1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 /* 64 * Control how reservations are dealt with. 65 * 66 * RESERVE_FREE - freeing a reservation. 67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 68 * ENOSPC accounting 69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 70 * bytes_may_use as the ENOSPC accounting is done elsewhere 71 */ 72 enum { 73 RESERVE_FREE = 0, 74 RESERVE_ALLOC = 1, 75 RESERVE_ALLOC_NO_ACCOUNT = 2, 76 }; 77 78 static int update_block_group(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, u64 bytenr, 80 u64 num_bytes, int alloc); 81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 82 struct btrfs_root *root, 83 struct btrfs_delayed_ref_node *node, u64 parent, 84 u64 root_objectid, u64 owner_objectid, 85 u64 owner_offset, int refs_to_drop, 86 struct btrfs_delayed_extent_op *extra_op); 87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 #ifdef CONFIG_BTRFS_DEBUG 336 static void fragment_free_space(struct btrfs_root *root, 337 struct btrfs_block_group_cache *block_group) 338 { 339 u64 start = block_group->key.objectid; 340 u64 len = block_group->key.offset; 341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 342 root->nodesize : root->sectorsize; 343 u64 step = chunk << 1; 344 345 while (len > chunk) { 346 btrfs_remove_free_space(block_group, start, chunk); 347 start += step; 348 if (len < step) 349 len = 0; 350 else 351 len -= step; 352 } 353 } 354 #endif 355 356 /* 357 * this is only called by cache_block_group, since we could have freed extents 358 * we need to check the pinned_extents for any extents that can't be used yet 359 * since their free space will be released as soon as the transaction commits. 360 */ 361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 362 struct btrfs_fs_info *info, u64 start, u64 end) 363 { 364 u64 extent_start, extent_end, size, total_added = 0; 365 int ret; 366 367 while (start < end) { 368 ret = find_first_extent_bit(info->pinned_extents, start, 369 &extent_start, &extent_end, 370 EXTENT_DIRTY | EXTENT_UPTODATE, 371 NULL); 372 if (ret) 373 break; 374 375 if (extent_start <= start) { 376 start = extent_end + 1; 377 } else if (extent_start > start && extent_start < end) { 378 size = extent_start - start; 379 total_added += size; 380 ret = btrfs_add_free_space(block_group, start, 381 size); 382 BUG_ON(ret); /* -ENOMEM or logic error */ 383 start = extent_end + 1; 384 } else { 385 break; 386 } 387 } 388 389 if (start < end) { 390 size = end - start; 391 total_added += size; 392 ret = btrfs_add_free_space(block_group, start, size); 393 BUG_ON(ret); /* -ENOMEM or logic error */ 394 } 395 396 return total_added; 397 } 398 399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 400 { 401 struct btrfs_block_group_cache *block_group; 402 struct btrfs_fs_info *fs_info; 403 struct btrfs_root *extent_root; 404 struct btrfs_path *path; 405 struct extent_buffer *leaf; 406 struct btrfs_key key; 407 u64 total_found = 0; 408 u64 last = 0; 409 u32 nritems; 410 int ret; 411 bool wakeup = true; 412 413 block_group = caching_ctl->block_group; 414 fs_info = block_group->fs_info; 415 extent_root = fs_info->extent_root; 416 417 path = btrfs_alloc_path(); 418 if (!path) 419 return -ENOMEM; 420 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 422 423 #ifdef CONFIG_BTRFS_DEBUG 424 /* 425 * If we're fragmenting we don't want to make anybody think we can 426 * allocate from this block group until we've had a chance to fragment 427 * the free space. 428 */ 429 if (btrfs_should_fragment_free_space(extent_root, block_group)) 430 wakeup = false; 431 #endif 432 /* 433 * We don't want to deadlock with somebody trying to allocate a new 434 * extent for the extent root while also trying to search the extent 435 * root to add free space. So we skip locking and search the commit 436 * root, since its read-only 437 */ 438 path->skip_locking = 1; 439 path->search_commit_root = 1; 440 path->reada = READA_FORWARD; 441 442 key.objectid = last; 443 key.offset = 0; 444 key.type = BTRFS_EXTENT_ITEM_KEY; 445 446 next: 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 448 if (ret < 0) 449 goto out; 450 451 leaf = path->nodes[0]; 452 nritems = btrfs_header_nritems(leaf); 453 454 while (1) { 455 if (btrfs_fs_closing(fs_info) > 1) { 456 last = (u64)-1; 457 break; 458 } 459 460 if (path->slots[0] < nritems) { 461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 462 } else { 463 ret = find_next_key(path, 0, &key); 464 if (ret) 465 break; 466 467 if (need_resched() || 468 rwsem_is_contended(&fs_info->commit_root_sem)) { 469 if (wakeup) 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 up_read(&fs_info->commit_root_sem); 473 mutex_unlock(&caching_ctl->mutex); 474 cond_resched(); 475 mutex_lock(&caching_ctl->mutex); 476 down_read(&fs_info->commit_root_sem); 477 goto next; 478 } 479 480 ret = btrfs_next_leaf(extent_root, path); 481 if (ret < 0) 482 goto out; 483 if (ret) 484 break; 485 leaf = path->nodes[0]; 486 nritems = btrfs_header_nritems(leaf); 487 continue; 488 } 489 490 if (key.objectid < last) { 491 key.objectid = last; 492 key.offset = 0; 493 key.type = BTRFS_EXTENT_ITEM_KEY; 494 495 if (wakeup) 496 caching_ctl->progress = last; 497 btrfs_release_path(path); 498 goto next; 499 } 500 501 if (key.objectid < block_group->key.objectid) { 502 path->slots[0]++; 503 continue; 504 } 505 506 if (key.objectid >= block_group->key.objectid + 507 block_group->key.offset) 508 break; 509 510 if (key.type == BTRFS_EXTENT_ITEM_KEY || 511 key.type == BTRFS_METADATA_ITEM_KEY) { 512 total_found += add_new_free_space(block_group, 513 fs_info, last, 514 key.objectid); 515 if (key.type == BTRFS_METADATA_ITEM_KEY) 516 last = key.objectid + 517 fs_info->tree_root->nodesize; 518 else 519 last = key.objectid + key.offset; 520 521 if (total_found > CACHING_CTL_WAKE_UP) { 522 total_found = 0; 523 if (wakeup) 524 wake_up(&caching_ctl->wait); 525 } 526 } 527 path->slots[0]++; 528 } 529 ret = 0; 530 531 total_found += add_new_free_space(block_group, fs_info, last, 532 block_group->key.objectid + 533 block_group->key.offset); 534 caching_ctl->progress = (u64)-1; 535 536 out: 537 btrfs_free_path(path); 538 return ret; 539 } 540 541 static noinline void caching_thread(struct btrfs_work *work) 542 { 543 struct btrfs_block_group_cache *block_group; 544 struct btrfs_fs_info *fs_info; 545 struct btrfs_caching_control *caching_ctl; 546 struct btrfs_root *extent_root; 547 int ret; 548 549 caching_ctl = container_of(work, struct btrfs_caching_control, work); 550 block_group = caching_ctl->block_group; 551 fs_info = block_group->fs_info; 552 extent_root = fs_info->extent_root; 553 554 mutex_lock(&caching_ctl->mutex); 555 down_read(&fs_info->commit_root_sem); 556 557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 558 ret = load_free_space_tree(caching_ctl); 559 else 560 ret = load_extent_tree_free(caching_ctl); 561 562 spin_lock(&block_group->lock); 563 block_group->caching_ctl = NULL; 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 565 spin_unlock(&block_group->lock); 566 567 #ifdef CONFIG_BTRFS_DEBUG 568 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 569 u64 bytes_used; 570 571 spin_lock(&block_group->space_info->lock); 572 spin_lock(&block_group->lock); 573 bytes_used = block_group->key.offset - 574 btrfs_block_group_used(&block_group->item); 575 block_group->space_info->bytes_used += bytes_used >> 1; 576 spin_unlock(&block_group->lock); 577 spin_unlock(&block_group->space_info->lock); 578 fragment_free_space(extent_root, block_group); 579 } 580 #endif 581 582 caching_ctl->progress = (u64)-1; 583 584 up_read(&fs_info->commit_root_sem); 585 free_excluded_extents(fs_info->extent_root, block_group); 586 mutex_unlock(&caching_ctl->mutex); 587 588 wake_up(&caching_ctl->wait); 589 590 put_caching_control(caching_ctl); 591 btrfs_put_block_group(block_group); 592 } 593 594 static int cache_block_group(struct btrfs_block_group_cache *cache, 595 int load_cache_only) 596 { 597 DEFINE_WAIT(wait); 598 struct btrfs_fs_info *fs_info = cache->fs_info; 599 struct btrfs_caching_control *caching_ctl; 600 int ret = 0; 601 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 603 if (!caching_ctl) 604 return -ENOMEM; 605 606 INIT_LIST_HEAD(&caching_ctl->list); 607 mutex_init(&caching_ctl->mutex); 608 init_waitqueue_head(&caching_ctl->wait); 609 caching_ctl->block_group = cache; 610 caching_ctl->progress = cache->key.objectid; 611 atomic_set(&caching_ctl->count, 1); 612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 613 caching_thread, NULL, NULL); 614 615 spin_lock(&cache->lock); 616 /* 617 * This should be a rare occasion, but this could happen I think in the 618 * case where one thread starts to load the space cache info, and then 619 * some other thread starts a transaction commit which tries to do an 620 * allocation while the other thread is still loading the space cache 621 * info. The previous loop should have kept us from choosing this block 622 * group, but if we've moved to the state where we will wait on caching 623 * block groups we need to first check if we're doing a fast load here, 624 * so we can wait for it to finish, otherwise we could end up allocating 625 * from a block group who's cache gets evicted for one reason or 626 * another. 627 */ 628 while (cache->cached == BTRFS_CACHE_FAST) { 629 struct btrfs_caching_control *ctl; 630 631 ctl = cache->caching_ctl; 632 atomic_inc(&ctl->count); 633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 634 spin_unlock(&cache->lock); 635 636 schedule(); 637 638 finish_wait(&ctl->wait, &wait); 639 put_caching_control(ctl); 640 spin_lock(&cache->lock); 641 } 642 643 if (cache->cached != BTRFS_CACHE_NO) { 644 spin_unlock(&cache->lock); 645 kfree(caching_ctl); 646 return 0; 647 } 648 WARN_ON(cache->caching_ctl); 649 cache->caching_ctl = caching_ctl; 650 cache->cached = BTRFS_CACHE_FAST; 651 spin_unlock(&cache->lock); 652 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 654 mutex_lock(&caching_ctl->mutex); 655 ret = load_free_space_cache(fs_info, cache); 656 657 spin_lock(&cache->lock); 658 if (ret == 1) { 659 cache->caching_ctl = NULL; 660 cache->cached = BTRFS_CACHE_FINISHED; 661 cache->last_byte_to_unpin = (u64)-1; 662 caching_ctl->progress = (u64)-1; 663 } else { 664 if (load_cache_only) { 665 cache->caching_ctl = NULL; 666 cache->cached = BTRFS_CACHE_NO; 667 } else { 668 cache->cached = BTRFS_CACHE_STARTED; 669 cache->has_caching_ctl = 1; 670 } 671 } 672 spin_unlock(&cache->lock); 673 #ifdef CONFIG_BTRFS_DEBUG 674 if (ret == 1 && 675 btrfs_should_fragment_free_space(fs_info->extent_root, 676 cache)) { 677 u64 bytes_used; 678 679 spin_lock(&cache->space_info->lock); 680 spin_lock(&cache->lock); 681 bytes_used = cache->key.offset - 682 btrfs_block_group_used(&cache->item); 683 cache->space_info->bytes_used += bytes_used >> 1; 684 spin_unlock(&cache->lock); 685 spin_unlock(&cache->space_info->lock); 686 fragment_free_space(fs_info->extent_root, cache); 687 } 688 #endif 689 mutex_unlock(&caching_ctl->mutex); 690 691 wake_up(&caching_ctl->wait); 692 if (ret == 1) { 693 put_caching_control(caching_ctl); 694 free_excluded_extents(fs_info->extent_root, cache); 695 return 0; 696 } 697 } else { 698 /* 699 * We're either using the free space tree or no caching at all. 700 * Set cached to the appropriate value and wakeup any waiters. 701 */ 702 spin_lock(&cache->lock); 703 if (load_cache_only) { 704 cache->caching_ctl = NULL; 705 cache->cached = BTRFS_CACHE_NO; 706 } else { 707 cache->cached = BTRFS_CACHE_STARTED; 708 cache->has_caching_ctl = 1; 709 } 710 spin_unlock(&cache->lock); 711 wake_up(&caching_ctl->wait); 712 } 713 714 if (load_cache_only) { 715 put_caching_control(caching_ctl); 716 return 0; 717 } 718 719 down_write(&fs_info->commit_root_sem); 720 atomic_inc(&caching_ctl->count); 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 722 up_write(&fs_info->commit_root_sem); 723 724 btrfs_get_block_group(cache); 725 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 727 728 return ret; 729 } 730 731 /* 732 * return the block group that starts at or after bytenr 733 */ 734 static struct btrfs_block_group_cache * 735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 736 { 737 struct btrfs_block_group_cache *cache; 738 739 cache = block_group_cache_tree_search(info, bytenr, 0); 740 741 return cache; 742 } 743 744 /* 745 * return the block group that contains the given bytenr 746 */ 747 struct btrfs_block_group_cache *btrfs_lookup_block_group( 748 struct btrfs_fs_info *info, 749 u64 bytenr) 750 { 751 struct btrfs_block_group_cache *cache; 752 753 cache = block_group_cache_tree_search(info, bytenr, 1); 754 755 return cache; 756 } 757 758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 759 u64 flags) 760 { 761 struct list_head *head = &info->space_info; 762 struct btrfs_space_info *found; 763 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 765 766 rcu_read_lock(); 767 list_for_each_entry_rcu(found, head, list) { 768 if (found->flags & flags) { 769 rcu_read_unlock(); 770 return found; 771 } 772 } 773 rcu_read_unlock(); 774 return NULL; 775 } 776 777 /* 778 * after adding space to the filesystem, we need to clear the full flags 779 * on all the space infos. 780 */ 781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 782 { 783 struct list_head *head = &info->space_info; 784 struct btrfs_space_info *found; 785 786 rcu_read_lock(); 787 list_for_each_entry_rcu(found, head, list) 788 found->full = 0; 789 rcu_read_unlock(); 790 } 791 792 /* simple helper to search for an existing data extent at a given offset */ 793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 794 { 795 int ret; 796 struct btrfs_key key; 797 struct btrfs_path *path; 798 799 path = btrfs_alloc_path(); 800 if (!path) 801 return -ENOMEM; 802 803 key.objectid = start; 804 key.offset = len; 805 key.type = BTRFS_EXTENT_ITEM_KEY; 806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 807 0, 0); 808 btrfs_free_path(path); 809 return ret; 810 } 811 812 /* 813 * helper function to lookup reference count and flags of a tree block. 814 * 815 * the head node for delayed ref is used to store the sum of all the 816 * reference count modifications queued up in the rbtree. the head 817 * node may also store the extent flags to set. This way you can check 818 * to see what the reference count and extent flags would be if all of 819 * the delayed refs are not processed. 820 */ 821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 822 struct btrfs_root *root, u64 bytenr, 823 u64 offset, int metadata, u64 *refs, u64 *flags) 824 { 825 struct btrfs_delayed_ref_head *head; 826 struct btrfs_delayed_ref_root *delayed_refs; 827 struct btrfs_path *path; 828 struct btrfs_extent_item *ei; 829 struct extent_buffer *leaf; 830 struct btrfs_key key; 831 u32 item_size; 832 u64 num_refs; 833 u64 extent_flags; 834 int ret; 835 836 /* 837 * If we don't have skinny metadata, don't bother doing anything 838 * different 839 */ 840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 841 offset = root->nodesize; 842 metadata = 0; 843 } 844 845 path = btrfs_alloc_path(); 846 if (!path) 847 return -ENOMEM; 848 849 if (!trans) { 850 path->skip_locking = 1; 851 path->search_commit_root = 1; 852 } 853 854 search_again: 855 key.objectid = bytenr; 856 key.offset = offset; 857 if (metadata) 858 key.type = BTRFS_METADATA_ITEM_KEY; 859 else 860 key.type = BTRFS_EXTENT_ITEM_KEY; 861 862 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 863 &key, path, 0, 0); 864 if (ret < 0) 865 goto out_free; 866 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 868 if (path->slots[0]) { 869 path->slots[0]--; 870 btrfs_item_key_to_cpu(path->nodes[0], &key, 871 path->slots[0]); 872 if (key.objectid == bytenr && 873 key.type == BTRFS_EXTENT_ITEM_KEY && 874 key.offset == root->nodesize) 875 ret = 0; 876 } 877 } 878 879 if (ret == 0) { 880 leaf = path->nodes[0]; 881 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 882 if (item_size >= sizeof(*ei)) { 883 ei = btrfs_item_ptr(leaf, path->slots[0], 884 struct btrfs_extent_item); 885 num_refs = btrfs_extent_refs(leaf, ei); 886 extent_flags = btrfs_extent_flags(leaf, ei); 887 } else { 888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 889 struct btrfs_extent_item_v0 *ei0; 890 BUG_ON(item_size != sizeof(*ei0)); 891 ei0 = btrfs_item_ptr(leaf, path->slots[0], 892 struct btrfs_extent_item_v0); 893 num_refs = btrfs_extent_refs_v0(leaf, ei0); 894 /* FIXME: this isn't correct for data */ 895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 896 #else 897 BUG(); 898 #endif 899 } 900 BUG_ON(num_refs == 0); 901 } else { 902 num_refs = 0; 903 extent_flags = 0; 904 ret = 0; 905 } 906 907 if (!trans) 908 goto out; 909 910 delayed_refs = &trans->transaction->delayed_refs; 911 spin_lock(&delayed_refs->lock); 912 head = btrfs_find_delayed_ref_head(trans, bytenr); 913 if (head) { 914 if (!mutex_trylock(&head->mutex)) { 915 atomic_inc(&head->node.refs); 916 spin_unlock(&delayed_refs->lock); 917 918 btrfs_release_path(path); 919 920 /* 921 * Mutex was contended, block until it's released and try 922 * again 923 */ 924 mutex_lock(&head->mutex); 925 mutex_unlock(&head->mutex); 926 btrfs_put_delayed_ref(&head->node); 927 goto search_again; 928 } 929 spin_lock(&head->lock); 930 if (head->extent_op && head->extent_op->update_flags) 931 extent_flags |= head->extent_op->flags_to_set; 932 else 933 BUG_ON(num_refs == 0); 934 935 num_refs += head->node.ref_mod; 936 spin_unlock(&head->lock); 937 mutex_unlock(&head->mutex); 938 } 939 spin_unlock(&delayed_refs->lock); 940 out: 941 WARN_ON(num_refs == 0); 942 if (refs) 943 *refs = num_refs; 944 if (flags) 945 *flags = extent_flags; 946 out_free: 947 btrfs_free_path(path); 948 return ret; 949 } 950 951 /* 952 * Back reference rules. Back refs have three main goals: 953 * 954 * 1) differentiate between all holders of references to an extent so that 955 * when a reference is dropped we can make sure it was a valid reference 956 * before freeing the extent. 957 * 958 * 2) Provide enough information to quickly find the holders of an extent 959 * if we notice a given block is corrupted or bad. 960 * 961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 962 * maintenance. This is actually the same as #2, but with a slightly 963 * different use case. 964 * 965 * There are two kinds of back refs. The implicit back refs is optimized 966 * for pointers in non-shared tree blocks. For a given pointer in a block, 967 * back refs of this kind provide information about the block's owner tree 968 * and the pointer's key. These information allow us to find the block by 969 * b-tree searching. The full back refs is for pointers in tree blocks not 970 * referenced by their owner trees. The location of tree block is recorded 971 * in the back refs. Actually the full back refs is generic, and can be 972 * used in all cases the implicit back refs is used. The major shortcoming 973 * of the full back refs is its overhead. Every time a tree block gets 974 * COWed, we have to update back refs entry for all pointers in it. 975 * 976 * For a newly allocated tree block, we use implicit back refs for 977 * pointers in it. This means most tree related operations only involve 978 * implicit back refs. For a tree block created in old transaction, the 979 * only way to drop a reference to it is COW it. So we can detect the 980 * event that tree block loses its owner tree's reference and do the 981 * back refs conversion. 982 * 983 * When a tree block is COWed through a tree, there are four cases: 984 * 985 * The reference count of the block is one and the tree is the block's 986 * owner tree. Nothing to do in this case. 987 * 988 * The reference count of the block is one and the tree is not the 989 * block's owner tree. In this case, full back refs is used for pointers 990 * in the block. Remove these full back refs, add implicit back refs for 991 * every pointers in the new block. 992 * 993 * The reference count of the block is greater than one and the tree is 994 * the block's owner tree. In this case, implicit back refs is used for 995 * pointers in the block. Add full back refs for every pointers in the 996 * block, increase lower level extents' reference counts. The original 997 * implicit back refs are entailed to the new block. 998 * 999 * The reference count of the block is greater than one and the tree is 1000 * not the block's owner tree. Add implicit back refs for every pointer in 1001 * the new block, increase lower level extents' reference count. 1002 * 1003 * Back Reference Key composing: 1004 * 1005 * The key objectid corresponds to the first byte in the extent, 1006 * The key type is used to differentiate between types of back refs. 1007 * There are different meanings of the key offset for different types 1008 * of back refs. 1009 * 1010 * File extents can be referenced by: 1011 * 1012 * - multiple snapshots, subvolumes, or different generations in one subvol 1013 * - different files inside a single subvolume 1014 * - different offsets inside a file (bookend extents in file.c) 1015 * 1016 * The extent ref structure for the implicit back refs has fields for: 1017 * 1018 * - Objectid of the subvolume root 1019 * - objectid of the file holding the reference 1020 * - original offset in the file 1021 * - how many bookend extents 1022 * 1023 * The key offset for the implicit back refs is hash of the first 1024 * three fields. 1025 * 1026 * The extent ref structure for the full back refs has field for: 1027 * 1028 * - number of pointers in the tree leaf 1029 * 1030 * The key offset for the implicit back refs is the first byte of 1031 * the tree leaf 1032 * 1033 * When a file extent is allocated, The implicit back refs is used. 1034 * the fields are filled in: 1035 * 1036 * (root_key.objectid, inode objectid, offset in file, 1) 1037 * 1038 * When a file extent is removed file truncation, we find the 1039 * corresponding implicit back refs and check the following fields: 1040 * 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1042 * 1043 * Btree extents can be referenced by: 1044 * 1045 * - Different subvolumes 1046 * 1047 * Both the implicit back refs and the full back refs for tree blocks 1048 * only consist of key. The key offset for the implicit back refs is 1049 * objectid of block's owner tree. The key offset for the full back refs 1050 * is the first byte of parent block. 1051 * 1052 * When implicit back refs is used, information about the lowest key and 1053 * level of the tree block are required. These information are stored in 1054 * tree block info structure. 1055 */ 1056 1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1059 struct btrfs_root *root, 1060 struct btrfs_path *path, 1061 u64 owner, u32 extra_size) 1062 { 1063 struct btrfs_extent_item *item; 1064 struct btrfs_extent_item_v0 *ei0; 1065 struct btrfs_extent_ref_v0 *ref0; 1066 struct btrfs_tree_block_info *bi; 1067 struct extent_buffer *leaf; 1068 struct btrfs_key key; 1069 struct btrfs_key found_key; 1070 u32 new_size = sizeof(*item); 1071 u64 refs; 1072 int ret; 1073 1074 leaf = path->nodes[0]; 1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1076 1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1078 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1079 struct btrfs_extent_item_v0); 1080 refs = btrfs_extent_refs_v0(leaf, ei0); 1081 1082 if (owner == (u64)-1) { 1083 while (1) { 1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1085 ret = btrfs_next_leaf(root, path); 1086 if (ret < 0) 1087 return ret; 1088 BUG_ON(ret > 0); /* Corruption */ 1089 leaf = path->nodes[0]; 1090 } 1091 btrfs_item_key_to_cpu(leaf, &found_key, 1092 path->slots[0]); 1093 BUG_ON(key.objectid != found_key.objectid); 1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1095 path->slots[0]++; 1096 continue; 1097 } 1098 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1099 struct btrfs_extent_ref_v0); 1100 owner = btrfs_ref_objectid_v0(leaf, ref0); 1101 break; 1102 } 1103 } 1104 btrfs_release_path(path); 1105 1106 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1107 new_size += sizeof(*bi); 1108 1109 new_size -= sizeof(*ei0); 1110 ret = btrfs_search_slot(trans, root, &key, path, 1111 new_size + extra_size, 1); 1112 if (ret < 0) 1113 return ret; 1114 BUG_ON(ret); /* Corruption */ 1115 1116 btrfs_extend_item(root, path, new_size); 1117 1118 leaf = path->nodes[0]; 1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1120 btrfs_set_extent_refs(leaf, item, refs); 1121 /* FIXME: get real generation */ 1122 btrfs_set_extent_generation(leaf, item, 0); 1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1124 btrfs_set_extent_flags(leaf, item, 1125 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1126 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1127 bi = (struct btrfs_tree_block_info *)(item + 1); 1128 /* FIXME: get first key of the block */ 1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1130 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1131 } else { 1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1133 } 1134 btrfs_mark_buffer_dirty(leaf); 1135 return 0; 1136 } 1137 #endif 1138 1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1140 { 1141 u32 high_crc = ~(u32)0; 1142 u32 low_crc = ~(u32)0; 1143 __le64 lenum; 1144 1145 lenum = cpu_to_le64(root_objectid); 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1147 lenum = cpu_to_le64(owner); 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1149 lenum = cpu_to_le64(offset); 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1151 1152 return ((u64)high_crc << 31) ^ (u64)low_crc; 1153 } 1154 1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1156 struct btrfs_extent_data_ref *ref) 1157 { 1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1159 btrfs_extent_data_ref_objectid(leaf, ref), 1160 btrfs_extent_data_ref_offset(leaf, ref)); 1161 } 1162 1163 static int match_extent_data_ref(struct extent_buffer *leaf, 1164 struct btrfs_extent_data_ref *ref, 1165 u64 root_objectid, u64 owner, u64 offset) 1166 { 1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1169 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1170 return 0; 1171 return 1; 1172 } 1173 1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1175 struct btrfs_root *root, 1176 struct btrfs_path *path, 1177 u64 bytenr, u64 parent, 1178 u64 root_objectid, 1179 u64 owner, u64 offset) 1180 { 1181 struct btrfs_key key; 1182 struct btrfs_extent_data_ref *ref; 1183 struct extent_buffer *leaf; 1184 u32 nritems; 1185 int ret; 1186 int recow; 1187 int err = -ENOENT; 1188 1189 key.objectid = bytenr; 1190 if (parent) { 1191 key.type = BTRFS_SHARED_DATA_REF_KEY; 1192 key.offset = parent; 1193 } else { 1194 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1195 key.offset = hash_extent_data_ref(root_objectid, 1196 owner, offset); 1197 } 1198 again: 1199 recow = 0; 1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1201 if (ret < 0) { 1202 err = ret; 1203 goto fail; 1204 } 1205 1206 if (parent) { 1207 if (!ret) 1208 return 0; 1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1210 key.type = BTRFS_EXTENT_REF_V0_KEY; 1211 btrfs_release_path(path); 1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1213 if (ret < 0) { 1214 err = ret; 1215 goto fail; 1216 } 1217 if (!ret) 1218 return 0; 1219 #endif 1220 goto fail; 1221 } 1222 1223 leaf = path->nodes[0]; 1224 nritems = btrfs_header_nritems(leaf); 1225 while (1) { 1226 if (path->slots[0] >= nritems) { 1227 ret = btrfs_next_leaf(root, path); 1228 if (ret < 0) 1229 err = ret; 1230 if (ret) 1231 goto fail; 1232 1233 leaf = path->nodes[0]; 1234 nritems = btrfs_header_nritems(leaf); 1235 recow = 1; 1236 } 1237 1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1239 if (key.objectid != bytenr || 1240 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1241 goto fail; 1242 1243 ref = btrfs_item_ptr(leaf, path->slots[0], 1244 struct btrfs_extent_data_ref); 1245 1246 if (match_extent_data_ref(leaf, ref, root_objectid, 1247 owner, offset)) { 1248 if (recow) { 1249 btrfs_release_path(path); 1250 goto again; 1251 } 1252 err = 0; 1253 break; 1254 } 1255 path->slots[0]++; 1256 } 1257 fail: 1258 return err; 1259 } 1260 1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 u64 bytenr, u64 parent, 1265 u64 root_objectid, u64 owner, 1266 u64 offset, int refs_to_add) 1267 { 1268 struct btrfs_key key; 1269 struct extent_buffer *leaf; 1270 u32 size; 1271 u32 num_refs; 1272 int ret; 1273 1274 key.objectid = bytenr; 1275 if (parent) { 1276 key.type = BTRFS_SHARED_DATA_REF_KEY; 1277 key.offset = parent; 1278 size = sizeof(struct btrfs_shared_data_ref); 1279 } else { 1280 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1281 key.offset = hash_extent_data_ref(root_objectid, 1282 owner, offset); 1283 size = sizeof(struct btrfs_extent_data_ref); 1284 } 1285 1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1287 if (ret && ret != -EEXIST) 1288 goto fail; 1289 1290 leaf = path->nodes[0]; 1291 if (parent) { 1292 struct btrfs_shared_data_ref *ref; 1293 ref = btrfs_item_ptr(leaf, path->slots[0], 1294 struct btrfs_shared_data_ref); 1295 if (ret == 0) { 1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1297 } else { 1298 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1299 num_refs += refs_to_add; 1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1301 } 1302 } else { 1303 struct btrfs_extent_data_ref *ref; 1304 while (ret == -EEXIST) { 1305 ref = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_extent_data_ref); 1307 if (match_extent_data_ref(leaf, ref, root_objectid, 1308 owner, offset)) 1309 break; 1310 btrfs_release_path(path); 1311 key.offset++; 1312 ret = btrfs_insert_empty_item(trans, root, path, &key, 1313 size); 1314 if (ret && ret != -EEXIST) 1315 goto fail; 1316 1317 leaf = path->nodes[0]; 1318 } 1319 ref = btrfs_item_ptr(leaf, path->slots[0], 1320 struct btrfs_extent_data_ref); 1321 if (ret == 0) { 1322 btrfs_set_extent_data_ref_root(leaf, ref, 1323 root_objectid); 1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1327 } else { 1328 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1329 num_refs += refs_to_add; 1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1331 } 1332 } 1333 btrfs_mark_buffer_dirty(leaf); 1334 ret = 0; 1335 fail: 1336 btrfs_release_path(path); 1337 return ret; 1338 } 1339 1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1341 struct btrfs_root *root, 1342 struct btrfs_path *path, 1343 int refs_to_drop, int *last_ref) 1344 { 1345 struct btrfs_key key; 1346 struct btrfs_extent_data_ref *ref1 = NULL; 1347 struct btrfs_shared_data_ref *ref2 = NULL; 1348 struct extent_buffer *leaf; 1349 u32 num_refs = 0; 1350 int ret = 0; 1351 1352 leaf = path->nodes[0]; 1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1354 1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1356 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1357 struct btrfs_extent_data_ref); 1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1360 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_shared_data_ref); 1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1365 struct btrfs_extent_ref_v0 *ref0; 1366 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1367 struct btrfs_extent_ref_v0); 1368 num_refs = btrfs_ref_count_v0(leaf, ref0); 1369 #endif 1370 } else { 1371 BUG(); 1372 } 1373 1374 BUG_ON(num_refs < refs_to_drop); 1375 num_refs -= refs_to_drop; 1376 1377 if (num_refs == 0) { 1378 ret = btrfs_del_item(trans, root, path); 1379 *last_ref = 1; 1380 } else { 1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1386 else { 1387 struct btrfs_extent_ref_v0 *ref0; 1388 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1389 struct btrfs_extent_ref_v0); 1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1391 } 1392 #endif 1393 btrfs_mark_buffer_dirty(leaf); 1394 } 1395 return ret; 1396 } 1397 1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1399 struct btrfs_extent_inline_ref *iref) 1400 { 1401 struct btrfs_key key; 1402 struct extent_buffer *leaf; 1403 struct btrfs_extent_data_ref *ref1; 1404 struct btrfs_shared_data_ref *ref2; 1405 u32 num_refs = 0; 1406 1407 leaf = path->nodes[0]; 1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1409 if (iref) { 1410 if (btrfs_extent_inline_ref_type(leaf, iref) == 1411 BTRFS_EXTENT_DATA_REF_KEY) { 1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1414 } else { 1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1417 } 1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1419 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1420 struct btrfs_extent_data_ref); 1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1423 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1424 struct btrfs_shared_data_ref); 1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1428 struct btrfs_extent_ref_v0 *ref0; 1429 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1430 struct btrfs_extent_ref_v0); 1431 num_refs = btrfs_ref_count_v0(leaf, ref0); 1432 #endif 1433 } else { 1434 WARN_ON(1); 1435 } 1436 return num_refs; 1437 } 1438 1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1440 struct btrfs_root *root, 1441 struct btrfs_path *path, 1442 u64 bytenr, u64 parent, 1443 u64 root_objectid) 1444 { 1445 struct btrfs_key key; 1446 int ret; 1447 1448 key.objectid = bytenr; 1449 if (parent) { 1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1451 key.offset = parent; 1452 } else { 1453 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1454 key.offset = root_objectid; 1455 } 1456 1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1458 if (ret > 0) 1459 ret = -ENOENT; 1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1461 if (ret == -ENOENT && parent) { 1462 btrfs_release_path(path); 1463 key.type = BTRFS_EXTENT_REF_V0_KEY; 1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1465 if (ret > 0) 1466 ret = -ENOENT; 1467 } 1468 #endif 1469 return ret; 1470 } 1471 1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1473 struct btrfs_root *root, 1474 struct btrfs_path *path, 1475 u64 bytenr, u64 parent, 1476 u64 root_objectid) 1477 { 1478 struct btrfs_key key; 1479 int ret; 1480 1481 key.objectid = bytenr; 1482 if (parent) { 1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1484 key.offset = parent; 1485 } else { 1486 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1487 key.offset = root_objectid; 1488 } 1489 1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1491 btrfs_release_path(path); 1492 return ret; 1493 } 1494 1495 static inline int extent_ref_type(u64 parent, u64 owner) 1496 { 1497 int type; 1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1499 if (parent > 0) 1500 type = BTRFS_SHARED_BLOCK_REF_KEY; 1501 else 1502 type = BTRFS_TREE_BLOCK_REF_KEY; 1503 } else { 1504 if (parent > 0) 1505 type = BTRFS_SHARED_DATA_REF_KEY; 1506 else 1507 type = BTRFS_EXTENT_DATA_REF_KEY; 1508 } 1509 return type; 1510 } 1511 1512 static int find_next_key(struct btrfs_path *path, int level, 1513 struct btrfs_key *key) 1514 1515 { 1516 for (; level < BTRFS_MAX_LEVEL; level++) { 1517 if (!path->nodes[level]) 1518 break; 1519 if (path->slots[level] + 1 >= 1520 btrfs_header_nritems(path->nodes[level])) 1521 continue; 1522 if (level == 0) 1523 btrfs_item_key_to_cpu(path->nodes[level], key, 1524 path->slots[level] + 1); 1525 else 1526 btrfs_node_key_to_cpu(path->nodes[level], key, 1527 path->slots[level] + 1); 1528 return 0; 1529 } 1530 return 1; 1531 } 1532 1533 /* 1534 * look for inline back ref. if back ref is found, *ref_ret is set 1535 * to the address of inline back ref, and 0 is returned. 1536 * 1537 * if back ref isn't found, *ref_ret is set to the address where it 1538 * should be inserted, and -ENOENT is returned. 1539 * 1540 * if insert is true and there are too many inline back refs, the path 1541 * points to the extent item, and -EAGAIN is returned. 1542 * 1543 * NOTE: inline back refs are ordered in the same way that back ref 1544 * items in the tree are ordered. 1545 */ 1546 static noinline_for_stack 1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1548 struct btrfs_root *root, 1549 struct btrfs_path *path, 1550 struct btrfs_extent_inline_ref **ref_ret, 1551 u64 bytenr, u64 num_bytes, 1552 u64 parent, u64 root_objectid, 1553 u64 owner, u64 offset, int insert) 1554 { 1555 struct btrfs_key key; 1556 struct extent_buffer *leaf; 1557 struct btrfs_extent_item *ei; 1558 struct btrfs_extent_inline_ref *iref; 1559 u64 flags; 1560 u64 item_size; 1561 unsigned long ptr; 1562 unsigned long end; 1563 int extra_size; 1564 int type; 1565 int want; 1566 int ret; 1567 int err = 0; 1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1569 SKINNY_METADATA); 1570 1571 key.objectid = bytenr; 1572 key.type = BTRFS_EXTENT_ITEM_KEY; 1573 key.offset = num_bytes; 1574 1575 want = extent_ref_type(parent, owner); 1576 if (insert) { 1577 extra_size = btrfs_extent_inline_ref_size(want); 1578 path->keep_locks = 1; 1579 } else 1580 extra_size = -1; 1581 1582 /* 1583 * Owner is our parent level, so we can just add one to get the level 1584 * for the block we are interested in. 1585 */ 1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1587 key.type = BTRFS_METADATA_ITEM_KEY; 1588 key.offset = owner; 1589 } 1590 1591 again: 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1593 if (ret < 0) { 1594 err = ret; 1595 goto out; 1596 } 1597 1598 /* 1599 * We may be a newly converted file system which still has the old fat 1600 * extent entries for metadata, so try and see if we have one of those. 1601 */ 1602 if (ret > 0 && skinny_metadata) { 1603 skinny_metadata = false; 1604 if (path->slots[0]) { 1605 path->slots[0]--; 1606 btrfs_item_key_to_cpu(path->nodes[0], &key, 1607 path->slots[0]); 1608 if (key.objectid == bytenr && 1609 key.type == BTRFS_EXTENT_ITEM_KEY && 1610 key.offset == num_bytes) 1611 ret = 0; 1612 } 1613 if (ret) { 1614 key.objectid = bytenr; 1615 key.type = BTRFS_EXTENT_ITEM_KEY; 1616 key.offset = num_bytes; 1617 btrfs_release_path(path); 1618 goto again; 1619 } 1620 } 1621 1622 if (ret && !insert) { 1623 err = -ENOENT; 1624 goto out; 1625 } else if (WARN_ON(ret)) { 1626 err = -EIO; 1627 goto out; 1628 } 1629 1630 leaf = path->nodes[0]; 1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1633 if (item_size < sizeof(*ei)) { 1634 if (!insert) { 1635 err = -ENOENT; 1636 goto out; 1637 } 1638 ret = convert_extent_item_v0(trans, root, path, owner, 1639 extra_size); 1640 if (ret < 0) { 1641 err = ret; 1642 goto out; 1643 } 1644 leaf = path->nodes[0]; 1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1646 } 1647 #endif 1648 BUG_ON(item_size < sizeof(*ei)); 1649 1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1651 flags = btrfs_extent_flags(leaf, ei); 1652 1653 ptr = (unsigned long)(ei + 1); 1654 end = (unsigned long)ei + item_size; 1655 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1657 ptr += sizeof(struct btrfs_tree_block_info); 1658 BUG_ON(ptr > end); 1659 } 1660 1661 err = -ENOENT; 1662 while (1) { 1663 if (ptr >= end) { 1664 WARN_ON(ptr > end); 1665 break; 1666 } 1667 iref = (struct btrfs_extent_inline_ref *)ptr; 1668 type = btrfs_extent_inline_ref_type(leaf, iref); 1669 if (want < type) 1670 break; 1671 if (want > type) { 1672 ptr += btrfs_extent_inline_ref_size(type); 1673 continue; 1674 } 1675 1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1677 struct btrfs_extent_data_ref *dref; 1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1679 if (match_extent_data_ref(leaf, dref, root_objectid, 1680 owner, offset)) { 1681 err = 0; 1682 break; 1683 } 1684 if (hash_extent_data_ref_item(leaf, dref) < 1685 hash_extent_data_ref(root_objectid, owner, offset)) 1686 break; 1687 } else { 1688 u64 ref_offset; 1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1690 if (parent > 0) { 1691 if (parent == ref_offset) { 1692 err = 0; 1693 break; 1694 } 1695 if (ref_offset < parent) 1696 break; 1697 } else { 1698 if (root_objectid == ref_offset) { 1699 err = 0; 1700 break; 1701 } 1702 if (ref_offset < root_objectid) 1703 break; 1704 } 1705 } 1706 ptr += btrfs_extent_inline_ref_size(type); 1707 } 1708 if (err == -ENOENT && insert) { 1709 if (item_size + extra_size >= 1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1711 err = -EAGAIN; 1712 goto out; 1713 } 1714 /* 1715 * To add new inline back ref, we have to make sure 1716 * there is no corresponding back ref item. 1717 * For simplicity, we just do not add new inline back 1718 * ref if there is any kind of item for this block 1719 */ 1720 if (find_next_key(path, 0, &key) == 0 && 1721 key.objectid == bytenr && 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1723 err = -EAGAIN; 1724 goto out; 1725 } 1726 } 1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1728 out: 1729 if (insert) { 1730 path->keep_locks = 0; 1731 btrfs_unlock_up_safe(path, 1); 1732 } 1733 return err; 1734 } 1735 1736 /* 1737 * helper to add new inline back ref 1738 */ 1739 static noinline_for_stack 1740 void setup_inline_extent_backref(struct btrfs_root *root, 1741 struct btrfs_path *path, 1742 struct btrfs_extent_inline_ref *iref, 1743 u64 parent, u64 root_objectid, 1744 u64 owner, u64 offset, int refs_to_add, 1745 struct btrfs_delayed_extent_op *extent_op) 1746 { 1747 struct extent_buffer *leaf; 1748 struct btrfs_extent_item *ei; 1749 unsigned long ptr; 1750 unsigned long end; 1751 unsigned long item_offset; 1752 u64 refs; 1753 int size; 1754 int type; 1755 1756 leaf = path->nodes[0]; 1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1758 item_offset = (unsigned long)iref - (unsigned long)ei; 1759 1760 type = extent_ref_type(parent, owner); 1761 size = btrfs_extent_inline_ref_size(type); 1762 1763 btrfs_extend_item(root, path, size); 1764 1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1766 refs = btrfs_extent_refs(leaf, ei); 1767 refs += refs_to_add; 1768 btrfs_set_extent_refs(leaf, ei, refs); 1769 if (extent_op) 1770 __run_delayed_extent_op(extent_op, leaf, ei); 1771 1772 ptr = (unsigned long)ei + item_offset; 1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1774 if (ptr < end - size) 1775 memmove_extent_buffer(leaf, ptr + size, ptr, 1776 end - size - ptr); 1777 1778 iref = (struct btrfs_extent_inline_ref *)ptr; 1779 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1781 struct btrfs_extent_data_ref *dref; 1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 struct btrfs_shared_data_ref *sref; 1789 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1794 } else { 1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1796 } 1797 btrfs_mark_buffer_dirty(leaf); 1798 } 1799 1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 struct btrfs_path *path, 1803 struct btrfs_extent_inline_ref **ref_ret, 1804 u64 bytenr, u64 num_bytes, u64 parent, 1805 u64 root_objectid, u64 owner, u64 offset) 1806 { 1807 int ret; 1808 1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1810 bytenr, num_bytes, parent, 1811 root_objectid, owner, offset, 0); 1812 if (ret != -ENOENT) 1813 return ret; 1814 1815 btrfs_release_path(path); 1816 *ref_ret = NULL; 1817 1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1820 root_objectid); 1821 } else { 1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1823 root_objectid, owner, offset); 1824 } 1825 return ret; 1826 } 1827 1828 /* 1829 * helper to update/remove inline back ref 1830 */ 1831 static noinline_for_stack 1832 void update_inline_extent_backref(struct btrfs_root *root, 1833 struct btrfs_path *path, 1834 struct btrfs_extent_inline_ref *iref, 1835 int refs_to_mod, 1836 struct btrfs_delayed_extent_op *extent_op, 1837 int *last_ref) 1838 { 1839 struct extent_buffer *leaf; 1840 struct btrfs_extent_item *ei; 1841 struct btrfs_extent_data_ref *dref = NULL; 1842 struct btrfs_shared_data_ref *sref = NULL; 1843 unsigned long ptr; 1844 unsigned long end; 1845 u32 item_size; 1846 int size; 1847 int type; 1848 u64 refs; 1849 1850 leaf = path->nodes[0]; 1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1852 refs = btrfs_extent_refs(leaf, ei); 1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1854 refs += refs_to_mod; 1855 btrfs_set_extent_refs(leaf, ei, refs); 1856 if (extent_op) 1857 __run_delayed_extent_op(extent_op, leaf, ei); 1858 1859 type = btrfs_extent_inline_ref_type(leaf, iref); 1860 1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1863 refs = btrfs_extent_data_ref_count(leaf, dref); 1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1865 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1866 refs = btrfs_shared_data_ref_count(leaf, sref); 1867 } else { 1868 refs = 1; 1869 BUG_ON(refs_to_mod != -1); 1870 } 1871 1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1873 refs += refs_to_mod; 1874 1875 if (refs > 0) { 1876 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1877 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1878 else 1879 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1880 } else { 1881 *last_ref = 1; 1882 size = btrfs_extent_inline_ref_size(type); 1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1884 ptr = (unsigned long)iref; 1885 end = (unsigned long)ei + item_size; 1886 if (ptr + size < end) 1887 memmove_extent_buffer(leaf, ptr, ptr + size, 1888 end - ptr - size); 1889 item_size -= size; 1890 btrfs_truncate_item(root, path, item_size, 1); 1891 } 1892 btrfs_mark_buffer_dirty(leaf); 1893 } 1894 1895 static noinline_for_stack 1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1897 struct btrfs_root *root, 1898 struct btrfs_path *path, 1899 u64 bytenr, u64 num_bytes, u64 parent, 1900 u64 root_objectid, u64 owner, 1901 u64 offset, int refs_to_add, 1902 struct btrfs_delayed_extent_op *extent_op) 1903 { 1904 struct btrfs_extent_inline_ref *iref; 1905 int ret; 1906 1907 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1908 bytenr, num_bytes, parent, 1909 root_objectid, owner, offset, 1); 1910 if (ret == 0) { 1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1912 update_inline_extent_backref(root, path, iref, 1913 refs_to_add, extent_op, NULL); 1914 } else if (ret == -ENOENT) { 1915 setup_inline_extent_backref(root, path, iref, parent, 1916 root_objectid, owner, offset, 1917 refs_to_add, extent_op); 1918 ret = 0; 1919 } 1920 return ret; 1921 } 1922 1923 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1924 struct btrfs_root *root, 1925 struct btrfs_path *path, 1926 u64 bytenr, u64 parent, u64 root_objectid, 1927 u64 owner, u64 offset, int refs_to_add) 1928 { 1929 int ret; 1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1931 BUG_ON(refs_to_add != 1); 1932 ret = insert_tree_block_ref(trans, root, path, bytenr, 1933 parent, root_objectid); 1934 } else { 1935 ret = insert_extent_data_ref(trans, root, path, bytenr, 1936 parent, root_objectid, 1937 owner, offset, refs_to_add); 1938 } 1939 return ret; 1940 } 1941 1942 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 struct btrfs_path *path, 1945 struct btrfs_extent_inline_ref *iref, 1946 int refs_to_drop, int is_data, int *last_ref) 1947 { 1948 int ret = 0; 1949 1950 BUG_ON(!is_data && refs_to_drop != 1); 1951 if (iref) { 1952 update_inline_extent_backref(root, path, iref, 1953 -refs_to_drop, NULL, last_ref); 1954 } else if (is_data) { 1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1956 last_ref); 1957 } else { 1958 *last_ref = 1; 1959 ret = btrfs_del_item(trans, root, path); 1960 } 1961 return ret; 1962 } 1963 1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1966 u64 *discarded_bytes) 1967 { 1968 int j, ret = 0; 1969 u64 bytes_left, end; 1970 u64 aligned_start = ALIGN(start, 1 << 9); 1971 1972 if (WARN_ON(start != aligned_start)) { 1973 len -= aligned_start - start; 1974 len = round_down(len, 1 << 9); 1975 start = aligned_start; 1976 } 1977 1978 *discarded_bytes = 0; 1979 1980 if (!len) 1981 return 0; 1982 1983 end = start + len; 1984 bytes_left = len; 1985 1986 /* Skip any superblocks on this device. */ 1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1988 u64 sb_start = btrfs_sb_offset(j); 1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1990 u64 size = sb_start - start; 1991 1992 if (!in_range(sb_start, start, bytes_left) && 1993 !in_range(sb_end, start, bytes_left) && 1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1995 continue; 1996 1997 /* 1998 * Superblock spans beginning of range. Adjust start and 1999 * try again. 2000 */ 2001 if (sb_start <= start) { 2002 start += sb_end - start; 2003 if (start > end) { 2004 bytes_left = 0; 2005 break; 2006 } 2007 bytes_left = end - start; 2008 continue; 2009 } 2010 2011 if (size) { 2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2013 GFP_NOFS, 0); 2014 if (!ret) 2015 *discarded_bytes += size; 2016 else if (ret != -EOPNOTSUPP) 2017 return ret; 2018 } 2019 2020 start = sb_end; 2021 if (start > end) { 2022 bytes_left = 0; 2023 break; 2024 } 2025 bytes_left = end - start; 2026 } 2027 2028 if (bytes_left) { 2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2030 GFP_NOFS, 0); 2031 if (!ret) 2032 *discarded_bytes += bytes_left; 2033 } 2034 return ret; 2035 } 2036 2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2038 u64 num_bytes, u64 *actual_bytes) 2039 { 2040 int ret; 2041 u64 discarded_bytes = 0; 2042 struct btrfs_bio *bbio = NULL; 2043 2044 2045 /* Tell the block device(s) that the sectors can be discarded */ 2046 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 2047 bytenr, &num_bytes, &bbio, 0); 2048 /* Error condition is -ENOMEM */ 2049 if (!ret) { 2050 struct btrfs_bio_stripe *stripe = bbio->stripes; 2051 int i; 2052 2053 2054 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2055 u64 bytes; 2056 if (!stripe->dev->can_discard) 2057 continue; 2058 2059 ret = btrfs_issue_discard(stripe->dev->bdev, 2060 stripe->physical, 2061 stripe->length, 2062 &bytes); 2063 if (!ret) 2064 discarded_bytes += bytes; 2065 else if (ret != -EOPNOTSUPP) 2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2067 2068 /* 2069 * Just in case we get back EOPNOTSUPP for some reason, 2070 * just ignore the return value so we don't screw up 2071 * people calling discard_extent. 2072 */ 2073 ret = 0; 2074 } 2075 btrfs_put_bbio(bbio); 2076 } 2077 2078 if (actual_bytes) 2079 *actual_bytes = discarded_bytes; 2080 2081 2082 if (ret == -EOPNOTSUPP) 2083 ret = 0; 2084 return ret; 2085 } 2086 2087 /* Can return -ENOMEM */ 2088 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2089 struct btrfs_root *root, 2090 u64 bytenr, u64 num_bytes, u64 parent, 2091 u64 root_objectid, u64 owner, u64 offset) 2092 { 2093 int ret; 2094 struct btrfs_fs_info *fs_info = root->fs_info; 2095 2096 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2097 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2098 2099 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2100 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2101 num_bytes, 2102 parent, root_objectid, (int)owner, 2103 BTRFS_ADD_DELAYED_REF, NULL); 2104 } else { 2105 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2106 num_bytes, parent, root_objectid, 2107 owner, offset, 0, 2108 BTRFS_ADD_DELAYED_REF, NULL); 2109 } 2110 return ret; 2111 } 2112 2113 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2114 struct btrfs_root *root, 2115 struct btrfs_delayed_ref_node *node, 2116 u64 parent, u64 root_objectid, 2117 u64 owner, u64 offset, int refs_to_add, 2118 struct btrfs_delayed_extent_op *extent_op) 2119 { 2120 struct btrfs_fs_info *fs_info = root->fs_info; 2121 struct btrfs_path *path; 2122 struct extent_buffer *leaf; 2123 struct btrfs_extent_item *item; 2124 struct btrfs_key key; 2125 u64 bytenr = node->bytenr; 2126 u64 num_bytes = node->num_bytes; 2127 u64 refs; 2128 int ret; 2129 2130 path = btrfs_alloc_path(); 2131 if (!path) 2132 return -ENOMEM; 2133 2134 path->reada = READA_FORWARD; 2135 path->leave_spinning = 1; 2136 /* this will setup the path even if it fails to insert the back ref */ 2137 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2138 bytenr, num_bytes, parent, 2139 root_objectid, owner, offset, 2140 refs_to_add, extent_op); 2141 if ((ret < 0 && ret != -EAGAIN) || !ret) 2142 goto out; 2143 2144 /* 2145 * Ok we had -EAGAIN which means we didn't have space to insert and 2146 * inline extent ref, so just update the reference count and add a 2147 * normal backref. 2148 */ 2149 leaf = path->nodes[0]; 2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2152 refs = btrfs_extent_refs(leaf, item); 2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2154 if (extent_op) 2155 __run_delayed_extent_op(extent_op, leaf, item); 2156 2157 btrfs_mark_buffer_dirty(leaf); 2158 btrfs_release_path(path); 2159 2160 path->reada = READA_FORWARD; 2161 path->leave_spinning = 1; 2162 /* now insert the actual backref */ 2163 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2164 path, bytenr, parent, root_objectid, 2165 owner, offset, refs_to_add); 2166 if (ret) 2167 btrfs_abort_transaction(trans, root, ret); 2168 out: 2169 btrfs_free_path(path); 2170 return ret; 2171 } 2172 2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2174 struct btrfs_root *root, 2175 struct btrfs_delayed_ref_node *node, 2176 struct btrfs_delayed_extent_op *extent_op, 2177 int insert_reserved) 2178 { 2179 int ret = 0; 2180 struct btrfs_delayed_data_ref *ref; 2181 struct btrfs_key ins; 2182 u64 parent = 0; 2183 u64 ref_root = 0; 2184 u64 flags = 0; 2185 2186 ins.objectid = node->bytenr; 2187 ins.offset = node->num_bytes; 2188 ins.type = BTRFS_EXTENT_ITEM_KEY; 2189 2190 ref = btrfs_delayed_node_to_data_ref(node); 2191 trace_run_delayed_data_ref(node, ref, node->action); 2192 2193 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2194 parent = ref->parent; 2195 ref_root = ref->root; 2196 2197 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2198 if (extent_op) 2199 flags |= extent_op->flags_to_set; 2200 ret = alloc_reserved_file_extent(trans, root, 2201 parent, ref_root, flags, 2202 ref->objectid, ref->offset, 2203 &ins, node->ref_mod); 2204 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2205 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2206 ref_root, ref->objectid, 2207 ref->offset, node->ref_mod, 2208 extent_op); 2209 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2210 ret = __btrfs_free_extent(trans, root, node, parent, 2211 ref_root, ref->objectid, 2212 ref->offset, node->ref_mod, 2213 extent_op); 2214 } else { 2215 BUG(); 2216 } 2217 return ret; 2218 } 2219 2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2221 struct extent_buffer *leaf, 2222 struct btrfs_extent_item *ei) 2223 { 2224 u64 flags = btrfs_extent_flags(leaf, ei); 2225 if (extent_op->update_flags) { 2226 flags |= extent_op->flags_to_set; 2227 btrfs_set_extent_flags(leaf, ei, flags); 2228 } 2229 2230 if (extent_op->update_key) { 2231 struct btrfs_tree_block_info *bi; 2232 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2233 bi = (struct btrfs_tree_block_info *)(ei + 1); 2234 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2235 } 2236 } 2237 2238 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2239 struct btrfs_root *root, 2240 struct btrfs_delayed_ref_node *node, 2241 struct btrfs_delayed_extent_op *extent_op) 2242 { 2243 struct btrfs_key key; 2244 struct btrfs_path *path; 2245 struct btrfs_extent_item *ei; 2246 struct extent_buffer *leaf; 2247 u32 item_size; 2248 int ret; 2249 int err = 0; 2250 int metadata = !extent_op->is_data; 2251 2252 if (trans->aborted) 2253 return 0; 2254 2255 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2256 metadata = 0; 2257 2258 path = btrfs_alloc_path(); 2259 if (!path) 2260 return -ENOMEM; 2261 2262 key.objectid = node->bytenr; 2263 2264 if (metadata) { 2265 key.type = BTRFS_METADATA_ITEM_KEY; 2266 key.offset = extent_op->level; 2267 } else { 2268 key.type = BTRFS_EXTENT_ITEM_KEY; 2269 key.offset = node->num_bytes; 2270 } 2271 2272 again: 2273 path->reada = READA_FORWARD; 2274 path->leave_spinning = 1; 2275 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2276 path, 0, 1); 2277 if (ret < 0) { 2278 err = ret; 2279 goto out; 2280 } 2281 if (ret > 0) { 2282 if (metadata) { 2283 if (path->slots[0] > 0) { 2284 path->slots[0]--; 2285 btrfs_item_key_to_cpu(path->nodes[0], &key, 2286 path->slots[0]); 2287 if (key.objectid == node->bytenr && 2288 key.type == BTRFS_EXTENT_ITEM_KEY && 2289 key.offset == node->num_bytes) 2290 ret = 0; 2291 } 2292 if (ret > 0) { 2293 btrfs_release_path(path); 2294 metadata = 0; 2295 2296 key.objectid = node->bytenr; 2297 key.offset = node->num_bytes; 2298 key.type = BTRFS_EXTENT_ITEM_KEY; 2299 goto again; 2300 } 2301 } else { 2302 err = -EIO; 2303 goto out; 2304 } 2305 } 2306 2307 leaf = path->nodes[0]; 2308 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2310 if (item_size < sizeof(*ei)) { 2311 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2312 path, (u64)-1, 0); 2313 if (ret < 0) { 2314 err = ret; 2315 goto out; 2316 } 2317 leaf = path->nodes[0]; 2318 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2319 } 2320 #endif 2321 BUG_ON(item_size < sizeof(*ei)); 2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2323 __run_delayed_extent_op(extent_op, leaf, ei); 2324 2325 btrfs_mark_buffer_dirty(leaf); 2326 out: 2327 btrfs_free_path(path); 2328 return err; 2329 } 2330 2331 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2332 struct btrfs_root *root, 2333 struct btrfs_delayed_ref_node *node, 2334 struct btrfs_delayed_extent_op *extent_op, 2335 int insert_reserved) 2336 { 2337 int ret = 0; 2338 struct btrfs_delayed_tree_ref *ref; 2339 struct btrfs_key ins; 2340 u64 parent = 0; 2341 u64 ref_root = 0; 2342 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2343 SKINNY_METADATA); 2344 2345 ref = btrfs_delayed_node_to_tree_ref(node); 2346 trace_run_delayed_tree_ref(node, ref, node->action); 2347 2348 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2349 parent = ref->parent; 2350 ref_root = ref->root; 2351 2352 ins.objectid = node->bytenr; 2353 if (skinny_metadata) { 2354 ins.offset = ref->level; 2355 ins.type = BTRFS_METADATA_ITEM_KEY; 2356 } else { 2357 ins.offset = node->num_bytes; 2358 ins.type = BTRFS_EXTENT_ITEM_KEY; 2359 } 2360 2361 BUG_ON(node->ref_mod != 1); 2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2363 BUG_ON(!extent_op || !extent_op->update_flags); 2364 ret = alloc_reserved_tree_block(trans, root, 2365 parent, ref_root, 2366 extent_op->flags_to_set, 2367 &extent_op->key, 2368 ref->level, &ins); 2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2370 ret = __btrfs_inc_extent_ref(trans, root, node, 2371 parent, ref_root, 2372 ref->level, 0, 1, 2373 extent_op); 2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2375 ret = __btrfs_free_extent(trans, root, node, 2376 parent, ref_root, 2377 ref->level, 0, 1, extent_op); 2378 } else { 2379 BUG(); 2380 } 2381 return ret; 2382 } 2383 2384 /* helper function to actually process a single delayed ref entry */ 2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct btrfs_delayed_ref_node *node, 2388 struct btrfs_delayed_extent_op *extent_op, 2389 int insert_reserved) 2390 { 2391 int ret = 0; 2392 2393 if (trans->aborted) { 2394 if (insert_reserved) 2395 btrfs_pin_extent(root, node->bytenr, 2396 node->num_bytes, 1); 2397 return 0; 2398 } 2399 2400 if (btrfs_delayed_ref_is_head(node)) { 2401 struct btrfs_delayed_ref_head *head; 2402 /* 2403 * we've hit the end of the chain and we were supposed 2404 * to insert this extent into the tree. But, it got 2405 * deleted before we ever needed to insert it, so all 2406 * we have to do is clean up the accounting 2407 */ 2408 BUG_ON(extent_op); 2409 head = btrfs_delayed_node_to_head(node); 2410 trace_run_delayed_ref_head(node, head, node->action); 2411 2412 if (insert_reserved) { 2413 btrfs_pin_extent(root, node->bytenr, 2414 node->num_bytes, 1); 2415 if (head->is_data) { 2416 ret = btrfs_del_csums(trans, root, 2417 node->bytenr, 2418 node->num_bytes); 2419 } 2420 } 2421 2422 /* Also free its reserved qgroup space */ 2423 btrfs_qgroup_free_delayed_ref(root->fs_info, 2424 head->qgroup_ref_root, 2425 head->qgroup_reserved); 2426 return ret; 2427 } 2428 2429 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2430 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2431 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2432 insert_reserved); 2433 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2434 node->type == BTRFS_SHARED_DATA_REF_KEY) 2435 ret = run_delayed_data_ref(trans, root, node, extent_op, 2436 insert_reserved); 2437 else 2438 BUG(); 2439 return ret; 2440 } 2441 2442 static inline struct btrfs_delayed_ref_node * 2443 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2444 { 2445 struct btrfs_delayed_ref_node *ref; 2446 2447 if (list_empty(&head->ref_list)) 2448 return NULL; 2449 2450 /* 2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2452 * This is to prevent a ref count from going down to zero, which deletes 2453 * the extent item from the extent tree, when there still are references 2454 * to add, which would fail because they would not find the extent item. 2455 */ 2456 list_for_each_entry(ref, &head->ref_list, list) { 2457 if (ref->action == BTRFS_ADD_DELAYED_REF) 2458 return ref; 2459 } 2460 2461 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2462 list); 2463 } 2464 2465 /* 2466 * Returns 0 on success or if called with an already aborted transaction. 2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2468 */ 2469 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2470 struct btrfs_root *root, 2471 unsigned long nr) 2472 { 2473 struct btrfs_delayed_ref_root *delayed_refs; 2474 struct btrfs_delayed_ref_node *ref; 2475 struct btrfs_delayed_ref_head *locked_ref = NULL; 2476 struct btrfs_delayed_extent_op *extent_op; 2477 struct btrfs_fs_info *fs_info = root->fs_info; 2478 ktime_t start = ktime_get(); 2479 int ret; 2480 unsigned long count = 0; 2481 unsigned long actual_count = 0; 2482 int must_insert_reserved = 0; 2483 2484 delayed_refs = &trans->transaction->delayed_refs; 2485 while (1) { 2486 if (!locked_ref) { 2487 if (count >= nr) 2488 break; 2489 2490 spin_lock(&delayed_refs->lock); 2491 locked_ref = btrfs_select_ref_head(trans); 2492 if (!locked_ref) { 2493 spin_unlock(&delayed_refs->lock); 2494 break; 2495 } 2496 2497 /* grab the lock that says we are going to process 2498 * all the refs for this head */ 2499 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2500 spin_unlock(&delayed_refs->lock); 2501 /* 2502 * we may have dropped the spin lock to get the head 2503 * mutex lock, and that might have given someone else 2504 * time to free the head. If that's true, it has been 2505 * removed from our list and we can move on. 2506 */ 2507 if (ret == -EAGAIN) { 2508 locked_ref = NULL; 2509 count++; 2510 continue; 2511 } 2512 } 2513 2514 /* 2515 * We need to try and merge add/drops of the same ref since we 2516 * can run into issues with relocate dropping the implicit ref 2517 * and then it being added back again before the drop can 2518 * finish. If we merged anything we need to re-loop so we can 2519 * get a good ref. 2520 * Or we can get node references of the same type that weren't 2521 * merged when created due to bumps in the tree mod seq, and 2522 * we need to merge them to prevent adding an inline extent 2523 * backref before dropping it (triggering a BUG_ON at 2524 * insert_inline_extent_backref()). 2525 */ 2526 spin_lock(&locked_ref->lock); 2527 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2528 locked_ref); 2529 2530 /* 2531 * locked_ref is the head node, so we have to go one 2532 * node back for any delayed ref updates 2533 */ 2534 ref = select_delayed_ref(locked_ref); 2535 2536 if (ref && ref->seq && 2537 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2538 spin_unlock(&locked_ref->lock); 2539 btrfs_delayed_ref_unlock(locked_ref); 2540 spin_lock(&delayed_refs->lock); 2541 locked_ref->processing = 0; 2542 delayed_refs->num_heads_ready++; 2543 spin_unlock(&delayed_refs->lock); 2544 locked_ref = NULL; 2545 cond_resched(); 2546 count++; 2547 continue; 2548 } 2549 2550 /* 2551 * record the must insert reserved flag before we 2552 * drop the spin lock. 2553 */ 2554 must_insert_reserved = locked_ref->must_insert_reserved; 2555 locked_ref->must_insert_reserved = 0; 2556 2557 extent_op = locked_ref->extent_op; 2558 locked_ref->extent_op = NULL; 2559 2560 if (!ref) { 2561 2562 2563 /* All delayed refs have been processed, Go ahead 2564 * and send the head node to run_one_delayed_ref, 2565 * so that any accounting fixes can happen 2566 */ 2567 ref = &locked_ref->node; 2568 2569 if (extent_op && must_insert_reserved) { 2570 btrfs_free_delayed_extent_op(extent_op); 2571 extent_op = NULL; 2572 } 2573 2574 if (extent_op) { 2575 spin_unlock(&locked_ref->lock); 2576 ret = run_delayed_extent_op(trans, root, 2577 ref, extent_op); 2578 btrfs_free_delayed_extent_op(extent_op); 2579 2580 if (ret) { 2581 /* 2582 * Need to reset must_insert_reserved if 2583 * there was an error so the abort stuff 2584 * can cleanup the reserved space 2585 * properly. 2586 */ 2587 if (must_insert_reserved) 2588 locked_ref->must_insert_reserved = 1; 2589 locked_ref->processing = 0; 2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2591 btrfs_delayed_ref_unlock(locked_ref); 2592 return ret; 2593 } 2594 continue; 2595 } 2596 2597 /* 2598 * Need to drop our head ref lock and re-acquire the 2599 * delayed ref lock and then re-check to make sure 2600 * nobody got added. 2601 */ 2602 spin_unlock(&locked_ref->lock); 2603 spin_lock(&delayed_refs->lock); 2604 spin_lock(&locked_ref->lock); 2605 if (!list_empty(&locked_ref->ref_list) || 2606 locked_ref->extent_op) { 2607 spin_unlock(&locked_ref->lock); 2608 spin_unlock(&delayed_refs->lock); 2609 continue; 2610 } 2611 ref->in_tree = 0; 2612 delayed_refs->num_heads--; 2613 rb_erase(&locked_ref->href_node, 2614 &delayed_refs->href_root); 2615 spin_unlock(&delayed_refs->lock); 2616 } else { 2617 actual_count++; 2618 ref->in_tree = 0; 2619 list_del(&ref->list); 2620 } 2621 atomic_dec(&delayed_refs->num_entries); 2622 2623 if (!btrfs_delayed_ref_is_head(ref)) { 2624 /* 2625 * when we play the delayed ref, also correct the 2626 * ref_mod on head 2627 */ 2628 switch (ref->action) { 2629 case BTRFS_ADD_DELAYED_REF: 2630 case BTRFS_ADD_DELAYED_EXTENT: 2631 locked_ref->node.ref_mod -= ref->ref_mod; 2632 break; 2633 case BTRFS_DROP_DELAYED_REF: 2634 locked_ref->node.ref_mod += ref->ref_mod; 2635 break; 2636 default: 2637 WARN_ON(1); 2638 } 2639 } 2640 spin_unlock(&locked_ref->lock); 2641 2642 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2643 must_insert_reserved); 2644 2645 btrfs_free_delayed_extent_op(extent_op); 2646 if (ret) { 2647 locked_ref->processing = 0; 2648 btrfs_delayed_ref_unlock(locked_ref); 2649 btrfs_put_delayed_ref(ref); 2650 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2651 return ret; 2652 } 2653 2654 /* 2655 * If this node is a head, that means all the refs in this head 2656 * have been dealt with, and we will pick the next head to deal 2657 * with, so we must unlock the head and drop it from the cluster 2658 * list before we release it. 2659 */ 2660 if (btrfs_delayed_ref_is_head(ref)) { 2661 if (locked_ref->is_data && 2662 locked_ref->total_ref_mod < 0) { 2663 spin_lock(&delayed_refs->lock); 2664 delayed_refs->pending_csums -= ref->num_bytes; 2665 spin_unlock(&delayed_refs->lock); 2666 } 2667 btrfs_delayed_ref_unlock(locked_ref); 2668 locked_ref = NULL; 2669 } 2670 btrfs_put_delayed_ref(ref); 2671 count++; 2672 cond_resched(); 2673 } 2674 2675 /* 2676 * We don't want to include ref heads since we can have empty ref heads 2677 * and those will drastically skew our runtime down since we just do 2678 * accounting, no actual extent tree updates. 2679 */ 2680 if (actual_count > 0) { 2681 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2682 u64 avg; 2683 2684 /* 2685 * We weigh the current average higher than our current runtime 2686 * to avoid large swings in the average. 2687 */ 2688 spin_lock(&delayed_refs->lock); 2689 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2690 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2691 spin_unlock(&delayed_refs->lock); 2692 } 2693 return 0; 2694 } 2695 2696 #ifdef SCRAMBLE_DELAYED_REFS 2697 /* 2698 * Normally delayed refs get processed in ascending bytenr order. This 2699 * correlates in most cases to the order added. To expose dependencies on this 2700 * order, we start to process the tree in the middle instead of the beginning 2701 */ 2702 static u64 find_middle(struct rb_root *root) 2703 { 2704 struct rb_node *n = root->rb_node; 2705 struct btrfs_delayed_ref_node *entry; 2706 int alt = 1; 2707 u64 middle; 2708 u64 first = 0, last = 0; 2709 2710 n = rb_first(root); 2711 if (n) { 2712 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2713 first = entry->bytenr; 2714 } 2715 n = rb_last(root); 2716 if (n) { 2717 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2718 last = entry->bytenr; 2719 } 2720 n = root->rb_node; 2721 2722 while (n) { 2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2724 WARN_ON(!entry->in_tree); 2725 2726 middle = entry->bytenr; 2727 2728 if (alt) 2729 n = n->rb_left; 2730 else 2731 n = n->rb_right; 2732 2733 alt = 1 - alt; 2734 } 2735 return middle; 2736 } 2737 #endif 2738 2739 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2740 { 2741 u64 num_bytes; 2742 2743 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2744 sizeof(struct btrfs_extent_inline_ref)); 2745 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2746 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2747 2748 /* 2749 * We don't ever fill up leaves all the way so multiply by 2 just to be 2750 * closer to what we're really going to want to use. 2751 */ 2752 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2753 } 2754 2755 /* 2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2757 * would require to store the csums for that many bytes. 2758 */ 2759 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2760 { 2761 u64 csum_size; 2762 u64 num_csums_per_leaf; 2763 u64 num_csums; 2764 2765 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2766 num_csums_per_leaf = div64_u64(csum_size, 2767 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2768 num_csums = div64_u64(csum_bytes, root->sectorsize); 2769 num_csums += num_csums_per_leaf - 1; 2770 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2771 return num_csums; 2772 } 2773 2774 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2775 struct btrfs_root *root) 2776 { 2777 struct btrfs_block_rsv *global_rsv; 2778 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2779 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2780 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2781 u64 num_bytes, num_dirty_bgs_bytes; 2782 int ret = 0; 2783 2784 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2785 num_heads = heads_to_leaves(root, num_heads); 2786 if (num_heads > 1) 2787 num_bytes += (num_heads - 1) * root->nodesize; 2788 num_bytes <<= 1; 2789 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2790 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2791 num_dirty_bgs); 2792 global_rsv = &root->fs_info->global_block_rsv; 2793 2794 /* 2795 * If we can't allocate any more chunks lets make sure we have _lots_ of 2796 * wiggle room since running delayed refs can create more delayed refs. 2797 */ 2798 if (global_rsv->space_info->full) { 2799 num_dirty_bgs_bytes <<= 1; 2800 num_bytes <<= 1; 2801 } 2802 2803 spin_lock(&global_rsv->lock); 2804 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2805 ret = 1; 2806 spin_unlock(&global_rsv->lock); 2807 return ret; 2808 } 2809 2810 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2811 struct btrfs_root *root) 2812 { 2813 struct btrfs_fs_info *fs_info = root->fs_info; 2814 u64 num_entries = 2815 atomic_read(&trans->transaction->delayed_refs.num_entries); 2816 u64 avg_runtime; 2817 u64 val; 2818 2819 smp_mb(); 2820 avg_runtime = fs_info->avg_delayed_ref_runtime; 2821 val = num_entries * avg_runtime; 2822 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2823 return 1; 2824 if (val >= NSEC_PER_SEC / 2) 2825 return 2; 2826 2827 return btrfs_check_space_for_delayed_refs(trans, root); 2828 } 2829 2830 struct async_delayed_refs { 2831 struct btrfs_root *root; 2832 int count; 2833 int error; 2834 int sync; 2835 struct completion wait; 2836 struct btrfs_work work; 2837 }; 2838 2839 static void delayed_ref_async_start(struct btrfs_work *work) 2840 { 2841 struct async_delayed_refs *async; 2842 struct btrfs_trans_handle *trans; 2843 int ret; 2844 2845 async = container_of(work, struct async_delayed_refs, work); 2846 2847 trans = btrfs_join_transaction(async->root); 2848 if (IS_ERR(trans)) { 2849 async->error = PTR_ERR(trans); 2850 goto done; 2851 } 2852 2853 /* 2854 * trans->sync means that when we call end_transaction, we won't 2855 * wait on delayed refs 2856 */ 2857 trans->sync = true; 2858 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2859 if (ret) 2860 async->error = ret; 2861 2862 ret = btrfs_end_transaction(trans, async->root); 2863 if (ret && !async->error) 2864 async->error = ret; 2865 done: 2866 if (async->sync) 2867 complete(&async->wait); 2868 else 2869 kfree(async); 2870 } 2871 2872 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2873 unsigned long count, int wait) 2874 { 2875 struct async_delayed_refs *async; 2876 int ret; 2877 2878 async = kmalloc(sizeof(*async), GFP_NOFS); 2879 if (!async) 2880 return -ENOMEM; 2881 2882 async->root = root->fs_info->tree_root; 2883 async->count = count; 2884 async->error = 0; 2885 if (wait) 2886 async->sync = 1; 2887 else 2888 async->sync = 0; 2889 init_completion(&async->wait); 2890 2891 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2892 delayed_ref_async_start, NULL, NULL); 2893 2894 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2895 2896 if (wait) { 2897 wait_for_completion(&async->wait); 2898 ret = async->error; 2899 kfree(async); 2900 return ret; 2901 } 2902 return 0; 2903 } 2904 2905 /* 2906 * this starts processing the delayed reference count updates and 2907 * extent insertions we have queued up so far. count can be 2908 * 0, which means to process everything in the tree at the start 2909 * of the run (but not newly added entries), or it can be some target 2910 * number you'd like to process. 2911 * 2912 * Returns 0 on success or if called with an aborted transaction 2913 * Returns <0 on error and aborts the transaction 2914 */ 2915 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2916 struct btrfs_root *root, unsigned long count) 2917 { 2918 struct rb_node *node; 2919 struct btrfs_delayed_ref_root *delayed_refs; 2920 struct btrfs_delayed_ref_head *head; 2921 int ret; 2922 int run_all = count == (unsigned long)-1; 2923 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2924 2925 /* We'll clean this up in btrfs_cleanup_transaction */ 2926 if (trans->aborted) 2927 return 0; 2928 2929 if (root->fs_info->creating_free_space_tree) 2930 return 0; 2931 2932 if (root == root->fs_info->extent_root) 2933 root = root->fs_info->tree_root; 2934 2935 delayed_refs = &trans->transaction->delayed_refs; 2936 if (count == 0) 2937 count = atomic_read(&delayed_refs->num_entries) * 2; 2938 2939 again: 2940 #ifdef SCRAMBLE_DELAYED_REFS 2941 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2942 #endif 2943 trans->can_flush_pending_bgs = false; 2944 ret = __btrfs_run_delayed_refs(trans, root, count); 2945 if (ret < 0) { 2946 btrfs_abort_transaction(trans, root, ret); 2947 return ret; 2948 } 2949 2950 if (run_all) { 2951 if (!list_empty(&trans->new_bgs)) 2952 btrfs_create_pending_block_groups(trans, root); 2953 2954 spin_lock(&delayed_refs->lock); 2955 node = rb_first(&delayed_refs->href_root); 2956 if (!node) { 2957 spin_unlock(&delayed_refs->lock); 2958 goto out; 2959 } 2960 count = (unsigned long)-1; 2961 2962 while (node) { 2963 head = rb_entry(node, struct btrfs_delayed_ref_head, 2964 href_node); 2965 if (btrfs_delayed_ref_is_head(&head->node)) { 2966 struct btrfs_delayed_ref_node *ref; 2967 2968 ref = &head->node; 2969 atomic_inc(&ref->refs); 2970 2971 spin_unlock(&delayed_refs->lock); 2972 /* 2973 * Mutex was contended, block until it's 2974 * released and try again 2975 */ 2976 mutex_lock(&head->mutex); 2977 mutex_unlock(&head->mutex); 2978 2979 btrfs_put_delayed_ref(ref); 2980 cond_resched(); 2981 goto again; 2982 } else { 2983 WARN_ON(1); 2984 } 2985 node = rb_next(node); 2986 } 2987 spin_unlock(&delayed_refs->lock); 2988 cond_resched(); 2989 goto again; 2990 } 2991 out: 2992 assert_qgroups_uptodate(trans); 2993 trans->can_flush_pending_bgs = can_flush_pending_bgs; 2994 return 0; 2995 } 2996 2997 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *root, 2999 u64 bytenr, u64 num_bytes, u64 flags, 3000 int level, int is_data) 3001 { 3002 struct btrfs_delayed_extent_op *extent_op; 3003 int ret; 3004 3005 extent_op = btrfs_alloc_delayed_extent_op(); 3006 if (!extent_op) 3007 return -ENOMEM; 3008 3009 extent_op->flags_to_set = flags; 3010 extent_op->update_flags = true; 3011 extent_op->update_key = false; 3012 extent_op->is_data = is_data ? true : false; 3013 extent_op->level = level; 3014 3015 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3016 num_bytes, extent_op); 3017 if (ret) 3018 btrfs_free_delayed_extent_op(extent_op); 3019 return ret; 3020 } 3021 3022 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3023 struct btrfs_root *root, 3024 struct btrfs_path *path, 3025 u64 objectid, u64 offset, u64 bytenr) 3026 { 3027 struct btrfs_delayed_ref_head *head; 3028 struct btrfs_delayed_ref_node *ref; 3029 struct btrfs_delayed_data_ref *data_ref; 3030 struct btrfs_delayed_ref_root *delayed_refs; 3031 int ret = 0; 3032 3033 delayed_refs = &trans->transaction->delayed_refs; 3034 spin_lock(&delayed_refs->lock); 3035 head = btrfs_find_delayed_ref_head(trans, bytenr); 3036 if (!head) { 3037 spin_unlock(&delayed_refs->lock); 3038 return 0; 3039 } 3040 3041 if (!mutex_trylock(&head->mutex)) { 3042 atomic_inc(&head->node.refs); 3043 spin_unlock(&delayed_refs->lock); 3044 3045 btrfs_release_path(path); 3046 3047 /* 3048 * Mutex was contended, block until it's released and let 3049 * caller try again 3050 */ 3051 mutex_lock(&head->mutex); 3052 mutex_unlock(&head->mutex); 3053 btrfs_put_delayed_ref(&head->node); 3054 return -EAGAIN; 3055 } 3056 spin_unlock(&delayed_refs->lock); 3057 3058 spin_lock(&head->lock); 3059 list_for_each_entry(ref, &head->ref_list, list) { 3060 /* If it's a shared ref we know a cross reference exists */ 3061 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3062 ret = 1; 3063 break; 3064 } 3065 3066 data_ref = btrfs_delayed_node_to_data_ref(ref); 3067 3068 /* 3069 * If our ref doesn't match the one we're currently looking at 3070 * then we have a cross reference. 3071 */ 3072 if (data_ref->root != root->root_key.objectid || 3073 data_ref->objectid != objectid || 3074 data_ref->offset != offset) { 3075 ret = 1; 3076 break; 3077 } 3078 } 3079 spin_unlock(&head->lock); 3080 mutex_unlock(&head->mutex); 3081 return ret; 3082 } 3083 3084 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3085 struct btrfs_root *root, 3086 struct btrfs_path *path, 3087 u64 objectid, u64 offset, u64 bytenr) 3088 { 3089 struct btrfs_root *extent_root = root->fs_info->extent_root; 3090 struct extent_buffer *leaf; 3091 struct btrfs_extent_data_ref *ref; 3092 struct btrfs_extent_inline_ref *iref; 3093 struct btrfs_extent_item *ei; 3094 struct btrfs_key key; 3095 u32 item_size; 3096 int ret; 3097 3098 key.objectid = bytenr; 3099 key.offset = (u64)-1; 3100 key.type = BTRFS_EXTENT_ITEM_KEY; 3101 3102 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3103 if (ret < 0) 3104 goto out; 3105 BUG_ON(ret == 0); /* Corruption */ 3106 3107 ret = -ENOENT; 3108 if (path->slots[0] == 0) 3109 goto out; 3110 3111 path->slots[0]--; 3112 leaf = path->nodes[0]; 3113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3114 3115 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3116 goto out; 3117 3118 ret = 1; 3119 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3121 if (item_size < sizeof(*ei)) { 3122 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3123 goto out; 3124 } 3125 #endif 3126 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3127 3128 if (item_size != sizeof(*ei) + 3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3130 goto out; 3131 3132 if (btrfs_extent_generation(leaf, ei) <= 3133 btrfs_root_last_snapshot(&root->root_item)) 3134 goto out; 3135 3136 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3137 if (btrfs_extent_inline_ref_type(leaf, iref) != 3138 BTRFS_EXTENT_DATA_REF_KEY) 3139 goto out; 3140 3141 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3142 if (btrfs_extent_refs(leaf, ei) != 3143 btrfs_extent_data_ref_count(leaf, ref) || 3144 btrfs_extent_data_ref_root(leaf, ref) != 3145 root->root_key.objectid || 3146 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3147 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3148 goto out; 3149 3150 ret = 0; 3151 out: 3152 return ret; 3153 } 3154 3155 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3156 struct btrfs_root *root, 3157 u64 objectid, u64 offset, u64 bytenr) 3158 { 3159 struct btrfs_path *path; 3160 int ret; 3161 int ret2; 3162 3163 path = btrfs_alloc_path(); 3164 if (!path) 3165 return -ENOENT; 3166 3167 do { 3168 ret = check_committed_ref(trans, root, path, objectid, 3169 offset, bytenr); 3170 if (ret && ret != -ENOENT) 3171 goto out; 3172 3173 ret2 = check_delayed_ref(trans, root, path, objectid, 3174 offset, bytenr); 3175 } while (ret2 == -EAGAIN); 3176 3177 if (ret2 && ret2 != -ENOENT) { 3178 ret = ret2; 3179 goto out; 3180 } 3181 3182 if (ret != -ENOENT || ret2 != -ENOENT) 3183 ret = 0; 3184 out: 3185 btrfs_free_path(path); 3186 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3187 WARN_ON(ret > 0); 3188 return ret; 3189 } 3190 3191 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3192 struct btrfs_root *root, 3193 struct extent_buffer *buf, 3194 int full_backref, int inc) 3195 { 3196 u64 bytenr; 3197 u64 num_bytes; 3198 u64 parent; 3199 u64 ref_root; 3200 u32 nritems; 3201 struct btrfs_key key; 3202 struct btrfs_file_extent_item *fi; 3203 int i; 3204 int level; 3205 int ret = 0; 3206 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3207 u64, u64, u64, u64, u64, u64); 3208 3209 3210 if (btrfs_test_is_dummy_root(root)) 3211 return 0; 3212 3213 ref_root = btrfs_header_owner(buf); 3214 nritems = btrfs_header_nritems(buf); 3215 level = btrfs_header_level(buf); 3216 3217 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3218 return 0; 3219 3220 if (inc) 3221 process_func = btrfs_inc_extent_ref; 3222 else 3223 process_func = btrfs_free_extent; 3224 3225 if (full_backref) 3226 parent = buf->start; 3227 else 3228 parent = 0; 3229 3230 for (i = 0; i < nritems; i++) { 3231 if (level == 0) { 3232 btrfs_item_key_to_cpu(buf, &key, i); 3233 if (key.type != BTRFS_EXTENT_DATA_KEY) 3234 continue; 3235 fi = btrfs_item_ptr(buf, i, 3236 struct btrfs_file_extent_item); 3237 if (btrfs_file_extent_type(buf, fi) == 3238 BTRFS_FILE_EXTENT_INLINE) 3239 continue; 3240 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3241 if (bytenr == 0) 3242 continue; 3243 3244 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3245 key.offset -= btrfs_file_extent_offset(buf, fi); 3246 ret = process_func(trans, root, bytenr, num_bytes, 3247 parent, ref_root, key.objectid, 3248 key.offset); 3249 if (ret) 3250 goto fail; 3251 } else { 3252 bytenr = btrfs_node_blockptr(buf, i); 3253 num_bytes = root->nodesize; 3254 ret = process_func(trans, root, bytenr, num_bytes, 3255 parent, ref_root, level - 1, 0); 3256 if (ret) 3257 goto fail; 3258 } 3259 } 3260 return 0; 3261 fail: 3262 return ret; 3263 } 3264 3265 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3266 struct extent_buffer *buf, int full_backref) 3267 { 3268 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3269 } 3270 3271 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3272 struct extent_buffer *buf, int full_backref) 3273 { 3274 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3275 } 3276 3277 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3278 struct btrfs_root *root, 3279 struct btrfs_path *path, 3280 struct btrfs_block_group_cache *cache) 3281 { 3282 int ret; 3283 struct btrfs_root *extent_root = root->fs_info->extent_root; 3284 unsigned long bi; 3285 struct extent_buffer *leaf; 3286 3287 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3288 if (ret) { 3289 if (ret > 0) 3290 ret = -ENOENT; 3291 goto fail; 3292 } 3293 3294 leaf = path->nodes[0]; 3295 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3296 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3297 btrfs_mark_buffer_dirty(leaf); 3298 fail: 3299 btrfs_release_path(path); 3300 return ret; 3301 3302 } 3303 3304 static struct btrfs_block_group_cache * 3305 next_block_group(struct btrfs_root *root, 3306 struct btrfs_block_group_cache *cache) 3307 { 3308 struct rb_node *node; 3309 3310 spin_lock(&root->fs_info->block_group_cache_lock); 3311 3312 /* If our block group was removed, we need a full search. */ 3313 if (RB_EMPTY_NODE(&cache->cache_node)) { 3314 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3315 3316 spin_unlock(&root->fs_info->block_group_cache_lock); 3317 btrfs_put_block_group(cache); 3318 cache = btrfs_lookup_first_block_group(root->fs_info, 3319 next_bytenr); 3320 return cache; 3321 } 3322 node = rb_next(&cache->cache_node); 3323 btrfs_put_block_group(cache); 3324 if (node) { 3325 cache = rb_entry(node, struct btrfs_block_group_cache, 3326 cache_node); 3327 btrfs_get_block_group(cache); 3328 } else 3329 cache = NULL; 3330 spin_unlock(&root->fs_info->block_group_cache_lock); 3331 return cache; 3332 } 3333 3334 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3335 struct btrfs_trans_handle *trans, 3336 struct btrfs_path *path) 3337 { 3338 struct btrfs_root *root = block_group->fs_info->tree_root; 3339 struct inode *inode = NULL; 3340 u64 alloc_hint = 0; 3341 int dcs = BTRFS_DC_ERROR; 3342 u64 num_pages = 0; 3343 int retries = 0; 3344 int ret = 0; 3345 3346 /* 3347 * If this block group is smaller than 100 megs don't bother caching the 3348 * block group. 3349 */ 3350 if (block_group->key.offset < (100 * SZ_1M)) { 3351 spin_lock(&block_group->lock); 3352 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3353 spin_unlock(&block_group->lock); 3354 return 0; 3355 } 3356 3357 if (trans->aborted) 3358 return 0; 3359 again: 3360 inode = lookup_free_space_inode(root, block_group, path); 3361 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3362 ret = PTR_ERR(inode); 3363 btrfs_release_path(path); 3364 goto out; 3365 } 3366 3367 if (IS_ERR(inode)) { 3368 BUG_ON(retries); 3369 retries++; 3370 3371 if (block_group->ro) 3372 goto out_free; 3373 3374 ret = create_free_space_inode(root, trans, block_group, path); 3375 if (ret) 3376 goto out_free; 3377 goto again; 3378 } 3379 3380 /* We've already setup this transaction, go ahead and exit */ 3381 if (block_group->cache_generation == trans->transid && 3382 i_size_read(inode)) { 3383 dcs = BTRFS_DC_SETUP; 3384 goto out_put; 3385 } 3386 3387 /* 3388 * We want to set the generation to 0, that way if anything goes wrong 3389 * from here on out we know not to trust this cache when we load up next 3390 * time. 3391 */ 3392 BTRFS_I(inode)->generation = 0; 3393 ret = btrfs_update_inode(trans, root, inode); 3394 if (ret) { 3395 /* 3396 * So theoretically we could recover from this, simply set the 3397 * super cache generation to 0 so we know to invalidate the 3398 * cache, but then we'd have to keep track of the block groups 3399 * that fail this way so we know we _have_ to reset this cache 3400 * before the next commit or risk reading stale cache. So to 3401 * limit our exposure to horrible edge cases lets just abort the 3402 * transaction, this only happens in really bad situations 3403 * anyway. 3404 */ 3405 btrfs_abort_transaction(trans, root, ret); 3406 goto out_put; 3407 } 3408 WARN_ON(ret); 3409 3410 if (i_size_read(inode) > 0) { 3411 ret = btrfs_check_trunc_cache_free_space(root, 3412 &root->fs_info->global_block_rsv); 3413 if (ret) 3414 goto out_put; 3415 3416 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3417 if (ret) 3418 goto out_put; 3419 } 3420 3421 spin_lock(&block_group->lock); 3422 if (block_group->cached != BTRFS_CACHE_FINISHED || 3423 !btrfs_test_opt(root, SPACE_CACHE)) { 3424 /* 3425 * don't bother trying to write stuff out _if_ 3426 * a) we're not cached, 3427 * b) we're with nospace_cache mount option. 3428 */ 3429 dcs = BTRFS_DC_WRITTEN; 3430 spin_unlock(&block_group->lock); 3431 goto out_put; 3432 } 3433 spin_unlock(&block_group->lock); 3434 3435 /* 3436 * We hit an ENOSPC when setting up the cache in this transaction, just 3437 * skip doing the setup, we've already cleared the cache so we're safe. 3438 */ 3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3440 ret = -ENOSPC; 3441 goto out_put; 3442 } 3443 3444 /* 3445 * Try to preallocate enough space based on how big the block group is. 3446 * Keep in mind this has to include any pinned space which could end up 3447 * taking up quite a bit since it's not folded into the other space 3448 * cache. 3449 */ 3450 num_pages = div_u64(block_group->key.offset, SZ_256M); 3451 if (!num_pages) 3452 num_pages = 1; 3453 3454 num_pages *= 16; 3455 num_pages *= PAGE_SIZE; 3456 3457 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3458 if (ret) 3459 goto out_put; 3460 3461 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3462 num_pages, num_pages, 3463 &alloc_hint); 3464 /* 3465 * Our cache requires contiguous chunks so that we don't modify a bunch 3466 * of metadata or split extents when writing the cache out, which means 3467 * we can enospc if we are heavily fragmented in addition to just normal 3468 * out of space conditions. So if we hit this just skip setting up any 3469 * other block groups for this transaction, maybe we'll unpin enough 3470 * space the next time around. 3471 */ 3472 if (!ret) 3473 dcs = BTRFS_DC_SETUP; 3474 else if (ret == -ENOSPC) 3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3476 btrfs_free_reserved_data_space(inode, 0, num_pages); 3477 3478 out_put: 3479 iput(inode); 3480 out_free: 3481 btrfs_release_path(path); 3482 out: 3483 spin_lock(&block_group->lock); 3484 if (!ret && dcs == BTRFS_DC_SETUP) 3485 block_group->cache_generation = trans->transid; 3486 block_group->disk_cache_state = dcs; 3487 spin_unlock(&block_group->lock); 3488 3489 return ret; 3490 } 3491 3492 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3493 struct btrfs_root *root) 3494 { 3495 struct btrfs_block_group_cache *cache, *tmp; 3496 struct btrfs_transaction *cur_trans = trans->transaction; 3497 struct btrfs_path *path; 3498 3499 if (list_empty(&cur_trans->dirty_bgs) || 3500 !btrfs_test_opt(root, SPACE_CACHE)) 3501 return 0; 3502 3503 path = btrfs_alloc_path(); 3504 if (!path) 3505 return -ENOMEM; 3506 3507 /* Could add new block groups, use _safe just in case */ 3508 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3509 dirty_list) { 3510 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3511 cache_save_setup(cache, trans, path); 3512 } 3513 3514 btrfs_free_path(path); 3515 return 0; 3516 } 3517 3518 /* 3519 * transaction commit does final block group cache writeback during a 3520 * critical section where nothing is allowed to change the FS. This is 3521 * required in order for the cache to actually match the block group, 3522 * but can introduce a lot of latency into the commit. 3523 * 3524 * So, btrfs_start_dirty_block_groups is here to kick off block group 3525 * cache IO. There's a chance we'll have to redo some of it if the 3526 * block group changes again during the commit, but it greatly reduces 3527 * the commit latency by getting rid of the easy block groups while 3528 * we're still allowing others to join the commit. 3529 */ 3530 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3531 struct btrfs_root *root) 3532 { 3533 struct btrfs_block_group_cache *cache; 3534 struct btrfs_transaction *cur_trans = trans->transaction; 3535 int ret = 0; 3536 int should_put; 3537 struct btrfs_path *path = NULL; 3538 LIST_HEAD(dirty); 3539 struct list_head *io = &cur_trans->io_bgs; 3540 int num_started = 0; 3541 int loops = 0; 3542 3543 spin_lock(&cur_trans->dirty_bgs_lock); 3544 if (list_empty(&cur_trans->dirty_bgs)) { 3545 spin_unlock(&cur_trans->dirty_bgs_lock); 3546 return 0; 3547 } 3548 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3549 spin_unlock(&cur_trans->dirty_bgs_lock); 3550 3551 again: 3552 /* 3553 * make sure all the block groups on our dirty list actually 3554 * exist 3555 */ 3556 btrfs_create_pending_block_groups(trans, root); 3557 3558 if (!path) { 3559 path = btrfs_alloc_path(); 3560 if (!path) 3561 return -ENOMEM; 3562 } 3563 3564 /* 3565 * cache_write_mutex is here only to save us from balance or automatic 3566 * removal of empty block groups deleting this block group while we are 3567 * writing out the cache 3568 */ 3569 mutex_lock(&trans->transaction->cache_write_mutex); 3570 while (!list_empty(&dirty)) { 3571 cache = list_first_entry(&dirty, 3572 struct btrfs_block_group_cache, 3573 dirty_list); 3574 /* 3575 * this can happen if something re-dirties a block 3576 * group that is already under IO. Just wait for it to 3577 * finish and then do it all again 3578 */ 3579 if (!list_empty(&cache->io_list)) { 3580 list_del_init(&cache->io_list); 3581 btrfs_wait_cache_io(root, trans, cache, 3582 &cache->io_ctl, path, 3583 cache->key.objectid); 3584 btrfs_put_block_group(cache); 3585 } 3586 3587 3588 /* 3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3590 * if it should update the cache_state. Don't delete 3591 * until after we wait. 3592 * 3593 * Since we're not running in the commit critical section 3594 * we need the dirty_bgs_lock to protect from update_block_group 3595 */ 3596 spin_lock(&cur_trans->dirty_bgs_lock); 3597 list_del_init(&cache->dirty_list); 3598 spin_unlock(&cur_trans->dirty_bgs_lock); 3599 3600 should_put = 1; 3601 3602 cache_save_setup(cache, trans, path); 3603 3604 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3605 cache->io_ctl.inode = NULL; 3606 ret = btrfs_write_out_cache(root, trans, cache, path); 3607 if (ret == 0 && cache->io_ctl.inode) { 3608 num_started++; 3609 should_put = 0; 3610 3611 /* 3612 * the cache_write_mutex is protecting 3613 * the io_list 3614 */ 3615 list_add_tail(&cache->io_list, io); 3616 } else { 3617 /* 3618 * if we failed to write the cache, the 3619 * generation will be bad and life goes on 3620 */ 3621 ret = 0; 3622 } 3623 } 3624 if (!ret) { 3625 ret = write_one_cache_group(trans, root, path, cache); 3626 /* 3627 * Our block group might still be attached to the list 3628 * of new block groups in the transaction handle of some 3629 * other task (struct btrfs_trans_handle->new_bgs). This 3630 * means its block group item isn't yet in the extent 3631 * tree. If this happens ignore the error, as we will 3632 * try again later in the critical section of the 3633 * transaction commit. 3634 */ 3635 if (ret == -ENOENT) { 3636 ret = 0; 3637 spin_lock(&cur_trans->dirty_bgs_lock); 3638 if (list_empty(&cache->dirty_list)) { 3639 list_add_tail(&cache->dirty_list, 3640 &cur_trans->dirty_bgs); 3641 btrfs_get_block_group(cache); 3642 } 3643 spin_unlock(&cur_trans->dirty_bgs_lock); 3644 } else if (ret) { 3645 btrfs_abort_transaction(trans, root, ret); 3646 } 3647 } 3648 3649 /* if its not on the io list, we need to put the block group */ 3650 if (should_put) 3651 btrfs_put_block_group(cache); 3652 3653 if (ret) 3654 break; 3655 3656 /* 3657 * Avoid blocking other tasks for too long. It might even save 3658 * us from writing caches for block groups that are going to be 3659 * removed. 3660 */ 3661 mutex_unlock(&trans->transaction->cache_write_mutex); 3662 mutex_lock(&trans->transaction->cache_write_mutex); 3663 } 3664 mutex_unlock(&trans->transaction->cache_write_mutex); 3665 3666 /* 3667 * go through delayed refs for all the stuff we've just kicked off 3668 * and then loop back (just once) 3669 */ 3670 ret = btrfs_run_delayed_refs(trans, root, 0); 3671 if (!ret && loops == 0) { 3672 loops++; 3673 spin_lock(&cur_trans->dirty_bgs_lock); 3674 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3675 /* 3676 * dirty_bgs_lock protects us from concurrent block group 3677 * deletes too (not just cache_write_mutex). 3678 */ 3679 if (!list_empty(&dirty)) { 3680 spin_unlock(&cur_trans->dirty_bgs_lock); 3681 goto again; 3682 } 3683 spin_unlock(&cur_trans->dirty_bgs_lock); 3684 } 3685 3686 btrfs_free_path(path); 3687 return ret; 3688 } 3689 3690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3691 struct btrfs_root *root) 3692 { 3693 struct btrfs_block_group_cache *cache; 3694 struct btrfs_transaction *cur_trans = trans->transaction; 3695 int ret = 0; 3696 int should_put; 3697 struct btrfs_path *path; 3698 struct list_head *io = &cur_trans->io_bgs; 3699 int num_started = 0; 3700 3701 path = btrfs_alloc_path(); 3702 if (!path) 3703 return -ENOMEM; 3704 3705 /* 3706 * Even though we are in the critical section of the transaction commit, 3707 * we can still have concurrent tasks adding elements to this 3708 * transaction's list of dirty block groups. These tasks correspond to 3709 * endio free space workers started when writeback finishes for a 3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3711 * allocate new block groups as a result of COWing nodes of the root 3712 * tree when updating the free space inode. The writeback for the space 3713 * caches is triggered by an earlier call to 3714 * btrfs_start_dirty_block_groups() and iterations of the following 3715 * loop. 3716 * Also we want to do the cache_save_setup first and then run the 3717 * delayed refs to make sure we have the best chance at doing this all 3718 * in one shot. 3719 */ 3720 spin_lock(&cur_trans->dirty_bgs_lock); 3721 while (!list_empty(&cur_trans->dirty_bgs)) { 3722 cache = list_first_entry(&cur_trans->dirty_bgs, 3723 struct btrfs_block_group_cache, 3724 dirty_list); 3725 3726 /* 3727 * this can happen if cache_save_setup re-dirties a block 3728 * group that is already under IO. Just wait for it to 3729 * finish and then do it all again 3730 */ 3731 if (!list_empty(&cache->io_list)) { 3732 spin_unlock(&cur_trans->dirty_bgs_lock); 3733 list_del_init(&cache->io_list); 3734 btrfs_wait_cache_io(root, trans, cache, 3735 &cache->io_ctl, path, 3736 cache->key.objectid); 3737 btrfs_put_block_group(cache); 3738 spin_lock(&cur_trans->dirty_bgs_lock); 3739 } 3740 3741 /* 3742 * don't remove from the dirty list until after we've waited 3743 * on any pending IO 3744 */ 3745 list_del_init(&cache->dirty_list); 3746 spin_unlock(&cur_trans->dirty_bgs_lock); 3747 should_put = 1; 3748 3749 cache_save_setup(cache, trans, path); 3750 3751 if (!ret) 3752 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3753 3754 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3755 cache->io_ctl.inode = NULL; 3756 ret = btrfs_write_out_cache(root, trans, cache, path); 3757 if (ret == 0 && cache->io_ctl.inode) { 3758 num_started++; 3759 should_put = 0; 3760 list_add_tail(&cache->io_list, io); 3761 } else { 3762 /* 3763 * if we failed to write the cache, the 3764 * generation will be bad and life goes on 3765 */ 3766 ret = 0; 3767 } 3768 } 3769 if (!ret) { 3770 ret = write_one_cache_group(trans, root, path, cache); 3771 /* 3772 * One of the free space endio workers might have 3773 * created a new block group while updating a free space 3774 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3775 * and hasn't released its transaction handle yet, in 3776 * which case the new block group is still attached to 3777 * its transaction handle and its creation has not 3778 * finished yet (no block group item in the extent tree 3779 * yet, etc). If this is the case, wait for all free 3780 * space endio workers to finish and retry. This is a 3781 * a very rare case so no need for a more efficient and 3782 * complex approach. 3783 */ 3784 if (ret == -ENOENT) { 3785 wait_event(cur_trans->writer_wait, 3786 atomic_read(&cur_trans->num_writers) == 1); 3787 ret = write_one_cache_group(trans, root, path, 3788 cache); 3789 } 3790 if (ret) 3791 btrfs_abort_transaction(trans, root, ret); 3792 } 3793 3794 /* if its not on the io list, we need to put the block group */ 3795 if (should_put) 3796 btrfs_put_block_group(cache); 3797 spin_lock(&cur_trans->dirty_bgs_lock); 3798 } 3799 spin_unlock(&cur_trans->dirty_bgs_lock); 3800 3801 while (!list_empty(io)) { 3802 cache = list_first_entry(io, struct btrfs_block_group_cache, 3803 io_list); 3804 list_del_init(&cache->io_list); 3805 btrfs_wait_cache_io(root, trans, cache, 3806 &cache->io_ctl, path, cache->key.objectid); 3807 btrfs_put_block_group(cache); 3808 } 3809 3810 btrfs_free_path(path); 3811 return ret; 3812 } 3813 3814 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3815 { 3816 struct btrfs_block_group_cache *block_group; 3817 int readonly = 0; 3818 3819 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3820 if (!block_group || block_group->ro) 3821 readonly = 1; 3822 if (block_group) 3823 btrfs_put_block_group(block_group); 3824 return readonly; 3825 } 3826 3827 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3828 { 3829 struct btrfs_block_group_cache *bg; 3830 bool ret = true; 3831 3832 bg = btrfs_lookup_block_group(fs_info, bytenr); 3833 if (!bg) 3834 return false; 3835 3836 spin_lock(&bg->lock); 3837 if (bg->ro) 3838 ret = false; 3839 else 3840 atomic_inc(&bg->nocow_writers); 3841 spin_unlock(&bg->lock); 3842 3843 /* no put on block group, done by btrfs_dec_nocow_writers */ 3844 if (!ret) 3845 btrfs_put_block_group(bg); 3846 3847 return ret; 3848 3849 } 3850 3851 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3852 { 3853 struct btrfs_block_group_cache *bg; 3854 3855 bg = btrfs_lookup_block_group(fs_info, bytenr); 3856 ASSERT(bg); 3857 if (atomic_dec_and_test(&bg->nocow_writers)) 3858 wake_up_atomic_t(&bg->nocow_writers); 3859 /* 3860 * Once for our lookup and once for the lookup done by a previous call 3861 * to btrfs_inc_nocow_writers() 3862 */ 3863 btrfs_put_block_group(bg); 3864 btrfs_put_block_group(bg); 3865 } 3866 3867 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3868 { 3869 schedule(); 3870 return 0; 3871 } 3872 3873 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3874 { 3875 wait_on_atomic_t(&bg->nocow_writers, 3876 btrfs_wait_nocow_writers_atomic_t, 3877 TASK_UNINTERRUPTIBLE); 3878 } 3879 3880 static const char *alloc_name(u64 flags) 3881 { 3882 switch (flags) { 3883 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3884 return "mixed"; 3885 case BTRFS_BLOCK_GROUP_METADATA: 3886 return "metadata"; 3887 case BTRFS_BLOCK_GROUP_DATA: 3888 return "data"; 3889 case BTRFS_BLOCK_GROUP_SYSTEM: 3890 return "system"; 3891 default: 3892 WARN_ON(1); 3893 return "invalid-combination"; 3894 }; 3895 } 3896 3897 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3898 u64 total_bytes, u64 bytes_used, 3899 struct btrfs_space_info **space_info) 3900 { 3901 struct btrfs_space_info *found; 3902 int i; 3903 int factor; 3904 int ret; 3905 3906 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3907 BTRFS_BLOCK_GROUP_RAID10)) 3908 factor = 2; 3909 else 3910 factor = 1; 3911 3912 found = __find_space_info(info, flags); 3913 if (found) { 3914 spin_lock(&found->lock); 3915 found->total_bytes += total_bytes; 3916 found->disk_total += total_bytes * factor; 3917 found->bytes_used += bytes_used; 3918 found->disk_used += bytes_used * factor; 3919 if (total_bytes > 0) 3920 found->full = 0; 3921 spin_unlock(&found->lock); 3922 *space_info = found; 3923 return 0; 3924 } 3925 found = kzalloc(sizeof(*found), GFP_NOFS); 3926 if (!found) 3927 return -ENOMEM; 3928 3929 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3930 if (ret) { 3931 kfree(found); 3932 return ret; 3933 } 3934 3935 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3936 INIT_LIST_HEAD(&found->block_groups[i]); 3937 init_rwsem(&found->groups_sem); 3938 spin_lock_init(&found->lock); 3939 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3940 found->total_bytes = total_bytes; 3941 found->disk_total = total_bytes * factor; 3942 found->bytes_used = bytes_used; 3943 found->disk_used = bytes_used * factor; 3944 found->bytes_pinned = 0; 3945 found->bytes_reserved = 0; 3946 found->bytes_readonly = 0; 3947 found->bytes_may_use = 0; 3948 found->full = 0; 3949 found->max_extent_size = 0; 3950 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3951 found->chunk_alloc = 0; 3952 found->flush = 0; 3953 init_waitqueue_head(&found->wait); 3954 INIT_LIST_HEAD(&found->ro_bgs); 3955 3956 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3957 info->space_info_kobj, "%s", 3958 alloc_name(found->flags)); 3959 if (ret) { 3960 kfree(found); 3961 return ret; 3962 } 3963 3964 *space_info = found; 3965 list_add_rcu(&found->list, &info->space_info); 3966 if (flags & BTRFS_BLOCK_GROUP_DATA) 3967 info->data_sinfo = found; 3968 3969 return ret; 3970 } 3971 3972 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3973 { 3974 u64 extra_flags = chunk_to_extended(flags) & 3975 BTRFS_EXTENDED_PROFILE_MASK; 3976 3977 write_seqlock(&fs_info->profiles_lock); 3978 if (flags & BTRFS_BLOCK_GROUP_DATA) 3979 fs_info->avail_data_alloc_bits |= extra_flags; 3980 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3981 fs_info->avail_metadata_alloc_bits |= extra_flags; 3982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3983 fs_info->avail_system_alloc_bits |= extra_flags; 3984 write_sequnlock(&fs_info->profiles_lock); 3985 } 3986 3987 /* 3988 * returns target flags in extended format or 0 if restripe for this 3989 * chunk_type is not in progress 3990 * 3991 * should be called with either volume_mutex or balance_lock held 3992 */ 3993 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3994 { 3995 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3996 u64 target = 0; 3997 3998 if (!bctl) 3999 return 0; 4000 4001 if (flags & BTRFS_BLOCK_GROUP_DATA && 4002 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4003 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4004 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4005 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4006 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4007 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4008 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4009 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4010 } 4011 4012 return target; 4013 } 4014 4015 /* 4016 * @flags: available profiles in extended format (see ctree.h) 4017 * 4018 * Returns reduced profile in chunk format. If profile changing is in 4019 * progress (either running or paused) picks the target profile (if it's 4020 * already available), otherwise falls back to plain reducing. 4021 */ 4022 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 4023 { 4024 u64 num_devices = root->fs_info->fs_devices->rw_devices; 4025 u64 target; 4026 u64 raid_type; 4027 u64 allowed = 0; 4028 4029 /* 4030 * see if restripe for this chunk_type is in progress, if so 4031 * try to reduce to the target profile 4032 */ 4033 spin_lock(&root->fs_info->balance_lock); 4034 target = get_restripe_target(root->fs_info, flags); 4035 if (target) { 4036 /* pick target profile only if it's already available */ 4037 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4038 spin_unlock(&root->fs_info->balance_lock); 4039 return extended_to_chunk(target); 4040 } 4041 } 4042 spin_unlock(&root->fs_info->balance_lock); 4043 4044 /* First, mask out the RAID levels which aren't possible */ 4045 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4046 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4047 allowed |= btrfs_raid_group[raid_type]; 4048 } 4049 allowed &= flags; 4050 4051 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4052 allowed = BTRFS_BLOCK_GROUP_RAID6; 4053 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4054 allowed = BTRFS_BLOCK_GROUP_RAID5; 4055 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4056 allowed = BTRFS_BLOCK_GROUP_RAID10; 4057 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4058 allowed = BTRFS_BLOCK_GROUP_RAID1; 4059 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4060 allowed = BTRFS_BLOCK_GROUP_RAID0; 4061 4062 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4063 4064 return extended_to_chunk(flags | allowed); 4065 } 4066 4067 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4068 { 4069 unsigned seq; 4070 u64 flags; 4071 4072 do { 4073 flags = orig_flags; 4074 seq = read_seqbegin(&root->fs_info->profiles_lock); 4075 4076 if (flags & BTRFS_BLOCK_GROUP_DATA) 4077 flags |= root->fs_info->avail_data_alloc_bits; 4078 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4079 flags |= root->fs_info->avail_system_alloc_bits; 4080 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4081 flags |= root->fs_info->avail_metadata_alloc_bits; 4082 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4083 4084 return btrfs_reduce_alloc_profile(root, flags); 4085 } 4086 4087 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4088 { 4089 u64 flags; 4090 u64 ret; 4091 4092 if (data) 4093 flags = BTRFS_BLOCK_GROUP_DATA; 4094 else if (root == root->fs_info->chunk_root) 4095 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4096 else 4097 flags = BTRFS_BLOCK_GROUP_METADATA; 4098 4099 ret = get_alloc_profile(root, flags); 4100 return ret; 4101 } 4102 4103 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4104 { 4105 struct btrfs_space_info *data_sinfo; 4106 struct btrfs_root *root = BTRFS_I(inode)->root; 4107 struct btrfs_fs_info *fs_info = root->fs_info; 4108 u64 used; 4109 int ret = 0; 4110 int need_commit = 2; 4111 int have_pinned_space; 4112 4113 /* make sure bytes are sectorsize aligned */ 4114 bytes = ALIGN(bytes, root->sectorsize); 4115 4116 if (btrfs_is_free_space_inode(inode)) { 4117 need_commit = 0; 4118 ASSERT(current->journal_info); 4119 } 4120 4121 data_sinfo = fs_info->data_sinfo; 4122 if (!data_sinfo) 4123 goto alloc; 4124 4125 again: 4126 /* make sure we have enough space to handle the data first */ 4127 spin_lock(&data_sinfo->lock); 4128 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4129 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4130 data_sinfo->bytes_may_use; 4131 4132 if (used + bytes > data_sinfo->total_bytes) { 4133 struct btrfs_trans_handle *trans; 4134 4135 /* 4136 * if we don't have enough free bytes in this space then we need 4137 * to alloc a new chunk. 4138 */ 4139 if (!data_sinfo->full) { 4140 u64 alloc_target; 4141 4142 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4143 spin_unlock(&data_sinfo->lock); 4144 alloc: 4145 alloc_target = btrfs_get_alloc_profile(root, 1); 4146 /* 4147 * It is ugly that we don't call nolock join 4148 * transaction for the free space inode case here. 4149 * But it is safe because we only do the data space 4150 * reservation for the free space cache in the 4151 * transaction context, the common join transaction 4152 * just increase the counter of the current transaction 4153 * handler, doesn't try to acquire the trans_lock of 4154 * the fs. 4155 */ 4156 trans = btrfs_join_transaction(root); 4157 if (IS_ERR(trans)) 4158 return PTR_ERR(trans); 4159 4160 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4161 alloc_target, 4162 CHUNK_ALLOC_NO_FORCE); 4163 btrfs_end_transaction(trans, root); 4164 if (ret < 0) { 4165 if (ret != -ENOSPC) 4166 return ret; 4167 else { 4168 have_pinned_space = 1; 4169 goto commit_trans; 4170 } 4171 } 4172 4173 if (!data_sinfo) 4174 data_sinfo = fs_info->data_sinfo; 4175 4176 goto again; 4177 } 4178 4179 /* 4180 * If we don't have enough pinned space to deal with this 4181 * allocation, and no removed chunk in current transaction, 4182 * don't bother committing the transaction. 4183 */ 4184 have_pinned_space = percpu_counter_compare( 4185 &data_sinfo->total_bytes_pinned, 4186 used + bytes - data_sinfo->total_bytes); 4187 spin_unlock(&data_sinfo->lock); 4188 4189 /* commit the current transaction and try again */ 4190 commit_trans: 4191 if (need_commit && 4192 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4193 need_commit--; 4194 4195 if (need_commit > 0) { 4196 btrfs_start_delalloc_roots(fs_info, 0, -1); 4197 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 4198 } 4199 4200 trans = btrfs_join_transaction(root); 4201 if (IS_ERR(trans)) 4202 return PTR_ERR(trans); 4203 if (have_pinned_space >= 0 || 4204 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4205 &trans->transaction->flags) || 4206 need_commit > 0) { 4207 ret = btrfs_commit_transaction(trans, root); 4208 if (ret) 4209 return ret; 4210 /* 4211 * The cleaner kthread might still be doing iput 4212 * operations. Wait for it to finish so that 4213 * more space is released. 4214 */ 4215 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4216 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4217 goto again; 4218 } else { 4219 btrfs_end_transaction(trans, root); 4220 } 4221 } 4222 4223 trace_btrfs_space_reservation(root->fs_info, 4224 "space_info:enospc", 4225 data_sinfo->flags, bytes, 1); 4226 return -ENOSPC; 4227 } 4228 data_sinfo->bytes_may_use += bytes; 4229 trace_btrfs_space_reservation(root->fs_info, "space_info", 4230 data_sinfo->flags, bytes, 1); 4231 spin_unlock(&data_sinfo->lock); 4232 4233 return ret; 4234 } 4235 4236 /* 4237 * New check_data_free_space() with ability for precious data reservation 4238 * Will replace old btrfs_check_data_free_space(), but for patch split, 4239 * add a new function first and then replace it. 4240 */ 4241 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4242 { 4243 struct btrfs_root *root = BTRFS_I(inode)->root; 4244 int ret; 4245 4246 /* align the range */ 4247 len = round_up(start + len, root->sectorsize) - 4248 round_down(start, root->sectorsize); 4249 start = round_down(start, root->sectorsize); 4250 4251 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4252 if (ret < 0) 4253 return ret; 4254 4255 /* 4256 * Use new btrfs_qgroup_reserve_data to reserve precious data space 4257 * 4258 * TODO: Find a good method to avoid reserve data space for NOCOW 4259 * range, but don't impact performance on quota disable case. 4260 */ 4261 ret = btrfs_qgroup_reserve_data(inode, start, len); 4262 return ret; 4263 } 4264 4265 /* 4266 * Called if we need to clear a data reservation for this inode 4267 * Normally in a error case. 4268 * 4269 * This one will *NOT* use accurate qgroup reserved space API, just for case 4270 * which we can't sleep and is sure it won't affect qgroup reserved space. 4271 * Like clear_bit_hook(). 4272 */ 4273 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4274 u64 len) 4275 { 4276 struct btrfs_root *root = BTRFS_I(inode)->root; 4277 struct btrfs_space_info *data_sinfo; 4278 4279 /* Make sure the range is aligned to sectorsize */ 4280 len = round_up(start + len, root->sectorsize) - 4281 round_down(start, root->sectorsize); 4282 start = round_down(start, root->sectorsize); 4283 4284 data_sinfo = root->fs_info->data_sinfo; 4285 spin_lock(&data_sinfo->lock); 4286 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4287 data_sinfo->bytes_may_use = 0; 4288 else 4289 data_sinfo->bytes_may_use -= len; 4290 trace_btrfs_space_reservation(root->fs_info, "space_info", 4291 data_sinfo->flags, len, 0); 4292 spin_unlock(&data_sinfo->lock); 4293 } 4294 4295 /* 4296 * Called if we need to clear a data reservation for this inode 4297 * Normally in a error case. 4298 * 4299 * This one will handle the per-inode data rsv map for accurate reserved 4300 * space framework. 4301 */ 4302 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4303 { 4304 btrfs_free_reserved_data_space_noquota(inode, start, len); 4305 btrfs_qgroup_free_data(inode, start, len); 4306 } 4307 4308 static void force_metadata_allocation(struct btrfs_fs_info *info) 4309 { 4310 struct list_head *head = &info->space_info; 4311 struct btrfs_space_info *found; 4312 4313 rcu_read_lock(); 4314 list_for_each_entry_rcu(found, head, list) { 4315 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4316 found->force_alloc = CHUNK_ALLOC_FORCE; 4317 } 4318 rcu_read_unlock(); 4319 } 4320 4321 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4322 { 4323 return (global->size << 1); 4324 } 4325 4326 static int should_alloc_chunk(struct btrfs_root *root, 4327 struct btrfs_space_info *sinfo, int force) 4328 { 4329 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4330 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4331 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4332 u64 thresh; 4333 4334 if (force == CHUNK_ALLOC_FORCE) 4335 return 1; 4336 4337 /* 4338 * We need to take into account the global rsv because for all intents 4339 * and purposes it's used space. Don't worry about locking the 4340 * global_rsv, it doesn't change except when the transaction commits. 4341 */ 4342 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4343 num_allocated += calc_global_rsv_need_space(global_rsv); 4344 4345 /* 4346 * in limited mode, we want to have some free space up to 4347 * about 1% of the FS size. 4348 */ 4349 if (force == CHUNK_ALLOC_LIMITED) { 4350 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4351 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4352 4353 if (num_bytes - num_allocated < thresh) 4354 return 1; 4355 } 4356 4357 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4358 return 0; 4359 return 1; 4360 } 4361 4362 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4363 { 4364 u64 num_dev; 4365 4366 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4367 BTRFS_BLOCK_GROUP_RAID0 | 4368 BTRFS_BLOCK_GROUP_RAID5 | 4369 BTRFS_BLOCK_GROUP_RAID6)) 4370 num_dev = root->fs_info->fs_devices->rw_devices; 4371 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4372 num_dev = 2; 4373 else 4374 num_dev = 1; /* DUP or single */ 4375 4376 return num_dev; 4377 } 4378 4379 /* 4380 * If @is_allocation is true, reserve space in the system space info necessary 4381 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4382 * removing a chunk. 4383 */ 4384 void check_system_chunk(struct btrfs_trans_handle *trans, 4385 struct btrfs_root *root, 4386 u64 type) 4387 { 4388 struct btrfs_space_info *info; 4389 u64 left; 4390 u64 thresh; 4391 int ret = 0; 4392 u64 num_devs; 4393 4394 /* 4395 * Needed because we can end up allocating a system chunk and for an 4396 * atomic and race free space reservation in the chunk block reserve. 4397 */ 4398 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4399 4400 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4401 spin_lock(&info->lock); 4402 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4403 info->bytes_reserved - info->bytes_readonly - 4404 info->bytes_may_use; 4405 spin_unlock(&info->lock); 4406 4407 num_devs = get_profile_num_devs(root, type); 4408 4409 /* num_devs device items to update and 1 chunk item to add or remove */ 4410 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4411 btrfs_calc_trans_metadata_size(root, 1); 4412 4413 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4414 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4415 left, thresh, type); 4416 dump_space_info(info, 0, 0); 4417 } 4418 4419 if (left < thresh) { 4420 u64 flags; 4421 4422 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4423 /* 4424 * Ignore failure to create system chunk. We might end up not 4425 * needing it, as we might not need to COW all nodes/leafs from 4426 * the paths we visit in the chunk tree (they were already COWed 4427 * or created in the current transaction for example). 4428 */ 4429 ret = btrfs_alloc_chunk(trans, root, flags); 4430 } 4431 4432 if (!ret) { 4433 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4434 &root->fs_info->chunk_block_rsv, 4435 thresh, BTRFS_RESERVE_NO_FLUSH); 4436 if (!ret) 4437 trans->chunk_bytes_reserved += thresh; 4438 } 4439 } 4440 4441 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4442 struct btrfs_root *extent_root, u64 flags, int force) 4443 { 4444 struct btrfs_space_info *space_info; 4445 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4446 int wait_for_alloc = 0; 4447 int ret = 0; 4448 4449 /* Don't re-enter if we're already allocating a chunk */ 4450 if (trans->allocating_chunk) 4451 return -ENOSPC; 4452 4453 space_info = __find_space_info(extent_root->fs_info, flags); 4454 if (!space_info) { 4455 ret = update_space_info(extent_root->fs_info, flags, 4456 0, 0, &space_info); 4457 BUG_ON(ret); /* -ENOMEM */ 4458 } 4459 BUG_ON(!space_info); /* Logic error */ 4460 4461 again: 4462 spin_lock(&space_info->lock); 4463 if (force < space_info->force_alloc) 4464 force = space_info->force_alloc; 4465 if (space_info->full) { 4466 if (should_alloc_chunk(extent_root, space_info, force)) 4467 ret = -ENOSPC; 4468 else 4469 ret = 0; 4470 spin_unlock(&space_info->lock); 4471 return ret; 4472 } 4473 4474 if (!should_alloc_chunk(extent_root, space_info, force)) { 4475 spin_unlock(&space_info->lock); 4476 return 0; 4477 } else if (space_info->chunk_alloc) { 4478 wait_for_alloc = 1; 4479 } else { 4480 space_info->chunk_alloc = 1; 4481 } 4482 4483 spin_unlock(&space_info->lock); 4484 4485 mutex_lock(&fs_info->chunk_mutex); 4486 4487 /* 4488 * The chunk_mutex is held throughout the entirety of a chunk 4489 * allocation, so once we've acquired the chunk_mutex we know that the 4490 * other guy is done and we need to recheck and see if we should 4491 * allocate. 4492 */ 4493 if (wait_for_alloc) { 4494 mutex_unlock(&fs_info->chunk_mutex); 4495 wait_for_alloc = 0; 4496 goto again; 4497 } 4498 4499 trans->allocating_chunk = true; 4500 4501 /* 4502 * If we have mixed data/metadata chunks we want to make sure we keep 4503 * allocating mixed chunks instead of individual chunks. 4504 */ 4505 if (btrfs_mixed_space_info(space_info)) 4506 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4507 4508 /* 4509 * if we're doing a data chunk, go ahead and make sure that 4510 * we keep a reasonable number of metadata chunks allocated in the 4511 * FS as well. 4512 */ 4513 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4514 fs_info->data_chunk_allocations++; 4515 if (!(fs_info->data_chunk_allocations % 4516 fs_info->metadata_ratio)) 4517 force_metadata_allocation(fs_info); 4518 } 4519 4520 /* 4521 * Check if we have enough space in SYSTEM chunk because we may need 4522 * to update devices. 4523 */ 4524 check_system_chunk(trans, extent_root, flags); 4525 4526 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4527 trans->allocating_chunk = false; 4528 4529 spin_lock(&space_info->lock); 4530 if (ret < 0 && ret != -ENOSPC) 4531 goto out; 4532 if (ret) 4533 space_info->full = 1; 4534 else 4535 ret = 1; 4536 4537 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4538 out: 4539 space_info->chunk_alloc = 0; 4540 spin_unlock(&space_info->lock); 4541 mutex_unlock(&fs_info->chunk_mutex); 4542 /* 4543 * When we allocate a new chunk we reserve space in the chunk block 4544 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4545 * add new nodes/leafs to it if we end up needing to do it when 4546 * inserting the chunk item and updating device items as part of the 4547 * second phase of chunk allocation, performed by 4548 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4549 * large number of new block groups to create in our transaction 4550 * handle's new_bgs list to avoid exhausting the chunk block reserve 4551 * in extreme cases - like having a single transaction create many new 4552 * block groups when starting to write out the free space caches of all 4553 * the block groups that were made dirty during the lifetime of the 4554 * transaction. 4555 */ 4556 if (trans->can_flush_pending_bgs && 4557 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4558 btrfs_create_pending_block_groups(trans, trans->root); 4559 btrfs_trans_release_chunk_metadata(trans); 4560 } 4561 return ret; 4562 } 4563 4564 static int can_overcommit(struct btrfs_root *root, 4565 struct btrfs_space_info *space_info, u64 bytes, 4566 enum btrfs_reserve_flush_enum flush) 4567 { 4568 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4569 u64 profile = btrfs_get_alloc_profile(root, 0); 4570 u64 space_size; 4571 u64 avail; 4572 u64 used; 4573 4574 used = space_info->bytes_used + space_info->bytes_reserved + 4575 space_info->bytes_pinned + space_info->bytes_readonly; 4576 4577 /* 4578 * We only want to allow over committing if we have lots of actual space 4579 * free, but if we don't have enough space to handle the global reserve 4580 * space then we could end up having a real enospc problem when trying 4581 * to allocate a chunk or some other such important allocation. 4582 */ 4583 spin_lock(&global_rsv->lock); 4584 space_size = calc_global_rsv_need_space(global_rsv); 4585 spin_unlock(&global_rsv->lock); 4586 if (used + space_size >= space_info->total_bytes) 4587 return 0; 4588 4589 used += space_info->bytes_may_use; 4590 4591 spin_lock(&root->fs_info->free_chunk_lock); 4592 avail = root->fs_info->free_chunk_space; 4593 spin_unlock(&root->fs_info->free_chunk_lock); 4594 4595 /* 4596 * If we have dup, raid1 or raid10 then only half of the free 4597 * space is actually useable. For raid56, the space info used 4598 * doesn't include the parity drive, so we don't have to 4599 * change the math 4600 */ 4601 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4602 BTRFS_BLOCK_GROUP_RAID1 | 4603 BTRFS_BLOCK_GROUP_RAID10)) 4604 avail >>= 1; 4605 4606 /* 4607 * If we aren't flushing all things, let us overcommit up to 4608 * 1/2th of the space. If we can flush, don't let us overcommit 4609 * too much, let it overcommit up to 1/8 of the space. 4610 */ 4611 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4612 avail >>= 3; 4613 else 4614 avail >>= 1; 4615 4616 if (used + bytes < space_info->total_bytes + avail) 4617 return 1; 4618 return 0; 4619 } 4620 4621 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4622 unsigned long nr_pages, int nr_items) 4623 { 4624 struct super_block *sb = root->fs_info->sb; 4625 4626 if (down_read_trylock(&sb->s_umount)) { 4627 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4628 up_read(&sb->s_umount); 4629 } else { 4630 /* 4631 * We needn't worry the filesystem going from r/w to r/o though 4632 * we don't acquire ->s_umount mutex, because the filesystem 4633 * should guarantee the delalloc inodes list be empty after 4634 * the filesystem is readonly(all dirty pages are written to 4635 * the disk). 4636 */ 4637 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4638 if (!current->journal_info) 4639 btrfs_wait_ordered_roots(root->fs_info, nr_items, 4640 0, (u64)-1); 4641 } 4642 } 4643 4644 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4645 { 4646 u64 bytes; 4647 int nr; 4648 4649 bytes = btrfs_calc_trans_metadata_size(root, 1); 4650 nr = (int)div64_u64(to_reclaim, bytes); 4651 if (!nr) 4652 nr = 1; 4653 return nr; 4654 } 4655 4656 #define EXTENT_SIZE_PER_ITEM SZ_256K 4657 4658 /* 4659 * shrink metadata reservation for delalloc 4660 */ 4661 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4662 bool wait_ordered) 4663 { 4664 struct btrfs_block_rsv *block_rsv; 4665 struct btrfs_space_info *space_info; 4666 struct btrfs_trans_handle *trans; 4667 u64 delalloc_bytes; 4668 u64 max_reclaim; 4669 long time_left; 4670 unsigned long nr_pages; 4671 int loops; 4672 int items; 4673 enum btrfs_reserve_flush_enum flush; 4674 4675 /* Calc the number of the pages we need flush for space reservation */ 4676 items = calc_reclaim_items_nr(root, to_reclaim); 4677 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4678 4679 trans = (struct btrfs_trans_handle *)current->journal_info; 4680 block_rsv = &root->fs_info->delalloc_block_rsv; 4681 space_info = block_rsv->space_info; 4682 4683 delalloc_bytes = percpu_counter_sum_positive( 4684 &root->fs_info->delalloc_bytes); 4685 if (delalloc_bytes == 0) { 4686 if (trans) 4687 return; 4688 if (wait_ordered) 4689 btrfs_wait_ordered_roots(root->fs_info, items, 4690 0, (u64)-1); 4691 return; 4692 } 4693 4694 loops = 0; 4695 while (delalloc_bytes && loops < 3) { 4696 max_reclaim = min(delalloc_bytes, to_reclaim); 4697 nr_pages = max_reclaim >> PAGE_SHIFT; 4698 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4699 /* 4700 * We need to wait for the async pages to actually start before 4701 * we do anything. 4702 */ 4703 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4704 if (!max_reclaim) 4705 goto skip_async; 4706 4707 if (max_reclaim <= nr_pages) 4708 max_reclaim = 0; 4709 else 4710 max_reclaim -= nr_pages; 4711 4712 wait_event(root->fs_info->async_submit_wait, 4713 atomic_read(&root->fs_info->async_delalloc_pages) <= 4714 (int)max_reclaim); 4715 skip_async: 4716 if (!trans) 4717 flush = BTRFS_RESERVE_FLUSH_ALL; 4718 else 4719 flush = BTRFS_RESERVE_NO_FLUSH; 4720 spin_lock(&space_info->lock); 4721 if (can_overcommit(root, space_info, orig, flush)) { 4722 spin_unlock(&space_info->lock); 4723 break; 4724 } 4725 spin_unlock(&space_info->lock); 4726 4727 loops++; 4728 if (wait_ordered && !trans) { 4729 btrfs_wait_ordered_roots(root->fs_info, items, 4730 0, (u64)-1); 4731 } else { 4732 time_left = schedule_timeout_killable(1); 4733 if (time_left) 4734 break; 4735 } 4736 delalloc_bytes = percpu_counter_sum_positive( 4737 &root->fs_info->delalloc_bytes); 4738 } 4739 } 4740 4741 /** 4742 * maybe_commit_transaction - possibly commit the transaction if its ok to 4743 * @root - the root we're allocating for 4744 * @bytes - the number of bytes we want to reserve 4745 * @force - force the commit 4746 * 4747 * This will check to make sure that committing the transaction will actually 4748 * get us somewhere and then commit the transaction if it does. Otherwise it 4749 * will return -ENOSPC. 4750 */ 4751 static int may_commit_transaction(struct btrfs_root *root, 4752 struct btrfs_space_info *space_info, 4753 u64 bytes, int force) 4754 { 4755 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4756 struct btrfs_trans_handle *trans; 4757 4758 trans = (struct btrfs_trans_handle *)current->journal_info; 4759 if (trans) 4760 return -EAGAIN; 4761 4762 if (force) 4763 goto commit; 4764 4765 /* See if there is enough pinned space to make this reservation */ 4766 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4767 bytes) >= 0) 4768 goto commit; 4769 4770 /* 4771 * See if there is some space in the delayed insertion reservation for 4772 * this reservation. 4773 */ 4774 if (space_info != delayed_rsv->space_info) 4775 return -ENOSPC; 4776 4777 spin_lock(&delayed_rsv->lock); 4778 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4779 bytes - delayed_rsv->size) >= 0) { 4780 spin_unlock(&delayed_rsv->lock); 4781 return -ENOSPC; 4782 } 4783 spin_unlock(&delayed_rsv->lock); 4784 4785 commit: 4786 trans = btrfs_join_transaction(root); 4787 if (IS_ERR(trans)) 4788 return -ENOSPC; 4789 4790 return btrfs_commit_transaction(trans, root); 4791 } 4792 4793 enum flush_state { 4794 FLUSH_DELAYED_ITEMS_NR = 1, 4795 FLUSH_DELAYED_ITEMS = 2, 4796 FLUSH_DELALLOC = 3, 4797 FLUSH_DELALLOC_WAIT = 4, 4798 ALLOC_CHUNK = 5, 4799 COMMIT_TRANS = 6, 4800 }; 4801 4802 static int flush_space(struct btrfs_root *root, 4803 struct btrfs_space_info *space_info, u64 num_bytes, 4804 u64 orig_bytes, int state) 4805 { 4806 struct btrfs_trans_handle *trans; 4807 int nr; 4808 int ret = 0; 4809 4810 switch (state) { 4811 case FLUSH_DELAYED_ITEMS_NR: 4812 case FLUSH_DELAYED_ITEMS: 4813 if (state == FLUSH_DELAYED_ITEMS_NR) 4814 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4815 else 4816 nr = -1; 4817 4818 trans = btrfs_join_transaction(root); 4819 if (IS_ERR(trans)) { 4820 ret = PTR_ERR(trans); 4821 break; 4822 } 4823 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4824 btrfs_end_transaction(trans, root); 4825 break; 4826 case FLUSH_DELALLOC: 4827 case FLUSH_DELALLOC_WAIT: 4828 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4829 state == FLUSH_DELALLOC_WAIT); 4830 break; 4831 case ALLOC_CHUNK: 4832 trans = btrfs_join_transaction(root); 4833 if (IS_ERR(trans)) { 4834 ret = PTR_ERR(trans); 4835 break; 4836 } 4837 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4838 btrfs_get_alloc_profile(root, 0), 4839 CHUNK_ALLOC_NO_FORCE); 4840 btrfs_end_transaction(trans, root); 4841 if (ret == -ENOSPC) 4842 ret = 0; 4843 break; 4844 case COMMIT_TRANS: 4845 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4846 break; 4847 default: 4848 ret = -ENOSPC; 4849 break; 4850 } 4851 4852 return ret; 4853 } 4854 4855 static inline u64 4856 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4857 struct btrfs_space_info *space_info) 4858 { 4859 u64 used; 4860 u64 expected; 4861 u64 to_reclaim; 4862 4863 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4864 spin_lock(&space_info->lock); 4865 if (can_overcommit(root, space_info, to_reclaim, 4866 BTRFS_RESERVE_FLUSH_ALL)) { 4867 to_reclaim = 0; 4868 goto out; 4869 } 4870 4871 used = space_info->bytes_used + space_info->bytes_reserved + 4872 space_info->bytes_pinned + space_info->bytes_readonly + 4873 space_info->bytes_may_use; 4874 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4875 expected = div_factor_fine(space_info->total_bytes, 95); 4876 else 4877 expected = div_factor_fine(space_info->total_bytes, 90); 4878 4879 if (used > expected) 4880 to_reclaim = used - expected; 4881 else 4882 to_reclaim = 0; 4883 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4884 space_info->bytes_reserved); 4885 out: 4886 spin_unlock(&space_info->lock); 4887 4888 return to_reclaim; 4889 } 4890 4891 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4892 struct btrfs_fs_info *fs_info, u64 used) 4893 { 4894 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4895 4896 /* If we're just plain full then async reclaim just slows us down. */ 4897 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4898 return 0; 4899 4900 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4901 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4902 } 4903 4904 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4905 struct btrfs_fs_info *fs_info, 4906 int flush_state) 4907 { 4908 u64 used; 4909 4910 spin_lock(&space_info->lock); 4911 /* 4912 * We run out of space and have not got any free space via flush_space, 4913 * so don't bother doing async reclaim. 4914 */ 4915 if (flush_state > COMMIT_TRANS && space_info->full) { 4916 spin_unlock(&space_info->lock); 4917 return 0; 4918 } 4919 4920 used = space_info->bytes_used + space_info->bytes_reserved + 4921 space_info->bytes_pinned + space_info->bytes_readonly + 4922 space_info->bytes_may_use; 4923 if (need_do_async_reclaim(space_info, fs_info, used)) { 4924 spin_unlock(&space_info->lock); 4925 return 1; 4926 } 4927 spin_unlock(&space_info->lock); 4928 4929 return 0; 4930 } 4931 4932 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4933 { 4934 struct btrfs_fs_info *fs_info; 4935 struct btrfs_space_info *space_info; 4936 u64 to_reclaim; 4937 int flush_state; 4938 4939 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4940 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4941 4942 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4943 space_info); 4944 if (!to_reclaim) 4945 return; 4946 4947 flush_state = FLUSH_DELAYED_ITEMS_NR; 4948 do { 4949 flush_space(fs_info->fs_root, space_info, to_reclaim, 4950 to_reclaim, flush_state); 4951 flush_state++; 4952 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4953 flush_state)) 4954 return; 4955 } while (flush_state < COMMIT_TRANS); 4956 } 4957 4958 void btrfs_init_async_reclaim_work(struct work_struct *work) 4959 { 4960 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4961 } 4962 4963 /** 4964 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4965 * @root - the root we're allocating for 4966 * @block_rsv - the block_rsv we're allocating for 4967 * @orig_bytes - the number of bytes we want 4968 * @flush - whether or not we can flush to make our reservation 4969 * 4970 * This will reserve orig_bytes number of bytes from the space info associated 4971 * with the block_rsv. If there is not enough space it will make an attempt to 4972 * flush out space to make room. It will do this by flushing delalloc if 4973 * possible or committing the transaction. If flush is 0 then no attempts to 4974 * regain reservations will be made and this will fail if there is not enough 4975 * space already. 4976 */ 4977 static int reserve_metadata_bytes(struct btrfs_root *root, 4978 struct btrfs_block_rsv *block_rsv, 4979 u64 orig_bytes, 4980 enum btrfs_reserve_flush_enum flush) 4981 { 4982 struct btrfs_space_info *space_info = block_rsv->space_info; 4983 u64 used; 4984 u64 num_bytes = orig_bytes; 4985 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4986 int ret = 0; 4987 bool flushing = false; 4988 4989 again: 4990 ret = 0; 4991 spin_lock(&space_info->lock); 4992 /* 4993 * We only want to wait if somebody other than us is flushing and we 4994 * are actually allowed to flush all things. 4995 */ 4996 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4997 space_info->flush) { 4998 spin_unlock(&space_info->lock); 4999 /* 5000 * If we have a trans handle we can't wait because the flusher 5001 * may have to commit the transaction, which would mean we would 5002 * deadlock since we are waiting for the flusher to finish, but 5003 * hold the current transaction open. 5004 */ 5005 if (current->journal_info) 5006 return -EAGAIN; 5007 ret = wait_event_killable(space_info->wait, !space_info->flush); 5008 /* Must have been killed, return */ 5009 if (ret) 5010 return -EINTR; 5011 5012 spin_lock(&space_info->lock); 5013 } 5014 5015 ret = -ENOSPC; 5016 used = space_info->bytes_used + space_info->bytes_reserved + 5017 space_info->bytes_pinned + space_info->bytes_readonly + 5018 space_info->bytes_may_use; 5019 5020 /* 5021 * The idea here is that we've not already over-reserved the block group 5022 * then we can go ahead and save our reservation first and then start 5023 * flushing if we need to. Otherwise if we've already overcommitted 5024 * lets start flushing stuff first and then come back and try to make 5025 * our reservation. 5026 */ 5027 if (used <= space_info->total_bytes) { 5028 if (used + orig_bytes <= space_info->total_bytes) { 5029 space_info->bytes_may_use += orig_bytes; 5030 trace_btrfs_space_reservation(root->fs_info, 5031 "space_info", space_info->flags, orig_bytes, 1); 5032 ret = 0; 5033 } else { 5034 /* 5035 * Ok set num_bytes to orig_bytes since we aren't 5036 * overocmmitted, this way we only try and reclaim what 5037 * we need. 5038 */ 5039 num_bytes = orig_bytes; 5040 } 5041 } else { 5042 /* 5043 * Ok we're over committed, set num_bytes to the overcommitted 5044 * amount plus the amount of bytes that we need for this 5045 * reservation. 5046 */ 5047 num_bytes = used - space_info->total_bytes + 5048 (orig_bytes * 2); 5049 } 5050 5051 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 5052 space_info->bytes_may_use += orig_bytes; 5053 trace_btrfs_space_reservation(root->fs_info, "space_info", 5054 space_info->flags, orig_bytes, 5055 1); 5056 ret = 0; 5057 } 5058 5059 /* 5060 * Couldn't make our reservation, save our place so while we're trying 5061 * to reclaim space we can actually use it instead of somebody else 5062 * stealing it from us. 5063 * 5064 * We make the other tasks wait for the flush only when we can flush 5065 * all things. 5066 */ 5067 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5068 flushing = true; 5069 space_info->flush = 1; 5070 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5071 used += orig_bytes; 5072 /* 5073 * We will do the space reservation dance during log replay, 5074 * which means we won't have fs_info->fs_root set, so don't do 5075 * the async reclaim as we will panic. 5076 */ 5077 if (!root->fs_info->log_root_recovering && 5078 need_do_async_reclaim(space_info, root->fs_info, used) && 5079 !work_busy(&root->fs_info->async_reclaim_work)) 5080 queue_work(system_unbound_wq, 5081 &root->fs_info->async_reclaim_work); 5082 } 5083 spin_unlock(&space_info->lock); 5084 5085 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5086 goto out; 5087 5088 ret = flush_space(root, space_info, num_bytes, orig_bytes, 5089 flush_state); 5090 flush_state++; 5091 5092 /* 5093 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 5094 * would happen. So skip delalloc flush. 5095 */ 5096 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 5097 (flush_state == FLUSH_DELALLOC || 5098 flush_state == FLUSH_DELALLOC_WAIT)) 5099 flush_state = ALLOC_CHUNK; 5100 5101 if (!ret) 5102 goto again; 5103 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 5104 flush_state < COMMIT_TRANS) 5105 goto again; 5106 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 5107 flush_state <= COMMIT_TRANS) 5108 goto again; 5109 5110 out: 5111 if (ret == -ENOSPC && 5112 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5113 struct btrfs_block_rsv *global_rsv = 5114 &root->fs_info->global_block_rsv; 5115 5116 if (block_rsv != global_rsv && 5117 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5118 ret = 0; 5119 } 5120 if (ret == -ENOSPC) 5121 trace_btrfs_space_reservation(root->fs_info, 5122 "space_info:enospc", 5123 space_info->flags, orig_bytes, 1); 5124 if (flushing) { 5125 spin_lock(&space_info->lock); 5126 space_info->flush = 0; 5127 wake_up_all(&space_info->wait); 5128 spin_unlock(&space_info->lock); 5129 } 5130 return ret; 5131 } 5132 5133 static struct btrfs_block_rsv *get_block_rsv( 5134 const struct btrfs_trans_handle *trans, 5135 const struct btrfs_root *root) 5136 { 5137 struct btrfs_block_rsv *block_rsv = NULL; 5138 5139 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5140 (root == root->fs_info->csum_root && trans->adding_csums) || 5141 (root == root->fs_info->uuid_root)) 5142 block_rsv = trans->block_rsv; 5143 5144 if (!block_rsv) 5145 block_rsv = root->block_rsv; 5146 5147 if (!block_rsv) 5148 block_rsv = &root->fs_info->empty_block_rsv; 5149 5150 return block_rsv; 5151 } 5152 5153 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5154 u64 num_bytes) 5155 { 5156 int ret = -ENOSPC; 5157 spin_lock(&block_rsv->lock); 5158 if (block_rsv->reserved >= num_bytes) { 5159 block_rsv->reserved -= num_bytes; 5160 if (block_rsv->reserved < block_rsv->size) 5161 block_rsv->full = 0; 5162 ret = 0; 5163 } 5164 spin_unlock(&block_rsv->lock); 5165 return ret; 5166 } 5167 5168 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5169 u64 num_bytes, int update_size) 5170 { 5171 spin_lock(&block_rsv->lock); 5172 block_rsv->reserved += num_bytes; 5173 if (update_size) 5174 block_rsv->size += num_bytes; 5175 else if (block_rsv->reserved >= block_rsv->size) 5176 block_rsv->full = 1; 5177 spin_unlock(&block_rsv->lock); 5178 } 5179 5180 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5181 struct btrfs_block_rsv *dest, u64 num_bytes, 5182 int min_factor) 5183 { 5184 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5185 u64 min_bytes; 5186 5187 if (global_rsv->space_info != dest->space_info) 5188 return -ENOSPC; 5189 5190 spin_lock(&global_rsv->lock); 5191 min_bytes = div_factor(global_rsv->size, min_factor); 5192 if (global_rsv->reserved < min_bytes + num_bytes) { 5193 spin_unlock(&global_rsv->lock); 5194 return -ENOSPC; 5195 } 5196 global_rsv->reserved -= num_bytes; 5197 if (global_rsv->reserved < global_rsv->size) 5198 global_rsv->full = 0; 5199 spin_unlock(&global_rsv->lock); 5200 5201 block_rsv_add_bytes(dest, num_bytes, 1); 5202 return 0; 5203 } 5204 5205 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5206 struct btrfs_block_rsv *block_rsv, 5207 struct btrfs_block_rsv *dest, u64 num_bytes) 5208 { 5209 struct btrfs_space_info *space_info = block_rsv->space_info; 5210 5211 spin_lock(&block_rsv->lock); 5212 if (num_bytes == (u64)-1) 5213 num_bytes = block_rsv->size; 5214 block_rsv->size -= num_bytes; 5215 if (block_rsv->reserved >= block_rsv->size) { 5216 num_bytes = block_rsv->reserved - block_rsv->size; 5217 block_rsv->reserved = block_rsv->size; 5218 block_rsv->full = 1; 5219 } else { 5220 num_bytes = 0; 5221 } 5222 spin_unlock(&block_rsv->lock); 5223 5224 if (num_bytes > 0) { 5225 if (dest) { 5226 spin_lock(&dest->lock); 5227 if (!dest->full) { 5228 u64 bytes_to_add; 5229 5230 bytes_to_add = dest->size - dest->reserved; 5231 bytes_to_add = min(num_bytes, bytes_to_add); 5232 dest->reserved += bytes_to_add; 5233 if (dest->reserved >= dest->size) 5234 dest->full = 1; 5235 num_bytes -= bytes_to_add; 5236 } 5237 spin_unlock(&dest->lock); 5238 } 5239 if (num_bytes) { 5240 spin_lock(&space_info->lock); 5241 space_info->bytes_may_use -= num_bytes; 5242 trace_btrfs_space_reservation(fs_info, "space_info", 5243 space_info->flags, num_bytes, 0); 5244 spin_unlock(&space_info->lock); 5245 } 5246 } 5247 } 5248 5249 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5250 struct btrfs_block_rsv *dst, u64 num_bytes) 5251 { 5252 int ret; 5253 5254 ret = block_rsv_use_bytes(src, num_bytes); 5255 if (ret) 5256 return ret; 5257 5258 block_rsv_add_bytes(dst, num_bytes, 1); 5259 return 0; 5260 } 5261 5262 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5263 { 5264 memset(rsv, 0, sizeof(*rsv)); 5265 spin_lock_init(&rsv->lock); 5266 rsv->type = type; 5267 } 5268 5269 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5270 unsigned short type) 5271 { 5272 struct btrfs_block_rsv *block_rsv; 5273 struct btrfs_fs_info *fs_info = root->fs_info; 5274 5275 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5276 if (!block_rsv) 5277 return NULL; 5278 5279 btrfs_init_block_rsv(block_rsv, type); 5280 block_rsv->space_info = __find_space_info(fs_info, 5281 BTRFS_BLOCK_GROUP_METADATA); 5282 return block_rsv; 5283 } 5284 5285 void btrfs_free_block_rsv(struct btrfs_root *root, 5286 struct btrfs_block_rsv *rsv) 5287 { 5288 if (!rsv) 5289 return; 5290 btrfs_block_rsv_release(root, rsv, (u64)-1); 5291 kfree(rsv); 5292 } 5293 5294 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5295 { 5296 kfree(rsv); 5297 } 5298 5299 int btrfs_block_rsv_add(struct btrfs_root *root, 5300 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5301 enum btrfs_reserve_flush_enum flush) 5302 { 5303 int ret; 5304 5305 if (num_bytes == 0) 5306 return 0; 5307 5308 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5309 if (!ret) { 5310 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5311 return 0; 5312 } 5313 5314 return ret; 5315 } 5316 5317 int btrfs_block_rsv_check(struct btrfs_root *root, 5318 struct btrfs_block_rsv *block_rsv, int min_factor) 5319 { 5320 u64 num_bytes = 0; 5321 int ret = -ENOSPC; 5322 5323 if (!block_rsv) 5324 return 0; 5325 5326 spin_lock(&block_rsv->lock); 5327 num_bytes = div_factor(block_rsv->size, min_factor); 5328 if (block_rsv->reserved >= num_bytes) 5329 ret = 0; 5330 spin_unlock(&block_rsv->lock); 5331 5332 return ret; 5333 } 5334 5335 int btrfs_block_rsv_refill(struct btrfs_root *root, 5336 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5337 enum btrfs_reserve_flush_enum flush) 5338 { 5339 u64 num_bytes = 0; 5340 int ret = -ENOSPC; 5341 5342 if (!block_rsv) 5343 return 0; 5344 5345 spin_lock(&block_rsv->lock); 5346 num_bytes = min_reserved; 5347 if (block_rsv->reserved >= num_bytes) 5348 ret = 0; 5349 else 5350 num_bytes -= block_rsv->reserved; 5351 spin_unlock(&block_rsv->lock); 5352 5353 if (!ret) 5354 return 0; 5355 5356 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5357 if (!ret) { 5358 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5359 return 0; 5360 } 5361 5362 return ret; 5363 } 5364 5365 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5366 struct btrfs_block_rsv *dst_rsv, 5367 u64 num_bytes) 5368 { 5369 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5370 } 5371 5372 void btrfs_block_rsv_release(struct btrfs_root *root, 5373 struct btrfs_block_rsv *block_rsv, 5374 u64 num_bytes) 5375 { 5376 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5377 if (global_rsv == block_rsv || 5378 block_rsv->space_info != global_rsv->space_info) 5379 global_rsv = NULL; 5380 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5381 num_bytes); 5382 } 5383 5384 /* 5385 * helper to calculate size of global block reservation. 5386 * the desired value is sum of space used by extent tree, 5387 * checksum tree and root tree 5388 */ 5389 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5390 { 5391 struct btrfs_space_info *sinfo; 5392 u64 num_bytes; 5393 u64 meta_used; 5394 u64 data_used; 5395 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5396 5397 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5398 spin_lock(&sinfo->lock); 5399 data_used = sinfo->bytes_used; 5400 spin_unlock(&sinfo->lock); 5401 5402 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5403 spin_lock(&sinfo->lock); 5404 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5405 data_used = 0; 5406 meta_used = sinfo->bytes_used; 5407 spin_unlock(&sinfo->lock); 5408 5409 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5410 csum_size * 2; 5411 num_bytes += div_u64(data_used + meta_used, 50); 5412 5413 if (num_bytes * 3 > meta_used) 5414 num_bytes = div_u64(meta_used, 3); 5415 5416 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5417 } 5418 5419 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5420 { 5421 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5422 struct btrfs_space_info *sinfo = block_rsv->space_info; 5423 u64 num_bytes; 5424 5425 num_bytes = calc_global_metadata_size(fs_info); 5426 5427 spin_lock(&sinfo->lock); 5428 spin_lock(&block_rsv->lock); 5429 5430 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5431 5432 if (block_rsv->reserved < block_rsv->size) { 5433 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5434 sinfo->bytes_reserved + sinfo->bytes_readonly + 5435 sinfo->bytes_may_use; 5436 if (sinfo->total_bytes > num_bytes) { 5437 num_bytes = sinfo->total_bytes - num_bytes; 5438 num_bytes = min(num_bytes, 5439 block_rsv->size - block_rsv->reserved); 5440 block_rsv->reserved += num_bytes; 5441 sinfo->bytes_may_use += num_bytes; 5442 trace_btrfs_space_reservation(fs_info, "space_info", 5443 sinfo->flags, num_bytes, 5444 1); 5445 } 5446 } else if (block_rsv->reserved > block_rsv->size) { 5447 num_bytes = block_rsv->reserved - block_rsv->size; 5448 sinfo->bytes_may_use -= num_bytes; 5449 trace_btrfs_space_reservation(fs_info, "space_info", 5450 sinfo->flags, num_bytes, 0); 5451 block_rsv->reserved = block_rsv->size; 5452 } 5453 5454 if (block_rsv->reserved == block_rsv->size) 5455 block_rsv->full = 1; 5456 else 5457 block_rsv->full = 0; 5458 5459 spin_unlock(&block_rsv->lock); 5460 spin_unlock(&sinfo->lock); 5461 } 5462 5463 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5464 { 5465 struct btrfs_space_info *space_info; 5466 5467 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5468 fs_info->chunk_block_rsv.space_info = space_info; 5469 5470 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5471 fs_info->global_block_rsv.space_info = space_info; 5472 fs_info->delalloc_block_rsv.space_info = space_info; 5473 fs_info->trans_block_rsv.space_info = space_info; 5474 fs_info->empty_block_rsv.space_info = space_info; 5475 fs_info->delayed_block_rsv.space_info = space_info; 5476 5477 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5478 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5479 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5480 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5481 if (fs_info->quota_root) 5482 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5483 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5484 5485 update_global_block_rsv(fs_info); 5486 } 5487 5488 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5489 { 5490 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5491 (u64)-1); 5492 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5493 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5494 WARN_ON(fs_info->trans_block_rsv.size > 0); 5495 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5496 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5497 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5498 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5499 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5500 } 5501 5502 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5503 struct btrfs_root *root) 5504 { 5505 if (!trans->block_rsv) 5506 return; 5507 5508 if (!trans->bytes_reserved) 5509 return; 5510 5511 trace_btrfs_space_reservation(root->fs_info, "transaction", 5512 trans->transid, trans->bytes_reserved, 0); 5513 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5514 trans->bytes_reserved = 0; 5515 } 5516 5517 /* 5518 * To be called after all the new block groups attached to the transaction 5519 * handle have been created (btrfs_create_pending_block_groups()). 5520 */ 5521 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5522 { 5523 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5524 5525 if (!trans->chunk_bytes_reserved) 5526 return; 5527 5528 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5529 5530 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5531 trans->chunk_bytes_reserved); 5532 trans->chunk_bytes_reserved = 0; 5533 } 5534 5535 /* Can only return 0 or -ENOSPC */ 5536 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5537 struct inode *inode) 5538 { 5539 struct btrfs_root *root = BTRFS_I(inode)->root; 5540 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5541 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5542 5543 /* 5544 * We need to hold space in order to delete our orphan item once we've 5545 * added it, so this takes the reservation so we can release it later 5546 * when we are truly done with the orphan item. 5547 */ 5548 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5549 trace_btrfs_space_reservation(root->fs_info, "orphan", 5550 btrfs_ino(inode), num_bytes, 1); 5551 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5552 } 5553 5554 void btrfs_orphan_release_metadata(struct inode *inode) 5555 { 5556 struct btrfs_root *root = BTRFS_I(inode)->root; 5557 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5558 trace_btrfs_space_reservation(root->fs_info, "orphan", 5559 btrfs_ino(inode), num_bytes, 0); 5560 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5561 } 5562 5563 /* 5564 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5565 * root: the root of the parent directory 5566 * rsv: block reservation 5567 * items: the number of items that we need do reservation 5568 * qgroup_reserved: used to return the reserved size in qgroup 5569 * 5570 * This function is used to reserve the space for snapshot/subvolume 5571 * creation and deletion. Those operations are different with the 5572 * common file/directory operations, they change two fs/file trees 5573 * and root tree, the number of items that the qgroup reserves is 5574 * different with the free space reservation. So we can not use 5575 * the space reservation mechanism in start_transaction(). 5576 */ 5577 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5578 struct btrfs_block_rsv *rsv, 5579 int items, 5580 u64 *qgroup_reserved, 5581 bool use_global_rsv) 5582 { 5583 u64 num_bytes; 5584 int ret; 5585 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5586 5587 if (root->fs_info->quota_enabled) { 5588 /* One for parent inode, two for dir entries */ 5589 num_bytes = 3 * root->nodesize; 5590 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5591 if (ret) 5592 return ret; 5593 } else { 5594 num_bytes = 0; 5595 } 5596 5597 *qgroup_reserved = num_bytes; 5598 5599 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5600 rsv->space_info = __find_space_info(root->fs_info, 5601 BTRFS_BLOCK_GROUP_METADATA); 5602 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5603 BTRFS_RESERVE_FLUSH_ALL); 5604 5605 if (ret == -ENOSPC && use_global_rsv) 5606 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5607 5608 if (ret && *qgroup_reserved) 5609 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5610 5611 return ret; 5612 } 5613 5614 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5615 struct btrfs_block_rsv *rsv, 5616 u64 qgroup_reserved) 5617 { 5618 btrfs_block_rsv_release(root, rsv, (u64)-1); 5619 } 5620 5621 /** 5622 * drop_outstanding_extent - drop an outstanding extent 5623 * @inode: the inode we're dropping the extent for 5624 * @num_bytes: the number of bytes we're releasing. 5625 * 5626 * This is called when we are freeing up an outstanding extent, either called 5627 * after an error or after an extent is written. This will return the number of 5628 * reserved extents that need to be freed. This must be called with 5629 * BTRFS_I(inode)->lock held. 5630 */ 5631 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5632 { 5633 unsigned drop_inode_space = 0; 5634 unsigned dropped_extents = 0; 5635 unsigned num_extents = 0; 5636 5637 num_extents = (unsigned)div64_u64(num_bytes + 5638 BTRFS_MAX_EXTENT_SIZE - 1, 5639 BTRFS_MAX_EXTENT_SIZE); 5640 ASSERT(num_extents); 5641 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5642 BTRFS_I(inode)->outstanding_extents -= num_extents; 5643 5644 if (BTRFS_I(inode)->outstanding_extents == 0 && 5645 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5646 &BTRFS_I(inode)->runtime_flags)) 5647 drop_inode_space = 1; 5648 5649 /* 5650 * If we have more or the same amount of outstanding extents than we have 5651 * reserved then we need to leave the reserved extents count alone. 5652 */ 5653 if (BTRFS_I(inode)->outstanding_extents >= 5654 BTRFS_I(inode)->reserved_extents) 5655 return drop_inode_space; 5656 5657 dropped_extents = BTRFS_I(inode)->reserved_extents - 5658 BTRFS_I(inode)->outstanding_extents; 5659 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5660 return dropped_extents + drop_inode_space; 5661 } 5662 5663 /** 5664 * calc_csum_metadata_size - return the amount of metadata space that must be 5665 * reserved/freed for the given bytes. 5666 * @inode: the inode we're manipulating 5667 * @num_bytes: the number of bytes in question 5668 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5669 * 5670 * This adjusts the number of csum_bytes in the inode and then returns the 5671 * correct amount of metadata that must either be reserved or freed. We 5672 * calculate how many checksums we can fit into one leaf and then divide the 5673 * number of bytes that will need to be checksumed by this value to figure out 5674 * how many checksums will be required. If we are adding bytes then the number 5675 * may go up and we will return the number of additional bytes that must be 5676 * reserved. If it is going down we will return the number of bytes that must 5677 * be freed. 5678 * 5679 * This must be called with BTRFS_I(inode)->lock held. 5680 */ 5681 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5682 int reserve) 5683 { 5684 struct btrfs_root *root = BTRFS_I(inode)->root; 5685 u64 old_csums, num_csums; 5686 5687 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5688 BTRFS_I(inode)->csum_bytes == 0) 5689 return 0; 5690 5691 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5692 if (reserve) 5693 BTRFS_I(inode)->csum_bytes += num_bytes; 5694 else 5695 BTRFS_I(inode)->csum_bytes -= num_bytes; 5696 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5697 5698 /* No change, no need to reserve more */ 5699 if (old_csums == num_csums) 5700 return 0; 5701 5702 if (reserve) 5703 return btrfs_calc_trans_metadata_size(root, 5704 num_csums - old_csums); 5705 5706 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5707 } 5708 5709 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5710 { 5711 struct btrfs_root *root = BTRFS_I(inode)->root; 5712 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5713 u64 to_reserve = 0; 5714 u64 csum_bytes; 5715 unsigned nr_extents = 0; 5716 int extra_reserve = 0; 5717 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5718 int ret = 0; 5719 bool delalloc_lock = true; 5720 u64 to_free = 0; 5721 unsigned dropped; 5722 5723 /* If we are a free space inode we need to not flush since we will be in 5724 * the middle of a transaction commit. We also don't need the delalloc 5725 * mutex since we won't race with anybody. We need this mostly to make 5726 * lockdep shut its filthy mouth. 5727 */ 5728 if (btrfs_is_free_space_inode(inode)) { 5729 flush = BTRFS_RESERVE_NO_FLUSH; 5730 delalloc_lock = false; 5731 } 5732 5733 if (flush != BTRFS_RESERVE_NO_FLUSH && 5734 btrfs_transaction_in_commit(root->fs_info)) 5735 schedule_timeout(1); 5736 5737 if (delalloc_lock) 5738 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5739 5740 num_bytes = ALIGN(num_bytes, root->sectorsize); 5741 5742 spin_lock(&BTRFS_I(inode)->lock); 5743 nr_extents = (unsigned)div64_u64(num_bytes + 5744 BTRFS_MAX_EXTENT_SIZE - 1, 5745 BTRFS_MAX_EXTENT_SIZE); 5746 BTRFS_I(inode)->outstanding_extents += nr_extents; 5747 nr_extents = 0; 5748 5749 if (BTRFS_I(inode)->outstanding_extents > 5750 BTRFS_I(inode)->reserved_extents) 5751 nr_extents = BTRFS_I(inode)->outstanding_extents - 5752 BTRFS_I(inode)->reserved_extents; 5753 5754 /* 5755 * Add an item to reserve for updating the inode when we complete the 5756 * delalloc io. 5757 */ 5758 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5759 &BTRFS_I(inode)->runtime_flags)) { 5760 nr_extents++; 5761 extra_reserve = 1; 5762 } 5763 5764 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5765 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5766 csum_bytes = BTRFS_I(inode)->csum_bytes; 5767 spin_unlock(&BTRFS_I(inode)->lock); 5768 5769 if (root->fs_info->quota_enabled) { 5770 ret = btrfs_qgroup_reserve_meta(root, 5771 nr_extents * root->nodesize); 5772 if (ret) 5773 goto out_fail; 5774 } 5775 5776 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5777 if (unlikely(ret)) { 5778 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5779 goto out_fail; 5780 } 5781 5782 spin_lock(&BTRFS_I(inode)->lock); 5783 if (extra_reserve) { 5784 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5785 &BTRFS_I(inode)->runtime_flags); 5786 nr_extents--; 5787 } 5788 BTRFS_I(inode)->reserved_extents += nr_extents; 5789 spin_unlock(&BTRFS_I(inode)->lock); 5790 5791 if (delalloc_lock) 5792 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5793 5794 if (to_reserve) 5795 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5796 btrfs_ino(inode), to_reserve, 1); 5797 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5798 5799 return 0; 5800 5801 out_fail: 5802 spin_lock(&BTRFS_I(inode)->lock); 5803 dropped = drop_outstanding_extent(inode, num_bytes); 5804 /* 5805 * If the inodes csum_bytes is the same as the original 5806 * csum_bytes then we know we haven't raced with any free()ers 5807 * so we can just reduce our inodes csum bytes and carry on. 5808 */ 5809 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5810 calc_csum_metadata_size(inode, num_bytes, 0); 5811 } else { 5812 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5813 u64 bytes; 5814 5815 /* 5816 * This is tricky, but first we need to figure out how much we 5817 * freed from any free-ers that occurred during this 5818 * reservation, so we reset ->csum_bytes to the csum_bytes 5819 * before we dropped our lock, and then call the free for the 5820 * number of bytes that were freed while we were trying our 5821 * reservation. 5822 */ 5823 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5824 BTRFS_I(inode)->csum_bytes = csum_bytes; 5825 to_free = calc_csum_metadata_size(inode, bytes, 0); 5826 5827 5828 /* 5829 * Now we need to see how much we would have freed had we not 5830 * been making this reservation and our ->csum_bytes were not 5831 * artificially inflated. 5832 */ 5833 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5834 bytes = csum_bytes - orig_csum_bytes; 5835 bytes = calc_csum_metadata_size(inode, bytes, 0); 5836 5837 /* 5838 * Now reset ->csum_bytes to what it should be. If bytes is 5839 * more than to_free then we would have freed more space had we 5840 * not had an artificially high ->csum_bytes, so we need to free 5841 * the remainder. If bytes is the same or less then we don't 5842 * need to do anything, the other free-ers did the correct 5843 * thing. 5844 */ 5845 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5846 if (bytes > to_free) 5847 to_free = bytes - to_free; 5848 else 5849 to_free = 0; 5850 } 5851 spin_unlock(&BTRFS_I(inode)->lock); 5852 if (dropped) 5853 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5854 5855 if (to_free) { 5856 btrfs_block_rsv_release(root, block_rsv, to_free); 5857 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5858 btrfs_ino(inode), to_free, 0); 5859 } 5860 if (delalloc_lock) 5861 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5862 return ret; 5863 } 5864 5865 /** 5866 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5867 * @inode: the inode to release the reservation for 5868 * @num_bytes: the number of bytes we're releasing 5869 * 5870 * This will release the metadata reservation for an inode. This can be called 5871 * once we complete IO for a given set of bytes to release their metadata 5872 * reservations. 5873 */ 5874 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5875 { 5876 struct btrfs_root *root = BTRFS_I(inode)->root; 5877 u64 to_free = 0; 5878 unsigned dropped; 5879 5880 num_bytes = ALIGN(num_bytes, root->sectorsize); 5881 spin_lock(&BTRFS_I(inode)->lock); 5882 dropped = drop_outstanding_extent(inode, num_bytes); 5883 5884 if (num_bytes) 5885 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5886 spin_unlock(&BTRFS_I(inode)->lock); 5887 if (dropped > 0) 5888 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5889 5890 if (btrfs_test_is_dummy_root(root)) 5891 return; 5892 5893 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5894 btrfs_ino(inode), to_free, 0); 5895 5896 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5897 to_free); 5898 } 5899 5900 /** 5901 * btrfs_delalloc_reserve_space - reserve data and metadata space for 5902 * delalloc 5903 * @inode: inode we're writing to 5904 * @start: start range we are writing to 5905 * @len: how long the range we are writing to 5906 * 5907 * TODO: This function will finally replace old btrfs_delalloc_reserve_space() 5908 * 5909 * This will do the following things 5910 * 5911 * o reserve space in data space info for num bytes 5912 * and reserve precious corresponding qgroup space 5913 * (Done in check_data_free_space) 5914 * 5915 * o reserve space for metadata space, based on the number of outstanding 5916 * extents and how much csums will be needed 5917 * also reserve metadata space in a per root over-reserve method. 5918 * o add to the inodes->delalloc_bytes 5919 * o add it to the fs_info's delalloc inodes list. 5920 * (Above 3 all done in delalloc_reserve_metadata) 5921 * 5922 * Return 0 for success 5923 * Return <0 for error(-ENOSPC or -EQUOT) 5924 */ 5925 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 5926 { 5927 int ret; 5928 5929 ret = btrfs_check_data_free_space(inode, start, len); 5930 if (ret < 0) 5931 return ret; 5932 ret = btrfs_delalloc_reserve_metadata(inode, len); 5933 if (ret < 0) 5934 btrfs_free_reserved_data_space(inode, start, len); 5935 return ret; 5936 } 5937 5938 /** 5939 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5940 * @inode: inode we're releasing space for 5941 * @start: start position of the space already reserved 5942 * @len: the len of the space already reserved 5943 * 5944 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5945 * called in the case that we don't need the metadata AND data reservations 5946 * anymore. So if there is an error or we insert an inline extent. 5947 * 5948 * This function will release the metadata space that was not used and will 5949 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5950 * list if there are no delalloc bytes left. 5951 * Also it will handle the qgroup reserved space. 5952 */ 5953 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 5954 { 5955 btrfs_delalloc_release_metadata(inode, len); 5956 btrfs_free_reserved_data_space(inode, start, len); 5957 } 5958 5959 static int update_block_group(struct btrfs_trans_handle *trans, 5960 struct btrfs_root *root, u64 bytenr, 5961 u64 num_bytes, int alloc) 5962 { 5963 struct btrfs_block_group_cache *cache = NULL; 5964 struct btrfs_fs_info *info = root->fs_info; 5965 u64 total = num_bytes; 5966 u64 old_val; 5967 u64 byte_in_group; 5968 int factor; 5969 5970 /* block accounting for super block */ 5971 spin_lock(&info->delalloc_root_lock); 5972 old_val = btrfs_super_bytes_used(info->super_copy); 5973 if (alloc) 5974 old_val += num_bytes; 5975 else 5976 old_val -= num_bytes; 5977 btrfs_set_super_bytes_used(info->super_copy, old_val); 5978 spin_unlock(&info->delalloc_root_lock); 5979 5980 while (total) { 5981 cache = btrfs_lookup_block_group(info, bytenr); 5982 if (!cache) 5983 return -ENOENT; 5984 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5985 BTRFS_BLOCK_GROUP_RAID1 | 5986 BTRFS_BLOCK_GROUP_RAID10)) 5987 factor = 2; 5988 else 5989 factor = 1; 5990 /* 5991 * If this block group has free space cache written out, we 5992 * need to make sure to load it if we are removing space. This 5993 * is because we need the unpinning stage to actually add the 5994 * space back to the block group, otherwise we will leak space. 5995 */ 5996 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5997 cache_block_group(cache, 1); 5998 5999 byte_in_group = bytenr - cache->key.objectid; 6000 WARN_ON(byte_in_group > cache->key.offset); 6001 6002 spin_lock(&cache->space_info->lock); 6003 spin_lock(&cache->lock); 6004 6005 if (btrfs_test_opt(root, SPACE_CACHE) && 6006 cache->disk_cache_state < BTRFS_DC_CLEAR) 6007 cache->disk_cache_state = BTRFS_DC_CLEAR; 6008 6009 old_val = btrfs_block_group_used(&cache->item); 6010 num_bytes = min(total, cache->key.offset - byte_in_group); 6011 if (alloc) { 6012 old_val += num_bytes; 6013 btrfs_set_block_group_used(&cache->item, old_val); 6014 cache->reserved -= num_bytes; 6015 cache->space_info->bytes_reserved -= num_bytes; 6016 cache->space_info->bytes_used += num_bytes; 6017 cache->space_info->disk_used += num_bytes * factor; 6018 spin_unlock(&cache->lock); 6019 spin_unlock(&cache->space_info->lock); 6020 } else { 6021 old_val -= num_bytes; 6022 btrfs_set_block_group_used(&cache->item, old_val); 6023 cache->pinned += num_bytes; 6024 cache->space_info->bytes_pinned += num_bytes; 6025 cache->space_info->bytes_used -= num_bytes; 6026 cache->space_info->disk_used -= num_bytes * factor; 6027 spin_unlock(&cache->lock); 6028 spin_unlock(&cache->space_info->lock); 6029 6030 set_extent_dirty(info->pinned_extents, 6031 bytenr, bytenr + num_bytes - 1, 6032 GFP_NOFS | __GFP_NOFAIL); 6033 } 6034 6035 spin_lock(&trans->transaction->dirty_bgs_lock); 6036 if (list_empty(&cache->dirty_list)) { 6037 list_add_tail(&cache->dirty_list, 6038 &trans->transaction->dirty_bgs); 6039 trans->transaction->num_dirty_bgs++; 6040 btrfs_get_block_group(cache); 6041 } 6042 spin_unlock(&trans->transaction->dirty_bgs_lock); 6043 6044 /* 6045 * No longer have used bytes in this block group, queue it for 6046 * deletion. We do this after adding the block group to the 6047 * dirty list to avoid races between cleaner kthread and space 6048 * cache writeout. 6049 */ 6050 if (!alloc && old_val == 0) { 6051 spin_lock(&info->unused_bgs_lock); 6052 if (list_empty(&cache->bg_list)) { 6053 btrfs_get_block_group(cache); 6054 list_add_tail(&cache->bg_list, 6055 &info->unused_bgs); 6056 } 6057 spin_unlock(&info->unused_bgs_lock); 6058 } 6059 6060 btrfs_put_block_group(cache); 6061 total -= num_bytes; 6062 bytenr += num_bytes; 6063 } 6064 return 0; 6065 } 6066 6067 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6068 { 6069 struct btrfs_block_group_cache *cache; 6070 u64 bytenr; 6071 6072 spin_lock(&root->fs_info->block_group_cache_lock); 6073 bytenr = root->fs_info->first_logical_byte; 6074 spin_unlock(&root->fs_info->block_group_cache_lock); 6075 6076 if (bytenr < (u64)-1) 6077 return bytenr; 6078 6079 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6080 if (!cache) 6081 return 0; 6082 6083 bytenr = cache->key.objectid; 6084 btrfs_put_block_group(cache); 6085 6086 return bytenr; 6087 } 6088 6089 static int pin_down_extent(struct btrfs_root *root, 6090 struct btrfs_block_group_cache *cache, 6091 u64 bytenr, u64 num_bytes, int reserved) 6092 { 6093 spin_lock(&cache->space_info->lock); 6094 spin_lock(&cache->lock); 6095 cache->pinned += num_bytes; 6096 cache->space_info->bytes_pinned += num_bytes; 6097 if (reserved) { 6098 cache->reserved -= num_bytes; 6099 cache->space_info->bytes_reserved -= num_bytes; 6100 } 6101 spin_unlock(&cache->lock); 6102 spin_unlock(&cache->space_info->lock); 6103 6104 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6105 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6106 if (reserved) 6107 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 6108 return 0; 6109 } 6110 6111 /* 6112 * this function must be called within transaction 6113 */ 6114 int btrfs_pin_extent(struct btrfs_root *root, 6115 u64 bytenr, u64 num_bytes, int reserved) 6116 { 6117 struct btrfs_block_group_cache *cache; 6118 6119 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6120 BUG_ON(!cache); /* Logic error */ 6121 6122 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6123 6124 btrfs_put_block_group(cache); 6125 return 0; 6126 } 6127 6128 /* 6129 * this function must be called within transaction 6130 */ 6131 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6132 u64 bytenr, u64 num_bytes) 6133 { 6134 struct btrfs_block_group_cache *cache; 6135 int ret; 6136 6137 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6138 if (!cache) 6139 return -EINVAL; 6140 6141 /* 6142 * pull in the free space cache (if any) so that our pin 6143 * removes the free space from the cache. We have load_only set 6144 * to one because the slow code to read in the free extents does check 6145 * the pinned extents. 6146 */ 6147 cache_block_group(cache, 1); 6148 6149 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6150 6151 /* remove us from the free space cache (if we're there at all) */ 6152 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6153 btrfs_put_block_group(cache); 6154 return ret; 6155 } 6156 6157 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6158 { 6159 int ret; 6160 struct btrfs_block_group_cache *block_group; 6161 struct btrfs_caching_control *caching_ctl; 6162 6163 block_group = btrfs_lookup_block_group(root->fs_info, start); 6164 if (!block_group) 6165 return -EINVAL; 6166 6167 cache_block_group(block_group, 0); 6168 caching_ctl = get_caching_control(block_group); 6169 6170 if (!caching_ctl) { 6171 /* Logic error */ 6172 BUG_ON(!block_group_cache_done(block_group)); 6173 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6174 } else { 6175 mutex_lock(&caching_ctl->mutex); 6176 6177 if (start >= caching_ctl->progress) { 6178 ret = add_excluded_extent(root, start, num_bytes); 6179 } else if (start + num_bytes <= caching_ctl->progress) { 6180 ret = btrfs_remove_free_space(block_group, 6181 start, num_bytes); 6182 } else { 6183 num_bytes = caching_ctl->progress - start; 6184 ret = btrfs_remove_free_space(block_group, 6185 start, num_bytes); 6186 if (ret) 6187 goto out_lock; 6188 6189 num_bytes = (start + num_bytes) - 6190 caching_ctl->progress; 6191 start = caching_ctl->progress; 6192 ret = add_excluded_extent(root, start, num_bytes); 6193 } 6194 out_lock: 6195 mutex_unlock(&caching_ctl->mutex); 6196 put_caching_control(caching_ctl); 6197 } 6198 btrfs_put_block_group(block_group); 6199 return ret; 6200 } 6201 6202 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6203 struct extent_buffer *eb) 6204 { 6205 struct btrfs_file_extent_item *item; 6206 struct btrfs_key key; 6207 int found_type; 6208 int i; 6209 6210 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6211 return 0; 6212 6213 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6214 btrfs_item_key_to_cpu(eb, &key, i); 6215 if (key.type != BTRFS_EXTENT_DATA_KEY) 6216 continue; 6217 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6218 found_type = btrfs_file_extent_type(eb, item); 6219 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6220 continue; 6221 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6222 continue; 6223 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6224 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6225 __exclude_logged_extent(log, key.objectid, key.offset); 6226 } 6227 6228 return 0; 6229 } 6230 6231 static void 6232 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6233 { 6234 atomic_inc(&bg->reservations); 6235 } 6236 6237 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6238 const u64 start) 6239 { 6240 struct btrfs_block_group_cache *bg; 6241 6242 bg = btrfs_lookup_block_group(fs_info, start); 6243 ASSERT(bg); 6244 if (atomic_dec_and_test(&bg->reservations)) 6245 wake_up_atomic_t(&bg->reservations); 6246 btrfs_put_block_group(bg); 6247 } 6248 6249 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6250 { 6251 schedule(); 6252 return 0; 6253 } 6254 6255 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6256 { 6257 struct btrfs_space_info *space_info = bg->space_info; 6258 6259 ASSERT(bg->ro); 6260 6261 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6262 return; 6263 6264 /* 6265 * Our block group is read only but before we set it to read only, 6266 * some task might have had allocated an extent from it already, but it 6267 * has not yet created a respective ordered extent (and added it to a 6268 * root's list of ordered extents). 6269 * Therefore wait for any task currently allocating extents, since the 6270 * block group's reservations counter is incremented while a read lock 6271 * on the groups' semaphore is held and decremented after releasing 6272 * the read access on that semaphore and creating the ordered extent. 6273 */ 6274 down_write(&space_info->groups_sem); 6275 up_write(&space_info->groups_sem); 6276 6277 wait_on_atomic_t(&bg->reservations, 6278 btrfs_wait_bg_reservations_atomic_t, 6279 TASK_UNINTERRUPTIBLE); 6280 } 6281 6282 /** 6283 * btrfs_update_reserved_bytes - update the block_group and space info counters 6284 * @cache: The cache we are manipulating 6285 * @num_bytes: The number of bytes in question 6286 * @reserve: One of the reservation enums 6287 * @delalloc: The blocks are allocated for the delalloc write 6288 * 6289 * This is called by the allocator when it reserves space, or by somebody who is 6290 * freeing space that was never actually used on disk. For example if you 6291 * reserve some space for a new leaf in transaction A and before transaction A 6292 * commits you free that leaf, you call this with reserve set to 0 in order to 6293 * clear the reservation. 6294 * 6295 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 6296 * ENOSPC accounting. For data we handle the reservation through clearing the 6297 * delalloc bits in the io_tree. We have to do this since we could end up 6298 * allocating less disk space for the amount of data we have reserved in the 6299 * case of compression. 6300 * 6301 * If this is a reservation and the block group has become read only we cannot 6302 * make the reservation and return -EAGAIN, otherwise this function always 6303 * succeeds. 6304 */ 6305 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 6306 u64 num_bytes, int reserve, int delalloc) 6307 { 6308 struct btrfs_space_info *space_info = cache->space_info; 6309 int ret = 0; 6310 6311 spin_lock(&space_info->lock); 6312 spin_lock(&cache->lock); 6313 if (reserve != RESERVE_FREE) { 6314 if (cache->ro) { 6315 ret = -EAGAIN; 6316 } else { 6317 cache->reserved += num_bytes; 6318 space_info->bytes_reserved += num_bytes; 6319 if (reserve == RESERVE_ALLOC) { 6320 trace_btrfs_space_reservation(cache->fs_info, 6321 "space_info", space_info->flags, 6322 num_bytes, 0); 6323 space_info->bytes_may_use -= num_bytes; 6324 } 6325 6326 if (delalloc) 6327 cache->delalloc_bytes += num_bytes; 6328 } 6329 } else { 6330 if (cache->ro) 6331 space_info->bytes_readonly += num_bytes; 6332 cache->reserved -= num_bytes; 6333 space_info->bytes_reserved -= num_bytes; 6334 6335 if (delalloc) 6336 cache->delalloc_bytes -= num_bytes; 6337 } 6338 spin_unlock(&cache->lock); 6339 spin_unlock(&space_info->lock); 6340 return ret; 6341 } 6342 6343 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6344 struct btrfs_root *root) 6345 { 6346 struct btrfs_fs_info *fs_info = root->fs_info; 6347 struct btrfs_caching_control *next; 6348 struct btrfs_caching_control *caching_ctl; 6349 struct btrfs_block_group_cache *cache; 6350 6351 down_write(&fs_info->commit_root_sem); 6352 6353 list_for_each_entry_safe(caching_ctl, next, 6354 &fs_info->caching_block_groups, list) { 6355 cache = caching_ctl->block_group; 6356 if (block_group_cache_done(cache)) { 6357 cache->last_byte_to_unpin = (u64)-1; 6358 list_del_init(&caching_ctl->list); 6359 put_caching_control(caching_ctl); 6360 } else { 6361 cache->last_byte_to_unpin = caching_ctl->progress; 6362 } 6363 } 6364 6365 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6366 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6367 else 6368 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6369 6370 up_write(&fs_info->commit_root_sem); 6371 6372 update_global_block_rsv(fs_info); 6373 } 6374 6375 /* 6376 * Returns the free cluster for the given space info and sets empty_cluster to 6377 * what it should be based on the mount options. 6378 */ 6379 static struct btrfs_free_cluster * 6380 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6381 u64 *empty_cluster) 6382 { 6383 struct btrfs_free_cluster *ret = NULL; 6384 bool ssd = btrfs_test_opt(root, SSD); 6385 6386 *empty_cluster = 0; 6387 if (btrfs_mixed_space_info(space_info)) 6388 return ret; 6389 6390 if (ssd) 6391 *empty_cluster = SZ_2M; 6392 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6393 ret = &root->fs_info->meta_alloc_cluster; 6394 if (!ssd) 6395 *empty_cluster = SZ_64K; 6396 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6397 ret = &root->fs_info->data_alloc_cluster; 6398 } 6399 6400 return ret; 6401 } 6402 6403 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6404 const bool return_free_space) 6405 { 6406 struct btrfs_fs_info *fs_info = root->fs_info; 6407 struct btrfs_block_group_cache *cache = NULL; 6408 struct btrfs_space_info *space_info; 6409 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6410 struct btrfs_free_cluster *cluster = NULL; 6411 u64 len; 6412 u64 total_unpinned = 0; 6413 u64 empty_cluster = 0; 6414 bool readonly; 6415 6416 while (start <= end) { 6417 readonly = false; 6418 if (!cache || 6419 start >= cache->key.objectid + cache->key.offset) { 6420 if (cache) 6421 btrfs_put_block_group(cache); 6422 total_unpinned = 0; 6423 cache = btrfs_lookup_block_group(fs_info, start); 6424 BUG_ON(!cache); /* Logic error */ 6425 6426 cluster = fetch_cluster_info(root, 6427 cache->space_info, 6428 &empty_cluster); 6429 empty_cluster <<= 1; 6430 } 6431 6432 len = cache->key.objectid + cache->key.offset - start; 6433 len = min(len, end + 1 - start); 6434 6435 if (start < cache->last_byte_to_unpin) { 6436 len = min(len, cache->last_byte_to_unpin - start); 6437 if (return_free_space) 6438 btrfs_add_free_space(cache, start, len); 6439 } 6440 6441 start += len; 6442 total_unpinned += len; 6443 space_info = cache->space_info; 6444 6445 /* 6446 * If this space cluster has been marked as fragmented and we've 6447 * unpinned enough in this block group to potentially allow a 6448 * cluster to be created inside of it go ahead and clear the 6449 * fragmented check. 6450 */ 6451 if (cluster && cluster->fragmented && 6452 total_unpinned > empty_cluster) { 6453 spin_lock(&cluster->lock); 6454 cluster->fragmented = 0; 6455 spin_unlock(&cluster->lock); 6456 } 6457 6458 spin_lock(&space_info->lock); 6459 spin_lock(&cache->lock); 6460 cache->pinned -= len; 6461 space_info->bytes_pinned -= len; 6462 space_info->max_extent_size = 0; 6463 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6464 if (cache->ro) { 6465 space_info->bytes_readonly += len; 6466 readonly = true; 6467 } 6468 spin_unlock(&cache->lock); 6469 if (!readonly && global_rsv->space_info == space_info) { 6470 spin_lock(&global_rsv->lock); 6471 if (!global_rsv->full) { 6472 len = min(len, global_rsv->size - 6473 global_rsv->reserved); 6474 global_rsv->reserved += len; 6475 space_info->bytes_may_use += len; 6476 if (global_rsv->reserved >= global_rsv->size) 6477 global_rsv->full = 1; 6478 } 6479 spin_unlock(&global_rsv->lock); 6480 } 6481 spin_unlock(&space_info->lock); 6482 } 6483 6484 if (cache) 6485 btrfs_put_block_group(cache); 6486 return 0; 6487 } 6488 6489 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6490 struct btrfs_root *root) 6491 { 6492 struct btrfs_fs_info *fs_info = root->fs_info; 6493 struct btrfs_block_group_cache *block_group, *tmp; 6494 struct list_head *deleted_bgs; 6495 struct extent_io_tree *unpin; 6496 u64 start; 6497 u64 end; 6498 int ret; 6499 6500 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6501 unpin = &fs_info->freed_extents[1]; 6502 else 6503 unpin = &fs_info->freed_extents[0]; 6504 6505 while (!trans->aborted) { 6506 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6507 ret = find_first_extent_bit(unpin, 0, &start, &end, 6508 EXTENT_DIRTY, NULL); 6509 if (ret) { 6510 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6511 break; 6512 } 6513 6514 if (btrfs_test_opt(root, DISCARD)) 6515 ret = btrfs_discard_extent(root, start, 6516 end + 1 - start, NULL); 6517 6518 clear_extent_dirty(unpin, start, end); 6519 unpin_extent_range(root, start, end, true); 6520 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6521 cond_resched(); 6522 } 6523 6524 /* 6525 * Transaction is finished. We don't need the lock anymore. We 6526 * do need to clean up the block groups in case of a transaction 6527 * abort. 6528 */ 6529 deleted_bgs = &trans->transaction->deleted_bgs; 6530 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6531 u64 trimmed = 0; 6532 6533 ret = -EROFS; 6534 if (!trans->aborted) 6535 ret = btrfs_discard_extent(root, 6536 block_group->key.objectid, 6537 block_group->key.offset, 6538 &trimmed); 6539 6540 list_del_init(&block_group->bg_list); 6541 btrfs_put_block_group_trimming(block_group); 6542 btrfs_put_block_group(block_group); 6543 6544 if (ret) { 6545 const char *errstr = btrfs_decode_error(ret); 6546 btrfs_warn(fs_info, 6547 "Discard failed while removing blockgroup: errno=%d %s\n", 6548 ret, errstr); 6549 } 6550 } 6551 6552 return 0; 6553 } 6554 6555 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6556 u64 owner, u64 root_objectid) 6557 { 6558 struct btrfs_space_info *space_info; 6559 u64 flags; 6560 6561 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6562 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6563 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6564 else 6565 flags = BTRFS_BLOCK_GROUP_METADATA; 6566 } else { 6567 flags = BTRFS_BLOCK_GROUP_DATA; 6568 } 6569 6570 space_info = __find_space_info(fs_info, flags); 6571 BUG_ON(!space_info); /* Logic bug */ 6572 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6573 } 6574 6575 6576 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6577 struct btrfs_root *root, 6578 struct btrfs_delayed_ref_node *node, u64 parent, 6579 u64 root_objectid, u64 owner_objectid, 6580 u64 owner_offset, int refs_to_drop, 6581 struct btrfs_delayed_extent_op *extent_op) 6582 { 6583 struct btrfs_key key; 6584 struct btrfs_path *path; 6585 struct btrfs_fs_info *info = root->fs_info; 6586 struct btrfs_root *extent_root = info->extent_root; 6587 struct extent_buffer *leaf; 6588 struct btrfs_extent_item *ei; 6589 struct btrfs_extent_inline_ref *iref; 6590 int ret; 6591 int is_data; 6592 int extent_slot = 0; 6593 int found_extent = 0; 6594 int num_to_del = 1; 6595 u32 item_size; 6596 u64 refs; 6597 u64 bytenr = node->bytenr; 6598 u64 num_bytes = node->num_bytes; 6599 int last_ref = 0; 6600 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6601 SKINNY_METADATA); 6602 6603 path = btrfs_alloc_path(); 6604 if (!path) 6605 return -ENOMEM; 6606 6607 path->reada = READA_FORWARD; 6608 path->leave_spinning = 1; 6609 6610 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6611 BUG_ON(!is_data && refs_to_drop != 1); 6612 6613 if (is_data) 6614 skinny_metadata = 0; 6615 6616 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6617 bytenr, num_bytes, parent, 6618 root_objectid, owner_objectid, 6619 owner_offset); 6620 if (ret == 0) { 6621 extent_slot = path->slots[0]; 6622 while (extent_slot >= 0) { 6623 btrfs_item_key_to_cpu(path->nodes[0], &key, 6624 extent_slot); 6625 if (key.objectid != bytenr) 6626 break; 6627 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6628 key.offset == num_bytes) { 6629 found_extent = 1; 6630 break; 6631 } 6632 if (key.type == BTRFS_METADATA_ITEM_KEY && 6633 key.offset == owner_objectid) { 6634 found_extent = 1; 6635 break; 6636 } 6637 if (path->slots[0] - extent_slot > 5) 6638 break; 6639 extent_slot--; 6640 } 6641 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6642 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6643 if (found_extent && item_size < sizeof(*ei)) 6644 found_extent = 0; 6645 #endif 6646 if (!found_extent) { 6647 BUG_ON(iref); 6648 ret = remove_extent_backref(trans, extent_root, path, 6649 NULL, refs_to_drop, 6650 is_data, &last_ref); 6651 if (ret) { 6652 btrfs_abort_transaction(trans, extent_root, ret); 6653 goto out; 6654 } 6655 btrfs_release_path(path); 6656 path->leave_spinning = 1; 6657 6658 key.objectid = bytenr; 6659 key.type = BTRFS_EXTENT_ITEM_KEY; 6660 key.offset = num_bytes; 6661 6662 if (!is_data && skinny_metadata) { 6663 key.type = BTRFS_METADATA_ITEM_KEY; 6664 key.offset = owner_objectid; 6665 } 6666 6667 ret = btrfs_search_slot(trans, extent_root, 6668 &key, path, -1, 1); 6669 if (ret > 0 && skinny_metadata && path->slots[0]) { 6670 /* 6671 * Couldn't find our skinny metadata item, 6672 * see if we have ye olde extent item. 6673 */ 6674 path->slots[0]--; 6675 btrfs_item_key_to_cpu(path->nodes[0], &key, 6676 path->slots[0]); 6677 if (key.objectid == bytenr && 6678 key.type == BTRFS_EXTENT_ITEM_KEY && 6679 key.offset == num_bytes) 6680 ret = 0; 6681 } 6682 6683 if (ret > 0 && skinny_metadata) { 6684 skinny_metadata = false; 6685 key.objectid = bytenr; 6686 key.type = BTRFS_EXTENT_ITEM_KEY; 6687 key.offset = num_bytes; 6688 btrfs_release_path(path); 6689 ret = btrfs_search_slot(trans, extent_root, 6690 &key, path, -1, 1); 6691 } 6692 6693 if (ret) { 6694 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6695 ret, bytenr); 6696 if (ret > 0) 6697 btrfs_print_leaf(extent_root, 6698 path->nodes[0]); 6699 } 6700 if (ret < 0) { 6701 btrfs_abort_transaction(trans, extent_root, ret); 6702 goto out; 6703 } 6704 extent_slot = path->slots[0]; 6705 } 6706 } else if (WARN_ON(ret == -ENOENT)) { 6707 btrfs_print_leaf(extent_root, path->nodes[0]); 6708 btrfs_err(info, 6709 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6710 bytenr, parent, root_objectid, owner_objectid, 6711 owner_offset); 6712 btrfs_abort_transaction(trans, extent_root, ret); 6713 goto out; 6714 } else { 6715 btrfs_abort_transaction(trans, extent_root, ret); 6716 goto out; 6717 } 6718 6719 leaf = path->nodes[0]; 6720 item_size = btrfs_item_size_nr(leaf, extent_slot); 6721 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6722 if (item_size < sizeof(*ei)) { 6723 BUG_ON(found_extent || extent_slot != path->slots[0]); 6724 ret = convert_extent_item_v0(trans, extent_root, path, 6725 owner_objectid, 0); 6726 if (ret < 0) { 6727 btrfs_abort_transaction(trans, extent_root, ret); 6728 goto out; 6729 } 6730 6731 btrfs_release_path(path); 6732 path->leave_spinning = 1; 6733 6734 key.objectid = bytenr; 6735 key.type = BTRFS_EXTENT_ITEM_KEY; 6736 key.offset = num_bytes; 6737 6738 ret = btrfs_search_slot(trans, extent_root, &key, path, 6739 -1, 1); 6740 if (ret) { 6741 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6742 ret, bytenr); 6743 btrfs_print_leaf(extent_root, path->nodes[0]); 6744 } 6745 if (ret < 0) { 6746 btrfs_abort_transaction(trans, extent_root, ret); 6747 goto out; 6748 } 6749 6750 extent_slot = path->slots[0]; 6751 leaf = path->nodes[0]; 6752 item_size = btrfs_item_size_nr(leaf, extent_slot); 6753 } 6754 #endif 6755 BUG_ON(item_size < sizeof(*ei)); 6756 ei = btrfs_item_ptr(leaf, extent_slot, 6757 struct btrfs_extent_item); 6758 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6759 key.type == BTRFS_EXTENT_ITEM_KEY) { 6760 struct btrfs_tree_block_info *bi; 6761 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6762 bi = (struct btrfs_tree_block_info *)(ei + 1); 6763 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6764 } 6765 6766 refs = btrfs_extent_refs(leaf, ei); 6767 if (refs < refs_to_drop) { 6768 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6769 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6770 ret = -EINVAL; 6771 btrfs_abort_transaction(trans, extent_root, ret); 6772 goto out; 6773 } 6774 refs -= refs_to_drop; 6775 6776 if (refs > 0) { 6777 if (extent_op) 6778 __run_delayed_extent_op(extent_op, leaf, ei); 6779 /* 6780 * In the case of inline back ref, reference count will 6781 * be updated by remove_extent_backref 6782 */ 6783 if (iref) { 6784 BUG_ON(!found_extent); 6785 } else { 6786 btrfs_set_extent_refs(leaf, ei, refs); 6787 btrfs_mark_buffer_dirty(leaf); 6788 } 6789 if (found_extent) { 6790 ret = remove_extent_backref(trans, extent_root, path, 6791 iref, refs_to_drop, 6792 is_data, &last_ref); 6793 if (ret) { 6794 btrfs_abort_transaction(trans, extent_root, ret); 6795 goto out; 6796 } 6797 } 6798 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6799 root_objectid); 6800 } else { 6801 if (found_extent) { 6802 BUG_ON(is_data && refs_to_drop != 6803 extent_data_ref_count(path, iref)); 6804 if (iref) { 6805 BUG_ON(path->slots[0] != extent_slot); 6806 } else { 6807 BUG_ON(path->slots[0] != extent_slot + 1); 6808 path->slots[0] = extent_slot; 6809 num_to_del = 2; 6810 } 6811 } 6812 6813 last_ref = 1; 6814 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6815 num_to_del); 6816 if (ret) { 6817 btrfs_abort_transaction(trans, extent_root, ret); 6818 goto out; 6819 } 6820 btrfs_release_path(path); 6821 6822 if (is_data) { 6823 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6824 if (ret) { 6825 btrfs_abort_transaction(trans, extent_root, ret); 6826 goto out; 6827 } 6828 } 6829 6830 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 6831 num_bytes); 6832 if (ret) { 6833 btrfs_abort_transaction(trans, extent_root, ret); 6834 goto out; 6835 } 6836 6837 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6838 if (ret) { 6839 btrfs_abort_transaction(trans, extent_root, ret); 6840 goto out; 6841 } 6842 } 6843 btrfs_release_path(path); 6844 6845 out: 6846 btrfs_free_path(path); 6847 return ret; 6848 } 6849 6850 /* 6851 * when we free an block, it is possible (and likely) that we free the last 6852 * delayed ref for that extent as well. This searches the delayed ref tree for 6853 * a given extent, and if there are no other delayed refs to be processed, it 6854 * removes it from the tree. 6855 */ 6856 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6857 struct btrfs_root *root, u64 bytenr) 6858 { 6859 struct btrfs_delayed_ref_head *head; 6860 struct btrfs_delayed_ref_root *delayed_refs; 6861 int ret = 0; 6862 6863 delayed_refs = &trans->transaction->delayed_refs; 6864 spin_lock(&delayed_refs->lock); 6865 head = btrfs_find_delayed_ref_head(trans, bytenr); 6866 if (!head) 6867 goto out_delayed_unlock; 6868 6869 spin_lock(&head->lock); 6870 if (!list_empty(&head->ref_list)) 6871 goto out; 6872 6873 if (head->extent_op) { 6874 if (!head->must_insert_reserved) 6875 goto out; 6876 btrfs_free_delayed_extent_op(head->extent_op); 6877 head->extent_op = NULL; 6878 } 6879 6880 /* 6881 * waiting for the lock here would deadlock. If someone else has it 6882 * locked they are already in the process of dropping it anyway 6883 */ 6884 if (!mutex_trylock(&head->mutex)) 6885 goto out; 6886 6887 /* 6888 * at this point we have a head with no other entries. Go 6889 * ahead and process it. 6890 */ 6891 head->node.in_tree = 0; 6892 rb_erase(&head->href_node, &delayed_refs->href_root); 6893 6894 atomic_dec(&delayed_refs->num_entries); 6895 6896 /* 6897 * we don't take a ref on the node because we're removing it from the 6898 * tree, so we just steal the ref the tree was holding. 6899 */ 6900 delayed_refs->num_heads--; 6901 if (head->processing == 0) 6902 delayed_refs->num_heads_ready--; 6903 head->processing = 0; 6904 spin_unlock(&head->lock); 6905 spin_unlock(&delayed_refs->lock); 6906 6907 BUG_ON(head->extent_op); 6908 if (head->must_insert_reserved) 6909 ret = 1; 6910 6911 mutex_unlock(&head->mutex); 6912 btrfs_put_delayed_ref(&head->node); 6913 return ret; 6914 out: 6915 spin_unlock(&head->lock); 6916 6917 out_delayed_unlock: 6918 spin_unlock(&delayed_refs->lock); 6919 return 0; 6920 } 6921 6922 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6923 struct btrfs_root *root, 6924 struct extent_buffer *buf, 6925 u64 parent, int last_ref) 6926 { 6927 int pin = 1; 6928 int ret; 6929 6930 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6931 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6932 buf->start, buf->len, 6933 parent, root->root_key.objectid, 6934 btrfs_header_level(buf), 6935 BTRFS_DROP_DELAYED_REF, NULL); 6936 BUG_ON(ret); /* -ENOMEM */ 6937 } 6938 6939 if (!last_ref) 6940 return; 6941 6942 if (btrfs_header_generation(buf) == trans->transid) { 6943 struct btrfs_block_group_cache *cache; 6944 6945 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6946 ret = check_ref_cleanup(trans, root, buf->start); 6947 if (!ret) 6948 goto out; 6949 } 6950 6951 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6952 6953 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6954 pin_down_extent(root, cache, buf->start, buf->len, 1); 6955 btrfs_put_block_group(cache); 6956 goto out; 6957 } 6958 6959 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6960 6961 btrfs_add_free_space(cache, buf->start, buf->len); 6962 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6963 btrfs_put_block_group(cache); 6964 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6965 pin = 0; 6966 } 6967 out: 6968 if (pin) 6969 add_pinned_bytes(root->fs_info, buf->len, 6970 btrfs_header_level(buf), 6971 root->root_key.objectid); 6972 6973 /* 6974 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6975 * anymore. 6976 */ 6977 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6978 } 6979 6980 /* Can return -ENOMEM */ 6981 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6982 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6983 u64 owner, u64 offset) 6984 { 6985 int ret; 6986 struct btrfs_fs_info *fs_info = root->fs_info; 6987 6988 if (btrfs_test_is_dummy_root(root)) 6989 return 0; 6990 6991 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6992 6993 /* 6994 * tree log blocks never actually go into the extent allocation 6995 * tree, just update pinning info and exit early. 6996 */ 6997 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6998 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6999 /* unlocks the pinned mutex */ 7000 btrfs_pin_extent(root, bytenr, num_bytes, 1); 7001 ret = 0; 7002 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7003 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7004 num_bytes, 7005 parent, root_objectid, (int)owner, 7006 BTRFS_DROP_DELAYED_REF, NULL); 7007 } else { 7008 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7009 num_bytes, 7010 parent, root_objectid, owner, 7011 offset, 0, 7012 BTRFS_DROP_DELAYED_REF, NULL); 7013 } 7014 return ret; 7015 } 7016 7017 /* 7018 * when we wait for progress in the block group caching, its because 7019 * our allocation attempt failed at least once. So, we must sleep 7020 * and let some progress happen before we try again. 7021 * 7022 * This function will sleep at least once waiting for new free space to 7023 * show up, and then it will check the block group free space numbers 7024 * for our min num_bytes. Another option is to have it go ahead 7025 * and look in the rbtree for a free extent of a given size, but this 7026 * is a good start. 7027 * 7028 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7029 * any of the information in this block group. 7030 */ 7031 static noinline void 7032 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7033 u64 num_bytes) 7034 { 7035 struct btrfs_caching_control *caching_ctl; 7036 7037 caching_ctl = get_caching_control(cache); 7038 if (!caching_ctl) 7039 return; 7040 7041 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7042 (cache->free_space_ctl->free_space >= num_bytes)); 7043 7044 put_caching_control(caching_ctl); 7045 } 7046 7047 static noinline int 7048 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7049 { 7050 struct btrfs_caching_control *caching_ctl; 7051 int ret = 0; 7052 7053 caching_ctl = get_caching_control(cache); 7054 if (!caching_ctl) 7055 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7056 7057 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7058 if (cache->cached == BTRFS_CACHE_ERROR) 7059 ret = -EIO; 7060 put_caching_control(caching_ctl); 7061 return ret; 7062 } 7063 7064 int __get_raid_index(u64 flags) 7065 { 7066 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7067 return BTRFS_RAID_RAID10; 7068 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7069 return BTRFS_RAID_RAID1; 7070 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7071 return BTRFS_RAID_DUP; 7072 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7073 return BTRFS_RAID_RAID0; 7074 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7075 return BTRFS_RAID_RAID5; 7076 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7077 return BTRFS_RAID_RAID6; 7078 7079 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7080 } 7081 7082 int get_block_group_index(struct btrfs_block_group_cache *cache) 7083 { 7084 return __get_raid_index(cache->flags); 7085 } 7086 7087 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7088 [BTRFS_RAID_RAID10] = "raid10", 7089 [BTRFS_RAID_RAID1] = "raid1", 7090 [BTRFS_RAID_DUP] = "dup", 7091 [BTRFS_RAID_RAID0] = "raid0", 7092 [BTRFS_RAID_SINGLE] = "single", 7093 [BTRFS_RAID_RAID5] = "raid5", 7094 [BTRFS_RAID_RAID6] = "raid6", 7095 }; 7096 7097 static const char *get_raid_name(enum btrfs_raid_types type) 7098 { 7099 if (type >= BTRFS_NR_RAID_TYPES) 7100 return NULL; 7101 7102 return btrfs_raid_type_names[type]; 7103 } 7104 7105 enum btrfs_loop_type { 7106 LOOP_CACHING_NOWAIT = 0, 7107 LOOP_CACHING_WAIT = 1, 7108 LOOP_ALLOC_CHUNK = 2, 7109 LOOP_NO_EMPTY_SIZE = 3, 7110 }; 7111 7112 static inline void 7113 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7114 int delalloc) 7115 { 7116 if (delalloc) 7117 down_read(&cache->data_rwsem); 7118 } 7119 7120 static inline void 7121 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7122 int delalloc) 7123 { 7124 btrfs_get_block_group(cache); 7125 if (delalloc) 7126 down_read(&cache->data_rwsem); 7127 } 7128 7129 static struct btrfs_block_group_cache * 7130 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7131 struct btrfs_free_cluster *cluster, 7132 int delalloc) 7133 { 7134 struct btrfs_block_group_cache *used_bg = NULL; 7135 7136 spin_lock(&cluster->refill_lock); 7137 while (1) { 7138 used_bg = cluster->block_group; 7139 if (!used_bg) 7140 return NULL; 7141 7142 if (used_bg == block_group) 7143 return used_bg; 7144 7145 btrfs_get_block_group(used_bg); 7146 7147 if (!delalloc) 7148 return used_bg; 7149 7150 if (down_read_trylock(&used_bg->data_rwsem)) 7151 return used_bg; 7152 7153 spin_unlock(&cluster->refill_lock); 7154 7155 down_read(&used_bg->data_rwsem); 7156 7157 spin_lock(&cluster->refill_lock); 7158 if (used_bg == cluster->block_group) 7159 return used_bg; 7160 7161 up_read(&used_bg->data_rwsem); 7162 btrfs_put_block_group(used_bg); 7163 } 7164 } 7165 7166 static inline void 7167 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7168 int delalloc) 7169 { 7170 if (delalloc) 7171 up_read(&cache->data_rwsem); 7172 btrfs_put_block_group(cache); 7173 } 7174 7175 /* 7176 * walks the btree of allocated extents and find a hole of a given size. 7177 * The key ins is changed to record the hole: 7178 * ins->objectid == start position 7179 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7180 * ins->offset == the size of the hole. 7181 * Any available blocks before search_start are skipped. 7182 * 7183 * If there is no suitable free space, we will record the max size of 7184 * the free space extent currently. 7185 */ 7186 static noinline int find_free_extent(struct btrfs_root *orig_root, 7187 u64 num_bytes, u64 empty_size, 7188 u64 hint_byte, struct btrfs_key *ins, 7189 u64 flags, int delalloc) 7190 { 7191 int ret = 0; 7192 struct btrfs_root *root = orig_root->fs_info->extent_root; 7193 struct btrfs_free_cluster *last_ptr = NULL; 7194 struct btrfs_block_group_cache *block_group = NULL; 7195 u64 search_start = 0; 7196 u64 max_extent_size = 0; 7197 u64 empty_cluster = 0; 7198 struct btrfs_space_info *space_info; 7199 int loop = 0; 7200 int index = __get_raid_index(flags); 7201 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 7202 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 7203 bool failed_cluster_refill = false; 7204 bool failed_alloc = false; 7205 bool use_cluster = true; 7206 bool have_caching_bg = false; 7207 bool orig_have_caching_bg = false; 7208 bool full_search = false; 7209 7210 WARN_ON(num_bytes < root->sectorsize); 7211 ins->type = BTRFS_EXTENT_ITEM_KEY; 7212 ins->objectid = 0; 7213 ins->offset = 0; 7214 7215 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7216 7217 space_info = __find_space_info(root->fs_info, flags); 7218 if (!space_info) { 7219 btrfs_err(root->fs_info, "No space info for %llu", flags); 7220 return -ENOSPC; 7221 } 7222 7223 /* 7224 * If our free space is heavily fragmented we may not be able to make 7225 * big contiguous allocations, so instead of doing the expensive search 7226 * for free space, simply return ENOSPC with our max_extent_size so we 7227 * can go ahead and search for a more manageable chunk. 7228 * 7229 * If our max_extent_size is large enough for our allocation simply 7230 * disable clustering since we will likely not be able to find enough 7231 * space to create a cluster and induce latency trying. 7232 */ 7233 if (unlikely(space_info->max_extent_size)) { 7234 spin_lock(&space_info->lock); 7235 if (space_info->max_extent_size && 7236 num_bytes > space_info->max_extent_size) { 7237 ins->offset = space_info->max_extent_size; 7238 spin_unlock(&space_info->lock); 7239 return -ENOSPC; 7240 } else if (space_info->max_extent_size) { 7241 use_cluster = false; 7242 } 7243 spin_unlock(&space_info->lock); 7244 } 7245 7246 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7247 if (last_ptr) { 7248 spin_lock(&last_ptr->lock); 7249 if (last_ptr->block_group) 7250 hint_byte = last_ptr->window_start; 7251 if (last_ptr->fragmented) { 7252 /* 7253 * We still set window_start so we can keep track of the 7254 * last place we found an allocation to try and save 7255 * some time. 7256 */ 7257 hint_byte = last_ptr->window_start; 7258 use_cluster = false; 7259 } 7260 spin_unlock(&last_ptr->lock); 7261 } 7262 7263 search_start = max(search_start, first_logical_byte(root, 0)); 7264 search_start = max(search_start, hint_byte); 7265 if (search_start == hint_byte) { 7266 block_group = btrfs_lookup_block_group(root->fs_info, 7267 search_start); 7268 /* 7269 * we don't want to use the block group if it doesn't match our 7270 * allocation bits, or if its not cached. 7271 * 7272 * However if we are re-searching with an ideal block group 7273 * picked out then we don't care that the block group is cached. 7274 */ 7275 if (block_group && block_group_bits(block_group, flags) && 7276 block_group->cached != BTRFS_CACHE_NO) { 7277 down_read(&space_info->groups_sem); 7278 if (list_empty(&block_group->list) || 7279 block_group->ro) { 7280 /* 7281 * someone is removing this block group, 7282 * we can't jump into the have_block_group 7283 * target because our list pointers are not 7284 * valid 7285 */ 7286 btrfs_put_block_group(block_group); 7287 up_read(&space_info->groups_sem); 7288 } else { 7289 index = get_block_group_index(block_group); 7290 btrfs_lock_block_group(block_group, delalloc); 7291 goto have_block_group; 7292 } 7293 } else if (block_group) { 7294 btrfs_put_block_group(block_group); 7295 } 7296 } 7297 search: 7298 have_caching_bg = false; 7299 if (index == 0 || index == __get_raid_index(flags)) 7300 full_search = true; 7301 down_read(&space_info->groups_sem); 7302 list_for_each_entry(block_group, &space_info->block_groups[index], 7303 list) { 7304 u64 offset; 7305 int cached; 7306 7307 btrfs_grab_block_group(block_group, delalloc); 7308 search_start = block_group->key.objectid; 7309 7310 /* 7311 * this can happen if we end up cycling through all the 7312 * raid types, but we want to make sure we only allocate 7313 * for the proper type. 7314 */ 7315 if (!block_group_bits(block_group, flags)) { 7316 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7317 BTRFS_BLOCK_GROUP_RAID1 | 7318 BTRFS_BLOCK_GROUP_RAID5 | 7319 BTRFS_BLOCK_GROUP_RAID6 | 7320 BTRFS_BLOCK_GROUP_RAID10; 7321 7322 /* 7323 * if they asked for extra copies and this block group 7324 * doesn't provide them, bail. This does allow us to 7325 * fill raid0 from raid1. 7326 */ 7327 if ((flags & extra) && !(block_group->flags & extra)) 7328 goto loop; 7329 } 7330 7331 have_block_group: 7332 cached = block_group_cache_done(block_group); 7333 if (unlikely(!cached)) { 7334 have_caching_bg = true; 7335 ret = cache_block_group(block_group, 0); 7336 BUG_ON(ret < 0); 7337 ret = 0; 7338 } 7339 7340 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7341 goto loop; 7342 if (unlikely(block_group->ro)) 7343 goto loop; 7344 7345 /* 7346 * Ok we want to try and use the cluster allocator, so 7347 * lets look there 7348 */ 7349 if (last_ptr && use_cluster) { 7350 struct btrfs_block_group_cache *used_block_group; 7351 unsigned long aligned_cluster; 7352 /* 7353 * the refill lock keeps out other 7354 * people trying to start a new cluster 7355 */ 7356 used_block_group = btrfs_lock_cluster(block_group, 7357 last_ptr, 7358 delalloc); 7359 if (!used_block_group) 7360 goto refill_cluster; 7361 7362 if (used_block_group != block_group && 7363 (used_block_group->ro || 7364 !block_group_bits(used_block_group, flags))) 7365 goto release_cluster; 7366 7367 offset = btrfs_alloc_from_cluster(used_block_group, 7368 last_ptr, 7369 num_bytes, 7370 used_block_group->key.objectid, 7371 &max_extent_size); 7372 if (offset) { 7373 /* we have a block, we're done */ 7374 spin_unlock(&last_ptr->refill_lock); 7375 trace_btrfs_reserve_extent_cluster(root, 7376 used_block_group, 7377 search_start, num_bytes); 7378 if (used_block_group != block_group) { 7379 btrfs_release_block_group(block_group, 7380 delalloc); 7381 block_group = used_block_group; 7382 } 7383 goto checks; 7384 } 7385 7386 WARN_ON(last_ptr->block_group != used_block_group); 7387 release_cluster: 7388 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7389 * set up a new clusters, so lets just skip it 7390 * and let the allocator find whatever block 7391 * it can find. If we reach this point, we 7392 * will have tried the cluster allocator 7393 * plenty of times and not have found 7394 * anything, so we are likely way too 7395 * fragmented for the clustering stuff to find 7396 * anything. 7397 * 7398 * However, if the cluster is taken from the 7399 * current block group, release the cluster 7400 * first, so that we stand a better chance of 7401 * succeeding in the unclustered 7402 * allocation. */ 7403 if (loop >= LOOP_NO_EMPTY_SIZE && 7404 used_block_group != block_group) { 7405 spin_unlock(&last_ptr->refill_lock); 7406 btrfs_release_block_group(used_block_group, 7407 delalloc); 7408 goto unclustered_alloc; 7409 } 7410 7411 /* 7412 * this cluster didn't work out, free it and 7413 * start over 7414 */ 7415 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7416 7417 if (used_block_group != block_group) 7418 btrfs_release_block_group(used_block_group, 7419 delalloc); 7420 refill_cluster: 7421 if (loop >= LOOP_NO_EMPTY_SIZE) { 7422 spin_unlock(&last_ptr->refill_lock); 7423 goto unclustered_alloc; 7424 } 7425 7426 aligned_cluster = max_t(unsigned long, 7427 empty_cluster + empty_size, 7428 block_group->full_stripe_len); 7429 7430 /* allocate a cluster in this block group */ 7431 ret = btrfs_find_space_cluster(root, block_group, 7432 last_ptr, search_start, 7433 num_bytes, 7434 aligned_cluster); 7435 if (ret == 0) { 7436 /* 7437 * now pull our allocation out of this 7438 * cluster 7439 */ 7440 offset = btrfs_alloc_from_cluster(block_group, 7441 last_ptr, 7442 num_bytes, 7443 search_start, 7444 &max_extent_size); 7445 if (offset) { 7446 /* we found one, proceed */ 7447 spin_unlock(&last_ptr->refill_lock); 7448 trace_btrfs_reserve_extent_cluster(root, 7449 block_group, search_start, 7450 num_bytes); 7451 goto checks; 7452 } 7453 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7454 && !failed_cluster_refill) { 7455 spin_unlock(&last_ptr->refill_lock); 7456 7457 failed_cluster_refill = true; 7458 wait_block_group_cache_progress(block_group, 7459 num_bytes + empty_cluster + empty_size); 7460 goto have_block_group; 7461 } 7462 7463 /* 7464 * at this point we either didn't find a cluster 7465 * or we weren't able to allocate a block from our 7466 * cluster. Free the cluster we've been trying 7467 * to use, and go to the next block group 7468 */ 7469 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7470 spin_unlock(&last_ptr->refill_lock); 7471 goto loop; 7472 } 7473 7474 unclustered_alloc: 7475 /* 7476 * We are doing an unclustered alloc, set the fragmented flag so 7477 * we don't bother trying to setup a cluster again until we get 7478 * more space. 7479 */ 7480 if (unlikely(last_ptr)) { 7481 spin_lock(&last_ptr->lock); 7482 last_ptr->fragmented = 1; 7483 spin_unlock(&last_ptr->lock); 7484 } 7485 spin_lock(&block_group->free_space_ctl->tree_lock); 7486 if (cached && 7487 block_group->free_space_ctl->free_space < 7488 num_bytes + empty_cluster + empty_size) { 7489 if (block_group->free_space_ctl->free_space > 7490 max_extent_size) 7491 max_extent_size = 7492 block_group->free_space_ctl->free_space; 7493 spin_unlock(&block_group->free_space_ctl->tree_lock); 7494 goto loop; 7495 } 7496 spin_unlock(&block_group->free_space_ctl->tree_lock); 7497 7498 offset = btrfs_find_space_for_alloc(block_group, search_start, 7499 num_bytes, empty_size, 7500 &max_extent_size); 7501 /* 7502 * If we didn't find a chunk, and we haven't failed on this 7503 * block group before, and this block group is in the middle of 7504 * caching and we are ok with waiting, then go ahead and wait 7505 * for progress to be made, and set failed_alloc to true. 7506 * 7507 * If failed_alloc is true then we've already waited on this 7508 * block group once and should move on to the next block group. 7509 */ 7510 if (!offset && !failed_alloc && !cached && 7511 loop > LOOP_CACHING_NOWAIT) { 7512 wait_block_group_cache_progress(block_group, 7513 num_bytes + empty_size); 7514 failed_alloc = true; 7515 goto have_block_group; 7516 } else if (!offset) { 7517 goto loop; 7518 } 7519 checks: 7520 search_start = ALIGN(offset, root->stripesize); 7521 7522 /* move on to the next group */ 7523 if (search_start + num_bytes > 7524 block_group->key.objectid + block_group->key.offset) { 7525 btrfs_add_free_space(block_group, offset, num_bytes); 7526 goto loop; 7527 } 7528 7529 if (offset < search_start) 7530 btrfs_add_free_space(block_group, offset, 7531 search_start - offset); 7532 BUG_ON(offset > search_start); 7533 7534 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7535 alloc_type, delalloc); 7536 if (ret == -EAGAIN) { 7537 btrfs_add_free_space(block_group, offset, num_bytes); 7538 goto loop; 7539 } 7540 btrfs_inc_block_group_reservations(block_group); 7541 7542 /* we are all good, lets return */ 7543 ins->objectid = search_start; 7544 ins->offset = num_bytes; 7545 7546 trace_btrfs_reserve_extent(orig_root, block_group, 7547 search_start, num_bytes); 7548 btrfs_release_block_group(block_group, delalloc); 7549 break; 7550 loop: 7551 failed_cluster_refill = false; 7552 failed_alloc = false; 7553 BUG_ON(index != get_block_group_index(block_group)); 7554 btrfs_release_block_group(block_group, delalloc); 7555 } 7556 up_read(&space_info->groups_sem); 7557 7558 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7559 && !orig_have_caching_bg) 7560 orig_have_caching_bg = true; 7561 7562 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7563 goto search; 7564 7565 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7566 goto search; 7567 7568 /* 7569 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7570 * caching kthreads as we move along 7571 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7572 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7573 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7574 * again 7575 */ 7576 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7577 index = 0; 7578 if (loop == LOOP_CACHING_NOWAIT) { 7579 /* 7580 * We want to skip the LOOP_CACHING_WAIT step if we 7581 * don't have any uncached bgs and we've already done a 7582 * full search through. 7583 */ 7584 if (orig_have_caching_bg || !full_search) 7585 loop = LOOP_CACHING_WAIT; 7586 else 7587 loop = LOOP_ALLOC_CHUNK; 7588 } else { 7589 loop++; 7590 } 7591 7592 if (loop == LOOP_ALLOC_CHUNK) { 7593 struct btrfs_trans_handle *trans; 7594 int exist = 0; 7595 7596 trans = current->journal_info; 7597 if (trans) 7598 exist = 1; 7599 else 7600 trans = btrfs_join_transaction(root); 7601 7602 if (IS_ERR(trans)) { 7603 ret = PTR_ERR(trans); 7604 goto out; 7605 } 7606 7607 ret = do_chunk_alloc(trans, root, flags, 7608 CHUNK_ALLOC_FORCE); 7609 7610 /* 7611 * If we can't allocate a new chunk we've already looped 7612 * through at least once, move on to the NO_EMPTY_SIZE 7613 * case. 7614 */ 7615 if (ret == -ENOSPC) 7616 loop = LOOP_NO_EMPTY_SIZE; 7617 7618 /* 7619 * Do not bail out on ENOSPC since we 7620 * can do more things. 7621 */ 7622 if (ret < 0 && ret != -ENOSPC) 7623 btrfs_abort_transaction(trans, 7624 root, ret); 7625 else 7626 ret = 0; 7627 if (!exist) 7628 btrfs_end_transaction(trans, root); 7629 if (ret) 7630 goto out; 7631 } 7632 7633 if (loop == LOOP_NO_EMPTY_SIZE) { 7634 /* 7635 * Don't loop again if we already have no empty_size and 7636 * no empty_cluster. 7637 */ 7638 if (empty_size == 0 && 7639 empty_cluster == 0) { 7640 ret = -ENOSPC; 7641 goto out; 7642 } 7643 empty_size = 0; 7644 empty_cluster = 0; 7645 } 7646 7647 goto search; 7648 } else if (!ins->objectid) { 7649 ret = -ENOSPC; 7650 } else if (ins->objectid) { 7651 if (!use_cluster && last_ptr) { 7652 spin_lock(&last_ptr->lock); 7653 last_ptr->window_start = ins->objectid; 7654 spin_unlock(&last_ptr->lock); 7655 } 7656 ret = 0; 7657 } 7658 out: 7659 if (ret == -ENOSPC) { 7660 spin_lock(&space_info->lock); 7661 space_info->max_extent_size = max_extent_size; 7662 spin_unlock(&space_info->lock); 7663 ins->offset = max_extent_size; 7664 } 7665 return ret; 7666 } 7667 7668 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7669 int dump_block_groups) 7670 { 7671 struct btrfs_block_group_cache *cache; 7672 int index = 0; 7673 7674 spin_lock(&info->lock); 7675 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7676 info->flags, 7677 info->total_bytes - info->bytes_used - info->bytes_pinned - 7678 info->bytes_reserved - info->bytes_readonly, 7679 (info->full) ? "" : "not "); 7680 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7681 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7682 info->total_bytes, info->bytes_used, info->bytes_pinned, 7683 info->bytes_reserved, info->bytes_may_use, 7684 info->bytes_readonly); 7685 spin_unlock(&info->lock); 7686 7687 if (!dump_block_groups) 7688 return; 7689 7690 down_read(&info->groups_sem); 7691 again: 7692 list_for_each_entry(cache, &info->block_groups[index], list) { 7693 spin_lock(&cache->lock); 7694 printk(KERN_INFO "BTRFS: " 7695 "block group %llu has %llu bytes, " 7696 "%llu used %llu pinned %llu reserved %s\n", 7697 cache->key.objectid, cache->key.offset, 7698 btrfs_block_group_used(&cache->item), cache->pinned, 7699 cache->reserved, cache->ro ? "[readonly]" : ""); 7700 btrfs_dump_free_space(cache, bytes); 7701 spin_unlock(&cache->lock); 7702 } 7703 if (++index < BTRFS_NR_RAID_TYPES) 7704 goto again; 7705 up_read(&info->groups_sem); 7706 } 7707 7708 int btrfs_reserve_extent(struct btrfs_root *root, 7709 u64 num_bytes, u64 min_alloc_size, 7710 u64 empty_size, u64 hint_byte, 7711 struct btrfs_key *ins, int is_data, int delalloc) 7712 { 7713 bool final_tried = num_bytes == min_alloc_size; 7714 u64 flags; 7715 int ret; 7716 7717 flags = btrfs_get_alloc_profile(root, is_data); 7718 again: 7719 WARN_ON(num_bytes < root->sectorsize); 7720 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7721 flags, delalloc); 7722 if (!ret && !is_data) { 7723 btrfs_dec_block_group_reservations(root->fs_info, 7724 ins->objectid); 7725 } else if (ret == -ENOSPC) { 7726 if (!final_tried && ins->offset) { 7727 num_bytes = min(num_bytes >> 1, ins->offset); 7728 num_bytes = round_down(num_bytes, root->sectorsize); 7729 num_bytes = max(num_bytes, min_alloc_size); 7730 if (num_bytes == min_alloc_size) 7731 final_tried = true; 7732 goto again; 7733 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7734 struct btrfs_space_info *sinfo; 7735 7736 sinfo = __find_space_info(root->fs_info, flags); 7737 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7738 flags, num_bytes); 7739 if (sinfo) 7740 dump_space_info(sinfo, num_bytes, 1); 7741 } 7742 } 7743 7744 return ret; 7745 } 7746 7747 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7748 u64 start, u64 len, 7749 int pin, int delalloc) 7750 { 7751 struct btrfs_block_group_cache *cache; 7752 int ret = 0; 7753 7754 cache = btrfs_lookup_block_group(root->fs_info, start); 7755 if (!cache) { 7756 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7757 start); 7758 return -ENOSPC; 7759 } 7760 7761 if (pin) 7762 pin_down_extent(root, cache, start, len, 1); 7763 else { 7764 if (btrfs_test_opt(root, DISCARD)) 7765 ret = btrfs_discard_extent(root, start, len, NULL); 7766 btrfs_add_free_space(cache, start, len); 7767 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7768 } 7769 7770 btrfs_put_block_group(cache); 7771 7772 trace_btrfs_reserved_extent_free(root, start, len); 7773 7774 return ret; 7775 } 7776 7777 int btrfs_free_reserved_extent(struct btrfs_root *root, 7778 u64 start, u64 len, int delalloc) 7779 { 7780 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7781 } 7782 7783 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7784 u64 start, u64 len) 7785 { 7786 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7787 } 7788 7789 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7790 struct btrfs_root *root, 7791 u64 parent, u64 root_objectid, 7792 u64 flags, u64 owner, u64 offset, 7793 struct btrfs_key *ins, int ref_mod) 7794 { 7795 int ret; 7796 struct btrfs_fs_info *fs_info = root->fs_info; 7797 struct btrfs_extent_item *extent_item; 7798 struct btrfs_extent_inline_ref *iref; 7799 struct btrfs_path *path; 7800 struct extent_buffer *leaf; 7801 int type; 7802 u32 size; 7803 7804 if (parent > 0) 7805 type = BTRFS_SHARED_DATA_REF_KEY; 7806 else 7807 type = BTRFS_EXTENT_DATA_REF_KEY; 7808 7809 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7810 7811 path = btrfs_alloc_path(); 7812 if (!path) 7813 return -ENOMEM; 7814 7815 path->leave_spinning = 1; 7816 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7817 ins, size); 7818 if (ret) { 7819 btrfs_free_path(path); 7820 return ret; 7821 } 7822 7823 leaf = path->nodes[0]; 7824 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7825 struct btrfs_extent_item); 7826 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7827 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7828 btrfs_set_extent_flags(leaf, extent_item, 7829 flags | BTRFS_EXTENT_FLAG_DATA); 7830 7831 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7832 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7833 if (parent > 0) { 7834 struct btrfs_shared_data_ref *ref; 7835 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7836 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7837 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7838 } else { 7839 struct btrfs_extent_data_ref *ref; 7840 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7841 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7842 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7843 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7844 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7845 } 7846 7847 btrfs_mark_buffer_dirty(path->nodes[0]); 7848 btrfs_free_path(path); 7849 7850 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 7851 ins->offset); 7852 if (ret) 7853 return ret; 7854 7855 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7856 if (ret) { /* -ENOENT, logic error */ 7857 btrfs_err(fs_info, "update block group failed for %llu %llu", 7858 ins->objectid, ins->offset); 7859 BUG(); 7860 } 7861 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7862 return ret; 7863 } 7864 7865 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7866 struct btrfs_root *root, 7867 u64 parent, u64 root_objectid, 7868 u64 flags, struct btrfs_disk_key *key, 7869 int level, struct btrfs_key *ins) 7870 { 7871 int ret; 7872 struct btrfs_fs_info *fs_info = root->fs_info; 7873 struct btrfs_extent_item *extent_item; 7874 struct btrfs_tree_block_info *block_info; 7875 struct btrfs_extent_inline_ref *iref; 7876 struct btrfs_path *path; 7877 struct extent_buffer *leaf; 7878 u32 size = sizeof(*extent_item) + sizeof(*iref); 7879 u64 num_bytes = ins->offset; 7880 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7881 SKINNY_METADATA); 7882 7883 if (!skinny_metadata) 7884 size += sizeof(*block_info); 7885 7886 path = btrfs_alloc_path(); 7887 if (!path) { 7888 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7889 root->nodesize); 7890 return -ENOMEM; 7891 } 7892 7893 path->leave_spinning = 1; 7894 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7895 ins, size); 7896 if (ret) { 7897 btrfs_free_path(path); 7898 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7899 root->nodesize); 7900 return ret; 7901 } 7902 7903 leaf = path->nodes[0]; 7904 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7905 struct btrfs_extent_item); 7906 btrfs_set_extent_refs(leaf, extent_item, 1); 7907 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7908 btrfs_set_extent_flags(leaf, extent_item, 7909 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7910 7911 if (skinny_metadata) { 7912 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7913 num_bytes = root->nodesize; 7914 } else { 7915 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7916 btrfs_set_tree_block_key(leaf, block_info, key); 7917 btrfs_set_tree_block_level(leaf, block_info, level); 7918 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7919 } 7920 7921 if (parent > 0) { 7922 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7923 btrfs_set_extent_inline_ref_type(leaf, iref, 7924 BTRFS_SHARED_BLOCK_REF_KEY); 7925 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7926 } else { 7927 btrfs_set_extent_inline_ref_type(leaf, iref, 7928 BTRFS_TREE_BLOCK_REF_KEY); 7929 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7930 } 7931 7932 btrfs_mark_buffer_dirty(leaf); 7933 btrfs_free_path(path); 7934 7935 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 7936 num_bytes); 7937 if (ret) 7938 return ret; 7939 7940 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7941 1); 7942 if (ret) { /* -ENOENT, logic error */ 7943 btrfs_err(fs_info, "update block group failed for %llu %llu", 7944 ins->objectid, ins->offset); 7945 BUG(); 7946 } 7947 7948 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7949 return ret; 7950 } 7951 7952 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7953 struct btrfs_root *root, 7954 u64 root_objectid, u64 owner, 7955 u64 offset, u64 ram_bytes, 7956 struct btrfs_key *ins) 7957 { 7958 int ret; 7959 7960 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7961 7962 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7963 ins->offset, 0, 7964 root_objectid, owner, offset, 7965 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 7966 NULL); 7967 return ret; 7968 } 7969 7970 /* 7971 * this is used by the tree logging recovery code. It records that 7972 * an extent has been allocated and makes sure to clear the free 7973 * space cache bits as well 7974 */ 7975 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7976 struct btrfs_root *root, 7977 u64 root_objectid, u64 owner, u64 offset, 7978 struct btrfs_key *ins) 7979 { 7980 int ret; 7981 struct btrfs_block_group_cache *block_group; 7982 7983 /* 7984 * Mixed block groups will exclude before processing the log so we only 7985 * need to do the exclude dance if this fs isn't mixed. 7986 */ 7987 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7988 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7989 if (ret) 7990 return ret; 7991 } 7992 7993 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7994 if (!block_group) 7995 return -EINVAL; 7996 7997 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7998 RESERVE_ALLOC_NO_ACCOUNT, 0); 7999 BUG_ON(ret); /* logic error */ 8000 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 8001 0, owner, offset, ins, 1); 8002 btrfs_put_block_group(block_group); 8003 return ret; 8004 } 8005 8006 static struct extent_buffer * 8007 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8008 u64 bytenr, int level) 8009 { 8010 struct extent_buffer *buf; 8011 8012 buf = btrfs_find_create_tree_block(root, bytenr); 8013 if (!buf) 8014 return ERR_PTR(-ENOMEM); 8015 btrfs_set_header_generation(buf, trans->transid); 8016 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8017 btrfs_tree_lock(buf); 8018 clean_tree_block(trans, root->fs_info, buf); 8019 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8020 8021 btrfs_set_lock_blocking(buf); 8022 set_extent_buffer_uptodate(buf); 8023 8024 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8025 buf->log_index = root->log_transid % 2; 8026 /* 8027 * we allow two log transactions at a time, use different 8028 * EXENT bit to differentiate dirty pages. 8029 */ 8030 if (buf->log_index == 0) 8031 set_extent_dirty(&root->dirty_log_pages, buf->start, 8032 buf->start + buf->len - 1, GFP_NOFS); 8033 else 8034 set_extent_new(&root->dirty_log_pages, buf->start, 8035 buf->start + buf->len - 1); 8036 } else { 8037 buf->log_index = -1; 8038 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8039 buf->start + buf->len - 1, GFP_NOFS); 8040 } 8041 trans->blocks_used++; 8042 /* this returns a buffer locked for blocking */ 8043 return buf; 8044 } 8045 8046 static struct btrfs_block_rsv * 8047 use_block_rsv(struct btrfs_trans_handle *trans, 8048 struct btrfs_root *root, u32 blocksize) 8049 { 8050 struct btrfs_block_rsv *block_rsv; 8051 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 8052 int ret; 8053 bool global_updated = false; 8054 8055 block_rsv = get_block_rsv(trans, root); 8056 8057 if (unlikely(block_rsv->size == 0)) 8058 goto try_reserve; 8059 again: 8060 ret = block_rsv_use_bytes(block_rsv, blocksize); 8061 if (!ret) 8062 return block_rsv; 8063 8064 if (block_rsv->failfast) 8065 return ERR_PTR(ret); 8066 8067 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8068 global_updated = true; 8069 update_global_block_rsv(root->fs_info); 8070 goto again; 8071 } 8072 8073 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 8074 static DEFINE_RATELIMIT_STATE(_rs, 8075 DEFAULT_RATELIMIT_INTERVAL * 10, 8076 /*DEFAULT_RATELIMIT_BURST*/ 1); 8077 if (__ratelimit(&_rs)) 8078 WARN(1, KERN_DEBUG 8079 "BTRFS: block rsv returned %d\n", ret); 8080 } 8081 try_reserve: 8082 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8083 BTRFS_RESERVE_NO_FLUSH); 8084 if (!ret) 8085 return block_rsv; 8086 /* 8087 * If we couldn't reserve metadata bytes try and use some from 8088 * the global reserve if its space type is the same as the global 8089 * reservation. 8090 */ 8091 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8092 block_rsv->space_info == global_rsv->space_info) { 8093 ret = block_rsv_use_bytes(global_rsv, blocksize); 8094 if (!ret) 8095 return global_rsv; 8096 } 8097 return ERR_PTR(ret); 8098 } 8099 8100 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8101 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8102 { 8103 block_rsv_add_bytes(block_rsv, blocksize, 0); 8104 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8105 } 8106 8107 /* 8108 * finds a free extent and does all the dirty work required for allocation 8109 * returns the tree buffer or an ERR_PTR on error. 8110 */ 8111 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8112 struct btrfs_root *root, 8113 u64 parent, u64 root_objectid, 8114 struct btrfs_disk_key *key, int level, 8115 u64 hint, u64 empty_size) 8116 { 8117 struct btrfs_key ins; 8118 struct btrfs_block_rsv *block_rsv; 8119 struct extent_buffer *buf; 8120 struct btrfs_delayed_extent_op *extent_op; 8121 u64 flags = 0; 8122 int ret; 8123 u32 blocksize = root->nodesize; 8124 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8125 SKINNY_METADATA); 8126 8127 if (btrfs_test_is_dummy_root(root)) { 8128 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8129 level); 8130 if (!IS_ERR(buf)) 8131 root->alloc_bytenr += blocksize; 8132 return buf; 8133 } 8134 8135 block_rsv = use_block_rsv(trans, root, blocksize); 8136 if (IS_ERR(block_rsv)) 8137 return ERR_CAST(block_rsv); 8138 8139 ret = btrfs_reserve_extent(root, blocksize, blocksize, 8140 empty_size, hint, &ins, 0, 0); 8141 if (ret) 8142 goto out_unuse; 8143 8144 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8145 if (IS_ERR(buf)) { 8146 ret = PTR_ERR(buf); 8147 goto out_free_reserved; 8148 } 8149 8150 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8151 if (parent == 0) 8152 parent = ins.objectid; 8153 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8154 } else 8155 BUG_ON(parent > 0); 8156 8157 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8158 extent_op = btrfs_alloc_delayed_extent_op(); 8159 if (!extent_op) { 8160 ret = -ENOMEM; 8161 goto out_free_buf; 8162 } 8163 if (key) 8164 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8165 else 8166 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8167 extent_op->flags_to_set = flags; 8168 extent_op->update_key = skinny_metadata ? false : true; 8169 extent_op->update_flags = true; 8170 extent_op->is_data = false; 8171 extent_op->level = level; 8172 8173 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8174 ins.objectid, ins.offset, 8175 parent, root_objectid, level, 8176 BTRFS_ADD_DELAYED_EXTENT, 8177 extent_op); 8178 if (ret) 8179 goto out_free_delayed; 8180 } 8181 return buf; 8182 8183 out_free_delayed: 8184 btrfs_free_delayed_extent_op(extent_op); 8185 out_free_buf: 8186 free_extent_buffer(buf); 8187 out_free_reserved: 8188 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8189 out_unuse: 8190 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8191 return ERR_PTR(ret); 8192 } 8193 8194 struct walk_control { 8195 u64 refs[BTRFS_MAX_LEVEL]; 8196 u64 flags[BTRFS_MAX_LEVEL]; 8197 struct btrfs_key update_progress; 8198 int stage; 8199 int level; 8200 int shared_level; 8201 int update_ref; 8202 int keep_locks; 8203 int reada_slot; 8204 int reada_count; 8205 int for_reloc; 8206 }; 8207 8208 #define DROP_REFERENCE 1 8209 #define UPDATE_BACKREF 2 8210 8211 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8212 struct btrfs_root *root, 8213 struct walk_control *wc, 8214 struct btrfs_path *path) 8215 { 8216 u64 bytenr; 8217 u64 generation; 8218 u64 refs; 8219 u64 flags; 8220 u32 nritems; 8221 u32 blocksize; 8222 struct btrfs_key key; 8223 struct extent_buffer *eb; 8224 int ret; 8225 int slot; 8226 int nread = 0; 8227 8228 if (path->slots[wc->level] < wc->reada_slot) { 8229 wc->reada_count = wc->reada_count * 2 / 3; 8230 wc->reada_count = max(wc->reada_count, 2); 8231 } else { 8232 wc->reada_count = wc->reada_count * 3 / 2; 8233 wc->reada_count = min_t(int, wc->reada_count, 8234 BTRFS_NODEPTRS_PER_BLOCK(root)); 8235 } 8236 8237 eb = path->nodes[wc->level]; 8238 nritems = btrfs_header_nritems(eb); 8239 blocksize = root->nodesize; 8240 8241 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8242 if (nread >= wc->reada_count) 8243 break; 8244 8245 cond_resched(); 8246 bytenr = btrfs_node_blockptr(eb, slot); 8247 generation = btrfs_node_ptr_generation(eb, slot); 8248 8249 if (slot == path->slots[wc->level]) 8250 goto reada; 8251 8252 if (wc->stage == UPDATE_BACKREF && 8253 generation <= root->root_key.offset) 8254 continue; 8255 8256 /* We don't lock the tree block, it's OK to be racy here */ 8257 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8258 wc->level - 1, 1, &refs, 8259 &flags); 8260 /* We don't care about errors in readahead. */ 8261 if (ret < 0) 8262 continue; 8263 BUG_ON(refs == 0); 8264 8265 if (wc->stage == DROP_REFERENCE) { 8266 if (refs == 1) 8267 goto reada; 8268 8269 if (wc->level == 1 && 8270 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8271 continue; 8272 if (!wc->update_ref || 8273 generation <= root->root_key.offset) 8274 continue; 8275 btrfs_node_key_to_cpu(eb, &key, slot); 8276 ret = btrfs_comp_cpu_keys(&key, 8277 &wc->update_progress); 8278 if (ret < 0) 8279 continue; 8280 } else { 8281 if (wc->level == 1 && 8282 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8283 continue; 8284 } 8285 reada: 8286 readahead_tree_block(root, bytenr); 8287 nread++; 8288 } 8289 wc->reada_slot = slot; 8290 } 8291 8292 /* 8293 * These may not be seen by the usual inc/dec ref code so we have to 8294 * add them here. 8295 */ 8296 static int record_one_subtree_extent(struct btrfs_trans_handle *trans, 8297 struct btrfs_root *root, u64 bytenr, 8298 u64 num_bytes) 8299 { 8300 struct btrfs_qgroup_extent_record *qrecord; 8301 struct btrfs_delayed_ref_root *delayed_refs; 8302 8303 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS); 8304 if (!qrecord) 8305 return -ENOMEM; 8306 8307 qrecord->bytenr = bytenr; 8308 qrecord->num_bytes = num_bytes; 8309 qrecord->old_roots = NULL; 8310 8311 delayed_refs = &trans->transaction->delayed_refs; 8312 spin_lock(&delayed_refs->lock); 8313 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord)) 8314 kfree(qrecord); 8315 spin_unlock(&delayed_refs->lock); 8316 8317 return 0; 8318 } 8319 8320 static int account_leaf_items(struct btrfs_trans_handle *trans, 8321 struct btrfs_root *root, 8322 struct extent_buffer *eb) 8323 { 8324 int nr = btrfs_header_nritems(eb); 8325 int i, extent_type, ret; 8326 struct btrfs_key key; 8327 struct btrfs_file_extent_item *fi; 8328 u64 bytenr, num_bytes; 8329 8330 /* We can be called directly from walk_up_proc() */ 8331 if (!root->fs_info->quota_enabled) 8332 return 0; 8333 8334 for (i = 0; i < nr; i++) { 8335 btrfs_item_key_to_cpu(eb, &key, i); 8336 8337 if (key.type != BTRFS_EXTENT_DATA_KEY) 8338 continue; 8339 8340 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8341 /* filter out non qgroup-accountable extents */ 8342 extent_type = btrfs_file_extent_type(eb, fi); 8343 8344 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8345 continue; 8346 8347 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8348 if (!bytenr) 8349 continue; 8350 8351 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8352 8353 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes); 8354 if (ret) 8355 return ret; 8356 } 8357 return 0; 8358 } 8359 8360 /* 8361 * Walk up the tree from the bottom, freeing leaves and any interior 8362 * nodes which have had all slots visited. If a node (leaf or 8363 * interior) is freed, the node above it will have it's slot 8364 * incremented. The root node will never be freed. 8365 * 8366 * At the end of this function, we should have a path which has all 8367 * slots incremented to the next position for a search. If we need to 8368 * read a new node it will be NULL and the node above it will have the 8369 * correct slot selected for a later read. 8370 * 8371 * If we increment the root nodes slot counter past the number of 8372 * elements, 1 is returned to signal completion of the search. 8373 */ 8374 static int adjust_slots_upwards(struct btrfs_root *root, 8375 struct btrfs_path *path, int root_level) 8376 { 8377 int level = 0; 8378 int nr, slot; 8379 struct extent_buffer *eb; 8380 8381 if (root_level == 0) 8382 return 1; 8383 8384 while (level <= root_level) { 8385 eb = path->nodes[level]; 8386 nr = btrfs_header_nritems(eb); 8387 path->slots[level]++; 8388 slot = path->slots[level]; 8389 if (slot >= nr || level == 0) { 8390 /* 8391 * Don't free the root - we will detect this 8392 * condition after our loop and return a 8393 * positive value for caller to stop walking the tree. 8394 */ 8395 if (level != root_level) { 8396 btrfs_tree_unlock_rw(eb, path->locks[level]); 8397 path->locks[level] = 0; 8398 8399 free_extent_buffer(eb); 8400 path->nodes[level] = NULL; 8401 path->slots[level] = 0; 8402 } 8403 } else { 8404 /* 8405 * We have a valid slot to walk back down 8406 * from. Stop here so caller can process these 8407 * new nodes. 8408 */ 8409 break; 8410 } 8411 8412 level++; 8413 } 8414 8415 eb = path->nodes[root_level]; 8416 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8417 return 1; 8418 8419 return 0; 8420 } 8421 8422 /* 8423 * root_eb is the subtree root and is locked before this function is called. 8424 */ 8425 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8426 struct btrfs_root *root, 8427 struct extent_buffer *root_eb, 8428 u64 root_gen, 8429 int root_level) 8430 { 8431 int ret = 0; 8432 int level; 8433 struct extent_buffer *eb = root_eb; 8434 struct btrfs_path *path = NULL; 8435 8436 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8437 BUG_ON(root_eb == NULL); 8438 8439 if (!root->fs_info->quota_enabled) 8440 return 0; 8441 8442 if (!extent_buffer_uptodate(root_eb)) { 8443 ret = btrfs_read_buffer(root_eb, root_gen); 8444 if (ret) 8445 goto out; 8446 } 8447 8448 if (root_level == 0) { 8449 ret = account_leaf_items(trans, root, root_eb); 8450 goto out; 8451 } 8452 8453 path = btrfs_alloc_path(); 8454 if (!path) 8455 return -ENOMEM; 8456 8457 /* 8458 * Walk down the tree. Missing extent blocks are filled in as 8459 * we go. Metadata is accounted every time we read a new 8460 * extent block. 8461 * 8462 * When we reach a leaf, we account for file extent items in it, 8463 * walk back up the tree (adjusting slot pointers as we go) 8464 * and restart the search process. 8465 */ 8466 extent_buffer_get(root_eb); /* For path */ 8467 path->nodes[root_level] = root_eb; 8468 path->slots[root_level] = 0; 8469 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8470 walk_down: 8471 level = root_level; 8472 while (level >= 0) { 8473 if (path->nodes[level] == NULL) { 8474 int parent_slot; 8475 u64 child_gen; 8476 u64 child_bytenr; 8477 8478 /* We need to get child blockptr/gen from 8479 * parent before we can read it. */ 8480 eb = path->nodes[level + 1]; 8481 parent_slot = path->slots[level + 1]; 8482 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8483 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8484 8485 eb = read_tree_block(root, child_bytenr, child_gen); 8486 if (IS_ERR(eb)) { 8487 ret = PTR_ERR(eb); 8488 goto out; 8489 } else if (!extent_buffer_uptodate(eb)) { 8490 free_extent_buffer(eb); 8491 ret = -EIO; 8492 goto out; 8493 } 8494 8495 path->nodes[level] = eb; 8496 path->slots[level] = 0; 8497 8498 btrfs_tree_read_lock(eb); 8499 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8500 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8501 8502 ret = record_one_subtree_extent(trans, root, child_bytenr, 8503 root->nodesize); 8504 if (ret) 8505 goto out; 8506 } 8507 8508 if (level == 0) { 8509 ret = account_leaf_items(trans, root, path->nodes[level]); 8510 if (ret) 8511 goto out; 8512 8513 /* Nonzero return here means we completed our search */ 8514 ret = adjust_slots_upwards(root, path, root_level); 8515 if (ret) 8516 break; 8517 8518 /* Restart search with new slots */ 8519 goto walk_down; 8520 } 8521 8522 level--; 8523 } 8524 8525 ret = 0; 8526 out: 8527 btrfs_free_path(path); 8528 8529 return ret; 8530 } 8531 8532 /* 8533 * helper to process tree block while walking down the tree. 8534 * 8535 * when wc->stage == UPDATE_BACKREF, this function updates 8536 * back refs for pointers in the block. 8537 * 8538 * NOTE: return value 1 means we should stop walking down. 8539 */ 8540 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8541 struct btrfs_root *root, 8542 struct btrfs_path *path, 8543 struct walk_control *wc, int lookup_info) 8544 { 8545 int level = wc->level; 8546 struct extent_buffer *eb = path->nodes[level]; 8547 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8548 int ret; 8549 8550 if (wc->stage == UPDATE_BACKREF && 8551 btrfs_header_owner(eb) != root->root_key.objectid) 8552 return 1; 8553 8554 /* 8555 * when reference count of tree block is 1, it won't increase 8556 * again. once full backref flag is set, we never clear it. 8557 */ 8558 if (lookup_info && 8559 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8560 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8561 BUG_ON(!path->locks[level]); 8562 ret = btrfs_lookup_extent_info(trans, root, 8563 eb->start, level, 1, 8564 &wc->refs[level], 8565 &wc->flags[level]); 8566 BUG_ON(ret == -ENOMEM); 8567 if (ret) 8568 return ret; 8569 BUG_ON(wc->refs[level] == 0); 8570 } 8571 8572 if (wc->stage == DROP_REFERENCE) { 8573 if (wc->refs[level] > 1) 8574 return 1; 8575 8576 if (path->locks[level] && !wc->keep_locks) { 8577 btrfs_tree_unlock_rw(eb, path->locks[level]); 8578 path->locks[level] = 0; 8579 } 8580 return 0; 8581 } 8582 8583 /* wc->stage == UPDATE_BACKREF */ 8584 if (!(wc->flags[level] & flag)) { 8585 BUG_ON(!path->locks[level]); 8586 ret = btrfs_inc_ref(trans, root, eb, 1); 8587 BUG_ON(ret); /* -ENOMEM */ 8588 ret = btrfs_dec_ref(trans, root, eb, 0); 8589 BUG_ON(ret); /* -ENOMEM */ 8590 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8591 eb->len, flag, 8592 btrfs_header_level(eb), 0); 8593 BUG_ON(ret); /* -ENOMEM */ 8594 wc->flags[level] |= flag; 8595 } 8596 8597 /* 8598 * the block is shared by multiple trees, so it's not good to 8599 * keep the tree lock 8600 */ 8601 if (path->locks[level] && level > 0) { 8602 btrfs_tree_unlock_rw(eb, path->locks[level]); 8603 path->locks[level] = 0; 8604 } 8605 return 0; 8606 } 8607 8608 /* 8609 * helper to process tree block pointer. 8610 * 8611 * when wc->stage == DROP_REFERENCE, this function checks 8612 * reference count of the block pointed to. if the block 8613 * is shared and we need update back refs for the subtree 8614 * rooted at the block, this function changes wc->stage to 8615 * UPDATE_BACKREF. if the block is shared and there is no 8616 * need to update back, this function drops the reference 8617 * to the block. 8618 * 8619 * NOTE: return value 1 means we should stop walking down. 8620 */ 8621 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8622 struct btrfs_root *root, 8623 struct btrfs_path *path, 8624 struct walk_control *wc, int *lookup_info) 8625 { 8626 u64 bytenr; 8627 u64 generation; 8628 u64 parent; 8629 u32 blocksize; 8630 struct btrfs_key key; 8631 struct extent_buffer *next; 8632 int level = wc->level; 8633 int reada = 0; 8634 int ret = 0; 8635 bool need_account = false; 8636 8637 generation = btrfs_node_ptr_generation(path->nodes[level], 8638 path->slots[level]); 8639 /* 8640 * if the lower level block was created before the snapshot 8641 * was created, we know there is no need to update back refs 8642 * for the subtree 8643 */ 8644 if (wc->stage == UPDATE_BACKREF && 8645 generation <= root->root_key.offset) { 8646 *lookup_info = 1; 8647 return 1; 8648 } 8649 8650 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8651 blocksize = root->nodesize; 8652 8653 next = btrfs_find_tree_block(root->fs_info, bytenr); 8654 if (!next) { 8655 next = btrfs_find_create_tree_block(root, bytenr); 8656 if (!next) 8657 return -ENOMEM; 8658 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8659 level - 1); 8660 reada = 1; 8661 } 8662 btrfs_tree_lock(next); 8663 btrfs_set_lock_blocking(next); 8664 8665 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8666 &wc->refs[level - 1], 8667 &wc->flags[level - 1]); 8668 if (ret < 0) { 8669 btrfs_tree_unlock(next); 8670 return ret; 8671 } 8672 8673 if (unlikely(wc->refs[level - 1] == 0)) { 8674 btrfs_err(root->fs_info, "Missing references."); 8675 BUG(); 8676 } 8677 *lookup_info = 0; 8678 8679 if (wc->stage == DROP_REFERENCE) { 8680 if (wc->refs[level - 1] > 1) { 8681 need_account = true; 8682 if (level == 1 && 8683 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8684 goto skip; 8685 8686 if (!wc->update_ref || 8687 generation <= root->root_key.offset) 8688 goto skip; 8689 8690 btrfs_node_key_to_cpu(path->nodes[level], &key, 8691 path->slots[level]); 8692 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8693 if (ret < 0) 8694 goto skip; 8695 8696 wc->stage = UPDATE_BACKREF; 8697 wc->shared_level = level - 1; 8698 } 8699 } else { 8700 if (level == 1 && 8701 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8702 goto skip; 8703 } 8704 8705 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8706 btrfs_tree_unlock(next); 8707 free_extent_buffer(next); 8708 next = NULL; 8709 *lookup_info = 1; 8710 } 8711 8712 if (!next) { 8713 if (reada && level == 1) 8714 reada_walk_down(trans, root, wc, path); 8715 next = read_tree_block(root, bytenr, generation); 8716 if (IS_ERR(next)) { 8717 return PTR_ERR(next); 8718 } else if (!extent_buffer_uptodate(next)) { 8719 free_extent_buffer(next); 8720 return -EIO; 8721 } 8722 btrfs_tree_lock(next); 8723 btrfs_set_lock_blocking(next); 8724 } 8725 8726 level--; 8727 BUG_ON(level != btrfs_header_level(next)); 8728 path->nodes[level] = next; 8729 path->slots[level] = 0; 8730 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8731 wc->level = level; 8732 if (wc->level == 1) 8733 wc->reada_slot = 0; 8734 return 0; 8735 skip: 8736 wc->refs[level - 1] = 0; 8737 wc->flags[level - 1] = 0; 8738 if (wc->stage == DROP_REFERENCE) { 8739 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8740 parent = path->nodes[level]->start; 8741 } else { 8742 BUG_ON(root->root_key.objectid != 8743 btrfs_header_owner(path->nodes[level])); 8744 parent = 0; 8745 } 8746 8747 if (need_account) { 8748 ret = account_shared_subtree(trans, root, next, 8749 generation, level - 1); 8750 if (ret) { 8751 btrfs_err_rl(root->fs_info, 8752 "Error " 8753 "%d accounting shared subtree. Quota " 8754 "is out of sync, rescan required.", 8755 ret); 8756 } 8757 } 8758 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8759 root->root_key.objectid, level - 1, 0); 8760 BUG_ON(ret); /* -ENOMEM */ 8761 } 8762 btrfs_tree_unlock(next); 8763 free_extent_buffer(next); 8764 *lookup_info = 1; 8765 return 1; 8766 } 8767 8768 /* 8769 * helper to process tree block while walking up the tree. 8770 * 8771 * when wc->stage == DROP_REFERENCE, this function drops 8772 * reference count on the block. 8773 * 8774 * when wc->stage == UPDATE_BACKREF, this function changes 8775 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8776 * to UPDATE_BACKREF previously while processing the block. 8777 * 8778 * NOTE: return value 1 means we should stop walking up. 8779 */ 8780 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8781 struct btrfs_root *root, 8782 struct btrfs_path *path, 8783 struct walk_control *wc) 8784 { 8785 int ret; 8786 int level = wc->level; 8787 struct extent_buffer *eb = path->nodes[level]; 8788 u64 parent = 0; 8789 8790 if (wc->stage == UPDATE_BACKREF) { 8791 BUG_ON(wc->shared_level < level); 8792 if (level < wc->shared_level) 8793 goto out; 8794 8795 ret = find_next_key(path, level + 1, &wc->update_progress); 8796 if (ret > 0) 8797 wc->update_ref = 0; 8798 8799 wc->stage = DROP_REFERENCE; 8800 wc->shared_level = -1; 8801 path->slots[level] = 0; 8802 8803 /* 8804 * check reference count again if the block isn't locked. 8805 * we should start walking down the tree again if reference 8806 * count is one. 8807 */ 8808 if (!path->locks[level]) { 8809 BUG_ON(level == 0); 8810 btrfs_tree_lock(eb); 8811 btrfs_set_lock_blocking(eb); 8812 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8813 8814 ret = btrfs_lookup_extent_info(trans, root, 8815 eb->start, level, 1, 8816 &wc->refs[level], 8817 &wc->flags[level]); 8818 if (ret < 0) { 8819 btrfs_tree_unlock_rw(eb, path->locks[level]); 8820 path->locks[level] = 0; 8821 return ret; 8822 } 8823 BUG_ON(wc->refs[level] == 0); 8824 if (wc->refs[level] == 1) { 8825 btrfs_tree_unlock_rw(eb, path->locks[level]); 8826 path->locks[level] = 0; 8827 return 1; 8828 } 8829 } 8830 } 8831 8832 /* wc->stage == DROP_REFERENCE */ 8833 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8834 8835 if (wc->refs[level] == 1) { 8836 if (level == 0) { 8837 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8838 ret = btrfs_dec_ref(trans, root, eb, 1); 8839 else 8840 ret = btrfs_dec_ref(trans, root, eb, 0); 8841 BUG_ON(ret); /* -ENOMEM */ 8842 ret = account_leaf_items(trans, root, eb); 8843 if (ret) { 8844 btrfs_err_rl(root->fs_info, 8845 "error " 8846 "%d accounting leaf items. Quota " 8847 "is out of sync, rescan required.", 8848 ret); 8849 } 8850 } 8851 /* make block locked assertion in clean_tree_block happy */ 8852 if (!path->locks[level] && 8853 btrfs_header_generation(eb) == trans->transid) { 8854 btrfs_tree_lock(eb); 8855 btrfs_set_lock_blocking(eb); 8856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8857 } 8858 clean_tree_block(trans, root->fs_info, eb); 8859 } 8860 8861 if (eb == root->node) { 8862 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8863 parent = eb->start; 8864 else 8865 BUG_ON(root->root_key.objectid != 8866 btrfs_header_owner(eb)); 8867 } else { 8868 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8869 parent = path->nodes[level + 1]->start; 8870 else 8871 BUG_ON(root->root_key.objectid != 8872 btrfs_header_owner(path->nodes[level + 1])); 8873 } 8874 8875 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8876 out: 8877 wc->refs[level] = 0; 8878 wc->flags[level] = 0; 8879 return 0; 8880 } 8881 8882 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8883 struct btrfs_root *root, 8884 struct btrfs_path *path, 8885 struct walk_control *wc) 8886 { 8887 int level = wc->level; 8888 int lookup_info = 1; 8889 int ret; 8890 8891 while (level >= 0) { 8892 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8893 if (ret > 0) 8894 break; 8895 8896 if (level == 0) 8897 break; 8898 8899 if (path->slots[level] >= 8900 btrfs_header_nritems(path->nodes[level])) 8901 break; 8902 8903 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8904 if (ret > 0) { 8905 path->slots[level]++; 8906 continue; 8907 } else if (ret < 0) 8908 return ret; 8909 level = wc->level; 8910 } 8911 return 0; 8912 } 8913 8914 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8915 struct btrfs_root *root, 8916 struct btrfs_path *path, 8917 struct walk_control *wc, int max_level) 8918 { 8919 int level = wc->level; 8920 int ret; 8921 8922 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8923 while (level < max_level && path->nodes[level]) { 8924 wc->level = level; 8925 if (path->slots[level] + 1 < 8926 btrfs_header_nritems(path->nodes[level])) { 8927 path->slots[level]++; 8928 return 0; 8929 } else { 8930 ret = walk_up_proc(trans, root, path, wc); 8931 if (ret > 0) 8932 return 0; 8933 8934 if (path->locks[level]) { 8935 btrfs_tree_unlock_rw(path->nodes[level], 8936 path->locks[level]); 8937 path->locks[level] = 0; 8938 } 8939 free_extent_buffer(path->nodes[level]); 8940 path->nodes[level] = NULL; 8941 level++; 8942 } 8943 } 8944 return 1; 8945 } 8946 8947 /* 8948 * drop a subvolume tree. 8949 * 8950 * this function traverses the tree freeing any blocks that only 8951 * referenced by the tree. 8952 * 8953 * when a shared tree block is found. this function decreases its 8954 * reference count by one. if update_ref is true, this function 8955 * also make sure backrefs for the shared block and all lower level 8956 * blocks are properly updated. 8957 * 8958 * If called with for_reloc == 0, may exit early with -EAGAIN 8959 */ 8960 int btrfs_drop_snapshot(struct btrfs_root *root, 8961 struct btrfs_block_rsv *block_rsv, int update_ref, 8962 int for_reloc) 8963 { 8964 struct btrfs_path *path; 8965 struct btrfs_trans_handle *trans; 8966 struct btrfs_root *tree_root = root->fs_info->tree_root; 8967 struct btrfs_root_item *root_item = &root->root_item; 8968 struct walk_control *wc; 8969 struct btrfs_key key; 8970 int err = 0; 8971 int ret; 8972 int level; 8973 bool root_dropped = false; 8974 8975 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8976 8977 path = btrfs_alloc_path(); 8978 if (!path) { 8979 err = -ENOMEM; 8980 goto out; 8981 } 8982 8983 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8984 if (!wc) { 8985 btrfs_free_path(path); 8986 err = -ENOMEM; 8987 goto out; 8988 } 8989 8990 trans = btrfs_start_transaction(tree_root, 0); 8991 if (IS_ERR(trans)) { 8992 err = PTR_ERR(trans); 8993 goto out_free; 8994 } 8995 8996 if (block_rsv) 8997 trans->block_rsv = block_rsv; 8998 8999 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9000 level = btrfs_header_level(root->node); 9001 path->nodes[level] = btrfs_lock_root_node(root); 9002 btrfs_set_lock_blocking(path->nodes[level]); 9003 path->slots[level] = 0; 9004 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9005 memset(&wc->update_progress, 0, 9006 sizeof(wc->update_progress)); 9007 } else { 9008 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9009 memcpy(&wc->update_progress, &key, 9010 sizeof(wc->update_progress)); 9011 9012 level = root_item->drop_level; 9013 BUG_ON(level == 0); 9014 path->lowest_level = level; 9015 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9016 path->lowest_level = 0; 9017 if (ret < 0) { 9018 err = ret; 9019 goto out_end_trans; 9020 } 9021 WARN_ON(ret > 0); 9022 9023 /* 9024 * unlock our path, this is safe because only this 9025 * function is allowed to delete this snapshot 9026 */ 9027 btrfs_unlock_up_safe(path, 0); 9028 9029 level = btrfs_header_level(root->node); 9030 while (1) { 9031 btrfs_tree_lock(path->nodes[level]); 9032 btrfs_set_lock_blocking(path->nodes[level]); 9033 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9034 9035 ret = btrfs_lookup_extent_info(trans, root, 9036 path->nodes[level]->start, 9037 level, 1, &wc->refs[level], 9038 &wc->flags[level]); 9039 if (ret < 0) { 9040 err = ret; 9041 goto out_end_trans; 9042 } 9043 BUG_ON(wc->refs[level] == 0); 9044 9045 if (level == root_item->drop_level) 9046 break; 9047 9048 btrfs_tree_unlock(path->nodes[level]); 9049 path->locks[level] = 0; 9050 WARN_ON(wc->refs[level] != 1); 9051 level--; 9052 } 9053 } 9054 9055 wc->level = level; 9056 wc->shared_level = -1; 9057 wc->stage = DROP_REFERENCE; 9058 wc->update_ref = update_ref; 9059 wc->keep_locks = 0; 9060 wc->for_reloc = for_reloc; 9061 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9062 9063 while (1) { 9064 9065 ret = walk_down_tree(trans, root, path, wc); 9066 if (ret < 0) { 9067 err = ret; 9068 break; 9069 } 9070 9071 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9072 if (ret < 0) { 9073 err = ret; 9074 break; 9075 } 9076 9077 if (ret > 0) { 9078 BUG_ON(wc->stage != DROP_REFERENCE); 9079 break; 9080 } 9081 9082 if (wc->stage == DROP_REFERENCE) { 9083 level = wc->level; 9084 btrfs_node_key(path->nodes[level], 9085 &root_item->drop_progress, 9086 path->slots[level]); 9087 root_item->drop_level = level; 9088 } 9089 9090 BUG_ON(wc->level == 0); 9091 if (btrfs_should_end_transaction(trans, tree_root) || 9092 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 9093 ret = btrfs_update_root(trans, tree_root, 9094 &root->root_key, 9095 root_item); 9096 if (ret) { 9097 btrfs_abort_transaction(trans, tree_root, ret); 9098 err = ret; 9099 goto out_end_trans; 9100 } 9101 9102 btrfs_end_transaction_throttle(trans, tree_root); 9103 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 9104 pr_debug("BTRFS: drop snapshot early exit\n"); 9105 err = -EAGAIN; 9106 goto out_free; 9107 } 9108 9109 trans = btrfs_start_transaction(tree_root, 0); 9110 if (IS_ERR(trans)) { 9111 err = PTR_ERR(trans); 9112 goto out_free; 9113 } 9114 if (block_rsv) 9115 trans->block_rsv = block_rsv; 9116 } 9117 } 9118 btrfs_release_path(path); 9119 if (err) 9120 goto out_end_trans; 9121 9122 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9123 if (ret) { 9124 btrfs_abort_transaction(trans, tree_root, ret); 9125 goto out_end_trans; 9126 } 9127 9128 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9129 ret = btrfs_find_root(tree_root, &root->root_key, path, 9130 NULL, NULL); 9131 if (ret < 0) { 9132 btrfs_abort_transaction(trans, tree_root, ret); 9133 err = ret; 9134 goto out_end_trans; 9135 } else if (ret > 0) { 9136 /* if we fail to delete the orphan item this time 9137 * around, it'll get picked up the next time. 9138 * 9139 * The most common failure here is just -ENOENT. 9140 */ 9141 btrfs_del_orphan_item(trans, tree_root, 9142 root->root_key.objectid); 9143 } 9144 } 9145 9146 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9147 btrfs_add_dropped_root(trans, root); 9148 } else { 9149 free_extent_buffer(root->node); 9150 free_extent_buffer(root->commit_root); 9151 btrfs_put_fs_root(root); 9152 } 9153 root_dropped = true; 9154 out_end_trans: 9155 btrfs_end_transaction_throttle(trans, tree_root); 9156 out_free: 9157 kfree(wc); 9158 btrfs_free_path(path); 9159 out: 9160 /* 9161 * So if we need to stop dropping the snapshot for whatever reason we 9162 * need to make sure to add it back to the dead root list so that we 9163 * keep trying to do the work later. This also cleans up roots if we 9164 * don't have it in the radix (like when we recover after a power fail 9165 * or unmount) so we don't leak memory. 9166 */ 9167 if (!for_reloc && root_dropped == false) 9168 btrfs_add_dead_root(root); 9169 if (err && err != -EAGAIN) 9170 btrfs_handle_fs_error(root->fs_info, err, NULL); 9171 return err; 9172 } 9173 9174 /* 9175 * drop subtree rooted at tree block 'node'. 9176 * 9177 * NOTE: this function will unlock and release tree block 'node' 9178 * only used by relocation code 9179 */ 9180 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9181 struct btrfs_root *root, 9182 struct extent_buffer *node, 9183 struct extent_buffer *parent) 9184 { 9185 struct btrfs_path *path; 9186 struct walk_control *wc; 9187 int level; 9188 int parent_level; 9189 int ret = 0; 9190 int wret; 9191 9192 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9193 9194 path = btrfs_alloc_path(); 9195 if (!path) 9196 return -ENOMEM; 9197 9198 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9199 if (!wc) { 9200 btrfs_free_path(path); 9201 return -ENOMEM; 9202 } 9203 9204 btrfs_assert_tree_locked(parent); 9205 parent_level = btrfs_header_level(parent); 9206 extent_buffer_get(parent); 9207 path->nodes[parent_level] = parent; 9208 path->slots[parent_level] = btrfs_header_nritems(parent); 9209 9210 btrfs_assert_tree_locked(node); 9211 level = btrfs_header_level(node); 9212 path->nodes[level] = node; 9213 path->slots[level] = 0; 9214 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9215 9216 wc->refs[parent_level] = 1; 9217 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9218 wc->level = level; 9219 wc->shared_level = -1; 9220 wc->stage = DROP_REFERENCE; 9221 wc->update_ref = 0; 9222 wc->keep_locks = 1; 9223 wc->for_reloc = 1; 9224 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9225 9226 while (1) { 9227 wret = walk_down_tree(trans, root, path, wc); 9228 if (wret < 0) { 9229 ret = wret; 9230 break; 9231 } 9232 9233 wret = walk_up_tree(trans, root, path, wc, parent_level); 9234 if (wret < 0) 9235 ret = wret; 9236 if (wret != 0) 9237 break; 9238 } 9239 9240 kfree(wc); 9241 btrfs_free_path(path); 9242 return ret; 9243 } 9244 9245 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9246 { 9247 u64 num_devices; 9248 u64 stripped; 9249 9250 /* 9251 * if restripe for this chunk_type is on pick target profile and 9252 * return, otherwise do the usual balance 9253 */ 9254 stripped = get_restripe_target(root->fs_info, flags); 9255 if (stripped) 9256 return extended_to_chunk(stripped); 9257 9258 num_devices = root->fs_info->fs_devices->rw_devices; 9259 9260 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9261 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9262 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9263 9264 if (num_devices == 1) { 9265 stripped |= BTRFS_BLOCK_GROUP_DUP; 9266 stripped = flags & ~stripped; 9267 9268 /* turn raid0 into single device chunks */ 9269 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9270 return stripped; 9271 9272 /* turn mirroring into duplication */ 9273 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9274 BTRFS_BLOCK_GROUP_RAID10)) 9275 return stripped | BTRFS_BLOCK_GROUP_DUP; 9276 } else { 9277 /* they already had raid on here, just return */ 9278 if (flags & stripped) 9279 return flags; 9280 9281 stripped |= BTRFS_BLOCK_GROUP_DUP; 9282 stripped = flags & ~stripped; 9283 9284 /* switch duplicated blocks with raid1 */ 9285 if (flags & BTRFS_BLOCK_GROUP_DUP) 9286 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9287 9288 /* this is drive concat, leave it alone */ 9289 } 9290 9291 return flags; 9292 } 9293 9294 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9295 { 9296 struct btrfs_space_info *sinfo = cache->space_info; 9297 u64 num_bytes; 9298 u64 min_allocable_bytes; 9299 int ret = -ENOSPC; 9300 9301 /* 9302 * We need some metadata space and system metadata space for 9303 * allocating chunks in some corner cases until we force to set 9304 * it to be readonly. 9305 */ 9306 if ((sinfo->flags & 9307 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9308 !force) 9309 min_allocable_bytes = SZ_1M; 9310 else 9311 min_allocable_bytes = 0; 9312 9313 spin_lock(&sinfo->lock); 9314 spin_lock(&cache->lock); 9315 9316 if (cache->ro) { 9317 cache->ro++; 9318 ret = 0; 9319 goto out; 9320 } 9321 9322 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9323 cache->bytes_super - btrfs_block_group_used(&cache->item); 9324 9325 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9326 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9327 min_allocable_bytes <= sinfo->total_bytes) { 9328 sinfo->bytes_readonly += num_bytes; 9329 cache->ro++; 9330 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9331 ret = 0; 9332 } 9333 out: 9334 spin_unlock(&cache->lock); 9335 spin_unlock(&sinfo->lock); 9336 return ret; 9337 } 9338 9339 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9340 struct btrfs_block_group_cache *cache) 9341 9342 { 9343 struct btrfs_trans_handle *trans; 9344 u64 alloc_flags; 9345 int ret; 9346 9347 again: 9348 trans = btrfs_join_transaction(root); 9349 if (IS_ERR(trans)) 9350 return PTR_ERR(trans); 9351 9352 /* 9353 * we're not allowed to set block groups readonly after the dirty 9354 * block groups cache has started writing. If it already started, 9355 * back off and let this transaction commit 9356 */ 9357 mutex_lock(&root->fs_info->ro_block_group_mutex); 9358 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9359 u64 transid = trans->transid; 9360 9361 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9362 btrfs_end_transaction(trans, root); 9363 9364 ret = btrfs_wait_for_commit(root, transid); 9365 if (ret) 9366 return ret; 9367 goto again; 9368 } 9369 9370 /* 9371 * if we are changing raid levels, try to allocate a corresponding 9372 * block group with the new raid level. 9373 */ 9374 alloc_flags = update_block_group_flags(root, cache->flags); 9375 if (alloc_flags != cache->flags) { 9376 ret = do_chunk_alloc(trans, root, alloc_flags, 9377 CHUNK_ALLOC_FORCE); 9378 /* 9379 * ENOSPC is allowed here, we may have enough space 9380 * already allocated at the new raid level to 9381 * carry on 9382 */ 9383 if (ret == -ENOSPC) 9384 ret = 0; 9385 if (ret < 0) 9386 goto out; 9387 } 9388 9389 ret = inc_block_group_ro(cache, 0); 9390 if (!ret) 9391 goto out; 9392 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9393 ret = do_chunk_alloc(trans, root, alloc_flags, 9394 CHUNK_ALLOC_FORCE); 9395 if (ret < 0) 9396 goto out; 9397 ret = inc_block_group_ro(cache, 0); 9398 out: 9399 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9400 alloc_flags = update_block_group_flags(root, cache->flags); 9401 lock_chunks(root->fs_info->chunk_root); 9402 check_system_chunk(trans, root, alloc_flags); 9403 unlock_chunks(root->fs_info->chunk_root); 9404 } 9405 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9406 9407 btrfs_end_transaction(trans, root); 9408 return ret; 9409 } 9410 9411 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9412 struct btrfs_root *root, u64 type) 9413 { 9414 u64 alloc_flags = get_alloc_profile(root, type); 9415 return do_chunk_alloc(trans, root, alloc_flags, 9416 CHUNK_ALLOC_FORCE); 9417 } 9418 9419 /* 9420 * helper to account the unused space of all the readonly block group in the 9421 * space_info. takes mirrors into account. 9422 */ 9423 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9424 { 9425 struct btrfs_block_group_cache *block_group; 9426 u64 free_bytes = 0; 9427 int factor; 9428 9429 /* It's df, we don't care if it's racy */ 9430 if (list_empty(&sinfo->ro_bgs)) 9431 return 0; 9432 9433 spin_lock(&sinfo->lock); 9434 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9435 spin_lock(&block_group->lock); 9436 9437 if (!block_group->ro) { 9438 spin_unlock(&block_group->lock); 9439 continue; 9440 } 9441 9442 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9443 BTRFS_BLOCK_GROUP_RAID10 | 9444 BTRFS_BLOCK_GROUP_DUP)) 9445 factor = 2; 9446 else 9447 factor = 1; 9448 9449 free_bytes += (block_group->key.offset - 9450 btrfs_block_group_used(&block_group->item)) * 9451 factor; 9452 9453 spin_unlock(&block_group->lock); 9454 } 9455 spin_unlock(&sinfo->lock); 9456 9457 return free_bytes; 9458 } 9459 9460 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9461 struct btrfs_block_group_cache *cache) 9462 { 9463 struct btrfs_space_info *sinfo = cache->space_info; 9464 u64 num_bytes; 9465 9466 BUG_ON(!cache->ro); 9467 9468 spin_lock(&sinfo->lock); 9469 spin_lock(&cache->lock); 9470 if (!--cache->ro) { 9471 num_bytes = cache->key.offset - cache->reserved - 9472 cache->pinned - cache->bytes_super - 9473 btrfs_block_group_used(&cache->item); 9474 sinfo->bytes_readonly -= num_bytes; 9475 list_del_init(&cache->ro_list); 9476 } 9477 spin_unlock(&cache->lock); 9478 spin_unlock(&sinfo->lock); 9479 } 9480 9481 /* 9482 * checks to see if its even possible to relocate this block group. 9483 * 9484 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9485 * ok to go ahead and try. 9486 */ 9487 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9488 { 9489 struct btrfs_block_group_cache *block_group; 9490 struct btrfs_space_info *space_info; 9491 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9492 struct btrfs_device *device; 9493 struct btrfs_trans_handle *trans; 9494 u64 min_free; 9495 u64 dev_min = 1; 9496 u64 dev_nr = 0; 9497 u64 target; 9498 int debug; 9499 int index; 9500 int full = 0; 9501 int ret = 0; 9502 9503 debug = btrfs_test_opt(root, ENOSPC_DEBUG); 9504 9505 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9506 9507 /* odd, couldn't find the block group, leave it alone */ 9508 if (!block_group) { 9509 if (debug) 9510 btrfs_warn(root->fs_info, 9511 "can't find block group for bytenr %llu", 9512 bytenr); 9513 return -1; 9514 } 9515 9516 min_free = btrfs_block_group_used(&block_group->item); 9517 9518 /* no bytes used, we're good */ 9519 if (!min_free) 9520 goto out; 9521 9522 space_info = block_group->space_info; 9523 spin_lock(&space_info->lock); 9524 9525 full = space_info->full; 9526 9527 /* 9528 * if this is the last block group we have in this space, we can't 9529 * relocate it unless we're able to allocate a new chunk below. 9530 * 9531 * Otherwise, we need to make sure we have room in the space to handle 9532 * all of the extents from this block group. If we can, we're good 9533 */ 9534 if ((space_info->total_bytes != block_group->key.offset) && 9535 (space_info->bytes_used + space_info->bytes_reserved + 9536 space_info->bytes_pinned + space_info->bytes_readonly + 9537 min_free < space_info->total_bytes)) { 9538 spin_unlock(&space_info->lock); 9539 goto out; 9540 } 9541 spin_unlock(&space_info->lock); 9542 9543 /* 9544 * ok we don't have enough space, but maybe we have free space on our 9545 * devices to allocate new chunks for relocation, so loop through our 9546 * alloc devices and guess if we have enough space. if this block 9547 * group is going to be restriped, run checks against the target 9548 * profile instead of the current one. 9549 */ 9550 ret = -1; 9551 9552 /* 9553 * index: 9554 * 0: raid10 9555 * 1: raid1 9556 * 2: dup 9557 * 3: raid0 9558 * 4: single 9559 */ 9560 target = get_restripe_target(root->fs_info, block_group->flags); 9561 if (target) { 9562 index = __get_raid_index(extended_to_chunk(target)); 9563 } else { 9564 /* 9565 * this is just a balance, so if we were marked as full 9566 * we know there is no space for a new chunk 9567 */ 9568 if (full) { 9569 if (debug) 9570 btrfs_warn(root->fs_info, 9571 "no space to alloc new chunk for block group %llu", 9572 block_group->key.objectid); 9573 goto out; 9574 } 9575 9576 index = get_block_group_index(block_group); 9577 } 9578 9579 if (index == BTRFS_RAID_RAID10) { 9580 dev_min = 4; 9581 /* Divide by 2 */ 9582 min_free >>= 1; 9583 } else if (index == BTRFS_RAID_RAID1) { 9584 dev_min = 2; 9585 } else if (index == BTRFS_RAID_DUP) { 9586 /* Multiply by 2 */ 9587 min_free <<= 1; 9588 } else if (index == BTRFS_RAID_RAID0) { 9589 dev_min = fs_devices->rw_devices; 9590 min_free = div64_u64(min_free, dev_min); 9591 } 9592 9593 /* We need to do this so that we can look at pending chunks */ 9594 trans = btrfs_join_transaction(root); 9595 if (IS_ERR(trans)) { 9596 ret = PTR_ERR(trans); 9597 goto out; 9598 } 9599 9600 mutex_lock(&root->fs_info->chunk_mutex); 9601 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9602 u64 dev_offset; 9603 9604 /* 9605 * check to make sure we can actually find a chunk with enough 9606 * space to fit our block group in. 9607 */ 9608 if (device->total_bytes > device->bytes_used + min_free && 9609 !device->is_tgtdev_for_dev_replace) { 9610 ret = find_free_dev_extent(trans, device, min_free, 9611 &dev_offset, NULL); 9612 if (!ret) 9613 dev_nr++; 9614 9615 if (dev_nr >= dev_min) 9616 break; 9617 9618 ret = -1; 9619 } 9620 } 9621 if (debug && ret == -1) 9622 btrfs_warn(root->fs_info, 9623 "no space to allocate a new chunk for block group %llu", 9624 block_group->key.objectid); 9625 mutex_unlock(&root->fs_info->chunk_mutex); 9626 btrfs_end_transaction(trans, root); 9627 out: 9628 btrfs_put_block_group(block_group); 9629 return ret; 9630 } 9631 9632 static int find_first_block_group(struct btrfs_root *root, 9633 struct btrfs_path *path, struct btrfs_key *key) 9634 { 9635 int ret = 0; 9636 struct btrfs_key found_key; 9637 struct extent_buffer *leaf; 9638 int slot; 9639 9640 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9641 if (ret < 0) 9642 goto out; 9643 9644 while (1) { 9645 slot = path->slots[0]; 9646 leaf = path->nodes[0]; 9647 if (slot >= btrfs_header_nritems(leaf)) { 9648 ret = btrfs_next_leaf(root, path); 9649 if (ret == 0) 9650 continue; 9651 if (ret < 0) 9652 goto out; 9653 break; 9654 } 9655 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9656 9657 if (found_key.objectid >= key->objectid && 9658 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9659 ret = 0; 9660 goto out; 9661 } 9662 path->slots[0]++; 9663 } 9664 out: 9665 return ret; 9666 } 9667 9668 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9669 { 9670 struct btrfs_block_group_cache *block_group; 9671 u64 last = 0; 9672 9673 while (1) { 9674 struct inode *inode; 9675 9676 block_group = btrfs_lookup_first_block_group(info, last); 9677 while (block_group) { 9678 spin_lock(&block_group->lock); 9679 if (block_group->iref) 9680 break; 9681 spin_unlock(&block_group->lock); 9682 block_group = next_block_group(info->tree_root, 9683 block_group); 9684 } 9685 if (!block_group) { 9686 if (last == 0) 9687 break; 9688 last = 0; 9689 continue; 9690 } 9691 9692 inode = block_group->inode; 9693 block_group->iref = 0; 9694 block_group->inode = NULL; 9695 spin_unlock(&block_group->lock); 9696 iput(inode); 9697 last = block_group->key.objectid + block_group->key.offset; 9698 btrfs_put_block_group(block_group); 9699 } 9700 } 9701 9702 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9703 { 9704 struct btrfs_block_group_cache *block_group; 9705 struct btrfs_space_info *space_info; 9706 struct btrfs_caching_control *caching_ctl; 9707 struct rb_node *n; 9708 9709 down_write(&info->commit_root_sem); 9710 while (!list_empty(&info->caching_block_groups)) { 9711 caching_ctl = list_entry(info->caching_block_groups.next, 9712 struct btrfs_caching_control, list); 9713 list_del(&caching_ctl->list); 9714 put_caching_control(caching_ctl); 9715 } 9716 up_write(&info->commit_root_sem); 9717 9718 spin_lock(&info->unused_bgs_lock); 9719 while (!list_empty(&info->unused_bgs)) { 9720 block_group = list_first_entry(&info->unused_bgs, 9721 struct btrfs_block_group_cache, 9722 bg_list); 9723 list_del_init(&block_group->bg_list); 9724 btrfs_put_block_group(block_group); 9725 } 9726 spin_unlock(&info->unused_bgs_lock); 9727 9728 spin_lock(&info->block_group_cache_lock); 9729 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9730 block_group = rb_entry(n, struct btrfs_block_group_cache, 9731 cache_node); 9732 rb_erase(&block_group->cache_node, 9733 &info->block_group_cache_tree); 9734 RB_CLEAR_NODE(&block_group->cache_node); 9735 spin_unlock(&info->block_group_cache_lock); 9736 9737 down_write(&block_group->space_info->groups_sem); 9738 list_del(&block_group->list); 9739 up_write(&block_group->space_info->groups_sem); 9740 9741 if (block_group->cached == BTRFS_CACHE_STARTED) 9742 wait_block_group_cache_done(block_group); 9743 9744 /* 9745 * We haven't cached this block group, which means we could 9746 * possibly have excluded extents on this block group. 9747 */ 9748 if (block_group->cached == BTRFS_CACHE_NO || 9749 block_group->cached == BTRFS_CACHE_ERROR) 9750 free_excluded_extents(info->extent_root, block_group); 9751 9752 btrfs_remove_free_space_cache(block_group); 9753 btrfs_put_block_group(block_group); 9754 9755 spin_lock(&info->block_group_cache_lock); 9756 } 9757 spin_unlock(&info->block_group_cache_lock); 9758 9759 /* now that all the block groups are freed, go through and 9760 * free all the space_info structs. This is only called during 9761 * the final stages of unmount, and so we know nobody is 9762 * using them. We call synchronize_rcu() once before we start, 9763 * just to be on the safe side. 9764 */ 9765 synchronize_rcu(); 9766 9767 release_global_block_rsv(info); 9768 9769 while (!list_empty(&info->space_info)) { 9770 int i; 9771 9772 space_info = list_entry(info->space_info.next, 9773 struct btrfs_space_info, 9774 list); 9775 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9776 if (WARN_ON(space_info->bytes_pinned > 0 || 9777 space_info->bytes_reserved > 0 || 9778 space_info->bytes_may_use > 0)) { 9779 dump_space_info(space_info, 0, 0); 9780 } 9781 } 9782 list_del(&space_info->list); 9783 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9784 struct kobject *kobj; 9785 kobj = space_info->block_group_kobjs[i]; 9786 space_info->block_group_kobjs[i] = NULL; 9787 if (kobj) { 9788 kobject_del(kobj); 9789 kobject_put(kobj); 9790 } 9791 } 9792 kobject_del(&space_info->kobj); 9793 kobject_put(&space_info->kobj); 9794 } 9795 return 0; 9796 } 9797 9798 static void __link_block_group(struct btrfs_space_info *space_info, 9799 struct btrfs_block_group_cache *cache) 9800 { 9801 int index = get_block_group_index(cache); 9802 bool first = false; 9803 9804 down_write(&space_info->groups_sem); 9805 if (list_empty(&space_info->block_groups[index])) 9806 first = true; 9807 list_add_tail(&cache->list, &space_info->block_groups[index]); 9808 up_write(&space_info->groups_sem); 9809 9810 if (first) { 9811 struct raid_kobject *rkobj; 9812 int ret; 9813 9814 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9815 if (!rkobj) 9816 goto out_err; 9817 rkobj->raid_type = index; 9818 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9819 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9820 "%s", get_raid_name(index)); 9821 if (ret) { 9822 kobject_put(&rkobj->kobj); 9823 goto out_err; 9824 } 9825 space_info->block_group_kobjs[index] = &rkobj->kobj; 9826 } 9827 9828 return; 9829 out_err: 9830 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9831 } 9832 9833 static struct btrfs_block_group_cache * 9834 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9835 { 9836 struct btrfs_block_group_cache *cache; 9837 9838 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9839 if (!cache) 9840 return NULL; 9841 9842 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9843 GFP_NOFS); 9844 if (!cache->free_space_ctl) { 9845 kfree(cache); 9846 return NULL; 9847 } 9848 9849 cache->key.objectid = start; 9850 cache->key.offset = size; 9851 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9852 9853 cache->sectorsize = root->sectorsize; 9854 cache->fs_info = root->fs_info; 9855 cache->full_stripe_len = btrfs_full_stripe_len(root, 9856 &root->fs_info->mapping_tree, 9857 start); 9858 set_free_space_tree_thresholds(cache); 9859 9860 atomic_set(&cache->count, 1); 9861 spin_lock_init(&cache->lock); 9862 init_rwsem(&cache->data_rwsem); 9863 INIT_LIST_HEAD(&cache->list); 9864 INIT_LIST_HEAD(&cache->cluster_list); 9865 INIT_LIST_HEAD(&cache->bg_list); 9866 INIT_LIST_HEAD(&cache->ro_list); 9867 INIT_LIST_HEAD(&cache->dirty_list); 9868 INIT_LIST_HEAD(&cache->io_list); 9869 btrfs_init_free_space_ctl(cache); 9870 atomic_set(&cache->trimming, 0); 9871 mutex_init(&cache->free_space_lock); 9872 9873 return cache; 9874 } 9875 9876 int btrfs_read_block_groups(struct btrfs_root *root) 9877 { 9878 struct btrfs_path *path; 9879 int ret; 9880 struct btrfs_block_group_cache *cache; 9881 struct btrfs_fs_info *info = root->fs_info; 9882 struct btrfs_space_info *space_info; 9883 struct btrfs_key key; 9884 struct btrfs_key found_key; 9885 struct extent_buffer *leaf; 9886 int need_clear = 0; 9887 u64 cache_gen; 9888 9889 root = info->extent_root; 9890 key.objectid = 0; 9891 key.offset = 0; 9892 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9893 path = btrfs_alloc_path(); 9894 if (!path) 9895 return -ENOMEM; 9896 path->reada = READA_FORWARD; 9897 9898 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9899 if (btrfs_test_opt(root, SPACE_CACHE) && 9900 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9901 need_clear = 1; 9902 if (btrfs_test_opt(root, CLEAR_CACHE)) 9903 need_clear = 1; 9904 9905 while (1) { 9906 ret = find_first_block_group(root, path, &key); 9907 if (ret > 0) 9908 break; 9909 if (ret != 0) 9910 goto error; 9911 9912 leaf = path->nodes[0]; 9913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9914 9915 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9916 found_key.offset); 9917 if (!cache) { 9918 ret = -ENOMEM; 9919 goto error; 9920 } 9921 9922 if (need_clear) { 9923 /* 9924 * When we mount with old space cache, we need to 9925 * set BTRFS_DC_CLEAR and set dirty flag. 9926 * 9927 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9928 * truncate the old free space cache inode and 9929 * setup a new one. 9930 * b) Setting 'dirty flag' makes sure that we flush 9931 * the new space cache info onto disk. 9932 */ 9933 if (btrfs_test_opt(root, SPACE_CACHE)) 9934 cache->disk_cache_state = BTRFS_DC_CLEAR; 9935 } 9936 9937 read_extent_buffer(leaf, &cache->item, 9938 btrfs_item_ptr_offset(leaf, path->slots[0]), 9939 sizeof(cache->item)); 9940 cache->flags = btrfs_block_group_flags(&cache->item); 9941 9942 key.objectid = found_key.objectid + found_key.offset; 9943 btrfs_release_path(path); 9944 9945 /* 9946 * We need to exclude the super stripes now so that the space 9947 * info has super bytes accounted for, otherwise we'll think 9948 * we have more space than we actually do. 9949 */ 9950 ret = exclude_super_stripes(root, cache); 9951 if (ret) { 9952 /* 9953 * We may have excluded something, so call this just in 9954 * case. 9955 */ 9956 free_excluded_extents(root, cache); 9957 btrfs_put_block_group(cache); 9958 goto error; 9959 } 9960 9961 /* 9962 * check for two cases, either we are full, and therefore 9963 * don't need to bother with the caching work since we won't 9964 * find any space, or we are empty, and we can just add all 9965 * the space in and be done with it. This saves us _alot_ of 9966 * time, particularly in the full case. 9967 */ 9968 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9969 cache->last_byte_to_unpin = (u64)-1; 9970 cache->cached = BTRFS_CACHE_FINISHED; 9971 free_excluded_extents(root, cache); 9972 } else if (btrfs_block_group_used(&cache->item) == 0) { 9973 cache->last_byte_to_unpin = (u64)-1; 9974 cache->cached = BTRFS_CACHE_FINISHED; 9975 add_new_free_space(cache, root->fs_info, 9976 found_key.objectid, 9977 found_key.objectid + 9978 found_key.offset); 9979 free_excluded_extents(root, cache); 9980 } 9981 9982 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9983 if (ret) { 9984 btrfs_remove_free_space_cache(cache); 9985 btrfs_put_block_group(cache); 9986 goto error; 9987 } 9988 9989 ret = update_space_info(info, cache->flags, found_key.offset, 9990 btrfs_block_group_used(&cache->item), 9991 &space_info); 9992 if (ret) { 9993 btrfs_remove_free_space_cache(cache); 9994 spin_lock(&info->block_group_cache_lock); 9995 rb_erase(&cache->cache_node, 9996 &info->block_group_cache_tree); 9997 RB_CLEAR_NODE(&cache->cache_node); 9998 spin_unlock(&info->block_group_cache_lock); 9999 btrfs_put_block_group(cache); 10000 goto error; 10001 } 10002 10003 cache->space_info = space_info; 10004 spin_lock(&cache->space_info->lock); 10005 cache->space_info->bytes_readonly += cache->bytes_super; 10006 spin_unlock(&cache->space_info->lock); 10007 10008 __link_block_group(space_info, cache); 10009 10010 set_avail_alloc_bits(root->fs_info, cache->flags); 10011 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 10012 inc_block_group_ro(cache, 1); 10013 } else if (btrfs_block_group_used(&cache->item) == 0) { 10014 spin_lock(&info->unused_bgs_lock); 10015 /* Should always be true but just in case. */ 10016 if (list_empty(&cache->bg_list)) { 10017 btrfs_get_block_group(cache); 10018 list_add_tail(&cache->bg_list, 10019 &info->unused_bgs); 10020 } 10021 spin_unlock(&info->unused_bgs_lock); 10022 } 10023 } 10024 10025 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 10026 if (!(get_alloc_profile(root, space_info->flags) & 10027 (BTRFS_BLOCK_GROUP_RAID10 | 10028 BTRFS_BLOCK_GROUP_RAID1 | 10029 BTRFS_BLOCK_GROUP_RAID5 | 10030 BTRFS_BLOCK_GROUP_RAID6 | 10031 BTRFS_BLOCK_GROUP_DUP))) 10032 continue; 10033 /* 10034 * avoid allocating from un-mirrored block group if there are 10035 * mirrored block groups. 10036 */ 10037 list_for_each_entry(cache, 10038 &space_info->block_groups[BTRFS_RAID_RAID0], 10039 list) 10040 inc_block_group_ro(cache, 1); 10041 list_for_each_entry(cache, 10042 &space_info->block_groups[BTRFS_RAID_SINGLE], 10043 list) 10044 inc_block_group_ro(cache, 1); 10045 } 10046 10047 init_global_block_rsv(info); 10048 ret = 0; 10049 error: 10050 btrfs_free_path(path); 10051 return ret; 10052 } 10053 10054 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10055 struct btrfs_root *root) 10056 { 10057 struct btrfs_block_group_cache *block_group, *tmp; 10058 struct btrfs_root *extent_root = root->fs_info->extent_root; 10059 struct btrfs_block_group_item item; 10060 struct btrfs_key key; 10061 int ret = 0; 10062 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10063 10064 trans->can_flush_pending_bgs = false; 10065 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10066 if (ret) 10067 goto next; 10068 10069 spin_lock(&block_group->lock); 10070 memcpy(&item, &block_group->item, sizeof(item)); 10071 memcpy(&key, &block_group->key, sizeof(key)); 10072 spin_unlock(&block_group->lock); 10073 10074 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10075 sizeof(item)); 10076 if (ret) 10077 btrfs_abort_transaction(trans, extent_root, ret); 10078 ret = btrfs_finish_chunk_alloc(trans, extent_root, 10079 key.objectid, key.offset); 10080 if (ret) 10081 btrfs_abort_transaction(trans, extent_root, ret); 10082 add_block_group_free_space(trans, root->fs_info, block_group); 10083 /* already aborted the transaction if it failed. */ 10084 next: 10085 list_del_init(&block_group->bg_list); 10086 } 10087 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10088 } 10089 10090 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10091 struct btrfs_root *root, u64 bytes_used, 10092 u64 type, u64 chunk_objectid, u64 chunk_offset, 10093 u64 size) 10094 { 10095 int ret; 10096 struct btrfs_root *extent_root; 10097 struct btrfs_block_group_cache *cache; 10098 10099 extent_root = root->fs_info->extent_root; 10100 10101 btrfs_set_log_full_commit(root->fs_info, trans); 10102 10103 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 10104 if (!cache) 10105 return -ENOMEM; 10106 10107 btrfs_set_block_group_used(&cache->item, bytes_used); 10108 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10109 btrfs_set_block_group_flags(&cache->item, type); 10110 10111 cache->flags = type; 10112 cache->last_byte_to_unpin = (u64)-1; 10113 cache->cached = BTRFS_CACHE_FINISHED; 10114 cache->needs_free_space = 1; 10115 ret = exclude_super_stripes(root, cache); 10116 if (ret) { 10117 /* 10118 * We may have excluded something, so call this just in 10119 * case. 10120 */ 10121 free_excluded_extents(root, cache); 10122 btrfs_put_block_group(cache); 10123 return ret; 10124 } 10125 10126 add_new_free_space(cache, root->fs_info, chunk_offset, 10127 chunk_offset + size); 10128 10129 free_excluded_extents(root, cache); 10130 10131 #ifdef CONFIG_BTRFS_DEBUG 10132 if (btrfs_should_fragment_free_space(root, cache)) { 10133 u64 new_bytes_used = size - bytes_used; 10134 10135 bytes_used += new_bytes_used >> 1; 10136 fragment_free_space(root, cache); 10137 } 10138 #endif 10139 /* 10140 * Call to ensure the corresponding space_info object is created and 10141 * assigned to our block group, but don't update its counters just yet. 10142 * We want our bg to be added to the rbtree with its ->space_info set. 10143 */ 10144 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 10145 &cache->space_info); 10146 if (ret) { 10147 btrfs_remove_free_space_cache(cache); 10148 btrfs_put_block_group(cache); 10149 return ret; 10150 } 10151 10152 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10153 if (ret) { 10154 btrfs_remove_free_space_cache(cache); 10155 btrfs_put_block_group(cache); 10156 return ret; 10157 } 10158 10159 /* 10160 * Now that our block group has its ->space_info set and is inserted in 10161 * the rbtree, update the space info's counters. 10162 */ 10163 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10164 &cache->space_info); 10165 if (ret) { 10166 btrfs_remove_free_space_cache(cache); 10167 spin_lock(&root->fs_info->block_group_cache_lock); 10168 rb_erase(&cache->cache_node, 10169 &root->fs_info->block_group_cache_tree); 10170 RB_CLEAR_NODE(&cache->cache_node); 10171 spin_unlock(&root->fs_info->block_group_cache_lock); 10172 btrfs_put_block_group(cache); 10173 return ret; 10174 } 10175 update_global_block_rsv(root->fs_info); 10176 10177 spin_lock(&cache->space_info->lock); 10178 cache->space_info->bytes_readonly += cache->bytes_super; 10179 spin_unlock(&cache->space_info->lock); 10180 10181 __link_block_group(cache->space_info, cache); 10182 10183 list_add_tail(&cache->bg_list, &trans->new_bgs); 10184 10185 set_avail_alloc_bits(extent_root->fs_info, type); 10186 10187 return 0; 10188 } 10189 10190 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10191 { 10192 u64 extra_flags = chunk_to_extended(flags) & 10193 BTRFS_EXTENDED_PROFILE_MASK; 10194 10195 write_seqlock(&fs_info->profiles_lock); 10196 if (flags & BTRFS_BLOCK_GROUP_DATA) 10197 fs_info->avail_data_alloc_bits &= ~extra_flags; 10198 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10199 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10200 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10201 fs_info->avail_system_alloc_bits &= ~extra_flags; 10202 write_sequnlock(&fs_info->profiles_lock); 10203 } 10204 10205 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10206 struct btrfs_root *root, u64 group_start, 10207 struct extent_map *em) 10208 { 10209 struct btrfs_path *path; 10210 struct btrfs_block_group_cache *block_group; 10211 struct btrfs_free_cluster *cluster; 10212 struct btrfs_root *tree_root = root->fs_info->tree_root; 10213 struct btrfs_key key; 10214 struct inode *inode; 10215 struct kobject *kobj = NULL; 10216 int ret; 10217 int index; 10218 int factor; 10219 struct btrfs_caching_control *caching_ctl = NULL; 10220 bool remove_em; 10221 10222 root = root->fs_info->extent_root; 10223 10224 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10225 BUG_ON(!block_group); 10226 BUG_ON(!block_group->ro); 10227 10228 /* 10229 * Free the reserved super bytes from this block group before 10230 * remove it. 10231 */ 10232 free_excluded_extents(root, block_group); 10233 10234 memcpy(&key, &block_group->key, sizeof(key)); 10235 index = get_block_group_index(block_group); 10236 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10237 BTRFS_BLOCK_GROUP_RAID1 | 10238 BTRFS_BLOCK_GROUP_RAID10)) 10239 factor = 2; 10240 else 10241 factor = 1; 10242 10243 /* make sure this block group isn't part of an allocation cluster */ 10244 cluster = &root->fs_info->data_alloc_cluster; 10245 spin_lock(&cluster->refill_lock); 10246 btrfs_return_cluster_to_free_space(block_group, cluster); 10247 spin_unlock(&cluster->refill_lock); 10248 10249 /* 10250 * make sure this block group isn't part of a metadata 10251 * allocation cluster 10252 */ 10253 cluster = &root->fs_info->meta_alloc_cluster; 10254 spin_lock(&cluster->refill_lock); 10255 btrfs_return_cluster_to_free_space(block_group, cluster); 10256 spin_unlock(&cluster->refill_lock); 10257 10258 path = btrfs_alloc_path(); 10259 if (!path) { 10260 ret = -ENOMEM; 10261 goto out; 10262 } 10263 10264 /* 10265 * get the inode first so any iput calls done for the io_list 10266 * aren't the final iput (no unlinks allowed now) 10267 */ 10268 inode = lookup_free_space_inode(tree_root, block_group, path); 10269 10270 mutex_lock(&trans->transaction->cache_write_mutex); 10271 /* 10272 * make sure our free spache cache IO is done before remove the 10273 * free space inode 10274 */ 10275 spin_lock(&trans->transaction->dirty_bgs_lock); 10276 if (!list_empty(&block_group->io_list)) { 10277 list_del_init(&block_group->io_list); 10278 10279 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10280 10281 spin_unlock(&trans->transaction->dirty_bgs_lock); 10282 btrfs_wait_cache_io(root, trans, block_group, 10283 &block_group->io_ctl, path, 10284 block_group->key.objectid); 10285 btrfs_put_block_group(block_group); 10286 spin_lock(&trans->transaction->dirty_bgs_lock); 10287 } 10288 10289 if (!list_empty(&block_group->dirty_list)) { 10290 list_del_init(&block_group->dirty_list); 10291 btrfs_put_block_group(block_group); 10292 } 10293 spin_unlock(&trans->transaction->dirty_bgs_lock); 10294 mutex_unlock(&trans->transaction->cache_write_mutex); 10295 10296 if (!IS_ERR(inode)) { 10297 ret = btrfs_orphan_add(trans, inode); 10298 if (ret) { 10299 btrfs_add_delayed_iput(inode); 10300 goto out; 10301 } 10302 clear_nlink(inode); 10303 /* One for the block groups ref */ 10304 spin_lock(&block_group->lock); 10305 if (block_group->iref) { 10306 block_group->iref = 0; 10307 block_group->inode = NULL; 10308 spin_unlock(&block_group->lock); 10309 iput(inode); 10310 } else { 10311 spin_unlock(&block_group->lock); 10312 } 10313 /* One for our lookup ref */ 10314 btrfs_add_delayed_iput(inode); 10315 } 10316 10317 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10318 key.offset = block_group->key.objectid; 10319 key.type = 0; 10320 10321 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10322 if (ret < 0) 10323 goto out; 10324 if (ret > 0) 10325 btrfs_release_path(path); 10326 if (ret == 0) { 10327 ret = btrfs_del_item(trans, tree_root, path); 10328 if (ret) 10329 goto out; 10330 btrfs_release_path(path); 10331 } 10332 10333 spin_lock(&root->fs_info->block_group_cache_lock); 10334 rb_erase(&block_group->cache_node, 10335 &root->fs_info->block_group_cache_tree); 10336 RB_CLEAR_NODE(&block_group->cache_node); 10337 10338 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10339 root->fs_info->first_logical_byte = (u64)-1; 10340 spin_unlock(&root->fs_info->block_group_cache_lock); 10341 10342 down_write(&block_group->space_info->groups_sem); 10343 /* 10344 * we must use list_del_init so people can check to see if they 10345 * are still on the list after taking the semaphore 10346 */ 10347 list_del_init(&block_group->list); 10348 if (list_empty(&block_group->space_info->block_groups[index])) { 10349 kobj = block_group->space_info->block_group_kobjs[index]; 10350 block_group->space_info->block_group_kobjs[index] = NULL; 10351 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10352 } 10353 up_write(&block_group->space_info->groups_sem); 10354 if (kobj) { 10355 kobject_del(kobj); 10356 kobject_put(kobj); 10357 } 10358 10359 if (block_group->has_caching_ctl) 10360 caching_ctl = get_caching_control(block_group); 10361 if (block_group->cached == BTRFS_CACHE_STARTED) 10362 wait_block_group_cache_done(block_group); 10363 if (block_group->has_caching_ctl) { 10364 down_write(&root->fs_info->commit_root_sem); 10365 if (!caching_ctl) { 10366 struct btrfs_caching_control *ctl; 10367 10368 list_for_each_entry(ctl, 10369 &root->fs_info->caching_block_groups, list) 10370 if (ctl->block_group == block_group) { 10371 caching_ctl = ctl; 10372 atomic_inc(&caching_ctl->count); 10373 break; 10374 } 10375 } 10376 if (caching_ctl) 10377 list_del_init(&caching_ctl->list); 10378 up_write(&root->fs_info->commit_root_sem); 10379 if (caching_ctl) { 10380 /* Once for the caching bgs list and once for us. */ 10381 put_caching_control(caching_ctl); 10382 put_caching_control(caching_ctl); 10383 } 10384 } 10385 10386 spin_lock(&trans->transaction->dirty_bgs_lock); 10387 if (!list_empty(&block_group->dirty_list)) { 10388 WARN_ON(1); 10389 } 10390 if (!list_empty(&block_group->io_list)) { 10391 WARN_ON(1); 10392 } 10393 spin_unlock(&trans->transaction->dirty_bgs_lock); 10394 btrfs_remove_free_space_cache(block_group); 10395 10396 spin_lock(&block_group->space_info->lock); 10397 list_del_init(&block_group->ro_list); 10398 10399 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 10400 WARN_ON(block_group->space_info->total_bytes 10401 < block_group->key.offset); 10402 WARN_ON(block_group->space_info->bytes_readonly 10403 < block_group->key.offset); 10404 WARN_ON(block_group->space_info->disk_total 10405 < block_group->key.offset * factor); 10406 } 10407 block_group->space_info->total_bytes -= block_group->key.offset; 10408 block_group->space_info->bytes_readonly -= block_group->key.offset; 10409 block_group->space_info->disk_total -= block_group->key.offset * factor; 10410 10411 spin_unlock(&block_group->space_info->lock); 10412 10413 memcpy(&key, &block_group->key, sizeof(key)); 10414 10415 lock_chunks(root); 10416 if (!list_empty(&em->list)) { 10417 /* We're in the transaction->pending_chunks list. */ 10418 free_extent_map(em); 10419 } 10420 spin_lock(&block_group->lock); 10421 block_group->removed = 1; 10422 /* 10423 * At this point trimming can't start on this block group, because we 10424 * removed the block group from the tree fs_info->block_group_cache_tree 10425 * so no one can't find it anymore and even if someone already got this 10426 * block group before we removed it from the rbtree, they have already 10427 * incremented block_group->trimming - if they didn't, they won't find 10428 * any free space entries because we already removed them all when we 10429 * called btrfs_remove_free_space_cache(). 10430 * 10431 * And we must not remove the extent map from the fs_info->mapping_tree 10432 * to prevent the same logical address range and physical device space 10433 * ranges from being reused for a new block group. This is because our 10434 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10435 * completely transactionless, so while it is trimming a range the 10436 * currently running transaction might finish and a new one start, 10437 * allowing for new block groups to be created that can reuse the same 10438 * physical device locations unless we take this special care. 10439 * 10440 * There may also be an implicit trim operation if the file system 10441 * is mounted with -odiscard. The same protections must remain 10442 * in place until the extents have been discarded completely when 10443 * the transaction commit has completed. 10444 */ 10445 remove_em = (atomic_read(&block_group->trimming) == 0); 10446 /* 10447 * Make sure a trimmer task always sees the em in the pinned_chunks list 10448 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10449 * before checking block_group->removed). 10450 */ 10451 if (!remove_em) { 10452 /* 10453 * Our em might be in trans->transaction->pending_chunks which 10454 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10455 * and so is the fs_info->pinned_chunks list. 10456 * 10457 * So at this point we must be holding the chunk_mutex to avoid 10458 * any races with chunk allocation (more specifically at 10459 * volumes.c:contains_pending_extent()), to ensure it always 10460 * sees the em, either in the pending_chunks list or in the 10461 * pinned_chunks list. 10462 */ 10463 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10464 } 10465 spin_unlock(&block_group->lock); 10466 10467 if (remove_em) { 10468 struct extent_map_tree *em_tree; 10469 10470 em_tree = &root->fs_info->mapping_tree.map_tree; 10471 write_lock(&em_tree->lock); 10472 /* 10473 * The em might be in the pending_chunks list, so make sure the 10474 * chunk mutex is locked, since remove_extent_mapping() will 10475 * delete us from that list. 10476 */ 10477 remove_extent_mapping(em_tree, em); 10478 write_unlock(&em_tree->lock); 10479 /* once for the tree */ 10480 free_extent_map(em); 10481 } 10482 10483 unlock_chunks(root); 10484 10485 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10486 if (ret) 10487 goto out; 10488 10489 btrfs_put_block_group(block_group); 10490 btrfs_put_block_group(block_group); 10491 10492 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10493 if (ret > 0) 10494 ret = -EIO; 10495 if (ret < 0) 10496 goto out; 10497 10498 ret = btrfs_del_item(trans, root, path); 10499 out: 10500 btrfs_free_path(path); 10501 return ret; 10502 } 10503 10504 struct btrfs_trans_handle * 10505 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10506 const u64 chunk_offset) 10507 { 10508 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10509 struct extent_map *em; 10510 struct map_lookup *map; 10511 unsigned int num_items; 10512 10513 read_lock(&em_tree->lock); 10514 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10515 read_unlock(&em_tree->lock); 10516 ASSERT(em && em->start == chunk_offset); 10517 10518 /* 10519 * We need to reserve 3 + N units from the metadata space info in order 10520 * to remove a block group (done at btrfs_remove_chunk() and at 10521 * btrfs_remove_block_group()), which are used for: 10522 * 10523 * 1 unit for adding the free space inode's orphan (located in the tree 10524 * of tree roots). 10525 * 1 unit for deleting the block group item (located in the extent 10526 * tree). 10527 * 1 unit for deleting the free space item (located in tree of tree 10528 * roots). 10529 * N units for deleting N device extent items corresponding to each 10530 * stripe (located in the device tree). 10531 * 10532 * In order to remove a block group we also need to reserve units in the 10533 * system space info in order to update the chunk tree (update one or 10534 * more device items and remove one chunk item), but this is done at 10535 * btrfs_remove_chunk() through a call to check_system_chunk(). 10536 */ 10537 map = em->map_lookup; 10538 num_items = 3 + map->num_stripes; 10539 free_extent_map(em); 10540 10541 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10542 num_items, 1); 10543 } 10544 10545 /* 10546 * Process the unused_bgs list and remove any that don't have any allocated 10547 * space inside of them. 10548 */ 10549 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10550 { 10551 struct btrfs_block_group_cache *block_group; 10552 struct btrfs_space_info *space_info; 10553 struct btrfs_root *root = fs_info->extent_root; 10554 struct btrfs_trans_handle *trans; 10555 int ret = 0; 10556 10557 if (!fs_info->open) 10558 return; 10559 10560 spin_lock(&fs_info->unused_bgs_lock); 10561 while (!list_empty(&fs_info->unused_bgs)) { 10562 u64 start, end; 10563 int trimming; 10564 10565 block_group = list_first_entry(&fs_info->unused_bgs, 10566 struct btrfs_block_group_cache, 10567 bg_list); 10568 list_del_init(&block_group->bg_list); 10569 10570 space_info = block_group->space_info; 10571 10572 if (ret || btrfs_mixed_space_info(space_info)) { 10573 btrfs_put_block_group(block_group); 10574 continue; 10575 } 10576 spin_unlock(&fs_info->unused_bgs_lock); 10577 10578 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10579 10580 /* Don't want to race with allocators so take the groups_sem */ 10581 down_write(&space_info->groups_sem); 10582 spin_lock(&block_group->lock); 10583 if (block_group->reserved || 10584 btrfs_block_group_used(&block_group->item) || 10585 block_group->ro || 10586 list_is_singular(&block_group->list)) { 10587 /* 10588 * We want to bail if we made new allocations or have 10589 * outstanding allocations in this block group. We do 10590 * the ro check in case balance is currently acting on 10591 * this block group. 10592 */ 10593 spin_unlock(&block_group->lock); 10594 up_write(&space_info->groups_sem); 10595 goto next; 10596 } 10597 spin_unlock(&block_group->lock); 10598 10599 /* We don't want to force the issue, only flip if it's ok. */ 10600 ret = inc_block_group_ro(block_group, 0); 10601 up_write(&space_info->groups_sem); 10602 if (ret < 0) { 10603 ret = 0; 10604 goto next; 10605 } 10606 10607 /* 10608 * Want to do this before we do anything else so we can recover 10609 * properly if we fail to join the transaction. 10610 */ 10611 trans = btrfs_start_trans_remove_block_group(fs_info, 10612 block_group->key.objectid); 10613 if (IS_ERR(trans)) { 10614 btrfs_dec_block_group_ro(root, block_group); 10615 ret = PTR_ERR(trans); 10616 goto next; 10617 } 10618 10619 /* 10620 * We could have pending pinned extents for this block group, 10621 * just delete them, we don't care about them anymore. 10622 */ 10623 start = block_group->key.objectid; 10624 end = start + block_group->key.offset - 1; 10625 /* 10626 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10627 * btrfs_finish_extent_commit(). If we are at transaction N, 10628 * another task might be running finish_extent_commit() for the 10629 * previous transaction N - 1, and have seen a range belonging 10630 * to the block group in freed_extents[] before we were able to 10631 * clear the whole block group range from freed_extents[]. This 10632 * means that task can lookup for the block group after we 10633 * unpinned it from freed_extents[] and removed it, leading to 10634 * a BUG_ON() at btrfs_unpin_extent_range(). 10635 */ 10636 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10637 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10638 EXTENT_DIRTY); 10639 if (ret) { 10640 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10641 btrfs_dec_block_group_ro(root, block_group); 10642 goto end_trans; 10643 } 10644 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10645 EXTENT_DIRTY); 10646 if (ret) { 10647 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10648 btrfs_dec_block_group_ro(root, block_group); 10649 goto end_trans; 10650 } 10651 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10652 10653 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10654 spin_lock(&space_info->lock); 10655 spin_lock(&block_group->lock); 10656 10657 space_info->bytes_pinned -= block_group->pinned; 10658 space_info->bytes_readonly += block_group->pinned; 10659 percpu_counter_add(&space_info->total_bytes_pinned, 10660 -block_group->pinned); 10661 block_group->pinned = 0; 10662 10663 spin_unlock(&block_group->lock); 10664 spin_unlock(&space_info->lock); 10665 10666 /* DISCARD can flip during remount */ 10667 trimming = btrfs_test_opt(root, DISCARD); 10668 10669 /* Implicit trim during transaction commit. */ 10670 if (trimming) 10671 btrfs_get_block_group_trimming(block_group); 10672 10673 /* 10674 * Btrfs_remove_chunk will abort the transaction if things go 10675 * horribly wrong. 10676 */ 10677 ret = btrfs_remove_chunk(trans, root, 10678 block_group->key.objectid); 10679 10680 if (ret) { 10681 if (trimming) 10682 btrfs_put_block_group_trimming(block_group); 10683 goto end_trans; 10684 } 10685 10686 /* 10687 * If we're not mounted with -odiscard, we can just forget 10688 * about this block group. Otherwise we'll need to wait 10689 * until transaction commit to do the actual discard. 10690 */ 10691 if (trimming) { 10692 spin_lock(&fs_info->unused_bgs_lock); 10693 /* 10694 * A concurrent scrub might have added us to the list 10695 * fs_info->unused_bgs, so use a list_move operation 10696 * to add the block group to the deleted_bgs list. 10697 */ 10698 list_move(&block_group->bg_list, 10699 &trans->transaction->deleted_bgs); 10700 spin_unlock(&fs_info->unused_bgs_lock); 10701 btrfs_get_block_group(block_group); 10702 } 10703 end_trans: 10704 btrfs_end_transaction(trans, root); 10705 next: 10706 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10707 btrfs_put_block_group(block_group); 10708 spin_lock(&fs_info->unused_bgs_lock); 10709 } 10710 spin_unlock(&fs_info->unused_bgs_lock); 10711 } 10712 10713 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10714 { 10715 struct btrfs_space_info *space_info; 10716 struct btrfs_super_block *disk_super; 10717 u64 features; 10718 u64 flags; 10719 int mixed = 0; 10720 int ret; 10721 10722 disk_super = fs_info->super_copy; 10723 if (!btrfs_super_root(disk_super)) 10724 return -EINVAL; 10725 10726 features = btrfs_super_incompat_flags(disk_super); 10727 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10728 mixed = 1; 10729 10730 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10731 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10732 if (ret) 10733 goto out; 10734 10735 if (mixed) { 10736 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10737 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10738 } else { 10739 flags = BTRFS_BLOCK_GROUP_METADATA; 10740 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10741 if (ret) 10742 goto out; 10743 10744 flags = BTRFS_BLOCK_GROUP_DATA; 10745 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10746 } 10747 out: 10748 return ret; 10749 } 10750 10751 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10752 { 10753 return unpin_extent_range(root, start, end, false); 10754 } 10755 10756 /* 10757 * It used to be that old block groups would be left around forever. 10758 * Iterating over them would be enough to trim unused space. Since we 10759 * now automatically remove them, we also need to iterate over unallocated 10760 * space. 10761 * 10762 * We don't want a transaction for this since the discard may take a 10763 * substantial amount of time. We don't require that a transaction be 10764 * running, but we do need to take a running transaction into account 10765 * to ensure that we're not discarding chunks that were released in 10766 * the current transaction. 10767 * 10768 * Holding the chunks lock will prevent other threads from allocating 10769 * or releasing chunks, but it won't prevent a running transaction 10770 * from committing and releasing the memory that the pending chunks 10771 * list head uses. For that, we need to take a reference to the 10772 * transaction. 10773 */ 10774 static int btrfs_trim_free_extents(struct btrfs_device *device, 10775 u64 minlen, u64 *trimmed) 10776 { 10777 u64 start = 0, len = 0; 10778 int ret; 10779 10780 *trimmed = 0; 10781 10782 /* Not writeable = nothing to do. */ 10783 if (!device->writeable) 10784 return 0; 10785 10786 /* No free space = nothing to do. */ 10787 if (device->total_bytes <= device->bytes_used) 10788 return 0; 10789 10790 ret = 0; 10791 10792 while (1) { 10793 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10794 struct btrfs_transaction *trans; 10795 u64 bytes; 10796 10797 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10798 if (ret) 10799 return ret; 10800 10801 down_read(&fs_info->commit_root_sem); 10802 10803 spin_lock(&fs_info->trans_lock); 10804 trans = fs_info->running_transaction; 10805 if (trans) 10806 atomic_inc(&trans->use_count); 10807 spin_unlock(&fs_info->trans_lock); 10808 10809 ret = find_free_dev_extent_start(trans, device, minlen, start, 10810 &start, &len); 10811 if (trans) 10812 btrfs_put_transaction(trans); 10813 10814 if (ret) { 10815 up_read(&fs_info->commit_root_sem); 10816 mutex_unlock(&fs_info->chunk_mutex); 10817 if (ret == -ENOSPC) 10818 ret = 0; 10819 break; 10820 } 10821 10822 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10823 up_read(&fs_info->commit_root_sem); 10824 mutex_unlock(&fs_info->chunk_mutex); 10825 10826 if (ret) 10827 break; 10828 10829 start += len; 10830 *trimmed += bytes; 10831 10832 if (fatal_signal_pending(current)) { 10833 ret = -ERESTARTSYS; 10834 break; 10835 } 10836 10837 cond_resched(); 10838 } 10839 10840 return ret; 10841 } 10842 10843 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10844 { 10845 struct btrfs_fs_info *fs_info = root->fs_info; 10846 struct btrfs_block_group_cache *cache = NULL; 10847 struct btrfs_device *device; 10848 struct list_head *devices; 10849 u64 group_trimmed; 10850 u64 start; 10851 u64 end; 10852 u64 trimmed = 0; 10853 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10854 int ret = 0; 10855 10856 /* 10857 * try to trim all FS space, our block group may start from non-zero. 10858 */ 10859 if (range->len == total_bytes) 10860 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10861 else 10862 cache = btrfs_lookup_block_group(fs_info, range->start); 10863 10864 while (cache) { 10865 if (cache->key.objectid >= (range->start + range->len)) { 10866 btrfs_put_block_group(cache); 10867 break; 10868 } 10869 10870 start = max(range->start, cache->key.objectid); 10871 end = min(range->start + range->len, 10872 cache->key.objectid + cache->key.offset); 10873 10874 if (end - start >= range->minlen) { 10875 if (!block_group_cache_done(cache)) { 10876 ret = cache_block_group(cache, 0); 10877 if (ret) { 10878 btrfs_put_block_group(cache); 10879 break; 10880 } 10881 ret = wait_block_group_cache_done(cache); 10882 if (ret) { 10883 btrfs_put_block_group(cache); 10884 break; 10885 } 10886 } 10887 ret = btrfs_trim_block_group(cache, 10888 &group_trimmed, 10889 start, 10890 end, 10891 range->minlen); 10892 10893 trimmed += group_trimmed; 10894 if (ret) { 10895 btrfs_put_block_group(cache); 10896 break; 10897 } 10898 } 10899 10900 cache = next_block_group(fs_info->tree_root, cache); 10901 } 10902 10903 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10904 devices = &root->fs_info->fs_devices->alloc_list; 10905 list_for_each_entry(device, devices, dev_alloc_list) { 10906 ret = btrfs_trim_free_extents(device, range->minlen, 10907 &group_trimmed); 10908 if (ret) 10909 break; 10910 10911 trimmed += group_trimmed; 10912 } 10913 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10914 10915 range->len = trimmed; 10916 return ret; 10917 } 10918 10919 /* 10920 * btrfs_{start,end}_write_no_snapshoting() are similar to 10921 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10922 * data into the page cache through nocow before the subvolume is snapshoted, 10923 * but flush the data into disk after the snapshot creation, or to prevent 10924 * operations while snapshoting is ongoing and that cause the snapshot to be 10925 * inconsistent (writes followed by expanding truncates for example). 10926 */ 10927 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10928 { 10929 percpu_counter_dec(&root->subv_writers->counter); 10930 /* 10931 * Make sure counter is updated before we wake up waiters. 10932 */ 10933 smp_mb(); 10934 if (waitqueue_active(&root->subv_writers->wait)) 10935 wake_up(&root->subv_writers->wait); 10936 } 10937 10938 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10939 { 10940 if (atomic_read(&root->will_be_snapshoted)) 10941 return 0; 10942 10943 percpu_counter_inc(&root->subv_writers->counter); 10944 /* 10945 * Make sure counter is updated before we check for snapshot creation. 10946 */ 10947 smp_mb(); 10948 if (atomic_read(&root->will_be_snapshoted)) { 10949 btrfs_end_write_no_snapshoting(root); 10950 return 0; 10951 } 10952 return 1; 10953 } 10954 10955 static int wait_snapshoting_atomic_t(atomic_t *a) 10956 { 10957 schedule(); 10958 return 0; 10959 } 10960 10961 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 10962 { 10963 while (true) { 10964 int ret; 10965 10966 ret = btrfs_start_write_no_snapshoting(root); 10967 if (ret) 10968 break; 10969 wait_on_atomic_t(&root->will_be_snapshoted, 10970 wait_snapshoting_atomic_t, 10971 TASK_UNINTERRUPTIBLE); 10972 } 10973 } 10974