1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include <linux/lockdep.h> 30 #include <linux/crc32c.h> 31 #include "tree-log.h" 32 #include "disk-io.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "free-space-tree.h" 39 #include "math.h" 40 #include "sysfs.h" 41 #include "qgroup.h" 42 #include "ref-verify.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 /* 47 * control flags for do_chunk_alloc's force field 48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 49 * if we really need one. 50 * 51 * CHUNK_ALLOC_LIMITED means to only try and allocate one 52 * if we have very few chunks already allocated. This is 53 * used as part of the clustering code to help make sure 54 * we have a good pool of storage to cluster in, without 55 * filling the FS with empty chunks 56 * 57 * CHUNK_ALLOC_FORCE means it must try to allocate one 58 * 59 */ 60 enum { 61 CHUNK_ALLOC_NO_FORCE = 0, 62 CHUNK_ALLOC_LIMITED = 1, 63 CHUNK_ALLOC_FORCE = 2, 64 }; 65 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_fs_info *fs_info, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_fs_info *fs_info, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_fs_info *fs_info, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_fs_info *fs_info, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 94 u64 num_bytes); 95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 96 struct btrfs_space_info *space_info, 97 u64 num_bytes); 98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 99 struct btrfs_space_info *space_info, 100 u64 num_bytes); 101 102 static noinline int 103 block_group_cache_done(struct btrfs_block_group_cache *cache) 104 { 105 smp_mb(); 106 return cache->cached == BTRFS_CACHE_FINISHED || 107 cache->cached == BTRFS_CACHE_ERROR; 108 } 109 110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 111 { 112 return (cache->flags & bits) == bits; 113 } 114 115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 116 { 117 atomic_inc(&cache->count); 118 } 119 120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 121 { 122 if (atomic_dec_and_test(&cache->count)) { 123 WARN_ON(cache->pinned > 0); 124 WARN_ON(cache->reserved > 0); 125 126 /* 127 * If not empty, someone is still holding mutex of 128 * full_stripe_lock, which can only be released by caller. 129 * And it will definitely cause use-after-free when caller 130 * tries to release full stripe lock. 131 * 132 * No better way to resolve, but only to warn. 133 */ 134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE); 232 set_extent_bits(&fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE); 247 clear_extent_bits(&fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE); 249 } 250 251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(fs_info, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 271 bytenr, 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(fs_info, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 refcount_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (refcount_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 333 { 334 struct btrfs_fs_info *fs_info = block_group->fs_info; 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 fs_info->nodesize : fs_info->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 398 struct btrfs_fs_info *fs_info = block_group->fs_info; 399 struct btrfs_root *extent_root = fs_info->extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 path = btrfs_alloc_path(); 410 if (!path) 411 return -ENOMEM; 412 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 414 415 #ifdef CONFIG_BTRFS_DEBUG 416 /* 417 * If we're fragmenting we don't want to make anybody think we can 418 * allocate from this block group until we've had a chance to fragment 419 * the free space. 420 */ 421 if (btrfs_should_fragment_free_space(block_group)) 422 wakeup = false; 423 #endif 424 /* 425 * We don't want to deadlock with somebody trying to allocate a new 426 * extent for the extent root while also trying to search the extent 427 * root to add free space. So we skip locking and search the commit 428 * root, since its read-only 429 */ 430 path->skip_locking = 1; 431 path->search_commit_root = 1; 432 path->reada = READA_FORWARD; 433 434 key.objectid = last; 435 key.offset = 0; 436 key.type = BTRFS_EXTENT_ITEM_KEY; 437 438 next: 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 440 if (ret < 0) 441 goto out; 442 443 leaf = path->nodes[0]; 444 nritems = btrfs_header_nritems(leaf); 445 446 while (1) { 447 if (btrfs_fs_closing(fs_info) > 1) { 448 last = (u64)-1; 449 break; 450 } 451 452 if (path->slots[0] < nritems) { 453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 454 } else { 455 ret = find_next_key(path, 0, &key); 456 if (ret) 457 break; 458 459 if (need_resched() || 460 rwsem_is_contended(&fs_info->commit_root_sem)) { 461 if (wakeup) 462 caching_ctl->progress = last; 463 btrfs_release_path(path); 464 up_read(&fs_info->commit_root_sem); 465 mutex_unlock(&caching_ctl->mutex); 466 cond_resched(); 467 mutex_lock(&caching_ctl->mutex); 468 down_read(&fs_info->commit_root_sem); 469 goto next; 470 } 471 472 ret = btrfs_next_leaf(extent_root, path); 473 if (ret < 0) 474 goto out; 475 if (ret) 476 break; 477 leaf = path->nodes[0]; 478 nritems = btrfs_header_nritems(leaf); 479 continue; 480 } 481 482 if (key.objectid < last) { 483 key.objectid = last; 484 key.offset = 0; 485 key.type = BTRFS_EXTENT_ITEM_KEY; 486 487 if (wakeup) 488 caching_ctl->progress = last; 489 btrfs_release_path(path); 490 goto next; 491 } 492 493 if (key.objectid < block_group->key.objectid) { 494 path->slots[0]++; 495 continue; 496 } 497 498 if (key.objectid >= block_group->key.objectid + 499 block_group->key.offset) 500 break; 501 502 if (key.type == BTRFS_EXTENT_ITEM_KEY || 503 key.type == BTRFS_METADATA_ITEM_KEY) { 504 total_found += add_new_free_space(block_group, 505 fs_info, last, 506 key.objectid); 507 if (key.type == BTRFS_METADATA_ITEM_KEY) 508 last = key.objectid + 509 fs_info->nodesize; 510 else 511 last = key.objectid + key.offset; 512 513 if (total_found > CACHING_CTL_WAKE_UP) { 514 total_found = 0; 515 if (wakeup) 516 wake_up(&caching_ctl->wait); 517 } 518 } 519 path->slots[0]++; 520 } 521 ret = 0; 522 523 total_found += add_new_free_space(block_group, fs_info, last, 524 block_group->key.objectid + 525 block_group->key.offset); 526 caching_ctl->progress = (u64)-1; 527 528 out: 529 btrfs_free_path(path); 530 return ret; 531 } 532 533 static noinline void caching_thread(struct btrfs_work *work) 534 { 535 struct btrfs_block_group_cache *block_group; 536 struct btrfs_fs_info *fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 int ret; 539 540 caching_ctl = container_of(work, struct btrfs_caching_control, work); 541 block_group = caching_ctl->block_group; 542 fs_info = block_group->fs_info; 543 544 mutex_lock(&caching_ctl->mutex); 545 down_read(&fs_info->commit_root_sem); 546 547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 548 ret = load_free_space_tree(caching_ctl); 549 else 550 ret = load_extent_tree_free(caching_ctl); 551 552 spin_lock(&block_group->lock); 553 block_group->caching_ctl = NULL; 554 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 555 spin_unlock(&block_group->lock); 556 557 #ifdef CONFIG_BTRFS_DEBUG 558 if (btrfs_should_fragment_free_space(block_group)) { 559 u64 bytes_used; 560 561 spin_lock(&block_group->space_info->lock); 562 spin_lock(&block_group->lock); 563 bytes_used = block_group->key.offset - 564 btrfs_block_group_used(&block_group->item); 565 block_group->space_info->bytes_used += bytes_used >> 1; 566 spin_unlock(&block_group->lock); 567 spin_unlock(&block_group->space_info->lock); 568 fragment_free_space(block_group); 569 } 570 #endif 571 572 caching_ctl->progress = (u64)-1; 573 574 up_read(&fs_info->commit_root_sem); 575 free_excluded_extents(fs_info, block_group); 576 mutex_unlock(&caching_ctl->mutex); 577 578 wake_up(&caching_ctl->wait); 579 580 put_caching_control(caching_ctl); 581 btrfs_put_block_group(block_group); 582 } 583 584 static int cache_block_group(struct btrfs_block_group_cache *cache, 585 int load_cache_only) 586 { 587 DEFINE_WAIT(wait); 588 struct btrfs_fs_info *fs_info = cache->fs_info; 589 struct btrfs_caching_control *caching_ctl; 590 int ret = 0; 591 592 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 593 if (!caching_ctl) 594 return -ENOMEM; 595 596 INIT_LIST_HEAD(&caching_ctl->list); 597 mutex_init(&caching_ctl->mutex); 598 init_waitqueue_head(&caching_ctl->wait); 599 caching_ctl->block_group = cache; 600 caching_ctl->progress = cache->key.objectid; 601 refcount_set(&caching_ctl->count, 1); 602 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 603 caching_thread, NULL, NULL); 604 605 spin_lock(&cache->lock); 606 /* 607 * This should be a rare occasion, but this could happen I think in the 608 * case where one thread starts to load the space cache info, and then 609 * some other thread starts a transaction commit which tries to do an 610 * allocation while the other thread is still loading the space cache 611 * info. The previous loop should have kept us from choosing this block 612 * group, but if we've moved to the state where we will wait on caching 613 * block groups we need to first check if we're doing a fast load here, 614 * so we can wait for it to finish, otherwise we could end up allocating 615 * from a block group who's cache gets evicted for one reason or 616 * another. 617 */ 618 while (cache->cached == BTRFS_CACHE_FAST) { 619 struct btrfs_caching_control *ctl; 620 621 ctl = cache->caching_ctl; 622 refcount_inc(&ctl->count); 623 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 624 spin_unlock(&cache->lock); 625 626 schedule(); 627 628 finish_wait(&ctl->wait, &wait); 629 put_caching_control(ctl); 630 spin_lock(&cache->lock); 631 } 632 633 if (cache->cached != BTRFS_CACHE_NO) { 634 spin_unlock(&cache->lock); 635 kfree(caching_ctl); 636 return 0; 637 } 638 WARN_ON(cache->caching_ctl); 639 cache->caching_ctl = caching_ctl; 640 cache->cached = BTRFS_CACHE_FAST; 641 spin_unlock(&cache->lock); 642 643 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 644 mutex_lock(&caching_ctl->mutex); 645 ret = load_free_space_cache(fs_info, cache); 646 647 spin_lock(&cache->lock); 648 if (ret == 1) { 649 cache->caching_ctl = NULL; 650 cache->cached = BTRFS_CACHE_FINISHED; 651 cache->last_byte_to_unpin = (u64)-1; 652 caching_ctl->progress = (u64)-1; 653 } else { 654 if (load_cache_only) { 655 cache->caching_ctl = NULL; 656 cache->cached = BTRFS_CACHE_NO; 657 } else { 658 cache->cached = BTRFS_CACHE_STARTED; 659 cache->has_caching_ctl = 1; 660 } 661 } 662 spin_unlock(&cache->lock); 663 #ifdef CONFIG_BTRFS_DEBUG 664 if (ret == 1 && 665 btrfs_should_fragment_free_space(cache)) { 666 u64 bytes_used; 667 668 spin_lock(&cache->space_info->lock); 669 spin_lock(&cache->lock); 670 bytes_used = cache->key.offset - 671 btrfs_block_group_used(&cache->item); 672 cache->space_info->bytes_used += bytes_used >> 1; 673 spin_unlock(&cache->lock); 674 spin_unlock(&cache->space_info->lock); 675 fragment_free_space(cache); 676 } 677 #endif 678 mutex_unlock(&caching_ctl->mutex); 679 680 wake_up(&caching_ctl->wait); 681 if (ret == 1) { 682 put_caching_control(caching_ctl); 683 free_excluded_extents(fs_info, cache); 684 return 0; 685 } 686 } else { 687 /* 688 * We're either using the free space tree or no caching at all. 689 * Set cached to the appropriate value and wakeup any waiters. 690 */ 691 spin_lock(&cache->lock); 692 if (load_cache_only) { 693 cache->caching_ctl = NULL; 694 cache->cached = BTRFS_CACHE_NO; 695 } else { 696 cache->cached = BTRFS_CACHE_STARTED; 697 cache->has_caching_ctl = 1; 698 } 699 spin_unlock(&cache->lock); 700 wake_up(&caching_ctl->wait); 701 } 702 703 if (load_cache_only) { 704 put_caching_control(caching_ctl); 705 return 0; 706 } 707 708 down_write(&fs_info->commit_root_sem); 709 refcount_inc(&caching_ctl->count); 710 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 711 up_write(&fs_info->commit_root_sem); 712 713 btrfs_get_block_group(cache); 714 715 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 716 717 return ret; 718 } 719 720 /* 721 * return the block group that starts at or after bytenr 722 */ 723 static struct btrfs_block_group_cache * 724 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 725 { 726 return block_group_cache_tree_search(info, bytenr, 0); 727 } 728 729 /* 730 * return the block group that contains the given bytenr 731 */ 732 struct btrfs_block_group_cache *btrfs_lookup_block_group( 733 struct btrfs_fs_info *info, 734 u64 bytenr) 735 { 736 return block_group_cache_tree_search(info, bytenr, 1); 737 } 738 739 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 740 u64 flags) 741 { 742 struct list_head *head = &info->space_info; 743 struct btrfs_space_info *found; 744 745 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 746 747 rcu_read_lock(); 748 list_for_each_entry_rcu(found, head, list) { 749 if (found->flags & flags) { 750 rcu_read_unlock(); 751 return found; 752 } 753 } 754 rcu_read_unlock(); 755 return NULL; 756 } 757 758 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 759 u64 owner, u64 root_objectid) 760 { 761 struct btrfs_space_info *space_info; 762 u64 flags; 763 764 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 765 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 766 flags = BTRFS_BLOCK_GROUP_SYSTEM; 767 else 768 flags = BTRFS_BLOCK_GROUP_METADATA; 769 } else { 770 flags = BTRFS_BLOCK_GROUP_DATA; 771 } 772 773 space_info = __find_space_info(fs_info, flags); 774 ASSERT(space_info); 775 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 776 } 777 778 /* 779 * after adding space to the filesystem, we need to clear the full flags 780 * on all the space infos. 781 */ 782 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 783 { 784 struct list_head *head = &info->space_info; 785 struct btrfs_space_info *found; 786 787 rcu_read_lock(); 788 list_for_each_entry_rcu(found, head, list) 789 found->full = 0; 790 rcu_read_unlock(); 791 } 792 793 /* simple helper to search for an existing data extent at a given offset */ 794 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 795 { 796 int ret; 797 struct btrfs_key key; 798 struct btrfs_path *path; 799 800 path = btrfs_alloc_path(); 801 if (!path) 802 return -ENOMEM; 803 804 key.objectid = start; 805 key.offset = len; 806 key.type = BTRFS_EXTENT_ITEM_KEY; 807 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 808 btrfs_free_path(path); 809 return ret; 810 } 811 812 /* 813 * helper function to lookup reference count and flags of a tree block. 814 * 815 * the head node for delayed ref is used to store the sum of all the 816 * reference count modifications queued up in the rbtree. the head 817 * node may also store the extent flags to set. This way you can check 818 * to see what the reference count and extent flags would be if all of 819 * the delayed refs are not processed. 820 */ 821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 822 struct btrfs_fs_info *fs_info, u64 bytenr, 823 u64 offset, int metadata, u64 *refs, u64 *flags) 824 { 825 struct btrfs_delayed_ref_head *head; 826 struct btrfs_delayed_ref_root *delayed_refs; 827 struct btrfs_path *path; 828 struct btrfs_extent_item *ei; 829 struct extent_buffer *leaf; 830 struct btrfs_key key; 831 u32 item_size; 832 u64 num_refs; 833 u64 extent_flags; 834 int ret; 835 836 /* 837 * If we don't have skinny metadata, don't bother doing anything 838 * different 839 */ 840 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 841 offset = fs_info->nodesize; 842 metadata = 0; 843 } 844 845 path = btrfs_alloc_path(); 846 if (!path) 847 return -ENOMEM; 848 849 if (!trans) { 850 path->skip_locking = 1; 851 path->search_commit_root = 1; 852 } 853 854 search_again: 855 key.objectid = bytenr; 856 key.offset = offset; 857 if (metadata) 858 key.type = BTRFS_METADATA_ITEM_KEY; 859 else 860 key.type = BTRFS_EXTENT_ITEM_KEY; 861 862 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 863 if (ret < 0) 864 goto out_free; 865 866 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 867 if (path->slots[0]) { 868 path->slots[0]--; 869 btrfs_item_key_to_cpu(path->nodes[0], &key, 870 path->slots[0]); 871 if (key.objectid == bytenr && 872 key.type == BTRFS_EXTENT_ITEM_KEY && 873 key.offset == fs_info->nodesize) 874 ret = 0; 875 } 876 } 877 878 if (ret == 0) { 879 leaf = path->nodes[0]; 880 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 881 if (item_size >= sizeof(*ei)) { 882 ei = btrfs_item_ptr(leaf, path->slots[0], 883 struct btrfs_extent_item); 884 num_refs = btrfs_extent_refs(leaf, ei); 885 extent_flags = btrfs_extent_flags(leaf, ei); 886 } else { 887 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 888 struct btrfs_extent_item_v0 *ei0; 889 BUG_ON(item_size != sizeof(*ei0)); 890 ei0 = btrfs_item_ptr(leaf, path->slots[0], 891 struct btrfs_extent_item_v0); 892 num_refs = btrfs_extent_refs_v0(leaf, ei0); 893 /* FIXME: this isn't correct for data */ 894 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 895 #else 896 BUG(); 897 #endif 898 } 899 BUG_ON(num_refs == 0); 900 } else { 901 num_refs = 0; 902 extent_flags = 0; 903 ret = 0; 904 } 905 906 if (!trans) 907 goto out; 908 909 delayed_refs = &trans->transaction->delayed_refs; 910 spin_lock(&delayed_refs->lock); 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 912 if (head) { 913 if (!mutex_trylock(&head->mutex)) { 914 refcount_inc(&head->refs); 915 spin_unlock(&delayed_refs->lock); 916 917 btrfs_release_path(path); 918 919 /* 920 * Mutex was contended, block until it's released and try 921 * again 922 */ 923 mutex_lock(&head->mutex); 924 mutex_unlock(&head->mutex); 925 btrfs_put_delayed_ref_head(head); 926 goto search_again; 927 } 928 spin_lock(&head->lock); 929 if (head->extent_op && head->extent_op->update_flags) 930 extent_flags |= head->extent_op->flags_to_set; 931 else 932 BUG_ON(num_refs == 0); 933 934 num_refs += head->ref_mod; 935 spin_unlock(&head->lock); 936 mutex_unlock(&head->mutex); 937 } 938 spin_unlock(&delayed_refs->lock); 939 out: 940 WARN_ON(num_refs == 0); 941 if (refs) 942 *refs = num_refs; 943 if (flags) 944 *flags = extent_flags; 945 out_free: 946 btrfs_free_path(path); 947 return ret; 948 } 949 950 /* 951 * Back reference rules. Back refs have three main goals: 952 * 953 * 1) differentiate between all holders of references to an extent so that 954 * when a reference is dropped we can make sure it was a valid reference 955 * before freeing the extent. 956 * 957 * 2) Provide enough information to quickly find the holders of an extent 958 * if we notice a given block is corrupted or bad. 959 * 960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 961 * maintenance. This is actually the same as #2, but with a slightly 962 * different use case. 963 * 964 * There are two kinds of back refs. The implicit back refs is optimized 965 * for pointers in non-shared tree blocks. For a given pointer in a block, 966 * back refs of this kind provide information about the block's owner tree 967 * and the pointer's key. These information allow us to find the block by 968 * b-tree searching. The full back refs is for pointers in tree blocks not 969 * referenced by their owner trees. The location of tree block is recorded 970 * in the back refs. Actually the full back refs is generic, and can be 971 * used in all cases the implicit back refs is used. The major shortcoming 972 * of the full back refs is its overhead. Every time a tree block gets 973 * COWed, we have to update back refs entry for all pointers in it. 974 * 975 * For a newly allocated tree block, we use implicit back refs for 976 * pointers in it. This means most tree related operations only involve 977 * implicit back refs. For a tree block created in old transaction, the 978 * only way to drop a reference to it is COW it. So we can detect the 979 * event that tree block loses its owner tree's reference and do the 980 * back refs conversion. 981 * 982 * When a tree block is COWed through a tree, there are four cases: 983 * 984 * The reference count of the block is one and the tree is the block's 985 * owner tree. Nothing to do in this case. 986 * 987 * The reference count of the block is one and the tree is not the 988 * block's owner tree. In this case, full back refs is used for pointers 989 * in the block. Remove these full back refs, add implicit back refs for 990 * every pointers in the new block. 991 * 992 * The reference count of the block is greater than one and the tree is 993 * the block's owner tree. In this case, implicit back refs is used for 994 * pointers in the block. Add full back refs for every pointers in the 995 * block, increase lower level extents' reference counts. The original 996 * implicit back refs are entailed to the new block. 997 * 998 * The reference count of the block is greater than one and the tree is 999 * not the block's owner tree. Add implicit back refs for every pointer in 1000 * the new block, increase lower level extents' reference count. 1001 * 1002 * Back Reference Key composing: 1003 * 1004 * The key objectid corresponds to the first byte in the extent, 1005 * The key type is used to differentiate between types of back refs. 1006 * There are different meanings of the key offset for different types 1007 * of back refs. 1008 * 1009 * File extents can be referenced by: 1010 * 1011 * - multiple snapshots, subvolumes, or different generations in one subvol 1012 * - different files inside a single subvolume 1013 * - different offsets inside a file (bookend extents in file.c) 1014 * 1015 * The extent ref structure for the implicit back refs has fields for: 1016 * 1017 * - Objectid of the subvolume root 1018 * - objectid of the file holding the reference 1019 * - original offset in the file 1020 * - how many bookend extents 1021 * 1022 * The key offset for the implicit back refs is hash of the first 1023 * three fields. 1024 * 1025 * The extent ref structure for the full back refs has field for: 1026 * 1027 * - number of pointers in the tree leaf 1028 * 1029 * The key offset for the implicit back refs is the first byte of 1030 * the tree leaf 1031 * 1032 * When a file extent is allocated, The implicit back refs is used. 1033 * the fields are filled in: 1034 * 1035 * (root_key.objectid, inode objectid, offset in file, 1) 1036 * 1037 * When a file extent is removed file truncation, we find the 1038 * corresponding implicit back refs and check the following fields: 1039 * 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1041 * 1042 * Btree extents can be referenced by: 1043 * 1044 * - Different subvolumes 1045 * 1046 * Both the implicit back refs and the full back refs for tree blocks 1047 * only consist of key. The key offset for the implicit back refs is 1048 * objectid of block's owner tree. The key offset for the full back refs 1049 * is the first byte of parent block. 1050 * 1051 * When implicit back refs is used, information about the lowest key and 1052 * level of the tree block are required. These information are stored in 1053 * tree block info structure. 1054 */ 1055 1056 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1057 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1058 struct btrfs_fs_info *fs_info, 1059 struct btrfs_path *path, 1060 u64 owner, u32 extra_size) 1061 { 1062 struct btrfs_root *root = fs_info->extent_root; 1063 struct btrfs_extent_item *item; 1064 struct btrfs_extent_item_v0 *ei0; 1065 struct btrfs_extent_ref_v0 *ref0; 1066 struct btrfs_tree_block_info *bi; 1067 struct extent_buffer *leaf; 1068 struct btrfs_key key; 1069 struct btrfs_key found_key; 1070 u32 new_size = sizeof(*item); 1071 u64 refs; 1072 int ret; 1073 1074 leaf = path->nodes[0]; 1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1076 1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1078 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1079 struct btrfs_extent_item_v0); 1080 refs = btrfs_extent_refs_v0(leaf, ei0); 1081 1082 if (owner == (u64)-1) { 1083 while (1) { 1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1085 ret = btrfs_next_leaf(root, path); 1086 if (ret < 0) 1087 return ret; 1088 BUG_ON(ret > 0); /* Corruption */ 1089 leaf = path->nodes[0]; 1090 } 1091 btrfs_item_key_to_cpu(leaf, &found_key, 1092 path->slots[0]); 1093 BUG_ON(key.objectid != found_key.objectid); 1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1095 path->slots[0]++; 1096 continue; 1097 } 1098 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1099 struct btrfs_extent_ref_v0); 1100 owner = btrfs_ref_objectid_v0(leaf, ref0); 1101 break; 1102 } 1103 } 1104 btrfs_release_path(path); 1105 1106 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1107 new_size += sizeof(*bi); 1108 1109 new_size -= sizeof(*ei0); 1110 ret = btrfs_search_slot(trans, root, &key, path, 1111 new_size + extra_size, 1); 1112 if (ret < 0) 1113 return ret; 1114 BUG_ON(ret); /* Corruption */ 1115 1116 btrfs_extend_item(fs_info, path, new_size); 1117 1118 leaf = path->nodes[0]; 1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1120 btrfs_set_extent_refs(leaf, item, refs); 1121 /* FIXME: get real generation */ 1122 btrfs_set_extent_generation(leaf, item, 0); 1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1124 btrfs_set_extent_flags(leaf, item, 1125 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1126 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1127 bi = (struct btrfs_tree_block_info *)(item + 1); 1128 /* FIXME: get first key of the block */ 1129 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1130 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1131 } else { 1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1133 } 1134 btrfs_mark_buffer_dirty(leaf); 1135 return 0; 1136 } 1137 #endif 1138 1139 /* 1140 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1141 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1142 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1143 */ 1144 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1145 struct btrfs_extent_inline_ref *iref, 1146 enum btrfs_inline_ref_type is_data) 1147 { 1148 int type = btrfs_extent_inline_ref_type(eb, iref); 1149 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1150 1151 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1152 type == BTRFS_SHARED_BLOCK_REF_KEY || 1153 type == BTRFS_SHARED_DATA_REF_KEY || 1154 type == BTRFS_EXTENT_DATA_REF_KEY) { 1155 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1156 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1157 return type; 1158 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1159 ASSERT(eb->fs_info); 1160 /* 1161 * Every shared one has parent tree 1162 * block, which must be aligned to 1163 * nodesize. 1164 */ 1165 if (offset && 1166 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1167 return type; 1168 } 1169 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1170 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1171 return type; 1172 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1173 ASSERT(eb->fs_info); 1174 /* 1175 * Every shared one has parent tree 1176 * block, which must be aligned to 1177 * nodesize. 1178 */ 1179 if (offset && 1180 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1181 return type; 1182 } 1183 } else { 1184 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1185 return type; 1186 } 1187 } 1188 1189 btrfs_print_leaf((struct extent_buffer *)eb); 1190 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1191 eb->start, type); 1192 WARN_ON(1); 1193 1194 return BTRFS_REF_TYPE_INVALID; 1195 } 1196 1197 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1198 { 1199 u32 high_crc = ~(u32)0; 1200 u32 low_crc = ~(u32)0; 1201 __le64 lenum; 1202 1203 lenum = cpu_to_le64(root_objectid); 1204 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1205 lenum = cpu_to_le64(owner); 1206 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1207 lenum = cpu_to_le64(offset); 1208 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1209 1210 return ((u64)high_crc << 31) ^ (u64)low_crc; 1211 } 1212 1213 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1214 struct btrfs_extent_data_ref *ref) 1215 { 1216 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1217 btrfs_extent_data_ref_objectid(leaf, ref), 1218 btrfs_extent_data_ref_offset(leaf, ref)); 1219 } 1220 1221 static int match_extent_data_ref(struct extent_buffer *leaf, 1222 struct btrfs_extent_data_ref *ref, 1223 u64 root_objectid, u64 owner, u64 offset) 1224 { 1225 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1226 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1227 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1228 return 0; 1229 return 1; 1230 } 1231 1232 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1233 struct btrfs_fs_info *fs_info, 1234 struct btrfs_path *path, 1235 u64 bytenr, u64 parent, 1236 u64 root_objectid, 1237 u64 owner, u64 offset) 1238 { 1239 struct btrfs_root *root = fs_info->extent_root; 1240 struct btrfs_key key; 1241 struct btrfs_extent_data_ref *ref; 1242 struct extent_buffer *leaf; 1243 u32 nritems; 1244 int ret; 1245 int recow; 1246 int err = -ENOENT; 1247 1248 key.objectid = bytenr; 1249 if (parent) { 1250 key.type = BTRFS_SHARED_DATA_REF_KEY; 1251 key.offset = parent; 1252 } else { 1253 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1254 key.offset = hash_extent_data_ref(root_objectid, 1255 owner, offset); 1256 } 1257 again: 1258 recow = 0; 1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1260 if (ret < 0) { 1261 err = ret; 1262 goto fail; 1263 } 1264 1265 if (parent) { 1266 if (!ret) 1267 return 0; 1268 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1269 key.type = BTRFS_EXTENT_REF_V0_KEY; 1270 btrfs_release_path(path); 1271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1272 if (ret < 0) { 1273 err = ret; 1274 goto fail; 1275 } 1276 if (!ret) 1277 return 0; 1278 #endif 1279 goto fail; 1280 } 1281 1282 leaf = path->nodes[0]; 1283 nritems = btrfs_header_nritems(leaf); 1284 while (1) { 1285 if (path->slots[0] >= nritems) { 1286 ret = btrfs_next_leaf(root, path); 1287 if (ret < 0) 1288 err = ret; 1289 if (ret) 1290 goto fail; 1291 1292 leaf = path->nodes[0]; 1293 nritems = btrfs_header_nritems(leaf); 1294 recow = 1; 1295 } 1296 1297 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1298 if (key.objectid != bytenr || 1299 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1300 goto fail; 1301 1302 ref = btrfs_item_ptr(leaf, path->slots[0], 1303 struct btrfs_extent_data_ref); 1304 1305 if (match_extent_data_ref(leaf, ref, root_objectid, 1306 owner, offset)) { 1307 if (recow) { 1308 btrfs_release_path(path); 1309 goto again; 1310 } 1311 err = 0; 1312 break; 1313 } 1314 path->slots[0]++; 1315 } 1316 fail: 1317 return err; 1318 } 1319 1320 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1321 struct btrfs_fs_info *fs_info, 1322 struct btrfs_path *path, 1323 u64 bytenr, u64 parent, 1324 u64 root_objectid, u64 owner, 1325 u64 offset, int refs_to_add) 1326 { 1327 struct btrfs_root *root = fs_info->extent_root; 1328 struct btrfs_key key; 1329 struct extent_buffer *leaf; 1330 u32 size; 1331 u32 num_refs; 1332 int ret; 1333 1334 key.objectid = bytenr; 1335 if (parent) { 1336 key.type = BTRFS_SHARED_DATA_REF_KEY; 1337 key.offset = parent; 1338 size = sizeof(struct btrfs_shared_data_ref); 1339 } else { 1340 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1341 key.offset = hash_extent_data_ref(root_objectid, 1342 owner, offset); 1343 size = sizeof(struct btrfs_extent_data_ref); 1344 } 1345 1346 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1347 if (ret && ret != -EEXIST) 1348 goto fail; 1349 1350 leaf = path->nodes[0]; 1351 if (parent) { 1352 struct btrfs_shared_data_ref *ref; 1353 ref = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_shared_data_ref); 1355 if (ret == 0) { 1356 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1357 } else { 1358 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1359 num_refs += refs_to_add; 1360 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1361 } 1362 } else { 1363 struct btrfs_extent_data_ref *ref; 1364 while (ret == -EEXIST) { 1365 ref = btrfs_item_ptr(leaf, path->slots[0], 1366 struct btrfs_extent_data_ref); 1367 if (match_extent_data_ref(leaf, ref, root_objectid, 1368 owner, offset)) 1369 break; 1370 btrfs_release_path(path); 1371 key.offset++; 1372 ret = btrfs_insert_empty_item(trans, root, path, &key, 1373 size); 1374 if (ret && ret != -EEXIST) 1375 goto fail; 1376 1377 leaf = path->nodes[0]; 1378 } 1379 ref = btrfs_item_ptr(leaf, path->slots[0], 1380 struct btrfs_extent_data_ref); 1381 if (ret == 0) { 1382 btrfs_set_extent_data_ref_root(leaf, ref, 1383 root_objectid); 1384 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1385 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1386 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1387 } else { 1388 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1389 num_refs += refs_to_add; 1390 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1391 } 1392 } 1393 btrfs_mark_buffer_dirty(leaf); 1394 ret = 0; 1395 fail: 1396 btrfs_release_path(path); 1397 return ret; 1398 } 1399 1400 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1401 struct btrfs_fs_info *fs_info, 1402 struct btrfs_path *path, 1403 int refs_to_drop, int *last_ref) 1404 { 1405 struct btrfs_key key; 1406 struct btrfs_extent_data_ref *ref1 = NULL; 1407 struct btrfs_shared_data_ref *ref2 = NULL; 1408 struct extent_buffer *leaf; 1409 u32 num_refs = 0; 1410 int ret = 0; 1411 1412 leaf = path->nodes[0]; 1413 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1414 1415 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1416 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1417 struct btrfs_extent_data_ref); 1418 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1419 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1420 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1421 struct btrfs_shared_data_ref); 1422 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1423 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1424 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1425 struct btrfs_extent_ref_v0 *ref0; 1426 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1427 struct btrfs_extent_ref_v0); 1428 num_refs = btrfs_ref_count_v0(leaf, ref0); 1429 #endif 1430 } else { 1431 BUG(); 1432 } 1433 1434 BUG_ON(num_refs < refs_to_drop); 1435 num_refs -= refs_to_drop; 1436 1437 if (num_refs == 0) { 1438 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1439 *last_ref = 1; 1440 } else { 1441 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1442 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1443 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1444 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1445 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1446 else { 1447 struct btrfs_extent_ref_v0 *ref0; 1448 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1449 struct btrfs_extent_ref_v0); 1450 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1451 } 1452 #endif 1453 btrfs_mark_buffer_dirty(leaf); 1454 } 1455 return ret; 1456 } 1457 1458 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1459 struct btrfs_extent_inline_ref *iref) 1460 { 1461 struct btrfs_key key; 1462 struct extent_buffer *leaf; 1463 struct btrfs_extent_data_ref *ref1; 1464 struct btrfs_shared_data_ref *ref2; 1465 u32 num_refs = 0; 1466 int type; 1467 1468 leaf = path->nodes[0]; 1469 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1470 if (iref) { 1471 /* 1472 * If type is invalid, we should have bailed out earlier than 1473 * this call. 1474 */ 1475 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1476 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1477 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1478 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1479 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1480 } else { 1481 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1482 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1483 } 1484 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1485 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1486 struct btrfs_extent_data_ref); 1487 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1488 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1489 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1490 struct btrfs_shared_data_ref); 1491 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1492 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1493 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1494 struct btrfs_extent_ref_v0 *ref0; 1495 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1496 struct btrfs_extent_ref_v0); 1497 num_refs = btrfs_ref_count_v0(leaf, ref0); 1498 #endif 1499 } else { 1500 WARN_ON(1); 1501 } 1502 return num_refs; 1503 } 1504 1505 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1506 struct btrfs_fs_info *fs_info, 1507 struct btrfs_path *path, 1508 u64 bytenr, u64 parent, 1509 u64 root_objectid) 1510 { 1511 struct btrfs_root *root = fs_info->extent_root; 1512 struct btrfs_key key; 1513 int ret; 1514 1515 key.objectid = bytenr; 1516 if (parent) { 1517 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1518 key.offset = parent; 1519 } else { 1520 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1521 key.offset = root_objectid; 1522 } 1523 1524 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1525 if (ret > 0) 1526 ret = -ENOENT; 1527 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1528 if (ret == -ENOENT && parent) { 1529 btrfs_release_path(path); 1530 key.type = BTRFS_EXTENT_REF_V0_KEY; 1531 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1532 if (ret > 0) 1533 ret = -ENOENT; 1534 } 1535 #endif 1536 return ret; 1537 } 1538 1539 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1540 struct btrfs_fs_info *fs_info, 1541 struct btrfs_path *path, 1542 u64 bytenr, u64 parent, 1543 u64 root_objectid) 1544 { 1545 struct btrfs_key key; 1546 int ret; 1547 1548 key.objectid = bytenr; 1549 if (parent) { 1550 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1551 key.offset = parent; 1552 } else { 1553 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1554 key.offset = root_objectid; 1555 } 1556 1557 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1558 path, &key, 0); 1559 btrfs_release_path(path); 1560 return ret; 1561 } 1562 1563 static inline int extent_ref_type(u64 parent, u64 owner) 1564 { 1565 int type; 1566 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1567 if (parent > 0) 1568 type = BTRFS_SHARED_BLOCK_REF_KEY; 1569 else 1570 type = BTRFS_TREE_BLOCK_REF_KEY; 1571 } else { 1572 if (parent > 0) 1573 type = BTRFS_SHARED_DATA_REF_KEY; 1574 else 1575 type = BTRFS_EXTENT_DATA_REF_KEY; 1576 } 1577 return type; 1578 } 1579 1580 static int find_next_key(struct btrfs_path *path, int level, 1581 struct btrfs_key *key) 1582 1583 { 1584 for (; level < BTRFS_MAX_LEVEL; level++) { 1585 if (!path->nodes[level]) 1586 break; 1587 if (path->slots[level] + 1 >= 1588 btrfs_header_nritems(path->nodes[level])) 1589 continue; 1590 if (level == 0) 1591 btrfs_item_key_to_cpu(path->nodes[level], key, 1592 path->slots[level] + 1); 1593 else 1594 btrfs_node_key_to_cpu(path->nodes[level], key, 1595 path->slots[level] + 1); 1596 return 0; 1597 } 1598 return 1; 1599 } 1600 1601 /* 1602 * look for inline back ref. if back ref is found, *ref_ret is set 1603 * to the address of inline back ref, and 0 is returned. 1604 * 1605 * if back ref isn't found, *ref_ret is set to the address where it 1606 * should be inserted, and -ENOENT is returned. 1607 * 1608 * if insert is true and there are too many inline back refs, the path 1609 * points to the extent item, and -EAGAIN is returned. 1610 * 1611 * NOTE: inline back refs are ordered in the same way that back ref 1612 * items in the tree are ordered. 1613 */ 1614 static noinline_for_stack 1615 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1616 struct btrfs_fs_info *fs_info, 1617 struct btrfs_path *path, 1618 struct btrfs_extent_inline_ref **ref_ret, 1619 u64 bytenr, u64 num_bytes, 1620 u64 parent, u64 root_objectid, 1621 u64 owner, u64 offset, int insert) 1622 { 1623 struct btrfs_root *root = fs_info->extent_root; 1624 struct btrfs_key key; 1625 struct extent_buffer *leaf; 1626 struct btrfs_extent_item *ei; 1627 struct btrfs_extent_inline_ref *iref; 1628 u64 flags; 1629 u64 item_size; 1630 unsigned long ptr; 1631 unsigned long end; 1632 int extra_size; 1633 int type; 1634 int want; 1635 int ret; 1636 int err = 0; 1637 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1638 int needed; 1639 1640 key.objectid = bytenr; 1641 key.type = BTRFS_EXTENT_ITEM_KEY; 1642 key.offset = num_bytes; 1643 1644 want = extent_ref_type(parent, owner); 1645 if (insert) { 1646 extra_size = btrfs_extent_inline_ref_size(want); 1647 path->keep_locks = 1; 1648 } else 1649 extra_size = -1; 1650 1651 /* 1652 * Owner is our parent level, so we can just add one to get the level 1653 * for the block we are interested in. 1654 */ 1655 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1656 key.type = BTRFS_METADATA_ITEM_KEY; 1657 key.offset = owner; 1658 } 1659 1660 again: 1661 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1662 if (ret < 0) { 1663 err = ret; 1664 goto out; 1665 } 1666 1667 /* 1668 * We may be a newly converted file system which still has the old fat 1669 * extent entries for metadata, so try and see if we have one of those. 1670 */ 1671 if (ret > 0 && skinny_metadata) { 1672 skinny_metadata = false; 1673 if (path->slots[0]) { 1674 path->slots[0]--; 1675 btrfs_item_key_to_cpu(path->nodes[0], &key, 1676 path->slots[0]); 1677 if (key.objectid == bytenr && 1678 key.type == BTRFS_EXTENT_ITEM_KEY && 1679 key.offset == num_bytes) 1680 ret = 0; 1681 } 1682 if (ret) { 1683 key.objectid = bytenr; 1684 key.type = BTRFS_EXTENT_ITEM_KEY; 1685 key.offset = num_bytes; 1686 btrfs_release_path(path); 1687 goto again; 1688 } 1689 } 1690 1691 if (ret && !insert) { 1692 err = -ENOENT; 1693 goto out; 1694 } else if (WARN_ON(ret)) { 1695 err = -EIO; 1696 goto out; 1697 } 1698 1699 leaf = path->nodes[0]; 1700 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1701 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1702 if (item_size < sizeof(*ei)) { 1703 if (!insert) { 1704 err = -ENOENT; 1705 goto out; 1706 } 1707 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1708 extra_size); 1709 if (ret < 0) { 1710 err = ret; 1711 goto out; 1712 } 1713 leaf = path->nodes[0]; 1714 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1715 } 1716 #endif 1717 BUG_ON(item_size < sizeof(*ei)); 1718 1719 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1720 flags = btrfs_extent_flags(leaf, ei); 1721 1722 ptr = (unsigned long)(ei + 1); 1723 end = (unsigned long)ei + item_size; 1724 1725 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1726 ptr += sizeof(struct btrfs_tree_block_info); 1727 BUG_ON(ptr > end); 1728 } 1729 1730 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1731 needed = BTRFS_REF_TYPE_DATA; 1732 else 1733 needed = BTRFS_REF_TYPE_BLOCK; 1734 1735 err = -ENOENT; 1736 while (1) { 1737 if (ptr >= end) { 1738 WARN_ON(ptr > end); 1739 break; 1740 } 1741 iref = (struct btrfs_extent_inline_ref *)ptr; 1742 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1743 if (type == BTRFS_REF_TYPE_INVALID) { 1744 err = -EINVAL; 1745 goto out; 1746 } 1747 1748 if (want < type) 1749 break; 1750 if (want > type) { 1751 ptr += btrfs_extent_inline_ref_size(type); 1752 continue; 1753 } 1754 1755 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1756 struct btrfs_extent_data_ref *dref; 1757 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1758 if (match_extent_data_ref(leaf, dref, root_objectid, 1759 owner, offset)) { 1760 err = 0; 1761 break; 1762 } 1763 if (hash_extent_data_ref_item(leaf, dref) < 1764 hash_extent_data_ref(root_objectid, owner, offset)) 1765 break; 1766 } else { 1767 u64 ref_offset; 1768 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1769 if (parent > 0) { 1770 if (parent == ref_offset) { 1771 err = 0; 1772 break; 1773 } 1774 if (ref_offset < parent) 1775 break; 1776 } else { 1777 if (root_objectid == ref_offset) { 1778 err = 0; 1779 break; 1780 } 1781 if (ref_offset < root_objectid) 1782 break; 1783 } 1784 } 1785 ptr += btrfs_extent_inline_ref_size(type); 1786 } 1787 if (err == -ENOENT && insert) { 1788 if (item_size + extra_size >= 1789 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1790 err = -EAGAIN; 1791 goto out; 1792 } 1793 /* 1794 * To add new inline back ref, we have to make sure 1795 * there is no corresponding back ref item. 1796 * For simplicity, we just do not add new inline back 1797 * ref if there is any kind of item for this block 1798 */ 1799 if (find_next_key(path, 0, &key) == 0 && 1800 key.objectid == bytenr && 1801 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1802 err = -EAGAIN; 1803 goto out; 1804 } 1805 } 1806 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1807 out: 1808 if (insert) { 1809 path->keep_locks = 0; 1810 btrfs_unlock_up_safe(path, 1); 1811 } 1812 return err; 1813 } 1814 1815 /* 1816 * helper to add new inline back ref 1817 */ 1818 static noinline_for_stack 1819 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1820 struct btrfs_path *path, 1821 struct btrfs_extent_inline_ref *iref, 1822 u64 parent, u64 root_objectid, 1823 u64 owner, u64 offset, int refs_to_add, 1824 struct btrfs_delayed_extent_op *extent_op) 1825 { 1826 struct extent_buffer *leaf; 1827 struct btrfs_extent_item *ei; 1828 unsigned long ptr; 1829 unsigned long end; 1830 unsigned long item_offset; 1831 u64 refs; 1832 int size; 1833 int type; 1834 1835 leaf = path->nodes[0]; 1836 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1837 item_offset = (unsigned long)iref - (unsigned long)ei; 1838 1839 type = extent_ref_type(parent, owner); 1840 size = btrfs_extent_inline_ref_size(type); 1841 1842 btrfs_extend_item(fs_info, path, size); 1843 1844 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1845 refs = btrfs_extent_refs(leaf, ei); 1846 refs += refs_to_add; 1847 btrfs_set_extent_refs(leaf, ei, refs); 1848 if (extent_op) 1849 __run_delayed_extent_op(extent_op, leaf, ei); 1850 1851 ptr = (unsigned long)ei + item_offset; 1852 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1853 if (ptr < end - size) 1854 memmove_extent_buffer(leaf, ptr + size, ptr, 1855 end - size - ptr); 1856 1857 iref = (struct btrfs_extent_inline_ref *)ptr; 1858 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1859 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1860 struct btrfs_extent_data_ref *dref; 1861 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1862 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1863 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1864 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1865 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1866 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1867 struct btrfs_shared_data_ref *sref; 1868 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1869 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1870 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1871 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1873 } else { 1874 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1875 } 1876 btrfs_mark_buffer_dirty(leaf); 1877 } 1878 1879 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1880 struct btrfs_fs_info *fs_info, 1881 struct btrfs_path *path, 1882 struct btrfs_extent_inline_ref **ref_ret, 1883 u64 bytenr, u64 num_bytes, u64 parent, 1884 u64 root_objectid, u64 owner, u64 offset) 1885 { 1886 int ret; 1887 1888 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1889 bytenr, num_bytes, parent, 1890 root_objectid, owner, offset, 0); 1891 if (ret != -ENOENT) 1892 return ret; 1893 1894 btrfs_release_path(path); 1895 *ref_ret = NULL; 1896 1897 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1898 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1899 parent, root_objectid); 1900 } else { 1901 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1902 parent, root_objectid, owner, 1903 offset); 1904 } 1905 return ret; 1906 } 1907 1908 /* 1909 * helper to update/remove inline back ref 1910 */ 1911 static noinline_for_stack 1912 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1913 struct btrfs_path *path, 1914 struct btrfs_extent_inline_ref *iref, 1915 int refs_to_mod, 1916 struct btrfs_delayed_extent_op *extent_op, 1917 int *last_ref) 1918 { 1919 struct extent_buffer *leaf; 1920 struct btrfs_extent_item *ei; 1921 struct btrfs_extent_data_ref *dref = NULL; 1922 struct btrfs_shared_data_ref *sref = NULL; 1923 unsigned long ptr; 1924 unsigned long end; 1925 u32 item_size; 1926 int size; 1927 int type; 1928 u64 refs; 1929 1930 leaf = path->nodes[0]; 1931 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1932 refs = btrfs_extent_refs(leaf, ei); 1933 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1934 refs += refs_to_mod; 1935 btrfs_set_extent_refs(leaf, ei, refs); 1936 if (extent_op) 1937 __run_delayed_extent_op(extent_op, leaf, ei); 1938 1939 /* 1940 * If type is invalid, we should have bailed out after 1941 * lookup_inline_extent_backref(). 1942 */ 1943 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1944 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1945 1946 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1947 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1948 refs = btrfs_extent_data_ref_count(leaf, dref); 1949 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1950 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1951 refs = btrfs_shared_data_ref_count(leaf, sref); 1952 } else { 1953 refs = 1; 1954 BUG_ON(refs_to_mod != -1); 1955 } 1956 1957 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1958 refs += refs_to_mod; 1959 1960 if (refs > 0) { 1961 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1962 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1963 else 1964 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1965 } else { 1966 *last_ref = 1; 1967 size = btrfs_extent_inline_ref_size(type); 1968 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1969 ptr = (unsigned long)iref; 1970 end = (unsigned long)ei + item_size; 1971 if (ptr + size < end) 1972 memmove_extent_buffer(leaf, ptr, ptr + size, 1973 end - ptr - size); 1974 item_size -= size; 1975 btrfs_truncate_item(fs_info, path, item_size, 1); 1976 } 1977 btrfs_mark_buffer_dirty(leaf); 1978 } 1979 1980 static noinline_for_stack 1981 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1982 struct btrfs_fs_info *fs_info, 1983 struct btrfs_path *path, 1984 u64 bytenr, u64 num_bytes, u64 parent, 1985 u64 root_objectid, u64 owner, 1986 u64 offset, int refs_to_add, 1987 struct btrfs_delayed_extent_op *extent_op) 1988 { 1989 struct btrfs_extent_inline_ref *iref; 1990 int ret; 1991 1992 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1993 bytenr, num_bytes, parent, 1994 root_objectid, owner, offset, 1); 1995 if (ret == 0) { 1996 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1997 update_inline_extent_backref(fs_info, path, iref, 1998 refs_to_add, extent_op, NULL); 1999 } else if (ret == -ENOENT) { 2000 setup_inline_extent_backref(fs_info, path, iref, parent, 2001 root_objectid, owner, offset, 2002 refs_to_add, extent_op); 2003 ret = 0; 2004 } 2005 return ret; 2006 } 2007 2008 static int insert_extent_backref(struct btrfs_trans_handle *trans, 2009 struct btrfs_fs_info *fs_info, 2010 struct btrfs_path *path, 2011 u64 bytenr, u64 parent, u64 root_objectid, 2012 u64 owner, u64 offset, int refs_to_add) 2013 { 2014 int ret; 2015 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2016 BUG_ON(refs_to_add != 1); 2017 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2018 parent, root_objectid); 2019 } else { 2020 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2021 parent, root_objectid, 2022 owner, offset, refs_to_add); 2023 } 2024 return ret; 2025 } 2026 2027 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2028 struct btrfs_fs_info *fs_info, 2029 struct btrfs_path *path, 2030 struct btrfs_extent_inline_ref *iref, 2031 int refs_to_drop, int is_data, int *last_ref) 2032 { 2033 int ret = 0; 2034 2035 BUG_ON(!is_data && refs_to_drop != 1); 2036 if (iref) { 2037 update_inline_extent_backref(fs_info, path, iref, 2038 -refs_to_drop, NULL, last_ref); 2039 } else if (is_data) { 2040 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2041 last_ref); 2042 } else { 2043 *last_ref = 1; 2044 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2045 } 2046 return ret; 2047 } 2048 2049 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2050 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2051 u64 *discarded_bytes) 2052 { 2053 int j, ret = 0; 2054 u64 bytes_left, end; 2055 u64 aligned_start = ALIGN(start, 1 << 9); 2056 2057 if (WARN_ON(start != aligned_start)) { 2058 len -= aligned_start - start; 2059 len = round_down(len, 1 << 9); 2060 start = aligned_start; 2061 } 2062 2063 *discarded_bytes = 0; 2064 2065 if (!len) 2066 return 0; 2067 2068 end = start + len; 2069 bytes_left = len; 2070 2071 /* Skip any superblocks on this device. */ 2072 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2073 u64 sb_start = btrfs_sb_offset(j); 2074 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2075 u64 size = sb_start - start; 2076 2077 if (!in_range(sb_start, start, bytes_left) && 2078 !in_range(sb_end, start, bytes_left) && 2079 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2080 continue; 2081 2082 /* 2083 * Superblock spans beginning of range. Adjust start and 2084 * try again. 2085 */ 2086 if (sb_start <= start) { 2087 start += sb_end - start; 2088 if (start > end) { 2089 bytes_left = 0; 2090 break; 2091 } 2092 bytes_left = end - start; 2093 continue; 2094 } 2095 2096 if (size) { 2097 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2098 GFP_NOFS, 0); 2099 if (!ret) 2100 *discarded_bytes += size; 2101 else if (ret != -EOPNOTSUPP) 2102 return ret; 2103 } 2104 2105 start = sb_end; 2106 if (start > end) { 2107 bytes_left = 0; 2108 break; 2109 } 2110 bytes_left = end - start; 2111 } 2112 2113 if (bytes_left) { 2114 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2115 GFP_NOFS, 0); 2116 if (!ret) 2117 *discarded_bytes += bytes_left; 2118 } 2119 return ret; 2120 } 2121 2122 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2123 u64 num_bytes, u64 *actual_bytes) 2124 { 2125 int ret; 2126 u64 discarded_bytes = 0; 2127 struct btrfs_bio *bbio = NULL; 2128 2129 2130 /* 2131 * Avoid races with device replace and make sure our bbio has devices 2132 * associated to its stripes that don't go away while we are discarding. 2133 */ 2134 btrfs_bio_counter_inc_blocked(fs_info); 2135 /* Tell the block device(s) that the sectors can be discarded */ 2136 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2137 &bbio, 0); 2138 /* Error condition is -ENOMEM */ 2139 if (!ret) { 2140 struct btrfs_bio_stripe *stripe = bbio->stripes; 2141 int i; 2142 2143 2144 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2145 u64 bytes; 2146 struct request_queue *req_q; 2147 2148 if (!stripe->dev->bdev) { 2149 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2150 continue; 2151 } 2152 req_q = bdev_get_queue(stripe->dev->bdev); 2153 if (!blk_queue_discard(req_q)) 2154 continue; 2155 2156 ret = btrfs_issue_discard(stripe->dev->bdev, 2157 stripe->physical, 2158 stripe->length, 2159 &bytes); 2160 if (!ret) 2161 discarded_bytes += bytes; 2162 else if (ret != -EOPNOTSUPP) 2163 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2164 2165 /* 2166 * Just in case we get back EOPNOTSUPP for some reason, 2167 * just ignore the return value so we don't screw up 2168 * people calling discard_extent. 2169 */ 2170 ret = 0; 2171 } 2172 btrfs_put_bbio(bbio); 2173 } 2174 btrfs_bio_counter_dec(fs_info); 2175 2176 if (actual_bytes) 2177 *actual_bytes = discarded_bytes; 2178 2179 2180 if (ret == -EOPNOTSUPP) 2181 ret = 0; 2182 return ret; 2183 } 2184 2185 /* Can return -ENOMEM */ 2186 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2187 struct btrfs_root *root, 2188 u64 bytenr, u64 num_bytes, u64 parent, 2189 u64 root_objectid, u64 owner, u64 offset) 2190 { 2191 struct btrfs_fs_info *fs_info = root->fs_info; 2192 int old_ref_mod, new_ref_mod; 2193 int ret; 2194 2195 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2196 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2197 2198 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2199 owner, offset, BTRFS_ADD_DELAYED_REF); 2200 2201 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2202 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2203 num_bytes, parent, 2204 root_objectid, (int)owner, 2205 BTRFS_ADD_DELAYED_REF, NULL, 2206 &old_ref_mod, &new_ref_mod); 2207 } else { 2208 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2209 num_bytes, parent, 2210 root_objectid, owner, offset, 2211 0, BTRFS_ADD_DELAYED_REF, 2212 &old_ref_mod, &new_ref_mod); 2213 } 2214 2215 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2216 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2217 2218 return ret; 2219 } 2220 2221 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2222 struct btrfs_fs_info *fs_info, 2223 struct btrfs_delayed_ref_node *node, 2224 u64 parent, u64 root_objectid, 2225 u64 owner, u64 offset, int refs_to_add, 2226 struct btrfs_delayed_extent_op *extent_op) 2227 { 2228 struct btrfs_path *path; 2229 struct extent_buffer *leaf; 2230 struct btrfs_extent_item *item; 2231 struct btrfs_key key; 2232 u64 bytenr = node->bytenr; 2233 u64 num_bytes = node->num_bytes; 2234 u64 refs; 2235 int ret; 2236 2237 path = btrfs_alloc_path(); 2238 if (!path) 2239 return -ENOMEM; 2240 2241 path->reada = READA_FORWARD; 2242 path->leave_spinning = 1; 2243 /* this will setup the path even if it fails to insert the back ref */ 2244 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2245 num_bytes, parent, root_objectid, 2246 owner, offset, 2247 refs_to_add, extent_op); 2248 if ((ret < 0 && ret != -EAGAIN) || !ret) 2249 goto out; 2250 2251 /* 2252 * Ok we had -EAGAIN which means we didn't have space to insert and 2253 * inline extent ref, so just update the reference count and add a 2254 * normal backref. 2255 */ 2256 leaf = path->nodes[0]; 2257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2258 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2259 refs = btrfs_extent_refs(leaf, item); 2260 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2261 if (extent_op) 2262 __run_delayed_extent_op(extent_op, leaf, item); 2263 2264 btrfs_mark_buffer_dirty(leaf); 2265 btrfs_release_path(path); 2266 2267 path->reada = READA_FORWARD; 2268 path->leave_spinning = 1; 2269 /* now insert the actual backref */ 2270 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2271 root_objectid, owner, offset, refs_to_add); 2272 if (ret) 2273 btrfs_abort_transaction(trans, ret); 2274 out: 2275 btrfs_free_path(path); 2276 return ret; 2277 } 2278 2279 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2280 struct btrfs_fs_info *fs_info, 2281 struct btrfs_delayed_ref_node *node, 2282 struct btrfs_delayed_extent_op *extent_op, 2283 int insert_reserved) 2284 { 2285 int ret = 0; 2286 struct btrfs_delayed_data_ref *ref; 2287 struct btrfs_key ins; 2288 u64 parent = 0; 2289 u64 ref_root = 0; 2290 u64 flags = 0; 2291 2292 ins.objectid = node->bytenr; 2293 ins.offset = node->num_bytes; 2294 ins.type = BTRFS_EXTENT_ITEM_KEY; 2295 2296 ref = btrfs_delayed_node_to_data_ref(node); 2297 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2298 2299 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2300 parent = ref->parent; 2301 ref_root = ref->root; 2302 2303 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2304 if (extent_op) 2305 flags |= extent_op->flags_to_set; 2306 ret = alloc_reserved_file_extent(trans, fs_info, 2307 parent, ref_root, flags, 2308 ref->objectid, ref->offset, 2309 &ins, node->ref_mod); 2310 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2311 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2312 ref_root, ref->objectid, 2313 ref->offset, node->ref_mod, 2314 extent_op); 2315 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2316 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2317 ref_root, ref->objectid, 2318 ref->offset, node->ref_mod, 2319 extent_op); 2320 } else { 2321 BUG(); 2322 } 2323 return ret; 2324 } 2325 2326 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2327 struct extent_buffer *leaf, 2328 struct btrfs_extent_item *ei) 2329 { 2330 u64 flags = btrfs_extent_flags(leaf, ei); 2331 if (extent_op->update_flags) { 2332 flags |= extent_op->flags_to_set; 2333 btrfs_set_extent_flags(leaf, ei, flags); 2334 } 2335 2336 if (extent_op->update_key) { 2337 struct btrfs_tree_block_info *bi; 2338 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2339 bi = (struct btrfs_tree_block_info *)(ei + 1); 2340 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2341 } 2342 } 2343 2344 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2345 struct btrfs_fs_info *fs_info, 2346 struct btrfs_delayed_ref_head *head, 2347 struct btrfs_delayed_extent_op *extent_op) 2348 { 2349 struct btrfs_key key; 2350 struct btrfs_path *path; 2351 struct btrfs_extent_item *ei; 2352 struct extent_buffer *leaf; 2353 u32 item_size; 2354 int ret; 2355 int err = 0; 2356 int metadata = !extent_op->is_data; 2357 2358 if (trans->aborted) 2359 return 0; 2360 2361 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2362 metadata = 0; 2363 2364 path = btrfs_alloc_path(); 2365 if (!path) 2366 return -ENOMEM; 2367 2368 key.objectid = head->bytenr; 2369 2370 if (metadata) { 2371 key.type = BTRFS_METADATA_ITEM_KEY; 2372 key.offset = extent_op->level; 2373 } else { 2374 key.type = BTRFS_EXTENT_ITEM_KEY; 2375 key.offset = head->num_bytes; 2376 } 2377 2378 again: 2379 path->reada = READA_FORWARD; 2380 path->leave_spinning = 1; 2381 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2382 if (ret < 0) { 2383 err = ret; 2384 goto out; 2385 } 2386 if (ret > 0) { 2387 if (metadata) { 2388 if (path->slots[0] > 0) { 2389 path->slots[0]--; 2390 btrfs_item_key_to_cpu(path->nodes[0], &key, 2391 path->slots[0]); 2392 if (key.objectid == head->bytenr && 2393 key.type == BTRFS_EXTENT_ITEM_KEY && 2394 key.offset == head->num_bytes) 2395 ret = 0; 2396 } 2397 if (ret > 0) { 2398 btrfs_release_path(path); 2399 metadata = 0; 2400 2401 key.objectid = head->bytenr; 2402 key.offset = head->num_bytes; 2403 key.type = BTRFS_EXTENT_ITEM_KEY; 2404 goto again; 2405 } 2406 } else { 2407 err = -EIO; 2408 goto out; 2409 } 2410 } 2411 2412 leaf = path->nodes[0]; 2413 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2415 if (item_size < sizeof(*ei)) { 2416 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2417 if (ret < 0) { 2418 err = ret; 2419 goto out; 2420 } 2421 leaf = path->nodes[0]; 2422 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2423 } 2424 #endif 2425 BUG_ON(item_size < sizeof(*ei)); 2426 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2427 __run_delayed_extent_op(extent_op, leaf, ei); 2428 2429 btrfs_mark_buffer_dirty(leaf); 2430 out: 2431 btrfs_free_path(path); 2432 return err; 2433 } 2434 2435 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2436 struct btrfs_fs_info *fs_info, 2437 struct btrfs_delayed_ref_node *node, 2438 struct btrfs_delayed_extent_op *extent_op, 2439 int insert_reserved) 2440 { 2441 int ret = 0; 2442 struct btrfs_delayed_tree_ref *ref; 2443 struct btrfs_key ins; 2444 u64 parent = 0; 2445 u64 ref_root = 0; 2446 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2447 2448 ref = btrfs_delayed_node_to_tree_ref(node); 2449 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2450 2451 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2452 parent = ref->parent; 2453 ref_root = ref->root; 2454 2455 ins.objectid = node->bytenr; 2456 if (skinny_metadata) { 2457 ins.offset = ref->level; 2458 ins.type = BTRFS_METADATA_ITEM_KEY; 2459 } else { 2460 ins.offset = node->num_bytes; 2461 ins.type = BTRFS_EXTENT_ITEM_KEY; 2462 } 2463 2464 if (node->ref_mod != 1) { 2465 btrfs_err(fs_info, 2466 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2467 node->bytenr, node->ref_mod, node->action, ref_root, 2468 parent); 2469 return -EIO; 2470 } 2471 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2472 BUG_ON(!extent_op || !extent_op->update_flags); 2473 ret = alloc_reserved_tree_block(trans, fs_info, 2474 parent, ref_root, 2475 extent_op->flags_to_set, 2476 &extent_op->key, 2477 ref->level, &ins); 2478 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2479 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2480 parent, ref_root, 2481 ref->level, 0, 1, 2482 extent_op); 2483 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2484 ret = __btrfs_free_extent(trans, fs_info, node, 2485 parent, ref_root, 2486 ref->level, 0, 1, extent_op); 2487 } else { 2488 BUG(); 2489 } 2490 return ret; 2491 } 2492 2493 /* helper function to actually process a single delayed ref entry */ 2494 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2495 struct btrfs_fs_info *fs_info, 2496 struct btrfs_delayed_ref_node *node, 2497 struct btrfs_delayed_extent_op *extent_op, 2498 int insert_reserved) 2499 { 2500 int ret = 0; 2501 2502 if (trans->aborted) { 2503 if (insert_reserved) 2504 btrfs_pin_extent(fs_info, node->bytenr, 2505 node->num_bytes, 1); 2506 return 0; 2507 } 2508 2509 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2510 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2511 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2512 insert_reserved); 2513 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2514 node->type == BTRFS_SHARED_DATA_REF_KEY) 2515 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2516 insert_reserved); 2517 else 2518 BUG(); 2519 return ret; 2520 } 2521 2522 static inline struct btrfs_delayed_ref_node * 2523 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2524 { 2525 struct btrfs_delayed_ref_node *ref; 2526 2527 if (RB_EMPTY_ROOT(&head->ref_tree)) 2528 return NULL; 2529 2530 /* 2531 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2532 * This is to prevent a ref count from going down to zero, which deletes 2533 * the extent item from the extent tree, when there still are references 2534 * to add, which would fail because they would not find the extent item. 2535 */ 2536 if (!list_empty(&head->ref_add_list)) 2537 return list_first_entry(&head->ref_add_list, 2538 struct btrfs_delayed_ref_node, add_list); 2539 2540 ref = rb_entry(rb_first(&head->ref_tree), 2541 struct btrfs_delayed_ref_node, ref_node); 2542 ASSERT(list_empty(&ref->add_list)); 2543 return ref; 2544 } 2545 2546 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2547 struct btrfs_delayed_ref_head *head) 2548 { 2549 spin_lock(&delayed_refs->lock); 2550 head->processing = 0; 2551 delayed_refs->num_heads_ready++; 2552 spin_unlock(&delayed_refs->lock); 2553 btrfs_delayed_ref_unlock(head); 2554 } 2555 2556 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2557 struct btrfs_fs_info *fs_info, 2558 struct btrfs_delayed_ref_head *head) 2559 { 2560 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2561 int ret; 2562 2563 if (!extent_op) 2564 return 0; 2565 head->extent_op = NULL; 2566 if (head->must_insert_reserved) { 2567 btrfs_free_delayed_extent_op(extent_op); 2568 return 0; 2569 } 2570 spin_unlock(&head->lock); 2571 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2572 btrfs_free_delayed_extent_op(extent_op); 2573 return ret ? ret : 1; 2574 } 2575 2576 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2577 struct btrfs_fs_info *fs_info, 2578 struct btrfs_delayed_ref_head *head) 2579 { 2580 struct btrfs_delayed_ref_root *delayed_refs; 2581 int ret; 2582 2583 delayed_refs = &trans->transaction->delayed_refs; 2584 2585 ret = cleanup_extent_op(trans, fs_info, head); 2586 if (ret < 0) { 2587 unselect_delayed_ref_head(delayed_refs, head); 2588 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2589 return ret; 2590 } else if (ret) { 2591 return ret; 2592 } 2593 2594 /* 2595 * Need to drop our head ref lock and re-acquire the delayed ref lock 2596 * and then re-check to make sure nobody got added. 2597 */ 2598 spin_unlock(&head->lock); 2599 spin_lock(&delayed_refs->lock); 2600 spin_lock(&head->lock); 2601 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2602 spin_unlock(&head->lock); 2603 spin_unlock(&delayed_refs->lock); 2604 return 1; 2605 } 2606 delayed_refs->num_heads--; 2607 rb_erase(&head->href_node, &delayed_refs->href_root); 2608 RB_CLEAR_NODE(&head->href_node); 2609 spin_unlock(&delayed_refs->lock); 2610 spin_unlock(&head->lock); 2611 atomic_dec(&delayed_refs->num_entries); 2612 2613 trace_run_delayed_ref_head(fs_info, head, 0); 2614 2615 if (head->total_ref_mod < 0) { 2616 struct btrfs_block_group_cache *cache; 2617 2618 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 2619 ASSERT(cache); 2620 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2621 -head->num_bytes); 2622 btrfs_put_block_group(cache); 2623 2624 if (head->is_data) { 2625 spin_lock(&delayed_refs->lock); 2626 delayed_refs->pending_csums -= head->num_bytes; 2627 spin_unlock(&delayed_refs->lock); 2628 } 2629 } 2630 2631 if (head->must_insert_reserved) { 2632 btrfs_pin_extent(fs_info, head->bytenr, 2633 head->num_bytes, 1); 2634 if (head->is_data) { 2635 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2636 head->num_bytes); 2637 } 2638 } 2639 2640 /* Also free its reserved qgroup space */ 2641 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2642 head->qgroup_reserved); 2643 btrfs_delayed_ref_unlock(head); 2644 btrfs_put_delayed_ref_head(head); 2645 return 0; 2646 } 2647 2648 /* 2649 * Returns 0 on success or if called with an already aborted transaction. 2650 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2651 */ 2652 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2653 unsigned long nr) 2654 { 2655 struct btrfs_fs_info *fs_info = trans->fs_info; 2656 struct btrfs_delayed_ref_root *delayed_refs; 2657 struct btrfs_delayed_ref_node *ref; 2658 struct btrfs_delayed_ref_head *locked_ref = NULL; 2659 struct btrfs_delayed_extent_op *extent_op; 2660 ktime_t start = ktime_get(); 2661 int ret; 2662 unsigned long count = 0; 2663 unsigned long actual_count = 0; 2664 int must_insert_reserved = 0; 2665 2666 delayed_refs = &trans->transaction->delayed_refs; 2667 while (1) { 2668 if (!locked_ref) { 2669 if (count >= nr) 2670 break; 2671 2672 spin_lock(&delayed_refs->lock); 2673 locked_ref = btrfs_select_ref_head(trans); 2674 if (!locked_ref) { 2675 spin_unlock(&delayed_refs->lock); 2676 break; 2677 } 2678 2679 /* grab the lock that says we are going to process 2680 * all the refs for this head */ 2681 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2682 spin_unlock(&delayed_refs->lock); 2683 /* 2684 * we may have dropped the spin lock to get the head 2685 * mutex lock, and that might have given someone else 2686 * time to free the head. If that's true, it has been 2687 * removed from our list and we can move on. 2688 */ 2689 if (ret == -EAGAIN) { 2690 locked_ref = NULL; 2691 count++; 2692 continue; 2693 } 2694 } 2695 2696 /* 2697 * We need to try and merge add/drops of the same ref since we 2698 * can run into issues with relocate dropping the implicit ref 2699 * and then it being added back again before the drop can 2700 * finish. If we merged anything we need to re-loop so we can 2701 * get a good ref. 2702 * Or we can get node references of the same type that weren't 2703 * merged when created due to bumps in the tree mod seq, and 2704 * we need to merge them to prevent adding an inline extent 2705 * backref before dropping it (triggering a BUG_ON at 2706 * insert_inline_extent_backref()). 2707 */ 2708 spin_lock(&locked_ref->lock); 2709 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2710 locked_ref); 2711 2712 /* 2713 * locked_ref is the head node, so we have to go one 2714 * node back for any delayed ref updates 2715 */ 2716 ref = select_delayed_ref(locked_ref); 2717 2718 if (ref && ref->seq && 2719 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2720 spin_unlock(&locked_ref->lock); 2721 unselect_delayed_ref_head(delayed_refs, locked_ref); 2722 locked_ref = NULL; 2723 cond_resched(); 2724 count++; 2725 continue; 2726 } 2727 2728 /* 2729 * We're done processing refs in this ref_head, clean everything 2730 * up and move on to the next ref_head. 2731 */ 2732 if (!ref) { 2733 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2734 if (ret > 0 ) { 2735 /* We dropped our lock, we need to loop. */ 2736 ret = 0; 2737 continue; 2738 } else if (ret) { 2739 return ret; 2740 } 2741 locked_ref = NULL; 2742 count++; 2743 continue; 2744 } 2745 2746 actual_count++; 2747 ref->in_tree = 0; 2748 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2749 RB_CLEAR_NODE(&ref->ref_node); 2750 if (!list_empty(&ref->add_list)) 2751 list_del(&ref->add_list); 2752 /* 2753 * When we play the delayed ref, also correct the ref_mod on 2754 * head 2755 */ 2756 switch (ref->action) { 2757 case BTRFS_ADD_DELAYED_REF: 2758 case BTRFS_ADD_DELAYED_EXTENT: 2759 locked_ref->ref_mod -= ref->ref_mod; 2760 break; 2761 case BTRFS_DROP_DELAYED_REF: 2762 locked_ref->ref_mod += ref->ref_mod; 2763 break; 2764 default: 2765 WARN_ON(1); 2766 } 2767 atomic_dec(&delayed_refs->num_entries); 2768 2769 /* 2770 * Record the must-insert_reserved flag before we drop the spin 2771 * lock. 2772 */ 2773 must_insert_reserved = locked_ref->must_insert_reserved; 2774 locked_ref->must_insert_reserved = 0; 2775 2776 extent_op = locked_ref->extent_op; 2777 locked_ref->extent_op = NULL; 2778 spin_unlock(&locked_ref->lock); 2779 2780 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2781 must_insert_reserved); 2782 2783 btrfs_free_delayed_extent_op(extent_op); 2784 if (ret) { 2785 unselect_delayed_ref_head(delayed_refs, locked_ref); 2786 btrfs_put_delayed_ref(ref); 2787 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2788 ret); 2789 return ret; 2790 } 2791 2792 btrfs_put_delayed_ref(ref); 2793 count++; 2794 cond_resched(); 2795 } 2796 2797 /* 2798 * We don't want to include ref heads since we can have empty ref heads 2799 * and those will drastically skew our runtime down since we just do 2800 * accounting, no actual extent tree updates. 2801 */ 2802 if (actual_count > 0) { 2803 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2804 u64 avg; 2805 2806 /* 2807 * We weigh the current average higher than our current runtime 2808 * to avoid large swings in the average. 2809 */ 2810 spin_lock(&delayed_refs->lock); 2811 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2812 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2813 spin_unlock(&delayed_refs->lock); 2814 } 2815 return 0; 2816 } 2817 2818 #ifdef SCRAMBLE_DELAYED_REFS 2819 /* 2820 * Normally delayed refs get processed in ascending bytenr order. This 2821 * correlates in most cases to the order added. To expose dependencies on this 2822 * order, we start to process the tree in the middle instead of the beginning 2823 */ 2824 static u64 find_middle(struct rb_root *root) 2825 { 2826 struct rb_node *n = root->rb_node; 2827 struct btrfs_delayed_ref_node *entry; 2828 int alt = 1; 2829 u64 middle; 2830 u64 first = 0, last = 0; 2831 2832 n = rb_first(root); 2833 if (n) { 2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2835 first = entry->bytenr; 2836 } 2837 n = rb_last(root); 2838 if (n) { 2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2840 last = entry->bytenr; 2841 } 2842 n = root->rb_node; 2843 2844 while (n) { 2845 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2846 WARN_ON(!entry->in_tree); 2847 2848 middle = entry->bytenr; 2849 2850 if (alt) 2851 n = n->rb_left; 2852 else 2853 n = n->rb_right; 2854 2855 alt = 1 - alt; 2856 } 2857 return middle; 2858 } 2859 #endif 2860 2861 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2862 { 2863 u64 num_bytes; 2864 2865 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2866 sizeof(struct btrfs_extent_inline_ref)); 2867 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2868 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2869 2870 /* 2871 * We don't ever fill up leaves all the way so multiply by 2 just to be 2872 * closer to what we're really going to want to use. 2873 */ 2874 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2875 } 2876 2877 /* 2878 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2879 * would require to store the csums for that many bytes. 2880 */ 2881 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2882 { 2883 u64 csum_size; 2884 u64 num_csums_per_leaf; 2885 u64 num_csums; 2886 2887 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2888 num_csums_per_leaf = div64_u64(csum_size, 2889 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2890 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2891 num_csums += num_csums_per_leaf - 1; 2892 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2893 return num_csums; 2894 } 2895 2896 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2897 struct btrfs_fs_info *fs_info) 2898 { 2899 struct btrfs_block_rsv *global_rsv; 2900 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2901 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2902 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2903 u64 num_bytes, num_dirty_bgs_bytes; 2904 int ret = 0; 2905 2906 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2907 num_heads = heads_to_leaves(fs_info, num_heads); 2908 if (num_heads > 1) 2909 num_bytes += (num_heads - 1) * fs_info->nodesize; 2910 num_bytes <<= 1; 2911 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2912 fs_info->nodesize; 2913 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2914 num_dirty_bgs); 2915 global_rsv = &fs_info->global_block_rsv; 2916 2917 /* 2918 * If we can't allocate any more chunks lets make sure we have _lots_ of 2919 * wiggle room since running delayed refs can create more delayed refs. 2920 */ 2921 if (global_rsv->space_info->full) { 2922 num_dirty_bgs_bytes <<= 1; 2923 num_bytes <<= 1; 2924 } 2925 2926 spin_lock(&global_rsv->lock); 2927 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2928 ret = 1; 2929 spin_unlock(&global_rsv->lock); 2930 return ret; 2931 } 2932 2933 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2934 struct btrfs_fs_info *fs_info) 2935 { 2936 u64 num_entries = 2937 atomic_read(&trans->transaction->delayed_refs.num_entries); 2938 u64 avg_runtime; 2939 u64 val; 2940 2941 smp_mb(); 2942 avg_runtime = fs_info->avg_delayed_ref_runtime; 2943 val = num_entries * avg_runtime; 2944 if (val >= NSEC_PER_SEC) 2945 return 1; 2946 if (val >= NSEC_PER_SEC / 2) 2947 return 2; 2948 2949 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2950 } 2951 2952 struct async_delayed_refs { 2953 struct btrfs_root *root; 2954 u64 transid; 2955 int count; 2956 int error; 2957 int sync; 2958 struct completion wait; 2959 struct btrfs_work work; 2960 }; 2961 2962 static inline struct async_delayed_refs * 2963 to_async_delayed_refs(struct btrfs_work *work) 2964 { 2965 return container_of(work, struct async_delayed_refs, work); 2966 } 2967 2968 static void delayed_ref_async_start(struct btrfs_work *work) 2969 { 2970 struct async_delayed_refs *async = to_async_delayed_refs(work); 2971 struct btrfs_trans_handle *trans; 2972 struct btrfs_fs_info *fs_info = async->root->fs_info; 2973 int ret; 2974 2975 /* if the commit is already started, we don't need to wait here */ 2976 if (btrfs_transaction_blocked(fs_info)) 2977 goto done; 2978 2979 trans = btrfs_join_transaction(async->root); 2980 if (IS_ERR(trans)) { 2981 async->error = PTR_ERR(trans); 2982 goto done; 2983 } 2984 2985 /* 2986 * trans->sync means that when we call end_transaction, we won't 2987 * wait on delayed refs 2988 */ 2989 trans->sync = true; 2990 2991 /* Don't bother flushing if we got into a different transaction */ 2992 if (trans->transid > async->transid) 2993 goto end; 2994 2995 ret = btrfs_run_delayed_refs(trans, async->count); 2996 if (ret) 2997 async->error = ret; 2998 end: 2999 ret = btrfs_end_transaction(trans); 3000 if (ret && !async->error) 3001 async->error = ret; 3002 done: 3003 if (async->sync) 3004 complete(&async->wait); 3005 else 3006 kfree(async); 3007 } 3008 3009 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3010 unsigned long count, u64 transid, int wait) 3011 { 3012 struct async_delayed_refs *async; 3013 int ret; 3014 3015 async = kmalloc(sizeof(*async), GFP_NOFS); 3016 if (!async) 3017 return -ENOMEM; 3018 3019 async->root = fs_info->tree_root; 3020 async->count = count; 3021 async->error = 0; 3022 async->transid = transid; 3023 if (wait) 3024 async->sync = 1; 3025 else 3026 async->sync = 0; 3027 init_completion(&async->wait); 3028 3029 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3030 delayed_ref_async_start, NULL, NULL); 3031 3032 btrfs_queue_work(fs_info->extent_workers, &async->work); 3033 3034 if (wait) { 3035 wait_for_completion(&async->wait); 3036 ret = async->error; 3037 kfree(async); 3038 return ret; 3039 } 3040 return 0; 3041 } 3042 3043 /* 3044 * this starts processing the delayed reference count updates and 3045 * extent insertions we have queued up so far. count can be 3046 * 0, which means to process everything in the tree at the start 3047 * of the run (but not newly added entries), or it can be some target 3048 * number you'd like to process. 3049 * 3050 * Returns 0 on success or if called with an aborted transaction 3051 * Returns <0 on error and aborts the transaction 3052 */ 3053 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3054 unsigned long count) 3055 { 3056 struct btrfs_fs_info *fs_info = trans->fs_info; 3057 struct rb_node *node; 3058 struct btrfs_delayed_ref_root *delayed_refs; 3059 struct btrfs_delayed_ref_head *head; 3060 int ret; 3061 int run_all = count == (unsigned long)-1; 3062 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3063 3064 /* We'll clean this up in btrfs_cleanup_transaction */ 3065 if (trans->aborted) 3066 return 0; 3067 3068 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3069 return 0; 3070 3071 delayed_refs = &trans->transaction->delayed_refs; 3072 if (count == 0) 3073 count = atomic_read(&delayed_refs->num_entries) * 2; 3074 3075 again: 3076 #ifdef SCRAMBLE_DELAYED_REFS 3077 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3078 #endif 3079 trans->can_flush_pending_bgs = false; 3080 ret = __btrfs_run_delayed_refs(trans, count); 3081 if (ret < 0) { 3082 btrfs_abort_transaction(trans, ret); 3083 return ret; 3084 } 3085 3086 if (run_all) { 3087 if (!list_empty(&trans->new_bgs)) 3088 btrfs_create_pending_block_groups(trans); 3089 3090 spin_lock(&delayed_refs->lock); 3091 node = rb_first(&delayed_refs->href_root); 3092 if (!node) { 3093 spin_unlock(&delayed_refs->lock); 3094 goto out; 3095 } 3096 head = rb_entry(node, struct btrfs_delayed_ref_head, 3097 href_node); 3098 refcount_inc(&head->refs); 3099 spin_unlock(&delayed_refs->lock); 3100 3101 /* Mutex was contended, block until it's released and retry. */ 3102 mutex_lock(&head->mutex); 3103 mutex_unlock(&head->mutex); 3104 3105 btrfs_put_delayed_ref_head(head); 3106 cond_resched(); 3107 goto again; 3108 } 3109 out: 3110 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3111 return 0; 3112 } 3113 3114 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3115 struct btrfs_fs_info *fs_info, 3116 u64 bytenr, u64 num_bytes, u64 flags, 3117 int level, int is_data) 3118 { 3119 struct btrfs_delayed_extent_op *extent_op; 3120 int ret; 3121 3122 extent_op = btrfs_alloc_delayed_extent_op(); 3123 if (!extent_op) 3124 return -ENOMEM; 3125 3126 extent_op->flags_to_set = flags; 3127 extent_op->update_flags = true; 3128 extent_op->update_key = false; 3129 extent_op->is_data = is_data ? true : false; 3130 extent_op->level = level; 3131 3132 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3133 num_bytes, extent_op); 3134 if (ret) 3135 btrfs_free_delayed_extent_op(extent_op); 3136 return ret; 3137 } 3138 3139 static noinline int check_delayed_ref(struct btrfs_root *root, 3140 struct btrfs_path *path, 3141 u64 objectid, u64 offset, u64 bytenr) 3142 { 3143 struct btrfs_delayed_ref_head *head; 3144 struct btrfs_delayed_ref_node *ref; 3145 struct btrfs_delayed_data_ref *data_ref; 3146 struct btrfs_delayed_ref_root *delayed_refs; 3147 struct btrfs_transaction *cur_trans; 3148 struct rb_node *node; 3149 int ret = 0; 3150 3151 cur_trans = root->fs_info->running_transaction; 3152 if (!cur_trans) 3153 return 0; 3154 3155 delayed_refs = &cur_trans->delayed_refs; 3156 spin_lock(&delayed_refs->lock); 3157 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3158 if (!head) { 3159 spin_unlock(&delayed_refs->lock); 3160 return 0; 3161 } 3162 3163 if (!mutex_trylock(&head->mutex)) { 3164 refcount_inc(&head->refs); 3165 spin_unlock(&delayed_refs->lock); 3166 3167 btrfs_release_path(path); 3168 3169 /* 3170 * Mutex was contended, block until it's released and let 3171 * caller try again 3172 */ 3173 mutex_lock(&head->mutex); 3174 mutex_unlock(&head->mutex); 3175 btrfs_put_delayed_ref_head(head); 3176 return -EAGAIN; 3177 } 3178 spin_unlock(&delayed_refs->lock); 3179 3180 spin_lock(&head->lock); 3181 /* 3182 * XXX: We should replace this with a proper search function in the 3183 * future. 3184 */ 3185 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3186 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3187 /* If it's a shared ref we know a cross reference exists */ 3188 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3189 ret = 1; 3190 break; 3191 } 3192 3193 data_ref = btrfs_delayed_node_to_data_ref(ref); 3194 3195 /* 3196 * If our ref doesn't match the one we're currently looking at 3197 * then we have a cross reference. 3198 */ 3199 if (data_ref->root != root->root_key.objectid || 3200 data_ref->objectid != objectid || 3201 data_ref->offset != offset) { 3202 ret = 1; 3203 break; 3204 } 3205 } 3206 spin_unlock(&head->lock); 3207 mutex_unlock(&head->mutex); 3208 return ret; 3209 } 3210 3211 static noinline int check_committed_ref(struct btrfs_root *root, 3212 struct btrfs_path *path, 3213 u64 objectid, u64 offset, u64 bytenr) 3214 { 3215 struct btrfs_fs_info *fs_info = root->fs_info; 3216 struct btrfs_root *extent_root = fs_info->extent_root; 3217 struct extent_buffer *leaf; 3218 struct btrfs_extent_data_ref *ref; 3219 struct btrfs_extent_inline_ref *iref; 3220 struct btrfs_extent_item *ei; 3221 struct btrfs_key key; 3222 u32 item_size; 3223 int type; 3224 int ret; 3225 3226 key.objectid = bytenr; 3227 key.offset = (u64)-1; 3228 key.type = BTRFS_EXTENT_ITEM_KEY; 3229 3230 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3231 if (ret < 0) 3232 goto out; 3233 BUG_ON(ret == 0); /* Corruption */ 3234 3235 ret = -ENOENT; 3236 if (path->slots[0] == 0) 3237 goto out; 3238 3239 path->slots[0]--; 3240 leaf = path->nodes[0]; 3241 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3242 3243 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3244 goto out; 3245 3246 ret = 1; 3247 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3248 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3249 if (item_size < sizeof(*ei)) { 3250 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3251 goto out; 3252 } 3253 #endif 3254 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3255 3256 if (item_size != sizeof(*ei) + 3257 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3258 goto out; 3259 3260 if (btrfs_extent_generation(leaf, ei) <= 3261 btrfs_root_last_snapshot(&root->root_item)) 3262 goto out; 3263 3264 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3265 3266 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3267 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3268 goto out; 3269 3270 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3271 if (btrfs_extent_refs(leaf, ei) != 3272 btrfs_extent_data_ref_count(leaf, ref) || 3273 btrfs_extent_data_ref_root(leaf, ref) != 3274 root->root_key.objectid || 3275 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3276 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3277 goto out; 3278 3279 ret = 0; 3280 out: 3281 return ret; 3282 } 3283 3284 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3285 u64 bytenr) 3286 { 3287 struct btrfs_path *path; 3288 int ret; 3289 int ret2; 3290 3291 path = btrfs_alloc_path(); 3292 if (!path) 3293 return -ENOENT; 3294 3295 do { 3296 ret = check_committed_ref(root, path, objectid, 3297 offset, bytenr); 3298 if (ret && ret != -ENOENT) 3299 goto out; 3300 3301 ret2 = check_delayed_ref(root, path, objectid, 3302 offset, bytenr); 3303 } while (ret2 == -EAGAIN); 3304 3305 if (ret2 && ret2 != -ENOENT) { 3306 ret = ret2; 3307 goto out; 3308 } 3309 3310 if (ret != -ENOENT || ret2 != -ENOENT) 3311 ret = 0; 3312 out: 3313 btrfs_free_path(path); 3314 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3315 WARN_ON(ret > 0); 3316 return ret; 3317 } 3318 3319 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3320 struct btrfs_root *root, 3321 struct extent_buffer *buf, 3322 int full_backref, int inc) 3323 { 3324 struct btrfs_fs_info *fs_info = root->fs_info; 3325 u64 bytenr; 3326 u64 num_bytes; 3327 u64 parent; 3328 u64 ref_root; 3329 u32 nritems; 3330 struct btrfs_key key; 3331 struct btrfs_file_extent_item *fi; 3332 int i; 3333 int level; 3334 int ret = 0; 3335 int (*process_func)(struct btrfs_trans_handle *, 3336 struct btrfs_root *, 3337 u64, u64, u64, u64, u64, u64); 3338 3339 3340 if (btrfs_is_testing(fs_info)) 3341 return 0; 3342 3343 ref_root = btrfs_header_owner(buf); 3344 nritems = btrfs_header_nritems(buf); 3345 level = btrfs_header_level(buf); 3346 3347 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3348 return 0; 3349 3350 if (inc) 3351 process_func = btrfs_inc_extent_ref; 3352 else 3353 process_func = btrfs_free_extent; 3354 3355 if (full_backref) 3356 parent = buf->start; 3357 else 3358 parent = 0; 3359 3360 for (i = 0; i < nritems; i++) { 3361 if (level == 0) { 3362 btrfs_item_key_to_cpu(buf, &key, i); 3363 if (key.type != BTRFS_EXTENT_DATA_KEY) 3364 continue; 3365 fi = btrfs_item_ptr(buf, i, 3366 struct btrfs_file_extent_item); 3367 if (btrfs_file_extent_type(buf, fi) == 3368 BTRFS_FILE_EXTENT_INLINE) 3369 continue; 3370 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3371 if (bytenr == 0) 3372 continue; 3373 3374 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3375 key.offset -= btrfs_file_extent_offset(buf, fi); 3376 ret = process_func(trans, root, bytenr, num_bytes, 3377 parent, ref_root, key.objectid, 3378 key.offset); 3379 if (ret) 3380 goto fail; 3381 } else { 3382 bytenr = btrfs_node_blockptr(buf, i); 3383 num_bytes = fs_info->nodesize; 3384 ret = process_func(trans, root, bytenr, num_bytes, 3385 parent, ref_root, level - 1, 0); 3386 if (ret) 3387 goto fail; 3388 } 3389 } 3390 return 0; 3391 fail: 3392 return ret; 3393 } 3394 3395 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3396 struct extent_buffer *buf, int full_backref) 3397 { 3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3399 } 3400 3401 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3402 struct extent_buffer *buf, int full_backref) 3403 { 3404 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3405 } 3406 3407 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3408 struct btrfs_fs_info *fs_info, 3409 struct btrfs_path *path, 3410 struct btrfs_block_group_cache *cache) 3411 { 3412 int ret; 3413 struct btrfs_root *extent_root = fs_info->extent_root; 3414 unsigned long bi; 3415 struct extent_buffer *leaf; 3416 3417 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3418 if (ret) { 3419 if (ret > 0) 3420 ret = -ENOENT; 3421 goto fail; 3422 } 3423 3424 leaf = path->nodes[0]; 3425 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3426 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3427 btrfs_mark_buffer_dirty(leaf); 3428 fail: 3429 btrfs_release_path(path); 3430 return ret; 3431 3432 } 3433 3434 static struct btrfs_block_group_cache * 3435 next_block_group(struct btrfs_fs_info *fs_info, 3436 struct btrfs_block_group_cache *cache) 3437 { 3438 struct rb_node *node; 3439 3440 spin_lock(&fs_info->block_group_cache_lock); 3441 3442 /* If our block group was removed, we need a full search. */ 3443 if (RB_EMPTY_NODE(&cache->cache_node)) { 3444 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3445 3446 spin_unlock(&fs_info->block_group_cache_lock); 3447 btrfs_put_block_group(cache); 3448 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3449 } 3450 node = rb_next(&cache->cache_node); 3451 btrfs_put_block_group(cache); 3452 if (node) { 3453 cache = rb_entry(node, struct btrfs_block_group_cache, 3454 cache_node); 3455 btrfs_get_block_group(cache); 3456 } else 3457 cache = NULL; 3458 spin_unlock(&fs_info->block_group_cache_lock); 3459 return cache; 3460 } 3461 3462 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3463 struct btrfs_trans_handle *trans, 3464 struct btrfs_path *path) 3465 { 3466 struct btrfs_fs_info *fs_info = block_group->fs_info; 3467 struct btrfs_root *root = fs_info->tree_root; 3468 struct inode *inode = NULL; 3469 struct extent_changeset *data_reserved = NULL; 3470 u64 alloc_hint = 0; 3471 int dcs = BTRFS_DC_ERROR; 3472 u64 num_pages = 0; 3473 int retries = 0; 3474 int ret = 0; 3475 3476 /* 3477 * If this block group is smaller than 100 megs don't bother caching the 3478 * block group. 3479 */ 3480 if (block_group->key.offset < (100 * SZ_1M)) { 3481 spin_lock(&block_group->lock); 3482 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3483 spin_unlock(&block_group->lock); 3484 return 0; 3485 } 3486 3487 if (trans->aborted) 3488 return 0; 3489 again: 3490 inode = lookup_free_space_inode(fs_info, block_group, path); 3491 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3492 ret = PTR_ERR(inode); 3493 btrfs_release_path(path); 3494 goto out; 3495 } 3496 3497 if (IS_ERR(inode)) { 3498 BUG_ON(retries); 3499 retries++; 3500 3501 if (block_group->ro) 3502 goto out_free; 3503 3504 ret = create_free_space_inode(fs_info, trans, block_group, 3505 path); 3506 if (ret) 3507 goto out_free; 3508 goto again; 3509 } 3510 3511 /* 3512 * We want to set the generation to 0, that way if anything goes wrong 3513 * from here on out we know not to trust this cache when we load up next 3514 * time. 3515 */ 3516 BTRFS_I(inode)->generation = 0; 3517 ret = btrfs_update_inode(trans, root, inode); 3518 if (ret) { 3519 /* 3520 * So theoretically we could recover from this, simply set the 3521 * super cache generation to 0 so we know to invalidate the 3522 * cache, but then we'd have to keep track of the block groups 3523 * that fail this way so we know we _have_ to reset this cache 3524 * before the next commit or risk reading stale cache. So to 3525 * limit our exposure to horrible edge cases lets just abort the 3526 * transaction, this only happens in really bad situations 3527 * anyway. 3528 */ 3529 btrfs_abort_transaction(trans, ret); 3530 goto out_put; 3531 } 3532 WARN_ON(ret); 3533 3534 /* We've already setup this transaction, go ahead and exit */ 3535 if (block_group->cache_generation == trans->transid && 3536 i_size_read(inode)) { 3537 dcs = BTRFS_DC_SETUP; 3538 goto out_put; 3539 } 3540 3541 if (i_size_read(inode) > 0) { 3542 ret = btrfs_check_trunc_cache_free_space(fs_info, 3543 &fs_info->global_block_rsv); 3544 if (ret) 3545 goto out_put; 3546 3547 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3548 if (ret) 3549 goto out_put; 3550 } 3551 3552 spin_lock(&block_group->lock); 3553 if (block_group->cached != BTRFS_CACHE_FINISHED || 3554 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3555 /* 3556 * don't bother trying to write stuff out _if_ 3557 * a) we're not cached, 3558 * b) we're with nospace_cache mount option, 3559 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3560 */ 3561 dcs = BTRFS_DC_WRITTEN; 3562 spin_unlock(&block_group->lock); 3563 goto out_put; 3564 } 3565 spin_unlock(&block_group->lock); 3566 3567 /* 3568 * We hit an ENOSPC when setting up the cache in this transaction, just 3569 * skip doing the setup, we've already cleared the cache so we're safe. 3570 */ 3571 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3572 ret = -ENOSPC; 3573 goto out_put; 3574 } 3575 3576 /* 3577 * Try to preallocate enough space based on how big the block group is. 3578 * Keep in mind this has to include any pinned space which could end up 3579 * taking up quite a bit since it's not folded into the other space 3580 * cache. 3581 */ 3582 num_pages = div_u64(block_group->key.offset, SZ_256M); 3583 if (!num_pages) 3584 num_pages = 1; 3585 3586 num_pages *= 16; 3587 num_pages *= PAGE_SIZE; 3588 3589 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3590 if (ret) 3591 goto out_put; 3592 3593 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3594 num_pages, num_pages, 3595 &alloc_hint); 3596 /* 3597 * Our cache requires contiguous chunks so that we don't modify a bunch 3598 * of metadata or split extents when writing the cache out, which means 3599 * we can enospc if we are heavily fragmented in addition to just normal 3600 * out of space conditions. So if we hit this just skip setting up any 3601 * other block groups for this transaction, maybe we'll unpin enough 3602 * space the next time around. 3603 */ 3604 if (!ret) 3605 dcs = BTRFS_DC_SETUP; 3606 else if (ret == -ENOSPC) 3607 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3608 3609 out_put: 3610 iput(inode); 3611 out_free: 3612 btrfs_release_path(path); 3613 out: 3614 spin_lock(&block_group->lock); 3615 if (!ret && dcs == BTRFS_DC_SETUP) 3616 block_group->cache_generation = trans->transid; 3617 block_group->disk_cache_state = dcs; 3618 spin_unlock(&block_group->lock); 3619 3620 extent_changeset_free(data_reserved); 3621 return ret; 3622 } 3623 3624 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3625 struct btrfs_fs_info *fs_info) 3626 { 3627 struct btrfs_block_group_cache *cache, *tmp; 3628 struct btrfs_transaction *cur_trans = trans->transaction; 3629 struct btrfs_path *path; 3630 3631 if (list_empty(&cur_trans->dirty_bgs) || 3632 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3633 return 0; 3634 3635 path = btrfs_alloc_path(); 3636 if (!path) 3637 return -ENOMEM; 3638 3639 /* Could add new block groups, use _safe just in case */ 3640 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3641 dirty_list) { 3642 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3643 cache_save_setup(cache, trans, path); 3644 } 3645 3646 btrfs_free_path(path); 3647 return 0; 3648 } 3649 3650 /* 3651 * transaction commit does final block group cache writeback during a 3652 * critical section where nothing is allowed to change the FS. This is 3653 * required in order for the cache to actually match the block group, 3654 * but can introduce a lot of latency into the commit. 3655 * 3656 * So, btrfs_start_dirty_block_groups is here to kick off block group 3657 * cache IO. There's a chance we'll have to redo some of it if the 3658 * block group changes again during the commit, but it greatly reduces 3659 * the commit latency by getting rid of the easy block groups while 3660 * we're still allowing others to join the commit. 3661 */ 3662 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3663 { 3664 struct btrfs_fs_info *fs_info = trans->fs_info; 3665 struct btrfs_block_group_cache *cache; 3666 struct btrfs_transaction *cur_trans = trans->transaction; 3667 int ret = 0; 3668 int should_put; 3669 struct btrfs_path *path = NULL; 3670 LIST_HEAD(dirty); 3671 struct list_head *io = &cur_trans->io_bgs; 3672 int num_started = 0; 3673 int loops = 0; 3674 3675 spin_lock(&cur_trans->dirty_bgs_lock); 3676 if (list_empty(&cur_trans->dirty_bgs)) { 3677 spin_unlock(&cur_trans->dirty_bgs_lock); 3678 return 0; 3679 } 3680 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3681 spin_unlock(&cur_trans->dirty_bgs_lock); 3682 3683 again: 3684 /* 3685 * make sure all the block groups on our dirty list actually 3686 * exist 3687 */ 3688 btrfs_create_pending_block_groups(trans); 3689 3690 if (!path) { 3691 path = btrfs_alloc_path(); 3692 if (!path) 3693 return -ENOMEM; 3694 } 3695 3696 /* 3697 * cache_write_mutex is here only to save us from balance or automatic 3698 * removal of empty block groups deleting this block group while we are 3699 * writing out the cache 3700 */ 3701 mutex_lock(&trans->transaction->cache_write_mutex); 3702 while (!list_empty(&dirty)) { 3703 cache = list_first_entry(&dirty, 3704 struct btrfs_block_group_cache, 3705 dirty_list); 3706 /* 3707 * this can happen if something re-dirties a block 3708 * group that is already under IO. Just wait for it to 3709 * finish and then do it all again 3710 */ 3711 if (!list_empty(&cache->io_list)) { 3712 list_del_init(&cache->io_list); 3713 btrfs_wait_cache_io(trans, cache, path); 3714 btrfs_put_block_group(cache); 3715 } 3716 3717 3718 /* 3719 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3720 * if it should update the cache_state. Don't delete 3721 * until after we wait. 3722 * 3723 * Since we're not running in the commit critical section 3724 * we need the dirty_bgs_lock to protect from update_block_group 3725 */ 3726 spin_lock(&cur_trans->dirty_bgs_lock); 3727 list_del_init(&cache->dirty_list); 3728 spin_unlock(&cur_trans->dirty_bgs_lock); 3729 3730 should_put = 1; 3731 3732 cache_save_setup(cache, trans, path); 3733 3734 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3735 cache->io_ctl.inode = NULL; 3736 ret = btrfs_write_out_cache(fs_info, trans, 3737 cache, path); 3738 if (ret == 0 && cache->io_ctl.inode) { 3739 num_started++; 3740 should_put = 0; 3741 3742 /* 3743 * The cache_write_mutex is protecting the 3744 * io_list, also refer to the definition of 3745 * btrfs_transaction::io_bgs for more details 3746 */ 3747 list_add_tail(&cache->io_list, io); 3748 } else { 3749 /* 3750 * if we failed to write the cache, the 3751 * generation will be bad and life goes on 3752 */ 3753 ret = 0; 3754 } 3755 } 3756 if (!ret) { 3757 ret = write_one_cache_group(trans, fs_info, 3758 path, cache); 3759 /* 3760 * Our block group might still be attached to the list 3761 * of new block groups in the transaction handle of some 3762 * other task (struct btrfs_trans_handle->new_bgs). This 3763 * means its block group item isn't yet in the extent 3764 * tree. If this happens ignore the error, as we will 3765 * try again later in the critical section of the 3766 * transaction commit. 3767 */ 3768 if (ret == -ENOENT) { 3769 ret = 0; 3770 spin_lock(&cur_trans->dirty_bgs_lock); 3771 if (list_empty(&cache->dirty_list)) { 3772 list_add_tail(&cache->dirty_list, 3773 &cur_trans->dirty_bgs); 3774 btrfs_get_block_group(cache); 3775 } 3776 spin_unlock(&cur_trans->dirty_bgs_lock); 3777 } else if (ret) { 3778 btrfs_abort_transaction(trans, ret); 3779 } 3780 } 3781 3782 /* if its not on the io list, we need to put the block group */ 3783 if (should_put) 3784 btrfs_put_block_group(cache); 3785 3786 if (ret) 3787 break; 3788 3789 /* 3790 * Avoid blocking other tasks for too long. It might even save 3791 * us from writing caches for block groups that are going to be 3792 * removed. 3793 */ 3794 mutex_unlock(&trans->transaction->cache_write_mutex); 3795 mutex_lock(&trans->transaction->cache_write_mutex); 3796 } 3797 mutex_unlock(&trans->transaction->cache_write_mutex); 3798 3799 /* 3800 * go through delayed refs for all the stuff we've just kicked off 3801 * and then loop back (just once) 3802 */ 3803 ret = btrfs_run_delayed_refs(trans, 0); 3804 if (!ret && loops == 0) { 3805 loops++; 3806 spin_lock(&cur_trans->dirty_bgs_lock); 3807 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3808 /* 3809 * dirty_bgs_lock protects us from concurrent block group 3810 * deletes too (not just cache_write_mutex). 3811 */ 3812 if (!list_empty(&dirty)) { 3813 spin_unlock(&cur_trans->dirty_bgs_lock); 3814 goto again; 3815 } 3816 spin_unlock(&cur_trans->dirty_bgs_lock); 3817 } else if (ret < 0) { 3818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3819 } 3820 3821 btrfs_free_path(path); 3822 return ret; 3823 } 3824 3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3826 struct btrfs_fs_info *fs_info) 3827 { 3828 struct btrfs_block_group_cache *cache; 3829 struct btrfs_transaction *cur_trans = trans->transaction; 3830 int ret = 0; 3831 int should_put; 3832 struct btrfs_path *path; 3833 struct list_head *io = &cur_trans->io_bgs; 3834 int num_started = 0; 3835 3836 path = btrfs_alloc_path(); 3837 if (!path) 3838 return -ENOMEM; 3839 3840 /* 3841 * Even though we are in the critical section of the transaction commit, 3842 * we can still have concurrent tasks adding elements to this 3843 * transaction's list of dirty block groups. These tasks correspond to 3844 * endio free space workers started when writeback finishes for a 3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3846 * allocate new block groups as a result of COWing nodes of the root 3847 * tree when updating the free space inode. The writeback for the space 3848 * caches is triggered by an earlier call to 3849 * btrfs_start_dirty_block_groups() and iterations of the following 3850 * loop. 3851 * Also we want to do the cache_save_setup first and then run the 3852 * delayed refs to make sure we have the best chance at doing this all 3853 * in one shot. 3854 */ 3855 spin_lock(&cur_trans->dirty_bgs_lock); 3856 while (!list_empty(&cur_trans->dirty_bgs)) { 3857 cache = list_first_entry(&cur_trans->dirty_bgs, 3858 struct btrfs_block_group_cache, 3859 dirty_list); 3860 3861 /* 3862 * this can happen if cache_save_setup re-dirties a block 3863 * group that is already under IO. Just wait for it to 3864 * finish and then do it all again 3865 */ 3866 if (!list_empty(&cache->io_list)) { 3867 spin_unlock(&cur_trans->dirty_bgs_lock); 3868 list_del_init(&cache->io_list); 3869 btrfs_wait_cache_io(trans, cache, path); 3870 btrfs_put_block_group(cache); 3871 spin_lock(&cur_trans->dirty_bgs_lock); 3872 } 3873 3874 /* 3875 * don't remove from the dirty list until after we've waited 3876 * on any pending IO 3877 */ 3878 list_del_init(&cache->dirty_list); 3879 spin_unlock(&cur_trans->dirty_bgs_lock); 3880 should_put = 1; 3881 3882 cache_save_setup(cache, trans, path); 3883 3884 if (!ret) 3885 ret = btrfs_run_delayed_refs(trans, 3886 (unsigned long) -1); 3887 3888 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3889 cache->io_ctl.inode = NULL; 3890 ret = btrfs_write_out_cache(fs_info, trans, 3891 cache, path); 3892 if (ret == 0 && cache->io_ctl.inode) { 3893 num_started++; 3894 should_put = 0; 3895 list_add_tail(&cache->io_list, io); 3896 } else { 3897 /* 3898 * if we failed to write the cache, the 3899 * generation will be bad and life goes on 3900 */ 3901 ret = 0; 3902 } 3903 } 3904 if (!ret) { 3905 ret = write_one_cache_group(trans, fs_info, 3906 path, cache); 3907 /* 3908 * One of the free space endio workers might have 3909 * created a new block group while updating a free space 3910 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3911 * and hasn't released its transaction handle yet, in 3912 * which case the new block group is still attached to 3913 * its transaction handle and its creation has not 3914 * finished yet (no block group item in the extent tree 3915 * yet, etc). If this is the case, wait for all free 3916 * space endio workers to finish and retry. This is a 3917 * a very rare case so no need for a more efficient and 3918 * complex approach. 3919 */ 3920 if (ret == -ENOENT) { 3921 wait_event(cur_trans->writer_wait, 3922 atomic_read(&cur_trans->num_writers) == 1); 3923 ret = write_one_cache_group(trans, fs_info, 3924 path, cache); 3925 } 3926 if (ret) 3927 btrfs_abort_transaction(trans, ret); 3928 } 3929 3930 /* if its not on the io list, we need to put the block group */ 3931 if (should_put) 3932 btrfs_put_block_group(cache); 3933 spin_lock(&cur_trans->dirty_bgs_lock); 3934 } 3935 spin_unlock(&cur_trans->dirty_bgs_lock); 3936 3937 /* 3938 * Refer to the definition of io_bgs member for details why it's safe 3939 * to use it without any locking 3940 */ 3941 while (!list_empty(io)) { 3942 cache = list_first_entry(io, struct btrfs_block_group_cache, 3943 io_list); 3944 list_del_init(&cache->io_list); 3945 btrfs_wait_cache_io(trans, cache, path); 3946 btrfs_put_block_group(cache); 3947 } 3948 3949 btrfs_free_path(path); 3950 return ret; 3951 } 3952 3953 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3954 { 3955 struct btrfs_block_group_cache *block_group; 3956 int readonly = 0; 3957 3958 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3959 if (!block_group || block_group->ro) 3960 readonly = 1; 3961 if (block_group) 3962 btrfs_put_block_group(block_group); 3963 return readonly; 3964 } 3965 3966 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3967 { 3968 struct btrfs_block_group_cache *bg; 3969 bool ret = true; 3970 3971 bg = btrfs_lookup_block_group(fs_info, bytenr); 3972 if (!bg) 3973 return false; 3974 3975 spin_lock(&bg->lock); 3976 if (bg->ro) 3977 ret = false; 3978 else 3979 atomic_inc(&bg->nocow_writers); 3980 spin_unlock(&bg->lock); 3981 3982 /* no put on block group, done by btrfs_dec_nocow_writers */ 3983 if (!ret) 3984 btrfs_put_block_group(bg); 3985 3986 return ret; 3987 3988 } 3989 3990 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3991 { 3992 struct btrfs_block_group_cache *bg; 3993 3994 bg = btrfs_lookup_block_group(fs_info, bytenr); 3995 ASSERT(bg); 3996 if (atomic_dec_and_test(&bg->nocow_writers)) 3997 wake_up_var(&bg->nocow_writers); 3998 /* 3999 * Once for our lookup and once for the lookup done by a previous call 4000 * to btrfs_inc_nocow_writers() 4001 */ 4002 btrfs_put_block_group(bg); 4003 btrfs_put_block_group(bg); 4004 } 4005 4006 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4007 { 4008 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 4009 } 4010 4011 static const char *alloc_name(u64 flags) 4012 { 4013 switch (flags) { 4014 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4015 return "mixed"; 4016 case BTRFS_BLOCK_GROUP_METADATA: 4017 return "metadata"; 4018 case BTRFS_BLOCK_GROUP_DATA: 4019 return "data"; 4020 case BTRFS_BLOCK_GROUP_SYSTEM: 4021 return "system"; 4022 default: 4023 WARN_ON(1); 4024 return "invalid-combination"; 4025 }; 4026 } 4027 4028 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4029 struct btrfs_space_info **new) 4030 { 4031 4032 struct btrfs_space_info *space_info; 4033 int i; 4034 int ret; 4035 4036 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4037 if (!space_info) 4038 return -ENOMEM; 4039 4040 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4041 GFP_KERNEL); 4042 if (ret) { 4043 kfree(space_info); 4044 return ret; 4045 } 4046 4047 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4048 INIT_LIST_HEAD(&space_info->block_groups[i]); 4049 init_rwsem(&space_info->groups_sem); 4050 spin_lock_init(&space_info->lock); 4051 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4052 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4053 init_waitqueue_head(&space_info->wait); 4054 INIT_LIST_HEAD(&space_info->ro_bgs); 4055 INIT_LIST_HEAD(&space_info->tickets); 4056 INIT_LIST_HEAD(&space_info->priority_tickets); 4057 4058 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4059 info->space_info_kobj, "%s", 4060 alloc_name(space_info->flags)); 4061 if (ret) { 4062 percpu_counter_destroy(&space_info->total_bytes_pinned); 4063 kfree(space_info); 4064 return ret; 4065 } 4066 4067 *new = space_info; 4068 list_add_rcu(&space_info->list, &info->space_info); 4069 if (flags & BTRFS_BLOCK_GROUP_DATA) 4070 info->data_sinfo = space_info; 4071 4072 return ret; 4073 } 4074 4075 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4076 u64 total_bytes, u64 bytes_used, 4077 u64 bytes_readonly, 4078 struct btrfs_space_info **space_info) 4079 { 4080 struct btrfs_space_info *found; 4081 int factor; 4082 4083 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4084 BTRFS_BLOCK_GROUP_RAID10)) 4085 factor = 2; 4086 else 4087 factor = 1; 4088 4089 found = __find_space_info(info, flags); 4090 ASSERT(found); 4091 spin_lock(&found->lock); 4092 found->total_bytes += total_bytes; 4093 found->disk_total += total_bytes * factor; 4094 found->bytes_used += bytes_used; 4095 found->disk_used += bytes_used * factor; 4096 found->bytes_readonly += bytes_readonly; 4097 if (total_bytes > 0) 4098 found->full = 0; 4099 space_info_add_new_bytes(info, found, total_bytes - 4100 bytes_used - bytes_readonly); 4101 spin_unlock(&found->lock); 4102 *space_info = found; 4103 } 4104 4105 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4106 { 4107 u64 extra_flags = chunk_to_extended(flags) & 4108 BTRFS_EXTENDED_PROFILE_MASK; 4109 4110 write_seqlock(&fs_info->profiles_lock); 4111 if (flags & BTRFS_BLOCK_GROUP_DATA) 4112 fs_info->avail_data_alloc_bits |= extra_flags; 4113 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4114 fs_info->avail_metadata_alloc_bits |= extra_flags; 4115 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4116 fs_info->avail_system_alloc_bits |= extra_flags; 4117 write_sequnlock(&fs_info->profiles_lock); 4118 } 4119 4120 /* 4121 * returns target flags in extended format or 0 if restripe for this 4122 * chunk_type is not in progress 4123 * 4124 * should be called with either volume_mutex or balance_lock held 4125 */ 4126 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4127 { 4128 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4129 u64 target = 0; 4130 4131 if (!bctl) 4132 return 0; 4133 4134 if (flags & BTRFS_BLOCK_GROUP_DATA && 4135 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4136 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4137 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4138 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4139 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4140 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4141 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4142 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4143 } 4144 4145 return target; 4146 } 4147 4148 /* 4149 * @flags: available profiles in extended format (see ctree.h) 4150 * 4151 * Returns reduced profile in chunk format. If profile changing is in 4152 * progress (either running or paused) picks the target profile (if it's 4153 * already available), otherwise falls back to plain reducing. 4154 */ 4155 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4156 { 4157 u64 num_devices = fs_info->fs_devices->rw_devices; 4158 u64 target; 4159 u64 raid_type; 4160 u64 allowed = 0; 4161 4162 /* 4163 * see if restripe for this chunk_type is in progress, if so 4164 * try to reduce to the target profile 4165 */ 4166 spin_lock(&fs_info->balance_lock); 4167 target = get_restripe_target(fs_info, flags); 4168 if (target) { 4169 /* pick target profile only if it's already available */ 4170 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4171 spin_unlock(&fs_info->balance_lock); 4172 return extended_to_chunk(target); 4173 } 4174 } 4175 spin_unlock(&fs_info->balance_lock); 4176 4177 /* First, mask out the RAID levels which aren't possible */ 4178 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4179 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4180 allowed |= btrfs_raid_group[raid_type]; 4181 } 4182 allowed &= flags; 4183 4184 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4185 allowed = BTRFS_BLOCK_GROUP_RAID6; 4186 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4187 allowed = BTRFS_BLOCK_GROUP_RAID5; 4188 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4189 allowed = BTRFS_BLOCK_GROUP_RAID10; 4190 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4191 allowed = BTRFS_BLOCK_GROUP_RAID1; 4192 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4193 allowed = BTRFS_BLOCK_GROUP_RAID0; 4194 4195 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4196 4197 return extended_to_chunk(flags | allowed); 4198 } 4199 4200 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4201 { 4202 unsigned seq; 4203 u64 flags; 4204 4205 do { 4206 flags = orig_flags; 4207 seq = read_seqbegin(&fs_info->profiles_lock); 4208 4209 if (flags & BTRFS_BLOCK_GROUP_DATA) 4210 flags |= fs_info->avail_data_alloc_bits; 4211 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4212 flags |= fs_info->avail_system_alloc_bits; 4213 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4214 flags |= fs_info->avail_metadata_alloc_bits; 4215 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4216 4217 return btrfs_reduce_alloc_profile(fs_info, flags); 4218 } 4219 4220 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4221 { 4222 struct btrfs_fs_info *fs_info = root->fs_info; 4223 u64 flags; 4224 u64 ret; 4225 4226 if (data) 4227 flags = BTRFS_BLOCK_GROUP_DATA; 4228 else if (root == fs_info->chunk_root) 4229 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4230 else 4231 flags = BTRFS_BLOCK_GROUP_METADATA; 4232 4233 ret = get_alloc_profile(fs_info, flags); 4234 return ret; 4235 } 4236 4237 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4238 { 4239 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4240 } 4241 4242 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4243 { 4244 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4245 } 4246 4247 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4248 { 4249 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4250 } 4251 4252 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4253 bool may_use_included) 4254 { 4255 ASSERT(s_info); 4256 return s_info->bytes_used + s_info->bytes_reserved + 4257 s_info->bytes_pinned + s_info->bytes_readonly + 4258 (may_use_included ? s_info->bytes_may_use : 0); 4259 } 4260 4261 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4262 { 4263 struct btrfs_root *root = inode->root; 4264 struct btrfs_fs_info *fs_info = root->fs_info; 4265 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4266 u64 used; 4267 int ret = 0; 4268 int need_commit = 2; 4269 int have_pinned_space; 4270 4271 /* make sure bytes are sectorsize aligned */ 4272 bytes = ALIGN(bytes, fs_info->sectorsize); 4273 4274 if (btrfs_is_free_space_inode(inode)) { 4275 need_commit = 0; 4276 ASSERT(current->journal_info); 4277 } 4278 4279 again: 4280 /* make sure we have enough space to handle the data first */ 4281 spin_lock(&data_sinfo->lock); 4282 used = btrfs_space_info_used(data_sinfo, true); 4283 4284 if (used + bytes > data_sinfo->total_bytes) { 4285 struct btrfs_trans_handle *trans; 4286 4287 /* 4288 * if we don't have enough free bytes in this space then we need 4289 * to alloc a new chunk. 4290 */ 4291 if (!data_sinfo->full) { 4292 u64 alloc_target; 4293 4294 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4295 spin_unlock(&data_sinfo->lock); 4296 4297 alloc_target = btrfs_data_alloc_profile(fs_info); 4298 /* 4299 * It is ugly that we don't call nolock join 4300 * transaction for the free space inode case here. 4301 * But it is safe because we only do the data space 4302 * reservation for the free space cache in the 4303 * transaction context, the common join transaction 4304 * just increase the counter of the current transaction 4305 * handler, doesn't try to acquire the trans_lock of 4306 * the fs. 4307 */ 4308 trans = btrfs_join_transaction(root); 4309 if (IS_ERR(trans)) 4310 return PTR_ERR(trans); 4311 4312 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4313 CHUNK_ALLOC_NO_FORCE); 4314 btrfs_end_transaction(trans); 4315 if (ret < 0) { 4316 if (ret != -ENOSPC) 4317 return ret; 4318 else { 4319 have_pinned_space = 1; 4320 goto commit_trans; 4321 } 4322 } 4323 4324 goto again; 4325 } 4326 4327 /* 4328 * If we don't have enough pinned space to deal with this 4329 * allocation, and no removed chunk in current transaction, 4330 * don't bother committing the transaction. 4331 */ 4332 have_pinned_space = percpu_counter_compare( 4333 &data_sinfo->total_bytes_pinned, 4334 used + bytes - data_sinfo->total_bytes); 4335 spin_unlock(&data_sinfo->lock); 4336 4337 /* commit the current transaction and try again */ 4338 commit_trans: 4339 if (need_commit) { 4340 need_commit--; 4341 4342 if (need_commit > 0) { 4343 btrfs_start_delalloc_roots(fs_info, 0, -1); 4344 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4345 (u64)-1); 4346 } 4347 4348 trans = btrfs_join_transaction(root); 4349 if (IS_ERR(trans)) 4350 return PTR_ERR(trans); 4351 if (have_pinned_space >= 0 || 4352 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4353 &trans->transaction->flags) || 4354 need_commit > 0) { 4355 ret = btrfs_commit_transaction(trans); 4356 if (ret) 4357 return ret; 4358 /* 4359 * The cleaner kthread might still be doing iput 4360 * operations. Wait for it to finish so that 4361 * more space is released. 4362 */ 4363 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4364 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4365 goto again; 4366 } else { 4367 btrfs_end_transaction(trans); 4368 } 4369 } 4370 4371 trace_btrfs_space_reservation(fs_info, 4372 "space_info:enospc", 4373 data_sinfo->flags, bytes, 1); 4374 return -ENOSPC; 4375 } 4376 data_sinfo->bytes_may_use += bytes; 4377 trace_btrfs_space_reservation(fs_info, "space_info", 4378 data_sinfo->flags, bytes, 1); 4379 spin_unlock(&data_sinfo->lock); 4380 4381 return ret; 4382 } 4383 4384 int btrfs_check_data_free_space(struct inode *inode, 4385 struct extent_changeset **reserved, u64 start, u64 len) 4386 { 4387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4388 int ret; 4389 4390 /* align the range */ 4391 len = round_up(start + len, fs_info->sectorsize) - 4392 round_down(start, fs_info->sectorsize); 4393 start = round_down(start, fs_info->sectorsize); 4394 4395 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4396 if (ret < 0) 4397 return ret; 4398 4399 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4400 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4401 if (ret < 0) 4402 btrfs_free_reserved_data_space_noquota(inode, start, len); 4403 else 4404 ret = 0; 4405 return ret; 4406 } 4407 4408 /* 4409 * Called if we need to clear a data reservation for this inode 4410 * Normally in a error case. 4411 * 4412 * This one will *NOT* use accurate qgroup reserved space API, just for case 4413 * which we can't sleep and is sure it won't affect qgroup reserved space. 4414 * Like clear_bit_hook(). 4415 */ 4416 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4417 u64 len) 4418 { 4419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4420 struct btrfs_space_info *data_sinfo; 4421 4422 /* Make sure the range is aligned to sectorsize */ 4423 len = round_up(start + len, fs_info->sectorsize) - 4424 round_down(start, fs_info->sectorsize); 4425 start = round_down(start, fs_info->sectorsize); 4426 4427 data_sinfo = fs_info->data_sinfo; 4428 spin_lock(&data_sinfo->lock); 4429 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4430 data_sinfo->bytes_may_use = 0; 4431 else 4432 data_sinfo->bytes_may_use -= len; 4433 trace_btrfs_space_reservation(fs_info, "space_info", 4434 data_sinfo->flags, len, 0); 4435 spin_unlock(&data_sinfo->lock); 4436 } 4437 4438 /* 4439 * Called if we need to clear a data reservation for this inode 4440 * Normally in a error case. 4441 * 4442 * This one will handle the per-inode data rsv map for accurate reserved 4443 * space framework. 4444 */ 4445 void btrfs_free_reserved_data_space(struct inode *inode, 4446 struct extent_changeset *reserved, u64 start, u64 len) 4447 { 4448 struct btrfs_root *root = BTRFS_I(inode)->root; 4449 4450 /* Make sure the range is aligned to sectorsize */ 4451 len = round_up(start + len, root->fs_info->sectorsize) - 4452 round_down(start, root->fs_info->sectorsize); 4453 start = round_down(start, root->fs_info->sectorsize); 4454 4455 btrfs_free_reserved_data_space_noquota(inode, start, len); 4456 btrfs_qgroup_free_data(inode, reserved, start, len); 4457 } 4458 4459 static void force_metadata_allocation(struct btrfs_fs_info *info) 4460 { 4461 struct list_head *head = &info->space_info; 4462 struct btrfs_space_info *found; 4463 4464 rcu_read_lock(); 4465 list_for_each_entry_rcu(found, head, list) { 4466 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4467 found->force_alloc = CHUNK_ALLOC_FORCE; 4468 } 4469 rcu_read_unlock(); 4470 } 4471 4472 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4473 { 4474 return (global->size << 1); 4475 } 4476 4477 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4478 struct btrfs_space_info *sinfo, int force) 4479 { 4480 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4481 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4482 u64 thresh; 4483 4484 if (force == CHUNK_ALLOC_FORCE) 4485 return 1; 4486 4487 /* 4488 * We need to take into account the global rsv because for all intents 4489 * and purposes it's used space. Don't worry about locking the 4490 * global_rsv, it doesn't change except when the transaction commits. 4491 */ 4492 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4493 bytes_used += calc_global_rsv_need_space(global_rsv); 4494 4495 /* 4496 * in limited mode, we want to have some free space up to 4497 * about 1% of the FS size. 4498 */ 4499 if (force == CHUNK_ALLOC_LIMITED) { 4500 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4501 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4502 4503 if (sinfo->total_bytes - bytes_used < thresh) 4504 return 1; 4505 } 4506 4507 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4508 return 0; 4509 return 1; 4510 } 4511 4512 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4513 { 4514 u64 num_dev; 4515 4516 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4517 BTRFS_BLOCK_GROUP_RAID0 | 4518 BTRFS_BLOCK_GROUP_RAID5 | 4519 BTRFS_BLOCK_GROUP_RAID6)) 4520 num_dev = fs_info->fs_devices->rw_devices; 4521 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4522 num_dev = 2; 4523 else 4524 num_dev = 1; /* DUP or single */ 4525 4526 return num_dev; 4527 } 4528 4529 /* 4530 * If @is_allocation is true, reserve space in the system space info necessary 4531 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4532 * removing a chunk. 4533 */ 4534 void check_system_chunk(struct btrfs_trans_handle *trans, 4535 struct btrfs_fs_info *fs_info, u64 type) 4536 { 4537 struct btrfs_space_info *info; 4538 u64 left; 4539 u64 thresh; 4540 int ret = 0; 4541 u64 num_devs; 4542 4543 /* 4544 * Needed because we can end up allocating a system chunk and for an 4545 * atomic and race free space reservation in the chunk block reserve. 4546 */ 4547 lockdep_assert_held(&fs_info->chunk_mutex); 4548 4549 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4550 spin_lock(&info->lock); 4551 left = info->total_bytes - btrfs_space_info_used(info, true); 4552 spin_unlock(&info->lock); 4553 4554 num_devs = get_profile_num_devs(fs_info, type); 4555 4556 /* num_devs device items to update and 1 chunk item to add or remove */ 4557 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4558 btrfs_calc_trans_metadata_size(fs_info, 1); 4559 4560 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4561 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4562 left, thresh, type); 4563 dump_space_info(fs_info, info, 0, 0); 4564 } 4565 4566 if (left < thresh) { 4567 u64 flags = btrfs_system_alloc_profile(fs_info); 4568 4569 /* 4570 * Ignore failure to create system chunk. We might end up not 4571 * needing it, as we might not need to COW all nodes/leafs from 4572 * the paths we visit in the chunk tree (they were already COWed 4573 * or created in the current transaction for example). 4574 */ 4575 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4576 } 4577 4578 if (!ret) { 4579 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4580 &fs_info->chunk_block_rsv, 4581 thresh, BTRFS_RESERVE_NO_FLUSH); 4582 if (!ret) 4583 trans->chunk_bytes_reserved += thresh; 4584 } 4585 } 4586 4587 /* 4588 * If force is CHUNK_ALLOC_FORCE: 4589 * - return 1 if it successfully allocates a chunk, 4590 * - return errors including -ENOSPC otherwise. 4591 * If force is NOT CHUNK_ALLOC_FORCE: 4592 * - return 0 if it doesn't need to allocate a new chunk, 4593 * - return 1 if it successfully allocates a chunk, 4594 * - return errors including -ENOSPC otherwise. 4595 */ 4596 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4597 struct btrfs_fs_info *fs_info, u64 flags, int force) 4598 { 4599 struct btrfs_space_info *space_info; 4600 int wait_for_alloc = 0; 4601 int ret = 0; 4602 4603 /* Don't re-enter if we're already allocating a chunk */ 4604 if (trans->allocating_chunk) 4605 return -ENOSPC; 4606 4607 space_info = __find_space_info(fs_info, flags); 4608 ASSERT(space_info); 4609 4610 again: 4611 spin_lock(&space_info->lock); 4612 if (force < space_info->force_alloc) 4613 force = space_info->force_alloc; 4614 if (space_info->full) { 4615 if (should_alloc_chunk(fs_info, space_info, force)) 4616 ret = -ENOSPC; 4617 else 4618 ret = 0; 4619 spin_unlock(&space_info->lock); 4620 return ret; 4621 } 4622 4623 if (!should_alloc_chunk(fs_info, space_info, force)) { 4624 spin_unlock(&space_info->lock); 4625 return 0; 4626 } else if (space_info->chunk_alloc) { 4627 wait_for_alloc = 1; 4628 } else { 4629 space_info->chunk_alloc = 1; 4630 } 4631 4632 spin_unlock(&space_info->lock); 4633 4634 mutex_lock(&fs_info->chunk_mutex); 4635 4636 /* 4637 * The chunk_mutex is held throughout the entirety of a chunk 4638 * allocation, so once we've acquired the chunk_mutex we know that the 4639 * other guy is done and we need to recheck and see if we should 4640 * allocate. 4641 */ 4642 if (wait_for_alloc) { 4643 mutex_unlock(&fs_info->chunk_mutex); 4644 wait_for_alloc = 0; 4645 goto again; 4646 } 4647 4648 trans->allocating_chunk = true; 4649 4650 /* 4651 * If we have mixed data/metadata chunks we want to make sure we keep 4652 * allocating mixed chunks instead of individual chunks. 4653 */ 4654 if (btrfs_mixed_space_info(space_info)) 4655 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4656 4657 /* 4658 * if we're doing a data chunk, go ahead and make sure that 4659 * we keep a reasonable number of metadata chunks allocated in the 4660 * FS as well. 4661 */ 4662 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4663 fs_info->data_chunk_allocations++; 4664 if (!(fs_info->data_chunk_allocations % 4665 fs_info->metadata_ratio)) 4666 force_metadata_allocation(fs_info); 4667 } 4668 4669 /* 4670 * Check if we have enough space in SYSTEM chunk because we may need 4671 * to update devices. 4672 */ 4673 check_system_chunk(trans, fs_info, flags); 4674 4675 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4676 trans->allocating_chunk = false; 4677 4678 spin_lock(&space_info->lock); 4679 if (ret < 0 && ret != -ENOSPC) 4680 goto out; 4681 if (ret) 4682 space_info->full = 1; 4683 else 4684 ret = 1; 4685 4686 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4687 out: 4688 space_info->chunk_alloc = 0; 4689 spin_unlock(&space_info->lock); 4690 mutex_unlock(&fs_info->chunk_mutex); 4691 /* 4692 * When we allocate a new chunk we reserve space in the chunk block 4693 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4694 * add new nodes/leafs to it if we end up needing to do it when 4695 * inserting the chunk item and updating device items as part of the 4696 * second phase of chunk allocation, performed by 4697 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4698 * large number of new block groups to create in our transaction 4699 * handle's new_bgs list to avoid exhausting the chunk block reserve 4700 * in extreme cases - like having a single transaction create many new 4701 * block groups when starting to write out the free space caches of all 4702 * the block groups that were made dirty during the lifetime of the 4703 * transaction. 4704 */ 4705 if (trans->can_flush_pending_bgs && 4706 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4707 btrfs_create_pending_block_groups(trans); 4708 btrfs_trans_release_chunk_metadata(trans); 4709 } 4710 return ret; 4711 } 4712 4713 static int can_overcommit(struct btrfs_fs_info *fs_info, 4714 struct btrfs_space_info *space_info, u64 bytes, 4715 enum btrfs_reserve_flush_enum flush, 4716 bool system_chunk) 4717 { 4718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4719 u64 profile; 4720 u64 space_size; 4721 u64 avail; 4722 u64 used; 4723 4724 /* Don't overcommit when in mixed mode. */ 4725 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4726 return 0; 4727 4728 if (system_chunk) 4729 profile = btrfs_system_alloc_profile(fs_info); 4730 else 4731 profile = btrfs_metadata_alloc_profile(fs_info); 4732 4733 used = btrfs_space_info_used(space_info, false); 4734 4735 /* 4736 * We only want to allow over committing if we have lots of actual space 4737 * free, but if we don't have enough space to handle the global reserve 4738 * space then we could end up having a real enospc problem when trying 4739 * to allocate a chunk or some other such important allocation. 4740 */ 4741 spin_lock(&global_rsv->lock); 4742 space_size = calc_global_rsv_need_space(global_rsv); 4743 spin_unlock(&global_rsv->lock); 4744 if (used + space_size >= space_info->total_bytes) 4745 return 0; 4746 4747 used += space_info->bytes_may_use; 4748 4749 avail = atomic64_read(&fs_info->free_chunk_space); 4750 4751 /* 4752 * If we have dup, raid1 or raid10 then only half of the free 4753 * space is actually useable. For raid56, the space info used 4754 * doesn't include the parity drive, so we don't have to 4755 * change the math 4756 */ 4757 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4758 BTRFS_BLOCK_GROUP_RAID1 | 4759 BTRFS_BLOCK_GROUP_RAID10)) 4760 avail >>= 1; 4761 4762 /* 4763 * If we aren't flushing all things, let us overcommit up to 4764 * 1/2th of the space. If we can flush, don't let us overcommit 4765 * too much, let it overcommit up to 1/8 of the space. 4766 */ 4767 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4768 avail >>= 3; 4769 else 4770 avail >>= 1; 4771 4772 if (used + bytes < space_info->total_bytes + avail) 4773 return 1; 4774 return 0; 4775 } 4776 4777 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4778 unsigned long nr_pages, int nr_items) 4779 { 4780 struct super_block *sb = fs_info->sb; 4781 4782 if (down_read_trylock(&sb->s_umount)) { 4783 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4784 up_read(&sb->s_umount); 4785 } else { 4786 /* 4787 * We needn't worry the filesystem going from r/w to r/o though 4788 * we don't acquire ->s_umount mutex, because the filesystem 4789 * should guarantee the delalloc inodes list be empty after 4790 * the filesystem is readonly(all dirty pages are written to 4791 * the disk). 4792 */ 4793 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4794 if (!current->journal_info) 4795 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4796 } 4797 } 4798 4799 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4800 u64 to_reclaim) 4801 { 4802 u64 bytes; 4803 u64 nr; 4804 4805 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4806 nr = div64_u64(to_reclaim, bytes); 4807 if (!nr) 4808 nr = 1; 4809 return nr; 4810 } 4811 4812 #define EXTENT_SIZE_PER_ITEM SZ_256K 4813 4814 /* 4815 * shrink metadata reservation for delalloc 4816 */ 4817 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4818 u64 orig, bool wait_ordered) 4819 { 4820 struct btrfs_space_info *space_info; 4821 struct btrfs_trans_handle *trans; 4822 u64 delalloc_bytes; 4823 u64 max_reclaim; 4824 u64 items; 4825 long time_left; 4826 unsigned long nr_pages; 4827 int loops; 4828 4829 /* Calc the number of the pages we need flush for space reservation */ 4830 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4831 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4832 4833 trans = (struct btrfs_trans_handle *)current->journal_info; 4834 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4835 4836 delalloc_bytes = percpu_counter_sum_positive( 4837 &fs_info->delalloc_bytes); 4838 if (delalloc_bytes == 0) { 4839 if (trans) 4840 return; 4841 if (wait_ordered) 4842 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4843 return; 4844 } 4845 4846 loops = 0; 4847 while (delalloc_bytes && loops < 3) { 4848 max_reclaim = min(delalloc_bytes, to_reclaim); 4849 nr_pages = max_reclaim >> PAGE_SHIFT; 4850 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4851 /* 4852 * We need to wait for the async pages to actually start before 4853 * we do anything. 4854 */ 4855 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4856 if (!max_reclaim) 4857 goto skip_async; 4858 4859 if (max_reclaim <= nr_pages) 4860 max_reclaim = 0; 4861 else 4862 max_reclaim -= nr_pages; 4863 4864 wait_event(fs_info->async_submit_wait, 4865 atomic_read(&fs_info->async_delalloc_pages) <= 4866 (int)max_reclaim); 4867 skip_async: 4868 spin_lock(&space_info->lock); 4869 if (list_empty(&space_info->tickets) && 4870 list_empty(&space_info->priority_tickets)) { 4871 spin_unlock(&space_info->lock); 4872 break; 4873 } 4874 spin_unlock(&space_info->lock); 4875 4876 loops++; 4877 if (wait_ordered && !trans) { 4878 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4879 } else { 4880 time_left = schedule_timeout_killable(1); 4881 if (time_left) 4882 break; 4883 } 4884 delalloc_bytes = percpu_counter_sum_positive( 4885 &fs_info->delalloc_bytes); 4886 } 4887 } 4888 4889 struct reserve_ticket { 4890 u64 bytes; 4891 int error; 4892 struct list_head list; 4893 wait_queue_head_t wait; 4894 }; 4895 4896 /** 4897 * maybe_commit_transaction - possibly commit the transaction if its ok to 4898 * @root - the root we're allocating for 4899 * @bytes - the number of bytes we want to reserve 4900 * @force - force the commit 4901 * 4902 * This will check to make sure that committing the transaction will actually 4903 * get us somewhere and then commit the transaction if it does. Otherwise it 4904 * will return -ENOSPC. 4905 */ 4906 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4907 struct btrfs_space_info *space_info) 4908 { 4909 struct reserve_ticket *ticket = NULL; 4910 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4911 struct btrfs_trans_handle *trans; 4912 u64 bytes; 4913 4914 trans = (struct btrfs_trans_handle *)current->journal_info; 4915 if (trans) 4916 return -EAGAIN; 4917 4918 spin_lock(&space_info->lock); 4919 if (!list_empty(&space_info->priority_tickets)) 4920 ticket = list_first_entry(&space_info->priority_tickets, 4921 struct reserve_ticket, list); 4922 else if (!list_empty(&space_info->tickets)) 4923 ticket = list_first_entry(&space_info->tickets, 4924 struct reserve_ticket, list); 4925 bytes = (ticket) ? ticket->bytes : 0; 4926 spin_unlock(&space_info->lock); 4927 4928 if (!bytes) 4929 return 0; 4930 4931 /* See if there is enough pinned space to make this reservation */ 4932 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4933 bytes) >= 0) 4934 goto commit; 4935 4936 /* 4937 * See if there is some space in the delayed insertion reservation for 4938 * this reservation. 4939 */ 4940 if (space_info != delayed_rsv->space_info) 4941 return -ENOSPC; 4942 4943 spin_lock(&delayed_rsv->lock); 4944 if (delayed_rsv->size > bytes) 4945 bytes = 0; 4946 else 4947 bytes -= delayed_rsv->size; 4948 spin_unlock(&delayed_rsv->lock); 4949 4950 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4951 bytes) < 0) { 4952 return -ENOSPC; 4953 } 4954 4955 commit: 4956 trans = btrfs_join_transaction(fs_info->extent_root); 4957 if (IS_ERR(trans)) 4958 return -ENOSPC; 4959 4960 return btrfs_commit_transaction(trans); 4961 } 4962 4963 /* 4964 * Try to flush some data based on policy set by @state. This is only advisory 4965 * and may fail for various reasons. The caller is supposed to examine the 4966 * state of @space_info to detect the outcome. 4967 */ 4968 static void flush_space(struct btrfs_fs_info *fs_info, 4969 struct btrfs_space_info *space_info, u64 num_bytes, 4970 int state) 4971 { 4972 struct btrfs_root *root = fs_info->extent_root; 4973 struct btrfs_trans_handle *trans; 4974 int nr; 4975 int ret = 0; 4976 4977 switch (state) { 4978 case FLUSH_DELAYED_ITEMS_NR: 4979 case FLUSH_DELAYED_ITEMS: 4980 if (state == FLUSH_DELAYED_ITEMS_NR) 4981 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4982 else 4983 nr = -1; 4984 4985 trans = btrfs_join_transaction(root); 4986 if (IS_ERR(trans)) { 4987 ret = PTR_ERR(trans); 4988 break; 4989 } 4990 ret = btrfs_run_delayed_items_nr(trans, nr); 4991 btrfs_end_transaction(trans); 4992 break; 4993 case FLUSH_DELALLOC: 4994 case FLUSH_DELALLOC_WAIT: 4995 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 4996 state == FLUSH_DELALLOC_WAIT); 4997 break; 4998 case ALLOC_CHUNK: 4999 trans = btrfs_join_transaction(root); 5000 if (IS_ERR(trans)) { 5001 ret = PTR_ERR(trans); 5002 break; 5003 } 5004 ret = do_chunk_alloc(trans, fs_info, 5005 btrfs_metadata_alloc_profile(fs_info), 5006 CHUNK_ALLOC_NO_FORCE); 5007 btrfs_end_transaction(trans); 5008 if (ret > 0 || ret == -ENOSPC) 5009 ret = 0; 5010 break; 5011 case COMMIT_TRANS: 5012 ret = may_commit_transaction(fs_info, space_info); 5013 break; 5014 default: 5015 ret = -ENOSPC; 5016 break; 5017 } 5018 5019 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5020 ret); 5021 return; 5022 } 5023 5024 static inline u64 5025 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5026 struct btrfs_space_info *space_info, 5027 bool system_chunk) 5028 { 5029 struct reserve_ticket *ticket; 5030 u64 used; 5031 u64 expected; 5032 u64 to_reclaim = 0; 5033 5034 list_for_each_entry(ticket, &space_info->tickets, list) 5035 to_reclaim += ticket->bytes; 5036 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5037 to_reclaim += ticket->bytes; 5038 if (to_reclaim) 5039 return to_reclaim; 5040 5041 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5042 if (can_overcommit(fs_info, space_info, to_reclaim, 5043 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5044 return 0; 5045 5046 used = btrfs_space_info_used(space_info, true); 5047 5048 if (can_overcommit(fs_info, space_info, SZ_1M, 5049 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5050 expected = div_factor_fine(space_info->total_bytes, 95); 5051 else 5052 expected = div_factor_fine(space_info->total_bytes, 90); 5053 5054 if (used > expected) 5055 to_reclaim = used - expected; 5056 else 5057 to_reclaim = 0; 5058 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5059 space_info->bytes_reserved); 5060 return to_reclaim; 5061 } 5062 5063 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5064 struct btrfs_space_info *space_info, 5065 u64 used, bool system_chunk) 5066 { 5067 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5068 5069 /* If we're just plain full then async reclaim just slows us down. */ 5070 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5071 return 0; 5072 5073 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5074 system_chunk)) 5075 return 0; 5076 5077 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5078 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5079 } 5080 5081 static void wake_all_tickets(struct list_head *head) 5082 { 5083 struct reserve_ticket *ticket; 5084 5085 while (!list_empty(head)) { 5086 ticket = list_first_entry(head, struct reserve_ticket, list); 5087 list_del_init(&ticket->list); 5088 ticket->error = -ENOSPC; 5089 wake_up(&ticket->wait); 5090 } 5091 } 5092 5093 /* 5094 * This is for normal flushers, we can wait all goddamned day if we want to. We 5095 * will loop and continuously try to flush as long as we are making progress. 5096 * We count progress as clearing off tickets each time we have to loop. 5097 */ 5098 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5099 { 5100 struct btrfs_fs_info *fs_info; 5101 struct btrfs_space_info *space_info; 5102 u64 to_reclaim; 5103 int flush_state; 5104 int commit_cycles = 0; 5105 u64 last_tickets_id; 5106 5107 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5108 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5109 5110 spin_lock(&space_info->lock); 5111 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5112 false); 5113 if (!to_reclaim) { 5114 space_info->flush = 0; 5115 spin_unlock(&space_info->lock); 5116 return; 5117 } 5118 last_tickets_id = space_info->tickets_id; 5119 spin_unlock(&space_info->lock); 5120 5121 flush_state = FLUSH_DELAYED_ITEMS_NR; 5122 do { 5123 flush_space(fs_info, space_info, to_reclaim, flush_state); 5124 spin_lock(&space_info->lock); 5125 if (list_empty(&space_info->tickets)) { 5126 space_info->flush = 0; 5127 spin_unlock(&space_info->lock); 5128 return; 5129 } 5130 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5131 space_info, 5132 false); 5133 if (last_tickets_id == space_info->tickets_id) { 5134 flush_state++; 5135 } else { 5136 last_tickets_id = space_info->tickets_id; 5137 flush_state = FLUSH_DELAYED_ITEMS_NR; 5138 if (commit_cycles) 5139 commit_cycles--; 5140 } 5141 5142 if (flush_state > COMMIT_TRANS) { 5143 commit_cycles++; 5144 if (commit_cycles > 2) { 5145 wake_all_tickets(&space_info->tickets); 5146 space_info->flush = 0; 5147 } else { 5148 flush_state = FLUSH_DELAYED_ITEMS_NR; 5149 } 5150 } 5151 spin_unlock(&space_info->lock); 5152 } while (flush_state <= COMMIT_TRANS); 5153 } 5154 5155 void btrfs_init_async_reclaim_work(struct work_struct *work) 5156 { 5157 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5158 } 5159 5160 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5161 struct btrfs_space_info *space_info, 5162 struct reserve_ticket *ticket) 5163 { 5164 u64 to_reclaim; 5165 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5166 5167 spin_lock(&space_info->lock); 5168 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5169 false); 5170 if (!to_reclaim) { 5171 spin_unlock(&space_info->lock); 5172 return; 5173 } 5174 spin_unlock(&space_info->lock); 5175 5176 do { 5177 flush_space(fs_info, space_info, to_reclaim, flush_state); 5178 flush_state++; 5179 spin_lock(&space_info->lock); 5180 if (ticket->bytes == 0) { 5181 spin_unlock(&space_info->lock); 5182 return; 5183 } 5184 spin_unlock(&space_info->lock); 5185 5186 /* 5187 * Priority flushers can't wait on delalloc without 5188 * deadlocking. 5189 */ 5190 if (flush_state == FLUSH_DELALLOC || 5191 flush_state == FLUSH_DELALLOC_WAIT) 5192 flush_state = ALLOC_CHUNK; 5193 } while (flush_state < COMMIT_TRANS); 5194 } 5195 5196 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5197 struct btrfs_space_info *space_info, 5198 struct reserve_ticket *ticket, u64 orig_bytes) 5199 5200 { 5201 DEFINE_WAIT(wait); 5202 int ret = 0; 5203 5204 spin_lock(&space_info->lock); 5205 while (ticket->bytes > 0 && ticket->error == 0) { 5206 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5207 if (ret) { 5208 ret = -EINTR; 5209 break; 5210 } 5211 spin_unlock(&space_info->lock); 5212 5213 schedule(); 5214 5215 finish_wait(&ticket->wait, &wait); 5216 spin_lock(&space_info->lock); 5217 } 5218 if (!ret) 5219 ret = ticket->error; 5220 if (!list_empty(&ticket->list)) 5221 list_del_init(&ticket->list); 5222 if (ticket->bytes && ticket->bytes < orig_bytes) { 5223 u64 num_bytes = orig_bytes - ticket->bytes; 5224 space_info->bytes_may_use -= num_bytes; 5225 trace_btrfs_space_reservation(fs_info, "space_info", 5226 space_info->flags, num_bytes, 0); 5227 } 5228 spin_unlock(&space_info->lock); 5229 5230 return ret; 5231 } 5232 5233 /** 5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5235 * @root - the root we're allocating for 5236 * @space_info - the space info we want to allocate from 5237 * @orig_bytes - the number of bytes we want 5238 * @flush - whether or not we can flush to make our reservation 5239 * 5240 * This will reserve orig_bytes number of bytes from the space info associated 5241 * with the block_rsv. If there is not enough space it will make an attempt to 5242 * flush out space to make room. It will do this by flushing delalloc if 5243 * possible or committing the transaction. If flush is 0 then no attempts to 5244 * regain reservations will be made and this will fail if there is not enough 5245 * space already. 5246 */ 5247 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5248 struct btrfs_space_info *space_info, 5249 u64 orig_bytes, 5250 enum btrfs_reserve_flush_enum flush, 5251 bool system_chunk) 5252 { 5253 struct reserve_ticket ticket; 5254 u64 used; 5255 int ret = 0; 5256 5257 ASSERT(orig_bytes); 5258 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5259 5260 spin_lock(&space_info->lock); 5261 ret = -ENOSPC; 5262 used = btrfs_space_info_used(space_info, true); 5263 5264 /* 5265 * If we have enough space then hooray, make our reservation and carry 5266 * on. If not see if we can overcommit, and if we can, hooray carry on. 5267 * If not things get more complicated. 5268 */ 5269 if (used + orig_bytes <= space_info->total_bytes) { 5270 space_info->bytes_may_use += orig_bytes; 5271 trace_btrfs_space_reservation(fs_info, "space_info", 5272 space_info->flags, orig_bytes, 1); 5273 ret = 0; 5274 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5275 system_chunk)) { 5276 space_info->bytes_may_use += orig_bytes; 5277 trace_btrfs_space_reservation(fs_info, "space_info", 5278 space_info->flags, orig_bytes, 1); 5279 ret = 0; 5280 } 5281 5282 /* 5283 * If we couldn't make a reservation then setup our reservation ticket 5284 * and kick the async worker if it's not already running. 5285 * 5286 * If we are a priority flusher then we just need to add our ticket to 5287 * the list and we will do our own flushing further down. 5288 */ 5289 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5290 ticket.bytes = orig_bytes; 5291 ticket.error = 0; 5292 init_waitqueue_head(&ticket.wait); 5293 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5294 list_add_tail(&ticket.list, &space_info->tickets); 5295 if (!space_info->flush) { 5296 space_info->flush = 1; 5297 trace_btrfs_trigger_flush(fs_info, 5298 space_info->flags, 5299 orig_bytes, flush, 5300 "enospc"); 5301 queue_work(system_unbound_wq, 5302 &fs_info->async_reclaim_work); 5303 } 5304 } else { 5305 list_add_tail(&ticket.list, 5306 &space_info->priority_tickets); 5307 } 5308 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5309 used += orig_bytes; 5310 /* 5311 * We will do the space reservation dance during log replay, 5312 * which means we won't have fs_info->fs_root set, so don't do 5313 * the async reclaim as we will panic. 5314 */ 5315 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5316 need_do_async_reclaim(fs_info, space_info, 5317 used, system_chunk) && 5318 !work_busy(&fs_info->async_reclaim_work)) { 5319 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5320 orig_bytes, flush, "preempt"); 5321 queue_work(system_unbound_wq, 5322 &fs_info->async_reclaim_work); 5323 } 5324 } 5325 spin_unlock(&space_info->lock); 5326 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5327 return ret; 5328 5329 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5330 return wait_reserve_ticket(fs_info, space_info, &ticket, 5331 orig_bytes); 5332 5333 ret = 0; 5334 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5335 spin_lock(&space_info->lock); 5336 if (ticket.bytes) { 5337 if (ticket.bytes < orig_bytes) { 5338 u64 num_bytes = orig_bytes - ticket.bytes; 5339 space_info->bytes_may_use -= num_bytes; 5340 trace_btrfs_space_reservation(fs_info, "space_info", 5341 space_info->flags, 5342 num_bytes, 0); 5343 5344 } 5345 list_del_init(&ticket.list); 5346 ret = -ENOSPC; 5347 } 5348 spin_unlock(&space_info->lock); 5349 ASSERT(list_empty(&ticket.list)); 5350 return ret; 5351 } 5352 5353 /** 5354 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5355 * @root - the root we're allocating for 5356 * @block_rsv - the block_rsv we're allocating for 5357 * @orig_bytes - the number of bytes we want 5358 * @flush - whether or not we can flush to make our reservation 5359 * 5360 * This will reserve orgi_bytes number of bytes from the space info associated 5361 * with the block_rsv. If there is not enough space it will make an attempt to 5362 * flush out space to make room. It will do this by flushing delalloc if 5363 * possible or committing the transaction. If flush is 0 then no attempts to 5364 * regain reservations will be made and this will fail if there is not enough 5365 * space already. 5366 */ 5367 static int reserve_metadata_bytes(struct btrfs_root *root, 5368 struct btrfs_block_rsv *block_rsv, 5369 u64 orig_bytes, 5370 enum btrfs_reserve_flush_enum flush) 5371 { 5372 struct btrfs_fs_info *fs_info = root->fs_info; 5373 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5374 int ret; 5375 bool system_chunk = (root == fs_info->chunk_root); 5376 5377 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5378 orig_bytes, flush, system_chunk); 5379 if (ret == -ENOSPC && 5380 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5381 if (block_rsv != global_rsv && 5382 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5383 ret = 0; 5384 } 5385 if (ret == -ENOSPC) { 5386 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5387 block_rsv->space_info->flags, 5388 orig_bytes, 1); 5389 5390 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5391 dump_space_info(fs_info, block_rsv->space_info, 5392 orig_bytes, 0); 5393 } 5394 return ret; 5395 } 5396 5397 static struct btrfs_block_rsv *get_block_rsv( 5398 const struct btrfs_trans_handle *trans, 5399 const struct btrfs_root *root) 5400 { 5401 struct btrfs_fs_info *fs_info = root->fs_info; 5402 struct btrfs_block_rsv *block_rsv = NULL; 5403 5404 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5405 (root == fs_info->csum_root && trans->adding_csums) || 5406 (root == fs_info->uuid_root)) 5407 block_rsv = trans->block_rsv; 5408 5409 if (!block_rsv) 5410 block_rsv = root->block_rsv; 5411 5412 if (!block_rsv) 5413 block_rsv = &fs_info->empty_block_rsv; 5414 5415 return block_rsv; 5416 } 5417 5418 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5419 u64 num_bytes) 5420 { 5421 int ret = -ENOSPC; 5422 spin_lock(&block_rsv->lock); 5423 if (block_rsv->reserved >= num_bytes) { 5424 block_rsv->reserved -= num_bytes; 5425 if (block_rsv->reserved < block_rsv->size) 5426 block_rsv->full = 0; 5427 ret = 0; 5428 } 5429 spin_unlock(&block_rsv->lock); 5430 return ret; 5431 } 5432 5433 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5434 u64 num_bytes, int update_size) 5435 { 5436 spin_lock(&block_rsv->lock); 5437 block_rsv->reserved += num_bytes; 5438 if (update_size) 5439 block_rsv->size += num_bytes; 5440 else if (block_rsv->reserved >= block_rsv->size) 5441 block_rsv->full = 1; 5442 spin_unlock(&block_rsv->lock); 5443 } 5444 5445 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5446 struct btrfs_block_rsv *dest, u64 num_bytes, 5447 int min_factor) 5448 { 5449 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5450 u64 min_bytes; 5451 5452 if (global_rsv->space_info != dest->space_info) 5453 return -ENOSPC; 5454 5455 spin_lock(&global_rsv->lock); 5456 min_bytes = div_factor(global_rsv->size, min_factor); 5457 if (global_rsv->reserved < min_bytes + num_bytes) { 5458 spin_unlock(&global_rsv->lock); 5459 return -ENOSPC; 5460 } 5461 global_rsv->reserved -= num_bytes; 5462 if (global_rsv->reserved < global_rsv->size) 5463 global_rsv->full = 0; 5464 spin_unlock(&global_rsv->lock); 5465 5466 block_rsv_add_bytes(dest, num_bytes, 1); 5467 return 0; 5468 } 5469 5470 /* 5471 * This is for space we already have accounted in space_info->bytes_may_use, so 5472 * basically when we're returning space from block_rsv's. 5473 */ 5474 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5475 struct btrfs_space_info *space_info, 5476 u64 num_bytes) 5477 { 5478 struct reserve_ticket *ticket; 5479 struct list_head *head; 5480 u64 used; 5481 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5482 bool check_overcommit = false; 5483 5484 spin_lock(&space_info->lock); 5485 head = &space_info->priority_tickets; 5486 5487 /* 5488 * If we are over our limit then we need to check and see if we can 5489 * overcommit, and if we can't then we just need to free up our space 5490 * and not satisfy any requests. 5491 */ 5492 used = btrfs_space_info_used(space_info, true); 5493 if (used - num_bytes >= space_info->total_bytes) 5494 check_overcommit = true; 5495 again: 5496 while (!list_empty(head) && num_bytes) { 5497 ticket = list_first_entry(head, struct reserve_ticket, 5498 list); 5499 /* 5500 * We use 0 bytes because this space is already reserved, so 5501 * adding the ticket space would be a double count. 5502 */ 5503 if (check_overcommit && 5504 !can_overcommit(fs_info, space_info, 0, flush, false)) 5505 break; 5506 if (num_bytes >= ticket->bytes) { 5507 list_del_init(&ticket->list); 5508 num_bytes -= ticket->bytes; 5509 ticket->bytes = 0; 5510 space_info->tickets_id++; 5511 wake_up(&ticket->wait); 5512 } else { 5513 ticket->bytes -= num_bytes; 5514 num_bytes = 0; 5515 } 5516 } 5517 5518 if (num_bytes && head == &space_info->priority_tickets) { 5519 head = &space_info->tickets; 5520 flush = BTRFS_RESERVE_FLUSH_ALL; 5521 goto again; 5522 } 5523 space_info->bytes_may_use -= num_bytes; 5524 trace_btrfs_space_reservation(fs_info, "space_info", 5525 space_info->flags, num_bytes, 0); 5526 spin_unlock(&space_info->lock); 5527 } 5528 5529 /* 5530 * This is for newly allocated space that isn't accounted in 5531 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5532 * we use this helper. 5533 */ 5534 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5535 struct btrfs_space_info *space_info, 5536 u64 num_bytes) 5537 { 5538 struct reserve_ticket *ticket; 5539 struct list_head *head = &space_info->priority_tickets; 5540 5541 again: 5542 while (!list_empty(head) && num_bytes) { 5543 ticket = list_first_entry(head, struct reserve_ticket, 5544 list); 5545 if (num_bytes >= ticket->bytes) { 5546 trace_btrfs_space_reservation(fs_info, "space_info", 5547 space_info->flags, 5548 ticket->bytes, 1); 5549 list_del_init(&ticket->list); 5550 num_bytes -= ticket->bytes; 5551 space_info->bytes_may_use += ticket->bytes; 5552 ticket->bytes = 0; 5553 space_info->tickets_id++; 5554 wake_up(&ticket->wait); 5555 } else { 5556 trace_btrfs_space_reservation(fs_info, "space_info", 5557 space_info->flags, 5558 num_bytes, 1); 5559 space_info->bytes_may_use += num_bytes; 5560 ticket->bytes -= num_bytes; 5561 num_bytes = 0; 5562 } 5563 } 5564 5565 if (num_bytes && head == &space_info->priority_tickets) { 5566 head = &space_info->tickets; 5567 goto again; 5568 } 5569 } 5570 5571 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5572 struct btrfs_block_rsv *block_rsv, 5573 struct btrfs_block_rsv *dest, u64 num_bytes) 5574 { 5575 struct btrfs_space_info *space_info = block_rsv->space_info; 5576 u64 ret; 5577 5578 spin_lock(&block_rsv->lock); 5579 if (num_bytes == (u64)-1) 5580 num_bytes = block_rsv->size; 5581 block_rsv->size -= num_bytes; 5582 if (block_rsv->reserved >= block_rsv->size) { 5583 num_bytes = block_rsv->reserved - block_rsv->size; 5584 block_rsv->reserved = block_rsv->size; 5585 block_rsv->full = 1; 5586 } else { 5587 num_bytes = 0; 5588 } 5589 spin_unlock(&block_rsv->lock); 5590 5591 ret = num_bytes; 5592 if (num_bytes > 0) { 5593 if (dest) { 5594 spin_lock(&dest->lock); 5595 if (!dest->full) { 5596 u64 bytes_to_add; 5597 5598 bytes_to_add = dest->size - dest->reserved; 5599 bytes_to_add = min(num_bytes, bytes_to_add); 5600 dest->reserved += bytes_to_add; 5601 if (dest->reserved >= dest->size) 5602 dest->full = 1; 5603 num_bytes -= bytes_to_add; 5604 } 5605 spin_unlock(&dest->lock); 5606 } 5607 if (num_bytes) 5608 space_info_add_old_bytes(fs_info, space_info, 5609 num_bytes); 5610 } 5611 return ret; 5612 } 5613 5614 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5615 struct btrfs_block_rsv *dst, u64 num_bytes, 5616 int update_size) 5617 { 5618 int ret; 5619 5620 ret = block_rsv_use_bytes(src, num_bytes); 5621 if (ret) 5622 return ret; 5623 5624 block_rsv_add_bytes(dst, num_bytes, update_size); 5625 return 0; 5626 } 5627 5628 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5629 { 5630 memset(rsv, 0, sizeof(*rsv)); 5631 spin_lock_init(&rsv->lock); 5632 rsv->type = type; 5633 } 5634 5635 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5636 struct btrfs_block_rsv *rsv, 5637 unsigned short type) 5638 { 5639 btrfs_init_block_rsv(rsv, type); 5640 rsv->space_info = __find_space_info(fs_info, 5641 BTRFS_BLOCK_GROUP_METADATA); 5642 } 5643 5644 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5645 unsigned short type) 5646 { 5647 struct btrfs_block_rsv *block_rsv; 5648 5649 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5650 if (!block_rsv) 5651 return NULL; 5652 5653 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5654 return block_rsv; 5655 } 5656 5657 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5658 struct btrfs_block_rsv *rsv) 5659 { 5660 if (!rsv) 5661 return; 5662 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5663 kfree(rsv); 5664 } 5665 5666 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5667 { 5668 kfree(rsv); 5669 } 5670 5671 int btrfs_block_rsv_add(struct btrfs_root *root, 5672 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5673 enum btrfs_reserve_flush_enum flush) 5674 { 5675 int ret; 5676 5677 if (num_bytes == 0) 5678 return 0; 5679 5680 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5681 if (!ret) { 5682 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5683 return 0; 5684 } 5685 5686 return ret; 5687 } 5688 5689 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5690 { 5691 u64 num_bytes = 0; 5692 int ret = -ENOSPC; 5693 5694 if (!block_rsv) 5695 return 0; 5696 5697 spin_lock(&block_rsv->lock); 5698 num_bytes = div_factor(block_rsv->size, min_factor); 5699 if (block_rsv->reserved >= num_bytes) 5700 ret = 0; 5701 spin_unlock(&block_rsv->lock); 5702 5703 return ret; 5704 } 5705 5706 int btrfs_block_rsv_refill(struct btrfs_root *root, 5707 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5708 enum btrfs_reserve_flush_enum flush) 5709 { 5710 u64 num_bytes = 0; 5711 int ret = -ENOSPC; 5712 5713 if (!block_rsv) 5714 return 0; 5715 5716 spin_lock(&block_rsv->lock); 5717 num_bytes = min_reserved; 5718 if (block_rsv->reserved >= num_bytes) 5719 ret = 0; 5720 else 5721 num_bytes -= block_rsv->reserved; 5722 spin_unlock(&block_rsv->lock); 5723 5724 if (!ret) 5725 return 0; 5726 5727 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5728 if (!ret) { 5729 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5730 return 0; 5731 } 5732 5733 return ret; 5734 } 5735 5736 /** 5737 * btrfs_inode_rsv_refill - refill the inode block rsv. 5738 * @inode - the inode we are refilling. 5739 * @flush - the flusing restriction. 5740 * 5741 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5742 * block_rsv->size as the minimum size. We'll either refill the missing amount 5743 * or return if we already have enough space. This will also handle the resreve 5744 * tracepoint for the reserved amount. 5745 */ 5746 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5747 enum btrfs_reserve_flush_enum flush) 5748 { 5749 struct btrfs_root *root = inode->root; 5750 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5751 u64 num_bytes = 0; 5752 int ret = -ENOSPC; 5753 5754 spin_lock(&block_rsv->lock); 5755 if (block_rsv->reserved < block_rsv->size) 5756 num_bytes = block_rsv->size - block_rsv->reserved; 5757 spin_unlock(&block_rsv->lock); 5758 5759 if (num_bytes == 0) 5760 return 0; 5761 5762 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 5763 if (ret) 5764 return ret; 5765 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5766 if (!ret) { 5767 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5768 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5769 btrfs_ino(inode), num_bytes, 1); 5770 } 5771 return ret; 5772 } 5773 5774 /** 5775 * btrfs_inode_rsv_release - release any excessive reservation. 5776 * @inode - the inode we need to release from. 5777 * @qgroup_free - free or convert qgroup meta. 5778 * Unlike normal operation, qgroup meta reservation needs to know if we are 5779 * freeing qgroup reservation or just converting it into per-trans. Normally 5780 * @qgroup_free is true for error handling, and false for normal release. 5781 * 5782 * This is the same as btrfs_block_rsv_release, except that it handles the 5783 * tracepoint for the reservation. 5784 */ 5785 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5786 { 5787 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5788 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5789 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5790 u64 released = 0; 5791 5792 /* 5793 * Since we statically set the block_rsv->size we just want to say we 5794 * are releasing 0 bytes, and then we'll just get the reservation over 5795 * the size free'd. 5796 */ 5797 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0); 5798 if (released > 0) 5799 trace_btrfs_space_reservation(fs_info, "delalloc", 5800 btrfs_ino(inode), released, 0); 5801 if (qgroup_free) 5802 btrfs_qgroup_free_meta_prealloc(inode->root, released); 5803 else 5804 btrfs_qgroup_convert_reserved_meta(inode->root, released); 5805 } 5806 5807 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5808 struct btrfs_block_rsv *block_rsv, 5809 u64 num_bytes) 5810 { 5811 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5812 5813 if (global_rsv == block_rsv || 5814 block_rsv->space_info != global_rsv->space_info) 5815 global_rsv = NULL; 5816 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5817 } 5818 5819 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5820 { 5821 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5822 struct btrfs_space_info *sinfo = block_rsv->space_info; 5823 u64 num_bytes; 5824 5825 /* 5826 * The global block rsv is based on the size of the extent tree, the 5827 * checksum tree and the root tree. If the fs is empty we want to set 5828 * it to a minimal amount for safety. 5829 */ 5830 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5831 btrfs_root_used(&fs_info->csum_root->root_item) + 5832 btrfs_root_used(&fs_info->tree_root->root_item); 5833 num_bytes = max_t(u64, num_bytes, SZ_16M); 5834 5835 spin_lock(&sinfo->lock); 5836 spin_lock(&block_rsv->lock); 5837 5838 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5839 5840 if (block_rsv->reserved < block_rsv->size) { 5841 num_bytes = btrfs_space_info_used(sinfo, true); 5842 if (sinfo->total_bytes > num_bytes) { 5843 num_bytes = sinfo->total_bytes - num_bytes; 5844 num_bytes = min(num_bytes, 5845 block_rsv->size - block_rsv->reserved); 5846 block_rsv->reserved += num_bytes; 5847 sinfo->bytes_may_use += num_bytes; 5848 trace_btrfs_space_reservation(fs_info, "space_info", 5849 sinfo->flags, num_bytes, 5850 1); 5851 } 5852 } else if (block_rsv->reserved > block_rsv->size) { 5853 num_bytes = block_rsv->reserved - block_rsv->size; 5854 sinfo->bytes_may_use -= num_bytes; 5855 trace_btrfs_space_reservation(fs_info, "space_info", 5856 sinfo->flags, num_bytes, 0); 5857 block_rsv->reserved = block_rsv->size; 5858 } 5859 5860 if (block_rsv->reserved == block_rsv->size) 5861 block_rsv->full = 1; 5862 else 5863 block_rsv->full = 0; 5864 5865 spin_unlock(&block_rsv->lock); 5866 spin_unlock(&sinfo->lock); 5867 } 5868 5869 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5870 { 5871 struct btrfs_space_info *space_info; 5872 5873 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5874 fs_info->chunk_block_rsv.space_info = space_info; 5875 5876 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5877 fs_info->global_block_rsv.space_info = space_info; 5878 fs_info->trans_block_rsv.space_info = space_info; 5879 fs_info->empty_block_rsv.space_info = space_info; 5880 fs_info->delayed_block_rsv.space_info = space_info; 5881 5882 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5883 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5884 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5885 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5886 if (fs_info->quota_root) 5887 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5888 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5889 5890 update_global_block_rsv(fs_info); 5891 } 5892 5893 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5894 { 5895 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5896 (u64)-1); 5897 WARN_ON(fs_info->trans_block_rsv.size > 0); 5898 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5899 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5900 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5901 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5902 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5903 } 5904 5905 5906 /* 5907 * To be called after all the new block groups attached to the transaction 5908 * handle have been created (btrfs_create_pending_block_groups()). 5909 */ 5910 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5911 { 5912 struct btrfs_fs_info *fs_info = trans->fs_info; 5913 5914 if (!trans->chunk_bytes_reserved) 5915 return; 5916 5917 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5918 5919 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5920 trans->chunk_bytes_reserved); 5921 trans->chunk_bytes_reserved = 0; 5922 } 5923 5924 /* Can only return 0 or -ENOSPC */ 5925 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5926 struct btrfs_inode *inode) 5927 { 5928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5929 struct btrfs_root *root = inode->root; 5930 /* 5931 * We always use trans->block_rsv here as we will have reserved space 5932 * for our orphan when starting the transaction, using get_block_rsv() 5933 * here will sometimes make us choose the wrong block rsv as we could be 5934 * doing a reloc inode for a non refcounted root. 5935 */ 5936 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5937 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5938 5939 /* 5940 * We need to hold space in order to delete our orphan item once we've 5941 * added it, so this takes the reservation so we can release it later 5942 * when we are truly done with the orphan item. 5943 */ 5944 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5945 5946 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5947 num_bytes, 1); 5948 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5949 } 5950 5951 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5952 { 5953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5954 struct btrfs_root *root = inode->root; 5955 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5956 5957 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5958 num_bytes, 0); 5959 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5960 } 5961 5962 /* 5963 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5964 * root: the root of the parent directory 5965 * rsv: block reservation 5966 * items: the number of items that we need do reservation 5967 * qgroup_reserved: used to return the reserved size in qgroup 5968 * 5969 * This function is used to reserve the space for snapshot/subvolume 5970 * creation and deletion. Those operations are different with the 5971 * common file/directory operations, they change two fs/file trees 5972 * and root tree, the number of items that the qgroup reserves is 5973 * different with the free space reservation. So we can not use 5974 * the space reservation mechanism in start_transaction(). 5975 */ 5976 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5977 struct btrfs_block_rsv *rsv, 5978 int items, 5979 u64 *qgroup_reserved, 5980 bool use_global_rsv) 5981 { 5982 u64 num_bytes; 5983 int ret; 5984 struct btrfs_fs_info *fs_info = root->fs_info; 5985 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5986 5987 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5988 /* One for parent inode, two for dir entries */ 5989 num_bytes = 3 * fs_info->nodesize; 5990 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 5991 if (ret) 5992 return ret; 5993 } else { 5994 num_bytes = 0; 5995 } 5996 5997 *qgroup_reserved = num_bytes; 5998 5999 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6000 rsv->space_info = __find_space_info(fs_info, 6001 BTRFS_BLOCK_GROUP_METADATA); 6002 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6003 BTRFS_RESERVE_FLUSH_ALL); 6004 6005 if (ret == -ENOSPC && use_global_rsv) 6006 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6007 6008 if (ret && *qgroup_reserved) 6009 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved); 6010 6011 return ret; 6012 } 6013 6014 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6015 struct btrfs_block_rsv *rsv) 6016 { 6017 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6018 } 6019 6020 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6021 struct btrfs_inode *inode) 6022 { 6023 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6024 u64 reserve_size = 0; 6025 u64 csum_leaves; 6026 unsigned outstanding_extents; 6027 6028 lockdep_assert_held(&inode->lock); 6029 outstanding_extents = inode->outstanding_extents; 6030 if (outstanding_extents) 6031 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6032 outstanding_extents + 1); 6033 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6034 inode->csum_bytes); 6035 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6036 csum_leaves); 6037 6038 spin_lock(&block_rsv->lock); 6039 block_rsv->size = reserve_size; 6040 spin_unlock(&block_rsv->lock); 6041 } 6042 6043 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6044 { 6045 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6046 unsigned nr_extents; 6047 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6048 int ret = 0; 6049 bool delalloc_lock = true; 6050 6051 /* If we are a free space inode we need to not flush since we will be in 6052 * the middle of a transaction commit. We also don't need the delalloc 6053 * mutex since we won't race with anybody. We need this mostly to make 6054 * lockdep shut its filthy mouth. 6055 * 6056 * If we have a transaction open (can happen if we call truncate_block 6057 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6058 */ 6059 if (btrfs_is_free_space_inode(inode)) { 6060 flush = BTRFS_RESERVE_NO_FLUSH; 6061 delalloc_lock = false; 6062 } else { 6063 if (current->journal_info) 6064 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6065 6066 if (btrfs_transaction_in_commit(fs_info)) 6067 schedule_timeout(1); 6068 } 6069 6070 if (delalloc_lock) 6071 mutex_lock(&inode->delalloc_mutex); 6072 6073 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6074 6075 /* Add our new extents and calculate the new rsv size. */ 6076 spin_lock(&inode->lock); 6077 nr_extents = count_max_extents(num_bytes); 6078 btrfs_mod_outstanding_extents(inode, nr_extents); 6079 inode->csum_bytes += num_bytes; 6080 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6081 spin_unlock(&inode->lock); 6082 6083 ret = btrfs_inode_rsv_refill(inode, flush); 6084 if (unlikely(ret)) 6085 goto out_fail; 6086 6087 if (delalloc_lock) 6088 mutex_unlock(&inode->delalloc_mutex); 6089 return 0; 6090 6091 out_fail: 6092 spin_lock(&inode->lock); 6093 nr_extents = count_max_extents(num_bytes); 6094 btrfs_mod_outstanding_extents(inode, -nr_extents); 6095 inode->csum_bytes -= num_bytes; 6096 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6097 spin_unlock(&inode->lock); 6098 6099 btrfs_inode_rsv_release(inode, true); 6100 if (delalloc_lock) 6101 mutex_unlock(&inode->delalloc_mutex); 6102 return ret; 6103 } 6104 6105 /** 6106 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6107 * @inode: the inode to release the reservation for. 6108 * @num_bytes: the number of bytes we are releasing. 6109 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 6110 * 6111 * This will release the metadata reservation for an inode. This can be called 6112 * once we complete IO for a given set of bytes to release their metadata 6113 * reservations, or on error for the same reason. 6114 */ 6115 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 6116 bool qgroup_free) 6117 { 6118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6119 6120 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6121 spin_lock(&inode->lock); 6122 inode->csum_bytes -= num_bytes; 6123 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6124 spin_unlock(&inode->lock); 6125 6126 if (btrfs_is_testing(fs_info)) 6127 return; 6128 6129 btrfs_inode_rsv_release(inode, qgroup_free); 6130 } 6131 6132 /** 6133 * btrfs_delalloc_release_extents - release our outstanding_extents 6134 * @inode: the inode to balance the reservation for. 6135 * @num_bytes: the number of bytes we originally reserved with 6136 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6137 * 6138 * When we reserve space we increase outstanding_extents for the extents we may 6139 * add. Once we've set the range as delalloc or created our ordered extents we 6140 * have outstanding_extents to track the real usage, so we use this to free our 6141 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6142 * with btrfs_delalloc_reserve_metadata. 6143 */ 6144 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6145 bool qgroup_free) 6146 { 6147 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6148 unsigned num_extents; 6149 6150 spin_lock(&inode->lock); 6151 num_extents = count_max_extents(num_bytes); 6152 btrfs_mod_outstanding_extents(inode, -num_extents); 6153 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6154 spin_unlock(&inode->lock); 6155 6156 if (btrfs_is_testing(fs_info)) 6157 return; 6158 6159 btrfs_inode_rsv_release(inode, qgroup_free); 6160 } 6161 6162 /** 6163 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6164 * delalloc 6165 * @inode: inode we're writing to 6166 * @start: start range we are writing to 6167 * @len: how long the range we are writing to 6168 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6169 * current reservation. 6170 * 6171 * This will do the following things 6172 * 6173 * o reserve space in data space info for num bytes 6174 * and reserve precious corresponding qgroup space 6175 * (Done in check_data_free_space) 6176 * 6177 * o reserve space for metadata space, based on the number of outstanding 6178 * extents and how much csums will be needed 6179 * also reserve metadata space in a per root over-reserve method. 6180 * o add to the inodes->delalloc_bytes 6181 * o add it to the fs_info's delalloc inodes list. 6182 * (Above 3 all done in delalloc_reserve_metadata) 6183 * 6184 * Return 0 for success 6185 * Return <0 for error(-ENOSPC or -EQUOT) 6186 */ 6187 int btrfs_delalloc_reserve_space(struct inode *inode, 6188 struct extent_changeset **reserved, u64 start, u64 len) 6189 { 6190 int ret; 6191 6192 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6193 if (ret < 0) 6194 return ret; 6195 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6196 if (ret < 0) 6197 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6198 return ret; 6199 } 6200 6201 /** 6202 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6203 * @inode: inode we're releasing space for 6204 * @start: start position of the space already reserved 6205 * @len: the len of the space already reserved 6206 * @release_bytes: the len of the space we consumed or didn't use 6207 * 6208 * This function will release the metadata space that was not used and will 6209 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6210 * list if there are no delalloc bytes left. 6211 * Also it will handle the qgroup reserved space. 6212 */ 6213 void btrfs_delalloc_release_space(struct inode *inode, 6214 struct extent_changeset *reserved, 6215 u64 start, u64 len, bool qgroup_free) 6216 { 6217 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6218 btrfs_free_reserved_data_space(inode, reserved, start, len); 6219 } 6220 6221 static int update_block_group(struct btrfs_trans_handle *trans, 6222 struct btrfs_fs_info *info, u64 bytenr, 6223 u64 num_bytes, int alloc) 6224 { 6225 struct btrfs_block_group_cache *cache = NULL; 6226 u64 total = num_bytes; 6227 u64 old_val; 6228 u64 byte_in_group; 6229 int factor; 6230 6231 /* block accounting for super block */ 6232 spin_lock(&info->delalloc_root_lock); 6233 old_val = btrfs_super_bytes_used(info->super_copy); 6234 if (alloc) 6235 old_val += num_bytes; 6236 else 6237 old_val -= num_bytes; 6238 btrfs_set_super_bytes_used(info->super_copy, old_val); 6239 spin_unlock(&info->delalloc_root_lock); 6240 6241 while (total) { 6242 cache = btrfs_lookup_block_group(info, bytenr); 6243 if (!cache) 6244 return -ENOENT; 6245 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6246 BTRFS_BLOCK_GROUP_RAID1 | 6247 BTRFS_BLOCK_GROUP_RAID10)) 6248 factor = 2; 6249 else 6250 factor = 1; 6251 /* 6252 * If this block group has free space cache written out, we 6253 * need to make sure to load it if we are removing space. This 6254 * is because we need the unpinning stage to actually add the 6255 * space back to the block group, otherwise we will leak space. 6256 */ 6257 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6258 cache_block_group(cache, 1); 6259 6260 byte_in_group = bytenr - cache->key.objectid; 6261 WARN_ON(byte_in_group > cache->key.offset); 6262 6263 spin_lock(&cache->space_info->lock); 6264 spin_lock(&cache->lock); 6265 6266 if (btrfs_test_opt(info, SPACE_CACHE) && 6267 cache->disk_cache_state < BTRFS_DC_CLEAR) 6268 cache->disk_cache_state = BTRFS_DC_CLEAR; 6269 6270 old_val = btrfs_block_group_used(&cache->item); 6271 num_bytes = min(total, cache->key.offset - byte_in_group); 6272 if (alloc) { 6273 old_val += num_bytes; 6274 btrfs_set_block_group_used(&cache->item, old_val); 6275 cache->reserved -= num_bytes; 6276 cache->space_info->bytes_reserved -= num_bytes; 6277 cache->space_info->bytes_used += num_bytes; 6278 cache->space_info->disk_used += num_bytes * factor; 6279 spin_unlock(&cache->lock); 6280 spin_unlock(&cache->space_info->lock); 6281 } else { 6282 old_val -= num_bytes; 6283 btrfs_set_block_group_used(&cache->item, old_val); 6284 cache->pinned += num_bytes; 6285 cache->space_info->bytes_pinned += num_bytes; 6286 cache->space_info->bytes_used -= num_bytes; 6287 cache->space_info->disk_used -= num_bytes * factor; 6288 spin_unlock(&cache->lock); 6289 spin_unlock(&cache->space_info->lock); 6290 6291 trace_btrfs_space_reservation(info, "pinned", 6292 cache->space_info->flags, 6293 num_bytes, 1); 6294 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6295 num_bytes); 6296 set_extent_dirty(info->pinned_extents, 6297 bytenr, bytenr + num_bytes - 1, 6298 GFP_NOFS | __GFP_NOFAIL); 6299 } 6300 6301 spin_lock(&trans->transaction->dirty_bgs_lock); 6302 if (list_empty(&cache->dirty_list)) { 6303 list_add_tail(&cache->dirty_list, 6304 &trans->transaction->dirty_bgs); 6305 trans->transaction->num_dirty_bgs++; 6306 btrfs_get_block_group(cache); 6307 } 6308 spin_unlock(&trans->transaction->dirty_bgs_lock); 6309 6310 /* 6311 * No longer have used bytes in this block group, queue it for 6312 * deletion. We do this after adding the block group to the 6313 * dirty list to avoid races between cleaner kthread and space 6314 * cache writeout. 6315 */ 6316 if (!alloc && old_val == 0) { 6317 spin_lock(&info->unused_bgs_lock); 6318 if (list_empty(&cache->bg_list)) { 6319 btrfs_get_block_group(cache); 6320 list_add_tail(&cache->bg_list, 6321 &info->unused_bgs); 6322 } 6323 spin_unlock(&info->unused_bgs_lock); 6324 } 6325 6326 btrfs_put_block_group(cache); 6327 total -= num_bytes; 6328 bytenr += num_bytes; 6329 } 6330 return 0; 6331 } 6332 6333 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6334 { 6335 struct btrfs_block_group_cache *cache; 6336 u64 bytenr; 6337 6338 spin_lock(&fs_info->block_group_cache_lock); 6339 bytenr = fs_info->first_logical_byte; 6340 spin_unlock(&fs_info->block_group_cache_lock); 6341 6342 if (bytenr < (u64)-1) 6343 return bytenr; 6344 6345 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6346 if (!cache) 6347 return 0; 6348 6349 bytenr = cache->key.objectid; 6350 btrfs_put_block_group(cache); 6351 6352 return bytenr; 6353 } 6354 6355 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6356 struct btrfs_block_group_cache *cache, 6357 u64 bytenr, u64 num_bytes, int reserved) 6358 { 6359 spin_lock(&cache->space_info->lock); 6360 spin_lock(&cache->lock); 6361 cache->pinned += num_bytes; 6362 cache->space_info->bytes_pinned += num_bytes; 6363 if (reserved) { 6364 cache->reserved -= num_bytes; 6365 cache->space_info->bytes_reserved -= num_bytes; 6366 } 6367 spin_unlock(&cache->lock); 6368 spin_unlock(&cache->space_info->lock); 6369 6370 trace_btrfs_space_reservation(fs_info, "pinned", 6371 cache->space_info->flags, num_bytes, 1); 6372 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6373 set_extent_dirty(fs_info->pinned_extents, bytenr, 6374 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6375 return 0; 6376 } 6377 6378 /* 6379 * this function must be called within transaction 6380 */ 6381 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6382 u64 bytenr, u64 num_bytes, int reserved) 6383 { 6384 struct btrfs_block_group_cache *cache; 6385 6386 cache = btrfs_lookup_block_group(fs_info, bytenr); 6387 BUG_ON(!cache); /* Logic error */ 6388 6389 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6390 6391 btrfs_put_block_group(cache); 6392 return 0; 6393 } 6394 6395 /* 6396 * this function must be called within transaction 6397 */ 6398 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6399 u64 bytenr, u64 num_bytes) 6400 { 6401 struct btrfs_block_group_cache *cache; 6402 int ret; 6403 6404 cache = btrfs_lookup_block_group(fs_info, bytenr); 6405 if (!cache) 6406 return -EINVAL; 6407 6408 /* 6409 * pull in the free space cache (if any) so that our pin 6410 * removes the free space from the cache. We have load_only set 6411 * to one because the slow code to read in the free extents does check 6412 * the pinned extents. 6413 */ 6414 cache_block_group(cache, 1); 6415 6416 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6417 6418 /* remove us from the free space cache (if we're there at all) */ 6419 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6420 btrfs_put_block_group(cache); 6421 return ret; 6422 } 6423 6424 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6425 u64 start, u64 num_bytes) 6426 { 6427 int ret; 6428 struct btrfs_block_group_cache *block_group; 6429 struct btrfs_caching_control *caching_ctl; 6430 6431 block_group = btrfs_lookup_block_group(fs_info, start); 6432 if (!block_group) 6433 return -EINVAL; 6434 6435 cache_block_group(block_group, 0); 6436 caching_ctl = get_caching_control(block_group); 6437 6438 if (!caching_ctl) { 6439 /* Logic error */ 6440 BUG_ON(!block_group_cache_done(block_group)); 6441 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6442 } else { 6443 mutex_lock(&caching_ctl->mutex); 6444 6445 if (start >= caching_ctl->progress) { 6446 ret = add_excluded_extent(fs_info, start, num_bytes); 6447 } else if (start + num_bytes <= caching_ctl->progress) { 6448 ret = btrfs_remove_free_space(block_group, 6449 start, num_bytes); 6450 } else { 6451 num_bytes = caching_ctl->progress - start; 6452 ret = btrfs_remove_free_space(block_group, 6453 start, num_bytes); 6454 if (ret) 6455 goto out_lock; 6456 6457 num_bytes = (start + num_bytes) - 6458 caching_ctl->progress; 6459 start = caching_ctl->progress; 6460 ret = add_excluded_extent(fs_info, start, num_bytes); 6461 } 6462 out_lock: 6463 mutex_unlock(&caching_ctl->mutex); 6464 put_caching_control(caching_ctl); 6465 } 6466 btrfs_put_block_group(block_group); 6467 return ret; 6468 } 6469 6470 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6471 struct extent_buffer *eb) 6472 { 6473 struct btrfs_file_extent_item *item; 6474 struct btrfs_key key; 6475 int found_type; 6476 int i; 6477 6478 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6479 return 0; 6480 6481 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6482 btrfs_item_key_to_cpu(eb, &key, i); 6483 if (key.type != BTRFS_EXTENT_DATA_KEY) 6484 continue; 6485 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6486 found_type = btrfs_file_extent_type(eb, item); 6487 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6488 continue; 6489 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6490 continue; 6491 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6492 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6493 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6494 } 6495 6496 return 0; 6497 } 6498 6499 static void 6500 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6501 { 6502 atomic_inc(&bg->reservations); 6503 } 6504 6505 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6506 const u64 start) 6507 { 6508 struct btrfs_block_group_cache *bg; 6509 6510 bg = btrfs_lookup_block_group(fs_info, start); 6511 ASSERT(bg); 6512 if (atomic_dec_and_test(&bg->reservations)) 6513 wake_up_var(&bg->reservations); 6514 btrfs_put_block_group(bg); 6515 } 6516 6517 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6518 { 6519 struct btrfs_space_info *space_info = bg->space_info; 6520 6521 ASSERT(bg->ro); 6522 6523 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6524 return; 6525 6526 /* 6527 * Our block group is read only but before we set it to read only, 6528 * some task might have had allocated an extent from it already, but it 6529 * has not yet created a respective ordered extent (and added it to a 6530 * root's list of ordered extents). 6531 * Therefore wait for any task currently allocating extents, since the 6532 * block group's reservations counter is incremented while a read lock 6533 * on the groups' semaphore is held and decremented after releasing 6534 * the read access on that semaphore and creating the ordered extent. 6535 */ 6536 down_write(&space_info->groups_sem); 6537 up_write(&space_info->groups_sem); 6538 6539 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6540 } 6541 6542 /** 6543 * btrfs_add_reserved_bytes - update the block_group and space info counters 6544 * @cache: The cache we are manipulating 6545 * @ram_bytes: The number of bytes of file content, and will be same to 6546 * @num_bytes except for the compress path. 6547 * @num_bytes: The number of bytes in question 6548 * @delalloc: The blocks are allocated for the delalloc write 6549 * 6550 * This is called by the allocator when it reserves space. If this is a 6551 * reservation and the block group has become read only we cannot make the 6552 * reservation and return -EAGAIN, otherwise this function always succeeds. 6553 */ 6554 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6555 u64 ram_bytes, u64 num_bytes, int delalloc) 6556 { 6557 struct btrfs_space_info *space_info = cache->space_info; 6558 int ret = 0; 6559 6560 spin_lock(&space_info->lock); 6561 spin_lock(&cache->lock); 6562 if (cache->ro) { 6563 ret = -EAGAIN; 6564 } else { 6565 cache->reserved += num_bytes; 6566 space_info->bytes_reserved += num_bytes; 6567 6568 trace_btrfs_space_reservation(cache->fs_info, 6569 "space_info", space_info->flags, 6570 ram_bytes, 0); 6571 space_info->bytes_may_use -= ram_bytes; 6572 if (delalloc) 6573 cache->delalloc_bytes += num_bytes; 6574 } 6575 spin_unlock(&cache->lock); 6576 spin_unlock(&space_info->lock); 6577 return ret; 6578 } 6579 6580 /** 6581 * btrfs_free_reserved_bytes - update the block_group and space info counters 6582 * @cache: The cache we are manipulating 6583 * @num_bytes: The number of bytes in question 6584 * @delalloc: The blocks are allocated for the delalloc write 6585 * 6586 * This is called by somebody who is freeing space that was never actually used 6587 * on disk. For example if you reserve some space for a new leaf in transaction 6588 * A and before transaction A commits you free that leaf, you call this with 6589 * reserve set to 0 in order to clear the reservation. 6590 */ 6591 6592 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6593 u64 num_bytes, int delalloc) 6594 { 6595 struct btrfs_space_info *space_info = cache->space_info; 6596 int ret = 0; 6597 6598 spin_lock(&space_info->lock); 6599 spin_lock(&cache->lock); 6600 if (cache->ro) 6601 space_info->bytes_readonly += num_bytes; 6602 cache->reserved -= num_bytes; 6603 space_info->bytes_reserved -= num_bytes; 6604 6605 if (delalloc) 6606 cache->delalloc_bytes -= num_bytes; 6607 spin_unlock(&cache->lock); 6608 spin_unlock(&space_info->lock); 6609 return ret; 6610 } 6611 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6612 { 6613 struct btrfs_caching_control *next; 6614 struct btrfs_caching_control *caching_ctl; 6615 struct btrfs_block_group_cache *cache; 6616 6617 down_write(&fs_info->commit_root_sem); 6618 6619 list_for_each_entry_safe(caching_ctl, next, 6620 &fs_info->caching_block_groups, list) { 6621 cache = caching_ctl->block_group; 6622 if (block_group_cache_done(cache)) { 6623 cache->last_byte_to_unpin = (u64)-1; 6624 list_del_init(&caching_ctl->list); 6625 put_caching_control(caching_ctl); 6626 } else { 6627 cache->last_byte_to_unpin = caching_ctl->progress; 6628 } 6629 } 6630 6631 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6632 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6633 else 6634 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6635 6636 up_write(&fs_info->commit_root_sem); 6637 6638 update_global_block_rsv(fs_info); 6639 } 6640 6641 /* 6642 * Returns the free cluster for the given space info and sets empty_cluster to 6643 * what it should be based on the mount options. 6644 */ 6645 static struct btrfs_free_cluster * 6646 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6647 struct btrfs_space_info *space_info, u64 *empty_cluster) 6648 { 6649 struct btrfs_free_cluster *ret = NULL; 6650 6651 *empty_cluster = 0; 6652 if (btrfs_mixed_space_info(space_info)) 6653 return ret; 6654 6655 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6656 ret = &fs_info->meta_alloc_cluster; 6657 if (btrfs_test_opt(fs_info, SSD)) 6658 *empty_cluster = SZ_2M; 6659 else 6660 *empty_cluster = SZ_64K; 6661 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6662 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6663 *empty_cluster = SZ_2M; 6664 ret = &fs_info->data_alloc_cluster; 6665 } 6666 6667 return ret; 6668 } 6669 6670 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6671 u64 start, u64 end, 6672 const bool return_free_space) 6673 { 6674 struct btrfs_block_group_cache *cache = NULL; 6675 struct btrfs_space_info *space_info; 6676 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6677 struct btrfs_free_cluster *cluster = NULL; 6678 u64 len; 6679 u64 total_unpinned = 0; 6680 u64 empty_cluster = 0; 6681 bool readonly; 6682 6683 while (start <= end) { 6684 readonly = false; 6685 if (!cache || 6686 start >= cache->key.objectid + cache->key.offset) { 6687 if (cache) 6688 btrfs_put_block_group(cache); 6689 total_unpinned = 0; 6690 cache = btrfs_lookup_block_group(fs_info, start); 6691 BUG_ON(!cache); /* Logic error */ 6692 6693 cluster = fetch_cluster_info(fs_info, 6694 cache->space_info, 6695 &empty_cluster); 6696 empty_cluster <<= 1; 6697 } 6698 6699 len = cache->key.objectid + cache->key.offset - start; 6700 len = min(len, end + 1 - start); 6701 6702 if (start < cache->last_byte_to_unpin) { 6703 len = min(len, cache->last_byte_to_unpin - start); 6704 if (return_free_space) 6705 btrfs_add_free_space(cache, start, len); 6706 } 6707 6708 start += len; 6709 total_unpinned += len; 6710 space_info = cache->space_info; 6711 6712 /* 6713 * If this space cluster has been marked as fragmented and we've 6714 * unpinned enough in this block group to potentially allow a 6715 * cluster to be created inside of it go ahead and clear the 6716 * fragmented check. 6717 */ 6718 if (cluster && cluster->fragmented && 6719 total_unpinned > empty_cluster) { 6720 spin_lock(&cluster->lock); 6721 cluster->fragmented = 0; 6722 spin_unlock(&cluster->lock); 6723 } 6724 6725 spin_lock(&space_info->lock); 6726 spin_lock(&cache->lock); 6727 cache->pinned -= len; 6728 space_info->bytes_pinned -= len; 6729 6730 trace_btrfs_space_reservation(fs_info, "pinned", 6731 space_info->flags, len, 0); 6732 space_info->max_extent_size = 0; 6733 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6734 if (cache->ro) { 6735 space_info->bytes_readonly += len; 6736 readonly = true; 6737 } 6738 spin_unlock(&cache->lock); 6739 if (!readonly && return_free_space && 6740 global_rsv->space_info == space_info) { 6741 u64 to_add = len; 6742 6743 spin_lock(&global_rsv->lock); 6744 if (!global_rsv->full) { 6745 to_add = min(len, global_rsv->size - 6746 global_rsv->reserved); 6747 global_rsv->reserved += to_add; 6748 space_info->bytes_may_use += to_add; 6749 if (global_rsv->reserved >= global_rsv->size) 6750 global_rsv->full = 1; 6751 trace_btrfs_space_reservation(fs_info, 6752 "space_info", 6753 space_info->flags, 6754 to_add, 1); 6755 len -= to_add; 6756 } 6757 spin_unlock(&global_rsv->lock); 6758 /* Add to any tickets we may have */ 6759 if (len) 6760 space_info_add_new_bytes(fs_info, space_info, 6761 len); 6762 } 6763 spin_unlock(&space_info->lock); 6764 } 6765 6766 if (cache) 6767 btrfs_put_block_group(cache); 6768 return 0; 6769 } 6770 6771 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6772 { 6773 struct btrfs_fs_info *fs_info = trans->fs_info; 6774 struct btrfs_block_group_cache *block_group, *tmp; 6775 struct list_head *deleted_bgs; 6776 struct extent_io_tree *unpin; 6777 u64 start; 6778 u64 end; 6779 int ret; 6780 6781 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6782 unpin = &fs_info->freed_extents[1]; 6783 else 6784 unpin = &fs_info->freed_extents[0]; 6785 6786 while (!trans->aborted) { 6787 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6788 ret = find_first_extent_bit(unpin, 0, &start, &end, 6789 EXTENT_DIRTY, NULL); 6790 if (ret) { 6791 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6792 break; 6793 } 6794 6795 if (btrfs_test_opt(fs_info, DISCARD)) 6796 ret = btrfs_discard_extent(fs_info, start, 6797 end + 1 - start, NULL); 6798 6799 clear_extent_dirty(unpin, start, end); 6800 unpin_extent_range(fs_info, start, end, true); 6801 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6802 cond_resched(); 6803 } 6804 6805 /* 6806 * Transaction is finished. We don't need the lock anymore. We 6807 * do need to clean up the block groups in case of a transaction 6808 * abort. 6809 */ 6810 deleted_bgs = &trans->transaction->deleted_bgs; 6811 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6812 u64 trimmed = 0; 6813 6814 ret = -EROFS; 6815 if (!trans->aborted) 6816 ret = btrfs_discard_extent(fs_info, 6817 block_group->key.objectid, 6818 block_group->key.offset, 6819 &trimmed); 6820 6821 list_del_init(&block_group->bg_list); 6822 btrfs_put_block_group_trimming(block_group); 6823 btrfs_put_block_group(block_group); 6824 6825 if (ret) { 6826 const char *errstr = btrfs_decode_error(ret); 6827 btrfs_warn(fs_info, 6828 "discard failed while removing blockgroup: errno=%d %s", 6829 ret, errstr); 6830 } 6831 } 6832 6833 return 0; 6834 } 6835 6836 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6837 struct btrfs_fs_info *info, 6838 struct btrfs_delayed_ref_node *node, u64 parent, 6839 u64 root_objectid, u64 owner_objectid, 6840 u64 owner_offset, int refs_to_drop, 6841 struct btrfs_delayed_extent_op *extent_op) 6842 { 6843 struct btrfs_key key; 6844 struct btrfs_path *path; 6845 struct btrfs_root *extent_root = info->extent_root; 6846 struct extent_buffer *leaf; 6847 struct btrfs_extent_item *ei; 6848 struct btrfs_extent_inline_ref *iref; 6849 int ret; 6850 int is_data; 6851 int extent_slot = 0; 6852 int found_extent = 0; 6853 int num_to_del = 1; 6854 u32 item_size; 6855 u64 refs; 6856 u64 bytenr = node->bytenr; 6857 u64 num_bytes = node->num_bytes; 6858 int last_ref = 0; 6859 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6860 6861 path = btrfs_alloc_path(); 6862 if (!path) 6863 return -ENOMEM; 6864 6865 path->reada = READA_FORWARD; 6866 path->leave_spinning = 1; 6867 6868 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6869 BUG_ON(!is_data && refs_to_drop != 1); 6870 6871 if (is_data) 6872 skinny_metadata = false; 6873 6874 ret = lookup_extent_backref(trans, info, path, &iref, 6875 bytenr, num_bytes, parent, 6876 root_objectid, owner_objectid, 6877 owner_offset); 6878 if (ret == 0) { 6879 extent_slot = path->slots[0]; 6880 while (extent_slot >= 0) { 6881 btrfs_item_key_to_cpu(path->nodes[0], &key, 6882 extent_slot); 6883 if (key.objectid != bytenr) 6884 break; 6885 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6886 key.offset == num_bytes) { 6887 found_extent = 1; 6888 break; 6889 } 6890 if (key.type == BTRFS_METADATA_ITEM_KEY && 6891 key.offset == owner_objectid) { 6892 found_extent = 1; 6893 break; 6894 } 6895 if (path->slots[0] - extent_slot > 5) 6896 break; 6897 extent_slot--; 6898 } 6899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6900 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6901 if (found_extent && item_size < sizeof(*ei)) 6902 found_extent = 0; 6903 #endif 6904 if (!found_extent) { 6905 BUG_ON(iref); 6906 ret = remove_extent_backref(trans, info, path, NULL, 6907 refs_to_drop, 6908 is_data, &last_ref); 6909 if (ret) { 6910 btrfs_abort_transaction(trans, ret); 6911 goto out; 6912 } 6913 btrfs_release_path(path); 6914 path->leave_spinning = 1; 6915 6916 key.objectid = bytenr; 6917 key.type = BTRFS_EXTENT_ITEM_KEY; 6918 key.offset = num_bytes; 6919 6920 if (!is_data && skinny_metadata) { 6921 key.type = BTRFS_METADATA_ITEM_KEY; 6922 key.offset = owner_objectid; 6923 } 6924 6925 ret = btrfs_search_slot(trans, extent_root, 6926 &key, path, -1, 1); 6927 if (ret > 0 && skinny_metadata && path->slots[0]) { 6928 /* 6929 * Couldn't find our skinny metadata item, 6930 * see if we have ye olde extent item. 6931 */ 6932 path->slots[0]--; 6933 btrfs_item_key_to_cpu(path->nodes[0], &key, 6934 path->slots[0]); 6935 if (key.objectid == bytenr && 6936 key.type == BTRFS_EXTENT_ITEM_KEY && 6937 key.offset == num_bytes) 6938 ret = 0; 6939 } 6940 6941 if (ret > 0 && skinny_metadata) { 6942 skinny_metadata = false; 6943 key.objectid = bytenr; 6944 key.type = BTRFS_EXTENT_ITEM_KEY; 6945 key.offset = num_bytes; 6946 btrfs_release_path(path); 6947 ret = btrfs_search_slot(trans, extent_root, 6948 &key, path, -1, 1); 6949 } 6950 6951 if (ret) { 6952 btrfs_err(info, 6953 "umm, got %d back from search, was looking for %llu", 6954 ret, bytenr); 6955 if (ret > 0) 6956 btrfs_print_leaf(path->nodes[0]); 6957 } 6958 if (ret < 0) { 6959 btrfs_abort_transaction(trans, ret); 6960 goto out; 6961 } 6962 extent_slot = path->slots[0]; 6963 } 6964 } else if (WARN_ON(ret == -ENOENT)) { 6965 btrfs_print_leaf(path->nodes[0]); 6966 btrfs_err(info, 6967 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6968 bytenr, parent, root_objectid, owner_objectid, 6969 owner_offset); 6970 btrfs_abort_transaction(trans, ret); 6971 goto out; 6972 } else { 6973 btrfs_abort_transaction(trans, ret); 6974 goto out; 6975 } 6976 6977 leaf = path->nodes[0]; 6978 item_size = btrfs_item_size_nr(leaf, extent_slot); 6979 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6980 if (item_size < sizeof(*ei)) { 6981 BUG_ON(found_extent || extent_slot != path->slots[0]); 6982 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 6983 0); 6984 if (ret < 0) { 6985 btrfs_abort_transaction(trans, ret); 6986 goto out; 6987 } 6988 6989 btrfs_release_path(path); 6990 path->leave_spinning = 1; 6991 6992 key.objectid = bytenr; 6993 key.type = BTRFS_EXTENT_ITEM_KEY; 6994 key.offset = num_bytes; 6995 6996 ret = btrfs_search_slot(trans, extent_root, &key, path, 6997 -1, 1); 6998 if (ret) { 6999 btrfs_err(info, 7000 "umm, got %d back from search, was looking for %llu", 7001 ret, bytenr); 7002 btrfs_print_leaf(path->nodes[0]); 7003 } 7004 if (ret < 0) { 7005 btrfs_abort_transaction(trans, ret); 7006 goto out; 7007 } 7008 7009 extent_slot = path->slots[0]; 7010 leaf = path->nodes[0]; 7011 item_size = btrfs_item_size_nr(leaf, extent_slot); 7012 } 7013 #endif 7014 BUG_ON(item_size < sizeof(*ei)); 7015 ei = btrfs_item_ptr(leaf, extent_slot, 7016 struct btrfs_extent_item); 7017 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7018 key.type == BTRFS_EXTENT_ITEM_KEY) { 7019 struct btrfs_tree_block_info *bi; 7020 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7021 bi = (struct btrfs_tree_block_info *)(ei + 1); 7022 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7023 } 7024 7025 refs = btrfs_extent_refs(leaf, ei); 7026 if (refs < refs_to_drop) { 7027 btrfs_err(info, 7028 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7029 refs_to_drop, refs, bytenr); 7030 ret = -EINVAL; 7031 btrfs_abort_transaction(trans, ret); 7032 goto out; 7033 } 7034 refs -= refs_to_drop; 7035 7036 if (refs > 0) { 7037 if (extent_op) 7038 __run_delayed_extent_op(extent_op, leaf, ei); 7039 /* 7040 * In the case of inline back ref, reference count will 7041 * be updated by remove_extent_backref 7042 */ 7043 if (iref) { 7044 BUG_ON(!found_extent); 7045 } else { 7046 btrfs_set_extent_refs(leaf, ei, refs); 7047 btrfs_mark_buffer_dirty(leaf); 7048 } 7049 if (found_extent) { 7050 ret = remove_extent_backref(trans, info, path, 7051 iref, refs_to_drop, 7052 is_data, &last_ref); 7053 if (ret) { 7054 btrfs_abort_transaction(trans, ret); 7055 goto out; 7056 } 7057 } 7058 } else { 7059 if (found_extent) { 7060 BUG_ON(is_data && refs_to_drop != 7061 extent_data_ref_count(path, iref)); 7062 if (iref) { 7063 BUG_ON(path->slots[0] != extent_slot); 7064 } else { 7065 BUG_ON(path->slots[0] != extent_slot + 1); 7066 path->slots[0] = extent_slot; 7067 num_to_del = 2; 7068 } 7069 } 7070 7071 last_ref = 1; 7072 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7073 num_to_del); 7074 if (ret) { 7075 btrfs_abort_transaction(trans, ret); 7076 goto out; 7077 } 7078 btrfs_release_path(path); 7079 7080 if (is_data) { 7081 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7082 if (ret) { 7083 btrfs_abort_transaction(trans, ret); 7084 goto out; 7085 } 7086 } 7087 7088 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7089 if (ret) { 7090 btrfs_abort_transaction(trans, ret); 7091 goto out; 7092 } 7093 7094 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7095 if (ret) { 7096 btrfs_abort_transaction(trans, ret); 7097 goto out; 7098 } 7099 } 7100 btrfs_release_path(path); 7101 7102 out: 7103 btrfs_free_path(path); 7104 return ret; 7105 } 7106 7107 /* 7108 * when we free an block, it is possible (and likely) that we free the last 7109 * delayed ref for that extent as well. This searches the delayed ref tree for 7110 * a given extent, and if there are no other delayed refs to be processed, it 7111 * removes it from the tree. 7112 */ 7113 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7114 u64 bytenr) 7115 { 7116 struct btrfs_delayed_ref_head *head; 7117 struct btrfs_delayed_ref_root *delayed_refs; 7118 int ret = 0; 7119 7120 delayed_refs = &trans->transaction->delayed_refs; 7121 spin_lock(&delayed_refs->lock); 7122 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7123 if (!head) 7124 goto out_delayed_unlock; 7125 7126 spin_lock(&head->lock); 7127 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7128 goto out; 7129 7130 if (head->extent_op) { 7131 if (!head->must_insert_reserved) 7132 goto out; 7133 btrfs_free_delayed_extent_op(head->extent_op); 7134 head->extent_op = NULL; 7135 } 7136 7137 /* 7138 * waiting for the lock here would deadlock. If someone else has it 7139 * locked they are already in the process of dropping it anyway 7140 */ 7141 if (!mutex_trylock(&head->mutex)) 7142 goto out; 7143 7144 /* 7145 * at this point we have a head with no other entries. Go 7146 * ahead and process it. 7147 */ 7148 rb_erase(&head->href_node, &delayed_refs->href_root); 7149 RB_CLEAR_NODE(&head->href_node); 7150 atomic_dec(&delayed_refs->num_entries); 7151 7152 /* 7153 * we don't take a ref on the node because we're removing it from the 7154 * tree, so we just steal the ref the tree was holding. 7155 */ 7156 delayed_refs->num_heads--; 7157 if (head->processing == 0) 7158 delayed_refs->num_heads_ready--; 7159 head->processing = 0; 7160 spin_unlock(&head->lock); 7161 spin_unlock(&delayed_refs->lock); 7162 7163 BUG_ON(head->extent_op); 7164 if (head->must_insert_reserved) 7165 ret = 1; 7166 7167 mutex_unlock(&head->mutex); 7168 btrfs_put_delayed_ref_head(head); 7169 return ret; 7170 out: 7171 spin_unlock(&head->lock); 7172 7173 out_delayed_unlock: 7174 spin_unlock(&delayed_refs->lock); 7175 return 0; 7176 } 7177 7178 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7179 struct btrfs_root *root, 7180 struct extent_buffer *buf, 7181 u64 parent, int last_ref) 7182 { 7183 struct btrfs_fs_info *fs_info = root->fs_info; 7184 int pin = 1; 7185 int ret; 7186 7187 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7188 int old_ref_mod, new_ref_mod; 7189 7190 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7191 root->root_key.objectid, 7192 btrfs_header_level(buf), 0, 7193 BTRFS_DROP_DELAYED_REF); 7194 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7195 buf->len, parent, 7196 root->root_key.objectid, 7197 btrfs_header_level(buf), 7198 BTRFS_DROP_DELAYED_REF, NULL, 7199 &old_ref_mod, &new_ref_mod); 7200 BUG_ON(ret); /* -ENOMEM */ 7201 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7202 } 7203 7204 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7205 struct btrfs_block_group_cache *cache; 7206 7207 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7208 ret = check_ref_cleanup(trans, buf->start); 7209 if (!ret) 7210 goto out; 7211 } 7212 7213 pin = 0; 7214 cache = btrfs_lookup_block_group(fs_info, buf->start); 7215 7216 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7217 pin_down_extent(fs_info, cache, buf->start, 7218 buf->len, 1); 7219 btrfs_put_block_group(cache); 7220 goto out; 7221 } 7222 7223 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7224 7225 btrfs_add_free_space(cache, buf->start, buf->len); 7226 btrfs_free_reserved_bytes(cache, buf->len, 0); 7227 btrfs_put_block_group(cache); 7228 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7229 } 7230 out: 7231 if (pin) 7232 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7233 root->root_key.objectid); 7234 7235 if (last_ref) { 7236 /* 7237 * Deleting the buffer, clear the corrupt flag since it doesn't 7238 * matter anymore. 7239 */ 7240 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7241 } 7242 } 7243 7244 /* Can return -ENOMEM */ 7245 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7246 struct btrfs_root *root, 7247 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7248 u64 owner, u64 offset) 7249 { 7250 struct btrfs_fs_info *fs_info = root->fs_info; 7251 int old_ref_mod, new_ref_mod; 7252 int ret; 7253 7254 if (btrfs_is_testing(fs_info)) 7255 return 0; 7256 7257 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7258 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7259 root_objectid, owner, offset, 7260 BTRFS_DROP_DELAYED_REF); 7261 7262 /* 7263 * tree log blocks never actually go into the extent allocation 7264 * tree, just update pinning info and exit early. 7265 */ 7266 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7267 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7268 /* unlocks the pinned mutex */ 7269 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7270 old_ref_mod = new_ref_mod = 0; 7271 ret = 0; 7272 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7273 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7274 num_bytes, parent, 7275 root_objectid, (int)owner, 7276 BTRFS_DROP_DELAYED_REF, NULL, 7277 &old_ref_mod, &new_ref_mod); 7278 } else { 7279 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7280 num_bytes, parent, 7281 root_objectid, owner, offset, 7282 0, BTRFS_DROP_DELAYED_REF, 7283 &old_ref_mod, &new_ref_mod); 7284 } 7285 7286 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7287 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7288 7289 return ret; 7290 } 7291 7292 /* 7293 * when we wait for progress in the block group caching, its because 7294 * our allocation attempt failed at least once. So, we must sleep 7295 * and let some progress happen before we try again. 7296 * 7297 * This function will sleep at least once waiting for new free space to 7298 * show up, and then it will check the block group free space numbers 7299 * for our min num_bytes. Another option is to have it go ahead 7300 * and look in the rbtree for a free extent of a given size, but this 7301 * is a good start. 7302 * 7303 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7304 * any of the information in this block group. 7305 */ 7306 static noinline void 7307 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7308 u64 num_bytes) 7309 { 7310 struct btrfs_caching_control *caching_ctl; 7311 7312 caching_ctl = get_caching_control(cache); 7313 if (!caching_ctl) 7314 return; 7315 7316 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7317 (cache->free_space_ctl->free_space >= num_bytes)); 7318 7319 put_caching_control(caching_ctl); 7320 } 7321 7322 static noinline int 7323 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7324 { 7325 struct btrfs_caching_control *caching_ctl; 7326 int ret = 0; 7327 7328 caching_ctl = get_caching_control(cache); 7329 if (!caching_ctl) 7330 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7331 7332 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7333 if (cache->cached == BTRFS_CACHE_ERROR) 7334 ret = -EIO; 7335 put_caching_control(caching_ctl); 7336 return ret; 7337 } 7338 7339 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7340 [BTRFS_RAID_RAID10] = "raid10", 7341 [BTRFS_RAID_RAID1] = "raid1", 7342 [BTRFS_RAID_DUP] = "dup", 7343 [BTRFS_RAID_RAID0] = "raid0", 7344 [BTRFS_RAID_SINGLE] = "single", 7345 [BTRFS_RAID_RAID5] = "raid5", 7346 [BTRFS_RAID_RAID6] = "raid6", 7347 }; 7348 7349 static const char *get_raid_name(enum btrfs_raid_types type) 7350 { 7351 if (type >= BTRFS_NR_RAID_TYPES) 7352 return NULL; 7353 7354 return btrfs_raid_type_names[type]; 7355 } 7356 7357 enum btrfs_loop_type { 7358 LOOP_CACHING_NOWAIT = 0, 7359 LOOP_CACHING_WAIT = 1, 7360 LOOP_ALLOC_CHUNK = 2, 7361 LOOP_NO_EMPTY_SIZE = 3, 7362 }; 7363 7364 static inline void 7365 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7366 int delalloc) 7367 { 7368 if (delalloc) 7369 down_read(&cache->data_rwsem); 7370 } 7371 7372 static inline void 7373 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7374 int delalloc) 7375 { 7376 btrfs_get_block_group(cache); 7377 if (delalloc) 7378 down_read(&cache->data_rwsem); 7379 } 7380 7381 static struct btrfs_block_group_cache * 7382 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7383 struct btrfs_free_cluster *cluster, 7384 int delalloc) 7385 { 7386 struct btrfs_block_group_cache *used_bg = NULL; 7387 7388 spin_lock(&cluster->refill_lock); 7389 while (1) { 7390 used_bg = cluster->block_group; 7391 if (!used_bg) 7392 return NULL; 7393 7394 if (used_bg == block_group) 7395 return used_bg; 7396 7397 btrfs_get_block_group(used_bg); 7398 7399 if (!delalloc) 7400 return used_bg; 7401 7402 if (down_read_trylock(&used_bg->data_rwsem)) 7403 return used_bg; 7404 7405 spin_unlock(&cluster->refill_lock); 7406 7407 /* We should only have one-level nested. */ 7408 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7409 7410 spin_lock(&cluster->refill_lock); 7411 if (used_bg == cluster->block_group) 7412 return used_bg; 7413 7414 up_read(&used_bg->data_rwsem); 7415 btrfs_put_block_group(used_bg); 7416 } 7417 } 7418 7419 static inline void 7420 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7421 int delalloc) 7422 { 7423 if (delalloc) 7424 up_read(&cache->data_rwsem); 7425 btrfs_put_block_group(cache); 7426 } 7427 7428 /* 7429 * walks the btree of allocated extents and find a hole of a given size. 7430 * The key ins is changed to record the hole: 7431 * ins->objectid == start position 7432 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7433 * ins->offset == the size of the hole. 7434 * Any available blocks before search_start are skipped. 7435 * 7436 * If there is no suitable free space, we will record the max size of 7437 * the free space extent currently. 7438 */ 7439 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7440 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7441 u64 hint_byte, struct btrfs_key *ins, 7442 u64 flags, int delalloc) 7443 { 7444 int ret = 0; 7445 struct btrfs_root *root = fs_info->extent_root; 7446 struct btrfs_free_cluster *last_ptr = NULL; 7447 struct btrfs_block_group_cache *block_group = NULL; 7448 u64 search_start = 0; 7449 u64 max_extent_size = 0; 7450 u64 empty_cluster = 0; 7451 struct btrfs_space_info *space_info; 7452 int loop = 0; 7453 int index = btrfs_bg_flags_to_raid_index(flags); 7454 bool failed_cluster_refill = false; 7455 bool failed_alloc = false; 7456 bool use_cluster = true; 7457 bool have_caching_bg = false; 7458 bool orig_have_caching_bg = false; 7459 bool full_search = false; 7460 7461 WARN_ON(num_bytes < fs_info->sectorsize); 7462 ins->type = BTRFS_EXTENT_ITEM_KEY; 7463 ins->objectid = 0; 7464 ins->offset = 0; 7465 7466 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7467 7468 space_info = __find_space_info(fs_info, flags); 7469 if (!space_info) { 7470 btrfs_err(fs_info, "No space info for %llu", flags); 7471 return -ENOSPC; 7472 } 7473 7474 /* 7475 * If our free space is heavily fragmented we may not be able to make 7476 * big contiguous allocations, so instead of doing the expensive search 7477 * for free space, simply return ENOSPC with our max_extent_size so we 7478 * can go ahead and search for a more manageable chunk. 7479 * 7480 * If our max_extent_size is large enough for our allocation simply 7481 * disable clustering since we will likely not be able to find enough 7482 * space to create a cluster and induce latency trying. 7483 */ 7484 if (unlikely(space_info->max_extent_size)) { 7485 spin_lock(&space_info->lock); 7486 if (space_info->max_extent_size && 7487 num_bytes > space_info->max_extent_size) { 7488 ins->offset = space_info->max_extent_size; 7489 spin_unlock(&space_info->lock); 7490 return -ENOSPC; 7491 } else if (space_info->max_extent_size) { 7492 use_cluster = false; 7493 } 7494 spin_unlock(&space_info->lock); 7495 } 7496 7497 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7498 if (last_ptr) { 7499 spin_lock(&last_ptr->lock); 7500 if (last_ptr->block_group) 7501 hint_byte = last_ptr->window_start; 7502 if (last_ptr->fragmented) { 7503 /* 7504 * We still set window_start so we can keep track of the 7505 * last place we found an allocation to try and save 7506 * some time. 7507 */ 7508 hint_byte = last_ptr->window_start; 7509 use_cluster = false; 7510 } 7511 spin_unlock(&last_ptr->lock); 7512 } 7513 7514 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7515 search_start = max(search_start, hint_byte); 7516 if (search_start == hint_byte) { 7517 block_group = btrfs_lookup_block_group(fs_info, search_start); 7518 /* 7519 * we don't want to use the block group if it doesn't match our 7520 * allocation bits, or if its not cached. 7521 * 7522 * However if we are re-searching with an ideal block group 7523 * picked out then we don't care that the block group is cached. 7524 */ 7525 if (block_group && block_group_bits(block_group, flags) && 7526 block_group->cached != BTRFS_CACHE_NO) { 7527 down_read(&space_info->groups_sem); 7528 if (list_empty(&block_group->list) || 7529 block_group->ro) { 7530 /* 7531 * someone is removing this block group, 7532 * we can't jump into the have_block_group 7533 * target because our list pointers are not 7534 * valid 7535 */ 7536 btrfs_put_block_group(block_group); 7537 up_read(&space_info->groups_sem); 7538 } else { 7539 index = btrfs_bg_flags_to_raid_index( 7540 block_group->flags); 7541 btrfs_lock_block_group(block_group, delalloc); 7542 goto have_block_group; 7543 } 7544 } else if (block_group) { 7545 btrfs_put_block_group(block_group); 7546 } 7547 } 7548 search: 7549 have_caching_bg = false; 7550 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7551 full_search = true; 7552 down_read(&space_info->groups_sem); 7553 list_for_each_entry(block_group, &space_info->block_groups[index], 7554 list) { 7555 u64 offset; 7556 int cached; 7557 7558 /* If the block group is read-only, we can skip it entirely. */ 7559 if (unlikely(block_group->ro)) 7560 continue; 7561 7562 btrfs_grab_block_group(block_group, delalloc); 7563 search_start = block_group->key.objectid; 7564 7565 /* 7566 * this can happen if we end up cycling through all the 7567 * raid types, but we want to make sure we only allocate 7568 * for the proper type. 7569 */ 7570 if (!block_group_bits(block_group, flags)) { 7571 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7572 BTRFS_BLOCK_GROUP_RAID1 | 7573 BTRFS_BLOCK_GROUP_RAID5 | 7574 BTRFS_BLOCK_GROUP_RAID6 | 7575 BTRFS_BLOCK_GROUP_RAID10; 7576 7577 /* 7578 * if they asked for extra copies and this block group 7579 * doesn't provide them, bail. This does allow us to 7580 * fill raid0 from raid1. 7581 */ 7582 if ((flags & extra) && !(block_group->flags & extra)) 7583 goto loop; 7584 } 7585 7586 have_block_group: 7587 cached = block_group_cache_done(block_group); 7588 if (unlikely(!cached)) { 7589 have_caching_bg = true; 7590 ret = cache_block_group(block_group, 0); 7591 BUG_ON(ret < 0); 7592 ret = 0; 7593 } 7594 7595 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7596 goto loop; 7597 7598 /* 7599 * Ok we want to try and use the cluster allocator, so 7600 * lets look there 7601 */ 7602 if (last_ptr && use_cluster) { 7603 struct btrfs_block_group_cache *used_block_group; 7604 unsigned long aligned_cluster; 7605 /* 7606 * the refill lock keeps out other 7607 * people trying to start a new cluster 7608 */ 7609 used_block_group = btrfs_lock_cluster(block_group, 7610 last_ptr, 7611 delalloc); 7612 if (!used_block_group) 7613 goto refill_cluster; 7614 7615 if (used_block_group != block_group && 7616 (used_block_group->ro || 7617 !block_group_bits(used_block_group, flags))) 7618 goto release_cluster; 7619 7620 offset = btrfs_alloc_from_cluster(used_block_group, 7621 last_ptr, 7622 num_bytes, 7623 used_block_group->key.objectid, 7624 &max_extent_size); 7625 if (offset) { 7626 /* we have a block, we're done */ 7627 spin_unlock(&last_ptr->refill_lock); 7628 trace_btrfs_reserve_extent_cluster(fs_info, 7629 used_block_group, 7630 search_start, num_bytes); 7631 if (used_block_group != block_group) { 7632 btrfs_release_block_group(block_group, 7633 delalloc); 7634 block_group = used_block_group; 7635 } 7636 goto checks; 7637 } 7638 7639 WARN_ON(last_ptr->block_group != used_block_group); 7640 release_cluster: 7641 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7642 * set up a new clusters, so lets just skip it 7643 * and let the allocator find whatever block 7644 * it can find. If we reach this point, we 7645 * will have tried the cluster allocator 7646 * plenty of times and not have found 7647 * anything, so we are likely way too 7648 * fragmented for the clustering stuff to find 7649 * anything. 7650 * 7651 * However, if the cluster is taken from the 7652 * current block group, release the cluster 7653 * first, so that we stand a better chance of 7654 * succeeding in the unclustered 7655 * allocation. */ 7656 if (loop >= LOOP_NO_EMPTY_SIZE && 7657 used_block_group != block_group) { 7658 spin_unlock(&last_ptr->refill_lock); 7659 btrfs_release_block_group(used_block_group, 7660 delalloc); 7661 goto unclustered_alloc; 7662 } 7663 7664 /* 7665 * this cluster didn't work out, free it and 7666 * start over 7667 */ 7668 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7669 7670 if (used_block_group != block_group) 7671 btrfs_release_block_group(used_block_group, 7672 delalloc); 7673 refill_cluster: 7674 if (loop >= LOOP_NO_EMPTY_SIZE) { 7675 spin_unlock(&last_ptr->refill_lock); 7676 goto unclustered_alloc; 7677 } 7678 7679 aligned_cluster = max_t(unsigned long, 7680 empty_cluster + empty_size, 7681 block_group->full_stripe_len); 7682 7683 /* allocate a cluster in this block group */ 7684 ret = btrfs_find_space_cluster(fs_info, block_group, 7685 last_ptr, search_start, 7686 num_bytes, 7687 aligned_cluster); 7688 if (ret == 0) { 7689 /* 7690 * now pull our allocation out of this 7691 * cluster 7692 */ 7693 offset = btrfs_alloc_from_cluster(block_group, 7694 last_ptr, 7695 num_bytes, 7696 search_start, 7697 &max_extent_size); 7698 if (offset) { 7699 /* we found one, proceed */ 7700 spin_unlock(&last_ptr->refill_lock); 7701 trace_btrfs_reserve_extent_cluster(fs_info, 7702 block_group, search_start, 7703 num_bytes); 7704 goto checks; 7705 } 7706 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7707 && !failed_cluster_refill) { 7708 spin_unlock(&last_ptr->refill_lock); 7709 7710 failed_cluster_refill = true; 7711 wait_block_group_cache_progress(block_group, 7712 num_bytes + empty_cluster + empty_size); 7713 goto have_block_group; 7714 } 7715 7716 /* 7717 * at this point we either didn't find a cluster 7718 * or we weren't able to allocate a block from our 7719 * cluster. Free the cluster we've been trying 7720 * to use, and go to the next block group 7721 */ 7722 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7723 spin_unlock(&last_ptr->refill_lock); 7724 goto loop; 7725 } 7726 7727 unclustered_alloc: 7728 /* 7729 * We are doing an unclustered alloc, set the fragmented flag so 7730 * we don't bother trying to setup a cluster again until we get 7731 * more space. 7732 */ 7733 if (unlikely(last_ptr)) { 7734 spin_lock(&last_ptr->lock); 7735 last_ptr->fragmented = 1; 7736 spin_unlock(&last_ptr->lock); 7737 } 7738 if (cached) { 7739 struct btrfs_free_space_ctl *ctl = 7740 block_group->free_space_ctl; 7741 7742 spin_lock(&ctl->tree_lock); 7743 if (ctl->free_space < 7744 num_bytes + empty_cluster + empty_size) { 7745 if (ctl->free_space > max_extent_size) 7746 max_extent_size = ctl->free_space; 7747 spin_unlock(&ctl->tree_lock); 7748 goto loop; 7749 } 7750 spin_unlock(&ctl->tree_lock); 7751 } 7752 7753 offset = btrfs_find_space_for_alloc(block_group, search_start, 7754 num_bytes, empty_size, 7755 &max_extent_size); 7756 /* 7757 * If we didn't find a chunk, and we haven't failed on this 7758 * block group before, and this block group is in the middle of 7759 * caching and we are ok with waiting, then go ahead and wait 7760 * for progress to be made, and set failed_alloc to true. 7761 * 7762 * If failed_alloc is true then we've already waited on this 7763 * block group once and should move on to the next block group. 7764 */ 7765 if (!offset && !failed_alloc && !cached && 7766 loop > LOOP_CACHING_NOWAIT) { 7767 wait_block_group_cache_progress(block_group, 7768 num_bytes + empty_size); 7769 failed_alloc = true; 7770 goto have_block_group; 7771 } else if (!offset) { 7772 goto loop; 7773 } 7774 checks: 7775 search_start = ALIGN(offset, fs_info->stripesize); 7776 7777 /* move on to the next group */ 7778 if (search_start + num_bytes > 7779 block_group->key.objectid + block_group->key.offset) { 7780 btrfs_add_free_space(block_group, offset, num_bytes); 7781 goto loop; 7782 } 7783 7784 if (offset < search_start) 7785 btrfs_add_free_space(block_group, offset, 7786 search_start - offset); 7787 BUG_ON(offset > search_start); 7788 7789 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7790 num_bytes, delalloc); 7791 if (ret == -EAGAIN) { 7792 btrfs_add_free_space(block_group, offset, num_bytes); 7793 goto loop; 7794 } 7795 btrfs_inc_block_group_reservations(block_group); 7796 7797 /* we are all good, lets return */ 7798 ins->objectid = search_start; 7799 ins->offset = num_bytes; 7800 7801 trace_btrfs_reserve_extent(fs_info, block_group, 7802 search_start, num_bytes); 7803 btrfs_release_block_group(block_group, delalloc); 7804 break; 7805 loop: 7806 failed_cluster_refill = false; 7807 failed_alloc = false; 7808 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7809 index); 7810 btrfs_release_block_group(block_group, delalloc); 7811 cond_resched(); 7812 } 7813 up_read(&space_info->groups_sem); 7814 7815 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7816 && !orig_have_caching_bg) 7817 orig_have_caching_bg = true; 7818 7819 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7820 goto search; 7821 7822 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7823 goto search; 7824 7825 /* 7826 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7827 * caching kthreads as we move along 7828 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7829 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7830 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7831 * again 7832 */ 7833 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7834 index = 0; 7835 if (loop == LOOP_CACHING_NOWAIT) { 7836 /* 7837 * We want to skip the LOOP_CACHING_WAIT step if we 7838 * don't have any uncached bgs and we've already done a 7839 * full search through. 7840 */ 7841 if (orig_have_caching_bg || !full_search) 7842 loop = LOOP_CACHING_WAIT; 7843 else 7844 loop = LOOP_ALLOC_CHUNK; 7845 } else { 7846 loop++; 7847 } 7848 7849 if (loop == LOOP_ALLOC_CHUNK) { 7850 struct btrfs_trans_handle *trans; 7851 int exist = 0; 7852 7853 trans = current->journal_info; 7854 if (trans) 7855 exist = 1; 7856 else 7857 trans = btrfs_join_transaction(root); 7858 7859 if (IS_ERR(trans)) { 7860 ret = PTR_ERR(trans); 7861 goto out; 7862 } 7863 7864 ret = do_chunk_alloc(trans, fs_info, flags, 7865 CHUNK_ALLOC_FORCE); 7866 7867 /* 7868 * If we can't allocate a new chunk we've already looped 7869 * through at least once, move on to the NO_EMPTY_SIZE 7870 * case. 7871 */ 7872 if (ret == -ENOSPC) 7873 loop = LOOP_NO_EMPTY_SIZE; 7874 7875 /* 7876 * Do not bail out on ENOSPC since we 7877 * can do more things. 7878 */ 7879 if (ret < 0 && ret != -ENOSPC) 7880 btrfs_abort_transaction(trans, ret); 7881 else 7882 ret = 0; 7883 if (!exist) 7884 btrfs_end_transaction(trans); 7885 if (ret) 7886 goto out; 7887 } 7888 7889 if (loop == LOOP_NO_EMPTY_SIZE) { 7890 /* 7891 * Don't loop again if we already have no empty_size and 7892 * no empty_cluster. 7893 */ 7894 if (empty_size == 0 && 7895 empty_cluster == 0) { 7896 ret = -ENOSPC; 7897 goto out; 7898 } 7899 empty_size = 0; 7900 empty_cluster = 0; 7901 } 7902 7903 goto search; 7904 } else if (!ins->objectid) { 7905 ret = -ENOSPC; 7906 } else if (ins->objectid) { 7907 if (!use_cluster && last_ptr) { 7908 spin_lock(&last_ptr->lock); 7909 last_ptr->window_start = ins->objectid; 7910 spin_unlock(&last_ptr->lock); 7911 } 7912 ret = 0; 7913 } 7914 out: 7915 if (ret == -ENOSPC) { 7916 spin_lock(&space_info->lock); 7917 space_info->max_extent_size = max_extent_size; 7918 spin_unlock(&space_info->lock); 7919 ins->offset = max_extent_size; 7920 } 7921 return ret; 7922 } 7923 7924 static void dump_space_info(struct btrfs_fs_info *fs_info, 7925 struct btrfs_space_info *info, u64 bytes, 7926 int dump_block_groups) 7927 { 7928 struct btrfs_block_group_cache *cache; 7929 int index = 0; 7930 7931 spin_lock(&info->lock); 7932 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7933 info->flags, 7934 info->total_bytes - btrfs_space_info_used(info, true), 7935 info->full ? "" : "not "); 7936 btrfs_info(fs_info, 7937 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7938 info->total_bytes, info->bytes_used, info->bytes_pinned, 7939 info->bytes_reserved, info->bytes_may_use, 7940 info->bytes_readonly); 7941 spin_unlock(&info->lock); 7942 7943 if (!dump_block_groups) 7944 return; 7945 7946 down_read(&info->groups_sem); 7947 again: 7948 list_for_each_entry(cache, &info->block_groups[index], list) { 7949 spin_lock(&cache->lock); 7950 btrfs_info(fs_info, 7951 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7952 cache->key.objectid, cache->key.offset, 7953 btrfs_block_group_used(&cache->item), cache->pinned, 7954 cache->reserved, cache->ro ? "[readonly]" : ""); 7955 btrfs_dump_free_space(cache, bytes); 7956 spin_unlock(&cache->lock); 7957 } 7958 if (++index < BTRFS_NR_RAID_TYPES) 7959 goto again; 7960 up_read(&info->groups_sem); 7961 } 7962 7963 /* 7964 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 7965 * hole that is at least as big as @num_bytes. 7966 * 7967 * @root - The root that will contain this extent 7968 * 7969 * @ram_bytes - The amount of space in ram that @num_bytes take. This 7970 * is used for accounting purposes. This value differs 7971 * from @num_bytes only in the case of compressed extents. 7972 * 7973 * @num_bytes - Number of bytes to allocate on-disk. 7974 * 7975 * @min_alloc_size - Indicates the minimum amount of space that the 7976 * allocator should try to satisfy. In some cases 7977 * @num_bytes may be larger than what is required and if 7978 * the filesystem is fragmented then allocation fails. 7979 * However, the presence of @min_alloc_size gives a 7980 * chance to try and satisfy the smaller allocation. 7981 * 7982 * @empty_size - A hint that you plan on doing more COW. This is the 7983 * size in bytes the allocator should try to find free 7984 * next to the block it returns. This is just a hint and 7985 * may be ignored by the allocator. 7986 * 7987 * @hint_byte - Hint to the allocator to start searching above the byte 7988 * address passed. It might be ignored. 7989 * 7990 * @ins - This key is modified to record the found hole. It will 7991 * have the following values: 7992 * ins->objectid == start position 7993 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7994 * ins->offset == the size of the hole. 7995 * 7996 * @is_data - Boolean flag indicating whether an extent is 7997 * allocated for data (true) or metadata (false) 7998 * 7999 * @delalloc - Boolean flag indicating whether this allocation is for 8000 * delalloc or not. If 'true' data_rwsem of block groups 8001 * is going to be acquired. 8002 * 8003 * 8004 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 8005 * case -ENOSPC is returned then @ins->offset will contain the size of the 8006 * largest available hole the allocator managed to find. 8007 */ 8008 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8009 u64 num_bytes, u64 min_alloc_size, 8010 u64 empty_size, u64 hint_byte, 8011 struct btrfs_key *ins, int is_data, int delalloc) 8012 { 8013 struct btrfs_fs_info *fs_info = root->fs_info; 8014 bool final_tried = num_bytes == min_alloc_size; 8015 u64 flags; 8016 int ret; 8017 8018 flags = get_alloc_profile_by_root(root, is_data); 8019 again: 8020 WARN_ON(num_bytes < fs_info->sectorsize); 8021 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8022 hint_byte, ins, flags, delalloc); 8023 if (!ret && !is_data) { 8024 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8025 } else if (ret == -ENOSPC) { 8026 if (!final_tried && ins->offset) { 8027 num_bytes = min(num_bytes >> 1, ins->offset); 8028 num_bytes = round_down(num_bytes, 8029 fs_info->sectorsize); 8030 num_bytes = max(num_bytes, min_alloc_size); 8031 ram_bytes = num_bytes; 8032 if (num_bytes == min_alloc_size) 8033 final_tried = true; 8034 goto again; 8035 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8036 struct btrfs_space_info *sinfo; 8037 8038 sinfo = __find_space_info(fs_info, flags); 8039 btrfs_err(fs_info, 8040 "allocation failed flags %llu, wanted %llu", 8041 flags, num_bytes); 8042 if (sinfo) 8043 dump_space_info(fs_info, sinfo, num_bytes, 1); 8044 } 8045 } 8046 8047 return ret; 8048 } 8049 8050 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8051 u64 start, u64 len, 8052 int pin, int delalloc) 8053 { 8054 struct btrfs_block_group_cache *cache; 8055 int ret = 0; 8056 8057 cache = btrfs_lookup_block_group(fs_info, start); 8058 if (!cache) { 8059 btrfs_err(fs_info, "Unable to find block group for %llu", 8060 start); 8061 return -ENOSPC; 8062 } 8063 8064 if (pin) 8065 pin_down_extent(fs_info, cache, start, len, 1); 8066 else { 8067 if (btrfs_test_opt(fs_info, DISCARD)) 8068 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8069 btrfs_add_free_space(cache, start, len); 8070 btrfs_free_reserved_bytes(cache, len, delalloc); 8071 trace_btrfs_reserved_extent_free(fs_info, start, len); 8072 } 8073 8074 btrfs_put_block_group(cache); 8075 return ret; 8076 } 8077 8078 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8079 u64 start, u64 len, int delalloc) 8080 { 8081 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8082 } 8083 8084 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8085 u64 start, u64 len) 8086 { 8087 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8088 } 8089 8090 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8091 struct btrfs_fs_info *fs_info, 8092 u64 parent, u64 root_objectid, 8093 u64 flags, u64 owner, u64 offset, 8094 struct btrfs_key *ins, int ref_mod) 8095 { 8096 int ret; 8097 struct btrfs_extent_item *extent_item; 8098 struct btrfs_extent_inline_ref *iref; 8099 struct btrfs_path *path; 8100 struct extent_buffer *leaf; 8101 int type; 8102 u32 size; 8103 8104 if (parent > 0) 8105 type = BTRFS_SHARED_DATA_REF_KEY; 8106 else 8107 type = BTRFS_EXTENT_DATA_REF_KEY; 8108 8109 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8110 8111 path = btrfs_alloc_path(); 8112 if (!path) 8113 return -ENOMEM; 8114 8115 path->leave_spinning = 1; 8116 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8117 ins, size); 8118 if (ret) { 8119 btrfs_free_path(path); 8120 return ret; 8121 } 8122 8123 leaf = path->nodes[0]; 8124 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8125 struct btrfs_extent_item); 8126 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8127 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8128 btrfs_set_extent_flags(leaf, extent_item, 8129 flags | BTRFS_EXTENT_FLAG_DATA); 8130 8131 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8132 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8133 if (parent > 0) { 8134 struct btrfs_shared_data_ref *ref; 8135 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8136 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8137 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8138 } else { 8139 struct btrfs_extent_data_ref *ref; 8140 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8141 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8142 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8143 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8144 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8145 } 8146 8147 btrfs_mark_buffer_dirty(path->nodes[0]); 8148 btrfs_free_path(path); 8149 8150 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8151 ins->offset); 8152 if (ret) 8153 return ret; 8154 8155 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8156 if (ret) { /* -ENOENT, logic error */ 8157 btrfs_err(fs_info, "update block group failed for %llu %llu", 8158 ins->objectid, ins->offset); 8159 BUG(); 8160 } 8161 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8162 return ret; 8163 } 8164 8165 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8166 struct btrfs_fs_info *fs_info, 8167 u64 parent, u64 root_objectid, 8168 u64 flags, struct btrfs_disk_key *key, 8169 int level, struct btrfs_key *ins) 8170 { 8171 int ret; 8172 struct btrfs_extent_item *extent_item; 8173 struct btrfs_tree_block_info *block_info; 8174 struct btrfs_extent_inline_ref *iref; 8175 struct btrfs_path *path; 8176 struct extent_buffer *leaf; 8177 u32 size = sizeof(*extent_item) + sizeof(*iref); 8178 u64 num_bytes = ins->offset; 8179 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8180 8181 if (!skinny_metadata) 8182 size += sizeof(*block_info); 8183 8184 path = btrfs_alloc_path(); 8185 if (!path) { 8186 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8187 fs_info->nodesize); 8188 return -ENOMEM; 8189 } 8190 8191 path->leave_spinning = 1; 8192 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8193 ins, size); 8194 if (ret) { 8195 btrfs_free_path(path); 8196 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8197 fs_info->nodesize); 8198 return ret; 8199 } 8200 8201 leaf = path->nodes[0]; 8202 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8203 struct btrfs_extent_item); 8204 btrfs_set_extent_refs(leaf, extent_item, 1); 8205 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8206 btrfs_set_extent_flags(leaf, extent_item, 8207 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8208 8209 if (skinny_metadata) { 8210 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8211 num_bytes = fs_info->nodesize; 8212 } else { 8213 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8214 btrfs_set_tree_block_key(leaf, block_info, key); 8215 btrfs_set_tree_block_level(leaf, block_info, level); 8216 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8217 } 8218 8219 if (parent > 0) { 8220 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8221 btrfs_set_extent_inline_ref_type(leaf, iref, 8222 BTRFS_SHARED_BLOCK_REF_KEY); 8223 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8224 } else { 8225 btrfs_set_extent_inline_ref_type(leaf, iref, 8226 BTRFS_TREE_BLOCK_REF_KEY); 8227 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8228 } 8229 8230 btrfs_mark_buffer_dirty(leaf); 8231 btrfs_free_path(path); 8232 8233 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8234 num_bytes); 8235 if (ret) 8236 return ret; 8237 8238 ret = update_block_group(trans, fs_info, ins->objectid, 8239 fs_info->nodesize, 1); 8240 if (ret) { /* -ENOENT, logic error */ 8241 btrfs_err(fs_info, "update block group failed for %llu %llu", 8242 ins->objectid, ins->offset); 8243 BUG(); 8244 } 8245 8246 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8247 fs_info->nodesize); 8248 return ret; 8249 } 8250 8251 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8252 struct btrfs_root *root, u64 owner, 8253 u64 offset, u64 ram_bytes, 8254 struct btrfs_key *ins) 8255 { 8256 struct btrfs_fs_info *fs_info = root->fs_info; 8257 int ret; 8258 8259 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8260 8261 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8262 root->root_key.objectid, owner, offset, 8263 BTRFS_ADD_DELAYED_EXTENT); 8264 8265 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8266 ins->offset, 0, 8267 root->root_key.objectid, owner, 8268 offset, ram_bytes, 8269 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8270 return ret; 8271 } 8272 8273 /* 8274 * this is used by the tree logging recovery code. It records that 8275 * an extent has been allocated and makes sure to clear the free 8276 * space cache bits as well 8277 */ 8278 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8279 struct btrfs_fs_info *fs_info, 8280 u64 root_objectid, u64 owner, u64 offset, 8281 struct btrfs_key *ins) 8282 { 8283 int ret; 8284 struct btrfs_block_group_cache *block_group; 8285 struct btrfs_space_info *space_info; 8286 8287 /* 8288 * Mixed block groups will exclude before processing the log so we only 8289 * need to do the exclude dance if this fs isn't mixed. 8290 */ 8291 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8292 ret = __exclude_logged_extent(fs_info, ins->objectid, 8293 ins->offset); 8294 if (ret) 8295 return ret; 8296 } 8297 8298 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8299 if (!block_group) 8300 return -EINVAL; 8301 8302 space_info = block_group->space_info; 8303 spin_lock(&space_info->lock); 8304 spin_lock(&block_group->lock); 8305 space_info->bytes_reserved += ins->offset; 8306 block_group->reserved += ins->offset; 8307 spin_unlock(&block_group->lock); 8308 spin_unlock(&space_info->lock); 8309 8310 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8311 0, owner, offset, ins, 1); 8312 btrfs_put_block_group(block_group); 8313 return ret; 8314 } 8315 8316 static struct extent_buffer * 8317 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8318 u64 bytenr, int level) 8319 { 8320 struct btrfs_fs_info *fs_info = root->fs_info; 8321 struct extent_buffer *buf; 8322 8323 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8324 if (IS_ERR(buf)) 8325 return buf; 8326 8327 btrfs_set_header_generation(buf, trans->transid); 8328 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8329 btrfs_tree_lock(buf); 8330 clean_tree_block(fs_info, buf); 8331 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8332 8333 btrfs_set_lock_blocking(buf); 8334 set_extent_buffer_uptodate(buf); 8335 8336 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8337 buf->log_index = root->log_transid % 2; 8338 /* 8339 * we allow two log transactions at a time, use different 8340 * EXENT bit to differentiate dirty pages. 8341 */ 8342 if (buf->log_index == 0) 8343 set_extent_dirty(&root->dirty_log_pages, buf->start, 8344 buf->start + buf->len - 1, GFP_NOFS); 8345 else 8346 set_extent_new(&root->dirty_log_pages, buf->start, 8347 buf->start + buf->len - 1); 8348 } else { 8349 buf->log_index = -1; 8350 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8351 buf->start + buf->len - 1, GFP_NOFS); 8352 } 8353 trans->dirty = true; 8354 /* this returns a buffer locked for blocking */ 8355 return buf; 8356 } 8357 8358 static struct btrfs_block_rsv * 8359 use_block_rsv(struct btrfs_trans_handle *trans, 8360 struct btrfs_root *root, u32 blocksize) 8361 { 8362 struct btrfs_fs_info *fs_info = root->fs_info; 8363 struct btrfs_block_rsv *block_rsv; 8364 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8365 int ret; 8366 bool global_updated = false; 8367 8368 block_rsv = get_block_rsv(trans, root); 8369 8370 if (unlikely(block_rsv->size == 0)) 8371 goto try_reserve; 8372 again: 8373 ret = block_rsv_use_bytes(block_rsv, blocksize); 8374 if (!ret) 8375 return block_rsv; 8376 8377 if (block_rsv->failfast) 8378 return ERR_PTR(ret); 8379 8380 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8381 global_updated = true; 8382 update_global_block_rsv(fs_info); 8383 goto again; 8384 } 8385 8386 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8387 static DEFINE_RATELIMIT_STATE(_rs, 8388 DEFAULT_RATELIMIT_INTERVAL * 10, 8389 /*DEFAULT_RATELIMIT_BURST*/ 1); 8390 if (__ratelimit(&_rs)) 8391 WARN(1, KERN_DEBUG 8392 "BTRFS: block rsv returned %d\n", ret); 8393 } 8394 try_reserve: 8395 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8396 BTRFS_RESERVE_NO_FLUSH); 8397 if (!ret) 8398 return block_rsv; 8399 /* 8400 * If we couldn't reserve metadata bytes try and use some from 8401 * the global reserve if its space type is the same as the global 8402 * reservation. 8403 */ 8404 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8405 block_rsv->space_info == global_rsv->space_info) { 8406 ret = block_rsv_use_bytes(global_rsv, blocksize); 8407 if (!ret) 8408 return global_rsv; 8409 } 8410 return ERR_PTR(ret); 8411 } 8412 8413 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8414 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8415 { 8416 block_rsv_add_bytes(block_rsv, blocksize, 0); 8417 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8418 } 8419 8420 /* 8421 * finds a free extent and does all the dirty work required for allocation 8422 * returns the tree buffer or an ERR_PTR on error. 8423 */ 8424 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8425 struct btrfs_root *root, 8426 u64 parent, u64 root_objectid, 8427 const struct btrfs_disk_key *key, 8428 int level, u64 hint, 8429 u64 empty_size) 8430 { 8431 struct btrfs_fs_info *fs_info = root->fs_info; 8432 struct btrfs_key ins; 8433 struct btrfs_block_rsv *block_rsv; 8434 struct extent_buffer *buf; 8435 struct btrfs_delayed_extent_op *extent_op; 8436 u64 flags = 0; 8437 int ret; 8438 u32 blocksize = fs_info->nodesize; 8439 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8440 8441 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8442 if (btrfs_is_testing(fs_info)) { 8443 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8444 level); 8445 if (!IS_ERR(buf)) 8446 root->alloc_bytenr += blocksize; 8447 return buf; 8448 } 8449 #endif 8450 8451 block_rsv = use_block_rsv(trans, root, blocksize); 8452 if (IS_ERR(block_rsv)) 8453 return ERR_CAST(block_rsv); 8454 8455 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8456 empty_size, hint, &ins, 0, 0); 8457 if (ret) 8458 goto out_unuse; 8459 8460 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8461 if (IS_ERR(buf)) { 8462 ret = PTR_ERR(buf); 8463 goto out_free_reserved; 8464 } 8465 8466 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8467 if (parent == 0) 8468 parent = ins.objectid; 8469 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8470 } else 8471 BUG_ON(parent > 0); 8472 8473 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8474 extent_op = btrfs_alloc_delayed_extent_op(); 8475 if (!extent_op) { 8476 ret = -ENOMEM; 8477 goto out_free_buf; 8478 } 8479 if (key) 8480 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8481 else 8482 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8483 extent_op->flags_to_set = flags; 8484 extent_op->update_key = skinny_metadata ? false : true; 8485 extent_op->update_flags = true; 8486 extent_op->is_data = false; 8487 extent_op->level = level; 8488 8489 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8490 root_objectid, level, 0, 8491 BTRFS_ADD_DELAYED_EXTENT); 8492 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8493 ins.offset, parent, 8494 root_objectid, level, 8495 BTRFS_ADD_DELAYED_EXTENT, 8496 extent_op, NULL, NULL); 8497 if (ret) 8498 goto out_free_delayed; 8499 } 8500 return buf; 8501 8502 out_free_delayed: 8503 btrfs_free_delayed_extent_op(extent_op); 8504 out_free_buf: 8505 free_extent_buffer(buf); 8506 out_free_reserved: 8507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8508 out_unuse: 8509 unuse_block_rsv(fs_info, block_rsv, blocksize); 8510 return ERR_PTR(ret); 8511 } 8512 8513 struct walk_control { 8514 u64 refs[BTRFS_MAX_LEVEL]; 8515 u64 flags[BTRFS_MAX_LEVEL]; 8516 struct btrfs_key update_progress; 8517 int stage; 8518 int level; 8519 int shared_level; 8520 int update_ref; 8521 int keep_locks; 8522 int reada_slot; 8523 int reada_count; 8524 int for_reloc; 8525 }; 8526 8527 #define DROP_REFERENCE 1 8528 #define UPDATE_BACKREF 2 8529 8530 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8531 struct btrfs_root *root, 8532 struct walk_control *wc, 8533 struct btrfs_path *path) 8534 { 8535 struct btrfs_fs_info *fs_info = root->fs_info; 8536 u64 bytenr; 8537 u64 generation; 8538 u64 refs; 8539 u64 flags; 8540 u32 nritems; 8541 struct btrfs_key key; 8542 struct extent_buffer *eb; 8543 int ret; 8544 int slot; 8545 int nread = 0; 8546 8547 if (path->slots[wc->level] < wc->reada_slot) { 8548 wc->reada_count = wc->reada_count * 2 / 3; 8549 wc->reada_count = max(wc->reada_count, 2); 8550 } else { 8551 wc->reada_count = wc->reada_count * 3 / 2; 8552 wc->reada_count = min_t(int, wc->reada_count, 8553 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8554 } 8555 8556 eb = path->nodes[wc->level]; 8557 nritems = btrfs_header_nritems(eb); 8558 8559 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8560 if (nread >= wc->reada_count) 8561 break; 8562 8563 cond_resched(); 8564 bytenr = btrfs_node_blockptr(eb, slot); 8565 generation = btrfs_node_ptr_generation(eb, slot); 8566 8567 if (slot == path->slots[wc->level]) 8568 goto reada; 8569 8570 if (wc->stage == UPDATE_BACKREF && 8571 generation <= root->root_key.offset) 8572 continue; 8573 8574 /* We don't lock the tree block, it's OK to be racy here */ 8575 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8576 wc->level - 1, 1, &refs, 8577 &flags); 8578 /* We don't care about errors in readahead. */ 8579 if (ret < 0) 8580 continue; 8581 BUG_ON(refs == 0); 8582 8583 if (wc->stage == DROP_REFERENCE) { 8584 if (refs == 1) 8585 goto reada; 8586 8587 if (wc->level == 1 && 8588 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8589 continue; 8590 if (!wc->update_ref || 8591 generation <= root->root_key.offset) 8592 continue; 8593 btrfs_node_key_to_cpu(eb, &key, slot); 8594 ret = btrfs_comp_cpu_keys(&key, 8595 &wc->update_progress); 8596 if (ret < 0) 8597 continue; 8598 } else { 8599 if (wc->level == 1 && 8600 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8601 continue; 8602 } 8603 reada: 8604 readahead_tree_block(fs_info, bytenr); 8605 nread++; 8606 } 8607 wc->reada_slot = slot; 8608 } 8609 8610 /* 8611 * helper to process tree block while walking down the tree. 8612 * 8613 * when wc->stage == UPDATE_BACKREF, this function updates 8614 * back refs for pointers in the block. 8615 * 8616 * NOTE: return value 1 means we should stop walking down. 8617 */ 8618 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8619 struct btrfs_root *root, 8620 struct btrfs_path *path, 8621 struct walk_control *wc, int lookup_info) 8622 { 8623 struct btrfs_fs_info *fs_info = root->fs_info; 8624 int level = wc->level; 8625 struct extent_buffer *eb = path->nodes[level]; 8626 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8627 int ret; 8628 8629 if (wc->stage == UPDATE_BACKREF && 8630 btrfs_header_owner(eb) != root->root_key.objectid) 8631 return 1; 8632 8633 /* 8634 * when reference count of tree block is 1, it won't increase 8635 * again. once full backref flag is set, we never clear it. 8636 */ 8637 if (lookup_info && 8638 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8639 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8640 BUG_ON(!path->locks[level]); 8641 ret = btrfs_lookup_extent_info(trans, fs_info, 8642 eb->start, level, 1, 8643 &wc->refs[level], 8644 &wc->flags[level]); 8645 BUG_ON(ret == -ENOMEM); 8646 if (ret) 8647 return ret; 8648 BUG_ON(wc->refs[level] == 0); 8649 } 8650 8651 if (wc->stage == DROP_REFERENCE) { 8652 if (wc->refs[level] > 1) 8653 return 1; 8654 8655 if (path->locks[level] && !wc->keep_locks) { 8656 btrfs_tree_unlock_rw(eb, path->locks[level]); 8657 path->locks[level] = 0; 8658 } 8659 return 0; 8660 } 8661 8662 /* wc->stage == UPDATE_BACKREF */ 8663 if (!(wc->flags[level] & flag)) { 8664 BUG_ON(!path->locks[level]); 8665 ret = btrfs_inc_ref(trans, root, eb, 1); 8666 BUG_ON(ret); /* -ENOMEM */ 8667 ret = btrfs_dec_ref(trans, root, eb, 0); 8668 BUG_ON(ret); /* -ENOMEM */ 8669 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8670 eb->len, flag, 8671 btrfs_header_level(eb), 0); 8672 BUG_ON(ret); /* -ENOMEM */ 8673 wc->flags[level] |= flag; 8674 } 8675 8676 /* 8677 * the block is shared by multiple trees, so it's not good to 8678 * keep the tree lock 8679 */ 8680 if (path->locks[level] && level > 0) { 8681 btrfs_tree_unlock_rw(eb, path->locks[level]); 8682 path->locks[level] = 0; 8683 } 8684 return 0; 8685 } 8686 8687 /* 8688 * helper to process tree block pointer. 8689 * 8690 * when wc->stage == DROP_REFERENCE, this function checks 8691 * reference count of the block pointed to. if the block 8692 * is shared and we need update back refs for the subtree 8693 * rooted at the block, this function changes wc->stage to 8694 * UPDATE_BACKREF. if the block is shared and there is no 8695 * need to update back, this function drops the reference 8696 * to the block. 8697 * 8698 * NOTE: return value 1 means we should stop walking down. 8699 */ 8700 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8701 struct btrfs_root *root, 8702 struct btrfs_path *path, 8703 struct walk_control *wc, int *lookup_info) 8704 { 8705 struct btrfs_fs_info *fs_info = root->fs_info; 8706 u64 bytenr; 8707 u64 generation; 8708 u64 parent; 8709 u32 blocksize; 8710 struct btrfs_key key; 8711 struct btrfs_key first_key; 8712 struct extent_buffer *next; 8713 int level = wc->level; 8714 int reada = 0; 8715 int ret = 0; 8716 bool need_account = false; 8717 8718 generation = btrfs_node_ptr_generation(path->nodes[level], 8719 path->slots[level]); 8720 /* 8721 * if the lower level block was created before the snapshot 8722 * was created, we know there is no need to update back refs 8723 * for the subtree 8724 */ 8725 if (wc->stage == UPDATE_BACKREF && 8726 generation <= root->root_key.offset) { 8727 *lookup_info = 1; 8728 return 1; 8729 } 8730 8731 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8732 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8733 path->slots[level]); 8734 blocksize = fs_info->nodesize; 8735 8736 next = find_extent_buffer(fs_info, bytenr); 8737 if (!next) { 8738 next = btrfs_find_create_tree_block(fs_info, bytenr); 8739 if (IS_ERR(next)) 8740 return PTR_ERR(next); 8741 8742 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8743 level - 1); 8744 reada = 1; 8745 } 8746 btrfs_tree_lock(next); 8747 btrfs_set_lock_blocking(next); 8748 8749 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8750 &wc->refs[level - 1], 8751 &wc->flags[level - 1]); 8752 if (ret < 0) 8753 goto out_unlock; 8754 8755 if (unlikely(wc->refs[level - 1] == 0)) { 8756 btrfs_err(fs_info, "Missing references."); 8757 ret = -EIO; 8758 goto out_unlock; 8759 } 8760 *lookup_info = 0; 8761 8762 if (wc->stage == DROP_REFERENCE) { 8763 if (wc->refs[level - 1] > 1) { 8764 need_account = true; 8765 if (level == 1 && 8766 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8767 goto skip; 8768 8769 if (!wc->update_ref || 8770 generation <= root->root_key.offset) 8771 goto skip; 8772 8773 btrfs_node_key_to_cpu(path->nodes[level], &key, 8774 path->slots[level]); 8775 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8776 if (ret < 0) 8777 goto skip; 8778 8779 wc->stage = UPDATE_BACKREF; 8780 wc->shared_level = level - 1; 8781 } 8782 } else { 8783 if (level == 1 && 8784 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8785 goto skip; 8786 } 8787 8788 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8789 btrfs_tree_unlock(next); 8790 free_extent_buffer(next); 8791 next = NULL; 8792 *lookup_info = 1; 8793 } 8794 8795 if (!next) { 8796 if (reada && level == 1) 8797 reada_walk_down(trans, root, wc, path); 8798 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8799 &first_key); 8800 if (IS_ERR(next)) { 8801 return PTR_ERR(next); 8802 } else if (!extent_buffer_uptodate(next)) { 8803 free_extent_buffer(next); 8804 return -EIO; 8805 } 8806 btrfs_tree_lock(next); 8807 btrfs_set_lock_blocking(next); 8808 } 8809 8810 level--; 8811 ASSERT(level == btrfs_header_level(next)); 8812 if (level != btrfs_header_level(next)) { 8813 btrfs_err(root->fs_info, "mismatched level"); 8814 ret = -EIO; 8815 goto out_unlock; 8816 } 8817 path->nodes[level] = next; 8818 path->slots[level] = 0; 8819 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8820 wc->level = level; 8821 if (wc->level == 1) 8822 wc->reada_slot = 0; 8823 return 0; 8824 skip: 8825 wc->refs[level - 1] = 0; 8826 wc->flags[level - 1] = 0; 8827 if (wc->stage == DROP_REFERENCE) { 8828 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8829 parent = path->nodes[level]->start; 8830 } else { 8831 ASSERT(root->root_key.objectid == 8832 btrfs_header_owner(path->nodes[level])); 8833 if (root->root_key.objectid != 8834 btrfs_header_owner(path->nodes[level])) { 8835 btrfs_err(root->fs_info, 8836 "mismatched block owner"); 8837 ret = -EIO; 8838 goto out_unlock; 8839 } 8840 parent = 0; 8841 } 8842 8843 if (need_account) { 8844 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8845 generation, level - 1); 8846 if (ret) { 8847 btrfs_err_rl(fs_info, 8848 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8849 ret); 8850 } 8851 } 8852 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8853 parent, root->root_key.objectid, 8854 level - 1, 0); 8855 if (ret) 8856 goto out_unlock; 8857 } 8858 8859 *lookup_info = 1; 8860 ret = 1; 8861 8862 out_unlock: 8863 btrfs_tree_unlock(next); 8864 free_extent_buffer(next); 8865 8866 return ret; 8867 } 8868 8869 /* 8870 * helper to process tree block while walking up the tree. 8871 * 8872 * when wc->stage == DROP_REFERENCE, this function drops 8873 * reference count on the block. 8874 * 8875 * when wc->stage == UPDATE_BACKREF, this function changes 8876 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8877 * to UPDATE_BACKREF previously while processing the block. 8878 * 8879 * NOTE: return value 1 means we should stop walking up. 8880 */ 8881 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8882 struct btrfs_root *root, 8883 struct btrfs_path *path, 8884 struct walk_control *wc) 8885 { 8886 struct btrfs_fs_info *fs_info = root->fs_info; 8887 int ret; 8888 int level = wc->level; 8889 struct extent_buffer *eb = path->nodes[level]; 8890 u64 parent = 0; 8891 8892 if (wc->stage == UPDATE_BACKREF) { 8893 BUG_ON(wc->shared_level < level); 8894 if (level < wc->shared_level) 8895 goto out; 8896 8897 ret = find_next_key(path, level + 1, &wc->update_progress); 8898 if (ret > 0) 8899 wc->update_ref = 0; 8900 8901 wc->stage = DROP_REFERENCE; 8902 wc->shared_level = -1; 8903 path->slots[level] = 0; 8904 8905 /* 8906 * check reference count again if the block isn't locked. 8907 * we should start walking down the tree again if reference 8908 * count is one. 8909 */ 8910 if (!path->locks[level]) { 8911 BUG_ON(level == 0); 8912 btrfs_tree_lock(eb); 8913 btrfs_set_lock_blocking(eb); 8914 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8915 8916 ret = btrfs_lookup_extent_info(trans, fs_info, 8917 eb->start, level, 1, 8918 &wc->refs[level], 8919 &wc->flags[level]); 8920 if (ret < 0) { 8921 btrfs_tree_unlock_rw(eb, path->locks[level]); 8922 path->locks[level] = 0; 8923 return ret; 8924 } 8925 BUG_ON(wc->refs[level] == 0); 8926 if (wc->refs[level] == 1) { 8927 btrfs_tree_unlock_rw(eb, path->locks[level]); 8928 path->locks[level] = 0; 8929 return 1; 8930 } 8931 } 8932 } 8933 8934 /* wc->stage == DROP_REFERENCE */ 8935 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8936 8937 if (wc->refs[level] == 1) { 8938 if (level == 0) { 8939 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8940 ret = btrfs_dec_ref(trans, root, eb, 1); 8941 else 8942 ret = btrfs_dec_ref(trans, root, eb, 0); 8943 BUG_ON(ret); /* -ENOMEM */ 8944 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8945 if (ret) { 8946 btrfs_err_rl(fs_info, 8947 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8948 ret); 8949 } 8950 } 8951 /* make block locked assertion in clean_tree_block happy */ 8952 if (!path->locks[level] && 8953 btrfs_header_generation(eb) == trans->transid) { 8954 btrfs_tree_lock(eb); 8955 btrfs_set_lock_blocking(eb); 8956 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8957 } 8958 clean_tree_block(fs_info, eb); 8959 } 8960 8961 if (eb == root->node) { 8962 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8963 parent = eb->start; 8964 else 8965 BUG_ON(root->root_key.objectid != 8966 btrfs_header_owner(eb)); 8967 } else { 8968 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8969 parent = path->nodes[level + 1]->start; 8970 else 8971 BUG_ON(root->root_key.objectid != 8972 btrfs_header_owner(path->nodes[level + 1])); 8973 } 8974 8975 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8976 out: 8977 wc->refs[level] = 0; 8978 wc->flags[level] = 0; 8979 return 0; 8980 } 8981 8982 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8983 struct btrfs_root *root, 8984 struct btrfs_path *path, 8985 struct walk_control *wc) 8986 { 8987 int level = wc->level; 8988 int lookup_info = 1; 8989 int ret; 8990 8991 while (level >= 0) { 8992 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8993 if (ret > 0) 8994 break; 8995 8996 if (level == 0) 8997 break; 8998 8999 if (path->slots[level] >= 9000 btrfs_header_nritems(path->nodes[level])) 9001 break; 9002 9003 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9004 if (ret > 0) { 9005 path->slots[level]++; 9006 continue; 9007 } else if (ret < 0) 9008 return ret; 9009 level = wc->level; 9010 } 9011 return 0; 9012 } 9013 9014 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9015 struct btrfs_root *root, 9016 struct btrfs_path *path, 9017 struct walk_control *wc, int max_level) 9018 { 9019 int level = wc->level; 9020 int ret; 9021 9022 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9023 while (level < max_level && path->nodes[level]) { 9024 wc->level = level; 9025 if (path->slots[level] + 1 < 9026 btrfs_header_nritems(path->nodes[level])) { 9027 path->slots[level]++; 9028 return 0; 9029 } else { 9030 ret = walk_up_proc(trans, root, path, wc); 9031 if (ret > 0) 9032 return 0; 9033 9034 if (path->locks[level]) { 9035 btrfs_tree_unlock_rw(path->nodes[level], 9036 path->locks[level]); 9037 path->locks[level] = 0; 9038 } 9039 free_extent_buffer(path->nodes[level]); 9040 path->nodes[level] = NULL; 9041 level++; 9042 } 9043 } 9044 return 1; 9045 } 9046 9047 /* 9048 * drop a subvolume tree. 9049 * 9050 * this function traverses the tree freeing any blocks that only 9051 * referenced by the tree. 9052 * 9053 * when a shared tree block is found. this function decreases its 9054 * reference count by one. if update_ref is true, this function 9055 * also make sure backrefs for the shared block and all lower level 9056 * blocks are properly updated. 9057 * 9058 * If called with for_reloc == 0, may exit early with -EAGAIN 9059 */ 9060 int btrfs_drop_snapshot(struct btrfs_root *root, 9061 struct btrfs_block_rsv *block_rsv, int update_ref, 9062 int for_reloc) 9063 { 9064 struct btrfs_fs_info *fs_info = root->fs_info; 9065 struct btrfs_path *path; 9066 struct btrfs_trans_handle *trans; 9067 struct btrfs_root *tree_root = fs_info->tree_root; 9068 struct btrfs_root_item *root_item = &root->root_item; 9069 struct walk_control *wc; 9070 struct btrfs_key key; 9071 int err = 0; 9072 int ret; 9073 int level; 9074 bool root_dropped = false; 9075 9076 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9077 9078 path = btrfs_alloc_path(); 9079 if (!path) { 9080 err = -ENOMEM; 9081 goto out; 9082 } 9083 9084 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9085 if (!wc) { 9086 btrfs_free_path(path); 9087 err = -ENOMEM; 9088 goto out; 9089 } 9090 9091 trans = btrfs_start_transaction(tree_root, 0); 9092 if (IS_ERR(trans)) { 9093 err = PTR_ERR(trans); 9094 goto out_free; 9095 } 9096 9097 if (block_rsv) 9098 trans->block_rsv = block_rsv; 9099 9100 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9101 level = btrfs_header_level(root->node); 9102 path->nodes[level] = btrfs_lock_root_node(root); 9103 btrfs_set_lock_blocking(path->nodes[level]); 9104 path->slots[level] = 0; 9105 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9106 memset(&wc->update_progress, 0, 9107 sizeof(wc->update_progress)); 9108 } else { 9109 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9110 memcpy(&wc->update_progress, &key, 9111 sizeof(wc->update_progress)); 9112 9113 level = root_item->drop_level; 9114 BUG_ON(level == 0); 9115 path->lowest_level = level; 9116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9117 path->lowest_level = 0; 9118 if (ret < 0) { 9119 err = ret; 9120 goto out_end_trans; 9121 } 9122 WARN_ON(ret > 0); 9123 9124 /* 9125 * unlock our path, this is safe because only this 9126 * function is allowed to delete this snapshot 9127 */ 9128 btrfs_unlock_up_safe(path, 0); 9129 9130 level = btrfs_header_level(root->node); 9131 while (1) { 9132 btrfs_tree_lock(path->nodes[level]); 9133 btrfs_set_lock_blocking(path->nodes[level]); 9134 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9135 9136 ret = btrfs_lookup_extent_info(trans, fs_info, 9137 path->nodes[level]->start, 9138 level, 1, &wc->refs[level], 9139 &wc->flags[level]); 9140 if (ret < 0) { 9141 err = ret; 9142 goto out_end_trans; 9143 } 9144 BUG_ON(wc->refs[level] == 0); 9145 9146 if (level == root_item->drop_level) 9147 break; 9148 9149 btrfs_tree_unlock(path->nodes[level]); 9150 path->locks[level] = 0; 9151 WARN_ON(wc->refs[level] != 1); 9152 level--; 9153 } 9154 } 9155 9156 wc->level = level; 9157 wc->shared_level = -1; 9158 wc->stage = DROP_REFERENCE; 9159 wc->update_ref = update_ref; 9160 wc->keep_locks = 0; 9161 wc->for_reloc = for_reloc; 9162 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9163 9164 while (1) { 9165 9166 ret = walk_down_tree(trans, root, path, wc); 9167 if (ret < 0) { 9168 err = ret; 9169 break; 9170 } 9171 9172 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9173 if (ret < 0) { 9174 err = ret; 9175 break; 9176 } 9177 9178 if (ret > 0) { 9179 BUG_ON(wc->stage != DROP_REFERENCE); 9180 break; 9181 } 9182 9183 if (wc->stage == DROP_REFERENCE) { 9184 level = wc->level; 9185 btrfs_node_key(path->nodes[level], 9186 &root_item->drop_progress, 9187 path->slots[level]); 9188 root_item->drop_level = level; 9189 } 9190 9191 BUG_ON(wc->level == 0); 9192 if (btrfs_should_end_transaction(trans) || 9193 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9194 ret = btrfs_update_root(trans, tree_root, 9195 &root->root_key, 9196 root_item); 9197 if (ret) { 9198 btrfs_abort_transaction(trans, ret); 9199 err = ret; 9200 goto out_end_trans; 9201 } 9202 9203 btrfs_end_transaction_throttle(trans); 9204 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9205 btrfs_debug(fs_info, 9206 "drop snapshot early exit"); 9207 err = -EAGAIN; 9208 goto out_free; 9209 } 9210 9211 trans = btrfs_start_transaction(tree_root, 0); 9212 if (IS_ERR(trans)) { 9213 err = PTR_ERR(trans); 9214 goto out_free; 9215 } 9216 if (block_rsv) 9217 trans->block_rsv = block_rsv; 9218 } 9219 } 9220 btrfs_release_path(path); 9221 if (err) 9222 goto out_end_trans; 9223 9224 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9225 if (ret) { 9226 btrfs_abort_transaction(trans, ret); 9227 err = ret; 9228 goto out_end_trans; 9229 } 9230 9231 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9232 ret = btrfs_find_root(tree_root, &root->root_key, path, 9233 NULL, NULL); 9234 if (ret < 0) { 9235 btrfs_abort_transaction(trans, ret); 9236 err = ret; 9237 goto out_end_trans; 9238 } else if (ret > 0) { 9239 /* if we fail to delete the orphan item this time 9240 * around, it'll get picked up the next time. 9241 * 9242 * The most common failure here is just -ENOENT. 9243 */ 9244 btrfs_del_orphan_item(trans, tree_root, 9245 root->root_key.objectid); 9246 } 9247 } 9248 9249 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9250 btrfs_add_dropped_root(trans, root); 9251 } else { 9252 free_extent_buffer(root->node); 9253 free_extent_buffer(root->commit_root); 9254 btrfs_put_fs_root(root); 9255 } 9256 root_dropped = true; 9257 out_end_trans: 9258 btrfs_end_transaction_throttle(trans); 9259 out_free: 9260 kfree(wc); 9261 btrfs_free_path(path); 9262 out: 9263 /* 9264 * So if we need to stop dropping the snapshot for whatever reason we 9265 * need to make sure to add it back to the dead root list so that we 9266 * keep trying to do the work later. This also cleans up roots if we 9267 * don't have it in the radix (like when we recover after a power fail 9268 * or unmount) so we don't leak memory. 9269 */ 9270 if (!for_reloc && !root_dropped) 9271 btrfs_add_dead_root(root); 9272 if (err && err != -EAGAIN) 9273 btrfs_handle_fs_error(fs_info, err, NULL); 9274 return err; 9275 } 9276 9277 /* 9278 * drop subtree rooted at tree block 'node'. 9279 * 9280 * NOTE: this function will unlock and release tree block 'node' 9281 * only used by relocation code 9282 */ 9283 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9284 struct btrfs_root *root, 9285 struct extent_buffer *node, 9286 struct extent_buffer *parent) 9287 { 9288 struct btrfs_fs_info *fs_info = root->fs_info; 9289 struct btrfs_path *path; 9290 struct walk_control *wc; 9291 int level; 9292 int parent_level; 9293 int ret = 0; 9294 int wret; 9295 9296 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9297 9298 path = btrfs_alloc_path(); 9299 if (!path) 9300 return -ENOMEM; 9301 9302 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9303 if (!wc) { 9304 btrfs_free_path(path); 9305 return -ENOMEM; 9306 } 9307 9308 btrfs_assert_tree_locked(parent); 9309 parent_level = btrfs_header_level(parent); 9310 extent_buffer_get(parent); 9311 path->nodes[parent_level] = parent; 9312 path->slots[parent_level] = btrfs_header_nritems(parent); 9313 9314 btrfs_assert_tree_locked(node); 9315 level = btrfs_header_level(node); 9316 path->nodes[level] = node; 9317 path->slots[level] = 0; 9318 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9319 9320 wc->refs[parent_level] = 1; 9321 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9322 wc->level = level; 9323 wc->shared_level = -1; 9324 wc->stage = DROP_REFERENCE; 9325 wc->update_ref = 0; 9326 wc->keep_locks = 1; 9327 wc->for_reloc = 1; 9328 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9329 9330 while (1) { 9331 wret = walk_down_tree(trans, root, path, wc); 9332 if (wret < 0) { 9333 ret = wret; 9334 break; 9335 } 9336 9337 wret = walk_up_tree(trans, root, path, wc, parent_level); 9338 if (wret < 0) 9339 ret = wret; 9340 if (wret != 0) 9341 break; 9342 } 9343 9344 kfree(wc); 9345 btrfs_free_path(path); 9346 return ret; 9347 } 9348 9349 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9350 { 9351 u64 num_devices; 9352 u64 stripped; 9353 9354 /* 9355 * if restripe for this chunk_type is on pick target profile and 9356 * return, otherwise do the usual balance 9357 */ 9358 stripped = get_restripe_target(fs_info, flags); 9359 if (stripped) 9360 return extended_to_chunk(stripped); 9361 9362 num_devices = fs_info->fs_devices->rw_devices; 9363 9364 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9365 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9366 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9367 9368 if (num_devices == 1) { 9369 stripped |= BTRFS_BLOCK_GROUP_DUP; 9370 stripped = flags & ~stripped; 9371 9372 /* turn raid0 into single device chunks */ 9373 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9374 return stripped; 9375 9376 /* turn mirroring into duplication */ 9377 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9378 BTRFS_BLOCK_GROUP_RAID10)) 9379 return stripped | BTRFS_BLOCK_GROUP_DUP; 9380 } else { 9381 /* they already had raid on here, just return */ 9382 if (flags & stripped) 9383 return flags; 9384 9385 stripped |= BTRFS_BLOCK_GROUP_DUP; 9386 stripped = flags & ~stripped; 9387 9388 /* switch duplicated blocks with raid1 */ 9389 if (flags & BTRFS_BLOCK_GROUP_DUP) 9390 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9391 9392 /* this is drive concat, leave it alone */ 9393 } 9394 9395 return flags; 9396 } 9397 9398 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9399 { 9400 struct btrfs_space_info *sinfo = cache->space_info; 9401 u64 num_bytes; 9402 u64 min_allocable_bytes; 9403 int ret = -ENOSPC; 9404 9405 /* 9406 * We need some metadata space and system metadata space for 9407 * allocating chunks in some corner cases until we force to set 9408 * it to be readonly. 9409 */ 9410 if ((sinfo->flags & 9411 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9412 !force) 9413 min_allocable_bytes = SZ_1M; 9414 else 9415 min_allocable_bytes = 0; 9416 9417 spin_lock(&sinfo->lock); 9418 spin_lock(&cache->lock); 9419 9420 if (cache->ro) { 9421 cache->ro++; 9422 ret = 0; 9423 goto out; 9424 } 9425 9426 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9427 cache->bytes_super - btrfs_block_group_used(&cache->item); 9428 9429 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9430 min_allocable_bytes <= sinfo->total_bytes) { 9431 sinfo->bytes_readonly += num_bytes; 9432 cache->ro++; 9433 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9434 ret = 0; 9435 } 9436 out: 9437 spin_unlock(&cache->lock); 9438 spin_unlock(&sinfo->lock); 9439 return ret; 9440 } 9441 9442 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9443 struct btrfs_block_group_cache *cache) 9444 9445 { 9446 struct btrfs_trans_handle *trans; 9447 u64 alloc_flags; 9448 int ret; 9449 9450 again: 9451 trans = btrfs_join_transaction(fs_info->extent_root); 9452 if (IS_ERR(trans)) 9453 return PTR_ERR(trans); 9454 9455 /* 9456 * we're not allowed to set block groups readonly after the dirty 9457 * block groups cache has started writing. If it already started, 9458 * back off and let this transaction commit 9459 */ 9460 mutex_lock(&fs_info->ro_block_group_mutex); 9461 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9462 u64 transid = trans->transid; 9463 9464 mutex_unlock(&fs_info->ro_block_group_mutex); 9465 btrfs_end_transaction(trans); 9466 9467 ret = btrfs_wait_for_commit(fs_info, transid); 9468 if (ret) 9469 return ret; 9470 goto again; 9471 } 9472 9473 /* 9474 * if we are changing raid levels, try to allocate a corresponding 9475 * block group with the new raid level. 9476 */ 9477 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9478 if (alloc_flags != cache->flags) { 9479 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9480 CHUNK_ALLOC_FORCE); 9481 /* 9482 * ENOSPC is allowed here, we may have enough space 9483 * already allocated at the new raid level to 9484 * carry on 9485 */ 9486 if (ret == -ENOSPC) 9487 ret = 0; 9488 if (ret < 0) 9489 goto out; 9490 } 9491 9492 ret = inc_block_group_ro(cache, 0); 9493 if (!ret) 9494 goto out; 9495 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9496 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9497 CHUNK_ALLOC_FORCE); 9498 if (ret < 0) 9499 goto out; 9500 ret = inc_block_group_ro(cache, 0); 9501 out: 9502 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9503 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9504 mutex_lock(&fs_info->chunk_mutex); 9505 check_system_chunk(trans, fs_info, alloc_flags); 9506 mutex_unlock(&fs_info->chunk_mutex); 9507 } 9508 mutex_unlock(&fs_info->ro_block_group_mutex); 9509 9510 btrfs_end_transaction(trans); 9511 return ret; 9512 } 9513 9514 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9515 struct btrfs_fs_info *fs_info, u64 type) 9516 { 9517 u64 alloc_flags = get_alloc_profile(fs_info, type); 9518 9519 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9520 } 9521 9522 /* 9523 * helper to account the unused space of all the readonly block group in the 9524 * space_info. takes mirrors into account. 9525 */ 9526 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9527 { 9528 struct btrfs_block_group_cache *block_group; 9529 u64 free_bytes = 0; 9530 int factor; 9531 9532 /* It's df, we don't care if it's racy */ 9533 if (list_empty(&sinfo->ro_bgs)) 9534 return 0; 9535 9536 spin_lock(&sinfo->lock); 9537 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9538 spin_lock(&block_group->lock); 9539 9540 if (!block_group->ro) { 9541 spin_unlock(&block_group->lock); 9542 continue; 9543 } 9544 9545 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9546 BTRFS_BLOCK_GROUP_RAID10 | 9547 BTRFS_BLOCK_GROUP_DUP)) 9548 factor = 2; 9549 else 9550 factor = 1; 9551 9552 free_bytes += (block_group->key.offset - 9553 btrfs_block_group_used(&block_group->item)) * 9554 factor; 9555 9556 spin_unlock(&block_group->lock); 9557 } 9558 spin_unlock(&sinfo->lock); 9559 9560 return free_bytes; 9561 } 9562 9563 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9564 { 9565 struct btrfs_space_info *sinfo = cache->space_info; 9566 u64 num_bytes; 9567 9568 BUG_ON(!cache->ro); 9569 9570 spin_lock(&sinfo->lock); 9571 spin_lock(&cache->lock); 9572 if (!--cache->ro) { 9573 num_bytes = cache->key.offset - cache->reserved - 9574 cache->pinned - cache->bytes_super - 9575 btrfs_block_group_used(&cache->item); 9576 sinfo->bytes_readonly -= num_bytes; 9577 list_del_init(&cache->ro_list); 9578 } 9579 spin_unlock(&cache->lock); 9580 spin_unlock(&sinfo->lock); 9581 } 9582 9583 /* 9584 * checks to see if its even possible to relocate this block group. 9585 * 9586 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9587 * ok to go ahead and try. 9588 */ 9589 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9590 { 9591 struct btrfs_root *root = fs_info->extent_root; 9592 struct btrfs_block_group_cache *block_group; 9593 struct btrfs_space_info *space_info; 9594 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9595 struct btrfs_device *device; 9596 struct btrfs_trans_handle *trans; 9597 u64 min_free; 9598 u64 dev_min = 1; 9599 u64 dev_nr = 0; 9600 u64 target; 9601 int debug; 9602 int index; 9603 int full = 0; 9604 int ret = 0; 9605 9606 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9607 9608 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9609 9610 /* odd, couldn't find the block group, leave it alone */ 9611 if (!block_group) { 9612 if (debug) 9613 btrfs_warn(fs_info, 9614 "can't find block group for bytenr %llu", 9615 bytenr); 9616 return -1; 9617 } 9618 9619 min_free = btrfs_block_group_used(&block_group->item); 9620 9621 /* no bytes used, we're good */ 9622 if (!min_free) 9623 goto out; 9624 9625 space_info = block_group->space_info; 9626 spin_lock(&space_info->lock); 9627 9628 full = space_info->full; 9629 9630 /* 9631 * if this is the last block group we have in this space, we can't 9632 * relocate it unless we're able to allocate a new chunk below. 9633 * 9634 * Otherwise, we need to make sure we have room in the space to handle 9635 * all of the extents from this block group. If we can, we're good 9636 */ 9637 if ((space_info->total_bytes != block_group->key.offset) && 9638 (btrfs_space_info_used(space_info, false) + min_free < 9639 space_info->total_bytes)) { 9640 spin_unlock(&space_info->lock); 9641 goto out; 9642 } 9643 spin_unlock(&space_info->lock); 9644 9645 /* 9646 * ok we don't have enough space, but maybe we have free space on our 9647 * devices to allocate new chunks for relocation, so loop through our 9648 * alloc devices and guess if we have enough space. if this block 9649 * group is going to be restriped, run checks against the target 9650 * profile instead of the current one. 9651 */ 9652 ret = -1; 9653 9654 /* 9655 * index: 9656 * 0: raid10 9657 * 1: raid1 9658 * 2: dup 9659 * 3: raid0 9660 * 4: single 9661 */ 9662 target = get_restripe_target(fs_info, block_group->flags); 9663 if (target) { 9664 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9665 } else { 9666 /* 9667 * this is just a balance, so if we were marked as full 9668 * we know there is no space for a new chunk 9669 */ 9670 if (full) { 9671 if (debug) 9672 btrfs_warn(fs_info, 9673 "no space to alloc new chunk for block group %llu", 9674 block_group->key.objectid); 9675 goto out; 9676 } 9677 9678 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9679 } 9680 9681 if (index == BTRFS_RAID_RAID10) { 9682 dev_min = 4; 9683 /* Divide by 2 */ 9684 min_free >>= 1; 9685 } else if (index == BTRFS_RAID_RAID1) { 9686 dev_min = 2; 9687 } else if (index == BTRFS_RAID_DUP) { 9688 /* Multiply by 2 */ 9689 min_free <<= 1; 9690 } else if (index == BTRFS_RAID_RAID0) { 9691 dev_min = fs_devices->rw_devices; 9692 min_free = div64_u64(min_free, dev_min); 9693 } 9694 9695 /* We need to do this so that we can look at pending chunks */ 9696 trans = btrfs_join_transaction(root); 9697 if (IS_ERR(trans)) { 9698 ret = PTR_ERR(trans); 9699 goto out; 9700 } 9701 9702 mutex_lock(&fs_info->chunk_mutex); 9703 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9704 u64 dev_offset; 9705 9706 /* 9707 * check to make sure we can actually find a chunk with enough 9708 * space to fit our block group in. 9709 */ 9710 if (device->total_bytes > device->bytes_used + min_free && 9711 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9712 ret = find_free_dev_extent(trans, device, min_free, 9713 &dev_offset, NULL); 9714 if (!ret) 9715 dev_nr++; 9716 9717 if (dev_nr >= dev_min) 9718 break; 9719 9720 ret = -1; 9721 } 9722 } 9723 if (debug && ret == -1) 9724 btrfs_warn(fs_info, 9725 "no space to allocate a new chunk for block group %llu", 9726 block_group->key.objectid); 9727 mutex_unlock(&fs_info->chunk_mutex); 9728 btrfs_end_transaction(trans); 9729 out: 9730 btrfs_put_block_group(block_group); 9731 return ret; 9732 } 9733 9734 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9735 struct btrfs_path *path, 9736 struct btrfs_key *key) 9737 { 9738 struct btrfs_root *root = fs_info->extent_root; 9739 int ret = 0; 9740 struct btrfs_key found_key; 9741 struct extent_buffer *leaf; 9742 int slot; 9743 9744 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9745 if (ret < 0) 9746 goto out; 9747 9748 while (1) { 9749 slot = path->slots[0]; 9750 leaf = path->nodes[0]; 9751 if (slot >= btrfs_header_nritems(leaf)) { 9752 ret = btrfs_next_leaf(root, path); 9753 if (ret == 0) 9754 continue; 9755 if (ret < 0) 9756 goto out; 9757 break; 9758 } 9759 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9760 9761 if (found_key.objectid >= key->objectid && 9762 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9763 struct extent_map_tree *em_tree; 9764 struct extent_map *em; 9765 9766 em_tree = &root->fs_info->mapping_tree.map_tree; 9767 read_lock(&em_tree->lock); 9768 em = lookup_extent_mapping(em_tree, found_key.objectid, 9769 found_key.offset); 9770 read_unlock(&em_tree->lock); 9771 if (!em) { 9772 btrfs_err(fs_info, 9773 "logical %llu len %llu found bg but no related chunk", 9774 found_key.objectid, found_key.offset); 9775 ret = -ENOENT; 9776 } else { 9777 ret = 0; 9778 } 9779 free_extent_map(em); 9780 goto out; 9781 } 9782 path->slots[0]++; 9783 } 9784 out: 9785 return ret; 9786 } 9787 9788 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9789 { 9790 struct btrfs_block_group_cache *block_group; 9791 u64 last = 0; 9792 9793 while (1) { 9794 struct inode *inode; 9795 9796 block_group = btrfs_lookup_first_block_group(info, last); 9797 while (block_group) { 9798 spin_lock(&block_group->lock); 9799 if (block_group->iref) 9800 break; 9801 spin_unlock(&block_group->lock); 9802 block_group = next_block_group(info, block_group); 9803 } 9804 if (!block_group) { 9805 if (last == 0) 9806 break; 9807 last = 0; 9808 continue; 9809 } 9810 9811 inode = block_group->inode; 9812 block_group->iref = 0; 9813 block_group->inode = NULL; 9814 spin_unlock(&block_group->lock); 9815 ASSERT(block_group->io_ctl.inode == NULL); 9816 iput(inode); 9817 last = block_group->key.objectid + block_group->key.offset; 9818 btrfs_put_block_group(block_group); 9819 } 9820 } 9821 9822 /* 9823 * Must be called only after stopping all workers, since we could have block 9824 * group caching kthreads running, and therefore they could race with us if we 9825 * freed the block groups before stopping them. 9826 */ 9827 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9828 { 9829 struct btrfs_block_group_cache *block_group; 9830 struct btrfs_space_info *space_info; 9831 struct btrfs_caching_control *caching_ctl; 9832 struct rb_node *n; 9833 9834 down_write(&info->commit_root_sem); 9835 while (!list_empty(&info->caching_block_groups)) { 9836 caching_ctl = list_entry(info->caching_block_groups.next, 9837 struct btrfs_caching_control, list); 9838 list_del(&caching_ctl->list); 9839 put_caching_control(caching_ctl); 9840 } 9841 up_write(&info->commit_root_sem); 9842 9843 spin_lock(&info->unused_bgs_lock); 9844 while (!list_empty(&info->unused_bgs)) { 9845 block_group = list_first_entry(&info->unused_bgs, 9846 struct btrfs_block_group_cache, 9847 bg_list); 9848 list_del_init(&block_group->bg_list); 9849 btrfs_put_block_group(block_group); 9850 } 9851 spin_unlock(&info->unused_bgs_lock); 9852 9853 spin_lock(&info->block_group_cache_lock); 9854 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9855 block_group = rb_entry(n, struct btrfs_block_group_cache, 9856 cache_node); 9857 rb_erase(&block_group->cache_node, 9858 &info->block_group_cache_tree); 9859 RB_CLEAR_NODE(&block_group->cache_node); 9860 spin_unlock(&info->block_group_cache_lock); 9861 9862 down_write(&block_group->space_info->groups_sem); 9863 list_del(&block_group->list); 9864 up_write(&block_group->space_info->groups_sem); 9865 9866 /* 9867 * We haven't cached this block group, which means we could 9868 * possibly have excluded extents on this block group. 9869 */ 9870 if (block_group->cached == BTRFS_CACHE_NO || 9871 block_group->cached == BTRFS_CACHE_ERROR) 9872 free_excluded_extents(info, block_group); 9873 9874 btrfs_remove_free_space_cache(block_group); 9875 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9876 ASSERT(list_empty(&block_group->dirty_list)); 9877 ASSERT(list_empty(&block_group->io_list)); 9878 ASSERT(list_empty(&block_group->bg_list)); 9879 ASSERT(atomic_read(&block_group->count) == 1); 9880 btrfs_put_block_group(block_group); 9881 9882 spin_lock(&info->block_group_cache_lock); 9883 } 9884 spin_unlock(&info->block_group_cache_lock); 9885 9886 /* now that all the block groups are freed, go through and 9887 * free all the space_info structs. This is only called during 9888 * the final stages of unmount, and so we know nobody is 9889 * using them. We call synchronize_rcu() once before we start, 9890 * just to be on the safe side. 9891 */ 9892 synchronize_rcu(); 9893 9894 release_global_block_rsv(info); 9895 9896 while (!list_empty(&info->space_info)) { 9897 int i; 9898 9899 space_info = list_entry(info->space_info.next, 9900 struct btrfs_space_info, 9901 list); 9902 9903 /* 9904 * Do not hide this behind enospc_debug, this is actually 9905 * important and indicates a real bug if this happens. 9906 */ 9907 if (WARN_ON(space_info->bytes_pinned > 0 || 9908 space_info->bytes_reserved > 0 || 9909 space_info->bytes_may_use > 0)) 9910 dump_space_info(info, space_info, 0, 0); 9911 list_del(&space_info->list); 9912 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9913 struct kobject *kobj; 9914 kobj = space_info->block_group_kobjs[i]; 9915 space_info->block_group_kobjs[i] = NULL; 9916 if (kobj) { 9917 kobject_del(kobj); 9918 kobject_put(kobj); 9919 } 9920 } 9921 kobject_del(&space_info->kobj); 9922 kobject_put(&space_info->kobj); 9923 } 9924 return 0; 9925 } 9926 9927 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9928 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9929 { 9930 struct btrfs_space_info *space_info; 9931 struct raid_kobject *rkobj; 9932 LIST_HEAD(list); 9933 int index; 9934 int ret = 0; 9935 9936 spin_lock(&fs_info->pending_raid_kobjs_lock); 9937 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9938 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9939 9940 list_for_each_entry(rkobj, &list, list) { 9941 space_info = __find_space_info(fs_info, rkobj->flags); 9942 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9943 9944 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9945 "%s", get_raid_name(index)); 9946 if (ret) { 9947 kobject_put(&rkobj->kobj); 9948 break; 9949 } 9950 } 9951 if (ret) 9952 btrfs_warn(fs_info, 9953 "failed to add kobject for block cache, ignoring"); 9954 } 9955 9956 static void link_block_group(struct btrfs_block_group_cache *cache) 9957 { 9958 struct btrfs_space_info *space_info = cache->space_info; 9959 struct btrfs_fs_info *fs_info = cache->fs_info; 9960 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9961 bool first = false; 9962 9963 down_write(&space_info->groups_sem); 9964 if (list_empty(&space_info->block_groups[index])) 9965 first = true; 9966 list_add_tail(&cache->list, &space_info->block_groups[index]); 9967 up_write(&space_info->groups_sem); 9968 9969 if (first) { 9970 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9971 if (!rkobj) { 9972 btrfs_warn(cache->fs_info, 9973 "couldn't alloc memory for raid level kobject"); 9974 return; 9975 } 9976 rkobj->flags = cache->flags; 9977 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9978 9979 spin_lock(&fs_info->pending_raid_kobjs_lock); 9980 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 9981 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9982 space_info->block_group_kobjs[index] = &rkobj->kobj; 9983 } 9984 } 9985 9986 static struct btrfs_block_group_cache * 9987 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9988 u64 start, u64 size) 9989 { 9990 struct btrfs_block_group_cache *cache; 9991 9992 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9993 if (!cache) 9994 return NULL; 9995 9996 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9997 GFP_NOFS); 9998 if (!cache->free_space_ctl) { 9999 kfree(cache); 10000 return NULL; 10001 } 10002 10003 cache->key.objectid = start; 10004 cache->key.offset = size; 10005 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10006 10007 cache->fs_info = fs_info; 10008 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 10009 set_free_space_tree_thresholds(cache); 10010 10011 atomic_set(&cache->count, 1); 10012 spin_lock_init(&cache->lock); 10013 init_rwsem(&cache->data_rwsem); 10014 INIT_LIST_HEAD(&cache->list); 10015 INIT_LIST_HEAD(&cache->cluster_list); 10016 INIT_LIST_HEAD(&cache->bg_list); 10017 INIT_LIST_HEAD(&cache->ro_list); 10018 INIT_LIST_HEAD(&cache->dirty_list); 10019 INIT_LIST_HEAD(&cache->io_list); 10020 btrfs_init_free_space_ctl(cache); 10021 atomic_set(&cache->trimming, 0); 10022 mutex_init(&cache->free_space_lock); 10023 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10024 10025 return cache; 10026 } 10027 10028 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10029 { 10030 struct btrfs_path *path; 10031 int ret; 10032 struct btrfs_block_group_cache *cache; 10033 struct btrfs_space_info *space_info; 10034 struct btrfs_key key; 10035 struct btrfs_key found_key; 10036 struct extent_buffer *leaf; 10037 int need_clear = 0; 10038 u64 cache_gen; 10039 u64 feature; 10040 int mixed; 10041 10042 feature = btrfs_super_incompat_flags(info->super_copy); 10043 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10044 10045 key.objectid = 0; 10046 key.offset = 0; 10047 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10048 path = btrfs_alloc_path(); 10049 if (!path) 10050 return -ENOMEM; 10051 path->reada = READA_FORWARD; 10052 10053 cache_gen = btrfs_super_cache_generation(info->super_copy); 10054 if (btrfs_test_opt(info, SPACE_CACHE) && 10055 btrfs_super_generation(info->super_copy) != cache_gen) 10056 need_clear = 1; 10057 if (btrfs_test_opt(info, CLEAR_CACHE)) 10058 need_clear = 1; 10059 10060 while (1) { 10061 ret = find_first_block_group(info, path, &key); 10062 if (ret > 0) 10063 break; 10064 if (ret != 0) 10065 goto error; 10066 10067 leaf = path->nodes[0]; 10068 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10069 10070 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10071 found_key.offset); 10072 if (!cache) { 10073 ret = -ENOMEM; 10074 goto error; 10075 } 10076 10077 if (need_clear) { 10078 /* 10079 * When we mount with old space cache, we need to 10080 * set BTRFS_DC_CLEAR and set dirty flag. 10081 * 10082 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10083 * truncate the old free space cache inode and 10084 * setup a new one. 10085 * b) Setting 'dirty flag' makes sure that we flush 10086 * the new space cache info onto disk. 10087 */ 10088 if (btrfs_test_opt(info, SPACE_CACHE)) 10089 cache->disk_cache_state = BTRFS_DC_CLEAR; 10090 } 10091 10092 read_extent_buffer(leaf, &cache->item, 10093 btrfs_item_ptr_offset(leaf, path->slots[0]), 10094 sizeof(cache->item)); 10095 cache->flags = btrfs_block_group_flags(&cache->item); 10096 if (!mixed && 10097 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10098 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10099 btrfs_err(info, 10100 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10101 cache->key.objectid); 10102 ret = -EINVAL; 10103 goto error; 10104 } 10105 10106 key.objectid = found_key.objectid + found_key.offset; 10107 btrfs_release_path(path); 10108 10109 /* 10110 * We need to exclude the super stripes now so that the space 10111 * info has super bytes accounted for, otherwise we'll think 10112 * we have more space than we actually do. 10113 */ 10114 ret = exclude_super_stripes(info, cache); 10115 if (ret) { 10116 /* 10117 * We may have excluded something, so call this just in 10118 * case. 10119 */ 10120 free_excluded_extents(info, cache); 10121 btrfs_put_block_group(cache); 10122 goto error; 10123 } 10124 10125 /* 10126 * check for two cases, either we are full, and therefore 10127 * don't need to bother with the caching work since we won't 10128 * find any space, or we are empty, and we can just add all 10129 * the space in and be done with it. This saves us _alot_ of 10130 * time, particularly in the full case. 10131 */ 10132 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10133 cache->last_byte_to_unpin = (u64)-1; 10134 cache->cached = BTRFS_CACHE_FINISHED; 10135 free_excluded_extents(info, cache); 10136 } else if (btrfs_block_group_used(&cache->item) == 0) { 10137 cache->last_byte_to_unpin = (u64)-1; 10138 cache->cached = BTRFS_CACHE_FINISHED; 10139 add_new_free_space(cache, info, 10140 found_key.objectid, 10141 found_key.objectid + 10142 found_key.offset); 10143 free_excluded_extents(info, cache); 10144 } 10145 10146 ret = btrfs_add_block_group_cache(info, cache); 10147 if (ret) { 10148 btrfs_remove_free_space_cache(cache); 10149 btrfs_put_block_group(cache); 10150 goto error; 10151 } 10152 10153 trace_btrfs_add_block_group(info, cache, 0); 10154 update_space_info(info, cache->flags, found_key.offset, 10155 btrfs_block_group_used(&cache->item), 10156 cache->bytes_super, &space_info); 10157 10158 cache->space_info = space_info; 10159 10160 link_block_group(cache); 10161 10162 set_avail_alloc_bits(info, cache->flags); 10163 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10164 inc_block_group_ro(cache, 1); 10165 } else if (btrfs_block_group_used(&cache->item) == 0) { 10166 spin_lock(&info->unused_bgs_lock); 10167 /* Should always be true but just in case. */ 10168 if (list_empty(&cache->bg_list)) { 10169 btrfs_get_block_group(cache); 10170 list_add_tail(&cache->bg_list, 10171 &info->unused_bgs); 10172 } 10173 spin_unlock(&info->unused_bgs_lock); 10174 } 10175 } 10176 10177 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10178 if (!(get_alloc_profile(info, space_info->flags) & 10179 (BTRFS_BLOCK_GROUP_RAID10 | 10180 BTRFS_BLOCK_GROUP_RAID1 | 10181 BTRFS_BLOCK_GROUP_RAID5 | 10182 BTRFS_BLOCK_GROUP_RAID6 | 10183 BTRFS_BLOCK_GROUP_DUP))) 10184 continue; 10185 /* 10186 * avoid allocating from un-mirrored block group if there are 10187 * mirrored block groups. 10188 */ 10189 list_for_each_entry(cache, 10190 &space_info->block_groups[BTRFS_RAID_RAID0], 10191 list) 10192 inc_block_group_ro(cache, 1); 10193 list_for_each_entry(cache, 10194 &space_info->block_groups[BTRFS_RAID_SINGLE], 10195 list) 10196 inc_block_group_ro(cache, 1); 10197 } 10198 10199 btrfs_add_raid_kobjects(info); 10200 init_global_block_rsv(info); 10201 ret = 0; 10202 error: 10203 btrfs_free_path(path); 10204 return ret; 10205 } 10206 10207 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10208 { 10209 struct btrfs_fs_info *fs_info = trans->fs_info; 10210 struct btrfs_block_group_cache *block_group, *tmp; 10211 struct btrfs_root *extent_root = fs_info->extent_root; 10212 struct btrfs_block_group_item item; 10213 struct btrfs_key key; 10214 int ret = 0; 10215 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10216 10217 trans->can_flush_pending_bgs = false; 10218 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10219 if (ret) 10220 goto next; 10221 10222 spin_lock(&block_group->lock); 10223 memcpy(&item, &block_group->item, sizeof(item)); 10224 memcpy(&key, &block_group->key, sizeof(key)); 10225 spin_unlock(&block_group->lock); 10226 10227 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10228 sizeof(item)); 10229 if (ret) 10230 btrfs_abort_transaction(trans, ret); 10231 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10232 key.offset); 10233 if (ret) 10234 btrfs_abort_transaction(trans, ret); 10235 add_block_group_free_space(trans, fs_info, block_group); 10236 /* already aborted the transaction if it failed. */ 10237 next: 10238 list_del_init(&block_group->bg_list); 10239 } 10240 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10241 } 10242 10243 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10244 struct btrfs_fs_info *fs_info, u64 bytes_used, 10245 u64 type, u64 chunk_offset, u64 size) 10246 { 10247 struct btrfs_block_group_cache *cache; 10248 int ret; 10249 10250 btrfs_set_log_full_commit(fs_info, trans); 10251 10252 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10253 if (!cache) 10254 return -ENOMEM; 10255 10256 btrfs_set_block_group_used(&cache->item, bytes_used); 10257 btrfs_set_block_group_chunk_objectid(&cache->item, 10258 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10259 btrfs_set_block_group_flags(&cache->item, type); 10260 10261 cache->flags = type; 10262 cache->last_byte_to_unpin = (u64)-1; 10263 cache->cached = BTRFS_CACHE_FINISHED; 10264 cache->needs_free_space = 1; 10265 ret = exclude_super_stripes(fs_info, cache); 10266 if (ret) { 10267 /* 10268 * We may have excluded something, so call this just in 10269 * case. 10270 */ 10271 free_excluded_extents(fs_info, cache); 10272 btrfs_put_block_group(cache); 10273 return ret; 10274 } 10275 10276 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10277 10278 free_excluded_extents(fs_info, cache); 10279 10280 #ifdef CONFIG_BTRFS_DEBUG 10281 if (btrfs_should_fragment_free_space(cache)) { 10282 u64 new_bytes_used = size - bytes_used; 10283 10284 bytes_used += new_bytes_used >> 1; 10285 fragment_free_space(cache); 10286 } 10287 #endif 10288 /* 10289 * Ensure the corresponding space_info object is created and 10290 * assigned to our block group. We want our bg to be added to the rbtree 10291 * with its ->space_info set. 10292 */ 10293 cache->space_info = __find_space_info(fs_info, cache->flags); 10294 ASSERT(cache->space_info); 10295 10296 ret = btrfs_add_block_group_cache(fs_info, cache); 10297 if (ret) { 10298 btrfs_remove_free_space_cache(cache); 10299 btrfs_put_block_group(cache); 10300 return ret; 10301 } 10302 10303 /* 10304 * Now that our block group has its ->space_info set and is inserted in 10305 * the rbtree, update the space info's counters. 10306 */ 10307 trace_btrfs_add_block_group(fs_info, cache, 1); 10308 update_space_info(fs_info, cache->flags, size, bytes_used, 10309 cache->bytes_super, &cache->space_info); 10310 update_global_block_rsv(fs_info); 10311 10312 link_block_group(cache); 10313 10314 list_add_tail(&cache->bg_list, &trans->new_bgs); 10315 10316 set_avail_alloc_bits(fs_info, type); 10317 return 0; 10318 } 10319 10320 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10321 { 10322 u64 extra_flags = chunk_to_extended(flags) & 10323 BTRFS_EXTENDED_PROFILE_MASK; 10324 10325 write_seqlock(&fs_info->profiles_lock); 10326 if (flags & BTRFS_BLOCK_GROUP_DATA) 10327 fs_info->avail_data_alloc_bits &= ~extra_flags; 10328 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10329 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10330 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10331 fs_info->avail_system_alloc_bits &= ~extra_flags; 10332 write_sequnlock(&fs_info->profiles_lock); 10333 } 10334 10335 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10336 struct btrfs_fs_info *fs_info, u64 group_start, 10337 struct extent_map *em) 10338 { 10339 struct btrfs_root *root = fs_info->extent_root; 10340 struct btrfs_path *path; 10341 struct btrfs_block_group_cache *block_group; 10342 struct btrfs_free_cluster *cluster; 10343 struct btrfs_root *tree_root = fs_info->tree_root; 10344 struct btrfs_key key; 10345 struct inode *inode; 10346 struct kobject *kobj = NULL; 10347 int ret; 10348 int index; 10349 int factor; 10350 struct btrfs_caching_control *caching_ctl = NULL; 10351 bool remove_em; 10352 10353 block_group = btrfs_lookup_block_group(fs_info, group_start); 10354 BUG_ON(!block_group); 10355 BUG_ON(!block_group->ro); 10356 10357 /* 10358 * Free the reserved super bytes from this block group before 10359 * remove it. 10360 */ 10361 free_excluded_extents(fs_info, block_group); 10362 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10363 block_group->key.offset); 10364 10365 memcpy(&key, &block_group->key, sizeof(key)); 10366 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10367 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10368 BTRFS_BLOCK_GROUP_RAID1 | 10369 BTRFS_BLOCK_GROUP_RAID10)) 10370 factor = 2; 10371 else 10372 factor = 1; 10373 10374 /* make sure this block group isn't part of an allocation cluster */ 10375 cluster = &fs_info->data_alloc_cluster; 10376 spin_lock(&cluster->refill_lock); 10377 btrfs_return_cluster_to_free_space(block_group, cluster); 10378 spin_unlock(&cluster->refill_lock); 10379 10380 /* 10381 * make sure this block group isn't part of a metadata 10382 * allocation cluster 10383 */ 10384 cluster = &fs_info->meta_alloc_cluster; 10385 spin_lock(&cluster->refill_lock); 10386 btrfs_return_cluster_to_free_space(block_group, cluster); 10387 spin_unlock(&cluster->refill_lock); 10388 10389 path = btrfs_alloc_path(); 10390 if (!path) { 10391 ret = -ENOMEM; 10392 goto out; 10393 } 10394 10395 /* 10396 * get the inode first so any iput calls done for the io_list 10397 * aren't the final iput (no unlinks allowed now) 10398 */ 10399 inode = lookup_free_space_inode(fs_info, block_group, path); 10400 10401 mutex_lock(&trans->transaction->cache_write_mutex); 10402 /* 10403 * make sure our free spache cache IO is done before remove the 10404 * free space inode 10405 */ 10406 spin_lock(&trans->transaction->dirty_bgs_lock); 10407 if (!list_empty(&block_group->io_list)) { 10408 list_del_init(&block_group->io_list); 10409 10410 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10411 10412 spin_unlock(&trans->transaction->dirty_bgs_lock); 10413 btrfs_wait_cache_io(trans, block_group, path); 10414 btrfs_put_block_group(block_group); 10415 spin_lock(&trans->transaction->dirty_bgs_lock); 10416 } 10417 10418 if (!list_empty(&block_group->dirty_list)) { 10419 list_del_init(&block_group->dirty_list); 10420 btrfs_put_block_group(block_group); 10421 } 10422 spin_unlock(&trans->transaction->dirty_bgs_lock); 10423 mutex_unlock(&trans->transaction->cache_write_mutex); 10424 10425 if (!IS_ERR(inode)) { 10426 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10427 if (ret) { 10428 btrfs_add_delayed_iput(inode); 10429 goto out; 10430 } 10431 clear_nlink(inode); 10432 /* One for the block groups ref */ 10433 spin_lock(&block_group->lock); 10434 if (block_group->iref) { 10435 block_group->iref = 0; 10436 block_group->inode = NULL; 10437 spin_unlock(&block_group->lock); 10438 iput(inode); 10439 } else { 10440 spin_unlock(&block_group->lock); 10441 } 10442 /* One for our lookup ref */ 10443 btrfs_add_delayed_iput(inode); 10444 } 10445 10446 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10447 key.offset = block_group->key.objectid; 10448 key.type = 0; 10449 10450 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10451 if (ret < 0) 10452 goto out; 10453 if (ret > 0) 10454 btrfs_release_path(path); 10455 if (ret == 0) { 10456 ret = btrfs_del_item(trans, tree_root, path); 10457 if (ret) 10458 goto out; 10459 btrfs_release_path(path); 10460 } 10461 10462 spin_lock(&fs_info->block_group_cache_lock); 10463 rb_erase(&block_group->cache_node, 10464 &fs_info->block_group_cache_tree); 10465 RB_CLEAR_NODE(&block_group->cache_node); 10466 10467 if (fs_info->first_logical_byte == block_group->key.objectid) 10468 fs_info->first_logical_byte = (u64)-1; 10469 spin_unlock(&fs_info->block_group_cache_lock); 10470 10471 down_write(&block_group->space_info->groups_sem); 10472 /* 10473 * we must use list_del_init so people can check to see if they 10474 * are still on the list after taking the semaphore 10475 */ 10476 list_del_init(&block_group->list); 10477 if (list_empty(&block_group->space_info->block_groups[index])) { 10478 kobj = block_group->space_info->block_group_kobjs[index]; 10479 block_group->space_info->block_group_kobjs[index] = NULL; 10480 clear_avail_alloc_bits(fs_info, block_group->flags); 10481 } 10482 up_write(&block_group->space_info->groups_sem); 10483 if (kobj) { 10484 kobject_del(kobj); 10485 kobject_put(kobj); 10486 } 10487 10488 if (block_group->has_caching_ctl) 10489 caching_ctl = get_caching_control(block_group); 10490 if (block_group->cached == BTRFS_CACHE_STARTED) 10491 wait_block_group_cache_done(block_group); 10492 if (block_group->has_caching_ctl) { 10493 down_write(&fs_info->commit_root_sem); 10494 if (!caching_ctl) { 10495 struct btrfs_caching_control *ctl; 10496 10497 list_for_each_entry(ctl, 10498 &fs_info->caching_block_groups, list) 10499 if (ctl->block_group == block_group) { 10500 caching_ctl = ctl; 10501 refcount_inc(&caching_ctl->count); 10502 break; 10503 } 10504 } 10505 if (caching_ctl) 10506 list_del_init(&caching_ctl->list); 10507 up_write(&fs_info->commit_root_sem); 10508 if (caching_ctl) { 10509 /* Once for the caching bgs list and once for us. */ 10510 put_caching_control(caching_ctl); 10511 put_caching_control(caching_ctl); 10512 } 10513 } 10514 10515 spin_lock(&trans->transaction->dirty_bgs_lock); 10516 if (!list_empty(&block_group->dirty_list)) { 10517 WARN_ON(1); 10518 } 10519 if (!list_empty(&block_group->io_list)) { 10520 WARN_ON(1); 10521 } 10522 spin_unlock(&trans->transaction->dirty_bgs_lock); 10523 btrfs_remove_free_space_cache(block_group); 10524 10525 spin_lock(&block_group->space_info->lock); 10526 list_del_init(&block_group->ro_list); 10527 10528 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10529 WARN_ON(block_group->space_info->total_bytes 10530 < block_group->key.offset); 10531 WARN_ON(block_group->space_info->bytes_readonly 10532 < block_group->key.offset); 10533 WARN_ON(block_group->space_info->disk_total 10534 < block_group->key.offset * factor); 10535 } 10536 block_group->space_info->total_bytes -= block_group->key.offset; 10537 block_group->space_info->bytes_readonly -= block_group->key.offset; 10538 block_group->space_info->disk_total -= block_group->key.offset * factor; 10539 10540 spin_unlock(&block_group->space_info->lock); 10541 10542 memcpy(&key, &block_group->key, sizeof(key)); 10543 10544 mutex_lock(&fs_info->chunk_mutex); 10545 if (!list_empty(&em->list)) { 10546 /* We're in the transaction->pending_chunks list. */ 10547 free_extent_map(em); 10548 } 10549 spin_lock(&block_group->lock); 10550 block_group->removed = 1; 10551 /* 10552 * At this point trimming can't start on this block group, because we 10553 * removed the block group from the tree fs_info->block_group_cache_tree 10554 * so no one can't find it anymore and even if someone already got this 10555 * block group before we removed it from the rbtree, they have already 10556 * incremented block_group->trimming - if they didn't, they won't find 10557 * any free space entries because we already removed them all when we 10558 * called btrfs_remove_free_space_cache(). 10559 * 10560 * And we must not remove the extent map from the fs_info->mapping_tree 10561 * to prevent the same logical address range and physical device space 10562 * ranges from being reused for a new block group. This is because our 10563 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10564 * completely transactionless, so while it is trimming a range the 10565 * currently running transaction might finish and a new one start, 10566 * allowing for new block groups to be created that can reuse the same 10567 * physical device locations unless we take this special care. 10568 * 10569 * There may also be an implicit trim operation if the file system 10570 * is mounted with -odiscard. The same protections must remain 10571 * in place until the extents have been discarded completely when 10572 * the transaction commit has completed. 10573 */ 10574 remove_em = (atomic_read(&block_group->trimming) == 0); 10575 /* 10576 * Make sure a trimmer task always sees the em in the pinned_chunks list 10577 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10578 * before checking block_group->removed). 10579 */ 10580 if (!remove_em) { 10581 /* 10582 * Our em might be in trans->transaction->pending_chunks which 10583 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10584 * and so is the fs_info->pinned_chunks list. 10585 * 10586 * So at this point we must be holding the chunk_mutex to avoid 10587 * any races with chunk allocation (more specifically at 10588 * volumes.c:contains_pending_extent()), to ensure it always 10589 * sees the em, either in the pending_chunks list or in the 10590 * pinned_chunks list. 10591 */ 10592 list_move_tail(&em->list, &fs_info->pinned_chunks); 10593 } 10594 spin_unlock(&block_group->lock); 10595 10596 if (remove_em) { 10597 struct extent_map_tree *em_tree; 10598 10599 em_tree = &fs_info->mapping_tree.map_tree; 10600 write_lock(&em_tree->lock); 10601 /* 10602 * The em might be in the pending_chunks list, so make sure the 10603 * chunk mutex is locked, since remove_extent_mapping() will 10604 * delete us from that list. 10605 */ 10606 remove_extent_mapping(em_tree, em); 10607 write_unlock(&em_tree->lock); 10608 /* once for the tree */ 10609 free_extent_map(em); 10610 } 10611 10612 mutex_unlock(&fs_info->chunk_mutex); 10613 10614 ret = remove_block_group_free_space(trans, fs_info, block_group); 10615 if (ret) 10616 goto out; 10617 10618 btrfs_put_block_group(block_group); 10619 btrfs_put_block_group(block_group); 10620 10621 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10622 if (ret > 0) 10623 ret = -EIO; 10624 if (ret < 0) 10625 goto out; 10626 10627 ret = btrfs_del_item(trans, root, path); 10628 out: 10629 btrfs_free_path(path); 10630 return ret; 10631 } 10632 10633 struct btrfs_trans_handle * 10634 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10635 const u64 chunk_offset) 10636 { 10637 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10638 struct extent_map *em; 10639 struct map_lookup *map; 10640 unsigned int num_items; 10641 10642 read_lock(&em_tree->lock); 10643 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10644 read_unlock(&em_tree->lock); 10645 ASSERT(em && em->start == chunk_offset); 10646 10647 /* 10648 * We need to reserve 3 + N units from the metadata space info in order 10649 * to remove a block group (done at btrfs_remove_chunk() and at 10650 * btrfs_remove_block_group()), which are used for: 10651 * 10652 * 1 unit for adding the free space inode's orphan (located in the tree 10653 * of tree roots). 10654 * 1 unit for deleting the block group item (located in the extent 10655 * tree). 10656 * 1 unit for deleting the free space item (located in tree of tree 10657 * roots). 10658 * N units for deleting N device extent items corresponding to each 10659 * stripe (located in the device tree). 10660 * 10661 * In order to remove a block group we also need to reserve units in the 10662 * system space info in order to update the chunk tree (update one or 10663 * more device items and remove one chunk item), but this is done at 10664 * btrfs_remove_chunk() through a call to check_system_chunk(). 10665 */ 10666 map = em->map_lookup; 10667 num_items = 3 + map->num_stripes; 10668 free_extent_map(em); 10669 10670 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10671 num_items, 1); 10672 } 10673 10674 /* 10675 * Process the unused_bgs list and remove any that don't have any allocated 10676 * space inside of them. 10677 */ 10678 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10679 { 10680 struct btrfs_block_group_cache *block_group; 10681 struct btrfs_space_info *space_info; 10682 struct btrfs_trans_handle *trans; 10683 int ret = 0; 10684 10685 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10686 return; 10687 10688 spin_lock(&fs_info->unused_bgs_lock); 10689 while (!list_empty(&fs_info->unused_bgs)) { 10690 u64 start, end; 10691 int trimming; 10692 10693 block_group = list_first_entry(&fs_info->unused_bgs, 10694 struct btrfs_block_group_cache, 10695 bg_list); 10696 list_del_init(&block_group->bg_list); 10697 10698 space_info = block_group->space_info; 10699 10700 if (ret || btrfs_mixed_space_info(space_info)) { 10701 btrfs_put_block_group(block_group); 10702 continue; 10703 } 10704 spin_unlock(&fs_info->unused_bgs_lock); 10705 10706 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10707 10708 /* Don't want to race with allocators so take the groups_sem */ 10709 down_write(&space_info->groups_sem); 10710 spin_lock(&block_group->lock); 10711 if (block_group->reserved || 10712 btrfs_block_group_used(&block_group->item) || 10713 block_group->ro || 10714 list_is_singular(&block_group->list)) { 10715 /* 10716 * We want to bail if we made new allocations or have 10717 * outstanding allocations in this block group. We do 10718 * the ro check in case balance is currently acting on 10719 * this block group. 10720 */ 10721 spin_unlock(&block_group->lock); 10722 up_write(&space_info->groups_sem); 10723 goto next; 10724 } 10725 spin_unlock(&block_group->lock); 10726 10727 /* We don't want to force the issue, only flip if it's ok. */ 10728 ret = inc_block_group_ro(block_group, 0); 10729 up_write(&space_info->groups_sem); 10730 if (ret < 0) { 10731 ret = 0; 10732 goto next; 10733 } 10734 10735 /* 10736 * Want to do this before we do anything else so we can recover 10737 * properly if we fail to join the transaction. 10738 */ 10739 trans = btrfs_start_trans_remove_block_group(fs_info, 10740 block_group->key.objectid); 10741 if (IS_ERR(trans)) { 10742 btrfs_dec_block_group_ro(block_group); 10743 ret = PTR_ERR(trans); 10744 goto next; 10745 } 10746 10747 /* 10748 * We could have pending pinned extents for this block group, 10749 * just delete them, we don't care about them anymore. 10750 */ 10751 start = block_group->key.objectid; 10752 end = start + block_group->key.offset - 1; 10753 /* 10754 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10755 * btrfs_finish_extent_commit(). If we are at transaction N, 10756 * another task might be running finish_extent_commit() for the 10757 * previous transaction N - 1, and have seen a range belonging 10758 * to the block group in freed_extents[] before we were able to 10759 * clear the whole block group range from freed_extents[]. This 10760 * means that task can lookup for the block group after we 10761 * unpinned it from freed_extents[] and removed it, leading to 10762 * a BUG_ON() at btrfs_unpin_extent_range(). 10763 */ 10764 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10765 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10766 EXTENT_DIRTY); 10767 if (ret) { 10768 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10769 btrfs_dec_block_group_ro(block_group); 10770 goto end_trans; 10771 } 10772 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10773 EXTENT_DIRTY); 10774 if (ret) { 10775 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10776 btrfs_dec_block_group_ro(block_group); 10777 goto end_trans; 10778 } 10779 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10780 10781 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10782 spin_lock(&space_info->lock); 10783 spin_lock(&block_group->lock); 10784 10785 space_info->bytes_pinned -= block_group->pinned; 10786 space_info->bytes_readonly += block_group->pinned; 10787 percpu_counter_add(&space_info->total_bytes_pinned, 10788 -block_group->pinned); 10789 block_group->pinned = 0; 10790 10791 spin_unlock(&block_group->lock); 10792 spin_unlock(&space_info->lock); 10793 10794 /* DISCARD can flip during remount */ 10795 trimming = btrfs_test_opt(fs_info, DISCARD); 10796 10797 /* Implicit trim during transaction commit. */ 10798 if (trimming) 10799 btrfs_get_block_group_trimming(block_group); 10800 10801 /* 10802 * Btrfs_remove_chunk will abort the transaction if things go 10803 * horribly wrong. 10804 */ 10805 ret = btrfs_remove_chunk(trans, fs_info, 10806 block_group->key.objectid); 10807 10808 if (ret) { 10809 if (trimming) 10810 btrfs_put_block_group_trimming(block_group); 10811 goto end_trans; 10812 } 10813 10814 /* 10815 * If we're not mounted with -odiscard, we can just forget 10816 * about this block group. Otherwise we'll need to wait 10817 * until transaction commit to do the actual discard. 10818 */ 10819 if (trimming) { 10820 spin_lock(&fs_info->unused_bgs_lock); 10821 /* 10822 * A concurrent scrub might have added us to the list 10823 * fs_info->unused_bgs, so use a list_move operation 10824 * to add the block group to the deleted_bgs list. 10825 */ 10826 list_move(&block_group->bg_list, 10827 &trans->transaction->deleted_bgs); 10828 spin_unlock(&fs_info->unused_bgs_lock); 10829 btrfs_get_block_group(block_group); 10830 } 10831 end_trans: 10832 btrfs_end_transaction(trans); 10833 next: 10834 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10835 btrfs_put_block_group(block_group); 10836 spin_lock(&fs_info->unused_bgs_lock); 10837 } 10838 spin_unlock(&fs_info->unused_bgs_lock); 10839 } 10840 10841 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10842 { 10843 struct btrfs_space_info *space_info; 10844 struct btrfs_super_block *disk_super; 10845 u64 features; 10846 u64 flags; 10847 int mixed = 0; 10848 int ret; 10849 10850 disk_super = fs_info->super_copy; 10851 if (!btrfs_super_root(disk_super)) 10852 return -EINVAL; 10853 10854 features = btrfs_super_incompat_flags(disk_super); 10855 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10856 mixed = 1; 10857 10858 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10859 ret = create_space_info(fs_info, flags, &space_info); 10860 if (ret) 10861 goto out; 10862 10863 if (mixed) { 10864 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10865 ret = create_space_info(fs_info, flags, &space_info); 10866 } else { 10867 flags = BTRFS_BLOCK_GROUP_METADATA; 10868 ret = create_space_info(fs_info, flags, &space_info); 10869 if (ret) 10870 goto out; 10871 10872 flags = BTRFS_BLOCK_GROUP_DATA; 10873 ret = create_space_info(fs_info, flags, &space_info); 10874 } 10875 out: 10876 return ret; 10877 } 10878 10879 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10880 u64 start, u64 end) 10881 { 10882 return unpin_extent_range(fs_info, start, end, false); 10883 } 10884 10885 /* 10886 * It used to be that old block groups would be left around forever. 10887 * Iterating over them would be enough to trim unused space. Since we 10888 * now automatically remove them, we also need to iterate over unallocated 10889 * space. 10890 * 10891 * We don't want a transaction for this since the discard may take a 10892 * substantial amount of time. We don't require that a transaction be 10893 * running, but we do need to take a running transaction into account 10894 * to ensure that we're not discarding chunks that were released in 10895 * the current transaction. 10896 * 10897 * Holding the chunks lock will prevent other threads from allocating 10898 * or releasing chunks, but it won't prevent a running transaction 10899 * from committing and releasing the memory that the pending chunks 10900 * list head uses. For that, we need to take a reference to the 10901 * transaction. 10902 */ 10903 static int btrfs_trim_free_extents(struct btrfs_device *device, 10904 u64 minlen, u64 *trimmed) 10905 { 10906 u64 start = 0, len = 0; 10907 int ret; 10908 10909 *trimmed = 0; 10910 10911 /* Not writeable = nothing to do. */ 10912 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10913 return 0; 10914 10915 /* No free space = nothing to do. */ 10916 if (device->total_bytes <= device->bytes_used) 10917 return 0; 10918 10919 ret = 0; 10920 10921 while (1) { 10922 struct btrfs_fs_info *fs_info = device->fs_info; 10923 struct btrfs_transaction *trans; 10924 u64 bytes; 10925 10926 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10927 if (ret) 10928 return ret; 10929 10930 down_read(&fs_info->commit_root_sem); 10931 10932 spin_lock(&fs_info->trans_lock); 10933 trans = fs_info->running_transaction; 10934 if (trans) 10935 refcount_inc(&trans->use_count); 10936 spin_unlock(&fs_info->trans_lock); 10937 10938 ret = find_free_dev_extent_start(trans, device, minlen, start, 10939 &start, &len); 10940 if (trans) 10941 btrfs_put_transaction(trans); 10942 10943 if (ret) { 10944 up_read(&fs_info->commit_root_sem); 10945 mutex_unlock(&fs_info->chunk_mutex); 10946 if (ret == -ENOSPC) 10947 ret = 0; 10948 break; 10949 } 10950 10951 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10952 up_read(&fs_info->commit_root_sem); 10953 mutex_unlock(&fs_info->chunk_mutex); 10954 10955 if (ret) 10956 break; 10957 10958 start += len; 10959 *trimmed += bytes; 10960 10961 if (fatal_signal_pending(current)) { 10962 ret = -ERESTARTSYS; 10963 break; 10964 } 10965 10966 cond_resched(); 10967 } 10968 10969 return ret; 10970 } 10971 10972 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10973 { 10974 struct btrfs_block_group_cache *cache = NULL; 10975 struct btrfs_device *device; 10976 struct list_head *devices; 10977 u64 group_trimmed; 10978 u64 start; 10979 u64 end; 10980 u64 trimmed = 0; 10981 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10982 int ret = 0; 10983 10984 /* 10985 * try to trim all FS space, our block group may start from non-zero. 10986 */ 10987 if (range->len == total_bytes) 10988 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10989 else 10990 cache = btrfs_lookup_block_group(fs_info, range->start); 10991 10992 while (cache) { 10993 if (cache->key.objectid >= (range->start + range->len)) { 10994 btrfs_put_block_group(cache); 10995 break; 10996 } 10997 10998 start = max(range->start, cache->key.objectid); 10999 end = min(range->start + range->len, 11000 cache->key.objectid + cache->key.offset); 11001 11002 if (end - start >= range->minlen) { 11003 if (!block_group_cache_done(cache)) { 11004 ret = cache_block_group(cache, 0); 11005 if (ret) { 11006 btrfs_put_block_group(cache); 11007 break; 11008 } 11009 ret = wait_block_group_cache_done(cache); 11010 if (ret) { 11011 btrfs_put_block_group(cache); 11012 break; 11013 } 11014 } 11015 ret = btrfs_trim_block_group(cache, 11016 &group_trimmed, 11017 start, 11018 end, 11019 range->minlen); 11020 11021 trimmed += group_trimmed; 11022 if (ret) { 11023 btrfs_put_block_group(cache); 11024 break; 11025 } 11026 } 11027 11028 cache = next_block_group(fs_info, cache); 11029 } 11030 11031 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11032 devices = &fs_info->fs_devices->alloc_list; 11033 list_for_each_entry(device, devices, dev_alloc_list) { 11034 ret = btrfs_trim_free_extents(device, range->minlen, 11035 &group_trimmed); 11036 if (ret) 11037 break; 11038 11039 trimmed += group_trimmed; 11040 } 11041 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11042 11043 range->len = trimmed; 11044 return ret; 11045 } 11046 11047 /* 11048 * btrfs_{start,end}_write_no_snapshotting() are similar to 11049 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11050 * data into the page cache through nocow before the subvolume is snapshoted, 11051 * but flush the data into disk after the snapshot creation, or to prevent 11052 * operations while snapshotting is ongoing and that cause the snapshot to be 11053 * inconsistent (writes followed by expanding truncates for example). 11054 */ 11055 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11056 { 11057 percpu_counter_dec(&root->subv_writers->counter); 11058 /* 11059 * Make sure counter is updated before we wake up waiters. 11060 */ 11061 smp_mb(); 11062 if (waitqueue_active(&root->subv_writers->wait)) 11063 wake_up(&root->subv_writers->wait); 11064 } 11065 11066 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11067 { 11068 if (atomic_read(&root->will_be_snapshotted)) 11069 return 0; 11070 11071 percpu_counter_inc(&root->subv_writers->counter); 11072 /* 11073 * Make sure counter is updated before we check for snapshot creation. 11074 */ 11075 smp_mb(); 11076 if (atomic_read(&root->will_be_snapshotted)) { 11077 btrfs_end_write_no_snapshotting(root); 11078 return 0; 11079 } 11080 return 1; 11081 } 11082 11083 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11084 { 11085 while (true) { 11086 int ret; 11087 11088 ret = btrfs_start_write_no_snapshotting(root); 11089 if (ret) 11090 break; 11091 wait_var_event(&root->will_be_snapshotted, 11092 !atomic_read(&root->will_be_snapshotted)); 11093 } 11094 } 11095