1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 u64 bytenr, u64 num_bytes, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op, 86 int no_quota); 87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins, 100 int no_quota); 101 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 102 struct btrfs_root *extent_root, u64 flags, 103 int force); 104 static int find_next_key(struct btrfs_path *path, int level, 105 struct btrfs_key *key); 106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 107 int dump_block_groups); 108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 109 u64 num_bytes, int reserve, 110 int delalloc); 111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 112 u64 num_bytes); 113 int btrfs_pin_extent(struct btrfs_root *root, 114 u64 bytenr, u64 num_bytes, int reserved); 115 116 static noinline int 117 block_group_cache_done(struct btrfs_block_group_cache *cache) 118 { 119 smp_mb(); 120 return cache->cached == BTRFS_CACHE_FINISHED || 121 cache->cached == BTRFS_CACHE_ERROR; 122 } 123 124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 125 { 126 return (cache->flags & bits) == bits; 127 } 128 129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 130 { 131 atomic_inc(&cache->count); 132 } 133 134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 135 { 136 if (atomic_dec_and_test(&cache->count)) { 137 WARN_ON(cache->pinned > 0); 138 WARN_ON(cache->reserved > 0); 139 kfree(cache->free_space_ctl); 140 kfree(cache); 141 } 142 } 143 144 /* 145 * this adds the block group to the fs_info rb tree for the block group 146 * cache 147 */ 148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 149 struct btrfs_block_group_cache *block_group) 150 { 151 struct rb_node **p; 152 struct rb_node *parent = NULL; 153 struct btrfs_block_group_cache *cache; 154 155 spin_lock(&info->block_group_cache_lock); 156 p = &info->block_group_cache_tree.rb_node; 157 158 while (*p) { 159 parent = *p; 160 cache = rb_entry(parent, struct btrfs_block_group_cache, 161 cache_node); 162 if (block_group->key.objectid < cache->key.objectid) { 163 p = &(*p)->rb_left; 164 } else if (block_group->key.objectid > cache->key.objectid) { 165 p = &(*p)->rb_right; 166 } else { 167 spin_unlock(&info->block_group_cache_lock); 168 return -EEXIST; 169 } 170 } 171 172 rb_link_node(&block_group->cache_node, parent, p); 173 rb_insert_color(&block_group->cache_node, 174 &info->block_group_cache_tree); 175 176 if (info->first_logical_byte > block_group->key.objectid) 177 info->first_logical_byte = block_group->key.objectid; 178 179 spin_unlock(&info->block_group_cache_lock); 180 181 return 0; 182 } 183 184 /* 185 * This will return the block group at or after bytenr if contains is 0, else 186 * it will return the block group that contains the bytenr 187 */ 188 static struct btrfs_block_group_cache * 189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 190 int contains) 191 { 192 struct btrfs_block_group_cache *cache, *ret = NULL; 193 struct rb_node *n; 194 u64 end, start; 195 196 spin_lock(&info->block_group_cache_lock); 197 n = info->block_group_cache_tree.rb_node; 198 199 while (n) { 200 cache = rb_entry(n, struct btrfs_block_group_cache, 201 cache_node); 202 end = cache->key.objectid + cache->key.offset - 1; 203 start = cache->key.objectid; 204 205 if (bytenr < start) { 206 if (!contains && (!ret || start < ret->key.objectid)) 207 ret = cache; 208 n = n->rb_left; 209 } else if (bytenr > start) { 210 if (contains && bytenr <= end) { 211 ret = cache; 212 break; 213 } 214 n = n->rb_right; 215 } else { 216 ret = cache; 217 break; 218 } 219 } 220 if (ret) { 221 btrfs_get_block_group(ret); 222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 223 info->first_logical_byte = ret->key.objectid; 224 } 225 spin_unlock(&info->block_group_cache_lock); 226 227 return ret; 228 } 229 230 static int add_excluded_extent(struct btrfs_root *root, 231 u64 start, u64 num_bytes) 232 { 233 u64 end = start + num_bytes - 1; 234 set_extent_bits(&root->fs_info->freed_extents[0], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 set_extent_bits(&root->fs_info->freed_extents[1], 237 start, end, EXTENT_UPTODATE, GFP_NOFS); 238 return 0; 239 } 240 241 static void free_excluded_extents(struct btrfs_root *root, 242 struct btrfs_block_group_cache *cache) 243 { 244 u64 start, end; 245 246 start = cache->key.objectid; 247 end = start + cache->key.offset - 1; 248 249 clear_extent_bits(&root->fs_info->freed_extents[0], 250 start, end, EXTENT_UPTODATE, GFP_NOFS); 251 clear_extent_bits(&root->fs_info->freed_extents[1], 252 start, end, EXTENT_UPTODATE, GFP_NOFS); 253 } 254 255 static int exclude_super_stripes(struct btrfs_root *root, 256 struct btrfs_block_group_cache *cache) 257 { 258 u64 bytenr; 259 u64 *logical; 260 int stripe_len; 261 int i, nr, ret; 262 263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 265 cache->bytes_super += stripe_len; 266 ret = add_excluded_extent(root, cache->key.objectid, 267 stripe_len); 268 if (ret) 269 return ret; 270 } 271 272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 273 bytenr = btrfs_sb_offset(i); 274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 275 cache->key.objectid, bytenr, 276 0, &logical, &nr, &stripe_len); 277 if (ret) 278 return ret; 279 280 while (nr--) { 281 u64 start, len; 282 283 if (logical[nr] > cache->key.objectid + 284 cache->key.offset) 285 continue; 286 287 if (logical[nr] + stripe_len <= cache->key.objectid) 288 continue; 289 290 start = logical[nr]; 291 if (start < cache->key.objectid) { 292 start = cache->key.objectid; 293 len = (logical[nr] + stripe_len) - start; 294 } else { 295 len = min_t(u64, stripe_len, 296 cache->key.objectid + 297 cache->key.offset - start); 298 } 299 300 cache->bytes_super += len; 301 ret = add_excluded_extent(root, start, len); 302 if (ret) { 303 kfree(logical); 304 return ret; 305 } 306 } 307 308 kfree(logical); 309 } 310 return 0; 311 } 312 313 static struct btrfs_caching_control * 314 get_caching_control(struct btrfs_block_group_cache *cache) 315 { 316 struct btrfs_caching_control *ctl; 317 318 spin_lock(&cache->lock); 319 if (!cache->caching_ctl) { 320 spin_unlock(&cache->lock); 321 return NULL; 322 } 323 324 ctl = cache->caching_ctl; 325 atomic_inc(&ctl->count); 326 spin_unlock(&cache->lock); 327 return ctl; 328 } 329 330 static void put_caching_control(struct btrfs_caching_control *ctl) 331 { 332 if (atomic_dec_and_test(&ctl->count)) 333 kfree(ctl); 334 } 335 336 /* 337 * this is only called by cache_block_group, since we could have freed extents 338 * we need to check the pinned_extents for any extents that can't be used yet 339 * since their free space will be released as soon as the transaction commits. 340 */ 341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 342 struct btrfs_fs_info *info, u64 start, u64 end) 343 { 344 u64 extent_start, extent_end, size, total_added = 0; 345 int ret; 346 347 while (start < end) { 348 ret = find_first_extent_bit(info->pinned_extents, start, 349 &extent_start, &extent_end, 350 EXTENT_DIRTY | EXTENT_UPTODATE, 351 NULL); 352 if (ret) 353 break; 354 355 if (extent_start <= start) { 356 start = extent_end + 1; 357 } else if (extent_start > start && extent_start < end) { 358 size = extent_start - start; 359 total_added += size; 360 ret = btrfs_add_free_space(block_group, start, 361 size); 362 BUG_ON(ret); /* -ENOMEM or logic error */ 363 start = extent_end + 1; 364 } else { 365 break; 366 } 367 } 368 369 if (start < end) { 370 size = end - start; 371 total_added += size; 372 ret = btrfs_add_free_space(block_group, start, size); 373 BUG_ON(ret); /* -ENOMEM or logic error */ 374 } 375 376 return total_added; 377 } 378 379 static noinline void caching_thread(struct btrfs_work *work) 380 { 381 struct btrfs_block_group_cache *block_group; 382 struct btrfs_fs_info *fs_info; 383 struct btrfs_caching_control *caching_ctl; 384 struct btrfs_root *extent_root; 385 struct btrfs_path *path; 386 struct extent_buffer *leaf; 387 struct btrfs_key key; 388 u64 total_found = 0; 389 u64 last = 0; 390 u32 nritems; 391 int ret = -ENOMEM; 392 393 caching_ctl = container_of(work, struct btrfs_caching_control, work); 394 block_group = caching_ctl->block_group; 395 fs_info = block_group->fs_info; 396 extent_root = fs_info->extent_root; 397 398 path = btrfs_alloc_path(); 399 if (!path) 400 goto out; 401 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 403 404 /* 405 * We don't want to deadlock with somebody trying to allocate a new 406 * extent for the extent root while also trying to search the extent 407 * root to add free space. So we skip locking and search the commit 408 * root, since its read-only 409 */ 410 path->skip_locking = 1; 411 path->search_commit_root = 1; 412 path->reada = 1; 413 414 key.objectid = last; 415 key.offset = 0; 416 key.type = BTRFS_EXTENT_ITEM_KEY; 417 again: 418 mutex_lock(&caching_ctl->mutex); 419 /* need to make sure the commit_root doesn't disappear */ 420 down_read(&fs_info->commit_root_sem); 421 422 next: 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 424 if (ret < 0) 425 goto err; 426 427 leaf = path->nodes[0]; 428 nritems = btrfs_header_nritems(leaf); 429 430 while (1) { 431 if (btrfs_fs_closing(fs_info) > 1) { 432 last = (u64)-1; 433 break; 434 } 435 436 if (path->slots[0] < nritems) { 437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 438 } else { 439 ret = find_next_key(path, 0, &key); 440 if (ret) 441 break; 442 443 if (need_resched() || 444 rwsem_is_contended(&fs_info->commit_root_sem)) { 445 caching_ctl->progress = last; 446 btrfs_release_path(path); 447 up_read(&fs_info->commit_root_sem); 448 mutex_unlock(&caching_ctl->mutex); 449 cond_resched(); 450 goto again; 451 } 452 453 ret = btrfs_next_leaf(extent_root, path); 454 if (ret < 0) 455 goto err; 456 if (ret) 457 break; 458 leaf = path->nodes[0]; 459 nritems = btrfs_header_nritems(leaf); 460 continue; 461 } 462 463 if (key.objectid < last) { 464 key.objectid = last; 465 key.offset = 0; 466 key.type = BTRFS_EXTENT_ITEM_KEY; 467 468 caching_ctl->progress = last; 469 btrfs_release_path(path); 470 goto next; 471 } 472 473 if (key.objectid < block_group->key.objectid) { 474 path->slots[0]++; 475 continue; 476 } 477 478 if (key.objectid >= block_group->key.objectid + 479 block_group->key.offset) 480 break; 481 482 if (key.type == BTRFS_EXTENT_ITEM_KEY || 483 key.type == BTRFS_METADATA_ITEM_KEY) { 484 total_found += add_new_free_space(block_group, 485 fs_info, last, 486 key.objectid); 487 if (key.type == BTRFS_METADATA_ITEM_KEY) 488 last = key.objectid + 489 fs_info->tree_root->nodesize; 490 else 491 last = key.objectid + key.offset; 492 493 if (total_found > (1024 * 1024 * 2)) { 494 total_found = 0; 495 wake_up(&caching_ctl->wait); 496 } 497 } 498 path->slots[0]++; 499 } 500 ret = 0; 501 502 total_found += add_new_free_space(block_group, fs_info, last, 503 block_group->key.objectid + 504 block_group->key.offset); 505 caching_ctl->progress = (u64)-1; 506 507 spin_lock(&block_group->lock); 508 block_group->caching_ctl = NULL; 509 block_group->cached = BTRFS_CACHE_FINISHED; 510 spin_unlock(&block_group->lock); 511 512 err: 513 btrfs_free_path(path); 514 up_read(&fs_info->commit_root_sem); 515 516 free_excluded_extents(extent_root, block_group); 517 518 mutex_unlock(&caching_ctl->mutex); 519 out: 520 if (ret) { 521 spin_lock(&block_group->lock); 522 block_group->caching_ctl = NULL; 523 block_group->cached = BTRFS_CACHE_ERROR; 524 spin_unlock(&block_group->lock); 525 } 526 wake_up(&caching_ctl->wait); 527 528 put_caching_control(caching_ctl); 529 btrfs_put_block_group(block_group); 530 } 531 532 static int cache_block_group(struct btrfs_block_group_cache *cache, 533 int load_cache_only) 534 { 535 DEFINE_WAIT(wait); 536 struct btrfs_fs_info *fs_info = cache->fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 int ret = 0; 539 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 541 if (!caching_ctl) 542 return -ENOMEM; 543 544 INIT_LIST_HEAD(&caching_ctl->list); 545 mutex_init(&caching_ctl->mutex); 546 init_waitqueue_head(&caching_ctl->wait); 547 caching_ctl->block_group = cache; 548 caching_ctl->progress = cache->key.objectid; 549 atomic_set(&caching_ctl->count, 1); 550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 551 caching_thread, NULL, NULL); 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 mutex_lock(&caching_ctl->mutex); 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 caching_ctl->progress = (u64)-1; 601 } else { 602 if (load_cache_only) { 603 cache->caching_ctl = NULL; 604 cache->cached = BTRFS_CACHE_NO; 605 } else { 606 cache->cached = BTRFS_CACHE_STARTED; 607 cache->has_caching_ctl = 1; 608 } 609 } 610 spin_unlock(&cache->lock); 611 mutex_unlock(&caching_ctl->mutex); 612 613 wake_up(&caching_ctl->wait); 614 if (ret == 1) { 615 put_caching_control(caching_ctl); 616 free_excluded_extents(fs_info->extent_root, cache); 617 return 0; 618 } 619 } else { 620 /* 621 * We are not going to do the fast caching, set cached to the 622 * appropriate value and wakeup any waiters. 623 */ 624 spin_lock(&cache->lock); 625 if (load_cache_only) { 626 cache->caching_ctl = NULL; 627 cache->cached = BTRFS_CACHE_NO; 628 } else { 629 cache->cached = BTRFS_CACHE_STARTED; 630 cache->has_caching_ctl = 1; 631 } 632 spin_unlock(&cache->lock); 633 wake_up(&caching_ctl->wait); 634 } 635 636 if (load_cache_only) { 637 put_caching_control(caching_ctl); 638 return 0; 639 } 640 641 down_write(&fs_info->commit_root_sem); 642 atomic_inc(&caching_ctl->count); 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 644 up_write(&fs_info->commit_root_sem); 645 646 btrfs_get_block_group(cache); 647 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 649 650 return ret; 651 } 652 653 /* 654 * return the block group that starts at or after bytenr 655 */ 656 static struct btrfs_block_group_cache * 657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 658 { 659 struct btrfs_block_group_cache *cache; 660 661 cache = block_group_cache_tree_search(info, bytenr, 0); 662 663 return cache; 664 } 665 666 /* 667 * return the block group that contains the given bytenr 668 */ 669 struct btrfs_block_group_cache *btrfs_lookup_block_group( 670 struct btrfs_fs_info *info, 671 u64 bytenr) 672 { 673 struct btrfs_block_group_cache *cache; 674 675 cache = block_group_cache_tree_search(info, bytenr, 1); 676 677 return cache; 678 } 679 680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 681 u64 flags) 682 { 683 struct list_head *head = &info->space_info; 684 struct btrfs_space_info *found; 685 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 687 688 rcu_read_lock(); 689 list_for_each_entry_rcu(found, head, list) { 690 if (found->flags & flags) { 691 rcu_read_unlock(); 692 return found; 693 } 694 } 695 rcu_read_unlock(); 696 return NULL; 697 } 698 699 /* 700 * after adding space to the filesystem, we need to clear the full flags 701 * on all the space infos. 702 */ 703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 704 { 705 struct list_head *head = &info->space_info; 706 struct btrfs_space_info *found; 707 708 rcu_read_lock(); 709 list_for_each_entry_rcu(found, head, list) 710 found->full = 0; 711 rcu_read_unlock(); 712 } 713 714 /* simple helper to search for an existing data extent at a given offset */ 715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 716 { 717 int ret; 718 struct btrfs_key key; 719 struct btrfs_path *path; 720 721 path = btrfs_alloc_path(); 722 if (!path) 723 return -ENOMEM; 724 725 key.objectid = start; 726 key.offset = len; 727 key.type = BTRFS_EXTENT_ITEM_KEY; 728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 729 0, 0); 730 btrfs_free_path(path); 731 return ret; 732 } 733 734 /* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746 { 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->nodesize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (!trans) { 772 path->skip_locking = 1; 773 path->search_commit_root = 1; 774 } 775 776 search_again: 777 key.objectid = bytenr; 778 key.offset = offset; 779 if (metadata) 780 key.type = BTRFS_METADATA_ITEM_KEY; 781 else 782 key.type = BTRFS_EXTENT_ITEM_KEY; 783 784 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 785 &key, path, 0, 0); 786 if (ret < 0) 787 goto out_free; 788 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 790 if (path->slots[0]) { 791 path->slots[0]--; 792 btrfs_item_key_to_cpu(path->nodes[0], &key, 793 path->slots[0]); 794 if (key.objectid == bytenr && 795 key.type == BTRFS_EXTENT_ITEM_KEY && 796 key.offset == root->nodesize) 797 ret = 0; 798 } 799 } 800 801 if (ret == 0) { 802 leaf = path->nodes[0]; 803 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 804 if (item_size >= sizeof(*ei)) { 805 ei = btrfs_item_ptr(leaf, path->slots[0], 806 struct btrfs_extent_item); 807 num_refs = btrfs_extent_refs(leaf, ei); 808 extent_flags = btrfs_extent_flags(leaf, ei); 809 } else { 810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 struct btrfs_extent_item_v0 *ei0; 812 BUG_ON(item_size != sizeof(*ei0)); 813 ei0 = btrfs_item_ptr(leaf, path->slots[0], 814 struct btrfs_extent_item_v0); 815 num_refs = btrfs_extent_refs_v0(leaf, ei0); 816 /* FIXME: this isn't correct for data */ 817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 818 #else 819 BUG(); 820 #endif 821 } 822 BUG_ON(num_refs == 0); 823 } else { 824 num_refs = 0; 825 extent_flags = 0; 826 ret = 0; 827 } 828 829 if (!trans) 830 goto out; 831 832 delayed_refs = &trans->transaction->delayed_refs; 833 spin_lock(&delayed_refs->lock); 834 head = btrfs_find_delayed_ref_head(trans, bytenr); 835 if (head) { 836 if (!mutex_trylock(&head->mutex)) { 837 atomic_inc(&head->node.refs); 838 spin_unlock(&delayed_refs->lock); 839 840 btrfs_release_path(path); 841 842 /* 843 * Mutex was contended, block until it's released and try 844 * again 845 */ 846 mutex_lock(&head->mutex); 847 mutex_unlock(&head->mutex); 848 btrfs_put_delayed_ref(&head->node); 849 goto search_again; 850 } 851 spin_lock(&head->lock); 852 if (head->extent_op && head->extent_op->update_flags) 853 extent_flags |= head->extent_op->flags_to_set; 854 else 855 BUG_ON(num_refs == 0); 856 857 num_refs += head->node.ref_mod; 858 spin_unlock(&head->lock); 859 mutex_unlock(&head->mutex); 860 } 861 spin_unlock(&delayed_refs->lock); 862 out: 863 WARN_ON(num_refs == 0); 864 if (refs) 865 *refs = num_refs; 866 if (flags) 867 *flags = extent_flags; 868 out_free: 869 btrfs_free_path(path); 870 return ret; 871 } 872 873 /* 874 * Back reference rules. Back refs have three main goals: 875 * 876 * 1) differentiate between all holders of references to an extent so that 877 * when a reference is dropped we can make sure it was a valid reference 878 * before freeing the extent. 879 * 880 * 2) Provide enough information to quickly find the holders of an extent 881 * if we notice a given block is corrupted or bad. 882 * 883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 884 * maintenance. This is actually the same as #2, but with a slightly 885 * different use case. 886 * 887 * There are two kinds of back refs. The implicit back refs is optimized 888 * for pointers in non-shared tree blocks. For a given pointer in a block, 889 * back refs of this kind provide information about the block's owner tree 890 * and the pointer's key. These information allow us to find the block by 891 * b-tree searching. The full back refs is for pointers in tree blocks not 892 * referenced by their owner trees. The location of tree block is recorded 893 * in the back refs. Actually the full back refs is generic, and can be 894 * used in all cases the implicit back refs is used. The major shortcoming 895 * of the full back refs is its overhead. Every time a tree block gets 896 * COWed, we have to update back refs entry for all pointers in it. 897 * 898 * For a newly allocated tree block, we use implicit back refs for 899 * pointers in it. This means most tree related operations only involve 900 * implicit back refs. For a tree block created in old transaction, the 901 * only way to drop a reference to it is COW it. So we can detect the 902 * event that tree block loses its owner tree's reference and do the 903 * back refs conversion. 904 * 905 * When a tree block is COW'd through a tree, there are four cases: 906 * 907 * The reference count of the block is one and the tree is the block's 908 * owner tree. Nothing to do in this case. 909 * 910 * The reference count of the block is one and the tree is not the 911 * block's owner tree. In this case, full back refs is used for pointers 912 * in the block. Remove these full back refs, add implicit back refs for 913 * every pointers in the new block. 914 * 915 * The reference count of the block is greater than one and the tree is 916 * the block's owner tree. In this case, implicit back refs is used for 917 * pointers in the block. Add full back refs for every pointers in the 918 * block, increase lower level extents' reference counts. The original 919 * implicit back refs are entailed to the new block. 920 * 921 * The reference count of the block is greater than one and the tree is 922 * not the block's owner tree. Add implicit back refs for every pointer in 923 * the new block, increase lower level extents' reference count. 924 * 925 * Back Reference Key composing: 926 * 927 * The key objectid corresponds to the first byte in the extent, 928 * The key type is used to differentiate between types of back refs. 929 * There are different meanings of the key offset for different types 930 * of back refs. 931 * 932 * File extents can be referenced by: 933 * 934 * - multiple snapshots, subvolumes, or different generations in one subvol 935 * - different files inside a single subvolume 936 * - different offsets inside a file (bookend extents in file.c) 937 * 938 * The extent ref structure for the implicit back refs has fields for: 939 * 940 * - Objectid of the subvolume root 941 * - objectid of the file holding the reference 942 * - original offset in the file 943 * - how many bookend extents 944 * 945 * The key offset for the implicit back refs is hash of the first 946 * three fields. 947 * 948 * The extent ref structure for the full back refs has field for: 949 * 950 * - number of pointers in the tree leaf 951 * 952 * The key offset for the implicit back refs is the first byte of 953 * the tree leaf 954 * 955 * When a file extent is allocated, The implicit back refs is used. 956 * the fields are filled in: 957 * 958 * (root_key.objectid, inode objectid, offset in file, 1) 959 * 960 * When a file extent is removed file truncation, we find the 961 * corresponding implicit back refs and check the following fields: 962 * 963 * (btrfs_header_owner(leaf), inode objectid, offset in file) 964 * 965 * Btree extents can be referenced by: 966 * 967 * - Different subvolumes 968 * 969 * Both the implicit back refs and the full back refs for tree blocks 970 * only consist of key. The key offset for the implicit back refs is 971 * objectid of block's owner tree. The key offset for the full back refs 972 * is the first byte of parent block. 973 * 974 * When implicit back refs is used, information about the lowest key and 975 * level of the tree block are required. These information are stored in 976 * tree block info structure. 977 */ 978 979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct btrfs_path *path, 983 u64 owner, u32 extra_size) 984 { 985 struct btrfs_extent_item *item; 986 struct btrfs_extent_item_v0 *ei0; 987 struct btrfs_extent_ref_v0 *ref0; 988 struct btrfs_tree_block_info *bi; 989 struct extent_buffer *leaf; 990 struct btrfs_key key; 991 struct btrfs_key found_key; 992 u32 new_size = sizeof(*item); 993 u64 refs; 994 int ret; 995 996 leaf = path->nodes[0]; 997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 998 999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1000 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_extent_item_v0); 1002 refs = btrfs_extent_refs_v0(leaf, ei0); 1003 1004 if (owner == (u64)-1) { 1005 while (1) { 1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1007 ret = btrfs_next_leaf(root, path); 1008 if (ret < 0) 1009 return ret; 1010 BUG_ON(ret > 0); /* Corruption */ 1011 leaf = path->nodes[0]; 1012 } 1013 btrfs_item_key_to_cpu(leaf, &found_key, 1014 path->slots[0]); 1015 BUG_ON(key.objectid != found_key.objectid); 1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1017 path->slots[0]++; 1018 continue; 1019 } 1020 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1021 struct btrfs_extent_ref_v0); 1022 owner = btrfs_ref_objectid_v0(leaf, ref0); 1023 break; 1024 } 1025 } 1026 btrfs_release_path(path); 1027 1028 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1029 new_size += sizeof(*bi); 1030 1031 new_size -= sizeof(*ei0); 1032 ret = btrfs_search_slot(trans, root, &key, path, 1033 new_size + extra_size, 1); 1034 if (ret < 0) 1035 return ret; 1036 BUG_ON(ret); /* Corruption */ 1037 1038 btrfs_extend_item(root, path, new_size); 1039 1040 leaf = path->nodes[0]; 1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1042 btrfs_set_extent_refs(leaf, item, refs); 1043 /* FIXME: get real generation */ 1044 btrfs_set_extent_generation(leaf, item, 0); 1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1046 btrfs_set_extent_flags(leaf, item, 1047 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1048 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1049 bi = (struct btrfs_tree_block_info *)(item + 1); 1050 /* FIXME: get first key of the block */ 1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1052 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1053 } else { 1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1055 } 1056 btrfs_mark_buffer_dirty(leaf); 1057 return 0; 1058 } 1059 #endif 1060 1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1062 { 1063 u32 high_crc = ~(u32)0; 1064 u32 low_crc = ~(u32)0; 1065 __le64 lenum; 1066 1067 lenum = cpu_to_le64(root_objectid); 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1069 lenum = cpu_to_le64(owner); 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1071 lenum = cpu_to_le64(offset); 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1073 1074 return ((u64)high_crc << 31) ^ (u64)low_crc; 1075 } 1076 1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1078 struct btrfs_extent_data_ref *ref) 1079 { 1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1081 btrfs_extent_data_ref_objectid(leaf, ref), 1082 btrfs_extent_data_ref_offset(leaf, ref)); 1083 } 1084 1085 static int match_extent_data_ref(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref, 1087 u64 root_objectid, u64 owner, u64 offset) 1088 { 1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1091 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1092 return 0; 1093 return 1; 1094 } 1095 1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1097 struct btrfs_root *root, 1098 struct btrfs_path *path, 1099 u64 bytenr, u64 parent, 1100 u64 root_objectid, 1101 u64 owner, u64 offset) 1102 { 1103 struct btrfs_key key; 1104 struct btrfs_extent_data_ref *ref; 1105 struct extent_buffer *leaf; 1106 u32 nritems; 1107 int ret; 1108 int recow; 1109 int err = -ENOENT; 1110 1111 key.objectid = bytenr; 1112 if (parent) { 1113 key.type = BTRFS_SHARED_DATA_REF_KEY; 1114 key.offset = parent; 1115 } else { 1116 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1117 key.offset = hash_extent_data_ref(root_objectid, 1118 owner, offset); 1119 } 1120 again: 1121 recow = 0; 1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1123 if (ret < 0) { 1124 err = ret; 1125 goto fail; 1126 } 1127 1128 if (parent) { 1129 if (!ret) 1130 return 0; 1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1132 key.type = BTRFS_EXTENT_REF_V0_KEY; 1133 btrfs_release_path(path); 1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1135 if (ret < 0) { 1136 err = ret; 1137 goto fail; 1138 } 1139 if (!ret) 1140 return 0; 1141 #endif 1142 goto fail; 1143 } 1144 1145 leaf = path->nodes[0]; 1146 nritems = btrfs_header_nritems(leaf); 1147 while (1) { 1148 if (path->slots[0] >= nritems) { 1149 ret = btrfs_next_leaf(root, path); 1150 if (ret < 0) 1151 err = ret; 1152 if (ret) 1153 goto fail; 1154 1155 leaf = path->nodes[0]; 1156 nritems = btrfs_header_nritems(leaf); 1157 recow = 1; 1158 } 1159 1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1161 if (key.objectid != bytenr || 1162 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1163 goto fail; 1164 1165 ref = btrfs_item_ptr(leaf, path->slots[0], 1166 struct btrfs_extent_data_ref); 1167 1168 if (match_extent_data_ref(leaf, ref, root_objectid, 1169 owner, offset)) { 1170 if (recow) { 1171 btrfs_release_path(path); 1172 goto again; 1173 } 1174 err = 0; 1175 break; 1176 } 1177 path->slots[0]++; 1178 } 1179 fail: 1180 return err; 1181 } 1182 1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1184 struct btrfs_root *root, 1185 struct btrfs_path *path, 1186 u64 bytenr, u64 parent, 1187 u64 root_objectid, u64 owner, 1188 u64 offset, int refs_to_add) 1189 { 1190 struct btrfs_key key; 1191 struct extent_buffer *leaf; 1192 u32 size; 1193 u32 num_refs; 1194 int ret; 1195 1196 key.objectid = bytenr; 1197 if (parent) { 1198 key.type = BTRFS_SHARED_DATA_REF_KEY; 1199 key.offset = parent; 1200 size = sizeof(struct btrfs_shared_data_ref); 1201 } else { 1202 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1203 key.offset = hash_extent_data_ref(root_objectid, 1204 owner, offset); 1205 size = sizeof(struct btrfs_extent_data_ref); 1206 } 1207 1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1209 if (ret && ret != -EEXIST) 1210 goto fail; 1211 1212 leaf = path->nodes[0]; 1213 if (parent) { 1214 struct btrfs_shared_data_ref *ref; 1215 ref = btrfs_item_ptr(leaf, path->slots[0], 1216 struct btrfs_shared_data_ref); 1217 if (ret == 0) { 1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1219 } else { 1220 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1221 num_refs += refs_to_add; 1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1223 } 1224 } else { 1225 struct btrfs_extent_data_ref *ref; 1226 while (ret == -EEXIST) { 1227 ref = btrfs_item_ptr(leaf, path->slots[0], 1228 struct btrfs_extent_data_ref); 1229 if (match_extent_data_ref(leaf, ref, root_objectid, 1230 owner, offset)) 1231 break; 1232 btrfs_release_path(path); 1233 key.offset++; 1234 ret = btrfs_insert_empty_item(trans, root, path, &key, 1235 size); 1236 if (ret && ret != -EEXIST) 1237 goto fail; 1238 1239 leaf = path->nodes[0]; 1240 } 1241 ref = btrfs_item_ptr(leaf, path->slots[0], 1242 struct btrfs_extent_data_ref); 1243 if (ret == 0) { 1244 btrfs_set_extent_data_ref_root(leaf, ref, 1245 root_objectid); 1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1249 } else { 1250 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1251 num_refs += refs_to_add; 1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1253 } 1254 } 1255 btrfs_mark_buffer_dirty(leaf); 1256 ret = 0; 1257 fail: 1258 btrfs_release_path(path); 1259 return ret; 1260 } 1261 1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1263 struct btrfs_root *root, 1264 struct btrfs_path *path, 1265 int refs_to_drop, int *last_ref) 1266 { 1267 struct btrfs_key key; 1268 struct btrfs_extent_data_ref *ref1 = NULL; 1269 struct btrfs_shared_data_ref *ref2 = NULL; 1270 struct extent_buffer *leaf; 1271 u32 num_refs = 0; 1272 int ret = 0; 1273 1274 leaf = path->nodes[0]; 1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1276 1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1278 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1279 struct btrfs_extent_data_ref); 1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1282 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1283 struct btrfs_shared_data_ref); 1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1287 struct btrfs_extent_ref_v0 *ref0; 1288 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1289 struct btrfs_extent_ref_v0); 1290 num_refs = btrfs_ref_count_v0(leaf, ref0); 1291 #endif 1292 } else { 1293 BUG(); 1294 } 1295 1296 BUG_ON(num_refs < refs_to_drop); 1297 num_refs -= refs_to_drop; 1298 1299 if (num_refs == 0) { 1300 ret = btrfs_del_item(trans, root, path); 1301 *last_ref = 1; 1302 } else { 1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1308 else { 1309 struct btrfs_extent_ref_v0 *ref0; 1310 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1311 struct btrfs_extent_ref_v0); 1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1313 } 1314 #endif 1315 btrfs_mark_buffer_dirty(leaf); 1316 } 1317 return ret; 1318 } 1319 1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1321 struct btrfs_path *path, 1322 struct btrfs_extent_inline_ref *iref) 1323 { 1324 struct btrfs_key key; 1325 struct extent_buffer *leaf; 1326 struct btrfs_extent_data_ref *ref1; 1327 struct btrfs_shared_data_ref *ref2; 1328 u32 num_refs = 0; 1329 1330 leaf = path->nodes[0]; 1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1332 if (iref) { 1333 if (btrfs_extent_inline_ref_type(leaf, iref) == 1334 BTRFS_EXTENT_DATA_REF_KEY) { 1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1337 } else { 1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1340 } 1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1343 struct btrfs_extent_data_ref); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1346 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1347 struct btrfs_shared_data_ref); 1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1351 struct btrfs_extent_ref_v0 *ref0; 1352 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_extent_ref_v0); 1354 num_refs = btrfs_ref_count_v0(leaf, ref0); 1355 #endif 1356 } else { 1357 WARN_ON(1); 1358 } 1359 return num_refs; 1360 } 1361 1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root, 1364 struct btrfs_path *path, 1365 u64 bytenr, u64 parent, 1366 u64 root_objectid) 1367 { 1368 struct btrfs_key key; 1369 int ret; 1370 1371 key.objectid = bytenr; 1372 if (parent) { 1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1374 key.offset = parent; 1375 } else { 1376 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1377 key.offset = root_objectid; 1378 } 1379 1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1381 if (ret > 0) 1382 ret = -ENOENT; 1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1384 if (ret == -ENOENT && parent) { 1385 btrfs_release_path(path); 1386 key.type = BTRFS_EXTENT_REF_V0_KEY; 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 } 1391 #endif 1392 return ret; 1393 } 1394 1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root, 1397 struct btrfs_path *path, 1398 u64 bytenr, u64 parent, 1399 u64 root_objectid) 1400 { 1401 struct btrfs_key key; 1402 int ret; 1403 1404 key.objectid = bytenr; 1405 if (parent) { 1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1407 key.offset = parent; 1408 } else { 1409 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1410 key.offset = root_objectid; 1411 } 1412 1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1414 btrfs_release_path(path); 1415 return ret; 1416 } 1417 1418 static inline int extent_ref_type(u64 parent, u64 owner) 1419 { 1420 int type; 1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1422 if (parent > 0) 1423 type = BTRFS_SHARED_BLOCK_REF_KEY; 1424 else 1425 type = BTRFS_TREE_BLOCK_REF_KEY; 1426 } else { 1427 if (parent > 0) 1428 type = BTRFS_SHARED_DATA_REF_KEY; 1429 else 1430 type = BTRFS_EXTENT_DATA_REF_KEY; 1431 } 1432 return type; 1433 } 1434 1435 static int find_next_key(struct btrfs_path *path, int level, 1436 struct btrfs_key *key) 1437 1438 { 1439 for (; level < BTRFS_MAX_LEVEL; level++) { 1440 if (!path->nodes[level]) 1441 break; 1442 if (path->slots[level] + 1 >= 1443 btrfs_header_nritems(path->nodes[level])) 1444 continue; 1445 if (level == 0) 1446 btrfs_item_key_to_cpu(path->nodes[level], key, 1447 path->slots[level] + 1); 1448 else 1449 btrfs_node_key_to_cpu(path->nodes[level], key, 1450 path->slots[level] + 1); 1451 return 0; 1452 } 1453 return 1; 1454 } 1455 1456 /* 1457 * look for inline back ref. if back ref is found, *ref_ret is set 1458 * to the address of inline back ref, and 0 is returned. 1459 * 1460 * if back ref isn't found, *ref_ret is set to the address where it 1461 * should be inserted, and -ENOENT is returned. 1462 * 1463 * if insert is true and there are too many inline back refs, the path 1464 * points to the extent item, and -EAGAIN is returned. 1465 * 1466 * NOTE: inline back refs are ordered in the same way that back ref 1467 * items in the tree are ordered. 1468 */ 1469 static noinline_for_stack 1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1471 struct btrfs_root *root, 1472 struct btrfs_path *path, 1473 struct btrfs_extent_inline_ref **ref_ret, 1474 u64 bytenr, u64 num_bytes, 1475 u64 parent, u64 root_objectid, 1476 u64 owner, u64 offset, int insert) 1477 { 1478 struct btrfs_key key; 1479 struct extent_buffer *leaf; 1480 struct btrfs_extent_item *ei; 1481 struct btrfs_extent_inline_ref *iref; 1482 u64 flags; 1483 u64 item_size; 1484 unsigned long ptr; 1485 unsigned long end; 1486 int extra_size; 1487 int type; 1488 int want; 1489 int ret; 1490 int err = 0; 1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1492 SKINNY_METADATA); 1493 1494 key.objectid = bytenr; 1495 key.type = BTRFS_EXTENT_ITEM_KEY; 1496 key.offset = num_bytes; 1497 1498 want = extent_ref_type(parent, owner); 1499 if (insert) { 1500 extra_size = btrfs_extent_inline_ref_size(want); 1501 path->keep_locks = 1; 1502 } else 1503 extra_size = -1; 1504 1505 /* 1506 * Owner is our parent level, so we can just add one to get the level 1507 * for the block we are interested in. 1508 */ 1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1510 key.type = BTRFS_METADATA_ITEM_KEY; 1511 key.offset = owner; 1512 } 1513 1514 again: 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1516 if (ret < 0) { 1517 err = ret; 1518 goto out; 1519 } 1520 1521 /* 1522 * We may be a newly converted file system which still has the old fat 1523 * extent entries for metadata, so try and see if we have one of those. 1524 */ 1525 if (ret > 0 && skinny_metadata) { 1526 skinny_metadata = false; 1527 if (path->slots[0]) { 1528 path->slots[0]--; 1529 btrfs_item_key_to_cpu(path->nodes[0], &key, 1530 path->slots[0]); 1531 if (key.objectid == bytenr && 1532 key.type == BTRFS_EXTENT_ITEM_KEY && 1533 key.offset == num_bytes) 1534 ret = 0; 1535 } 1536 if (ret) { 1537 key.objectid = bytenr; 1538 key.type = BTRFS_EXTENT_ITEM_KEY; 1539 key.offset = num_bytes; 1540 btrfs_release_path(path); 1541 goto again; 1542 } 1543 } 1544 1545 if (ret && !insert) { 1546 err = -ENOENT; 1547 goto out; 1548 } else if (WARN_ON(ret)) { 1549 err = -EIO; 1550 goto out; 1551 } 1552 1553 leaf = path->nodes[0]; 1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1556 if (item_size < sizeof(*ei)) { 1557 if (!insert) { 1558 err = -ENOENT; 1559 goto out; 1560 } 1561 ret = convert_extent_item_v0(trans, root, path, owner, 1562 extra_size); 1563 if (ret < 0) { 1564 err = ret; 1565 goto out; 1566 } 1567 leaf = path->nodes[0]; 1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1569 } 1570 #endif 1571 BUG_ON(item_size < sizeof(*ei)); 1572 1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1574 flags = btrfs_extent_flags(leaf, ei); 1575 1576 ptr = (unsigned long)(ei + 1); 1577 end = (unsigned long)ei + item_size; 1578 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1580 ptr += sizeof(struct btrfs_tree_block_info); 1581 BUG_ON(ptr > end); 1582 } 1583 1584 err = -ENOENT; 1585 while (1) { 1586 if (ptr >= end) { 1587 WARN_ON(ptr > end); 1588 break; 1589 } 1590 iref = (struct btrfs_extent_inline_ref *)ptr; 1591 type = btrfs_extent_inline_ref_type(leaf, iref); 1592 if (want < type) 1593 break; 1594 if (want > type) { 1595 ptr += btrfs_extent_inline_ref_size(type); 1596 continue; 1597 } 1598 1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1600 struct btrfs_extent_data_ref *dref; 1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1602 if (match_extent_data_ref(leaf, dref, root_objectid, 1603 owner, offset)) { 1604 err = 0; 1605 break; 1606 } 1607 if (hash_extent_data_ref_item(leaf, dref) < 1608 hash_extent_data_ref(root_objectid, owner, offset)) 1609 break; 1610 } else { 1611 u64 ref_offset; 1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1613 if (parent > 0) { 1614 if (parent == ref_offset) { 1615 err = 0; 1616 break; 1617 } 1618 if (ref_offset < parent) 1619 break; 1620 } else { 1621 if (root_objectid == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < root_objectid) 1626 break; 1627 } 1628 } 1629 ptr += btrfs_extent_inline_ref_size(type); 1630 } 1631 if (err == -ENOENT && insert) { 1632 if (item_size + extra_size >= 1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1634 err = -EAGAIN; 1635 goto out; 1636 } 1637 /* 1638 * To add new inline back ref, we have to make sure 1639 * there is no corresponding back ref item. 1640 * For simplicity, we just do not add new inline back 1641 * ref if there is any kind of item for this block 1642 */ 1643 if (find_next_key(path, 0, &key) == 0 && 1644 key.objectid == bytenr && 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1646 err = -EAGAIN; 1647 goto out; 1648 } 1649 } 1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1651 out: 1652 if (insert) { 1653 path->keep_locks = 0; 1654 btrfs_unlock_up_safe(path, 1); 1655 } 1656 return err; 1657 } 1658 1659 /* 1660 * helper to add new inline back ref 1661 */ 1662 static noinline_for_stack 1663 void setup_inline_extent_backref(struct btrfs_root *root, 1664 struct btrfs_path *path, 1665 struct btrfs_extent_inline_ref *iref, 1666 u64 parent, u64 root_objectid, 1667 u64 owner, u64 offset, int refs_to_add, 1668 struct btrfs_delayed_extent_op *extent_op) 1669 { 1670 struct extent_buffer *leaf; 1671 struct btrfs_extent_item *ei; 1672 unsigned long ptr; 1673 unsigned long end; 1674 unsigned long item_offset; 1675 u64 refs; 1676 int size; 1677 int type; 1678 1679 leaf = path->nodes[0]; 1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1681 item_offset = (unsigned long)iref - (unsigned long)ei; 1682 1683 type = extent_ref_type(parent, owner); 1684 size = btrfs_extent_inline_ref_size(type); 1685 1686 btrfs_extend_item(root, path, size); 1687 1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1689 refs = btrfs_extent_refs(leaf, ei); 1690 refs += refs_to_add; 1691 btrfs_set_extent_refs(leaf, ei, refs); 1692 if (extent_op) 1693 __run_delayed_extent_op(extent_op, leaf, ei); 1694 1695 ptr = (unsigned long)ei + item_offset; 1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1697 if (ptr < end - size) 1698 memmove_extent_buffer(leaf, ptr + size, ptr, 1699 end - size - ptr); 1700 1701 iref = (struct btrfs_extent_inline_ref *)ptr; 1702 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1704 struct btrfs_extent_data_ref *dref; 1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1711 struct btrfs_shared_data_ref *sref; 1712 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1717 } else { 1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1719 } 1720 btrfs_mark_buffer_dirty(leaf); 1721 } 1722 1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, 1726 struct btrfs_extent_inline_ref **ref_ret, 1727 u64 bytenr, u64 num_bytes, u64 parent, 1728 u64 root_objectid, u64 owner, u64 offset) 1729 { 1730 int ret; 1731 1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1733 bytenr, num_bytes, parent, 1734 root_objectid, owner, offset, 0); 1735 if (ret != -ENOENT) 1736 return ret; 1737 1738 btrfs_release_path(path); 1739 *ref_ret = NULL; 1740 1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1743 root_objectid); 1744 } else { 1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1746 root_objectid, owner, offset); 1747 } 1748 return ret; 1749 } 1750 1751 /* 1752 * helper to update/remove inline back ref 1753 */ 1754 static noinline_for_stack 1755 void update_inline_extent_backref(struct btrfs_root *root, 1756 struct btrfs_path *path, 1757 struct btrfs_extent_inline_ref *iref, 1758 int refs_to_mod, 1759 struct btrfs_delayed_extent_op *extent_op, 1760 int *last_ref) 1761 { 1762 struct extent_buffer *leaf; 1763 struct btrfs_extent_item *ei; 1764 struct btrfs_extent_data_ref *dref = NULL; 1765 struct btrfs_shared_data_ref *sref = NULL; 1766 unsigned long ptr; 1767 unsigned long end; 1768 u32 item_size; 1769 int size; 1770 int type; 1771 u64 refs; 1772 1773 leaf = path->nodes[0]; 1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1775 refs = btrfs_extent_refs(leaf, ei); 1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1777 refs += refs_to_mod; 1778 btrfs_set_extent_refs(leaf, ei, refs); 1779 if (extent_op) 1780 __run_delayed_extent_op(extent_op, leaf, ei); 1781 1782 type = btrfs_extent_inline_ref_type(leaf, iref); 1783 1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1786 refs = btrfs_extent_data_ref_count(leaf, dref); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1789 refs = btrfs_shared_data_ref_count(leaf, sref); 1790 } else { 1791 refs = 1; 1792 BUG_ON(refs_to_mod != -1); 1793 } 1794 1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1796 refs += refs_to_mod; 1797 1798 if (refs > 0) { 1799 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1800 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1801 else 1802 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1803 } else { 1804 *last_ref = 1; 1805 size = btrfs_extent_inline_ref_size(type); 1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1807 ptr = (unsigned long)iref; 1808 end = (unsigned long)ei + item_size; 1809 if (ptr + size < end) 1810 memmove_extent_buffer(leaf, ptr, ptr + size, 1811 end - ptr - size); 1812 item_size -= size; 1813 btrfs_truncate_item(root, path, item_size, 1); 1814 } 1815 btrfs_mark_buffer_dirty(leaf); 1816 } 1817 1818 static noinline_for_stack 1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1820 struct btrfs_root *root, 1821 struct btrfs_path *path, 1822 u64 bytenr, u64 num_bytes, u64 parent, 1823 u64 root_objectid, u64 owner, 1824 u64 offset, int refs_to_add, 1825 struct btrfs_delayed_extent_op *extent_op) 1826 { 1827 struct btrfs_extent_inline_ref *iref; 1828 int ret; 1829 1830 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1831 bytenr, num_bytes, parent, 1832 root_objectid, owner, offset, 1); 1833 if (ret == 0) { 1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1835 update_inline_extent_backref(root, path, iref, 1836 refs_to_add, extent_op, NULL); 1837 } else if (ret == -ENOENT) { 1838 setup_inline_extent_backref(root, path, iref, parent, 1839 root_objectid, owner, offset, 1840 refs_to_add, extent_op); 1841 ret = 0; 1842 } 1843 return ret; 1844 } 1845 1846 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1847 struct btrfs_root *root, 1848 struct btrfs_path *path, 1849 u64 bytenr, u64 parent, u64 root_objectid, 1850 u64 owner, u64 offset, int refs_to_add) 1851 { 1852 int ret; 1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1854 BUG_ON(refs_to_add != 1); 1855 ret = insert_tree_block_ref(trans, root, path, bytenr, 1856 parent, root_objectid); 1857 } else { 1858 ret = insert_extent_data_ref(trans, root, path, bytenr, 1859 parent, root_objectid, 1860 owner, offset, refs_to_add); 1861 } 1862 return ret; 1863 } 1864 1865 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1866 struct btrfs_root *root, 1867 struct btrfs_path *path, 1868 struct btrfs_extent_inline_ref *iref, 1869 int refs_to_drop, int is_data, int *last_ref) 1870 { 1871 int ret = 0; 1872 1873 BUG_ON(!is_data && refs_to_drop != 1); 1874 if (iref) { 1875 update_inline_extent_backref(root, path, iref, 1876 -refs_to_drop, NULL, last_ref); 1877 } else if (is_data) { 1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1879 last_ref); 1880 } else { 1881 *last_ref = 1; 1882 ret = btrfs_del_item(trans, root, path); 1883 } 1884 return ret; 1885 } 1886 1887 static int btrfs_issue_discard(struct block_device *bdev, 1888 u64 start, u64 len) 1889 { 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1891 } 1892 1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1894 u64 num_bytes, u64 *actual_bytes) 1895 { 1896 int ret; 1897 u64 discarded_bytes = 0; 1898 struct btrfs_bio *bbio = NULL; 1899 1900 1901 /* Tell the block device(s) that the sectors can be discarded */ 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1903 bytenr, &num_bytes, &bbio, 0); 1904 /* Error condition is -ENOMEM */ 1905 if (!ret) { 1906 struct btrfs_bio_stripe *stripe = bbio->stripes; 1907 int i; 1908 1909 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1911 if (!stripe->dev->can_discard) 1912 continue; 1913 1914 ret = btrfs_issue_discard(stripe->dev->bdev, 1915 stripe->physical, 1916 stripe->length); 1917 if (!ret) 1918 discarded_bytes += stripe->length; 1919 else if (ret != -EOPNOTSUPP) 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1921 1922 /* 1923 * Just in case we get back EOPNOTSUPP for some reason, 1924 * just ignore the return value so we don't screw up 1925 * people calling discard_extent. 1926 */ 1927 ret = 0; 1928 } 1929 btrfs_put_bbio(bbio); 1930 } 1931 1932 if (actual_bytes) 1933 *actual_bytes = discarded_bytes; 1934 1935 1936 if (ret == -EOPNOTSUPP) 1937 ret = 0; 1938 return ret; 1939 } 1940 1941 /* Can return -ENOMEM */ 1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 u64 bytenr, u64 num_bytes, u64 parent, 1945 u64 root_objectid, u64 owner, u64 offset, 1946 int no_quota) 1947 { 1948 int ret; 1949 struct btrfs_fs_info *fs_info = root->fs_info; 1950 1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1952 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1953 1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1956 num_bytes, 1957 parent, root_objectid, (int)owner, 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1959 } else { 1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1961 num_bytes, 1962 parent, root_objectid, owner, offset, 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1964 } 1965 return ret; 1966 } 1967 1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1969 struct btrfs_root *root, 1970 u64 bytenr, u64 num_bytes, 1971 u64 parent, u64 root_objectid, 1972 u64 owner, u64 offset, int refs_to_add, 1973 int no_quota, 1974 struct btrfs_delayed_extent_op *extent_op) 1975 { 1976 struct btrfs_fs_info *fs_info = root->fs_info; 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 struct btrfs_key key; 1981 u64 refs; 1982 int ret; 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota)) 2000 goto out; 2001 /* 2002 * Ok we were able to insert an inline extent and it appears to be a new 2003 * reference, deal with the qgroup accounting. 2004 */ 2005 if (!ret && !no_quota) { 2006 ASSERT(root->fs_info->quota_enabled); 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], 2010 struct btrfs_extent_item); 2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add) 2012 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2013 btrfs_release_path(path); 2014 2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2016 bytenr, num_bytes, type, 0); 2017 goto out; 2018 } 2019 2020 /* 2021 * Ok we had -EAGAIN which means we didn't have space to insert and 2022 * inline extent ref, so just update the reference count and add a 2023 * normal backref. 2024 */ 2025 leaf = path->nodes[0]; 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2028 refs = btrfs_extent_refs(leaf, item); 2029 if (refs) 2030 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2032 if (extent_op) 2033 __run_delayed_extent_op(extent_op, leaf, item); 2034 2035 btrfs_mark_buffer_dirty(leaf); 2036 btrfs_release_path(path); 2037 2038 if (!no_quota) { 2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2040 bytenr, num_bytes, type, 0); 2041 if (ret) 2042 goto out; 2043 } 2044 2045 path->reada = 1; 2046 path->leave_spinning = 1; 2047 /* now insert the actual backref */ 2048 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2049 path, bytenr, parent, root_objectid, 2050 owner, offset, refs_to_add); 2051 if (ret) 2052 btrfs_abort_transaction(trans, root, ret); 2053 out: 2054 btrfs_free_path(path); 2055 return ret; 2056 } 2057 2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2059 struct btrfs_root *root, 2060 struct btrfs_delayed_ref_node *node, 2061 struct btrfs_delayed_extent_op *extent_op, 2062 int insert_reserved) 2063 { 2064 int ret = 0; 2065 struct btrfs_delayed_data_ref *ref; 2066 struct btrfs_key ins; 2067 u64 parent = 0; 2068 u64 ref_root = 0; 2069 u64 flags = 0; 2070 2071 ins.objectid = node->bytenr; 2072 ins.offset = node->num_bytes; 2073 ins.type = BTRFS_EXTENT_ITEM_KEY; 2074 2075 ref = btrfs_delayed_node_to_data_ref(node); 2076 trace_run_delayed_data_ref(node, ref, node->action); 2077 2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2079 parent = ref->parent; 2080 ref_root = ref->root; 2081 2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2083 if (extent_op) 2084 flags |= extent_op->flags_to_set; 2085 ret = alloc_reserved_file_extent(trans, root, 2086 parent, ref_root, flags, 2087 ref->objectid, ref->offset, 2088 &ins, node->ref_mod); 2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2091 node->num_bytes, parent, 2092 ref_root, ref->objectid, 2093 ref->offset, node->ref_mod, 2094 node->no_quota, extent_op); 2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2096 ret = __btrfs_free_extent(trans, root, node->bytenr, 2097 node->num_bytes, parent, 2098 ref_root, ref->objectid, 2099 ref->offset, node->ref_mod, 2100 extent_op, node->no_quota); 2101 } else { 2102 BUG(); 2103 } 2104 return ret; 2105 } 2106 2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2108 struct extent_buffer *leaf, 2109 struct btrfs_extent_item *ei) 2110 { 2111 u64 flags = btrfs_extent_flags(leaf, ei); 2112 if (extent_op->update_flags) { 2113 flags |= extent_op->flags_to_set; 2114 btrfs_set_extent_flags(leaf, ei, flags); 2115 } 2116 2117 if (extent_op->update_key) { 2118 struct btrfs_tree_block_info *bi; 2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2120 bi = (struct btrfs_tree_block_info *)(ei + 1); 2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2122 } 2123 } 2124 2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root, 2127 struct btrfs_delayed_ref_node *node, 2128 struct btrfs_delayed_extent_op *extent_op) 2129 { 2130 struct btrfs_key key; 2131 struct btrfs_path *path; 2132 struct btrfs_extent_item *ei; 2133 struct extent_buffer *leaf; 2134 u32 item_size; 2135 int ret; 2136 int err = 0; 2137 int metadata = !extent_op->is_data; 2138 2139 if (trans->aborted) 2140 return 0; 2141 2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2143 metadata = 0; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 2149 key.objectid = node->bytenr; 2150 2151 if (metadata) { 2152 key.type = BTRFS_METADATA_ITEM_KEY; 2153 key.offset = extent_op->level; 2154 } else { 2155 key.type = BTRFS_EXTENT_ITEM_KEY; 2156 key.offset = node->num_bytes; 2157 } 2158 2159 again: 2160 path->reada = 1; 2161 path->leave_spinning = 1; 2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2163 path, 0, 1); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 if (ret > 0) { 2169 if (metadata) { 2170 if (path->slots[0] > 0) { 2171 path->slots[0]--; 2172 btrfs_item_key_to_cpu(path->nodes[0], &key, 2173 path->slots[0]); 2174 if (key.objectid == node->bytenr && 2175 key.type == BTRFS_EXTENT_ITEM_KEY && 2176 key.offset == node->num_bytes) 2177 ret = 0; 2178 } 2179 if (ret > 0) { 2180 btrfs_release_path(path); 2181 metadata = 0; 2182 2183 key.objectid = node->bytenr; 2184 key.offset = node->num_bytes; 2185 key.type = BTRFS_EXTENT_ITEM_KEY; 2186 goto again; 2187 } 2188 } else { 2189 err = -EIO; 2190 goto out; 2191 } 2192 } 2193 2194 leaf = path->nodes[0]; 2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2197 if (item_size < sizeof(*ei)) { 2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2199 path, (u64)-1, 0); 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 leaf = path->nodes[0]; 2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2206 } 2207 #endif 2208 BUG_ON(item_size < sizeof(*ei)); 2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2210 __run_delayed_extent_op(extent_op, leaf, ei); 2211 2212 btrfs_mark_buffer_dirty(leaf); 2213 out: 2214 btrfs_free_path(path); 2215 return err; 2216 } 2217 2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2219 struct btrfs_root *root, 2220 struct btrfs_delayed_ref_node *node, 2221 struct btrfs_delayed_extent_op *extent_op, 2222 int insert_reserved) 2223 { 2224 int ret = 0; 2225 struct btrfs_delayed_tree_ref *ref; 2226 struct btrfs_key ins; 2227 u64 parent = 0; 2228 u64 ref_root = 0; 2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2230 SKINNY_METADATA); 2231 2232 ref = btrfs_delayed_node_to_tree_ref(node); 2233 trace_run_delayed_tree_ref(node, ref, node->action); 2234 2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2236 parent = ref->parent; 2237 ref_root = ref->root; 2238 2239 ins.objectid = node->bytenr; 2240 if (skinny_metadata) { 2241 ins.offset = ref->level; 2242 ins.type = BTRFS_METADATA_ITEM_KEY; 2243 } else { 2244 ins.offset = node->num_bytes; 2245 ins.type = BTRFS_EXTENT_ITEM_KEY; 2246 } 2247 2248 BUG_ON(node->ref_mod != 1); 2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2250 BUG_ON(!extent_op || !extent_op->update_flags); 2251 ret = alloc_reserved_tree_block(trans, root, 2252 parent, ref_root, 2253 extent_op->flags_to_set, 2254 &extent_op->key, 2255 ref->level, &ins, 2256 node->no_quota); 2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2259 node->num_bytes, parent, ref_root, 2260 ref->level, 0, 1, node->no_quota, 2261 extent_op); 2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2263 ret = __btrfs_free_extent(trans, root, node->bytenr, 2264 node->num_bytes, parent, ref_root, 2265 ref->level, 0, 1, extent_op, 2266 node->no_quota); 2267 } else { 2268 BUG(); 2269 } 2270 return ret; 2271 } 2272 2273 /* helper function to actually process a single delayed ref entry */ 2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2275 struct btrfs_root *root, 2276 struct btrfs_delayed_ref_node *node, 2277 struct btrfs_delayed_extent_op *extent_op, 2278 int insert_reserved) 2279 { 2280 int ret = 0; 2281 2282 if (trans->aborted) { 2283 if (insert_reserved) 2284 btrfs_pin_extent(root, node->bytenr, 2285 node->num_bytes, 1); 2286 return 0; 2287 } 2288 2289 if (btrfs_delayed_ref_is_head(node)) { 2290 struct btrfs_delayed_ref_head *head; 2291 /* 2292 * we've hit the end of the chain and we were supposed 2293 * to insert this extent into the tree. But, it got 2294 * deleted before we ever needed to insert it, so all 2295 * we have to do is clean up the accounting 2296 */ 2297 BUG_ON(extent_op); 2298 head = btrfs_delayed_node_to_head(node); 2299 trace_run_delayed_ref_head(node, head, node->action); 2300 2301 if (insert_reserved) { 2302 btrfs_pin_extent(root, node->bytenr, 2303 node->num_bytes, 1); 2304 if (head->is_data) { 2305 ret = btrfs_del_csums(trans, root, 2306 node->bytenr, 2307 node->num_bytes); 2308 } 2309 } 2310 return ret; 2311 } 2312 2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2315 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2316 insert_reserved); 2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2318 node->type == BTRFS_SHARED_DATA_REF_KEY) 2319 ret = run_delayed_data_ref(trans, root, node, extent_op, 2320 insert_reserved); 2321 else 2322 BUG(); 2323 return ret; 2324 } 2325 2326 static noinline struct btrfs_delayed_ref_node * 2327 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2328 { 2329 struct rb_node *node; 2330 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2331 2332 /* 2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2334 * this prevents ref count from going down to zero when 2335 * there still are pending delayed ref. 2336 */ 2337 node = rb_first(&head->ref_root); 2338 while (node) { 2339 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2340 rb_node); 2341 if (ref->action == BTRFS_ADD_DELAYED_REF) 2342 return ref; 2343 else if (last == NULL) 2344 last = ref; 2345 node = rb_next(node); 2346 } 2347 return last; 2348 } 2349 2350 /* 2351 * Returns 0 on success or if called with an already aborted transaction. 2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2353 */ 2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2355 struct btrfs_root *root, 2356 unsigned long nr) 2357 { 2358 struct btrfs_delayed_ref_root *delayed_refs; 2359 struct btrfs_delayed_ref_node *ref; 2360 struct btrfs_delayed_ref_head *locked_ref = NULL; 2361 struct btrfs_delayed_extent_op *extent_op; 2362 struct btrfs_fs_info *fs_info = root->fs_info; 2363 ktime_t start = ktime_get(); 2364 int ret; 2365 unsigned long count = 0; 2366 unsigned long actual_count = 0; 2367 int must_insert_reserved = 0; 2368 2369 delayed_refs = &trans->transaction->delayed_refs; 2370 while (1) { 2371 if (!locked_ref) { 2372 if (count >= nr) 2373 break; 2374 2375 spin_lock(&delayed_refs->lock); 2376 locked_ref = btrfs_select_ref_head(trans); 2377 if (!locked_ref) { 2378 spin_unlock(&delayed_refs->lock); 2379 break; 2380 } 2381 2382 /* grab the lock that says we are going to process 2383 * all the refs for this head */ 2384 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2385 spin_unlock(&delayed_refs->lock); 2386 /* 2387 * we may have dropped the spin lock to get the head 2388 * mutex lock, and that might have given someone else 2389 * time to free the head. If that's true, it has been 2390 * removed from our list and we can move on. 2391 */ 2392 if (ret == -EAGAIN) { 2393 locked_ref = NULL; 2394 count++; 2395 continue; 2396 } 2397 } 2398 2399 /* 2400 * We need to try and merge add/drops of the same ref since we 2401 * can run into issues with relocate dropping the implicit ref 2402 * and then it being added back again before the drop can 2403 * finish. If we merged anything we need to re-loop so we can 2404 * get a good ref. 2405 */ 2406 spin_lock(&locked_ref->lock); 2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2408 locked_ref); 2409 2410 /* 2411 * locked_ref is the head node, so we have to go one 2412 * node back for any delayed ref updates 2413 */ 2414 ref = select_delayed_ref(locked_ref); 2415 2416 if (ref && ref->seq && 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2418 spin_unlock(&locked_ref->lock); 2419 btrfs_delayed_ref_unlock(locked_ref); 2420 spin_lock(&delayed_refs->lock); 2421 locked_ref->processing = 0; 2422 delayed_refs->num_heads_ready++; 2423 spin_unlock(&delayed_refs->lock); 2424 locked_ref = NULL; 2425 cond_resched(); 2426 count++; 2427 continue; 2428 } 2429 2430 /* 2431 * record the must insert reserved flag before we 2432 * drop the spin lock. 2433 */ 2434 must_insert_reserved = locked_ref->must_insert_reserved; 2435 locked_ref->must_insert_reserved = 0; 2436 2437 extent_op = locked_ref->extent_op; 2438 locked_ref->extent_op = NULL; 2439 2440 if (!ref) { 2441 2442 2443 /* All delayed refs have been processed, Go ahead 2444 * and send the head node to run_one_delayed_ref, 2445 * so that any accounting fixes can happen 2446 */ 2447 ref = &locked_ref->node; 2448 2449 if (extent_op && must_insert_reserved) { 2450 btrfs_free_delayed_extent_op(extent_op); 2451 extent_op = NULL; 2452 } 2453 2454 if (extent_op) { 2455 spin_unlock(&locked_ref->lock); 2456 ret = run_delayed_extent_op(trans, root, 2457 ref, extent_op); 2458 btrfs_free_delayed_extent_op(extent_op); 2459 2460 if (ret) { 2461 /* 2462 * Need to reset must_insert_reserved if 2463 * there was an error so the abort stuff 2464 * can cleanup the reserved space 2465 * properly. 2466 */ 2467 if (must_insert_reserved) 2468 locked_ref->must_insert_reserved = 1; 2469 locked_ref->processing = 0; 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2471 btrfs_delayed_ref_unlock(locked_ref); 2472 return ret; 2473 } 2474 continue; 2475 } 2476 2477 /* 2478 * Need to drop our head ref lock and re-aqcuire the 2479 * delayed ref lock and then re-check to make sure 2480 * nobody got added. 2481 */ 2482 spin_unlock(&locked_ref->lock); 2483 spin_lock(&delayed_refs->lock); 2484 spin_lock(&locked_ref->lock); 2485 if (rb_first(&locked_ref->ref_root) || 2486 locked_ref->extent_op) { 2487 spin_unlock(&locked_ref->lock); 2488 spin_unlock(&delayed_refs->lock); 2489 continue; 2490 } 2491 ref->in_tree = 0; 2492 delayed_refs->num_heads--; 2493 rb_erase(&locked_ref->href_node, 2494 &delayed_refs->href_root); 2495 spin_unlock(&delayed_refs->lock); 2496 } else { 2497 actual_count++; 2498 ref->in_tree = 0; 2499 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2500 } 2501 atomic_dec(&delayed_refs->num_entries); 2502 2503 if (!btrfs_delayed_ref_is_head(ref)) { 2504 /* 2505 * when we play the delayed ref, also correct the 2506 * ref_mod on head 2507 */ 2508 switch (ref->action) { 2509 case BTRFS_ADD_DELAYED_REF: 2510 case BTRFS_ADD_DELAYED_EXTENT: 2511 locked_ref->node.ref_mod -= ref->ref_mod; 2512 break; 2513 case BTRFS_DROP_DELAYED_REF: 2514 locked_ref->node.ref_mod += ref->ref_mod; 2515 break; 2516 default: 2517 WARN_ON(1); 2518 } 2519 } 2520 spin_unlock(&locked_ref->lock); 2521 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2523 must_insert_reserved); 2524 2525 btrfs_free_delayed_extent_op(extent_op); 2526 if (ret) { 2527 locked_ref->processing = 0; 2528 btrfs_delayed_ref_unlock(locked_ref); 2529 btrfs_put_delayed_ref(ref); 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2531 return ret; 2532 } 2533 2534 /* 2535 * If this node is a head, that means all the refs in this head 2536 * have been dealt with, and we will pick the next head to deal 2537 * with, so we must unlock the head and drop it from the cluster 2538 * list before we release it. 2539 */ 2540 if (btrfs_delayed_ref_is_head(ref)) { 2541 if (locked_ref->is_data && 2542 locked_ref->total_ref_mod < 0) { 2543 spin_lock(&delayed_refs->lock); 2544 delayed_refs->pending_csums -= ref->num_bytes; 2545 spin_unlock(&delayed_refs->lock); 2546 } 2547 btrfs_delayed_ref_unlock(locked_ref); 2548 locked_ref = NULL; 2549 } 2550 btrfs_put_delayed_ref(ref); 2551 count++; 2552 cond_resched(); 2553 } 2554 2555 /* 2556 * We don't want to include ref heads since we can have empty ref heads 2557 * and those will drastically skew our runtime down since we just do 2558 * accounting, no actual extent tree updates. 2559 */ 2560 if (actual_count > 0) { 2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2562 u64 avg; 2563 2564 /* 2565 * We weigh the current average higher than our current runtime 2566 * to avoid large swings in the average. 2567 */ 2568 spin_lock(&delayed_refs->lock); 2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2571 spin_unlock(&delayed_refs->lock); 2572 } 2573 return 0; 2574 } 2575 2576 #ifdef SCRAMBLE_DELAYED_REFS 2577 /* 2578 * Normally delayed refs get processed in ascending bytenr order. This 2579 * correlates in most cases to the order added. To expose dependencies on this 2580 * order, we start to process the tree in the middle instead of the beginning 2581 */ 2582 static u64 find_middle(struct rb_root *root) 2583 { 2584 struct rb_node *n = root->rb_node; 2585 struct btrfs_delayed_ref_node *entry; 2586 int alt = 1; 2587 u64 middle; 2588 u64 first = 0, last = 0; 2589 2590 n = rb_first(root); 2591 if (n) { 2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2593 first = entry->bytenr; 2594 } 2595 n = rb_last(root); 2596 if (n) { 2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2598 last = entry->bytenr; 2599 } 2600 n = root->rb_node; 2601 2602 while (n) { 2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2604 WARN_ON(!entry->in_tree); 2605 2606 middle = entry->bytenr; 2607 2608 if (alt) 2609 n = n->rb_left; 2610 else 2611 n = n->rb_right; 2612 2613 alt = 1 - alt; 2614 } 2615 return middle; 2616 } 2617 #endif 2618 2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2620 { 2621 u64 num_bytes; 2622 2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2624 sizeof(struct btrfs_extent_inline_ref)); 2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2627 2628 /* 2629 * We don't ever fill up leaves all the way so multiply by 2 just to be 2630 * closer to what we're really going to want to ouse. 2631 */ 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2633 } 2634 2635 /* 2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2637 * would require to store the csums for that many bytes. 2638 */ 2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2640 { 2641 u64 csum_size; 2642 u64 num_csums_per_leaf; 2643 u64 num_csums; 2644 2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2646 num_csums_per_leaf = div64_u64(csum_size, 2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2648 num_csums = div64_u64(csum_bytes, root->sectorsize); 2649 num_csums += num_csums_per_leaf - 1; 2650 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2651 return num_csums; 2652 } 2653 2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2655 struct btrfs_root *root) 2656 { 2657 struct btrfs_block_rsv *global_rsv; 2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2661 u64 num_bytes, num_dirty_bgs_bytes; 2662 int ret = 0; 2663 2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2665 num_heads = heads_to_leaves(root, num_heads); 2666 if (num_heads > 1) 2667 num_bytes += (num_heads - 1) * root->nodesize; 2668 num_bytes <<= 1; 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2671 num_dirty_bgs); 2672 global_rsv = &root->fs_info->global_block_rsv; 2673 2674 /* 2675 * If we can't allocate any more chunks lets make sure we have _lots_ of 2676 * wiggle room since running delayed refs can create more delayed refs. 2677 */ 2678 if (global_rsv->space_info->full) { 2679 num_dirty_bgs_bytes <<= 1; 2680 num_bytes <<= 1; 2681 } 2682 2683 spin_lock(&global_rsv->lock); 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2685 ret = 1; 2686 spin_unlock(&global_rsv->lock); 2687 return ret; 2688 } 2689 2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2691 struct btrfs_root *root) 2692 { 2693 struct btrfs_fs_info *fs_info = root->fs_info; 2694 u64 num_entries = 2695 atomic_read(&trans->transaction->delayed_refs.num_entries); 2696 u64 avg_runtime; 2697 u64 val; 2698 2699 smp_mb(); 2700 avg_runtime = fs_info->avg_delayed_ref_runtime; 2701 val = num_entries * avg_runtime; 2702 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2703 return 1; 2704 if (val >= NSEC_PER_SEC / 2) 2705 return 2; 2706 2707 return btrfs_check_space_for_delayed_refs(trans, root); 2708 } 2709 2710 struct async_delayed_refs { 2711 struct btrfs_root *root; 2712 int count; 2713 int error; 2714 int sync; 2715 struct completion wait; 2716 struct btrfs_work work; 2717 }; 2718 2719 static void delayed_ref_async_start(struct btrfs_work *work) 2720 { 2721 struct async_delayed_refs *async; 2722 struct btrfs_trans_handle *trans; 2723 int ret; 2724 2725 async = container_of(work, struct async_delayed_refs, work); 2726 2727 trans = btrfs_join_transaction(async->root); 2728 if (IS_ERR(trans)) { 2729 async->error = PTR_ERR(trans); 2730 goto done; 2731 } 2732 2733 /* 2734 * trans->sync means that when we call end_transaciton, we won't 2735 * wait on delayed refs 2736 */ 2737 trans->sync = true; 2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2739 if (ret) 2740 async->error = ret; 2741 2742 ret = btrfs_end_transaction(trans, async->root); 2743 if (ret && !async->error) 2744 async->error = ret; 2745 done: 2746 if (async->sync) 2747 complete(&async->wait); 2748 else 2749 kfree(async); 2750 } 2751 2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2753 unsigned long count, int wait) 2754 { 2755 struct async_delayed_refs *async; 2756 int ret; 2757 2758 async = kmalloc(sizeof(*async), GFP_NOFS); 2759 if (!async) 2760 return -ENOMEM; 2761 2762 async->root = root->fs_info->tree_root; 2763 async->count = count; 2764 async->error = 0; 2765 if (wait) 2766 async->sync = 1; 2767 else 2768 async->sync = 0; 2769 init_completion(&async->wait); 2770 2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2772 delayed_ref_async_start, NULL, NULL); 2773 2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2775 2776 if (wait) { 2777 wait_for_completion(&async->wait); 2778 ret = async->error; 2779 kfree(async); 2780 return ret; 2781 } 2782 return 0; 2783 } 2784 2785 /* 2786 * this starts processing the delayed reference count updates and 2787 * extent insertions we have queued up so far. count can be 2788 * 0, which means to process everything in the tree at the start 2789 * of the run (but not newly added entries), or it can be some target 2790 * number you'd like to process. 2791 * 2792 * Returns 0 on success or if called with an aborted transaction 2793 * Returns <0 on error and aborts the transaction 2794 */ 2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2796 struct btrfs_root *root, unsigned long count) 2797 { 2798 struct rb_node *node; 2799 struct btrfs_delayed_ref_root *delayed_refs; 2800 struct btrfs_delayed_ref_head *head; 2801 int ret; 2802 int run_all = count == (unsigned long)-1; 2803 2804 /* We'll clean this up in btrfs_cleanup_transaction */ 2805 if (trans->aborted) 2806 return 0; 2807 2808 if (root == root->fs_info->extent_root) 2809 root = root->fs_info->tree_root; 2810 2811 delayed_refs = &trans->transaction->delayed_refs; 2812 if (count == 0) 2813 count = atomic_read(&delayed_refs->num_entries) * 2; 2814 2815 again: 2816 #ifdef SCRAMBLE_DELAYED_REFS 2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2818 #endif 2819 ret = __btrfs_run_delayed_refs(trans, root, count); 2820 if (ret < 0) { 2821 btrfs_abort_transaction(trans, root, ret); 2822 return ret; 2823 } 2824 2825 if (run_all) { 2826 if (!list_empty(&trans->new_bgs)) 2827 btrfs_create_pending_block_groups(trans, root); 2828 2829 spin_lock(&delayed_refs->lock); 2830 node = rb_first(&delayed_refs->href_root); 2831 if (!node) { 2832 spin_unlock(&delayed_refs->lock); 2833 goto out; 2834 } 2835 count = (unsigned long)-1; 2836 2837 while (node) { 2838 head = rb_entry(node, struct btrfs_delayed_ref_head, 2839 href_node); 2840 if (btrfs_delayed_ref_is_head(&head->node)) { 2841 struct btrfs_delayed_ref_node *ref; 2842 2843 ref = &head->node; 2844 atomic_inc(&ref->refs); 2845 2846 spin_unlock(&delayed_refs->lock); 2847 /* 2848 * Mutex was contended, block until it's 2849 * released and try again 2850 */ 2851 mutex_lock(&head->mutex); 2852 mutex_unlock(&head->mutex); 2853 2854 btrfs_put_delayed_ref(ref); 2855 cond_resched(); 2856 goto again; 2857 } else { 2858 WARN_ON(1); 2859 } 2860 node = rb_next(node); 2861 } 2862 spin_unlock(&delayed_refs->lock); 2863 cond_resched(); 2864 goto again; 2865 } 2866 out: 2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info); 2868 if (ret) 2869 return ret; 2870 assert_qgroups_uptodate(trans); 2871 return 0; 2872 } 2873 2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2875 struct btrfs_root *root, 2876 u64 bytenr, u64 num_bytes, u64 flags, 2877 int level, int is_data) 2878 { 2879 struct btrfs_delayed_extent_op *extent_op; 2880 int ret; 2881 2882 extent_op = btrfs_alloc_delayed_extent_op(); 2883 if (!extent_op) 2884 return -ENOMEM; 2885 2886 extent_op->flags_to_set = flags; 2887 extent_op->update_flags = 1; 2888 extent_op->update_key = 0; 2889 extent_op->is_data = is_data ? 1 : 0; 2890 extent_op->level = level; 2891 2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2893 num_bytes, extent_op); 2894 if (ret) 2895 btrfs_free_delayed_extent_op(extent_op); 2896 return ret; 2897 } 2898 2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 struct btrfs_path *path, 2902 u64 objectid, u64 offset, u64 bytenr) 2903 { 2904 struct btrfs_delayed_ref_head *head; 2905 struct btrfs_delayed_ref_node *ref; 2906 struct btrfs_delayed_data_ref *data_ref; 2907 struct btrfs_delayed_ref_root *delayed_refs; 2908 struct rb_node *node; 2909 int ret = 0; 2910 2911 delayed_refs = &trans->transaction->delayed_refs; 2912 spin_lock(&delayed_refs->lock); 2913 head = btrfs_find_delayed_ref_head(trans, bytenr); 2914 if (!head) { 2915 spin_unlock(&delayed_refs->lock); 2916 return 0; 2917 } 2918 2919 if (!mutex_trylock(&head->mutex)) { 2920 atomic_inc(&head->node.refs); 2921 spin_unlock(&delayed_refs->lock); 2922 2923 btrfs_release_path(path); 2924 2925 /* 2926 * Mutex was contended, block until it's released and let 2927 * caller try again 2928 */ 2929 mutex_lock(&head->mutex); 2930 mutex_unlock(&head->mutex); 2931 btrfs_put_delayed_ref(&head->node); 2932 return -EAGAIN; 2933 } 2934 spin_unlock(&delayed_refs->lock); 2935 2936 spin_lock(&head->lock); 2937 node = rb_first(&head->ref_root); 2938 while (node) { 2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2940 node = rb_next(node); 2941 2942 /* If it's a shared ref we know a cross reference exists */ 2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2944 ret = 1; 2945 break; 2946 } 2947 2948 data_ref = btrfs_delayed_node_to_data_ref(ref); 2949 2950 /* 2951 * If our ref doesn't match the one we're currently looking at 2952 * then we have a cross reference. 2953 */ 2954 if (data_ref->root != root->root_key.objectid || 2955 data_ref->objectid != objectid || 2956 data_ref->offset != offset) { 2957 ret = 1; 2958 break; 2959 } 2960 } 2961 spin_unlock(&head->lock); 2962 mutex_unlock(&head->mutex); 2963 return ret; 2964 } 2965 2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2967 struct btrfs_root *root, 2968 struct btrfs_path *path, 2969 u64 objectid, u64 offset, u64 bytenr) 2970 { 2971 struct btrfs_root *extent_root = root->fs_info->extent_root; 2972 struct extent_buffer *leaf; 2973 struct btrfs_extent_data_ref *ref; 2974 struct btrfs_extent_inline_ref *iref; 2975 struct btrfs_extent_item *ei; 2976 struct btrfs_key key; 2977 u32 item_size; 2978 int ret; 2979 2980 key.objectid = bytenr; 2981 key.offset = (u64)-1; 2982 key.type = BTRFS_EXTENT_ITEM_KEY; 2983 2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2985 if (ret < 0) 2986 goto out; 2987 BUG_ON(ret == 0); /* Corruption */ 2988 2989 ret = -ENOENT; 2990 if (path->slots[0] == 0) 2991 goto out; 2992 2993 path->slots[0]--; 2994 leaf = path->nodes[0]; 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2996 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2998 goto out; 2999 3000 ret = 1; 3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3003 if (item_size < sizeof(*ei)) { 3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3005 goto out; 3006 } 3007 #endif 3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3009 3010 if (item_size != sizeof(*ei) + 3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3012 goto out; 3013 3014 if (btrfs_extent_generation(leaf, ei) <= 3015 btrfs_root_last_snapshot(&root->root_item)) 3016 goto out; 3017 3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3019 if (btrfs_extent_inline_ref_type(leaf, iref) != 3020 BTRFS_EXTENT_DATA_REF_KEY) 3021 goto out; 3022 3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3024 if (btrfs_extent_refs(leaf, ei) != 3025 btrfs_extent_data_ref_count(leaf, ref) || 3026 btrfs_extent_data_ref_root(leaf, ref) != 3027 root->root_key.objectid || 3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3029 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3030 goto out; 3031 3032 ret = 0; 3033 out: 3034 return ret; 3035 } 3036 3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3038 struct btrfs_root *root, 3039 u64 objectid, u64 offset, u64 bytenr) 3040 { 3041 struct btrfs_path *path; 3042 int ret; 3043 int ret2; 3044 3045 path = btrfs_alloc_path(); 3046 if (!path) 3047 return -ENOENT; 3048 3049 do { 3050 ret = check_committed_ref(trans, root, path, objectid, 3051 offset, bytenr); 3052 if (ret && ret != -ENOENT) 3053 goto out; 3054 3055 ret2 = check_delayed_ref(trans, root, path, objectid, 3056 offset, bytenr); 3057 } while (ret2 == -EAGAIN); 3058 3059 if (ret2 && ret2 != -ENOENT) { 3060 ret = ret2; 3061 goto out; 3062 } 3063 3064 if (ret != -ENOENT || ret2 != -ENOENT) 3065 ret = 0; 3066 out: 3067 btrfs_free_path(path); 3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3069 WARN_ON(ret > 0); 3070 return ret; 3071 } 3072 3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3074 struct btrfs_root *root, 3075 struct extent_buffer *buf, 3076 int full_backref, int inc) 3077 { 3078 u64 bytenr; 3079 u64 num_bytes; 3080 u64 parent; 3081 u64 ref_root; 3082 u32 nritems; 3083 struct btrfs_key key; 3084 struct btrfs_file_extent_item *fi; 3085 int i; 3086 int level; 3087 int ret = 0; 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3089 u64, u64, u64, u64, u64, u64, int); 3090 3091 3092 if (btrfs_test_is_dummy_root(root)) 3093 return 0; 3094 3095 ref_root = btrfs_header_owner(buf); 3096 nritems = btrfs_header_nritems(buf); 3097 level = btrfs_header_level(buf); 3098 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3100 return 0; 3101 3102 if (inc) 3103 process_func = btrfs_inc_extent_ref; 3104 else 3105 process_func = btrfs_free_extent; 3106 3107 if (full_backref) 3108 parent = buf->start; 3109 else 3110 parent = 0; 3111 3112 for (i = 0; i < nritems; i++) { 3113 if (level == 0) { 3114 btrfs_item_key_to_cpu(buf, &key, i); 3115 if (key.type != BTRFS_EXTENT_DATA_KEY) 3116 continue; 3117 fi = btrfs_item_ptr(buf, i, 3118 struct btrfs_file_extent_item); 3119 if (btrfs_file_extent_type(buf, fi) == 3120 BTRFS_FILE_EXTENT_INLINE) 3121 continue; 3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3123 if (bytenr == 0) 3124 continue; 3125 3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3127 key.offset -= btrfs_file_extent_offset(buf, fi); 3128 ret = process_func(trans, root, bytenr, num_bytes, 3129 parent, ref_root, key.objectid, 3130 key.offset, 1); 3131 if (ret) 3132 goto fail; 3133 } else { 3134 bytenr = btrfs_node_blockptr(buf, i); 3135 num_bytes = root->nodesize; 3136 ret = process_func(trans, root, bytenr, num_bytes, 3137 parent, ref_root, level - 1, 0, 3138 1); 3139 if (ret) 3140 goto fail; 3141 } 3142 } 3143 return 0; 3144 fail: 3145 return ret; 3146 } 3147 3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3149 struct extent_buffer *buf, int full_backref) 3150 { 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3152 } 3153 3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3155 struct extent_buffer *buf, int full_backref) 3156 { 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3158 } 3159 3160 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3161 struct btrfs_root *root, 3162 struct btrfs_path *path, 3163 struct btrfs_block_group_cache *cache) 3164 { 3165 int ret; 3166 struct btrfs_root *extent_root = root->fs_info->extent_root; 3167 unsigned long bi; 3168 struct extent_buffer *leaf; 3169 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3171 if (ret) { 3172 if (ret > 0) 3173 ret = -ENOENT; 3174 goto fail; 3175 } 3176 3177 leaf = path->nodes[0]; 3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3180 btrfs_mark_buffer_dirty(leaf); 3181 fail: 3182 btrfs_release_path(path); 3183 if (ret) 3184 btrfs_abort_transaction(trans, root, ret); 3185 return ret; 3186 3187 } 3188 3189 static struct btrfs_block_group_cache * 3190 next_block_group(struct btrfs_root *root, 3191 struct btrfs_block_group_cache *cache) 3192 { 3193 struct rb_node *node; 3194 3195 spin_lock(&root->fs_info->block_group_cache_lock); 3196 3197 /* If our block group was removed, we need a full search. */ 3198 if (RB_EMPTY_NODE(&cache->cache_node)) { 3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3200 3201 spin_unlock(&root->fs_info->block_group_cache_lock); 3202 btrfs_put_block_group(cache); 3203 cache = btrfs_lookup_first_block_group(root->fs_info, 3204 next_bytenr); 3205 return cache; 3206 } 3207 node = rb_next(&cache->cache_node); 3208 btrfs_put_block_group(cache); 3209 if (node) { 3210 cache = rb_entry(node, struct btrfs_block_group_cache, 3211 cache_node); 3212 btrfs_get_block_group(cache); 3213 } else 3214 cache = NULL; 3215 spin_unlock(&root->fs_info->block_group_cache_lock); 3216 return cache; 3217 } 3218 3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3220 struct btrfs_trans_handle *trans, 3221 struct btrfs_path *path) 3222 { 3223 struct btrfs_root *root = block_group->fs_info->tree_root; 3224 struct inode *inode = NULL; 3225 u64 alloc_hint = 0; 3226 int dcs = BTRFS_DC_ERROR; 3227 u64 num_pages = 0; 3228 int retries = 0; 3229 int ret = 0; 3230 3231 /* 3232 * If this block group is smaller than 100 megs don't bother caching the 3233 * block group. 3234 */ 3235 if (block_group->key.offset < (100 * 1024 * 1024)) { 3236 spin_lock(&block_group->lock); 3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3238 spin_unlock(&block_group->lock); 3239 return 0; 3240 } 3241 3242 if (trans->aborted) 3243 return 0; 3244 again: 3245 inode = lookup_free_space_inode(root, block_group, path); 3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3247 ret = PTR_ERR(inode); 3248 btrfs_release_path(path); 3249 goto out; 3250 } 3251 3252 if (IS_ERR(inode)) { 3253 BUG_ON(retries); 3254 retries++; 3255 3256 if (block_group->ro) 3257 goto out_free; 3258 3259 ret = create_free_space_inode(root, trans, block_group, path); 3260 if (ret) 3261 goto out_free; 3262 goto again; 3263 } 3264 3265 /* We've already setup this transaction, go ahead and exit */ 3266 if (block_group->cache_generation == trans->transid && 3267 i_size_read(inode)) { 3268 dcs = BTRFS_DC_SETUP; 3269 goto out_put; 3270 } 3271 3272 /* 3273 * We want to set the generation to 0, that way if anything goes wrong 3274 * from here on out we know not to trust this cache when we load up next 3275 * time. 3276 */ 3277 BTRFS_I(inode)->generation = 0; 3278 ret = btrfs_update_inode(trans, root, inode); 3279 if (ret) { 3280 /* 3281 * So theoretically we could recover from this, simply set the 3282 * super cache generation to 0 so we know to invalidate the 3283 * cache, but then we'd have to keep track of the block groups 3284 * that fail this way so we know we _have_ to reset this cache 3285 * before the next commit or risk reading stale cache. So to 3286 * limit our exposure to horrible edge cases lets just abort the 3287 * transaction, this only happens in really bad situations 3288 * anyway. 3289 */ 3290 btrfs_abort_transaction(trans, root, ret); 3291 goto out_put; 3292 } 3293 WARN_ON(ret); 3294 3295 if (i_size_read(inode) > 0) { 3296 ret = btrfs_check_trunc_cache_free_space(root, 3297 &root->fs_info->global_block_rsv); 3298 if (ret) 3299 goto out_put; 3300 3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3302 if (ret) 3303 goto out_put; 3304 } 3305 3306 spin_lock(&block_group->lock); 3307 if (block_group->cached != BTRFS_CACHE_FINISHED || 3308 !btrfs_test_opt(root, SPACE_CACHE)) { 3309 /* 3310 * don't bother trying to write stuff out _if_ 3311 * a) we're not cached, 3312 * b) we're with nospace_cache mount option. 3313 */ 3314 dcs = BTRFS_DC_WRITTEN; 3315 spin_unlock(&block_group->lock); 3316 goto out_put; 3317 } 3318 spin_unlock(&block_group->lock); 3319 3320 /* 3321 * Try to preallocate enough space based on how big the block group is. 3322 * Keep in mind this has to include any pinned space which could end up 3323 * taking up quite a bit since it's not folded into the other space 3324 * cache. 3325 */ 3326 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3327 if (!num_pages) 3328 num_pages = 1; 3329 3330 num_pages *= 16; 3331 num_pages *= PAGE_CACHE_SIZE; 3332 3333 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3334 if (ret) 3335 goto out_put; 3336 3337 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3338 num_pages, num_pages, 3339 &alloc_hint); 3340 if (!ret) 3341 dcs = BTRFS_DC_SETUP; 3342 btrfs_free_reserved_data_space(inode, num_pages); 3343 3344 out_put: 3345 iput(inode); 3346 out_free: 3347 btrfs_release_path(path); 3348 out: 3349 spin_lock(&block_group->lock); 3350 if (!ret && dcs == BTRFS_DC_SETUP) 3351 block_group->cache_generation = trans->transid; 3352 block_group->disk_cache_state = dcs; 3353 spin_unlock(&block_group->lock); 3354 3355 return ret; 3356 } 3357 3358 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3359 struct btrfs_root *root) 3360 { 3361 struct btrfs_block_group_cache *cache, *tmp; 3362 struct btrfs_transaction *cur_trans = trans->transaction; 3363 struct btrfs_path *path; 3364 3365 if (list_empty(&cur_trans->dirty_bgs) || 3366 !btrfs_test_opt(root, SPACE_CACHE)) 3367 return 0; 3368 3369 path = btrfs_alloc_path(); 3370 if (!path) 3371 return -ENOMEM; 3372 3373 /* Could add new block groups, use _safe just in case */ 3374 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3375 dirty_list) { 3376 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3377 cache_save_setup(cache, trans, path); 3378 } 3379 3380 btrfs_free_path(path); 3381 return 0; 3382 } 3383 3384 /* 3385 * transaction commit does final block group cache writeback during a 3386 * critical section where nothing is allowed to change the FS. This is 3387 * required in order for the cache to actually match the block group, 3388 * but can introduce a lot of latency into the commit. 3389 * 3390 * So, btrfs_start_dirty_block_groups is here to kick off block group 3391 * cache IO. There's a chance we'll have to redo some of it if the 3392 * block group changes again during the commit, but it greatly reduces 3393 * the commit latency by getting rid of the easy block groups while 3394 * we're still allowing others to join the commit. 3395 */ 3396 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3397 struct btrfs_root *root) 3398 { 3399 struct btrfs_block_group_cache *cache; 3400 struct btrfs_transaction *cur_trans = trans->transaction; 3401 int ret = 0; 3402 int should_put; 3403 struct btrfs_path *path = NULL; 3404 LIST_HEAD(dirty); 3405 struct list_head *io = &cur_trans->io_bgs; 3406 int num_started = 0; 3407 int loops = 0; 3408 3409 spin_lock(&cur_trans->dirty_bgs_lock); 3410 if (list_empty(&cur_trans->dirty_bgs)) { 3411 spin_unlock(&cur_trans->dirty_bgs_lock); 3412 return 0; 3413 } 3414 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3415 spin_unlock(&cur_trans->dirty_bgs_lock); 3416 3417 again: 3418 /* 3419 * make sure all the block groups on our dirty list actually 3420 * exist 3421 */ 3422 btrfs_create_pending_block_groups(trans, root); 3423 3424 if (!path) { 3425 path = btrfs_alloc_path(); 3426 if (!path) 3427 return -ENOMEM; 3428 } 3429 3430 /* 3431 * cache_write_mutex is here only to save us from balance or automatic 3432 * removal of empty block groups deleting this block group while we are 3433 * writing out the cache 3434 */ 3435 mutex_lock(&trans->transaction->cache_write_mutex); 3436 while (!list_empty(&dirty)) { 3437 cache = list_first_entry(&dirty, 3438 struct btrfs_block_group_cache, 3439 dirty_list); 3440 /* 3441 * this can happen if something re-dirties a block 3442 * group that is already under IO. Just wait for it to 3443 * finish and then do it all again 3444 */ 3445 if (!list_empty(&cache->io_list)) { 3446 list_del_init(&cache->io_list); 3447 btrfs_wait_cache_io(root, trans, cache, 3448 &cache->io_ctl, path, 3449 cache->key.objectid); 3450 btrfs_put_block_group(cache); 3451 } 3452 3453 3454 /* 3455 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3456 * if it should update the cache_state. Don't delete 3457 * until after we wait. 3458 * 3459 * Since we're not running in the commit critical section 3460 * we need the dirty_bgs_lock to protect from update_block_group 3461 */ 3462 spin_lock(&cur_trans->dirty_bgs_lock); 3463 list_del_init(&cache->dirty_list); 3464 spin_unlock(&cur_trans->dirty_bgs_lock); 3465 3466 should_put = 1; 3467 3468 cache_save_setup(cache, trans, path); 3469 3470 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3471 cache->io_ctl.inode = NULL; 3472 ret = btrfs_write_out_cache(root, trans, cache, path); 3473 if (ret == 0 && cache->io_ctl.inode) { 3474 num_started++; 3475 should_put = 0; 3476 3477 /* 3478 * the cache_write_mutex is protecting 3479 * the io_list 3480 */ 3481 list_add_tail(&cache->io_list, io); 3482 } else { 3483 /* 3484 * if we failed to write the cache, the 3485 * generation will be bad and life goes on 3486 */ 3487 ret = 0; 3488 } 3489 } 3490 if (!ret) 3491 ret = write_one_cache_group(trans, root, path, cache); 3492 3493 /* if its not on the io list, we need to put the block group */ 3494 if (should_put) 3495 btrfs_put_block_group(cache); 3496 3497 if (ret) 3498 break; 3499 3500 /* 3501 * Avoid blocking other tasks for too long. It might even save 3502 * us from writing caches for block groups that are going to be 3503 * removed. 3504 */ 3505 mutex_unlock(&trans->transaction->cache_write_mutex); 3506 mutex_lock(&trans->transaction->cache_write_mutex); 3507 } 3508 mutex_unlock(&trans->transaction->cache_write_mutex); 3509 3510 /* 3511 * go through delayed refs for all the stuff we've just kicked off 3512 * and then loop back (just once) 3513 */ 3514 ret = btrfs_run_delayed_refs(trans, root, 0); 3515 if (!ret && loops == 0) { 3516 loops++; 3517 spin_lock(&cur_trans->dirty_bgs_lock); 3518 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3519 /* 3520 * dirty_bgs_lock protects us from concurrent block group 3521 * deletes too (not just cache_write_mutex). 3522 */ 3523 if (!list_empty(&dirty)) { 3524 spin_unlock(&cur_trans->dirty_bgs_lock); 3525 goto again; 3526 } 3527 spin_unlock(&cur_trans->dirty_bgs_lock); 3528 } 3529 3530 btrfs_free_path(path); 3531 return ret; 3532 } 3533 3534 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3535 struct btrfs_root *root) 3536 { 3537 struct btrfs_block_group_cache *cache; 3538 struct btrfs_transaction *cur_trans = trans->transaction; 3539 int ret = 0; 3540 int should_put; 3541 struct btrfs_path *path; 3542 struct list_head *io = &cur_trans->io_bgs; 3543 int num_started = 0; 3544 3545 path = btrfs_alloc_path(); 3546 if (!path) 3547 return -ENOMEM; 3548 3549 /* 3550 * We don't need the lock here since we are protected by the transaction 3551 * commit. We want to do the cache_save_setup first and then run the 3552 * delayed refs to make sure we have the best chance at doing this all 3553 * in one shot. 3554 */ 3555 while (!list_empty(&cur_trans->dirty_bgs)) { 3556 cache = list_first_entry(&cur_trans->dirty_bgs, 3557 struct btrfs_block_group_cache, 3558 dirty_list); 3559 3560 /* 3561 * this can happen if cache_save_setup re-dirties a block 3562 * group that is already under IO. Just wait for it to 3563 * finish and then do it all again 3564 */ 3565 if (!list_empty(&cache->io_list)) { 3566 list_del_init(&cache->io_list); 3567 btrfs_wait_cache_io(root, trans, cache, 3568 &cache->io_ctl, path, 3569 cache->key.objectid); 3570 btrfs_put_block_group(cache); 3571 } 3572 3573 /* 3574 * don't remove from the dirty list until after we've waited 3575 * on any pending IO 3576 */ 3577 list_del_init(&cache->dirty_list); 3578 should_put = 1; 3579 3580 cache_save_setup(cache, trans, path); 3581 3582 if (!ret) 3583 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3584 3585 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3586 cache->io_ctl.inode = NULL; 3587 ret = btrfs_write_out_cache(root, trans, cache, path); 3588 if (ret == 0 && cache->io_ctl.inode) { 3589 num_started++; 3590 should_put = 0; 3591 list_add_tail(&cache->io_list, io); 3592 } else { 3593 /* 3594 * if we failed to write the cache, the 3595 * generation will be bad and life goes on 3596 */ 3597 ret = 0; 3598 } 3599 } 3600 if (!ret) 3601 ret = write_one_cache_group(trans, root, path, cache); 3602 3603 /* if its not on the io list, we need to put the block group */ 3604 if (should_put) 3605 btrfs_put_block_group(cache); 3606 } 3607 3608 while (!list_empty(io)) { 3609 cache = list_first_entry(io, struct btrfs_block_group_cache, 3610 io_list); 3611 list_del_init(&cache->io_list); 3612 btrfs_wait_cache_io(root, trans, cache, 3613 &cache->io_ctl, path, cache->key.objectid); 3614 btrfs_put_block_group(cache); 3615 } 3616 3617 btrfs_free_path(path); 3618 return ret; 3619 } 3620 3621 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3622 { 3623 struct btrfs_block_group_cache *block_group; 3624 int readonly = 0; 3625 3626 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3627 if (!block_group || block_group->ro) 3628 readonly = 1; 3629 if (block_group) 3630 btrfs_put_block_group(block_group); 3631 return readonly; 3632 } 3633 3634 static const char *alloc_name(u64 flags) 3635 { 3636 switch (flags) { 3637 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3638 return "mixed"; 3639 case BTRFS_BLOCK_GROUP_METADATA: 3640 return "metadata"; 3641 case BTRFS_BLOCK_GROUP_DATA: 3642 return "data"; 3643 case BTRFS_BLOCK_GROUP_SYSTEM: 3644 return "system"; 3645 default: 3646 WARN_ON(1); 3647 return "invalid-combination"; 3648 }; 3649 } 3650 3651 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3652 u64 total_bytes, u64 bytes_used, 3653 struct btrfs_space_info **space_info) 3654 { 3655 struct btrfs_space_info *found; 3656 int i; 3657 int factor; 3658 int ret; 3659 3660 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3661 BTRFS_BLOCK_GROUP_RAID10)) 3662 factor = 2; 3663 else 3664 factor = 1; 3665 3666 found = __find_space_info(info, flags); 3667 if (found) { 3668 spin_lock(&found->lock); 3669 found->total_bytes += total_bytes; 3670 found->disk_total += total_bytes * factor; 3671 found->bytes_used += bytes_used; 3672 found->disk_used += bytes_used * factor; 3673 found->full = 0; 3674 spin_unlock(&found->lock); 3675 *space_info = found; 3676 return 0; 3677 } 3678 found = kzalloc(sizeof(*found), GFP_NOFS); 3679 if (!found) 3680 return -ENOMEM; 3681 3682 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3683 if (ret) { 3684 kfree(found); 3685 return ret; 3686 } 3687 3688 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3689 INIT_LIST_HEAD(&found->block_groups[i]); 3690 init_rwsem(&found->groups_sem); 3691 spin_lock_init(&found->lock); 3692 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3693 found->total_bytes = total_bytes; 3694 found->disk_total = total_bytes * factor; 3695 found->bytes_used = bytes_used; 3696 found->disk_used = bytes_used * factor; 3697 found->bytes_pinned = 0; 3698 found->bytes_reserved = 0; 3699 found->bytes_readonly = 0; 3700 found->bytes_may_use = 0; 3701 found->full = 0; 3702 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3703 found->chunk_alloc = 0; 3704 found->flush = 0; 3705 init_waitqueue_head(&found->wait); 3706 INIT_LIST_HEAD(&found->ro_bgs); 3707 3708 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3709 info->space_info_kobj, "%s", 3710 alloc_name(found->flags)); 3711 if (ret) { 3712 kfree(found); 3713 return ret; 3714 } 3715 3716 *space_info = found; 3717 list_add_rcu(&found->list, &info->space_info); 3718 if (flags & BTRFS_BLOCK_GROUP_DATA) 3719 info->data_sinfo = found; 3720 3721 return ret; 3722 } 3723 3724 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3725 { 3726 u64 extra_flags = chunk_to_extended(flags) & 3727 BTRFS_EXTENDED_PROFILE_MASK; 3728 3729 write_seqlock(&fs_info->profiles_lock); 3730 if (flags & BTRFS_BLOCK_GROUP_DATA) 3731 fs_info->avail_data_alloc_bits |= extra_flags; 3732 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3733 fs_info->avail_metadata_alloc_bits |= extra_flags; 3734 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3735 fs_info->avail_system_alloc_bits |= extra_flags; 3736 write_sequnlock(&fs_info->profiles_lock); 3737 } 3738 3739 /* 3740 * returns target flags in extended format or 0 if restripe for this 3741 * chunk_type is not in progress 3742 * 3743 * should be called with either volume_mutex or balance_lock held 3744 */ 3745 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3746 { 3747 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3748 u64 target = 0; 3749 3750 if (!bctl) 3751 return 0; 3752 3753 if (flags & BTRFS_BLOCK_GROUP_DATA && 3754 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3755 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3756 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3757 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3758 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3759 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3760 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3761 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3762 } 3763 3764 return target; 3765 } 3766 3767 /* 3768 * @flags: available profiles in extended format (see ctree.h) 3769 * 3770 * Returns reduced profile in chunk format. If profile changing is in 3771 * progress (either running or paused) picks the target profile (if it's 3772 * already available), otherwise falls back to plain reducing. 3773 */ 3774 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3775 { 3776 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3777 u64 target; 3778 u64 tmp; 3779 3780 /* 3781 * see if restripe for this chunk_type is in progress, if so 3782 * try to reduce to the target profile 3783 */ 3784 spin_lock(&root->fs_info->balance_lock); 3785 target = get_restripe_target(root->fs_info, flags); 3786 if (target) { 3787 /* pick target profile only if it's already available */ 3788 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3789 spin_unlock(&root->fs_info->balance_lock); 3790 return extended_to_chunk(target); 3791 } 3792 } 3793 spin_unlock(&root->fs_info->balance_lock); 3794 3795 /* First, mask out the RAID levels which aren't possible */ 3796 if (num_devices == 1) 3797 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3798 BTRFS_BLOCK_GROUP_RAID5); 3799 if (num_devices < 3) 3800 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3801 if (num_devices < 4) 3802 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3803 3804 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3805 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3806 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3807 flags &= ~tmp; 3808 3809 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3810 tmp = BTRFS_BLOCK_GROUP_RAID6; 3811 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3812 tmp = BTRFS_BLOCK_GROUP_RAID5; 3813 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3814 tmp = BTRFS_BLOCK_GROUP_RAID10; 3815 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3816 tmp = BTRFS_BLOCK_GROUP_RAID1; 3817 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3818 tmp = BTRFS_BLOCK_GROUP_RAID0; 3819 3820 return extended_to_chunk(flags | tmp); 3821 } 3822 3823 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3824 { 3825 unsigned seq; 3826 u64 flags; 3827 3828 do { 3829 flags = orig_flags; 3830 seq = read_seqbegin(&root->fs_info->profiles_lock); 3831 3832 if (flags & BTRFS_BLOCK_GROUP_DATA) 3833 flags |= root->fs_info->avail_data_alloc_bits; 3834 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3835 flags |= root->fs_info->avail_system_alloc_bits; 3836 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3837 flags |= root->fs_info->avail_metadata_alloc_bits; 3838 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3839 3840 return btrfs_reduce_alloc_profile(root, flags); 3841 } 3842 3843 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3844 { 3845 u64 flags; 3846 u64 ret; 3847 3848 if (data) 3849 flags = BTRFS_BLOCK_GROUP_DATA; 3850 else if (root == root->fs_info->chunk_root) 3851 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3852 else 3853 flags = BTRFS_BLOCK_GROUP_METADATA; 3854 3855 ret = get_alloc_profile(root, flags); 3856 return ret; 3857 } 3858 3859 /* 3860 * This will check the space that the inode allocates from to make sure we have 3861 * enough space for bytes. 3862 */ 3863 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3864 { 3865 struct btrfs_space_info *data_sinfo; 3866 struct btrfs_root *root = BTRFS_I(inode)->root; 3867 struct btrfs_fs_info *fs_info = root->fs_info; 3868 u64 used; 3869 int ret = 0; 3870 int need_commit = 2; 3871 int have_pinned_space; 3872 3873 /* make sure bytes are sectorsize aligned */ 3874 bytes = ALIGN(bytes, root->sectorsize); 3875 3876 if (btrfs_is_free_space_inode(inode)) { 3877 need_commit = 0; 3878 ASSERT(current->journal_info); 3879 } 3880 3881 data_sinfo = fs_info->data_sinfo; 3882 if (!data_sinfo) 3883 goto alloc; 3884 3885 again: 3886 /* make sure we have enough space to handle the data first */ 3887 spin_lock(&data_sinfo->lock); 3888 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3889 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3890 data_sinfo->bytes_may_use; 3891 3892 if (used + bytes > data_sinfo->total_bytes) { 3893 struct btrfs_trans_handle *trans; 3894 3895 /* 3896 * if we don't have enough free bytes in this space then we need 3897 * to alloc a new chunk. 3898 */ 3899 if (!data_sinfo->full) { 3900 u64 alloc_target; 3901 3902 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3903 spin_unlock(&data_sinfo->lock); 3904 alloc: 3905 alloc_target = btrfs_get_alloc_profile(root, 1); 3906 /* 3907 * It is ugly that we don't call nolock join 3908 * transaction for the free space inode case here. 3909 * But it is safe because we only do the data space 3910 * reservation for the free space cache in the 3911 * transaction context, the common join transaction 3912 * just increase the counter of the current transaction 3913 * handler, doesn't try to acquire the trans_lock of 3914 * the fs. 3915 */ 3916 trans = btrfs_join_transaction(root); 3917 if (IS_ERR(trans)) 3918 return PTR_ERR(trans); 3919 3920 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3921 alloc_target, 3922 CHUNK_ALLOC_NO_FORCE); 3923 btrfs_end_transaction(trans, root); 3924 if (ret < 0) { 3925 if (ret != -ENOSPC) 3926 return ret; 3927 else { 3928 have_pinned_space = 1; 3929 goto commit_trans; 3930 } 3931 } 3932 3933 if (!data_sinfo) 3934 data_sinfo = fs_info->data_sinfo; 3935 3936 goto again; 3937 } 3938 3939 /* 3940 * If we don't have enough pinned space to deal with this 3941 * allocation, and no removed chunk in current transaction, 3942 * don't bother committing the transaction. 3943 */ 3944 have_pinned_space = percpu_counter_compare( 3945 &data_sinfo->total_bytes_pinned, 3946 used + bytes - data_sinfo->total_bytes); 3947 spin_unlock(&data_sinfo->lock); 3948 3949 /* commit the current transaction and try again */ 3950 commit_trans: 3951 if (need_commit && 3952 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3953 need_commit--; 3954 3955 trans = btrfs_join_transaction(root); 3956 if (IS_ERR(trans)) 3957 return PTR_ERR(trans); 3958 if (have_pinned_space >= 0 || 3959 trans->transaction->have_free_bgs || 3960 need_commit > 0) { 3961 ret = btrfs_commit_transaction(trans, root); 3962 if (ret) 3963 return ret; 3964 /* 3965 * make sure that all running delayed iput are 3966 * done 3967 */ 3968 down_write(&root->fs_info->delayed_iput_sem); 3969 up_write(&root->fs_info->delayed_iput_sem); 3970 goto again; 3971 } else { 3972 btrfs_end_transaction(trans, root); 3973 } 3974 } 3975 3976 trace_btrfs_space_reservation(root->fs_info, 3977 "space_info:enospc", 3978 data_sinfo->flags, bytes, 1); 3979 return -ENOSPC; 3980 } 3981 ret = btrfs_qgroup_reserve(root, write_bytes); 3982 if (ret) 3983 goto out; 3984 data_sinfo->bytes_may_use += bytes; 3985 trace_btrfs_space_reservation(root->fs_info, "space_info", 3986 data_sinfo->flags, bytes, 1); 3987 out: 3988 spin_unlock(&data_sinfo->lock); 3989 3990 return ret; 3991 } 3992 3993 /* 3994 * Called if we need to clear a data reservation for this inode. 3995 */ 3996 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3997 { 3998 struct btrfs_root *root = BTRFS_I(inode)->root; 3999 struct btrfs_space_info *data_sinfo; 4000 4001 /* make sure bytes are sectorsize aligned */ 4002 bytes = ALIGN(bytes, root->sectorsize); 4003 4004 data_sinfo = root->fs_info->data_sinfo; 4005 spin_lock(&data_sinfo->lock); 4006 WARN_ON(data_sinfo->bytes_may_use < bytes); 4007 data_sinfo->bytes_may_use -= bytes; 4008 trace_btrfs_space_reservation(root->fs_info, "space_info", 4009 data_sinfo->flags, bytes, 0); 4010 spin_unlock(&data_sinfo->lock); 4011 } 4012 4013 static void force_metadata_allocation(struct btrfs_fs_info *info) 4014 { 4015 struct list_head *head = &info->space_info; 4016 struct btrfs_space_info *found; 4017 4018 rcu_read_lock(); 4019 list_for_each_entry_rcu(found, head, list) { 4020 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4021 found->force_alloc = CHUNK_ALLOC_FORCE; 4022 } 4023 rcu_read_unlock(); 4024 } 4025 4026 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4027 { 4028 return (global->size << 1); 4029 } 4030 4031 static int should_alloc_chunk(struct btrfs_root *root, 4032 struct btrfs_space_info *sinfo, int force) 4033 { 4034 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4035 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4036 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4037 u64 thresh; 4038 4039 if (force == CHUNK_ALLOC_FORCE) 4040 return 1; 4041 4042 /* 4043 * We need to take into account the global rsv because for all intents 4044 * and purposes it's used space. Don't worry about locking the 4045 * global_rsv, it doesn't change except when the transaction commits. 4046 */ 4047 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4048 num_allocated += calc_global_rsv_need_space(global_rsv); 4049 4050 /* 4051 * in limited mode, we want to have some free space up to 4052 * about 1% of the FS size. 4053 */ 4054 if (force == CHUNK_ALLOC_LIMITED) { 4055 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4056 thresh = max_t(u64, 64 * 1024 * 1024, 4057 div_factor_fine(thresh, 1)); 4058 4059 if (num_bytes - num_allocated < thresh) 4060 return 1; 4061 } 4062 4063 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4064 return 0; 4065 return 1; 4066 } 4067 4068 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 4069 { 4070 u64 num_dev; 4071 4072 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4073 BTRFS_BLOCK_GROUP_RAID0 | 4074 BTRFS_BLOCK_GROUP_RAID5 | 4075 BTRFS_BLOCK_GROUP_RAID6)) 4076 num_dev = root->fs_info->fs_devices->rw_devices; 4077 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4078 num_dev = 2; 4079 else 4080 num_dev = 1; /* DUP or single */ 4081 4082 /* metadata for updaing devices and chunk tree */ 4083 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 4084 } 4085 4086 static void check_system_chunk(struct btrfs_trans_handle *trans, 4087 struct btrfs_root *root, u64 type) 4088 { 4089 struct btrfs_space_info *info; 4090 u64 left; 4091 u64 thresh; 4092 4093 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4094 spin_lock(&info->lock); 4095 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4096 info->bytes_reserved - info->bytes_readonly; 4097 spin_unlock(&info->lock); 4098 4099 thresh = get_system_chunk_thresh(root, type); 4100 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4101 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4102 left, thresh, type); 4103 dump_space_info(info, 0, 0); 4104 } 4105 4106 if (left < thresh) { 4107 u64 flags; 4108 4109 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4110 btrfs_alloc_chunk(trans, root, flags); 4111 } 4112 } 4113 4114 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4115 struct btrfs_root *extent_root, u64 flags, int force) 4116 { 4117 struct btrfs_space_info *space_info; 4118 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4119 int wait_for_alloc = 0; 4120 int ret = 0; 4121 4122 /* Don't re-enter if we're already allocating a chunk */ 4123 if (trans->allocating_chunk) 4124 return -ENOSPC; 4125 4126 space_info = __find_space_info(extent_root->fs_info, flags); 4127 if (!space_info) { 4128 ret = update_space_info(extent_root->fs_info, flags, 4129 0, 0, &space_info); 4130 BUG_ON(ret); /* -ENOMEM */ 4131 } 4132 BUG_ON(!space_info); /* Logic error */ 4133 4134 again: 4135 spin_lock(&space_info->lock); 4136 if (force < space_info->force_alloc) 4137 force = space_info->force_alloc; 4138 if (space_info->full) { 4139 if (should_alloc_chunk(extent_root, space_info, force)) 4140 ret = -ENOSPC; 4141 else 4142 ret = 0; 4143 spin_unlock(&space_info->lock); 4144 return ret; 4145 } 4146 4147 if (!should_alloc_chunk(extent_root, space_info, force)) { 4148 spin_unlock(&space_info->lock); 4149 return 0; 4150 } else if (space_info->chunk_alloc) { 4151 wait_for_alloc = 1; 4152 } else { 4153 space_info->chunk_alloc = 1; 4154 } 4155 4156 spin_unlock(&space_info->lock); 4157 4158 mutex_lock(&fs_info->chunk_mutex); 4159 4160 /* 4161 * The chunk_mutex is held throughout the entirety of a chunk 4162 * allocation, so once we've acquired the chunk_mutex we know that the 4163 * other guy is done and we need to recheck and see if we should 4164 * allocate. 4165 */ 4166 if (wait_for_alloc) { 4167 mutex_unlock(&fs_info->chunk_mutex); 4168 wait_for_alloc = 0; 4169 goto again; 4170 } 4171 4172 trans->allocating_chunk = true; 4173 4174 /* 4175 * If we have mixed data/metadata chunks we want to make sure we keep 4176 * allocating mixed chunks instead of individual chunks. 4177 */ 4178 if (btrfs_mixed_space_info(space_info)) 4179 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4180 4181 /* 4182 * if we're doing a data chunk, go ahead and make sure that 4183 * we keep a reasonable number of metadata chunks allocated in the 4184 * FS as well. 4185 */ 4186 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4187 fs_info->data_chunk_allocations++; 4188 if (!(fs_info->data_chunk_allocations % 4189 fs_info->metadata_ratio)) 4190 force_metadata_allocation(fs_info); 4191 } 4192 4193 /* 4194 * Check if we have enough space in SYSTEM chunk because we may need 4195 * to update devices. 4196 */ 4197 check_system_chunk(trans, extent_root, flags); 4198 4199 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4200 trans->allocating_chunk = false; 4201 4202 spin_lock(&space_info->lock); 4203 if (ret < 0 && ret != -ENOSPC) 4204 goto out; 4205 if (ret) 4206 space_info->full = 1; 4207 else 4208 ret = 1; 4209 4210 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4211 out: 4212 space_info->chunk_alloc = 0; 4213 spin_unlock(&space_info->lock); 4214 mutex_unlock(&fs_info->chunk_mutex); 4215 return ret; 4216 } 4217 4218 static int can_overcommit(struct btrfs_root *root, 4219 struct btrfs_space_info *space_info, u64 bytes, 4220 enum btrfs_reserve_flush_enum flush) 4221 { 4222 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4223 u64 profile = btrfs_get_alloc_profile(root, 0); 4224 u64 space_size; 4225 u64 avail; 4226 u64 used; 4227 4228 used = space_info->bytes_used + space_info->bytes_reserved + 4229 space_info->bytes_pinned + space_info->bytes_readonly; 4230 4231 /* 4232 * We only want to allow over committing if we have lots of actual space 4233 * free, but if we don't have enough space to handle the global reserve 4234 * space then we could end up having a real enospc problem when trying 4235 * to allocate a chunk or some other such important allocation. 4236 */ 4237 spin_lock(&global_rsv->lock); 4238 space_size = calc_global_rsv_need_space(global_rsv); 4239 spin_unlock(&global_rsv->lock); 4240 if (used + space_size >= space_info->total_bytes) 4241 return 0; 4242 4243 used += space_info->bytes_may_use; 4244 4245 spin_lock(&root->fs_info->free_chunk_lock); 4246 avail = root->fs_info->free_chunk_space; 4247 spin_unlock(&root->fs_info->free_chunk_lock); 4248 4249 /* 4250 * If we have dup, raid1 or raid10 then only half of the free 4251 * space is actually useable. For raid56, the space info used 4252 * doesn't include the parity drive, so we don't have to 4253 * change the math 4254 */ 4255 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4256 BTRFS_BLOCK_GROUP_RAID1 | 4257 BTRFS_BLOCK_GROUP_RAID10)) 4258 avail >>= 1; 4259 4260 /* 4261 * If we aren't flushing all things, let us overcommit up to 4262 * 1/2th of the space. If we can flush, don't let us overcommit 4263 * too much, let it overcommit up to 1/8 of the space. 4264 */ 4265 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4266 avail >>= 3; 4267 else 4268 avail >>= 1; 4269 4270 if (used + bytes < space_info->total_bytes + avail) 4271 return 1; 4272 return 0; 4273 } 4274 4275 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4276 unsigned long nr_pages, int nr_items) 4277 { 4278 struct super_block *sb = root->fs_info->sb; 4279 4280 if (down_read_trylock(&sb->s_umount)) { 4281 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4282 up_read(&sb->s_umount); 4283 } else { 4284 /* 4285 * We needn't worry the filesystem going from r/w to r/o though 4286 * we don't acquire ->s_umount mutex, because the filesystem 4287 * should guarantee the delalloc inodes list be empty after 4288 * the filesystem is readonly(all dirty pages are written to 4289 * the disk). 4290 */ 4291 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4292 if (!current->journal_info) 4293 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4294 } 4295 } 4296 4297 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4298 { 4299 u64 bytes; 4300 int nr; 4301 4302 bytes = btrfs_calc_trans_metadata_size(root, 1); 4303 nr = (int)div64_u64(to_reclaim, bytes); 4304 if (!nr) 4305 nr = 1; 4306 return nr; 4307 } 4308 4309 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4310 4311 /* 4312 * shrink metadata reservation for delalloc 4313 */ 4314 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4315 bool wait_ordered) 4316 { 4317 struct btrfs_block_rsv *block_rsv; 4318 struct btrfs_space_info *space_info; 4319 struct btrfs_trans_handle *trans; 4320 u64 delalloc_bytes; 4321 u64 max_reclaim; 4322 long time_left; 4323 unsigned long nr_pages; 4324 int loops; 4325 int items; 4326 enum btrfs_reserve_flush_enum flush; 4327 4328 /* Calc the number of the pages we need flush for space reservation */ 4329 items = calc_reclaim_items_nr(root, to_reclaim); 4330 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4331 4332 trans = (struct btrfs_trans_handle *)current->journal_info; 4333 block_rsv = &root->fs_info->delalloc_block_rsv; 4334 space_info = block_rsv->space_info; 4335 4336 delalloc_bytes = percpu_counter_sum_positive( 4337 &root->fs_info->delalloc_bytes); 4338 if (delalloc_bytes == 0) { 4339 if (trans) 4340 return; 4341 if (wait_ordered) 4342 btrfs_wait_ordered_roots(root->fs_info, items); 4343 return; 4344 } 4345 4346 loops = 0; 4347 while (delalloc_bytes && loops < 3) { 4348 max_reclaim = min(delalloc_bytes, to_reclaim); 4349 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4350 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4351 /* 4352 * We need to wait for the async pages to actually start before 4353 * we do anything. 4354 */ 4355 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4356 if (!max_reclaim) 4357 goto skip_async; 4358 4359 if (max_reclaim <= nr_pages) 4360 max_reclaim = 0; 4361 else 4362 max_reclaim -= nr_pages; 4363 4364 wait_event(root->fs_info->async_submit_wait, 4365 atomic_read(&root->fs_info->async_delalloc_pages) <= 4366 (int)max_reclaim); 4367 skip_async: 4368 if (!trans) 4369 flush = BTRFS_RESERVE_FLUSH_ALL; 4370 else 4371 flush = BTRFS_RESERVE_NO_FLUSH; 4372 spin_lock(&space_info->lock); 4373 if (can_overcommit(root, space_info, orig, flush)) { 4374 spin_unlock(&space_info->lock); 4375 break; 4376 } 4377 spin_unlock(&space_info->lock); 4378 4379 loops++; 4380 if (wait_ordered && !trans) { 4381 btrfs_wait_ordered_roots(root->fs_info, items); 4382 } else { 4383 time_left = schedule_timeout_killable(1); 4384 if (time_left) 4385 break; 4386 } 4387 delalloc_bytes = percpu_counter_sum_positive( 4388 &root->fs_info->delalloc_bytes); 4389 } 4390 } 4391 4392 /** 4393 * maybe_commit_transaction - possibly commit the transaction if its ok to 4394 * @root - the root we're allocating for 4395 * @bytes - the number of bytes we want to reserve 4396 * @force - force the commit 4397 * 4398 * This will check to make sure that committing the transaction will actually 4399 * get us somewhere and then commit the transaction if it does. Otherwise it 4400 * will return -ENOSPC. 4401 */ 4402 static int may_commit_transaction(struct btrfs_root *root, 4403 struct btrfs_space_info *space_info, 4404 u64 bytes, int force) 4405 { 4406 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4407 struct btrfs_trans_handle *trans; 4408 4409 trans = (struct btrfs_trans_handle *)current->journal_info; 4410 if (trans) 4411 return -EAGAIN; 4412 4413 if (force) 4414 goto commit; 4415 4416 /* See if there is enough pinned space to make this reservation */ 4417 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4418 bytes) >= 0) 4419 goto commit; 4420 4421 /* 4422 * See if there is some space in the delayed insertion reservation for 4423 * this reservation. 4424 */ 4425 if (space_info != delayed_rsv->space_info) 4426 return -ENOSPC; 4427 4428 spin_lock(&delayed_rsv->lock); 4429 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4430 bytes - delayed_rsv->size) >= 0) { 4431 spin_unlock(&delayed_rsv->lock); 4432 return -ENOSPC; 4433 } 4434 spin_unlock(&delayed_rsv->lock); 4435 4436 commit: 4437 trans = btrfs_join_transaction(root); 4438 if (IS_ERR(trans)) 4439 return -ENOSPC; 4440 4441 return btrfs_commit_transaction(trans, root); 4442 } 4443 4444 enum flush_state { 4445 FLUSH_DELAYED_ITEMS_NR = 1, 4446 FLUSH_DELAYED_ITEMS = 2, 4447 FLUSH_DELALLOC = 3, 4448 FLUSH_DELALLOC_WAIT = 4, 4449 ALLOC_CHUNK = 5, 4450 COMMIT_TRANS = 6, 4451 }; 4452 4453 static int flush_space(struct btrfs_root *root, 4454 struct btrfs_space_info *space_info, u64 num_bytes, 4455 u64 orig_bytes, int state) 4456 { 4457 struct btrfs_trans_handle *trans; 4458 int nr; 4459 int ret = 0; 4460 4461 switch (state) { 4462 case FLUSH_DELAYED_ITEMS_NR: 4463 case FLUSH_DELAYED_ITEMS: 4464 if (state == FLUSH_DELAYED_ITEMS_NR) 4465 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4466 else 4467 nr = -1; 4468 4469 trans = btrfs_join_transaction(root); 4470 if (IS_ERR(trans)) { 4471 ret = PTR_ERR(trans); 4472 break; 4473 } 4474 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4475 btrfs_end_transaction(trans, root); 4476 break; 4477 case FLUSH_DELALLOC: 4478 case FLUSH_DELALLOC_WAIT: 4479 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4480 state == FLUSH_DELALLOC_WAIT); 4481 break; 4482 case ALLOC_CHUNK: 4483 trans = btrfs_join_transaction(root); 4484 if (IS_ERR(trans)) { 4485 ret = PTR_ERR(trans); 4486 break; 4487 } 4488 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4489 btrfs_get_alloc_profile(root, 0), 4490 CHUNK_ALLOC_NO_FORCE); 4491 btrfs_end_transaction(trans, root); 4492 if (ret == -ENOSPC) 4493 ret = 0; 4494 break; 4495 case COMMIT_TRANS: 4496 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4497 break; 4498 default: 4499 ret = -ENOSPC; 4500 break; 4501 } 4502 4503 return ret; 4504 } 4505 4506 static inline u64 4507 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4508 struct btrfs_space_info *space_info) 4509 { 4510 u64 used; 4511 u64 expected; 4512 u64 to_reclaim; 4513 4514 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4515 16 * 1024 * 1024); 4516 spin_lock(&space_info->lock); 4517 if (can_overcommit(root, space_info, to_reclaim, 4518 BTRFS_RESERVE_FLUSH_ALL)) { 4519 to_reclaim = 0; 4520 goto out; 4521 } 4522 4523 used = space_info->bytes_used + space_info->bytes_reserved + 4524 space_info->bytes_pinned + space_info->bytes_readonly + 4525 space_info->bytes_may_use; 4526 if (can_overcommit(root, space_info, 1024 * 1024, 4527 BTRFS_RESERVE_FLUSH_ALL)) 4528 expected = div_factor_fine(space_info->total_bytes, 95); 4529 else 4530 expected = div_factor_fine(space_info->total_bytes, 90); 4531 4532 if (used > expected) 4533 to_reclaim = used - expected; 4534 else 4535 to_reclaim = 0; 4536 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4537 space_info->bytes_reserved); 4538 out: 4539 spin_unlock(&space_info->lock); 4540 4541 return to_reclaim; 4542 } 4543 4544 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4545 struct btrfs_fs_info *fs_info, u64 used) 4546 { 4547 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4548 4549 /* If we're just plain full then async reclaim just slows us down. */ 4550 if (space_info->bytes_used >= thresh) 4551 return 0; 4552 4553 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4554 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4555 } 4556 4557 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4558 struct btrfs_fs_info *fs_info, 4559 int flush_state) 4560 { 4561 u64 used; 4562 4563 spin_lock(&space_info->lock); 4564 /* 4565 * We run out of space and have not got any free space via flush_space, 4566 * so don't bother doing async reclaim. 4567 */ 4568 if (flush_state > COMMIT_TRANS && space_info->full) { 4569 spin_unlock(&space_info->lock); 4570 return 0; 4571 } 4572 4573 used = space_info->bytes_used + space_info->bytes_reserved + 4574 space_info->bytes_pinned + space_info->bytes_readonly + 4575 space_info->bytes_may_use; 4576 if (need_do_async_reclaim(space_info, fs_info, used)) { 4577 spin_unlock(&space_info->lock); 4578 return 1; 4579 } 4580 spin_unlock(&space_info->lock); 4581 4582 return 0; 4583 } 4584 4585 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4586 { 4587 struct btrfs_fs_info *fs_info; 4588 struct btrfs_space_info *space_info; 4589 u64 to_reclaim; 4590 int flush_state; 4591 4592 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4593 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4594 4595 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4596 space_info); 4597 if (!to_reclaim) 4598 return; 4599 4600 flush_state = FLUSH_DELAYED_ITEMS_NR; 4601 do { 4602 flush_space(fs_info->fs_root, space_info, to_reclaim, 4603 to_reclaim, flush_state); 4604 flush_state++; 4605 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4606 flush_state)) 4607 return; 4608 } while (flush_state < COMMIT_TRANS); 4609 } 4610 4611 void btrfs_init_async_reclaim_work(struct work_struct *work) 4612 { 4613 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4614 } 4615 4616 /** 4617 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4618 * @root - the root we're allocating for 4619 * @block_rsv - the block_rsv we're allocating for 4620 * @orig_bytes - the number of bytes we want 4621 * @flush - whether or not we can flush to make our reservation 4622 * 4623 * This will reserve orgi_bytes number of bytes from the space info associated 4624 * with the block_rsv. If there is not enough space it will make an attempt to 4625 * flush out space to make room. It will do this by flushing delalloc if 4626 * possible or committing the transaction. If flush is 0 then no attempts to 4627 * regain reservations will be made and this will fail if there is not enough 4628 * space already. 4629 */ 4630 static int reserve_metadata_bytes(struct btrfs_root *root, 4631 struct btrfs_block_rsv *block_rsv, 4632 u64 orig_bytes, 4633 enum btrfs_reserve_flush_enum flush) 4634 { 4635 struct btrfs_space_info *space_info = block_rsv->space_info; 4636 u64 used; 4637 u64 num_bytes = orig_bytes; 4638 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4639 int ret = 0; 4640 bool flushing = false; 4641 4642 again: 4643 ret = 0; 4644 spin_lock(&space_info->lock); 4645 /* 4646 * We only want to wait if somebody other than us is flushing and we 4647 * are actually allowed to flush all things. 4648 */ 4649 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4650 space_info->flush) { 4651 spin_unlock(&space_info->lock); 4652 /* 4653 * If we have a trans handle we can't wait because the flusher 4654 * may have to commit the transaction, which would mean we would 4655 * deadlock since we are waiting for the flusher to finish, but 4656 * hold the current transaction open. 4657 */ 4658 if (current->journal_info) 4659 return -EAGAIN; 4660 ret = wait_event_killable(space_info->wait, !space_info->flush); 4661 /* Must have been killed, return */ 4662 if (ret) 4663 return -EINTR; 4664 4665 spin_lock(&space_info->lock); 4666 } 4667 4668 ret = -ENOSPC; 4669 used = space_info->bytes_used + space_info->bytes_reserved + 4670 space_info->bytes_pinned + space_info->bytes_readonly + 4671 space_info->bytes_may_use; 4672 4673 /* 4674 * The idea here is that we've not already over-reserved the block group 4675 * then we can go ahead and save our reservation first and then start 4676 * flushing if we need to. Otherwise if we've already overcommitted 4677 * lets start flushing stuff first and then come back and try to make 4678 * our reservation. 4679 */ 4680 if (used <= space_info->total_bytes) { 4681 if (used + orig_bytes <= space_info->total_bytes) { 4682 space_info->bytes_may_use += orig_bytes; 4683 trace_btrfs_space_reservation(root->fs_info, 4684 "space_info", space_info->flags, orig_bytes, 1); 4685 ret = 0; 4686 } else { 4687 /* 4688 * Ok set num_bytes to orig_bytes since we aren't 4689 * overocmmitted, this way we only try and reclaim what 4690 * we need. 4691 */ 4692 num_bytes = orig_bytes; 4693 } 4694 } else { 4695 /* 4696 * Ok we're over committed, set num_bytes to the overcommitted 4697 * amount plus the amount of bytes that we need for this 4698 * reservation. 4699 */ 4700 num_bytes = used - space_info->total_bytes + 4701 (orig_bytes * 2); 4702 } 4703 4704 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4705 space_info->bytes_may_use += orig_bytes; 4706 trace_btrfs_space_reservation(root->fs_info, "space_info", 4707 space_info->flags, orig_bytes, 4708 1); 4709 ret = 0; 4710 } 4711 4712 /* 4713 * Couldn't make our reservation, save our place so while we're trying 4714 * to reclaim space we can actually use it instead of somebody else 4715 * stealing it from us. 4716 * 4717 * We make the other tasks wait for the flush only when we can flush 4718 * all things. 4719 */ 4720 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4721 flushing = true; 4722 space_info->flush = 1; 4723 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4724 used += orig_bytes; 4725 /* 4726 * We will do the space reservation dance during log replay, 4727 * which means we won't have fs_info->fs_root set, so don't do 4728 * the async reclaim as we will panic. 4729 */ 4730 if (!root->fs_info->log_root_recovering && 4731 need_do_async_reclaim(space_info, root->fs_info, used) && 4732 !work_busy(&root->fs_info->async_reclaim_work)) 4733 queue_work(system_unbound_wq, 4734 &root->fs_info->async_reclaim_work); 4735 } 4736 spin_unlock(&space_info->lock); 4737 4738 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4739 goto out; 4740 4741 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4742 flush_state); 4743 flush_state++; 4744 4745 /* 4746 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4747 * would happen. So skip delalloc flush. 4748 */ 4749 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4750 (flush_state == FLUSH_DELALLOC || 4751 flush_state == FLUSH_DELALLOC_WAIT)) 4752 flush_state = ALLOC_CHUNK; 4753 4754 if (!ret) 4755 goto again; 4756 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4757 flush_state < COMMIT_TRANS) 4758 goto again; 4759 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4760 flush_state <= COMMIT_TRANS) 4761 goto again; 4762 4763 out: 4764 if (ret == -ENOSPC && 4765 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4766 struct btrfs_block_rsv *global_rsv = 4767 &root->fs_info->global_block_rsv; 4768 4769 if (block_rsv != global_rsv && 4770 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4771 ret = 0; 4772 } 4773 if (ret == -ENOSPC) 4774 trace_btrfs_space_reservation(root->fs_info, 4775 "space_info:enospc", 4776 space_info->flags, orig_bytes, 1); 4777 if (flushing) { 4778 spin_lock(&space_info->lock); 4779 space_info->flush = 0; 4780 wake_up_all(&space_info->wait); 4781 spin_unlock(&space_info->lock); 4782 } 4783 return ret; 4784 } 4785 4786 static struct btrfs_block_rsv *get_block_rsv( 4787 const struct btrfs_trans_handle *trans, 4788 const struct btrfs_root *root) 4789 { 4790 struct btrfs_block_rsv *block_rsv = NULL; 4791 4792 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4793 block_rsv = trans->block_rsv; 4794 4795 if (root == root->fs_info->csum_root && trans->adding_csums) 4796 block_rsv = trans->block_rsv; 4797 4798 if (root == root->fs_info->uuid_root) 4799 block_rsv = trans->block_rsv; 4800 4801 if (!block_rsv) 4802 block_rsv = root->block_rsv; 4803 4804 if (!block_rsv) 4805 block_rsv = &root->fs_info->empty_block_rsv; 4806 4807 return block_rsv; 4808 } 4809 4810 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4811 u64 num_bytes) 4812 { 4813 int ret = -ENOSPC; 4814 spin_lock(&block_rsv->lock); 4815 if (block_rsv->reserved >= num_bytes) { 4816 block_rsv->reserved -= num_bytes; 4817 if (block_rsv->reserved < block_rsv->size) 4818 block_rsv->full = 0; 4819 ret = 0; 4820 } 4821 spin_unlock(&block_rsv->lock); 4822 return ret; 4823 } 4824 4825 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4826 u64 num_bytes, int update_size) 4827 { 4828 spin_lock(&block_rsv->lock); 4829 block_rsv->reserved += num_bytes; 4830 if (update_size) 4831 block_rsv->size += num_bytes; 4832 else if (block_rsv->reserved >= block_rsv->size) 4833 block_rsv->full = 1; 4834 spin_unlock(&block_rsv->lock); 4835 } 4836 4837 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4838 struct btrfs_block_rsv *dest, u64 num_bytes, 4839 int min_factor) 4840 { 4841 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4842 u64 min_bytes; 4843 4844 if (global_rsv->space_info != dest->space_info) 4845 return -ENOSPC; 4846 4847 spin_lock(&global_rsv->lock); 4848 min_bytes = div_factor(global_rsv->size, min_factor); 4849 if (global_rsv->reserved < min_bytes + num_bytes) { 4850 spin_unlock(&global_rsv->lock); 4851 return -ENOSPC; 4852 } 4853 global_rsv->reserved -= num_bytes; 4854 if (global_rsv->reserved < global_rsv->size) 4855 global_rsv->full = 0; 4856 spin_unlock(&global_rsv->lock); 4857 4858 block_rsv_add_bytes(dest, num_bytes, 1); 4859 return 0; 4860 } 4861 4862 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4863 struct btrfs_block_rsv *block_rsv, 4864 struct btrfs_block_rsv *dest, u64 num_bytes) 4865 { 4866 struct btrfs_space_info *space_info = block_rsv->space_info; 4867 4868 spin_lock(&block_rsv->lock); 4869 if (num_bytes == (u64)-1) 4870 num_bytes = block_rsv->size; 4871 block_rsv->size -= num_bytes; 4872 if (block_rsv->reserved >= block_rsv->size) { 4873 num_bytes = block_rsv->reserved - block_rsv->size; 4874 block_rsv->reserved = block_rsv->size; 4875 block_rsv->full = 1; 4876 } else { 4877 num_bytes = 0; 4878 } 4879 spin_unlock(&block_rsv->lock); 4880 4881 if (num_bytes > 0) { 4882 if (dest) { 4883 spin_lock(&dest->lock); 4884 if (!dest->full) { 4885 u64 bytes_to_add; 4886 4887 bytes_to_add = dest->size - dest->reserved; 4888 bytes_to_add = min(num_bytes, bytes_to_add); 4889 dest->reserved += bytes_to_add; 4890 if (dest->reserved >= dest->size) 4891 dest->full = 1; 4892 num_bytes -= bytes_to_add; 4893 } 4894 spin_unlock(&dest->lock); 4895 } 4896 if (num_bytes) { 4897 spin_lock(&space_info->lock); 4898 space_info->bytes_may_use -= num_bytes; 4899 trace_btrfs_space_reservation(fs_info, "space_info", 4900 space_info->flags, num_bytes, 0); 4901 spin_unlock(&space_info->lock); 4902 } 4903 } 4904 } 4905 4906 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4907 struct btrfs_block_rsv *dst, u64 num_bytes) 4908 { 4909 int ret; 4910 4911 ret = block_rsv_use_bytes(src, num_bytes); 4912 if (ret) 4913 return ret; 4914 4915 block_rsv_add_bytes(dst, num_bytes, 1); 4916 return 0; 4917 } 4918 4919 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4920 { 4921 memset(rsv, 0, sizeof(*rsv)); 4922 spin_lock_init(&rsv->lock); 4923 rsv->type = type; 4924 } 4925 4926 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4927 unsigned short type) 4928 { 4929 struct btrfs_block_rsv *block_rsv; 4930 struct btrfs_fs_info *fs_info = root->fs_info; 4931 4932 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4933 if (!block_rsv) 4934 return NULL; 4935 4936 btrfs_init_block_rsv(block_rsv, type); 4937 block_rsv->space_info = __find_space_info(fs_info, 4938 BTRFS_BLOCK_GROUP_METADATA); 4939 return block_rsv; 4940 } 4941 4942 void btrfs_free_block_rsv(struct btrfs_root *root, 4943 struct btrfs_block_rsv *rsv) 4944 { 4945 if (!rsv) 4946 return; 4947 btrfs_block_rsv_release(root, rsv, (u64)-1); 4948 kfree(rsv); 4949 } 4950 4951 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4952 { 4953 kfree(rsv); 4954 } 4955 4956 int btrfs_block_rsv_add(struct btrfs_root *root, 4957 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4958 enum btrfs_reserve_flush_enum flush) 4959 { 4960 int ret; 4961 4962 if (num_bytes == 0) 4963 return 0; 4964 4965 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4966 if (!ret) { 4967 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4968 return 0; 4969 } 4970 4971 return ret; 4972 } 4973 4974 int btrfs_block_rsv_check(struct btrfs_root *root, 4975 struct btrfs_block_rsv *block_rsv, int min_factor) 4976 { 4977 u64 num_bytes = 0; 4978 int ret = -ENOSPC; 4979 4980 if (!block_rsv) 4981 return 0; 4982 4983 spin_lock(&block_rsv->lock); 4984 num_bytes = div_factor(block_rsv->size, min_factor); 4985 if (block_rsv->reserved >= num_bytes) 4986 ret = 0; 4987 spin_unlock(&block_rsv->lock); 4988 4989 return ret; 4990 } 4991 4992 int btrfs_block_rsv_refill(struct btrfs_root *root, 4993 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4994 enum btrfs_reserve_flush_enum flush) 4995 { 4996 u64 num_bytes = 0; 4997 int ret = -ENOSPC; 4998 4999 if (!block_rsv) 5000 return 0; 5001 5002 spin_lock(&block_rsv->lock); 5003 num_bytes = min_reserved; 5004 if (block_rsv->reserved >= num_bytes) 5005 ret = 0; 5006 else 5007 num_bytes -= block_rsv->reserved; 5008 spin_unlock(&block_rsv->lock); 5009 5010 if (!ret) 5011 return 0; 5012 5013 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5014 if (!ret) { 5015 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5016 return 0; 5017 } 5018 5019 return ret; 5020 } 5021 5022 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5023 struct btrfs_block_rsv *dst_rsv, 5024 u64 num_bytes) 5025 { 5026 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5027 } 5028 5029 void btrfs_block_rsv_release(struct btrfs_root *root, 5030 struct btrfs_block_rsv *block_rsv, 5031 u64 num_bytes) 5032 { 5033 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5034 if (global_rsv == block_rsv || 5035 block_rsv->space_info != global_rsv->space_info) 5036 global_rsv = NULL; 5037 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5038 num_bytes); 5039 } 5040 5041 /* 5042 * helper to calculate size of global block reservation. 5043 * the desired value is sum of space used by extent tree, 5044 * checksum tree and root tree 5045 */ 5046 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5047 { 5048 struct btrfs_space_info *sinfo; 5049 u64 num_bytes; 5050 u64 meta_used; 5051 u64 data_used; 5052 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5053 5054 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5055 spin_lock(&sinfo->lock); 5056 data_used = sinfo->bytes_used; 5057 spin_unlock(&sinfo->lock); 5058 5059 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5060 spin_lock(&sinfo->lock); 5061 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5062 data_used = 0; 5063 meta_used = sinfo->bytes_used; 5064 spin_unlock(&sinfo->lock); 5065 5066 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5067 csum_size * 2; 5068 num_bytes += div_u64(data_used + meta_used, 50); 5069 5070 if (num_bytes * 3 > meta_used) 5071 num_bytes = div_u64(meta_used, 3); 5072 5073 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5074 } 5075 5076 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5077 { 5078 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5079 struct btrfs_space_info *sinfo = block_rsv->space_info; 5080 u64 num_bytes; 5081 5082 num_bytes = calc_global_metadata_size(fs_info); 5083 5084 spin_lock(&sinfo->lock); 5085 spin_lock(&block_rsv->lock); 5086 5087 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5088 5089 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5090 sinfo->bytes_reserved + sinfo->bytes_readonly + 5091 sinfo->bytes_may_use; 5092 5093 if (sinfo->total_bytes > num_bytes) { 5094 num_bytes = sinfo->total_bytes - num_bytes; 5095 block_rsv->reserved += num_bytes; 5096 sinfo->bytes_may_use += num_bytes; 5097 trace_btrfs_space_reservation(fs_info, "space_info", 5098 sinfo->flags, num_bytes, 1); 5099 } 5100 5101 if (block_rsv->reserved >= block_rsv->size) { 5102 num_bytes = block_rsv->reserved - block_rsv->size; 5103 sinfo->bytes_may_use -= num_bytes; 5104 trace_btrfs_space_reservation(fs_info, "space_info", 5105 sinfo->flags, num_bytes, 0); 5106 block_rsv->reserved = block_rsv->size; 5107 block_rsv->full = 1; 5108 } 5109 5110 spin_unlock(&block_rsv->lock); 5111 spin_unlock(&sinfo->lock); 5112 } 5113 5114 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5115 { 5116 struct btrfs_space_info *space_info; 5117 5118 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5119 fs_info->chunk_block_rsv.space_info = space_info; 5120 5121 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5122 fs_info->global_block_rsv.space_info = space_info; 5123 fs_info->delalloc_block_rsv.space_info = space_info; 5124 fs_info->trans_block_rsv.space_info = space_info; 5125 fs_info->empty_block_rsv.space_info = space_info; 5126 fs_info->delayed_block_rsv.space_info = space_info; 5127 5128 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5129 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5130 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5131 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5132 if (fs_info->quota_root) 5133 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5134 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5135 5136 update_global_block_rsv(fs_info); 5137 } 5138 5139 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5140 { 5141 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5142 (u64)-1); 5143 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5144 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5145 WARN_ON(fs_info->trans_block_rsv.size > 0); 5146 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5147 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5148 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5149 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5150 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5151 } 5152 5153 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5154 struct btrfs_root *root) 5155 { 5156 if (!trans->block_rsv) 5157 return; 5158 5159 if (!trans->bytes_reserved) 5160 return; 5161 5162 trace_btrfs_space_reservation(root->fs_info, "transaction", 5163 trans->transid, trans->bytes_reserved, 0); 5164 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5165 trans->bytes_reserved = 0; 5166 } 5167 5168 /* Can only return 0 or -ENOSPC */ 5169 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5170 struct inode *inode) 5171 { 5172 struct btrfs_root *root = BTRFS_I(inode)->root; 5173 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5174 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5175 5176 /* 5177 * We need to hold space in order to delete our orphan item once we've 5178 * added it, so this takes the reservation so we can release it later 5179 * when we are truly done with the orphan item. 5180 */ 5181 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5182 trace_btrfs_space_reservation(root->fs_info, "orphan", 5183 btrfs_ino(inode), num_bytes, 1); 5184 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5185 } 5186 5187 void btrfs_orphan_release_metadata(struct inode *inode) 5188 { 5189 struct btrfs_root *root = BTRFS_I(inode)->root; 5190 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5191 trace_btrfs_space_reservation(root->fs_info, "orphan", 5192 btrfs_ino(inode), num_bytes, 0); 5193 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5194 } 5195 5196 /* 5197 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5198 * root: the root of the parent directory 5199 * rsv: block reservation 5200 * items: the number of items that we need do reservation 5201 * qgroup_reserved: used to return the reserved size in qgroup 5202 * 5203 * This function is used to reserve the space for snapshot/subvolume 5204 * creation and deletion. Those operations are different with the 5205 * common file/directory operations, they change two fs/file trees 5206 * and root tree, the number of items that the qgroup reserves is 5207 * different with the free space reservation. So we can not use 5208 * the space reseravtion mechanism in start_transaction(). 5209 */ 5210 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5211 struct btrfs_block_rsv *rsv, 5212 int items, 5213 u64 *qgroup_reserved, 5214 bool use_global_rsv) 5215 { 5216 u64 num_bytes; 5217 int ret; 5218 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5219 5220 if (root->fs_info->quota_enabled) { 5221 /* One for parent inode, two for dir entries */ 5222 num_bytes = 3 * root->nodesize; 5223 ret = btrfs_qgroup_reserve(root, num_bytes); 5224 if (ret) 5225 return ret; 5226 } else { 5227 num_bytes = 0; 5228 } 5229 5230 *qgroup_reserved = num_bytes; 5231 5232 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5233 rsv->space_info = __find_space_info(root->fs_info, 5234 BTRFS_BLOCK_GROUP_METADATA); 5235 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5236 BTRFS_RESERVE_FLUSH_ALL); 5237 5238 if (ret == -ENOSPC && use_global_rsv) 5239 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5240 5241 if (ret) { 5242 if (*qgroup_reserved) 5243 btrfs_qgroup_free(root, *qgroup_reserved); 5244 } 5245 5246 return ret; 5247 } 5248 5249 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5250 struct btrfs_block_rsv *rsv, 5251 u64 qgroup_reserved) 5252 { 5253 btrfs_block_rsv_release(root, rsv, (u64)-1); 5254 } 5255 5256 /** 5257 * drop_outstanding_extent - drop an outstanding extent 5258 * @inode: the inode we're dropping the extent for 5259 * @num_bytes: the number of bytes we're relaseing. 5260 * 5261 * This is called when we are freeing up an outstanding extent, either called 5262 * after an error or after an extent is written. This will return the number of 5263 * reserved extents that need to be freed. This must be called with 5264 * BTRFS_I(inode)->lock held. 5265 */ 5266 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5267 { 5268 unsigned drop_inode_space = 0; 5269 unsigned dropped_extents = 0; 5270 unsigned num_extents = 0; 5271 5272 num_extents = (unsigned)div64_u64(num_bytes + 5273 BTRFS_MAX_EXTENT_SIZE - 1, 5274 BTRFS_MAX_EXTENT_SIZE); 5275 ASSERT(num_extents); 5276 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5277 BTRFS_I(inode)->outstanding_extents -= num_extents; 5278 5279 if (BTRFS_I(inode)->outstanding_extents == 0 && 5280 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5281 &BTRFS_I(inode)->runtime_flags)) 5282 drop_inode_space = 1; 5283 5284 /* 5285 * If we have more or the same amount of outsanding extents than we have 5286 * reserved then we need to leave the reserved extents count alone. 5287 */ 5288 if (BTRFS_I(inode)->outstanding_extents >= 5289 BTRFS_I(inode)->reserved_extents) 5290 return drop_inode_space; 5291 5292 dropped_extents = BTRFS_I(inode)->reserved_extents - 5293 BTRFS_I(inode)->outstanding_extents; 5294 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5295 return dropped_extents + drop_inode_space; 5296 } 5297 5298 /** 5299 * calc_csum_metadata_size - return the amount of metada space that must be 5300 * reserved/free'd for the given bytes. 5301 * @inode: the inode we're manipulating 5302 * @num_bytes: the number of bytes in question 5303 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5304 * 5305 * This adjusts the number of csum_bytes in the inode and then returns the 5306 * correct amount of metadata that must either be reserved or freed. We 5307 * calculate how many checksums we can fit into one leaf and then divide the 5308 * number of bytes that will need to be checksumed by this value to figure out 5309 * how many checksums will be required. If we are adding bytes then the number 5310 * may go up and we will return the number of additional bytes that must be 5311 * reserved. If it is going down we will return the number of bytes that must 5312 * be freed. 5313 * 5314 * This must be called with BTRFS_I(inode)->lock held. 5315 */ 5316 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5317 int reserve) 5318 { 5319 struct btrfs_root *root = BTRFS_I(inode)->root; 5320 u64 old_csums, num_csums; 5321 5322 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5323 BTRFS_I(inode)->csum_bytes == 0) 5324 return 0; 5325 5326 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5327 if (reserve) 5328 BTRFS_I(inode)->csum_bytes += num_bytes; 5329 else 5330 BTRFS_I(inode)->csum_bytes -= num_bytes; 5331 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5332 5333 /* No change, no need to reserve more */ 5334 if (old_csums == num_csums) 5335 return 0; 5336 5337 if (reserve) 5338 return btrfs_calc_trans_metadata_size(root, 5339 num_csums - old_csums); 5340 5341 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5342 } 5343 5344 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5345 { 5346 struct btrfs_root *root = BTRFS_I(inode)->root; 5347 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5348 u64 to_reserve = 0; 5349 u64 csum_bytes; 5350 unsigned nr_extents = 0; 5351 int extra_reserve = 0; 5352 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5353 int ret = 0; 5354 bool delalloc_lock = true; 5355 u64 to_free = 0; 5356 unsigned dropped; 5357 5358 /* If we are a free space inode we need to not flush since we will be in 5359 * the middle of a transaction commit. We also don't need the delalloc 5360 * mutex since we won't race with anybody. We need this mostly to make 5361 * lockdep shut its filthy mouth. 5362 */ 5363 if (btrfs_is_free_space_inode(inode)) { 5364 flush = BTRFS_RESERVE_NO_FLUSH; 5365 delalloc_lock = false; 5366 } 5367 5368 if (flush != BTRFS_RESERVE_NO_FLUSH && 5369 btrfs_transaction_in_commit(root->fs_info)) 5370 schedule_timeout(1); 5371 5372 if (delalloc_lock) 5373 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5374 5375 num_bytes = ALIGN(num_bytes, root->sectorsize); 5376 5377 spin_lock(&BTRFS_I(inode)->lock); 5378 nr_extents = (unsigned)div64_u64(num_bytes + 5379 BTRFS_MAX_EXTENT_SIZE - 1, 5380 BTRFS_MAX_EXTENT_SIZE); 5381 BTRFS_I(inode)->outstanding_extents += nr_extents; 5382 nr_extents = 0; 5383 5384 if (BTRFS_I(inode)->outstanding_extents > 5385 BTRFS_I(inode)->reserved_extents) 5386 nr_extents = BTRFS_I(inode)->outstanding_extents - 5387 BTRFS_I(inode)->reserved_extents; 5388 5389 /* 5390 * Add an item to reserve for updating the inode when we complete the 5391 * delalloc io. 5392 */ 5393 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5394 &BTRFS_I(inode)->runtime_flags)) { 5395 nr_extents++; 5396 extra_reserve = 1; 5397 } 5398 5399 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5400 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5401 csum_bytes = BTRFS_I(inode)->csum_bytes; 5402 spin_unlock(&BTRFS_I(inode)->lock); 5403 5404 if (root->fs_info->quota_enabled) { 5405 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5406 if (ret) 5407 goto out_fail; 5408 } 5409 5410 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5411 if (unlikely(ret)) { 5412 if (root->fs_info->quota_enabled) 5413 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5414 goto out_fail; 5415 } 5416 5417 spin_lock(&BTRFS_I(inode)->lock); 5418 if (extra_reserve) { 5419 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5420 &BTRFS_I(inode)->runtime_flags); 5421 nr_extents--; 5422 } 5423 BTRFS_I(inode)->reserved_extents += nr_extents; 5424 spin_unlock(&BTRFS_I(inode)->lock); 5425 5426 if (delalloc_lock) 5427 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5428 5429 if (to_reserve) 5430 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5431 btrfs_ino(inode), to_reserve, 1); 5432 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5433 5434 return 0; 5435 5436 out_fail: 5437 spin_lock(&BTRFS_I(inode)->lock); 5438 dropped = drop_outstanding_extent(inode, num_bytes); 5439 /* 5440 * If the inodes csum_bytes is the same as the original 5441 * csum_bytes then we know we haven't raced with any free()ers 5442 * so we can just reduce our inodes csum bytes and carry on. 5443 */ 5444 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5445 calc_csum_metadata_size(inode, num_bytes, 0); 5446 } else { 5447 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5448 u64 bytes; 5449 5450 /* 5451 * This is tricky, but first we need to figure out how much we 5452 * free'd from any free-ers that occured during this 5453 * reservation, so we reset ->csum_bytes to the csum_bytes 5454 * before we dropped our lock, and then call the free for the 5455 * number of bytes that were freed while we were trying our 5456 * reservation. 5457 */ 5458 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5459 BTRFS_I(inode)->csum_bytes = csum_bytes; 5460 to_free = calc_csum_metadata_size(inode, bytes, 0); 5461 5462 5463 /* 5464 * Now we need to see how much we would have freed had we not 5465 * been making this reservation and our ->csum_bytes were not 5466 * artificially inflated. 5467 */ 5468 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5469 bytes = csum_bytes - orig_csum_bytes; 5470 bytes = calc_csum_metadata_size(inode, bytes, 0); 5471 5472 /* 5473 * Now reset ->csum_bytes to what it should be. If bytes is 5474 * more than to_free then we would have free'd more space had we 5475 * not had an artificially high ->csum_bytes, so we need to free 5476 * the remainder. If bytes is the same or less then we don't 5477 * need to do anything, the other free-ers did the correct 5478 * thing. 5479 */ 5480 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5481 if (bytes > to_free) 5482 to_free = bytes - to_free; 5483 else 5484 to_free = 0; 5485 } 5486 spin_unlock(&BTRFS_I(inode)->lock); 5487 if (dropped) 5488 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5489 5490 if (to_free) { 5491 btrfs_block_rsv_release(root, block_rsv, to_free); 5492 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5493 btrfs_ino(inode), to_free, 0); 5494 } 5495 if (delalloc_lock) 5496 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5497 return ret; 5498 } 5499 5500 /** 5501 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5502 * @inode: the inode to release the reservation for 5503 * @num_bytes: the number of bytes we're releasing 5504 * 5505 * This will release the metadata reservation for an inode. This can be called 5506 * once we complete IO for a given set of bytes to release their metadata 5507 * reservations. 5508 */ 5509 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5510 { 5511 struct btrfs_root *root = BTRFS_I(inode)->root; 5512 u64 to_free = 0; 5513 unsigned dropped; 5514 5515 num_bytes = ALIGN(num_bytes, root->sectorsize); 5516 spin_lock(&BTRFS_I(inode)->lock); 5517 dropped = drop_outstanding_extent(inode, num_bytes); 5518 5519 if (num_bytes) 5520 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5521 spin_unlock(&BTRFS_I(inode)->lock); 5522 if (dropped > 0) 5523 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5524 5525 if (btrfs_test_is_dummy_root(root)) 5526 return; 5527 5528 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5529 btrfs_ino(inode), to_free, 0); 5530 5531 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5532 to_free); 5533 } 5534 5535 /** 5536 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5537 * @inode: inode we're writing to 5538 * @num_bytes: the number of bytes we want to allocate 5539 * 5540 * This will do the following things 5541 * 5542 * o reserve space in the data space info for num_bytes 5543 * o reserve space in the metadata space info based on number of outstanding 5544 * extents and how much csums will be needed 5545 * o add to the inodes ->delalloc_bytes 5546 * o add it to the fs_info's delalloc inodes list. 5547 * 5548 * This will return 0 for success and -ENOSPC if there is no space left. 5549 */ 5550 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5551 { 5552 int ret; 5553 5554 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5555 if (ret) 5556 return ret; 5557 5558 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5559 if (ret) { 5560 btrfs_free_reserved_data_space(inode, num_bytes); 5561 return ret; 5562 } 5563 5564 return 0; 5565 } 5566 5567 /** 5568 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5569 * @inode: inode we're releasing space for 5570 * @num_bytes: the number of bytes we want to free up 5571 * 5572 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5573 * called in the case that we don't need the metadata AND data reservations 5574 * anymore. So if there is an error or we insert an inline extent. 5575 * 5576 * This function will release the metadata space that was not used and will 5577 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5578 * list if there are no delalloc bytes left. 5579 */ 5580 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5581 { 5582 btrfs_delalloc_release_metadata(inode, num_bytes); 5583 btrfs_free_reserved_data_space(inode, num_bytes); 5584 } 5585 5586 static int update_block_group(struct btrfs_trans_handle *trans, 5587 struct btrfs_root *root, u64 bytenr, 5588 u64 num_bytes, int alloc) 5589 { 5590 struct btrfs_block_group_cache *cache = NULL; 5591 struct btrfs_fs_info *info = root->fs_info; 5592 u64 total = num_bytes; 5593 u64 old_val; 5594 u64 byte_in_group; 5595 int factor; 5596 5597 /* block accounting for super block */ 5598 spin_lock(&info->delalloc_root_lock); 5599 old_val = btrfs_super_bytes_used(info->super_copy); 5600 if (alloc) 5601 old_val += num_bytes; 5602 else 5603 old_val -= num_bytes; 5604 btrfs_set_super_bytes_used(info->super_copy, old_val); 5605 spin_unlock(&info->delalloc_root_lock); 5606 5607 while (total) { 5608 cache = btrfs_lookup_block_group(info, bytenr); 5609 if (!cache) 5610 return -ENOENT; 5611 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5612 BTRFS_BLOCK_GROUP_RAID1 | 5613 BTRFS_BLOCK_GROUP_RAID10)) 5614 factor = 2; 5615 else 5616 factor = 1; 5617 /* 5618 * If this block group has free space cache written out, we 5619 * need to make sure to load it if we are removing space. This 5620 * is because we need the unpinning stage to actually add the 5621 * space back to the block group, otherwise we will leak space. 5622 */ 5623 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5624 cache_block_group(cache, 1); 5625 5626 byte_in_group = bytenr - cache->key.objectid; 5627 WARN_ON(byte_in_group > cache->key.offset); 5628 5629 spin_lock(&cache->space_info->lock); 5630 spin_lock(&cache->lock); 5631 5632 if (btrfs_test_opt(root, SPACE_CACHE) && 5633 cache->disk_cache_state < BTRFS_DC_CLEAR) 5634 cache->disk_cache_state = BTRFS_DC_CLEAR; 5635 5636 old_val = btrfs_block_group_used(&cache->item); 5637 num_bytes = min(total, cache->key.offset - byte_in_group); 5638 if (alloc) { 5639 old_val += num_bytes; 5640 btrfs_set_block_group_used(&cache->item, old_val); 5641 cache->reserved -= num_bytes; 5642 cache->space_info->bytes_reserved -= num_bytes; 5643 cache->space_info->bytes_used += num_bytes; 5644 cache->space_info->disk_used += num_bytes * factor; 5645 spin_unlock(&cache->lock); 5646 spin_unlock(&cache->space_info->lock); 5647 } else { 5648 old_val -= num_bytes; 5649 btrfs_set_block_group_used(&cache->item, old_val); 5650 cache->pinned += num_bytes; 5651 cache->space_info->bytes_pinned += num_bytes; 5652 cache->space_info->bytes_used -= num_bytes; 5653 cache->space_info->disk_used -= num_bytes * factor; 5654 spin_unlock(&cache->lock); 5655 spin_unlock(&cache->space_info->lock); 5656 5657 set_extent_dirty(info->pinned_extents, 5658 bytenr, bytenr + num_bytes - 1, 5659 GFP_NOFS | __GFP_NOFAIL); 5660 /* 5661 * No longer have used bytes in this block group, queue 5662 * it for deletion. 5663 */ 5664 if (old_val == 0) { 5665 spin_lock(&info->unused_bgs_lock); 5666 if (list_empty(&cache->bg_list)) { 5667 btrfs_get_block_group(cache); 5668 list_add_tail(&cache->bg_list, 5669 &info->unused_bgs); 5670 } 5671 spin_unlock(&info->unused_bgs_lock); 5672 } 5673 } 5674 5675 spin_lock(&trans->transaction->dirty_bgs_lock); 5676 if (list_empty(&cache->dirty_list)) { 5677 list_add_tail(&cache->dirty_list, 5678 &trans->transaction->dirty_bgs); 5679 trans->transaction->num_dirty_bgs++; 5680 btrfs_get_block_group(cache); 5681 } 5682 spin_unlock(&trans->transaction->dirty_bgs_lock); 5683 5684 btrfs_put_block_group(cache); 5685 total -= num_bytes; 5686 bytenr += num_bytes; 5687 } 5688 return 0; 5689 } 5690 5691 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5692 { 5693 struct btrfs_block_group_cache *cache; 5694 u64 bytenr; 5695 5696 spin_lock(&root->fs_info->block_group_cache_lock); 5697 bytenr = root->fs_info->first_logical_byte; 5698 spin_unlock(&root->fs_info->block_group_cache_lock); 5699 5700 if (bytenr < (u64)-1) 5701 return bytenr; 5702 5703 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5704 if (!cache) 5705 return 0; 5706 5707 bytenr = cache->key.objectid; 5708 btrfs_put_block_group(cache); 5709 5710 return bytenr; 5711 } 5712 5713 static int pin_down_extent(struct btrfs_root *root, 5714 struct btrfs_block_group_cache *cache, 5715 u64 bytenr, u64 num_bytes, int reserved) 5716 { 5717 spin_lock(&cache->space_info->lock); 5718 spin_lock(&cache->lock); 5719 cache->pinned += num_bytes; 5720 cache->space_info->bytes_pinned += num_bytes; 5721 if (reserved) { 5722 cache->reserved -= num_bytes; 5723 cache->space_info->bytes_reserved -= num_bytes; 5724 } 5725 spin_unlock(&cache->lock); 5726 spin_unlock(&cache->space_info->lock); 5727 5728 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5729 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5730 if (reserved) 5731 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5732 return 0; 5733 } 5734 5735 /* 5736 * this function must be called within transaction 5737 */ 5738 int btrfs_pin_extent(struct btrfs_root *root, 5739 u64 bytenr, u64 num_bytes, int reserved) 5740 { 5741 struct btrfs_block_group_cache *cache; 5742 5743 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5744 BUG_ON(!cache); /* Logic error */ 5745 5746 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5747 5748 btrfs_put_block_group(cache); 5749 return 0; 5750 } 5751 5752 /* 5753 * this function must be called within transaction 5754 */ 5755 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5756 u64 bytenr, u64 num_bytes) 5757 { 5758 struct btrfs_block_group_cache *cache; 5759 int ret; 5760 5761 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5762 if (!cache) 5763 return -EINVAL; 5764 5765 /* 5766 * pull in the free space cache (if any) so that our pin 5767 * removes the free space from the cache. We have load_only set 5768 * to one because the slow code to read in the free extents does check 5769 * the pinned extents. 5770 */ 5771 cache_block_group(cache, 1); 5772 5773 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5774 5775 /* remove us from the free space cache (if we're there at all) */ 5776 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5777 btrfs_put_block_group(cache); 5778 return ret; 5779 } 5780 5781 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5782 { 5783 int ret; 5784 struct btrfs_block_group_cache *block_group; 5785 struct btrfs_caching_control *caching_ctl; 5786 5787 block_group = btrfs_lookup_block_group(root->fs_info, start); 5788 if (!block_group) 5789 return -EINVAL; 5790 5791 cache_block_group(block_group, 0); 5792 caching_ctl = get_caching_control(block_group); 5793 5794 if (!caching_ctl) { 5795 /* Logic error */ 5796 BUG_ON(!block_group_cache_done(block_group)); 5797 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5798 } else { 5799 mutex_lock(&caching_ctl->mutex); 5800 5801 if (start >= caching_ctl->progress) { 5802 ret = add_excluded_extent(root, start, num_bytes); 5803 } else if (start + num_bytes <= caching_ctl->progress) { 5804 ret = btrfs_remove_free_space(block_group, 5805 start, num_bytes); 5806 } else { 5807 num_bytes = caching_ctl->progress - start; 5808 ret = btrfs_remove_free_space(block_group, 5809 start, num_bytes); 5810 if (ret) 5811 goto out_lock; 5812 5813 num_bytes = (start + num_bytes) - 5814 caching_ctl->progress; 5815 start = caching_ctl->progress; 5816 ret = add_excluded_extent(root, start, num_bytes); 5817 } 5818 out_lock: 5819 mutex_unlock(&caching_ctl->mutex); 5820 put_caching_control(caching_ctl); 5821 } 5822 btrfs_put_block_group(block_group); 5823 return ret; 5824 } 5825 5826 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5827 struct extent_buffer *eb) 5828 { 5829 struct btrfs_file_extent_item *item; 5830 struct btrfs_key key; 5831 int found_type; 5832 int i; 5833 5834 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5835 return 0; 5836 5837 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5838 btrfs_item_key_to_cpu(eb, &key, i); 5839 if (key.type != BTRFS_EXTENT_DATA_KEY) 5840 continue; 5841 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5842 found_type = btrfs_file_extent_type(eb, item); 5843 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5844 continue; 5845 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5846 continue; 5847 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5848 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5849 __exclude_logged_extent(log, key.objectid, key.offset); 5850 } 5851 5852 return 0; 5853 } 5854 5855 /** 5856 * btrfs_update_reserved_bytes - update the block_group and space info counters 5857 * @cache: The cache we are manipulating 5858 * @num_bytes: The number of bytes in question 5859 * @reserve: One of the reservation enums 5860 * @delalloc: The blocks are allocated for the delalloc write 5861 * 5862 * This is called by the allocator when it reserves space, or by somebody who is 5863 * freeing space that was never actually used on disk. For example if you 5864 * reserve some space for a new leaf in transaction A and before transaction A 5865 * commits you free that leaf, you call this with reserve set to 0 in order to 5866 * clear the reservation. 5867 * 5868 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5869 * ENOSPC accounting. For data we handle the reservation through clearing the 5870 * delalloc bits in the io_tree. We have to do this since we could end up 5871 * allocating less disk space for the amount of data we have reserved in the 5872 * case of compression. 5873 * 5874 * If this is a reservation and the block group has become read only we cannot 5875 * make the reservation and return -EAGAIN, otherwise this function always 5876 * succeeds. 5877 */ 5878 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5879 u64 num_bytes, int reserve, int delalloc) 5880 { 5881 struct btrfs_space_info *space_info = cache->space_info; 5882 int ret = 0; 5883 5884 spin_lock(&space_info->lock); 5885 spin_lock(&cache->lock); 5886 if (reserve != RESERVE_FREE) { 5887 if (cache->ro) { 5888 ret = -EAGAIN; 5889 } else { 5890 cache->reserved += num_bytes; 5891 space_info->bytes_reserved += num_bytes; 5892 if (reserve == RESERVE_ALLOC) { 5893 trace_btrfs_space_reservation(cache->fs_info, 5894 "space_info", space_info->flags, 5895 num_bytes, 0); 5896 space_info->bytes_may_use -= num_bytes; 5897 } 5898 5899 if (delalloc) 5900 cache->delalloc_bytes += num_bytes; 5901 } 5902 } else { 5903 if (cache->ro) 5904 space_info->bytes_readonly += num_bytes; 5905 cache->reserved -= num_bytes; 5906 space_info->bytes_reserved -= num_bytes; 5907 5908 if (delalloc) 5909 cache->delalloc_bytes -= num_bytes; 5910 } 5911 spin_unlock(&cache->lock); 5912 spin_unlock(&space_info->lock); 5913 return ret; 5914 } 5915 5916 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5917 struct btrfs_root *root) 5918 { 5919 struct btrfs_fs_info *fs_info = root->fs_info; 5920 struct btrfs_caching_control *next; 5921 struct btrfs_caching_control *caching_ctl; 5922 struct btrfs_block_group_cache *cache; 5923 5924 down_write(&fs_info->commit_root_sem); 5925 5926 list_for_each_entry_safe(caching_ctl, next, 5927 &fs_info->caching_block_groups, list) { 5928 cache = caching_ctl->block_group; 5929 if (block_group_cache_done(cache)) { 5930 cache->last_byte_to_unpin = (u64)-1; 5931 list_del_init(&caching_ctl->list); 5932 put_caching_control(caching_ctl); 5933 } else { 5934 cache->last_byte_to_unpin = caching_ctl->progress; 5935 } 5936 } 5937 5938 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5939 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5940 else 5941 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5942 5943 up_write(&fs_info->commit_root_sem); 5944 5945 update_global_block_rsv(fs_info); 5946 } 5947 5948 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 5949 const bool return_free_space) 5950 { 5951 struct btrfs_fs_info *fs_info = root->fs_info; 5952 struct btrfs_block_group_cache *cache = NULL; 5953 struct btrfs_space_info *space_info; 5954 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5955 u64 len; 5956 bool readonly; 5957 5958 while (start <= end) { 5959 readonly = false; 5960 if (!cache || 5961 start >= cache->key.objectid + cache->key.offset) { 5962 if (cache) 5963 btrfs_put_block_group(cache); 5964 cache = btrfs_lookup_block_group(fs_info, start); 5965 BUG_ON(!cache); /* Logic error */ 5966 } 5967 5968 len = cache->key.objectid + cache->key.offset - start; 5969 len = min(len, end + 1 - start); 5970 5971 if (start < cache->last_byte_to_unpin) { 5972 len = min(len, cache->last_byte_to_unpin - start); 5973 if (return_free_space) 5974 btrfs_add_free_space(cache, start, len); 5975 } 5976 5977 start += len; 5978 space_info = cache->space_info; 5979 5980 spin_lock(&space_info->lock); 5981 spin_lock(&cache->lock); 5982 cache->pinned -= len; 5983 space_info->bytes_pinned -= len; 5984 percpu_counter_add(&space_info->total_bytes_pinned, -len); 5985 if (cache->ro) { 5986 space_info->bytes_readonly += len; 5987 readonly = true; 5988 } 5989 spin_unlock(&cache->lock); 5990 if (!readonly && global_rsv->space_info == space_info) { 5991 spin_lock(&global_rsv->lock); 5992 if (!global_rsv->full) { 5993 len = min(len, global_rsv->size - 5994 global_rsv->reserved); 5995 global_rsv->reserved += len; 5996 space_info->bytes_may_use += len; 5997 if (global_rsv->reserved >= global_rsv->size) 5998 global_rsv->full = 1; 5999 } 6000 spin_unlock(&global_rsv->lock); 6001 } 6002 spin_unlock(&space_info->lock); 6003 } 6004 6005 if (cache) 6006 btrfs_put_block_group(cache); 6007 return 0; 6008 } 6009 6010 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6011 struct btrfs_root *root) 6012 { 6013 struct btrfs_fs_info *fs_info = root->fs_info; 6014 struct extent_io_tree *unpin; 6015 u64 start; 6016 u64 end; 6017 int ret; 6018 6019 if (trans->aborted) 6020 return 0; 6021 6022 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6023 unpin = &fs_info->freed_extents[1]; 6024 else 6025 unpin = &fs_info->freed_extents[0]; 6026 6027 while (1) { 6028 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6029 ret = find_first_extent_bit(unpin, 0, &start, &end, 6030 EXTENT_DIRTY, NULL); 6031 if (ret) { 6032 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6033 break; 6034 } 6035 6036 if (btrfs_test_opt(root, DISCARD)) 6037 ret = btrfs_discard_extent(root, start, 6038 end + 1 - start, NULL); 6039 6040 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6041 unpin_extent_range(root, start, end, true); 6042 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6043 cond_resched(); 6044 } 6045 6046 return 0; 6047 } 6048 6049 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6050 u64 owner, u64 root_objectid) 6051 { 6052 struct btrfs_space_info *space_info; 6053 u64 flags; 6054 6055 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6056 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6057 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6058 else 6059 flags = BTRFS_BLOCK_GROUP_METADATA; 6060 } else { 6061 flags = BTRFS_BLOCK_GROUP_DATA; 6062 } 6063 6064 space_info = __find_space_info(fs_info, flags); 6065 BUG_ON(!space_info); /* Logic bug */ 6066 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6067 } 6068 6069 6070 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6071 struct btrfs_root *root, 6072 u64 bytenr, u64 num_bytes, u64 parent, 6073 u64 root_objectid, u64 owner_objectid, 6074 u64 owner_offset, int refs_to_drop, 6075 struct btrfs_delayed_extent_op *extent_op, 6076 int no_quota) 6077 { 6078 struct btrfs_key key; 6079 struct btrfs_path *path; 6080 struct btrfs_fs_info *info = root->fs_info; 6081 struct btrfs_root *extent_root = info->extent_root; 6082 struct extent_buffer *leaf; 6083 struct btrfs_extent_item *ei; 6084 struct btrfs_extent_inline_ref *iref; 6085 int ret; 6086 int is_data; 6087 int extent_slot = 0; 6088 int found_extent = 0; 6089 int num_to_del = 1; 6090 u32 item_size; 6091 u64 refs; 6092 int last_ref = 0; 6093 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL; 6094 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6095 SKINNY_METADATA); 6096 6097 if (!info->quota_enabled || !is_fstree(root_objectid)) 6098 no_quota = 1; 6099 6100 path = btrfs_alloc_path(); 6101 if (!path) 6102 return -ENOMEM; 6103 6104 path->reada = 1; 6105 path->leave_spinning = 1; 6106 6107 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6108 BUG_ON(!is_data && refs_to_drop != 1); 6109 6110 if (is_data) 6111 skinny_metadata = 0; 6112 6113 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6114 bytenr, num_bytes, parent, 6115 root_objectid, owner_objectid, 6116 owner_offset); 6117 if (ret == 0) { 6118 extent_slot = path->slots[0]; 6119 while (extent_slot >= 0) { 6120 btrfs_item_key_to_cpu(path->nodes[0], &key, 6121 extent_slot); 6122 if (key.objectid != bytenr) 6123 break; 6124 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6125 key.offset == num_bytes) { 6126 found_extent = 1; 6127 break; 6128 } 6129 if (key.type == BTRFS_METADATA_ITEM_KEY && 6130 key.offset == owner_objectid) { 6131 found_extent = 1; 6132 break; 6133 } 6134 if (path->slots[0] - extent_slot > 5) 6135 break; 6136 extent_slot--; 6137 } 6138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6139 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6140 if (found_extent && item_size < sizeof(*ei)) 6141 found_extent = 0; 6142 #endif 6143 if (!found_extent) { 6144 BUG_ON(iref); 6145 ret = remove_extent_backref(trans, extent_root, path, 6146 NULL, refs_to_drop, 6147 is_data, &last_ref); 6148 if (ret) { 6149 btrfs_abort_transaction(trans, extent_root, ret); 6150 goto out; 6151 } 6152 btrfs_release_path(path); 6153 path->leave_spinning = 1; 6154 6155 key.objectid = bytenr; 6156 key.type = BTRFS_EXTENT_ITEM_KEY; 6157 key.offset = num_bytes; 6158 6159 if (!is_data && skinny_metadata) { 6160 key.type = BTRFS_METADATA_ITEM_KEY; 6161 key.offset = owner_objectid; 6162 } 6163 6164 ret = btrfs_search_slot(trans, extent_root, 6165 &key, path, -1, 1); 6166 if (ret > 0 && skinny_metadata && path->slots[0]) { 6167 /* 6168 * Couldn't find our skinny metadata item, 6169 * see if we have ye olde extent item. 6170 */ 6171 path->slots[0]--; 6172 btrfs_item_key_to_cpu(path->nodes[0], &key, 6173 path->slots[0]); 6174 if (key.objectid == bytenr && 6175 key.type == BTRFS_EXTENT_ITEM_KEY && 6176 key.offset == num_bytes) 6177 ret = 0; 6178 } 6179 6180 if (ret > 0 && skinny_metadata) { 6181 skinny_metadata = false; 6182 key.objectid = bytenr; 6183 key.type = BTRFS_EXTENT_ITEM_KEY; 6184 key.offset = num_bytes; 6185 btrfs_release_path(path); 6186 ret = btrfs_search_slot(trans, extent_root, 6187 &key, path, -1, 1); 6188 } 6189 6190 if (ret) { 6191 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6192 ret, bytenr); 6193 if (ret > 0) 6194 btrfs_print_leaf(extent_root, 6195 path->nodes[0]); 6196 } 6197 if (ret < 0) { 6198 btrfs_abort_transaction(trans, extent_root, ret); 6199 goto out; 6200 } 6201 extent_slot = path->slots[0]; 6202 } 6203 } else if (WARN_ON(ret == -ENOENT)) { 6204 btrfs_print_leaf(extent_root, path->nodes[0]); 6205 btrfs_err(info, 6206 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6207 bytenr, parent, root_objectid, owner_objectid, 6208 owner_offset); 6209 btrfs_abort_transaction(trans, extent_root, ret); 6210 goto out; 6211 } else { 6212 btrfs_abort_transaction(trans, extent_root, ret); 6213 goto out; 6214 } 6215 6216 leaf = path->nodes[0]; 6217 item_size = btrfs_item_size_nr(leaf, extent_slot); 6218 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6219 if (item_size < sizeof(*ei)) { 6220 BUG_ON(found_extent || extent_slot != path->slots[0]); 6221 ret = convert_extent_item_v0(trans, extent_root, path, 6222 owner_objectid, 0); 6223 if (ret < 0) { 6224 btrfs_abort_transaction(trans, extent_root, ret); 6225 goto out; 6226 } 6227 6228 btrfs_release_path(path); 6229 path->leave_spinning = 1; 6230 6231 key.objectid = bytenr; 6232 key.type = BTRFS_EXTENT_ITEM_KEY; 6233 key.offset = num_bytes; 6234 6235 ret = btrfs_search_slot(trans, extent_root, &key, path, 6236 -1, 1); 6237 if (ret) { 6238 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6239 ret, bytenr); 6240 btrfs_print_leaf(extent_root, path->nodes[0]); 6241 } 6242 if (ret < 0) { 6243 btrfs_abort_transaction(trans, extent_root, ret); 6244 goto out; 6245 } 6246 6247 extent_slot = path->slots[0]; 6248 leaf = path->nodes[0]; 6249 item_size = btrfs_item_size_nr(leaf, extent_slot); 6250 } 6251 #endif 6252 BUG_ON(item_size < sizeof(*ei)); 6253 ei = btrfs_item_ptr(leaf, extent_slot, 6254 struct btrfs_extent_item); 6255 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6256 key.type == BTRFS_EXTENT_ITEM_KEY) { 6257 struct btrfs_tree_block_info *bi; 6258 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6259 bi = (struct btrfs_tree_block_info *)(ei + 1); 6260 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6261 } 6262 6263 refs = btrfs_extent_refs(leaf, ei); 6264 if (refs < refs_to_drop) { 6265 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6266 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6267 ret = -EINVAL; 6268 btrfs_abort_transaction(trans, extent_root, ret); 6269 goto out; 6270 } 6271 refs -= refs_to_drop; 6272 6273 if (refs > 0) { 6274 type = BTRFS_QGROUP_OPER_SUB_SHARED; 6275 if (extent_op) 6276 __run_delayed_extent_op(extent_op, leaf, ei); 6277 /* 6278 * In the case of inline back ref, reference count will 6279 * be updated by remove_extent_backref 6280 */ 6281 if (iref) { 6282 BUG_ON(!found_extent); 6283 } else { 6284 btrfs_set_extent_refs(leaf, ei, refs); 6285 btrfs_mark_buffer_dirty(leaf); 6286 } 6287 if (found_extent) { 6288 ret = remove_extent_backref(trans, extent_root, path, 6289 iref, refs_to_drop, 6290 is_data, &last_ref); 6291 if (ret) { 6292 btrfs_abort_transaction(trans, extent_root, ret); 6293 goto out; 6294 } 6295 } 6296 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6297 root_objectid); 6298 } else { 6299 if (found_extent) { 6300 BUG_ON(is_data && refs_to_drop != 6301 extent_data_ref_count(root, path, iref)); 6302 if (iref) { 6303 BUG_ON(path->slots[0] != extent_slot); 6304 } else { 6305 BUG_ON(path->slots[0] != extent_slot + 1); 6306 path->slots[0] = extent_slot; 6307 num_to_del = 2; 6308 } 6309 } 6310 6311 last_ref = 1; 6312 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6313 num_to_del); 6314 if (ret) { 6315 btrfs_abort_transaction(trans, extent_root, ret); 6316 goto out; 6317 } 6318 btrfs_release_path(path); 6319 6320 if (is_data) { 6321 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6322 if (ret) { 6323 btrfs_abort_transaction(trans, extent_root, ret); 6324 goto out; 6325 } 6326 } 6327 6328 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6329 if (ret) { 6330 btrfs_abort_transaction(trans, extent_root, ret); 6331 goto out; 6332 } 6333 } 6334 btrfs_release_path(path); 6335 6336 /* Deal with the quota accounting */ 6337 if (!ret && last_ref && !no_quota) { 6338 int mod_seq = 0; 6339 6340 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID && 6341 type == BTRFS_QGROUP_OPER_SUB_SHARED) 6342 mod_seq = 1; 6343 6344 ret = btrfs_qgroup_record_ref(trans, info, root_objectid, 6345 bytenr, num_bytes, type, 6346 mod_seq); 6347 } 6348 out: 6349 btrfs_free_path(path); 6350 return ret; 6351 } 6352 6353 /* 6354 * when we free an block, it is possible (and likely) that we free the last 6355 * delayed ref for that extent as well. This searches the delayed ref tree for 6356 * a given extent, and if there are no other delayed refs to be processed, it 6357 * removes it from the tree. 6358 */ 6359 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6360 struct btrfs_root *root, u64 bytenr) 6361 { 6362 struct btrfs_delayed_ref_head *head; 6363 struct btrfs_delayed_ref_root *delayed_refs; 6364 int ret = 0; 6365 6366 delayed_refs = &trans->transaction->delayed_refs; 6367 spin_lock(&delayed_refs->lock); 6368 head = btrfs_find_delayed_ref_head(trans, bytenr); 6369 if (!head) 6370 goto out_delayed_unlock; 6371 6372 spin_lock(&head->lock); 6373 if (rb_first(&head->ref_root)) 6374 goto out; 6375 6376 if (head->extent_op) { 6377 if (!head->must_insert_reserved) 6378 goto out; 6379 btrfs_free_delayed_extent_op(head->extent_op); 6380 head->extent_op = NULL; 6381 } 6382 6383 /* 6384 * waiting for the lock here would deadlock. If someone else has it 6385 * locked they are already in the process of dropping it anyway 6386 */ 6387 if (!mutex_trylock(&head->mutex)) 6388 goto out; 6389 6390 /* 6391 * at this point we have a head with no other entries. Go 6392 * ahead and process it. 6393 */ 6394 head->node.in_tree = 0; 6395 rb_erase(&head->href_node, &delayed_refs->href_root); 6396 6397 atomic_dec(&delayed_refs->num_entries); 6398 6399 /* 6400 * we don't take a ref on the node because we're removing it from the 6401 * tree, so we just steal the ref the tree was holding. 6402 */ 6403 delayed_refs->num_heads--; 6404 if (head->processing == 0) 6405 delayed_refs->num_heads_ready--; 6406 head->processing = 0; 6407 spin_unlock(&head->lock); 6408 spin_unlock(&delayed_refs->lock); 6409 6410 BUG_ON(head->extent_op); 6411 if (head->must_insert_reserved) 6412 ret = 1; 6413 6414 mutex_unlock(&head->mutex); 6415 btrfs_put_delayed_ref(&head->node); 6416 return ret; 6417 out: 6418 spin_unlock(&head->lock); 6419 6420 out_delayed_unlock: 6421 spin_unlock(&delayed_refs->lock); 6422 return 0; 6423 } 6424 6425 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6426 struct btrfs_root *root, 6427 struct extent_buffer *buf, 6428 u64 parent, int last_ref) 6429 { 6430 int pin = 1; 6431 int ret; 6432 6433 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6434 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6435 buf->start, buf->len, 6436 parent, root->root_key.objectid, 6437 btrfs_header_level(buf), 6438 BTRFS_DROP_DELAYED_REF, NULL, 0); 6439 BUG_ON(ret); /* -ENOMEM */ 6440 } 6441 6442 if (!last_ref) 6443 return; 6444 6445 if (btrfs_header_generation(buf) == trans->transid) { 6446 struct btrfs_block_group_cache *cache; 6447 6448 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6449 ret = check_ref_cleanup(trans, root, buf->start); 6450 if (!ret) 6451 goto out; 6452 } 6453 6454 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6455 6456 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6457 pin_down_extent(root, cache, buf->start, buf->len, 1); 6458 btrfs_put_block_group(cache); 6459 goto out; 6460 } 6461 6462 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6463 6464 btrfs_add_free_space(cache, buf->start, buf->len); 6465 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6466 btrfs_put_block_group(cache); 6467 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6468 pin = 0; 6469 } 6470 out: 6471 if (pin) 6472 add_pinned_bytes(root->fs_info, buf->len, 6473 btrfs_header_level(buf), 6474 root->root_key.objectid); 6475 6476 /* 6477 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6478 * anymore. 6479 */ 6480 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6481 } 6482 6483 /* Can return -ENOMEM */ 6484 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6485 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6486 u64 owner, u64 offset, int no_quota) 6487 { 6488 int ret; 6489 struct btrfs_fs_info *fs_info = root->fs_info; 6490 6491 if (btrfs_test_is_dummy_root(root)) 6492 return 0; 6493 6494 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6495 6496 /* 6497 * tree log blocks never actually go into the extent allocation 6498 * tree, just update pinning info and exit early. 6499 */ 6500 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6501 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6502 /* unlocks the pinned mutex */ 6503 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6504 ret = 0; 6505 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6506 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6507 num_bytes, 6508 parent, root_objectid, (int)owner, 6509 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6510 } else { 6511 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6512 num_bytes, 6513 parent, root_objectid, owner, 6514 offset, BTRFS_DROP_DELAYED_REF, 6515 NULL, no_quota); 6516 } 6517 return ret; 6518 } 6519 6520 /* 6521 * when we wait for progress in the block group caching, its because 6522 * our allocation attempt failed at least once. So, we must sleep 6523 * and let some progress happen before we try again. 6524 * 6525 * This function will sleep at least once waiting for new free space to 6526 * show up, and then it will check the block group free space numbers 6527 * for our min num_bytes. Another option is to have it go ahead 6528 * and look in the rbtree for a free extent of a given size, but this 6529 * is a good start. 6530 * 6531 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6532 * any of the information in this block group. 6533 */ 6534 static noinline void 6535 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6536 u64 num_bytes) 6537 { 6538 struct btrfs_caching_control *caching_ctl; 6539 6540 caching_ctl = get_caching_control(cache); 6541 if (!caching_ctl) 6542 return; 6543 6544 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6545 (cache->free_space_ctl->free_space >= num_bytes)); 6546 6547 put_caching_control(caching_ctl); 6548 } 6549 6550 static noinline int 6551 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6552 { 6553 struct btrfs_caching_control *caching_ctl; 6554 int ret = 0; 6555 6556 caching_ctl = get_caching_control(cache); 6557 if (!caching_ctl) 6558 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6559 6560 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6561 if (cache->cached == BTRFS_CACHE_ERROR) 6562 ret = -EIO; 6563 put_caching_control(caching_ctl); 6564 return ret; 6565 } 6566 6567 int __get_raid_index(u64 flags) 6568 { 6569 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6570 return BTRFS_RAID_RAID10; 6571 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6572 return BTRFS_RAID_RAID1; 6573 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6574 return BTRFS_RAID_DUP; 6575 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6576 return BTRFS_RAID_RAID0; 6577 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6578 return BTRFS_RAID_RAID5; 6579 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6580 return BTRFS_RAID_RAID6; 6581 6582 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6583 } 6584 6585 int get_block_group_index(struct btrfs_block_group_cache *cache) 6586 { 6587 return __get_raid_index(cache->flags); 6588 } 6589 6590 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6591 [BTRFS_RAID_RAID10] = "raid10", 6592 [BTRFS_RAID_RAID1] = "raid1", 6593 [BTRFS_RAID_DUP] = "dup", 6594 [BTRFS_RAID_RAID0] = "raid0", 6595 [BTRFS_RAID_SINGLE] = "single", 6596 [BTRFS_RAID_RAID5] = "raid5", 6597 [BTRFS_RAID_RAID6] = "raid6", 6598 }; 6599 6600 static const char *get_raid_name(enum btrfs_raid_types type) 6601 { 6602 if (type >= BTRFS_NR_RAID_TYPES) 6603 return NULL; 6604 6605 return btrfs_raid_type_names[type]; 6606 } 6607 6608 enum btrfs_loop_type { 6609 LOOP_CACHING_NOWAIT = 0, 6610 LOOP_CACHING_WAIT = 1, 6611 LOOP_ALLOC_CHUNK = 2, 6612 LOOP_NO_EMPTY_SIZE = 3, 6613 }; 6614 6615 static inline void 6616 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6617 int delalloc) 6618 { 6619 if (delalloc) 6620 down_read(&cache->data_rwsem); 6621 } 6622 6623 static inline void 6624 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6625 int delalloc) 6626 { 6627 btrfs_get_block_group(cache); 6628 if (delalloc) 6629 down_read(&cache->data_rwsem); 6630 } 6631 6632 static struct btrfs_block_group_cache * 6633 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6634 struct btrfs_free_cluster *cluster, 6635 int delalloc) 6636 { 6637 struct btrfs_block_group_cache *used_bg; 6638 bool locked = false; 6639 again: 6640 spin_lock(&cluster->refill_lock); 6641 if (locked) { 6642 if (used_bg == cluster->block_group) 6643 return used_bg; 6644 6645 up_read(&used_bg->data_rwsem); 6646 btrfs_put_block_group(used_bg); 6647 } 6648 6649 used_bg = cluster->block_group; 6650 if (!used_bg) 6651 return NULL; 6652 6653 if (used_bg == block_group) 6654 return used_bg; 6655 6656 btrfs_get_block_group(used_bg); 6657 6658 if (!delalloc) 6659 return used_bg; 6660 6661 if (down_read_trylock(&used_bg->data_rwsem)) 6662 return used_bg; 6663 6664 spin_unlock(&cluster->refill_lock); 6665 down_read(&used_bg->data_rwsem); 6666 locked = true; 6667 goto again; 6668 } 6669 6670 static inline void 6671 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6672 int delalloc) 6673 { 6674 if (delalloc) 6675 up_read(&cache->data_rwsem); 6676 btrfs_put_block_group(cache); 6677 } 6678 6679 /* 6680 * walks the btree of allocated extents and find a hole of a given size. 6681 * The key ins is changed to record the hole: 6682 * ins->objectid == start position 6683 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6684 * ins->offset == the size of the hole. 6685 * Any available blocks before search_start are skipped. 6686 * 6687 * If there is no suitable free space, we will record the max size of 6688 * the free space extent currently. 6689 */ 6690 static noinline int find_free_extent(struct btrfs_root *orig_root, 6691 u64 num_bytes, u64 empty_size, 6692 u64 hint_byte, struct btrfs_key *ins, 6693 u64 flags, int delalloc) 6694 { 6695 int ret = 0; 6696 struct btrfs_root *root = orig_root->fs_info->extent_root; 6697 struct btrfs_free_cluster *last_ptr = NULL; 6698 struct btrfs_block_group_cache *block_group = NULL; 6699 u64 search_start = 0; 6700 u64 max_extent_size = 0; 6701 int empty_cluster = 2 * 1024 * 1024; 6702 struct btrfs_space_info *space_info; 6703 int loop = 0; 6704 int index = __get_raid_index(flags); 6705 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6706 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6707 bool failed_cluster_refill = false; 6708 bool failed_alloc = false; 6709 bool use_cluster = true; 6710 bool have_caching_bg = false; 6711 6712 WARN_ON(num_bytes < root->sectorsize); 6713 ins->type = BTRFS_EXTENT_ITEM_KEY; 6714 ins->objectid = 0; 6715 ins->offset = 0; 6716 6717 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6718 6719 space_info = __find_space_info(root->fs_info, flags); 6720 if (!space_info) { 6721 btrfs_err(root->fs_info, "No space info for %llu", flags); 6722 return -ENOSPC; 6723 } 6724 6725 /* 6726 * If the space info is for both data and metadata it means we have a 6727 * small filesystem and we can't use the clustering stuff. 6728 */ 6729 if (btrfs_mixed_space_info(space_info)) 6730 use_cluster = false; 6731 6732 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6733 last_ptr = &root->fs_info->meta_alloc_cluster; 6734 if (!btrfs_test_opt(root, SSD)) 6735 empty_cluster = 64 * 1024; 6736 } 6737 6738 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6739 btrfs_test_opt(root, SSD)) { 6740 last_ptr = &root->fs_info->data_alloc_cluster; 6741 } 6742 6743 if (last_ptr) { 6744 spin_lock(&last_ptr->lock); 6745 if (last_ptr->block_group) 6746 hint_byte = last_ptr->window_start; 6747 spin_unlock(&last_ptr->lock); 6748 } 6749 6750 search_start = max(search_start, first_logical_byte(root, 0)); 6751 search_start = max(search_start, hint_byte); 6752 6753 if (!last_ptr) 6754 empty_cluster = 0; 6755 6756 if (search_start == hint_byte) { 6757 block_group = btrfs_lookup_block_group(root->fs_info, 6758 search_start); 6759 /* 6760 * we don't want to use the block group if it doesn't match our 6761 * allocation bits, or if its not cached. 6762 * 6763 * However if we are re-searching with an ideal block group 6764 * picked out then we don't care that the block group is cached. 6765 */ 6766 if (block_group && block_group_bits(block_group, flags) && 6767 block_group->cached != BTRFS_CACHE_NO) { 6768 down_read(&space_info->groups_sem); 6769 if (list_empty(&block_group->list) || 6770 block_group->ro) { 6771 /* 6772 * someone is removing this block group, 6773 * we can't jump into the have_block_group 6774 * target because our list pointers are not 6775 * valid 6776 */ 6777 btrfs_put_block_group(block_group); 6778 up_read(&space_info->groups_sem); 6779 } else { 6780 index = get_block_group_index(block_group); 6781 btrfs_lock_block_group(block_group, delalloc); 6782 goto have_block_group; 6783 } 6784 } else if (block_group) { 6785 btrfs_put_block_group(block_group); 6786 } 6787 } 6788 search: 6789 have_caching_bg = false; 6790 down_read(&space_info->groups_sem); 6791 list_for_each_entry(block_group, &space_info->block_groups[index], 6792 list) { 6793 u64 offset; 6794 int cached; 6795 6796 btrfs_grab_block_group(block_group, delalloc); 6797 search_start = block_group->key.objectid; 6798 6799 /* 6800 * this can happen if we end up cycling through all the 6801 * raid types, but we want to make sure we only allocate 6802 * for the proper type. 6803 */ 6804 if (!block_group_bits(block_group, flags)) { 6805 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6806 BTRFS_BLOCK_GROUP_RAID1 | 6807 BTRFS_BLOCK_GROUP_RAID5 | 6808 BTRFS_BLOCK_GROUP_RAID6 | 6809 BTRFS_BLOCK_GROUP_RAID10; 6810 6811 /* 6812 * if they asked for extra copies and this block group 6813 * doesn't provide them, bail. This does allow us to 6814 * fill raid0 from raid1. 6815 */ 6816 if ((flags & extra) && !(block_group->flags & extra)) 6817 goto loop; 6818 } 6819 6820 have_block_group: 6821 cached = block_group_cache_done(block_group); 6822 if (unlikely(!cached)) { 6823 ret = cache_block_group(block_group, 0); 6824 BUG_ON(ret < 0); 6825 ret = 0; 6826 } 6827 6828 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6829 goto loop; 6830 if (unlikely(block_group->ro)) 6831 goto loop; 6832 6833 /* 6834 * Ok we want to try and use the cluster allocator, so 6835 * lets look there 6836 */ 6837 if (last_ptr) { 6838 struct btrfs_block_group_cache *used_block_group; 6839 unsigned long aligned_cluster; 6840 /* 6841 * the refill lock keeps out other 6842 * people trying to start a new cluster 6843 */ 6844 used_block_group = btrfs_lock_cluster(block_group, 6845 last_ptr, 6846 delalloc); 6847 if (!used_block_group) 6848 goto refill_cluster; 6849 6850 if (used_block_group != block_group && 6851 (used_block_group->ro || 6852 !block_group_bits(used_block_group, flags))) 6853 goto release_cluster; 6854 6855 offset = btrfs_alloc_from_cluster(used_block_group, 6856 last_ptr, 6857 num_bytes, 6858 used_block_group->key.objectid, 6859 &max_extent_size); 6860 if (offset) { 6861 /* we have a block, we're done */ 6862 spin_unlock(&last_ptr->refill_lock); 6863 trace_btrfs_reserve_extent_cluster(root, 6864 used_block_group, 6865 search_start, num_bytes); 6866 if (used_block_group != block_group) { 6867 btrfs_release_block_group(block_group, 6868 delalloc); 6869 block_group = used_block_group; 6870 } 6871 goto checks; 6872 } 6873 6874 WARN_ON(last_ptr->block_group != used_block_group); 6875 release_cluster: 6876 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6877 * set up a new clusters, so lets just skip it 6878 * and let the allocator find whatever block 6879 * it can find. If we reach this point, we 6880 * will have tried the cluster allocator 6881 * plenty of times and not have found 6882 * anything, so we are likely way too 6883 * fragmented for the clustering stuff to find 6884 * anything. 6885 * 6886 * However, if the cluster is taken from the 6887 * current block group, release the cluster 6888 * first, so that we stand a better chance of 6889 * succeeding in the unclustered 6890 * allocation. */ 6891 if (loop >= LOOP_NO_EMPTY_SIZE && 6892 used_block_group != block_group) { 6893 spin_unlock(&last_ptr->refill_lock); 6894 btrfs_release_block_group(used_block_group, 6895 delalloc); 6896 goto unclustered_alloc; 6897 } 6898 6899 /* 6900 * this cluster didn't work out, free it and 6901 * start over 6902 */ 6903 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6904 6905 if (used_block_group != block_group) 6906 btrfs_release_block_group(used_block_group, 6907 delalloc); 6908 refill_cluster: 6909 if (loop >= LOOP_NO_EMPTY_SIZE) { 6910 spin_unlock(&last_ptr->refill_lock); 6911 goto unclustered_alloc; 6912 } 6913 6914 aligned_cluster = max_t(unsigned long, 6915 empty_cluster + empty_size, 6916 block_group->full_stripe_len); 6917 6918 /* allocate a cluster in this block group */ 6919 ret = btrfs_find_space_cluster(root, block_group, 6920 last_ptr, search_start, 6921 num_bytes, 6922 aligned_cluster); 6923 if (ret == 0) { 6924 /* 6925 * now pull our allocation out of this 6926 * cluster 6927 */ 6928 offset = btrfs_alloc_from_cluster(block_group, 6929 last_ptr, 6930 num_bytes, 6931 search_start, 6932 &max_extent_size); 6933 if (offset) { 6934 /* we found one, proceed */ 6935 spin_unlock(&last_ptr->refill_lock); 6936 trace_btrfs_reserve_extent_cluster(root, 6937 block_group, search_start, 6938 num_bytes); 6939 goto checks; 6940 } 6941 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6942 && !failed_cluster_refill) { 6943 spin_unlock(&last_ptr->refill_lock); 6944 6945 failed_cluster_refill = true; 6946 wait_block_group_cache_progress(block_group, 6947 num_bytes + empty_cluster + empty_size); 6948 goto have_block_group; 6949 } 6950 6951 /* 6952 * at this point we either didn't find a cluster 6953 * or we weren't able to allocate a block from our 6954 * cluster. Free the cluster we've been trying 6955 * to use, and go to the next block group 6956 */ 6957 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6958 spin_unlock(&last_ptr->refill_lock); 6959 goto loop; 6960 } 6961 6962 unclustered_alloc: 6963 spin_lock(&block_group->free_space_ctl->tree_lock); 6964 if (cached && 6965 block_group->free_space_ctl->free_space < 6966 num_bytes + empty_cluster + empty_size) { 6967 if (block_group->free_space_ctl->free_space > 6968 max_extent_size) 6969 max_extent_size = 6970 block_group->free_space_ctl->free_space; 6971 spin_unlock(&block_group->free_space_ctl->tree_lock); 6972 goto loop; 6973 } 6974 spin_unlock(&block_group->free_space_ctl->tree_lock); 6975 6976 offset = btrfs_find_space_for_alloc(block_group, search_start, 6977 num_bytes, empty_size, 6978 &max_extent_size); 6979 /* 6980 * If we didn't find a chunk, and we haven't failed on this 6981 * block group before, and this block group is in the middle of 6982 * caching and we are ok with waiting, then go ahead and wait 6983 * for progress to be made, and set failed_alloc to true. 6984 * 6985 * If failed_alloc is true then we've already waited on this 6986 * block group once and should move on to the next block group. 6987 */ 6988 if (!offset && !failed_alloc && !cached && 6989 loop > LOOP_CACHING_NOWAIT) { 6990 wait_block_group_cache_progress(block_group, 6991 num_bytes + empty_size); 6992 failed_alloc = true; 6993 goto have_block_group; 6994 } else if (!offset) { 6995 if (!cached) 6996 have_caching_bg = true; 6997 goto loop; 6998 } 6999 checks: 7000 search_start = ALIGN(offset, root->stripesize); 7001 7002 /* move on to the next group */ 7003 if (search_start + num_bytes > 7004 block_group->key.objectid + block_group->key.offset) { 7005 btrfs_add_free_space(block_group, offset, num_bytes); 7006 goto loop; 7007 } 7008 7009 if (offset < search_start) 7010 btrfs_add_free_space(block_group, offset, 7011 search_start - offset); 7012 BUG_ON(offset > search_start); 7013 7014 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7015 alloc_type, delalloc); 7016 if (ret == -EAGAIN) { 7017 btrfs_add_free_space(block_group, offset, num_bytes); 7018 goto loop; 7019 } 7020 7021 /* we are all good, lets return */ 7022 ins->objectid = search_start; 7023 ins->offset = num_bytes; 7024 7025 trace_btrfs_reserve_extent(orig_root, block_group, 7026 search_start, num_bytes); 7027 btrfs_release_block_group(block_group, delalloc); 7028 break; 7029 loop: 7030 failed_cluster_refill = false; 7031 failed_alloc = false; 7032 BUG_ON(index != get_block_group_index(block_group)); 7033 btrfs_release_block_group(block_group, delalloc); 7034 } 7035 up_read(&space_info->groups_sem); 7036 7037 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7038 goto search; 7039 7040 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7041 goto search; 7042 7043 /* 7044 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7045 * caching kthreads as we move along 7046 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7047 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7048 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7049 * again 7050 */ 7051 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7052 index = 0; 7053 loop++; 7054 if (loop == LOOP_ALLOC_CHUNK) { 7055 struct btrfs_trans_handle *trans; 7056 int exist = 0; 7057 7058 trans = current->journal_info; 7059 if (trans) 7060 exist = 1; 7061 else 7062 trans = btrfs_join_transaction(root); 7063 7064 if (IS_ERR(trans)) { 7065 ret = PTR_ERR(trans); 7066 goto out; 7067 } 7068 7069 ret = do_chunk_alloc(trans, root, flags, 7070 CHUNK_ALLOC_FORCE); 7071 /* 7072 * Do not bail out on ENOSPC since we 7073 * can do more things. 7074 */ 7075 if (ret < 0 && ret != -ENOSPC) 7076 btrfs_abort_transaction(trans, 7077 root, ret); 7078 else 7079 ret = 0; 7080 if (!exist) 7081 btrfs_end_transaction(trans, root); 7082 if (ret) 7083 goto out; 7084 } 7085 7086 if (loop == LOOP_NO_EMPTY_SIZE) { 7087 empty_size = 0; 7088 empty_cluster = 0; 7089 } 7090 7091 goto search; 7092 } else if (!ins->objectid) { 7093 ret = -ENOSPC; 7094 } else if (ins->objectid) { 7095 ret = 0; 7096 } 7097 out: 7098 if (ret == -ENOSPC) 7099 ins->offset = max_extent_size; 7100 return ret; 7101 } 7102 7103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7104 int dump_block_groups) 7105 { 7106 struct btrfs_block_group_cache *cache; 7107 int index = 0; 7108 7109 spin_lock(&info->lock); 7110 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7111 info->flags, 7112 info->total_bytes - info->bytes_used - info->bytes_pinned - 7113 info->bytes_reserved - info->bytes_readonly, 7114 (info->full) ? "" : "not "); 7115 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7116 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7117 info->total_bytes, info->bytes_used, info->bytes_pinned, 7118 info->bytes_reserved, info->bytes_may_use, 7119 info->bytes_readonly); 7120 spin_unlock(&info->lock); 7121 7122 if (!dump_block_groups) 7123 return; 7124 7125 down_read(&info->groups_sem); 7126 again: 7127 list_for_each_entry(cache, &info->block_groups[index], list) { 7128 spin_lock(&cache->lock); 7129 printk(KERN_INFO "BTRFS: " 7130 "block group %llu has %llu bytes, " 7131 "%llu used %llu pinned %llu reserved %s\n", 7132 cache->key.objectid, cache->key.offset, 7133 btrfs_block_group_used(&cache->item), cache->pinned, 7134 cache->reserved, cache->ro ? "[readonly]" : ""); 7135 btrfs_dump_free_space(cache, bytes); 7136 spin_unlock(&cache->lock); 7137 } 7138 if (++index < BTRFS_NR_RAID_TYPES) 7139 goto again; 7140 up_read(&info->groups_sem); 7141 } 7142 7143 int btrfs_reserve_extent(struct btrfs_root *root, 7144 u64 num_bytes, u64 min_alloc_size, 7145 u64 empty_size, u64 hint_byte, 7146 struct btrfs_key *ins, int is_data, int delalloc) 7147 { 7148 bool final_tried = false; 7149 u64 flags; 7150 int ret; 7151 7152 flags = btrfs_get_alloc_profile(root, is_data); 7153 again: 7154 WARN_ON(num_bytes < root->sectorsize); 7155 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7156 flags, delalloc); 7157 7158 if (ret == -ENOSPC) { 7159 if (!final_tried && ins->offset) { 7160 num_bytes = min(num_bytes >> 1, ins->offset); 7161 num_bytes = round_down(num_bytes, root->sectorsize); 7162 num_bytes = max(num_bytes, min_alloc_size); 7163 if (num_bytes == min_alloc_size) 7164 final_tried = true; 7165 goto again; 7166 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7167 struct btrfs_space_info *sinfo; 7168 7169 sinfo = __find_space_info(root->fs_info, flags); 7170 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7171 flags, num_bytes); 7172 if (sinfo) 7173 dump_space_info(sinfo, num_bytes, 1); 7174 } 7175 } 7176 7177 return ret; 7178 } 7179 7180 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7181 u64 start, u64 len, 7182 int pin, int delalloc) 7183 { 7184 struct btrfs_block_group_cache *cache; 7185 int ret = 0; 7186 7187 cache = btrfs_lookup_block_group(root->fs_info, start); 7188 if (!cache) { 7189 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7190 start); 7191 return -ENOSPC; 7192 } 7193 7194 if (pin) 7195 pin_down_extent(root, cache, start, len, 1); 7196 else { 7197 if (btrfs_test_opt(root, DISCARD)) 7198 ret = btrfs_discard_extent(root, start, len, NULL); 7199 btrfs_add_free_space(cache, start, len); 7200 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7201 } 7202 7203 btrfs_put_block_group(cache); 7204 7205 trace_btrfs_reserved_extent_free(root, start, len); 7206 7207 return ret; 7208 } 7209 7210 int btrfs_free_reserved_extent(struct btrfs_root *root, 7211 u64 start, u64 len, int delalloc) 7212 { 7213 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7214 } 7215 7216 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7217 u64 start, u64 len) 7218 { 7219 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7220 } 7221 7222 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7223 struct btrfs_root *root, 7224 u64 parent, u64 root_objectid, 7225 u64 flags, u64 owner, u64 offset, 7226 struct btrfs_key *ins, int ref_mod) 7227 { 7228 int ret; 7229 struct btrfs_fs_info *fs_info = root->fs_info; 7230 struct btrfs_extent_item *extent_item; 7231 struct btrfs_extent_inline_ref *iref; 7232 struct btrfs_path *path; 7233 struct extent_buffer *leaf; 7234 int type; 7235 u32 size; 7236 7237 if (parent > 0) 7238 type = BTRFS_SHARED_DATA_REF_KEY; 7239 else 7240 type = BTRFS_EXTENT_DATA_REF_KEY; 7241 7242 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7243 7244 path = btrfs_alloc_path(); 7245 if (!path) 7246 return -ENOMEM; 7247 7248 path->leave_spinning = 1; 7249 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7250 ins, size); 7251 if (ret) { 7252 btrfs_free_path(path); 7253 return ret; 7254 } 7255 7256 leaf = path->nodes[0]; 7257 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7258 struct btrfs_extent_item); 7259 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7260 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7261 btrfs_set_extent_flags(leaf, extent_item, 7262 flags | BTRFS_EXTENT_FLAG_DATA); 7263 7264 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7265 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7266 if (parent > 0) { 7267 struct btrfs_shared_data_ref *ref; 7268 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7269 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7270 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7271 } else { 7272 struct btrfs_extent_data_ref *ref; 7273 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7274 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7275 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7276 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7277 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7278 } 7279 7280 btrfs_mark_buffer_dirty(path->nodes[0]); 7281 btrfs_free_path(path); 7282 7283 /* Always set parent to 0 here since its exclusive anyway. */ 7284 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7285 ins->objectid, ins->offset, 7286 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7287 if (ret) 7288 return ret; 7289 7290 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7291 if (ret) { /* -ENOENT, logic error */ 7292 btrfs_err(fs_info, "update block group failed for %llu %llu", 7293 ins->objectid, ins->offset); 7294 BUG(); 7295 } 7296 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7297 return ret; 7298 } 7299 7300 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7301 struct btrfs_root *root, 7302 u64 parent, u64 root_objectid, 7303 u64 flags, struct btrfs_disk_key *key, 7304 int level, struct btrfs_key *ins, 7305 int no_quota) 7306 { 7307 int ret; 7308 struct btrfs_fs_info *fs_info = root->fs_info; 7309 struct btrfs_extent_item *extent_item; 7310 struct btrfs_tree_block_info *block_info; 7311 struct btrfs_extent_inline_ref *iref; 7312 struct btrfs_path *path; 7313 struct extent_buffer *leaf; 7314 u32 size = sizeof(*extent_item) + sizeof(*iref); 7315 u64 num_bytes = ins->offset; 7316 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7317 SKINNY_METADATA); 7318 7319 if (!skinny_metadata) 7320 size += sizeof(*block_info); 7321 7322 path = btrfs_alloc_path(); 7323 if (!path) { 7324 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7325 root->nodesize); 7326 return -ENOMEM; 7327 } 7328 7329 path->leave_spinning = 1; 7330 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7331 ins, size); 7332 if (ret) { 7333 btrfs_free_path(path); 7334 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7335 root->nodesize); 7336 return ret; 7337 } 7338 7339 leaf = path->nodes[0]; 7340 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7341 struct btrfs_extent_item); 7342 btrfs_set_extent_refs(leaf, extent_item, 1); 7343 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7344 btrfs_set_extent_flags(leaf, extent_item, 7345 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7346 7347 if (skinny_metadata) { 7348 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7349 num_bytes = root->nodesize; 7350 } else { 7351 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7352 btrfs_set_tree_block_key(leaf, block_info, key); 7353 btrfs_set_tree_block_level(leaf, block_info, level); 7354 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7355 } 7356 7357 if (parent > 0) { 7358 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7359 btrfs_set_extent_inline_ref_type(leaf, iref, 7360 BTRFS_SHARED_BLOCK_REF_KEY); 7361 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7362 } else { 7363 btrfs_set_extent_inline_ref_type(leaf, iref, 7364 BTRFS_TREE_BLOCK_REF_KEY); 7365 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7366 } 7367 7368 btrfs_mark_buffer_dirty(leaf); 7369 btrfs_free_path(path); 7370 7371 if (!no_quota) { 7372 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7373 ins->objectid, num_bytes, 7374 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7375 if (ret) 7376 return ret; 7377 } 7378 7379 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7380 1); 7381 if (ret) { /* -ENOENT, logic error */ 7382 btrfs_err(fs_info, "update block group failed for %llu %llu", 7383 ins->objectid, ins->offset); 7384 BUG(); 7385 } 7386 7387 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7388 return ret; 7389 } 7390 7391 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7392 struct btrfs_root *root, 7393 u64 root_objectid, u64 owner, 7394 u64 offset, struct btrfs_key *ins) 7395 { 7396 int ret; 7397 7398 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7399 7400 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7401 ins->offset, 0, 7402 root_objectid, owner, offset, 7403 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7404 return ret; 7405 } 7406 7407 /* 7408 * this is used by the tree logging recovery code. It records that 7409 * an extent has been allocated and makes sure to clear the free 7410 * space cache bits as well 7411 */ 7412 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7413 struct btrfs_root *root, 7414 u64 root_objectid, u64 owner, u64 offset, 7415 struct btrfs_key *ins) 7416 { 7417 int ret; 7418 struct btrfs_block_group_cache *block_group; 7419 7420 /* 7421 * Mixed block groups will exclude before processing the log so we only 7422 * need to do the exlude dance if this fs isn't mixed. 7423 */ 7424 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7425 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7426 if (ret) 7427 return ret; 7428 } 7429 7430 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7431 if (!block_group) 7432 return -EINVAL; 7433 7434 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7435 RESERVE_ALLOC_NO_ACCOUNT, 0); 7436 BUG_ON(ret); /* logic error */ 7437 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7438 0, owner, offset, ins, 1); 7439 btrfs_put_block_group(block_group); 7440 return ret; 7441 } 7442 7443 static struct extent_buffer * 7444 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7445 u64 bytenr, int level) 7446 { 7447 struct extent_buffer *buf; 7448 7449 buf = btrfs_find_create_tree_block(root, bytenr); 7450 if (!buf) 7451 return ERR_PTR(-ENOMEM); 7452 btrfs_set_header_generation(buf, trans->transid); 7453 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7454 btrfs_tree_lock(buf); 7455 clean_tree_block(trans, root->fs_info, buf); 7456 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7457 7458 btrfs_set_lock_blocking(buf); 7459 btrfs_set_buffer_uptodate(buf); 7460 7461 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7462 buf->log_index = root->log_transid % 2; 7463 /* 7464 * we allow two log transactions at a time, use different 7465 * EXENT bit to differentiate dirty pages. 7466 */ 7467 if (buf->log_index == 0) 7468 set_extent_dirty(&root->dirty_log_pages, buf->start, 7469 buf->start + buf->len - 1, GFP_NOFS); 7470 else 7471 set_extent_new(&root->dirty_log_pages, buf->start, 7472 buf->start + buf->len - 1, GFP_NOFS); 7473 } else { 7474 buf->log_index = -1; 7475 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7476 buf->start + buf->len - 1, GFP_NOFS); 7477 } 7478 trans->blocks_used++; 7479 /* this returns a buffer locked for blocking */ 7480 return buf; 7481 } 7482 7483 static struct btrfs_block_rsv * 7484 use_block_rsv(struct btrfs_trans_handle *trans, 7485 struct btrfs_root *root, u32 blocksize) 7486 { 7487 struct btrfs_block_rsv *block_rsv; 7488 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7489 int ret; 7490 bool global_updated = false; 7491 7492 block_rsv = get_block_rsv(trans, root); 7493 7494 if (unlikely(block_rsv->size == 0)) 7495 goto try_reserve; 7496 again: 7497 ret = block_rsv_use_bytes(block_rsv, blocksize); 7498 if (!ret) 7499 return block_rsv; 7500 7501 if (block_rsv->failfast) 7502 return ERR_PTR(ret); 7503 7504 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7505 global_updated = true; 7506 update_global_block_rsv(root->fs_info); 7507 goto again; 7508 } 7509 7510 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7511 static DEFINE_RATELIMIT_STATE(_rs, 7512 DEFAULT_RATELIMIT_INTERVAL * 10, 7513 /*DEFAULT_RATELIMIT_BURST*/ 1); 7514 if (__ratelimit(&_rs)) 7515 WARN(1, KERN_DEBUG 7516 "BTRFS: block rsv returned %d\n", ret); 7517 } 7518 try_reserve: 7519 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7520 BTRFS_RESERVE_NO_FLUSH); 7521 if (!ret) 7522 return block_rsv; 7523 /* 7524 * If we couldn't reserve metadata bytes try and use some from 7525 * the global reserve if its space type is the same as the global 7526 * reservation. 7527 */ 7528 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7529 block_rsv->space_info == global_rsv->space_info) { 7530 ret = block_rsv_use_bytes(global_rsv, blocksize); 7531 if (!ret) 7532 return global_rsv; 7533 } 7534 return ERR_PTR(ret); 7535 } 7536 7537 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7538 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7539 { 7540 block_rsv_add_bytes(block_rsv, blocksize, 0); 7541 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7542 } 7543 7544 /* 7545 * finds a free extent and does all the dirty work required for allocation 7546 * returns the key for the extent through ins, and a tree buffer for 7547 * the first block of the extent through buf. 7548 * 7549 * returns the tree buffer or an ERR_PTR on error. 7550 */ 7551 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7552 struct btrfs_root *root, 7553 u64 parent, u64 root_objectid, 7554 struct btrfs_disk_key *key, int level, 7555 u64 hint, u64 empty_size) 7556 { 7557 struct btrfs_key ins; 7558 struct btrfs_block_rsv *block_rsv; 7559 struct extent_buffer *buf; 7560 struct btrfs_delayed_extent_op *extent_op; 7561 u64 flags = 0; 7562 int ret; 7563 u32 blocksize = root->nodesize; 7564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7565 SKINNY_METADATA); 7566 7567 if (btrfs_test_is_dummy_root(root)) { 7568 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7569 level); 7570 if (!IS_ERR(buf)) 7571 root->alloc_bytenr += blocksize; 7572 return buf; 7573 } 7574 7575 block_rsv = use_block_rsv(trans, root, blocksize); 7576 if (IS_ERR(block_rsv)) 7577 return ERR_CAST(block_rsv); 7578 7579 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7580 empty_size, hint, &ins, 0, 0); 7581 if (ret) 7582 goto out_unuse; 7583 7584 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7585 if (IS_ERR(buf)) { 7586 ret = PTR_ERR(buf); 7587 goto out_free_reserved; 7588 } 7589 7590 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7591 if (parent == 0) 7592 parent = ins.objectid; 7593 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7594 } else 7595 BUG_ON(parent > 0); 7596 7597 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7598 extent_op = btrfs_alloc_delayed_extent_op(); 7599 if (!extent_op) { 7600 ret = -ENOMEM; 7601 goto out_free_buf; 7602 } 7603 if (key) 7604 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7605 else 7606 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7607 extent_op->flags_to_set = flags; 7608 if (skinny_metadata) 7609 extent_op->update_key = 0; 7610 else 7611 extent_op->update_key = 1; 7612 extent_op->update_flags = 1; 7613 extent_op->is_data = 0; 7614 extent_op->level = level; 7615 7616 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7617 ins.objectid, ins.offset, 7618 parent, root_objectid, level, 7619 BTRFS_ADD_DELAYED_EXTENT, 7620 extent_op, 0); 7621 if (ret) 7622 goto out_free_delayed; 7623 } 7624 return buf; 7625 7626 out_free_delayed: 7627 btrfs_free_delayed_extent_op(extent_op); 7628 out_free_buf: 7629 free_extent_buffer(buf); 7630 out_free_reserved: 7631 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7632 out_unuse: 7633 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7634 return ERR_PTR(ret); 7635 } 7636 7637 struct walk_control { 7638 u64 refs[BTRFS_MAX_LEVEL]; 7639 u64 flags[BTRFS_MAX_LEVEL]; 7640 struct btrfs_key update_progress; 7641 int stage; 7642 int level; 7643 int shared_level; 7644 int update_ref; 7645 int keep_locks; 7646 int reada_slot; 7647 int reada_count; 7648 int for_reloc; 7649 }; 7650 7651 #define DROP_REFERENCE 1 7652 #define UPDATE_BACKREF 2 7653 7654 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7655 struct btrfs_root *root, 7656 struct walk_control *wc, 7657 struct btrfs_path *path) 7658 { 7659 u64 bytenr; 7660 u64 generation; 7661 u64 refs; 7662 u64 flags; 7663 u32 nritems; 7664 u32 blocksize; 7665 struct btrfs_key key; 7666 struct extent_buffer *eb; 7667 int ret; 7668 int slot; 7669 int nread = 0; 7670 7671 if (path->slots[wc->level] < wc->reada_slot) { 7672 wc->reada_count = wc->reada_count * 2 / 3; 7673 wc->reada_count = max(wc->reada_count, 2); 7674 } else { 7675 wc->reada_count = wc->reada_count * 3 / 2; 7676 wc->reada_count = min_t(int, wc->reada_count, 7677 BTRFS_NODEPTRS_PER_BLOCK(root)); 7678 } 7679 7680 eb = path->nodes[wc->level]; 7681 nritems = btrfs_header_nritems(eb); 7682 blocksize = root->nodesize; 7683 7684 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7685 if (nread >= wc->reada_count) 7686 break; 7687 7688 cond_resched(); 7689 bytenr = btrfs_node_blockptr(eb, slot); 7690 generation = btrfs_node_ptr_generation(eb, slot); 7691 7692 if (slot == path->slots[wc->level]) 7693 goto reada; 7694 7695 if (wc->stage == UPDATE_BACKREF && 7696 generation <= root->root_key.offset) 7697 continue; 7698 7699 /* We don't lock the tree block, it's OK to be racy here */ 7700 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7701 wc->level - 1, 1, &refs, 7702 &flags); 7703 /* We don't care about errors in readahead. */ 7704 if (ret < 0) 7705 continue; 7706 BUG_ON(refs == 0); 7707 7708 if (wc->stage == DROP_REFERENCE) { 7709 if (refs == 1) 7710 goto reada; 7711 7712 if (wc->level == 1 && 7713 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7714 continue; 7715 if (!wc->update_ref || 7716 generation <= root->root_key.offset) 7717 continue; 7718 btrfs_node_key_to_cpu(eb, &key, slot); 7719 ret = btrfs_comp_cpu_keys(&key, 7720 &wc->update_progress); 7721 if (ret < 0) 7722 continue; 7723 } else { 7724 if (wc->level == 1 && 7725 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7726 continue; 7727 } 7728 reada: 7729 readahead_tree_block(root, bytenr); 7730 nread++; 7731 } 7732 wc->reada_slot = slot; 7733 } 7734 7735 static int account_leaf_items(struct btrfs_trans_handle *trans, 7736 struct btrfs_root *root, 7737 struct extent_buffer *eb) 7738 { 7739 int nr = btrfs_header_nritems(eb); 7740 int i, extent_type, ret; 7741 struct btrfs_key key; 7742 struct btrfs_file_extent_item *fi; 7743 u64 bytenr, num_bytes; 7744 7745 for (i = 0; i < nr; i++) { 7746 btrfs_item_key_to_cpu(eb, &key, i); 7747 7748 if (key.type != BTRFS_EXTENT_DATA_KEY) 7749 continue; 7750 7751 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7752 /* filter out non qgroup-accountable extents */ 7753 extent_type = btrfs_file_extent_type(eb, fi); 7754 7755 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7756 continue; 7757 7758 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7759 if (!bytenr) 7760 continue; 7761 7762 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7763 7764 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7765 root->objectid, 7766 bytenr, num_bytes, 7767 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0); 7768 if (ret) 7769 return ret; 7770 } 7771 return 0; 7772 } 7773 7774 /* 7775 * Walk up the tree from the bottom, freeing leaves and any interior 7776 * nodes which have had all slots visited. If a node (leaf or 7777 * interior) is freed, the node above it will have it's slot 7778 * incremented. The root node will never be freed. 7779 * 7780 * At the end of this function, we should have a path which has all 7781 * slots incremented to the next position for a search. If we need to 7782 * read a new node it will be NULL and the node above it will have the 7783 * correct slot selected for a later read. 7784 * 7785 * If we increment the root nodes slot counter past the number of 7786 * elements, 1 is returned to signal completion of the search. 7787 */ 7788 static int adjust_slots_upwards(struct btrfs_root *root, 7789 struct btrfs_path *path, int root_level) 7790 { 7791 int level = 0; 7792 int nr, slot; 7793 struct extent_buffer *eb; 7794 7795 if (root_level == 0) 7796 return 1; 7797 7798 while (level <= root_level) { 7799 eb = path->nodes[level]; 7800 nr = btrfs_header_nritems(eb); 7801 path->slots[level]++; 7802 slot = path->slots[level]; 7803 if (slot >= nr || level == 0) { 7804 /* 7805 * Don't free the root - we will detect this 7806 * condition after our loop and return a 7807 * positive value for caller to stop walking the tree. 7808 */ 7809 if (level != root_level) { 7810 btrfs_tree_unlock_rw(eb, path->locks[level]); 7811 path->locks[level] = 0; 7812 7813 free_extent_buffer(eb); 7814 path->nodes[level] = NULL; 7815 path->slots[level] = 0; 7816 } 7817 } else { 7818 /* 7819 * We have a valid slot to walk back down 7820 * from. Stop here so caller can process these 7821 * new nodes. 7822 */ 7823 break; 7824 } 7825 7826 level++; 7827 } 7828 7829 eb = path->nodes[root_level]; 7830 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7831 return 1; 7832 7833 return 0; 7834 } 7835 7836 /* 7837 * root_eb is the subtree root and is locked before this function is called. 7838 */ 7839 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7840 struct btrfs_root *root, 7841 struct extent_buffer *root_eb, 7842 u64 root_gen, 7843 int root_level) 7844 { 7845 int ret = 0; 7846 int level; 7847 struct extent_buffer *eb = root_eb; 7848 struct btrfs_path *path = NULL; 7849 7850 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7851 BUG_ON(root_eb == NULL); 7852 7853 if (!root->fs_info->quota_enabled) 7854 return 0; 7855 7856 if (!extent_buffer_uptodate(root_eb)) { 7857 ret = btrfs_read_buffer(root_eb, root_gen); 7858 if (ret) 7859 goto out; 7860 } 7861 7862 if (root_level == 0) { 7863 ret = account_leaf_items(trans, root, root_eb); 7864 goto out; 7865 } 7866 7867 path = btrfs_alloc_path(); 7868 if (!path) 7869 return -ENOMEM; 7870 7871 /* 7872 * Walk down the tree. Missing extent blocks are filled in as 7873 * we go. Metadata is accounted every time we read a new 7874 * extent block. 7875 * 7876 * When we reach a leaf, we account for file extent items in it, 7877 * walk back up the tree (adjusting slot pointers as we go) 7878 * and restart the search process. 7879 */ 7880 extent_buffer_get(root_eb); /* For path */ 7881 path->nodes[root_level] = root_eb; 7882 path->slots[root_level] = 0; 7883 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7884 walk_down: 7885 level = root_level; 7886 while (level >= 0) { 7887 if (path->nodes[level] == NULL) { 7888 int parent_slot; 7889 u64 child_gen; 7890 u64 child_bytenr; 7891 7892 /* We need to get child blockptr/gen from 7893 * parent before we can read it. */ 7894 eb = path->nodes[level + 1]; 7895 parent_slot = path->slots[level + 1]; 7896 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7897 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7898 7899 eb = read_tree_block(root, child_bytenr, child_gen); 7900 if (!eb || !extent_buffer_uptodate(eb)) { 7901 ret = -EIO; 7902 goto out; 7903 } 7904 7905 path->nodes[level] = eb; 7906 path->slots[level] = 0; 7907 7908 btrfs_tree_read_lock(eb); 7909 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7910 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7911 7912 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7913 root->objectid, 7914 child_bytenr, 7915 root->nodesize, 7916 BTRFS_QGROUP_OPER_SUB_SUBTREE, 7917 0); 7918 if (ret) 7919 goto out; 7920 7921 } 7922 7923 if (level == 0) { 7924 ret = account_leaf_items(trans, root, path->nodes[level]); 7925 if (ret) 7926 goto out; 7927 7928 /* Nonzero return here means we completed our search */ 7929 ret = adjust_slots_upwards(root, path, root_level); 7930 if (ret) 7931 break; 7932 7933 /* Restart search with new slots */ 7934 goto walk_down; 7935 } 7936 7937 level--; 7938 } 7939 7940 ret = 0; 7941 out: 7942 btrfs_free_path(path); 7943 7944 return ret; 7945 } 7946 7947 /* 7948 * helper to process tree block while walking down the tree. 7949 * 7950 * when wc->stage == UPDATE_BACKREF, this function updates 7951 * back refs for pointers in the block. 7952 * 7953 * NOTE: return value 1 means we should stop walking down. 7954 */ 7955 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7956 struct btrfs_root *root, 7957 struct btrfs_path *path, 7958 struct walk_control *wc, int lookup_info) 7959 { 7960 int level = wc->level; 7961 struct extent_buffer *eb = path->nodes[level]; 7962 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7963 int ret; 7964 7965 if (wc->stage == UPDATE_BACKREF && 7966 btrfs_header_owner(eb) != root->root_key.objectid) 7967 return 1; 7968 7969 /* 7970 * when reference count of tree block is 1, it won't increase 7971 * again. once full backref flag is set, we never clear it. 7972 */ 7973 if (lookup_info && 7974 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7975 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7976 BUG_ON(!path->locks[level]); 7977 ret = btrfs_lookup_extent_info(trans, root, 7978 eb->start, level, 1, 7979 &wc->refs[level], 7980 &wc->flags[level]); 7981 BUG_ON(ret == -ENOMEM); 7982 if (ret) 7983 return ret; 7984 BUG_ON(wc->refs[level] == 0); 7985 } 7986 7987 if (wc->stage == DROP_REFERENCE) { 7988 if (wc->refs[level] > 1) 7989 return 1; 7990 7991 if (path->locks[level] && !wc->keep_locks) { 7992 btrfs_tree_unlock_rw(eb, path->locks[level]); 7993 path->locks[level] = 0; 7994 } 7995 return 0; 7996 } 7997 7998 /* wc->stage == UPDATE_BACKREF */ 7999 if (!(wc->flags[level] & flag)) { 8000 BUG_ON(!path->locks[level]); 8001 ret = btrfs_inc_ref(trans, root, eb, 1); 8002 BUG_ON(ret); /* -ENOMEM */ 8003 ret = btrfs_dec_ref(trans, root, eb, 0); 8004 BUG_ON(ret); /* -ENOMEM */ 8005 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8006 eb->len, flag, 8007 btrfs_header_level(eb), 0); 8008 BUG_ON(ret); /* -ENOMEM */ 8009 wc->flags[level] |= flag; 8010 } 8011 8012 /* 8013 * the block is shared by multiple trees, so it's not good to 8014 * keep the tree lock 8015 */ 8016 if (path->locks[level] && level > 0) { 8017 btrfs_tree_unlock_rw(eb, path->locks[level]); 8018 path->locks[level] = 0; 8019 } 8020 return 0; 8021 } 8022 8023 /* 8024 * helper to process tree block pointer. 8025 * 8026 * when wc->stage == DROP_REFERENCE, this function checks 8027 * reference count of the block pointed to. if the block 8028 * is shared and we need update back refs for the subtree 8029 * rooted at the block, this function changes wc->stage to 8030 * UPDATE_BACKREF. if the block is shared and there is no 8031 * need to update back, this function drops the reference 8032 * to the block. 8033 * 8034 * NOTE: return value 1 means we should stop walking down. 8035 */ 8036 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8037 struct btrfs_root *root, 8038 struct btrfs_path *path, 8039 struct walk_control *wc, int *lookup_info) 8040 { 8041 u64 bytenr; 8042 u64 generation; 8043 u64 parent; 8044 u32 blocksize; 8045 struct btrfs_key key; 8046 struct extent_buffer *next; 8047 int level = wc->level; 8048 int reada = 0; 8049 int ret = 0; 8050 bool need_account = false; 8051 8052 generation = btrfs_node_ptr_generation(path->nodes[level], 8053 path->slots[level]); 8054 /* 8055 * if the lower level block was created before the snapshot 8056 * was created, we know there is no need to update back refs 8057 * for the subtree 8058 */ 8059 if (wc->stage == UPDATE_BACKREF && 8060 generation <= root->root_key.offset) { 8061 *lookup_info = 1; 8062 return 1; 8063 } 8064 8065 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8066 blocksize = root->nodesize; 8067 8068 next = btrfs_find_tree_block(root->fs_info, bytenr); 8069 if (!next) { 8070 next = btrfs_find_create_tree_block(root, bytenr); 8071 if (!next) 8072 return -ENOMEM; 8073 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8074 level - 1); 8075 reada = 1; 8076 } 8077 btrfs_tree_lock(next); 8078 btrfs_set_lock_blocking(next); 8079 8080 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8081 &wc->refs[level - 1], 8082 &wc->flags[level - 1]); 8083 if (ret < 0) { 8084 btrfs_tree_unlock(next); 8085 return ret; 8086 } 8087 8088 if (unlikely(wc->refs[level - 1] == 0)) { 8089 btrfs_err(root->fs_info, "Missing references."); 8090 BUG(); 8091 } 8092 *lookup_info = 0; 8093 8094 if (wc->stage == DROP_REFERENCE) { 8095 if (wc->refs[level - 1] > 1) { 8096 need_account = true; 8097 if (level == 1 && 8098 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8099 goto skip; 8100 8101 if (!wc->update_ref || 8102 generation <= root->root_key.offset) 8103 goto skip; 8104 8105 btrfs_node_key_to_cpu(path->nodes[level], &key, 8106 path->slots[level]); 8107 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8108 if (ret < 0) 8109 goto skip; 8110 8111 wc->stage = UPDATE_BACKREF; 8112 wc->shared_level = level - 1; 8113 } 8114 } else { 8115 if (level == 1 && 8116 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8117 goto skip; 8118 } 8119 8120 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8121 btrfs_tree_unlock(next); 8122 free_extent_buffer(next); 8123 next = NULL; 8124 *lookup_info = 1; 8125 } 8126 8127 if (!next) { 8128 if (reada && level == 1) 8129 reada_walk_down(trans, root, wc, path); 8130 next = read_tree_block(root, bytenr, generation); 8131 if (!next || !extent_buffer_uptodate(next)) { 8132 free_extent_buffer(next); 8133 return -EIO; 8134 } 8135 btrfs_tree_lock(next); 8136 btrfs_set_lock_blocking(next); 8137 } 8138 8139 level--; 8140 BUG_ON(level != btrfs_header_level(next)); 8141 path->nodes[level] = next; 8142 path->slots[level] = 0; 8143 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8144 wc->level = level; 8145 if (wc->level == 1) 8146 wc->reada_slot = 0; 8147 return 0; 8148 skip: 8149 wc->refs[level - 1] = 0; 8150 wc->flags[level - 1] = 0; 8151 if (wc->stage == DROP_REFERENCE) { 8152 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8153 parent = path->nodes[level]->start; 8154 } else { 8155 BUG_ON(root->root_key.objectid != 8156 btrfs_header_owner(path->nodes[level])); 8157 parent = 0; 8158 } 8159 8160 if (need_account) { 8161 ret = account_shared_subtree(trans, root, next, 8162 generation, level - 1); 8163 if (ret) { 8164 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8165 "%d accounting shared subtree. Quota " 8166 "is out of sync, rescan required.\n", 8167 root->fs_info->sb->s_id, ret); 8168 } 8169 } 8170 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8171 root->root_key.objectid, level - 1, 0, 0); 8172 BUG_ON(ret); /* -ENOMEM */ 8173 } 8174 btrfs_tree_unlock(next); 8175 free_extent_buffer(next); 8176 *lookup_info = 1; 8177 return 1; 8178 } 8179 8180 /* 8181 * helper to process tree block while walking up the tree. 8182 * 8183 * when wc->stage == DROP_REFERENCE, this function drops 8184 * reference count on the block. 8185 * 8186 * when wc->stage == UPDATE_BACKREF, this function changes 8187 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8188 * to UPDATE_BACKREF previously while processing the block. 8189 * 8190 * NOTE: return value 1 means we should stop walking up. 8191 */ 8192 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8193 struct btrfs_root *root, 8194 struct btrfs_path *path, 8195 struct walk_control *wc) 8196 { 8197 int ret; 8198 int level = wc->level; 8199 struct extent_buffer *eb = path->nodes[level]; 8200 u64 parent = 0; 8201 8202 if (wc->stage == UPDATE_BACKREF) { 8203 BUG_ON(wc->shared_level < level); 8204 if (level < wc->shared_level) 8205 goto out; 8206 8207 ret = find_next_key(path, level + 1, &wc->update_progress); 8208 if (ret > 0) 8209 wc->update_ref = 0; 8210 8211 wc->stage = DROP_REFERENCE; 8212 wc->shared_level = -1; 8213 path->slots[level] = 0; 8214 8215 /* 8216 * check reference count again if the block isn't locked. 8217 * we should start walking down the tree again if reference 8218 * count is one. 8219 */ 8220 if (!path->locks[level]) { 8221 BUG_ON(level == 0); 8222 btrfs_tree_lock(eb); 8223 btrfs_set_lock_blocking(eb); 8224 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8225 8226 ret = btrfs_lookup_extent_info(trans, root, 8227 eb->start, level, 1, 8228 &wc->refs[level], 8229 &wc->flags[level]); 8230 if (ret < 0) { 8231 btrfs_tree_unlock_rw(eb, path->locks[level]); 8232 path->locks[level] = 0; 8233 return ret; 8234 } 8235 BUG_ON(wc->refs[level] == 0); 8236 if (wc->refs[level] == 1) { 8237 btrfs_tree_unlock_rw(eb, path->locks[level]); 8238 path->locks[level] = 0; 8239 return 1; 8240 } 8241 } 8242 } 8243 8244 /* wc->stage == DROP_REFERENCE */ 8245 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8246 8247 if (wc->refs[level] == 1) { 8248 if (level == 0) { 8249 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8250 ret = btrfs_dec_ref(trans, root, eb, 1); 8251 else 8252 ret = btrfs_dec_ref(trans, root, eb, 0); 8253 BUG_ON(ret); /* -ENOMEM */ 8254 ret = account_leaf_items(trans, root, eb); 8255 if (ret) { 8256 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8257 "%d accounting leaf items. Quota " 8258 "is out of sync, rescan required.\n", 8259 root->fs_info->sb->s_id, ret); 8260 } 8261 } 8262 /* make block locked assertion in clean_tree_block happy */ 8263 if (!path->locks[level] && 8264 btrfs_header_generation(eb) == trans->transid) { 8265 btrfs_tree_lock(eb); 8266 btrfs_set_lock_blocking(eb); 8267 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8268 } 8269 clean_tree_block(trans, root->fs_info, eb); 8270 } 8271 8272 if (eb == root->node) { 8273 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8274 parent = eb->start; 8275 else 8276 BUG_ON(root->root_key.objectid != 8277 btrfs_header_owner(eb)); 8278 } else { 8279 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8280 parent = path->nodes[level + 1]->start; 8281 else 8282 BUG_ON(root->root_key.objectid != 8283 btrfs_header_owner(path->nodes[level + 1])); 8284 } 8285 8286 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8287 out: 8288 wc->refs[level] = 0; 8289 wc->flags[level] = 0; 8290 return 0; 8291 } 8292 8293 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8294 struct btrfs_root *root, 8295 struct btrfs_path *path, 8296 struct walk_control *wc) 8297 { 8298 int level = wc->level; 8299 int lookup_info = 1; 8300 int ret; 8301 8302 while (level >= 0) { 8303 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8304 if (ret > 0) 8305 break; 8306 8307 if (level == 0) 8308 break; 8309 8310 if (path->slots[level] >= 8311 btrfs_header_nritems(path->nodes[level])) 8312 break; 8313 8314 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8315 if (ret > 0) { 8316 path->slots[level]++; 8317 continue; 8318 } else if (ret < 0) 8319 return ret; 8320 level = wc->level; 8321 } 8322 return 0; 8323 } 8324 8325 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8326 struct btrfs_root *root, 8327 struct btrfs_path *path, 8328 struct walk_control *wc, int max_level) 8329 { 8330 int level = wc->level; 8331 int ret; 8332 8333 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8334 while (level < max_level && path->nodes[level]) { 8335 wc->level = level; 8336 if (path->slots[level] + 1 < 8337 btrfs_header_nritems(path->nodes[level])) { 8338 path->slots[level]++; 8339 return 0; 8340 } else { 8341 ret = walk_up_proc(trans, root, path, wc); 8342 if (ret > 0) 8343 return 0; 8344 8345 if (path->locks[level]) { 8346 btrfs_tree_unlock_rw(path->nodes[level], 8347 path->locks[level]); 8348 path->locks[level] = 0; 8349 } 8350 free_extent_buffer(path->nodes[level]); 8351 path->nodes[level] = NULL; 8352 level++; 8353 } 8354 } 8355 return 1; 8356 } 8357 8358 /* 8359 * drop a subvolume tree. 8360 * 8361 * this function traverses the tree freeing any blocks that only 8362 * referenced by the tree. 8363 * 8364 * when a shared tree block is found. this function decreases its 8365 * reference count by one. if update_ref is true, this function 8366 * also make sure backrefs for the shared block and all lower level 8367 * blocks are properly updated. 8368 * 8369 * If called with for_reloc == 0, may exit early with -EAGAIN 8370 */ 8371 int btrfs_drop_snapshot(struct btrfs_root *root, 8372 struct btrfs_block_rsv *block_rsv, int update_ref, 8373 int for_reloc) 8374 { 8375 struct btrfs_path *path; 8376 struct btrfs_trans_handle *trans; 8377 struct btrfs_root *tree_root = root->fs_info->tree_root; 8378 struct btrfs_root_item *root_item = &root->root_item; 8379 struct walk_control *wc; 8380 struct btrfs_key key; 8381 int err = 0; 8382 int ret; 8383 int level; 8384 bool root_dropped = false; 8385 8386 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8387 8388 path = btrfs_alloc_path(); 8389 if (!path) { 8390 err = -ENOMEM; 8391 goto out; 8392 } 8393 8394 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8395 if (!wc) { 8396 btrfs_free_path(path); 8397 err = -ENOMEM; 8398 goto out; 8399 } 8400 8401 trans = btrfs_start_transaction(tree_root, 0); 8402 if (IS_ERR(trans)) { 8403 err = PTR_ERR(trans); 8404 goto out_free; 8405 } 8406 8407 if (block_rsv) 8408 trans->block_rsv = block_rsv; 8409 8410 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8411 level = btrfs_header_level(root->node); 8412 path->nodes[level] = btrfs_lock_root_node(root); 8413 btrfs_set_lock_blocking(path->nodes[level]); 8414 path->slots[level] = 0; 8415 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8416 memset(&wc->update_progress, 0, 8417 sizeof(wc->update_progress)); 8418 } else { 8419 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8420 memcpy(&wc->update_progress, &key, 8421 sizeof(wc->update_progress)); 8422 8423 level = root_item->drop_level; 8424 BUG_ON(level == 0); 8425 path->lowest_level = level; 8426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8427 path->lowest_level = 0; 8428 if (ret < 0) { 8429 err = ret; 8430 goto out_end_trans; 8431 } 8432 WARN_ON(ret > 0); 8433 8434 /* 8435 * unlock our path, this is safe because only this 8436 * function is allowed to delete this snapshot 8437 */ 8438 btrfs_unlock_up_safe(path, 0); 8439 8440 level = btrfs_header_level(root->node); 8441 while (1) { 8442 btrfs_tree_lock(path->nodes[level]); 8443 btrfs_set_lock_blocking(path->nodes[level]); 8444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8445 8446 ret = btrfs_lookup_extent_info(trans, root, 8447 path->nodes[level]->start, 8448 level, 1, &wc->refs[level], 8449 &wc->flags[level]); 8450 if (ret < 0) { 8451 err = ret; 8452 goto out_end_trans; 8453 } 8454 BUG_ON(wc->refs[level] == 0); 8455 8456 if (level == root_item->drop_level) 8457 break; 8458 8459 btrfs_tree_unlock(path->nodes[level]); 8460 path->locks[level] = 0; 8461 WARN_ON(wc->refs[level] != 1); 8462 level--; 8463 } 8464 } 8465 8466 wc->level = level; 8467 wc->shared_level = -1; 8468 wc->stage = DROP_REFERENCE; 8469 wc->update_ref = update_ref; 8470 wc->keep_locks = 0; 8471 wc->for_reloc = for_reloc; 8472 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8473 8474 while (1) { 8475 8476 ret = walk_down_tree(trans, root, path, wc); 8477 if (ret < 0) { 8478 err = ret; 8479 break; 8480 } 8481 8482 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8483 if (ret < 0) { 8484 err = ret; 8485 break; 8486 } 8487 8488 if (ret > 0) { 8489 BUG_ON(wc->stage != DROP_REFERENCE); 8490 break; 8491 } 8492 8493 if (wc->stage == DROP_REFERENCE) { 8494 level = wc->level; 8495 btrfs_node_key(path->nodes[level], 8496 &root_item->drop_progress, 8497 path->slots[level]); 8498 root_item->drop_level = level; 8499 } 8500 8501 BUG_ON(wc->level == 0); 8502 if (btrfs_should_end_transaction(trans, tree_root) || 8503 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8504 ret = btrfs_update_root(trans, tree_root, 8505 &root->root_key, 8506 root_item); 8507 if (ret) { 8508 btrfs_abort_transaction(trans, tree_root, ret); 8509 err = ret; 8510 goto out_end_trans; 8511 } 8512 8513 /* 8514 * Qgroup update accounting is run from 8515 * delayed ref handling. This usually works 8516 * out because delayed refs are normally the 8517 * only way qgroup updates are added. However, 8518 * we may have added updates during our tree 8519 * walk so run qgroups here to make sure we 8520 * don't lose any updates. 8521 */ 8522 ret = btrfs_delayed_qgroup_accounting(trans, 8523 root->fs_info); 8524 if (ret) 8525 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8526 "running qgroup updates " 8527 "during snapshot delete. " 8528 "Quota is out of sync, " 8529 "rescan required.\n", ret); 8530 8531 btrfs_end_transaction_throttle(trans, tree_root); 8532 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8533 pr_debug("BTRFS: drop snapshot early exit\n"); 8534 err = -EAGAIN; 8535 goto out_free; 8536 } 8537 8538 trans = btrfs_start_transaction(tree_root, 0); 8539 if (IS_ERR(trans)) { 8540 err = PTR_ERR(trans); 8541 goto out_free; 8542 } 8543 if (block_rsv) 8544 trans->block_rsv = block_rsv; 8545 } 8546 } 8547 btrfs_release_path(path); 8548 if (err) 8549 goto out_end_trans; 8550 8551 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8552 if (ret) { 8553 btrfs_abort_transaction(trans, tree_root, ret); 8554 goto out_end_trans; 8555 } 8556 8557 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8558 ret = btrfs_find_root(tree_root, &root->root_key, path, 8559 NULL, NULL); 8560 if (ret < 0) { 8561 btrfs_abort_transaction(trans, tree_root, ret); 8562 err = ret; 8563 goto out_end_trans; 8564 } else if (ret > 0) { 8565 /* if we fail to delete the orphan item this time 8566 * around, it'll get picked up the next time. 8567 * 8568 * The most common failure here is just -ENOENT. 8569 */ 8570 btrfs_del_orphan_item(trans, tree_root, 8571 root->root_key.objectid); 8572 } 8573 } 8574 8575 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8576 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8577 } else { 8578 free_extent_buffer(root->node); 8579 free_extent_buffer(root->commit_root); 8580 btrfs_put_fs_root(root); 8581 } 8582 root_dropped = true; 8583 out_end_trans: 8584 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info); 8585 if (ret) 8586 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8587 "running qgroup updates " 8588 "during snapshot delete. " 8589 "Quota is out of sync, " 8590 "rescan required.\n", ret); 8591 8592 btrfs_end_transaction_throttle(trans, tree_root); 8593 out_free: 8594 kfree(wc); 8595 btrfs_free_path(path); 8596 out: 8597 /* 8598 * So if we need to stop dropping the snapshot for whatever reason we 8599 * need to make sure to add it back to the dead root list so that we 8600 * keep trying to do the work later. This also cleans up roots if we 8601 * don't have it in the radix (like when we recover after a power fail 8602 * or unmount) so we don't leak memory. 8603 */ 8604 if (!for_reloc && root_dropped == false) 8605 btrfs_add_dead_root(root); 8606 if (err && err != -EAGAIN) 8607 btrfs_std_error(root->fs_info, err); 8608 return err; 8609 } 8610 8611 /* 8612 * drop subtree rooted at tree block 'node'. 8613 * 8614 * NOTE: this function will unlock and release tree block 'node' 8615 * only used by relocation code 8616 */ 8617 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8618 struct btrfs_root *root, 8619 struct extent_buffer *node, 8620 struct extent_buffer *parent) 8621 { 8622 struct btrfs_path *path; 8623 struct walk_control *wc; 8624 int level; 8625 int parent_level; 8626 int ret = 0; 8627 int wret; 8628 8629 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8630 8631 path = btrfs_alloc_path(); 8632 if (!path) 8633 return -ENOMEM; 8634 8635 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8636 if (!wc) { 8637 btrfs_free_path(path); 8638 return -ENOMEM; 8639 } 8640 8641 btrfs_assert_tree_locked(parent); 8642 parent_level = btrfs_header_level(parent); 8643 extent_buffer_get(parent); 8644 path->nodes[parent_level] = parent; 8645 path->slots[parent_level] = btrfs_header_nritems(parent); 8646 8647 btrfs_assert_tree_locked(node); 8648 level = btrfs_header_level(node); 8649 path->nodes[level] = node; 8650 path->slots[level] = 0; 8651 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8652 8653 wc->refs[parent_level] = 1; 8654 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8655 wc->level = level; 8656 wc->shared_level = -1; 8657 wc->stage = DROP_REFERENCE; 8658 wc->update_ref = 0; 8659 wc->keep_locks = 1; 8660 wc->for_reloc = 1; 8661 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8662 8663 while (1) { 8664 wret = walk_down_tree(trans, root, path, wc); 8665 if (wret < 0) { 8666 ret = wret; 8667 break; 8668 } 8669 8670 wret = walk_up_tree(trans, root, path, wc, parent_level); 8671 if (wret < 0) 8672 ret = wret; 8673 if (wret != 0) 8674 break; 8675 } 8676 8677 kfree(wc); 8678 btrfs_free_path(path); 8679 return ret; 8680 } 8681 8682 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8683 { 8684 u64 num_devices; 8685 u64 stripped; 8686 8687 /* 8688 * if restripe for this chunk_type is on pick target profile and 8689 * return, otherwise do the usual balance 8690 */ 8691 stripped = get_restripe_target(root->fs_info, flags); 8692 if (stripped) 8693 return extended_to_chunk(stripped); 8694 8695 num_devices = root->fs_info->fs_devices->rw_devices; 8696 8697 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8698 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8699 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8700 8701 if (num_devices == 1) { 8702 stripped |= BTRFS_BLOCK_GROUP_DUP; 8703 stripped = flags & ~stripped; 8704 8705 /* turn raid0 into single device chunks */ 8706 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8707 return stripped; 8708 8709 /* turn mirroring into duplication */ 8710 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8711 BTRFS_BLOCK_GROUP_RAID10)) 8712 return stripped | BTRFS_BLOCK_GROUP_DUP; 8713 } else { 8714 /* they already had raid on here, just return */ 8715 if (flags & stripped) 8716 return flags; 8717 8718 stripped |= BTRFS_BLOCK_GROUP_DUP; 8719 stripped = flags & ~stripped; 8720 8721 /* switch duplicated blocks with raid1 */ 8722 if (flags & BTRFS_BLOCK_GROUP_DUP) 8723 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8724 8725 /* this is drive concat, leave it alone */ 8726 } 8727 8728 return flags; 8729 } 8730 8731 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8732 { 8733 struct btrfs_space_info *sinfo = cache->space_info; 8734 u64 num_bytes; 8735 u64 min_allocable_bytes; 8736 int ret = -ENOSPC; 8737 8738 8739 /* 8740 * We need some metadata space and system metadata space for 8741 * allocating chunks in some corner cases until we force to set 8742 * it to be readonly. 8743 */ 8744 if ((sinfo->flags & 8745 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8746 !force) 8747 min_allocable_bytes = 1 * 1024 * 1024; 8748 else 8749 min_allocable_bytes = 0; 8750 8751 spin_lock(&sinfo->lock); 8752 spin_lock(&cache->lock); 8753 8754 if (cache->ro) { 8755 ret = 0; 8756 goto out; 8757 } 8758 8759 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8760 cache->bytes_super - btrfs_block_group_used(&cache->item); 8761 8762 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8763 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8764 min_allocable_bytes <= sinfo->total_bytes) { 8765 sinfo->bytes_readonly += num_bytes; 8766 cache->ro = 1; 8767 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8768 ret = 0; 8769 } 8770 out: 8771 spin_unlock(&cache->lock); 8772 spin_unlock(&sinfo->lock); 8773 return ret; 8774 } 8775 8776 int btrfs_set_block_group_ro(struct btrfs_root *root, 8777 struct btrfs_block_group_cache *cache) 8778 8779 { 8780 struct btrfs_trans_handle *trans; 8781 u64 alloc_flags; 8782 int ret; 8783 8784 BUG_ON(cache->ro); 8785 8786 again: 8787 trans = btrfs_join_transaction(root); 8788 if (IS_ERR(trans)) 8789 return PTR_ERR(trans); 8790 8791 /* 8792 * we're not allowed to set block groups readonly after the dirty 8793 * block groups cache has started writing. If it already started, 8794 * back off and let this transaction commit 8795 */ 8796 mutex_lock(&root->fs_info->ro_block_group_mutex); 8797 if (trans->transaction->dirty_bg_run) { 8798 u64 transid = trans->transid; 8799 8800 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8801 btrfs_end_transaction(trans, root); 8802 8803 ret = btrfs_wait_for_commit(root, transid); 8804 if (ret) 8805 return ret; 8806 goto again; 8807 } 8808 8809 8810 ret = set_block_group_ro(cache, 0); 8811 if (!ret) 8812 goto out; 8813 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8814 ret = do_chunk_alloc(trans, root, alloc_flags, 8815 CHUNK_ALLOC_FORCE); 8816 if (ret < 0) 8817 goto out; 8818 ret = set_block_group_ro(cache, 0); 8819 out: 8820 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8821 alloc_flags = update_block_group_flags(root, cache->flags); 8822 check_system_chunk(trans, root, alloc_flags); 8823 } 8824 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8825 8826 btrfs_end_transaction(trans, root); 8827 return ret; 8828 } 8829 8830 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8831 struct btrfs_root *root, u64 type) 8832 { 8833 u64 alloc_flags = get_alloc_profile(root, type); 8834 return do_chunk_alloc(trans, root, alloc_flags, 8835 CHUNK_ALLOC_FORCE); 8836 } 8837 8838 /* 8839 * helper to account the unused space of all the readonly block group in the 8840 * space_info. takes mirrors into account. 8841 */ 8842 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8843 { 8844 struct btrfs_block_group_cache *block_group; 8845 u64 free_bytes = 0; 8846 int factor; 8847 8848 /* It's df, we don't care if it's racey */ 8849 if (list_empty(&sinfo->ro_bgs)) 8850 return 0; 8851 8852 spin_lock(&sinfo->lock); 8853 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8854 spin_lock(&block_group->lock); 8855 8856 if (!block_group->ro) { 8857 spin_unlock(&block_group->lock); 8858 continue; 8859 } 8860 8861 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8862 BTRFS_BLOCK_GROUP_RAID10 | 8863 BTRFS_BLOCK_GROUP_DUP)) 8864 factor = 2; 8865 else 8866 factor = 1; 8867 8868 free_bytes += (block_group->key.offset - 8869 btrfs_block_group_used(&block_group->item)) * 8870 factor; 8871 8872 spin_unlock(&block_group->lock); 8873 } 8874 spin_unlock(&sinfo->lock); 8875 8876 return free_bytes; 8877 } 8878 8879 void btrfs_set_block_group_rw(struct btrfs_root *root, 8880 struct btrfs_block_group_cache *cache) 8881 { 8882 struct btrfs_space_info *sinfo = cache->space_info; 8883 u64 num_bytes; 8884 8885 BUG_ON(!cache->ro); 8886 8887 spin_lock(&sinfo->lock); 8888 spin_lock(&cache->lock); 8889 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8890 cache->bytes_super - btrfs_block_group_used(&cache->item); 8891 sinfo->bytes_readonly -= num_bytes; 8892 cache->ro = 0; 8893 list_del_init(&cache->ro_list); 8894 spin_unlock(&cache->lock); 8895 spin_unlock(&sinfo->lock); 8896 } 8897 8898 /* 8899 * checks to see if its even possible to relocate this block group. 8900 * 8901 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8902 * ok to go ahead and try. 8903 */ 8904 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8905 { 8906 struct btrfs_block_group_cache *block_group; 8907 struct btrfs_space_info *space_info; 8908 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8909 struct btrfs_device *device; 8910 struct btrfs_trans_handle *trans; 8911 u64 min_free; 8912 u64 dev_min = 1; 8913 u64 dev_nr = 0; 8914 u64 target; 8915 int index; 8916 int full = 0; 8917 int ret = 0; 8918 8919 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8920 8921 /* odd, couldn't find the block group, leave it alone */ 8922 if (!block_group) 8923 return -1; 8924 8925 min_free = btrfs_block_group_used(&block_group->item); 8926 8927 /* no bytes used, we're good */ 8928 if (!min_free) 8929 goto out; 8930 8931 space_info = block_group->space_info; 8932 spin_lock(&space_info->lock); 8933 8934 full = space_info->full; 8935 8936 /* 8937 * if this is the last block group we have in this space, we can't 8938 * relocate it unless we're able to allocate a new chunk below. 8939 * 8940 * Otherwise, we need to make sure we have room in the space to handle 8941 * all of the extents from this block group. If we can, we're good 8942 */ 8943 if ((space_info->total_bytes != block_group->key.offset) && 8944 (space_info->bytes_used + space_info->bytes_reserved + 8945 space_info->bytes_pinned + space_info->bytes_readonly + 8946 min_free < space_info->total_bytes)) { 8947 spin_unlock(&space_info->lock); 8948 goto out; 8949 } 8950 spin_unlock(&space_info->lock); 8951 8952 /* 8953 * ok we don't have enough space, but maybe we have free space on our 8954 * devices to allocate new chunks for relocation, so loop through our 8955 * alloc devices and guess if we have enough space. if this block 8956 * group is going to be restriped, run checks against the target 8957 * profile instead of the current one. 8958 */ 8959 ret = -1; 8960 8961 /* 8962 * index: 8963 * 0: raid10 8964 * 1: raid1 8965 * 2: dup 8966 * 3: raid0 8967 * 4: single 8968 */ 8969 target = get_restripe_target(root->fs_info, block_group->flags); 8970 if (target) { 8971 index = __get_raid_index(extended_to_chunk(target)); 8972 } else { 8973 /* 8974 * this is just a balance, so if we were marked as full 8975 * we know there is no space for a new chunk 8976 */ 8977 if (full) 8978 goto out; 8979 8980 index = get_block_group_index(block_group); 8981 } 8982 8983 if (index == BTRFS_RAID_RAID10) { 8984 dev_min = 4; 8985 /* Divide by 2 */ 8986 min_free >>= 1; 8987 } else if (index == BTRFS_RAID_RAID1) { 8988 dev_min = 2; 8989 } else if (index == BTRFS_RAID_DUP) { 8990 /* Multiply by 2 */ 8991 min_free <<= 1; 8992 } else if (index == BTRFS_RAID_RAID0) { 8993 dev_min = fs_devices->rw_devices; 8994 min_free = div64_u64(min_free, dev_min); 8995 } 8996 8997 /* We need to do this so that we can look at pending chunks */ 8998 trans = btrfs_join_transaction(root); 8999 if (IS_ERR(trans)) { 9000 ret = PTR_ERR(trans); 9001 goto out; 9002 } 9003 9004 mutex_lock(&root->fs_info->chunk_mutex); 9005 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9006 u64 dev_offset; 9007 9008 /* 9009 * check to make sure we can actually find a chunk with enough 9010 * space to fit our block group in. 9011 */ 9012 if (device->total_bytes > device->bytes_used + min_free && 9013 !device->is_tgtdev_for_dev_replace) { 9014 ret = find_free_dev_extent(trans, device, min_free, 9015 &dev_offset, NULL); 9016 if (!ret) 9017 dev_nr++; 9018 9019 if (dev_nr >= dev_min) 9020 break; 9021 9022 ret = -1; 9023 } 9024 } 9025 mutex_unlock(&root->fs_info->chunk_mutex); 9026 btrfs_end_transaction(trans, root); 9027 out: 9028 btrfs_put_block_group(block_group); 9029 return ret; 9030 } 9031 9032 static int find_first_block_group(struct btrfs_root *root, 9033 struct btrfs_path *path, struct btrfs_key *key) 9034 { 9035 int ret = 0; 9036 struct btrfs_key found_key; 9037 struct extent_buffer *leaf; 9038 int slot; 9039 9040 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9041 if (ret < 0) 9042 goto out; 9043 9044 while (1) { 9045 slot = path->slots[0]; 9046 leaf = path->nodes[0]; 9047 if (slot >= btrfs_header_nritems(leaf)) { 9048 ret = btrfs_next_leaf(root, path); 9049 if (ret == 0) 9050 continue; 9051 if (ret < 0) 9052 goto out; 9053 break; 9054 } 9055 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9056 9057 if (found_key.objectid >= key->objectid && 9058 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9059 ret = 0; 9060 goto out; 9061 } 9062 path->slots[0]++; 9063 } 9064 out: 9065 return ret; 9066 } 9067 9068 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9069 { 9070 struct btrfs_block_group_cache *block_group; 9071 u64 last = 0; 9072 9073 while (1) { 9074 struct inode *inode; 9075 9076 block_group = btrfs_lookup_first_block_group(info, last); 9077 while (block_group) { 9078 spin_lock(&block_group->lock); 9079 if (block_group->iref) 9080 break; 9081 spin_unlock(&block_group->lock); 9082 block_group = next_block_group(info->tree_root, 9083 block_group); 9084 } 9085 if (!block_group) { 9086 if (last == 0) 9087 break; 9088 last = 0; 9089 continue; 9090 } 9091 9092 inode = block_group->inode; 9093 block_group->iref = 0; 9094 block_group->inode = NULL; 9095 spin_unlock(&block_group->lock); 9096 iput(inode); 9097 last = block_group->key.objectid + block_group->key.offset; 9098 btrfs_put_block_group(block_group); 9099 } 9100 } 9101 9102 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9103 { 9104 struct btrfs_block_group_cache *block_group; 9105 struct btrfs_space_info *space_info; 9106 struct btrfs_caching_control *caching_ctl; 9107 struct rb_node *n; 9108 9109 down_write(&info->commit_root_sem); 9110 while (!list_empty(&info->caching_block_groups)) { 9111 caching_ctl = list_entry(info->caching_block_groups.next, 9112 struct btrfs_caching_control, list); 9113 list_del(&caching_ctl->list); 9114 put_caching_control(caching_ctl); 9115 } 9116 up_write(&info->commit_root_sem); 9117 9118 spin_lock(&info->unused_bgs_lock); 9119 while (!list_empty(&info->unused_bgs)) { 9120 block_group = list_first_entry(&info->unused_bgs, 9121 struct btrfs_block_group_cache, 9122 bg_list); 9123 list_del_init(&block_group->bg_list); 9124 btrfs_put_block_group(block_group); 9125 } 9126 spin_unlock(&info->unused_bgs_lock); 9127 9128 spin_lock(&info->block_group_cache_lock); 9129 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9130 block_group = rb_entry(n, struct btrfs_block_group_cache, 9131 cache_node); 9132 rb_erase(&block_group->cache_node, 9133 &info->block_group_cache_tree); 9134 RB_CLEAR_NODE(&block_group->cache_node); 9135 spin_unlock(&info->block_group_cache_lock); 9136 9137 down_write(&block_group->space_info->groups_sem); 9138 list_del(&block_group->list); 9139 up_write(&block_group->space_info->groups_sem); 9140 9141 if (block_group->cached == BTRFS_CACHE_STARTED) 9142 wait_block_group_cache_done(block_group); 9143 9144 /* 9145 * We haven't cached this block group, which means we could 9146 * possibly have excluded extents on this block group. 9147 */ 9148 if (block_group->cached == BTRFS_CACHE_NO || 9149 block_group->cached == BTRFS_CACHE_ERROR) 9150 free_excluded_extents(info->extent_root, block_group); 9151 9152 btrfs_remove_free_space_cache(block_group); 9153 btrfs_put_block_group(block_group); 9154 9155 spin_lock(&info->block_group_cache_lock); 9156 } 9157 spin_unlock(&info->block_group_cache_lock); 9158 9159 /* now that all the block groups are freed, go through and 9160 * free all the space_info structs. This is only called during 9161 * the final stages of unmount, and so we know nobody is 9162 * using them. We call synchronize_rcu() once before we start, 9163 * just to be on the safe side. 9164 */ 9165 synchronize_rcu(); 9166 9167 release_global_block_rsv(info); 9168 9169 while (!list_empty(&info->space_info)) { 9170 int i; 9171 9172 space_info = list_entry(info->space_info.next, 9173 struct btrfs_space_info, 9174 list); 9175 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9176 if (WARN_ON(space_info->bytes_pinned > 0 || 9177 space_info->bytes_reserved > 0 || 9178 space_info->bytes_may_use > 0)) { 9179 dump_space_info(space_info, 0, 0); 9180 } 9181 } 9182 list_del(&space_info->list); 9183 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9184 struct kobject *kobj; 9185 kobj = space_info->block_group_kobjs[i]; 9186 space_info->block_group_kobjs[i] = NULL; 9187 if (kobj) { 9188 kobject_del(kobj); 9189 kobject_put(kobj); 9190 } 9191 } 9192 kobject_del(&space_info->kobj); 9193 kobject_put(&space_info->kobj); 9194 } 9195 return 0; 9196 } 9197 9198 static void __link_block_group(struct btrfs_space_info *space_info, 9199 struct btrfs_block_group_cache *cache) 9200 { 9201 int index = get_block_group_index(cache); 9202 bool first = false; 9203 9204 down_write(&space_info->groups_sem); 9205 if (list_empty(&space_info->block_groups[index])) 9206 first = true; 9207 list_add_tail(&cache->list, &space_info->block_groups[index]); 9208 up_write(&space_info->groups_sem); 9209 9210 if (first) { 9211 struct raid_kobject *rkobj; 9212 int ret; 9213 9214 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9215 if (!rkobj) 9216 goto out_err; 9217 rkobj->raid_type = index; 9218 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9219 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9220 "%s", get_raid_name(index)); 9221 if (ret) { 9222 kobject_put(&rkobj->kobj); 9223 goto out_err; 9224 } 9225 space_info->block_group_kobjs[index] = &rkobj->kobj; 9226 } 9227 9228 return; 9229 out_err: 9230 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9231 } 9232 9233 static struct btrfs_block_group_cache * 9234 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9235 { 9236 struct btrfs_block_group_cache *cache; 9237 9238 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9239 if (!cache) 9240 return NULL; 9241 9242 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9243 GFP_NOFS); 9244 if (!cache->free_space_ctl) { 9245 kfree(cache); 9246 return NULL; 9247 } 9248 9249 cache->key.objectid = start; 9250 cache->key.offset = size; 9251 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9252 9253 cache->sectorsize = root->sectorsize; 9254 cache->fs_info = root->fs_info; 9255 cache->full_stripe_len = btrfs_full_stripe_len(root, 9256 &root->fs_info->mapping_tree, 9257 start); 9258 atomic_set(&cache->count, 1); 9259 spin_lock_init(&cache->lock); 9260 init_rwsem(&cache->data_rwsem); 9261 INIT_LIST_HEAD(&cache->list); 9262 INIT_LIST_HEAD(&cache->cluster_list); 9263 INIT_LIST_HEAD(&cache->bg_list); 9264 INIT_LIST_HEAD(&cache->ro_list); 9265 INIT_LIST_HEAD(&cache->dirty_list); 9266 INIT_LIST_HEAD(&cache->io_list); 9267 btrfs_init_free_space_ctl(cache); 9268 atomic_set(&cache->trimming, 0); 9269 9270 return cache; 9271 } 9272 9273 int btrfs_read_block_groups(struct btrfs_root *root) 9274 { 9275 struct btrfs_path *path; 9276 int ret; 9277 struct btrfs_block_group_cache *cache; 9278 struct btrfs_fs_info *info = root->fs_info; 9279 struct btrfs_space_info *space_info; 9280 struct btrfs_key key; 9281 struct btrfs_key found_key; 9282 struct extent_buffer *leaf; 9283 int need_clear = 0; 9284 u64 cache_gen; 9285 9286 root = info->extent_root; 9287 key.objectid = 0; 9288 key.offset = 0; 9289 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9290 path = btrfs_alloc_path(); 9291 if (!path) 9292 return -ENOMEM; 9293 path->reada = 1; 9294 9295 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9296 if (btrfs_test_opt(root, SPACE_CACHE) && 9297 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9298 need_clear = 1; 9299 if (btrfs_test_opt(root, CLEAR_CACHE)) 9300 need_clear = 1; 9301 9302 while (1) { 9303 ret = find_first_block_group(root, path, &key); 9304 if (ret > 0) 9305 break; 9306 if (ret != 0) 9307 goto error; 9308 9309 leaf = path->nodes[0]; 9310 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9311 9312 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9313 found_key.offset); 9314 if (!cache) { 9315 ret = -ENOMEM; 9316 goto error; 9317 } 9318 9319 if (need_clear) { 9320 /* 9321 * When we mount with old space cache, we need to 9322 * set BTRFS_DC_CLEAR and set dirty flag. 9323 * 9324 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9325 * truncate the old free space cache inode and 9326 * setup a new one. 9327 * b) Setting 'dirty flag' makes sure that we flush 9328 * the new space cache info onto disk. 9329 */ 9330 if (btrfs_test_opt(root, SPACE_CACHE)) 9331 cache->disk_cache_state = BTRFS_DC_CLEAR; 9332 } 9333 9334 read_extent_buffer(leaf, &cache->item, 9335 btrfs_item_ptr_offset(leaf, path->slots[0]), 9336 sizeof(cache->item)); 9337 cache->flags = btrfs_block_group_flags(&cache->item); 9338 9339 key.objectid = found_key.objectid + found_key.offset; 9340 btrfs_release_path(path); 9341 9342 /* 9343 * We need to exclude the super stripes now so that the space 9344 * info has super bytes accounted for, otherwise we'll think 9345 * we have more space than we actually do. 9346 */ 9347 ret = exclude_super_stripes(root, cache); 9348 if (ret) { 9349 /* 9350 * We may have excluded something, so call this just in 9351 * case. 9352 */ 9353 free_excluded_extents(root, cache); 9354 btrfs_put_block_group(cache); 9355 goto error; 9356 } 9357 9358 /* 9359 * check for two cases, either we are full, and therefore 9360 * don't need to bother with the caching work since we won't 9361 * find any space, or we are empty, and we can just add all 9362 * the space in and be done with it. This saves us _alot_ of 9363 * time, particularly in the full case. 9364 */ 9365 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9366 cache->last_byte_to_unpin = (u64)-1; 9367 cache->cached = BTRFS_CACHE_FINISHED; 9368 free_excluded_extents(root, cache); 9369 } else if (btrfs_block_group_used(&cache->item) == 0) { 9370 cache->last_byte_to_unpin = (u64)-1; 9371 cache->cached = BTRFS_CACHE_FINISHED; 9372 add_new_free_space(cache, root->fs_info, 9373 found_key.objectid, 9374 found_key.objectid + 9375 found_key.offset); 9376 free_excluded_extents(root, cache); 9377 } 9378 9379 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9380 if (ret) { 9381 btrfs_remove_free_space_cache(cache); 9382 btrfs_put_block_group(cache); 9383 goto error; 9384 } 9385 9386 ret = update_space_info(info, cache->flags, found_key.offset, 9387 btrfs_block_group_used(&cache->item), 9388 &space_info); 9389 if (ret) { 9390 btrfs_remove_free_space_cache(cache); 9391 spin_lock(&info->block_group_cache_lock); 9392 rb_erase(&cache->cache_node, 9393 &info->block_group_cache_tree); 9394 RB_CLEAR_NODE(&cache->cache_node); 9395 spin_unlock(&info->block_group_cache_lock); 9396 btrfs_put_block_group(cache); 9397 goto error; 9398 } 9399 9400 cache->space_info = space_info; 9401 spin_lock(&cache->space_info->lock); 9402 cache->space_info->bytes_readonly += cache->bytes_super; 9403 spin_unlock(&cache->space_info->lock); 9404 9405 __link_block_group(space_info, cache); 9406 9407 set_avail_alloc_bits(root->fs_info, cache->flags); 9408 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9409 set_block_group_ro(cache, 1); 9410 } else if (btrfs_block_group_used(&cache->item) == 0) { 9411 spin_lock(&info->unused_bgs_lock); 9412 /* Should always be true but just in case. */ 9413 if (list_empty(&cache->bg_list)) { 9414 btrfs_get_block_group(cache); 9415 list_add_tail(&cache->bg_list, 9416 &info->unused_bgs); 9417 } 9418 spin_unlock(&info->unused_bgs_lock); 9419 } 9420 } 9421 9422 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9423 if (!(get_alloc_profile(root, space_info->flags) & 9424 (BTRFS_BLOCK_GROUP_RAID10 | 9425 BTRFS_BLOCK_GROUP_RAID1 | 9426 BTRFS_BLOCK_GROUP_RAID5 | 9427 BTRFS_BLOCK_GROUP_RAID6 | 9428 BTRFS_BLOCK_GROUP_DUP))) 9429 continue; 9430 /* 9431 * avoid allocating from un-mirrored block group if there are 9432 * mirrored block groups. 9433 */ 9434 list_for_each_entry(cache, 9435 &space_info->block_groups[BTRFS_RAID_RAID0], 9436 list) 9437 set_block_group_ro(cache, 1); 9438 list_for_each_entry(cache, 9439 &space_info->block_groups[BTRFS_RAID_SINGLE], 9440 list) 9441 set_block_group_ro(cache, 1); 9442 } 9443 9444 init_global_block_rsv(info); 9445 ret = 0; 9446 error: 9447 btrfs_free_path(path); 9448 return ret; 9449 } 9450 9451 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9452 struct btrfs_root *root) 9453 { 9454 struct btrfs_block_group_cache *block_group, *tmp; 9455 struct btrfs_root *extent_root = root->fs_info->extent_root; 9456 struct btrfs_block_group_item item; 9457 struct btrfs_key key; 9458 int ret = 0; 9459 9460 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9461 if (ret) 9462 goto next; 9463 9464 spin_lock(&block_group->lock); 9465 memcpy(&item, &block_group->item, sizeof(item)); 9466 memcpy(&key, &block_group->key, sizeof(key)); 9467 spin_unlock(&block_group->lock); 9468 9469 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9470 sizeof(item)); 9471 if (ret) 9472 btrfs_abort_transaction(trans, extent_root, ret); 9473 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9474 key.objectid, key.offset); 9475 if (ret) 9476 btrfs_abort_transaction(trans, extent_root, ret); 9477 next: 9478 list_del_init(&block_group->bg_list); 9479 } 9480 } 9481 9482 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9483 struct btrfs_root *root, u64 bytes_used, 9484 u64 type, u64 chunk_objectid, u64 chunk_offset, 9485 u64 size) 9486 { 9487 int ret; 9488 struct btrfs_root *extent_root; 9489 struct btrfs_block_group_cache *cache; 9490 9491 extent_root = root->fs_info->extent_root; 9492 9493 btrfs_set_log_full_commit(root->fs_info, trans); 9494 9495 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9496 if (!cache) 9497 return -ENOMEM; 9498 9499 btrfs_set_block_group_used(&cache->item, bytes_used); 9500 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9501 btrfs_set_block_group_flags(&cache->item, type); 9502 9503 cache->flags = type; 9504 cache->last_byte_to_unpin = (u64)-1; 9505 cache->cached = BTRFS_CACHE_FINISHED; 9506 ret = exclude_super_stripes(root, cache); 9507 if (ret) { 9508 /* 9509 * We may have excluded something, so call this just in 9510 * case. 9511 */ 9512 free_excluded_extents(root, cache); 9513 btrfs_put_block_group(cache); 9514 return ret; 9515 } 9516 9517 add_new_free_space(cache, root->fs_info, chunk_offset, 9518 chunk_offset + size); 9519 9520 free_excluded_extents(root, cache); 9521 9522 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9523 if (ret) { 9524 btrfs_remove_free_space_cache(cache); 9525 btrfs_put_block_group(cache); 9526 return ret; 9527 } 9528 9529 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9530 &cache->space_info); 9531 if (ret) { 9532 btrfs_remove_free_space_cache(cache); 9533 spin_lock(&root->fs_info->block_group_cache_lock); 9534 rb_erase(&cache->cache_node, 9535 &root->fs_info->block_group_cache_tree); 9536 RB_CLEAR_NODE(&cache->cache_node); 9537 spin_unlock(&root->fs_info->block_group_cache_lock); 9538 btrfs_put_block_group(cache); 9539 return ret; 9540 } 9541 update_global_block_rsv(root->fs_info); 9542 9543 spin_lock(&cache->space_info->lock); 9544 cache->space_info->bytes_readonly += cache->bytes_super; 9545 spin_unlock(&cache->space_info->lock); 9546 9547 __link_block_group(cache->space_info, cache); 9548 9549 list_add_tail(&cache->bg_list, &trans->new_bgs); 9550 9551 set_avail_alloc_bits(extent_root->fs_info, type); 9552 9553 return 0; 9554 } 9555 9556 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9557 { 9558 u64 extra_flags = chunk_to_extended(flags) & 9559 BTRFS_EXTENDED_PROFILE_MASK; 9560 9561 write_seqlock(&fs_info->profiles_lock); 9562 if (flags & BTRFS_BLOCK_GROUP_DATA) 9563 fs_info->avail_data_alloc_bits &= ~extra_flags; 9564 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9565 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9566 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9567 fs_info->avail_system_alloc_bits &= ~extra_flags; 9568 write_sequnlock(&fs_info->profiles_lock); 9569 } 9570 9571 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9572 struct btrfs_root *root, u64 group_start, 9573 struct extent_map *em) 9574 { 9575 struct btrfs_path *path; 9576 struct btrfs_block_group_cache *block_group; 9577 struct btrfs_free_cluster *cluster; 9578 struct btrfs_root *tree_root = root->fs_info->tree_root; 9579 struct btrfs_key key; 9580 struct inode *inode; 9581 struct kobject *kobj = NULL; 9582 int ret; 9583 int index; 9584 int factor; 9585 struct btrfs_caching_control *caching_ctl = NULL; 9586 bool remove_em; 9587 9588 root = root->fs_info->extent_root; 9589 9590 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9591 BUG_ON(!block_group); 9592 BUG_ON(!block_group->ro); 9593 9594 /* 9595 * Free the reserved super bytes from this block group before 9596 * remove it. 9597 */ 9598 free_excluded_extents(root, block_group); 9599 9600 memcpy(&key, &block_group->key, sizeof(key)); 9601 index = get_block_group_index(block_group); 9602 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9603 BTRFS_BLOCK_GROUP_RAID1 | 9604 BTRFS_BLOCK_GROUP_RAID10)) 9605 factor = 2; 9606 else 9607 factor = 1; 9608 9609 /* make sure this block group isn't part of an allocation cluster */ 9610 cluster = &root->fs_info->data_alloc_cluster; 9611 spin_lock(&cluster->refill_lock); 9612 btrfs_return_cluster_to_free_space(block_group, cluster); 9613 spin_unlock(&cluster->refill_lock); 9614 9615 /* 9616 * make sure this block group isn't part of a metadata 9617 * allocation cluster 9618 */ 9619 cluster = &root->fs_info->meta_alloc_cluster; 9620 spin_lock(&cluster->refill_lock); 9621 btrfs_return_cluster_to_free_space(block_group, cluster); 9622 spin_unlock(&cluster->refill_lock); 9623 9624 path = btrfs_alloc_path(); 9625 if (!path) { 9626 ret = -ENOMEM; 9627 goto out; 9628 } 9629 9630 /* 9631 * get the inode first so any iput calls done for the io_list 9632 * aren't the final iput (no unlinks allowed now) 9633 */ 9634 inode = lookup_free_space_inode(tree_root, block_group, path); 9635 9636 mutex_lock(&trans->transaction->cache_write_mutex); 9637 /* 9638 * make sure our free spache cache IO is done before remove the 9639 * free space inode 9640 */ 9641 spin_lock(&trans->transaction->dirty_bgs_lock); 9642 if (!list_empty(&block_group->io_list)) { 9643 list_del_init(&block_group->io_list); 9644 9645 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9646 9647 spin_unlock(&trans->transaction->dirty_bgs_lock); 9648 btrfs_wait_cache_io(root, trans, block_group, 9649 &block_group->io_ctl, path, 9650 block_group->key.objectid); 9651 btrfs_put_block_group(block_group); 9652 spin_lock(&trans->transaction->dirty_bgs_lock); 9653 } 9654 9655 if (!list_empty(&block_group->dirty_list)) { 9656 list_del_init(&block_group->dirty_list); 9657 btrfs_put_block_group(block_group); 9658 } 9659 spin_unlock(&trans->transaction->dirty_bgs_lock); 9660 mutex_unlock(&trans->transaction->cache_write_mutex); 9661 9662 if (!IS_ERR(inode)) { 9663 ret = btrfs_orphan_add(trans, inode); 9664 if (ret) { 9665 btrfs_add_delayed_iput(inode); 9666 goto out; 9667 } 9668 clear_nlink(inode); 9669 /* One for the block groups ref */ 9670 spin_lock(&block_group->lock); 9671 if (block_group->iref) { 9672 block_group->iref = 0; 9673 block_group->inode = NULL; 9674 spin_unlock(&block_group->lock); 9675 iput(inode); 9676 } else { 9677 spin_unlock(&block_group->lock); 9678 } 9679 /* One for our lookup ref */ 9680 btrfs_add_delayed_iput(inode); 9681 } 9682 9683 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9684 key.offset = block_group->key.objectid; 9685 key.type = 0; 9686 9687 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9688 if (ret < 0) 9689 goto out; 9690 if (ret > 0) 9691 btrfs_release_path(path); 9692 if (ret == 0) { 9693 ret = btrfs_del_item(trans, tree_root, path); 9694 if (ret) 9695 goto out; 9696 btrfs_release_path(path); 9697 } 9698 9699 spin_lock(&root->fs_info->block_group_cache_lock); 9700 rb_erase(&block_group->cache_node, 9701 &root->fs_info->block_group_cache_tree); 9702 RB_CLEAR_NODE(&block_group->cache_node); 9703 9704 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9705 root->fs_info->first_logical_byte = (u64)-1; 9706 spin_unlock(&root->fs_info->block_group_cache_lock); 9707 9708 down_write(&block_group->space_info->groups_sem); 9709 /* 9710 * we must use list_del_init so people can check to see if they 9711 * are still on the list after taking the semaphore 9712 */ 9713 list_del_init(&block_group->list); 9714 if (list_empty(&block_group->space_info->block_groups[index])) { 9715 kobj = block_group->space_info->block_group_kobjs[index]; 9716 block_group->space_info->block_group_kobjs[index] = NULL; 9717 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9718 } 9719 up_write(&block_group->space_info->groups_sem); 9720 if (kobj) { 9721 kobject_del(kobj); 9722 kobject_put(kobj); 9723 } 9724 9725 if (block_group->has_caching_ctl) 9726 caching_ctl = get_caching_control(block_group); 9727 if (block_group->cached == BTRFS_CACHE_STARTED) 9728 wait_block_group_cache_done(block_group); 9729 if (block_group->has_caching_ctl) { 9730 down_write(&root->fs_info->commit_root_sem); 9731 if (!caching_ctl) { 9732 struct btrfs_caching_control *ctl; 9733 9734 list_for_each_entry(ctl, 9735 &root->fs_info->caching_block_groups, list) 9736 if (ctl->block_group == block_group) { 9737 caching_ctl = ctl; 9738 atomic_inc(&caching_ctl->count); 9739 break; 9740 } 9741 } 9742 if (caching_ctl) 9743 list_del_init(&caching_ctl->list); 9744 up_write(&root->fs_info->commit_root_sem); 9745 if (caching_ctl) { 9746 /* Once for the caching bgs list and once for us. */ 9747 put_caching_control(caching_ctl); 9748 put_caching_control(caching_ctl); 9749 } 9750 } 9751 9752 spin_lock(&trans->transaction->dirty_bgs_lock); 9753 if (!list_empty(&block_group->dirty_list)) { 9754 WARN_ON(1); 9755 } 9756 if (!list_empty(&block_group->io_list)) { 9757 WARN_ON(1); 9758 } 9759 spin_unlock(&trans->transaction->dirty_bgs_lock); 9760 btrfs_remove_free_space_cache(block_group); 9761 9762 spin_lock(&block_group->space_info->lock); 9763 list_del_init(&block_group->ro_list); 9764 9765 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9766 WARN_ON(block_group->space_info->total_bytes 9767 < block_group->key.offset); 9768 WARN_ON(block_group->space_info->bytes_readonly 9769 < block_group->key.offset); 9770 WARN_ON(block_group->space_info->disk_total 9771 < block_group->key.offset * factor); 9772 } 9773 block_group->space_info->total_bytes -= block_group->key.offset; 9774 block_group->space_info->bytes_readonly -= block_group->key.offset; 9775 block_group->space_info->disk_total -= block_group->key.offset * factor; 9776 9777 spin_unlock(&block_group->space_info->lock); 9778 9779 memcpy(&key, &block_group->key, sizeof(key)); 9780 9781 lock_chunks(root); 9782 if (!list_empty(&em->list)) { 9783 /* We're in the transaction->pending_chunks list. */ 9784 free_extent_map(em); 9785 } 9786 spin_lock(&block_group->lock); 9787 block_group->removed = 1; 9788 /* 9789 * At this point trimming can't start on this block group, because we 9790 * removed the block group from the tree fs_info->block_group_cache_tree 9791 * so no one can't find it anymore and even if someone already got this 9792 * block group before we removed it from the rbtree, they have already 9793 * incremented block_group->trimming - if they didn't, they won't find 9794 * any free space entries because we already removed them all when we 9795 * called btrfs_remove_free_space_cache(). 9796 * 9797 * And we must not remove the extent map from the fs_info->mapping_tree 9798 * to prevent the same logical address range and physical device space 9799 * ranges from being reused for a new block group. This is because our 9800 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9801 * completely transactionless, so while it is trimming a range the 9802 * currently running transaction might finish and a new one start, 9803 * allowing for new block groups to be created that can reuse the same 9804 * physical device locations unless we take this special care. 9805 */ 9806 remove_em = (atomic_read(&block_group->trimming) == 0); 9807 /* 9808 * Make sure a trimmer task always sees the em in the pinned_chunks list 9809 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9810 * before checking block_group->removed). 9811 */ 9812 if (!remove_em) { 9813 /* 9814 * Our em might be in trans->transaction->pending_chunks which 9815 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9816 * and so is the fs_info->pinned_chunks list. 9817 * 9818 * So at this point we must be holding the chunk_mutex to avoid 9819 * any races with chunk allocation (more specifically at 9820 * volumes.c:contains_pending_extent()), to ensure it always 9821 * sees the em, either in the pending_chunks list or in the 9822 * pinned_chunks list. 9823 */ 9824 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9825 } 9826 spin_unlock(&block_group->lock); 9827 9828 if (remove_em) { 9829 struct extent_map_tree *em_tree; 9830 9831 em_tree = &root->fs_info->mapping_tree.map_tree; 9832 write_lock(&em_tree->lock); 9833 /* 9834 * The em might be in the pending_chunks list, so make sure the 9835 * chunk mutex is locked, since remove_extent_mapping() will 9836 * delete us from that list. 9837 */ 9838 remove_extent_mapping(em_tree, em); 9839 write_unlock(&em_tree->lock); 9840 /* once for the tree */ 9841 free_extent_map(em); 9842 } 9843 9844 unlock_chunks(root); 9845 9846 btrfs_put_block_group(block_group); 9847 btrfs_put_block_group(block_group); 9848 9849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9850 if (ret > 0) 9851 ret = -EIO; 9852 if (ret < 0) 9853 goto out; 9854 9855 ret = btrfs_del_item(trans, root, path); 9856 out: 9857 btrfs_free_path(path); 9858 return ret; 9859 } 9860 9861 /* 9862 * Process the unused_bgs list and remove any that don't have any allocated 9863 * space inside of them. 9864 */ 9865 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9866 { 9867 struct btrfs_block_group_cache *block_group; 9868 struct btrfs_space_info *space_info; 9869 struct btrfs_root *root = fs_info->extent_root; 9870 struct btrfs_trans_handle *trans; 9871 int ret = 0; 9872 9873 if (!fs_info->open) 9874 return; 9875 9876 spin_lock(&fs_info->unused_bgs_lock); 9877 while (!list_empty(&fs_info->unused_bgs)) { 9878 u64 start, end; 9879 9880 block_group = list_first_entry(&fs_info->unused_bgs, 9881 struct btrfs_block_group_cache, 9882 bg_list); 9883 space_info = block_group->space_info; 9884 list_del_init(&block_group->bg_list); 9885 if (ret || btrfs_mixed_space_info(space_info)) { 9886 btrfs_put_block_group(block_group); 9887 continue; 9888 } 9889 spin_unlock(&fs_info->unused_bgs_lock); 9890 9891 /* Don't want to race with allocators so take the groups_sem */ 9892 down_write(&space_info->groups_sem); 9893 spin_lock(&block_group->lock); 9894 if (block_group->reserved || 9895 btrfs_block_group_used(&block_group->item) || 9896 block_group->ro) { 9897 /* 9898 * We want to bail if we made new allocations or have 9899 * outstanding allocations in this block group. We do 9900 * the ro check in case balance is currently acting on 9901 * this block group. 9902 */ 9903 spin_unlock(&block_group->lock); 9904 up_write(&space_info->groups_sem); 9905 goto next; 9906 } 9907 spin_unlock(&block_group->lock); 9908 9909 /* We don't want to force the issue, only flip if it's ok. */ 9910 ret = set_block_group_ro(block_group, 0); 9911 up_write(&space_info->groups_sem); 9912 if (ret < 0) { 9913 ret = 0; 9914 goto next; 9915 } 9916 9917 /* 9918 * Want to do this before we do anything else so we can recover 9919 * properly if we fail to join the transaction. 9920 */ 9921 /* 1 for btrfs_orphan_reserve_metadata() */ 9922 trans = btrfs_start_transaction(root, 1); 9923 if (IS_ERR(trans)) { 9924 btrfs_set_block_group_rw(root, block_group); 9925 ret = PTR_ERR(trans); 9926 goto next; 9927 } 9928 9929 /* 9930 * We could have pending pinned extents for this block group, 9931 * just delete them, we don't care about them anymore. 9932 */ 9933 start = block_group->key.objectid; 9934 end = start + block_group->key.offset - 1; 9935 /* 9936 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9937 * btrfs_finish_extent_commit(). If we are at transaction N, 9938 * another task might be running finish_extent_commit() for the 9939 * previous transaction N - 1, and have seen a range belonging 9940 * to the block group in freed_extents[] before we were able to 9941 * clear the whole block group range from freed_extents[]. This 9942 * means that task can lookup for the block group after we 9943 * unpinned it from freed_extents[] and removed it, leading to 9944 * a BUG_ON() at btrfs_unpin_extent_range(). 9945 */ 9946 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9947 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9948 EXTENT_DIRTY, GFP_NOFS); 9949 if (ret) { 9950 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9951 btrfs_set_block_group_rw(root, block_group); 9952 goto end_trans; 9953 } 9954 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 9955 EXTENT_DIRTY, GFP_NOFS); 9956 if (ret) { 9957 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9958 btrfs_set_block_group_rw(root, block_group); 9959 goto end_trans; 9960 } 9961 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9962 9963 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9964 spin_lock(&space_info->lock); 9965 spin_lock(&block_group->lock); 9966 9967 space_info->bytes_pinned -= block_group->pinned; 9968 space_info->bytes_readonly += block_group->pinned; 9969 percpu_counter_add(&space_info->total_bytes_pinned, 9970 -block_group->pinned); 9971 block_group->pinned = 0; 9972 9973 spin_unlock(&block_group->lock); 9974 spin_unlock(&space_info->lock); 9975 9976 /* 9977 * Btrfs_remove_chunk will abort the transaction if things go 9978 * horribly wrong. 9979 */ 9980 ret = btrfs_remove_chunk(trans, root, 9981 block_group->key.objectid); 9982 end_trans: 9983 btrfs_end_transaction(trans, root); 9984 next: 9985 btrfs_put_block_group(block_group); 9986 spin_lock(&fs_info->unused_bgs_lock); 9987 } 9988 spin_unlock(&fs_info->unused_bgs_lock); 9989 } 9990 9991 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 9992 { 9993 struct btrfs_space_info *space_info; 9994 struct btrfs_super_block *disk_super; 9995 u64 features; 9996 u64 flags; 9997 int mixed = 0; 9998 int ret; 9999 10000 disk_super = fs_info->super_copy; 10001 if (!btrfs_super_root(disk_super)) 10002 return 1; 10003 10004 features = btrfs_super_incompat_flags(disk_super); 10005 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10006 mixed = 1; 10007 10008 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10009 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10010 if (ret) 10011 goto out; 10012 10013 if (mixed) { 10014 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10015 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10016 } else { 10017 flags = BTRFS_BLOCK_GROUP_METADATA; 10018 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10019 if (ret) 10020 goto out; 10021 10022 flags = BTRFS_BLOCK_GROUP_DATA; 10023 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10024 } 10025 out: 10026 return ret; 10027 } 10028 10029 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10030 { 10031 return unpin_extent_range(root, start, end, false); 10032 } 10033 10034 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10035 { 10036 struct btrfs_fs_info *fs_info = root->fs_info; 10037 struct btrfs_block_group_cache *cache = NULL; 10038 u64 group_trimmed; 10039 u64 start; 10040 u64 end; 10041 u64 trimmed = 0; 10042 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10043 int ret = 0; 10044 10045 /* 10046 * try to trim all FS space, our block group may start from non-zero. 10047 */ 10048 if (range->len == total_bytes) 10049 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10050 else 10051 cache = btrfs_lookup_block_group(fs_info, range->start); 10052 10053 while (cache) { 10054 if (cache->key.objectid >= (range->start + range->len)) { 10055 btrfs_put_block_group(cache); 10056 break; 10057 } 10058 10059 start = max(range->start, cache->key.objectid); 10060 end = min(range->start + range->len, 10061 cache->key.objectid + cache->key.offset); 10062 10063 if (end - start >= range->minlen) { 10064 if (!block_group_cache_done(cache)) { 10065 ret = cache_block_group(cache, 0); 10066 if (ret) { 10067 btrfs_put_block_group(cache); 10068 break; 10069 } 10070 ret = wait_block_group_cache_done(cache); 10071 if (ret) { 10072 btrfs_put_block_group(cache); 10073 break; 10074 } 10075 } 10076 ret = btrfs_trim_block_group(cache, 10077 &group_trimmed, 10078 start, 10079 end, 10080 range->minlen); 10081 10082 trimmed += group_trimmed; 10083 if (ret) { 10084 btrfs_put_block_group(cache); 10085 break; 10086 } 10087 } 10088 10089 cache = next_block_group(fs_info->tree_root, cache); 10090 } 10091 10092 range->len = trimmed; 10093 return ret; 10094 } 10095 10096 /* 10097 * btrfs_{start,end}_write_no_snapshoting() are similar to 10098 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10099 * data into the page cache through nocow before the subvolume is snapshoted, 10100 * but flush the data into disk after the snapshot creation, or to prevent 10101 * operations while snapshoting is ongoing and that cause the snapshot to be 10102 * inconsistent (writes followed by expanding truncates for example). 10103 */ 10104 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10105 { 10106 percpu_counter_dec(&root->subv_writers->counter); 10107 /* 10108 * Make sure counter is updated before we wake up 10109 * waiters. 10110 */ 10111 smp_mb(); 10112 if (waitqueue_active(&root->subv_writers->wait)) 10113 wake_up(&root->subv_writers->wait); 10114 } 10115 10116 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10117 { 10118 if (atomic_read(&root->will_be_snapshoted)) 10119 return 0; 10120 10121 percpu_counter_inc(&root->subv_writers->counter); 10122 /* 10123 * Make sure counter is updated before we check for snapshot creation. 10124 */ 10125 smp_mb(); 10126 if (atomic_read(&root->will_be_snapshoted)) { 10127 btrfs_end_write_no_snapshoting(root); 10128 return 0; 10129 } 10130 return 1; 10131 } 10132