xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 37be287c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 				    struct extent_buffer *leaf,
87 				    struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 				      struct btrfs_root *root,
90 				      u64 parent, u64 root_objectid,
91 				      u64 flags, u64 owner, u64 offset,
92 				      struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 				     struct btrfs_root *root,
95 				     u64 parent, u64 root_objectid,
96 				     u64 flags, struct btrfs_disk_key *key,
97 				     int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 			  struct btrfs_root *extent_root, u64 flags,
100 			  int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 			 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 			    int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 				       u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 			       u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 		     u64 bytenr, u64 num_bytes, int reserved);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 				       cache->key.objectid, bytenr,
272 				       0, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(root, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (cache->cached != BTRFS_CACHE_STARTED) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	/* We're loading it the fast way, so we don't have a caching_ctl. */
321 	if (!cache->caching_ctl) {
322 		spin_unlock(&cache->lock);
323 		return NULL;
324 	}
325 
326 	ctl = cache->caching_ctl;
327 	atomic_inc(&ctl->count);
328 	spin_unlock(&cache->lock);
329 	return ctl;
330 }
331 
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 	if (atomic_dec_and_test(&ctl->count))
335 		kfree(ctl);
336 }
337 
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 			      struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 	u64 extent_start, extent_end, size, total_added = 0;
347 	int ret;
348 
349 	while (start < end) {
350 		ret = find_first_extent_bit(info->pinned_extents, start,
351 					    &extent_start, &extent_end,
352 					    EXTENT_DIRTY | EXTENT_UPTODATE,
353 					    NULL);
354 		if (ret)
355 			break;
356 
357 		if (extent_start <= start) {
358 			start = extent_end + 1;
359 		} else if (extent_start > start && extent_start < end) {
360 			size = extent_start - start;
361 			total_added += size;
362 			ret = btrfs_add_free_space(block_group, start,
363 						   size);
364 			BUG_ON(ret); /* -ENOMEM or logic error */
365 			start = extent_end + 1;
366 		} else {
367 			break;
368 		}
369 	}
370 
371 	if (start < end) {
372 		size = end - start;
373 		total_added += size;
374 		ret = btrfs_add_free_space(block_group, start, size);
375 		BUG_ON(ret); /* -ENOMEM or logic error */
376 	}
377 
378 	return total_added;
379 }
380 
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 	struct btrfs_block_group_cache *block_group;
384 	struct btrfs_fs_info *fs_info;
385 	struct btrfs_caching_control *caching_ctl;
386 	struct btrfs_root *extent_root;
387 	struct btrfs_path *path;
388 	struct extent_buffer *leaf;
389 	struct btrfs_key key;
390 	u64 total_found = 0;
391 	u64 last = 0;
392 	u32 nritems;
393 	int ret = -ENOMEM;
394 
395 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 	block_group = caching_ctl->block_group;
397 	fs_info = block_group->fs_info;
398 	extent_root = fs_info->extent_root;
399 
400 	path = btrfs_alloc_path();
401 	if (!path)
402 		goto out;
403 
404 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 
406 	/*
407 	 * We don't want to deadlock with somebody trying to allocate a new
408 	 * extent for the extent root while also trying to search the extent
409 	 * root to add free space.  So we skip locking and search the commit
410 	 * root, since its read-only
411 	 */
412 	path->skip_locking = 1;
413 	path->search_commit_root = 1;
414 	path->reada = 1;
415 
416 	key.objectid = last;
417 	key.offset = 0;
418 	key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 	mutex_lock(&caching_ctl->mutex);
421 	/* need to make sure the commit_root doesn't disappear */
422 	down_read(&fs_info->extent_commit_sem);
423 
424 next:
425 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 	if (ret < 0)
427 		goto err;
428 
429 	leaf = path->nodes[0];
430 	nritems = btrfs_header_nritems(leaf);
431 
432 	while (1) {
433 		if (btrfs_fs_closing(fs_info) > 1) {
434 			last = (u64)-1;
435 			break;
436 		}
437 
438 		if (path->slots[0] < nritems) {
439 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 		} else {
441 			ret = find_next_key(path, 0, &key);
442 			if (ret)
443 				break;
444 
445 			if (need_resched() ||
446 			    rwsem_is_contended(&fs_info->extent_commit_sem)) {
447 				caching_ctl->progress = last;
448 				btrfs_release_path(path);
449 				up_read(&fs_info->extent_commit_sem);
450 				mutex_unlock(&caching_ctl->mutex);
451 				cond_resched();
452 				goto again;
453 			}
454 
455 			ret = btrfs_next_leaf(extent_root, path);
456 			if (ret < 0)
457 				goto err;
458 			if (ret)
459 				break;
460 			leaf = path->nodes[0];
461 			nritems = btrfs_header_nritems(leaf);
462 			continue;
463 		}
464 
465 		if (key.objectid < last) {
466 			key.objectid = last;
467 			key.offset = 0;
468 			key.type = BTRFS_EXTENT_ITEM_KEY;
469 
470 			caching_ctl->progress = last;
471 			btrfs_release_path(path);
472 			goto next;
473 		}
474 
475 		if (key.objectid < block_group->key.objectid) {
476 			path->slots[0]++;
477 			continue;
478 		}
479 
480 		if (key.objectid >= block_group->key.objectid +
481 		    block_group->key.offset)
482 			break;
483 
484 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 		    key.type == BTRFS_METADATA_ITEM_KEY) {
486 			total_found += add_new_free_space(block_group,
487 							  fs_info, last,
488 							  key.objectid);
489 			if (key.type == BTRFS_METADATA_ITEM_KEY)
490 				last = key.objectid +
491 					fs_info->tree_root->leafsize;
492 			else
493 				last = key.objectid + key.offset;
494 
495 			if (total_found > (1024 * 1024 * 2)) {
496 				total_found = 0;
497 				wake_up(&caching_ctl->wait);
498 			}
499 		}
500 		path->slots[0]++;
501 	}
502 	ret = 0;
503 
504 	total_found += add_new_free_space(block_group, fs_info, last,
505 					  block_group->key.objectid +
506 					  block_group->key.offset);
507 	caching_ctl->progress = (u64)-1;
508 
509 	spin_lock(&block_group->lock);
510 	block_group->caching_ctl = NULL;
511 	block_group->cached = BTRFS_CACHE_FINISHED;
512 	spin_unlock(&block_group->lock);
513 
514 err:
515 	btrfs_free_path(path);
516 	up_read(&fs_info->extent_commit_sem);
517 
518 	free_excluded_extents(extent_root, block_group);
519 
520 	mutex_unlock(&caching_ctl->mutex);
521 out:
522 	if (ret) {
523 		spin_lock(&block_group->lock);
524 		block_group->caching_ctl = NULL;
525 		block_group->cached = BTRFS_CACHE_ERROR;
526 		spin_unlock(&block_group->lock);
527 	}
528 	wake_up(&caching_ctl->wait);
529 
530 	put_caching_control(caching_ctl);
531 	btrfs_put_block_group(block_group);
532 }
533 
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 			     int load_cache_only)
536 {
537 	DEFINE_WAIT(wait);
538 	struct btrfs_fs_info *fs_info = cache->fs_info;
539 	struct btrfs_caching_control *caching_ctl;
540 	int ret = 0;
541 
542 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 	if (!caching_ctl)
544 		return -ENOMEM;
545 
546 	INIT_LIST_HEAD(&caching_ctl->list);
547 	mutex_init(&caching_ctl->mutex);
548 	init_waitqueue_head(&caching_ctl->wait);
549 	caching_ctl->block_group = cache;
550 	caching_ctl->progress = cache->key.objectid;
551 	atomic_set(&caching_ctl->count, 1);
552 	caching_ctl->work.func = caching_thread;
553 
554 	spin_lock(&cache->lock);
555 	/*
556 	 * This should be a rare occasion, but this could happen I think in the
557 	 * case where one thread starts to load the space cache info, and then
558 	 * some other thread starts a transaction commit which tries to do an
559 	 * allocation while the other thread is still loading the space cache
560 	 * info.  The previous loop should have kept us from choosing this block
561 	 * group, but if we've moved to the state where we will wait on caching
562 	 * block groups we need to first check if we're doing a fast load here,
563 	 * so we can wait for it to finish, otherwise we could end up allocating
564 	 * from a block group who's cache gets evicted for one reason or
565 	 * another.
566 	 */
567 	while (cache->cached == BTRFS_CACHE_FAST) {
568 		struct btrfs_caching_control *ctl;
569 
570 		ctl = cache->caching_ctl;
571 		atomic_inc(&ctl->count);
572 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 		spin_unlock(&cache->lock);
574 
575 		schedule();
576 
577 		finish_wait(&ctl->wait, &wait);
578 		put_caching_control(ctl);
579 		spin_lock(&cache->lock);
580 	}
581 
582 	if (cache->cached != BTRFS_CACHE_NO) {
583 		spin_unlock(&cache->lock);
584 		kfree(caching_ctl);
585 		return 0;
586 	}
587 	WARN_ON(cache->caching_ctl);
588 	cache->caching_ctl = caching_ctl;
589 	cache->cached = BTRFS_CACHE_FAST;
590 	spin_unlock(&cache->lock);
591 
592 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 			}
607 		}
608 		spin_unlock(&cache->lock);
609 		wake_up(&caching_ctl->wait);
610 		if (ret == 1) {
611 			put_caching_control(caching_ctl);
612 			free_excluded_extents(fs_info->extent_root, cache);
613 			return 0;
614 		}
615 	} else {
616 		/*
617 		 * We are not going to do the fast caching, set cached to the
618 		 * appropriate value and wakeup any waiters.
619 		 */
620 		spin_lock(&cache->lock);
621 		if (load_cache_only) {
622 			cache->caching_ctl = NULL;
623 			cache->cached = BTRFS_CACHE_NO;
624 		} else {
625 			cache->cached = BTRFS_CACHE_STARTED;
626 		}
627 		spin_unlock(&cache->lock);
628 		wake_up(&caching_ctl->wait);
629 	}
630 
631 	if (load_cache_only) {
632 		put_caching_control(caching_ctl);
633 		return 0;
634 	}
635 
636 	down_write(&fs_info->extent_commit_sem);
637 	atomic_inc(&caching_ctl->count);
638 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 	up_write(&fs_info->extent_commit_sem);
640 
641 	btrfs_get_block_group(cache);
642 
643 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
644 
645 	return ret;
646 }
647 
648 /*
649  * return the block group that starts at or after bytenr
650  */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 	struct btrfs_block_group_cache *cache;
655 
656 	cache = block_group_cache_tree_search(info, bytenr, 0);
657 
658 	return cache;
659 }
660 
661 /*
662  * return the block group that contains the given bytenr
663  */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 						 struct btrfs_fs_info *info,
666 						 u64 bytenr)
667 {
668 	struct btrfs_block_group_cache *cache;
669 
670 	cache = block_group_cache_tree_search(info, bytenr, 1);
671 
672 	return cache;
673 }
674 
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 						  u64 flags)
677 {
678 	struct list_head *head = &info->space_info;
679 	struct btrfs_space_info *found;
680 
681 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682 
683 	rcu_read_lock();
684 	list_for_each_entry_rcu(found, head, list) {
685 		if (found->flags & flags) {
686 			rcu_read_unlock();
687 			return found;
688 		}
689 	}
690 	rcu_read_unlock();
691 	return NULL;
692 }
693 
694 /*
695  * after adding space to the filesystem, we need to clear the full flags
696  * on all the space infos.
697  */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 	struct list_head *head = &info->space_info;
701 	struct btrfs_space_info *found;
702 
703 	rcu_read_lock();
704 	list_for_each_entry_rcu(found, head, list)
705 		found->full = 0;
706 	rcu_read_unlock();
707 }
708 
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 	int ret;
713 	struct btrfs_key key;
714 	struct btrfs_path *path;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	key.objectid = start;
721 	key.offset = len;
722 	key.type = BTRFS_EXTENT_ITEM_KEY;
723 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 				0, 0);
725 	if (ret > 0) {
726 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 		if (key.objectid == start &&
728 		    key.type == BTRFS_METADATA_ITEM_KEY)
729 			ret = 0;
730 	}
731 	btrfs_free_path(path);
732 	return ret;
733 }
734 
735 /*
736  * helper function to lookup reference count and flags of a tree block.
737  *
738  * the head node for delayed ref is used to store the sum of all the
739  * reference count modifications queued up in the rbtree. the head
740  * node may also store the extent flags to set. This way you can check
741  * to see what the reference count and extent flags would be if all of
742  * the delayed refs are not processed.
743  */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 			     struct btrfs_root *root, u64 bytenr,
746 			     u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 	struct btrfs_delayed_ref_head *head;
749 	struct btrfs_delayed_ref_root *delayed_refs;
750 	struct btrfs_path *path;
751 	struct btrfs_extent_item *ei;
752 	struct extent_buffer *leaf;
753 	struct btrfs_key key;
754 	u32 item_size;
755 	u64 num_refs;
756 	u64 extent_flags;
757 	int ret;
758 
759 	/*
760 	 * If we don't have skinny metadata, don't bother doing anything
761 	 * different
762 	 */
763 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 		offset = root->leafsize;
765 		metadata = 0;
766 	}
767 
768 	path = btrfs_alloc_path();
769 	if (!path)
770 		return -ENOMEM;
771 
772 	if (!trans) {
773 		path->skip_locking = 1;
774 		path->search_commit_root = 1;
775 	}
776 
777 search_again:
778 	key.objectid = bytenr;
779 	key.offset = offset;
780 	if (metadata)
781 		key.type = BTRFS_METADATA_ITEM_KEY;
782 	else
783 		key.type = BTRFS_EXTENT_ITEM_KEY;
784 
785 again:
786 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 				&key, path, 0, 0);
788 	if (ret < 0)
789 		goto out_free;
790 
791 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 		if (path->slots[0]) {
793 			path->slots[0]--;
794 			btrfs_item_key_to_cpu(path->nodes[0], &key,
795 					      path->slots[0]);
796 			if (key.objectid == bytenr &&
797 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
798 			    key.offset == root->leafsize)
799 				ret = 0;
800 		}
801 		if (ret) {
802 			key.objectid = bytenr;
803 			key.type = BTRFS_EXTENT_ITEM_KEY;
804 			key.offset = root->leafsize;
805 			btrfs_release_path(path);
806 			goto again;
807 		}
808 	}
809 
810 	if (ret == 0) {
811 		leaf = path->nodes[0];
812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 		if (item_size >= sizeof(*ei)) {
814 			ei = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_extent_item);
816 			num_refs = btrfs_extent_refs(leaf, ei);
817 			extent_flags = btrfs_extent_flags(leaf, ei);
818 		} else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 			struct btrfs_extent_item_v0 *ei0;
821 			BUG_ON(item_size != sizeof(*ei0));
822 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 					     struct btrfs_extent_item_v0);
824 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 			/* FIXME: this isn't correct for data */
826 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 			BUG();
829 #endif
830 		}
831 		BUG_ON(num_refs == 0);
832 	} else {
833 		num_refs = 0;
834 		extent_flags = 0;
835 		ret = 0;
836 	}
837 
838 	if (!trans)
839 		goto out;
840 
841 	delayed_refs = &trans->transaction->delayed_refs;
842 	spin_lock(&delayed_refs->lock);
843 	head = btrfs_find_delayed_ref_head(trans, bytenr);
844 	if (head) {
845 		if (!mutex_trylock(&head->mutex)) {
846 			atomic_inc(&head->node.refs);
847 			spin_unlock(&delayed_refs->lock);
848 
849 			btrfs_release_path(path);
850 
851 			/*
852 			 * Mutex was contended, block until it's released and try
853 			 * again
854 			 */
855 			mutex_lock(&head->mutex);
856 			mutex_unlock(&head->mutex);
857 			btrfs_put_delayed_ref(&head->node);
858 			goto search_again;
859 		}
860 		spin_lock(&head->lock);
861 		if (head->extent_op && head->extent_op->update_flags)
862 			extent_flags |= head->extent_op->flags_to_set;
863 		else
864 			BUG_ON(num_refs == 0);
865 
866 		num_refs += head->node.ref_mod;
867 		spin_unlock(&head->lock);
868 		mutex_unlock(&head->mutex);
869 	}
870 	spin_unlock(&delayed_refs->lock);
871 out:
872 	WARN_ON(num_refs == 0);
873 	if (refs)
874 		*refs = num_refs;
875 	if (flags)
876 		*flags = extent_flags;
877 out_free:
878 	btrfs_free_path(path);
879 	return ret;
880 }
881 
882 /*
883  * Back reference rules.  Back refs have three main goals:
884  *
885  * 1) differentiate between all holders of references to an extent so that
886  *    when a reference is dropped we can make sure it was a valid reference
887  *    before freeing the extent.
888  *
889  * 2) Provide enough information to quickly find the holders of an extent
890  *    if we notice a given block is corrupted or bad.
891  *
892  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893  *    maintenance.  This is actually the same as #2, but with a slightly
894  *    different use case.
895  *
896  * There are two kinds of back refs. The implicit back refs is optimized
897  * for pointers in non-shared tree blocks. For a given pointer in a block,
898  * back refs of this kind provide information about the block's owner tree
899  * and the pointer's key. These information allow us to find the block by
900  * b-tree searching. The full back refs is for pointers in tree blocks not
901  * referenced by their owner trees. The location of tree block is recorded
902  * in the back refs. Actually the full back refs is generic, and can be
903  * used in all cases the implicit back refs is used. The major shortcoming
904  * of the full back refs is its overhead. Every time a tree block gets
905  * COWed, we have to update back refs entry for all pointers in it.
906  *
907  * For a newly allocated tree block, we use implicit back refs for
908  * pointers in it. This means most tree related operations only involve
909  * implicit back refs. For a tree block created in old transaction, the
910  * only way to drop a reference to it is COW it. So we can detect the
911  * event that tree block loses its owner tree's reference and do the
912  * back refs conversion.
913  *
914  * When a tree block is COW'd through a tree, there are four cases:
915  *
916  * The reference count of the block is one and the tree is the block's
917  * owner tree. Nothing to do in this case.
918  *
919  * The reference count of the block is one and the tree is not the
920  * block's owner tree. In this case, full back refs is used for pointers
921  * in the block. Remove these full back refs, add implicit back refs for
922  * every pointers in the new block.
923  *
924  * The reference count of the block is greater than one and the tree is
925  * the block's owner tree. In this case, implicit back refs is used for
926  * pointers in the block. Add full back refs for every pointers in the
927  * block, increase lower level extents' reference counts. The original
928  * implicit back refs are entailed to the new block.
929  *
930  * The reference count of the block is greater than one and the tree is
931  * not the block's owner tree. Add implicit back refs for every pointer in
932  * the new block, increase lower level extents' reference count.
933  *
934  * Back Reference Key composing:
935  *
936  * The key objectid corresponds to the first byte in the extent,
937  * The key type is used to differentiate between types of back refs.
938  * There are different meanings of the key offset for different types
939  * of back refs.
940  *
941  * File extents can be referenced by:
942  *
943  * - multiple snapshots, subvolumes, or different generations in one subvol
944  * - different files inside a single subvolume
945  * - different offsets inside a file (bookend extents in file.c)
946  *
947  * The extent ref structure for the implicit back refs has fields for:
948  *
949  * - Objectid of the subvolume root
950  * - objectid of the file holding the reference
951  * - original offset in the file
952  * - how many bookend extents
953  *
954  * The key offset for the implicit back refs is hash of the first
955  * three fields.
956  *
957  * The extent ref structure for the full back refs has field for:
958  *
959  * - number of pointers in the tree leaf
960  *
961  * The key offset for the implicit back refs is the first byte of
962  * the tree leaf
963  *
964  * When a file extent is allocated, The implicit back refs is used.
965  * the fields are filled in:
966  *
967  *     (root_key.objectid, inode objectid, offset in file, 1)
968  *
969  * When a file extent is removed file truncation, we find the
970  * corresponding implicit back refs and check the following fields:
971  *
972  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
973  *
974  * Btree extents can be referenced by:
975  *
976  * - Different subvolumes
977  *
978  * Both the implicit back refs and the full back refs for tree blocks
979  * only consist of key. The key offset for the implicit back refs is
980  * objectid of block's owner tree. The key offset for the full back refs
981  * is the first byte of parent block.
982  *
983  * When implicit back refs is used, information about the lowest key and
984  * level of the tree block are required. These information are stored in
985  * tree block info structure.
986  */
987 
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 				  struct btrfs_root *root,
991 				  struct btrfs_path *path,
992 				  u64 owner, u32 extra_size)
993 {
994 	struct btrfs_extent_item *item;
995 	struct btrfs_extent_item_v0 *ei0;
996 	struct btrfs_extent_ref_v0 *ref0;
997 	struct btrfs_tree_block_info *bi;
998 	struct extent_buffer *leaf;
999 	struct btrfs_key key;
1000 	struct btrfs_key found_key;
1001 	u32 new_size = sizeof(*item);
1002 	u64 refs;
1003 	int ret;
1004 
1005 	leaf = path->nodes[0];
1006 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007 
1008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 			     struct btrfs_extent_item_v0);
1011 	refs = btrfs_extent_refs_v0(leaf, ei0);
1012 
1013 	if (owner == (u64)-1) {
1014 		while (1) {
1015 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 				ret = btrfs_next_leaf(root, path);
1017 				if (ret < 0)
1018 					return ret;
1019 				BUG_ON(ret > 0); /* Corruption */
1020 				leaf = path->nodes[0];
1021 			}
1022 			btrfs_item_key_to_cpu(leaf, &found_key,
1023 					      path->slots[0]);
1024 			BUG_ON(key.objectid != found_key.objectid);
1025 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 				path->slots[0]++;
1027 				continue;
1028 			}
1029 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 					      struct btrfs_extent_ref_v0);
1031 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 			break;
1033 		}
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 		new_size += sizeof(*bi);
1039 
1040 	new_size -= sizeof(*ei0);
1041 	ret = btrfs_search_slot(trans, root, &key, path,
1042 				new_size + extra_size, 1);
1043 	if (ret < 0)
1044 		return ret;
1045 	BUG_ON(ret); /* Corruption */
1046 
1047 	btrfs_extend_item(root, path, new_size);
1048 
1049 	leaf = path->nodes[0];
1050 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 	btrfs_set_extent_refs(leaf, item, refs);
1052 	/* FIXME: get real generation */
1053 	btrfs_set_extent_generation(leaf, item, 0);
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		btrfs_set_extent_flags(leaf, item,
1056 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 		bi = (struct btrfs_tree_block_info *)(item + 1);
1059 		/* FIXME: get first key of the block */
1060 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 	} else {
1063 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 	return 0;
1067 }
1068 #endif
1069 
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071 {
1072 	u32 high_crc = ~(u32)0;
1073 	u32 low_crc = ~(u32)0;
1074 	__le64 lenum;
1075 
1076 	lenum = cpu_to_le64(root_objectid);
1077 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 	lenum = cpu_to_le64(owner);
1079 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 	lenum = cpu_to_le64(offset);
1081 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082 
1083 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 }
1085 
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 				     struct btrfs_extent_data_ref *ref)
1088 {
1089 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 				    btrfs_extent_data_ref_objectid(leaf, ref),
1091 				    btrfs_extent_data_ref_offset(leaf, ref));
1092 }
1093 
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 				 struct btrfs_extent_data_ref *ref,
1096 				 u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 					   struct btrfs_root *root,
1107 					   struct btrfs_path *path,
1108 					   u64 bytenr, u64 parent,
1109 					   u64 root_objectid,
1110 					   u64 owner, u64 offset)
1111 {
1112 	struct btrfs_key key;
1113 	struct btrfs_extent_data_ref *ref;
1114 	struct extent_buffer *leaf;
1115 	u32 nritems;
1116 	int ret;
1117 	int recow;
1118 	int err = -ENOENT;
1119 
1120 	key.objectid = bytenr;
1121 	if (parent) {
1122 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 		key.offset = parent;
1124 	} else {
1125 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 		key.offset = hash_extent_data_ref(root_objectid,
1127 						  owner, offset);
1128 	}
1129 again:
1130 	recow = 0;
1131 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 	if (ret < 0) {
1133 		err = ret;
1134 		goto fail;
1135 	}
1136 
1137 	if (parent) {
1138 		if (!ret)
1139 			return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 		btrfs_release_path(path);
1143 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 		if (ret < 0) {
1145 			err = ret;
1146 			goto fail;
1147 		}
1148 		if (!ret)
1149 			return 0;
1150 #endif
1151 		goto fail;
1152 	}
1153 
1154 	leaf = path->nodes[0];
1155 	nritems = btrfs_header_nritems(leaf);
1156 	while (1) {
1157 		if (path->slots[0] >= nritems) {
1158 			ret = btrfs_next_leaf(root, path);
1159 			if (ret < 0)
1160 				err = ret;
1161 			if (ret)
1162 				goto fail;
1163 
1164 			leaf = path->nodes[0];
1165 			nritems = btrfs_header_nritems(leaf);
1166 			recow = 1;
1167 		}
1168 
1169 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 		if (key.objectid != bytenr ||
1171 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 			goto fail;
1173 
1174 		ref = btrfs_item_ptr(leaf, path->slots[0],
1175 				     struct btrfs_extent_data_ref);
1176 
1177 		if (match_extent_data_ref(leaf, ref, root_objectid,
1178 					  owner, offset)) {
1179 			if (recow) {
1180 				btrfs_release_path(path);
1181 				goto again;
1182 			}
1183 			err = 0;
1184 			break;
1185 		}
1186 		path->slots[0]++;
1187 	}
1188 fail:
1189 	return err;
1190 }
1191 
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 					   struct btrfs_root *root,
1194 					   struct btrfs_path *path,
1195 					   u64 bytenr, u64 parent,
1196 					   u64 root_objectid, u64 owner,
1197 					   u64 offset, int refs_to_add)
1198 {
1199 	struct btrfs_key key;
1200 	struct extent_buffer *leaf;
1201 	u32 size;
1202 	u32 num_refs;
1203 	int ret;
1204 
1205 	key.objectid = bytenr;
1206 	if (parent) {
1207 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 		key.offset = parent;
1209 		size = sizeof(struct btrfs_shared_data_ref);
1210 	} else {
1211 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 		key.offset = hash_extent_data_ref(root_objectid,
1213 						  owner, offset);
1214 		size = sizeof(struct btrfs_extent_data_ref);
1215 	}
1216 
1217 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 	if (ret && ret != -EEXIST)
1219 		goto fail;
1220 
1221 	leaf = path->nodes[0];
1222 	if (parent) {
1223 		struct btrfs_shared_data_ref *ref;
1224 		ref = btrfs_item_ptr(leaf, path->slots[0],
1225 				     struct btrfs_shared_data_ref);
1226 		if (ret == 0) {
1227 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 		} else {
1229 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 			num_refs += refs_to_add;
1231 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 		}
1233 	} else {
1234 		struct btrfs_extent_data_ref *ref;
1235 		while (ret == -EEXIST) {
1236 			ref = btrfs_item_ptr(leaf, path->slots[0],
1237 					     struct btrfs_extent_data_ref);
1238 			if (match_extent_data_ref(leaf, ref, root_objectid,
1239 						  owner, offset))
1240 				break;
1241 			btrfs_release_path(path);
1242 			key.offset++;
1243 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 						      size);
1245 			if (ret && ret != -EEXIST)
1246 				goto fail;
1247 
1248 			leaf = path->nodes[0];
1249 		}
1250 		ref = btrfs_item_ptr(leaf, path->slots[0],
1251 				     struct btrfs_extent_data_ref);
1252 		if (ret == 0) {
1253 			btrfs_set_extent_data_ref_root(leaf, ref,
1254 						       root_objectid);
1255 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 		} else {
1259 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 			num_refs += refs_to_add;
1261 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 		}
1263 	}
1264 	btrfs_mark_buffer_dirty(leaf);
1265 	ret = 0;
1266 fail:
1267 	btrfs_release_path(path);
1268 	return ret;
1269 }
1270 
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 					   struct btrfs_root *root,
1273 					   struct btrfs_path *path,
1274 					   int refs_to_drop)
1275 {
1276 	struct btrfs_key key;
1277 	struct btrfs_extent_data_ref *ref1 = NULL;
1278 	struct btrfs_shared_data_ref *ref2 = NULL;
1279 	struct extent_buffer *leaf;
1280 	u32 num_refs = 0;
1281 	int ret = 0;
1282 
1283 	leaf = path->nodes[0];
1284 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285 
1286 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_data_ref);
1289 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 				      struct btrfs_shared_data_ref);
1293 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 		struct btrfs_extent_ref_v0 *ref0;
1297 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 				      struct btrfs_extent_ref_v0);
1299 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 	} else {
1302 		BUG();
1303 	}
1304 
1305 	BUG_ON(num_refs < refs_to_drop);
1306 	num_refs -= refs_to_drop;
1307 
1308 	if (num_refs == 0) {
1309 		ret = btrfs_del_item(trans, root, path);
1310 	} else {
1311 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 		else {
1317 			struct btrfs_extent_ref_v0 *ref0;
1318 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 					struct btrfs_extent_ref_v0);
1320 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 		}
1322 #endif
1323 		btrfs_mark_buffer_dirty(leaf);
1324 	}
1325 	return ret;
1326 }
1327 
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 					  struct btrfs_path *path,
1330 					  struct btrfs_extent_inline_ref *iref)
1331 {
1332 	struct btrfs_key key;
1333 	struct extent_buffer *leaf;
1334 	struct btrfs_extent_data_ref *ref1;
1335 	struct btrfs_shared_data_ref *ref2;
1336 	u32 num_refs = 0;
1337 
1338 	leaf = path->nodes[0];
1339 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 	if (iref) {
1341 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 		    BTRFS_EXTENT_DATA_REF_KEY) {
1343 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 		} else {
1346 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 		}
1349 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_data_ref);
1352 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_shared_data_ref);
1356 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 		struct btrfs_extent_ref_v0 *ref0;
1360 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_extent_ref_v0);
1362 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 	} else {
1365 		WARN_ON(1);
1366 	}
1367 	return num_refs;
1368 }
1369 
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 					  struct btrfs_root *root,
1372 					  struct btrfs_path *path,
1373 					  u64 bytenr, u64 parent,
1374 					  u64 root_objectid)
1375 {
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	if (parent) {
1381 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 		key.offset = parent;
1383 	} else {
1384 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 		key.offset = root_objectid;
1386 	}
1387 
1388 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 	if (ret > 0)
1390 		ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 	if (ret == -ENOENT && parent) {
1393 		btrfs_release_path(path);
1394 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 		if (ret > 0)
1397 			ret = -ENOENT;
1398 	}
1399 #endif
1400 	return ret;
1401 }
1402 
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 					  struct btrfs_root *root,
1405 					  struct btrfs_path *path,
1406 					  u64 bytenr, u64 parent,
1407 					  u64 root_objectid)
1408 {
1409 	struct btrfs_key key;
1410 	int ret;
1411 
1412 	key.objectid = bytenr;
1413 	if (parent) {
1414 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 		key.offset = parent;
1416 	} else {
1417 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 		key.offset = root_objectid;
1419 	}
1420 
1421 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 	btrfs_release_path(path);
1423 	return ret;
1424 }
1425 
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1427 {
1428 	int type;
1429 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 		if (parent > 0)
1431 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 		else
1433 			type = BTRFS_TREE_BLOCK_REF_KEY;
1434 	} else {
1435 		if (parent > 0)
1436 			type = BTRFS_SHARED_DATA_REF_KEY;
1437 		else
1438 			type = BTRFS_EXTENT_DATA_REF_KEY;
1439 	}
1440 	return type;
1441 }
1442 
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 			 struct btrfs_key *key)
1445 
1446 {
1447 	for (; level < BTRFS_MAX_LEVEL; level++) {
1448 		if (!path->nodes[level])
1449 			break;
1450 		if (path->slots[level] + 1 >=
1451 		    btrfs_header_nritems(path->nodes[level]))
1452 			continue;
1453 		if (level == 0)
1454 			btrfs_item_key_to_cpu(path->nodes[level], key,
1455 					      path->slots[level] + 1);
1456 		else
1457 			btrfs_node_key_to_cpu(path->nodes[level], key,
1458 					      path->slots[level] + 1);
1459 		return 0;
1460 	}
1461 	return 1;
1462 }
1463 
1464 /*
1465  * look for inline back ref. if back ref is found, *ref_ret is set
1466  * to the address of inline back ref, and 0 is returned.
1467  *
1468  * if back ref isn't found, *ref_ret is set to the address where it
1469  * should be inserted, and -ENOENT is returned.
1470  *
1471  * if insert is true and there are too many inline back refs, the path
1472  * points to the extent item, and -EAGAIN is returned.
1473  *
1474  * NOTE: inline back refs are ordered in the same way that back ref
1475  *	 items in the tree are ordered.
1476  */
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 				 struct btrfs_root *root,
1480 				 struct btrfs_path *path,
1481 				 struct btrfs_extent_inline_ref **ref_ret,
1482 				 u64 bytenr, u64 num_bytes,
1483 				 u64 parent, u64 root_objectid,
1484 				 u64 owner, u64 offset, int insert)
1485 {
1486 	struct btrfs_key key;
1487 	struct extent_buffer *leaf;
1488 	struct btrfs_extent_item *ei;
1489 	struct btrfs_extent_inline_ref *iref;
1490 	u64 flags;
1491 	u64 item_size;
1492 	unsigned long ptr;
1493 	unsigned long end;
1494 	int extra_size;
1495 	int type;
1496 	int want;
1497 	int ret;
1498 	int err = 0;
1499 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 						 SKINNY_METADATA);
1501 
1502 	key.objectid = bytenr;
1503 	key.type = BTRFS_EXTENT_ITEM_KEY;
1504 	key.offset = num_bytes;
1505 
1506 	want = extent_ref_type(parent, owner);
1507 	if (insert) {
1508 		extra_size = btrfs_extent_inline_ref_size(want);
1509 		path->keep_locks = 1;
1510 	} else
1511 		extra_size = -1;
1512 
1513 	/*
1514 	 * Owner is our parent level, so we can just add one to get the level
1515 	 * for the block we are interested in.
1516 	 */
1517 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 		key.type = BTRFS_METADATA_ITEM_KEY;
1519 		key.offset = owner;
1520 	}
1521 
1522 again:
1523 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 	if (ret < 0) {
1525 		err = ret;
1526 		goto out;
1527 	}
1528 
1529 	/*
1530 	 * We may be a newly converted file system which still has the old fat
1531 	 * extent entries for metadata, so try and see if we have one of those.
1532 	 */
1533 	if (ret > 0 && skinny_metadata) {
1534 		skinny_metadata = false;
1535 		if (path->slots[0]) {
1536 			path->slots[0]--;
1537 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 					      path->slots[0]);
1539 			if (key.objectid == bytenr &&
1540 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 			    key.offset == num_bytes)
1542 				ret = 0;
1543 		}
1544 		if (ret) {
1545 			key.type = BTRFS_EXTENT_ITEM_KEY;
1546 			key.offset = num_bytes;
1547 			btrfs_release_path(path);
1548 			goto again;
1549 		}
1550 	}
1551 
1552 	if (ret && !insert) {
1553 		err = -ENOENT;
1554 		goto out;
1555 	} else if (WARN_ON(ret)) {
1556 		err = -EIO;
1557 		goto out;
1558 	}
1559 
1560 	leaf = path->nodes[0];
1561 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 	if (item_size < sizeof(*ei)) {
1564 		if (!insert) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		ret = convert_extent_item_v0(trans, root, path, owner,
1569 					     extra_size);
1570 		if (ret < 0) {
1571 			err = ret;
1572 			goto out;
1573 		}
1574 		leaf = path->nodes[0];
1575 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 	}
1577 #endif
1578 	BUG_ON(item_size < sizeof(*ei));
1579 
1580 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 	flags = btrfs_extent_flags(leaf, ei);
1582 
1583 	ptr = (unsigned long)(ei + 1);
1584 	end = (unsigned long)ei + item_size;
1585 
1586 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 		ptr += sizeof(struct btrfs_tree_block_info);
1588 		BUG_ON(ptr > end);
1589 	}
1590 
1591 	err = -ENOENT;
1592 	while (1) {
1593 		if (ptr >= end) {
1594 			WARN_ON(ptr > end);
1595 			break;
1596 		}
1597 		iref = (struct btrfs_extent_inline_ref *)ptr;
1598 		type = btrfs_extent_inline_ref_type(leaf, iref);
1599 		if (want < type)
1600 			break;
1601 		if (want > type) {
1602 			ptr += btrfs_extent_inline_ref_size(type);
1603 			continue;
1604 		}
1605 
1606 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 			struct btrfs_extent_data_ref *dref;
1608 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 			if (match_extent_data_ref(leaf, dref, root_objectid,
1610 						  owner, offset)) {
1611 				err = 0;
1612 				break;
1613 			}
1614 			if (hash_extent_data_ref_item(leaf, dref) <
1615 			    hash_extent_data_ref(root_objectid, owner, offset))
1616 				break;
1617 		} else {
1618 			u64 ref_offset;
1619 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 			if (parent > 0) {
1621 				if (parent == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < parent)
1626 					break;
1627 			} else {
1628 				if (root_objectid == ref_offset) {
1629 					err = 0;
1630 					break;
1631 				}
1632 				if (ref_offset < root_objectid)
1633 					break;
1634 			}
1635 		}
1636 		ptr += btrfs_extent_inline_ref_size(type);
1637 	}
1638 	if (err == -ENOENT && insert) {
1639 		if (item_size + extra_size >=
1640 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 			err = -EAGAIN;
1642 			goto out;
1643 		}
1644 		/*
1645 		 * To add new inline back ref, we have to make sure
1646 		 * there is no corresponding back ref item.
1647 		 * For simplicity, we just do not add new inline back
1648 		 * ref if there is any kind of item for this block
1649 		 */
1650 		if (find_next_key(path, 0, &key) == 0 &&
1651 		    key.objectid == bytenr &&
1652 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 			err = -EAGAIN;
1654 			goto out;
1655 		}
1656 	}
1657 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 	if (insert) {
1660 		path->keep_locks = 0;
1661 		btrfs_unlock_up_safe(path, 1);
1662 	}
1663 	return err;
1664 }
1665 
1666 /*
1667  * helper to add new inline back ref
1668  */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 				 struct btrfs_path *path,
1672 				 struct btrfs_extent_inline_ref *iref,
1673 				 u64 parent, u64 root_objectid,
1674 				 u64 owner, u64 offset, int refs_to_add,
1675 				 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_extent_item *ei;
1679 	unsigned long ptr;
1680 	unsigned long end;
1681 	unsigned long item_offset;
1682 	u64 refs;
1683 	int size;
1684 	int type;
1685 
1686 	leaf = path->nodes[0];
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	item_offset = (unsigned long)iref - (unsigned long)ei;
1689 
1690 	type = extent_ref_type(parent, owner);
1691 	size = btrfs_extent_inline_ref_size(type);
1692 
1693 	btrfs_extend_item(root, path, size);
1694 
1695 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 	refs = btrfs_extent_refs(leaf, ei);
1697 	refs += refs_to_add;
1698 	btrfs_set_extent_refs(leaf, ei, refs);
1699 	if (extent_op)
1700 		__run_delayed_extent_op(extent_op, leaf, ei);
1701 
1702 	ptr = (unsigned long)ei + item_offset;
1703 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 	if (ptr < end - size)
1705 		memmove_extent_buffer(leaf, ptr + size, ptr,
1706 				      end - size - ptr);
1707 
1708 	iref = (struct btrfs_extent_inline_ref *)ptr;
1709 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 		struct btrfs_extent_data_ref *dref;
1712 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 		struct btrfs_shared_data_ref *sref;
1719 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 	} else {
1725 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 	}
1727 	btrfs_mark_buffer_dirty(leaf);
1728 }
1729 
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 				 struct btrfs_root *root,
1732 				 struct btrfs_path *path,
1733 				 struct btrfs_extent_inline_ref **ref_ret,
1734 				 u64 bytenr, u64 num_bytes, u64 parent,
1735 				 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 	int ret;
1738 
1739 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 					   bytenr, num_bytes, parent,
1741 					   root_objectid, owner, offset, 0);
1742 	if (ret != -ENOENT)
1743 		return ret;
1744 
1745 	btrfs_release_path(path);
1746 	*ref_ret = NULL;
1747 
1748 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 					    root_objectid);
1751 	} else {
1752 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 					     root_objectid, owner, offset);
1754 	}
1755 	return ret;
1756 }
1757 
1758 /*
1759  * helper to update/remove inline back ref
1760  */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 				  struct btrfs_path *path,
1764 				  struct btrfs_extent_inline_ref *iref,
1765 				  int refs_to_mod,
1766 				  struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 	struct extent_buffer *leaf;
1769 	struct btrfs_extent_item *ei;
1770 	struct btrfs_extent_data_ref *dref = NULL;
1771 	struct btrfs_shared_data_ref *sref = NULL;
1772 	unsigned long ptr;
1773 	unsigned long end;
1774 	u32 item_size;
1775 	int size;
1776 	int type;
1777 	u64 refs;
1778 
1779 	leaf = path->nodes[0];
1780 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 	refs = btrfs_extent_refs(leaf, ei);
1782 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 	refs += refs_to_mod;
1784 	btrfs_set_extent_refs(leaf, ei, refs);
1785 	if (extent_op)
1786 		__run_delayed_extent_op(extent_op, leaf, ei);
1787 
1788 	type = btrfs_extent_inline_ref_type(leaf, iref);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		size =  btrfs_extent_inline_ref_size(type);
1811 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 		ptr = (unsigned long)iref;
1813 		end = (unsigned long)ei + item_size;
1814 		if (ptr + size < end)
1815 			memmove_extent_buffer(leaf, ptr, ptr + size,
1816 					      end - ptr - size);
1817 		item_size -= size;
1818 		btrfs_truncate_item(root, path, item_size, 1);
1819 	}
1820 	btrfs_mark_buffer_dirty(leaf);
1821 }
1822 
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 				 struct btrfs_root *root,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 					   bytenr, num_bytes, parent,
1837 					   root_objectid, owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(root, path, iref,
1841 					     refs_to_add, extent_op);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(root, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_root *root,
1853 				 struct btrfs_path *path,
1854 				 u64 bytenr, u64 parent, u64 root_objectid,
1855 				 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 	int ret;
1858 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 		BUG_ON(refs_to_add != 1);
1860 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 					    parent, root_objectid);
1862 	} else {
1863 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 					     parent, root_objectid,
1865 					     owner, offset, refs_to_add);
1866 	}
1867 	return ret;
1868 }
1869 
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 				 struct btrfs_root *root,
1872 				 struct btrfs_path *path,
1873 				 struct btrfs_extent_inline_ref *iref,
1874 				 int refs_to_drop, int is_data)
1875 {
1876 	int ret = 0;
1877 
1878 	BUG_ON(!is_data && refs_to_drop != 1);
1879 	if (iref) {
1880 		update_inline_extent_backref(root, path, iref,
1881 					     -refs_to_drop, NULL);
1882 	} else if (is_data) {
1883 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 	} else {
1885 		ret = btrfs_del_item(trans, root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 				u64 start, u64 len)
1892 {
1893 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895 
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 				u64 num_bytes, u64 *actual_bytes)
1898 {
1899 	int ret;
1900 	u64 discarded_bytes = 0;
1901 	struct btrfs_bio *bbio = NULL;
1902 
1903 
1904 	/* Tell the block device(s) that the sectors can be discarded */
1905 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 			      bytenr, &num_bytes, &bbio, 0);
1907 	/* Error condition is -ENOMEM */
1908 	if (!ret) {
1909 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 		int i;
1911 
1912 
1913 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 			if (!stripe->dev->can_discard)
1915 				continue;
1916 
1917 			ret = btrfs_issue_discard(stripe->dev->bdev,
1918 						  stripe->physical,
1919 						  stripe->length);
1920 			if (!ret)
1921 				discarded_bytes += stripe->length;
1922 			else if (ret != -EOPNOTSUPP)
1923 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924 
1925 			/*
1926 			 * Just in case we get back EOPNOTSUPP for some reason,
1927 			 * just ignore the return value so we don't screw up
1928 			 * people calling discard_extent.
1929 			 */
1930 			ret = 0;
1931 		}
1932 		kfree(bbio);
1933 	}
1934 
1935 	if (actual_bytes)
1936 		*actual_bytes = discarded_bytes;
1937 
1938 
1939 	if (ret == -EOPNOTSUPP)
1940 		ret = 0;
1941 	return ret;
1942 }
1943 
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 			 struct btrfs_root *root,
1947 			 u64 bytenr, u64 num_bytes, u64 parent,
1948 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 	int ret;
1951 	struct btrfs_fs_info *fs_info = root->fs_info;
1952 
1953 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955 
1956 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 					num_bytes,
1959 					parent, root_objectid, (int)owner,
1960 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 	} else {
1962 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 					num_bytes,
1964 					parent, root_objectid, owner, offset,
1965 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 				  struct btrfs_root *root,
1972 				  u64 bytenr, u64 num_bytes,
1973 				  u64 parent, u64 root_objectid,
1974 				  u64 owner, u64 offset, int refs_to_add,
1975 				  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	u64 refs;
1981 	int ret;
1982 
1983 	path = btrfs_alloc_path();
1984 	if (!path)
1985 		return -ENOMEM;
1986 
1987 	path->reada = 1;
1988 	path->leave_spinning = 1;
1989 	/* this will setup the path even if it fails to insert the back ref */
1990 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1991 					   path, bytenr, num_bytes, parent,
1992 					   root_objectid, owner, offset,
1993 					   refs_to_add, extent_op);
1994 	if (ret != -EAGAIN)
1995 		goto out;
1996 
1997 	leaf = path->nodes[0];
1998 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 	refs = btrfs_extent_refs(leaf, item);
2000 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 	if (extent_op)
2002 		__run_delayed_extent_op(extent_op, leaf, item);
2003 
2004 	btrfs_mark_buffer_dirty(leaf);
2005 	btrfs_release_path(path);
2006 
2007 	path->reada = 1;
2008 	path->leave_spinning = 1;
2009 
2010 	/* now insert the actual backref */
2011 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 				    path, bytenr, parent, root_objectid,
2013 				    owner, offset, refs_to_add);
2014 	if (ret)
2015 		btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 	btrfs_free_path(path);
2018 	return ret;
2019 }
2020 
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 				struct btrfs_root *root,
2023 				struct btrfs_delayed_ref_node *node,
2024 				struct btrfs_delayed_extent_op *extent_op,
2025 				int insert_reserved)
2026 {
2027 	int ret = 0;
2028 	struct btrfs_delayed_data_ref *ref;
2029 	struct btrfs_key ins;
2030 	u64 parent = 0;
2031 	u64 ref_root = 0;
2032 	u64 flags = 0;
2033 
2034 	ins.objectid = node->bytenr;
2035 	ins.offset = node->num_bytes;
2036 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2037 
2038 	ref = btrfs_delayed_node_to_data_ref(node);
2039 	trace_run_delayed_data_ref(node, ref, node->action);
2040 
2041 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2042 		parent = ref->parent;
2043 	else
2044 		ref_root = ref->root;
2045 
2046 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2047 		if (extent_op)
2048 			flags |= extent_op->flags_to_set;
2049 		ret = alloc_reserved_file_extent(trans, root,
2050 						 parent, ref_root, flags,
2051 						 ref->objectid, ref->offset,
2052 						 &ins, node->ref_mod);
2053 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2054 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2055 					     node->num_bytes, parent,
2056 					     ref_root, ref->objectid,
2057 					     ref->offset, node->ref_mod,
2058 					     extent_op);
2059 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2060 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2061 					  node->num_bytes, parent,
2062 					  ref_root, ref->objectid,
2063 					  ref->offset, node->ref_mod,
2064 					  extent_op);
2065 	} else {
2066 		BUG();
2067 	}
2068 	return ret;
2069 }
2070 
2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2072 				    struct extent_buffer *leaf,
2073 				    struct btrfs_extent_item *ei)
2074 {
2075 	u64 flags = btrfs_extent_flags(leaf, ei);
2076 	if (extent_op->update_flags) {
2077 		flags |= extent_op->flags_to_set;
2078 		btrfs_set_extent_flags(leaf, ei, flags);
2079 	}
2080 
2081 	if (extent_op->update_key) {
2082 		struct btrfs_tree_block_info *bi;
2083 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2084 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2085 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2086 	}
2087 }
2088 
2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2090 				 struct btrfs_root *root,
2091 				 struct btrfs_delayed_ref_node *node,
2092 				 struct btrfs_delayed_extent_op *extent_op)
2093 {
2094 	struct btrfs_key key;
2095 	struct btrfs_path *path;
2096 	struct btrfs_extent_item *ei;
2097 	struct extent_buffer *leaf;
2098 	u32 item_size;
2099 	int ret;
2100 	int err = 0;
2101 	int metadata = !extent_op->is_data;
2102 
2103 	if (trans->aborted)
2104 		return 0;
2105 
2106 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2107 		metadata = 0;
2108 
2109 	path = btrfs_alloc_path();
2110 	if (!path)
2111 		return -ENOMEM;
2112 
2113 	key.objectid = node->bytenr;
2114 
2115 	if (metadata) {
2116 		key.type = BTRFS_METADATA_ITEM_KEY;
2117 		key.offset = extent_op->level;
2118 	} else {
2119 		key.type = BTRFS_EXTENT_ITEM_KEY;
2120 		key.offset = node->num_bytes;
2121 	}
2122 
2123 again:
2124 	path->reada = 1;
2125 	path->leave_spinning = 1;
2126 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2127 				path, 0, 1);
2128 	if (ret < 0) {
2129 		err = ret;
2130 		goto out;
2131 	}
2132 	if (ret > 0) {
2133 		if (metadata) {
2134 			if (path->slots[0] > 0) {
2135 				path->slots[0]--;
2136 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2137 						      path->slots[0]);
2138 				if (key.objectid == node->bytenr &&
2139 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2140 				    key.offset == node->num_bytes)
2141 					ret = 0;
2142 			}
2143 			if (ret > 0) {
2144 				btrfs_release_path(path);
2145 				metadata = 0;
2146 
2147 				key.objectid = node->bytenr;
2148 				key.offset = node->num_bytes;
2149 				key.type = BTRFS_EXTENT_ITEM_KEY;
2150 				goto again;
2151 			}
2152 		} else {
2153 			err = -EIO;
2154 			goto out;
2155 		}
2156 	}
2157 
2158 	leaf = path->nodes[0];
2159 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2161 	if (item_size < sizeof(*ei)) {
2162 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2163 					     path, (u64)-1, 0);
2164 		if (ret < 0) {
2165 			err = ret;
2166 			goto out;
2167 		}
2168 		leaf = path->nodes[0];
2169 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2170 	}
2171 #endif
2172 	BUG_ON(item_size < sizeof(*ei));
2173 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2174 	__run_delayed_extent_op(extent_op, leaf, ei);
2175 
2176 	btrfs_mark_buffer_dirty(leaf);
2177 out:
2178 	btrfs_free_path(path);
2179 	return err;
2180 }
2181 
2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2183 				struct btrfs_root *root,
2184 				struct btrfs_delayed_ref_node *node,
2185 				struct btrfs_delayed_extent_op *extent_op,
2186 				int insert_reserved)
2187 {
2188 	int ret = 0;
2189 	struct btrfs_delayed_tree_ref *ref;
2190 	struct btrfs_key ins;
2191 	u64 parent = 0;
2192 	u64 ref_root = 0;
2193 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2194 						 SKINNY_METADATA);
2195 
2196 	ref = btrfs_delayed_node_to_tree_ref(node);
2197 	trace_run_delayed_tree_ref(node, ref, node->action);
2198 
2199 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2200 		parent = ref->parent;
2201 	else
2202 		ref_root = ref->root;
2203 
2204 	ins.objectid = node->bytenr;
2205 	if (skinny_metadata) {
2206 		ins.offset = ref->level;
2207 		ins.type = BTRFS_METADATA_ITEM_KEY;
2208 	} else {
2209 		ins.offset = node->num_bytes;
2210 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 	}
2212 
2213 	BUG_ON(node->ref_mod != 1);
2214 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 		BUG_ON(!extent_op || !extent_op->update_flags);
2216 		ret = alloc_reserved_tree_block(trans, root,
2217 						parent, ref_root,
2218 						extent_op->flags_to_set,
2219 						&extent_op->key,
2220 						ref->level, &ins);
2221 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2222 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2223 					     node->num_bytes, parent, ref_root,
2224 					     ref->level, 0, 1, extent_op);
2225 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2227 					  node->num_bytes, parent, ref_root,
2228 					  ref->level, 0, 1, extent_op);
2229 	} else {
2230 		BUG();
2231 	}
2232 	return ret;
2233 }
2234 
2235 /* helper function to actually process a single delayed ref entry */
2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2237 			       struct btrfs_root *root,
2238 			       struct btrfs_delayed_ref_node *node,
2239 			       struct btrfs_delayed_extent_op *extent_op,
2240 			       int insert_reserved)
2241 {
2242 	int ret = 0;
2243 
2244 	if (trans->aborted) {
2245 		if (insert_reserved)
2246 			btrfs_pin_extent(root, node->bytenr,
2247 					 node->num_bytes, 1);
2248 		return 0;
2249 	}
2250 
2251 	if (btrfs_delayed_ref_is_head(node)) {
2252 		struct btrfs_delayed_ref_head *head;
2253 		/*
2254 		 * we've hit the end of the chain and we were supposed
2255 		 * to insert this extent into the tree.  But, it got
2256 		 * deleted before we ever needed to insert it, so all
2257 		 * we have to do is clean up the accounting
2258 		 */
2259 		BUG_ON(extent_op);
2260 		head = btrfs_delayed_node_to_head(node);
2261 		trace_run_delayed_ref_head(node, head, node->action);
2262 
2263 		if (insert_reserved) {
2264 			btrfs_pin_extent(root, node->bytenr,
2265 					 node->num_bytes, 1);
2266 			if (head->is_data) {
2267 				ret = btrfs_del_csums(trans, root,
2268 						      node->bytenr,
2269 						      node->num_bytes);
2270 			}
2271 		}
2272 		return ret;
2273 	}
2274 
2275 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2276 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2277 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2278 					   insert_reserved);
2279 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2280 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2281 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2282 					   insert_reserved);
2283 	else
2284 		BUG();
2285 	return ret;
2286 }
2287 
2288 static noinline struct btrfs_delayed_ref_node *
2289 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2290 {
2291 	struct rb_node *node;
2292 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2293 
2294 	/*
2295 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 	 * this prevents ref count from going down to zero when
2297 	 * there still are pending delayed ref.
2298 	 */
2299 	node = rb_first(&head->ref_root);
2300 	while (node) {
2301 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 				rb_node);
2303 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2304 			return ref;
2305 		else if (last == NULL)
2306 			last = ref;
2307 		node = rb_next(node);
2308 	}
2309 	return last;
2310 }
2311 
2312 /*
2313  * Returns 0 on success or if called with an already aborted transaction.
2314  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2315  */
2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2317 					     struct btrfs_root *root,
2318 					     unsigned long nr)
2319 {
2320 	struct btrfs_delayed_ref_root *delayed_refs;
2321 	struct btrfs_delayed_ref_node *ref;
2322 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2323 	struct btrfs_delayed_extent_op *extent_op;
2324 	struct btrfs_fs_info *fs_info = root->fs_info;
2325 	ktime_t start = ktime_get();
2326 	int ret;
2327 	unsigned long count = 0;
2328 	unsigned long actual_count = 0;
2329 	int must_insert_reserved = 0;
2330 
2331 	delayed_refs = &trans->transaction->delayed_refs;
2332 	while (1) {
2333 		if (!locked_ref) {
2334 			if (count >= nr)
2335 				break;
2336 
2337 			spin_lock(&delayed_refs->lock);
2338 			locked_ref = btrfs_select_ref_head(trans);
2339 			if (!locked_ref) {
2340 				spin_unlock(&delayed_refs->lock);
2341 				break;
2342 			}
2343 
2344 			/* grab the lock that says we are going to process
2345 			 * all the refs for this head */
2346 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 			spin_unlock(&delayed_refs->lock);
2348 			/*
2349 			 * we may have dropped the spin lock to get the head
2350 			 * mutex lock, and that might have given someone else
2351 			 * time to free the head.  If that's true, it has been
2352 			 * removed from our list and we can move on.
2353 			 */
2354 			if (ret == -EAGAIN) {
2355 				locked_ref = NULL;
2356 				count++;
2357 				continue;
2358 			}
2359 		}
2360 
2361 		/*
2362 		 * We need to try and merge add/drops of the same ref since we
2363 		 * can run into issues with relocate dropping the implicit ref
2364 		 * and then it being added back again before the drop can
2365 		 * finish.  If we merged anything we need to re-loop so we can
2366 		 * get a good ref.
2367 		 */
2368 		spin_lock(&locked_ref->lock);
2369 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 					 locked_ref);
2371 
2372 		/*
2373 		 * locked_ref is the head node, so we have to go one
2374 		 * node back for any delayed ref updates
2375 		 */
2376 		ref = select_delayed_ref(locked_ref);
2377 
2378 		if (ref && ref->seq &&
2379 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 			spin_unlock(&locked_ref->lock);
2381 			btrfs_delayed_ref_unlock(locked_ref);
2382 			spin_lock(&delayed_refs->lock);
2383 			locked_ref->processing = 0;
2384 			delayed_refs->num_heads_ready++;
2385 			spin_unlock(&delayed_refs->lock);
2386 			locked_ref = NULL;
2387 			cond_resched();
2388 			continue;
2389 		}
2390 
2391 		/*
2392 		 * record the must insert reserved flag before we
2393 		 * drop the spin lock.
2394 		 */
2395 		must_insert_reserved = locked_ref->must_insert_reserved;
2396 		locked_ref->must_insert_reserved = 0;
2397 
2398 		extent_op = locked_ref->extent_op;
2399 		locked_ref->extent_op = NULL;
2400 
2401 		if (!ref) {
2402 
2403 
2404 			/* All delayed refs have been processed, Go ahead
2405 			 * and send the head node to run_one_delayed_ref,
2406 			 * so that any accounting fixes can happen
2407 			 */
2408 			ref = &locked_ref->node;
2409 
2410 			if (extent_op && must_insert_reserved) {
2411 				btrfs_free_delayed_extent_op(extent_op);
2412 				extent_op = NULL;
2413 			}
2414 
2415 			if (extent_op) {
2416 				spin_unlock(&locked_ref->lock);
2417 				ret = run_delayed_extent_op(trans, root,
2418 							    ref, extent_op);
2419 				btrfs_free_delayed_extent_op(extent_op);
2420 
2421 				if (ret) {
2422 					/*
2423 					 * Need to reset must_insert_reserved if
2424 					 * there was an error so the abort stuff
2425 					 * can cleanup the reserved space
2426 					 * properly.
2427 					 */
2428 					if (must_insert_reserved)
2429 						locked_ref->must_insert_reserved = 1;
2430 					locked_ref->processing = 0;
2431 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2432 					btrfs_delayed_ref_unlock(locked_ref);
2433 					return ret;
2434 				}
2435 				continue;
2436 			}
2437 
2438 			/*
2439 			 * Need to drop our head ref lock and re-aqcuire the
2440 			 * delayed ref lock and then re-check to make sure
2441 			 * nobody got added.
2442 			 */
2443 			spin_unlock(&locked_ref->lock);
2444 			spin_lock(&delayed_refs->lock);
2445 			spin_lock(&locked_ref->lock);
2446 			if (rb_first(&locked_ref->ref_root)) {
2447 				spin_unlock(&locked_ref->lock);
2448 				spin_unlock(&delayed_refs->lock);
2449 				continue;
2450 			}
2451 			ref->in_tree = 0;
2452 			delayed_refs->num_heads--;
2453 			rb_erase(&locked_ref->href_node,
2454 				 &delayed_refs->href_root);
2455 			spin_unlock(&delayed_refs->lock);
2456 		} else {
2457 			actual_count++;
2458 			ref->in_tree = 0;
2459 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2460 		}
2461 		atomic_dec(&delayed_refs->num_entries);
2462 
2463 		if (!btrfs_delayed_ref_is_head(ref)) {
2464 			/*
2465 			 * when we play the delayed ref, also correct the
2466 			 * ref_mod on head
2467 			 */
2468 			switch (ref->action) {
2469 			case BTRFS_ADD_DELAYED_REF:
2470 			case BTRFS_ADD_DELAYED_EXTENT:
2471 				locked_ref->node.ref_mod -= ref->ref_mod;
2472 				break;
2473 			case BTRFS_DROP_DELAYED_REF:
2474 				locked_ref->node.ref_mod += ref->ref_mod;
2475 				break;
2476 			default:
2477 				WARN_ON(1);
2478 			}
2479 		}
2480 		spin_unlock(&locked_ref->lock);
2481 
2482 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2483 					  must_insert_reserved);
2484 
2485 		btrfs_free_delayed_extent_op(extent_op);
2486 		if (ret) {
2487 			locked_ref->processing = 0;
2488 			btrfs_delayed_ref_unlock(locked_ref);
2489 			btrfs_put_delayed_ref(ref);
2490 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2491 			return ret;
2492 		}
2493 
2494 		/*
2495 		 * If this node is a head, that means all the refs in this head
2496 		 * have been dealt with, and we will pick the next head to deal
2497 		 * with, so we must unlock the head and drop it from the cluster
2498 		 * list before we release it.
2499 		 */
2500 		if (btrfs_delayed_ref_is_head(ref)) {
2501 			btrfs_delayed_ref_unlock(locked_ref);
2502 			locked_ref = NULL;
2503 		}
2504 		btrfs_put_delayed_ref(ref);
2505 		count++;
2506 		cond_resched();
2507 	}
2508 
2509 	/*
2510 	 * We don't want to include ref heads since we can have empty ref heads
2511 	 * and those will drastically skew our runtime down since we just do
2512 	 * accounting, no actual extent tree updates.
2513 	 */
2514 	if (actual_count > 0) {
2515 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2516 		u64 avg;
2517 
2518 		/*
2519 		 * We weigh the current average higher than our current runtime
2520 		 * to avoid large swings in the average.
2521 		 */
2522 		spin_lock(&delayed_refs->lock);
2523 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2524 		avg = div64_u64(avg, 4);
2525 		fs_info->avg_delayed_ref_runtime = avg;
2526 		spin_unlock(&delayed_refs->lock);
2527 	}
2528 	return 0;
2529 }
2530 
2531 #ifdef SCRAMBLE_DELAYED_REFS
2532 /*
2533  * Normally delayed refs get processed in ascending bytenr order. This
2534  * correlates in most cases to the order added. To expose dependencies on this
2535  * order, we start to process the tree in the middle instead of the beginning
2536  */
2537 static u64 find_middle(struct rb_root *root)
2538 {
2539 	struct rb_node *n = root->rb_node;
2540 	struct btrfs_delayed_ref_node *entry;
2541 	int alt = 1;
2542 	u64 middle;
2543 	u64 first = 0, last = 0;
2544 
2545 	n = rb_first(root);
2546 	if (n) {
2547 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2548 		first = entry->bytenr;
2549 	}
2550 	n = rb_last(root);
2551 	if (n) {
2552 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2553 		last = entry->bytenr;
2554 	}
2555 	n = root->rb_node;
2556 
2557 	while (n) {
2558 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2559 		WARN_ON(!entry->in_tree);
2560 
2561 		middle = entry->bytenr;
2562 
2563 		if (alt)
2564 			n = n->rb_left;
2565 		else
2566 			n = n->rb_right;
2567 
2568 		alt = 1 - alt;
2569 	}
2570 	return middle;
2571 }
2572 #endif
2573 
2574 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2575 					 struct btrfs_fs_info *fs_info)
2576 {
2577 	struct qgroup_update *qgroup_update;
2578 	int ret = 0;
2579 
2580 	if (list_empty(&trans->qgroup_ref_list) !=
2581 	    !trans->delayed_ref_elem.seq) {
2582 		/* list without seq or seq without list */
2583 		btrfs_err(fs_info,
2584 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2585 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2586 			(u32)(trans->delayed_ref_elem.seq >> 32),
2587 			(u32)trans->delayed_ref_elem.seq);
2588 		BUG();
2589 	}
2590 
2591 	if (!trans->delayed_ref_elem.seq)
2592 		return 0;
2593 
2594 	while (!list_empty(&trans->qgroup_ref_list)) {
2595 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2596 						 struct qgroup_update, list);
2597 		list_del(&qgroup_update->list);
2598 		if (!ret)
2599 			ret = btrfs_qgroup_account_ref(
2600 					trans, fs_info, qgroup_update->node,
2601 					qgroup_update->extent_op);
2602 		kfree(qgroup_update);
2603 	}
2604 
2605 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2606 
2607 	return ret;
2608 }
2609 
2610 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2611 {
2612 	u64 num_bytes;
2613 
2614 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2615 			     sizeof(struct btrfs_extent_inline_ref));
2616 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2617 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2618 
2619 	/*
2620 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2621 	 * closer to what we're really going to want to ouse.
2622 	 */
2623 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2624 }
2625 
2626 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2627 				       struct btrfs_root *root)
2628 {
2629 	struct btrfs_block_rsv *global_rsv;
2630 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2631 	u64 num_bytes;
2632 	int ret = 0;
2633 
2634 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2635 	num_heads = heads_to_leaves(root, num_heads);
2636 	if (num_heads > 1)
2637 		num_bytes += (num_heads - 1) * root->leafsize;
2638 	num_bytes <<= 1;
2639 	global_rsv = &root->fs_info->global_block_rsv;
2640 
2641 	/*
2642 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2643 	 * wiggle room since running delayed refs can create more delayed refs.
2644 	 */
2645 	if (global_rsv->space_info->full)
2646 		num_bytes <<= 1;
2647 
2648 	spin_lock(&global_rsv->lock);
2649 	if (global_rsv->reserved <= num_bytes)
2650 		ret = 1;
2651 	spin_unlock(&global_rsv->lock);
2652 	return ret;
2653 }
2654 
2655 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2656 				       struct btrfs_root *root)
2657 {
2658 	struct btrfs_fs_info *fs_info = root->fs_info;
2659 	u64 num_entries =
2660 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2661 	u64 avg_runtime;
2662 
2663 	smp_mb();
2664 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2665 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2666 		return 1;
2667 
2668 	return btrfs_check_space_for_delayed_refs(trans, root);
2669 }
2670 
2671 /*
2672  * this starts processing the delayed reference count updates and
2673  * extent insertions we have queued up so far.  count can be
2674  * 0, which means to process everything in the tree at the start
2675  * of the run (but not newly added entries), or it can be some target
2676  * number you'd like to process.
2677  *
2678  * Returns 0 on success or if called with an aborted transaction
2679  * Returns <0 on error and aborts the transaction
2680  */
2681 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2682 			   struct btrfs_root *root, unsigned long count)
2683 {
2684 	struct rb_node *node;
2685 	struct btrfs_delayed_ref_root *delayed_refs;
2686 	struct btrfs_delayed_ref_head *head;
2687 	int ret;
2688 	int run_all = count == (unsigned long)-1;
2689 	int run_most = 0;
2690 
2691 	/* We'll clean this up in btrfs_cleanup_transaction */
2692 	if (trans->aborted)
2693 		return 0;
2694 
2695 	if (root == root->fs_info->extent_root)
2696 		root = root->fs_info->tree_root;
2697 
2698 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2699 
2700 	delayed_refs = &trans->transaction->delayed_refs;
2701 	if (count == 0) {
2702 		count = atomic_read(&delayed_refs->num_entries) * 2;
2703 		run_most = 1;
2704 	}
2705 
2706 again:
2707 #ifdef SCRAMBLE_DELAYED_REFS
2708 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2709 #endif
2710 	ret = __btrfs_run_delayed_refs(trans, root, count);
2711 	if (ret < 0) {
2712 		btrfs_abort_transaction(trans, root, ret);
2713 		return ret;
2714 	}
2715 
2716 	if (run_all) {
2717 		if (!list_empty(&trans->new_bgs))
2718 			btrfs_create_pending_block_groups(trans, root);
2719 
2720 		spin_lock(&delayed_refs->lock);
2721 		node = rb_first(&delayed_refs->href_root);
2722 		if (!node) {
2723 			spin_unlock(&delayed_refs->lock);
2724 			goto out;
2725 		}
2726 		count = (unsigned long)-1;
2727 
2728 		while (node) {
2729 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2730 					href_node);
2731 			if (btrfs_delayed_ref_is_head(&head->node)) {
2732 				struct btrfs_delayed_ref_node *ref;
2733 
2734 				ref = &head->node;
2735 				atomic_inc(&ref->refs);
2736 
2737 				spin_unlock(&delayed_refs->lock);
2738 				/*
2739 				 * Mutex was contended, block until it's
2740 				 * released and try again
2741 				 */
2742 				mutex_lock(&head->mutex);
2743 				mutex_unlock(&head->mutex);
2744 
2745 				btrfs_put_delayed_ref(ref);
2746 				cond_resched();
2747 				goto again;
2748 			} else {
2749 				WARN_ON(1);
2750 			}
2751 			node = rb_next(node);
2752 		}
2753 		spin_unlock(&delayed_refs->lock);
2754 		cond_resched();
2755 		goto again;
2756 	}
2757 out:
2758 	assert_qgroups_uptodate(trans);
2759 	return 0;
2760 }
2761 
2762 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2763 				struct btrfs_root *root,
2764 				u64 bytenr, u64 num_bytes, u64 flags,
2765 				int level, int is_data)
2766 {
2767 	struct btrfs_delayed_extent_op *extent_op;
2768 	int ret;
2769 
2770 	extent_op = btrfs_alloc_delayed_extent_op();
2771 	if (!extent_op)
2772 		return -ENOMEM;
2773 
2774 	extent_op->flags_to_set = flags;
2775 	extent_op->update_flags = 1;
2776 	extent_op->update_key = 0;
2777 	extent_op->is_data = is_data ? 1 : 0;
2778 	extent_op->level = level;
2779 
2780 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2781 					  num_bytes, extent_op);
2782 	if (ret)
2783 		btrfs_free_delayed_extent_op(extent_op);
2784 	return ret;
2785 }
2786 
2787 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2788 				      struct btrfs_root *root,
2789 				      struct btrfs_path *path,
2790 				      u64 objectid, u64 offset, u64 bytenr)
2791 {
2792 	struct btrfs_delayed_ref_head *head;
2793 	struct btrfs_delayed_ref_node *ref;
2794 	struct btrfs_delayed_data_ref *data_ref;
2795 	struct btrfs_delayed_ref_root *delayed_refs;
2796 	struct rb_node *node;
2797 	int ret = 0;
2798 
2799 	delayed_refs = &trans->transaction->delayed_refs;
2800 	spin_lock(&delayed_refs->lock);
2801 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2802 	if (!head) {
2803 		spin_unlock(&delayed_refs->lock);
2804 		return 0;
2805 	}
2806 
2807 	if (!mutex_trylock(&head->mutex)) {
2808 		atomic_inc(&head->node.refs);
2809 		spin_unlock(&delayed_refs->lock);
2810 
2811 		btrfs_release_path(path);
2812 
2813 		/*
2814 		 * Mutex was contended, block until it's released and let
2815 		 * caller try again
2816 		 */
2817 		mutex_lock(&head->mutex);
2818 		mutex_unlock(&head->mutex);
2819 		btrfs_put_delayed_ref(&head->node);
2820 		return -EAGAIN;
2821 	}
2822 	spin_unlock(&delayed_refs->lock);
2823 
2824 	spin_lock(&head->lock);
2825 	node = rb_first(&head->ref_root);
2826 	while (node) {
2827 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2828 		node = rb_next(node);
2829 
2830 		/* If it's a shared ref we know a cross reference exists */
2831 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2832 			ret = 1;
2833 			break;
2834 		}
2835 
2836 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2837 
2838 		/*
2839 		 * If our ref doesn't match the one we're currently looking at
2840 		 * then we have a cross reference.
2841 		 */
2842 		if (data_ref->root != root->root_key.objectid ||
2843 		    data_ref->objectid != objectid ||
2844 		    data_ref->offset != offset) {
2845 			ret = 1;
2846 			break;
2847 		}
2848 	}
2849 	spin_unlock(&head->lock);
2850 	mutex_unlock(&head->mutex);
2851 	return ret;
2852 }
2853 
2854 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2855 					struct btrfs_root *root,
2856 					struct btrfs_path *path,
2857 					u64 objectid, u64 offset, u64 bytenr)
2858 {
2859 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2860 	struct extent_buffer *leaf;
2861 	struct btrfs_extent_data_ref *ref;
2862 	struct btrfs_extent_inline_ref *iref;
2863 	struct btrfs_extent_item *ei;
2864 	struct btrfs_key key;
2865 	u32 item_size;
2866 	int ret;
2867 
2868 	key.objectid = bytenr;
2869 	key.offset = (u64)-1;
2870 	key.type = BTRFS_EXTENT_ITEM_KEY;
2871 
2872 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2873 	if (ret < 0)
2874 		goto out;
2875 	BUG_ON(ret == 0); /* Corruption */
2876 
2877 	ret = -ENOENT;
2878 	if (path->slots[0] == 0)
2879 		goto out;
2880 
2881 	path->slots[0]--;
2882 	leaf = path->nodes[0];
2883 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2884 
2885 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2886 		goto out;
2887 
2888 	ret = 1;
2889 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2890 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2891 	if (item_size < sizeof(*ei)) {
2892 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2893 		goto out;
2894 	}
2895 #endif
2896 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2897 
2898 	if (item_size != sizeof(*ei) +
2899 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2900 		goto out;
2901 
2902 	if (btrfs_extent_generation(leaf, ei) <=
2903 	    btrfs_root_last_snapshot(&root->root_item))
2904 		goto out;
2905 
2906 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2907 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2908 	    BTRFS_EXTENT_DATA_REF_KEY)
2909 		goto out;
2910 
2911 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2912 	if (btrfs_extent_refs(leaf, ei) !=
2913 	    btrfs_extent_data_ref_count(leaf, ref) ||
2914 	    btrfs_extent_data_ref_root(leaf, ref) !=
2915 	    root->root_key.objectid ||
2916 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2917 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2918 		goto out;
2919 
2920 	ret = 0;
2921 out:
2922 	return ret;
2923 }
2924 
2925 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2926 			  struct btrfs_root *root,
2927 			  u64 objectid, u64 offset, u64 bytenr)
2928 {
2929 	struct btrfs_path *path;
2930 	int ret;
2931 	int ret2;
2932 
2933 	path = btrfs_alloc_path();
2934 	if (!path)
2935 		return -ENOENT;
2936 
2937 	do {
2938 		ret = check_committed_ref(trans, root, path, objectid,
2939 					  offset, bytenr);
2940 		if (ret && ret != -ENOENT)
2941 			goto out;
2942 
2943 		ret2 = check_delayed_ref(trans, root, path, objectid,
2944 					 offset, bytenr);
2945 	} while (ret2 == -EAGAIN);
2946 
2947 	if (ret2 && ret2 != -ENOENT) {
2948 		ret = ret2;
2949 		goto out;
2950 	}
2951 
2952 	if (ret != -ENOENT || ret2 != -ENOENT)
2953 		ret = 0;
2954 out:
2955 	btrfs_free_path(path);
2956 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2957 		WARN_ON(ret > 0);
2958 	return ret;
2959 }
2960 
2961 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2962 			   struct btrfs_root *root,
2963 			   struct extent_buffer *buf,
2964 			   int full_backref, int inc, int for_cow)
2965 {
2966 	u64 bytenr;
2967 	u64 num_bytes;
2968 	u64 parent;
2969 	u64 ref_root;
2970 	u32 nritems;
2971 	struct btrfs_key key;
2972 	struct btrfs_file_extent_item *fi;
2973 	int i;
2974 	int level;
2975 	int ret = 0;
2976 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2977 			    u64, u64, u64, u64, u64, u64, int);
2978 
2979 	ref_root = btrfs_header_owner(buf);
2980 	nritems = btrfs_header_nritems(buf);
2981 	level = btrfs_header_level(buf);
2982 
2983 	if (!root->ref_cows && level == 0)
2984 		return 0;
2985 
2986 	if (inc)
2987 		process_func = btrfs_inc_extent_ref;
2988 	else
2989 		process_func = btrfs_free_extent;
2990 
2991 	if (full_backref)
2992 		parent = buf->start;
2993 	else
2994 		parent = 0;
2995 
2996 	for (i = 0; i < nritems; i++) {
2997 		if (level == 0) {
2998 			btrfs_item_key_to_cpu(buf, &key, i);
2999 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3000 				continue;
3001 			fi = btrfs_item_ptr(buf, i,
3002 					    struct btrfs_file_extent_item);
3003 			if (btrfs_file_extent_type(buf, fi) ==
3004 			    BTRFS_FILE_EXTENT_INLINE)
3005 				continue;
3006 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3007 			if (bytenr == 0)
3008 				continue;
3009 
3010 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3011 			key.offset -= btrfs_file_extent_offset(buf, fi);
3012 			ret = process_func(trans, root, bytenr, num_bytes,
3013 					   parent, ref_root, key.objectid,
3014 					   key.offset, for_cow);
3015 			if (ret)
3016 				goto fail;
3017 		} else {
3018 			bytenr = btrfs_node_blockptr(buf, i);
3019 			num_bytes = btrfs_level_size(root, level - 1);
3020 			ret = process_func(trans, root, bytenr, num_bytes,
3021 					   parent, ref_root, level - 1, 0,
3022 					   for_cow);
3023 			if (ret)
3024 				goto fail;
3025 		}
3026 	}
3027 	return 0;
3028 fail:
3029 	return ret;
3030 }
3031 
3032 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3033 		  struct extent_buffer *buf, int full_backref, int for_cow)
3034 {
3035 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3036 }
3037 
3038 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3039 		  struct extent_buffer *buf, int full_backref, int for_cow)
3040 {
3041 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3042 }
3043 
3044 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3045 				 struct btrfs_root *root,
3046 				 struct btrfs_path *path,
3047 				 struct btrfs_block_group_cache *cache)
3048 {
3049 	int ret;
3050 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3051 	unsigned long bi;
3052 	struct extent_buffer *leaf;
3053 
3054 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3055 	if (ret < 0)
3056 		goto fail;
3057 	BUG_ON(ret); /* Corruption */
3058 
3059 	leaf = path->nodes[0];
3060 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3061 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3062 	btrfs_mark_buffer_dirty(leaf);
3063 	btrfs_release_path(path);
3064 fail:
3065 	if (ret) {
3066 		btrfs_abort_transaction(trans, root, ret);
3067 		return ret;
3068 	}
3069 	return 0;
3070 
3071 }
3072 
3073 static struct btrfs_block_group_cache *
3074 next_block_group(struct btrfs_root *root,
3075 		 struct btrfs_block_group_cache *cache)
3076 {
3077 	struct rb_node *node;
3078 	spin_lock(&root->fs_info->block_group_cache_lock);
3079 	node = rb_next(&cache->cache_node);
3080 	btrfs_put_block_group(cache);
3081 	if (node) {
3082 		cache = rb_entry(node, struct btrfs_block_group_cache,
3083 				 cache_node);
3084 		btrfs_get_block_group(cache);
3085 	} else
3086 		cache = NULL;
3087 	spin_unlock(&root->fs_info->block_group_cache_lock);
3088 	return cache;
3089 }
3090 
3091 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3092 			    struct btrfs_trans_handle *trans,
3093 			    struct btrfs_path *path)
3094 {
3095 	struct btrfs_root *root = block_group->fs_info->tree_root;
3096 	struct inode *inode = NULL;
3097 	u64 alloc_hint = 0;
3098 	int dcs = BTRFS_DC_ERROR;
3099 	int num_pages = 0;
3100 	int retries = 0;
3101 	int ret = 0;
3102 
3103 	/*
3104 	 * If this block group is smaller than 100 megs don't bother caching the
3105 	 * block group.
3106 	 */
3107 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3108 		spin_lock(&block_group->lock);
3109 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3110 		spin_unlock(&block_group->lock);
3111 		return 0;
3112 	}
3113 
3114 again:
3115 	inode = lookup_free_space_inode(root, block_group, path);
3116 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3117 		ret = PTR_ERR(inode);
3118 		btrfs_release_path(path);
3119 		goto out;
3120 	}
3121 
3122 	if (IS_ERR(inode)) {
3123 		BUG_ON(retries);
3124 		retries++;
3125 
3126 		if (block_group->ro)
3127 			goto out_free;
3128 
3129 		ret = create_free_space_inode(root, trans, block_group, path);
3130 		if (ret)
3131 			goto out_free;
3132 		goto again;
3133 	}
3134 
3135 	/* We've already setup this transaction, go ahead and exit */
3136 	if (block_group->cache_generation == trans->transid &&
3137 	    i_size_read(inode)) {
3138 		dcs = BTRFS_DC_SETUP;
3139 		goto out_put;
3140 	}
3141 
3142 	/*
3143 	 * We want to set the generation to 0, that way if anything goes wrong
3144 	 * from here on out we know not to trust this cache when we load up next
3145 	 * time.
3146 	 */
3147 	BTRFS_I(inode)->generation = 0;
3148 	ret = btrfs_update_inode(trans, root, inode);
3149 	WARN_ON(ret);
3150 
3151 	if (i_size_read(inode) > 0) {
3152 		ret = btrfs_check_trunc_cache_free_space(root,
3153 					&root->fs_info->global_block_rsv);
3154 		if (ret)
3155 			goto out_put;
3156 
3157 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3158 		if (ret)
3159 			goto out_put;
3160 	}
3161 
3162 	spin_lock(&block_group->lock);
3163 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3164 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3165 		/*
3166 		 * don't bother trying to write stuff out _if_
3167 		 * a) we're not cached,
3168 		 * b) we're with nospace_cache mount option.
3169 		 */
3170 		dcs = BTRFS_DC_WRITTEN;
3171 		spin_unlock(&block_group->lock);
3172 		goto out_put;
3173 	}
3174 	spin_unlock(&block_group->lock);
3175 
3176 	/*
3177 	 * Try to preallocate enough space based on how big the block group is.
3178 	 * Keep in mind this has to include any pinned space which could end up
3179 	 * taking up quite a bit since it's not folded into the other space
3180 	 * cache.
3181 	 */
3182 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3183 	if (!num_pages)
3184 		num_pages = 1;
3185 
3186 	num_pages *= 16;
3187 	num_pages *= PAGE_CACHE_SIZE;
3188 
3189 	ret = btrfs_check_data_free_space(inode, num_pages);
3190 	if (ret)
3191 		goto out_put;
3192 
3193 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3194 					      num_pages, num_pages,
3195 					      &alloc_hint);
3196 	if (!ret)
3197 		dcs = BTRFS_DC_SETUP;
3198 	btrfs_free_reserved_data_space(inode, num_pages);
3199 
3200 out_put:
3201 	iput(inode);
3202 out_free:
3203 	btrfs_release_path(path);
3204 out:
3205 	spin_lock(&block_group->lock);
3206 	if (!ret && dcs == BTRFS_DC_SETUP)
3207 		block_group->cache_generation = trans->transid;
3208 	block_group->disk_cache_state = dcs;
3209 	spin_unlock(&block_group->lock);
3210 
3211 	return ret;
3212 }
3213 
3214 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3215 				   struct btrfs_root *root)
3216 {
3217 	struct btrfs_block_group_cache *cache;
3218 	int err = 0;
3219 	struct btrfs_path *path;
3220 	u64 last = 0;
3221 
3222 	path = btrfs_alloc_path();
3223 	if (!path)
3224 		return -ENOMEM;
3225 
3226 again:
3227 	while (1) {
3228 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3229 		while (cache) {
3230 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3231 				break;
3232 			cache = next_block_group(root, cache);
3233 		}
3234 		if (!cache) {
3235 			if (last == 0)
3236 				break;
3237 			last = 0;
3238 			continue;
3239 		}
3240 		err = cache_save_setup(cache, trans, path);
3241 		last = cache->key.objectid + cache->key.offset;
3242 		btrfs_put_block_group(cache);
3243 	}
3244 
3245 	while (1) {
3246 		if (last == 0) {
3247 			err = btrfs_run_delayed_refs(trans, root,
3248 						     (unsigned long)-1);
3249 			if (err) /* File system offline */
3250 				goto out;
3251 		}
3252 
3253 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3254 		while (cache) {
3255 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3256 				btrfs_put_block_group(cache);
3257 				goto again;
3258 			}
3259 
3260 			if (cache->dirty)
3261 				break;
3262 			cache = next_block_group(root, cache);
3263 		}
3264 		if (!cache) {
3265 			if (last == 0)
3266 				break;
3267 			last = 0;
3268 			continue;
3269 		}
3270 
3271 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3272 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3273 		cache->dirty = 0;
3274 		last = cache->key.objectid + cache->key.offset;
3275 
3276 		err = write_one_cache_group(trans, root, path, cache);
3277 		btrfs_put_block_group(cache);
3278 		if (err) /* File system offline */
3279 			goto out;
3280 	}
3281 
3282 	while (1) {
3283 		/*
3284 		 * I don't think this is needed since we're just marking our
3285 		 * preallocated extent as written, but just in case it can't
3286 		 * hurt.
3287 		 */
3288 		if (last == 0) {
3289 			err = btrfs_run_delayed_refs(trans, root,
3290 						     (unsigned long)-1);
3291 			if (err) /* File system offline */
3292 				goto out;
3293 		}
3294 
3295 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3296 		while (cache) {
3297 			/*
3298 			 * Really this shouldn't happen, but it could if we
3299 			 * couldn't write the entire preallocated extent and
3300 			 * splitting the extent resulted in a new block.
3301 			 */
3302 			if (cache->dirty) {
3303 				btrfs_put_block_group(cache);
3304 				goto again;
3305 			}
3306 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3307 				break;
3308 			cache = next_block_group(root, cache);
3309 		}
3310 		if (!cache) {
3311 			if (last == 0)
3312 				break;
3313 			last = 0;
3314 			continue;
3315 		}
3316 
3317 		err = btrfs_write_out_cache(root, trans, cache, path);
3318 
3319 		/*
3320 		 * If we didn't have an error then the cache state is still
3321 		 * NEED_WRITE, so we can set it to WRITTEN.
3322 		 */
3323 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3324 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3325 		last = cache->key.objectid + cache->key.offset;
3326 		btrfs_put_block_group(cache);
3327 	}
3328 out:
3329 
3330 	btrfs_free_path(path);
3331 	return err;
3332 }
3333 
3334 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3335 {
3336 	struct btrfs_block_group_cache *block_group;
3337 	int readonly = 0;
3338 
3339 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3340 	if (!block_group || block_group->ro)
3341 		readonly = 1;
3342 	if (block_group)
3343 		btrfs_put_block_group(block_group);
3344 	return readonly;
3345 }
3346 
3347 static const char *alloc_name(u64 flags)
3348 {
3349 	switch (flags) {
3350 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3351 		return "mixed";
3352 	case BTRFS_BLOCK_GROUP_METADATA:
3353 		return "metadata";
3354 	case BTRFS_BLOCK_GROUP_DATA:
3355 		return "data";
3356 	case BTRFS_BLOCK_GROUP_SYSTEM:
3357 		return "system";
3358 	default:
3359 		WARN_ON(1);
3360 		return "invalid-combination";
3361 	};
3362 }
3363 
3364 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3365 			     u64 total_bytes, u64 bytes_used,
3366 			     struct btrfs_space_info **space_info)
3367 {
3368 	struct btrfs_space_info *found;
3369 	int i;
3370 	int factor;
3371 	int ret;
3372 
3373 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3374 		     BTRFS_BLOCK_GROUP_RAID10))
3375 		factor = 2;
3376 	else
3377 		factor = 1;
3378 
3379 	found = __find_space_info(info, flags);
3380 	if (found) {
3381 		spin_lock(&found->lock);
3382 		found->total_bytes += total_bytes;
3383 		found->disk_total += total_bytes * factor;
3384 		found->bytes_used += bytes_used;
3385 		found->disk_used += bytes_used * factor;
3386 		found->full = 0;
3387 		spin_unlock(&found->lock);
3388 		*space_info = found;
3389 		return 0;
3390 	}
3391 	found = kzalloc(sizeof(*found), GFP_NOFS);
3392 	if (!found)
3393 		return -ENOMEM;
3394 
3395 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3396 	if (ret) {
3397 		kfree(found);
3398 		return ret;
3399 	}
3400 
3401 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3402 		INIT_LIST_HEAD(&found->block_groups[i]);
3403 		kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3404 	}
3405 	init_rwsem(&found->groups_sem);
3406 	spin_lock_init(&found->lock);
3407 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3408 	found->total_bytes = total_bytes;
3409 	found->disk_total = total_bytes * factor;
3410 	found->bytes_used = bytes_used;
3411 	found->disk_used = bytes_used * factor;
3412 	found->bytes_pinned = 0;
3413 	found->bytes_reserved = 0;
3414 	found->bytes_readonly = 0;
3415 	found->bytes_may_use = 0;
3416 	found->full = 0;
3417 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3418 	found->chunk_alloc = 0;
3419 	found->flush = 0;
3420 	init_waitqueue_head(&found->wait);
3421 
3422 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3423 				    info->space_info_kobj, "%s",
3424 				    alloc_name(found->flags));
3425 	if (ret) {
3426 		kfree(found);
3427 		return ret;
3428 	}
3429 
3430 	*space_info = found;
3431 	list_add_rcu(&found->list, &info->space_info);
3432 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3433 		info->data_sinfo = found;
3434 
3435 	return ret;
3436 }
3437 
3438 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3439 {
3440 	u64 extra_flags = chunk_to_extended(flags) &
3441 				BTRFS_EXTENDED_PROFILE_MASK;
3442 
3443 	write_seqlock(&fs_info->profiles_lock);
3444 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3445 		fs_info->avail_data_alloc_bits |= extra_flags;
3446 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3447 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3448 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3449 		fs_info->avail_system_alloc_bits |= extra_flags;
3450 	write_sequnlock(&fs_info->profiles_lock);
3451 }
3452 
3453 /*
3454  * returns target flags in extended format or 0 if restripe for this
3455  * chunk_type is not in progress
3456  *
3457  * should be called with either volume_mutex or balance_lock held
3458  */
3459 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3460 {
3461 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3462 	u64 target = 0;
3463 
3464 	if (!bctl)
3465 		return 0;
3466 
3467 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3468 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3469 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3470 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3471 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3472 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3473 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3474 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3475 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3476 	}
3477 
3478 	return target;
3479 }
3480 
3481 /*
3482  * @flags: available profiles in extended format (see ctree.h)
3483  *
3484  * Returns reduced profile in chunk format.  If profile changing is in
3485  * progress (either running or paused) picks the target profile (if it's
3486  * already available), otherwise falls back to plain reducing.
3487  */
3488 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3489 {
3490 	/*
3491 	 * we add in the count of missing devices because we want
3492 	 * to make sure that any RAID levels on a degraded FS
3493 	 * continue to be honored.
3494 	 */
3495 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3496 		root->fs_info->fs_devices->missing_devices;
3497 	u64 target;
3498 	u64 tmp;
3499 
3500 	/*
3501 	 * see if restripe for this chunk_type is in progress, if so
3502 	 * try to reduce to the target profile
3503 	 */
3504 	spin_lock(&root->fs_info->balance_lock);
3505 	target = get_restripe_target(root->fs_info, flags);
3506 	if (target) {
3507 		/* pick target profile only if it's already available */
3508 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3509 			spin_unlock(&root->fs_info->balance_lock);
3510 			return extended_to_chunk(target);
3511 		}
3512 	}
3513 	spin_unlock(&root->fs_info->balance_lock);
3514 
3515 	/* First, mask out the RAID levels which aren't possible */
3516 	if (num_devices == 1)
3517 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3518 			   BTRFS_BLOCK_GROUP_RAID5);
3519 	if (num_devices < 3)
3520 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3521 	if (num_devices < 4)
3522 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3523 
3524 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3525 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3526 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3527 	flags &= ~tmp;
3528 
3529 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3530 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3531 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3532 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3533 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3534 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3535 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3536 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3537 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3538 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3539 
3540 	return extended_to_chunk(flags | tmp);
3541 }
3542 
3543 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3544 {
3545 	unsigned seq;
3546 
3547 	do {
3548 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3549 
3550 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3551 			flags |= root->fs_info->avail_data_alloc_bits;
3552 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3553 			flags |= root->fs_info->avail_system_alloc_bits;
3554 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3555 			flags |= root->fs_info->avail_metadata_alloc_bits;
3556 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3557 
3558 	return btrfs_reduce_alloc_profile(root, flags);
3559 }
3560 
3561 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3562 {
3563 	u64 flags;
3564 	u64 ret;
3565 
3566 	if (data)
3567 		flags = BTRFS_BLOCK_GROUP_DATA;
3568 	else if (root == root->fs_info->chunk_root)
3569 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3570 	else
3571 		flags = BTRFS_BLOCK_GROUP_METADATA;
3572 
3573 	ret = get_alloc_profile(root, flags);
3574 	return ret;
3575 }
3576 
3577 /*
3578  * This will check the space that the inode allocates from to make sure we have
3579  * enough space for bytes.
3580  */
3581 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3582 {
3583 	struct btrfs_space_info *data_sinfo;
3584 	struct btrfs_root *root = BTRFS_I(inode)->root;
3585 	struct btrfs_fs_info *fs_info = root->fs_info;
3586 	u64 used;
3587 	int ret = 0, committed = 0, alloc_chunk = 1;
3588 
3589 	/* make sure bytes are sectorsize aligned */
3590 	bytes = ALIGN(bytes, root->sectorsize);
3591 
3592 	if (btrfs_is_free_space_inode(inode)) {
3593 		committed = 1;
3594 		ASSERT(current->journal_info);
3595 	}
3596 
3597 	data_sinfo = fs_info->data_sinfo;
3598 	if (!data_sinfo)
3599 		goto alloc;
3600 
3601 again:
3602 	/* make sure we have enough space to handle the data first */
3603 	spin_lock(&data_sinfo->lock);
3604 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3605 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3606 		data_sinfo->bytes_may_use;
3607 
3608 	if (used + bytes > data_sinfo->total_bytes) {
3609 		struct btrfs_trans_handle *trans;
3610 
3611 		/*
3612 		 * if we don't have enough free bytes in this space then we need
3613 		 * to alloc a new chunk.
3614 		 */
3615 		if (!data_sinfo->full && alloc_chunk) {
3616 			u64 alloc_target;
3617 
3618 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3619 			spin_unlock(&data_sinfo->lock);
3620 alloc:
3621 			alloc_target = btrfs_get_alloc_profile(root, 1);
3622 			/*
3623 			 * It is ugly that we don't call nolock join
3624 			 * transaction for the free space inode case here.
3625 			 * But it is safe because we only do the data space
3626 			 * reservation for the free space cache in the
3627 			 * transaction context, the common join transaction
3628 			 * just increase the counter of the current transaction
3629 			 * handler, doesn't try to acquire the trans_lock of
3630 			 * the fs.
3631 			 */
3632 			trans = btrfs_join_transaction(root);
3633 			if (IS_ERR(trans))
3634 				return PTR_ERR(trans);
3635 
3636 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3637 					     alloc_target,
3638 					     CHUNK_ALLOC_NO_FORCE);
3639 			btrfs_end_transaction(trans, root);
3640 			if (ret < 0) {
3641 				if (ret != -ENOSPC)
3642 					return ret;
3643 				else
3644 					goto commit_trans;
3645 			}
3646 
3647 			if (!data_sinfo)
3648 				data_sinfo = fs_info->data_sinfo;
3649 
3650 			goto again;
3651 		}
3652 
3653 		/*
3654 		 * If we don't have enough pinned space to deal with this
3655 		 * allocation don't bother committing the transaction.
3656 		 */
3657 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3658 					   bytes) < 0)
3659 			committed = 1;
3660 		spin_unlock(&data_sinfo->lock);
3661 
3662 		/* commit the current transaction and try again */
3663 commit_trans:
3664 		if (!committed &&
3665 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3666 			committed = 1;
3667 
3668 			trans = btrfs_join_transaction(root);
3669 			if (IS_ERR(trans))
3670 				return PTR_ERR(trans);
3671 			ret = btrfs_commit_transaction(trans, root);
3672 			if (ret)
3673 				return ret;
3674 			goto again;
3675 		}
3676 
3677 		trace_btrfs_space_reservation(root->fs_info,
3678 					      "space_info:enospc",
3679 					      data_sinfo->flags, bytes, 1);
3680 		return -ENOSPC;
3681 	}
3682 	data_sinfo->bytes_may_use += bytes;
3683 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3684 				      data_sinfo->flags, bytes, 1);
3685 	spin_unlock(&data_sinfo->lock);
3686 
3687 	return 0;
3688 }
3689 
3690 /*
3691  * Called if we need to clear a data reservation for this inode.
3692  */
3693 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3694 {
3695 	struct btrfs_root *root = BTRFS_I(inode)->root;
3696 	struct btrfs_space_info *data_sinfo;
3697 
3698 	/* make sure bytes are sectorsize aligned */
3699 	bytes = ALIGN(bytes, root->sectorsize);
3700 
3701 	data_sinfo = root->fs_info->data_sinfo;
3702 	spin_lock(&data_sinfo->lock);
3703 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3704 	data_sinfo->bytes_may_use -= bytes;
3705 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3706 				      data_sinfo->flags, bytes, 0);
3707 	spin_unlock(&data_sinfo->lock);
3708 }
3709 
3710 static void force_metadata_allocation(struct btrfs_fs_info *info)
3711 {
3712 	struct list_head *head = &info->space_info;
3713 	struct btrfs_space_info *found;
3714 
3715 	rcu_read_lock();
3716 	list_for_each_entry_rcu(found, head, list) {
3717 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3718 			found->force_alloc = CHUNK_ALLOC_FORCE;
3719 	}
3720 	rcu_read_unlock();
3721 }
3722 
3723 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3724 {
3725 	return (global->size << 1);
3726 }
3727 
3728 static int should_alloc_chunk(struct btrfs_root *root,
3729 			      struct btrfs_space_info *sinfo, int force)
3730 {
3731 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3732 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3733 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3734 	u64 thresh;
3735 
3736 	if (force == CHUNK_ALLOC_FORCE)
3737 		return 1;
3738 
3739 	/*
3740 	 * We need to take into account the global rsv because for all intents
3741 	 * and purposes it's used space.  Don't worry about locking the
3742 	 * global_rsv, it doesn't change except when the transaction commits.
3743 	 */
3744 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3745 		num_allocated += calc_global_rsv_need_space(global_rsv);
3746 
3747 	/*
3748 	 * in limited mode, we want to have some free space up to
3749 	 * about 1% of the FS size.
3750 	 */
3751 	if (force == CHUNK_ALLOC_LIMITED) {
3752 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3753 		thresh = max_t(u64, 64 * 1024 * 1024,
3754 			       div_factor_fine(thresh, 1));
3755 
3756 		if (num_bytes - num_allocated < thresh)
3757 			return 1;
3758 	}
3759 
3760 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3761 		return 0;
3762 	return 1;
3763 }
3764 
3765 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3766 {
3767 	u64 num_dev;
3768 
3769 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3770 		    BTRFS_BLOCK_GROUP_RAID0 |
3771 		    BTRFS_BLOCK_GROUP_RAID5 |
3772 		    BTRFS_BLOCK_GROUP_RAID6))
3773 		num_dev = root->fs_info->fs_devices->rw_devices;
3774 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3775 		num_dev = 2;
3776 	else
3777 		num_dev = 1;	/* DUP or single */
3778 
3779 	/* metadata for updaing devices and chunk tree */
3780 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3781 }
3782 
3783 static void check_system_chunk(struct btrfs_trans_handle *trans,
3784 			       struct btrfs_root *root, u64 type)
3785 {
3786 	struct btrfs_space_info *info;
3787 	u64 left;
3788 	u64 thresh;
3789 
3790 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3791 	spin_lock(&info->lock);
3792 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3793 		info->bytes_reserved - info->bytes_readonly;
3794 	spin_unlock(&info->lock);
3795 
3796 	thresh = get_system_chunk_thresh(root, type);
3797 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3798 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3799 			left, thresh, type);
3800 		dump_space_info(info, 0, 0);
3801 	}
3802 
3803 	if (left < thresh) {
3804 		u64 flags;
3805 
3806 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3807 		btrfs_alloc_chunk(trans, root, flags);
3808 	}
3809 }
3810 
3811 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3812 			  struct btrfs_root *extent_root, u64 flags, int force)
3813 {
3814 	struct btrfs_space_info *space_info;
3815 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3816 	int wait_for_alloc = 0;
3817 	int ret = 0;
3818 
3819 	/* Don't re-enter if we're already allocating a chunk */
3820 	if (trans->allocating_chunk)
3821 		return -ENOSPC;
3822 
3823 	space_info = __find_space_info(extent_root->fs_info, flags);
3824 	if (!space_info) {
3825 		ret = update_space_info(extent_root->fs_info, flags,
3826 					0, 0, &space_info);
3827 		BUG_ON(ret); /* -ENOMEM */
3828 	}
3829 	BUG_ON(!space_info); /* Logic error */
3830 
3831 again:
3832 	spin_lock(&space_info->lock);
3833 	if (force < space_info->force_alloc)
3834 		force = space_info->force_alloc;
3835 	if (space_info->full) {
3836 		if (should_alloc_chunk(extent_root, space_info, force))
3837 			ret = -ENOSPC;
3838 		else
3839 			ret = 0;
3840 		spin_unlock(&space_info->lock);
3841 		return ret;
3842 	}
3843 
3844 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3845 		spin_unlock(&space_info->lock);
3846 		return 0;
3847 	} else if (space_info->chunk_alloc) {
3848 		wait_for_alloc = 1;
3849 	} else {
3850 		space_info->chunk_alloc = 1;
3851 	}
3852 
3853 	spin_unlock(&space_info->lock);
3854 
3855 	mutex_lock(&fs_info->chunk_mutex);
3856 
3857 	/*
3858 	 * The chunk_mutex is held throughout the entirety of a chunk
3859 	 * allocation, so once we've acquired the chunk_mutex we know that the
3860 	 * other guy is done and we need to recheck and see if we should
3861 	 * allocate.
3862 	 */
3863 	if (wait_for_alloc) {
3864 		mutex_unlock(&fs_info->chunk_mutex);
3865 		wait_for_alloc = 0;
3866 		goto again;
3867 	}
3868 
3869 	trans->allocating_chunk = true;
3870 
3871 	/*
3872 	 * If we have mixed data/metadata chunks we want to make sure we keep
3873 	 * allocating mixed chunks instead of individual chunks.
3874 	 */
3875 	if (btrfs_mixed_space_info(space_info))
3876 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3877 
3878 	/*
3879 	 * if we're doing a data chunk, go ahead and make sure that
3880 	 * we keep a reasonable number of metadata chunks allocated in the
3881 	 * FS as well.
3882 	 */
3883 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3884 		fs_info->data_chunk_allocations++;
3885 		if (!(fs_info->data_chunk_allocations %
3886 		      fs_info->metadata_ratio))
3887 			force_metadata_allocation(fs_info);
3888 	}
3889 
3890 	/*
3891 	 * Check if we have enough space in SYSTEM chunk because we may need
3892 	 * to update devices.
3893 	 */
3894 	check_system_chunk(trans, extent_root, flags);
3895 
3896 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3897 	trans->allocating_chunk = false;
3898 
3899 	spin_lock(&space_info->lock);
3900 	if (ret < 0 && ret != -ENOSPC)
3901 		goto out;
3902 	if (ret)
3903 		space_info->full = 1;
3904 	else
3905 		ret = 1;
3906 
3907 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3908 out:
3909 	space_info->chunk_alloc = 0;
3910 	spin_unlock(&space_info->lock);
3911 	mutex_unlock(&fs_info->chunk_mutex);
3912 	return ret;
3913 }
3914 
3915 static int can_overcommit(struct btrfs_root *root,
3916 			  struct btrfs_space_info *space_info, u64 bytes,
3917 			  enum btrfs_reserve_flush_enum flush)
3918 {
3919 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3920 	u64 profile = btrfs_get_alloc_profile(root, 0);
3921 	u64 space_size;
3922 	u64 avail;
3923 	u64 used;
3924 
3925 	used = space_info->bytes_used + space_info->bytes_reserved +
3926 		space_info->bytes_pinned + space_info->bytes_readonly;
3927 
3928 	/*
3929 	 * We only want to allow over committing if we have lots of actual space
3930 	 * free, but if we don't have enough space to handle the global reserve
3931 	 * space then we could end up having a real enospc problem when trying
3932 	 * to allocate a chunk or some other such important allocation.
3933 	 */
3934 	spin_lock(&global_rsv->lock);
3935 	space_size = calc_global_rsv_need_space(global_rsv);
3936 	spin_unlock(&global_rsv->lock);
3937 	if (used + space_size >= space_info->total_bytes)
3938 		return 0;
3939 
3940 	used += space_info->bytes_may_use;
3941 
3942 	spin_lock(&root->fs_info->free_chunk_lock);
3943 	avail = root->fs_info->free_chunk_space;
3944 	spin_unlock(&root->fs_info->free_chunk_lock);
3945 
3946 	/*
3947 	 * If we have dup, raid1 or raid10 then only half of the free
3948 	 * space is actually useable.  For raid56, the space info used
3949 	 * doesn't include the parity drive, so we don't have to
3950 	 * change the math
3951 	 */
3952 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3953 		       BTRFS_BLOCK_GROUP_RAID1 |
3954 		       BTRFS_BLOCK_GROUP_RAID10))
3955 		avail >>= 1;
3956 
3957 	/*
3958 	 * If we aren't flushing all things, let us overcommit up to
3959 	 * 1/2th of the space. If we can flush, don't let us overcommit
3960 	 * too much, let it overcommit up to 1/8 of the space.
3961 	 */
3962 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3963 		avail >>= 3;
3964 	else
3965 		avail >>= 1;
3966 
3967 	if (used + bytes < space_info->total_bytes + avail)
3968 		return 1;
3969 	return 0;
3970 }
3971 
3972 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3973 					 unsigned long nr_pages)
3974 {
3975 	struct super_block *sb = root->fs_info->sb;
3976 
3977 	if (down_read_trylock(&sb->s_umount)) {
3978 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3979 		up_read(&sb->s_umount);
3980 	} else {
3981 		/*
3982 		 * We needn't worry the filesystem going from r/w to r/o though
3983 		 * we don't acquire ->s_umount mutex, because the filesystem
3984 		 * should guarantee the delalloc inodes list be empty after
3985 		 * the filesystem is readonly(all dirty pages are written to
3986 		 * the disk).
3987 		 */
3988 		btrfs_start_delalloc_roots(root->fs_info, 0);
3989 		if (!current->journal_info)
3990 			btrfs_wait_ordered_roots(root->fs_info, -1);
3991 	}
3992 }
3993 
3994 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
3995 {
3996 	u64 bytes;
3997 	int nr;
3998 
3999 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4000 	nr = (int)div64_u64(to_reclaim, bytes);
4001 	if (!nr)
4002 		nr = 1;
4003 	return nr;
4004 }
4005 
4006 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4007 
4008 /*
4009  * shrink metadata reservation for delalloc
4010  */
4011 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4012 			    bool wait_ordered)
4013 {
4014 	struct btrfs_block_rsv *block_rsv;
4015 	struct btrfs_space_info *space_info;
4016 	struct btrfs_trans_handle *trans;
4017 	u64 delalloc_bytes;
4018 	u64 max_reclaim;
4019 	long time_left;
4020 	unsigned long nr_pages;
4021 	int loops;
4022 	int items;
4023 	enum btrfs_reserve_flush_enum flush;
4024 
4025 	/* Calc the number of the pages we need flush for space reservation */
4026 	items = calc_reclaim_items_nr(root, to_reclaim);
4027 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4028 
4029 	trans = (struct btrfs_trans_handle *)current->journal_info;
4030 	block_rsv = &root->fs_info->delalloc_block_rsv;
4031 	space_info = block_rsv->space_info;
4032 
4033 	delalloc_bytes = percpu_counter_sum_positive(
4034 						&root->fs_info->delalloc_bytes);
4035 	if (delalloc_bytes == 0) {
4036 		if (trans)
4037 			return;
4038 		if (wait_ordered)
4039 			btrfs_wait_ordered_roots(root->fs_info, items);
4040 		return;
4041 	}
4042 
4043 	loops = 0;
4044 	while (delalloc_bytes && loops < 3) {
4045 		max_reclaim = min(delalloc_bytes, to_reclaim);
4046 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4047 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4048 		/*
4049 		 * We need to wait for the async pages to actually start before
4050 		 * we do anything.
4051 		 */
4052 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4053 		if (!max_reclaim)
4054 			goto skip_async;
4055 
4056 		if (max_reclaim <= nr_pages)
4057 			max_reclaim = 0;
4058 		else
4059 			max_reclaim -= nr_pages;
4060 
4061 		wait_event(root->fs_info->async_submit_wait,
4062 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4063 			   (int)max_reclaim);
4064 skip_async:
4065 		if (!trans)
4066 			flush = BTRFS_RESERVE_FLUSH_ALL;
4067 		else
4068 			flush = BTRFS_RESERVE_NO_FLUSH;
4069 		spin_lock(&space_info->lock);
4070 		if (can_overcommit(root, space_info, orig, flush)) {
4071 			spin_unlock(&space_info->lock);
4072 			break;
4073 		}
4074 		spin_unlock(&space_info->lock);
4075 
4076 		loops++;
4077 		if (wait_ordered && !trans) {
4078 			btrfs_wait_ordered_roots(root->fs_info, items);
4079 		} else {
4080 			time_left = schedule_timeout_killable(1);
4081 			if (time_left)
4082 				break;
4083 		}
4084 		delalloc_bytes = percpu_counter_sum_positive(
4085 						&root->fs_info->delalloc_bytes);
4086 	}
4087 }
4088 
4089 /**
4090  * maybe_commit_transaction - possibly commit the transaction if its ok to
4091  * @root - the root we're allocating for
4092  * @bytes - the number of bytes we want to reserve
4093  * @force - force the commit
4094  *
4095  * This will check to make sure that committing the transaction will actually
4096  * get us somewhere and then commit the transaction if it does.  Otherwise it
4097  * will return -ENOSPC.
4098  */
4099 static int may_commit_transaction(struct btrfs_root *root,
4100 				  struct btrfs_space_info *space_info,
4101 				  u64 bytes, int force)
4102 {
4103 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4104 	struct btrfs_trans_handle *trans;
4105 
4106 	trans = (struct btrfs_trans_handle *)current->journal_info;
4107 	if (trans)
4108 		return -EAGAIN;
4109 
4110 	if (force)
4111 		goto commit;
4112 
4113 	/* See if there is enough pinned space to make this reservation */
4114 	spin_lock(&space_info->lock);
4115 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4116 				   bytes) >= 0) {
4117 		spin_unlock(&space_info->lock);
4118 		goto commit;
4119 	}
4120 	spin_unlock(&space_info->lock);
4121 
4122 	/*
4123 	 * See if there is some space in the delayed insertion reservation for
4124 	 * this reservation.
4125 	 */
4126 	if (space_info != delayed_rsv->space_info)
4127 		return -ENOSPC;
4128 
4129 	spin_lock(&space_info->lock);
4130 	spin_lock(&delayed_rsv->lock);
4131 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4132 				   bytes - delayed_rsv->size) >= 0) {
4133 		spin_unlock(&delayed_rsv->lock);
4134 		spin_unlock(&space_info->lock);
4135 		return -ENOSPC;
4136 	}
4137 	spin_unlock(&delayed_rsv->lock);
4138 	spin_unlock(&space_info->lock);
4139 
4140 commit:
4141 	trans = btrfs_join_transaction(root);
4142 	if (IS_ERR(trans))
4143 		return -ENOSPC;
4144 
4145 	return btrfs_commit_transaction(trans, root);
4146 }
4147 
4148 enum flush_state {
4149 	FLUSH_DELAYED_ITEMS_NR	=	1,
4150 	FLUSH_DELAYED_ITEMS	=	2,
4151 	FLUSH_DELALLOC		=	3,
4152 	FLUSH_DELALLOC_WAIT	=	4,
4153 	ALLOC_CHUNK		=	5,
4154 	COMMIT_TRANS		=	6,
4155 };
4156 
4157 static int flush_space(struct btrfs_root *root,
4158 		       struct btrfs_space_info *space_info, u64 num_bytes,
4159 		       u64 orig_bytes, int state)
4160 {
4161 	struct btrfs_trans_handle *trans;
4162 	int nr;
4163 	int ret = 0;
4164 
4165 	switch (state) {
4166 	case FLUSH_DELAYED_ITEMS_NR:
4167 	case FLUSH_DELAYED_ITEMS:
4168 		if (state == FLUSH_DELAYED_ITEMS_NR)
4169 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4170 		else
4171 			nr = -1;
4172 
4173 		trans = btrfs_join_transaction(root);
4174 		if (IS_ERR(trans)) {
4175 			ret = PTR_ERR(trans);
4176 			break;
4177 		}
4178 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4179 		btrfs_end_transaction(trans, root);
4180 		break;
4181 	case FLUSH_DELALLOC:
4182 	case FLUSH_DELALLOC_WAIT:
4183 		shrink_delalloc(root, num_bytes, orig_bytes,
4184 				state == FLUSH_DELALLOC_WAIT);
4185 		break;
4186 	case ALLOC_CHUNK:
4187 		trans = btrfs_join_transaction(root);
4188 		if (IS_ERR(trans)) {
4189 			ret = PTR_ERR(trans);
4190 			break;
4191 		}
4192 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4193 				     btrfs_get_alloc_profile(root, 0),
4194 				     CHUNK_ALLOC_NO_FORCE);
4195 		btrfs_end_transaction(trans, root);
4196 		if (ret == -ENOSPC)
4197 			ret = 0;
4198 		break;
4199 	case COMMIT_TRANS:
4200 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4201 		break;
4202 	default:
4203 		ret = -ENOSPC;
4204 		break;
4205 	}
4206 
4207 	return ret;
4208 }
4209 /**
4210  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4211  * @root - the root we're allocating for
4212  * @block_rsv - the block_rsv we're allocating for
4213  * @orig_bytes - the number of bytes we want
4214  * @flush - whether or not we can flush to make our reservation
4215  *
4216  * This will reserve orgi_bytes number of bytes from the space info associated
4217  * with the block_rsv.  If there is not enough space it will make an attempt to
4218  * flush out space to make room.  It will do this by flushing delalloc if
4219  * possible or committing the transaction.  If flush is 0 then no attempts to
4220  * regain reservations will be made and this will fail if there is not enough
4221  * space already.
4222  */
4223 static int reserve_metadata_bytes(struct btrfs_root *root,
4224 				  struct btrfs_block_rsv *block_rsv,
4225 				  u64 orig_bytes,
4226 				  enum btrfs_reserve_flush_enum flush)
4227 {
4228 	struct btrfs_space_info *space_info = block_rsv->space_info;
4229 	u64 used;
4230 	u64 num_bytes = orig_bytes;
4231 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4232 	int ret = 0;
4233 	bool flushing = false;
4234 
4235 again:
4236 	ret = 0;
4237 	spin_lock(&space_info->lock);
4238 	/*
4239 	 * We only want to wait if somebody other than us is flushing and we
4240 	 * are actually allowed to flush all things.
4241 	 */
4242 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4243 	       space_info->flush) {
4244 		spin_unlock(&space_info->lock);
4245 		/*
4246 		 * If we have a trans handle we can't wait because the flusher
4247 		 * may have to commit the transaction, which would mean we would
4248 		 * deadlock since we are waiting for the flusher to finish, but
4249 		 * hold the current transaction open.
4250 		 */
4251 		if (current->journal_info)
4252 			return -EAGAIN;
4253 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4254 		/* Must have been killed, return */
4255 		if (ret)
4256 			return -EINTR;
4257 
4258 		spin_lock(&space_info->lock);
4259 	}
4260 
4261 	ret = -ENOSPC;
4262 	used = space_info->bytes_used + space_info->bytes_reserved +
4263 		space_info->bytes_pinned + space_info->bytes_readonly +
4264 		space_info->bytes_may_use;
4265 
4266 	/*
4267 	 * The idea here is that we've not already over-reserved the block group
4268 	 * then we can go ahead and save our reservation first and then start
4269 	 * flushing if we need to.  Otherwise if we've already overcommitted
4270 	 * lets start flushing stuff first and then come back and try to make
4271 	 * our reservation.
4272 	 */
4273 	if (used <= space_info->total_bytes) {
4274 		if (used + orig_bytes <= space_info->total_bytes) {
4275 			space_info->bytes_may_use += orig_bytes;
4276 			trace_btrfs_space_reservation(root->fs_info,
4277 				"space_info", space_info->flags, orig_bytes, 1);
4278 			ret = 0;
4279 		} else {
4280 			/*
4281 			 * Ok set num_bytes to orig_bytes since we aren't
4282 			 * overocmmitted, this way we only try and reclaim what
4283 			 * we need.
4284 			 */
4285 			num_bytes = orig_bytes;
4286 		}
4287 	} else {
4288 		/*
4289 		 * Ok we're over committed, set num_bytes to the overcommitted
4290 		 * amount plus the amount of bytes that we need for this
4291 		 * reservation.
4292 		 */
4293 		num_bytes = used - space_info->total_bytes +
4294 			(orig_bytes * 2);
4295 	}
4296 
4297 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4298 		space_info->bytes_may_use += orig_bytes;
4299 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4300 					      space_info->flags, orig_bytes,
4301 					      1);
4302 		ret = 0;
4303 	}
4304 
4305 	/*
4306 	 * Couldn't make our reservation, save our place so while we're trying
4307 	 * to reclaim space we can actually use it instead of somebody else
4308 	 * stealing it from us.
4309 	 *
4310 	 * We make the other tasks wait for the flush only when we can flush
4311 	 * all things.
4312 	 */
4313 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4314 		flushing = true;
4315 		space_info->flush = 1;
4316 	}
4317 
4318 	spin_unlock(&space_info->lock);
4319 
4320 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4321 		goto out;
4322 
4323 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4324 			  flush_state);
4325 	flush_state++;
4326 
4327 	/*
4328 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4329 	 * would happen. So skip delalloc flush.
4330 	 */
4331 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4332 	    (flush_state == FLUSH_DELALLOC ||
4333 	     flush_state == FLUSH_DELALLOC_WAIT))
4334 		flush_state = ALLOC_CHUNK;
4335 
4336 	if (!ret)
4337 		goto again;
4338 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4339 		 flush_state < COMMIT_TRANS)
4340 		goto again;
4341 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4342 		 flush_state <= COMMIT_TRANS)
4343 		goto again;
4344 
4345 out:
4346 	if (ret == -ENOSPC &&
4347 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4348 		struct btrfs_block_rsv *global_rsv =
4349 			&root->fs_info->global_block_rsv;
4350 
4351 		if (block_rsv != global_rsv &&
4352 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4353 			ret = 0;
4354 	}
4355 	if (ret == -ENOSPC)
4356 		trace_btrfs_space_reservation(root->fs_info,
4357 					      "space_info:enospc",
4358 					      space_info->flags, orig_bytes, 1);
4359 	if (flushing) {
4360 		spin_lock(&space_info->lock);
4361 		space_info->flush = 0;
4362 		wake_up_all(&space_info->wait);
4363 		spin_unlock(&space_info->lock);
4364 	}
4365 	return ret;
4366 }
4367 
4368 static struct btrfs_block_rsv *get_block_rsv(
4369 					const struct btrfs_trans_handle *trans,
4370 					const struct btrfs_root *root)
4371 {
4372 	struct btrfs_block_rsv *block_rsv = NULL;
4373 
4374 	if (root->ref_cows)
4375 		block_rsv = trans->block_rsv;
4376 
4377 	if (root == root->fs_info->csum_root && trans->adding_csums)
4378 		block_rsv = trans->block_rsv;
4379 
4380 	if (root == root->fs_info->uuid_root)
4381 		block_rsv = trans->block_rsv;
4382 
4383 	if (!block_rsv)
4384 		block_rsv = root->block_rsv;
4385 
4386 	if (!block_rsv)
4387 		block_rsv = &root->fs_info->empty_block_rsv;
4388 
4389 	return block_rsv;
4390 }
4391 
4392 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4393 			       u64 num_bytes)
4394 {
4395 	int ret = -ENOSPC;
4396 	spin_lock(&block_rsv->lock);
4397 	if (block_rsv->reserved >= num_bytes) {
4398 		block_rsv->reserved -= num_bytes;
4399 		if (block_rsv->reserved < block_rsv->size)
4400 			block_rsv->full = 0;
4401 		ret = 0;
4402 	}
4403 	spin_unlock(&block_rsv->lock);
4404 	return ret;
4405 }
4406 
4407 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4408 				u64 num_bytes, int update_size)
4409 {
4410 	spin_lock(&block_rsv->lock);
4411 	block_rsv->reserved += num_bytes;
4412 	if (update_size)
4413 		block_rsv->size += num_bytes;
4414 	else if (block_rsv->reserved >= block_rsv->size)
4415 		block_rsv->full = 1;
4416 	spin_unlock(&block_rsv->lock);
4417 }
4418 
4419 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4420 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4421 			     int min_factor)
4422 {
4423 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4424 	u64 min_bytes;
4425 
4426 	if (global_rsv->space_info != dest->space_info)
4427 		return -ENOSPC;
4428 
4429 	spin_lock(&global_rsv->lock);
4430 	min_bytes = div_factor(global_rsv->size, min_factor);
4431 	if (global_rsv->reserved < min_bytes + num_bytes) {
4432 		spin_unlock(&global_rsv->lock);
4433 		return -ENOSPC;
4434 	}
4435 	global_rsv->reserved -= num_bytes;
4436 	if (global_rsv->reserved < global_rsv->size)
4437 		global_rsv->full = 0;
4438 	spin_unlock(&global_rsv->lock);
4439 
4440 	block_rsv_add_bytes(dest, num_bytes, 1);
4441 	return 0;
4442 }
4443 
4444 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4445 				    struct btrfs_block_rsv *block_rsv,
4446 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4447 {
4448 	struct btrfs_space_info *space_info = block_rsv->space_info;
4449 
4450 	spin_lock(&block_rsv->lock);
4451 	if (num_bytes == (u64)-1)
4452 		num_bytes = block_rsv->size;
4453 	block_rsv->size -= num_bytes;
4454 	if (block_rsv->reserved >= block_rsv->size) {
4455 		num_bytes = block_rsv->reserved - block_rsv->size;
4456 		block_rsv->reserved = block_rsv->size;
4457 		block_rsv->full = 1;
4458 	} else {
4459 		num_bytes = 0;
4460 	}
4461 	spin_unlock(&block_rsv->lock);
4462 
4463 	if (num_bytes > 0) {
4464 		if (dest) {
4465 			spin_lock(&dest->lock);
4466 			if (!dest->full) {
4467 				u64 bytes_to_add;
4468 
4469 				bytes_to_add = dest->size - dest->reserved;
4470 				bytes_to_add = min(num_bytes, bytes_to_add);
4471 				dest->reserved += bytes_to_add;
4472 				if (dest->reserved >= dest->size)
4473 					dest->full = 1;
4474 				num_bytes -= bytes_to_add;
4475 			}
4476 			spin_unlock(&dest->lock);
4477 		}
4478 		if (num_bytes) {
4479 			spin_lock(&space_info->lock);
4480 			space_info->bytes_may_use -= num_bytes;
4481 			trace_btrfs_space_reservation(fs_info, "space_info",
4482 					space_info->flags, num_bytes, 0);
4483 			spin_unlock(&space_info->lock);
4484 		}
4485 	}
4486 }
4487 
4488 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4489 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4490 {
4491 	int ret;
4492 
4493 	ret = block_rsv_use_bytes(src, num_bytes);
4494 	if (ret)
4495 		return ret;
4496 
4497 	block_rsv_add_bytes(dst, num_bytes, 1);
4498 	return 0;
4499 }
4500 
4501 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4502 {
4503 	memset(rsv, 0, sizeof(*rsv));
4504 	spin_lock_init(&rsv->lock);
4505 	rsv->type = type;
4506 }
4507 
4508 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4509 					      unsigned short type)
4510 {
4511 	struct btrfs_block_rsv *block_rsv;
4512 	struct btrfs_fs_info *fs_info = root->fs_info;
4513 
4514 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4515 	if (!block_rsv)
4516 		return NULL;
4517 
4518 	btrfs_init_block_rsv(block_rsv, type);
4519 	block_rsv->space_info = __find_space_info(fs_info,
4520 						  BTRFS_BLOCK_GROUP_METADATA);
4521 	return block_rsv;
4522 }
4523 
4524 void btrfs_free_block_rsv(struct btrfs_root *root,
4525 			  struct btrfs_block_rsv *rsv)
4526 {
4527 	if (!rsv)
4528 		return;
4529 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4530 	kfree(rsv);
4531 }
4532 
4533 int btrfs_block_rsv_add(struct btrfs_root *root,
4534 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4535 			enum btrfs_reserve_flush_enum flush)
4536 {
4537 	int ret;
4538 
4539 	if (num_bytes == 0)
4540 		return 0;
4541 
4542 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4543 	if (!ret) {
4544 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4545 		return 0;
4546 	}
4547 
4548 	return ret;
4549 }
4550 
4551 int btrfs_block_rsv_check(struct btrfs_root *root,
4552 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4553 {
4554 	u64 num_bytes = 0;
4555 	int ret = -ENOSPC;
4556 
4557 	if (!block_rsv)
4558 		return 0;
4559 
4560 	spin_lock(&block_rsv->lock);
4561 	num_bytes = div_factor(block_rsv->size, min_factor);
4562 	if (block_rsv->reserved >= num_bytes)
4563 		ret = 0;
4564 	spin_unlock(&block_rsv->lock);
4565 
4566 	return ret;
4567 }
4568 
4569 int btrfs_block_rsv_refill(struct btrfs_root *root,
4570 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4571 			   enum btrfs_reserve_flush_enum flush)
4572 {
4573 	u64 num_bytes = 0;
4574 	int ret = -ENOSPC;
4575 
4576 	if (!block_rsv)
4577 		return 0;
4578 
4579 	spin_lock(&block_rsv->lock);
4580 	num_bytes = min_reserved;
4581 	if (block_rsv->reserved >= num_bytes)
4582 		ret = 0;
4583 	else
4584 		num_bytes -= block_rsv->reserved;
4585 	spin_unlock(&block_rsv->lock);
4586 
4587 	if (!ret)
4588 		return 0;
4589 
4590 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4591 	if (!ret) {
4592 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4593 		return 0;
4594 	}
4595 
4596 	return ret;
4597 }
4598 
4599 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4600 			    struct btrfs_block_rsv *dst_rsv,
4601 			    u64 num_bytes)
4602 {
4603 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4604 }
4605 
4606 void btrfs_block_rsv_release(struct btrfs_root *root,
4607 			     struct btrfs_block_rsv *block_rsv,
4608 			     u64 num_bytes)
4609 {
4610 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4611 	if (global_rsv == block_rsv ||
4612 	    block_rsv->space_info != global_rsv->space_info)
4613 		global_rsv = NULL;
4614 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4615 				num_bytes);
4616 }
4617 
4618 /*
4619  * helper to calculate size of global block reservation.
4620  * the desired value is sum of space used by extent tree,
4621  * checksum tree and root tree
4622  */
4623 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4624 {
4625 	struct btrfs_space_info *sinfo;
4626 	u64 num_bytes;
4627 	u64 meta_used;
4628 	u64 data_used;
4629 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4630 
4631 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4632 	spin_lock(&sinfo->lock);
4633 	data_used = sinfo->bytes_used;
4634 	spin_unlock(&sinfo->lock);
4635 
4636 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4637 	spin_lock(&sinfo->lock);
4638 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4639 		data_used = 0;
4640 	meta_used = sinfo->bytes_used;
4641 	spin_unlock(&sinfo->lock);
4642 
4643 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4644 		    csum_size * 2;
4645 	num_bytes += div64_u64(data_used + meta_used, 50);
4646 
4647 	if (num_bytes * 3 > meta_used)
4648 		num_bytes = div64_u64(meta_used, 3);
4649 
4650 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4651 }
4652 
4653 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4654 {
4655 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4656 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4657 	u64 num_bytes;
4658 
4659 	num_bytes = calc_global_metadata_size(fs_info);
4660 
4661 	spin_lock(&sinfo->lock);
4662 	spin_lock(&block_rsv->lock);
4663 
4664 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4665 
4666 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4667 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4668 		    sinfo->bytes_may_use;
4669 
4670 	if (sinfo->total_bytes > num_bytes) {
4671 		num_bytes = sinfo->total_bytes - num_bytes;
4672 		block_rsv->reserved += num_bytes;
4673 		sinfo->bytes_may_use += num_bytes;
4674 		trace_btrfs_space_reservation(fs_info, "space_info",
4675 				      sinfo->flags, num_bytes, 1);
4676 	}
4677 
4678 	if (block_rsv->reserved >= block_rsv->size) {
4679 		num_bytes = block_rsv->reserved - block_rsv->size;
4680 		sinfo->bytes_may_use -= num_bytes;
4681 		trace_btrfs_space_reservation(fs_info, "space_info",
4682 				      sinfo->flags, num_bytes, 0);
4683 		block_rsv->reserved = block_rsv->size;
4684 		block_rsv->full = 1;
4685 	}
4686 
4687 	spin_unlock(&block_rsv->lock);
4688 	spin_unlock(&sinfo->lock);
4689 }
4690 
4691 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4692 {
4693 	struct btrfs_space_info *space_info;
4694 
4695 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4696 	fs_info->chunk_block_rsv.space_info = space_info;
4697 
4698 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4699 	fs_info->global_block_rsv.space_info = space_info;
4700 	fs_info->delalloc_block_rsv.space_info = space_info;
4701 	fs_info->trans_block_rsv.space_info = space_info;
4702 	fs_info->empty_block_rsv.space_info = space_info;
4703 	fs_info->delayed_block_rsv.space_info = space_info;
4704 
4705 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4706 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4707 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4708 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4709 	if (fs_info->quota_root)
4710 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4711 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4712 
4713 	update_global_block_rsv(fs_info);
4714 }
4715 
4716 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4717 {
4718 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4719 				(u64)-1);
4720 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4721 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4722 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4723 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4724 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4725 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4726 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4727 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4728 }
4729 
4730 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4731 				  struct btrfs_root *root)
4732 {
4733 	if (!trans->block_rsv)
4734 		return;
4735 
4736 	if (!trans->bytes_reserved)
4737 		return;
4738 
4739 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4740 				      trans->transid, trans->bytes_reserved, 0);
4741 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4742 	trans->bytes_reserved = 0;
4743 }
4744 
4745 /* Can only return 0 or -ENOSPC */
4746 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4747 				  struct inode *inode)
4748 {
4749 	struct btrfs_root *root = BTRFS_I(inode)->root;
4750 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4751 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4752 
4753 	/*
4754 	 * We need to hold space in order to delete our orphan item once we've
4755 	 * added it, so this takes the reservation so we can release it later
4756 	 * when we are truly done with the orphan item.
4757 	 */
4758 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4759 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4760 				      btrfs_ino(inode), num_bytes, 1);
4761 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4762 }
4763 
4764 void btrfs_orphan_release_metadata(struct inode *inode)
4765 {
4766 	struct btrfs_root *root = BTRFS_I(inode)->root;
4767 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4768 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4769 				      btrfs_ino(inode), num_bytes, 0);
4770 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4771 }
4772 
4773 /*
4774  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4775  * root: the root of the parent directory
4776  * rsv: block reservation
4777  * items: the number of items that we need do reservation
4778  * qgroup_reserved: used to return the reserved size in qgroup
4779  *
4780  * This function is used to reserve the space for snapshot/subvolume
4781  * creation and deletion. Those operations are different with the
4782  * common file/directory operations, they change two fs/file trees
4783  * and root tree, the number of items that the qgroup reserves is
4784  * different with the free space reservation. So we can not use
4785  * the space reseravtion mechanism in start_transaction().
4786  */
4787 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4788 				     struct btrfs_block_rsv *rsv,
4789 				     int items,
4790 				     u64 *qgroup_reserved,
4791 				     bool use_global_rsv)
4792 {
4793 	u64 num_bytes;
4794 	int ret;
4795 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4796 
4797 	if (root->fs_info->quota_enabled) {
4798 		/* One for parent inode, two for dir entries */
4799 		num_bytes = 3 * root->leafsize;
4800 		ret = btrfs_qgroup_reserve(root, num_bytes);
4801 		if (ret)
4802 			return ret;
4803 	} else {
4804 		num_bytes = 0;
4805 	}
4806 
4807 	*qgroup_reserved = num_bytes;
4808 
4809 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4810 	rsv->space_info = __find_space_info(root->fs_info,
4811 					    BTRFS_BLOCK_GROUP_METADATA);
4812 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4813 				  BTRFS_RESERVE_FLUSH_ALL);
4814 
4815 	if (ret == -ENOSPC && use_global_rsv)
4816 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4817 
4818 	if (ret) {
4819 		if (*qgroup_reserved)
4820 			btrfs_qgroup_free(root, *qgroup_reserved);
4821 	}
4822 
4823 	return ret;
4824 }
4825 
4826 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4827 				      struct btrfs_block_rsv *rsv,
4828 				      u64 qgroup_reserved)
4829 {
4830 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4831 	if (qgroup_reserved)
4832 		btrfs_qgroup_free(root, qgroup_reserved);
4833 }
4834 
4835 /**
4836  * drop_outstanding_extent - drop an outstanding extent
4837  * @inode: the inode we're dropping the extent for
4838  *
4839  * This is called when we are freeing up an outstanding extent, either called
4840  * after an error or after an extent is written.  This will return the number of
4841  * reserved extents that need to be freed.  This must be called with
4842  * BTRFS_I(inode)->lock held.
4843  */
4844 static unsigned drop_outstanding_extent(struct inode *inode)
4845 {
4846 	unsigned drop_inode_space = 0;
4847 	unsigned dropped_extents = 0;
4848 
4849 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4850 	BTRFS_I(inode)->outstanding_extents--;
4851 
4852 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4853 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4854 			       &BTRFS_I(inode)->runtime_flags))
4855 		drop_inode_space = 1;
4856 
4857 	/*
4858 	 * If we have more or the same amount of outsanding extents than we have
4859 	 * reserved then we need to leave the reserved extents count alone.
4860 	 */
4861 	if (BTRFS_I(inode)->outstanding_extents >=
4862 	    BTRFS_I(inode)->reserved_extents)
4863 		return drop_inode_space;
4864 
4865 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4866 		BTRFS_I(inode)->outstanding_extents;
4867 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4868 	return dropped_extents + drop_inode_space;
4869 }
4870 
4871 /**
4872  * calc_csum_metadata_size - return the amount of metada space that must be
4873  *	reserved/free'd for the given bytes.
4874  * @inode: the inode we're manipulating
4875  * @num_bytes: the number of bytes in question
4876  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4877  *
4878  * This adjusts the number of csum_bytes in the inode and then returns the
4879  * correct amount of metadata that must either be reserved or freed.  We
4880  * calculate how many checksums we can fit into one leaf and then divide the
4881  * number of bytes that will need to be checksumed by this value to figure out
4882  * how many checksums will be required.  If we are adding bytes then the number
4883  * may go up and we will return the number of additional bytes that must be
4884  * reserved.  If it is going down we will return the number of bytes that must
4885  * be freed.
4886  *
4887  * This must be called with BTRFS_I(inode)->lock held.
4888  */
4889 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4890 				   int reserve)
4891 {
4892 	struct btrfs_root *root = BTRFS_I(inode)->root;
4893 	u64 csum_size;
4894 	int num_csums_per_leaf;
4895 	int num_csums;
4896 	int old_csums;
4897 
4898 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4899 	    BTRFS_I(inode)->csum_bytes == 0)
4900 		return 0;
4901 
4902 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4903 	if (reserve)
4904 		BTRFS_I(inode)->csum_bytes += num_bytes;
4905 	else
4906 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4907 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4908 	num_csums_per_leaf = (int)div64_u64(csum_size,
4909 					    sizeof(struct btrfs_csum_item) +
4910 					    sizeof(struct btrfs_disk_key));
4911 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4912 	num_csums = num_csums + num_csums_per_leaf - 1;
4913 	num_csums = num_csums / num_csums_per_leaf;
4914 
4915 	old_csums = old_csums + num_csums_per_leaf - 1;
4916 	old_csums = old_csums / num_csums_per_leaf;
4917 
4918 	/* No change, no need to reserve more */
4919 	if (old_csums == num_csums)
4920 		return 0;
4921 
4922 	if (reserve)
4923 		return btrfs_calc_trans_metadata_size(root,
4924 						      num_csums - old_csums);
4925 
4926 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4927 }
4928 
4929 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4930 {
4931 	struct btrfs_root *root = BTRFS_I(inode)->root;
4932 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4933 	u64 to_reserve = 0;
4934 	u64 csum_bytes;
4935 	unsigned nr_extents = 0;
4936 	int extra_reserve = 0;
4937 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4938 	int ret = 0;
4939 	bool delalloc_lock = true;
4940 	u64 to_free = 0;
4941 	unsigned dropped;
4942 
4943 	/* If we are a free space inode we need to not flush since we will be in
4944 	 * the middle of a transaction commit.  We also don't need the delalloc
4945 	 * mutex since we won't race with anybody.  We need this mostly to make
4946 	 * lockdep shut its filthy mouth.
4947 	 */
4948 	if (btrfs_is_free_space_inode(inode)) {
4949 		flush = BTRFS_RESERVE_NO_FLUSH;
4950 		delalloc_lock = false;
4951 	}
4952 
4953 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4954 	    btrfs_transaction_in_commit(root->fs_info))
4955 		schedule_timeout(1);
4956 
4957 	if (delalloc_lock)
4958 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4959 
4960 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4961 
4962 	spin_lock(&BTRFS_I(inode)->lock);
4963 	BTRFS_I(inode)->outstanding_extents++;
4964 
4965 	if (BTRFS_I(inode)->outstanding_extents >
4966 	    BTRFS_I(inode)->reserved_extents)
4967 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4968 			BTRFS_I(inode)->reserved_extents;
4969 
4970 	/*
4971 	 * Add an item to reserve for updating the inode when we complete the
4972 	 * delalloc io.
4973 	 */
4974 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4975 		      &BTRFS_I(inode)->runtime_flags)) {
4976 		nr_extents++;
4977 		extra_reserve = 1;
4978 	}
4979 
4980 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4981 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4982 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4983 	spin_unlock(&BTRFS_I(inode)->lock);
4984 
4985 	if (root->fs_info->quota_enabled) {
4986 		ret = btrfs_qgroup_reserve(root, num_bytes +
4987 					   nr_extents * root->leafsize);
4988 		if (ret)
4989 			goto out_fail;
4990 	}
4991 
4992 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4993 	if (unlikely(ret)) {
4994 		if (root->fs_info->quota_enabled)
4995 			btrfs_qgroup_free(root, num_bytes +
4996 						nr_extents * root->leafsize);
4997 		goto out_fail;
4998 	}
4999 
5000 	spin_lock(&BTRFS_I(inode)->lock);
5001 	if (extra_reserve) {
5002 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5003 			&BTRFS_I(inode)->runtime_flags);
5004 		nr_extents--;
5005 	}
5006 	BTRFS_I(inode)->reserved_extents += nr_extents;
5007 	spin_unlock(&BTRFS_I(inode)->lock);
5008 
5009 	if (delalloc_lock)
5010 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5011 
5012 	if (to_reserve)
5013 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5014 					      btrfs_ino(inode), to_reserve, 1);
5015 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5016 
5017 	return 0;
5018 
5019 out_fail:
5020 	spin_lock(&BTRFS_I(inode)->lock);
5021 	dropped = drop_outstanding_extent(inode);
5022 	/*
5023 	 * If the inodes csum_bytes is the same as the original
5024 	 * csum_bytes then we know we haven't raced with any free()ers
5025 	 * so we can just reduce our inodes csum bytes and carry on.
5026 	 */
5027 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5028 		calc_csum_metadata_size(inode, num_bytes, 0);
5029 	} else {
5030 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5031 		u64 bytes;
5032 
5033 		/*
5034 		 * This is tricky, but first we need to figure out how much we
5035 		 * free'd from any free-ers that occured during this
5036 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5037 		 * before we dropped our lock, and then call the free for the
5038 		 * number of bytes that were freed while we were trying our
5039 		 * reservation.
5040 		 */
5041 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5042 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5043 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5044 
5045 
5046 		/*
5047 		 * Now we need to see how much we would have freed had we not
5048 		 * been making this reservation and our ->csum_bytes were not
5049 		 * artificially inflated.
5050 		 */
5051 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5052 		bytes = csum_bytes - orig_csum_bytes;
5053 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5054 
5055 		/*
5056 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5057 		 * more than to_free then we would have free'd more space had we
5058 		 * not had an artificially high ->csum_bytes, so we need to free
5059 		 * the remainder.  If bytes is the same or less then we don't
5060 		 * need to do anything, the other free-ers did the correct
5061 		 * thing.
5062 		 */
5063 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5064 		if (bytes > to_free)
5065 			to_free = bytes - to_free;
5066 		else
5067 			to_free = 0;
5068 	}
5069 	spin_unlock(&BTRFS_I(inode)->lock);
5070 	if (dropped)
5071 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5072 
5073 	if (to_free) {
5074 		btrfs_block_rsv_release(root, block_rsv, to_free);
5075 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5076 					      btrfs_ino(inode), to_free, 0);
5077 	}
5078 	if (delalloc_lock)
5079 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5080 	return ret;
5081 }
5082 
5083 /**
5084  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5085  * @inode: the inode to release the reservation for
5086  * @num_bytes: the number of bytes we're releasing
5087  *
5088  * This will release the metadata reservation for an inode.  This can be called
5089  * once we complete IO for a given set of bytes to release their metadata
5090  * reservations.
5091  */
5092 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5093 {
5094 	struct btrfs_root *root = BTRFS_I(inode)->root;
5095 	u64 to_free = 0;
5096 	unsigned dropped;
5097 
5098 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5099 	spin_lock(&BTRFS_I(inode)->lock);
5100 	dropped = drop_outstanding_extent(inode);
5101 
5102 	if (num_bytes)
5103 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5104 	spin_unlock(&BTRFS_I(inode)->lock);
5105 	if (dropped > 0)
5106 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5107 
5108 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5109 				      btrfs_ino(inode), to_free, 0);
5110 	if (root->fs_info->quota_enabled) {
5111 		btrfs_qgroup_free(root, num_bytes +
5112 					dropped * root->leafsize);
5113 	}
5114 
5115 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5116 				to_free);
5117 }
5118 
5119 /**
5120  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5121  * @inode: inode we're writing to
5122  * @num_bytes: the number of bytes we want to allocate
5123  *
5124  * This will do the following things
5125  *
5126  * o reserve space in the data space info for num_bytes
5127  * o reserve space in the metadata space info based on number of outstanding
5128  *   extents and how much csums will be needed
5129  * o add to the inodes ->delalloc_bytes
5130  * o add it to the fs_info's delalloc inodes list.
5131  *
5132  * This will return 0 for success and -ENOSPC if there is no space left.
5133  */
5134 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5135 {
5136 	int ret;
5137 
5138 	ret = btrfs_check_data_free_space(inode, num_bytes);
5139 	if (ret)
5140 		return ret;
5141 
5142 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5143 	if (ret) {
5144 		btrfs_free_reserved_data_space(inode, num_bytes);
5145 		return ret;
5146 	}
5147 
5148 	return 0;
5149 }
5150 
5151 /**
5152  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5153  * @inode: inode we're releasing space for
5154  * @num_bytes: the number of bytes we want to free up
5155  *
5156  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5157  * called in the case that we don't need the metadata AND data reservations
5158  * anymore.  So if there is an error or we insert an inline extent.
5159  *
5160  * This function will release the metadata space that was not used and will
5161  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5162  * list if there are no delalloc bytes left.
5163  */
5164 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5165 {
5166 	btrfs_delalloc_release_metadata(inode, num_bytes);
5167 	btrfs_free_reserved_data_space(inode, num_bytes);
5168 }
5169 
5170 static int update_block_group(struct btrfs_root *root,
5171 			      u64 bytenr, u64 num_bytes, int alloc)
5172 {
5173 	struct btrfs_block_group_cache *cache = NULL;
5174 	struct btrfs_fs_info *info = root->fs_info;
5175 	u64 total = num_bytes;
5176 	u64 old_val;
5177 	u64 byte_in_group;
5178 	int factor;
5179 
5180 	/* block accounting for super block */
5181 	spin_lock(&info->delalloc_root_lock);
5182 	old_val = btrfs_super_bytes_used(info->super_copy);
5183 	if (alloc)
5184 		old_val += num_bytes;
5185 	else
5186 		old_val -= num_bytes;
5187 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5188 	spin_unlock(&info->delalloc_root_lock);
5189 
5190 	while (total) {
5191 		cache = btrfs_lookup_block_group(info, bytenr);
5192 		if (!cache)
5193 			return -ENOENT;
5194 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5195 				    BTRFS_BLOCK_GROUP_RAID1 |
5196 				    BTRFS_BLOCK_GROUP_RAID10))
5197 			factor = 2;
5198 		else
5199 			factor = 1;
5200 		/*
5201 		 * If this block group has free space cache written out, we
5202 		 * need to make sure to load it if we are removing space.  This
5203 		 * is because we need the unpinning stage to actually add the
5204 		 * space back to the block group, otherwise we will leak space.
5205 		 */
5206 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5207 			cache_block_group(cache, 1);
5208 
5209 		byte_in_group = bytenr - cache->key.objectid;
5210 		WARN_ON(byte_in_group > cache->key.offset);
5211 
5212 		spin_lock(&cache->space_info->lock);
5213 		spin_lock(&cache->lock);
5214 
5215 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5216 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5217 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5218 
5219 		cache->dirty = 1;
5220 		old_val = btrfs_block_group_used(&cache->item);
5221 		num_bytes = min(total, cache->key.offset - byte_in_group);
5222 		if (alloc) {
5223 			old_val += num_bytes;
5224 			btrfs_set_block_group_used(&cache->item, old_val);
5225 			cache->reserved -= num_bytes;
5226 			cache->space_info->bytes_reserved -= num_bytes;
5227 			cache->space_info->bytes_used += num_bytes;
5228 			cache->space_info->disk_used += num_bytes * factor;
5229 			spin_unlock(&cache->lock);
5230 			spin_unlock(&cache->space_info->lock);
5231 		} else {
5232 			old_val -= num_bytes;
5233 			btrfs_set_block_group_used(&cache->item, old_val);
5234 			cache->pinned += num_bytes;
5235 			cache->space_info->bytes_pinned += num_bytes;
5236 			cache->space_info->bytes_used -= num_bytes;
5237 			cache->space_info->disk_used -= num_bytes * factor;
5238 			spin_unlock(&cache->lock);
5239 			spin_unlock(&cache->space_info->lock);
5240 
5241 			set_extent_dirty(info->pinned_extents,
5242 					 bytenr, bytenr + num_bytes - 1,
5243 					 GFP_NOFS | __GFP_NOFAIL);
5244 		}
5245 		btrfs_put_block_group(cache);
5246 		total -= num_bytes;
5247 		bytenr += num_bytes;
5248 	}
5249 	return 0;
5250 }
5251 
5252 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5253 {
5254 	struct btrfs_block_group_cache *cache;
5255 	u64 bytenr;
5256 
5257 	spin_lock(&root->fs_info->block_group_cache_lock);
5258 	bytenr = root->fs_info->first_logical_byte;
5259 	spin_unlock(&root->fs_info->block_group_cache_lock);
5260 
5261 	if (bytenr < (u64)-1)
5262 		return bytenr;
5263 
5264 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5265 	if (!cache)
5266 		return 0;
5267 
5268 	bytenr = cache->key.objectid;
5269 	btrfs_put_block_group(cache);
5270 
5271 	return bytenr;
5272 }
5273 
5274 static int pin_down_extent(struct btrfs_root *root,
5275 			   struct btrfs_block_group_cache *cache,
5276 			   u64 bytenr, u64 num_bytes, int reserved)
5277 {
5278 	spin_lock(&cache->space_info->lock);
5279 	spin_lock(&cache->lock);
5280 	cache->pinned += num_bytes;
5281 	cache->space_info->bytes_pinned += num_bytes;
5282 	if (reserved) {
5283 		cache->reserved -= num_bytes;
5284 		cache->space_info->bytes_reserved -= num_bytes;
5285 	}
5286 	spin_unlock(&cache->lock);
5287 	spin_unlock(&cache->space_info->lock);
5288 
5289 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5290 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5291 	if (reserved)
5292 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5293 	return 0;
5294 }
5295 
5296 /*
5297  * this function must be called within transaction
5298  */
5299 int btrfs_pin_extent(struct btrfs_root *root,
5300 		     u64 bytenr, u64 num_bytes, int reserved)
5301 {
5302 	struct btrfs_block_group_cache *cache;
5303 
5304 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5305 	BUG_ON(!cache); /* Logic error */
5306 
5307 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5308 
5309 	btrfs_put_block_group(cache);
5310 	return 0;
5311 }
5312 
5313 /*
5314  * this function must be called within transaction
5315  */
5316 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5317 				    u64 bytenr, u64 num_bytes)
5318 {
5319 	struct btrfs_block_group_cache *cache;
5320 	int ret;
5321 
5322 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5323 	if (!cache)
5324 		return -EINVAL;
5325 
5326 	/*
5327 	 * pull in the free space cache (if any) so that our pin
5328 	 * removes the free space from the cache.  We have load_only set
5329 	 * to one because the slow code to read in the free extents does check
5330 	 * the pinned extents.
5331 	 */
5332 	cache_block_group(cache, 1);
5333 
5334 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5335 
5336 	/* remove us from the free space cache (if we're there at all) */
5337 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5338 	btrfs_put_block_group(cache);
5339 	return ret;
5340 }
5341 
5342 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5343 {
5344 	int ret;
5345 	struct btrfs_block_group_cache *block_group;
5346 	struct btrfs_caching_control *caching_ctl;
5347 
5348 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5349 	if (!block_group)
5350 		return -EINVAL;
5351 
5352 	cache_block_group(block_group, 0);
5353 	caching_ctl = get_caching_control(block_group);
5354 
5355 	if (!caching_ctl) {
5356 		/* Logic error */
5357 		BUG_ON(!block_group_cache_done(block_group));
5358 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5359 	} else {
5360 		mutex_lock(&caching_ctl->mutex);
5361 
5362 		if (start >= caching_ctl->progress) {
5363 			ret = add_excluded_extent(root, start, num_bytes);
5364 		} else if (start + num_bytes <= caching_ctl->progress) {
5365 			ret = btrfs_remove_free_space(block_group,
5366 						      start, num_bytes);
5367 		} else {
5368 			num_bytes = caching_ctl->progress - start;
5369 			ret = btrfs_remove_free_space(block_group,
5370 						      start, num_bytes);
5371 			if (ret)
5372 				goto out_lock;
5373 
5374 			num_bytes = (start + num_bytes) -
5375 				caching_ctl->progress;
5376 			start = caching_ctl->progress;
5377 			ret = add_excluded_extent(root, start, num_bytes);
5378 		}
5379 out_lock:
5380 		mutex_unlock(&caching_ctl->mutex);
5381 		put_caching_control(caching_ctl);
5382 	}
5383 	btrfs_put_block_group(block_group);
5384 	return ret;
5385 }
5386 
5387 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5388 				 struct extent_buffer *eb)
5389 {
5390 	struct btrfs_file_extent_item *item;
5391 	struct btrfs_key key;
5392 	int found_type;
5393 	int i;
5394 
5395 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5396 		return 0;
5397 
5398 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5399 		btrfs_item_key_to_cpu(eb, &key, i);
5400 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5401 			continue;
5402 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5403 		found_type = btrfs_file_extent_type(eb, item);
5404 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5405 			continue;
5406 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5407 			continue;
5408 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5409 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5410 		__exclude_logged_extent(log, key.objectid, key.offset);
5411 	}
5412 
5413 	return 0;
5414 }
5415 
5416 /**
5417  * btrfs_update_reserved_bytes - update the block_group and space info counters
5418  * @cache:	The cache we are manipulating
5419  * @num_bytes:	The number of bytes in question
5420  * @reserve:	One of the reservation enums
5421  *
5422  * This is called by the allocator when it reserves space, or by somebody who is
5423  * freeing space that was never actually used on disk.  For example if you
5424  * reserve some space for a new leaf in transaction A and before transaction A
5425  * commits you free that leaf, you call this with reserve set to 0 in order to
5426  * clear the reservation.
5427  *
5428  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5429  * ENOSPC accounting.  For data we handle the reservation through clearing the
5430  * delalloc bits in the io_tree.  We have to do this since we could end up
5431  * allocating less disk space for the amount of data we have reserved in the
5432  * case of compression.
5433  *
5434  * If this is a reservation and the block group has become read only we cannot
5435  * make the reservation and return -EAGAIN, otherwise this function always
5436  * succeeds.
5437  */
5438 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5439 				       u64 num_bytes, int reserve)
5440 {
5441 	struct btrfs_space_info *space_info = cache->space_info;
5442 	int ret = 0;
5443 
5444 	spin_lock(&space_info->lock);
5445 	spin_lock(&cache->lock);
5446 	if (reserve != RESERVE_FREE) {
5447 		if (cache->ro) {
5448 			ret = -EAGAIN;
5449 		} else {
5450 			cache->reserved += num_bytes;
5451 			space_info->bytes_reserved += num_bytes;
5452 			if (reserve == RESERVE_ALLOC) {
5453 				trace_btrfs_space_reservation(cache->fs_info,
5454 						"space_info", space_info->flags,
5455 						num_bytes, 0);
5456 				space_info->bytes_may_use -= num_bytes;
5457 			}
5458 		}
5459 	} else {
5460 		if (cache->ro)
5461 			space_info->bytes_readonly += num_bytes;
5462 		cache->reserved -= num_bytes;
5463 		space_info->bytes_reserved -= num_bytes;
5464 	}
5465 	spin_unlock(&cache->lock);
5466 	spin_unlock(&space_info->lock);
5467 	return ret;
5468 }
5469 
5470 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5471 				struct btrfs_root *root)
5472 {
5473 	struct btrfs_fs_info *fs_info = root->fs_info;
5474 	struct btrfs_caching_control *next;
5475 	struct btrfs_caching_control *caching_ctl;
5476 	struct btrfs_block_group_cache *cache;
5477 	struct btrfs_space_info *space_info;
5478 
5479 	down_write(&fs_info->extent_commit_sem);
5480 
5481 	list_for_each_entry_safe(caching_ctl, next,
5482 				 &fs_info->caching_block_groups, list) {
5483 		cache = caching_ctl->block_group;
5484 		if (block_group_cache_done(cache)) {
5485 			cache->last_byte_to_unpin = (u64)-1;
5486 			list_del_init(&caching_ctl->list);
5487 			put_caching_control(caching_ctl);
5488 		} else {
5489 			cache->last_byte_to_unpin = caching_ctl->progress;
5490 		}
5491 	}
5492 
5493 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5494 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5495 	else
5496 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5497 
5498 	up_write(&fs_info->extent_commit_sem);
5499 
5500 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5501 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5502 
5503 	update_global_block_rsv(fs_info);
5504 }
5505 
5506 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5507 {
5508 	struct btrfs_fs_info *fs_info = root->fs_info;
5509 	struct btrfs_block_group_cache *cache = NULL;
5510 	struct btrfs_space_info *space_info;
5511 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5512 	u64 len;
5513 	bool readonly;
5514 
5515 	while (start <= end) {
5516 		readonly = false;
5517 		if (!cache ||
5518 		    start >= cache->key.objectid + cache->key.offset) {
5519 			if (cache)
5520 				btrfs_put_block_group(cache);
5521 			cache = btrfs_lookup_block_group(fs_info, start);
5522 			BUG_ON(!cache); /* Logic error */
5523 		}
5524 
5525 		len = cache->key.objectid + cache->key.offset - start;
5526 		len = min(len, end + 1 - start);
5527 
5528 		if (start < cache->last_byte_to_unpin) {
5529 			len = min(len, cache->last_byte_to_unpin - start);
5530 			btrfs_add_free_space(cache, start, len);
5531 		}
5532 
5533 		start += len;
5534 		space_info = cache->space_info;
5535 
5536 		spin_lock(&space_info->lock);
5537 		spin_lock(&cache->lock);
5538 		cache->pinned -= len;
5539 		space_info->bytes_pinned -= len;
5540 		if (cache->ro) {
5541 			space_info->bytes_readonly += len;
5542 			readonly = true;
5543 		}
5544 		spin_unlock(&cache->lock);
5545 		if (!readonly && global_rsv->space_info == space_info) {
5546 			spin_lock(&global_rsv->lock);
5547 			if (!global_rsv->full) {
5548 				len = min(len, global_rsv->size -
5549 					  global_rsv->reserved);
5550 				global_rsv->reserved += len;
5551 				space_info->bytes_may_use += len;
5552 				if (global_rsv->reserved >= global_rsv->size)
5553 					global_rsv->full = 1;
5554 			}
5555 			spin_unlock(&global_rsv->lock);
5556 		}
5557 		spin_unlock(&space_info->lock);
5558 	}
5559 
5560 	if (cache)
5561 		btrfs_put_block_group(cache);
5562 	return 0;
5563 }
5564 
5565 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5566 			       struct btrfs_root *root)
5567 {
5568 	struct btrfs_fs_info *fs_info = root->fs_info;
5569 	struct extent_io_tree *unpin;
5570 	u64 start;
5571 	u64 end;
5572 	int ret;
5573 
5574 	if (trans->aborted)
5575 		return 0;
5576 
5577 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5578 		unpin = &fs_info->freed_extents[1];
5579 	else
5580 		unpin = &fs_info->freed_extents[0];
5581 
5582 	while (1) {
5583 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5584 					    EXTENT_DIRTY, NULL);
5585 		if (ret)
5586 			break;
5587 
5588 		if (btrfs_test_opt(root, DISCARD))
5589 			ret = btrfs_discard_extent(root, start,
5590 						   end + 1 - start, NULL);
5591 
5592 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5593 		unpin_extent_range(root, start, end);
5594 		cond_resched();
5595 	}
5596 
5597 	return 0;
5598 }
5599 
5600 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5601 			     u64 owner, u64 root_objectid)
5602 {
5603 	struct btrfs_space_info *space_info;
5604 	u64 flags;
5605 
5606 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5607 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5608 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5609 		else
5610 			flags = BTRFS_BLOCK_GROUP_METADATA;
5611 	} else {
5612 		flags = BTRFS_BLOCK_GROUP_DATA;
5613 	}
5614 
5615 	space_info = __find_space_info(fs_info, flags);
5616 	BUG_ON(!space_info); /* Logic bug */
5617 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5618 }
5619 
5620 
5621 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5622 				struct btrfs_root *root,
5623 				u64 bytenr, u64 num_bytes, u64 parent,
5624 				u64 root_objectid, u64 owner_objectid,
5625 				u64 owner_offset, int refs_to_drop,
5626 				struct btrfs_delayed_extent_op *extent_op)
5627 {
5628 	struct btrfs_key key;
5629 	struct btrfs_path *path;
5630 	struct btrfs_fs_info *info = root->fs_info;
5631 	struct btrfs_root *extent_root = info->extent_root;
5632 	struct extent_buffer *leaf;
5633 	struct btrfs_extent_item *ei;
5634 	struct btrfs_extent_inline_ref *iref;
5635 	int ret;
5636 	int is_data;
5637 	int extent_slot = 0;
5638 	int found_extent = 0;
5639 	int num_to_del = 1;
5640 	u32 item_size;
5641 	u64 refs;
5642 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5643 						 SKINNY_METADATA);
5644 
5645 	path = btrfs_alloc_path();
5646 	if (!path)
5647 		return -ENOMEM;
5648 
5649 	path->reada = 1;
5650 	path->leave_spinning = 1;
5651 
5652 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5653 	BUG_ON(!is_data && refs_to_drop != 1);
5654 
5655 	if (is_data)
5656 		skinny_metadata = 0;
5657 
5658 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5659 				    bytenr, num_bytes, parent,
5660 				    root_objectid, owner_objectid,
5661 				    owner_offset);
5662 	if (ret == 0) {
5663 		extent_slot = path->slots[0];
5664 		while (extent_slot >= 0) {
5665 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5666 					      extent_slot);
5667 			if (key.objectid != bytenr)
5668 				break;
5669 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5670 			    key.offset == num_bytes) {
5671 				found_extent = 1;
5672 				break;
5673 			}
5674 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5675 			    key.offset == owner_objectid) {
5676 				found_extent = 1;
5677 				break;
5678 			}
5679 			if (path->slots[0] - extent_slot > 5)
5680 				break;
5681 			extent_slot--;
5682 		}
5683 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5684 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5685 		if (found_extent && item_size < sizeof(*ei))
5686 			found_extent = 0;
5687 #endif
5688 		if (!found_extent) {
5689 			BUG_ON(iref);
5690 			ret = remove_extent_backref(trans, extent_root, path,
5691 						    NULL, refs_to_drop,
5692 						    is_data);
5693 			if (ret) {
5694 				btrfs_abort_transaction(trans, extent_root, ret);
5695 				goto out;
5696 			}
5697 			btrfs_release_path(path);
5698 			path->leave_spinning = 1;
5699 
5700 			key.objectid = bytenr;
5701 			key.type = BTRFS_EXTENT_ITEM_KEY;
5702 			key.offset = num_bytes;
5703 
5704 			if (!is_data && skinny_metadata) {
5705 				key.type = BTRFS_METADATA_ITEM_KEY;
5706 				key.offset = owner_objectid;
5707 			}
5708 
5709 			ret = btrfs_search_slot(trans, extent_root,
5710 						&key, path, -1, 1);
5711 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5712 				/*
5713 				 * Couldn't find our skinny metadata item,
5714 				 * see if we have ye olde extent item.
5715 				 */
5716 				path->slots[0]--;
5717 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5718 						      path->slots[0]);
5719 				if (key.objectid == bytenr &&
5720 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5721 				    key.offset == num_bytes)
5722 					ret = 0;
5723 			}
5724 
5725 			if (ret > 0 && skinny_metadata) {
5726 				skinny_metadata = false;
5727 				key.type = BTRFS_EXTENT_ITEM_KEY;
5728 				key.offset = num_bytes;
5729 				btrfs_release_path(path);
5730 				ret = btrfs_search_slot(trans, extent_root,
5731 							&key, path, -1, 1);
5732 			}
5733 
5734 			if (ret) {
5735 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5736 					ret, bytenr);
5737 				if (ret > 0)
5738 					btrfs_print_leaf(extent_root,
5739 							 path->nodes[0]);
5740 			}
5741 			if (ret < 0) {
5742 				btrfs_abort_transaction(trans, extent_root, ret);
5743 				goto out;
5744 			}
5745 			extent_slot = path->slots[0];
5746 		}
5747 	} else if (WARN_ON(ret == -ENOENT)) {
5748 		btrfs_print_leaf(extent_root, path->nodes[0]);
5749 		btrfs_err(info,
5750 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5751 			bytenr, parent, root_objectid, owner_objectid,
5752 			owner_offset);
5753 	} else {
5754 		btrfs_abort_transaction(trans, extent_root, ret);
5755 		goto out;
5756 	}
5757 
5758 	leaf = path->nodes[0];
5759 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5760 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5761 	if (item_size < sizeof(*ei)) {
5762 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5763 		ret = convert_extent_item_v0(trans, extent_root, path,
5764 					     owner_objectid, 0);
5765 		if (ret < 0) {
5766 			btrfs_abort_transaction(trans, extent_root, ret);
5767 			goto out;
5768 		}
5769 
5770 		btrfs_release_path(path);
5771 		path->leave_spinning = 1;
5772 
5773 		key.objectid = bytenr;
5774 		key.type = BTRFS_EXTENT_ITEM_KEY;
5775 		key.offset = num_bytes;
5776 
5777 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5778 					-1, 1);
5779 		if (ret) {
5780 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5781 				ret, bytenr);
5782 			btrfs_print_leaf(extent_root, path->nodes[0]);
5783 		}
5784 		if (ret < 0) {
5785 			btrfs_abort_transaction(trans, extent_root, ret);
5786 			goto out;
5787 		}
5788 
5789 		extent_slot = path->slots[0];
5790 		leaf = path->nodes[0];
5791 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5792 	}
5793 #endif
5794 	BUG_ON(item_size < sizeof(*ei));
5795 	ei = btrfs_item_ptr(leaf, extent_slot,
5796 			    struct btrfs_extent_item);
5797 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5798 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5799 		struct btrfs_tree_block_info *bi;
5800 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5801 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5802 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5803 	}
5804 
5805 	refs = btrfs_extent_refs(leaf, ei);
5806 	if (refs < refs_to_drop) {
5807 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5808 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5809 		ret = -EINVAL;
5810 		btrfs_abort_transaction(trans, extent_root, ret);
5811 		goto out;
5812 	}
5813 	refs -= refs_to_drop;
5814 
5815 	if (refs > 0) {
5816 		if (extent_op)
5817 			__run_delayed_extent_op(extent_op, leaf, ei);
5818 		/*
5819 		 * In the case of inline back ref, reference count will
5820 		 * be updated by remove_extent_backref
5821 		 */
5822 		if (iref) {
5823 			BUG_ON(!found_extent);
5824 		} else {
5825 			btrfs_set_extent_refs(leaf, ei, refs);
5826 			btrfs_mark_buffer_dirty(leaf);
5827 		}
5828 		if (found_extent) {
5829 			ret = remove_extent_backref(trans, extent_root, path,
5830 						    iref, refs_to_drop,
5831 						    is_data);
5832 			if (ret) {
5833 				btrfs_abort_transaction(trans, extent_root, ret);
5834 				goto out;
5835 			}
5836 		}
5837 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5838 				 root_objectid);
5839 	} else {
5840 		if (found_extent) {
5841 			BUG_ON(is_data && refs_to_drop !=
5842 			       extent_data_ref_count(root, path, iref));
5843 			if (iref) {
5844 				BUG_ON(path->slots[0] != extent_slot);
5845 			} else {
5846 				BUG_ON(path->slots[0] != extent_slot + 1);
5847 				path->slots[0] = extent_slot;
5848 				num_to_del = 2;
5849 			}
5850 		}
5851 
5852 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5853 				      num_to_del);
5854 		if (ret) {
5855 			btrfs_abort_transaction(trans, extent_root, ret);
5856 			goto out;
5857 		}
5858 		btrfs_release_path(path);
5859 
5860 		if (is_data) {
5861 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5862 			if (ret) {
5863 				btrfs_abort_transaction(trans, extent_root, ret);
5864 				goto out;
5865 			}
5866 		}
5867 
5868 		ret = update_block_group(root, bytenr, num_bytes, 0);
5869 		if (ret) {
5870 			btrfs_abort_transaction(trans, extent_root, ret);
5871 			goto out;
5872 		}
5873 	}
5874 out:
5875 	btrfs_free_path(path);
5876 	return ret;
5877 }
5878 
5879 /*
5880  * when we free an block, it is possible (and likely) that we free the last
5881  * delayed ref for that extent as well.  This searches the delayed ref tree for
5882  * a given extent, and if there are no other delayed refs to be processed, it
5883  * removes it from the tree.
5884  */
5885 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5886 				      struct btrfs_root *root, u64 bytenr)
5887 {
5888 	struct btrfs_delayed_ref_head *head;
5889 	struct btrfs_delayed_ref_root *delayed_refs;
5890 	int ret = 0;
5891 
5892 	delayed_refs = &trans->transaction->delayed_refs;
5893 	spin_lock(&delayed_refs->lock);
5894 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5895 	if (!head)
5896 		goto out_delayed_unlock;
5897 
5898 	spin_lock(&head->lock);
5899 	if (rb_first(&head->ref_root))
5900 		goto out;
5901 
5902 	if (head->extent_op) {
5903 		if (!head->must_insert_reserved)
5904 			goto out;
5905 		btrfs_free_delayed_extent_op(head->extent_op);
5906 		head->extent_op = NULL;
5907 	}
5908 
5909 	/*
5910 	 * waiting for the lock here would deadlock.  If someone else has it
5911 	 * locked they are already in the process of dropping it anyway
5912 	 */
5913 	if (!mutex_trylock(&head->mutex))
5914 		goto out;
5915 
5916 	/*
5917 	 * at this point we have a head with no other entries.  Go
5918 	 * ahead and process it.
5919 	 */
5920 	head->node.in_tree = 0;
5921 	rb_erase(&head->href_node, &delayed_refs->href_root);
5922 
5923 	atomic_dec(&delayed_refs->num_entries);
5924 
5925 	/*
5926 	 * we don't take a ref on the node because we're removing it from the
5927 	 * tree, so we just steal the ref the tree was holding.
5928 	 */
5929 	delayed_refs->num_heads--;
5930 	if (head->processing == 0)
5931 		delayed_refs->num_heads_ready--;
5932 	head->processing = 0;
5933 	spin_unlock(&head->lock);
5934 	spin_unlock(&delayed_refs->lock);
5935 
5936 	BUG_ON(head->extent_op);
5937 	if (head->must_insert_reserved)
5938 		ret = 1;
5939 
5940 	mutex_unlock(&head->mutex);
5941 	btrfs_put_delayed_ref(&head->node);
5942 	return ret;
5943 out:
5944 	spin_unlock(&head->lock);
5945 
5946 out_delayed_unlock:
5947 	spin_unlock(&delayed_refs->lock);
5948 	return 0;
5949 }
5950 
5951 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5952 			   struct btrfs_root *root,
5953 			   struct extent_buffer *buf,
5954 			   u64 parent, int last_ref)
5955 {
5956 	struct btrfs_block_group_cache *cache = NULL;
5957 	int pin = 1;
5958 	int ret;
5959 
5960 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5961 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5962 					buf->start, buf->len,
5963 					parent, root->root_key.objectid,
5964 					btrfs_header_level(buf),
5965 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5966 		BUG_ON(ret); /* -ENOMEM */
5967 	}
5968 
5969 	if (!last_ref)
5970 		return;
5971 
5972 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5973 
5974 	if (btrfs_header_generation(buf) == trans->transid) {
5975 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5976 			ret = check_ref_cleanup(trans, root, buf->start);
5977 			if (!ret)
5978 				goto out;
5979 		}
5980 
5981 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5982 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5983 			goto out;
5984 		}
5985 
5986 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5987 
5988 		btrfs_add_free_space(cache, buf->start, buf->len);
5989 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5990 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5991 		pin = 0;
5992 	}
5993 out:
5994 	if (pin)
5995 		add_pinned_bytes(root->fs_info, buf->len,
5996 				 btrfs_header_level(buf),
5997 				 root->root_key.objectid);
5998 
5999 	/*
6000 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6001 	 * anymore.
6002 	 */
6003 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6004 	btrfs_put_block_group(cache);
6005 }
6006 
6007 /* Can return -ENOMEM */
6008 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6009 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6010 		      u64 owner, u64 offset, int for_cow)
6011 {
6012 	int ret;
6013 	struct btrfs_fs_info *fs_info = root->fs_info;
6014 
6015 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6016 
6017 	/*
6018 	 * tree log blocks never actually go into the extent allocation
6019 	 * tree, just update pinning info and exit early.
6020 	 */
6021 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6022 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6023 		/* unlocks the pinned mutex */
6024 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6025 		ret = 0;
6026 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6027 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6028 					num_bytes,
6029 					parent, root_objectid, (int)owner,
6030 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6031 	} else {
6032 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6033 						num_bytes,
6034 						parent, root_objectid, owner,
6035 						offset, BTRFS_DROP_DELAYED_REF,
6036 						NULL, for_cow);
6037 	}
6038 	return ret;
6039 }
6040 
6041 static u64 stripe_align(struct btrfs_root *root,
6042 			struct btrfs_block_group_cache *cache,
6043 			u64 val, u64 num_bytes)
6044 {
6045 	u64 ret = ALIGN(val, root->stripesize);
6046 	return ret;
6047 }
6048 
6049 /*
6050  * when we wait for progress in the block group caching, its because
6051  * our allocation attempt failed at least once.  So, we must sleep
6052  * and let some progress happen before we try again.
6053  *
6054  * This function will sleep at least once waiting for new free space to
6055  * show up, and then it will check the block group free space numbers
6056  * for our min num_bytes.  Another option is to have it go ahead
6057  * and look in the rbtree for a free extent of a given size, but this
6058  * is a good start.
6059  *
6060  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6061  * any of the information in this block group.
6062  */
6063 static noinline void
6064 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6065 				u64 num_bytes)
6066 {
6067 	struct btrfs_caching_control *caching_ctl;
6068 
6069 	caching_ctl = get_caching_control(cache);
6070 	if (!caching_ctl)
6071 		return;
6072 
6073 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6074 		   (cache->free_space_ctl->free_space >= num_bytes));
6075 
6076 	put_caching_control(caching_ctl);
6077 }
6078 
6079 static noinline int
6080 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6081 {
6082 	struct btrfs_caching_control *caching_ctl;
6083 	int ret = 0;
6084 
6085 	caching_ctl = get_caching_control(cache);
6086 	if (!caching_ctl)
6087 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6088 
6089 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6090 	if (cache->cached == BTRFS_CACHE_ERROR)
6091 		ret = -EIO;
6092 	put_caching_control(caching_ctl);
6093 	return ret;
6094 }
6095 
6096 int __get_raid_index(u64 flags)
6097 {
6098 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6099 		return BTRFS_RAID_RAID10;
6100 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6101 		return BTRFS_RAID_RAID1;
6102 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6103 		return BTRFS_RAID_DUP;
6104 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6105 		return BTRFS_RAID_RAID0;
6106 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6107 		return BTRFS_RAID_RAID5;
6108 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6109 		return BTRFS_RAID_RAID6;
6110 
6111 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6112 }
6113 
6114 int get_block_group_index(struct btrfs_block_group_cache *cache)
6115 {
6116 	return __get_raid_index(cache->flags);
6117 }
6118 
6119 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6120 	[BTRFS_RAID_RAID10]	= "raid10",
6121 	[BTRFS_RAID_RAID1]	= "raid1",
6122 	[BTRFS_RAID_DUP]	= "dup",
6123 	[BTRFS_RAID_RAID0]	= "raid0",
6124 	[BTRFS_RAID_SINGLE]	= "single",
6125 	[BTRFS_RAID_RAID5]	= "raid5",
6126 	[BTRFS_RAID_RAID6]	= "raid6",
6127 };
6128 
6129 static const char *get_raid_name(enum btrfs_raid_types type)
6130 {
6131 	if (type >= BTRFS_NR_RAID_TYPES)
6132 		return NULL;
6133 
6134 	return btrfs_raid_type_names[type];
6135 }
6136 
6137 enum btrfs_loop_type {
6138 	LOOP_CACHING_NOWAIT = 0,
6139 	LOOP_CACHING_WAIT = 1,
6140 	LOOP_ALLOC_CHUNK = 2,
6141 	LOOP_NO_EMPTY_SIZE = 3,
6142 };
6143 
6144 /*
6145  * walks the btree of allocated extents and find a hole of a given size.
6146  * The key ins is changed to record the hole:
6147  * ins->objectid == start position
6148  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6149  * ins->offset == the size of the hole.
6150  * Any available blocks before search_start are skipped.
6151  *
6152  * If there is no suitable free space, we will record the max size of
6153  * the free space extent currently.
6154  */
6155 static noinline int find_free_extent(struct btrfs_root *orig_root,
6156 				     u64 num_bytes, u64 empty_size,
6157 				     u64 hint_byte, struct btrfs_key *ins,
6158 				     u64 flags)
6159 {
6160 	int ret = 0;
6161 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6162 	struct btrfs_free_cluster *last_ptr = NULL;
6163 	struct btrfs_block_group_cache *block_group = NULL;
6164 	u64 search_start = 0;
6165 	u64 max_extent_size = 0;
6166 	int empty_cluster = 2 * 1024 * 1024;
6167 	struct btrfs_space_info *space_info;
6168 	int loop = 0;
6169 	int index = __get_raid_index(flags);
6170 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6171 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6172 	bool failed_cluster_refill = false;
6173 	bool failed_alloc = false;
6174 	bool use_cluster = true;
6175 	bool have_caching_bg = false;
6176 
6177 	WARN_ON(num_bytes < root->sectorsize);
6178 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6179 	ins->objectid = 0;
6180 	ins->offset = 0;
6181 
6182 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6183 
6184 	space_info = __find_space_info(root->fs_info, flags);
6185 	if (!space_info) {
6186 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6187 		return -ENOSPC;
6188 	}
6189 
6190 	/*
6191 	 * If the space info is for both data and metadata it means we have a
6192 	 * small filesystem and we can't use the clustering stuff.
6193 	 */
6194 	if (btrfs_mixed_space_info(space_info))
6195 		use_cluster = false;
6196 
6197 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6198 		last_ptr = &root->fs_info->meta_alloc_cluster;
6199 		if (!btrfs_test_opt(root, SSD))
6200 			empty_cluster = 64 * 1024;
6201 	}
6202 
6203 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6204 	    btrfs_test_opt(root, SSD)) {
6205 		last_ptr = &root->fs_info->data_alloc_cluster;
6206 	}
6207 
6208 	if (last_ptr) {
6209 		spin_lock(&last_ptr->lock);
6210 		if (last_ptr->block_group)
6211 			hint_byte = last_ptr->window_start;
6212 		spin_unlock(&last_ptr->lock);
6213 	}
6214 
6215 	search_start = max(search_start, first_logical_byte(root, 0));
6216 	search_start = max(search_start, hint_byte);
6217 
6218 	if (!last_ptr)
6219 		empty_cluster = 0;
6220 
6221 	if (search_start == hint_byte) {
6222 		block_group = btrfs_lookup_block_group(root->fs_info,
6223 						       search_start);
6224 		/*
6225 		 * we don't want to use the block group if it doesn't match our
6226 		 * allocation bits, or if its not cached.
6227 		 *
6228 		 * However if we are re-searching with an ideal block group
6229 		 * picked out then we don't care that the block group is cached.
6230 		 */
6231 		if (block_group && block_group_bits(block_group, flags) &&
6232 		    block_group->cached != BTRFS_CACHE_NO) {
6233 			down_read(&space_info->groups_sem);
6234 			if (list_empty(&block_group->list) ||
6235 			    block_group->ro) {
6236 				/*
6237 				 * someone is removing this block group,
6238 				 * we can't jump into the have_block_group
6239 				 * target because our list pointers are not
6240 				 * valid
6241 				 */
6242 				btrfs_put_block_group(block_group);
6243 				up_read(&space_info->groups_sem);
6244 			} else {
6245 				index = get_block_group_index(block_group);
6246 				goto have_block_group;
6247 			}
6248 		} else if (block_group) {
6249 			btrfs_put_block_group(block_group);
6250 		}
6251 	}
6252 search:
6253 	have_caching_bg = false;
6254 	down_read(&space_info->groups_sem);
6255 	list_for_each_entry(block_group, &space_info->block_groups[index],
6256 			    list) {
6257 		u64 offset;
6258 		int cached;
6259 
6260 		btrfs_get_block_group(block_group);
6261 		search_start = block_group->key.objectid;
6262 
6263 		/*
6264 		 * this can happen if we end up cycling through all the
6265 		 * raid types, but we want to make sure we only allocate
6266 		 * for the proper type.
6267 		 */
6268 		if (!block_group_bits(block_group, flags)) {
6269 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6270 				BTRFS_BLOCK_GROUP_RAID1 |
6271 				BTRFS_BLOCK_GROUP_RAID5 |
6272 				BTRFS_BLOCK_GROUP_RAID6 |
6273 				BTRFS_BLOCK_GROUP_RAID10;
6274 
6275 			/*
6276 			 * if they asked for extra copies and this block group
6277 			 * doesn't provide them, bail.  This does allow us to
6278 			 * fill raid0 from raid1.
6279 			 */
6280 			if ((flags & extra) && !(block_group->flags & extra))
6281 				goto loop;
6282 		}
6283 
6284 have_block_group:
6285 		cached = block_group_cache_done(block_group);
6286 		if (unlikely(!cached)) {
6287 			ret = cache_block_group(block_group, 0);
6288 			BUG_ON(ret < 0);
6289 			ret = 0;
6290 		}
6291 
6292 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6293 			goto loop;
6294 		if (unlikely(block_group->ro))
6295 			goto loop;
6296 
6297 		/*
6298 		 * Ok we want to try and use the cluster allocator, so
6299 		 * lets look there
6300 		 */
6301 		if (last_ptr) {
6302 			struct btrfs_block_group_cache *used_block_group;
6303 			unsigned long aligned_cluster;
6304 			/*
6305 			 * the refill lock keeps out other
6306 			 * people trying to start a new cluster
6307 			 */
6308 			spin_lock(&last_ptr->refill_lock);
6309 			used_block_group = last_ptr->block_group;
6310 			if (used_block_group != block_group &&
6311 			    (!used_block_group ||
6312 			     used_block_group->ro ||
6313 			     !block_group_bits(used_block_group, flags)))
6314 				goto refill_cluster;
6315 
6316 			if (used_block_group != block_group)
6317 				btrfs_get_block_group(used_block_group);
6318 
6319 			offset = btrfs_alloc_from_cluster(used_block_group,
6320 						last_ptr,
6321 						num_bytes,
6322 						used_block_group->key.objectid,
6323 						&max_extent_size);
6324 			if (offset) {
6325 				/* we have a block, we're done */
6326 				spin_unlock(&last_ptr->refill_lock);
6327 				trace_btrfs_reserve_extent_cluster(root,
6328 						used_block_group,
6329 						search_start, num_bytes);
6330 				if (used_block_group != block_group) {
6331 					btrfs_put_block_group(block_group);
6332 					block_group = used_block_group;
6333 				}
6334 				goto checks;
6335 			}
6336 
6337 			WARN_ON(last_ptr->block_group != used_block_group);
6338 			if (used_block_group != block_group)
6339 				btrfs_put_block_group(used_block_group);
6340 refill_cluster:
6341 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6342 			 * set up a new clusters, so lets just skip it
6343 			 * and let the allocator find whatever block
6344 			 * it can find.  If we reach this point, we
6345 			 * will have tried the cluster allocator
6346 			 * plenty of times and not have found
6347 			 * anything, so we are likely way too
6348 			 * fragmented for the clustering stuff to find
6349 			 * anything.
6350 			 *
6351 			 * However, if the cluster is taken from the
6352 			 * current block group, release the cluster
6353 			 * first, so that we stand a better chance of
6354 			 * succeeding in the unclustered
6355 			 * allocation.  */
6356 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6357 			    last_ptr->block_group != block_group) {
6358 				spin_unlock(&last_ptr->refill_lock);
6359 				goto unclustered_alloc;
6360 			}
6361 
6362 			/*
6363 			 * this cluster didn't work out, free it and
6364 			 * start over
6365 			 */
6366 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6367 
6368 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6369 				spin_unlock(&last_ptr->refill_lock);
6370 				goto unclustered_alloc;
6371 			}
6372 
6373 			aligned_cluster = max_t(unsigned long,
6374 						empty_cluster + empty_size,
6375 					      block_group->full_stripe_len);
6376 
6377 			/* allocate a cluster in this block group */
6378 			ret = btrfs_find_space_cluster(root, block_group,
6379 						       last_ptr, search_start,
6380 						       num_bytes,
6381 						       aligned_cluster);
6382 			if (ret == 0) {
6383 				/*
6384 				 * now pull our allocation out of this
6385 				 * cluster
6386 				 */
6387 				offset = btrfs_alloc_from_cluster(block_group,
6388 							last_ptr,
6389 							num_bytes,
6390 							search_start,
6391 							&max_extent_size);
6392 				if (offset) {
6393 					/* we found one, proceed */
6394 					spin_unlock(&last_ptr->refill_lock);
6395 					trace_btrfs_reserve_extent_cluster(root,
6396 						block_group, search_start,
6397 						num_bytes);
6398 					goto checks;
6399 				}
6400 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6401 				   && !failed_cluster_refill) {
6402 				spin_unlock(&last_ptr->refill_lock);
6403 
6404 				failed_cluster_refill = true;
6405 				wait_block_group_cache_progress(block_group,
6406 				       num_bytes + empty_cluster + empty_size);
6407 				goto have_block_group;
6408 			}
6409 
6410 			/*
6411 			 * at this point we either didn't find a cluster
6412 			 * or we weren't able to allocate a block from our
6413 			 * cluster.  Free the cluster we've been trying
6414 			 * to use, and go to the next block group
6415 			 */
6416 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6417 			spin_unlock(&last_ptr->refill_lock);
6418 			goto loop;
6419 		}
6420 
6421 unclustered_alloc:
6422 		spin_lock(&block_group->free_space_ctl->tree_lock);
6423 		if (cached &&
6424 		    block_group->free_space_ctl->free_space <
6425 		    num_bytes + empty_cluster + empty_size) {
6426 			if (block_group->free_space_ctl->free_space >
6427 			    max_extent_size)
6428 				max_extent_size =
6429 					block_group->free_space_ctl->free_space;
6430 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6431 			goto loop;
6432 		}
6433 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6434 
6435 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6436 						    num_bytes, empty_size,
6437 						    &max_extent_size);
6438 		/*
6439 		 * If we didn't find a chunk, and we haven't failed on this
6440 		 * block group before, and this block group is in the middle of
6441 		 * caching and we are ok with waiting, then go ahead and wait
6442 		 * for progress to be made, and set failed_alloc to true.
6443 		 *
6444 		 * If failed_alloc is true then we've already waited on this
6445 		 * block group once and should move on to the next block group.
6446 		 */
6447 		if (!offset && !failed_alloc && !cached &&
6448 		    loop > LOOP_CACHING_NOWAIT) {
6449 			wait_block_group_cache_progress(block_group,
6450 						num_bytes + empty_size);
6451 			failed_alloc = true;
6452 			goto have_block_group;
6453 		} else if (!offset) {
6454 			if (!cached)
6455 				have_caching_bg = true;
6456 			goto loop;
6457 		}
6458 checks:
6459 		search_start = stripe_align(root, block_group,
6460 					    offset, num_bytes);
6461 
6462 		/* move on to the next group */
6463 		if (search_start + num_bytes >
6464 		    block_group->key.objectid + block_group->key.offset) {
6465 			btrfs_add_free_space(block_group, offset, num_bytes);
6466 			goto loop;
6467 		}
6468 
6469 		if (offset < search_start)
6470 			btrfs_add_free_space(block_group, offset,
6471 					     search_start - offset);
6472 		BUG_ON(offset > search_start);
6473 
6474 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6475 						  alloc_type);
6476 		if (ret == -EAGAIN) {
6477 			btrfs_add_free_space(block_group, offset, num_bytes);
6478 			goto loop;
6479 		}
6480 
6481 		/* we are all good, lets return */
6482 		ins->objectid = search_start;
6483 		ins->offset = num_bytes;
6484 
6485 		trace_btrfs_reserve_extent(orig_root, block_group,
6486 					   search_start, num_bytes);
6487 		btrfs_put_block_group(block_group);
6488 		break;
6489 loop:
6490 		failed_cluster_refill = false;
6491 		failed_alloc = false;
6492 		BUG_ON(index != get_block_group_index(block_group));
6493 		btrfs_put_block_group(block_group);
6494 	}
6495 	up_read(&space_info->groups_sem);
6496 
6497 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6498 		goto search;
6499 
6500 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6501 		goto search;
6502 
6503 	/*
6504 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6505 	 *			caching kthreads as we move along
6506 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6507 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6508 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6509 	 *			again
6510 	 */
6511 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6512 		index = 0;
6513 		loop++;
6514 		if (loop == LOOP_ALLOC_CHUNK) {
6515 			struct btrfs_trans_handle *trans;
6516 
6517 			trans = btrfs_join_transaction(root);
6518 			if (IS_ERR(trans)) {
6519 				ret = PTR_ERR(trans);
6520 				goto out;
6521 			}
6522 
6523 			ret = do_chunk_alloc(trans, root, flags,
6524 					     CHUNK_ALLOC_FORCE);
6525 			/*
6526 			 * Do not bail out on ENOSPC since we
6527 			 * can do more things.
6528 			 */
6529 			if (ret < 0 && ret != -ENOSPC)
6530 				btrfs_abort_transaction(trans,
6531 							root, ret);
6532 			else
6533 				ret = 0;
6534 			btrfs_end_transaction(trans, root);
6535 			if (ret)
6536 				goto out;
6537 		}
6538 
6539 		if (loop == LOOP_NO_EMPTY_SIZE) {
6540 			empty_size = 0;
6541 			empty_cluster = 0;
6542 		}
6543 
6544 		goto search;
6545 	} else if (!ins->objectid) {
6546 		ret = -ENOSPC;
6547 	} else if (ins->objectid) {
6548 		ret = 0;
6549 	}
6550 out:
6551 	if (ret == -ENOSPC)
6552 		ins->offset = max_extent_size;
6553 	return ret;
6554 }
6555 
6556 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6557 			    int dump_block_groups)
6558 {
6559 	struct btrfs_block_group_cache *cache;
6560 	int index = 0;
6561 
6562 	spin_lock(&info->lock);
6563 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6564 	       info->flags,
6565 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6566 	       info->bytes_reserved - info->bytes_readonly,
6567 	       (info->full) ? "" : "not ");
6568 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6569 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6570 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6571 	       info->bytes_reserved, info->bytes_may_use,
6572 	       info->bytes_readonly);
6573 	spin_unlock(&info->lock);
6574 
6575 	if (!dump_block_groups)
6576 		return;
6577 
6578 	down_read(&info->groups_sem);
6579 again:
6580 	list_for_each_entry(cache, &info->block_groups[index], list) {
6581 		spin_lock(&cache->lock);
6582 		printk(KERN_INFO "BTRFS: "
6583 			   "block group %llu has %llu bytes, "
6584 			   "%llu used %llu pinned %llu reserved %s\n",
6585 		       cache->key.objectid, cache->key.offset,
6586 		       btrfs_block_group_used(&cache->item), cache->pinned,
6587 		       cache->reserved, cache->ro ? "[readonly]" : "");
6588 		btrfs_dump_free_space(cache, bytes);
6589 		spin_unlock(&cache->lock);
6590 	}
6591 	if (++index < BTRFS_NR_RAID_TYPES)
6592 		goto again;
6593 	up_read(&info->groups_sem);
6594 }
6595 
6596 int btrfs_reserve_extent(struct btrfs_root *root,
6597 			 u64 num_bytes, u64 min_alloc_size,
6598 			 u64 empty_size, u64 hint_byte,
6599 			 struct btrfs_key *ins, int is_data)
6600 {
6601 	bool final_tried = false;
6602 	u64 flags;
6603 	int ret;
6604 
6605 	flags = btrfs_get_alloc_profile(root, is_data);
6606 again:
6607 	WARN_ON(num_bytes < root->sectorsize);
6608 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6609 			       flags);
6610 
6611 	if (ret == -ENOSPC) {
6612 		if (!final_tried && ins->offset) {
6613 			num_bytes = min(num_bytes >> 1, ins->offset);
6614 			num_bytes = round_down(num_bytes, root->sectorsize);
6615 			num_bytes = max(num_bytes, min_alloc_size);
6616 			if (num_bytes == min_alloc_size)
6617 				final_tried = true;
6618 			goto again;
6619 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6620 			struct btrfs_space_info *sinfo;
6621 
6622 			sinfo = __find_space_info(root->fs_info, flags);
6623 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6624 				flags, num_bytes);
6625 			if (sinfo)
6626 				dump_space_info(sinfo, num_bytes, 1);
6627 		}
6628 	}
6629 
6630 	return ret;
6631 }
6632 
6633 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6634 					u64 start, u64 len, int pin)
6635 {
6636 	struct btrfs_block_group_cache *cache;
6637 	int ret = 0;
6638 
6639 	cache = btrfs_lookup_block_group(root->fs_info, start);
6640 	if (!cache) {
6641 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6642 			start);
6643 		return -ENOSPC;
6644 	}
6645 
6646 	if (btrfs_test_opt(root, DISCARD))
6647 		ret = btrfs_discard_extent(root, start, len, NULL);
6648 
6649 	if (pin)
6650 		pin_down_extent(root, cache, start, len, 1);
6651 	else {
6652 		btrfs_add_free_space(cache, start, len);
6653 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6654 	}
6655 	btrfs_put_block_group(cache);
6656 
6657 	trace_btrfs_reserved_extent_free(root, start, len);
6658 
6659 	return ret;
6660 }
6661 
6662 int btrfs_free_reserved_extent(struct btrfs_root *root,
6663 					u64 start, u64 len)
6664 {
6665 	return __btrfs_free_reserved_extent(root, start, len, 0);
6666 }
6667 
6668 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6669 				       u64 start, u64 len)
6670 {
6671 	return __btrfs_free_reserved_extent(root, start, len, 1);
6672 }
6673 
6674 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6675 				      struct btrfs_root *root,
6676 				      u64 parent, u64 root_objectid,
6677 				      u64 flags, u64 owner, u64 offset,
6678 				      struct btrfs_key *ins, int ref_mod)
6679 {
6680 	int ret;
6681 	struct btrfs_fs_info *fs_info = root->fs_info;
6682 	struct btrfs_extent_item *extent_item;
6683 	struct btrfs_extent_inline_ref *iref;
6684 	struct btrfs_path *path;
6685 	struct extent_buffer *leaf;
6686 	int type;
6687 	u32 size;
6688 
6689 	if (parent > 0)
6690 		type = BTRFS_SHARED_DATA_REF_KEY;
6691 	else
6692 		type = BTRFS_EXTENT_DATA_REF_KEY;
6693 
6694 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6695 
6696 	path = btrfs_alloc_path();
6697 	if (!path)
6698 		return -ENOMEM;
6699 
6700 	path->leave_spinning = 1;
6701 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6702 				      ins, size);
6703 	if (ret) {
6704 		btrfs_free_path(path);
6705 		return ret;
6706 	}
6707 
6708 	leaf = path->nodes[0];
6709 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6710 				     struct btrfs_extent_item);
6711 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6712 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6713 	btrfs_set_extent_flags(leaf, extent_item,
6714 			       flags | BTRFS_EXTENT_FLAG_DATA);
6715 
6716 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6717 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6718 	if (parent > 0) {
6719 		struct btrfs_shared_data_ref *ref;
6720 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6722 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6723 	} else {
6724 		struct btrfs_extent_data_ref *ref;
6725 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6726 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6727 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6728 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6729 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6730 	}
6731 
6732 	btrfs_mark_buffer_dirty(path->nodes[0]);
6733 	btrfs_free_path(path);
6734 
6735 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6736 	if (ret) { /* -ENOENT, logic error */
6737 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6738 			ins->objectid, ins->offset);
6739 		BUG();
6740 	}
6741 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6742 	return ret;
6743 }
6744 
6745 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6746 				     struct btrfs_root *root,
6747 				     u64 parent, u64 root_objectid,
6748 				     u64 flags, struct btrfs_disk_key *key,
6749 				     int level, struct btrfs_key *ins)
6750 {
6751 	int ret;
6752 	struct btrfs_fs_info *fs_info = root->fs_info;
6753 	struct btrfs_extent_item *extent_item;
6754 	struct btrfs_tree_block_info *block_info;
6755 	struct btrfs_extent_inline_ref *iref;
6756 	struct btrfs_path *path;
6757 	struct extent_buffer *leaf;
6758 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6759 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6760 						 SKINNY_METADATA);
6761 
6762 	if (!skinny_metadata)
6763 		size += sizeof(*block_info);
6764 
6765 	path = btrfs_alloc_path();
6766 	if (!path) {
6767 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6768 						   root->leafsize);
6769 		return -ENOMEM;
6770 	}
6771 
6772 	path->leave_spinning = 1;
6773 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6774 				      ins, size);
6775 	if (ret) {
6776 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6777 						   root->leafsize);
6778 		btrfs_free_path(path);
6779 		return ret;
6780 	}
6781 
6782 	leaf = path->nodes[0];
6783 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6784 				     struct btrfs_extent_item);
6785 	btrfs_set_extent_refs(leaf, extent_item, 1);
6786 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6787 	btrfs_set_extent_flags(leaf, extent_item,
6788 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6789 
6790 	if (skinny_metadata) {
6791 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6792 	} else {
6793 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6794 		btrfs_set_tree_block_key(leaf, block_info, key);
6795 		btrfs_set_tree_block_level(leaf, block_info, level);
6796 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6797 	}
6798 
6799 	if (parent > 0) {
6800 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6801 		btrfs_set_extent_inline_ref_type(leaf, iref,
6802 						 BTRFS_SHARED_BLOCK_REF_KEY);
6803 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6804 	} else {
6805 		btrfs_set_extent_inline_ref_type(leaf, iref,
6806 						 BTRFS_TREE_BLOCK_REF_KEY);
6807 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6808 	}
6809 
6810 	btrfs_mark_buffer_dirty(leaf);
6811 	btrfs_free_path(path);
6812 
6813 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6814 	if (ret) { /* -ENOENT, logic error */
6815 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6816 			ins->objectid, ins->offset);
6817 		BUG();
6818 	}
6819 
6820 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6821 	return ret;
6822 }
6823 
6824 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6825 				     struct btrfs_root *root,
6826 				     u64 root_objectid, u64 owner,
6827 				     u64 offset, struct btrfs_key *ins)
6828 {
6829 	int ret;
6830 
6831 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6832 
6833 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6834 					 ins->offset, 0,
6835 					 root_objectid, owner, offset,
6836 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6837 	return ret;
6838 }
6839 
6840 /*
6841  * this is used by the tree logging recovery code.  It records that
6842  * an extent has been allocated and makes sure to clear the free
6843  * space cache bits as well
6844  */
6845 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6846 				   struct btrfs_root *root,
6847 				   u64 root_objectid, u64 owner, u64 offset,
6848 				   struct btrfs_key *ins)
6849 {
6850 	int ret;
6851 	struct btrfs_block_group_cache *block_group;
6852 
6853 	/*
6854 	 * Mixed block groups will exclude before processing the log so we only
6855 	 * need to do the exlude dance if this fs isn't mixed.
6856 	 */
6857 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6858 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6859 		if (ret)
6860 			return ret;
6861 	}
6862 
6863 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6864 	if (!block_group)
6865 		return -EINVAL;
6866 
6867 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6868 					  RESERVE_ALLOC_NO_ACCOUNT);
6869 	BUG_ON(ret); /* logic error */
6870 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6871 					 0, owner, offset, ins, 1);
6872 	btrfs_put_block_group(block_group);
6873 	return ret;
6874 }
6875 
6876 static struct extent_buffer *
6877 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6878 		      u64 bytenr, u32 blocksize, int level)
6879 {
6880 	struct extent_buffer *buf;
6881 
6882 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6883 	if (!buf)
6884 		return ERR_PTR(-ENOMEM);
6885 	btrfs_set_header_generation(buf, trans->transid);
6886 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6887 	btrfs_tree_lock(buf);
6888 	clean_tree_block(trans, root, buf);
6889 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6890 
6891 	btrfs_set_lock_blocking(buf);
6892 	btrfs_set_buffer_uptodate(buf);
6893 
6894 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6895 		/*
6896 		 * we allow two log transactions at a time, use different
6897 		 * EXENT bit to differentiate dirty pages.
6898 		 */
6899 		if (root->log_transid % 2 == 0)
6900 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6901 					buf->start + buf->len - 1, GFP_NOFS);
6902 		else
6903 			set_extent_new(&root->dirty_log_pages, buf->start,
6904 					buf->start + buf->len - 1, GFP_NOFS);
6905 	} else {
6906 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6907 			 buf->start + buf->len - 1, GFP_NOFS);
6908 	}
6909 	trans->blocks_used++;
6910 	/* this returns a buffer locked for blocking */
6911 	return buf;
6912 }
6913 
6914 static struct btrfs_block_rsv *
6915 use_block_rsv(struct btrfs_trans_handle *trans,
6916 	      struct btrfs_root *root, u32 blocksize)
6917 {
6918 	struct btrfs_block_rsv *block_rsv;
6919 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6920 	int ret;
6921 	bool global_updated = false;
6922 
6923 	block_rsv = get_block_rsv(trans, root);
6924 
6925 	if (unlikely(block_rsv->size == 0))
6926 		goto try_reserve;
6927 again:
6928 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6929 	if (!ret)
6930 		return block_rsv;
6931 
6932 	if (block_rsv->failfast)
6933 		return ERR_PTR(ret);
6934 
6935 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6936 		global_updated = true;
6937 		update_global_block_rsv(root->fs_info);
6938 		goto again;
6939 	}
6940 
6941 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6942 		static DEFINE_RATELIMIT_STATE(_rs,
6943 				DEFAULT_RATELIMIT_INTERVAL * 10,
6944 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6945 		if (__ratelimit(&_rs))
6946 			WARN(1, KERN_DEBUG
6947 				"BTRFS: block rsv returned %d\n", ret);
6948 	}
6949 try_reserve:
6950 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6951 				     BTRFS_RESERVE_NO_FLUSH);
6952 	if (!ret)
6953 		return block_rsv;
6954 	/*
6955 	 * If we couldn't reserve metadata bytes try and use some from
6956 	 * the global reserve if its space type is the same as the global
6957 	 * reservation.
6958 	 */
6959 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6960 	    block_rsv->space_info == global_rsv->space_info) {
6961 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6962 		if (!ret)
6963 			return global_rsv;
6964 	}
6965 	return ERR_PTR(ret);
6966 }
6967 
6968 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6969 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6970 {
6971 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6972 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6973 }
6974 
6975 /*
6976  * finds a free extent and does all the dirty work required for allocation
6977  * returns the key for the extent through ins, and a tree buffer for
6978  * the first block of the extent through buf.
6979  *
6980  * returns the tree buffer or NULL.
6981  */
6982 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6983 					struct btrfs_root *root, u32 blocksize,
6984 					u64 parent, u64 root_objectid,
6985 					struct btrfs_disk_key *key, int level,
6986 					u64 hint, u64 empty_size)
6987 {
6988 	struct btrfs_key ins;
6989 	struct btrfs_block_rsv *block_rsv;
6990 	struct extent_buffer *buf;
6991 	u64 flags = 0;
6992 	int ret;
6993 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6994 						 SKINNY_METADATA);
6995 
6996 	block_rsv = use_block_rsv(trans, root, blocksize);
6997 	if (IS_ERR(block_rsv))
6998 		return ERR_CAST(block_rsv);
6999 
7000 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7001 				   empty_size, hint, &ins, 0);
7002 	if (ret) {
7003 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7004 		return ERR_PTR(ret);
7005 	}
7006 
7007 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7008 				    blocksize, level);
7009 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7010 
7011 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7012 		if (parent == 0)
7013 			parent = ins.objectid;
7014 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7015 	} else
7016 		BUG_ON(parent > 0);
7017 
7018 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7019 		struct btrfs_delayed_extent_op *extent_op;
7020 		extent_op = btrfs_alloc_delayed_extent_op();
7021 		BUG_ON(!extent_op); /* -ENOMEM */
7022 		if (key)
7023 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7024 		else
7025 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7026 		extent_op->flags_to_set = flags;
7027 		if (skinny_metadata)
7028 			extent_op->update_key = 0;
7029 		else
7030 			extent_op->update_key = 1;
7031 		extent_op->update_flags = 1;
7032 		extent_op->is_data = 0;
7033 		extent_op->level = level;
7034 
7035 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7036 					ins.objectid,
7037 					ins.offset, parent, root_objectid,
7038 					level, BTRFS_ADD_DELAYED_EXTENT,
7039 					extent_op, 0);
7040 		BUG_ON(ret); /* -ENOMEM */
7041 	}
7042 	return buf;
7043 }
7044 
7045 struct walk_control {
7046 	u64 refs[BTRFS_MAX_LEVEL];
7047 	u64 flags[BTRFS_MAX_LEVEL];
7048 	struct btrfs_key update_progress;
7049 	int stage;
7050 	int level;
7051 	int shared_level;
7052 	int update_ref;
7053 	int keep_locks;
7054 	int reada_slot;
7055 	int reada_count;
7056 	int for_reloc;
7057 };
7058 
7059 #define DROP_REFERENCE	1
7060 #define UPDATE_BACKREF	2
7061 
7062 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7063 				     struct btrfs_root *root,
7064 				     struct walk_control *wc,
7065 				     struct btrfs_path *path)
7066 {
7067 	u64 bytenr;
7068 	u64 generation;
7069 	u64 refs;
7070 	u64 flags;
7071 	u32 nritems;
7072 	u32 blocksize;
7073 	struct btrfs_key key;
7074 	struct extent_buffer *eb;
7075 	int ret;
7076 	int slot;
7077 	int nread = 0;
7078 
7079 	if (path->slots[wc->level] < wc->reada_slot) {
7080 		wc->reada_count = wc->reada_count * 2 / 3;
7081 		wc->reada_count = max(wc->reada_count, 2);
7082 	} else {
7083 		wc->reada_count = wc->reada_count * 3 / 2;
7084 		wc->reada_count = min_t(int, wc->reada_count,
7085 					BTRFS_NODEPTRS_PER_BLOCK(root));
7086 	}
7087 
7088 	eb = path->nodes[wc->level];
7089 	nritems = btrfs_header_nritems(eb);
7090 	blocksize = btrfs_level_size(root, wc->level - 1);
7091 
7092 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7093 		if (nread >= wc->reada_count)
7094 			break;
7095 
7096 		cond_resched();
7097 		bytenr = btrfs_node_blockptr(eb, slot);
7098 		generation = btrfs_node_ptr_generation(eb, slot);
7099 
7100 		if (slot == path->slots[wc->level])
7101 			goto reada;
7102 
7103 		if (wc->stage == UPDATE_BACKREF &&
7104 		    generation <= root->root_key.offset)
7105 			continue;
7106 
7107 		/* We don't lock the tree block, it's OK to be racy here */
7108 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7109 					       wc->level - 1, 1, &refs,
7110 					       &flags);
7111 		/* We don't care about errors in readahead. */
7112 		if (ret < 0)
7113 			continue;
7114 		BUG_ON(refs == 0);
7115 
7116 		if (wc->stage == DROP_REFERENCE) {
7117 			if (refs == 1)
7118 				goto reada;
7119 
7120 			if (wc->level == 1 &&
7121 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7122 				continue;
7123 			if (!wc->update_ref ||
7124 			    generation <= root->root_key.offset)
7125 				continue;
7126 			btrfs_node_key_to_cpu(eb, &key, slot);
7127 			ret = btrfs_comp_cpu_keys(&key,
7128 						  &wc->update_progress);
7129 			if (ret < 0)
7130 				continue;
7131 		} else {
7132 			if (wc->level == 1 &&
7133 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7134 				continue;
7135 		}
7136 reada:
7137 		ret = readahead_tree_block(root, bytenr, blocksize,
7138 					   generation);
7139 		if (ret)
7140 			break;
7141 		nread++;
7142 	}
7143 	wc->reada_slot = slot;
7144 }
7145 
7146 /*
7147  * helper to process tree block while walking down the tree.
7148  *
7149  * when wc->stage == UPDATE_BACKREF, this function updates
7150  * back refs for pointers in the block.
7151  *
7152  * NOTE: return value 1 means we should stop walking down.
7153  */
7154 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7155 				   struct btrfs_root *root,
7156 				   struct btrfs_path *path,
7157 				   struct walk_control *wc, int lookup_info)
7158 {
7159 	int level = wc->level;
7160 	struct extent_buffer *eb = path->nodes[level];
7161 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7162 	int ret;
7163 
7164 	if (wc->stage == UPDATE_BACKREF &&
7165 	    btrfs_header_owner(eb) != root->root_key.objectid)
7166 		return 1;
7167 
7168 	/*
7169 	 * when reference count of tree block is 1, it won't increase
7170 	 * again. once full backref flag is set, we never clear it.
7171 	 */
7172 	if (lookup_info &&
7173 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7174 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7175 		BUG_ON(!path->locks[level]);
7176 		ret = btrfs_lookup_extent_info(trans, root,
7177 					       eb->start, level, 1,
7178 					       &wc->refs[level],
7179 					       &wc->flags[level]);
7180 		BUG_ON(ret == -ENOMEM);
7181 		if (ret)
7182 			return ret;
7183 		BUG_ON(wc->refs[level] == 0);
7184 	}
7185 
7186 	if (wc->stage == DROP_REFERENCE) {
7187 		if (wc->refs[level] > 1)
7188 			return 1;
7189 
7190 		if (path->locks[level] && !wc->keep_locks) {
7191 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7192 			path->locks[level] = 0;
7193 		}
7194 		return 0;
7195 	}
7196 
7197 	/* wc->stage == UPDATE_BACKREF */
7198 	if (!(wc->flags[level] & flag)) {
7199 		BUG_ON(!path->locks[level]);
7200 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7201 		BUG_ON(ret); /* -ENOMEM */
7202 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7203 		BUG_ON(ret); /* -ENOMEM */
7204 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7205 						  eb->len, flag,
7206 						  btrfs_header_level(eb), 0);
7207 		BUG_ON(ret); /* -ENOMEM */
7208 		wc->flags[level] |= flag;
7209 	}
7210 
7211 	/*
7212 	 * the block is shared by multiple trees, so it's not good to
7213 	 * keep the tree lock
7214 	 */
7215 	if (path->locks[level] && level > 0) {
7216 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7217 		path->locks[level] = 0;
7218 	}
7219 	return 0;
7220 }
7221 
7222 /*
7223  * helper to process tree block pointer.
7224  *
7225  * when wc->stage == DROP_REFERENCE, this function checks
7226  * reference count of the block pointed to. if the block
7227  * is shared and we need update back refs for the subtree
7228  * rooted at the block, this function changes wc->stage to
7229  * UPDATE_BACKREF. if the block is shared and there is no
7230  * need to update back, this function drops the reference
7231  * to the block.
7232  *
7233  * NOTE: return value 1 means we should stop walking down.
7234  */
7235 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7236 				 struct btrfs_root *root,
7237 				 struct btrfs_path *path,
7238 				 struct walk_control *wc, int *lookup_info)
7239 {
7240 	u64 bytenr;
7241 	u64 generation;
7242 	u64 parent;
7243 	u32 blocksize;
7244 	struct btrfs_key key;
7245 	struct extent_buffer *next;
7246 	int level = wc->level;
7247 	int reada = 0;
7248 	int ret = 0;
7249 
7250 	generation = btrfs_node_ptr_generation(path->nodes[level],
7251 					       path->slots[level]);
7252 	/*
7253 	 * if the lower level block was created before the snapshot
7254 	 * was created, we know there is no need to update back refs
7255 	 * for the subtree
7256 	 */
7257 	if (wc->stage == UPDATE_BACKREF &&
7258 	    generation <= root->root_key.offset) {
7259 		*lookup_info = 1;
7260 		return 1;
7261 	}
7262 
7263 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7264 	blocksize = btrfs_level_size(root, level - 1);
7265 
7266 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7267 	if (!next) {
7268 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7269 		if (!next)
7270 			return -ENOMEM;
7271 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7272 					       level - 1);
7273 		reada = 1;
7274 	}
7275 	btrfs_tree_lock(next);
7276 	btrfs_set_lock_blocking(next);
7277 
7278 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7279 				       &wc->refs[level - 1],
7280 				       &wc->flags[level - 1]);
7281 	if (ret < 0) {
7282 		btrfs_tree_unlock(next);
7283 		return ret;
7284 	}
7285 
7286 	if (unlikely(wc->refs[level - 1] == 0)) {
7287 		btrfs_err(root->fs_info, "Missing references.");
7288 		BUG();
7289 	}
7290 	*lookup_info = 0;
7291 
7292 	if (wc->stage == DROP_REFERENCE) {
7293 		if (wc->refs[level - 1] > 1) {
7294 			if (level == 1 &&
7295 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7296 				goto skip;
7297 
7298 			if (!wc->update_ref ||
7299 			    generation <= root->root_key.offset)
7300 				goto skip;
7301 
7302 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7303 					      path->slots[level]);
7304 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7305 			if (ret < 0)
7306 				goto skip;
7307 
7308 			wc->stage = UPDATE_BACKREF;
7309 			wc->shared_level = level - 1;
7310 		}
7311 	} else {
7312 		if (level == 1 &&
7313 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7314 			goto skip;
7315 	}
7316 
7317 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7318 		btrfs_tree_unlock(next);
7319 		free_extent_buffer(next);
7320 		next = NULL;
7321 		*lookup_info = 1;
7322 	}
7323 
7324 	if (!next) {
7325 		if (reada && level == 1)
7326 			reada_walk_down(trans, root, wc, path);
7327 		next = read_tree_block(root, bytenr, blocksize, generation);
7328 		if (!next || !extent_buffer_uptodate(next)) {
7329 			free_extent_buffer(next);
7330 			return -EIO;
7331 		}
7332 		btrfs_tree_lock(next);
7333 		btrfs_set_lock_blocking(next);
7334 	}
7335 
7336 	level--;
7337 	BUG_ON(level != btrfs_header_level(next));
7338 	path->nodes[level] = next;
7339 	path->slots[level] = 0;
7340 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7341 	wc->level = level;
7342 	if (wc->level == 1)
7343 		wc->reada_slot = 0;
7344 	return 0;
7345 skip:
7346 	wc->refs[level - 1] = 0;
7347 	wc->flags[level - 1] = 0;
7348 	if (wc->stage == DROP_REFERENCE) {
7349 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7350 			parent = path->nodes[level]->start;
7351 		} else {
7352 			BUG_ON(root->root_key.objectid !=
7353 			       btrfs_header_owner(path->nodes[level]));
7354 			parent = 0;
7355 		}
7356 
7357 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7358 				root->root_key.objectid, level - 1, 0, 0);
7359 		BUG_ON(ret); /* -ENOMEM */
7360 	}
7361 	btrfs_tree_unlock(next);
7362 	free_extent_buffer(next);
7363 	*lookup_info = 1;
7364 	return 1;
7365 }
7366 
7367 /*
7368  * helper to process tree block while walking up the tree.
7369  *
7370  * when wc->stage == DROP_REFERENCE, this function drops
7371  * reference count on the block.
7372  *
7373  * when wc->stage == UPDATE_BACKREF, this function changes
7374  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7375  * to UPDATE_BACKREF previously while processing the block.
7376  *
7377  * NOTE: return value 1 means we should stop walking up.
7378  */
7379 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7380 				 struct btrfs_root *root,
7381 				 struct btrfs_path *path,
7382 				 struct walk_control *wc)
7383 {
7384 	int ret;
7385 	int level = wc->level;
7386 	struct extent_buffer *eb = path->nodes[level];
7387 	u64 parent = 0;
7388 
7389 	if (wc->stage == UPDATE_BACKREF) {
7390 		BUG_ON(wc->shared_level < level);
7391 		if (level < wc->shared_level)
7392 			goto out;
7393 
7394 		ret = find_next_key(path, level + 1, &wc->update_progress);
7395 		if (ret > 0)
7396 			wc->update_ref = 0;
7397 
7398 		wc->stage = DROP_REFERENCE;
7399 		wc->shared_level = -1;
7400 		path->slots[level] = 0;
7401 
7402 		/*
7403 		 * check reference count again if the block isn't locked.
7404 		 * we should start walking down the tree again if reference
7405 		 * count is one.
7406 		 */
7407 		if (!path->locks[level]) {
7408 			BUG_ON(level == 0);
7409 			btrfs_tree_lock(eb);
7410 			btrfs_set_lock_blocking(eb);
7411 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7412 
7413 			ret = btrfs_lookup_extent_info(trans, root,
7414 						       eb->start, level, 1,
7415 						       &wc->refs[level],
7416 						       &wc->flags[level]);
7417 			if (ret < 0) {
7418 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7419 				path->locks[level] = 0;
7420 				return ret;
7421 			}
7422 			BUG_ON(wc->refs[level] == 0);
7423 			if (wc->refs[level] == 1) {
7424 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7425 				path->locks[level] = 0;
7426 				return 1;
7427 			}
7428 		}
7429 	}
7430 
7431 	/* wc->stage == DROP_REFERENCE */
7432 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7433 
7434 	if (wc->refs[level] == 1) {
7435 		if (level == 0) {
7436 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7437 				ret = btrfs_dec_ref(trans, root, eb, 1,
7438 						    wc->for_reloc);
7439 			else
7440 				ret = btrfs_dec_ref(trans, root, eb, 0,
7441 						    wc->for_reloc);
7442 			BUG_ON(ret); /* -ENOMEM */
7443 		}
7444 		/* make block locked assertion in clean_tree_block happy */
7445 		if (!path->locks[level] &&
7446 		    btrfs_header_generation(eb) == trans->transid) {
7447 			btrfs_tree_lock(eb);
7448 			btrfs_set_lock_blocking(eb);
7449 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7450 		}
7451 		clean_tree_block(trans, root, eb);
7452 	}
7453 
7454 	if (eb == root->node) {
7455 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7456 			parent = eb->start;
7457 		else
7458 			BUG_ON(root->root_key.objectid !=
7459 			       btrfs_header_owner(eb));
7460 	} else {
7461 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7462 			parent = path->nodes[level + 1]->start;
7463 		else
7464 			BUG_ON(root->root_key.objectid !=
7465 			       btrfs_header_owner(path->nodes[level + 1]));
7466 	}
7467 
7468 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7469 out:
7470 	wc->refs[level] = 0;
7471 	wc->flags[level] = 0;
7472 	return 0;
7473 }
7474 
7475 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7476 				   struct btrfs_root *root,
7477 				   struct btrfs_path *path,
7478 				   struct walk_control *wc)
7479 {
7480 	int level = wc->level;
7481 	int lookup_info = 1;
7482 	int ret;
7483 
7484 	while (level >= 0) {
7485 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7486 		if (ret > 0)
7487 			break;
7488 
7489 		if (level == 0)
7490 			break;
7491 
7492 		if (path->slots[level] >=
7493 		    btrfs_header_nritems(path->nodes[level]))
7494 			break;
7495 
7496 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7497 		if (ret > 0) {
7498 			path->slots[level]++;
7499 			continue;
7500 		} else if (ret < 0)
7501 			return ret;
7502 		level = wc->level;
7503 	}
7504 	return 0;
7505 }
7506 
7507 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7508 				 struct btrfs_root *root,
7509 				 struct btrfs_path *path,
7510 				 struct walk_control *wc, int max_level)
7511 {
7512 	int level = wc->level;
7513 	int ret;
7514 
7515 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7516 	while (level < max_level && path->nodes[level]) {
7517 		wc->level = level;
7518 		if (path->slots[level] + 1 <
7519 		    btrfs_header_nritems(path->nodes[level])) {
7520 			path->slots[level]++;
7521 			return 0;
7522 		} else {
7523 			ret = walk_up_proc(trans, root, path, wc);
7524 			if (ret > 0)
7525 				return 0;
7526 
7527 			if (path->locks[level]) {
7528 				btrfs_tree_unlock_rw(path->nodes[level],
7529 						     path->locks[level]);
7530 				path->locks[level] = 0;
7531 			}
7532 			free_extent_buffer(path->nodes[level]);
7533 			path->nodes[level] = NULL;
7534 			level++;
7535 		}
7536 	}
7537 	return 1;
7538 }
7539 
7540 /*
7541  * drop a subvolume tree.
7542  *
7543  * this function traverses the tree freeing any blocks that only
7544  * referenced by the tree.
7545  *
7546  * when a shared tree block is found. this function decreases its
7547  * reference count by one. if update_ref is true, this function
7548  * also make sure backrefs for the shared block and all lower level
7549  * blocks are properly updated.
7550  *
7551  * If called with for_reloc == 0, may exit early with -EAGAIN
7552  */
7553 int btrfs_drop_snapshot(struct btrfs_root *root,
7554 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7555 			 int for_reloc)
7556 {
7557 	struct btrfs_path *path;
7558 	struct btrfs_trans_handle *trans;
7559 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7560 	struct btrfs_root_item *root_item = &root->root_item;
7561 	struct walk_control *wc;
7562 	struct btrfs_key key;
7563 	int err = 0;
7564 	int ret;
7565 	int level;
7566 	bool root_dropped = false;
7567 
7568 	path = btrfs_alloc_path();
7569 	if (!path) {
7570 		err = -ENOMEM;
7571 		goto out;
7572 	}
7573 
7574 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7575 	if (!wc) {
7576 		btrfs_free_path(path);
7577 		err = -ENOMEM;
7578 		goto out;
7579 	}
7580 
7581 	trans = btrfs_start_transaction(tree_root, 0);
7582 	if (IS_ERR(trans)) {
7583 		err = PTR_ERR(trans);
7584 		goto out_free;
7585 	}
7586 
7587 	if (block_rsv)
7588 		trans->block_rsv = block_rsv;
7589 
7590 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7591 		level = btrfs_header_level(root->node);
7592 		path->nodes[level] = btrfs_lock_root_node(root);
7593 		btrfs_set_lock_blocking(path->nodes[level]);
7594 		path->slots[level] = 0;
7595 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7596 		memset(&wc->update_progress, 0,
7597 		       sizeof(wc->update_progress));
7598 	} else {
7599 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7600 		memcpy(&wc->update_progress, &key,
7601 		       sizeof(wc->update_progress));
7602 
7603 		level = root_item->drop_level;
7604 		BUG_ON(level == 0);
7605 		path->lowest_level = level;
7606 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7607 		path->lowest_level = 0;
7608 		if (ret < 0) {
7609 			err = ret;
7610 			goto out_end_trans;
7611 		}
7612 		WARN_ON(ret > 0);
7613 
7614 		/*
7615 		 * unlock our path, this is safe because only this
7616 		 * function is allowed to delete this snapshot
7617 		 */
7618 		btrfs_unlock_up_safe(path, 0);
7619 
7620 		level = btrfs_header_level(root->node);
7621 		while (1) {
7622 			btrfs_tree_lock(path->nodes[level]);
7623 			btrfs_set_lock_blocking(path->nodes[level]);
7624 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7625 
7626 			ret = btrfs_lookup_extent_info(trans, root,
7627 						path->nodes[level]->start,
7628 						level, 1, &wc->refs[level],
7629 						&wc->flags[level]);
7630 			if (ret < 0) {
7631 				err = ret;
7632 				goto out_end_trans;
7633 			}
7634 			BUG_ON(wc->refs[level] == 0);
7635 
7636 			if (level == root_item->drop_level)
7637 				break;
7638 
7639 			btrfs_tree_unlock(path->nodes[level]);
7640 			path->locks[level] = 0;
7641 			WARN_ON(wc->refs[level] != 1);
7642 			level--;
7643 		}
7644 	}
7645 
7646 	wc->level = level;
7647 	wc->shared_level = -1;
7648 	wc->stage = DROP_REFERENCE;
7649 	wc->update_ref = update_ref;
7650 	wc->keep_locks = 0;
7651 	wc->for_reloc = for_reloc;
7652 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7653 
7654 	while (1) {
7655 
7656 		ret = walk_down_tree(trans, root, path, wc);
7657 		if (ret < 0) {
7658 			err = ret;
7659 			break;
7660 		}
7661 
7662 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7663 		if (ret < 0) {
7664 			err = ret;
7665 			break;
7666 		}
7667 
7668 		if (ret > 0) {
7669 			BUG_ON(wc->stage != DROP_REFERENCE);
7670 			break;
7671 		}
7672 
7673 		if (wc->stage == DROP_REFERENCE) {
7674 			level = wc->level;
7675 			btrfs_node_key(path->nodes[level],
7676 				       &root_item->drop_progress,
7677 				       path->slots[level]);
7678 			root_item->drop_level = level;
7679 		}
7680 
7681 		BUG_ON(wc->level == 0);
7682 		if (btrfs_should_end_transaction(trans, tree_root) ||
7683 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7684 			ret = btrfs_update_root(trans, tree_root,
7685 						&root->root_key,
7686 						root_item);
7687 			if (ret) {
7688 				btrfs_abort_transaction(trans, tree_root, ret);
7689 				err = ret;
7690 				goto out_end_trans;
7691 			}
7692 
7693 			btrfs_end_transaction_throttle(trans, tree_root);
7694 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7695 				pr_debug("BTRFS: drop snapshot early exit\n");
7696 				err = -EAGAIN;
7697 				goto out_free;
7698 			}
7699 
7700 			trans = btrfs_start_transaction(tree_root, 0);
7701 			if (IS_ERR(trans)) {
7702 				err = PTR_ERR(trans);
7703 				goto out_free;
7704 			}
7705 			if (block_rsv)
7706 				trans->block_rsv = block_rsv;
7707 		}
7708 	}
7709 	btrfs_release_path(path);
7710 	if (err)
7711 		goto out_end_trans;
7712 
7713 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7714 	if (ret) {
7715 		btrfs_abort_transaction(trans, tree_root, ret);
7716 		goto out_end_trans;
7717 	}
7718 
7719 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7720 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7721 				      NULL, NULL);
7722 		if (ret < 0) {
7723 			btrfs_abort_transaction(trans, tree_root, ret);
7724 			err = ret;
7725 			goto out_end_trans;
7726 		} else if (ret > 0) {
7727 			/* if we fail to delete the orphan item this time
7728 			 * around, it'll get picked up the next time.
7729 			 *
7730 			 * The most common failure here is just -ENOENT.
7731 			 */
7732 			btrfs_del_orphan_item(trans, tree_root,
7733 					      root->root_key.objectid);
7734 		}
7735 	}
7736 
7737 	if (root->in_radix) {
7738 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7739 	} else {
7740 		free_extent_buffer(root->node);
7741 		free_extent_buffer(root->commit_root);
7742 		btrfs_put_fs_root(root);
7743 	}
7744 	root_dropped = true;
7745 out_end_trans:
7746 	btrfs_end_transaction_throttle(trans, tree_root);
7747 out_free:
7748 	kfree(wc);
7749 	btrfs_free_path(path);
7750 out:
7751 	/*
7752 	 * So if we need to stop dropping the snapshot for whatever reason we
7753 	 * need to make sure to add it back to the dead root list so that we
7754 	 * keep trying to do the work later.  This also cleans up roots if we
7755 	 * don't have it in the radix (like when we recover after a power fail
7756 	 * or unmount) so we don't leak memory.
7757 	 */
7758 	if (!for_reloc && root_dropped == false)
7759 		btrfs_add_dead_root(root);
7760 	if (err && err != -EAGAIN)
7761 		btrfs_std_error(root->fs_info, err);
7762 	return err;
7763 }
7764 
7765 /*
7766  * drop subtree rooted at tree block 'node'.
7767  *
7768  * NOTE: this function will unlock and release tree block 'node'
7769  * only used by relocation code
7770  */
7771 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7772 			struct btrfs_root *root,
7773 			struct extent_buffer *node,
7774 			struct extent_buffer *parent)
7775 {
7776 	struct btrfs_path *path;
7777 	struct walk_control *wc;
7778 	int level;
7779 	int parent_level;
7780 	int ret = 0;
7781 	int wret;
7782 
7783 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7784 
7785 	path = btrfs_alloc_path();
7786 	if (!path)
7787 		return -ENOMEM;
7788 
7789 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7790 	if (!wc) {
7791 		btrfs_free_path(path);
7792 		return -ENOMEM;
7793 	}
7794 
7795 	btrfs_assert_tree_locked(parent);
7796 	parent_level = btrfs_header_level(parent);
7797 	extent_buffer_get(parent);
7798 	path->nodes[parent_level] = parent;
7799 	path->slots[parent_level] = btrfs_header_nritems(parent);
7800 
7801 	btrfs_assert_tree_locked(node);
7802 	level = btrfs_header_level(node);
7803 	path->nodes[level] = node;
7804 	path->slots[level] = 0;
7805 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7806 
7807 	wc->refs[parent_level] = 1;
7808 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7809 	wc->level = level;
7810 	wc->shared_level = -1;
7811 	wc->stage = DROP_REFERENCE;
7812 	wc->update_ref = 0;
7813 	wc->keep_locks = 1;
7814 	wc->for_reloc = 1;
7815 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7816 
7817 	while (1) {
7818 		wret = walk_down_tree(trans, root, path, wc);
7819 		if (wret < 0) {
7820 			ret = wret;
7821 			break;
7822 		}
7823 
7824 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7825 		if (wret < 0)
7826 			ret = wret;
7827 		if (wret != 0)
7828 			break;
7829 	}
7830 
7831 	kfree(wc);
7832 	btrfs_free_path(path);
7833 	return ret;
7834 }
7835 
7836 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7837 {
7838 	u64 num_devices;
7839 	u64 stripped;
7840 
7841 	/*
7842 	 * if restripe for this chunk_type is on pick target profile and
7843 	 * return, otherwise do the usual balance
7844 	 */
7845 	stripped = get_restripe_target(root->fs_info, flags);
7846 	if (stripped)
7847 		return extended_to_chunk(stripped);
7848 
7849 	/*
7850 	 * we add in the count of missing devices because we want
7851 	 * to make sure that any RAID levels on a degraded FS
7852 	 * continue to be honored.
7853 	 */
7854 	num_devices = root->fs_info->fs_devices->rw_devices +
7855 		root->fs_info->fs_devices->missing_devices;
7856 
7857 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7858 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7859 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7860 
7861 	if (num_devices == 1) {
7862 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7863 		stripped = flags & ~stripped;
7864 
7865 		/* turn raid0 into single device chunks */
7866 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7867 			return stripped;
7868 
7869 		/* turn mirroring into duplication */
7870 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7871 			     BTRFS_BLOCK_GROUP_RAID10))
7872 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7873 	} else {
7874 		/* they already had raid on here, just return */
7875 		if (flags & stripped)
7876 			return flags;
7877 
7878 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7879 		stripped = flags & ~stripped;
7880 
7881 		/* switch duplicated blocks with raid1 */
7882 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7883 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7884 
7885 		/* this is drive concat, leave it alone */
7886 	}
7887 
7888 	return flags;
7889 }
7890 
7891 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7892 {
7893 	struct btrfs_space_info *sinfo = cache->space_info;
7894 	u64 num_bytes;
7895 	u64 min_allocable_bytes;
7896 	int ret = -ENOSPC;
7897 
7898 
7899 	/*
7900 	 * We need some metadata space and system metadata space for
7901 	 * allocating chunks in some corner cases until we force to set
7902 	 * it to be readonly.
7903 	 */
7904 	if ((sinfo->flags &
7905 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7906 	    !force)
7907 		min_allocable_bytes = 1 * 1024 * 1024;
7908 	else
7909 		min_allocable_bytes = 0;
7910 
7911 	spin_lock(&sinfo->lock);
7912 	spin_lock(&cache->lock);
7913 
7914 	if (cache->ro) {
7915 		ret = 0;
7916 		goto out;
7917 	}
7918 
7919 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7920 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7921 
7922 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7923 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7924 	    min_allocable_bytes <= sinfo->total_bytes) {
7925 		sinfo->bytes_readonly += num_bytes;
7926 		cache->ro = 1;
7927 		ret = 0;
7928 	}
7929 out:
7930 	spin_unlock(&cache->lock);
7931 	spin_unlock(&sinfo->lock);
7932 	return ret;
7933 }
7934 
7935 int btrfs_set_block_group_ro(struct btrfs_root *root,
7936 			     struct btrfs_block_group_cache *cache)
7937 
7938 {
7939 	struct btrfs_trans_handle *trans;
7940 	u64 alloc_flags;
7941 	int ret;
7942 
7943 	BUG_ON(cache->ro);
7944 
7945 	trans = btrfs_join_transaction(root);
7946 	if (IS_ERR(trans))
7947 		return PTR_ERR(trans);
7948 
7949 	alloc_flags = update_block_group_flags(root, cache->flags);
7950 	if (alloc_flags != cache->flags) {
7951 		ret = do_chunk_alloc(trans, root, alloc_flags,
7952 				     CHUNK_ALLOC_FORCE);
7953 		if (ret < 0)
7954 			goto out;
7955 	}
7956 
7957 	ret = set_block_group_ro(cache, 0);
7958 	if (!ret)
7959 		goto out;
7960 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7961 	ret = do_chunk_alloc(trans, root, alloc_flags,
7962 			     CHUNK_ALLOC_FORCE);
7963 	if (ret < 0)
7964 		goto out;
7965 	ret = set_block_group_ro(cache, 0);
7966 out:
7967 	btrfs_end_transaction(trans, root);
7968 	return ret;
7969 }
7970 
7971 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7972 			    struct btrfs_root *root, u64 type)
7973 {
7974 	u64 alloc_flags = get_alloc_profile(root, type);
7975 	return do_chunk_alloc(trans, root, alloc_flags,
7976 			      CHUNK_ALLOC_FORCE);
7977 }
7978 
7979 /*
7980  * helper to account the unused space of all the readonly block group in the
7981  * list. takes mirrors into account.
7982  */
7983 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7984 {
7985 	struct btrfs_block_group_cache *block_group;
7986 	u64 free_bytes = 0;
7987 	int factor;
7988 
7989 	list_for_each_entry(block_group, groups_list, list) {
7990 		spin_lock(&block_group->lock);
7991 
7992 		if (!block_group->ro) {
7993 			spin_unlock(&block_group->lock);
7994 			continue;
7995 		}
7996 
7997 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7998 					  BTRFS_BLOCK_GROUP_RAID10 |
7999 					  BTRFS_BLOCK_GROUP_DUP))
8000 			factor = 2;
8001 		else
8002 			factor = 1;
8003 
8004 		free_bytes += (block_group->key.offset -
8005 			       btrfs_block_group_used(&block_group->item)) *
8006 			       factor;
8007 
8008 		spin_unlock(&block_group->lock);
8009 	}
8010 
8011 	return free_bytes;
8012 }
8013 
8014 /*
8015  * helper to account the unused space of all the readonly block group in the
8016  * space_info. takes mirrors into account.
8017  */
8018 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8019 {
8020 	int i;
8021 	u64 free_bytes = 0;
8022 
8023 	spin_lock(&sinfo->lock);
8024 
8025 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8026 		if (!list_empty(&sinfo->block_groups[i]))
8027 			free_bytes += __btrfs_get_ro_block_group_free_space(
8028 						&sinfo->block_groups[i]);
8029 
8030 	spin_unlock(&sinfo->lock);
8031 
8032 	return free_bytes;
8033 }
8034 
8035 void btrfs_set_block_group_rw(struct btrfs_root *root,
8036 			      struct btrfs_block_group_cache *cache)
8037 {
8038 	struct btrfs_space_info *sinfo = cache->space_info;
8039 	u64 num_bytes;
8040 
8041 	BUG_ON(!cache->ro);
8042 
8043 	spin_lock(&sinfo->lock);
8044 	spin_lock(&cache->lock);
8045 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8046 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8047 	sinfo->bytes_readonly -= num_bytes;
8048 	cache->ro = 0;
8049 	spin_unlock(&cache->lock);
8050 	spin_unlock(&sinfo->lock);
8051 }
8052 
8053 /*
8054  * checks to see if its even possible to relocate this block group.
8055  *
8056  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8057  * ok to go ahead and try.
8058  */
8059 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8060 {
8061 	struct btrfs_block_group_cache *block_group;
8062 	struct btrfs_space_info *space_info;
8063 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8064 	struct btrfs_device *device;
8065 	struct btrfs_trans_handle *trans;
8066 	u64 min_free;
8067 	u64 dev_min = 1;
8068 	u64 dev_nr = 0;
8069 	u64 target;
8070 	int index;
8071 	int full = 0;
8072 	int ret = 0;
8073 
8074 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8075 
8076 	/* odd, couldn't find the block group, leave it alone */
8077 	if (!block_group)
8078 		return -1;
8079 
8080 	min_free = btrfs_block_group_used(&block_group->item);
8081 
8082 	/* no bytes used, we're good */
8083 	if (!min_free)
8084 		goto out;
8085 
8086 	space_info = block_group->space_info;
8087 	spin_lock(&space_info->lock);
8088 
8089 	full = space_info->full;
8090 
8091 	/*
8092 	 * if this is the last block group we have in this space, we can't
8093 	 * relocate it unless we're able to allocate a new chunk below.
8094 	 *
8095 	 * Otherwise, we need to make sure we have room in the space to handle
8096 	 * all of the extents from this block group.  If we can, we're good
8097 	 */
8098 	if ((space_info->total_bytes != block_group->key.offset) &&
8099 	    (space_info->bytes_used + space_info->bytes_reserved +
8100 	     space_info->bytes_pinned + space_info->bytes_readonly +
8101 	     min_free < space_info->total_bytes)) {
8102 		spin_unlock(&space_info->lock);
8103 		goto out;
8104 	}
8105 	spin_unlock(&space_info->lock);
8106 
8107 	/*
8108 	 * ok we don't have enough space, but maybe we have free space on our
8109 	 * devices to allocate new chunks for relocation, so loop through our
8110 	 * alloc devices and guess if we have enough space.  if this block
8111 	 * group is going to be restriped, run checks against the target
8112 	 * profile instead of the current one.
8113 	 */
8114 	ret = -1;
8115 
8116 	/*
8117 	 * index:
8118 	 *      0: raid10
8119 	 *      1: raid1
8120 	 *      2: dup
8121 	 *      3: raid0
8122 	 *      4: single
8123 	 */
8124 	target = get_restripe_target(root->fs_info, block_group->flags);
8125 	if (target) {
8126 		index = __get_raid_index(extended_to_chunk(target));
8127 	} else {
8128 		/*
8129 		 * this is just a balance, so if we were marked as full
8130 		 * we know there is no space for a new chunk
8131 		 */
8132 		if (full)
8133 			goto out;
8134 
8135 		index = get_block_group_index(block_group);
8136 	}
8137 
8138 	if (index == BTRFS_RAID_RAID10) {
8139 		dev_min = 4;
8140 		/* Divide by 2 */
8141 		min_free >>= 1;
8142 	} else if (index == BTRFS_RAID_RAID1) {
8143 		dev_min = 2;
8144 	} else if (index == BTRFS_RAID_DUP) {
8145 		/* Multiply by 2 */
8146 		min_free <<= 1;
8147 	} else if (index == BTRFS_RAID_RAID0) {
8148 		dev_min = fs_devices->rw_devices;
8149 		do_div(min_free, dev_min);
8150 	}
8151 
8152 	/* We need to do this so that we can look at pending chunks */
8153 	trans = btrfs_join_transaction(root);
8154 	if (IS_ERR(trans)) {
8155 		ret = PTR_ERR(trans);
8156 		goto out;
8157 	}
8158 
8159 	mutex_lock(&root->fs_info->chunk_mutex);
8160 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8161 		u64 dev_offset;
8162 
8163 		/*
8164 		 * check to make sure we can actually find a chunk with enough
8165 		 * space to fit our block group in.
8166 		 */
8167 		if (device->total_bytes > device->bytes_used + min_free &&
8168 		    !device->is_tgtdev_for_dev_replace) {
8169 			ret = find_free_dev_extent(trans, device, min_free,
8170 						   &dev_offset, NULL);
8171 			if (!ret)
8172 				dev_nr++;
8173 
8174 			if (dev_nr >= dev_min)
8175 				break;
8176 
8177 			ret = -1;
8178 		}
8179 	}
8180 	mutex_unlock(&root->fs_info->chunk_mutex);
8181 	btrfs_end_transaction(trans, root);
8182 out:
8183 	btrfs_put_block_group(block_group);
8184 	return ret;
8185 }
8186 
8187 static int find_first_block_group(struct btrfs_root *root,
8188 		struct btrfs_path *path, struct btrfs_key *key)
8189 {
8190 	int ret = 0;
8191 	struct btrfs_key found_key;
8192 	struct extent_buffer *leaf;
8193 	int slot;
8194 
8195 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8196 	if (ret < 0)
8197 		goto out;
8198 
8199 	while (1) {
8200 		slot = path->slots[0];
8201 		leaf = path->nodes[0];
8202 		if (slot >= btrfs_header_nritems(leaf)) {
8203 			ret = btrfs_next_leaf(root, path);
8204 			if (ret == 0)
8205 				continue;
8206 			if (ret < 0)
8207 				goto out;
8208 			break;
8209 		}
8210 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8211 
8212 		if (found_key.objectid >= key->objectid &&
8213 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8214 			ret = 0;
8215 			goto out;
8216 		}
8217 		path->slots[0]++;
8218 	}
8219 out:
8220 	return ret;
8221 }
8222 
8223 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8224 {
8225 	struct btrfs_block_group_cache *block_group;
8226 	u64 last = 0;
8227 
8228 	while (1) {
8229 		struct inode *inode;
8230 
8231 		block_group = btrfs_lookup_first_block_group(info, last);
8232 		while (block_group) {
8233 			spin_lock(&block_group->lock);
8234 			if (block_group->iref)
8235 				break;
8236 			spin_unlock(&block_group->lock);
8237 			block_group = next_block_group(info->tree_root,
8238 						       block_group);
8239 		}
8240 		if (!block_group) {
8241 			if (last == 0)
8242 				break;
8243 			last = 0;
8244 			continue;
8245 		}
8246 
8247 		inode = block_group->inode;
8248 		block_group->iref = 0;
8249 		block_group->inode = NULL;
8250 		spin_unlock(&block_group->lock);
8251 		iput(inode);
8252 		last = block_group->key.objectid + block_group->key.offset;
8253 		btrfs_put_block_group(block_group);
8254 	}
8255 }
8256 
8257 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8258 {
8259 	struct btrfs_block_group_cache *block_group;
8260 	struct btrfs_space_info *space_info;
8261 	struct btrfs_caching_control *caching_ctl;
8262 	struct rb_node *n;
8263 
8264 	down_write(&info->extent_commit_sem);
8265 	while (!list_empty(&info->caching_block_groups)) {
8266 		caching_ctl = list_entry(info->caching_block_groups.next,
8267 					 struct btrfs_caching_control, list);
8268 		list_del(&caching_ctl->list);
8269 		put_caching_control(caching_ctl);
8270 	}
8271 	up_write(&info->extent_commit_sem);
8272 
8273 	spin_lock(&info->block_group_cache_lock);
8274 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8275 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8276 				       cache_node);
8277 		rb_erase(&block_group->cache_node,
8278 			 &info->block_group_cache_tree);
8279 		spin_unlock(&info->block_group_cache_lock);
8280 
8281 		down_write(&block_group->space_info->groups_sem);
8282 		list_del(&block_group->list);
8283 		up_write(&block_group->space_info->groups_sem);
8284 
8285 		if (block_group->cached == BTRFS_CACHE_STARTED)
8286 			wait_block_group_cache_done(block_group);
8287 
8288 		/*
8289 		 * We haven't cached this block group, which means we could
8290 		 * possibly have excluded extents on this block group.
8291 		 */
8292 		if (block_group->cached == BTRFS_CACHE_NO ||
8293 		    block_group->cached == BTRFS_CACHE_ERROR)
8294 			free_excluded_extents(info->extent_root, block_group);
8295 
8296 		btrfs_remove_free_space_cache(block_group);
8297 		btrfs_put_block_group(block_group);
8298 
8299 		spin_lock(&info->block_group_cache_lock);
8300 	}
8301 	spin_unlock(&info->block_group_cache_lock);
8302 
8303 	/* now that all the block groups are freed, go through and
8304 	 * free all the space_info structs.  This is only called during
8305 	 * the final stages of unmount, and so we know nobody is
8306 	 * using them.  We call synchronize_rcu() once before we start,
8307 	 * just to be on the safe side.
8308 	 */
8309 	synchronize_rcu();
8310 
8311 	release_global_block_rsv(info);
8312 
8313 	while (!list_empty(&info->space_info)) {
8314 		int i;
8315 
8316 		space_info = list_entry(info->space_info.next,
8317 					struct btrfs_space_info,
8318 					list);
8319 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8320 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8321 			    space_info->bytes_reserved > 0 ||
8322 			    space_info->bytes_may_use > 0)) {
8323 				dump_space_info(space_info, 0, 0);
8324 			}
8325 		}
8326 		list_del(&space_info->list);
8327 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8328 			struct kobject *kobj;
8329 			kobj = &space_info->block_group_kobjs[i];
8330 			if (kobj->parent) {
8331 				kobject_del(kobj);
8332 				kobject_put(kobj);
8333 			}
8334 		}
8335 		kobject_del(&space_info->kobj);
8336 		kobject_put(&space_info->kobj);
8337 	}
8338 	return 0;
8339 }
8340 
8341 static void __link_block_group(struct btrfs_space_info *space_info,
8342 			       struct btrfs_block_group_cache *cache)
8343 {
8344 	int index = get_block_group_index(cache);
8345 
8346 	down_write(&space_info->groups_sem);
8347 	if (list_empty(&space_info->block_groups[index])) {
8348 		struct kobject *kobj = &space_info->block_group_kobjs[index];
8349 		int ret;
8350 
8351 		kobject_get(&space_info->kobj); /* put in release */
8352 		ret = kobject_add(kobj, &space_info->kobj, "%s",
8353 				  get_raid_name(index));
8354 		if (ret) {
8355 			pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8356 			kobject_put(&space_info->kobj);
8357 		}
8358 	}
8359 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8360 	up_write(&space_info->groups_sem);
8361 }
8362 
8363 static struct btrfs_block_group_cache *
8364 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8365 {
8366 	struct btrfs_block_group_cache *cache;
8367 
8368 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8369 	if (!cache)
8370 		return NULL;
8371 
8372 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8373 					GFP_NOFS);
8374 	if (!cache->free_space_ctl) {
8375 		kfree(cache);
8376 		return NULL;
8377 	}
8378 
8379 	cache->key.objectid = start;
8380 	cache->key.offset = size;
8381 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8382 
8383 	cache->sectorsize = root->sectorsize;
8384 	cache->fs_info = root->fs_info;
8385 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8386 					       &root->fs_info->mapping_tree,
8387 					       start);
8388 	atomic_set(&cache->count, 1);
8389 	spin_lock_init(&cache->lock);
8390 	INIT_LIST_HEAD(&cache->list);
8391 	INIT_LIST_HEAD(&cache->cluster_list);
8392 	INIT_LIST_HEAD(&cache->new_bg_list);
8393 	btrfs_init_free_space_ctl(cache);
8394 
8395 	return cache;
8396 }
8397 
8398 int btrfs_read_block_groups(struct btrfs_root *root)
8399 {
8400 	struct btrfs_path *path;
8401 	int ret;
8402 	struct btrfs_block_group_cache *cache;
8403 	struct btrfs_fs_info *info = root->fs_info;
8404 	struct btrfs_space_info *space_info;
8405 	struct btrfs_key key;
8406 	struct btrfs_key found_key;
8407 	struct extent_buffer *leaf;
8408 	int need_clear = 0;
8409 	u64 cache_gen;
8410 
8411 	root = info->extent_root;
8412 	key.objectid = 0;
8413 	key.offset = 0;
8414 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8415 	path = btrfs_alloc_path();
8416 	if (!path)
8417 		return -ENOMEM;
8418 	path->reada = 1;
8419 
8420 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8421 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8422 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8423 		need_clear = 1;
8424 	if (btrfs_test_opt(root, CLEAR_CACHE))
8425 		need_clear = 1;
8426 
8427 	while (1) {
8428 		ret = find_first_block_group(root, path, &key);
8429 		if (ret > 0)
8430 			break;
8431 		if (ret != 0)
8432 			goto error;
8433 
8434 		leaf = path->nodes[0];
8435 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8436 
8437 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8438 						       found_key.offset);
8439 		if (!cache) {
8440 			ret = -ENOMEM;
8441 			goto error;
8442 		}
8443 
8444 		if (need_clear) {
8445 			/*
8446 			 * When we mount with old space cache, we need to
8447 			 * set BTRFS_DC_CLEAR and set dirty flag.
8448 			 *
8449 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8450 			 *    truncate the old free space cache inode and
8451 			 *    setup a new one.
8452 			 * b) Setting 'dirty flag' makes sure that we flush
8453 			 *    the new space cache info onto disk.
8454 			 */
8455 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8456 			if (btrfs_test_opt(root, SPACE_CACHE))
8457 				cache->dirty = 1;
8458 		}
8459 
8460 		read_extent_buffer(leaf, &cache->item,
8461 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8462 				   sizeof(cache->item));
8463 		cache->flags = btrfs_block_group_flags(&cache->item);
8464 
8465 		key.objectid = found_key.objectid + found_key.offset;
8466 		btrfs_release_path(path);
8467 
8468 		/*
8469 		 * We need to exclude the super stripes now so that the space
8470 		 * info has super bytes accounted for, otherwise we'll think
8471 		 * we have more space than we actually do.
8472 		 */
8473 		ret = exclude_super_stripes(root, cache);
8474 		if (ret) {
8475 			/*
8476 			 * We may have excluded something, so call this just in
8477 			 * case.
8478 			 */
8479 			free_excluded_extents(root, cache);
8480 			btrfs_put_block_group(cache);
8481 			goto error;
8482 		}
8483 
8484 		/*
8485 		 * check for two cases, either we are full, and therefore
8486 		 * don't need to bother with the caching work since we won't
8487 		 * find any space, or we are empty, and we can just add all
8488 		 * the space in and be done with it.  This saves us _alot_ of
8489 		 * time, particularly in the full case.
8490 		 */
8491 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8492 			cache->last_byte_to_unpin = (u64)-1;
8493 			cache->cached = BTRFS_CACHE_FINISHED;
8494 			free_excluded_extents(root, cache);
8495 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8496 			cache->last_byte_to_unpin = (u64)-1;
8497 			cache->cached = BTRFS_CACHE_FINISHED;
8498 			add_new_free_space(cache, root->fs_info,
8499 					   found_key.objectid,
8500 					   found_key.objectid +
8501 					   found_key.offset);
8502 			free_excluded_extents(root, cache);
8503 		}
8504 
8505 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8506 		if (ret) {
8507 			btrfs_remove_free_space_cache(cache);
8508 			btrfs_put_block_group(cache);
8509 			goto error;
8510 		}
8511 
8512 		ret = update_space_info(info, cache->flags, found_key.offset,
8513 					btrfs_block_group_used(&cache->item),
8514 					&space_info);
8515 		if (ret) {
8516 			btrfs_remove_free_space_cache(cache);
8517 			spin_lock(&info->block_group_cache_lock);
8518 			rb_erase(&cache->cache_node,
8519 				 &info->block_group_cache_tree);
8520 			spin_unlock(&info->block_group_cache_lock);
8521 			btrfs_put_block_group(cache);
8522 			goto error;
8523 		}
8524 
8525 		cache->space_info = space_info;
8526 		spin_lock(&cache->space_info->lock);
8527 		cache->space_info->bytes_readonly += cache->bytes_super;
8528 		spin_unlock(&cache->space_info->lock);
8529 
8530 		__link_block_group(space_info, cache);
8531 
8532 		set_avail_alloc_bits(root->fs_info, cache->flags);
8533 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8534 			set_block_group_ro(cache, 1);
8535 	}
8536 
8537 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8538 		if (!(get_alloc_profile(root, space_info->flags) &
8539 		      (BTRFS_BLOCK_GROUP_RAID10 |
8540 		       BTRFS_BLOCK_GROUP_RAID1 |
8541 		       BTRFS_BLOCK_GROUP_RAID5 |
8542 		       BTRFS_BLOCK_GROUP_RAID6 |
8543 		       BTRFS_BLOCK_GROUP_DUP)))
8544 			continue;
8545 		/*
8546 		 * avoid allocating from un-mirrored block group if there are
8547 		 * mirrored block groups.
8548 		 */
8549 		list_for_each_entry(cache,
8550 				&space_info->block_groups[BTRFS_RAID_RAID0],
8551 				list)
8552 			set_block_group_ro(cache, 1);
8553 		list_for_each_entry(cache,
8554 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8555 				list)
8556 			set_block_group_ro(cache, 1);
8557 	}
8558 
8559 	init_global_block_rsv(info);
8560 	ret = 0;
8561 error:
8562 	btrfs_free_path(path);
8563 	return ret;
8564 }
8565 
8566 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8567 				       struct btrfs_root *root)
8568 {
8569 	struct btrfs_block_group_cache *block_group, *tmp;
8570 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8571 	struct btrfs_block_group_item item;
8572 	struct btrfs_key key;
8573 	int ret = 0;
8574 
8575 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8576 				 new_bg_list) {
8577 		list_del_init(&block_group->new_bg_list);
8578 
8579 		if (ret)
8580 			continue;
8581 
8582 		spin_lock(&block_group->lock);
8583 		memcpy(&item, &block_group->item, sizeof(item));
8584 		memcpy(&key, &block_group->key, sizeof(key));
8585 		spin_unlock(&block_group->lock);
8586 
8587 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8588 					sizeof(item));
8589 		if (ret)
8590 			btrfs_abort_transaction(trans, extent_root, ret);
8591 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8592 					       key.objectid, key.offset);
8593 		if (ret)
8594 			btrfs_abort_transaction(trans, extent_root, ret);
8595 	}
8596 }
8597 
8598 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8599 			   struct btrfs_root *root, u64 bytes_used,
8600 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8601 			   u64 size)
8602 {
8603 	int ret;
8604 	struct btrfs_root *extent_root;
8605 	struct btrfs_block_group_cache *cache;
8606 
8607 	extent_root = root->fs_info->extent_root;
8608 
8609 	root->fs_info->last_trans_log_full_commit = trans->transid;
8610 
8611 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8612 	if (!cache)
8613 		return -ENOMEM;
8614 
8615 	btrfs_set_block_group_used(&cache->item, bytes_used);
8616 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8617 	btrfs_set_block_group_flags(&cache->item, type);
8618 
8619 	cache->flags = type;
8620 	cache->last_byte_to_unpin = (u64)-1;
8621 	cache->cached = BTRFS_CACHE_FINISHED;
8622 	ret = exclude_super_stripes(root, cache);
8623 	if (ret) {
8624 		/*
8625 		 * We may have excluded something, so call this just in
8626 		 * case.
8627 		 */
8628 		free_excluded_extents(root, cache);
8629 		btrfs_put_block_group(cache);
8630 		return ret;
8631 	}
8632 
8633 	add_new_free_space(cache, root->fs_info, chunk_offset,
8634 			   chunk_offset + size);
8635 
8636 	free_excluded_extents(root, cache);
8637 
8638 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8639 	if (ret) {
8640 		btrfs_remove_free_space_cache(cache);
8641 		btrfs_put_block_group(cache);
8642 		return ret;
8643 	}
8644 
8645 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8646 				&cache->space_info);
8647 	if (ret) {
8648 		btrfs_remove_free_space_cache(cache);
8649 		spin_lock(&root->fs_info->block_group_cache_lock);
8650 		rb_erase(&cache->cache_node,
8651 			 &root->fs_info->block_group_cache_tree);
8652 		spin_unlock(&root->fs_info->block_group_cache_lock);
8653 		btrfs_put_block_group(cache);
8654 		return ret;
8655 	}
8656 	update_global_block_rsv(root->fs_info);
8657 
8658 	spin_lock(&cache->space_info->lock);
8659 	cache->space_info->bytes_readonly += cache->bytes_super;
8660 	spin_unlock(&cache->space_info->lock);
8661 
8662 	__link_block_group(cache->space_info, cache);
8663 
8664 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8665 
8666 	set_avail_alloc_bits(extent_root->fs_info, type);
8667 
8668 	return 0;
8669 }
8670 
8671 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8672 {
8673 	u64 extra_flags = chunk_to_extended(flags) &
8674 				BTRFS_EXTENDED_PROFILE_MASK;
8675 
8676 	write_seqlock(&fs_info->profiles_lock);
8677 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8678 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8679 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8680 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8681 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8682 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8683 	write_sequnlock(&fs_info->profiles_lock);
8684 }
8685 
8686 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8687 			     struct btrfs_root *root, u64 group_start)
8688 {
8689 	struct btrfs_path *path;
8690 	struct btrfs_block_group_cache *block_group;
8691 	struct btrfs_free_cluster *cluster;
8692 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8693 	struct btrfs_key key;
8694 	struct inode *inode;
8695 	int ret;
8696 	int index;
8697 	int factor;
8698 
8699 	root = root->fs_info->extent_root;
8700 
8701 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8702 	BUG_ON(!block_group);
8703 	BUG_ON(!block_group->ro);
8704 
8705 	/*
8706 	 * Free the reserved super bytes from this block group before
8707 	 * remove it.
8708 	 */
8709 	free_excluded_extents(root, block_group);
8710 
8711 	memcpy(&key, &block_group->key, sizeof(key));
8712 	index = get_block_group_index(block_group);
8713 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8714 				  BTRFS_BLOCK_GROUP_RAID1 |
8715 				  BTRFS_BLOCK_GROUP_RAID10))
8716 		factor = 2;
8717 	else
8718 		factor = 1;
8719 
8720 	/* make sure this block group isn't part of an allocation cluster */
8721 	cluster = &root->fs_info->data_alloc_cluster;
8722 	spin_lock(&cluster->refill_lock);
8723 	btrfs_return_cluster_to_free_space(block_group, cluster);
8724 	spin_unlock(&cluster->refill_lock);
8725 
8726 	/*
8727 	 * make sure this block group isn't part of a metadata
8728 	 * allocation cluster
8729 	 */
8730 	cluster = &root->fs_info->meta_alloc_cluster;
8731 	spin_lock(&cluster->refill_lock);
8732 	btrfs_return_cluster_to_free_space(block_group, cluster);
8733 	spin_unlock(&cluster->refill_lock);
8734 
8735 	path = btrfs_alloc_path();
8736 	if (!path) {
8737 		ret = -ENOMEM;
8738 		goto out;
8739 	}
8740 
8741 	inode = lookup_free_space_inode(tree_root, block_group, path);
8742 	if (!IS_ERR(inode)) {
8743 		ret = btrfs_orphan_add(trans, inode);
8744 		if (ret) {
8745 			btrfs_add_delayed_iput(inode);
8746 			goto out;
8747 		}
8748 		clear_nlink(inode);
8749 		/* One for the block groups ref */
8750 		spin_lock(&block_group->lock);
8751 		if (block_group->iref) {
8752 			block_group->iref = 0;
8753 			block_group->inode = NULL;
8754 			spin_unlock(&block_group->lock);
8755 			iput(inode);
8756 		} else {
8757 			spin_unlock(&block_group->lock);
8758 		}
8759 		/* One for our lookup ref */
8760 		btrfs_add_delayed_iput(inode);
8761 	}
8762 
8763 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8764 	key.offset = block_group->key.objectid;
8765 	key.type = 0;
8766 
8767 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8768 	if (ret < 0)
8769 		goto out;
8770 	if (ret > 0)
8771 		btrfs_release_path(path);
8772 	if (ret == 0) {
8773 		ret = btrfs_del_item(trans, tree_root, path);
8774 		if (ret)
8775 			goto out;
8776 		btrfs_release_path(path);
8777 	}
8778 
8779 	spin_lock(&root->fs_info->block_group_cache_lock);
8780 	rb_erase(&block_group->cache_node,
8781 		 &root->fs_info->block_group_cache_tree);
8782 
8783 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8784 		root->fs_info->first_logical_byte = (u64)-1;
8785 	spin_unlock(&root->fs_info->block_group_cache_lock);
8786 
8787 	down_write(&block_group->space_info->groups_sem);
8788 	/*
8789 	 * we must use list_del_init so people can check to see if they
8790 	 * are still on the list after taking the semaphore
8791 	 */
8792 	list_del_init(&block_group->list);
8793 	if (list_empty(&block_group->space_info->block_groups[index])) {
8794 		kobject_del(&block_group->space_info->block_group_kobjs[index]);
8795 		kobject_put(&block_group->space_info->block_group_kobjs[index]);
8796 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8797 	}
8798 	up_write(&block_group->space_info->groups_sem);
8799 
8800 	if (block_group->cached == BTRFS_CACHE_STARTED)
8801 		wait_block_group_cache_done(block_group);
8802 
8803 	btrfs_remove_free_space_cache(block_group);
8804 
8805 	spin_lock(&block_group->space_info->lock);
8806 	block_group->space_info->total_bytes -= block_group->key.offset;
8807 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8808 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8809 	spin_unlock(&block_group->space_info->lock);
8810 
8811 	memcpy(&key, &block_group->key, sizeof(key));
8812 
8813 	btrfs_clear_space_info_full(root->fs_info);
8814 
8815 	btrfs_put_block_group(block_group);
8816 	btrfs_put_block_group(block_group);
8817 
8818 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8819 	if (ret > 0)
8820 		ret = -EIO;
8821 	if (ret < 0)
8822 		goto out;
8823 
8824 	ret = btrfs_del_item(trans, root, path);
8825 out:
8826 	btrfs_free_path(path);
8827 	return ret;
8828 }
8829 
8830 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8831 {
8832 	struct btrfs_space_info *space_info;
8833 	struct btrfs_super_block *disk_super;
8834 	u64 features;
8835 	u64 flags;
8836 	int mixed = 0;
8837 	int ret;
8838 
8839 	disk_super = fs_info->super_copy;
8840 	if (!btrfs_super_root(disk_super))
8841 		return 1;
8842 
8843 	features = btrfs_super_incompat_flags(disk_super);
8844 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8845 		mixed = 1;
8846 
8847 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8848 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8849 	if (ret)
8850 		goto out;
8851 
8852 	if (mixed) {
8853 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8854 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8855 	} else {
8856 		flags = BTRFS_BLOCK_GROUP_METADATA;
8857 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8858 		if (ret)
8859 			goto out;
8860 
8861 		flags = BTRFS_BLOCK_GROUP_DATA;
8862 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 	}
8864 out:
8865 	return ret;
8866 }
8867 
8868 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8869 {
8870 	return unpin_extent_range(root, start, end);
8871 }
8872 
8873 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8874 			       u64 num_bytes, u64 *actual_bytes)
8875 {
8876 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8877 }
8878 
8879 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8880 {
8881 	struct btrfs_fs_info *fs_info = root->fs_info;
8882 	struct btrfs_block_group_cache *cache = NULL;
8883 	u64 group_trimmed;
8884 	u64 start;
8885 	u64 end;
8886 	u64 trimmed = 0;
8887 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8888 	int ret = 0;
8889 
8890 	/*
8891 	 * try to trim all FS space, our block group may start from non-zero.
8892 	 */
8893 	if (range->len == total_bytes)
8894 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8895 	else
8896 		cache = btrfs_lookup_block_group(fs_info, range->start);
8897 
8898 	while (cache) {
8899 		if (cache->key.objectid >= (range->start + range->len)) {
8900 			btrfs_put_block_group(cache);
8901 			break;
8902 		}
8903 
8904 		start = max(range->start, cache->key.objectid);
8905 		end = min(range->start + range->len,
8906 				cache->key.objectid + cache->key.offset);
8907 
8908 		if (end - start >= range->minlen) {
8909 			if (!block_group_cache_done(cache)) {
8910 				ret = cache_block_group(cache, 0);
8911 				if (ret) {
8912 					btrfs_put_block_group(cache);
8913 					break;
8914 				}
8915 				ret = wait_block_group_cache_done(cache);
8916 				if (ret) {
8917 					btrfs_put_block_group(cache);
8918 					break;
8919 				}
8920 			}
8921 			ret = btrfs_trim_block_group(cache,
8922 						     &group_trimmed,
8923 						     start,
8924 						     end,
8925 						     range->minlen);
8926 
8927 			trimmed += group_trimmed;
8928 			if (ret) {
8929 				btrfs_put_block_group(cache);
8930 				break;
8931 			}
8932 		}
8933 
8934 		cache = next_block_group(fs_info->tree_root, cache);
8935 	}
8936 
8937 	range->len = trimmed;
8938 	return ret;
8939 }
8940