1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 46 #undef SCRAMBLE_DELAYED_REFS 47 48 49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 50 struct btrfs_delayed_ref_node *node, u64 parent, 51 u64 root_objectid, u64 owner_objectid, 52 u64 owner_offset, int refs_to_drop, 53 struct btrfs_delayed_extent_op *extra_op); 54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 55 struct extent_buffer *leaf, 56 struct btrfs_extent_item *ei); 57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 58 u64 parent, u64 root_objectid, 59 u64 flags, u64 owner, u64 offset, 60 struct btrfs_key *ins, int ref_mod); 61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 62 struct btrfs_delayed_ref_node *node, 63 struct btrfs_delayed_extent_op *extent_op); 64 static int find_next_key(struct btrfs_path *path, int level, 65 struct btrfs_key *key); 66 67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 68 { 69 return (cache->flags & bits) == bits; 70 } 71 72 /* simple helper to search for an existing data extent at a given offset */ 73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 74 { 75 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 76 int ret; 77 struct btrfs_key key; 78 struct btrfs_path *path; 79 80 path = btrfs_alloc_path(); 81 if (!path) 82 return -ENOMEM; 83 84 key.objectid = start; 85 key.offset = len; 86 key.type = BTRFS_EXTENT_ITEM_KEY; 87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 88 btrfs_free_path(path); 89 return ret; 90 } 91 92 /* 93 * helper function to lookup reference count and flags of a tree block. 94 * 95 * the head node for delayed ref is used to store the sum of all the 96 * reference count modifications queued up in the rbtree. the head 97 * node may also store the extent flags to set. This way you can check 98 * to see what the reference count and extent flags would be if all of 99 * the delayed refs are not processed. 100 */ 101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 102 struct btrfs_fs_info *fs_info, u64 bytenr, 103 u64 offset, int metadata, u64 *refs, u64 *flags) 104 { 105 struct btrfs_root *extent_root; 106 struct btrfs_delayed_ref_head *head; 107 struct btrfs_delayed_ref_root *delayed_refs; 108 struct btrfs_path *path; 109 struct btrfs_extent_item *ei; 110 struct extent_buffer *leaf; 111 struct btrfs_key key; 112 u32 item_size; 113 u64 num_refs; 114 u64 extent_flags; 115 int ret; 116 117 /* 118 * If we don't have skinny metadata, don't bother doing anything 119 * different 120 */ 121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 122 offset = fs_info->nodesize; 123 metadata = 0; 124 } 125 126 path = btrfs_alloc_path(); 127 if (!path) 128 return -ENOMEM; 129 130 if (!trans) { 131 path->skip_locking = 1; 132 path->search_commit_root = 1; 133 } 134 135 search_again: 136 key.objectid = bytenr; 137 key.offset = offset; 138 if (metadata) 139 key.type = BTRFS_METADATA_ITEM_KEY; 140 else 141 key.type = BTRFS_EXTENT_ITEM_KEY; 142 143 extent_root = btrfs_extent_root(fs_info, bytenr); 144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 145 if (ret < 0) 146 goto out_free; 147 148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 149 if (path->slots[0]) { 150 path->slots[0]--; 151 btrfs_item_key_to_cpu(path->nodes[0], &key, 152 path->slots[0]); 153 if (key.objectid == bytenr && 154 key.type == BTRFS_EXTENT_ITEM_KEY && 155 key.offset == fs_info->nodesize) 156 ret = 0; 157 } 158 } 159 160 if (ret == 0) { 161 leaf = path->nodes[0]; 162 item_size = btrfs_item_size(leaf, path->slots[0]); 163 if (item_size >= sizeof(*ei)) { 164 ei = btrfs_item_ptr(leaf, path->slots[0], 165 struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 extent_flags = btrfs_extent_flags(leaf, ei); 168 } else { 169 ret = -EUCLEAN; 170 btrfs_err(fs_info, 171 "unexpected extent item size, has %u expect >= %zu", 172 item_size, sizeof(*ei)); 173 if (trans) 174 btrfs_abort_transaction(trans, ret); 175 else 176 btrfs_handle_fs_error(fs_info, ret, NULL); 177 178 goto out_free; 179 } 180 181 BUG_ON(num_refs == 0); 182 } else { 183 num_refs = 0; 184 extent_flags = 0; 185 ret = 0; 186 } 187 188 if (!trans) 189 goto out; 190 191 delayed_refs = &trans->transaction->delayed_refs; 192 spin_lock(&delayed_refs->lock); 193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 194 if (head) { 195 if (!mutex_trylock(&head->mutex)) { 196 refcount_inc(&head->refs); 197 spin_unlock(&delayed_refs->lock); 198 199 btrfs_release_path(path); 200 201 /* 202 * Mutex was contended, block until it's released and try 203 * again 204 */ 205 mutex_lock(&head->mutex); 206 mutex_unlock(&head->mutex); 207 btrfs_put_delayed_ref_head(head); 208 goto search_again; 209 } 210 spin_lock(&head->lock); 211 if (head->extent_op && head->extent_op->update_flags) 212 extent_flags |= head->extent_op->flags_to_set; 213 else 214 BUG_ON(num_refs == 0); 215 216 num_refs += head->ref_mod; 217 spin_unlock(&head->lock); 218 mutex_unlock(&head->mutex); 219 } 220 spin_unlock(&delayed_refs->lock); 221 out: 222 WARN_ON(num_refs == 0); 223 if (refs) 224 *refs = num_refs; 225 if (flags) 226 *flags = extent_flags; 227 out_free: 228 btrfs_free_path(path); 229 return ret; 230 } 231 232 /* 233 * Back reference rules. Back refs have three main goals: 234 * 235 * 1) differentiate between all holders of references to an extent so that 236 * when a reference is dropped we can make sure it was a valid reference 237 * before freeing the extent. 238 * 239 * 2) Provide enough information to quickly find the holders of an extent 240 * if we notice a given block is corrupted or bad. 241 * 242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 243 * maintenance. This is actually the same as #2, but with a slightly 244 * different use case. 245 * 246 * There are two kinds of back refs. The implicit back refs is optimized 247 * for pointers in non-shared tree blocks. For a given pointer in a block, 248 * back refs of this kind provide information about the block's owner tree 249 * and the pointer's key. These information allow us to find the block by 250 * b-tree searching. The full back refs is for pointers in tree blocks not 251 * referenced by their owner trees. The location of tree block is recorded 252 * in the back refs. Actually the full back refs is generic, and can be 253 * used in all cases the implicit back refs is used. The major shortcoming 254 * of the full back refs is its overhead. Every time a tree block gets 255 * COWed, we have to update back refs entry for all pointers in it. 256 * 257 * For a newly allocated tree block, we use implicit back refs for 258 * pointers in it. This means most tree related operations only involve 259 * implicit back refs. For a tree block created in old transaction, the 260 * only way to drop a reference to it is COW it. So we can detect the 261 * event that tree block loses its owner tree's reference and do the 262 * back refs conversion. 263 * 264 * When a tree block is COWed through a tree, there are four cases: 265 * 266 * The reference count of the block is one and the tree is the block's 267 * owner tree. Nothing to do in this case. 268 * 269 * The reference count of the block is one and the tree is not the 270 * block's owner tree. In this case, full back refs is used for pointers 271 * in the block. Remove these full back refs, add implicit back refs for 272 * every pointers in the new block. 273 * 274 * The reference count of the block is greater than one and the tree is 275 * the block's owner tree. In this case, implicit back refs is used for 276 * pointers in the block. Add full back refs for every pointers in the 277 * block, increase lower level extents' reference counts. The original 278 * implicit back refs are entailed to the new block. 279 * 280 * The reference count of the block is greater than one and the tree is 281 * not the block's owner tree. Add implicit back refs for every pointer in 282 * the new block, increase lower level extents' reference count. 283 * 284 * Back Reference Key composing: 285 * 286 * The key objectid corresponds to the first byte in the extent, 287 * The key type is used to differentiate between types of back refs. 288 * There are different meanings of the key offset for different types 289 * of back refs. 290 * 291 * File extents can be referenced by: 292 * 293 * - multiple snapshots, subvolumes, or different generations in one subvol 294 * - different files inside a single subvolume 295 * - different offsets inside a file (bookend extents in file.c) 296 * 297 * The extent ref structure for the implicit back refs has fields for: 298 * 299 * - Objectid of the subvolume root 300 * - objectid of the file holding the reference 301 * - original offset in the file 302 * - how many bookend extents 303 * 304 * The key offset for the implicit back refs is hash of the first 305 * three fields. 306 * 307 * The extent ref structure for the full back refs has field for: 308 * 309 * - number of pointers in the tree leaf 310 * 311 * The key offset for the implicit back refs is the first byte of 312 * the tree leaf 313 * 314 * When a file extent is allocated, The implicit back refs is used. 315 * the fields are filled in: 316 * 317 * (root_key.objectid, inode objectid, offset in file, 1) 318 * 319 * When a file extent is removed file truncation, we find the 320 * corresponding implicit back refs and check the following fields: 321 * 322 * (btrfs_header_owner(leaf), inode objectid, offset in file) 323 * 324 * Btree extents can be referenced by: 325 * 326 * - Different subvolumes 327 * 328 * Both the implicit back refs and the full back refs for tree blocks 329 * only consist of key. The key offset for the implicit back refs is 330 * objectid of block's owner tree. The key offset for the full back refs 331 * is the first byte of parent block. 332 * 333 * When implicit back refs is used, information about the lowest key and 334 * level of the tree block are required. These information are stored in 335 * tree block info structure. 336 */ 337 338 /* 339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 342 */ 343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 344 struct btrfs_extent_inline_ref *iref, 345 enum btrfs_inline_ref_type is_data) 346 { 347 int type = btrfs_extent_inline_ref_type(eb, iref); 348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 349 350 if (type == BTRFS_TREE_BLOCK_REF_KEY || 351 type == BTRFS_SHARED_BLOCK_REF_KEY || 352 type == BTRFS_SHARED_DATA_REF_KEY || 353 type == BTRFS_EXTENT_DATA_REF_KEY) { 354 if (is_data == BTRFS_REF_TYPE_BLOCK) { 355 if (type == BTRFS_TREE_BLOCK_REF_KEY) 356 return type; 357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 358 ASSERT(eb->fs_info); 359 /* 360 * Every shared one has parent tree block, 361 * which must be aligned to sector size. 362 */ 363 if (offset && 364 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 365 return type; 366 } 367 } else if (is_data == BTRFS_REF_TYPE_DATA) { 368 if (type == BTRFS_EXTENT_DATA_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_DATA_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else { 381 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 382 return type; 383 } 384 } 385 386 WARN_ON(1); 387 btrfs_print_leaf(eb); 388 btrfs_err(eb->fs_info, 389 "eb %llu iref 0x%lx invalid extent inline ref type %d", 390 eb->start, (unsigned long)iref, type); 391 392 return BTRFS_REF_TYPE_INVALID; 393 } 394 395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 396 { 397 u32 high_crc = ~(u32)0; 398 u32 low_crc = ~(u32)0; 399 __le64 lenum; 400 401 lenum = cpu_to_le64(root_objectid); 402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 403 lenum = cpu_to_le64(owner); 404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 405 lenum = cpu_to_le64(offset); 406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 407 408 return ((u64)high_crc << 31) ^ (u64)low_crc; 409 } 410 411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 412 struct btrfs_extent_data_ref *ref) 413 { 414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 415 btrfs_extent_data_ref_objectid(leaf, ref), 416 btrfs_extent_data_ref_offset(leaf, ref)); 417 } 418 419 static int match_extent_data_ref(struct extent_buffer *leaf, 420 struct btrfs_extent_data_ref *ref, 421 u64 root_objectid, u64 owner, u64 offset) 422 { 423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 424 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 425 btrfs_extent_data_ref_offset(leaf, ref) != offset) 426 return 0; 427 return 1; 428 } 429 430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 431 struct btrfs_path *path, 432 u64 bytenr, u64 parent, 433 u64 root_objectid, 434 u64 owner, u64 offset) 435 { 436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 437 struct btrfs_key key; 438 struct btrfs_extent_data_ref *ref; 439 struct extent_buffer *leaf; 440 u32 nritems; 441 int ret; 442 int recow; 443 int err = -ENOENT; 444 445 key.objectid = bytenr; 446 if (parent) { 447 key.type = BTRFS_SHARED_DATA_REF_KEY; 448 key.offset = parent; 449 } else { 450 key.type = BTRFS_EXTENT_DATA_REF_KEY; 451 key.offset = hash_extent_data_ref(root_objectid, 452 owner, offset); 453 } 454 again: 455 recow = 0; 456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 457 if (ret < 0) { 458 err = ret; 459 goto fail; 460 } 461 462 if (parent) { 463 if (!ret) 464 return 0; 465 goto fail; 466 } 467 468 leaf = path->nodes[0]; 469 nritems = btrfs_header_nritems(leaf); 470 while (1) { 471 if (path->slots[0] >= nritems) { 472 ret = btrfs_next_leaf(root, path); 473 if (ret < 0) 474 err = ret; 475 if (ret) 476 goto fail; 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 recow = 1; 481 } 482 483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 484 if (key.objectid != bytenr || 485 key.type != BTRFS_EXTENT_DATA_REF_KEY) 486 goto fail; 487 488 ref = btrfs_item_ptr(leaf, path->slots[0], 489 struct btrfs_extent_data_ref); 490 491 if (match_extent_data_ref(leaf, ref, root_objectid, 492 owner, offset)) { 493 if (recow) { 494 btrfs_release_path(path); 495 goto again; 496 } 497 err = 0; 498 break; 499 } 500 path->slots[0]++; 501 } 502 fail: 503 return err; 504 } 505 506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 507 struct btrfs_path *path, 508 u64 bytenr, u64 parent, 509 u64 root_objectid, u64 owner, 510 u64 offset, int refs_to_add) 511 { 512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 513 struct btrfs_key key; 514 struct extent_buffer *leaf; 515 u32 size; 516 u32 num_refs; 517 int ret; 518 519 key.objectid = bytenr; 520 if (parent) { 521 key.type = BTRFS_SHARED_DATA_REF_KEY; 522 key.offset = parent; 523 size = sizeof(struct btrfs_shared_data_ref); 524 } else { 525 key.type = BTRFS_EXTENT_DATA_REF_KEY; 526 key.offset = hash_extent_data_ref(root_objectid, 527 owner, offset); 528 size = sizeof(struct btrfs_extent_data_ref); 529 } 530 531 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 532 if (ret && ret != -EEXIST) 533 goto fail; 534 535 leaf = path->nodes[0]; 536 if (parent) { 537 struct btrfs_shared_data_ref *ref; 538 ref = btrfs_item_ptr(leaf, path->slots[0], 539 struct btrfs_shared_data_ref); 540 if (ret == 0) { 541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 542 } else { 543 num_refs = btrfs_shared_data_ref_count(leaf, ref); 544 num_refs += refs_to_add; 545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 546 } 547 } else { 548 struct btrfs_extent_data_ref *ref; 549 while (ret == -EEXIST) { 550 ref = btrfs_item_ptr(leaf, path->slots[0], 551 struct btrfs_extent_data_ref); 552 if (match_extent_data_ref(leaf, ref, root_objectid, 553 owner, offset)) 554 break; 555 btrfs_release_path(path); 556 key.offset++; 557 ret = btrfs_insert_empty_item(trans, root, path, &key, 558 size); 559 if (ret && ret != -EEXIST) 560 goto fail; 561 562 leaf = path->nodes[0]; 563 } 564 ref = btrfs_item_ptr(leaf, path->slots[0], 565 struct btrfs_extent_data_ref); 566 if (ret == 0) { 567 btrfs_set_extent_data_ref_root(leaf, ref, 568 root_objectid); 569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 570 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 572 } else { 573 num_refs = btrfs_extent_data_ref_count(leaf, ref); 574 num_refs += refs_to_add; 575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 576 } 577 } 578 btrfs_mark_buffer_dirty(trans, leaf); 579 ret = 0; 580 fail: 581 btrfs_release_path(path); 582 return ret; 583 } 584 585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 586 struct btrfs_root *root, 587 struct btrfs_path *path, 588 int refs_to_drop) 589 { 590 struct btrfs_key key; 591 struct btrfs_extent_data_ref *ref1 = NULL; 592 struct btrfs_shared_data_ref *ref2 = NULL; 593 struct extent_buffer *leaf; 594 u32 num_refs = 0; 595 int ret = 0; 596 597 leaf = path->nodes[0]; 598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 599 600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 601 ref1 = btrfs_item_ptr(leaf, path->slots[0], 602 struct btrfs_extent_data_ref); 603 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 605 ref2 = btrfs_item_ptr(leaf, path->slots[0], 606 struct btrfs_shared_data_ref); 607 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 608 } else { 609 btrfs_err(trans->fs_info, 610 "unrecognized backref key (%llu %u %llu)", 611 key.objectid, key.type, key.offset); 612 btrfs_abort_transaction(trans, -EUCLEAN); 613 return -EUCLEAN; 614 } 615 616 BUG_ON(num_refs < refs_to_drop); 617 num_refs -= refs_to_drop; 618 619 if (num_refs == 0) { 620 ret = btrfs_del_item(trans, root, path); 621 } else { 622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 626 btrfs_mark_buffer_dirty(trans, leaf); 627 } 628 return ret; 629 } 630 631 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 632 struct btrfs_extent_inline_ref *iref) 633 { 634 struct btrfs_key key; 635 struct extent_buffer *leaf; 636 struct btrfs_extent_data_ref *ref1; 637 struct btrfs_shared_data_ref *ref2; 638 u32 num_refs = 0; 639 int type; 640 641 leaf = path->nodes[0]; 642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 643 644 if (iref) { 645 /* 646 * If type is invalid, we should have bailed out earlier than 647 * this call. 648 */ 649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 650 ASSERT(type != BTRFS_REF_TYPE_INVALID); 651 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 653 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 654 } else { 655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 656 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 657 } 658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 659 ref1 = btrfs_item_ptr(leaf, path->slots[0], 660 struct btrfs_extent_data_ref); 661 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 663 ref2 = btrfs_item_ptr(leaf, path->slots[0], 664 struct btrfs_shared_data_ref); 665 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 666 } else { 667 WARN_ON(1); 668 } 669 return num_refs; 670 } 671 672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 673 struct btrfs_path *path, 674 u64 bytenr, u64 parent, 675 u64 root_objectid) 676 { 677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 678 struct btrfs_key key; 679 int ret; 680 681 key.objectid = bytenr; 682 if (parent) { 683 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 684 key.offset = parent; 685 } else { 686 key.type = BTRFS_TREE_BLOCK_REF_KEY; 687 key.offset = root_objectid; 688 } 689 690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 691 if (ret > 0) 692 ret = -ENOENT; 693 return ret; 694 } 695 696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 697 struct btrfs_path *path, 698 u64 bytenr, u64 parent, 699 u64 root_objectid) 700 { 701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 702 struct btrfs_key key; 703 int ret; 704 705 key.objectid = bytenr; 706 if (parent) { 707 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 708 key.offset = parent; 709 } else { 710 key.type = BTRFS_TREE_BLOCK_REF_KEY; 711 key.offset = root_objectid; 712 } 713 714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 715 btrfs_release_path(path); 716 return ret; 717 } 718 719 static inline int extent_ref_type(u64 parent, u64 owner) 720 { 721 int type; 722 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 723 if (parent > 0) 724 type = BTRFS_SHARED_BLOCK_REF_KEY; 725 else 726 type = BTRFS_TREE_BLOCK_REF_KEY; 727 } else { 728 if (parent > 0) 729 type = BTRFS_SHARED_DATA_REF_KEY; 730 else 731 type = BTRFS_EXTENT_DATA_REF_KEY; 732 } 733 return type; 734 } 735 736 static int find_next_key(struct btrfs_path *path, int level, 737 struct btrfs_key *key) 738 739 { 740 for (; level < BTRFS_MAX_LEVEL; level++) { 741 if (!path->nodes[level]) 742 break; 743 if (path->slots[level] + 1 >= 744 btrfs_header_nritems(path->nodes[level])) 745 continue; 746 if (level == 0) 747 btrfs_item_key_to_cpu(path->nodes[level], key, 748 path->slots[level] + 1); 749 else 750 btrfs_node_key_to_cpu(path->nodes[level], key, 751 path->slots[level] + 1); 752 return 0; 753 } 754 return 1; 755 } 756 757 /* 758 * look for inline back ref. if back ref is found, *ref_ret is set 759 * to the address of inline back ref, and 0 is returned. 760 * 761 * if back ref isn't found, *ref_ret is set to the address where it 762 * should be inserted, and -ENOENT is returned. 763 * 764 * if insert is true and there are too many inline back refs, the path 765 * points to the extent item, and -EAGAIN is returned. 766 * 767 * NOTE: inline back refs are ordered in the same way that back ref 768 * items in the tree are ordered. 769 */ 770 static noinline_for_stack 771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 772 struct btrfs_path *path, 773 struct btrfs_extent_inline_ref **ref_ret, 774 u64 bytenr, u64 num_bytes, 775 u64 parent, u64 root_objectid, 776 u64 owner, u64 offset, int insert) 777 { 778 struct btrfs_fs_info *fs_info = trans->fs_info; 779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 780 struct btrfs_key key; 781 struct extent_buffer *leaf; 782 struct btrfs_extent_item *ei; 783 struct btrfs_extent_inline_ref *iref; 784 u64 flags; 785 u64 item_size; 786 unsigned long ptr; 787 unsigned long end; 788 int extra_size; 789 int type; 790 int want; 791 int ret; 792 int err = 0; 793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 794 int needed; 795 796 key.objectid = bytenr; 797 key.type = BTRFS_EXTENT_ITEM_KEY; 798 key.offset = num_bytes; 799 800 want = extent_ref_type(parent, owner); 801 if (insert) { 802 extra_size = btrfs_extent_inline_ref_size(want); 803 path->search_for_extension = 1; 804 path->keep_locks = 1; 805 } else 806 extra_size = -1; 807 808 /* 809 * Owner is our level, so we can just add one to get the level for the 810 * block we are interested in. 811 */ 812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 813 key.type = BTRFS_METADATA_ITEM_KEY; 814 key.offset = owner; 815 } 816 817 again: 818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 819 if (ret < 0) { 820 err = ret; 821 goto out; 822 } 823 824 /* 825 * We may be a newly converted file system which still has the old fat 826 * extent entries for metadata, so try and see if we have one of those. 827 */ 828 if (ret > 0 && skinny_metadata) { 829 skinny_metadata = false; 830 if (path->slots[0]) { 831 path->slots[0]--; 832 btrfs_item_key_to_cpu(path->nodes[0], &key, 833 path->slots[0]); 834 if (key.objectid == bytenr && 835 key.type == BTRFS_EXTENT_ITEM_KEY && 836 key.offset == num_bytes) 837 ret = 0; 838 } 839 if (ret) { 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 btrfs_release_path(path); 844 goto again; 845 } 846 } 847 848 if (ret && !insert) { 849 err = -ENOENT; 850 goto out; 851 } else if (WARN_ON(ret)) { 852 btrfs_print_leaf(path->nodes[0]); 853 btrfs_err(fs_info, 854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 855 bytenr, num_bytes, parent, root_objectid, owner, 856 offset); 857 err = -EIO; 858 goto out; 859 } 860 861 leaf = path->nodes[0]; 862 item_size = btrfs_item_size(leaf, path->slots[0]); 863 if (unlikely(item_size < sizeof(*ei))) { 864 err = -EUCLEAN; 865 btrfs_err(fs_info, 866 "unexpected extent item size, has %llu expect >= %zu", 867 item_size, sizeof(*ei)); 868 btrfs_abort_transaction(trans, err); 869 goto out; 870 } 871 872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 873 flags = btrfs_extent_flags(leaf, ei); 874 875 ptr = (unsigned long)(ei + 1); 876 end = (unsigned long)ei + item_size; 877 878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 879 ptr += sizeof(struct btrfs_tree_block_info); 880 BUG_ON(ptr > end); 881 } 882 883 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 884 needed = BTRFS_REF_TYPE_DATA; 885 else 886 needed = BTRFS_REF_TYPE_BLOCK; 887 888 err = -ENOENT; 889 while (1) { 890 if (ptr >= end) { 891 if (ptr > end) { 892 err = -EUCLEAN; 893 btrfs_print_leaf(path->nodes[0]); 894 btrfs_crit(fs_info, 895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 896 path->slots[0], root_objectid, owner, offset, parent); 897 } 898 break; 899 } 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_REF_TYPE_INVALID) { 903 err = -EUCLEAN; 904 goto out; 905 } 906 907 if (want < type) 908 break; 909 if (want > type) { 910 ptr += btrfs_extent_inline_ref_size(type); 911 continue; 912 } 913 914 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 915 struct btrfs_extent_data_ref *dref; 916 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 917 if (match_extent_data_ref(leaf, dref, root_objectid, 918 owner, offset)) { 919 err = 0; 920 break; 921 } 922 if (hash_extent_data_ref_item(leaf, dref) < 923 hash_extent_data_ref(root_objectid, owner, offset)) 924 break; 925 } else { 926 u64 ref_offset; 927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 928 if (parent > 0) { 929 if (parent == ref_offset) { 930 err = 0; 931 break; 932 } 933 if (ref_offset < parent) 934 break; 935 } else { 936 if (root_objectid == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < root_objectid) 941 break; 942 } 943 } 944 ptr += btrfs_extent_inline_ref_size(type); 945 } 946 if (err == -ENOENT && insert) { 947 if (item_size + extra_size >= 948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 949 err = -EAGAIN; 950 goto out; 951 } 952 /* 953 * To add new inline back ref, we have to make sure 954 * there is no corresponding back ref item. 955 * For simplicity, we just do not add new inline back 956 * ref if there is any kind of item for this block 957 */ 958 if (find_next_key(path, 0, &key) == 0 && 959 key.objectid == bytenr && 960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 961 err = -EAGAIN; 962 goto out; 963 } 964 } 965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 966 out: 967 if (insert) { 968 path->keep_locks = 0; 969 path->search_for_extension = 0; 970 btrfs_unlock_up_safe(path, 1); 971 } 972 return err; 973 } 974 975 /* 976 * helper to add new inline back ref 977 */ 978 static noinline_for_stack 979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 980 struct btrfs_path *path, 981 struct btrfs_extent_inline_ref *iref, 982 u64 parent, u64 root_objectid, 983 u64 owner, u64 offset, int refs_to_add, 984 struct btrfs_delayed_extent_op *extent_op) 985 { 986 struct extent_buffer *leaf; 987 struct btrfs_extent_item *ei; 988 unsigned long ptr; 989 unsigned long end; 990 unsigned long item_offset; 991 u64 refs; 992 int size; 993 int type; 994 995 leaf = path->nodes[0]; 996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 997 item_offset = (unsigned long)iref - (unsigned long)ei; 998 999 type = extent_ref_type(parent, owner); 1000 size = btrfs_extent_inline_ref_size(type); 1001 1002 btrfs_extend_item(trans, path, size); 1003 1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1005 refs = btrfs_extent_refs(leaf, ei); 1006 refs += refs_to_add; 1007 btrfs_set_extent_refs(leaf, ei, refs); 1008 if (extent_op) 1009 __run_delayed_extent_op(extent_op, leaf, ei); 1010 1011 ptr = (unsigned long)ei + item_offset; 1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1013 if (ptr < end - size) 1014 memmove_extent_buffer(leaf, ptr + size, ptr, 1015 end - size - ptr); 1016 1017 iref = (struct btrfs_extent_inline_ref *)ptr; 1018 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1020 struct btrfs_extent_data_ref *dref; 1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1027 struct btrfs_shared_data_ref *sref; 1028 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1033 } else { 1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1035 } 1036 btrfs_mark_buffer_dirty(trans, leaf); 1037 } 1038 1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1040 struct btrfs_path *path, 1041 struct btrfs_extent_inline_ref **ref_ret, 1042 u64 bytenr, u64 num_bytes, u64 parent, 1043 u64 root_objectid, u64 owner, u64 offset) 1044 { 1045 int ret; 1046 1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1048 num_bytes, parent, root_objectid, 1049 owner, offset, 0); 1050 if (ret != -ENOENT) 1051 return ret; 1052 1053 btrfs_release_path(path); 1054 *ref_ret = NULL; 1055 1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1058 root_objectid); 1059 } else { 1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1061 root_objectid, owner, offset); 1062 } 1063 return ret; 1064 } 1065 1066 /* 1067 * helper to update/remove inline back ref 1068 */ 1069 static noinline_for_stack int update_inline_extent_backref( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_extent_inline_ref *iref, 1073 int refs_to_mod, 1074 struct btrfs_delayed_extent_op *extent_op) 1075 { 1076 struct extent_buffer *leaf = path->nodes[0]; 1077 struct btrfs_fs_info *fs_info = leaf->fs_info; 1078 struct btrfs_extent_item *ei; 1079 struct btrfs_extent_data_ref *dref = NULL; 1080 struct btrfs_shared_data_ref *sref = NULL; 1081 unsigned long ptr; 1082 unsigned long end; 1083 u32 item_size; 1084 int size; 1085 int type; 1086 u64 refs; 1087 1088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1089 refs = btrfs_extent_refs(leaf, ei); 1090 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1091 struct btrfs_key key; 1092 u32 extent_size; 1093 1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1095 if (key.type == BTRFS_METADATA_ITEM_KEY) 1096 extent_size = fs_info->nodesize; 1097 else 1098 extent_size = key.offset; 1099 btrfs_print_leaf(leaf); 1100 btrfs_err(fs_info, 1101 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1102 key.objectid, extent_size, refs_to_mod, refs); 1103 return -EUCLEAN; 1104 } 1105 refs += refs_to_mod; 1106 btrfs_set_extent_refs(leaf, ei, refs); 1107 if (extent_op) 1108 __run_delayed_extent_op(extent_op, leaf, ei); 1109 1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1111 /* 1112 * Function btrfs_get_extent_inline_ref_type() has already printed 1113 * error messages. 1114 */ 1115 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1116 return -EUCLEAN; 1117 1118 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1119 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1120 refs = btrfs_extent_data_ref_count(leaf, dref); 1121 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1122 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1123 refs = btrfs_shared_data_ref_count(leaf, sref); 1124 } else { 1125 refs = 1; 1126 /* 1127 * For tree blocks we can only drop one ref for it, and tree 1128 * blocks should not have refs > 1. 1129 * 1130 * Furthermore if we're inserting a new inline backref, we 1131 * won't reach this path either. That would be 1132 * setup_inline_extent_backref(). 1133 */ 1134 if (unlikely(refs_to_mod != -1)) { 1135 struct btrfs_key key; 1136 1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1138 1139 btrfs_print_leaf(leaf); 1140 btrfs_err(fs_info, 1141 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1142 key.objectid, refs_to_mod); 1143 return -EUCLEAN; 1144 } 1145 } 1146 1147 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1148 struct btrfs_key key; 1149 u32 extent_size; 1150 1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1152 if (key.type == BTRFS_METADATA_ITEM_KEY) 1153 extent_size = fs_info->nodesize; 1154 else 1155 extent_size = key.offset; 1156 btrfs_print_leaf(leaf); 1157 btrfs_err(fs_info, 1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1159 (unsigned long)iref, key.objectid, extent_size, 1160 refs_to_mod, refs); 1161 return -EUCLEAN; 1162 } 1163 refs += refs_to_mod; 1164 1165 if (refs > 0) { 1166 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1167 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1168 else 1169 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1170 } else { 1171 size = btrfs_extent_inline_ref_size(type); 1172 item_size = btrfs_item_size(leaf, path->slots[0]); 1173 ptr = (unsigned long)iref; 1174 end = (unsigned long)ei + item_size; 1175 if (ptr + size < end) 1176 memmove_extent_buffer(leaf, ptr, ptr + size, 1177 end - ptr - size); 1178 item_size -= size; 1179 btrfs_truncate_item(trans, path, item_size, 1); 1180 } 1181 btrfs_mark_buffer_dirty(trans, leaf); 1182 return 0; 1183 } 1184 1185 static noinline_for_stack 1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1187 struct btrfs_path *path, 1188 u64 bytenr, u64 num_bytes, u64 parent, 1189 u64 root_objectid, u64 owner, 1190 u64 offset, int refs_to_add, 1191 struct btrfs_delayed_extent_op *extent_op) 1192 { 1193 struct btrfs_extent_inline_ref *iref; 1194 int ret; 1195 1196 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1197 num_bytes, parent, root_objectid, 1198 owner, offset, 1); 1199 if (ret == 0) { 1200 /* 1201 * We're adding refs to a tree block we already own, this 1202 * should not happen at all. 1203 */ 1204 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1205 btrfs_print_leaf(path->nodes[0]); 1206 btrfs_crit(trans->fs_info, 1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1208 bytenr, num_bytes, root_objectid, path->slots[0]); 1209 return -EUCLEAN; 1210 } 1211 ret = update_inline_extent_backref(trans, path, iref, 1212 refs_to_add, extent_op); 1213 } else if (ret == -ENOENT) { 1214 setup_inline_extent_backref(trans, path, iref, parent, 1215 root_objectid, owner, offset, 1216 refs_to_add, extent_op); 1217 ret = 0; 1218 } 1219 return ret; 1220 } 1221 1222 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, 1225 struct btrfs_extent_inline_ref *iref, 1226 int refs_to_drop, int is_data) 1227 { 1228 int ret = 0; 1229 1230 BUG_ON(!is_data && refs_to_drop != 1); 1231 if (iref) 1232 ret = update_inline_extent_backref(trans, path, iref, 1233 -refs_to_drop, NULL); 1234 else if (is_data) 1235 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1236 else 1237 ret = btrfs_del_item(trans, root, path); 1238 return ret; 1239 } 1240 1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1242 u64 *discarded_bytes) 1243 { 1244 int j, ret = 0; 1245 u64 bytes_left, end; 1246 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1247 1248 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1249 if (start != aligned_start) { 1250 len -= aligned_start - start; 1251 len = round_down(len, 1 << SECTOR_SHIFT); 1252 start = aligned_start; 1253 } 1254 1255 *discarded_bytes = 0; 1256 1257 if (!len) 1258 return 0; 1259 1260 end = start + len; 1261 bytes_left = len; 1262 1263 /* Skip any superblocks on this device. */ 1264 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1265 u64 sb_start = btrfs_sb_offset(j); 1266 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1267 u64 size = sb_start - start; 1268 1269 if (!in_range(sb_start, start, bytes_left) && 1270 !in_range(sb_end, start, bytes_left) && 1271 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1272 continue; 1273 1274 /* 1275 * Superblock spans beginning of range. Adjust start and 1276 * try again. 1277 */ 1278 if (sb_start <= start) { 1279 start += sb_end - start; 1280 if (start > end) { 1281 bytes_left = 0; 1282 break; 1283 } 1284 bytes_left = end - start; 1285 continue; 1286 } 1287 1288 if (size) { 1289 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1290 size >> SECTOR_SHIFT, 1291 GFP_NOFS); 1292 if (!ret) 1293 *discarded_bytes += size; 1294 else if (ret != -EOPNOTSUPP) 1295 return ret; 1296 } 1297 1298 start = sb_end; 1299 if (start > end) { 1300 bytes_left = 0; 1301 break; 1302 } 1303 bytes_left = end - start; 1304 } 1305 1306 if (bytes_left) { 1307 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1308 bytes_left >> SECTOR_SHIFT, 1309 GFP_NOFS); 1310 if (!ret) 1311 *discarded_bytes += bytes_left; 1312 } 1313 return ret; 1314 } 1315 1316 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1317 { 1318 struct btrfs_device *dev = stripe->dev; 1319 struct btrfs_fs_info *fs_info = dev->fs_info; 1320 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1321 u64 phys = stripe->physical; 1322 u64 len = stripe->length; 1323 u64 discarded = 0; 1324 int ret = 0; 1325 1326 /* Zone reset on a zoned filesystem */ 1327 if (btrfs_can_zone_reset(dev, phys, len)) { 1328 u64 src_disc; 1329 1330 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1331 if (ret) 1332 goto out; 1333 1334 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1335 dev != dev_replace->srcdev) 1336 goto out; 1337 1338 src_disc = discarded; 1339 1340 /* Send to replace target as well */ 1341 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1342 &discarded); 1343 discarded += src_disc; 1344 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1345 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1346 } else { 1347 ret = 0; 1348 *bytes = 0; 1349 } 1350 1351 out: 1352 *bytes = discarded; 1353 return ret; 1354 } 1355 1356 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1357 u64 num_bytes, u64 *actual_bytes) 1358 { 1359 int ret = 0; 1360 u64 discarded_bytes = 0; 1361 u64 end = bytenr + num_bytes; 1362 u64 cur = bytenr; 1363 1364 /* 1365 * Avoid races with device replace and make sure the devices in the 1366 * stripes don't go away while we are discarding. 1367 */ 1368 btrfs_bio_counter_inc_blocked(fs_info); 1369 while (cur < end) { 1370 struct btrfs_discard_stripe *stripes; 1371 unsigned int num_stripes; 1372 int i; 1373 1374 num_bytes = end - cur; 1375 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1376 if (IS_ERR(stripes)) { 1377 ret = PTR_ERR(stripes); 1378 if (ret == -EOPNOTSUPP) 1379 ret = 0; 1380 break; 1381 } 1382 1383 for (i = 0; i < num_stripes; i++) { 1384 struct btrfs_discard_stripe *stripe = stripes + i; 1385 u64 bytes; 1386 1387 if (!stripe->dev->bdev) { 1388 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1389 continue; 1390 } 1391 1392 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1393 &stripe->dev->dev_state)) 1394 continue; 1395 1396 ret = do_discard_extent(stripe, &bytes); 1397 if (ret) { 1398 /* 1399 * Keep going if discard is not supported by the 1400 * device. 1401 */ 1402 if (ret != -EOPNOTSUPP) 1403 break; 1404 ret = 0; 1405 } else { 1406 discarded_bytes += bytes; 1407 } 1408 } 1409 kfree(stripes); 1410 if (ret) 1411 break; 1412 cur += num_bytes; 1413 } 1414 btrfs_bio_counter_dec(fs_info); 1415 if (actual_bytes) 1416 *actual_bytes = discarded_bytes; 1417 return ret; 1418 } 1419 1420 /* Can return -ENOMEM */ 1421 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1422 struct btrfs_ref *generic_ref) 1423 { 1424 struct btrfs_fs_info *fs_info = trans->fs_info; 1425 int ret; 1426 1427 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1428 generic_ref->action); 1429 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1430 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1431 1432 if (generic_ref->type == BTRFS_REF_METADATA) 1433 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1434 else 1435 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1436 1437 btrfs_ref_tree_mod(fs_info, generic_ref); 1438 1439 return ret; 1440 } 1441 1442 /* 1443 * __btrfs_inc_extent_ref - insert backreference for a given extent 1444 * 1445 * The counterpart is in __btrfs_free_extent(), with examples and more details 1446 * how it works. 1447 * 1448 * @trans: Handle of transaction 1449 * 1450 * @node: The delayed ref node used to get the bytenr/length for 1451 * extent whose references are incremented. 1452 * 1453 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1454 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1455 * bytenr of the parent block. Since new extents are always 1456 * created with indirect references, this will only be the case 1457 * when relocating a shared extent. In that case, root_objectid 1458 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1459 * be 0 1460 * 1461 * @root_objectid: The id of the root where this modification has originated, 1462 * this can be either one of the well-known metadata trees or 1463 * the subvolume id which references this extent. 1464 * 1465 * @owner: For data extents it is the inode number of the owning file. 1466 * For metadata extents this parameter holds the level in the 1467 * tree of the extent. 1468 * 1469 * @offset: For metadata extents the offset is ignored and is currently 1470 * always passed as 0. For data extents it is the fileoffset 1471 * this extent belongs to. 1472 * 1473 * @refs_to_add Number of references to add 1474 * 1475 * @extent_op Pointer to a structure, holding information necessary when 1476 * updating a tree block's flags 1477 * 1478 */ 1479 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1480 struct btrfs_delayed_ref_node *node, 1481 u64 parent, u64 root_objectid, 1482 u64 owner, u64 offset, int refs_to_add, 1483 struct btrfs_delayed_extent_op *extent_op) 1484 { 1485 struct btrfs_path *path; 1486 struct extent_buffer *leaf; 1487 struct btrfs_extent_item *item; 1488 struct btrfs_key key; 1489 u64 bytenr = node->bytenr; 1490 u64 num_bytes = node->num_bytes; 1491 u64 refs; 1492 int ret; 1493 1494 path = btrfs_alloc_path(); 1495 if (!path) 1496 return -ENOMEM; 1497 1498 /* this will setup the path even if it fails to insert the back ref */ 1499 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1500 parent, root_objectid, owner, 1501 offset, refs_to_add, extent_op); 1502 if ((ret < 0 && ret != -EAGAIN) || !ret) 1503 goto out; 1504 1505 /* 1506 * Ok we had -EAGAIN which means we didn't have space to insert and 1507 * inline extent ref, so just update the reference count and add a 1508 * normal backref. 1509 */ 1510 leaf = path->nodes[0]; 1511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1512 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1513 refs = btrfs_extent_refs(leaf, item); 1514 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1515 if (extent_op) 1516 __run_delayed_extent_op(extent_op, leaf, item); 1517 1518 btrfs_mark_buffer_dirty(trans, leaf); 1519 btrfs_release_path(path); 1520 1521 /* now insert the actual backref */ 1522 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1523 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1524 root_objectid); 1525 else 1526 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1527 root_objectid, owner, offset, 1528 refs_to_add); 1529 1530 if (ret) 1531 btrfs_abort_transaction(trans, ret); 1532 out: 1533 btrfs_free_path(path); 1534 return ret; 1535 } 1536 1537 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1538 struct btrfs_delayed_ref_node *node, 1539 struct btrfs_delayed_extent_op *extent_op, 1540 bool insert_reserved) 1541 { 1542 int ret = 0; 1543 struct btrfs_delayed_data_ref *ref; 1544 struct btrfs_key ins; 1545 u64 parent = 0; 1546 u64 ref_root = 0; 1547 u64 flags = 0; 1548 1549 ins.objectid = node->bytenr; 1550 ins.offset = node->num_bytes; 1551 ins.type = BTRFS_EXTENT_ITEM_KEY; 1552 1553 ref = btrfs_delayed_node_to_data_ref(node); 1554 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1555 1556 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1557 parent = ref->parent; 1558 ref_root = ref->root; 1559 1560 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1561 if (extent_op) 1562 flags |= extent_op->flags_to_set; 1563 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1564 flags, ref->objectid, 1565 ref->offset, &ins, 1566 node->ref_mod); 1567 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1568 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1569 ref->objectid, ref->offset, 1570 node->ref_mod, extent_op); 1571 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1572 ret = __btrfs_free_extent(trans, node, parent, 1573 ref_root, ref->objectid, 1574 ref->offset, node->ref_mod, 1575 extent_op); 1576 } else { 1577 BUG(); 1578 } 1579 return ret; 1580 } 1581 1582 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1583 struct extent_buffer *leaf, 1584 struct btrfs_extent_item *ei) 1585 { 1586 u64 flags = btrfs_extent_flags(leaf, ei); 1587 if (extent_op->update_flags) { 1588 flags |= extent_op->flags_to_set; 1589 btrfs_set_extent_flags(leaf, ei, flags); 1590 } 1591 1592 if (extent_op->update_key) { 1593 struct btrfs_tree_block_info *bi; 1594 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1595 bi = (struct btrfs_tree_block_info *)(ei + 1); 1596 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1597 } 1598 } 1599 1600 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1601 struct btrfs_delayed_ref_head *head, 1602 struct btrfs_delayed_extent_op *extent_op) 1603 { 1604 struct btrfs_fs_info *fs_info = trans->fs_info; 1605 struct btrfs_root *root; 1606 struct btrfs_key key; 1607 struct btrfs_path *path; 1608 struct btrfs_extent_item *ei; 1609 struct extent_buffer *leaf; 1610 u32 item_size; 1611 int ret; 1612 int err = 0; 1613 int metadata = 1; 1614 1615 if (TRANS_ABORTED(trans)) 1616 return 0; 1617 1618 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1619 metadata = 0; 1620 1621 path = btrfs_alloc_path(); 1622 if (!path) 1623 return -ENOMEM; 1624 1625 key.objectid = head->bytenr; 1626 1627 if (metadata) { 1628 key.type = BTRFS_METADATA_ITEM_KEY; 1629 key.offset = extent_op->level; 1630 } else { 1631 key.type = BTRFS_EXTENT_ITEM_KEY; 1632 key.offset = head->num_bytes; 1633 } 1634 1635 root = btrfs_extent_root(fs_info, key.objectid); 1636 again: 1637 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1638 if (ret < 0) { 1639 err = ret; 1640 goto out; 1641 } 1642 if (ret > 0) { 1643 if (metadata) { 1644 if (path->slots[0] > 0) { 1645 path->slots[0]--; 1646 btrfs_item_key_to_cpu(path->nodes[0], &key, 1647 path->slots[0]); 1648 if (key.objectid == head->bytenr && 1649 key.type == BTRFS_EXTENT_ITEM_KEY && 1650 key.offset == head->num_bytes) 1651 ret = 0; 1652 } 1653 if (ret > 0) { 1654 btrfs_release_path(path); 1655 metadata = 0; 1656 1657 key.objectid = head->bytenr; 1658 key.offset = head->num_bytes; 1659 key.type = BTRFS_EXTENT_ITEM_KEY; 1660 goto again; 1661 } 1662 } else { 1663 err = -EUCLEAN; 1664 btrfs_err(fs_info, 1665 "missing extent item for extent %llu num_bytes %llu level %d", 1666 head->bytenr, head->num_bytes, extent_op->level); 1667 goto out; 1668 } 1669 } 1670 1671 leaf = path->nodes[0]; 1672 item_size = btrfs_item_size(leaf, path->slots[0]); 1673 1674 if (unlikely(item_size < sizeof(*ei))) { 1675 err = -EUCLEAN; 1676 btrfs_err(fs_info, 1677 "unexpected extent item size, has %u expect >= %zu", 1678 item_size, sizeof(*ei)); 1679 btrfs_abort_transaction(trans, err); 1680 goto out; 1681 } 1682 1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1684 __run_delayed_extent_op(extent_op, leaf, ei); 1685 1686 btrfs_mark_buffer_dirty(trans, leaf); 1687 out: 1688 btrfs_free_path(path); 1689 return err; 1690 } 1691 1692 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1693 struct btrfs_delayed_ref_node *node, 1694 struct btrfs_delayed_extent_op *extent_op, 1695 bool insert_reserved) 1696 { 1697 int ret = 0; 1698 struct btrfs_delayed_tree_ref *ref; 1699 u64 parent = 0; 1700 u64 ref_root = 0; 1701 1702 ref = btrfs_delayed_node_to_tree_ref(node); 1703 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1704 1705 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1706 parent = ref->parent; 1707 ref_root = ref->root; 1708 1709 if (unlikely(node->ref_mod != 1)) { 1710 btrfs_err(trans->fs_info, 1711 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1712 node->bytenr, node->ref_mod, node->action, ref_root, 1713 parent); 1714 return -EUCLEAN; 1715 } 1716 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1717 BUG_ON(!extent_op || !extent_op->update_flags); 1718 ret = alloc_reserved_tree_block(trans, node, extent_op); 1719 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1720 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1721 ref->level, 0, 1, extent_op); 1722 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1723 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1724 ref->level, 0, 1, extent_op); 1725 } else { 1726 BUG(); 1727 } 1728 return ret; 1729 } 1730 1731 /* helper function to actually process a single delayed ref entry */ 1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1733 struct btrfs_delayed_ref_node *node, 1734 struct btrfs_delayed_extent_op *extent_op, 1735 bool insert_reserved) 1736 { 1737 int ret = 0; 1738 1739 if (TRANS_ABORTED(trans)) { 1740 if (insert_reserved) 1741 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1742 return 0; 1743 } 1744 1745 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1746 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1747 ret = run_delayed_tree_ref(trans, node, extent_op, 1748 insert_reserved); 1749 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1750 node->type == BTRFS_SHARED_DATA_REF_KEY) 1751 ret = run_delayed_data_ref(trans, node, extent_op, 1752 insert_reserved); 1753 else 1754 BUG(); 1755 if (ret && insert_reserved) 1756 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1757 if (ret < 0) 1758 btrfs_err(trans->fs_info, 1759 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1760 node->bytenr, node->num_bytes, node->type, 1761 node->action, node->ref_mod, ret); 1762 return ret; 1763 } 1764 1765 static inline struct btrfs_delayed_ref_node * 1766 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1767 { 1768 struct btrfs_delayed_ref_node *ref; 1769 1770 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1771 return NULL; 1772 1773 /* 1774 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1775 * This is to prevent a ref count from going down to zero, which deletes 1776 * the extent item from the extent tree, when there still are references 1777 * to add, which would fail because they would not find the extent item. 1778 */ 1779 if (!list_empty(&head->ref_add_list)) 1780 return list_first_entry(&head->ref_add_list, 1781 struct btrfs_delayed_ref_node, add_list); 1782 1783 ref = rb_entry(rb_first_cached(&head->ref_tree), 1784 struct btrfs_delayed_ref_node, ref_node); 1785 ASSERT(list_empty(&ref->add_list)); 1786 return ref; 1787 } 1788 1789 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1790 struct btrfs_delayed_ref_head *head) 1791 { 1792 spin_lock(&delayed_refs->lock); 1793 head->processing = false; 1794 delayed_refs->num_heads_ready++; 1795 spin_unlock(&delayed_refs->lock); 1796 btrfs_delayed_ref_unlock(head); 1797 } 1798 1799 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1800 struct btrfs_delayed_ref_head *head) 1801 { 1802 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1803 1804 if (!extent_op) 1805 return NULL; 1806 1807 if (head->must_insert_reserved) { 1808 head->extent_op = NULL; 1809 btrfs_free_delayed_extent_op(extent_op); 1810 return NULL; 1811 } 1812 return extent_op; 1813 } 1814 1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1816 struct btrfs_delayed_ref_head *head) 1817 { 1818 struct btrfs_delayed_extent_op *extent_op; 1819 int ret; 1820 1821 extent_op = cleanup_extent_op(head); 1822 if (!extent_op) 1823 return 0; 1824 head->extent_op = NULL; 1825 spin_unlock(&head->lock); 1826 ret = run_delayed_extent_op(trans, head, extent_op); 1827 btrfs_free_delayed_extent_op(extent_op); 1828 return ret ? ret : 1; 1829 } 1830 1831 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1832 struct btrfs_delayed_ref_root *delayed_refs, 1833 struct btrfs_delayed_ref_head *head) 1834 { 1835 int nr_items = 1; /* Dropping this ref head update. */ 1836 1837 /* 1838 * We had csum deletions accounted for in our delayed refs rsv, we need 1839 * to drop the csum leaves for this update from our delayed_refs_rsv. 1840 */ 1841 if (head->total_ref_mod < 0 && head->is_data) { 1842 spin_lock(&delayed_refs->lock); 1843 delayed_refs->pending_csums -= head->num_bytes; 1844 spin_unlock(&delayed_refs->lock); 1845 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1846 } 1847 1848 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1849 } 1850 1851 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1852 struct btrfs_delayed_ref_head *head) 1853 { 1854 1855 struct btrfs_fs_info *fs_info = trans->fs_info; 1856 struct btrfs_delayed_ref_root *delayed_refs; 1857 int ret; 1858 1859 delayed_refs = &trans->transaction->delayed_refs; 1860 1861 ret = run_and_cleanup_extent_op(trans, head); 1862 if (ret < 0) { 1863 unselect_delayed_ref_head(delayed_refs, head); 1864 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1865 return ret; 1866 } else if (ret) { 1867 return ret; 1868 } 1869 1870 /* 1871 * Need to drop our head ref lock and re-acquire the delayed ref lock 1872 * and then re-check to make sure nobody got added. 1873 */ 1874 spin_unlock(&head->lock); 1875 spin_lock(&delayed_refs->lock); 1876 spin_lock(&head->lock); 1877 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1878 spin_unlock(&head->lock); 1879 spin_unlock(&delayed_refs->lock); 1880 return 1; 1881 } 1882 btrfs_delete_ref_head(delayed_refs, head); 1883 spin_unlock(&head->lock); 1884 spin_unlock(&delayed_refs->lock); 1885 1886 if (head->must_insert_reserved) { 1887 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1888 if (head->is_data) { 1889 struct btrfs_root *csum_root; 1890 1891 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1892 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1893 head->num_bytes); 1894 } 1895 } 1896 1897 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1898 1899 trace_run_delayed_ref_head(fs_info, head, 0); 1900 btrfs_delayed_ref_unlock(head); 1901 btrfs_put_delayed_ref_head(head); 1902 return ret; 1903 } 1904 1905 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1906 struct btrfs_trans_handle *trans) 1907 { 1908 struct btrfs_delayed_ref_root *delayed_refs = 1909 &trans->transaction->delayed_refs; 1910 struct btrfs_delayed_ref_head *head = NULL; 1911 int ret; 1912 1913 spin_lock(&delayed_refs->lock); 1914 head = btrfs_select_ref_head(delayed_refs); 1915 if (!head) { 1916 spin_unlock(&delayed_refs->lock); 1917 return head; 1918 } 1919 1920 /* 1921 * Grab the lock that says we are going to process all the refs for 1922 * this head 1923 */ 1924 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1925 spin_unlock(&delayed_refs->lock); 1926 1927 /* 1928 * We may have dropped the spin lock to get the head mutex lock, and 1929 * that might have given someone else time to free the head. If that's 1930 * true, it has been removed from our list and we can move on. 1931 */ 1932 if (ret == -EAGAIN) 1933 head = ERR_PTR(-EAGAIN); 1934 1935 return head; 1936 } 1937 1938 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1939 struct btrfs_delayed_ref_head *locked_ref) 1940 { 1941 struct btrfs_fs_info *fs_info = trans->fs_info; 1942 struct btrfs_delayed_ref_root *delayed_refs; 1943 struct btrfs_delayed_extent_op *extent_op; 1944 struct btrfs_delayed_ref_node *ref; 1945 bool must_insert_reserved; 1946 int ret; 1947 1948 delayed_refs = &trans->transaction->delayed_refs; 1949 1950 lockdep_assert_held(&locked_ref->mutex); 1951 lockdep_assert_held(&locked_ref->lock); 1952 1953 while ((ref = select_delayed_ref(locked_ref))) { 1954 if (ref->seq && 1955 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1956 spin_unlock(&locked_ref->lock); 1957 unselect_delayed_ref_head(delayed_refs, locked_ref); 1958 return -EAGAIN; 1959 } 1960 1961 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1962 RB_CLEAR_NODE(&ref->ref_node); 1963 if (!list_empty(&ref->add_list)) 1964 list_del(&ref->add_list); 1965 /* 1966 * When we play the delayed ref, also correct the ref_mod on 1967 * head 1968 */ 1969 switch (ref->action) { 1970 case BTRFS_ADD_DELAYED_REF: 1971 case BTRFS_ADD_DELAYED_EXTENT: 1972 locked_ref->ref_mod -= ref->ref_mod; 1973 break; 1974 case BTRFS_DROP_DELAYED_REF: 1975 locked_ref->ref_mod += ref->ref_mod; 1976 break; 1977 default: 1978 WARN_ON(1); 1979 } 1980 atomic_dec(&delayed_refs->num_entries); 1981 1982 /* 1983 * Record the must_insert_reserved flag before we drop the 1984 * spin lock. 1985 */ 1986 must_insert_reserved = locked_ref->must_insert_reserved; 1987 locked_ref->must_insert_reserved = false; 1988 1989 extent_op = locked_ref->extent_op; 1990 locked_ref->extent_op = NULL; 1991 spin_unlock(&locked_ref->lock); 1992 1993 ret = run_one_delayed_ref(trans, ref, extent_op, 1994 must_insert_reserved); 1995 1996 btrfs_free_delayed_extent_op(extent_op); 1997 if (ret) { 1998 unselect_delayed_ref_head(delayed_refs, locked_ref); 1999 btrfs_put_delayed_ref(ref); 2000 return ret; 2001 } 2002 2003 btrfs_put_delayed_ref(ref); 2004 cond_resched(); 2005 2006 spin_lock(&locked_ref->lock); 2007 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2008 } 2009 2010 return 0; 2011 } 2012 2013 /* 2014 * Returns 0 on success or if called with an already aborted transaction. 2015 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2016 */ 2017 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2018 unsigned long nr) 2019 { 2020 struct btrfs_fs_info *fs_info = trans->fs_info; 2021 struct btrfs_delayed_ref_root *delayed_refs; 2022 struct btrfs_delayed_ref_head *locked_ref = NULL; 2023 int ret; 2024 unsigned long count = 0; 2025 2026 delayed_refs = &trans->transaction->delayed_refs; 2027 do { 2028 if (!locked_ref) { 2029 locked_ref = btrfs_obtain_ref_head(trans); 2030 if (IS_ERR_OR_NULL(locked_ref)) { 2031 if (PTR_ERR(locked_ref) == -EAGAIN) { 2032 continue; 2033 } else { 2034 break; 2035 } 2036 } 2037 count++; 2038 } 2039 /* 2040 * We need to try and merge add/drops of the same ref since we 2041 * can run into issues with relocate dropping the implicit ref 2042 * and then it being added back again before the drop can 2043 * finish. If we merged anything we need to re-loop so we can 2044 * get a good ref. 2045 * Or we can get node references of the same type that weren't 2046 * merged when created due to bumps in the tree mod seq, and 2047 * we need to merge them to prevent adding an inline extent 2048 * backref before dropping it (triggering a BUG_ON at 2049 * insert_inline_extent_backref()). 2050 */ 2051 spin_lock(&locked_ref->lock); 2052 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2053 2054 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref); 2055 if (ret < 0 && ret != -EAGAIN) { 2056 /* 2057 * Error, btrfs_run_delayed_refs_for_head already 2058 * unlocked everything so just bail out 2059 */ 2060 return ret; 2061 } else if (!ret) { 2062 /* 2063 * Success, perform the usual cleanup of a processed 2064 * head 2065 */ 2066 ret = cleanup_ref_head(trans, locked_ref); 2067 if (ret > 0 ) { 2068 /* We dropped our lock, we need to loop. */ 2069 ret = 0; 2070 continue; 2071 } else if (ret) { 2072 return ret; 2073 } 2074 } 2075 2076 /* 2077 * Either success case or btrfs_run_delayed_refs_for_head 2078 * returned -EAGAIN, meaning we need to select another head 2079 */ 2080 2081 locked_ref = NULL; 2082 cond_resched(); 2083 } while ((nr != -1 && count < nr) || locked_ref); 2084 2085 return 0; 2086 } 2087 2088 #ifdef SCRAMBLE_DELAYED_REFS 2089 /* 2090 * Normally delayed refs get processed in ascending bytenr order. This 2091 * correlates in most cases to the order added. To expose dependencies on this 2092 * order, we start to process the tree in the middle instead of the beginning 2093 */ 2094 static u64 find_middle(struct rb_root *root) 2095 { 2096 struct rb_node *n = root->rb_node; 2097 struct btrfs_delayed_ref_node *entry; 2098 int alt = 1; 2099 u64 middle; 2100 u64 first = 0, last = 0; 2101 2102 n = rb_first(root); 2103 if (n) { 2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2105 first = entry->bytenr; 2106 } 2107 n = rb_last(root); 2108 if (n) { 2109 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2110 last = entry->bytenr; 2111 } 2112 n = root->rb_node; 2113 2114 while (n) { 2115 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2116 WARN_ON(!entry->in_tree); 2117 2118 middle = entry->bytenr; 2119 2120 if (alt) 2121 n = n->rb_left; 2122 else 2123 n = n->rb_right; 2124 2125 alt = 1 - alt; 2126 } 2127 return middle; 2128 } 2129 #endif 2130 2131 /* 2132 * this starts processing the delayed reference count updates and 2133 * extent insertions we have queued up so far. count can be 2134 * 0, which means to process everything in the tree at the start 2135 * of the run (but not newly added entries), or it can be some target 2136 * number you'd like to process. 2137 * 2138 * Returns 0 on success or if called with an aborted transaction 2139 * Returns <0 on error and aborts the transaction 2140 */ 2141 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2142 unsigned long count) 2143 { 2144 struct btrfs_fs_info *fs_info = trans->fs_info; 2145 struct rb_node *node; 2146 struct btrfs_delayed_ref_root *delayed_refs; 2147 struct btrfs_delayed_ref_head *head; 2148 int ret; 2149 int run_all = count == (unsigned long)-1; 2150 2151 /* We'll clean this up in btrfs_cleanup_transaction */ 2152 if (TRANS_ABORTED(trans)) 2153 return 0; 2154 2155 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2156 return 0; 2157 2158 delayed_refs = &trans->transaction->delayed_refs; 2159 if (count == 0) 2160 count = delayed_refs->num_heads_ready; 2161 2162 again: 2163 #ifdef SCRAMBLE_DELAYED_REFS 2164 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2165 #endif 2166 ret = __btrfs_run_delayed_refs(trans, count); 2167 if (ret < 0) { 2168 btrfs_abort_transaction(trans, ret); 2169 return ret; 2170 } 2171 2172 if (run_all) { 2173 btrfs_create_pending_block_groups(trans); 2174 2175 spin_lock(&delayed_refs->lock); 2176 node = rb_first_cached(&delayed_refs->href_root); 2177 if (!node) { 2178 spin_unlock(&delayed_refs->lock); 2179 goto out; 2180 } 2181 head = rb_entry(node, struct btrfs_delayed_ref_head, 2182 href_node); 2183 refcount_inc(&head->refs); 2184 spin_unlock(&delayed_refs->lock); 2185 2186 /* Mutex was contended, block until it's released and retry. */ 2187 mutex_lock(&head->mutex); 2188 mutex_unlock(&head->mutex); 2189 2190 btrfs_put_delayed_ref_head(head); 2191 cond_resched(); 2192 goto again; 2193 } 2194 out: 2195 return 0; 2196 } 2197 2198 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2199 struct extent_buffer *eb, u64 flags) 2200 { 2201 struct btrfs_delayed_extent_op *extent_op; 2202 int level = btrfs_header_level(eb); 2203 int ret; 2204 2205 extent_op = btrfs_alloc_delayed_extent_op(); 2206 if (!extent_op) 2207 return -ENOMEM; 2208 2209 extent_op->flags_to_set = flags; 2210 extent_op->update_flags = true; 2211 extent_op->update_key = false; 2212 extent_op->level = level; 2213 2214 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2215 if (ret) 2216 btrfs_free_delayed_extent_op(extent_op); 2217 return ret; 2218 } 2219 2220 static noinline int check_delayed_ref(struct btrfs_root *root, 2221 struct btrfs_path *path, 2222 u64 objectid, u64 offset, u64 bytenr) 2223 { 2224 struct btrfs_delayed_ref_head *head; 2225 struct btrfs_delayed_ref_node *ref; 2226 struct btrfs_delayed_data_ref *data_ref; 2227 struct btrfs_delayed_ref_root *delayed_refs; 2228 struct btrfs_transaction *cur_trans; 2229 struct rb_node *node; 2230 int ret = 0; 2231 2232 spin_lock(&root->fs_info->trans_lock); 2233 cur_trans = root->fs_info->running_transaction; 2234 if (cur_trans) 2235 refcount_inc(&cur_trans->use_count); 2236 spin_unlock(&root->fs_info->trans_lock); 2237 if (!cur_trans) 2238 return 0; 2239 2240 delayed_refs = &cur_trans->delayed_refs; 2241 spin_lock(&delayed_refs->lock); 2242 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2243 if (!head) { 2244 spin_unlock(&delayed_refs->lock); 2245 btrfs_put_transaction(cur_trans); 2246 return 0; 2247 } 2248 2249 if (!mutex_trylock(&head->mutex)) { 2250 if (path->nowait) { 2251 spin_unlock(&delayed_refs->lock); 2252 btrfs_put_transaction(cur_trans); 2253 return -EAGAIN; 2254 } 2255 2256 refcount_inc(&head->refs); 2257 spin_unlock(&delayed_refs->lock); 2258 2259 btrfs_release_path(path); 2260 2261 /* 2262 * Mutex was contended, block until it's released and let 2263 * caller try again 2264 */ 2265 mutex_lock(&head->mutex); 2266 mutex_unlock(&head->mutex); 2267 btrfs_put_delayed_ref_head(head); 2268 btrfs_put_transaction(cur_trans); 2269 return -EAGAIN; 2270 } 2271 spin_unlock(&delayed_refs->lock); 2272 2273 spin_lock(&head->lock); 2274 /* 2275 * XXX: We should replace this with a proper search function in the 2276 * future. 2277 */ 2278 for (node = rb_first_cached(&head->ref_tree); node; 2279 node = rb_next(node)) { 2280 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2281 /* If it's a shared ref we know a cross reference exists */ 2282 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2283 ret = 1; 2284 break; 2285 } 2286 2287 data_ref = btrfs_delayed_node_to_data_ref(ref); 2288 2289 /* 2290 * If our ref doesn't match the one we're currently looking at 2291 * then we have a cross reference. 2292 */ 2293 if (data_ref->root != root->root_key.objectid || 2294 data_ref->objectid != objectid || 2295 data_ref->offset != offset) { 2296 ret = 1; 2297 break; 2298 } 2299 } 2300 spin_unlock(&head->lock); 2301 mutex_unlock(&head->mutex); 2302 btrfs_put_transaction(cur_trans); 2303 return ret; 2304 } 2305 2306 static noinline int check_committed_ref(struct btrfs_root *root, 2307 struct btrfs_path *path, 2308 u64 objectid, u64 offset, u64 bytenr, 2309 bool strict) 2310 { 2311 struct btrfs_fs_info *fs_info = root->fs_info; 2312 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2313 struct extent_buffer *leaf; 2314 struct btrfs_extent_data_ref *ref; 2315 struct btrfs_extent_inline_ref *iref; 2316 struct btrfs_extent_item *ei; 2317 struct btrfs_key key; 2318 u32 item_size; 2319 int type; 2320 int ret; 2321 2322 key.objectid = bytenr; 2323 key.offset = (u64)-1; 2324 key.type = BTRFS_EXTENT_ITEM_KEY; 2325 2326 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2327 if (ret < 0) 2328 goto out; 2329 BUG_ON(ret == 0); /* Corruption */ 2330 2331 ret = -ENOENT; 2332 if (path->slots[0] == 0) 2333 goto out; 2334 2335 path->slots[0]--; 2336 leaf = path->nodes[0]; 2337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2338 2339 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2340 goto out; 2341 2342 ret = 1; 2343 item_size = btrfs_item_size(leaf, path->slots[0]); 2344 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2345 2346 /* If extent item has more than 1 inline ref then it's shared */ 2347 if (item_size != sizeof(*ei) + 2348 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2349 goto out; 2350 2351 /* 2352 * If extent created before last snapshot => it's shared unless the 2353 * snapshot has been deleted. Use the heuristic if strict is false. 2354 */ 2355 if (!strict && 2356 (btrfs_extent_generation(leaf, ei) <= 2357 btrfs_root_last_snapshot(&root->root_item))) 2358 goto out; 2359 2360 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2361 2362 /* If this extent has SHARED_DATA_REF then it's shared */ 2363 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2364 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2365 goto out; 2366 2367 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2368 if (btrfs_extent_refs(leaf, ei) != 2369 btrfs_extent_data_ref_count(leaf, ref) || 2370 btrfs_extent_data_ref_root(leaf, ref) != 2371 root->root_key.objectid || 2372 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2373 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2374 goto out; 2375 2376 ret = 0; 2377 out: 2378 return ret; 2379 } 2380 2381 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2382 u64 bytenr, bool strict, struct btrfs_path *path) 2383 { 2384 int ret; 2385 2386 do { 2387 ret = check_committed_ref(root, path, objectid, 2388 offset, bytenr, strict); 2389 if (ret && ret != -ENOENT) 2390 goto out; 2391 2392 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2393 } while (ret == -EAGAIN); 2394 2395 out: 2396 btrfs_release_path(path); 2397 if (btrfs_is_data_reloc_root(root)) 2398 WARN_ON(ret > 0); 2399 return ret; 2400 } 2401 2402 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2403 struct btrfs_root *root, 2404 struct extent_buffer *buf, 2405 int full_backref, int inc) 2406 { 2407 struct btrfs_fs_info *fs_info = root->fs_info; 2408 u64 bytenr; 2409 u64 num_bytes; 2410 u64 parent; 2411 u64 ref_root; 2412 u32 nritems; 2413 struct btrfs_key key; 2414 struct btrfs_file_extent_item *fi; 2415 struct btrfs_ref generic_ref = { 0 }; 2416 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2417 int i; 2418 int action; 2419 int level; 2420 int ret = 0; 2421 2422 if (btrfs_is_testing(fs_info)) 2423 return 0; 2424 2425 ref_root = btrfs_header_owner(buf); 2426 nritems = btrfs_header_nritems(buf); 2427 level = btrfs_header_level(buf); 2428 2429 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2430 return 0; 2431 2432 if (full_backref) 2433 parent = buf->start; 2434 else 2435 parent = 0; 2436 if (inc) 2437 action = BTRFS_ADD_DELAYED_REF; 2438 else 2439 action = BTRFS_DROP_DELAYED_REF; 2440 2441 for (i = 0; i < nritems; i++) { 2442 if (level == 0) { 2443 btrfs_item_key_to_cpu(buf, &key, i); 2444 if (key.type != BTRFS_EXTENT_DATA_KEY) 2445 continue; 2446 fi = btrfs_item_ptr(buf, i, 2447 struct btrfs_file_extent_item); 2448 if (btrfs_file_extent_type(buf, fi) == 2449 BTRFS_FILE_EXTENT_INLINE) 2450 continue; 2451 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2452 if (bytenr == 0) 2453 continue; 2454 2455 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2456 key.offset -= btrfs_file_extent_offset(buf, fi); 2457 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2458 num_bytes, parent); 2459 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2460 key.offset, root->root_key.objectid, 2461 for_reloc); 2462 if (inc) 2463 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2464 else 2465 ret = btrfs_free_extent(trans, &generic_ref); 2466 if (ret) 2467 goto fail; 2468 } else { 2469 bytenr = btrfs_node_blockptr(buf, i); 2470 num_bytes = fs_info->nodesize; 2471 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2472 num_bytes, parent); 2473 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2474 root->root_key.objectid, for_reloc); 2475 if (inc) 2476 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2477 else 2478 ret = btrfs_free_extent(trans, &generic_ref); 2479 if (ret) 2480 goto fail; 2481 } 2482 } 2483 return 0; 2484 fail: 2485 return ret; 2486 } 2487 2488 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2489 struct extent_buffer *buf, int full_backref) 2490 { 2491 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2492 } 2493 2494 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2495 struct extent_buffer *buf, int full_backref) 2496 { 2497 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2498 } 2499 2500 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2501 { 2502 struct btrfs_fs_info *fs_info = root->fs_info; 2503 u64 flags; 2504 u64 ret; 2505 2506 if (data) 2507 flags = BTRFS_BLOCK_GROUP_DATA; 2508 else if (root == fs_info->chunk_root) 2509 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2510 else 2511 flags = BTRFS_BLOCK_GROUP_METADATA; 2512 2513 ret = btrfs_get_alloc_profile(fs_info, flags); 2514 return ret; 2515 } 2516 2517 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2518 { 2519 struct rb_node *leftmost; 2520 u64 bytenr = 0; 2521 2522 read_lock(&fs_info->block_group_cache_lock); 2523 /* Get the block group with the lowest logical start address. */ 2524 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2525 if (leftmost) { 2526 struct btrfs_block_group *bg; 2527 2528 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2529 bytenr = bg->start; 2530 } 2531 read_unlock(&fs_info->block_group_cache_lock); 2532 2533 return bytenr; 2534 } 2535 2536 static int pin_down_extent(struct btrfs_trans_handle *trans, 2537 struct btrfs_block_group *cache, 2538 u64 bytenr, u64 num_bytes, int reserved) 2539 { 2540 struct btrfs_fs_info *fs_info = cache->fs_info; 2541 2542 spin_lock(&cache->space_info->lock); 2543 spin_lock(&cache->lock); 2544 cache->pinned += num_bytes; 2545 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2546 num_bytes); 2547 if (reserved) { 2548 cache->reserved -= num_bytes; 2549 cache->space_info->bytes_reserved -= num_bytes; 2550 } 2551 spin_unlock(&cache->lock); 2552 spin_unlock(&cache->space_info->lock); 2553 2554 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2555 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2556 return 0; 2557 } 2558 2559 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2560 u64 bytenr, u64 num_bytes, int reserved) 2561 { 2562 struct btrfs_block_group *cache; 2563 2564 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2565 BUG_ON(!cache); /* Logic error */ 2566 2567 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2568 2569 btrfs_put_block_group(cache); 2570 return 0; 2571 } 2572 2573 /* 2574 * this function must be called within transaction 2575 */ 2576 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2577 u64 bytenr, u64 num_bytes) 2578 { 2579 struct btrfs_block_group *cache; 2580 int ret; 2581 2582 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2583 if (!cache) 2584 return -EINVAL; 2585 2586 /* 2587 * Fully cache the free space first so that our pin removes the free space 2588 * from the cache. 2589 */ 2590 ret = btrfs_cache_block_group(cache, true); 2591 if (ret) 2592 goto out; 2593 2594 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2595 2596 /* remove us from the free space cache (if we're there at all) */ 2597 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2598 out: 2599 btrfs_put_block_group(cache); 2600 return ret; 2601 } 2602 2603 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2604 u64 start, u64 num_bytes) 2605 { 2606 int ret; 2607 struct btrfs_block_group *block_group; 2608 2609 block_group = btrfs_lookup_block_group(fs_info, start); 2610 if (!block_group) 2611 return -EINVAL; 2612 2613 ret = btrfs_cache_block_group(block_group, true); 2614 if (ret) 2615 goto out; 2616 2617 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2618 out: 2619 btrfs_put_block_group(block_group); 2620 return ret; 2621 } 2622 2623 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2624 { 2625 struct btrfs_fs_info *fs_info = eb->fs_info; 2626 struct btrfs_file_extent_item *item; 2627 struct btrfs_key key; 2628 int found_type; 2629 int i; 2630 int ret = 0; 2631 2632 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2633 return 0; 2634 2635 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2636 btrfs_item_key_to_cpu(eb, &key, i); 2637 if (key.type != BTRFS_EXTENT_DATA_KEY) 2638 continue; 2639 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2640 found_type = btrfs_file_extent_type(eb, item); 2641 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2642 continue; 2643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2644 continue; 2645 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2646 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2647 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2648 if (ret) 2649 break; 2650 } 2651 2652 return ret; 2653 } 2654 2655 static void 2656 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2657 { 2658 atomic_inc(&bg->reservations); 2659 } 2660 2661 /* 2662 * Returns the free cluster for the given space info and sets empty_cluster to 2663 * what it should be based on the mount options. 2664 */ 2665 static struct btrfs_free_cluster * 2666 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2667 struct btrfs_space_info *space_info, u64 *empty_cluster) 2668 { 2669 struct btrfs_free_cluster *ret = NULL; 2670 2671 *empty_cluster = 0; 2672 if (btrfs_mixed_space_info(space_info)) 2673 return ret; 2674 2675 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2676 ret = &fs_info->meta_alloc_cluster; 2677 if (btrfs_test_opt(fs_info, SSD)) 2678 *empty_cluster = SZ_2M; 2679 else 2680 *empty_cluster = SZ_64K; 2681 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2682 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2683 *empty_cluster = SZ_2M; 2684 ret = &fs_info->data_alloc_cluster; 2685 } 2686 2687 return ret; 2688 } 2689 2690 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2691 u64 start, u64 end, 2692 const bool return_free_space) 2693 { 2694 struct btrfs_block_group *cache = NULL; 2695 struct btrfs_space_info *space_info; 2696 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2697 struct btrfs_free_cluster *cluster = NULL; 2698 u64 len; 2699 u64 total_unpinned = 0; 2700 u64 empty_cluster = 0; 2701 bool readonly; 2702 2703 while (start <= end) { 2704 readonly = false; 2705 if (!cache || 2706 start >= cache->start + cache->length) { 2707 if (cache) 2708 btrfs_put_block_group(cache); 2709 total_unpinned = 0; 2710 cache = btrfs_lookup_block_group(fs_info, start); 2711 BUG_ON(!cache); /* Logic error */ 2712 2713 cluster = fetch_cluster_info(fs_info, 2714 cache->space_info, 2715 &empty_cluster); 2716 empty_cluster <<= 1; 2717 } 2718 2719 len = cache->start + cache->length - start; 2720 len = min(len, end + 1 - start); 2721 2722 if (return_free_space) 2723 btrfs_add_free_space(cache, start, len); 2724 2725 start += len; 2726 total_unpinned += len; 2727 space_info = cache->space_info; 2728 2729 /* 2730 * If this space cluster has been marked as fragmented and we've 2731 * unpinned enough in this block group to potentially allow a 2732 * cluster to be created inside of it go ahead and clear the 2733 * fragmented check. 2734 */ 2735 if (cluster && cluster->fragmented && 2736 total_unpinned > empty_cluster) { 2737 spin_lock(&cluster->lock); 2738 cluster->fragmented = 0; 2739 spin_unlock(&cluster->lock); 2740 } 2741 2742 spin_lock(&space_info->lock); 2743 spin_lock(&cache->lock); 2744 cache->pinned -= len; 2745 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2746 space_info->max_extent_size = 0; 2747 if (cache->ro) { 2748 space_info->bytes_readonly += len; 2749 readonly = true; 2750 } else if (btrfs_is_zoned(fs_info)) { 2751 /* Need reset before reusing in a zoned block group */ 2752 space_info->bytes_zone_unusable += len; 2753 readonly = true; 2754 } 2755 spin_unlock(&cache->lock); 2756 if (!readonly && return_free_space && 2757 global_rsv->space_info == space_info) { 2758 spin_lock(&global_rsv->lock); 2759 if (!global_rsv->full) { 2760 u64 to_add = min(len, global_rsv->size - 2761 global_rsv->reserved); 2762 2763 global_rsv->reserved += to_add; 2764 btrfs_space_info_update_bytes_may_use(fs_info, 2765 space_info, to_add); 2766 if (global_rsv->reserved >= global_rsv->size) 2767 global_rsv->full = 1; 2768 len -= to_add; 2769 } 2770 spin_unlock(&global_rsv->lock); 2771 } 2772 /* Add to any tickets we may have */ 2773 if (!readonly && return_free_space && len) 2774 btrfs_try_granting_tickets(fs_info, space_info); 2775 spin_unlock(&space_info->lock); 2776 } 2777 2778 if (cache) 2779 btrfs_put_block_group(cache); 2780 return 0; 2781 } 2782 2783 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2784 { 2785 struct btrfs_fs_info *fs_info = trans->fs_info; 2786 struct btrfs_block_group *block_group, *tmp; 2787 struct list_head *deleted_bgs; 2788 struct extent_io_tree *unpin; 2789 u64 start; 2790 u64 end; 2791 int ret; 2792 2793 unpin = &trans->transaction->pinned_extents; 2794 2795 while (!TRANS_ABORTED(trans)) { 2796 struct extent_state *cached_state = NULL; 2797 2798 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2799 if (!find_first_extent_bit(unpin, 0, &start, &end, 2800 EXTENT_DIRTY, &cached_state)) { 2801 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2802 break; 2803 } 2804 2805 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2806 ret = btrfs_discard_extent(fs_info, start, 2807 end + 1 - start, NULL); 2808 2809 clear_extent_dirty(unpin, start, end, &cached_state); 2810 unpin_extent_range(fs_info, start, end, true); 2811 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2812 free_extent_state(cached_state); 2813 cond_resched(); 2814 } 2815 2816 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2817 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2818 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2819 } 2820 2821 /* 2822 * Transaction is finished. We don't need the lock anymore. We 2823 * do need to clean up the block groups in case of a transaction 2824 * abort. 2825 */ 2826 deleted_bgs = &trans->transaction->deleted_bgs; 2827 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2828 u64 trimmed = 0; 2829 2830 ret = -EROFS; 2831 if (!TRANS_ABORTED(trans)) 2832 ret = btrfs_discard_extent(fs_info, 2833 block_group->start, 2834 block_group->length, 2835 &trimmed); 2836 2837 list_del_init(&block_group->bg_list); 2838 btrfs_unfreeze_block_group(block_group); 2839 btrfs_put_block_group(block_group); 2840 2841 if (ret) { 2842 const char *errstr = btrfs_decode_error(ret); 2843 btrfs_warn(fs_info, 2844 "discard failed while removing blockgroup: errno=%d %s", 2845 ret, errstr); 2846 } 2847 } 2848 2849 return 0; 2850 } 2851 2852 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2853 u64 bytenr, u64 num_bytes, bool is_data) 2854 { 2855 int ret; 2856 2857 if (is_data) { 2858 struct btrfs_root *csum_root; 2859 2860 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2861 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2862 if (ret) { 2863 btrfs_abort_transaction(trans, ret); 2864 return ret; 2865 } 2866 } 2867 2868 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2869 if (ret) { 2870 btrfs_abort_transaction(trans, ret); 2871 return ret; 2872 } 2873 2874 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2875 if (ret) 2876 btrfs_abort_transaction(trans, ret); 2877 2878 return ret; 2879 } 2880 2881 #define abort_and_dump(trans, path, fmt, args...) \ 2882 ({ \ 2883 btrfs_abort_transaction(trans, -EUCLEAN); \ 2884 btrfs_print_leaf(path->nodes[0]); \ 2885 btrfs_crit(trans->fs_info, fmt, ##args); \ 2886 }) 2887 2888 /* 2889 * Drop one or more refs of @node. 2890 * 2891 * 1. Locate the extent refs. 2892 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2893 * Locate it, then reduce the refs number or remove the ref line completely. 2894 * 2895 * 2. Update the refs count in EXTENT/METADATA_ITEM 2896 * 2897 * Inline backref case: 2898 * 2899 * in extent tree we have: 2900 * 2901 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2902 * refs 2 gen 6 flags DATA 2903 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2904 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2905 * 2906 * This function gets called with: 2907 * 2908 * node->bytenr = 13631488 2909 * node->num_bytes = 1048576 2910 * root_objectid = FS_TREE 2911 * owner_objectid = 257 2912 * owner_offset = 0 2913 * refs_to_drop = 1 2914 * 2915 * Then we should get some like: 2916 * 2917 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2918 * refs 1 gen 6 flags DATA 2919 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2920 * 2921 * Keyed backref case: 2922 * 2923 * in extent tree we have: 2924 * 2925 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2926 * refs 754 gen 6 flags DATA 2927 * [...] 2928 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2929 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2930 * 2931 * This function get called with: 2932 * 2933 * node->bytenr = 13631488 2934 * node->num_bytes = 1048576 2935 * root_objectid = FS_TREE 2936 * owner_objectid = 866 2937 * owner_offset = 0 2938 * refs_to_drop = 1 2939 * 2940 * Then we should get some like: 2941 * 2942 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2943 * refs 753 gen 6 flags DATA 2944 * 2945 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2946 */ 2947 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2948 struct btrfs_delayed_ref_node *node, u64 parent, 2949 u64 root_objectid, u64 owner_objectid, 2950 u64 owner_offset, int refs_to_drop, 2951 struct btrfs_delayed_extent_op *extent_op) 2952 { 2953 struct btrfs_fs_info *info = trans->fs_info; 2954 struct btrfs_key key; 2955 struct btrfs_path *path; 2956 struct btrfs_root *extent_root; 2957 struct extent_buffer *leaf; 2958 struct btrfs_extent_item *ei; 2959 struct btrfs_extent_inline_ref *iref; 2960 int ret; 2961 int is_data; 2962 int extent_slot = 0; 2963 int found_extent = 0; 2964 int num_to_del = 1; 2965 u32 item_size; 2966 u64 refs; 2967 u64 bytenr = node->bytenr; 2968 u64 num_bytes = node->num_bytes; 2969 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2970 2971 extent_root = btrfs_extent_root(info, bytenr); 2972 ASSERT(extent_root); 2973 2974 path = btrfs_alloc_path(); 2975 if (!path) 2976 return -ENOMEM; 2977 2978 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2979 2980 if (!is_data && refs_to_drop != 1) { 2981 btrfs_crit(info, 2982 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2983 node->bytenr, refs_to_drop); 2984 ret = -EINVAL; 2985 btrfs_abort_transaction(trans, ret); 2986 goto out; 2987 } 2988 2989 if (is_data) 2990 skinny_metadata = false; 2991 2992 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2993 parent, root_objectid, owner_objectid, 2994 owner_offset); 2995 if (ret == 0) { 2996 /* 2997 * Either the inline backref or the SHARED_DATA_REF/ 2998 * SHARED_BLOCK_REF is found 2999 * 3000 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3001 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3002 */ 3003 extent_slot = path->slots[0]; 3004 while (extent_slot >= 0) { 3005 btrfs_item_key_to_cpu(path->nodes[0], &key, 3006 extent_slot); 3007 if (key.objectid != bytenr) 3008 break; 3009 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3010 key.offset == num_bytes) { 3011 found_extent = 1; 3012 break; 3013 } 3014 if (key.type == BTRFS_METADATA_ITEM_KEY && 3015 key.offset == owner_objectid) { 3016 found_extent = 1; 3017 break; 3018 } 3019 3020 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3021 if (path->slots[0] - extent_slot > 5) 3022 break; 3023 extent_slot--; 3024 } 3025 3026 if (!found_extent) { 3027 if (iref) { 3028 abort_and_dump(trans, path, 3029 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3030 path->slots[0]); 3031 ret = -EUCLEAN; 3032 goto out; 3033 } 3034 /* Must be SHARED_* item, remove the backref first */ 3035 ret = remove_extent_backref(trans, extent_root, path, 3036 NULL, refs_to_drop, is_data); 3037 if (ret) { 3038 btrfs_abort_transaction(trans, ret); 3039 goto out; 3040 } 3041 btrfs_release_path(path); 3042 3043 /* Slow path to locate EXTENT/METADATA_ITEM */ 3044 key.objectid = bytenr; 3045 key.type = BTRFS_EXTENT_ITEM_KEY; 3046 key.offset = num_bytes; 3047 3048 if (!is_data && skinny_metadata) { 3049 key.type = BTRFS_METADATA_ITEM_KEY; 3050 key.offset = owner_objectid; 3051 } 3052 3053 ret = btrfs_search_slot(trans, extent_root, 3054 &key, path, -1, 1); 3055 if (ret > 0 && skinny_metadata && path->slots[0]) { 3056 /* 3057 * Couldn't find our skinny metadata item, 3058 * see if we have ye olde extent item. 3059 */ 3060 path->slots[0]--; 3061 btrfs_item_key_to_cpu(path->nodes[0], &key, 3062 path->slots[0]); 3063 if (key.objectid == bytenr && 3064 key.type == BTRFS_EXTENT_ITEM_KEY && 3065 key.offset == num_bytes) 3066 ret = 0; 3067 } 3068 3069 if (ret > 0 && skinny_metadata) { 3070 skinny_metadata = false; 3071 key.objectid = bytenr; 3072 key.type = BTRFS_EXTENT_ITEM_KEY; 3073 key.offset = num_bytes; 3074 btrfs_release_path(path); 3075 ret = btrfs_search_slot(trans, extent_root, 3076 &key, path, -1, 1); 3077 } 3078 3079 if (ret) { 3080 if (ret > 0) 3081 btrfs_print_leaf(path->nodes[0]); 3082 btrfs_err(info, 3083 "umm, got %d back from search, was looking for %llu, slot %d", 3084 ret, bytenr, path->slots[0]); 3085 } 3086 if (ret < 0) { 3087 btrfs_abort_transaction(trans, ret); 3088 goto out; 3089 } 3090 extent_slot = path->slots[0]; 3091 } 3092 } else if (WARN_ON(ret == -ENOENT)) { 3093 abort_and_dump(trans, path, 3094 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3095 bytenr, parent, root_objectid, owner_objectid, 3096 owner_offset, path->slots[0]); 3097 goto out; 3098 } else { 3099 btrfs_abort_transaction(trans, ret); 3100 goto out; 3101 } 3102 3103 leaf = path->nodes[0]; 3104 item_size = btrfs_item_size(leaf, extent_slot); 3105 if (unlikely(item_size < sizeof(*ei))) { 3106 ret = -EUCLEAN; 3107 btrfs_err(trans->fs_info, 3108 "unexpected extent item size, has %u expect >= %zu", 3109 item_size, sizeof(*ei)); 3110 btrfs_abort_transaction(trans, ret); 3111 goto out; 3112 } 3113 ei = btrfs_item_ptr(leaf, extent_slot, 3114 struct btrfs_extent_item); 3115 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3116 key.type == BTRFS_EXTENT_ITEM_KEY) { 3117 struct btrfs_tree_block_info *bi; 3118 3119 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3120 abort_and_dump(trans, path, 3121 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3122 key.objectid, key.type, key.offset, 3123 path->slots[0], owner_objectid, item_size, 3124 sizeof(*ei) + sizeof(*bi)); 3125 ret = -EUCLEAN; 3126 goto out; 3127 } 3128 bi = (struct btrfs_tree_block_info *)(ei + 1); 3129 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3130 } 3131 3132 refs = btrfs_extent_refs(leaf, ei); 3133 if (refs < refs_to_drop) { 3134 abort_and_dump(trans, path, 3135 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3136 refs_to_drop, refs, bytenr, path->slots[0]); 3137 ret = -EUCLEAN; 3138 goto out; 3139 } 3140 refs -= refs_to_drop; 3141 3142 if (refs > 0) { 3143 if (extent_op) 3144 __run_delayed_extent_op(extent_op, leaf, ei); 3145 /* 3146 * In the case of inline back ref, reference count will 3147 * be updated by remove_extent_backref 3148 */ 3149 if (iref) { 3150 if (!found_extent) { 3151 abort_and_dump(trans, path, 3152 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3153 path->slots[0]); 3154 ret = -EUCLEAN; 3155 goto out; 3156 } 3157 } else { 3158 btrfs_set_extent_refs(leaf, ei, refs); 3159 btrfs_mark_buffer_dirty(trans, leaf); 3160 } 3161 if (found_extent) { 3162 ret = remove_extent_backref(trans, extent_root, path, 3163 iref, refs_to_drop, is_data); 3164 if (ret) { 3165 btrfs_abort_transaction(trans, ret); 3166 goto out; 3167 } 3168 } 3169 } else { 3170 /* In this branch refs == 1 */ 3171 if (found_extent) { 3172 if (is_data && refs_to_drop != 3173 extent_data_ref_count(path, iref)) { 3174 abort_and_dump(trans, path, 3175 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3176 extent_data_ref_count(path, iref), 3177 refs_to_drop, path->slots[0]); 3178 ret = -EUCLEAN; 3179 goto out; 3180 } 3181 if (iref) { 3182 if (path->slots[0] != extent_slot) { 3183 abort_and_dump(trans, path, 3184 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3185 key.objectid, key.type, 3186 key.offset, path->slots[0]); 3187 ret = -EUCLEAN; 3188 goto out; 3189 } 3190 } else { 3191 /* 3192 * No inline ref, we must be at SHARED_* item, 3193 * And it's single ref, it must be: 3194 * | extent_slot ||extent_slot + 1| 3195 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3196 */ 3197 if (path->slots[0] != extent_slot + 1) { 3198 abort_and_dump(trans, path, 3199 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3200 path->slots[0]); 3201 ret = -EUCLEAN; 3202 goto out; 3203 } 3204 path->slots[0] = extent_slot; 3205 num_to_del = 2; 3206 } 3207 } 3208 3209 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3210 num_to_del); 3211 if (ret) { 3212 btrfs_abort_transaction(trans, ret); 3213 goto out; 3214 } 3215 btrfs_release_path(path); 3216 3217 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3218 } 3219 btrfs_release_path(path); 3220 3221 out: 3222 btrfs_free_path(path); 3223 return ret; 3224 } 3225 3226 /* 3227 * when we free an block, it is possible (and likely) that we free the last 3228 * delayed ref for that extent as well. This searches the delayed ref tree for 3229 * a given extent, and if there are no other delayed refs to be processed, it 3230 * removes it from the tree. 3231 */ 3232 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3233 u64 bytenr) 3234 { 3235 struct btrfs_delayed_ref_head *head; 3236 struct btrfs_delayed_ref_root *delayed_refs; 3237 int ret = 0; 3238 3239 delayed_refs = &trans->transaction->delayed_refs; 3240 spin_lock(&delayed_refs->lock); 3241 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3242 if (!head) 3243 goto out_delayed_unlock; 3244 3245 spin_lock(&head->lock); 3246 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3247 goto out; 3248 3249 if (cleanup_extent_op(head) != NULL) 3250 goto out; 3251 3252 /* 3253 * waiting for the lock here would deadlock. If someone else has it 3254 * locked they are already in the process of dropping it anyway 3255 */ 3256 if (!mutex_trylock(&head->mutex)) 3257 goto out; 3258 3259 btrfs_delete_ref_head(delayed_refs, head); 3260 head->processing = false; 3261 3262 spin_unlock(&head->lock); 3263 spin_unlock(&delayed_refs->lock); 3264 3265 BUG_ON(head->extent_op); 3266 if (head->must_insert_reserved) 3267 ret = 1; 3268 3269 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3270 mutex_unlock(&head->mutex); 3271 btrfs_put_delayed_ref_head(head); 3272 return ret; 3273 out: 3274 spin_unlock(&head->lock); 3275 3276 out_delayed_unlock: 3277 spin_unlock(&delayed_refs->lock); 3278 return 0; 3279 } 3280 3281 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3282 u64 root_id, 3283 struct extent_buffer *buf, 3284 u64 parent, int last_ref) 3285 { 3286 struct btrfs_fs_info *fs_info = trans->fs_info; 3287 struct btrfs_ref generic_ref = { 0 }; 3288 int ret; 3289 3290 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3291 buf->start, buf->len, parent); 3292 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3293 root_id, 0, false); 3294 3295 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3296 btrfs_ref_tree_mod(fs_info, &generic_ref); 3297 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3298 BUG_ON(ret); /* -ENOMEM */ 3299 } 3300 3301 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3302 struct btrfs_block_group *cache; 3303 bool must_pin = false; 3304 3305 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3306 ret = check_ref_cleanup(trans, buf->start); 3307 if (!ret) { 3308 btrfs_redirty_list_add(trans->transaction, buf); 3309 goto out; 3310 } 3311 } 3312 3313 cache = btrfs_lookup_block_group(fs_info, buf->start); 3314 3315 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3316 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3317 btrfs_put_block_group(cache); 3318 goto out; 3319 } 3320 3321 /* 3322 * If there are tree mod log users we may have recorded mod log 3323 * operations for this node. If we re-allocate this node we 3324 * could replay operations on this node that happened when it 3325 * existed in a completely different root. For example if it 3326 * was part of root A, then was reallocated to root B, and we 3327 * are doing a btrfs_old_search_slot(root b), we could replay 3328 * operations that happened when the block was part of root A, 3329 * giving us an inconsistent view of the btree. 3330 * 3331 * We are safe from races here because at this point no other 3332 * node or root points to this extent buffer, so if after this 3333 * check a new tree mod log user joins we will not have an 3334 * existing log of operations on this node that we have to 3335 * contend with. 3336 */ 3337 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3338 must_pin = true; 3339 3340 if (must_pin || btrfs_is_zoned(fs_info)) { 3341 btrfs_redirty_list_add(trans->transaction, buf); 3342 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3343 btrfs_put_block_group(cache); 3344 goto out; 3345 } 3346 3347 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3348 3349 btrfs_add_free_space(cache, buf->start, buf->len); 3350 btrfs_free_reserved_bytes(cache, buf->len, 0); 3351 btrfs_put_block_group(cache); 3352 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3353 } 3354 out: 3355 if (last_ref) { 3356 /* 3357 * Deleting the buffer, clear the corrupt flag since it doesn't 3358 * matter anymore. 3359 */ 3360 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3361 } 3362 } 3363 3364 /* Can return -ENOMEM */ 3365 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3366 { 3367 struct btrfs_fs_info *fs_info = trans->fs_info; 3368 int ret; 3369 3370 if (btrfs_is_testing(fs_info)) 3371 return 0; 3372 3373 /* 3374 * tree log blocks never actually go into the extent allocation 3375 * tree, just update pinning info and exit early. 3376 */ 3377 if ((ref->type == BTRFS_REF_METADATA && 3378 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3379 (ref->type == BTRFS_REF_DATA && 3380 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3381 /* unlocks the pinned mutex */ 3382 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3383 ret = 0; 3384 } else if (ref->type == BTRFS_REF_METADATA) { 3385 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3386 } else { 3387 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3388 } 3389 3390 if (!((ref->type == BTRFS_REF_METADATA && 3391 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3392 (ref->type == BTRFS_REF_DATA && 3393 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3394 btrfs_ref_tree_mod(fs_info, ref); 3395 3396 return ret; 3397 } 3398 3399 enum btrfs_loop_type { 3400 /* 3401 * Start caching block groups but do not wait for progress or for them 3402 * to be done. 3403 */ 3404 LOOP_CACHING_NOWAIT, 3405 3406 /* 3407 * Wait for the block group free_space >= the space we're waiting for if 3408 * the block group isn't cached. 3409 */ 3410 LOOP_CACHING_WAIT, 3411 3412 /* 3413 * Allow allocations to happen from block groups that do not yet have a 3414 * size classification. 3415 */ 3416 LOOP_UNSET_SIZE_CLASS, 3417 3418 /* 3419 * Allocate a chunk and then retry the allocation. 3420 */ 3421 LOOP_ALLOC_CHUNK, 3422 3423 /* 3424 * Ignore the size class restrictions for this allocation. 3425 */ 3426 LOOP_WRONG_SIZE_CLASS, 3427 3428 /* 3429 * Ignore the empty size, only try to allocate the number of bytes 3430 * needed for this allocation. 3431 */ 3432 LOOP_NO_EMPTY_SIZE, 3433 }; 3434 3435 static inline void 3436 btrfs_lock_block_group(struct btrfs_block_group *cache, 3437 int delalloc) 3438 { 3439 if (delalloc) 3440 down_read(&cache->data_rwsem); 3441 } 3442 3443 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3444 int delalloc) 3445 { 3446 btrfs_get_block_group(cache); 3447 if (delalloc) 3448 down_read(&cache->data_rwsem); 3449 } 3450 3451 static struct btrfs_block_group *btrfs_lock_cluster( 3452 struct btrfs_block_group *block_group, 3453 struct btrfs_free_cluster *cluster, 3454 int delalloc) 3455 __acquires(&cluster->refill_lock) 3456 { 3457 struct btrfs_block_group *used_bg = NULL; 3458 3459 spin_lock(&cluster->refill_lock); 3460 while (1) { 3461 used_bg = cluster->block_group; 3462 if (!used_bg) 3463 return NULL; 3464 3465 if (used_bg == block_group) 3466 return used_bg; 3467 3468 btrfs_get_block_group(used_bg); 3469 3470 if (!delalloc) 3471 return used_bg; 3472 3473 if (down_read_trylock(&used_bg->data_rwsem)) 3474 return used_bg; 3475 3476 spin_unlock(&cluster->refill_lock); 3477 3478 /* We should only have one-level nested. */ 3479 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3480 3481 spin_lock(&cluster->refill_lock); 3482 if (used_bg == cluster->block_group) 3483 return used_bg; 3484 3485 up_read(&used_bg->data_rwsem); 3486 btrfs_put_block_group(used_bg); 3487 } 3488 } 3489 3490 static inline void 3491 btrfs_release_block_group(struct btrfs_block_group *cache, 3492 int delalloc) 3493 { 3494 if (delalloc) 3495 up_read(&cache->data_rwsem); 3496 btrfs_put_block_group(cache); 3497 } 3498 3499 /* 3500 * Helper function for find_free_extent(). 3501 * 3502 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3503 * Return >0 to inform caller that we find nothing 3504 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3505 */ 3506 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3507 struct find_free_extent_ctl *ffe_ctl, 3508 struct btrfs_block_group **cluster_bg_ret) 3509 { 3510 struct btrfs_block_group *cluster_bg; 3511 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3512 u64 aligned_cluster; 3513 u64 offset; 3514 int ret; 3515 3516 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3517 if (!cluster_bg) 3518 goto refill_cluster; 3519 if (cluster_bg != bg && (cluster_bg->ro || 3520 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3521 goto release_cluster; 3522 3523 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3524 ffe_ctl->num_bytes, cluster_bg->start, 3525 &ffe_ctl->max_extent_size); 3526 if (offset) { 3527 /* We have a block, we're done */ 3528 spin_unlock(&last_ptr->refill_lock); 3529 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3530 *cluster_bg_ret = cluster_bg; 3531 ffe_ctl->found_offset = offset; 3532 return 0; 3533 } 3534 WARN_ON(last_ptr->block_group != cluster_bg); 3535 3536 release_cluster: 3537 /* 3538 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3539 * lets just skip it and let the allocator find whatever block it can 3540 * find. If we reach this point, we will have tried the cluster 3541 * allocator plenty of times and not have found anything, so we are 3542 * likely way too fragmented for the clustering stuff to find anything. 3543 * 3544 * However, if the cluster is taken from the current block group, 3545 * release the cluster first, so that we stand a better chance of 3546 * succeeding in the unclustered allocation. 3547 */ 3548 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3549 spin_unlock(&last_ptr->refill_lock); 3550 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3551 return -ENOENT; 3552 } 3553 3554 /* This cluster didn't work out, free it and start over */ 3555 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3556 3557 if (cluster_bg != bg) 3558 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3559 3560 refill_cluster: 3561 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3562 spin_unlock(&last_ptr->refill_lock); 3563 return -ENOENT; 3564 } 3565 3566 aligned_cluster = max_t(u64, 3567 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3568 bg->full_stripe_len); 3569 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3570 ffe_ctl->num_bytes, aligned_cluster); 3571 if (ret == 0) { 3572 /* Now pull our allocation out of this cluster */ 3573 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3574 ffe_ctl->num_bytes, ffe_ctl->search_start, 3575 &ffe_ctl->max_extent_size); 3576 if (offset) { 3577 /* We found one, proceed */ 3578 spin_unlock(&last_ptr->refill_lock); 3579 ffe_ctl->found_offset = offset; 3580 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3581 return 0; 3582 } 3583 } 3584 /* 3585 * At this point we either didn't find a cluster or we weren't able to 3586 * allocate a block from our cluster. Free the cluster we've been 3587 * trying to use, and go to the next block group. 3588 */ 3589 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3590 spin_unlock(&last_ptr->refill_lock); 3591 return 1; 3592 } 3593 3594 /* 3595 * Return >0 to inform caller that we find nothing 3596 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3597 */ 3598 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3599 struct find_free_extent_ctl *ffe_ctl) 3600 { 3601 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3602 u64 offset; 3603 3604 /* 3605 * We are doing an unclustered allocation, set the fragmented flag so 3606 * we don't bother trying to setup a cluster again until we get more 3607 * space. 3608 */ 3609 if (unlikely(last_ptr)) { 3610 spin_lock(&last_ptr->lock); 3611 last_ptr->fragmented = 1; 3612 spin_unlock(&last_ptr->lock); 3613 } 3614 if (ffe_ctl->cached) { 3615 struct btrfs_free_space_ctl *free_space_ctl; 3616 3617 free_space_ctl = bg->free_space_ctl; 3618 spin_lock(&free_space_ctl->tree_lock); 3619 if (free_space_ctl->free_space < 3620 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3621 ffe_ctl->empty_size) { 3622 ffe_ctl->total_free_space = max_t(u64, 3623 ffe_ctl->total_free_space, 3624 free_space_ctl->free_space); 3625 spin_unlock(&free_space_ctl->tree_lock); 3626 return 1; 3627 } 3628 spin_unlock(&free_space_ctl->tree_lock); 3629 } 3630 3631 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3632 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3633 &ffe_ctl->max_extent_size); 3634 if (!offset) 3635 return 1; 3636 ffe_ctl->found_offset = offset; 3637 return 0; 3638 } 3639 3640 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3641 struct find_free_extent_ctl *ffe_ctl, 3642 struct btrfs_block_group **bg_ret) 3643 { 3644 int ret; 3645 3646 /* We want to try and use the cluster allocator, so lets look there */ 3647 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3648 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3649 if (ret >= 0) 3650 return ret; 3651 /* ret == -ENOENT case falls through */ 3652 } 3653 3654 return find_free_extent_unclustered(block_group, ffe_ctl); 3655 } 3656 3657 /* 3658 * Tree-log block group locking 3659 * ============================ 3660 * 3661 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3662 * indicates the starting address of a block group, which is reserved only 3663 * for tree-log metadata. 3664 * 3665 * Lock nesting 3666 * ============ 3667 * 3668 * space_info::lock 3669 * block_group::lock 3670 * fs_info::treelog_bg_lock 3671 */ 3672 3673 /* 3674 * Simple allocator for sequential-only block group. It only allows sequential 3675 * allocation. No need to play with trees. This function also reserves the 3676 * bytes as in btrfs_add_reserved_bytes. 3677 */ 3678 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3679 struct find_free_extent_ctl *ffe_ctl, 3680 struct btrfs_block_group **bg_ret) 3681 { 3682 struct btrfs_fs_info *fs_info = block_group->fs_info; 3683 struct btrfs_space_info *space_info = block_group->space_info; 3684 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3685 u64 start = block_group->start; 3686 u64 num_bytes = ffe_ctl->num_bytes; 3687 u64 avail; 3688 u64 bytenr = block_group->start; 3689 u64 log_bytenr; 3690 u64 data_reloc_bytenr; 3691 int ret = 0; 3692 bool skip = false; 3693 3694 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3695 3696 /* 3697 * Do not allow non-tree-log blocks in the dedicated tree-log block 3698 * group, and vice versa. 3699 */ 3700 spin_lock(&fs_info->treelog_bg_lock); 3701 log_bytenr = fs_info->treelog_bg; 3702 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3703 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3704 skip = true; 3705 spin_unlock(&fs_info->treelog_bg_lock); 3706 if (skip) 3707 return 1; 3708 3709 /* 3710 * Do not allow non-relocation blocks in the dedicated relocation block 3711 * group, and vice versa. 3712 */ 3713 spin_lock(&fs_info->relocation_bg_lock); 3714 data_reloc_bytenr = fs_info->data_reloc_bg; 3715 if (data_reloc_bytenr && 3716 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3717 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3718 skip = true; 3719 spin_unlock(&fs_info->relocation_bg_lock); 3720 if (skip) 3721 return 1; 3722 3723 /* Check RO and no space case before trying to activate it */ 3724 spin_lock(&block_group->lock); 3725 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3726 ret = 1; 3727 /* 3728 * May need to clear fs_info->{treelog,data_reloc}_bg. 3729 * Return the error after taking the locks. 3730 */ 3731 } 3732 spin_unlock(&block_group->lock); 3733 3734 /* Metadata block group is activated at write time. */ 3735 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3736 !btrfs_zone_activate(block_group)) { 3737 ret = 1; 3738 /* 3739 * May need to clear fs_info->{treelog,data_reloc}_bg. 3740 * Return the error after taking the locks. 3741 */ 3742 } 3743 3744 spin_lock(&space_info->lock); 3745 spin_lock(&block_group->lock); 3746 spin_lock(&fs_info->treelog_bg_lock); 3747 spin_lock(&fs_info->relocation_bg_lock); 3748 3749 if (ret) 3750 goto out; 3751 3752 ASSERT(!ffe_ctl->for_treelog || 3753 block_group->start == fs_info->treelog_bg || 3754 fs_info->treelog_bg == 0); 3755 ASSERT(!ffe_ctl->for_data_reloc || 3756 block_group->start == fs_info->data_reloc_bg || 3757 fs_info->data_reloc_bg == 0); 3758 3759 if (block_group->ro || 3760 (!ffe_ctl->for_data_reloc && 3761 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3762 ret = 1; 3763 goto out; 3764 } 3765 3766 /* 3767 * Do not allow currently using block group to be tree-log dedicated 3768 * block group. 3769 */ 3770 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3771 (block_group->used || block_group->reserved)) { 3772 ret = 1; 3773 goto out; 3774 } 3775 3776 /* 3777 * Do not allow currently used block group to be the data relocation 3778 * dedicated block group. 3779 */ 3780 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3781 (block_group->used || block_group->reserved)) { 3782 ret = 1; 3783 goto out; 3784 } 3785 3786 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3787 avail = block_group->zone_capacity - block_group->alloc_offset; 3788 if (avail < num_bytes) { 3789 if (ffe_ctl->max_extent_size < avail) { 3790 /* 3791 * With sequential allocator, free space is always 3792 * contiguous 3793 */ 3794 ffe_ctl->max_extent_size = avail; 3795 ffe_ctl->total_free_space = avail; 3796 } 3797 ret = 1; 3798 goto out; 3799 } 3800 3801 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3802 fs_info->treelog_bg = block_group->start; 3803 3804 if (ffe_ctl->for_data_reloc) { 3805 if (!fs_info->data_reloc_bg) 3806 fs_info->data_reloc_bg = block_group->start; 3807 /* 3808 * Do not allow allocations from this block group, unless it is 3809 * for data relocation. Compared to increasing the ->ro, setting 3810 * the ->zoned_data_reloc_ongoing flag still allows nocow 3811 * writers to come in. See btrfs_inc_nocow_writers(). 3812 * 3813 * We need to disable an allocation to avoid an allocation of 3814 * regular (non-relocation data) extent. With mix of relocation 3815 * extents and regular extents, we can dispatch WRITE commands 3816 * (for relocation extents) and ZONE APPEND commands (for 3817 * regular extents) at the same time to the same zone, which 3818 * easily break the write pointer. 3819 * 3820 * Also, this flag avoids this block group to be zone finished. 3821 */ 3822 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3823 } 3824 3825 ffe_ctl->found_offset = start + block_group->alloc_offset; 3826 block_group->alloc_offset += num_bytes; 3827 spin_lock(&ctl->tree_lock); 3828 ctl->free_space -= num_bytes; 3829 spin_unlock(&ctl->tree_lock); 3830 3831 /* 3832 * We do not check if found_offset is aligned to stripesize. The 3833 * address is anyway rewritten when using zone append writing. 3834 */ 3835 3836 ffe_ctl->search_start = ffe_ctl->found_offset; 3837 3838 out: 3839 if (ret && ffe_ctl->for_treelog) 3840 fs_info->treelog_bg = 0; 3841 if (ret && ffe_ctl->for_data_reloc) 3842 fs_info->data_reloc_bg = 0; 3843 spin_unlock(&fs_info->relocation_bg_lock); 3844 spin_unlock(&fs_info->treelog_bg_lock); 3845 spin_unlock(&block_group->lock); 3846 spin_unlock(&space_info->lock); 3847 return ret; 3848 } 3849 3850 static int do_allocation(struct btrfs_block_group *block_group, 3851 struct find_free_extent_ctl *ffe_ctl, 3852 struct btrfs_block_group **bg_ret) 3853 { 3854 switch (ffe_ctl->policy) { 3855 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3856 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3857 case BTRFS_EXTENT_ALLOC_ZONED: 3858 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3859 default: 3860 BUG(); 3861 } 3862 } 3863 3864 static void release_block_group(struct btrfs_block_group *block_group, 3865 struct find_free_extent_ctl *ffe_ctl, 3866 int delalloc) 3867 { 3868 switch (ffe_ctl->policy) { 3869 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3870 ffe_ctl->retry_uncached = false; 3871 break; 3872 case BTRFS_EXTENT_ALLOC_ZONED: 3873 /* Nothing to do */ 3874 break; 3875 default: 3876 BUG(); 3877 } 3878 3879 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3880 ffe_ctl->index); 3881 btrfs_release_block_group(block_group, delalloc); 3882 } 3883 3884 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3885 struct btrfs_key *ins) 3886 { 3887 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3888 3889 if (!ffe_ctl->use_cluster && last_ptr) { 3890 spin_lock(&last_ptr->lock); 3891 last_ptr->window_start = ins->objectid; 3892 spin_unlock(&last_ptr->lock); 3893 } 3894 } 3895 3896 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3897 struct btrfs_key *ins) 3898 { 3899 switch (ffe_ctl->policy) { 3900 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3901 found_extent_clustered(ffe_ctl, ins); 3902 break; 3903 case BTRFS_EXTENT_ALLOC_ZONED: 3904 /* Nothing to do */ 3905 break; 3906 default: 3907 BUG(); 3908 } 3909 } 3910 3911 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3912 struct find_free_extent_ctl *ffe_ctl) 3913 { 3914 /* Block group's activeness is not a requirement for METADATA block groups. */ 3915 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 3916 return 0; 3917 3918 /* If we can activate new zone, just allocate a chunk and use it */ 3919 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3920 return 0; 3921 3922 /* 3923 * We already reached the max active zones. Try to finish one block 3924 * group to make a room for a new block group. This is only possible 3925 * for a data block group because btrfs_zone_finish() may need to wait 3926 * for a running transaction which can cause a deadlock for metadata 3927 * allocation. 3928 */ 3929 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3930 int ret = btrfs_zone_finish_one_bg(fs_info); 3931 3932 if (ret == 1) 3933 return 0; 3934 else if (ret < 0) 3935 return ret; 3936 } 3937 3938 /* 3939 * If we have enough free space left in an already active block group 3940 * and we can't activate any other zone now, do not allow allocating a 3941 * new chunk and let find_free_extent() retry with a smaller size. 3942 */ 3943 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3944 return -ENOSPC; 3945 3946 /* 3947 * Even min_alloc_size is not left in any block groups. Since we cannot 3948 * activate a new block group, allocating it may not help. Let's tell a 3949 * caller to try again and hope it progress something by writing some 3950 * parts of the region. That is only possible for data block groups, 3951 * where a part of the region can be written. 3952 */ 3953 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3954 return -EAGAIN; 3955 3956 /* 3957 * We cannot activate a new block group and no enough space left in any 3958 * block groups. So, allocating a new block group may not help. But, 3959 * there is nothing to do anyway, so let's go with it. 3960 */ 3961 return 0; 3962 } 3963 3964 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 3965 struct find_free_extent_ctl *ffe_ctl) 3966 { 3967 switch (ffe_ctl->policy) { 3968 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3969 return 0; 3970 case BTRFS_EXTENT_ALLOC_ZONED: 3971 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 3972 default: 3973 BUG(); 3974 } 3975 } 3976 3977 /* 3978 * Return >0 means caller needs to re-search for free extent 3979 * Return 0 means we have the needed free extent. 3980 * Return <0 means we failed to locate any free extent. 3981 */ 3982 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3983 struct btrfs_key *ins, 3984 struct find_free_extent_ctl *ffe_ctl, 3985 bool full_search) 3986 { 3987 struct btrfs_root *root = fs_info->chunk_root; 3988 int ret; 3989 3990 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3991 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3992 ffe_ctl->orig_have_caching_bg = true; 3993 3994 if (ins->objectid) { 3995 found_extent(ffe_ctl, ins); 3996 return 0; 3997 } 3998 3999 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4000 return 1; 4001 4002 ffe_ctl->index++; 4003 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4004 return 1; 4005 4006 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4007 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4008 ffe_ctl->index = 0; 4009 /* 4010 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4011 * any uncached bgs and we've already done a full search 4012 * through. 4013 */ 4014 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4015 (!ffe_ctl->orig_have_caching_bg && full_search)) 4016 ffe_ctl->loop++; 4017 ffe_ctl->loop++; 4018 4019 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4020 struct btrfs_trans_handle *trans; 4021 int exist = 0; 4022 4023 /* Check if allocation policy allows to create a new chunk */ 4024 ret = can_allocate_chunk(fs_info, ffe_ctl); 4025 if (ret) 4026 return ret; 4027 4028 trans = current->journal_info; 4029 if (trans) 4030 exist = 1; 4031 else 4032 trans = btrfs_join_transaction(root); 4033 4034 if (IS_ERR(trans)) { 4035 ret = PTR_ERR(trans); 4036 return ret; 4037 } 4038 4039 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4040 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4041 4042 /* Do not bail out on ENOSPC since we can do more. */ 4043 if (ret == -ENOSPC) { 4044 ret = 0; 4045 ffe_ctl->loop++; 4046 } 4047 else if (ret < 0) 4048 btrfs_abort_transaction(trans, ret); 4049 else 4050 ret = 0; 4051 if (!exist) 4052 btrfs_end_transaction(trans); 4053 if (ret) 4054 return ret; 4055 } 4056 4057 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4058 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4059 return -ENOSPC; 4060 4061 /* 4062 * Don't loop again if we already have no empty_size and 4063 * no empty_cluster. 4064 */ 4065 if (ffe_ctl->empty_size == 0 && 4066 ffe_ctl->empty_cluster == 0) 4067 return -ENOSPC; 4068 ffe_ctl->empty_size = 0; 4069 ffe_ctl->empty_cluster = 0; 4070 } 4071 return 1; 4072 } 4073 return -ENOSPC; 4074 } 4075 4076 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4077 struct btrfs_block_group *bg) 4078 { 4079 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4080 return true; 4081 if (!btrfs_block_group_should_use_size_class(bg)) 4082 return true; 4083 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4084 return true; 4085 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4086 bg->size_class == BTRFS_BG_SZ_NONE) 4087 return true; 4088 return ffe_ctl->size_class == bg->size_class; 4089 } 4090 4091 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4092 struct find_free_extent_ctl *ffe_ctl, 4093 struct btrfs_space_info *space_info, 4094 struct btrfs_key *ins) 4095 { 4096 /* 4097 * If our free space is heavily fragmented we may not be able to make 4098 * big contiguous allocations, so instead of doing the expensive search 4099 * for free space, simply return ENOSPC with our max_extent_size so we 4100 * can go ahead and search for a more manageable chunk. 4101 * 4102 * If our max_extent_size is large enough for our allocation simply 4103 * disable clustering since we will likely not be able to find enough 4104 * space to create a cluster and induce latency trying. 4105 */ 4106 if (space_info->max_extent_size) { 4107 spin_lock(&space_info->lock); 4108 if (space_info->max_extent_size && 4109 ffe_ctl->num_bytes > space_info->max_extent_size) { 4110 ins->offset = space_info->max_extent_size; 4111 spin_unlock(&space_info->lock); 4112 return -ENOSPC; 4113 } else if (space_info->max_extent_size) { 4114 ffe_ctl->use_cluster = false; 4115 } 4116 spin_unlock(&space_info->lock); 4117 } 4118 4119 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4120 &ffe_ctl->empty_cluster); 4121 if (ffe_ctl->last_ptr) { 4122 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4123 4124 spin_lock(&last_ptr->lock); 4125 if (last_ptr->block_group) 4126 ffe_ctl->hint_byte = last_ptr->window_start; 4127 if (last_ptr->fragmented) { 4128 /* 4129 * We still set window_start so we can keep track of the 4130 * last place we found an allocation to try and save 4131 * some time. 4132 */ 4133 ffe_ctl->hint_byte = last_ptr->window_start; 4134 ffe_ctl->use_cluster = false; 4135 } 4136 spin_unlock(&last_ptr->lock); 4137 } 4138 4139 return 0; 4140 } 4141 4142 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4143 struct find_free_extent_ctl *ffe_ctl) 4144 { 4145 if (ffe_ctl->for_treelog) { 4146 spin_lock(&fs_info->treelog_bg_lock); 4147 if (fs_info->treelog_bg) 4148 ffe_ctl->hint_byte = fs_info->treelog_bg; 4149 spin_unlock(&fs_info->treelog_bg_lock); 4150 } else if (ffe_ctl->for_data_reloc) { 4151 spin_lock(&fs_info->relocation_bg_lock); 4152 if (fs_info->data_reloc_bg) 4153 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4154 spin_unlock(&fs_info->relocation_bg_lock); 4155 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4156 struct btrfs_block_group *block_group; 4157 4158 spin_lock(&fs_info->zone_active_bgs_lock); 4159 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4160 /* 4161 * No lock is OK here because avail is monotinically 4162 * decreasing, and this is just a hint. 4163 */ 4164 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4165 4166 if (block_group_bits(block_group, ffe_ctl->flags) && 4167 avail >= ffe_ctl->num_bytes) { 4168 ffe_ctl->hint_byte = block_group->start; 4169 break; 4170 } 4171 } 4172 spin_unlock(&fs_info->zone_active_bgs_lock); 4173 } 4174 4175 return 0; 4176 } 4177 4178 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4179 struct find_free_extent_ctl *ffe_ctl, 4180 struct btrfs_space_info *space_info, 4181 struct btrfs_key *ins) 4182 { 4183 switch (ffe_ctl->policy) { 4184 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4185 return prepare_allocation_clustered(fs_info, ffe_ctl, 4186 space_info, ins); 4187 case BTRFS_EXTENT_ALLOC_ZONED: 4188 return prepare_allocation_zoned(fs_info, ffe_ctl); 4189 default: 4190 BUG(); 4191 } 4192 } 4193 4194 /* 4195 * walks the btree of allocated extents and find a hole of a given size. 4196 * The key ins is changed to record the hole: 4197 * ins->objectid == start position 4198 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4199 * ins->offset == the size of the hole. 4200 * Any available blocks before search_start are skipped. 4201 * 4202 * If there is no suitable free space, we will record the max size of 4203 * the free space extent currently. 4204 * 4205 * The overall logic and call chain: 4206 * 4207 * find_free_extent() 4208 * |- Iterate through all block groups 4209 * | |- Get a valid block group 4210 * | |- Try to do clustered allocation in that block group 4211 * | |- Try to do unclustered allocation in that block group 4212 * | |- Check if the result is valid 4213 * | | |- If valid, then exit 4214 * | |- Jump to next block group 4215 * | 4216 * |- Push harder to find free extents 4217 * |- If not found, re-iterate all block groups 4218 */ 4219 static noinline int find_free_extent(struct btrfs_root *root, 4220 struct btrfs_key *ins, 4221 struct find_free_extent_ctl *ffe_ctl) 4222 { 4223 struct btrfs_fs_info *fs_info = root->fs_info; 4224 int ret = 0; 4225 int cache_block_group_error = 0; 4226 struct btrfs_block_group *block_group = NULL; 4227 struct btrfs_space_info *space_info; 4228 bool full_search = false; 4229 4230 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4231 4232 ffe_ctl->search_start = 0; 4233 /* For clustered allocation */ 4234 ffe_ctl->empty_cluster = 0; 4235 ffe_ctl->last_ptr = NULL; 4236 ffe_ctl->use_cluster = true; 4237 ffe_ctl->have_caching_bg = false; 4238 ffe_ctl->orig_have_caching_bg = false; 4239 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4240 ffe_ctl->loop = 0; 4241 ffe_ctl->retry_uncached = false; 4242 ffe_ctl->cached = 0; 4243 ffe_ctl->max_extent_size = 0; 4244 ffe_ctl->total_free_space = 0; 4245 ffe_ctl->found_offset = 0; 4246 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4247 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4248 4249 if (btrfs_is_zoned(fs_info)) 4250 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4251 4252 ins->type = BTRFS_EXTENT_ITEM_KEY; 4253 ins->objectid = 0; 4254 ins->offset = 0; 4255 4256 trace_find_free_extent(root, ffe_ctl); 4257 4258 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4259 if (!space_info) { 4260 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4261 return -ENOSPC; 4262 } 4263 4264 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4265 if (ret < 0) 4266 return ret; 4267 4268 ffe_ctl->search_start = max(ffe_ctl->search_start, 4269 first_logical_byte(fs_info)); 4270 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4271 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4272 block_group = btrfs_lookup_block_group(fs_info, 4273 ffe_ctl->search_start); 4274 /* 4275 * we don't want to use the block group if it doesn't match our 4276 * allocation bits, or if its not cached. 4277 * 4278 * However if we are re-searching with an ideal block group 4279 * picked out then we don't care that the block group is cached. 4280 */ 4281 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4282 block_group->cached != BTRFS_CACHE_NO) { 4283 down_read(&space_info->groups_sem); 4284 if (list_empty(&block_group->list) || 4285 block_group->ro) { 4286 /* 4287 * someone is removing this block group, 4288 * we can't jump into the have_block_group 4289 * target because our list pointers are not 4290 * valid 4291 */ 4292 btrfs_put_block_group(block_group); 4293 up_read(&space_info->groups_sem); 4294 } else { 4295 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4296 block_group->flags); 4297 btrfs_lock_block_group(block_group, 4298 ffe_ctl->delalloc); 4299 ffe_ctl->hinted = true; 4300 goto have_block_group; 4301 } 4302 } else if (block_group) { 4303 btrfs_put_block_group(block_group); 4304 } 4305 } 4306 search: 4307 trace_find_free_extent_search_loop(root, ffe_ctl); 4308 ffe_ctl->have_caching_bg = false; 4309 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4310 ffe_ctl->index == 0) 4311 full_search = true; 4312 down_read(&space_info->groups_sem); 4313 list_for_each_entry(block_group, 4314 &space_info->block_groups[ffe_ctl->index], list) { 4315 struct btrfs_block_group *bg_ret; 4316 4317 ffe_ctl->hinted = false; 4318 /* If the block group is read-only, we can skip it entirely. */ 4319 if (unlikely(block_group->ro)) { 4320 if (ffe_ctl->for_treelog) 4321 btrfs_clear_treelog_bg(block_group); 4322 if (ffe_ctl->for_data_reloc) 4323 btrfs_clear_data_reloc_bg(block_group); 4324 continue; 4325 } 4326 4327 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4328 ffe_ctl->search_start = block_group->start; 4329 4330 /* 4331 * this can happen if we end up cycling through all the 4332 * raid types, but we want to make sure we only allocate 4333 * for the proper type. 4334 */ 4335 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4336 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4337 BTRFS_BLOCK_GROUP_RAID1_MASK | 4338 BTRFS_BLOCK_GROUP_RAID56_MASK | 4339 BTRFS_BLOCK_GROUP_RAID10; 4340 4341 /* 4342 * if they asked for extra copies and this block group 4343 * doesn't provide them, bail. This does allow us to 4344 * fill raid0 from raid1. 4345 */ 4346 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4347 goto loop; 4348 4349 /* 4350 * This block group has different flags than we want. 4351 * It's possible that we have MIXED_GROUP flag but no 4352 * block group is mixed. Just skip such block group. 4353 */ 4354 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4355 continue; 4356 } 4357 4358 have_block_group: 4359 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4360 ffe_ctl->cached = btrfs_block_group_done(block_group); 4361 if (unlikely(!ffe_ctl->cached)) { 4362 ffe_ctl->have_caching_bg = true; 4363 ret = btrfs_cache_block_group(block_group, false); 4364 4365 /* 4366 * If we get ENOMEM here or something else we want to 4367 * try other block groups, because it may not be fatal. 4368 * However if we can't find anything else we need to 4369 * save our return here so that we return the actual 4370 * error that caused problems, not ENOSPC. 4371 */ 4372 if (ret < 0) { 4373 if (!cache_block_group_error) 4374 cache_block_group_error = ret; 4375 ret = 0; 4376 goto loop; 4377 } 4378 ret = 0; 4379 } 4380 4381 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4382 if (!cache_block_group_error) 4383 cache_block_group_error = -EIO; 4384 goto loop; 4385 } 4386 4387 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4388 goto loop; 4389 4390 bg_ret = NULL; 4391 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4392 if (ret > 0) 4393 goto loop; 4394 4395 if (bg_ret && bg_ret != block_group) { 4396 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4397 block_group = bg_ret; 4398 } 4399 4400 /* Checks */ 4401 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4402 fs_info->stripesize); 4403 4404 /* move on to the next group */ 4405 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4406 block_group->start + block_group->length) { 4407 btrfs_add_free_space_unused(block_group, 4408 ffe_ctl->found_offset, 4409 ffe_ctl->num_bytes); 4410 goto loop; 4411 } 4412 4413 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4414 btrfs_add_free_space_unused(block_group, 4415 ffe_ctl->found_offset, 4416 ffe_ctl->search_start - ffe_ctl->found_offset); 4417 4418 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4419 ffe_ctl->num_bytes, 4420 ffe_ctl->delalloc, 4421 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4422 if (ret == -EAGAIN) { 4423 btrfs_add_free_space_unused(block_group, 4424 ffe_ctl->found_offset, 4425 ffe_ctl->num_bytes); 4426 goto loop; 4427 } 4428 btrfs_inc_block_group_reservations(block_group); 4429 4430 /* we are all good, lets return */ 4431 ins->objectid = ffe_ctl->search_start; 4432 ins->offset = ffe_ctl->num_bytes; 4433 4434 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4435 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4436 break; 4437 loop: 4438 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4439 !ffe_ctl->retry_uncached) { 4440 ffe_ctl->retry_uncached = true; 4441 btrfs_wait_block_group_cache_progress(block_group, 4442 ffe_ctl->num_bytes + 4443 ffe_ctl->empty_cluster + 4444 ffe_ctl->empty_size); 4445 goto have_block_group; 4446 } 4447 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4448 cond_resched(); 4449 } 4450 up_read(&space_info->groups_sem); 4451 4452 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4453 if (ret > 0) 4454 goto search; 4455 4456 if (ret == -ENOSPC && !cache_block_group_error) { 4457 /* 4458 * Use ffe_ctl->total_free_space as fallback if we can't find 4459 * any contiguous hole. 4460 */ 4461 if (!ffe_ctl->max_extent_size) 4462 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4463 spin_lock(&space_info->lock); 4464 space_info->max_extent_size = ffe_ctl->max_extent_size; 4465 spin_unlock(&space_info->lock); 4466 ins->offset = ffe_ctl->max_extent_size; 4467 } else if (ret == -ENOSPC) { 4468 ret = cache_block_group_error; 4469 } 4470 return ret; 4471 } 4472 4473 /* 4474 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4475 * hole that is at least as big as @num_bytes. 4476 * 4477 * @root - The root that will contain this extent 4478 * 4479 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4480 * is used for accounting purposes. This value differs 4481 * from @num_bytes only in the case of compressed extents. 4482 * 4483 * @num_bytes - Number of bytes to allocate on-disk. 4484 * 4485 * @min_alloc_size - Indicates the minimum amount of space that the 4486 * allocator should try to satisfy. In some cases 4487 * @num_bytes may be larger than what is required and if 4488 * the filesystem is fragmented then allocation fails. 4489 * However, the presence of @min_alloc_size gives a 4490 * chance to try and satisfy the smaller allocation. 4491 * 4492 * @empty_size - A hint that you plan on doing more COW. This is the 4493 * size in bytes the allocator should try to find free 4494 * next to the block it returns. This is just a hint and 4495 * may be ignored by the allocator. 4496 * 4497 * @hint_byte - Hint to the allocator to start searching above the byte 4498 * address passed. It might be ignored. 4499 * 4500 * @ins - This key is modified to record the found hole. It will 4501 * have the following values: 4502 * ins->objectid == start position 4503 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4504 * ins->offset == the size of the hole. 4505 * 4506 * @is_data - Boolean flag indicating whether an extent is 4507 * allocated for data (true) or metadata (false) 4508 * 4509 * @delalloc - Boolean flag indicating whether this allocation is for 4510 * delalloc or not. If 'true' data_rwsem of block groups 4511 * is going to be acquired. 4512 * 4513 * 4514 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4515 * case -ENOSPC is returned then @ins->offset will contain the size of the 4516 * largest available hole the allocator managed to find. 4517 */ 4518 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4519 u64 num_bytes, u64 min_alloc_size, 4520 u64 empty_size, u64 hint_byte, 4521 struct btrfs_key *ins, int is_data, int delalloc) 4522 { 4523 struct btrfs_fs_info *fs_info = root->fs_info; 4524 struct find_free_extent_ctl ffe_ctl = {}; 4525 bool final_tried = num_bytes == min_alloc_size; 4526 u64 flags; 4527 int ret; 4528 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4529 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4530 4531 flags = get_alloc_profile_by_root(root, is_data); 4532 again: 4533 WARN_ON(num_bytes < fs_info->sectorsize); 4534 4535 ffe_ctl.ram_bytes = ram_bytes; 4536 ffe_ctl.num_bytes = num_bytes; 4537 ffe_ctl.min_alloc_size = min_alloc_size; 4538 ffe_ctl.empty_size = empty_size; 4539 ffe_ctl.flags = flags; 4540 ffe_ctl.delalloc = delalloc; 4541 ffe_ctl.hint_byte = hint_byte; 4542 ffe_ctl.for_treelog = for_treelog; 4543 ffe_ctl.for_data_reloc = for_data_reloc; 4544 4545 ret = find_free_extent(root, ins, &ffe_ctl); 4546 if (!ret && !is_data) { 4547 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4548 } else if (ret == -ENOSPC) { 4549 if (!final_tried && ins->offset) { 4550 num_bytes = min(num_bytes >> 1, ins->offset); 4551 num_bytes = round_down(num_bytes, 4552 fs_info->sectorsize); 4553 num_bytes = max(num_bytes, min_alloc_size); 4554 ram_bytes = num_bytes; 4555 if (num_bytes == min_alloc_size) 4556 final_tried = true; 4557 goto again; 4558 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4559 struct btrfs_space_info *sinfo; 4560 4561 sinfo = btrfs_find_space_info(fs_info, flags); 4562 btrfs_err(fs_info, 4563 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4564 flags, num_bytes, for_treelog, for_data_reloc); 4565 if (sinfo) 4566 btrfs_dump_space_info(fs_info, sinfo, 4567 num_bytes, 1); 4568 } 4569 } 4570 4571 return ret; 4572 } 4573 4574 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4575 u64 start, u64 len, int delalloc) 4576 { 4577 struct btrfs_block_group *cache; 4578 4579 cache = btrfs_lookup_block_group(fs_info, start); 4580 if (!cache) { 4581 btrfs_err(fs_info, "Unable to find block group for %llu", 4582 start); 4583 return -ENOSPC; 4584 } 4585 4586 btrfs_add_free_space(cache, start, len); 4587 btrfs_free_reserved_bytes(cache, len, delalloc); 4588 trace_btrfs_reserved_extent_free(fs_info, start, len); 4589 4590 btrfs_put_block_group(cache); 4591 return 0; 4592 } 4593 4594 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4595 u64 len) 4596 { 4597 struct btrfs_block_group *cache; 4598 int ret = 0; 4599 4600 cache = btrfs_lookup_block_group(trans->fs_info, start); 4601 if (!cache) { 4602 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4603 start); 4604 return -ENOSPC; 4605 } 4606 4607 ret = pin_down_extent(trans, cache, start, len, 1); 4608 btrfs_put_block_group(cache); 4609 return ret; 4610 } 4611 4612 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4613 u64 num_bytes) 4614 { 4615 struct btrfs_fs_info *fs_info = trans->fs_info; 4616 int ret; 4617 4618 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4619 if (ret) 4620 return ret; 4621 4622 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4623 if (ret) { 4624 ASSERT(!ret); 4625 btrfs_err(fs_info, "update block group failed for %llu %llu", 4626 bytenr, num_bytes); 4627 return ret; 4628 } 4629 4630 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4631 return 0; 4632 } 4633 4634 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4635 u64 parent, u64 root_objectid, 4636 u64 flags, u64 owner, u64 offset, 4637 struct btrfs_key *ins, int ref_mod) 4638 { 4639 struct btrfs_fs_info *fs_info = trans->fs_info; 4640 struct btrfs_root *extent_root; 4641 int ret; 4642 struct btrfs_extent_item *extent_item; 4643 struct btrfs_extent_inline_ref *iref; 4644 struct btrfs_path *path; 4645 struct extent_buffer *leaf; 4646 int type; 4647 u32 size; 4648 4649 if (parent > 0) 4650 type = BTRFS_SHARED_DATA_REF_KEY; 4651 else 4652 type = BTRFS_EXTENT_DATA_REF_KEY; 4653 4654 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4655 4656 path = btrfs_alloc_path(); 4657 if (!path) 4658 return -ENOMEM; 4659 4660 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4661 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4662 if (ret) { 4663 btrfs_free_path(path); 4664 return ret; 4665 } 4666 4667 leaf = path->nodes[0]; 4668 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4669 struct btrfs_extent_item); 4670 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4671 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4672 btrfs_set_extent_flags(leaf, extent_item, 4673 flags | BTRFS_EXTENT_FLAG_DATA); 4674 4675 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4676 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4677 if (parent > 0) { 4678 struct btrfs_shared_data_ref *ref; 4679 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4680 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4681 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4682 } else { 4683 struct btrfs_extent_data_ref *ref; 4684 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4685 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4686 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4687 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4688 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4689 } 4690 4691 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4692 btrfs_free_path(path); 4693 4694 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4695 } 4696 4697 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4698 struct btrfs_delayed_ref_node *node, 4699 struct btrfs_delayed_extent_op *extent_op) 4700 { 4701 struct btrfs_fs_info *fs_info = trans->fs_info; 4702 struct btrfs_root *extent_root; 4703 int ret; 4704 struct btrfs_extent_item *extent_item; 4705 struct btrfs_key extent_key; 4706 struct btrfs_tree_block_info *block_info; 4707 struct btrfs_extent_inline_ref *iref; 4708 struct btrfs_path *path; 4709 struct extent_buffer *leaf; 4710 struct btrfs_delayed_tree_ref *ref; 4711 u32 size = sizeof(*extent_item) + sizeof(*iref); 4712 u64 flags = extent_op->flags_to_set; 4713 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4714 4715 ref = btrfs_delayed_node_to_tree_ref(node); 4716 4717 extent_key.objectid = node->bytenr; 4718 if (skinny_metadata) { 4719 extent_key.offset = ref->level; 4720 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4721 } else { 4722 extent_key.offset = node->num_bytes; 4723 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4724 size += sizeof(*block_info); 4725 } 4726 4727 path = btrfs_alloc_path(); 4728 if (!path) 4729 return -ENOMEM; 4730 4731 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4732 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4733 size); 4734 if (ret) { 4735 btrfs_free_path(path); 4736 return ret; 4737 } 4738 4739 leaf = path->nodes[0]; 4740 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4741 struct btrfs_extent_item); 4742 btrfs_set_extent_refs(leaf, extent_item, 1); 4743 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4744 btrfs_set_extent_flags(leaf, extent_item, 4745 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4746 4747 if (skinny_metadata) { 4748 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4749 } else { 4750 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4751 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4752 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4753 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4754 } 4755 4756 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4757 btrfs_set_extent_inline_ref_type(leaf, iref, 4758 BTRFS_SHARED_BLOCK_REF_KEY); 4759 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4760 } else { 4761 btrfs_set_extent_inline_ref_type(leaf, iref, 4762 BTRFS_TREE_BLOCK_REF_KEY); 4763 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4764 } 4765 4766 btrfs_mark_buffer_dirty(trans, leaf); 4767 btrfs_free_path(path); 4768 4769 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4770 } 4771 4772 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4773 struct btrfs_root *root, u64 owner, 4774 u64 offset, u64 ram_bytes, 4775 struct btrfs_key *ins) 4776 { 4777 struct btrfs_ref generic_ref = { 0 }; 4778 4779 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4780 4781 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4782 ins->objectid, ins->offset, 0); 4783 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4784 offset, 0, false); 4785 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4786 4787 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4788 } 4789 4790 /* 4791 * this is used by the tree logging recovery code. It records that 4792 * an extent has been allocated and makes sure to clear the free 4793 * space cache bits as well 4794 */ 4795 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4796 u64 root_objectid, u64 owner, u64 offset, 4797 struct btrfs_key *ins) 4798 { 4799 struct btrfs_fs_info *fs_info = trans->fs_info; 4800 int ret; 4801 struct btrfs_block_group *block_group; 4802 struct btrfs_space_info *space_info; 4803 4804 /* 4805 * Mixed block groups will exclude before processing the log so we only 4806 * need to do the exclude dance if this fs isn't mixed. 4807 */ 4808 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4809 ret = __exclude_logged_extent(fs_info, ins->objectid, 4810 ins->offset); 4811 if (ret) 4812 return ret; 4813 } 4814 4815 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4816 if (!block_group) 4817 return -EINVAL; 4818 4819 space_info = block_group->space_info; 4820 spin_lock(&space_info->lock); 4821 spin_lock(&block_group->lock); 4822 space_info->bytes_reserved += ins->offset; 4823 block_group->reserved += ins->offset; 4824 spin_unlock(&block_group->lock); 4825 spin_unlock(&space_info->lock); 4826 4827 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4828 offset, ins, 1); 4829 if (ret) 4830 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4831 btrfs_put_block_group(block_group); 4832 return ret; 4833 } 4834 4835 static struct extent_buffer * 4836 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4837 u64 bytenr, int level, u64 owner, 4838 enum btrfs_lock_nesting nest) 4839 { 4840 struct btrfs_fs_info *fs_info = root->fs_info; 4841 struct extent_buffer *buf; 4842 u64 lockdep_owner = owner; 4843 4844 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4845 if (IS_ERR(buf)) 4846 return buf; 4847 4848 /* 4849 * Extra safety check in case the extent tree is corrupted and extent 4850 * allocator chooses to use a tree block which is already used and 4851 * locked. 4852 */ 4853 if (buf->lock_owner == current->pid) { 4854 btrfs_err_rl(fs_info, 4855 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4856 buf->start, btrfs_header_owner(buf), current->pid); 4857 free_extent_buffer(buf); 4858 return ERR_PTR(-EUCLEAN); 4859 } 4860 4861 /* 4862 * The reloc trees are just snapshots, so we need them to appear to be 4863 * just like any other fs tree WRT lockdep. 4864 * 4865 * The exception however is in replace_path() in relocation, where we 4866 * hold the lock on the original fs root and then search for the reloc 4867 * root. At that point we need to make sure any reloc root buffers are 4868 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4869 * lockdep happy. 4870 */ 4871 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4872 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4873 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4874 4875 /* btrfs_clear_buffer_dirty() accesses generation field. */ 4876 btrfs_set_header_generation(buf, trans->transid); 4877 4878 /* 4879 * This needs to stay, because we could allocate a freed block from an 4880 * old tree into a new tree, so we need to make sure this new block is 4881 * set to the appropriate level and owner. 4882 */ 4883 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4884 4885 __btrfs_tree_lock(buf, nest); 4886 btrfs_clear_buffer_dirty(trans, buf); 4887 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4888 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4889 4890 set_extent_buffer_uptodate(buf); 4891 4892 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4893 btrfs_set_header_level(buf, level); 4894 btrfs_set_header_bytenr(buf, buf->start); 4895 btrfs_set_header_generation(buf, trans->transid); 4896 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4897 btrfs_set_header_owner(buf, owner); 4898 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4899 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4900 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4901 buf->log_index = root->log_transid % 2; 4902 /* 4903 * we allow two log transactions at a time, use different 4904 * EXTENT bit to differentiate dirty pages. 4905 */ 4906 if (buf->log_index == 0) 4907 set_extent_bit(&root->dirty_log_pages, buf->start, 4908 buf->start + buf->len - 1, 4909 EXTENT_DIRTY, NULL); 4910 else 4911 set_extent_bit(&root->dirty_log_pages, buf->start, 4912 buf->start + buf->len - 1, 4913 EXTENT_NEW, NULL); 4914 } else { 4915 buf->log_index = -1; 4916 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 4917 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 4918 } 4919 /* this returns a buffer locked for blocking */ 4920 return buf; 4921 } 4922 4923 /* 4924 * finds a free extent and does all the dirty work required for allocation 4925 * returns the tree buffer or an ERR_PTR on error. 4926 */ 4927 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4928 struct btrfs_root *root, 4929 u64 parent, u64 root_objectid, 4930 const struct btrfs_disk_key *key, 4931 int level, u64 hint, 4932 u64 empty_size, 4933 enum btrfs_lock_nesting nest) 4934 { 4935 struct btrfs_fs_info *fs_info = root->fs_info; 4936 struct btrfs_key ins; 4937 struct btrfs_block_rsv *block_rsv; 4938 struct extent_buffer *buf; 4939 struct btrfs_delayed_extent_op *extent_op; 4940 struct btrfs_ref generic_ref = { 0 }; 4941 u64 flags = 0; 4942 int ret; 4943 u32 blocksize = fs_info->nodesize; 4944 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4945 4946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4947 if (btrfs_is_testing(fs_info)) { 4948 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4949 level, root_objectid, nest); 4950 if (!IS_ERR(buf)) 4951 root->alloc_bytenr += blocksize; 4952 return buf; 4953 } 4954 #endif 4955 4956 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4957 if (IS_ERR(block_rsv)) 4958 return ERR_CAST(block_rsv); 4959 4960 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4961 empty_size, hint, &ins, 0, 0); 4962 if (ret) 4963 goto out_unuse; 4964 4965 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4966 root_objectid, nest); 4967 if (IS_ERR(buf)) { 4968 ret = PTR_ERR(buf); 4969 goto out_free_reserved; 4970 } 4971 4972 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4973 if (parent == 0) 4974 parent = ins.objectid; 4975 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4976 } else 4977 BUG_ON(parent > 0); 4978 4979 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4980 extent_op = btrfs_alloc_delayed_extent_op(); 4981 if (!extent_op) { 4982 ret = -ENOMEM; 4983 goto out_free_buf; 4984 } 4985 if (key) 4986 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4987 else 4988 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4989 extent_op->flags_to_set = flags; 4990 extent_op->update_key = skinny_metadata ? false : true; 4991 extent_op->update_flags = true; 4992 extent_op->level = level; 4993 4994 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4995 ins.objectid, ins.offset, parent); 4996 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 4997 root->root_key.objectid, false); 4998 btrfs_ref_tree_mod(fs_info, &generic_ref); 4999 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5000 if (ret) 5001 goto out_free_delayed; 5002 } 5003 return buf; 5004 5005 out_free_delayed: 5006 btrfs_free_delayed_extent_op(extent_op); 5007 out_free_buf: 5008 btrfs_tree_unlock(buf); 5009 free_extent_buffer(buf); 5010 out_free_reserved: 5011 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5012 out_unuse: 5013 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5014 return ERR_PTR(ret); 5015 } 5016 5017 struct walk_control { 5018 u64 refs[BTRFS_MAX_LEVEL]; 5019 u64 flags[BTRFS_MAX_LEVEL]; 5020 struct btrfs_key update_progress; 5021 struct btrfs_key drop_progress; 5022 int drop_level; 5023 int stage; 5024 int level; 5025 int shared_level; 5026 int update_ref; 5027 int keep_locks; 5028 int reada_slot; 5029 int reada_count; 5030 int restarted; 5031 }; 5032 5033 #define DROP_REFERENCE 1 5034 #define UPDATE_BACKREF 2 5035 5036 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5037 struct btrfs_root *root, 5038 struct walk_control *wc, 5039 struct btrfs_path *path) 5040 { 5041 struct btrfs_fs_info *fs_info = root->fs_info; 5042 u64 bytenr; 5043 u64 generation; 5044 u64 refs; 5045 u64 flags; 5046 u32 nritems; 5047 struct btrfs_key key; 5048 struct extent_buffer *eb; 5049 int ret; 5050 int slot; 5051 int nread = 0; 5052 5053 if (path->slots[wc->level] < wc->reada_slot) { 5054 wc->reada_count = wc->reada_count * 2 / 3; 5055 wc->reada_count = max(wc->reada_count, 2); 5056 } else { 5057 wc->reada_count = wc->reada_count * 3 / 2; 5058 wc->reada_count = min_t(int, wc->reada_count, 5059 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5060 } 5061 5062 eb = path->nodes[wc->level]; 5063 nritems = btrfs_header_nritems(eb); 5064 5065 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5066 if (nread >= wc->reada_count) 5067 break; 5068 5069 cond_resched(); 5070 bytenr = btrfs_node_blockptr(eb, slot); 5071 generation = btrfs_node_ptr_generation(eb, slot); 5072 5073 if (slot == path->slots[wc->level]) 5074 goto reada; 5075 5076 if (wc->stage == UPDATE_BACKREF && 5077 generation <= root->root_key.offset) 5078 continue; 5079 5080 /* We don't lock the tree block, it's OK to be racy here */ 5081 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5082 wc->level - 1, 1, &refs, 5083 &flags); 5084 /* We don't care about errors in readahead. */ 5085 if (ret < 0) 5086 continue; 5087 BUG_ON(refs == 0); 5088 5089 if (wc->stage == DROP_REFERENCE) { 5090 if (refs == 1) 5091 goto reada; 5092 5093 if (wc->level == 1 && 5094 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5095 continue; 5096 if (!wc->update_ref || 5097 generation <= root->root_key.offset) 5098 continue; 5099 btrfs_node_key_to_cpu(eb, &key, slot); 5100 ret = btrfs_comp_cpu_keys(&key, 5101 &wc->update_progress); 5102 if (ret < 0) 5103 continue; 5104 } else { 5105 if (wc->level == 1 && 5106 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5107 continue; 5108 } 5109 reada: 5110 btrfs_readahead_node_child(eb, slot); 5111 nread++; 5112 } 5113 wc->reada_slot = slot; 5114 } 5115 5116 /* 5117 * helper to process tree block while walking down the tree. 5118 * 5119 * when wc->stage == UPDATE_BACKREF, this function updates 5120 * back refs for pointers in the block. 5121 * 5122 * NOTE: return value 1 means we should stop walking down. 5123 */ 5124 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5125 struct btrfs_root *root, 5126 struct btrfs_path *path, 5127 struct walk_control *wc, int lookup_info) 5128 { 5129 struct btrfs_fs_info *fs_info = root->fs_info; 5130 int level = wc->level; 5131 struct extent_buffer *eb = path->nodes[level]; 5132 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5133 int ret; 5134 5135 if (wc->stage == UPDATE_BACKREF && 5136 btrfs_header_owner(eb) != root->root_key.objectid) 5137 return 1; 5138 5139 /* 5140 * when reference count of tree block is 1, it won't increase 5141 * again. once full backref flag is set, we never clear it. 5142 */ 5143 if (lookup_info && 5144 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5145 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5146 BUG_ON(!path->locks[level]); 5147 ret = btrfs_lookup_extent_info(trans, fs_info, 5148 eb->start, level, 1, 5149 &wc->refs[level], 5150 &wc->flags[level]); 5151 BUG_ON(ret == -ENOMEM); 5152 if (ret) 5153 return ret; 5154 BUG_ON(wc->refs[level] == 0); 5155 } 5156 5157 if (wc->stage == DROP_REFERENCE) { 5158 if (wc->refs[level] > 1) 5159 return 1; 5160 5161 if (path->locks[level] && !wc->keep_locks) { 5162 btrfs_tree_unlock_rw(eb, path->locks[level]); 5163 path->locks[level] = 0; 5164 } 5165 return 0; 5166 } 5167 5168 /* wc->stage == UPDATE_BACKREF */ 5169 if (!(wc->flags[level] & flag)) { 5170 BUG_ON(!path->locks[level]); 5171 ret = btrfs_inc_ref(trans, root, eb, 1); 5172 BUG_ON(ret); /* -ENOMEM */ 5173 ret = btrfs_dec_ref(trans, root, eb, 0); 5174 BUG_ON(ret); /* -ENOMEM */ 5175 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5176 BUG_ON(ret); /* -ENOMEM */ 5177 wc->flags[level] |= flag; 5178 } 5179 5180 /* 5181 * the block is shared by multiple trees, so it's not good to 5182 * keep the tree lock 5183 */ 5184 if (path->locks[level] && level > 0) { 5185 btrfs_tree_unlock_rw(eb, path->locks[level]); 5186 path->locks[level] = 0; 5187 } 5188 return 0; 5189 } 5190 5191 /* 5192 * This is used to verify a ref exists for this root to deal with a bug where we 5193 * would have a drop_progress key that hadn't been updated properly. 5194 */ 5195 static int check_ref_exists(struct btrfs_trans_handle *trans, 5196 struct btrfs_root *root, u64 bytenr, u64 parent, 5197 int level) 5198 { 5199 struct btrfs_path *path; 5200 struct btrfs_extent_inline_ref *iref; 5201 int ret; 5202 5203 path = btrfs_alloc_path(); 5204 if (!path) 5205 return -ENOMEM; 5206 5207 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5208 root->fs_info->nodesize, parent, 5209 root->root_key.objectid, level, 0); 5210 btrfs_free_path(path); 5211 if (ret == -ENOENT) 5212 return 0; 5213 if (ret < 0) 5214 return ret; 5215 return 1; 5216 } 5217 5218 /* 5219 * helper to process tree block pointer. 5220 * 5221 * when wc->stage == DROP_REFERENCE, this function checks 5222 * reference count of the block pointed to. if the block 5223 * is shared and we need update back refs for the subtree 5224 * rooted at the block, this function changes wc->stage to 5225 * UPDATE_BACKREF. if the block is shared and there is no 5226 * need to update back, this function drops the reference 5227 * to the block. 5228 * 5229 * NOTE: return value 1 means we should stop walking down. 5230 */ 5231 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5232 struct btrfs_root *root, 5233 struct btrfs_path *path, 5234 struct walk_control *wc, int *lookup_info) 5235 { 5236 struct btrfs_fs_info *fs_info = root->fs_info; 5237 u64 bytenr; 5238 u64 generation; 5239 u64 parent; 5240 struct btrfs_tree_parent_check check = { 0 }; 5241 struct btrfs_key key; 5242 struct btrfs_ref ref = { 0 }; 5243 struct extent_buffer *next; 5244 int level = wc->level; 5245 int reada = 0; 5246 int ret = 0; 5247 bool need_account = false; 5248 5249 generation = btrfs_node_ptr_generation(path->nodes[level], 5250 path->slots[level]); 5251 /* 5252 * if the lower level block was created before the snapshot 5253 * was created, we know there is no need to update back refs 5254 * for the subtree 5255 */ 5256 if (wc->stage == UPDATE_BACKREF && 5257 generation <= root->root_key.offset) { 5258 *lookup_info = 1; 5259 return 1; 5260 } 5261 5262 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5263 5264 check.level = level - 1; 5265 check.transid = generation; 5266 check.owner_root = root->root_key.objectid; 5267 check.has_first_key = true; 5268 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5269 path->slots[level]); 5270 5271 next = find_extent_buffer(fs_info, bytenr); 5272 if (!next) { 5273 next = btrfs_find_create_tree_block(fs_info, bytenr, 5274 root->root_key.objectid, level - 1); 5275 if (IS_ERR(next)) 5276 return PTR_ERR(next); 5277 reada = 1; 5278 } 5279 btrfs_tree_lock(next); 5280 5281 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5282 &wc->refs[level - 1], 5283 &wc->flags[level - 1]); 5284 if (ret < 0) 5285 goto out_unlock; 5286 5287 if (unlikely(wc->refs[level - 1] == 0)) { 5288 btrfs_err(fs_info, "Missing references."); 5289 ret = -EIO; 5290 goto out_unlock; 5291 } 5292 *lookup_info = 0; 5293 5294 if (wc->stage == DROP_REFERENCE) { 5295 if (wc->refs[level - 1] > 1) { 5296 need_account = true; 5297 if (level == 1 && 5298 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5299 goto skip; 5300 5301 if (!wc->update_ref || 5302 generation <= root->root_key.offset) 5303 goto skip; 5304 5305 btrfs_node_key_to_cpu(path->nodes[level], &key, 5306 path->slots[level]); 5307 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5308 if (ret < 0) 5309 goto skip; 5310 5311 wc->stage = UPDATE_BACKREF; 5312 wc->shared_level = level - 1; 5313 } 5314 } else { 5315 if (level == 1 && 5316 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5317 goto skip; 5318 } 5319 5320 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5321 btrfs_tree_unlock(next); 5322 free_extent_buffer(next); 5323 next = NULL; 5324 *lookup_info = 1; 5325 } 5326 5327 if (!next) { 5328 if (reada && level == 1) 5329 reada_walk_down(trans, root, wc, path); 5330 next = read_tree_block(fs_info, bytenr, &check); 5331 if (IS_ERR(next)) { 5332 return PTR_ERR(next); 5333 } else if (!extent_buffer_uptodate(next)) { 5334 free_extent_buffer(next); 5335 return -EIO; 5336 } 5337 btrfs_tree_lock(next); 5338 } 5339 5340 level--; 5341 ASSERT(level == btrfs_header_level(next)); 5342 if (level != btrfs_header_level(next)) { 5343 btrfs_err(root->fs_info, "mismatched level"); 5344 ret = -EIO; 5345 goto out_unlock; 5346 } 5347 path->nodes[level] = next; 5348 path->slots[level] = 0; 5349 path->locks[level] = BTRFS_WRITE_LOCK; 5350 wc->level = level; 5351 if (wc->level == 1) 5352 wc->reada_slot = 0; 5353 return 0; 5354 skip: 5355 wc->refs[level - 1] = 0; 5356 wc->flags[level - 1] = 0; 5357 if (wc->stage == DROP_REFERENCE) { 5358 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5359 parent = path->nodes[level]->start; 5360 } else { 5361 ASSERT(root->root_key.objectid == 5362 btrfs_header_owner(path->nodes[level])); 5363 if (root->root_key.objectid != 5364 btrfs_header_owner(path->nodes[level])) { 5365 btrfs_err(root->fs_info, 5366 "mismatched block owner"); 5367 ret = -EIO; 5368 goto out_unlock; 5369 } 5370 parent = 0; 5371 } 5372 5373 /* 5374 * If we had a drop_progress we need to verify the refs are set 5375 * as expected. If we find our ref then we know that from here 5376 * on out everything should be correct, and we can clear the 5377 * ->restarted flag. 5378 */ 5379 if (wc->restarted) { 5380 ret = check_ref_exists(trans, root, bytenr, parent, 5381 level - 1); 5382 if (ret < 0) 5383 goto out_unlock; 5384 if (ret == 0) 5385 goto no_delete; 5386 ret = 0; 5387 wc->restarted = 0; 5388 } 5389 5390 /* 5391 * Reloc tree doesn't contribute to qgroup numbers, and we have 5392 * already accounted them at merge time (replace_path), 5393 * thus we could skip expensive subtree trace here. 5394 */ 5395 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5396 need_account) { 5397 ret = btrfs_qgroup_trace_subtree(trans, next, 5398 generation, level - 1); 5399 if (ret) { 5400 btrfs_err_rl(fs_info, 5401 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5402 ret); 5403 } 5404 } 5405 5406 /* 5407 * We need to update the next key in our walk control so we can 5408 * update the drop_progress key accordingly. We don't care if 5409 * find_next_key doesn't find a key because that means we're at 5410 * the end and are going to clean up now. 5411 */ 5412 wc->drop_level = level; 5413 find_next_key(path, level, &wc->drop_progress); 5414 5415 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5416 fs_info->nodesize, parent); 5417 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5418 0, false); 5419 ret = btrfs_free_extent(trans, &ref); 5420 if (ret) 5421 goto out_unlock; 5422 } 5423 no_delete: 5424 *lookup_info = 1; 5425 ret = 1; 5426 5427 out_unlock: 5428 btrfs_tree_unlock(next); 5429 free_extent_buffer(next); 5430 5431 return ret; 5432 } 5433 5434 /* 5435 * helper to process tree block while walking up the tree. 5436 * 5437 * when wc->stage == DROP_REFERENCE, this function drops 5438 * reference count on the block. 5439 * 5440 * when wc->stage == UPDATE_BACKREF, this function changes 5441 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5442 * to UPDATE_BACKREF previously while processing the block. 5443 * 5444 * NOTE: return value 1 means we should stop walking up. 5445 */ 5446 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5447 struct btrfs_root *root, 5448 struct btrfs_path *path, 5449 struct walk_control *wc) 5450 { 5451 struct btrfs_fs_info *fs_info = root->fs_info; 5452 int ret; 5453 int level = wc->level; 5454 struct extent_buffer *eb = path->nodes[level]; 5455 u64 parent = 0; 5456 5457 if (wc->stage == UPDATE_BACKREF) { 5458 BUG_ON(wc->shared_level < level); 5459 if (level < wc->shared_level) 5460 goto out; 5461 5462 ret = find_next_key(path, level + 1, &wc->update_progress); 5463 if (ret > 0) 5464 wc->update_ref = 0; 5465 5466 wc->stage = DROP_REFERENCE; 5467 wc->shared_level = -1; 5468 path->slots[level] = 0; 5469 5470 /* 5471 * check reference count again if the block isn't locked. 5472 * we should start walking down the tree again if reference 5473 * count is one. 5474 */ 5475 if (!path->locks[level]) { 5476 BUG_ON(level == 0); 5477 btrfs_tree_lock(eb); 5478 path->locks[level] = BTRFS_WRITE_LOCK; 5479 5480 ret = btrfs_lookup_extent_info(trans, fs_info, 5481 eb->start, level, 1, 5482 &wc->refs[level], 5483 &wc->flags[level]); 5484 if (ret < 0) { 5485 btrfs_tree_unlock_rw(eb, path->locks[level]); 5486 path->locks[level] = 0; 5487 return ret; 5488 } 5489 BUG_ON(wc->refs[level] == 0); 5490 if (wc->refs[level] == 1) { 5491 btrfs_tree_unlock_rw(eb, path->locks[level]); 5492 path->locks[level] = 0; 5493 return 1; 5494 } 5495 } 5496 } 5497 5498 /* wc->stage == DROP_REFERENCE */ 5499 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5500 5501 if (wc->refs[level] == 1) { 5502 if (level == 0) { 5503 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5504 ret = btrfs_dec_ref(trans, root, eb, 1); 5505 else 5506 ret = btrfs_dec_ref(trans, root, eb, 0); 5507 BUG_ON(ret); /* -ENOMEM */ 5508 if (is_fstree(root->root_key.objectid)) { 5509 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5510 if (ret) { 5511 btrfs_err_rl(fs_info, 5512 "error %d accounting leaf items, quota is out of sync, rescan required", 5513 ret); 5514 } 5515 } 5516 } 5517 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5518 if (!path->locks[level]) { 5519 btrfs_tree_lock(eb); 5520 path->locks[level] = BTRFS_WRITE_LOCK; 5521 } 5522 btrfs_clear_buffer_dirty(trans, eb); 5523 } 5524 5525 if (eb == root->node) { 5526 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5527 parent = eb->start; 5528 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5529 goto owner_mismatch; 5530 } else { 5531 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5532 parent = path->nodes[level + 1]->start; 5533 else if (root->root_key.objectid != 5534 btrfs_header_owner(path->nodes[level + 1])) 5535 goto owner_mismatch; 5536 } 5537 5538 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5539 wc->refs[level] == 1); 5540 out: 5541 wc->refs[level] = 0; 5542 wc->flags[level] = 0; 5543 return 0; 5544 5545 owner_mismatch: 5546 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5547 btrfs_header_owner(eb), root->root_key.objectid); 5548 return -EUCLEAN; 5549 } 5550 5551 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5552 struct btrfs_root *root, 5553 struct btrfs_path *path, 5554 struct walk_control *wc) 5555 { 5556 int level = wc->level; 5557 int lookup_info = 1; 5558 int ret = 0; 5559 5560 while (level >= 0) { 5561 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5562 if (ret) 5563 break; 5564 5565 if (level == 0) 5566 break; 5567 5568 if (path->slots[level] >= 5569 btrfs_header_nritems(path->nodes[level])) 5570 break; 5571 5572 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5573 if (ret > 0) { 5574 path->slots[level]++; 5575 continue; 5576 } else if (ret < 0) 5577 break; 5578 level = wc->level; 5579 } 5580 return (ret == 1) ? 0 : ret; 5581 } 5582 5583 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5584 struct btrfs_root *root, 5585 struct btrfs_path *path, 5586 struct walk_control *wc, int max_level) 5587 { 5588 int level = wc->level; 5589 int ret; 5590 5591 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5592 while (level < max_level && path->nodes[level]) { 5593 wc->level = level; 5594 if (path->slots[level] + 1 < 5595 btrfs_header_nritems(path->nodes[level])) { 5596 path->slots[level]++; 5597 return 0; 5598 } else { 5599 ret = walk_up_proc(trans, root, path, wc); 5600 if (ret > 0) 5601 return 0; 5602 if (ret < 0) 5603 return ret; 5604 5605 if (path->locks[level]) { 5606 btrfs_tree_unlock_rw(path->nodes[level], 5607 path->locks[level]); 5608 path->locks[level] = 0; 5609 } 5610 free_extent_buffer(path->nodes[level]); 5611 path->nodes[level] = NULL; 5612 level++; 5613 } 5614 } 5615 return 1; 5616 } 5617 5618 /* 5619 * drop a subvolume tree. 5620 * 5621 * this function traverses the tree freeing any blocks that only 5622 * referenced by the tree. 5623 * 5624 * when a shared tree block is found. this function decreases its 5625 * reference count by one. if update_ref is true, this function 5626 * also make sure backrefs for the shared block and all lower level 5627 * blocks are properly updated. 5628 * 5629 * If called with for_reloc == 0, may exit early with -EAGAIN 5630 */ 5631 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5632 { 5633 const bool is_reloc_root = (root->root_key.objectid == 5634 BTRFS_TREE_RELOC_OBJECTID); 5635 struct btrfs_fs_info *fs_info = root->fs_info; 5636 struct btrfs_path *path; 5637 struct btrfs_trans_handle *trans; 5638 struct btrfs_root *tree_root = fs_info->tree_root; 5639 struct btrfs_root_item *root_item = &root->root_item; 5640 struct walk_control *wc; 5641 struct btrfs_key key; 5642 int err = 0; 5643 int ret; 5644 int level; 5645 bool root_dropped = false; 5646 bool unfinished_drop = false; 5647 5648 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5649 5650 path = btrfs_alloc_path(); 5651 if (!path) { 5652 err = -ENOMEM; 5653 goto out; 5654 } 5655 5656 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5657 if (!wc) { 5658 btrfs_free_path(path); 5659 err = -ENOMEM; 5660 goto out; 5661 } 5662 5663 /* 5664 * Use join to avoid potential EINTR from transaction start. See 5665 * wait_reserve_ticket and the whole reservation callchain. 5666 */ 5667 if (for_reloc) 5668 trans = btrfs_join_transaction(tree_root); 5669 else 5670 trans = btrfs_start_transaction(tree_root, 0); 5671 if (IS_ERR(trans)) { 5672 err = PTR_ERR(trans); 5673 goto out_free; 5674 } 5675 5676 err = btrfs_run_delayed_items(trans); 5677 if (err) 5678 goto out_end_trans; 5679 5680 /* 5681 * This will help us catch people modifying the fs tree while we're 5682 * dropping it. It is unsafe to mess with the fs tree while it's being 5683 * dropped as we unlock the root node and parent nodes as we walk down 5684 * the tree, assuming nothing will change. If something does change 5685 * then we'll have stale information and drop references to blocks we've 5686 * already dropped. 5687 */ 5688 set_bit(BTRFS_ROOT_DELETING, &root->state); 5689 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5690 5691 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5692 level = btrfs_header_level(root->node); 5693 path->nodes[level] = btrfs_lock_root_node(root); 5694 path->slots[level] = 0; 5695 path->locks[level] = BTRFS_WRITE_LOCK; 5696 memset(&wc->update_progress, 0, 5697 sizeof(wc->update_progress)); 5698 } else { 5699 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5700 memcpy(&wc->update_progress, &key, 5701 sizeof(wc->update_progress)); 5702 5703 level = btrfs_root_drop_level(root_item); 5704 BUG_ON(level == 0); 5705 path->lowest_level = level; 5706 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5707 path->lowest_level = 0; 5708 if (ret < 0) { 5709 err = ret; 5710 goto out_end_trans; 5711 } 5712 WARN_ON(ret > 0); 5713 5714 /* 5715 * unlock our path, this is safe because only this 5716 * function is allowed to delete this snapshot 5717 */ 5718 btrfs_unlock_up_safe(path, 0); 5719 5720 level = btrfs_header_level(root->node); 5721 while (1) { 5722 btrfs_tree_lock(path->nodes[level]); 5723 path->locks[level] = BTRFS_WRITE_LOCK; 5724 5725 ret = btrfs_lookup_extent_info(trans, fs_info, 5726 path->nodes[level]->start, 5727 level, 1, &wc->refs[level], 5728 &wc->flags[level]); 5729 if (ret < 0) { 5730 err = ret; 5731 goto out_end_trans; 5732 } 5733 BUG_ON(wc->refs[level] == 0); 5734 5735 if (level == btrfs_root_drop_level(root_item)) 5736 break; 5737 5738 btrfs_tree_unlock(path->nodes[level]); 5739 path->locks[level] = 0; 5740 WARN_ON(wc->refs[level] != 1); 5741 level--; 5742 } 5743 } 5744 5745 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5746 wc->level = level; 5747 wc->shared_level = -1; 5748 wc->stage = DROP_REFERENCE; 5749 wc->update_ref = update_ref; 5750 wc->keep_locks = 0; 5751 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5752 5753 while (1) { 5754 5755 ret = walk_down_tree(trans, root, path, wc); 5756 if (ret < 0) { 5757 btrfs_abort_transaction(trans, ret); 5758 err = ret; 5759 break; 5760 } 5761 5762 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5763 if (ret < 0) { 5764 btrfs_abort_transaction(trans, ret); 5765 err = ret; 5766 break; 5767 } 5768 5769 if (ret > 0) { 5770 BUG_ON(wc->stage != DROP_REFERENCE); 5771 break; 5772 } 5773 5774 if (wc->stage == DROP_REFERENCE) { 5775 wc->drop_level = wc->level; 5776 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5777 &wc->drop_progress, 5778 path->slots[wc->drop_level]); 5779 } 5780 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5781 &wc->drop_progress); 5782 btrfs_set_root_drop_level(root_item, wc->drop_level); 5783 5784 BUG_ON(wc->level == 0); 5785 if (btrfs_should_end_transaction(trans) || 5786 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5787 ret = btrfs_update_root(trans, tree_root, 5788 &root->root_key, 5789 root_item); 5790 if (ret) { 5791 btrfs_abort_transaction(trans, ret); 5792 err = ret; 5793 goto out_end_trans; 5794 } 5795 5796 if (!is_reloc_root) 5797 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5798 5799 btrfs_end_transaction_throttle(trans); 5800 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5801 btrfs_debug(fs_info, 5802 "drop snapshot early exit"); 5803 err = -EAGAIN; 5804 goto out_free; 5805 } 5806 5807 /* 5808 * Use join to avoid potential EINTR from transaction 5809 * start. See wait_reserve_ticket and the whole 5810 * reservation callchain. 5811 */ 5812 if (for_reloc) 5813 trans = btrfs_join_transaction(tree_root); 5814 else 5815 trans = btrfs_start_transaction(tree_root, 0); 5816 if (IS_ERR(trans)) { 5817 err = PTR_ERR(trans); 5818 goto out_free; 5819 } 5820 } 5821 } 5822 btrfs_release_path(path); 5823 if (err) 5824 goto out_end_trans; 5825 5826 ret = btrfs_del_root(trans, &root->root_key); 5827 if (ret) { 5828 btrfs_abort_transaction(trans, ret); 5829 err = ret; 5830 goto out_end_trans; 5831 } 5832 5833 if (!is_reloc_root) { 5834 ret = btrfs_find_root(tree_root, &root->root_key, path, 5835 NULL, NULL); 5836 if (ret < 0) { 5837 btrfs_abort_transaction(trans, ret); 5838 err = ret; 5839 goto out_end_trans; 5840 } else if (ret > 0) { 5841 /* if we fail to delete the orphan item this time 5842 * around, it'll get picked up the next time. 5843 * 5844 * The most common failure here is just -ENOENT. 5845 */ 5846 btrfs_del_orphan_item(trans, tree_root, 5847 root->root_key.objectid); 5848 } 5849 } 5850 5851 /* 5852 * This subvolume is going to be completely dropped, and won't be 5853 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5854 * commit transaction time. So free it here manually. 5855 */ 5856 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5857 btrfs_qgroup_free_meta_all_pertrans(root); 5858 5859 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5860 btrfs_add_dropped_root(trans, root); 5861 else 5862 btrfs_put_root(root); 5863 root_dropped = true; 5864 out_end_trans: 5865 if (!is_reloc_root) 5866 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5867 5868 btrfs_end_transaction_throttle(trans); 5869 out_free: 5870 kfree(wc); 5871 btrfs_free_path(path); 5872 out: 5873 /* 5874 * We were an unfinished drop root, check to see if there are any 5875 * pending, and if not clear and wake up any waiters. 5876 */ 5877 if (!err && unfinished_drop) 5878 btrfs_maybe_wake_unfinished_drop(fs_info); 5879 5880 /* 5881 * So if we need to stop dropping the snapshot for whatever reason we 5882 * need to make sure to add it back to the dead root list so that we 5883 * keep trying to do the work later. This also cleans up roots if we 5884 * don't have it in the radix (like when we recover after a power fail 5885 * or unmount) so we don't leak memory. 5886 */ 5887 if (!for_reloc && !root_dropped) 5888 btrfs_add_dead_root(root); 5889 return err; 5890 } 5891 5892 /* 5893 * drop subtree rooted at tree block 'node'. 5894 * 5895 * NOTE: this function will unlock and release tree block 'node' 5896 * only used by relocation code 5897 */ 5898 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5899 struct btrfs_root *root, 5900 struct extent_buffer *node, 5901 struct extent_buffer *parent) 5902 { 5903 struct btrfs_fs_info *fs_info = root->fs_info; 5904 struct btrfs_path *path; 5905 struct walk_control *wc; 5906 int level; 5907 int parent_level; 5908 int ret = 0; 5909 int wret; 5910 5911 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5912 5913 path = btrfs_alloc_path(); 5914 if (!path) 5915 return -ENOMEM; 5916 5917 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5918 if (!wc) { 5919 btrfs_free_path(path); 5920 return -ENOMEM; 5921 } 5922 5923 btrfs_assert_tree_write_locked(parent); 5924 parent_level = btrfs_header_level(parent); 5925 atomic_inc(&parent->refs); 5926 path->nodes[parent_level] = parent; 5927 path->slots[parent_level] = btrfs_header_nritems(parent); 5928 5929 btrfs_assert_tree_write_locked(node); 5930 level = btrfs_header_level(node); 5931 path->nodes[level] = node; 5932 path->slots[level] = 0; 5933 path->locks[level] = BTRFS_WRITE_LOCK; 5934 5935 wc->refs[parent_level] = 1; 5936 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5937 wc->level = level; 5938 wc->shared_level = -1; 5939 wc->stage = DROP_REFERENCE; 5940 wc->update_ref = 0; 5941 wc->keep_locks = 1; 5942 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5943 5944 while (1) { 5945 wret = walk_down_tree(trans, root, path, wc); 5946 if (wret < 0) { 5947 ret = wret; 5948 break; 5949 } 5950 5951 wret = walk_up_tree(trans, root, path, wc, parent_level); 5952 if (wret < 0) 5953 ret = wret; 5954 if (wret != 0) 5955 break; 5956 } 5957 5958 kfree(wc); 5959 btrfs_free_path(path); 5960 return ret; 5961 } 5962 5963 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5964 u64 start, u64 end) 5965 { 5966 return unpin_extent_range(fs_info, start, end, false); 5967 } 5968 5969 /* 5970 * It used to be that old block groups would be left around forever. 5971 * Iterating over them would be enough to trim unused space. Since we 5972 * now automatically remove them, we also need to iterate over unallocated 5973 * space. 5974 * 5975 * We don't want a transaction for this since the discard may take a 5976 * substantial amount of time. We don't require that a transaction be 5977 * running, but we do need to take a running transaction into account 5978 * to ensure that we're not discarding chunks that were released or 5979 * allocated in the current transaction. 5980 * 5981 * Holding the chunks lock will prevent other threads from allocating 5982 * or releasing chunks, but it won't prevent a running transaction 5983 * from committing and releasing the memory that the pending chunks 5984 * list head uses. For that, we need to take a reference to the 5985 * transaction and hold the commit root sem. We only need to hold 5986 * it while performing the free space search since we have already 5987 * held back allocations. 5988 */ 5989 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5990 { 5991 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 5992 int ret; 5993 5994 *trimmed = 0; 5995 5996 /* Discard not supported = nothing to do. */ 5997 if (!bdev_max_discard_sectors(device->bdev)) 5998 return 0; 5999 6000 /* Not writable = nothing to do. */ 6001 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6002 return 0; 6003 6004 /* No free space = nothing to do. */ 6005 if (device->total_bytes <= device->bytes_used) 6006 return 0; 6007 6008 ret = 0; 6009 6010 while (1) { 6011 struct btrfs_fs_info *fs_info = device->fs_info; 6012 u64 bytes; 6013 6014 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6015 if (ret) 6016 break; 6017 6018 find_first_clear_extent_bit(&device->alloc_state, start, 6019 &start, &end, 6020 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6021 6022 /* Check if there are any CHUNK_* bits left */ 6023 if (start > device->total_bytes) { 6024 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6025 btrfs_warn_in_rcu(fs_info, 6026 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6027 start, end - start + 1, 6028 btrfs_dev_name(device), 6029 device->total_bytes); 6030 mutex_unlock(&fs_info->chunk_mutex); 6031 ret = 0; 6032 break; 6033 } 6034 6035 /* Ensure we skip the reserved space on each device. */ 6036 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6037 6038 /* 6039 * If find_first_clear_extent_bit find a range that spans the 6040 * end of the device it will set end to -1, in this case it's up 6041 * to the caller to trim the value to the size of the device. 6042 */ 6043 end = min(end, device->total_bytes - 1); 6044 6045 len = end - start + 1; 6046 6047 /* We didn't find any extents */ 6048 if (!len) { 6049 mutex_unlock(&fs_info->chunk_mutex); 6050 ret = 0; 6051 break; 6052 } 6053 6054 ret = btrfs_issue_discard(device->bdev, start, len, 6055 &bytes); 6056 if (!ret) 6057 set_extent_bit(&device->alloc_state, start, 6058 start + bytes - 1, CHUNK_TRIMMED, NULL); 6059 mutex_unlock(&fs_info->chunk_mutex); 6060 6061 if (ret) 6062 break; 6063 6064 start += len; 6065 *trimmed += bytes; 6066 6067 if (fatal_signal_pending(current)) { 6068 ret = -ERESTARTSYS; 6069 break; 6070 } 6071 6072 cond_resched(); 6073 } 6074 6075 return ret; 6076 } 6077 6078 /* 6079 * Trim the whole filesystem by: 6080 * 1) trimming the free space in each block group 6081 * 2) trimming the unallocated space on each device 6082 * 6083 * This will also continue trimming even if a block group or device encounters 6084 * an error. The return value will be the last error, or 0 if nothing bad 6085 * happens. 6086 */ 6087 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6088 { 6089 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6090 struct btrfs_block_group *cache = NULL; 6091 struct btrfs_device *device; 6092 u64 group_trimmed; 6093 u64 range_end = U64_MAX; 6094 u64 start; 6095 u64 end; 6096 u64 trimmed = 0; 6097 u64 bg_failed = 0; 6098 u64 dev_failed = 0; 6099 int bg_ret = 0; 6100 int dev_ret = 0; 6101 int ret = 0; 6102 6103 if (range->start == U64_MAX) 6104 return -EINVAL; 6105 6106 /* 6107 * Check range overflow if range->len is set. 6108 * The default range->len is U64_MAX. 6109 */ 6110 if (range->len != U64_MAX && 6111 check_add_overflow(range->start, range->len, &range_end)) 6112 return -EINVAL; 6113 6114 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6115 for (; cache; cache = btrfs_next_block_group(cache)) { 6116 if (cache->start >= range_end) { 6117 btrfs_put_block_group(cache); 6118 break; 6119 } 6120 6121 start = max(range->start, cache->start); 6122 end = min(range_end, cache->start + cache->length); 6123 6124 if (end - start >= range->minlen) { 6125 if (!btrfs_block_group_done(cache)) { 6126 ret = btrfs_cache_block_group(cache, true); 6127 if (ret) { 6128 bg_failed++; 6129 bg_ret = ret; 6130 continue; 6131 } 6132 } 6133 ret = btrfs_trim_block_group(cache, 6134 &group_trimmed, 6135 start, 6136 end, 6137 range->minlen); 6138 6139 trimmed += group_trimmed; 6140 if (ret) { 6141 bg_failed++; 6142 bg_ret = ret; 6143 continue; 6144 } 6145 } 6146 } 6147 6148 if (bg_failed) 6149 btrfs_warn(fs_info, 6150 "failed to trim %llu block group(s), last error %d", 6151 bg_failed, bg_ret); 6152 6153 mutex_lock(&fs_devices->device_list_mutex); 6154 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6155 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6156 continue; 6157 6158 ret = btrfs_trim_free_extents(device, &group_trimmed); 6159 if (ret) { 6160 dev_failed++; 6161 dev_ret = ret; 6162 break; 6163 } 6164 6165 trimmed += group_trimmed; 6166 } 6167 mutex_unlock(&fs_devices->device_list_mutex); 6168 6169 if (dev_failed) 6170 btrfs_warn(fs_info, 6171 "failed to trim %llu device(s), last error %d", 6172 dev_failed, dev_ret); 6173 range->len = trimmed; 6174 if (bg_ret) 6175 return bg_ret; 6176 return dev_ret; 6177 } 6178