1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 /* 64 * Control how reservations are dealt with. 65 * 66 * RESERVE_FREE - freeing a reservation. 67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 68 * ENOSPC accounting 69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 70 * bytes_may_use as the ENOSPC accounting is done elsewhere 71 */ 72 enum { 73 RESERVE_FREE = 0, 74 RESERVE_ALLOC = 1, 75 RESERVE_ALLOC_NO_ACCOUNT = 2, 76 }; 77 78 static int update_block_group(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, u64 bytenr, 80 u64 num_bytes, int alloc); 81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 82 struct btrfs_root *root, 83 struct btrfs_delayed_ref_node *node, u64 parent, 84 u64 root_objectid, u64 owner_objectid, 85 u64 owner_offset, int refs_to_drop, 86 struct btrfs_delayed_extent_op *extra_op); 87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 #ifdef CONFIG_BTRFS_DEBUG 336 static void fragment_free_space(struct btrfs_root *root, 337 struct btrfs_block_group_cache *block_group) 338 { 339 u64 start = block_group->key.objectid; 340 u64 len = block_group->key.offset; 341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 342 root->nodesize : root->sectorsize; 343 u64 step = chunk << 1; 344 345 while (len > chunk) { 346 btrfs_remove_free_space(block_group, start, chunk); 347 start += step; 348 if (len < step) 349 len = 0; 350 else 351 len -= step; 352 } 353 } 354 #endif 355 356 /* 357 * this is only called by cache_block_group, since we could have freed extents 358 * we need to check the pinned_extents for any extents that can't be used yet 359 * since their free space will be released as soon as the transaction commits. 360 */ 361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 362 struct btrfs_fs_info *info, u64 start, u64 end) 363 { 364 u64 extent_start, extent_end, size, total_added = 0; 365 int ret; 366 367 while (start < end) { 368 ret = find_first_extent_bit(info->pinned_extents, start, 369 &extent_start, &extent_end, 370 EXTENT_DIRTY | EXTENT_UPTODATE, 371 NULL); 372 if (ret) 373 break; 374 375 if (extent_start <= start) { 376 start = extent_end + 1; 377 } else if (extent_start > start && extent_start < end) { 378 size = extent_start - start; 379 total_added += size; 380 ret = btrfs_add_free_space(block_group, start, 381 size); 382 BUG_ON(ret); /* -ENOMEM or logic error */ 383 start = extent_end + 1; 384 } else { 385 break; 386 } 387 } 388 389 if (start < end) { 390 size = end - start; 391 total_added += size; 392 ret = btrfs_add_free_space(block_group, start, size); 393 BUG_ON(ret); /* -ENOMEM or logic error */ 394 } 395 396 return total_added; 397 } 398 399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 400 { 401 struct btrfs_block_group_cache *block_group; 402 struct btrfs_fs_info *fs_info; 403 struct btrfs_root *extent_root; 404 struct btrfs_path *path; 405 struct extent_buffer *leaf; 406 struct btrfs_key key; 407 u64 total_found = 0; 408 u64 last = 0; 409 u32 nritems; 410 int ret; 411 bool wakeup = true; 412 413 block_group = caching_ctl->block_group; 414 fs_info = block_group->fs_info; 415 extent_root = fs_info->extent_root; 416 417 path = btrfs_alloc_path(); 418 if (!path) 419 return -ENOMEM; 420 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 422 423 #ifdef CONFIG_BTRFS_DEBUG 424 /* 425 * If we're fragmenting we don't want to make anybody think we can 426 * allocate from this block group until we've had a chance to fragment 427 * the free space. 428 */ 429 if (btrfs_should_fragment_free_space(extent_root, block_group)) 430 wakeup = false; 431 #endif 432 /* 433 * We don't want to deadlock with somebody trying to allocate a new 434 * extent for the extent root while also trying to search the extent 435 * root to add free space. So we skip locking and search the commit 436 * root, since its read-only 437 */ 438 path->skip_locking = 1; 439 path->search_commit_root = 1; 440 path->reada = READA_FORWARD; 441 442 key.objectid = last; 443 key.offset = 0; 444 key.type = BTRFS_EXTENT_ITEM_KEY; 445 446 next: 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 448 if (ret < 0) 449 goto out; 450 451 leaf = path->nodes[0]; 452 nritems = btrfs_header_nritems(leaf); 453 454 while (1) { 455 if (btrfs_fs_closing(fs_info) > 1) { 456 last = (u64)-1; 457 break; 458 } 459 460 if (path->slots[0] < nritems) { 461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 462 } else { 463 ret = find_next_key(path, 0, &key); 464 if (ret) 465 break; 466 467 if (need_resched() || 468 rwsem_is_contended(&fs_info->commit_root_sem)) { 469 if (wakeup) 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 up_read(&fs_info->commit_root_sem); 473 mutex_unlock(&caching_ctl->mutex); 474 cond_resched(); 475 mutex_lock(&caching_ctl->mutex); 476 down_read(&fs_info->commit_root_sem); 477 goto next; 478 } 479 480 ret = btrfs_next_leaf(extent_root, path); 481 if (ret < 0) 482 goto out; 483 if (ret) 484 break; 485 leaf = path->nodes[0]; 486 nritems = btrfs_header_nritems(leaf); 487 continue; 488 } 489 490 if (key.objectid < last) { 491 key.objectid = last; 492 key.offset = 0; 493 key.type = BTRFS_EXTENT_ITEM_KEY; 494 495 if (wakeup) 496 caching_ctl->progress = last; 497 btrfs_release_path(path); 498 goto next; 499 } 500 501 if (key.objectid < block_group->key.objectid) { 502 path->slots[0]++; 503 continue; 504 } 505 506 if (key.objectid >= block_group->key.objectid + 507 block_group->key.offset) 508 break; 509 510 if (key.type == BTRFS_EXTENT_ITEM_KEY || 511 key.type == BTRFS_METADATA_ITEM_KEY) { 512 total_found += add_new_free_space(block_group, 513 fs_info, last, 514 key.objectid); 515 if (key.type == BTRFS_METADATA_ITEM_KEY) 516 last = key.objectid + 517 fs_info->tree_root->nodesize; 518 else 519 last = key.objectid + key.offset; 520 521 if (total_found > CACHING_CTL_WAKE_UP) { 522 total_found = 0; 523 if (wakeup) 524 wake_up(&caching_ctl->wait); 525 } 526 } 527 path->slots[0]++; 528 } 529 ret = 0; 530 531 total_found += add_new_free_space(block_group, fs_info, last, 532 block_group->key.objectid + 533 block_group->key.offset); 534 caching_ctl->progress = (u64)-1; 535 536 out: 537 btrfs_free_path(path); 538 return ret; 539 } 540 541 static noinline void caching_thread(struct btrfs_work *work) 542 { 543 struct btrfs_block_group_cache *block_group; 544 struct btrfs_fs_info *fs_info; 545 struct btrfs_caching_control *caching_ctl; 546 struct btrfs_root *extent_root; 547 int ret; 548 549 caching_ctl = container_of(work, struct btrfs_caching_control, work); 550 block_group = caching_ctl->block_group; 551 fs_info = block_group->fs_info; 552 extent_root = fs_info->extent_root; 553 554 mutex_lock(&caching_ctl->mutex); 555 down_read(&fs_info->commit_root_sem); 556 557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 558 ret = load_free_space_tree(caching_ctl); 559 else 560 ret = load_extent_tree_free(caching_ctl); 561 562 spin_lock(&block_group->lock); 563 block_group->caching_ctl = NULL; 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 565 spin_unlock(&block_group->lock); 566 567 #ifdef CONFIG_BTRFS_DEBUG 568 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 569 u64 bytes_used; 570 571 spin_lock(&block_group->space_info->lock); 572 spin_lock(&block_group->lock); 573 bytes_used = block_group->key.offset - 574 btrfs_block_group_used(&block_group->item); 575 block_group->space_info->bytes_used += bytes_used >> 1; 576 spin_unlock(&block_group->lock); 577 spin_unlock(&block_group->space_info->lock); 578 fragment_free_space(extent_root, block_group); 579 } 580 #endif 581 582 caching_ctl->progress = (u64)-1; 583 584 up_read(&fs_info->commit_root_sem); 585 free_excluded_extents(fs_info->extent_root, block_group); 586 mutex_unlock(&caching_ctl->mutex); 587 588 wake_up(&caching_ctl->wait); 589 590 put_caching_control(caching_ctl); 591 btrfs_put_block_group(block_group); 592 } 593 594 static int cache_block_group(struct btrfs_block_group_cache *cache, 595 int load_cache_only) 596 { 597 DEFINE_WAIT(wait); 598 struct btrfs_fs_info *fs_info = cache->fs_info; 599 struct btrfs_caching_control *caching_ctl; 600 int ret = 0; 601 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 603 if (!caching_ctl) 604 return -ENOMEM; 605 606 INIT_LIST_HEAD(&caching_ctl->list); 607 mutex_init(&caching_ctl->mutex); 608 init_waitqueue_head(&caching_ctl->wait); 609 caching_ctl->block_group = cache; 610 caching_ctl->progress = cache->key.objectid; 611 atomic_set(&caching_ctl->count, 1); 612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 613 caching_thread, NULL, NULL); 614 615 spin_lock(&cache->lock); 616 /* 617 * This should be a rare occasion, but this could happen I think in the 618 * case where one thread starts to load the space cache info, and then 619 * some other thread starts a transaction commit which tries to do an 620 * allocation while the other thread is still loading the space cache 621 * info. The previous loop should have kept us from choosing this block 622 * group, but if we've moved to the state where we will wait on caching 623 * block groups we need to first check if we're doing a fast load here, 624 * so we can wait for it to finish, otherwise we could end up allocating 625 * from a block group who's cache gets evicted for one reason or 626 * another. 627 */ 628 while (cache->cached == BTRFS_CACHE_FAST) { 629 struct btrfs_caching_control *ctl; 630 631 ctl = cache->caching_ctl; 632 atomic_inc(&ctl->count); 633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 634 spin_unlock(&cache->lock); 635 636 schedule(); 637 638 finish_wait(&ctl->wait, &wait); 639 put_caching_control(ctl); 640 spin_lock(&cache->lock); 641 } 642 643 if (cache->cached != BTRFS_CACHE_NO) { 644 spin_unlock(&cache->lock); 645 kfree(caching_ctl); 646 return 0; 647 } 648 WARN_ON(cache->caching_ctl); 649 cache->caching_ctl = caching_ctl; 650 cache->cached = BTRFS_CACHE_FAST; 651 spin_unlock(&cache->lock); 652 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 654 mutex_lock(&caching_ctl->mutex); 655 ret = load_free_space_cache(fs_info, cache); 656 657 spin_lock(&cache->lock); 658 if (ret == 1) { 659 cache->caching_ctl = NULL; 660 cache->cached = BTRFS_CACHE_FINISHED; 661 cache->last_byte_to_unpin = (u64)-1; 662 caching_ctl->progress = (u64)-1; 663 } else { 664 if (load_cache_only) { 665 cache->caching_ctl = NULL; 666 cache->cached = BTRFS_CACHE_NO; 667 } else { 668 cache->cached = BTRFS_CACHE_STARTED; 669 cache->has_caching_ctl = 1; 670 } 671 } 672 spin_unlock(&cache->lock); 673 #ifdef CONFIG_BTRFS_DEBUG 674 if (ret == 1 && 675 btrfs_should_fragment_free_space(fs_info->extent_root, 676 cache)) { 677 u64 bytes_used; 678 679 spin_lock(&cache->space_info->lock); 680 spin_lock(&cache->lock); 681 bytes_used = cache->key.offset - 682 btrfs_block_group_used(&cache->item); 683 cache->space_info->bytes_used += bytes_used >> 1; 684 spin_unlock(&cache->lock); 685 spin_unlock(&cache->space_info->lock); 686 fragment_free_space(fs_info->extent_root, cache); 687 } 688 #endif 689 mutex_unlock(&caching_ctl->mutex); 690 691 wake_up(&caching_ctl->wait); 692 if (ret == 1) { 693 put_caching_control(caching_ctl); 694 free_excluded_extents(fs_info->extent_root, cache); 695 return 0; 696 } 697 } else { 698 /* 699 * We're either using the free space tree or no caching at all. 700 * Set cached to the appropriate value and wakeup any waiters. 701 */ 702 spin_lock(&cache->lock); 703 if (load_cache_only) { 704 cache->caching_ctl = NULL; 705 cache->cached = BTRFS_CACHE_NO; 706 } else { 707 cache->cached = BTRFS_CACHE_STARTED; 708 cache->has_caching_ctl = 1; 709 } 710 spin_unlock(&cache->lock); 711 wake_up(&caching_ctl->wait); 712 } 713 714 if (load_cache_only) { 715 put_caching_control(caching_ctl); 716 return 0; 717 } 718 719 down_write(&fs_info->commit_root_sem); 720 atomic_inc(&caching_ctl->count); 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 722 up_write(&fs_info->commit_root_sem); 723 724 btrfs_get_block_group(cache); 725 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 727 728 return ret; 729 } 730 731 /* 732 * return the block group that starts at or after bytenr 733 */ 734 static struct btrfs_block_group_cache * 735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 736 { 737 struct btrfs_block_group_cache *cache; 738 739 cache = block_group_cache_tree_search(info, bytenr, 0); 740 741 return cache; 742 } 743 744 /* 745 * return the block group that contains the given bytenr 746 */ 747 struct btrfs_block_group_cache *btrfs_lookup_block_group( 748 struct btrfs_fs_info *info, 749 u64 bytenr) 750 { 751 struct btrfs_block_group_cache *cache; 752 753 cache = block_group_cache_tree_search(info, bytenr, 1); 754 755 return cache; 756 } 757 758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 759 u64 flags) 760 { 761 struct list_head *head = &info->space_info; 762 struct btrfs_space_info *found; 763 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 765 766 rcu_read_lock(); 767 list_for_each_entry_rcu(found, head, list) { 768 if (found->flags & flags) { 769 rcu_read_unlock(); 770 return found; 771 } 772 } 773 rcu_read_unlock(); 774 return NULL; 775 } 776 777 /* 778 * after adding space to the filesystem, we need to clear the full flags 779 * on all the space infos. 780 */ 781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 782 { 783 struct list_head *head = &info->space_info; 784 struct btrfs_space_info *found; 785 786 rcu_read_lock(); 787 list_for_each_entry_rcu(found, head, list) 788 found->full = 0; 789 rcu_read_unlock(); 790 } 791 792 /* simple helper to search for an existing data extent at a given offset */ 793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 794 { 795 int ret; 796 struct btrfs_key key; 797 struct btrfs_path *path; 798 799 path = btrfs_alloc_path(); 800 if (!path) 801 return -ENOMEM; 802 803 key.objectid = start; 804 key.offset = len; 805 key.type = BTRFS_EXTENT_ITEM_KEY; 806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 807 0, 0); 808 btrfs_free_path(path); 809 return ret; 810 } 811 812 /* 813 * helper function to lookup reference count and flags of a tree block. 814 * 815 * the head node for delayed ref is used to store the sum of all the 816 * reference count modifications queued up in the rbtree. the head 817 * node may also store the extent flags to set. This way you can check 818 * to see what the reference count and extent flags would be if all of 819 * the delayed refs are not processed. 820 */ 821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 822 struct btrfs_root *root, u64 bytenr, 823 u64 offset, int metadata, u64 *refs, u64 *flags) 824 { 825 struct btrfs_delayed_ref_head *head; 826 struct btrfs_delayed_ref_root *delayed_refs; 827 struct btrfs_path *path; 828 struct btrfs_extent_item *ei; 829 struct extent_buffer *leaf; 830 struct btrfs_key key; 831 u32 item_size; 832 u64 num_refs; 833 u64 extent_flags; 834 int ret; 835 836 /* 837 * If we don't have skinny metadata, don't bother doing anything 838 * different 839 */ 840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 841 offset = root->nodesize; 842 metadata = 0; 843 } 844 845 path = btrfs_alloc_path(); 846 if (!path) 847 return -ENOMEM; 848 849 if (!trans) { 850 path->skip_locking = 1; 851 path->search_commit_root = 1; 852 } 853 854 search_again: 855 key.objectid = bytenr; 856 key.offset = offset; 857 if (metadata) 858 key.type = BTRFS_METADATA_ITEM_KEY; 859 else 860 key.type = BTRFS_EXTENT_ITEM_KEY; 861 862 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 863 &key, path, 0, 0); 864 if (ret < 0) 865 goto out_free; 866 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 868 if (path->slots[0]) { 869 path->slots[0]--; 870 btrfs_item_key_to_cpu(path->nodes[0], &key, 871 path->slots[0]); 872 if (key.objectid == bytenr && 873 key.type == BTRFS_EXTENT_ITEM_KEY && 874 key.offset == root->nodesize) 875 ret = 0; 876 } 877 } 878 879 if (ret == 0) { 880 leaf = path->nodes[0]; 881 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 882 if (item_size >= sizeof(*ei)) { 883 ei = btrfs_item_ptr(leaf, path->slots[0], 884 struct btrfs_extent_item); 885 num_refs = btrfs_extent_refs(leaf, ei); 886 extent_flags = btrfs_extent_flags(leaf, ei); 887 } else { 888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 889 struct btrfs_extent_item_v0 *ei0; 890 BUG_ON(item_size != sizeof(*ei0)); 891 ei0 = btrfs_item_ptr(leaf, path->slots[0], 892 struct btrfs_extent_item_v0); 893 num_refs = btrfs_extent_refs_v0(leaf, ei0); 894 /* FIXME: this isn't correct for data */ 895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 896 #else 897 BUG(); 898 #endif 899 } 900 BUG_ON(num_refs == 0); 901 } else { 902 num_refs = 0; 903 extent_flags = 0; 904 ret = 0; 905 } 906 907 if (!trans) 908 goto out; 909 910 delayed_refs = &trans->transaction->delayed_refs; 911 spin_lock(&delayed_refs->lock); 912 head = btrfs_find_delayed_ref_head(trans, bytenr); 913 if (head) { 914 if (!mutex_trylock(&head->mutex)) { 915 atomic_inc(&head->node.refs); 916 spin_unlock(&delayed_refs->lock); 917 918 btrfs_release_path(path); 919 920 /* 921 * Mutex was contended, block until it's released and try 922 * again 923 */ 924 mutex_lock(&head->mutex); 925 mutex_unlock(&head->mutex); 926 btrfs_put_delayed_ref(&head->node); 927 goto search_again; 928 } 929 spin_lock(&head->lock); 930 if (head->extent_op && head->extent_op->update_flags) 931 extent_flags |= head->extent_op->flags_to_set; 932 else 933 BUG_ON(num_refs == 0); 934 935 num_refs += head->node.ref_mod; 936 spin_unlock(&head->lock); 937 mutex_unlock(&head->mutex); 938 } 939 spin_unlock(&delayed_refs->lock); 940 out: 941 WARN_ON(num_refs == 0); 942 if (refs) 943 *refs = num_refs; 944 if (flags) 945 *flags = extent_flags; 946 out_free: 947 btrfs_free_path(path); 948 return ret; 949 } 950 951 /* 952 * Back reference rules. Back refs have three main goals: 953 * 954 * 1) differentiate between all holders of references to an extent so that 955 * when a reference is dropped we can make sure it was a valid reference 956 * before freeing the extent. 957 * 958 * 2) Provide enough information to quickly find the holders of an extent 959 * if we notice a given block is corrupted or bad. 960 * 961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 962 * maintenance. This is actually the same as #2, but with a slightly 963 * different use case. 964 * 965 * There are two kinds of back refs. The implicit back refs is optimized 966 * for pointers in non-shared tree blocks. For a given pointer in a block, 967 * back refs of this kind provide information about the block's owner tree 968 * and the pointer's key. These information allow us to find the block by 969 * b-tree searching. The full back refs is for pointers in tree blocks not 970 * referenced by their owner trees. The location of tree block is recorded 971 * in the back refs. Actually the full back refs is generic, and can be 972 * used in all cases the implicit back refs is used. The major shortcoming 973 * of the full back refs is its overhead. Every time a tree block gets 974 * COWed, we have to update back refs entry for all pointers in it. 975 * 976 * For a newly allocated tree block, we use implicit back refs for 977 * pointers in it. This means most tree related operations only involve 978 * implicit back refs. For a tree block created in old transaction, the 979 * only way to drop a reference to it is COW it. So we can detect the 980 * event that tree block loses its owner tree's reference and do the 981 * back refs conversion. 982 * 983 * When a tree block is COW'd through a tree, there are four cases: 984 * 985 * The reference count of the block is one and the tree is the block's 986 * owner tree. Nothing to do in this case. 987 * 988 * The reference count of the block is one and the tree is not the 989 * block's owner tree. In this case, full back refs is used for pointers 990 * in the block. Remove these full back refs, add implicit back refs for 991 * every pointers in the new block. 992 * 993 * The reference count of the block is greater than one and the tree is 994 * the block's owner tree. In this case, implicit back refs is used for 995 * pointers in the block. Add full back refs for every pointers in the 996 * block, increase lower level extents' reference counts. The original 997 * implicit back refs are entailed to the new block. 998 * 999 * The reference count of the block is greater than one and the tree is 1000 * not the block's owner tree. Add implicit back refs for every pointer in 1001 * the new block, increase lower level extents' reference count. 1002 * 1003 * Back Reference Key composing: 1004 * 1005 * The key objectid corresponds to the first byte in the extent, 1006 * The key type is used to differentiate between types of back refs. 1007 * There are different meanings of the key offset for different types 1008 * of back refs. 1009 * 1010 * File extents can be referenced by: 1011 * 1012 * - multiple snapshots, subvolumes, or different generations in one subvol 1013 * - different files inside a single subvolume 1014 * - different offsets inside a file (bookend extents in file.c) 1015 * 1016 * The extent ref structure for the implicit back refs has fields for: 1017 * 1018 * - Objectid of the subvolume root 1019 * - objectid of the file holding the reference 1020 * - original offset in the file 1021 * - how many bookend extents 1022 * 1023 * The key offset for the implicit back refs is hash of the first 1024 * three fields. 1025 * 1026 * The extent ref structure for the full back refs has field for: 1027 * 1028 * - number of pointers in the tree leaf 1029 * 1030 * The key offset for the implicit back refs is the first byte of 1031 * the tree leaf 1032 * 1033 * When a file extent is allocated, The implicit back refs is used. 1034 * the fields are filled in: 1035 * 1036 * (root_key.objectid, inode objectid, offset in file, 1) 1037 * 1038 * When a file extent is removed file truncation, we find the 1039 * corresponding implicit back refs and check the following fields: 1040 * 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1042 * 1043 * Btree extents can be referenced by: 1044 * 1045 * - Different subvolumes 1046 * 1047 * Both the implicit back refs and the full back refs for tree blocks 1048 * only consist of key. The key offset for the implicit back refs is 1049 * objectid of block's owner tree. The key offset for the full back refs 1050 * is the first byte of parent block. 1051 * 1052 * When implicit back refs is used, information about the lowest key and 1053 * level of the tree block are required. These information are stored in 1054 * tree block info structure. 1055 */ 1056 1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1059 struct btrfs_root *root, 1060 struct btrfs_path *path, 1061 u64 owner, u32 extra_size) 1062 { 1063 struct btrfs_extent_item *item; 1064 struct btrfs_extent_item_v0 *ei0; 1065 struct btrfs_extent_ref_v0 *ref0; 1066 struct btrfs_tree_block_info *bi; 1067 struct extent_buffer *leaf; 1068 struct btrfs_key key; 1069 struct btrfs_key found_key; 1070 u32 new_size = sizeof(*item); 1071 u64 refs; 1072 int ret; 1073 1074 leaf = path->nodes[0]; 1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1076 1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1078 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1079 struct btrfs_extent_item_v0); 1080 refs = btrfs_extent_refs_v0(leaf, ei0); 1081 1082 if (owner == (u64)-1) { 1083 while (1) { 1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1085 ret = btrfs_next_leaf(root, path); 1086 if (ret < 0) 1087 return ret; 1088 BUG_ON(ret > 0); /* Corruption */ 1089 leaf = path->nodes[0]; 1090 } 1091 btrfs_item_key_to_cpu(leaf, &found_key, 1092 path->slots[0]); 1093 BUG_ON(key.objectid != found_key.objectid); 1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1095 path->slots[0]++; 1096 continue; 1097 } 1098 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1099 struct btrfs_extent_ref_v0); 1100 owner = btrfs_ref_objectid_v0(leaf, ref0); 1101 break; 1102 } 1103 } 1104 btrfs_release_path(path); 1105 1106 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1107 new_size += sizeof(*bi); 1108 1109 new_size -= sizeof(*ei0); 1110 ret = btrfs_search_slot(trans, root, &key, path, 1111 new_size + extra_size, 1); 1112 if (ret < 0) 1113 return ret; 1114 BUG_ON(ret); /* Corruption */ 1115 1116 btrfs_extend_item(root, path, new_size); 1117 1118 leaf = path->nodes[0]; 1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1120 btrfs_set_extent_refs(leaf, item, refs); 1121 /* FIXME: get real generation */ 1122 btrfs_set_extent_generation(leaf, item, 0); 1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1124 btrfs_set_extent_flags(leaf, item, 1125 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1126 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1127 bi = (struct btrfs_tree_block_info *)(item + 1); 1128 /* FIXME: get first key of the block */ 1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1130 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1131 } else { 1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1133 } 1134 btrfs_mark_buffer_dirty(leaf); 1135 return 0; 1136 } 1137 #endif 1138 1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1140 { 1141 u32 high_crc = ~(u32)0; 1142 u32 low_crc = ~(u32)0; 1143 __le64 lenum; 1144 1145 lenum = cpu_to_le64(root_objectid); 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1147 lenum = cpu_to_le64(owner); 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1149 lenum = cpu_to_le64(offset); 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1151 1152 return ((u64)high_crc << 31) ^ (u64)low_crc; 1153 } 1154 1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1156 struct btrfs_extent_data_ref *ref) 1157 { 1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1159 btrfs_extent_data_ref_objectid(leaf, ref), 1160 btrfs_extent_data_ref_offset(leaf, ref)); 1161 } 1162 1163 static int match_extent_data_ref(struct extent_buffer *leaf, 1164 struct btrfs_extent_data_ref *ref, 1165 u64 root_objectid, u64 owner, u64 offset) 1166 { 1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1169 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1170 return 0; 1171 return 1; 1172 } 1173 1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1175 struct btrfs_root *root, 1176 struct btrfs_path *path, 1177 u64 bytenr, u64 parent, 1178 u64 root_objectid, 1179 u64 owner, u64 offset) 1180 { 1181 struct btrfs_key key; 1182 struct btrfs_extent_data_ref *ref; 1183 struct extent_buffer *leaf; 1184 u32 nritems; 1185 int ret; 1186 int recow; 1187 int err = -ENOENT; 1188 1189 key.objectid = bytenr; 1190 if (parent) { 1191 key.type = BTRFS_SHARED_DATA_REF_KEY; 1192 key.offset = parent; 1193 } else { 1194 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1195 key.offset = hash_extent_data_ref(root_objectid, 1196 owner, offset); 1197 } 1198 again: 1199 recow = 0; 1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1201 if (ret < 0) { 1202 err = ret; 1203 goto fail; 1204 } 1205 1206 if (parent) { 1207 if (!ret) 1208 return 0; 1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1210 key.type = BTRFS_EXTENT_REF_V0_KEY; 1211 btrfs_release_path(path); 1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1213 if (ret < 0) { 1214 err = ret; 1215 goto fail; 1216 } 1217 if (!ret) 1218 return 0; 1219 #endif 1220 goto fail; 1221 } 1222 1223 leaf = path->nodes[0]; 1224 nritems = btrfs_header_nritems(leaf); 1225 while (1) { 1226 if (path->slots[0] >= nritems) { 1227 ret = btrfs_next_leaf(root, path); 1228 if (ret < 0) 1229 err = ret; 1230 if (ret) 1231 goto fail; 1232 1233 leaf = path->nodes[0]; 1234 nritems = btrfs_header_nritems(leaf); 1235 recow = 1; 1236 } 1237 1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1239 if (key.objectid != bytenr || 1240 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1241 goto fail; 1242 1243 ref = btrfs_item_ptr(leaf, path->slots[0], 1244 struct btrfs_extent_data_ref); 1245 1246 if (match_extent_data_ref(leaf, ref, root_objectid, 1247 owner, offset)) { 1248 if (recow) { 1249 btrfs_release_path(path); 1250 goto again; 1251 } 1252 err = 0; 1253 break; 1254 } 1255 path->slots[0]++; 1256 } 1257 fail: 1258 return err; 1259 } 1260 1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 u64 bytenr, u64 parent, 1265 u64 root_objectid, u64 owner, 1266 u64 offset, int refs_to_add) 1267 { 1268 struct btrfs_key key; 1269 struct extent_buffer *leaf; 1270 u32 size; 1271 u32 num_refs; 1272 int ret; 1273 1274 key.objectid = bytenr; 1275 if (parent) { 1276 key.type = BTRFS_SHARED_DATA_REF_KEY; 1277 key.offset = parent; 1278 size = sizeof(struct btrfs_shared_data_ref); 1279 } else { 1280 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1281 key.offset = hash_extent_data_ref(root_objectid, 1282 owner, offset); 1283 size = sizeof(struct btrfs_extent_data_ref); 1284 } 1285 1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1287 if (ret && ret != -EEXIST) 1288 goto fail; 1289 1290 leaf = path->nodes[0]; 1291 if (parent) { 1292 struct btrfs_shared_data_ref *ref; 1293 ref = btrfs_item_ptr(leaf, path->slots[0], 1294 struct btrfs_shared_data_ref); 1295 if (ret == 0) { 1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1297 } else { 1298 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1299 num_refs += refs_to_add; 1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1301 } 1302 } else { 1303 struct btrfs_extent_data_ref *ref; 1304 while (ret == -EEXIST) { 1305 ref = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_extent_data_ref); 1307 if (match_extent_data_ref(leaf, ref, root_objectid, 1308 owner, offset)) 1309 break; 1310 btrfs_release_path(path); 1311 key.offset++; 1312 ret = btrfs_insert_empty_item(trans, root, path, &key, 1313 size); 1314 if (ret && ret != -EEXIST) 1315 goto fail; 1316 1317 leaf = path->nodes[0]; 1318 } 1319 ref = btrfs_item_ptr(leaf, path->slots[0], 1320 struct btrfs_extent_data_ref); 1321 if (ret == 0) { 1322 btrfs_set_extent_data_ref_root(leaf, ref, 1323 root_objectid); 1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1327 } else { 1328 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1329 num_refs += refs_to_add; 1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1331 } 1332 } 1333 btrfs_mark_buffer_dirty(leaf); 1334 ret = 0; 1335 fail: 1336 btrfs_release_path(path); 1337 return ret; 1338 } 1339 1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1341 struct btrfs_root *root, 1342 struct btrfs_path *path, 1343 int refs_to_drop, int *last_ref) 1344 { 1345 struct btrfs_key key; 1346 struct btrfs_extent_data_ref *ref1 = NULL; 1347 struct btrfs_shared_data_ref *ref2 = NULL; 1348 struct extent_buffer *leaf; 1349 u32 num_refs = 0; 1350 int ret = 0; 1351 1352 leaf = path->nodes[0]; 1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1354 1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1356 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1357 struct btrfs_extent_data_ref); 1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1360 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_shared_data_ref); 1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1365 struct btrfs_extent_ref_v0 *ref0; 1366 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1367 struct btrfs_extent_ref_v0); 1368 num_refs = btrfs_ref_count_v0(leaf, ref0); 1369 #endif 1370 } else { 1371 BUG(); 1372 } 1373 1374 BUG_ON(num_refs < refs_to_drop); 1375 num_refs -= refs_to_drop; 1376 1377 if (num_refs == 0) { 1378 ret = btrfs_del_item(trans, root, path); 1379 *last_ref = 1; 1380 } else { 1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1386 else { 1387 struct btrfs_extent_ref_v0 *ref0; 1388 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1389 struct btrfs_extent_ref_v0); 1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1391 } 1392 #endif 1393 btrfs_mark_buffer_dirty(leaf); 1394 } 1395 return ret; 1396 } 1397 1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1399 struct btrfs_extent_inline_ref *iref) 1400 { 1401 struct btrfs_key key; 1402 struct extent_buffer *leaf; 1403 struct btrfs_extent_data_ref *ref1; 1404 struct btrfs_shared_data_ref *ref2; 1405 u32 num_refs = 0; 1406 1407 leaf = path->nodes[0]; 1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1409 if (iref) { 1410 if (btrfs_extent_inline_ref_type(leaf, iref) == 1411 BTRFS_EXTENT_DATA_REF_KEY) { 1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1414 } else { 1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1417 } 1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1419 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1420 struct btrfs_extent_data_ref); 1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1423 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1424 struct btrfs_shared_data_ref); 1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1428 struct btrfs_extent_ref_v0 *ref0; 1429 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1430 struct btrfs_extent_ref_v0); 1431 num_refs = btrfs_ref_count_v0(leaf, ref0); 1432 #endif 1433 } else { 1434 WARN_ON(1); 1435 } 1436 return num_refs; 1437 } 1438 1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1440 struct btrfs_root *root, 1441 struct btrfs_path *path, 1442 u64 bytenr, u64 parent, 1443 u64 root_objectid) 1444 { 1445 struct btrfs_key key; 1446 int ret; 1447 1448 key.objectid = bytenr; 1449 if (parent) { 1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1451 key.offset = parent; 1452 } else { 1453 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1454 key.offset = root_objectid; 1455 } 1456 1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1458 if (ret > 0) 1459 ret = -ENOENT; 1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1461 if (ret == -ENOENT && parent) { 1462 btrfs_release_path(path); 1463 key.type = BTRFS_EXTENT_REF_V0_KEY; 1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1465 if (ret > 0) 1466 ret = -ENOENT; 1467 } 1468 #endif 1469 return ret; 1470 } 1471 1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1473 struct btrfs_root *root, 1474 struct btrfs_path *path, 1475 u64 bytenr, u64 parent, 1476 u64 root_objectid) 1477 { 1478 struct btrfs_key key; 1479 int ret; 1480 1481 key.objectid = bytenr; 1482 if (parent) { 1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1484 key.offset = parent; 1485 } else { 1486 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1487 key.offset = root_objectid; 1488 } 1489 1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1491 btrfs_release_path(path); 1492 return ret; 1493 } 1494 1495 static inline int extent_ref_type(u64 parent, u64 owner) 1496 { 1497 int type; 1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1499 if (parent > 0) 1500 type = BTRFS_SHARED_BLOCK_REF_KEY; 1501 else 1502 type = BTRFS_TREE_BLOCK_REF_KEY; 1503 } else { 1504 if (parent > 0) 1505 type = BTRFS_SHARED_DATA_REF_KEY; 1506 else 1507 type = BTRFS_EXTENT_DATA_REF_KEY; 1508 } 1509 return type; 1510 } 1511 1512 static int find_next_key(struct btrfs_path *path, int level, 1513 struct btrfs_key *key) 1514 1515 { 1516 for (; level < BTRFS_MAX_LEVEL; level++) { 1517 if (!path->nodes[level]) 1518 break; 1519 if (path->slots[level] + 1 >= 1520 btrfs_header_nritems(path->nodes[level])) 1521 continue; 1522 if (level == 0) 1523 btrfs_item_key_to_cpu(path->nodes[level], key, 1524 path->slots[level] + 1); 1525 else 1526 btrfs_node_key_to_cpu(path->nodes[level], key, 1527 path->slots[level] + 1); 1528 return 0; 1529 } 1530 return 1; 1531 } 1532 1533 /* 1534 * look for inline back ref. if back ref is found, *ref_ret is set 1535 * to the address of inline back ref, and 0 is returned. 1536 * 1537 * if back ref isn't found, *ref_ret is set to the address where it 1538 * should be inserted, and -ENOENT is returned. 1539 * 1540 * if insert is true and there are too many inline back refs, the path 1541 * points to the extent item, and -EAGAIN is returned. 1542 * 1543 * NOTE: inline back refs are ordered in the same way that back ref 1544 * items in the tree are ordered. 1545 */ 1546 static noinline_for_stack 1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1548 struct btrfs_root *root, 1549 struct btrfs_path *path, 1550 struct btrfs_extent_inline_ref **ref_ret, 1551 u64 bytenr, u64 num_bytes, 1552 u64 parent, u64 root_objectid, 1553 u64 owner, u64 offset, int insert) 1554 { 1555 struct btrfs_key key; 1556 struct extent_buffer *leaf; 1557 struct btrfs_extent_item *ei; 1558 struct btrfs_extent_inline_ref *iref; 1559 u64 flags; 1560 u64 item_size; 1561 unsigned long ptr; 1562 unsigned long end; 1563 int extra_size; 1564 int type; 1565 int want; 1566 int ret; 1567 int err = 0; 1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1569 SKINNY_METADATA); 1570 1571 key.objectid = bytenr; 1572 key.type = BTRFS_EXTENT_ITEM_KEY; 1573 key.offset = num_bytes; 1574 1575 want = extent_ref_type(parent, owner); 1576 if (insert) { 1577 extra_size = btrfs_extent_inline_ref_size(want); 1578 path->keep_locks = 1; 1579 } else 1580 extra_size = -1; 1581 1582 /* 1583 * Owner is our parent level, so we can just add one to get the level 1584 * for the block we are interested in. 1585 */ 1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1587 key.type = BTRFS_METADATA_ITEM_KEY; 1588 key.offset = owner; 1589 } 1590 1591 again: 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1593 if (ret < 0) { 1594 err = ret; 1595 goto out; 1596 } 1597 1598 /* 1599 * We may be a newly converted file system which still has the old fat 1600 * extent entries for metadata, so try and see if we have one of those. 1601 */ 1602 if (ret > 0 && skinny_metadata) { 1603 skinny_metadata = false; 1604 if (path->slots[0]) { 1605 path->slots[0]--; 1606 btrfs_item_key_to_cpu(path->nodes[0], &key, 1607 path->slots[0]); 1608 if (key.objectid == bytenr && 1609 key.type == BTRFS_EXTENT_ITEM_KEY && 1610 key.offset == num_bytes) 1611 ret = 0; 1612 } 1613 if (ret) { 1614 key.objectid = bytenr; 1615 key.type = BTRFS_EXTENT_ITEM_KEY; 1616 key.offset = num_bytes; 1617 btrfs_release_path(path); 1618 goto again; 1619 } 1620 } 1621 1622 if (ret && !insert) { 1623 err = -ENOENT; 1624 goto out; 1625 } else if (WARN_ON(ret)) { 1626 err = -EIO; 1627 goto out; 1628 } 1629 1630 leaf = path->nodes[0]; 1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1633 if (item_size < sizeof(*ei)) { 1634 if (!insert) { 1635 err = -ENOENT; 1636 goto out; 1637 } 1638 ret = convert_extent_item_v0(trans, root, path, owner, 1639 extra_size); 1640 if (ret < 0) { 1641 err = ret; 1642 goto out; 1643 } 1644 leaf = path->nodes[0]; 1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1646 } 1647 #endif 1648 BUG_ON(item_size < sizeof(*ei)); 1649 1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1651 flags = btrfs_extent_flags(leaf, ei); 1652 1653 ptr = (unsigned long)(ei + 1); 1654 end = (unsigned long)ei + item_size; 1655 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1657 ptr += sizeof(struct btrfs_tree_block_info); 1658 BUG_ON(ptr > end); 1659 } 1660 1661 err = -ENOENT; 1662 while (1) { 1663 if (ptr >= end) { 1664 WARN_ON(ptr > end); 1665 break; 1666 } 1667 iref = (struct btrfs_extent_inline_ref *)ptr; 1668 type = btrfs_extent_inline_ref_type(leaf, iref); 1669 if (want < type) 1670 break; 1671 if (want > type) { 1672 ptr += btrfs_extent_inline_ref_size(type); 1673 continue; 1674 } 1675 1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1677 struct btrfs_extent_data_ref *dref; 1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1679 if (match_extent_data_ref(leaf, dref, root_objectid, 1680 owner, offset)) { 1681 err = 0; 1682 break; 1683 } 1684 if (hash_extent_data_ref_item(leaf, dref) < 1685 hash_extent_data_ref(root_objectid, owner, offset)) 1686 break; 1687 } else { 1688 u64 ref_offset; 1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1690 if (parent > 0) { 1691 if (parent == ref_offset) { 1692 err = 0; 1693 break; 1694 } 1695 if (ref_offset < parent) 1696 break; 1697 } else { 1698 if (root_objectid == ref_offset) { 1699 err = 0; 1700 break; 1701 } 1702 if (ref_offset < root_objectid) 1703 break; 1704 } 1705 } 1706 ptr += btrfs_extent_inline_ref_size(type); 1707 } 1708 if (err == -ENOENT && insert) { 1709 if (item_size + extra_size >= 1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1711 err = -EAGAIN; 1712 goto out; 1713 } 1714 /* 1715 * To add new inline back ref, we have to make sure 1716 * there is no corresponding back ref item. 1717 * For simplicity, we just do not add new inline back 1718 * ref if there is any kind of item for this block 1719 */ 1720 if (find_next_key(path, 0, &key) == 0 && 1721 key.objectid == bytenr && 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1723 err = -EAGAIN; 1724 goto out; 1725 } 1726 } 1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1728 out: 1729 if (insert) { 1730 path->keep_locks = 0; 1731 btrfs_unlock_up_safe(path, 1); 1732 } 1733 return err; 1734 } 1735 1736 /* 1737 * helper to add new inline back ref 1738 */ 1739 static noinline_for_stack 1740 void setup_inline_extent_backref(struct btrfs_root *root, 1741 struct btrfs_path *path, 1742 struct btrfs_extent_inline_ref *iref, 1743 u64 parent, u64 root_objectid, 1744 u64 owner, u64 offset, int refs_to_add, 1745 struct btrfs_delayed_extent_op *extent_op) 1746 { 1747 struct extent_buffer *leaf; 1748 struct btrfs_extent_item *ei; 1749 unsigned long ptr; 1750 unsigned long end; 1751 unsigned long item_offset; 1752 u64 refs; 1753 int size; 1754 int type; 1755 1756 leaf = path->nodes[0]; 1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1758 item_offset = (unsigned long)iref - (unsigned long)ei; 1759 1760 type = extent_ref_type(parent, owner); 1761 size = btrfs_extent_inline_ref_size(type); 1762 1763 btrfs_extend_item(root, path, size); 1764 1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1766 refs = btrfs_extent_refs(leaf, ei); 1767 refs += refs_to_add; 1768 btrfs_set_extent_refs(leaf, ei, refs); 1769 if (extent_op) 1770 __run_delayed_extent_op(extent_op, leaf, ei); 1771 1772 ptr = (unsigned long)ei + item_offset; 1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1774 if (ptr < end - size) 1775 memmove_extent_buffer(leaf, ptr + size, ptr, 1776 end - size - ptr); 1777 1778 iref = (struct btrfs_extent_inline_ref *)ptr; 1779 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1781 struct btrfs_extent_data_ref *dref; 1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 struct btrfs_shared_data_ref *sref; 1789 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1794 } else { 1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1796 } 1797 btrfs_mark_buffer_dirty(leaf); 1798 } 1799 1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 struct btrfs_path *path, 1803 struct btrfs_extent_inline_ref **ref_ret, 1804 u64 bytenr, u64 num_bytes, u64 parent, 1805 u64 root_objectid, u64 owner, u64 offset) 1806 { 1807 int ret; 1808 1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1810 bytenr, num_bytes, parent, 1811 root_objectid, owner, offset, 0); 1812 if (ret != -ENOENT) 1813 return ret; 1814 1815 btrfs_release_path(path); 1816 *ref_ret = NULL; 1817 1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1820 root_objectid); 1821 } else { 1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1823 root_objectid, owner, offset); 1824 } 1825 return ret; 1826 } 1827 1828 /* 1829 * helper to update/remove inline back ref 1830 */ 1831 static noinline_for_stack 1832 void update_inline_extent_backref(struct btrfs_root *root, 1833 struct btrfs_path *path, 1834 struct btrfs_extent_inline_ref *iref, 1835 int refs_to_mod, 1836 struct btrfs_delayed_extent_op *extent_op, 1837 int *last_ref) 1838 { 1839 struct extent_buffer *leaf; 1840 struct btrfs_extent_item *ei; 1841 struct btrfs_extent_data_ref *dref = NULL; 1842 struct btrfs_shared_data_ref *sref = NULL; 1843 unsigned long ptr; 1844 unsigned long end; 1845 u32 item_size; 1846 int size; 1847 int type; 1848 u64 refs; 1849 1850 leaf = path->nodes[0]; 1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1852 refs = btrfs_extent_refs(leaf, ei); 1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1854 refs += refs_to_mod; 1855 btrfs_set_extent_refs(leaf, ei, refs); 1856 if (extent_op) 1857 __run_delayed_extent_op(extent_op, leaf, ei); 1858 1859 type = btrfs_extent_inline_ref_type(leaf, iref); 1860 1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1863 refs = btrfs_extent_data_ref_count(leaf, dref); 1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1865 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1866 refs = btrfs_shared_data_ref_count(leaf, sref); 1867 } else { 1868 refs = 1; 1869 BUG_ON(refs_to_mod != -1); 1870 } 1871 1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1873 refs += refs_to_mod; 1874 1875 if (refs > 0) { 1876 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1877 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1878 else 1879 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1880 } else { 1881 *last_ref = 1; 1882 size = btrfs_extent_inline_ref_size(type); 1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1884 ptr = (unsigned long)iref; 1885 end = (unsigned long)ei + item_size; 1886 if (ptr + size < end) 1887 memmove_extent_buffer(leaf, ptr, ptr + size, 1888 end - ptr - size); 1889 item_size -= size; 1890 btrfs_truncate_item(root, path, item_size, 1); 1891 } 1892 btrfs_mark_buffer_dirty(leaf); 1893 } 1894 1895 static noinline_for_stack 1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1897 struct btrfs_root *root, 1898 struct btrfs_path *path, 1899 u64 bytenr, u64 num_bytes, u64 parent, 1900 u64 root_objectid, u64 owner, 1901 u64 offset, int refs_to_add, 1902 struct btrfs_delayed_extent_op *extent_op) 1903 { 1904 struct btrfs_extent_inline_ref *iref; 1905 int ret; 1906 1907 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1908 bytenr, num_bytes, parent, 1909 root_objectid, owner, offset, 1); 1910 if (ret == 0) { 1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1912 update_inline_extent_backref(root, path, iref, 1913 refs_to_add, extent_op, NULL); 1914 } else if (ret == -ENOENT) { 1915 setup_inline_extent_backref(root, path, iref, parent, 1916 root_objectid, owner, offset, 1917 refs_to_add, extent_op); 1918 ret = 0; 1919 } 1920 return ret; 1921 } 1922 1923 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1924 struct btrfs_root *root, 1925 struct btrfs_path *path, 1926 u64 bytenr, u64 parent, u64 root_objectid, 1927 u64 owner, u64 offset, int refs_to_add) 1928 { 1929 int ret; 1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1931 BUG_ON(refs_to_add != 1); 1932 ret = insert_tree_block_ref(trans, root, path, bytenr, 1933 parent, root_objectid); 1934 } else { 1935 ret = insert_extent_data_ref(trans, root, path, bytenr, 1936 parent, root_objectid, 1937 owner, offset, refs_to_add); 1938 } 1939 return ret; 1940 } 1941 1942 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 struct btrfs_path *path, 1945 struct btrfs_extent_inline_ref *iref, 1946 int refs_to_drop, int is_data, int *last_ref) 1947 { 1948 int ret = 0; 1949 1950 BUG_ON(!is_data && refs_to_drop != 1); 1951 if (iref) { 1952 update_inline_extent_backref(root, path, iref, 1953 -refs_to_drop, NULL, last_ref); 1954 } else if (is_data) { 1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1956 last_ref); 1957 } else { 1958 *last_ref = 1; 1959 ret = btrfs_del_item(trans, root, path); 1960 } 1961 return ret; 1962 } 1963 1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1966 u64 *discarded_bytes) 1967 { 1968 int j, ret = 0; 1969 u64 bytes_left, end; 1970 u64 aligned_start = ALIGN(start, 1 << 9); 1971 1972 if (WARN_ON(start != aligned_start)) { 1973 len -= aligned_start - start; 1974 len = round_down(len, 1 << 9); 1975 start = aligned_start; 1976 } 1977 1978 *discarded_bytes = 0; 1979 1980 if (!len) 1981 return 0; 1982 1983 end = start + len; 1984 bytes_left = len; 1985 1986 /* Skip any superblocks on this device. */ 1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1988 u64 sb_start = btrfs_sb_offset(j); 1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1990 u64 size = sb_start - start; 1991 1992 if (!in_range(sb_start, start, bytes_left) && 1993 !in_range(sb_end, start, bytes_left) && 1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1995 continue; 1996 1997 /* 1998 * Superblock spans beginning of range. Adjust start and 1999 * try again. 2000 */ 2001 if (sb_start <= start) { 2002 start += sb_end - start; 2003 if (start > end) { 2004 bytes_left = 0; 2005 break; 2006 } 2007 bytes_left = end - start; 2008 continue; 2009 } 2010 2011 if (size) { 2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2013 GFP_NOFS, 0); 2014 if (!ret) 2015 *discarded_bytes += size; 2016 else if (ret != -EOPNOTSUPP) 2017 return ret; 2018 } 2019 2020 start = sb_end; 2021 if (start > end) { 2022 bytes_left = 0; 2023 break; 2024 } 2025 bytes_left = end - start; 2026 } 2027 2028 if (bytes_left) { 2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2030 GFP_NOFS, 0); 2031 if (!ret) 2032 *discarded_bytes += bytes_left; 2033 } 2034 return ret; 2035 } 2036 2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2038 u64 num_bytes, u64 *actual_bytes) 2039 { 2040 int ret; 2041 u64 discarded_bytes = 0; 2042 struct btrfs_bio *bbio = NULL; 2043 2044 2045 /* Tell the block device(s) that the sectors can be discarded */ 2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 2047 bytenr, &num_bytes, &bbio, 0); 2048 /* Error condition is -ENOMEM */ 2049 if (!ret) { 2050 struct btrfs_bio_stripe *stripe = bbio->stripes; 2051 int i; 2052 2053 2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2055 u64 bytes; 2056 if (!stripe->dev->can_discard) 2057 continue; 2058 2059 ret = btrfs_issue_discard(stripe->dev->bdev, 2060 stripe->physical, 2061 stripe->length, 2062 &bytes); 2063 if (!ret) 2064 discarded_bytes += bytes; 2065 else if (ret != -EOPNOTSUPP) 2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2067 2068 /* 2069 * Just in case we get back EOPNOTSUPP for some reason, 2070 * just ignore the return value so we don't screw up 2071 * people calling discard_extent. 2072 */ 2073 ret = 0; 2074 } 2075 btrfs_put_bbio(bbio); 2076 } 2077 2078 if (actual_bytes) 2079 *actual_bytes = discarded_bytes; 2080 2081 2082 if (ret == -EOPNOTSUPP) 2083 ret = 0; 2084 return ret; 2085 } 2086 2087 /* Can return -ENOMEM */ 2088 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2089 struct btrfs_root *root, 2090 u64 bytenr, u64 num_bytes, u64 parent, 2091 u64 root_objectid, u64 owner, u64 offset) 2092 { 2093 int ret; 2094 struct btrfs_fs_info *fs_info = root->fs_info; 2095 2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2097 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2098 2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2101 num_bytes, 2102 parent, root_objectid, (int)owner, 2103 BTRFS_ADD_DELAYED_REF, NULL); 2104 } else { 2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2106 num_bytes, parent, root_objectid, 2107 owner, offset, 0, 2108 BTRFS_ADD_DELAYED_REF, NULL); 2109 } 2110 return ret; 2111 } 2112 2113 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2114 struct btrfs_root *root, 2115 struct btrfs_delayed_ref_node *node, 2116 u64 parent, u64 root_objectid, 2117 u64 owner, u64 offset, int refs_to_add, 2118 struct btrfs_delayed_extent_op *extent_op) 2119 { 2120 struct btrfs_fs_info *fs_info = root->fs_info; 2121 struct btrfs_path *path; 2122 struct extent_buffer *leaf; 2123 struct btrfs_extent_item *item; 2124 struct btrfs_key key; 2125 u64 bytenr = node->bytenr; 2126 u64 num_bytes = node->num_bytes; 2127 u64 refs; 2128 int ret; 2129 2130 path = btrfs_alloc_path(); 2131 if (!path) 2132 return -ENOMEM; 2133 2134 path->reada = READA_FORWARD; 2135 path->leave_spinning = 1; 2136 /* this will setup the path even if it fails to insert the back ref */ 2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2138 bytenr, num_bytes, parent, 2139 root_objectid, owner, offset, 2140 refs_to_add, extent_op); 2141 if ((ret < 0 && ret != -EAGAIN) || !ret) 2142 goto out; 2143 2144 /* 2145 * Ok we had -EAGAIN which means we didn't have space to insert and 2146 * inline extent ref, so just update the reference count and add a 2147 * normal backref. 2148 */ 2149 leaf = path->nodes[0]; 2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2152 refs = btrfs_extent_refs(leaf, item); 2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2154 if (extent_op) 2155 __run_delayed_extent_op(extent_op, leaf, item); 2156 2157 btrfs_mark_buffer_dirty(leaf); 2158 btrfs_release_path(path); 2159 2160 path->reada = READA_FORWARD; 2161 path->leave_spinning = 1; 2162 /* now insert the actual backref */ 2163 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2164 path, bytenr, parent, root_objectid, 2165 owner, offset, refs_to_add); 2166 if (ret) 2167 btrfs_abort_transaction(trans, root, ret); 2168 out: 2169 btrfs_free_path(path); 2170 return ret; 2171 } 2172 2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2174 struct btrfs_root *root, 2175 struct btrfs_delayed_ref_node *node, 2176 struct btrfs_delayed_extent_op *extent_op, 2177 int insert_reserved) 2178 { 2179 int ret = 0; 2180 struct btrfs_delayed_data_ref *ref; 2181 struct btrfs_key ins; 2182 u64 parent = 0; 2183 u64 ref_root = 0; 2184 u64 flags = 0; 2185 2186 ins.objectid = node->bytenr; 2187 ins.offset = node->num_bytes; 2188 ins.type = BTRFS_EXTENT_ITEM_KEY; 2189 2190 ref = btrfs_delayed_node_to_data_ref(node); 2191 trace_run_delayed_data_ref(node, ref, node->action); 2192 2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2194 parent = ref->parent; 2195 ref_root = ref->root; 2196 2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2198 if (extent_op) 2199 flags |= extent_op->flags_to_set; 2200 ret = alloc_reserved_file_extent(trans, root, 2201 parent, ref_root, flags, 2202 ref->objectid, ref->offset, 2203 &ins, node->ref_mod); 2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2206 ref_root, ref->objectid, 2207 ref->offset, node->ref_mod, 2208 extent_op); 2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2210 ret = __btrfs_free_extent(trans, root, node, parent, 2211 ref_root, ref->objectid, 2212 ref->offset, node->ref_mod, 2213 extent_op); 2214 } else { 2215 BUG(); 2216 } 2217 return ret; 2218 } 2219 2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2221 struct extent_buffer *leaf, 2222 struct btrfs_extent_item *ei) 2223 { 2224 u64 flags = btrfs_extent_flags(leaf, ei); 2225 if (extent_op->update_flags) { 2226 flags |= extent_op->flags_to_set; 2227 btrfs_set_extent_flags(leaf, ei, flags); 2228 } 2229 2230 if (extent_op->update_key) { 2231 struct btrfs_tree_block_info *bi; 2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2233 bi = (struct btrfs_tree_block_info *)(ei + 1); 2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2235 } 2236 } 2237 2238 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2239 struct btrfs_root *root, 2240 struct btrfs_delayed_ref_node *node, 2241 struct btrfs_delayed_extent_op *extent_op) 2242 { 2243 struct btrfs_key key; 2244 struct btrfs_path *path; 2245 struct btrfs_extent_item *ei; 2246 struct extent_buffer *leaf; 2247 u32 item_size; 2248 int ret; 2249 int err = 0; 2250 int metadata = !extent_op->is_data; 2251 2252 if (trans->aborted) 2253 return 0; 2254 2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2256 metadata = 0; 2257 2258 path = btrfs_alloc_path(); 2259 if (!path) 2260 return -ENOMEM; 2261 2262 key.objectid = node->bytenr; 2263 2264 if (metadata) { 2265 key.type = BTRFS_METADATA_ITEM_KEY; 2266 key.offset = extent_op->level; 2267 } else { 2268 key.type = BTRFS_EXTENT_ITEM_KEY; 2269 key.offset = node->num_bytes; 2270 } 2271 2272 again: 2273 path->reada = READA_FORWARD; 2274 path->leave_spinning = 1; 2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2276 path, 0, 1); 2277 if (ret < 0) { 2278 err = ret; 2279 goto out; 2280 } 2281 if (ret > 0) { 2282 if (metadata) { 2283 if (path->slots[0] > 0) { 2284 path->slots[0]--; 2285 btrfs_item_key_to_cpu(path->nodes[0], &key, 2286 path->slots[0]); 2287 if (key.objectid == node->bytenr && 2288 key.type == BTRFS_EXTENT_ITEM_KEY && 2289 key.offset == node->num_bytes) 2290 ret = 0; 2291 } 2292 if (ret > 0) { 2293 btrfs_release_path(path); 2294 metadata = 0; 2295 2296 key.objectid = node->bytenr; 2297 key.offset = node->num_bytes; 2298 key.type = BTRFS_EXTENT_ITEM_KEY; 2299 goto again; 2300 } 2301 } else { 2302 err = -EIO; 2303 goto out; 2304 } 2305 } 2306 2307 leaf = path->nodes[0]; 2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2310 if (item_size < sizeof(*ei)) { 2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2312 path, (u64)-1, 0); 2313 if (ret < 0) { 2314 err = ret; 2315 goto out; 2316 } 2317 leaf = path->nodes[0]; 2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2319 } 2320 #endif 2321 BUG_ON(item_size < sizeof(*ei)); 2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2323 __run_delayed_extent_op(extent_op, leaf, ei); 2324 2325 btrfs_mark_buffer_dirty(leaf); 2326 out: 2327 btrfs_free_path(path); 2328 return err; 2329 } 2330 2331 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2332 struct btrfs_root *root, 2333 struct btrfs_delayed_ref_node *node, 2334 struct btrfs_delayed_extent_op *extent_op, 2335 int insert_reserved) 2336 { 2337 int ret = 0; 2338 struct btrfs_delayed_tree_ref *ref; 2339 struct btrfs_key ins; 2340 u64 parent = 0; 2341 u64 ref_root = 0; 2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2343 SKINNY_METADATA); 2344 2345 ref = btrfs_delayed_node_to_tree_ref(node); 2346 trace_run_delayed_tree_ref(node, ref, node->action); 2347 2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2349 parent = ref->parent; 2350 ref_root = ref->root; 2351 2352 ins.objectid = node->bytenr; 2353 if (skinny_metadata) { 2354 ins.offset = ref->level; 2355 ins.type = BTRFS_METADATA_ITEM_KEY; 2356 } else { 2357 ins.offset = node->num_bytes; 2358 ins.type = BTRFS_EXTENT_ITEM_KEY; 2359 } 2360 2361 BUG_ON(node->ref_mod != 1); 2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2363 BUG_ON(!extent_op || !extent_op->update_flags); 2364 ret = alloc_reserved_tree_block(trans, root, 2365 parent, ref_root, 2366 extent_op->flags_to_set, 2367 &extent_op->key, 2368 ref->level, &ins); 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2370 ret = __btrfs_inc_extent_ref(trans, root, node, 2371 parent, ref_root, 2372 ref->level, 0, 1, 2373 extent_op); 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2375 ret = __btrfs_free_extent(trans, root, node, 2376 parent, ref_root, 2377 ref->level, 0, 1, extent_op); 2378 } else { 2379 BUG(); 2380 } 2381 return ret; 2382 } 2383 2384 /* helper function to actually process a single delayed ref entry */ 2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct btrfs_delayed_ref_node *node, 2388 struct btrfs_delayed_extent_op *extent_op, 2389 int insert_reserved) 2390 { 2391 int ret = 0; 2392 2393 if (trans->aborted) { 2394 if (insert_reserved) 2395 btrfs_pin_extent(root, node->bytenr, 2396 node->num_bytes, 1); 2397 return 0; 2398 } 2399 2400 if (btrfs_delayed_ref_is_head(node)) { 2401 struct btrfs_delayed_ref_head *head; 2402 /* 2403 * we've hit the end of the chain and we were supposed 2404 * to insert this extent into the tree. But, it got 2405 * deleted before we ever needed to insert it, so all 2406 * we have to do is clean up the accounting 2407 */ 2408 BUG_ON(extent_op); 2409 head = btrfs_delayed_node_to_head(node); 2410 trace_run_delayed_ref_head(node, head, node->action); 2411 2412 if (insert_reserved) { 2413 btrfs_pin_extent(root, node->bytenr, 2414 node->num_bytes, 1); 2415 if (head->is_data) { 2416 ret = btrfs_del_csums(trans, root, 2417 node->bytenr, 2418 node->num_bytes); 2419 } 2420 } 2421 2422 /* Also free its reserved qgroup space */ 2423 btrfs_qgroup_free_delayed_ref(root->fs_info, 2424 head->qgroup_ref_root, 2425 head->qgroup_reserved); 2426 return ret; 2427 } 2428 2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2431 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2432 insert_reserved); 2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2434 node->type == BTRFS_SHARED_DATA_REF_KEY) 2435 ret = run_delayed_data_ref(trans, root, node, extent_op, 2436 insert_reserved); 2437 else 2438 BUG(); 2439 return ret; 2440 } 2441 2442 static inline struct btrfs_delayed_ref_node * 2443 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2444 { 2445 struct btrfs_delayed_ref_node *ref; 2446 2447 if (list_empty(&head->ref_list)) 2448 return NULL; 2449 2450 /* 2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2452 * This is to prevent a ref count from going down to zero, which deletes 2453 * the extent item from the extent tree, when there still are references 2454 * to add, which would fail because they would not find the extent item. 2455 */ 2456 list_for_each_entry(ref, &head->ref_list, list) { 2457 if (ref->action == BTRFS_ADD_DELAYED_REF) 2458 return ref; 2459 } 2460 2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2462 list); 2463 } 2464 2465 /* 2466 * Returns 0 on success or if called with an already aborted transaction. 2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2468 */ 2469 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2470 struct btrfs_root *root, 2471 unsigned long nr) 2472 { 2473 struct btrfs_delayed_ref_root *delayed_refs; 2474 struct btrfs_delayed_ref_node *ref; 2475 struct btrfs_delayed_ref_head *locked_ref = NULL; 2476 struct btrfs_delayed_extent_op *extent_op; 2477 struct btrfs_fs_info *fs_info = root->fs_info; 2478 ktime_t start = ktime_get(); 2479 int ret; 2480 unsigned long count = 0; 2481 unsigned long actual_count = 0; 2482 int must_insert_reserved = 0; 2483 2484 delayed_refs = &trans->transaction->delayed_refs; 2485 while (1) { 2486 if (!locked_ref) { 2487 if (count >= nr) 2488 break; 2489 2490 spin_lock(&delayed_refs->lock); 2491 locked_ref = btrfs_select_ref_head(trans); 2492 if (!locked_ref) { 2493 spin_unlock(&delayed_refs->lock); 2494 break; 2495 } 2496 2497 /* grab the lock that says we are going to process 2498 * all the refs for this head */ 2499 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2500 spin_unlock(&delayed_refs->lock); 2501 /* 2502 * we may have dropped the spin lock to get the head 2503 * mutex lock, and that might have given someone else 2504 * time to free the head. If that's true, it has been 2505 * removed from our list and we can move on. 2506 */ 2507 if (ret == -EAGAIN) { 2508 locked_ref = NULL; 2509 count++; 2510 continue; 2511 } 2512 } 2513 2514 /* 2515 * We need to try and merge add/drops of the same ref since we 2516 * can run into issues with relocate dropping the implicit ref 2517 * and then it being added back again before the drop can 2518 * finish. If we merged anything we need to re-loop so we can 2519 * get a good ref. 2520 * Or we can get node references of the same type that weren't 2521 * merged when created due to bumps in the tree mod seq, and 2522 * we need to merge them to prevent adding an inline extent 2523 * backref before dropping it (triggering a BUG_ON at 2524 * insert_inline_extent_backref()). 2525 */ 2526 spin_lock(&locked_ref->lock); 2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2528 locked_ref); 2529 2530 /* 2531 * locked_ref is the head node, so we have to go one 2532 * node back for any delayed ref updates 2533 */ 2534 ref = select_delayed_ref(locked_ref); 2535 2536 if (ref && ref->seq && 2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2538 spin_unlock(&locked_ref->lock); 2539 btrfs_delayed_ref_unlock(locked_ref); 2540 spin_lock(&delayed_refs->lock); 2541 locked_ref->processing = 0; 2542 delayed_refs->num_heads_ready++; 2543 spin_unlock(&delayed_refs->lock); 2544 locked_ref = NULL; 2545 cond_resched(); 2546 count++; 2547 continue; 2548 } 2549 2550 /* 2551 * record the must insert reserved flag before we 2552 * drop the spin lock. 2553 */ 2554 must_insert_reserved = locked_ref->must_insert_reserved; 2555 locked_ref->must_insert_reserved = 0; 2556 2557 extent_op = locked_ref->extent_op; 2558 locked_ref->extent_op = NULL; 2559 2560 if (!ref) { 2561 2562 2563 /* All delayed refs have been processed, Go ahead 2564 * and send the head node to run_one_delayed_ref, 2565 * so that any accounting fixes can happen 2566 */ 2567 ref = &locked_ref->node; 2568 2569 if (extent_op && must_insert_reserved) { 2570 btrfs_free_delayed_extent_op(extent_op); 2571 extent_op = NULL; 2572 } 2573 2574 if (extent_op) { 2575 spin_unlock(&locked_ref->lock); 2576 ret = run_delayed_extent_op(trans, root, 2577 ref, extent_op); 2578 btrfs_free_delayed_extent_op(extent_op); 2579 2580 if (ret) { 2581 /* 2582 * Need to reset must_insert_reserved if 2583 * there was an error so the abort stuff 2584 * can cleanup the reserved space 2585 * properly. 2586 */ 2587 if (must_insert_reserved) 2588 locked_ref->must_insert_reserved = 1; 2589 locked_ref->processing = 0; 2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2591 btrfs_delayed_ref_unlock(locked_ref); 2592 return ret; 2593 } 2594 continue; 2595 } 2596 2597 /* 2598 * Need to drop our head ref lock and re-aqcuire the 2599 * delayed ref lock and then re-check to make sure 2600 * nobody got added. 2601 */ 2602 spin_unlock(&locked_ref->lock); 2603 spin_lock(&delayed_refs->lock); 2604 spin_lock(&locked_ref->lock); 2605 if (!list_empty(&locked_ref->ref_list) || 2606 locked_ref->extent_op) { 2607 spin_unlock(&locked_ref->lock); 2608 spin_unlock(&delayed_refs->lock); 2609 continue; 2610 } 2611 ref->in_tree = 0; 2612 delayed_refs->num_heads--; 2613 rb_erase(&locked_ref->href_node, 2614 &delayed_refs->href_root); 2615 spin_unlock(&delayed_refs->lock); 2616 } else { 2617 actual_count++; 2618 ref->in_tree = 0; 2619 list_del(&ref->list); 2620 } 2621 atomic_dec(&delayed_refs->num_entries); 2622 2623 if (!btrfs_delayed_ref_is_head(ref)) { 2624 /* 2625 * when we play the delayed ref, also correct the 2626 * ref_mod on head 2627 */ 2628 switch (ref->action) { 2629 case BTRFS_ADD_DELAYED_REF: 2630 case BTRFS_ADD_DELAYED_EXTENT: 2631 locked_ref->node.ref_mod -= ref->ref_mod; 2632 break; 2633 case BTRFS_DROP_DELAYED_REF: 2634 locked_ref->node.ref_mod += ref->ref_mod; 2635 break; 2636 default: 2637 WARN_ON(1); 2638 } 2639 } 2640 spin_unlock(&locked_ref->lock); 2641 2642 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2643 must_insert_reserved); 2644 2645 btrfs_free_delayed_extent_op(extent_op); 2646 if (ret) { 2647 locked_ref->processing = 0; 2648 btrfs_delayed_ref_unlock(locked_ref); 2649 btrfs_put_delayed_ref(ref); 2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2651 return ret; 2652 } 2653 2654 /* 2655 * If this node is a head, that means all the refs in this head 2656 * have been dealt with, and we will pick the next head to deal 2657 * with, so we must unlock the head and drop it from the cluster 2658 * list before we release it. 2659 */ 2660 if (btrfs_delayed_ref_is_head(ref)) { 2661 if (locked_ref->is_data && 2662 locked_ref->total_ref_mod < 0) { 2663 spin_lock(&delayed_refs->lock); 2664 delayed_refs->pending_csums -= ref->num_bytes; 2665 spin_unlock(&delayed_refs->lock); 2666 } 2667 btrfs_delayed_ref_unlock(locked_ref); 2668 locked_ref = NULL; 2669 } 2670 btrfs_put_delayed_ref(ref); 2671 count++; 2672 cond_resched(); 2673 } 2674 2675 /* 2676 * We don't want to include ref heads since we can have empty ref heads 2677 * and those will drastically skew our runtime down since we just do 2678 * accounting, no actual extent tree updates. 2679 */ 2680 if (actual_count > 0) { 2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2682 u64 avg; 2683 2684 /* 2685 * We weigh the current average higher than our current runtime 2686 * to avoid large swings in the average. 2687 */ 2688 spin_lock(&delayed_refs->lock); 2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2691 spin_unlock(&delayed_refs->lock); 2692 } 2693 return 0; 2694 } 2695 2696 #ifdef SCRAMBLE_DELAYED_REFS 2697 /* 2698 * Normally delayed refs get processed in ascending bytenr order. This 2699 * correlates in most cases to the order added. To expose dependencies on this 2700 * order, we start to process the tree in the middle instead of the beginning 2701 */ 2702 static u64 find_middle(struct rb_root *root) 2703 { 2704 struct rb_node *n = root->rb_node; 2705 struct btrfs_delayed_ref_node *entry; 2706 int alt = 1; 2707 u64 middle; 2708 u64 first = 0, last = 0; 2709 2710 n = rb_first(root); 2711 if (n) { 2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2713 first = entry->bytenr; 2714 } 2715 n = rb_last(root); 2716 if (n) { 2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2718 last = entry->bytenr; 2719 } 2720 n = root->rb_node; 2721 2722 while (n) { 2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2724 WARN_ON(!entry->in_tree); 2725 2726 middle = entry->bytenr; 2727 2728 if (alt) 2729 n = n->rb_left; 2730 else 2731 n = n->rb_right; 2732 2733 alt = 1 - alt; 2734 } 2735 return middle; 2736 } 2737 #endif 2738 2739 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2740 { 2741 u64 num_bytes; 2742 2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2744 sizeof(struct btrfs_extent_inline_ref)); 2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2747 2748 /* 2749 * We don't ever fill up leaves all the way so multiply by 2 just to be 2750 * closer to what we're really going to want to ouse. 2751 */ 2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2753 } 2754 2755 /* 2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2757 * would require to store the csums for that many bytes. 2758 */ 2759 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2760 { 2761 u64 csum_size; 2762 u64 num_csums_per_leaf; 2763 u64 num_csums; 2764 2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2766 num_csums_per_leaf = div64_u64(csum_size, 2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2768 num_csums = div64_u64(csum_bytes, root->sectorsize); 2769 num_csums += num_csums_per_leaf - 1; 2770 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2771 return num_csums; 2772 } 2773 2774 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2775 struct btrfs_root *root) 2776 { 2777 struct btrfs_block_rsv *global_rsv; 2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2781 u64 num_bytes, num_dirty_bgs_bytes; 2782 int ret = 0; 2783 2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2785 num_heads = heads_to_leaves(root, num_heads); 2786 if (num_heads > 1) 2787 num_bytes += (num_heads - 1) * root->nodesize; 2788 num_bytes <<= 1; 2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2791 num_dirty_bgs); 2792 global_rsv = &root->fs_info->global_block_rsv; 2793 2794 /* 2795 * If we can't allocate any more chunks lets make sure we have _lots_ of 2796 * wiggle room since running delayed refs can create more delayed refs. 2797 */ 2798 if (global_rsv->space_info->full) { 2799 num_dirty_bgs_bytes <<= 1; 2800 num_bytes <<= 1; 2801 } 2802 2803 spin_lock(&global_rsv->lock); 2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2805 ret = 1; 2806 spin_unlock(&global_rsv->lock); 2807 return ret; 2808 } 2809 2810 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2811 struct btrfs_root *root) 2812 { 2813 struct btrfs_fs_info *fs_info = root->fs_info; 2814 u64 num_entries = 2815 atomic_read(&trans->transaction->delayed_refs.num_entries); 2816 u64 avg_runtime; 2817 u64 val; 2818 2819 smp_mb(); 2820 avg_runtime = fs_info->avg_delayed_ref_runtime; 2821 val = num_entries * avg_runtime; 2822 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2823 return 1; 2824 if (val >= NSEC_PER_SEC / 2) 2825 return 2; 2826 2827 return btrfs_check_space_for_delayed_refs(trans, root); 2828 } 2829 2830 struct async_delayed_refs { 2831 struct btrfs_root *root; 2832 int count; 2833 int error; 2834 int sync; 2835 struct completion wait; 2836 struct btrfs_work work; 2837 }; 2838 2839 static void delayed_ref_async_start(struct btrfs_work *work) 2840 { 2841 struct async_delayed_refs *async; 2842 struct btrfs_trans_handle *trans; 2843 int ret; 2844 2845 async = container_of(work, struct async_delayed_refs, work); 2846 2847 trans = btrfs_join_transaction(async->root); 2848 if (IS_ERR(trans)) { 2849 async->error = PTR_ERR(trans); 2850 goto done; 2851 } 2852 2853 /* 2854 * trans->sync means that when we call end_transaciton, we won't 2855 * wait on delayed refs 2856 */ 2857 trans->sync = true; 2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2859 if (ret) 2860 async->error = ret; 2861 2862 ret = btrfs_end_transaction(trans, async->root); 2863 if (ret && !async->error) 2864 async->error = ret; 2865 done: 2866 if (async->sync) 2867 complete(&async->wait); 2868 else 2869 kfree(async); 2870 } 2871 2872 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2873 unsigned long count, int wait) 2874 { 2875 struct async_delayed_refs *async; 2876 int ret; 2877 2878 async = kmalloc(sizeof(*async), GFP_NOFS); 2879 if (!async) 2880 return -ENOMEM; 2881 2882 async->root = root->fs_info->tree_root; 2883 async->count = count; 2884 async->error = 0; 2885 if (wait) 2886 async->sync = 1; 2887 else 2888 async->sync = 0; 2889 init_completion(&async->wait); 2890 2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2892 delayed_ref_async_start, NULL, NULL); 2893 2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2895 2896 if (wait) { 2897 wait_for_completion(&async->wait); 2898 ret = async->error; 2899 kfree(async); 2900 return ret; 2901 } 2902 return 0; 2903 } 2904 2905 /* 2906 * this starts processing the delayed reference count updates and 2907 * extent insertions we have queued up so far. count can be 2908 * 0, which means to process everything in the tree at the start 2909 * of the run (but not newly added entries), or it can be some target 2910 * number you'd like to process. 2911 * 2912 * Returns 0 on success or if called with an aborted transaction 2913 * Returns <0 on error and aborts the transaction 2914 */ 2915 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2916 struct btrfs_root *root, unsigned long count) 2917 { 2918 struct rb_node *node; 2919 struct btrfs_delayed_ref_root *delayed_refs; 2920 struct btrfs_delayed_ref_head *head; 2921 int ret; 2922 int run_all = count == (unsigned long)-1; 2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2924 2925 /* We'll clean this up in btrfs_cleanup_transaction */ 2926 if (trans->aborted) 2927 return 0; 2928 2929 if (root->fs_info->creating_free_space_tree) 2930 return 0; 2931 2932 if (root == root->fs_info->extent_root) 2933 root = root->fs_info->tree_root; 2934 2935 delayed_refs = &trans->transaction->delayed_refs; 2936 if (count == 0) 2937 count = atomic_read(&delayed_refs->num_entries) * 2; 2938 2939 again: 2940 #ifdef SCRAMBLE_DELAYED_REFS 2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2942 #endif 2943 trans->can_flush_pending_bgs = false; 2944 ret = __btrfs_run_delayed_refs(trans, root, count); 2945 if (ret < 0) { 2946 btrfs_abort_transaction(trans, root, ret); 2947 return ret; 2948 } 2949 2950 if (run_all) { 2951 if (!list_empty(&trans->new_bgs)) 2952 btrfs_create_pending_block_groups(trans, root); 2953 2954 spin_lock(&delayed_refs->lock); 2955 node = rb_first(&delayed_refs->href_root); 2956 if (!node) { 2957 spin_unlock(&delayed_refs->lock); 2958 goto out; 2959 } 2960 count = (unsigned long)-1; 2961 2962 while (node) { 2963 head = rb_entry(node, struct btrfs_delayed_ref_head, 2964 href_node); 2965 if (btrfs_delayed_ref_is_head(&head->node)) { 2966 struct btrfs_delayed_ref_node *ref; 2967 2968 ref = &head->node; 2969 atomic_inc(&ref->refs); 2970 2971 spin_unlock(&delayed_refs->lock); 2972 /* 2973 * Mutex was contended, block until it's 2974 * released and try again 2975 */ 2976 mutex_lock(&head->mutex); 2977 mutex_unlock(&head->mutex); 2978 2979 btrfs_put_delayed_ref(ref); 2980 cond_resched(); 2981 goto again; 2982 } else { 2983 WARN_ON(1); 2984 } 2985 node = rb_next(node); 2986 } 2987 spin_unlock(&delayed_refs->lock); 2988 cond_resched(); 2989 goto again; 2990 } 2991 out: 2992 assert_qgroups_uptodate(trans); 2993 trans->can_flush_pending_bgs = can_flush_pending_bgs; 2994 return 0; 2995 } 2996 2997 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *root, 2999 u64 bytenr, u64 num_bytes, u64 flags, 3000 int level, int is_data) 3001 { 3002 struct btrfs_delayed_extent_op *extent_op; 3003 int ret; 3004 3005 extent_op = btrfs_alloc_delayed_extent_op(); 3006 if (!extent_op) 3007 return -ENOMEM; 3008 3009 extent_op->flags_to_set = flags; 3010 extent_op->update_flags = true; 3011 extent_op->update_key = false; 3012 extent_op->is_data = is_data ? true : false; 3013 extent_op->level = level; 3014 3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3016 num_bytes, extent_op); 3017 if (ret) 3018 btrfs_free_delayed_extent_op(extent_op); 3019 return ret; 3020 } 3021 3022 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3023 struct btrfs_root *root, 3024 struct btrfs_path *path, 3025 u64 objectid, u64 offset, u64 bytenr) 3026 { 3027 struct btrfs_delayed_ref_head *head; 3028 struct btrfs_delayed_ref_node *ref; 3029 struct btrfs_delayed_data_ref *data_ref; 3030 struct btrfs_delayed_ref_root *delayed_refs; 3031 int ret = 0; 3032 3033 delayed_refs = &trans->transaction->delayed_refs; 3034 spin_lock(&delayed_refs->lock); 3035 head = btrfs_find_delayed_ref_head(trans, bytenr); 3036 if (!head) { 3037 spin_unlock(&delayed_refs->lock); 3038 return 0; 3039 } 3040 3041 if (!mutex_trylock(&head->mutex)) { 3042 atomic_inc(&head->node.refs); 3043 spin_unlock(&delayed_refs->lock); 3044 3045 btrfs_release_path(path); 3046 3047 /* 3048 * Mutex was contended, block until it's released and let 3049 * caller try again 3050 */ 3051 mutex_lock(&head->mutex); 3052 mutex_unlock(&head->mutex); 3053 btrfs_put_delayed_ref(&head->node); 3054 return -EAGAIN; 3055 } 3056 spin_unlock(&delayed_refs->lock); 3057 3058 spin_lock(&head->lock); 3059 list_for_each_entry(ref, &head->ref_list, list) { 3060 /* If it's a shared ref we know a cross reference exists */ 3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3062 ret = 1; 3063 break; 3064 } 3065 3066 data_ref = btrfs_delayed_node_to_data_ref(ref); 3067 3068 /* 3069 * If our ref doesn't match the one we're currently looking at 3070 * then we have a cross reference. 3071 */ 3072 if (data_ref->root != root->root_key.objectid || 3073 data_ref->objectid != objectid || 3074 data_ref->offset != offset) { 3075 ret = 1; 3076 break; 3077 } 3078 } 3079 spin_unlock(&head->lock); 3080 mutex_unlock(&head->mutex); 3081 return ret; 3082 } 3083 3084 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3085 struct btrfs_root *root, 3086 struct btrfs_path *path, 3087 u64 objectid, u64 offset, u64 bytenr) 3088 { 3089 struct btrfs_root *extent_root = root->fs_info->extent_root; 3090 struct extent_buffer *leaf; 3091 struct btrfs_extent_data_ref *ref; 3092 struct btrfs_extent_inline_ref *iref; 3093 struct btrfs_extent_item *ei; 3094 struct btrfs_key key; 3095 u32 item_size; 3096 int ret; 3097 3098 key.objectid = bytenr; 3099 key.offset = (u64)-1; 3100 key.type = BTRFS_EXTENT_ITEM_KEY; 3101 3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3103 if (ret < 0) 3104 goto out; 3105 BUG_ON(ret == 0); /* Corruption */ 3106 3107 ret = -ENOENT; 3108 if (path->slots[0] == 0) 3109 goto out; 3110 3111 path->slots[0]--; 3112 leaf = path->nodes[0]; 3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3114 3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3116 goto out; 3117 3118 ret = 1; 3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3121 if (item_size < sizeof(*ei)) { 3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3123 goto out; 3124 } 3125 #endif 3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3127 3128 if (item_size != sizeof(*ei) + 3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3130 goto out; 3131 3132 if (btrfs_extent_generation(leaf, ei) <= 3133 btrfs_root_last_snapshot(&root->root_item)) 3134 goto out; 3135 3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3137 if (btrfs_extent_inline_ref_type(leaf, iref) != 3138 BTRFS_EXTENT_DATA_REF_KEY) 3139 goto out; 3140 3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3142 if (btrfs_extent_refs(leaf, ei) != 3143 btrfs_extent_data_ref_count(leaf, ref) || 3144 btrfs_extent_data_ref_root(leaf, ref) != 3145 root->root_key.objectid || 3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3147 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3148 goto out; 3149 3150 ret = 0; 3151 out: 3152 return ret; 3153 } 3154 3155 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3156 struct btrfs_root *root, 3157 u64 objectid, u64 offset, u64 bytenr) 3158 { 3159 struct btrfs_path *path; 3160 int ret; 3161 int ret2; 3162 3163 path = btrfs_alloc_path(); 3164 if (!path) 3165 return -ENOENT; 3166 3167 do { 3168 ret = check_committed_ref(trans, root, path, objectid, 3169 offset, bytenr); 3170 if (ret && ret != -ENOENT) 3171 goto out; 3172 3173 ret2 = check_delayed_ref(trans, root, path, objectid, 3174 offset, bytenr); 3175 } while (ret2 == -EAGAIN); 3176 3177 if (ret2 && ret2 != -ENOENT) { 3178 ret = ret2; 3179 goto out; 3180 } 3181 3182 if (ret != -ENOENT || ret2 != -ENOENT) 3183 ret = 0; 3184 out: 3185 btrfs_free_path(path); 3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3187 WARN_ON(ret > 0); 3188 return ret; 3189 } 3190 3191 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3192 struct btrfs_root *root, 3193 struct extent_buffer *buf, 3194 int full_backref, int inc) 3195 { 3196 u64 bytenr; 3197 u64 num_bytes; 3198 u64 parent; 3199 u64 ref_root; 3200 u32 nritems; 3201 struct btrfs_key key; 3202 struct btrfs_file_extent_item *fi; 3203 int i; 3204 int level; 3205 int ret = 0; 3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3207 u64, u64, u64, u64, u64, u64); 3208 3209 3210 if (btrfs_test_is_dummy_root(root)) 3211 return 0; 3212 3213 ref_root = btrfs_header_owner(buf); 3214 nritems = btrfs_header_nritems(buf); 3215 level = btrfs_header_level(buf); 3216 3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3218 return 0; 3219 3220 if (inc) 3221 process_func = btrfs_inc_extent_ref; 3222 else 3223 process_func = btrfs_free_extent; 3224 3225 if (full_backref) 3226 parent = buf->start; 3227 else 3228 parent = 0; 3229 3230 for (i = 0; i < nritems; i++) { 3231 if (level == 0) { 3232 btrfs_item_key_to_cpu(buf, &key, i); 3233 if (key.type != BTRFS_EXTENT_DATA_KEY) 3234 continue; 3235 fi = btrfs_item_ptr(buf, i, 3236 struct btrfs_file_extent_item); 3237 if (btrfs_file_extent_type(buf, fi) == 3238 BTRFS_FILE_EXTENT_INLINE) 3239 continue; 3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3241 if (bytenr == 0) 3242 continue; 3243 3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3245 key.offset -= btrfs_file_extent_offset(buf, fi); 3246 ret = process_func(trans, root, bytenr, num_bytes, 3247 parent, ref_root, key.objectid, 3248 key.offset); 3249 if (ret) 3250 goto fail; 3251 } else { 3252 bytenr = btrfs_node_blockptr(buf, i); 3253 num_bytes = root->nodesize; 3254 ret = process_func(trans, root, bytenr, num_bytes, 3255 parent, ref_root, level - 1, 0); 3256 if (ret) 3257 goto fail; 3258 } 3259 } 3260 return 0; 3261 fail: 3262 return ret; 3263 } 3264 3265 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3266 struct extent_buffer *buf, int full_backref) 3267 { 3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3269 } 3270 3271 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3272 struct extent_buffer *buf, int full_backref) 3273 { 3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3275 } 3276 3277 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3278 struct btrfs_root *root, 3279 struct btrfs_path *path, 3280 struct btrfs_block_group_cache *cache) 3281 { 3282 int ret; 3283 struct btrfs_root *extent_root = root->fs_info->extent_root; 3284 unsigned long bi; 3285 struct extent_buffer *leaf; 3286 3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3288 if (ret) { 3289 if (ret > 0) 3290 ret = -ENOENT; 3291 goto fail; 3292 } 3293 3294 leaf = path->nodes[0]; 3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3297 btrfs_mark_buffer_dirty(leaf); 3298 fail: 3299 btrfs_release_path(path); 3300 return ret; 3301 3302 } 3303 3304 static struct btrfs_block_group_cache * 3305 next_block_group(struct btrfs_root *root, 3306 struct btrfs_block_group_cache *cache) 3307 { 3308 struct rb_node *node; 3309 3310 spin_lock(&root->fs_info->block_group_cache_lock); 3311 3312 /* If our block group was removed, we need a full search. */ 3313 if (RB_EMPTY_NODE(&cache->cache_node)) { 3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3315 3316 spin_unlock(&root->fs_info->block_group_cache_lock); 3317 btrfs_put_block_group(cache); 3318 cache = btrfs_lookup_first_block_group(root->fs_info, 3319 next_bytenr); 3320 return cache; 3321 } 3322 node = rb_next(&cache->cache_node); 3323 btrfs_put_block_group(cache); 3324 if (node) { 3325 cache = rb_entry(node, struct btrfs_block_group_cache, 3326 cache_node); 3327 btrfs_get_block_group(cache); 3328 } else 3329 cache = NULL; 3330 spin_unlock(&root->fs_info->block_group_cache_lock); 3331 return cache; 3332 } 3333 3334 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3335 struct btrfs_trans_handle *trans, 3336 struct btrfs_path *path) 3337 { 3338 struct btrfs_root *root = block_group->fs_info->tree_root; 3339 struct inode *inode = NULL; 3340 u64 alloc_hint = 0; 3341 int dcs = BTRFS_DC_ERROR; 3342 u64 num_pages = 0; 3343 int retries = 0; 3344 int ret = 0; 3345 3346 /* 3347 * If this block group is smaller than 100 megs don't bother caching the 3348 * block group. 3349 */ 3350 if (block_group->key.offset < (100 * SZ_1M)) { 3351 spin_lock(&block_group->lock); 3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3353 spin_unlock(&block_group->lock); 3354 return 0; 3355 } 3356 3357 if (trans->aborted) 3358 return 0; 3359 again: 3360 inode = lookup_free_space_inode(root, block_group, path); 3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3362 ret = PTR_ERR(inode); 3363 btrfs_release_path(path); 3364 goto out; 3365 } 3366 3367 if (IS_ERR(inode)) { 3368 BUG_ON(retries); 3369 retries++; 3370 3371 if (block_group->ro) 3372 goto out_free; 3373 3374 ret = create_free_space_inode(root, trans, block_group, path); 3375 if (ret) 3376 goto out_free; 3377 goto again; 3378 } 3379 3380 /* We've already setup this transaction, go ahead and exit */ 3381 if (block_group->cache_generation == trans->transid && 3382 i_size_read(inode)) { 3383 dcs = BTRFS_DC_SETUP; 3384 goto out_put; 3385 } 3386 3387 /* 3388 * We want to set the generation to 0, that way if anything goes wrong 3389 * from here on out we know not to trust this cache when we load up next 3390 * time. 3391 */ 3392 BTRFS_I(inode)->generation = 0; 3393 ret = btrfs_update_inode(trans, root, inode); 3394 if (ret) { 3395 /* 3396 * So theoretically we could recover from this, simply set the 3397 * super cache generation to 0 so we know to invalidate the 3398 * cache, but then we'd have to keep track of the block groups 3399 * that fail this way so we know we _have_ to reset this cache 3400 * before the next commit or risk reading stale cache. So to 3401 * limit our exposure to horrible edge cases lets just abort the 3402 * transaction, this only happens in really bad situations 3403 * anyway. 3404 */ 3405 btrfs_abort_transaction(trans, root, ret); 3406 goto out_put; 3407 } 3408 WARN_ON(ret); 3409 3410 if (i_size_read(inode) > 0) { 3411 ret = btrfs_check_trunc_cache_free_space(root, 3412 &root->fs_info->global_block_rsv); 3413 if (ret) 3414 goto out_put; 3415 3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3417 if (ret) 3418 goto out_put; 3419 } 3420 3421 spin_lock(&block_group->lock); 3422 if (block_group->cached != BTRFS_CACHE_FINISHED || 3423 !btrfs_test_opt(root, SPACE_CACHE)) { 3424 /* 3425 * don't bother trying to write stuff out _if_ 3426 * a) we're not cached, 3427 * b) we're with nospace_cache mount option. 3428 */ 3429 dcs = BTRFS_DC_WRITTEN; 3430 spin_unlock(&block_group->lock); 3431 goto out_put; 3432 } 3433 spin_unlock(&block_group->lock); 3434 3435 /* 3436 * We hit an ENOSPC when setting up the cache in this transaction, just 3437 * skip doing the setup, we've already cleared the cache so we're safe. 3438 */ 3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3440 ret = -ENOSPC; 3441 goto out_put; 3442 } 3443 3444 /* 3445 * Try to preallocate enough space based on how big the block group is. 3446 * Keep in mind this has to include any pinned space which could end up 3447 * taking up quite a bit since it's not folded into the other space 3448 * cache. 3449 */ 3450 num_pages = div_u64(block_group->key.offset, SZ_256M); 3451 if (!num_pages) 3452 num_pages = 1; 3453 3454 num_pages *= 16; 3455 num_pages *= PAGE_CACHE_SIZE; 3456 3457 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3458 if (ret) 3459 goto out_put; 3460 3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3462 num_pages, num_pages, 3463 &alloc_hint); 3464 /* 3465 * Our cache requires contiguous chunks so that we don't modify a bunch 3466 * of metadata or split extents when writing the cache out, which means 3467 * we can enospc if we are heavily fragmented in addition to just normal 3468 * out of space conditions. So if we hit this just skip setting up any 3469 * other block groups for this transaction, maybe we'll unpin enough 3470 * space the next time around. 3471 */ 3472 if (!ret) 3473 dcs = BTRFS_DC_SETUP; 3474 else if (ret == -ENOSPC) 3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3476 btrfs_free_reserved_data_space(inode, 0, num_pages); 3477 3478 out_put: 3479 iput(inode); 3480 out_free: 3481 btrfs_release_path(path); 3482 out: 3483 spin_lock(&block_group->lock); 3484 if (!ret && dcs == BTRFS_DC_SETUP) 3485 block_group->cache_generation = trans->transid; 3486 block_group->disk_cache_state = dcs; 3487 spin_unlock(&block_group->lock); 3488 3489 return ret; 3490 } 3491 3492 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3493 struct btrfs_root *root) 3494 { 3495 struct btrfs_block_group_cache *cache, *tmp; 3496 struct btrfs_transaction *cur_trans = trans->transaction; 3497 struct btrfs_path *path; 3498 3499 if (list_empty(&cur_trans->dirty_bgs) || 3500 !btrfs_test_opt(root, SPACE_CACHE)) 3501 return 0; 3502 3503 path = btrfs_alloc_path(); 3504 if (!path) 3505 return -ENOMEM; 3506 3507 /* Could add new block groups, use _safe just in case */ 3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3509 dirty_list) { 3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3511 cache_save_setup(cache, trans, path); 3512 } 3513 3514 btrfs_free_path(path); 3515 return 0; 3516 } 3517 3518 /* 3519 * transaction commit does final block group cache writeback during a 3520 * critical section where nothing is allowed to change the FS. This is 3521 * required in order for the cache to actually match the block group, 3522 * but can introduce a lot of latency into the commit. 3523 * 3524 * So, btrfs_start_dirty_block_groups is here to kick off block group 3525 * cache IO. There's a chance we'll have to redo some of it if the 3526 * block group changes again during the commit, but it greatly reduces 3527 * the commit latency by getting rid of the easy block groups while 3528 * we're still allowing others to join the commit. 3529 */ 3530 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3531 struct btrfs_root *root) 3532 { 3533 struct btrfs_block_group_cache *cache; 3534 struct btrfs_transaction *cur_trans = trans->transaction; 3535 int ret = 0; 3536 int should_put; 3537 struct btrfs_path *path = NULL; 3538 LIST_HEAD(dirty); 3539 struct list_head *io = &cur_trans->io_bgs; 3540 int num_started = 0; 3541 int loops = 0; 3542 3543 spin_lock(&cur_trans->dirty_bgs_lock); 3544 if (list_empty(&cur_trans->dirty_bgs)) { 3545 spin_unlock(&cur_trans->dirty_bgs_lock); 3546 return 0; 3547 } 3548 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3549 spin_unlock(&cur_trans->dirty_bgs_lock); 3550 3551 again: 3552 /* 3553 * make sure all the block groups on our dirty list actually 3554 * exist 3555 */ 3556 btrfs_create_pending_block_groups(trans, root); 3557 3558 if (!path) { 3559 path = btrfs_alloc_path(); 3560 if (!path) 3561 return -ENOMEM; 3562 } 3563 3564 /* 3565 * cache_write_mutex is here only to save us from balance or automatic 3566 * removal of empty block groups deleting this block group while we are 3567 * writing out the cache 3568 */ 3569 mutex_lock(&trans->transaction->cache_write_mutex); 3570 while (!list_empty(&dirty)) { 3571 cache = list_first_entry(&dirty, 3572 struct btrfs_block_group_cache, 3573 dirty_list); 3574 /* 3575 * this can happen if something re-dirties a block 3576 * group that is already under IO. Just wait for it to 3577 * finish and then do it all again 3578 */ 3579 if (!list_empty(&cache->io_list)) { 3580 list_del_init(&cache->io_list); 3581 btrfs_wait_cache_io(root, trans, cache, 3582 &cache->io_ctl, path, 3583 cache->key.objectid); 3584 btrfs_put_block_group(cache); 3585 } 3586 3587 3588 /* 3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3590 * if it should update the cache_state. Don't delete 3591 * until after we wait. 3592 * 3593 * Since we're not running in the commit critical section 3594 * we need the dirty_bgs_lock to protect from update_block_group 3595 */ 3596 spin_lock(&cur_trans->dirty_bgs_lock); 3597 list_del_init(&cache->dirty_list); 3598 spin_unlock(&cur_trans->dirty_bgs_lock); 3599 3600 should_put = 1; 3601 3602 cache_save_setup(cache, trans, path); 3603 3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3605 cache->io_ctl.inode = NULL; 3606 ret = btrfs_write_out_cache(root, trans, cache, path); 3607 if (ret == 0 && cache->io_ctl.inode) { 3608 num_started++; 3609 should_put = 0; 3610 3611 /* 3612 * the cache_write_mutex is protecting 3613 * the io_list 3614 */ 3615 list_add_tail(&cache->io_list, io); 3616 } else { 3617 /* 3618 * if we failed to write the cache, the 3619 * generation will be bad and life goes on 3620 */ 3621 ret = 0; 3622 } 3623 } 3624 if (!ret) { 3625 ret = write_one_cache_group(trans, root, path, cache); 3626 /* 3627 * Our block group might still be attached to the list 3628 * of new block groups in the transaction handle of some 3629 * other task (struct btrfs_trans_handle->new_bgs). This 3630 * means its block group item isn't yet in the extent 3631 * tree. If this happens ignore the error, as we will 3632 * try again later in the critical section of the 3633 * transaction commit. 3634 */ 3635 if (ret == -ENOENT) { 3636 ret = 0; 3637 spin_lock(&cur_trans->dirty_bgs_lock); 3638 if (list_empty(&cache->dirty_list)) { 3639 list_add_tail(&cache->dirty_list, 3640 &cur_trans->dirty_bgs); 3641 btrfs_get_block_group(cache); 3642 } 3643 spin_unlock(&cur_trans->dirty_bgs_lock); 3644 } else if (ret) { 3645 btrfs_abort_transaction(trans, root, ret); 3646 } 3647 } 3648 3649 /* if its not on the io list, we need to put the block group */ 3650 if (should_put) 3651 btrfs_put_block_group(cache); 3652 3653 if (ret) 3654 break; 3655 3656 /* 3657 * Avoid blocking other tasks for too long. It might even save 3658 * us from writing caches for block groups that are going to be 3659 * removed. 3660 */ 3661 mutex_unlock(&trans->transaction->cache_write_mutex); 3662 mutex_lock(&trans->transaction->cache_write_mutex); 3663 } 3664 mutex_unlock(&trans->transaction->cache_write_mutex); 3665 3666 /* 3667 * go through delayed refs for all the stuff we've just kicked off 3668 * and then loop back (just once) 3669 */ 3670 ret = btrfs_run_delayed_refs(trans, root, 0); 3671 if (!ret && loops == 0) { 3672 loops++; 3673 spin_lock(&cur_trans->dirty_bgs_lock); 3674 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3675 /* 3676 * dirty_bgs_lock protects us from concurrent block group 3677 * deletes too (not just cache_write_mutex). 3678 */ 3679 if (!list_empty(&dirty)) { 3680 spin_unlock(&cur_trans->dirty_bgs_lock); 3681 goto again; 3682 } 3683 spin_unlock(&cur_trans->dirty_bgs_lock); 3684 } 3685 3686 btrfs_free_path(path); 3687 return ret; 3688 } 3689 3690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3691 struct btrfs_root *root) 3692 { 3693 struct btrfs_block_group_cache *cache; 3694 struct btrfs_transaction *cur_trans = trans->transaction; 3695 int ret = 0; 3696 int should_put; 3697 struct btrfs_path *path; 3698 struct list_head *io = &cur_trans->io_bgs; 3699 int num_started = 0; 3700 3701 path = btrfs_alloc_path(); 3702 if (!path) 3703 return -ENOMEM; 3704 3705 /* 3706 * Even though we are in the critical section of the transaction commit, 3707 * we can still have concurrent tasks adding elements to this 3708 * transaction's list of dirty block groups. These tasks correspond to 3709 * endio free space workers started when writeback finishes for a 3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3711 * allocate new block groups as a result of COWing nodes of the root 3712 * tree when updating the free space inode. The writeback for the space 3713 * caches is triggered by an earlier call to 3714 * btrfs_start_dirty_block_groups() and iterations of the following 3715 * loop. 3716 * Also we want to do the cache_save_setup first and then run the 3717 * delayed refs to make sure we have the best chance at doing this all 3718 * in one shot. 3719 */ 3720 spin_lock(&cur_trans->dirty_bgs_lock); 3721 while (!list_empty(&cur_trans->dirty_bgs)) { 3722 cache = list_first_entry(&cur_trans->dirty_bgs, 3723 struct btrfs_block_group_cache, 3724 dirty_list); 3725 3726 /* 3727 * this can happen if cache_save_setup re-dirties a block 3728 * group that is already under IO. Just wait for it to 3729 * finish and then do it all again 3730 */ 3731 if (!list_empty(&cache->io_list)) { 3732 spin_unlock(&cur_trans->dirty_bgs_lock); 3733 list_del_init(&cache->io_list); 3734 btrfs_wait_cache_io(root, trans, cache, 3735 &cache->io_ctl, path, 3736 cache->key.objectid); 3737 btrfs_put_block_group(cache); 3738 spin_lock(&cur_trans->dirty_bgs_lock); 3739 } 3740 3741 /* 3742 * don't remove from the dirty list until after we've waited 3743 * on any pending IO 3744 */ 3745 list_del_init(&cache->dirty_list); 3746 spin_unlock(&cur_trans->dirty_bgs_lock); 3747 should_put = 1; 3748 3749 cache_save_setup(cache, trans, path); 3750 3751 if (!ret) 3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3753 3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3755 cache->io_ctl.inode = NULL; 3756 ret = btrfs_write_out_cache(root, trans, cache, path); 3757 if (ret == 0 && cache->io_ctl.inode) { 3758 num_started++; 3759 should_put = 0; 3760 list_add_tail(&cache->io_list, io); 3761 } else { 3762 /* 3763 * if we failed to write the cache, the 3764 * generation will be bad and life goes on 3765 */ 3766 ret = 0; 3767 } 3768 } 3769 if (!ret) { 3770 ret = write_one_cache_group(trans, root, path, cache); 3771 /* 3772 * One of the free space endio workers might have 3773 * created a new block group while updating a free space 3774 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3775 * and hasn't released its transaction handle yet, in 3776 * which case the new block group is still attached to 3777 * its transaction handle and its creation has not 3778 * finished yet (no block group item in the extent tree 3779 * yet, etc). If this is the case, wait for all free 3780 * space endio workers to finish and retry. This is a 3781 * a very rare case so no need for a more efficient and 3782 * complex approach. 3783 */ 3784 if (ret == -ENOENT) { 3785 wait_event(cur_trans->writer_wait, 3786 atomic_read(&cur_trans->num_writers) == 1); 3787 ret = write_one_cache_group(trans, root, path, 3788 cache); 3789 } 3790 if (ret) 3791 btrfs_abort_transaction(trans, root, ret); 3792 } 3793 3794 /* if its not on the io list, we need to put the block group */ 3795 if (should_put) 3796 btrfs_put_block_group(cache); 3797 spin_lock(&cur_trans->dirty_bgs_lock); 3798 } 3799 spin_unlock(&cur_trans->dirty_bgs_lock); 3800 3801 while (!list_empty(io)) { 3802 cache = list_first_entry(io, struct btrfs_block_group_cache, 3803 io_list); 3804 list_del_init(&cache->io_list); 3805 btrfs_wait_cache_io(root, trans, cache, 3806 &cache->io_ctl, path, cache->key.objectid); 3807 btrfs_put_block_group(cache); 3808 } 3809 3810 btrfs_free_path(path); 3811 return ret; 3812 } 3813 3814 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3815 { 3816 struct btrfs_block_group_cache *block_group; 3817 int readonly = 0; 3818 3819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3820 if (!block_group || block_group->ro) 3821 readonly = 1; 3822 if (block_group) 3823 btrfs_put_block_group(block_group); 3824 return readonly; 3825 } 3826 3827 static const char *alloc_name(u64 flags) 3828 { 3829 switch (flags) { 3830 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3831 return "mixed"; 3832 case BTRFS_BLOCK_GROUP_METADATA: 3833 return "metadata"; 3834 case BTRFS_BLOCK_GROUP_DATA: 3835 return "data"; 3836 case BTRFS_BLOCK_GROUP_SYSTEM: 3837 return "system"; 3838 default: 3839 WARN_ON(1); 3840 return "invalid-combination"; 3841 }; 3842 } 3843 3844 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3845 u64 total_bytes, u64 bytes_used, 3846 struct btrfs_space_info **space_info) 3847 { 3848 struct btrfs_space_info *found; 3849 int i; 3850 int factor; 3851 int ret; 3852 3853 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3854 BTRFS_BLOCK_GROUP_RAID10)) 3855 factor = 2; 3856 else 3857 factor = 1; 3858 3859 found = __find_space_info(info, flags); 3860 if (found) { 3861 spin_lock(&found->lock); 3862 found->total_bytes += total_bytes; 3863 found->disk_total += total_bytes * factor; 3864 found->bytes_used += bytes_used; 3865 found->disk_used += bytes_used * factor; 3866 if (total_bytes > 0) 3867 found->full = 0; 3868 spin_unlock(&found->lock); 3869 *space_info = found; 3870 return 0; 3871 } 3872 found = kzalloc(sizeof(*found), GFP_NOFS); 3873 if (!found) 3874 return -ENOMEM; 3875 3876 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3877 if (ret) { 3878 kfree(found); 3879 return ret; 3880 } 3881 3882 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3883 INIT_LIST_HEAD(&found->block_groups[i]); 3884 init_rwsem(&found->groups_sem); 3885 spin_lock_init(&found->lock); 3886 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3887 found->total_bytes = total_bytes; 3888 found->disk_total = total_bytes * factor; 3889 found->bytes_used = bytes_used; 3890 found->disk_used = bytes_used * factor; 3891 found->bytes_pinned = 0; 3892 found->bytes_reserved = 0; 3893 found->bytes_readonly = 0; 3894 found->bytes_may_use = 0; 3895 found->full = 0; 3896 found->max_extent_size = 0; 3897 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3898 found->chunk_alloc = 0; 3899 found->flush = 0; 3900 init_waitqueue_head(&found->wait); 3901 INIT_LIST_HEAD(&found->ro_bgs); 3902 3903 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3904 info->space_info_kobj, "%s", 3905 alloc_name(found->flags)); 3906 if (ret) { 3907 kfree(found); 3908 return ret; 3909 } 3910 3911 *space_info = found; 3912 list_add_rcu(&found->list, &info->space_info); 3913 if (flags & BTRFS_BLOCK_GROUP_DATA) 3914 info->data_sinfo = found; 3915 3916 return ret; 3917 } 3918 3919 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3920 { 3921 u64 extra_flags = chunk_to_extended(flags) & 3922 BTRFS_EXTENDED_PROFILE_MASK; 3923 3924 write_seqlock(&fs_info->profiles_lock); 3925 if (flags & BTRFS_BLOCK_GROUP_DATA) 3926 fs_info->avail_data_alloc_bits |= extra_flags; 3927 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3928 fs_info->avail_metadata_alloc_bits |= extra_flags; 3929 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3930 fs_info->avail_system_alloc_bits |= extra_flags; 3931 write_sequnlock(&fs_info->profiles_lock); 3932 } 3933 3934 /* 3935 * returns target flags in extended format or 0 if restripe for this 3936 * chunk_type is not in progress 3937 * 3938 * should be called with either volume_mutex or balance_lock held 3939 */ 3940 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3941 { 3942 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3943 u64 target = 0; 3944 3945 if (!bctl) 3946 return 0; 3947 3948 if (flags & BTRFS_BLOCK_GROUP_DATA && 3949 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3950 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3951 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3952 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3953 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3954 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3955 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3956 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3957 } 3958 3959 return target; 3960 } 3961 3962 /* 3963 * @flags: available profiles in extended format (see ctree.h) 3964 * 3965 * Returns reduced profile in chunk format. If profile changing is in 3966 * progress (either running or paused) picks the target profile (if it's 3967 * already available), otherwise falls back to plain reducing. 3968 */ 3969 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3970 { 3971 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3972 u64 target; 3973 u64 raid_type; 3974 u64 allowed = 0; 3975 3976 /* 3977 * see if restripe for this chunk_type is in progress, if so 3978 * try to reduce to the target profile 3979 */ 3980 spin_lock(&root->fs_info->balance_lock); 3981 target = get_restripe_target(root->fs_info, flags); 3982 if (target) { 3983 /* pick target profile only if it's already available */ 3984 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3985 spin_unlock(&root->fs_info->balance_lock); 3986 return extended_to_chunk(target); 3987 } 3988 } 3989 spin_unlock(&root->fs_info->balance_lock); 3990 3991 /* First, mask out the RAID levels which aren't possible */ 3992 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3993 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 3994 allowed |= btrfs_raid_group[raid_type]; 3995 } 3996 allowed &= flags; 3997 3998 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 3999 allowed = BTRFS_BLOCK_GROUP_RAID6; 4000 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4001 allowed = BTRFS_BLOCK_GROUP_RAID5; 4002 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4003 allowed = BTRFS_BLOCK_GROUP_RAID10; 4004 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4005 allowed = BTRFS_BLOCK_GROUP_RAID1; 4006 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4007 allowed = BTRFS_BLOCK_GROUP_RAID0; 4008 4009 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4010 4011 return extended_to_chunk(flags | allowed); 4012 } 4013 4014 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4015 { 4016 unsigned seq; 4017 u64 flags; 4018 4019 do { 4020 flags = orig_flags; 4021 seq = read_seqbegin(&root->fs_info->profiles_lock); 4022 4023 if (flags & BTRFS_BLOCK_GROUP_DATA) 4024 flags |= root->fs_info->avail_data_alloc_bits; 4025 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4026 flags |= root->fs_info->avail_system_alloc_bits; 4027 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4028 flags |= root->fs_info->avail_metadata_alloc_bits; 4029 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4030 4031 return btrfs_reduce_alloc_profile(root, flags); 4032 } 4033 4034 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4035 { 4036 u64 flags; 4037 u64 ret; 4038 4039 if (data) 4040 flags = BTRFS_BLOCK_GROUP_DATA; 4041 else if (root == root->fs_info->chunk_root) 4042 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4043 else 4044 flags = BTRFS_BLOCK_GROUP_METADATA; 4045 4046 ret = get_alloc_profile(root, flags); 4047 return ret; 4048 } 4049 4050 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4051 { 4052 struct btrfs_space_info *data_sinfo; 4053 struct btrfs_root *root = BTRFS_I(inode)->root; 4054 struct btrfs_fs_info *fs_info = root->fs_info; 4055 u64 used; 4056 int ret = 0; 4057 int need_commit = 2; 4058 int have_pinned_space; 4059 4060 /* make sure bytes are sectorsize aligned */ 4061 bytes = ALIGN(bytes, root->sectorsize); 4062 4063 if (btrfs_is_free_space_inode(inode)) { 4064 need_commit = 0; 4065 ASSERT(current->journal_info); 4066 } 4067 4068 data_sinfo = fs_info->data_sinfo; 4069 if (!data_sinfo) 4070 goto alloc; 4071 4072 again: 4073 /* make sure we have enough space to handle the data first */ 4074 spin_lock(&data_sinfo->lock); 4075 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4076 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4077 data_sinfo->bytes_may_use; 4078 4079 if (used + bytes > data_sinfo->total_bytes) { 4080 struct btrfs_trans_handle *trans; 4081 4082 /* 4083 * if we don't have enough free bytes in this space then we need 4084 * to alloc a new chunk. 4085 */ 4086 if (!data_sinfo->full) { 4087 u64 alloc_target; 4088 4089 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4090 spin_unlock(&data_sinfo->lock); 4091 alloc: 4092 alloc_target = btrfs_get_alloc_profile(root, 1); 4093 /* 4094 * It is ugly that we don't call nolock join 4095 * transaction for the free space inode case here. 4096 * But it is safe because we only do the data space 4097 * reservation for the free space cache in the 4098 * transaction context, the common join transaction 4099 * just increase the counter of the current transaction 4100 * handler, doesn't try to acquire the trans_lock of 4101 * the fs. 4102 */ 4103 trans = btrfs_join_transaction(root); 4104 if (IS_ERR(trans)) 4105 return PTR_ERR(trans); 4106 4107 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4108 alloc_target, 4109 CHUNK_ALLOC_NO_FORCE); 4110 btrfs_end_transaction(trans, root); 4111 if (ret < 0) { 4112 if (ret != -ENOSPC) 4113 return ret; 4114 else { 4115 have_pinned_space = 1; 4116 goto commit_trans; 4117 } 4118 } 4119 4120 if (!data_sinfo) 4121 data_sinfo = fs_info->data_sinfo; 4122 4123 goto again; 4124 } 4125 4126 /* 4127 * If we don't have enough pinned space to deal with this 4128 * allocation, and no removed chunk in current transaction, 4129 * don't bother committing the transaction. 4130 */ 4131 have_pinned_space = percpu_counter_compare( 4132 &data_sinfo->total_bytes_pinned, 4133 used + bytes - data_sinfo->total_bytes); 4134 spin_unlock(&data_sinfo->lock); 4135 4136 /* commit the current transaction and try again */ 4137 commit_trans: 4138 if (need_commit && 4139 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4140 need_commit--; 4141 4142 if (need_commit > 0) { 4143 btrfs_start_delalloc_roots(fs_info, 0, -1); 4144 btrfs_wait_ordered_roots(fs_info, -1); 4145 } 4146 4147 trans = btrfs_join_transaction(root); 4148 if (IS_ERR(trans)) 4149 return PTR_ERR(trans); 4150 if (have_pinned_space >= 0 || 4151 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4152 &trans->transaction->flags) || 4153 need_commit > 0) { 4154 ret = btrfs_commit_transaction(trans, root); 4155 if (ret) 4156 return ret; 4157 /* 4158 * The cleaner kthread might still be doing iput 4159 * operations. Wait for it to finish so that 4160 * more space is released. 4161 */ 4162 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4163 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4164 goto again; 4165 } else { 4166 btrfs_end_transaction(trans, root); 4167 } 4168 } 4169 4170 trace_btrfs_space_reservation(root->fs_info, 4171 "space_info:enospc", 4172 data_sinfo->flags, bytes, 1); 4173 return -ENOSPC; 4174 } 4175 data_sinfo->bytes_may_use += bytes; 4176 trace_btrfs_space_reservation(root->fs_info, "space_info", 4177 data_sinfo->flags, bytes, 1); 4178 spin_unlock(&data_sinfo->lock); 4179 4180 return ret; 4181 } 4182 4183 /* 4184 * New check_data_free_space() with ability for precious data reservation 4185 * Will replace old btrfs_check_data_free_space(), but for patch split, 4186 * add a new function first and then replace it. 4187 */ 4188 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4189 { 4190 struct btrfs_root *root = BTRFS_I(inode)->root; 4191 int ret; 4192 4193 /* align the range */ 4194 len = round_up(start + len, root->sectorsize) - 4195 round_down(start, root->sectorsize); 4196 start = round_down(start, root->sectorsize); 4197 4198 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4199 if (ret < 0) 4200 return ret; 4201 4202 /* 4203 * Use new btrfs_qgroup_reserve_data to reserve precious data space 4204 * 4205 * TODO: Find a good method to avoid reserve data space for NOCOW 4206 * range, but don't impact performance on quota disable case. 4207 */ 4208 ret = btrfs_qgroup_reserve_data(inode, start, len); 4209 return ret; 4210 } 4211 4212 /* 4213 * Called if we need to clear a data reservation for this inode 4214 * Normally in a error case. 4215 * 4216 * This one will *NOT* use accurate qgroup reserved space API, just for case 4217 * which we can't sleep and is sure it won't affect qgroup reserved space. 4218 * Like clear_bit_hook(). 4219 */ 4220 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4221 u64 len) 4222 { 4223 struct btrfs_root *root = BTRFS_I(inode)->root; 4224 struct btrfs_space_info *data_sinfo; 4225 4226 /* Make sure the range is aligned to sectorsize */ 4227 len = round_up(start + len, root->sectorsize) - 4228 round_down(start, root->sectorsize); 4229 start = round_down(start, root->sectorsize); 4230 4231 data_sinfo = root->fs_info->data_sinfo; 4232 spin_lock(&data_sinfo->lock); 4233 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4234 data_sinfo->bytes_may_use = 0; 4235 else 4236 data_sinfo->bytes_may_use -= len; 4237 trace_btrfs_space_reservation(root->fs_info, "space_info", 4238 data_sinfo->flags, len, 0); 4239 spin_unlock(&data_sinfo->lock); 4240 } 4241 4242 /* 4243 * Called if we need to clear a data reservation for this inode 4244 * Normally in a error case. 4245 * 4246 * This one will handle the per-indoe data rsv map for accurate reserved 4247 * space framework. 4248 */ 4249 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4250 { 4251 btrfs_free_reserved_data_space_noquota(inode, start, len); 4252 btrfs_qgroup_free_data(inode, start, len); 4253 } 4254 4255 static void force_metadata_allocation(struct btrfs_fs_info *info) 4256 { 4257 struct list_head *head = &info->space_info; 4258 struct btrfs_space_info *found; 4259 4260 rcu_read_lock(); 4261 list_for_each_entry_rcu(found, head, list) { 4262 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4263 found->force_alloc = CHUNK_ALLOC_FORCE; 4264 } 4265 rcu_read_unlock(); 4266 } 4267 4268 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4269 { 4270 return (global->size << 1); 4271 } 4272 4273 static int should_alloc_chunk(struct btrfs_root *root, 4274 struct btrfs_space_info *sinfo, int force) 4275 { 4276 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4277 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4278 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4279 u64 thresh; 4280 4281 if (force == CHUNK_ALLOC_FORCE) 4282 return 1; 4283 4284 /* 4285 * We need to take into account the global rsv because for all intents 4286 * and purposes it's used space. Don't worry about locking the 4287 * global_rsv, it doesn't change except when the transaction commits. 4288 */ 4289 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4290 num_allocated += calc_global_rsv_need_space(global_rsv); 4291 4292 /* 4293 * in limited mode, we want to have some free space up to 4294 * about 1% of the FS size. 4295 */ 4296 if (force == CHUNK_ALLOC_LIMITED) { 4297 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4298 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4299 4300 if (num_bytes - num_allocated < thresh) 4301 return 1; 4302 } 4303 4304 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4305 return 0; 4306 return 1; 4307 } 4308 4309 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4310 { 4311 u64 num_dev; 4312 4313 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4314 BTRFS_BLOCK_GROUP_RAID0 | 4315 BTRFS_BLOCK_GROUP_RAID5 | 4316 BTRFS_BLOCK_GROUP_RAID6)) 4317 num_dev = root->fs_info->fs_devices->rw_devices; 4318 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4319 num_dev = 2; 4320 else 4321 num_dev = 1; /* DUP or single */ 4322 4323 return num_dev; 4324 } 4325 4326 /* 4327 * If @is_allocation is true, reserve space in the system space info necessary 4328 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4329 * removing a chunk. 4330 */ 4331 void check_system_chunk(struct btrfs_trans_handle *trans, 4332 struct btrfs_root *root, 4333 u64 type) 4334 { 4335 struct btrfs_space_info *info; 4336 u64 left; 4337 u64 thresh; 4338 int ret = 0; 4339 u64 num_devs; 4340 4341 /* 4342 * Needed because we can end up allocating a system chunk and for an 4343 * atomic and race free space reservation in the chunk block reserve. 4344 */ 4345 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4346 4347 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4348 spin_lock(&info->lock); 4349 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4350 info->bytes_reserved - info->bytes_readonly - 4351 info->bytes_may_use; 4352 spin_unlock(&info->lock); 4353 4354 num_devs = get_profile_num_devs(root, type); 4355 4356 /* num_devs device items to update and 1 chunk item to add or remove */ 4357 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4358 btrfs_calc_trans_metadata_size(root, 1); 4359 4360 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4361 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4362 left, thresh, type); 4363 dump_space_info(info, 0, 0); 4364 } 4365 4366 if (left < thresh) { 4367 u64 flags; 4368 4369 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4370 /* 4371 * Ignore failure to create system chunk. We might end up not 4372 * needing it, as we might not need to COW all nodes/leafs from 4373 * the paths we visit in the chunk tree (they were already COWed 4374 * or created in the current transaction for example). 4375 */ 4376 ret = btrfs_alloc_chunk(trans, root, flags); 4377 } 4378 4379 if (!ret) { 4380 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4381 &root->fs_info->chunk_block_rsv, 4382 thresh, BTRFS_RESERVE_NO_FLUSH); 4383 if (!ret) 4384 trans->chunk_bytes_reserved += thresh; 4385 } 4386 } 4387 4388 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4389 struct btrfs_root *extent_root, u64 flags, int force) 4390 { 4391 struct btrfs_space_info *space_info; 4392 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4393 int wait_for_alloc = 0; 4394 int ret = 0; 4395 4396 /* Don't re-enter if we're already allocating a chunk */ 4397 if (trans->allocating_chunk) 4398 return -ENOSPC; 4399 4400 space_info = __find_space_info(extent_root->fs_info, flags); 4401 if (!space_info) { 4402 ret = update_space_info(extent_root->fs_info, flags, 4403 0, 0, &space_info); 4404 BUG_ON(ret); /* -ENOMEM */ 4405 } 4406 BUG_ON(!space_info); /* Logic error */ 4407 4408 again: 4409 spin_lock(&space_info->lock); 4410 if (force < space_info->force_alloc) 4411 force = space_info->force_alloc; 4412 if (space_info->full) { 4413 if (should_alloc_chunk(extent_root, space_info, force)) 4414 ret = -ENOSPC; 4415 else 4416 ret = 0; 4417 spin_unlock(&space_info->lock); 4418 return ret; 4419 } 4420 4421 if (!should_alloc_chunk(extent_root, space_info, force)) { 4422 spin_unlock(&space_info->lock); 4423 return 0; 4424 } else if (space_info->chunk_alloc) { 4425 wait_for_alloc = 1; 4426 } else { 4427 space_info->chunk_alloc = 1; 4428 } 4429 4430 spin_unlock(&space_info->lock); 4431 4432 mutex_lock(&fs_info->chunk_mutex); 4433 4434 /* 4435 * The chunk_mutex is held throughout the entirety of a chunk 4436 * allocation, so once we've acquired the chunk_mutex we know that the 4437 * other guy is done and we need to recheck and see if we should 4438 * allocate. 4439 */ 4440 if (wait_for_alloc) { 4441 mutex_unlock(&fs_info->chunk_mutex); 4442 wait_for_alloc = 0; 4443 goto again; 4444 } 4445 4446 trans->allocating_chunk = true; 4447 4448 /* 4449 * If we have mixed data/metadata chunks we want to make sure we keep 4450 * allocating mixed chunks instead of individual chunks. 4451 */ 4452 if (btrfs_mixed_space_info(space_info)) 4453 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4454 4455 /* 4456 * if we're doing a data chunk, go ahead and make sure that 4457 * we keep a reasonable number of metadata chunks allocated in the 4458 * FS as well. 4459 */ 4460 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4461 fs_info->data_chunk_allocations++; 4462 if (!(fs_info->data_chunk_allocations % 4463 fs_info->metadata_ratio)) 4464 force_metadata_allocation(fs_info); 4465 } 4466 4467 /* 4468 * Check if we have enough space in SYSTEM chunk because we may need 4469 * to update devices. 4470 */ 4471 check_system_chunk(trans, extent_root, flags); 4472 4473 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4474 trans->allocating_chunk = false; 4475 4476 spin_lock(&space_info->lock); 4477 if (ret < 0 && ret != -ENOSPC) 4478 goto out; 4479 if (ret) 4480 space_info->full = 1; 4481 else 4482 ret = 1; 4483 4484 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4485 out: 4486 space_info->chunk_alloc = 0; 4487 spin_unlock(&space_info->lock); 4488 mutex_unlock(&fs_info->chunk_mutex); 4489 /* 4490 * When we allocate a new chunk we reserve space in the chunk block 4491 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4492 * add new nodes/leafs to it if we end up needing to do it when 4493 * inserting the chunk item and updating device items as part of the 4494 * second phase of chunk allocation, performed by 4495 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4496 * large number of new block groups to create in our transaction 4497 * handle's new_bgs list to avoid exhausting the chunk block reserve 4498 * in extreme cases - like having a single transaction create many new 4499 * block groups when starting to write out the free space caches of all 4500 * the block groups that were made dirty during the lifetime of the 4501 * transaction. 4502 */ 4503 if (trans->can_flush_pending_bgs && 4504 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4505 btrfs_create_pending_block_groups(trans, trans->root); 4506 btrfs_trans_release_chunk_metadata(trans); 4507 } 4508 return ret; 4509 } 4510 4511 static int can_overcommit(struct btrfs_root *root, 4512 struct btrfs_space_info *space_info, u64 bytes, 4513 enum btrfs_reserve_flush_enum flush) 4514 { 4515 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4516 u64 profile = btrfs_get_alloc_profile(root, 0); 4517 u64 space_size; 4518 u64 avail; 4519 u64 used; 4520 4521 used = space_info->bytes_used + space_info->bytes_reserved + 4522 space_info->bytes_pinned + space_info->bytes_readonly; 4523 4524 /* 4525 * We only want to allow over committing if we have lots of actual space 4526 * free, but if we don't have enough space to handle the global reserve 4527 * space then we could end up having a real enospc problem when trying 4528 * to allocate a chunk or some other such important allocation. 4529 */ 4530 spin_lock(&global_rsv->lock); 4531 space_size = calc_global_rsv_need_space(global_rsv); 4532 spin_unlock(&global_rsv->lock); 4533 if (used + space_size >= space_info->total_bytes) 4534 return 0; 4535 4536 used += space_info->bytes_may_use; 4537 4538 spin_lock(&root->fs_info->free_chunk_lock); 4539 avail = root->fs_info->free_chunk_space; 4540 spin_unlock(&root->fs_info->free_chunk_lock); 4541 4542 /* 4543 * If we have dup, raid1 or raid10 then only half of the free 4544 * space is actually useable. For raid56, the space info used 4545 * doesn't include the parity drive, so we don't have to 4546 * change the math 4547 */ 4548 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4549 BTRFS_BLOCK_GROUP_RAID1 | 4550 BTRFS_BLOCK_GROUP_RAID10)) 4551 avail >>= 1; 4552 4553 /* 4554 * If we aren't flushing all things, let us overcommit up to 4555 * 1/2th of the space. If we can flush, don't let us overcommit 4556 * too much, let it overcommit up to 1/8 of the space. 4557 */ 4558 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4559 avail >>= 3; 4560 else 4561 avail >>= 1; 4562 4563 if (used + bytes < space_info->total_bytes + avail) 4564 return 1; 4565 return 0; 4566 } 4567 4568 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4569 unsigned long nr_pages, int nr_items) 4570 { 4571 struct super_block *sb = root->fs_info->sb; 4572 4573 if (down_read_trylock(&sb->s_umount)) { 4574 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4575 up_read(&sb->s_umount); 4576 } else { 4577 /* 4578 * We needn't worry the filesystem going from r/w to r/o though 4579 * we don't acquire ->s_umount mutex, because the filesystem 4580 * should guarantee the delalloc inodes list be empty after 4581 * the filesystem is readonly(all dirty pages are written to 4582 * the disk). 4583 */ 4584 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4585 if (!current->journal_info) 4586 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4587 } 4588 } 4589 4590 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4591 { 4592 u64 bytes; 4593 int nr; 4594 4595 bytes = btrfs_calc_trans_metadata_size(root, 1); 4596 nr = (int)div64_u64(to_reclaim, bytes); 4597 if (!nr) 4598 nr = 1; 4599 return nr; 4600 } 4601 4602 #define EXTENT_SIZE_PER_ITEM SZ_256K 4603 4604 /* 4605 * shrink metadata reservation for delalloc 4606 */ 4607 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4608 bool wait_ordered) 4609 { 4610 struct btrfs_block_rsv *block_rsv; 4611 struct btrfs_space_info *space_info; 4612 struct btrfs_trans_handle *trans; 4613 u64 delalloc_bytes; 4614 u64 max_reclaim; 4615 long time_left; 4616 unsigned long nr_pages; 4617 int loops; 4618 int items; 4619 enum btrfs_reserve_flush_enum flush; 4620 4621 /* Calc the number of the pages we need flush for space reservation */ 4622 items = calc_reclaim_items_nr(root, to_reclaim); 4623 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4624 4625 trans = (struct btrfs_trans_handle *)current->journal_info; 4626 block_rsv = &root->fs_info->delalloc_block_rsv; 4627 space_info = block_rsv->space_info; 4628 4629 delalloc_bytes = percpu_counter_sum_positive( 4630 &root->fs_info->delalloc_bytes); 4631 if (delalloc_bytes == 0) { 4632 if (trans) 4633 return; 4634 if (wait_ordered) 4635 btrfs_wait_ordered_roots(root->fs_info, items); 4636 return; 4637 } 4638 4639 loops = 0; 4640 while (delalloc_bytes && loops < 3) { 4641 max_reclaim = min(delalloc_bytes, to_reclaim); 4642 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4643 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4644 /* 4645 * We need to wait for the async pages to actually start before 4646 * we do anything. 4647 */ 4648 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4649 if (!max_reclaim) 4650 goto skip_async; 4651 4652 if (max_reclaim <= nr_pages) 4653 max_reclaim = 0; 4654 else 4655 max_reclaim -= nr_pages; 4656 4657 wait_event(root->fs_info->async_submit_wait, 4658 atomic_read(&root->fs_info->async_delalloc_pages) <= 4659 (int)max_reclaim); 4660 skip_async: 4661 if (!trans) 4662 flush = BTRFS_RESERVE_FLUSH_ALL; 4663 else 4664 flush = BTRFS_RESERVE_NO_FLUSH; 4665 spin_lock(&space_info->lock); 4666 if (can_overcommit(root, space_info, orig, flush)) { 4667 spin_unlock(&space_info->lock); 4668 break; 4669 } 4670 spin_unlock(&space_info->lock); 4671 4672 loops++; 4673 if (wait_ordered && !trans) { 4674 btrfs_wait_ordered_roots(root->fs_info, items); 4675 } else { 4676 time_left = schedule_timeout_killable(1); 4677 if (time_left) 4678 break; 4679 } 4680 delalloc_bytes = percpu_counter_sum_positive( 4681 &root->fs_info->delalloc_bytes); 4682 } 4683 } 4684 4685 /** 4686 * maybe_commit_transaction - possibly commit the transaction if its ok to 4687 * @root - the root we're allocating for 4688 * @bytes - the number of bytes we want to reserve 4689 * @force - force the commit 4690 * 4691 * This will check to make sure that committing the transaction will actually 4692 * get us somewhere and then commit the transaction if it does. Otherwise it 4693 * will return -ENOSPC. 4694 */ 4695 static int may_commit_transaction(struct btrfs_root *root, 4696 struct btrfs_space_info *space_info, 4697 u64 bytes, int force) 4698 { 4699 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4700 struct btrfs_trans_handle *trans; 4701 4702 trans = (struct btrfs_trans_handle *)current->journal_info; 4703 if (trans) 4704 return -EAGAIN; 4705 4706 if (force) 4707 goto commit; 4708 4709 /* See if there is enough pinned space to make this reservation */ 4710 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4711 bytes) >= 0) 4712 goto commit; 4713 4714 /* 4715 * See if there is some space in the delayed insertion reservation for 4716 * this reservation. 4717 */ 4718 if (space_info != delayed_rsv->space_info) 4719 return -ENOSPC; 4720 4721 spin_lock(&delayed_rsv->lock); 4722 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4723 bytes - delayed_rsv->size) >= 0) { 4724 spin_unlock(&delayed_rsv->lock); 4725 return -ENOSPC; 4726 } 4727 spin_unlock(&delayed_rsv->lock); 4728 4729 commit: 4730 trans = btrfs_join_transaction(root); 4731 if (IS_ERR(trans)) 4732 return -ENOSPC; 4733 4734 return btrfs_commit_transaction(trans, root); 4735 } 4736 4737 enum flush_state { 4738 FLUSH_DELAYED_ITEMS_NR = 1, 4739 FLUSH_DELAYED_ITEMS = 2, 4740 FLUSH_DELALLOC = 3, 4741 FLUSH_DELALLOC_WAIT = 4, 4742 ALLOC_CHUNK = 5, 4743 COMMIT_TRANS = 6, 4744 }; 4745 4746 static int flush_space(struct btrfs_root *root, 4747 struct btrfs_space_info *space_info, u64 num_bytes, 4748 u64 orig_bytes, int state) 4749 { 4750 struct btrfs_trans_handle *trans; 4751 int nr; 4752 int ret = 0; 4753 4754 switch (state) { 4755 case FLUSH_DELAYED_ITEMS_NR: 4756 case FLUSH_DELAYED_ITEMS: 4757 if (state == FLUSH_DELAYED_ITEMS_NR) 4758 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4759 else 4760 nr = -1; 4761 4762 trans = btrfs_join_transaction(root); 4763 if (IS_ERR(trans)) { 4764 ret = PTR_ERR(trans); 4765 break; 4766 } 4767 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4768 btrfs_end_transaction(trans, root); 4769 break; 4770 case FLUSH_DELALLOC: 4771 case FLUSH_DELALLOC_WAIT: 4772 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4773 state == FLUSH_DELALLOC_WAIT); 4774 break; 4775 case ALLOC_CHUNK: 4776 trans = btrfs_join_transaction(root); 4777 if (IS_ERR(trans)) { 4778 ret = PTR_ERR(trans); 4779 break; 4780 } 4781 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4782 btrfs_get_alloc_profile(root, 0), 4783 CHUNK_ALLOC_NO_FORCE); 4784 btrfs_end_transaction(trans, root); 4785 if (ret == -ENOSPC) 4786 ret = 0; 4787 break; 4788 case COMMIT_TRANS: 4789 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4790 break; 4791 default: 4792 ret = -ENOSPC; 4793 break; 4794 } 4795 4796 return ret; 4797 } 4798 4799 static inline u64 4800 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4801 struct btrfs_space_info *space_info) 4802 { 4803 u64 used; 4804 u64 expected; 4805 u64 to_reclaim; 4806 4807 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4808 spin_lock(&space_info->lock); 4809 if (can_overcommit(root, space_info, to_reclaim, 4810 BTRFS_RESERVE_FLUSH_ALL)) { 4811 to_reclaim = 0; 4812 goto out; 4813 } 4814 4815 used = space_info->bytes_used + space_info->bytes_reserved + 4816 space_info->bytes_pinned + space_info->bytes_readonly + 4817 space_info->bytes_may_use; 4818 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4819 expected = div_factor_fine(space_info->total_bytes, 95); 4820 else 4821 expected = div_factor_fine(space_info->total_bytes, 90); 4822 4823 if (used > expected) 4824 to_reclaim = used - expected; 4825 else 4826 to_reclaim = 0; 4827 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4828 space_info->bytes_reserved); 4829 out: 4830 spin_unlock(&space_info->lock); 4831 4832 return to_reclaim; 4833 } 4834 4835 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4836 struct btrfs_fs_info *fs_info, u64 used) 4837 { 4838 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4839 4840 /* If we're just plain full then async reclaim just slows us down. */ 4841 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4842 return 0; 4843 4844 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4845 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4846 } 4847 4848 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4849 struct btrfs_fs_info *fs_info, 4850 int flush_state) 4851 { 4852 u64 used; 4853 4854 spin_lock(&space_info->lock); 4855 /* 4856 * We run out of space and have not got any free space via flush_space, 4857 * so don't bother doing async reclaim. 4858 */ 4859 if (flush_state > COMMIT_TRANS && space_info->full) { 4860 spin_unlock(&space_info->lock); 4861 return 0; 4862 } 4863 4864 used = space_info->bytes_used + space_info->bytes_reserved + 4865 space_info->bytes_pinned + space_info->bytes_readonly + 4866 space_info->bytes_may_use; 4867 if (need_do_async_reclaim(space_info, fs_info, used)) { 4868 spin_unlock(&space_info->lock); 4869 return 1; 4870 } 4871 spin_unlock(&space_info->lock); 4872 4873 return 0; 4874 } 4875 4876 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4877 { 4878 struct btrfs_fs_info *fs_info; 4879 struct btrfs_space_info *space_info; 4880 u64 to_reclaim; 4881 int flush_state; 4882 4883 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4884 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4885 4886 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4887 space_info); 4888 if (!to_reclaim) 4889 return; 4890 4891 flush_state = FLUSH_DELAYED_ITEMS_NR; 4892 do { 4893 flush_space(fs_info->fs_root, space_info, to_reclaim, 4894 to_reclaim, flush_state); 4895 flush_state++; 4896 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4897 flush_state)) 4898 return; 4899 } while (flush_state < COMMIT_TRANS); 4900 } 4901 4902 void btrfs_init_async_reclaim_work(struct work_struct *work) 4903 { 4904 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4905 } 4906 4907 /** 4908 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4909 * @root - the root we're allocating for 4910 * @block_rsv - the block_rsv we're allocating for 4911 * @orig_bytes - the number of bytes we want 4912 * @flush - whether or not we can flush to make our reservation 4913 * 4914 * This will reserve orgi_bytes number of bytes from the space info associated 4915 * with the block_rsv. If there is not enough space it will make an attempt to 4916 * flush out space to make room. It will do this by flushing delalloc if 4917 * possible or committing the transaction. If flush is 0 then no attempts to 4918 * regain reservations will be made and this will fail if there is not enough 4919 * space already. 4920 */ 4921 static int reserve_metadata_bytes(struct btrfs_root *root, 4922 struct btrfs_block_rsv *block_rsv, 4923 u64 orig_bytes, 4924 enum btrfs_reserve_flush_enum flush) 4925 { 4926 struct btrfs_space_info *space_info = block_rsv->space_info; 4927 u64 used; 4928 u64 num_bytes = orig_bytes; 4929 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4930 int ret = 0; 4931 bool flushing = false; 4932 4933 again: 4934 ret = 0; 4935 spin_lock(&space_info->lock); 4936 /* 4937 * We only want to wait if somebody other than us is flushing and we 4938 * are actually allowed to flush all things. 4939 */ 4940 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4941 space_info->flush) { 4942 spin_unlock(&space_info->lock); 4943 /* 4944 * If we have a trans handle we can't wait because the flusher 4945 * may have to commit the transaction, which would mean we would 4946 * deadlock since we are waiting for the flusher to finish, but 4947 * hold the current transaction open. 4948 */ 4949 if (current->journal_info) 4950 return -EAGAIN; 4951 ret = wait_event_killable(space_info->wait, !space_info->flush); 4952 /* Must have been killed, return */ 4953 if (ret) 4954 return -EINTR; 4955 4956 spin_lock(&space_info->lock); 4957 } 4958 4959 ret = -ENOSPC; 4960 used = space_info->bytes_used + space_info->bytes_reserved + 4961 space_info->bytes_pinned + space_info->bytes_readonly + 4962 space_info->bytes_may_use; 4963 4964 /* 4965 * The idea here is that we've not already over-reserved the block group 4966 * then we can go ahead and save our reservation first and then start 4967 * flushing if we need to. Otherwise if we've already overcommitted 4968 * lets start flushing stuff first and then come back and try to make 4969 * our reservation. 4970 */ 4971 if (used <= space_info->total_bytes) { 4972 if (used + orig_bytes <= space_info->total_bytes) { 4973 space_info->bytes_may_use += orig_bytes; 4974 trace_btrfs_space_reservation(root->fs_info, 4975 "space_info", space_info->flags, orig_bytes, 1); 4976 ret = 0; 4977 } else { 4978 /* 4979 * Ok set num_bytes to orig_bytes since we aren't 4980 * overocmmitted, this way we only try and reclaim what 4981 * we need. 4982 */ 4983 num_bytes = orig_bytes; 4984 } 4985 } else { 4986 /* 4987 * Ok we're over committed, set num_bytes to the overcommitted 4988 * amount plus the amount of bytes that we need for this 4989 * reservation. 4990 */ 4991 num_bytes = used - space_info->total_bytes + 4992 (orig_bytes * 2); 4993 } 4994 4995 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4996 space_info->bytes_may_use += orig_bytes; 4997 trace_btrfs_space_reservation(root->fs_info, "space_info", 4998 space_info->flags, orig_bytes, 4999 1); 5000 ret = 0; 5001 } 5002 5003 /* 5004 * Couldn't make our reservation, save our place so while we're trying 5005 * to reclaim space we can actually use it instead of somebody else 5006 * stealing it from us. 5007 * 5008 * We make the other tasks wait for the flush only when we can flush 5009 * all things. 5010 */ 5011 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5012 flushing = true; 5013 space_info->flush = 1; 5014 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5015 used += orig_bytes; 5016 /* 5017 * We will do the space reservation dance during log replay, 5018 * which means we won't have fs_info->fs_root set, so don't do 5019 * the async reclaim as we will panic. 5020 */ 5021 if (!root->fs_info->log_root_recovering && 5022 need_do_async_reclaim(space_info, root->fs_info, used) && 5023 !work_busy(&root->fs_info->async_reclaim_work)) 5024 queue_work(system_unbound_wq, 5025 &root->fs_info->async_reclaim_work); 5026 } 5027 spin_unlock(&space_info->lock); 5028 5029 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5030 goto out; 5031 5032 ret = flush_space(root, space_info, num_bytes, orig_bytes, 5033 flush_state); 5034 flush_state++; 5035 5036 /* 5037 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 5038 * would happen. So skip delalloc flush. 5039 */ 5040 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 5041 (flush_state == FLUSH_DELALLOC || 5042 flush_state == FLUSH_DELALLOC_WAIT)) 5043 flush_state = ALLOC_CHUNK; 5044 5045 if (!ret) 5046 goto again; 5047 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 5048 flush_state < COMMIT_TRANS) 5049 goto again; 5050 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 5051 flush_state <= COMMIT_TRANS) 5052 goto again; 5053 5054 out: 5055 if (ret == -ENOSPC && 5056 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5057 struct btrfs_block_rsv *global_rsv = 5058 &root->fs_info->global_block_rsv; 5059 5060 if (block_rsv != global_rsv && 5061 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5062 ret = 0; 5063 } 5064 if (ret == -ENOSPC) 5065 trace_btrfs_space_reservation(root->fs_info, 5066 "space_info:enospc", 5067 space_info->flags, orig_bytes, 1); 5068 if (flushing) { 5069 spin_lock(&space_info->lock); 5070 space_info->flush = 0; 5071 wake_up_all(&space_info->wait); 5072 spin_unlock(&space_info->lock); 5073 } 5074 return ret; 5075 } 5076 5077 static struct btrfs_block_rsv *get_block_rsv( 5078 const struct btrfs_trans_handle *trans, 5079 const struct btrfs_root *root) 5080 { 5081 struct btrfs_block_rsv *block_rsv = NULL; 5082 5083 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5084 (root == root->fs_info->csum_root && trans->adding_csums) || 5085 (root == root->fs_info->uuid_root)) 5086 block_rsv = trans->block_rsv; 5087 5088 if (!block_rsv) 5089 block_rsv = root->block_rsv; 5090 5091 if (!block_rsv) 5092 block_rsv = &root->fs_info->empty_block_rsv; 5093 5094 return block_rsv; 5095 } 5096 5097 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5098 u64 num_bytes) 5099 { 5100 int ret = -ENOSPC; 5101 spin_lock(&block_rsv->lock); 5102 if (block_rsv->reserved >= num_bytes) { 5103 block_rsv->reserved -= num_bytes; 5104 if (block_rsv->reserved < block_rsv->size) 5105 block_rsv->full = 0; 5106 ret = 0; 5107 } 5108 spin_unlock(&block_rsv->lock); 5109 return ret; 5110 } 5111 5112 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5113 u64 num_bytes, int update_size) 5114 { 5115 spin_lock(&block_rsv->lock); 5116 block_rsv->reserved += num_bytes; 5117 if (update_size) 5118 block_rsv->size += num_bytes; 5119 else if (block_rsv->reserved >= block_rsv->size) 5120 block_rsv->full = 1; 5121 spin_unlock(&block_rsv->lock); 5122 } 5123 5124 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5125 struct btrfs_block_rsv *dest, u64 num_bytes, 5126 int min_factor) 5127 { 5128 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5129 u64 min_bytes; 5130 5131 if (global_rsv->space_info != dest->space_info) 5132 return -ENOSPC; 5133 5134 spin_lock(&global_rsv->lock); 5135 min_bytes = div_factor(global_rsv->size, min_factor); 5136 if (global_rsv->reserved < min_bytes + num_bytes) { 5137 spin_unlock(&global_rsv->lock); 5138 return -ENOSPC; 5139 } 5140 global_rsv->reserved -= num_bytes; 5141 if (global_rsv->reserved < global_rsv->size) 5142 global_rsv->full = 0; 5143 spin_unlock(&global_rsv->lock); 5144 5145 block_rsv_add_bytes(dest, num_bytes, 1); 5146 return 0; 5147 } 5148 5149 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5150 struct btrfs_block_rsv *block_rsv, 5151 struct btrfs_block_rsv *dest, u64 num_bytes) 5152 { 5153 struct btrfs_space_info *space_info = block_rsv->space_info; 5154 5155 spin_lock(&block_rsv->lock); 5156 if (num_bytes == (u64)-1) 5157 num_bytes = block_rsv->size; 5158 block_rsv->size -= num_bytes; 5159 if (block_rsv->reserved >= block_rsv->size) { 5160 num_bytes = block_rsv->reserved - block_rsv->size; 5161 block_rsv->reserved = block_rsv->size; 5162 block_rsv->full = 1; 5163 } else { 5164 num_bytes = 0; 5165 } 5166 spin_unlock(&block_rsv->lock); 5167 5168 if (num_bytes > 0) { 5169 if (dest) { 5170 spin_lock(&dest->lock); 5171 if (!dest->full) { 5172 u64 bytes_to_add; 5173 5174 bytes_to_add = dest->size - dest->reserved; 5175 bytes_to_add = min(num_bytes, bytes_to_add); 5176 dest->reserved += bytes_to_add; 5177 if (dest->reserved >= dest->size) 5178 dest->full = 1; 5179 num_bytes -= bytes_to_add; 5180 } 5181 spin_unlock(&dest->lock); 5182 } 5183 if (num_bytes) { 5184 spin_lock(&space_info->lock); 5185 space_info->bytes_may_use -= num_bytes; 5186 trace_btrfs_space_reservation(fs_info, "space_info", 5187 space_info->flags, num_bytes, 0); 5188 spin_unlock(&space_info->lock); 5189 } 5190 } 5191 } 5192 5193 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5194 struct btrfs_block_rsv *dst, u64 num_bytes) 5195 { 5196 int ret; 5197 5198 ret = block_rsv_use_bytes(src, num_bytes); 5199 if (ret) 5200 return ret; 5201 5202 block_rsv_add_bytes(dst, num_bytes, 1); 5203 return 0; 5204 } 5205 5206 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5207 { 5208 memset(rsv, 0, sizeof(*rsv)); 5209 spin_lock_init(&rsv->lock); 5210 rsv->type = type; 5211 } 5212 5213 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5214 unsigned short type) 5215 { 5216 struct btrfs_block_rsv *block_rsv; 5217 struct btrfs_fs_info *fs_info = root->fs_info; 5218 5219 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5220 if (!block_rsv) 5221 return NULL; 5222 5223 btrfs_init_block_rsv(block_rsv, type); 5224 block_rsv->space_info = __find_space_info(fs_info, 5225 BTRFS_BLOCK_GROUP_METADATA); 5226 return block_rsv; 5227 } 5228 5229 void btrfs_free_block_rsv(struct btrfs_root *root, 5230 struct btrfs_block_rsv *rsv) 5231 { 5232 if (!rsv) 5233 return; 5234 btrfs_block_rsv_release(root, rsv, (u64)-1); 5235 kfree(rsv); 5236 } 5237 5238 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5239 { 5240 kfree(rsv); 5241 } 5242 5243 int btrfs_block_rsv_add(struct btrfs_root *root, 5244 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5245 enum btrfs_reserve_flush_enum flush) 5246 { 5247 int ret; 5248 5249 if (num_bytes == 0) 5250 return 0; 5251 5252 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5253 if (!ret) { 5254 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5255 return 0; 5256 } 5257 5258 return ret; 5259 } 5260 5261 int btrfs_block_rsv_check(struct btrfs_root *root, 5262 struct btrfs_block_rsv *block_rsv, int min_factor) 5263 { 5264 u64 num_bytes = 0; 5265 int ret = -ENOSPC; 5266 5267 if (!block_rsv) 5268 return 0; 5269 5270 spin_lock(&block_rsv->lock); 5271 num_bytes = div_factor(block_rsv->size, min_factor); 5272 if (block_rsv->reserved >= num_bytes) 5273 ret = 0; 5274 spin_unlock(&block_rsv->lock); 5275 5276 return ret; 5277 } 5278 5279 int btrfs_block_rsv_refill(struct btrfs_root *root, 5280 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5281 enum btrfs_reserve_flush_enum flush) 5282 { 5283 u64 num_bytes = 0; 5284 int ret = -ENOSPC; 5285 5286 if (!block_rsv) 5287 return 0; 5288 5289 spin_lock(&block_rsv->lock); 5290 num_bytes = min_reserved; 5291 if (block_rsv->reserved >= num_bytes) 5292 ret = 0; 5293 else 5294 num_bytes -= block_rsv->reserved; 5295 spin_unlock(&block_rsv->lock); 5296 5297 if (!ret) 5298 return 0; 5299 5300 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5301 if (!ret) { 5302 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5303 return 0; 5304 } 5305 5306 return ret; 5307 } 5308 5309 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5310 struct btrfs_block_rsv *dst_rsv, 5311 u64 num_bytes) 5312 { 5313 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5314 } 5315 5316 void btrfs_block_rsv_release(struct btrfs_root *root, 5317 struct btrfs_block_rsv *block_rsv, 5318 u64 num_bytes) 5319 { 5320 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5321 if (global_rsv == block_rsv || 5322 block_rsv->space_info != global_rsv->space_info) 5323 global_rsv = NULL; 5324 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5325 num_bytes); 5326 } 5327 5328 /* 5329 * helper to calculate size of global block reservation. 5330 * the desired value is sum of space used by extent tree, 5331 * checksum tree and root tree 5332 */ 5333 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5334 { 5335 struct btrfs_space_info *sinfo; 5336 u64 num_bytes; 5337 u64 meta_used; 5338 u64 data_used; 5339 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5340 5341 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5342 spin_lock(&sinfo->lock); 5343 data_used = sinfo->bytes_used; 5344 spin_unlock(&sinfo->lock); 5345 5346 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5347 spin_lock(&sinfo->lock); 5348 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5349 data_used = 0; 5350 meta_used = sinfo->bytes_used; 5351 spin_unlock(&sinfo->lock); 5352 5353 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5354 csum_size * 2; 5355 num_bytes += div_u64(data_used + meta_used, 50); 5356 5357 if (num_bytes * 3 > meta_used) 5358 num_bytes = div_u64(meta_used, 3); 5359 5360 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5361 } 5362 5363 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5364 { 5365 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5366 struct btrfs_space_info *sinfo = block_rsv->space_info; 5367 u64 num_bytes; 5368 5369 num_bytes = calc_global_metadata_size(fs_info); 5370 5371 spin_lock(&sinfo->lock); 5372 spin_lock(&block_rsv->lock); 5373 5374 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5375 5376 if (block_rsv->reserved < block_rsv->size) { 5377 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5378 sinfo->bytes_reserved + sinfo->bytes_readonly + 5379 sinfo->bytes_may_use; 5380 if (sinfo->total_bytes > num_bytes) { 5381 num_bytes = sinfo->total_bytes - num_bytes; 5382 num_bytes = min(num_bytes, 5383 block_rsv->size - block_rsv->reserved); 5384 block_rsv->reserved += num_bytes; 5385 sinfo->bytes_may_use += num_bytes; 5386 trace_btrfs_space_reservation(fs_info, "space_info", 5387 sinfo->flags, num_bytes, 5388 1); 5389 } 5390 } else if (block_rsv->reserved > block_rsv->size) { 5391 num_bytes = block_rsv->reserved - block_rsv->size; 5392 sinfo->bytes_may_use -= num_bytes; 5393 trace_btrfs_space_reservation(fs_info, "space_info", 5394 sinfo->flags, num_bytes, 0); 5395 block_rsv->reserved = block_rsv->size; 5396 } 5397 5398 if (block_rsv->reserved == block_rsv->size) 5399 block_rsv->full = 1; 5400 else 5401 block_rsv->full = 0; 5402 5403 spin_unlock(&block_rsv->lock); 5404 spin_unlock(&sinfo->lock); 5405 } 5406 5407 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5408 { 5409 struct btrfs_space_info *space_info; 5410 5411 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5412 fs_info->chunk_block_rsv.space_info = space_info; 5413 5414 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5415 fs_info->global_block_rsv.space_info = space_info; 5416 fs_info->delalloc_block_rsv.space_info = space_info; 5417 fs_info->trans_block_rsv.space_info = space_info; 5418 fs_info->empty_block_rsv.space_info = space_info; 5419 fs_info->delayed_block_rsv.space_info = space_info; 5420 5421 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5422 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5423 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5424 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5425 if (fs_info->quota_root) 5426 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5427 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5428 5429 update_global_block_rsv(fs_info); 5430 } 5431 5432 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5433 { 5434 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5435 (u64)-1); 5436 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5437 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5438 WARN_ON(fs_info->trans_block_rsv.size > 0); 5439 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5440 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5441 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5442 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5443 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5444 } 5445 5446 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5447 struct btrfs_root *root) 5448 { 5449 if (!trans->block_rsv) 5450 return; 5451 5452 if (!trans->bytes_reserved) 5453 return; 5454 5455 trace_btrfs_space_reservation(root->fs_info, "transaction", 5456 trans->transid, trans->bytes_reserved, 0); 5457 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5458 trans->bytes_reserved = 0; 5459 } 5460 5461 /* 5462 * To be called after all the new block groups attached to the transaction 5463 * handle have been created (btrfs_create_pending_block_groups()). 5464 */ 5465 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5466 { 5467 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5468 5469 if (!trans->chunk_bytes_reserved) 5470 return; 5471 5472 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5473 5474 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5475 trans->chunk_bytes_reserved); 5476 trans->chunk_bytes_reserved = 0; 5477 } 5478 5479 /* Can only return 0 or -ENOSPC */ 5480 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5481 struct inode *inode) 5482 { 5483 struct btrfs_root *root = BTRFS_I(inode)->root; 5484 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5485 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5486 5487 /* 5488 * We need to hold space in order to delete our orphan item once we've 5489 * added it, so this takes the reservation so we can release it later 5490 * when we are truly done with the orphan item. 5491 */ 5492 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5493 trace_btrfs_space_reservation(root->fs_info, "orphan", 5494 btrfs_ino(inode), num_bytes, 1); 5495 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5496 } 5497 5498 void btrfs_orphan_release_metadata(struct inode *inode) 5499 { 5500 struct btrfs_root *root = BTRFS_I(inode)->root; 5501 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5502 trace_btrfs_space_reservation(root->fs_info, "orphan", 5503 btrfs_ino(inode), num_bytes, 0); 5504 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5505 } 5506 5507 /* 5508 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5509 * root: the root of the parent directory 5510 * rsv: block reservation 5511 * items: the number of items that we need do reservation 5512 * qgroup_reserved: used to return the reserved size in qgroup 5513 * 5514 * This function is used to reserve the space for snapshot/subvolume 5515 * creation and deletion. Those operations are different with the 5516 * common file/directory operations, they change two fs/file trees 5517 * and root tree, the number of items that the qgroup reserves is 5518 * different with the free space reservation. So we can not use 5519 * the space reseravtion mechanism in start_transaction(). 5520 */ 5521 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5522 struct btrfs_block_rsv *rsv, 5523 int items, 5524 u64 *qgroup_reserved, 5525 bool use_global_rsv) 5526 { 5527 u64 num_bytes; 5528 int ret; 5529 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5530 5531 if (root->fs_info->quota_enabled) { 5532 /* One for parent inode, two for dir entries */ 5533 num_bytes = 3 * root->nodesize; 5534 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5535 if (ret) 5536 return ret; 5537 } else { 5538 num_bytes = 0; 5539 } 5540 5541 *qgroup_reserved = num_bytes; 5542 5543 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5544 rsv->space_info = __find_space_info(root->fs_info, 5545 BTRFS_BLOCK_GROUP_METADATA); 5546 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5547 BTRFS_RESERVE_FLUSH_ALL); 5548 5549 if (ret == -ENOSPC && use_global_rsv) 5550 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5551 5552 if (ret && *qgroup_reserved) 5553 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5554 5555 return ret; 5556 } 5557 5558 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5559 struct btrfs_block_rsv *rsv, 5560 u64 qgroup_reserved) 5561 { 5562 btrfs_block_rsv_release(root, rsv, (u64)-1); 5563 } 5564 5565 /** 5566 * drop_outstanding_extent - drop an outstanding extent 5567 * @inode: the inode we're dropping the extent for 5568 * @num_bytes: the number of bytes we're relaseing. 5569 * 5570 * This is called when we are freeing up an outstanding extent, either called 5571 * after an error or after an extent is written. This will return the number of 5572 * reserved extents that need to be freed. This must be called with 5573 * BTRFS_I(inode)->lock held. 5574 */ 5575 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5576 { 5577 unsigned drop_inode_space = 0; 5578 unsigned dropped_extents = 0; 5579 unsigned num_extents = 0; 5580 5581 num_extents = (unsigned)div64_u64(num_bytes + 5582 BTRFS_MAX_EXTENT_SIZE - 1, 5583 BTRFS_MAX_EXTENT_SIZE); 5584 ASSERT(num_extents); 5585 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5586 BTRFS_I(inode)->outstanding_extents -= num_extents; 5587 5588 if (BTRFS_I(inode)->outstanding_extents == 0 && 5589 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5590 &BTRFS_I(inode)->runtime_flags)) 5591 drop_inode_space = 1; 5592 5593 /* 5594 * If we have more or the same amount of outsanding extents than we have 5595 * reserved then we need to leave the reserved extents count alone. 5596 */ 5597 if (BTRFS_I(inode)->outstanding_extents >= 5598 BTRFS_I(inode)->reserved_extents) 5599 return drop_inode_space; 5600 5601 dropped_extents = BTRFS_I(inode)->reserved_extents - 5602 BTRFS_I(inode)->outstanding_extents; 5603 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5604 return dropped_extents + drop_inode_space; 5605 } 5606 5607 /** 5608 * calc_csum_metadata_size - return the amount of metada space that must be 5609 * reserved/free'd for the given bytes. 5610 * @inode: the inode we're manipulating 5611 * @num_bytes: the number of bytes in question 5612 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5613 * 5614 * This adjusts the number of csum_bytes in the inode and then returns the 5615 * correct amount of metadata that must either be reserved or freed. We 5616 * calculate how many checksums we can fit into one leaf and then divide the 5617 * number of bytes that will need to be checksumed by this value to figure out 5618 * how many checksums will be required. If we are adding bytes then the number 5619 * may go up and we will return the number of additional bytes that must be 5620 * reserved. If it is going down we will return the number of bytes that must 5621 * be freed. 5622 * 5623 * This must be called with BTRFS_I(inode)->lock held. 5624 */ 5625 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5626 int reserve) 5627 { 5628 struct btrfs_root *root = BTRFS_I(inode)->root; 5629 u64 old_csums, num_csums; 5630 5631 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5632 BTRFS_I(inode)->csum_bytes == 0) 5633 return 0; 5634 5635 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5636 if (reserve) 5637 BTRFS_I(inode)->csum_bytes += num_bytes; 5638 else 5639 BTRFS_I(inode)->csum_bytes -= num_bytes; 5640 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5641 5642 /* No change, no need to reserve more */ 5643 if (old_csums == num_csums) 5644 return 0; 5645 5646 if (reserve) 5647 return btrfs_calc_trans_metadata_size(root, 5648 num_csums - old_csums); 5649 5650 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5651 } 5652 5653 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5654 { 5655 struct btrfs_root *root = BTRFS_I(inode)->root; 5656 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5657 u64 to_reserve = 0; 5658 u64 csum_bytes; 5659 unsigned nr_extents = 0; 5660 int extra_reserve = 0; 5661 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5662 int ret = 0; 5663 bool delalloc_lock = true; 5664 u64 to_free = 0; 5665 unsigned dropped; 5666 5667 /* If we are a free space inode we need to not flush since we will be in 5668 * the middle of a transaction commit. We also don't need the delalloc 5669 * mutex since we won't race with anybody. We need this mostly to make 5670 * lockdep shut its filthy mouth. 5671 */ 5672 if (btrfs_is_free_space_inode(inode)) { 5673 flush = BTRFS_RESERVE_NO_FLUSH; 5674 delalloc_lock = false; 5675 } 5676 5677 if (flush != BTRFS_RESERVE_NO_FLUSH && 5678 btrfs_transaction_in_commit(root->fs_info)) 5679 schedule_timeout(1); 5680 5681 if (delalloc_lock) 5682 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5683 5684 num_bytes = ALIGN(num_bytes, root->sectorsize); 5685 5686 spin_lock(&BTRFS_I(inode)->lock); 5687 nr_extents = (unsigned)div64_u64(num_bytes + 5688 BTRFS_MAX_EXTENT_SIZE - 1, 5689 BTRFS_MAX_EXTENT_SIZE); 5690 BTRFS_I(inode)->outstanding_extents += nr_extents; 5691 nr_extents = 0; 5692 5693 if (BTRFS_I(inode)->outstanding_extents > 5694 BTRFS_I(inode)->reserved_extents) 5695 nr_extents = BTRFS_I(inode)->outstanding_extents - 5696 BTRFS_I(inode)->reserved_extents; 5697 5698 /* 5699 * Add an item to reserve for updating the inode when we complete the 5700 * delalloc io. 5701 */ 5702 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5703 &BTRFS_I(inode)->runtime_flags)) { 5704 nr_extents++; 5705 extra_reserve = 1; 5706 } 5707 5708 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5709 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5710 csum_bytes = BTRFS_I(inode)->csum_bytes; 5711 spin_unlock(&BTRFS_I(inode)->lock); 5712 5713 if (root->fs_info->quota_enabled) { 5714 ret = btrfs_qgroup_reserve_meta(root, 5715 nr_extents * root->nodesize); 5716 if (ret) 5717 goto out_fail; 5718 } 5719 5720 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5721 if (unlikely(ret)) { 5722 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5723 goto out_fail; 5724 } 5725 5726 spin_lock(&BTRFS_I(inode)->lock); 5727 if (extra_reserve) { 5728 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5729 &BTRFS_I(inode)->runtime_flags); 5730 nr_extents--; 5731 } 5732 BTRFS_I(inode)->reserved_extents += nr_extents; 5733 spin_unlock(&BTRFS_I(inode)->lock); 5734 5735 if (delalloc_lock) 5736 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5737 5738 if (to_reserve) 5739 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5740 btrfs_ino(inode), to_reserve, 1); 5741 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5742 5743 return 0; 5744 5745 out_fail: 5746 spin_lock(&BTRFS_I(inode)->lock); 5747 dropped = drop_outstanding_extent(inode, num_bytes); 5748 /* 5749 * If the inodes csum_bytes is the same as the original 5750 * csum_bytes then we know we haven't raced with any free()ers 5751 * so we can just reduce our inodes csum bytes and carry on. 5752 */ 5753 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5754 calc_csum_metadata_size(inode, num_bytes, 0); 5755 } else { 5756 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5757 u64 bytes; 5758 5759 /* 5760 * This is tricky, but first we need to figure out how much we 5761 * free'd from any free-ers that occurred during this 5762 * reservation, so we reset ->csum_bytes to the csum_bytes 5763 * before we dropped our lock, and then call the free for the 5764 * number of bytes that were freed while we were trying our 5765 * reservation. 5766 */ 5767 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5768 BTRFS_I(inode)->csum_bytes = csum_bytes; 5769 to_free = calc_csum_metadata_size(inode, bytes, 0); 5770 5771 5772 /* 5773 * Now we need to see how much we would have freed had we not 5774 * been making this reservation and our ->csum_bytes were not 5775 * artificially inflated. 5776 */ 5777 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5778 bytes = csum_bytes - orig_csum_bytes; 5779 bytes = calc_csum_metadata_size(inode, bytes, 0); 5780 5781 /* 5782 * Now reset ->csum_bytes to what it should be. If bytes is 5783 * more than to_free then we would have free'd more space had we 5784 * not had an artificially high ->csum_bytes, so we need to free 5785 * the remainder. If bytes is the same or less then we don't 5786 * need to do anything, the other free-ers did the correct 5787 * thing. 5788 */ 5789 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5790 if (bytes > to_free) 5791 to_free = bytes - to_free; 5792 else 5793 to_free = 0; 5794 } 5795 spin_unlock(&BTRFS_I(inode)->lock); 5796 if (dropped) 5797 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5798 5799 if (to_free) { 5800 btrfs_block_rsv_release(root, block_rsv, to_free); 5801 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5802 btrfs_ino(inode), to_free, 0); 5803 } 5804 if (delalloc_lock) 5805 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5806 return ret; 5807 } 5808 5809 /** 5810 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5811 * @inode: the inode to release the reservation for 5812 * @num_bytes: the number of bytes we're releasing 5813 * 5814 * This will release the metadata reservation for an inode. This can be called 5815 * once we complete IO for a given set of bytes to release their metadata 5816 * reservations. 5817 */ 5818 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5819 { 5820 struct btrfs_root *root = BTRFS_I(inode)->root; 5821 u64 to_free = 0; 5822 unsigned dropped; 5823 5824 num_bytes = ALIGN(num_bytes, root->sectorsize); 5825 spin_lock(&BTRFS_I(inode)->lock); 5826 dropped = drop_outstanding_extent(inode, num_bytes); 5827 5828 if (num_bytes) 5829 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5830 spin_unlock(&BTRFS_I(inode)->lock); 5831 if (dropped > 0) 5832 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5833 5834 if (btrfs_test_is_dummy_root(root)) 5835 return; 5836 5837 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5838 btrfs_ino(inode), to_free, 0); 5839 5840 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5841 to_free); 5842 } 5843 5844 /** 5845 * btrfs_delalloc_reserve_space - reserve data and metadata space for 5846 * delalloc 5847 * @inode: inode we're writing to 5848 * @start: start range we are writing to 5849 * @len: how long the range we are writing to 5850 * 5851 * TODO: This function will finally replace old btrfs_delalloc_reserve_space() 5852 * 5853 * This will do the following things 5854 * 5855 * o reserve space in data space info for num bytes 5856 * and reserve precious corresponding qgroup space 5857 * (Done in check_data_free_space) 5858 * 5859 * o reserve space for metadata space, based on the number of outstanding 5860 * extents and how much csums will be needed 5861 * also reserve metadata space in a per root over-reserve method. 5862 * o add to the inodes->delalloc_bytes 5863 * o add it to the fs_info's delalloc inodes list. 5864 * (Above 3 all done in delalloc_reserve_metadata) 5865 * 5866 * Return 0 for success 5867 * Return <0 for error(-ENOSPC or -EQUOT) 5868 */ 5869 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 5870 { 5871 int ret; 5872 5873 ret = btrfs_check_data_free_space(inode, start, len); 5874 if (ret < 0) 5875 return ret; 5876 ret = btrfs_delalloc_reserve_metadata(inode, len); 5877 if (ret < 0) 5878 btrfs_free_reserved_data_space(inode, start, len); 5879 return ret; 5880 } 5881 5882 /** 5883 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5884 * @inode: inode we're releasing space for 5885 * @start: start position of the space already reserved 5886 * @len: the len of the space already reserved 5887 * 5888 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5889 * called in the case that we don't need the metadata AND data reservations 5890 * anymore. So if there is an error or we insert an inline extent. 5891 * 5892 * This function will release the metadata space that was not used and will 5893 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5894 * list if there are no delalloc bytes left. 5895 * Also it will handle the qgroup reserved space. 5896 */ 5897 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 5898 { 5899 btrfs_delalloc_release_metadata(inode, len); 5900 btrfs_free_reserved_data_space(inode, start, len); 5901 } 5902 5903 static int update_block_group(struct btrfs_trans_handle *trans, 5904 struct btrfs_root *root, u64 bytenr, 5905 u64 num_bytes, int alloc) 5906 { 5907 struct btrfs_block_group_cache *cache = NULL; 5908 struct btrfs_fs_info *info = root->fs_info; 5909 u64 total = num_bytes; 5910 u64 old_val; 5911 u64 byte_in_group; 5912 int factor; 5913 5914 /* block accounting for super block */ 5915 spin_lock(&info->delalloc_root_lock); 5916 old_val = btrfs_super_bytes_used(info->super_copy); 5917 if (alloc) 5918 old_val += num_bytes; 5919 else 5920 old_val -= num_bytes; 5921 btrfs_set_super_bytes_used(info->super_copy, old_val); 5922 spin_unlock(&info->delalloc_root_lock); 5923 5924 while (total) { 5925 cache = btrfs_lookup_block_group(info, bytenr); 5926 if (!cache) 5927 return -ENOENT; 5928 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5929 BTRFS_BLOCK_GROUP_RAID1 | 5930 BTRFS_BLOCK_GROUP_RAID10)) 5931 factor = 2; 5932 else 5933 factor = 1; 5934 /* 5935 * If this block group has free space cache written out, we 5936 * need to make sure to load it if we are removing space. This 5937 * is because we need the unpinning stage to actually add the 5938 * space back to the block group, otherwise we will leak space. 5939 */ 5940 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5941 cache_block_group(cache, 1); 5942 5943 byte_in_group = bytenr - cache->key.objectid; 5944 WARN_ON(byte_in_group > cache->key.offset); 5945 5946 spin_lock(&cache->space_info->lock); 5947 spin_lock(&cache->lock); 5948 5949 if (btrfs_test_opt(root, SPACE_CACHE) && 5950 cache->disk_cache_state < BTRFS_DC_CLEAR) 5951 cache->disk_cache_state = BTRFS_DC_CLEAR; 5952 5953 old_val = btrfs_block_group_used(&cache->item); 5954 num_bytes = min(total, cache->key.offset - byte_in_group); 5955 if (alloc) { 5956 old_val += num_bytes; 5957 btrfs_set_block_group_used(&cache->item, old_val); 5958 cache->reserved -= num_bytes; 5959 cache->space_info->bytes_reserved -= num_bytes; 5960 cache->space_info->bytes_used += num_bytes; 5961 cache->space_info->disk_used += num_bytes * factor; 5962 spin_unlock(&cache->lock); 5963 spin_unlock(&cache->space_info->lock); 5964 } else { 5965 old_val -= num_bytes; 5966 btrfs_set_block_group_used(&cache->item, old_val); 5967 cache->pinned += num_bytes; 5968 cache->space_info->bytes_pinned += num_bytes; 5969 cache->space_info->bytes_used -= num_bytes; 5970 cache->space_info->disk_used -= num_bytes * factor; 5971 spin_unlock(&cache->lock); 5972 spin_unlock(&cache->space_info->lock); 5973 5974 set_extent_dirty(info->pinned_extents, 5975 bytenr, bytenr + num_bytes - 1, 5976 GFP_NOFS | __GFP_NOFAIL); 5977 } 5978 5979 spin_lock(&trans->transaction->dirty_bgs_lock); 5980 if (list_empty(&cache->dirty_list)) { 5981 list_add_tail(&cache->dirty_list, 5982 &trans->transaction->dirty_bgs); 5983 trans->transaction->num_dirty_bgs++; 5984 btrfs_get_block_group(cache); 5985 } 5986 spin_unlock(&trans->transaction->dirty_bgs_lock); 5987 5988 /* 5989 * No longer have used bytes in this block group, queue it for 5990 * deletion. We do this after adding the block group to the 5991 * dirty list to avoid races between cleaner kthread and space 5992 * cache writeout. 5993 */ 5994 if (!alloc && old_val == 0) { 5995 spin_lock(&info->unused_bgs_lock); 5996 if (list_empty(&cache->bg_list)) { 5997 btrfs_get_block_group(cache); 5998 list_add_tail(&cache->bg_list, 5999 &info->unused_bgs); 6000 } 6001 spin_unlock(&info->unused_bgs_lock); 6002 } 6003 6004 btrfs_put_block_group(cache); 6005 total -= num_bytes; 6006 bytenr += num_bytes; 6007 } 6008 return 0; 6009 } 6010 6011 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6012 { 6013 struct btrfs_block_group_cache *cache; 6014 u64 bytenr; 6015 6016 spin_lock(&root->fs_info->block_group_cache_lock); 6017 bytenr = root->fs_info->first_logical_byte; 6018 spin_unlock(&root->fs_info->block_group_cache_lock); 6019 6020 if (bytenr < (u64)-1) 6021 return bytenr; 6022 6023 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6024 if (!cache) 6025 return 0; 6026 6027 bytenr = cache->key.objectid; 6028 btrfs_put_block_group(cache); 6029 6030 return bytenr; 6031 } 6032 6033 static int pin_down_extent(struct btrfs_root *root, 6034 struct btrfs_block_group_cache *cache, 6035 u64 bytenr, u64 num_bytes, int reserved) 6036 { 6037 spin_lock(&cache->space_info->lock); 6038 spin_lock(&cache->lock); 6039 cache->pinned += num_bytes; 6040 cache->space_info->bytes_pinned += num_bytes; 6041 if (reserved) { 6042 cache->reserved -= num_bytes; 6043 cache->space_info->bytes_reserved -= num_bytes; 6044 } 6045 spin_unlock(&cache->lock); 6046 spin_unlock(&cache->space_info->lock); 6047 6048 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6049 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6050 if (reserved) 6051 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 6052 return 0; 6053 } 6054 6055 /* 6056 * this function must be called within transaction 6057 */ 6058 int btrfs_pin_extent(struct btrfs_root *root, 6059 u64 bytenr, u64 num_bytes, int reserved) 6060 { 6061 struct btrfs_block_group_cache *cache; 6062 6063 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6064 BUG_ON(!cache); /* Logic error */ 6065 6066 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6067 6068 btrfs_put_block_group(cache); 6069 return 0; 6070 } 6071 6072 /* 6073 * this function must be called within transaction 6074 */ 6075 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6076 u64 bytenr, u64 num_bytes) 6077 { 6078 struct btrfs_block_group_cache *cache; 6079 int ret; 6080 6081 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6082 if (!cache) 6083 return -EINVAL; 6084 6085 /* 6086 * pull in the free space cache (if any) so that our pin 6087 * removes the free space from the cache. We have load_only set 6088 * to one because the slow code to read in the free extents does check 6089 * the pinned extents. 6090 */ 6091 cache_block_group(cache, 1); 6092 6093 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6094 6095 /* remove us from the free space cache (if we're there at all) */ 6096 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6097 btrfs_put_block_group(cache); 6098 return ret; 6099 } 6100 6101 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6102 { 6103 int ret; 6104 struct btrfs_block_group_cache *block_group; 6105 struct btrfs_caching_control *caching_ctl; 6106 6107 block_group = btrfs_lookup_block_group(root->fs_info, start); 6108 if (!block_group) 6109 return -EINVAL; 6110 6111 cache_block_group(block_group, 0); 6112 caching_ctl = get_caching_control(block_group); 6113 6114 if (!caching_ctl) { 6115 /* Logic error */ 6116 BUG_ON(!block_group_cache_done(block_group)); 6117 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6118 } else { 6119 mutex_lock(&caching_ctl->mutex); 6120 6121 if (start >= caching_ctl->progress) { 6122 ret = add_excluded_extent(root, start, num_bytes); 6123 } else if (start + num_bytes <= caching_ctl->progress) { 6124 ret = btrfs_remove_free_space(block_group, 6125 start, num_bytes); 6126 } else { 6127 num_bytes = caching_ctl->progress - start; 6128 ret = btrfs_remove_free_space(block_group, 6129 start, num_bytes); 6130 if (ret) 6131 goto out_lock; 6132 6133 num_bytes = (start + num_bytes) - 6134 caching_ctl->progress; 6135 start = caching_ctl->progress; 6136 ret = add_excluded_extent(root, start, num_bytes); 6137 } 6138 out_lock: 6139 mutex_unlock(&caching_ctl->mutex); 6140 put_caching_control(caching_ctl); 6141 } 6142 btrfs_put_block_group(block_group); 6143 return ret; 6144 } 6145 6146 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6147 struct extent_buffer *eb) 6148 { 6149 struct btrfs_file_extent_item *item; 6150 struct btrfs_key key; 6151 int found_type; 6152 int i; 6153 6154 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6155 return 0; 6156 6157 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6158 btrfs_item_key_to_cpu(eb, &key, i); 6159 if (key.type != BTRFS_EXTENT_DATA_KEY) 6160 continue; 6161 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6162 found_type = btrfs_file_extent_type(eb, item); 6163 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6164 continue; 6165 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6166 continue; 6167 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6168 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6169 __exclude_logged_extent(log, key.objectid, key.offset); 6170 } 6171 6172 return 0; 6173 } 6174 6175 /** 6176 * btrfs_update_reserved_bytes - update the block_group and space info counters 6177 * @cache: The cache we are manipulating 6178 * @num_bytes: The number of bytes in question 6179 * @reserve: One of the reservation enums 6180 * @delalloc: The blocks are allocated for the delalloc write 6181 * 6182 * This is called by the allocator when it reserves space, or by somebody who is 6183 * freeing space that was never actually used on disk. For example if you 6184 * reserve some space for a new leaf in transaction A and before transaction A 6185 * commits you free that leaf, you call this with reserve set to 0 in order to 6186 * clear the reservation. 6187 * 6188 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 6189 * ENOSPC accounting. For data we handle the reservation through clearing the 6190 * delalloc bits in the io_tree. We have to do this since we could end up 6191 * allocating less disk space for the amount of data we have reserved in the 6192 * case of compression. 6193 * 6194 * If this is a reservation and the block group has become read only we cannot 6195 * make the reservation and return -EAGAIN, otherwise this function always 6196 * succeeds. 6197 */ 6198 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 6199 u64 num_bytes, int reserve, int delalloc) 6200 { 6201 struct btrfs_space_info *space_info = cache->space_info; 6202 int ret = 0; 6203 6204 spin_lock(&space_info->lock); 6205 spin_lock(&cache->lock); 6206 if (reserve != RESERVE_FREE) { 6207 if (cache->ro) { 6208 ret = -EAGAIN; 6209 } else { 6210 cache->reserved += num_bytes; 6211 space_info->bytes_reserved += num_bytes; 6212 if (reserve == RESERVE_ALLOC) { 6213 trace_btrfs_space_reservation(cache->fs_info, 6214 "space_info", space_info->flags, 6215 num_bytes, 0); 6216 space_info->bytes_may_use -= num_bytes; 6217 } 6218 6219 if (delalloc) 6220 cache->delalloc_bytes += num_bytes; 6221 } 6222 } else { 6223 if (cache->ro) 6224 space_info->bytes_readonly += num_bytes; 6225 cache->reserved -= num_bytes; 6226 space_info->bytes_reserved -= num_bytes; 6227 6228 if (delalloc) 6229 cache->delalloc_bytes -= num_bytes; 6230 } 6231 spin_unlock(&cache->lock); 6232 spin_unlock(&space_info->lock); 6233 return ret; 6234 } 6235 6236 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6237 struct btrfs_root *root) 6238 { 6239 struct btrfs_fs_info *fs_info = root->fs_info; 6240 struct btrfs_caching_control *next; 6241 struct btrfs_caching_control *caching_ctl; 6242 struct btrfs_block_group_cache *cache; 6243 6244 down_write(&fs_info->commit_root_sem); 6245 6246 list_for_each_entry_safe(caching_ctl, next, 6247 &fs_info->caching_block_groups, list) { 6248 cache = caching_ctl->block_group; 6249 if (block_group_cache_done(cache)) { 6250 cache->last_byte_to_unpin = (u64)-1; 6251 list_del_init(&caching_ctl->list); 6252 put_caching_control(caching_ctl); 6253 } else { 6254 cache->last_byte_to_unpin = caching_ctl->progress; 6255 } 6256 } 6257 6258 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6259 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6260 else 6261 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6262 6263 up_write(&fs_info->commit_root_sem); 6264 6265 update_global_block_rsv(fs_info); 6266 } 6267 6268 /* 6269 * Returns the free cluster for the given space info and sets empty_cluster to 6270 * what it should be based on the mount options. 6271 */ 6272 static struct btrfs_free_cluster * 6273 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6274 u64 *empty_cluster) 6275 { 6276 struct btrfs_free_cluster *ret = NULL; 6277 bool ssd = btrfs_test_opt(root, SSD); 6278 6279 *empty_cluster = 0; 6280 if (btrfs_mixed_space_info(space_info)) 6281 return ret; 6282 6283 if (ssd) 6284 *empty_cluster = SZ_2M; 6285 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6286 ret = &root->fs_info->meta_alloc_cluster; 6287 if (!ssd) 6288 *empty_cluster = SZ_64K; 6289 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6290 ret = &root->fs_info->data_alloc_cluster; 6291 } 6292 6293 return ret; 6294 } 6295 6296 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6297 const bool return_free_space) 6298 { 6299 struct btrfs_fs_info *fs_info = root->fs_info; 6300 struct btrfs_block_group_cache *cache = NULL; 6301 struct btrfs_space_info *space_info; 6302 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6303 struct btrfs_free_cluster *cluster = NULL; 6304 u64 len; 6305 u64 total_unpinned = 0; 6306 u64 empty_cluster = 0; 6307 bool readonly; 6308 6309 while (start <= end) { 6310 readonly = false; 6311 if (!cache || 6312 start >= cache->key.objectid + cache->key.offset) { 6313 if (cache) 6314 btrfs_put_block_group(cache); 6315 total_unpinned = 0; 6316 cache = btrfs_lookup_block_group(fs_info, start); 6317 BUG_ON(!cache); /* Logic error */ 6318 6319 cluster = fetch_cluster_info(root, 6320 cache->space_info, 6321 &empty_cluster); 6322 empty_cluster <<= 1; 6323 } 6324 6325 len = cache->key.objectid + cache->key.offset - start; 6326 len = min(len, end + 1 - start); 6327 6328 if (start < cache->last_byte_to_unpin) { 6329 len = min(len, cache->last_byte_to_unpin - start); 6330 if (return_free_space) 6331 btrfs_add_free_space(cache, start, len); 6332 } 6333 6334 start += len; 6335 total_unpinned += len; 6336 space_info = cache->space_info; 6337 6338 /* 6339 * If this space cluster has been marked as fragmented and we've 6340 * unpinned enough in this block group to potentially allow a 6341 * cluster to be created inside of it go ahead and clear the 6342 * fragmented check. 6343 */ 6344 if (cluster && cluster->fragmented && 6345 total_unpinned > empty_cluster) { 6346 spin_lock(&cluster->lock); 6347 cluster->fragmented = 0; 6348 spin_unlock(&cluster->lock); 6349 } 6350 6351 spin_lock(&space_info->lock); 6352 spin_lock(&cache->lock); 6353 cache->pinned -= len; 6354 space_info->bytes_pinned -= len; 6355 space_info->max_extent_size = 0; 6356 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6357 if (cache->ro) { 6358 space_info->bytes_readonly += len; 6359 readonly = true; 6360 } 6361 spin_unlock(&cache->lock); 6362 if (!readonly && global_rsv->space_info == space_info) { 6363 spin_lock(&global_rsv->lock); 6364 if (!global_rsv->full) { 6365 len = min(len, global_rsv->size - 6366 global_rsv->reserved); 6367 global_rsv->reserved += len; 6368 space_info->bytes_may_use += len; 6369 if (global_rsv->reserved >= global_rsv->size) 6370 global_rsv->full = 1; 6371 } 6372 spin_unlock(&global_rsv->lock); 6373 } 6374 spin_unlock(&space_info->lock); 6375 } 6376 6377 if (cache) 6378 btrfs_put_block_group(cache); 6379 return 0; 6380 } 6381 6382 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6383 struct btrfs_root *root) 6384 { 6385 struct btrfs_fs_info *fs_info = root->fs_info; 6386 struct btrfs_block_group_cache *block_group, *tmp; 6387 struct list_head *deleted_bgs; 6388 struct extent_io_tree *unpin; 6389 u64 start; 6390 u64 end; 6391 int ret; 6392 6393 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6394 unpin = &fs_info->freed_extents[1]; 6395 else 6396 unpin = &fs_info->freed_extents[0]; 6397 6398 while (!trans->aborted) { 6399 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6400 ret = find_first_extent_bit(unpin, 0, &start, &end, 6401 EXTENT_DIRTY, NULL); 6402 if (ret) { 6403 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6404 break; 6405 } 6406 6407 if (btrfs_test_opt(root, DISCARD)) 6408 ret = btrfs_discard_extent(root, start, 6409 end + 1 - start, NULL); 6410 6411 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6412 unpin_extent_range(root, start, end, true); 6413 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6414 cond_resched(); 6415 } 6416 6417 /* 6418 * Transaction is finished. We don't need the lock anymore. We 6419 * do need to clean up the block groups in case of a transaction 6420 * abort. 6421 */ 6422 deleted_bgs = &trans->transaction->deleted_bgs; 6423 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6424 u64 trimmed = 0; 6425 6426 ret = -EROFS; 6427 if (!trans->aborted) 6428 ret = btrfs_discard_extent(root, 6429 block_group->key.objectid, 6430 block_group->key.offset, 6431 &trimmed); 6432 6433 list_del_init(&block_group->bg_list); 6434 btrfs_put_block_group_trimming(block_group); 6435 btrfs_put_block_group(block_group); 6436 6437 if (ret) { 6438 const char *errstr = btrfs_decode_error(ret); 6439 btrfs_warn(fs_info, 6440 "Discard failed while removing blockgroup: errno=%d %s\n", 6441 ret, errstr); 6442 } 6443 } 6444 6445 return 0; 6446 } 6447 6448 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6449 u64 owner, u64 root_objectid) 6450 { 6451 struct btrfs_space_info *space_info; 6452 u64 flags; 6453 6454 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6455 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6456 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6457 else 6458 flags = BTRFS_BLOCK_GROUP_METADATA; 6459 } else { 6460 flags = BTRFS_BLOCK_GROUP_DATA; 6461 } 6462 6463 space_info = __find_space_info(fs_info, flags); 6464 BUG_ON(!space_info); /* Logic bug */ 6465 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6466 } 6467 6468 6469 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6470 struct btrfs_root *root, 6471 struct btrfs_delayed_ref_node *node, u64 parent, 6472 u64 root_objectid, u64 owner_objectid, 6473 u64 owner_offset, int refs_to_drop, 6474 struct btrfs_delayed_extent_op *extent_op) 6475 { 6476 struct btrfs_key key; 6477 struct btrfs_path *path; 6478 struct btrfs_fs_info *info = root->fs_info; 6479 struct btrfs_root *extent_root = info->extent_root; 6480 struct extent_buffer *leaf; 6481 struct btrfs_extent_item *ei; 6482 struct btrfs_extent_inline_ref *iref; 6483 int ret; 6484 int is_data; 6485 int extent_slot = 0; 6486 int found_extent = 0; 6487 int num_to_del = 1; 6488 u32 item_size; 6489 u64 refs; 6490 u64 bytenr = node->bytenr; 6491 u64 num_bytes = node->num_bytes; 6492 int last_ref = 0; 6493 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6494 SKINNY_METADATA); 6495 6496 path = btrfs_alloc_path(); 6497 if (!path) 6498 return -ENOMEM; 6499 6500 path->reada = READA_FORWARD; 6501 path->leave_spinning = 1; 6502 6503 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6504 BUG_ON(!is_data && refs_to_drop != 1); 6505 6506 if (is_data) 6507 skinny_metadata = 0; 6508 6509 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6510 bytenr, num_bytes, parent, 6511 root_objectid, owner_objectid, 6512 owner_offset); 6513 if (ret == 0) { 6514 extent_slot = path->slots[0]; 6515 while (extent_slot >= 0) { 6516 btrfs_item_key_to_cpu(path->nodes[0], &key, 6517 extent_slot); 6518 if (key.objectid != bytenr) 6519 break; 6520 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6521 key.offset == num_bytes) { 6522 found_extent = 1; 6523 break; 6524 } 6525 if (key.type == BTRFS_METADATA_ITEM_KEY && 6526 key.offset == owner_objectid) { 6527 found_extent = 1; 6528 break; 6529 } 6530 if (path->slots[0] - extent_slot > 5) 6531 break; 6532 extent_slot--; 6533 } 6534 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6535 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6536 if (found_extent && item_size < sizeof(*ei)) 6537 found_extent = 0; 6538 #endif 6539 if (!found_extent) { 6540 BUG_ON(iref); 6541 ret = remove_extent_backref(trans, extent_root, path, 6542 NULL, refs_to_drop, 6543 is_data, &last_ref); 6544 if (ret) { 6545 btrfs_abort_transaction(trans, extent_root, ret); 6546 goto out; 6547 } 6548 btrfs_release_path(path); 6549 path->leave_spinning = 1; 6550 6551 key.objectid = bytenr; 6552 key.type = BTRFS_EXTENT_ITEM_KEY; 6553 key.offset = num_bytes; 6554 6555 if (!is_data && skinny_metadata) { 6556 key.type = BTRFS_METADATA_ITEM_KEY; 6557 key.offset = owner_objectid; 6558 } 6559 6560 ret = btrfs_search_slot(trans, extent_root, 6561 &key, path, -1, 1); 6562 if (ret > 0 && skinny_metadata && path->slots[0]) { 6563 /* 6564 * Couldn't find our skinny metadata item, 6565 * see if we have ye olde extent item. 6566 */ 6567 path->slots[0]--; 6568 btrfs_item_key_to_cpu(path->nodes[0], &key, 6569 path->slots[0]); 6570 if (key.objectid == bytenr && 6571 key.type == BTRFS_EXTENT_ITEM_KEY && 6572 key.offset == num_bytes) 6573 ret = 0; 6574 } 6575 6576 if (ret > 0 && skinny_metadata) { 6577 skinny_metadata = false; 6578 key.objectid = bytenr; 6579 key.type = BTRFS_EXTENT_ITEM_KEY; 6580 key.offset = num_bytes; 6581 btrfs_release_path(path); 6582 ret = btrfs_search_slot(trans, extent_root, 6583 &key, path, -1, 1); 6584 } 6585 6586 if (ret) { 6587 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6588 ret, bytenr); 6589 if (ret > 0) 6590 btrfs_print_leaf(extent_root, 6591 path->nodes[0]); 6592 } 6593 if (ret < 0) { 6594 btrfs_abort_transaction(trans, extent_root, ret); 6595 goto out; 6596 } 6597 extent_slot = path->slots[0]; 6598 } 6599 } else if (WARN_ON(ret == -ENOENT)) { 6600 btrfs_print_leaf(extent_root, path->nodes[0]); 6601 btrfs_err(info, 6602 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6603 bytenr, parent, root_objectid, owner_objectid, 6604 owner_offset); 6605 btrfs_abort_transaction(trans, extent_root, ret); 6606 goto out; 6607 } else { 6608 btrfs_abort_transaction(trans, extent_root, ret); 6609 goto out; 6610 } 6611 6612 leaf = path->nodes[0]; 6613 item_size = btrfs_item_size_nr(leaf, extent_slot); 6614 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6615 if (item_size < sizeof(*ei)) { 6616 BUG_ON(found_extent || extent_slot != path->slots[0]); 6617 ret = convert_extent_item_v0(trans, extent_root, path, 6618 owner_objectid, 0); 6619 if (ret < 0) { 6620 btrfs_abort_transaction(trans, extent_root, ret); 6621 goto out; 6622 } 6623 6624 btrfs_release_path(path); 6625 path->leave_spinning = 1; 6626 6627 key.objectid = bytenr; 6628 key.type = BTRFS_EXTENT_ITEM_KEY; 6629 key.offset = num_bytes; 6630 6631 ret = btrfs_search_slot(trans, extent_root, &key, path, 6632 -1, 1); 6633 if (ret) { 6634 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6635 ret, bytenr); 6636 btrfs_print_leaf(extent_root, path->nodes[0]); 6637 } 6638 if (ret < 0) { 6639 btrfs_abort_transaction(trans, extent_root, ret); 6640 goto out; 6641 } 6642 6643 extent_slot = path->slots[0]; 6644 leaf = path->nodes[0]; 6645 item_size = btrfs_item_size_nr(leaf, extent_slot); 6646 } 6647 #endif 6648 BUG_ON(item_size < sizeof(*ei)); 6649 ei = btrfs_item_ptr(leaf, extent_slot, 6650 struct btrfs_extent_item); 6651 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6652 key.type == BTRFS_EXTENT_ITEM_KEY) { 6653 struct btrfs_tree_block_info *bi; 6654 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6655 bi = (struct btrfs_tree_block_info *)(ei + 1); 6656 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6657 } 6658 6659 refs = btrfs_extent_refs(leaf, ei); 6660 if (refs < refs_to_drop) { 6661 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6662 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6663 ret = -EINVAL; 6664 btrfs_abort_transaction(trans, extent_root, ret); 6665 goto out; 6666 } 6667 refs -= refs_to_drop; 6668 6669 if (refs > 0) { 6670 if (extent_op) 6671 __run_delayed_extent_op(extent_op, leaf, ei); 6672 /* 6673 * In the case of inline back ref, reference count will 6674 * be updated by remove_extent_backref 6675 */ 6676 if (iref) { 6677 BUG_ON(!found_extent); 6678 } else { 6679 btrfs_set_extent_refs(leaf, ei, refs); 6680 btrfs_mark_buffer_dirty(leaf); 6681 } 6682 if (found_extent) { 6683 ret = remove_extent_backref(trans, extent_root, path, 6684 iref, refs_to_drop, 6685 is_data, &last_ref); 6686 if (ret) { 6687 btrfs_abort_transaction(trans, extent_root, ret); 6688 goto out; 6689 } 6690 } 6691 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6692 root_objectid); 6693 } else { 6694 if (found_extent) { 6695 BUG_ON(is_data && refs_to_drop != 6696 extent_data_ref_count(path, iref)); 6697 if (iref) { 6698 BUG_ON(path->slots[0] != extent_slot); 6699 } else { 6700 BUG_ON(path->slots[0] != extent_slot + 1); 6701 path->slots[0] = extent_slot; 6702 num_to_del = 2; 6703 } 6704 } 6705 6706 last_ref = 1; 6707 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6708 num_to_del); 6709 if (ret) { 6710 btrfs_abort_transaction(trans, extent_root, ret); 6711 goto out; 6712 } 6713 btrfs_release_path(path); 6714 6715 if (is_data) { 6716 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6717 if (ret) { 6718 btrfs_abort_transaction(trans, extent_root, ret); 6719 goto out; 6720 } 6721 } 6722 6723 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 6724 num_bytes); 6725 if (ret) { 6726 btrfs_abort_transaction(trans, extent_root, ret); 6727 goto out; 6728 } 6729 6730 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6731 if (ret) { 6732 btrfs_abort_transaction(trans, extent_root, ret); 6733 goto out; 6734 } 6735 } 6736 btrfs_release_path(path); 6737 6738 out: 6739 btrfs_free_path(path); 6740 return ret; 6741 } 6742 6743 /* 6744 * when we free an block, it is possible (and likely) that we free the last 6745 * delayed ref for that extent as well. This searches the delayed ref tree for 6746 * a given extent, and if there are no other delayed refs to be processed, it 6747 * removes it from the tree. 6748 */ 6749 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6750 struct btrfs_root *root, u64 bytenr) 6751 { 6752 struct btrfs_delayed_ref_head *head; 6753 struct btrfs_delayed_ref_root *delayed_refs; 6754 int ret = 0; 6755 6756 delayed_refs = &trans->transaction->delayed_refs; 6757 spin_lock(&delayed_refs->lock); 6758 head = btrfs_find_delayed_ref_head(trans, bytenr); 6759 if (!head) 6760 goto out_delayed_unlock; 6761 6762 spin_lock(&head->lock); 6763 if (!list_empty(&head->ref_list)) 6764 goto out; 6765 6766 if (head->extent_op) { 6767 if (!head->must_insert_reserved) 6768 goto out; 6769 btrfs_free_delayed_extent_op(head->extent_op); 6770 head->extent_op = NULL; 6771 } 6772 6773 /* 6774 * waiting for the lock here would deadlock. If someone else has it 6775 * locked they are already in the process of dropping it anyway 6776 */ 6777 if (!mutex_trylock(&head->mutex)) 6778 goto out; 6779 6780 /* 6781 * at this point we have a head with no other entries. Go 6782 * ahead and process it. 6783 */ 6784 head->node.in_tree = 0; 6785 rb_erase(&head->href_node, &delayed_refs->href_root); 6786 6787 atomic_dec(&delayed_refs->num_entries); 6788 6789 /* 6790 * we don't take a ref on the node because we're removing it from the 6791 * tree, so we just steal the ref the tree was holding. 6792 */ 6793 delayed_refs->num_heads--; 6794 if (head->processing == 0) 6795 delayed_refs->num_heads_ready--; 6796 head->processing = 0; 6797 spin_unlock(&head->lock); 6798 spin_unlock(&delayed_refs->lock); 6799 6800 BUG_ON(head->extent_op); 6801 if (head->must_insert_reserved) 6802 ret = 1; 6803 6804 mutex_unlock(&head->mutex); 6805 btrfs_put_delayed_ref(&head->node); 6806 return ret; 6807 out: 6808 spin_unlock(&head->lock); 6809 6810 out_delayed_unlock: 6811 spin_unlock(&delayed_refs->lock); 6812 return 0; 6813 } 6814 6815 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6816 struct btrfs_root *root, 6817 struct extent_buffer *buf, 6818 u64 parent, int last_ref) 6819 { 6820 int pin = 1; 6821 int ret; 6822 6823 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6824 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6825 buf->start, buf->len, 6826 parent, root->root_key.objectid, 6827 btrfs_header_level(buf), 6828 BTRFS_DROP_DELAYED_REF, NULL); 6829 BUG_ON(ret); /* -ENOMEM */ 6830 } 6831 6832 if (!last_ref) 6833 return; 6834 6835 if (btrfs_header_generation(buf) == trans->transid) { 6836 struct btrfs_block_group_cache *cache; 6837 6838 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6839 ret = check_ref_cleanup(trans, root, buf->start); 6840 if (!ret) 6841 goto out; 6842 } 6843 6844 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6845 6846 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6847 pin_down_extent(root, cache, buf->start, buf->len, 1); 6848 btrfs_put_block_group(cache); 6849 goto out; 6850 } 6851 6852 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6853 6854 btrfs_add_free_space(cache, buf->start, buf->len); 6855 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6856 btrfs_put_block_group(cache); 6857 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6858 pin = 0; 6859 } 6860 out: 6861 if (pin) 6862 add_pinned_bytes(root->fs_info, buf->len, 6863 btrfs_header_level(buf), 6864 root->root_key.objectid); 6865 6866 /* 6867 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6868 * anymore. 6869 */ 6870 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6871 } 6872 6873 /* Can return -ENOMEM */ 6874 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6875 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6876 u64 owner, u64 offset) 6877 { 6878 int ret; 6879 struct btrfs_fs_info *fs_info = root->fs_info; 6880 6881 if (btrfs_test_is_dummy_root(root)) 6882 return 0; 6883 6884 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6885 6886 /* 6887 * tree log blocks never actually go into the extent allocation 6888 * tree, just update pinning info and exit early. 6889 */ 6890 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6891 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6892 /* unlocks the pinned mutex */ 6893 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6894 ret = 0; 6895 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6896 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6897 num_bytes, 6898 parent, root_objectid, (int)owner, 6899 BTRFS_DROP_DELAYED_REF, NULL); 6900 } else { 6901 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6902 num_bytes, 6903 parent, root_objectid, owner, 6904 offset, 0, 6905 BTRFS_DROP_DELAYED_REF, NULL); 6906 } 6907 return ret; 6908 } 6909 6910 /* 6911 * when we wait for progress in the block group caching, its because 6912 * our allocation attempt failed at least once. So, we must sleep 6913 * and let some progress happen before we try again. 6914 * 6915 * This function will sleep at least once waiting for new free space to 6916 * show up, and then it will check the block group free space numbers 6917 * for our min num_bytes. Another option is to have it go ahead 6918 * and look in the rbtree for a free extent of a given size, but this 6919 * is a good start. 6920 * 6921 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6922 * any of the information in this block group. 6923 */ 6924 static noinline void 6925 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6926 u64 num_bytes) 6927 { 6928 struct btrfs_caching_control *caching_ctl; 6929 6930 caching_ctl = get_caching_control(cache); 6931 if (!caching_ctl) 6932 return; 6933 6934 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6935 (cache->free_space_ctl->free_space >= num_bytes)); 6936 6937 put_caching_control(caching_ctl); 6938 } 6939 6940 static noinline int 6941 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6942 { 6943 struct btrfs_caching_control *caching_ctl; 6944 int ret = 0; 6945 6946 caching_ctl = get_caching_control(cache); 6947 if (!caching_ctl) 6948 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6949 6950 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6951 if (cache->cached == BTRFS_CACHE_ERROR) 6952 ret = -EIO; 6953 put_caching_control(caching_ctl); 6954 return ret; 6955 } 6956 6957 int __get_raid_index(u64 flags) 6958 { 6959 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6960 return BTRFS_RAID_RAID10; 6961 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6962 return BTRFS_RAID_RAID1; 6963 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6964 return BTRFS_RAID_DUP; 6965 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6966 return BTRFS_RAID_RAID0; 6967 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6968 return BTRFS_RAID_RAID5; 6969 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6970 return BTRFS_RAID_RAID6; 6971 6972 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6973 } 6974 6975 int get_block_group_index(struct btrfs_block_group_cache *cache) 6976 { 6977 return __get_raid_index(cache->flags); 6978 } 6979 6980 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6981 [BTRFS_RAID_RAID10] = "raid10", 6982 [BTRFS_RAID_RAID1] = "raid1", 6983 [BTRFS_RAID_DUP] = "dup", 6984 [BTRFS_RAID_RAID0] = "raid0", 6985 [BTRFS_RAID_SINGLE] = "single", 6986 [BTRFS_RAID_RAID5] = "raid5", 6987 [BTRFS_RAID_RAID6] = "raid6", 6988 }; 6989 6990 static const char *get_raid_name(enum btrfs_raid_types type) 6991 { 6992 if (type >= BTRFS_NR_RAID_TYPES) 6993 return NULL; 6994 6995 return btrfs_raid_type_names[type]; 6996 } 6997 6998 enum btrfs_loop_type { 6999 LOOP_CACHING_NOWAIT = 0, 7000 LOOP_CACHING_WAIT = 1, 7001 LOOP_ALLOC_CHUNK = 2, 7002 LOOP_NO_EMPTY_SIZE = 3, 7003 }; 7004 7005 static inline void 7006 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7007 int delalloc) 7008 { 7009 if (delalloc) 7010 down_read(&cache->data_rwsem); 7011 } 7012 7013 static inline void 7014 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7015 int delalloc) 7016 { 7017 btrfs_get_block_group(cache); 7018 if (delalloc) 7019 down_read(&cache->data_rwsem); 7020 } 7021 7022 static struct btrfs_block_group_cache * 7023 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7024 struct btrfs_free_cluster *cluster, 7025 int delalloc) 7026 { 7027 struct btrfs_block_group_cache *used_bg = NULL; 7028 bool locked = false; 7029 again: 7030 spin_lock(&cluster->refill_lock); 7031 if (locked) { 7032 if (used_bg == cluster->block_group) 7033 return used_bg; 7034 7035 up_read(&used_bg->data_rwsem); 7036 btrfs_put_block_group(used_bg); 7037 } 7038 7039 used_bg = cluster->block_group; 7040 if (!used_bg) 7041 return NULL; 7042 7043 if (used_bg == block_group) 7044 return used_bg; 7045 7046 btrfs_get_block_group(used_bg); 7047 7048 if (!delalloc) 7049 return used_bg; 7050 7051 if (down_read_trylock(&used_bg->data_rwsem)) 7052 return used_bg; 7053 7054 spin_unlock(&cluster->refill_lock); 7055 down_read(&used_bg->data_rwsem); 7056 locked = true; 7057 goto again; 7058 } 7059 7060 static inline void 7061 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7062 int delalloc) 7063 { 7064 if (delalloc) 7065 up_read(&cache->data_rwsem); 7066 btrfs_put_block_group(cache); 7067 } 7068 7069 /* 7070 * walks the btree of allocated extents and find a hole of a given size. 7071 * The key ins is changed to record the hole: 7072 * ins->objectid == start position 7073 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7074 * ins->offset == the size of the hole. 7075 * Any available blocks before search_start are skipped. 7076 * 7077 * If there is no suitable free space, we will record the max size of 7078 * the free space extent currently. 7079 */ 7080 static noinline int find_free_extent(struct btrfs_root *orig_root, 7081 u64 num_bytes, u64 empty_size, 7082 u64 hint_byte, struct btrfs_key *ins, 7083 u64 flags, int delalloc) 7084 { 7085 int ret = 0; 7086 struct btrfs_root *root = orig_root->fs_info->extent_root; 7087 struct btrfs_free_cluster *last_ptr = NULL; 7088 struct btrfs_block_group_cache *block_group = NULL; 7089 u64 search_start = 0; 7090 u64 max_extent_size = 0; 7091 u64 empty_cluster = 0; 7092 struct btrfs_space_info *space_info; 7093 int loop = 0; 7094 int index = __get_raid_index(flags); 7095 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 7096 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 7097 bool failed_cluster_refill = false; 7098 bool failed_alloc = false; 7099 bool use_cluster = true; 7100 bool have_caching_bg = false; 7101 bool orig_have_caching_bg = false; 7102 bool full_search = false; 7103 7104 WARN_ON(num_bytes < root->sectorsize); 7105 ins->type = BTRFS_EXTENT_ITEM_KEY; 7106 ins->objectid = 0; 7107 ins->offset = 0; 7108 7109 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7110 7111 space_info = __find_space_info(root->fs_info, flags); 7112 if (!space_info) { 7113 btrfs_err(root->fs_info, "No space info for %llu", flags); 7114 return -ENOSPC; 7115 } 7116 7117 /* 7118 * If our free space is heavily fragmented we may not be able to make 7119 * big contiguous allocations, so instead of doing the expensive search 7120 * for free space, simply return ENOSPC with our max_extent_size so we 7121 * can go ahead and search for a more manageable chunk. 7122 * 7123 * If our max_extent_size is large enough for our allocation simply 7124 * disable clustering since we will likely not be able to find enough 7125 * space to create a cluster and induce latency trying. 7126 */ 7127 if (unlikely(space_info->max_extent_size)) { 7128 spin_lock(&space_info->lock); 7129 if (space_info->max_extent_size && 7130 num_bytes > space_info->max_extent_size) { 7131 ins->offset = space_info->max_extent_size; 7132 spin_unlock(&space_info->lock); 7133 return -ENOSPC; 7134 } else if (space_info->max_extent_size) { 7135 use_cluster = false; 7136 } 7137 spin_unlock(&space_info->lock); 7138 } 7139 7140 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7141 if (last_ptr) { 7142 spin_lock(&last_ptr->lock); 7143 if (last_ptr->block_group) 7144 hint_byte = last_ptr->window_start; 7145 if (last_ptr->fragmented) { 7146 /* 7147 * We still set window_start so we can keep track of the 7148 * last place we found an allocation to try and save 7149 * some time. 7150 */ 7151 hint_byte = last_ptr->window_start; 7152 use_cluster = false; 7153 } 7154 spin_unlock(&last_ptr->lock); 7155 } 7156 7157 search_start = max(search_start, first_logical_byte(root, 0)); 7158 search_start = max(search_start, hint_byte); 7159 if (search_start == hint_byte) { 7160 block_group = btrfs_lookup_block_group(root->fs_info, 7161 search_start); 7162 /* 7163 * we don't want to use the block group if it doesn't match our 7164 * allocation bits, or if its not cached. 7165 * 7166 * However if we are re-searching with an ideal block group 7167 * picked out then we don't care that the block group is cached. 7168 */ 7169 if (block_group && block_group_bits(block_group, flags) && 7170 block_group->cached != BTRFS_CACHE_NO) { 7171 down_read(&space_info->groups_sem); 7172 if (list_empty(&block_group->list) || 7173 block_group->ro) { 7174 /* 7175 * someone is removing this block group, 7176 * we can't jump into the have_block_group 7177 * target because our list pointers are not 7178 * valid 7179 */ 7180 btrfs_put_block_group(block_group); 7181 up_read(&space_info->groups_sem); 7182 } else { 7183 index = get_block_group_index(block_group); 7184 btrfs_lock_block_group(block_group, delalloc); 7185 goto have_block_group; 7186 } 7187 } else if (block_group) { 7188 btrfs_put_block_group(block_group); 7189 } 7190 } 7191 search: 7192 have_caching_bg = false; 7193 if (index == 0 || index == __get_raid_index(flags)) 7194 full_search = true; 7195 down_read(&space_info->groups_sem); 7196 list_for_each_entry(block_group, &space_info->block_groups[index], 7197 list) { 7198 u64 offset; 7199 int cached; 7200 7201 btrfs_grab_block_group(block_group, delalloc); 7202 search_start = block_group->key.objectid; 7203 7204 /* 7205 * this can happen if we end up cycling through all the 7206 * raid types, but we want to make sure we only allocate 7207 * for the proper type. 7208 */ 7209 if (!block_group_bits(block_group, flags)) { 7210 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7211 BTRFS_BLOCK_GROUP_RAID1 | 7212 BTRFS_BLOCK_GROUP_RAID5 | 7213 BTRFS_BLOCK_GROUP_RAID6 | 7214 BTRFS_BLOCK_GROUP_RAID10; 7215 7216 /* 7217 * if they asked for extra copies and this block group 7218 * doesn't provide them, bail. This does allow us to 7219 * fill raid0 from raid1. 7220 */ 7221 if ((flags & extra) && !(block_group->flags & extra)) 7222 goto loop; 7223 } 7224 7225 have_block_group: 7226 cached = block_group_cache_done(block_group); 7227 if (unlikely(!cached)) { 7228 have_caching_bg = true; 7229 ret = cache_block_group(block_group, 0); 7230 BUG_ON(ret < 0); 7231 ret = 0; 7232 } 7233 7234 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7235 goto loop; 7236 if (unlikely(block_group->ro)) 7237 goto loop; 7238 7239 /* 7240 * Ok we want to try and use the cluster allocator, so 7241 * lets look there 7242 */ 7243 if (last_ptr && use_cluster) { 7244 struct btrfs_block_group_cache *used_block_group; 7245 unsigned long aligned_cluster; 7246 /* 7247 * the refill lock keeps out other 7248 * people trying to start a new cluster 7249 */ 7250 used_block_group = btrfs_lock_cluster(block_group, 7251 last_ptr, 7252 delalloc); 7253 if (!used_block_group) 7254 goto refill_cluster; 7255 7256 if (used_block_group != block_group && 7257 (used_block_group->ro || 7258 !block_group_bits(used_block_group, flags))) 7259 goto release_cluster; 7260 7261 offset = btrfs_alloc_from_cluster(used_block_group, 7262 last_ptr, 7263 num_bytes, 7264 used_block_group->key.objectid, 7265 &max_extent_size); 7266 if (offset) { 7267 /* we have a block, we're done */ 7268 spin_unlock(&last_ptr->refill_lock); 7269 trace_btrfs_reserve_extent_cluster(root, 7270 used_block_group, 7271 search_start, num_bytes); 7272 if (used_block_group != block_group) { 7273 btrfs_release_block_group(block_group, 7274 delalloc); 7275 block_group = used_block_group; 7276 } 7277 goto checks; 7278 } 7279 7280 WARN_ON(last_ptr->block_group != used_block_group); 7281 release_cluster: 7282 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7283 * set up a new clusters, so lets just skip it 7284 * and let the allocator find whatever block 7285 * it can find. If we reach this point, we 7286 * will have tried the cluster allocator 7287 * plenty of times and not have found 7288 * anything, so we are likely way too 7289 * fragmented for the clustering stuff to find 7290 * anything. 7291 * 7292 * However, if the cluster is taken from the 7293 * current block group, release the cluster 7294 * first, so that we stand a better chance of 7295 * succeeding in the unclustered 7296 * allocation. */ 7297 if (loop >= LOOP_NO_EMPTY_SIZE && 7298 used_block_group != block_group) { 7299 spin_unlock(&last_ptr->refill_lock); 7300 btrfs_release_block_group(used_block_group, 7301 delalloc); 7302 goto unclustered_alloc; 7303 } 7304 7305 /* 7306 * this cluster didn't work out, free it and 7307 * start over 7308 */ 7309 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7310 7311 if (used_block_group != block_group) 7312 btrfs_release_block_group(used_block_group, 7313 delalloc); 7314 refill_cluster: 7315 if (loop >= LOOP_NO_EMPTY_SIZE) { 7316 spin_unlock(&last_ptr->refill_lock); 7317 goto unclustered_alloc; 7318 } 7319 7320 aligned_cluster = max_t(unsigned long, 7321 empty_cluster + empty_size, 7322 block_group->full_stripe_len); 7323 7324 /* allocate a cluster in this block group */ 7325 ret = btrfs_find_space_cluster(root, block_group, 7326 last_ptr, search_start, 7327 num_bytes, 7328 aligned_cluster); 7329 if (ret == 0) { 7330 /* 7331 * now pull our allocation out of this 7332 * cluster 7333 */ 7334 offset = btrfs_alloc_from_cluster(block_group, 7335 last_ptr, 7336 num_bytes, 7337 search_start, 7338 &max_extent_size); 7339 if (offset) { 7340 /* we found one, proceed */ 7341 spin_unlock(&last_ptr->refill_lock); 7342 trace_btrfs_reserve_extent_cluster(root, 7343 block_group, search_start, 7344 num_bytes); 7345 goto checks; 7346 } 7347 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7348 && !failed_cluster_refill) { 7349 spin_unlock(&last_ptr->refill_lock); 7350 7351 failed_cluster_refill = true; 7352 wait_block_group_cache_progress(block_group, 7353 num_bytes + empty_cluster + empty_size); 7354 goto have_block_group; 7355 } 7356 7357 /* 7358 * at this point we either didn't find a cluster 7359 * or we weren't able to allocate a block from our 7360 * cluster. Free the cluster we've been trying 7361 * to use, and go to the next block group 7362 */ 7363 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7364 spin_unlock(&last_ptr->refill_lock); 7365 goto loop; 7366 } 7367 7368 unclustered_alloc: 7369 /* 7370 * We are doing an unclustered alloc, set the fragmented flag so 7371 * we don't bother trying to setup a cluster again until we get 7372 * more space. 7373 */ 7374 if (unlikely(last_ptr)) { 7375 spin_lock(&last_ptr->lock); 7376 last_ptr->fragmented = 1; 7377 spin_unlock(&last_ptr->lock); 7378 } 7379 spin_lock(&block_group->free_space_ctl->tree_lock); 7380 if (cached && 7381 block_group->free_space_ctl->free_space < 7382 num_bytes + empty_cluster + empty_size) { 7383 if (block_group->free_space_ctl->free_space > 7384 max_extent_size) 7385 max_extent_size = 7386 block_group->free_space_ctl->free_space; 7387 spin_unlock(&block_group->free_space_ctl->tree_lock); 7388 goto loop; 7389 } 7390 spin_unlock(&block_group->free_space_ctl->tree_lock); 7391 7392 offset = btrfs_find_space_for_alloc(block_group, search_start, 7393 num_bytes, empty_size, 7394 &max_extent_size); 7395 /* 7396 * If we didn't find a chunk, and we haven't failed on this 7397 * block group before, and this block group is in the middle of 7398 * caching and we are ok with waiting, then go ahead and wait 7399 * for progress to be made, and set failed_alloc to true. 7400 * 7401 * If failed_alloc is true then we've already waited on this 7402 * block group once and should move on to the next block group. 7403 */ 7404 if (!offset && !failed_alloc && !cached && 7405 loop > LOOP_CACHING_NOWAIT) { 7406 wait_block_group_cache_progress(block_group, 7407 num_bytes + empty_size); 7408 failed_alloc = true; 7409 goto have_block_group; 7410 } else if (!offset) { 7411 goto loop; 7412 } 7413 checks: 7414 search_start = ALIGN(offset, root->stripesize); 7415 7416 /* move on to the next group */ 7417 if (search_start + num_bytes > 7418 block_group->key.objectid + block_group->key.offset) { 7419 btrfs_add_free_space(block_group, offset, num_bytes); 7420 goto loop; 7421 } 7422 7423 if (offset < search_start) 7424 btrfs_add_free_space(block_group, offset, 7425 search_start - offset); 7426 BUG_ON(offset > search_start); 7427 7428 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7429 alloc_type, delalloc); 7430 if (ret == -EAGAIN) { 7431 btrfs_add_free_space(block_group, offset, num_bytes); 7432 goto loop; 7433 } 7434 7435 /* we are all good, lets return */ 7436 ins->objectid = search_start; 7437 ins->offset = num_bytes; 7438 7439 trace_btrfs_reserve_extent(orig_root, block_group, 7440 search_start, num_bytes); 7441 btrfs_release_block_group(block_group, delalloc); 7442 break; 7443 loop: 7444 failed_cluster_refill = false; 7445 failed_alloc = false; 7446 BUG_ON(index != get_block_group_index(block_group)); 7447 btrfs_release_block_group(block_group, delalloc); 7448 } 7449 up_read(&space_info->groups_sem); 7450 7451 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7452 && !orig_have_caching_bg) 7453 orig_have_caching_bg = true; 7454 7455 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7456 goto search; 7457 7458 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7459 goto search; 7460 7461 /* 7462 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7463 * caching kthreads as we move along 7464 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7465 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7466 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7467 * again 7468 */ 7469 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7470 index = 0; 7471 if (loop == LOOP_CACHING_NOWAIT) { 7472 /* 7473 * We want to skip the LOOP_CACHING_WAIT step if we 7474 * don't have any unached bgs and we've alrelady done a 7475 * full search through. 7476 */ 7477 if (orig_have_caching_bg || !full_search) 7478 loop = LOOP_CACHING_WAIT; 7479 else 7480 loop = LOOP_ALLOC_CHUNK; 7481 } else { 7482 loop++; 7483 } 7484 7485 if (loop == LOOP_ALLOC_CHUNK) { 7486 struct btrfs_trans_handle *trans; 7487 int exist = 0; 7488 7489 trans = current->journal_info; 7490 if (trans) 7491 exist = 1; 7492 else 7493 trans = btrfs_join_transaction(root); 7494 7495 if (IS_ERR(trans)) { 7496 ret = PTR_ERR(trans); 7497 goto out; 7498 } 7499 7500 ret = do_chunk_alloc(trans, root, flags, 7501 CHUNK_ALLOC_FORCE); 7502 7503 /* 7504 * If we can't allocate a new chunk we've already looped 7505 * through at least once, move on to the NO_EMPTY_SIZE 7506 * case. 7507 */ 7508 if (ret == -ENOSPC) 7509 loop = LOOP_NO_EMPTY_SIZE; 7510 7511 /* 7512 * Do not bail out on ENOSPC since we 7513 * can do more things. 7514 */ 7515 if (ret < 0 && ret != -ENOSPC) 7516 btrfs_abort_transaction(trans, 7517 root, ret); 7518 else 7519 ret = 0; 7520 if (!exist) 7521 btrfs_end_transaction(trans, root); 7522 if (ret) 7523 goto out; 7524 } 7525 7526 if (loop == LOOP_NO_EMPTY_SIZE) { 7527 /* 7528 * Don't loop again if we already have no empty_size and 7529 * no empty_cluster. 7530 */ 7531 if (empty_size == 0 && 7532 empty_cluster == 0) { 7533 ret = -ENOSPC; 7534 goto out; 7535 } 7536 empty_size = 0; 7537 empty_cluster = 0; 7538 } 7539 7540 goto search; 7541 } else if (!ins->objectid) { 7542 ret = -ENOSPC; 7543 } else if (ins->objectid) { 7544 if (!use_cluster && last_ptr) { 7545 spin_lock(&last_ptr->lock); 7546 last_ptr->window_start = ins->objectid; 7547 spin_unlock(&last_ptr->lock); 7548 } 7549 ret = 0; 7550 } 7551 out: 7552 if (ret == -ENOSPC) { 7553 spin_lock(&space_info->lock); 7554 space_info->max_extent_size = max_extent_size; 7555 spin_unlock(&space_info->lock); 7556 ins->offset = max_extent_size; 7557 } 7558 return ret; 7559 } 7560 7561 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7562 int dump_block_groups) 7563 { 7564 struct btrfs_block_group_cache *cache; 7565 int index = 0; 7566 7567 spin_lock(&info->lock); 7568 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7569 info->flags, 7570 info->total_bytes - info->bytes_used - info->bytes_pinned - 7571 info->bytes_reserved - info->bytes_readonly, 7572 (info->full) ? "" : "not "); 7573 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7574 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7575 info->total_bytes, info->bytes_used, info->bytes_pinned, 7576 info->bytes_reserved, info->bytes_may_use, 7577 info->bytes_readonly); 7578 spin_unlock(&info->lock); 7579 7580 if (!dump_block_groups) 7581 return; 7582 7583 down_read(&info->groups_sem); 7584 again: 7585 list_for_each_entry(cache, &info->block_groups[index], list) { 7586 spin_lock(&cache->lock); 7587 printk(KERN_INFO "BTRFS: " 7588 "block group %llu has %llu bytes, " 7589 "%llu used %llu pinned %llu reserved %s\n", 7590 cache->key.objectid, cache->key.offset, 7591 btrfs_block_group_used(&cache->item), cache->pinned, 7592 cache->reserved, cache->ro ? "[readonly]" : ""); 7593 btrfs_dump_free_space(cache, bytes); 7594 spin_unlock(&cache->lock); 7595 } 7596 if (++index < BTRFS_NR_RAID_TYPES) 7597 goto again; 7598 up_read(&info->groups_sem); 7599 } 7600 7601 int btrfs_reserve_extent(struct btrfs_root *root, 7602 u64 num_bytes, u64 min_alloc_size, 7603 u64 empty_size, u64 hint_byte, 7604 struct btrfs_key *ins, int is_data, int delalloc) 7605 { 7606 bool final_tried = num_bytes == min_alloc_size; 7607 u64 flags; 7608 int ret; 7609 7610 flags = btrfs_get_alloc_profile(root, is_data); 7611 again: 7612 WARN_ON(num_bytes < root->sectorsize); 7613 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7614 flags, delalloc); 7615 7616 if (ret == -ENOSPC) { 7617 if (!final_tried && ins->offset) { 7618 num_bytes = min(num_bytes >> 1, ins->offset); 7619 num_bytes = round_down(num_bytes, root->sectorsize); 7620 num_bytes = max(num_bytes, min_alloc_size); 7621 if (num_bytes == min_alloc_size) 7622 final_tried = true; 7623 goto again; 7624 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7625 struct btrfs_space_info *sinfo; 7626 7627 sinfo = __find_space_info(root->fs_info, flags); 7628 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7629 flags, num_bytes); 7630 if (sinfo) 7631 dump_space_info(sinfo, num_bytes, 1); 7632 } 7633 } 7634 7635 return ret; 7636 } 7637 7638 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7639 u64 start, u64 len, 7640 int pin, int delalloc) 7641 { 7642 struct btrfs_block_group_cache *cache; 7643 int ret = 0; 7644 7645 cache = btrfs_lookup_block_group(root->fs_info, start); 7646 if (!cache) { 7647 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7648 start); 7649 return -ENOSPC; 7650 } 7651 7652 if (pin) 7653 pin_down_extent(root, cache, start, len, 1); 7654 else { 7655 if (btrfs_test_opt(root, DISCARD)) 7656 ret = btrfs_discard_extent(root, start, len, NULL); 7657 btrfs_add_free_space(cache, start, len); 7658 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7659 } 7660 7661 btrfs_put_block_group(cache); 7662 7663 trace_btrfs_reserved_extent_free(root, start, len); 7664 7665 return ret; 7666 } 7667 7668 int btrfs_free_reserved_extent(struct btrfs_root *root, 7669 u64 start, u64 len, int delalloc) 7670 { 7671 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7672 } 7673 7674 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7675 u64 start, u64 len) 7676 { 7677 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7678 } 7679 7680 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7681 struct btrfs_root *root, 7682 u64 parent, u64 root_objectid, 7683 u64 flags, u64 owner, u64 offset, 7684 struct btrfs_key *ins, int ref_mod) 7685 { 7686 int ret; 7687 struct btrfs_fs_info *fs_info = root->fs_info; 7688 struct btrfs_extent_item *extent_item; 7689 struct btrfs_extent_inline_ref *iref; 7690 struct btrfs_path *path; 7691 struct extent_buffer *leaf; 7692 int type; 7693 u32 size; 7694 7695 if (parent > 0) 7696 type = BTRFS_SHARED_DATA_REF_KEY; 7697 else 7698 type = BTRFS_EXTENT_DATA_REF_KEY; 7699 7700 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7701 7702 path = btrfs_alloc_path(); 7703 if (!path) 7704 return -ENOMEM; 7705 7706 path->leave_spinning = 1; 7707 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7708 ins, size); 7709 if (ret) { 7710 btrfs_free_path(path); 7711 return ret; 7712 } 7713 7714 leaf = path->nodes[0]; 7715 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7716 struct btrfs_extent_item); 7717 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7718 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7719 btrfs_set_extent_flags(leaf, extent_item, 7720 flags | BTRFS_EXTENT_FLAG_DATA); 7721 7722 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7723 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7724 if (parent > 0) { 7725 struct btrfs_shared_data_ref *ref; 7726 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7727 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7728 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7729 } else { 7730 struct btrfs_extent_data_ref *ref; 7731 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7732 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7733 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7734 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7735 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7736 } 7737 7738 btrfs_mark_buffer_dirty(path->nodes[0]); 7739 btrfs_free_path(path); 7740 7741 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 7742 ins->offset); 7743 if (ret) 7744 return ret; 7745 7746 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7747 if (ret) { /* -ENOENT, logic error */ 7748 btrfs_err(fs_info, "update block group failed for %llu %llu", 7749 ins->objectid, ins->offset); 7750 BUG(); 7751 } 7752 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7753 return ret; 7754 } 7755 7756 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7757 struct btrfs_root *root, 7758 u64 parent, u64 root_objectid, 7759 u64 flags, struct btrfs_disk_key *key, 7760 int level, struct btrfs_key *ins) 7761 { 7762 int ret; 7763 struct btrfs_fs_info *fs_info = root->fs_info; 7764 struct btrfs_extent_item *extent_item; 7765 struct btrfs_tree_block_info *block_info; 7766 struct btrfs_extent_inline_ref *iref; 7767 struct btrfs_path *path; 7768 struct extent_buffer *leaf; 7769 u32 size = sizeof(*extent_item) + sizeof(*iref); 7770 u64 num_bytes = ins->offset; 7771 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7772 SKINNY_METADATA); 7773 7774 if (!skinny_metadata) 7775 size += sizeof(*block_info); 7776 7777 path = btrfs_alloc_path(); 7778 if (!path) { 7779 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7780 root->nodesize); 7781 return -ENOMEM; 7782 } 7783 7784 path->leave_spinning = 1; 7785 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7786 ins, size); 7787 if (ret) { 7788 btrfs_free_path(path); 7789 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7790 root->nodesize); 7791 return ret; 7792 } 7793 7794 leaf = path->nodes[0]; 7795 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7796 struct btrfs_extent_item); 7797 btrfs_set_extent_refs(leaf, extent_item, 1); 7798 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7799 btrfs_set_extent_flags(leaf, extent_item, 7800 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7801 7802 if (skinny_metadata) { 7803 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7804 num_bytes = root->nodesize; 7805 } else { 7806 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7807 btrfs_set_tree_block_key(leaf, block_info, key); 7808 btrfs_set_tree_block_level(leaf, block_info, level); 7809 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7810 } 7811 7812 if (parent > 0) { 7813 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7814 btrfs_set_extent_inline_ref_type(leaf, iref, 7815 BTRFS_SHARED_BLOCK_REF_KEY); 7816 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7817 } else { 7818 btrfs_set_extent_inline_ref_type(leaf, iref, 7819 BTRFS_TREE_BLOCK_REF_KEY); 7820 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7821 } 7822 7823 btrfs_mark_buffer_dirty(leaf); 7824 btrfs_free_path(path); 7825 7826 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 7827 num_bytes); 7828 if (ret) 7829 return ret; 7830 7831 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7832 1); 7833 if (ret) { /* -ENOENT, logic error */ 7834 btrfs_err(fs_info, "update block group failed for %llu %llu", 7835 ins->objectid, ins->offset); 7836 BUG(); 7837 } 7838 7839 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7840 return ret; 7841 } 7842 7843 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7844 struct btrfs_root *root, 7845 u64 root_objectid, u64 owner, 7846 u64 offset, u64 ram_bytes, 7847 struct btrfs_key *ins) 7848 { 7849 int ret; 7850 7851 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7852 7853 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7854 ins->offset, 0, 7855 root_objectid, owner, offset, 7856 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 7857 NULL); 7858 return ret; 7859 } 7860 7861 /* 7862 * this is used by the tree logging recovery code. It records that 7863 * an extent has been allocated and makes sure to clear the free 7864 * space cache bits as well 7865 */ 7866 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7867 struct btrfs_root *root, 7868 u64 root_objectid, u64 owner, u64 offset, 7869 struct btrfs_key *ins) 7870 { 7871 int ret; 7872 struct btrfs_block_group_cache *block_group; 7873 7874 /* 7875 * Mixed block groups will exclude before processing the log so we only 7876 * need to do the exlude dance if this fs isn't mixed. 7877 */ 7878 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7879 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7880 if (ret) 7881 return ret; 7882 } 7883 7884 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7885 if (!block_group) 7886 return -EINVAL; 7887 7888 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7889 RESERVE_ALLOC_NO_ACCOUNT, 0); 7890 BUG_ON(ret); /* logic error */ 7891 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7892 0, owner, offset, ins, 1); 7893 btrfs_put_block_group(block_group); 7894 return ret; 7895 } 7896 7897 static struct extent_buffer * 7898 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7899 u64 bytenr, int level) 7900 { 7901 struct extent_buffer *buf; 7902 7903 buf = btrfs_find_create_tree_block(root, bytenr); 7904 if (!buf) 7905 return ERR_PTR(-ENOMEM); 7906 btrfs_set_header_generation(buf, trans->transid); 7907 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7908 btrfs_tree_lock(buf); 7909 clean_tree_block(trans, root->fs_info, buf); 7910 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7911 7912 btrfs_set_lock_blocking(buf); 7913 set_extent_buffer_uptodate(buf); 7914 7915 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7916 buf->log_index = root->log_transid % 2; 7917 /* 7918 * we allow two log transactions at a time, use different 7919 * EXENT bit to differentiate dirty pages. 7920 */ 7921 if (buf->log_index == 0) 7922 set_extent_dirty(&root->dirty_log_pages, buf->start, 7923 buf->start + buf->len - 1, GFP_NOFS); 7924 else 7925 set_extent_new(&root->dirty_log_pages, buf->start, 7926 buf->start + buf->len - 1, GFP_NOFS); 7927 } else { 7928 buf->log_index = -1; 7929 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7930 buf->start + buf->len - 1, GFP_NOFS); 7931 } 7932 trans->blocks_used++; 7933 /* this returns a buffer locked for blocking */ 7934 return buf; 7935 } 7936 7937 static struct btrfs_block_rsv * 7938 use_block_rsv(struct btrfs_trans_handle *trans, 7939 struct btrfs_root *root, u32 blocksize) 7940 { 7941 struct btrfs_block_rsv *block_rsv; 7942 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7943 int ret; 7944 bool global_updated = false; 7945 7946 block_rsv = get_block_rsv(trans, root); 7947 7948 if (unlikely(block_rsv->size == 0)) 7949 goto try_reserve; 7950 again: 7951 ret = block_rsv_use_bytes(block_rsv, blocksize); 7952 if (!ret) 7953 return block_rsv; 7954 7955 if (block_rsv->failfast) 7956 return ERR_PTR(ret); 7957 7958 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7959 global_updated = true; 7960 update_global_block_rsv(root->fs_info); 7961 goto again; 7962 } 7963 7964 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7965 static DEFINE_RATELIMIT_STATE(_rs, 7966 DEFAULT_RATELIMIT_INTERVAL * 10, 7967 /*DEFAULT_RATELIMIT_BURST*/ 1); 7968 if (__ratelimit(&_rs)) 7969 WARN(1, KERN_DEBUG 7970 "BTRFS: block rsv returned %d\n", ret); 7971 } 7972 try_reserve: 7973 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7974 BTRFS_RESERVE_NO_FLUSH); 7975 if (!ret) 7976 return block_rsv; 7977 /* 7978 * If we couldn't reserve metadata bytes try and use some from 7979 * the global reserve if its space type is the same as the global 7980 * reservation. 7981 */ 7982 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7983 block_rsv->space_info == global_rsv->space_info) { 7984 ret = block_rsv_use_bytes(global_rsv, blocksize); 7985 if (!ret) 7986 return global_rsv; 7987 } 7988 return ERR_PTR(ret); 7989 } 7990 7991 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7992 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7993 { 7994 block_rsv_add_bytes(block_rsv, blocksize, 0); 7995 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7996 } 7997 7998 /* 7999 * finds a free extent and does all the dirty work required for allocation 8000 * returns the tree buffer or an ERR_PTR on error. 8001 */ 8002 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8003 struct btrfs_root *root, 8004 u64 parent, u64 root_objectid, 8005 struct btrfs_disk_key *key, int level, 8006 u64 hint, u64 empty_size) 8007 { 8008 struct btrfs_key ins; 8009 struct btrfs_block_rsv *block_rsv; 8010 struct extent_buffer *buf; 8011 struct btrfs_delayed_extent_op *extent_op; 8012 u64 flags = 0; 8013 int ret; 8014 u32 blocksize = root->nodesize; 8015 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8016 SKINNY_METADATA); 8017 8018 if (btrfs_test_is_dummy_root(root)) { 8019 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8020 level); 8021 if (!IS_ERR(buf)) 8022 root->alloc_bytenr += blocksize; 8023 return buf; 8024 } 8025 8026 block_rsv = use_block_rsv(trans, root, blocksize); 8027 if (IS_ERR(block_rsv)) 8028 return ERR_CAST(block_rsv); 8029 8030 ret = btrfs_reserve_extent(root, blocksize, blocksize, 8031 empty_size, hint, &ins, 0, 0); 8032 if (ret) 8033 goto out_unuse; 8034 8035 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8036 if (IS_ERR(buf)) { 8037 ret = PTR_ERR(buf); 8038 goto out_free_reserved; 8039 } 8040 8041 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8042 if (parent == 0) 8043 parent = ins.objectid; 8044 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8045 } else 8046 BUG_ON(parent > 0); 8047 8048 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8049 extent_op = btrfs_alloc_delayed_extent_op(); 8050 if (!extent_op) { 8051 ret = -ENOMEM; 8052 goto out_free_buf; 8053 } 8054 if (key) 8055 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8056 else 8057 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8058 extent_op->flags_to_set = flags; 8059 extent_op->update_key = skinny_metadata ? false : true; 8060 extent_op->update_flags = true; 8061 extent_op->is_data = false; 8062 extent_op->level = level; 8063 8064 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8065 ins.objectid, ins.offset, 8066 parent, root_objectid, level, 8067 BTRFS_ADD_DELAYED_EXTENT, 8068 extent_op); 8069 if (ret) 8070 goto out_free_delayed; 8071 } 8072 return buf; 8073 8074 out_free_delayed: 8075 btrfs_free_delayed_extent_op(extent_op); 8076 out_free_buf: 8077 free_extent_buffer(buf); 8078 out_free_reserved: 8079 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8080 out_unuse: 8081 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8082 return ERR_PTR(ret); 8083 } 8084 8085 struct walk_control { 8086 u64 refs[BTRFS_MAX_LEVEL]; 8087 u64 flags[BTRFS_MAX_LEVEL]; 8088 struct btrfs_key update_progress; 8089 int stage; 8090 int level; 8091 int shared_level; 8092 int update_ref; 8093 int keep_locks; 8094 int reada_slot; 8095 int reada_count; 8096 int for_reloc; 8097 }; 8098 8099 #define DROP_REFERENCE 1 8100 #define UPDATE_BACKREF 2 8101 8102 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8103 struct btrfs_root *root, 8104 struct walk_control *wc, 8105 struct btrfs_path *path) 8106 { 8107 u64 bytenr; 8108 u64 generation; 8109 u64 refs; 8110 u64 flags; 8111 u32 nritems; 8112 u32 blocksize; 8113 struct btrfs_key key; 8114 struct extent_buffer *eb; 8115 int ret; 8116 int slot; 8117 int nread = 0; 8118 8119 if (path->slots[wc->level] < wc->reada_slot) { 8120 wc->reada_count = wc->reada_count * 2 / 3; 8121 wc->reada_count = max(wc->reada_count, 2); 8122 } else { 8123 wc->reada_count = wc->reada_count * 3 / 2; 8124 wc->reada_count = min_t(int, wc->reada_count, 8125 BTRFS_NODEPTRS_PER_BLOCK(root)); 8126 } 8127 8128 eb = path->nodes[wc->level]; 8129 nritems = btrfs_header_nritems(eb); 8130 blocksize = root->nodesize; 8131 8132 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8133 if (nread >= wc->reada_count) 8134 break; 8135 8136 cond_resched(); 8137 bytenr = btrfs_node_blockptr(eb, slot); 8138 generation = btrfs_node_ptr_generation(eb, slot); 8139 8140 if (slot == path->slots[wc->level]) 8141 goto reada; 8142 8143 if (wc->stage == UPDATE_BACKREF && 8144 generation <= root->root_key.offset) 8145 continue; 8146 8147 /* We don't lock the tree block, it's OK to be racy here */ 8148 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8149 wc->level - 1, 1, &refs, 8150 &flags); 8151 /* We don't care about errors in readahead. */ 8152 if (ret < 0) 8153 continue; 8154 BUG_ON(refs == 0); 8155 8156 if (wc->stage == DROP_REFERENCE) { 8157 if (refs == 1) 8158 goto reada; 8159 8160 if (wc->level == 1 && 8161 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8162 continue; 8163 if (!wc->update_ref || 8164 generation <= root->root_key.offset) 8165 continue; 8166 btrfs_node_key_to_cpu(eb, &key, slot); 8167 ret = btrfs_comp_cpu_keys(&key, 8168 &wc->update_progress); 8169 if (ret < 0) 8170 continue; 8171 } else { 8172 if (wc->level == 1 && 8173 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8174 continue; 8175 } 8176 reada: 8177 readahead_tree_block(root, bytenr); 8178 nread++; 8179 } 8180 wc->reada_slot = slot; 8181 } 8182 8183 /* 8184 * These may not be seen by the usual inc/dec ref code so we have to 8185 * add them here. 8186 */ 8187 static int record_one_subtree_extent(struct btrfs_trans_handle *trans, 8188 struct btrfs_root *root, u64 bytenr, 8189 u64 num_bytes) 8190 { 8191 struct btrfs_qgroup_extent_record *qrecord; 8192 struct btrfs_delayed_ref_root *delayed_refs; 8193 8194 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS); 8195 if (!qrecord) 8196 return -ENOMEM; 8197 8198 qrecord->bytenr = bytenr; 8199 qrecord->num_bytes = num_bytes; 8200 qrecord->old_roots = NULL; 8201 8202 delayed_refs = &trans->transaction->delayed_refs; 8203 spin_lock(&delayed_refs->lock); 8204 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord)) 8205 kfree(qrecord); 8206 spin_unlock(&delayed_refs->lock); 8207 8208 return 0; 8209 } 8210 8211 static int account_leaf_items(struct btrfs_trans_handle *trans, 8212 struct btrfs_root *root, 8213 struct extent_buffer *eb) 8214 { 8215 int nr = btrfs_header_nritems(eb); 8216 int i, extent_type, ret; 8217 struct btrfs_key key; 8218 struct btrfs_file_extent_item *fi; 8219 u64 bytenr, num_bytes; 8220 8221 /* We can be called directly from walk_up_proc() */ 8222 if (!root->fs_info->quota_enabled) 8223 return 0; 8224 8225 for (i = 0; i < nr; i++) { 8226 btrfs_item_key_to_cpu(eb, &key, i); 8227 8228 if (key.type != BTRFS_EXTENT_DATA_KEY) 8229 continue; 8230 8231 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8232 /* filter out non qgroup-accountable extents */ 8233 extent_type = btrfs_file_extent_type(eb, fi); 8234 8235 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8236 continue; 8237 8238 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8239 if (!bytenr) 8240 continue; 8241 8242 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8243 8244 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes); 8245 if (ret) 8246 return ret; 8247 } 8248 return 0; 8249 } 8250 8251 /* 8252 * Walk up the tree from the bottom, freeing leaves and any interior 8253 * nodes which have had all slots visited. If a node (leaf or 8254 * interior) is freed, the node above it will have it's slot 8255 * incremented. The root node will never be freed. 8256 * 8257 * At the end of this function, we should have a path which has all 8258 * slots incremented to the next position for a search. If we need to 8259 * read a new node it will be NULL and the node above it will have the 8260 * correct slot selected for a later read. 8261 * 8262 * If we increment the root nodes slot counter past the number of 8263 * elements, 1 is returned to signal completion of the search. 8264 */ 8265 static int adjust_slots_upwards(struct btrfs_root *root, 8266 struct btrfs_path *path, int root_level) 8267 { 8268 int level = 0; 8269 int nr, slot; 8270 struct extent_buffer *eb; 8271 8272 if (root_level == 0) 8273 return 1; 8274 8275 while (level <= root_level) { 8276 eb = path->nodes[level]; 8277 nr = btrfs_header_nritems(eb); 8278 path->slots[level]++; 8279 slot = path->slots[level]; 8280 if (slot >= nr || level == 0) { 8281 /* 8282 * Don't free the root - we will detect this 8283 * condition after our loop and return a 8284 * positive value for caller to stop walking the tree. 8285 */ 8286 if (level != root_level) { 8287 btrfs_tree_unlock_rw(eb, path->locks[level]); 8288 path->locks[level] = 0; 8289 8290 free_extent_buffer(eb); 8291 path->nodes[level] = NULL; 8292 path->slots[level] = 0; 8293 } 8294 } else { 8295 /* 8296 * We have a valid slot to walk back down 8297 * from. Stop here so caller can process these 8298 * new nodes. 8299 */ 8300 break; 8301 } 8302 8303 level++; 8304 } 8305 8306 eb = path->nodes[root_level]; 8307 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8308 return 1; 8309 8310 return 0; 8311 } 8312 8313 /* 8314 * root_eb is the subtree root and is locked before this function is called. 8315 */ 8316 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8317 struct btrfs_root *root, 8318 struct extent_buffer *root_eb, 8319 u64 root_gen, 8320 int root_level) 8321 { 8322 int ret = 0; 8323 int level; 8324 struct extent_buffer *eb = root_eb; 8325 struct btrfs_path *path = NULL; 8326 8327 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8328 BUG_ON(root_eb == NULL); 8329 8330 if (!root->fs_info->quota_enabled) 8331 return 0; 8332 8333 if (!extent_buffer_uptodate(root_eb)) { 8334 ret = btrfs_read_buffer(root_eb, root_gen); 8335 if (ret) 8336 goto out; 8337 } 8338 8339 if (root_level == 0) { 8340 ret = account_leaf_items(trans, root, root_eb); 8341 goto out; 8342 } 8343 8344 path = btrfs_alloc_path(); 8345 if (!path) 8346 return -ENOMEM; 8347 8348 /* 8349 * Walk down the tree. Missing extent blocks are filled in as 8350 * we go. Metadata is accounted every time we read a new 8351 * extent block. 8352 * 8353 * When we reach a leaf, we account for file extent items in it, 8354 * walk back up the tree (adjusting slot pointers as we go) 8355 * and restart the search process. 8356 */ 8357 extent_buffer_get(root_eb); /* For path */ 8358 path->nodes[root_level] = root_eb; 8359 path->slots[root_level] = 0; 8360 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8361 walk_down: 8362 level = root_level; 8363 while (level >= 0) { 8364 if (path->nodes[level] == NULL) { 8365 int parent_slot; 8366 u64 child_gen; 8367 u64 child_bytenr; 8368 8369 /* We need to get child blockptr/gen from 8370 * parent before we can read it. */ 8371 eb = path->nodes[level + 1]; 8372 parent_slot = path->slots[level + 1]; 8373 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8374 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8375 8376 eb = read_tree_block(root, child_bytenr, child_gen); 8377 if (IS_ERR(eb)) { 8378 ret = PTR_ERR(eb); 8379 goto out; 8380 } else if (!extent_buffer_uptodate(eb)) { 8381 free_extent_buffer(eb); 8382 ret = -EIO; 8383 goto out; 8384 } 8385 8386 path->nodes[level] = eb; 8387 path->slots[level] = 0; 8388 8389 btrfs_tree_read_lock(eb); 8390 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8391 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8392 8393 ret = record_one_subtree_extent(trans, root, child_bytenr, 8394 root->nodesize); 8395 if (ret) 8396 goto out; 8397 } 8398 8399 if (level == 0) { 8400 ret = account_leaf_items(trans, root, path->nodes[level]); 8401 if (ret) 8402 goto out; 8403 8404 /* Nonzero return here means we completed our search */ 8405 ret = adjust_slots_upwards(root, path, root_level); 8406 if (ret) 8407 break; 8408 8409 /* Restart search with new slots */ 8410 goto walk_down; 8411 } 8412 8413 level--; 8414 } 8415 8416 ret = 0; 8417 out: 8418 btrfs_free_path(path); 8419 8420 return ret; 8421 } 8422 8423 /* 8424 * helper to process tree block while walking down the tree. 8425 * 8426 * when wc->stage == UPDATE_BACKREF, this function updates 8427 * back refs for pointers in the block. 8428 * 8429 * NOTE: return value 1 means we should stop walking down. 8430 */ 8431 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8432 struct btrfs_root *root, 8433 struct btrfs_path *path, 8434 struct walk_control *wc, int lookup_info) 8435 { 8436 int level = wc->level; 8437 struct extent_buffer *eb = path->nodes[level]; 8438 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8439 int ret; 8440 8441 if (wc->stage == UPDATE_BACKREF && 8442 btrfs_header_owner(eb) != root->root_key.objectid) 8443 return 1; 8444 8445 /* 8446 * when reference count of tree block is 1, it won't increase 8447 * again. once full backref flag is set, we never clear it. 8448 */ 8449 if (lookup_info && 8450 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8451 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8452 BUG_ON(!path->locks[level]); 8453 ret = btrfs_lookup_extent_info(trans, root, 8454 eb->start, level, 1, 8455 &wc->refs[level], 8456 &wc->flags[level]); 8457 BUG_ON(ret == -ENOMEM); 8458 if (ret) 8459 return ret; 8460 BUG_ON(wc->refs[level] == 0); 8461 } 8462 8463 if (wc->stage == DROP_REFERENCE) { 8464 if (wc->refs[level] > 1) 8465 return 1; 8466 8467 if (path->locks[level] && !wc->keep_locks) { 8468 btrfs_tree_unlock_rw(eb, path->locks[level]); 8469 path->locks[level] = 0; 8470 } 8471 return 0; 8472 } 8473 8474 /* wc->stage == UPDATE_BACKREF */ 8475 if (!(wc->flags[level] & flag)) { 8476 BUG_ON(!path->locks[level]); 8477 ret = btrfs_inc_ref(trans, root, eb, 1); 8478 BUG_ON(ret); /* -ENOMEM */ 8479 ret = btrfs_dec_ref(trans, root, eb, 0); 8480 BUG_ON(ret); /* -ENOMEM */ 8481 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8482 eb->len, flag, 8483 btrfs_header_level(eb), 0); 8484 BUG_ON(ret); /* -ENOMEM */ 8485 wc->flags[level] |= flag; 8486 } 8487 8488 /* 8489 * the block is shared by multiple trees, so it's not good to 8490 * keep the tree lock 8491 */ 8492 if (path->locks[level] && level > 0) { 8493 btrfs_tree_unlock_rw(eb, path->locks[level]); 8494 path->locks[level] = 0; 8495 } 8496 return 0; 8497 } 8498 8499 /* 8500 * helper to process tree block pointer. 8501 * 8502 * when wc->stage == DROP_REFERENCE, this function checks 8503 * reference count of the block pointed to. if the block 8504 * is shared and we need update back refs for the subtree 8505 * rooted at the block, this function changes wc->stage to 8506 * UPDATE_BACKREF. if the block is shared and there is no 8507 * need to update back, this function drops the reference 8508 * to the block. 8509 * 8510 * NOTE: return value 1 means we should stop walking down. 8511 */ 8512 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8513 struct btrfs_root *root, 8514 struct btrfs_path *path, 8515 struct walk_control *wc, int *lookup_info) 8516 { 8517 u64 bytenr; 8518 u64 generation; 8519 u64 parent; 8520 u32 blocksize; 8521 struct btrfs_key key; 8522 struct extent_buffer *next; 8523 int level = wc->level; 8524 int reada = 0; 8525 int ret = 0; 8526 bool need_account = false; 8527 8528 generation = btrfs_node_ptr_generation(path->nodes[level], 8529 path->slots[level]); 8530 /* 8531 * if the lower level block was created before the snapshot 8532 * was created, we know there is no need to update back refs 8533 * for the subtree 8534 */ 8535 if (wc->stage == UPDATE_BACKREF && 8536 generation <= root->root_key.offset) { 8537 *lookup_info = 1; 8538 return 1; 8539 } 8540 8541 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8542 blocksize = root->nodesize; 8543 8544 next = btrfs_find_tree_block(root->fs_info, bytenr); 8545 if (!next) { 8546 next = btrfs_find_create_tree_block(root, bytenr); 8547 if (!next) 8548 return -ENOMEM; 8549 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8550 level - 1); 8551 reada = 1; 8552 } 8553 btrfs_tree_lock(next); 8554 btrfs_set_lock_blocking(next); 8555 8556 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8557 &wc->refs[level - 1], 8558 &wc->flags[level - 1]); 8559 if (ret < 0) { 8560 btrfs_tree_unlock(next); 8561 return ret; 8562 } 8563 8564 if (unlikely(wc->refs[level - 1] == 0)) { 8565 btrfs_err(root->fs_info, "Missing references."); 8566 BUG(); 8567 } 8568 *lookup_info = 0; 8569 8570 if (wc->stage == DROP_REFERENCE) { 8571 if (wc->refs[level - 1] > 1) { 8572 need_account = true; 8573 if (level == 1 && 8574 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8575 goto skip; 8576 8577 if (!wc->update_ref || 8578 generation <= root->root_key.offset) 8579 goto skip; 8580 8581 btrfs_node_key_to_cpu(path->nodes[level], &key, 8582 path->slots[level]); 8583 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8584 if (ret < 0) 8585 goto skip; 8586 8587 wc->stage = UPDATE_BACKREF; 8588 wc->shared_level = level - 1; 8589 } 8590 } else { 8591 if (level == 1 && 8592 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8593 goto skip; 8594 } 8595 8596 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8597 btrfs_tree_unlock(next); 8598 free_extent_buffer(next); 8599 next = NULL; 8600 *lookup_info = 1; 8601 } 8602 8603 if (!next) { 8604 if (reada && level == 1) 8605 reada_walk_down(trans, root, wc, path); 8606 next = read_tree_block(root, bytenr, generation); 8607 if (IS_ERR(next)) { 8608 return PTR_ERR(next); 8609 } else if (!extent_buffer_uptodate(next)) { 8610 free_extent_buffer(next); 8611 return -EIO; 8612 } 8613 btrfs_tree_lock(next); 8614 btrfs_set_lock_blocking(next); 8615 } 8616 8617 level--; 8618 BUG_ON(level != btrfs_header_level(next)); 8619 path->nodes[level] = next; 8620 path->slots[level] = 0; 8621 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8622 wc->level = level; 8623 if (wc->level == 1) 8624 wc->reada_slot = 0; 8625 return 0; 8626 skip: 8627 wc->refs[level - 1] = 0; 8628 wc->flags[level - 1] = 0; 8629 if (wc->stage == DROP_REFERENCE) { 8630 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8631 parent = path->nodes[level]->start; 8632 } else { 8633 BUG_ON(root->root_key.objectid != 8634 btrfs_header_owner(path->nodes[level])); 8635 parent = 0; 8636 } 8637 8638 if (need_account) { 8639 ret = account_shared_subtree(trans, root, next, 8640 generation, level - 1); 8641 if (ret) { 8642 btrfs_err_rl(root->fs_info, 8643 "Error " 8644 "%d accounting shared subtree. Quota " 8645 "is out of sync, rescan required.", 8646 ret); 8647 } 8648 } 8649 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8650 root->root_key.objectid, level - 1, 0); 8651 BUG_ON(ret); /* -ENOMEM */ 8652 } 8653 btrfs_tree_unlock(next); 8654 free_extent_buffer(next); 8655 *lookup_info = 1; 8656 return 1; 8657 } 8658 8659 /* 8660 * helper to process tree block while walking up the tree. 8661 * 8662 * when wc->stage == DROP_REFERENCE, this function drops 8663 * reference count on the block. 8664 * 8665 * when wc->stage == UPDATE_BACKREF, this function changes 8666 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8667 * to UPDATE_BACKREF previously while processing the block. 8668 * 8669 * NOTE: return value 1 means we should stop walking up. 8670 */ 8671 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8672 struct btrfs_root *root, 8673 struct btrfs_path *path, 8674 struct walk_control *wc) 8675 { 8676 int ret; 8677 int level = wc->level; 8678 struct extent_buffer *eb = path->nodes[level]; 8679 u64 parent = 0; 8680 8681 if (wc->stage == UPDATE_BACKREF) { 8682 BUG_ON(wc->shared_level < level); 8683 if (level < wc->shared_level) 8684 goto out; 8685 8686 ret = find_next_key(path, level + 1, &wc->update_progress); 8687 if (ret > 0) 8688 wc->update_ref = 0; 8689 8690 wc->stage = DROP_REFERENCE; 8691 wc->shared_level = -1; 8692 path->slots[level] = 0; 8693 8694 /* 8695 * check reference count again if the block isn't locked. 8696 * we should start walking down the tree again if reference 8697 * count is one. 8698 */ 8699 if (!path->locks[level]) { 8700 BUG_ON(level == 0); 8701 btrfs_tree_lock(eb); 8702 btrfs_set_lock_blocking(eb); 8703 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8704 8705 ret = btrfs_lookup_extent_info(trans, root, 8706 eb->start, level, 1, 8707 &wc->refs[level], 8708 &wc->flags[level]); 8709 if (ret < 0) { 8710 btrfs_tree_unlock_rw(eb, path->locks[level]); 8711 path->locks[level] = 0; 8712 return ret; 8713 } 8714 BUG_ON(wc->refs[level] == 0); 8715 if (wc->refs[level] == 1) { 8716 btrfs_tree_unlock_rw(eb, path->locks[level]); 8717 path->locks[level] = 0; 8718 return 1; 8719 } 8720 } 8721 } 8722 8723 /* wc->stage == DROP_REFERENCE */ 8724 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8725 8726 if (wc->refs[level] == 1) { 8727 if (level == 0) { 8728 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8729 ret = btrfs_dec_ref(trans, root, eb, 1); 8730 else 8731 ret = btrfs_dec_ref(trans, root, eb, 0); 8732 BUG_ON(ret); /* -ENOMEM */ 8733 ret = account_leaf_items(trans, root, eb); 8734 if (ret) { 8735 btrfs_err_rl(root->fs_info, 8736 "error " 8737 "%d accounting leaf items. Quota " 8738 "is out of sync, rescan required.", 8739 ret); 8740 } 8741 } 8742 /* make block locked assertion in clean_tree_block happy */ 8743 if (!path->locks[level] && 8744 btrfs_header_generation(eb) == trans->transid) { 8745 btrfs_tree_lock(eb); 8746 btrfs_set_lock_blocking(eb); 8747 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8748 } 8749 clean_tree_block(trans, root->fs_info, eb); 8750 } 8751 8752 if (eb == root->node) { 8753 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8754 parent = eb->start; 8755 else 8756 BUG_ON(root->root_key.objectid != 8757 btrfs_header_owner(eb)); 8758 } else { 8759 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8760 parent = path->nodes[level + 1]->start; 8761 else 8762 BUG_ON(root->root_key.objectid != 8763 btrfs_header_owner(path->nodes[level + 1])); 8764 } 8765 8766 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8767 out: 8768 wc->refs[level] = 0; 8769 wc->flags[level] = 0; 8770 return 0; 8771 } 8772 8773 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8774 struct btrfs_root *root, 8775 struct btrfs_path *path, 8776 struct walk_control *wc) 8777 { 8778 int level = wc->level; 8779 int lookup_info = 1; 8780 int ret; 8781 8782 while (level >= 0) { 8783 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8784 if (ret > 0) 8785 break; 8786 8787 if (level == 0) 8788 break; 8789 8790 if (path->slots[level] >= 8791 btrfs_header_nritems(path->nodes[level])) 8792 break; 8793 8794 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8795 if (ret > 0) { 8796 path->slots[level]++; 8797 continue; 8798 } else if (ret < 0) 8799 return ret; 8800 level = wc->level; 8801 } 8802 return 0; 8803 } 8804 8805 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8806 struct btrfs_root *root, 8807 struct btrfs_path *path, 8808 struct walk_control *wc, int max_level) 8809 { 8810 int level = wc->level; 8811 int ret; 8812 8813 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8814 while (level < max_level && path->nodes[level]) { 8815 wc->level = level; 8816 if (path->slots[level] + 1 < 8817 btrfs_header_nritems(path->nodes[level])) { 8818 path->slots[level]++; 8819 return 0; 8820 } else { 8821 ret = walk_up_proc(trans, root, path, wc); 8822 if (ret > 0) 8823 return 0; 8824 8825 if (path->locks[level]) { 8826 btrfs_tree_unlock_rw(path->nodes[level], 8827 path->locks[level]); 8828 path->locks[level] = 0; 8829 } 8830 free_extent_buffer(path->nodes[level]); 8831 path->nodes[level] = NULL; 8832 level++; 8833 } 8834 } 8835 return 1; 8836 } 8837 8838 /* 8839 * drop a subvolume tree. 8840 * 8841 * this function traverses the tree freeing any blocks that only 8842 * referenced by the tree. 8843 * 8844 * when a shared tree block is found. this function decreases its 8845 * reference count by one. if update_ref is true, this function 8846 * also make sure backrefs for the shared block and all lower level 8847 * blocks are properly updated. 8848 * 8849 * If called with for_reloc == 0, may exit early with -EAGAIN 8850 */ 8851 int btrfs_drop_snapshot(struct btrfs_root *root, 8852 struct btrfs_block_rsv *block_rsv, int update_ref, 8853 int for_reloc) 8854 { 8855 struct btrfs_path *path; 8856 struct btrfs_trans_handle *trans; 8857 struct btrfs_root *tree_root = root->fs_info->tree_root; 8858 struct btrfs_root_item *root_item = &root->root_item; 8859 struct walk_control *wc; 8860 struct btrfs_key key; 8861 int err = 0; 8862 int ret; 8863 int level; 8864 bool root_dropped = false; 8865 8866 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8867 8868 path = btrfs_alloc_path(); 8869 if (!path) { 8870 err = -ENOMEM; 8871 goto out; 8872 } 8873 8874 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8875 if (!wc) { 8876 btrfs_free_path(path); 8877 err = -ENOMEM; 8878 goto out; 8879 } 8880 8881 trans = btrfs_start_transaction(tree_root, 0); 8882 if (IS_ERR(trans)) { 8883 err = PTR_ERR(trans); 8884 goto out_free; 8885 } 8886 8887 if (block_rsv) 8888 trans->block_rsv = block_rsv; 8889 8890 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8891 level = btrfs_header_level(root->node); 8892 path->nodes[level] = btrfs_lock_root_node(root); 8893 btrfs_set_lock_blocking(path->nodes[level]); 8894 path->slots[level] = 0; 8895 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8896 memset(&wc->update_progress, 0, 8897 sizeof(wc->update_progress)); 8898 } else { 8899 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8900 memcpy(&wc->update_progress, &key, 8901 sizeof(wc->update_progress)); 8902 8903 level = root_item->drop_level; 8904 BUG_ON(level == 0); 8905 path->lowest_level = level; 8906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8907 path->lowest_level = 0; 8908 if (ret < 0) { 8909 err = ret; 8910 goto out_end_trans; 8911 } 8912 WARN_ON(ret > 0); 8913 8914 /* 8915 * unlock our path, this is safe because only this 8916 * function is allowed to delete this snapshot 8917 */ 8918 btrfs_unlock_up_safe(path, 0); 8919 8920 level = btrfs_header_level(root->node); 8921 while (1) { 8922 btrfs_tree_lock(path->nodes[level]); 8923 btrfs_set_lock_blocking(path->nodes[level]); 8924 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8925 8926 ret = btrfs_lookup_extent_info(trans, root, 8927 path->nodes[level]->start, 8928 level, 1, &wc->refs[level], 8929 &wc->flags[level]); 8930 if (ret < 0) { 8931 err = ret; 8932 goto out_end_trans; 8933 } 8934 BUG_ON(wc->refs[level] == 0); 8935 8936 if (level == root_item->drop_level) 8937 break; 8938 8939 btrfs_tree_unlock(path->nodes[level]); 8940 path->locks[level] = 0; 8941 WARN_ON(wc->refs[level] != 1); 8942 level--; 8943 } 8944 } 8945 8946 wc->level = level; 8947 wc->shared_level = -1; 8948 wc->stage = DROP_REFERENCE; 8949 wc->update_ref = update_ref; 8950 wc->keep_locks = 0; 8951 wc->for_reloc = for_reloc; 8952 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8953 8954 while (1) { 8955 8956 ret = walk_down_tree(trans, root, path, wc); 8957 if (ret < 0) { 8958 err = ret; 8959 break; 8960 } 8961 8962 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8963 if (ret < 0) { 8964 err = ret; 8965 break; 8966 } 8967 8968 if (ret > 0) { 8969 BUG_ON(wc->stage != DROP_REFERENCE); 8970 break; 8971 } 8972 8973 if (wc->stage == DROP_REFERENCE) { 8974 level = wc->level; 8975 btrfs_node_key(path->nodes[level], 8976 &root_item->drop_progress, 8977 path->slots[level]); 8978 root_item->drop_level = level; 8979 } 8980 8981 BUG_ON(wc->level == 0); 8982 if (btrfs_should_end_transaction(trans, tree_root) || 8983 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8984 ret = btrfs_update_root(trans, tree_root, 8985 &root->root_key, 8986 root_item); 8987 if (ret) { 8988 btrfs_abort_transaction(trans, tree_root, ret); 8989 err = ret; 8990 goto out_end_trans; 8991 } 8992 8993 btrfs_end_transaction_throttle(trans, tree_root); 8994 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8995 pr_debug("BTRFS: drop snapshot early exit\n"); 8996 err = -EAGAIN; 8997 goto out_free; 8998 } 8999 9000 trans = btrfs_start_transaction(tree_root, 0); 9001 if (IS_ERR(trans)) { 9002 err = PTR_ERR(trans); 9003 goto out_free; 9004 } 9005 if (block_rsv) 9006 trans->block_rsv = block_rsv; 9007 } 9008 } 9009 btrfs_release_path(path); 9010 if (err) 9011 goto out_end_trans; 9012 9013 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9014 if (ret) { 9015 btrfs_abort_transaction(trans, tree_root, ret); 9016 goto out_end_trans; 9017 } 9018 9019 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9020 ret = btrfs_find_root(tree_root, &root->root_key, path, 9021 NULL, NULL); 9022 if (ret < 0) { 9023 btrfs_abort_transaction(trans, tree_root, ret); 9024 err = ret; 9025 goto out_end_trans; 9026 } else if (ret > 0) { 9027 /* if we fail to delete the orphan item this time 9028 * around, it'll get picked up the next time. 9029 * 9030 * The most common failure here is just -ENOENT. 9031 */ 9032 btrfs_del_orphan_item(trans, tree_root, 9033 root->root_key.objectid); 9034 } 9035 } 9036 9037 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9038 btrfs_add_dropped_root(trans, root); 9039 } else { 9040 free_extent_buffer(root->node); 9041 free_extent_buffer(root->commit_root); 9042 btrfs_put_fs_root(root); 9043 } 9044 root_dropped = true; 9045 out_end_trans: 9046 btrfs_end_transaction_throttle(trans, tree_root); 9047 out_free: 9048 kfree(wc); 9049 btrfs_free_path(path); 9050 out: 9051 /* 9052 * So if we need to stop dropping the snapshot for whatever reason we 9053 * need to make sure to add it back to the dead root list so that we 9054 * keep trying to do the work later. This also cleans up roots if we 9055 * don't have it in the radix (like when we recover after a power fail 9056 * or unmount) so we don't leak memory. 9057 */ 9058 if (!for_reloc && root_dropped == false) 9059 btrfs_add_dead_root(root); 9060 if (err && err != -EAGAIN) 9061 btrfs_std_error(root->fs_info, err, NULL); 9062 return err; 9063 } 9064 9065 /* 9066 * drop subtree rooted at tree block 'node'. 9067 * 9068 * NOTE: this function will unlock and release tree block 'node' 9069 * only used by relocation code 9070 */ 9071 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9072 struct btrfs_root *root, 9073 struct extent_buffer *node, 9074 struct extent_buffer *parent) 9075 { 9076 struct btrfs_path *path; 9077 struct walk_control *wc; 9078 int level; 9079 int parent_level; 9080 int ret = 0; 9081 int wret; 9082 9083 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9084 9085 path = btrfs_alloc_path(); 9086 if (!path) 9087 return -ENOMEM; 9088 9089 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9090 if (!wc) { 9091 btrfs_free_path(path); 9092 return -ENOMEM; 9093 } 9094 9095 btrfs_assert_tree_locked(parent); 9096 parent_level = btrfs_header_level(parent); 9097 extent_buffer_get(parent); 9098 path->nodes[parent_level] = parent; 9099 path->slots[parent_level] = btrfs_header_nritems(parent); 9100 9101 btrfs_assert_tree_locked(node); 9102 level = btrfs_header_level(node); 9103 path->nodes[level] = node; 9104 path->slots[level] = 0; 9105 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9106 9107 wc->refs[parent_level] = 1; 9108 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9109 wc->level = level; 9110 wc->shared_level = -1; 9111 wc->stage = DROP_REFERENCE; 9112 wc->update_ref = 0; 9113 wc->keep_locks = 1; 9114 wc->for_reloc = 1; 9115 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9116 9117 while (1) { 9118 wret = walk_down_tree(trans, root, path, wc); 9119 if (wret < 0) { 9120 ret = wret; 9121 break; 9122 } 9123 9124 wret = walk_up_tree(trans, root, path, wc, parent_level); 9125 if (wret < 0) 9126 ret = wret; 9127 if (wret != 0) 9128 break; 9129 } 9130 9131 kfree(wc); 9132 btrfs_free_path(path); 9133 return ret; 9134 } 9135 9136 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9137 { 9138 u64 num_devices; 9139 u64 stripped; 9140 9141 /* 9142 * if restripe for this chunk_type is on pick target profile and 9143 * return, otherwise do the usual balance 9144 */ 9145 stripped = get_restripe_target(root->fs_info, flags); 9146 if (stripped) 9147 return extended_to_chunk(stripped); 9148 9149 num_devices = root->fs_info->fs_devices->rw_devices; 9150 9151 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9152 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9153 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9154 9155 if (num_devices == 1) { 9156 stripped |= BTRFS_BLOCK_GROUP_DUP; 9157 stripped = flags & ~stripped; 9158 9159 /* turn raid0 into single device chunks */ 9160 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9161 return stripped; 9162 9163 /* turn mirroring into duplication */ 9164 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9165 BTRFS_BLOCK_GROUP_RAID10)) 9166 return stripped | BTRFS_BLOCK_GROUP_DUP; 9167 } else { 9168 /* they already had raid on here, just return */ 9169 if (flags & stripped) 9170 return flags; 9171 9172 stripped |= BTRFS_BLOCK_GROUP_DUP; 9173 stripped = flags & ~stripped; 9174 9175 /* switch duplicated blocks with raid1 */ 9176 if (flags & BTRFS_BLOCK_GROUP_DUP) 9177 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9178 9179 /* this is drive concat, leave it alone */ 9180 } 9181 9182 return flags; 9183 } 9184 9185 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9186 { 9187 struct btrfs_space_info *sinfo = cache->space_info; 9188 u64 num_bytes; 9189 u64 min_allocable_bytes; 9190 int ret = -ENOSPC; 9191 9192 /* 9193 * We need some metadata space and system metadata space for 9194 * allocating chunks in some corner cases until we force to set 9195 * it to be readonly. 9196 */ 9197 if ((sinfo->flags & 9198 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9199 !force) 9200 min_allocable_bytes = SZ_1M; 9201 else 9202 min_allocable_bytes = 0; 9203 9204 spin_lock(&sinfo->lock); 9205 spin_lock(&cache->lock); 9206 9207 if (cache->ro) { 9208 cache->ro++; 9209 ret = 0; 9210 goto out; 9211 } 9212 9213 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9214 cache->bytes_super - btrfs_block_group_used(&cache->item); 9215 9216 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9217 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9218 min_allocable_bytes <= sinfo->total_bytes) { 9219 sinfo->bytes_readonly += num_bytes; 9220 cache->ro++; 9221 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9222 ret = 0; 9223 } 9224 out: 9225 spin_unlock(&cache->lock); 9226 spin_unlock(&sinfo->lock); 9227 return ret; 9228 } 9229 9230 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9231 struct btrfs_block_group_cache *cache) 9232 9233 { 9234 struct btrfs_trans_handle *trans; 9235 u64 alloc_flags; 9236 int ret; 9237 9238 again: 9239 trans = btrfs_join_transaction(root); 9240 if (IS_ERR(trans)) 9241 return PTR_ERR(trans); 9242 9243 /* 9244 * we're not allowed to set block groups readonly after the dirty 9245 * block groups cache has started writing. If it already started, 9246 * back off and let this transaction commit 9247 */ 9248 mutex_lock(&root->fs_info->ro_block_group_mutex); 9249 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9250 u64 transid = trans->transid; 9251 9252 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9253 btrfs_end_transaction(trans, root); 9254 9255 ret = btrfs_wait_for_commit(root, transid); 9256 if (ret) 9257 return ret; 9258 goto again; 9259 } 9260 9261 /* 9262 * if we are changing raid levels, try to allocate a corresponding 9263 * block group with the new raid level. 9264 */ 9265 alloc_flags = update_block_group_flags(root, cache->flags); 9266 if (alloc_flags != cache->flags) { 9267 ret = do_chunk_alloc(trans, root, alloc_flags, 9268 CHUNK_ALLOC_FORCE); 9269 /* 9270 * ENOSPC is allowed here, we may have enough space 9271 * already allocated at the new raid level to 9272 * carry on 9273 */ 9274 if (ret == -ENOSPC) 9275 ret = 0; 9276 if (ret < 0) 9277 goto out; 9278 } 9279 9280 ret = inc_block_group_ro(cache, 0); 9281 if (!ret) 9282 goto out; 9283 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9284 ret = do_chunk_alloc(trans, root, alloc_flags, 9285 CHUNK_ALLOC_FORCE); 9286 if (ret < 0) 9287 goto out; 9288 ret = inc_block_group_ro(cache, 0); 9289 out: 9290 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9291 alloc_flags = update_block_group_flags(root, cache->flags); 9292 lock_chunks(root->fs_info->chunk_root); 9293 check_system_chunk(trans, root, alloc_flags); 9294 unlock_chunks(root->fs_info->chunk_root); 9295 } 9296 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9297 9298 btrfs_end_transaction(trans, root); 9299 return ret; 9300 } 9301 9302 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9303 struct btrfs_root *root, u64 type) 9304 { 9305 u64 alloc_flags = get_alloc_profile(root, type); 9306 return do_chunk_alloc(trans, root, alloc_flags, 9307 CHUNK_ALLOC_FORCE); 9308 } 9309 9310 /* 9311 * helper to account the unused space of all the readonly block group in the 9312 * space_info. takes mirrors into account. 9313 */ 9314 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9315 { 9316 struct btrfs_block_group_cache *block_group; 9317 u64 free_bytes = 0; 9318 int factor; 9319 9320 /* It's df, we don't care if it's racey */ 9321 if (list_empty(&sinfo->ro_bgs)) 9322 return 0; 9323 9324 spin_lock(&sinfo->lock); 9325 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9326 spin_lock(&block_group->lock); 9327 9328 if (!block_group->ro) { 9329 spin_unlock(&block_group->lock); 9330 continue; 9331 } 9332 9333 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9334 BTRFS_BLOCK_GROUP_RAID10 | 9335 BTRFS_BLOCK_GROUP_DUP)) 9336 factor = 2; 9337 else 9338 factor = 1; 9339 9340 free_bytes += (block_group->key.offset - 9341 btrfs_block_group_used(&block_group->item)) * 9342 factor; 9343 9344 spin_unlock(&block_group->lock); 9345 } 9346 spin_unlock(&sinfo->lock); 9347 9348 return free_bytes; 9349 } 9350 9351 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9352 struct btrfs_block_group_cache *cache) 9353 { 9354 struct btrfs_space_info *sinfo = cache->space_info; 9355 u64 num_bytes; 9356 9357 BUG_ON(!cache->ro); 9358 9359 spin_lock(&sinfo->lock); 9360 spin_lock(&cache->lock); 9361 if (!--cache->ro) { 9362 num_bytes = cache->key.offset - cache->reserved - 9363 cache->pinned - cache->bytes_super - 9364 btrfs_block_group_used(&cache->item); 9365 sinfo->bytes_readonly -= num_bytes; 9366 list_del_init(&cache->ro_list); 9367 } 9368 spin_unlock(&cache->lock); 9369 spin_unlock(&sinfo->lock); 9370 } 9371 9372 /* 9373 * checks to see if its even possible to relocate this block group. 9374 * 9375 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9376 * ok to go ahead and try. 9377 */ 9378 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9379 { 9380 struct btrfs_block_group_cache *block_group; 9381 struct btrfs_space_info *space_info; 9382 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9383 struct btrfs_device *device; 9384 struct btrfs_trans_handle *trans; 9385 u64 min_free; 9386 u64 dev_min = 1; 9387 u64 dev_nr = 0; 9388 u64 target; 9389 int index; 9390 int full = 0; 9391 int ret = 0; 9392 9393 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9394 9395 /* odd, couldn't find the block group, leave it alone */ 9396 if (!block_group) 9397 return -1; 9398 9399 min_free = btrfs_block_group_used(&block_group->item); 9400 9401 /* no bytes used, we're good */ 9402 if (!min_free) 9403 goto out; 9404 9405 space_info = block_group->space_info; 9406 spin_lock(&space_info->lock); 9407 9408 full = space_info->full; 9409 9410 /* 9411 * if this is the last block group we have in this space, we can't 9412 * relocate it unless we're able to allocate a new chunk below. 9413 * 9414 * Otherwise, we need to make sure we have room in the space to handle 9415 * all of the extents from this block group. If we can, we're good 9416 */ 9417 if ((space_info->total_bytes != block_group->key.offset) && 9418 (space_info->bytes_used + space_info->bytes_reserved + 9419 space_info->bytes_pinned + space_info->bytes_readonly + 9420 min_free < space_info->total_bytes)) { 9421 spin_unlock(&space_info->lock); 9422 goto out; 9423 } 9424 spin_unlock(&space_info->lock); 9425 9426 /* 9427 * ok we don't have enough space, but maybe we have free space on our 9428 * devices to allocate new chunks for relocation, so loop through our 9429 * alloc devices and guess if we have enough space. if this block 9430 * group is going to be restriped, run checks against the target 9431 * profile instead of the current one. 9432 */ 9433 ret = -1; 9434 9435 /* 9436 * index: 9437 * 0: raid10 9438 * 1: raid1 9439 * 2: dup 9440 * 3: raid0 9441 * 4: single 9442 */ 9443 target = get_restripe_target(root->fs_info, block_group->flags); 9444 if (target) { 9445 index = __get_raid_index(extended_to_chunk(target)); 9446 } else { 9447 /* 9448 * this is just a balance, so if we were marked as full 9449 * we know there is no space for a new chunk 9450 */ 9451 if (full) 9452 goto out; 9453 9454 index = get_block_group_index(block_group); 9455 } 9456 9457 if (index == BTRFS_RAID_RAID10) { 9458 dev_min = 4; 9459 /* Divide by 2 */ 9460 min_free >>= 1; 9461 } else if (index == BTRFS_RAID_RAID1) { 9462 dev_min = 2; 9463 } else if (index == BTRFS_RAID_DUP) { 9464 /* Multiply by 2 */ 9465 min_free <<= 1; 9466 } else if (index == BTRFS_RAID_RAID0) { 9467 dev_min = fs_devices->rw_devices; 9468 min_free = div64_u64(min_free, dev_min); 9469 } 9470 9471 /* We need to do this so that we can look at pending chunks */ 9472 trans = btrfs_join_transaction(root); 9473 if (IS_ERR(trans)) { 9474 ret = PTR_ERR(trans); 9475 goto out; 9476 } 9477 9478 mutex_lock(&root->fs_info->chunk_mutex); 9479 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9480 u64 dev_offset; 9481 9482 /* 9483 * check to make sure we can actually find a chunk with enough 9484 * space to fit our block group in. 9485 */ 9486 if (device->total_bytes > device->bytes_used + min_free && 9487 !device->is_tgtdev_for_dev_replace) { 9488 ret = find_free_dev_extent(trans, device, min_free, 9489 &dev_offset, NULL); 9490 if (!ret) 9491 dev_nr++; 9492 9493 if (dev_nr >= dev_min) 9494 break; 9495 9496 ret = -1; 9497 } 9498 } 9499 mutex_unlock(&root->fs_info->chunk_mutex); 9500 btrfs_end_transaction(trans, root); 9501 out: 9502 btrfs_put_block_group(block_group); 9503 return ret; 9504 } 9505 9506 static int find_first_block_group(struct btrfs_root *root, 9507 struct btrfs_path *path, struct btrfs_key *key) 9508 { 9509 int ret = 0; 9510 struct btrfs_key found_key; 9511 struct extent_buffer *leaf; 9512 int slot; 9513 9514 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9515 if (ret < 0) 9516 goto out; 9517 9518 while (1) { 9519 slot = path->slots[0]; 9520 leaf = path->nodes[0]; 9521 if (slot >= btrfs_header_nritems(leaf)) { 9522 ret = btrfs_next_leaf(root, path); 9523 if (ret == 0) 9524 continue; 9525 if (ret < 0) 9526 goto out; 9527 break; 9528 } 9529 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9530 9531 if (found_key.objectid >= key->objectid && 9532 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9533 ret = 0; 9534 goto out; 9535 } 9536 path->slots[0]++; 9537 } 9538 out: 9539 return ret; 9540 } 9541 9542 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9543 { 9544 struct btrfs_block_group_cache *block_group; 9545 u64 last = 0; 9546 9547 while (1) { 9548 struct inode *inode; 9549 9550 block_group = btrfs_lookup_first_block_group(info, last); 9551 while (block_group) { 9552 spin_lock(&block_group->lock); 9553 if (block_group->iref) 9554 break; 9555 spin_unlock(&block_group->lock); 9556 block_group = next_block_group(info->tree_root, 9557 block_group); 9558 } 9559 if (!block_group) { 9560 if (last == 0) 9561 break; 9562 last = 0; 9563 continue; 9564 } 9565 9566 inode = block_group->inode; 9567 block_group->iref = 0; 9568 block_group->inode = NULL; 9569 spin_unlock(&block_group->lock); 9570 iput(inode); 9571 last = block_group->key.objectid + block_group->key.offset; 9572 btrfs_put_block_group(block_group); 9573 } 9574 } 9575 9576 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9577 { 9578 struct btrfs_block_group_cache *block_group; 9579 struct btrfs_space_info *space_info; 9580 struct btrfs_caching_control *caching_ctl; 9581 struct rb_node *n; 9582 9583 down_write(&info->commit_root_sem); 9584 while (!list_empty(&info->caching_block_groups)) { 9585 caching_ctl = list_entry(info->caching_block_groups.next, 9586 struct btrfs_caching_control, list); 9587 list_del(&caching_ctl->list); 9588 put_caching_control(caching_ctl); 9589 } 9590 up_write(&info->commit_root_sem); 9591 9592 spin_lock(&info->unused_bgs_lock); 9593 while (!list_empty(&info->unused_bgs)) { 9594 block_group = list_first_entry(&info->unused_bgs, 9595 struct btrfs_block_group_cache, 9596 bg_list); 9597 list_del_init(&block_group->bg_list); 9598 btrfs_put_block_group(block_group); 9599 } 9600 spin_unlock(&info->unused_bgs_lock); 9601 9602 spin_lock(&info->block_group_cache_lock); 9603 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9604 block_group = rb_entry(n, struct btrfs_block_group_cache, 9605 cache_node); 9606 rb_erase(&block_group->cache_node, 9607 &info->block_group_cache_tree); 9608 RB_CLEAR_NODE(&block_group->cache_node); 9609 spin_unlock(&info->block_group_cache_lock); 9610 9611 down_write(&block_group->space_info->groups_sem); 9612 list_del(&block_group->list); 9613 up_write(&block_group->space_info->groups_sem); 9614 9615 if (block_group->cached == BTRFS_CACHE_STARTED) 9616 wait_block_group_cache_done(block_group); 9617 9618 /* 9619 * We haven't cached this block group, which means we could 9620 * possibly have excluded extents on this block group. 9621 */ 9622 if (block_group->cached == BTRFS_CACHE_NO || 9623 block_group->cached == BTRFS_CACHE_ERROR) 9624 free_excluded_extents(info->extent_root, block_group); 9625 9626 btrfs_remove_free_space_cache(block_group); 9627 btrfs_put_block_group(block_group); 9628 9629 spin_lock(&info->block_group_cache_lock); 9630 } 9631 spin_unlock(&info->block_group_cache_lock); 9632 9633 /* now that all the block groups are freed, go through and 9634 * free all the space_info structs. This is only called during 9635 * the final stages of unmount, and so we know nobody is 9636 * using them. We call synchronize_rcu() once before we start, 9637 * just to be on the safe side. 9638 */ 9639 synchronize_rcu(); 9640 9641 release_global_block_rsv(info); 9642 9643 while (!list_empty(&info->space_info)) { 9644 int i; 9645 9646 space_info = list_entry(info->space_info.next, 9647 struct btrfs_space_info, 9648 list); 9649 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9650 if (WARN_ON(space_info->bytes_pinned > 0 || 9651 space_info->bytes_reserved > 0 || 9652 space_info->bytes_may_use > 0)) { 9653 dump_space_info(space_info, 0, 0); 9654 } 9655 } 9656 list_del(&space_info->list); 9657 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9658 struct kobject *kobj; 9659 kobj = space_info->block_group_kobjs[i]; 9660 space_info->block_group_kobjs[i] = NULL; 9661 if (kobj) { 9662 kobject_del(kobj); 9663 kobject_put(kobj); 9664 } 9665 } 9666 kobject_del(&space_info->kobj); 9667 kobject_put(&space_info->kobj); 9668 } 9669 return 0; 9670 } 9671 9672 static void __link_block_group(struct btrfs_space_info *space_info, 9673 struct btrfs_block_group_cache *cache) 9674 { 9675 int index = get_block_group_index(cache); 9676 bool first = false; 9677 9678 down_write(&space_info->groups_sem); 9679 if (list_empty(&space_info->block_groups[index])) 9680 first = true; 9681 list_add_tail(&cache->list, &space_info->block_groups[index]); 9682 up_write(&space_info->groups_sem); 9683 9684 if (first) { 9685 struct raid_kobject *rkobj; 9686 int ret; 9687 9688 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9689 if (!rkobj) 9690 goto out_err; 9691 rkobj->raid_type = index; 9692 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9693 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9694 "%s", get_raid_name(index)); 9695 if (ret) { 9696 kobject_put(&rkobj->kobj); 9697 goto out_err; 9698 } 9699 space_info->block_group_kobjs[index] = &rkobj->kobj; 9700 } 9701 9702 return; 9703 out_err: 9704 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9705 } 9706 9707 static struct btrfs_block_group_cache * 9708 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9709 { 9710 struct btrfs_block_group_cache *cache; 9711 9712 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9713 if (!cache) 9714 return NULL; 9715 9716 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9717 GFP_NOFS); 9718 if (!cache->free_space_ctl) { 9719 kfree(cache); 9720 return NULL; 9721 } 9722 9723 cache->key.objectid = start; 9724 cache->key.offset = size; 9725 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9726 9727 cache->sectorsize = root->sectorsize; 9728 cache->fs_info = root->fs_info; 9729 cache->full_stripe_len = btrfs_full_stripe_len(root, 9730 &root->fs_info->mapping_tree, 9731 start); 9732 set_free_space_tree_thresholds(cache); 9733 9734 atomic_set(&cache->count, 1); 9735 spin_lock_init(&cache->lock); 9736 init_rwsem(&cache->data_rwsem); 9737 INIT_LIST_HEAD(&cache->list); 9738 INIT_LIST_HEAD(&cache->cluster_list); 9739 INIT_LIST_HEAD(&cache->bg_list); 9740 INIT_LIST_HEAD(&cache->ro_list); 9741 INIT_LIST_HEAD(&cache->dirty_list); 9742 INIT_LIST_HEAD(&cache->io_list); 9743 btrfs_init_free_space_ctl(cache); 9744 atomic_set(&cache->trimming, 0); 9745 mutex_init(&cache->free_space_lock); 9746 9747 return cache; 9748 } 9749 9750 int btrfs_read_block_groups(struct btrfs_root *root) 9751 { 9752 struct btrfs_path *path; 9753 int ret; 9754 struct btrfs_block_group_cache *cache; 9755 struct btrfs_fs_info *info = root->fs_info; 9756 struct btrfs_space_info *space_info; 9757 struct btrfs_key key; 9758 struct btrfs_key found_key; 9759 struct extent_buffer *leaf; 9760 int need_clear = 0; 9761 u64 cache_gen; 9762 9763 root = info->extent_root; 9764 key.objectid = 0; 9765 key.offset = 0; 9766 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9767 path = btrfs_alloc_path(); 9768 if (!path) 9769 return -ENOMEM; 9770 path->reada = READA_FORWARD; 9771 9772 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9773 if (btrfs_test_opt(root, SPACE_CACHE) && 9774 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9775 need_clear = 1; 9776 if (btrfs_test_opt(root, CLEAR_CACHE)) 9777 need_clear = 1; 9778 9779 while (1) { 9780 ret = find_first_block_group(root, path, &key); 9781 if (ret > 0) 9782 break; 9783 if (ret != 0) 9784 goto error; 9785 9786 leaf = path->nodes[0]; 9787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9788 9789 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9790 found_key.offset); 9791 if (!cache) { 9792 ret = -ENOMEM; 9793 goto error; 9794 } 9795 9796 if (need_clear) { 9797 /* 9798 * When we mount with old space cache, we need to 9799 * set BTRFS_DC_CLEAR and set dirty flag. 9800 * 9801 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9802 * truncate the old free space cache inode and 9803 * setup a new one. 9804 * b) Setting 'dirty flag' makes sure that we flush 9805 * the new space cache info onto disk. 9806 */ 9807 if (btrfs_test_opt(root, SPACE_CACHE)) 9808 cache->disk_cache_state = BTRFS_DC_CLEAR; 9809 } 9810 9811 read_extent_buffer(leaf, &cache->item, 9812 btrfs_item_ptr_offset(leaf, path->slots[0]), 9813 sizeof(cache->item)); 9814 cache->flags = btrfs_block_group_flags(&cache->item); 9815 9816 key.objectid = found_key.objectid + found_key.offset; 9817 btrfs_release_path(path); 9818 9819 /* 9820 * We need to exclude the super stripes now so that the space 9821 * info has super bytes accounted for, otherwise we'll think 9822 * we have more space than we actually do. 9823 */ 9824 ret = exclude_super_stripes(root, cache); 9825 if (ret) { 9826 /* 9827 * We may have excluded something, so call this just in 9828 * case. 9829 */ 9830 free_excluded_extents(root, cache); 9831 btrfs_put_block_group(cache); 9832 goto error; 9833 } 9834 9835 /* 9836 * check for two cases, either we are full, and therefore 9837 * don't need to bother with the caching work since we won't 9838 * find any space, or we are empty, and we can just add all 9839 * the space in and be done with it. This saves us _alot_ of 9840 * time, particularly in the full case. 9841 */ 9842 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9843 cache->last_byte_to_unpin = (u64)-1; 9844 cache->cached = BTRFS_CACHE_FINISHED; 9845 free_excluded_extents(root, cache); 9846 } else if (btrfs_block_group_used(&cache->item) == 0) { 9847 cache->last_byte_to_unpin = (u64)-1; 9848 cache->cached = BTRFS_CACHE_FINISHED; 9849 add_new_free_space(cache, root->fs_info, 9850 found_key.objectid, 9851 found_key.objectid + 9852 found_key.offset); 9853 free_excluded_extents(root, cache); 9854 } 9855 9856 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9857 if (ret) { 9858 btrfs_remove_free_space_cache(cache); 9859 btrfs_put_block_group(cache); 9860 goto error; 9861 } 9862 9863 ret = update_space_info(info, cache->flags, found_key.offset, 9864 btrfs_block_group_used(&cache->item), 9865 &space_info); 9866 if (ret) { 9867 btrfs_remove_free_space_cache(cache); 9868 spin_lock(&info->block_group_cache_lock); 9869 rb_erase(&cache->cache_node, 9870 &info->block_group_cache_tree); 9871 RB_CLEAR_NODE(&cache->cache_node); 9872 spin_unlock(&info->block_group_cache_lock); 9873 btrfs_put_block_group(cache); 9874 goto error; 9875 } 9876 9877 cache->space_info = space_info; 9878 spin_lock(&cache->space_info->lock); 9879 cache->space_info->bytes_readonly += cache->bytes_super; 9880 spin_unlock(&cache->space_info->lock); 9881 9882 __link_block_group(space_info, cache); 9883 9884 set_avail_alloc_bits(root->fs_info, cache->flags); 9885 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9886 inc_block_group_ro(cache, 1); 9887 } else if (btrfs_block_group_used(&cache->item) == 0) { 9888 spin_lock(&info->unused_bgs_lock); 9889 /* Should always be true but just in case. */ 9890 if (list_empty(&cache->bg_list)) { 9891 btrfs_get_block_group(cache); 9892 list_add_tail(&cache->bg_list, 9893 &info->unused_bgs); 9894 } 9895 spin_unlock(&info->unused_bgs_lock); 9896 } 9897 } 9898 9899 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9900 if (!(get_alloc_profile(root, space_info->flags) & 9901 (BTRFS_BLOCK_GROUP_RAID10 | 9902 BTRFS_BLOCK_GROUP_RAID1 | 9903 BTRFS_BLOCK_GROUP_RAID5 | 9904 BTRFS_BLOCK_GROUP_RAID6 | 9905 BTRFS_BLOCK_GROUP_DUP))) 9906 continue; 9907 /* 9908 * avoid allocating from un-mirrored block group if there are 9909 * mirrored block groups. 9910 */ 9911 list_for_each_entry(cache, 9912 &space_info->block_groups[BTRFS_RAID_RAID0], 9913 list) 9914 inc_block_group_ro(cache, 1); 9915 list_for_each_entry(cache, 9916 &space_info->block_groups[BTRFS_RAID_SINGLE], 9917 list) 9918 inc_block_group_ro(cache, 1); 9919 } 9920 9921 init_global_block_rsv(info); 9922 ret = 0; 9923 error: 9924 btrfs_free_path(path); 9925 return ret; 9926 } 9927 9928 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9929 struct btrfs_root *root) 9930 { 9931 struct btrfs_block_group_cache *block_group, *tmp; 9932 struct btrfs_root *extent_root = root->fs_info->extent_root; 9933 struct btrfs_block_group_item item; 9934 struct btrfs_key key; 9935 int ret = 0; 9936 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 9937 9938 trans->can_flush_pending_bgs = false; 9939 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9940 if (ret) 9941 goto next; 9942 9943 spin_lock(&block_group->lock); 9944 memcpy(&item, &block_group->item, sizeof(item)); 9945 memcpy(&key, &block_group->key, sizeof(key)); 9946 spin_unlock(&block_group->lock); 9947 9948 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9949 sizeof(item)); 9950 if (ret) 9951 btrfs_abort_transaction(trans, extent_root, ret); 9952 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9953 key.objectid, key.offset); 9954 if (ret) 9955 btrfs_abort_transaction(trans, extent_root, ret); 9956 add_block_group_free_space(trans, root->fs_info, block_group); 9957 /* already aborted the transaction if it failed. */ 9958 next: 9959 list_del_init(&block_group->bg_list); 9960 } 9961 trans->can_flush_pending_bgs = can_flush_pending_bgs; 9962 } 9963 9964 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9965 struct btrfs_root *root, u64 bytes_used, 9966 u64 type, u64 chunk_objectid, u64 chunk_offset, 9967 u64 size) 9968 { 9969 int ret; 9970 struct btrfs_root *extent_root; 9971 struct btrfs_block_group_cache *cache; 9972 9973 extent_root = root->fs_info->extent_root; 9974 9975 btrfs_set_log_full_commit(root->fs_info, trans); 9976 9977 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9978 if (!cache) 9979 return -ENOMEM; 9980 9981 btrfs_set_block_group_used(&cache->item, bytes_used); 9982 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9983 btrfs_set_block_group_flags(&cache->item, type); 9984 9985 cache->flags = type; 9986 cache->last_byte_to_unpin = (u64)-1; 9987 cache->cached = BTRFS_CACHE_FINISHED; 9988 cache->needs_free_space = 1; 9989 ret = exclude_super_stripes(root, cache); 9990 if (ret) { 9991 /* 9992 * We may have excluded something, so call this just in 9993 * case. 9994 */ 9995 free_excluded_extents(root, cache); 9996 btrfs_put_block_group(cache); 9997 return ret; 9998 } 9999 10000 add_new_free_space(cache, root->fs_info, chunk_offset, 10001 chunk_offset + size); 10002 10003 free_excluded_extents(root, cache); 10004 10005 #ifdef CONFIG_BTRFS_DEBUG 10006 if (btrfs_should_fragment_free_space(root, cache)) { 10007 u64 new_bytes_used = size - bytes_used; 10008 10009 bytes_used += new_bytes_used >> 1; 10010 fragment_free_space(root, cache); 10011 } 10012 #endif 10013 /* 10014 * Call to ensure the corresponding space_info object is created and 10015 * assigned to our block group, but don't update its counters just yet. 10016 * We want our bg to be added to the rbtree with its ->space_info set. 10017 */ 10018 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 10019 &cache->space_info); 10020 if (ret) { 10021 btrfs_remove_free_space_cache(cache); 10022 btrfs_put_block_group(cache); 10023 return ret; 10024 } 10025 10026 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10027 if (ret) { 10028 btrfs_remove_free_space_cache(cache); 10029 btrfs_put_block_group(cache); 10030 return ret; 10031 } 10032 10033 /* 10034 * Now that our block group has its ->space_info set and is inserted in 10035 * the rbtree, update the space info's counters. 10036 */ 10037 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10038 &cache->space_info); 10039 if (ret) { 10040 btrfs_remove_free_space_cache(cache); 10041 spin_lock(&root->fs_info->block_group_cache_lock); 10042 rb_erase(&cache->cache_node, 10043 &root->fs_info->block_group_cache_tree); 10044 RB_CLEAR_NODE(&cache->cache_node); 10045 spin_unlock(&root->fs_info->block_group_cache_lock); 10046 btrfs_put_block_group(cache); 10047 return ret; 10048 } 10049 update_global_block_rsv(root->fs_info); 10050 10051 spin_lock(&cache->space_info->lock); 10052 cache->space_info->bytes_readonly += cache->bytes_super; 10053 spin_unlock(&cache->space_info->lock); 10054 10055 __link_block_group(cache->space_info, cache); 10056 10057 list_add_tail(&cache->bg_list, &trans->new_bgs); 10058 10059 set_avail_alloc_bits(extent_root->fs_info, type); 10060 10061 return 0; 10062 } 10063 10064 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10065 { 10066 u64 extra_flags = chunk_to_extended(flags) & 10067 BTRFS_EXTENDED_PROFILE_MASK; 10068 10069 write_seqlock(&fs_info->profiles_lock); 10070 if (flags & BTRFS_BLOCK_GROUP_DATA) 10071 fs_info->avail_data_alloc_bits &= ~extra_flags; 10072 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10073 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10074 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10075 fs_info->avail_system_alloc_bits &= ~extra_flags; 10076 write_sequnlock(&fs_info->profiles_lock); 10077 } 10078 10079 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10080 struct btrfs_root *root, u64 group_start, 10081 struct extent_map *em) 10082 { 10083 struct btrfs_path *path; 10084 struct btrfs_block_group_cache *block_group; 10085 struct btrfs_free_cluster *cluster; 10086 struct btrfs_root *tree_root = root->fs_info->tree_root; 10087 struct btrfs_key key; 10088 struct inode *inode; 10089 struct kobject *kobj = NULL; 10090 int ret; 10091 int index; 10092 int factor; 10093 struct btrfs_caching_control *caching_ctl = NULL; 10094 bool remove_em; 10095 10096 root = root->fs_info->extent_root; 10097 10098 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10099 BUG_ON(!block_group); 10100 BUG_ON(!block_group->ro); 10101 10102 /* 10103 * Free the reserved super bytes from this block group before 10104 * remove it. 10105 */ 10106 free_excluded_extents(root, block_group); 10107 10108 memcpy(&key, &block_group->key, sizeof(key)); 10109 index = get_block_group_index(block_group); 10110 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10111 BTRFS_BLOCK_GROUP_RAID1 | 10112 BTRFS_BLOCK_GROUP_RAID10)) 10113 factor = 2; 10114 else 10115 factor = 1; 10116 10117 /* make sure this block group isn't part of an allocation cluster */ 10118 cluster = &root->fs_info->data_alloc_cluster; 10119 spin_lock(&cluster->refill_lock); 10120 btrfs_return_cluster_to_free_space(block_group, cluster); 10121 spin_unlock(&cluster->refill_lock); 10122 10123 /* 10124 * make sure this block group isn't part of a metadata 10125 * allocation cluster 10126 */ 10127 cluster = &root->fs_info->meta_alloc_cluster; 10128 spin_lock(&cluster->refill_lock); 10129 btrfs_return_cluster_to_free_space(block_group, cluster); 10130 spin_unlock(&cluster->refill_lock); 10131 10132 path = btrfs_alloc_path(); 10133 if (!path) { 10134 ret = -ENOMEM; 10135 goto out; 10136 } 10137 10138 /* 10139 * get the inode first so any iput calls done for the io_list 10140 * aren't the final iput (no unlinks allowed now) 10141 */ 10142 inode = lookup_free_space_inode(tree_root, block_group, path); 10143 10144 mutex_lock(&trans->transaction->cache_write_mutex); 10145 /* 10146 * make sure our free spache cache IO is done before remove the 10147 * free space inode 10148 */ 10149 spin_lock(&trans->transaction->dirty_bgs_lock); 10150 if (!list_empty(&block_group->io_list)) { 10151 list_del_init(&block_group->io_list); 10152 10153 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10154 10155 spin_unlock(&trans->transaction->dirty_bgs_lock); 10156 btrfs_wait_cache_io(root, trans, block_group, 10157 &block_group->io_ctl, path, 10158 block_group->key.objectid); 10159 btrfs_put_block_group(block_group); 10160 spin_lock(&trans->transaction->dirty_bgs_lock); 10161 } 10162 10163 if (!list_empty(&block_group->dirty_list)) { 10164 list_del_init(&block_group->dirty_list); 10165 btrfs_put_block_group(block_group); 10166 } 10167 spin_unlock(&trans->transaction->dirty_bgs_lock); 10168 mutex_unlock(&trans->transaction->cache_write_mutex); 10169 10170 if (!IS_ERR(inode)) { 10171 ret = btrfs_orphan_add(trans, inode); 10172 if (ret) { 10173 btrfs_add_delayed_iput(inode); 10174 goto out; 10175 } 10176 clear_nlink(inode); 10177 /* One for the block groups ref */ 10178 spin_lock(&block_group->lock); 10179 if (block_group->iref) { 10180 block_group->iref = 0; 10181 block_group->inode = NULL; 10182 spin_unlock(&block_group->lock); 10183 iput(inode); 10184 } else { 10185 spin_unlock(&block_group->lock); 10186 } 10187 /* One for our lookup ref */ 10188 btrfs_add_delayed_iput(inode); 10189 } 10190 10191 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10192 key.offset = block_group->key.objectid; 10193 key.type = 0; 10194 10195 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10196 if (ret < 0) 10197 goto out; 10198 if (ret > 0) 10199 btrfs_release_path(path); 10200 if (ret == 0) { 10201 ret = btrfs_del_item(trans, tree_root, path); 10202 if (ret) 10203 goto out; 10204 btrfs_release_path(path); 10205 } 10206 10207 spin_lock(&root->fs_info->block_group_cache_lock); 10208 rb_erase(&block_group->cache_node, 10209 &root->fs_info->block_group_cache_tree); 10210 RB_CLEAR_NODE(&block_group->cache_node); 10211 10212 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10213 root->fs_info->first_logical_byte = (u64)-1; 10214 spin_unlock(&root->fs_info->block_group_cache_lock); 10215 10216 down_write(&block_group->space_info->groups_sem); 10217 /* 10218 * we must use list_del_init so people can check to see if they 10219 * are still on the list after taking the semaphore 10220 */ 10221 list_del_init(&block_group->list); 10222 if (list_empty(&block_group->space_info->block_groups[index])) { 10223 kobj = block_group->space_info->block_group_kobjs[index]; 10224 block_group->space_info->block_group_kobjs[index] = NULL; 10225 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10226 } 10227 up_write(&block_group->space_info->groups_sem); 10228 if (kobj) { 10229 kobject_del(kobj); 10230 kobject_put(kobj); 10231 } 10232 10233 if (block_group->has_caching_ctl) 10234 caching_ctl = get_caching_control(block_group); 10235 if (block_group->cached == BTRFS_CACHE_STARTED) 10236 wait_block_group_cache_done(block_group); 10237 if (block_group->has_caching_ctl) { 10238 down_write(&root->fs_info->commit_root_sem); 10239 if (!caching_ctl) { 10240 struct btrfs_caching_control *ctl; 10241 10242 list_for_each_entry(ctl, 10243 &root->fs_info->caching_block_groups, list) 10244 if (ctl->block_group == block_group) { 10245 caching_ctl = ctl; 10246 atomic_inc(&caching_ctl->count); 10247 break; 10248 } 10249 } 10250 if (caching_ctl) 10251 list_del_init(&caching_ctl->list); 10252 up_write(&root->fs_info->commit_root_sem); 10253 if (caching_ctl) { 10254 /* Once for the caching bgs list and once for us. */ 10255 put_caching_control(caching_ctl); 10256 put_caching_control(caching_ctl); 10257 } 10258 } 10259 10260 spin_lock(&trans->transaction->dirty_bgs_lock); 10261 if (!list_empty(&block_group->dirty_list)) { 10262 WARN_ON(1); 10263 } 10264 if (!list_empty(&block_group->io_list)) { 10265 WARN_ON(1); 10266 } 10267 spin_unlock(&trans->transaction->dirty_bgs_lock); 10268 btrfs_remove_free_space_cache(block_group); 10269 10270 spin_lock(&block_group->space_info->lock); 10271 list_del_init(&block_group->ro_list); 10272 10273 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 10274 WARN_ON(block_group->space_info->total_bytes 10275 < block_group->key.offset); 10276 WARN_ON(block_group->space_info->bytes_readonly 10277 < block_group->key.offset); 10278 WARN_ON(block_group->space_info->disk_total 10279 < block_group->key.offset * factor); 10280 } 10281 block_group->space_info->total_bytes -= block_group->key.offset; 10282 block_group->space_info->bytes_readonly -= block_group->key.offset; 10283 block_group->space_info->disk_total -= block_group->key.offset * factor; 10284 10285 spin_unlock(&block_group->space_info->lock); 10286 10287 memcpy(&key, &block_group->key, sizeof(key)); 10288 10289 lock_chunks(root); 10290 if (!list_empty(&em->list)) { 10291 /* We're in the transaction->pending_chunks list. */ 10292 free_extent_map(em); 10293 } 10294 spin_lock(&block_group->lock); 10295 block_group->removed = 1; 10296 /* 10297 * At this point trimming can't start on this block group, because we 10298 * removed the block group from the tree fs_info->block_group_cache_tree 10299 * so no one can't find it anymore and even if someone already got this 10300 * block group before we removed it from the rbtree, they have already 10301 * incremented block_group->trimming - if they didn't, they won't find 10302 * any free space entries because we already removed them all when we 10303 * called btrfs_remove_free_space_cache(). 10304 * 10305 * And we must not remove the extent map from the fs_info->mapping_tree 10306 * to prevent the same logical address range and physical device space 10307 * ranges from being reused for a new block group. This is because our 10308 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10309 * completely transactionless, so while it is trimming a range the 10310 * currently running transaction might finish and a new one start, 10311 * allowing for new block groups to be created that can reuse the same 10312 * physical device locations unless we take this special care. 10313 * 10314 * There may also be an implicit trim operation if the file system 10315 * is mounted with -odiscard. The same protections must remain 10316 * in place until the extents have been discarded completely when 10317 * the transaction commit has completed. 10318 */ 10319 remove_em = (atomic_read(&block_group->trimming) == 0); 10320 /* 10321 * Make sure a trimmer task always sees the em in the pinned_chunks list 10322 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10323 * before checking block_group->removed). 10324 */ 10325 if (!remove_em) { 10326 /* 10327 * Our em might be in trans->transaction->pending_chunks which 10328 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10329 * and so is the fs_info->pinned_chunks list. 10330 * 10331 * So at this point we must be holding the chunk_mutex to avoid 10332 * any races with chunk allocation (more specifically at 10333 * volumes.c:contains_pending_extent()), to ensure it always 10334 * sees the em, either in the pending_chunks list or in the 10335 * pinned_chunks list. 10336 */ 10337 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10338 } 10339 spin_unlock(&block_group->lock); 10340 10341 if (remove_em) { 10342 struct extent_map_tree *em_tree; 10343 10344 em_tree = &root->fs_info->mapping_tree.map_tree; 10345 write_lock(&em_tree->lock); 10346 /* 10347 * The em might be in the pending_chunks list, so make sure the 10348 * chunk mutex is locked, since remove_extent_mapping() will 10349 * delete us from that list. 10350 */ 10351 remove_extent_mapping(em_tree, em); 10352 write_unlock(&em_tree->lock); 10353 /* once for the tree */ 10354 free_extent_map(em); 10355 } 10356 10357 unlock_chunks(root); 10358 10359 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10360 if (ret) 10361 goto out; 10362 10363 btrfs_put_block_group(block_group); 10364 btrfs_put_block_group(block_group); 10365 10366 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10367 if (ret > 0) 10368 ret = -EIO; 10369 if (ret < 0) 10370 goto out; 10371 10372 ret = btrfs_del_item(trans, root, path); 10373 out: 10374 btrfs_free_path(path); 10375 return ret; 10376 } 10377 10378 struct btrfs_trans_handle * 10379 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10380 const u64 chunk_offset) 10381 { 10382 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10383 struct extent_map *em; 10384 struct map_lookup *map; 10385 unsigned int num_items; 10386 10387 read_lock(&em_tree->lock); 10388 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10389 read_unlock(&em_tree->lock); 10390 ASSERT(em && em->start == chunk_offset); 10391 10392 /* 10393 * We need to reserve 3 + N units from the metadata space info in order 10394 * to remove a block group (done at btrfs_remove_chunk() and at 10395 * btrfs_remove_block_group()), which are used for: 10396 * 10397 * 1 unit for adding the free space inode's orphan (located in the tree 10398 * of tree roots). 10399 * 1 unit for deleting the block group item (located in the extent 10400 * tree). 10401 * 1 unit for deleting the free space item (located in tree of tree 10402 * roots). 10403 * N units for deleting N device extent items corresponding to each 10404 * stripe (located in the device tree). 10405 * 10406 * In order to remove a block group we also need to reserve units in the 10407 * system space info in order to update the chunk tree (update one or 10408 * more device items and remove one chunk item), but this is done at 10409 * btrfs_remove_chunk() through a call to check_system_chunk(). 10410 */ 10411 map = em->map_lookup; 10412 num_items = 3 + map->num_stripes; 10413 free_extent_map(em); 10414 10415 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10416 num_items, 1); 10417 } 10418 10419 /* 10420 * Process the unused_bgs list and remove any that don't have any allocated 10421 * space inside of them. 10422 */ 10423 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10424 { 10425 struct btrfs_block_group_cache *block_group; 10426 struct btrfs_space_info *space_info; 10427 struct btrfs_root *root = fs_info->extent_root; 10428 struct btrfs_trans_handle *trans; 10429 int ret = 0; 10430 10431 if (!fs_info->open) 10432 return; 10433 10434 spin_lock(&fs_info->unused_bgs_lock); 10435 while (!list_empty(&fs_info->unused_bgs)) { 10436 u64 start, end; 10437 int trimming; 10438 10439 block_group = list_first_entry(&fs_info->unused_bgs, 10440 struct btrfs_block_group_cache, 10441 bg_list); 10442 list_del_init(&block_group->bg_list); 10443 10444 space_info = block_group->space_info; 10445 10446 if (ret || btrfs_mixed_space_info(space_info)) { 10447 btrfs_put_block_group(block_group); 10448 continue; 10449 } 10450 spin_unlock(&fs_info->unused_bgs_lock); 10451 10452 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10453 10454 /* Don't want to race with allocators so take the groups_sem */ 10455 down_write(&space_info->groups_sem); 10456 spin_lock(&block_group->lock); 10457 if (block_group->reserved || 10458 btrfs_block_group_used(&block_group->item) || 10459 block_group->ro || 10460 list_is_singular(&block_group->list)) { 10461 /* 10462 * We want to bail if we made new allocations or have 10463 * outstanding allocations in this block group. We do 10464 * the ro check in case balance is currently acting on 10465 * this block group. 10466 */ 10467 spin_unlock(&block_group->lock); 10468 up_write(&space_info->groups_sem); 10469 goto next; 10470 } 10471 spin_unlock(&block_group->lock); 10472 10473 /* We don't want to force the issue, only flip if it's ok. */ 10474 ret = inc_block_group_ro(block_group, 0); 10475 up_write(&space_info->groups_sem); 10476 if (ret < 0) { 10477 ret = 0; 10478 goto next; 10479 } 10480 10481 /* 10482 * Want to do this before we do anything else so we can recover 10483 * properly if we fail to join the transaction. 10484 */ 10485 trans = btrfs_start_trans_remove_block_group(fs_info, 10486 block_group->key.objectid); 10487 if (IS_ERR(trans)) { 10488 btrfs_dec_block_group_ro(root, block_group); 10489 ret = PTR_ERR(trans); 10490 goto next; 10491 } 10492 10493 /* 10494 * We could have pending pinned extents for this block group, 10495 * just delete them, we don't care about them anymore. 10496 */ 10497 start = block_group->key.objectid; 10498 end = start + block_group->key.offset - 1; 10499 /* 10500 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10501 * btrfs_finish_extent_commit(). If we are at transaction N, 10502 * another task might be running finish_extent_commit() for the 10503 * previous transaction N - 1, and have seen a range belonging 10504 * to the block group in freed_extents[] before we were able to 10505 * clear the whole block group range from freed_extents[]. This 10506 * means that task can lookup for the block group after we 10507 * unpinned it from freed_extents[] and removed it, leading to 10508 * a BUG_ON() at btrfs_unpin_extent_range(). 10509 */ 10510 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10511 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10512 EXTENT_DIRTY, GFP_NOFS); 10513 if (ret) { 10514 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10515 btrfs_dec_block_group_ro(root, block_group); 10516 goto end_trans; 10517 } 10518 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10519 EXTENT_DIRTY, GFP_NOFS); 10520 if (ret) { 10521 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10522 btrfs_dec_block_group_ro(root, block_group); 10523 goto end_trans; 10524 } 10525 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10526 10527 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10528 spin_lock(&space_info->lock); 10529 spin_lock(&block_group->lock); 10530 10531 space_info->bytes_pinned -= block_group->pinned; 10532 space_info->bytes_readonly += block_group->pinned; 10533 percpu_counter_add(&space_info->total_bytes_pinned, 10534 -block_group->pinned); 10535 block_group->pinned = 0; 10536 10537 spin_unlock(&block_group->lock); 10538 spin_unlock(&space_info->lock); 10539 10540 /* DISCARD can flip during remount */ 10541 trimming = btrfs_test_opt(root, DISCARD); 10542 10543 /* Implicit trim during transaction commit. */ 10544 if (trimming) 10545 btrfs_get_block_group_trimming(block_group); 10546 10547 /* 10548 * Btrfs_remove_chunk will abort the transaction if things go 10549 * horribly wrong. 10550 */ 10551 ret = btrfs_remove_chunk(trans, root, 10552 block_group->key.objectid); 10553 10554 if (ret) { 10555 if (trimming) 10556 btrfs_put_block_group_trimming(block_group); 10557 goto end_trans; 10558 } 10559 10560 /* 10561 * If we're not mounted with -odiscard, we can just forget 10562 * about this block group. Otherwise we'll need to wait 10563 * until transaction commit to do the actual discard. 10564 */ 10565 if (trimming) { 10566 spin_lock(&fs_info->unused_bgs_lock); 10567 /* 10568 * A concurrent scrub might have added us to the list 10569 * fs_info->unused_bgs, so use a list_move operation 10570 * to add the block group to the deleted_bgs list. 10571 */ 10572 list_move(&block_group->bg_list, 10573 &trans->transaction->deleted_bgs); 10574 spin_unlock(&fs_info->unused_bgs_lock); 10575 btrfs_get_block_group(block_group); 10576 } 10577 end_trans: 10578 btrfs_end_transaction(trans, root); 10579 next: 10580 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10581 btrfs_put_block_group(block_group); 10582 spin_lock(&fs_info->unused_bgs_lock); 10583 } 10584 spin_unlock(&fs_info->unused_bgs_lock); 10585 } 10586 10587 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10588 { 10589 struct btrfs_space_info *space_info; 10590 struct btrfs_super_block *disk_super; 10591 u64 features; 10592 u64 flags; 10593 int mixed = 0; 10594 int ret; 10595 10596 disk_super = fs_info->super_copy; 10597 if (!btrfs_super_root(disk_super)) 10598 return -EINVAL; 10599 10600 features = btrfs_super_incompat_flags(disk_super); 10601 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10602 mixed = 1; 10603 10604 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10605 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10606 if (ret) 10607 goto out; 10608 10609 if (mixed) { 10610 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10611 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10612 } else { 10613 flags = BTRFS_BLOCK_GROUP_METADATA; 10614 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10615 if (ret) 10616 goto out; 10617 10618 flags = BTRFS_BLOCK_GROUP_DATA; 10619 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10620 } 10621 out: 10622 return ret; 10623 } 10624 10625 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10626 { 10627 return unpin_extent_range(root, start, end, false); 10628 } 10629 10630 /* 10631 * It used to be that old block groups would be left around forever. 10632 * Iterating over them would be enough to trim unused space. Since we 10633 * now automatically remove them, we also need to iterate over unallocated 10634 * space. 10635 * 10636 * We don't want a transaction for this since the discard may take a 10637 * substantial amount of time. We don't require that a transaction be 10638 * running, but we do need to take a running transaction into account 10639 * to ensure that we're not discarding chunks that were released in 10640 * the current transaction. 10641 * 10642 * Holding the chunks lock will prevent other threads from allocating 10643 * or releasing chunks, but it won't prevent a running transaction 10644 * from committing and releasing the memory that the pending chunks 10645 * list head uses. For that, we need to take a reference to the 10646 * transaction. 10647 */ 10648 static int btrfs_trim_free_extents(struct btrfs_device *device, 10649 u64 minlen, u64 *trimmed) 10650 { 10651 u64 start = 0, len = 0; 10652 int ret; 10653 10654 *trimmed = 0; 10655 10656 /* Not writeable = nothing to do. */ 10657 if (!device->writeable) 10658 return 0; 10659 10660 /* No free space = nothing to do. */ 10661 if (device->total_bytes <= device->bytes_used) 10662 return 0; 10663 10664 ret = 0; 10665 10666 while (1) { 10667 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10668 struct btrfs_transaction *trans; 10669 u64 bytes; 10670 10671 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10672 if (ret) 10673 return ret; 10674 10675 down_read(&fs_info->commit_root_sem); 10676 10677 spin_lock(&fs_info->trans_lock); 10678 trans = fs_info->running_transaction; 10679 if (trans) 10680 atomic_inc(&trans->use_count); 10681 spin_unlock(&fs_info->trans_lock); 10682 10683 ret = find_free_dev_extent_start(trans, device, minlen, start, 10684 &start, &len); 10685 if (trans) 10686 btrfs_put_transaction(trans); 10687 10688 if (ret) { 10689 up_read(&fs_info->commit_root_sem); 10690 mutex_unlock(&fs_info->chunk_mutex); 10691 if (ret == -ENOSPC) 10692 ret = 0; 10693 break; 10694 } 10695 10696 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10697 up_read(&fs_info->commit_root_sem); 10698 mutex_unlock(&fs_info->chunk_mutex); 10699 10700 if (ret) 10701 break; 10702 10703 start += len; 10704 *trimmed += bytes; 10705 10706 if (fatal_signal_pending(current)) { 10707 ret = -ERESTARTSYS; 10708 break; 10709 } 10710 10711 cond_resched(); 10712 } 10713 10714 return ret; 10715 } 10716 10717 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10718 { 10719 struct btrfs_fs_info *fs_info = root->fs_info; 10720 struct btrfs_block_group_cache *cache = NULL; 10721 struct btrfs_device *device; 10722 struct list_head *devices; 10723 u64 group_trimmed; 10724 u64 start; 10725 u64 end; 10726 u64 trimmed = 0; 10727 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10728 int ret = 0; 10729 10730 /* 10731 * try to trim all FS space, our block group may start from non-zero. 10732 */ 10733 if (range->len == total_bytes) 10734 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10735 else 10736 cache = btrfs_lookup_block_group(fs_info, range->start); 10737 10738 while (cache) { 10739 if (cache->key.objectid >= (range->start + range->len)) { 10740 btrfs_put_block_group(cache); 10741 break; 10742 } 10743 10744 start = max(range->start, cache->key.objectid); 10745 end = min(range->start + range->len, 10746 cache->key.objectid + cache->key.offset); 10747 10748 if (end - start >= range->minlen) { 10749 if (!block_group_cache_done(cache)) { 10750 ret = cache_block_group(cache, 0); 10751 if (ret) { 10752 btrfs_put_block_group(cache); 10753 break; 10754 } 10755 ret = wait_block_group_cache_done(cache); 10756 if (ret) { 10757 btrfs_put_block_group(cache); 10758 break; 10759 } 10760 } 10761 ret = btrfs_trim_block_group(cache, 10762 &group_trimmed, 10763 start, 10764 end, 10765 range->minlen); 10766 10767 trimmed += group_trimmed; 10768 if (ret) { 10769 btrfs_put_block_group(cache); 10770 break; 10771 } 10772 } 10773 10774 cache = next_block_group(fs_info->tree_root, cache); 10775 } 10776 10777 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10778 devices = &root->fs_info->fs_devices->alloc_list; 10779 list_for_each_entry(device, devices, dev_alloc_list) { 10780 ret = btrfs_trim_free_extents(device, range->minlen, 10781 &group_trimmed); 10782 if (ret) 10783 break; 10784 10785 trimmed += group_trimmed; 10786 } 10787 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10788 10789 range->len = trimmed; 10790 return ret; 10791 } 10792 10793 /* 10794 * btrfs_{start,end}_write_no_snapshoting() are similar to 10795 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10796 * data into the page cache through nocow before the subvolume is snapshoted, 10797 * but flush the data into disk after the snapshot creation, or to prevent 10798 * operations while snapshoting is ongoing and that cause the snapshot to be 10799 * inconsistent (writes followed by expanding truncates for example). 10800 */ 10801 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10802 { 10803 percpu_counter_dec(&root->subv_writers->counter); 10804 /* 10805 * Make sure counter is updated before we wake up waiters. 10806 */ 10807 smp_mb(); 10808 if (waitqueue_active(&root->subv_writers->wait)) 10809 wake_up(&root->subv_writers->wait); 10810 } 10811 10812 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10813 { 10814 if (atomic_read(&root->will_be_snapshoted)) 10815 return 0; 10816 10817 percpu_counter_inc(&root->subv_writers->counter); 10818 /* 10819 * Make sure counter is updated before we check for snapshot creation. 10820 */ 10821 smp_mb(); 10822 if (atomic_read(&root->will_be_snapshoted)) { 10823 btrfs_end_write_no_snapshoting(root); 10824 return 0; 10825 } 10826 return 1; 10827 } 10828 10829 static int wait_snapshoting_atomic_t(atomic_t *a) 10830 { 10831 schedule(); 10832 return 0; 10833 } 10834 10835 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 10836 { 10837 while (true) { 10838 int ret; 10839 10840 ret = btrfs_start_write_no_snapshoting(root); 10841 if (ret) 10842 break; 10843 wait_on_atomic_t(&root->will_be_snapshoted, 10844 wait_snapshoting_atomic_t, 10845 TASK_UNINTERRUPTIBLE); 10846 } 10847 } 10848