1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 37 #undef SCRAMBLE_DELAYED_REFS 38 39 40 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 41 struct btrfs_delayed_ref_node *node, u64 parent, 42 u64 root_objectid, u64 owner_objectid, 43 u64 owner_offset, int refs_to_drop, 44 struct btrfs_delayed_extent_op *extra_op); 45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 46 struct extent_buffer *leaf, 47 struct btrfs_extent_item *ei); 48 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 49 u64 parent, u64 root_objectid, 50 u64 flags, u64 owner, u64 offset, 51 struct btrfs_key *ins, int ref_mod); 52 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 53 struct btrfs_delayed_ref_node *node, 54 struct btrfs_delayed_extent_op *extent_op); 55 static int find_next_key(struct btrfs_path *path, int level, 56 struct btrfs_key *key); 57 58 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 59 { 60 return (cache->flags & bits) == bits; 61 } 62 63 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 64 u64 start, u64 num_bytes) 65 { 66 u64 end = start + num_bytes - 1; 67 set_extent_bits(&fs_info->excluded_extents, start, end, 68 EXTENT_UPTODATE); 69 return 0; 70 } 71 72 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 73 { 74 struct btrfs_fs_info *fs_info = cache->fs_info; 75 u64 start, end; 76 77 start = cache->start; 78 end = start + cache->length - 1; 79 80 clear_extent_bits(&fs_info->excluded_extents, start, end, 81 EXTENT_UPTODATE); 82 } 83 84 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 85 { 86 if (ref->type == BTRFS_REF_METADATA) { 87 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 88 return BTRFS_BLOCK_GROUP_SYSTEM; 89 else 90 return BTRFS_BLOCK_GROUP_METADATA; 91 } 92 return BTRFS_BLOCK_GROUP_DATA; 93 } 94 95 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 96 struct btrfs_ref *ref) 97 { 98 struct btrfs_space_info *space_info; 99 u64 flags = generic_ref_to_space_flags(ref); 100 101 space_info = btrfs_find_space_info(fs_info, flags); 102 ASSERT(space_info); 103 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 104 BTRFS_TOTAL_BYTES_PINNED_BATCH); 105 } 106 107 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 108 struct btrfs_ref *ref) 109 { 110 struct btrfs_space_info *space_info; 111 u64 flags = generic_ref_to_space_flags(ref); 112 113 space_info = btrfs_find_space_info(fs_info, flags); 114 ASSERT(space_info); 115 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 116 BTRFS_TOTAL_BYTES_PINNED_BATCH); 117 } 118 119 /* simple helper to search for an existing data extent at a given offset */ 120 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 121 { 122 int ret; 123 struct btrfs_key key; 124 struct btrfs_path *path; 125 126 path = btrfs_alloc_path(); 127 if (!path) 128 return -ENOMEM; 129 130 key.objectid = start; 131 key.offset = len; 132 key.type = BTRFS_EXTENT_ITEM_KEY; 133 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 134 btrfs_free_path(path); 135 return ret; 136 } 137 138 /* 139 * helper function to lookup reference count and flags of a tree block. 140 * 141 * the head node for delayed ref is used to store the sum of all the 142 * reference count modifications queued up in the rbtree. the head 143 * node may also store the extent flags to set. This way you can check 144 * to see what the reference count and extent flags would be if all of 145 * the delayed refs are not processed. 146 */ 147 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 148 struct btrfs_fs_info *fs_info, u64 bytenr, 149 u64 offset, int metadata, u64 *refs, u64 *flags) 150 { 151 struct btrfs_delayed_ref_head *head; 152 struct btrfs_delayed_ref_root *delayed_refs; 153 struct btrfs_path *path; 154 struct btrfs_extent_item *ei; 155 struct extent_buffer *leaf; 156 struct btrfs_key key; 157 u32 item_size; 158 u64 num_refs; 159 u64 extent_flags; 160 int ret; 161 162 /* 163 * If we don't have skinny metadata, don't bother doing anything 164 * different 165 */ 166 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 167 offset = fs_info->nodesize; 168 metadata = 0; 169 } 170 171 path = btrfs_alloc_path(); 172 if (!path) 173 return -ENOMEM; 174 175 if (!trans) { 176 path->skip_locking = 1; 177 path->search_commit_root = 1; 178 } 179 180 search_again: 181 key.objectid = bytenr; 182 key.offset = offset; 183 if (metadata) 184 key.type = BTRFS_METADATA_ITEM_KEY; 185 else 186 key.type = BTRFS_EXTENT_ITEM_KEY; 187 188 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 189 if (ret < 0) 190 goto out_free; 191 192 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 193 if (path->slots[0]) { 194 path->slots[0]--; 195 btrfs_item_key_to_cpu(path->nodes[0], &key, 196 path->slots[0]); 197 if (key.objectid == bytenr && 198 key.type == BTRFS_EXTENT_ITEM_KEY && 199 key.offset == fs_info->nodesize) 200 ret = 0; 201 } 202 } 203 204 if (ret == 0) { 205 leaf = path->nodes[0]; 206 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 207 if (item_size >= sizeof(*ei)) { 208 ei = btrfs_item_ptr(leaf, path->slots[0], 209 struct btrfs_extent_item); 210 num_refs = btrfs_extent_refs(leaf, ei); 211 extent_flags = btrfs_extent_flags(leaf, ei); 212 } else { 213 ret = -EINVAL; 214 btrfs_print_v0_err(fs_info); 215 if (trans) 216 btrfs_abort_transaction(trans, ret); 217 else 218 btrfs_handle_fs_error(fs_info, ret, NULL); 219 220 goto out_free; 221 } 222 223 BUG_ON(num_refs == 0); 224 } else { 225 num_refs = 0; 226 extent_flags = 0; 227 ret = 0; 228 } 229 230 if (!trans) 231 goto out; 232 233 delayed_refs = &trans->transaction->delayed_refs; 234 spin_lock(&delayed_refs->lock); 235 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 236 if (head) { 237 if (!mutex_trylock(&head->mutex)) { 238 refcount_inc(&head->refs); 239 spin_unlock(&delayed_refs->lock); 240 241 btrfs_release_path(path); 242 243 /* 244 * Mutex was contended, block until it's released and try 245 * again 246 */ 247 mutex_lock(&head->mutex); 248 mutex_unlock(&head->mutex); 249 btrfs_put_delayed_ref_head(head); 250 goto search_again; 251 } 252 spin_lock(&head->lock); 253 if (head->extent_op && head->extent_op->update_flags) 254 extent_flags |= head->extent_op->flags_to_set; 255 else 256 BUG_ON(num_refs == 0); 257 258 num_refs += head->ref_mod; 259 spin_unlock(&head->lock); 260 mutex_unlock(&head->mutex); 261 } 262 spin_unlock(&delayed_refs->lock); 263 out: 264 WARN_ON(num_refs == 0); 265 if (refs) 266 *refs = num_refs; 267 if (flags) 268 *flags = extent_flags; 269 out_free: 270 btrfs_free_path(path); 271 return ret; 272 } 273 274 /* 275 * Back reference rules. Back refs have three main goals: 276 * 277 * 1) differentiate between all holders of references to an extent so that 278 * when a reference is dropped we can make sure it was a valid reference 279 * before freeing the extent. 280 * 281 * 2) Provide enough information to quickly find the holders of an extent 282 * if we notice a given block is corrupted or bad. 283 * 284 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 285 * maintenance. This is actually the same as #2, but with a slightly 286 * different use case. 287 * 288 * There are two kinds of back refs. The implicit back refs is optimized 289 * for pointers in non-shared tree blocks. For a given pointer in a block, 290 * back refs of this kind provide information about the block's owner tree 291 * and the pointer's key. These information allow us to find the block by 292 * b-tree searching. The full back refs is for pointers in tree blocks not 293 * referenced by their owner trees. The location of tree block is recorded 294 * in the back refs. Actually the full back refs is generic, and can be 295 * used in all cases the implicit back refs is used. The major shortcoming 296 * of the full back refs is its overhead. Every time a tree block gets 297 * COWed, we have to update back refs entry for all pointers in it. 298 * 299 * For a newly allocated tree block, we use implicit back refs for 300 * pointers in it. This means most tree related operations only involve 301 * implicit back refs. For a tree block created in old transaction, the 302 * only way to drop a reference to it is COW it. So we can detect the 303 * event that tree block loses its owner tree's reference and do the 304 * back refs conversion. 305 * 306 * When a tree block is COWed through a tree, there are four cases: 307 * 308 * The reference count of the block is one and the tree is the block's 309 * owner tree. Nothing to do in this case. 310 * 311 * The reference count of the block is one and the tree is not the 312 * block's owner tree. In this case, full back refs is used for pointers 313 * in the block. Remove these full back refs, add implicit back refs for 314 * every pointers in the new block. 315 * 316 * The reference count of the block is greater than one and the tree is 317 * the block's owner tree. In this case, implicit back refs is used for 318 * pointers in the block. Add full back refs for every pointers in the 319 * block, increase lower level extents' reference counts. The original 320 * implicit back refs are entailed to the new block. 321 * 322 * The reference count of the block is greater than one and the tree is 323 * not the block's owner tree. Add implicit back refs for every pointer in 324 * the new block, increase lower level extents' reference count. 325 * 326 * Back Reference Key composing: 327 * 328 * The key objectid corresponds to the first byte in the extent, 329 * The key type is used to differentiate between types of back refs. 330 * There are different meanings of the key offset for different types 331 * of back refs. 332 * 333 * File extents can be referenced by: 334 * 335 * - multiple snapshots, subvolumes, or different generations in one subvol 336 * - different files inside a single subvolume 337 * - different offsets inside a file (bookend extents in file.c) 338 * 339 * The extent ref structure for the implicit back refs has fields for: 340 * 341 * - Objectid of the subvolume root 342 * - objectid of the file holding the reference 343 * - original offset in the file 344 * - how many bookend extents 345 * 346 * The key offset for the implicit back refs is hash of the first 347 * three fields. 348 * 349 * The extent ref structure for the full back refs has field for: 350 * 351 * - number of pointers in the tree leaf 352 * 353 * The key offset for the implicit back refs is the first byte of 354 * the tree leaf 355 * 356 * When a file extent is allocated, The implicit back refs is used. 357 * the fields are filled in: 358 * 359 * (root_key.objectid, inode objectid, offset in file, 1) 360 * 361 * When a file extent is removed file truncation, we find the 362 * corresponding implicit back refs and check the following fields: 363 * 364 * (btrfs_header_owner(leaf), inode objectid, offset in file) 365 * 366 * Btree extents can be referenced by: 367 * 368 * - Different subvolumes 369 * 370 * Both the implicit back refs and the full back refs for tree blocks 371 * only consist of key. The key offset for the implicit back refs is 372 * objectid of block's owner tree. The key offset for the full back refs 373 * is the first byte of parent block. 374 * 375 * When implicit back refs is used, information about the lowest key and 376 * level of the tree block are required. These information are stored in 377 * tree block info structure. 378 */ 379 380 /* 381 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 382 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 383 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 384 */ 385 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 386 struct btrfs_extent_inline_ref *iref, 387 enum btrfs_inline_ref_type is_data) 388 { 389 int type = btrfs_extent_inline_ref_type(eb, iref); 390 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 391 392 if (type == BTRFS_TREE_BLOCK_REF_KEY || 393 type == BTRFS_SHARED_BLOCK_REF_KEY || 394 type == BTRFS_SHARED_DATA_REF_KEY || 395 type == BTRFS_EXTENT_DATA_REF_KEY) { 396 if (is_data == BTRFS_REF_TYPE_BLOCK) { 397 if (type == BTRFS_TREE_BLOCK_REF_KEY) 398 return type; 399 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 400 ASSERT(eb->fs_info); 401 /* 402 * Every shared one has parent tree 403 * block, which must be aligned to 404 * nodesize. 405 */ 406 if (offset && 407 IS_ALIGNED(offset, eb->fs_info->nodesize)) 408 return type; 409 } 410 } else if (is_data == BTRFS_REF_TYPE_DATA) { 411 if (type == BTRFS_EXTENT_DATA_REF_KEY) 412 return type; 413 if (type == BTRFS_SHARED_DATA_REF_KEY) { 414 ASSERT(eb->fs_info); 415 /* 416 * Every shared one has parent tree 417 * block, which must be aligned to 418 * nodesize. 419 */ 420 if (offset && 421 IS_ALIGNED(offset, eb->fs_info->nodesize)) 422 return type; 423 } 424 } else { 425 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 426 return type; 427 } 428 } 429 430 btrfs_print_leaf((struct extent_buffer *)eb); 431 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 432 eb->start, type); 433 WARN_ON(1); 434 435 return BTRFS_REF_TYPE_INVALID; 436 } 437 438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 439 { 440 u32 high_crc = ~(u32)0; 441 u32 low_crc = ~(u32)0; 442 __le64 lenum; 443 444 lenum = cpu_to_le64(root_objectid); 445 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 446 lenum = cpu_to_le64(owner); 447 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 448 lenum = cpu_to_le64(offset); 449 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 450 451 return ((u64)high_crc << 31) ^ (u64)low_crc; 452 } 453 454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 455 struct btrfs_extent_data_ref *ref) 456 { 457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 458 btrfs_extent_data_ref_objectid(leaf, ref), 459 btrfs_extent_data_ref_offset(leaf, ref)); 460 } 461 462 static int match_extent_data_ref(struct extent_buffer *leaf, 463 struct btrfs_extent_data_ref *ref, 464 u64 root_objectid, u64 owner, u64 offset) 465 { 466 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 467 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 468 btrfs_extent_data_ref_offset(leaf, ref) != offset) 469 return 0; 470 return 1; 471 } 472 473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 474 struct btrfs_path *path, 475 u64 bytenr, u64 parent, 476 u64 root_objectid, 477 u64 owner, u64 offset) 478 { 479 struct btrfs_root *root = trans->fs_info->extent_root; 480 struct btrfs_key key; 481 struct btrfs_extent_data_ref *ref; 482 struct extent_buffer *leaf; 483 u32 nritems; 484 int ret; 485 int recow; 486 int err = -ENOENT; 487 488 key.objectid = bytenr; 489 if (parent) { 490 key.type = BTRFS_SHARED_DATA_REF_KEY; 491 key.offset = parent; 492 } else { 493 key.type = BTRFS_EXTENT_DATA_REF_KEY; 494 key.offset = hash_extent_data_ref(root_objectid, 495 owner, offset); 496 } 497 again: 498 recow = 0; 499 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 500 if (ret < 0) { 501 err = ret; 502 goto fail; 503 } 504 505 if (parent) { 506 if (!ret) 507 return 0; 508 goto fail; 509 } 510 511 leaf = path->nodes[0]; 512 nritems = btrfs_header_nritems(leaf); 513 while (1) { 514 if (path->slots[0] >= nritems) { 515 ret = btrfs_next_leaf(root, path); 516 if (ret < 0) 517 err = ret; 518 if (ret) 519 goto fail; 520 521 leaf = path->nodes[0]; 522 nritems = btrfs_header_nritems(leaf); 523 recow = 1; 524 } 525 526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 527 if (key.objectid != bytenr || 528 key.type != BTRFS_EXTENT_DATA_REF_KEY) 529 goto fail; 530 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_extent_data_ref); 533 534 if (match_extent_data_ref(leaf, ref, root_objectid, 535 owner, offset)) { 536 if (recow) { 537 btrfs_release_path(path); 538 goto again; 539 } 540 err = 0; 541 break; 542 } 543 path->slots[0]++; 544 } 545 fail: 546 return err; 547 } 548 549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 550 struct btrfs_path *path, 551 u64 bytenr, u64 parent, 552 u64 root_objectid, u64 owner, 553 u64 offset, int refs_to_add) 554 { 555 struct btrfs_root *root = trans->fs_info->extent_root; 556 struct btrfs_key key; 557 struct extent_buffer *leaf; 558 u32 size; 559 u32 num_refs; 560 int ret; 561 562 key.objectid = bytenr; 563 if (parent) { 564 key.type = BTRFS_SHARED_DATA_REF_KEY; 565 key.offset = parent; 566 size = sizeof(struct btrfs_shared_data_ref); 567 } else { 568 key.type = BTRFS_EXTENT_DATA_REF_KEY; 569 key.offset = hash_extent_data_ref(root_objectid, 570 owner, offset); 571 size = sizeof(struct btrfs_extent_data_ref); 572 } 573 574 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 575 if (ret && ret != -EEXIST) 576 goto fail; 577 578 leaf = path->nodes[0]; 579 if (parent) { 580 struct btrfs_shared_data_ref *ref; 581 ref = btrfs_item_ptr(leaf, path->slots[0], 582 struct btrfs_shared_data_ref); 583 if (ret == 0) { 584 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_shared_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 589 } 590 } else { 591 struct btrfs_extent_data_ref *ref; 592 while (ret == -EEXIST) { 593 ref = btrfs_item_ptr(leaf, path->slots[0], 594 struct btrfs_extent_data_ref); 595 if (match_extent_data_ref(leaf, ref, root_objectid, 596 owner, offset)) 597 break; 598 btrfs_release_path(path); 599 key.offset++; 600 ret = btrfs_insert_empty_item(trans, root, path, &key, 601 size); 602 if (ret && ret != -EEXIST) 603 goto fail; 604 605 leaf = path->nodes[0]; 606 } 607 ref = btrfs_item_ptr(leaf, path->slots[0], 608 struct btrfs_extent_data_ref); 609 if (ret == 0) { 610 btrfs_set_extent_data_ref_root(leaf, ref, 611 root_objectid); 612 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 613 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 614 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 615 } else { 616 num_refs = btrfs_extent_data_ref_count(leaf, ref); 617 num_refs += refs_to_add; 618 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 619 } 620 } 621 btrfs_mark_buffer_dirty(leaf); 622 ret = 0; 623 fail: 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 629 struct btrfs_path *path, 630 int refs_to_drop, int *last_ref) 631 { 632 struct btrfs_key key; 633 struct btrfs_extent_data_ref *ref1 = NULL; 634 struct btrfs_shared_data_ref *ref2 = NULL; 635 struct extent_buffer *leaf; 636 u32 num_refs = 0; 637 int ret = 0; 638 639 leaf = path->nodes[0]; 640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 641 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 643 ref1 = btrfs_item_ptr(leaf, path->slots[0], 644 struct btrfs_extent_data_ref); 645 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 646 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 647 ref2 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_shared_data_ref); 649 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 650 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 651 btrfs_print_v0_err(trans->fs_info); 652 btrfs_abort_transaction(trans, -EINVAL); 653 return -EINVAL; 654 } else { 655 BUG(); 656 } 657 658 BUG_ON(num_refs < refs_to_drop); 659 num_refs -= refs_to_drop; 660 661 if (num_refs == 0) { 662 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 663 *last_ref = 1; 664 } else { 665 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 666 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 667 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 668 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 669 btrfs_mark_buffer_dirty(leaf); 670 } 671 return ret; 672 } 673 674 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 675 struct btrfs_extent_inline_ref *iref) 676 { 677 struct btrfs_key key; 678 struct extent_buffer *leaf; 679 struct btrfs_extent_data_ref *ref1; 680 struct btrfs_shared_data_ref *ref2; 681 u32 num_refs = 0; 682 int type; 683 684 leaf = path->nodes[0]; 685 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 686 687 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 688 if (iref) { 689 /* 690 * If type is invalid, we should have bailed out earlier than 691 * this call. 692 */ 693 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 694 ASSERT(type != BTRFS_REF_TYPE_INVALID); 695 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 696 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 697 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 698 } else { 699 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 700 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 701 } 702 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 703 ref1 = btrfs_item_ptr(leaf, path->slots[0], 704 struct btrfs_extent_data_ref); 705 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 706 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 707 ref2 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_shared_data_ref); 709 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 710 } else { 711 WARN_ON(1); 712 } 713 return num_refs; 714 } 715 716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 717 struct btrfs_path *path, 718 u64 bytenr, u64 parent, 719 u64 root_objectid) 720 { 721 struct btrfs_root *root = trans->fs_info->extent_root; 722 struct btrfs_key key; 723 int ret; 724 725 key.objectid = bytenr; 726 if (parent) { 727 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 728 key.offset = parent; 729 } else { 730 key.type = BTRFS_TREE_BLOCK_REF_KEY; 731 key.offset = root_objectid; 732 } 733 734 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 735 if (ret > 0) 736 ret = -ENOENT; 737 return ret; 738 } 739 740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 741 struct btrfs_path *path, 742 u64 bytenr, u64 parent, 743 u64 root_objectid) 744 { 745 struct btrfs_key key; 746 int ret; 747 748 key.objectid = bytenr; 749 if (parent) { 750 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 751 key.offset = parent; 752 } else { 753 key.type = BTRFS_TREE_BLOCK_REF_KEY; 754 key.offset = root_objectid; 755 } 756 757 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 758 path, &key, 0); 759 btrfs_release_path(path); 760 return ret; 761 } 762 763 static inline int extent_ref_type(u64 parent, u64 owner) 764 { 765 int type; 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (parent > 0) 768 type = BTRFS_SHARED_BLOCK_REF_KEY; 769 else 770 type = BTRFS_TREE_BLOCK_REF_KEY; 771 } else { 772 if (parent > 0) 773 type = BTRFS_SHARED_DATA_REF_KEY; 774 else 775 type = BTRFS_EXTENT_DATA_REF_KEY; 776 } 777 return type; 778 } 779 780 static int find_next_key(struct btrfs_path *path, int level, 781 struct btrfs_key *key) 782 783 { 784 for (; level < BTRFS_MAX_LEVEL; level++) { 785 if (!path->nodes[level]) 786 break; 787 if (path->slots[level] + 1 >= 788 btrfs_header_nritems(path->nodes[level])) 789 continue; 790 if (level == 0) 791 btrfs_item_key_to_cpu(path->nodes[level], key, 792 path->slots[level] + 1); 793 else 794 btrfs_node_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 return 0; 797 } 798 return 1; 799 } 800 801 /* 802 * look for inline back ref. if back ref is found, *ref_ret is set 803 * to the address of inline back ref, and 0 is returned. 804 * 805 * if back ref isn't found, *ref_ret is set to the address where it 806 * should be inserted, and -ENOENT is returned. 807 * 808 * if insert is true and there are too many inline back refs, the path 809 * points to the extent item, and -EAGAIN is returned. 810 * 811 * NOTE: inline back refs are ordered in the same way that back ref 812 * items in the tree are ordered. 813 */ 814 static noinline_for_stack 815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 816 struct btrfs_path *path, 817 struct btrfs_extent_inline_ref **ref_ret, 818 u64 bytenr, u64 num_bytes, 819 u64 parent, u64 root_objectid, 820 u64 owner, u64 offset, int insert) 821 { 822 struct btrfs_fs_info *fs_info = trans->fs_info; 823 struct btrfs_root *root = fs_info->extent_root; 824 struct btrfs_key key; 825 struct extent_buffer *leaf; 826 struct btrfs_extent_item *ei; 827 struct btrfs_extent_inline_ref *iref; 828 u64 flags; 829 u64 item_size; 830 unsigned long ptr; 831 unsigned long end; 832 int extra_size; 833 int type; 834 int want; 835 int ret; 836 int err = 0; 837 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 838 int needed; 839 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 844 want = extent_ref_type(parent, owner); 845 if (insert) { 846 extra_size = btrfs_extent_inline_ref_size(want); 847 path->keep_locks = 1; 848 } else 849 extra_size = -1; 850 851 /* 852 * Owner is our level, so we can just add one to get the level for the 853 * block we are interested in. 854 */ 855 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 856 key.type = BTRFS_METADATA_ITEM_KEY; 857 key.offset = owner; 858 } 859 860 again: 861 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 862 if (ret < 0) { 863 err = ret; 864 goto out; 865 } 866 867 /* 868 * We may be a newly converted file system which still has the old fat 869 * extent entries for metadata, so try and see if we have one of those. 870 */ 871 if (ret > 0 && skinny_metadata) { 872 skinny_metadata = false; 873 if (path->slots[0]) { 874 path->slots[0]--; 875 btrfs_item_key_to_cpu(path->nodes[0], &key, 876 path->slots[0]); 877 if (key.objectid == bytenr && 878 key.type == BTRFS_EXTENT_ITEM_KEY && 879 key.offset == num_bytes) 880 ret = 0; 881 } 882 if (ret) { 883 key.objectid = bytenr; 884 key.type = BTRFS_EXTENT_ITEM_KEY; 885 key.offset = num_bytes; 886 btrfs_release_path(path); 887 goto again; 888 } 889 } 890 891 if (ret && !insert) { 892 err = -ENOENT; 893 goto out; 894 } else if (WARN_ON(ret)) { 895 err = -EIO; 896 goto out; 897 } 898 899 leaf = path->nodes[0]; 900 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 901 if (unlikely(item_size < sizeof(*ei))) { 902 err = -EINVAL; 903 btrfs_print_v0_err(fs_info); 904 btrfs_abort_transaction(trans, err); 905 goto out; 906 } 907 908 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 909 flags = btrfs_extent_flags(leaf, ei); 910 911 ptr = (unsigned long)(ei + 1); 912 end = (unsigned long)ei + item_size; 913 914 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 915 ptr += sizeof(struct btrfs_tree_block_info); 916 BUG_ON(ptr > end); 917 } 918 919 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 920 needed = BTRFS_REF_TYPE_DATA; 921 else 922 needed = BTRFS_REF_TYPE_BLOCK; 923 924 err = -ENOENT; 925 while (1) { 926 if (ptr >= end) { 927 WARN_ON(ptr > end); 928 break; 929 } 930 iref = (struct btrfs_extent_inline_ref *)ptr; 931 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 932 if (type == BTRFS_REF_TYPE_INVALID) { 933 err = -EUCLEAN; 934 goto out; 935 } 936 937 if (want < type) 938 break; 939 if (want > type) { 940 ptr += btrfs_extent_inline_ref_size(type); 941 continue; 942 } 943 944 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 945 struct btrfs_extent_data_ref *dref; 946 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 947 if (match_extent_data_ref(leaf, dref, root_objectid, 948 owner, offset)) { 949 err = 0; 950 break; 951 } 952 if (hash_extent_data_ref_item(leaf, dref) < 953 hash_extent_data_ref(root_objectid, owner, offset)) 954 break; 955 } else { 956 u64 ref_offset; 957 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 958 if (parent > 0) { 959 if (parent == ref_offset) { 960 err = 0; 961 break; 962 } 963 if (ref_offset < parent) 964 break; 965 } else { 966 if (root_objectid == ref_offset) { 967 err = 0; 968 break; 969 } 970 if (ref_offset < root_objectid) 971 break; 972 } 973 } 974 ptr += btrfs_extent_inline_ref_size(type); 975 } 976 if (err == -ENOENT && insert) { 977 if (item_size + extra_size >= 978 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 979 err = -EAGAIN; 980 goto out; 981 } 982 /* 983 * To add new inline back ref, we have to make sure 984 * there is no corresponding back ref item. 985 * For simplicity, we just do not add new inline back 986 * ref if there is any kind of item for this block 987 */ 988 if (find_next_key(path, 0, &key) == 0 && 989 key.objectid == bytenr && 990 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 991 err = -EAGAIN; 992 goto out; 993 } 994 } 995 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 996 out: 997 if (insert) { 998 path->keep_locks = 0; 999 btrfs_unlock_up_safe(path, 1); 1000 } 1001 return err; 1002 } 1003 1004 /* 1005 * helper to add new inline back ref 1006 */ 1007 static noinline_for_stack 1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1009 struct btrfs_path *path, 1010 struct btrfs_extent_inline_ref *iref, 1011 u64 parent, u64 root_objectid, 1012 u64 owner, u64 offset, int refs_to_add, 1013 struct btrfs_delayed_extent_op *extent_op) 1014 { 1015 struct extent_buffer *leaf; 1016 struct btrfs_extent_item *ei; 1017 unsigned long ptr; 1018 unsigned long end; 1019 unsigned long item_offset; 1020 u64 refs; 1021 int size; 1022 int type; 1023 1024 leaf = path->nodes[0]; 1025 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1026 item_offset = (unsigned long)iref - (unsigned long)ei; 1027 1028 type = extent_ref_type(parent, owner); 1029 size = btrfs_extent_inline_ref_size(type); 1030 1031 btrfs_extend_item(path, size); 1032 1033 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1034 refs = btrfs_extent_refs(leaf, ei); 1035 refs += refs_to_add; 1036 btrfs_set_extent_refs(leaf, ei, refs); 1037 if (extent_op) 1038 __run_delayed_extent_op(extent_op, leaf, ei); 1039 1040 ptr = (unsigned long)ei + item_offset; 1041 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1042 if (ptr < end - size) 1043 memmove_extent_buffer(leaf, ptr + size, ptr, 1044 end - size - ptr); 1045 1046 iref = (struct btrfs_extent_inline_ref *)ptr; 1047 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1048 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1049 struct btrfs_extent_data_ref *dref; 1050 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1051 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1052 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1053 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1054 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1055 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1056 struct btrfs_shared_data_ref *sref; 1057 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1058 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1059 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1060 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1061 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1062 } else { 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 } 1067 1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1069 struct btrfs_path *path, 1070 struct btrfs_extent_inline_ref **ref_ret, 1071 u64 bytenr, u64 num_bytes, u64 parent, 1072 u64 root_objectid, u64 owner, u64 offset) 1073 { 1074 int ret; 1075 1076 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1077 num_bytes, parent, root_objectid, 1078 owner, offset, 0); 1079 if (ret != -ENOENT) 1080 return ret; 1081 1082 btrfs_release_path(path); 1083 *ref_ret = NULL; 1084 1085 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1086 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1087 root_objectid); 1088 } else { 1089 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1090 root_objectid, owner, offset); 1091 } 1092 return ret; 1093 } 1094 1095 /* 1096 * helper to update/remove inline back ref 1097 */ 1098 static noinline_for_stack 1099 void update_inline_extent_backref(struct btrfs_path *path, 1100 struct btrfs_extent_inline_ref *iref, 1101 int refs_to_mod, 1102 struct btrfs_delayed_extent_op *extent_op, 1103 int *last_ref) 1104 { 1105 struct extent_buffer *leaf = path->nodes[0]; 1106 struct btrfs_extent_item *ei; 1107 struct btrfs_extent_data_ref *dref = NULL; 1108 struct btrfs_shared_data_ref *sref = NULL; 1109 unsigned long ptr; 1110 unsigned long end; 1111 u32 item_size; 1112 int size; 1113 int type; 1114 u64 refs; 1115 1116 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1117 refs = btrfs_extent_refs(leaf, ei); 1118 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1119 refs += refs_to_mod; 1120 btrfs_set_extent_refs(leaf, ei, refs); 1121 if (extent_op) 1122 __run_delayed_extent_op(extent_op, leaf, ei); 1123 1124 /* 1125 * If type is invalid, we should have bailed out after 1126 * lookup_inline_extent_backref(). 1127 */ 1128 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1129 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1130 1131 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1132 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1133 refs = btrfs_extent_data_ref_count(leaf, dref); 1134 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1135 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1136 refs = btrfs_shared_data_ref_count(leaf, sref); 1137 } else { 1138 refs = 1; 1139 BUG_ON(refs_to_mod != -1); 1140 } 1141 1142 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1143 refs += refs_to_mod; 1144 1145 if (refs > 0) { 1146 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1147 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1148 else 1149 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1150 } else { 1151 *last_ref = 1; 1152 size = btrfs_extent_inline_ref_size(type); 1153 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1154 ptr = (unsigned long)iref; 1155 end = (unsigned long)ei + item_size; 1156 if (ptr + size < end) 1157 memmove_extent_buffer(leaf, ptr, ptr + size, 1158 end - ptr - size); 1159 item_size -= size; 1160 btrfs_truncate_item(path, item_size, 1); 1161 } 1162 btrfs_mark_buffer_dirty(leaf); 1163 } 1164 1165 static noinline_for_stack 1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1167 struct btrfs_path *path, 1168 u64 bytenr, u64 num_bytes, u64 parent, 1169 u64 root_objectid, u64 owner, 1170 u64 offset, int refs_to_add, 1171 struct btrfs_delayed_extent_op *extent_op) 1172 { 1173 struct btrfs_extent_inline_ref *iref; 1174 int ret; 1175 1176 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1177 num_bytes, parent, root_objectid, 1178 owner, offset, 1); 1179 if (ret == 0) { 1180 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1181 update_inline_extent_backref(path, iref, refs_to_add, 1182 extent_op, NULL); 1183 } else if (ret == -ENOENT) { 1184 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1185 root_objectid, owner, offset, 1186 refs_to_add, extent_op); 1187 ret = 0; 1188 } 1189 return ret; 1190 } 1191 1192 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1193 struct btrfs_path *path, 1194 struct btrfs_extent_inline_ref *iref, 1195 int refs_to_drop, int is_data, int *last_ref) 1196 { 1197 int ret = 0; 1198 1199 BUG_ON(!is_data && refs_to_drop != 1); 1200 if (iref) { 1201 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1202 last_ref); 1203 } else if (is_data) { 1204 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1205 last_ref); 1206 } else { 1207 *last_ref = 1; 1208 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1209 } 1210 return ret; 1211 } 1212 1213 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1214 u64 *discarded_bytes) 1215 { 1216 int j, ret = 0; 1217 u64 bytes_left, end; 1218 u64 aligned_start = ALIGN(start, 1 << 9); 1219 1220 if (WARN_ON(start != aligned_start)) { 1221 len -= aligned_start - start; 1222 len = round_down(len, 1 << 9); 1223 start = aligned_start; 1224 } 1225 1226 *discarded_bytes = 0; 1227 1228 if (!len) 1229 return 0; 1230 1231 end = start + len; 1232 bytes_left = len; 1233 1234 /* Skip any superblocks on this device. */ 1235 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1236 u64 sb_start = btrfs_sb_offset(j); 1237 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1238 u64 size = sb_start - start; 1239 1240 if (!in_range(sb_start, start, bytes_left) && 1241 !in_range(sb_end, start, bytes_left) && 1242 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1243 continue; 1244 1245 /* 1246 * Superblock spans beginning of range. Adjust start and 1247 * try again. 1248 */ 1249 if (sb_start <= start) { 1250 start += sb_end - start; 1251 if (start > end) { 1252 bytes_left = 0; 1253 break; 1254 } 1255 bytes_left = end - start; 1256 continue; 1257 } 1258 1259 if (size) { 1260 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1261 GFP_NOFS, 0); 1262 if (!ret) 1263 *discarded_bytes += size; 1264 else if (ret != -EOPNOTSUPP) 1265 return ret; 1266 } 1267 1268 start = sb_end; 1269 if (start > end) { 1270 bytes_left = 0; 1271 break; 1272 } 1273 bytes_left = end - start; 1274 } 1275 1276 if (bytes_left) { 1277 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1278 GFP_NOFS, 0); 1279 if (!ret) 1280 *discarded_bytes += bytes_left; 1281 } 1282 return ret; 1283 } 1284 1285 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1286 u64 num_bytes, u64 *actual_bytes) 1287 { 1288 int ret = 0; 1289 u64 discarded_bytes = 0; 1290 u64 end = bytenr + num_bytes; 1291 u64 cur = bytenr; 1292 struct btrfs_bio *bbio = NULL; 1293 1294 1295 /* 1296 * Avoid races with device replace and make sure our bbio has devices 1297 * associated to its stripes that don't go away while we are discarding. 1298 */ 1299 btrfs_bio_counter_inc_blocked(fs_info); 1300 while (cur < end) { 1301 struct btrfs_bio_stripe *stripe; 1302 int i; 1303 1304 num_bytes = end - cur; 1305 /* Tell the block device(s) that the sectors can be discarded */ 1306 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1307 &num_bytes, &bbio, 0); 1308 /* 1309 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1310 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1311 * thus we can't continue anyway. 1312 */ 1313 if (ret < 0) 1314 goto out; 1315 1316 stripe = bbio->stripes; 1317 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1318 u64 bytes; 1319 struct request_queue *req_q; 1320 1321 if (!stripe->dev->bdev) { 1322 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1323 continue; 1324 } 1325 req_q = bdev_get_queue(stripe->dev->bdev); 1326 if (!blk_queue_discard(req_q)) 1327 continue; 1328 1329 ret = btrfs_issue_discard(stripe->dev->bdev, 1330 stripe->physical, 1331 stripe->length, 1332 &bytes); 1333 if (!ret) { 1334 discarded_bytes += bytes; 1335 } else if (ret != -EOPNOTSUPP) { 1336 /* 1337 * Logic errors or -ENOMEM, or -EIO, but 1338 * unlikely to happen. 1339 * 1340 * And since there are two loops, explicitly 1341 * go to out to avoid confusion. 1342 */ 1343 btrfs_put_bbio(bbio); 1344 goto out; 1345 } 1346 1347 /* 1348 * Just in case we get back EOPNOTSUPP for some reason, 1349 * just ignore the return value so we don't screw up 1350 * people calling discard_extent. 1351 */ 1352 ret = 0; 1353 } 1354 btrfs_put_bbio(bbio); 1355 cur += num_bytes; 1356 } 1357 out: 1358 btrfs_bio_counter_dec(fs_info); 1359 1360 if (actual_bytes) 1361 *actual_bytes = discarded_bytes; 1362 1363 1364 if (ret == -EOPNOTSUPP) 1365 ret = 0; 1366 return ret; 1367 } 1368 1369 /* Can return -ENOMEM */ 1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_ref *generic_ref) 1372 { 1373 struct btrfs_fs_info *fs_info = trans->fs_info; 1374 int old_ref_mod, new_ref_mod; 1375 int ret; 1376 1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1378 generic_ref->action); 1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1381 1382 if (generic_ref->type == BTRFS_REF_METADATA) 1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1384 NULL, &old_ref_mod, &new_ref_mod); 1385 else 1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1387 &old_ref_mod, &new_ref_mod); 1388 1389 btrfs_ref_tree_mod(fs_info, generic_ref); 1390 1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1392 sub_pinned_bytes(fs_info, generic_ref); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * __btrfs_inc_extent_ref - insert backreference for a given extent 1399 * 1400 * @trans: Handle of transaction 1401 * 1402 * @node: The delayed ref node used to get the bytenr/length for 1403 * extent whose references are incremented. 1404 * 1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1407 * bytenr of the parent block. Since new extents are always 1408 * created with indirect references, this will only be the case 1409 * when relocating a shared extent. In that case, root_objectid 1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1411 * be 0 1412 * 1413 * @root_objectid: The id of the root where this modification has originated, 1414 * this can be either one of the well-known metadata trees or 1415 * the subvolume id which references this extent. 1416 * 1417 * @owner: For data extents it is the inode number of the owning file. 1418 * For metadata extents this parameter holds the level in the 1419 * tree of the extent. 1420 * 1421 * @offset: For metadata extents the offset is ignored and is currently 1422 * always passed as 0. For data extents it is the fileoffset 1423 * this extent belongs to. 1424 * 1425 * @refs_to_add Number of references to add 1426 * 1427 * @extent_op Pointer to a structure, holding information necessary when 1428 * updating a tree block's flags 1429 * 1430 */ 1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1432 struct btrfs_delayed_ref_node *node, 1433 u64 parent, u64 root_objectid, 1434 u64 owner, u64 offset, int refs_to_add, 1435 struct btrfs_delayed_extent_op *extent_op) 1436 { 1437 struct btrfs_path *path; 1438 struct extent_buffer *leaf; 1439 struct btrfs_extent_item *item; 1440 struct btrfs_key key; 1441 u64 bytenr = node->bytenr; 1442 u64 num_bytes = node->num_bytes; 1443 u64 refs; 1444 int ret; 1445 1446 path = btrfs_alloc_path(); 1447 if (!path) 1448 return -ENOMEM; 1449 1450 path->leave_spinning = 1; 1451 /* this will setup the path even if it fails to insert the back ref */ 1452 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1453 parent, root_objectid, owner, 1454 offset, refs_to_add, extent_op); 1455 if ((ret < 0 && ret != -EAGAIN) || !ret) 1456 goto out; 1457 1458 /* 1459 * Ok we had -EAGAIN which means we didn't have space to insert and 1460 * inline extent ref, so just update the reference count and add a 1461 * normal backref. 1462 */ 1463 leaf = path->nodes[0]; 1464 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1465 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1466 refs = btrfs_extent_refs(leaf, item); 1467 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1468 if (extent_op) 1469 __run_delayed_extent_op(extent_op, leaf, item); 1470 1471 btrfs_mark_buffer_dirty(leaf); 1472 btrfs_release_path(path); 1473 1474 path->leave_spinning = 1; 1475 /* now insert the actual backref */ 1476 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1477 BUG_ON(refs_to_add != 1); 1478 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1479 root_objectid); 1480 } else { 1481 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1482 root_objectid, owner, offset, 1483 refs_to_add); 1484 } 1485 if (ret) 1486 btrfs_abort_transaction(trans, ret); 1487 out: 1488 btrfs_free_path(path); 1489 return ret; 1490 } 1491 1492 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1493 struct btrfs_delayed_ref_node *node, 1494 struct btrfs_delayed_extent_op *extent_op, 1495 int insert_reserved) 1496 { 1497 int ret = 0; 1498 struct btrfs_delayed_data_ref *ref; 1499 struct btrfs_key ins; 1500 u64 parent = 0; 1501 u64 ref_root = 0; 1502 u64 flags = 0; 1503 1504 ins.objectid = node->bytenr; 1505 ins.offset = node->num_bytes; 1506 ins.type = BTRFS_EXTENT_ITEM_KEY; 1507 1508 ref = btrfs_delayed_node_to_data_ref(node); 1509 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1510 1511 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1512 parent = ref->parent; 1513 ref_root = ref->root; 1514 1515 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1516 if (extent_op) 1517 flags |= extent_op->flags_to_set; 1518 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1519 flags, ref->objectid, 1520 ref->offset, &ins, 1521 node->ref_mod); 1522 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1523 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1524 ref->objectid, ref->offset, 1525 node->ref_mod, extent_op); 1526 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1527 ret = __btrfs_free_extent(trans, node, parent, 1528 ref_root, ref->objectid, 1529 ref->offset, node->ref_mod, 1530 extent_op); 1531 } else { 1532 BUG(); 1533 } 1534 return ret; 1535 } 1536 1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1538 struct extent_buffer *leaf, 1539 struct btrfs_extent_item *ei) 1540 { 1541 u64 flags = btrfs_extent_flags(leaf, ei); 1542 if (extent_op->update_flags) { 1543 flags |= extent_op->flags_to_set; 1544 btrfs_set_extent_flags(leaf, ei, flags); 1545 } 1546 1547 if (extent_op->update_key) { 1548 struct btrfs_tree_block_info *bi; 1549 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1550 bi = (struct btrfs_tree_block_info *)(ei + 1); 1551 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1552 } 1553 } 1554 1555 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1556 struct btrfs_delayed_ref_head *head, 1557 struct btrfs_delayed_extent_op *extent_op) 1558 { 1559 struct btrfs_fs_info *fs_info = trans->fs_info; 1560 struct btrfs_key key; 1561 struct btrfs_path *path; 1562 struct btrfs_extent_item *ei; 1563 struct extent_buffer *leaf; 1564 u32 item_size; 1565 int ret; 1566 int err = 0; 1567 int metadata = !extent_op->is_data; 1568 1569 if (TRANS_ABORTED(trans)) 1570 return 0; 1571 1572 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1573 metadata = 0; 1574 1575 path = btrfs_alloc_path(); 1576 if (!path) 1577 return -ENOMEM; 1578 1579 key.objectid = head->bytenr; 1580 1581 if (metadata) { 1582 key.type = BTRFS_METADATA_ITEM_KEY; 1583 key.offset = extent_op->level; 1584 } else { 1585 key.type = BTRFS_EXTENT_ITEM_KEY; 1586 key.offset = head->num_bytes; 1587 } 1588 1589 again: 1590 path->leave_spinning = 1; 1591 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1592 if (ret < 0) { 1593 err = ret; 1594 goto out; 1595 } 1596 if (ret > 0) { 1597 if (metadata) { 1598 if (path->slots[0] > 0) { 1599 path->slots[0]--; 1600 btrfs_item_key_to_cpu(path->nodes[0], &key, 1601 path->slots[0]); 1602 if (key.objectid == head->bytenr && 1603 key.type == BTRFS_EXTENT_ITEM_KEY && 1604 key.offset == head->num_bytes) 1605 ret = 0; 1606 } 1607 if (ret > 0) { 1608 btrfs_release_path(path); 1609 metadata = 0; 1610 1611 key.objectid = head->bytenr; 1612 key.offset = head->num_bytes; 1613 key.type = BTRFS_EXTENT_ITEM_KEY; 1614 goto again; 1615 } 1616 } else { 1617 err = -EIO; 1618 goto out; 1619 } 1620 } 1621 1622 leaf = path->nodes[0]; 1623 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1624 1625 if (unlikely(item_size < sizeof(*ei))) { 1626 err = -EINVAL; 1627 btrfs_print_v0_err(fs_info); 1628 btrfs_abort_transaction(trans, err); 1629 goto out; 1630 } 1631 1632 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1633 __run_delayed_extent_op(extent_op, leaf, ei); 1634 1635 btrfs_mark_buffer_dirty(leaf); 1636 out: 1637 btrfs_free_path(path); 1638 return err; 1639 } 1640 1641 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1642 struct btrfs_delayed_ref_node *node, 1643 struct btrfs_delayed_extent_op *extent_op, 1644 int insert_reserved) 1645 { 1646 int ret = 0; 1647 struct btrfs_delayed_tree_ref *ref; 1648 u64 parent = 0; 1649 u64 ref_root = 0; 1650 1651 ref = btrfs_delayed_node_to_tree_ref(node); 1652 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1653 1654 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1655 parent = ref->parent; 1656 ref_root = ref->root; 1657 1658 if (node->ref_mod != 1) { 1659 btrfs_err(trans->fs_info, 1660 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1661 node->bytenr, node->ref_mod, node->action, ref_root, 1662 parent); 1663 return -EIO; 1664 } 1665 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1666 BUG_ON(!extent_op || !extent_op->update_flags); 1667 ret = alloc_reserved_tree_block(trans, node, extent_op); 1668 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1669 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1670 ref->level, 0, 1, extent_op); 1671 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1672 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1673 ref->level, 0, 1, extent_op); 1674 } else { 1675 BUG(); 1676 } 1677 return ret; 1678 } 1679 1680 /* helper function to actually process a single delayed ref entry */ 1681 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1682 struct btrfs_delayed_ref_node *node, 1683 struct btrfs_delayed_extent_op *extent_op, 1684 int insert_reserved) 1685 { 1686 int ret = 0; 1687 1688 if (TRANS_ABORTED(trans)) { 1689 if (insert_reserved) 1690 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1691 return 0; 1692 } 1693 1694 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1695 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1696 ret = run_delayed_tree_ref(trans, node, extent_op, 1697 insert_reserved); 1698 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1699 node->type == BTRFS_SHARED_DATA_REF_KEY) 1700 ret = run_delayed_data_ref(trans, node, extent_op, 1701 insert_reserved); 1702 else 1703 BUG(); 1704 if (ret && insert_reserved) 1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1706 return ret; 1707 } 1708 1709 static inline struct btrfs_delayed_ref_node * 1710 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1711 { 1712 struct btrfs_delayed_ref_node *ref; 1713 1714 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1715 return NULL; 1716 1717 /* 1718 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1719 * This is to prevent a ref count from going down to zero, which deletes 1720 * the extent item from the extent tree, when there still are references 1721 * to add, which would fail because they would not find the extent item. 1722 */ 1723 if (!list_empty(&head->ref_add_list)) 1724 return list_first_entry(&head->ref_add_list, 1725 struct btrfs_delayed_ref_node, add_list); 1726 1727 ref = rb_entry(rb_first_cached(&head->ref_tree), 1728 struct btrfs_delayed_ref_node, ref_node); 1729 ASSERT(list_empty(&ref->add_list)); 1730 return ref; 1731 } 1732 1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1734 struct btrfs_delayed_ref_head *head) 1735 { 1736 spin_lock(&delayed_refs->lock); 1737 head->processing = 0; 1738 delayed_refs->num_heads_ready++; 1739 spin_unlock(&delayed_refs->lock); 1740 btrfs_delayed_ref_unlock(head); 1741 } 1742 1743 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1744 struct btrfs_delayed_ref_head *head) 1745 { 1746 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1747 1748 if (!extent_op) 1749 return NULL; 1750 1751 if (head->must_insert_reserved) { 1752 head->extent_op = NULL; 1753 btrfs_free_delayed_extent_op(extent_op); 1754 return NULL; 1755 } 1756 return extent_op; 1757 } 1758 1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1760 struct btrfs_delayed_ref_head *head) 1761 { 1762 struct btrfs_delayed_extent_op *extent_op; 1763 int ret; 1764 1765 extent_op = cleanup_extent_op(head); 1766 if (!extent_op) 1767 return 0; 1768 head->extent_op = NULL; 1769 spin_unlock(&head->lock); 1770 ret = run_delayed_extent_op(trans, head, extent_op); 1771 btrfs_free_delayed_extent_op(extent_op); 1772 return ret ? ret : 1; 1773 } 1774 1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1776 struct btrfs_delayed_ref_root *delayed_refs, 1777 struct btrfs_delayed_ref_head *head) 1778 { 1779 int nr_items = 1; /* Dropping this ref head update. */ 1780 1781 if (head->total_ref_mod < 0) { 1782 struct btrfs_space_info *space_info; 1783 u64 flags; 1784 1785 if (head->is_data) 1786 flags = BTRFS_BLOCK_GROUP_DATA; 1787 else if (head->is_system) 1788 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1789 else 1790 flags = BTRFS_BLOCK_GROUP_METADATA; 1791 space_info = btrfs_find_space_info(fs_info, flags); 1792 ASSERT(space_info); 1793 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1794 -head->num_bytes, 1795 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1796 1797 /* 1798 * We had csum deletions accounted for in our delayed refs rsv, 1799 * we need to drop the csum leaves for this update from our 1800 * delayed_refs_rsv. 1801 */ 1802 if (head->is_data) { 1803 spin_lock(&delayed_refs->lock); 1804 delayed_refs->pending_csums -= head->num_bytes; 1805 spin_unlock(&delayed_refs->lock); 1806 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1807 head->num_bytes); 1808 } 1809 } 1810 1811 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1812 } 1813 1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1815 struct btrfs_delayed_ref_head *head) 1816 { 1817 1818 struct btrfs_fs_info *fs_info = trans->fs_info; 1819 struct btrfs_delayed_ref_root *delayed_refs; 1820 int ret; 1821 1822 delayed_refs = &trans->transaction->delayed_refs; 1823 1824 ret = run_and_cleanup_extent_op(trans, head); 1825 if (ret < 0) { 1826 unselect_delayed_ref_head(delayed_refs, head); 1827 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1828 return ret; 1829 } else if (ret) { 1830 return ret; 1831 } 1832 1833 /* 1834 * Need to drop our head ref lock and re-acquire the delayed ref lock 1835 * and then re-check to make sure nobody got added. 1836 */ 1837 spin_unlock(&head->lock); 1838 spin_lock(&delayed_refs->lock); 1839 spin_lock(&head->lock); 1840 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1841 spin_unlock(&head->lock); 1842 spin_unlock(&delayed_refs->lock); 1843 return 1; 1844 } 1845 btrfs_delete_ref_head(delayed_refs, head); 1846 spin_unlock(&head->lock); 1847 spin_unlock(&delayed_refs->lock); 1848 1849 if (head->must_insert_reserved) { 1850 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1851 if (head->is_data) { 1852 ret = btrfs_del_csums(trans, fs_info->csum_root, 1853 head->bytenr, head->num_bytes); 1854 } 1855 } 1856 1857 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1858 1859 trace_run_delayed_ref_head(fs_info, head, 0); 1860 btrfs_delayed_ref_unlock(head); 1861 btrfs_put_delayed_ref_head(head); 1862 return 0; 1863 } 1864 1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1866 struct btrfs_trans_handle *trans) 1867 { 1868 struct btrfs_delayed_ref_root *delayed_refs = 1869 &trans->transaction->delayed_refs; 1870 struct btrfs_delayed_ref_head *head = NULL; 1871 int ret; 1872 1873 spin_lock(&delayed_refs->lock); 1874 head = btrfs_select_ref_head(delayed_refs); 1875 if (!head) { 1876 spin_unlock(&delayed_refs->lock); 1877 return head; 1878 } 1879 1880 /* 1881 * Grab the lock that says we are going to process all the refs for 1882 * this head 1883 */ 1884 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1885 spin_unlock(&delayed_refs->lock); 1886 1887 /* 1888 * We may have dropped the spin lock to get the head mutex lock, and 1889 * that might have given someone else time to free the head. If that's 1890 * true, it has been removed from our list and we can move on. 1891 */ 1892 if (ret == -EAGAIN) 1893 head = ERR_PTR(-EAGAIN); 1894 1895 return head; 1896 } 1897 1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1899 struct btrfs_delayed_ref_head *locked_ref, 1900 unsigned long *run_refs) 1901 { 1902 struct btrfs_fs_info *fs_info = trans->fs_info; 1903 struct btrfs_delayed_ref_root *delayed_refs; 1904 struct btrfs_delayed_extent_op *extent_op; 1905 struct btrfs_delayed_ref_node *ref; 1906 int must_insert_reserved = 0; 1907 int ret; 1908 1909 delayed_refs = &trans->transaction->delayed_refs; 1910 1911 lockdep_assert_held(&locked_ref->mutex); 1912 lockdep_assert_held(&locked_ref->lock); 1913 1914 while ((ref = select_delayed_ref(locked_ref))) { 1915 if (ref->seq && 1916 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1917 spin_unlock(&locked_ref->lock); 1918 unselect_delayed_ref_head(delayed_refs, locked_ref); 1919 return -EAGAIN; 1920 } 1921 1922 (*run_refs)++; 1923 ref->in_tree = 0; 1924 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1925 RB_CLEAR_NODE(&ref->ref_node); 1926 if (!list_empty(&ref->add_list)) 1927 list_del(&ref->add_list); 1928 /* 1929 * When we play the delayed ref, also correct the ref_mod on 1930 * head 1931 */ 1932 switch (ref->action) { 1933 case BTRFS_ADD_DELAYED_REF: 1934 case BTRFS_ADD_DELAYED_EXTENT: 1935 locked_ref->ref_mod -= ref->ref_mod; 1936 break; 1937 case BTRFS_DROP_DELAYED_REF: 1938 locked_ref->ref_mod += ref->ref_mod; 1939 break; 1940 default: 1941 WARN_ON(1); 1942 } 1943 atomic_dec(&delayed_refs->num_entries); 1944 1945 /* 1946 * Record the must_insert_reserved flag before we drop the 1947 * spin lock. 1948 */ 1949 must_insert_reserved = locked_ref->must_insert_reserved; 1950 locked_ref->must_insert_reserved = 0; 1951 1952 extent_op = locked_ref->extent_op; 1953 locked_ref->extent_op = NULL; 1954 spin_unlock(&locked_ref->lock); 1955 1956 ret = run_one_delayed_ref(trans, ref, extent_op, 1957 must_insert_reserved); 1958 1959 btrfs_free_delayed_extent_op(extent_op); 1960 if (ret) { 1961 unselect_delayed_ref_head(delayed_refs, locked_ref); 1962 btrfs_put_delayed_ref(ref); 1963 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1964 ret); 1965 return ret; 1966 } 1967 1968 btrfs_put_delayed_ref(ref); 1969 cond_resched(); 1970 1971 spin_lock(&locked_ref->lock); 1972 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1973 } 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Returns 0 on success or if called with an already aborted transaction. 1980 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1981 */ 1982 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1983 unsigned long nr) 1984 { 1985 struct btrfs_fs_info *fs_info = trans->fs_info; 1986 struct btrfs_delayed_ref_root *delayed_refs; 1987 struct btrfs_delayed_ref_head *locked_ref = NULL; 1988 ktime_t start = ktime_get(); 1989 int ret; 1990 unsigned long count = 0; 1991 unsigned long actual_count = 0; 1992 1993 delayed_refs = &trans->transaction->delayed_refs; 1994 do { 1995 if (!locked_ref) { 1996 locked_ref = btrfs_obtain_ref_head(trans); 1997 if (IS_ERR_OR_NULL(locked_ref)) { 1998 if (PTR_ERR(locked_ref) == -EAGAIN) { 1999 continue; 2000 } else { 2001 break; 2002 } 2003 } 2004 count++; 2005 } 2006 /* 2007 * We need to try and merge add/drops of the same ref since we 2008 * can run into issues with relocate dropping the implicit ref 2009 * and then it being added back again before the drop can 2010 * finish. If we merged anything we need to re-loop so we can 2011 * get a good ref. 2012 * Or we can get node references of the same type that weren't 2013 * merged when created due to bumps in the tree mod seq, and 2014 * we need to merge them to prevent adding an inline extent 2015 * backref before dropping it (triggering a BUG_ON at 2016 * insert_inline_extent_backref()). 2017 */ 2018 spin_lock(&locked_ref->lock); 2019 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2020 2021 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2022 &actual_count); 2023 if (ret < 0 && ret != -EAGAIN) { 2024 /* 2025 * Error, btrfs_run_delayed_refs_for_head already 2026 * unlocked everything so just bail out 2027 */ 2028 return ret; 2029 } else if (!ret) { 2030 /* 2031 * Success, perform the usual cleanup of a processed 2032 * head 2033 */ 2034 ret = cleanup_ref_head(trans, locked_ref); 2035 if (ret > 0 ) { 2036 /* We dropped our lock, we need to loop. */ 2037 ret = 0; 2038 continue; 2039 } else if (ret) { 2040 return ret; 2041 } 2042 } 2043 2044 /* 2045 * Either success case or btrfs_run_delayed_refs_for_head 2046 * returned -EAGAIN, meaning we need to select another head 2047 */ 2048 2049 locked_ref = NULL; 2050 cond_resched(); 2051 } while ((nr != -1 && count < nr) || locked_ref); 2052 2053 /* 2054 * We don't want to include ref heads since we can have empty ref heads 2055 * and those will drastically skew our runtime down since we just do 2056 * accounting, no actual extent tree updates. 2057 */ 2058 if (actual_count > 0) { 2059 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2060 u64 avg; 2061 2062 /* 2063 * We weigh the current average higher than our current runtime 2064 * to avoid large swings in the average. 2065 */ 2066 spin_lock(&delayed_refs->lock); 2067 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2068 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2069 spin_unlock(&delayed_refs->lock); 2070 } 2071 return 0; 2072 } 2073 2074 #ifdef SCRAMBLE_DELAYED_REFS 2075 /* 2076 * Normally delayed refs get processed in ascending bytenr order. This 2077 * correlates in most cases to the order added. To expose dependencies on this 2078 * order, we start to process the tree in the middle instead of the beginning 2079 */ 2080 static u64 find_middle(struct rb_root *root) 2081 { 2082 struct rb_node *n = root->rb_node; 2083 struct btrfs_delayed_ref_node *entry; 2084 int alt = 1; 2085 u64 middle; 2086 u64 first = 0, last = 0; 2087 2088 n = rb_first(root); 2089 if (n) { 2090 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2091 first = entry->bytenr; 2092 } 2093 n = rb_last(root); 2094 if (n) { 2095 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2096 last = entry->bytenr; 2097 } 2098 n = root->rb_node; 2099 2100 while (n) { 2101 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2102 WARN_ON(!entry->in_tree); 2103 2104 middle = entry->bytenr; 2105 2106 if (alt) 2107 n = n->rb_left; 2108 else 2109 n = n->rb_right; 2110 2111 alt = 1 - alt; 2112 } 2113 return middle; 2114 } 2115 #endif 2116 2117 /* 2118 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2119 * would require to store the csums for that many bytes. 2120 */ 2121 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2122 { 2123 u64 csum_size; 2124 u64 num_csums_per_leaf; 2125 u64 num_csums; 2126 2127 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2128 num_csums_per_leaf = div64_u64(csum_size, 2129 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2130 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2131 num_csums += num_csums_per_leaf - 1; 2132 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2133 return num_csums; 2134 } 2135 2136 /* 2137 * this starts processing the delayed reference count updates and 2138 * extent insertions we have queued up so far. count can be 2139 * 0, which means to process everything in the tree at the start 2140 * of the run (but not newly added entries), or it can be some target 2141 * number you'd like to process. 2142 * 2143 * Returns 0 on success or if called with an aborted transaction 2144 * Returns <0 on error and aborts the transaction 2145 */ 2146 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2147 unsigned long count) 2148 { 2149 struct btrfs_fs_info *fs_info = trans->fs_info; 2150 struct rb_node *node; 2151 struct btrfs_delayed_ref_root *delayed_refs; 2152 struct btrfs_delayed_ref_head *head; 2153 int ret; 2154 int run_all = count == (unsigned long)-1; 2155 2156 /* We'll clean this up in btrfs_cleanup_transaction */ 2157 if (TRANS_ABORTED(trans)) 2158 return 0; 2159 2160 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2161 return 0; 2162 2163 delayed_refs = &trans->transaction->delayed_refs; 2164 if (count == 0) 2165 count = atomic_read(&delayed_refs->num_entries) * 2; 2166 2167 again: 2168 #ifdef SCRAMBLE_DELAYED_REFS 2169 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2170 #endif 2171 ret = __btrfs_run_delayed_refs(trans, count); 2172 if (ret < 0) { 2173 btrfs_abort_transaction(trans, ret); 2174 return ret; 2175 } 2176 2177 if (run_all) { 2178 btrfs_create_pending_block_groups(trans); 2179 2180 spin_lock(&delayed_refs->lock); 2181 node = rb_first_cached(&delayed_refs->href_root); 2182 if (!node) { 2183 spin_unlock(&delayed_refs->lock); 2184 goto out; 2185 } 2186 head = rb_entry(node, struct btrfs_delayed_ref_head, 2187 href_node); 2188 refcount_inc(&head->refs); 2189 spin_unlock(&delayed_refs->lock); 2190 2191 /* Mutex was contended, block until it's released and retry. */ 2192 mutex_lock(&head->mutex); 2193 mutex_unlock(&head->mutex); 2194 2195 btrfs_put_delayed_ref_head(head); 2196 cond_resched(); 2197 goto again; 2198 } 2199 out: 2200 return 0; 2201 } 2202 2203 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2204 struct extent_buffer *eb, u64 flags, 2205 int level, int is_data) 2206 { 2207 struct btrfs_delayed_extent_op *extent_op; 2208 int ret; 2209 2210 extent_op = btrfs_alloc_delayed_extent_op(); 2211 if (!extent_op) 2212 return -ENOMEM; 2213 2214 extent_op->flags_to_set = flags; 2215 extent_op->update_flags = true; 2216 extent_op->update_key = false; 2217 extent_op->is_data = is_data ? true : false; 2218 extent_op->level = level; 2219 2220 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2221 if (ret) 2222 btrfs_free_delayed_extent_op(extent_op); 2223 return ret; 2224 } 2225 2226 static noinline int check_delayed_ref(struct btrfs_root *root, 2227 struct btrfs_path *path, 2228 u64 objectid, u64 offset, u64 bytenr) 2229 { 2230 struct btrfs_delayed_ref_head *head; 2231 struct btrfs_delayed_ref_node *ref; 2232 struct btrfs_delayed_data_ref *data_ref; 2233 struct btrfs_delayed_ref_root *delayed_refs; 2234 struct btrfs_transaction *cur_trans; 2235 struct rb_node *node; 2236 int ret = 0; 2237 2238 spin_lock(&root->fs_info->trans_lock); 2239 cur_trans = root->fs_info->running_transaction; 2240 if (cur_trans) 2241 refcount_inc(&cur_trans->use_count); 2242 spin_unlock(&root->fs_info->trans_lock); 2243 if (!cur_trans) 2244 return 0; 2245 2246 delayed_refs = &cur_trans->delayed_refs; 2247 spin_lock(&delayed_refs->lock); 2248 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2249 if (!head) { 2250 spin_unlock(&delayed_refs->lock); 2251 btrfs_put_transaction(cur_trans); 2252 return 0; 2253 } 2254 2255 if (!mutex_trylock(&head->mutex)) { 2256 refcount_inc(&head->refs); 2257 spin_unlock(&delayed_refs->lock); 2258 2259 btrfs_release_path(path); 2260 2261 /* 2262 * Mutex was contended, block until it's released and let 2263 * caller try again 2264 */ 2265 mutex_lock(&head->mutex); 2266 mutex_unlock(&head->mutex); 2267 btrfs_put_delayed_ref_head(head); 2268 btrfs_put_transaction(cur_trans); 2269 return -EAGAIN; 2270 } 2271 spin_unlock(&delayed_refs->lock); 2272 2273 spin_lock(&head->lock); 2274 /* 2275 * XXX: We should replace this with a proper search function in the 2276 * future. 2277 */ 2278 for (node = rb_first_cached(&head->ref_tree); node; 2279 node = rb_next(node)) { 2280 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2281 /* If it's a shared ref we know a cross reference exists */ 2282 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2283 ret = 1; 2284 break; 2285 } 2286 2287 data_ref = btrfs_delayed_node_to_data_ref(ref); 2288 2289 /* 2290 * If our ref doesn't match the one we're currently looking at 2291 * then we have a cross reference. 2292 */ 2293 if (data_ref->root != root->root_key.objectid || 2294 data_ref->objectid != objectid || 2295 data_ref->offset != offset) { 2296 ret = 1; 2297 break; 2298 } 2299 } 2300 spin_unlock(&head->lock); 2301 mutex_unlock(&head->mutex); 2302 btrfs_put_transaction(cur_trans); 2303 return ret; 2304 } 2305 2306 static noinline int check_committed_ref(struct btrfs_root *root, 2307 struct btrfs_path *path, 2308 u64 objectid, u64 offset, u64 bytenr) 2309 { 2310 struct btrfs_fs_info *fs_info = root->fs_info; 2311 struct btrfs_root *extent_root = fs_info->extent_root; 2312 struct extent_buffer *leaf; 2313 struct btrfs_extent_data_ref *ref; 2314 struct btrfs_extent_inline_ref *iref; 2315 struct btrfs_extent_item *ei; 2316 struct btrfs_key key; 2317 u32 item_size; 2318 int type; 2319 int ret; 2320 2321 key.objectid = bytenr; 2322 key.offset = (u64)-1; 2323 key.type = BTRFS_EXTENT_ITEM_KEY; 2324 2325 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2326 if (ret < 0) 2327 goto out; 2328 BUG_ON(ret == 0); /* Corruption */ 2329 2330 ret = -ENOENT; 2331 if (path->slots[0] == 0) 2332 goto out; 2333 2334 path->slots[0]--; 2335 leaf = path->nodes[0]; 2336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2337 2338 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2339 goto out; 2340 2341 ret = 1; 2342 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2343 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2344 2345 /* If extent item has more than 1 inline ref then it's shared */ 2346 if (item_size != sizeof(*ei) + 2347 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2348 goto out; 2349 2350 /* If extent created before last snapshot => it's definitely shared */ 2351 if (btrfs_extent_generation(leaf, ei) <= 2352 btrfs_root_last_snapshot(&root->root_item)) 2353 goto out; 2354 2355 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2356 2357 /* If this extent has SHARED_DATA_REF then it's shared */ 2358 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2359 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2360 goto out; 2361 2362 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2363 if (btrfs_extent_refs(leaf, ei) != 2364 btrfs_extent_data_ref_count(leaf, ref) || 2365 btrfs_extent_data_ref_root(leaf, ref) != 2366 root->root_key.objectid || 2367 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2368 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2369 goto out; 2370 2371 ret = 0; 2372 out: 2373 return ret; 2374 } 2375 2376 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2377 u64 bytenr) 2378 { 2379 struct btrfs_path *path; 2380 int ret; 2381 2382 path = btrfs_alloc_path(); 2383 if (!path) 2384 return -ENOMEM; 2385 2386 do { 2387 ret = check_committed_ref(root, path, objectid, 2388 offset, bytenr); 2389 if (ret && ret != -ENOENT) 2390 goto out; 2391 2392 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2393 } while (ret == -EAGAIN); 2394 2395 out: 2396 btrfs_free_path(path); 2397 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2398 WARN_ON(ret > 0); 2399 return ret; 2400 } 2401 2402 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2403 struct btrfs_root *root, 2404 struct extent_buffer *buf, 2405 int full_backref, int inc) 2406 { 2407 struct btrfs_fs_info *fs_info = root->fs_info; 2408 u64 bytenr; 2409 u64 num_bytes; 2410 u64 parent; 2411 u64 ref_root; 2412 u32 nritems; 2413 struct btrfs_key key; 2414 struct btrfs_file_extent_item *fi; 2415 struct btrfs_ref generic_ref = { 0 }; 2416 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2417 int i; 2418 int action; 2419 int level; 2420 int ret = 0; 2421 2422 if (btrfs_is_testing(fs_info)) 2423 return 0; 2424 2425 ref_root = btrfs_header_owner(buf); 2426 nritems = btrfs_header_nritems(buf); 2427 level = btrfs_header_level(buf); 2428 2429 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2430 return 0; 2431 2432 if (full_backref) 2433 parent = buf->start; 2434 else 2435 parent = 0; 2436 if (inc) 2437 action = BTRFS_ADD_DELAYED_REF; 2438 else 2439 action = BTRFS_DROP_DELAYED_REF; 2440 2441 for (i = 0; i < nritems; i++) { 2442 if (level == 0) { 2443 btrfs_item_key_to_cpu(buf, &key, i); 2444 if (key.type != BTRFS_EXTENT_DATA_KEY) 2445 continue; 2446 fi = btrfs_item_ptr(buf, i, 2447 struct btrfs_file_extent_item); 2448 if (btrfs_file_extent_type(buf, fi) == 2449 BTRFS_FILE_EXTENT_INLINE) 2450 continue; 2451 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2452 if (bytenr == 0) 2453 continue; 2454 2455 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2456 key.offset -= btrfs_file_extent_offset(buf, fi); 2457 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2458 num_bytes, parent); 2459 generic_ref.real_root = root->root_key.objectid; 2460 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2461 key.offset); 2462 generic_ref.skip_qgroup = for_reloc; 2463 if (inc) 2464 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2465 else 2466 ret = btrfs_free_extent(trans, &generic_ref); 2467 if (ret) 2468 goto fail; 2469 } else { 2470 bytenr = btrfs_node_blockptr(buf, i); 2471 num_bytes = fs_info->nodesize; 2472 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2473 num_bytes, parent); 2474 generic_ref.real_root = root->root_key.objectid; 2475 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2476 generic_ref.skip_qgroup = for_reloc; 2477 if (inc) 2478 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2479 else 2480 ret = btrfs_free_extent(trans, &generic_ref); 2481 if (ret) 2482 goto fail; 2483 } 2484 } 2485 return 0; 2486 fail: 2487 return ret; 2488 } 2489 2490 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2491 struct extent_buffer *buf, int full_backref) 2492 { 2493 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2494 } 2495 2496 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2497 struct extent_buffer *buf, int full_backref) 2498 { 2499 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2500 } 2501 2502 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2503 { 2504 struct btrfs_block_group *block_group; 2505 int readonly = 0; 2506 2507 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2508 if (!block_group || block_group->ro) 2509 readonly = 1; 2510 if (block_group) 2511 btrfs_put_block_group(block_group); 2512 return readonly; 2513 } 2514 2515 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2516 { 2517 struct btrfs_fs_info *fs_info = root->fs_info; 2518 u64 flags; 2519 u64 ret; 2520 2521 if (data) 2522 flags = BTRFS_BLOCK_GROUP_DATA; 2523 else if (root == fs_info->chunk_root) 2524 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2525 else 2526 flags = BTRFS_BLOCK_GROUP_METADATA; 2527 2528 ret = btrfs_get_alloc_profile(fs_info, flags); 2529 return ret; 2530 } 2531 2532 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2533 { 2534 struct btrfs_block_group *cache; 2535 u64 bytenr; 2536 2537 spin_lock(&fs_info->block_group_cache_lock); 2538 bytenr = fs_info->first_logical_byte; 2539 spin_unlock(&fs_info->block_group_cache_lock); 2540 2541 if (bytenr < (u64)-1) 2542 return bytenr; 2543 2544 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2545 if (!cache) 2546 return 0; 2547 2548 bytenr = cache->start; 2549 btrfs_put_block_group(cache); 2550 2551 return bytenr; 2552 } 2553 2554 static int pin_down_extent(struct btrfs_trans_handle *trans, 2555 struct btrfs_block_group *cache, 2556 u64 bytenr, u64 num_bytes, int reserved) 2557 { 2558 struct btrfs_fs_info *fs_info = cache->fs_info; 2559 2560 spin_lock(&cache->space_info->lock); 2561 spin_lock(&cache->lock); 2562 cache->pinned += num_bytes; 2563 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2564 num_bytes); 2565 if (reserved) { 2566 cache->reserved -= num_bytes; 2567 cache->space_info->bytes_reserved -= num_bytes; 2568 } 2569 spin_unlock(&cache->lock); 2570 spin_unlock(&cache->space_info->lock); 2571 2572 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2573 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2574 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2575 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2576 return 0; 2577 } 2578 2579 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2580 u64 bytenr, u64 num_bytes, int reserved) 2581 { 2582 struct btrfs_block_group *cache; 2583 2584 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2585 BUG_ON(!cache); /* Logic error */ 2586 2587 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2588 2589 btrfs_put_block_group(cache); 2590 return 0; 2591 } 2592 2593 /* 2594 * this function must be called within transaction 2595 */ 2596 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2597 u64 bytenr, u64 num_bytes) 2598 { 2599 struct btrfs_block_group *cache; 2600 int ret; 2601 2602 btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes); 2603 2604 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2605 if (!cache) 2606 return -EINVAL; 2607 2608 /* 2609 * pull in the free space cache (if any) so that our pin 2610 * removes the free space from the cache. We have load_only set 2611 * to one because the slow code to read in the free extents does check 2612 * the pinned extents. 2613 */ 2614 btrfs_cache_block_group(cache, 1); 2615 2616 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2617 2618 /* remove us from the free space cache (if we're there at all) */ 2619 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2620 btrfs_put_block_group(cache); 2621 return ret; 2622 } 2623 2624 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2625 u64 start, u64 num_bytes) 2626 { 2627 int ret; 2628 struct btrfs_block_group *block_group; 2629 struct btrfs_caching_control *caching_ctl; 2630 2631 block_group = btrfs_lookup_block_group(fs_info, start); 2632 if (!block_group) 2633 return -EINVAL; 2634 2635 btrfs_cache_block_group(block_group, 0); 2636 caching_ctl = btrfs_get_caching_control(block_group); 2637 2638 if (!caching_ctl) { 2639 /* Logic error */ 2640 BUG_ON(!btrfs_block_group_done(block_group)); 2641 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2642 } else { 2643 mutex_lock(&caching_ctl->mutex); 2644 2645 if (start >= caching_ctl->progress) { 2646 ret = btrfs_add_excluded_extent(fs_info, start, 2647 num_bytes); 2648 } else if (start + num_bytes <= caching_ctl->progress) { 2649 ret = btrfs_remove_free_space(block_group, 2650 start, num_bytes); 2651 } else { 2652 num_bytes = caching_ctl->progress - start; 2653 ret = btrfs_remove_free_space(block_group, 2654 start, num_bytes); 2655 if (ret) 2656 goto out_lock; 2657 2658 num_bytes = (start + num_bytes) - 2659 caching_ctl->progress; 2660 start = caching_ctl->progress; 2661 ret = btrfs_add_excluded_extent(fs_info, start, 2662 num_bytes); 2663 } 2664 out_lock: 2665 mutex_unlock(&caching_ctl->mutex); 2666 btrfs_put_caching_control(caching_ctl); 2667 } 2668 btrfs_put_block_group(block_group); 2669 return ret; 2670 } 2671 2672 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2673 { 2674 struct btrfs_fs_info *fs_info = eb->fs_info; 2675 struct btrfs_file_extent_item *item; 2676 struct btrfs_key key; 2677 int found_type; 2678 int i; 2679 int ret = 0; 2680 2681 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2682 return 0; 2683 2684 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2685 btrfs_item_key_to_cpu(eb, &key, i); 2686 if (key.type != BTRFS_EXTENT_DATA_KEY) 2687 continue; 2688 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2689 found_type = btrfs_file_extent_type(eb, item); 2690 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2691 continue; 2692 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2693 continue; 2694 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2695 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2696 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2697 if (ret) 2698 break; 2699 } 2700 2701 return ret; 2702 } 2703 2704 static void 2705 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2706 { 2707 atomic_inc(&bg->reservations); 2708 } 2709 2710 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2711 { 2712 struct btrfs_caching_control *next; 2713 struct btrfs_caching_control *caching_ctl; 2714 struct btrfs_block_group *cache; 2715 2716 down_write(&fs_info->commit_root_sem); 2717 2718 list_for_each_entry_safe(caching_ctl, next, 2719 &fs_info->caching_block_groups, list) { 2720 cache = caching_ctl->block_group; 2721 if (btrfs_block_group_done(cache)) { 2722 cache->last_byte_to_unpin = (u64)-1; 2723 list_del_init(&caching_ctl->list); 2724 btrfs_put_caching_control(caching_ctl); 2725 } else { 2726 cache->last_byte_to_unpin = caching_ctl->progress; 2727 } 2728 } 2729 2730 up_write(&fs_info->commit_root_sem); 2731 2732 btrfs_update_global_block_rsv(fs_info); 2733 } 2734 2735 /* 2736 * Returns the free cluster for the given space info and sets empty_cluster to 2737 * what it should be based on the mount options. 2738 */ 2739 static struct btrfs_free_cluster * 2740 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2741 struct btrfs_space_info *space_info, u64 *empty_cluster) 2742 { 2743 struct btrfs_free_cluster *ret = NULL; 2744 2745 *empty_cluster = 0; 2746 if (btrfs_mixed_space_info(space_info)) 2747 return ret; 2748 2749 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2750 ret = &fs_info->meta_alloc_cluster; 2751 if (btrfs_test_opt(fs_info, SSD)) 2752 *empty_cluster = SZ_2M; 2753 else 2754 *empty_cluster = SZ_64K; 2755 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2756 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2757 *empty_cluster = SZ_2M; 2758 ret = &fs_info->data_alloc_cluster; 2759 } 2760 2761 return ret; 2762 } 2763 2764 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2765 u64 start, u64 end, 2766 const bool return_free_space) 2767 { 2768 struct btrfs_block_group *cache = NULL; 2769 struct btrfs_space_info *space_info; 2770 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2771 struct btrfs_free_cluster *cluster = NULL; 2772 u64 len; 2773 u64 total_unpinned = 0; 2774 u64 empty_cluster = 0; 2775 bool readonly; 2776 2777 while (start <= end) { 2778 readonly = false; 2779 if (!cache || 2780 start >= cache->start + cache->length) { 2781 if (cache) 2782 btrfs_put_block_group(cache); 2783 total_unpinned = 0; 2784 cache = btrfs_lookup_block_group(fs_info, start); 2785 BUG_ON(!cache); /* Logic error */ 2786 2787 cluster = fetch_cluster_info(fs_info, 2788 cache->space_info, 2789 &empty_cluster); 2790 empty_cluster <<= 1; 2791 } 2792 2793 len = cache->start + cache->length - start; 2794 len = min(len, end + 1 - start); 2795 2796 if (start < cache->last_byte_to_unpin) { 2797 len = min(len, cache->last_byte_to_unpin - start); 2798 if (return_free_space) 2799 btrfs_add_free_space(cache, start, len); 2800 } 2801 2802 start += len; 2803 total_unpinned += len; 2804 space_info = cache->space_info; 2805 2806 /* 2807 * If this space cluster has been marked as fragmented and we've 2808 * unpinned enough in this block group to potentially allow a 2809 * cluster to be created inside of it go ahead and clear the 2810 * fragmented check. 2811 */ 2812 if (cluster && cluster->fragmented && 2813 total_unpinned > empty_cluster) { 2814 spin_lock(&cluster->lock); 2815 cluster->fragmented = 0; 2816 spin_unlock(&cluster->lock); 2817 } 2818 2819 spin_lock(&space_info->lock); 2820 spin_lock(&cache->lock); 2821 cache->pinned -= len; 2822 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2823 space_info->max_extent_size = 0; 2824 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2825 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2826 if (cache->ro) { 2827 space_info->bytes_readonly += len; 2828 readonly = true; 2829 } 2830 spin_unlock(&cache->lock); 2831 if (!readonly && return_free_space && 2832 global_rsv->space_info == space_info) { 2833 u64 to_add = len; 2834 2835 spin_lock(&global_rsv->lock); 2836 if (!global_rsv->full) { 2837 to_add = min(len, global_rsv->size - 2838 global_rsv->reserved); 2839 global_rsv->reserved += to_add; 2840 btrfs_space_info_update_bytes_may_use(fs_info, 2841 space_info, to_add); 2842 if (global_rsv->reserved >= global_rsv->size) 2843 global_rsv->full = 1; 2844 len -= to_add; 2845 } 2846 spin_unlock(&global_rsv->lock); 2847 /* Add to any tickets we may have */ 2848 if (len) 2849 btrfs_try_granting_tickets(fs_info, 2850 space_info); 2851 } 2852 spin_unlock(&space_info->lock); 2853 } 2854 2855 if (cache) 2856 btrfs_put_block_group(cache); 2857 return 0; 2858 } 2859 2860 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2861 { 2862 struct btrfs_fs_info *fs_info = trans->fs_info; 2863 struct btrfs_block_group *block_group, *tmp; 2864 struct list_head *deleted_bgs; 2865 struct extent_io_tree *unpin; 2866 u64 start; 2867 u64 end; 2868 int ret; 2869 2870 unpin = &trans->transaction->pinned_extents; 2871 2872 while (!TRANS_ABORTED(trans)) { 2873 struct extent_state *cached_state = NULL; 2874 2875 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2876 ret = find_first_extent_bit(unpin, 0, &start, &end, 2877 EXTENT_DIRTY, &cached_state); 2878 if (ret) { 2879 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2880 break; 2881 } 2882 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 2883 clear_extent_bits(&fs_info->excluded_extents, start, 2884 end, EXTENT_UPTODATE); 2885 2886 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2887 ret = btrfs_discard_extent(fs_info, start, 2888 end + 1 - start, NULL); 2889 2890 clear_extent_dirty(unpin, start, end, &cached_state); 2891 unpin_extent_range(fs_info, start, end, true); 2892 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2893 free_extent_state(cached_state); 2894 cond_resched(); 2895 } 2896 2897 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2898 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2899 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2900 } 2901 2902 /* 2903 * Transaction is finished. We don't need the lock anymore. We 2904 * do need to clean up the block groups in case of a transaction 2905 * abort. 2906 */ 2907 deleted_bgs = &trans->transaction->deleted_bgs; 2908 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2909 u64 trimmed = 0; 2910 2911 ret = -EROFS; 2912 if (!TRANS_ABORTED(trans)) 2913 ret = btrfs_discard_extent(fs_info, 2914 block_group->start, 2915 block_group->length, 2916 &trimmed); 2917 2918 list_del_init(&block_group->bg_list); 2919 btrfs_unfreeze_block_group(block_group); 2920 btrfs_put_block_group(block_group); 2921 2922 if (ret) { 2923 const char *errstr = btrfs_decode_error(ret); 2924 btrfs_warn(fs_info, 2925 "discard failed while removing blockgroup: errno=%d %s", 2926 ret, errstr); 2927 } 2928 } 2929 2930 return 0; 2931 } 2932 2933 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2934 struct btrfs_delayed_ref_node *node, u64 parent, 2935 u64 root_objectid, u64 owner_objectid, 2936 u64 owner_offset, int refs_to_drop, 2937 struct btrfs_delayed_extent_op *extent_op) 2938 { 2939 struct btrfs_fs_info *info = trans->fs_info; 2940 struct btrfs_key key; 2941 struct btrfs_path *path; 2942 struct btrfs_root *extent_root = info->extent_root; 2943 struct extent_buffer *leaf; 2944 struct btrfs_extent_item *ei; 2945 struct btrfs_extent_inline_ref *iref; 2946 int ret; 2947 int is_data; 2948 int extent_slot = 0; 2949 int found_extent = 0; 2950 int num_to_del = 1; 2951 u32 item_size; 2952 u64 refs; 2953 u64 bytenr = node->bytenr; 2954 u64 num_bytes = node->num_bytes; 2955 int last_ref = 0; 2956 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2957 2958 path = btrfs_alloc_path(); 2959 if (!path) 2960 return -ENOMEM; 2961 2962 path->leave_spinning = 1; 2963 2964 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2965 BUG_ON(!is_data && refs_to_drop != 1); 2966 2967 if (is_data) 2968 skinny_metadata = false; 2969 2970 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2971 parent, root_objectid, owner_objectid, 2972 owner_offset); 2973 if (ret == 0) { 2974 extent_slot = path->slots[0]; 2975 while (extent_slot >= 0) { 2976 btrfs_item_key_to_cpu(path->nodes[0], &key, 2977 extent_slot); 2978 if (key.objectid != bytenr) 2979 break; 2980 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2981 key.offset == num_bytes) { 2982 found_extent = 1; 2983 break; 2984 } 2985 if (key.type == BTRFS_METADATA_ITEM_KEY && 2986 key.offset == owner_objectid) { 2987 found_extent = 1; 2988 break; 2989 } 2990 if (path->slots[0] - extent_slot > 5) 2991 break; 2992 extent_slot--; 2993 } 2994 2995 if (!found_extent) { 2996 BUG_ON(iref); 2997 ret = remove_extent_backref(trans, path, NULL, 2998 refs_to_drop, 2999 is_data, &last_ref); 3000 if (ret) { 3001 btrfs_abort_transaction(trans, ret); 3002 goto out; 3003 } 3004 btrfs_release_path(path); 3005 path->leave_spinning = 1; 3006 3007 key.objectid = bytenr; 3008 key.type = BTRFS_EXTENT_ITEM_KEY; 3009 key.offset = num_bytes; 3010 3011 if (!is_data && skinny_metadata) { 3012 key.type = BTRFS_METADATA_ITEM_KEY; 3013 key.offset = owner_objectid; 3014 } 3015 3016 ret = btrfs_search_slot(trans, extent_root, 3017 &key, path, -1, 1); 3018 if (ret > 0 && skinny_metadata && path->slots[0]) { 3019 /* 3020 * Couldn't find our skinny metadata item, 3021 * see if we have ye olde extent item. 3022 */ 3023 path->slots[0]--; 3024 btrfs_item_key_to_cpu(path->nodes[0], &key, 3025 path->slots[0]); 3026 if (key.objectid == bytenr && 3027 key.type == BTRFS_EXTENT_ITEM_KEY && 3028 key.offset == num_bytes) 3029 ret = 0; 3030 } 3031 3032 if (ret > 0 && skinny_metadata) { 3033 skinny_metadata = false; 3034 key.objectid = bytenr; 3035 key.type = BTRFS_EXTENT_ITEM_KEY; 3036 key.offset = num_bytes; 3037 btrfs_release_path(path); 3038 ret = btrfs_search_slot(trans, extent_root, 3039 &key, path, -1, 1); 3040 } 3041 3042 if (ret) { 3043 btrfs_err(info, 3044 "umm, got %d back from search, was looking for %llu", 3045 ret, bytenr); 3046 if (ret > 0) 3047 btrfs_print_leaf(path->nodes[0]); 3048 } 3049 if (ret < 0) { 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 extent_slot = path->slots[0]; 3054 } 3055 } else if (WARN_ON(ret == -ENOENT)) { 3056 btrfs_print_leaf(path->nodes[0]); 3057 btrfs_err(info, 3058 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3059 bytenr, parent, root_objectid, owner_objectid, 3060 owner_offset); 3061 btrfs_abort_transaction(trans, ret); 3062 goto out; 3063 } else { 3064 btrfs_abort_transaction(trans, ret); 3065 goto out; 3066 } 3067 3068 leaf = path->nodes[0]; 3069 item_size = btrfs_item_size_nr(leaf, extent_slot); 3070 if (unlikely(item_size < sizeof(*ei))) { 3071 ret = -EINVAL; 3072 btrfs_print_v0_err(info); 3073 btrfs_abort_transaction(trans, ret); 3074 goto out; 3075 } 3076 ei = btrfs_item_ptr(leaf, extent_slot, 3077 struct btrfs_extent_item); 3078 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3079 key.type == BTRFS_EXTENT_ITEM_KEY) { 3080 struct btrfs_tree_block_info *bi; 3081 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3082 bi = (struct btrfs_tree_block_info *)(ei + 1); 3083 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3084 } 3085 3086 refs = btrfs_extent_refs(leaf, ei); 3087 if (refs < refs_to_drop) { 3088 btrfs_err(info, 3089 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3090 refs_to_drop, refs, bytenr); 3091 ret = -EINVAL; 3092 btrfs_abort_transaction(trans, ret); 3093 goto out; 3094 } 3095 refs -= refs_to_drop; 3096 3097 if (refs > 0) { 3098 if (extent_op) 3099 __run_delayed_extent_op(extent_op, leaf, ei); 3100 /* 3101 * In the case of inline back ref, reference count will 3102 * be updated by remove_extent_backref 3103 */ 3104 if (iref) { 3105 BUG_ON(!found_extent); 3106 } else { 3107 btrfs_set_extent_refs(leaf, ei, refs); 3108 btrfs_mark_buffer_dirty(leaf); 3109 } 3110 if (found_extent) { 3111 ret = remove_extent_backref(trans, path, iref, 3112 refs_to_drop, is_data, 3113 &last_ref); 3114 if (ret) { 3115 btrfs_abort_transaction(trans, ret); 3116 goto out; 3117 } 3118 } 3119 } else { 3120 if (found_extent) { 3121 BUG_ON(is_data && refs_to_drop != 3122 extent_data_ref_count(path, iref)); 3123 if (iref) { 3124 BUG_ON(path->slots[0] != extent_slot); 3125 } else { 3126 BUG_ON(path->slots[0] != extent_slot + 1); 3127 path->slots[0] = extent_slot; 3128 num_to_del = 2; 3129 } 3130 } 3131 3132 last_ref = 1; 3133 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3134 num_to_del); 3135 if (ret) { 3136 btrfs_abort_transaction(trans, ret); 3137 goto out; 3138 } 3139 btrfs_release_path(path); 3140 3141 if (is_data) { 3142 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3143 num_bytes); 3144 if (ret) { 3145 btrfs_abort_transaction(trans, ret); 3146 goto out; 3147 } 3148 } 3149 3150 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3151 if (ret) { 3152 btrfs_abort_transaction(trans, ret); 3153 goto out; 3154 } 3155 3156 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3157 if (ret) { 3158 btrfs_abort_transaction(trans, ret); 3159 goto out; 3160 } 3161 } 3162 btrfs_release_path(path); 3163 3164 out: 3165 btrfs_free_path(path); 3166 return ret; 3167 } 3168 3169 /* 3170 * when we free an block, it is possible (and likely) that we free the last 3171 * delayed ref for that extent as well. This searches the delayed ref tree for 3172 * a given extent, and if there are no other delayed refs to be processed, it 3173 * removes it from the tree. 3174 */ 3175 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3176 u64 bytenr) 3177 { 3178 struct btrfs_delayed_ref_head *head; 3179 struct btrfs_delayed_ref_root *delayed_refs; 3180 int ret = 0; 3181 3182 delayed_refs = &trans->transaction->delayed_refs; 3183 spin_lock(&delayed_refs->lock); 3184 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3185 if (!head) 3186 goto out_delayed_unlock; 3187 3188 spin_lock(&head->lock); 3189 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3190 goto out; 3191 3192 if (cleanup_extent_op(head) != NULL) 3193 goto out; 3194 3195 /* 3196 * waiting for the lock here would deadlock. If someone else has it 3197 * locked they are already in the process of dropping it anyway 3198 */ 3199 if (!mutex_trylock(&head->mutex)) 3200 goto out; 3201 3202 btrfs_delete_ref_head(delayed_refs, head); 3203 head->processing = 0; 3204 3205 spin_unlock(&head->lock); 3206 spin_unlock(&delayed_refs->lock); 3207 3208 BUG_ON(head->extent_op); 3209 if (head->must_insert_reserved) 3210 ret = 1; 3211 3212 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3213 mutex_unlock(&head->mutex); 3214 btrfs_put_delayed_ref_head(head); 3215 return ret; 3216 out: 3217 spin_unlock(&head->lock); 3218 3219 out_delayed_unlock: 3220 spin_unlock(&delayed_refs->lock); 3221 return 0; 3222 } 3223 3224 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3225 struct btrfs_root *root, 3226 struct extent_buffer *buf, 3227 u64 parent, int last_ref) 3228 { 3229 struct btrfs_fs_info *fs_info = root->fs_info; 3230 struct btrfs_ref generic_ref = { 0 }; 3231 int pin = 1; 3232 int ret; 3233 3234 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3235 buf->start, buf->len, parent); 3236 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3237 root->root_key.objectid); 3238 3239 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3240 int old_ref_mod, new_ref_mod; 3241 3242 btrfs_ref_tree_mod(fs_info, &generic_ref); 3243 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3244 &old_ref_mod, &new_ref_mod); 3245 BUG_ON(ret); /* -ENOMEM */ 3246 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3247 } 3248 3249 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3250 struct btrfs_block_group *cache; 3251 3252 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3253 ret = check_ref_cleanup(trans, buf->start); 3254 if (!ret) 3255 goto out; 3256 } 3257 3258 pin = 0; 3259 cache = btrfs_lookup_block_group(fs_info, buf->start); 3260 3261 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3262 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3263 btrfs_put_block_group(cache); 3264 goto out; 3265 } 3266 3267 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3268 3269 btrfs_add_free_space(cache, buf->start, buf->len); 3270 btrfs_free_reserved_bytes(cache, buf->len, 0); 3271 btrfs_put_block_group(cache); 3272 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3273 } 3274 out: 3275 if (pin) 3276 add_pinned_bytes(fs_info, &generic_ref); 3277 3278 if (last_ref) { 3279 /* 3280 * Deleting the buffer, clear the corrupt flag since it doesn't 3281 * matter anymore. 3282 */ 3283 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3284 } 3285 } 3286 3287 /* Can return -ENOMEM */ 3288 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3289 { 3290 struct btrfs_fs_info *fs_info = trans->fs_info; 3291 int old_ref_mod, new_ref_mod; 3292 int ret; 3293 3294 if (btrfs_is_testing(fs_info)) 3295 return 0; 3296 3297 /* 3298 * tree log blocks never actually go into the extent allocation 3299 * tree, just update pinning info and exit early. 3300 */ 3301 if ((ref->type == BTRFS_REF_METADATA && 3302 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3303 (ref->type == BTRFS_REF_DATA && 3304 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3305 /* unlocks the pinned mutex */ 3306 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3307 old_ref_mod = new_ref_mod = 0; 3308 ret = 0; 3309 } else if (ref->type == BTRFS_REF_METADATA) { 3310 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3311 &old_ref_mod, &new_ref_mod); 3312 } else { 3313 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3314 &old_ref_mod, &new_ref_mod); 3315 } 3316 3317 if (!((ref->type == BTRFS_REF_METADATA && 3318 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3319 (ref->type == BTRFS_REF_DATA && 3320 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3321 btrfs_ref_tree_mod(fs_info, ref); 3322 3323 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3324 add_pinned_bytes(fs_info, ref); 3325 3326 return ret; 3327 } 3328 3329 enum btrfs_loop_type { 3330 LOOP_CACHING_NOWAIT, 3331 LOOP_CACHING_WAIT, 3332 LOOP_ALLOC_CHUNK, 3333 LOOP_NO_EMPTY_SIZE, 3334 }; 3335 3336 static inline void 3337 btrfs_lock_block_group(struct btrfs_block_group *cache, 3338 int delalloc) 3339 { 3340 if (delalloc) 3341 down_read(&cache->data_rwsem); 3342 } 3343 3344 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3345 int delalloc) 3346 { 3347 btrfs_get_block_group(cache); 3348 if (delalloc) 3349 down_read(&cache->data_rwsem); 3350 } 3351 3352 static struct btrfs_block_group *btrfs_lock_cluster( 3353 struct btrfs_block_group *block_group, 3354 struct btrfs_free_cluster *cluster, 3355 int delalloc) 3356 __acquires(&cluster->refill_lock) 3357 { 3358 struct btrfs_block_group *used_bg = NULL; 3359 3360 spin_lock(&cluster->refill_lock); 3361 while (1) { 3362 used_bg = cluster->block_group; 3363 if (!used_bg) 3364 return NULL; 3365 3366 if (used_bg == block_group) 3367 return used_bg; 3368 3369 btrfs_get_block_group(used_bg); 3370 3371 if (!delalloc) 3372 return used_bg; 3373 3374 if (down_read_trylock(&used_bg->data_rwsem)) 3375 return used_bg; 3376 3377 spin_unlock(&cluster->refill_lock); 3378 3379 /* We should only have one-level nested. */ 3380 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3381 3382 spin_lock(&cluster->refill_lock); 3383 if (used_bg == cluster->block_group) 3384 return used_bg; 3385 3386 up_read(&used_bg->data_rwsem); 3387 btrfs_put_block_group(used_bg); 3388 } 3389 } 3390 3391 static inline void 3392 btrfs_release_block_group(struct btrfs_block_group *cache, 3393 int delalloc) 3394 { 3395 if (delalloc) 3396 up_read(&cache->data_rwsem); 3397 btrfs_put_block_group(cache); 3398 } 3399 3400 enum btrfs_extent_allocation_policy { 3401 BTRFS_EXTENT_ALLOC_CLUSTERED, 3402 }; 3403 3404 /* 3405 * Structure used internally for find_free_extent() function. Wraps needed 3406 * parameters. 3407 */ 3408 struct find_free_extent_ctl { 3409 /* Basic allocation info */ 3410 u64 num_bytes; 3411 u64 empty_size; 3412 u64 flags; 3413 int delalloc; 3414 3415 /* Where to start the search inside the bg */ 3416 u64 search_start; 3417 3418 /* For clustered allocation */ 3419 u64 empty_cluster; 3420 struct btrfs_free_cluster *last_ptr; 3421 bool use_cluster; 3422 3423 bool have_caching_bg; 3424 bool orig_have_caching_bg; 3425 3426 /* RAID index, converted from flags */ 3427 int index; 3428 3429 /* 3430 * Current loop number, check find_free_extent_update_loop() for details 3431 */ 3432 int loop; 3433 3434 /* 3435 * Whether we're refilling a cluster, if true we need to re-search 3436 * current block group but don't try to refill the cluster again. 3437 */ 3438 bool retry_clustered; 3439 3440 /* 3441 * Whether we're updating free space cache, if true we need to re-search 3442 * current block group but don't try updating free space cache again. 3443 */ 3444 bool retry_unclustered; 3445 3446 /* If current block group is cached */ 3447 int cached; 3448 3449 /* Max contiguous hole found */ 3450 u64 max_extent_size; 3451 3452 /* Total free space from free space cache, not always contiguous */ 3453 u64 total_free_space; 3454 3455 /* Found result */ 3456 u64 found_offset; 3457 3458 /* Hint where to start looking for an empty space */ 3459 u64 hint_byte; 3460 3461 /* Allocation policy */ 3462 enum btrfs_extent_allocation_policy policy; 3463 }; 3464 3465 3466 /* 3467 * Helper function for find_free_extent(). 3468 * 3469 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3470 * Return -EAGAIN to inform caller that we need to re-search this block group 3471 * Return >0 to inform caller that we find nothing 3472 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3473 */ 3474 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3475 struct find_free_extent_ctl *ffe_ctl, 3476 struct btrfs_block_group **cluster_bg_ret) 3477 { 3478 struct btrfs_block_group *cluster_bg; 3479 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3480 u64 aligned_cluster; 3481 u64 offset; 3482 int ret; 3483 3484 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3485 if (!cluster_bg) 3486 goto refill_cluster; 3487 if (cluster_bg != bg && (cluster_bg->ro || 3488 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3489 goto release_cluster; 3490 3491 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3492 ffe_ctl->num_bytes, cluster_bg->start, 3493 &ffe_ctl->max_extent_size); 3494 if (offset) { 3495 /* We have a block, we're done */ 3496 spin_unlock(&last_ptr->refill_lock); 3497 trace_btrfs_reserve_extent_cluster(cluster_bg, 3498 ffe_ctl->search_start, ffe_ctl->num_bytes); 3499 *cluster_bg_ret = cluster_bg; 3500 ffe_ctl->found_offset = offset; 3501 return 0; 3502 } 3503 WARN_ON(last_ptr->block_group != cluster_bg); 3504 3505 release_cluster: 3506 /* 3507 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3508 * lets just skip it and let the allocator find whatever block it can 3509 * find. If we reach this point, we will have tried the cluster 3510 * allocator plenty of times and not have found anything, so we are 3511 * likely way too fragmented for the clustering stuff to find anything. 3512 * 3513 * However, if the cluster is taken from the current block group, 3514 * release the cluster first, so that we stand a better chance of 3515 * succeeding in the unclustered allocation. 3516 */ 3517 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3518 spin_unlock(&last_ptr->refill_lock); 3519 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3520 return -ENOENT; 3521 } 3522 3523 /* This cluster didn't work out, free it and start over */ 3524 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3525 3526 if (cluster_bg != bg) 3527 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3528 3529 refill_cluster: 3530 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3531 spin_unlock(&last_ptr->refill_lock); 3532 return -ENOENT; 3533 } 3534 3535 aligned_cluster = max_t(u64, 3536 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3537 bg->full_stripe_len); 3538 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3539 ffe_ctl->num_bytes, aligned_cluster); 3540 if (ret == 0) { 3541 /* Now pull our allocation out of this cluster */ 3542 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3543 ffe_ctl->num_bytes, ffe_ctl->search_start, 3544 &ffe_ctl->max_extent_size); 3545 if (offset) { 3546 /* We found one, proceed */ 3547 spin_unlock(&last_ptr->refill_lock); 3548 trace_btrfs_reserve_extent_cluster(bg, 3549 ffe_ctl->search_start, 3550 ffe_ctl->num_bytes); 3551 ffe_ctl->found_offset = offset; 3552 return 0; 3553 } 3554 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3555 !ffe_ctl->retry_clustered) { 3556 spin_unlock(&last_ptr->refill_lock); 3557 3558 ffe_ctl->retry_clustered = true; 3559 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3560 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3561 return -EAGAIN; 3562 } 3563 /* 3564 * At this point we either didn't find a cluster or we weren't able to 3565 * allocate a block from our cluster. Free the cluster we've been 3566 * trying to use, and go to the next block group. 3567 */ 3568 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3569 spin_unlock(&last_ptr->refill_lock); 3570 return 1; 3571 } 3572 3573 /* 3574 * Return >0 to inform caller that we find nothing 3575 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3576 * Return -EAGAIN to inform caller that we need to re-search this block group 3577 */ 3578 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3579 struct find_free_extent_ctl *ffe_ctl) 3580 { 3581 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3582 u64 offset; 3583 3584 /* 3585 * We are doing an unclustered allocation, set the fragmented flag so 3586 * we don't bother trying to setup a cluster again until we get more 3587 * space. 3588 */ 3589 if (unlikely(last_ptr)) { 3590 spin_lock(&last_ptr->lock); 3591 last_ptr->fragmented = 1; 3592 spin_unlock(&last_ptr->lock); 3593 } 3594 if (ffe_ctl->cached) { 3595 struct btrfs_free_space_ctl *free_space_ctl; 3596 3597 free_space_ctl = bg->free_space_ctl; 3598 spin_lock(&free_space_ctl->tree_lock); 3599 if (free_space_ctl->free_space < 3600 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3601 ffe_ctl->empty_size) { 3602 ffe_ctl->total_free_space = max_t(u64, 3603 ffe_ctl->total_free_space, 3604 free_space_ctl->free_space); 3605 spin_unlock(&free_space_ctl->tree_lock); 3606 return 1; 3607 } 3608 spin_unlock(&free_space_ctl->tree_lock); 3609 } 3610 3611 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3612 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3613 &ffe_ctl->max_extent_size); 3614 3615 /* 3616 * If we didn't find a chunk, and we haven't failed on this block group 3617 * before, and this block group is in the middle of caching and we are 3618 * ok with waiting, then go ahead and wait for progress to be made, and 3619 * set @retry_unclustered to true. 3620 * 3621 * If @retry_unclustered is true then we've already waited on this 3622 * block group once and should move on to the next block group. 3623 */ 3624 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3625 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3626 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3627 ffe_ctl->empty_size); 3628 ffe_ctl->retry_unclustered = true; 3629 return -EAGAIN; 3630 } else if (!offset) { 3631 return 1; 3632 } 3633 ffe_ctl->found_offset = offset; 3634 return 0; 3635 } 3636 3637 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3638 struct find_free_extent_ctl *ffe_ctl, 3639 struct btrfs_block_group **bg_ret) 3640 { 3641 int ret; 3642 3643 /* We want to try and use the cluster allocator, so lets look there */ 3644 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3645 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3646 if (ret >= 0 || ret == -EAGAIN) 3647 return ret; 3648 /* ret == -ENOENT case falls through */ 3649 } 3650 3651 return find_free_extent_unclustered(block_group, ffe_ctl); 3652 } 3653 3654 static int do_allocation(struct btrfs_block_group *block_group, 3655 struct find_free_extent_ctl *ffe_ctl, 3656 struct btrfs_block_group **bg_ret) 3657 { 3658 switch (ffe_ctl->policy) { 3659 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3660 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3661 default: 3662 BUG(); 3663 } 3664 } 3665 3666 static void release_block_group(struct btrfs_block_group *block_group, 3667 struct find_free_extent_ctl *ffe_ctl, 3668 int delalloc) 3669 { 3670 switch (ffe_ctl->policy) { 3671 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3672 ffe_ctl->retry_clustered = false; 3673 ffe_ctl->retry_unclustered = false; 3674 break; 3675 default: 3676 BUG(); 3677 } 3678 3679 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3680 ffe_ctl->index); 3681 btrfs_release_block_group(block_group, delalloc); 3682 } 3683 3684 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3685 struct btrfs_key *ins) 3686 { 3687 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3688 3689 if (!ffe_ctl->use_cluster && last_ptr) { 3690 spin_lock(&last_ptr->lock); 3691 last_ptr->window_start = ins->objectid; 3692 spin_unlock(&last_ptr->lock); 3693 } 3694 } 3695 3696 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3697 struct btrfs_key *ins) 3698 { 3699 switch (ffe_ctl->policy) { 3700 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3701 found_extent_clustered(ffe_ctl, ins); 3702 break; 3703 default: 3704 BUG(); 3705 } 3706 } 3707 3708 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3709 { 3710 switch (ffe_ctl->policy) { 3711 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3712 /* 3713 * If we can't allocate a new chunk we've already looped through 3714 * at least once, move on to the NO_EMPTY_SIZE case. 3715 */ 3716 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3717 return 0; 3718 default: 3719 BUG(); 3720 } 3721 } 3722 3723 /* 3724 * Return >0 means caller needs to re-search for free extent 3725 * Return 0 means we have the needed free extent. 3726 * Return <0 means we failed to locate any free extent. 3727 */ 3728 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3729 struct btrfs_key *ins, 3730 struct find_free_extent_ctl *ffe_ctl, 3731 bool full_search) 3732 { 3733 struct btrfs_root *root = fs_info->extent_root; 3734 int ret; 3735 3736 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3737 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3738 ffe_ctl->orig_have_caching_bg = true; 3739 3740 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3741 ffe_ctl->have_caching_bg) 3742 return 1; 3743 3744 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3745 return 1; 3746 3747 if (ins->objectid) { 3748 found_extent(ffe_ctl, ins); 3749 return 0; 3750 } 3751 3752 /* 3753 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3754 * caching kthreads as we move along 3755 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3756 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3757 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3758 * again 3759 */ 3760 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3761 ffe_ctl->index = 0; 3762 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3763 /* 3764 * We want to skip the LOOP_CACHING_WAIT step if we 3765 * don't have any uncached bgs and we've already done a 3766 * full search through. 3767 */ 3768 if (ffe_ctl->orig_have_caching_bg || !full_search) 3769 ffe_ctl->loop = LOOP_CACHING_WAIT; 3770 else 3771 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3772 } else { 3773 ffe_ctl->loop++; 3774 } 3775 3776 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3777 struct btrfs_trans_handle *trans; 3778 int exist = 0; 3779 3780 trans = current->journal_info; 3781 if (trans) 3782 exist = 1; 3783 else 3784 trans = btrfs_join_transaction(root); 3785 3786 if (IS_ERR(trans)) { 3787 ret = PTR_ERR(trans); 3788 return ret; 3789 } 3790 3791 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3792 CHUNK_ALLOC_FORCE); 3793 3794 /* Do not bail out on ENOSPC since we can do more. */ 3795 if (ret == -ENOSPC) 3796 ret = chunk_allocation_failed(ffe_ctl); 3797 else if (ret < 0) 3798 btrfs_abort_transaction(trans, ret); 3799 else 3800 ret = 0; 3801 if (!exist) 3802 btrfs_end_transaction(trans); 3803 if (ret) 3804 return ret; 3805 } 3806 3807 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3808 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 3809 return -ENOSPC; 3810 3811 /* 3812 * Don't loop again if we already have no empty_size and 3813 * no empty_cluster. 3814 */ 3815 if (ffe_ctl->empty_size == 0 && 3816 ffe_ctl->empty_cluster == 0) 3817 return -ENOSPC; 3818 ffe_ctl->empty_size = 0; 3819 ffe_ctl->empty_cluster = 0; 3820 } 3821 return 1; 3822 } 3823 return -ENOSPC; 3824 } 3825 3826 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 3827 struct find_free_extent_ctl *ffe_ctl, 3828 struct btrfs_space_info *space_info, 3829 struct btrfs_key *ins) 3830 { 3831 /* 3832 * If our free space is heavily fragmented we may not be able to make 3833 * big contiguous allocations, so instead of doing the expensive search 3834 * for free space, simply return ENOSPC with our max_extent_size so we 3835 * can go ahead and search for a more manageable chunk. 3836 * 3837 * If our max_extent_size is large enough for our allocation simply 3838 * disable clustering since we will likely not be able to find enough 3839 * space to create a cluster and induce latency trying. 3840 */ 3841 if (space_info->max_extent_size) { 3842 spin_lock(&space_info->lock); 3843 if (space_info->max_extent_size && 3844 ffe_ctl->num_bytes > space_info->max_extent_size) { 3845 ins->offset = space_info->max_extent_size; 3846 spin_unlock(&space_info->lock); 3847 return -ENOSPC; 3848 } else if (space_info->max_extent_size) { 3849 ffe_ctl->use_cluster = false; 3850 } 3851 spin_unlock(&space_info->lock); 3852 } 3853 3854 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 3855 &ffe_ctl->empty_cluster); 3856 if (ffe_ctl->last_ptr) { 3857 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3858 3859 spin_lock(&last_ptr->lock); 3860 if (last_ptr->block_group) 3861 ffe_ctl->hint_byte = last_ptr->window_start; 3862 if (last_ptr->fragmented) { 3863 /* 3864 * We still set window_start so we can keep track of the 3865 * last place we found an allocation to try and save 3866 * some time. 3867 */ 3868 ffe_ctl->hint_byte = last_ptr->window_start; 3869 ffe_ctl->use_cluster = false; 3870 } 3871 spin_unlock(&last_ptr->lock); 3872 } 3873 3874 return 0; 3875 } 3876 3877 static int prepare_allocation(struct btrfs_fs_info *fs_info, 3878 struct find_free_extent_ctl *ffe_ctl, 3879 struct btrfs_space_info *space_info, 3880 struct btrfs_key *ins) 3881 { 3882 switch (ffe_ctl->policy) { 3883 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3884 return prepare_allocation_clustered(fs_info, ffe_ctl, 3885 space_info, ins); 3886 default: 3887 BUG(); 3888 } 3889 } 3890 3891 /* 3892 * walks the btree of allocated extents and find a hole of a given size. 3893 * The key ins is changed to record the hole: 3894 * ins->objectid == start position 3895 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3896 * ins->offset == the size of the hole. 3897 * Any available blocks before search_start are skipped. 3898 * 3899 * If there is no suitable free space, we will record the max size of 3900 * the free space extent currently. 3901 * 3902 * The overall logic and call chain: 3903 * 3904 * find_free_extent() 3905 * |- Iterate through all block groups 3906 * | |- Get a valid block group 3907 * | |- Try to do clustered allocation in that block group 3908 * | |- Try to do unclustered allocation in that block group 3909 * | |- Check if the result is valid 3910 * | | |- If valid, then exit 3911 * | |- Jump to next block group 3912 * | 3913 * |- Push harder to find free extents 3914 * |- If not found, re-iterate all block groups 3915 */ 3916 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3917 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3918 u64 hint_byte_orig, struct btrfs_key *ins, 3919 u64 flags, int delalloc) 3920 { 3921 int ret = 0; 3922 int cache_block_group_error = 0; 3923 struct btrfs_block_group *block_group = NULL; 3924 struct find_free_extent_ctl ffe_ctl = {0}; 3925 struct btrfs_space_info *space_info; 3926 bool full_search = false; 3927 3928 WARN_ON(num_bytes < fs_info->sectorsize); 3929 3930 ffe_ctl.num_bytes = num_bytes; 3931 ffe_ctl.empty_size = empty_size; 3932 ffe_ctl.flags = flags; 3933 ffe_ctl.search_start = 0; 3934 ffe_ctl.delalloc = delalloc; 3935 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3936 ffe_ctl.have_caching_bg = false; 3937 ffe_ctl.orig_have_caching_bg = false; 3938 ffe_ctl.found_offset = 0; 3939 ffe_ctl.hint_byte = hint_byte_orig; 3940 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 3941 3942 /* For clustered allocation */ 3943 ffe_ctl.retry_clustered = false; 3944 ffe_ctl.retry_unclustered = false; 3945 ffe_ctl.last_ptr = NULL; 3946 ffe_ctl.use_cluster = true; 3947 3948 ins->type = BTRFS_EXTENT_ITEM_KEY; 3949 ins->objectid = 0; 3950 ins->offset = 0; 3951 3952 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3953 3954 space_info = btrfs_find_space_info(fs_info, flags); 3955 if (!space_info) { 3956 btrfs_err(fs_info, "No space info for %llu", flags); 3957 return -ENOSPC; 3958 } 3959 3960 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 3961 if (ret < 0) 3962 return ret; 3963 3964 ffe_ctl.search_start = max(ffe_ctl.search_start, 3965 first_logical_byte(fs_info, 0)); 3966 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 3967 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 3968 block_group = btrfs_lookup_block_group(fs_info, 3969 ffe_ctl.search_start); 3970 /* 3971 * we don't want to use the block group if it doesn't match our 3972 * allocation bits, or if its not cached. 3973 * 3974 * However if we are re-searching with an ideal block group 3975 * picked out then we don't care that the block group is cached. 3976 */ 3977 if (block_group && block_group_bits(block_group, flags) && 3978 block_group->cached != BTRFS_CACHE_NO) { 3979 down_read(&space_info->groups_sem); 3980 if (list_empty(&block_group->list) || 3981 block_group->ro) { 3982 /* 3983 * someone is removing this block group, 3984 * we can't jump into the have_block_group 3985 * target because our list pointers are not 3986 * valid 3987 */ 3988 btrfs_put_block_group(block_group); 3989 up_read(&space_info->groups_sem); 3990 } else { 3991 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 3992 block_group->flags); 3993 btrfs_lock_block_group(block_group, delalloc); 3994 goto have_block_group; 3995 } 3996 } else if (block_group) { 3997 btrfs_put_block_group(block_group); 3998 } 3999 } 4000 search: 4001 ffe_ctl.have_caching_bg = false; 4002 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4003 ffe_ctl.index == 0) 4004 full_search = true; 4005 down_read(&space_info->groups_sem); 4006 list_for_each_entry(block_group, 4007 &space_info->block_groups[ffe_ctl.index], list) { 4008 struct btrfs_block_group *bg_ret; 4009 4010 /* If the block group is read-only, we can skip it entirely. */ 4011 if (unlikely(block_group->ro)) 4012 continue; 4013 4014 btrfs_grab_block_group(block_group, delalloc); 4015 ffe_ctl.search_start = block_group->start; 4016 4017 /* 4018 * this can happen if we end up cycling through all the 4019 * raid types, but we want to make sure we only allocate 4020 * for the proper type. 4021 */ 4022 if (!block_group_bits(block_group, flags)) { 4023 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4024 BTRFS_BLOCK_GROUP_RAID1_MASK | 4025 BTRFS_BLOCK_GROUP_RAID56_MASK | 4026 BTRFS_BLOCK_GROUP_RAID10; 4027 4028 /* 4029 * if they asked for extra copies and this block group 4030 * doesn't provide them, bail. This does allow us to 4031 * fill raid0 from raid1. 4032 */ 4033 if ((flags & extra) && !(block_group->flags & extra)) 4034 goto loop; 4035 4036 /* 4037 * This block group has different flags than we want. 4038 * It's possible that we have MIXED_GROUP flag but no 4039 * block group is mixed. Just skip such block group. 4040 */ 4041 btrfs_release_block_group(block_group, delalloc); 4042 continue; 4043 } 4044 4045 have_block_group: 4046 ffe_ctl.cached = btrfs_block_group_done(block_group); 4047 if (unlikely(!ffe_ctl.cached)) { 4048 ffe_ctl.have_caching_bg = true; 4049 ret = btrfs_cache_block_group(block_group, 0); 4050 4051 /* 4052 * If we get ENOMEM here or something else we want to 4053 * try other block groups, because it may not be fatal. 4054 * However if we can't find anything else we need to 4055 * save our return here so that we return the actual 4056 * error that caused problems, not ENOSPC. 4057 */ 4058 if (ret < 0) { 4059 if (!cache_block_group_error) 4060 cache_block_group_error = ret; 4061 ret = 0; 4062 goto loop; 4063 } 4064 ret = 0; 4065 } 4066 4067 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4068 goto loop; 4069 4070 bg_ret = NULL; 4071 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4072 if (ret == 0) { 4073 if (bg_ret && bg_ret != block_group) { 4074 btrfs_release_block_group(block_group, delalloc); 4075 block_group = bg_ret; 4076 } 4077 } else if (ret == -EAGAIN) { 4078 goto have_block_group; 4079 } else if (ret > 0) { 4080 goto loop; 4081 } 4082 4083 /* Checks */ 4084 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4085 fs_info->stripesize); 4086 4087 /* move on to the next group */ 4088 if (ffe_ctl.search_start + num_bytes > 4089 block_group->start + block_group->length) { 4090 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4091 num_bytes); 4092 goto loop; 4093 } 4094 4095 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4096 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4097 ffe_ctl.search_start - ffe_ctl.found_offset); 4098 4099 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4100 num_bytes, delalloc); 4101 if (ret == -EAGAIN) { 4102 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4103 num_bytes); 4104 goto loop; 4105 } 4106 btrfs_inc_block_group_reservations(block_group); 4107 4108 /* we are all good, lets return */ 4109 ins->objectid = ffe_ctl.search_start; 4110 ins->offset = num_bytes; 4111 4112 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4113 num_bytes); 4114 btrfs_release_block_group(block_group, delalloc); 4115 break; 4116 loop: 4117 release_block_group(block_group, &ffe_ctl, delalloc); 4118 cond_resched(); 4119 } 4120 up_read(&space_info->groups_sem); 4121 4122 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4123 if (ret > 0) 4124 goto search; 4125 4126 if (ret == -ENOSPC && !cache_block_group_error) { 4127 /* 4128 * Use ffe_ctl->total_free_space as fallback if we can't find 4129 * any contiguous hole. 4130 */ 4131 if (!ffe_ctl.max_extent_size) 4132 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4133 spin_lock(&space_info->lock); 4134 space_info->max_extent_size = ffe_ctl.max_extent_size; 4135 spin_unlock(&space_info->lock); 4136 ins->offset = ffe_ctl.max_extent_size; 4137 } else if (ret == -ENOSPC) { 4138 ret = cache_block_group_error; 4139 } 4140 return ret; 4141 } 4142 4143 /* 4144 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4145 * hole that is at least as big as @num_bytes. 4146 * 4147 * @root - The root that will contain this extent 4148 * 4149 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4150 * is used for accounting purposes. This value differs 4151 * from @num_bytes only in the case of compressed extents. 4152 * 4153 * @num_bytes - Number of bytes to allocate on-disk. 4154 * 4155 * @min_alloc_size - Indicates the minimum amount of space that the 4156 * allocator should try to satisfy. In some cases 4157 * @num_bytes may be larger than what is required and if 4158 * the filesystem is fragmented then allocation fails. 4159 * However, the presence of @min_alloc_size gives a 4160 * chance to try and satisfy the smaller allocation. 4161 * 4162 * @empty_size - A hint that you plan on doing more COW. This is the 4163 * size in bytes the allocator should try to find free 4164 * next to the block it returns. This is just a hint and 4165 * may be ignored by the allocator. 4166 * 4167 * @hint_byte - Hint to the allocator to start searching above the byte 4168 * address passed. It might be ignored. 4169 * 4170 * @ins - This key is modified to record the found hole. It will 4171 * have the following values: 4172 * ins->objectid == start position 4173 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4174 * ins->offset == the size of the hole. 4175 * 4176 * @is_data - Boolean flag indicating whether an extent is 4177 * allocated for data (true) or metadata (false) 4178 * 4179 * @delalloc - Boolean flag indicating whether this allocation is for 4180 * delalloc or not. If 'true' data_rwsem of block groups 4181 * is going to be acquired. 4182 * 4183 * 4184 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4185 * case -ENOSPC is returned then @ins->offset will contain the size of the 4186 * largest available hole the allocator managed to find. 4187 */ 4188 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4189 u64 num_bytes, u64 min_alloc_size, 4190 u64 empty_size, u64 hint_byte, 4191 struct btrfs_key *ins, int is_data, int delalloc) 4192 { 4193 struct btrfs_fs_info *fs_info = root->fs_info; 4194 bool final_tried = num_bytes == min_alloc_size; 4195 u64 flags; 4196 int ret; 4197 4198 flags = get_alloc_profile_by_root(root, is_data); 4199 again: 4200 WARN_ON(num_bytes < fs_info->sectorsize); 4201 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4202 hint_byte, ins, flags, delalloc); 4203 if (!ret && !is_data) { 4204 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4205 } else if (ret == -ENOSPC) { 4206 if (!final_tried && ins->offset) { 4207 num_bytes = min(num_bytes >> 1, ins->offset); 4208 num_bytes = round_down(num_bytes, 4209 fs_info->sectorsize); 4210 num_bytes = max(num_bytes, min_alloc_size); 4211 ram_bytes = num_bytes; 4212 if (num_bytes == min_alloc_size) 4213 final_tried = true; 4214 goto again; 4215 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4216 struct btrfs_space_info *sinfo; 4217 4218 sinfo = btrfs_find_space_info(fs_info, flags); 4219 btrfs_err(fs_info, 4220 "allocation failed flags %llu, wanted %llu", 4221 flags, num_bytes); 4222 if (sinfo) 4223 btrfs_dump_space_info(fs_info, sinfo, 4224 num_bytes, 1); 4225 } 4226 } 4227 4228 return ret; 4229 } 4230 4231 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4232 u64 start, u64 len, int delalloc) 4233 { 4234 struct btrfs_block_group *cache; 4235 4236 cache = btrfs_lookup_block_group(fs_info, start); 4237 if (!cache) { 4238 btrfs_err(fs_info, "Unable to find block group for %llu", 4239 start); 4240 return -ENOSPC; 4241 } 4242 4243 btrfs_add_free_space(cache, start, len); 4244 btrfs_free_reserved_bytes(cache, len, delalloc); 4245 trace_btrfs_reserved_extent_free(fs_info, start, len); 4246 4247 btrfs_put_block_group(cache); 4248 return 0; 4249 } 4250 4251 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4252 u64 len) 4253 { 4254 struct btrfs_block_group *cache; 4255 int ret = 0; 4256 4257 cache = btrfs_lookup_block_group(trans->fs_info, start); 4258 if (!cache) { 4259 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4260 start); 4261 return -ENOSPC; 4262 } 4263 4264 ret = pin_down_extent(trans, cache, start, len, 1); 4265 btrfs_put_block_group(cache); 4266 return ret; 4267 } 4268 4269 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4270 u64 parent, u64 root_objectid, 4271 u64 flags, u64 owner, u64 offset, 4272 struct btrfs_key *ins, int ref_mod) 4273 { 4274 struct btrfs_fs_info *fs_info = trans->fs_info; 4275 int ret; 4276 struct btrfs_extent_item *extent_item; 4277 struct btrfs_extent_inline_ref *iref; 4278 struct btrfs_path *path; 4279 struct extent_buffer *leaf; 4280 int type; 4281 u32 size; 4282 4283 if (parent > 0) 4284 type = BTRFS_SHARED_DATA_REF_KEY; 4285 else 4286 type = BTRFS_EXTENT_DATA_REF_KEY; 4287 4288 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4289 4290 path = btrfs_alloc_path(); 4291 if (!path) 4292 return -ENOMEM; 4293 4294 path->leave_spinning = 1; 4295 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4296 ins, size); 4297 if (ret) { 4298 btrfs_free_path(path); 4299 return ret; 4300 } 4301 4302 leaf = path->nodes[0]; 4303 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4304 struct btrfs_extent_item); 4305 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4306 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4307 btrfs_set_extent_flags(leaf, extent_item, 4308 flags | BTRFS_EXTENT_FLAG_DATA); 4309 4310 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4311 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4312 if (parent > 0) { 4313 struct btrfs_shared_data_ref *ref; 4314 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4315 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4316 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4317 } else { 4318 struct btrfs_extent_data_ref *ref; 4319 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4320 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4321 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4322 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4323 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4324 } 4325 4326 btrfs_mark_buffer_dirty(path->nodes[0]); 4327 btrfs_free_path(path); 4328 4329 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4330 if (ret) 4331 return ret; 4332 4333 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4334 if (ret) { /* -ENOENT, logic error */ 4335 btrfs_err(fs_info, "update block group failed for %llu %llu", 4336 ins->objectid, ins->offset); 4337 BUG(); 4338 } 4339 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4340 return ret; 4341 } 4342 4343 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4344 struct btrfs_delayed_ref_node *node, 4345 struct btrfs_delayed_extent_op *extent_op) 4346 { 4347 struct btrfs_fs_info *fs_info = trans->fs_info; 4348 int ret; 4349 struct btrfs_extent_item *extent_item; 4350 struct btrfs_key extent_key; 4351 struct btrfs_tree_block_info *block_info; 4352 struct btrfs_extent_inline_ref *iref; 4353 struct btrfs_path *path; 4354 struct extent_buffer *leaf; 4355 struct btrfs_delayed_tree_ref *ref; 4356 u32 size = sizeof(*extent_item) + sizeof(*iref); 4357 u64 num_bytes; 4358 u64 flags = extent_op->flags_to_set; 4359 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4360 4361 ref = btrfs_delayed_node_to_tree_ref(node); 4362 4363 extent_key.objectid = node->bytenr; 4364 if (skinny_metadata) { 4365 extent_key.offset = ref->level; 4366 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4367 num_bytes = fs_info->nodesize; 4368 } else { 4369 extent_key.offset = node->num_bytes; 4370 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4371 size += sizeof(*block_info); 4372 num_bytes = node->num_bytes; 4373 } 4374 4375 path = btrfs_alloc_path(); 4376 if (!path) 4377 return -ENOMEM; 4378 4379 path->leave_spinning = 1; 4380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4381 &extent_key, size); 4382 if (ret) { 4383 btrfs_free_path(path); 4384 return ret; 4385 } 4386 4387 leaf = path->nodes[0]; 4388 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4389 struct btrfs_extent_item); 4390 btrfs_set_extent_refs(leaf, extent_item, 1); 4391 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4392 btrfs_set_extent_flags(leaf, extent_item, 4393 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4394 4395 if (skinny_metadata) { 4396 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4397 } else { 4398 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4399 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4400 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4401 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4402 } 4403 4404 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4405 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4406 btrfs_set_extent_inline_ref_type(leaf, iref, 4407 BTRFS_SHARED_BLOCK_REF_KEY); 4408 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4409 } else { 4410 btrfs_set_extent_inline_ref_type(leaf, iref, 4411 BTRFS_TREE_BLOCK_REF_KEY); 4412 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4413 } 4414 4415 btrfs_mark_buffer_dirty(leaf); 4416 btrfs_free_path(path); 4417 4418 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4419 num_bytes); 4420 if (ret) 4421 return ret; 4422 4423 ret = btrfs_update_block_group(trans, extent_key.objectid, 4424 fs_info->nodesize, 1); 4425 if (ret) { /* -ENOENT, logic error */ 4426 btrfs_err(fs_info, "update block group failed for %llu %llu", 4427 extent_key.objectid, extent_key.offset); 4428 BUG(); 4429 } 4430 4431 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4432 fs_info->nodesize); 4433 return ret; 4434 } 4435 4436 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4437 struct btrfs_root *root, u64 owner, 4438 u64 offset, u64 ram_bytes, 4439 struct btrfs_key *ins) 4440 { 4441 struct btrfs_ref generic_ref = { 0 }; 4442 int ret; 4443 4444 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4445 4446 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4447 ins->objectid, ins->offset, 0); 4448 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4449 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4450 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4451 ram_bytes, NULL, NULL); 4452 return ret; 4453 } 4454 4455 /* 4456 * this is used by the tree logging recovery code. It records that 4457 * an extent has been allocated and makes sure to clear the free 4458 * space cache bits as well 4459 */ 4460 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4461 u64 root_objectid, u64 owner, u64 offset, 4462 struct btrfs_key *ins) 4463 { 4464 struct btrfs_fs_info *fs_info = trans->fs_info; 4465 int ret; 4466 struct btrfs_block_group *block_group; 4467 struct btrfs_space_info *space_info; 4468 4469 /* 4470 * Mixed block groups will exclude before processing the log so we only 4471 * need to do the exclude dance if this fs isn't mixed. 4472 */ 4473 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4474 ret = __exclude_logged_extent(fs_info, ins->objectid, 4475 ins->offset); 4476 if (ret) 4477 return ret; 4478 } 4479 4480 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4481 if (!block_group) 4482 return -EINVAL; 4483 4484 space_info = block_group->space_info; 4485 spin_lock(&space_info->lock); 4486 spin_lock(&block_group->lock); 4487 space_info->bytes_reserved += ins->offset; 4488 block_group->reserved += ins->offset; 4489 spin_unlock(&block_group->lock); 4490 spin_unlock(&space_info->lock); 4491 4492 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4493 offset, ins, 1); 4494 if (ret) 4495 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4496 btrfs_put_block_group(block_group); 4497 return ret; 4498 } 4499 4500 static struct extent_buffer * 4501 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4502 u64 bytenr, int level, u64 owner) 4503 { 4504 struct btrfs_fs_info *fs_info = root->fs_info; 4505 struct extent_buffer *buf; 4506 4507 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4508 if (IS_ERR(buf)) 4509 return buf; 4510 4511 /* 4512 * Extra safety check in case the extent tree is corrupted and extent 4513 * allocator chooses to use a tree block which is already used and 4514 * locked. 4515 */ 4516 if (buf->lock_owner == current->pid) { 4517 btrfs_err_rl(fs_info, 4518 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4519 buf->start, btrfs_header_owner(buf), current->pid); 4520 free_extent_buffer(buf); 4521 return ERR_PTR(-EUCLEAN); 4522 } 4523 4524 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 4525 btrfs_tree_lock(buf); 4526 btrfs_clean_tree_block(buf); 4527 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4528 4529 btrfs_set_lock_blocking_write(buf); 4530 set_extent_buffer_uptodate(buf); 4531 4532 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4533 btrfs_set_header_level(buf, level); 4534 btrfs_set_header_bytenr(buf, buf->start); 4535 btrfs_set_header_generation(buf, trans->transid); 4536 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4537 btrfs_set_header_owner(buf, owner); 4538 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4539 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4540 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4541 buf->log_index = root->log_transid % 2; 4542 /* 4543 * we allow two log transactions at a time, use different 4544 * EXTENT bit to differentiate dirty pages. 4545 */ 4546 if (buf->log_index == 0) 4547 set_extent_dirty(&root->dirty_log_pages, buf->start, 4548 buf->start + buf->len - 1, GFP_NOFS); 4549 else 4550 set_extent_new(&root->dirty_log_pages, buf->start, 4551 buf->start + buf->len - 1); 4552 } else { 4553 buf->log_index = -1; 4554 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4555 buf->start + buf->len - 1, GFP_NOFS); 4556 } 4557 trans->dirty = true; 4558 /* this returns a buffer locked for blocking */ 4559 return buf; 4560 } 4561 4562 /* 4563 * finds a free extent and does all the dirty work required for allocation 4564 * returns the tree buffer or an ERR_PTR on error. 4565 */ 4566 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4567 struct btrfs_root *root, 4568 u64 parent, u64 root_objectid, 4569 const struct btrfs_disk_key *key, 4570 int level, u64 hint, 4571 u64 empty_size) 4572 { 4573 struct btrfs_fs_info *fs_info = root->fs_info; 4574 struct btrfs_key ins; 4575 struct btrfs_block_rsv *block_rsv; 4576 struct extent_buffer *buf; 4577 struct btrfs_delayed_extent_op *extent_op; 4578 struct btrfs_ref generic_ref = { 0 }; 4579 u64 flags = 0; 4580 int ret; 4581 u32 blocksize = fs_info->nodesize; 4582 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4583 4584 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4585 if (btrfs_is_testing(fs_info)) { 4586 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4587 level, root_objectid); 4588 if (!IS_ERR(buf)) 4589 root->alloc_bytenr += blocksize; 4590 return buf; 4591 } 4592 #endif 4593 4594 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4595 if (IS_ERR(block_rsv)) 4596 return ERR_CAST(block_rsv); 4597 4598 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4599 empty_size, hint, &ins, 0, 0); 4600 if (ret) 4601 goto out_unuse; 4602 4603 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4604 root_objectid); 4605 if (IS_ERR(buf)) { 4606 ret = PTR_ERR(buf); 4607 goto out_free_reserved; 4608 } 4609 4610 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4611 if (parent == 0) 4612 parent = ins.objectid; 4613 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4614 } else 4615 BUG_ON(parent > 0); 4616 4617 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4618 extent_op = btrfs_alloc_delayed_extent_op(); 4619 if (!extent_op) { 4620 ret = -ENOMEM; 4621 goto out_free_buf; 4622 } 4623 if (key) 4624 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4625 else 4626 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4627 extent_op->flags_to_set = flags; 4628 extent_op->update_key = skinny_metadata ? false : true; 4629 extent_op->update_flags = true; 4630 extent_op->is_data = false; 4631 extent_op->level = level; 4632 4633 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4634 ins.objectid, ins.offset, parent); 4635 generic_ref.real_root = root->root_key.objectid; 4636 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4637 btrfs_ref_tree_mod(fs_info, &generic_ref); 4638 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4639 extent_op, NULL, NULL); 4640 if (ret) 4641 goto out_free_delayed; 4642 } 4643 return buf; 4644 4645 out_free_delayed: 4646 btrfs_free_delayed_extent_op(extent_op); 4647 out_free_buf: 4648 free_extent_buffer(buf); 4649 out_free_reserved: 4650 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4651 out_unuse: 4652 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4653 return ERR_PTR(ret); 4654 } 4655 4656 struct walk_control { 4657 u64 refs[BTRFS_MAX_LEVEL]; 4658 u64 flags[BTRFS_MAX_LEVEL]; 4659 struct btrfs_key update_progress; 4660 struct btrfs_key drop_progress; 4661 int drop_level; 4662 int stage; 4663 int level; 4664 int shared_level; 4665 int update_ref; 4666 int keep_locks; 4667 int reada_slot; 4668 int reada_count; 4669 int restarted; 4670 }; 4671 4672 #define DROP_REFERENCE 1 4673 #define UPDATE_BACKREF 2 4674 4675 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4676 struct btrfs_root *root, 4677 struct walk_control *wc, 4678 struct btrfs_path *path) 4679 { 4680 struct btrfs_fs_info *fs_info = root->fs_info; 4681 u64 bytenr; 4682 u64 generation; 4683 u64 refs; 4684 u64 flags; 4685 u32 nritems; 4686 struct btrfs_key key; 4687 struct extent_buffer *eb; 4688 int ret; 4689 int slot; 4690 int nread = 0; 4691 4692 if (path->slots[wc->level] < wc->reada_slot) { 4693 wc->reada_count = wc->reada_count * 2 / 3; 4694 wc->reada_count = max(wc->reada_count, 2); 4695 } else { 4696 wc->reada_count = wc->reada_count * 3 / 2; 4697 wc->reada_count = min_t(int, wc->reada_count, 4698 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4699 } 4700 4701 eb = path->nodes[wc->level]; 4702 nritems = btrfs_header_nritems(eb); 4703 4704 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4705 if (nread >= wc->reada_count) 4706 break; 4707 4708 cond_resched(); 4709 bytenr = btrfs_node_blockptr(eb, slot); 4710 generation = btrfs_node_ptr_generation(eb, slot); 4711 4712 if (slot == path->slots[wc->level]) 4713 goto reada; 4714 4715 if (wc->stage == UPDATE_BACKREF && 4716 generation <= root->root_key.offset) 4717 continue; 4718 4719 /* We don't lock the tree block, it's OK to be racy here */ 4720 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4721 wc->level - 1, 1, &refs, 4722 &flags); 4723 /* We don't care about errors in readahead. */ 4724 if (ret < 0) 4725 continue; 4726 BUG_ON(refs == 0); 4727 4728 if (wc->stage == DROP_REFERENCE) { 4729 if (refs == 1) 4730 goto reada; 4731 4732 if (wc->level == 1 && 4733 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4734 continue; 4735 if (!wc->update_ref || 4736 generation <= root->root_key.offset) 4737 continue; 4738 btrfs_node_key_to_cpu(eb, &key, slot); 4739 ret = btrfs_comp_cpu_keys(&key, 4740 &wc->update_progress); 4741 if (ret < 0) 4742 continue; 4743 } else { 4744 if (wc->level == 1 && 4745 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4746 continue; 4747 } 4748 reada: 4749 readahead_tree_block(fs_info, bytenr); 4750 nread++; 4751 } 4752 wc->reada_slot = slot; 4753 } 4754 4755 /* 4756 * helper to process tree block while walking down the tree. 4757 * 4758 * when wc->stage == UPDATE_BACKREF, this function updates 4759 * back refs for pointers in the block. 4760 * 4761 * NOTE: return value 1 means we should stop walking down. 4762 */ 4763 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4764 struct btrfs_root *root, 4765 struct btrfs_path *path, 4766 struct walk_control *wc, int lookup_info) 4767 { 4768 struct btrfs_fs_info *fs_info = root->fs_info; 4769 int level = wc->level; 4770 struct extent_buffer *eb = path->nodes[level]; 4771 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4772 int ret; 4773 4774 if (wc->stage == UPDATE_BACKREF && 4775 btrfs_header_owner(eb) != root->root_key.objectid) 4776 return 1; 4777 4778 /* 4779 * when reference count of tree block is 1, it won't increase 4780 * again. once full backref flag is set, we never clear it. 4781 */ 4782 if (lookup_info && 4783 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4784 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4785 BUG_ON(!path->locks[level]); 4786 ret = btrfs_lookup_extent_info(trans, fs_info, 4787 eb->start, level, 1, 4788 &wc->refs[level], 4789 &wc->flags[level]); 4790 BUG_ON(ret == -ENOMEM); 4791 if (ret) 4792 return ret; 4793 BUG_ON(wc->refs[level] == 0); 4794 } 4795 4796 if (wc->stage == DROP_REFERENCE) { 4797 if (wc->refs[level] > 1) 4798 return 1; 4799 4800 if (path->locks[level] && !wc->keep_locks) { 4801 btrfs_tree_unlock_rw(eb, path->locks[level]); 4802 path->locks[level] = 0; 4803 } 4804 return 0; 4805 } 4806 4807 /* wc->stage == UPDATE_BACKREF */ 4808 if (!(wc->flags[level] & flag)) { 4809 BUG_ON(!path->locks[level]); 4810 ret = btrfs_inc_ref(trans, root, eb, 1); 4811 BUG_ON(ret); /* -ENOMEM */ 4812 ret = btrfs_dec_ref(trans, root, eb, 0); 4813 BUG_ON(ret); /* -ENOMEM */ 4814 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 4815 btrfs_header_level(eb), 0); 4816 BUG_ON(ret); /* -ENOMEM */ 4817 wc->flags[level] |= flag; 4818 } 4819 4820 /* 4821 * the block is shared by multiple trees, so it's not good to 4822 * keep the tree lock 4823 */ 4824 if (path->locks[level] && level > 0) { 4825 btrfs_tree_unlock_rw(eb, path->locks[level]); 4826 path->locks[level] = 0; 4827 } 4828 return 0; 4829 } 4830 4831 /* 4832 * This is used to verify a ref exists for this root to deal with a bug where we 4833 * would have a drop_progress key that hadn't been updated properly. 4834 */ 4835 static int check_ref_exists(struct btrfs_trans_handle *trans, 4836 struct btrfs_root *root, u64 bytenr, u64 parent, 4837 int level) 4838 { 4839 struct btrfs_path *path; 4840 struct btrfs_extent_inline_ref *iref; 4841 int ret; 4842 4843 path = btrfs_alloc_path(); 4844 if (!path) 4845 return -ENOMEM; 4846 4847 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4848 root->fs_info->nodesize, parent, 4849 root->root_key.objectid, level, 0); 4850 btrfs_free_path(path); 4851 if (ret == -ENOENT) 4852 return 0; 4853 if (ret < 0) 4854 return ret; 4855 return 1; 4856 } 4857 4858 /* 4859 * helper to process tree block pointer. 4860 * 4861 * when wc->stage == DROP_REFERENCE, this function checks 4862 * reference count of the block pointed to. if the block 4863 * is shared and we need update back refs for the subtree 4864 * rooted at the block, this function changes wc->stage to 4865 * UPDATE_BACKREF. if the block is shared and there is no 4866 * need to update back, this function drops the reference 4867 * to the block. 4868 * 4869 * NOTE: return value 1 means we should stop walking down. 4870 */ 4871 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4872 struct btrfs_root *root, 4873 struct btrfs_path *path, 4874 struct walk_control *wc, int *lookup_info) 4875 { 4876 struct btrfs_fs_info *fs_info = root->fs_info; 4877 u64 bytenr; 4878 u64 generation; 4879 u64 parent; 4880 struct btrfs_key key; 4881 struct btrfs_key first_key; 4882 struct btrfs_ref ref = { 0 }; 4883 struct extent_buffer *next; 4884 int level = wc->level; 4885 int reada = 0; 4886 int ret = 0; 4887 bool need_account = false; 4888 4889 generation = btrfs_node_ptr_generation(path->nodes[level], 4890 path->slots[level]); 4891 /* 4892 * if the lower level block was created before the snapshot 4893 * was created, we know there is no need to update back refs 4894 * for the subtree 4895 */ 4896 if (wc->stage == UPDATE_BACKREF && 4897 generation <= root->root_key.offset) { 4898 *lookup_info = 1; 4899 return 1; 4900 } 4901 4902 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4903 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4904 path->slots[level]); 4905 4906 next = find_extent_buffer(fs_info, bytenr); 4907 if (!next) { 4908 next = btrfs_find_create_tree_block(fs_info, bytenr); 4909 if (IS_ERR(next)) 4910 return PTR_ERR(next); 4911 4912 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4913 level - 1); 4914 reada = 1; 4915 } 4916 btrfs_tree_lock(next); 4917 btrfs_set_lock_blocking_write(next); 4918 4919 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4920 &wc->refs[level - 1], 4921 &wc->flags[level - 1]); 4922 if (ret < 0) 4923 goto out_unlock; 4924 4925 if (unlikely(wc->refs[level - 1] == 0)) { 4926 btrfs_err(fs_info, "Missing references."); 4927 ret = -EIO; 4928 goto out_unlock; 4929 } 4930 *lookup_info = 0; 4931 4932 if (wc->stage == DROP_REFERENCE) { 4933 if (wc->refs[level - 1] > 1) { 4934 need_account = true; 4935 if (level == 1 && 4936 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4937 goto skip; 4938 4939 if (!wc->update_ref || 4940 generation <= root->root_key.offset) 4941 goto skip; 4942 4943 btrfs_node_key_to_cpu(path->nodes[level], &key, 4944 path->slots[level]); 4945 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4946 if (ret < 0) 4947 goto skip; 4948 4949 wc->stage = UPDATE_BACKREF; 4950 wc->shared_level = level - 1; 4951 } 4952 } else { 4953 if (level == 1 && 4954 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4955 goto skip; 4956 } 4957 4958 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4959 btrfs_tree_unlock(next); 4960 free_extent_buffer(next); 4961 next = NULL; 4962 *lookup_info = 1; 4963 } 4964 4965 if (!next) { 4966 if (reada && level == 1) 4967 reada_walk_down(trans, root, wc, path); 4968 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4969 &first_key); 4970 if (IS_ERR(next)) { 4971 return PTR_ERR(next); 4972 } else if (!extent_buffer_uptodate(next)) { 4973 free_extent_buffer(next); 4974 return -EIO; 4975 } 4976 btrfs_tree_lock(next); 4977 btrfs_set_lock_blocking_write(next); 4978 } 4979 4980 level--; 4981 ASSERT(level == btrfs_header_level(next)); 4982 if (level != btrfs_header_level(next)) { 4983 btrfs_err(root->fs_info, "mismatched level"); 4984 ret = -EIO; 4985 goto out_unlock; 4986 } 4987 path->nodes[level] = next; 4988 path->slots[level] = 0; 4989 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 4990 wc->level = level; 4991 if (wc->level == 1) 4992 wc->reada_slot = 0; 4993 return 0; 4994 skip: 4995 wc->refs[level - 1] = 0; 4996 wc->flags[level - 1] = 0; 4997 if (wc->stage == DROP_REFERENCE) { 4998 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 4999 parent = path->nodes[level]->start; 5000 } else { 5001 ASSERT(root->root_key.objectid == 5002 btrfs_header_owner(path->nodes[level])); 5003 if (root->root_key.objectid != 5004 btrfs_header_owner(path->nodes[level])) { 5005 btrfs_err(root->fs_info, 5006 "mismatched block owner"); 5007 ret = -EIO; 5008 goto out_unlock; 5009 } 5010 parent = 0; 5011 } 5012 5013 /* 5014 * If we had a drop_progress we need to verify the refs are set 5015 * as expected. If we find our ref then we know that from here 5016 * on out everything should be correct, and we can clear the 5017 * ->restarted flag. 5018 */ 5019 if (wc->restarted) { 5020 ret = check_ref_exists(trans, root, bytenr, parent, 5021 level - 1); 5022 if (ret < 0) 5023 goto out_unlock; 5024 if (ret == 0) 5025 goto no_delete; 5026 ret = 0; 5027 wc->restarted = 0; 5028 } 5029 5030 /* 5031 * Reloc tree doesn't contribute to qgroup numbers, and we have 5032 * already accounted them at merge time (replace_path), 5033 * thus we could skip expensive subtree trace here. 5034 */ 5035 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5036 need_account) { 5037 ret = btrfs_qgroup_trace_subtree(trans, next, 5038 generation, level - 1); 5039 if (ret) { 5040 btrfs_err_rl(fs_info, 5041 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5042 ret); 5043 } 5044 } 5045 5046 /* 5047 * We need to update the next key in our walk control so we can 5048 * update the drop_progress key accordingly. We don't care if 5049 * find_next_key doesn't find a key because that means we're at 5050 * the end and are going to clean up now. 5051 */ 5052 wc->drop_level = level; 5053 find_next_key(path, level, &wc->drop_progress); 5054 5055 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5056 fs_info->nodesize, parent); 5057 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5058 ret = btrfs_free_extent(trans, &ref); 5059 if (ret) 5060 goto out_unlock; 5061 } 5062 no_delete: 5063 *lookup_info = 1; 5064 ret = 1; 5065 5066 out_unlock: 5067 btrfs_tree_unlock(next); 5068 free_extent_buffer(next); 5069 5070 return ret; 5071 } 5072 5073 /* 5074 * helper to process tree block while walking up the tree. 5075 * 5076 * when wc->stage == DROP_REFERENCE, this function drops 5077 * reference count on the block. 5078 * 5079 * when wc->stage == UPDATE_BACKREF, this function changes 5080 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5081 * to UPDATE_BACKREF previously while processing the block. 5082 * 5083 * NOTE: return value 1 means we should stop walking up. 5084 */ 5085 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5086 struct btrfs_root *root, 5087 struct btrfs_path *path, 5088 struct walk_control *wc) 5089 { 5090 struct btrfs_fs_info *fs_info = root->fs_info; 5091 int ret; 5092 int level = wc->level; 5093 struct extent_buffer *eb = path->nodes[level]; 5094 u64 parent = 0; 5095 5096 if (wc->stage == UPDATE_BACKREF) { 5097 BUG_ON(wc->shared_level < level); 5098 if (level < wc->shared_level) 5099 goto out; 5100 5101 ret = find_next_key(path, level + 1, &wc->update_progress); 5102 if (ret > 0) 5103 wc->update_ref = 0; 5104 5105 wc->stage = DROP_REFERENCE; 5106 wc->shared_level = -1; 5107 path->slots[level] = 0; 5108 5109 /* 5110 * check reference count again if the block isn't locked. 5111 * we should start walking down the tree again if reference 5112 * count is one. 5113 */ 5114 if (!path->locks[level]) { 5115 BUG_ON(level == 0); 5116 btrfs_tree_lock(eb); 5117 btrfs_set_lock_blocking_write(eb); 5118 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5119 5120 ret = btrfs_lookup_extent_info(trans, fs_info, 5121 eb->start, level, 1, 5122 &wc->refs[level], 5123 &wc->flags[level]); 5124 if (ret < 0) { 5125 btrfs_tree_unlock_rw(eb, path->locks[level]); 5126 path->locks[level] = 0; 5127 return ret; 5128 } 5129 BUG_ON(wc->refs[level] == 0); 5130 if (wc->refs[level] == 1) { 5131 btrfs_tree_unlock_rw(eb, path->locks[level]); 5132 path->locks[level] = 0; 5133 return 1; 5134 } 5135 } 5136 } 5137 5138 /* wc->stage == DROP_REFERENCE */ 5139 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5140 5141 if (wc->refs[level] == 1) { 5142 if (level == 0) { 5143 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5144 ret = btrfs_dec_ref(trans, root, eb, 1); 5145 else 5146 ret = btrfs_dec_ref(trans, root, eb, 0); 5147 BUG_ON(ret); /* -ENOMEM */ 5148 if (is_fstree(root->root_key.objectid)) { 5149 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5150 if (ret) { 5151 btrfs_err_rl(fs_info, 5152 "error %d accounting leaf items, quota is out of sync, rescan required", 5153 ret); 5154 } 5155 } 5156 } 5157 /* make block locked assertion in btrfs_clean_tree_block happy */ 5158 if (!path->locks[level] && 5159 btrfs_header_generation(eb) == trans->transid) { 5160 btrfs_tree_lock(eb); 5161 btrfs_set_lock_blocking_write(eb); 5162 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5163 } 5164 btrfs_clean_tree_block(eb); 5165 } 5166 5167 if (eb == root->node) { 5168 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5169 parent = eb->start; 5170 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5171 goto owner_mismatch; 5172 } else { 5173 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5174 parent = path->nodes[level + 1]->start; 5175 else if (root->root_key.objectid != 5176 btrfs_header_owner(path->nodes[level + 1])) 5177 goto owner_mismatch; 5178 } 5179 5180 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5181 out: 5182 wc->refs[level] = 0; 5183 wc->flags[level] = 0; 5184 return 0; 5185 5186 owner_mismatch: 5187 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5188 btrfs_header_owner(eb), root->root_key.objectid); 5189 return -EUCLEAN; 5190 } 5191 5192 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5193 struct btrfs_root *root, 5194 struct btrfs_path *path, 5195 struct walk_control *wc) 5196 { 5197 int level = wc->level; 5198 int lookup_info = 1; 5199 int ret; 5200 5201 while (level >= 0) { 5202 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5203 if (ret > 0) 5204 break; 5205 5206 if (level == 0) 5207 break; 5208 5209 if (path->slots[level] >= 5210 btrfs_header_nritems(path->nodes[level])) 5211 break; 5212 5213 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5214 if (ret > 0) { 5215 path->slots[level]++; 5216 continue; 5217 } else if (ret < 0) 5218 return ret; 5219 level = wc->level; 5220 } 5221 return 0; 5222 } 5223 5224 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5225 struct btrfs_root *root, 5226 struct btrfs_path *path, 5227 struct walk_control *wc, int max_level) 5228 { 5229 int level = wc->level; 5230 int ret; 5231 5232 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5233 while (level < max_level && path->nodes[level]) { 5234 wc->level = level; 5235 if (path->slots[level] + 1 < 5236 btrfs_header_nritems(path->nodes[level])) { 5237 path->slots[level]++; 5238 return 0; 5239 } else { 5240 ret = walk_up_proc(trans, root, path, wc); 5241 if (ret > 0) 5242 return 0; 5243 if (ret < 0) 5244 return ret; 5245 5246 if (path->locks[level]) { 5247 btrfs_tree_unlock_rw(path->nodes[level], 5248 path->locks[level]); 5249 path->locks[level] = 0; 5250 } 5251 free_extent_buffer(path->nodes[level]); 5252 path->nodes[level] = NULL; 5253 level++; 5254 } 5255 } 5256 return 1; 5257 } 5258 5259 /* 5260 * drop a subvolume tree. 5261 * 5262 * this function traverses the tree freeing any blocks that only 5263 * referenced by the tree. 5264 * 5265 * when a shared tree block is found. this function decreases its 5266 * reference count by one. if update_ref is true, this function 5267 * also make sure backrefs for the shared block and all lower level 5268 * blocks are properly updated. 5269 * 5270 * If called with for_reloc == 0, may exit early with -EAGAIN 5271 */ 5272 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5273 { 5274 struct btrfs_fs_info *fs_info = root->fs_info; 5275 struct btrfs_path *path; 5276 struct btrfs_trans_handle *trans; 5277 struct btrfs_root *tree_root = fs_info->tree_root; 5278 struct btrfs_root_item *root_item = &root->root_item; 5279 struct walk_control *wc; 5280 struct btrfs_key key; 5281 int err = 0; 5282 int ret; 5283 int level; 5284 bool root_dropped = false; 5285 5286 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5287 5288 path = btrfs_alloc_path(); 5289 if (!path) { 5290 err = -ENOMEM; 5291 goto out; 5292 } 5293 5294 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5295 if (!wc) { 5296 btrfs_free_path(path); 5297 err = -ENOMEM; 5298 goto out; 5299 } 5300 5301 trans = btrfs_start_transaction(tree_root, 0); 5302 if (IS_ERR(trans)) { 5303 err = PTR_ERR(trans); 5304 goto out_free; 5305 } 5306 5307 err = btrfs_run_delayed_items(trans); 5308 if (err) 5309 goto out_end_trans; 5310 5311 /* 5312 * This will help us catch people modifying the fs tree while we're 5313 * dropping it. It is unsafe to mess with the fs tree while it's being 5314 * dropped as we unlock the root node and parent nodes as we walk down 5315 * the tree, assuming nothing will change. If something does change 5316 * then we'll have stale information and drop references to blocks we've 5317 * already dropped. 5318 */ 5319 set_bit(BTRFS_ROOT_DELETING, &root->state); 5320 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5321 level = btrfs_header_level(root->node); 5322 path->nodes[level] = btrfs_lock_root_node(root); 5323 btrfs_set_lock_blocking_write(path->nodes[level]); 5324 path->slots[level] = 0; 5325 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5326 memset(&wc->update_progress, 0, 5327 sizeof(wc->update_progress)); 5328 } else { 5329 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5330 memcpy(&wc->update_progress, &key, 5331 sizeof(wc->update_progress)); 5332 5333 level = root_item->drop_level; 5334 BUG_ON(level == 0); 5335 path->lowest_level = level; 5336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5337 path->lowest_level = 0; 5338 if (ret < 0) { 5339 err = ret; 5340 goto out_end_trans; 5341 } 5342 WARN_ON(ret > 0); 5343 5344 /* 5345 * unlock our path, this is safe because only this 5346 * function is allowed to delete this snapshot 5347 */ 5348 btrfs_unlock_up_safe(path, 0); 5349 5350 level = btrfs_header_level(root->node); 5351 while (1) { 5352 btrfs_tree_lock(path->nodes[level]); 5353 btrfs_set_lock_blocking_write(path->nodes[level]); 5354 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5355 5356 ret = btrfs_lookup_extent_info(trans, fs_info, 5357 path->nodes[level]->start, 5358 level, 1, &wc->refs[level], 5359 &wc->flags[level]); 5360 if (ret < 0) { 5361 err = ret; 5362 goto out_end_trans; 5363 } 5364 BUG_ON(wc->refs[level] == 0); 5365 5366 if (level == root_item->drop_level) 5367 break; 5368 5369 btrfs_tree_unlock(path->nodes[level]); 5370 path->locks[level] = 0; 5371 WARN_ON(wc->refs[level] != 1); 5372 level--; 5373 } 5374 } 5375 5376 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5377 wc->level = level; 5378 wc->shared_level = -1; 5379 wc->stage = DROP_REFERENCE; 5380 wc->update_ref = update_ref; 5381 wc->keep_locks = 0; 5382 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5383 5384 while (1) { 5385 5386 ret = walk_down_tree(trans, root, path, wc); 5387 if (ret < 0) { 5388 err = ret; 5389 break; 5390 } 5391 5392 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5393 if (ret < 0) { 5394 err = ret; 5395 break; 5396 } 5397 5398 if (ret > 0) { 5399 BUG_ON(wc->stage != DROP_REFERENCE); 5400 break; 5401 } 5402 5403 if (wc->stage == DROP_REFERENCE) { 5404 wc->drop_level = wc->level; 5405 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5406 &wc->drop_progress, 5407 path->slots[wc->drop_level]); 5408 } 5409 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5410 &wc->drop_progress); 5411 root_item->drop_level = wc->drop_level; 5412 5413 BUG_ON(wc->level == 0); 5414 if (btrfs_should_end_transaction(trans) || 5415 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5416 ret = btrfs_update_root(trans, tree_root, 5417 &root->root_key, 5418 root_item); 5419 if (ret) { 5420 btrfs_abort_transaction(trans, ret); 5421 err = ret; 5422 goto out_end_trans; 5423 } 5424 5425 btrfs_end_transaction_throttle(trans); 5426 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5427 btrfs_debug(fs_info, 5428 "drop snapshot early exit"); 5429 err = -EAGAIN; 5430 goto out_free; 5431 } 5432 5433 trans = btrfs_start_transaction(tree_root, 0); 5434 if (IS_ERR(trans)) { 5435 err = PTR_ERR(trans); 5436 goto out_free; 5437 } 5438 } 5439 } 5440 btrfs_release_path(path); 5441 if (err) 5442 goto out_end_trans; 5443 5444 ret = btrfs_del_root(trans, &root->root_key); 5445 if (ret) { 5446 btrfs_abort_transaction(trans, ret); 5447 err = ret; 5448 goto out_end_trans; 5449 } 5450 5451 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5452 ret = btrfs_find_root(tree_root, &root->root_key, path, 5453 NULL, NULL); 5454 if (ret < 0) { 5455 btrfs_abort_transaction(trans, ret); 5456 err = ret; 5457 goto out_end_trans; 5458 } else if (ret > 0) { 5459 /* if we fail to delete the orphan item this time 5460 * around, it'll get picked up the next time. 5461 * 5462 * The most common failure here is just -ENOENT. 5463 */ 5464 btrfs_del_orphan_item(trans, tree_root, 5465 root->root_key.objectid); 5466 } 5467 } 5468 5469 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5470 btrfs_add_dropped_root(trans, root); 5471 else 5472 btrfs_put_root(root); 5473 root_dropped = true; 5474 out_end_trans: 5475 btrfs_end_transaction_throttle(trans); 5476 out_free: 5477 kfree(wc); 5478 btrfs_free_path(path); 5479 out: 5480 /* 5481 * So if we need to stop dropping the snapshot for whatever reason we 5482 * need to make sure to add it back to the dead root list so that we 5483 * keep trying to do the work later. This also cleans up roots if we 5484 * don't have it in the radix (like when we recover after a power fail 5485 * or unmount) so we don't leak memory. 5486 */ 5487 if (!for_reloc && !root_dropped) 5488 btrfs_add_dead_root(root); 5489 return err; 5490 } 5491 5492 /* 5493 * drop subtree rooted at tree block 'node'. 5494 * 5495 * NOTE: this function will unlock and release tree block 'node' 5496 * only used by relocation code 5497 */ 5498 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5499 struct btrfs_root *root, 5500 struct extent_buffer *node, 5501 struct extent_buffer *parent) 5502 { 5503 struct btrfs_fs_info *fs_info = root->fs_info; 5504 struct btrfs_path *path; 5505 struct walk_control *wc; 5506 int level; 5507 int parent_level; 5508 int ret = 0; 5509 int wret; 5510 5511 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5512 5513 path = btrfs_alloc_path(); 5514 if (!path) 5515 return -ENOMEM; 5516 5517 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5518 if (!wc) { 5519 btrfs_free_path(path); 5520 return -ENOMEM; 5521 } 5522 5523 btrfs_assert_tree_locked(parent); 5524 parent_level = btrfs_header_level(parent); 5525 atomic_inc(&parent->refs); 5526 path->nodes[parent_level] = parent; 5527 path->slots[parent_level] = btrfs_header_nritems(parent); 5528 5529 btrfs_assert_tree_locked(node); 5530 level = btrfs_header_level(node); 5531 path->nodes[level] = node; 5532 path->slots[level] = 0; 5533 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5534 5535 wc->refs[parent_level] = 1; 5536 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5537 wc->level = level; 5538 wc->shared_level = -1; 5539 wc->stage = DROP_REFERENCE; 5540 wc->update_ref = 0; 5541 wc->keep_locks = 1; 5542 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5543 5544 while (1) { 5545 wret = walk_down_tree(trans, root, path, wc); 5546 if (wret < 0) { 5547 ret = wret; 5548 break; 5549 } 5550 5551 wret = walk_up_tree(trans, root, path, wc, parent_level); 5552 if (wret < 0) 5553 ret = wret; 5554 if (wret != 0) 5555 break; 5556 } 5557 5558 kfree(wc); 5559 btrfs_free_path(path); 5560 return ret; 5561 } 5562 5563 /* 5564 * helper to account the unused space of all the readonly block group in the 5565 * space_info. takes mirrors into account. 5566 */ 5567 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5568 { 5569 struct btrfs_block_group *block_group; 5570 u64 free_bytes = 0; 5571 int factor; 5572 5573 /* It's df, we don't care if it's racy */ 5574 if (list_empty(&sinfo->ro_bgs)) 5575 return 0; 5576 5577 spin_lock(&sinfo->lock); 5578 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5579 spin_lock(&block_group->lock); 5580 5581 if (!block_group->ro) { 5582 spin_unlock(&block_group->lock); 5583 continue; 5584 } 5585 5586 factor = btrfs_bg_type_to_factor(block_group->flags); 5587 free_bytes += (block_group->length - 5588 block_group->used) * factor; 5589 5590 spin_unlock(&block_group->lock); 5591 } 5592 spin_unlock(&sinfo->lock); 5593 5594 return free_bytes; 5595 } 5596 5597 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5598 u64 start, u64 end) 5599 { 5600 return unpin_extent_range(fs_info, start, end, false); 5601 } 5602 5603 /* 5604 * It used to be that old block groups would be left around forever. 5605 * Iterating over them would be enough to trim unused space. Since we 5606 * now automatically remove them, we also need to iterate over unallocated 5607 * space. 5608 * 5609 * We don't want a transaction for this since the discard may take a 5610 * substantial amount of time. We don't require that a transaction be 5611 * running, but we do need to take a running transaction into account 5612 * to ensure that we're not discarding chunks that were released or 5613 * allocated in the current transaction. 5614 * 5615 * Holding the chunks lock will prevent other threads from allocating 5616 * or releasing chunks, but it won't prevent a running transaction 5617 * from committing and releasing the memory that the pending chunks 5618 * list head uses. For that, we need to take a reference to the 5619 * transaction and hold the commit root sem. We only need to hold 5620 * it while performing the free space search since we have already 5621 * held back allocations. 5622 */ 5623 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5624 { 5625 u64 start = SZ_1M, len = 0, end = 0; 5626 int ret; 5627 5628 *trimmed = 0; 5629 5630 /* Discard not supported = nothing to do. */ 5631 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5632 return 0; 5633 5634 /* Not writable = nothing to do. */ 5635 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5636 return 0; 5637 5638 /* No free space = nothing to do. */ 5639 if (device->total_bytes <= device->bytes_used) 5640 return 0; 5641 5642 ret = 0; 5643 5644 while (1) { 5645 struct btrfs_fs_info *fs_info = device->fs_info; 5646 u64 bytes; 5647 5648 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5649 if (ret) 5650 break; 5651 5652 find_first_clear_extent_bit(&device->alloc_state, start, 5653 &start, &end, 5654 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5655 5656 /* Ensure we skip the reserved area in the first 1M */ 5657 start = max_t(u64, start, SZ_1M); 5658 5659 /* 5660 * If find_first_clear_extent_bit find a range that spans the 5661 * end of the device it will set end to -1, in this case it's up 5662 * to the caller to trim the value to the size of the device. 5663 */ 5664 end = min(end, device->total_bytes - 1); 5665 5666 len = end - start + 1; 5667 5668 /* We didn't find any extents */ 5669 if (!len) { 5670 mutex_unlock(&fs_info->chunk_mutex); 5671 ret = 0; 5672 break; 5673 } 5674 5675 ret = btrfs_issue_discard(device->bdev, start, len, 5676 &bytes); 5677 if (!ret) 5678 set_extent_bits(&device->alloc_state, start, 5679 start + bytes - 1, 5680 CHUNK_TRIMMED); 5681 mutex_unlock(&fs_info->chunk_mutex); 5682 5683 if (ret) 5684 break; 5685 5686 start += len; 5687 *trimmed += bytes; 5688 5689 if (fatal_signal_pending(current)) { 5690 ret = -ERESTARTSYS; 5691 break; 5692 } 5693 5694 cond_resched(); 5695 } 5696 5697 return ret; 5698 } 5699 5700 /* 5701 * Trim the whole filesystem by: 5702 * 1) trimming the free space in each block group 5703 * 2) trimming the unallocated space on each device 5704 * 5705 * This will also continue trimming even if a block group or device encounters 5706 * an error. The return value will be the last error, or 0 if nothing bad 5707 * happens. 5708 */ 5709 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5710 { 5711 struct btrfs_block_group *cache = NULL; 5712 struct btrfs_device *device; 5713 struct list_head *devices; 5714 u64 group_trimmed; 5715 u64 range_end = U64_MAX; 5716 u64 start; 5717 u64 end; 5718 u64 trimmed = 0; 5719 u64 bg_failed = 0; 5720 u64 dev_failed = 0; 5721 int bg_ret = 0; 5722 int dev_ret = 0; 5723 int ret = 0; 5724 5725 /* 5726 * Check range overflow if range->len is set. 5727 * The default range->len is U64_MAX. 5728 */ 5729 if (range->len != U64_MAX && 5730 check_add_overflow(range->start, range->len, &range_end)) 5731 return -EINVAL; 5732 5733 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5734 for (; cache; cache = btrfs_next_block_group(cache)) { 5735 if (cache->start >= range_end) { 5736 btrfs_put_block_group(cache); 5737 break; 5738 } 5739 5740 start = max(range->start, cache->start); 5741 end = min(range_end, cache->start + cache->length); 5742 5743 if (end - start >= range->minlen) { 5744 if (!btrfs_block_group_done(cache)) { 5745 ret = btrfs_cache_block_group(cache, 0); 5746 if (ret) { 5747 bg_failed++; 5748 bg_ret = ret; 5749 continue; 5750 } 5751 ret = btrfs_wait_block_group_cache_done(cache); 5752 if (ret) { 5753 bg_failed++; 5754 bg_ret = ret; 5755 continue; 5756 } 5757 } 5758 ret = btrfs_trim_block_group(cache, 5759 &group_trimmed, 5760 start, 5761 end, 5762 range->minlen); 5763 5764 trimmed += group_trimmed; 5765 if (ret) { 5766 bg_failed++; 5767 bg_ret = ret; 5768 continue; 5769 } 5770 } 5771 } 5772 5773 if (bg_failed) 5774 btrfs_warn(fs_info, 5775 "failed to trim %llu block group(s), last error %d", 5776 bg_failed, bg_ret); 5777 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5778 devices = &fs_info->fs_devices->devices; 5779 list_for_each_entry(device, devices, dev_list) { 5780 ret = btrfs_trim_free_extents(device, &group_trimmed); 5781 if (ret) { 5782 dev_failed++; 5783 dev_ret = ret; 5784 break; 5785 } 5786 5787 trimmed += group_trimmed; 5788 } 5789 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5790 5791 if (dev_failed) 5792 btrfs_warn(fs_info, 5793 "failed to trim %llu device(s), last error %d", 5794 dev_failed, dev_ret); 5795 range->len = trimmed; 5796 if (bg_ret) 5797 return bg_ret; 5798 return dev_ret; 5799 } 5800