xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include <linux/crc32c.h>
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61 	CHUNK_ALLOC_NO_FORCE = 0,
62 	CHUNK_ALLOC_LIMITED = 1,
63 	CHUNK_ALLOC_FORCE = 2,
64 };
65 
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 			       struct btrfs_fs_info *fs_info,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_fs_info *fs_info,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_fs_info *fs_info,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_fs_info *fs_info, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 			       u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 				     struct btrfs_space_info *space_info,
97 				     u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 				     struct btrfs_space_info *space_info,
100 				     u64 num_bytes);
101 
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105 	smp_mb();
106 	return cache->cached == BTRFS_CACHE_FINISHED ||
107 		cache->cached == BTRFS_CACHE_ERROR;
108 }
109 
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 	return (cache->flags & bits) == bits;
113 }
114 
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 	atomic_inc(&cache->count);
118 }
119 
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 	if (atomic_dec_and_test(&cache->count)) {
123 		WARN_ON(cache->pinned > 0);
124 		WARN_ON(cache->reserved > 0);
125 
126 		/*
127 		 * If not empty, someone is still holding mutex of
128 		 * full_stripe_lock, which can only be released by caller.
129 		 * And it will definitely cause use-after-free when caller
130 		 * tries to release full stripe lock.
131 		 *
132 		 * No better way to resolve, but only to warn.
133 		 */
134 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE);
232 	set_extent_bits(&fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE);
247 	clear_extent_bits(&fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(fs_info, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 				       bytenr, 0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(fs_info, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	refcount_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (refcount_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334 	struct btrfs_fs_info *fs_info = block_group->fs_info;
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		fs_info->nodesize : fs_info->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 	struct btrfs_fs_info *fs_info = block_group->fs_info;
399 	struct btrfs_root *extent_root = fs_info->extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	path = btrfs_alloc_path();
410 	if (!path)
411 		return -ENOMEM;
412 
413 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414 
415 #ifdef CONFIG_BTRFS_DEBUG
416 	/*
417 	 * If we're fragmenting we don't want to make anybody think we can
418 	 * allocate from this block group until we've had a chance to fragment
419 	 * the free space.
420 	 */
421 	if (btrfs_should_fragment_free_space(block_group))
422 		wakeup = false;
423 #endif
424 	/*
425 	 * We don't want to deadlock with somebody trying to allocate a new
426 	 * extent for the extent root while also trying to search the extent
427 	 * root to add free space.  So we skip locking and search the commit
428 	 * root, since its read-only
429 	 */
430 	path->skip_locking = 1;
431 	path->search_commit_root = 1;
432 	path->reada = READA_FORWARD;
433 
434 	key.objectid = last;
435 	key.offset = 0;
436 	key.type = BTRFS_EXTENT_ITEM_KEY;
437 
438 next:
439 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 	if (ret < 0)
441 		goto out;
442 
443 	leaf = path->nodes[0];
444 	nritems = btrfs_header_nritems(leaf);
445 
446 	while (1) {
447 		if (btrfs_fs_closing(fs_info) > 1) {
448 			last = (u64)-1;
449 			break;
450 		}
451 
452 		if (path->slots[0] < nritems) {
453 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 		} else {
455 			ret = find_next_key(path, 0, &key);
456 			if (ret)
457 				break;
458 
459 			if (need_resched() ||
460 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
461 				if (wakeup)
462 					caching_ctl->progress = last;
463 				btrfs_release_path(path);
464 				up_read(&fs_info->commit_root_sem);
465 				mutex_unlock(&caching_ctl->mutex);
466 				cond_resched();
467 				mutex_lock(&caching_ctl->mutex);
468 				down_read(&fs_info->commit_root_sem);
469 				goto next;
470 			}
471 
472 			ret = btrfs_next_leaf(extent_root, path);
473 			if (ret < 0)
474 				goto out;
475 			if (ret)
476 				break;
477 			leaf = path->nodes[0];
478 			nritems = btrfs_header_nritems(leaf);
479 			continue;
480 		}
481 
482 		if (key.objectid < last) {
483 			key.objectid = last;
484 			key.offset = 0;
485 			key.type = BTRFS_EXTENT_ITEM_KEY;
486 
487 			if (wakeup)
488 				caching_ctl->progress = last;
489 			btrfs_release_path(path);
490 			goto next;
491 		}
492 
493 		if (key.objectid < block_group->key.objectid) {
494 			path->slots[0]++;
495 			continue;
496 		}
497 
498 		if (key.objectid >= block_group->key.objectid +
499 		    block_group->key.offset)
500 			break;
501 
502 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 		    key.type == BTRFS_METADATA_ITEM_KEY) {
504 			total_found += add_new_free_space(block_group,
505 							  fs_info, last,
506 							  key.objectid);
507 			if (key.type == BTRFS_METADATA_ITEM_KEY)
508 				last = key.objectid +
509 					fs_info->nodesize;
510 			else
511 				last = key.objectid + key.offset;
512 
513 			if (total_found > CACHING_CTL_WAKE_UP) {
514 				total_found = 0;
515 				if (wakeup)
516 					wake_up(&caching_ctl->wait);
517 			}
518 		}
519 		path->slots[0]++;
520 	}
521 	ret = 0;
522 
523 	total_found += add_new_free_space(block_group, fs_info, last,
524 					  block_group->key.objectid +
525 					  block_group->key.offset);
526 	caching_ctl->progress = (u64)-1;
527 
528 out:
529 	btrfs_free_path(path);
530 	return ret;
531 }
532 
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535 	struct btrfs_block_group_cache *block_group;
536 	struct btrfs_fs_info *fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	int ret;
539 
540 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
541 	block_group = caching_ctl->block_group;
542 	fs_info = block_group->fs_info;
543 
544 	mutex_lock(&caching_ctl->mutex);
545 	down_read(&fs_info->commit_root_sem);
546 
547 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
548 		ret = load_free_space_tree(caching_ctl);
549 	else
550 		ret = load_extent_tree_free(caching_ctl);
551 
552 	spin_lock(&block_group->lock);
553 	block_group->caching_ctl = NULL;
554 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
555 	spin_unlock(&block_group->lock);
556 
557 #ifdef CONFIG_BTRFS_DEBUG
558 	if (btrfs_should_fragment_free_space(block_group)) {
559 		u64 bytes_used;
560 
561 		spin_lock(&block_group->space_info->lock);
562 		spin_lock(&block_group->lock);
563 		bytes_used = block_group->key.offset -
564 			btrfs_block_group_used(&block_group->item);
565 		block_group->space_info->bytes_used += bytes_used >> 1;
566 		spin_unlock(&block_group->lock);
567 		spin_unlock(&block_group->space_info->lock);
568 		fragment_free_space(block_group);
569 	}
570 #endif
571 
572 	caching_ctl->progress = (u64)-1;
573 
574 	up_read(&fs_info->commit_root_sem);
575 	free_excluded_extents(fs_info, block_group);
576 	mutex_unlock(&caching_ctl->mutex);
577 
578 	wake_up(&caching_ctl->wait);
579 
580 	put_caching_control(caching_ctl);
581 	btrfs_put_block_group(block_group);
582 }
583 
584 static int cache_block_group(struct btrfs_block_group_cache *cache,
585 			     int load_cache_only)
586 {
587 	DEFINE_WAIT(wait);
588 	struct btrfs_fs_info *fs_info = cache->fs_info;
589 	struct btrfs_caching_control *caching_ctl;
590 	int ret = 0;
591 
592 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
593 	if (!caching_ctl)
594 		return -ENOMEM;
595 
596 	INIT_LIST_HEAD(&caching_ctl->list);
597 	mutex_init(&caching_ctl->mutex);
598 	init_waitqueue_head(&caching_ctl->wait);
599 	caching_ctl->block_group = cache;
600 	caching_ctl->progress = cache->key.objectid;
601 	refcount_set(&caching_ctl->count, 1);
602 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
603 			caching_thread, NULL, NULL);
604 
605 	spin_lock(&cache->lock);
606 	/*
607 	 * This should be a rare occasion, but this could happen I think in the
608 	 * case where one thread starts to load the space cache info, and then
609 	 * some other thread starts a transaction commit which tries to do an
610 	 * allocation while the other thread is still loading the space cache
611 	 * info.  The previous loop should have kept us from choosing this block
612 	 * group, but if we've moved to the state where we will wait on caching
613 	 * block groups we need to first check if we're doing a fast load here,
614 	 * so we can wait for it to finish, otherwise we could end up allocating
615 	 * from a block group who's cache gets evicted for one reason or
616 	 * another.
617 	 */
618 	while (cache->cached == BTRFS_CACHE_FAST) {
619 		struct btrfs_caching_control *ctl;
620 
621 		ctl = cache->caching_ctl;
622 		refcount_inc(&ctl->count);
623 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
624 		spin_unlock(&cache->lock);
625 
626 		schedule();
627 
628 		finish_wait(&ctl->wait, &wait);
629 		put_caching_control(ctl);
630 		spin_lock(&cache->lock);
631 	}
632 
633 	if (cache->cached != BTRFS_CACHE_NO) {
634 		spin_unlock(&cache->lock);
635 		kfree(caching_ctl);
636 		return 0;
637 	}
638 	WARN_ON(cache->caching_ctl);
639 	cache->caching_ctl = caching_ctl;
640 	cache->cached = BTRFS_CACHE_FAST;
641 	spin_unlock(&cache->lock);
642 
643 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
644 		mutex_lock(&caching_ctl->mutex);
645 		ret = load_free_space_cache(fs_info, cache);
646 
647 		spin_lock(&cache->lock);
648 		if (ret == 1) {
649 			cache->caching_ctl = NULL;
650 			cache->cached = BTRFS_CACHE_FINISHED;
651 			cache->last_byte_to_unpin = (u64)-1;
652 			caching_ctl->progress = (u64)-1;
653 		} else {
654 			if (load_cache_only) {
655 				cache->caching_ctl = NULL;
656 				cache->cached = BTRFS_CACHE_NO;
657 			} else {
658 				cache->cached = BTRFS_CACHE_STARTED;
659 				cache->has_caching_ctl = 1;
660 			}
661 		}
662 		spin_unlock(&cache->lock);
663 #ifdef CONFIG_BTRFS_DEBUG
664 		if (ret == 1 &&
665 		    btrfs_should_fragment_free_space(cache)) {
666 			u64 bytes_used;
667 
668 			spin_lock(&cache->space_info->lock);
669 			spin_lock(&cache->lock);
670 			bytes_used = cache->key.offset -
671 				btrfs_block_group_used(&cache->item);
672 			cache->space_info->bytes_used += bytes_used >> 1;
673 			spin_unlock(&cache->lock);
674 			spin_unlock(&cache->space_info->lock);
675 			fragment_free_space(cache);
676 		}
677 #endif
678 		mutex_unlock(&caching_ctl->mutex);
679 
680 		wake_up(&caching_ctl->wait);
681 		if (ret == 1) {
682 			put_caching_control(caching_ctl);
683 			free_excluded_extents(fs_info, cache);
684 			return 0;
685 		}
686 	} else {
687 		/*
688 		 * We're either using the free space tree or no caching at all.
689 		 * Set cached to the appropriate value and wakeup any waiters.
690 		 */
691 		spin_lock(&cache->lock);
692 		if (load_cache_only) {
693 			cache->caching_ctl = NULL;
694 			cache->cached = BTRFS_CACHE_NO;
695 		} else {
696 			cache->cached = BTRFS_CACHE_STARTED;
697 			cache->has_caching_ctl = 1;
698 		}
699 		spin_unlock(&cache->lock);
700 		wake_up(&caching_ctl->wait);
701 	}
702 
703 	if (load_cache_only) {
704 		put_caching_control(caching_ctl);
705 		return 0;
706 	}
707 
708 	down_write(&fs_info->commit_root_sem);
709 	refcount_inc(&caching_ctl->count);
710 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
711 	up_write(&fs_info->commit_root_sem);
712 
713 	btrfs_get_block_group(cache);
714 
715 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
716 
717 	return ret;
718 }
719 
720 /*
721  * return the block group that starts at or after bytenr
722  */
723 static struct btrfs_block_group_cache *
724 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
725 {
726 	return block_group_cache_tree_search(info, bytenr, 0);
727 }
728 
729 /*
730  * return the block group that contains the given bytenr
731  */
732 struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 						 struct btrfs_fs_info *info,
734 						 u64 bytenr)
735 {
736 	return block_group_cache_tree_search(info, bytenr, 1);
737 }
738 
739 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
740 						  u64 flags)
741 {
742 	struct list_head *head = &info->space_info;
743 	struct btrfs_space_info *found;
744 
745 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
746 
747 	rcu_read_lock();
748 	list_for_each_entry_rcu(found, head, list) {
749 		if (found->flags & flags) {
750 			rcu_read_unlock();
751 			return found;
752 		}
753 	}
754 	rcu_read_unlock();
755 	return NULL;
756 }
757 
758 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
759 			     u64 owner, u64 root_objectid)
760 {
761 	struct btrfs_space_info *space_info;
762 	u64 flags;
763 
764 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
765 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
766 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
767 		else
768 			flags = BTRFS_BLOCK_GROUP_METADATA;
769 	} else {
770 		flags = BTRFS_BLOCK_GROUP_DATA;
771 	}
772 
773 	space_info = __find_space_info(fs_info, flags);
774 	ASSERT(space_info);
775 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
776 }
777 
778 /*
779  * after adding space to the filesystem, we need to clear the full flags
780  * on all the space infos.
781  */
782 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
783 {
784 	struct list_head *head = &info->space_info;
785 	struct btrfs_space_info *found;
786 
787 	rcu_read_lock();
788 	list_for_each_entry_rcu(found, head, list)
789 		found->full = 0;
790 	rcu_read_unlock();
791 }
792 
793 /* simple helper to search for an existing data extent at a given offset */
794 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
795 {
796 	int ret;
797 	struct btrfs_key key;
798 	struct btrfs_path *path;
799 
800 	path = btrfs_alloc_path();
801 	if (!path)
802 		return -ENOMEM;
803 
804 	key.objectid = start;
805 	key.offset = len;
806 	key.type = BTRFS_EXTENT_ITEM_KEY;
807 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
808 	btrfs_free_path(path);
809 	return ret;
810 }
811 
812 /*
813  * helper function to lookup reference count and flags of a tree block.
814  *
815  * the head node for delayed ref is used to store the sum of all the
816  * reference count modifications queued up in the rbtree. the head
817  * node may also store the extent flags to set. This way you can check
818  * to see what the reference count and extent flags would be if all of
819  * the delayed refs are not processed.
820  */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 			     struct btrfs_fs_info *fs_info, u64 bytenr,
823 			     u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 	struct btrfs_delayed_ref_head *head;
826 	struct btrfs_delayed_ref_root *delayed_refs;
827 	struct btrfs_path *path;
828 	struct btrfs_extent_item *ei;
829 	struct extent_buffer *leaf;
830 	struct btrfs_key key;
831 	u32 item_size;
832 	u64 num_refs;
833 	u64 extent_flags;
834 	int ret;
835 
836 	/*
837 	 * If we don't have skinny metadata, don't bother doing anything
838 	 * different
839 	 */
840 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
841 		offset = fs_info->nodesize;
842 		metadata = 0;
843 	}
844 
845 	path = btrfs_alloc_path();
846 	if (!path)
847 		return -ENOMEM;
848 
849 	if (!trans) {
850 		path->skip_locking = 1;
851 		path->search_commit_root = 1;
852 	}
853 
854 search_again:
855 	key.objectid = bytenr;
856 	key.offset = offset;
857 	if (metadata)
858 		key.type = BTRFS_METADATA_ITEM_KEY;
859 	else
860 		key.type = BTRFS_EXTENT_ITEM_KEY;
861 
862 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
863 	if (ret < 0)
864 		goto out_free;
865 
866 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
867 		if (path->slots[0]) {
868 			path->slots[0]--;
869 			btrfs_item_key_to_cpu(path->nodes[0], &key,
870 					      path->slots[0]);
871 			if (key.objectid == bytenr &&
872 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
873 			    key.offset == fs_info->nodesize)
874 				ret = 0;
875 		}
876 	}
877 
878 	if (ret == 0) {
879 		leaf = path->nodes[0];
880 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
881 		if (item_size >= sizeof(*ei)) {
882 			ei = btrfs_item_ptr(leaf, path->slots[0],
883 					    struct btrfs_extent_item);
884 			num_refs = btrfs_extent_refs(leaf, ei);
885 			extent_flags = btrfs_extent_flags(leaf, ei);
886 		} else {
887 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
888 			struct btrfs_extent_item_v0 *ei0;
889 			BUG_ON(item_size != sizeof(*ei0));
890 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
891 					     struct btrfs_extent_item_v0);
892 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
893 			/* FIXME: this isn't correct for data */
894 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
895 #else
896 			BUG();
897 #endif
898 		}
899 		BUG_ON(num_refs == 0);
900 	} else {
901 		num_refs = 0;
902 		extent_flags = 0;
903 		ret = 0;
904 	}
905 
906 	if (!trans)
907 		goto out;
908 
909 	delayed_refs = &trans->transaction->delayed_refs;
910 	spin_lock(&delayed_refs->lock);
911 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
912 	if (head) {
913 		if (!mutex_trylock(&head->mutex)) {
914 			refcount_inc(&head->refs);
915 			spin_unlock(&delayed_refs->lock);
916 
917 			btrfs_release_path(path);
918 
919 			/*
920 			 * Mutex was contended, block until it's released and try
921 			 * again
922 			 */
923 			mutex_lock(&head->mutex);
924 			mutex_unlock(&head->mutex);
925 			btrfs_put_delayed_ref_head(head);
926 			goto search_again;
927 		}
928 		spin_lock(&head->lock);
929 		if (head->extent_op && head->extent_op->update_flags)
930 			extent_flags |= head->extent_op->flags_to_set;
931 		else
932 			BUG_ON(num_refs == 0);
933 
934 		num_refs += head->ref_mod;
935 		spin_unlock(&head->lock);
936 		mutex_unlock(&head->mutex);
937 	}
938 	spin_unlock(&delayed_refs->lock);
939 out:
940 	WARN_ON(num_refs == 0);
941 	if (refs)
942 		*refs = num_refs;
943 	if (flags)
944 		*flags = extent_flags;
945 out_free:
946 	btrfs_free_path(path);
947 	return ret;
948 }
949 
950 /*
951  * Back reference rules.  Back refs have three main goals:
952  *
953  * 1) differentiate between all holders of references to an extent so that
954  *    when a reference is dropped we can make sure it was a valid reference
955  *    before freeing the extent.
956  *
957  * 2) Provide enough information to quickly find the holders of an extent
958  *    if we notice a given block is corrupted or bad.
959  *
960  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961  *    maintenance.  This is actually the same as #2, but with a slightly
962  *    different use case.
963  *
964  * There are two kinds of back refs. The implicit back refs is optimized
965  * for pointers in non-shared tree blocks. For a given pointer in a block,
966  * back refs of this kind provide information about the block's owner tree
967  * and the pointer's key. These information allow us to find the block by
968  * b-tree searching. The full back refs is for pointers in tree blocks not
969  * referenced by their owner trees. The location of tree block is recorded
970  * in the back refs. Actually the full back refs is generic, and can be
971  * used in all cases the implicit back refs is used. The major shortcoming
972  * of the full back refs is its overhead. Every time a tree block gets
973  * COWed, we have to update back refs entry for all pointers in it.
974  *
975  * For a newly allocated tree block, we use implicit back refs for
976  * pointers in it. This means most tree related operations only involve
977  * implicit back refs. For a tree block created in old transaction, the
978  * only way to drop a reference to it is COW it. So we can detect the
979  * event that tree block loses its owner tree's reference and do the
980  * back refs conversion.
981  *
982  * When a tree block is COWed through a tree, there are four cases:
983  *
984  * The reference count of the block is one and the tree is the block's
985  * owner tree. Nothing to do in this case.
986  *
987  * The reference count of the block is one and the tree is not the
988  * block's owner tree. In this case, full back refs is used for pointers
989  * in the block. Remove these full back refs, add implicit back refs for
990  * every pointers in the new block.
991  *
992  * The reference count of the block is greater than one and the tree is
993  * the block's owner tree. In this case, implicit back refs is used for
994  * pointers in the block. Add full back refs for every pointers in the
995  * block, increase lower level extents' reference counts. The original
996  * implicit back refs are entailed to the new block.
997  *
998  * The reference count of the block is greater than one and the tree is
999  * not the block's owner tree. Add implicit back refs for every pointer in
1000  * the new block, increase lower level extents' reference count.
1001  *
1002  * Back Reference Key composing:
1003  *
1004  * The key objectid corresponds to the first byte in the extent,
1005  * The key type is used to differentiate between types of back refs.
1006  * There are different meanings of the key offset for different types
1007  * of back refs.
1008  *
1009  * File extents can be referenced by:
1010  *
1011  * - multiple snapshots, subvolumes, or different generations in one subvol
1012  * - different files inside a single subvolume
1013  * - different offsets inside a file (bookend extents in file.c)
1014  *
1015  * The extent ref structure for the implicit back refs has fields for:
1016  *
1017  * - Objectid of the subvolume root
1018  * - objectid of the file holding the reference
1019  * - original offset in the file
1020  * - how many bookend extents
1021  *
1022  * The key offset for the implicit back refs is hash of the first
1023  * three fields.
1024  *
1025  * The extent ref structure for the full back refs has field for:
1026  *
1027  * - number of pointers in the tree leaf
1028  *
1029  * The key offset for the implicit back refs is the first byte of
1030  * the tree leaf
1031  *
1032  * When a file extent is allocated, The implicit back refs is used.
1033  * the fields are filled in:
1034  *
1035  *     (root_key.objectid, inode objectid, offset in file, 1)
1036  *
1037  * When a file extent is removed file truncation, we find the
1038  * corresponding implicit back refs and check the following fields:
1039  *
1040  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1041  *
1042  * Btree extents can be referenced by:
1043  *
1044  * - Different subvolumes
1045  *
1046  * Both the implicit back refs and the full back refs for tree blocks
1047  * only consist of key. The key offset for the implicit back refs is
1048  * objectid of block's owner tree. The key offset for the full back refs
1049  * is the first byte of parent block.
1050  *
1051  * When implicit back refs is used, information about the lowest key and
1052  * level of the tree block are required. These information are stored in
1053  * tree block info structure.
1054  */
1055 
1056 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1057 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1058 				  struct btrfs_fs_info *fs_info,
1059 				  struct btrfs_path *path,
1060 				  u64 owner, u32 extra_size)
1061 {
1062 	struct btrfs_root *root = fs_info->extent_root;
1063 	struct btrfs_extent_item *item;
1064 	struct btrfs_extent_item_v0 *ei0;
1065 	struct btrfs_extent_ref_v0 *ref0;
1066 	struct btrfs_tree_block_info *bi;
1067 	struct extent_buffer *leaf;
1068 	struct btrfs_key key;
1069 	struct btrfs_key found_key;
1070 	u32 new_size = sizeof(*item);
1071 	u64 refs;
1072 	int ret;
1073 
1074 	leaf = path->nodes[0];
1075 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076 
1077 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 			     struct btrfs_extent_item_v0);
1080 	refs = btrfs_extent_refs_v0(leaf, ei0);
1081 
1082 	if (owner == (u64)-1) {
1083 		while (1) {
1084 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 				ret = btrfs_next_leaf(root, path);
1086 				if (ret < 0)
1087 					return ret;
1088 				BUG_ON(ret > 0); /* Corruption */
1089 				leaf = path->nodes[0];
1090 			}
1091 			btrfs_item_key_to_cpu(leaf, &found_key,
1092 					      path->slots[0]);
1093 			BUG_ON(key.objectid != found_key.objectid);
1094 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 				path->slots[0]++;
1096 				continue;
1097 			}
1098 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 					      struct btrfs_extent_ref_v0);
1100 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 			break;
1102 		}
1103 	}
1104 	btrfs_release_path(path);
1105 
1106 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 		new_size += sizeof(*bi);
1108 
1109 	new_size -= sizeof(*ei0);
1110 	ret = btrfs_search_slot(trans, root, &key, path,
1111 				new_size + extra_size, 1);
1112 	if (ret < 0)
1113 		return ret;
1114 	BUG_ON(ret); /* Corruption */
1115 
1116 	btrfs_extend_item(fs_info, path, new_size);
1117 
1118 	leaf = path->nodes[0];
1119 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 	btrfs_set_extent_refs(leaf, item, refs);
1121 	/* FIXME: get real generation */
1122 	btrfs_set_extent_generation(leaf, item, 0);
1123 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 		btrfs_set_extent_flags(leaf, item,
1125 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 		bi = (struct btrfs_tree_block_info *)(item + 1);
1128 		/* FIXME: get first key of the block */
1129 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1130 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 	} else {
1132 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 	}
1134 	btrfs_mark_buffer_dirty(leaf);
1135 	return 0;
1136 }
1137 #endif
1138 
1139 /*
1140  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1141  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1142  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1143  */
1144 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1145 				     struct btrfs_extent_inline_ref *iref,
1146 				     enum btrfs_inline_ref_type is_data)
1147 {
1148 	int type = btrfs_extent_inline_ref_type(eb, iref);
1149 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1150 
1151 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1152 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1153 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1154 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1155 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1156 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1157 				return type;
1158 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1159 				ASSERT(eb->fs_info);
1160 				/*
1161 				 * Every shared one has parent tree
1162 				 * block, which must be aligned to
1163 				 * nodesize.
1164 				 */
1165 				if (offset &&
1166 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1167 					return type;
1168 			}
1169 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1170 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1171 				return type;
1172 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1173 				ASSERT(eb->fs_info);
1174 				/*
1175 				 * Every shared one has parent tree
1176 				 * block, which must be aligned to
1177 				 * nodesize.
1178 				 */
1179 				if (offset &&
1180 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1181 					return type;
1182 			}
1183 		} else {
1184 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1185 			return type;
1186 		}
1187 	}
1188 
1189 	btrfs_print_leaf((struct extent_buffer *)eb);
1190 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1191 		  eb->start, type);
1192 	WARN_ON(1);
1193 
1194 	return BTRFS_REF_TYPE_INVALID;
1195 }
1196 
1197 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1198 {
1199 	u32 high_crc = ~(u32)0;
1200 	u32 low_crc = ~(u32)0;
1201 	__le64 lenum;
1202 
1203 	lenum = cpu_to_le64(root_objectid);
1204 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1205 	lenum = cpu_to_le64(owner);
1206 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1207 	lenum = cpu_to_le64(offset);
1208 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1209 
1210 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1211 }
1212 
1213 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1214 				     struct btrfs_extent_data_ref *ref)
1215 {
1216 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1217 				    btrfs_extent_data_ref_objectid(leaf, ref),
1218 				    btrfs_extent_data_ref_offset(leaf, ref));
1219 }
1220 
1221 static int match_extent_data_ref(struct extent_buffer *leaf,
1222 				 struct btrfs_extent_data_ref *ref,
1223 				 u64 root_objectid, u64 owner, u64 offset)
1224 {
1225 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1226 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1227 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1228 		return 0;
1229 	return 1;
1230 }
1231 
1232 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1233 					   struct btrfs_fs_info *fs_info,
1234 					   struct btrfs_path *path,
1235 					   u64 bytenr, u64 parent,
1236 					   u64 root_objectid,
1237 					   u64 owner, u64 offset)
1238 {
1239 	struct btrfs_root *root = fs_info->extent_root;
1240 	struct btrfs_key key;
1241 	struct btrfs_extent_data_ref *ref;
1242 	struct extent_buffer *leaf;
1243 	u32 nritems;
1244 	int ret;
1245 	int recow;
1246 	int err = -ENOENT;
1247 
1248 	key.objectid = bytenr;
1249 	if (parent) {
1250 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1251 		key.offset = parent;
1252 	} else {
1253 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1254 		key.offset = hash_extent_data_ref(root_objectid,
1255 						  owner, offset);
1256 	}
1257 again:
1258 	recow = 0;
1259 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 	if (ret < 0) {
1261 		err = ret;
1262 		goto fail;
1263 	}
1264 
1265 	if (parent) {
1266 		if (!ret)
1267 			return 0;
1268 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1269 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1270 		btrfs_release_path(path);
1271 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1272 		if (ret < 0) {
1273 			err = ret;
1274 			goto fail;
1275 		}
1276 		if (!ret)
1277 			return 0;
1278 #endif
1279 		goto fail;
1280 	}
1281 
1282 	leaf = path->nodes[0];
1283 	nritems = btrfs_header_nritems(leaf);
1284 	while (1) {
1285 		if (path->slots[0] >= nritems) {
1286 			ret = btrfs_next_leaf(root, path);
1287 			if (ret < 0)
1288 				err = ret;
1289 			if (ret)
1290 				goto fail;
1291 
1292 			leaf = path->nodes[0];
1293 			nritems = btrfs_header_nritems(leaf);
1294 			recow = 1;
1295 		}
1296 
1297 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1298 		if (key.objectid != bytenr ||
1299 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1300 			goto fail;
1301 
1302 		ref = btrfs_item_ptr(leaf, path->slots[0],
1303 				     struct btrfs_extent_data_ref);
1304 
1305 		if (match_extent_data_ref(leaf, ref, root_objectid,
1306 					  owner, offset)) {
1307 			if (recow) {
1308 				btrfs_release_path(path);
1309 				goto again;
1310 			}
1311 			err = 0;
1312 			break;
1313 		}
1314 		path->slots[0]++;
1315 	}
1316 fail:
1317 	return err;
1318 }
1319 
1320 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1321 					   struct btrfs_fs_info *fs_info,
1322 					   struct btrfs_path *path,
1323 					   u64 bytenr, u64 parent,
1324 					   u64 root_objectid, u64 owner,
1325 					   u64 offset, int refs_to_add)
1326 {
1327 	struct btrfs_root *root = fs_info->extent_root;
1328 	struct btrfs_key key;
1329 	struct extent_buffer *leaf;
1330 	u32 size;
1331 	u32 num_refs;
1332 	int ret;
1333 
1334 	key.objectid = bytenr;
1335 	if (parent) {
1336 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1337 		key.offset = parent;
1338 		size = sizeof(struct btrfs_shared_data_ref);
1339 	} else {
1340 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1341 		key.offset = hash_extent_data_ref(root_objectid,
1342 						  owner, offset);
1343 		size = sizeof(struct btrfs_extent_data_ref);
1344 	}
1345 
1346 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1347 	if (ret && ret != -EEXIST)
1348 		goto fail;
1349 
1350 	leaf = path->nodes[0];
1351 	if (parent) {
1352 		struct btrfs_shared_data_ref *ref;
1353 		ref = btrfs_item_ptr(leaf, path->slots[0],
1354 				     struct btrfs_shared_data_ref);
1355 		if (ret == 0) {
1356 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1357 		} else {
1358 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1359 			num_refs += refs_to_add;
1360 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1361 		}
1362 	} else {
1363 		struct btrfs_extent_data_ref *ref;
1364 		while (ret == -EEXIST) {
1365 			ref = btrfs_item_ptr(leaf, path->slots[0],
1366 					     struct btrfs_extent_data_ref);
1367 			if (match_extent_data_ref(leaf, ref, root_objectid,
1368 						  owner, offset))
1369 				break;
1370 			btrfs_release_path(path);
1371 			key.offset++;
1372 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1373 						      size);
1374 			if (ret && ret != -EEXIST)
1375 				goto fail;
1376 
1377 			leaf = path->nodes[0];
1378 		}
1379 		ref = btrfs_item_ptr(leaf, path->slots[0],
1380 				     struct btrfs_extent_data_ref);
1381 		if (ret == 0) {
1382 			btrfs_set_extent_data_ref_root(leaf, ref,
1383 						       root_objectid);
1384 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1385 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1386 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1387 		} else {
1388 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1389 			num_refs += refs_to_add;
1390 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1391 		}
1392 	}
1393 	btrfs_mark_buffer_dirty(leaf);
1394 	ret = 0;
1395 fail:
1396 	btrfs_release_path(path);
1397 	return ret;
1398 }
1399 
1400 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1401 					   struct btrfs_fs_info *fs_info,
1402 					   struct btrfs_path *path,
1403 					   int refs_to_drop, int *last_ref)
1404 {
1405 	struct btrfs_key key;
1406 	struct btrfs_extent_data_ref *ref1 = NULL;
1407 	struct btrfs_shared_data_ref *ref2 = NULL;
1408 	struct extent_buffer *leaf;
1409 	u32 num_refs = 0;
1410 	int ret = 0;
1411 
1412 	leaf = path->nodes[0];
1413 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1414 
1415 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1416 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1417 				      struct btrfs_extent_data_ref);
1418 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1419 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1420 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1421 				      struct btrfs_shared_data_ref);
1422 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1423 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1424 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1425 		struct btrfs_extent_ref_v0 *ref0;
1426 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1427 				      struct btrfs_extent_ref_v0);
1428 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1429 #endif
1430 	} else {
1431 		BUG();
1432 	}
1433 
1434 	BUG_ON(num_refs < refs_to_drop);
1435 	num_refs -= refs_to_drop;
1436 
1437 	if (num_refs == 0) {
1438 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1439 		*last_ref = 1;
1440 	} else {
1441 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1442 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1443 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1444 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1445 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1446 		else {
1447 			struct btrfs_extent_ref_v0 *ref0;
1448 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1449 					struct btrfs_extent_ref_v0);
1450 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1451 		}
1452 #endif
1453 		btrfs_mark_buffer_dirty(leaf);
1454 	}
1455 	return ret;
1456 }
1457 
1458 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1459 					  struct btrfs_extent_inline_ref *iref)
1460 {
1461 	struct btrfs_key key;
1462 	struct extent_buffer *leaf;
1463 	struct btrfs_extent_data_ref *ref1;
1464 	struct btrfs_shared_data_ref *ref2;
1465 	u32 num_refs = 0;
1466 	int type;
1467 
1468 	leaf = path->nodes[0];
1469 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1470 	if (iref) {
1471 		/*
1472 		 * If type is invalid, we should have bailed out earlier than
1473 		 * this call.
1474 		 */
1475 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1476 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1477 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1478 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1479 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1480 		} else {
1481 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1482 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1483 		}
1484 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1485 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1486 				      struct btrfs_extent_data_ref);
1487 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1488 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1489 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1490 				      struct btrfs_shared_data_ref);
1491 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1492 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1493 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1494 		struct btrfs_extent_ref_v0 *ref0;
1495 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1496 				      struct btrfs_extent_ref_v0);
1497 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1498 #endif
1499 	} else {
1500 		WARN_ON(1);
1501 	}
1502 	return num_refs;
1503 }
1504 
1505 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1506 					  struct btrfs_fs_info *fs_info,
1507 					  struct btrfs_path *path,
1508 					  u64 bytenr, u64 parent,
1509 					  u64 root_objectid)
1510 {
1511 	struct btrfs_root *root = fs_info->extent_root;
1512 	struct btrfs_key key;
1513 	int ret;
1514 
1515 	key.objectid = bytenr;
1516 	if (parent) {
1517 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1518 		key.offset = parent;
1519 	} else {
1520 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1521 		key.offset = root_objectid;
1522 	}
1523 
1524 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1525 	if (ret > 0)
1526 		ret = -ENOENT;
1527 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1528 	if (ret == -ENOENT && parent) {
1529 		btrfs_release_path(path);
1530 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1531 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1532 		if (ret > 0)
1533 			ret = -ENOENT;
1534 	}
1535 #endif
1536 	return ret;
1537 }
1538 
1539 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1540 					  struct btrfs_fs_info *fs_info,
1541 					  struct btrfs_path *path,
1542 					  u64 bytenr, u64 parent,
1543 					  u64 root_objectid)
1544 {
1545 	struct btrfs_key key;
1546 	int ret;
1547 
1548 	key.objectid = bytenr;
1549 	if (parent) {
1550 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1551 		key.offset = parent;
1552 	} else {
1553 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1554 		key.offset = root_objectid;
1555 	}
1556 
1557 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1558 				      path, &key, 0);
1559 	btrfs_release_path(path);
1560 	return ret;
1561 }
1562 
1563 static inline int extent_ref_type(u64 parent, u64 owner)
1564 {
1565 	int type;
1566 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1567 		if (parent > 0)
1568 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1569 		else
1570 			type = BTRFS_TREE_BLOCK_REF_KEY;
1571 	} else {
1572 		if (parent > 0)
1573 			type = BTRFS_SHARED_DATA_REF_KEY;
1574 		else
1575 			type = BTRFS_EXTENT_DATA_REF_KEY;
1576 	}
1577 	return type;
1578 }
1579 
1580 static int find_next_key(struct btrfs_path *path, int level,
1581 			 struct btrfs_key *key)
1582 
1583 {
1584 	for (; level < BTRFS_MAX_LEVEL; level++) {
1585 		if (!path->nodes[level])
1586 			break;
1587 		if (path->slots[level] + 1 >=
1588 		    btrfs_header_nritems(path->nodes[level]))
1589 			continue;
1590 		if (level == 0)
1591 			btrfs_item_key_to_cpu(path->nodes[level], key,
1592 					      path->slots[level] + 1);
1593 		else
1594 			btrfs_node_key_to_cpu(path->nodes[level], key,
1595 					      path->slots[level] + 1);
1596 		return 0;
1597 	}
1598 	return 1;
1599 }
1600 
1601 /*
1602  * look for inline back ref. if back ref is found, *ref_ret is set
1603  * to the address of inline back ref, and 0 is returned.
1604  *
1605  * if back ref isn't found, *ref_ret is set to the address where it
1606  * should be inserted, and -ENOENT is returned.
1607  *
1608  * if insert is true and there are too many inline back refs, the path
1609  * points to the extent item, and -EAGAIN is returned.
1610  *
1611  * NOTE: inline back refs are ordered in the same way that back ref
1612  *	 items in the tree are ordered.
1613  */
1614 static noinline_for_stack
1615 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1616 				 struct btrfs_fs_info *fs_info,
1617 				 struct btrfs_path *path,
1618 				 struct btrfs_extent_inline_ref **ref_ret,
1619 				 u64 bytenr, u64 num_bytes,
1620 				 u64 parent, u64 root_objectid,
1621 				 u64 owner, u64 offset, int insert)
1622 {
1623 	struct btrfs_root *root = fs_info->extent_root;
1624 	struct btrfs_key key;
1625 	struct extent_buffer *leaf;
1626 	struct btrfs_extent_item *ei;
1627 	struct btrfs_extent_inline_ref *iref;
1628 	u64 flags;
1629 	u64 item_size;
1630 	unsigned long ptr;
1631 	unsigned long end;
1632 	int extra_size;
1633 	int type;
1634 	int want;
1635 	int ret;
1636 	int err = 0;
1637 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1638 	int needed;
1639 
1640 	key.objectid = bytenr;
1641 	key.type = BTRFS_EXTENT_ITEM_KEY;
1642 	key.offset = num_bytes;
1643 
1644 	want = extent_ref_type(parent, owner);
1645 	if (insert) {
1646 		extra_size = btrfs_extent_inline_ref_size(want);
1647 		path->keep_locks = 1;
1648 	} else
1649 		extra_size = -1;
1650 
1651 	/*
1652 	 * Owner is our parent level, so we can just add one to get the level
1653 	 * for the block we are interested in.
1654 	 */
1655 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1656 		key.type = BTRFS_METADATA_ITEM_KEY;
1657 		key.offset = owner;
1658 	}
1659 
1660 again:
1661 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1662 	if (ret < 0) {
1663 		err = ret;
1664 		goto out;
1665 	}
1666 
1667 	/*
1668 	 * We may be a newly converted file system which still has the old fat
1669 	 * extent entries for metadata, so try and see if we have one of those.
1670 	 */
1671 	if (ret > 0 && skinny_metadata) {
1672 		skinny_metadata = false;
1673 		if (path->slots[0]) {
1674 			path->slots[0]--;
1675 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1676 					      path->slots[0]);
1677 			if (key.objectid == bytenr &&
1678 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1679 			    key.offset == num_bytes)
1680 				ret = 0;
1681 		}
1682 		if (ret) {
1683 			key.objectid = bytenr;
1684 			key.type = BTRFS_EXTENT_ITEM_KEY;
1685 			key.offset = num_bytes;
1686 			btrfs_release_path(path);
1687 			goto again;
1688 		}
1689 	}
1690 
1691 	if (ret && !insert) {
1692 		err = -ENOENT;
1693 		goto out;
1694 	} else if (WARN_ON(ret)) {
1695 		err = -EIO;
1696 		goto out;
1697 	}
1698 
1699 	leaf = path->nodes[0];
1700 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1701 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1702 	if (item_size < sizeof(*ei)) {
1703 		if (!insert) {
1704 			err = -ENOENT;
1705 			goto out;
1706 		}
1707 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1708 					     extra_size);
1709 		if (ret < 0) {
1710 			err = ret;
1711 			goto out;
1712 		}
1713 		leaf = path->nodes[0];
1714 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1715 	}
1716 #endif
1717 	BUG_ON(item_size < sizeof(*ei));
1718 
1719 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1720 	flags = btrfs_extent_flags(leaf, ei);
1721 
1722 	ptr = (unsigned long)(ei + 1);
1723 	end = (unsigned long)ei + item_size;
1724 
1725 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1726 		ptr += sizeof(struct btrfs_tree_block_info);
1727 		BUG_ON(ptr > end);
1728 	}
1729 
1730 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1731 		needed = BTRFS_REF_TYPE_DATA;
1732 	else
1733 		needed = BTRFS_REF_TYPE_BLOCK;
1734 
1735 	err = -ENOENT;
1736 	while (1) {
1737 		if (ptr >= end) {
1738 			WARN_ON(ptr > end);
1739 			break;
1740 		}
1741 		iref = (struct btrfs_extent_inline_ref *)ptr;
1742 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1743 		if (type == BTRFS_REF_TYPE_INVALID) {
1744 			err = -EINVAL;
1745 			goto out;
1746 		}
1747 
1748 		if (want < type)
1749 			break;
1750 		if (want > type) {
1751 			ptr += btrfs_extent_inline_ref_size(type);
1752 			continue;
1753 		}
1754 
1755 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1756 			struct btrfs_extent_data_ref *dref;
1757 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1758 			if (match_extent_data_ref(leaf, dref, root_objectid,
1759 						  owner, offset)) {
1760 				err = 0;
1761 				break;
1762 			}
1763 			if (hash_extent_data_ref_item(leaf, dref) <
1764 			    hash_extent_data_ref(root_objectid, owner, offset))
1765 				break;
1766 		} else {
1767 			u64 ref_offset;
1768 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1769 			if (parent > 0) {
1770 				if (parent == ref_offset) {
1771 					err = 0;
1772 					break;
1773 				}
1774 				if (ref_offset < parent)
1775 					break;
1776 			} else {
1777 				if (root_objectid == ref_offset) {
1778 					err = 0;
1779 					break;
1780 				}
1781 				if (ref_offset < root_objectid)
1782 					break;
1783 			}
1784 		}
1785 		ptr += btrfs_extent_inline_ref_size(type);
1786 	}
1787 	if (err == -ENOENT && insert) {
1788 		if (item_size + extra_size >=
1789 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1790 			err = -EAGAIN;
1791 			goto out;
1792 		}
1793 		/*
1794 		 * To add new inline back ref, we have to make sure
1795 		 * there is no corresponding back ref item.
1796 		 * For simplicity, we just do not add new inline back
1797 		 * ref if there is any kind of item for this block
1798 		 */
1799 		if (find_next_key(path, 0, &key) == 0 &&
1800 		    key.objectid == bytenr &&
1801 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1802 			err = -EAGAIN;
1803 			goto out;
1804 		}
1805 	}
1806 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1807 out:
1808 	if (insert) {
1809 		path->keep_locks = 0;
1810 		btrfs_unlock_up_safe(path, 1);
1811 	}
1812 	return err;
1813 }
1814 
1815 /*
1816  * helper to add new inline back ref
1817  */
1818 static noinline_for_stack
1819 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1820 				 struct btrfs_path *path,
1821 				 struct btrfs_extent_inline_ref *iref,
1822 				 u64 parent, u64 root_objectid,
1823 				 u64 owner, u64 offset, int refs_to_add,
1824 				 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 	struct extent_buffer *leaf;
1827 	struct btrfs_extent_item *ei;
1828 	unsigned long ptr;
1829 	unsigned long end;
1830 	unsigned long item_offset;
1831 	u64 refs;
1832 	int size;
1833 	int type;
1834 
1835 	leaf = path->nodes[0];
1836 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 	item_offset = (unsigned long)iref - (unsigned long)ei;
1838 
1839 	type = extent_ref_type(parent, owner);
1840 	size = btrfs_extent_inline_ref_size(type);
1841 
1842 	btrfs_extend_item(fs_info, path, size);
1843 
1844 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1845 	refs = btrfs_extent_refs(leaf, ei);
1846 	refs += refs_to_add;
1847 	btrfs_set_extent_refs(leaf, ei, refs);
1848 	if (extent_op)
1849 		__run_delayed_extent_op(extent_op, leaf, ei);
1850 
1851 	ptr = (unsigned long)ei + item_offset;
1852 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1853 	if (ptr < end - size)
1854 		memmove_extent_buffer(leaf, ptr + size, ptr,
1855 				      end - size - ptr);
1856 
1857 	iref = (struct btrfs_extent_inline_ref *)ptr;
1858 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1859 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1860 		struct btrfs_extent_data_ref *dref;
1861 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1862 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1863 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1864 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1865 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1866 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1867 		struct btrfs_shared_data_ref *sref;
1868 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1869 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1870 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1871 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1872 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 	} else {
1874 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1875 	}
1876 	btrfs_mark_buffer_dirty(leaf);
1877 }
1878 
1879 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1880 				 struct btrfs_fs_info *fs_info,
1881 				 struct btrfs_path *path,
1882 				 struct btrfs_extent_inline_ref **ref_ret,
1883 				 u64 bytenr, u64 num_bytes, u64 parent,
1884 				 u64 root_objectid, u64 owner, u64 offset)
1885 {
1886 	int ret;
1887 
1888 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1889 					   bytenr, num_bytes, parent,
1890 					   root_objectid, owner, offset, 0);
1891 	if (ret != -ENOENT)
1892 		return ret;
1893 
1894 	btrfs_release_path(path);
1895 	*ref_ret = NULL;
1896 
1897 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1898 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1899 					    parent, root_objectid);
1900 	} else {
1901 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1902 					     parent, root_objectid, owner,
1903 					     offset);
1904 	}
1905 	return ret;
1906 }
1907 
1908 /*
1909  * helper to update/remove inline back ref
1910  */
1911 static noinline_for_stack
1912 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1913 				  struct btrfs_path *path,
1914 				  struct btrfs_extent_inline_ref *iref,
1915 				  int refs_to_mod,
1916 				  struct btrfs_delayed_extent_op *extent_op,
1917 				  int *last_ref)
1918 {
1919 	struct extent_buffer *leaf;
1920 	struct btrfs_extent_item *ei;
1921 	struct btrfs_extent_data_ref *dref = NULL;
1922 	struct btrfs_shared_data_ref *sref = NULL;
1923 	unsigned long ptr;
1924 	unsigned long end;
1925 	u32 item_size;
1926 	int size;
1927 	int type;
1928 	u64 refs;
1929 
1930 	leaf = path->nodes[0];
1931 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 	refs = btrfs_extent_refs(leaf, ei);
1933 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1934 	refs += refs_to_mod;
1935 	btrfs_set_extent_refs(leaf, ei, refs);
1936 	if (extent_op)
1937 		__run_delayed_extent_op(extent_op, leaf, ei);
1938 
1939 	/*
1940 	 * If type is invalid, we should have bailed out after
1941 	 * lookup_inline_extent_backref().
1942 	 */
1943 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1944 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1945 
1946 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1947 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1948 		refs = btrfs_extent_data_ref_count(leaf, dref);
1949 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1950 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1951 		refs = btrfs_shared_data_ref_count(leaf, sref);
1952 	} else {
1953 		refs = 1;
1954 		BUG_ON(refs_to_mod != -1);
1955 	}
1956 
1957 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1958 	refs += refs_to_mod;
1959 
1960 	if (refs > 0) {
1961 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1962 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1963 		else
1964 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1965 	} else {
1966 		*last_ref = 1;
1967 		size =  btrfs_extent_inline_ref_size(type);
1968 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1969 		ptr = (unsigned long)iref;
1970 		end = (unsigned long)ei + item_size;
1971 		if (ptr + size < end)
1972 			memmove_extent_buffer(leaf, ptr, ptr + size,
1973 					      end - ptr - size);
1974 		item_size -= size;
1975 		btrfs_truncate_item(fs_info, path, item_size, 1);
1976 	}
1977 	btrfs_mark_buffer_dirty(leaf);
1978 }
1979 
1980 static noinline_for_stack
1981 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1982 				 struct btrfs_fs_info *fs_info,
1983 				 struct btrfs_path *path,
1984 				 u64 bytenr, u64 num_bytes, u64 parent,
1985 				 u64 root_objectid, u64 owner,
1986 				 u64 offset, int refs_to_add,
1987 				 struct btrfs_delayed_extent_op *extent_op)
1988 {
1989 	struct btrfs_extent_inline_ref *iref;
1990 	int ret;
1991 
1992 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1993 					   bytenr, num_bytes, parent,
1994 					   root_objectid, owner, offset, 1);
1995 	if (ret == 0) {
1996 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1997 		update_inline_extent_backref(fs_info, path, iref,
1998 					     refs_to_add, extent_op, NULL);
1999 	} else if (ret == -ENOENT) {
2000 		setup_inline_extent_backref(fs_info, path, iref, parent,
2001 					    root_objectid, owner, offset,
2002 					    refs_to_add, extent_op);
2003 		ret = 0;
2004 	}
2005 	return ret;
2006 }
2007 
2008 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2009 				 struct btrfs_fs_info *fs_info,
2010 				 struct btrfs_path *path,
2011 				 u64 bytenr, u64 parent, u64 root_objectid,
2012 				 u64 owner, u64 offset, int refs_to_add)
2013 {
2014 	int ret;
2015 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2016 		BUG_ON(refs_to_add != 1);
2017 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2018 					    parent, root_objectid);
2019 	} else {
2020 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2021 					     parent, root_objectid,
2022 					     owner, offset, refs_to_add);
2023 	}
2024 	return ret;
2025 }
2026 
2027 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2028 				 struct btrfs_fs_info *fs_info,
2029 				 struct btrfs_path *path,
2030 				 struct btrfs_extent_inline_ref *iref,
2031 				 int refs_to_drop, int is_data, int *last_ref)
2032 {
2033 	int ret = 0;
2034 
2035 	BUG_ON(!is_data && refs_to_drop != 1);
2036 	if (iref) {
2037 		update_inline_extent_backref(fs_info, path, iref,
2038 					     -refs_to_drop, NULL, last_ref);
2039 	} else if (is_data) {
2040 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2041 					     last_ref);
2042 	} else {
2043 		*last_ref = 1;
2044 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2045 	}
2046 	return ret;
2047 }
2048 
2049 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2050 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2051 			       u64 *discarded_bytes)
2052 {
2053 	int j, ret = 0;
2054 	u64 bytes_left, end;
2055 	u64 aligned_start = ALIGN(start, 1 << 9);
2056 
2057 	if (WARN_ON(start != aligned_start)) {
2058 		len -= aligned_start - start;
2059 		len = round_down(len, 1 << 9);
2060 		start = aligned_start;
2061 	}
2062 
2063 	*discarded_bytes = 0;
2064 
2065 	if (!len)
2066 		return 0;
2067 
2068 	end = start + len;
2069 	bytes_left = len;
2070 
2071 	/* Skip any superblocks on this device. */
2072 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2073 		u64 sb_start = btrfs_sb_offset(j);
2074 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2075 		u64 size = sb_start - start;
2076 
2077 		if (!in_range(sb_start, start, bytes_left) &&
2078 		    !in_range(sb_end, start, bytes_left) &&
2079 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2080 			continue;
2081 
2082 		/*
2083 		 * Superblock spans beginning of range.  Adjust start and
2084 		 * try again.
2085 		 */
2086 		if (sb_start <= start) {
2087 			start += sb_end - start;
2088 			if (start > end) {
2089 				bytes_left = 0;
2090 				break;
2091 			}
2092 			bytes_left = end - start;
2093 			continue;
2094 		}
2095 
2096 		if (size) {
2097 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2098 						   GFP_NOFS, 0);
2099 			if (!ret)
2100 				*discarded_bytes += size;
2101 			else if (ret != -EOPNOTSUPP)
2102 				return ret;
2103 		}
2104 
2105 		start = sb_end;
2106 		if (start > end) {
2107 			bytes_left = 0;
2108 			break;
2109 		}
2110 		bytes_left = end - start;
2111 	}
2112 
2113 	if (bytes_left) {
2114 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2115 					   GFP_NOFS, 0);
2116 		if (!ret)
2117 			*discarded_bytes += bytes_left;
2118 	}
2119 	return ret;
2120 }
2121 
2122 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2123 			 u64 num_bytes, u64 *actual_bytes)
2124 {
2125 	int ret;
2126 	u64 discarded_bytes = 0;
2127 	struct btrfs_bio *bbio = NULL;
2128 
2129 
2130 	/*
2131 	 * Avoid races with device replace and make sure our bbio has devices
2132 	 * associated to its stripes that don't go away while we are discarding.
2133 	 */
2134 	btrfs_bio_counter_inc_blocked(fs_info);
2135 	/* Tell the block device(s) that the sectors can be discarded */
2136 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2137 			      &bbio, 0);
2138 	/* Error condition is -ENOMEM */
2139 	if (!ret) {
2140 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2141 		int i;
2142 
2143 
2144 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2145 			u64 bytes;
2146 			struct request_queue *req_q;
2147 
2148 			if (!stripe->dev->bdev) {
2149 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2150 				continue;
2151 			}
2152 			req_q = bdev_get_queue(stripe->dev->bdev);
2153 			if (!blk_queue_discard(req_q))
2154 				continue;
2155 
2156 			ret = btrfs_issue_discard(stripe->dev->bdev,
2157 						  stripe->physical,
2158 						  stripe->length,
2159 						  &bytes);
2160 			if (!ret)
2161 				discarded_bytes += bytes;
2162 			else if (ret != -EOPNOTSUPP)
2163 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2164 
2165 			/*
2166 			 * Just in case we get back EOPNOTSUPP for some reason,
2167 			 * just ignore the return value so we don't screw up
2168 			 * people calling discard_extent.
2169 			 */
2170 			ret = 0;
2171 		}
2172 		btrfs_put_bbio(bbio);
2173 	}
2174 	btrfs_bio_counter_dec(fs_info);
2175 
2176 	if (actual_bytes)
2177 		*actual_bytes = discarded_bytes;
2178 
2179 
2180 	if (ret == -EOPNOTSUPP)
2181 		ret = 0;
2182 	return ret;
2183 }
2184 
2185 /* Can return -ENOMEM */
2186 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2187 			 struct btrfs_root *root,
2188 			 u64 bytenr, u64 num_bytes, u64 parent,
2189 			 u64 root_objectid, u64 owner, u64 offset)
2190 {
2191 	struct btrfs_fs_info *fs_info = root->fs_info;
2192 	int old_ref_mod, new_ref_mod;
2193 	int ret;
2194 
2195 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2196 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2197 
2198 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2199 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2200 
2201 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2202 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2203 						 num_bytes, parent,
2204 						 root_objectid, (int)owner,
2205 						 BTRFS_ADD_DELAYED_REF, NULL,
2206 						 &old_ref_mod, &new_ref_mod);
2207 	} else {
2208 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2209 						 num_bytes, parent,
2210 						 root_objectid, owner, offset,
2211 						 0, BTRFS_ADD_DELAYED_REF,
2212 						 &old_ref_mod, &new_ref_mod);
2213 	}
2214 
2215 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2216 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2217 
2218 	return ret;
2219 }
2220 
2221 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2222 				  struct btrfs_fs_info *fs_info,
2223 				  struct btrfs_delayed_ref_node *node,
2224 				  u64 parent, u64 root_objectid,
2225 				  u64 owner, u64 offset, int refs_to_add,
2226 				  struct btrfs_delayed_extent_op *extent_op)
2227 {
2228 	struct btrfs_path *path;
2229 	struct extent_buffer *leaf;
2230 	struct btrfs_extent_item *item;
2231 	struct btrfs_key key;
2232 	u64 bytenr = node->bytenr;
2233 	u64 num_bytes = node->num_bytes;
2234 	u64 refs;
2235 	int ret;
2236 
2237 	path = btrfs_alloc_path();
2238 	if (!path)
2239 		return -ENOMEM;
2240 
2241 	path->reada = READA_FORWARD;
2242 	path->leave_spinning = 1;
2243 	/* this will setup the path even if it fails to insert the back ref */
2244 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2245 					   num_bytes, parent, root_objectid,
2246 					   owner, offset,
2247 					   refs_to_add, extent_op);
2248 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2249 		goto out;
2250 
2251 	/*
2252 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2253 	 * inline extent ref, so just update the reference count and add a
2254 	 * normal backref.
2255 	 */
2256 	leaf = path->nodes[0];
2257 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2258 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2259 	refs = btrfs_extent_refs(leaf, item);
2260 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2261 	if (extent_op)
2262 		__run_delayed_extent_op(extent_op, leaf, item);
2263 
2264 	btrfs_mark_buffer_dirty(leaf);
2265 	btrfs_release_path(path);
2266 
2267 	path->reada = READA_FORWARD;
2268 	path->leave_spinning = 1;
2269 	/* now insert the actual backref */
2270 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2271 				    root_objectid, owner, offset, refs_to_add);
2272 	if (ret)
2273 		btrfs_abort_transaction(trans, ret);
2274 out:
2275 	btrfs_free_path(path);
2276 	return ret;
2277 }
2278 
2279 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2280 				struct btrfs_fs_info *fs_info,
2281 				struct btrfs_delayed_ref_node *node,
2282 				struct btrfs_delayed_extent_op *extent_op,
2283 				int insert_reserved)
2284 {
2285 	int ret = 0;
2286 	struct btrfs_delayed_data_ref *ref;
2287 	struct btrfs_key ins;
2288 	u64 parent = 0;
2289 	u64 ref_root = 0;
2290 	u64 flags = 0;
2291 
2292 	ins.objectid = node->bytenr;
2293 	ins.offset = node->num_bytes;
2294 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2295 
2296 	ref = btrfs_delayed_node_to_data_ref(node);
2297 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2298 
2299 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2300 		parent = ref->parent;
2301 	ref_root = ref->root;
2302 
2303 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2304 		if (extent_op)
2305 			flags |= extent_op->flags_to_set;
2306 		ret = alloc_reserved_file_extent(trans, fs_info,
2307 						 parent, ref_root, flags,
2308 						 ref->objectid, ref->offset,
2309 						 &ins, node->ref_mod);
2310 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2311 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2312 					     ref_root, ref->objectid,
2313 					     ref->offset, node->ref_mod,
2314 					     extent_op);
2315 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2316 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2317 					  ref_root, ref->objectid,
2318 					  ref->offset, node->ref_mod,
2319 					  extent_op);
2320 	} else {
2321 		BUG();
2322 	}
2323 	return ret;
2324 }
2325 
2326 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2327 				    struct extent_buffer *leaf,
2328 				    struct btrfs_extent_item *ei)
2329 {
2330 	u64 flags = btrfs_extent_flags(leaf, ei);
2331 	if (extent_op->update_flags) {
2332 		flags |= extent_op->flags_to_set;
2333 		btrfs_set_extent_flags(leaf, ei, flags);
2334 	}
2335 
2336 	if (extent_op->update_key) {
2337 		struct btrfs_tree_block_info *bi;
2338 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2339 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2340 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2341 	}
2342 }
2343 
2344 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2345 				 struct btrfs_fs_info *fs_info,
2346 				 struct btrfs_delayed_ref_head *head,
2347 				 struct btrfs_delayed_extent_op *extent_op)
2348 {
2349 	struct btrfs_key key;
2350 	struct btrfs_path *path;
2351 	struct btrfs_extent_item *ei;
2352 	struct extent_buffer *leaf;
2353 	u32 item_size;
2354 	int ret;
2355 	int err = 0;
2356 	int metadata = !extent_op->is_data;
2357 
2358 	if (trans->aborted)
2359 		return 0;
2360 
2361 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2362 		metadata = 0;
2363 
2364 	path = btrfs_alloc_path();
2365 	if (!path)
2366 		return -ENOMEM;
2367 
2368 	key.objectid = head->bytenr;
2369 
2370 	if (metadata) {
2371 		key.type = BTRFS_METADATA_ITEM_KEY;
2372 		key.offset = extent_op->level;
2373 	} else {
2374 		key.type = BTRFS_EXTENT_ITEM_KEY;
2375 		key.offset = head->num_bytes;
2376 	}
2377 
2378 again:
2379 	path->reada = READA_FORWARD;
2380 	path->leave_spinning = 1;
2381 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2382 	if (ret < 0) {
2383 		err = ret;
2384 		goto out;
2385 	}
2386 	if (ret > 0) {
2387 		if (metadata) {
2388 			if (path->slots[0] > 0) {
2389 				path->slots[0]--;
2390 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2391 						      path->slots[0]);
2392 				if (key.objectid == head->bytenr &&
2393 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2394 				    key.offset == head->num_bytes)
2395 					ret = 0;
2396 			}
2397 			if (ret > 0) {
2398 				btrfs_release_path(path);
2399 				metadata = 0;
2400 
2401 				key.objectid = head->bytenr;
2402 				key.offset = head->num_bytes;
2403 				key.type = BTRFS_EXTENT_ITEM_KEY;
2404 				goto again;
2405 			}
2406 		} else {
2407 			err = -EIO;
2408 			goto out;
2409 		}
2410 	}
2411 
2412 	leaf = path->nodes[0];
2413 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2415 	if (item_size < sizeof(*ei)) {
2416 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2417 		if (ret < 0) {
2418 			err = ret;
2419 			goto out;
2420 		}
2421 		leaf = path->nodes[0];
2422 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2423 	}
2424 #endif
2425 	BUG_ON(item_size < sizeof(*ei));
2426 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2427 	__run_delayed_extent_op(extent_op, leaf, ei);
2428 
2429 	btrfs_mark_buffer_dirty(leaf);
2430 out:
2431 	btrfs_free_path(path);
2432 	return err;
2433 }
2434 
2435 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2436 				struct btrfs_fs_info *fs_info,
2437 				struct btrfs_delayed_ref_node *node,
2438 				struct btrfs_delayed_extent_op *extent_op,
2439 				int insert_reserved)
2440 {
2441 	int ret = 0;
2442 	struct btrfs_delayed_tree_ref *ref;
2443 	struct btrfs_key ins;
2444 	u64 parent = 0;
2445 	u64 ref_root = 0;
2446 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2447 
2448 	ref = btrfs_delayed_node_to_tree_ref(node);
2449 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2450 
2451 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2452 		parent = ref->parent;
2453 	ref_root = ref->root;
2454 
2455 	ins.objectid = node->bytenr;
2456 	if (skinny_metadata) {
2457 		ins.offset = ref->level;
2458 		ins.type = BTRFS_METADATA_ITEM_KEY;
2459 	} else {
2460 		ins.offset = node->num_bytes;
2461 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2462 	}
2463 
2464 	if (node->ref_mod != 1) {
2465 		btrfs_err(fs_info,
2466 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2467 			  node->bytenr, node->ref_mod, node->action, ref_root,
2468 			  parent);
2469 		return -EIO;
2470 	}
2471 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2472 		BUG_ON(!extent_op || !extent_op->update_flags);
2473 		ret = alloc_reserved_tree_block(trans, fs_info,
2474 						parent, ref_root,
2475 						extent_op->flags_to_set,
2476 						&extent_op->key,
2477 						ref->level, &ins);
2478 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2479 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2480 					     parent, ref_root,
2481 					     ref->level, 0, 1,
2482 					     extent_op);
2483 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2484 		ret = __btrfs_free_extent(trans, fs_info, node,
2485 					  parent, ref_root,
2486 					  ref->level, 0, 1, extent_op);
2487 	} else {
2488 		BUG();
2489 	}
2490 	return ret;
2491 }
2492 
2493 /* helper function to actually process a single delayed ref entry */
2494 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2495 			       struct btrfs_fs_info *fs_info,
2496 			       struct btrfs_delayed_ref_node *node,
2497 			       struct btrfs_delayed_extent_op *extent_op,
2498 			       int insert_reserved)
2499 {
2500 	int ret = 0;
2501 
2502 	if (trans->aborted) {
2503 		if (insert_reserved)
2504 			btrfs_pin_extent(fs_info, node->bytenr,
2505 					 node->num_bytes, 1);
2506 		return 0;
2507 	}
2508 
2509 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2510 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2511 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2512 					   insert_reserved);
2513 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2514 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2515 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2516 					   insert_reserved);
2517 	else
2518 		BUG();
2519 	return ret;
2520 }
2521 
2522 static inline struct btrfs_delayed_ref_node *
2523 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2524 {
2525 	struct btrfs_delayed_ref_node *ref;
2526 
2527 	if (RB_EMPTY_ROOT(&head->ref_tree))
2528 		return NULL;
2529 
2530 	/*
2531 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2532 	 * This is to prevent a ref count from going down to zero, which deletes
2533 	 * the extent item from the extent tree, when there still are references
2534 	 * to add, which would fail because they would not find the extent item.
2535 	 */
2536 	if (!list_empty(&head->ref_add_list))
2537 		return list_first_entry(&head->ref_add_list,
2538 				struct btrfs_delayed_ref_node, add_list);
2539 
2540 	ref = rb_entry(rb_first(&head->ref_tree),
2541 		       struct btrfs_delayed_ref_node, ref_node);
2542 	ASSERT(list_empty(&ref->add_list));
2543 	return ref;
2544 }
2545 
2546 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2547 				      struct btrfs_delayed_ref_head *head)
2548 {
2549 	spin_lock(&delayed_refs->lock);
2550 	head->processing = 0;
2551 	delayed_refs->num_heads_ready++;
2552 	spin_unlock(&delayed_refs->lock);
2553 	btrfs_delayed_ref_unlock(head);
2554 }
2555 
2556 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2557 			     struct btrfs_fs_info *fs_info,
2558 			     struct btrfs_delayed_ref_head *head)
2559 {
2560 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2561 	int ret;
2562 
2563 	if (!extent_op)
2564 		return 0;
2565 	head->extent_op = NULL;
2566 	if (head->must_insert_reserved) {
2567 		btrfs_free_delayed_extent_op(extent_op);
2568 		return 0;
2569 	}
2570 	spin_unlock(&head->lock);
2571 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2572 	btrfs_free_delayed_extent_op(extent_op);
2573 	return ret ? ret : 1;
2574 }
2575 
2576 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2577 			    struct btrfs_fs_info *fs_info,
2578 			    struct btrfs_delayed_ref_head *head)
2579 {
2580 	struct btrfs_delayed_ref_root *delayed_refs;
2581 	int ret;
2582 
2583 	delayed_refs = &trans->transaction->delayed_refs;
2584 
2585 	ret = cleanup_extent_op(trans, fs_info, head);
2586 	if (ret < 0) {
2587 		unselect_delayed_ref_head(delayed_refs, head);
2588 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2589 		return ret;
2590 	} else if (ret) {
2591 		return ret;
2592 	}
2593 
2594 	/*
2595 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2596 	 * and then re-check to make sure nobody got added.
2597 	 */
2598 	spin_unlock(&head->lock);
2599 	spin_lock(&delayed_refs->lock);
2600 	spin_lock(&head->lock);
2601 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2602 		spin_unlock(&head->lock);
2603 		spin_unlock(&delayed_refs->lock);
2604 		return 1;
2605 	}
2606 	delayed_refs->num_heads--;
2607 	rb_erase(&head->href_node, &delayed_refs->href_root);
2608 	RB_CLEAR_NODE(&head->href_node);
2609 	spin_unlock(&delayed_refs->lock);
2610 	spin_unlock(&head->lock);
2611 	atomic_dec(&delayed_refs->num_entries);
2612 
2613 	trace_run_delayed_ref_head(fs_info, head, 0);
2614 
2615 	if (head->total_ref_mod < 0) {
2616 		struct btrfs_block_group_cache *cache;
2617 
2618 		cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2619 		ASSERT(cache);
2620 		percpu_counter_add(&cache->space_info->total_bytes_pinned,
2621 				   -head->num_bytes);
2622 		btrfs_put_block_group(cache);
2623 
2624 		if (head->is_data) {
2625 			spin_lock(&delayed_refs->lock);
2626 			delayed_refs->pending_csums -= head->num_bytes;
2627 			spin_unlock(&delayed_refs->lock);
2628 		}
2629 	}
2630 
2631 	if (head->must_insert_reserved) {
2632 		btrfs_pin_extent(fs_info, head->bytenr,
2633 				 head->num_bytes, 1);
2634 		if (head->is_data) {
2635 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2636 					      head->num_bytes);
2637 		}
2638 	}
2639 
2640 	/* Also free its reserved qgroup space */
2641 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2642 				      head->qgroup_reserved);
2643 	btrfs_delayed_ref_unlock(head);
2644 	btrfs_put_delayed_ref_head(head);
2645 	return 0;
2646 }
2647 
2648 /*
2649  * Returns 0 on success or if called with an already aborted transaction.
2650  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2651  */
2652 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2653 					     unsigned long nr)
2654 {
2655 	struct btrfs_fs_info *fs_info = trans->fs_info;
2656 	struct btrfs_delayed_ref_root *delayed_refs;
2657 	struct btrfs_delayed_ref_node *ref;
2658 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2659 	struct btrfs_delayed_extent_op *extent_op;
2660 	ktime_t start = ktime_get();
2661 	int ret;
2662 	unsigned long count = 0;
2663 	unsigned long actual_count = 0;
2664 	int must_insert_reserved = 0;
2665 
2666 	delayed_refs = &trans->transaction->delayed_refs;
2667 	while (1) {
2668 		if (!locked_ref) {
2669 			if (count >= nr)
2670 				break;
2671 
2672 			spin_lock(&delayed_refs->lock);
2673 			locked_ref = btrfs_select_ref_head(trans);
2674 			if (!locked_ref) {
2675 				spin_unlock(&delayed_refs->lock);
2676 				break;
2677 			}
2678 
2679 			/* grab the lock that says we are going to process
2680 			 * all the refs for this head */
2681 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2682 			spin_unlock(&delayed_refs->lock);
2683 			/*
2684 			 * we may have dropped the spin lock to get the head
2685 			 * mutex lock, and that might have given someone else
2686 			 * time to free the head.  If that's true, it has been
2687 			 * removed from our list and we can move on.
2688 			 */
2689 			if (ret == -EAGAIN) {
2690 				locked_ref = NULL;
2691 				count++;
2692 				continue;
2693 			}
2694 		}
2695 
2696 		/*
2697 		 * We need to try and merge add/drops of the same ref since we
2698 		 * can run into issues with relocate dropping the implicit ref
2699 		 * and then it being added back again before the drop can
2700 		 * finish.  If we merged anything we need to re-loop so we can
2701 		 * get a good ref.
2702 		 * Or we can get node references of the same type that weren't
2703 		 * merged when created due to bumps in the tree mod seq, and
2704 		 * we need to merge them to prevent adding an inline extent
2705 		 * backref before dropping it (triggering a BUG_ON at
2706 		 * insert_inline_extent_backref()).
2707 		 */
2708 		spin_lock(&locked_ref->lock);
2709 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2710 					 locked_ref);
2711 
2712 		/*
2713 		 * locked_ref is the head node, so we have to go one
2714 		 * node back for any delayed ref updates
2715 		 */
2716 		ref = select_delayed_ref(locked_ref);
2717 
2718 		if (ref && ref->seq &&
2719 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2720 			spin_unlock(&locked_ref->lock);
2721 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2722 			locked_ref = NULL;
2723 			cond_resched();
2724 			count++;
2725 			continue;
2726 		}
2727 
2728 		/*
2729 		 * We're done processing refs in this ref_head, clean everything
2730 		 * up and move on to the next ref_head.
2731 		 */
2732 		if (!ref) {
2733 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2734 			if (ret > 0 ) {
2735 				/* We dropped our lock, we need to loop. */
2736 				ret = 0;
2737 				continue;
2738 			} else if (ret) {
2739 				return ret;
2740 			}
2741 			locked_ref = NULL;
2742 			count++;
2743 			continue;
2744 		}
2745 
2746 		actual_count++;
2747 		ref->in_tree = 0;
2748 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2749 		RB_CLEAR_NODE(&ref->ref_node);
2750 		if (!list_empty(&ref->add_list))
2751 			list_del(&ref->add_list);
2752 		/*
2753 		 * When we play the delayed ref, also correct the ref_mod on
2754 		 * head
2755 		 */
2756 		switch (ref->action) {
2757 		case BTRFS_ADD_DELAYED_REF:
2758 		case BTRFS_ADD_DELAYED_EXTENT:
2759 			locked_ref->ref_mod -= ref->ref_mod;
2760 			break;
2761 		case BTRFS_DROP_DELAYED_REF:
2762 			locked_ref->ref_mod += ref->ref_mod;
2763 			break;
2764 		default:
2765 			WARN_ON(1);
2766 		}
2767 		atomic_dec(&delayed_refs->num_entries);
2768 
2769 		/*
2770 		 * Record the must-insert_reserved flag before we drop the spin
2771 		 * lock.
2772 		 */
2773 		must_insert_reserved = locked_ref->must_insert_reserved;
2774 		locked_ref->must_insert_reserved = 0;
2775 
2776 		extent_op = locked_ref->extent_op;
2777 		locked_ref->extent_op = NULL;
2778 		spin_unlock(&locked_ref->lock);
2779 
2780 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2781 					  must_insert_reserved);
2782 
2783 		btrfs_free_delayed_extent_op(extent_op);
2784 		if (ret) {
2785 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2786 			btrfs_put_delayed_ref(ref);
2787 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2788 				    ret);
2789 			return ret;
2790 		}
2791 
2792 		btrfs_put_delayed_ref(ref);
2793 		count++;
2794 		cond_resched();
2795 	}
2796 
2797 	/*
2798 	 * We don't want to include ref heads since we can have empty ref heads
2799 	 * and those will drastically skew our runtime down since we just do
2800 	 * accounting, no actual extent tree updates.
2801 	 */
2802 	if (actual_count > 0) {
2803 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2804 		u64 avg;
2805 
2806 		/*
2807 		 * We weigh the current average higher than our current runtime
2808 		 * to avoid large swings in the average.
2809 		 */
2810 		spin_lock(&delayed_refs->lock);
2811 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2812 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2813 		spin_unlock(&delayed_refs->lock);
2814 	}
2815 	return 0;
2816 }
2817 
2818 #ifdef SCRAMBLE_DELAYED_REFS
2819 /*
2820  * Normally delayed refs get processed in ascending bytenr order. This
2821  * correlates in most cases to the order added. To expose dependencies on this
2822  * order, we start to process the tree in the middle instead of the beginning
2823  */
2824 static u64 find_middle(struct rb_root *root)
2825 {
2826 	struct rb_node *n = root->rb_node;
2827 	struct btrfs_delayed_ref_node *entry;
2828 	int alt = 1;
2829 	u64 middle;
2830 	u64 first = 0, last = 0;
2831 
2832 	n = rb_first(root);
2833 	if (n) {
2834 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835 		first = entry->bytenr;
2836 	}
2837 	n = rb_last(root);
2838 	if (n) {
2839 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 		last = entry->bytenr;
2841 	}
2842 	n = root->rb_node;
2843 
2844 	while (n) {
2845 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2846 		WARN_ON(!entry->in_tree);
2847 
2848 		middle = entry->bytenr;
2849 
2850 		if (alt)
2851 			n = n->rb_left;
2852 		else
2853 			n = n->rb_right;
2854 
2855 		alt = 1 - alt;
2856 	}
2857 	return middle;
2858 }
2859 #endif
2860 
2861 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2862 {
2863 	u64 num_bytes;
2864 
2865 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2866 			     sizeof(struct btrfs_extent_inline_ref));
2867 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2868 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2869 
2870 	/*
2871 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2872 	 * closer to what we're really going to want to use.
2873 	 */
2874 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2875 }
2876 
2877 /*
2878  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2879  * would require to store the csums for that many bytes.
2880  */
2881 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2882 {
2883 	u64 csum_size;
2884 	u64 num_csums_per_leaf;
2885 	u64 num_csums;
2886 
2887 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2888 	num_csums_per_leaf = div64_u64(csum_size,
2889 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2890 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2891 	num_csums += num_csums_per_leaf - 1;
2892 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2893 	return num_csums;
2894 }
2895 
2896 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2897 				       struct btrfs_fs_info *fs_info)
2898 {
2899 	struct btrfs_block_rsv *global_rsv;
2900 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2901 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2902 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2903 	u64 num_bytes, num_dirty_bgs_bytes;
2904 	int ret = 0;
2905 
2906 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2907 	num_heads = heads_to_leaves(fs_info, num_heads);
2908 	if (num_heads > 1)
2909 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2910 	num_bytes <<= 1;
2911 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2912 							fs_info->nodesize;
2913 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2914 							     num_dirty_bgs);
2915 	global_rsv = &fs_info->global_block_rsv;
2916 
2917 	/*
2918 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2919 	 * wiggle room since running delayed refs can create more delayed refs.
2920 	 */
2921 	if (global_rsv->space_info->full) {
2922 		num_dirty_bgs_bytes <<= 1;
2923 		num_bytes <<= 1;
2924 	}
2925 
2926 	spin_lock(&global_rsv->lock);
2927 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2928 		ret = 1;
2929 	spin_unlock(&global_rsv->lock);
2930 	return ret;
2931 }
2932 
2933 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2934 				       struct btrfs_fs_info *fs_info)
2935 {
2936 	u64 num_entries =
2937 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2938 	u64 avg_runtime;
2939 	u64 val;
2940 
2941 	smp_mb();
2942 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2943 	val = num_entries * avg_runtime;
2944 	if (val >= NSEC_PER_SEC)
2945 		return 1;
2946 	if (val >= NSEC_PER_SEC / 2)
2947 		return 2;
2948 
2949 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2950 }
2951 
2952 struct async_delayed_refs {
2953 	struct btrfs_root *root;
2954 	u64 transid;
2955 	int count;
2956 	int error;
2957 	int sync;
2958 	struct completion wait;
2959 	struct btrfs_work work;
2960 };
2961 
2962 static inline struct async_delayed_refs *
2963 to_async_delayed_refs(struct btrfs_work *work)
2964 {
2965 	return container_of(work, struct async_delayed_refs, work);
2966 }
2967 
2968 static void delayed_ref_async_start(struct btrfs_work *work)
2969 {
2970 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2971 	struct btrfs_trans_handle *trans;
2972 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2973 	int ret;
2974 
2975 	/* if the commit is already started, we don't need to wait here */
2976 	if (btrfs_transaction_blocked(fs_info))
2977 		goto done;
2978 
2979 	trans = btrfs_join_transaction(async->root);
2980 	if (IS_ERR(trans)) {
2981 		async->error = PTR_ERR(trans);
2982 		goto done;
2983 	}
2984 
2985 	/*
2986 	 * trans->sync means that when we call end_transaction, we won't
2987 	 * wait on delayed refs
2988 	 */
2989 	trans->sync = true;
2990 
2991 	/* Don't bother flushing if we got into a different transaction */
2992 	if (trans->transid > async->transid)
2993 		goto end;
2994 
2995 	ret = btrfs_run_delayed_refs(trans, async->count);
2996 	if (ret)
2997 		async->error = ret;
2998 end:
2999 	ret = btrfs_end_transaction(trans);
3000 	if (ret && !async->error)
3001 		async->error = ret;
3002 done:
3003 	if (async->sync)
3004 		complete(&async->wait);
3005 	else
3006 		kfree(async);
3007 }
3008 
3009 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3010 				 unsigned long count, u64 transid, int wait)
3011 {
3012 	struct async_delayed_refs *async;
3013 	int ret;
3014 
3015 	async = kmalloc(sizeof(*async), GFP_NOFS);
3016 	if (!async)
3017 		return -ENOMEM;
3018 
3019 	async->root = fs_info->tree_root;
3020 	async->count = count;
3021 	async->error = 0;
3022 	async->transid = transid;
3023 	if (wait)
3024 		async->sync = 1;
3025 	else
3026 		async->sync = 0;
3027 	init_completion(&async->wait);
3028 
3029 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3030 			delayed_ref_async_start, NULL, NULL);
3031 
3032 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3033 
3034 	if (wait) {
3035 		wait_for_completion(&async->wait);
3036 		ret = async->error;
3037 		kfree(async);
3038 		return ret;
3039 	}
3040 	return 0;
3041 }
3042 
3043 /*
3044  * this starts processing the delayed reference count updates and
3045  * extent insertions we have queued up so far.  count can be
3046  * 0, which means to process everything in the tree at the start
3047  * of the run (but not newly added entries), or it can be some target
3048  * number you'd like to process.
3049  *
3050  * Returns 0 on success or if called with an aborted transaction
3051  * Returns <0 on error and aborts the transaction
3052  */
3053 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3054 			   unsigned long count)
3055 {
3056 	struct btrfs_fs_info *fs_info = trans->fs_info;
3057 	struct rb_node *node;
3058 	struct btrfs_delayed_ref_root *delayed_refs;
3059 	struct btrfs_delayed_ref_head *head;
3060 	int ret;
3061 	int run_all = count == (unsigned long)-1;
3062 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3063 
3064 	/* We'll clean this up in btrfs_cleanup_transaction */
3065 	if (trans->aborted)
3066 		return 0;
3067 
3068 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3069 		return 0;
3070 
3071 	delayed_refs = &trans->transaction->delayed_refs;
3072 	if (count == 0)
3073 		count = atomic_read(&delayed_refs->num_entries) * 2;
3074 
3075 again:
3076 #ifdef SCRAMBLE_DELAYED_REFS
3077 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3078 #endif
3079 	trans->can_flush_pending_bgs = false;
3080 	ret = __btrfs_run_delayed_refs(trans, count);
3081 	if (ret < 0) {
3082 		btrfs_abort_transaction(trans, ret);
3083 		return ret;
3084 	}
3085 
3086 	if (run_all) {
3087 		if (!list_empty(&trans->new_bgs))
3088 			btrfs_create_pending_block_groups(trans);
3089 
3090 		spin_lock(&delayed_refs->lock);
3091 		node = rb_first(&delayed_refs->href_root);
3092 		if (!node) {
3093 			spin_unlock(&delayed_refs->lock);
3094 			goto out;
3095 		}
3096 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3097 				href_node);
3098 		refcount_inc(&head->refs);
3099 		spin_unlock(&delayed_refs->lock);
3100 
3101 		/* Mutex was contended, block until it's released and retry. */
3102 		mutex_lock(&head->mutex);
3103 		mutex_unlock(&head->mutex);
3104 
3105 		btrfs_put_delayed_ref_head(head);
3106 		cond_resched();
3107 		goto again;
3108 	}
3109 out:
3110 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3111 	return 0;
3112 }
3113 
3114 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3115 				struct btrfs_fs_info *fs_info,
3116 				u64 bytenr, u64 num_bytes, u64 flags,
3117 				int level, int is_data)
3118 {
3119 	struct btrfs_delayed_extent_op *extent_op;
3120 	int ret;
3121 
3122 	extent_op = btrfs_alloc_delayed_extent_op();
3123 	if (!extent_op)
3124 		return -ENOMEM;
3125 
3126 	extent_op->flags_to_set = flags;
3127 	extent_op->update_flags = true;
3128 	extent_op->update_key = false;
3129 	extent_op->is_data = is_data ? true : false;
3130 	extent_op->level = level;
3131 
3132 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3133 					  num_bytes, extent_op);
3134 	if (ret)
3135 		btrfs_free_delayed_extent_op(extent_op);
3136 	return ret;
3137 }
3138 
3139 static noinline int check_delayed_ref(struct btrfs_root *root,
3140 				      struct btrfs_path *path,
3141 				      u64 objectid, u64 offset, u64 bytenr)
3142 {
3143 	struct btrfs_delayed_ref_head *head;
3144 	struct btrfs_delayed_ref_node *ref;
3145 	struct btrfs_delayed_data_ref *data_ref;
3146 	struct btrfs_delayed_ref_root *delayed_refs;
3147 	struct btrfs_transaction *cur_trans;
3148 	struct rb_node *node;
3149 	int ret = 0;
3150 
3151 	cur_trans = root->fs_info->running_transaction;
3152 	if (!cur_trans)
3153 		return 0;
3154 
3155 	delayed_refs = &cur_trans->delayed_refs;
3156 	spin_lock(&delayed_refs->lock);
3157 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3158 	if (!head) {
3159 		spin_unlock(&delayed_refs->lock);
3160 		return 0;
3161 	}
3162 
3163 	if (!mutex_trylock(&head->mutex)) {
3164 		refcount_inc(&head->refs);
3165 		spin_unlock(&delayed_refs->lock);
3166 
3167 		btrfs_release_path(path);
3168 
3169 		/*
3170 		 * Mutex was contended, block until it's released and let
3171 		 * caller try again
3172 		 */
3173 		mutex_lock(&head->mutex);
3174 		mutex_unlock(&head->mutex);
3175 		btrfs_put_delayed_ref_head(head);
3176 		return -EAGAIN;
3177 	}
3178 	spin_unlock(&delayed_refs->lock);
3179 
3180 	spin_lock(&head->lock);
3181 	/*
3182 	 * XXX: We should replace this with a proper search function in the
3183 	 * future.
3184 	 */
3185 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3186 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3187 		/* If it's a shared ref we know a cross reference exists */
3188 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3189 			ret = 1;
3190 			break;
3191 		}
3192 
3193 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3194 
3195 		/*
3196 		 * If our ref doesn't match the one we're currently looking at
3197 		 * then we have a cross reference.
3198 		 */
3199 		if (data_ref->root != root->root_key.objectid ||
3200 		    data_ref->objectid != objectid ||
3201 		    data_ref->offset != offset) {
3202 			ret = 1;
3203 			break;
3204 		}
3205 	}
3206 	spin_unlock(&head->lock);
3207 	mutex_unlock(&head->mutex);
3208 	return ret;
3209 }
3210 
3211 static noinline int check_committed_ref(struct btrfs_root *root,
3212 					struct btrfs_path *path,
3213 					u64 objectid, u64 offset, u64 bytenr)
3214 {
3215 	struct btrfs_fs_info *fs_info = root->fs_info;
3216 	struct btrfs_root *extent_root = fs_info->extent_root;
3217 	struct extent_buffer *leaf;
3218 	struct btrfs_extent_data_ref *ref;
3219 	struct btrfs_extent_inline_ref *iref;
3220 	struct btrfs_extent_item *ei;
3221 	struct btrfs_key key;
3222 	u32 item_size;
3223 	int type;
3224 	int ret;
3225 
3226 	key.objectid = bytenr;
3227 	key.offset = (u64)-1;
3228 	key.type = BTRFS_EXTENT_ITEM_KEY;
3229 
3230 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3231 	if (ret < 0)
3232 		goto out;
3233 	BUG_ON(ret == 0); /* Corruption */
3234 
3235 	ret = -ENOENT;
3236 	if (path->slots[0] == 0)
3237 		goto out;
3238 
3239 	path->slots[0]--;
3240 	leaf = path->nodes[0];
3241 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3242 
3243 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3244 		goto out;
3245 
3246 	ret = 1;
3247 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3248 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3249 	if (item_size < sizeof(*ei)) {
3250 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3251 		goto out;
3252 	}
3253 #endif
3254 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3255 
3256 	if (item_size != sizeof(*ei) +
3257 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3258 		goto out;
3259 
3260 	if (btrfs_extent_generation(leaf, ei) <=
3261 	    btrfs_root_last_snapshot(&root->root_item))
3262 		goto out;
3263 
3264 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3265 
3266 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3267 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3268 		goto out;
3269 
3270 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3271 	if (btrfs_extent_refs(leaf, ei) !=
3272 	    btrfs_extent_data_ref_count(leaf, ref) ||
3273 	    btrfs_extent_data_ref_root(leaf, ref) !=
3274 	    root->root_key.objectid ||
3275 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3276 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3277 		goto out;
3278 
3279 	ret = 0;
3280 out:
3281 	return ret;
3282 }
3283 
3284 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3285 			  u64 bytenr)
3286 {
3287 	struct btrfs_path *path;
3288 	int ret;
3289 	int ret2;
3290 
3291 	path = btrfs_alloc_path();
3292 	if (!path)
3293 		return -ENOENT;
3294 
3295 	do {
3296 		ret = check_committed_ref(root, path, objectid,
3297 					  offset, bytenr);
3298 		if (ret && ret != -ENOENT)
3299 			goto out;
3300 
3301 		ret2 = check_delayed_ref(root, path, objectid,
3302 					 offset, bytenr);
3303 	} while (ret2 == -EAGAIN);
3304 
3305 	if (ret2 && ret2 != -ENOENT) {
3306 		ret = ret2;
3307 		goto out;
3308 	}
3309 
3310 	if (ret != -ENOENT || ret2 != -ENOENT)
3311 		ret = 0;
3312 out:
3313 	btrfs_free_path(path);
3314 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3315 		WARN_ON(ret > 0);
3316 	return ret;
3317 }
3318 
3319 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3320 			   struct btrfs_root *root,
3321 			   struct extent_buffer *buf,
3322 			   int full_backref, int inc)
3323 {
3324 	struct btrfs_fs_info *fs_info = root->fs_info;
3325 	u64 bytenr;
3326 	u64 num_bytes;
3327 	u64 parent;
3328 	u64 ref_root;
3329 	u32 nritems;
3330 	struct btrfs_key key;
3331 	struct btrfs_file_extent_item *fi;
3332 	int i;
3333 	int level;
3334 	int ret = 0;
3335 	int (*process_func)(struct btrfs_trans_handle *,
3336 			    struct btrfs_root *,
3337 			    u64, u64, u64, u64, u64, u64);
3338 
3339 
3340 	if (btrfs_is_testing(fs_info))
3341 		return 0;
3342 
3343 	ref_root = btrfs_header_owner(buf);
3344 	nritems = btrfs_header_nritems(buf);
3345 	level = btrfs_header_level(buf);
3346 
3347 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3348 		return 0;
3349 
3350 	if (inc)
3351 		process_func = btrfs_inc_extent_ref;
3352 	else
3353 		process_func = btrfs_free_extent;
3354 
3355 	if (full_backref)
3356 		parent = buf->start;
3357 	else
3358 		parent = 0;
3359 
3360 	for (i = 0; i < nritems; i++) {
3361 		if (level == 0) {
3362 			btrfs_item_key_to_cpu(buf, &key, i);
3363 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3364 				continue;
3365 			fi = btrfs_item_ptr(buf, i,
3366 					    struct btrfs_file_extent_item);
3367 			if (btrfs_file_extent_type(buf, fi) ==
3368 			    BTRFS_FILE_EXTENT_INLINE)
3369 				continue;
3370 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3371 			if (bytenr == 0)
3372 				continue;
3373 
3374 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3375 			key.offset -= btrfs_file_extent_offset(buf, fi);
3376 			ret = process_func(trans, root, bytenr, num_bytes,
3377 					   parent, ref_root, key.objectid,
3378 					   key.offset);
3379 			if (ret)
3380 				goto fail;
3381 		} else {
3382 			bytenr = btrfs_node_blockptr(buf, i);
3383 			num_bytes = fs_info->nodesize;
3384 			ret = process_func(trans, root, bytenr, num_bytes,
3385 					   parent, ref_root, level - 1, 0);
3386 			if (ret)
3387 				goto fail;
3388 		}
3389 	}
3390 	return 0;
3391 fail:
3392 	return ret;
3393 }
3394 
3395 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396 		  struct extent_buffer *buf, int full_backref)
3397 {
3398 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3399 }
3400 
3401 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3402 		  struct extent_buffer *buf, int full_backref)
3403 {
3404 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3405 }
3406 
3407 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3408 				 struct btrfs_fs_info *fs_info,
3409 				 struct btrfs_path *path,
3410 				 struct btrfs_block_group_cache *cache)
3411 {
3412 	int ret;
3413 	struct btrfs_root *extent_root = fs_info->extent_root;
3414 	unsigned long bi;
3415 	struct extent_buffer *leaf;
3416 
3417 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3418 	if (ret) {
3419 		if (ret > 0)
3420 			ret = -ENOENT;
3421 		goto fail;
3422 	}
3423 
3424 	leaf = path->nodes[0];
3425 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3426 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3427 	btrfs_mark_buffer_dirty(leaf);
3428 fail:
3429 	btrfs_release_path(path);
3430 	return ret;
3431 
3432 }
3433 
3434 static struct btrfs_block_group_cache *
3435 next_block_group(struct btrfs_fs_info *fs_info,
3436 		 struct btrfs_block_group_cache *cache)
3437 {
3438 	struct rb_node *node;
3439 
3440 	spin_lock(&fs_info->block_group_cache_lock);
3441 
3442 	/* If our block group was removed, we need a full search. */
3443 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3444 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3445 
3446 		spin_unlock(&fs_info->block_group_cache_lock);
3447 		btrfs_put_block_group(cache);
3448 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3449 	}
3450 	node = rb_next(&cache->cache_node);
3451 	btrfs_put_block_group(cache);
3452 	if (node) {
3453 		cache = rb_entry(node, struct btrfs_block_group_cache,
3454 				 cache_node);
3455 		btrfs_get_block_group(cache);
3456 	} else
3457 		cache = NULL;
3458 	spin_unlock(&fs_info->block_group_cache_lock);
3459 	return cache;
3460 }
3461 
3462 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3463 			    struct btrfs_trans_handle *trans,
3464 			    struct btrfs_path *path)
3465 {
3466 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3467 	struct btrfs_root *root = fs_info->tree_root;
3468 	struct inode *inode = NULL;
3469 	struct extent_changeset *data_reserved = NULL;
3470 	u64 alloc_hint = 0;
3471 	int dcs = BTRFS_DC_ERROR;
3472 	u64 num_pages = 0;
3473 	int retries = 0;
3474 	int ret = 0;
3475 
3476 	/*
3477 	 * If this block group is smaller than 100 megs don't bother caching the
3478 	 * block group.
3479 	 */
3480 	if (block_group->key.offset < (100 * SZ_1M)) {
3481 		spin_lock(&block_group->lock);
3482 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3483 		spin_unlock(&block_group->lock);
3484 		return 0;
3485 	}
3486 
3487 	if (trans->aborted)
3488 		return 0;
3489 again:
3490 	inode = lookup_free_space_inode(fs_info, block_group, path);
3491 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3492 		ret = PTR_ERR(inode);
3493 		btrfs_release_path(path);
3494 		goto out;
3495 	}
3496 
3497 	if (IS_ERR(inode)) {
3498 		BUG_ON(retries);
3499 		retries++;
3500 
3501 		if (block_group->ro)
3502 			goto out_free;
3503 
3504 		ret = create_free_space_inode(fs_info, trans, block_group,
3505 					      path);
3506 		if (ret)
3507 			goto out_free;
3508 		goto again;
3509 	}
3510 
3511 	/*
3512 	 * We want to set the generation to 0, that way if anything goes wrong
3513 	 * from here on out we know not to trust this cache when we load up next
3514 	 * time.
3515 	 */
3516 	BTRFS_I(inode)->generation = 0;
3517 	ret = btrfs_update_inode(trans, root, inode);
3518 	if (ret) {
3519 		/*
3520 		 * So theoretically we could recover from this, simply set the
3521 		 * super cache generation to 0 so we know to invalidate the
3522 		 * cache, but then we'd have to keep track of the block groups
3523 		 * that fail this way so we know we _have_ to reset this cache
3524 		 * before the next commit or risk reading stale cache.  So to
3525 		 * limit our exposure to horrible edge cases lets just abort the
3526 		 * transaction, this only happens in really bad situations
3527 		 * anyway.
3528 		 */
3529 		btrfs_abort_transaction(trans, ret);
3530 		goto out_put;
3531 	}
3532 	WARN_ON(ret);
3533 
3534 	/* We've already setup this transaction, go ahead and exit */
3535 	if (block_group->cache_generation == trans->transid &&
3536 	    i_size_read(inode)) {
3537 		dcs = BTRFS_DC_SETUP;
3538 		goto out_put;
3539 	}
3540 
3541 	if (i_size_read(inode) > 0) {
3542 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3543 					&fs_info->global_block_rsv);
3544 		if (ret)
3545 			goto out_put;
3546 
3547 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3548 		if (ret)
3549 			goto out_put;
3550 	}
3551 
3552 	spin_lock(&block_group->lock);
3553 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3554 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3555 		/*
3556 		 * don't bother trying to write stuff out _if_
3557 		 * a) we're not cached,
3558 		 * b) we're with nospace_cache mount option,
3559 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3560 		 */
3561 		dcs = BTRFS_DC_WRITTEN;
3562 		spin_unlock(&block_group->lock);
3563 		goto out_put;
3564 	}
3565 	spin_unlock(&block_group->lock);
3566 
3567 	/*
3568 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3569 	 * skip doing the setup, we've already cleared the cache so we're safe.
3570 	 */
3571 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3572 		ret = -ENOSPC;
3573 		goto out_put;
3574 	}
3575 
3576 	/*
3577 	 * Try to preallocate enough space based on how big the block group is.
3578 	 * Keep in mind this has to include any pinned space which could end up
3579 	 * taking up quite a bit since it's not folded into the other space
3580 	 * cache.
3581 	 */
3582 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3583 	if (!num_pages)
3584 		num_pages = 1;
3585 
3586 	num_pages *= 16;
3587 	num_pages *= PAGE_SIZE;
3588 
3589 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3590 	if (ret)
3591 		goto out_put;
3592 
3593 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3594 					      num_pages, num_pages,
3595 					      &alloc_hint);
3596 	/*
3597 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3598 	 * of metadata or split extents when writing the cache out, which means
3599 	 * we can enospc if we are heavily fragmented in addition to just normal
3600 	 * out of space conditions.  So if we hit this just skip setting up any
3601 	 * other block groups for this transaction, maybe we'll unpin enough
3602 	 * space the next time around.
3603 	 */
3604 	if (!ret)
3605 		dcs = BTRFS_DC_SETUP;
3606 	else if (ret == -ENOSPC)
3607 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3608 
3609 out_put:
3610 	iput(inode);
3611 out_free:
3612 	btrfs_release_path(path);
3613 out:
3614 	spin_lock(&block_group->lock);
3615 	if (!ret && dcs == BTRFS_DC_SETUP)
3616 		block_group->cache_generation = trans->transid;
3617 	block_group->disk_cache_state = dcs;
3618 	spin_unlock(&block_group->lock);
3619 
3620 	extent_changeset_free(data_reserved);
3621 	return ret;
3622 }
3623 
3624 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3625 			    struct btrfs_fs_info *fs_info)
3626 {
3627 	struct btrfs_block_group_cache *cache, *tmp;
3628 	struct btrfs_transaction *cur_trans = trans->transaction;
3629 	struct btrfs_path *path;
3630 
3631 	if (list_empty(&cur_trans->dirty_bgs) ||
3632 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3633 		return 0;
3634 
3635 	path = btrfs_alloc_path();
3636 	if (!path)
3637 		return -ENOMEM;
3638 
3639 	/* Could add new block groups, use _safe just in case */
3640 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3641 				 dirty_list) {
3642 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3643 			cache_save_setup(cache, trans, path);
3644 	}
3645 
3646 	btrfs_free_path(path);
3647 	return 0;
3648 }
3649 
3650 /*
3651  * transaction commit does final block group cache writeback during a
3652  * critical section where nothing is allowed to change the FS.  This is
3653  * required in order for the cache to actually match the block group,
3654  * but can introduce a lot of latency into the commit.
3655  *
3656  * So, btrfs_start_dirty_block_groups is here to kick off block group
3657  * cache IO.  There's a chance we'll have to redo some of it if the
3658  * block group changes again during the commit, but it greatly reduces
3659  * the commit latency by getting rid of the easy block groups while
3660  * we're still allowing others to join the commit.
3661  */
3662 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3663 {
3664 	struct btrfs_fs_info *fs_info = trans->fs_info;
3665 	struct btrfs_block_group_cache *cache;
3666 	struct btrfs_transaction *cur_trans = trans->transaction;
3667 	int ret = 0;
3668 	int should_put;
3669 	struct btrfs_path *path = NULL;
3670 	LIST_HEAD(dirty);
3671 	struct list_head *io = &cur_trans->io_bgs;
3672 	int num_started = 0;
3673 	int loops = 0;
3674 
3675 	spin_lock(&cur_trans->dirty_bgs_lock);
3676 	if (list_empty(&cur_trans->dirty_bgs)) {
3677 		spin_unlock(&cur_trans->dirty_bgs_lock);
3678 		return 0;
3679 	}
3680 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3681 	spin_unlock(&cur_trans->dirty_bgs_lock);
3682 
3683 again:
3684 	/*
3685 	 * make sure all the block groups on our dirty list actually
3686 	 * exist
3687 	 */
3688 	btrfs_create_pending_block_groups(trans);
3689 
3690 	if (!path) {
3691 		path = btrfs_alloc_path();
3692 		if (!path)
3693 			return -ENOMEM;
3694 	}
3695 
3696 	/*
3697 	 * cache_write_mutex is here only to save us from balance or automatic
3698 	 * removal of empty block groups deleting this block group while we are
3699 	 * writing out the cache
3700 	 */
3701 	mutex_lock(&trans->transaction->cache_write_mutex);
3702 	while (!list_empty(&dirty)) {
3703 		cache = list_first_entry(&dirty,
3704 					 struct btrfs_block_group_cache,
3705 					 dirty_list);
3706 		/*
3707 		 * this can happen if something re-dirties a block
3708 		 * group that is already under IO.  Just wait for it to
3709 		 * finish and then do it all again
3710 		 */
3711 		if (!list_empty(&cache->io_list)) {
3712 			list_del_init(&cache->io_list);
3713 			btrfs_wait_cache_io(trans, cache, path);
3714 			btrfs_put_block_group(cache);
3715 		}
3716 
3717 
3718 		/*
3719 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3720 		 * if it should update the cache_state.  Don't delete
3721 		 * until after we wait.
3722 		 *
3723 		 * Since we're not running in the commit critical section
3724 		 * we need the dirty_bgs_lock to protect from update_block_group
3725 		 */
3726 		spin_lock(&cur_trans->dirty_bgs_lock);
3727 		list_del_init(&cache->dirty_list);
3728 		spin_unlock(&cur_trans->dirty_bgs_lock);
3729 
3730 		should_put = 1;
3731 
3732 		cache_save_setup(cache, trans, path);
3733 
3734 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3735 			cache->io_ctl.inode = NULL;
3736 			ret = btrfs_write_out_cache(fs_info, trans,
3737 						    cache, path);
3738 			if (ret == 0 && cache->io_ctl.inode) {
3739 				num_started++;
3740 				should_put = 0;
3741 
3742 				/*
3743 				 * The cache_write_mutex is protecting the
3744 				 * io_list, also refer to the definition of
3745 				 * btrfs_transaction::io_bgs for more details
3746 				 */
3747 				list_add_tail(&cache->io_list, io);
3748 			} else {
3749 				/*
3750 				 * if we failed to write the cache, the
3751 				 * generation will be bad and life goes on
3752 				 */
3753 				ret = 0;
3754 			}
3755 		}
3756 		if (!ret) {
3757 			ret = write_one_cache_group(trans, fs_info,
3758 						    path, cache);
3759 			/*
3760 			 * Our block group might still be attached to the list
3761 			 * of new block groups in the transaction handle of some
3762 			 * other task (struct btrfs_trans_handle->new_bgs). This
3763 			 * means its block group item isn't yet in the extent
3764 			 * tree. If this happens ignore the error, as we will
3765 			 * try again later in the critical section of the
3766 			 * transaction commit.
3767 			 */
3768 			if (ret == -ENOENT) {
3769 				ret = 0;
3770 				spin_lock(&cur_trans->dirty_bgs_lock);
3771 				if (list_empty(&cache->dirty_list)) {
3772 					list_add_tail(&cache->dirty_list,
3773 						      &cur_trans->dirty_bgs);
3774 					btrfs_get_block_group(cache);
3775 				}
3776 				spin_unlock(&cur_trans->dirty_bgs_lock);
3777 			} else if (ret) {
3778 				btrfs_abort_transaction(trans, ret);
3779 			}
3780 		}
3781 
3782 		/* if its not on the io list, we need to put the block group */
3783 		if (should_put)
3784 			btrfs_put_block_group(cache);
3785 
3786 		if (ret)
3787 			break;
3788 
3789 		/*
3790 		 * Avoid blocking other tasks for too long. It might even save
3791 		 * us from writing caches for block groups that are going to be
3792 		 * removed.
3793 		 */
3794 		mutex_unlock(&trans->transaction->cache_write_mutex);
3795 		mutex_lock(&trans->transaction->cache_write_mutex);
3796 	}
3797 	mutex_unlock(&trans->transaction->cache_write_mutex);
3798 
3799 	/*
3800 	 * go through delayed refs for all the stuff we've just kicked off
3801 	 * and then loop back (just once)
3802 	 */
3803 	ret = btrfs_run_delayed_refs(trans, 0);
3804 	if (!ret && loops == 0) {
3805 		loops++;
3806 		spin_lock(&cur_trans->dirty_bgs_lock);
3807 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3808 		/*
3809 		 * dirty_bgs_lock protects us from concurrent block group
3810 		 * deletes too (not just cache_write_mutex).
3811 		 */
3812 		if (!list_empty(&dirty)) {
3813 			spin_unlock(&cur_trans->dirty_bgs_lock);
3814 			goto again;
3815 		}
3816 		spin_unlock(&cur_trans->dirty_bgs_lock);
3817 	} else if (ret < 0) {
3818 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3819 	}
3820 
3821 	btrfs_free_path(path);
3822 	return ret;
3823 }
3824 
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3826 				   struct btrfs_fs_info *fs_info)
3827 {
3828 	struct btrfs_block_group_cache *cache;
3829 	struct btrfs_transaction *cur_trans = trans->transaction;
3830 	int ret = 0;
3831 	int should_put;
3832 	struct btrfs_path *path;
3833 	struct list_head *io = &cur_trans->io_bgs;
3834 	int num_started = 0;
3835 
3836 	path = btrfs_alloc_path();
3837 	if (!path)
3838 		return -ENOMEM;
3839 
3840 	/*
3841 	 * Even though we are in the critical section of the transaction commit,
3842 	 * we can still have concurrent tasks adding elements to this
3843 	 * transaction's list of dirty block groups. These tasks correspond to
3844 	 * endio free space workers started when writeback finishes for a
3845 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 	 * allocate new block groups as a result of COWing nodes of the root
3847 	 * tree when updating the free space inode. The writeback for the space
3848 	 * caches is triggered by an earlier call to
3849 	 * btrfs_start_dirty_block_groups() and iterations of the following
3850 	 * loop.
3851 	 * Also we want to do the cache_save_setup first and then run the
3852 	 * delayed refs to make sure we have the best chance at doing this all
3853 	 * in one shot.
3854 	 */
3855 	spin_lock(&cur_trans->dirty_bgs_lock);
3856 	while (!list_empty(&cur_trans->dirty_bgs)) {
3857 		cache = list_first_entry(&cur_trans->dirty_bgs,
3858 					 struct btrfs_block_group_cache,
3859 					 dirty_list);
3860 
3861 		/*
3862 		 * this can happen if cache_save_setup re-dirties a block
3863 		 * group that is already under IO.  Just wait for it to
3864 		 * finish and then do it all again
3865 		 */
3866 		if (!list_empty(&cache->io_list)) {
3867 			spin_unlock(&cur_trans->dirty_bgs_lock);
3868 			list_del_init(&cache->io_list);
3869 			btrfs_wait_cache_io(trans, cache, path);
3870 			btrfs_put_block_group(cache);
3871 			spin_lock(&cur_trans->dirty_bgs_lock);
3872 		}
3873 
3874 		/*
3875 		 * don't remove from the dirty list until after we've waited
3876 		 * on any pending IO
3877 		 */
3878 		list_del_init(&cache->dirty_list);
3879 		spin_unlock(&cur_trans->dirty_bgs_lock);
3880 		should_put = 1;
3881 
3882 		cache_save_setup(cache, trans, path);
3883 
3884 		if (!ret)
3885 			ret = btrfs_run_delayed_refs(trans,
3886 						     (unsigned long) -1);
3887 
3888 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889 			cache->io_ctl.inode = NULL;
3890 			ret = btrfs_write_out_cache(fs_info, trans,
3891 						    cache, path);
3892 			if (ret == 0 && cache->io_ctl.inode) {
3893 				num_started++;
3894 				should_put = 0;
3895 				list_add_tail(&cache->io_list, io);
3896 			} else {
3897 				/*
3898 				 * if we failed to write the cache, the
3899 				 * generation will be bad and life goes on
3900 				 */
3901 				ret = 0;
3902 			}
3903 		}
3904 		if (!ret) {
3905 			ret = write_one_cache_group(trans, fs_info,
3906 						    path, cache);
3907 			/*
3908 			 * One of the free space endio workers might have
3909 			 * created a new block group while updating a free space
3910 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 			 * and hasn't released its transaction handle yet, in
3912 			 * which case the new block group is still attached to
3913 			 * its transaction handle and its creation has not
3914 			 * finished yet (no block group item in the extent tree
3915 			 * yet, etc). If this is the case, wait for all free
3916 			 * space endio workers to finish and retry. This is a
3917 			 * a very rare case so no need for a more efficient and
3918 			 * complex approach.
3919 			 */
3920 			if (ret == -ENOENT) {
3921 				wait_event(cur_trans->writer_wait,
3922 				   atomic_read(&cur_trans->num_writers) == 1);
3923 				ret = write_one_cache_group(trans, fs_info,
3924 							    path, cache);
3925 			}
3926 			if (ret)
3927 				btrfs_abort_transaction(trans, ret);
3928 		}
3929 
3930 		/* if its not on the io list, we need to put the block group */
3931 		if (should_put)
3932 			btrfs_put_block_group(cache);
3933 		spin_lock(&cur_trans->dirty_bgs_lock);
3934 	}
3935 	spin_unlock(&cur_trans->dirty_bgs_lock);
3936 
3937 	/*
3938 	 * Refer to the definition of io_bgs member for details why it's safe
3939 	 * to use it without any locking
3940 	 */
3941 	while (!list_empty(io)) {
3942 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3943 					 io_list);
3944 		list_del_init(&cache->io_list);
3945 		btrfs_wait_cache_io(trans, cache, path);
3946 		btrfs_put_block_group(cache);
3947 	}
3948 
3949 	btrfs_free_path(path);
3950 	return ret;
3951 }
3952 
3953 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3954 {
3955 	struct btrfs_block_group_cache *block_group;
3956 	int readonly = 0;
3957 
3958 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3959 	if (!block_group || block_group->ro)
3960 		readonly = 1;
3961 	if (block_group)
3962 		btrfs_put_block_group(block_group);
3963 	return readonly;
3964 }
3965 
3966 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3967 {
3968 	struct btrfs_block_group_cache *bg;
3969 	bool ret = true;
3970 
3971 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3972 	if (!bg)
3973 		return false;
3974 
3975 	spin_lock(&bg->lock);
3976 	if (bg->ro)
3977 		ret = false;
3978 	else
3979 		atomic_inc(&bg->nocow_writers);
3980 	spin_unlock(&bg->lock);
3981 
3982 	/* no put on block group, done by btrfs_dec_nocow_writers */
3983 	if (!ret)
3984 		btrfs_put_block_group(bg);
3985 
3986 	return ret;
3987 
3988 }
3989 
3990 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3991 {
3992 	struct btrfs_block_group_cache *bg;
3993 
3994 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3995 	ASSERT(bg);
3996 	if (atomic_dec_and_test(&bg->nocow_writers))
3997 		wake_up_var(&bg->nocow_writers);
3998 	/*
3999 	 * Once for our lookup and once for the lookup done by a previous call
4000 	 * to btrfs_inc_nocow_writers()
4001 	 */
4002 	btrfs_put_block_group(bg);
4003 	btrfs_put_block_group(bg);
4004 }
4005 
4006 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4007 {
4008 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4009 }
4010 
4011 static const char *alloc_name(u64 flags)
4012 {
4013 	switch (flags) {
4014 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4015 		return "mixed";
4016 	case BTRFS_BLOCK_GROUP_METADATA:
4017 		return "metadata";
4018 	case BTRFS_BLOCK_GROUP_DATA:
4019 		return "data";
4020 	case BTRFS_BLOCK_GROUP_SYSTEM:
4021 		return "system";
4022 	default:
4023 		WARN_ON(1);
4024 		return "invalid-combination";
4025 	};
4026 }
4027 
4028 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4029 			     struct btrfs_space_info **new)
4030 {
4031 
4032 	struct btrfs_space_info *space_info;
4033 	int i;
4034 	int ret;
4035 
4036 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4037 	if (!space_info)
4038 		return -ENOMEM;
4039 
4040 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4041 				 GFP_KERNEL);
4042 	if (ret) {
4043 		kfree(space_info);
4044 		return ret;
4045 	}
4046 
4047 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4048 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4049 	init_rwsem(&space_info->groups_sem);
4050 	spin_lock_init(&space_info->lock);
4051 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4052 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4053 	init_waitqueue_head(&space_info->wait);
4054 	INIT_LIST_HEAD(&space_info->ro_bgs);
4055 	INIT_LIST_HEAD(&space_info->tickets);
4056 	INIT_LIST_HEAD(&space_info->priority_tickets);
4057 
4058 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4059 				    info->space_info_kobj, "%s",
4060 				    alloc_name(space_info->flags));
4061 	if (ret) {
4062 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4063 		kfree(space_info);
4064 		return ret;
4065 	}
4066 
4067 	*new = space_info;
4068 	list_add_rcu(&space_info->list, &info->space_info);
4069 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4070 		info->data_sinfo = space_info;
4071 
4072 	return ret;
4073 }
4074 
4075 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4076 			     u64 total_bytes, u64 bytes_used,
4077 			     u64 bytes_readonly,
4078 			     struct btrfs_space_info **space_info)
4079 {
4080 	struct btrfs_space_info *found;
4081 	int factor;
4082 
4083 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4084 		     BTRFS_BLOCK_GROUP_RAID10))
4085 		factor = 2;
4086 	else
4087 		factor = 1;
4088 
4089 	found = __find_space_info(info, flags);
4090 	ASSERT(found);
4091 	spin_lock(&found->lock);
4092 	found->total_bytes += total_bytes;
4093 	found->disk_total += total_bytes * factor;
4094 	found->bytes_used += bytes_used;
4095 	found->disk_used += bytes_used * factor;
4096 	found->bytes_readonly += bytes_readonly;
4097 	if (total_bytes > 0)
4098 		found->full = 0;
4099 	space_info_add_new_bytes(info, found, total_bytes -
4100 				 bytes_used - bytes_readonly);
4101 	spin_unlock(&found->lock);
4102 	*space_info = found;
4103 }
4104 
4105 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4106 {
4107 	u64 extra_flags = chunk_to_extended(flags) &
4108 				BTRFS_EXTENDED_PROFILE_MASK;
4109 
4110 	write_seqlock(&fs_info->profiles_lock);
4111 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4112 		fs_info->avail_data_alloc_bits |= extra_flags;
4113 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4114 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4115 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4116 		fs_info->avail_system_alloc_bits |= extra_flags;
4117 	write_sequnlock(&fs_info->profiles_lock);
4118 }
4119 
4120 /*
4121  * returns target flags in extended format or 0 if restripe for this
4122  * chunk_type is not in progress
4123  *
4124  * should be called with either volume_mutex or balance_lock held
4125  */
4126 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4127 {
4128 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4129 	u64 target = 0;
4130 
4131 	if (!bctl)
4132 		return 0;
4133 
4134 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4135 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4137 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4138 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4140 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4141 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4142 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4143 	}
4144 
4145 	return target;
4146 }
4147 
4148 /*
4149  * @flags: available profiles in extended format (see ctree.h)
4150  *
4151  * Returns reduced profile in chunk format.  If profile changing is in
4152  * progress (either running or paused) picks the target profile (if it's
4153  * already available), otherwise falls back to plain reducing.
4154  */
4155 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4156 {
4157 	u64 num_devices = fs_info->fs_devices->rw_devices;
4158 	u64 target;
4159 	u64 raid_type;
4160 	u64 allowed = 0;
4161 
4162 	/*
4163 	 * see if restripe for this chunk_type is in progress, if so
4164 	 * try to reduce to the target profile
4165 	 */
4166 	spin_lock(&fs_info->balance_lock);
4167 	target = get_restripe_target(fs_info, flags);
4168 	if (target) {
4169 		/* pick target profile only if it's already available */
4170 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4171 			spin_unlock(&fs_info->balance_lock);
4172 			return extended_to_chunk(target);
4173 		}
4174 	}
4175 	spin_unlock(&fs_info->balance_lock);
4176 
4177 	/* First, mask out the RAID levels which aren't possible */
4178 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4179 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4180 			allowed |= btrfs_raid_group[raid_type];
4181 	}
4182 	allowed &= flags;
4183 
4184 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4185 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4186 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4187 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4188 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4189 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4190 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4191 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4192 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4193 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4194 
4195 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4196 
4197 	return extended_to_chunk(flags | allowed);
4198 }
4199 
4200 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4201 {
4202 	unsigned seq;
4203 	u64 flags;
4204 
4205 	do {
4206 		flags = orig_flags;
4207 		seq = read_seqbegin(&fs_info->profiles_lock);
4208 
4209 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4210 			flags |= fs_info->avail_data_alloc_bits;
4211 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4212 			flags |= fs_info->avail_system_alloc_bits;
4213 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4214 			flags |= fs_info->avail_metadata_alloc_bits;
4215 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4216 
4217 	return btrfs_reduce_alloc_profile(fs_info, flags);
4218 }
4219 
4220 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4221 {
4222 	struct btrfs_fs_info *fs_info = root->fs_info;
4223 	u64 flags;
4224 	u64 ret;
4225 
4226 	if (data)
4227 		flags = BTRFS_BLOCK_GROUP_DATA;
4228 	else if (root == fs_info->chunk_root)
4229 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4230 	else
4231 		flags = BTRFS_BLOCK_GROUP_METADATA;
4232 
4233 	ret = get_alloc_profile(fs_info, flags);
4234 	return ret;
4235 }
4236 
4237 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4238 {
4239 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4240 }
4241 
4242 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4243 {
4244 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4245 }
4246 
4247 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4248 {
4249 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4250 }
4251 
4252 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4253 				 bool may_use_included)
4254 {
4255 	ASSERT(s_info);
4256 	return s_info->bytes_used + s_info->bytes_reserved +
4257 		s_info->bytes_pinned + s_info->bytes_readonly +
4258 		(may_use_included ? s_info->bytes_may_use : 0);
4259 }
4260 
4261 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4262 {
4263 	struct btrfs_root *root = inode->root;
4264 	struct btrfs_fs_info *fs_info = root->fs_info;
4265 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4266 	u64 used;
4267 	int ret = 0;
4268 	int need_commit = 2;
4269 	int have_pinned_space;
4270 
4271 	/* make sure bytes are sectorsize aligned */
4272 	bytes = ALIGN(bytes, fs_info->sectorsize);
4273 
4274 	if (btrfs_is_free_space_inode(inode)) {
4275 		need_commit = 0;
4276 		ASSERT(current->journal_info);
4277 	}
4278 
4279 again:
4280 	/* make sure we have enough space to handle the data first */
4281 	spin_lock(&data_sinfo->lock);
4282 	used = btrfs_space_info_used(data_sinfo, true);
4283 
4284 	if (used + bytes > data_sinfo->total_bytes) {
4285 		struct btrfs_trans_handle *trans;
4286 
4287 		/*
4288 		 * if we don't have enough free bytes in this space then we need
4289 		 * to alloc a new chunk.
4290 		 */
4291 		if (!data_sinfo->full) {
4292 			u64 alloc_target;
4293 
4294 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4295 			spin_unlock(&data_sinfo->lock);
4296 
4297 			alloc_target = btrfs_data_alloc_profile(fs_info);
4298 			/*
4299 			 * It is ugly that we don't call nolock join
4300 			 * transaction for the free space inode case here.
4301 			 * But it is safe because we only do the data space
4302 			 * reservation for the free space cache in the
4303 			 * transaction context, the common join transaction
4304 			 * just increase the counter of the current transaction
4305 			 * handler, doesn't try to acquire the trans_lock of
4306 			 * the fs.
4307 			 */
4308 			trans = btrfs_join_transaction(root);
4309 			if (IS_ERR(trans))
4310 				return PTR_ERR(trans);
4311 
4312 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4313 					     CHUNK_ALLOC_NO_FORCE);
4314 			btrfs_end_transaction(trans);
4315 			if (ret < 0) {
4316 				if (ret != -ENOSPC)
4317 					return ret;
4318 				else {
4319 					have_pinned_space = 1;
4320 					goto commit_trans;
4321 				}
4322 			}
4323 
4324 			goto again;
4325 		}
4326 
4327 		/*
4328 		 * If we don't have enough pinned space to deal with this
4329 		 * allocation, and no removed chunk in current transaction,
4330 		 * don't bother committing the transaction.
4331 		 */
4332 		have_pinned_space = percpu_counter_compare(
4333 			&data_sinfo->total_bytes_pinned,
4334 			used + bytes - data_sinfo->total_bytes);
4335 		spin_unlock(&data_sinfo->lock);
4336 
4337 		/* commit the current transaction and try again */
4338 commit_trans:
4339 		if (need_commit) {
4340 			need_commit--;
4341 
4342 			if (need_commit > 0) {
4343 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4344 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4345 							 (u64)-1);
4346 			}
4347 
4348 			trans = btrfs_join_transaction(root);
4349 			if (IS_ERR(trans))
4350 				return PTR_ERR(trans);
4351 			if (have_pinned_space >= 0 ||
4352 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4353 				     &trans->transaction->flags) ||
4354 			    need_commit > 0) {
4355 				ret = btrfs_commit_transaction(trans);
4356 				if (ret)
4357 					return ret;
4358 				/*
4359 				 * The cleaner kthread might still be doing iput
4360 				 * operations. Wait for it to finish so that
4361 				 * more space is released.
4362 				 */
4363 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4364 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4365 				goto again;
4366 			} else {
4367 				btrfs_end_transaction(trans);
4368 			}
4369 		}
4370 
4371 		trace_btrfs_space_reservation(fs_info,
4372 					      "space_info:enospc",
4373 					      data_sinfo->flags, bytes, 1);
4374 		return -ENOSPC;
4375 	}
4376 	data_sinfo->bytes_may_use += bytes;
4377 	trace_btrfs_space_reservation(fs_info, "space_info",
4378 				      data_sinfo->flags, bytes, 1);
4379 	spin_unlock(&data_sinfo->lock);
4380 
4381 	return ret;
4382 }
4383 
4384 int btrfs_check_data_free_space(struct inode *inode,
4385 			struct extent_changeset **reserved, u64 start, u64 len)
4386 {
4387 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4388 	int ret;
4389 
4390 	/* align the range */
4391 	len = round_up(start + len, fs_info->sectorsize) -
4392 	      round_down(start, fs_info->sectorsize);
4393 	start = round_down(start, fs_info->sectorsize);
4394 
4395 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4396 	if (ret < 0)
4397 		return ret;
4398 
4399 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4400 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4401 	if (ret < 0)
4402 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4403 	else
4404 		ret = 0;
4405 	return ret;
4406 }
4407 
4408 /*
4409  * Called if we need to clear a data reservation for this inode
4410  * Normally in a error case.
4411  *
4412  * This one will *NOT* use accurate qgroup reserved space API, just for case
4413  * which we can't sleep and is sure it won't affect qgroup reserved space.
4414  * Like clear_bit_hook().
4415  */
4416 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4417 					    u64 len)
4418 {
4419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4420 	struct btrfs_space_info *data_sinfo;
4421 
4422 	/* Make sure the range is aligned to sectorsize */
4423 	len = round_up(start + len, fs_info->sectorsize) -
4424 	      round_down(start, fs_info->sectorsize);
4425 	start = round_down(start, fs_info->sectorsize);
4426 
4427 	data_sinfo = fs_info->data_sinfo;
4428 	spin_lock(&data_sinfo->lock);
4429 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4430 		data_sinfo->bytes_may_use = 0;
4431 	else
4432 		data_sinfo->bytes_may_use -= len;
4433 	trace_btrfs_space_reservation(fs_info, "space_info",
4434 				      data_sinfo->flags, len, 0);
4435 	spin_unlock(&data_sinfo->lock);
4436 }
4437 
4438 /*
4439  * Called if we need to clear a data reservation for this inode
4440  * Normally in a error case.
4441  *
4442  * This one will handle the per-inode data rsv map for accurate reserved
4443  * space framework.
4444  */
4445 void btrfs_free_reserved_data_space(struct inode *inode,
4446 			struct extent_changeset *reserved, u64 start, u64 len)
4447 {
4448 	struct btrfs_root *root = BTRFS_I(inode)->root;
4449 
4450 	/* Make sure the range is aligned to sectorsize */
4451 	len = round_up(start + len, root->fs_info->sectorsize) -
4452 	      round_down(start, root->fs_info->sectorsize);
4453 	start = round_down(start, root->fs_info->sectorsize);
4454 
4455 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4456 	btrfs_qgroup_free_data(inode, reserved, start, len);
4457 }
4458 
4459 static void force_metadata_allocation(struct btrfs_fs_info *info)
4460 {
4461 	struct list_head *head = &info->space_info;
4462 	struct btrfs_space_info *found;
4463 
4464 	rcu_read_lock();
4465 	list_for_each_entry_rcu(found, head, list) {
4466 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4467 			found->force_alloc = CHUNK_ALLOC_FORCE;
4468 	}
4469 	rcu_read_unlock();
4470 }
4471 
4472 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4473 {
4474 	return (global->size << 1);
4475 }
4476 
4477 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4478 			      struct btrfs_space_info *sinfo, int force)
4479 {
4480 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4481 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4482 	u64 thresh;
4483 
4484 	if (force == CHUNK_ALLOC_FORCE)
4485 		return 1;
4486 
4487 	/*
4488 	 * We need to take into account the global rsv because for all intents
4489 	 * and purposes it's used space.  Don't worry about locking the
4490 	 * global_rsv, it doesn't change except when the transaction commits.
4491 	 */
4492 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4493 		bytes_used += calc_global_rsv_need_space(global_rsv);
4494 
4495 	/*
4496 	 * in limited mode, we want to have some free space up to
4497 	 * about 1% of the FS size.
4498 	 */
4499 	if (force == CHUNK_ALLOC_LIMITED) {
4500 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4501 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4502 
4503 		if (sinfo->total_bytes - bytes_used < thresh)
4504 			return 1;
4505 	}
4506 
4507 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4508 		return 0;
4509 	return 1;
4510 }
4511 
4512 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4513 {
4514 	u64 num_dev;
4515 
4516 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4517 		    BTRFS_BLOCK_GROUP_RAID0 |
4518 		    BTRFS_BLOCK_GROUP_RAID5 |
4519 		    BTRFS_BLOCK_GROUP_RAID6))
4520 		num_dev = fs_info->fs_devices->rw_devices;
4521 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4522 		num_dev = 2;
4523 	else
4524 		num_dev = 1;	/* DUP or single */
4525 
4526 	return num_dev;
4527 }
4528 
4529 /*
4530  * If @is_allocation is true, reserve space in the system space info necessary
4531  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4532  * removing a chunk.
4533  */
4534 void check_system_chunk(struct btrfs_trans_handle *trans,
4535 			struct btrfs_fs_info *fs_info, u64 type)
4536 {
4537 	struct btrfs_space_info *info;
4538 	u64 left;
4539 	u64 thresh;
4540 	int ret = 0;
4541 	u64 num_devs;
4542 
4543 	/*
4544 	 * Needed because we can end up allocating a system chunk and for an
4545 	 * atomic and race free space reservation in the chunk block reserve.
4546 	 */
4547 	lockdep_assert_held(&fs_info->chunk_mutex);
4548 
4549 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4550 	spin_lock(&info->lock);
4551 	left = info->total_bytes - btrfs_space_info_used(info, true);
4552 	spin_unlock(&info->lock);
4553 
4554 	num_devs = get_profile_num_devs(fs_info, type);
4555 
4556 	/* num_devs device items to update and 1 chunk item to add or remove */
4557 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4558 		btrfs_calc_trans_metadata_size(fs_info, 1);
4559 
4560 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4561 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4562 			   left, thresh, type);
4563 		dump_space_info(fs_info, info, 0, 0);
4564 	}
4565 
4566 	if (left < thresh) {
4567 		u64 flags = btrfs_system_alloc_profile(fs_info);
4568 
4569 		/*
4570 		 * Ignore failure to create system chunk. We might end up not
4571 		 * needing it, as we might not need to COW all nodes/leafs from
4572 		 * the paths we visit in the chunk tree (they were already COWed
4573 		 * or created in the current transaction for example).
4574 		 */
4575 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4576 	}
4577 
4578 	if (!ret) {
4579 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4580 					  &fs_info->chunk_block_rsv,
4581 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4582 		if (!ret)
4583 			trans->chunk_bytes_reserved += thresh;
4584 	}
4585 }
4586 
4587 /*
4588  * If force is CHUNK_ALLOC_FORCE:
4589  *    - return 1 if it successfully allocates a chunk,
4590  *    - return errors including -ENOSPC otherwise.
4591  * If force is NOT CHUNK_ALLOC_FORCE:
4592  *    - return 0 if it doesn't need to allocate a new chunk,
4593  *    - return 1 if it successfully allocates a chunk,
4594  *    - return errors including -ENOSPC otherwise.
4595  */
4596 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4597 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4598 {
4599 	struct btrfs_space_info *space_info;
4600 	int wait_for_alloc = 0;
4601 	int ret = 0;
4602 
4603 	/* Don't re-enter if we're already allocating a chunk */
4604 	if (trans->allocating_chunk)
4605 		return -ENOSPC;
4606 
4607 	space_info = __find_space_info(fs_info, flags);
4608 	ASSERT(space_info);
4609 
4610 again:
4611 	spin_lock(&space_info->lock);
4612 	if (force < space_info->force_alloc)
4613 		force = space_info->force_alloc;
4614 	if (space_info->full) {
4615 		if (should_alloc_chunk(fs_info, space_info, force))
4616 			ret = -ENOSPC;
4617 		else
4618 			ret = 0;
4619 		spin_unlock(&space_info->lock);
4620 		return ret;
4621 	}
4622 
4623 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4624 		spin_unlock(&space_info->lock);
4625 		return 0;
4626 	} else if (space_info->chunk_alloc) {
4627 		wait_for_alloc = 1;
4628 	} else {
4629 		space_info->chunk_alloc = 1;
4630 	}
4631 
4632 	spin_unlock(&space_info->lock);
4633 
4634 	mutex_lock(&fs_info->chunk_mutex);
4635 
4636 	/*
4637 	 * The chunk_mutex is held throughout the entirety of a chunk
4638 	 * allocation, so once we've acquired the chunk_mutex we know that the
4639 	 * other guy is done and we need to recheck and see if we should
4640 	 * allocate.
4641 	 */
4642 	if (wait_for_alloc) {
4643 		mutex_unlock(&fs_info->chunk_mutex);
4644 		wait_for_alloc = 0;
4645 		goto again;
4646 	}
4647 
4648 	trans->allocating_chunk = true;
4649 
4650 	/*
4651 	 * If we have mixed data/metadata chunks we want to make sure we keep
4652 	 * allocating mixed chunks instead of individual chunks.
4653 	 */
4654 	if (btrfs_mixed_space_info(space_info))
4655 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4656 
4657 	/*
4658 	 * if we're doing a data chunk, go ahead and make sure that
4659 	 * we keep a reasonable number of metadata chunks allocated in the
4660 	 * FS as well.
4661 	 */
4662 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4663 		fs_info->data_chunk_allocations++;
4664 		if (!(fs_info->data_chunk_allocations %
4665 		      fs_info->metadata_ratio))
4666 			force_metadata_allocation(fs_info);
4667 	}
4668 
4669 	/*
4670 	 * Check if we have enough space in SYSTEM chunk because we may need
4671 	 * to update devices.
4672 	 */
4673 	check_system_chunk(trans, fs_info, flags);
4674 
4675 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4676 	trans->allocating_chunk = false;
4677 
4678 	spin_lock(&space_info->lock);
4679 	if (ret < 0 && ret != -ENOSPC)
4680 		goto out;
4681 	if (ret)
4682 		space_info->full = 1;
4683 	else
4684 		ret = 1;
4685 
4686 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4687 out:
4688 	space_info->chunk_alloc = 0;
4689 	spin_unlock(&space_info->lock);
4690 	mutex_unlock(&fs_info->chunk_mutex);
4691 	/*
4692 	 * When we allocate a new chunk we reserve space in the chunk block
4693 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4694 	 * add new nodes/leafs to it if we end up needing to do it when
4695 	 * inserting the chunk item and updating device items as part of the
4696 	 * second phase of chunk allocation, performed by
4697 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4698 	 * large number of new block groups to create in our transaction
4699 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4700 	 * in extreme cases - like having a single transaction create many new
4701 	 * block groups when starting to write out the free space caches of all
4702 	 * the block groups that were made dirty during the lifetime of the
4703 	 * transaction.
4704 	 */
4705 	if (trans->can_flush_pending_bgs &&
4706 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4707 		btrfs_create_pending_block_groups(trans);
4708 		btrfs_trans_release_chunk_metadata(trans);
4709 	}
4710 	return ret;
4711 }
4712 
4713 static int can_overcommit(struct btrfs_fs_info *fs_info,
4714 			  struct btrfs_space_info *space_info, u64 bytes,
4715 			  enum btrfs_reserve_flush_enum flush,
4716 			  bool system_chunk)
4717 {
4718 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4719 	u64 profile;
4720 	u64 space_size;
4721 	u64 avail;
4722 	u64 used;
4723 
4724 	/* Don't overcommit when in mixed mode. */
4725 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4726 		return 0;
4727 
4728 	if (system_chunk)
4729 		profile = btrfs_system_alloc_profile(fs_info);
4730 	else
4731 		profile = btrfs_metadata_alloc_profile(fs_info);
4732 
4733 	used = btrfs_space_info_used(space_info, false);
4734 
4735 	/*
4736 	 * We only want to allow over committing if we have lots of actual space
4737 	 * free, but if we don't have enough space to handle the global reserve
4738 	 * space then we could end up having a real enospc problem when trying
4739 	 * to allocate a chunk or some other such important allocation.
4740 	 */
4741 	spin_lock(&global_rsv->lock);
4742 	space_size = calc_global_rsv_need_space(global_rsv);
4743 	spin_unlock(&global_rsv->lock);
4744 	if (used + space_size >= space_info->total_bytes)
4745 		return 0;
4746 
4747 	used += space_info->bytes_may_use;
4748 
4749 	avail = atomic64_read(&fs_info->free_chunk_space);
4750 
4751 	/*
4752 	 * If we have dup, raid1 or raid10 then only half of the free
4753 	 * space is actually useable.  For raid56, the space info used
4754 	 * doesn't include the parity drive, so we don't have to
4755 	 * change the math
4756 	 */
4757 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4758 		       BTRFS_BLOCK_GROUP_RAID1 |
4759 		       BTRFS_BLOCK_GROUP_RAID10))
4760 		avail >>= 1;
4761 
4762 	/*
4763 	 * If we aren't flushing all things, let us overcommit up to
4764 	 * 1/2th of the space. If we can flush, don't let us overcommit
4765 	 * too much, let it overcommit up to 1/8 of the space.
4766 	 */
4767 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4768 		avail >>= 3;
4769 	else
4770 		avail >>= 1;
4771 
4772 	if (used + bytes < space_info->total_bytes + avail)
4773 		return 1;
4774 	return 0;
4775 }
4776 
4777 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4778 					 unsigned long nr_pages, int nr_items)
4779 {
4780 	struct super_block *sb = fs_info->sb;
4781 
4782 	if (down_read_trylock(&sb->s_umount)) {
4783 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4784 		up_read(&sb->s_umount);
4785 	} else {
4786 		/*
4787 		 * We needn't worry the filesystem going from r/w to r/o though
4788 		 * we don't acquire ->s_umount mutex, because the filesystem
4789 		 * should guarantee the delalloc inodes list be empty after
4790 		 * the filesystem is readonly(all dirty pages are written to
4791 		 * the disk).
4792 		 */
4793 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4794 		if (!current->journal_info)
4795 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4796 	}
4797 }
4798 
4799 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4800 					u64 to_reclaim)
4801 {
4802 	u64 bytes;
4803 	u64 nr;
4804 
4805 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4806 	nr = div64_u64(to_reclaim, bytes);
4807 	if (!nr)
4808 		nr = 1;
4809 	return nr;
4810 }
4811 
4812 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4813 
4814 /*
4815  * shrink metadata reservation for delalloc
4816  */
4817 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4818 			    u64 orig, bool wait_ordered)
4819 {
4820 	struct btrfs_space_info *space_info;
4821 	struct btrfs_trans_handle *trans;
4822 	u64 delalloc_bytes;
4823 	u64 max_reclaim;
4824 	u64 items;
4825 	long time_left;
4826 	unsigned long nr_pages;
4827 	int loops;
4828 
4829 	/* Calc the number of the pages we need flush for space reservation */
4830 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4831 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4832 
4833 	trans = (struct btrfs_trans_handle *)current->journal_info;
4834 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4835 
4836 	delalloc_bytes = percpu_counter_sum_positive(
4837 						&fs_info->delalloc_bytes);
4838 	if (delalloc_bytes == 0) {
4839 		if (trans)
4840 			return;
4841 		if (wait_ordered)
4842 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4843 		return;
4844 	}
4845 
4846 	loops = 0;
4847 	while (delalloc_bytes && loops < 3) {
4848 		max_reclaim = min(delalloc_bytes, to_reclaim);
4849 		nr_pages = max_reclaim >> PAGE_SHIFT;
4850 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4851 		/*
4852 		 * We need to wait for the async pages to actually start before
4853 		 * we do anything.
4854 		 */
4855 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4856 		if (!max_reclaim)
4857 			goto skip_async;
4858 
4859 		if (max_reclaim <= nr_pages)
4860 			max_reclaim = 0;
4861 		else
4862 			max_reclaim -= nr_pages;
4863 
4864 		wait_event(fs_info->async_submit_wait,
4865 			   atomic_read(&fs_info->async_delalloc_pages) <=
4866 			   (int)max_reclaim);
4867 skip_async:
4868 		spin_lock(&space_info->lock);
4869 		if (list_empty(&space_info->tickets) &&
4870 		    list_empty(&space_info->priority_tickets)) {
4871 			spin_unlock(&space_info->lock);
4872 			break;
4873 		}
4874 		spin_unlock(&space_info->lock);
4875 
4876 		loops++;
4877 		if (wait_ordered && !trans) {
4878 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4879 		} else {
4880 			time_left = schedule_timeout_killable(1);
4881 			if (time_left)
4882 				break;
4883 		}
4884 		delalloc_bytes = percpu_counter_sum_positive(
4885 						&fs_info->delalloc_bytes);
4886 	}
4887 }
4888 
4889 struct reserve_ticket {
4890 	u64 bytes;
4891 	int error;
4892 	struct list_head list;
4893 	wait_queue_head_t wait;
4894 };
4895 
4896 /**
4897  * maybe_commit_transaction - possibly commit the transaction if its ok to
4898  * @root - the root we're allocating for
4899  * @bytes - the number of bytes we want to reserve
4900  * @force - force the commit
4901  *
4902  * This will check to make sure that committing the transaction will actually
4903  * get us somewhere and then commit the transaction if it does.  Otherwise it
4904  * will return -ENOSPC.
4905  */
4906 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4907 				  struct btrfs_space_info *space_info)
4908 {
4909 	struct reserve_ticket *ticket = NULL;
4910 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4911 	struct btrfs_trans_handle *trans;
4912 	u64 bytes;
4913 
4914 	trans = (struct btrfs_trans_handle *)current->journal_info;
4915 	if (trans)
4916 		return -EAGAIN;
4917 
4918 	spin_lock(&space_info->lock);
4919 	if (!list_empty(&space_info->priority_tickets))
4920 		ticket = list_first_entry(&space_info->priority_tickets,
4921 					  struct reserve_ticket, list);
4922 	else if (!list_empty(&space_info->tickets))
4923 		ticket = list_first_entry(&space_info->tickets,
4924 					  struct reserve_ticket, list);
4925 	bytes = (ticket) ? ticket->bytes : 0;
4926 	spin_unlock(&space_info->lock);
4927 
4928 	if (!bytes)
4929 		return 0;
4930 
4931 	/* See if there is enough pinned space to make this reservation */
4932 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4933 				   bytes) >= 0)
4934 		goto commit;
4935 
4936 	/*
4937 	 * See if there is some space in the delayed insertion reservation for
4938 	 * this reservation.
4939 	 */
4940 	if (space_info != delayed_rsv->space_info)
4941 		return -ENOSPC;
4942 
4943 	spin_lock(&delayed_rsv->lock);
4944 	if (delayed_rsv->size > bytes)
4945 		bytes = 0;
4946 	else
4947 		bytes -= delayed_rsv->size;
4948 	spin_unlock(&delayed_rsv->lock);
4949 
4950 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4951 				   bytes) < 0) {
4952 		return -ENOSPC;
4953 	}
4954 
4955 commit:
4956 	trans = btrfs_join_transaction(fs_info->extent_root);
4957 	if (IS_ERR(trans))
4958 		return -ENOSPC;
4959 
4960 	return btrfs_commit_transaction(trans);
4961 }
4962 
4963 /*
4964  * Try to flush some data based on policy set by @state. This is only advisory
4965  * and may fail for various reasons. The caller is supposed to examine the
4966  * state of @space_info to detect the outcome.
4967  */
4968 static void flush_space(struct btrfs_fs_info *fs_info,
4969 		       struct btrfs_space_info *space_info, u64 num_bytes,
4970 		       int state)
4971 {
4972 	struct btrfs_root *root = fs_info->extent_root;
4973 	struct btrfs_trans_handle *trans;
4974 	int nr;
4975 	int ret = 0;
4976 
4977 	switch (state) {
4978 	case FLUSH_DELAYED_ITEMS_NR:
4979 	case FLUSH_DELAYED_ITEMS:
4980 		if (state == FLUSH_DELAYED_ITEMS_NR)
4981 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4982 		else
4983 			nr = -1;
4984 
4985 		trans = btrfs_join_transaction(root);
4986 		if (IS_ERR(trans)) {
4987 			ret = PTR_ERR(trans);
4988 			break;
4989 		}
4990 		ret = btrfs_run_delayed_items_nr(trans, nr);
4991 		btrfs_end_transaction(trans);
4992 		break;
4993 	case FLUSH_DELALLOC:
4994 	case FLUSH_DELALLOC_WAIT:
4995 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4996 				state == FLUSH_DELALLOC_WAIT);
4997 		break;
4998 	case ALLOC_CHUNK:
4999 		trans = btrfs_join_transaction(root);
5000 		if (IS_ERR(trans)) {
5001 			ret = PTR_ERR(trans);
5002 			break;
5003 		}
5004 		ret = do_chunk_alloc(trans, fs_info,
5005 				     btrfs_metadata_alloc_profile(fs_info),
5006 				     CHUNK_ALLOC_NO_FORCE);
5007 		btrfs_end_transaction(trans);
5008 		if (ret > 0 || ret == -ENOSPC)
5009 			ret = 0;
5010 		break;
5011 	case COMMIT_TRANS:
5012 		ret = may_commit_transaction(fs_info, space_info);
5013 		break;
5014 	default:
5015 		ret = -ENOSPC;
5016 		break;
5017 	}
5018 
5019 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5020 				ret);
5021 	return;
5022 }
5023 
5024 static inline u64
5025 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5026 				 struct btrfs_space_info *space_info,
5027 				 bool system_chunk)
5028 {
5029 	struct reserve_ticket *ticket;
5030 	u64 used;
5031 	u64 expected;
5032 	u64 to_reclaim = 0;
5033 
5034 	list_for_each_entry(ticket, &space_info->tickets, list)
5035 		to_reclaim += ticket->bytes;
5036 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5037 		to_reclaim += ticket->bytes;
5038 	if (to_reclaim)
5039 		return to_reclaim;
5040 
5041 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5042 	if (can_overcommit(fs_info, space_info, to_reclaim,
5043 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5044 		return 0;
5045 
5046 	used = btrfs_space_info_used(space_info, true);
5047 
5048 	if (can_overcommit(fs_info, space_info, SZ_1M,
5049 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050 		expected = div_factor_fine(space_info->total_bytes, 95);
5051 	else
5052 		expected = div_factor_fine(space_info->total_bytes, 90);
5053 
5054 	if (used > expected)
5055 		to_reclaim = used - expected;
5056 	else
5057 		to_reclaim = 0;
5058 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5059 				     space_info->bytes_reserved);
5060 	return to_reclaim;
5061 }
5062 
5063 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5064 					struct btrfs_space_info *space_info,
5065 					u64 used, bool system_chunk)
5066 {
5067 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5068 
5069 	/* If we're just plain full then async reclaim just slows us down. */
5070 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5071 		return 0;
5072 
5073 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5074 					      system_chunk))
5075 		return 0;
5076 
5077 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5078 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5079 }
5080 
5081 static void wake_all_tickets(struct list_head *head)
5082 {
5083 	struct reserve_ticket *ticket;
5084 
5085 	while (!list_empty(head)) {
5086 		ticket = list_first_entry(head, struct reserve_ticket, list);
5087 		list_del_init(&ticket->list);
5088 		ticket->error = -ENOSPC;
5089 		wake_up(&ticket->wait);
5090 	}
5091 }
5092 
5093 /*
5094  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5095  * will loop and continuously try to flush as long as we are making progress.
5096  * We count progress as clearing off tickets each time we have to loop.
5097  */
5098 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5099 {
5100 	struct btrfs_fs_info *fs_info;
5101 	struct btrfs_space_info *space_info;
5102 	u64 to_reclaim;
5103 	int flush_state;
5104 	int commit_cycles = 0;
5105 	u64 last_tickets_id;
5106 
5107 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5108 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5109 
5110 	spin_lock(&space_info->lock);
5111 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5112 						      false);
5113 	if (!to_reclaim) {
5114 		space_info->flush = 0;
5115 		spin_unlock(&space_info->lock);
5116 		return;
5117 	}
5118 	last_tickets_id = space_info->tickets_id;
5119 	spin_unlock(&space_info->lock);
5120 
5121 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5122 	do {
5123 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5124 		spin_lock(&space_info->lock);
5125 		if (list_empty(&space_info->tickets)) {
5126 			space_info->flush = 0;
5127 			spin_unlock(&space_info->lock);
5128 			return;
5129 		}
5130 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5131 							      space_info,
5132 							      false);
5133 		if (last_tickets_id == space_info->tickets_id) {
5134 			flush_state++;
5135 		} else {
5136 			last_tickets_id = space_info->tickets_id;
5137 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5138 			if (commit_cycles)
5139 				commit_cycles--;
5140 		}
5141 
5142 		if (flush_state > COMMIT_TRANS) {
5143 			commit_cycles++;
5144 			if (commit_cycles > 2) {
5145 				wake_all_tickets(&space_info->tickets);
5146 				space_info->flush = 0;
5147 			} else {
5148 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5149 			}
5150 		}
5151 		spin_unlock(&space_info->lock);
5152 	} while (flush_state <= COMMIT_TRANS);
5153 }
5154 
5155 void btrfs_init_async_reclaim_work(struct work_struct *work)
5156 {
5157 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5158 }
5159 
5160 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5161 					    struct btrfs_space_info *space_info,
5162 					    struct reserve_ticket *ticket)
5163 {
5164 	u64 to_reclaim;
5165 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5166 
5167 	spin_lock(&space_info->lock);
5168 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5169 						      false);
5170 	if (!to_reclaim) {
5171 		spin_unlock(&space_info->lock);
5172 		return;
5173 	}
5174 	spin_unlock(&space_info->lock);
5175 
5176 	do {
5177 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5178 		flush_state++;
5179 		spin_lock(&space_info->lock);
5180 		if (ticket->bytes == 0) {
5181 			spin_unlock(&space_info->lock);
5182 			return;
5183 		}
5184 		spin_unlock(&space_info->lock);
5185 
5186 		/*
5187 		 * Priority flushers can't wait on delalloc without
5188 		 * deadlocking.
5189 		 */
5190 		if (flush_state == FLUSH_DELALLOC ||
5191 		    flush_state == FLUSH_DELALLOC_WAIT)
5192 			flush_state = ALLOC_CHUNK;
5193 	} while (flush_state < COMMIT_TRANS);
5194 }
5195 
5196 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5197 			       struct btrfs_space_info *space_info,
5198 			       struct reserve_ticket *ticket, u64 orig_bytes)
5199 
5200 {
5201 	DEFINE_WAIT(wait);
5202 	int ret = 0;
5203 
5204 	spin_lock(&space_info->lock);
5205 	while (ticket->bytes > 0 && ticket->error == 0) {
5206 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5207 		if (ret) {
5208 			ret = -EINTR;
5209 			break;
5210 		}
5211 		spin_unlock(&space_info->lock);
5212 
5213 		schedule();
5214 
5215 		finish_wait(&ticket->wait, &wait);
5216 		spin_lock(&space_info->lock);
5217 	}
5218 	if (!ret)
5219 		ret = ticket->error;
5220 	if (!list_empty(&ticket->list))
5221 		list_del_init(&ticket->list);
5222 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5223 		u64 num_bytes = orig_bytes - ticket->bytes;
5224 		space_info->bytes_may_use -= num_bytes;
5225 		trace_btrfs_space_reservation(fs_info, "space_info",
5226 					      space_info->flags, num_bytes, 0);
5227 	}
5228 	spin_unlock(&space_info->lock);
5229 
5230 	return ret;
5231 }
5232 
5233 /**
5234  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235  * @root - the root we're allocating for
5236  * @space_info - the space info we want to allocate from
5237  * @orig_bytes - the number of bytes we want
5238  * @flush - whether or not we can flush to make our reservation
5239  *
5240  * This will reserve orig_bytes number of bytes from the space info associated
5241  * with the block_rsv.  If there is not enough space it will make an attempt to
5242  * flush out space to make room.  It will do this by flushing delalloc if
5243  * possible or committing the transaction.  If flush is 0 then no attempts to
5244  * regain reservations will be made and this will fail if there is not enough
5245  * space already.
5246  */
5247 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5248 				    struct btrfs_space_info *space_info,
5249 				    u64 orig_bytes,
5250 				    enum btrfs_reserve_flush_enum flush,
5251 				    bool system_chunk)
5252 {
5253 	struct reserve_ticket ticket;
5254 	u64 used;
5255 	int ret = 0;
5256 
5257 	ASSERT(orig_bytes);
5258 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5259 
5260 	spin_lock(&space_info->lock);
5261 	ret = -ENOSPC;
5262 	used = btrfs_space_info_used(space_info, true);
5263 
5264 	/*
5265 	 * If we have enough space then hooray, make our reservation and carry
5266 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5267 	 * If not things get more complicated.
5268 	 */
5269 	if (used + orig_bytes <= space_info->total_bytes) {
5270 		space_info->bytes_may_use += orig_bytes;
5271 		trace_btrfs_space_reservation(fs_info, "space_info",
5272 					      space_info->flags, orig_bytes, 1);
5273 		ret = 0;
5274 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5275 				  system_chunk)) {
5276 		space_info->bytes_may_use += orig_bytes;
5277 		trace_btrfs_space_reservation(fs_info, "space_info",
5278 					      space_info->flags, orig_bytes, 1);
5279 		ret = 0;
5280 	}
5281 
5282 	/*
5283 	 * If we couldn't make a reservation then setup our reservation ticket
5284 	 * and kick the async worker if it's not already running.
5285 	 *
5286 	 * If we are a priority flusher then we just need to add our ticket to
5287 	 * the list and we will do our own flushing further down.
5288 	 */
5289 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5290 		ticket.bytes = orig_bytes;
5291 		ticket.error = 0;
5292 		init_waitqueue_head(&ticket.wait);
5293 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5294 			list_add_tail(&ticket.list, &space_info->tickets);
5295 			if (!space_info->flush) {
5296 				space_info->flush = 1;
5297 				trace_btrfs_trigger_flush(fs_info,
5298 							  space_info->flags,
5299 							  orig_bytes, flush,
5300 							  "enospc");
5301 				queue_work(system_unbound_wq,
5302 					   &fs_info->async_reclaim_work);
5303 			}
5304 		} else {
5305 			list_add_tail(&ticket.list,
5306 				      &space_info->priority_tickets);
5307 		}
5308 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5309 		used += orig_bytes;
5310 		/*
5311 		 * We will do the space reservation dance during log replay,
5312 		 * which means we won't have fs_info->fs_root set, so don't do
5313 		 * the async reclaim as we will panic.
5314 		 */
5315 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5316 		    need_do_async_reclaim(fs_info, space_info,
5317 					  used, system_chunk) &&
5318 		    !work_busy(&fs_info->async_reclaim_work)) {
5319 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5320 						  orig_bytes, flush, "preempt");
5321 			queue_work(system_unbound_wq,
5322 				   &fs_info->async_reclaim_work);
5323 		}
5324 	}
5325 	spin_unlock(&space_info->lock);
5326 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5327 		return ret;
5328 
5329 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5330 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5331 					   orig_bytes);
5332 
5333 	ret = 0;
5334 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5335 	spin_lock(&space_info->lock);
5336 	if (ticket.bytes) {
5337 		if (ticket.bytes < orig_bytes) {
5338 			u64 num_bytes = orig_bytes - ticket.bytes;
5339 			space_info->bytes_may_use -= num_bytes;
5340 			trace_btrfs_space_reservation(fs_info, "space_info",
5341 						      space_info->flags,
5342 						      num_bytes, 0);
5343 
5344 		}
5345 		list_del_init(&ticket.list);
5346 		ret = -ENOSPC;
5347 	}
5348 	spin_unlock(&space_info->lock);
5349 	ASSERT(list_empty(&ticket.list));
5350 	return ret;
5351 }
5352 
5353 /**
5354  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5355  * @root - the root we're allocating for
5356  * @block_rsv - the block_rsv we're allocating for
5357  * @orig_bytes - the number of bytes we want
5358  * @flush - whether or not we can flush to make our reservation
5359  *
5360  * This will reserve orgi_bytes number of bytes from the space info associated
5361  * with the block_rsv.  If there is not enough space it will make an attempt to
5362  * flush out space to make room.  It will do this by flushing delalloc if
5363  * possible or committing the transaction.  If flush is 0 then no attempts to
5364  * regain reservations will be made and this will fail if there is not enough
5365  * space already.
5366  */
5367 static int reserve_metadata_bytes(struct btrfs_root *root,
5368 				  struct btrfs_block_rsv *block_rsv,
5369 				  u64 orig_bytes,
5370 				  enum btrfs_reserve_flush_enum flush)
5371 {
5372 	struct btrfs_fs_info *fs_info = root->fs_info;
5373 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5374 	int ret;
5375 	bool system_chunk = (root == fs_info->chunk_root);
5376 
5377 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5378 				       orig_bytes, flush, system_chunk);
5379 	if (ret == -ENOSPC &&
5380 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5381 		if (block_rsv != global_rsv &&
5382 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5383 			ret = 0;
5384 	}
5385 	if (ret == -ENOSPC) {
5386 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5387 					      block_rsv->space_info->flags,
5388 					      orig_bytes, 1);
5389 
5390 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5391 			dump_space_info(fs_info, block_rsv->space_info,
5392 					orig_bytes, 0);
5393 	}
5394 	return ret;
5395 }
5396 
5397 static struct btrfs_block_rsv *get_block_rsv(
5398 					const struct btrfs_trans_handle *trans,
5399 					const struct btrfs_root *root)
5400 {
5401 	struct btrfs_fs_info *fs_info = root->fs_info;
5402 	struct btrfs_block_rsv *block_rsv = NULL;
5403 
5404 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5405 	    (root == fs_info->csum_root && trans->adding_csums) ||
5406 	    (root == fs_info->uuid_root))
5407 		block_rsv = trans->block_rsv;
5408 
5409 	if (!block_rsv)
5410 		block_rsv = root->block_rsv;
5411 
5412 	if (!block_rsv)
5413 		block_rsv = &fs_info->empty_block_rsv;
5414 
5415 	return block_rsv;
5416 }
5417 
5418 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5419 			       u64 num_bytes)
5420 {
5421 	int ret = -ENOSPC;
5422 	spin_lock(&block_rsv->lock);
5423 	if (block_rsv->reserved >= num_bytes) {
5424 		block_rsv->reserved -= num_bytes;
5425 		if (block_rsv->reserved < block_rsv->size)
5426 			block_rsv->full = 0;
5427 		ret = 0;
5428 	}
5429 	spin_unlock(&block_rsv->lock);
5430 	return ret;
5431 }
5432 
5433 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5434 				u64 num_bytes, int update_size)
5435 {
5436 	spin_lock(&block_rsv->lock);
5437 	block_rsv->reserved += num_bytes;
5438 	if (update_size)
5439 		block_rsv->size += num_bytes;
5440 	else if (block_rsv->reserved >= block_rsv->size)
5441 		block_rsv->full = 1;
5442 	spin_unlock(&block_rsv->lock);
5443 }
5444 
5445 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5446 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5447 			     int min_factor)
5448 {
5449 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5450 	u64 min_bytes;
5451 
5452 	if (global_rsv->space_info != dest->space_info)
5453 		return -ENOSPC;
5454 
5455 	spin_lock(&global_rsv->lock);
5456 	min_bytes = div_factor(global_rsv->size, min_factor);
5457 	if (global_rsv->reserved < min_bytes + num_bytes) {
5458 		spin_unlock(&global_rsv->lock);
5459 		return -ENOSPC;
5460 	}
5461 	global_rsv->reserved -= num_bytes;
5462 	if (global_rsv->reserved < global_rsv->size)
5463 		global_rsv->full = 0;
5464 	spin_unlock(&global_rsv->lock);
5465 
5466 	block_rsv_add_bytes(dest, num_bytes, 1);
5467 	return 0;
5468 }
5469 
5470 /*
5471  * This is for space we already have accounted in space_info->bytes_may_use, so
5472  * basically when we're returning space from block_rsv's.
5473  */
5474 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5475 				     struct btrfs_space_info *space_info,
5476 				     u64 num_bytes)
5477 {
5478 	struct reserve_ticket *ticket;
5479 	struct list_head *head;
5480 	u64 used;
5481 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5482 	bool check_overcommit = false;
5483 
5484 	spin_lock(&space_info->lock);
5485 	head = &space_info->priority_tickets;
5486 
5487 	/*
5488 	 * If we are over our limit then we need to check and see if we can
5489 	 * overcommit, and if we can't then we just need to free up our space
5490 	 * and not satisfy any requests.
5491 	 */
5492 	used = btrfs_space_info_used(space_info, true);
5493 	if (used - num_bytes >= space_info->total_bytes)
5494 		check_overcommit = true;
5495 again:
5496 	while (!list_empty(head) && num_bytes) {
5497 		ticket = list_first_entry(head, struct reserve_ticket,
5498 					  list);
5499 		/*
5500 		 * We use 0 bytes because this space is already reserved, so
5501 		 * adding the ticket space would be a double count.
5502 		 */
5503 		if (check_overcommit &&
5504 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5505 			break;
5506 		if (num_bytes >= ticket->bytes) {
5507 			list_del_init(&ticket->list);
5508 			num_bytes -= ticket->bytes;
5509 			ticket->bytes = 0;
5510 			space_info->tickets_id++;
5511 			wake_up(&ticket->wait);
5512 		} else {
5513 			ticket->bytes -= num_bytes;
5514 			num_bytes = 0;
5515 		}
5516 	}
5517 
5518 	if (num_bytes && head == &space_info->priority_tickets) {
5519 		head = &space_info->tickets;
5520 		flush = BTRFS_RESERVE_FLUSH_ALL;
5521 		goto again;
5522 	}
5523 	space_info->bytes_may_use -= num_bytes;
5524 	trace_btrfs_space_reservation(fs_info, "space_info",
5525 				      space_info->flags, num_bytes, 0);
5526 	spin_unlock(&space_info->lock);
5527 }
5528 
5529 /*
5530  * This is for newly allocated space that isn't accounted in
5531  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5532  * we use this helper.
5533  */
5534 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5535 				     struct btrfs_space_info *space_info,
5536 				     u64 num_bytes)
5537 {
5538 	struct reserve_ticket *ticket;
5539 	struct list_head *head = &space_info->priority_tickets;
5540 
5541 again:
5542 	while (!list_empty(head) && num_bytes) {
5543 		ticket = list_first_entry(head, struct reserve_ticket,
5544 					  list);
5545 		if (num_bytes >= ticket->bytes) {
5546 			trace_btrfs_space_reservation(fs_info, "space_info",
5547 						      space_info->flags,
5548 						      ticket->bytes, 1);
5549 			list_del_init(&ticket->list);
5550 			num_bytes -= ticket->bytes;
5551 			space_info->bytes_may_use += ticket->bytes;
5552 			ticket->bytes = 0;
5553 			space_info->tickets_id++;
5554 			wake_up(&ticket->wait);
5555 		} else {
5556 			trace_btrfs_space_reservation(fs_info, "space_info",
5557 						      space_info->flags,
5558 						      num_bytes, 1);
5559 			space_info->bytes_may_use += num_bytes;
5560 			ticket->bytes -= num_bytes;
5561 			num_bytes = 0;
5562 		}
5563 	}
5564 
5565 	if (num_bytes && head == &space_info->priority_tickets) {
5566 		head = &space_info->tickets;
5567 		goto again;
5568 	}
5569 }
5570 
5571 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5572 				    struct btrfs_block_rsv *block_rsv,
5573 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5574 {
5575 	struct btrfs_space_info *space_info = block_rsv->space_info;
5576 	u64 ret;
5577 
5578 	spin_lock(&block_rsv->lock);
5579 	if (num_bytes == (u64)-1)
5580 		num_bytes = block_rsv->size;
5581 	block_rsv->size -= num_bytes;
5582 	if (block_rsv->reserved >= block_rsv->size) {
5583 		num_bytes = block_rsv->reserved - block_rsv->size;
5584 		block_rsv->reserved = block_rsv->size;
5585 		block_rsv->full = 1;
5586 	} else {
5587 		num_bytes = 0;
5588 	}
5589 	spin_unlock(&block_rsv->lock);
5590 
5591 	ret = num_bytes;
5592 	if (num_bytes > 0) {
5593 		if (dest) {
5594 			spin_lock(&dest->lock);
5595 			if (!dest->full) {
5596 				u64 bytes_to_add;
5597 
5598 				bytes_to_add = dest->size - dest->reserved;
5599 				bytes_to_add = min(num_bytes, bytes_to_add);
5600 				dest->reserved += bytes_to_add;
5601 				if (dest->reserved >= dest->size)
5602 					dest->full = 1;
5603 				num_bytes -= bytes_to_add;
5604 			}
5605 			spin_unlock(&dest->lock);
5606 		}
5607 		if (num_bytes)
5608 			space_info_add_old_bytes(fs_info, space_info,
5609 						 num_bytes);
5610 	}
5611 	return ret;
5612 }
5613 
5614 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5615 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5616 			    int update_size)
5617 {
5618 	int ret;
5619 
5620 	ret = block_rsv_use_bytes(src, num_bytes);
5621 	if (ret)
5622 		return ret;
5623 
5624 	block_rsv_add_bytes(dst, num_bytes, update_size);
5625 	return 0;
5626 }
5627 
5628 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5629 {
5630 	memset(rsv, 0, sizeof(*rsv));
5631 	spin_lock_init(&rsv->lock);
5632 	rsv->type = type;
5633 }
5634 
5635 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5636 				   struct btrfs_block_rsv *rsv,
5637 				   unsigned short type)
5638 {
5639 	btrfs_init_block_rsv(rsv, type);
5640 	rsv->space_info = __find_space_info(fs_info,
5641 					    BTRFS_BLOCK_GROUP_METADATA);
5642 }
5643 
5644 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5645 					      unsigned short type)
5646 {
5647 	struct btrfs_block_rsv *block_rsv;
5648 
5649 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5650 	if (!block_rsv)
5651 		return NULL;
5652 
5653 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5654 	return block_rsv;
5655 }
5656 
5657 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5658 			  struct btrfs_block_rsv *rsv)
5659 {
5660 	if (!rsv)
5661 		return;
5662 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5663 	kfree(rsv);
5664 }
5665 
5666 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5667 {
5668 	kfree(rsv);
5669 }
5670 
5671 int btrfs_block_rsv_add(struct btrfs_root *root,
5672 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5673 			enum btrfs_reserve_flush_enum flush)
5674 {
5675 	int ret;
5676 
5677 	if (num_bytes == 0)
5678 		return 0;
5679 
5680 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5681 	if (!ret) {
5682 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5683 		return 0;
5684 	}
5685 
5686 	return ret;
5687 }
5688 
5689 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5690 {
5691 	u64 num_bytes = 0;
5692 	int ret = -ENOSPC;
5693 
5694 	if (!block_rsv)
5695 		return 0;
5696 
5697 	spin_lock(&block_rsv->lock);
5698 	num_bytes = div_factor(block_rsv->size, min_factor);
5699 	if (block_rsv->reserved >= num_bytes)
5700 		ret = 0;
5701 	spin_unlock(&block_rsv->lock);
5702 
5703 	return ret;
5704 }
5705 
5706 int btrfs_block_rsv_refill(struct btrfs_root *root,
5707 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5708 			   enum btrfs_reserve_flush_enum flush)
5709 {
5710 	u64 num_bytes = 0;
5711 	int ret = -ENOSPC;
5712 
5713 	if (!block_rsv)
5714 		return 0;
5715 
5716 	spin_lock(&block_rsv->lock);
5717 	num_bytes = min_reserved;
5718 	if (block_rsv->reserved >= num_bytes)
5719 		ret = 0;
5720 	else
5721 		num_bytes -= block_rsv->reserved;
5722 	spin_unlock(&block_rsv->lock);
5723 
5724 	if (!ret)
5725 		return 0;
5726 
5727 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5728 	if (!ret) {
5729 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5730 		return 0;
5731 	}
5732 
5733 	return ret;
5734 }
5735 
5736 /**
5737  * btrfs_inode_rsv_refill - refill the inode block rsv.
5738  * @inode - the inode we are refilling.
5739  * @flush - the flusing restriction.
5740  *
5741  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5742  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5743  * or return if we already have enough space.  This will also handle the resreve
5744  * tracepoint for the reserved amount.
5745  */
5746 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5747 				  enum btrfs_reserve_flush_enum flush)
5748 {
5749 	struct btrfs_root *root = inode->root;
5750 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5751 	u64 num_bytes = 0;
5752 	int ret = -ENOSPC;
5753 
5754 	spin_lock(&block_rsv->lock);
5755 	if (block_rsv->reserved < block_rsv->size)
5756 		num_bytes = block_rsv->size - block_rsv->reserved;
5757 	spin_unlock(&block_rsv->lock);
5758 
5759 	if (num_bytes == 0)
5760 		return 0;
5761 
5762 	ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5763 	if (ret)
5764 		return ret;
5765 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5766 	if (!ret) {
5767 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5768 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5769 					      btrfs_ino(inode), num_bytes, 1);
5770 	}
5771 	return ret;
5772 }
5773 
5774 /**
5775  * btrfs_inode_rsv_release - release any excessive reservation.
5776  * @inode - the inode we need to release from.
5777  * @qgroup_free - free or convert qgroup meta.
5778  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5779  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5780  *   @qgroup_free is true for error handling, and false for normal release.
5781  *
5782  * This is the same as btrfs_block_rsv_release, except that it handles the
5783  * tracepoint for the reservation.
5784  */
5785 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5786 {
5787 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5788 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5789 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5790 	u64 released = 0;
5791 
5792 	/*
5793 	 * Since we statically set the block_rsv->size we just want to say we
5794 	 * are releasing 0 bytes, and then we'll just get the reservation over
5795 	 * the size free'd.
5796 	 */
5797 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5798 	if (released > 0)
5799 		trace_btrfs_space_reservation(fs_info, "delalloc",
5800 					      btrfs_ino(inode), released, 0);
5801 	if (qgroup_free)
5802 		btrfs_qgroup_free_meta_prealloc(inode->root, released);
5803 	else
5804 		btrfs_qgroup_convert_reserved_meta(inode->root, released);
5805 }
5806 
5807 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5808 			     struct btrfs_block_rsv *block_rsv,
5809 			     u64 num_bytes)
5810 {
5811 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5812 
5813 	if (global_rsv == block_rsv ||
5814 	    block_rsv->space_info != global_rsv->space_info)
5815 		global_rsv = NULL;
5816 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5817 }
5818 
5819 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5820 {
5821 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5822 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5823 	u64 num_bytes;
5824 
5825 	/*
5826 	 * The global block rsv is based on the size of the extent tree, the
5827 	 * checksum tree and the root tree.  If the fs is empty we want to set
5828 	 * it to a minimal amount for safety.
5829 	 */
5830 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5831 		btrfs_root_used(&fs_info->csum_root->root_item) +
5832 		btrfs_root_used(&fs_info->tree_root->root_item);
5833 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5834 
5835 	spin_lock(&sinfo->lock);
5836 	spin_lock(&block_rsv->lock);
5837 
5838 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5839 
5840 	if (block_rsv->reserved < block_rsv->size) {
5841 		num_bytes = btrfs_space_info_used(sinfo, true);
5842 		if (sinfo->total_bytes > num_bytes) {
5843 			num_bytes = sinfo->total_bytes - num_bytes;
5844 			num_bytes = min(num_bytes,
5845 					block_rsv->size - block_rsv->reserved);
5846 			block_rsv->reserved += num_bytes;
5847 			sinfo->bytes_may_use += num_bytes;
5848 			trace_btrfs_space_reservation(fs_info, "space_info",
5849 						      sinfo->flags, num_bytes,
5850 						      1);
5851 		}
5852 	} else if (block_rsv->reserved > block_rsv->size) {
5853 		num_bytes = block_rsv->reserved - block_rsv->size;
5854 		sinfo->bytes_may_use -= num_bytes;
5855 		trace_btrfs_space_reservation(fs_info, "space_info",
5856 				      sinfo->flags, num_bytes, 0);
5857 		block_rsv->reserved = block_rsv->size;
5858 	}
5859 
5860 	if (block_rsv->reserved == block_rsv->size)
5861 		block_rsv->full = 1;
5862 	else
5863 		block_rsv->full = 0;
5864 
5865 	spin_unlock(&block_rsv->lock);
5866 	spin_unlock(&sinfo->lock);
5867 }
5868 
5869 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5870 {
5871 	struct btrfs_space_info *space_info;
5872 
5873 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5874 	fs_info->chunk_block_rsv.space_info = space_info;
5875 
5876 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5877 	fs_info->global_block_rsv.space_info = space_info;
5878 	fs_info->trans_block_rsv.space_info = space_info;
5879 	fs_info->empty_block_rsv.space_info = space_info;
5880 	fs_info->delayed_block_rsv.space_info = space_info;
5881 
5882 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5883 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5884 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5885 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5886 	if (fs_info->quota_root)
5887 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5888 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5889 
5890 	update_global_block_rsv(fs_info);
5891 }
5892 
5893 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5894 {
5895 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5896 				(u64)-1);
5897 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5898 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5899 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5900 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5901 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5902 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5903 }
5904 
5905 
5906 /*
5907  * To be called after all the new block groups attached to the transaction
5908  * handle have been created (btrfs_create_pending_block_groups()).
5909  */
5910 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5911 {
5912 	struct btrfs_fs_info *fs_info = trans->fs_info;
5913 
5914 	if (!trans->chunk_bytes_reserved)
5915 		return;
5916 
5917 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5918 
5919 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5920 				trans->chunk_bytes_reserved);
5921 	trans->chunk_bytes_reserved = 0;
5922 }
5923 
5924 /* Can only return 0 or -ENOSPC */
5925 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5926 				  struct btrfs_inode *inode)
5927 {
5928 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5929 	struct btrfs_root *root = inode->root;
5930 	/*
5931 	 * We always use trans->block_rsv here as we will have reserved space
5932 	 * for our orphan when starting the transaction, using get_block_rsv()
5933 	 * here will sometimes make us choose the wrong block rsv as we could be
5934 	 * doing a reloc inode for a non refcounted root.
5935 	 */
5936 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5937 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5938 
5939 	/*
5940 	 * We need to hold space in order to delete our orphan item once we've
5941 	 * added it, so this takes the reservation so we can release it later
5942 	 * when we are truly done with the orphan item.
5943 	 */
5944 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5945 
5946 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5947 			num_bytes, 1);
5948 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5949 }
5950 
5951 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5952 {
5953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5954 	struct btrfs_root *root = inode->root;
5955 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5956 
5957 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5958 			num_bytes, 0);
5959 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5960 }
5961 
5962 /*
5963  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5964  * root: the root of the parent directory
5965  * rsv: block reservation
5966  * items: the number of items that we need do reservation
5967  * qgroup_reserved: used to return the reserved size in qgroup
5968  *
5969  * This function is used to reserve the space for snapshot/subvolume
5970  * creation and deletion. Those operations are different with the
5971  * common file/directory operations, they change two fs/file trees
5972  * and root tree, the number of items that the qgroup reserves is
5973  * different with the free space reservation. So we can not use
5974  * the space reservation mechanism in start_transaction().
5975  */
5976 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5977 				     struct btrfs_block_rsv *rsv,
5978 				     int items,
5979 				     u64 *qgroup_reserved,
5980 				     bool use_global_rsv)
5981 {
5982 	u64 num_bytes;
5983 	int ret;
5984 	struct btrfs_fs_info *fs_info = root->fs_info;
5985 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5986 
5987 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5988 		/* One for parent inode, two for dir entries */
5989 		num_bytes = 3 * fs_info->nodesize;
5990 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
5991 		if (ret)
5992 			return ret;
5993 	} else {
5994 		num_bytes = 0;
5995 	}
5996 
5997 	*qgroup_reserved = num_bytes;
5998 
5999 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6000 	rsv->space_info = __find_space_info(fs_info,
6001 					    BTRFS_BLOCK_GROUP_METADATA);
6002 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6003 				  BTRFS_RESERVE_FLUSH_ALL);
6004 
6005 	if (ret == -ENOSPC && use_global_rsv)
6006 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6007 
6008 	if (ret && *qgroup_reserved)
6009 		btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6010 
6011 	return ret;
6012 }
6013 
6014 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6015 				      struct btrfs_block_rsv *rsv)
6016 {
6017 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6018 }
6019 
6020 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6021 						 struct btrfs_inode *inode)
6022 {
6023 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6024 	u64 reserve_size = 0;
6025 	u64 csum_leaves;
6026 	unsigned outstanding_extents;
6027 
6028 	lockdep_assert_held(&inode->lock);
6029 	outstanding_extents = inode->outstanding_extents;
6030 	if (outstanding_extents)
6031 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6032 						outstanding_extents + 1);
6033 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6034 						 inode->csum_bytes);
6035 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6036 						       csum_leaves);
6037 
6038 	spin_lock(&block_rsv->lock);
6039 	block_rsv->size = reserve_size;
6040 	spin_unlock(&block_rsv->lock);
6041 }
6042 
6043 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6044 {
6045 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6046 	unsigned nr_extents;
6047 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6048 	int ret = 0;
6049 	bool delalloc_lock = true;
6050 
6051 	/* If we are a free space inode we need to not flush since we will be in
6052 	 * the middle of a transaction commit.  We also don't need the delalloc
6053 	 * mutex since we won't race with anybody.  We need this mostly to make
6054 	 * lockdep shut its filthy mouth.
6055 	 *
6056 	 * If we have a transaction open (can happen if we call truncate_block
6057 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6058 	 */
6059 	if (btrfs_is_free_space_inode(inode)) {
6060 		flush = BTRFS_RESERVE_NO_FLUSH;
6061 		delalloc_lock = false;
6062 	} else {
6063 		if (current->journal_info)
6064 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6065 
6066 		if (btrfs_transaction_in_commit(fs_info))
6067 			schedule_timeout(1);
6068 	}
6069 
6070 	if (delalloc_lock)
6071 		mutex_lock(&inode->delalloc_mutex);
6072 
6073 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6074 
6075 	/* Add our new extents and calculate the new rsv size. */
6076 	spin_lock(&inode->lock);
6077 	nr_extents = count_max_extents(num_bytes);
6078 	btrfs_mod_outstanding_extents(inode, nr_extents);
6079 	inode->csum_bytes += num_bytes;
6080 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6081 	spin_unlock(&inode->lock);
6082 
6083 	ret = btrfs_inode_rsv_refill(inode, flush);
6084 	if (unlikely(ret))
6085 		goto out_fail;
6086 
6087 	if (delalloc_lock)
6088 		mutex_unlock(&inode->delalloc_mutex);
6089 	return 0;
6090 
6091 out_fail:
6092 	spin_lock(&inode->lock);
6093 	nr_extents = count_max_extents(num_bytes);
6094 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6095 	inode->csum_bytes -= num_bytes;
6096 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6097 	spin_unlock(&inode->lock);
6098 
6099 	btrfs_inode_rsv_release(inode, true);
6100 	if (delalloc_lock)
6101 		mutex_unlock(&inode->delalloc_mutex);
6102 	return ret;
6103 }
6104 
6105 /**
6106  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6107  * @inode: the inode to release the reservation for.
6108  * @num_bytes: the number of bytes we are releasing.
6109  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6110  *
6111  * This will release the metadata reservation for an inode.  This can be called
6112  * once we complete IO for a given set of bytes to release their metadata
6113  * reservations, or on error for the same reason.
6114  */
6115 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6116 				     bool qgroup_free)
6117 {
6118 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6119 
6120 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6121 	spin_lock(&inode->lock);
6122 	inode->csum_bytes -= num_bytes;
6123 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6124 	spin_unlock(&inode->lock);
6125 
6126 	if (btrfs_is_testing(fs_info))
6127 		return;
6128 
6129 	btrfs_inode_rsv_release(inode, qgroup_free);
6130 }
6131 
6132 /**
6133  * btrfs_delalloc_release_extents - release our outstanding_extents
6134  * @inode: the inode to balance the reservation for.
6135  * @num_bytes: the number of bytes we originally reserved with
6136  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6137  *
6138  * When we reserve space we increase outstanding_extents for the extents we may
6139  * add.  Once we've set the range as delalloc or created our ordered extents we
6140  * have outstanding_extents to track the real usage, so we use this to free our
6141  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6142  * with btrfs_delalloc_reserve_metadata.
6143  */
6144 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6145 				    bool qgroup_free)
6146 {
6147 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6148 	unsigned num_extents;
6149 
6150 	spin_lock(&inode->lock);
6151 	num_extents = count_max_extents(num_bytes);
6152 	btrfs_mod_outstanding_extents(inode, -num_extents);
6153 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6154 	spin_unlock(&inode->lock);
6155 
6156 	if (btrfs_is_testing(fs_info))
6157 		return;
6158 
6159 	btrfs_inode_rsv_release(inode, qgroup_free);
6160 }
6161 
6162 /**
6163  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6164  * delalloc
6165  * @inode: inode we're writing to
6166  * @start: start range we are writing to
6167  * @len: how long the range we are writing to
6168  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6169  * 	      current reservation.
6170  *
6171  * This will do the following things
6172  *
6173  * o reserve space in data space info for num bytes
6174  *   and reserve precious corresponding qgroup space
6175  *   (Done in check_data_free_space)
6176  *
6177  * o reserve space for metadata space, based on the number of outstanding
6178  *   extents and how much csums will be needed
6179  *   also reserve metadata space in a per root over-reserve method.
6180  * o add to the inodes->delalloc_bytes
6181  * o add it to the fs_info's delalloc inodes list.
6182  *   (Above 3 all done in delalloc_reserve_metadata)
6183  *
6184  * Return 0 for success
6185  * Return <0 for error(-ENOSPC or -EQUOT)
6186  */
6187 int btrfs_delalloc_reserve_space(struct inode *inode,
6188 			struct extent_changeset **reserved, u64 start, u64 len)
6189 {
6190 	int ret;
6191 
6192 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6193 	if (ret < 0)
6194 		return ret;
6195 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6196 	if (ret < 0)
6197 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6198 	return ret;
6199 }
6200 
6201 /**
6202  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6203  * @inode: inode we're releasing space for
6204  * @start: start position of the space already reserved
6205  * @len: the len of the space already reserved
6206  * @release_bytes: the len of the space we consumed or didn't use
6207  *
6208  * This function will release the metadata space that was not used and will
6209  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6210  * list if there are no delalloc bytes left.
6211  * Also it will handle the qgroup reserved space.
6212  */
6213 void btrfs_delalloc_release_space(struct inode *inode,
6214 				  struct extent_changeset *reserved,
6215 				  u64 start, u64 len, bool qgroup_free)
6216 {
6217 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6218 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6219 }
6220 
6221 static int update_block_group(struct btrfs_trans_handle *trans,
6222 			      struct btrfs_fs_info *info, u64 bytenr,
6223 			      u64 num_bytes, int alloc)
6224 {
6225 	struct btrfs_block_group_cache *cache = NULL;
6226 	u64 total = num_bytes;
6227 	u64 old_val;
6228 	u64 byte_in_group;
6229 	int factor;
6230 
6231 	/* block accounting for super block */
6232 	spin_lock(&info->delalloc_root_lock);
6233 	old_val = btrfs_super_bytes_used(info->super_copy);
6234 	if (alloc)
6235 		old_val += num_bytes;
6236 	else
6237 		old_val -= num_bytes;
6238 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6239 	spin_unlock(&info->delalloc_root_lock);
6240 
6241 	while (total) {
6242 		cache = btrfs_lookup_block_group(info, bytenr);
6243 		if (!cache)
6244 			return -ENOENT;
6245 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6246 				    BTRFS_BLOCK_GROUP_RAID1 |
6247 				    BTRFS_BLOCK_GROUP_RAID10))
6248 			factor = 2;
6249 		else
6250 			factor = 1;
6251 		/*
6252 		 * If this block group has free space cache written out, we
6253 		 * need to make sure to load it if we are removing space.  This
6254 		 * is because we need the unpinning stage to actually add the
6255 		 * space back to the block group, otherwise we will leak space.
6256 		 */
6257 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6258 			cache_block_group(cache, 1);
6259 
6260 		byte_in_group = bytenr - cache->key.objectid;
6261 		WARN_ON(byte_in_group > cache->key.offset);
6262 
6263 		spin_lock(&cache->space_info->lock);
6264 		spin_lock(&cache->lock);
6265 
6266 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6267 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6268 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6269 
6270 		old_val = btrfs_block_group_used(&cache->item);
6271 		num_bytes = min(total, cache->key.offset - byte_in_group);
6272 		if (alloc) {
6273 			old_val += num_bytes;
6274 			btrfs_set_block_group_used(&cache->item, old_val);
6275 			cache->reserved -= num_bytes;
6276 			cache->space_info->bytes_reserved -= num_bytes;
6277 			cache->space_info->bytes_used += num_bytes;
6278 			cache->space_info->disk_used += num_bytes * factor;
6279 			spin_unlock(&cache->lock);
6280 			spin_unlock(&cache->space_info->lock);
6281 		} else {
6282 			old_val -= num_bytes;
6283 			btrfs_set_block_group_used(&cache->item, old_val);
6284 			cache->pinned += num_bytes;
6285 			cache->space_info->bytes_pinned += num_bytes;
6286 			cache->space_info->bytes_used -= num_bytes;
6287 			cache->space_info->disk_used -= num_bytes * factor;
6288 			spin_unlock(&cache->lock);
6289 			spin_unlock(&cache->space_info->lock);
6290 
6291 			trace_btrfs_space_reservation(info, "pinned",
6292 						      cache->space_info->flags,
6293 						      num_bytes, 1);
6294 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6295 					   num_bytes);
6296 			set_extent_dirty(info->pinned_extents,
6297 					 bytenr, bytenr + num_bytes - 1,
6298 					 GFP_NOFS | __GFP_NOFAIL);
6299 		}
6300 
6301 		spin_lock(&trans->transaction->dirty_bgs_lock);
6302 		if (list_empty(&cache->dirty_list)) {
6303 			list_add_tail(&cache->dirty_list,
6304 				      &trans->transaction->dirty_bgs);
6305 				trans->transaction->num_dirty_bgs++;
6306 			btrfs_get_block_group(cache);
6307 		}
6308 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6309 
6310 		/*
6311 		 * No longer have used bytes in this block group, queue it for
6312 		 * deletion. We do this after adding the block group to the
6313 		 * dirty list to avoid races between cleaner kthread and space
6314 		 * cache writeout.
6315 		 */
6316 		if (!alloc && old_val == 0) {
6317 			spin_lock(&info->unused_bgs_lock);
6318 			if (list_empty(&cache->bg_list)) {
6319 				btrfs_get_block_group(cache);
6320 				list_add_tail(&cache->bg_list,
6321 					      &info->unused_bgs);
6322 			}
6323 			spin_unlock(&info->unused_bgs_lock);
6324 		}
6325 
6326 		btrfs_put_block_group(cache);
6327 		total -= num_bytes;
6328 		bytenr += num_bytes;
6329 	}
6330 	return 0;
6331 }
6332 
6333 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6334 {
6335 	struct btrfs_block_group_cache *cache;
6336 	u64 bytenr;
6337 
6338 	spin_lock(&fs_info->block_group_cache_lock);
6339 	bytenr = fs_info->first_logical_byte;
6340 	spin_unlock(&fs_info->block_group_cache_lock);
6341 
6342 	if (bytenr < (u64)-1)
6343 		return bytenr;
6344 
6345 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6346 	if (!cache)
6347 		return 0;
6348 
6349 	bytenr = cache->key.objectid;
6350 	btrfs_put_block_group(cache);
6351 
6352 	return bytenr;
6353 }
6354 
6355 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6356 			   struct btrfs_block_group_cache *cache,
6357 			   u64 bytenr, u64 num_bytes, int reserved)
6358 {
6359 	spin_lock(&cache->space_info->lock);
6360 	spin_lock(&cache->lock);
6361 	cache->pinned += num_bytes;
6362 	cache->space_info->bytes_pinned += num_bytes;
6363 	if (reserved) {
6364 		cache->reserved -= num_bytes;
6365 		cache->space_info->bytes_reserved -= num_bytes;
6366 	}
6367 	spin_unlock(&cache->lock);
6368 	spin_unlock(&cache->space_info->lock);
6369 
6370 	trace_btrfs_space_reservation(fs_info, "pinned",
6371 				      cache->space_info->flags, num_bytes, 1);
6372 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6373 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6374 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6375 	return 0;
6376 }
6377 
6378 /*
6379  * this function must be called within transaction
6380  */
6381 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6382 		     u64 bytenr, u64 num_bytes, int reserved)
6383 {
6384 	struct btrfs_block_group_cache *cache;
6385 
6386 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6387 	BUG_ON(!cache); /* Logic error */
6388 
6389 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6390 
6391 	btrfs_put_block_group(cache);
6392 	return 0;
6393 }
6394 
6395 /*
6396  * this function must be called within transaction
6397  */
6398 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6399 				    u64 bytenr, u64 num_bytes)
6400 {
6401 	struct btrfs_block_group_cache *cache;
6402 	int ret;
6403 
6404 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6405 	if (!cache)
6406 		return -EINVAL;
6407 
6408 	/*
6409 	 * pull in the free space cache (if any) so that our pin
6410 	 * removes the free space from the cache.  We have load_only set
6411 	 * to one because the slow code to read in the free extents does check
6412 	 * the pinned extents.
6413 	 */
6414 	cache_block_group(cache, 1);
6415 
6416 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6417 
6418 	/* remove us from the free space cache (if we're there at all) */
6419 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6420 	btrfs_put_block_group(cache);
6421 	return ret;
6422 }
6423 
6424 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6425 				   u64 start, u64 num_bytes)
6426 {
6427 	int ret;
6428 	struct btrfs_block_group_cache *block_group;
6429 	struct btrfs_caching_control *caching_ctl;
6430 
6431 	block_group = btrfs_lookup_block_group(fs_info, start);
6432 	if (!block_group)
6433 		return -EINVAL;
6434 
6435 	cache_block_group(block_group, 0);
6436 	caching_ctl = get_caching_control(block_group);
6437 
6438 	if (!caching_ctl) {
6439 		/* Logic error */
6440 		BUG_ON(!block_group_cache_done(block_group));
6441 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6442 	} else {
6443 		mutex_lock(&caching_ctl->mutex);
6444 
6445 		if (start >= caching_ctl->progress) {
6446 			ret = add_excluded_extent(fs_info, start, num_bytes);
6447 		} else if (start + num_bytes <= caching_ctl->progress) {
6448 			ret = btrfs_remove_free_space(block_group,
6449 						      start, num_bytes);
6450 		} else {
6451 			num_bytes = caching_ctl->progress - start;
6452 			ret = btrfs_remove_free_space(block_group,
6453 						      start, num_bytes);
6454 			if (ret)
6455 				goto out_lock;
6456 
6457 			num_bytes = (start + num_bytes) -
6458 				caching_ctl->progress;
6459 			start = caching_ctl->progress;
6460 			ret = add_excluded_extent(fs_info, start, num_bytes);
6461 		}
6462 out_lock:
6463 		mutex_unlock(&caching_ctl->mutex);
6464 		put_caching_control(caching_ctl);
6465 	}
6466 	btrfs_put_block_group(block_group);
6467 	return ret;
6468 }
6469 
6470 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6471 				 struct extent_buffer *eb)
6472 {
6473 	struct btrfs_file_extent_item *item;
6474 	struct btrfs_key key;
6475 	int found_type;
6476 	int i;
6477 
6478 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6479 		return 0;
6480 
6481 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6482 		btrfs_item_key_to_cpu(eb, &key, i);
6483 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6484 			continue;
6485 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6486 		found_type = btrfs_file_extent_type(eb, item);
6487 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6488 			continue;
6489 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6490 			continue;
6491 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6492 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6493 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6494 	}
6495 
6496 	return 0;
6497 }
6498 
6499 static void
6500 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6501 {
6502 	atomic_inc(&bg->reservations);
6503 }
6504 
6505 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6506 					const u64 start)
6507 {
6508 	struct btrfs_block_group_cache *bg;
6509 
6510 	bg = btrfs_lookup_block_group(fs_info, start);
6511 	ASSERT(bg);
6512 	if (atomic_dec_and_test(&bg->reservations))
6513 		wake_up_var(&bg->reservations);
6514 	btrfs_put_block_group(bg);
6515 }
6516 
6517 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6518 {
6519 	struct btrfs_space_info *space_info = bg->space_info;
6520 
6521 	ASSERT(bg->ro);
6522 
6523 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6524 		return;
6525 
6526 	/*
6527 	 * Our block group is read only but before we set it to read only,
6528 	 * some task might have had allocated an extent from it already, but it
6529 	 * has not yet created a respective ordered extent (and added it to a
6530 	 * root's list of ordered extents).
6531 	 * Therefore wait for any task currently allocating extents, since the
6532 	 * block group's reservations counter is incremented while a read lock
6533 	 * on the groups' semaphore is held and decremented after releasing
6534 	 * the read access on that semaphore and creating the ordered extent.
6535 	 */
6536 	down_write(&space_info->groups_sem);
6537 	up_write(&space_info->groups_sem);
6538 
6539 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6540 }
6541 
6542 /**
6543  * btrfs_add_reserved_bytes - update the block_group and space info counters
6544  * @cache:	The cache we are manipulating
6545  * @ram_bytes:  The number of bytes of file content, and will be same to
6546  *              @num_bytes except for the compress path.
6547  * @num_bytes:	The number of bytes in question
6548  * @delalloc:   The blocks are allocated for the delalloc write
6549  *
6550  * This is called by the allocator when it reserves space. If this is a
6551  * reservation and the block group has become read only we cannot make the
6552  * reservation and return -EAGAIN, otherwise this function always succeeds.
6553  */
6554 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6555 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6556 {
6557 	struct btrfs_space_info *space_info = cache->space_info;
6558 	int ret = 0;
6559 
6560 	spin_lock(&space_info->lock);
6561 	spin_lock(&cache->lock);
6562 	if (cache->ro) {
6563 		ret = -EAGAIN;
6564 	} else {
6565 		cache->reserved += num_bytes;
6566 		space_info->bytes_reserved += num_bytes;
6567 
6568 		trace_btrfs_space_reservation(cache->fs_info,
6569 				"space_info", space_info->flags,
6570 				ram_bytes, 0);
6571 		space_info->bytes_may_use -= ram_bytes;
6572 		if (delalloc)
6573 			cache->delalloc_bytes += num_bytes;
6574 	}
6575 	spin_unlock(&cache->lock);
6576 	spin_unlock(&space_info->lock);
6577 	return ret;
6578 }
6579 
6580 /**
6581  * btrfs_free_reserved_bytes - update the block_group and space info counters
6582  * @cache:      The cache we are manipulating
6583  * @num_bytes:  The number of bytes in question
6584  * @delalloc:   The blocks are allocated for the delalloc write
6585  *
6586  * This is called by somebody who is freeing space that was never actually used
6587  * on disk.  For example if you reserve some space for a new leaf in transaction
6588  * A and before transaction A commits you free that leaf, you call this with
6589  * reserve set to 0 in order to clear the reservation.
6590  */
6591 
6592 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6593 				     u64 num_bytes, int delalloc)
6594 {
6595 	struct btrfs_space_info *space_info = cache->space_info;
6596 	int ret = 0;
6597 
6598 	spin_lock(&space_info->lock);
6599 	spin_lock(&cache->lock);
6600 	if (cache->ro)
6601 		space_info->bytes_readonly += num_bytes;
6602 	cache->reserved -= num_bytes;
6603 	space_info->bytes_reserved -= num_bytes;
6604 
6605 	if (delalloc)
6606 		cache->delalloc_bytes -= num_bytes;
6607 	spin_unlock(&cache->lock);
6608 	spin_unlock(&space_info->lock);
6609 	return ret;
6610 }
6611 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6612 {
6613 	struct btrfs_caching_control *next;
6614 	struct btrfs_caching_control *caching_ctl;
6615 	struct btrfs_block_group_cache *cache;
6616 
6617 	down_write(&fs_info->commit_root_sem);
6618 
6619 	list_for_each_entry_safe(caching_ctl, next,
6620 				 &fs_info->caching_block_groups, list) {
6621 		cache = caching_ctl->block_group;
6622 		if (block_group_cache_done(cache)) {
6623 			cache->last_byte_to_unpin = (u64)-1;
6624 			list_del_init(&caching_ctl->list);
6625 			put_caching_control(caching_ctl);
6626 		} else {
6627 			cache->last_byte_to_unpin = caching_ctl->progress;
6628 		}
6629 	}
6630 
6631 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6632 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6633 	else
6634 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6635 
6636 	up_write(&fs_info->commit_root_sem);
6637 
6638 	update_global_block_rsv(fs_info);
6639 }
6640 
6641 /*
6642  * Returns the free cluster for the given space info and sets empty_cluster to
6643  * what it should be based on the mount options.
6644  */
6645 static struct btrfs_free_cluster *
6646 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6647 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6648 {
6649 	struct btrfs_free_cluster *ret = NULL;
6650 
6651 	*empty_cluster = 0;
6652 	if (btrfs_mixed_space_info(space_info))
6653 		return ret;
6654 
6655 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6656 		ret = &fs_info->meta_alloc_cluster;
6657 		if (btrfs_test_opt(fs_info, SSD))
6658 			*empty_cluster = SZ_2M;
6659 		else
6660 			*empty_cluster = SZ_64K;
6661 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6662 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6663 		*empty_cluster = SZ_2M;
6664 		ret = &fs_info->data_alloc_cluster;
6665 	}
6666 
6667 	return ret;
6668 }
6669 
6670 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6671 			      u64 start, u64 end,
6672 			      const bool return_free_space)
6673 {
6674 	struct btrfs_block_group_cache *cache = NULL;
6675 	struct btrfs_space_info *space_info;
6676 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6677 	struct btrfs_free_cluster *cluster = NULL;
6678 	u64 len;
6679 	u64 total_unpinned = 0;
6680 	u64 empty_cluster = 0;
6681 	bool readonly;
6682 
6683 	while (start <= end) {
6684 		readonly = false;
6685 		if (!cache ||
6686 		    start >= cache->key.objectid + cache->key.offset) {
6687 			if (cache)
6688 				btrfs_put_block_group(cache);
6689 			total_unpinned = 0;
6690 			cache = btrfs_lookup_block_group(fs_info, start);
6691 			BUG_ON(!cache); /* Logic error */
6692 
6693 			cluster = fetch_cluster_info(fs_info,
6694 						     cache->space_info,
6695 						     &empty_cluster);
6696 			empty_cluster <<= 1;
6697 		}
6698 
6699 		len = cache->key.objectid + cache->key.offset - start;
6700 		len = min(len, end + 1 - start);
6701 
6702 		if (start < cache->last_byte_to_unpin) {
6703 			len = min(len, cache->last_byte_to_unpin - start);
6704 			if (return_free_space)
6705 				btrfs_add_free_space(cache, start, len);
6706 		}
6707 
6708 		start += len;
6709 		total_unpinned += len;
6710 		space_info = cache->space_info;
6711 
6712 		/*
6713 		 * If this space cluster has been marked as fragmented and we've
6714 		 * unpinned enough in this block group to potentially allow a
6715 		 * cluster to be created inside of it go ahead and clear the
6716 		 * fragmented check.
6717 		 */
6718 		if (cluster && cluster->fragmented &&
6719 		    total_unpinned > empty_cluster) {
6720 			spin_lock(&cluster->lock);
6721 			cluster->fragmented = 0;
6722 			spin_unlock(&cluster->lock);
6723 		}
6724 
6725 		spin_lock(&space_info->lock);
6726 		spin_lock(&cache->lock);
6727 		cache->pinned -= len;
6728 		space_info->bytes_pinned -= len;
6729 
6730 		trace_btrfs_space_reservation(fs_info, "pinned",
6731 					      space_info->flags, len, 0);
6732 		space_info->max_extent_size = 0;
6733 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6734 		if (cache->ro) {
6735 			space_info->bytes_readonly += len;
6736 			readonly = true;
6737 		}
6738 		spin_unlock(&cache->lock);
6739 		if (!readonly && return_free_space &&
6740 		    global_rsv->space_info == space_info) {
6741 			u64 to_add = len;
6742 
6743 			spin_lock(&global_rsv->lock);
6744 			if (!global_rsv->full) {
6745 				to_add = min(len, global_rsv->size -
6746 					     global_rsv->reserved);
6747 				global_rsv->reserved += to_add;
6748 				space_info->bytes_may_use += to_add;
6749 				if (global_rsv->reserved >= global_rsv->size)
6750 					global_rsv->full = 1;
6751 				trace_btrfs_space_reservation(fs_info,
6752 							      "space_info",
6753 							      space_info->flags,
6754 							      to_add, 1);
6755 				len -= to_add;
6756 			}
6757 			spin_unlock(&global_rsv->lock);
6758 			/* Add to any tickets we may have */
6759 			if (len)
6760 				space_info_add_new_bytes(fs_info, space_info,
6761 							 len);
6762 		}
6763 		spin_unlock(&space_info->lock);
6764 	}
6765 
6766 	if (cache)
6767 		btrfs_put_block_group(cache);
6768 	return 0;
6769 }
6770 
6771 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6772 {
6773 	struct btrfs_fs_info *fs_info = trans->fs_info;
6774 	struct btrfs_block_group_cache *block_group, *tmp;
6775 	struct list_head *deleted_bgs;
6776 	struct extent_io_tree *unpin;
6777 	u64 start;
6778 	u64 end;
6779 	int ret;
6780 
6781 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6782 		unpin = &fs_info->freed_extents[1];
6783 	else
6784 		unpin = &fs_info->freed_extents[0];
6785 
6786 	while (!trans->aborted) {
6787 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6788 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6789 					    EXTENT_DIRTY, NULL);
6790 		if (ret) {
6791 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6792 			break;
6793 		}
6794 
6795 		if (btrfs_test_opt(fs_info, DISCARD))
6796 			ret = btrfs_discard_extent(fs_info, start,
6797 						   end + 1 - start, NULL);
6798 
6799 		clear_extent_dirty(unpin, start, end);
6800 		unpin_extent_range(fs_info, start, end, true);
6801 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6802 		cond_resched();
6803 	}
6804 
6805 	/*
6806 	 * Transaction is finished.  We don't need the lock anymore.  We
6807 	 * do need to clean up the block groups in case of a transaction
6808 	 * abort.
6809 	 */
6810 	deleted_bgs = &trans->transaction->deleted_bgs;
6811 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6812 		u64 trimmed = 0;
6813 
6814 		ret = -EROFS;
6815 		if (!trans->aborted)
6816 			ret = btrfs_discard_extent(fs_info,
6817 						   block_group->key.objectid,
6818 						   block_group->key.offset,
6819 						   &trimmed);
6820 
6821 		list_del_init(&block_group->bg_list);
6822 		btrfs_put_block_group_trimming(block_group);
6823 		btrfs_put_block_group(block_group);
6824 
6825 		if (ret) {
6826 			const char *errstr = btrfs_decode_error(ret);
6827 			btrfs_warn(fs_info,
6828 			   "discard failed while removing blockgroup: errno=%d %s",
6829 				   ret, errstr);
6830 		}
6831 	}
6832 
6833 	return 0;
6834 }
6835 
6836 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6837 				struct btrfs_fs_info *info,
6838 				struct btrfs_delayed_ref_node *node, u64 parent,
6839 				u64 root_objectid, u64 owner_objectid,
6840 				u64 owner_offset, int refs_to_drop,
6841 				struct btrfs_delayed_extent_op *extent_op)
6842 {
6843 	struct btrfs_key key;
6844 	struct btrfs_path *path;
6845 	struct btrfs_root *extent_root = info->extent_root;
6846 	struct extent_buffer *leaf;
6847 	struct btrfs_extent_item *ei;
6848 	struct btrfs_extent_inline_ref *iref;
6849 	int ret;
6850 	int is_data;
6851 	int extent_slot = 0;
6852 	int found_extent = 0;
6853 	int num_to_del = 1;
6854 	u32 item_size;
6855 	u64 refs;
6856 	u64 bytenr = node->bytenr;
6857 	u64 num_bytes = node->num_bytes;
6858 	int last_ref = 0;
6859 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6860 
6861 	path = btrfs_alloc_path();
6862 	if (!path)
6863 		return -ENOMEM;
6864 
6865 	path->reada = READA_FORWARD;
6866 	path->leave_spinning = 1;
6867 
6868 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6869 	BUG_ON(!is_data && refs_to_drop != 1);
6870 
6871 	if (is_data)
6872 		skinny_metadata = false;
6873 
6874 	ret = lookup_extent_backref(trans, info, path, &iref,
6875 				    bytenr, num_bytes, parent,
6876 				    root_objectid, owner_objectid,
6877 				    owner_offset);
6878 	if (ret == 0) {
6879 		extent_slot = path->slots[0];
6880 		while (extent_slot >= 0) {
6881 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6882 					      extent_slot);
6883 			if (key.objectid != bytenr)
6884 				break;
6885 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6886 			    key.offset == num_bytes) {
6887 				found_extent = 1;
6888 				break;
6889 			}
6890 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6891 			    key.offset == owner_objectid) {
6892 				found_extent = 1;
6893 				break;
6894 			}
6895 			if (path->slots[0] - extent_slot > 5)
6896 				break;
6897 			extent_slot--;
6898 		}
6899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6900 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6901 		if (found_extent && item_size < sizeof(*ei))
6902 			found_extent = 0;
6903 #endif
6904 		if (!found_extent) {
6905 			BUG_ON(iref);
6906 			ret = remove_extent_backref(trans, info, path, NULL,
6907 						    refs_to_drop,
6908 						    is_data, &last_ref);
6909 			if (ret) {
6910 				btrfs_abort_transaction(trans, ret);
6911 				goto out;
6912 			}
6913 			btrfs_release_path(path);
6914 			path->leave_spinning = 1;
6915 
6916 			key.objectid = bytenr;
6917 			key.type = BTRFS_EXTENT_ITEM_KEY;
6918 			key.offset = num_bytes;
6919 
6920 			if (!is_data && skinny_metadata) {
6921 				key.type = BTRFS_METADATA_ITEM_KEY;
6922 				key.offset = owner_objectid;
6923 			}
6924 
6925 			ret = btrfs_search_slot(trans, extent_root,
6926 						&key, path, -1, 1);
6927 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6928 				/*
6929 				 * Couldn't find our skinny metadata item,
6930 				 * see if we have ye olde extent item.
6931 				 */
6932 				path->slots[0]--;
6933 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6934 						      path->slots[0]);
6935 				if (key.objectid == bytenr &&
6936 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6937 				    key.offset == num_bytes)
6938 					ret = 0;
6939 			}
6940 
6941 			if (ret > 0 && skinny_metadata) {
6942 				skinny_metadata = false;
6943 				key.objectid = bytenr;
6944 				key.type = BTRFS_EXTENT_ITEM_KEY;
6945 				key.offset = num_bytes;
6946 				btrfs_release_path(path);
6947 				ret = btrfs_search_slot(trans, extent_root,
6948 							&key, path, -1, 1);
6949 			}
6950 
6951 			if (ret) {
6952 				btrfs_err(info,
6953 					  "umm, got %d back from search, was looking for %llu",
6954 					  ret, bytenr);
6955 				if (ret > 0)
6956 					btrfs_print_leaf(path->nodes[0]);
6957 			}
6958 			if (ret < 0) {
6959 				btrfs_abort_transaction(trans, ret);
6960 				goto out;
6961 			}
6962 			extent_slot = path->slots[0];
6963 		}
6964 	} else if (WARN_ON(ret == -ENOENT)) {
6965 		btrfs_print_leaf(path->nodes[0]);
6966 		btrfs_err(info,
6967 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6968 			bytenr, parent, root_objectid, owner_objectid,
6969 			owner_offset);
6970 		btrfs_abort_transaction(trans, ret);
6971 		goto out;
6972 	} else {
6973 		btrfs_abort_transaction(trans, ret);
6974 		goto out;
6975 	}
6976 
6977 	leaf = path->nodes[0];
6978 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6980 	if (item_size < sizeof(*ei)) {
6981 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6982 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6983 					     0);
6984 		if (ret < 0) {
6985 			btrfs_abort_transaction(trans, ret);
6986 			goto out;
6987 		}
6988 
6989 		btrfs_release_path(path);
6990 		path->leave_spinning = 1;
6991 
6992 		key.objectid = bytenr;
6993 		key.type = BTRFS_EXTENT_ITEM_KEY;
6994 		key.offset = num_bytes;
6995 
6996 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6997 					-1, 1);
6998 		if (ret) {
6999 			btrfs_err(info,
7000 				  "umm, got %d back from search, was looking for %llu",
7001 				ret, bytenr);
7002 			btrfs_print_leaf(path->nodes[0]);
7003 		}
7004 		if (ret < 0) {
7005 			btrfs_abort_transaction(trans, ret);
7006 			goto out;
7007 		}
7008 
7009 		extent_slot = path->slots[0];
7010 		leaf = path->nodes[0];
7011 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7012 	}
7013 #endif
7014 	BUG_ON(item_size < sizeof(*ei));
7015 	ei = btrfs_item_ptr(leaf, extent_slot,
7016 			    struct btrfs_extent_item);
7017 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7018 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7019 		struct btrfs_tree_block_info *bi;
7020 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7021 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7022 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7023 	}
7024 
7025 	refs = btrfs_extent_refs(leaf, ei);
7026 	if (refs < refs_to_drop) {
7027 		btrfs_err(info,
7028 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7029 			  refs_to_drop, refs, bytenr);
7030 		ret = -EINVAL;
7031 		btrfs_abort_transaction(trans, ret);
7032 		goto out;
7033 	}
7034 	refs -= refs_to_drop;
7035 
7036 	if (refs > 0) {
7037 		if (extent_op)
7038 			__run_delayed_extent_op(extent_op, leaf, ei);
7039 		/*
7040 		 * In the case of inline back ref, reference count will
7041 		 * be updated by remove_extent_backref
7042 		 */
7043 		if (iref) {
7044 			BUG_ON(!found_extent);
7045 		} else {
7046 			btrfs_set_extent_refs(leaf, ei, refs);
7047 			btrfs_mark_buffer_dirty(leaf);
7048 		}
7049 		if (found_extent) {
7050 			ret = remove_extent_backref(trans, info, path,
7051 						    iref, refs_to_drop,
7052 						    is_data, &last_ref);
7053 			if (ret) {
7054 				btrfs_abort_transaction(trans, ret);
7055 				goto out;
7056 			}
7057 		}
7058 	} else {
7059 		if (found_extent) {
7060 			BUG_ON(is_data && refs_to_drop !=
7061 			       extent_data_ref_count(path, iref));
7062 			if (iref) {
7063 				BUG_ON(path->slots[0] != extent_slot);
7064 			} else {
7065 				BUG_ON(path->slots[0] != extent_slot + 1);
7066 				path->slots[0] = extent_slot;
7067 				num_to_del = 2;
7068 			}
7069 		}
7070 
7071 		last_ref = 1;
7072 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7073 				      num_to_del);
7074 		if (ret) {
7075 			btrfs_abort_transaction(trans, ret);
7076 			goto out;
7077 		}
7078 		btrfs_release_path(path);
7079 
7080 		if (is_data) {
7081 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7082 			if (ret) {
7083 				btrfs_abort_transaction(trans, ret);
7084 				goto out;
7085 			}
7086 		}
7087 
7088 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7089 		if (ret) {
7090 			btrfs_abort_transaction(trans, ret);
7091 			goto out;
7092 		}
7093 
7094 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7095 		if (ret) {
7096 			btrfs_abort_transaction(trans, ret);
7097 			goto out;
7098 		}
7099 	}
7100 	btrfs_release_path(path);
7101 
7102 out:
7103 	btrfs_free_path(path);
7104 	return ret;
7105 }
7106 
7107 /*
7108  * when we free an block, it is possible (and likely) that we free the last
7109  * delayed ref for that extent as well.  This searches the delayed ref tree for
7110  * a given extent, and if there are no other delayed refs to be processed, it
7111  * removes it from the tree.
7112  */
7113 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7114 				      u64 bytenr)
7115 {
7116 	struct btrfs_delayed_ref_head *head;
7117 	struct btrfs_delayed_ref_root *delayed_refs;
7118 	int ret = 0;
7119 
7120 	delayed_refs = &trans->transaction->delayed_refs;
7121 	spin_lock(&delayed_refs->lock);
7122 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7123 	if (!head)
7124 		goto out_delayed_unlock;
7125 
7126 	spin_lock(&head->lock);
7127 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7128 		goto out;
7129 
7130 	if (head->extent_op) {
7131 		if (!head->must_insert_reserved)
7132 			goto out;
7133 		btrfs_free_delayed_extent_op(head->extent_op);
7134 		head->extent_op = NULL;
7135 	}
7136 
7137 	/*
7138 	 * waiting for the lock here would deadlock.  If someone else has it
7139 	 * locked they are already in the process of dropping it anyway
7140 	 */
7141 	if (!mutex_trylock(&head->mutex))
7142 		goto out;
7143 
7144 	/*
7145 	 * at this point we have a head with no other entries.  Go
7146 	 * ahead and process it.
7147 	 */
7148 	rb_erase(&head->href_node, &delayed_refs->href_root);
7149 	RB_CLEAR_NODE(&head->href_node);
7150 	atomic_dec(&delayed_refs->num_entries);
7151 
7152 	/*
7153 	 * we don't take a ref on the node because we're removing it from the
7154 	 * tree, so we just steal the ref the tree was holding.
7155 	 */
7156 	delayed_refs->num_heads--;
7157 	if (head->processing == 0)
7158 		delayed_refs->num_heads_ready--;
7159 	head->processing = 0;
7160 	spin_unlock(&head->lock);
7161 	spin_unlock(&delayed_refs->lock);
7162 
7163 	BUG_ON(head->extent_op);
7164 	if (head->must_insert_reserved)
7165 		ret = 1;
7166 
7167 	mutex_unlock(&head->mutex);
7168 	btrfs_put_delayed_ref_head(head);
7169 	return ret;
7170 out:
7171 	spin_unlock(&head->lock);
7172 
7173 out_delayed_unlock:
7174 	spin_unlock(&delayed_refs->lock);
7175 	return 0;
7176 }
7177 
7178 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7179 			   struct btrfs_root *root,
7180 			   struct extent_buffer *buf,
7181 			   u64 parent, int last_ref)
7182 {
7183 	struct btrfs_fs_info *fs_info = root->fs_info;
7184 	int pin = 1;
7185 	int ret;
7186 
7187 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7188 		int old_ref_mod, new_ref_mod;
7189 
7190 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7191 				   root->root_key.objectid,
7192 				   btrfs_header_level(buf), 0,
7193 				   BTRFS_DROP_DELAYED_REF);
7194 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7195 						 buf->len, parent,
7196 						 root->root_key.objectid,
7197 						 btrfs_header_level(buf),
7198 						 BTRFS_DROP_DELAYED_REF, NULL,
7199 						 &old_ref_mod, &new_ref_mod);
7200 		BUG_ON(ret); /* -ENOMEM */
7201 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7202 	}
7203 
7204 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7205 		struct btrfs_block_group_cache *cache;
7206 
7207 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7208 			ret = check_ref_cleanup(trans, buf->start);
7209 			if (!ret)
7210 				goto out;
7211 		}
7212 
7213 		pin = 0;
7214 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7215 
7216 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7217 			pin_down_extent(fs_info, cache, buf->start,
7218 					buf->len, 1);
7219 			btrfs_put_block_group(cache);
7220 			goto out;
7221 		}
7222 
7223 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7224 
7225 		btrfs_add_free_space(cache, buf->start, buf->len);
7226 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7227 		btrfs_put_block_group(cache);
7228 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7229 	}
7230 out:
7231 	if (pin)
7232 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7233 				 root->root_key.objectid);
7234 
7235 	if (last_ref) {
7236 		/*
7237 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7238 		 * matter anymore.
7239 		 */
7240 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7241 	}
7242 }
7243 
7244 /* Can return -ENOMEM */
7245 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7246 		      struct btrfs_root *root,
7247 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7248 		      u64 owner, u64 offset)
7249 {
7250 	struct btrfs_fs_info *fs_info = root->fs_info;
7251 	int old_ref_mod, new_ref_mod;
7252 	int ret;
7253 
7254 	if (btrfs_is_testing(fs_info))
7255 		return 0;
7256 
7257 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7258 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7259 				   root_objectid, owner, offset,
7260 				   BTRFS_DROP_DELAYED_REF);
7261 
7262 	/*
7263 	 * tree log blocks never actually go into the extent allocation
7264 	 * tree, just update pinning info and exit early.
7265 	 */
7266 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7267 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7268 		/* unlocks the pinned mutex */
7269 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7270 		old_ref_mod = new_ref_mod = 0;
7271 		ret = 0;
7272 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7273 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7274 						 num_bytes, parent,
7275 						 root_objectid, (int)owner,
7276 						 BTRFS_DROP_DELAYED_REF, NULL,
7277 						 &old_ref_mod, &new_ref_mod);
7278 	} else {
7279 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7280 						 num_bytes, parent,
7281 						 root_objectid, owner, offset,
7282 						 0, BTRFS_DROP_DELAYED_REF,
7283 						 &old_ref_mod, &new_ref_mod);
7284 	}
7285 
7286 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7287 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7288 
7289 	return ret;
7290 }
7291 
7292 /*
7293  * when we wait for progress in the block group caching, its because
7294  * our allocation attempt failed at least once.  So, we must sleep
7295  * and let some progress happen before we try again.
7296  *
7297  * This function will sleep at least once waiting for new free space to
7298  * show up, and then it will check the block group free space numbers
7299  * for our min num_bytes.  Another option is to have it go ahead
7300  * and look in the rbtree for a free extent of a given size, but this
7301  * is a good start.
7302  *
7303  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7304  * any of the information in this block group.
7305  */
7306 static noinline void
7307 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7308 				u64 num_bytes)
7309 {
7310 	struct btrfs_caching_control *caching_ctl;
7311 
7312 	caching_ctl = get_caching_control(cache);
7313 	if (!caching_ctl)
7314 		return;
7315 
7316 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7317 		   (cache->free_space_ctl->free_space >= num_bytes));
7318 
7319 	put_caching_control(caching_ctl);
7320 }
7321 
7322 static noinline int
7323 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7324 {
7325 	struct btrfs_caching_control *caching_ctl;
7326 	int ret = 0;
7327 
7328 	caching_ctl = get_caching_control(cache);
7329 	if (!caching_ctl)
7330 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7331 
7332 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7333 	if (cache->cached == BTRFS_CACHE_ERROR)
7334 		ret = -EIO;
7335 	put_caching_control(caching_ctl);
7336 	return ret;
7337 }
7338 
7339 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7340 	[BTRFS_RAID_RAID10]	= "raid10",
7341 	[BTRFS_RAID_RAID1]	= "raid1",
7342 	[BTRFS_RAID_DUP]	= "dup",
7343 	[BTRFS_RAID_RAID0]	= "raid0",
7344 	[BTRFS_RAID_SINGLE]	= "single",
7345 	[BTRFS_RAID_RAID5]	= "raid5",
7346 	[BTRFS_RAID_RAID6]	= "raid6",
7347 };
7348 
7349 static const char *get_raid_name(enum btrfs_raid_types type)
7350 {
7351 	if (type >= BTRFS_NR_RAID_TYPES)
7352 		return NULL;
7353 
7354 	return btrfs_raid_type_names[type];
7355 }
7356 
7357 enum btrfs_loop_type {
7358 	LOOP_CACHING_NOWAIT = 0,
7359 	LOOP_CACHING_WAIT = 1,
7360 	LOOP_ALLOC_CHUNK = 2,
7361 	LOOP_NO_EMPTY_SIZE = 3,
7362 };
7363 
7364 static inline void
7365 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7366 		       int delalloc)
7367 {
7368 	if (delalloc)
7369 		down_read(&cache->data_rwsem);
7370 }
7371 
7372 static inline void
7373 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7374 		       int delalloc)
7375 {
7376 	btrfs_get_block_group(cache);
7377 	if (delalloc)
7378 		down_read(&cache->data_rwsem);
7379 }
7380 
7381 static struct btrfs_block_group_cache *
7382 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7383 		   struct btrfs_free_cluster *cluster,
7384 		   int delalloc)
7385 {
7386 	struct btrfs_block_group_cache *used_bg = NULL;
7387 
7388 	spin_lock(&cluster->refill_lock);
7389 	while (1) {
7390 		used_bg = cluster->block_group;
7391 		if (!used_bg)
7392 			return NULL;
7393 
7394 		if (used_bg == block_group)
7395 			return used_bg;
7396 
7397 		btrfs_get_block_group(used_bg);
7398 
7399 		if (!delalloc)
7400 			return used_bg;
7401 
7402 		if (down_read_trylock(&used_bg->data_rwsem))
7403 			return used_bg;
7404 
7405 		spin_unlock(&cluster->refill_lock);
7406 
7407 		/* We should only have one-level nested. */
7408 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7409 
7410 		spin_lock(&cluster->refill_lock);
7411 		if (used_bg == cluster->block_group)
7412 			return used_bg;
7413 
7414 		up_read(&used_bg->data_rwsem);
7415 		btrfs_put_block_group(used_bg);
7416 	}
7417 }
7418 
7419 static inline void
7420 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7421 			 int delalloc)
7422 {
7423 	if (delalloc)
7424 		up_read(&cache->data_rwsem);
7425 	btrfs_put_block_group(cache);
7426 }
7427 
7428 /*
7429  * walks the btree of allocated extents and find a hole of a given size.
7430  * The key ins is changed to record the hole:
7431  * ins->objectid == start position
7432  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7433  * ins->offset == the size of the hole.
7434  * Any available blocks before search_start are skipped.
7435  *
7436  * If there is no suitable free space, we will record the max size of
7437  * the free space extent currently.
7438  */
7439 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7440 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7441 				u64 hint_byte, struct btrfs_key *ins,
7442 				u64 flags, int delalloc)
7443 {
7444 	int ret = 0;
7445 	struct btrfs_root *root = fs_info->extent_root;
7446 	struct btrfs_free_cluster *last_ptr = NULL;
7447 	struct btrfs_block_group_cache *block_group = NULL;
7448 	u64 search_start = 0;
7449 	u64 max_extent_size = 0;
7450 	u64 empty_cluster = 0;
7451 	struct btrfs_space_info *space_info;
7452 	int loop = 0;
7453 	int index = btrfs_bg_flags_to_raid_index(flags);
7454 	bool failed_cluster_refill = false;
7455 	bool failed_alloc = false;
7456 	bool use_cluster = true;
7457 	bool have_caching_bg = false;
7458 	bool orig_have_caching_bg = false;
7459 	bool full_search = false;
7460 
7461 	WARN_ON(num_bytes < fs_info->sectorsize);
7462 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7463 	ins->objectid = 0;
7464 	ins->offset = 0;
7465 
7466 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7467 
7468 	space_info = __find_space_info(fs_info, flags);
7469 	if (!space_info) {
7470 		btrfs_err(fs_info, "No space info for %llu", flags);
7471 		return -ENOSPC;
7472 	}
7473 
7474 	/*
7475 	 * If our free space is heavily fragmented we may not be able to make
7476 	 * big contiguous allocations, so instead of doing the expensive search
7477 	 * for free space, simply return ENOSPC with our max_extent_size so we
7478 	 * can go ahead and search for a more manageable chunk.
7479 	 *
7480 	 * If our max_extent_size is large enough for our allocation simply
7481 	 * disable clustering since we will likely not be able to find enough
7482 	 * space to create a cluster and induce latency trying.
7483 	 */
7484 	if (unlikely(space_info->max_extent_size)) {
7485 		spin_lock(&space_info->lock);
7486 		if (space_info->max_extent_size &&
7487 		    num_bytes > space_info->max_extent_size) {
7488 			ins->offset = space_info->max_extent_size;
7489 			spin_unlock(&space_info->lock);
7490 			return -ENOSPC;
7491 		} else if (space_info->max_extent_size) {
7492 			use_cluster = false;
7493 		}
7494 		spin_unlock(&space_info->lock);
7495 	}
7496 
7497 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7498 	if (last_ptr) {
7499 		spin_lock(&last_ptr->lock);
7500 		if (last_ptr->block_group)
7501 			hint_byte = last_ptr->window_start;
7502 		if (last_ptr->fragmented) {
7503 			/*
7504 			 * We still set window_start so we can keep track of the
7505 			 * last place we found an allocation to try and save
7506 			 * some time.
7507 			 */
7508 			hint_byte = last_ptr->window_start;
7509 			use_cluster = false;
7510 		}
7511 		spin_unlock(&last_ptr->lock);
7512 	}
7513 
7514 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7515 	search_start = max(search_start, hint_byte);
7516 	if (search_start == hint_byte) {
7517 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7518 		/*
7519 		 * we don't want to use the block group if it doesn't match our
7520 		 * allocation bits, or if its not cached.
7521 		 *
7522 		 * However if we are re-searching with an ideal block group
7523 		 * picked out then we don't care that the block group is cached.
7524 		 */
7525 		if (block_group && block_group_bits(block_group, flags) &&
7526 		    block_group->cached != BTRFS_CACHE_NO) {
7527 			down_read(&space_info->groups_sem);
7528 			if (list_empty(&block_group->list) ||
7529 			    block_group->ro) {
7530 				/*
7531 				 * someone is removing this block group,
7532 				 * we can't jump into the have_block_group
7533 				 * target because our list pointers are not
7534 				 * valid
7535 				 */
7536 				btrfs_put_block_group(block_group);
7537 				up_read(&space_info->groups_sem);
7538 			} else {
7539 				index = btrfs_bg_flags_to_raid_index(
7540 						block_group->flags);
7541 				btrfs_lock_block_group(block_group, delalloc);
7542 				goto have_block_group;
7543 			}
7544 		} else if (block_group) {
7545 			btrfs_put_block_group(block_group);
7546 		}
7547 	}
7548 search:
7549 	have_caching_bg = false;
7550 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7551 		full_search = true;
7552 	down_read(&space_info->groups_sem);
7553 	list_for_each_entry(block_group, &space_info->block_groups[index],
7554 			    list) {
7555 		u64 offset;
7556 		int cached;
7557 
7558 		/* If the block group is read-only, we can skip it entirely. */
7559 		if (unlikely(block_group->ro))
7560 			continue;
7561 
7562 		btrfs_grab_block_group(block_group, delalloc);
7563 		search_start = block_group->key.objectid;
7564 
7565 		/*
7566 		 * this can happen if we end up cycling through all the
7567 		 * raid types, but we want to make sure we only allocate
7568 		 * for the proper type.
7569 		 */
7570 		if (!block_group_bits(block_group, flags)) {
7571 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7572 				BTRFS_BLOCK_GROUP_RAID1 |
7573 				BTRFS_BLOCK_GROUP_RAID5 |
7574 				BTRFS_BLOCK_GROUP_RAID6 |
7575 				BTRFS_BLOCK_GROUP_RAID10;
7576 
7577 			/*
7578 			 * if they asked for extra copies and this block group
7579 			 * doesn't provide them, bail.  This does allow us to
7580 			 * fill raid0 from raid1.
7581 			 */
7582 			if ((flags & extra) && !(block_group->flags & extra))
7583 				goto loop;
7584 		}
7585 
7586 have_block_group:
7587 		cached = block_group_cache_done(block_group);
7588 		if (unlikely(!cached)) {
7589 			have_caching_bg = true;
7590 			ret = cache_block_group(block_group, 0);
7591 			BUG_ON(ret < 0);
7592 			ret = 0;
7593 		}
7594 
7595 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7596 			goto loop;
7597 
7598 		/*
7599 		 * Ok we want to try and use the cluster allocator, so
7600 		 * lets look there
7601 		 */
7602 		if (last_ptr && use_cluster) {
7603 			struct btrfs_block_group_cache *used_block_group;
7604 			unsigned long aligned_cluster;
7605 			/*
7606 			 * the refill lock keeps out other
7607 			 * people trying to start a new cluster
7608 			 */
7609 			used_block_group = btrfs_lock_cluster(block_group,
7610 							      last_ptr,
7611 							      delalloc);
7612 			if (!used_block_group)
7613 				goto refill_cluster;
7614 
7615 			if (used_block_group != block_group &&
7616 			    (used_block_group->ro ||
7617 			     !block_group_bits(used_block_group, flags)))
7618 				goto release_cluster;
7619 
7620 			offset = btrfs_alloc_from_cluster(used_block_group,
7621 						last_ptr,
7622 						num_bytes,
7623 						used_block_group->key.objectid,
7624 						&max_extent_size);
7625 			if (offset) {
7626 				/* we have a block, we're done */
7627 				spin_unlock(&last_ptr->refill_lock);
7628 				trace_btrfs_reserve_extent_cluster(fs_info,
7629 						used_block_group,
7630 						search_start, num_bytes);
7631 				if (used_block_group != block_group) {
7632 					btrfs_release_block_group(block_group,
7633 								  delalloc);
7634 					block_group = used_block_group;
7635 				}
7636 				goto checks;
7637 			}
7638 
7639 			WARN_ON(last_ptr->block_group != used_block_group);
7640 release_cluster:
7641 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7642 			 * set up a new clusters, so lets just skip it
7643 			 * and let the allocator find whatever block
7644 			 * it can find.  If we reach this point, we
7645 			 * will have tried the cluster allocator
7646 			 * plenty of times and not have found
7647 			 * anything, so we are likely way too
7648 			 * fragmented for the clustering stuff to find
7649 			 * anything.
7650 			 *
7651 			 * However, if the cluster is taken from the
7652 			 * current block group, release the cluster
7653 			 * first, so that we stand a better chance of
7654 			 * succeeding in the unclustered
7655 			 * allocation.  */
7656 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7657 			    used_block_group != block_group) {
7658 				spin_unlock(&last_ptr->refill_lock);
7659 				btrfs_release_block_group(used_block_group,
7660 							  delalloc);
7661 				goto unclustered_alloc;
7662 			}
7663 
7664 			/*
7665 			 * this cluster didn't work out, free it and
7666 			 * start over
7667 			 */
7668 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7669 
7670 			if (used_block_group != block_group)
7671 				btrfs_release_block_group(used_block_group,
7672 							  delalloc);
7673 refill_cluster:
7674 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7675 				spin_unlock(&last_ptr->refill_lock);
7676 				goto unclustered_alloc;
7677 			}
7678 
7679 			aligned_cluster = max_t(unsigned long,
7680 						empty_cluster + empty_size,
7681 					      block_group->full_stripe_len);
7682 
7683 			/* allocate a cluster in this block group */
7684 			ret = btrfs_find_space_cluster(fs_info, block_group,
7685 						       last_ptr, search_start,
7686 						       num_bytes,
7687 						       aligned_cluster);
7688 			if (ret == 0) {
7689 				/*
7690 				 * now pull our allocation out of this
7691 				 * cluster
7692 				 */
7693 				offset = btrfs_alloc_from_cluster(block_group,
7694 							last_ptr,
7695 							num_bytes,
7696 							search_start,
7697 							&max_extent_size);
7698 				if (offset) {
7699 					/* we found one, proceed */
7700 					spin_unlock(&last_ptr->refill_lock);
7701 					trace_btrfs_reserve_extent_cluster(fs_info,
7702 						block_group, search_start,
7703 						num_bytes);
7704 					goto checks;
7705 				}
7706 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7707 				   && !failed_cluster_refill) {
7708 				spin_unlock(&last_ptr->refill_lock);
7709 
7710 				failed_cluster_refill = true;
7711 				wait_block_group_cache_progress(block_group,
7712 				       num_bytes + empty_cluster + empty_size);
7713 				goto have_block_group;
7714 			}
7715 
7716 			/*
7717 			 * at this point we either didn't find a cluster
7718 			 * or we weren't able to allocate a block from our
7719 			 * cluster.  Free the cluster we've been trying
7720 			 * to use, and go to the next block group
7721 			 */
7722 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7723 			spin_unlock(&last_ptr->refill_lock);
7724 			goto loop;
7725 		}
7726 
7727 unclustered_alloc:
7728 		/*
7729 		 * We are doing an unclustered alloc, set the fragmented flag so
7730 		 * we don't bother trying to setup a cluster again until we get
7731 		 * more space.
7732 		 */
7733 		if (unlikely(last_ptr)) {
7734 			spin_lock(&last_ptr->lock);
7735 			last_ptr->fragmented = 1;
7736 			spin_unlock(&last_ptr->lock);
7737 		}
7738 		if (cached) {
7739 			struct btrfs_free_space_ctl *ctl =
7740 				block_group->free_space_ctl;
7741 
7742 			spin_lock(&ctl->tree_lock);
7743 			if (ctl->free_space <
7744 			    num_bytes + empty_cluster + empty_size) {
7745 				if (ctl->free_space > max_extent_size)
7746 					max_extent_size = ctl->free_space;
7747 				spin_unlock(&ctl->tree_lock);
7748 				goto loop;
7749 			}
7750 			spin_unlock(&ctl->tree_lock);
7751 		}
7752 
7753 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7754 						    num_bytes, empty_size,
7755 						    &max_extent_size);
7756 		/*
7757 		 * If we didn't find a chunk, and we haven't failed on this
7758 		 * block group before, and this block group is in the middle of
7759 		 * caching and we are ok with waiting, then go ahead and wait
7760 		 * for progress to be made, and set failed_alloc to true.
7761 		 *
7762 		 * If failed_alloc is true then we've already waited on this
7763 		 * block group once and should move on to the next block group.
7764 		 */
7765 		if (!offset && !failed_alloc && !cached &&
7766 		    loop > LOOP_CACHING_NOWAIT) {
7767 			wait_block_group_cache_progress(block_group,
7768 						num_bytes + empty_size);
7769 			failed_alloc = true;
7770 			goto have_block_group;
7771 		} else if (!offset) {
7772 			goto loop;
7773 		}
7774 checks:
7775 		search_start = ALIGN(offset, fs_info->stripesize);
7776 
7777 		/* move on to the next group */
7778 		if (search_start + num_bytes >
7779 		    block_group->key.objectid + block_group->key.offset) {
7780 			btrfs_add_free_space(block_group, offset, num_bytes);
7781 			goto loop;
7782 		}
7783 
7784 		if (offset < search_start)
7785 			btrfs_add_free_space(block_group, offset,
7786 					     search_start - offset);
7787 		BUG_ON(offset > search_start);
7788 
7789 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7790 				num_bytes, delalloc);
7791 		if (ret == -EAGAIN) {
7792 			btrfs_add_free_space(block_group, offset, num_bytes);
7793 			goto loop;
7794 		}
7795 		btrfs_inc_block_group_reservations(block_group);
7796 
7797 		/* we are all good, lets return */
7798 		ins->objectid = search_start;
7799 		ins->offset = num_bytes;
7800 
7801 		trace_btrfs_reserve_extent(fs_info, block_group,
7802 					   search_start, num_bytes);
7803 		btrfs_release_block_group(block_group, delalloc);
7804 		break;
7805 loop:
7806 		failed_cluster_refill = false;
7807 		failed_alloc = false;
7808 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7809 		       index);
7810 		btrfs_release_block_group(block_group, delalloc);
7811 		cond_resched();
7812 	}
7813 	up_read(&space_info->groups_sem);
7814 
7815 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7816 		&& !orig_have_caching_bg)
7817 		orig_have_caching_bg = true;
7818 
7819 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7820 		goto search;
7821 
7822 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7823 		goto search;
7824 
7825 	/*
7826 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7827 	 *			caching kthreads as we move along
7828 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7829 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7830 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7831 	 *			again
7832 	 */
7833 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7834 		index = 0;
7835 		if (loop == LOOP_CACHING_NOWAIT) {
7836 			/*
7837 			 * We want to skip the LOOP_CACHING_WAIT step if we
7838 			 * don't have any uncached bgs and we've already done a
7839 			 * full search through.
7840 			 */
7841 			if (orig_have_caching_bg || !full_search)
7842 				loop = LOOP_CACHING_WAIT;
7843 			else
7844 				loop = LOOP_ALLOC_CHUNK;
7845 		} else {
7846 			loop++;
7847 		}
7848 
7849 		if (loop == LOOP_ALLOC_CHUNK) {
7850 			struct btrfs_trans_handle *trans;
7851 			int exist = 0;
7852 
7853 			trans = current->journal_info;
7854 			if (trans)
7855 				exist = 1;
7856 			else
7857 				trans = btrfs_join_transaction(root);
7858 
7859 			if (IS_ERR(trans)) {
7860 				ret = PTR_ERR(trans);
7861 				goto out;
7862 			}
7863 
7864 			ret = do_chunk_alloc(trans, fs_info, flags,
7865 					     CHUNK_ALLOC_FORCE);
7866 
7867 			/*
7868 			 * If we can't allocate a new chunk we've already looped
7869 			 * through at least once, move on to the NO_EMPTY_SIZE
7870 			 * case.
7871 			 */
7872 			if (ret == -ENOSPC)
7873 				loop = LOOP_NO_EMPTY_SIZE;
7874 
7875 			/*
7876 			 * Do not bail out on ENOSPC since we
7877 			 * can do more things.
7878 			 */
7879 			if (ret < 0 && ret != -ENOSPC)
7880 				btrfs_abort_transaction(trans, ret);
7881 			else
7882 				ret = 0;
7883 			if (!exist)
7884 				btrfs_end_transaction(trans);
7885 			if (ret)
7886 				goto out;
7887 		}
7888 
7889 		if (loop == LOOP_NO_EMPTY_SIZE) {
7890 			/*
7891 			 * Don't loop again if we already have no empty_size and
7892 			 * no empty_cluster.
7893 			 */
7894 			if (empty_size == 0 &&
7895 			    empty_cluster == 0) {
7896 				ret = -ENOSPC;
7897 				goto out;
7898 			}
7899 			empty_size = 0;
7900 			empty_cluster = 0;
7901 		}
7902 
7903 		goto search;
7904 	} else if (!ins->objectid) {
7905 		ret = -ENOSPC;
7906 	} else if (ins->objectid) {
7907 		if (!use_cluster && last_ptr) {
7908 			spin_lock(&last_ptr->lock);
7909 			last_ptr->window_start = ins->objectid;
7910 			spin_unlock(&last_ptr->lock);
7911 		}
7912 		ret = 0;
7913 	}
7914 out:
7915 	if (ret == -ENOSPC) {
7916 		spin_lock(&space_info->lock);
7917 		space_info->max_extent_size = max_extent_size;
7918 		spin_unlock(&space_info->lock);
7919 		ins->offset = max_extent_size;
7920 	}
7921 	return ret;
7922 }
7923 
7924 static void dump_space_info(struct btrfs_fs_info *fs_info,
7925 			    struct btrfs_space_info *info, u64 bytes,
7926 			    int dump_block_groups)
7927 {
7928 	struct btrfs_block_group_cache *cache;
7929 	int index = 0;
7930 
7931 	spin_lock(&info->lock);
7932 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7933 		   info->flags,
7934 		   info->total_bytes - btrfs_space_info_used(info, true),
7935 		   info->full ? "" : "not ");
7936 	btrfs_info(fs_info,
7937 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7938 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7939 		info->bytes_reserved, info->bytes_may_use,
7940 		info->bytes_readonly);
7941 	spin_unlock(&info->lock);
7942 
7943 	if (!dump_block_groups)
7944 		return;
7945 
7946 	down_read(&info->groups_sem);
7947 again:
7948 	list_for_each_entry(cache, &info->block_groups[index], list) {
7949 		spin_lock(&cache->lock);
7950 		btrfs_info(fs_info,
7951 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7952 			cache->key.objectid, cache->key.offset,
7953 			btrfs_block_group_used(&cache->item), cache->pinned,
7954 			cache->reserved, cache->ro ? "[readonly]" : "");
7955 		btrfs_dump_free_space(cache, bytes);
7956 		spin_unlock(&cache->lock);
7957 	}
7958 	if (++index < BTRFS_NR_RAID_TYPES)
7959 		goto again;
7960 	up_read(&info->groups_sem);
7961 }
7962 
7963 /*
7964  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7965  *			  hole that is at least as big as @num_bytes.
7966  *
7967  * @root           -	The root that will contain this extent
7968  *
7969  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
7970  *			is used for accounting purposes. This value differs
7971  *			from @num_bytes only in the case of compressed extents.
7972  *
7973  * @num_bytes      -	Number of bytes to allocate on-disk.
7974  *
7975  * @min_alloc_size -	Indicates the minimum amount of space that the
7976  *			allocator should try to satisfy. In some cases
7977  *			@num_bytes may be larger than what is required and if
7978  *			the filesystem is fragmented then allocation fails.
7979  *			However, the presence of @min_alloc_size gives a
7980  *			chance to try and satisfy the smaller allocation.
7981  *
7982  * @empty_size     -	A hint that you plan on doing more COW. This is the
7983  *			size in bytes the allocator should try to find free
7984  *			next to the block it returns.  This is just a hint and
7985  *			may be ignored by the allocator.
7986  *
7987  * @hint_byte      -	Hint to the allocator to start searching above the byte
7988  *			address passed. It might be ignored.
7989  *
7990  * @ins            -	This key is modified to record the found hole. It will
7991  *			have the following values:
7992  *			ins->objectid == start position
7993  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
7994  *			ins->offset == the size of the hole.
7995  *
7996  * @is_data        -	Boolean flag indicating whether an extent is
7997  *			allocated for data (true) or metadata (false)
7998  *
7999  * @delalloc       -	Boolean flag indicating whether this allocation is for
8000  *			delalloc or not. If 'true' data_rwsem of block groups
8001  *			is going to be acquired.
8002  *
8003  *
8004  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8005  * case -ENOSPC is returned then @ins->offset will contain the size of the
8006  * largest available hole the allocator managed to find.
8007  */
8008 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8009 			 u64 num_bytes, u64 min_alloc_size,
8010 			 u64 empty_size, u64 hint_byte,
8011 			 struct btrfs_key *ins, int is_data, int delalloc)
8012 {
8013 	struct btrfs_fs_info *fs_info = root->fs_info;
8014 	bool final_tried = num_bytes == min_alloc_size;
8015 	u64 flags;
8016 	int ret;
8017 
8018 	flags = get_alloc_profile_by_root(root, is_data);
8019 again:
8020 	WARN_ON(num_bytes < fs_info->sectorsize);
8021 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8022 			       hint_byte, ins, flags, delalloc);
8023 	if (!ret && !is_data) {
8024 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8025 	} else if (ret == -ENOSPC) {
8026 		if (!final_tried && ins->offset) {
8027 			num_bytes = min(num_bytes >> 1, ins->offset);
8028 			num_bytes = round_down(num_bytes,
8029 					       fs_info->sectorsize);
8030 			num_bytes = max(num_bytes, min_alloc_size);
8031 			ram_bytes = num_bytes;
8032 			if (num_bytes == min_alloc_size)
8033 				final_tried = true;
8034 			goto again;
8035 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8036 			struct btrfs_space_info *sinfo;
8037 
8038 			sinfo = __find_space_info(fs_info, flags);
8039 			btrfs_err(fs_info,
8040 				  "allocation failed flags %llu, wanted %llu",
8041 				  flags, num_bytes);
8042 			if (sinfo)
8043 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8044 		}
8045 	}
8046 
8047 	return ret;
8048 }
8049 
8050 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8051 					u64 start, u64 len,
8052 					int pin, int delalloc)
8053 {
8054 	struct btrfs_block_group_cache *cache;
8055 	int ret = 0;
8056 
8057 	cache = btrfs_lookup_block_group(fs_info, start);
8058 	if (!cache) {
8059 		btrfs_err(fs_info, "Unable to find block group for %llu",
8060 			  start);
8061 		return -ENOSPC;
8062 	}
8063 
8064 	if (pin)
8065 		pin_down_extent(fs_info, cache, start, len, 1);
8066 	else {
8067 		if (btrfs_test_opt(fs_info, DISCARD))
8068 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8069 		btrfs_add_free_space(cache, start, len);
8070 		btrfs_free_reserved_bytes(cache, len, delalloc);
8071 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8072 	}
8073 
8074 	btrfs_put_block_group(cache);
8075 	return ret;
8076 }
8077 
8078 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8079 			       u64 start, u64 len, int delalloc)
8080 {
8081 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8082 }
8083 
8084 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8085 				       u64 start, u64 len)
8086 {
8087 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8088 }
8089 
8090 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8091 				      struct btrfs_fs_info *fs_info,
8092 				      u64 parent, u64 root_objectid,
8093 				      u64 flags, u64 owner, u64 offset,
8094 				      struct btrfs_key *ins, int ref_mod)
8095 {
8096 	int ret;
8097 	struct btrfs_extent_item *extent_item;
8098 	struct btrfs_extent_inline_ref *iref;
8099 	struct btrfs_path *path;
8100 	struct extent_buffer *leaf;
8101 	int type;
8102 	u32 size;
8103 
8104 	if (parent > 0)
8105 		type = BTRFS_SHARED_DATA_REF_KEY;
8106 	else
8107 		type = BTRFS_EXTENT_DATA_REF_KEY;
8108 
8109 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8110 
8111 	path = btrfs_alloc_path();
8112 	if (!path)
8113 		return -ENOMEM;
8114 
8115 	path->leave_spinning = 1;
8116 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8117 				      ins, size);
8118 	if (ret) {
8119 		btrfs_free_path(path);
8120 		return ret;
8121 	}
8122 
8123 	leaf = path->nodes[0];
8124 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8125 				     struct btrfs_extent_item);
8126 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8127 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8128 	btrfs_set_extent_flags(leaf, extent_item,
8129 			       flags | BTRFS_EXTENT_FLAG_DATA);
8130 
8131 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8132 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8133 	if (parent > 0) {
8134 		struct btrfs_shared_data_ref *ref;
8135 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8136 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8137 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8138 	} else {
8139 		struct btrfs_extent_data_ref *ref;
8140 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8141 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8142 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8143 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8144 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8145 	}
8146 
8147 	btrfs_mark_buffer_dirty(path->nodes[0]);
8148 	btrfs_free_path(path);
8149 
8150 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8151 					  ins->offset);
8152 	if (ret)
8153 		return ret;
8154 
8155 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8156 	if (ret) { /* -ENOENT, logic error */
8157 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8158 			ins->objectid, ins->offset);
8159 		BUG();
8160 	}
8161 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8162 	return ret;
8163 }
8164 
8165 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8166 				     struct btrfs_fs_info *fs_info,
8167 				     u64 parent, u64 root_objectid,
8168 				     u64 flags, struct btrfs_disk_key *key,
8169 				     int level, struct btrfs_key *ins)
8170 {
8171 	int ret;
8172 	struct btrfs_extent_item *extent_item;
8173 	struct btrfs_tree_block_info *block_info;
8174 	struct btrfs_extent_inline_ref *iref;
8175 	struct btrfs_path *path;
8176 	struct extent_buffer *leaf;
8177 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8178 	u64 num_bytes = ins->offset;
8179 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8180 
8181 	if (!skinny_metadata)
8182 		size += sizeof(*block_info);
8183 
8184 	path = btrfs_alloc_path();
8185 	if (!path) {
8186 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8187 						   fs_info->nodesize);
8188 		return -ENOMEM;
8189 	}
8190 
8191 	path->leave_spinning = 1;
8192 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8193 				      ins, size);
8194 	if (ret) {
8195 		btrfs_free_path(path);
8196 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8197 						   fs_info->nodesize);
8198 		return ret;
8199 	}
8200 
8201 	leaf = path->nodes[0];
8202 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8203 				     struct btrfs_extent_item);
8204 	btrfs_set_extent_refs(leaf, extent_item, 1);
8205 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8206 	btrfs_set_extent_flags(leaf, extent_item,
8207 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8208 
8209 	if (skinny_metadata) {
8210 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8211 		num_bytes = fs_info->nodesize;
8212 	} else {
8213 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8214 		btrfs_set_tree_block_key(leaf, block_info, key);
8215 		btrfs_set_tree_block_level(leaf, block_info, level);
8216 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8217 	}
8218 
8219 	if (parent > 0) {
8220 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8221 		btrfs_set_extent_inline_ref_type(leaf, iref,
8222 						 BTRFS_SHARED_BLOCK_REF_KEY);
8223 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8224 	} else {
8225 		btrfs_set_extent_inline_ref_type(leaf, iref,
8226 						 BTRFS_TREE_BLOCK_REF_KEY);
8227 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8228 	}
8229 
8230 	btrfs_mark_buffer_dirty(leaf);
8231 	btrfs_free_path(path);
8232 
8233 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8234 					  num_bytes);
8235 	if (ret)
8236 		return ret;
8237 
8238 	ret = update_block_group(trans, fs_info, ins->objectid,
8239 				 fs_info->nodesize, 1);
8240 	if (ret) { /* -ENOENT, logic error */
8241 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8242 			ins->objectid, ins->offset);
8243 		BUG();
8244 	}
8245 
8246 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8247 					  fs_info->nodesize);
8248 	return ret;
8249 }
8250 
8251 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8252 				     struct btrfs_root *root, u64 owner,
8253 				     u64 offset, u64 ram_bytes,
8254 				     struct btrfs_key *ins)
8255 {
8256 	struct btrfs_fs_info *fs_info = root->fs_info;
8257 	int ret;
8258 
8259 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8260 
8261 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8262 			   root->root_key.objectid, owner, offset,
8263 			   BTRFS_ADD_DELAYED_EXTENT);
8264 
8265 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8266 					 ins->offset, 0,
8267 					 root->root_key.objectid, owner,
8268 					 offset, ram_bytes,
8269 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8270 	return ret;
8271 }
8272 
8273 /*
8274  * this is used by the tree logging recovery code.  It records that
8275  * an extent has been allocated and makes sure to clear the free
8276  * space cache bits as well
8277  */
8278 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8279 				   struct btrfs_fs_info *fs_info,
8280 				   u64 root_objectid, u64 owner, u64 offset,
8281 				   struct btrfs_key *ins)
8282 {
8283 	int ret;
8284 	struct btrfs_block_group_cache *block_group;
8285 	struct btrfs_space_info *space_info;
8286 
8287 	/*
8288 	 * Mixed block groups will exclude before processing the log so we only
8289 	 * need to do the exclude dance if this fs isn't mixed.
8290 	 */
8291 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8292 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8293 					      ins->offset);
8294 		if (ret)
8295 			return ret;
8296 	}
8297 
8298 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8299 	if (!block_group)
8300 		return -EINVAL;
8301 
8302 	space_info = block_group->space_info;
8303 	spin_lock(&space_info->lock);
8304 	spin_lock(&block_group->lock);
8305 	space_info->bytes_reserved += ins->offset;
8306 	block_group->reserved += ins->offset;
8307 	spin_unlock(&block_group->lock);
8308 	spin_unlock(&space_info->lock);
8309 
8310 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8311 					 0, owner, offset, ins, 1);
8312 	btrfs_put_block_group(block_group);
8313 	return ret;
8314 }
8315 
8316 static struct extent_buffer *
8317 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8318 		      u64 bytenr, int level)
8319 {
8320 	struct btrfs_fs_info *fs_info = root->fs_info;
8321 	struct extent_buffer *buf;
8322 
8323 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8324 	if (IS_ERR(buf))
8325 		return buf;
8326 
8327 	btrfs_set_header_generation(buf, trans->transid);
8328 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8329 	btrfs_tree_lock(buf);
8330 	clean_tree_block(fs_info, buf);
8331 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8332 
8333 	btrfs_set_lock_blocking(buf);
8334 	set_extent_buffer_uptodate(buf);
8335 
8336 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8337 		buf->log_index = root->log_transid % 2;
8338 		/*
8339 		 * we allow two log transactions at a time, use different
8340 		 * EXENT bit to differentiate dirty pages.
8341 		 */
8342 		if (buf->log_index == 0)
8343 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8344 					buf->start + buf->len - 1, GFP_NOFS);
8345 		else
8346 			set_extent_new(&root->dirty_log_pages, buf->start,
8347 					buf->start + buf->len - 1);
8348 	} else {
8349 		buf->log_index = -1;
8350 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8351 			 buf->start + buf->len - 1, GFP_NOFS);
8352 	}
8353 	trans->dirty = true;
8354 	/* this returns a buffer locked for blocking */
8355 	return buf;
8356 }
8357 
8358 static struct btrfs_block_rsv *
8359 use_block_rsv(struct btrfs_trans_handle *trans,
8360 	      struct btrfs_root *root, u32 blocksize)
8361 {
8362 	struct btrfs_fs_info *fs_info = root->fs_info;
8363 	struct btrfs_block_rsv *block_rsv;
8364 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8365 	int ret;
8366 	bool global_updated = false;
8367 
8368 	block_rsv = get_block_rsv(trans, root);
8369 
8370 	if (unlikely(block_rsv->size == 0))
8371 		goto try_reserve;
8372 again:
8373 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8374 	if (!ret)
8375 		return block_rsv;
8376 
8377 	if (block_rsv->failfast)
8378 		return ERR_PTR(ret);
8379 
8380 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8381 		global_updated = true;
8382 		update_global_block_rsv(fs_info);
8383 		goto again;
8384 	}
8385 
8386 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8387 		static DEFINE_RATELIMIT_STATE(_rs,
8388 				DEFAULT_RATELIMIT_INTERVAL * 10,
8389 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8390 		if (__ratelimit(&_rs))
8391 			WARN(1, KERN_DEBUG
8392 				"BTRFS: block rsv returned %d\n", ret);
8393 	}
8394 try_reserve:
8395 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8396 				     BTRFS_RESERVE_NO_FLUSH);
8397 	if (!ret)
8398 		return block_rsv;
8399 	/*
8400 	 * If we couldn't reserve metadata bytes try and use some from
8401 	 * the global reserve if its space type is the same as the global
8402 	 * reservation.
8403 	 */
8404 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8405 	    block_rsv->space_info == global_rsv->space_info) {
8406 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8407 		if (!ret)
8408 			return global_rsv;
8409 	}
8410 	return ERR_PTR(ret);
8411 }
8412 
8413 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8414 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8415 {
8416 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8417 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8418 }
8419 
8420 /*
8421  * finds a free extent and does all the dirty work required for allocation
8422  * returns the tree buffer or an ERR_PTR on error.
8423  */
8424 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8425 					     struct btrfs_root *root,
8426 					     u64 parent, u64 root_objectid,
8427 					     const struct btrfs_disk_key *key,
8428 					     int level, u64 hint,
8429 					     u64 empty_size)
8430 {
8431 	struct btrfs_fs_info *fs_info = root->fs_info;
8432 	struct btrfs_key ins;
8433 	struct btrfs_block_rsv *block_rsv;
8434 	struct extent_buffer *buf;
8435 	struct btrfs_delayed_extent_op *extent_op;
8436 	u64 flags = 0;
8437 	int ret;
8438 	u32 blocksize = fs_info->nodesize;
8439 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8440 
8441 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8442 	if (btrfs_is_testing(fs_info)) {
8443 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8444 					    level);
8445 		if (!IS_ERR(buf))
8446 			root->alloc_bytenr += blocksize;
8447 		return buf;
8448 	}
8449 #endif
8450 
8451 	block_rsv = use_block_rsv(trans, root, blocksize);
8452 	if (IS_ERR(block_rsv))
8453 		return ERR_CAST(block_rsv);
8454 
8455 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8456 				   empty_size, hint, &ins, 0, 0);
8457 	if (ret)
8458 		goto out_unuse;
8459 
8460 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8461 	if (IS_ERR(buf)) {
8462 		ret = PTR_ERR(buf);
8463 		goto out_free_reserved;
8464 	}
8465 
8466 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8467 		if (parent == 0)
8468 			parent = ins.objectid;
8469 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8470 	} else
8471 		BUG_ON(parent > 0);
8472 
8473 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8474 		extent_op = btrfs_alloc_delayed_extent_op();
8475 		if (!extent_op) {
8476 			ret = -ENOMEM;
8477 			goto out_free_buf;
8478 		}
8479 		if (key)
8480 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8481 		else
8482 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8483 		extent_op->flags_to_set = flags;
8484 		extent_op->update_key = skinny_metadata ? false : true;
8485 		extent_op->update_flags = true;
8486 		extent_op->is_data = false;
8487 		extent_op->level = level;
8488 
8489 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8490 				   root_objectid, level, 0,
8491 				   BTRFS_ADD_DELAYED_EXTENT);
8492 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8493 						 ins.offset, parent,
8494 						 root_objectid, level,
8495 						 BTRFS_ADD_DELAYED_EXTENT,
8496 						 extent_op, NULL, NULL);
8497 		if (ret)
8498 			goto out_free_delayed;
8499 	}
8500 	return buf;
8501 
8502 out_free_delayed:
8503 	btrfs_free_delayed_extent_op(extent_op);
8504 out_free_buf:
8505 	free_extent_buffer(buf);
8506 out_free_reserved:
8507 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8508 out_unuse:
8509 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8510 	return ERR_PTR(ret);
8511 }
8512 
8513 struct walk_control {
8514 	u64 refs[BTRFS_MAX_LEVEL];
8515 	u64 flags[BTRFS_MAX_LEVEL];
8516 	struct btrfs_key update_progress;
8517 	int stage;
8518 	int level;
8519 	int shared_level;
8520 	int update_ref;
8521 	int keep_locks;
8522 	int reada_slot;
8523 	int reada_count;
8524 	int for_reloc;
8525 };
8526 
8527 #define DROP_REFERENCE	1
8528 #define UPDATE_BACKREF	2
8529 
8530 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8531 				     struct btrfs_root *root,
8532 				     struct walk_control *wc,
8533 				     struct btrfs_path *path)
8534 {
8535 	struct btrfs_fs_info *fs_info = root->fs_info;
8536 	u64 bytenr;
8537 	u64 generation;
8538 	u64 refs;
8539 	u64 flags;
8540 	u32 nritems;
8541 	struct btrfs_key key;
8542 	struct extent_buffer *eb;
8543 	int ret;
8544 	int slot;
8545 	int nread = 0;
8546 
8547 	if (path->slots[wc->level] < wc->reada_slot) {
8548 		wc->reada_count = wc->reada_count * 2 / 3;
8549 		wc->reada_count = max(wc->reada_count, 2);
8550 	} else {
8551 		wc->reada_count = wc->reada_count * 3 / 2;
8552 		wc->reada_count = min_t(int, wc->reada_count,
8553 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8554 	}
8555 
8556 	eb = path->nodes[wc->level];
8557 	nritems = btrfs_header_nritems(eb);
8558 
8559 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8560 		if (nread >= wc->reada_count)
8561 			break;
8562 
8563 		cond_resched();
8564 		bytenr = btrfs_node_blockptr(eb, slot);
8565 		generation = btrfs_node_ptr_generation(eb, slot);
8566 
8567 		if (slot == path->slots[wc->level])
8568 			goto reada;
8569 
8570 		if (wc->stage == UPDATE_BACKREF &&
8571 		    generation <= root->root_key.offset)
8572 			continue;
8573 
8574 		/* We don't lock the tree block, it's OK to be racy here */
8575 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8576 					       wc->level - 1, 1, &refs,
8577 					       &flags);
8578 		/* We don't care about errors in readahead. */
8579 		if (ret < 0)
8580 			continue;
8581 		BUG_ON(refs == 0);
8582 
8583 		if (wc->stage == DROP_REFERENCE) {
8584 			if (refs == 1)
8585 				goto reada;
8586 
8587 			if (wc->level == 1 &&
8588 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8589 				continue;
8590 			if (!wc->update_ref ||
8591 			    generation <= root->root_key.offset)
8592 				continue;
8593 			btrfs_node_key_to_cpu(eb, &key, slot);
8594 			ret = btrfs_comp_cpu_keys(&key,
8595 						  &wc->update_progress);
8596 			if (ret < 0)
8597 				continue;
8598 		} else {
8599 			if (wc->level == 1 &&
8600 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8601 				continue;
8602 		}
8603 reada:
8604 		readahead_tree_block(fs_info, bytenr);
8605 		nread++;
8606 	}
8607 	wc->reada_slot = slot;
8608 }
8609 
8610 /*
8611  * helper to process tree block while walking down the tree.
8612  *
8613  * when wc->stage == UPDATE_BACKREF, this function updates
8614  * back refs for pointers in the block.
8615  *
8616  * NOTE: return value 1 means we should stop walking down.
8617  */
8618 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8619 				   struct btrfs_root *root,
8620 				   struct btrfs_path *path,
8621 				   struct walk_control *wc, int lookup_info)
8622 {
8623 	struct btrfs_fs_info *fs_info = root->fs_info;
8624 	int level = wc->level;
8625 	struct extent_buffer *eb = path->nodes[level];
8626 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8627 	int ret;
8628 
8629 	if (wc->stage == UPDATE_BACKREF &&
8630 	    btrfs_header_owner(eb) != root->root_key.objectid)
8631 		return 1;
8632 
8633 	/*
8634 	 * when reference count of tree block is 1, it won't increase
8635 	 * again. once full backref flag is set, we never clear it.
8636 	 */
8637 	if (lookup_info &&
8638 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8639 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8640 		BUG_ON(!path->locks[level]);
8641 		ret = btrfs_lookup_extent_info(trans, fs_info,
8642 					       eb->start, level, 1,
8643 					       &wc->refs[level],
8644 					       &wc->flags[level]);
8645 		BUG_ON(ret == -ENOMEM);
8646 		if (ret)
8647 			return ret;
8648 		BUG_ON(wc->refs[level] == 0);
8649 	}
8650 
8651 	if (wc->stage == DROP_REFERENCE) {
8652 		if (wc->refs[level] > 1)
8653 			return 1;
8654 
8655 		if (path->locks[level] && !wc->keep_locks) {
8656 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8657 			path->locks[level] = 0;
8658 		}
8659 		return 0;
8660 	}
8661 
8662 	/* wc->stage == UPDATE_BACKREF */
8663 	if (!(wc->flags[level] & flag)) {
8664 		BUG_ON(!path->locks[level]);
8665 		ret = btrfs_inc_ref(trans, root, eb, 1);
8666 		BUG_ON(ret); /* -ENOMEM */
8667 		ret = btrfs_dec_ref(trans, root, eb, 0);
8668 		BUG_ON(ret); /* -ENOMEM */
8669 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8670 						  eb->len, flag,
8671 						  btrfs_header_level(eb), 0);
8672 		BUG_ON(ret); /* -ENOMEM */
8673 		wc->flags[level] |= flag;
8674 	}
8675 
8676 	/*
8677 	 * the block is shared by multiple trees, so it's not good to
8678 	 * keep the tree lock
8679 	 */
8680 	if (path->locks[level] && level > 0) {
8681 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8682 		path->locks[level] = 0;
8683 	}
8684 	return 0;
8685 }
8686 
8687 /*
8688  * helper to process tree block pointer.
8689  *
8690  * when wc->stage == DROP_REFERENCE, this function checks
8691  * reference count of the block pointed to. if the block
8692  * is shared and we need update back refs for the subtree
8693  * rooted at the block, this function changes wc->stage to
8694  * UPDATE_BACKREF. if the block is shared and there is no
8695  * need to update back, this function drops the reference
8696  * to the block.
8697  *
8698  * NOTE: return value 1 means we should stop walking down.
8699  */
8700 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8701 				 struct btrfs_root *root,
8702 				 struct btrfs_path *path,
8703 				 struct walk_control *wc, int *lookup_info)
8704 {
8705 	struct btrfs_fs_info *fs_info = root->fs_info;
8706 	u64 bytenr;
8707 	u64 generation;
8708 	u64 parent;
8709 	u32 blocksize;
8710 	struct btrfs_key key;
8711 	struct btrfs_key first_key;
8712 	struct extent_buffer *next;
8713 	int level = wc->level;
8714 	int reada = 0;
8715 	int ret = 0;
8716 	bool need_account = false;
8717 
8718 	generation = btrfs_node_ptr_generation(path->nodes[level],
8719 					       path->slots[level]);
8720 	/*
8721 	 * if the lower level block was created before the snapshot
8722 	 * was created, we know there is no need to update back refs
8723 	 * for the subtree
8724 	 */
8725 	if (wc->stage == UPDATE_BACKREF &&
8726 	    generation <= root->root_key.offset) {
8727 		*lookup_info = 1;
8728 		return 1;
8729 	}
8730 
8731 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8732 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8733 			      path->slots[level]);
8734 	blocksize = fs_info->nodesize;
8735 
8736 	next = find_extent_buffer(fs_info, bytenr);
8737 	if (!next) {
8738 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8739 		if (IS_ERR(next))
8740 			return PTR_ERR(next);
8741 
8742 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8743 					       level - 1);
8744 		reada = 1;
8745 	}
8746 	btrfs_tree_lock(next);
8747 	btrfs_set_lock_blocking(next);
8748 
8749 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8750 				       &wc->refs[level - 1],
8751 				       &wc->flags[level - 1]);
8752 	if (ret < 0)
8753 		goto out_unlock;
8754 
8755 	if (unlikely(wc->refs[level - 1] == 0)) {
8756 		btrfs_err(fs_info, "Missing references.");
8757 		ret = -EIO;
8758 		goto out_unlock;
8759 	}
8760 	*lookup_info = 0;
8761 
8762 	if (wc->stage == DROP_REFERENCE) {
8763 		if (wc->refs[level - 1] > 1) {
8764 			need_account = true;
8765 			if (level == 1 &&
8766 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8767 				goto skip;
8768 
8769 			if (!wc->update_ref ||
8770 			    generation <= root->root_key.offset)
8771 				goto skip;
8772 
8773 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8774 					      path->slots[level]);
8775 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8776 			if (ret < 0)
8777 				goto skip;
8778 
8779 			wc->stage = UPDATE_BACKREF;
8780 			wc->shared_level = level - 1;
8781 		}
8782 	} else {
8783 		if (level == 1 &&
8784 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8785 			goto skip;
8786 	}
8787 
8788 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8789 		btrfs_tree_unlock(next);
8790 		free_extent_buffer(next);
8791 		next = NULL;
8792 		*lookup_info = 1;
8793 	}
8794 
8795 	if (!next) {
8796 		if (reada && level == 1)
8797 			reada_walk_down(trans, root, wc, path);
8798 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8799 				       &first_key);
8800 		if (IS_ERR(next)) {
8801 			return PTR_ERR(next);
8802 		} else if (!extent_buffer_uptodate(next)) {
8803 			free_extent_buffer(next);
8804 			return -EIO;
8805 		}
8806 		btrfs_tree_lock(next);
8807 		btrfs_set_lock_blocking(next);
8808 	}
8809 
8810 	level--;
8811 	ASSERT(level == btrfs_header_level(next));
8812 	if (level != btrfs_header_level(next)) {
8813 		btrfs_err(root->fs_info, "mismatched level");
8814 		ret = -EIO;
8815 		goto out_unlock;
8816 	}
8817 	path->nodes[level] = next;
8818 	path->slots[level] = 0;
8819 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8820 	wc->level = level;
8821 	if (wc->level == 1)
8822 		wc->reada_slot = 0;
8823 	return 0;
8824 skip:
8825 	wc->refs[level - 1] = 0;
8826 	wc->flags[level - 1] = 0;
8827 	if (wc->stage == DROP_REFERENCE) {
8828 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8829 			parent = path->nodes[level]->start;
8830 		} else {
8831 			ASSERT(root->root_key.objectid ==
8832 			       btrfs_header_owner(path->nodes[level]));
8833 			if (root->root_key.objectid !=
8834 			    btrfs_header_owner(path->nodes[level])) {
8835 				btrfs_err(root->fs_info,
8836 						"mismatched block owner");
8837 				ret = -EIO;
8838 				goto out_unlock;
8839 			}
8840 			parent = 0;
8841 		}
8842 
8843 		if (need_account) {
8844 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8845 							 generation, level - 1);
8846 			if (ret) {
8847 				btrfs_err_rl(fs_info,
8848 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8849 					     ret);
8850 			}
8851 		}
8852 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8853 					parent, root->root_key.objectid,
8854 					level - 1, 0);
8855 		if (ret)
8856 			goto out_unlock;
8857 	}
8858 
8859 	*lookup_info = 1;
8860 	ret = 1;
8861 
8862 out_unlock:
8863 	btrfs_tree_unlock(next);
8864 	free_extent_buffer(next);
8865 
8866 	return ret;
8867 }
8868 
8869 /*
8870  * helper to process tree block while walking up the tree.
8871  *
8872  * when wc->stage == DROP_REFERENCE, this function drops
8873  * reference count on the block.
8874  *
8875  * when wc->stage == UPDATE_BACKREF, this function changes
8876  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8877  * to UPDATE_BACKREF previously while processing the block.
8878  *
8879  * NOTE: return value 1 means we should stop walking up.
8880  */
8881 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8882 				 struct btrfs_root *root,
8883 				 struct btrfs_path *path,
8884 				 struct walk_control *wc)
8885 {
8886 	struct btrfs_fs_info *fs_info = root->fs_info;
8887 	int ret;
8888 	int level = wc->level;
8889 	struct extent_buffer *eb = path->nodes[level];
8890 	u64 parent = 0;
8891 
8892 	if (wc->stage == UPDATE_BACKREF) {
8893 		BUG_ON(wc->shared_level < level);
8894 		if (level < wc->shared_level)
8895 			goto out;
8896 
8897 		ret = find_next_key(path, level + 1, &wc->update_progress);
8898 		if (ret > 0)
8899 			wc->update_ref = 0;
8900 
8901 		wc->stage = DROP_REFERENCE;
8902 		wc->shared_level = -1;
8903 		path->slots[level] = 0;
8904 
8905 		/*
8906 		 * check reference count again if the block isn't locked.
8907 		 * we should start walking down the tree again if reference
8908 		 * count is one.
8909 		 */
8910 		if (!path->locks[level]) {
8911 			BUG_ON(level == 0);
8912 			btrfs_tree_lock(eb);
8913 			btrfs_set_lock_blocking(eb);
8914 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8915 
8916 			ret = btrfs_lookup_extent_info(trans, fs_info,
8917 						       eb->start, level, 1,
8918 						       &wc->refs[level],
8919 						       &wc->flags[level]);
8920 			if (ret < 0) {
8921 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8922 				path->locks[level] = 0;
8923 				return ret;
8924 			}
8925 			BUG_ON(wc->refs[level] == 0);
8926 			if (wc->refs[level] == 1) {
8927 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8928 				path->locks[level] = 0;
8929 				return 1;
8930 			}
8931 		}
8932 	}
8933 
8934 	/* wc->stage == DROP_REFERENCE */
8935 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8936 
8937 	if (wc->refs[level] == 1) {
8938 		if (level == 0) {
8939 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8940 				ret = btrfs_dec_ref(trans, root, eb, 1);
8941 			else
8942 				ret = btrfs_dec_ref(trans, root, eb, 0);
8943 			BUG_ON(ret); /* -ENOMEM */
8944 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8945 			if (ret) {
8946 				btrfs_err_rl(fs_info,
8947 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8948 					     ret);
8949 			}
8950 		}
8951 		/* make block locked assertion in clean_tree_block happy */
8952 		if (!path->locks[level] &&
8953 		    btrfs_header_generation(eb) == trans->transid) {
8954 			btrfs_tree_lock(eb);
8955 			btrfs_set_lock_blocking(eb);
8956 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8957 		}
8958 		clean_tree_block(fs_info, eb);
8959 	}
8960 
8961 	if (eb == root->node) {
8962 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8963 			parent = eb->start;
8964 		else
8965 			BUG_ON(root->root_key.objectid !=
8966 			       btrfs_header_owner(eb));
8967 	} else {
8968 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8969 			parent = path->nodes[level + 1]->start;
8970 		else
8971 			BUG_ON(root->root_key.objectid !=
8972 			       btrfs_header_owner(path->nodes[level + 1]));
8973 	}
8974 
8975 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8976 out:
8977 	wc->refs[level] = 0;
8978 	wc->flags[level] = 0;
8979 	return 0;
8980 }
8981 
8982 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8983 				   struct btrfs_root *root,
8984 				   struct btrfs_path *path,
8985 				   struct walk_control *wc)
8986 {
8987 	int level = wc->level;
8988 	int lookup_info = 1;
8989 	int ret;
8990 
8991 	while (level >= 0) {
8992 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8993 		if (ret > 0)
8994 			break;
8995 
8996 		if (level == 0)
8997 			break;
8998 
8999 		if (path->slots[level] >=
9000 		    btrfs_header_nritems(path->nodes[level]))
9001 			break;
9002 
9003 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9004 		if (ret > 0) {
9005 			path->slots[level]++;
9006 			continue;
9007 		} else if (ret < 0)
9008 			return ret;
9009 		level = wc->level;
9010 	}
9011 	return 0;
9012 }
9013 
9014 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9015 				 struct btrfs_root *root,
9016 				 struct btrfs_path *path,
9017 				 struct walk_control *wc, int max_level)
9018 {
9019 	int level = wc->level;
9020 	int ret;
9021 
9022 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9023 	while (level < max_level && path->nodes[level]) {
9024 		wc->level = level;
9025 		if (path->slots[level] + 1 <
9026 		    btrfs_header_nritems(path->nodes[level])) {
9027 			path->slots[level]++;
9028 			return 0;
9029 		} else {
9030 			ret = walk_up_proc(trans, root, path, wc);
9031 			if (ret > 0)
9032 				return 0;
9033 
9034 			if (path->locks[level]) {
9035 				btrfs_tree_unlock_rw(path->nodes[level],
9036 						     path->locks[level]);
9037 				path->locks[level] = 0;
9038 			}
9039 			free_extent_buffer(path->nodes[level]);
9040 			path->nodes[level] = NULL;
9041 			level++;
9042 		}
9043 	}
9044 	return 1;
9045 }
9046 
9047 /*
9048  * drop a subvolume tree.
9049  *
9050  * this function traverses the tree freeing any blocks that only
9051  * referenced by the tree.
9052  *
9053  * when a shared tree block is found. this function decreases its
9054  * reference count by one. if update_ref is true, this function
9055  * also make sure backrefs for the shared block and all lower level
9056  * blocks are properly updated.
9057  *
9058  * If called with for_reloc == 0, may exit early with -EAGAIN
9059  */
9060 int btrfs_drop_snapshot(struct btrfs_root *root,
9061 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9062 			 int for_reloc)
9063 {
9064 	struct btrfs_fs_info *fs_info = root->fs_info;
9065 	struct btrfs_path *path;
9066 	struct btrfs_trans_handle *trans;
9067 	struct btrfs_root *tree_root = fs_info->tree_root;
9068 	struct btrfs_root_item *root_item = &root->root_item;
9069 	struct walk_control *wc;
9070 	struct btrfs_key key;
9071 	int err = 0;
9072 	int ret;
9073 	int level;
9074 	bool root_dropped = false;
9075 
9076 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9077 
9078 	path = btrfs_alloc_path();
9079 	if (!path) {
9080 		err = -ENOMEM;
9081 		goto out;
9082 	}
9083 
9084 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9085 	if (!wc) {
9086 		btrfs_free_path(path);
9087 		err = -ENOMEM;
9088 		goto out;
9089 	}
9090 
9091 	trans = btrfs_start_transaction(tree_root, 0);
9092 	if (IS_ERR(trans)) {
9093 		err = PTR_ERR(trans);
9094 		goto out_free;
9095 	}
9096 
9097 	if (block_rsv)
9098 		trans->block_rsv = block_rsv;
9099 
9100 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9101 		level = btrfs_header_level(root->node);
9102 		path->nodes[level] = btrfs_lock_root_node(root);
9103 		btrfs_set_lock_blocking(path->nodes[level]);
9104 		path->slots[level] = 0;
9105 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9106 		memset(&wc->update_progress, 0,
9107 		       sizeof(wc->update_progress));
9108 	} else {
9109 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9110 		memcpy(&wc->update_progress, &key,
9111 		       sizeof(wc->update_progress));
9112 
9113 		level = root_item->drop_level;
9114 		BUG_ON(level == 0);
9115 		path->lowest_level = level;
9116 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9117 		path->lowest_level = 0;
9118 		if (ret < 0) {
9119 			err = ret;
9120 			goto out_end_trans;
9121 		}
9122 		WARN_ON(ret > 0);
9123 
9124 		/*
9125 		 * unlock our path, this is safe because only this
9126 		 * function is allowed to delete this snapshot
9127 		 */
9128 		btrfs_unlock_up_safe(path, 0);
9129 
9130 		level = btrfs_header_level(root->node);
9131 		while (1) {
9132 			btrfs_tree_lock(path->nodes[level]);
9133 			btrfs_set_lock_blocking(path->nodes[level]);
9134 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9135 
9136 			ret = btrfs_lookup_extent_info(trans, fs_info,
9137 						path->nodes[level]->start,
9138 						level, 1, &wc->refs[level],
9139 						&wc->flags[level]);
9140 			if (ret < 0) {
9141 				err = ret;
9142 				goto out_end_trans;
9143 			}
9144 			BUG_ON(wc->refs[level] == 0);
9145 
9146 			if (level == root_item->drop_level)
9147 				break;
9148 
9149 			btrfs_tree_unlock(path->nodes[level]);
9150 			path->locks[level] = 0;
9151 			WARN_ON(wc->refs[level] != 1);
9152 			level--;
9153 		}
9154 	}
9155 
9156 	wc->level = level;
9157 	wc->shared_level = -1;
9158 	wc->stage = DROP_REFERENCE;
9159 	wc->update_ref = update_ref;
9160 	wc->keep_locks = 0;
9161 	wc->for_reloc = for_reloc;
9162 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9163 
9164 	while (1) {
9165 
9166 		ret = walk_down_tree(trans, root, path, wc);
9167 		if (ret < 0) {
9168 			err = ret;
9169 			break;
9170 		}
9171 
9172 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9173 		if (ret < 0) {
9174 			err = ret;
9175 			break;
9176 		}
9177 
9178 		if (ret > 0) {
9179 			BUG_ON(wc->stage != DROP_REFERENCE);
9180 			break;
9181 		}
9182 
9183 		if (wc->stage == DROP_REFERENCE) {
9184 			level = wc->level;
9185 			btrfs_node_key(path->nodes[level],
9186 				       &root_item->drop_progress,
9187 				       path->slots[level]);
9188 			root_item->drop_level = level;
9189 		}
9190 
9191 		BUG_ON(wc->level == 0);
9192 		if (btrfs_should_end_transaction(trans) ||
9193 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9194 			ret = btrfs_update_root(trans, tree_root,
9195 						&root->root_key,
9196 						root_item);
9197 			if (ret) {
9198 				btrfs_abort_transaction(trans, ret);
9199 				err = ret;
9200 				goto out_end_trans;
9201 			}
9202 
9203 			btrfs_end_transaction_throttle(trans);
9204 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9205 				btrfs_debug(fs_info,
9206 					    "drop snapshot early exit");
9207 				err = -EAGAIN;
9208 				goto out_free;
9209 			}
9210 
9211 			trans = btrfs_start_transaction(tree_root, 0);
9212 			if (IS_ERR(trans)) {
9213 				err = PTR_ERR(trans);
9214 				goto out_free;
9215 			}
9216 			if (block_rsv)
9217 				trans->block_rsv = block_rsv;
9218 		}
9219 	}
9220 	btrfs_release_path(path);
9221 	if (err)
9222 		goto out_end_trans;
9223 
9224 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9225 	if (ret) {
9226 		btrfs_abort_transaction(trans, ret);
9227 		err = ret;
9228 		goto out_end_trans;
9229 	}
9230 
9231 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9232 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9233 				      NULL, NULL);
9234 		if (ret < 0) {
9235 			btrfs_abort_transaction(trans, ret);
9236 			err = ret;
9237 			goto out_end_trans;
9238 		} else if (ret > 0) {
9239 			/* if we fail to delete the orphan item this time
9240 			 * around, it'll get picked up the next time.
9241 			 *
9242 			 * The most common failure here is just -ENOENT.
9243 			 */
9244 			btrfs_del_orphan_item(trans, tree_root,
9245 					      root->root_key.objectid);
9246 		}
9247 	}
9248 
9249 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9250 		btrfs_add_dropped_root(trans, root);
9251 	} else {
9252 		free_extent_buffer(root->node);
9253 		free_extent_buffer(root->commit_root);
9254 		btrfs_put_fs_root(root);
9255 	}
9256 	root_dropped = true;
9257 out_end_trans:
9258 	btrfs_end_transaction_throttle(trans);
9259 out_free:
9260 	kfree(wc);
9261 	btrfs_free_path(path);
9262 out:
9263 	/*
9264 	 * So if we need to stop dropping the snapshot for whatever reason we
9265 	 * need to make sure to add it back to the dead root list so that we
9266 	 * keep trying to do the work later.  This also cleans up roots if we
9267 	 * don't have it in the radix (like when we recover after a power fail
9268 	 * or unmount) so we don't leak memory.
9269 	 */
9270 	if (!for_reloc && !root_dropped)
9271 		btrfs_add_dead_root(root);
9272 	if (err && err != -EAGAIN)
9273 		btrfs_handle_fs_error(fs_info, err, NULL);
9274 	return err;
9275 }
9276 
9277 /*
9278  * drop subtree rooted at tree block 'node'.
9279  *
9280  * NOTE: this function will unlock and release tree block 'node'
9281  * only used by relocation code
9282  */
9283 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9284 			struct btrfs_root *root,
9285 			struct extent_buffer *node,
9286 			struct extent_buffer *parent)
9287 {
9288 	struct btrfs_fs_info *fs_info = root->fs_info;
9289 	struct btrfs_path *path;
9290 	struct walk_control *wc;
9291 	int level;
9292 	int parent_level;
9293 	int ret = 0;
9294 	int wret;
9295 
9296 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9297 
9298 	path = btrfs_alloc_path();
9299 	if (!path)
9300 		return -ENOMEM;
9301 
9302 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9303 	if (!wc) {
9304 		btrfs_free_path(path);
9305 		return -ENOMEM;
9306 	}
9307 
9308 	btrfs_assert_tree_locked(parent);
9309 	parent_level = btrfs_header_level(parent);
9310 	extent_buffer_get(parent);
9311 	path->nodes[parent_level] = parent;
9312 	path->slots[parent_level] = btrfs_header_nritems(parent);
9313 
9314 	btrfs_assert_tree_locked(node);
9315 	level = btrfs_header_level(node);
9316 	path->nodes[level] = node;
9317 	path->slots[level] = 0;
9318 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9319 
9320 	wc->refs[parent_level] = 1;
9321 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9322 	wc->level = level;
9323 	wc->shared_level = -1;
9324 	wc->stage = DROP_REFERENCE;
9325 	wc->update_ref = 0;
9326 	wc->keep_locks = 1;
9327 	wc->for_reloc = 1;
9328 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9329 
9330 	while (1) {
9331 		wret = walk_down_tree(trans, root, path, wc);
9332 		if (wret < 0) {
9333 			ret = wret;
9334 			break;
9335 		}
9336 
9337 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9338 		if (wret < 0)
9339 			ret = wret;
9340 		if (wret != 0)
9341 			break;
9342 	}
9343 
9344 	kfree(wc);
9345 	btrfs_free_path(path);
9346 	return ret;
9347 }
9348 
9349 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9350 {
9351 	u64 num_devices;
9352 	u64 stripped;
9353 
9354 	/*
9355 	 * if restripe for this chunk_type is on pick target profile and
9356 	 * return, otherwise do the usual balance
9357 	 */
9358 	stripped = get_restripe_target(fs_info, flags);
9359 	if (stripped)
9360 		return extended_to_chunk(stripped);
9361 
9362 	num_devices = fs_info->fs_devices->rw_devices;
9363 
9364 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9365 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9366 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9367 
9368 	if (num_devices == 1) {
9369 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9370 		stripped = flags & ~stripped;
9371 
9372 		/* turn raid0 into single device chunks */
9373 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9374 			return stripped;
9375 
9376 		/* turn mirroring into duplication */
9377 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9378 			     BTRFS_BLOCK_GROUP_RAID10))
9379 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9380 	} else {
9381 		/* they already had raid on here, just return */
9382 		if (flags & stripped)
9383 			return flags;
9384 
9385 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9386 		stripped = flags & ~stripped;
9387 
9388 		/* switch duplicated blocks with raid1 */
9389 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9390 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9391 
9392 		/* this is drive concat, leave it alone */
9393 	}
9394 
9395 	return flags;
9396 }
9397 
9398 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9399 {
9400 	struct btrfs_space_info *sinfo = cache->space_info;
9401 	u64 num_bytes;
9402 	u64 min_allocable_bytes;
9403 	int ret = -ENOSPC;
9404 
9405 	/*
9406 	 * We need some metadata space and system metadata space for
9407 	 * allocating chunks in some corner cases until we force to set
9408 	 * it to be readonly.
9409 	 */
9410 	if ((sinfo->flags &
9411 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9412 	    !force)
9413 		min_allocable_bytes = SZ_1M;
9414 	else
9415 		min_allocable_bytes = 0;
9416 
9417 	spin_lock(&sinfo->lock);
9418 	spin_lock(&cache->lock);
9419 
9420 	if (cache->ro) {
9421 		cache->ro++;
9422 		ret = 0;
9423 		goto out;
9424 	}
9425 
9426 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9427 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9428 
9429 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9430 	    min_allocable_bytes <= sinfo->total_bytes) {
9431 		sinfo->bytes_readonly += num_bytes;
9432 		cache->ro++;
9433 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9434 		ret = 0;
9435 	}
9436 out:
9437 	spin_unlock(&cache->lock);
9438 	spin_unlock(&sinfo->lock);
9439 	return ret;
9440 }
9441 
9442 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9443 			     struct btrfs_block_group_cache *cache)
9444 
9445 {
9446 	struct btrfs_trans_handle *trans;
9447 	u64 alloc_flags;
9448 	int ret;
9449 
9450 again:
9451 	trans = btrfs_join_transaction(fs_info->extent_root);
9452 	if (IS_ERR(trans))
9453 		return PTR_ERR(trans);
9454 
9455 	/*
9456 	 * we're not allowed to set block groups readonly after the dirty
9457 	 * block groups cache has started writing.  If it already started,
9458 	 * back off and let this transaction commit
9459 	 */
9460 	mutex_lock(&fs_info->ro_block_group_mutex);
9461 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9462 		u64 transid = trans->transid;
9463 
9464 		mutex_unlock(&fs_info->ro_block_group_mutex);
9465 		btrfs_end_transaction(trans);
9466 
9467 		ret = btrfs_wait_for_commit(fs_info, transid);
9468 		if (ret)
9469 			return ret;
9470 		goto again;
9471 	}
9472 
9473 	/*
9474 	 * if we are changing raid levels, try to allocate a corresponding
9475 	 * block group with the new raid level.
9476 	 */
9477 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9478 	if (alloc_flags != cache->flags) {
9479 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9480 				     CHUNK_ALLOC_FORCE);
9481 		/*
9482 		 * ENOSPC is allowed here, we may have enough space
9483 		 * already allocated at the new raid level to
9484 		 * carry on
9485 		 */
9486 		if (ret == -ENOSPC)
9487 			ret = 0;
9488 		if (ret < 0)
9489 			goto out;
9490 	}
9491 
9492 	ret = inc_block_group_ro(cache, 0);
9493 	if (!ret)
9494 		goto out;
9495 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9496 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9497 			     CHUNK_ALLOC_FORCE);
9498 	if (ret < 0)
9499 		goto out;
9500 	ret = inc_block_group_ro(cache, 0);
9501 out:
9502 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9503 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9504 		mutex_lock(&fs_info->chunk_mutex);
9505 		check_system_chunk(trans, fs_info, alloc_flags);
9506 		mutex_unlock(&fs_info->chunk_mutex);
9507 	}
9508 	mutex_unlock(&fs_info->ro_block_group_mutex);
9509 
9510 	btrfs_end_transaction(trans);
9511 	return ret;
9512 }
9513 
9514 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9515 			    struct btrfs_fs_info *fs_info, u64 type)
9516 {
9517 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9518 
9519 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9520 }
9521 
9522 /*
9523  * helper to account the unused space of all the readonly block group in the
9524  * space_info. takes mirrors into account.
9525  */
9526 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9527 {
9528 	struct btrfs_block_group_cache *block_group;
9529 	u64 free_bytes = 0;
9530 	int factor;
9531 
9532 	/* It's df, we don't care if it's racy */
9533 	if (list_empty(&sinfo->ro_bgs))
9534 		return 0;
9535 
9536 	spin_lock(&sinfo->lock);
9537 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9538 		spin_lock(&block_group->lock);
9539 
9540 		if (!block_group->ro) {
9541 			spin_unlock(&block_group->lock);
9542 			continue;
9543 		}
9544 
9545 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9546 					  BTRFS_BLOCK_GROUP_RAID10 |
9547 					  BTRFS_BLOCK_GROUP_DUP))
9548 			factor = 2;
9549 		else
9550 			factor = 1;
9551 
9552 		free_bytes += (block_group->key.offset -
9553 			       btrfs_block_group_used(&block_group->item)) *
9554 			       factor;
9555 
9556 		spin_unlock(&block_group->lock);
9557 	}
9558 	spin_unlock(&sinfo->lock);
9559 
9560 	return free_bytes;
9561 }
9562 
9563 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9564 {
9565 	struct btrfs_space_info *sinfo = cache->space_info;
9566 	u64 num_bytes;
9567 
9568 	BUG_ON(!cache->ro);
9569 
9570 	spin_lock(&sinfo->lock);
9571 	spin_lock(&cache->lock);
9572 	if (!--cache->ro) {
9573 		num_bytes = cache->key.offset - cache->reserved -
9574 			    cache->pinned - cache->bytes_super -
9575 			    btrfs_block_group_used(&cache->item);
9576 		sinfo->bytes_readonly -= num_bytes;
9577 		list_del_init(&cache->ro_list);
9578 	}
9579 	spin_unlock(&cache->lock);
9580 	spin_unlock(&sinfo->lock);
9581 }
9582 
9583 /*
9584  * checks to see if its even possible to relocate this block group.
9585  *
9586  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9587  * ok to go ahead and try.
9588  */
9589 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9590 {
9591 	struct btrfs_root *root = fs_info->extent_root;
9592 	struct btrfs_block_group_cache *block_group;
9593 	struct btrfs_space_info *space_info;
9594 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9595 	struct btrfs_device *device;
9596 	struct btrfs_trans_handle *trans;
9597 	u64 min_free;
9598 	u64 dev_min = 1;
9599 	u64 dev_nr = 0;
9600 	u64 target;
9601 	int debug;
9602 	int index;
9603 	int full = 0;
9604 	int ret = 0;
9605 
9606 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9607 
9608 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9609 
9610 	/* odd, couldn't find the block group, leave it alone */
9611 	if (!block_group) {
9612 		if (debug)
9613 			btrfs_warn(fs_info,
9614 				   "can't find block group for bytenr %llu",
9615 				   bytenr);
9616 		return -1;
9617 	}
9618 
9619 	min_free = btrfs_block_group_used(&block_group->item);
9620 
9621 	/* no bytes used, we're good */
9622 	if (!min_free)
9623 		goto out;
9624 
9625 	space_info = block_group->space_info;
9626 	spin_lock(&space_info->lock);
9627 
9628 	full = space_info->full;
9629 
9630 	/*
9631 	 * if this is the last block group we have in this space, we can't
9632 	 * relocate it unless we're able to allocate a new chunk below.
9633 	 *
9634 	 * Otherwise, we need to make sure we have room in the space to handle
9635 	 * all of the extents from this block group.  If we can, we're good
9636 	 */
9637 	if ((space_info->total_bytes != block_group->key.offset) &&
9638 	    (btrfs_space_info_used(space_info, false) + min_free <
9639 	     space_info->total_bytes)) {
9640 		spin_unlock(&space_info->lock);
9641 		goto out;
9642 	}
9643 	spin_unlock(&space_info->lock);
9644 
9645 	/*
9646 	 * ok we don't have enough space, but maybe we have free space on our
9647 	 * devices to allocate new chunks for relocation, so loop through our
9648 	 * alloc devices and guess if we have enough space.  if this block
9649 	 * group is going to be restriped, run checks against the target
9650 	 * profile instead of the current one.
9651 	 */
9652 	ret = -1;
9653 
9654 	/*
9655 	 * index:
9656 	 *      0: raid10
9657 	 *      1: raid1
9658 	 *      2: dup
9659 	 *      3: raid0
9660 	 *      4: single
9661 	 */
9662 	target = get_restripe_target(fs_info, block_group->flags);
9663 	if (target) {
9664 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9665 	} else {
9666 		/*
9667 		 * this is just a balance, so if we were marked as full
9668 		 * we know there is no space for a new chunk
9669 		 */
9670 		if (full) {
9671 			if (debug)
9672 				btrfs_warn(fs_info,
9673 					   "no space to alloc new chunk for block group %llu",
9674 					   block_group->key.objectid);
9675 			goto out;
9676 		}
9677 
9678 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9679 	}
9680 
9681 	if (index == BTRFS_RAID_RAID10) {
9682 		dev_min = 4;
9683 		/* Divide by 2 */
9684 		min_free >>= 1;
9685 	} else if (index == BTRFS_RAID_RAID1) {
9686 		dev_min = 2;
9687 	} else if (index == BTRFS_RAID_DUP) {
9688 		/* Multiply by 2 */
9689 		min_free <<= 1;
9690 	} else if (index == BTRFS_RAID_RAID0) {
9691 		dev_min = fs_devices->rw_devices;
9692 		min_free = div64_u64(min_free, dev_min);
9693 	}
9694 
9695 	/* We need to do this so that we can look at pending chunks */
9696 	trans = btrfs_join_transaction(root);
9697 	if (IS_ERR(trans)) {
9698 		ret = PTR_ERR(trans);
9699 		goto out;
9700 	}
9701 
9702 	mutex_lock(&fs_info->chunk_mutex);
9703 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9704 		u64 dev_offset;
9705 
9706 		/*
9707 		 * check to make sure we can actually find a chunk with enough
9708 		 * space to fit our block group in.
9709 		 */
9710 		if (device->total_bytes > device->bytes_used + min_free &&
9711 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9712 			ret = find_free_dev_extent(trans, device, min_free,
9713 						   &dev_offset, NULL);
9714 			if (!ret)
9715 				dev_nr++;
9716 
9717 			if (dev_nr >= dev_min)
9718 				break;
9719 
9720 			ret = -1;
9721 		}
9722 	}
9723 	if (debug && ret == -1)
9724 		btrfs_warn(fs_info,
9725 			   "no space to allocate a new chunk for block group %llu",
9726 			   block_group->key.objectid);
9727 	mutex_unlock(&fs_info->chunk_mutex);
9728 	btrfs_end_transaction(trans);
9729 out:
9730 	btrfs_put_block_group(block_group);
9731 	return ret;
9732 }
9733 
9734 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9735 				  struct btrfs_path *path,
9736 				  struct btrfs_key *key)
9737 {
9738 	struct btrfs_root *root = fs_info->extent_root;
9739 	int ret = 0;
9740 	struct btrfs_key found_key;
9741 	struct extent_buffer *leaf;
9742 	int slot;
9743 
9744 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9745 	if (ret < 0)
9746 		goto out;
9747 
9748 	while (1) {
9749 		slot = path->slots[0];
9750 		leaf = path->nodes[0];
9751 		if (slot >= btrfs_header_nritems(leaf)) {
9752 			ret = btrfs_next_leaf(root, path);
9753 			if (ret == 0)
9754 				continue;
9755 			if (ret < 0)
9756 				goto out;
9757 			break;
9758 		}
9759 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9760 
9761 		if (found_key.objectid >= key->objectid &&
9762 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9763 			struct extent_map_tree *em_tree;
9764 			struct extent_map *em;
9765 
9766 			em_tree = &root->fs_info->mapping_tree.map_tree;
9767 			read_lock(&em_tree->lock);
9768 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9769 						   found_key.offset);
9770 			read_unlock(&em_tree->lock);
9771 			if (!em) {
9772 				btrfs_err(fs_info,
9773 			"logical %llu len %llu found bg but no related chunk",
9774 					  found_key.objectid, found_key.offset);
9775 				ret = -ENOENT;
9776 			} else {
9777 				ret = 0;
9778 			}
9779 			free_extent_map(em);
9780 			goto out;
9781 		}
9782 		path->slots[0]++;
9783 	}
9784 out:
9785 	return ret;
9786 }
9787 
9788 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9789 {
9790 	struct btrfs_block_group_cache *block_group;
9791 	u64 last = 0;
9792 
9793 	while (1) {
9794 		struct inode *inode;
9795 
9796 		block_group = btrfs_lookup_first_block_group(info, last);
9797 		while (block_group) {
9798 			spin_lock(&block_group->lock);
9799 			if (block_group->iref)
9800 				break;
9801 			spin_unlock(&block_group->lock);
9802 			block_group = next_block_group(info, block_group);
9803 		}
9804 		if (!block_group) {
9805 			if (last == 0)
9806 				break;
9807 			last = 0;
9808 			continue;
9809 		}
9810 
9811 		inode = block_group->inode;
9812 		block_group->iref = 0;
9813 		block_group->inode = NULL;
9814 		spin_unlock(&block_group->lock);
9815 		ASSERT(block_group->io_ctl.inode == NULL);
9816 		iput(inode);
9817 		last = block_group->key.objectid + block_group->key.offset;
9818 		btrfs_put_block_group(block_group);
9819 	}
9820 }
9821 
9822 /*
9823  * Must be called only after stopping all workers, since we could have block
9824  * group caching kthreads running, and therefore they could race with us if we
9825  * freed the block groups before stopping them.
9826  */
9827 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9828 {
9829 	struct btrfs_block_group_cache *block_group;
9830 	struct btrfs_space_info *space_info;
9831 	struct btrfs_caching_control *caching_ctl;
9832 	struct rb_node *n;
9833 
9834 	down_write(&info->commit_root_sem);
9835 	while (!list_empty(&info->caching_block_groups)) {
9836 		caching_ctl = list_entry(info->caching_block_groups.next,
9837 					 struct btrfs_caching_control, list);
9838 		list_del(&caching_ctl->list);
9839 		put_caching_control(caching_ctl);
9840 	}
9841 	up_write(&info->commit_root_sem);
9842 
9843 	spin_lock(&info->unused_bgs_lock);
9844 	while (!list_empty(&info->unused_bgs)) {
9845 		block_group = list_first_entry(&info->unused_bgs,
9846 					       struct btrfs_block_group_cache,
9847 					       bg_list);
9848 		list_del_init(&block_group->bg_list);
9849 		btrfs_put_block_group(block_group);
9850 	}
9851 	spin_unlock(&info->unused_bgs_lock);
9852 
9853 	spin_lock(&info->block_group_cache_lock);
9854 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9855 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9856 				       cache_node);
9857 		rb_erase(&block_group->cache_node,
9858 			 &info->block_group_cache_tree);
9859 		RB_CLEAR_NODE(&block_group->cache_node);
9860 		spin_unlock(&info->block_group_cache_lock);
9861 
9862 		down_write(&block_group->space_info->groups_sem);
9863 		list_del(&block_group->list);
9864 		up_write(&block_group->space_info->groups_sem);
9865 
9866 		/*
9867 		 * We haven't cached this block group, which means we could
9868 		 * possibly have excluded extents on this block group.
9869 		 */
9870 		if (block_group->cached == BTRFS_CACHE_NO ||
9871 		    block_group->cached == BTRFS_CACHE_ERROR)
9872 			free_excluded_extents(info, block_group);
9873 
9874 		btrfs_remove_free_space_cache(block_group);
9875 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9876 		ASSERT(list_empty(&block_group->dirty_list));
9877 		ASSERT(list_empty(&block_group->io_list));
9878 		ASSERT(list_empty(&block_group->bg_list));
9879 		ASSERT(atomic_read(&block_group->count) == 1);
9880 		btrfs_put_block_group(block_group);
9881 
9882 		spin_lock(&info->block_group_cache_lock);
9883 	}
9884 	spin_unlock(&info->block_group_cache_lock);
9885 
9886 	/* now that all the block groups are freed, go through and
9887 	 * free all the space_info structs.  This is only called during
9888 	 * the final stages of unmount, and so we know nobody is
9889 	 * using them.  We call synchronize_rcu() once before we start,
9890 	 * just to be on the safe side.
9891 	 */
9892 	synchronize_rcu();
9893 
9894 	release_global_block_rsv(info);
9895 
9896 	while (!list_empty(&info->space_info)) {
9897 		int i;
9898 
9899 		space_info = list_entry(info->space_info.next,
9900 					struct btrfs_space_info,
9901 					list);
9902 
9903 		/*
9904 		 * Do not hide this behind enospc_debug, this is actually
9905 		 * important and indicates a real bug if this happens.
9906 		 */
9907 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9908 			    space_info->bytes_reserved > 0 ||
9909 			    space_info->bytes_may_use > 0))
9910 			dump_space_info(info, space_info, 0, 0);
9911 		list_del(&space_info->list);
9912 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9913 			struct kobject *kobj;
9914 			kobj = space_info->block_group_kobjs[i];
9915 			space_info->block_group_kobjs[i] = NULL;
9916 			if (kobj) {
9917 				kobject_del(kobj);
9918 				kobject_put(kobj);
9919 			}
9920 		}
9921 		kobject_del(&space_info->kobj);
9922 		kobject_put(&space_info->kobj);
9923 	}
9924 	return 0;
9925 }
9926 
9927 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9928 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9929 {
9930 	struct btrfs_space_info *space_info;
9931 	struct raid_kobject *rkobj;
9932 	LIST_HEAD(list);
9933 	int index;
9934 	int ret = 0;
9935 
9936 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9937 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9938 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9939 
9940 	list_for_each_entry(rkobj, &list, list) {
9941 		space_info = __find_space_info(fs_info, rkobj->flags);
9942 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9943 
9944 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9945 				  "%s", get_raid_name(index));
9946 		if (ret) {
9947 			kobject_put(&rkobj->kobj);
9948 			break;
9949 		}
9950 	}
9951 	if (ret)
9952 		btrfs_warn(fs_info,
9953 			   "failed to add kobject for block cache, ignoring");
9954 }
9955 
9956 static void link_block_group(struct btrfs_block_group_cache *cache)
9957 {
9958 	struct btrfs_space_info *space_info = cache->space_info;
9959 	struct btrfs_fs_info *fs_info = cache->fs_info;
9960 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9961 	bool first = false;
9962 
9963 	down_write(&space_info->groups_sem);
9964 	if (list_empty(&space_info->block_groups[index]))
9965 		first = true;
9966 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9967 	up_write(&space_info->groups_sem);
9968 
9969 	if (first) {
9970 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9971 		if (!rkobj) {
9972 			btrfs_warn(cache->fs_info,
9973 				"couldn't alloc memory for raid level kobject");
9974 			return;
9975 		}
9976 		rkobj->flags = cache->flags;
9977 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9978 
9979 		spin_lock(&fs_info->pending_raid_kobjs_lock);
9980 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9981 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
9982 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9983 	}
9984 }
9985 
9986 static struct btrfs_block_group_cache *
9987 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9988 			       u64 start, u64 size)
9989 {
9990 	struct btrfs_block_group_cache *cache;
9991 
9992 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9993 	if (!cache)
9994 		return NULL;
9995 
9996 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9997 					GFP_NOFS);
9998 	if (!cache->free_space_ctl) {
9999 		kfree(cache);
10000 		return NULL;
10001 	}
10002 
10003 	cache->key.objectid = start;
10004 	cache->key.offset = size;
10005 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10006 
10007 	cache->fs_info = fs_info;
10008 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10009 	set_free_space_tree_thresholds(cache);
10010 
10011 	atomic_set(&cache->count, 1);
10012 	spin_lock_init(&cache->lock);
10013 	init_rwsem(&cache->data_rwsem);
10014 	INIT_LIST_HEAD(&cache->list);
10015 	INIT_LIST_HEAD(&cache->cluster_list);
10016 	INIT_LIST_HEAD(&cache->bg_list);
10017 	INIT_LIST_HEAD(&cache->ro_list);
10018 	INIT_LIST_HEAD(&cache->dirty_list);
10019 	INIT_LIST_HEAD(&cache->io_list);
10020 	btrfs_init_free_space_ctl(cache);
10021 	atomic_set(&cache->trimming, 0);
10022 	mutex_init(&cache->free_space_lock);
10023 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10024 
10025 	return cache;
10026 }
10027 
10028 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10029 {
10030 	struct btrfs_path *path;
10031 	int ret;
10032 	struct btrfs_block_group_cache *cache;
10033 	struct btrfs_space_info *space_info;
10034 	struct btrfs_key key;
10035 	struct btrfs_key found_key;
10036 	struct extent_buffer *leaf;
10037 	int need_clear = 0;
10038 	u64 cache_gen;
10039 	u64 feature;
10040 	int mixed;
10041 
10042 	feature = btrfs_super_incompat_flags(info->super_copy);
10043 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10044 
10045 	key.objectid = 0;
10046 	key.offset = 0;
10047 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10048 	path = btrfs_alloc_path();
10049 	if (!path)
10050 		return -ENOMEM;
10051 	path->reada = READA_FORWARD;
10052 
10053 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10054 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10055 	    btrfs_super_generation(info->super_copy) != cache_gen)
10056 		need_clear = 1;
10057 	if (btrfs_test_opt(info, CLEAR_CACHE))
10058 		need_clear = 1;
10059 
10060 	while (1) {
10061 		ret = find_first_block_group(info, path, &key);
10062 		if (ret > 0)
10063 			break;
10064 		if (ret != 0)
10065 			goto error;
10066 
10067 		leaf = path->nodes[0];
10068 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10069 
10070 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10071 						       found_key.offset);
10072 		if (!cache) {
10073 			ret = -ENOMEM;
10074 			goto error;
10075 		}
10076 
10077 		if (need_clear) {
10078 			/*
10079 			 * When we mount with old space cache, we need to
10080 			 * set BTRFS_DC_CLEAR and set dirty flag.
10081 			 *
10082 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10083 			 *    truncate the old free space cache inode and
10084 			 *    setup a new one.
10085 			 * b) Setting 'dirty flag' makes sure that we flush
10086 			 *    the new space cache info onto disk.
10087 			 */
10088 			if (btrfs_test_opt(info, SPACE_CACHE))
10089 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10090 		}
10091 
10092 		read_extent_buffer(leaf, &cache->item,
10093 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10094 				   sizeof(cache->item));
10095 		cache->flags = btrfs_block_group_flags(&cache->item);
10096 		if (!mixed &&
10097 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10098 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10099 			btrfs_err(info,
10100 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10101 				  cache->key.objectid);
10102 			ret = -EINVAL;
10103 			goto error;
10104 		}
10105 
10106 		key.objectid = found_key.objectid + found_key.offset;
10107 		btrfs_release_path(path);
10108 
10109 		/*
10110 		 * We need to exclude the super stripes now so that the space
10111 		 * info has super bytes accounted for, otherwise we'll think
10112 		 * we have more space than we actually do.
10113 		 */
10114 		ret = exclude_super_stripes(info, cache);
10115 		if (ret) {
10116 			/*
10117 			 * We may have excluded something, so call this just in
10118 			 * case.
10119 			 */
10120 			free_excluded_extents(info, cache);
10121 			btrfs_put_block_group(cache);
10122 			goto error;
10123 		}
10124 
10125 		/*
10126 		 * check for two cases, either we are full, and therefore
10127 		 * don't need to bother with the caching work since we won't
10128 		 * find any space, or we are empty, and we can just add all
10129 		 * the space in and be done with it.  This saves us _alot_ of
10130 		 * time, particularly in the full case.
10131 		 */
10132 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10133 			cache->last_byte_to_unpin = (u64)-1;
10134 			cache->cached = BTRFS_CACHE_FINISHED;
10135 			free_excluded_extents(info, cache);
10136 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10137 			cache->last_byte_to_unpin = (u64)-1;
10138 			cache->cached = BTRFS_CACHE_FINISHED;
10139 			add_new_free_space(cache, info,
10140 					   found_key.objectid,
10141 					   found_key.objectid +
10142 					   found_key.offset);
10143 			free_excluded_extents(info, cache);
10144 		}
10145 
10146 		ret = btrfs_add_block_group_cache(info, cache);
10147 		if (ret) {
10148 			btrfs_remove_free_space_cache(cache);
10149 			btrfs_put_block_group(cache);
10150 			goto error;
10151 		}
10152 
10153 		trace_btrfs_add_block_group(info, cache, 0);
10154 		update_space_info(info, cache->flags, found_key.offset,
10155 				  btrfs_block_group_used(&cache->item),
10156 				  cache->bytes_super, &space_info);
10157 
10158 		cache->space_info = space_info;
10159 
10160 		link_block_group(cache);
10161 
10162 		set_avail_alloc_bits(info, cache->flags);
10163 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10164 			inc_block_group_ro(cache, 1);
10165 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10166 			spin_lock(&info->unused_bgs_lock);
10167 			/* Should always be true but just in case. */
10168 			if (list_empty(&cache->bg_list)) {
10169 				btrfs_get_block_group(cache);
10170 				list_add_tail(&cache->bg_list,
10171 					      &info->unused_bgs);
10172 			}
10173 			spin_unlock(&info->unused_bgs_lock);
10174 		}
10175 	}
10176 
10177 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10178 		if (!(get_alloc_profile(info, space_info->flags) &
10179 		      (BTRFS_BLOCK_GROUP_RAID10 |
10180 		       BTRFS_BLOCK_GROUP_RAID1 |
10181 		       BTRFS_BLOCK_GROUP_RAID5 |
10182 		       BTRFS_BLOCK_GROUP_RAID6 |
10183 		       BTRFS_BLOCK_GROUP_DUP)))
10184 			continue;
10185 		/*
10186 		 * avoid allocating from un-mirrored block group if there are
10187 		 * mirrored block groups.
10188 		 */
10189 		list_for_each_entry(cache,
10190 				&space_info->block_groups[BTRFS_RAID_RAID0],
10191 				list)
10192 			inc_block_group_ro(cache, 1);
10193 		list_for_each_entry(cache,
10194 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10195 				list)
10196 			inc_block_group_ro(cache, 1);
10197 	}
10198 
10199 	btrfs_add_raid_kobjects(info);
10200 	init_global_block_rsv(info);
10201 	ret = 0;
10202 error:
10203 	btrfs_free_path(path);
10204 	return ret;
10205 }
10206 
10207 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10208 {
10209 	struct btrfs_fs_info *fs_info = trans->fs_info;
10210 	struct btrfs_block_group_cache *block_group, *tmp;
10211 	struct btrfs_root *extent_root = fs_info->extent_root;
10212 	struct btrfs_block_group_item item;
10213 	struct btrfs_key key;
10214 	int ret = 0;
10215 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10216 
10217 	trans->can_flush_pending_bgs = false;
10218 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10219 		if (ret)
10220 			goto next;
10221 
10222 		spin_lock(&block_group->lock);
10223 		memcpy(&item, &block_group->item, sizeof(item));
10224 		memcpy(&key, &block_group->key, sizeof(key));
10225 		spin_unlock(&block_group->lock);
10226 
10227 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10228 					sizeof(item));
10229 		if (ret)
10230 			btrfs_abort_transaction(trans, ret);
10231 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10232 					       key.offset);
10233 		if (ret)
10234 			btrfs_abort_transaction(trans, ret);
10235 		add_block_group_free_space(trans, fs_info, block_group);
10236 		/* already aborted the transaction if it failed. */
10237 next:
10238 		list_del_init(&block_group->bg_list);
10239 	}
10240 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10241 }
10242 
10243 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10244 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10245 			   u64 type, u64 chunk_offset, u64 size)
10246 {
10247 	struct btrfs_block_group_cache *cache;
10248 	int ret;
10249 
10250 	btrfs_set_log_full_commit(fs_info, trans);
10251 
10252 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10253 	if (!cache)
10254 		return -ENOMEM;
10255 
10256 	btrfs_set_block_group_used(&cache->item, bytes_used);
10257 	btrfs_set_block_group_chunk_objectid(&cache->item,
10258 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10259 	btrfs_set_block_group_flags(&cache->item, type);
10260 
10261 	cache->flags = type;
10262 	cache->last_byte_to_unpin = (u64)-1;
10263 	cache->cached = BTRFS_CACHE_FINISHED;
10264 	cache->needs_free_space = 1;
10265 	ret = exclude_super_stripes(fs_info, cache);
10266 	if (ret) {
10267 		/*
10268 		 * We may have excluded something, so call this just in
10269 		 * case.
10270 		 */
10271 		free_excluded_extents(fs_info, cache);
10272 		btrfs_put_block_group(cache);
10273 		return ret;
10274 	}
10275 
10276 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10277 
10278 	free_excluded_extents(fs_info, cache);
10279 
10280 #ifdef CONFIG_BTRFS_DEBUG
10281 	if (btrfs_should_fragment_free_space(cache)) {
10282 		u64 new_bytes_used = size - bytes_used;
10283 
10284 		bytes_used += new_bytes_used >> 1;
10285 		fragment_free_space(cache);
10286 	}
10287 #endif
10288 	/*
10289 	 * Ensure the corresponding space_info object is created and
10290 	 * assigned to our block group. We want our bg to be added to the rbtree
10291 	 * with its ->space_info set.
10292 	 */
10293 	cache->space_info = __find_space_info(fs_info, cache->flags);
10294 	ASSERT(cache->space_info);
10295 
10296 	ret = btrfs_add_block_group_cache(fs_info, cache);
10297 	if (ret) {
10298 		btrfs_remove_free_space_cache(cache);
10299 		btrfs_put_block_group(cache);
10300 		return ret;
10301 	}
10302 
10303 	/*
10304 	 * Now that our block group has its ->space_info set and is inserted in
10305 	 * the rbtree, update the space info's counters.
10306 	 */
10307 	trace_btrfs_add_block_group(fs_info, cache, 1);
10308 	update_space_info(fs_info, cache->flags, size, bytes_used,
10309 				cache->bytes_super, &cache->space_info);
10310 	update_global_block_rsv(fs_info);
10311 
10312 	link_block_group(cache);
10313 
10314 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10315 
10316 	set_avail_alloc_bits(fs_info, type);
10317 	return 0;
10318 }
10319 
10320 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10321 {
10322 	u64 extra_flags = chunk_to_extended(flags) &
10323 				BTRFS_EXTENDED_PROFILE_MASK;
10324 
10325 	write_seqlock(&fs_info->profiles_lock);
10326 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10327 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10328 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10329 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10330 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10331 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10332 	write_sequnlock(&fs_info->profiles_lock);
10333 }
10334 
10335 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10336 			     struct btrfs_fs_info *fs_info, u64 group_start,
10337 			     struct extent_map *em)
10338 {
10339 	struct btrfs_root *root = fs_info->extent_root;
10340 	struct btrfs_path *path;
10341 	struct btrfs_block_group_cache *block_group;
10342 	struct btrfs_free_cluster *cluster;
10343 	struct btrfs_root *tree_root = fs_info->tree_root;
10344 	struct btrfs_key key;
10345 	struct inode *inode;
10346 	struct kobject *kobj = NULL;
10347 	int ret;
10348 	int index;
10349 	int factor;
10350 	struct btrfs_caching_control *caching_ctl = NULL;
10351 	bool remove_em;
10352 
10353 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10354 	BUG_ON(!block_group);
10355 	BUG_ON(!block_group->ro);
10356 
10357 	/*
10358 	 * Free the reserved super bytes from this block group before
10359 	 * remove it.
10360 	 */
10361 	free_excluded_extents(fs_info, block_group);
10362 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10363 				  block_group->key.offset);
10364 
10365 	memcpy(&key, &block_group->key, sizeof(key));
10366 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10367 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10368 				  BTRFS_BLOCK_GROUP_RAID1 |
10369 				  BTRFS_BLOCK_GROUP_RAID10))
10370 		factor = 2;
10371 	else
10372 		factor = 1;
10373 
10374 	/* make sure this block group isn't part of an allocation cluster */
10375 	cluster = &fs_info->data_alloc_cluster;
10376 	spin_lock(&cluster->refill_lock);
10377 	btrfs_return_cluster_to_free_space(block_group, cluster);
10378 	spin_unlock(&cluster->refill_lock);
10379 
10380 	/*
10381 	 * make sure this block group isn't part of a metadata
10382 	 * allocation cluster
10383 	 */
10384 	cluster = &fs_info->meta_alloc_cluster;
10385 	spin_lock(&cluster->refill_lock);
10386 	btrfs_return_cluster_to_free_space(block_group, cluster);
10387 	spin_unlock(&cluster->refill_lock);
10388 
10389 	path = btrfs_alloc_path();
10390 	if (!path) {
10391 		ret = -ENOMEM;
10392 		goto out;
10393 	}
10394 
10395 	/*
10396 	 * get the inode first so any iput calls done for the io_list
10397 	 * aren't the final iput (no unlinks allowed now)
10398 	 */
10399 	inode = lookup_free_space_inode(fs_info, block_group, path);
10400 
10401 	mutex_lock(&trans->transaction->cache_write_mutex);
10402 	/*
10403 	 * make sure our free spache cache IO is done before remove the
10404 	 * free space inode
10405 	 */
10406 	spin_lock(&trans->transaction->dirty_bgs_lock);
10407 	if (!list_empty(&block_group->io_list)) {
10408 		list_del_init(&block_group->io_list);
10409 
10410 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10411 
10412 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10413 		btrfs_wait_cache_io(trans, block_group, path);
10414 		btrfs_put_block_group(block_group);
10415 		spin_lock(&trans->transaction->dirty_bgs_lock);
10416 	}
10417 
10418 	if (!list_empty(&block_group->dirty_list)) {
10419 		list_del_init(&block_group->dirty_list);
10420 		btrfs_put_block_group(block_group);
10421 	}
10422 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10423 	mutex_unlock(&trans->transaction->cache_write_mutex);
10424 
10425 	if (!IS_ERR(inode)) {
10426 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10427 		if (ret) {
10428 			btrfs_add_delayed_iput(inode);
10429 			goto out;
10430 		}
10431 		clear_nlink(inode);
10432 		/* One for the block groups ref */
10433 		spin_lock(&block_group->lock);
10434 		if (block_group->iref) {
10435 			block_group->iref = 0;
10436 			block_group->inode = NULL;
10437 			spin_unlock(&block_group->lock);
10438 			iput(inode);
10439 		} else {
10440 			spin_unlock(&block_group->lock);
10441 		}
10442 		/* One for our lookup ref */
10443 		btrfs_add_delayed_iput(inode);
10444 	}
10445 
10446 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10447 	key.offset = block_group->key.objectid;
10448 	key.type = 0;
10449 
10450 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10451 	if (ret < 0)
10452 		goto out;
10453 	if (ret > 0)
10454 		btrfs_release_path(path);
10455 	if (ret == 0) {
10456 		ret = btrfs_del_item(trans, tree_root, path);
10457 		if (ret)
10458 			goto out;
10459 		btrfs_release_path(path);
10460 	}
10461 
10462 	spin_lock(&fs_info->block_group_cache_lock);
10463 	rb_erase(&block_group->cache_node,
10464 		 &fs_info->block_group_cache_tree);
10465 	RB_CLEAR_NODE(&block_group->cache_node);
10466 
10467 	if (fs_info->first_logical_byte == block_group->key.objectid)
10468 		fs_info->first_logical_byte = (u64)-1;
10469 	spin_unlock(&fs_info->block_group_cache_lock);
10470 
10471 	down_write(&block_group->space_info->groups_sem);
10472 	/*
10473 	 * we must use list_del_init so people can check to see if they
10474 	 * are still on the list after taking the semaphore
10475 	 */
10476 	list_del_init(&block_group->list);
10477 	if (list_empty(&block_group->space_info->block_groups[index])) {
10478 		kobj = block_group->space_info->block_group_kobjs[index];
10479 		block_group->space_info->block_group_kobjs[index] = NULL;
10480 		clear_avail_alloc_bits(fs_info, block_group->flags);
10481 	}
10482 	up_write(&block_group->space_info->groups_sem);
10483 	if (kobj) {
10484 		kobject_del(kobj);
10485 		kobject_put(kobj);
10486 	}
10487 
10488 	if (block_group->has_caching_ctl)
10489 		caching_ctl = get_caching_control(block_group);
10490 	if (block_group->cached == BTRFS_CACHE_STARTED)
10491 		wait_block_group_cache_done(block_group);
10492 	if (block_group->has_caching_ctl) {
10493 		down_write(&fs_info->commit_root_sem);
10494 		if (!caching_ctl) {
10495 			struct btrfs_caching_control *ctl;
10496 
10497 			list_for_each_entry(ctl,
10498 				    &fs_info->caching_block_groups, list)
10499 				if (ctl->block_group == block_group) {
10500 					caching_ctl = ctl;
10501 					refcount_inc(&caching_ctl->count);
10502 					break;
10503 				}
10504 		}
10505 		if (caching_ctl)
10506 			list_del_init(&caching_ctl->list);
10507 		up_write(&fs_info->commit_root_sem);
10508 		if (caching_ctl) {
10509 			/* Once for the caching bgs list and once for us. */
10510 			put_caching_control(caching_ctl);
10511 			put_caching_control(caching_ctl);
10512 		}
10513 	}
10514 
10515 	spin_lock(&trans->transaction->dirty_bgs_lock);
10516 	if (!list_empty(&block_group->dirty_list)) {
10517 		WARN_ON(1);
10518 	}
10519 	if (!list_empty(&block_group->io_list)) {
10520 		WARN_ON(1);
10521 	}
10522 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10523 	btrfs_remove_free_space_cache(block_group);
10524 
10525 	spin_lock(&block_group->space_info->lock);
10526 	list_del_init(&block_group->ro_list);
10527 
10528 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10529 		WARN_ON(block_group->space_info->total_bytes
10530 			< block_group->key.offset);
10531 		WARN_ON(block_group->space_info->bytes_readonly
10532 			< block_group->key.offset);
10533 		WARN_ON(block_group->space_info->disk_total
10534 			< block_group->key.offset * factor);
10535 	}
10536 	block_group->space_info->total_bytes -= block_group->key.offset;
10537 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10538 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10539 
10540 	spin_unlock(&block_group->space_info->lock);
10541 
10542 	memcpy(&key, &block_group->key, sizeof(key));
10543 
10544 	mutex_lock(&fs_info->chunk_mutex);
10545 	if (!list_empty(&em->list)) {
10546 		/* We're in the transaction->pending_chunks list. */
10547 		free_extent_map(em);
10548 	}
10549 	spin_lock(&block_group->lock);
10550 	block_group->removed = 1;
10551 	/*
10552 	 * At this point trimming can't start on this block group, because we
10553 	 * removed the block group from the tree fs_info->block_group_cache_tree
10554 	 * so no one can't find it anymore and even if someone already got this
10555 	 * block group before we removed it from the rbtree, they have already
10556 	 * incremented block_group->trimming - if they didn't, they won't find
10557 	 * any free space entries because we already removed them all when we
10558 	 * called btrfs_remove_free_space_cache().
10559 	 *
10560 	 * And we must not remove the extent map from the fs_info->mapping_tree
10561 	 * to prevent the same logical address range and physical device space
10562 	 * ranges from being reused for a new block group. This is because our
10563 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10564 	 * completely transactionless, so while it is trimming a range the
10565 	 * currently running transaction might finish and a new one start,
10566 	 * allowing for new block groups to be created that can reuse the same
10567 	 * physical device locations unless we take this special care.
10568 	 *
10569 	 * There may also be an implicit trim operation if the file system
10570 	 * is mounted with -odiscard. The same protections must remain
10571 	 * in place until the extents have been discarded completely when
10572 	 * the transaction commit has completed.
10573 	 */
10574 	remove_em = (atomic_read(&block_group->trimming) == 0);
10575 	/*
10576 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10577 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10578 	 * before checking block_group->removed).
10579 	 */
10580 	if (!remove_em) {
10581 		/*
10582 		 * Our em might be in trans->transaction->pending_chunks which
10583 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10584 		 * and so is the fs_info->pinned_chunks list.
10585 		 *
10586 		 * So at this point we must be holding the chunk_mutex to avoid
10587 		 * any races with chunk allocation (more specifically at
10588 		 * volumes.c:contains_pending_extent()), to ensure it always
10589 		 * sees the em, either in the pending_chunks list or in the
10590 		 * pinned_chunks list.
10591 		 */
10592 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10593 	}
10594 	spin_unlock(&block_group->lock);
10595 
10596 	if (remove_em) {
10597 		struct extent_map_tree *em_tree;
10598 
10599 		em_tree = &fs_info->mapping_tree.map_tree;
10600 		write_lock(&em_tree->lock);
10601 		/*
10602 		 * The em might be in the pending_chunks list, so make sure the
10603 		 * chunk mutex is locked, since remove_extent_mapping() will
10604 		 * delete us from that list.
10605 		 */
10606 		remove_extent_mapping(em_tree, em);
10607 		write_unlock(&em_tree->lock);
10608 		/* once for the tree */
10609 		free_extent_map(em);
10610 	}
10611 
10612 	mutex_unlock(&fs_info->chunk_mutex);
10613 
10614 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10615 	if (ret)
10616 		goto out;
10617 
10618 	btrfs_put_block_group(block_group);
10619 	btrfs_put_block_group(block_group);
10620 
10621 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10622 	if (ret > 0)
10623 		ret = -EIO;
10624 	if (ret < 0)
10625 		goto out;
10626 
10627 	ret = btrfs_del_item(trans, root, path);
10628 out:
10629 	btrfs_free_path(path);
10630 	return ret;
10631 }
10632 
10633 struct btrfs_trans_handle *
10634 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10635 				     const u64 chunk_offset)
10636 {
10637 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10638 	struct extent_map *em;
10639 	struct map_lookup *map;
10640 	unsigned int num_items;
10641 
10642 	read_lock(&em_tree->lock);
10643 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10644 	read_unlock(&em_tree->lock);
10645 	ASSERT(em && em->start == chunk_offset);
10646 
10647 	/*
10648 	 * We need to reserve 3 + N units from the metadata space info in order
10649 	 * to remove a block group (done at btrfs_remove_chunk() and at
10650 	 * btrfs_remove_block_group()), which are used for:
10651 	 *
10652 	 * 1 unit for adding the free space inode's orphan (located in the tree
10653 	 * of tree roots).
10654 	 * 1 unit for deleting the block group item (located in the extent
10655 	 * tree).
10656 	 * 1 unit for deleting the free space item (located in tree of tree
10657 	 * roots).
10658 	 * N units for deleting N device extent items corresponding to each
10659 	 * stripe (located in the device tree).
10660 	 *
10661 	 * In order to remove a block group we also need to reserve units in the
10662 	 * system space info in order to update the chunk tree (update one or
10663 	 * more device items and remove one chunk item), but this is done at
10664 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10665 	 */
10666 	map = em->map_lookup;
10667 	num_items = 3 + map->num_stripes;
10668 	free_extent_map(em);
10669 
10670 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10671 							   num_items, 1);
10672 }
10673 
10674 /*
10675  * Process the unused_bgs list and remove any that don't have any allocated
10676  * space inside of them.
10677  */
10678 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10679 {
10680 	struct btrfs_block_group_cache *block_group;
10681 	struct btrfs_space_info *space_info;
10682 	struct btrfs_trans_handle *trans;
10683 	int ret = 0;
10684 
10685 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10686 		return;
10687 
10688 	spin_lock(&fs_info->unused_bgs_lock);
10689 	while (!list_empty(&fs_info->unused_bgs)) {
10690 		u64 start, end;
10691 		int trimming;
10692 
10693 		block_group = list_first_entry(&fs_info->unused_bgs,
10694 					       struct btrfs_block_group_cache,
10695 					       bg_list);
10696 		list_del_init(&block_group->bg_list);
10697 
10698 		space_info = block_group->space_info;
10699 
10700 		if (ret || btrfs_mixed_space_info(space_info)) {
10701 			btrfs_put_block_group(block_group);
10702 			continue;
10703 		}
10704 		spin_unlock(&fs_info->unused_bgs_lock);
10705 
10706 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10707 
10708 		/* Don't want to race with allocators so take the groups_sem */
10709 		down_write(&space_info->groups_sem);
10710 		spin_lock(&block_group->lock);
10711 		if (block_group->reserved ||
10712 		    btrfs_block_group_used(&block_group->item) ||
10713 		    block_group->ro ||
10714 		    list_is_singular(&block_group->list)) {
10715 			/*
10716 			 * We want to bail if we made new allocations or have
10717 			 * outstanding allocations in this block group.  We do
10718 			 * the ro check in case balance is currently acting on
10719 			 * this block group.
10720 			 */
10721 			spin_unlock(&block_group->lock);
10722 			up_write(&space_info->groups_sem);
10723 			goto next;
10724 		}
10725 		spin_unlock(&block_group->lock);
10726 
10727 		/* We don't want to force the issue, only flip if it's ok. */
10728 		ret = inc_block_group_ro(block_group, 0);
10729 		up_write(&space_info->groups_sem);
10730 		if (ret < 0) {
10731 			ret = 0;
10732 			goto next;
10733 		}
10734 
10735 		/*
10736 		 * Want to do this before we do anything else so we can recover
10737 		 * properly if we fail to join the transaction.
10738 		 */
10739 		trans = btrfs_start_trans_remove_block_group(fs_info,
10740 						     block_group->key.objectid);
10741 		if (IS_ERR(trans)) {
10742 			btrfs_dec_block_group_ro(block_group);
10743 			ret = PTR_ERR(trans);
10744 			goto next;
10745 		}
10746 
10747 		/*
10748 		 * We could have pending pinned extents for this block group,
10749 		 * just delete them, we don't care about them anymore.
10750 		 */
10751 		start = block_group->key.objectid;
10752 		end = start + block_group->key.offset - 1;
10753 		/*
10754 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10755 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10756 		 * another task might be running finish_extent_commit() for the
10757 		 * previous transaction N - 1, and have seen a range belonging
10758 		 * to the block group in freed_extents[] before we were able to
10759 		 * clear the whole block group range from freed_extents[]. This
10760 		 * means that task can lookup for the block group after we
10761 		 * unpinned it from freed_extents[] and removed it, leading to
10762 		 * a BUG_ON() at btrfs_unpin_extent_range().
10763 		 */
10764 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10765 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10766 				  EXTENT_DIRTY);
10767 		if (ret) {
10768 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10769 			btrfs_dec_block_group_ro(block_group);
10770 			goto end_trans;
10771 		}
10772 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10773 				  EXTENT_DIRTY);
10774 		if (ret) {
10775 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10776 			btrfs_dec_block_group_ro(block_group);
10777 			goto end_trans;
10778 		}
10779 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10780 
10781 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10782 		spin_lock(&space_info->lock);
10783 		spin_lock(&block_group->lock);
10784 
10785 		space_info->bytes_pinned -= block_group->pinned;
10786 		space_info->bytes_readonly += block_group->pinned;
10787 		percpu_counter_add(&space_info->total_bytes_pinned,
10788 				   -block_group->pinned);
10789 		block_group->pinned = 0;
10790 
10791 		spin_unlock(&block_group->lock);
10792 		spin_unlock(&space_info->lock);
10793 
10794 		/* DISCARD can flip during remount */
10795 		trimming = btrfs_test_opt(fs_info, DISCARD);
10796 
10797 		/* Implicit trim during transaction commit. */
10798 		if (trimming)
10799 			btrfs_get_block_group_trimming(block_group);
10800 
10801 		/*
10802 		 * Btrfs_remove_chunk will abort the transaction if things go
10803 		 * horribly wrong.
10804 		 */
10805 		ret = btrfs_remove_chunk(trans, fs_info,
10806 					 block_group->key.objectid);
10807 
10808 		if (ret) {
10809 			if (trimming)
10810 				btrfs_put_block_group_trimming(block_group);
10811 			goto end_trans;
10812 		}
10813 
10814 		/*
10815 		 * If we're not mounted with -odiscard, we can just forget
10816 		 * about this block group. Otherwise we'll need to wait
10817 		 * until transaction commit to do the actual discard.
10818 		 */
10819 		if (trimming) {
10820 			spin_lock(&fs_info->unused_bgs_lock);
10821 			/*
10822 			 * A concurrent scrub might have added us to the list
10823 			 * fs_info->unused_bgs, so use a list_move operation
10824 			 * to add the block group to the deleted_bgs list.
10825 			 */
10826 			list_move(&block_group->bg_list,
10827 				  &trans->transaction->deleted_bgs);
10828 			spin_unlock(&fs_info->unused_bgs_lock);
10829 			btrfs_get_block_group(block_group);
10830 		}
10831 end_trans:
10832 		btrfs_end_transaction(trans);
10833 next:
10834 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10835 		btrfs_put_block_group(block_group);
10836 		spin_lock(&fs_info->unused_bgs_lock);
10837 	}
10838 	spin_unlock(&fs_info->unused_bgs_lock);
10839 }
10840 
10841 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10842 {
10843 	struct btrfs_space_info *space_info;
10844 	struct btrfs_super_block *disk_super;
10845 	u64 features;
10846 	u64 flags;
10847 	int mixed = 0;
10848 	int ret;
10849 
10850 	disk_super = fs_info->super_copy;
10851 	if (!btrfs_super_root(disk_super))
10852 		return -EINVAL;
10853 
10854 	features = btrfs_super_incompat_flags(disk_super);
10855 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10856 		mixed = 1;
10857 
10858 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10859 	ret = create_space_info(fs_info, flags, &space_info);
10860 	if (ret)
10861 		goto out;
10862 
10863 	if (mixed) {
10864 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10865 		ret = create_space_info(fs_info, flags, &space_info);
10866 	} else {
10867 		flags = BTRFS_BLOCK_GROUP_METADATA;
10868 		ret = create_space_info(fs_info, flags, &space_info);
10869 		if (ret)
10870 			goto out;
10871 
10872 		flags = BTRFS_BLOCK_GROUP_DATA;
10873 		ret = create_space_info(fs_info, flags, &space_info);
10874 	}
10875 out:
10876 	return ret;
10877 }
10878 
10879 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10880 				   u64 start, u64 end)
10881 {
10882 	return unpin_extent_range(fs_info, start, end, false);
10883 }
10884 
10885 /*
10886  * It used to be that old block groups would be left around forever.
10887  * Iterating over them would be enough to trim unused space.  Since we
10888  * now automatically remove them, we also need to iterate over unallocated
10889  * space.
10890  *
10891  * We don't want a transaction for this since the discard may take a
10892  * substantial amount of time.  We don't require that a transaction be
10893  * running, but we do need to take a running transaction into account
10894  * to ensure that we're not discarding chunks that were released in
10895  * the current transaction.
10896  *
10897  * Holding the chunks lock will prevent other threads from allocating
10898  * or releasing chunks, but it won't prevent a running transaction
10899  * from committing and releasing the memory that the pending chunks
10900  * list head uses.  For that, we need to take a reference to the
10901  * transaction.
10902  */
10903 static int btrfs_trim_free_extents(struct btrfs_device *device,
10904 				   u64 minlen, u64 *trimmed)
10905 {
10906 	u64 start = 0, len = 0;
10907 	int ret;
10908 
10909 	*trimmed = 0;
10910 
10911 	/* Not writeable = nothing to do. */
10912 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10913 		return 0;
10914 
10915 	/* No free space = nothing to do. */
10916 	if (device->total_bytes <= device->bytes_used)
10917 		return 0;
10918 
10919 	ret = 0;
10920 
10921 	while (1) {
10922 		struct btrfs_fs_info *fs_info = device->fs_info;
10923 		struct btrfs_transaction *trans;
10924 		u64 bytes;
10925 
10926 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10927 		if (ret)
10928 			return ret;
10929 
10930 		down_read(&fs_info->commit_root_sem);
10931 
10932 		spin_lock(&fs_info->trans_lock);
10933 		trans = fs_info->running_transaction;
10934 		if (trans)
10935 			refcount_inc(&trans->use_count);
10936 		spin_unlock(&fs_info->trans_lock);
10937 
10938 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10939 						 &start, &len);
10940 		if (trans)
10941 			btrfs_put_transaction(trans);
10942 
10943 		if (ret) {
10944 			up_read(&fs_info->commit_root_sem);
10945 			mutex_unlock(&fs_info->chunk_mutex);
10946 			if (ret == -ENOSPC)
10947 				ret = 0;
10948 			break;
10949 		}
10950 
10951 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10952 		up_read(&fs_info->commit_root_sem);
10953 		mutex_unlock(&fs_info->chunk_mutex);
10954 
10955 		if (ret)
10956 			break;
10957 
10958 		start += len;
10959 		*trimmed += bytes;
10960 
10961 		if (fatal_signal_pending(current)) {
10962 			ret = -ERESTARTSYS;
10963 			break;
10964 		}
10965 
10966 		cond_resched();
10967 	}
10968 
10969 	return ret;
10970 }
10971 
10972 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10973 {
10974 	struct btrfs_block_group_cache *cache = NULL;
10975 	struct btrfs_device *device;
10976 	struct list_head *devices;
10977 	u64 group_trimmed;
10978 	u64 start;
10979 	u64 end;
10980 	u64 trimmed = 0;
10981 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10982 	int ret = 0;
10983 
10984 	/*
10985 	 * try to trim all FS space, our block group may start from non-zero.
10986 	 */
10987 	if (range->len == total_bytes)
10988 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10989 	else
10990 		cache = btrfs_lookup_block_group(fs_info, range->start);
10991 
10992 	while (cache) {
10993 		if (cache->key.objectid >= (range->start + range->len)) {
10994 			btrfs_put_block_group(cache);
10995 			break;
10996 		}
10997 
10998 		start = max(range->start, cache->key.objectid);
10999 		end = min(range->start + range->len,
11000 				cache->key.objectid + cache->key.offset);
11001 
11002 		if (end - start >= range->minlen) {
11003 			if (!block_group_cache_done(cache)) {
11004 				ret = cache_block_group(cache, 0);
11005 				if (ret) {
11006 					btrfs_put_block_group(cache);
11007 					break;
11008 				}
11009 				ret = wait_block_group_cache_done(cache);
11010 				if (ret) {
11011 					btrfs_put_block_group(cache);
11012 					break;
11013 				}
11014 			}
11015 			ret = btrfs_trim_block_group(cache,
11016 						     &group_trimmed,
11017 						     start,
11018 						     end,
11019 						     range->minlen);
11020 
11021 			trimmed += group_trimmed;
11022 			if (ret) {
11023 				btrfs_put_block_group(cache);
11024 				break;
11025 			}
11026 		}
11027 
11028 		cache = next_block_group(fs_info, cache);
11029 	}
11030 
11031 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11032 	devices = &fs_info->fs_devices->alloc_list;
11033 	list_for_each_entry(device, devices, dev_alloc_list) {
11034 		ret = btrfs_trim_free_extents(device, range->minlen,
11035 					      &group_trimmed);
11036 		if (ret)
11037 			break;
11038 
11039 		trimmed += group_trimmed;
11040 	}
11041 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11042 
11043 	range->len = trimmed;
11044 	return ret;
11045 }
11046 
11047 /*
11048  * btrfs_{start,end}_write_no_snapshotting() are similar to
11049  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11050  * data into the page cache through nocow before the subvolume is snapshoted,
11051  * but flush the data into disk after the snapshot creation, or to prevent
11052  * operations while snapshotting is ongoing and that cause the snapshot to be
11053  * inconsistent (writes followed by expanding truncates for example).
11054  */
11055 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11056 {
11057 	percpu_counter_dec(&root->subv_writers->counter);
11058 	/*
11059 	 * Make sure counter is updated before we wake up waiters.
11060 	 */
11061 	smp_mb();
11062 	if (waitqueue_active(&root->subv_writers->wait))
11063 		wake_up(&root->subv_writers->wait);
11064 }
11065 
11066 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11067 {
11068 	if (atomic_read(&root->will_be_snapshotted))
11069 		return 0;
11070 
11071 	percpu_counter_inc(&root->subv_writers->counter);
11072 	/*
11073 	 * Make sure counter is updated before we check for snapshot creation.
11074 	 */
11075 	smp_mb();
11076 	if (atomic_read(&root->will_be_snapshotted)) {
11077 		btrfs_end_write_no_snapshotting(root);
11078 		return 0;
11079 	}
11080 	return 1;
11081 }
11082 
11083 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11084 {
11085 	while (true) {
11086 		int ret;
11087 
11088 		ret = btrfs_start_write_no_snapshotting(root);
11089 		if (ret)
11090 			break;
11091 		wait_var_event(&root->will_be_snapshotted,
11092 			       !atomic_read(&root->will_be_snapshotted));
11093 	}
11094 }
11095