xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 4f3db074)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				u64 bytenr, u64 num_bytes, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op,
86 				int no_quota);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins,
100 				     int no_quota);
101 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
102 			  struct btrfs_root *extent_root, u64 flags,
103 			  int force);
104 static int find_next_key(struct btrfs_path *path, int level,
105 			 struct btrfs_key *key);
106 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 			    int dump_block_groups);
108 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
109 				       u64 num_bytes, int reserve,
110 				       int delalloc);
111 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 			       u64 num_bytes);
113 int btrfs_pin_extent(struct btrfs_root *root,
114 		     u64 bytenr, u64 num_bytes, int reserved);
115 
116 static noinline int
117 block_group_cache_done(struct btrfs_block_group_cache *cache)
118 {
119 	smp_mb();
120 	return cache->cached == BTRFS_CACHE_FINISHED ||
121 		cache->cached == BTRFS_CACHE_ERROR;
122 }
123 
124 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125 {
126 	return (cache->flags & bits) == bits;
127 }
128 
129 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	atomic_inc(&cache->count);
132 }
133 
134 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135 {
136 	if (atomic_dec_and_test(&cache->count)) {
137 		WARN_ON(cache->pinned > 0);
138 		WARN_ON(cache->reserved > 0);
139 		kfree(cache->free_space_ctl);
140 		kfree(cache);
141 	}
142 }
143 
144 /*
145  * this adds the block group to the fs_info rb tree for the block group
146  * cache
147  */
148 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
149 				struct btrfs_block_group_cache *block_group)
150 {
151 	struct rb_node **p;
152 	struct rb_node *parent = NULL;
153 	struct btrfs_block_group_cache *cache;
154 
155 	spin_lock(&info->block_group_cache_lock);
156 	p = &info->block_group_cache_tree.rb_node;
157 
158 	while (*p) {
159 		parent = *p;
160 		cache = rb_entry(parent, struct btrfs_block_group_cache,
161 				 cache_node);
162 		if (block_group->key.objectid < cache->key.objectid) {
163 			p = &(*p)->rb_left;
164 		} else if (block_group->key.objectid > cache->key.objectid) {
165 			p = &(*p)->rb_right;
166 		} else {
167 			spin_unlock(&info->block_group_cache_lock);
168 			return -EEXIST;
169 		}
170 	}
171 
172 	rb_link_node(&block_group->cache_node, parent, p);
173 	rb_insert_color(&block_group->cache_node,
174 			&info->block_group_cache_tree);
175 
176 	if (info->first_logical_byte > block_group->key.objectid)
177 		info->first_logical_byte = block_group->key.objectid;
178 
179 	spin_unlock(&info->block_group_cache_lock);
180 
181 	return 0;
182 }
183 
184 /*
185  * This will return the block group at or after bytenr if contains is 0, else
186  * it will return the block group that contains the bytenr
187  */
188 static struct btrfs_block_group_cache *
189 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 			      int contains)
191 {
192 	struct btrfs_block_group_cache *cache, *ret = NULL;
193 	struct rb_node *n;
194 	u64 end, start;
195 
196 	spin_lock(&info->block_group_cache_lock);
197 	n = info->block_group_cache_tree.rb_node;
198 
199 	while (n) {
200 		cache = rb_entry(n, struct btrfs_block_group_cache,
201 				 cache_node);
202 		end = cache->key.objectid + cache->key.offset - 1;
203 		start = cache->key.objectid;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->key.objectid))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 			info->first_logical_byte = ret->key.objectid;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 static int add_excluded_extent(struct btrfs_root *root,
231 			       u64 start, u64 num_bytes)
232 {
233 	u64 end = start + num_bytes - 1;
234 	set_extent_bits(&root->fs_info->freed_extents[0],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	set_extent_bits(&root->fs_info->freed_extents[1],
237 			start, end, EXTENT_UPTODATE, GFP_NOFS);
238 	return 0;
239 }
240 
241 static void free_excluded_extents(struct btrfs_root *root,
242 				  struct btrfs_block_group_cache *cache)
243 {
244 	u64 start, end;
245 
246 	start = cache->key.objectid;
247 	end = start + cache->key.offset - 1;
248 
249 	clear_extent_bits(&root->fs_info->freed_extents[0],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 	clear_extent_bits(&root->fs_info->freed_extents[1],
252 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
253 }
254 
255 static int exclude_super_stripes(struct btrfs_root *root,
256 				 struct btrfs_block_group_cache *cache)
257 {
258 	u64 bytenr;
259 	u64 *logical;
260 	int stripe_len;
261 	int i, nr, ret;
262 
263 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 		cache->bytes_super += stripe_len;
266 		ret = add_excluded_extent(root, cache->key.objectid,
267 					  stripe_len);
268 		if (ret)
269 			return ret;
270 	}
271 
272 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 		bytenr = btrfs_sb_offset(i);
274 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 				       cache->key.objectid, bytenr,
276 				       0, &logical, &nr, &stripe_len);
277 		if (ret)
278 			return ret;
279 
280 		while (nr--) {
281 			u64 start, len;
282 
283 			if (logical[nr] > cache->key.objectid +
284 			    cache->key.offset)
285 				continue;
286 
287 			if (logical[nr] + stripe_len <= cache->key.objectid)
288 				continue;
289 
290 			start = logical[nr];
291 			if (start < cache->key.objectid) {
292 				start = cache->key.objectid;
293 				len = (logical[nr] + stripe_len) - start;
294 			} else {
295 				len = min_t(u64, stripe_len,
296 					    cache->key.objectid +
297 					    cache->key.offset - start);
298 			}
299 
300 			cache->bytes_super += len;
301 			ret = add_excluded_extent(root, start, len);
302 			if (ret) {
303 				kfree(logical);
304 				return ret;
305 			}
306 		}
307 
308 		kfree(logical);
309 	}
310 	return 0;
311 }
312 
313 static struct btrfs_caching_control *
314 get_caching_control(struct btrfs_block_group_cache *cache)
315 {
316 	struct btrfs_caching_control *ctl;
317 
318 	spin_lock(&cache->lock);
319 	if (!cache->caching_ctl) {
320 		spin_unlock(&cache->lock);
321 		return NULL;
322 	}
323 
324 	ctl = cache->caching_ctl;
325 	atomic_inc(&ctl->count);
326 	spin_unlock(&cache->lock);
327 	return ctl;
328 }
329 
330 static void put_caching_control(struct btrfs_caching_control *ctl)
331 {
332 	if (atomic_dec_and_test(&ctl->count))
333 		kfree(ctl);
334 }
335 
336 /*
337  * this is only called by cache_block_group, since we could have freed extents
338  * we need to check the pinned_extents for any extents that can't be used yet
339  * since their free space will be released as soon as the transaction commits.
340  */
341 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
342 			      struct btrfs_fs_info *info, u64 start, u64 end)
343 {
344 	u64 extent_start, extent_end, size, total_added = 0;
345 	int ret;
346 
347 	while (start < end) {
348 		ret = find_first_extent_bit(info->pinned_extents, start,
349 					    &extent_start, &extent_end,
350 					    EXTENT_DIRTY | EXTENT_UPTODATE,
351 					    NULL);
352 		if (ret)
353 			break;
354 
355 		if (extent_start <= start) {
356 			start = extent_end + 1;
357 		} else if (extent_start > start && extent_start < end) {
358 			size = extent_start - start;
359 			total_added += size;
360 			ret = btrfs_add_free_space(block_group, start,
361 						   size);
362 			BUG_ON(ret); /* -ENOMEM or logic error */
363 			start = extent_end + 1;
364 		} else {
365 			break;
366 		}
367 	}
368 
369 	if (start < end) {
370 		size = end - start;
371 		total_added += size;
372 		ret = btrfs_add_free_space(block_group, start, size);
373 		BUG_ON(ret); /* -ENOMEM or logic error */
374 	}
375 
376 	return total_added;
377 }
378 
379 static noinline void caching_thread(struct btrfs_work *work)
380 {
381 	struct btrfs_block_group_cache *block_group;
382 	struct btrfs_fs_info *fs_info;
383 	struct btrfs_caching_control *caching_ctl;
384 	struct btrfs_root *extent_root;
385 	struct btrfs_path *path;
386 	struct extent_buffer *leaf;
387 	struct btrfs_key key;
388 	u64 total_found = 0;
389 	u64 last = 0;
390 	u32 nritems;
391 	int ret = -ENOMEM;
392 
393 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 	block_group = caching_ctl->block_group;
395 	fs_info = block_group->fs_info;
396 	extent_root = fs_info->extent_root;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		goto out;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 	/*
405 	 * We don't want to deadlock with somebody trying to allocate a new
406 	 * extent for the extent root while also trying to search the extent
407 	 * root to add free space.  So we skip locking and search the commit
408 	 * root, since its read-only
409 	 */
410 	path->skip_locking = 1;
411 	path->search_commit_root = 1;
412 	path->reada = 1;
413 
414 	key.objectid = last;
415 	key.offset = 0;
416 	key.type = BTRFS_EXTENT_ITEM_KEY;
417 again:
418 	mutex_lock(&caching_ctl->mutex);
419 	/* need to make sure the commit_root doesn't disappear */
420 	down_read(&fs_info->commit_root_sem);
421 
422 next:
423 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
424 	if (ret < 0)
425 		goto err;
426 
427 	leaf = path->nodes[0];
428 	nritems = btrfs_header_nritems(leaf);
429 
430 	while (1) {
431 		if (btrfs_fs_closing(fs_info) > 1) {
432 			last = (u64)-1;
433 			break;
434 		}
435 
436 		if (path->slots[0] < nritems) {
437 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 		} else {
439 			ret = find_next_key(path, 0, &key);
440 			if (ret)
441 				break;
442 
443 			if (need_resched() ||
444 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
445 				caching_ctl->progress = last;
446 				btrfs_release_path(path);
447 				up_read(&fs_info->commit_root_sem);
448 				mutex_unlock(&caching_ctl->mutex);
449 				cond_resched();
450 				goto again;
451 			}
452 
453 			ret = btrfs_next_leaf(extent_root, path);
454 			if (ret < 0)
455 				goto err;
456 			if (ret)
457 				break;
458 			leaf = path->nodes[0];
459 			nritems = btrfs_header_nritems(leaf);
460 			continue;
461 		}
462 
463 		if (key.objectid < last) {
464 			key.objectid = last;
465 			key.offset = 0;
466 			key.type = BTRFS_EXTENT_ITEM_KEY;
467 
468 			caching_ctl->progress = last;
469 			btrfs_release_path(path);
470 			goto next;
471 		}
472 
473 		if (key.objectid < block_group->key.objectid) {
474 			path->slots[0]++;
475 			continue;
476 		}
477 
478 		if (key.objectid >= block_group->key.objectid +
479 		    block_group->key.offset)
480 			break;
481 
482 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 		    key.type == BTRFS_METADATA_ITEM_KEY) {
484 			total_found += add_new_free_space(block_group,
485 							  fs_info, last,
486 							  key.objectid);
487 			if (key.type == BTRFS_METADATA_ITEM_KEY)
488 				last = key.objectid +
489 					fs_info->tree_root->nodesize;
490 			else
491 				last = key.objectid + key.offset;
492 
493 			if (total_found > (1024 * 1024 * 2)) {
494 				total_found = 0;
495 				wake_up(&caching_ctl->wait);
496 			}
497 		}
498 		path->slots[0]++;
499 	}
500 	ret = 0;
501 
502 	total_found += add_new_free_space(block_group, fs_info, last,
503 					  block_group->key.objectid +
504 					  block_group->key.offset);
505 	caching_ctl->progress = (u64)-1;
506 
507 	spin_lock(&block_group->lock);
508 	block_group->caching_ctl = NULL;
509 	block_group->cached = BTRFS_CACHE_FINISHED;
510 	spin_unlock(&block_group->lock);
511 
512 err:
513 	btrfs_free_path(path);
514 	up_read(&fs_info->commit_root_sem);
515 
516 	free_excluded_extents(extent_root, block_group);
517 
518 	mutex_unlock(&caching_ctl->mutex);
519 out:
520 	if (ret) {
521 		spin_lock(&block_group->lock);
522 		block_group->caching_ctl = NULL;
523 		block_group->cached = BTRFS_CACHE_ERROR;
524 		spin_unlock(&block_group->lock);
525 	}
526 	wake_up(&caching_ctl->wait);
527 
528 	put_caching_control(caching_ctl);
529 	btrfs_put_block_group(block_group);
530 }
531 
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 			     int load_cache_only)
534 {
535 	DEFINE_WAIT(wait);
536 	struct btrfs_fs_info *fs_info = cache->fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret = 0;
539 
540 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 	if (!caching_ctl)
542 		return -ENOMEM;
543 
544 	INIT_LIST_HEAD(&caching_ctl->list);
545 	mutex_init(&caching_ctl->mutex);
546 	init_waitqueue_head(&caching_ctl->wait);
547 	caching_ctl->block_group = cache;
548 	caching_ctl->progress = cache->key.objectid;
549 	atomic_set(&caching_ctl->count, 1);
550 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 			caching_thread, NULL, NULL);
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		mutex_lock(&caching_ctl->mutex);
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 			caching_ctl->progress = (u64)-1;
601 		} else {
602 			if (load_cache_only) {
603 				cache->caching_ctl = NULL;
604 				cache->cached = BTRFS_CACHE_NO;
605 			} else {
606 				cache->cached = BTRFS_CACHE_STARTED;
607 				cache->has_caching_ctl = 1;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		mutex_unlock(&caching_ctl->mutex);
612 
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 			cache->has_caching_ctl = 1;
631 		}
632 		spin_unlock(&cache->lock);
633 		wake_up(&caching_ctl->wait);
634 	}
635 
636 	if (load_cache_only) {
637 		put_caching_control(caching_ctl);
638 		return 0;
639 	}
640 
641 	down_write(&fs_info->commit_root_sem);
642 	atomic_inc(&caching_ctl->count);
643 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
644 	up_write(&fs_info->commit_root_sem);
645 
646 	btrfs_get_block_group(cache);
647 
648 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
649 
650 	return ret;
651 }
652 
653 /*
654  * return the block group that starts at or after bytenr
655  */
656 static struct btrfs_block_group_cache *
657 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
658 {
659 	struct btrfs_block_group_cache *cache;
660 
661 	cache = block_group_cache_tree_search(info, bytenr, 0);
662 
663 	return cache;
664 }
665 
666 /*
667  * return the block group that contains the given bytenr
668  */
669 struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 						 struct btrfs_fs_info *info,
671 						 u64 bytenr)
672 {
673 	struct btrfs_block_group_cache *cache;
674 
675 	cache = block_group_cache_tree_search(info, bytenr, 1);
676 
677 	return cache;
678 }
679 
680 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 						  u64 flags)
682 {
683 	struct list_head *head = &info->space_info;
684 	struct btrfs_space_info *found;
685 
686 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
687 
688 	rcu_read_lock();
689 	list_for_each_entry_rcu(found, head, list) {
690 		if (found->flags & flags) {
691 			rcu_read_unlock();
692 			return found;
693 		}
694 	}
695 	rcu_read_unlock();
696 	return NULL;
697 }
698 
699 /*
700  * after adding space to the filesystem, we need to clear the full flags
701  * on all the space infos.
702  */
703 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704 {
705 	struct list_head *head = &info->space_info;
706 	struct btrfs_space_info *found;
707 
708 	rcu_read_lock();
709 	list_for_each_entry_rcu(found, head, list)
710 		found->full = 0;
711 	rcu_read_unlock();
712 }
713 
714 /* simple helper to search for an existing data extent at a given offset */
715 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
716 {
717 	int ret;
718 	struct btrfs_key key;
719 	struct btrfs_path *path;
720 
721 	path = btrfs_alloc_path();
722 	if (!path)
723 		return -ENOMEM;
724 
725 	key.objectid = start;
726 	key.offset = len;
727 	key.type = BTRFS_EXTENT_ITEM_KEY;
728 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 				0, 0);
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->nodesize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (!trans) {
772 		path->skip_locking = 1;
773 		path->search_commit_root = 1;
774 	}
775 
776 search_again:
777 	key.objectid = bytenr;
778 	key.offset = offset;
779 	if (metadata)
780 		key.type = BTRFS_METADATA_ITEM_KEY;
781 	else
782 		key.type = BTRFS_EXTENT_ITEM_KEY;
783 
784 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 				&key, path, 0, 0);
786 	if (ret < 0)
787 		goto out_free;
788 
789 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
790 		if (path->slots[0]) {
791 			path->slots[0]--;
792 			btrfs_item_key_to_cpu(path->nodes[0], &key,
793 					      path->slots[0]);
794 			if (key.objectid == bytenr &&
795 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
796 			    key.offset == root->nodesize)
797 				ret = 0;
798 		}
799 	}
800 
801 	if (ret == 0) {
802 		leaf = path->nodes[0];
803 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 		if (item_size >= sizeof(*ei)) {
805 			ei = btrfs_item_ptr(leaf, path->slots[0],
806 					    struct btrfs_extent_item);
807 			num_refs = btrfs_extent_refs(leaf, ei);
808 			extent_flags = btrfs_extent_flags(leaf, ei);
809 		} else {
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 			struct btrfs_extent_item_v0 *ei0;
812 			BUG_ON(item_size != sizeof(*ei0));
813 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 					     struct btrfs_extent_item_v0);
815 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 			/* FIXME: this isn't correct for data */
817 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818 #else
819 			BUG();
820 #endif
821 		}
822 		BUG_ON(num_refs == 0);
823 	} else {
824 		num_refs = 0;
825 		extent_flags = 0;
826 		ret = 0;
827 	}
828 
829 	if (!trans)
830 		goto out;
831 
832 	delayed_refs = &trans->transaction->delayed_refs;
833 	spin_lock(&delayed_refs->lock);
834 	head = btrfs_find_delayed_ref_head(trans, bytenr);
835 	if (head) {
836 		if (!mutex_trylock(&head->mutex)) {
837 			atomic_inc(&head->node.refs);
838 			spin_unlock(&delayed_refs->lock);
839 
840 			btrfs_release_path(path);
841 
842 			/*
843 			 * Mutex was contended, block until it's released and try
844 			 * again
845 			 */
846 			mutex_lock(&head->mutex);
847 			mutex_unlock(&head->mutex);
848 			btrfs_put_delayed_ref(&head->node);
849 			goto search_again;
850 		}
851 		spin_lock(&head->lock);
852 		if (head->extent_op && head->extent_op->update_flags)
853 			extent_flags |= head->extent_op->flags_to_set;
854 		else
855 			BUG_ON(num_refs == 0);
856 
857 		num_refs += head->node.ref_mod;
858 		spin_unlock(&head->lock);
859 		mutex_unlock(&head->mutex);
860 	}
861 	spin_unlock(&delayed_refs->lock);
862 out:
863 	WARN_ON(num_refs == 0);
864 	if (refs)
865 		*refs = num_refs;
866 	if (flags)
867 		*flags = extent_flags;
868 out_free:
869 	btrfs_free_path(path);
870 	return ret;
871 }
872 
873 /*
874  * Back reference rules.  Back refs have three main goals:
875  *
876  * 1) differentiate between all holders of references to an extent so that
877  *    when a reference is dropped we can make sure it was a valid reference
878  *    before freeing the extent.
879  *
880  * 2) Provide enough information to quickly find the holders of an extent
881  *    if we notice a given block is corrupted or bad.
882  *
883  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884  *    maintenance.  This is actually the same as #2, but with a slightly
885  *    different use case.
886  *
887  * There are two kinds of back refs. The implicit back refs is optimized
888  * for pointers in non-shared tree blocks. For a given pointer in a block,
889  * back refs of this kind provide information about the block's owner tree
890  * and the pointer's key. These information allow us to find the block by
891  * b-tree searching. The full back refs is for pointers in tree blocks not
892  * referenced by their owner trees. The location of tree block is recorded
893  * in the back refs. Actually the full back refs is generic, and can be
894  * used in all cases the implicit back refs is used. The major shortcoming
895  * of the full back refs is its overhead. Every time a tree block gets
896  * COWed, we have to update back refs entry for all pointers in it.
897  *
898  * For a newly allocated tree block, we use implicit back refs for
899  * pointers in it. This means most tree related operations only involve
900  * implicit back refs. For a tree block created in old transaction, the
901  * only way to drop a reference to it is COW it. So we can detect the
902  * event that tree block loses its owner tree's reference and do the
903  * back refs conversion.
904  *
905  * When a tree block is COW'd through a tree, there are four cases:
906  *
907  * The reference count of the block is one and the tree is the block's
908  * owner tree. Nothing to do in this case.
909  *
910  * The reference count of the block is one and the tree is not the
911  * block's owner tree. In this case, full back refs is used for pointers
912  * in the block. Remove these full back refs, add implicit back refs for
913  * every pointers in the new block.
914  *
915  * The reference count of the block is greater than one and the tree is
916  * the block's owner tree. In this case, implicit back refs is used for
917  * pointers in the block. Add full back refs for every pointers in the
918  * block, increase lower level extents' reference counts. The original
919  * implicit back refs are entailed to the new block.
920  *
921  * The reference count of the block is greater than one and the tree is
922  * not the block's owner tree. Add implicit back refs for every pointer in
923  * the new block, increase lower level extents' reference count.
924  *
925  * Back Reference Key composing:
926  *
927  * The key objectid corresponds to the first byte in the extent,
928  * The key type is used to differentiate between types of back refs.
929  * There are different meanings of the key offset for different types
930  * of back refs.
931  *
932  * File extents can be referenced by:
933  *
934  * - multiple snapshots, subvolumes, or different generations in one subvol
935  * - different files inside a single subvolume
936  * - different offsets inside a file (bookend extents in file.c)
937  *
938  * The extent ref structure for the implicit back refs has fields for:
939  *
940  * - Objectid of the subvolume root
941  * - objectid of the file holding the reference
942  * - original offset in the file
943  * - how many bookend extents
944  *
945  * The key offset for the implicit back refs is hash of the first
946  * three fields.
947  *
948  * The extent ref structure for the full back refs has field for:
949  *
950  * - number of pointers in the tree leaf
951  *
952  * The key offset for the implicit back refs is the first byte of
953  * the tree leaf
954  *
955  * When a file extent is allocated, The implicit back refs is used.
956  * the fields are filled in:
957  *
958  *     (root_key.objectid, inode objectid, offset in file, 1)
959  *
960  * When a file extent is removed file truncation, we find the
961  * corresponding implicit back refs and check the following fields:
962  *
963  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
964  *
965  * Btree extents can be referenced by:
966  *
967  * - Different subvolumes
968  *
969  * Both the implicit back refs and the full back refs for tree blocks
970  * only consist of key. The key offset for the implicit back refs is
971  * objectid of block's owner tree. The key offset for the full back refs
972  * is the first byte of parent block.
973  *
974  * When implicit back refs is used, information about the lowest key and
975  * level of the tree block are required. These information are stored in
976  * tree block info structure.
977  */
978 
979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 				  struct btrfs_root *root,
982 				  struct btrfs_path *path,
983 				  u64 owner, u32 extra_size)
984 {
985 	struct btrfs_extent_item *item;
986 	struct btrfs_extent_item_v0 *ei0;
987 	struct btrfs_extent_ref_v0 *ref0;
988 	struct btrfs_tree_block_info *bi;
989 	struct extent_buffer *leaf;
990 	struct btrfs_key key;
991 	struct btrfs_key found_key;
992 	u32 new_size = sizeof(*item);
993 	u64 refs;
994 	int ret;
995 
996 	leaf = path->nodes[0];
997 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998 
999 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 			     struct btrfs_extent_item_v0);
1002 	refs = btrfs_extent_refs_v0(leaf, ei0);
1003 
1004 	if (owner == (u64)-1) {
1005 		while (1) {
1006 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 				ret = btrfs_next_leaf(root, path);
1008 				if (ret < 0)
1009 					return ret;
1010 				BUG_ON(ret > 0); /* Corruption */
1011 				leaf = path->nodes[0];
1012 			}
1013 			btrfs_item_key_to_cpu(leaf, &found_key,
1014 					      path->slots[0]);
1015 			BUG_ON(key.objectid != found_key.objectid);
1016 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 				path->slots[0]++;
1018 				continue;
1019 			}
1020 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 					      struct btrfs_extent_ref_v0);
1022 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 			break;
1024 		}
1025 	}
1026 	btrfs_release_path(path);
1027 
1028 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 		new_size += sizeof(*bi);
1030 
1031 	new_size -= sizeof(*ei0);
1032 	ret = btrfs_search_slot(trans, root, &key, path,
1033 				new_size + extra_size, 1);
1034 	if (ret < 0)
1035 		return ret;
1036 	BUG_ON(ret); /* Corruption */
1037 
1038 	btrfs_extend_item(root, path, new_size);
1039 
1040 	leaf = path->nodes[0];
1041 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 	btrfs_set_extent_refs(leaf, item, refs);
1043 	/* FIXME: get real generation */
1044 	btrfs_set_extent_generation(leaf, item, 0);
1045 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 		btrfs_set_extent_flags(leaf, item,
1047 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 		bi = (struct btrfs_tree_block_info *)(item + 1);
1050 		/* FIXME: get first key of the block */
1051 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 	} else {
1054 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 	}
1056 	btrfs_mark_buffer_dirty(leaf);
1057 	return 0;
1058 }
1059 #endif
1060 
1061 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	u32 high_crc = ~(u32)0;
1064 	u32 low_crc = ~(u32)0;
1065 	__le64 lenum;
1066 
1067 	lenum = cpu_to_le64(root_objectid);
1068 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1069 	lenum = cpu_to_le64(owner);
1070 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1071 	lenum = cpu_to_le64(offset);
1072 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1073 
1074 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1075 }
1076 
1077 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 				     struct btrfs_extent_data_ref *ref)
1079 {
1080 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 				    btrfs_extent_data_ref_objectid(leaf, ref),
1082 				    btrfs_extent_data_ref_offset(leaf, ref));
1083 }
1084 
1085 static int match_extent_data_ref(struct extent_buffer *leaf,
1086 				 struct btrfs_extent_data_ref *ref,
1087 				 u64 root_objectid, u64 owner, u64 offset)
1088 {
1089 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 		return 0;
1093 	return 1;
1094 }
1095 
1096 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 					   struct btrfs_root *root,
1098 					   struct btrfs_path *path,
1099 					   u64 bytenr, u64 parent,
1100 					   u64 root_objectid,
1101 					   u64 owner, u64 offset)
1102 {
1103 	struct btrfs_key key;
1104 	struct btrfs_extent_data_ref *ref;
1105 	struct extent_buffer *leaf;
1106 	u32 nritems;
1107 	int ret;
1108 	int recow;
1109 	int err = -ENOENT;
1110 
1111 	key.objectid = bytenr;
1112 	if (parent) {
1113 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 		key.offset = parent;
1115 	} else {
1116 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 		key.offset = hash_extent_data_ref(root_objectid,
1118 						  owner, offset);
1119 	}
1120 again:
1121 	recow = 0;
1122 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 	if (ret < 0) {
1124 		err = ret;
1125 		goto fail;
1126 	}
1127 
1128 	if (parent) {
1129 		if (!ret)
1130 			return 0;
1131 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1133 		btrfs_release_path(path);
1134 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 		if (ret < 0) {
1136 			err = ret;
1137 			goto fail;
1138 		}
1139 		if (!ret)
1140 			return 0;
1141 #endif
1142 		goto fail;
1143 	}
1144 
1145 	leaf = path->nodes[0];
1146 	nritems = btrfs_header_nritems(leaf);
1147 	while (1) {
1148 		if (path->slots[0] >= nritems) {
1149 			ret = btrfs_next_leaf(root, path);
1150 			if (ret < 0)
1151 				err = ret;
1152 			if (ret)
1153 				goto fail;
1154 
1155 			leaf = path->nodes[0];
1156 			nritems = btrfs_header_nritems(leaf);
1157 			recow = 1;
1158 		}
1159 
1160 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 		if (key.objectid != bytenr ||
1162 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 			goto fail;
1164 
1165 		ref = btrfs_item_ptr(leaf, path->slots[0],
1166 				     struct btrfs_extent_data_ref);
1167 
1168 		if (match_extent_data_ref(leaf, ref, root_objectid,
1169 					  owner, offset)) {
1170 			if (recow) {
1171 				btrfs_release_path(path);
1172 				goto again;
1173 			}
1174 			err = 0;
1175 			break;
1176 		}
1177 		path->slots[0]++;
1178 	}
1179 fail:
1180 	return err;
1181 }
1182 
1183 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 					   struct btrfs_root *root,
1185 					   struct btrfs_path *path,
1186 					   u64 bytenr, u64 parent,
1187 					   u64 root_objectid, u64 owner,
1188 					   u64 offset, int refs_to_add)
1189 {
1190 	struct btrfs_key key;
1191 	struct extent_buffer *leaf;
1192 	u32 size;
1193 	u32 num_refs;
1194 	int ret;
1195 
1196 	key.objectid = bytenr;
1197 	if (parent) {
1198 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 		key.offset = parent;
1200 		size = sizeof(struct btrfs_shared_data_ref);
1201 	} else {
1202 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 		key.offset = hash_extent_data_ref(root_objectid,
1204 						  owner, offset);
1205 		size = sizeof(struct btrfs_extent_data_ref);
1206 	}
1207 
1208 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 	if (ret && ret != -EEXIST)
1210 		goto fail;
1211 
1212 	leaf = path->nodes[0];
1213 	if (parent) {
1214 		struct btrfs_shared_data_ref *ref;
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_shared_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 		} else {
1220 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 			num_refs += refs_to_add;
1222 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1223 		}
1224 	} else {
1225 		struct btrfs_extent_data_ref *ref;
1226 		while (ret == -EEXIST) {
1227 			ref = btrfs_item_ptr(leaf, path->slots[0],
1228 					     struct btrfs_extent_data_ref);
1229 			if (match_extent_data_ref(leaf, ref, root_objectid,
1230 						  owner, offset))
1231 				break;
1232 			btrfs_release_path(path);
1233 			key.offset++;
1234 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 						      size);
1236 			if (ret && ret != -EEXIST)
1237 				goto fail;
1238 
1239 			leaf = path->nodes[0];
1240 		}
1241 		ref = btrfs_item_ptr(leaf, path->slots[0],
1242 				     struct btrfs_extent_data_ref);
1243 		if (ret == 0) {
1244 			btrfs_set_extent_data_ref_root(leaf, ref,
1245 						       root_objectid);
1246 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 		} else {
1250 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 			num_refs += refs_to_add;
1252 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1253 		}
1254 	}
1255 	btrfs_mark_buffer_dirty(leaf);
1256 	ret = 0;
1257 fail:
1258 	btrfs_release_path(path);
1259 	return ret;
1260 }
1261 
1262 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 					   struct btrfs_root *root,
1264 					   struct btrfs_path *path,
1265 					   int refs_to_drop, int *last_ref)
1266 {
1267 	struct btrfs_key key;
1268 	struct btrfs_extent_data_ref *ref1 = NULL;
1269 	struct btrfs_shared_data_ref *ref2 = NULL;
1270 	struct extent_buffer *leaf;
1271 	u32 num_refs = 0;
1272 	int ret = 0;
1273 
1274 	leaf = path->nodes[0];
1275 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276 
1277 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 				      struct btrfs_extent_data_ref);
1280 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 				      struct btrfs_shared_data_ref);
1284 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 		struct btrfs_extent_ref_v0 *ref0;
1288 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 				      struct btrfs_extent_ref_v0);
1290 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1291 #endif
1292 	} else {
1293 		BUG();
1294 	}
1295 
1296 	BUG_ON(num_refs < refs_to_drop);
1297 	num_refs -= refs_to_drop;
1298 
1299 	if (num_refs == 0) {
1300 		ret = btrfs_del_item(trans, root, path);
1301 		*last_ref = 1;
1302 	} else {
1303 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 		else {
1309 			struct btrfs_extent_ref_v0 *ref0;
1310 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 					struct btrfs_extent_ref_v0);
1312 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 		}
1314 #endif
1315 		btrfs_mark_buffer_dirty(leaf);
1316 	}
1317 	return ret;
1318 }
1319 
1320 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 					  struct btrfs_path *path,
1322 					  struct btrfs_extent_inline_ref *iref)
1323 {
1324 	struct btrfs_key key;
1325 	struct extent_buffer *leaf;
1326 	struct btrfs_extent_data_ref *ref1;
1327 	struct btrfs_shared_data_ref *ref2;
1328 	u32 num_refs = 0;
1329 
1330 	leaf = path->nodes[0];
1331 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 	if (iref) {
1333 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 		    BTRFS_EXTENT_DATA_REF_KEY) {
1335 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 		} else {
1338 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 		}
1341 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_extent_data_ref);
1344 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 				      struct btrfs_shared_data_ref);
1348 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 		struct btrfs_extent_ref_v0 *ref0;
1352 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 				      struct btrfs_extent_ref_v0);
1354 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1355 #endif
1356 	} else {
1357 		WARN_ON(1);
1358 	}
1359 	return num_refs;
1360 }
1361 
1362 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 					  struct btrfs_root *root,
1364 					  struct btrfs_path *path,
1365 					  u64 bytenr, u64 parent,
1366 					  u64 root_objectid)
1367 {
1368 	struct btrfs_key key;
1369 	int ret;
1370 
1371 	key.objectid = bytenr;
1372 	if (parent) {
1373 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 		key.offset = parent;
1375 	} else {
1376 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 		key.offset = root_objectid;
1378 	}
1379 
1380 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 	if (ret > 0)
1382 		ret = -ENOENT;
1383 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 	if (ret == -ENOENT && parent) {
1385 		btrfs_release_path(path);
1386 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 		if (ret > 0)
1389 			ret = -ENOENT;
1390 	}
1391 #endif
1392 	return ret;
1393 }
1394 
1395 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 					  struct btrfs_root *root,
1397 					  struct btrfs_path *path,
1398 					  u64 bytenr, u64 parent,
1399 					  u64 root_objectid)
1400 {
1401 	struct btrfs_key key;
1402 	int ret;
1403 
1404 	key.objectid = bytenr;
1405 	if (parent) {
1406 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 		key.offset = parent;
1408 	} else {
1409 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 		key.offset = root_objectid;
1411 	}
1412 
1413 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1414 	btrfs_release_path(path);
1415 	return ret;
1416 }
1417 
1418 static inline int extent_ref_type(u64 parent, u64 owner)
1419 {
1420 	int type;
1421 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 		if (parent > 0)
1423 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 		else
1425 			type = BTRFS_TREE_BLOCK_REF_KEY;
1426 	} else {
1427 		if (parent > 0)
1428 			type = BTRFS_SHARED_DATA_REF_KEY;
1429 		else
1430 			type = BTRFS_EXTENT_DATA_REF_KEY;
1431 	}
1432 	return type;
1433 }
1434 
1435 static int find_next_key(struct btrfs_path *path, int level,
1436 			 struct btrfs_key *key)
1437 
1438 {
1439 	for (; level < BTRFS_MAX_LEVEL; level++) {
1440 		if (!path->nodes[level])
1441 			break;
1442 		if (path->slots[level] + 1 >=
1443 		    btrfs_header_nritems(path->nodes[level]))
1444 			continue;
1445 		if (level == 0)
1446 			btrfs_item_key_to_cpu(path->nodes[level], key,
1447 					      path->slots[level] + 1);
1448 		else
1449 			btrfs_node_key_to_cpu(path->nodes[level], key,
1450 					      path->slots[level] + 1);
1451 		return 0;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * look for inline back ref. if back ref is found, *ref_ret is set
1458  * to the address of inline back ref, and 0 is returned.
1459  *
1460  * if back ref isn't found, *ref_ret is set to the address where it
1461  * should be inserted, and -ENOENT is returned.
1462  *
1463  * if insert is true and there are too many inline back refs, the path
1464  * points to the extent item, and -EAGAIN is returned.
1465  *
1466  * NOTE: inline back refs are ordered in the same way that back ref
1467  *	 items in the tree are ordered.
1468  */
1469 static noinline_for_stack
1470 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 				 struct btrfs_root *root,
1472 				 struct btrfs_path *path,
1473 				 struct btrfs_extent_inline_ref **ref_ret,
1474 				 u64 bytenr, u64 num_bytes,
1475 				 u64 parent, u64 root_objectid,
1476 				 u64 owner, u64 offset, int insert)
1477 {
1478 	struct btrfs_key key;
1479 	struct extent_buffer *leaf;
1480 	struct btrfs_extent_item *ei;
1481 	struct btrfs_extent_inline_ref *iref;
1482 	u64 flags;
1483 	u64 item_size;
1484 	unsigned long ptr;
1485 	unsigned long end;
1486 	int extra_size;
1487 	int type;
1488 	int want;
1489 	int ret;
1490 	int err = 0;
1491 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 						 SKINNY_METADATA);
1493 
1494 	key.objectid = bytenr;
1495 	key.type = BTRFS_EXTENT_ITEM_KEY;
1496 	key.offset = num_bytes;
1497 
1498 	want = extent_ref_type(parent, owner);
1499 	if (insert) {
1500 		extra_size = btrfs_extent_inline_ref_size(want);
1501 		path->keep_locks = 1;
1502 	} else
1503 		extra_size = -1;
1504 
1505 	/*
1506 	 * Owner is our parent level, so we can just add one to get the level
1507 	 * for the block we are interested in.
1508 	 */
1509 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 		key.type = BTRFS_METADATA_ITEM_KEY;
1511 		key.offset = owner;
1512 	}
1513 
1514 again:
1515 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1516 	if (ret < 0) {
1517 		err = ret;
1518 		goto out;
1519 	}
1520 
1521 	/*
1522 	 * We may be a newly converted file system which still has the old fat
1523 	 * extent entries for metadata, so try and see if we have one of those.
1524 	 */
1525 	if (ret > 0 && skinny_metadata) {
1526 		skinny_metadata = false;
1527 		if (path->slots[0]) {
1528 			path->slots[0]--;
1529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 					      path->slots[0]);
1531 			if (key.objectid == bytenr &&
1532 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 			    key.offset == num_bytes)
1534 				ret = 0;
1535 		}
1536 		if (ret) {
1537 			key.objectid = bytenr;
1538 			key.type = BTRFS_EXTENT_ITEM_KEY;
1539 			key.offset = num_bytes;
1540 			btrfs_release_path(path);
1541 			goto again;
1542 		}
1543 	}
1544 
1545 	if (ret && !insert) {
1546 		err = -ENOENT;
1547 		goto out;
1548 	} else if (WARN_ON(ret)) {
1549 		err = -EIO;
1550 		goto out;
1551 	}
1552 
1553 	leaf = path->nodes[0];
1554 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 	if (item_size < sizeof(*ei)) {
1557 		if (!insert) {
1558 			err = -ENOENT;
1559 			goto out;
1560 		}
1561 		ret = convert_extent_item_v0(trans, root, path, owner,
1562 					     extra_size);
1563 		if (ret < 0) {
1564 			err = ret;
1565 			goto out;
1566 		}
1567 		leaf = path->nodes[0];
1568 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 	}
1570 #endif
1571 	BUG_ON(item_size < sizeof(*ei));
1572 
1573 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 	flags = btrfs_extent_flags(leaf, ei);
1575 
1576 	ptr = (unsigned long)(ei + 1);
1577 	end = (unsigned long)ei + item_size;
1578 
1579 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1580 		ptr += sizeof(struct btrfs_tree_block_info);
1581 		BUG_ON(ptr > end);
1582 	}
1583 
1584 	err = -ENOENT;
1585 	while (1) {
1586 		if (ptr >= end) {
1587 			WARN_ON(ptr > end);
1588 			break;
1589 		}
1590 		iref = (struct btrfs_extent_inline_ref *)ptr;
1591 		type = btrfs_extent_inline_ref_type(leaf, iref);
1592 		if (want < type)
1593 			break;
1594 		if (want > type) {
1595 			ptr += btrfs_extent_inline_ref_size(type);
1596 			continue;
1597 		}
1598 
1599 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 			struct btrfs_extent_data_ref *dref;
1601 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 			if (match_extent_data_ref(leaf, dref, root_objectid,
1603 						  owner, offset)) {
1604 				err = 0;
1605 				break;
1606 			}
1607 			if (hash_extent_data_ref_item(leaf, dref) <
1608 			    hash_extent_data_ref(root_objectid, owner, offset))
1609 				break;
1610 		} else {
1611 			u64 ref_offset;
1612 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 			if (parent > 0) {
1614 				if (parent == ref_offset) {
1615 					err = 0;
1616 					break;
1617 				}
1618 				if (ref_offset < parent)
1619 					break;
1620 			} else {
1621 				if (root_objectid == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < root_objectid)
1626 					break;
1627 			}
1628 		}
1629 		ptr += btrfs_extent_inline_ref_size(type);
1630 	}
1631 	if (err == -ENOENT && insert) {
1632 		if (item_size + extra_size >=
1633 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 			err = -EAGAIN;
1635 			goto out;
1636 		}
1637 		/*
1638 		 * To add new inline back ref, we have to make sure
1639 		 * there is no corresponding back ref item.
1640 		 * For simplicity, we just do not add new inline back
1641 		 * ref if there is any kind of item for this block
1642 		 */
1643 		if (find_next_key(path, 0, &key) == 0 &&
1644 		    key.objectid == bytenr &&
1645 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1646 			err = -EAGAIN;
1647 			goto out;
1648 		}
1649 	}
1650 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651 out:
1652 	if (insert) {
1653 		path->keep_locks = 0;
1654 		btrfs_unlock_up_safe(path, 1);
1655 	}
1656 	return err;
1657 }
1658 
1659 /*
1660  * helper to add new inline back ref
1661  */
1662 static noinline_for_stack
1663 void setup_inline_extent_backref(struct btrfs_root *root,
1664 				 struct btrfs_path *path,
1665 				 struct btrfs_extent_inline_ref *iref,
1666 				 u64 parent, u64 root_objectid,
1667 				 u64 owner, u64 offset, int refs_to_add,
1668 				 struct btrfs_delayed_extent_op *extent_op)
1669 {
1670 	struct extent_buffer *leaf;
1671 	struct btrfs_extent_item *ei;
1672 	unsigned long ptr;
1673 	unsigned long end;
1674 	unsigned long item_offset;
1675 	u64 refs;
1676 	int size;
1677 	int type;
1678 
1679 	leaf = path->nodes[0];
1680 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 	item_offset = (unsigned long)iref - (unsigned long)ei;
1682 
1683 	type = extent_ref_type(parent, owner);
1684 	size = btrfs_extent_inline_ref_size(type);
1685 
1686 	btrfs_extend_item(root, path, size);
1687 
1688 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 	refs = btrfs_extent_refs(leaf, ei);
1690 	refs += refs_to_add;
1691 	btrfs_set_extent_refs(leaf, ei, refs);
1692 	if (extent_op)
1693 		__run_delayed_extent_op(extent_op, leaf, ei);
1694 
1695 	ptr = (unsigned long)ei + item_offset;
1696 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 	if (ptr < end - size)
1698 		memmove_extent_buffer(leaf, ptr + size, ptr,
1699 				      end - size - ptr);
1700 
1701 	iref = (struct btrfs_extent_inline_ref *)ptr;
1702 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 		struct btrfs_extent_data_ref *dref;
1705 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 		struct btrfs_shared_data_ref *sref;
1712 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 	} else {
1718 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 	}
1720 	btrfs_mark_buffer_dirty(leaf);
1721 }
1722 
1723 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 				 struct btrfs_root *root,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref **ref_ret,
1727 				 u64 bytenr, u64 num_bytes, u64 parent,
1728 				 u64 root_objectid, u64 owner, u64 offset)
1729 {
1730 	int ret;
1731 
1732 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 					   bytenr, num_bytes, parent,
1734 					   root_objectid, owner, offset, 0);
1735 	if (ret != -ENOENT)
1736 		return ret;
1737 
1738 	btrfs_release_path(path);
1739 	*ref_ret = NULL;
1740 
1741 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 					    root_objectid);
1744 	} else {
1745 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 					     root_objectid, owner, offset);
1747 	}
1748 	return ret;
1749 }
1750 
1751 /*
1752  * helper to update/remove inline back ref
1753  */
1754 static noinline_for_stack
1755 void update_inline_extent_backref(struct btrfs_root *root,
1756 				  struct btrfs_path *path,
1757 				  struct btrfs_extent_inline_ref *iref,
1758 				  int refs_to_mod,
1759 				  struct btrfs_delayed_extent_op *extent_op,
1760 				  int *last_ref)
1761 {
1762 	struct extent_buffer *leaf;
1763 	struct btrfs_extent_item *ei;
1764 	struct btrfs_extent_data_ref *dref = NULL;
1765 	struct btrfs_shared_data_ref *sref = NULL;
1766 	unsigned long ptr;
1767 	unsigned long end;
1768 	u32 item_size;
1769 	int size;
1770 	int type;
1771 	u64 refs;
1772 
1773 	leaf = path->nodes[0];
1774 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 	refs = btrfs_extent_refs(leaf, ei);
1776 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 	refs += refs_to_mod;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	type = btrfs_extent_inline_ref_type(leaf, iref);
1783 
1784 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 		refs = btrfs_extent_data_ref_count(leaf, dref);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 		refs = btrfs_shared_data_ref_count(leaf, sref);
1790 	} else {
1791 		refs = 1;
1792 		BUG_ON(refs_to_mod != -1);
1793 	}
1794 
1795 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 	refs += refs_to_mod;
1797 
1798 	if (refs > 0) {
1799 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 		else
1802 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 	} else {
1804 		*last_ref = 1;
1805 		size =  btrfs_extent_inline_ref_size(type);
1806 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 		ptr = (unsigned long)iref;
1808 		end = (unsigned long)ei + item_size;
1809 		if (ptr + size < end)
1810 			memmove_extent_buffer(leaf, ptr, ptr + size,
1811 					      end - ptr - size);
1812 		item_size -= size;
1813 		btrfs_truncate_item(root, path, item_size, 1);
1814 	}
1815 	btrfs_mark_buffer_dirty(leaf);
1816 }
1817 
1818 static noinline_for_stack
1819 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 				 struct btrfs_root *root,
1821 				 struct btrfs_path *path,
1822 				 u64 bytenr, u64 num_bytes, u64 parent,
1823 				 u64 root_objectid, u64 owner,
1824 				 u64 offset, int refs_to_add,
1825 				 struct btrfs_delayed_extent_op *extent_op)
1826 {
1827 	struct btrfs_extent_inline_ref *iref;
1828 	int ret;
1829 
1830 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 					   bytenr, num_bytes, parent,
1832 					   root_objectid, owner, offset, 1);
1833 	if (ret == 0) {
1834 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1835 		update_inline_extent_backref(root, path, iref,
1836 					     refs_to_add, extent_op, NULL);
1837 	} else if (ret == -ENOENT) {
1838 		setup_inline_extent_backref(root, path, iref, parent,
1839 					    root_objectid, owner, offset,
1840 					    refs_to_add, extent_op);
1841 		ret = 0;
1842 	}
1843 	return ret;
1844 }
1845 
1846 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 				 struct btrfs_root *root,
1848 				 struct btrfs_path *path,
1849 				 u64 bytenr, u64 parent, u64 root_objectid,
1850 				 u64 owner, u64 offset, int refs_to_add)
1851 {
1852 	int ret;
1853 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 		BUG_ON(refs_to_add != 1);
1855 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 					    parent, root_objectid);
1857 	} else {
1858 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 					     parent, root_objectid,
1860 					     owner, offset, refs_to_add);
1861 	}
1862 	return ret;
1863 }
1864 
1865 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 				 struct btrfs_root *root,
1867 				 struct btrfs_path *path,
1868 				 struct btrfs_extent_inline_ref *iref,
1869 				 int refs_to_drop, int is_data, int *last_ref)
1870 {
1871 	int ret = 0;
1872 
1873 	BUG_ON(!is_data && refs_to_drop != 1);
1874 	if (iref) {
1875 		update_inline_extent_backref(root, path, iref,
1876 					     -refs_to_drop, NULL, last_ref);
1877 	} else if (is_data) {
1878 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 					     last_ref);
1880 	} else {
1881 		*last_ref = 1;
1882 		ret = btrfs_del_item(trans, root, path);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int btrfs_issue_discard(struct block_device *bdev,
1888 				u64 start, u64 len)
1889 {
1890 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1891 }
1892 
1893 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 			 u64 num_bytes, u64 *actual_bytes)
1895 {
1896 	int ret;
1897 	u64 discarded_bytes = 0;
1898 	struct btrfs_bio *bbio = NULL;
1899 
1900 
1901 	/* Tell the block device(s) that the sectors can be discarded */
1902 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1903 			      bytenr, &num_bytes, &bbio, 0);
1904 	/* Error condition is -ENOMEM */
1905 	if (!ret) {
1906 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1907 		int i;
1908 
1909 
1910 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1911 			if (!stripe->dev->can_discard)
1912 				continue;
1913 
1914 			ret = btrfs_issue_discard(stripe->dev->bdev,
1915 						  stripe->physical,
1916 						  stripe->length);
1917 			if (!ret)
1918 				discarded_bytes += stripe->length;
1919 			else if (ret != -EOPNOTSUPP)
1920 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1921 
1922 			/*
1923 			 * Just in case we get back EOPNOTSUPP for some reason,
1924 			 * just ignore the return value so we don't screw up
1925 			 * people calling discard_extent.
1926 			 */
1927 			ret = 0;
1928 		}
1929 		btrfs_put_bbio(bbio);
1930 	}
1931 
1932 	if (actual_bytes)
1933 		*actual_bytes = discarded_bytes;
1934 
1935 
1936 	if (ret == -EOPNOTSUPP)
1937 		ret = 0;
1938 	return ret;
1939 }
1940 
1941 /* Can return -ENOMEM */
1942 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 			 struct btrfs_root *root,
1944 			 u64 bytenr, u64 num_bytes, u64 parent,
1945 			 u64 root_objectid, u64 owner, u64 offset,
1946 			 int no_quota)
1947 {
1948 	int ret;
1949 	struct btrfs_fs_info *fs_info = root->fs_info;
1950 
1951 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953 
1954 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 					num_bytes,
1957 					parent, root_objectid, (int)owner,
1958 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1959 	} else {
1960 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 					num_bytes,
1962 					parent, root_objectid, owner, offset,
1963 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 				  struct btrfs_root *root,
1970 				  u64 bytenr, u64 num_bytes,
1971 				  u64 parent, u64 root_objectid,
1972 				  u64 owner, u64 offset, int refs_to_add,
1973 				  int no_quota,
1974 				  struct btrfs_delayed_extent_op *extent_op)
1975 {
1976 	struct btrfs_fs_info *fs_info = root->fs_info;
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	struct btrfs_key key;
1981 	u64 refs;
1982 	int ret;
1983 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2000 		goto out;
2001 	/*
2002 	 * Ok we were able to insert an inline extent and it appears to be a new
2003 	 * reference, deal with the qgroup accounting.
2004 	 */
2005 	if (!ret && !no_quota) {
2006 		ASSERT(root->fs_info->quota_enabled);
2007 		leaf = path->nodes[0];
2008 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 		item = btrfs_item_ptr(leaf, path->slots[0],
2010 				      struct btrfs_extent_item);
2011 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 		btrfs_release_path(path);
2014 
2015 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 					      bytenr, num_bytes, type, 0);
2017 		goto out;
2018 	}
2019 
2020 	/*
2021 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 	 * inline extent ref, so just update the reference count and add a
2023 	 * normal backref.
2024 	 */
2025 	leaf = path->nodes[0];
2026 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2027 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 	refs = btrfs_extent_refs(leaf, item);
2029 	if (refs)
2030 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2031 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 	if (extent_op)
2033 		__run_delayed_extent_op(extent_op, leaf, item);
2034 
2035 	btrfs_mark_buffer_dirty(leaf);
2036 	btrfs_release_path(path);
2037 
2038 	if (!no_quota) {
2039 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 					      bytenr, num_bytes, type, 0);
2041 		if (ret)
2042 			goto out;
2043 	}
2044 
2045 	path->reada = 1;
2046 	path->leave_spinning = 1;
2047 	/* now insert the actual backref */
2048 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2049 				    path, bytenr, parent, root_objectid,
2050 				    owner, offset, refs_to_add);
2051 	if (ret)
2052 		btrfs_abort_transaction(trans, root, ret);
2053 out:
2054 	btrfs_free_path(path);
2055 	return ret;
2056 }
2057 
2058 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 				struct btrfs_root *root,
2060 				struct btrfs_delayed_ref_node *node,
2061 				struct btrfs_delayed_extent_op *extent_op,
2062 				int insert_reserved)
2063 {
2064 	int ret = 0;
2065 	struct btrfs_delayed_data_ref *ref;
2066 	struct btrfs_key ins;
2067 	u64 parent = 0;
2068 	u64 ref_root = 0;
2069 	u64 flags = 0;
2070 
2071 	ins.objectid = node->bytenr;
2072 	ins.offset = node->num_bytes;
2073 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2074 
2075 	ref = btrfs_delayed_node_to_data_ref(node);
2076 	trace_run_delayed_data_ref(node, ref, node->action);
2077 
2078 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 		parent = ref->parent;
2080 	ref_root = ref->root;
2081 
2082 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2083 		if (extent_op)
2084 			flags |= extent_op->flags_to_set;
2085 		ret = alloc_reserved_file_extent(trans, root,
2086 						 parent, ref_root, flags,
2087 						 ref->objectid, ref->offset,
2088 						 &ins, node->ref_mod);
2089 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 					     node->num_bytes, parent,
2092 					     ref_root, ref->objectid,
2093 					     ref->offset, node->ref_mod,
2094 					     node->no_quota, extent_op);
2095 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 					  node->num_bytes, parent,
2098 					  ref_root, ref->objectid,
2099 					  ref->offset, node->ref_mod,
2100 					  extent_op, node->no_quota);
2101 	} else {
2102 		BUG();
2103 	}
2104 	return ret;
2105 }
2106 
2107 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 				    struct extent_buffer *leaf,
2109 				    struct btrfs_extent_item *ei)
2110 {
2111 	u64 flags = btrfs_extent_flags(leaf, ei);
2112 	if (extent_op->update_flags) {
2113 		flags |= extent_op->flags_to_set;
2114 		btrfs_set_extent_flags(leaf, ei, flags);
2115 	}
2116 
2117 	if (extent_op->update_key) {
2118 		struct btrfs_tree_block_info *bi;
2119 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 	}
2123 }
2124 
2125 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 				 struct btrfs_root *root,
2127 				 struct btrfs_delayed_ref_node *node,
2128 				 struct btrfs_delayed_extent_op *extent_op)
2129 {
2130 	struct btrfs_key key;
2131 	struct btrfs_path *path;
2132 	struct btrfs_extent_item *ei;
2133 	struct extent_buffer *leaf;
2134 	u32 item_size;
2135 	int ret;
2136 	int err = 0;
2137 	int metadata = !extent_op->is_data;
2138 
2139 	if (trans->aborted)
2140 		return 0;
2141 
2142 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 		metadata = 0;
2144 
2145 	path = btrfs_alloc_path();
2146 	if (!path)
2147 		return -ENOMEM;
2148 
2149 	key.objectid = node->bytenr;
2150 
2151 	if (metadata) {
2152 		key.type = BTRFS_METADATA_ITEM_KEY;
2153 		key.offset = extent_op->level;
2154 	} else {
2155 		key.type = BTRFS_EXTENT_ITEM_KEY;
2156 		key.offset = node->num_bytes;
2157 	}
2158 
2159 again:
2160 	path->reada = 1;
2161 	path->leave_spinning = 1;
2162 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 				path, 0, 1);
2164 	if (ret < 0) {
2165 		err = ret;
2166 		goto out;
2167 	}
2168 	if (ret > 0) {
2169 		if (metadata) {
2170 			if (path->slots[0] > 0) {
2171 				path->slots[0]--;
2172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 						      path->slots[0]);
2174 				if (key.objectid == node->bytenr &&
2175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 				    key.offset == node->num_bytes)
2177 					ret = 0;
2178 			}
2179 			if (ret > 0) {
2180 				btrfs_release_path(path);
2181 				metadata = 0;
2182 
2183 				key.objectid = node->bytenr;
2184 				key.offset = node->num_bytes;
2185 				key.type = BTRFS_EXTENT_ITEM_KEY;
2186 				goto again;
2187 			}
2188 		} else {
2189 			err = -EIO;
2190 			goto out;
2191 		}
2192 	}
2193 
2194 	leaf = path->nodes[0];
2195 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 	if (item_size < sizeof(*ei)) {
2198 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 					     path, (u64)-1, 0);
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 		leaf = path->nodes[0];
2205 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 	}
2207 #endif
2208 	BUG_ON(item_size < sizeof(*ei));
2209 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 	__run_delayed_extent_op(extent_op, leaf, ei);
2211 
2212 	btrfs_mark_buffer_dirty(leaf);
2213 out:
2214 	btrfs_free_path(path);
2215 	return err;
2216 }
2217 
2218 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 				struct btrfs_root *root,
2220 				struct btrfs_delayed_ref_node *node,
2221 				struct btrfs_delayed_extent_op *extent_op,
2222 				int insert_reserved)
2223 {
2224 	int ret = 0;
2225 	struct btrfs_delayed_tree_ref *ref;
2226 	struct btrfs_key ins;
2227 	u64 parent = 0;
2228 	u64 ref_root = 0;
2229 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 						 SKINNY_METADATA);
2231 
2232 	ref = btrfs_delayed_node_to_tree_ref(node);
2233 	trace_run_delayed_tree_ref(node, ref, node->action);
2234 
2235 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 		parent = ref->parent;
2237 	ref_root = ref->root;
2238 
2239 	ins.objectid = node->bytenr;
2240 	if (skinny_metadata) {
2241 		ins.offset = ref->level;
2242 		ins.type = BTRFS_METADATA_ITEM_KEY;
2243 	} else {
2244 		ins.offset = node->num_bytes;
2245 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 	}
2247 
2248 	BUG_ON(node->ref_mod != 1);
2249 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2250 		BUG_ON(!extent_op || !extent_op->update_flags);
2251 		ret = alloc_reserved_tree_block(trans, root,
2252 						parent, ref_root,
2253 						extent_op->flags_to_set,
2254 						&extent_op->key,
2255 						ref->level, &ins,
2256 						node->no_quota);
2257 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 					     node->num_bytes, parent, ref_root,
2260 					     ref->level, 0, 1, node->no_quota,
2261 					     extent_op);
2262 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 					  node->num_bytes, parent, ref_root,
2265 					  ref->level, 0, 1, extent_op,
2266 					  node->no_quota);
2267 	} else {
2268 		BUG();
2269 	}
2270 	return ret;
2271 }
2272 
2273 /* helper function to actually process a single delayed ref entry */
2274 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 			       struct btrfs_root *root,
2276 			       struct btrfs_delayed_ref_node *node,
2277 			       struct btrfs_delayed_extent_op *extent_op,
2278 			       int insert_reserved)
2279 {
2280 	int ret = 0;
2281 
2282 	if (trans->aborted) {
2283 		if (insert_reserved)
2284 			btrfs_pin_extent(root, node->bytenr,
2285 					 node->num_bytes, 1);
2286 		return 0;
2287 	}
2288 
2289 	if (btrfs_delayed_ref_is_head(node)) {
2290 		struct btrfs_delayed_ref_head *head;
2291 		/*
2292 		 * we've hit the end of the chain and we were supposed
2293 		 * to insert this extent into the tree.  But, it got
2294 		 * deleted before we ever needed to insert it, so all
2295 		 * we have to do is clean up the accounting
2296 		 */
2297 		BUG_ON(extent_op);
2298 		head = btrfs_delayed_node_to_head(node);
2299 		trace_run_delayed_ref_head(node, head, node->action);
2300 
2301 		if (insert_reserved) {
2302 			btrfs_pin_extent(root, node->bytenr,
2303 					 node->num_bytes, 1);
2304 			if (head->is_data) {
2305 				ret = btrfs_del_csums(trans, root,
2306 						      node->bytenr,
2307 						      node->num_bytes);
2308 			}
2309 		}
2310 		return ret;
2311 	}
2312 
2313 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 					   insert_reserved);
2317 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 					   insert_reserved);
2321 	else
2322 		BUG();
2323 	return ret;
2324 }
2325 
2326 static noinline struct btrfs_delayed_ref_node *
2327 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328 {
2329 	struct rb_node *node;
2330 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331 
2332 	/*
2333 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 	 * this prevents ref count from going down to zero when
2335 	 * there still are pending delayed ref.
2336 	 */
2337 	node = rb_first(&head->ref_root);
2338 	while (node) {
2339 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 				rb_node);
2341 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2342 			return ref;
2343 		else if (last == NULL)
2344 			last = ref;
2345 		node = rb_next(node);
2346 	}
2347 	return last;
2348 }
2349 
2350 /*
2351  * Returns 0 on success or if called with an already aborted transaction.
2352  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353  */
2354 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 					     struct btrfs_root *root,
2356 					     unsigned long nr)
2357 {
2358 	struct btrfs_delayed_ref_root *delayed_refs;
2359 	struct btrfs_delayed_ref_node *ref;
2360 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2361 	struct btrfs_delayed_extent_op *extent_op;
2362 	struct btrfs_fs_info *fs_info = root->fs_info;
2363 	ktime_t start = ktime_get();
2364 	int ret;
2365 	unsigned long count = 0;
2366 	unsigned long actual_count = 0;
2367 	int must_insert_reserved = 0;
2368 
2369 	delayed_refs = &trans->transaction->delayed_refs;
2370 	while (1) {
2371 		if (!locked_ref) {
2372 			if (count >= nr)
2373 				break;
2374 
2375 			spin_lock(&delayed_refs->lock);
2376 			locked_ref = btrfs_select_ref_head(trans);
2377 			if (!locked_ref) {
2378 				spin_unlock(&delayed_refs->lock);
2379 				break;
2380 			}
2381 
2382 			/* grab the lock that says we are going to process
2383 			 * all the refs for this head */
2384 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2385 			spin_unlock(&delayed_refs->lock);
2386 			/*
2387 			 * we may have dropped the spin lock to get the head
2388 			 * mutex lock, and that might have given someone else
2389 			 * time to free the head.  If that's true, it has been
2390 			 * removed from our list and we can move on.
2391 			 */
2392 			if (ret == -EAGAIN) {
2393 				locked_ref = NULL;
2394 				count++;
2395 				continue;
2396 			}
2397 		}
2398 
2399 		/*
2400 		 * We need to try and merge add/drops of the same ref since we
2401 		 * can run into issues with relocate dropping the implicit ref
2402 		 * and then it being added back again before the drop can
2403 		 * finish.  If we merged anything we need to re-loop so we can
2404 		 * get a good ref.
2405 		 */
2406 		spin_lock(&locked_ref->lock);
2407 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 					 locked_ref);
2409 
2410 		/*
2411 		 * locked_ref is the head node, so we have to go one
2412 		 * node back for any delayed ref updates
2413 		 */
2414 		ref = select_delayed_ref(locked_ref);
2415 
2416 		if (ref && ref->seq &&
2417 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2418 			spin_unlock(&locked_ref->lock);
2419 			btrfs_delayed_ref_unlock(locked_ref);
2420 			spin_lock(&delayed_refs->lock);
2421 			locked_ref->processing = 0;
2422 			delayed_refs->num_heads_ready++;
2423 			spin_unlock(&delayed_refs->lock);
2424 			locked_ref = NULL;
2425 			cond_resched();
2426 			count++;
2427 			continue;
2428 		}
2429 
2430 		/*
2431 		 * record the must insert reserved flag before we
2432 		 * drop the spin lock.
2433 		 */
2434 		must_insert_reserved = locked_ref->must_insert_reserved;
2435 		locked_ref->must_insert_reserved = 0;
2436 
2437 		extent_op = locked_ref->extent_op;
2438 		locked_ref->extent_op = NULL;
2439 
2440 		if (!ref) {
2441 
2442 
2443 			/* All delayed refs have been processed, Go ahead
2444 			 * and send the head node to run_one_delayed_ref,
2445 			 * so that any accounting fixes can happen
2446 			 */
2447 			ref = &locked_ref->node;
2448 
2449 			if (extent_op && must_insert_reserved) {
2450 				btrfs_free_delayed_extent_op(extent_op);
2451 				extent_op = NULL;
2452 			}
2453 
2454 			if (extent_op) {
2455 				spin_unlock(&locked_ref->lock);
2456 				ret = run_delayed_extent_op(trans, root,
2457 							    ref, extent_op);
2458 				btrfs_free_delayed_extent_op(extent_op);
2459 
2460 				if (ret) {
2461 					/*
2462 					 * Need to reset must_insert_reserved if
2463 					 * there was an error so the abort stuff
2464 					 * can cleanup the reserved space
2465 					 * properly.
2466 					 */
2467 					if (must_insert_reserved)
2468 						locked_ref->must_insert_reserved = 1;
2469 					locked_ref->processing = 0;
2470 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2471 					btrfs_delayed_ref_unlock(locked_ref);
2472 					return ret;
2473 				}
2474 				continue;
2475 			}
2476 
2477 			/*
2478 			 * Need to drop our head ref lock and re-aqcuire the
2479 			 * delayed ref lock and then re-check to make sure
2480 			 * nobody got added.
2481 			 */
2482 			spin_unlock(&locked_ref->lock);
2483 			spin_lock(&delayed_refs->lock);
2484 			spin_lock(&locked_ref->lock);
2485 			if (rb_first(&locked_ref->ref_root) ||
2486 			    locked_ref->extent_op) {
2487 				spin_unlock(&locked_ref->lock);
2488 				spin_unlock(&delayed_refs->lock);
2489 				continue;
2490 			}
2491 			ref->in_tree = 0;
2492 			delayed_refs->num_heads--;
2493 			rb_erase(&locked_ref->href_node,
2494 				 &delayed_refs->href_root);
2495 			spin_unlock(&delayed_refs->lock);
2496 		} else {
2497 			actual_count++;
2498 			ref->in_tree = 0;
2499 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2500 		}
2501 		atomic_dec(&delayed_refs->num_entries);
2502 
2503 		if (!btrfs_delayed_ref_is_head(ref)) {
2504 			/*
2505 			 * when we play the delayed ref, also correct the
2506 			 * ref_mod on head
2507 			 */
2508 			switch (ref->action) {
2509 			case BTRFS_ADD_DELAYED_REF:
2510 			case BTRFS_ADD_DELAYED_EXTENT:
2511 				locked_ref->node.ref_mod -= ref->ref_mod;
2512 				break;
2513 			case BTRFS_DROP_DELAYED_REF:
2514 				locked_ref->node.ref_mod += ref->ref_mod;
2515 				break;
2516 			default:
2517 				WARN_ON(1);
2518 			}
2519 		}
2520 		spin_unlock(&locked_ref->lock);
2521 
2522 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2523 					  must_insert_reserved);
2524 
2525 		btrfs_free_delayed_extent_op(extent_op);
2526 		if (ret) {
2527 			locked_ref->processing = 0;
2528 			btrfs_delayed_ref_unlock(locked_ref);
2529 			btrfs_put_delayed_ref(ref);
2530 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2531 			return ret;
2532 		}
2533 
2534 		/*
2535 		 * If this node is a head, that means all the refs in this head
2536 		 * have been dealt with, and we will pick the next head to deal
2537 		 * with, so we must unlock the head and drop it from the cluster
2538 		 * list before we release it.
2539 		 */
2540 		if (btrfs_delayed_ref_is_head(ref)) {
2541 			if (locked_ref->is_data &&
2542 			    locked_ref->total_ref_mod < 0) {
2543 				spin_lock(&delayed_refs->lock);
2544 				delayed_refs->pending_csums -= ref->num_bytes;
2545 				spin_unlock(&delayed_refs->lock);
2546 			}
2547 			btrfs_delayed_ref_unlock(locked_ref);
2548 			locked_ref = NULL;
2549 		}
2550 		btrfs_put_delayed_ref(ref);
2551 		count++;
2552 		cond_resched();
2553 	}
2554 
2555 	/*
2556 	 * We don't want to include ref heads since we can have empty ref heads
2557 	 * and those will drastically skew our runtime down since we just do
2558 	 * accounting, no actual extent tree updates.
2559 	 */
2560 	if (actual_count > 0) {
2561 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 		u64 avg;
2563 
2564 		/*
2565 		 * We weigh the current average higher than our current runtime
2566 		 * to avoid large swings in the average.
2567 		 */
2568 		spin_lock(&delayed_refs->lock);
2569 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2570 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2571 		spin_unlock(&delayed_refs->lock);
2572 	}
2573 	return 0;
2574 }
2575 
2576 #ifdef SCRAMBLE_DELAYED_REFS
2577 /*
2578  * Normally delayed refs get processed in ascending bytenr order. This
2579  * correlates in most cases to the order added. To expose dependencies on this
2580  * order, we start to process the tree in the middle instead of the beginning
2581  */
2582 static u64 find_middle(struct rb_root *root)
2583 {
2584 	struct rb_node *n = root->rb_node;
2585 	struct btrfs_delayed_ref_node *entry;
2586 	int alt = 1;
2587 	u64 middle;
2588 	u64 first = 0, last = 0;
2589 
2590 	n = rb_first(root);
2591 	if (n) {
2592 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 		first = entry->bytenr;
2594 	}
2595 	n = rb_last(root);
2596 	if (n) {
2597 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 		last = entry->bytenr;
2599 	}
2600 	n = root->rb_node;
2601 
2602 	while (n) {
2603 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 		WARN_ON(!entry->in_tree);
2605 
2606 		middle = entry->bytenr;
2607 
2608 		if (alt)
2609 			n = n->rb_left;
2610 		else
2611 			n = n->rb_right;
2612 
2613 		alt = 1 - alt;
2614 	}
2615 	return middle;
2616 }
2617 #endif
2618 
2619 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620 {
2621 	u64 num_bytes;
2622 
2623 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 			     sizeof(struct btrfs_extent_inline_ref));
2625 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627 
2628 	/*
2629 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 	 * closer to what we're really going to want to ouse.
2631 	 */
2632 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2633 }
2634 
2635 /*
2636  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637  * would require to store the csums for that many bytes.
2638  */
2639 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2640 {
2641 	u64 csum_size;
2642 	u64 num_csums_per_leaf;
2643 	u64 num_csums;
2644 
2645 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 	num_csums_per_leaf = div64_u64(csum_size,
2647 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 	num_csums += num_csums_per_leaf - 1;
2650 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 	return num_csums;
2652 }
2653 
2654 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2655 				       struct btrfs_root *root)
2656 {
2657 	struct btrfs_block_rsv *global_rsv;
2658 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2659 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2660 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 	u64 num_bytes, num_dirty_bgs_bytes;
2662 	int ret = 0;
2663 
2664 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 	num_heads = heads_to_leaves(root, num_heads);
2666 	if (num_heads > 1)
2667 		num_bytes += (num_heads - 1) * root->nodesize;
2668 	num_bytes <<= 1;
2669 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2670 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 							     num_dirty_bgs);
2672 	global_rsv = &root->fs_info->global_block_rsv;
2673 
2674 	/*
2675 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 	 * wiggle room since running delayed refs can create more delayed refs.
2677 	 */
2678 	if (global_rsv->space_info->full) {
2679 		num_dirty_bgs_bytes <<= 1;
2680 		num_bytes <<= 1;
2681 	}
2682 
2683 	spin_lock(&global_rsv->lock);
2684 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2685 		ret = 1;
2686 	spin_unlock(&global_rsv->lock);
2687 	return ret;
2688 }
2689 
2690 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 				       struct btrfs_root *root)
2692 {
2693 	struct btrfs_fs_info *fs_info = root->fs_info;
2694 	u64 num_entries =
2695 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 	u64 avg_runtime;
2697 	u64 val;
2698 
2699 	smp_mb();
2700 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2701 	val = num_entries * avg_runtime;
2702 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 		return 1;
2704 	if (val >= NSEC_PER_SEC / 2)
2705 		return 2;
2706 
2707 	return btrfs_check_space_for_delayed_refs(trans, root);
2708 }
2709 
2710 struct async_delayed_refs {
2711 	struct btrfs_root *root;
2712 	int count;
2713 	int error;
2714 	int sync;
2715 	struct completion wait;
2716 	struct btrfs_work work;
2717 };
2718 
2719 static void delayed_ref_async_start(struct btrfs_work *work)
2720 {
2721 	struct async_delayed_refs *async;
2722 	struct btrfs_trans_handle *trans;
2723 	int ret;
2724 
2725 	async = container_of(work, struct async_delayed_refs, work);
2726 
2727 	trans = btrfs_join_transaction(async->root);
2728 	if (IS_ERR(trans)) {
2729 		async->error = PTR_ERR(trans);
2730 		goto done;
2731 	}
2732 
2733 	/*
2734 	 * trans->sync means that when we call end_transaciton, we won't
2735 	 * wait on delayed refs
2736 	 */
2737 	trans->sync = true;
2738 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 	if (ret)
2740 		async->error = ret;
2741 
2742 	ret = btrfs_end_transaction(trans, async->root);
2743 	if (ret && !async->error)
2744 		async->error = ret;
2745 done:
2746 	if (async->sync)
2747 		complete(&async->wait);
2748 	else
2749 		kfree(async);
2750 }
2751 
2752 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 				 unsigned long count, int wait)
2754 {
2755 	struct async_delayed_refs *async;
2756 	int ret;
2757 
2758 	async = kmalloc(sizeof(*async), GFP_NOFS);
2759 	if (!async)
2760 		return -ENOMEM;
2761 
2762 	async->root = root->fs_info->tree_root;
2763 	async->count = count;
2764 	async->error = 0;
2765 	if (wait)
2766 		async->sync = 1;
2767 	else
2768 		async->sync = 0;
2769 	init_completion(&async->wait);
2770 
2771 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 			delayed_ref_async_start, NULL, NULL);
2773 
2774 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775 
2776 	if (wait) {
2777 		wait_for_completion(&async->wait);
2778 		ret = async->error;
2779 		kfree(async);
2780 		return ret;
2781 	}
2782 	return 0;
2783 }
2784 
2785 /*
2786  * this starts processing the delayed reference count updates and
2787  * extent insertions we have queued up so far.  count can be
2788  * 0, which means to process everything in the tree at the start
2789  * of the run (but not newly added entries), or it can be some target
2790  * number you'd like to process.
2791  *
2792  * Returns 0 on success or if called with an aborted transaction
2793  * Returns <0 on error and aborts the transaction
2794  */
2795 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 			   struct btrfs_root *root, unsigned long count)
2797 {
2798 	struct rb_node *node;
2799 	struct btrfs_delayed_ref_root *delayed_refs;
2800 	struct btrfs_delayed_ref_head *head;
2801 	int ret;
2802 	int run_all = count == (unsigned long)-1;
2803 
2804 	/* We'll clean this up in btrfs_cleanup_transaction */
2805 	if (trans->aborted)
2806 		return 0;
2807 
2808 	if (root == root->fs_info->extent_root)
2809 		root = root->fs_info->tree_root;
2810 
2811 	delayed_refs = &trans->transaction->delayed_refs;
2812 	if (count == 0)
2813 		count = atomic_read(&delayed_refs->num_entries) * 2;
2814 
2815 again:
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818 #endif
2819 	ret = __btrfs_run_delayed_refs(trans, root, count);
2820 	if (ret < 0) {
2821 		btrfs_abort_transaction(trans, root, ret);
2822 		return ret;
2823 	}
2824 
2825 	if (run_all) {
2826 		if (!list_empty(&trans->new_bgs))
2827 			btrfs_create_pending_block_groups(trans, root);
2828 
2829 		spin_lock(&delayed_refs->lock);
2830 		node = rb_first(&delayed_refs->href_root);
2831 		if (!node) {
2832 			spin_unlock(&delayed_refs->lock);
2833 			goto out;
2834 		}
2835 		count = (unsigned long)-1;
2836 
2837 		while (node) {
2838 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 					href_node);
2840 			if (btrfs_delayed_ref_is_head(&head->node)) {
2841 				struct btrfs_delayed_ref_node *ref;
2842 
2843 				ref = &head->node;
2844 				atomic_inc(&ref->refs);
2845 
2846 				spin_unlock(&delayed_refs->lock);
2847 				/*
2848 				 * Mutex was contended, block until it's
2849 				 * released and try again
2850 				 */
2851 				mutex_lock(&head->mutex);
2852 				mutex_unlock(&head->mutex);
2853 
2854 				btrfs_put_delayed_ref(ref);
2855 				cond_resched();
2856 				goto again;
2857 			} else {
2858 				WARN_ON(1);
2859 			}
2860 			node = rb_next(node);
2861 		}
2862 		spin_unlock(&delayed_refs->lock);
2863 		cond_resched();
2864 		goto again;
2865 	}
2866 out:
2867 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 	if (ret)
2869 		return ret;
2870 	assert_qgroups_uptodate(trans);
2871 	return 0;
2872 }
2873 
2874 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 				struct btrfs_root *root,
2876 				u64 bytenr, u64 num_bytes, u64 flags,
2877 				int level, int is_data)
2878 {
2879 	struct btrfs_delayed_extent_op *extent_op;
2880 	int ret;
2881 
2882 	extent_op = btrfs_alloc_delayed_extent_op();
2883 	if (!extent_op)
2884 		return -ENOMEM;
2885 
2886 	extent_op->flags_to_set = flags;
2887 	extent_op->update_flags = 1;
2888 	extent_op->update_key = 0;
2889 	extent_op->is_data = is_data ? 1 : 0;
2890 	extent_op->level = level;
2891 
2892 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 					  num_bytes, extent_op);
2894 	if (ret)
2895 		btrfs_free_delayed_extent_op(extent_op);
2896 	return ret;
2897 }
2898 
2899 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 				      struct btrfs_root *root,
2901 				      struct btrfs_path *path,
2902 				      u64 objectid, u64 offset, u64 bytenr)
2903 {
2904 	struct btrfs_delayed_ref_head *head;
2905 	struct btrfs_delayed_ref_node *ref;
2906 	struct btrfs_delayed_data_ref *data_ref;
2907 	struct btrfs_delayed_ref_root *delayed_refs;
2908 	struct rb_node *node;
2909 	int ret = 0;
2910 
2911 	delayed_refs = &trans->transaction->delayed_refs;
2912 	spin_lock(&delayed_refs->lock);
2913 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2914 	if (!head) {
2915 		spin_unlock(&delayed_refs->lock);
2916 		return 0;
2917 	}
2918 
2919 	if (!mutex_trylock(&head->mutex)) {
2920 		atomic_inc(&head->node.refs);
2921 		spin_unlock(&delayed_refs->lock);
2922 
2923 		btrfs_release_path(path);
2924 
2925 		/*
2926 		 * Mutex was contended, block until it's released and let
2927 		 * caller try again
2928 		 */
2929 		mutex_lock(&head->mutex);
2930 		mutex_unlock(&head->mutex);
2931 		btrfs_put_delayed_ref(&head->node);
2932 		return -EAGAIN;
2933 	}
2934 	spin_unlock(&delayed_refs->lock);
2935 
2936 	spin_lock(&head->lock);
2937 	node = rb_first(&head->ref_root);
2938 	while (node) {
2939 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 		node = rb_next(node);
2941 
2942 		/* If it's a shared ref we know a cross reference exists */
2943 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 			ret = 1;
2945 			break;
2946 		}
2947 
2948 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2949 
2950 		/*
2951 		 * If our ref doesn't match the one we're currently looking at
2952 		 * then we have a cross reference.
2953 		 */
2954 		if (data_ref->root != root->root_key.objectid ||
2955 		    data_ref->objectid != objectid ||
2956 		    data_ref->offset != offset) {
2957 			ret = 1;
2958 			break;
2959 		}
2960 	}
2961 	spin_unlock(&head->lock);
2962 	mutex_unlock(&head->mutex);
2963 	return ret;
2964 }
2965 
2966 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 					struct btrfs_root *root,
2968 					struct btrfs_path *path,
2969 					u64 objectid, u64 offset, u64 bytenr)
2970 {
2971 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2972 	struct extent_buffer *leaf;
2973 	struct btrfs_extent_data_ref *ref;
2974 	struct btrfs_extent_inline_ref *iref;
2975 	struct btrfs_extent_item *ei;
2976 	struct btrfs_key key;
2977 	u32 item_size;
2978 	int ret;
2979 
2980 	key.objectid = bytenr;
2981 	key.offset = (u64)-1;
2982 	key.type = BTRFS_EXTENT_ITEM_KEY;
2983 
2984 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 	if (ret < 0)
2986 		goto out;
2987 	BUG_ON(ret == 0); /* Corruption */
2988 
2989 	ret = -ENOENT;
2990 	if (path->slots[0] == 0)
2991 		goto out;
2992 
2993 	path->slots[0]--;
2994 	leaf = path->nodes[0];
2995 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2996 
2997 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2998 		goto out;
2999 
3000 	ret = 1;
3001 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 	if (item_size < sizeof(*ei)) {
3004 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 		goto out;
3006 	}
3007 #endif
3008 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3009 
3010 	if (item_size != sizeof(*ei) +
3011 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 		goto out;
3013 
3014 	if (btrfs_extent_generation(leaf, ei) <=
3015 	    btrfs_root_last_snapshot(&root->root_item))
3016 		goto out;
3017 
3018 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 	    BTRFS_EXTENT_DATA_REF_KEY)
3021 		goto out;
3022 
3023 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 	if (btrfs_extent_refs(leaf, ei) !=
3025 	    btrfs_extent_data_ref_count(leaf, ref) ||
3026 	    btrfs_extent_data_ref_root(leaf, ref) !=
3027 	    root->root_key.objectid ||
3028 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 		goto out;
3031 
3032 	ret = 0;
3033 out:
3034 	return ret;
3035 }
3036 
3037 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 			  struct btrfs_root *root,
3039 			  u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 	struct btrfs_path *path;
3042 	int ret;
3043 	int ret2;
3044 
3045 	path = btrfs_alloc_path();
3046 	if (!path)
3047 		return -ENOENT;
3048 
3049 	do {
3050 		ret = check_committed_ref(trans, root, path, objectid,
3051 					  offset, bytenr);
3052 		if (ret && ret != -ENOENT)
3053 			goto out;
3054 
3055 		ret2 = check_delayed_ref(trans, root, path, objectid,
3056 					 offset, bytenr);
3057 	} while (ret2 == -EAGAIN);
3058 
3059 	if (ret2 && ret2 != -ENOENT) {
3060 		ret = ret2;
3061 		goto out;
3062 	}
3063 
3064 	if (ret != -ENOENT || ret2 != -ENOENT)
3065 		ret = 0;
3066 out:
3067 	btrfs_free_path(path);
3068 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 		WARN_ON(ret > 0);
3070 	return ret;
3071 }
3072 
3073 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3074 			   struct btrfs_root *root,
3075 			   struct extent_buffer *buf,
3076 			   int full_backref, int inc)
3077 {
3078 	u64 bytenr;
3079 	u64 num_bytes;
3080 	u64 parent;
3081 	u64 ref_root;
3082 	u32 nritems;
3083 	struct btrfs_key key;
3084 	struct btrfs_file_extent_item *fi;
3085 	int i;
3086 	int level;
3087 	int ret = 0;
3088 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3089 			    u64, u64, u64, u64, u64, u64, int);
3090 
3091 
3092 	if (btrfs_test_is_dummy_root(root))
3093 		return 0;
3094 
3095 	ref_root = btrfs_header_owner(buf);
3096 	nritems = btrfs_header_nritems(buf);
3097 	level = btrfs_header_level(buf);
3098 
3099 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3100 		return 0;
3101 
3102 	if (inc)
3103 		process_func = btrfs_inc_extent_ref;
3104 	else
3105 		process_func = btrfs_free_extent;
3106 
3107 	if (full_backref)
3108 		parent = buf->start;
3109 	else
3110 		parent = 0;
3111 
3112 	for (i = 0; i < nritems; i++) {
3113 		if (level == 0) {
3114 			btrfs_item_key_to_cpu(buf, &key, i);
3115 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3116 				continue;
3117 			fi = btrfs_item_ptr(buf, i,
3118 					    struct btrfs_file_extent_item);
3119 			if (btrfs_file_extent_type(buf, fi) ==
3120 			    BTRFS_FILE_EXTENT_INLINE)
3121 				continue;
3122 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 			if (bytenr == 0)
3124 				continue;
3125 
3126 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 			key.offset -= btrfs_file_extent_offset(buf, fi);
3128 			ret = process_func(trans, root, bytenr, num_bytes,
3129 					   parent, ref_root, key.objectid,
3130 					   key.offset, 1);
3131 			if (ret)
3132 				goto fail;
3133 		} else {
3134 			bytenr = btrfs_node_blockptr(buf, i);
3135 			num_bytes = root->nodesize;
3136 			ret = process_func(trans, root, bytenr, num_bytes,
3137 					   parent, ref_root, level - 1, 0,
3138 					   1);
3139 			if (ret)
3140 				goto fail;
3141 		}
3142 	}
3143 	return 0;
3144 fail:
3145 	return ret;
3146 }
3147 
3148 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3149 		  struct extent_buffer *buf, int full_backref)
3150 {
3151 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3152 }
3153 
3154 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3155 		  struct extent_buffer *buf, int full_backref)
3156 {
3157 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3158 }
3159 
3160 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 				 struct btrfs_root *root,
3162 				 struct btrfs_path *path,
3163 				 struct btrfs_block_group_cache *cache)
3164 {
3165 	int ret;
3166 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3167 	unsigned long bi;
3168 	struct extent_buffer *leaf;
3169 
3170 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3171 	if (ret) {
3172 		if (ret > 0)
3173 			ret = -ENOENT;
3174 		goto fail;
3175 	}
3176 
3177 	leaf = path->nodes[0];
3178 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 	btrfs_mark_buffer_dirty(leaf);
3181 fail:
3182 	btrfs_release_path(path);
3183 	if (ret)
3184 		btrfs_abort_transaction(trans, root, ret);
3185 	return ret;
3186 
3187 }
3188 
3189 static struct btrfs_block_group_cache *
3190 next_block_group(struct btrfs_root *root,
3191 		 struct btrfs_block_group_cache *cache)
3192 {
3193 	struct rb_node *node;
3194 
3195 	spin_lock(&root->fs_info->block_group_cache_lock);
3196 
3197 	/* If our block group was removed, we need a full search. */
3198 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200 
3201 		spin_unlock(&root->fs_info->block_group_cache_lock);
3202 		btrfs_put_block_group(cache);
3203 		cache = btrfs_lookup_first_block_group(root->fs_info,
3204 						       next_bytenr);
3205 		return cache;
3206 	}
3207 	node = rb_next(&cache->cache_node);
3208 	btrfs_put_block_group(cache);
3209 	if (node) {
3210 		cache = rb_entry(node, struct btrfs_block_group_cache,
3211 				 cache_node);
3212 		btrfs_get_block_group(cache);
3213 	} else
3214 		cache = NULL;
3215 	spin_unlock(&root->fs_info->block_group_cache_lock);
3216 	return cache;
3217 }
3218 
3219 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 			    struct btrfs_trans_handle *trans,
3221 			    struct btrfs_path *path)
3222 {
3223 	struct btrfs_root *root = block_group->fs_info->tree_root;
3224 	struct inode *inode = NULL;
3225 	u64 alloc_hint = 0;
3226 	int dcs = BTRFS_DC_ERROR;
3227 	u64 num_pages = 0;
3228 	int retries = 0;
3229 	int ret = 0;
3230 
3231 	/*
3232 	 * If this block group is smaller than 100 megs don't bother caching the
3233 	 * block group.
3234 	 */
3235 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 		spin_lock(&block_group->lock);
3237 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 		spin_unlock(&block_group->lock);
3239 		return 0;
3240 	}
3241 
3242 	if (trans->aborted)
3243 		return 0;
3244 again:
3245 	inode = lookup_free_space_inode(root, block_group, path);
3246 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 		ret = PTR_ERR(inode);
3248 		btrfs_release_path(path);
3249 		goto out;
3250 	}
3251 
3252 	if (IS_ERR(inode)) {
3253 		BUG_ON(retries);
3254 		retries++;
3255 
3256 		if (block_group->ro)
3257 			goto out_free;
3258 
3259 		ret = create_free_space_inode(root, trans, block_group, path);
3260 		if (ret)
3261 			goto out_free;
3262 		goto again;
3263 	}
3264 
3265 	/* We've already setup this transaction, go ahead and exit */
3266 	if (block_group->cache_generation == trans->transid &&
3267 	    i_size_read(inode)) {
3268 		dcs = BTRFS_DC_SETUP;
3269 		goto out_put;
3270 	}
3271 
3272 	/*
3273 	 * We want to set the generation to 0, that way if anything goes wrong
3274 	 * from here on out we know not to trust this cache when we load up next
3275 	 * time.
3276 	 */
3277 	BTRFS_I(inode)->generation = 0;
3278 	ret = btrfs_update_inode(trans, root, inode);
3279 	if (ret) {
3280 		/*
3281 		 * So theoretically we could recover from this, simply set the
3282 		 * super cache generation to 0 so we know to invalidate the
3283 		 * cache, but then we'd have to keep track of the block groups
3284 		 * that fail this way so we know we _have_ to reset this cache
3285 		 * before the next commit or risk reading stale cache.  So to
3286 		 * limit our exposure to horrible edge cases lets just abort the
3287 		 * transaction, this only happens in really bad situations
3288 		 * anyway.
3289 		 */
3290 		btrfs_abort_transaction(trans, root, ret);
3291 		goto out_put;
3292 	}
3293 	WARN_ON(ret);
3294 
3295 	if (i_size_read(inode) > 0) {
3296 		ret = btrfs_check_trunc_cache_free_space(root,
3297 					&root->fs_info->global_block_rsv);
3298 		if (ret)
3299 			goto out_put;
3300 
3301 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3302 		if (ret)
3303 			goto out_put;
3304 	}
3305 
3306 	spin_lock(&block_group->lock);
3307 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3308 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3309 		/*
3310 		 * don't bother trying to write stuff out _if_
3311 		 * a) we're not cached,
3312 		 * b) we're with nospace_cache mount option.
3313 		 */
3314 		dcs = BTRFS_DC_WRITTEN;
3315 		spin_unlock(&block_group->lock);
3316 		goto out_put;
3317 	}
3318 	spin_unlock(&block_group->lock);
3319 
3320 	/*
3321 	 * Try to preallocate enough space based on how big the block group is.
3322 	 * Keep in mind this has to include any pinned space which could end up
3323 	 * taking up quite a bit since it's not folded into the other space
3324 	 * cache.
3325 	 */
3326 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3327 	if (!num_pages)
3328 		num_pages = 1;
3329 
3330 	num_pages *= 16;
3331 	num_pages *= PAGE_CACHE_SIZE;
3332 
3333 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3334 	if (ret)
3335 		goto out_put;
3336 
3337 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3338 					      num_pages, num_pages,
3339 					      &alloc_hint);
3340 	if (!ret)
3341 		dcs = BTRFS_DC_SETUP;
3342 	btrfs_free_reserved_data_space(inode, num_pages);
3343 
3344 out_put:
3345 	iput(inode);
3346 out_free:
3347 	btrfs_release_path(path);
3348 out:
3349 	spin_lock(&block_group->lock);
3350 	if (!ret && dcs == BTRFS_DC_SETUP)
3351 		block_group->cache_generation = trans->transid;
3352 	block_group->disk_cache_state = dcs;
3353 	spin_unlock(&block_group->lock);
3354 
3355 	return ret;
3356 }
3357 
3358 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3359 			    struct btrfs_root *root)
3360 {
3361 	struct btrfs_block_group_cache *cache, *tmp;
3362 	struct btrfs_transaction *cur_trans = trans->transaction;
3363 	struct btrfs_path *path;
3364 
3365 	if (list_empty(&cur_trans->dirty_bgs) ||
3366 	    !btrfs_test_opt(root, SPACE_CACHE))
3367 		return 0;
3368 
3369 	path = btrfs_alloc_path();
3370 	if (!path)
3371 		return -ENOMEM;
3372 
3373 	/* Could add new block groups, use _safe just in case */
3374 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3375 				 dirty_list) {
3376 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3377 			cache_save_setup(cache, trans, path);
3378 	}
3379 
3380 	btrfs_free_path(path);
3381 	return 0;
3382 }
3383 
3384 /*
3385  * transaction commit does final block group cache writeback during a
3386  * critical section where nothing is allowed to change the FS.  This is
3387  * required in order for the cache to actually match the block group,
3388  * but can introduce a lot of latency into the commit.
3389  *
3390  * So, btrfs_start_dirty_block_groups is here to kick off block group
3391  * cache IO.  There's a chance we'll have to redo some of it if the
3392  * block group changes again during the commit, but it greatly reduces
3393  * the commit latency by getting rid of the easy block groups while
3394  * we're still allowing others to join the commit.
3395  */
3396 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3397 				   struct btrfs_root *root)
3398 {
3399 	struct btrfs_block_group_cache *cache;
3400 	struct btrfs_transaction *cur_trans = trans->transaction;
3401 	int ret = 0;
3402 	int should_put;
3403 	struct btrfs_path *path = NULL;
3404 	LIST_HEAD(dirty);
3405 	struct list_head *io = &cur_trans->io_bgs;
3406 	int num_started = 0;
3407 	int loops = 0;
3408 
3409 	spin_lock(&cur_trans->dirty_bgs_lock);
3410 	if (list_empty(&cur_trans->dirty_bgs)) {
3411 		spin_unlock(&cur_trans->dirty_bgs_lock);
3412 		return 0;
3413 	}
3414 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3415 	spin_unlock(&cur_trans->dirty_bgs_lock);
3416 
3417 again:
3418 	/*
3419 	 * make sure all the block groups on our dirty list actually
3420 	 * exist
3421 	 */
3422 	btrfs_create_pending_block_groups(trans, root);
3423 
3424 	if (!path) {
3425 		path = btrfs_alloc_path();
3426 		if (!path)
3427 			return -ENOMEM;
3428 	}
3429 
3430 	/*
3431 	 * cache_write_mutex is here only to save us from balance or automatic
3432 	 * removal of empty block groups deleting this block group while we are
3433 	 * writing out the cache
3434 	 */
3435 	mutex_lock(&trans->transaction->cache_write_mutex);
3436 	while (!list_empty(&dirty)) {
3437 		cache = list_first_entry(&dirty,
3438 					 struct btrfs_block_group_cache,
3439 					 dirty_list);
3440 		/*
3441 		 * this can happen if something re-dirties a block
3442 		 * group that is already under IO.  Just wait for it to
3443 		 * finish and then do it all again
3444 		 */
3445 		if (!list_empty(&cache->io_list)) {
3446 			list_del_init(&cache->io_list);
3447 			btrfs_wait_cache_io(root, trans, cache,
3448 					    &cache->io_ctl, path,
3449 					    cache->key.objectid);
3450 			btrfs_put_block_group(cache);
3451 		}
3452 
3453 
3454 		/*
3455 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3456 		 * if it should update the cache_state.  Don't delete
3457 		 * until after we wait.
3458 		 *
3459 		 * Since we're not running in the commit critical section
3460 		 * we need the dirty_bgs_lock to protect from update_block_group
3461 		 */
3462 		spin_lock(&cur_trans->dirty_bgs_lock);
3463 		list_del_init(&cache->dirty_list);
3464 		spin_unlock(&cur_trans->dirty_bgs_lock);
3465 
3466 		should_put = 1;
3467 
3468 		cache_save_setup(cache, trans, path);
3469 
3470 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3471 			cache->io_ctl.inode = NULL;
3472 			ret = btrfs_write_out_cache(root, trans, cache, path);
3473 			if (ret == 0 && cache->io_ctl.inode) {
3474 				num_started++;
3475 				should_put = 0;
3476 
3477 				/*
3478 				 * the cache_write_mutex is protecting
3479 				 * the io_list
3480 				 */
3481 				list_add_tail(&cache->io_list, io);
3482 			} else {
3483 				/*
3484 				 * if we failed to write the cache, the
3485 				 * generation will be bad and life goes on
3486 				 */
3487 				ret = 0;
3488 			}
3489 		}
3490 		if (!ret)
3491 			ret = write_one_cache_group(trans, root, path, cache);
3492 
3493 		/* if its not on the io list, we need to put the block group */
3494 		if (should_put)
3495 			btrfs_put_block_group(cache);
3496 
3497 		if (ret)
3498 			break;
3499 
3500 		/*
3501 		 * Avoid blocking other tasks for too long. It might even save
3502 		 * us from writing caches for block groups that are going to be
3503 		 * removed.
3504 		 */
3505 		mutex_unlock(&trans->transaction->cache_write_mutex);
3506 		mutex_lock(&trans->transaction->cache_write_mutex);
3507 	}
3508 	mutex_unlock(&trans->transaction->cache_write_mutex);
3509 
3510 	/*
3511 	 * go through delayed refs for all the stuff we've just kicked off
3512 	 * and then loop back (just once)
3513 	 */
3514 	ret = btrfs_run_delayed_refs(trans, root, 0);
3515 	if (!ret && loops == 0) {
3516 		loops++;
3517 		spin_lock(&cur_trans->dirty_bgs_lock);
3518 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3519 		/*
3520 		 * dirty_bgs_lock protects us from concurrent block group
3521 		 * deletes too (not just cache_write_mutex).
3522 		 */
3523 		if (!list_empty(&dirty)) {
3524 			spin_unlock(&cur_trans->dirty_bgs_lock);
3525 			goto again;
3526 		}
3527 		spin_unlock(&cur_trans->dirty_bgs_lock);
3528 	}
3529 
3530 	btrfs_free_path(path);
3531 	return ret;
3532 }
3533 
3534 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3535 				   struct btrfs_root *root)
3536 {
3537 	struct btrfs_block_group_cache *cache;
3538 	struct btrfs_transaction *cur_trans = trans->transaction;
3539 	int ret = 0;
3540 	int should_put;
3541 	struct btrfs_path *path;
3542 	struct list_head *io = &cur_trans->io_bgs;
3543 	int num_started = 0;
3544 
3545 	path = btrfs_alloc_path();
3546 	if (!path)
3547 		return -ENOMEM;
3548 
3549 	/*
3550 	 * We don't need the lock here since we are protected by the transaction
3551 	 * commit.  We want to do the cache_save_setup first and then run the
3552 	 * delayed refs to make sure we have the best chance at doing this all
3553 	 * in one shot.
3554 	 */
3555 	while (!list_empty(&cur_trans->dirty_bgs)) {
3556 		cache = list_first_entry(&cur_trans->dirty_bgs,
3557 					 struct btrfs_block_group_cache,
3558 					 dirty_list);
3559 
3560 		/*
3561 		 * this can happen if cache_save_setup re-dirties a block
3562 		 * group that is already under IO.  Just wait for it to
3563 		 * finish and then do it all again
3564 		 */
3565 		if (!list_empty(&cache->io_list)) {
3566 			list_del_init(&cache->io_list);
3567 			btrfs_wait_cache_io(root, trans, cache,
3568 					    &cache->io_ctl, path,
3569 					    cache->key.objectid);
3570 			btrfs_put_block_group(cache);
3571 		}
3572 
3573 		/*
3574 		 * don't remove from the dirty list until after we've waited
3575 		 * on any pending IO
3576 		 */
3577 		list_del_init(&cache->dirty_list);
3578 		should_put = 1;
3579 
3580 		cache_save_setup(cache, trans, path);
3581 
3582 		if (!ret)
3583 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3584 
3585 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3586 			cache->io_ctl.inode = NULL;
3587 			ret = btrfs_write_out_cache(root, trans, cache, path);
3588 			if (ret == 0 && cache->io_ctl.inode) {
3589 				num_started++;
3590 				should_put = 0;
3591 				list_add_tail(&cache->io_list, io);
3592 			} else {
3593 				/*
3594 				 * if we failed to write the cache, the
3595 				 * generation will be bad and life goes on
3596 				 */
3597 				ret = 0;
3598 			}
3599 		}
3600 		if (!ret)
3601 			ret = write_one_cache_group(trans, root, path, cache);
3602 
3603 		/* if its not on the io list, we need to put the block group */
3604 		if (should_put)
3605 			btrfs_put_block_group(cache);
3606 	}
3607 
3608 	while (!list_empty(io)) {
3609 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3610 					 io_list);
3611 		list_del_init(&cache->io_list);
3612 		btrfs_wait_cache_io(root, trans, cache,
3613 				    &cache->io_ctl, path, cache->key.objectid);
3614 		btrfs_put_block_group(cache);
3615 	}
3616 
3617 	btrfs_free_path(path);
3618 	return ret;
3619 }
3620 
3621 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3622 {
3623 	struct btrfs_block_group_cache *block_group;
3624 	int readonly = 0;
3625 
3626 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3627 	if (!block_group || block_group->ro)
3628 		readonly = 1;
3629 	if (block_group)
3630 		btrfs_put_block_group(block_group);
3631 	return readonly;
3632 }
3633 
3634 static const char *alloc_name(u64 flags)
3635 {
3636 	switch (flags) {
3637 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3638 		return "mixed";
3639 	case BTRFS_BLOCK_GROUP_METADATA:
3640 		return "metadata";
3641 	case BTRFS_BLOCK_GROUP_DATA:
3642 		return "data";
3643 	case BTRFS_BLOCK_GROUP_SYSTEM:
3644 		return "system";
3645 	default:
3646 		WARN_ON(1);
3647 		return "invalid-combination";
3648 	};
3649 }
3650 
3651 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3652 			     u64 total_bytes, u64 bytes_used,
3653 			     struct btrfs_space_info **space_info)
3654 {
3655 	struct btrfs_space_info *found;
3656 	int i;
3657 	int factor;
3658 	int ret;
3659 
3660 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3661 		     BTRFS_BLOCK_GROUP_RAID10))
3662 		factor = 2;
3663 	else
3664 		factor = 1;
3665 
3666 	found = __find_space_info(info, flags);
3667 	if (found) {
3668 		spin_lock(&found->lock);
3669 		found->total_bytes += total_bytes;
3670 		found->disk_total += total_bytes * factor;
3671 		found->bytes_used += bytes_used;
3672 		found->disk_used += bytes_used * factor;
3673 		found->full = 0;
3674 		spin_unlock(&found->lock);
3675 		*space_info = found;
3676 		return 0;
3677 	}
3678 	found = kzalloc(sizeof(*found), GFP_NOFS);
3679 	if (!found)
3680 		return -ENOMEM;
3681 
3682 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3683 	if (ret) {
3684 		kfree(found);
3685 		return ret;
3686 	}
3687 
3688 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3689 		INIT_LIST_HEAD(&found->block_groups[i]);
3690 	init_rwsem(&found->groups_sem);
3691 	spin_lock_init(&found->lock);
3692 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3693 	found->total_bytes = total_bytes;
3694 	found->disk_total = total_bytes * factor;
3695 	found->bytes_used = bytes_used;
3696 	found->disk_used = bytes_used * factor;
3697 	found->bytes_pinned = 0;
3698 	found->bytes_reserved = 0;
3699 	found->bytes_readonly = 0;
3700 	found->bytes_may_use = 0;
3701 	found->full = 0;
3702 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3703 	found->chunk_alloc = 0;
3704 	found->flush = 0;
3705 	init_waitqueue_head(&found->wait);
3706 	INIT_LIST_HEAD(&found->ro_bgs);
3707 
3708 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3709 				    info->space_info_kobj, "%s",
3710 				    alloc_name(found->flags));
3711 	if (ret) {
3712 		kfree(found);
3713 		return ret;
3714 	}
3715 
3716 	*space_info = found;
3717 	list_add_rcu(&found->list, &info->space_info);
3718 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3719 		info->data_sinfo = found;
3720 
3721 	return ret;
3722 }
3723 
3724 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3725 {
3726 	u64 extra_flags = chunk_to_extended(flags) &
3727 				BTRFS_EXTENDED_PROFILE_MASK;
3728 
3729 	write_seqlock(&fs_info->profiles_lock);
3730 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3731 		fs_info->avail_data_alloc_bits |= extra_flags;
3732 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3733 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3734 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3735 		fs_info->avail_system_alloc_bits |= extra_flags;
3736 	write_sequnlock(&fs_info->profiles_lock);
3737 }
3738 
3739 /*
3740  * returns target flags in extended format or 0 if restripe for this
3741  * chunk_type is not in progress
3742  *
3743  * should be called with either volume_mutex or balance_lock held
3744  */
3745 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3746 {
3747 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3748 	u64 target = 0;
3749 
3750 	if (!bctl)
3751 		return 0;
3752 
3753 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3754 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3756 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3757 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3759 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3760 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3762 	}
3763 
3764 	return target;
3765 }
3766 
3767 /*
3768  * @flags: available profiles in extended format (see ctree.h)
3769  *
3770  * Returns reduced profile in chunk format.  If profile changing is in
3771  * progress (either running or paused) picks the target profile (if it's
3772  * already available), otherwise falls back to plain reducing.
3773  */
3774 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3775 {
3776 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3777 	u64 target;
3778 	u64 tmp;
3779 
3780 	/*
3781 	 * see if restripe for this chunk_type is in progress, if so
3782 	 * try to reduce to the target profile
3783 	 */
3784 	spin_lock(&root->fs_info->balance_lock);
3785 	target = get_restripe_target(root->fs_info, flags);
3786 	if (target) {
3787 		/* pick target profile only if it's already available */
3788 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3789 			spin_unlock(&root->fs_info->balance_lock);
3790 			return extended_to_chunk(target);
3791 		}
3792 	}
3793 	spin_unlock(&root->fs_info->balance_lock);
3794 
3795 	/* First, mask out the RAID levels which aren't possible */
3796 	if (num_devices == 1)
3797 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3798 			   BTRFS_BLOCK_GROUP_RAID5);
3799 	if (num_devices < 3)
3800 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3801 	if (num_devices < 4)
3802 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3803 
3804 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3805 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3806 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3807 	flags &= ~tmp;
3808 
3809 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3810 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3811 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3812 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3813 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3814 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3815 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3816 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3817 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3818 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3819 
3820 	return extended_to_chunk(flags | tmp);
3821 }
3822 
3823 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3824 {
3825 	unsigned seq;
3826 	u64 flags;
3827 
3828 	do {
3829 		flags = orig_flags;
3830 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3831 
3832 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3833 			flags |= root->fs_info->avail_data_alloc_bits;
3834 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3835 			flags |= root->fs_info->avail_system_alloc_bits;
3836 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3837 			flags |= root->fs_info->avail_metadata_alloc_bits;
3838 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3839 
3840 	return btrfs_reduce_alloc_profile(root, flags);
3841 }
3842 
3843 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3844 {
3845 	u64 flags;
3846 	u64 ret;
3847 
3848 	if (data)
3849 		flags = BTRFS_BLOCK_GROUP_DATA;
3850 	else if (root == root->fs_info->chunk_root)
3851 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3852 	else
3853 		flags = BTRFS_BLOCK_GROUP_METADATA;
3854 
3855 	ret = get_alloc_profile(root, flags);
3856 	return ret;
3857 }
3858 
3859 /*
3860  * This will check the space that the inode allocates from to make sure we have
3861  * enough space for bytes.
3862  */
3863 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3864 {
3865 	struct btrfs_space_info *data_sinfo;
3866 	struct btrfs_root *root = BTRFS_I(inode)->root;
3867 	struct btrfs_fs_info *fs_info = root->fs_info;
3868 	u64 used;
3869 	int ret = 0;
3870 	int need_commit = 2;
3871 	int have_pinned_space;
3872 
3873 	/* make sure bytes are sectorsize aligned */
3874 	bytes = ALIGN(bytes, root->sectorsize);
3875 
3876 	if (btrfs_is_free_space_inode(inode)) {
3877 		need_commit = 0;
3878 		ASSERT(current->journal_info);
3879 	}
3880 
3881 	data_sinfo = fs_info->data_sinfo;
3882 	if (!data_sinfo)
3883 		goto alloc;
3884 
3885 again:
3886 	/* make sure we have enough space to handle the data first */
3887 	spin_lock(&data_sinfo->lock);
3888 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3889 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3890 		data_sinfo->bytes_may_use;
3891 
3892 	if (used + bytes > data_sinfo->total_bytes) {
3893 		struct btrfs_trans_handle *trans;
3894 
3895 		/*
3896 		 * if we don't have enough free bytes in this space then we need
3897 		 * to alloc a new chunk.
3898 		 */
3899 		if (!data_sinfo->full) {
3900 			u64 alloc_target;
3901 
3902 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3903 			spin_unlock(&data_sinfo->lock);
3904 alloc:
3905 			alloc_target = btrfs_get_alloc_profile(root, 1);
3906 			/*
3907 			 * It is ugly that we don't call nolock join
3908 			 * transaction for the free space inode case here.
3909 			 * But it is safe because we only do the data space
3910 			 * reservation for the free space cache in the
3911 			 * transaction context, the common join transaction
3912 			 * just increase the counter of the current transaction
3913 			 * handler, doesn't try to acquire the trans_lock of
3914 			 * the fs.
3915 			 */
3916 			trans = btrfs_join_transaction(root);
3917 			if (IS_ERR(trans))
3918 				return PTR_ERR(trans);
3919 
3920 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3921 					     alloc_target,
3922 					     CHUNK_ALLOC_NO_FORCE);
3923 			btrfs_end_transaction(trans, root);
3924 			if (ret < 0) {
3925 				if (ret != -ENOSPC)
3926 					return ret;
3927 				else {
3928 					have_pinned_space = 1;
3929 					goto commit_trans;
3930 				}
3931 			}
3932 
3933 			if (!data_sinfo)
3934 				data_sinfo = fs_info->data_sinfo;
3935 
3936 			goto again;
3937 		}
3938 
3939 		/*
3940 		 * If we don't have enough pinned space to deal with this
3941 		 * allocation, and no removed chunk in current transaction,
3942 		 * don't bother committing the transaction.
3943 		 */
3944 		have_pinned_space = percpu_counter_compare(
3945 			&data_sinfo->total_bytes_pinned,
3946 			used + bytes - data_sinfo->total_bytes);
3947 		spin_unlock(&data_sinfo->lock);
3948 
3949 		/* commit the current transaction and try again */
3950 commit_trans:
3951 		if (need_commit &&
3952 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3953 			need_commit--;
3954 
3955 			trans = btrfs_join_transaction(root);
3956 			if (IS_ERR(trans))
3957 				return PTR_ERR(trans);
3958 			if (have_pinned_space >= 0 ||
3959 			    trans->transaction->have_free_bgs ||
3960 			    need_commit > 0) {
3961 				ret = btrfs_commit_transaction(trans, root);
3962 				if (ret)
3963 					return ret;
3964 				/*
3965 				 * make sure that all running delayed iput are
3966 				 * done
3967 				 */
3968 				down_write(&root->fs_info->delayed_iput_sem);
3969 				up_write(&root->fs_info->delayed_iput_sem);
3970 				goto again;
3971 			} else {
3972 				btrfs_end_transaction(trans, root);
3973 			}
3974 		}
3975 
3976 		trace_btrfs_space_reservation(root->fs_info,
3977 					      "space_info:enospc",
3978 					      data_sinfo->flags, bytes, 1);
3979 		return -ENOSPC;
3980 	}
3981 	ret = btrfs_qgroup_reserve(root, write_bytes);
3982 	if (ret)
3983 		goto out;
3984 	data_sinfo->bytes_may_use += bytes;
3985 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3986 				      data_sinfo->flags, bytes, 1);
3987 out:
3988 	spin_unlock(&data_sinfo->lock);
3989 
3990 	return ret;
3991 }
3992 
3993 /*
3994  * Called if we need to clear a data reservation for this inode.
3995  */
3996 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3997 {
3998 	struct btrfs_root *root = BTRFS_I(inode)->root;
3999 	struct btrfs_space_info *data_sinfo;
4000 
4001 	/* make sure bytes are sectorsize aligned */
4002 	bytes = ALIGN(bytes, root->sectorsize);
4003 
4004 	data_sinfo = root->fs_info->data_sinfo;
4005 	spin_lock(&data_sinfo->lock);
4006 	WARN_ON(data_sinfo->bytes_may_use < bytes);
4007 	data_sinfo->bytes_may_use -= bytes;
4008 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4009 				      data_sinfo->flags, bytes, 0);
4010 	spin_unlock(&data_sinfo->lock);
4011 }
4012 
4013 static void force_metadata_allocation(struct btrfs_fs_info *info)
4014 {
4015 	struct list_head *head = &info->space_info;
4016 	struct btrfs_space_info *found;
4017 
4018 	rcu_read_lock();
4019 	list_for_each_entry_rcu(found, head, list) {
4020 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4021 			found->force_alloc = CHUNK_ALLOC_FORCE;
4022 	}
4023 	rcu_read_unlock();
4024 }
4025 
4026 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4027 {
4028 	return (global->size << 1);
4029 }
4030 
4031 static int should_alloc_chunk(struct btrfs_root *root,
4032 			      struct btrfs_space_info *sinfo, int force)
4033 {
4034 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4035 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4036 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4037 	u64 thresh;
4038 
4039 	if (force == CHUNK_ALLOC_FORCE)
4040 		return 1;
4041 
4042 	/*
4043 	 * We need to take into account the global rsv because for all intents
4044 	 * and purposes it's used space.  Don't worry about locking the
4045 	 * global_rsv, it doesn't change except when the transaction commits.
4046 	 */
4047 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4048 		num_allocated += calc_global_rsv_need_space(global_rsv);
4049 
4050 	/*
4051 	 * in limited mode, we want to have some free space up to
4052 	 * about 1% of the FS size.
4053 	 */
4054 	if (force == CHUNK_ALLOC_LIMITED) {
4055 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4056 		thresh = max_t(u64, 64 * 1024 * 1024,
4057 			       div_factor_fine(thresh, 1));
4058 
4059 		if (num_bytes - num_allocated < thresh)
4060 			return 1;
4061 	}
4062 
4063 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4064 		return 0;
4065 	return 1;
4066 }
4067 
4068 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4069 {
4070 	u64 num_dev;
4071 
4072 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4073 		    BTRFS_BLOCK_GROUP_RAID0 |
4074 		    BTRFS_BLOCK_GROUP_RAID5 |
4075 		    BTRFS_BLOCK_GROUP_RAID6))
4076 		num_dev = root->fs_info->fs_devices->rw_devices;
4077 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4078 		num_dev = 2;
4079 	else
4080 		num_dev = 1;	/* DUP or single */
4081 
4082 	/* metadata for updaing devices and chunk tree */
4083 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4084 }
4085 
4086 static void check_system_chunk(struct btrfs_trans_handle *trans,
4087 			       struct btrfs_root *root, u64 type)
4088 {
4089 	struct btrfs_space_info *info;
4090 	u64 left;
4091 	u64 thresh;
4092 
4093 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4094 	spin_lock(&info->lock);
4095 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4096 		info->bytes_reserved - info->bytes_readonly;
4097 	spin_unlock(&info->lock);
4098 
4099 	thresh = get_system_chunk_thresh(root, type);
4100 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4101 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4102 			left, thresh, type);
4103 		dump_space_info(info, 0, 0);
4104 	}
4105 
4106 	if (left < thresh) {
4107 		u64 flags;
4108 
4109 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4110 		btrfs_alloc_chunk(trans, root, flags);
4111 	}
4112 }
4113 
4114 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4115 			  struct btrfs_root *extent_root, u64 flags, int force)
4116 {
4117 	struct btrfs_space_info *space_info;
4118 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4119 	int wait_for_alloc = 0;
4120 	int ret = 0;
4121 
4122 	/* Don't re-enter if we're already allocating a chunk */
4123 	if (trans->allocating_chunk)
4124 		return -ENOSPC;
4125 
4126 	space_info = __find_space_info(extent_root->fs_info, flags);
4127 	if (!space_info) {
4128 		ret = update_space_info(extent_root->fs_info, flags,
4129 					0, 0, &space_info);
4130 		BUG_ON(ret); /* -ENOMEM */
4131 	}
4132 	BUG_ON(!space_info); /* Logic error */
4133 
4134 again:
4135 	spin_lock(&space_info->lock);
4136 	if (force < space_info->force_alloc)
4137 		force = space_info->force_alloc;
4138 	if (space_info->full) {
4139 		if (should_alloc_chunk(extent_root, space_info, force))
4140 			ret = -ENOSPC;
4141 		else
4142 			ret = 0;
4143 		spin_unlock(&space_info->lock);
4144 		return ret;
4145 	}
4146 
4147 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4148 		spin_unlock(&space_info->lock);
4149 		return 0;
4150 	} else if (space_info->chunk_alloc) {
4151 		wait_for_alloc = 1;
4152 	} else {
4153 		space_info->chunk_alloc = 1;
4154 	}
4155 
4156 	spin_unlock(&space_info->lock);
4157 
4158 	mutex_lock(&fs_info->chunk_mutex);
4159 
4160 	/*
4161 	 * The chunk_mutex is held throughout the entirety of a chunk
4162 	 * allocation, so once we've acquired the chunk_mutex we know that the
4163 	 * other guy is done and we need to recheck and see if we should
4164 	 * allocate.
4165 	 */
4166 	if (wait_for_alloc) {
4167 		mutex_unlock(&fs_info->chunk_mutex);
4168 		wait_for_alloc = 0;
4169 		goto again;
4170 	}
4171 
4172 	trans->allocating_chunk = true;
4173 
4174 	/*
4175 	 * If we have mixed data/metadata chunks we want to make sure we keep
4176 	 * allocating mixed chunks instead of individual chunks.
4177 	 */
4178 	if (btrfs_mixed_space_info(space_info))
4179 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4180 
4181 	/*
4182 	 * if we're doing a data chunk, go ahead and make sure that
4183 	 * we keep a reasonable number of metadata chunks allocated in the
4184 	 * FS as well.
4185 	 */
4186 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4187 		fs_info->data_chunk_allocations++;
4188 		if (!(fs_info->data_chunk_allocations %
4189 		      fs_info->metadata_ratio))
4190 			force_metadata_allocation(fs_info);
4191 	}
4192 
4193 	/*
4194 	 * Check if we have enough space in SYSTEM chunk because we may need
4195 	 * to update devices.
4196 	 */
4197 	check_system_chunk(trans, extent_root, flags);
4198 
4199 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4200 	trans->allocating_chunk = false;
4201 
4202 	spin_lock(&space_info->lock);
4203 	if (ret < 0 && ret != -ENOSPC)
4204 		goto out;
4205 	if (ret)
4206 		space_info->full = 1;
4207 	else
4208 		ret = 1;
4209 
4210 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4211 out:
4212 	space_info->chunk_alloc = 0;
4213 	spin_unlock(&space_info->lock);
4214 	mutex_unlock(&fs_info->chunk_mutex);
4215 	return ret;
4216 }
4217 
4218 static int can_overcommit(struct btrfs_root *root,
4219 			  struct btrfs_space_info *space_info, u64 bytes,
4220 			  enum btrfs_reserve_flush_enum flush)
4221 {
4222 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4223 	u64 profile = btrfs_get_alloc_profile(root, 0);
4224 	u64 space_size;
4225 	u64 avail;
4226 	u64 used;
4227 
4228 	used = space_info->bytes_used + space_info->bytes_reserved +
4229 		space_info->bytes_pinned + space_info->bytes_readonly;
4230 
4231 	/*
4232 	 * We only want to allow over committing if we have lots of actual space
4233 	 * free, but if we don't have enough space to handle the global reserve
4234 	 * space then we could end up having a real enospc problem when trying
4235 	 * to allocate a chunk or some other such important allocation.
4236 	 */
4237 	spin_lock(&global_rsv->lock);
4238 	space_size = calc_global_rsv_need_space(global_rsv);
4239 	spin_unlock(&global_rsv->lock);
4240 	if (used + space_size >= space_info->total_bytes)
4241 		return 0;
4242 
4243 	used += space_info->bytes_may_use;
4244 
4245 	spin_lock(&root->fs_info->free_chunk_lock);
4246 	avail = root->fs_info->free_chunk_space;
4247 	spin_unlock(&root->fs_info->free_chunk_lock);
4248 
4249 	/*
4250 	 * If we have dup, raid1 or raid10 then only half of the free
4251 	 * space is actually useable.  For raid56, the space info used
4252 	 * doesn't include the parity drive, so we don't have to
4253 	 * change the math
4254 	 */
4255 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4256 		       BTRFS_BLOCK_GROUP_RAID1 |
4257 		       BTRFS_BLOCK_GROUP_RAID10))
4258 		avail >>= 1;
4259 
4260 	/*
4261 	 * If we aren't flushing all things, let us overcommit up to
4262 	 * 1/2th of the space. If we can flush, don't let us overcommit
4263 	 * too much, let it overcommit up to 1/8 of the space.
4264 	 */
4265 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4266 		avail >>= 3;
4267 	else
4268 		avail >>= 1;
4269 
4270 	if (used + bytes < space_info->total_bytes + avail)
4271 		return 1;
4272 	return 0;
4273 }
4274 
4275 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4276 					 unsigned long nr_pages, int nr_items)
4277 {
4278 	struct super_block *sb = root->fs_info->sb;
4279 
4280 	if (down_read_trylock(&sb->s_umount)) {
4281 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4282 		up_read(&sb->s_umount);
4283 	} else {
4284 		/*
4285 		 * We needn't worry the filesystem going from r/w to r/o though
4286 		 * we don't acquire ->s_umount mutex, because the filesystem
4287 		 * should guarantee the delalloc inodes list be empty after
4288 		 * the filesystem is readonly(all dirty pages are written to
4289 		 * the disk).
4290 		 */
4291 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4292 		if (!current->journal_info)
4293 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4294 	}
4295 }
4296 
4297 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4298 {
4299 	u64 bytes;
4300 	int nr;
4301 
4302 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4303 	nr = (int)div64_u64(to_reclaim, bytes);
4304 	if (!nr)
4305 		nr = 1;
4306 	return nr;
4307 }
4308 
4309 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4310 
4311 /*
4312  * shrink metadata reservation for delalloc
4313  */
4314 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4315 			    bool wait_ordered)
4316 {
4317 	struct btrfs_block_rsv *block_rsv;
4318 	struct btrfs_space_info *space_info;
4319 	struct btrfs_trans_handle *trans;
4320 	u64 delalloc_bytes;
4321 	u64 max_reclaim;
4322 	long time_left;
4323 	unsigned long nr_pages;
4324 	int loops;
4325 	int items;
4326 	enum btrfs_reserve_flush_enum flush;
4327 
4328 	/* Calc the number of the pages we need flush for space reservation */
4329 	items = calc_reclaim_items_nr(root, to_reclaim);
4330 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4331 
4332 	trans = (struct btrfs_trans_handle *)current->journal_info;
4333 	block_rsv = &root->fs_info->delalloc_block_rsv;
4334 	space_info = block_rsv->space_info;
4335 
4336 	delalloc_bytes = percpu_counter_sum_positive(
4337 						&root->fs_info->delalloc_bytes);
4338 	if (delalloc_bytes == 0) {
4339 		if (trans)
4340 			return;
4341 		if (wait_ordered)
4342 			btrfs_wait_ordered_roots(root->fs_info, items);
4343 		return;
4344 	}
4345 
4346 	loops = 0;
4347 	while (delalloc_bytes && loops < 3) {
4348 		max_reclaim = min(delalloc_bytes, to_reclaim);
4349 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4350 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4351 		/*
4352 		 * We need to wait for the async pages to actually start before
4353 		 * we do anything.
4354 		 */
4355 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4356 		if (!max_reclaim)
4357 			goto skip_async;
4358 
4359 		if (max_reclaim <= nr_pages)
4360 			max_reclaim = 0;
4361 		else
4362 			max_reclaim -= nr_pages;
4363 
4364 		wait_event(root->fs_info->async_submit_wait,
4365 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4366 			   (int)max_reclaim);
4367 skip_async:
4368 		if (!trans)
4369 			flush = BTRFS_RESERVE_FLUSH_ALL;
4370 		else
4371 			flush = BTRFS_RESERVE_NO_FLUSH;
4372 		spin_lock(&space_info->lock);
4373 		if (can_overcommit(root, space_info, orig, flush)) {
4374 			spin_unlock(&space_info->lock);
4375 			break;
4376 		}
4377 		spin_unlock(&space_info->lock);
4378 
4379 		loops++;
4380 		if (wait_ordered && !trans) {
4381 			btrfs_wait_ordered_roots(root->fs_info, items);
4382 		} else {
4383 			time_left = schedule_timeout_killable(1);
4384 			if (time_left)
4385 				break;
4386 		}
4387 		delalloc_bytes = percpu_counter_sum_positive(
4388 						&root->fs_info->delalloc_bytes);
4389 	}
4390 }
4391 
4392 /**
4393  * maybe_commit_transaction - possibly commit the transaction if its ok to
4394  * @root - the root we're allocating for
4395  * @bytes - the number of bytes we want to reserve
4396  * @force - force the commit
4397  *
4398  * This will check to make sure that committing the transaction will actually
4399  * get us somewhere and then commit the transaction if it does.  Otherwise it
4400  * will return -ENOSPC.
4401  */
4402 static int may_commit_transaction(struct btrfs_root *root,
4403 				  struct btrfs_space_info *space_info,
4404 				  u64 bytes, int force)
4405 {
4406 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4407 	struct btrfs_trans_handle *trans;
4408 
4409 	trans = (struct btrfs_trans_handle *)current->journal_info;
4410 	if (trans)
4411 		return -EAGAIN;
4412 
4413 	if (force)
4414 		goto commit;
4415 
4416 	/* See if there is enough pinned space to make this reservation */
4417 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4418 				   bytes) >= 0)
4419 		goto commit;
4420 
4421 	/*
4422 	 * See if there is some space in the delayed insertion reservation for
4423 	 * this reservation.
4424 	 */
4425 	if (space_info != delayed_rsv->space_info)
4426 		return -ENOSPC;
4427 
4428 	spin_lock(&delayed_rsv->lock);
4429 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4430 				   bytes - delayed_rsv->size) >= 0) {
4431 		spin_unlock(&delayed_rsv->lock);
4432 		return -ENOSPC;
4433 	}
4434 	spin_unlock(&delayed_rsv->lock);
4435 
4436 commit:
4437 	trans = btrfs_join_transaction(root);
4438 	if (IS_ERR(trans))
4439 		return -ENOSPC;
4440 
4441 	return btrfs_commit_transaction(trans, root);
4442 }
4443 
4444 enum flush_state {
4445 	FLUSH_DELAYED_ITEMS_NR	=	1,
4446 	FLUSH_DELAYED_ITEMS	=	2,
4447 	FLUSH_DELALLOC		=	3,
4448 	FLUSH_DELALLOC_WAIT	=	4,
4449 	ALLOC_CHUNK		=	5,
4450 	COMMIT_TRANS		=	6,
4451 };
4452 
4453 static int flush_space(struct btrfs_root *root,
4454 		       struct btrfs_space_info *space_info, u64 num_bytes,
4455 		       u64 orig_bytes, int state)
4456 {
4457 	struct btrfs_trans_handle *trans;
4458 	int nr;
4459 	int ret = 0;
4460 
4461 	switch (state) {
4462 	case FLUSH_DELAYED_ITEMS_NR:
4463 	case FLUSH_DELAYED_ITEMS:
4464 		if (state == FLUSH_DELAYED_ITEMS_NR)
4465 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4466 		else
4467 			nr = -1;
4468 
4469 		trans = btrfs_join_transaction(root);
4470 		if (IS_ERR(trans)) {
4471 			ret = PTR_ERR(trans);
4472 			break;
4473 		}
4474 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4475 		btrfs_end_transaction(trans, root);
4476 		break;
4477 	case FLUSH_DELALLOC:
4478 	case FLUSH_DELALLOC_WAIT:
4479 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4480 				state == FLUSH_DELALLOC_WAIT);
4481 		break;
4482 	case ALLOC_CHUNK:
4483 		trans = btrfs_join_transaction(root);
4484 		if (IS_ERR(trans)) {
4485 			ret = PTR_ERR(trans);
4486 			break;
4487 		}
4488 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4489 				     btrfs_get_alloc_profile(root, 0),
4490 				     CHUNK_ALLOC_NO_FORCE);
4491 		btrfs_end_transaction(trans, root);
4492 		if (ret == -ENOSPC)
4493 			ret = 0;
4494 		break;
4495 	case COMMIT_TRANS:
4496 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4497 		break;
4498 	default:
4499 		ret = -ENOSPC;
4500 		break;
4501 	}
4502 
4503 	return ret;
4504 }
4505 
4506 static inline u64
4507 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4508 				 struct btrfs_space_info *space_info)
4509 {
4510 	u64 used;
4511 	u64 expected;
4512 	u64 to_reclaim;
4513 
4514 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4515 				16 * 1024 * 1024);
4516 	spin_lock(&space_info->lock);
4517 	if (can_overcommit(root, space_info, to_reclaim,
4518 			   BTRFS_RESERVE_FLUSH_ALL)) {
4519 		to_reclaim = 0;
4520 		goto out;
4521 	}
4522 
4523 	used = space_info->bytes_used + space_info->bytes_reserved +
4524 	       space_info->bytes_pinned + space_info->bytes_readonly +
4525 	       space_info->bytes_may_use;
4526 	if (can_overcommit(root, space_info, 1024 * 1024,
4527 			   BTRFS_RESERVE_FLUSH_ALL))
4528 		expected = div_factor_fine(space_info->total_bytes, 95);
4529 	else
4530 		expected = div_factor_fine(space_info->total_bytes, 90);
4531 
4532 	if (used > expected)
4533 		to_reclaim = used - expected;
4534 	else
4535 		to_reclaim = 0;
4536 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4537 				     space_info->bytes_reserved);
4538 out:
4539 	spin_unlock(&space_info->lock);
4540 
4541 	return to_reclaim;
4542 }
4543 
4544 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4545 					struct btrfs_fs_info *fs_info, u64 used)
4546 {
4547 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4548 
4549 	/* If we're just plain full then async reclaim just slows us down. */
4550 	if (space_info->bytes_used >= thresh)
4551 		return 0;
4552 
4553 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4554 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4555 }
4556 
4557 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4558 				       struct btrfs_fs_info *fs_info,
4559 				       int flush_state)
4560 {
4561 	u64 used;
4562 
4563 	spin_lock(&space_info->lock);
4564 	/*
4565 	 * We run out of space and have not got any free space via flush_space,
4566 	 * so don't bother doing async reclaim.
4567 	 */
4568 	if (flush_state > COMMIT_TRANS && space_info->full) {
4569 		spin_unlock(&space_info->lock);
4570 		return 0;
4571 	}
4572 
4573 	used = space_info->bytes_used + space_info->bytes_reserved +
4574 	       space_info->bytes_pinned + space_info->bytes_readonly +
4575 	       space_info->bytes_may_use;
4576 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4577 		spin_unlock(&space_info->lock);
4578 		return 1;
4579 	}
4580 	spin_unlock(&space_info->lock);
4581 
4582 	return 0;
4583 }
4584 
4585 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4586 {
4587 	struct btrfs_fs_info *fs_info;
4588 	struct btrfs_space_info *space_info;
4589 	u64 to_reclaim;
4590 	int flush_state;
4591 
4592 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4593 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4594 
4595 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4596 						      space_info);
4597 	if (!to_reclaim)
4598 		return;
4599 
4600 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4601 	do {
4602 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4603 			    to_reclaim, flush_state);
4604 		flush_state++;
4605 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4606 						 flush_state))
4607 			return;
4608 	} while (flush_state < COMMIT_TRANS);
4609 }
4610 
4611 void btrfs_init_async_reclaim_work(struct work_struct *work)
4612 {
4613 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4614 }
4615 
4616 /**
4617  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4618  * @root - the root we're allocating for
4619  * @block_rsv - the block_rsv we're allocating for
4620  * @orig_bytes - the number of bytes we want
4621  * @flush - whether or not we can flush to make our reservation
4622  *
4623  * This will reserve orgi_bytes number of bytes from the space info associated
4624  * with the block_rsv.  If there is not enough space it will make an attempt to
4625  * flush out space to make room.  It will do this by flushing delalloc if
4626  * possible or committing the transaction.  If flush is 0 then no attempts to
4627  * regain reservations will be made and this will fail if there is not enough
4628  * space already.
4629  */
4630 static int reserve_metadata_bytes(struct btrfs_root *root,
4631 				  struct btrfs_block_rsv *block_rsv,
4632 				  u64 orig_bytes,
4633 				  enum btrfs_reserve_flush_enum flush)
4634 {
4635 	struct btrfs_space_info *space_info = block_rsv->space_info;
4636 	u64 used;
4637 	u64 num_bytes = orig_bytes;
4638 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4639 	int ret = 0;
4640 	bool flushing = false;
4641 
4642 again:
4643 	ret = 0;
4644 	spin_lock(&space_info->lock);
4645 	/*
4646 	 * We only want to wait if somebody other than us is flushing and we
4647 	 * are actually allowed to flush all things.
4648 	 */
4649 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4650 	       space_info->flush) {
4651 		spin_unlock(&space_info->lock);
4652 		/*
4653 		 * If we have a trans handle we can't wait because the flusher
4654 		 * may have to commit the transaction, which would mean we would
4655 		 * deadlock since we are waiting for the flusher to finish, but
4656 		 * hold the current transaction open.
4657 		 */
4658 		if (current->journal_info)
4659 			return -EAGAIN;
4660 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4661 		/* Must have been killed, return */
4662 		if (ret)
4663 			return -EINTR;
4664 
4665 		spin_lock(&space_info->lock);
4666 	}
4667 
4668 	ret = -ENOSPC;
4669 	used = space_info->bytes_used + space_info->bytes_reserved +
4670 		space_info->bytes_pinned + space_info->bytes_readonly +
4671 		space_info->bytes_may_use;
4672 
4673 	/*
4674 	 * The idea here is that we've not already over-reserved the block group
4675 	 * then we can go ahead and save our reservation first and then start
4676 	 * flushing if we need to.  Otherwise if we've already overcommitted
4677 	 * lets start flushing stuff first and then come back and try to make
4678 	 * our reservation.
4679 	 */
4680 	if (used <= space_info->total_bytes) {
4681 		if (used + orig_bytes <= space_info->total_bytes) {
4682 			space_info->bytes_may_use += orig_bytes;
4683 			trace_btrfs_space_reservation(root->fs_info,
4684 				"space_info", space_info->flags, orig_bytes, 1);
4685 			ret = 0;
4686 		} else {
4687 			/*
4688 			 * Ok set num_bytes to orig_bytes since we aren't
4689 			 * overocmmitted, this way we only try and reclaim what
4690 			 * we need.
4691 			 */
4692 			num_bytes = orig_bytes;
4693 		}
4694 	} else {
4695 		/*
4696 		 * Ok we're over committed, set num_bytes to the overcommitted
4697 		 * amount plus the amount of bytes that we need for this
4698 		 * reservation.
4699 		 */
4700 		num_bytes = used - space_info->total_bytes +
4701 			(orig_bytes * 2);
4702 	}
4703 
4704 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4705 		space_info->bytes_may_use += orig_bytes;
4706 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4707 					      space_info->flags, orig_bytes,
4708 					      1);
4709 		ret = 0;
4710 	}
4711 
4712 	/*
4713 	 * Couldn't make our reservation, save our place so while we're trying
4714 	 * to reclaim space we can actually use it instead of somebody else
4715 	 * stealing it from us.
4716 	 *
4717 	 * We make the other tasks wait for the flush only when we can flush
4718 	 * all things.
4719 	 */
4720 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4721 		flushing = true;
4722 		space_info->flush = 1;
4723 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4724 		used += orig_bytes;
4725 		/*
4726 		 * We will do the space reservation dance during log replay,
4727 		 * which means we won't have fs_info->fs_root set, so don't do
4728 		 * the async reclaim as we will panic.
4729 		 */
4730 		if (!root->fs_info->log_root_recovering &&
4731 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4732 		    !work_busy(&root->fs_info->async_reclaim_work))
4733 			queue_work(system_unbound_wq,
4734 				   &root->fs_info->async_reclaim_work);
4735 	}
4736 	spin_unlock(&space_info->lock);
4737 
4738 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4739 		goto out;
4740 
4741 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4742 			  flush_state);
4743 	flush_state++;
4744 
4745 	/*
4746 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4747 	 * would happen. So skip delalloc flush.
4748 	 */
4749 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4750 	    (flush_state == FLUSH_DELALLOC ||
4751 	     flush_state == FLUSH_DELALLOC_WAIT))
4752 		flush_state = ALLOC_CHUNK;
4753 
4754 	if (!ret)
4755 		goto again;
4756 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4757 		 flush_state < COMMIT_TRANS)
4758 		goto again;
4759 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4760 		 flush_state <= COMMIT_TRANS)
4761 		goto again;
4762 
4763 out:
4764 	if (ret == -ENOSPC &&
4765 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4766 		struct btrfs_block_rsv *global_rsv =
4767 			&root->fs_info->global_block_rsv;
4768 
4769 		if (block_rsv != global_rsv &&
4770 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4771 			ret = 0;
4772 	}
4773 	if (ret == -ENOSPC)
4774 		trace_btrfs_space_reservation(root->fs_info,
4775 					      "space_info:enospc",
4776 					      space_info->flags, orig_bytes, 1);
4777 	if (flushing) {
4778 		spin_lock(&space_info->lock);
4779 		space_info->flush = 0;
4780 		wake_up_all(&space_info->wait);
4781 		spin_unlock(&space_info->lock);
4782 	}
4783 	return ret;
4784 }
4785 
4786 static struct btrfs_block_rsv *get_block_rsv(
4787 					const struct btrfs_trans_handle *trans,
4788 					const struct btrfs_root *root)
4789 {
4790 	struct btrfs_block_rsv *block_rsv = NULL;
4791 
4792 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4793 		block_rsv = trans->block_rsv;
4794 
4795 	if (root == root->fs_info->csum_root && trans->adding_csums)
4796 		block_rsv = trans->block_rsv;
4797 
4798 	if (root == root->fs_info->uuid_root)
4799 		block_rsv = trans->block_rsv;
4800 
4801 	if (!block_rsv)
4802 		block_rsv = root->block_rsv;
4803 
4804 	if (!block_rsv)
4805 		block_rsv = &root->fs_info->empty_block_rsv;
4806 
4807 	return block_rsv;
4808 }
4809 
4810 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4811 			       u64 num_bytes)
4812 {
4813 	int ret = -ENOSPC;
4814 	spin_lock(&block_rsv->lock);
4815 	if (block_rsv->reserved >= num_bytes) {
4816 		block_rsv->reserved -= num_bytes;
4817 		if (block_rsv->reserved < block_rsv->size)
4818 			block_rsv->full = 0;
4819 		ret = 0;
4820 	}
4821 	spin_unlock(&block_rsv->lock);
4822 	return ret;
4823 }
4824 
4825 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4826 				u64 num_bytes, int update_size)
4827 {
4828 	spin_lock(&block_rsv->lock);
4829 	block_rsv->reserved += num_bytes;
4830 	if (update_size)
4831 		block_rsv->size += num_bytes;
4832 	else if (block_rsv->reserved >= block_rsv->size)
4833 		block_rsv->full = 1;
4834 	spin_unlock(&block_rsv->lock);
4835 }
4836 
4837 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4838 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4839 			     int min_factor)
4840 {
4841 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4842 	u64 min_bytes;
4843 
4844 	if (global_rsv->space_info != dest->space_info)
4845 		return -ENOSPC;
4846 
4847 	spin_lock(&global_rsv->lock);
4848 	min_bytes = div_factor(global_rsv->size, min_factor);
4849 	if (global_rsv->reserved < min_bytes + num_bytes) {
4850 		spin_unlock(&global_rsv->lock);
4851 		return -ENOSPC;
4852 	}
4853 	global_rsv->reserved -= num_bytes;
4854 	if (global_rsv->reserved < global_rsv->size)
4855 		global_rsv->full = 0;
4856 	spin_unlock(&global_rsv->lock);
4857 
4858 	block_rsv_add_bytes(dest, num_bytes, 1);
4859 	return 0;
4860 }
4861 
4862 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4863 				    struct btrfs_block_rsv *block_rsv,
4864 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4865 {
4866 	struct btrfs_space_info *space_info = block_rsv->space_info;
4867 
4868 	spin_lock(&block_rsv->lock);
4869 	if (num_bytes == (u64)-1)
4870 		num_bytes = block_rsv->size;
4871 	block_rsv->size -= num_bytes;
4872 	if (block_rsv->reserved >= block_rsv->size) {
4873 		num_bytes = block_rsv->reserved - block_rsv->size;
4874 		block_rsv->reserved = block_rsv->size;
4875 		block_rsv->full = 1;
4876 	} else {
4877 		num_bytes = 0;
4878 	}
4879 	spin_unlock(&block_rsv->lock);
4880 
4881 	if (num_bytes > 0) {
4882 		if (dest) {
4883 			spin_lock(&dest->lock);
4884 			if (!dest->full) {
4885 				u64 bytes_to_add;
4886 
4887 				bytes_to_add = dest->size - dest->reserved;
4888 				bytes_to_add = min(num_bytes, bytes_to_add);
4889 				dest->reserved += bytes_to_add;
4890 				if (dest->reserved >= dest->size)
4891 					dest->full = 1;
4892 				num_bytes -= bytes_to_add;
4893 			}
4894 			spin_unlock(&dest->lock);
4895 		}
4896 		if (num_bytes) {
4897 			spin_lock(&space_info->lock);
4898 			space_info->bytes_may_use -= num_bytes;
4899 			trace_btrfs_space_reservation(fs_info, "space_info",
4900 					space_info->flags, num_bytes, 0);
4901 			spin_unlock(&space_info->lock);
4902 		}
4903 	}
4904 }
4905 
4906 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4907 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4908 {
4909 	int ret;
4910 
4911 	ret = block_rsv_use_bytes(src, num_bytes);
4912 	if (ret)
4913 		return ret;
4914 
4915 	block_rsv_add_bytes(dst, num_bytes, 1);
4916 	return 0;
4917 }
4918 
4919 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4920 {
4921 	memset(rsv, 0, sizeof(*rsv));
4922 	spin_lock_init(&rsv->lock);
4923 	rsv->type = type;
4924 }
4925 
4926 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4927 					      unsigned short type)
4928 {
4929 	struct btrfs_block_rsv *block_rsv;
4930 	struct btrfs_fs_info *fs_info = root->fs_info;
4931 
4932 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4933 	if (!block_rsv)
4934 		return NULL;
4935 
4936 	btrfs_init_block_rsv(block_rsv, type);
4937 	block_rsv->space_info = __find_space_info(fs_info,
4938 						  BTRFS_BLOCK_GROUP_METADATA);
4939 	return block_rsv;
4940 }
4941 
4942 void btrfs_free_block_rsv(struct btrfs_root *root,
4943 			  struct btrfs_block_rsv *rsv)
4944 {
4945 	if (!rsv)
4946 		return;
4947 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4948 	kfree(rsv);
4949 }
4950 
4951 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4952 {
4953 	kfree(rsv);
4954 }
4955 
4956 int btrfs_block_rsv_add(struct btrfs_root *root,
4957 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4958 			enum btrfs_reserve_flush_enum flush)
4959 {
4960 	int ret;
4961 
4962 	if (num_bytes == 0)
4963 		return 0;
4964 
4965 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4966 	if (!ret) {
4967 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4968 		return 0;
4969 	}
4970 
4971 	return ret;
4972 }
4973 
4974 int btrfs_block_rsv_check(struct btrfs_root *root,
4975 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4976 {
4977 	u64 num_bytes = 0;
4978 	int ret = -ENOSPC;
4979 
4980 	if (!block_rsv)
4981 		return 0;
4982 
4983 	spin_lock(&block_rsv->lock);
4984 	num_bytes = div_factor(block_rsv->size, min_factor);
4985 	if (block_rsv->reserved >= num_bytes)
4986 		ret = 0;
4987 	spin_unlock(&block_rsv->lock);
4988 
4989 	return ret;
4990 }
4991 
4992 int btrfs_block_rsv_refill(struct btrfs_root *root,
4993 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4994 			   enum btrfs_reserve_flush_enum flush)
4995 {
4996 	u64 num_bytes = 0;
4997 	int ret = -ENOSPC;
4998 
4999 	if (!block_rsv)
5000 		return 0;
5001 
5002 	spin_lock(&block_rsv->lock);
5003 	num_bytes = min_reserved;
5004 	if (block_rsv->reserved >= num_bytes)
5005 		ret = 0;
5006 	else
5007 		num_bytes -= block_rsv->reserved;
5008 	spin_unlock(&block_rsv->lock);
5009 
5010 	if (!ret)
5011 		return 0;
5012 
5013 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5014 	if (!ret) {
5015 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5016 		return 0;
5017 	}
5018 
5019 	return ret;
5020 }
5021 
5022 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5023 			    struct btrfs_block_rsv *dst_rsv,
5024 			    u64 num_bytes)
5025 {
5026 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5027 }
5028 
5029 void btrfs_block_rsv_release(struct btrfs_root *root,
5030 			     struct btrfs_block_rsv *block_rsv,
5031 			     u64 num_bytes)
5032 {
5033 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5034 	if (global_rsv == block_rsv ||
5035 	    block_rsv->space_info != global_rsv->space_info)
5036 		global_rsv = NULL;
5037 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5038 				num_bytes);
5039 }
5040 
5041 /*
5042  * helper to calculate size of global block reservation.
5043  * the desired value is sum of space used by extent tree,
5044  * checksum tree and root tree
5045  */
5046 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5047 {
5048 	struct btrfs_space_info *sinfo;
5049 	u64 num_bytes;
5050 	u64 meta_used;
5051 	u64 data_used;
5052 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5053 
5054 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5055 	spin_lock(&sinfo->lock);
5056 	data_used = sinfo->bytes_used;
5057 	spin_unlock(&sinfo->lock);
5058 
5059 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5060 	spin_lock(&sinfo->lock);
5061 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5062 		data_used = 0;
5063 	meta_used = sinfo->bytes_used;
5064 	spin_unlock(&sinfo->lock);
5065 
5066 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5067 		    csum_size * 2;
5068 	num_bytes += div_u64(data_used + meta_used, 50);
5069 
5070 	if (num_bytes * 3 > meta_used)
5071 		num_bytes = div_u64(meta_used, 3);
5072 
5073 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5074 }
5075 
5076 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5077 {
5078 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5079 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5080 	u64 num_bytes;
5081 
5082 	num_bytes = calc_global_metadata_size(fs_info);
5083 
5084 	spin_lock(&sinfo->lock);
5085 	spin_lock(&block_rsv->lock);
5086 
5087 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5088 
5089 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5090 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5091 		    sinfo->bytes_may_use;
5092 
5093 	if (sinfo->total_bytes > num_bytes) {
5094 		num_bytes = sinfo->total_bytes - num_bytes;
5095 		block_rsv->reserved += num_bytes;
5096 		sinfo->bytes_may_use += num_bytes;
5097 		trace_btrfs_space_reservation(fs_info, "space_info",
5098 				      sinfo->flags, num_bytes, 1);
5099 	}
5100 
5101 	if (block_rsv->reserved >= block_rsv->size) {
5102 		num_bytes = block_rsv->reserved - block_rsv->size;
5103 		sinfo->bytes_may_use -= num_bytes;
5104 		trace_btrfs_space_reservation(fs_info, "space_info",
5105 				      sinfo->flags, num_bytes, 0);
5106 		block_rsv->reserved = block_rsv->size;
5107 		block_rsv->full = 1;
5108 	}
5109 
5110 	spin_unlock(&block_rsv->lock);
5111 	spin_unlock(&sinfo->lock);
5112 }
5113 
5114 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5115 {
5116 	struct btrfs_space_info *space_info;
5117 
5118 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5119 	fs_info->chunk_block_rsv.space_info = space_info;
5120 
5121 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5122 	fs_info->global_block_rsv.space_info = space_info;
5123 	fs_info->delalloc_block_rsv.space_info = space_info;
5124 	fs_info->trans_block_rsv.space_info = space_info;
5125 	fs_info->empty_block_rsv.space_info = space_info;
5126 	fs_info->delayed_block_rsv.space_info = space_info;
5127 
5128 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5129 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5130 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5131 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5132 	if (fs_info->quota_root)
5133 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5134 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5135 
5136 	update_global_block_rsv(fs_info);
5137 }
5138 
5139 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5140 {
5141 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5142 				(u64)-1);
5143 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5144 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5145 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5146 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5147 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5148 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5149 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5150 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5151 }
5152 
5153 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5154 				  struct btrfs_root *root)
5155 {
5156 	if (!trans->block_rsv)
5157 		return;
5158 
5159 	if (!trans->bytes_reserved)
5160 		return;
5161 
5162 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5163 				      trans->transid, trans->bytes_reserved, 0);
5164 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5165 	trans->bytes_reserved = 0;
5166 }
5167 
5168 /* Can only return 0 or -ENOSPC */
5169 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5170 				  struct inode *inode)
5171 {
5172 	struct btrfs_root *root = BTRFS_I(inode)->root;
5173 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5174 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5175 
5176 	/*
5177 	 * We need to hold space in order to delete our orphan item once we've
5178 	 * added it, so this takes the reservation so we can release it later
5179 	 * when we are truly done with the orphan item.
5180 	 */
5181 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5182 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5183 				      btrfs_ino(inode), num_bytes, 1);
5184 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5185 }
5186 
5187 void btrfs_orphan_release_metadata(struct inode *inode)
5188 {
5189 	struct btrfs_root *root = BTRFS_I(inode)->root;
5190 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5191 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5192 				      btrfs_ino(inode), num_bytes, 0);
5193 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5194 }
5195 
5196 /*
5197  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5198  * root: the root of the parent directory
5199  * rsv: block reservation
5200  * items: the number of items that we need do reservation
5201  * qgroup_reserved: used to return the reserved size in qgroup
5202  *
5203  * This function is used to reserve the space for snapshot/subvolume
5204  * creation and deletion. Those operations are different with the
5205  * common file/directory operations, they change two fs/file trees
5206  * and root tree, the number of items that the qgroup reserves is
5207  * different with the free space reservation. So we can not use
5208  * the space reseravtion mechanism in start_transaction().
5209  */
5210 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5211 				     struct btrfs_block_rsv *rsv,
5212 				     int items,
5213 				     u64 *qgroup_reserved,
5214 				     bool use_global_rsv)
5215 {
5216 	u64 num_bytes;
5217 	int ret;
5218 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5219 
5220 	if (root->fs_info->quota_enabled) {
5221 		/* One for parent inode, two for dir entries */
5222 		num_bytes = 3 * root->nodesize;
5223 		ret = btrfs_qgroup_reserve(root, num_bytes);
5224 		if (ret)
5225 			return ret;
5226 	} else {
5227 		num_bytes = 0;
5228 	}
5229 
5230 	*qgroup_reserved = num_bytes;
5231 
5232 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5233 	rsv->space_info = __find_space_info(root->fs_info,
5234 					    BTRFS_BLOCK_GROUP_METADATA);
5235 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5236 				  BTRFS_RESERVE_FLUSH_ALL);
5237 
5238 	if (ret == -ENOSPC && use_global_rsv)
5239 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5240 
5241 	if (ret) {
5242 		if (*qgroup_reserved)
5243 			btrfs_qgroup_free(root, *qgroup_reserved);
5244 	}
5245 
5246 	return ret;
5247 }
5248 
5249 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5250 				      struct btrfs_block_rsv *rsv,
5251 				      u64 qgroup_reserved)
5252 {
5253 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5254 }
5255 
5256 /**
5257  * drop_outstanding_extent - drop an outstanding extent
5258  * @inode: the inode we're dropping the extent for
5259  * @num_bytes: the number of bytes we're relaseing.
5260  *
5261  * This is called when we are freeing up an outstanding extent, either called
5262  * after an error or after an extent is written.  This will return the number of
5263  * reserved extents that need to be freed.  This must be called with
5264  * BTRFS_I(inode)->lock held.
5265  */
5266 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5267 {
5268 	unsigned drop_inode_space = 0;
5269 	unsigned dropped_extents = 0;
5270 	unsigned num_extents = 0;
5271 
5272 	num_extents = (unsigned)div64_u64(num_bytes +
5273 					  BTRFS_MAX_EXTENT_SIZE - 1,
5274 					  BTRFS_MAX_EXTENT_SIZE);
5275 	ASSERT(num_extents);
5276 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5277 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5278 
5279 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5280 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5281 			       &BTRFS_I(inode)->runtime_flags))
5282 		drop_inode_space = 1;
5283 
5284 	/*
5285 	 * If we have more or the same amount of outsanding extents than we have
5286 	 * reserved then we need to leave the reserved extents count alone.
5287 	 */
5288 	if (BTRFS_I(inode)->outstanding_extents >=
5289 	    BTRFS_I(inode)->reserved_extents)
5290 		return drop_inode_space;
5291 
5292 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5293 		BTRFS_I(inode)->outstanding_extents;
5294 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5295 	return dropped_extents + drop_inode_space;
5296 }
5297 
5298 /**
5299  * calc_csum_metadata_size - return the amount of metada space that must be
5300  *	reserved/free'd for the given bytes.
5301  * @inode: the inode we're manipulating
5302  * @num_bytes: the number of bytes in question
5303  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5304  *
5305  * This adjusts the number of csum_bytes in the inode and then returns the
5306  * correct amount of metadata that must either be reserved or freed.  We
5307  * calculate how many checksums we can fit into one leaf and then divide the
5308  * number of bytes that will need to be checksumed by this value to figure out
5309  * how many checksums will be required.  If we are adding bytes then the number
5310  * may go up and we will return the number of additional bytes that must be
5311  * reserved.  If it is going down we will return the number of bytes that must
5312  * be freed.
5313  *
5314  * This must be called with BTRFS_I(inode)->lock held.
5315  */
5316 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5317 				   int reserve)
5318 {
5319 	struct btrfs_root *root = BTRFS_I(inode)->root;
5320 	u64 old_csums, num_csums;
5321 
5322 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5323 	    BTRFS_I(inode)->csum_bytes == 0)
5324 		return 0;
5325 
5326 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5327 	if (reserve)
5328 		BTRFS_I(inode)->csum_bytes += num_bytes;
5329 	else
5330 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5331 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5332 
5333 	/* No change, no need to reserve more */
5334 	if (old_csums == num_csums)
5335 		return 0;
5336 
5337 	if (reserve)
5338 		return btrfs_calc_trans_metadata_size(root,
5339 						      num_csums - old_csums);
5340 
5341 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5342 }
5343 
5344 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5345 {
5346 	struct btrfs_root *root = BTRFS_I(inode)->root;
5347 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5348 	u64 to_reserve = 0;
5349 	u64 csum_bytes;
5350 	unsigned nr_extents = 0;
5351 	int extra_reserve = 0;
5352 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5353 	int ret = 0;
5354 	bool delalloc_lock = true;
5355 	u64 to_free = 0;
5356 	unsigned dropped;
5357 
5358 	/* If we are a free space inode we need to not flush since we will be in
5359 	 * the middle of a transaction commit.  We also don't need the delalloc
5360 	 * mutex since we won't race with anybody.  We need this mostly to make
5361 	 * lockdep shut its filthy mouth.
5362 	 */
5363 	if (btrfs_is_free_space_inode(inode)) {
5364 		flush = BTRFS_RESERVE_NO_FLUSH;
5365 		delalloc_lock = false;
5366 	}
5367 
5368 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5369 	    btrfs_transaction_in_commit(root->fs_info))
5370 		schedule_timeout(1);
5371 
5372 	if (delalloc_lock)
5373 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5374 
5375 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5376 
5377 	spin_lock(&BTRFS_I(inode)->lock);
5378 	nr_extents = (unsigned)div64_u64(num_bytes +
5379 					 BTRFS_MAX_EXTENT_SIZE - 1,
5380 					 BTRFS_MAX_EXTENT_SIZE);
5381 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5382 	nr_extents = 0;
5383 
5384 	if (BTRFS_I(inode)->outstanding_extents >
5385 	    BTRFS_I(inode)->reserved_extents)
5386 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5387 			BTRFS_I(inode)->reserved_extents;
5388 
5389 	/*
5390 	 * Add an item to reserve for updating the inode when we complete the
5391 	 * delalloc io.
5392 	 */
5393 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5394 		      &BTRFS_I(inode)->runtime_flags)) {
5395 		nr_extents++;
5396 		extra_reserve = 1;
5397 	}
5398 
5399 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5400 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5401 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5402 	spin_unlock(&BTRFS_I(inode)->lock);
5403 
5404 	if (root->fs_info->quota_enabled) {
5405 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5406 		if (ret)
5407 			goto out_fail;
5408 	}
5409 
5410 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5411 	if (unlikely(ret)) {
5412 		if (root->fs_info->quota_enabled)
5413 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5414 		goto out_fail;
5415 	}
5416 
5417 	spin_lock(&BTRFS_I(inode)->lock);
5418 	if (extra_reserve) {
5419 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5420 			&BTRFS_I(inode)->runtime_flags);
5421 		nr_extents--;
5422 	}
5423 	BTRFS_I(inode)->reserved_extents += nr_extents;
5424 	spin_unlock(&BTRFS_I(inode)->lock);
5425 
5426 	if (delalloc_lock)
5427 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5428 
5429 	if (to_reserve)
5430 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5431 					      btrfs_ino(inode), to_reserve, 1);
5432 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5433 
5434 	return 0;
5435 
5436 out_fail:
5437 	spin_lock(&BTRFS_I(inode)->lock);
5438 	dropped = drop_outstanding_extent(inode, num_bytes);
5439 	/*
5440 	 * If the inodes csum_bytes is the same as the original
5441 	 * csum_bytes then we know we haven't raced with any free()ers
5442 	 * so we can just reduce our inodes csum bytes and carry on.
5443 	 */
5444 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5445 		calc_csum_metadata_size(inode, num_bytes, 0);
5446 	} else {
5447 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5448 		u64 bytes;
5449 
5450 		/*
5451 		 * This is tricky, but first we need to figure out how much we
5452 		 * free'd from any free-ers that occured during this
5453 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5454 		 * before we dropped our lock, and then call the free for the
5455 		 * number of bytes that were freed while we were trying our
5456 		 * reservation.
5457 		 */
5458 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5459 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5460 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5461 
5462 
5463 		/*
5464 		 * Now we need to see how much we would have freed had we not
5465 		 * been making this reservation and our ->csum_bytes were not
5466 		 * artificially inflated.
5467 		 */
5468 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5469 		bytes = csum_bytes - orig_csum_bytes;
5470 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5471 
5472 		/*
5473 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5474 		 * more than to_free then we would have free'd more space had we
5475 		 * not had an artificially high ->csum_bytes, so we need to free
5476 		 * the remainder.  If bytes is the same or less then we don't
5477 		 * need to do anything, the other free-ers did the correct
5478 		 * thing.
5479 		 */
5480 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5481 		if (bytes > to_free)
5482 			to_free = bytes - to_free;
5483 		else
5484 			to_free = 0;
5485 	}
5486 	spin_unlock(&BTRFS_I(inode)->lock);
5487 	if (dropped)
5488 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5489 
5490 	if (to_free) {
5491 		btrfs_block_rsv_release(root, block_rsv, to_free);
5492 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5493 					      btrfs_ino(inode), to_free, 0);
5494 	}
5495 	if (delalloc_lock)
5496 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5497 	return ret;
5498 }
5499 
5500 /**
5501  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5502  * @inode: the inode to release the reservation for
5503  * @num_bytes: the number of bytes we're releasing
5504  *
5505  * This will release the metadata reservation for an inode.  This can be called
5506  * once we complete IO for a given set of bytes to release their metadata
5507  * reservations.
5508  */
5509 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5510 {
5511 	struct btrfs_root *root = BTRFS_I(inode)->root;
5512 	u64 to_free = 0;
5513 	unsigned dropped;
5514 
5515 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5516 	spin_lock(&BTRFS_I(inode)->lock);
5517 	dropped = drop_outstanding_extent(inode, num_bytes);
5518 
5519 	if (num_bytes)
5520 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5521 	spin_unlock(&BTRFS_I(inode)->lock);
5522 	if (dropped > 0)
5523 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5524 
5525 	if (btrfs_test_is_dummy_root(root))
5526 		return;
5527 
5528 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5529 				      btrfs_ino(inode), to_free, 0);
5530 
5531 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5532 				to_free);
5533 }
5534 
5535 /**
5536  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5537  * @inode: inode we're writing to
5538  * @num_bytes: the number of bytes we want to allocate
5539  *
5540  * This will do the following things
5541  *
5542  * o reserve space in the data space info for num_bytes
5543  * o reserve space in the metadata space info based on number of outstanding
5544  *   extents and how much csums will be needed
5545  * o add to the inodes ->delalloc_bytes
5546  * o add it to the fs_info's delalloc inodes list.
5547  *
5548  * This will return 0 for success and -ENOSPC if there is no space left.
5549  */
5550 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5551 {
5552 	int ret;
5553 
5554 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5555 	if (ret)
5556 		return ret;
5557 
5558 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5559 	if (ret) {
5560 		btrfs_free_reserved_data_space(inode, num_bytes);
5561 		return ret;
5562 	}
5563 
5564 	return 0;
5565 }
5566 
5567 /**
5568  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5569  * @inode: inode we're releasing space for
5570  * @num_bytes: the number of bytes we want to free up
5571  *
5572  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5573  * called in the case that we don't need the metadata AND data reservations
5574  * anymore.  So if there is an error or we insert an inline extent.
5575  *
5576  * This function will release the metadata space that was not used and will
5577  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5578  * list if there are no delalloc bytes left.
5579  */
5580 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5581 {
5582 	btrfs_delalloc_release_metadata(inode, num_bytes);
5583 	btrfs_free_reserved_data_space(inode, num_bytes);
5584 }
5585 
5586 static int update_block_group(struct btrfs_trans_handle *trans,
5587 			      struct btrfs_root *root, u64 bytenr,
5588 			      u64 num_bytes, int alloc)
5589 {
5590 	struct btrfs_block_group_cache *cache = NULL;
5591 	struct btrfs_fs_info *info = root->fs_info;
5592 	u64 total = num_bytes;
5593 	u64 old_val;
5594 	u64 byte_in_group;
5595 	int factor;
5596 
5597 	/* block accounting for super block */
5598 	spin_lock(&info->delalloc_root_lock);
5599 	old_val = btrfs_super_bytes_used(info->super_copy);
5600 	if (alloc)
5601 		old_val += num_bytes;
5602 	else
5603 		old_val -= num_bytes;
5604 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5605 	spin_unlock(&info->delalloc_root_lock);
5606 
5607 	while (total) {
5608 		cache = btrfs_lookup_block_group(info, bytenr);
5609 		if (!cache)
5610 			return -ENOENT;
5611 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5612 				    BTRFS_BLOCK_GROUP_RAID1 |
5613 				    BTRFS_BLOCK_GROUP_RAID10))
5614 			factor = 2;
5615 		else
5616 			factor = 1;
5617 		/*
5618 		 * If this block group has free space cache written out, we
5619 		 * need to make sure to load it if we are removing space.  This
5620 		 * is because we need the unpinning stage to actually add the
5621 		 * space back to the block group, otherwise we will leak space.
5622 		 */
5623 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5624 			cache_block_group(cache, 1);
5625 
5626 		byte_in_group = bytenr - cache->key.objectid;
5627 		WARN_ON(byte_in_group > cache->key.offset);
5628 
5629 		spin_lock(&cache->space_info->lock);
5630 		spin_lock(&cache->lock);
5631 
5632 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5633 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5634 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5635 
5636 		old_val = btrfs_block_group_used(&cache->item);
5637 		num_bytes = min(total, cache->key.offset - byte_in_group);
5638 		if (alloc) {
5639 			old_val += num_bytes;
5640 			btrfs_set_block_group_used(&cache->item, old_val);
5641 			cache->reserved -= num_bytes;
5642 			cache->space_info->bytes_reserved -= num_bytes;
5643 			cache->space_info->bytes_used += num_bytes;
5644 			cache->space_info->disk_used += num_bytes * factor;
5645 			spin_unlock(&cache->lock);
5646 			spin_unlock(&cache->space_info->lock);
5647 		} else {
5648 			old_val -= num_bytes;
5649 			btrfs_set_block_group_used(&cache->item, old_val);
5650 			cache->pinned += num_bytes;
5651 			cache->space_info->bytes_pinned += num_bytes;
5652 			cache->space_info->bytes_used -= num_bytes;
5653 			cache->space_info->disk_used -= num_bytes * factor;
5654 			spin_unlock(&cache->lock);
5655 			spin_unlock(&cache->space_info->lock);
5656 
5657 			set_extent_dirty(info->pinned_extents,
5658 					 bytenr, bytenr + num_bytes - 1,
5659 					 GFP_NOFS | __GFP_NOFAIL);
5660 			/*
5661 			 * No longer have used bytes in this block group, queue
5662 			 * it for deletion.
5663 			 */
5664 			if (old_val == 0) {
5665 				spin_lock(&info->unused_bgs_lock);
5666 				if (list_empty(&cache->bg_list)) {
5667 					btrfs_get_block_group(cache);
5668 					list_add_tail(&cache->bg_list,
5669 						      &info->unused_bgs);
5670 				}
5671 				spin_unlock(&info->unused_bgs_lock);
5672 			}
5673 		}
5674 
5675 		spin_lock(&trans->transaction->dirty_bgs_lock);
5676 		if (list_empty(&cache->dirty_list)) {
5677 			list_add_tail(&cache->dirty_list,
5678 				      &trans->transaction->dirty_bgs);
5679 				trans->transaction->num_dirty_bgs++;
5680 			btrfs_get_block_group(cache);
5681 		}
5682 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5683 
5684 		btrfs_put_block_group(cache);
5685 		total -= num_bytes;
5686 		bytenr += num_bytes;
5687 	}
5688 	return 0;
5689 }
5690 
5691 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5692 {
5693 	struct btrfs_block_group_cache *cache;
5694 	u64 bytenr;
5695 
5696 	spin_lock(&root->fs_info->block_group_cache_lock);
5697 	bytenr = root->fs_info->first_logical_byte;
5698 	spin_unlock(&root->fs_info->block_group_cache_lock);
5699 
5700 	if (bytenr < (u64)-1)
5701 		return bytenr;
5702 
5703 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5704 	if (!cache)
5705 		return 0;
5706 
5707 	bytenr = cache->key.objectid;
5708 	btrfs_put_block_group(cache);
5709 
5710 	return bytenr;
5711 }
5712 
5713 static int pin_down_extent(struct btrfs_root *root,
5714 			   struct btrfs_block_group_cache *cache,
5715 			   u64 bytenr, u64 num_bytes, int reserved)
5716 {
5717 	spin_lock(&cache->space_info->lock);
5718 	spin_lock(&cache->lock);
5719 	cache->pinned += num_bytes;
5720 	cache->space_info->bytes_pinned += num_bytes;
5721 	if (reserved) {
5722 		cache->reserved -= num_bytes;
5723 		cache->space_info->bytes_reserved -= num_bytes;
5724 	}
5725 	spin_unlock(&cache->lock);
5726 	spin_unlock(&cache->space_info->lock);
5727 
5728 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5729 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5730 	if (reserved)
5731 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5732 	return 0;
5733 }
5734 
5735 /*
5736  * this function must be called within transaction
5737  */
5738 int btrfs_pin_extent(struct btrfs_root *root,
5739 		     u64 bytenr, u64 num_bytes, int reserved)
5740 {
5741 	struct btrfs_block_group_cache *cache;
5742 
5743 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5744 	BUG_ON(!cache); /* Logic error */
5745 
5746 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5747 
5748 	btrfs_put_block_group(cache);
5749 	return 0;
5750 }
5751 
5752 /*
5753  * this function must be called within transaction
5754  */
5755 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5756 				    u64 bytenr, u64 num_bytes)
5757 {
5758 	struct btrfs_block_group_cache *cache;
5759 	int ret;
5760 
5761 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5762 	if (!cache)
5763 		return -EINVAL;
5764 
5765 	/*
5766 	 * pull in the free space cache (if any) so that our pin
5767 	 * removes the free space from the cache.  We have load_only set
5768 	 * to one because the slow code to read in the free extents does check
5769 	 * the pinned extents.
5770 	 */
5771 	cache_block_group(cache, 1);
5772 
5773 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5774 
5775 	/* remove us from the free space cache (if we're there at all) */
5776 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5777 	btrfs_put_block_group(cache);
5778 	return ret;
5779 }
5780 
5781 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5782 {
5783 	int ret;
5784 	struct btrfs_block_group_cache *block_group;
5785 	struct btrfs_caching_control *caching_ctl;
5786 
5787 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5788 	if (!block_group)
5789 		return -EINVAL;
5790 
5791 	cache_block_group(block_group, 0);
5792 	caching_ctl = get_caching_control(block_group);
5793 
5794 	if (!caching_ctl) {
5795 		/* Logic error */
5796 		BUG_ON(!block_group_cache_done(block_group));
5797 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5798 	} else {
5799 		mutex_lock(&caching_ctl->mutex);
5800 
5801 		if (start >= caching_ctl->progress) {
5802 			ret = add_excluded_extent(root, start, num_bytes);
5803 		} else if (start + num_bytes <= caching_ctl->progress) {
5804 			ret = btrfs_remove_free_space(block_group,
5805 						      start, num_bytes);
5806 		} else {
5807 			num_bytes = caching_ctl->progress - start;
5808 			ret = btrfs_remove_free_space(block_group,
5809 						      start, num_bytes);
5810 			if (ret)
5811 				goto out_lock;
5812 
5813 			num_bytes = (start + num_bytes) -
5814 				caching_ctl->progress;
5815 			start = caching_ctl->progress;
5816 			ret = add_excluded_extent(root, start, num_bytes);
5817 		}
5818 out_lock:
5819 		mutex_unlock(&caching_ctl->mutex);
5820 		put_caching_control(caching_ctl);
5821 	}
5822 	btrfs_put_block_group(block_group);
5823 	return ret;
5824 }
5825 
5826 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5827 				 struct extent_buffer *eb)
5828 {
5829 	struct btrfs_file_extent_item *item;
5830 	struct btrfs_key key;
5831 	int found_type;
5832 	int i;
5833 
5834 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5835 		return 0;
5836 
5837 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5838 		btrfs_item_key_to_cpu(eb, &key, i);
5839 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5840 			continue;
5841 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5842 		found_type = btrfs_file_extent_type(eb, item);
5843 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5844 			continue;
5845 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5846 			continue;
5847 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5848 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5849 		__exclude_logged_extent(log, key.objectid, key.offset);
5850 	}
5851 
5852 	return 0;
5853 }
5854 
5855 /**
5856  * btrfs_update_reserved_bytes - update the block_group and space info counters
5857  * @cache:	The cache we are manipulating
5858  * @num_bytes:	The number of bytes in question
5859  * @reserve:	One of the reservation enums
5860  * @delalloc:   The blocks are allocated for the delalloc write
5861  *
5862  * This is called by the allocator when it reserves space, or by somebody who is
5863  * freeing space that was never actually used on disk.  For example if you
5864  * reserve some space for a new leaf in transaction A and before transaction A
5865  * commits you free that leaf, you call this with reserve set to 0 in order to
5866  * clear the reservation.
5867  *
5868  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5869  * ENOSPC accounting.  For data we handle the reservation through clearing the
5870  * delalloc bits in the io_tree.  We have to do this since we could end up
5871  * allocating less disk space for the amount of data we have reserved in the
5872  * case of compression.
5873  *
5874  * If this is a reservation and the block group has become read only we cannot
5875  * make the reservation and return -EAGAIN, otherwise this function always
5876  * succeeds.
5877  */
5878 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5879 				       u64 num_bytes, int reserve, int delalloc)
5880 {
5881 	struct btrfs_space_info *space_info = cache->space_info;
5882 	int ret = 0;
5883 
5884 	spin_lock(&space_info->lock);
5885 	spin_lock(&cache->lock);
5886 	if (reserve != RESERVE_FREE) {
5887 		if (cache->ro) {
5888 			ret = -EAGAIN;
5889 		} else {
5890 			cache->reserved += num_bytes;
5891 			space_info->bytes_reserved += num_bytes;
5892 			if (reserve == RESERVE_ALLOC) {
5893 				trace_btrfs_space_reservation(cache->fs_info,
5894 						"space_info", space_info->flags,
5895 						num_bytes, 0);
5896 				space_info->bytes_may_use -= num_bytes;
5897 			}
5898 
5899 			if (delalloc)
5900 				cache->delalloc_bytes += num_bytes;
5901 		}
5902 	} else {
5903 		if (cache->ro)
5904 			space_info->bytes_readonly += num_bytes;
5905 		cache->reserved -= num_bytes;
5906 		space_info->bytes_reserved -= num_bytes;
5907 
5908 		if (delalloc)
5909 			cache->delalloc_bytes -= num_bytes;
5910 	}
5911 	spin_unlock(&cache->lock);
5912 	spin_unlock(&space_info->lock);
5913 	return ret;
5914 }
5915 
5916 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5917 				struct btrfs_root *root)
5918 {
5919 	struct btrfs_fs_info *fs_info = root->fs_info;
5920 	struct btrfs_caching_control *next;
5921 	struct btrfs_caching_control *caching_ctl;
5922 	struct btrfs_block_group_cache *cache;
5923 
5924 	down_write(&fs_info->commit_root_sem);
5925 
5926 	list_for_each_entry_safe(caching_ctl, next,
5927 				 &fs_info->caching_block_groups, list) {
5928 		cache = caching_ctl->block_group;
5929 		if (block_group_cache_done(cache)) {
5930 			cache->last_byte_to_unpin = (u64)-1;
5931 			list_del_init(&caching_ctl->list);
5932 			put_caching_control(caching_ctl);
5933 		} else {
5934 			cache->last_byte_to_unpin = caching_ctl->progress;
5935 		}
5936 	}
5937 
5938 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5939 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5940 	else
5941 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5942 
5943 	up_write(&fs_info->commit_root_sem);
5944 
5945 	update_global_block_rsv(fs_info);
5946 }
5947 
5948 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5949 			      const bool return_free_space)
5950 {
5951 	struct btrfs_fs_info *fs_info = root->fs_info;
5952 	struct btrfs_block_group_cache *cache = NULL;
5953 	struct btrfs_space_info *space_info;
5954 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5955 	u64 len;
5956 	bool readonly;
5957 
5958 	while (start <= end) {
5959 		readonly = false;
5960 		if (!cache ||
5961 		    start >= cache->key.objectid + cache->key.offset) {
5962 			if (cache)
5963 				btrfs_put_block_group(cache);
5964 			cache = btrfs_lookup_block_group(fs_info, start);
5965 			BUG_ON(!cache); /* Logic error */
5966 		}
5967 
5968 		len = cache->key.objectid + cache->key.offset - start;
5969 		len = min(len, end + 1 - start);
5970 
5971 		if (start < cache->last_byte_to_unpin) {
5972 			len = min(len, cache->last_byte_to_unpin - start);
5973 			if (return_free_space)
5974 				btrfs_add_free_space(cache, start, len);
5975 		}
5976 
5977 		start += len;
5978 		space_info = cache->space_info;
5979 
5980 		spin_lock(&space_info->lock);
5981 		spin_lock(&cache->lock);
5982 		cache->pinned -= len;
5983 		space_info->bytes_pinned -= len;
5984 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5985 		if (cache->ro) {
5986 			space_info->bytes_readonly += len;
5987 			readonly = true;
5988 		}
5989 		spin_unlock(&cache->lock);
5990 		if (!readonly && global_rsv->space_info == space_info) {
5991 			spin_lock(&global_rsv->lock);
5992 			if (!global_rsv->full) {
5993 				len = min(len, global_rsv->size -
5994 					  global_rsv->reserved);
5995 				global_rsv->reserved += len;
5996 				space_info->bytes_may_use += len;
5997 				if (global_rsv->reserved >= global_rsv->size)
5998 					global_rsv->full = 1;
5999 			}
6000 			spin_unlock(&global_rsv->lock);
6001 		}
6002 		spin_unlock(&space_info->lock);
6003 	}
6004 
6005 	if (cache)
6006 		btrfs_put_block_group(cache);
6007 	return 0;
6008 }
6009 
6010 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6011 			       struct btrfs_root *root)
6012 {
6013 	struct btrfs_fs_info *fs_info = root->fs_info;
6014 	struct extent_io_tree *unpin;
6015 	u64 start;
6016 	u64 end;
6017 	int ret;
6018 
6019 	if (trans->aborted)
6020 		return 0;
6021 
6022 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6023 		unpin = &fs_info->freed_extents[1];
6024 	else
6025 		unpin = &fs_info->freed_extents[0];
6026 
6027 	while (1) {
6028 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6029 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6030 					    EXTENT_DIRTY, NULL);
6031 		if (ret) {
6032 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6033 			break;
6034 		}
6035 
6036 		if (btrfs_test_opt(root, DISCARD))
6037 			ret = btrfs_discard_extent(root, start,
6038 						   end + 1 - start, NULL);
6039 
6040 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6041 		unpin_extent_range(root, start, end, true);
6042 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6043 		cond_resched();
6044 	}
6045 
6046 	return 0;
6047 }
6048 
6049 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6050 			     u64 owner, u64 root_objectid)
6051 {
6052 	struct btrfs_space_info *space_info;
6053 	u64 flags;
6054 
6055 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6056 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6057 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6058 		else
6059 			flags = BTRFS_BLOCK_GROUP_METADATA;
6060 	} else {
6061 		flags = BTRFS_BLOCK_GROUP_DATA;
6062 	}
6063 
6064 	space_info = __find_space_info(fs_info, flags);
6065 	BUG_ON(!space_info); /* Logic bug */
6066 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6067 }
6068 
6069 
6070 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6071 				struct btrfs_root *root,
6072 				u64 bytenr, u64 num_bytes, u64 parent,
6073 				u64 root_objectid, u64 owner_objectid,
6074 				u64 owner_offset, int refs_to_drop,
6075 				struct btrfs_delayed_extent_op *extent_op,
6076 				int no_quota)
6077 {
6078 	struct btrfs_key key;
6079 	struct btrfs_path *path;
6080 	struct btrfs_fs_info *info = root->fs_info;
6081 	struct btrfs_root *extent_root = info->extent_root;
6082 	struct extent_buffer *leaf;
6083 	struct btrfs_extent_item *ei;
6084 	struct btrfs_extent_inline_ref *iref;
6085 	int ret;
6086 	int is_data;
6087 	int extent_slot = 0;
6088 	int found_extent = 0;
6089 	int num_to_del = 1;
6090 	u32 item_size;
6091 	u64 refs;
6092 	int last_ref = 0;
6093 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
6094 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6095 						 SKINNY_METADATA);
6096 
6097 	if (!info->quota_enabled || !is_fstree(root_objectid))
6098 		no_quota = 1;
6099 
6100 	path = btrfs_alloc_path();
6101 	if (!path)
6102 		return -ENOMEM;
6103 
6104 	path->reada = 1;
6105 	path->leave_spinning = 1;
6106 
6107 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6108 	BUG_ON(!is_data && refs_to_drop != 1);
6109 
6110 	if (is_data)
6111 		skinny_metadata = 0;
6112 
6113 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6114 				    bytenr, num_bytes, parent,
6115 				    root_objectid, owner_objectid,
6116 				    owner_offset);
6117 	if (ret == 0) {
6118 		extent_slot = path->slots[0];
6119 		while (extent_slot >= 0) {
6120 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6121 					      extent_slot);
6122 			if (key.objectid != bytenr)
6123 				break;
6124 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6125 			    key.offset == num_bytes) {
6126 				found_extent = 1;
6127 				break;
6128 			}
6129 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6130 			    key.offset == owner_objectid) {
6131 				found_extent = 1;
6132 				break;
6133 			}
6134 			if (path->slots[0] - extent_slot > 5)
6135 				break;
6136 			extent_slot--;
6137 		}
6138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6139 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6140 		if (found_extent && item_size < sizeof(*ei))
6141 			found_extent = 0;
6142 #endif
6143 		if (!found_extent) {
6144 			BUG_ON(iref);
6145 			ret = remove_extent_backref(trans, extent_root, path,
6146 						    NULL, refs_to_drop,
6147 						    is_data, &last_ref);
6148 			if (ret) {
6149 				btrfs_abort_transaction(trans, extent_root, ret);
6150 				goto out;
6151 			}
6152 			btrfs_release_path(path);
6153 			path->leave_spinning = 1;
6154 
6155 			key.objectid = bytenr;
6156 			key.type = BTRFS_EXTENT_ITEM_KEY;
6157 			key.offset = num_bytes;
6158 
6159 			if (!is_data && skinny_metadata) {
6160 				key.type = BTRFS_METADATA_ITEM_KEY;
6161 				key.offset = owner_objectid;
6162 			}
6163 
6164 			ret = btrfs_search_slot(trans, extent_root,
6165 						&key, path, -1, 1);
6166 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6167 				/*
6168 				 * Couldn't find our skinny metadata item,
6169 				 * see if we have ye olde extent item.
6170 				 */
6171 				path->slots[0]--;
6172 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6173 						      path->slots[0]);
6174 				if (key.objectid == bytenr &&
6175 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6176 				    key.offset == num_bytes)
6177 					ret = 0;
6178 			}
6179 
6180 			if (ret > 0 && skinny_metadata) {
6181 				skinny_metadata = false;
6182 				key.objectid = bytenr;
6183 				key.type = BTRFS_EXTENT_ITEM_KEY;
6184 				key.offset = num_bytes;
6185 				btrfs_release_path(path);
6186 				ret = btrfs_search_slot(trans, extent_root,
6187 							&key, path, -1, 1);
6188 			}
6189 
6190 			if (ret) {
6191 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6192 					ret, bytenr);
6193 				if (ret > 0)
6194 					btrfs_print_leaf(extent_root,
6195 							 path->nodes[0]);
6196 			}
6197 			if (ret < 0) {
6198 				btrfs_abort_transaction(trans, extent_root, ret);
6199 				goto out;
6200 			}
6201 			extent_slot = path->slots[0];
6202 		}
6203 	} else if (WARN_ON(ret == -ENOENT)) {
6204 		btrfs_print_leaf(extent_root, path->nodes[0]);
6205 		btrfs_err(info,
6206 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6207 			bytenr, parent, root_objectid, owner_objectid,
6208 			owner_offset);
6209 		btrfs_abort_transaction(trans, extent_root, ret);
6210 		goto out;
6211 	} else {
6212 		btrfs_abort_transaction(trans, extent_root, ret);
6213 		goto out;
6214 	}
6215 
6216 	leaf = path->nodes[0];
6217 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6218 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6219 	if (item_size < sizeof(*ei)) {
6220 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6221 		ret = convert_extent_item_v0(trans, extent_root, path,
6222 					     owner_objectid, 0);
6223 		if (ret < 0) {
6224 			btrfs_abort_transaction(trans, extent_root, ret);
6225 			goto out;
6226 		}
6227 
6228 		btrfs_release_path(path);
6229 		path->leave_spinning = 1;
6230 
6231 		key.objectid = bytenr;
6232 		key.type = BTRFS_EXTENT_ITEM_KEY;
6233 		key.offset = num_bytes;
6234 
6235 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6236 					-1, 1);
6237 		if (ret) {
6238 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6239 				ret, bytenr);
6240 			btrfs_print_leaf(extent_root, path->nodes[0]);
6241 		}
6242 		if (ret < 0) {
6243 			btrfs_abort_transaction(trans, extent_root, ret);
6244 			goto out;
6245 		}
6246 
6247 		extent_slot = path->slots[0];
6248 		leaf = path->nodes[0];
6249 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6250 	}
6251 #endif
6252 	BUG_ON(item_size < sizeof(*ei));
6253 	ei = btrfs_item_ptr(leaf, extent_slot,
6254 			    struct btrfs_extent_item);
6255 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6256 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6257 		struct btrfs_tree_block_info *bi;
6258 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6259 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6260 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6261 	}
6262 
6263 	refs = btrfs_extent_refs(leaf, ei);
6264 	if (refs < refs_to_drop) {
6265 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6266 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6267 		ret = -EINVAL;
6268 		btrfs_abort_transaction(trans, extent_root, ret);
6269 		goto out;
6270 	}
6271 	refs -= refs_to_drop;
6272 
6273 	if (refs > 0) {
6274 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6275 		if (extent_op)
6276 			__run_delayed_extent_op(extent_op, leaf, ei);
6277 		/*
6278 		 * In the case of inline back ref, reference count will
6279 		 * be updated by remove_extent_backref
6280 		 */
6281 		if (iref) {
6282 			BUG_ON(!found_extent);
6283 		} else {
6284 			btrfs_set_extent_refs(leaf, ei, refs);
6285 			btrfs_mark_buffer_dirty(leaf);
6286 		}
6287 		if (found_extent) {
6288 			ret = remove_extent_backref(trans, extent_root, path,
6289 						    iref, refs_to_drop,
6290 						    is_data, &last_ref);
6291 			if (ret) {
6292 				btrfs_abort_transaction(trans, extent_root, ret);
6293 				goto out;
6294 			}
6295 		}
6296 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6297 				 root_objectid);
6298 	} else {
6299 		if (found_extent) {
6300 			BUG_ON(is_data && refs_to_drop !=
6301 			       extent_data_ref_count(root, path, iref));
6302 			if (iref) {
6303 				BUG_ON(path->slots[0] != extent_slot);
6304 			} else {
6305 				BUG_ON(path->slots[0] != extent_slot + 1);
6306 				path->slots[0] = extent_slot;
6307 				num_to_del = 2;
6308 			}
6309 		}
6310 
6311 		last_ref = 1;
6312 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6313 				      num_to_del);
6314 		if (ret) {
6315 			btrfs_abort_transaction(trans, extent_root, ret);
6316 			goto out;
6317 		}
6318 		btrfs_release_path(path);
6319 
6320 		if (is_data) {
6321 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6322 			if (ret) {
6323 				btrfs_abort_transaction(trans, extent_root, ret);
6324 				goto out;
6325 			}
6326 		}
6327 
6328 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6329 		if (ret) {
6330 			btrfs_abort_transaction(trans, extent_root, ret);
6331 			goto out;
6332 		}
6333 	}
6334 	btrfs_release_path(path);
6335 
6336 	/* Deal with the quota accounting */
6337 	if (!ret && last_ref && !no_quota) {
6338 		int mod_seq = 0;
6339 
6340 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6341 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6342 			mod_seq = 1;
6343 
6344 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6345 					      bytenr, num_bytes, type,
6346 					      mod_seq);
6347 	}
6348 out:
6349 	btrfs_free_path(path);
6350 	return ret;
6351 }
6352 
6353 /*
6354  * when we free an block, it is possible (and likely) that we free the last
6355  * delayed ref for that extent as well.  This searches the delayed ref tree for
6356  * a given extent, and if there are no other delayed refs to be processed, it
6357  * removes it from the tree.
6358  */
6359 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6360 				      struct btrfs_root *root, u64 bytenr)
6361 {
6362 	struct btrfs_delayed_ref_head *head;
6363 	struct btrfs_delayed_ref_root *delayed_refs;
6364 	int ret = 0;
6365 
6366 	delayed_refs = &trans->transaction->delayed_refs;
6367 	spin_lock(&delayed_refs->lock);
6368 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6369 	if (!head)
6370 		goto out_delayed_unlock;
6371 
6372 	spin_lock(&head->lock);
6373 	if (rb_first(&head->ref_root))
6374 		goto out;
6375 
6376 	if (head->extent_op) {
6377 		if (!head->must_insert_reserved)
6378 			goto out;
6379 		btrfs_free_delayed_extent_op(head->extent_op);
6380 		head->extent_op = NULL;
6381 	}
6382 
6383 	/*
6384 	 * waiting for the lock here would deadlock.  If someone else has it
6385 	 * locked they are already in the process of dropping it anyway
6386 	 */
6387 	if (!mutex_trylock(&head->mutex))
6388 		goto out;
6389 
6390 	/*
6391 	 * at this point we have a head with no other entries.  Go
6392 	 * ahead and process it.
6393 	 */
6394 	head->node.in_tree = 0;
6395 	rb_erase(&head->href_node, &delayed_refs->href_root);
6396 
6397 	atomic_dec(&delayed_refs->num_entries);
6398 
6399 	/*
6400 	 * we don't take a ref on the node because we're removing it from the
6401 	 * tree, so we just steal the ref the tree was holding.
6402 	 */
6403 	delayed_refs->num_heads--;
6404 	if (head->processing == 0)
6405 		delayed_refs->num_heads_ready--;
6406 	head->processing = 0;
6407 	spin_unlock(&head->lock);
6408 	spin_unlock(&delayed_refs->lock);
6409 
6410 	BUG_ON(head->extent_op);
6411 	if (head->must_insert_reserved)
6412 		ret = 1;
6413 
6414 	mutex_unlock(&head->mutex);
6415 	btrfs_put_delayed_ref(&head->node);
6416 	return ret;
6417 out:
6418 	spin_unlock(&head->lock);
6419 
6420 out_delayed_unlock:
6421 	spin_unlock(&delayed_refs->lock);
6422 	return 0;
6423 }
6424 
6425 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6426 			   struct btrfs_root *root,
6427 			   struct extent_buffer *buf,
6428 			   u64 parent, int last_ref)
6429 {
6430 	int pin = 1;
6431 	int ret;
6432 
6433 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6434 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6435 					buf->start, buf->len,
6436 					parent, root->root_key.objectid,
6437 					btrfs_header_level(buf),
6438 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6439 		BUG_ON(ret); /* -ENOMEM */
6440 	}
6441 
6442 	if (!last_ref)
6443 		return;
6444 
6445 	if (btrfs_header_generation(buf) == trans->transid) {
6446 		struct btrfs_block_group_cache *cache;
6447 
6448 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6449 			ret = check_ref_cleanup(trans, root, buf->start);
6450 			if (!ret)
6451 				goto out;
6452 		}
6453 
6454 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6455 
6456 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6457 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6458 			btrfs_put_block_group(cache);
6459 			goto out;
6460 		}
6461 
6462 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6463 
6464 		btrfs_add_free_space(cache, buf->start, buf->len);
6465 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6466 		btrfs_put_block_group(cache);
6467 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6468 		pin = 0;
6469 	}
6470 out:
6471 	if (pin)
6472 		add_pinned_bytes(root->fs_info, buf->len,
6473 				 btrfs_header_level(buf),
6474 				 root->root_key.objectid);
6475 
6476 	/*
6477 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6478 	 * anymore.
6479 	 */
6480 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6481 }
6482 
6483 /* Can return -ENOMEM */
6484 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6485 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6486 		      u64 owner, u64 offset, int no_quota)
6487 {
6488 	int ret;
6489 	struct btrfs_fs_info *fs_info = root->fs_info;
6490 
6491 	if (btrfs_test_is_dummy_root(root))
6492 		return 0;
6493 
6494 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6495 
6496 	/*
6497 	 * tree log blocks never actually go into the extent allocation
6498 	 * tree, just update pinning info and exit early.
6499 	 */
6500 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6501 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6502 		/* unlocks the pinned mutex */
6503 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6504 		ret = 0;
6505 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6506 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6507 					num_bytes,
6508 					parent, root_objectid, (int)owner,
6509 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6510 	} else {
6511 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6512 						num_bytes,
6513 						parent, root_objectid, owner,
6514 						offset, BTRFS_DROP_DELAYED_REF,
6515 						NULL, no_quota);
6516 	}
6517 	return ret;
6518 }
6519 
6520 /*
6521  * when we wait for progress in the block group caching, its because
6522  * our allocation attempt failed at least once.  So, we must sleep
6523  * and let some progress happen before we try again.
6524  *
6525  * This function will sleep at least once waiting for new free space to
6526  * show up, and then it will check the block group free space numbers
6527  * for our min num_bytes.  Another option is to have it go ahead
6528  * and look in the rbtree for a free extent of a given size, but this
6529  * is a good start.
6530  *
6531  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6532  * any of the information in this block group.
6533  */
6534 static noinline void
6535 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6536 				u64 num_bytes)
6537 {
6538 	struct btrfs_caching_control *caching_ctl;
6539 
6540 	caching_ctl = get_caching_control(cache);
6541 	if (!caching_ctl)
6542 		return;
6543 
6544 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6545 		   (cache->free_space_ctl->free_space >= num_bytes));
6546 
6547 	put_caching_control(caching_ctl);
6548 }
6549 
6550 static noinline int
6551 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6552 {
6553 	struct btrfs_caching_control *caching_ctl;
6554 	int ret = 0;
6555 
6556 	caching_ctl = get_caching_control(cache);
6557 	if (!caching_ctl)
6558 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6559 
6560 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6561 	if (cache->cached == BTRFS_CACHE_ERROR)
6562 		ret = -EIO;
6563 	put_caching_control(caching_ctl);
6564 	return ret;
6565 }
6566 
6567 int __get_raid_index(u64 flags)
6568 {
6569 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6570 		return BTRFS_RAID_RAID10;
6571 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6572 		return BTRFS_RAID_RAID1;
6573 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6574 		return BTRFS_RAID_DUP;
6575 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6576 		return BTRFS_RAID_RAID0;
6577 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6578 		return BTRFS_RAID_RAID5;
6579 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6580 		return BTRFS_RAID_RAID6;
6581 
6582 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6583 }
6584 
6585 int get_block_group_index(struct btrfs_block_group_cache *cache)
6586 {
6587 	return __get_raid_index(cache->flags);
6588 }
6589 
6590 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6591 	[BTRFS_RAID_RAID10]	= "raid10",
6592 	[BTRFS_RAID_RAID1]	= "raid1",
6593 	[BTRFS_RAID_DUP]	= "dup",
6594 	[BTRFS_RAID_RAID0]	= "raid0",
6595 	[BTRFS_RAID_SINGLE]	= "single",
6596 	[BTRFS_RAID_RAID5]	= "raid5",
6597 	[BTRFS_RAID_RAID6]	= "raid6",
6598 };
6599 
6600 static const char *get_raid_name(enum btrfs_raid_types type)
6601 {
6602 	if (type >= BTRFS_NR_RAID_TYPES)
6603 		return NULL;
6604 
6605 	return btrfs_raid_type_names[type];
6606 }
6607 
6608 enum btrfs_loop_type {
6609 	LOOP_CACHING_NOWAIT = 0,
6610 	LOOP_CACHING_WAIT = 1,
6611 	LOOP_ALLOC_CHUNK = 2,
6612 	LOOP_NO_EMPTY_SIZE = 3,
6613 };
6614 
6615 static inline void
6616 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6617 		       int delalloc)
6618 {
6619 	if (delalloc)
6620 		down_read(&cache->data_rwsem);
6621 }
6622 
6623 static inline void
6624 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6625 		       int delalloc)
6626 {
6627 	btrfs_get_block_group(cache);
6628 	if (delalloc)
6629 		down_read(&cache->data_rwsem);
6630 }
6631 
6632 static struct btrfs_block_group_cache *
6633 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6634 		   struct btrfs_free_cluster *cluster,
6635 		   int delalloc)
6636 {
6637 	struct btrfs_block_group_cache *used_bg;
6638 	bool locked = false;
6639 again:
6640 	spin_lock(&cluster->refill_lock);
6641 	if (locked) {
6642 		if (used_bg == cluster->block_group)
6643 			return used_bg;
6644 
6645 		up_read(&used_bg->data_rwsem);
6646 		btrfs_put_block_group(used_bg);
6647 	}
6648 
6649 	used_bg = cluster->block_group;
6650 	if (!used_bg)
6651 		return NULL;
6652 
6653 	if (used_bg == block_group)
6654 		return used_bg;
6655 
6656 	btrfs_get_block_group(used_bg);
6657 
6658 	if (!delalloc)
6659 		return used_bg;
6660 
6661 	if (down_read_trylock(&used_bg->data_rwsem))
6662 		return used_bg;
6663 
6664 	spin_unlock(&cluster->refill_lock);
6665 	down_read(&used_bg->data_rwsem);
6666 	locked = true;
6667 	goto again;
6668 }
6669 
6670 static inline void
6671 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6672 			 int delalloc)
6673 {
6674 	if (delalloc)
6675 		up_read(&cache->data_rwsem);
6676 	btrfs_put_block_group(cache);
6677 }
6678 
6679 /*
6680  * walks the btree of allocated extents and find a hole of a given size.
6681  * The key ins is changed to record the hole:
6682  * ins->objectid == start position
6683  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6684  * ins->offset == the size of the hole.
6685  * Any available blocks before search_start are skipped.
6686  *
6687  * If there is no suitable free space, we will record the max size of
6688  * the free space extent currently.
6689  */
6690 static noinline int find_free_extent(struct btrfs_root *orig_root,
6691 				     u64 num_bytes, u64 empty_size,
6692 				     u64 hint_byte, struct btrfs_key *ins,
6693 				     u64 flags, int delalloc)
6694 {
6695 	int ret = 0;
6696 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6697 	struct btrfs_free_cluster *last_ptr = NULL;
6698 	struct btrfs_block_group_cache *block_group = NULL;
6699 	u64 search_start = 0;
6700 	u64 max_extent_size = 0;
6701 	int empty_cluster = 2 * 1024 * 1024;
6702 	struct btrfs_space_info *space_info;
6703 	int loop = 0;
6704 	int index = __get_raid_index(flags);
6705 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6706 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6707 	bool failed_cluster_refill = false;
6708 	bool failed_alloc = false;
6709 	bool use_cluster = true;
6710 	bool have_caching_bg = false;
6711 
6712 	WARN_ON(num_bytes < root->sectorsize);
6713 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6714 	ins->objectid = 0;
6715 	ins->offset = 0;
6716 
6717 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6718 
6719 	space_info = __find_space_info(root->fs_info, flags);
6720 	if (!space_info) {
6721 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6722 		return -ENOSPC;
6723 	}
6724 
6725 	/*
6726 	 * If the space info is for both data and metadata it means we have a
6727 	 * small filesystem and we can't use the clustering stuff.
6728 	 */
6729 	if (btrfs_mixed_space_info(space_info))
6730 		use_cluster = false;
6731 
6732 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6733 		last_ptr = &root->fs_info->meta_alloc_cluster;
6734 		if (!btrfs_test_opt(root, SSD))
6735 			empty_cluster = 64 * 1024;
6736 	}
6737 
6738 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6739 	    btrfs_test_opt(root, SSD)) {
6740 		last_ptr = &root->fs_info->data_alloc_cluster;
6741 	}
6742 
6743 	if (last_ptr) {
6744 		spin_lock(&last_ptr->lock);
6745 		if (last_ptr->block_group)
6746 			hint_byte = last_ptr->window_start;
6747 		spin_unlock(&last_ptr->lock);
6748 	}
6749 
6750 	search_start = max(search_start, first_logical_byte(root, 0));
6751 	search_start = max(search_start, hint_byte);
6752 
6753 	if (!last_ptr)
6754 		empty_cluster = 0;
6755 
6756 	if (search_start == hint_byte) {
6757 		block_group = btrfs_lookup_block_group(root->fs_info,
6758 						       search_start);
6759 		/*
6760 		 * we don't want to use the block group if it doesn't match our
6761 		 * allocation bits, or if its not cached.
6762 		 *
6763 		 * However if we are re-searching with an ideal block group
6764 		 * picked out then we don't care that the block group is cached.
6765 		 */
6766 		if (block_group && block_group_bits(block_group, flags) &&
6767 		    block_group->cached != BTRFS_CACHE_NO) {
6768 			down_read(&space_info->groups_sem);
6769 			if (list_empty(&block_group->list) ||
6770 			    block_group->ro) {
6771 				/*
6772 				 * someone is removing this block group,
6773 				 * we can't jump into the have_block_group
6774 				 * target because our list pointers are not
6775 				 * valid
6776 				 */
6777 				btrfs_put_block_group(block_group);
6778 				up_read(&space_info->groups_sem);
6779 			} else {
6780 				index = get_block_group_index(block_group);
6781 				btrfs_lock_block_group(block_group, delalloc);
6782 				goto have_block_group;
6783 			}
6784 		} else if (block_group) {
6785 			btrfs_put_block_group(block_group);
6786 		}
6787 	}
6788 search:
6789 	have_caching_bg = false;
6790 	down_read(&space_info->groups_sem);
6791 	list_for_each_entry(block_group, &space_info->block_groups[index],
6792 			    list) {
6793 		u64 offset;
6794 		int cached;
6795 
6796 		btrfs_grab_block_group(block_group, delalloc);
6797 		search_start = block_group->key.objectid;
6798 
6799 		/*
6800 		 * this can happen if we end up cycling through all the
6801 		 * raid types, but we want to make sure we only allocate
6802 		 * for the proper type.
6803 		 */
6804 		if (!block_group_bits(block_group, flags)) {
6805 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6806 				BTRFS_BLOCK_GROUP_RAID1 |
6807 				BTRFS_BLOCK_GROUP_RAID5 |
6808 				BTRFS_BLOCK_GROUP_RAID6 |
6809 				BTRFS_BLOCK_GROUP_RAID10;
6810 
6811 			/*
6812 			 * if they asked for extra copies and this block group
6813 			 * doesn't provide them, bail.  This does allow us to
6814 			 * fill raid0 from raid1.
6815 			 */
6816 			if ((flags & extra) && !(block_group->flags & extra))
6817 				goto loop;
6818 		}
6819 
6820 have_block_group:
6821 		cached = block_group_cache_done(block_group);
6822 		if (unlikely(!cached)) {
6823 			ret = cache_block_group(block_group, 0);
6824 			BUG_ON(ret < 0);
6825 			ret = 0;
6826 		}
6827 
6828 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6829 			goto loop;
6830 		if (unlikely(block_group->ro))
6831 			goto loop;
6832 
6833 		/*
6834 		 * Ok we want to try and use the cluster allocator, so
6835 		 * lets look there
6836 		 */
6837 		if (last_ptr) {
6838 			struct btrfs_block_group_cache *used_block_group;
6839 			unsigned long aligned_cluster;
6840 			/*
6841 			 * the refill lock keeps out other
6842 			 * people trying to start a new cluster
6843 			 */
6844 			used_block_group = btrfs_lock_cluster(block_group,
6845 							      last_ptr,
6846 							      delalloc);
6847 			if (!used_block_group)
6848 				goto refill_cluster;
6849 
6850 			if (used_block_group != block_group &&
6851 			    (used_block_group->ro ||
6852 			     !block_group_bits(used_block_group, flags)))
6853 				goto release_cluster;
6854 
6855 			offset = btrfs_alloc_from_cluster(used_block_group,
6856 						last_ptr,
6857 						num_bytes,
6858 						used_block_group->key.objectid,
6859 						&max_extent_size);
6860 			if (offset) {
6861 				/* we have a block, we're done */
6862 				spin_unlock(&last_ptr->refill_lock);
6863 				trace_btrfs_reserve_extent_cluster(root,
6864 						used_block_group,
6865 						search_start, num_bytes);
6866 				if (used_block_group != block_group) {
6867 					btrfs_release_block_group(block_group,
6868 								  delalloc);
6869 					block_group = used_block_group;
6870 				}
6871 				goto checks;
6872 			}
6873 
6874 			WARN_ON(last_ptr->block_group != used_block_group);
6875 release_cluster:
6876 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6877 			 * set up a new clusters, so lets just skip it
6878 			 * and let the allocator find whatever block
6879 			 * it can find.  If we reach this point, we
6880 			 * will have tried the cluster allocator
6881 			 * plenty of times and not have found
6882 			 * anything, so we are likely way too
6883 			 * fragmented for the clustering stuff to find
6884 			 * anything.
6885 			 *
6886 			 * However, if the cluster is taken from the
6887 			 * current block group, release the cluster
6888 			 * first, so that we stand a better chance of
6889 			 * succeeding in the unclustered
6890 			 * allocation.  */
6891 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6892 			    used_block_group != block_group) {
6893 				spin_unlock(&last_ptr->refill_lock);
6894 				btrfs_release_block_group(used_block_group,
6895 							  delalloc);
6896 				goto unclustered_alloc;
6897 			}
6898 
6899 			/*
6900 			 * this cluster didn't work out, free it and
6901 			 * start over
6902 			 */
6903 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6904 
6905 			if (used_block_group != block_group)
6906 				btrfs_release_block_group(used_block_group,
6907 							  delalloc);
6908 refill_cluster:
6909 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6910 				spin_unlock(&last_ptr->refill_lock);
6911 				goto unclustered_alloc;
6912 			}
6913 
6914 			aligned_cluster = max_t(unsigned long,
6915 						empty_cluster + empty_size,
6916 					      block_group->full_stripe_len);
6917 
6918 			/* allocate a cluster in this block group */
6919 			ret = btrfs_find_space_cluster(root, block_group,
6920 						       last_ptr, search_start,
6921 						       num_bytes,
6922 						       aligned_cluster);
6923 			if (ret == 0) {
6924 				/*
6925 				 * now pull our allocation out of this
6926 				 * cluster
6927 				 */
6928 				offset = btrfs_alloc_from_cluster(block_group,
6929 							last_ptr,
6930 							num_bytes,
6931 							search_start,
6932 							&max_extent_size);
6933 				if (offset) {
6934 					/* we found one, proceed */
6935 					spin_unlock(&last_ptr->refill_lock);
6936 					trace_btrfs_reserve_extent_cluster(root,
6937 						block_group, search_start,
6938 						num_bytes);
6939 					goto checks;
6940 				}
6941 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6942 				   && !failed_cluster_refill) {
6943 				spin_unlock(&last_ptr->refill_lock);
6944 
6945 				failed_cluster_refill = true;
6946 				wait_block_group_cache_progress(block_group,
6947 				       num_bytes + empty_cluster + empty_size);
6948 				goto have_block_group;
6949 			}
6950 
6951 			/*
6952 			 * at this point we either didn't find a cluster
6953 			 * or we weren't able to allocate a block from our
6954 			 * cluster.  Free the cluster we've been trying
6955 			 * to use, and go to the next block group
6956 			 */
6957 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6958 			spin_unlock(&last_ptr->refill_lock);
6959 			goto loop;
6960 		}
6961 
6962 unclustered_alloc:
6963 		spin_lock(&block_group->free_space_ctl->tree_lock);
6964 		if (cached &&
6965 		    block_group->free_space_ctl->free_space <
6966 		    num_bytes + empty_cluster + empty_size) {
6967 			if (block_group->free_space_ctl->free_space >
6968 			    max_extent_size)
6969 				max_extent_size =
6970 					block_group->free_space_ctl->free_space;
6971 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6972 			goto loop;
6973 		}
6974 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6975 
6976 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6977 						    num_bytes, empty_size,
6978 						    &max_extent_size);
6979 		/*
6980 		 * If we didn't find a chunk, and we haven't failed on this
6981 		 * block group before, and this block group is in the middle of
6982 		 * caching and we are ok with waiting, then go ahead and wait
6983 		 * for progress to be made, and set failed_alloc to true.
6984 		 *
6985 		 * If failed_alloc is true then we've already waited on this
6986 		 * block group once and should move on to the next block group.
6987 		 */
6988 		if (!offset && !failed_alloc && !cached &&
6989 		    loop > LOOP_CACHING_NOWAIT) {
6990 			wait_block_group_cache_progress(block_group,
6991 						num_bytes + empty_size);
6992 			failed_alloc = true;
6993 			goto have_block_group;
6994 		} else if (!offset) {
6995 			if (!cached)
6996 				have_caching_bg = true;
6997 			goto loop;
6998 		}
6999 checks:
7000 		search_start = ALIGN(offset, root->stripesize);
7001 
7002 		/* move on to the next group */
7003 		if (search_start + num_bytes >
7004 		    block_group->key.objectid + block_group->key.offset) {
7005 			btrfs_add_free_space(block_group, offset, num_bytes);
7006 			goto loop;
7007 		}
7008 
7009 		if (offset < search_start)
7010 			btrfs_add_free_space(block_group, offset,
7011 					     search_start - offset);
7012 		BUG_ON(offset > search_start);
7013 
7014 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7015 						  alloc_type, delalloc);
7016 		if (ret == -EAGAIN) {
7017 			btrfs_add_free_space(block_group, offset, num_bytes);
7018 			goto loop;
7019 		}
7020 
7021 		/* we are all good, lets return */
7022 		ins->objectid = search_start;
7023 		ins->offset = num_bytes;
7024 
7025 		trace_btrfs_reserve_extent(orig_root, block_group,
7026 					   search_start, num_bytes);
7027 		btrfs_release_block_group(block_group, delalloc);
7028 		break;
7029 loop:
7030 		failed_cluster_refill = false;
7031 		failed_alloc = false;
7032 		BUG_ON(index != get_block_group_index(block_group));
7033 		btrfs_release_block_group(block_group, delalloc);
7034 	}
7035 	up_read(&space_info->groups_sem);
7036 
7037 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7038 		goto search;
7039 
7040 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7041 		goto search;
7042 
7043 	/*
7044 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7045 	 *			caching kthreads as we move along
7046 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7047 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7048 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7049 	 *			again
7050 	 */
7051 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7052 		index = 0;
7053 		loop++;
7054 		if (loop == LOOP_ALLOC_CHUNK) {
7055 			struct btrfs_trans_handle *trans;
7056 			int exist = 0;
7057 
7058 			trans = current->journal_info;
7059 			if (trans)
7060 				exist = 1;
7061 			else
7062 				trans = btrfs_join_transaction(root);
7063 
7064 			if (IS_ERR(trans)) {
7065 				ret = PTR_ERR(trans);
7066 				goto out;
7067 			}
7068 
7069 			ret = do_chunk_alloc(trans, root, flags,
7070 					     CHUNK_ALLOC_FORCE);
7071 			/*
7072 			 * Do not bail out on ENOSPC since we
7073 			 * can do more things.
7074 			 */
7075 			if (ret < 0 && ret != -ENOSPC)
7076 				btrfs_abort_transaction(trans,
7077 							root, ret);
7078 			else
7079 				ret = 0;
7080 			if (!exist)
7081 				btrfs_end_transaction(trans, root);
7082 			if (ret)
7083 				goto out;
7084 		}
7085 
7086 		if (loop == LOOP_NO_EMPTY_SIZE) {
7087 			empty_size = 0;
7088 			empty_cluster = 0;
7089 		}
7090 
7091 		goto search;
7092 	} else if (!ins->objectid) {
7093 		ret = -ENOSPC;
7094 	} else if (ins->objectid) {
7095 		ret = 0;
7096 	}
7097 out:
7098 	if (ret == -ENOSPC)
7099 		ins->offset = max_extent_size;
7100 	return ret;
7101 }
7102 
7103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7104 			    int dump_block_groups)
7105 {
7106 	struct btrfs_block_group_cache *cache;
7107 	int index = 0;
7108 
7109 	spin_lock(&info->lock);
7110 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7111 	       info->flags,
7112 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7113 	       info->bytes_reserved - info->bytes_readonly,
7114 	       (info->full) ? "" : "not ");
7115 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7116 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7117 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7118 	       info->bytes_reserved, info->bytes_may_use,
7119 	       info->bytes_readonly);
7120 	spin_unlock(&info->lock);
7121 
7122 	if (!dump_block_groups)
7123 		return;
7124 
7125 	down_read(&info->groups_sem);
7126 again:
7127 	list_for_each_entry(cache, &info->block_groups[index], list) {
7128 		spin_lock(&cache->lock);
7129 		printk(KERN_INFO "BTRFS: "
7130 			   "block group %llu has %llu bytes, "
7131 			   "%llu used %llu pinned %llu reserved %s\n",
7132 		       cache->key.objectid, cache->key.offset,
7133 		       btrfs_block_group_used(&cache->item), cache->pinned,
7134 		       cache->reserved, cache->ro ? "[readonly]" : "");
7135 		btrfs_dump_free_space(cache, bytes);
7136 		spin_unlock(&cache->lock);
7137 	}
7138 	if (++index < BTRFS_NR_RAID_TYPES)
7139 		goto again;
7140 	up_read(&info->groups_sem);
7141 }
7142 
7143 int btrfs_reserve_extent(struct btrfs_root *root,
7144 			 u64 num_bytes, u64 min_alloc_size,
7145 			 u64 empty_size, u64 hint_byte,
7146 			 struct btrfs_key *ins, int is_data, int delalloc)
7147 {
7148 	bool final_tried = false;
7149 	u64 flags;
7150 	int ret;
7151 
7152 	flags = btrfs_get_alloc_profile(root, is_data);
7153 again:
7154 	WARN_ON(num_bytes < root->sectorsize);
7155 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7156 			       flags, delalloc);
7157 
7158 	if (ret == -ENOSPC) {
7159 		if (!final_tried && ins->offset) {
7160 			num_bytes = min(num_bytes >> 1, ins->offset);
7161 			num_bytes = round_down(num_bytes, root->sectorsize);
7162 			num_bytes = max(num_bytes, min_alloc_size);
7163 			if (num_bytes == min_alloc_size)
7164 				final_tried = true;
7165 			goto again;
7166 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7167 			struct btrfs_space_info *sinfo;
7168 
7169 			sinfo = __find_space_info(root->fs_info, flags);
7170 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7171 				flags, num_bytes);
7172 			if (sinfo)
7173 				dump_space_info(sinfo, num_bytes, 1);
7174 		}
7175 	}
7176 
7177 	return ret;
7178 }
7179 
7180 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7181 					u64 start, u64 len,
7182 					int pin, int delalloc)
7183 {
7184 	struct btrfs_block_group_cache *cache;
7185 	int ret = 0;
7186 
7187 	cache = btrfs_lookup_block_group(root->fs_info, start);
7188 	if (!cache) {
7189 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7190 			start);
7191 		return -ENOSPC;
7192 	}
7193 
7194 	if (pin)
7195 		pin_down_extent(root, cache, start, len, 1);
7196 	else {
7197 		if (btrfs_test_opt(root, DISCARD))
7198 			ret = btrfs_discard_extent(root, start, len, NULL);
7199 		btrfs_add_free_space(cache, start, len);
7200 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7201 	}
7202 
7203 	btrfs_put_block_group(cache);
7204 
7205 	trace_btrfs_reserved_extent_free(root, start, len);
7206 
7207 	return ret;
7208 }
7209 
7210 int btrfs_free_reserved_extent(struct btrfs_root *root,
7211 			       u64 start, u64 len, int delalloc)
7212 {
7213 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7214 }
7215 
7216 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7217 				       u64 start, u64 len)
7218 {
7219 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7220 }
7221 
7222 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7223 				      struct btrfs_root *root,
7224 				      u64 parent, u64 root_objectid,
7225 				      u64 flags, u64 owner, u64 offset,
7226 				      struct btrfs_key *ins, int ref_mod)
7227 {
7228 	int ret;
7229 	struct btrfs_fs_info *fs_info = root->fs_info;
7230 	struct btrfs_extent_item *extent_item;
7231 	struct btrfs_extent_inline_ref *iref;
7232 	struct btrfs_path *path;
7233 	struct extent_buffer *leaf;
7234 	int type;
7235 	u32 size;
7236 
7237 	if (parent > 0)
7238 		type = BTRFS_SHARED_DATA_REF_KEY;
7239 	else
7240 		type = BTRFS_EXTENT_DATA_REF_KEY;
7241 
7242 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7243 
7244 	path = btrfs_alloc_path();
7245 	if (!path)
7246 		return -ENOMEM;
7247 
7248 	path->leave_spinning = 1;
7249 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7250 				      ins, size);
7251 	if (ret) {
7252 		btrfs_free_path(path);
7253 		return ret;
7254 	}
7255 
7256 	leaf = path->nodes[0];
7257 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7258 				     struct btrfs_extent_item);
7259 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7260 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7261 	btrfs_set_extent_flags(leaf, extent_item,
7262 			       flags | BTRFS_EXTENT_FLAG_DATA);
7263 
7264 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7265 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7266 	if (parent > 0) {
7267 		struct btrfs_shared_data_ref *ref;
7268 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7269 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7270 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7271 	} else {
7272 		struct btrfs_extent_data_ref *ref;
7273 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7274 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7275 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7276 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7277 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7278 	}
7279 
7280 	btrfs_mark_buffer_dirty(path->nodes[0]);
7281 	btrfs_free_path(path);
7282 
7283 	/* Always set parent to 0 here since its exclusive anyway. */
7284 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7285 				      ins->objectid, ins->offset,
7286 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7287 	if (ret)
7288 		return ret;
7289 
7290 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7291 	if (ret) { /* -ENOENT, logic error */
7292 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7293 			ins->objectid, ins->offset);
7294 		BUG();
7295 	}
7296 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7297 	return ret;
7298 }
7299 
7300 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7301 				     struct btrfs_root *root,
7302 				     u64 parent, u64 root_objectid,
7303 				     u64 flags, struct btrfs_disk_key *key,
7304 				     int level, struct btrfs_key *ins,
7305 				     int no_quota)
7306 {
7307 	int ret;
7308 	struct btrfs_fs_info *fs_info = root->fs_info;
7309 	struct btrfs_extent_item *extent_item;
7310 	struct btrfs_tree_block_info *block_info;
7311 	struct btrfs_extent_inline_ref *iref;
7312 	struct btrfs_path *path;
7313 	struct extent_buffer *leaf;
7314 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7315 	u64 num_bytes = ins->offset;
7316 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7317 						 SKINNY_METADATA);
7318 
7319 	if (!skinny_metadata)
7320 		size += sizeof(*block_info);
7321 
7322 	path = btrfs_alloc_path();
7323 	if (!path) {
7324 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7325 						   root->nodesize);
7326 		return -ENOMEM;
7327 	}
7328 
7329 	path->leave_spinning = 1;
7330 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7331 				      ins, size);
7332 	if (ret) {
7333 		btrfs_free_path(path);
7334 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7335 						   root->nodesize);
7336 		return ret;
7337 	}
7338 
7339 	leaf = path->nodes[0];
7340 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7341 				     struct btrfs_extent_item);
7342 	btrfs_set_extent_refs(leaf, extent_item, 1);
7343 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7344 	btrfs_set_extent_flags(leaf, extent_item,
7345 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7346 
7347 	if (skinny_metadata) {
7348 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7349 		num_bytes = root->nodesize;
7350 	} else {
7351 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7352 		btrfs_set_tree_block_key(leaf, block_info, key);
7353 		btrfs_set_tree_block_level(leaf, block_info, level);
7354 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7355 	}
7356 
7357 	if (parent > 0) {
7358 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7359 		btrfs_set_extent_inline_ref_type(leaf, iref,
7360 						 BTRFS_SHARED_BLOCK_REF_KEY);
7361 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7362 	} else {
7363 		btrfs_set_extent_inline_ref_type(leaf, iref,
7364 						 BTRFS_TREE_BLOCK_REF_KEY);
7365 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7366 	}
7367 
7368 	btrfs_mark_buffer_dirty(leaf);
7369 	btrfs_free_path(path);
7370 
7371 	if (!no_quota) {
7372 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7373 					      ins->objectid, num_bytes,
7374 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7375 		if (ret)
7376 			return ret;
7377 	}
7378 
7379 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7380 				 1);
7381 	if (ret) { /* -ENOENT, logic error */
7382 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7383 			ins->objectid, ins->offset);
7384 		BUG();
7385 	}
7386 
7387 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7388 	return ret;
7389 }
7390 
7391 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7392 				     struct btrfs_root *root,
7393 				     u64 root_objectid, u64 owner,
7394 				     u64 offset, struct btrfs_key *ins)
7395 {
7396 	int ret;
7397 
7398 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7399 
7400 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7401 					 ins->offset, 0,
7402 					 root_objectid, owner, offset,
7403 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7404 	return ret;
7405 }
7406 
7407 /*
7408  * this is used by the tree logging recovery code.  It records that
7409  * an extent has been allocated and makes sure to clear the free
7410  * space cache bits as well
7411  */
7412 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7413 				   struct btrfs_root *root,
7414 				   u64 root_objectid, u64 owner, u64 offset,
7415 				   struct btrfs_key *ins)
7416 {
7417 	int ret;
7418 	struct btrfs_block_group_cache *block_group;
7419 
7420 	/*
7421 	 * Mixed block groups will exclude before processing the log so we only
7422 	 * need to do the exlude dance if this fs isn't mixed.
7423 	 */
7424 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7425 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7426 		if (ret)
7427 			return ret;
7428 	}
7429 
7430 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7431 	if (!block_group)
7432 		return -EINVAL;
7433 
7434 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7435 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7436 	BUG_ON(ret); /* logic error */
7437 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7438 					 0, owner, offset, ins, 1);
7439 	btrfs_put_block_group(block_group);
7440 	return ret;
7441 }
7442 
7443 static struct extent_buffer *
7444 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7445 		      u64 bytenr, int level)
7446 {
7447 	struct extent_buffer *buf;
7448 
7449 	buf = btrfs_find_create_tree_block(root, bytenr);
7450 	if (!buf)
7451 		return ERR_PTR(-ENOMEM);
7452 	btrfs_set_header_generation(buf, trans->transid);
7453 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7454 	btrfs_tree_lock(buf);
7455 	clean_tree_block(trans, root->fs_info, buf);
7456 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7457 
7458 	btrfs_set_lock_blocking(buf);
7459 	btrfs_set_buffer_uptodate(buf);
7460 
7461 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7462 		buf->log_index = root->log_transid % 2;
7463 		/*
7464 		 * we allow two log transactions at a time, use different
7465 		 * EXENT bit to differentiate dirty pages.
7466 		 */
7467 		if (buf->log_index == 0)
7468 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7469 					buf->start + buf->len - 1, GFP_NOFS);
7470 		else
7471 			set_extent_new(&root->dirty_log_pages, buf->start,
7472 					buf->start + buf->len - 1, GFP_NOFS);
7473 	} else {
7474 		buf->log_index = -1;
7475 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7476 			 buf->start + buf->len - 1, GFP_NOFS);
7477 	}
7478 	trans->blocks_used++;
7479 	/* this returns a buffer locked for blocking */
7480 	return buf;
7481 }
7482 
7483 static struct btrfs_block_rsv *
7484 use_block_rsv(struct btrfs_trans_handle *trans,
7485 	      struct btrfs_root *root, u32 blocksize)
7486 {
7487 	struct btrfs_block_rsv *block_rsv;
7488 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7489 	int ret;
7490 	bool global_updated = false;
7491 
7492 	block_rsv = get_block_rsv(trans, root);
7493 
7494 	if (unlikely(block_rsv->size == 0))
7495 		goto try_reserve;
7496 again:
7497 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7498 	if (!ret)
7499 		return block_rsv;
7500 
7501 	if (block_rsv->failfast)
7502 		return ERR_PTR(ret);
7503 
7504 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7505 		global_updated = true;
7506 		update_global_block_rsv(root->fs_info);
7507 		goto again;
7508 	}
7509 
7510 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7511 		static DEFINE_RATELIMIT_STATE(_rs,
7512 				DEFAULT_RATELIMIT_INTERVAL * 10,
7513 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7514 		if (__ratelimit(&_rs))
7515 			WARN(1, KERN_DEBUG
7516 				"BTRFS: block rsv returned %d\n", ret);
7517 	}
7518 try_reserve:
7519 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7520 				     BTRFS_RESERVE_NO_FLUSH);
7521 	if (!ret)
7522 		return block_rsv;
7523 	/*
7524 	 * If we couldn't reserve metadata bytes try and use some from
7525 	 * the global reserve if its space type is the same as the global
7526 	 * reservation.
7527 	 */
7528 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7529 	    block_rsv->space_info == global_rsv->space_info) {
7530 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7531 		if (!ret)
7532 			return global_rsv;
7533 	}
7534 	return ERR_PTR(ret);
7535 }
7536 
7537 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7538 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7539 {
7540 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7541 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7542 }
7543 
7544 /*
7545  * finds a free extent and does all the dirty work required for allocation
7546  * returns the key for the extent through ins, and a tree buffer for
7547  * the first block of the extent through buf.
7548  *
7549  * returns the tree buffer or an ERR_PTR on error.
7550  */
7551 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7552 					struct btrfs_root *root,
7553 					u64 parent, u64 root_objectid,
7554 					struct btrfs_disk_key *key, int level,
7555 					u64 hint, u64 empty_size)
7556 {
7557 	struct btrfs_key ins;
7558 	struct btrfs_block_rsv *block_rsv;
7559 	struct extent_buffer *buf;
7560 	struct btrfs_delayed_extent_op *extent_op;
7561 	u64 flags = 0;
7562 	int ret;
7563 	u32 blocksize = root->nodesize;
7564 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7565 						 SKINNY_METADATA);
7566 
7567 	if (btrfs_test_is_dummy_root(root)) {
7568 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7569 					    level);
7570 		if (!IS_ERR(buf))
7571 			root->alloc_bytenr += blocksize;
7572 		return buf;
7573 	}
7574 
7575 	block_rsv = use_block_rsv(trans, root, blocksize);
7576 	if (IS_ERR(block_rsv))
7577 		return ERR_CAST(block_rsv);
7578 
7579 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7580 				   empty_size, hint, &ins, 0, 0);
7581 	if (ret)
7582 		goto out_unuse;
7583 
7584 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7585 	if (IS_ERR(buf)) {
7586 		ret = PTR_ERR(buf);
7587 		goto out_free_reserved;
7588 	}
7589 
7590 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7591 		if (parent == 0)
7592 			parent = ins.objectid;
7593 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7594 	} else
7595 		BUG_ON(parent > 0);
7596 
7597 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7598 		extent_op = btrfs_alloc_delayed_extent_op();
7599 		if (!extent_op) {
7600 			ret = -ENOMEM;
7601 			goto out_free_buf;
7602 		}
7603 		if (key)
7604 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7605 		else
7606 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7607 		extent_op->flags_to_set = flags;
7608 		if (skinny_metadata)
7609 			extent_op->update_key = 0;
7610 		else
7611 			extent_op->update_key = 1;
7612 		extent_op->update_flags = 1;
7613 		extent_op->is_data = 0;
7614 		extent_op->level = level;
7615 
7616 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7617 						 ins.objectid, ins.offset,
7618 						 parent, root_objectid, level,
7619 						 BTRFS_ADD_DELAYED_EXTENT,
7620 						 extent_op, 0);
7621 		if (ret)
7622 			goto out_free_delayed;
7623 	}
7624 	return buf;
7625 
7626 out_free_delayed:
7627 	btrfs_free_delayed_extent_op(extent_op);
7628 out_free_buf:
7629 	free_extent_buffer(buf);
7630 out_free_reserved:
7631 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7632 out_unuse:
7633 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7634 	return ERR_PTR(ret);
7635 }
7636 
7637 struct walk_control {
7638 	u64 refs[BTRFS_MAX_LEVEL];
7639 	u64 flags[BTRFS_MAX_LEVEL];
7640 	struct btrfs_key update_progress;
7641 	int stage;
7642 	int level;
7643 	int shared_level;
7644 	int update_ref;
7645 	int keep_locks;
7646 	int reada_slot;
7647 	int reada_count;
7648 	int for_reloc;
7649 };
7650 
7651 #define DROP_REFERENCE	1
7652 #define UPDATE_BACKREF	2
7653 
7654 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7655 				     struct btrfs_root *root,
7656 				     struct walk_control *wc,
7657 				     struct btrfs_path *path)
7658 {
7659 	u64 bytenr;
7660 	u64 generation;
7661 	u64 refs;
7662 	u64 flags;
7663 	u32 nritems;
7664 	u32 blocksize;
7665 	struct btrfs_key key;
7666 	struct extent_buffer *eb;
7667 	int ret;
7668 	int slot;
7669 	int nread = 0;
7670 
7671 	if (path->slots[wc->level] < wc->reada_slot) {
7672 		wc->reada_count = wc->reada_count * 2 / 3;
7673 		wc->reada_count = max(wc->reada_count, 2);
7674 	} else {
7675 		wc->reada_count = wc->reada_count * 3 / 2;
7676 		wc->reada_count = min_t(int, wc->reada_count,
7677 					BTRFS_NODEPTRS_PER_BLOCK(root));
7678 	}
7679 
7680 	eb = path->nodes[wc->level];
7681 	nritems = btrfs_header_nritems(eb);
7682 	blocksize = root->nodesize;
7683 
7684 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7685 		if (nread >= wc->reada_count)
7686 			break;
7687 
7688 		cond_resched();
7689 		bytenr = btrfs_node_blockptr(eb, slot);
7690 		generation = btrfs_node_ptr_generation(eb, slot);
7691 
7692 		if (slot == path->slots[wc->level])
7693 			goto reada;
7694 
7695 		if (wc->stage == UPDATE_BACKREF &&
7696 		    generation <= root->root_key.offset)
7697 			continue;
7698 
7699 		/* We don't lock the tree block, it's OK to be racy here */
7700 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7701 					       wc->level - 1, 1, &refs,
7702 					       &flags);
7703 		/* We don't care about errors in readahead. */
7704 		if (ret < 0)
7705 			continue;
7706 		BUG_ON(refs == 0);
7707 
7708 		if (wc->stage == DROP_REFERENCE) {
7709 			if (refs == 1)
7710 				goto reada;
7711 
7712 			if (wc->level == 1 &&
7713 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7714 				continue;
7715 			if (!wc->update_ref ||
7716 			    generation <= root->root_key.offset)
7717 				continue;
7718 			btrfs_node_key_to_cpu(eb, &key, slot);
7719 			ret = btrfs_comp_cpu_keys(&key,
7720 						  &wc->update_progress);
7721 			if (ret < 0)
7722 				continue;
7723 		} else {
7724 			if (wc->level == 1 &&
7725 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7726 				continue;
7727 		}
7728 reada:
7729 		readahead_tree_block(root, bytenr);
7730 		nread++;
7731 	}
7732 	wc->reada_slot = slot;
7733 }
7734 
7735 static int account_leaf_items(struct btrfs_trans_handle *trans,
7736 			      struct btrfs_root *root,
7737 			      struct extent_buffer *eb)
7738 {
7739 	int nr = btrfs_header_nritems(eb);
7740 	int i, extent_type, ret;
7741 	struct btrfs_key key;
7742 	struct btrfs_file_extent_item *fi;
7743 	u64 bytenr, num_bytes;
7744 
7745 	for (i = 0; i < nr; i++) {
7746 		btrfs_item_key_to_cpu(eb, &key, i);
7747 
7748 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7749 			continue;
7750 
7751 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7752 		/* filter out non qgroup-accountable extents  */
7753 		extent_type = btrfs_file_extent_type(eb, fi);
7754 
7755 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7756 			continue;
7757 
7758 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7759 		if (!bytenr)
7760 			continue;
7761 
7762 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7763 
7764 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7765 					      root->objectid,
7766 					      bytenr, num_bytes,
7767 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7768 		if (ret)
7769 			return ret;
7770 	}
7771 	return 0;
7772 }
7773 
7774 /*
7775  * Walk up the tree from the bottom, freeing leaves and any interior
7776  * nodes which have had all slots visited. If a node (leaf or
7777  * interior) is freed, the node above it will have it's slot
7778  * incremented. The root node will never be freed.
7779  *
7780  * At the end of this function, we should have a path which has all
7781  * slots incremented to the next position for a search. If we need to
7782  * read a new node it will be NULL and the node above it will have the
7783  * correct slot selected for a later read.
7784  *
7785  * If we increment the root nodes slot counter past the number of
7786  * elements, 1 is returned to signal completion of the search.
7787  */
7788 static int adjust_slots_upwards(struct btrfs_root *root,
7789 				struct btrfs_path *path, int root_level)
7790 {
7791 	int level = 0;
7792 	int nr, slot;
7793 	struct extent_buffer *eb;
7794 
7795 	if (root_level == 0)
7796 		return 1;
7797 
7798 	while (level <= root_level) {
7799 		eb = path->nodes[level];
7800 		nr = btrfs_header_nritems(eb);
7801 		path->slots[level]++;
7802 		slot = path->slots[level];
7803 		if (slot >= nr || level == 0) {
7804 			/*
7805 			 * Don't free the root -  we will detect this
7806 			 * condition after our loop and return a
7807 			 * positive value for caller to stop walking the tree.
7808 			 */
7809 			if (level != root_level) {
7810 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7811 				path->locks[level] = 0;
7812 
7813 				free_extent_buffer(eb);
7814 				path->nodes[level] = NULL;
7815 				path->slots[level] = 0;
7816 			}
7817 		} else {
7818 			/*
7819 			 * We have a valid slot to walk back down
7820 			 * from. Stop here so caller can process these
7821 			 * new nodes.
7822 			 */
7823 			break;
7824 		}
7825 
7826 		level++;
7827 	}
7828 
7829 	eb = path->nodes[root_level];
7830 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7831 		return 1;
7832 
7833 	return 0;
7834 }
7835 
7836 /*
7837  * root_eb is the subtree root and is locked before this function is called.
7838  */
7839 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7840 				  struct btrfs_root *root,
7841 				  struct extent_buffer *root_eb,
7842 				  u64 root_gen,
7843 				  int root_level)
7844 {
7845 	int ret = 0;
7846 	int level;
7847 	struct extent_buffer *eb = root_eb;
7848 	struct btrfs_path *path = NULL;
7849 
7850 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7851 	BUG_ON(root_eb == NULL);
7852 
7853 	if (!root->fs_info->quota_enabled)
7854 		return 0;
7855 
7856 	if (!extent_buffer_uptodate(root_eb)) {
7857 		ret = btrfs_read_buffer(root_eb, root_gen);
7858 		if (ret)
7859 			goto out;
7860 	}
7861 
7862 	if (root_level == 0) {
7863 		ret = account_leaf_items(trans, root, root_eb);
7864 		goto out;
7865 	}
7866 
7867 	path = btrfs_alloc_path();
7868 	if (!path)
7869 		return -ENOMEM;
7870 
7871 	/*
7872 	 * Walk down the tree.  Missing extent blocks are filled in as
7873 	 * we go. Metadata is accounted every time we read a new
7874 	 * extent block.
7875 	 *
7876 	 * When we reach a leaf, we account for file extent items in it,
7877 	 * walk back up the tree (adjusting slot pointers as we go)
7878 	 * and restart the search process.
7879 	 */
7880 	extent_buffer_get(root_eb); /* For path */
7881 	path->nodes[root_level] = root_eb;
7882 	path->slots[root_level] = 0;
7883 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7884 walk_down:
7885 	level = root_level;
7886 	while (level >= 0) {
7887 		if (path->nodes[level] == NULL) {
7888 			int parent_slot;
7889 			u64 child_gen;
7890 			u64 child_bytenr;
7891 
7892 			/* We need to get child blockptr/gen from
7893 			 * parent before we can read it. */
7894 			eb = path->nodes[level + 1];
7895 			parent_slot = path->slots[level + 1];
7896 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7897 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7898 
7899 			eb = read_tree_block(root, child_bytenr, child_gen);
7900 			if (!eb || !extent_buffer_uptodate(eb)) {
7901 				ret = -EIO;
7902 				goto out;
7903 			}
7904 
7905 			path->nodes[level] = eb;
7906 			path->slots[level] = 0;
7907 
7908 			btrfs_tree_read_lock(eb);
7909 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7910 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7911 
7912 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7913 						root->objectid,
7914 						child_bytenr,
7915 						root->nodesize,
7916 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7917 						0);
7918 			if (ret)
7919 				goto out;
7920 
7921 		}
7922 
7923 		if (level == 0) {
7924 			ret = account_leaf_items(trans, root, path->nodes[level]);
7925 			if (ret)
7926 				goto out;
7927 
7928 			/* Nonzero return here means we completed our search */
7929 			ret = adjust_slots_upwards(root, path, root_level);
7930 			if (ret)
7931 				break;
7932 
7933 			/* Restart search with new slots */
7934 			goto walk_down;
7935 		}
7936 
7937 		level--;
7938 	}
7939 
7940 	ret = 0;
7941 out:
7942 	btrfs_free_path(path);
7943 
7944 	return ret;
7945 }
7946 
7947 /*
7948  * helper to process tree block while walking down the tree.
7949  *
7950  * when wc->stage == UPDATE_BACKREF, this function updates
7951  * back refs for pointers in the block.
7952  *
7953  * NOTE: return value 1 means we should stop walking down.
7954  */
7955 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7956 				   struct btrfs_root *root,
7957 				   struct btrfs_path *path,
7958 				   struct walk_control *wc, int lookup_info)
7959 {
7960 	int level = wc->level;
7961 	struct extent_buffer *eb = path->nodes[level];
7962 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7963 	int ret;
7964 
7965 	if (wc->stage == UPDATE_BACKREF &&
7966 	    btrfs_header_owner(eb) != root->root_key.objectid)
7967 		return 1;
7968 
7969 	/*
7970 	 * when reference count of tree block is 1, it won't increase
7971 	 * again. once full backref flag is set, we never clear it.
7972 	 */
7973 	if (lookup_info &&
7974 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7975 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7976 		BUG_ON(!path->locks[level]);
7977 		ret = btrfs_lookup_extent_info(trans, root,
7978 					       eb->start, level, 1,
7979 					       &wc->refs[level],
7980 					       &wc->flags[level]);
7981 		BUG_ON(ret == -ENOMEM);
7982 		if (ret)
7983 			return ret;
7984 		BUG_ON(wc->refs[level] == 0);
7985 	}
7986 
7987 	if (wc->stage == DROP_REFERENCE) {
7988 		if (wc->refs[level] > 1)
7989 			return 1;
7990 
7991 		if (path->locks[level] && !wc->keep_locks) {
7992 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7993 			path->locks[level] = 0;
7994 		}
7995 		return 0;
7996 	}
7997 
7998 	/* wc->stage == UPDATE_BACKREF */
7999 	if (!(wc->flags[level] & flag)) {
8000 		BUG_ON(!path->locks[level]);
8001 		ret = btrfs_inc_ref(trans, root, eb, 1);
8002 		BUG_ON(ret); /* -ENOMEM */
8003 		ret = btrfs_dec_ref(trans, root, eb, 0);
8004 		BUG_ON(ret); /* -ENOMEM */
8005 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8006 						  eb->len, flag,
8007 						  btrfs_header_level(eb), 0);
8008 		BUG_ON(ret); /* -ENOMEM */
8009 		wc->flags[level] |= flag;
8010 	}
8011 
8012 	/*
8013 	 * the block is shared by multiple trees, so it's not good to
8014 	 * keep the tree lock
8015 	 */
8016 	if (path->locks[level] && level > 0) {
8017 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8018 		path->locks[level] = 0;
8019 	}
8020 	return 0;
8021 }
8022 
8023 /*
8024  * helper to process tree block pointer.
8025  *
8026  * when wc->stage == DROP_REFERENCE, this function checks
8027  * reference count of the block pointed to. if the block
8028  * is shared and we need update back refs for the subtree
8029  * rooted at the block, this function changes wc->stage to
8030  * UPDATE_BACKREF. if the block is shared and there is no
8031  * need to update back, this function drops the reference
8032  * to the block.
8033  *
8034  * NOTE: return value 1 means we should stop walking down.
8035  */
8036 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8037 				 struct btrfs_root *root,
8038 				 struct btrfs_path *path,
8039 				 struct walk_control *wc, int *lookup_info)
8040 {
8041 	u64 bytenr;
8042 	u64 generation;
8043 	u64 parent;
8044 	u32 blocksize;
8045 	struct btrfs_key key;
8046 	struct extent_buffer *next;
8047 	int level = wc->level;
8048 	int reada = 0;
8049 	int ret = 0;
8050 	bool need_account = false;
8051 
8052 	generation = btrfs_node_ptr_generation(path->nodes[level],
8053 					       path->slots[level]);
8054 	/*
8055 	 * if the lower level block was created before the snapshot
8056 	 * was created, we know there is no need to update back refs
8057 	 * for the subtree
8058 	 */
8059 	if (wc->stage == UPDATE_BACKREF &&
8060 	    generation <= root->root_key.offset) {
8061 		*lookup_info = 1;
8062 		return 1;
8063 	}
8064 
8065 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8066 	blocksize = root->nodesize;
8067 
8068 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8069 	if (!next) {
8070 		next = btrfs_find_create_tree_block(root, bytenr);
8071 		if (!next)
8072 			return -ENOMEM;
8073 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8074 					       level - 1);
8075 		reada = 1;
8076 	}
8077 	btrfs_tree_lock(next);
8078 	btrfs_set_lock_blocking(next);
8079 
8080 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8081 				       &wc->refs[level - 1],
8082 				       &wc->flags[level - 1]);
8083 	if (ret < 0) {
8084 		btrfs_tree_unlock(next);
8085 		return ret;
8086 	}
8087 
8088 	if (unlikely(wc->refs[level - 1] == 0)) {
8089 		btrfs_err(root->fs_info, "Missing references.");
8090 		BUG();
8091 	}
8092 	*lookup_info = 0;
8093 
8094 	if (wc->stage == DROP_REFERENCE) {
8095 		if (wc->refs[level - 1] > 1) {
8096 			need_account = true;
8097 			if (level == 1 &&
8098 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8099 				goto skip;
8100 
8101 			if (!wc->update_ref ||
8102 			    generation <= root->root_key.offset)
8103 				goto skip;
8104 
8105 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8106 					      path->slots[level]);
8107 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8108 			if (ret < 0)
8109 				goto skip;
8110 
8111 			wc->stage = UPDATE_BACKREF;
8112 			wc->shared_level = level - 1;
8113 		}
8114 	} else {
8115 		if (level == 1 &&
8116 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8117 			goto skip;
8118 	}
8119 
8120 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8121 		btrfs_tree_unlock(next);
8122 		free_extent_buffer(next);
8123 		next = NULL;
8124 		*lookup_info = 1;
8125 	}
8126 
8127 	if (!next) {
8128 		if (reada && level == 1)
8129 			reada_walk_down(trans, root, wc, path);
8130 		next = read_tree_block(root, bytenr, generation);
8131 		if (!next || !extent_buffer_uptodate(next)) {
8132 			free_extent_buffer(next);
8133 			return -EIO;
8134 		}
8135 		btrfs_tree_lock(next);
8136 		btrfs_set_lock_blocking(next);
8137 	}
8138 
8139 	level--;
8140 	BUG_ON(level != btrfs_header_level(next));
8141 	path->nodes[level] = next;
8142 	path->slots[level] = 0;
8143 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8144 	wc->level = level;
8145 	if (wc->level == 1)
8146 		wc->reada_slot = 0;
8147 	return 0;
8148 skip:
8149 	wc->refs[level - 1] = 0;
8150 	wc->flags[level - 1] = 0;
8151 	if (wc->stage == DROP_REFERENCE) {
8152 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8153 			parent = path->nodes[level]->start;
8154 		} else {
8155 			BUG_ON(root->root_key.objectid !=
8156 			       btrfs_header_owner(path->nodes[level]));
8157 			parent = 0;
8158 		}
8159 
8160 		if (need_account) {
8161 			ret = account_shared_subtree(trans, root, next,
8162 						     generation, level - 1);
8163 			if (ret) {
8164 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8165 					"%d accounting shared subtree. Quota "
8166 					"is out of sync, rescan required.\n",
8167 					root->fs_info->sb->s_id, ret);
8168 			}
8169 		}
8170 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8171 				root->root_key.objectid, level - 1, 0, 0);
8172 		BUG_ON(ret); /* -ENOMEM */
8173 	}
8174 	btrfs_tree_unlock(next);
8175 	free_extent_buffer(next);
8176 	*lookup_info = 1;
8177 	return 1;
8178 }
8179 
8180 /*
8181  * helper to process tree block while walking up the tree.
8182  *
8183  * when wc->stage == DROP_REFERENCE, this function drops
8184  * reference count on the block.
8185  *
8186  * when wc->stage == UPDATE_BACKREF, this function changes
8187  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8188  * to UPDATE_BACKREF previously while processing the block.
8189  *
8190  * NOTE: return value 1 means we should stop walking up.
8191  */
8192 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8193 				 struct btrfs_root *root,
8194 				 struct btrfs_path *path,
8195 				 struct walk_control *wc)
8196 {
8197 	int ret;
8198 	int level = wc->level;
8199 	struct extent_buffer *eb = path->nodes[level];
8200 	u64 parent = 0;
8201 
8202 	if (wc->stage == UPDATE_BACKREF) {
8203 		BUG_ON(wc->shared_level < level);
8204 		if (level < wc->shared_level)
8205 			goto out;
8206 
8207 		ret = find_next_key(path, level + 1, &wc->update_progress);
8208 		if (ret > 0)
8209 			wc->update_ref = 0;
8210 
8211 		wc->stage = DROP_REFERENCE;
8212 		wc->shared_level = -1;
8213 		path->slots[level] = 0;
8214 
8215 		/*
8216 		 * check reference count again if the block isn't locked.
8217 		 * we should start walking down the tree again if reference
8218 		 * count is one.
8219 		 */
8220 		if (!path->locks[level]) {
8221 			BUG_ON(level == 0);
8222 			btrfs_tree_lock(eb);
8223 			btrfs_set_lock_blocking(eb);
8224 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8225 
8226 			ret = btrfs_lookup_extent_info(trans, root,
8227 						       eb->start, level, 1,
8228 						       &wc->refs[level],
8229 						       &wc->flags[level]);
8230 			if (ret < 0) {
8231 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8232 				path->locks[level] = 0;
8233 				return ret;
8234 			}
8235 			BUG_ON(wc->refs[level] == 0);
8236 			if (wc->refs[level] == 1) {
8237 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8238 				path->locks[level] = 0;
8239 				return 1;
8240 			}
8241 		}
8242 	}
8243 
8244 	/* wc->stage == DROP_REFERENCE */
8245 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8246 
8247 	if (wc->refs[level] == 1) {
8248 		if (level == 0) {
8249 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8250 				ret = btrfs_dec_ref(trans, root, eb, 1);
8251 			else
8252 				ret = btrfs_dec_ref(trans, root, eb, 0);
8253 			BUG_ON(ret); /* -ENOMEM */
8254 			ret = account_leaf_items(trans, root, eb);
8255 			if (ret) {
8256 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8257 					"%d accounting leaf items. Quota "
8258 					"is out of sync, rescan required.\n",
8259 					root->fs_info->sb->s_id, ret);
8260 			}
8261 		}
8262 		/* make block locked assertion in clean_tree_block happy */
8263 		if (!path->locks[level] &&
8264 		    btrfs_header_generation(eb) == trans->transid) {
8265 			btrfs_tree_lock(eb);
8266 			btrfs_set_lock_blocking(eb);
8267 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8268 		}
8269 		clean_tree_block(trans, root->fs_info, eb);
8270 	}
8271 
8272 	if (eb == root->node) {
8273 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8274 			parent = eb->start;
8275 		else
8276 			BUG_ON(root->root_key.objectid !=
8277 			       btrfs_header_owner(eb));
8278 	} else {
8279 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8280 			parent = path->nodes[level + 1]->start;
8281 		else
8282 			BUG_ON(root->root_key.objectid !=
8283 			       btrfs_header_owner(path->nodes[level + 1]));
8284 	}
8285 
8286 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8287 out:
8288 	wc->refs[level] = 0;
8289 	wc->flags[level] = 0;
8290 	return 0;
8291 }
8292 
8293 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8294 				   struct btrfs_root *root,
8295 				   struct btrfs_path *path,
8296 				   struct walk_control *wc)
8297 {
8298 	int level = wc->level;
8299 	int lookup_info = 1;
8300 	int ret;
8301 
8302 	while (level >= 0) {
8303 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8304 		if (ret > 0)
8305 			break;
8306 
8307 		if (level == 0)
8308 			break;
8309 
8310 		if (path->slots[level] >=
8311 		    btrfs_header_nritems(path->nodes[level]))
8312 			break;
8313 
8314 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8315 		if (ret > 0) {
8316 			path->slots[level]++;
8317 			continue;
8318 		} else if (ret < 0)
8319 			return ret;
8320 		level = wc->level;
8321 	}
8322 	return 0;
8323 }
8324 
8325 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8326 				 struct btrfs_root *root,
8327 				 struct btrfs_path *path,
8328 				 struct walk_control *wc, int max_level)
8329 {
8330 	int level = wc->level;
8331 	int ret;
8332 
8333 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8334 	while (level < max_level && path->nodes[level]) {
8335 		wc->level = level;
8336 		if (path->slots[level] + 1 <
8337 		    btrfs_header_nritems(path->nodes[level])) {
8338 			path->slots[level]++;
8339 			return 0;
8340 		} else {
8341 			ret = walk_up_proc(trans, root, path, wc);
8342 			if (ret > 0)
8343 				return 0;
8344 
8345 			if (path->locks[level]) {
8346 				btrfs_tree_unlock_rw(path->nodes[level],
8347 						     path->locks[level]);
8348 				path->locks[level] = 0;
8349 			}
8350 			free_extent_buffer(path->nodes[level]);
8351 			path->nodes[level] = NULL;
8352 			level++;
8353 		}
8354 	}
8355 	return 1;
8356 }
8357 
8358 /*
8359  * drop a subvolume tree.
8360  *
8361  * this function traverses the tree freeing any blocks that only
8362  * referenced by the tree.
8363  *
8364  * when a shared tree block is found. this function decreases its
8365  * reference count by one. if update_ref is true, this function
8366  * also make sure backrefs for the shared block and all lower level
8367  * blocks are properly updated.
8368  *
8369  * If called with for_reloc == 0, may exit early with -EAGAIN
8370  */
8371 int btrfs_drop_snapshot(struct btrfs_root *root,
8372 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8373 			 int for_reloc)
8374 {
8375 	struct btrfs_path *path;
8376 	struct btrfs_trans_handle *trans;
8377 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8378 	struct btrfs_root_item *root_item = &root->root_item;
8379 	struct walk_control *wc;
8380 	struct btrfs_key key;
8381 	int err = 0;
8382 	int ret;
8383 	int level;
8384 	bool root_dropped = false;
8385 
8386 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8387 
8388 	path = btrfs_alloc_path();
8389 	if (!path) {
8390 		err = -ENOMEM;
8391 		goto out;
8392 	}
8393 
8394 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8395 	if (!wc) {
8396 		btrfs_free_path(path);
8397 		err = -ENOMEM;
8398 		goto out;
8399 	}
8400 
8401 	trans = btrfs_start_transaction(tree_root, 0);
8402 	if (IS_ERR(trans)) {
8403 		err = PTR_ERR(trans);
8404 		goto out_free;
8405 	}
8406 
8407 	if (block_rsv)
8408 		trans->block_rsv = block_rsv;
8409 
8410 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8411 		level = btrfs_header_level(root->node);
8412 		path->nodes[level] = btrfs_lock_root_node(root);
8413 		btrfs_set_lock_blocking(path->nodes[level]);
8414 		path->slots[level] = 0;
8415 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8416 		memset(&wc->update_progress, 0,
8417 		       sizeof(wc->update_progress));
8418 	} else {
8419 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8420 		memcpy(&wc->update_progress, &key,
8421 		       sizeof(wc->update_progress));
8422 
8423 		level = root_item->drop_level;
8424 		BUG_ON(level == 0);
8425 		path->lowest_level = level;
8426 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8427 		path->lowest_level = 0;
8428 		if (ret < 0) {
8429 			err = ret;
8430 			goto out_end_trans;
8431 		}
8432 		WARN_ON(ret > 0);
8433 
8434 		/*
8435 		 * unlock our path, this is safe because only this
8436 		 * function is allowed to delete this snapshot
8437 		 */
8438 		btrfs_unlock_up_safe(path, 0);
8439 
8440 		level = btrfs_header_level(root->node);
8441 		while (1) {
8442 			btrfs_tree_lock(path->nodes[level]);
8443 			btrfs_set_lock_blocking(path->nodes[level]);
8444 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8445 
8446 			ret = btrfs_lookup_extent_info(trans, root,
8447 						path->nodes[level]->start,
8448 						level, 1, &wc->refs[level],
8449 						&wc->flags[level]);
8450 			if (ret < 0) {
8451 				err = ret;
8452 				goto out_end_trans;
8453 			}
8454 			BUG_ON(wc->refs[level] == 0);
8455 
8456 			if (level == root_item->drop_level)
8457 				break;
8458 
8459 			btrfs_tree_unlock(path->nodes[level]);
8460 			path->locks[level] = 0;
8461 			WARN_ON(wc->refs[level] != 1);
8462 			level--;
8463 		}
8464 	}
8465 
8466 	wc->level = level;
8467 	wc->shared_level = -1;
8468 	wc->stage = DROP_REFERENCE;
8469 	wc->update_ref = update_ref;
8470 	wc->keep_locks = 0;
8471 	wc->for_reloc = for_reloc;
8472 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8473 
8474 	while (1) {
8475 
8476 		ret = walk_down_tree(trans, root, path, wc);
8477 		if (ret < 0) {
8478 			err = ret;
8479 			break;
8480 		}
8481 
8482 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8483 		if (ret < 0) {
8484 			err = ret;
8485 			break;
8486 		}
8487 
8488 		if (ret > 0) {
8489 			BUG_ON(wc->stage != DROP_REFERENCE);
8490 			break;
8491 		}
8492 
8493 		if (wc->stage == DROP_REFERENCE) {
8494 			level = wc->level;
8495 			btrfs_node_key(path->nodes[level],
8496 				       &root_item->drop_progress,
8497 				       path->slots[level]);
8498 			root_item->drop_level = level;
8499 		}
8500 
8501 		BUG_ON(wc->level == 0);
8502 		if (btrfs_should_end_transaction(trans, tree_root) ||
8503 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8504 			ret = btrfs_update_root(trans, tree_root,
8505 						&root->root_key,
8506 						root_item);
8507 			if (ret) {
8508 				btrfs_abort_transaction(trans, tree_root, ret);
8509 				err = ret;
8510 				goto out_end_trans;
8511 			}
8512 
8513 			/*
8514 			 * Qgroup update accounting is run from
8515 			 * delayed ref handling. This usually works
8516 			 * out because delayed refs are normally the
8517 			 * only way qgroup updates are added. However,
8518 			 * we may have added updates during our tree
8519 			 * walk so run qgroups here to make sure we
8520 			 * don't lose any updates.
8521 			 */
8522 			ret = btrfs_delayed_qgroup_accounting(trans,
8523 							      root->fs_info);
8524 			if (ret)
8525 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8526 						   "running qgroup updates "
8527 						   "during snapshot delete. "
8528 						   "Quota is out of sync, "
8529 						   "rescan required.\n", ret);
8530 
8531 			btrfs_end_transaction_throttle(trans, tree_root);
8532 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8533 				pr_debug("BTRFS: drop snapshot early exit\n");
8534 				err = -EAGAIN;
8535 				goto out_free;
8536 			}
8537 
8538 			trans = btrfs_start_transaction(tree_root, 0);
8539 			if (IS_ERR(trans)) {
8540 				err = PTR_ERR(trans);
8541 				goto out_free;
8542 			}
8543 			if (block_rsv)
8544 				trans->block_rsv = block_rsv;
8545 		}
8546 	}
8547 	btrfs_release_path(path);
8548 	if (err)
8549 		goto out_end_trans;
8550 
8551 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8552 	if (ret) {
8553 		btrfs_abort_transaction(trans, tree_root, ret);
8554 		goto out_end_trans;
8555 	}
8556 
8557 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8558 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8559 				      NULL, NULL);
8560 		if (ret < 0) {
8561 			btrfs_abort_transaction(trans, tree_root, ret);
8562 			err = ret;
8563 			goto out_end_trans;
8564 		} else if (ret > 0) {
8565 			/* if we fail to delete the orphan item this time
8566 			 * around, it'll get picked up the next time.
8567 			 *
8568 			 * The most common failure here is just -ENOENT.
8569 			 */
8570 			btrfs_del_orphan_item(trans, tree_root,
8571 					      root->root_key.objectid);
8572 		}
8573 	}
8574 
8575 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8576 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8577 	} else {
8578 		free_extent_buffer(root->node);
8579 		free_extent_buffer(root->commit_root);
8580 		btrfs_put_fs_root(root);
8581 	}
8582 	root_dropped = true;
8583 out_end_trans:
8584 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8585 	if (ret)
8586 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8587 				   "running qgroup updates "
8588 				   "during snapshot delete. "
8589 				   "Quota is out of sync, "
8590 				   "rescan required.\n", ret);
8591 
8592 	btrfs_end_transaction_throttle(trans, tree_root);
8593 out_free:
8594 	kfree(wc);
8595 	btrfs_free_path(path);
8596 out:
8597 	/*
8598 	 * So if we need to stop dropping the snapshot for whatever reason we
8599 	 * need to make sure to add it back to the dead root list so that we
8600 	 * keep trying to do the work later.  This also cleans up roots if we
8601 	 * don't have it in the radix (like when we recover after a power fail
8602 	 * or unmount) so we don't leak memory.
8603 	 */
8604 	if (!for_reloc && root_dropped == false)
8605 		btrfs_add_dead_root(root);
8606 	if (err && err != -EAGAIN)
8607 		btrfs_std_error(root->fs_info, err);
8608 	return err;
8609 }
8610 
8611 /*
8612  * drop subtree rooted at tree block 'node'.
8613  *
8614  * NOTE: this function will unlock and release tree block 'node'
8615  * only used by relocation code
8616  */
8617 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8618 			struct btrfs_root *root,
8619 			struct extent_buffer *node,
8620 			struct extent_buffer *parent)
8621 {
8622 	struct btrfs_path *path;
8623 	struct walk_control *wc;
8624 	int level;
8625 	int parent_level;
8626 	int ret = 0;
8627 	int wret;
8628 
8629 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8630 
8631 	path = btrfs_alloc_path();
8632 	if (!path)
8633 		return -ENOMEM;
8634 
8635 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8636 	if (!wc) {
8637 		btrfs_free_path(path);
8638 		return -ENOMEM;
8639 	}
8640 
8641 	btrfs_assert_tree_locked(parent);
8642 	parent_level = btrfs_header_level(parent);
8643 	extent_buffer_get(parent);
8644 	path->nodes[parent_level] = parent;
8645 	path->slots[parent_level] = btrfs_header_nritems(parent);
8646 
8647 	btrfs_assert_tree_locked(node);
8648 	level = btrfs_header_level(node);
8649 	path->nodes[level] = node;
8650 	path->slots[level] = 0;
8651 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8652 
8653 	wc->refs[parent_level] = 1;
8654 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8655 	wc->level = level;
8656 	wc->shared_level = -1;
8657 	wc->stage = DROP_REFERENCE;
8658 	wc->update_ref = 0;
8659 	wc->keep_locks = 1;
8660 	wc->for_reloc = 1;
8661 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8662 
8663 	while (1) {
8664 		wret = walk_down_tree(trans, root, path, wc);
8665 		if (wret < 0) {
8666 			ret = wret;
8667 			break;
8668 		}
8669 
8670 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8671 		if (wret < 0)
8672 			ret = wret;
8673 		if (wret != 0)
8674 			break;
8675 	}
8676 
8677 	kfree(wc);
8678 	btrfs_free_path(path);
8679 	return ret;
8680 }
8681 
8682 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8683 {
8684 	u64 num_devices;
8685 	u64 stripped;
8686 
8687 	/*
8688 	 * if restripe for this chunk_type is on pick target profile and
8689 	 * return, otherwise do the usual balance
8690 	 */
8691 	stripped = get_restripe_target(root->fs_info, flags);
8692 	if (stripped)
8693 		return extended_to_chunk(stripped);
8694 
8695 	num_devices = root->fs_info->fs_devices->rw_devices;
8696 
8697 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8698 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8699 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8700 
8701 	if (num_devices == 1) {
8702 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8703 		stripped = flags & ~stripped;
8704 
8705 		/* turn raid0 into single device chunks */
8706 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8707 			return stripped;
8708 
8709 		/* turn mirroring into duplication */
8710 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8711 			     BTRFS_BLOCK_GROUP_RAID10))
8712 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8713 	} else {
8714 		/* they already had raid on here, just return */
8715 		if (flags & stripped)
8716 			return flags;
8717 
8718 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8719 		stripped = flags & ~stripped;
8720 
8721 		/* switch duplicated blocks with raid1 */
8722 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8723 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8724 
8725 		/* this is drive concat, leave it alone */
8726 	}
8727 
8728 	return flags;
8729 }
8730 
8731 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8732 {
8733 	struct btrfs_space_info *sinfo = cache->space_info;
8734 	u64 num_bytes;
8735 	u64 min_allocable_bytes;
8736 	int ret = -ENOSPC;
8737 
8738 
8739 	/*
8740 	 * We need some metadata space and system metadata space for
8741 	 * allocating chunks in some corner cases until we force to set
8742 	 * it to be readonly.
8743 	 */
8744 	if ((sinfo->flags &
8745 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8746 	    !force)
8747 		min_allocable_bytes = 1 * 1024 * 1024;
8748 	else
8749 		min_allocable_bytes = 0;
8750 
8751 	spin_lock(&sinfo->lock);
8752 	spin_lock(&cache->lock);
8753 
8754 	if (cache->ro) {
8755 		ret = 0;
8756 		goto out;
8757 	}
8758 
8759 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8760 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8761 
8762 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8763 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8764 	    min_allocable_bytes <= sinfo->total_bytes) {
8765 		sinfo->bytes_readonly += num_bytes;
8766 		cache->ro = 1;
8767 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8768 		ret = 0;
8769 	}
8770 out:
8771 	spin_unlock(&cache->lock);
8772 	spin_unlock(&sinfo->lock);
8773 	return ret;
8774 }
8775 
8776 int btrfs_set_block_group_ro(struct btrfs_root *root,
8777 			     struct btrfs_block_group_cache *cache)
8778 
8779 {
8780 	struct btrfs_trans_handle *trans;
8781 	u64 alloc_flags;
8782 	int ret;
8783 
8784 	BUG_ON(cache->ro);
8785 
8786 again:
8787 	trans = btrfs_join_transaction(root);
8788 	if (IS_ERR(trans))
8789 		return PTR_ERR(trans);
8790 
8791 	/*
8792 	 * we're not allowed to set block groups readonly after the dirty
8793 	 * block groups cache has started writing.  If it already started,
8794 	 * back off and let this transaction commit
8795 	 */
8796 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8797 	if (trans->transaction->dirty_bg_run) {
8798 		u64 transid = trans->transid;
8799 
8800 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8801 		btrfs_end_transaction(trans, root);
8802 
8803 		ret = btrfs_wait_for_commit(root, transid);
8804 		if (ret)
8805 			return ret;
8806 		goto again;
8807 	}
8808 
8809 
8810 	ret = set_block_group_ro(cache, 0);
8811 	if (!ret)
8812 		goto out;
8813 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8814 	ret = do_chunk_alloc(trans, root, alloc_flags,
8815 			     CHUNK_ALLOC_FORCE);
8816 	if (ret < 0)
8817 		goto out;
8818 	ret = set_block_group_ro(cache, 0);
8819 out:
8820 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8821 		alloc_flags = update_block_group_flags(root, cache->flags);
8822 		check_system_chunk(trans, root, alloc_flags);
8823 	}
8824 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8825 
8826 	btrfs_end_transaction(trans, root);
8827 	return ret;
8828 }
8829 
8830 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8831 			    struct btrfs_root *root, u64 type)
8832 {
8833 	u64 alloc_flags = get_alloc_profile(root, type);
8834 	return do_chunk_alloc(trans, root, alloc_flags,
8835 			      CHUNK_ALLOC_FORCE);
8836 }
8837 
8838 /*
8839  * helper to account the unused space of all the readonly block group in the
8840  * space_info. takes mirrors into account.
8841  */
8842 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8843 {
8844 	struct btrfs_block_group_cache *block_group;
8845 	u64 free_bytes = 0;
8846 	int factor;
8847 
8848 	/* It's df, we don't care if it's racey */
8849 	if (list_empty(&sinfo->ro_bgs))
8850 		return 0;
8851 
8852 	spin_lock(&sinfo->lock);
8853 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8854 		spin_lock(&block_group->lock);
8855 
8856 		if (!block_group->ro) {
8857 			spin_unlock(&block_group->lock);
8858 			continue;
8859 		}
8860 
8861 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8862 					  BTRFS_BLOCK_GROUP_RAID10 |
8863 					  BTRFS_BLOCK_GROUP_DUP))
8864 			factor = 2;
8865 		else
8866 			factor = 1;
8867 
8868 		free_bytes += (block_group->key.offset -
8869 			       btrfs_block_group_used(&block_group->item)) *
8870 			       factor;
8871 
8872 		spin_unlock(&block_group->lock);
8873 	}
8874 	spin_unlock(&sinfo->lock);
8875 
8876 	return free_bytes;
8877 }
8878 
8879 void btrfs_set_block_group_rw(struct btrfs_root *root,
8880 			      struct btrfs_block_group_cache *cache)
8881 {
8882 	struct btrfs_space_info *sinfo = cache->space_info;
8883 	u64 num_bytes;
8884 
8885 	BUG_ON(!cache->ro);
8886 
8887 	spin_lock(&sinfo->lock);
8888 	spin_lock(&cache->lock);
8889 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8890 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8891 	sinfo->bytes_readonly -= num_bytes;
8892 	cache->ro = 0;
8893 	list_del_init(&cache->ro_list);
8894 	spin_unlock(&cache->lock);
8895 	spin_unlock(&sinfo->lock);
8896 }
8897 
8898 /*
8899  * checks to see if its even possible to relocate this block group.
8900  *
8901  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8902  * ok to go ahead and try.
8903  */
8904 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8905 {
8906 	struct btrfs_block_group_cache *block_group;
8907 	struct btrfs_space_info *space_info;
8908 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8909 	struct btrfs_device *device;
8910 	struct btrfs_trans_handle *trans;
8911 	u64 min_free;
8912 	u64 dev_min = 1;
8913 	u64 dev_nr = 0;
8914 	u64 target;
8915 	int index;
8916 	int full = 0;
8917 	int ret = 0;
8918 
8919 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8920 
8921 	/* odd, couldn't find the block group, leave it alone */
8922 	if (!block_group)
8923 		return -1;
8924 
8925 	min_free = btrfs_block_group_used(&block_group->item);
8926 
8927 	/* no bytes used, we're good */
8928 	if (!min_free)
8929 		goto out;
8930 
8931 	space_info = block_group->space_info;
8932 	spin_lock(&space_info->lock);
8933 
8934 	full = space_info->full;
8935 
8936 	/*
8937 	 * if this is the last block group we have in this space, we can't
8938 	 * relocate it unless we're able to allocate a new chunk below.
8939 	 *
8940 	 * Otherwise, we need to make sure we have room in the space to handle
8941 	 * all of the extents from this block group.  If we can, we're good
8942 	 */
8943 	if ((space_info->total_bytes != block_group->key.offset) &&
8944 	    (space_info->bytes_used + space_info->bytes_reserved +
8945 	     space_info->bytes_pinned + space_info->bytes_readonly +
8946 	     min_free < space_info->total_bytes)) {
8947 		spin_unlock(&space_info->lock);
8948 		goto out;
8949 	}
8950 	spin_unlock(&space_info->lock);
8951 
8952 	/*
8953 	 * ok we don't have enough space, but maybe we have free space on our
8954 	 * devices to allocate new chunks for relocation, so loop through our
8955 	 * alloc devices and guess if we have enough space.  if this block
8956 	 * group is going to be restriped, run checks against the target
8957 	 * profile instead of the current one.
8958 	 */
8959 	ret = -1;
8960 
8961 	/*
8962 	 * index:
8963 	 *      0: raid10
8964 	 *      1: raid1
8965 	 *      2: dup
8966 	 *      3: raid0
8967 	 *      4: single
8968 	 */
8969 	target = get_restripe_target(root->fs_info, block_group->flags);
8970 	if (target) {
8971 		index = __get_raid_index(extended_to_chunk(target));
8972 	} else {
8973 		/*
8974 		 * this is just a balance, so if we were marked as full
8975 		 * we know there is no space for a new chunk
8976 		 */
8977 		if (full)
8978 			goto out;
8979 
8980 		index = get_block_group_index(block_group);
8981 	}
8982 
8983 	if (index == BTRFS_RAID_RAID10) {
8984 		dev_min = 4;
8985 		/* Divide by 2 */
8986 		min_free >>= 1;
8987 	} else if (index == BTRFS_RAID_RAID1) {
8988 		dev_min = 2;
8989 	} else if (index == BTRFS_RAID_DUP) {
8990 		/* Multiply by 2 */
8991 		min_free <<= 1;
8992 	} else if (index == BTRFS_RAID_RAID0) {
8993 		dev_min = fs_devices->rw_devices;
8994 		min_free = div64_u64(min_free, dev_min);
8995 	}
8996 
8997 	/* We need to do this so that we can look at pending chunks */
8998 	trans = btrfs_join_transaction(root);
8999 	if (IS_ERR(trans)) {
9000 		ret = PTR_ERR(trans);
9001 		goto out;
9002 	}
9003 
9004 	mutex_lock(&root->fs_info->chunk_mutex);
9005 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9006 		u64 dev_offset;
9007 
9008 		/*
9009 		 * check to make sure we can actually find a chunk with enough
9010 		 * space to fit our block group in.
9011 		 */
9012 		if (device->total_bytes > device->bytes_used + min_free &&
9013 		    !device->is_tgtdev_for_dev_replace) {
9014 			ret = find_free_dev_extent(trans, device, min_free,
9015 						   &dev_offset, NULL);
9016 			if (!ret)
9017 				dev_nr++;
9018 
9019 			if (dev_nr >= dev_min)
9020 				break;
9021 
9022 			ret = -1;
9023 		}
9024 	}
9025 	mutex_unlock(&root->fs_info->chunk_mutex);
9026 	btrfs_end_transaction(trans, root);
9027 out:
9028 	btrfs_put_block_group(block_group);
9029 	return ret;
9030 }
9031 
9032 static int find_first_block_group(struct btrfs_root *root,
9033 		struct btrfs_path *path, struct btrfs_key *key)
9034 {
9035 	int ret = 0;
9036 	struct btrfs_key found_key;
9037 	struct extent_buffer *leaf;
9038 	int slot;
9039 
9040 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9041 	if (ret < 0)
9042 		goto out;
9043 
9044 	while (1) {
9045 		slot = path->slots[0];
9046 		leaf = path->nodes[0];
9047 		if (slot >= btrfs_header_nritems(leaf)) {
9048 			ret = btrfs_next_leaf(root, path);
9049 			if (ret == 0)
9050 				continue;
9051 			if (ret < 0)
9052 				goto out;
9053 			break;
9054 		}
9055 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9056 
9057 		if (found_key.objectid >= key->objectid &&
9058 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9059 			ret = 0;
9060 			goto out;
9061 		}
9062 		path->slots[0]++;
9063 	}
9064 out:
9065 	return ret;
9066 }
9067 
9068 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9069 {
9070 	struct btrfs_block_group_cache *block_group;
9071 	u64 last = 0;
9072 
9073 	while (1) {
9074 		struct inode *inode;
9075 
9076 		block_group = btrfs_lookup_first_block_group(info, last);
9077 		while (block_group) {
9078 			spin_lock(&block_group->lock);
9079 			if (block_group->iref)
9080 				break;
9081 			spin_unlock(&block_group->lock);
9082 			block_group = next_block_group(info->tree_root,
9083 						       block_group);
9084 		}
9085 		if (!block_group) {
9086 			if (last == 0)
9087 				break;
9088 			last = 0;
9089 			continue;
9090 		}
9091 
9092 		inode = block_group->inode;
9093 		block_group->iref = 0;
9094 		block_group->inode = NULL;
9095 		spin_unlock(&block_group->lock);
9096 		iput(inode);
9097 		last = block_group->key.objectid + block_group->key.offset;
9098 		btrfs_put_block_group(block_group);
9099 	}
9100 }
9101 
9102 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9103 {
9104 	struct btrfs_block_group_cache *block_group;
9105 	struct btrfs_space_info *space_info;
9106 	struct btrfs_caching_control *caching_ctl;
9107 	struct rb_node *n;
9108 
9109 	down_write(&info->commit_root_sem);
9110 	while (!list_empty(&info->caching_block_groups)) {
9111 		caching_ctl = list_entry(info->caching_block_groups.next,
9112 					 struct btrfs_caching_control, list);
9113 		list_del(&caching_ctl->list);
9114 		put_caching_control(caching_ctl);
9115 	}
9116 	up_write(&info->commit_root_sem);
9117 
9118 	spin_lock(&info->unused_bgs_lock);
9119 	while (!list_empty(&info->unused_bgs)) {
9120 		block_group = list_first_entry(&info->unused_bgs,
9121 					       struct btrfs_block_group_cache,
9122 					       bg_list);
9123 		list_del_init(&block_group->bg_list);
9124 		btrfs_put_block_group(block_group);
9125 	}
9126 	spin_unlock(&info->unused_bgs_lock);
9127 
9128 	spin_lock(&info->block_group_cache_lock);
9129 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9130 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9131 				       cache_node);
9132 		rb_erase(&block_group->cache_node,
9133 			 &info->block_group_cache_tree);
9134 		RB_CLEAR_NODE(&block_group->cache_node);
9135 		spin_unlock(&info->block_group_cache_lock);
9136 
9137 		down_write(&block_group->space_info->groups_sem);
9138 		list_del(&block_group->list);
9139 		up_write(&block_group->space_info->groups_sem);
9140 
9141 		if (block_group->cached == BTRFS_CACHE_STARTED)
9142 			wait_block_group_cache_done(block_group);
9143 
9144 		/*
9145 		 * We haven't cached this block group, which means we could
9146 		 * possibly have excluded extents on this block group.
9147 		 */
9148 		if (block_group->cached == BTRFS_CACHE_NO ||
9149 		    block_group->cached == BTRFS_CACHE_ERROR)
9150 			free_excluded_extents(info->extent_root, block_group);
9151 
9152 		btrfs_remove_free_space_cache(block_group);
9153 		btrfs_put_block_group(block_group);
9154 
9155 		spin_lock(&info->block_group_cache_lock);
9156 	}
9157 	spin_unlock(&info->block_group_cache_lock);
9158 
9159 	/* now that all the block groups are freed, go through and
9160 	 * free all the space_info structs.  This is only called during
9161 	 * the final stages of unmount, and so we know nobody is
9162 	 * using them.  We call synchronize_rcu() once before we start,
9163 	 * just to be on the safe side.
9164 	 */
9165 	synchronize_rcu();
9166 
9167 	release_global_block_rsv(info);
9168 
9169 	while (!list_empty(&info->space_info)) {
9170 		int i;
9171 
9172 		space_info = list_entry(info->space_info.next,
9173 					struct btrfs_space_info,
9174 					list);
9175 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9176 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9177 			    space_info->bytes_reserved > 0 ||
9178 			    space_info->bytes_may_use > 0)) {
9179 				dump_space_info(space_info, 0, 0);
9180 			}
9181 		}
9182 		list_del(&space_info->list);
9183 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9184 			struct kobject *kobj;
9185 			kobj = space_info->block_group_kobjs[i];
9186 			space_info->block_group_kobjs[i] = NULL;
9187 			if (kobj) {
9188 				kobject_del(kobj);
9189 				kobject_put(kobj);
9190 			}
9191 		}
9192 		kobject_del(&space_info->kobj);
9193 		kobject_put(&space_info->kobj);
9194 	}
9195 	return 0;
9196 }
9197 
9198 static void __link_block_group(struct btrfs_space_info *space_info,
9199 			       struct btrfs_block_group_cache *cache)
9200 {
9201 	int index = get_block_group_index(cache);
9202 	bool first = false;
9203 
9204 	down_write(&space_info->groups_sem);
9205 	if (list_empty(&space_info->block_groups[index]))
9206 		first = true;
9207 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9208 	up_write(&space_info->groups_sem);
9209 
9210 	if (first) {
9211 		struct raid_kobject *rkobj;
9212 		int ret;
9213 
9214 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9215 		if (!rkobj)
9216 			goto out_err;
9217 		rkobj->raid_type = index;
9218 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9219 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9220 				  "%s", get_raid_name(index));
9221 		if (ret) {
9222 			kobject_put(&rkobj->kobj);
9223 			goto out_err;
9224 		}
9225 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9226 	}
9227 
9228 	return;
9229 out_err:
9230 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9231 }
9232 
9233 static struct btrfs_block_group_cache *
9234 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9235 {
9236 	struct btrfs_block_group_cache *cache;
9237 
9238 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9239 	if (!cache)
9240 		return NULL;
9241 
9242 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9243 					GFP_NOFS);
9244 	if (!cache->free_space_ctl) {
9245 		kfree(cache);
9246 		return NULL;
9247 	}
9248 
9249 	cache->key.objectid = start;
9250 	cache->key.offset = size;
9251 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9252 
9253 	cache->sectorsize = root->sectorsize;
9254 	cache->fs_info = root->fs_info;
9255 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9256 					       &root->fs_info->mapping_tree,
9257 					       start);
9258 	atomic_set(&cache->count, 1);
9259 	spin_lock_init(&cache->lock);
9260 	init_rwsem(&cache->data_rwsem);
9261 	INIT_LIST_HEAD(&cache->list);
9262 	INIT_LIST_HEAD(&cache->cluster_list);
9263 	INIT_LIST_HEAD(&cache->bg_list);
9264 	INIT_LIST_HEAD(&cache->ro_list);
9265 	INIT_LIST_HEAD(&cache->dirty_list);
9266 	INIT_LIST_HEAD(&cache->io_list);
9267 	btrfs_init_free_space_ctl(cache);
9268 	atomic_set(&cache->trimming, 0);
9269 
9270 	return cache;
9271 }
9272 
9273 int btrfs_read_block_groups(struct btrfs_root *root)
9274 {
9275 	struct btrfs_path *path;
9276 	int ret;
9277 	struct btrfs_block_group_cache *cache;
9278 	struct btrfs_fs_info *info = root->fs_info;
9279 	struct btrfs_space_info *space_info;
9280 	struct btrfs_key key;
9281 	struct btrfs_key found_key;
9282 	struct extent_buffer *leaf;
9283 	int need_clear = 0;
9284 	u64 cache_gen;
9285 
9286 	root = info->extent_root;
9287 	key.objectid = 0;
9288 	key.offset = 0;
9289 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9290 	path = btrfs_alloc_path();
9291 	if (!path)
9292 		return -ENOMEM;
9293 	path->reada = 1;
9294 
9295 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9296 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9297 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9298 		need_clear = 1;
9299 	if (btrfs_test_opt(root, CLEAR_CACHE))
9300 		need_clear = 1;
9301 
9302 	while (1) {
9303 		ret = find_first_block_group(root, path, &key);
9304 		if (ret > 0)
9305 			break;
9306 		if (ret != 0)
9307 			goto error;
9308 
9309 		leaf = path->nodes[0];
9310 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9311 
9312 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9313 						       found_key.offset);
9314 		if (!cache) {
9315 			ret = -ENOMEM;
9316 			goto error;
9317 		}
9318 
9319 		if (need_clear) {
9320 			/*
9321 			 * When we mount with old space cache, we need to
9322 			 * set BTRFS_DC_CLEAR and set dirty flag.
9323 			 *
9324 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9325 			 *    truncate the old free space cache inode and
9326 			 *    setup a new one.
9327 			 * b) Setting 'dirty flag' makes sure that we flush
9328 			 *    the new space cache info onto disk.
9329 			 */
9330 			if (btrfs_test_opt(root, SPACE_CACHE))
9331 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9332 		}
9333 
9334 		read_extent_buffer(leaf, &cache->item,
9335 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9336 				   sizeof(cache->item));
9337 		cache->flags = btrfs_block_group_flags(&cache->item);
9338 
9339 		key.objectid = found_key.objectid + found_key.offset;
9340 		btrfs_release_path(path);
9341 
9342 		/*
9343 		 * We need to exclude the super stripes now so that the space
9344 		 * info has super bytes accounted for, otherwise we'll think
9345 		 * we have more space than we actually do.
9346 		 */
9347 		ret = exclude_super_stripes(root, cache);
9348 		if (ret) {
9349 			/*
9350 			 * We may have excluded something, so call this just in
9351 			 * case.
9352 			 */
9353 			free_excluded_extents(root, cache);
9354 			btrfs_put_block_group(cache);
9355 			goto error;
9356 		}
9357 
9358 		/*
9359 		 * check for two cases, either we are full, and therefore
9360 		 * don't need to bother with the caching work since we won't
9361 		 * find any space, or we are empty, and we can just add all
9362 		 * the space in and be done with it.  This saves us _alot_ of
9363 		 * time, particularly in the full case.
9364 		 */
9365 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9366 			cache->last_byte_to_unpin = (u64)-1;
9367 			cache->cached = BTRFS_CACHE_FINISHED;
9368 			free_excluded_extents(root, cache);
9369 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9370 			cache->last_byte_to_unpin = (u64)-1;
9371 			cache->cached = BTRFS_CACHE_FINISHED;
9372 			add_new_free_space(cache, root->fs_info,
9373 					   found_key.objectid,
9374 					   found_key.objectid +
9375 					   found_key.offset);
9376 			free_excluded_extents(root, cache);
9377 		}
9378 
9379 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9380 		if (ret) {
9381 			btrfs_remove_free_space_cache(cache);
9382 			btrfs_put_block_group(cache);
9383 			goto error;
9384 		}
9385 
9386 		ret = update_space_info(info, cache->flags, found_key.offset,
9387 					btrfs_block_group_used(&cache->item),
9388 					&space_info);
9389 		if (ret) {
9390 			btrfs_remove_free_space_cache(cache);
9391 			spin_lock(&info->block_group_cache_lock);
9392 			rb_erase(&cache->cache_node,
9393 				 &info->block_group_cache_tree);
9394 			RB_CLEAR_NODE(&cache->cache_node);
9395 			spin_unlock(&info->block_group_cache_lock);
9396 			btrfs_put_block_group(cache);
9397 			goto error;
9398 		}
9399 
9400 		cache->space_info = space_info;
9401 		spin_lock(&cache->space_info->lock);
9402 		cache->space_info->bytes_readonly += cache->bytes_super;
9403 		spin_unlock(&cache->space_info->lock);
9404 
9405 		__link_block_group(space_info, cache);
9406 
9407 		set_avail_alloc_bits(root->fs_info, cache->flags);
9408 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9409 			set_block_group_ro(cache, 1);
9410 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9411 			spin_lock(&info->unused_bgs_lock);
9412 			/* Should always be true but just in case. */
9413 			if (list_empty(&cache->bg_list)) {
9414 				btrfs_get_block_group(cache);
9415 				list_add_tail(&cache->bg_list,
9416 					      &info->unused_bgs);
9417 			}
9418 			spin_unlock(&info->unused_bgs_lock);
9419 		}
9420 	}
9421 
9422 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9423 		if (!(get_alloc_profile(root, space_info->flags) &
9424 		      (BTRFS_BLOCK_GROUP_RAID10 |
9425 		       BTRFS_BLOCK_GROUP_RAID1 |
9426 		       BTRFS_BLOCK_GROUP_RAID5 |
9427 		       BTRFS_BLOCK_GROUP_RAID6 |
9428 		       BTRFS_BLOCK_GROUP_DUP)))
9429 			continue;
9430 		/*
9431 		 * avoid allocating from un-mirrored block group if there are
9432 		 * mirrored block groups.
9433 		 */
9434 		list_for_each_entry(cache,
9435 				&space_info->block_groups[BTRFS_RAID_RAID0],
9436 				list)
9437 			set_block_group_ro(cache, 1);
9438 		list_for_each_entry(cache,
9439 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9440 				list)
9441 			set_block_group_ro(cache, 1);
9442 	}
9443 
9444 	init_global_block_rsv(info);
9445 	ret = 0;
9446 error:
9447 	btrfs_free_path(path);
9448 	return ret;
9449 }
9450 
9451 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9452 				       struct btrfs_root *root)
9453 {
9454 	struct btrfs_block_group_cache *block_group, *tmp;
9455 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9456 	struct btrfs_block_group_item item;
9457 	struct btrfs_key key;
9458 	int ret = 0;
9459 
9460 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9461 		if (ret)
9462 			goto next;
9463 
9464 		spin_lock(&block_group->lock);
9465 		memcpy(&item, &block_group->item, sizeof(item));
9466 		memcpy(&key, &block_group->key, sizeof(key));
9467 		spin_unlock(&block_group->lock);
9468 
9469 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9470 					sizeof(item));
9471 		if (ret)
9472 			btrfs_abort_transaction(trans, extent_root, ret);
9473 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9474 					       key.objectid, key.offset);
9475 		if (ret)
9476 			btrfs_abort_transaction(trans, extent_root, ret);
9477 next:
9478 		list_del_init(&block_group->bg_list);
9479 	}
9480 }
9481 
9482 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9483 			   struct btrfs_root *root, u64 bytes_used,
9484 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9485 			   u64 size)
9486 {
9487 	int ret;
9488 	struct btrfs_root *extent_root;
9489 	struct btrfs_block_group_cache *cache;
9490 
9491 	extent_root = root->fs_info->extent_root;
9492 
9493 	btrfs_set_log_full_commit(root->fs_info, trans);
9494 
9495 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9496 	if (!cache)
9497 		return -ENOMEM;
9498 
9499 	btrfs_set_block_group_used(&cache->item, bytes_used);
9500 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9501 	btrfs_set_block_group_flags(&cache->item, type);
9502 
9503 	cache->flags = type;
9504 	cache->last_byte_to_unpin = (u64)-1;
9505 	cache->cached = BTRFS_CACHE_FINISHED;
9506 	ret = exclude_super_stripes(root, cache);
9507 	if (ret) {
9508 		/*
9509 		 * We may have excluded something, so call this just in
9510 		 * case.
9511 		 */
9512 		free_excluded_extents(root, cache);
9513 		btrfs_put_block_group(cache);
9514 		return ret;
9515 	}
9516 
9517 	add_new_free_space(cache, root->fs_info, chunk_offset,
9518 			   chunk_offset + size);
9519 
9520 	free_excluded_extents(root, cache);
9521 
9522 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9523 	if (ret) {
9524 		btrfs_remove_free_space_cache(cache);
9525 		btrfs_put_block_group(cache);
9526 		return ret;
9527 	}
9528 
9529 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9530 				&cache->space_info);
9531 	if (ret) {
9532 		btrfs_remove_free_space_cache(cache);
9533 		spin_lock(&root->fs_info->block_group_cache_lock);
9534 		rb_erase(&cache->cache_node,
9535 			 &root->fs_info->block_group_cache_tree);
9536 		RB_CLEAR_NODE(&cache->cache_node);
9537 		spin_unlock(&root->fs_info->block_group_cache_lock);
9538 		btrfs_put_block_group(cache);
9539 		return ret;
9540 	}
9541 	update_global_block_rsv(root->fs_info);
9542 
9543 	spin_lock(&cache->space_info->lock);
9544 	cache->space_info->bytes_readonly += cache->bytes_super;
9545 	spin_unlock(&cache->space_info->lock);
9546 
9547 	__link_block_group(cache->space_info, cache);
9548 
9549 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9550 
9551 	set_avail_alloc_bits(extent_root->fs_info, type);
9552 
9553 	return 0;
9554 }
9555 
9556 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9557 {
9558 	u64 extra_flags = chunk_to_extended(flags) &
9559 				BTRFS_EXTENDED_PROFILE_MASK;
9560 
9561 	write_seqlock(&fs_info->profiles_lock);
9562 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9563 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9564 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9565 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9566 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9567 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9568 	write_sequnlock(&fs_info->profiles_lock);
9569 }
9570 
9571 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9572 			     struct btrfs_root *root, u64 group_start,
9573 			     struct extent_map *em)
9574 {
9575 	struct btrfs_path *path;
9576 	struct btrfs_block_group_cache *block_group;
9577 	struct btrfs_free_cluster *cluster;
9578 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9579 	struct btrfs_key key;
9580 	struct inode *inode;
9581 	struct kobject *kobj = NULL;
9582 	int ret;
9583 	int index;
9584 	int factor;
9585 	struct btrfs_caching_control *caching_ctl = NULL;
9586 	bool remove_em;
9587 
9588 	root = root->fs_info->extent_root;
9589 
9590 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9591 	BUG_ON(!block_group);
9592 	BUG_ON(!block_group->ro);
9593 
9594 	/*
9595 	 * Free the reserved super bytes from this block group before
9596 	 * remove it.
9597 	 */
9598 	free_excluded_extents(root, block_group);
9599 
9600 	memcpy(&key, &block_group->key, sizeof(key));
9601 	index = get_block_group_index(block_group);
9602 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9603 				  BTRFS_BLOCK_GROUP_RAID1 |
9604 				  BTRFS_BLOCK_GROUP_RAID10))
9605 		factor = 2;
9606 	else
9607 		factor = 1;
9608 
9609 	/* make sure this block group isn't part of an allocation cluster */
9610 	cluster = &root->fs_info->data_alloc_cluster;
9611 	spin_lock(&cluster->refill_lock);
9612 	btrfs_return_cluster_to_free_space(block_group, cluster);
9613 	spin_unlock(&cluster->refill_lock);
9614 
9615 	/*
9616 	 * make sure this block group isn't part of a metadata
9617 	 * allocation cluster
9618 	 */
9619 	cluster = &root->fs_info->meta_alloc_cluster;
9620 	spin_lock(&cluster->refill_lock);
9621 	btrfs_return_cluster_to_free_space(block_group, cluster);
9622 	spin_unlock(&cluster->refill_lock);
9623 
9624 	path = btrfs_alloc_path();
9625 	if (!path) {
9626 		ret = -ENOMEM;
9627 		goto out;
9628 	}
9629 
9630 	/*
9631 	 * get the inode first so any iput calls done for the io_list
9632 	 * aren't the final iput (no unlinks allowed now)
9633 	 */
9634 	inode = lookup_free_space_inode(tree_root, block_group, path);
9635 
9636 	mutex_lock(&trans->transaction->cache_write_mutex);
9637 	/*
9638 	 * make sure our free spache cache IO is done before remove the
9639 	 * free space inode
9640 	 */
9641 	spin_lock(&trans->transaction->dirty_bgs_lock);
9642 	if (!list_empty(&block_group->io_list)) {
9643 		list_del_init(&block_group->io_list);
9644 
9645 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9646 
9647 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9648 		btrfs_wait_cache_io(root, trans, block_group,
9649 				    &block_group->io_ctl, path,
9650 				    block_group->key.objectid);
9651 		btrfs_put_block_group(block_group);
9652 		spin_lock(&trans->transaction->dirty_bgs_lock);
9653 	}
9654 
9655 	if (!list_empty(&block_group->dirty_list)) {
9656 		list_del_init(&block_group->dirty_list);
9657 		btrfs_put_block_group(block_group);
9658 	}
9659 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9660 	mutex_unlock(&trans->transaction->cache_write_mutex);
9661 
9662 	if (!IS_ERR(inode)) {
9663 		ret = btrfs_orphan_add(trans, inode);
9664 		if (ret) {
9665 			btrfs_add_delayed_iput(inode);
9666 			goto out;
9667 		}
9668 		clear_nlink(inode);
9669 		/* One for the block groups ref */
9670 		spin_lock(&block_group->lock);
9671 		if (block_group->iref) {
9672 			block_group->iref = 0;
9673 			block_group->inode = NULL;
9674 			spin_unlock(&block_group->lock);
9675 			iput(inode);
9676 		} else {
9677 			spin_unlock(&block_group->lock);
9678 		}
9679 		/* One for our lookup ref */
9680 		btrfs_add_delayed_iput(inode);
9681 	}
9682 
9683 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9684 	key.offset = block_group->key.objectid;
9685 	key.type = 0;
9686 
9687 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9688 	if (ret < 0)
9689 		goto out;
9690 	if (ret > 0)
9691 		btrfs_release_path(path);
9692 	if (ret == 0) {
9693 		ret = btrfs_del_item(trans, tree_root, path);
9694 		if (ret)
9695 			goto out;
9696 		btrfs_release_path(path);
9697 	}
9698 
9699 	spin_lock(&root->fs_info->block_group_cache_lock);
9700 	rb_erase(&block_group->cache_node,
9701 		 &root->fs_info->block_group_cache_tree);
9702 	RB_CLEAR_NODE(&block_group->cache_node);
9703 
9704 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9705 		root->fs_info->first_logical_byte = (u64)-1;
9706 	spin_unlock(&root->fs_info->block_group_cache_lock);
9707 
9708 	down_write(&block_group->space_info->groups_sem);
9709 	/*
9710 	 * we must use list_del_init so people can check to see if they
9711 	 * are still on the list after taking the semaphore
9712 	 */
9713 	list_del_init(&block_group->list);
9714 	if (list_empty(&block_group->space_info->block_groups[index])) {
9715 		kobj = block_group->space_info->block_group_kobjs[index];
9716 		block_group->space_info->block_group_kobjs[index] = NULL;
9717 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9718 	}
9719 	up_write(&block_group->space_info->groups_sem);
9720 	if (kobj) {
9721 		kobject_del(kobj);
9722 		kobject_put(kobj);
9723 	}
9724 
9725 	if (block_group->has_caching_ctl)
9726 		caching_ctl = get_caching_control(block_group);
9727 	if (block_group->cached == BTRFS_CACHE_STARTED)
9728 		wait_block_group_cache_done(block_group);
9729 	if (block_group->has_caching_ctl) {
9730 		down_write(&root->fs_info->commit_root_sem);
9731 		if (!caching_ctl) {
9732 			struct btrfs_caching_control *ctl;
9733 
9734 			list_for_each_entry(ctl,
9735 				    &root->fs_info->caching_block_groups, list)
9736 				if (ctl->block_group == block_group) {
9737 					caching_ctl = ctl;
9738 					atomic_inc(&caching_ctl->count);
9739 					break;
9740 				}
9741 		}
9742 		if (caching_ctl)
9743 			list_del_init(&caching_ctl->list);
9744 		up_write(&root->fs_info->commit_root_sem);
9745 		if (caching_ctl) {
9746 			/* Once for the caching bgs list and once for us. */
9747 			put_caching_control(caching_ctl);
9748 			put_caching_control(caching_ctl);
9749 		}
9750 	}
9751 
9752 	spin_lock(&trans->transaction->dirty_bgs_lock);
9753 	if (!list_empty(&block_group->dirty_list)) {
9754 		WARN_ON(1);
9755 	}
9756 	if (!list_empty(&block_group->io_list)) {
9757 		WARN_ON(1);
9758 	}
9759 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9760 	btrfs_remove_free_space_cache(block_group);
9761 
9762 	spin_lock(&block_group->space_info->lock);
9763 	list_del_init(&block_group->ro_list);
9764 
9765 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9766 		WARN_ON(block_group->space_info->total_bytes
9767 			< block_group->key.offset);
9768 		WARN_ON(block_group->space_info->bytes_readonly
9769 			< block_group->key.offset);
9770 		WARN_ON(block_group->space_info->disk_total
9771 			< block_group->key.offset * factor);
9772 	}
9773 	block_group->space_info->total_bytes -= block_group->key.offset;
9774 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9775 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9776 
9777 	spin_unlock(&block_group->space_info->lock);
9778 
9779 	memcpy(&key, &block_group->key, sizeof(key));
9780 
9781 	lock_chunks(root);
9782 	if (!list_empty(&em->list)) {
9783 		/* We're in the transaction->pending_chunks list. */
9784 		free_extent_map(em);
9785 	}
9786 	spin_lock(&block_group->lock);
9787 	block_group->removed = 1;
9788 	/*
9789 	 * At this point trimming can't start on this block group, because we
9790 	 * removed the block group from the tree fs_info->block_group_cache_tree
9791 	 * so no one can't find it anymore and even if someone already got this
9792 	 * block group before we removed it from the rbtree, they have already
9793 	 * incremented block_group->trimming - if they didn't, they won't find
9794 	 * any free space entries because we already removed them all when we
9795 	 * called btrfs_remove_free_space_cache().
9796 	 *
9797 	 * And we must not remove the extent map from the fs_info->mapping_tree
9798 	 * to prevent the same logical address range and physical device space
9799 	 * ranges from being reused for a new block group. This is because our
9800 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9801 	 * completely transactionless, so while it is trimming a range the
9802 	 * currently running transaction might finish and a new one start,
9803 	 * allowing for new block groups to be created that can reuse the same
9804 	 * physical device locations unless we take this special care.
9805 	 */
9806 	remove_em = (atomic_read(&block_group->trimming) == 0);
9807 	/*
9808 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9809 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9810 	 * before checking block_group->removed).
9811 	 */
9812 	if (!remove_em) {
9813 		/*
9814 		 * Our em might be in trans->transaction->pending_chunks which
9815 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9816 		 * and so is the fs_info->pinned_chunks list.
9817 		 *
9818 		 * So at this point we must be holding the chunk_mutex to avoid
9819 		 * any races with chunk allocation (more specifically at
9820 		 * volumes.c:contains_pending_extent()), to ensure it always
9821 		 * sees the em, either in the pending_chunks list or in the
9822 		 * pinned_chunks list.
9823 		 */
9824 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9825 	}
9826 	spin_unlock(&block_group->lock);
9827 
9828 	if (remove_em) {
9829 		struct extent_map_tree *em_tree;
9830 
9831 		em_tree = &root->fs_info->mapping_tree.map_tree;
9832 		write_lock(&em_tree->lock);
9833 		/*
9834 		 * The em might be in the pending_chunks list, so make sure the
9835 		 * chunk mutex is locked, since remove_extent_mapping() will
9836 		 * delete us from that list.
9837 		 */
9838 		remove_extent_mapping(em_tree, em);
9839 		write_unlock(&em_tree->lock);
9840 		/* once for the tree */
9841 		free_extent_map(em);
9842 	}
9843 
9844 	unlock_chunks(root);
9845 
9846 	btrfs_put_block_group(block_group);
9847 	btrfs_put_block_group(block_group);
9848 
9849 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9850 	if (ret > 0)
9851 		ret = -EIO;
9852 	if (ret < 0)
9853 		goto out;
9854 
9855 	ret = btrfs_del_item(trans, root, path);
9856 out:
9857 	btrfs_free_path(path);
9858 	return ret;
9859 }
9860 
9861 /*
9862  * Process the unused_bgs list and remove any that don't have any allocated
9863  * space inside of them.
9864  */
9865 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9866 {
9867 	struct btrfs_block_group_cache *block_group;
9868 	struct btrfs_space_info *space_info;
9869 	struct btrfs_root *root = fs_info->extent_root;
9870 	struct btrfs_trans_handle *trans;
9871 	int ret = 0;
9872 
9873 	if (!fs_info->open)
9874 		return;
9875 
9876 	spin_lock(&fs_info->unused_bgs_lock);
9877 	while (!list_empty(&fs_info->unused_bgs)) {
9878 		u64 start, end;
9879 
9880 		block_group = list_first_entry(&fs_info->unused_bgs,
9881 					       struct btrfs_block_group_cache,
9882 					       bg_list);
9883 		space_info = block_group->space_info;
9884 		list_del_init(&block_group->bg_list);
9885 		if (ret || btrfs_mixed_space_info(space_info)) {
9886 			btrfs_put_block_group(block_group);
9887 			continue;
9888 		}
9889 		spin_unlock(&fs_info->unused_bgs_lock);
9890 
9891 		/* Don't want to race with allocators so take the groups_sem */
9892 		down_write(&space_info->groups_sem);
9893 		spin_lock(&block_group->lock);
9894 		if (block_group->reserved ||
9895 		    btrfs_block_group_used(&block_group->item) ||
9896 		    block_group->ro) {
9897 			/*
9898 			 * We want to bail if we made new allocations or have
9899 			 * outstanding allocations in this block group.  We do
9900 			 * the ro check in case balance is currently acting on
9901 			 * this block group.
9902 			 */
9903 			spin_unlock(&block_group->lock);
9904 			up_write(&space_info->groups_sem);
9905 			goto next;
9906 		}
9907 		spin_unlock(&block_group->lock);
9908 
9909 		/* We don't want to force the issue, only flip if it's ok. */
9910 		ret = set_block_group_ro(block_group, 0);
9911 		up_write(&space_info->groups_sem);
9912 		if (ret < 0) {
9913 			ret = 0;
9914 			goto next;
9915 		}
9916 
9917 		/*
9918 		 * Want to do this before we do anything else so we can recover
9919 		 * properly if we fail to join the transaction.
9920 		 */
9921 		/* 1 for btrfs_orphan_reserve_metadata() */
9922 		trans = btrfs_start_transaction(root, 1);
9923 		if (IS_ERR(trans)) {
9924 			btrfs_set_block_group_rw(root, block_group);
9925 			ret = PTR_ERR(trans);
9926 			goto next;
9927 		}
9928 
9929 		/*
9930 		 * We could have pending pinned extents for this block group,
9931 		 * just delete them, we don't care about them anymore.
9932 		 */
9933 		start = block_group->key.objectid;
9934 		end = start + block_group->key.offset - 1;
9935 		/*
9936 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9937 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9938 		 * another task might be running finish_extent_commit() for the
9939 		 * previous transaction N - 1, and have seen a range belonging
9940 		 * to the block group in freed_extents[] before we were able to
9941 		 * clear the whole block group range from freed_extents[]. This
9942 		 * means that task can lookup for the block group after we
9943 		 * unpinned it from freed_extents[] and removed it, leading to
9944 		 * a BUG_ON() at btrfs_unpin_extent_range().
9945 		 */
9946 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9947 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9948 				  EXTENT_DIRTY, GFP_NOFS);
9949 		if (ret) {
9950 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9951 			btrfs_set_block_group_rw(root, block_group);
9952 			goto end_trans;
9953 		}
9954 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9955 				  EXTENT_DIRTY, GFP_NOFS);
9956 		if (ret) {
9957 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9958 			btrfs_set_block_group_rw(root, block_group);
9959 			goto end_trans;
9960 		}
9961 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9962 
9963 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9964 		spin_lock(&space_info->lock);
9965 		spin_lock(&block_group->lock);
9966 
9967 		space_info->bytes_pinned -= block_group->pinned;
9968 		space_info->bytes_readonly += block_group->pinned;
9969 		percpu_counter_add(&space_info->total_bytes_pinned,
9970 				   -block_group->pinned);
9971 		block_group->pinned = 0;
9972 
9973 		spin_unlock(&block_group->lock);
9974 		spin_unlock(&space_info->lock);
9975 
9976 		/*
9977 		 * Btrfs_remove_chunk will abort the transaction if things go
9978 		 * horribly wrong.
9979 		 */
9980 		ret = btrfs_remove_chunk(trans, root,
9981 					 block_group->key.objectid);
9982 end_trans:
9983 		btrfs_end_transaction(trans, root);
9984 next:
9985 		btrfs_put_block_group(block_group);
9986 		spin_lock(&fs_info->unused_bgs_lock);
9987 	}
9988 	spin_unlock(&fs_info->unused_bgs_lock);
9989 }
9990 
9991 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9992 {
9993 	struct btrfs_space_info *space_info;
9994 	struct btrfs_super_block *disk_super;
9995 	u64 features;
9996 	u64 flags;
9997 	int mixed = 0;
9998 	int ret;
9999 
10000 	disk_super = fs_info->super_copy;
10001 	if (!btrfs_super_root(disk_super))
10002 		return 1;
10003 
10004 	features = btrfs_super_incompat_flags(disk_super);
10005 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10006 		mixed = 1;
10007 
10008 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10009 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10010 	if (ret)
10011 		goto out;
10012 
10013 	if (mixed) {
10014 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10015 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10016 	} else {
10017 		flags = BTRFS_BLOCK_GROUP_METADATA;
10018 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10019 		if (ret)
10020 			goto out;
10021 
10022 		flags = BTRFS_BLOCK_GROUP_DATA;
10023 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10024 	}
10025 out:
10026 	return ret;
10027 }
10028 
10029 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10030 {
10031 	return unpin_extent_range(root, start, end, false);
10032 }
10033 
10034 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10035 {
10036 	struct btrfs_fs_info *fs_info = root->fs_info;
10037 	struct btrfs_block_group_cache *cache = NULL;
10038 	u64 group_trimmed;
10039 	u64 start;
10040 	u64 end;
10041 	u64 trimmed = 0;
10042 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10043 	int ret = 0;
10044 
10045 	/*
10046 	 * try to trim all FS space, our block group may start from non-zero.
10047 	 */
10048 	if (range->len == total_bytes)
10049 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10050 	else
10051 		cache = btrfs_lookup_block_group(fs_info, range->start);
10052 
10053 	while (cache) {
10054 		if (cache->key.objectid >= (range->start + range->len)) {
10055 			btrfs_put_block_group(cache);
10056 			break;
10057 		}
10058 
10059 		start = max(range->start, cache->key.objectid);
10060 		end = min(range->start + range->len,
10061 				cache->key.objectid + cache->key.offset);
10062 
10063 		if (end - start >= range->minlen) {
10064 			if (!block_group_cache_done(cache)) {
10065 				ret = cache_block_group(cache, 0);
10066 				if (ret) {
10067 					btrfs_put_block_group(cache);
10068 					break;
10069 				}
10070 				ret = wait_block_group_cache_done(cache);
10071 				if (ret) {
10072 					btrfs_put_block_group(cache);
10073 					break;
10074 				}
10075 			}
10076 			ret = btrfs_trim_block_group(cache,
10077 						     &group_trimmed,
10078 						     start,
10079 						     end,
10080 						     range->minlen);
10081 
10082 			trimmed += group_trimmed;
10083 			if (ret) {
10084 				btrfs_put_block_group(cache);
10085 				break;
10086 			}
10087 		}
10088 
10089 		cache = next_block_group(fs_info->tree_root, cache);
10090 	}
10091 
10092 	range->len = trimmed;
10093 	return ret;
10094 }
10095 
10096 /*
10097  * btrfs_{start,end}_write_no_snapshoting() are similar to
10098  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10099  * data into the page cache through nocow before the subvolume is snapshoted,
10100  * but flush the data into disk after the snapshot creation, or to prevent
10101  * operations while snapshoting is ongoing and that cause the snapshot to be
10102  * inconsistent (writes followed by expanding truncates for example).
10103  */
10104 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10105 {
10106 	percpu_counter_dec(&root->subv_writers->counter);
10107 	/*
10108 	 * Make sure counter is updated before we wake up
10109 	 * waiters.
10110 	 */
10111 	smp_mb();
10112 	if (waitqueue_active(&root->subv_writers->wait))
10113 		wake_up(&root->subv_writers->wait);
10114 }
10115 
10116 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10117 {
10118 	if (atomic_read(&root->will_be_snapshoted))
10119 		return 0;
10120 
10121 	percpu_counter_inc(&root->subv_writers->counter);
10122 	/*
10123 	 * Make sure counter is updated before we check for snapshot creation.
10124 	 */
10125 	smp_mb();
10126 	if (atomic_read(&root->will_be_snapshoted)) {
10127 		btrfs_end_write_no_snapshoting(root);
10128 		return 0;
10129 	}
10130 	return 1;
10131 }
10132