xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 3b27d139)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				struct btrfs_delayed_ref_node *node, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 			      struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 	u64 extent_start, extent_end, size, total_added = 0;
344 	int ret;
345 
346 	while (start < end) {
347 		ret = find_first_extent_bit(info->pinned_extents, start,
348 					    &extent_start, &extent_end,
349 					    EXTENT_DIRTY | EXTENT_UPTODATE,
350 					    NULL);
351 		if (ret)
352 			break;
353 
354 		if (extent_start <= start) {
355 			start = extent_end + 1;
356 		} else if (extent_start > start && extent_start < end) {
357 			size = extent_start - start;
358 			total_added += size;
359 			ret = btrfs_add_free_space(block_group, start,
360 						   size);
361 			BUG_ON(ret); /* -ENOMEM or logic error */
362 			start = extent_end + 1;
363 		} else {
364 			break;
365 		}
366 	}
367 
368 	if (start < end) {
369 		size = end - start;
370 		total_added += size;
371 		ret = btrfs_add_free_space(block_group, start, size);
372 		BUG_ON(ret); /* -ENOMEM or logic error */
373 	}
374 
375 	return total_added;
376 }
377 
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 	struct btrfs_block_group_cache *block_group;
381 	struct btrfs_fs_info *fs_info;
382 	struct btrfs_caching_control *caching_ctl;
383 	struct btrfs_root *extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret = -ENOMEM;
391 
392 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 	block_group = caching_ctl->block_group;
394 	fs_info = block_group->fs_info;
395 	extent_root = fs_info->extent_root;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		goto out;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 	/*
404 	 * We don't want to deadlock with somebody trying to allocate a new
405 	 * extent for the extent root while also trying to search the extent
406 	 * root to add free space.  So we skip locking and search the commit
407 	 * root, since its read-only
408 	 */
409 	path->skip_locking = 1;
410 	path->search_commit_root = 1;
411 	path->reada = 1;
412 
413 	key.objectid = last;
414 	key.offset = 0;
415 	key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 	mutex_lock(&caching_ctl->mutex);
418 	/* need to make sure the commit_root doesn't disappear */
419 	down_read(&fs_info->commit_root_sem);
420 
421 next:
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched() ||
443 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
444 				caching_ctl->progress = last;
445 				btrfs_release_path(path);
446 				up_read(&fs_info->commit_root_sem);
447 				mutex_unlock(&caching_ctl->mutex);
448 				cond_resched();
449 				goto again;
450 			}
451 
452 			ret = btrfs_next_leaf(extent_root, path);
453 			if (ret < 0)
454 				goto err;
455 			if (ret)
456 				break;
457 			leaf = path->nodes[0];
458 			nritems = btrfs_header_nritems(leaf);
459 			continue;
460 		}
461 
462 		if (key.objectid < last) {
463 			key.objectid = last;
464 			key.offset = 0;
465 			key.type = BTRFS_EXTENT_ITEM_KEY;
466 
467 			caching_ctl->progress = last;
468 			btrfs_release_path(path);
469 			goto next;
470 		}
471 
472 		if (key.objectid < block_group->key.objectid) {
473 			path->slots[0]++;
474 			continue;
475 		}
476 
477 		if (key.objectid >= block_group->key.objectid +
478 		    block_group->key.offset)
479 			break;
480 
481 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 		    key.type == BTRFS_METADATA_ITEM_KEY) {
483 			total_found += add_new_free_space(block_group,
484 							  fs_info, last,
485 							  key.objectid);
486 			if (key.type == BTRFS_METADATA_ITEM_KEY)
487 				last = key.objectid +
488 					fs_info->tree_root->nodesize;
489 			else
490 				last = key.objectid + key.offset;
491 
492 			if (total_found > (1024 * 1024 * 2)) {
493 				total_found = 0;
494 				wake_up(&caching_ctl->wait);
495 			}
496 		}
497 		path->slots[0]++;
498 	}
499 	ret = 0;
500 
501 	total_found += add_new_free_space(block_group, fs_info, last,
502 					  block_group->key.objectid +
503 					  block_group->key.offset);
504 	caching_ctl->progress = (u64)-1;
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 err:
512 	btrfs_free_path(path);
513 	up_read(&fs_info->commit_root_sem);
514 
515 	free_excluded_extents(extent_root, block_group);
516 
517 	mutex_unlock(&caching_ctl->mutex);
518 out:
519 	if (ret) {
520 		spin_lock(&block_group->lock);
521 		block_group->caching_ctl = NULL;
522 		block_group->cached = BTRFS_CACHE_ERROR;
523 		spin_unlock(&block_group->lock);
524 	}
525 	wake_up(&caching_ctl->wait);
526 
527 	put_caching_control(caching_ctl);
528 	btrfs_put_block_group(block_group);
529 }
530 
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 			     int load_cache_only)
533 {
534 	DEFINE_WAIT(wait);
535 	struct btrfs_fs_info *fs_info = cache->fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	int ret = 0;
538 
539 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 	if (!caching_ctl)
541 		return -ENOMEM;
542 
543 	INIT_LIST_HEAD(&caching_ctl->list);
544 	mutex_init(&caching_ctl->mutex);
545 	init_waitqueue_head(&caching_ctl->wait);
546 	caching_ctl->block_group = cache;
547 	caching_ctl->progress = cache->key.objectid;
548 	atomic_set(&caching_ctl->count, 1);
549 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 			caching_thread, NULL, NULL);
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		mutex_lock(&caching_ctl->mutex);
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 			caching_ctl->progress = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 				cache->has_caching_ctl = 1;
607 			}
608 		}
609 		spin_unlock(&cache->lock);
610 		mutex_unlock(&caching_ctl->mutex);
611 
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 			cache->has_caching_ctl = 1;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->nodesize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 				&key, path, 0, 0);
785 	if (ret < 0)
786 		goto out_free;
787 
788 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 		if (path->slots[0]) {
790 			path->slots[0]--;
791 			btrfs_item_key_to_cpu(path->nodes[0], &key,
792 					      path->slots[0]);
793 			if (key.objectid == bytenr &&
794 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
795 			    key.offset == root->nodesize)
796 				ret = 0;
797 		}
798 	}
799 
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 		if (item_size >= sizeof(*ei)) {
804 			ei = btrfs_item_ptr(leaf, path->slots[0],
805 					    struct btrfs_extent_item);
806 			num_refs = btrfs_extent_refs(leaf, ei);
807 			extent_flags = btrfs_extent_flags(leaf, ei);
808 		} else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 			struct btrfs_extent_item_v0 *ei0;
811 			BUG_ON(item_size != sizeof(*ei0));
812 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 					     struct btrfs_extent_item_v0);
814 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 			/* FIXME: this isn't correct for data */
816 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 			BUG();
819 #endif
820 		}
821 		BUG_ON(num_refs == 0);
822 	} else {
823 		num_refs = 0;
824 		extent_flags = 0;
825 		ret = 0;
826 	}
827 
828 	if (!trans)
829 		goto out;
830 
831 	delayed_refs = &trans->transaction->delayed_refs;
832 	spin_lock(&delayed_refs->lock);
833 	head = btrfs_find_delayed_ref_head(trans, bytenr);
834 	if (head) {
835 		if (!mutex_trylock(&head->mutex)) {
836 			atomic_inc(&head->node.refs);
837 			spin_unlock(&delayed_refs->lock);
838 
839 			btrfs_release_path(path);
840 
841 			/*
842 			 * Mutex was contended, block until it's released and try
843 			 * again
844 			 */
845 			mutex_lock(&head->mutex);
846 			mutex_unlock(&head->mutex);
847 			btrfs_put_delayed_ref(&head->node);
848 			goto search_again;
849 		}
850 		spin_lock(&head->lock);
851 		if (head->extent_op && head->extent_op->update_flags)
852 			extent_flags |= head->extent_op->flags_to_set;
853 		else
854 			BUG_ON(num_refs == 0);
855 
856 		num_refs += head->node.ref_mod;
857 		spin_unlock(&head->lock);
858 		mutex_unlock(&head->mutex);
859 	}
860 	spin_unlock(&delayed_refs->lock);
861 out:
862 	WARN_ON(num_refs == 0);
863 	if (refs)
864 		*refs = num_refs;
865 	if (flags)
866 		*flags = extent_flags;
867 out_free:
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 /*
873  * Back reference rules.  Back refs have three main goals:
874  *
875  * 1) differentiate between all holders of references to an extent so that
876  *    when a reference is dropped we can make sure it was a valid reference
877  *    before freeing the extent.
878  *
879  * 2) Provide enough information to quickly find the holders of an extent
880  *    if we notice a given block is corrupted or bad.
881  *
882  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883  *    maintenance.  This is actually the same as #2, but with a slightly
884  *    different use case.
885  *
886  * There are two kinds of back refs. The implicit back refs is optimized
887  * for pointers in non-shared tree blocks. For a given pointer in a block,
888  * back refs of this kind provide information about the block's owner tree
889  * and the pointer's key. These information allow us to find the block by
890  * b-tree searching. The full back refs is for pointers in tree blocks not
891  * referenced by their owner trees. The location of tree block is recorded
892  * in the back refs. Actually the full back refs is generic, and can be
893  * used in all cases the implicit back refs is used. The major shortcoming
894  * of the full back refs is its overhead. Every time a tree block gets
895  * COWed, we have to update back refs entry for all pointers in it.
896  *
897  * For a newly allocated tree block, we use implicit back refs for
898  * pointers in it. This means most tree related operations only involve
899  * implicit back refs. For a tree block created in old transaction, the
900  * only way to drop a reference to it is COW it. So we can detect the
901  * event that tree block loses its owner tree's reference and do the
902  * back refs conversion.
903  *
904  * When a tree block is COW'd through a tree, there are four cases:
905  *
906  * The reference count of the block is one and the tree is the block's
907  * owner tree. Nothing to do in this case.
908  *
909  * The reference count of the block is one and the tree is not the
910  * block's owner tree. In this case, full back refs is used for pointers
911  * in the block. Remove these full back refs, add implicit back refs for
912  * every pointers in the new block.
913  *
914  * The reference count of the block is greater than one and the tree is
915  * the block's owner tree. In this case, implicit back refs is used for
916  * pointers in the block. Add full back refs for every pointers in the
917  * block, increase lower level extents' reference counts. The original
918  * implicit back refs are entailed to the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * not the block's owner tree. Add implicit back refs for every pointer in
922  * the new block, increase lower level extents' reference count.
923  *
924  * Back Reference Key composing:
925  *
926  * The key objectid corresponds to the first byte in the extent,
927  * The key type is used to differentiate between types of back refs.
928  * There are different meanings of the key offset for different types
929  * of back refs.
930  *
931  * File extents can be referenced by:
932  *
933  * - multiple snapshots, subvolumes, or different generations in one subvol
934  * - different files inside a single subvolume
935  * - different offsets inside a file (bookend extents in file.c)
936  *
937  * The extent ref structure for the implicit back refs has fields for:
938  *
939  * - Objectid of the subvolume root
940  * - objectid of the file holding the reference
941  * - original offset in the file
942  * - how many bookend extents
943  *
944  * The key offset for the implicit back refs is hash of the first
945  * three fields.
946  *
947  * The extent ref structure for the full back refs has field for:
948  *
949  * - number of pointers in the tree leaf
950  *
951  * The key offset for the implicit back refs is the first byte of
952  * the tree leaf
953  *
954  * When a file extent is allocated, The implicit back refs is used.
955  * the fields are filled in:
956  *
957  *     (root_key.objectid, inode objectid, offset in file, 1)
958  *
959  * When a file extent is removed file truncation, we find the
960  * corresponding implicit back refs and check the following fields:
961  *
962  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
963  *
964  * Btree extents can be referenced by:
965  *
966  * - Different subvolumes
967  *
968  * Both the implicit back refs and the full back refs for tree blocks
969  * only consist of key. The key offset for the implicit back refs is
970  * objectid of block's owner tree. The key offset for the full back refs
971  * is the first byte of parent block.
972  *
973  * When implicit back refs is used, information about the lowest key and
974  * level of the tree block are required. These information are stored in
975  * tree block info structure.
976  */
977 
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  u64 owner, u32 extra_size)
983 {
984 	struct btrfs_extent_item *item;
985 	struct btrfs_extent_item_v0 *ei0;
986 	struct btrfs_extent_ref_v0 *ref0;
987 	struct btrfs_tree_block_info *bi;
988 	struct extent_buffer *leaf;
989 	struct btrfs_key key;
990 	struct btrfs_key found_key;
991 	u32 new_size = sizeof(*item);
992 	u64 refs;
993 	int ret;
994 
995 	leaf = path->nodes[0];
996 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997 
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 			     struct btrfs_extent_item_v0);
1001 	refs = btrfs_extent_refs_v0(leaf, ei0);
1002 
1003 	if (owner == (u64)-1) {
1004 		while (1) {
1005 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 				ret = btrfs_next_leaf(root, path);
1007 				if (ret < 0)
1008 					return ret;
1009 				BUG_ON(ret > 0); /* Corruption */
1010 				leaf = path->nodes[0];
1011 			}
1012 			btrfs_item_key_to_cpu(leaf, &found_key,
1013 					      path->slots[0]);
1014 			BUG_ON(key.objectid != found_key.objectid);
1015 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 				path->slots[0]++;
1017 				continue;
1018 			}
1019 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 					      struct btrfs_extent_ref_v0);
1021 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 			break;
1023 		}
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 		new_size += sizeof(*bi);
1029 
1030 	new_size -= sizeof(*ei0);
1031 	ret = btrfs_search_slot(trans, root, &key, path,
1032 				new_size + extra_size, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 	BUG_ON(ret); /* Corruption */
1036 
1037 	btrfs_extend_item(root, path, new_size);
1038 
1039 	leaf = path->nodes[0];
1040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 	btrfs_set_extent_refs(leaf, item, refs);
1042 	/* FIXME: get real generation */
1043 	btrfs_set_extent_generation(leaf, item, 0);
1044 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 		btrfs_set_extent_flags(leaf, item,
1046 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 		bi = (struct btrfs_tree_block_info *)(item + 1);
1049 		/* FIXME: get first key of the block */
1050 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 	} else {
1053 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 	}
1055 	btrfs_mark_buffer_dirty(leaf);
1056 	return 0;
1057 }
1058 #endif
1059 
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	u32 high_crc = ~(u32)0;
1063 	u32 low_crc = ~(u32)0;
1064 	__le64 lenum;
1065 
1066 	lenum = cpu_to_le64(root_objectid);
1067 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 	lenum = cpu_to_le64(owner);
1069 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 	lenum = cpu_to_le64(offset);
1071 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 
1073 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075 
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 				     struct btrfs_extent_data_ref *ref)
1078 {
1079 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 				    btrfs_extent_data_ref_objectid(leaf, ref),
1081 				    btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083 
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 				 struct btrfs_extent_data_ref *ref,
1086 				 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 		return 0;
1092 	return 1;
1093 }
1094 
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 					   struct btrfs_root *root,
1097 					   struct btrfs_path *path,
1098 					   u64 bytenr, u64 parent,
1099 					   u64 root_objectid,
1100 					   u64 owner, u64 offset)
1101 {
1102 	struct btrfs_key key;
1103 	struct btrfs_extent_data_ref *ref;
1104 	struct extent_buffer *leaf;
1105 	u32 nritems;
1106 	int ret;
1107 	int recow;
1108 	int err = -ENOENT;
1109 
1110 	key.objectid = bytenr;
1111 	if (parent) {
1112 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 		key.offset = parent;
1114 	} else {
1115 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 		key.offset = hash_extent_data_ref(root_objectid,
1117 						  owner, offset);
1118 	}
1119 again:
1120 	recow = 0;
1121 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 	if (ret < 0) {
1123 		err = ret;
1124 		goto fail;
1125 	}
1126 
1127 	if (parent) {
1128 		if (!ret)
1129 			return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 		btrfs_release_path(path);
1133 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 		if (ret < 0) {
1135 			err = ret;
1136 			goto fail;
1137 		}
1138 		if (!ret)
1139 			return 0;
1140 #endif
1141 		goto fail;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	nritems = btrfs_header_nritems(leaf);
1146 	while (1) {
1147 		if (path->slots[0] >= nritems) {
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret < 0)
1150 				err = ret;
1151 			if (ret)
1152 				goto fail;
1153 
1154 			leaf = path->nodes[0];
1155 			nritems = btrfs_header_nritems(leaf);
1156 			recow = 1;
1157 		}
1158 
1159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 		if (key.objectid != bytenr ||
1161 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 			goto fail;
1163 
1164 		ref = btrfs_item_ptr(leaf, path->slots[0],
1165 				     struct btrfs_extent_data_ref);
1166 
1167 		if (match_extent_data_ref(leaf, ref, root_objectid,
1168 					  owner, offset)) {
1169 			if (recow) {
1170 				btrfs_release_path(path);
1171 				goto again;
1172 			}
1173 			err = 0;
1174 			break;
1175 		}
1176 		path->slots[0]++;
1177 	}
1178 fail:
1179 	return err;
1180 }
1181 
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 					   struct btrfs_root *root,
1184 					   struct btrfs_path *path,
1185 					   u64 bytenr, u64 parent,
1186 					   u64 root_objectid, u64 owner,
1187 					   u64 offset, int refs_to_add)
1188 {
1189 	struct btrfs_key key;
1190 	struct extent_buffer *leaf;
1191 	u32 size;
1192 	u32 num_refs;
1193 	int ret;
1194 
1195 	key.objectid = bytenr;
1196 	if (parent) {
1197 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 		key.offset = parent;
1199 		size = sizeof(struct btrfs_shared_data_ref);
1200 	} else {
1201 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 		key.offset = hash_extent_data_ref(root_objectid,
1203 						  owner, offset);
1204 		size = sizeof(struct btrfs_extent_data_ref);
1205 	}
1206 
1207 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 	if (ret && ret != -EEXIST)
1209 		goto fail;
1210 
1211 	leaf = path->nodes[0];
1212 	if (parent) {
1213 		struct btrfs_shared_data_ref *ref;
1214 		ref = btrfs_item_ptr(leaf, path->slots[0],
1215 				     struct btrfs_shared_data_ref);
1216 		if (ret == 0) {
1217 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 		} else {
1219 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 			num_refs += refs_to_add;
1221 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 		}
1223 	} else {
1224 		struct btrfs_extent_data_ref *ref;
1225 		while (ret == -EEXIST) {
1226 			ref = btrfs_item_ptr(leaf, path->slots[0],
1227 					     struct btrfs_extent_data_ref);
1228 			if (match_extent_data_ref(leaf, ref, root_objectid,
1229 						  owner, offset))
1230 				break;
1231 			btrfs_release_path(path);
1232 			key.offset++;
1233 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 						      size);
1235 			if (ret && ret != -EEXIST)
1236 				goto fail;
1237 
1238 			leaf = path->nodes[0];
1239 		}
1240 		ref = btrfs_item_ptr(leaf, path->slots[0],
1241 				     struct btrfs_extent_data_ref);
1242 		if (ret == 0) {
1243 			btrfs_set_extent_data_ref_root(leaf, ref,
1244 						       root_objectid);
1245 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 		} else {
1249 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 			num_refs += refs_to_add;
1251 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 		}
1253 	}
1254 	btrfs_mark_buffer_dirty(leaf);
1255 	ret = 0;
1256 fail:
1257 	btrfs_release_path(path);
1258 	return ret;
1259 }
1260 
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   int refs_to_drop, int *last_ref)
1265 {
1266 	struct btrfs_key key;
1267 	struct btrfs_extent_data_ref *ref1 = NULL;
1268 	struct btrfs_shared_data_ref *ref2 = NULL;
1269 	struct extent_buffer *leaf;
1270 	u32 num_refs = 0;
1271 	int ret = 0;
1272 
1273 	leaf = path->nodes[0];
1274 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275 
1276 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 				      struct btrfs_extent_data_ref);
1279 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 				      struct btrfs_shared_data_ref);
1283 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 		struct btrfs_extent_ref_v0 *ref0;
1287 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_ref_v0);
1289 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 	} else {
1292 		BUG();
1293 	}
1294 
1295 	BUG_ON(num_refs < refs_to_drop);
1296 	num_refs -= refs_to_drop;
1297 
1298 	if (num_refs == 0) {
1299 		ret = btrfs_del_item(trans, root, path);
1300 		*last_ref = 1;
1301 	} else {
1302 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 		else {
1308 			struct btrfs_extent_ref_v0 *ref0;
1309 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 					struct btrfs_extent_ref_v0);
1311 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 		}
1313 #endif
1314 		btrfs_mark_buffer_dirty(leaf);
1315 	}
1316 	return ret;
1317 }
1318 
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 					  struct btrfs_path *path,
1321 					  struct btrfs_extent_inline_ref *iref)
1322 {
1323 	struct btrfs_key key;
1324 	struct extent_buffer *leaf;
1325 	struct btrfs_extent_data_ref *ref1;
1326 	struct btrfs_shared_data_ref *ref2;
1327 	u32 num_refs = 0;
1328 
1329 	leaf = path->nodes[0];
1330 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 	if (iref) {
1332 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 		    BTRFS_EXTENT_DATA_REF_KEY) {
1334 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 		} else {
1337 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 		}
1340 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 				      struct btrfs_extent_data_ref);
1343 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 				      struct btrfs_shared_data_ref);
1347 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 		struct btrfs_extent_ref_v0 *ref0;
1351 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 				      struct btrfs_extent_ref_v0);
1353 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 	} else {
1356 		WARN_ON(1);
1357 	}
1358 	return num_refs;
1359 }
1360 
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 					  struct btrfs_root *root,
1363 					  struct btrfs_path *path,
1364 					  u64 bytenr, u64 parent,
1365 					  u64 root_objectid)
1366 {
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	key.objectid = bytenr;
1371 	if (parent) {
1372 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 		key.offset = parent;
1374 	} else {
1375 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 		key.offset = root_objectid;
1377 	}
1378 
1379 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 	if (ret > 0)
1381 		ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 	if (ret == -ENOENT && parent) {
1384 		btrfs_release_path(path);
1385 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 		if (ret > 0)
1388 			ret = -ENOENT;
1389 	}
1390 #endif
1391 	return ret;
1392 }
1393 
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 					  struct btrfs_root *root,
1396 					  struct btrfs_path *path,
1397 					  u64 bytenr, u64 parent,
1398 					  u64 root_objectid)
1399 {
1400 	struct btrfs_key key;
1401 	int ret;
1402 
1403 	key.objectid = bytenr;
1404 	if (parent) {
1405 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 		key.offset = parent;
1407 	} else {
1408 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 		key.offset = root_objectid;
1410 	}
1411 
1412 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 	btrfs_release_path(path);
1414 	return ret;
1415 }
1416 
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 	int type;
1420 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 		if (parent > 0)
1422 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 		else
1424 			type = BTRFS_TREE_BLOCK_REF_KEY;
1425 	} else {
1426 		if (parent > 0)
1427 			type = BTRFS_SHARED_DATA_REF_KEY;
1428 		else
1429 			type = BTRFS_EXTENT_DATA_REF_KEY;
1430 	}
1431 	return type;
1432 }
1433 
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 			 struct btrfs_key *key)
1436 
1437 {
1438 	for (; level < BTRFS_MAX_LEVEL; level++) {
1439 		if (!path->nodes[level])
1440 			break;
1441 		if (path->slots[level] + 1 >=
1442 		    btrfs_header_nritems(path->nodes[level]))
1443 			continue;
1444 		if (level == 0)
1445 			btrfs_item_key_to_cpu(path->nodes[level], key,
1446 					      path->slots[level] + 1);
1447 		else
1448 			btrfs_node_key_to_cpu(path->nodes[level], key,
1449 					      path->slots[level] + 1);
1450 		return 0;
1451 	}
1452 	return 1;
1453 }
1454 
1455 /*
1456  * look for inline back ref. if back ref is found, *ref_ret is set
1457  * to the address of inline back ref, and 0 is returned.
1458  *
1459  * if back ref isn't found, *ref_ret is set to the address where it
1460  * should be inserted, and -ENOENT is returned.
1461  *
1462  * if insert is true and there are too many inline back refs, the path
1463  * points to the extent item, and -EAGAIN is returned.
1464  *
1465  * NOTE: inline back refs are ordered in the same way that back ref
1466  *	 items in the tree are ordered.
1467  */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 				 struct btrfs_root *root,
1471 				 struct btrfs_path *path,
1472 				 struct btrfs_extent_inline_ref **ref_ret,
1473 				 u64 bytenr, u64 num_bytes,
1474 				 u64 parent, u64 root_objectid,
1475 				 u64 owner, u64 offset, int insert)
1476 {
1477 	struct btrfs_key key;
1478 	struct extent_buffer *leaf;
1479 	struct btrfs_extent_item *ei;
1480 	struct btrfs_extent_inline_ref *iref;
1481 	u64 flags;
1482 	u64 item_size;
1483 	unsigned long ptr;
1484 	unsigned long end;
1485 	int extra_size;
1486 	int type;
1487 	int want;
1488 	int ret;
1489 	int err = 0;
1490 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 						 SKINNY_METADATA);
1492 
1493 	key.objectid = bytenr;
1494 	key.type = BTRFS_EXTENT_ITEM_KEY;
1495 	key.offset = num_bytes;
1496 
1497 	want = extent_ref_type(parent, owner);
1498 	if (insert) {
1499 		extra_size = btrfs_extent_inline_ref_size(want);
1500 		path->keep_locks = 1;
1501 	} else
1502 		extra_size = -1;
1503 
1504 	/*
1505 	 * Owner is our parent level, so we can just add one to get the level
1506 	 * for the block we are interested in.
1507 	 */
1508 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		key.type = BTRFS_METADATA_ITEM_KEY;
1510 		key.offset = owner;
1511 	}
1512 
1513 again:
1514 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 	if (ret < 0) {
1516 		err = ret;
1517 		goto out;
1518 	}
1519 
1520 	/*
1521 	 * We may be a newly converted file system which still has the old fat
1522 	 * extent entries for metadata, so try and see if we have one of those.
1523 	 */
1524 	if (ret > 0 && skinny_metadata) {
1525 		skinny_metadata = false;
1526 		if (path->slots[0]) {
1527 			path->slots[0]--;
1528 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 					      path->slots[0]);
1530 			if (key.objectid == bytenr &&
1531 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 			    key.offset == num_bytes)
1533 				ret = 0;
1534 		}
1535 		if (ret) {
1536 			key.objectid = bytenr;
1537 			key.type = BTRFS_EXTENT_ITEM_KEY;
1538 			key.offset = num_bytes;
1539 			btrfs_release_path(path);
1540 			goto again;
1541 		}
1542 	}
1543 
1544 	if (ret && !insert) {
1545 		err = -ENOENT;
1546 		goto out;
1547 	} else if (WARN_ON(ret)) {
1548 		err = -EIO;
1549 		goto out;
1550 	}
1551 
1552 	leaf = path->nodes[0];
1553 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 	if (item_size < sizeof(*ei)) {
1556 		if (!insert) {
1557 			err = -ENOENT;
1558 			goto out;
1559 		}
1560 		ret = convert_extent_item_v0(trans, root, path, owner,
1561 					     extra_size);
1562 		if (ret < 0) {
1563 			err = ret;
1564 			goto out;
1565 		}
1566 		leaf = path->nodes[0];
1567 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 	}
1569 #endif
1570 	BUG_ON(item_size < sizeof(*ei));
1571 
1572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 	flags = btrfs_extent_flags(leaf, ei);
1574 
1575 	ptr = (unsigned long)(ei + 1);
1576 	end = (unsigned long)ei + item_size;
1577 
1578 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 		ptr += sizeof(struct btrfs_tree_block_info);
1580 		BUG_ON(ptr > end);
1581 	}
1582 
1583 	err = -ENOENT;
1584 	while (1) {
1585 		if (ptr >= end) {
1586 			WARN_ON(ptr > end);
1587 			break;
1588 		}
1589 		iref = (struct btrfs_extent_inline_ref *)ptr;
1590 		type = btrfs_extent_inline_ref_type(leaf, iref);
1591 		if (want < type)
1592 			break;
1593 		if (want > type) {
1594 			ptr += btrfs_extent_inline_ref_size(type);
1595 			continue;
1596 		}
1597 
1598 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 			struct btrfs_extent_data_ref *dref;
1600 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 			if (match_extent_data_ref(leaf, dref, root_objectid,
1602 						  owner, offset)) {
1603 				err = 0;
1604 				break;
1605 			}
1606 			if (hash_extent_data_ref_item(leaf, dref) <
1607 			    hash_extent_data_ref(root_objectid, owner, offset))
1608 				break;
1609 		} else {
1610 			u64 ref_offset;
1611 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 			if (parent > 0) {
1613 				if (parent == ref_offset) {
1614 					err = 0;
1615 					break;
1616 				}
1617 				if (ref_offset < parent)
1618 					break;
1619 			} else {
1620 				if (root_objectid == ref_offset) {
1621 					err = 0;
1622 					break;
1623 				}
1624 				if (ref_offset < root_objectid)
1625 					break;
1626 			}
1627 		}
1628 		ptr += btrfs_extent_inline_ref_size(type);
1629 	}
1630 	if (err == -ENOENT && insert) {
1631 		if (item_size + extra_size >=
1632 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 			err = -EAGAIN;
1634 			goto out;
1635 		}
1636 		/*
1637 		 * To add new inline back ref, we have to make sure
1638 		 * there is no corresponding back ref item.
1639 		 * For simplicity, we just do not add new inline back
1640 		 * ref if there is any kind of item for this block
1641 		 */
1642 		if (find_next_key(path, 0, &key) == 0 &&
1643 		    key.objectid == bytenr &&
1644 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 			err = -EAGAIN;
1646 			goto out;
1647 		}
1648 	}
1649 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 	if (insert) {
1652 		path->keep_locks = 0;
1653 		btrfs_unlock_up_safe(path, 1);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  * helper to add new inline back ref
1660  */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 				 struct btrfs_path *path,
1664 				 struct btrfs_extent_inline_ref *iref,
1665 				 u64 parent, u64 root_objectid,
1666 				 u64 owner, u64 offset, int refs_to_add,
1667 				 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 	struct extent_buffer *leaf;
1670 	struct btrfs_extent_item *ei;
1671 	unsigned long ptr;
1672 	unsigned long end;
1673 	unsigned long item_offset;
1674 	u64 refs;
1675 	int size;
1676 	int type;
1677 
1678 	leaf = path->nodes[0];
1679 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 	item_offset = (unsigned long)iref - (unsigned long)ei;
1681 
1682 	type = extent_ref_type(parent, owner);
1683 	size = btrfs_extent_inline_ref_size(type);
1684 
1685 	btrfs_extend_item(root, path, size);
1686 
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	refs = btrfs_extent_refs(leaf, ei);
1689 	refs += refs_to_add;
1690 	btrfs_set_extent_refs(leaf, ei, refs);
1691 	if (extent_op)
1692 		__run_delayed_extent_op(extent_op, leaf, ei);
1693 
1694 	ptr = (unsigned long)ei + item_offset;
1695 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 	if (ptr < end - size)
1697 		memmove_extent_buffer(leaf, ptr + size, ptr,
1698 				      end - size - ptr);
1699 
1700 	iref = (struct btrfs_extent_inline_ref *)ptr;
1701 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 		struct btrfs_extent_data_ref *dref;
1704 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		struct btrfs_shared_data_ref *sref;
1711 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 	} else {
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 	}
1719 	btrfs_mark_buffer_dirty(leaf);
1720 }
1721 
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 				 struct btrfs_root *root,
1724 				 struct btrfs_path *path,
1725 				 struct btrfs_extent_inline_ref **ref_ret,
1726 				 u64 bytenr, u64 num_bytes, u64 parent,
1727 				 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 	int ret;
1730 
1731 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 					   bytenr, num_bytes, parent,
1733 					   root_objectid, owner, offset, 0);
1734 	if (ret != -ENOENT)
1735 		return ret;
1736 
1737 	btrfs_release_path(path);
1738 	*ref_ret = NULL;
1739 
1740 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 					    root_objectid);
1743 	} else {
1744 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 					     root_objectid, owner, offset);
1746 	}
1747 	return ret;
1748 }
1749 
1750 /*
1751  * helper to update/remove inline back ref
1752  */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 				  struct btrfs_path *path,
1756 				  struct btrfs_extent_inline_ref *iref,
1757 				  int refs_to_mod,
1758 				  struct btrfs_delayed_extent_op *extent_op,
1759 				  int *last_ref)
1760 {
1761 	struct extent_buffer *leaf;
1762 	struct btrfs_extent_item *ei;
1763 	struct btrfs_extent_data_ref *dref = NULL;
1764 	struct btrfs_shared_data_ref *sref = NULL;
1765 	unsigned long ptr;
1766 	unsigned long end;
1767 	u32 item_size;
1768 	int size;
1769 	int type;
1770 	u64 refs;
1771 
1772 	leaf = path->nodes[0];
1773 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 	refs = btrfs_extent_refs(leaf, ei);
1775 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 	refs += refs_to_mod;
1777 	btrfs_set_extent_refs(leaf, ei, refs);
1778 	if (extent_op)
1779 		__run_delayed_extent_op(extent_op, leaf, ei);
1780 
1781 	type = btrfs_extent_inline_ref_type(leaf, iref);
1782 
1783 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 		refs = btrfs_extent_data_ref_count(leaf, dref);
1786 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 		refs = btrfs_shared_data_ref_count(leaf, sref);
1789 	} else {
1790 		refs = 1;
1791 		BUG_ON(refs_to_mod != -1);
1792 	}
1793 
1794 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 	refs += refs_to_mod;
1796 
1797 	if (refs > 0) {
1798 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 		else
1801 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 	} else {
1803 		*last_ref = 1;
1804 		size =  btrfs_extent_inline_ref_size(type);
1805 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 		ptr = (unsigned long)iref;
1807 		end = (unsigned long)ei + item_size;
1808 		if (ptr + size < end)
1809 			memmove_extent_buffer(leaf, ptr, ptr + size,
1810 					      end - ptr - size);
1811 		item_size -= size;
1812 		btrfs_truncate_item(root, path, item_size, 1);
1813 	}
1814 	btrfs_mark_buffer_dirty(leaf);
1815 }
1816 
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 				 struct btrfs_root *root,
1820 				 struct btrfs_path *path,
1821 				 u64 bytenr, u64 num_bytes, u64 parent,
1822 				 u64 root_objectid, u64 owner,
1823 				 u64 offset, int refs_to_add,
1824 				 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 	struct btrfs_extent_inline_ref *iref;
1827 	int ret;
1828 
1829 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 					   bytenr, num_bytes, parent,
1831 					   root_objectid, owner, offset, 1);
1832 	if (ret == 0) {
1833 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 		update_inline_extent_backref(root, path, iref,
1835 					     refs_to_add, extent_op, NULL);
1836 	} else if (ret == -ENOENT) {
1837 		setup_inline_extent_backref(root, path, iref, parent,
1838 					    root_objectid, owner, offset,
1839 					    refs_to_add, extent_op);
1840 		ret = 0;
1841 	}
1842 	return ret;
1843 }
1844 
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 				 struct btrfs_root *root,
1847 				 struct btrfs_path *path,
1848 				 u64 bytenr, u64 parent, u64 root_objectid,
1849 				 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 	int ret;
1852 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 		BUG_ON(refs_to_add != 1);
1854 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 					    parent, root_objectid);
1856 	} else {
1857 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 					     parent, root_objectid,
1859 					     owner, offset, refs_to_add);
1860 	}
1861 	return ret;
1862 }
1863 
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 				 struct btrfs_root *root,
1866 				 struct btrfs_path *path,
1867 				 struct btrfs_extent_inline_ref *iref,
1868 				 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 	int ret = 0;
1871 
1872 	BUG_ON(!is_data && refs_to_drop != 1);
1873 	if (iref) {
1874 		update_inline_extent_backref(root, path, iref,
1875 					     -refs_to_drop, NULL, last_ref);
1876 	} else if (is_data) {
1877 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 					     last_ref);
1879 	} else {
1880 		*last_ref = 1;
1881 		ret = btrfs_del_item(trans, root, path);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 				u64 start, u64 len)
1888 {
1889 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891 
1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 			 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 	int ret;
1896 	u64 discarded_bytes = 0;
1897 	struct btrfs_bio *bbio = NULL;
1898 
1899 
1900 	/* Tell the block device(s) that the sectors can be discarded */
1901 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 			      bytenr, &num_bytes, &bbio, 0);
1903 	/* Error condition is -ENOMEM */
1904 	if (!ret) {
1905 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 		int i;
1907 
1908 
1909 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 			if (!stripe->dev->can_discard)
1911 				continue;
1912 
1913 			ret = btrfs_issue_discard(stripe->dev->bdev,
1914 						  stripe->physical,
1915 						  stripe->length);
1916 			if (!ret)
1917 				discarded_bytes += stripe->length;
1918 			else if (ret != -EOPNOTSUPP)
1919 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920 
1921 			/*
1922 			 * Just in case we get back EOPNOTSUPP for some reason,
1923 			 * just ignore the return value so we don't screw up
1924 			 * people calling discard_extent.
1925 			 */
1926 			ret = 0;
1927 		}
1928 		btrfs_put_bbio(bbio);
1929 	}
1930 
1931 	if (actual_bytes)
1932 		*actual_bytes = discarded_bytes;
1933 
1934 
1935 	if (ret == -EOPNOTSUPP)
1936 		ret = 0;
1937 	return ret;
1938 }
1939 
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 			 struct btrfs_root *root,
1943 			 u64 bytenr, u64 num_bytes, u64 parent,
1944 			 u64 root_objectid, u64 owner, u64 offset,
1945 			 int no_quota)
1946 {
1947 	int ret;
1948 	struct btrfs_fs_info *fs_info = root->fs_info;
1949 
1950 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952 
1953 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 					num_bytes,
1956 					parent, root_objectid, (int)owner,
1957 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 	} else {
1959 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 					num_bytes,
1961 					parent, root_objectid, owner, offset,
1962 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 	}
1964 	return ret;
1965 }
1966 
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 				  struct btrfs_root *root,
1969 				  struct btrfs_delayed_ref_node *node,
1970 				  u64 parent, u64 root_objectid,
1971 				  u64 owner, u64 offset, int refs_to_add,
1972 				  struct btrfs_delayed_extent_op *extent_op)
1973 {
1974 	struct btrfs_fs_info *fs_info = root->fs_info;
1975 	struct btrfs_path *path;
1976 	struct extent_buffer *leaf;
1977 	struct btrfs_extent_item *item;
1978 	struct btrfs_key key;
1979 	u64 bytenr = node->bytenr;
1980 	u64 num_bytes = node->num_bytes;
1981 	u64 refs;
1982 	int ret;
1983 	int no_quota = node->no_quota;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2000 		goto out;
2001 
2002 	/*
2003 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 	 * inline extent ref, so just update the reference count and add a
2005 	 * normal backref.
2006 	 */
2007 	leaf = path->nodes[0];
2008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 	refs = btrfs_extent_refs(leaf, item);
2011 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2012 	if (extent_op)
2013 		__run_delayed_extent_op(extent_op, leaf, item);
2014 
2015 	btrfs_mark_buffer_dirty(leaf);
2016 	btrfs_release_path(path);
2017 
2018 	path->reada = 1;
2019 	path->leave_spinning = 1;
2020 	/* now insert the actual backref */
2021 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2022 				    path, bytenr, parent, root_objectid,
2023 				    owner, offset, refs_to_add);
2024 	if (ret)
2025 		btrfs_abort_transaction(trans, root, ret);
2026 out:
2027 	btrfs_free_path(path);
2028 	return ret;
2029 }
2030 
2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2032 				struct btrfs_root *root,
2033 				struct btrfs_delayed_ref_node *node,
2034 				struct btrfs_delayed_extent_op *extent_op,
2035 				int insert_reserved)
2036 {
2037 	int ret = 0;
2038 	struct btrfs_delayed_data_ref *ref;
2039 	struct btrfs_key ins;
2040 	u64 parent = 0;
2041 	u64 ref_root = 0;
2042 	u64 flags = 0;
2043 
2044 	ins.objectid = node->bytenr;
2045 	ins.offset = node->num_bytes;
2046 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2047 
2048 	ref = btrfs_delayed_node_to_data_ref(node);
2049 	trace_run_delayed_data_ref(node, ref, node->action);
2050 
2051 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2052 		parent = ref->parent;
2053 	ref_root = ref->root;
2054 
2055 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2056 		if (extent_op)
2057 			flags |= extent_op->flags_to_set;
2058 		ret = alloc_reserved_file_extent(trans, root,
2059 						 parent, ref_root, flags,
2060 						 ref->objectid, ref->offset,
2061 						 &ins, node->ref_mod);
2062 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2063 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2064 					     ref_root, ref->objectid,
2065 					     ref->offset, node->ref_mod,
2066 					     extent_op);
2067 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2068 		ret = __btrfs_free_extent(trans, root, node, parent,
2069 					  ref_root, ref->objectid,
2070 					  ref->offset, node->ref_mod,
2071 					  extent_op);
2072 	} else {
2073 		BUG();
2074 	}
2075 	return ret;
2076 }
2077 
2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2079 				    struct extent_buffer *leaf,
2080 				    struct btrfs_extent_item *ei)
2081 {
2082 	u64 flags = btrfs_extent_flags(leaf, ei);
2083 	if (extent_op->update_flags) {
2084 		flags |= extent_op->flags_to_set;
2085 		btrfs_set_extent_flags(leaf, ei, flags);
2086 	}
2087 
2088 	if (extent_op->update_key) {
2089 		struct btrfs_tree_block_info *bi;
2090 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2091 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2092 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2093 	}
2094 }
2095 
2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2097 				 struct btrfs_root *root,
2098 				 struct btrfs_delayed_ref_node *node,
2099 				 struct btrfs_delayed_extent_op *extent_op)
2100 {
2101 	struct btrfs_key key;
2102 	struct btrfs_path *path;
2103 	struct btrfs_extent_item *ei;
2104 	struct extent_buffer *leaf;
2105 	u32 item_size;
2106 	int ret;
2107 	int err = 0;
2108 	int metadata = !extent_op->is_data;
2109 
2110 	if (trans->aborted)
2111 		return 0;
2112 
2113 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2114 		metadata = 0;
2115 
2116 	path = btrfs_alloc_path();
2117 	if (!path)
2118 		return -ENOMEM;
2119 
2120 	key.objectid = node->bytenr;
2121 
2122 	if (metadata) {
2123 		key.type = BTRFS_METADATA_ITEM_KEY;
2124 		key.offset = extent_op->level;
2125 	} else {
2126 		key.type = BTRFS_EXTENT_ITEM_KEY;
2127 		key.offset = node->num_bytes;
2128 	}
2129 
2130 again:
2131 	path->reada = 1;
2132 	path->leave_spinning = 1;
2133 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2134 				path, 0, 1);
2135 	if (ret < 0) {
2136 		err = ret;
2137 		goto out;
2138 	}
2139 	if (ret > 0) {
2140 		if (metadata) {
2141 			if (path->slots[0] > 0) {
2142 				path->slots[0]--;
2143 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2144 						      path->slots[0]);
2145 				if (key.objectid == node->bytenr &&
2146 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2147 				    key.offset == node->num_bytes)
2148 					ret = 0;
2149 			}
2150 			if (ret > 0) {
2151 				btrfs_release_path(path);
2152 				metadata = 0;
2153 
2154 				key.objectid = node->bytenr;
2155 				key.offset = node->num_bytes;
2156 				key.type = BTRFS_EXTENT_ITEM_KEY;
2157 				goto again;
2158 			}
2159 		} else {
2160 			err = -EIO;
2161 			goto out;
2162 		}
2163 	}
2164 
2165 	leaf = path->nodes[0];
2166 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 	if (item_size < sizeof(*ei)) {
2169 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2170 					     path, (u64)-1, 0);
2171 		if (ret < 0) {
2172 			err = ret;
2173 			goto out;
2174 		}
2175 		leaf = path->nodes[0];
2176 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2177 	}
2178 #endif
2179 	BUG_ON(item_size < sizeof(*ei));
2180 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2181 	__run_delayed_extent_op(extent_op, leaf, ei);
2182 
2183 	btrfs_mark_buffer_dirty(leaf);
2184 out:
2185 	btrfs_free_path(path);
2186 	return err;
2187 }
2188 
2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2190 				struct btrfs_root *root,
2191 				struct btrfs_delayed_ref_node *node,
2192 				struct btrfs_delayed_extent_op *extent_op,
2193 				int insert_reserved)
2194 {
2195 	int ret = 0;
2196 	struct btrfs_delayed_tree_ref *ref;
2197 	struct btrfs_key ins;
2198 	u64 parent = 0;
2199 	u64 ref_root = 0;
2200 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2201 						 SKINNY_METADATA);
2202 
2203 	ref = btrfs_delayed_node_to_tree_ref(node);
2204 	trace_run_delayed_tree_ref(node, ref, node->action);
2205 
2206 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2207 		parent = ref->parent;
2208 	ref_root = ref->root;
2209 
2210 	ins.objectid = node->bytenr;
2211 	if (skinny_metadata) {
2212 		ins.offset = ref->level;
2213 		ins.type = BTRFS_METADATA_ITEM_KEY;
2214 	} else {
2215 		ins.offset = node->num_bytes;
2216 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2217 	}
2218 
2219 	BUG_ON(node->ref_mod != 1);
2220 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2221 		BUG_ON(!extent_op || !extent_op->update_flags);
2222 		ret = alloc_reserved_tree_block(trans, root,
2223 						parent, ref_root,
2224 						extent_op->flags_to_set,
2225 						&extent_op->key,
2226 						ref->level, &ins,
2227 						node->no_quota);
2228 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2229 		ret = __btrfs_inc_extent_ref(trans, root, node,
2230 					     parent, ref_root,
2231 					     ref->level, 0, 1,
2232 					     extent_op);
2233 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2234 		ret = __btrfs_free_extent(trans, root, node,
2235 					  parent, ref_root,
2236 					  ref->level, 0, 1, extent_op);
2237 	} else {
2238 		BUG();
2239 	}
2240 	return ret;
2241 }
2242 
2243 /* helper function to actually process a single delayed ref entry */
2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2245 			       struct btrfs_root *root,
2246 			       struct btrfs_delayed_ref_node *node,
2247 			       struct btrfs_delayed_extent_op *extent_op,
2248 			       int insert_reserved)
2249 {
2250 	int ret = 0;
2251 
2252 	if (trans->aborted) {
2253 		if (insert_reserved)
2254 			btrfs_pin_extent(root, node->bytenr,
2255 					 node->num_bytes, 1);
2256 		return 0;
2257 	}
2258 
2259 	if (btrfs_delayed_ref_is_head(node)) {
2260 		struct btrfs_delayed_ref_head *head;
2261 		/*
2262 		 * we've hit the end of the chain and we were supposed
2263 		 * to insert this extent into the tree.  But, it got
2264 		 * deleted before we ever needed to insert it, so all
2265 		 * we have to do is clean up the accounting
2266 		 */
2267 		BUG_ON(extent_op);
2268 		head = btrfs_delayed_node_to_head(node);
2269 		trace_run_delayed_ref_head(node, head, node->action);
2270 
2271 		if (insert_reserved) {
2272 			btrfs_pin_extent(root, node->bytenr,
2273 					 node->num_bytes, 1);
2274 			if (head->is_data) {
2275 				ret = btrfs_del_csums(trans, root,
2276 						      node->bytenr,
2277 						      node->num_bytes);
2278 			}
2279 		}
2280 		return ret;
2281 	}
2282 
2283 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2286 					   insert_reserved);
2287 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2288 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2290 					   insert_reserved);
2291 	else
2292 		BUG();
2293 	return ret;
2294 }
2295 
2296 static inline struct btrfs_delayed_ref_node *
2297 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2298 {
2299 	struct btrfs_delayed_ref_node *ref;
2300 
2301 	if (list_empty(&head->ref_list))
2302 		return NULL;
2303 
2304 	/*
2305 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2306 	 * This is to prevent a ref count from going down to zero, which deletes
2307 	 * the extent item from the extent tree, when there still are references
2308 	 * to add, which would fail because they would not find the extent item.
2309 	 */
2310 	list_for_each_entry(ref, &head->ref_list, list) {
2311 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2312 			return ref;
2313 	}
2314 
2315 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2316 			  list);
2317 }
2318 
2319 /*
2320  * Returns 0 on success or if called with an already aborted transaction.
2321  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2322  */
2323 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2324 					     struct btrfs_root *root,
2325 					     unsigned long nr)
2326 {
2327 	struct btrfs_delayed_ref_root *delayed_refs;
2328 	struct btrfs_delayed_ref_node *ref;
2329 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2330 	struct btrfs_delayed_extent_op *extent_op;
2331 	struct btrfs_fs_info *fs_info = root->fs_info;
2332 	ktime_t start = ktime_get();
2333 	int ret;
2334 	unsigned long count = 0;
2335 	unsigned long actual_count = 0;
2336 	int must_insert_reserved = 0;
2337 
2338 	delayed_refs = &trans->transaction->delayed_refs;
2339 	while (1) {
2340 		if (!locked_ref) {
2341 			if (count >= nr)
2342 				break;
2343 
2344 			spin_lock(&delayed_refs->lock);
2345 			locked_ref = btrfs_select_ref_head(trans);
2346 			if (!locked_ref) {
2347 				spin_unlock(&delayed_refs->lock);
2348 				break;
2349 			}
2350 
2351 			/* grab the lock that says we are going to process
2352 			 * all the refs for this head */
2353 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2354 			spin_unlock(&delayed_refs->lock);
2355 			/*
2356 			 * we may have dropped the spin lock to get the head
2357 			 * mutex lock, and that might have given someone else
2358 			 * time to free the head.  If that's true, it has been
2359 			 * removed from our list and we can move on.
2360 			 */
2361 			if (ret == -EAGAIN) {
2362 				locked_ref = NULL;
2363 				count++;
2364 				continue;
2365 			}
2366 		}
2367 
2368 		spin_lock(&locked_ref->lock);
2369 
2370 		/*
2371 		 * locked_ref is the head node, so we have to go one
2372 		 * node back for any delayed ref updates
2373 		 */
2374 		ref = select_delayed_ref(locked_ref);
2375 
2376 		if (ref && ref->seq &&
2377 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2378 			spin_unlock(&locked_ref->lock);
2379 			btrfs_delayed_ref_unlock(locked_ref);
2380 			spin_lock(&delayed_refs->lock);
2381 			locked_ref->processing = 0;
2382 			delayed_refs->num_heads_ready++;
2383 			spin_unlock(&delayed_refs->lock);
2384 			locked_ref = NULL;
2385 			cond_resched();
2386 			count++;
2387 			continue;
2388 		}
2389 
2390 		/*
2391 		 * record the must insert reserved flag before we
2392 		 * drop the spin lock.
2393 		 */
2394 		must_insert_reserved = locked_ref->must_insert_reserved;
2395 		locked_ref->must_insert_reserved = 0;
2396 
2397 		extent_op = locked_ref->extent_op;
2398 		locked_ref->extent_op = NULL;
2399 
2400 		if (!ref) {
2401 
2402 
2403 			/* All delayed refs have been processed, Go ahead
2404 			 * and send the head node to run_one_delayed_ref,
2405 			 * so that any accounting fixes can happen
2406 			 */
2407 			ref = &locked_ref->node;
2408 
2409 			if (extent_op && must_insert_reserved) {
2410 				btrfs_free_delayed_extent_op(extent_op);
2411 				extent_op = NULL;
2412 			}
2413 
2414 			if (extent_op) {
2415 				spin_unlock(&locked_ref->lock);
2416 				ret = run_delayed_extent_op(trans, root,
2417 							    ref, extent_op);
2418 				btrfs_free_delayed_extent_op(extent_op);
2419 
2420 				if (ret) {
2421 					/*
2422 					 * Need to reset must_insert_reserved if
2423 					 * there was an error so the abort stuff
2424 					 * can cleanup the reserved space
2425 					 * properly.
2426 					 */
2427 					if (must_insert_reserved)
2428 						locked_ref->must_insert_reserved = 1;
2429 					locked_ref->processing = 0;
2430 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2431 					btrfs_delayed_ref_unlock(locked_ref);
2432 					return ret;
2433 				}
2434 				continue;
2435 			}
2436 
2437 			/*
2438 			 * Need to drop our head ref lock and re-aqcuire the
2439 			 * delayed ref lock and then re-check to make sure
2440 			 * nobody got added.
2441 			 */
2442 			spin_unlock(&locked_ref->lock);
2443 			spin_lock(&delayed_refs->lock);
2444 			spin_lock(&locked_ref->lock);
2445 			if (!list_empty(&locked_ref->ref_list) ||
2446 			    locked_ref->extent_op) {
2447 				spin_unlock(&locked_ref->lock);
2448 				spin_unlock(&delayed_refs->lock);
2449 				continue;
2450 			}
2451 			ref->in_tree = 0;
2452 			delayed_refs->num_heads--;
2453 			rb_erase(&locked_ref->href_node,
2454 				 &delayed_refs->href_root);
2455 			spin_unlock(&delayed_refs->lock);
2456 		} else {
2457 			actual_count++;
2458 			ref->in_tree = 0;
2459 			list_del(&ref->list);
2460 		}
2461 		atomic_dec(&delayed_refs->num_entries);
2462 
2463 		if (!btrfs_delayed_ref_is_head(ref)) {
2464 			/*
2465 			 * when we play the delayed ref, also correct the
2466 			 * ref_mod on head
2467 			 */
2468 			switch (ref->action) {
2469 			case BTRFS_ADD_DELAYED_REF:
2470 			case BTRFS_ADD_DELAYED_EXTENT:
2471 				locked_ref->node.ref_mod -= ref->ref_mod;
2472 				break;
2473 			case BTRFS_DROP_DELAYED_REF:
2474 				locked_ref->node.ref_mod += ref->ref_mod;
2475 				break;
2476 			default:
2477 				WARN_ON(1);
2478 			}
2479 		}
2480 		spin_unlock(&locked_ref->lock);
2481 
2482 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2483 					  must_insert_reserved);
2484 
2485 		btrfs_free_delayed_extent_op(extent_op);
2486 		if (ret) {
2487 			locked_ref->processing = 0;
2488 			btrfs_delayed_ref_unlock(locked_ref);
2489 			btrfs_put_delayed_ref(ref);
2490 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2491 			return ret;
2492 		}
2493 
2494 		/*
2495 		 * If this node is a head, that means all the refs in this head
2496 		 * have been dealt with, and we will pick the next head to deal
2497 		 * with, so we must unlock the head and drop it from the cluster
2498 		 * list before we release it.
2499 		 */
2500 		if (btrfs_delayed_ref_is_head(ref)) {
2501 			if (locked_ref->is_data &&
2502 			    locked_ref->total_ref_mod < 0) {
2503 				spin_lock(&delayed_refs->lock);
2504 				delayed_refs->pending_csums -= ref->num_bytes;
2505 				spin_unlock(&delayed_refs->lock);
2506 			}
2507 			btrfs_delayed_ref_unlock(locked_ref);
2508 			locked_ref = NULL;
2509 		}
2510 		btrfs_put_delayed_ref(ref);
2511 		count++;
2512 		cond_resched();
2513 	}
2514 
2515 	/*
2516 	 * We don't want to include ref heads since we can have empty ref heads
2517 	 * and those will drastically skew our runtime down since we just do
2518 	 * accounting, no actual extent tree updates.
2519 	 */
2520 	if (actual_count > 0) {
2521 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2522 		u64 avg;
2523 
2524 		/*
2525 		 * We weigh the current average higher than our current runtime
2526 		 * to avoid large swings in the average.
2527 		 */
2528 		spin_lock(&delayed_refs->lock);
2529 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2530 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2531 		spin_unlock(&delayed_refs->lock);
2532 	}
2533 	return 0;
2534 }
2535 
2536 #ifdef SCRAMBLE_DELAYED_REFS
2537 /*
2538  * Normally delayed refs get processed in ascending bytenr order. This
2539  * correlates in most cases to the order added. To expose dependencies on this
2540  * order, we start to process the tree in the middle instead of the beginning
2541  */
2542 static u64 find_middle(struct rb_root *root)
2543 {
2544 	struct rb_node *n = root->rb_node;
2545 	struct btrfs_delayed_ref_node *entry;
2546 	int alt = 1;
2547 	u64 middle;
2548 	u64 first = 0, last = 0;
2549 
2550 	n = rb_first(root);
2551 	if (n) {
2552 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2553 		first = entry->bytenr;
2554 	}
2555 	n = rb_last(root);
2556 	if (n) {
2557 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2558 		last = entry->bytenr;
2559 	}
2560 	n = root->rb_node;
2561 
2562 	while (n) {
2563 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2564 		WARN_ON(!entry->in_tree);
2565 
2566 		middle = entry->bytenr;
2567 
2568 		if (alt)
2569 			n = n->rb_left;
2570 		else
2571 			n = n->rb_right;
2572 
2573 		alt = 1 - alt;
2574 	}
2575 	return middle;
2576 }
2577 #endif
2578 
2579 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2580 {
2581 	u64 num_bytes;
2582 
2583 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2584 			     sizeof(struct btrfs_extent_inline_ref));
2585 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2586 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2587 
2588 	/*
2589 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2590 	 * closer to what we're really going to want to ouse.
2591 	 */
2592 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2593 }
2594 
2595 /*
2596  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2597  * would require to store the csums for that many bytes.
2598  */
2599 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2600 {
2601 	u64 csum_size;
2602 	u64 num_csums_per_leaf;
2603 	u64 num_csums;
2604 
2605 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2606 	num_csums_per_leaf = div64_u64(csum_size,
2607 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2608 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2609 	num_csums += num_csums_per_leaf - 1;
2610 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2611 	return num_csums;
2612 }
2613 
2614 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2615 				       struct btrfs_root *root)
2616 {
2617 	struct btrfs_block_rsv *global_rsv;
2618 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2619 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2620 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2621 	u64 num_bytes, num_dirty_bgs_bytes;
2622 	int ret = 0;
2623 
2624 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2625 	num_heads = heads_to_leaves(root, num_heads);
2626 	if (num_heads > 1)
2627 		num_bytes += (num_heads - 1) * root->nodesize;
2628 	num_bytes <<= 1;
2629 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2630 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2631 							     num_dirty_bgs);
2632 	global_rsv = &root->fs_info->global_block_rsv;
2633 
2634 	/*
2635 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2636 	 * wiggle room since running delayed refs can create more delayed refs.
2637 	 */
2638 	if (global_rsv->space_info->full) {
2639 		num_dirty_bgs_bytes <<= 1;
2640 		num_bytes <<= 1;
2641 	}
2642 
2643 	spin_lock(&global_rsv->lock);
2644 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2645 		ret = 1;
2646 	spin_unlock(&global_rsv->lock);
2647 	return ret;
2648 }
2649 
2650 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2651 				       struct btrfs_root *root)
2652 {
2653 	struct btrfs_fs_info *fs_info = root->fs_info;
2654 	u64 num_entries =
2655 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2656 	u64 avg_runtime;
2657 	u64 val;
2658 
2659 	smp_mb();
2660 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2661 	val = num_entries * avg_runtime;
2662 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2663 		return 1;
2664 	if (val >= NSEC_PER_SEC / 2)
2665 		return 2;
2666 
2667 	return btrfs_check_space_for_delayed_refs(trans, root);
2668 }
2669 
2670 struct async_delayed_refs {
2671 	struct btrfs_root *root;
2672 	int count;
2673 	int error;
2674 	int sync;
2675 	struct completion wait;
2676 	struct btrfs_work work;
2677 };
2678 
2679 static void delayed_ref_async_start(struct btrfs_work *work)
2680 {
2681 	struct async_delayed_refs *async;
2682 	struct btrfs_trans_handle *trans;
2683 	int ret;
2684 
2685 	async = container_of(work, struct async_delayed_refs, work);
2686 
2687 	trans = btrfs_join_transaction(async->root);
2688 	if (IS_ERR(trans)) {
2689 		async->error = PTR_ERR(trans);
2690 		goto done;
2691 	}
2692 
2693 	/*
2694 	 * trans->sync means that when we call end_transaciton, we won't
2695 	 * wait on delayed refs
2696 	 */
2697 	trans->sync = true;
2698 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2699 	if (ret)
2700 		async->error = ret;
2701 
2702 	ret = btrfs_end_transaction(trans, async->root);
2703 	if (ret && !async->error)
2704 		async->error = ret;
2705 done:
2706 	if (async->sync)
2707 		complete(&async->wait);
2708 	else
2709 		kfree(async);
2710 }
2711 
2712 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2713 				 unsigned long count, int wait)
2714 {
2715 	struct async_delayed_refs *async;
2716 	int ret;
2717 
2718 	async = kmalloc(sizeof(*async), GFP_NOFS);
2719 	if (!async)
2720 		return -ENOMEM;
2721 
2722 	async->root = root->fs_info->tree_root;
2723 	async->count = count;
2724 	async->error = 0;
2725 	if (wait)
2726 		async->sync = 1;
2727 	else
2728 		async->sync = 0;
2729 	init_completion(&async->wait);
2730 
2731 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2732 			delayed_ref_async_start, NULL, NULL);
2733 
2734 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2735 
2736 	if (wait) {
2737 		wait_for_completion(&async->wait);
2738 		ret = async->error;
2739 		kfree(async);
2740 		return ret;
2741 	}
2742 	return 0;
2743 }
2744 
2745 /*
2746  * this starts processing the delayed reference count updates and
2747  * extent insertions we have queued up so far.  count can be
2748  * 0, which means to process everything in the tree at the start
2749  * of the run (but not newly added entries), or it can be some target
2750  * number you'd like to process.
2751  *
2752  * Returns 0 on success or if called with an aborted transaction
2753  * Returns <0 on error and aborts the transaction
2754  */
2755 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2756 			   struct btrfs_root *root, unsigned long count)
2757 {
2758 	struct rb_node *node;
2759 	struct btrfs_delayed_ref_root *delayed_refs;
2760 	struct btrfs_delayed_ref_head *head;
2761 	int ret;
2762 	int run_all = count == (unsigned long)-1;
2763 
2764 	/* We'll clean this up in btrfs_cleanup_transaction */
2765 	if (trans->aborted)
2766 		return 0;
2767 
2768 	if (root == root->fs_info->extent_root)
2769 		root = root->fs_info->tree_root;
2770 
2771 	delayed_refs = &trans->transaction->delayed_refs;
2772 	if (count == 0)
2773 		count = atomic_read(&delayed_refs->num_entries) * 2;
2774 
2775 again:
2776 #ifdef SCRAMBLE_DELAYED_REFS
2777 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2778 #endif
2779 	ret = __btrfs_run_delayed_refs(trans, root, count);
2780 	if (ret < 0) {
2781 		btrfs_abort_transaction(trans, root, ret);
2782 		return ret;
2783 	}
2784 
2785 	if (run_all) {
2786 		if (!list_empty(&trans->new_bgs))
2787 			btrfs_create_pending_block_groups(trans, root);
2788 
2789 		spin_lock(&delayed_refs->lock);
2790 		node = rb_first(&delayed_refs->href_root);
2791 		if (!node) {
2792 			spin_unlock(&delayed_refs->lock);
2793 			goto out;
2794 		}
2795 		count = (unsigned long)-1;
2796 
2797 		while (node) {
2798 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2799 					href_node);
2800 			if (btrfs_delayed_ref_is_head(&head->node)) {
2801 				struct btrfs_delayed_ref_node *ref;
2802 
2803 				ref = &head->node;
2804 				atomic_inc(&ref->refs);
2805 
2806 				spin_unlock(&delayed_refs->lock);
2807 				/*
2808 				 * Mutex was contended, block until it's
2809 				 * released and try again
2810 				 */
2811 				mutex_lock(&head->mutex);
2812 				mutex_unlock(&head->mutex);
2813 
2814 				btrfs_put_delayed_ref(ref);
2815 				cond_resched();
2816 				goto again;
2817 			} else {
2818 				WARN_ON(1);
2819 			}
2820 			node = rb_next(node);
2821 		}
2822 		spin_unlock(&delayed_refs->lock);
2823 		cond_resched();
2824 		goto again;
2825 	}
2826 out:
2827 	assert_qgroups_uptodate(trans);
2828 	return 0;
2829 }
2830 
2831 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2832 				struct btrfs_root *root,
2833 				u64 bytenr, u64 num_bytes, u64 flags,
2834 				int level, int is_data)
2835 {
2836 	struct btrfs_delayed_extent_op *extent_op;
2837 	int ret;
2838 
2839 	extent_op = btrfs_alloc_delayed_extent_op();
2840 	if (!extent_op)
2841 		return -ENOMEM;
2842 
2843 	extent_op->flags_to_set = flags;
2844 	extent_op->update_flags = 1;
2845 	extent_op->update_key = 0;
2846 	extent_op->is_data = is_data ? 1 : 0;
2847 	extent_op->level = level;
2848 
2849 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2850 					  num_bytes, extent_op);
2851 	if (ret)
2852 		btrfs_free_delayed_extent_op(extent_op);
2853 	return ret;
2854 }
2855 
2856 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2857 				      struct btrfs_root *root,
2858 				      struct btrfs_path *path,
2859 				      u64 objectid, u64 offset, u64 bytenr)
2860 {
2861 	struct btrfs_delayed_ref_head *head;
2862 	struct btrfs_delayed_ref_node *ref;
2863 	struct btrfs_delayed_data_ref *data_ref;
2864 	struct btrfs_delayed_ref_root *delayed_refs;
2865 	int ret = 0;
2866 
2867 	delayed_refs = &trans->transaction->delayed_refs;
2868 	spin_lock(&delayed_refs->lock);
2869 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2870 	if (!head) {
2871 		spin_unlock(&delayed_refs->lock);
2872 		return 0;
2873 	}
2874 
2875 	if (!mutex_trylock(&head->mutex)) {
2876 		atomic_inc(&head->node.refs);
2877 		spin_unlock(&delayed_refs->lock);
2878 
2879 		btrfs_release_path(path);
2880 
2881 		/*
2882 		 * Mutex was contended, block until it's released and let
2883 		 * caller try again
2884 		 */
2885 		mutex_lock(&head->mutex);
2886 		mutex_unlock(&head->mutex);
2887 		btrfs_put_delayed_ref(&head->node);
2888 		return -EAGAIN;
2889 	}
2890 	spin_unlock(&delayed_refs->lock);
2891 
2892 	spin_lock(&head->lock);
2893 	list_for_each_entry(ref, &head->ref_list, list) {
2894 		/* If it's a shared ref we know a cross reference exists */
2895 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2896 			ret = 1;
2897 			break;
2898 		}
2899 
2900 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2901 
2902 		/*
2903 		 * If our ref doesn't match the one we're currently looking at
2904 		 * then we have a cross reference.
2905 		 */
2906 		if (data_ref->root != root->root_key.objectid ||
2907 		    data_ref->objectid != objectid ||
2908 		    data_ref->offset != offset) {
2909 			ret = 1;
2910 			break;
2911 		}
2912 	}
2913 	spin_unlock(&head->lock);
2914 	mutex_unlock(&head->mutex);
2915 	return ret;
2916 }
2917 
2918 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2919 					struct btrfs_root *root,
2920 					struct btrfs_path *path,
2921 					u64 objectid, u64 offset, u64 bytenr)
2922 {
2923 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2924 	struct extent_buffer *leaf;
2925 	struct btrfs_extent_data_ref *ref;
2926 	struct btrfs_extent_inline_ref *iref;
2927 	struct btrfs_extent_item *ei;
2928 	struct btrfs_key key;
2929 	u32 item_size;
2930 	int ret;
2931 
2932 	key.objectid = bytenr;
2933 	key.offset = (u64)-1;
2934 	key.type = BTRFS_EXTENT_ITEM_KEY;
2935 
2936 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2937 	if (ret < 0)
2938 		goto out;
2939 	BUG_ON(ret == 0); /* Corruption */
2940 
2941 	ret = -ENOENT;
2942 	if (path->slots[0] == 0)
2943 		goto out;
2944 
2945 	path->slots[0]--;
2946 	leaf = path->nodes[0];
2947 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948 
2949 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2950 		goto out;
2951 
2952 	ret = 1;
2953 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2955 	if (item_size < sizeof(*ei)) {
2956 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2957 		goto out;
2958 	}
2959 #endif
2960 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2961 
2962 	if (item_size != sizeof(*ei) +
2963 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2964 		goto out;
2965 
2966 	if (btrfs_extent_generation(leaf, ei) <=
2967 	    btrfs_root_last_snapshot(&root->root_item))
2968 		goto out;
2969 
2970 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2971 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2972 	    BTRFS_EXTENT_DATA_REF_KEY)
2973 		goto out;
2974 
2975 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2976 	if (btrfs_extent_refs(leaf, ei) !=
2977 	    btrfs_extent_data_ref_count(leaf, ref) ||
2978 	    btrfs_extent_data_ref_root(leaf, ref) !=
2979 	    root->root_key.objectid ||
2980 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2981 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2982 		goto out;
2983 
2984 	ret = 0;
2985 out:
2986 	return ret;
2987 }
2988 
2989 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2990 			  struct btrfs_root *root,
2991 			  u64 objectid, u64 offset, u64 bytenr)
2992 {
2993 	struct btrfs_path *path;
2994 	int ret;
2995 	int ret2;
2996 
2997 	path = btrfs_alloc_path();
2998 	if (!path)
2999 		return -ENOENT;
3000 
3001 	do {
3002 		ret = check_committed_ref(trans, root, path, objectid,
3003 					  offset, bytenr);
3004 		if (ret && ret != -ENOENT)
3005 			goto out;
3006 
3007 		ret2 = check_delayed_ref(trans, root, path, objectid,
3008 					 offset, bytenr);
3009 	} while (ret2 == -EAGAIN);
3010 
3011 	if (ret2 && ret2 != -ENOENT) {
3012 		ret = ret2;
3013 		goto out;
3014 	}
3015 
3016 	if (ret != -ENOENT || ret2 != -ENOENT)
3017 		ret = 0;
3018 out:
3019 	btrfs_free_path(path);
3020 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3021 		WARN_ON(ret > 0);
3022 	return ret;
3023 }
3024 
3025 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3026 			   struct btrfs_root *root,
3027 			   struct extent_buffer *buf,
3028 			   int full_backref, int inc)
3029 {
3030 	u64 bytenr;
3031 	u64 num_bytes;
3032 	u64 parent;
3033 	u64 ref_root;
3034 	u32 nritems;
3035 	struct btrfs_key key;
3036 	struct btrfs_file_extent_item *fi;
3037 	int i;
3038 	int level;
3039 	int ret = 0;
3040 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3041 			    u64, u64, u64, u64, u64, u64, int);
3042 
3043 
3044 	if (btrfs_test_is_dummy_root(root))
3045 		return 0;
3046 
3047 	ref_root = btrfs_header_owner(buf);
3048 	nritems = btrfs_header_nritems(buf);
3049 	level = btrfs_header_level(buf);
3050 
3051 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3052 		return 0;
3053 
3054 	if (inc)
3055 		process_func = btrfs_inc_extent_ref;
3056 	else
3057 		process_func = btrfs_free_extent;
3058 
3059 	if (full_backref)
3060 		parent = buf->start;
3061 	else
3062 		parent = 0;
3063 
3064 	for (i = 0; i < nritems; i++) {
3065 		if (level == 0) {
3066 			btrfs_item_key_to_cpu(buf, &key, i);
3067 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3068 				continue;
3069 			fi = btrfs_item_ptr(buf, i,
3070 					    struct btrfs_file_extent_item);
3071 			if (btrfs_file_extent_type(buf, fi) ==
3072 			    BTRFS_FILE_EXTENT_INLINE)
3073 				continue;
3074 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3075 			if (bytenr == 0)
3076 				continue;
3077 
3078 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3079 			key.offset -= btrfs_file_extent_offset(buf, fi);
3080 			ret = process_func(trans, root, bytenr, num_bytes,
3081 					   parent, ref_root, key.objectid,
3082 					   key.offset, 1);
3083 			if (ret)
3084 				goto fail;
3085 		} else {
3086 			bytenr = btrfs_node_blockptr(buf, i);
3087 			num_bytes = root->nodesize;
3088 			ret = process_func(trans, root, bytenr, num_bytes,
3089 					   parent, ref_root, level - 1, 0,
3090 					   1);
3091 			if (ret)
3092 				goto fail;
3093 		}
3094 	}
3095 	return 0;
3096 fail:
3097 	return ret;
3098 }
3099 
3100 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3101 		  struct extent_buffer *buf, int full_backref)
3102 {
3103 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3104 }
3105 
3106 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3107 		  struct extent_buffer *buf, int full_backref)
3108 {
3109 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3110 }
3111 
3112 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3113 				 struct btrfs_root *root,
3114 				 struct btrfs_path *path,
3115 				 struct btrfs_block_group_cache *cache)
3116 {
3117 	int ret;
3118 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3119 	unsigned long bi;
3120 	struct extent_buffer *leaf;
3121 
3122 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3123 	if (ret) {
3124 		if (ret > 0)
3125 			ret = -ENOENT;
3126 		goto fail;
3127 	}
3128 
3129 	leaf = path->nodes[0];
3130 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3131 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3132 	btrfs_mark_buffer_dirty(leaf);
3133 fail:
3134 	btrfs_release_path(path);
3135 	return ret;
3136 
3137 }
3138 
3139 static struct btrfs_block_group_cache *
3140 next_block_group(struct btrfs_root *root,
3141 		 struct btrfs_block_group_cache *cache)
3142 {
3143 	struct rb_node *node;
3144 
3145 	spin_lock(&root->fs_info->block_group_cache_lock);
3146 
3147 	/* If our block group was removed, we need a full search. */
3148 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3149 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3150 
3151 		spin_unlock(&root->fs_info->block_group_cache_lock);
3152 		btrfs_put_block_group(cache);
3153 		cache = btrfs_lookup_first_block_group(root->fs_info,
3154 						       next_bytenr);
3155 		return cache;
3156 	}
3157 	node = rb_next(&cache->cache_node);
3158 	btrfs_put_block_group(cache);
3159 	if (node) {
3160 		cache = rb_entry(node, struct btrfs_block_group_cache,
3161 				 cache_node);
3162 		btrfs_get_block_group(cache);
3163 	} else
3164 		cache = NULL;
3165 	spin_unlock(&root->fs_info->block_group_cache_lock);
3166 	return cache;
3167 }
3168 
3169 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3170 			    struct btrfs_trans_handle *trans,
3171 			    struct btrfs_path *path)
3172 {
3173 	struct btrfs_root *root = block_group->fs_info->tree_root;
3174 	struct inode *inode = NULL;
3175 	u64 alloc_hint = 0;
3176 	int dcs = BTRFS_DC_ERROR;
3177 	u64 num_pages = 0;
3178 	int retries = 0;
3179 	int ret = 0;
3180 
3181 	/*
3182 	 * If this block group is smaller than 100 megs don't bother caching the
3183 	 * block group.
3184 	 */
3185 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3186 		spin_lock(&block_group->lock);
3187 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3188 		spin_unlock(&block_group->lock);
3189 		return 0;
3190 	}
3191 
3192 	if (trans->aborted)
3193 		return 0;
3194 again:
3195 	inode = lookup_free_space_inode(root, block_group, path);
3196 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3197 		ret = PTR_ERR(inode);
3198 		btrfs_release_path(path);
3199 		goto out;
3200 	}
3201 
3202 	if (IS_ERR(inode)) {
3203 		BUG_ON(retries);
3204 		retries++;
3205 
3206 		if (block_group->ro)
3207 			goto out_free;
3208 
3209 		ret = create_free_space_inode(root, trans, block_group, path);
3210 		if (ret)
3211 			goto out_free;
3212 		goto again;
3213 	}
3214 
3215 	/* We've already setup this transaction, go ahead and exit */
3216 	if (block_group->cache_generation == trans->transid &&
3217 	    i_size_read(inode)) {
3218 		dcs = BTRFS_DC_SETUP;
3219 		goto out_put;
3220 	}
3221 
3222 	/*
3223 	 * We want to set the generation to 0, that way if anything goes wrong
3224 	 * from here on out we know not to trust this cache when we load up next
3225 	 * time.
3226 	 */
3227 	BTRFS_I(inode)->generation = 0;
3228 	ret = btrfs_update_inode(trans, root, inode);
3229 	if (ret) {
3230 		/*
3231 		 * So theoretically we could recover from this, simply set the
3232 		 * super cache generation to 0 so we know to invalidate the
3233 		 * cache, but then we'd have to keep track of the block groups
3234 		 * that fail this way so we know we _have_ to reset this cache
3235 		 * before the next commit or risk reading stale cache.  So to
3236 		 * limit our exposure to horrible edge cases lets just abort the
3237 		 * transaction, this only happens in really bad situations
3238 		 * anyway.
3239 		 */
3240 		btrfs_abort_transaction(trans, root, ret);
3241 		goto out_put;
3242 	}
3243 	WARN_ON(ret);
3244 
3245 	if (i_size_read(inode) > 0) {
3246 		ret = btrfs_check_trunc_cache_free_space(root,
3247 					&root->fs_info->global_block_rsv);
3248 		if (ret)
3249 			goto out_put;
3250 
3251 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3252 		if (ret)
3253 			goto out_put;
3254 	}
3255 
3256 	spin_lock(&block_group->lock);
3257 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3258 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3259 		/*
3260 		 * don't bother trying to write stuff out _if_
3261 		 * a) we're not cached,
3262 		 * b) we're with nospace_cache mount option.
3263 		 */
3264 		dcs = BTRFS_DC_WRITTEN;
3265 		spin_unlock(&block_group->lock);
3266 		goto out_put;
3267 	}
3268 	spin_unlock(&block_group->lock);
3269 
3270 	/*
3271 	 * Try to preallocate enough space based on how big the block group is.
3272 	 * Keep in mind this has to include any pinned space which could end up
3273 	 * taking up quite a bit since it's not folded into the other space
3274 	 * cache.
3275 	 */
3276 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3277 	if (!num_pages)
3278 		num_pages = 1;
3279 
3280 	num_pages *= 16;
3281 	num_pages *= PAGE_CACHE_SIZE;
3282 
3283 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3284 	if (ret)
3285 		goto out_put;
3286 
3287 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3288 					      num_pages, num_pages,
3289 					      &alloc_hint);
3290 	if (!ret)
3291 		dcs = BTRFS_DC_SETUP;
3292 	btrfs_free_reserved_data_space(inode, num_pages);
3293 
3294 out_put:
3295 	iput(inode);
3296 out_free:
3297 	btrfs_release_path(path);
3298 out:
3299 	spin_lock(&block_group->lock);
3300 	if (!ret && dcs == BTRFS_DC_SETUP)
3301 		block_group->cache_generation = trans->transid;
3302 	block_group->disk_cache_state = dcs;
3303 	spin_unlock(&block_group->lock);
3304 
3305 	return ret;
3306 }
3307 
3308 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3309 			    struct btrfs_root *root)
3310 {
3311 	struct btrfs_block_group_cache *cache, *tmp;
3312 	struct btrfs_transaction *cur_trans = trans->transaction;
3313 	struct btrfs_path *path;
3314 
3315 	if (list_empty(&cur_trans->dirty_bgs) ||
3316 	    !btrfs_test_opt(root, SPACE_CACHE))
3317 		return 0;
3318 
3319 	path = btrfs_alloc_path();
3320 	if (!path)
3321 		return -ENOMEM;
3322 
3323 	/* Could add new block groups, use _safe just in case */
3324 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3325 				 dirty_list) {
3326 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3327 			cache_save_setup(cache, trans, path);
3328 	}
3329 
3330 	btrfs_free_path(path);
3331 	return 0;
3332 }
3333 
3334 /*
3335  * transaction commit does final block group cache writeback during a
3336  * critical section where nothing is allowed to change the FS.  This is
3337  * required in order for the cache to actually match the block group,
3338  * but can introduce a lot of latency into the commit.
3339  *
3340  * So, btrfs_start_dirty_block_groups is here to kick off block group
3341  * cache IO.  There's a chance we'll have to redo some of it if the
3342  * block group changes again during the commit, but it greatly reduces
3343  * the commit latency by getting rid of the easy block groups while
3344  * we're still allowing others to join the commit.
3345  */
3346 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3347 				   struct btrfs_root *root)
3348 {
3349 	struct btrfs_block_group_cache *cache;
3350 	struct btrfs_transaction *cur_trans = trans->transaction;
3351 	int ret = 0;
3352 	int should_put;
3353 	struct btrfs_path *path = NULL;
3354 	LIST_HEAD(dirty);
3355 	struct list_head *io = &cur_trans->io_bgs;
3356 	int num_started = 0;
3357 	int loops = 0;
3358 
3359 	spin_lock(&cur_trans->dirty_bgs_lock);
3360 	if (list_empty(&cur_trans->dirty_bgs)) {
3361 		spin_unlock(&cur_trans->dirty_bgs_lock);
3362 		return 0;
3363 	}
3364 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3365 	spin_unlock(&cur_trans->dirty_bgs_lock);
3366 
3367 again:
3368 	/*
3369 	 * make sure all the block groups on our dirty list actually
3370 	 * exist
3371 	 */
3372 	btrfs_create_pending_block_groups(trans, root);
3373 
3374 	if (!path) {
3375 		path = btrfs_alloc_path();
3376 		if (!path)
3377 			return -ENOMEM;
3378 	}
3379 
3380 	/*
3381 	 * cache_write_mutex is here only to save us from balance or automatic
3382 	 * removal of empty block groups deleting this block group while we are
3383 	 * writing out the cache
3384 	 */
3385 	mutex_lock(&trans->transaction->cache_write_mutex);
3386 	while (!list_empty(&dirty)) {
3387 		cache = list_first_entry(&dirty,
3388 					 struct btrfs_block_group_cache,
3389 					 dirty_list);
3390 		/*
3391 		 * this can happen if something re-dirties a block
3392 		 * group that is already under IO.  Just wait for it to
3393 		 * finish and then do it all again
3394 		 */
3395 		if (!list_empty(&cache->io_list)) {
3396 			list_del_init(&cache->io_list);
3397 			btrfs_wait_cache_io(root, trans, cache,
3398 					    &cache->io_ctl, path,
3399 					    cache->key.objectid);
3400 			btrfs_put_block_group(cache);
3401 		}
3402 
3403 
3404 		/*
3405 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3406 		 * if it should update the cache_state.  Don't delete
3407 		 * until after we wait.
3408 		 *
3409 		 * Since we're not running in the commit critical section
3410 		 * we need the dirty_bgs_lock to protect from update_block_group
3411 		 */
3412 		spin_lock(&cur_trans->dirty_bgs_lock);
3413 		list_del_init(&cache->dirty_list);
3414 		spin_unlock(&cur_trans->dirty_bgs_lock);
3415 
3416 		should_put = 1;
3417 
3418 		cache_save_setup(cache, trans, path);
3419 
3420 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3421 			cache->io_ctl.inode = NULL;
3422 			ret = btrfs_write_out_cache(root, trans, cache, path);
3423 			if (ret == 0 && cache->io_ctl.inode) {
3424 				num_started++;
3425 				should_put = 0;
3426 
3427 				/*
3428 				 * the cache_write_mutex is protecting
3429 				 * the io_list
3430 				 */
3431 				list_add_tail(&cache->io_list, io);
3432 			} else {
3433 				/*
3434 				 * if we failed to write the cache, the
3435 				 * generation will be bad and life goes on
3436 				 */
3437 				ret = 0;
3438 			}
3439 		}
3440 		if (!ret) {
3441 			ret = write_one_cache_group(trans, root, path, cache);
3442 			/*
3443 			 * Our block group might still be attached to the list
3444 			 * of new block groups in the transaction handle of some
3445 			 * other task (struct btrfs_trans_handle->new_bgs). This
3446 			 * means its block group item isn't yet in the extent
3447 			 * tree. If this happens ignore the error, as we will
3448 			 * try again later in the critical section of the
3449 			 * transaction commit.
3450 			 */
3451 			if (ret == -ENOENT) {
3452 				ret = 0;
3453 				spin_lock(&cur_trans->dirty_bgs_lock);
3454 				if (list_empty(&cache->dirty_list)) {
3455 					list_add_tail(&cache->dirty_list,
3456 						      &cur_trans->dirty_bgs);
3457 					btrfs_get_block_group(cache);
3458 				}
3459 				spin_unlock(&cur_trans->dirty_bgs_lock);
3460 			} else if (ret) {
3461 				btrfs_abort_transaction(trans, root, ret);
3462 			}
3463 		}
3464 
3465 		/* if its not on the io list, we need to put the block group */
3466 		if (should_put)
3467 			btrfs_put_block_group(cache);
3468 
3469 		if (ret)
3470 			break;
3471 
3472 		/*
3473 		 * Avoid blocking other tasks for too long. It might even save
3474 		 * us from writing caches for block groups that are going to be
3475 		 * removed.
3476 		 */
3477 		mutex_unlock(&trans->transaction->cache_write_mutex);
3478 		mutex_lock(&trans->transaction->cache_write_mutex);
3479 	}
3480 	mutex_unlock(&trans->transaction->cache_write_mutex);
3481 
3482 	/*
3483 	 * go through delayed refs for all the stuff we've just kicked off
3484 	 * and then loop back (just once)
3485 	 */
3486 	ret = btrfs_run_delayed_refs(trans, root, 0);
3487 	if (!ret && loops == 0) {
3488 		loops++;
3489 		spin_lock(&cur_trans->dirty_bgs_lock);
3490 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3491 		/*
3492 		 * dirty_bgs_lock protects us from concurrent block group
3493 		 * deletes too (not just cache_write_mutex).
3494 		 */
3495 		if (!list_empty(&dirty)) {
3496 			spin_unlock(&cur_trans->dirty_bgs_lock);
3497 			goto again;
3498 		}
3499 		spin_unlock(&cur_trans->dirty_bgs_lock);
3500 	}
3501 
3502 	btrfs_free_path(path);
3503 	return ret;
3504 }
3505 
3506 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3507 				   struct btrfs_root *root)
3508 {
3509 	struct btrfs_block_group_cache *cache;
3510 	struct btrfs_transaction *cur_trans = trans->transaction;
3511 	int ret = 0;
3512 	int should_put;
3513 	struct btrfs_path *path;
3514 	struct list_head *io = &cur_trans->io_bgs;
3515 	int num_started = 0;
3516 
3517 	path = btrfs_alloc_path();
3518 	if (!path)
3519 		return -ENOMEM;
3520 
3521 	/*
3522 	 * We don't need the lock here since we are protected by the transaction
3523 	 * commit.  We want to do the cache_save_setup first and then run the
3524 	 * delayed refs to make sure we have the best chance at doing this all
3525 	 * in one shot.
3526 	 */
3527 	while (!list_empty(&cur_trans->dirty_bgs)) {
3528 		cache = list_first_entry(&cur_trans->dirty_bgs,
3529 					 struct btrfs_block_group_cache,
3530 					 dirty_list);
3531 
3532 		/*
3533 		 * this can happen if cache_save_setup re-dirties a block
3534 		 * group that is already under IO.  Just wait for it to
3535 		 * finish and then do it all again
3536 		 */
3537 		if (!list_empty(&cache->io_list)) {
3538 			list_del_init(&cache->io_list);
3539 			btrfs_wait_cache_io(root, trans, cache,
3540 					    &cache->io_ctl, path,
3541 					    cache->key.objectid);
3542 			btrfs_put_block_group(cache);
3543 		}
3544 
3545 		/*
3546 		 * don't remove from the dirty list until after we've waited
3547 		 * on any pending IO
3548 		 */
3549 		list_del_init(&cache->dirty_list);
3550 		should_put = 1;
3551 
3552 		cache_save_setup(cache, trans, path);
3553 
3554 		if (!ret)
3555 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3556 
3557 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3558 			cache->io_ctl.inode = NULL;
3559 			ret = btrfs_write_out_cache(root, trans, cache, path);
3560 			if (ret == 0 && cache->io_ctl.inode) {
3561 				num_started++;
3562 				should_put = 0;
3563 				list_add_tail(&cache->io_list, io);
3564 			} else {
3565 				/*
3566 				 * if we failed to write the cache, the
3567 				 * generation will be bad and life goes on
3568 				 */
3569 				ret = 0;
3570 			}
3571 		}
3572 		if (!ret) {
3573 			ret = write_one_cache_group(trans, root, path, cache);
3574 			if (ret)
3575 				btrfs_abort_transaction(trans, root, ret);
3576 		}
3577 
3578 		/* if its not on the io list, we need to put the block group */
3579 		if (should_put)
3580 			btrfs_put_block_group(cache);
3581 	}
3582 
3583 	while (!list_empty(io)) {
3584 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3585 					 io_list);
3586 		list_del_init(&cache->io_list);
3587 		btrfs_wait_cache_io(root, trans, cache,
3588 				    &cache->io_ctl, path, cache->key.objectid);
3589 		btrfs_put_block_group(cache);
3590 	}
3591 
3592 	btrfs_free_path(path);
3593 	return ret;
3594 }
3595 
3596 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3597 {
3598 	struct btrfs_block_group_cache *block_group;
3599 	int readonly = 0;
3600 
3601 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3602 	if (!block_group || block_group->ro)
3603 		readonly = 1;
3604 	if (block_group)
3605 		btrfs_put_block_group(block_group);
3606 	return readonly;
3607 }
3608 
3609 static const char *alloc_name(u64 flags)
3610 {
3611 	switch (flags) {
3612 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3613 		return "mixed";
3614 	case BTRFS_BLOCK_GROUP_METADATA:
3615 		return "metadata";
3616 	case BTRFS_BLOCK_GROUP_DATA:
3617 		return "data";
3618 	case BTRFS_BLOCK_GROUP_SYSTEM:
3619 		return "system";
3620 	default:
3621 		WARN_ON(1);
3622 		return "invalid-combination";
3623 	};
3624 }
3625 
3626 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3627 			     u64 total_bytes, u64 bytes_used,
3628 			     struct btrfs_space_info **space_info)
3629 {
3630 	struct btrfs_space_info *found;
3631 	int i;
3632 	int factor;
3633 	int ret;
3634 
3635 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3636 		     BTRFS_BLOCK_GROUP_RAID10))
3637 		factor = 2;
3638 	else
3639 		factor = 1;
3640 
3641 	found = __find_space_info(info, flags);
3642 	if (found) {
3643 		spin_lock(&found->lock);
3644 		found->total_bytes += total_bytes;
3645 		found->disk_total += total_bytes * factor;
3646 		found->bytes_used += bytes_used;
3647 		found->disk_used += bytes_used * factor;
3648 		if (total_bytes > 0)
3649 			found->full = 0;
3650 		spin_unlock(&found->lock);
3651 		*space_info = found;
3652 		return 0;
3653 	}
3654 	found = kzalloc(sizeof(*found), GFP_NOFS);
3655 	if (!found)
3656 		return -ENOMEM;
3657 
3658 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3659 	if (ret) {
3660 		kfree(found);
3661 		return ret;
3662 	}
3663 
3664 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3665 		INIT_LIST_HEAD(&found->block_groups[i]);
3666 	init_rwsem(&found->groups_sem);
3667 	spin_lock_init(&found->lock);
3668 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3669 	found->total_bytes = total_bytes;
3670 	found->disk_total = total_bytes * factor;
3671 	found->bytes_used = bytes_used;
3672 	found->disk_used = bytes_used * factor;
3673 	found->bytes_pinned = 0;
3674 	found->bytes_reserved = 0;
3675 	found->bytes_readonly = 0;
3676 	found->bytes_may_use = 0;
3677 	if (total_bytes > 0)
3678 		found->full = 0;
3679 	else
3680 		found->full = 1;
3681 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3682 	found->chunk_alloc = 0;
3683 	found->flush = 0;
3684 	init_waitqueue_head(&found->wait);
3685 	INIT_LIST_HEAD(&found->ro_bgs);
3686 
3687 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3688 				    info->space_info_kobj, "%s",
3689 				    alloc_name(found->flags));
3690 	if (ret) {
3691 		kfree(found);
3692 		return ret;
3693 	}
3694 
3695 	*space_info = found;
3696 	list_add_rcu(&found->list, &info->space_info);
3697 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3698 		info->data_sinfo = found;
3699 
3700 	return ret;
3701 }
3702 
3703 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3704 {
3705 	u64 extra_flags = chunk_to_extended(flags) &
3706 				BTRFS_EXTENDED_PROFILE_MASK;
3707 
3708 	write_seqlock(&fs_info->profiles_lock);
3709 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 		fs_info->avail_data_alloc_bits |= extra_flags;
3711 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3712 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3713 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3714 		fs_info->avail_system_alloc_bits |= extra_flags;
3715 	write_sequnlock(&fs_info->profiles_lock);
3716 }
3717 
3718 /*
3719  * returns target flags in extended format or 0 if restripe for this
3720  * chunk_type is not in progress
3721  *
3722  * should be called with either volume_mutex or balance_lock held
3723  */
3724 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3725 {
3726 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 	u64 target = 0;
3728 
3729 	if (!bctl)
3730 		return 0;
3731 
3732 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3733 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3734 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3735 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3736 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3737 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3738 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3739 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3740 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3741 	}
3742 
3743 	return target;
3744 }
3745 
3746 /*
3747  * @flags: available profiles in extended format (see ctree.h)
3748  *
3749  * Returns reduced profile in chunk format.  If profile changing is in
3750  * progress (either running or paused) picks the target profile (if it's
3751  * already available), otherwise falls back to plain reducing.
3752  */
3753 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3754 {
3755 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3756 	u64 target;
3757 	u64 tmp;
3758 
3759 	/*
3760 	 * see if restripe for this chunk_type is in progress, if so
3761 	 * try to reduce to the target profile
3762 	 */
3763 	spin_lock(&root->fs_info->balance_lock);
3764 	target = get_restripe_target(root->fs_info, flags);
3765 	if (target) {
3766 		/* pick target profile only if it's already available */
3767 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3768 			spin_unlock(&root->fs_info->balance_lock);
3769 			return extended_to_chunk(target);
3770 		}
3771 	}
3772 	spin_unlock(&root->fs_info->balance_lock);
3773 
3774 	/* First, mask out the RAID levels which aren't possible */
3775 	if (num_devices == 1)
3776 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3777 			   BTRFS_BLOCK_GROUP_RAID5);
3778 	if (num_devices < 3)
3779 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3780 	if (num_devices < 4)
3781 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3782 
3783 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3784 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3785 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3786 	flags &= ~tmp;
3787 
3788 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3789 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3790 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3791 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3792 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3793 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3794 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3795 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3796 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3797 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3798 
3799 	return extended_to_chunk(flags | tmp);
3800 }
3801 
3802 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3803 {
3804 	unsigned seq;
3805 	u64 flags;
3806 
3807 	do {
3808 		flags = orig_flags;
3809 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3810 
3811 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3812 			flags |= root->fs_info->avail_data_alloc_bits;
3813 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3814 			flags |= root->fs_info->avail_system_alloc_bits;
3815 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3816 			flags |= root->fs_info->avail_metadata_alloc_bits;
3817 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3818 
3819 	return btrfs_reduce_alloc_profile(root, flags);
3820 }
3821 
3822 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3823 {
3824 	u64 flags;
3825 	u64 ret;
3826 
3827 	if (data)
3828 		flags = BTRFS_BLOCK_GROUP_DATA;
3829 	else if (root == root->fs_info->chunk_root)
3830 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3831 	else
3832 		flags = BTRFS_BLOCK_GROUP_METADATA;
3833 
3834 	ret = get_alloc_profile(root, flags);
3835 	return ret;
3836 }
3837 
3838 /*
3839  * This will check the space that the inode allocates from to make sure we have
3840  * enough space for bytes.
3841  */
3842 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3843 {
3844 	struct btrfs_space_info *data_sinfo;
3845 	struct btrfs_root *root = BTRFS_I(inode)->root;
3846 	struct btrfs_fs_info *fs_info = root->fs_info;
3847 	u64 used;
3848 	int ret = 0;
3849 	int need_commit = 2;
3850 	int have_pinned_space;
3851 
3852 	/* make sure bytes are sectorsize aligned */
3853 	bytes = ALIGN(bytes, root->sectorsize);
3854 
3855 	if (btrfs_is_free_space_inode(inode)) {
3856 		need_commit = 0;
3857 		ASSERT(current->journal_info);
3858 	}
3859 
3860 	data_sinfo = fs_info->data_sinfo;
3861 	if (!data_sinfo)
3862 		goto alloc;
3863 
3864 again:
3865 	/* make sure we have enough space to handle the data first */
3866 	spin_lock(&data_sinfo->lock);
3867 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3868 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3869 		data_sinfo->bytes_may_use;
3870 
3871 	if (used + bytes > data_sinfo->total_bytes) {
3872 		struct btrfs_trans_handle *trans;
3873 
3874 		/*
3875 		 * if we don't have enough free bytes in this space then we need
3876 		 * to alloc a new chunk.
3877 		 */
3878 		if (!data_sinfo->full) {
3879 			u64 alloc_target;
3880 
3881 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3882 			spin_unlock(&data_sinfo->lock);
3883 alloc:
3884 			alloc_target = btrfs_get_alloc_profile(root, 1);
3885 			/*
3886 			 * It is ugly that we don't call nolock join
3887 			 * transaction for the free space inode case here.
3888 			 * But it is safe because we only do the data space
3889 			 * reservation for the free space cache in the
3890 			 * transaction context, the common join transaction
3891 			 * just increase the counter of the current transaction
3892 			 * handler, doesn't try to acquire the trans_lock of
3893 			 * the fs.
3894 			 */
3895 			trans = btrfs_join_transaction(root);
3896 			if (IS_ERR(trans))
3897 				return PTR_ERR(trans);
3898 
3899 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3900 					     alloc_target,
3901 					     CHUNK_ALLOC_NO_FORCE);
3902 			btrfs_end_transaction(trans, root);
3903 			if (ret < 0) {
3904 				if (ret != -ENOSPC)
3905 					return ret;
3906 				else {
3907 					have_pinned_space = 1;
3908 					goto commit_trans;
3909 				}
3910 			}
3911 
3912 			if (!data_sinfo)
3913 				data_sinfo = fs_info->data_sinfo;
3914 
3915 			goto again;
3916 		}
3917 
3918 		/*
3919 		 * If we don't have enough pinned space to deal with this
3920 		 * allocation, and no removed chunk in current transaction,
3921 		 * don't bother committing the transaction.
3922 		 */
3923 		have_pinned_space = percpu_counter_compare(
3924 			&data_sinfo->total_bytes_pinned,
3925 			used + bytes - data_sinfo->total_bytes);
3926 		spin_unlock(&data_sinfo->lock);
3927 
3928 		/* commit the current transaction and try again */
3929 commit_trans:
3930 		if (need_commit &&
3931 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3932 			need_commit--;
3933 
3934 			if (need_commit > 0)
3935 				btrfs_wait_ordered_roots(fs_info, -1);
3936 
3937 			trans = btrfs_join_transaction(root);
3938 			if (IS_ERR(trans))
3939 				return PTR_ERR(trans);
3940 			if (have_pinned_space >= 0 ||
3941 			    trans->transaction->have_free_bgs ||
3942 			    need_commit > 0) {
3943 				ret = btrfs_commit_transaction(trans, root);
3944 				if (ret)
3945 					return ret;
3946 				/*
3947 				 * make sure that all running delayed iput are
3948 				 * done
3949 				 */
3950 				down_write(&root->fs_info->delayed_iput_sem);
3951 				up_write(&root->fs_info->delayed_iput_sem);
3952 				goto again;
3953 			} else {
3954 				btrfs_end_transaction(trans, root);
3955 			}
3956 		}
3957 
3958 		trace_btrfs_space_reservation(root->fs_info,
3959 					      "space_info:enospc",
3960 					      data_sinfo->flags, bytes, 1);
3961 		return -ENOSPC;
3962 	}
3963 	ret = btrfs_qgroup_reserve(root, write_bytes);
3964 	if (ret)
3965 		goto out;
3966 	data_sinfo->bytes_may_use += bytes;
3967 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3968 				      data_sinfo->flags, bytes, 1);
3969 out:
3970 	spin_unlock(&data_sinfo->lock);
3971 
3972 	return ret;
3973 }
3974 
3975 /*
3976  * Called if we need to clear a data reservation for this inode.
3977  */
3978 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3979 {
3980 	struct btrfs_root *root = BTRFS_I(inode)->root;
3981 	struct btrfs_space_info *data_sinfo;
3982 
3983 	/* make sure bytes are sectorsize aligned */
3984 	bytes = ALIGN(bytes, root->sectorsize);
3985 
3986 	data_sinfo = root->fs_info->data_sinfo;
3987 	spin_lock(&data_sinfo->lock);
3988 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3989 	data_sinfo->bytes_may_use -= bytes;
3990 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3991 				      data_sinfo->flags, bytes, 0);
3992 	spin_unlock(&data_sinfo->lock);
3993 }
3994 
3995 static void force_metadata_allocation(struct btrfs_fs_info *info)
3996 {
3997 	struct list_head *head = &info->space_info;
3998 	struct btrfs_space_info *found;
3999 
4000 	rcu_read_lock();
4001 	list_for_each_entry_rcu(found, head, list) {
4002 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4003 			found->force_alloc = CHUNK_ALLOC_FORCE;
4004 	}
4005 	rcu_read_unlock();
4006 }
4007 
4008 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4009 {
4010 	return (global->size << 1);
4011 }
4012 
4013 static int should_alloc_chunk(struct btrfs_root *root,
4014 			      struct btrfs_space_info *sinfo, int force)
4015 {
4016 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4017 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4018 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4019 	u64 thresh;
4020 
4021 	if (force == CHUNK_ALLOC_FORCE)
4022 		return 1;
4023 
4024 	/*
4025 	 * We need to take into account the global rsv because for all intents
4026 	 * and purposes it's used space.  Don't worry about locking the
4027 	 * global_rsv, it doesn't change except when the transaction commits.
4028 	 */
4029 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4030 		num_allocated += calc_global_rsv_need_space(global_rsv);
4031 
4032 	/*
4033 	 * in limited mode, we want to have some free space up to
4034 	 * about 1% of the FS size.
4035 	 */
4036 	if (force == CHUNK_ALLOC_LIMITED) {
4037 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4038 		thresh = max_t(u64, 64 * 1024 * 1024,
4039 			       div_factor_fine(thresh, 1));
4040 
4041 		if (num_bytes - num_allocated < thresh)
4042 			return 1;
4043 	}
4044 
4045 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4046 		return 0;
4047 	return 1;
4048 }
4049 
4050 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4051 {
4052 	u64 num_dev;
4053 
4054 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4055 		    BTRFS_BLOCK_GROUP_RAID0 |
4056 		    BTRFS_BLOCK_GROUP_RAID5 |
4057 		    BTRFS_BLOCK_GROUP_RAID6))
4058 		num_dev = root->fs_info->fs_devices->rw_devices;
4059 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4060 		num_dev = 2;
4061 	else
4062 		num_dev = 1;	/* DUP or single */
4063 
4064 	return num_dev;
4065 }
4066 
4067 /*
4068  * If @is_allocation is true, reserve space in the system space info necessary
4069  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4070  * removing a chunk.
4071  */
4072 void check_system_chunk(struct btrfs_trans_handle *trans,
4073 			struct btrfs_root *root,
4074 			u64 type)
4075 {
4076 	struct btrfs_space_info *info;
4077 	u64 left;
4078 	u64 thresh;
4079 	int ret = 0;
4080 	u64 num_devs;
4081 
4082 	/*
4083 	 * Needed because we can end up allocating a system chunk and for an
4084 	 * atomic and race free space reservation in the chunk block reserve.
4085 	 */
4086 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4087 
4088 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4089 	spin_lock(&info->lock);
4090 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4091 		info->bytes_reserved - info->bytes_readonly -
4092 		info->bytes_may_use;
4093 	spin_unlock(&info->lock);
4094 
4095 	num_devs = get_profile_num_devs(root, type);
4096 
4097 	/* num_devs device items to update and 1 chunk item to add or remove */
4098 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4099 		btrfs_calc_trans_metadata_size(root, 1);
4100 
4101 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4102 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4103 			left, thresh, type);
4104 		dump_space_info(info, 0, 0);
4105 	}
4106 
4107 	if (left < thresh) {
4108 		u64 flags;
4109 
4110 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4111 		/*
4112 		 * Ignore failure to create system chunk. We might end up not
4113 		 * needing it, as we might not need to COW all nodes/leafs from
4114 		 * the paths we visit in the chunk tree (they were already COWed
4115 		 * or created in the current transaction for example).
4116 		 */
4117 		ret = btrfs_alloc_chunk(trans, root, flags);
4118 	}
4119 
4120 	if (!ret) {
4121 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4122 					  &root->fs_info->chunk_block_rsv,
4123 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4124 		if (!ret)
4125 			trans->chunk_bytes_reserved += thresh;
4126 	}
4127 }
4128 
4129 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4130 			  struct btrfs_root *extent_root, u64 flags, int force)
4131 {
4132 	struct btrfs_space_info *space_info;
4133 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4134 	int wait_for_alloc = 0;
4135 	int ret = 0;
4136 
4137 	/* Don't re-enter if we're already allocating a chunk */
4138 	if (trans->allocating_chunk)
4139 		return -ENOSPC;
4140 
4141 	space_info = __find_space_info(extent_root->fs_info, flags);
4142 	if (!space_info) {
4143 		ret = update_space_info(extent_root->fs_info, flags,
4144 					0, 0, &space_info);
4145 		BUG_ON(ret); /* -ENOMEM */
4146 	}
4147 	BUG_ON(!space_info); /* Logic error */
4148 
4149 again:
4150 	spin_lock(&space_info->lock);
4151 	if (force < space_info->force_alloc)
4152 		force = space_info->force_alloc;
4153 	if (space_info->full) {
4154 		if (should_alloc_chunk(extent_root, space_info, force))
4155 			ret = -ENOSPC;
4156 		else
4157 			ret = 0;
4158 		spin_unlock(&space_info->lock);
4159 		return ret;
4160 	}
4161 
4162 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4163 		spin_unlock(&space_info->lock);
4164 		return 0;
4165 	} else if (space_info->chunk_alloc) {
4166 		wait_for_alloc = 1;
4167 	} else {
4168 		space_info->chunk_alloc = 1;
4169 	}
4170 
4171 	spin_unlock(&space_info->lock);
4172 
4173 	mutex_lock(&fs_info->chunk_mutex);
4174 
4175 	/*
4176 	 * The chunk_mutex is held throughout the entirety of a chunk
4177 	 * allocation, so once we've acquired the chunk_mutex we know that the
4178 	 * other guy is done and we need to recheck and see if we should
4179 	 * allocate.
4180 	 */
4181 	if (wait_for_alloc) {
4182 		mutex_unlock(&fs_info->chunk_mutex);
4183 		wait_for_alloc = 0;
4184 		goto again;
4185 	}
4186 
4187 	trans->allocating_chunk = true;
4188 
4189 	/*
4190 	 * If we have mixed data/metadata chunks we want to make sure we keep
4191 	 * allocating mixed chunks instead of individual chunks.
4192 	 */
4193 	if (btrfs_mixed_space_info(space_info))
4194 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4195 
4196 	/*
4197 	 * if we're doing a data chunk, go ahead and make sure that
4198 	 * we keep a reasonable number of metadata chunks allocated in the
4199 	 * FS as well.
4200 	 */
4201 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4202 		fs_info->data_chunk_allocations++;
4203 		if (!(fs_info->data_chunk_allocations %
4204 		      fs_info->metadata_ratio))
4205 			force_metadata_allocation(fs_info);
4206 	}
4207 
4208 	/*
4209 	 * Check if we have enough space in SYSTEM chunk because we may need
4210 	 * to update devices.
4211 	 */
4212 	check_system_chunk(trans, extent_root, flags);
4213 
4214 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4215 	trans->allocating_chunk = false;
4216 
4217 	spin_lock(&space_info->lock);
4218 	if (ret < 0 && ret != -ENOSPC)
4219 		goto out;
4220 	if (ret)
4221 		space_info->full = 1;
4222 	else
4223 		ret = 1;
4224 
4225 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4226 out:
4227 	space_info->chunk_alloc = 0;
4228 	spin_unlock(&space_info->lock);
4229 	mutex_unlock(&fs_info->chunk_mutex);
4230 	/*
4231 	 * When we allocate a new chunk we reserve space in the chunk block
4232 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4233 	 * add new nodes/leafs to it if we end up needing to do it when
4234 	 * inserting the chunk item and updating device items as part of the
4235 	 * second phase of chunk allocation, performed by
4236 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4237 	 * large number of new block groups to create in our transaction
4238 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4239 	 * in extreme cases - like having a single transaction create many new
4240 	 * block groups when starting to write out the free space caches of all
4241 	 * the block groups that were made dirty during the lifetime of the
4242 	 * transaction.
4243 	 */
4244 	if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4245 		btrfs_create_pending_block_groups(trans, trans->root);
4246 		btrfs_trans_release_chunk_metadata(trans);
4247 	}
4248 	return ret;
4249 }
4250 
4251 static int can_overcommit(struct btrfs_root *root,
4252 			  struct btrfs_space_info *space_info, u64 bytes,
4253 			  enum btrfs_reserve_flush_enum flush)
4254 {
4255 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4256 	u64 profile = btrfs_get_alloc_profile(root, 0);
4257 	u64 space_size;
4258 	u64 avail;
4259 	u64 used;
4260 
4261 	used = space_info->bytes_used + space_info->bytes_reserved +
4262 		space_info->bytes_pinned + space_info->bytes_readonly;
4263 
4264 	/*
4265 	 * We only want to allow over committing if we have lots of actual space
4266 	 * free, but if we don't have enough space to handle the global reserve
4267 	 * space then we could end up having a real enospc problem when trying
4268 	 * to allocate a chunk or some other such important allocation.
4269 	 */
4270 	spin_lock(&global_rsv->lock);
4271 	space_size = calc_global_rsv_need_space(global_rsv);
4272 	spin_unlock(&global_rsv->lock);
4273 	if (used + space_size >= space_info->total_bytes)
4274 		return 0;
4275 
4276 	used += space_info->bytes_may_use;
4277 
4278 	spin_lock(&root->fs_info->free_chunk_lock);
4279 	avail = root->fs_info->free_chunk_space;
4280 	spin_unlock(&root->fs_info->free_chunk_lock);
4281 
4282 	/*
4283 	 * If we have dup, raid1 or raid10 then only half of the free
4284 	 * space is actually useable.  For raid56, the space info used
4285 	 * doesn't include the parity drive, so we don't have to
4286 	 * change the math
4287 	 */
4288 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4289 		       BTRFS_BLOCK_GROUP_RAID1 |
4290 		       BTRFS_BLOCK_GROUP_RAID10))
4291 		avail >>= 1;
4292 
4293 	/*
4294 	 * If we aren't flushing all things, let us overcommit up to
4295 	 * 1/2th of the space. If we can flush, don't let us overcommit
4296 	 * too much, let it overcommit up to 1/8 of the space.
4297 	 */
4298 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4299 		avail >>= 3;
4300 	else
4301 		avail >>= 1;
4302 
4303 	if (used + bytes < space_info->total_bytes + avail)
4304 		return 1;
4305 	return 0;
4306 }
4307 
4308 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4309 					 unsigned long nr_pages, int nr_items)
4310 {
4311 	struct super_block *sb = root->fs_info->sb;
4312 
4313 	if (down_read_trylock(&sb->s_umount)) {
4314 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4315 		up_read(&sb->s_umount);
4316 	} else {
4317 		/*
4318 		 * We needn't worry the filesystem going from r/w to r/o though
4319 		 * we don't acquire ->s_umount mutex, because the filesystem
4320 		 * should guarantee the delalloc inodes list be empty after
4321 		 * the filesystem is readonly(all dirty pages are written to
4322 		 * the disk).
4323 		 */
4324 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4325 		if (!current->journal_info)
4326 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4327 	}
4328 }
4329 
4330 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4331 {
4332 	u64 bytes;
4333 	int nr;
4334 
4335 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4336 	nr = (int)div64_u64(to_reclaim, bytes);
4337 	if (!nr)
4338 		nr = 1;
4339 	return nr;
4340 }
4341 
4342 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4343 
4344 /*
4345  * shrink metadata reservation for delalloc
4346  */
4347 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4348 			    bool wait_ordered)
4349 {
4350 	struct btrfs_block_rsv *block_rsv;
4351 	struct btrfs_space_info *space_info;
4352 	struct btrfs_trans_handle *trans;
4353 	u64 delalloc_bytes;
4354 	u64 max_reclaim;
4355 	long time_left;
4356 	unsigned long nr_pages;
4357 	int loops;
4358 	int items;
4359 	enum btrfs_reserve_flush_enum flush;
4360 
4361 	/* Calc the number of the pages we need flush for space reservation */
4362 	items = calc_reclaim_items_nr(root, to_reclaim);
4363 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4364 
4365 	trans = (struct btrfs_trans_handle *)current->journal_info;
4366 	block_rsv = &root->fs_info->delalloc_block_rsv;
4367 	space_info = block_rsv->space_info;
4368 
4369 	delalloc_bytes = percpu_counter_sum_positive(
4370 						&root->fs_info->delalloc_bytes);
4371 	if (delalloc_bytes == 0) {
4372 		if (trans)
4373 			return;
4374 		if (wait_ordered)
4375 			btrfs_wait_ordered_roots(root->fs_info, items);
4376 		return;
4377 	}
4378 
4379 	loops = 0;
4380 	while (delalloc_bytes && loops < 3) {
4381 		max_reclaim = min(delalloc_bytes, to_reclaim);
4382 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4383 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4384 		/*
4385 		 * We need to wait for the async pages to actually start before
4386 		 * we do anything.
4387 		 */
4388 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4389 		if (!max_reclaim)
4390 			goto skip_async;
4391 
4392 		if (max_reclaim <= nr_pages)
4393 			max_reclaim = 0;
4394 		else
4395 			max_reclaim -= nr_pages;
4396 
4397 		wait_event(root->fs_info->async_submit_wait,
4398 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4399 			   (int)max_reclaim);
4400 skip_async:
4401 		if (!trans)
4402 			flush = BTRFS_RESERVE_FLUSH_ALL;
4403 		else
4404 			flush = BTRFS_RESERVE_NO_FLUSH;
4405 		spin_lock(&space_info->lock);
4406 		if (can_overcommit(root, space_info, orig, flush)) {
4407 			spin_unlock(&space_info->lock);
4408 			break;
4409 		}
4410 		spin_unlock(&space_info->lock);
4411 
4412 		loops++;
4413 		if (wait_ordered && !trans) {
4414 			btrfs_wait_ordered_roots(root->fs_info, items);
4415 		} else {
4416 			time_left = schedule_timeout_killable(1);
4417 			if (time_left)
4418 				break;
4419 		}
4420 		delalloc_bytes = percpu_counter_sum_positive(
4421 						&root->fs_info->delalloc_bytes);
4422 	}
4423 }
4424 
4425 /**
4426  * maybe_commit_transaction - possibly commit the transaction if its ok to
4427  * @root - the root we're allocating for
4428  * @bytes - the number of bytes we want to reserve
4429  * @force - force the commit
4430  *
4431  * This will check to make sure that committing the transaction will actually
4432  * get us somewhere and then commit the transaction if it does.  Otherwise it
4433  * will return -ENOSPC.
4434  */
4435 static int may_commit_transaction(struct btrfs_root *root,
4436 				  struct btrfs_space_info *space_info,
4437 				  u64 bytes, int force)
4438 {
4439 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4440 	struct btrfs_trans_handle *trans;
4441 
4442 	trans = (struct btrfs_trans_handle *)current->journal_info;
4443 	if (trans)
4444 		return -EAGAIN;
4445 
4446 	if (force)
4447 		goto commit;
4448 
4449 	/* See if there is enough pinned space to make this reservation */
4450 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4451 				   bytes) >= 0)
4452 		goto commit;
4453 
4454 	/*
4455 	 * See if there is some space in the delayed insertion reservation for
4456 	 * this reservation.
4457 	 */
4458 	if (space_info != delayed_rsv->space_info)
4459 		return -ENOSPC;
4460 
4461 	spin_lock(&delayed_rsv->lock);
4462 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4463 				   bytes - delayed_rsv->size) >= 0) {
4464 		spin_unlock(&delayed_rsv->lock);
4465 		return -ENOSPC;
4466 	}
4467 	spin_unlock(&delayed_rsv->lock);
4468 
4469 commit:
4470 	trans = btrfs_join_transaction(root);
4471 	if (IS_ERR(trans))
4472 		return -ENOSPC;
4473 
4474 	return btrfs_commit_transaction(trans, root);
4475 }
4476 
4477 enum flush_state {
4478 	FLUSH_DELAYED_ITEMS_NR	=	1,
4479 	FLUSH_DELAYED_ITEMS	=	2,
4480 	FLUSH_DELALLOC		=	3,
4481 	FLUSH_DELALLOC_WAIT	=	4,
4482 	ALLOC_CHUNK		=	5,
4483 	COMMIT_TRANS		=	6,
4484 };
4485 
4486 static int flush_space(struct btrfs_root *root,
4487 		       struct btrfs_space_info *space_info, u64 num_bytes,
4488 		       u64 orig_bytes, int state)
4489 {
4490 	struct btrfs_trans_handle *trans;
4491 	int nr;
4492 	int ret = 0;
4493 
4494 	switch (state) {
4495 	case FLUSH_DELAYED_ITEMS_NR:
4496 	case FLUSH_DELAYED_ITEMS:
4497 		if (state == FLUSH_DELAYED_ITEMS_NR)
4498 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4499 		else
4500 			nr = -1;
4501 
4502 		trans = btrfs_join_transaction(root);
4503 		if (IS_ERR(trans)) {
4504 			ret = PTR_ERR(trans);
4505 			break;
4506 		}
4507 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4508 		btrfs_end_transaction(trans, root);
4509 		break;
4510 	case FLUSH_DELALLOC:
4511 	case FLUSH_DELALLOC_WAIT:
4512 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4513 				state == FLUSH_DELALLOC_WAIT);
4514 		break;
4515 	case ALLOC_CHUNK:
4516 		trans = btrfs_join_transaction(root);
4517 		if (IS_ERR(trans)) {
4518 			ret = PTR_ERR(trans);
4519 			break;
4520 		}
4521 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4522 				     btrfs_get_alloc_profile(root, 0),
4523 				     CHUNK_ALLOC_NO_FORCE);
4524 		btrfs_end_transaction(trans, root);
4525 		if (ret == -ENOSPC)
4526 			ret = 0;
4527 		break;
4528 	case COMMIT_TRANS:
4529 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4530 		break;
4531 	default:
4532 		ret = -ENOSPC;
4533 		break;
4534 	}
4535 
4536 	return ret;
4537 }
4538 
4539 static inline u64
4540 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4541 				 struct btrfs_space_info *space_info)
4542 {
4543 	u64 used;
4544 	u64 expected;
4545 	u64 to_reclaim;
4546 
4547 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4548 				16 * 1024 * 1024);
4549 	spin_lock(&space_info->lock);
4550 	if (can_overcommit(root, space_info, to_reclaim,
4551 			   BTRFS_RESERVE_FLUSH_ALL)) {
4552 		to_reclaim = 0;
4553 		goto out;
4554 	}
4555 
4556 	used = space_info->bytes_used + space_info->bytes_reserved +
4557 	       space_info->bytes_pinned + space_info->bytes_readonly +
4558 	       space_info->bytes_may_use;
4559 	if (can_overcommit(root, space_info, 1024 * 1024,
4560 			   BTRFS_RESERVE_FLUSH_ALL))
4561 		expected = div_factor_fine(space_info->total_bytes, 95);
4562 	else
4563 		expected = div_factor_fine(space_info->total_bytes, 90);
4564 
4565 	if (used > expected)
4566 		to_reclaim = used - expected;
4567 	else
4568 		to_reclaim = 0;
4569 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4570 				     space_info->bytes_reserved);
4571 out:
4572 	spin_unlock(&space_info->lock);
4573 
4574 	return to_reclaim;
4575 }
4576 
4577 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4578 					struct btrfs_fs_info *fs_info, u64 used)
4579 {
4580 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4581 
4582 	/* If we're just plain full then async reclaim just slows us down. */
4583 	if (space_info->bytes_used >= thresh)
4584 		return 0;
4585 
4586 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4587 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4588 }
4589 
4590 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4591 				       struct btrfs_fs_info *fs_info,
4592 				       int flush_state)
4593 {
4594 	u64 used;
4595 
4596 	spin_lock(&space_info->lock);
4597 	/*
4598 	 * We run out of space and have not got any free space via flush_space,
4599 	 * so don't bother doing async reclaim.
4600 	 */
4601 	if (flush_state > COMMIT_TRANS && space_info->full) {
4602 		spin_unlock(&space_info->lock);
4603 		return 0;
4604 	}
4605 
4606 	used = space_info->bytes_used + space_info->bytes_reserved +
4607 	       space_info->bytes_pinned + space_info->bytes_readonly +
4608 	       space_info->bytes_may_use;
4609 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4610 		spin_unlock(&space_info->lock);
4611 		return 1;
4612 	}
4613 	spin_unlock(&space_info->lock);
4614 
4615 	return 0;
4616 }
4617 
4618 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4619 {
4620 	struct btrfs_fs_info *fs_info;
4621 	struct btrfs_space_info *space_info;
4622 	u64 to_reclaim;
4623 	int flush_state;
4624 
4625 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4626 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4627 
4628 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4629 						      space_info);
4630 	if (!to_reclaim)
4631 		return;
4632 
4633 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4634 	do {
4635 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4636 			    to_reclaim, flush_state);
4637 		flush_state++;
4638 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4639 						 flush_state))
4640 			return;
4641 	} while (flush_state < COMMIT_TRANS);
4642 }
4643 
4644 void btrfs_init_async_reclaim_work(struct work_struct *work)
4645 {
4646 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4647 }
4648 
4649 /**
4650  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4651  * @root - the root we're allocating for
4652  * @block_rsv - the block_rsv we're allocating for
4653  * @orig_bytes - the number of bytes we want
4654  * @flush - whether or not we can flush to make our reservation
4655  *
4656  * This will reserve orgi_bytes number of bytes from the space info associated
4657  * with the block_rsv.  If there is not enough space it will make an attempt to
4658  * flush out space to make room.  It will do this by flushing delalloc if
4659  * possible or committing the transaction.  If flush is 0 then no attempts to
4660  * regain reservations will be made and this will fail if there is not enough
4661  * space already.
4662  */
4663 static int reserve_metadata_bytes(struct btrfs_root *root,
4664 				  struct btrfs_block_rsv *block_rsv,
4665 				  u64 orig_bytes,
4666 				  enum btrfs_reserve_flush_enum flush)
4667 {
4668 	struct btrfs_space_info *space_info = block_rsv->space_info;
4669 	u64 used;
4670 	u64 num_bytes = orig_bytes;
4671 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4672 	int ret = 0;
4673 	bool flushing = false;
4674 
4675 again:
4676 	ret = 0;
4677 	spin_lock(&space_info->lock);
4678 	/*
4679 	 * We only want to wait if somebody other than us is flushing and we
4680 	 * are actually allowed to flush all things.
4681 	 */
4682 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4683 	       space_info->flush) {
4684 		spin_unlock(&space_info->lock);
4685 		/*
4686 		 * If we have a trans handle we can't wait because the flusher
4687 		 * may have to commit the transaction, which would mean we would
4688 		 * deadlock since we are waiting for the flusher to finish, but
4689 		 * hold the current transaction open.
4690 		 */
4691 		if (current->journal_info)
4692 			return -EAGAIN;
4693 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4694 		/* Must have been killed, return */
4695 		if (ret)
4696 			return -EINTR;
4697 
4698 		spin_lock(&space_info->lock);
4699 	}
4700 
4701 	ret = -ENOSPC;
4702 	used = space_info->bytes_used + space_info->bytes_reserved +
4703 		space_info->bytes_pinned + space_info->bytes_readonly +
4704 		space_info->bytes_may_use;
4705 
4706 	/*
4707 	 * The idea here is that we've not already over-reserved the block group
4708 	 * then we can go ahead and save our reservation first and then start
4709 	 * flushing if we need to.  Otherwise if we've already overcommitted
4710 	 * lets start flushing stuff first and then come back and try to make
4711 	 * our reservation.
4712 	 */
4713 	if (used <= space_info->total_bytes) {
4714 		if (used + orig_bytes <= space_info->total_bytes) {
4715 			space_info->bytes_may_use += orig_bytes;
4716 			trace_btrfs_space_reservation(root->fs_info,
4717 				"space_info", space_info->flags, orig_bytes, 1);
4718 			ret = 0;
4719 		} else {
4720 			/*
4721 			 * Ok set num_bytes to orig_bytes since we aren't
4722 			 * overocmmitted, this way we only try and reclaim what
4723 			 * we need.
4724 			 */
4725 			num_bytes = orig_bytes;
4726 		}
4727 	} else {
4728 		/*
4729 		 * Ok we're over committed, set num_bytes to the overcommitted
4730 		 * amount plus the amount of bytes that we need for this
4731 		 * reservation.
4732 		 */
4733 		num_bytes = used - space_info->total_bytes +
4734 			(orig_bytes * 2);
4735 	}
4736 
4737 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4738 		space_info->bytes_may_use += orig_bytes;
4739 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4740 					      space_info->flags, orig_bytes,
4741 					      1);
4742 		ret = 0;
4743 	}
4744 
4745 	/*
4746 	 * Couldn't make our reservation, save our place so while we're trying
4747 	 * to reclaim space we can actually use it instead of somebody else
4748 	 * stealing it from us.
4749 	 *
4750 	 * We make the other tasks wait for the flush only when we can flush
4751 	 * all things.
4752 	 */
4753 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4754 		flushing = true;
4755 		space_info->flush = 1;
4756 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4757 		used += orig_bytes;
4758 		/*
4759 		 * We will do the space reservation dance during log replay,
4760 		 * which means we won't have fs_info->fs_root set, so don't do
4761 		 * the async reclaim as we will panic.
4762 		 */
4763 		if (!root->fs_info->log_root_recovering &&
4764 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4765 		    !work_busy(&root->fs_info->async_reclaim_work))
4766 			queue_work(system_unbound_wq,
4767 				   &root->fs_info->async_reclaim_work);
4768 	}
4769 	spin_unlock(&space_info->lock);
4770 
4771 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4772 		goto out;
4773 
4774 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4775 			  flush_state);
4776 	flush_state++;
4777 
4778 	/*
4779 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4780 	 * would happen. So skip delalloc flush.
4781 	 */
4782 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4783 	    (flush_state == FLUSH_DELALLOC ||
4784 	     flush_state == FLUSH_DELALLOC_WAIT))
4785 		flush_state = ALLOC_CHUNK;
4786 
4787 	if (!ret)
4788 		goto again;
4789 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4790 		 flush_state < COMMIT_TRANS)
4791 		goto again;
4792 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4793 		 flush_state <= COMMIT_TRANS)
4794 		goto again;
4795 
4796 out:
4797 	if (ret == -ENOSPC &&
4798 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4799 		struct btrfs_block_rsv *global_rsv =
4800 			&root->fs_info->global_block_rsv;
4801 
4802 		if (block_rsv != global_rsv &&
4803 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4804 			ret = 0;
4805 	}
4806 	if (ret == -ENOSPC)
4807 		trace_btrfs_space_reservation(root->fs_info,
4808 					      "space_info:enospc",
4809 					      space_info->flags, orig_bytes, 1);
4810 	if (flushing) {
4811 		spin_lock(&space_info->lock);
4812 		space_info->flush = 0;
4813 		wake_up_all(&space_info->wait);
4814 		spin_unlock(&space_info->lock);
4815 	}
4816 	return ret;
4817 }
4818 
4819 static struct btrfs_block_rsv *get_block_rsv(
4820 					const struct btrfs_trans_handle *trans,
4821 					const struct btrfs_root *root)
4822 {
4823 	struct btrfs_block_rsv *block_rsv = NULL;
4824 
4825 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4826 		block_rsv = trans->block_rsv;
4827 
4828 	if (root == root->fs_info->csum_root && trans->adding_csums)
4829 		block_rsv = trans->block_rsv;
4830 
4831 	if (root == root->fs_info->uuid_root)
4832 		block_rsv = trans->block_rsv;
4833 
4834 	if (!block_rsv)
4835 		block_rsv = root->block_rsv;
4836 
4837 	if (!block_rsv)
4838 		block_rsv = &root->fs_info->empty_block_rsv;
4839 
4840 	return block_rsv;
4841 }
4842 
4843 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4844 			       u64 num_bytes)
4845 {
4846 	int ret = -ENOSPC;
4847 	spin_lock(&block_rsv->lock);
4848 	if (block_rsv->reserved >= num_bytes) {
4849 		block_rsv->reserved -= num_bytes;
4850 		if (block_rsv->reserved < block_rsv->size)
4851 			block_rsv->full = 0;
4852 		ret = 0;
4853 	}
4854 	spin_unlock(&block_rsv->lock);
4855 	return ret;
4856 }
4857 
4858 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4859 				u64 num_bytes, int update_size)
4860 {
4861 	spin_lock(&block_rsv->lock);
4862 	block_rsv->reserved += num_bytes;
4863 	if (update_size)
4864 		block_rsv->size += num_bytes;
4865 	else if (block_rsv->reserved >= block_rsv->size)
4866 		block_rsv->full = 1;
4867 	spin_unlock(&block_rsv->lock);
4868 }
4869 
4870 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4871 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4872 			     int min_factor)
4873 {
4874 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4875 	u64 min_bytes;
4876 
4877 	if (global_rsv->space_info != dest->space_info)
4878 		return -ENOSPC;
4879 
4880 	spin_lock(&global_rsv->lock);
4881 	min_bytes = div_factor(global_rsv->size, min_factor);
4882 	if (global_rsv->reserved < min_bytes + num_bytes) {
4883 		spin_unlock(&global_rsv->lock);
4884 		return -ENOSPC;
4885 	}
4886 	global_rsv->reserved -= num_bytes;
4887 	if (global_rsv->reserved < global_rsv->size)
4888 		global_rsv->full = 0;
4889 	spin_unlock(&global_rsv->lock);
4890 
4891 	block_rsv_add_bytes(dest, num_bytes, 1);
4892 	return 0;
4893 }
4894 
4895 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4896 				    struct btrfs_block_rsv *block_rsv,
4897 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4898 {
4899 	struct btrfs_space_info *space_info = block_rsv->space_info;
4900 
4901 	spin_lock(&block_rsv->lock);
4902 	if (num_bytes == (u64)-1)
4903 		num_bytes = block_rsv->size;
4904 	block_rsv->size -= num_bytes;
4905 	if (block_rsv->reserved >= block_rsv->size) {
4906 		num_bytes = block_rsv->reserved - block_rsv->size;
4907 		block_rsv->reserved = block_rsv->size;
4908 		block_rsv->full = 1;
4909 	} else {
4910 		num_bytes = 0;
4911 	}
4912 	spin_unlock(&block_rsv->lock);
4913 
4914 	if (num_bytes > 0) {
4915 		if (dest) {
4916 			spin_lock(&dest->lock);
4917 			if (!dest->full) {
4918 				u64 bytes_to_add;
4919 
4920 				bytes_to_add = dest->size - dest->reserved;
4921 				bytes_to_add = min(num_bytes, bytes_to_add);
4922 				dest->reserved += bytes_to_add;
4923 				if (dest->reserved >= dest->size)
4924 					dest->full = 1;
4925 				num_bytes -= bytes_to_add;
4926 			}
4927 			spin_unlock(&dest->lock);
4928 		}
4929 		if (num_bytes) {
4930 			spin_lock(&space_info->lock);
4931 			space_info->bytes_may_use -= num_bytes;
4932 			trace_btrfs_space_reservation(fs_info, "space_info",
4933 					space_info->flags, num_bytes, 0);
4934 			spin_unlock(&space_info->lock);
4935 		}
4936 	}
4937 }
4938 
4939 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4940 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4941 {
4942 	int ret;
4943 
4944 	ret = block_rsv_use_bytes(src, num_bytes);
4945 	if (ret)
4946 		return ret;
4947 
4948 	block_rsv_add_bytes(dst, num_bytes, 1);
4949 	return 0;
4950 }
4951 
4952 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4953 {
4954 	memset(rsv, 0, sizeof(*rsv));
4955 	spin_lock_init(&rsv->lock);
4956 	rsv->type = type;
4957 }
4958 
4959 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4960 					      unsigned short type)
4961 {
4962 	struct btrfs_block_rsv *block_rsv;
4963 	struct btrfs_fs_info *fs_info = root->fs_info;
4964 
4965 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4966 	if (!block_rsv)
4967 		return NULL;
4968 
4969 	btrfs_init_block_rsv(block_rsv, type);
4970 	block_rsv->space_info = __find_space_info(fs_info,
4971 						  BTRFS_BLOCK_GROUP_METADATA);
4972 	return block_rsv;
4973 }
4974 
4975 void btrfs_free_block_rsv(struct btrfs_root *root,
4976 			  struct btrfs_block_rsv *rsv)
4977 {
4978 	if (!rsv)
4979 		return;
4980 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4981 	kfree(rsv);
4982 }
4983 
4984 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4985 {
4986 	kfree(rsv);
4987 }
4988 
4989 int btrfs_block_rsv_add(struct btrfs_root *root,
4990 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4991 			enum btrfs_reserve_flush_enum flush)
4992 {
4993 	int ret;
4994 
4995 	if (num_bytes == 0)
4996 		return 0;
4997 
4998 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4999 	if (!ret) {
5000 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5001 		return 0;
5002 	}
5003 
5004 	return ret;
5005 }
5006 
5007 int btrfs_block_rsv_check(struct btrfs_root *root,
5008 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5009 {
5010 	u64 num_bytes = 0;
5011 	int ret = -ENOSPC;
5012 
5013 	if (!block_rsv)
5014 		return 0;
5015 
5016 	spin_lock(&block_rsv->lock);
5017 	num_bytes = div_factor(block_rsv->size, min_factor);
5018 	if (block_rsv->reserved >= num_bytes)
5019 		ret = 0;
5020 	spin_unlock(&block_rsv->lock);
5021 
5022 	return ret;
5023 }
5024 
5025 int btrfs_block_rsv_refill(struct btrfs_root *root,
5026 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5027 			   enum btrfs_reserve_flush_enum flush)
5028 {
5029 	u64 num_bytes = 0;
5030 	int ret = -ENOSPC;
5031 
5032 	if (!block_rsv)
5033 		return 0;
5034 
5035 	spin_lock(&block_rsv->lock);
5036 	num_bytes = min_reserved;
5037 	if (block_rsv->reserved >= num_bytes)
5038 		ret = 0;
5039 	else
5040 		num_bytes -= block_rsv->reserved;
5041 	spin_unlock(&block_rsv->lock);
5042 
5043 	if (!ret)
5044 		return 0;
5045 
5046 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5047 	if (!ret) {
5048 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5049 		return 0;
5050 	}
5051 
5052 	return ret;
5053 }
5054 
5055 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5056 			    struct btrfs_block_rsv *dst_rsv,
5057 			    u64 num_bytes)
5058 {
5059 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5060 }
5061 
5062 void btrfs_block_rsv_release(struct btrfs_root *root,
5063 			     struct btrfs_block_rsv *block_rsv,
5064 			     u64 num_bytes)
5065 {
5066 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5067 	if (global_rsv == block_rsv ||
5068 	    block_rsv->space_info != global_rsv->space_info)
5069 		global_rsv = NULL;
5070 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5071 				num_bytes);
5072 }
5073 
5074 /*
5075  * helper to calculate size of global block reservation.
5076  * the desired value is sum of space used by extent tree,
5077  * checksum tree and root tree
5078  */
5079 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5080 {
5081 	struct btrfs_space_info *sinfo;
5082 	u64 num_bytes;
5083 	u64 meta_used;
5084 	u64 data_used;
5085 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5086 
5087 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5088 	spin_lock(&sinfo->lock);
5089 	data_used = sinfo->bytes_used;
5090 	spin_unlock(&sinfo->lock);
5091 
5092 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5093 	spin_lock(&sinfo->lock);
5094 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5095 		data_used = 0;
5096 	meta_used = sinfo->bytes_used;
5097 	spin_unlock(&sinfo->lock);
5098 
5099 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5100 		    csum_size * 2;
5101 	num_bytes += div_u64(data_used + meta_used, 50);
5102 
5103 	if (num_bytes * 3 > meta_used)
5104 		num_bytes = div_u64(meta_used, 3);
5105 
5106 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5107 }
5108 
5109 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5110 {
5111 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5112 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5113 	u64 num_bytes;
5114 
5115 	num_bytes = calc_global_metadata_size(fs_info);
5116 
5117 	spin_lock(&sinfo->lock);
5118 	spin_lock(&block_rsv->lock);
5119 
5120 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5121 
5122 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5123 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5124 		    sinfo->bytes_may_use;
5125 
5126 	if (sinfo->total_bytes > num_bytes) {
5127 		num_bytes = sinfo->total_bytes - num_bytes;
5128 		block_rsv->reserved += num_bytes;
5129 		sinfo->bytes_may_use += num_bytes;
5130 		trace_btrfs_space_reservation(fs_info, "space_info",
5131 				      sinfo->flags, num_bytes, 1);
5132 	}
5133 
5134 	if (block_rsv->reserved >= block_rsv->size) {
5135 		num_bytes = block_rsv->reserved - block_rsv->size;
5136 		sinfo->bytes_may_use -= num_bytes;
5137 		trace_btrfs_space_reservation(fs_info, "space_info",
5138 				      sinfo->flags, num_bytes, 0);
5139 		block_rsv->reserved = block_rsv->size;
5140 		block_rsv->full = 1;
5141 	}
5142 
5143 	spin_unlock(&block_rsv->lock);
5144 	spin_unlock(&sinfo->lock);
5145 }
5146 
5147 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5148 {
5149 	struct btrfs_space_info *space_info;
5150 
5151 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5152 	fs_info->chunk_block_rsv.space_info = space_info;
5153 
5154 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5155 	fs_info->global_block_rsv.space_info = space_info;
5156 	fs_info->delalloc_block_rsv.space_info = space_info;
5157 	fs_info->trans_block_rsv.space_info = space_info;
5158 	fs_info->empty_block_rsv.space_info = space_info;
5159 	fs_info->delayed_block_rsv.space_info = space_info;
5160 
5161 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5162 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5163 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5164 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5165 	if (fs_info->quota_root)
5166 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5167 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5168 
5169 	update_global_block_rsv(fs_info);
5170 }
5171 
5172 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5173 {
5174 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5175 				(u64)-1);
5176 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5177 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5178 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5179 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5180 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5181 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5182 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5183 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5184 }
5185 
5186 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5187 				  struct btrfs_root *root)
5188 {
5189 	if (!trans->block_rsv)
5190 		return;
5191 
5192 	if (!trans->bytes_reserved)
5193 		return;
5194 
5195 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5196 				      trans->transid, trans->bytes_reserved, 0);
5197 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5198 	trans->bytes_reserved = 0;
5199 }
5200 
5201 /*
5202  * To be called after all the new block groups attached to the transaction
5203  * handle have been created (btrfs_create_pending_block_groups()).
5204  */
5205 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5206 {
5207 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5208 
5209 	if (!trans->chunk_bytes_reserved)
5210 		return;
5211 
5212 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5213 
5214 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5215 				trans->chunk_bytes_reserved);
5216 	trans->chunk_bytes_reserved = 0;
5217 }
5218 
5219 /* Can only return 0 or -ENOSPC */
5220 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5221 				  struct inode *inode)
5222 {
5223 	struct btrfs_root *root = BTRFS_I(inode)->root;
5224 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5225 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5226 
5227 	/*
5228 	 * We need to hold space in order to delete our orphan item once we've
5229 	 * added it, so this takes the reservation so we can release it later
5230 	 * when we are truly done with the orphan item.
5231 	 */
5232 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5233 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5234 				      btrfs_ino(inode), num_bytes, 1);
5235 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5236 }
5237 
5238 void btrfs_orphan_release_metadata(struct inode *inode)
5239 {
5240 	struct btrfs_root *root = BTRFS_I(inode)->root;
5241 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5242 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5243 				      btrfs_ino(inode), num_bytes, 0);
5244 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5245 }
5246 
5247 /*
5248  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5249  * root: the root of the parent directory
5250  * rsv: block reservation
5251  * items: the number of items that we need do reservation
5252  * qgroup_reserved: used to return the reserved size in qgroup
5253  *
5254  * This function is used to reserve the space for snapshot/subvolume
5255  * creation and deletion. Those operations are different with the
5256  * common file/directory operations, they change two fs/file trees
5257  * and root tree, the number of items that the qgroup reserves is
5258  * different with the free space reservation. So we can not use
5259  * the space reseravtion mechanism in start_transaction().
5260  */
5261 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5262 				     struct btrfs_block_rsv *rsv,
5263 				     int items,
5264 				     u64 *qgroup_reserved,
5265 				     bool use_global_rsv)
5266 {
5267 	u64 num_bytes;
5268 	int ret;
5269 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5270 
5271 	if (root->fs_info->quota_enabled) {
5272 		/* One for parent inode, two for dir entries */
5273 		num_bytes = 3 * root->nodesize;
5274 		ret = btrfs_qgroup_reserve(root, num_bytes);
5275 		if (ret)
5276 			return ret;
5277 	} else {
5278 		num_bytes = 0;
5279 	}
5280 
5281 	*qgroup_reserved = num_bytes;
5282 
5283 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5284 	rsv->space_info = __find_space_info(root->fs_info,
5285 					    BTRFS_BLOCK_GROUP_METADATA);
5286 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5287 				  BTRFS_RESERVE_FLUSH_ALL);
5288 
5289 	if (ret == -ENOSPC && use_global_rsv)
5290 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5291 
5292 	if (ret) {
5293 		if (*qgroup_reserved)
5294 			btrfs_qgroup_free(root, *qgroup_reserved);
5295 	}
5296 
5297 	return ret;
5298 }
5299 
5300 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5301 				      struct btrfs_block_rsv *rsv,
5302 				      u64 qgroup_reserved)
5303 {
5304 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5305 }
5306 
5307 /**
5308  * drop_outstanding_extent - drop an outstanding extent
5309  * @inode: the inode we're dropping the extent for
5310  * @num_bytes: the number of bytes we're relaseing.
5311  *
5312  * This is called when we are freeing up an outstanding extent, either called
5313  * after an error or after an extent is written.  This will return the number of
5314  * reserved extents that need to be freed.  This must be called with
5315  * BTRFS_I(inode)->lock held.
5316  */
5317 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5318 {
5319 	unsigned drop_inode_space = 0;
5320 	unsigned dropped_extents = 0;
5321 	unsigned num_extents = 0;
5322 
5323 	num_extents = (unsigned)div64_u64(num_bytes +
5324 					  BTRFS_MAX_EXTENT_SIZE - 1,
5325 					  BTRFS_MAX_EXTENT_SIZE);
5326 	ASSERT(num_extents);
5327 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5328 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5329 
5330 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5331 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5332 			       &BTRFS_I(inode)->runtime_flags))
5333 		drop_inode_space = 1;
5334 
5335 	/*
5336 	 * If we have more or the same amount of outsanding extents than we have
5337 	 * reserved then we need to leave the reserved extents count alone.
5338 	 */
5339 	if (BTRFS_I(inode)->outstanding_extents >=
5340 	    BTRFS_I(inode)->reserved_extents)
5341 		return drop_inode_space;
5342 
5343 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5344 		BTRFS_I(inode)->outstanding_extents;
5345 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5346 	return dropped_extents + drop_inode_space;
5347 }
5348 
5349 /**
5350  * calc_csum_metadata_size - return the amount of metada space that must be
5351  *	reserved/free'd for the given bytes.
5352  * @inode: the inode we're manipulating
5353  * @num_bytes: the number of bytes in question
5354  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5355  *
5356  * This adjusts the number of csum_bytes in the inode and then returns the
5357  * correct amount of metadata that must either be reserved or freed.  We
5358  * calculate how many checksums we can fit into one leaf and then divide the
5359  * number of bytes that will need to be checksumed by this value to figure out
5360  * how many checksums will be required.  If we are adding bytes then the number
5361  * may go up and we will return the number of additional bytes that must be
5362  * reserved.  If it is going down we will return the number of bytes that must
5363  * be freed.
5364  *
5365  * This must be called with BTRFS_I(inode)->lock held.
5366  */
5367 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5368 				   int reserve)
5369 {
5370 	struct btrfs_root *root = BTRFS_I(inode)->root;
5371 	u64 old_csums, num_csums;
5372 
5373 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5374 	    BTRFS_I(inode)->csum_bytes == 0)
5375 		return 0;
5376 
5377 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5378 	if (reserve)
5379 		BTRFS_I(inode)->csum_bytes += num_bytes;
5380 	else
5381 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5382 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5383 
5384 	/* No change, no need to reserve more */
5385 	if (old_csums == num_csums)
5386 		return 0;
5387 
5388 	if (reserve)
5389 		return btrfs_calc_trans_metadata_size(root,
5390 						      num_csums - old_csums);
5391 
5392 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5393 }
5394 
5395 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5396 {
5397 	struct btrfs_root *root = BTRFS_I(inode)->root;
5398 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5399 	u64 to_reserve = 0;
5400 	u64 csum_bytes;
5401 	unsigned nr_extents = 0;
5402 	int extra_reserve = 0;
5403 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5404 	int ret = 0;
5405 	bool delalloc_lock = true;
5406 	u64 to_free = 0;
5407 	unsigned dropped;
5408 
5409 	/* If we are a free space inode we need to not flush since we will be in
5410 	 * the middle of a transaction commit.  We also don't need the delalloc
5411 	 * mutex since we won't race with anybody.  We need this mostly to make
5412 	 * lockdep shut its filthy mouth.
5413 	 */
5414 	if (btrfs_is_free_space_inode(inode)) {
5415 		flush = BTRFS_RESERVE_NO_FLUSH;
5416 		delalloc_lock = false;
5417 	}
5418 
5419 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5420 	    btrfs_transaction_in_commit(root->fs_info))
5421 		schedule_timeout(1);
5422 
5423 	if (delalloc_lock)
5424 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5425 
5426 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5427 
5428 	spin_lock(&BTRFS_I(inode)->lock);
5429 	nr_extents = (unsigned)div64_u64(num_bytes +
5430 					 BTRFS_MAX_EXTENT_SIZE - 1,
5431 					 BTRFS_MAX_EXTENT_SIZE);
5432 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5433 	nr_extents = 0;
5434 
5435 	if (BTRFS_I(inode)->outstanding_extents >
5436 	    BTRFS_I(inode)->reserved_extents)
5437 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5438 			BTRFS_I(inode)->reserved_extents;
5439 
5440 	/*
5441 	 * Add an item to reserve for updating the inode when we complete the
5442 	 * delalloc io.
5443 	 */
5444 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5445 		      &BTRFS_I(inode)->runtime_flags)) {
5446 		nr_extents++;
5447 		extra_reserve = 1;
5448 	}
5449 
5450 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5451 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5452 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5453 	spin_unlock(&BTRFS_I(inode)->lock);
5454 
5455 	if (root->fs_info->quota_enabled) {
5456 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5457 		if (ret)
5458 			goto out_fail;
5459 	}
5460 
5461 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5462 	if (unlikely(ret)) {
5463 		if (root->fs_info->quota_enabled)
5464 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5465 		goto out_fail;
5466 	}
5467 
5468 	spin_lock(&BTRFS_I(inode)->lock);
5469 	if (extra_reserve) {
5470 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5471 			&BTRFS_I(inode)->runtime_flags);
5472 		nr_extents--;
5473 	}
5474 	BTRFS_I(inode)->reserved_extents += nr_extents;
5475 	spin_unlock(&BTRFS_I(inode)->lock);
5476 
5477 	if (delalloc_lock)
5478 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5479 
5480 	if (to_reserve)
5481 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5482 					      btrfs_ino(inode), to_reserve, 1);
5483 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5484 
5485 	return 0;
5486 
5487 out_fail:
5488 	spin_lock(&BTRFS_I(inode)->lock);
5489 	dropped = drop_outstanding_extent(inode, num_bytes);
5490 	/*
5491 	 * If the inodes csum_bytes is the same as the original
5492 	 * csum_bytes then we know we haven't raced with any free()ers
5493 	 * so we can just reduce our inodes csum bytes and carry on.
5494 	 */
5495 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5496 		calc_csum_metadata_size(inode, num_bytes, 0);
5497 	} else {
5498 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5499 		u64 bytes;
5500 
5501 		/*
5502 		 * This is tricky, but first we need to figure out how much we
5503 		 * free'd from any free-ers that occured during this
5504 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5505 		 * before we dropped our lock, and then call the free for the
5506 		 * number of bytes that were freed while we were trying our
5507 		 * reservation.
5508 		 */
5509 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5510 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5511 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5512 
5513 
5514 		/*
5515 		 * Now we need to see how much we would have freed had we not
5516 		 * been making this reservation and our ->csum_bytes were not
5517 		 * artificially inflated.
5518 		 */
5519 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5520 		bytes = csum_bytes - orig_csum_bytes;
5521 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5522 
5523 		/*
5524 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5525 		 * more than to_free then we would have free'd more space had we
5526 		 * not had an artificially high ->csum_bytes, so we need to free
5527 		 * the remainder.  If bytes is the same or less then we don't
5528 		 * need to do anything, the other free-ers did the correct
5529 		 * thing.
5530 		 */
5531 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5532 		if (bytes > to_free)
5533 			to_free = bytes - to_free;
5534 		else
5535 			to_free = 0;
5536 	}
5537 	spin_unlock(&BTRFS_I(inode)->lock);
5538 	if (dropped)
5539 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5540 
5541 	if (to_free) {
5542 		btrfs_block_rsv_release(root, block_rsv, to_free);
5543 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5544 					      btrfs_ino(inode), to_free, 0);
5545 	}
5546 	if (delalloc_lock)
5547 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5548 	return ret;
5549 }
5550 
5551 /**
5552  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5553  * @inode: the inode to release the reservation for
5554  * @num_bytes: the number of bytes we're releasing
5555  *
5556  * This will release the metadata reservation for an inode.  This can be called
5557  * once we complete IO for a given set of bytes to release their metadata
5558  * reservations.
5559  */
5560 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5561 {
5562 	struct btrfs_root *root = BTRFS_I(inode)->root;
5563 	u64 to_free = 0;
5564 	unsigned dropped;
5565 
5566 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5567 	spin_lock(&BTRFS_I(inode)->lock);
5568 	dropped = drop_outstanding_extent(inode, num_bytes);
5569 
5570 	if (num_bytes)
5571 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5572 	spin_unlock(&BTRFS_I(inode)->lock);
5573 	if (dropped > 0)
5574 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5575 
5576 	if (btrfs_test_is_dummy_root(root))
5577 		return;
5578 
5579 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5580 				      btrfs_ino(inode), to_free, 0);
5581 
5582 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5583 				to_free);
5584 }
5585 
5586 /**
5587  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5588  * @inode: inode we're writing to
5589  * @num_bytes: the number of bytes we want to allocate
5590  *
5591  * This will do the following things
5592  *
5593  * o reserve space in the data space info for num_bytes
5594  * o reserve space in the metadata space info based on number of outstanding
5595  *   extents and how much csums will be needed
5596  * o add to the inodes ->delalloc_bytes
5597  * o add it to the fs_info's delalloc inodes list.
5598  *
5599  * This will return 0 for success and -ENOSPC if there is no space left.
5600  */
5601 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5602 {
5603 	int ret;
5604 
5605 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5606 	if (ret)
5607 		return ret;
5608 
5609 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5610 	if (ret) {
5611 		btrfs_free_reserved_data_space(inode, num_bytes);
5612 		return ret;
5613 	}
5614 
5615 	return 0;
5616 }
5617 
5618 /**
5619  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5620  * @inode: inode we're releasing space for
5621  * @num_bytes: the number of bytes we want to free up
5622  *
5623  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5624  * called in the case that we don't need the metadata AND data reservations
5625  * anymore.  So if there is an error or we insert an inline extent.
5626  *
5627  * This function will release the metadata space that was not used and will
5628  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5629  * list if there are no delalloc bytes left.
5630  */
5631 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5632 {
5633 	btrfs_delalloc_release_metadata(inode, num_bytes);
5634 	btrfs_free_reserved_data_space(inode, num_bytes);
5635 }
5636 
5637 static int update_block_group(struct btrfs_trans_handle *trans,
5638 			      struct btrfs_root *root, u64 bytenr,
5639 			      u64 num_bytes, int alloc)
5640 {
5641 	struct btrfs_block_group_cache *cache = NULL;
5642 	struct btrfs_fs_info *info = root->fs_info;
5643 	u64 total = num_bytes;
5644 	u64 old_val;
5645 	u64 byte_in_group;
5646 	int factor;
5647 
5648 	/* block accounting for super block */
5649 	spin_lock(&info->delalloc_root_lock);
5650 	old_val = btrfs_super_bytes_used(info->super_copy);
5651 	if (alloc)
5652 		old_val += num_bytes;
5653 	else
5654 		old_val -= num_bytes;
5655 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5656 	spin_unlock(&info->delalloc_root_lock);
5657 
5658 	while (total) {
5659 		cache = btrfs_lookup_block_group(info, bytenr);
5660 		if (!cache)
5661 			return -ENOENT;
5662 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5663 				    BTRFS_BLOCK_GROUP_RAID1 |
5664 				    BTRFS_BLOCK_GROUP_RAID10))
5665 			factor = 2;
5666 		else
5667 			factor = 1;
5668 		/*
5669 		 * If this block group has free space cache written out, we
5670 		 * need to make sure to load it if we are removing space.  This
5671 		 * is because we need the unpinning stage to actually add the
5672 		 * space back to the block group, otherwise we will leak space.
5673 		 */
5674 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5675 			cache_block_group(cache, 1);
5676 
5677 		byte_in_group = bytenr - cache->key.objectid;
5678 		WARN_ON(byte_in_group > cache->key.offset);
5679 
5680 		spin_lock(&cache->space_info->lock);
5681 		spin_lock(&cache->lock);
5682 
5683 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5684 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5685 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5686 
5687 		old_val = btrfs_block_group_used(&cache->item);
5688 		num_bytes = min(total, cache->key.offset - byte_in_group);
5689 		if (alloc) {
5690 			old_val += num_bytes;
5691 			btrfs_set_block_group_used(&cache->item, old_val);
5692 			cache->reserved -= num_bytes;
5693 			cache->space_info->bytes_reserved -= num_bytes;
5694 			cache->space_info->bytes_used += num_bytes;
5695 			cache->space_info->disk_used += num_bytes * factor;
5696 			spin_unlock(&cache->lock);
5697 			spin_unlock(&cache->space_info->lock);
5698 		} else {
5699 			old_val -= num_bytes;
5700 			btrfs_set_block_group_used(&cache->item, old_val);
5701 			cache->pinned += num_bytes;
5702 			cache->space_info->bytes_pinned += num_bytes;
5703 			cache->space_info->bytes_used -= num_bytes;
5704 			cache->space_info->disk_used -= num_bytes * factor;
5705 			spin_unlock(&cache->lock);
5706 			spin_unlock(&cache->space_info->lock);
5707 
5708 			set_extent_dirty(info->pinned_extents,
5709 					 bytenr, bytenr + num_bytes - 1,
5710 					 GFP_NOFS | __GFP_NOFAIL);
5711 			/*
5712 			 * No longer have used bytes in this block group, queue
5713 			 * it for deletion.
5714 			 */
5715 			if (old_val == 0) {
5716 				spin_lock(&info->unused_bgs_lock);
5717 				if (list_empty(&cache->bg_list)) {
5718 					btrfs_get_block_group(cache);
5719 					list_add_tail(&cache->bg_list,
5720 						      &info->unused_bgs);
5721 				}
5722 				spin_unlock(&info->unused_bgs_lock);
5723 			}
5724 		}
5725 
5726 		spin_lock(&trans->transaction->dirty_bgs_lock);
5727 		if (list_empty(&cache->dirty_list)) {
5728 			list_add_tail(&cache->dirty_list,
5729 				      &trans->transaction->dirty_bgs);
5730 				trans->transaction->num_dirty_bgs++;
5731 			btrfs_get_block_group(cache);
5732 		}
5733 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5734 
5735 		btrfs_put_block_group(cache);
5736 		total -= num_bytes;
5737 		bytenr += num_bytes;
5738 	}
5739 	return 0;
5740 }
5741 
5742 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5743 {
5744 	struct btrfs_block_group_cache *cache;
5745 	u64 bytenr;
5746 
5747 	spin_lock(&root->fs_info->block_group_cache_lock);
5748 	bytenr = root->fs_info->first_logical_byte;
5749 	spin_unlock(&root->fs_info->block_group_cache_lock);
5750 
5751 	if (bytenr < (u64)-1)
5752 		return bytenr;
5753 
5754 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5755 	if (!cache)
5756 		return 0;
5757 
5758 	bytenr = cache->key.objectid;
5759 	btrfs_put_block_group(cache);
5760 
5761 	return bytenr;
5762 }
5763 
5764 static int pin_down_extent(struct btrfs_root *root,
5765 			   struct btrfs_block_group_cache *cache,
5766 			   u64 bytenr, u64 num_bytes, int reserved)
5767 {
5768 	spin_lock(&cache->space_info->lock);
5769 	spin_lock(&cache->lock);
5770 	cache->pinned += num_bytes;
5771 	cache->space_info->bytes_pinned += num_bytes;
5772 	if (reserved) {
5773 		cache->reserved -= num_bytes;
5774 		cache->space_info->bytes_reserved -= num_bytes;
5775 	}
5776 	spin_unlock(&cache->lock);
5777 	spin_unlock(&cache->space_info->lock);
5778 
5779 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5780 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5781 	if (reserved)
5782 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5783 	return 0;
5784 }
5785 
5786 /*
5787  * this function must be called within transaction
5788  */
5789 int btrfs_pin_extent(struct btrfs_root *root,
5790 		     u64 bytenr, u64 num_bytes, int reserved)
5791 {
5792 	struct btrfs_block_group_cache *cache;
5793 
5794 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5795 	BUG_ON(!cache); /* Logic error */
5796 
5797 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5798 
5799 	btrfs_put_block_group(cache);
5800 	return 0;
5801 }
5802 
5803 /*
5804  * this function must be called within transaction
5805  */
5806 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5807 				    u64 bytenr, u64 num_bytes)
5808 {
5809 	struct btrfs_block_group_cache *cache;
5810 	int ret;
5811 
5812 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5813 	if (!cache)
5814 		return -EINVAL;
5815 
5816 	/*
5817 	 * pull in the free space cache (if any) so that our pin
5818 	 * removes the free space from the cache.  We have load_only set
5819 	 * to one because the slow code to read in the free extents does check
5820 	 * the pinned extents.
5821 	 */
5822 	cache_block_group(cache, 1);
5823 
5824 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5825 
5826 	/* remove us from the free space cache (if we're there at all) */
5827 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5828 	btrfs_put_block_group(cache);
5829 	return ret;
5830 }
5831 
5832 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5833 {
5834 	int ret;
5835 	struct btrfs_block_group_cache *block_group;
5836 	struct btrfs_caching_control *caching_ctl;
5837 
5838 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5839 	if (!block_group)
5840 		return -EINVAL;
5841 
5842 	cache_block_group(block_group, 0);
5843 	caching_ctl = get_caching_control(block_group);
5844 
5845 	if (!caching_ctl) {
5846 		/* Logic error */
5847 		BUG_ON(!block_group_cache_done(block_group));
5848 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5849 	} else {
5850 		mutex_lock(&caching_ctl->mutex);
5851 
5852 		if (start >= caching_ctl->progress) {
5853 			ret = add_excluded_extent(root, start, num_bytes);
5854 		} else if (start + num_bytes <= caching_ctl->progress) {
5855 			ret = btrfs_remove_free_space(block_group,
5856 						      start, num_bytes);
5857 		} else {
5858 			num_bytes = caching_ctl->progress - start;
5859 			ret = btrfs_remove_free_space(block_group,
5860 						      start, num_bytes);
5861 			if (ret)
5862 				goto out_lock;
5863 
5864 			num_bytes = (start + num_bytes) -
5865 				caching_ctl->progress;
5866 			start = caching_ctl->progress;
5867 			ret = add_excluded_extent(root, start, num_bytes);
5868 		}
5869 out_lock:
5870 		mutex_unlock(&caching_ctl->mutex);
5871 		put_caching_control(caching_ctl);
5872 	}
5873 	btrfs_put_block_group(block_group);
5874 	return ret;
5875 }
5876 
5877 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5878 				 struct extent_buffer *eb)
5879 {
5880 	struct btrfs_file_extent_item *item;
5881 	struct btrfs_key key;
5882 	int found_type;
5883 	int i;
5884 
5885 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5886 		return 0;
5887 
5888 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5889 		btrfs_item_key_to_cpu(eb, &key, i);
5890 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5891 			continue;
5892 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5893 		found_type = btrfs_file_extent_type(eb, item);
5894 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5895 			continue;
5896 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5897 			continue;
5898 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5899 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5900 		__exclude_logged_extent(log, key.objectid, key.offset);
5901 	}
5902 
5903 	return 0;
5904 }
5905 
5906 /**
5907  * btrfs_update_reserved_bytes - update the block_group and space info counters
5908  * @cache:	The cache we are manipulating
5909  * @num_bytes:	The number of bytes in question
5910  * @reserve:	One of the reservation enums
5911  * @delalloc:   The blocks are allocated for the delalloc write
5912  *
5913  * This is called by the allocator when it reserves space, or by somebody who is
5914  * freeing space that was never actually used on disk.  For example if you
5915  * reserve some space for a new leaf in transaction A and before transaction A
5916  * commits you free that leaf, you call this with reserve set to 0 in order to
5917  * clear the reservation.
5918  *
5919  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5920  * ENOSPC accounting.  For data we handle the reservation through clearing the
5921  * delalloc bits in the io_tree.  We have to do this since we could end up
5922  * allocating less disk space for the amount of data we have reserved in the
5923  * case of compression.
5924  *
5925  * If this is a reservation and the block group has become read only we cannot
5926  * make the reservation and return -EAGAIN, otherwise this function always
5927  * succeeds.
5928  */
5929 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5930 				       u64 num_bytes, int reserve, int delalloc)
5931 {
5932 	struct btrfs_space_info *space_info = cache->space_info;
5933 	int ret = 0;
5934 
5935 	spin_lock(&space_info->lock);
5936 	spin_lock(&cache->lock);
5937 	if (reserve != RESERVE_FREE) {
5938 		if (cache->ro) {
5939 			ret = -EAGAIN;
5940 		} else {
5941 			cache->reserved += num_bytes;
5942 			space_info->bytes_reserved += num_bytes;
5943 			if (reserve == RESERVE_ALLOC) {
5944 				trace_btrfs_space_reservation(cache->fs_info,
5945 						"space_info", space_info->flags,
5946 						num_bytes, 0);
5947 				space_info->bytes_may_use -= num_bytes;
5948 			}
5949 
5950 			if (delalloc)
5951 				cache->delalloc_bytes += num_bytes;
5952 		}
5953 	} else {
5954 		if (cache->ro)
5955 			space_info->bytes_readonly += num_bytes;
5956 		cache->reserved -= num_bytes;
5957 		space_info->bytes_reserved -= num_bytes;
5958 
5959 		if (delalloc)
5960 			cache->delalloc_bytes -= num_bytes;
5961 	}
5962 	spin_unlock(&cache->lock);
5963 	spin_unlock(&space_info->lock);
5964 	return ret;
5965 }
5966 
5967 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5968 				struct btrfs_root *root)
5969 {
5970 	struct btrfs_fs_info *fs_info = root->fs_info;
5971 	struct btrfs_caching_control *next;
5972 	struct btrfs_caching_control *caching_ctl;
5973 	struct btrfs_block_group_cache *cache;
5974 
5975 	down_write(&fs_info->commit_root_sem);
5976 
5977 	list_for_each_entry_safe(caching_ctl, next,
5978 				 &fs_info->caching_block_groups, list) {
5979 		cache = caching_ctl->block_group;
5980 		if (block_group_cache_done(cache)) {
5981 			cache->last_byte_to_unpin = (u64)-1;
5982 			list_del_init(&caching_ctl->list);
5983 			put_caching_control(caching_ctl);
5984 		} else {
5985 			cache->last_byte_to_unpin = caching_ctl->progress;
5986 		}
5987 	}
5988 
5989 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5990 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5991 	else
5992 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5993 
5994 	up_write(&fs_info->commit_root_sem);
5995 
5996 	update_global_block_rsv(fs_info);
5997 }
5998 
5999 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6000 			      const bool return_free_space)
6001 {
6002 	struct btrfs_fs_info *fs_info = root->fs_info;
6003 	struct btrfs_block_group_cache *cache = NULL;
6004 	struct btrfs_space_info *space_info;
6005 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6006 	u64 len;
6007 	bool readonly;
6008 
6009 	while (start <= end) {
6010 		readonly = false;
6011 		if (!cache ||
6012 		    start >= cache->key.objectid + cache->key.offset) {
6013 			if (cache)
6014 				btrfs_put_block_group(cache);
6015 			cache = btrfs_lookup_block_group(fs_info, start);
6016 			BUG_ON(!cache); /* Logic error */
6017 		}
6018 
6019 		len = cache->key.objectid + cache->key.offset - start;
6020 		len = min(len, end + 1 - start);
6021 
6022 		if (start < cache->last_byte_to_unpin) {
6023 			len = min(len, cache->last_byte_to_unpin - start);
6024 			if (return_free_space)
6025 				btrfs_add_free_space(cache, start, len);
6026 		}
6027 
6028 		start += len;
6029 		space_info = cache->space_info;
6030 
6031 		spin_lock(&space_info->lock);
6032 		spin_lock(&cache->lock);
6033 		cache->pinned -= len;
6034 		space_info->bytes_pinned -= len;
6035 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6036 		if (cache->ro) {
6037 			space_info->bytes_readonly += len;
6038 			readonly = true;
6039 		}
6040 		spin_unlock(&cache->lock);
6041 		if (!readonly && global_rsv->space_info == space_info) {
6042 			spin_lock(&global_rsv->lock);
6043 			if (!global_rsv->full) {
6044 				len = min(len, global_rsv->size -
6045 					  global_rsv->reserved);
6046 				global_rsv->reserved += len;
6047 				space_info->bytes_may_use += len;
6048 				if (global_rsv->reserved >= global_rsv->size)
6049 					global_rsv->full = 1;
6050 			}
6051 			spin_unlock(&global_rsv->lock);
6052 		}
6053 		spin_unlock(&space_info->lock);
6054 	}
6055 
6056 	if (cache)
6057 		btrfs_put_block_group(cache);
6058 	return 0;
6059 }
6060 
6061 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6062 			       struct btrfs_root *root)
6063 {
6064 	struct btrfs_fs_info *fs_info = root->fs_info;
6065 	struct extent_io_tree *unpin;
6066 	u64 start;
6067 	u64 end;
6068 	int ret;
6069 
6070 	if (trans->aborted)
6071 		return 0;
6072 
6073 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6074 		unpin = &fs_info->freed_extents[1];
6075 	else
6076 		unpin = &fs_info->freed_extents[0];
6077 
6078 	while (1) {
6079 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6080 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6081 					    EXTENT_DIRTY, NULL);
6082 		if (ret) {
6083 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6084 			break;
6085 		}
6086 
6087 		if (btrfs_test_opt(root, DISCARD))
6088 			ret = btrfs_discard_extent(root, start,
6089 						   end + 1 - start, NULL);
6090 
6091 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6092 		unpin_extent_range(root, start, end, true);
6093 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6094 		cond_resched();
6095 	}
6096 
6097 	return 0;
6098 }
6099 
6100 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6101 			     u64 owner, u64 root_objectid)
6102 {
6103 	struct btrfs_space_info *space_info;
6104 	u64 flags;
6105 
6106 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6107 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6108 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6109 		else
6110 			flags = BTRFS_BLOCK_GROUP_METADATA;
6111 	} else {
6112 		flags = BTRFS_BLOCK_GROUP_DATA;
6113 	}
6114 
6115 	space_info = __find_space_info(fs_info, flags);
6116 	BUG_ON(!space_info); /* Logic bug */
6117 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6118 }
6119 
6120 
6121 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6122 				struct btrfs_root *root,
6123 				struct btrfs_delayed_ref_node *node, u64 parent,
6124 				u64 root_objectid, u64 owner_objectid,
6125 				u64 owner_offset, int refs_to_drop,
6126 				struct btrfs_delayed_extent_op *extent_op)
6127 {
6128 	struct btrfs_key key;
6129 	struct btrfs_path *path;
6130 	struct btrfs_fs_info *info = root->fs_info;
6131 	struct btrfs_root *extent_root = info->extent_root;
6132 	struct extent_buffer *leaf;
6133 	struct btrfs_extent_item *ei;
6134 	struct btrfs_extent_inline_ref *iref;
6135 	int ret;
6136 	int is_data;
6137 	int extent_slot = 0;
6138 	int found_extent = 0;
6139 	int num_to_del = 1;
6140 	int no_quota = node->no_quota;
6141 	u32 item_size;
6142 	u64 refs;
6143 	u64 bytenr = node->bytenr;
6144 	u64 num_bytes = node->num_bytes;
6145 	int last_ref = 0;
6146 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6147 						 SKINNY_METADATA);
6148 
6149 	if (!info->quota_enabled || !is_fstree(root_objectid))
6150 		no_quota = 1;
6151 
6152 	path = btrfs_alloc_path();
6153 	if (!path)
6154 		return -ENOMEM;
6155 
6156 	path->reada = 1;
6157 	path->leave_spinning = 1;
6158 
6159 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6160 	BUG_ON(!is_data && refs_to_drop != 1);
6161 
6162 	if (is_data)
6163 		skinny_metadata = 0;
6164 
6165 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6166 				    bytenr, num_bytes, parent,
6167 				    root_objectid, owner_objectid,
6168 				    owner_offset);
6169 	if (ret == 0) {
6170 		extent_slot = path->slots[0];
6171 		while (extent_slot >= 0) {
6172 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6173 					      extent_slot);
6174 			if (key.objectid != bytenr)
6175 				break;
6176 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6177 			    key.offset == num_bytes) {
6178 				found_extent = 1;
6179 				break;
6180 			}
6181 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6182 			    key.offset == owner_objectid) {
6183 				found_extent = 1;
6184 				break;
6185 			}
6186 			if (path->slots[0] - extent_slot > 5)
6187 				break;
6188 			extent_slot--;
6189 		}
6190 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6191 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6192 		if (found_extent && item_size < sizeof(*ei))
6193 			found_extent = 0;
6194 #endif
6195 		if (!found_extent) {
6196 			BUG_ON(iref);
6197 			ret = remove_extent_backref(trans, extent_root, path,
6198 						    NULL, refs_to_drop,
6199 						    is_data, &last_ref);
6200 			if (ret) {
6201 				btrfs_abort_transaction(trans, extent_root, ret);
6202 				goto out;
6203 			}
6204 			btrfs_release_path(path);
6205 			path->leave_spinning = 1;
6206 
6207 			key.objectid = bytenr;
6208 			key.type = BTRFS_EXTENT_ITEM_KEY;
6209 			key.offset = num_bytes;
6210 
6211 			if (!is_data && skinny_metadata) {
6212 				key.type = BTRFS_METADATA_ITEM_KEY;
6213 				key.offset = owner_objectid;
6214 			}
6215 
6216 			ret = btrfs_search_slot(trans, extent_root,
6217 						&key, path, -1, 1);
6218 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6219 				/*
6220 				 * Couldn't find our skinny metadata item,
6221 				 * see if we have ye olde extent item.
6222 				 */
6223 				path->slots[0]--;
6224 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6225 						      path->slots[0]);
6226 				if (key.objectid == bytenr &&
6227 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6228 				    key.offset == num_bytes)
6229 					ret = 0;
6230 			}
6231 
6232 			if (ret > 0 && skinny_metadata) {
6233 				skinny_metadata = false;
6234 				key.objectid = bytenr;
6235 				key.type = BTRFS_EXTENT_ITEM_KEY;
6236 				key.offset = num_bytes;
6237 				btrfs_release_path(path);
6238 				ret = btrfs_search_slot(trans, extent_root,
6239 							&key, path, -1, 1);
6240 			}
6241 
6242 			if (ret) {
6243 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6244 					ret, bytenr);
6245 				if (ret > 0)
6246 					btrfs_print_leaf(extent_root,
6247 							 path->nodes[0]);
6248 			}
6249 			if (ret < 0) {
6250 				btrfs_abort_transaction(trans, extent_root, ret);
6251 				goto out;
6252 			}
6253 			extent_slot = path->slots[0];
6254 		}
6255 	} else if (WARN_ON(ret == -ENOENT)) {
6256 		btrfs_print_leaf(extent_root, path->nodes[0]);
6257 		btrfs_err(info,
6258 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6259 			bytenr, parent, root_objectid, owner_objectid,
6260 			owner_offset);
6261 		btrfs_abort_transaction(trans, extent_root, ret);
6262 		goto out;
6263 	} else {
6264 		btrfs_abort_transaction(trans, extent_root, ret);
6265 		goto out;
6266 	}
6267 
6268 	leaf = path->nodes[0];
6269 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6271 	if (item_size < sizeof(*ei)) {
6272 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6273 		ret = convert_extent_item_v0(trans, extent_root, path,
6274 					     owner_objectid, 0);
6275 		if (ret < 0) {
6276 			btrfs_abort_transaction(trans, extent_root, ret);
6277 			goto out;
6278 		}
6279 
6280 		btrfs_release_path(path);
6281 		path->leave_spinning = 1;
6282 
6283 		key.objectid = bytenr;
6284 		key.type = BTRFS_EXTENT_ITEM_KEY;
6285 		key.offset = num_bytes;
6286 
6287 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6288 					-1, 1);
6289 		if (ret) {
6290 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6291 				ret, bytenr);
6292 			btrfs_print_leaf(extent_root, path->nodes[0]);
6293 		}
6294 		if (ret < 0) {
6295 			btrfs_abort_transaction(trans, extent_root, ret);
6296 			goto out;
6297 		}
6298 
6299 		extent_slot = path->slots[0];
6300 		leaf = path->nodes[0];
6301 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6302 	}
6303 #endif
6304 	BUG_ON(item_size < sizeof(*ei));
6305 	ei = btrfs_item_ptr(leaf, extent_slot,
6306 			    struct btrfs_extent_item);
6307 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6308 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6309 		struct btrfs_tree_block_info *bi;
6310 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6311 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6312 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6313 	}
6314 
6315 	refs = btrfs_extent_refs(leaf, ei);
6316 	if (refs < refs_to_drop) {
6317 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6318 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6319 		ret = -EINVAL;
6320 		btrfs_abort_transaction(trans, extent_root, ret);
6321 		goto out;
6322 	}
6323 	refs -= refs_to_drop;
6324 
6325 	if (refs > 0) {
6326 		if (extent_op)
6327 			__run_delayed_extent_op(extent_op, leaf, ei);
6328 		/*
6329 		 * In the case of inline back ref, reference count will
6330 		 * be updated by remove_extent_backref
6331 		 */
6332 		if (iref) {
6333 			BUG_ON(!found_extent);
6334 		} else {
6335 			btrfs_set_extent_refs(leaf, ei, refs);
6336 			btrfs_mark_buffer_dirty(leaf);
6337 		}
6338 		if (found_extent) {
6339 			ret = remove_extent_backref(trans, extent_root, path,
6340 						    iref, refs_to_drop,
6341 						    is_data, &last_ref);
6342 			if (ret) {
6343 				btrfs_abort_transaction(trans, extent_root, ret);
6344 				goto out;
6345 			}
6346 		}
6347 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6348 				 root_objectid);
6349 	} else {
6350 		if (found_extent) {
6351 			BUG_ON(is_data && refs_to_drop !=
6352 			       extent_data_ref_count(root, path, iref));
6353 			if (iref) {
6354 				BUG_ON(path->slots[0] != extent_slot);
6355 			} else {
6356 				BUG_ON(path->slots[0] != extent_slot + 1);
6357 				path->slots[0] = extent_slot;
6358 				num_to_del = 2;
6359 			}
6360 		}
6361 
6362 		last_ref = 1;
6363 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6364 				      num_to_del);
6365 		if (ret) {
6366 			btrfs_abort_transaction(trans, extent_root, ret);
6367 			goto out;
6368 		}
6369 		btrfs_release_path(path);
6370 
6371 		if (is_data) {
6372 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6373 			if (ret) {
6374 				btrfs_abort_transaction(trans, extent_root, ret);
6375 				goto out;
6376 			}
6377 		}
6378 
6379 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6380 		if (ret) {
6381 			btrfs_abort_transaction(trans, extent_root, ret);
6382 			goto out;
6383 		}
6384 	}
6385 	btrfs_release_path(path);
6386 
6387 out:
6388 	btrfs_free_path(path);
6389 	return ret;
6390 }
6391 
6392 /*
6393  * when we free an block, it is possible (and likely) that we free the last
6394  * delayed ref for that extent as well.  This searches the delayed ref tree for
6395  * a given extent, and if there are no other delayed refs to be processed, it
6396  * removes it from the tree.
6397  */
6398 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6399 				      struct btrfs_root *root, u64 bytenr)
6400 {
6401 	struct btrfs_delayed_ref_head *head;
6402 	struct btrfs_delayed_ref_root *delayed_refs;
6403 	int ret = 0;
6404 
6405 	delayed_refs = &trans->transaction->delayed_refs;
6406 	spin_lock(&delayed_refs->lock);
6407 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6408 	if (!head)
6409 		goto out_delayed_unlock;
6410 
6411 	spin_lock(&head->lock);
6412 	if (!list_empty(&head->ref_list))
6413 		goto out;
6414 
6415 	if (head->extent_op) {
6416 		if (!head->must_insert_reserved)
6417 			goto out;
6418 		btrfs_free_delayed_extent_op(head->extent_op);
6419 		head->extent_op = NULL;
6420 	}
6421 
6422 	/*
6423 	 * waiting for the lock here would deadlock.  If someone else has it
6424 	 * locked they are already in the process of dropping it anyway
6425 	 */
6426 	if (!mutex_trylock(&head->mutex))
6427 		goto out;
6428 
6429 	/*
6430 	 * at this point we have a head with no other entries.  Go
6431 	 * ahead and process it.
6432 	 */
6433 	head->node.in_tree = 0;
6434 	rb_erase(&head->href_node, &delayed_refs->href_root);
6435 
6436 	atomic_dec(&delayed_refs->num_entries);
6437 
6438 	/*
6439 	 * we don't take a ref on the node because we're removing it from the
6440 	 * tree, so we just steal the ref the tree was holding.
6441 	 */
6442 	delayed_refs->num_heads--;
6443 	if (head->processing == 0)
6444 		delayed_refs->num_heads_ready--;
6445 	head->processing = 0;
6446 	spin_unlock(&head->lock);
6447 	spin_unlock(&delayed_refs->lock);
6448 
6449 	BUG_ON(head->extent_op);
6450 	if (head->must_insert_reserved)
6451 		ret = 1;
6452 
6453 	mutex_unlock(&head->mutex);
6454 	btrfs_put_delayed_ref(&head->node);
6455 	return ret;
6456 out:
6457 	spin_unlock(&head->lock);
6458 
6459 out_delayed_unlock:
6460 	spin_unlock(&delayed_refs->lock);
6461 	return 0;
6462 }
6463 
6464 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6465 			   struct btrfs_root *root,
6466 			   struct extent_buffer *buf,
6467 			   u64 parent, int last_ref)
6468 {
6469 	int pin = 1;
6470 	int ret;
6471 
6472 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6473 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6474 					buf->start, buf->len,
6475 					parent, root->root_key.objectid,
6476 					btrfs_header_level(buf),
6477 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6478 		BUG_ON(ret); /* -ENOMEM */
6479 	}
6480 
6481 	if (!last_ref)
6482 		return;
6483 
6484 	if (btrfs_header_generation(buf) == trans->transid) {
6485 		struct btrfs_block_group_cache *cache;
6486 
6487 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6488 			ret = check_ref_cleanup(trans, root, buf->start);
6489 			if (!ret)
6490 				goto out;
6491 		}
6492 
6493 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6494 
6495 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6496 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6497 			btrfs_put_block_group(cache);
6498 			goto out;
6499 		}
6500 
6501 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6502 
6503 		btrfs_add_free_space(cache, buf->start, buf->len);
6504 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6505 		btrfs_put_block_group(cache);
6506 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6507 		pin = 0;
6508 	}
6509 out:
6510 	if (pin)
6511 		add_pinned_bytes(root->fs_info, buf->len,
6512 				 btrfs_header_level(buf),
6513 				 root->root_key.objectid);
6514 
6515 	/*
6516 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6517 	 * anymore.
6518 	 */
6519 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6520 }
6521 
6522 /* Can return -ENOMEM */
6523 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6524 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6525 		      u64 owner, u64 offset, int no_quota)
6526 {
6527 	int ret;
6528 	struct btrfs_fs_info *fs_info = root->fs_info;
6529 
6530 	if (btrfs_test_is_dummy_root(root))
6531 		return 0;
6532 
6533 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6534 
6535 	/*
6536 	 * tree log blocks never actually go into the extent allocation
6537 	 * tree, just update pinning info and exit early.
6538 	 */
6539 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6540 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6541 		/* unlocks the pinned mutex */
6542 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6543 		ret = 0;
6544 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6545 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6546 					num_bytes,
6547 					parent, root_objectid, (int)owner,
6548 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6549 	} else {
6550 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6551 						num_bytes,
6552 						parent, root_objectid, owner,
6553 						offset, BTRFS_DROP_DELAYED_REF,
6554 						NULL, no_quota);
6555 	}
6556 	return ret;
6557 }
6558 
6559 /*
6560  * when we wait for progress in the block group caching, its because
6561  * our allocation attempt failed at least once.  So, we must sleep
6562  * and let some progress happen before we try again.
6563  *
6564  * This function will sleep at least once waiting for new free space to
6565  * show up, and then it will check the block group free space numbers
6566  * for our min num_bytes.  Another option is to have it go ahead
6567  * and look in the rbtree for a free extent of a given size, but this
6568  * is a good start.
6569  *
6570  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6571  * any of the information in this block group.
6572  */
6573 static noinline void
6574 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6575 				u64 num_bytes)
6576 {
6577 	struct btrfs_caching_control *caching_ctl;
6578 
6579 	caching_ctl = get_caching_control(cache);
6580 	if (!caching_ctl)
6581 		return;
6582 
6583 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6584 		   (cache->free_space_ctl->free_space >= num_bytes));
6585 
6586 	put_caching_control(caching_ctl);
6587 }
6588 
6589 static noinline int
6590 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6591 {
6592 	struct btrfs_caching_control *caching_ctl;
6593 	int ret = 0;
6594 
6595 	caching_ctl = get_caching_control(cache);
6596 	if (!caching_ctl)
6597 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6598 
6599 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6600 	if (cache->cached == BTRFS_CACHE_ERROR)
6601 		ret = -EIO;
6602 	put_caching_control(caching_ctl);
6603 	return ret;
6604 }
6605 
6606 int __get_raid_index(u64 flags)
6607 {
6608 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6609 		return BTRFS_RAID_RAID10;
6610 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6611 		return BTRFS_RAID_RAID1;
6612 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6613 		return BTRFS_RAID_DUP;
6614 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6615 		return BTRFS_RAID_RAID0;
6616 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6617 		return BTRFS_RAID_RAID5;
6618 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6619 		return BTRFS_RAID_RAID6;
6620 
6621 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6622 }
6623 
6624 int get_block_group_index(struct btrfs_block_group_cache *cache)
6625 {
6626 	return __get_raid_index(cache->flags);
6627 }
6628 
6629 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6630 	[BTRFS_RAID_RAID10]	= "raid10",
6631 	[BTRFS_RAID_RAID1]	= "raid1",
6632 	[BTRFS_RAID_DUP]	= "dup",
6633 	[BTRFS_RAID_RAID0]	= "raid0",
6634 	[BTRFS_RAID_SINGLE]	= "single",
6635 	[BTRFS_RAID_RAID5]	= "raid5",
6636 	[BTRFS_RAID_RAID6]	= "raid6",
6637 };
6638 
6639 static const char *get_raid_name(enum btrfs_raid_types type)
6640 {
6641 	if (type >= BTRFS_NR_RAID_TYPES)
6642 		return NULL;
6643 
6644 	return btrfs_raid_type_names[type];
6645 }
6646 
6647 enum btrfs_loop_type {
6648 	LOOP_CACHING_NOWAIT = 0,
6649 	LOOP_CACHING_WAIT = 1,
6650 	LOOP_ALLOC_CHUNK = 2,
6651 	LOOP_NO_EMPTY_SIZE = 3,
6652 };
6653 
6654 static inline void
6655 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6656 		       int delalloc)
6657 {
6658 	if (delalloc)
6659 		down_read(&cache->data_rwsem);
6660 }
6661 
6662 static inline void
6663 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6664 		       int delalloc)
6665 {
6666 	btrfs_get_block_group(cache);
6667 	if (delalloc)
6668 		down_read(&cache->data_rwsem);
6669 }
6670 
6671 static struct btrfs_block_group_cache *
6672 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6673 		   struct btrfs_free_cluster *cluster,
6674 		   int delalloc)
6675 {
6676 	struct btrfs_block_group_cache *used_bg;
6677 	bool locked = false;
6678 again:
6679 	spin_lock(&cluster->refill_lock);
6680 	if (locked) {
6681 		if (used_bg == cluster->block_group)
6682 			return used_bg;
6683 
6684 		up_read(&used_bg->data_rwsem);
6685 		btrfs_put_block_group(used_bg);
6686 	}
6687 
6688 	used_bg = cluster->block_group;
6689 	if (!used_bg)
6690 		return NULL;
6691 
6692 	if (used_bg == block_group)
6693 		return used_bg;
6694 
6695 	btrfs_get_block_group(used_bg);
6696 
6697 	if (!delalloc)
6698 		return used_bg;
6699 
6700 	if (down_read_trylock(&used_bg->data_rwsem))
6701 		return used_bg;
6702 
6703 	spin_unlock(&cluster->refill_lock);
6704 	down_read(&used_bg->data_rwsem);
6705 	locked = true;
6706 	goto again;
6707 }
6708 
6709 static inline void
6710 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6711 			 int delalloc)
6712 {
6713 	if (delalloc)
6714 		up_read(&cache->data_rwsem);
6715 	btrfs_put_block_group(cache);
6716 }
6717 
6718 /*
6719  * walks the btree of allocated extents and find a hole of a given size.
6720  * The key ins is changed to record the hole:
6721  * ins->objectid == start position
6722  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6723  * ins->offset == the size of the hole.
6724  * Any available blocks before search_start are skipped.
6725  *
6726  * If there is no suitable free space, we will record the max size of
6727  * the free space extent currently.
6728  */
6729 static noinline int find_free_extent(struct btrfs_root *orig_root,
6730 				     u64 num_bytes, u64 empty_size,
6731 				     u64 hint_byte, struct btrfs_key *ins,
6732 				     u64 flags, int delalloc)
6733 {
6734 	int ret = 0;
6735 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6736 	struct btrfs_free_cluster *last_ptr = NULL;
6737 	struct btrfs_block_group_cache *block_group = NULL;
6738 	u64 search_start = 0;
6739 	u64 max_extent_size = 0;
6740 	int empty_cluster = 2 * 1024 * 1024;
6741 	struct btrfs_space_info *space_info;
6742 	int loop = 0;
6743 	int index = __get_raid_index(flags);
6744 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6745 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6746 	bool failed_cluster_refill = false;
6747 	bool failed_alloc = false;
6748 	bool use_cluster = true;
6749 	bool have_caching_bg = false;
6750 
6751 	WARN_ON(num_bytes < root->sectorsize);
6752 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6753 	ins->objectid = 0;
6754 	ins->offset = 0;
6755 
6756 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6757 
6758 	space_info = __find_space_info(root->fs_info, flags);
6759 	if (!space_info) {
6760 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6761 		return -ENOSPC;
6762 	}
6763 
6764 	/*
6765 	 * If the space info is for both data and metadata it means we have a
6766 	 * small filesystem and we can't use the clustering stuff.
6767 	 */
6768 	if (btrfs_mixed_space_info(space_info))
6769 		use_cluster = false;
6770 
6771 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6772 		last_ptr = &root->fs_info->meta_alloc_cluster;
6773 		if (!btrfs_test_opt(root, SSD))
6774 			empty_cluster = 64 * 1024;
6775 	}
6776 
6777 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6778 	    btrfs_test_opt(root, SSD)) {
6779 		last_ptr = &root->fs_info->data_alloc_cluster;
6780 	}
6781 
6782 	if (last_ptr) {
6783 		spin_lock(&last_ptr->lock);
6784 		if (last_ptr->block_group)
6785 			hint_byte = last_ptr->window_start;
6786 		spin_unlock(&last_ptr->lock);
6787 	}
6788 
6789 	search_start = max(search_start, first_logical_byte(root, 0));
6790 	search_start = max(search_start, hint_byte);
6791 
6792 	if (!last_ptr)
6793 		empty_cluster = 0;
6794 
6795 	if (search_start == hint_byte) {
6796 		block_group = btrfs_lookup_block_group(root->fs_info,
6797 						       search_start);
6798 		/*
6799 		 * we don't want to use the block group if it doesn't match our
6800 		 * allocation bits, or if its not cached.
6801 		 *
6802 		 * However if we are re-searching with an ideal block group
6803 		 * picked out then we don't care that the block group is cached.
6804 		 */
6805 		if (block_group && block_group_bits(block_group, flags) &&
6806 		    block_group->cached != BTRFS_CACHE_NO) {
6807 			down_read(&space_info->groups_sem);
6808 			if (list_empty(&block_group->list) ||
6809 			    block_group->ro) {
6810 				/*
6811 				 * someone is removing this block group,
6812 				 * we can't jump into the have_block_group
6813 				 * target because our list pointers are not
6814 				 * valid
6815 				 */
6816 				btrfs_put_block_group(block_group);
6817 				up_read(&space_info->groups_sem);
6818 			} else {
6819 				index = get_block_group_index(block_group);
6820 				btrfs_lock_block_group(block_group, delalloc);
6821 				goto have_block_group;
6822 			}
6823 		} else if (block_group) {
6824 			btrfs_put_block_group(block_group);
6825 		}
6826 	}
6827 search:
6828 	have_caching_bg = false;
6829 	down_read(&space_info->groups_sem);
6830 	list_for_each_entry(block_group, &space_info->block_groups[index],
6831 			    list) {
6832 		u64 offset;
6833 		int cached;
6834 
6835 		btrfs_grab_block_group(block_group, delalloc);
6836 		search_start = block_group->key.objectid;
6837 
6838 		/*
6839 		 * this can happen if we end up cycling through all the
6840 		 * raid types, but we want to make sure we only allocate
6841 		 * for the proper type.
6842 		 */
6843 		if (!block_group_bits(block_group, flags)) {
6844 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6845 				BTRFS_BLOCK_GROUP_RAID1 |
6846 				BTRFS_BLOCK_GROUP_RAID5 |
6847 				BTRFS_BLOCK_GROUP_RAID6 |
6848 				BTRFS_BLOCK_GROUP_RAID10;
6849 
6850 			/*
6851 			 * if they asked for extra copies and this block group
6852 			 * doesn't provide them, bail.  This does allow us to
6853 			 * fill raid0 from raid1.
6854 			 */
6855 			if ((flags & extra) && !(block_group->flags & extra))
6856 				goto loop;
6857 		}
6858 
6859 have_block_group:
6860 		cached = block_group_cache_done(block_group);
6861 		if (unlikely(!cached)) {
6862 			ret = cache_block_group(block_group, 0);
6863 			BUG_ON(ret < 0);
6864 			ret = 0;
6865 		}
6866 
6867 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6868 			goto loop;
6869 		if (unlikely(block_group->ro))
6870 			goto loop;
6871 
6872 		/*
6873 		 * Ok we want to try and use the cluster allocator, so
6874 		 * lets look there
6875 		 */
6876 		if (last_ptr) {
6877 			struct btrfs_block_group_cache *used_block_group;
6878 			unsigned long aligned_cluster;
6879 			/*
6880 			 * the refill lock keeps out other
6881 			 * people trying to start a new cluster
6882 			 */
6883 			used_block_group = btrfs_lock_cluster(block_group,
6884 							      last_ptr,
6885 							      delalloc);
6886 			if (!used_block_group)
6887 				goto refill_cluster;
6888 
6889 			if (used_block_group != block_group &&
6890 			    (used_block_group->ro ||
6891 			     !block_group_bits(used_block_group, flags)))
6892 				goto release_cluster;
6893 
6894 			offset = btrfs_alloc_from_cluster(used_block_group,
6895 						last_ptr,
6896 						num_bytes,
6897 						used_block_group->key.objectid,
6898 						&max_extent_size);
6899 			if (offset) {
6900 				/* we have a block, we're done */
6901 				spin_unlock(&last_ptr->refill_lock);
6902 				trace_btrfs_reserve_extent_cluster(root,
6903 						used_block_group,
6904 						search_start, num_bytes);
6905 				if (used_block_group != block_group) {
6906 					btrfs_release_block_group(block_group,
6907 								  delalloc);
6908 					block_group = used_block_group;
6909 				}
6910 				goto checks;
6911 			}
6912 
6913 			WARN_ON(last_ptr->block_group != used_block_group);
6914 release_cluster:
6915 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6916 			 * set up a new clusters, so lets just skip it
6917 			 * and let the allocator find whatever block
6918 			 * it can find.  If we reach this point, we
6919 			 * will have tried the cluster allocator
6920 			 * plenty of times and not have found
6921 			 * anything, so we are likely way too
6922 			 * fragmented for the clustering stuff to find
6923 			 * anything.
6924 			 *
6925 			 * However, if the cluster is taken from the
6926 			 * current block group, release the cluster
6927 			 * first, so that we stand a better chance of
6928 			 * succeeding in the unclustered
6929 			 * allocation.  */
6930 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6931 			    used_block_group != block_group) {
6932 				spin_unlock(&last_ptr->refill_lock);
6933 				btrfs_release_block_group(used_block_group,
6934 							  delalloc);
6935 				goto unclustered_alloc;
6936 			}
6937 
6938 			/*
6939 			 * this cluster didn't work out, free it and
6940 			 * start over
6941 			 */
6942 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6943 
6944 			if (used_block_group != block_group)
6945 				btrfs_release_block_group(used_block_group,
6946 							  delalloc);
6947 refill_cluster:
6948 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6949 				spin_unlock(&last_ptr->refill_lock);
6950 				goto unclustered_alloc;
6951 			}
6952 
6953 			aligned_cluster = max_t(unsigned long,
6954 						empty_cluster + empty_size,
6955 					      block_group->full_stripe_len);
6956 
6957 			/* allocate a cluster in this block group */
6958 			ret = btrfs_find_space_cluster(root, block_group,
6959 						       last_ptr, search_start,
6960 						       num_bytes,
6961 						       aligned_cluster);
6962 			if (ret == 0) {
6963 				/*
6964 				 * now pull our allocation out of this
6965 				 * cluster
6966 				 */
6967 				offset = btrfs_alloc_from_cluster(block_group,
6968 							last_ptr,
6969 							num_bytes,
6970 							search_start,
6971 							&max_extent_size);
6972 				if (offset) {
6973 					/* we found one, proceed */
6974 					spin_unlock(&last_ptr->refill_lock);
6975 					trace_btrfs_reserve_extent_cluster(root,
6976 						block_group, search_start,
6977 						num_bytes);
6978 					goto checks;
6979 				}
6980 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6981 				   && !failed_cluster_refill) {
6982 				spin_unlock(&last_ptr->refill_lock);
6983 
6984 				failed_cluster_refill = true;
6985 				wait_block_group_cache_progress(block_group,
6986 				       num_bytes + empty_cluster + empty_size);
6987 				goto have_block_group;
6988 			}
6989 
6990 			/*
6991 			 * at this point we either didn't find a cluster
6992 			 * or we weren't able to allocate a block from our
6993 			 * cluster.  Free the cluster we've been trying
6994 			 * to use, and go to the next block group
6995 			 */
6996 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6997 			spin_unlock(&last_ptr->refill_lock);
6998 			goto loop;
6999 		}
7000 
7001 unclustered_alloc:
7002 		spin_lock(&block_group->free_space_ctl->tree_lock);
7003 		if (cached &&
7004 		    block_group->free_space_ctl->free_space <
7005 		    num_bytes + empty_cluster + empty_size) {
7006 			if (block_group->free_space_ctl->free_space >
7007 			    max_extent_size)
7008 				max_extent_size =
7009 					block_group->free_space_ctl->free_space;
7010 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7011 			goto loop;
7012 		}
7013 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7014 
7015 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7016 						    num_bytes, empty_size,
7017 						    &max_extent_size);
7018 		/*
7019 		 * If we didn't find a chunk, and we haven't failed on this
7020 		 * block group before, and this block group is in the middle of
7021 		 * caching and we are ok with waiting, then go ahead and wait
7022 		 * for progress to be made, and set failed_alloc to true.
7023 		 *
7024 		 * If failed_alloc is true then we've already waited on this
7025 		 * block group once and should move on to the next block group.
7026 		 */
7027 		if (!offset && !failed_alloc && !cached &&
7028 		    loop > LOOP_CACHING_NOWAIT) {
7029 			wait_block_group_cache_progress(block_group,
7030 						num_bytes + empty_size);
7031 			failed_alloc = true;
7032 			goto have_block_group;
7033 		} else if (!offset) {
7034 			if (!cached)
7035 				have_caching_bg = true;
7036 			goto loop;
7037 		}
7038 checks:
7039 		search_start = ALIGN(offset, root->stripesize);
7040 
7041 		/* move on to the next group */
7042 		if (search_start + num_bytes >
7043 		    block_group->key.objectid + block_group->key.offset) {
7044 			btrfs_add_free_space(block_group, offset, num_bytes);
7045 			goto loop;
7046 		}
7047 
7048 		if (offset < search_start)
7049 			btrfs_add_free_space(block_group, offset,
7050 					     search_start - offset);
7051 		BUG_ON(offset > search_start);
7052 
7053 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7054 						  alloc_type, delalloc);
7055 		if (ret == -EAGAIN) {
7056 			btrfs_add_free_space(block_group, offset, num_bytes);
7057 			goto loop;
7058 		}
7059 
7060 		/* we are all good, lets return */
7061 		ins->objectid = search_start;
7062 		ins->offset = num_bytes;
7063 
7064 		trace_btrfs_reserve_extent(orig_root, block_group,
7065 					   search_start, num_bytes);
7066 		btrfs_release_block_group(block_group, delalloc);
7067 		break;
7068 loop:
7069 		failed_cluster_refill = false;
7070 		failed_alloc = false;
7071 		BUG_ON(index != get_block_group_index(block_group));
7072 		btrfs_release_block_group(block_group, delalloc);
7073 	}
7074 	up_read(&space_info->groups_sem);
7075 
7076 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7077 		goto search;
7078 
7079 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7080 		goto search;
7081 
7082 	/*
7083 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7084 	 *			caching kthreads as we move along
7085 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7086 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7087 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7088 	 *			again
7089 	 */
7090 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7091 		index = 0;
7092 		loop++;
7093 		if (loop == LOOP_ALLOC_CHUNK) {
7094 			struct btrfs_trans_handle *trans;
7095 			int exist = 0;
7096 
7097 			trans = current->journal_info;
7098 			if (trans)
7099 				exist = 1;
7100 			else
7101 				trans = btrfs_join_transaction(root);
7102 
7103 			if (IS_ERR(trans)) {
7104 				ret = PTR_ERR(trans);
7105 				goto out;
7106 			}
7107 
7108 			ret = do_chunk_alloc(trans, root, flags,
7109 					     CHUNK_ALLOC_FORCE);
7110 			/*
7111 			 * Do not bail out on ENOSPC since we
7112 			 * can do more things.
7113 			 */
7114 			if (ret < 0 && ret != -ENOSPC)
7115 				btrfs_abort_transaction(trans,
7116 							root, ret);
7117 			else
7118 				ret = 0;
7119 			if (!exist)
7120 				btrfs_end_transaction(trans, root);
7121 			if (ret)
7122 				goto out;
7123 		}
7124 
7125 		if (loop == LOOP_NO_EMPTY_SIZE) {
7126 			empty_size = 0;
7127 			empty_cluster = 0;
7128 		}
7129 
7130 		goto search;
7131 	} else if (!ins->objectid) {
7132 		ret = -ENOSPC;
7133 	} else if (ins->objectid) {
7134 		ret = 0;
7135 	}
7136 out:
7137 	if (ret == -ENOSPC)
7138 		ins->offset = max_extent_size;
7139 	return ret;
7140 }
7141 
7142 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7143 			    int dump_block_groups)
7144 {
7145 	struct btrfs_block_group_cache *cache;
7146 	int index = 0;
7147 
7148 	spin_lock(&info->lock);
7149 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7150 	       info->flags,
7151 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7152 	       info->bytes_reserved - info->bytes_readonly,
7153 	       (info->full) ? "" : "not ");
7154 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7155 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7156 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7157 	       info->bytes_reserved, info->bytes_may_use,
7158 	       info->bytes_readonly);
7159 	spin_unlock(&info->lock);
7160 
7161 	if (!dump_block_groups)
7162 		return;
7163 
7164 	down_read(&info->groups_sem);
7165 again:
7166 	list_for_each_entry(cache, &info->block_groups[index], list) {
7167 		spin_lock(&cache->lock);
7168 		printk(KERN_INFO "BTRFS: "
7169 			   "block group %llu has %llu bytes, "
7170 			   "%llu used %llu pinned %llu reserved %s\n",
7171 		       cache->key.objectid, cache->key.offset,
7172 		       btrfs_block_group_used(&cache->item), cache->pinned,
7173 		       cache->reserved, cache->ro ? "[readonly]" : "");
7174 		btrfs_dump_free_space(cache, bytes);
7175 		spin_unlock(&cache->lock);
7176 	}
7177 	if (++index < BTRFS_NR_RAID_TYPES)
7178 		goto again;
7179 	up_read(&info->groups_sem);
7180 }
7181 
7182 int btrfs_reserve_extent(struct btrfs_root *root,
7183 			 u64 num_bytes, u64 min_alloc_size,
7184 			 u64 empty_size, u64 hint_byte,
7185 			 struct btrfs_key *ins, int is_data, int delalloc)
7186 {
7187 	bool final_tried = false;
7188 	u64 flags;
7189 	int ret;
7190 
7191 	flags = btrfs_get_alloc_profile(root, is_data);
7192 again:
7193 	WARN_ON(num_bytes < root->sectorsize);
7194 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7195 			       flags, delalloc);
7196 
7197 	if (ret == -ENOSPC) {
7198 		if (!final_tried && ins->offset) {
7199 			num_bytes = min(num_bytes >> 1, ins->offset);
7200 			num_bytes = round_down(num_bytes, root->sectorsize);
7201 			num_bytes = max(num_bytes, min_alloc_size);
7202 			if (num_bytes == min_alloc_size)
7203 				final_tried = true;
7204 			goto again;
7205 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7206 			struct btrfs_space_info *sinfo;
7207 
7208 			sinfo = __find_space_info(root->fs_info, flags);
7209 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7210 				flags, num_bytes);
7211 			if (sinfo)
7212 				dump_space_info(sinfo, num_bytes, 1);
7213 		}
7214 	}
7215 
7216 	return ret;
7217 }
7218 
7219 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7220 					u64 start, u64 len,
7221 					int pin, int delalloc)
7222 {
7223 	struct btrfs_block_group_cache *cache;
7224 	int ret = 0;
7225 
7226 	cache = btrfs_lookup_block_group(root->fs_info, start);
7227 	if (!cache) {
7228 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7229 			start);
7230 		return -ENOSPC;
7231 	}
7232 
7233 	if (pin)
7234 		pin_down_extent(root, cache, start, len, 1);
7235 	else {
7236 		if (btrfs_test_opt(root, DISCARD))
7237 			ret = btrfs_discard_extent(root, start, len, NULL);
7238 		btrfs_add_free_space(cache, start, len);
7239 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7240 	}
7241 
7242 	btrfs_put_block_group(cache);
7243 
7244 	trace_btrfs_reserved_extent_free(root, start, len);
7245 
7246 	return ret;
7247 }
7248 
7249 int btrfs_free_reserved_extent(struct btrfs_root *root,
7250 			       u64 start, u64 len, int delalloc)
7251 {
7252 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7253 }
7254 
7255 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7256 				       u64 start, u64 len)
7257 {
7258 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7259 }
7260 
7261 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7262 				      struct btrfs_root *root,
7263 				      u64 parent, u64 root_objectid,
7264 				      u64 flags, u64 owner, u64 offset,
7265 				      struct btrfs_key *ins, int ref_mod)
7266 {
7267 	int ret;
7268 	struct btrfs_fs_info *fs_info = root->fs_info;
7269 	struct btrfs_extent_item *extent_item;
7270 	struct btrfs_extent_inline_ref *iref;
7271 	struct btrfs_path *path;
7272 	struct extent_buffer *leaf;
7273 	int type;
7274 	u32 size;
7275 
7276 	if (parent > 0)
7277 		type = BTRFS_SHARED_DATA_REF_KEY;
7278 	else
7279 		type = BTRFS_EXTENT_DATA_REF_KEY;
7280 
7281 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7282 
7283 	path = btrfs_alloc_path();
7284 	if (!path)
7285 		return -ENOMEM;
7286 
7287 	path->leave_spinning = 1;
7288 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7289 				      ins, size);
7290 	if (ret) {
7291 		btrfs_free_path(path);
7292 		return ret;
7293 	}
7294 
7295 	leaf = path->nodes[0];
7296 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7297 				     struct btrfs_extent_item);
7298 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7299 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7300 	btrfs_set_extent_flags(leaf, extent_item,
7301 			       flags | BTRFS_EXTENT_FLAG_DATA);
7302 
7303 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7304 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7305 	if (parent > 0) {
7306 		struct btrfs_shared_data_ref *ref;
7307 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7308 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7309 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7310 	} else {
7311 		struct btrfs_extent_data_ref *ref;
7312 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7313 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7314 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7315 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7316 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7317 	}
7318 
7319 	btrfs_mark_buffer_dirty(path->nodes[0]);
7320 	btrfs_free_path(path);
7321 
7322 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7323 	if (ret) { /* -ENOENT, logic error */
7324 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7325 			ins->objectid, ins->offset);
7326 		BUG();
7327 	}
7328 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7329 	return ret;
7330 }
7331 
7332 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7333 				     struct btrfs_root *root,
7334 				     u64 parent, u64 root_objectid,
7335 				     u64 flags, struct btrfs_disk_key *key,
7336 				     int level, struct btrfs_key *ins,
7337 				     int no_quota)
7338 {
7339 	int ret;
7340 	struct btrfs_fs_info *fs_info = root->fs_info;
7341 	struct btrfs_extent_item *extent_item;
7342 	struct btrfs_tree_block_info *block_info;
7343 	struct btrfs_extent_inline_ref *iref;
7344 	struct btrfs_path *path;
7345 	struct extent_buffer *leaf;
7346 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7347 	u64 num_bytes = ins->offset;
7348 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7349 						 SKINNY_METADATA);
7350 
7351 	if (!skinny_metadata)
7352 		size += sizeof(*block_info);
7353 
7354 	path = btrfs_alloc_path();
7355 	if (!path) {
7356 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7357 						   root->nodesize);
7358 		return -ENOMEM;
7359 	}
7360 
7361 	path->leave_spinning = 1;
7362 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7363 				      ins, size);
7364 	if (ret) {
7365 		btrfs_free_path(path);
7366 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7367 						   root->nodesize);
7368 		return ret;
7369 	}
7370 
7371 	leaf = path->nodes[0];
7372 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7373 				     struct btrfs_extent_item);
7374 	btrfs_set_extent_refs(leaf, extent_item, 1);
7375 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7376 	btrfs_set_extent_flags(leaf, extent_item,
7377 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7378 
7379 	if (skinny_metadata) {
7380 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7381 		num_bytes = root->nodesize;
7382 	} else {
7383 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7384 		btrfs_set_tree_block_key(leaf, block_info, key);
7385 		btrfs_set_tree_block_level(leaf, block_info, level);
7386 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7387 	}
7388 
7389 	if (parent > 0) {
7390 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7391 		btrfs_set_extent_inline_ref_type(leaf, iref,
7392 						 BTRFS_SHARED_BLOCK_REF_KEY);
7393 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7394 	} else {
7395 		btrfs_set_extent_inline_ref_type(leaf, iref,
7396 						 BTRFS_TREE_BLOCK_REF_KEY);
7397 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7398 	}
7399 
7400 	btrfs_mark_buffer_dirty(leaf);
7401 	btrfs_free_path(path);
7402 
7403 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7404 				 1);
7405 	if (ret) { /* -ENOENT, logic error */
7406 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7407 			ins->objectid, ins->offset);
7408 		BUG();
7409 	}
7410 
7411 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7412 	return ret;
7413 }
7414 
7415 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7416 				     struct btrfs_root *root,
7417 				     u64 root_objectid, u64 owner,
7418 				     u64 offset, struct btrfs_key *ins)
7419 {
7420 	int ret;
7421 
7422 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7423 
7424 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7425 					 ins->offset, 0,
7426 					 root_objectid, owner, offset,
7427 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7428 	return ret;
7429 }
7430 
7431 /*
7432  * this is used by the tree logging recovery code.  It records that
7433  * an extent has been allocated and makes sure to clear the free
7434  * space cache bits as well
7435  */
7436 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7437 				   struct btrfs_root *root,
7438 				   u64 root_objectid, u64 owner, u64 offset,
7439 				   struct btrfs_key *ins)
7440 {
7441 	int ret;
7442 	struct btrfs_block_group_cache *block_group;
7443 
7444 	/*
7445 	 * Mixed block groups will exclude before processing the log so we only
7446 	 * need to do the exlude dance if this fs isn't mixed.
7447 	 */
7448 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7449 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7450 		if (ret)
7451 			return ret;
7452 	}
7453 
7454 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7455 	if (!block_group)
7456 		return -EINVAL;
7457 
7458 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7459 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7460 	BUG_ON(ret); /* logic error */
7461 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7462 					 0, owner, offset, ins, 1);
7463 	btrfs_put_block_group(block_group);
7464 	return ret;
7465 }
7466 
7467 static struct extent_buffer *
7468 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7469 		      u64 bytenr, int level)
7470 {
7471 	struct extent_buffer *buf;
7472 
7473 	buf = btrfs_find_create_tree_block(root, bytenr);
7474 	if (!buf)
7475 		return ERR_PTR(-ENOMEM);
7476 	btrfs_set_header_generation(buf, trans->transid);
7477 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7478 	btrfs_tree_lock(buf);
7479 	clean_tree_block(trans, root->fs_info, buf);
7480 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7481 
7482 	btrfs_set_lock_blocking(buf);
7483 	btrfs_set_buffer_uptodate(buf);
7484 
7485 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7486 		buf->log_index = root->log_transid % 2;
7487 		/*
7488 		 * we allow two log transactions at a time, use different
7489 		 * EXENT bit to differentiate dirty pages.
7490 		 */
7491 		if (buf->log_index == 0)
7492 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7493 					buf->start + buf->len - 1, GFP_NOFS);
7494 		else
7495 			set_extent_new(&root->dirty_log_pages, buf->start,
7496 					buf->start + buf->len - 1, GFP_NOFS);
7497 	} else {
7498 		buf->log_index = -1;
7499 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7500 			 buf->start + buf->len - 1, GFP_NOFS);
7501 	}
7502 	trans->blocks_used++;
7503 	/* this returns a buffer locked for blocking */
7504 	return buf;
7505 }
7506 
7507 static struct btrfs_block_rsv *
7508 use_block_rsv(struct btrfs_trans_handle *trans,
7509 	      struct btrfs_root *root, u32 blocksize)
7510 {
7511 	struct btrfs_block_rsv *block_rsv;
7512 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7513 	int ret;
7514 	bool global_updated = false;
7515 
7516 	block_rsv = get_block_rsv(trans, root);
7517 
7518 	if (unlikely(block_rsv->size == 0))
7519 		goto try_reserve;
7520 again:
7521 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7522 	if (!ret)
7523 		return block_rsv;
7524 
7525 	if (block_rsv->failfast)
7526 		return ERR_PTR(ret);
7527 
7528 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7529 		global_updated = true;
7530 		update_global_block_rsv(root->fs_info);
7531 		goto again;
7532 	}
7533 
7534 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7535 		static DEFINE_RATELIMIT_STATE(_rs,
7536 				DEFAULT_RATELIMIT_INTERVAL * 10,
7537 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7538 		if (__ratelimit(&_rs))
7539 			WARN(1, KERN_DEBUG
7540 				"BTRFS: block rsv returned %d\n", ret);
7541 	}
7542 try_reserve:
7543 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7544 				     BTRFS_RESERVE_NO_FLUSH);
7545 	if (!ret)
7546 		return block_rsv;
7547 	/*
7548 	 * If we couldn't reserve metadata bytes try and use some from
7549 	 * the global reserve if its space type is the same as the global
7550 	 * reservation.
7551 	 */
7552 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7553 	    block_rsv->space_info == global_rsv->space_info) {
7554 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7555 		if (!ret)
7556 			return global_rsv;
7557 	}
7558 	return ERR_PTR(ret);
7559 }
7560 
7561 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7562 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7563 {
7564 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7565 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7566 }
7567 
7568 /*
7569  * finds a free extent and does all the dirty work required for allocation
7570  * returns the key for the extent through ins, and a tree buffer for
7571  * the first block of the extent through buf.
7572  *
7573  * returns the tree buffer or an ERR_PTR on error.
7574  */
7575 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7576 					struct btrfs_root *root,
7577 					u64 parent, u64 root_objectid,
7578 					struct btrfs_disk_key *key, int level,
7579 					u64 hint, u64 empty_size)
7580 {
7581 	struct btrfs_key ins;
7582 	struct btrfs_block_rsv *block_rsv;
7583 	struct extent_buffer *buf;
7584 	struct btrfs_delayed_extent_op *extent_op;
7585 	u64 flags = 0;
7586 	int ret;
7587 	u32 blocksize = root->nodesize;
7588 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7589 						 SKINNY_METADATA);
7590 
7591 	if (btrfs_test_is_dummy_root(root)) {
7592 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7593 					    level);
7594 		if (!IS_ERR(buf))
7595 			root->alloc_bytenr += blocksize;
7596 		return buf;
7597 	}
7598 
7599 	block_rsv = use_block_rsv(trans, root, blocksize);
7600 	if (IS_ERR(block_rsv))
7601 		return ERR_CAST(block_rsv);
7602 
7603 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7604 				   empty_size, hint, &ins, 0, 0);
7605 	if (ret)
7606 		goto out_unuse;
7607 
7608 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7609 	if (IS_ERR(buf)) {
7610 		ret = PTR_ERR(buf);
7611 		goto out_free_reserved;
7612 	}
7613 
7614 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7615 		if (parent == 0)
7616 			parent = ins.objectid;
7617 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7618 	} else
7619 		BUG_ON(parent > 0);
7620 
7621 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7622 		extent_op = btrfs_alloc_delayed_extent_op();
7623 		if (!extent_op) {
7624 			ret = -ENOMEM;
7625 			goto out_free_buf;
7626 		}
7627 		if (key)
7628 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7629 		else
7630 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7631 		extent_op->flags_to_set = flags;
7632 		if (skinny_metadata)
7633 			extent_op->update_key = 0;
7634 		else
7635 			extent_op->update_key = 1;
7636 		extent_op->update_flags = 1;
7637 		extent_op->is_data = 0;
7638 		extent_op->level = level;
7639 
7640 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7641 						 ins.objectid, ins.offset,
7642 						 parent, root_objectid, level,
7643 						 BTRFS_ADD_DELAYED_EXTENT,
7644 						 extent_op, 0);
7645 		if (ret)
7646 			goto out_free_delayed;
7647 	}
7648 	return buf;
7649 
7650 out_free_delayed:
7651 	btrfs_free_delayed_extent_op(extent_op);
7652 out_free_buf:
7653 	free_extent_buffer(buf);
7654 out_free_reserved:
7655 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7656 out_unuse:
7657 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7658 	return ERR_PTR(ret);
7659 }
7660 
7661 struct walk_control {
7662 	u64 refs[BTRFS_MAX_LEVEL];
7663 	u64 flags[BTRFS_MAX_LEVEL];
7664 	struct btrfs_key update_progress;
7665 	int stage;
7666 	int level;
7667 	int shared_level;
7668 	int update_ref;
7669 	int keep_locks;
7670 	int reada_slot;
7671 	int reada_count;
7672 	int for_reloc;
7673 };
7674 
7675 #define DROP_REFERENCE	1
7676 #define UPDATE_BACKREF	2
7677 
7678 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7679 				     struct btrfs_root *root,
7680 				     struct walk_control *wc,
7681 				     struct btrfs_path *path)
7682 {
7683 	u64 bytenr;
7684 	u64 generation;
7685 	u64 refs;
7686 	u64 flags;
7687 	u32 nritems;
7688 	u32 blocksize;
7689 	struct btrfs_key key;
7690 	struct extent_buffer *eb;
7691 	int ret;
7692 	int slot;
7693 	int nread = 0;
7694 
7695 	if (path->slots[wc->level] < wc->reada_slot) {
7696 		wc->reada_count = wc->reada_count * 2 / 3;
7697 		wc->reada_count = max(wc->reada_count, 2);
7698 	} else {
7699 		wc->reada_count = wc->reada_count * 3 / 2;
7700 		wc->reada_count = min_t(int, wc->reada_count,
7701 					BTRFS_NODEPTRS_PER_BLOCK(root));
7702 	}
7703 
7704 	eb = path->nodes[wc->level];
7705 	nritems = btrfs_header_nritems(eb);
7706 	blocksize = root->nodesize;
7707 
7708 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7709 		if (nread >= wc->reada_count)
7710 			break;
7711 
7712 		cond_resched();
7713 		bytenr = btrfs_node_blockptr(eb, slot);
7714 		generation = btrfs_node_ptr_generation(eb, slot);
7715 
7716 		if (slot == path->slots[wc->level])
7717 			goto reada;
7718 
7719 		if (wc->stage == UPDATE_BACKREF &&
7720 		    generation <= root->root_key.offset)
7721 			continue;
7722 
7723 		/* We don't lock the tree block, it's OK to be racy here */
7724 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7725 					       wc->level - 1, 1, &refs,
7726 					       &flags);
7727 		/* We don't care about errors in readahead. */
7728 		if (ret < 0)
7729 			continue;
7730 		BUG_ON(refs == 0);
7731 
7732 		if (wc->stage == DROP_REFERENCE) {
7733 			if (refs == 1)
7734 				goto reada;
7735 
7736 			if (wc->level == 1 &&
7737 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7738 				continue;
7739 			if (!wc->update_ref ||
7740 			    generation <= root->root_key.offset)
7741 				continue;
7742 			btrfs_node_key_to_cpu(eb, &key, slot);
7743 			ret = btrfs_comp_cpu_keys(&key,
7744 						  &wc->update_progress);
7745 			if (ret < 0)
7746 				continue;
7747 		} else {
7748 			if (wc->level == 1 &&
7749 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7750 				continue;
7751 		}
7752 reada:
7753 		readahead_tree_block(root, bytenr);
7754 		nread++;
7755 	}
7756 	wc->reada_slot = slot;
7757 }
7758 
7759 /*
7760  * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7761  * for later qgroup accounting.
7762  *
7763  * Current, this function does nothing.
7764  */
7765 static int account_leaf_items(struct btrfs_trans_handle *trans,
7766 			      struct btrfs_root *root,
7767 			      struct extent_buffer *eb)
7768 {
7769 	int nr = btrfs_header_nritems(eb);
7770 	int i, extent_type;
7771 	struct btrfs_key key;
7772 	struct btrfs_file_extent_item *fi;
7773 	u64 bytenr, num_bytes;
7774 
7775 	for (i = 0; i < nr; i++) {
7776 		btrfs_item_key_to_cpu(eb, &key, i);
7777 
7778 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7779 			continue;
7780 
7781 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7782 		/* filter out non qgroup-accountable extents  */
7783 		extent_type = btrfs_file_extent_type(eb, fi);
7784 
7785 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7786 			continue;
7787 
7788 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7789 		if (!bytenr)
7790 			continue;
7791 
7792 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7793 	}
7794 	return 0;
7795 }
7796 
7797 /*
7798  * Walk up the tree from the bottom, freeing leaves and any interior
7799  * nodes which have had all slots visited. If a node (leaf or
7800  * interior) is freed, the node above it will have it's slot
7801  * incremented. The root node will never be freed.
7802  *
7803  * At the end of this function, we should have a path which has all
7804  * slots incremented to the next position for a search. If we need to
7805  * read a new node it will be NULL and the node above it will have the
7806  * correct slot selected for a later read.
7807  *
7808  * If we increment the root nodes slot counter past the number of
7809  * elements, 1 is returned to signal completion of the search.
7810  */
7811 static int adjust_slots_upwards(struct btrfs_root *root,
7812 				struct btrfs_path *path, int root_level)
7813 {
7814 	int level = 0;
7815 	int nr, slot;
7816 	struct extent_buffer *eb;
7817 
7818 	if (root_level == 0)
7819 		return 1;
7820 
7821 	while (level <= root_level) {
7822 		eb = path->nodes[level];
7823 		nr = btrfs_header_nritems(eb);
7824 		path->slots[level]++;
7825 		slot = path->slots[level];
7826 		if (slot >= nr || level == 0) {
7827 			/*
7828 			 * Don't free the root -  we will detect this
7829 			 * condition after our loop and return a
7830 			 * positive value for caller to stop walking the tree.
7831 			 */
7832 			if (level != root_level) {
7833 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7834 				path->locks[level] = 0;
7835 
7836 				free_extent_buffer(eb);
7837 				path->nodes[level] = NULL;
7838 				path->slots[level] = 0;
7839 			}
7840 		} else {
7841 			/*
7842 			 * We have a valid slot to walk back down
7843 			 * from. Stop here so caller can process these
7844 			 * new nodes.
7845 			 */
7846 			break;
7847 		}
7848 
7849 		level++;
7850 	}
7851 
7852 	eb = path->nodes[root_level];
7853 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7854 		return 1;
7855 
7856 	return 0;
7857 }
7858 
7859 /*
7860  * root_eb is the subtree root and is locked before this function is called.
7861  * TODO: Modify this function to mark all (including complete shared node)
7862  * to dirty_extent_root to allow it get accounted in qgroup.
7863  */
7864 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7865 				  struct btrfs_root *root,
7866 				  struct extent_buffer *root_eb,
7867 				  u64 root_gen,
7868 				  int root_level)
7869 {
7870 	int ret = 0;
7871 	int level;
7872 	struct extent_buffer *eb = root_eb;
7873 	struct btrfs_path *path = NULL;
7874 
7875 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7876 	BUG_ON(root_eb == NULL);
7877 
7878 	if (!root->fs_info->quota_enabled)
7879 		return 0;
7880 
7881 	if (!extent_buffer_uptodate(root_eb)) {
7882 		ret = btrfs_read_buffer(root_eb, root_gen);
7883 		if (ret)
7884 			goto out;
7885 	}
7886 
7887 	if (root_level == 0) {
7888 		ret = account_leaf_items(trans, root, root_eb);
7889 		goto out;
7890 	}
7891 
7892 	path = btrfs_alloc_path();
7893 	if (!path)
7894 		return -ENOMEM;
7895 
7896 	/*
7897 	 * Walk down the tree.  Missing extent blocks are filled in as
7898 	 * we go. Metadata is accounted every time we read a new
7899 	 * extent block.
7900 	 *
7901 	 * When we reach a leaf, we account for file extent items in it,
7902 	 * walk back up the tree (adjusting slot pointers as we go)
7903 	 * and restart the search process.
7904 	 */
7905 	extent_buffer_get(root_eb); /* For path */
7906 	path->nodes[root_level] = root_eb;
7907 	path->slots[root_level] = 0;
7908 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7909 walk_down:
7910 	level = root_level;
7911 	while (level >= 0) {
7912 		if (path->nodes[level] == NULL) {
7913 			int parent_slot;
7914 			u64 child_gen;
7915 			u64 child_bytenr;
7916 
7917 			/* We need to get child blockptr/gen from
7918 			 * parent before we can read it. */
7919 			eb = path->nodes[level + 1];
7920 			parent_slot = path->slots[level + 1];
7921 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7922 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7923 
7924 			eb = read_tree_block(root, child_bytenr, child_gen);
7925 			if (IS_ERR(eb)) {
7926 				ret = PTR_ERR(eb);
7927 				goto out;
7928 			} else if (!extent_buffer_uptodate(eb)) {
7929 				free_extent_buffer(eb);
7930 				ret = -EIO;
7931 				goto out;
7932 			}
7933 
7934 			path->nodes[level] = eb;
7935 			path->slots[level] = 0;
7936 
7937 			btrfs_tree_read_lock(eb);
7938 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7939 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7940 		}
7941 
7942 		if (level == 0) {
7943 			ret = account_leaf_items(trans, root, path->nodes[level]);
7944 			if (ret)
7945 				goto out;
7946 
7947 			/* Nonzero return here means we completed our search */
7948 			ret = adjust_slots_upwards(root, path, root_level);
7949 			if (ret)
7950 				break;
7951 
7952 			/* Restart search with new slots */
7953 			goto walk_down;
7954 		}
7955 
7956 		level--;
7957 	}
7958 
7959 	ret = 0;
7960 out:
7961 	btrfs_free_path(path);
7962 
7963 	return ret;
7964 }
7965 
7966 /*
7967  * helper to process tree block while walking down the tree.
7968  *
7969  * when wc->stage == UPDATE_BACKREF, this function updates
7970  * back refs for pointers in the block.
7971  *
7972  * NOTE: return value 1 means we should stop walking down.
7973  */
7974 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7975 				   struct btrfs_root *root,
7976 				   struct btrfs_path *path,
7977 				   struct walk_control *wc, int lookup_info)
7978 {
7979 	int level = wc->level;
7980 	struct extent_buffer *eb = path->nodes[level];
7981 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7982 	int ret;
7983 
7984 	if (wc->stage == UPDATE_BACKREF &&
7985 	    btrfs_header_owner(eb) != root->root_key.objectid)
7986 		return 1;
7987 
7988 	/*
7989 	 * when reference count of tree block is 1, it won't increase
7990 	 * again. once full backref flag is set, we never clear it.
7991 	 */
7992 	if (lookup_info &&
7993 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7994 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7995 		BUG_ON(!path->locks[level]);
7996 		ret = btrfs_lookup_extent_info(trans, root,
7997 					       eb->start, level, 1,
7998 					       &wc->refs[level],
7999 					       &wc->flags[level]);
8000 		BUG_ON(ret == -ENOMEM);
8001 		if (ret)
8002 			return ret;
8003 		BUG_ON(wc->refs[level] == 0);
8004 	}
8005 
8006 	if (wc->stage == DROP_REFERENCE) {
8007 		if (wc->refs[level] > 1)
8008 			return 1;
8009 
8010 		if (path->locks[level] && !wc->keep_locks) {
8011 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8012 			path->locks[level] = 0;
8013 		}
8014 		return 0;
8015 	}
8016 
8017 	/* wc->stage == UPDATE_BACKREF */
8018 	if (!(wc->flags[level] & flag)) {
8019 		BUG_ON(!path->locks[level]);
8020 		ret = btrfs_inc_ref(trans, root, eb, 1);
8021 		BUG_ON(ret); /* -ENOMEM */
8022 		ret = btrfs_dec_ref(trans, root, eb, 0);
8023 		BUG_ON(ret); /* -ENOMEM */
8024 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8025 						  eb->len, flag,
8026 						  btrfs_header_level(eb), 0);
8027 		BUG_ON(ret); /* -ENOMEM */
8028 		wc->flags[level] |= flag;
8029 	}
8030 
8031 	/*
8032 	 * the block is shared by multiple trees, so it's not good to
8033 	 * keep the tree lock
8034 	 */
8035 	if (path->locks[level] && level > 0) {
8036 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8037 		path->locks[level] = 0;
8038 	}
8039 	return 0;
8040 }
8041 
8042 /*
8043  * helper to process tree block pointer.
8044  *
8045  * when wc->stage == DROP_REFERENCE, this function checks
8046  * reference count of the block pointed to. if the block
8047  * is shared and we need update back refs for the subtree
8048  * rooted at the block, this function changes wc->stage to
8049  * UPDATE_BACKREF. if the block is shared and there is no
8050  * need to update back, this function drops the reference
8051  * to the block.
8052  *
8053  * NOTE: return value 1 means we should stop walking down.
8054  */
8055 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8056 				 struct btrfs_root *root,
8057 				 struct btrfs_path *path,
8058 				 struct walk_control *wc, int *lookup_info)
8059 {
8060 	u64 bytenr;
8061 	u64 generation;
8062 	u64 parent;
8063 	u32 blocksize;
8064 	struct btrfs_key key;
8065 	struct extent_buffer *next;
8066 	int level = wc->level;
8067 	int reada = 0;
8068 	int ret = 0;
8069 	bool need_account = false;
8070 
8071 	generation = btrfs_node_ptr_generation(path->nodes[level],
8072 					       path->slots[level]);
8073 	/*
8074 	 * if the lower level block was created before the snapshot
8075 	 * was created, we know there is no need to update back refs
8076 	 * for the subtree
8077 	 */
8078 	if (wc->stage == UPDATE_BACKREF &&
8079 	    generation <= root->root_key.offset) {
8080 		*lookup_info = 1;
8081 		return 1;
8082 	}
8083 
8084 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8085 	blocksize = root->nodesize;
8086 
8087 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8088 	if (!next) {
8089 		next = btrfs_find_create_tree_block(root, bytenr);
8090 		if (!next)
8091 			return -ENOMEM;
8092 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8093 					       level - 1);
8094 		reada = 1;
8095 	}
8096 	btrfs_tree_lock(next);
8097 	btrfs_set_lock_blocking(next);
8098 
8099 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8100 				       &wc->refs[level - 1],
8101 				       &wc->flags[level - 1]);
8102 	if (ret < 0) {
8103 		btrfs_tree_unlock(next);
8104 		return ret;
8105 	}
8106 
8107 	if (unlikely(wc->refs[level - 1] == 0)) {
8108 		btrfs_err(root->fs_info, "Missing references.");
8109 		BUG();
8110 	}
8111 	*lookup_info = 0;
8112 
8113 	if (wc->stage == DROP_REFERENCE) {
8114 		if (wc->refs[level - 1] > 1) {
8115 			need_account = true;
8116 			if (level == 1 &&
8117 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8118 				goto skip;
8119 
8120 			if (!wc->update_ref ||
8121 			    generation <= root->root_key.offset)
8122 				goto skip;
8123 
8124 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8125 					      path->slots[level]);
8126 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8127 			if (ret < 0)
8128 				goto skip;
8129 
8130 			wc->stage = UPDATE_BACKREF;
8131 			wc->shared_level = level - 1;
8132 		}
8133 	} else {
8134 		if (level == 1 &&
8135 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8136 			goto skip;
8137 	}
8138 
8139 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8140 		btrfs_tree_unlock(next);
8141 		free_extent_buffer(next);
8142 		next = NULL;
8143 		*lookup_info = 1;
8144 	}
8145 
8146 	if (!next) {
8147 		if (reada && level == 1)
8148 			reada_walk_down(trans, root, wc, path);
8149 		next = read_tree_block(root, bytenr, generation);
8150 		if (IS_ERR(next)) {
8151 			return PTR_ERR(next);
8152 		} else if (!extent_buffer_uptodate(next)) {
8153 			free_extent_buffer(next);
8154 			return -EIO;
8155 		}
8156 		btrfs_tree_lock(next);
8157 		btrfs_set_lock_blocking(next);
8158 	}
8159 
8160 	level--;
8161 	BUG_ON(level != btrfs_header_level(next));
8162 	path->nodes[level] = next;
8163 	path->slots[level] = 0;
8164 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8165 	wc->level = level;
8166 	if (wc->level == 1)
8167 		wc->reada_slot = 0;
8168 	return 0;
8169 skip:
8170 	wc->refs[level - 1] = 0;
8171 	wc->flags[level - 1] = 0;
8172 	if (wc->stage == DROP_REFERENCE) {
8173 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8174 			parent = path->nodes[level]->start;
8175 		} else {
8176 			BUG_ON(root->root_key.objectid !=
8177 			       btrfs_header_owner(path->nodes[level]));
8178 			parent = 0;
8179 		}
8180 
8181 		if (need_account) {
8182 			ret = account_shared_subtree(trans, root, next,
8183 						     generation, level - 1);
8184 			if (ret) {
8185 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8186 					"%d accounting shared subtree. Quota "
8187 					"is out of sync, rescan required.\n",
8188 					root->fs_info->sb->s_id, ret);
8189 			}
8190 		}
8191 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8192 				root->root_key.objectid, level - 1, 0, 0);
8193 		BUG_ON(ret); /* -ENOMEM */
8194 	}
8195 	btrfs_tree_unlock(next);
8196 	free_extent_buffer(next);
8197 	*lookup_info = 1;
8198 	return 1;
8199 }
8200 
8201 /*
8202  * helper to process tree block while walking up the tree.
8203  *
8204  * when wc->stage == DROP_REFERENCE, this function drops
8205  * reference count on the block.
8206  *
8207  * when wc->stage == UPDATE_BACKREF, this function changes
8208  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8209  * to UPDATE_BACKREF previously while processing the block.
8210  *
8211  * NOTE: return value 1 means we should stop walking up.
8212  */
8213 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8214 				 struct btrfs_root *root,
8215 				 struct btrfs_path *path,
8216 				 struct walk_control *wc)
8217 {
8218 	int ret;
8219 	int level = wc->level;
8220 	struct extent_buffer *eb = path->nodes[level];
8221 	u64 parent = 0;
8222 
8223 	if (wc->stage == UPDATE_BACKREF) {
8224 		BUG_ON(wc->shared_level < level);
8225 		if (level < wc->shared_level)
8226 			goto out;
8227 
8228 		ret = find_next_key(path, level + 1, &wc->update_progress);
8229 		if (ret > 0)
8230 			wc->update_ref = 0;
8231 
8232 		wc->stage = DROP_REFERENCE;
8233 		wc->shared_level = -1;
8234 		path->slots[level] = 0;
8235 
8236 		/*
8237 		 * check reference count again if the block isn't locked.
8238 		 * we should start walking down the tree again if reference
8239 		 * count is one.
8240 		 */
8241 		if (!path->locks[level]) {
8242 			BUG_ON(level == 0);
8243 			btrfs_tree_lock(eb);
8244 			btrfs_set_lock_blocking(eb);
8245 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8246 
8247 			ret = btrfs_lookup_extent_info(trans, root,
8248 						       eb->start, level, 1,
8249 						       &wc->refs[level],
8250 						       &wc->flags[level]);
8251 			if (ret < 0) {
8252 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8253 				path->locks[level] = 0;
8254 				return ret;
8255 			}
8256 			BUG_ON(wc->refs[level] == 0);
8257 			if (wc->refs[level] == 1) {
8258 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8259 				path->locks[level] = 0;
8260 				return 1;
8261 			}
8262 		}
8263 	}
8264 
8265 	/* wc->stage == DROP_REFERENCE */
8266 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8267 
8268 	if (wc->refs[level] == 1) {
8269 		if (level == 0) {
8270 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8271 				ret = btrfs_dec_ref(trans, root, eb, 1);
8272 			else
8273 				ret = btrfs_dec_ref(trans, root, eb, 0);
8274 			BUG_ON(ret); /* -ENOMEM */
8275 			ret = account_leaf_items(trans, root, eb);
8276 			if (ret) {
8277 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8278 					"%d accounting leaf items. Quota "
8279 					"is out of sync, rescan required.\n",
8280 					root->fs_info->sb->s_id, ret);
8281 			}
8282 		}
8283 		/* make block locked assertion in clean_tree_block happy */
8284 		if (!path->locks[level] &&
8285 		    btrfs_header_generation(eb) == trans->transid) {
8286 			btrfs_tree_lock(eb);
8287 			btrfs_set_lock_blocking(eb);
8288 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8289 		}
8290 		clean_tree_block(trans, root->fs_info, eb);
8291 	}
8292 
8293 	if (eb == root->node) {
8294 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8295 			parent = eb->start;
8296 		else
8297 			BUG_ON(root->root_key.objectid !=
8298 			       btrfs_header_owner(eb));
8299 	} else {
8300 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8301 			parent = path->nodes[level + 1]->start;
8302 		else
8303 			BUG_ON(root->root_key.objectid !=
8304 			       btrfs_header_owner(path->nodes[level + 1]));
8305 	}
8306 
8307 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8308 out:
8309 	wc->refs[level] = 0;
8310 	wc->flags[level] = 0;
8311 	return 0;
8312 }
8313 
8314 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8315 				   struct btrfs_root *root,
8316 				   struct btrfs_path *path,
8317 				   struct walk_control *wc)
8318 {
8319 	int level = wc->level;
8320 	int lookup_info = 1;
8321 	int ret;
8322 
8323 	while (level >= 0) {
8324 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8325 		if (ret > 0)
8326 			break;
8327 
8328 		if (level == 0)
8329 			break;
8330 
8331 		if (path->slots[level] >=
8332 		    btrfs_header_nritems(path->nodes[level]))
8333 			break;
8334 
8335 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8336 		if (ret > 0) {
8337 			path->slots[level]++;
8338 			continue;
8339 		} else if (ret < 0)
8340 			return ret;
8341 		level = wc->level;
8342 	}
8343 	return 0;
8344 }
8345 
8346 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8347 				 struct btrfs_root *root,
8348 				 struct btrfs_path *path,
8349 				 struct walk_control *wc, int max_level)
8350 {
8351 	int level = wc->level;
8352 	int ret;
8353 
8354 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8355 	while (level < max_level && path->nodes[level]) {
8356 		wc->level = level;
8357 		if (path->slots[level] + 1 <
8358 		    btrfs_header_nritems(path->nodes[level])) {
8359 			path->slots[level]++;
8360 			return 0;
8361 		} else {
8362 			ret = walk_up_proc(trans, root, path, wc);
8363 			if (ret > 0)
8364 				return 0;
8365 
8366 			if (path->locks[level]) {
8367 				btrfs_tree_unlock_rw(path->nodes[level],
8368 						     path->locks[level]);
8369 				path->locks[level] = 0;
8370 			}
8371 			free_extent_buffer(path->nodes[level]);
8372 			path->nodes[level] = NULL;
8373 			level++;
8374 		}
8375 	}
8376 	return 1;
8377 }
8378 
8379 /*
8380  * drop a subvolume tree.
8381  *
8382  * this function traverses the tree freeing any blocks that only
8383  * referenced by the tree.
8384  *
8385  * when a shared tree block is found. this function decreases its
8386  * reference count by one. if update_ref is true, this function
8387  * also make sure backrefs for the shared block and all lower level
8388  * blocks are properly updated.
8389  *
8390  * If called with for_reloc == 0, may exit early with -EAGAIN
8391  */
8392 int btrfs_drop_snapshot(struct btrfs_root *root,
8393 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8394 			 int for_reloc)
8395 {
8396 	struct btrfs_path *path;
8397 	struct btrfs_trans_handle *trans;
8398 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8399 	struct btrfs_root_item *root_item = &root->root_item;
8400 	struct walk_control *wc;
8401 	struct btrfs_key key;
8402 	int err = 0;
8403 	int ret;
8404 	int level;
8405 	bool root_dropped = false;
8406 
8407 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8408 
8409 	path = btrfs_alloc_path();
8410 	if (!path) {
8411 		err = -ENOMEM;
8412 		goto out;
8413 	}
8414 
8415 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8416 	if (!wc) {
8417 		btrfs_free_path(path);
8418 		err = -ENOMEM;
8419 		goto out;
8420 	}
8421 
8422 	trans = btrfs_start_transaction(tree_root, 0);
8423 	if (IS_ERR(trans)) {
8424 		err = PTR_ERR(trans);
8425 		goto out_free;
8426 	}
8427 
8428 	if (block_rsv)
8429 		trans->block_rsv = block_rsv;
8430 
8431 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8432 		level = btrfs_header_level(root->node);
8433 		path->nodes[level] = btrfs_lock_root_node(root);
8434 		btrfs_set_lock_blocking(path->nodes[level]);
8435 		path->slots[level] = 0;
8436 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8437 		memset(&wc->update_progress, 0,
8438 		       sizeof(wc->update_progress));
8439 	} else {
8440 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8441 		memcpy(&wc->update_progress, &key,
8442 		       sizeof(wc->update_progress));
8443 
8444 		level = root_item->drop_level;
8445 		BUG_ON(level == 0);
8446 		path->lowest_level = level;
8447 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8448 		path->lowest_level = 0;
8449 		if (ret < 0) {
8450 			err = ret;
8451 			goto out_end_trans;
8452 		}
8453 		WARN_ON(ret > 0);
8454 
8455 		/*
8456 		 * unlock our path, this is safe because only this
8457 		 * function is allowed to delete this snapshot
8458 		 */
8459 		btrfs_unlock_up_safe(path, 0);
8460 
8461 		level = btrfs_header_level(root->node);
8462 		while (1) {
8463 			btrfs_tree_lock(path->nodes[level]);
8464 			btrfs_set_lock_blocking(path->nodes[level]);
8465 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8466 
8467 			ret = btrfs_lookup_extent_info(trans, root,
8468 						path->nodes[level]->start,
8469 						level, 1, &wc->refs[level],
8470 						&wc->flags[level]);
8471 			if (ret < 0) {
8472 				err = ret;
8473 				goto out_end_trans;
8474 			}
8475 			BUG_ON(wc->refs[level] == 0);
8476 
8477 			if (level == root_item->drop_level)
8478 				break;
8479 
8480 			btrfs_tree_unlock(path->nodes[level]);
8481 			path->locks[level] = 0;
8482 			WARN_ON(wc->refs[level] != 1);
8483 			level--;
8484 		}
8485 	}
8486 
8487 	wc->level = level;
8488 	wc->shared_level = -1;
8489 	wc->stage = DROP_REFERENCE;
8490 	wc->update_ref = update_ref;
8491 	wc->keep_locks = 0;
8492 	wc->for_reloc = for_reloc;
8493 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8494 
8495 	while (1) {
8496 
8497 		ret = walk_down_tree(trans, root, path, wc);
8498 		if (ret < 0) {
8499 			err = ret;
8500 			break;
8501 		}
8502 
8503 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8504 		if (ret < 0) {
8505 			err = ret;
8506 			break;
8507 		}
8508 
8509 		if (ret > 0) {
8510 			BUG_ON(wc->stage != DROP_REFERENCE);
8511 			break;
8512 		}
8513 
8514 		if (wc->stage == DROP_REFERENCE) {
8515 			level = wc->level;
8516 			btrfs_node_key(path->nodes[level],
8517 				       &root_item->drop_progress,
8518 				       path->slots[level]);
8519 			root_item->drop_level = level;
8520 		}
8521 
8522 		BUG_ON(wc->level == 0);
8523 		if (btrfs_should_end_transaction(trans, tree_root) ||
8524 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8525 			ret = btrfs_update_root(trans, tree_root,
8526 						&root->root_key,
8527 						root_item);
8528 			if (ret) {
8529 				btrfs_abort_transaction(trans, tree_root, ret);
8530 				err = ret;
8531 				goto out_end_trans;
8532 			}
8533 
8534 			btrfs_end_transaction_throttle(trans, tree_root);
8535 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8536 				pr_debug("BTRFS: drop snapshot early exit\n");
8537 				err = -EAGAIN;
8538 				goto out_free;
8539 			}
8540 
8541 			trans = btrfs_start_transaction(tree_root, 0);
8542 			if (IS_ERR(trans)) {
8543 				err = PTR_ERR(trans);
8544 				goto out_free;
8545 			}
8546 			if (block_rsv)
8547 				trans->block_rsv = block_rsv;
8548 		}
8549 	}
8550 	btrfs_release_path(path);
8551 	if (err)
8552 		goto out_end_trans;
8553 
8554 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8555 	if (ret) {
8556 		btrfs_abort_transaction(trans, tree_root, ret);
8557 		goto out_end_trans;
8558 	}
8559 
8560 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8561 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8562 				      NULL, NULL);
8563 		if (ret < 0) {
8564 			btrfs_abort_transaction(trans, tree_root, ret);
8565 			err = ret;
8566 			goto out_end_trans;
8567 		} else if (ret > 0) {
8568 			/* if we fail to delete the orphan item this time
8569 			 * around, it'll get picked up the next time.
8570 			 *
8571 			 * The most common failure here is just -ENOENT.
8572 			 */
8573 			btrfs_del_orphan_item(trans, tree_root,
8574 					      root->root_key.objectid);
8575 		}
8576 	}
8577 
8578 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8579 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8580 	} else {
8581 		free_extent_buffer(root->node);
8582 		free_extent_buffer(root->commit_root);
8583 		btrfs_put_fs_root(root);
8584 	}
8585 	root_dropped = true;
8586 out_end_trans:
8587 	btrfs_end_transaction_throttle(trans, tree_root);
8588 out_free:
8589 	kfree(wc);
8590 	btrfs_free_path(path);
8591 out:
8592 	/*
8593 	 * So if we need to stop dropping the snapshot for whatever reason we
8594 	 * need to make sure to add it back to the dead root list so that we
8595 	 * keep trying to do the work later.  This also cleans up roots if we
8596 	 * don't have it in the radix (like when we recover after a power fail
8597 	 * or unmount) so we don't leak memory.
8598 	 */
8599 	if (!for_reloc && root_dropped == false)
8600 		btrfs_add_dead_root(root);
8601 	if (err && err != -EAGAIN)
8602 		btrfs_std_error(root->fs_info, err);
8603 	return err;
8604 }
8605 
8606 /*
8607  * drop subtree rooted at tree block 'node'.
8608  *
8609  * NOTE: this function will unlock and release tree block 'node'
8610  * only used by relocation code
8611  */
8612 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8613 			struct btrfs_root *root,
8614 			struct extent_buffer *node,
8615 			struct extent_buffer *parent)
8616 {
8617 	struct btrfs_path *path;
8618 	struct walk_control *wc;
8619 	int level;
8620 	int parent_level;
8621 	int ret = 0;
8622 	int wret;
8623 
8624 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8625 
8626 	path = btrfs_alloc_path();
8627 	if (!path)
8628 		return -ENOMEM;
8629 
8630 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8631 	if (!wc) {
8632 		btrfs_free_path(path);
8633 		return -ENOMEM;
8634 	}
8635 
8636 	btrfs_assert_tree_locked(parent);
8637 	parent_level = btrfs_header_level(parent);
8638 	extent_buffer_get(parent);
8639 	path->nodes[parent_level] = parent;
8640 	path->slots[parent_level] = btrfs_header_nritems(parent);
8641 
8642 	btrfs_assert_tree_locked(node);
8643 	level = btrfs_header_level(node);
8644 	path->nodes[level] = node;
8645 	path->slots[level] = 0;
8646 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8647 
8648 	wc->refs[parent_level] = 1;
8649 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8650 	wc->level = level;
8651 	wc->shared_level = -1;
8652 	wc->stage = DROP_REFERENCE;
8653 	wc->update_ref = 0;
8654 	wc->keep_locks = 1;
8655 	wc->for_reloc = 1;
8656 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8657 
8658 	while (1) {
8659 		wret = walk_down_tree(trans, root, path, wc);
8660 		if (wret < 0) {
8661 			ret = wret;
8662 			break;
8663 		}
8664 
8665 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8666 		if (wret < 0)
8667 			ret = wret;
8668 		if (wret != 0)
8669 			break;
8670 	}
8671 
8672 	kfree(wc);
8673 	btrfs_free_path(path);
8674 	return ret;
8675 }
8676 
8677 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8678 {
8679 	u64 num_devices;
8680 	u64 stripped;
8681 
8682 	/*
8683 	 * if restripe for this chunk_type is on pick target profile and
8684 	 * return, otherwise do the usual balance
8685 	 */
8686 	stripped = get_restripe_target(root->fs_info, flags);
8687 	if (stripped)
8688 		return extended_to_chunk(stripped);
8689 
8690 	num_devices = root->fs_info->fs_devices->rw_devices;
8691 
8692 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8693 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8694 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8695 
8696 	if (num_devices == 1) {
8697 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8698 		stripped = flags & ~stripped;
8699 
8700 		/* turn raid0 into single device chunks */
8701 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8702 			return stripped;
8703 
8704 		/* turn mirroring into duplication */
8705 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8706 			     BTRFS_BLOCK_GROUP_RAID10))
8707 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8708 	} else {
8709 		/* they already had raid on here, just return */
8710 		if (flags & stripped)
8711 			return flags;
8712 
8713 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8714 		stripped = flags & ~stripped;
8715 
8716 		/* switch duplicated blocks with raid1 */
8717 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8718 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8719 
8720 		/* this is drive concat, leave it alone */
8721 	}
8722 
8723 	return flags;
8724 }
8725 
8726 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8727 {
8728 	struct btrfs_space_info *sinfo = cache->space_info;
8729 	u64 num_bytes;
8730 	u64 min_allocable_bytes;
8731 	int ret = -ENOSPC;
8732 
8733 
8734 	/*
8735 	 * We need some metadata space and system metadata space for
8736 	 * allocating chunks in some corner cases until we force to set
8737 	 * it to be readonly.
8738 	 */
8739 	if ((sinfo->flags &
8740 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8741 	    !force)
8742 		min_allocable_bytes = 1 * 1024 * 1024;
8743 	else
8744 		min_allocable_bytes = 0;
8745 
8746 	spin_lock(&sinfo->lock);
8747 	spin_lock(&cache->lock);
8748 
8749 	if (cache->ro) {
8750 		ret = 0;
8751 		goto out;
8752 	}
8753 
8754 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8755 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8756 
8757 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8758 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8759 	    min_allocable_bytes <= sinfo->total_bytes) {
8760 		sinfo->bytes_readonly += num_bytes;
8761 		cache->ro = 1;
8762 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8763 		ret = 0;
8764 	}
8765 out:
8766 	spin_unlock(&cache->lock);
8767 	spin_unlock(&sinfo->lock);
8768 	return ret;
8769 }
8770 
8771 int btrfs_set_block_group_ro(struct btrfs_root *root,
8772 			     struct btrfs_block_group_cache *cache)
8773 
8774 {
8775 	struct btrfs_trans_handle *trans;
8776 	u64 alloc_flags;
8777 	int ret;
8778 
8779 	BUG_ON(cache->ro);
8780 
8781 again:
8782 	trans = btrfs_join_transaction(root);
8783 	if (IS_ERR(trans))
8784 		return PTR_ERR(trans);
8785 
8786 	/*
8787 	 * we're not allowed to set block groups readonly after the dirty
8788 	 * block groups cache has started writing.  If it already started,
8789 	 * back off and let this transaction commit
8790 	 */
8791 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8792 	if (trans->transaction->dirty_bg_run) {
8793 		u64 transid = trans->transid;
8794 
8795 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8796 		btrfs_end_transaction(trans, root);
8797 
8798 		ret = btrfs_wait_for_commit(root, transid);
8799 		if (ret)
8800 			return ret;
8801 		goto again;
8802 	}
8803 
8804 	/*
8805 	 * if we are changing raid levels, try to allocate a corresponding
8806 	 * block group with the new raid level.
8807 	 */
8808 	alloc_flags = update_block_group_flags(root, cache->flags);
8809 	if (alloc_flags != cache->flags) {
8810 		ret = do_chunk_alloc(trans, root, alloc_flags,
8811 				     CHUNK_ALLOC_FORCE);
8812 		/*
8813 		 * ENOSPC is allowed here, we may have enough space
8814 		 * already allocated at the new raid level to
8815 		 * carry on
8816 		 */
8817 		if (ret == -ENOSPC)
8818 			ret = 0;
8819 		if (ret < 0)
8820 			goto out;
8821 	}
8822 
8823 	ret = set_block_group_ro(cache, 0);
8824 	if (!ret)
8825 		goto out;
8826 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8827 	ret = do_chunk_alloc(trans, root, alloc_flags,
8828 			     CHUNK_ALLOC_FORCE);
8829 	if (ret < 0)
8830 		goto out;
8831 	ret = set_block_group_ro(cache, 0);
8832 out:
8833 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8834 		alloc_flags = update_block_group_flags(root, cache->flags);
8835 		lock_chunks(root->fs_info->chunk_root);
8836 		check_system_chunk(trans, root, alloc_flags);
8837 		unlock_chunks(root->fs_info->chunk_root);
8838 	}
8839 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8840 
8841 	btrfs_end_transaction(trans, root);
8842 	return ret;
8843 }
8844 
8845 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8846 			    struct btrfs_root *root, u64 type)
8847 {
8848 	u64 alloc_flags = get_alloc_profile(root, type);
8849 	return do_chunk_alloc(trans, root, alloc_flags,
8850 			      CHUNK_ALLOC_FORCE);
8851 }
8852 
8853 /*
8854  * helper to account the unused space of all the readonly block group in the
8855  * space_info. takes mirrors into account.
8856  */
8857 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8858 {
8859 	struct btrfs_block_group_cache *block_group;
8860 	u64 free_bytes = 0;
8861 	int factor;
8862 
8863 	/* It's df, we don't care if it's racey */
8864 	if (list_empty(&sinfo->ro_bgs))
8865 		return 0;
8866 
8867 	spin_lock(&sinfo->lock);
8868 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8869 		spin_lock(&block_group->lock);
8870 
8871 		if (!block_group->ro) {
8872 			spin_unlock(&block_group->lock);
8873 			continue;
8874 		}
8875 
8876 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8877 					  BTRFS_BLOCK_GROUP_RAID10 |
8878 					  BTRFS_BLOCK_GROUP_DUP))
8879 			factor = 2;
8880 		else
8881 			factor = 1;
8882 
8883 		free_bytes += (block_group->key.offset -
8884 			       btrfs_block_group_used(&block_group->item)) *
8885 			       factor;
8886 
8887 		spin_unlock(&block_group->lock);
8888 	}
8889 	spin_unlock(&sinfo->lock);
8890 
8891 	return free_bytes;
8892 }
8893 
8894 void btrfs_set_block_group_rw(struct btrfs_root *root,
8895 			      struct btrfs_block_group_cache *cache)
8896 {
8897 	struct btrfs_space_info *sinfo = cache->space_info;
8898 	u64 num_bytes;
8899 
8900 	BUG_ON(!cache->ro);
8901 
8902 	spin_lock(&sinfo->lock);
8903 	spin_lock(&cache->lock);
8904 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8905 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8906 	sinfo->bytes_readonly -= num_bytes;
8907 	cache->ro = 0;
8908 	list_del_init(&cache->ro_list);
8909 	spin_unlock(&cache->lock);
8910 	spin_unlock(&sinfo->lock);
8911 }
8912 
8913 /*
8914  * checks to see if its even possible to relocate this block group.
8915  *
8916  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8917  * ok to go ahead and try.
8918  */
8919 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8920 {
8921 	struct btrfs_block_group_cache *block_group;
8922 	struct btrfs_space_info *space_info;
8923 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8924 	struct btrfs_device *device;
8925 	struct btrfs_trans_handle *trans;
8926 	u64 min_free;
8927 	u64 dev_min = 1;
8928 	u64 dev_nr = 0;
8929 	u64 target;
8930 	int index;
8931 	int full = 0;
8932 	int ret = 0;
8933 
8934 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8935 
8936 	/* odd, couldn't find the block group, leave it alone */
8937 	if (!block_group)
8938 		return -1;
8939 
8940 	min_free = btrfs_block_group_used(&block_group->item);
8941 
8942 	/* no bytes used, we're good */
8943 	if (!min_free)
8944 		goto out;
8945 
8946 	space_info = block_group->space_info;
8947 	spin_lock(&space_info->lock);
8948 
8949 	full = space_info->full;
8950 
8951 	/*
8952 	 * if this is the last block group we have in this space, we can't
8953 	 * relocate it unless we're able to allocate a new chunk below.
8954 	 *
8955 	 * Otherwise, we need to make sure we have room in the space to handle
8956 	 * all of the extents from this block group.  If we can, we're good
8957 	 */
8958 	if ((space_info->total_bytes != block_group->key.offset) &&
8959 	    (space_info->bytes_used + space_info->bytes_reserved +
8960 	     space_info->bytes_pinned + space_info->bytes_readonly +
8961 	     min_free < space_info->total_bytes)) {
8962 		spin_unlock(&space_info->lock);
8963 		goto out;
8964 	}
8965 	spin_unlock(&space_info->lock);
8966 
8967 	/*
8968 	 * ok we don't have enough space, but maybe we have free space on our
8969 	 * devices to allocate new chunks for relocation, so loop through our
8970 	 * alloc devices and guess if we have enough space.  if this block
8971 	 * group is going to be restriped, run checks against the target
8972 	 * profile instead of the current one.
8973 	 */
8974 	ret = -1;
8975 
8976 	/*
8977 	 * index:
8978 	 *      0: raid10
8979 	 *      1: raid1
8980 	 *      2: dup
8981 	 *      3: raid0
8982 	 *      4: single
8983 	 */
8984 	target = get_restripe_target(root->fs_info, block_group->flags);
8985 	if (target) {
8986 		index = __get_raid_index(extended_to_chunk(target));
8987 	} else {
8988 		/*
8989 		 * this is just a balance, so if we were marked as full
8990 		 * we know there is no space for a new chunk
8991 		 */
8992 		if (full)
8993 			goto out;
8994 
8995 		index = get_block_group_index(block_group);
8996 	}
8997 
8998 	if (index == BTRFS_RAID_RAID10) {
8999 		dev_min = 4;
9000 		/* Divide by 2 */
9001 		min_free >>= 1;
9002 	} else if (index == BTRFS_RAID_RAID1) {
9003 		dev_min = 2;
9004 	} else if (index == BTRFS_RAID_DUP) {
9005 		/* Multiply by 2 */
9006 		min_free <<= 1;
9007 	} else if (index == BTRFS_RAID_RAID0) {
9008 		dev_min = fs_devices->rw_devices;
9009 		min_free = div64_u64(min_free, dev_min);
9010 	}
9011 
9012 	/* We need to do this so that we can look at pending chunks */
9013 	trans = btrfs_join_transaction(root);
9014 	if (IS_ERR(trans)) {
9015 		ret = PTR_ERR(trans);
9016 		goto out;
9017 	}
9018 
9019 	mutex_lock(&root->fs_info->chunk_mutex);
9020 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9021 		u64 dev_offset;
9022 
9023 		/*
9024 		 * check to make sure we can actually find a chunk with enough
9025 		 * space to fit our block group in.
9026 		 */
9027 		if (device->total_bytes > device->bytes_used + min_free &&
9028 		    !device->is_tgtdev_for_dev_replace) {
9029 			ret = find_free_dev_extent(trans, device, min_free,
9030 						   &dev_offset, NULL);
9031 			if (!ret)
9032 				dev_nr++;
9033 
9034 			if (dev_nr >= dev_min)
9035 				break;
9036 
9037 			ret = -1;
9038 		}
9039 	}
9040 	mutex_unlock(&root->fs_info->chunk_mutex);
9041 	btrfs_end_transaction(trans, root);
9042 out:
9043 	btrfs_put_block_group(block_group);
9044 	return ret;
9045 }
9046 
9047 static int find_first_block_group(struct btrfs_root *root,
9048 		struct btrfs_path *path, struct btrfs_key *key)
9049 {
9050 	int ret = 0;
9051 	struct btrfs_key found_key;
9052 	struct extent_buffer *leaf;
9053 	int slot;
9054 
9055 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9056 	if (ret < 0)
9057 		goto out;
9058 
9059 	while (1) {
9060 		slot = path->slots[0];
9061 		leaf = path->nodes[0];
9062 		if (slot >= btrfs_header_nritems(leaf)) {
9063 			ret = btrfs_next_leaf(root, path);
9064 			if (ret == 0)
9065 				continue;
9066 			if (ret < 0)
9067 				goto out;
9068 			break;
9069 		}
9070 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9071 
9072 		if (found_key.objectid >= key->objectid &&
9073 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9074 			ret = 0;
9075 			goto out;
9076 		}
9077 		path->slots[0]++;
9078 	}
9079 out:
9080 	return ret;
9081 }
9082 
9083 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9084 {
9085 	struct btrfs_block_group_cache *block_group;
9086 	u64 last = 0;
9087 
9088 	while (1) {
9089 		struct inode *inode;
9090 
9091 		block_group = btrfs_lookup_first_block_group(info, last);
9092 		while (block_group) {
9093 			spin_lock(&block_group->lock);
9094 			if (block_group->iref)
9095 				break;
9096 			spin_unlock(&block_group->lock);
9097 			block_group = next_block_group(info->tree_root,
9098 						       block_group);
9099 		}
9100 		if (!block_group) {
9101 			if (last == 0)
9102 				break;
9103 			last = 0;
9104 			continue;
9105 		}
9106 
9107 		inode = block_group->inode;
9108 		block_group->iref = 0;
9109 		block_group->inode = NULL;
9110 		spin_unlock(&block_group->lock);
9111 		iput(inode);
9112 		last = block_group->key.objectid + block_group->key.offset;
9113 		btrfs_put_block_group(block_group);
9114 	}
9115 }
9116 
9117 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9118 {
9119 	struct btrfs_block_group_cache *block_group;
9120 	struct btrfs_space_info *space_info;
9121 	struct btrfs_caching_control *caching_ctl;
9122 	struct rb_node *n;
9123 
9124 	down_write(&info->commit_root_sem);
9125 	while (!list_empty(&info->caching_block_groups)) {
9126 		caching_ctl = list_entry(info->caching_block_groups.next,
9127 					 struct btrfs_caching_control, list);
9128 		list_del(&caching_ctl->list);
9129 		put_caching_control(caching_ctl);
9130 	}
9131 	up_write(&info->commit_root_sem);
9132 
9133 	spin_lock(&info->unused_bgs_lock);
9134 	while (!list_empty(&info->unused_bgs)) {
9135 		block_group = list_first_entry(&info->unused_bgs,
9136 					       struct btrfs_block_group_cache,
9137 					       bg_list);
9138 		list_del_init(&block_group->bg_list);
9139 		btrfs_put_block_group(block_group);
9140 	}
9141 	spin_unlock(&info->unused_bgs_lock);
9142 
9143 	spin_lock(&info->block_group_cache_lock);
9144 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9145 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9146 				       cache_node);
9147 		rb_erase(&block_group->cache_node,
9148 			 &info->block_group_cache_tree);
9149 		RB_CLEAR_NODE(&block_group->cache_node);
9150 		spin_unlock(&info->block_group_cache_lock);
9151 
9152 		down_write(&block_group->space_info->groups_sem);
9153 		list_del(&block_group->list);
9154 		up_write(&block_group->space_info->groups_sem);
9155 
9156 		if (block_group->cached == BTRFS_CACHE_STARTED)
9157 			wait_block_group_cache_done(block_group);
9158 
9159 		/*
9160 		 * We haven't cached this block group, which means we could
9161 		 * possibly have excluded extents on this block group.
9162 		 */
9163 		if (block_group->cached == BTRFS_CACHE_NO ||
9164 		    block_group->cached == BTRFS_CACHE_ERROR)
9165 			free_excluded_extents(info->extent_root, block_group);
9166 
9167 		btrfs_remove_free_space_cache(block_group);
9168 		btrfs_put_block_group(block_group);
9169 
9170 		spin_lock(&info->block_group_cache_lock);
9171 	}
9172 	spin_unlock(&info->block_group_cache_lock);
9173 
9174 	/* now that all the block groups are freed, go through and
9175 	 * free all the space_info structs.  This is only called during
9176 	 * the final stages of unmount, and so we know nobody is
9177 	 * using them.  We call synchronize_rcu() once before we start,
9178 	 * just to be on the safe side.
9179 	 */
9180 	synchronize_rcu();
9181 
9182 	release_global_block_rsv(info);
9183 
9184 	while (!list_empty(&info->space_info)) {
9185 		int i;
9186 
9187 		space_info = list_entry(info->space_info.next,
9188 					struct btrfs_space_info,
9189 					list);
9190 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9191 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9192 			    space_info->bytes_reserved > 0 ||
9193 			    space_info->bytes_may_use > 0)) {
9194 				dump_space_info(space_info, 0, 0);
9195 			}
9196 		}
9197 		list_del(&space_info->list);
9198 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9199 			struct kobject *kobj;
9200 			kobj = space_info->block_group_kobjs[i];
9201 			space_info->block_group_kobjs[i] = NULL;
9202 			if (kobj) {
9203 				kobject_del(kobj);
9204 				kobject_put(kobj);
9205 			}
9206 		}
9207 		kobject_del(&space_info->kobj);
9208 		kobject_put(&space_info->kobj);
9209 	}
9210 	return 0;
9211 }
9212 
9213 static void __link_block_group(struct btrfs_space_info *space_info,
9214 			       struct btrfs_block_group_cache *cache)
9215 {
9216 	int index = get_block_group_index(cache);
9217 	bool first = false;
9218 
9219 	down_write(&space_info->groups_sem);
9220 	if (list_empty(&space_info->block_groups[index]))
9221 		first = true;
9222 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9223 	up_write(&space_info->groups_sem);
9224 
9225 	if (first) {
9226 		struct raid_kobject *rkobj;
9227 		int ret;
9228 
9229 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9230 		if (!rkobj)
9231 			goto out_err;
9232 		rkobj->raid_type = index;
9233 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9234 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9235 				  "%s", get_raid_name(index));
9236 		if (ret) {
9237 			kobject_put(&rkobj->kobj);
9238 			goto out_err;
9239 		}
9240 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9241 	}
9242 
9243 	return;
9244 out_err:
9245 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9246 }
9247 
9248 static struct btrfs_block_group_cache *
9249 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9250 {
9251 	struct btrfs_block_group_cache *cache;
9252 
9253 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9254 	if (!cache)
9255 		return NULL;
9256 
9257 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9258 					GFP_NOFS);
9259 	if (!cache->free_space_ctl) {
9260 		kfree(cache);
9261 		return NULL;
9262 	}
9263 
9264 	cache->key.objectid = start;
9265 	cache->key.offset = size;
9266 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9267 
9268 	cache->sectorsize = root->sectorsize;
9269 	cache->fs_info = root->fs_info;
9270 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9271 					       &root->fs_info->mapping_tree,
9272 					       start);
9273 	atomic_set(&cache->count, 1);
9274 	spin_lock_init(&cache->lock);
9275 	init_rwsem(&cache->data_rwsem);
9276 	INIT_LIST_HEAD(&cache->list);
9277 	INIT_LIST_HEAD(&cache->cluster_list);
9278 	INIT_LIST_HEAD(&cache->bg_list);
9279 	INIT_LIST_HEAD(&cache->ro_list);
9280 	INIT_LIST_HEAD(&cache->dirty_list);
9281 	INIT_LIST_HEAD(&cache->io_list);
9282 	btrfs_init_free_space_ctl(cache);
9283 	atomic_set(&cache->trimming, 0);
9284 
9285 	return cache;
9286 }
9287 
9288 int btrfs_read_block_groups(struct btrfs_root *root)
9289 {
9290 	struct btrfs_path *path;
9291 	int ret;
9292 	struct btrfs_block_group_cache *cache;
9293 	struct btrfs_fs_info *info = root->fs_info;
9294 	struct btrfs_space_info *space_info;
9295 	struct btrfs_key key;
9296 	struct btrfs_key found_key;
9297 	struct extent_buffer *leaf;
9298 	int need_clear = 0;
9299 	u64 cache_gen;
9300 
9301 	root = info->extent_root;
9302 	key.objectid = 0;
9303 	key.offset = 0;
9304 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9305 	path = btrfs_alloc_path();
9306 	if (!path)
9307 		return -ENOMEM;
9308 	path->reada = 1;
9309 
9310 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9311 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9312 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9313 		need_clear = 1;
9314 	if (btrfs_test_opt(root, CLEAR_CACHE))
9315 		need_clear = 1;
9316 
9317 	while (1) {
9318 		ret = find_first_block_group(root, path, &key);
9319 		if (ret > 0)
9320 			break;
9321 		if (ret != 0)
9322 			goto error;
9323 
9324 		leaf = path->nodes[0];
9325 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9326 
9327 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9328 						       found_key.offset);
9329 		if (!cache) {
9330 			ret = -ENOMEM;
9331 			goto error;
9332 		}
9333 
9334 		if (need_clear) {
9335 			/*
9336 			 * When we mount with old space cache, we need to
9337 			 * set BTRFS_DC_CLEAR and set dirty flag.
9338 			 *
9339 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9340 			 *    truncate the old free space cache inode and
9341 			 *    setup a new one.
9342 			 * b) Setting 'dirty flag' makes sure that we flush
9343 			 *    the new space cache info onto disk.
9344 			 */
9345 			if (btrfs_test_opt(root, SPACE_CACHE))
9346 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9347 		}
9348 
9349 		read_extent_buffer(leaf, &cache->item,
9350 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9351 				   sizeof(cache->item));
9352 		cache->flags = btrfs_block_group_flags(&cache->item);
9353 
9354 		key.objectid = found_key.objectid + found_key.offset;
9355 		btrfs_release_path(path);
9356 
9357 		/*
9358 		 * We need to exclude the super stripes now so that the space
9359 		 * info has super bytes accounted for, otherwise we'll think
9360 		 * we have more space than we actually do.
9361 		 */
9362 		ret = exclude_super_stripes(root, cache);
9363 		if (ret) {
9364 			/*
9365 			 * We may have excluded something, so call this just in
9366 			 * case.
9367 			 */
9368 			free_excluded_extents(root, cache);
9369 			btrfs_put_block_group(cache);
9370 			goto error;
9371 		}
9372 
9373 		/*
9374 		 * check for two cases, either we are full, and therefore
9375 		 * don't need to bother with the caching work since we won't
9376 		 * find any space, or we are empty, and we can just add all
9377 		 * the space in and be done with it.  This saves us _alot_ of
9378 		 * time, particularly in the full case.
9379 		 */
9380 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9381 			cache->last_byte_to_unpin = (u64)-1;
9382 			cache->cached = BTRFS_CACHE_FINISHED;
9383 			free_excluded_extents(root, cache);
9384 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9385 			cache->last_byte_to_unpin = (u64)-1;
9386 			cache->cached = BTRFS_CACHE_FINISHED;
9387 			add_new_free_space(cache, root->fs_info,
9388 					   found_key.objectid,
9389 					   found_key.objectid +
9390 					   found_key.offset);
9391 			free_excluded_extents(root, cache);
9392 		}
9393 
9394 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9395 		if (ret) {
9396 			btrfs_remove_free_space_cache(cache);
9397 			btrfs_put_block_group(cache);
9398 			goto error;
9399 		}
9400 
9401 		ret = update_space_info(info, cache->flags, found_key.offset,
9402 					btrfs_block_group_used(&cache->item),
9403 					&space_info);
9404 		if (ret) {
9405 			btrfs_remove_free_space_cache(cache);
9406 			spin_lock(&info->block_group_cache_lock);
9407 			rb_erase(&cache->cache_node,
9408 				 &info->block_group_cache_tree);
9409 			RB_CLEAR_NODE(&cache->cache_node);
9410 			spin_unlock(&info->block_group_cache_lock);
9411 			btrfs_put_block_group(cache);
9412 			goto error;
9413 		}
9414 
9415 		cache->space_info = space_info;
9416 		spin_lock(&cache->space_info->lock);
9417 		cache->space_info->bytes_readonly += cache->bytes_super;
9418 		spin_unlock(&cache->space_info->lock);
9419 
9420 		__link_block_group(space_info, cache);
9421 
9422 		set_avail_alloc_bits(root->fs_info, cache->flags);
9423 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9424 			set_block_group_ro(cache, 1);
9425 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9426 			spin_lock(&info->unused_bgs_lock);
9427 			/* Should always be true but just in case. */
9428 			if (list_empty(&cache->bg_list)) {
9429 				btrfs_get_block_group(cache);
9430 				list_add_tail(&cache->bg_list,
9431 					      &info->unused_bgs);
9432 			}
9433 			spin_unlock(&info->unused_bgs_lock);
9434 		}
9435 	}
9436 
9437 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9438 		if (!(get_alloc_profile(root, space_info->flags) &
9439 		      (BTRFS_BLOCK_GROUP_RAID10 |
9440 		       BTRFS_BLOCK_GROUP_RAID1 |
9441 		       BTRFS_BLOCK_GROUP_RAID5 |
9442 		       BTRFS_BLOCK_GROUP_RAID6 |
9443 		       BTRFS_BLOCK_GROUP_DUP)))
9444 			continue;
9445 		/*
9446 		 * avoid allocating from un-mirrored block group if there are
9447 		 * mirrored block groups.
9448 		 */
9449 		list_for_each_entry(cache,
9450 				&space_info->block_groups[BTRFS_RAID_RAID0],
9451 				list)
9452 			set_block_group_ro(cache, 1);
9453 		list_for_each_entry(cache,
9454 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9455 				list)
9456 			set_block_group_ro(cache, 1);
9457 	}
9458 
9459 	init_global_block_rsv(info);
9460 	ret = 0;
9461 error:
9462 	btrfs_free_path(path);
9463 	return ret;
9464 }
9465 
9466 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9467 				       struct btrfs_root *root)
9468 {
9469 	struct btrfs_block_group_cache *block_group, *tmp;
9470 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9471 	struct btrfs_block_group_item item;
9472 	struct btrfs_key key;
9473 	int ret = 0;
9474 
9475 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9476 		if (ret)
9477 			goto next;
9478 
9479 		spin_lock(&block_group->lock);
9480 		memcpy(&item, &block_group->item, sizeof(item));
9481 		memcpy(&key, &block_group->key, sizeof(key));
9482 		spin_unlock(&block_group->lock);
9483 
9484 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9485 					sizeof(item));
9486 		if (ret)
9487 			btrfs_abort_transaction(trans, extent_root, ret);
9488 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9489 					       key.objectid, key.offset);
9490 		if (ret)
9491 			btrfs_abort_transaction(trans, extent_root, ret);
9492 next:
9493 		list_del_init(&block_group->bg_list);
9494 	}
9495 }
9496 
9497 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9498 			   struct btrfs_root *root, u64 bytes_used,
9499 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9500 			   u64 size)
9501 {
9502 	int ret;
9503 	struct btrfs_root *extent_root;
9504 	struct btrfs_block_group_cache *cache;
9505 
9506 	extent_root = root->fs_info->extent_root;
9507 
9508 	btrfs_set_log_full_commit(root->fs_info, trans);
9509 
9510 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9511 	if (!cache)
9512 		return -ENOMEM;
9513 
9514 	btrfs_set_block_group_used(&cache->item, bytes_used);
9515 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9516 	btrfs_set_block_group_flags(&cache->item, type);
9517 
9518 	cache->flags = type;
9519 	cache->last_byte_to_unpin = (u64)-1;
9520 	cache->cached = BTRFS_CACHE_FINISHED;
9521 	ret = exclude_super_stripes(root, cache);
9522 	if (ret) {
9523 		/*
9524 		 * We may have excluded something, so call this just in
9525 		 * case.
9526 		 */
9527 		free_excluded_extents(root, cache);
9528 		btrfs_put_block_group(cache);
9529 		return ret;
9530 	}
9531 
9532 	add_new_free_space(cache, root->fs_info, chunk_offset,
9533 			   chunk_offset + size);
9534 
9535 	free_excluded_extents(root, cache);
9536 
9537 	/*
9538 	 * Call to ensure the corresponding space_info object is created and
9539 	 * assigned to our block group, but don't update its counters just yet.
9540 	 * We want our bg to be added to the rbtree with its ->space_info set.
9541 	 */
9542 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9543 				&cache->space_info);
9544 	if (ret) {
9545 		btrfs_remove_free_space_cache(cache);
9546 		btrfs_put_block_group(cache);
9547 		return ret;
9548 	}
9549 
9550 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9551 	if (ret) {
9552 		btrfs_remove_free_space_cache(cache);
9553 		btrfs_put_block_group(cache);
9554 		return ret;
9555 	}
9556 
9557 	/*
9558 	 * Now that our block group has its ->space_info set and is inserted in
9559 	 * the rbtree, update the space info's counters.
9560 	 */
9561 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9562 				&cache->space_info);
9563 	if (ret) {
9564 		btrfs_remove_free_space_cache(cache);
9565 		spin_lock(&root->fs_info->block_group_cache_lock);
9566 		rb_erase(&cache->cache_node,
9567 			 &root->fs_info->block_group_cache_tree);
9568 		RB_CLEAR_NODE(&cache->cache_node);
9569 		spin_unlock(&root->fs_info->block_group_cache_lock);
9570 		btrfs_put_block_group(cache);
9571 		return ret;
9572 	}
9573 	update_global_block_rsv(root->fs_info);
9574 
9575 	spin_lock(&cache->space_info->lock);
9576 	cache->space_info->bytes_readonly += cache->bytes_super;
9577 	spin_unlock(&cache->space_info->lock);
9578 
9579 	__link_block_group(cache->space_info, cache);
9580 
9581 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9582 
9583 	set_avail_alloc_bits(extent_root->fs_info, type);
9584 
9585 	return 0;
9586 }
9587 
9588 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9589 {
9590 	u64 extra_flags = chunk_to_extended(flags) &
9591 				BTRFS_EXTENDED_PROFILE_MASK;
9592 
9593 	write_seqlock(&fs_info->profiles_lock);
9594 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9595 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9596 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9597 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9598 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9599 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9600 	write_sequnlock(&fs_info->profiles_lock);
9601 }
9602 
9603 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9604 			     struct btrfs_root *root, u64 group_start,
9605 			     struct extent_map *em)
9606 {
9607 	struct btrfs_path *path;
9608 	struct btrfs_block_group_cache *block_group;
9609 	struct btrfs_free_cluster *cluster;
9610 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9611 	struct btrfs_key key;
9612 	struct inode *inode;
9613 	struct kobject *kobj = NULL;
9614 	int ret;
9615 	int index;
9616 	int factor;
9617 	struct btrfs_caching_control *caching_ctl = NULL;
9618 	bool remove_em;
9619 
9620 	root = root->fs_info->extent_root;
9621 
9622 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9623 	BUG_ON(!block_group);
9624 	BUG_ON(!block_group->ro);
9625 
9626 	/*
9627 	 * Free the reserved super bytes from this block group before
9628 	 * remove it.
9629 	 */
9630 	free_excluded_extents(root, block_group);
9631 
9632 	memcpy(&key, &block_group->key, sizeof(key));
9633 	index = get_block_group_index(block_group);
9634 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9635 				  BTRFS_BLOCK_GROUP_RAID1 |
9636 				  BTRFS_BLOCK_GROUP_RAID10))
9637 		factor = 2;
9638 	else
9639 		factor = 1;
9640 
9641 	/* make sure this block group isn't part of an allocation cluster */
9642 	cluster = &root->fs_info->data_alloc_cluster;
9643 	spin_lock(&cluster->refill_lock);
9644 	btrfs_return_cluster_to_free_space(block_group, cluster);
9645 	spin_unlock(&cluster->refill_lock);
9646 
9647 	/*
9648 	 * make sure this block group isn't part of a metadata
9649 	 * allocation cluster
9650 	 */
9651 	cluster = &root->fs_info->meta_alloc_cluster;
9652 	spin_lock(&cluster->refill_lock);
9653 	btrfs_return_cluster_to_free_space(block_group, cluster);
9654 	spin_unlock(&cluster->refill_lock);
9655 
9656 	path = btrfs_alloc_path();
9657 	if (!path) {
9658 		ret = -ENOMEM;
9659 		goto out;
9660 	}
9661 
9662 	/*
9663 	 * get the inode first so any iput calls done for the io_list
9664 	 * aren't the final iput (no unlinks allowed now)
9665 	 */
9666 	inode = lookup_free_space_inode(tree_root, block_group, path);
9667 
9668 	mutex_lock(&trans->transaction->cache_write_mutex);
9669 	/*
9670 	 * make sure our free spache cache IO is done before remove the
9671 	 * free space inode
9672 	 */
9673 	spin_lock(&trans->transaction->dirty_bgs_lock);
9674 	if (!list_empty(&block_group->io_list)) {
9675 		list_del_init(&block_group->io_list);
9676 
9677 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9678 
9679 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9680 		btrfs_wait_cache_io(root, trans, block_group,
9681 				    &block_group->io_ctl, path,
9682 				    block_group->key.objectid);
9683 		btrfs_put_block_group(block_group);
9684 		spin_lock(&trans->transaction->dirty_bgs_lock);
9685 	}
9686 
9687 	if (!list_empty(&block_group->dirty_list)) {
9688 		list_del_init(&block_group->dirty_list);
9689 		btrfs_put_block_group(block_group);
9690 	}
9691 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9692 	mutex_unlock(&trans->transaction->cache_write_mutex);
9693 
9694 	if (!IS_ERR(inode)) {
9695 		ret = btrfs_orphan_add(trans, inode);
9696 		if (ret) {
9697 			btrfs_add_delayed_iput(inode);
9698 			goto out;
9699 		}
9700 		clear_nlink(inode);
9701 		/* One for the block groups ref */
9702 		spin_lock(&block_group->lock);
9703 		if (block_group->iref) {
9704 			block_group->iref = 0;
9705 			block_group->inode = NULL;
9706 			spin_unlock(&block_group->lock);
9707 			iput(inode);
9708 		} else {
9709 			spin_unlock(&block_group->lock);
9710 		}
9711 		/* One for our lookup ref */
9712 		btrfs_add_delayed_iput(inode);
9713 	}
9714 
9715 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9716 	key.offset = block_group->key.objectid;
9717 	key.type = 0;
9718 
9719 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9720 	if (ret < 0)
9721 		goto out;
9722 	if (ret > 0)
9723 		btrfs_release_path(path);
9724 	if (ret == 0) {
9725 		ret = btrfs_del_item(trans, tree_root, path);
9726 		if (ret)
9727 			goto out;
9728 		btrfs_release_path(path);
9729 	}
9730 
9731 	spin_lock(&root->fs_info->block_group_cache_lock);
9732 	rb_erase(&block_group->cache_node,
9733 		 &root->fs_info->block_group_cache_tree);
9734 	RB_CLEAR_NODE(&block_group->cache_node);
9735 
9736 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9737 		root->fs_info->first_logical_byte = (u64)-1;
9738 	spin_unlock(&root->fs_info->block_group_cache_lock);
9739 
9740 	down_write(&block_group->space_info->groups_sem);
9741 	/*
9742 	 * we must use list_del_init so people can check to see if they
9743 	 * are still on the list after taking the semaphore
9744 	 */
9745 	list_del_init(&block_group->list);
9746 	if (list_empty(&block_group->space_info->block_groups[index])) {
9747 		kobj = block_group->space_info->block_group_kobjs[index];
9748 		block_group->space_info->block_group_kobjs[index] = NULL;
9749 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9750 	}
9751 	up_write(&block_group->space_info->groups_sem);
9752 	if (kobj) {
9753 		kobject_del(kobj);
9754 		kobject_put(kobj);
9755 	}
9756 
9757 	if (block_group->has_caching_ctl)
9758 		caching_ctl = get_caching_control(block_group);
9759 	if (block_group->cached == BTRFS_CACHE_STARTED)
9760 		wait_block_group_cache_done(block_group);
9761 	if (block_group->has_caching_ctl) {
9762 		down_write(&root->fs_info->commit_root_sem);
9763 		if (!caching_ctl) {
9764 			struct btrfs_caching_control *ctl;
9765 
9766 			list_for_each_entry(ctl,
9767 				    &root->fs_info->caching_block_groups, list)
9768 				if (ctl->block_group == block_group) {
9769 					caching_ctl = ctl;
9770 					atomic_inc(&caching_ctl->count);
9771 					break;
9772 				}
9773 		}
9774 		if (caching_ctl)
9775 			list_del_init(&caching_ctl->list);
9776 		up_write(&root->fs_info->commit_root_sem);
9777 		if (caching_ctl) {
9778 			/* Once for the caching bgs list and once for us. */
9779 			put_caching_control(caching_ctl);
9780 			put_caching_control(caching_ctl);
9781 		}
9782 	}
9783 
9784 	spin_lock(&trans->transaction->dirty_bgs_lock);
9785 	if (!list_empty(&block_group->dirty_list)) {
9786 		WARN_ON(1);
9787 	}
9788 	if (!list_empty(&block_group->io_list)) {
9789 		WARN_ON(1);
9790 	}
9791 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9792 	btrfs_remove_free_space_cache(block_group);
9793 
9794 	spin_lock(&block_group->space_info->lock);
9795 	list_del_init(&block_group->ro_list);
9796 
9797 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9798 		WARN_ON(block_group->space_info->total_bytes
9799 			< block_group->key.offset);
9800 		WARN_ON(block_group->space_info->bytes_readonly
9801 			< block_group->key.offset);
9802 		WARN_ON(block_group->space_info->disk_total
9803 			< block_group->key.offset * factor);
9804 	}
9805 	block_group->space_info->total_bytes -= block_group->key.offset;
9806 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9807 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9808 
9809 	spin_unlock(&block_group->space_info->lock);
9810 
9811 	memcpy(&key, &block_group->key, sizeof(key));
9812 
9813 	lock_chunks(root);
9814 	if (!list_empty(&em->list)) {
9815 		/* We're in the transaction->pending_chunks list. */
9816 		free_extent_map(em);
9817 	}
9818 	spin_lock(&block_group->lock);
9819 	block_group->removed = 1;
9820 	/*
9821 	 * At this point trimming can't start on this block group, because we
9822 	 * removed the block group from the tree fs_info->block_group_cache_tree
9823 	 * so no one can't find it anymore and even if someone already got this
9824 	 * block group before we removed it from the rbtree, they have already
9825 	 * incremented block_group->trimming - if they didn't, they won't find
9826 	 * any free space entries because we already removed them all when we
9827 	 * called btrfs_remove_free_space_cache().
9828 	 *
9829 	 * And we must not remove the extent map from the fs_info->mapping_tree
9830 	 * to prevent the same logical address range and physical device space
9831 	 * ranges from being reused for a new block group. This is because our
9832 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9833 	 * completely transactionless, so while it is trimming a range the
9834 	 * currently running transaction might finish and a new one start,
9835 	 * allowing for new block groups to be created that can reuse the same
9836 	 * physical device locations unless we take this special care.
9837 	 */
9838 	remove_em = (atomic_read(&block_group->trimming) == 0);
9839 	/*
9840 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9841 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9842 	 * before checking block_group->removed).
9843 	 */
9844 	if (!remove_em) {
9845 		/*
9846 		 * Our em might be in trans->transaction->pending_chunks which
9847 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9848 		 * and so is the fs_info->pinned_chunks list.
9849 		 *
9850 		 * So at this point we must be holding the chunk_mutex to avoid
9851 		 * any races with chunk allocation (more specifically at
9852 		 * volumes.c:contains_pending_extent()), to ensure it always
9853 		 * sees the em, either in the pending_chunks list or in the
9854 		 * pinned_chunks list.
9855 		 */
9856 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9857 	}
9858 	spin_unlock(&block_group->lock);
9859 
9860 	if (remove_em) {
9861 		struct extent_map_tree *em_tree;
9862 
9863 		em_tree = &root->fs_info->mapping_tree.map_tree;
9864 		write_lock(&em_tree->lock);
9865 		/*
9866 		 * The em might be in the pending_chunks list, so make sure the
9867 		 * chunk mutex is locked, since remove_extent_mapping() will
9868 		 * delete us from that list.
9869 		 */
9870 		remove_extent_mapping(em_tree, em);
9871 		write_unlock(&em_tree->lock);
9872 		/* once for the tree */
9873 		free_extent_map(em);
9874 	}
9875 
9876 	unlock_chunks(root);
9877 
9878 	btrfs_put_block_group(block_group);
9879 	btrfs_put_block_group(block_group);
9880 
9881 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9882 	if (ret > 0)
9883 		ret = -EIO;
9884 	if (ret < 0)
9885 		goto out;
9886 
9887 	ret = btrfs_del_item(trans, root, path);
9888 out:
9889 	btrfs_free_path(path);
9890 	return ret;
9891 }
9892 
9893 /*
9894  * Process the unused_bgs list and remove any that don't have any allocated
9895  * space inside of them.
9896  */
9897 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9898 {
9899 	struct btrfs_block_group_cache *block_group;
9900 	struct btrfs_space_info *space_info;
9901 	struct btrfs_root *root = fs_info->extent_root;
9902 	struct btrfs_trans_handle *trans;
9903 	int ret = 0;
9904 
9905 	if (!fs_info->open)
9906 		return;
9907 
9908 	spin_lock(&fs_info->unused_bgs_lock);
9909 	while (!list_empty(&fs_info->unused_bgs)) {
9910 		u64 start, end;
9911 
9912 		block_group = list_first_entry(&fs_info->unused_bgs,
9913 					       struct btrfs_block_group_cache,
9914 					       bg_list);
9915 		space_info = block_group->space_info;
9916 		list_del_init(&block_group->bg_list);
9917 		if (ret || btrfs_mixed_space_info(space_info)) {
9918 			btrfs_put_block_group(block_group);
9919 			continue;
9920 		}
9921 		spin_unlock(&fs_info->unused_bgs_lock);
9922 
9923 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
9924 
9925 		/* Don't want to race with allocators so take the groups_sem */
9926 		down_write(&space_info->groups_sem);
9927 		spin_lock(&block_group->lock);
9928 		if (block_group->reserved ||
9929 		    btrfs_block_group_used(&block_group->item) ||
9930 		    block_group->ro) {
9931 			/*
9932 			 * We want to bail if we made new allocations or have
9933 			 * outstanding allocations in this block group.  We do
9934 			 * the ro check in case balance is currently acting on
9935 			 * this block group.
9936 			 */
9937 			spin_unlock(&block_group->lock);
9938 			up_write(&space_info->groups_sem);
9939 			goto next;
9940 		}
9941 		spin_unlock(&block_group->lock);
9942 
9943 		/* We don't want to force the issue, only flip if it's ok. */
9944 		ret = set_block_group_ro(block_group, 0);
9945 		up_write(&space_info->groups_sem);
9946 		if (ret < 0) {
9947 			ret = 0;
9948 			goto next;
9949 		}
9950 
9951 		/*
9952 		 * Want to do this before we do anything else so we can recover
9953 		 * properly if we fail to join the transaction.
9954 		 */
9955 		/* 1 for btrfs_orphan_reserve_metadata() */
9956 		trans = btrfs_start_transaction(root, 1);
9957 		if (IS_ERR(trans)) {
9958 			btrfs_set_block_group_rw(root, block_group);
9959 			ret = PTR_ERR(trans);
9960 			goto next;
9961 		}
9962 
9963 		/*
9964 		 * We could have pending pinned extents for this block group,
9965 		 * just delete them, we don't care about them anymore.
9966 		 */
9967 		start = block_group->key.objectid;
9968 		end = start + block_group->key.offset - 1;
9969 		/*
9970 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9971 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9972 		 * another task might be running finish_extent_commit() for the
9973 		 * previous transaction N - 1, and have seen a range belonging
9974 		 * to the block group in freed_extents[] before we were able to
9975 		 * clear the whole block group range from freed_extents[]. This
9976 		 * means that task can lookup for the block group after we
9977 		 * unpinned it from freed_extents[] and removed it, leading to
9978 		 * a BUG_ON() at btrfs_unpin_extent_range().
9979 		 */
9980 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9981 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9982 				  EXTENT_DIRTY, GFP_NOFS);
9983 		if (ret) {
9984 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9985 			btrfs_set_block_group_rw(root, block_group);
9986 			goto end_trans;
9987 		}
9988 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9989 				  EXTENT_DIRTY, GFP_NOFS);
9990 		if (ret) {
9991 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9992 			btrfs_set_block_group_rw(root, block_group);
9993 			goto end_trans;
9994 		}
9995 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9996 
9997 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9998 		spin_lock(&space_info->lock);
9999 		spin_lock(&block_group->lock);
10000 
10001 		space_info->bytes_pinned -= block_group->pinned;
10002 		space_info->bytes_readonly += block_group->pinned;
10003 		percpu_counter_add(&space_info->total_bytes_pinned,
10004 				   -block_group->pinned);
10005 		block_group->pinned = 0;
10006 
10007 		spin_unlock(&block_group->lock);
10008 		spin_unlock(&space_info->lock);
10009 
10010 		/*
10011 		 * Btrfs_remove_chunk will abort the transaction if things go
10012 		 * horribly wrong.
10013 		 */
10014 		ret = btrfs_remove_chunk(trans, root,
10015 					 block_group->key.objectid);
10016 end_trans:
10017 		btrfs_end_transaction(trans, root);
10018 next:
10019 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
10020 		btrfs_put_block_group(block_group);
10021 		spin_lock(&fs_info->unused_bgs_lock);
10022 	}
10023 	spin_unlock(&fs_info->unused_bgs_lock);
10024 }
10025 
10026 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10027 {
10028 	struct btrfs_space_info *space_info;
10029 	struct btrfs_super_block *disk_super;
10030 	u64 features;
10031 	u64 flags;
10032 	int mixed = 0;
10033 	int ret;
10034 
10035 	disk_super = fs_info->super_copy;
10036 	if (!btrfs_super_root(disk_super))
10037 		return 1;
10038 
10039 	features = btrfs_super_incompat_flags(disk_super);
10040 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10041 		mixed = 1;
10042 
10043 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10044 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10045 	if (ret)
10046 		goto out;
10047 
10048 	if (mixed) {
10049 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10050 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10051 	} else {
10052 		flags = BTRFS_BLOCK_GROUP_METADATA;
10053 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10054 		if (ret)
10055 			goto out;
10056 
10057 		flags = BTRFS_BLOCK_GROUP_DATA;
10058 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10059 	}
10060 out:
10061 	return ret;
10062 }
10063 
10064 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10065 {
10066 	return unpin_extent_range(root, start, end, false);
10067 }
10068 
10069 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10070 {
10071 	struct btrfs_fs_info *fs_info = root->fs_info;
10072 	struct btrfs_block_group_cache *cache = NULL;
10073 	u64 group_trimmed;
10074 	u64 start;
10075 	u64 end;
10076 	u64 trimmed = 0;
10077 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10078 	int ret = 0;
10079 
10080 	/*
10081 	 * try to trim all FS space, our block group may start from non-zero.
10082 	 */
10083 	if (range->len == total_bytes)
10084 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10085 	else
10086 		cache = btrfs_lookup_block_group(fs_info, range->start);
10087 
10088 	while (cache) {
10089 		if (cache->key.objectid >= (range->start + range->len)) {
10090 			btrfs_put_block_group(cache);
10091 			break;
10092 		}
10093 
10094 		start = max(range->start, cache->key.objectid);
10095 		end = min(range->start + range->len,
10096 				cache->key.objectid + cache->key.offset);
10097 
10098 		if (end - start >= range->minlen) {
10099 			if (!block_group_cache_done(cache)) {
10100 				ret = cache_block_group(cache, 0);
10101 				if (ret) {
10102 					btrfs_put_block_group(cache);
10103 					break;
10104 				}
10105 				ret = wait_block_group_cache_done(cache);
10106 				if (ret) {
10107 					btrfs_put_block_group(cache);
10108 					break;
10109 				}
10110 			}
10111 			ret = btrfs_trim_block_group(cache,
10112 						     &group_trimmed,
10113 						     start,
10114 						     end,
10115 						     range->minlen);
10116 
10117 			trimmed += group_trimmed;
10118 			if (ret) {
10119 				btrfs_put_block_group(cache);
10120 				break;
10121 			}
10122 		}
10123 
10124 		cache = next_block_group(fs_info->tree_root, cache);
10125 	}
10126 
10127 	range->len = trimmed;
10128 	return ret;
10129 }
10130 
10131 /*
10132  * btrfs_{start,end}_write_no_snapshoting() are similar to
10133  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10134  * data into the page cache through nocow before the subvolume is snapshoted,
10135  * but flush the data into disk after the snapshot creation, or to prevent
10136  * operations while snapshoting is ongoing and that cause the snapshot to be
10137  * inconsistent (writes followed by expanding truncates for example).
10138  */
10139 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10140 {
10141 	percpu_counter_dec(&root->subv_writers->counter);
10142 	/*
10143 	 * Make sure counter is updated before we wake up
10144 	 * waiters.
10145 	 */
10146 	smp_mb();
10147 	if (waitqueue_active(&root->subv_writers->wait))
10148 		wake_up(&root->subv_writers->wait);
10149 }
10150 
10151 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10152 {
10153 	if (atomic_read(&root->will_be_snapshoted))
10154 		return 0;
10155 
10156 	percpu_counter_inc(&root->subv_writers->counter);
10157 	/*
10158 	 * Make sure counter is updated before we check for snapshot creation.
10159 	 */
10160 	smp_mb();
10161 	if (atomic_read(&root->will_be_snapshoted)) {
10162 		btrfs_end_write_no_snapshoting(root);
10163 		return 0;
10164 	}
10165 	return 1;
10166 }
10167