1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 int ret; 91 struct btrfs_key key; 92 struct btrfs_path *path; 93 94 path = btrfs_alloc_path(); 95 if (!path) 96 return -ENOMEM; 97 98 key.objectid = start; 99 key.offset = len; 100 key.type = BTRFS_EXTENT_ITEM_KEY; 101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 102 btrfs_free_path(path); 103 return ret; 104 } 105 106 /* 107 * helper function to lookup reference count and flags of a tree block. 108 * 109 * the head node for delayed ref is used to store the sum of all the 110 * reference count modifications queued up in the rbtree. the head 111 * node may also store the extent flags to set. This way you can check 112 * to see what the reference count and extent flags would be if all of 113 * the delayed refs are not processed. 114 */ 115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 116 struct btrfs_fs_info *fs_info, u64 bytenr, 117 u64 offset, int metadata, u64 *refs, u64 *flags) 118 { 119 struct btrfs_delayed_ref_head *head; 120 struct btrfs_delayed_ref_root *delayed_refs; 121 struct btrfs_path *path; 122 struct btrfs_extent_item *ei; 123 struct extent_buffer *leaf; 124 struct btrfs_key key; 125 u32 item_size; 126 u64 num_refs; 127 u64 extent_flags; 128 int ret; 129 130 /* 131 * If we don't have skinny metadata, don't bother doing anything 132 * different 133 */ 134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 135 offset = fs_info->nodesize; 136 metadata = 0; 137 } 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 if (!trans) { 144 path->skip_locking = 1; 145 path->search_commit_root = 1; 146 } 147 148 search_again: 149 key.objectid = bytenr; 150 key.offset = offset; 151 if (metadata) 152 key.type = BTRFS_METADATA_ITEM_KEY; 153 else 154 key.type = BTRFS_EXTENT_ITEM_KEY; 155 156 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 157 if (ret < 0) 158 goto out_free; 159 160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 161 if (path->slots[0]) { 162 path->slots[0]--; 163 btrfs_item_key_to_cpu(path->nodes[0], &key, 164 path->slots[0]); 165 if (key.objectid == bytenr && 166 key.type == BTRFS_EXTENT_ITEM_KEY && 167 key.offset == fs_info->nodesize) 168 ret = 0; 169 } 170 } 171 172 if (ret == 0) { 173 leaf = path->nodes[0]; 174 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 175 if (item_size >= sizeof(*ei)) { 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_extent_item); 178 num_refs = btrfs_extent_refs(leaf, ei); 179 extent_flags = btrfs_extent_flags(leaf, ei); 180 } else { 181 ret = -EINVAL; 182 btrfs_print_v0_err(fs_info); 183 if (trans) 184 btrfs_abort_transaction(trans, ret); 185 else 186 btrfs_handle_fs_error(fs_info, ret, NULL); 187 188 goto out_free; 189 } 190 191 BUG_ON(num_refs == 0); 192 } else { 193 num_refs = 0; 194 extent_flags = 0; 195 ret = 0; 196 } 197 198 if (!trans) 199 goto out; 200 201 delayed_refs = &trans->transaction->delayed_refs; 202 spin_lock(&delayed_refs->lock); 203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 204 if (head) { 205 if (!mutex_trylock(&head->mutex)) { 206 refcount_inc(&head->refs); 207 spin_unlock(&delayed_refs->lock); 208 209 btrfs_release_path(path); 210 211 /* 212 * Mutex was contended, block until it's released and try 213 * again 214 */ 215 mutex_lock(&head->mutex); 216 mutex_unlock(&head->mutex); 217 btrfs_put_delayed_ref_head(head); 218 goto search_again; 219 } 220 spin_lock(&head->lock); 221 if (head->extent_op && head->extent_op->update_flags) 222 extent_flags |= head->extent_op->flags_to_set; 223 else 224 BUG_ON(num_refs == 0); 225 226 num_refs += head->ref_mod; 227 spin_unlock(&head->lock); 228 mutex_unlock(&head->mutex); 229 } 230 spin_unlock(&delayed_refs->lock); 231 out: 232 WARN_ON(num_refs == 0); 233 if (refs) 234 *refs = num_refs; 235 if (flags) 236 *flags = extent_flags; 237 out_free: 238 btrfs_free_path(path); 239 return ret; 240 } 241 242 /* 243 * Back reference rules. Back refs have three main goals: 244 * 245 * 1) differentiate between all holders of references to an extent so that 246 * when a reference is dropped we can make sure it was a valid reference 247 * before freeing the extent. 248 * 249 * 2) Provide enough information to quickly find the holders of an extent 250 * if we notice a given block is corrupted or bad. 251 * 252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 253 * maintenance. This is actually the same as #2, but with a slightly 254 * different use case. 255 * 256 * There are two kinds of back refs. The implicit back refs is optimized 257 * for pointers in non-shared tree blocks. For a given pointer in a block, 258 * back refs of this kind provide information about the block's owner tree 259 * and the pointer's key. These information allow us to find the block by 260 * b-tree searching. The full back refs is for pointers in tree blocks not 261 * referenced by their owner trees. The location of tree block is recorded 262 * in the back refs. Actually the full back refs is generic, and can be 263 * used in all cases the implicit back refs is used. The major shortcoming 264 * of the full back refs is its overhead. Every time a tree block gets 265 * COWed, we have to update back refs entry for all pointers in it. 266 * 267 * For a newly allocated tree block, we use implicit back refs for 268 * pointers in it. This means most tree related operations only involve 269 * implicit back refs. For a tree block created in old transaction, the 270 * only way to drop a reference to it is COW it. So we can detect the 271 * event that tree block loses its owner tree's reference and do the 272 * back refs conversion. 273 * 274 * When a tree block is COWed through a tree, there are four cases: 275 * 276 * The reference count of the block is one and the tree is the block's 277 * owner tree. Nothing to do in this case. 278 * 279 * The reference count of the block is one and the tree is not the 280 * block's owner tree. In this case, full back refs is used for pointers 281 * in the block. Remove these full back refs, add implicit back refs for 282 * every pointers in the new block. 283 * 284 * The reference count of the block is greater than one and the tree is 285 * the block's owner tree. In this case, implicit back refs is used for 286 * pointers in the block. Add full back refs for every pointers in the 287 * block, increase lower level extents' reference counts. The original 288 * implicit back refs are entailed to the new block. 289 * 290 * The reference count of the block is greater than one and the tree is 291 * not the block's owner tree. Add implicit back refs for every pointer in 292 * the new block, increase lower level extents' reference count. 293 * 294 * Back Reference Key composing: 295 * 296 * The key objectid corresponds to the first byte in the extent, 297 * The key type is used to differentiate between types of back refs. 298 * There are different meanings of the key offset for different types 299 * of back refs. 300 * 301 * File extents can be referenced by: 302 * 303 * - multiple snapshots, subvolumes, or different generations in one subvol 304 * - different files inside a single subvolume 305 * - different offsets inside a file (bookend extents in file.c) 306 * 307 * The extent ref structure for the implicit back refs has fields for: 308 * 309 * - Objectid of the subvolume root 310 * - objectid of the file holding the reference 311 * - original offset in the file 312 * - how many bookend extents 313 * 314 * The key offset for the implicit back refs is hash of the first 315 * three fields. 316 * 317 * The extent ref structure for the full back refs has field for: 318 * 319 * - number of pointers in the tree leaf 320 * 321 * The key offset for the implicit back refs is the first byte of 322 * the tree leaf 323 * 324 * When a file extent is allocated, The implicit back refs is used. 325 * the fields are filled in: 326 * 327 * (root_key.objectid, inode objectid, offset in file, 1) 328 * 329 * When a file extent is removed file truncation, we find the 330 * corresponding implicit back refs and check the following fields: 331 * 332 * (btrfs_header_owner(leaf), inode objectid, offset in file) 333 * 334 * Btree extents can be referenced by: 335 * 336 * - Different subvolumes 337 * 338 * Both the implicit back refs and the full back refs for tree blocks 339 * only consist of key. The key offset for the implicit back refs is 340 * objectid of block's owner tree. The key offset for the full back refs 341 * is the first byte of parent block. 342 * 343 * When implicit back refs is used, information about the lowest key and 344 * level of the tree block are required. These information are stored in 345 * tree block info structure. 346 */ 347 348 /* 349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 352 */ 353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 354 struct btrfs_extent_inline_ref *iref, 355 enum btrfs_inline_ref_type is_data) 356 { 357 int type = btrfs_extent_inline_ref_type(eb, iref); 358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 359 360 if (type == BTRFS_TREE_BLOCK_REF_KEY || 361 type == BTRFS_SHARED_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_DATA_REF_KEY || 363 type == BTRFS_EXTENT_DATA_REF_KEY) { 364 if (is_data == BTRFS_REF_TYPE_BLOCK) { 365 if (type == BTRFS_TREE_BLOCK_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 368 ASSERT(eb->fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(eb->fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 btrfs_print_leaf((struct extent_buffer *)eb); 397 btrfs_err(eb->fs_info, 398 "eb %llu iref 0x%lx invalid extent inline ref type %d", 399 eb->start, (unsigned long)iref, type); 400 WARN_ON(1); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = trans->fs_info->extent_root; 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = trans->fs_info->extent_root; 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_path *path, 597 int refs_to_drop, int *last_ref) 598 { 599 struct btrfs_key key; 600 struct btrfs_extent_data_ref *ref1 = NULL; 601 struct btrfs_shared_data_ref *ref2 = NULL; 602 struct extent_buffer *leaf; 603 u32 num_refs = 0; 604 int ret = 0; 605 606 leaf = path->nodes[0]; 607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 608 609 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 610 ref1 = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 613 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 614 ref2 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_shared_data_ref); 616 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 617 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 618 btrfs_print_v0_err(trans->fs_info); 619 btrfs_abort_transaction(trans, -EINVAL); 620 return -EINVAL; 621 } else { 622 BUG(); 623 } 624 625 BUG_ON(num_refs < refs_to_drop); 626 num_refs -= refs_to_drop; 627 628 if (num_refs == 0) { 629 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 630 *last_ref = 1; 631 } else { 632 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 633 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 634 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 635 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 636 btrfs_mark_buffer_dirty(leaf); 637 } 638 return ret; 639 } 640 641 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 642 struct btrfs_extent_inline_ref *iref) 643 { 644 struct btrfs_key key; 645 struct extent_buffer *leaf; 646 struct btrfs_extent_data_ref *ref1; 647 struct btrfs_shared_data_ref *ref2; 648 u32 num_refs = 0; 649 int type; 650 651 leaf = path->nodes[0]; 652 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 653 654 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 655 if (iref) { 656 /* 657 * If type is invalid, we should have bailed out earlier than 658 * this call. 659 */ 660 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 661 ASSERT(type != BTRFS_REF_TYPE_INVALID); 662 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 663 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 664 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 665 } else { 666 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 667 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 668 } 669 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 670 ref1 = btrfs_item_ptr(leaf, path->slots[0], 671 struct btrfs_extent_data_ref); 672 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 673 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 674 ref2 = btrfs_item_ptr(leaf, path->slots[0], 675 struct btrfs_shared_data_ref); 676 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 677 } else { 678 WARN_ON(1); 679 } 680 return num_refs; 681 } 682 683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 684 struct btrfs_path *path, 685 u64 bytenr, u64 parent, 686 u64 root_objectid) 687 { 688 struct btrfs_root *root = trans->fs_info->extent_root; 689 struct btrfs_key key; 690 int ret; 691 692 key.objectid = bytenr; 693 if (parent) { 694 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 695 key.offset = parent; 696 } else { 697 key.type = BTRFS_TREE_BLOCK_REF_KEY; 698 key.offset = root_objectid; 699 } 700 701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 702 if (ret > 0) 703 ret = -ENOENT; 704 return ret; 705 } 706 707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 708 struct btrfs_path *path, 709 u64 bytenr, u64 parent, 710 u64 root_objectid) 711 { 712 struct btrfs_key key; 713 int ret; 714 715 key.objectid = bytenr; 716 if (parent) { 717 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 718 key.offset = parent; 719 } else { 720 key.type = BTRFS_TREE_BLOCK_REF_KEY; 721 key.offset = root_objectid; 722 } 723 724 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 725 path, &key, 0); 726 btrfs_release_path(path); 727 return ret; 728 } 729 730 static inline int extent_ref_type(u64 parent, u64 owner) 731 { 732 int type; 733 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 734 if (parent > 0) 735 type = BTRFS_SHARED_BLOCK_REF_KEY; 736 else 737 type = BTRFS_TREE_BLOCK_REF_KEY; 738 } else { 739 if (parent > 0) 740 type = BTRFS_SHARED_DATA_REF_KEY; 741 else 742 type = BTRFS_EXTENT_DATA_REF_KEY; 743 } 744 return type; 745 } 746 747 static int find_next_key(struct btrfs_path *path, int level, 748 struct btrfs_key *key) 749 750 { 751 for (; level < BTRFS_MAX_LEVEL; level++) { 752 if (!path->nodes[level]) 753 break; 754 if (path->slots[level] + 1 >= 755 btrfs_header_nritems(path->nodes[level])) 756 continue; 757 if (level == 0) 758 btrfs_item_key_to_cpu(path->nodes[level], key, 759 path->slots[level] + 1); 760 else 761 btrfs_node_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 return 0; 764 } 765 return 1; 766 } 767 768 /* 769 * look for inline back ref. if back ref is found, *ref_ret is set 770 * to the address of inline back ref, and 0 is returned. 771 * 772 * if back ref isn't found, *ref_ret is set to the address where it 773 * should be inserted, and -ENOENT is returned. 774 * 775 * if insert is true and there are too many inline back refs, the path 776 * points to the extent item, and -EAGAIN is returned. 777 * 778 * NOTE: inline back refs are ordered in the same way that back ref 779 * items in the tree are ordered. 780 */ 781 static noinline_for_stack 782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 783 struct btrfs_path *path, 784 struct btrfs_extent_inline_ref **ref_ret, 785 u64 bytenr, u64 num_bytes, 786 u64 parent, u64 root_objectid, 787 u64 owner, u64 offset, int insert) 788 { 789 struct btrfs_fs_info *fs_info = trans->fs_info; 790 struct btrfs_root *root = fs_info->extent_root; 791 struct btrfs_key key; 792 struct extent_buffer *leaf; 793 struct btrfs_extent_item *ei; 794 struct btrfs_extent_inline_ref *iref; 795 u64 flags; 796 u64 item_size; 797 unsigned long ptr; 798 unsigned long end; 799 int extra_size; 800 int type; 801 int want; 802 int ret; 803 int err = 0; 804 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 805 int needed; 806 807 key.objectid = bytenr; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 key.offset = num_bytes; 810 811 want = extent_ref_type(parent, owner); 812 if (insert) { 813 extra_size = btrfs_extent_inline_ref_size(want); 814 path->search_for_extension = 1; 815 path->keep_locks = 1; 816 } else 817 extra_size = -1; 818 819 /* 820 * Owner is our level, so we can just add one to get the level for the 821 * block we are interested in. 822 */ 823 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 824 key.type = BTRFS_METADATA_ITEM_KEY; 825 key.offset = owner; 826 } 827 828 again: 829 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 830 if (ret < 0) { 831 err = ret; 832 goto out; 833 } 834 835 /* 836 * We may be a newly converted file system which still has the old fat 837 * extent entries for metadata, so try and see if we have one of those. 838 */ 839 if (ret > 0 && skinny_metadata) { 840 skinny_metadata = false; 841 if (path->slots[0]) { 842 path->slots[0]--; 843 btrfs_item_key_to_cpu(path->nodes[0], &key, 844 path->slots[0]); 845 if (key.objectid == bytenr && 846 key.type == BTRFS_EXTENT_ITEM_KEY && 847 key.offset == num_bytes) 848 ret = 0; 849 } 850 if (ret) { 851 key.objectid = bytenr; 852 key.type = BTRFS_EXTENT_ITEM_KEY; 853 key.offset = num_bytes; 854 btrfs_release_path(path); 855 goto again; 856 } 857 } 858 859 if (ret && !insert) { 860 err = -ENOENT; 861 goto out; 862 } else if (WARN_ON(ret)) { 863 err = -EIO; 864 goto out; 865 } 866 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (unlikely(item_size < sizeof(*ei))) { 870 err = -EINVAL; 871 btrfs_print_v0_err(fs_info); 872 btrfs_abort_transaction(trans, err); 873 goto out; 874 } 875 876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 877 flags = btrfs_extent_flags(leaf, ei); 878 879 ptr = (unsigned long)(ei + 1); 880 end = (unsigned long)ei + item_size; 881 882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 883 ptr += sizeof(struct btrfs_tree_block_info); 884 BUG_ON(ptr > end); 885 } 886 887 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 888 needed = BTRFS_REF_TYPE_DATA; 889 else 890 needed = BTRFS_REF_TYPE_BLOCK; 891 892 err = -ENOENT; 893 while (1) { 894 if (ptr >= end) { 895 WARN_ON(ptr > end); 896 break; 897 } 898 iref = (struct btrfs_extent_inline_ref *)ptr; 899 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 900 if (type == BTRFS_REF_TYPE_INVALID) { 901 err = -EUCLEAN; 902 goto out; 903 } 904 905 if (want < type) 906 break; 907 if (want > type) { 908 ptr += btrfs_extent_inline_ref_size(type); 909 continue; 910 } 911 912 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 913 struct btrfs_extent_data_ref *dref; 914 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 915 if (match_extent_data_ref(leaf, dref, root_objectid, 916 owner, offset)) { 917 err = 0; 918 break; 919 } 920 if (hash_extent_data_ref_item(leaf, dref) < 921 hash_extent_data_ref(root_objectid, owner, offset)) 922 break; 923 } else { 924 u64 ref_offset; 925 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 926 if (parent > 0) { 927 if (parent == ref_offset) { 928 err = 0; 929 break; 930 } 931 if (ref_offset < parent) 932 break; 933 } else { 934 if (root_objectid == ref_offset) { 935 err = 0; 936 break; 937 } 938 if (ref_offset < root_objectid) 939 break; 940 } 941 } 942 ptr += btrfs_extent_inline_ref_size(type); 943 } 944 if (err == -ENOENT && insert) { 945 if (item_size + extra_size >= 946 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 947 err = -EAGAIN; 948 goto out; 949 } 950 /* 951 * To add new inline back ref, we have to make sure 952 * there is no corresponding back ref item. 953 * For simplicity, we just do not add new inline back 954 * ref if there is any kind of item for this block 955 */ 956 if (find_next_key(path, 0, &key) == 0 && 957 key.objectid == bytenr && 958 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 959 err = -EAGAIN; 960 goto out; 961 } 962 } 963 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 964 out: 965 if (insert) { 966 path->keep_locks = 0; 967 path->search_for_extension = 0; 968 btrfs_unlock_up_safe(path, 1); 969 } 970 return err; 971 } 972 973 /* 974 * helper to add new inline back ref 975 */ 976 static noinline_for_stack 977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 978 struct btrfs_path *path, 979 struct btrfs_extent_inline_ref *iref, 980 u64 parent, u64 root_objectid, 981 u64 owner, u64 offset, int refs_to_add, 982 struct btrfs_delayed_extent_op *extent_op) 983 { 984 struct extent_buffer *leaf; 985 struct btrfs_extent_item *ei; 986 unsigned long ptr; 987 unsigned long end; 988 unsigned long item_offset; 989 u64 refs; 990 int size; 991 int type; 992 993 leaf = path->nodes[0]; 994 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 995 item_offset = (unsigned long)iref - (unsigned long)ei; 996 997 type = extent_ref_type(parent, owner); 998 size = btrfs_extent_inline_ref_size(type); 999 1000 btrfs_extend_item(path, size); 1001 1002 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1003 refs = btrfs_extent_refs(leaf, ei); 1004 refs += refs_to_add; 1005 btrfs_set_extent_refs(leaf, ei, refs); 1006 if (extent_op) 1007 __run_delayed_extent_op(extent_op, leaf, ei); 1008 1009 ptr = (unsigned long)ei + item_offset; 1010 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1011 if (ptr < end - size) 1012 memmove_extent_buffer(leaf, ptr + size, ptr, 1013 end - size - ptr); 1014 1015 iref = (struct btrfs_extent_inline_ref *)ptr; 1016 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1017 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1018 struct btrfs_extent_data_ref *dref; 1019 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1020 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1021 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1022 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1023 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1024 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1025 struct btrfs_shared_data_ref *sref; 1026 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1027 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1028 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1029 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1033 } 1034 btrfs_mark_buffer_dirty(leaf); 1035 } 1036 1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1038 struct btrfs_path *path, 1039 struct btrfs_extent_inline_ref **ref_ret, 1040 u64 bytenr, u64 num_bytes, u64 parent, 1041 u64 root_objectid, u64 owner, u64 offset) 1042 { 1043 int ret; 1044 1045 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1046 num_bytes, parent, root_objectid, 1047 owner, offset, 0); 1048 if (ret != -ENOENT) 1049 return ret; 1050 1051 btrfs_release_path(path); 1052 *ref_ret = NULL; 1053 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1056 root_objectid); 1057 } else { 1058 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1059 root_objectid, owner, offset); 1060 } 1061 return ret; 1062 } 1063 1064 /* 1065 * helper to update/remove inline back ref 1066 */ 1067 static noinline_for_stack 1068 void update_inline_extent_backref(struct btrfs_path *path, 1069 struct btrfs_extent_inline_ref *iref, 1070 int refs_to_mod, 1071 struct btrfs_delayed_extent_op *extent_op, 1072 int *last_ref) 1073 { 1074 struct extent_buffer *leaf = path->nodes[0]; 1075 struct btrfs_extent_item *ei; 1076 struct btrfs_extent_data_ref *dref = NULL; 1077 struct btrfs_shared_data_ref *sref = NULL; 1078 unsigned long ptr; 1079 unsigned long end; 1080 u32 item_size; 1081 int size; 1082 int type; 1083 u64 refs; 1084 1085 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1086 refs = btrfs_extent_refs(leaf, ei); 1087 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1088 refs += refs_to_mod; 1089 btrfs_set_extent_refs(leaf, ei, refs); 1090 if (extent_op) 1091 __run_delayed_extent_op(extent_op, leaf, ei); 1092 1093 /* 1094 * If type is invalid, we should have bailed out after 1095 * lookup_inline_extent_backref(). 1096 */ 1097 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1098 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1099 1100 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1101 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1102 refs = btrfs_extent_data_ref_count(leaf, dref); 1103 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1104 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1105 refs = btrfs_shared_data_ref_count(leaf, sref); 1106 } else { 1107 refs = 1; 1108 BUG_ON(refs_to_mod != -1); 1109 } 1110 1111 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1112 refs += refs_to_mod; 1113 1114 if (refs > 0) { 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1116 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1117 else 1118 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1119 } else { 1120 *last_ref = 1; 1121 size = btrfs_extent_inline_ref_size(type); 1122 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1123 ptr = (unsigned long)iref; 1124 end = (unsigned long)ei + item_size; 1125 if (ptr + size < end) 1126 memmove_extent_buffer(leaf, ptr, ptr + size, 1127 end - ptr - size); 1128 item_size -= size; 1129 btrfs_truncate_item(path, item_size, 1); 1130 } 1131 btrfs_mark_buffer_dirty(leaf); 1132 } 1133 1134 static noinline_for_stack 1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1136 struct btrfs_path *path, 1137 u64 bytenr, u64 num_bytes, u64 parent, 1138 u64 root_objectid, u64 owner, 1139 u64 offset, int refs_to_add, 1140 struct btrfs_delayed_extent_op *extent_op) 1141 { 1142 struct btrfs_extent_inline_ref *iref; 1143 int ret; 1144 1145 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1146 num_bytes, parent, root_objectid, 1147 owner, offset, 1); 1148 if (ret == 0) { 1149 /* 1150 * We're adding refs to a tree block we already own, this 1151 * should not happen at all. 1152 */ 1153 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1154 btrfs_crit(trans->fs_info, 1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1156 bytenr, num_bytes, root_objectid); 1157 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1158 WARN_ON(1); 1159 btrfs_crit(trans->fs_info, 1160 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1161 btrfs_print_leaf(path->nodes[0]); 1162 } 1163 return -EUCLEAN; 1164 } 1165 update_inline_extent_backref(path, iref, refs_to_add, 1166 extent_op, NULL); 1167 } else if (ret == -ENOENT) { 1168 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1169 root_objectid, owner, offset, 1170 refs_to_add, extent_op); 1171 ret = 0; 1172 } 1173 return ret; 1174 } 1175 1176 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1177 struct btrfs_path *path, 1178 struct btrfs_extent_inline_ref *iref, 1179 int refs_to_drop, int is_data, int *last_ref) 1180 { 1181 int ret = 0; 1182 1183 BUG_ON(!is_data && refs_to_drop != 1); 1184 if (iref) { 1185 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1186 last_ref); 1187 } else if (is_data) { 1188 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1189 last_ref); 1190 } else { 1191 *last_ref = 1; 1192 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1193 } 1194 return ret; 1195 } 1196 1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1198 u64 *discarded_bytes) 1199 { 1200 int j, ret = 0; 1201 u64 bytes_left, end; 1202 u64 aligned_start = ALIGN(start, 1 << 9); 1203 1204 if (WARN_ON(start != aligned_start)) { 1205 len -= aligned_start - start; 1206 len = round_down(len, 1 << 9); 1207 start = aligned_start; 1208 } 1209 1210 *discarded_bytes = 0; 1211 1212 if (!len) 1213 return 0; 1214 1215 end = start + len; 1216 bytes_left = len; 1217 1218 /* Skip any superblocks on this device. */ 1219 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1220 u64 sb_start = btrfs_sb_offset(j); 1221 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1222 u64 size = sb_start - start; 1223 1224 if (!in_range(sb_start, start, bytes_left) && 1225 !in_range(sb_end, start, bytes_left) && 1226 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1227 continue; 1228 1229 /* 1230 * Superblock spans beginning of range. Adjust start and 1231 * try again. 1232 */ 1233 if (sb_start <= start) { 1234 start += sb_end - start; 1235 if (start > end) { 1236 bytes_left = 0; 1237 break; 1238 } 1239 bytes_left = end - start; 1240 continue; 1241 } 1242 1243 if (size) { 1244 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1245 GFP_NOFS, 0); 1246 if (!ret) 1247 *discarded_bytes += size; 1248 else if (ret != -EOPNOTSUPP) 1249 return ret; 1250 } 1251 1252 start = sb_end; 1253 if (start > end) { 1254 bytes_left = 0; 1255 break; 1256 } 1257 bytes_left = end - start; 1258 } 1259 1260 if (bytes_left) { 1261 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1262 GFP_NOFS, 0); 1263 if (!ret) 1264 *discarded_bytes += bytes_left; 1265 } 1266 return ret; 1267 } 1268 1269 static int do_discard_extent(struct btrfs_bio_stripe *stripe, u64 *bytes) 1270 { 1271 struct btrfs_device *dev = stripe->dev; 1272 struct btrfs_fs_info *fs_info = dev->fs_info; 1273 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1274 u64 phys = stripe->physical; 1275 u64 len = stripe->length; 1276 u64 discarded = 0; 1277 int ret = 0; 1278 1279 /* Zone reset on a zoned filesystem */ 1280 if (btrfs_can_zone_reset(dev, phys, len)) { 1281 u64 src_disc; 1282 1283 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1284 if (ret) 1285 goto out; 1286 1287 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1288 dev != dev_replace->srcdev) 1289 goto out; 1290 1291 src_disc = discarded; 1292 1293 /* Send to replace target as well */ 1294 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1295 &discarded); 1296 discarded += src_disc; 1297 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) { 1298 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1299 } else { 1300 ret = 0; 1301 *bytes = 0; 1302 } 1303 1304 out: 1305 *bytes = discarded; 1306 return ret; 1307 } 1308 1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1310 u64 num_bytes, u64 *actual_bytes) 1311 { 1312 int ret = 0; 1313 u64 discarded_bytes = 0; 1314 u64 end = bytenr + num_bytes; 1315 u64 cur = bytenr; 1316 struct btrfs_bio *bbio = NULL; 1317 1318 1319 /* 1320 * Avoid races with device replace and make sure our bbio has devices 1321 * associated to its stripes that don't go away while we are discarding. 1322 */ 1323 btrfs_bio_counter_inc_blocked(fs_info); 1324 while (cur < end) { 1325 struct btrfs_bio_stripe *stripe; 1326 int i; 1327 1328 num_bytes = end - cur; 1329 /* Tell the block device(s) that the sectors can be discarded */ 1330 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1331 &num_bytes, &bbio, 0); 1332 /* 1333 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1334 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1335 * thus we can't continue anyway. 1336 */ 1337 if (ret < 0) 1338 goto out; 1339 1340 stripe = bbio->stripes; 1341 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1342 u64 bytes; 1343 struct btrfs_device *device = stripe->dev; 1344 1345 if (!device->bdev) { 1346 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1347 continue; 1348 } 1349 1350 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 1351 continue; 1352 1353 ret = do_discard_extent(stripe, &bytes); 1354 if (!ret) { 1355 discarded_bytes += bytes; 1356 } else if (ret != -EOPNOTSUPP) { 1357 /* 1358 * Logic errors or -ENOMEM, or -EIO, but 1359 * unlikely to happen. 1360 * 1361 * And since there are two loops, explicitly 1362 * go to out to avoid confusion. 1363 */ 1364 btrfs_put_bbio(bbio); 1365 goto out; 1366 } 1367 1368 /* 1369 * Just in case we get back EOPNOTSUPP for some reason, 1370 * just ignore the return value so we don't screw up 1371 * people calling discard_extent. 1372 */ 1373 ret = 0; 1374 } 1375 btrfs_put_bbio(bbio); 1376 cur += num_bytes; 1377 } 1378 out: 1379 btrfs_bio_counter_dec(fs_info); 1380 1381 if (actual_bytes) 1382 *actual_bytes = discarded_bytes; 1383 1384 1385 if (ret == -EOPNOTSUPP) 1386 ret = 0; 1387 return ret; 1388 } 1389 1390 /* Can return -ENOMEM */ 1391 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1392 struct btrfs_ref *generic_ref) 1393 { 1394 struct btrfs_fs_info *fs_info = trans->fs_info; 1395 int ret; 1396 1397 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1398 generic_ref->action); 1399 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1400 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1401 1402 if (generic_ref->type == BTRFS_REF_METADATA) 1403 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1404 else 1405 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1406 1407 btrfs_ref_tree_mod(fs_info, generic_ref); 1408 1409 return ret; 1410 } 1411 1412 /* 1413 * __btrfs_inc_extent_ref - insert backreference for a given extent 1414 * 1415 * The counterpart is in __btrfs_free_extent(), with examples and more details 1416 * how it works. 1417 * 1418 * @trans: Handle of transaction 1419 * 1420 * @node: The delayed ref node used to get the bytenr/length for 1421 * extent whose references are incremented. 1422 * 1423 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1424 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1425 * bytenr of the parent block. Since new extents are always 1426 * created with indirect references, this will only be the case 1427 * when relocating a shared extent. In that case, root_objectid 1428 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1429 * be 0 1430 * 1431 * @root_objectid: The id of the root where this modification has originated, 1432 * this can be either one of the well-known metadata trees or 1433 * the subvolume id which references this extent. 1434 * 1435 * @owner: For data extents it is the inode number of the owning file. 1436 * For metadata extents this parameter holds the level in the 1437 * tree of the extent. 1438 * 1439 * @offset: For metadata extents the offset is ignored and is currently 1440 * always passed as 0. For data extents it is the fileoffset 1441 * this extent belongs to. 1442 * 1443 * @refs_to_add Number of references to add 1444 * 1445 * @extent_op Pointer to a structure, holding information necessary when 1446 * updating a tree block's flags 1447 * 1448 */ 1449 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1450 struct btrfs_delayed_ref_node *node, 1451 u64 parent, u64 root_objectid, 1452 u64 owner, u64 offset, int refs_to_add, 1453 struct btrfs_delayed_extent_op *extent_op) 1454 { 1455 struct btrfs_path *path; 1456 struct extent_buffer *leaf; 1457 struct btrfs_extent_item *item; 1458 struct btrfs_key key; 1459 u64 bytenr = node->bytenr; 1460 u64 num_bytes = node->num_bytes; 1461 u64 refs; 1462 int ret; 1463 1464 path = btrfs_alloc_path(); 1465 if (!path) 1466 return -ENOMEM; 1467 1468 /* this will setup the path even if it fails to insert the back ref */ 1469 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1470 parent, root_objectid, owner, 1471 offset, refs_to_add, extent_op); 1472 if ((ret < 0 && ret != -EAGAIN) || !ret) 1473 goto out; 1474 1475 /* 1476 * Ok we had -EAGAIN which means we didn't have space to insert and 1477 * inline extent ref, so just update the reference count and add a 1478 * normal backref. 1479 */ 1480 leaf = path->nodes[0]; 1481 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1482 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1483 refs = btrfs_extent_refs(leaf, item); 1484 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1485 if (extent_op) 1486 __run_delayed_extent_op(extent_op, leaf, item); 1487 1488 btrfs_mark_buffer_dirty(leaf); 1489 btrfs_release_path(path); 1490 1491 /* now insert the actual backref */ 1492 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1493 BUG_ON(refs_to_add != 1); 1494 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1495 root_objectid); 1496 } else { 1497 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1498 root_objectid, owner, offset, 1499 refs_to_add); 1500 } 1501 if (ret) 1502 btrfs_abort_transaction(trans, ret); 1503 out: 1504 btrfs_free_path(path); 1505 return ret; 1506 } 1507 1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1509 struct btrfs_delayed_ref_node *node, 1510 struct btrfs_delayed_extent_op *extent_op, 1511 int insert_reserved) 1512 { 1513 int ret = 0; 1514 struct btrfs_delayed_data_ref *ref; 1515 struct btrfs_key ins; 1516 u64 parent = 0; 1517 u64 ref_root = 0; 1518 u64 flags = 0; 1519 1520 ins.objectid = node->bytenr; 1521 ins.offset = node->num_bytes; 1522 ins.type = BTRFS_EXTENT_ITEM_KEY; 1523 1524 ref = btrfs_delayed_node_to_data_ref(node); 1525 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1526 1527 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1528 parent = ref->parent; 1529 ref_root = ref->root; 1530 1531 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1532 if (extent_op) 1533 flags |= extent_op->flags_to_set; 1534 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1535 flags, ref->objectid, 1536 ref->offset, &ins, 1537 node->ref_mod); 1538 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1539 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1540 ref->objectid, ref->offset, 1541 node->ref_mod, extent_op); 1542 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1543 ret = __btrfs_free_extent(trans, node, parent, 1544 ref_root, ref->objectid, 1545 ref->offset, node->ref_mod, 1546 extent_op); 1547 } else { 1548 BUG(); 1549 } 1550 return ret; 1551 } 1552 1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1554 struct extent_buffer *leaf, 1555 struct btrfs_extent_item *ei) 1556 { 1557 u64 flags = btrfs_extent_flags(leaf, ei); 1558 if (extent_op->update_flags) { 1559 flags |= extent_op->flags_to_set; 1560 btrfs_set_extent_flags(leaf, ei, flags); 1561 } 1562 1563 if (extent_op->update_key) { 1564 struct btrfs_tree_block_info *bi; 1565 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1566 bi = (struct btrfs_tree_block_info *)(ei + 1); 1567 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1568 } 1569 } 1570 1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1572 struct btrfs_delayed_ref_head *head, 1573 struct btrfs_delayed_extent_op *extent_op) 1574 { 1575 struct btrfs_fs_info *fs_info = trans->fs_info; 1576 struct btrfs_key key; 1577 struct btrfs_path *path; 1578 struct btrfs_extent_item *ei; 1579 struct extent_buffer *leaf; 1580 u32 item_size; 1581 int ret; 1582 int err = 0; 1583 int metadata = !extent_op->is_data; 1584 1585 if (TRANS_ABORTED(trans)) 1586 return 0; 1587 1588 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1589 metadata = 0; 1590 1591 path = btrfs_alloc_path(); 1592 if (!path) 1593 return -ENOMEM; 1594 1595 key.objectid = head->bytenr; 1596 1597 if (metadata) { 1598 key.type = BTRFS_METADATA_ITEM_KEY; 1599 key.offset = extent_op->level; 1600 } else { 1601 key.type = BTRFS_EXTENT_ITEM_KEY; 1602 key.offset = head->num_bytes; 1603 } 1604 1605 again: 1606 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1607 if (ret < 0) { 1608 err = ret; 1609 goto out; 1610 } 1611 if (ret > 0) { 1612 if (metadata) { 1613 if (path->slots[0] > 0) { 1614 path->slots[0]--; 1615 btrfs_item_key_to_cpu(path->nodes[0], &key, 1616 path->slots[0]); 1617 if (key.objectid == head->bytenr && 1618 key.type == BTRFS_EXTENT_ITEM_KEY && 1619 key.offset == head->num_bytes) 1620 ret = 0; 1621 } 1622 if (ret > 0) { 1623 btrfs_release_path(path); 1624 metadata = 0; 1625 1626 key.objectid = head->bytenr; 1627 key.offset = head->num_bytes; 1628 key.type = BTRFS_EXTENT_ITEM_KEY; 1629 goto again; 1630 } 1631 } else { 1632 err = -EIO; 1633 goto out; 1634 } 1635 } 1636 1637 leaf = path->nodes[0]; 1638 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1639 1640 if (unlikely(item_size < sizeof(*ei))) { 1641 err = -EINVAL; 1642 btrfs_print_v0_err(fs_info); 1643 btrfs_abort_transaction(trans, err); 1644 goto out; 1645 } 1646 1647 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1648 __run_delayed_extent_op(extent_op, leaf, ei); 1649 1650 btrfs_mark_buffer_dirty(leaf); 1651 out: 1652 btrfs_free_path(path); 1653 return err; 1654 } 1655 1656 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1657 struct btrfs_delayed_ref_node *node, 1658 struct btrfs_delayed_extent_op *extent_op, 1659 int insert_reserved) 1660 { 1661 int ret = 0; 1662 struct btrfs_delayed_tree_ref *ref; 1663 u64 parent = 0; 1664 u64 ref_root = 0; 1665 1666 ref = btrfs_delayed_node_to_tree_ref(node); 1667 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1668 1669 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1670 parent = ref->parent; 1671 ref_root = ref->root; 1672 1673 if (node->ref_mod != 1) { 1674 btrfs_err(trans->fs_info, 1675 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1676 node->bytenr, node->ref_mod, node->action, ref_root, 1677 parent); 1678 return -EIO; 1679 } 1680 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1681 BUG_ON(!extent_op || !extent_op->update_flags); 1682 ret = alloc_reserved_tree_block(trans, node, extent_op); 1683 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1684 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1685 ref->level, 0, 1, extent_op); 1686 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1687 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1688 ref->level, 0, 1, extent_op); 1689 } else { 1690 BUG(); 1691 } 1692 return ret; 1693 } 1694 1695 /* helper function to actually process a single delayed ref entry */ 1696 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1697 struct btrfs_delayed_ref_node *node, 1698 struct btrfs_delayed_extent_op *extent_op, 1699 int insert_reserved) 1700 { 1701 int ret = 0; 1702 1703 if (TRANS_ABORTED(trans)) { 1704 if (insert_reserved) 1705 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1706 return 0; 1707 } 1708 1709 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1710 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1711 ret = run_delayed_tree_ref(trans, node, extent_op, 1712 insert_reserved); 1713 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1714 node->type == BTRFS_SHARED_DATA_REF_KEY) 1715 ret = run_delayed_data_ref(trans, node, extent_op, 1716 insert_reserved); 1717 else 1718 BUG(); 1719 if (ret && insert_reserved) 1720 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1721 return ret; 1722 } 1723 1724 static inline struct btrfs_delayed_ref_node * 1725 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1726 { 1727 struct btrfs_delayed_ref_node *ref; 1728 1729 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1730 return NULL; 1731 1732 /* 1733 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1734 * This is to prevent a ref count from going down to zero, which deletes 1735 * the extent item from the extent tree, when there still are references 1736 * to add, which would fail because they would not find the extent item. 1737 */ 1738 if (!list_empty(&head->ref_add_list)) 1739 return list_first_entry(&head->ref_add_list, 1740 struct btrfs_delayed_ref_node, add_list); 1741 1742 ref = rb_entry(rb_first_cached(&head->ref_tree), 1743 struct btrfs_delayed_ref_node, ref_node); 1744 ASSERT(list_empty(&ref->add_list)); 1745 return ref; 1746 } 1747 1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1749 struct btrfs_delayed_ref_head *head) 1750 { 1751 spin_lock(&delayed_refs->lock); 1752 head->processing = 0; 1753 delayed_refs->num_heads_ready++; 1754 spin_unlock(&delayed_refs->lock); 1755 btrfs_delayed_ref_unlock(head); 1756 } 1757 1758 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1759 struct btrfs_delayed_ref_head *head) 1760 { 1761 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1762 1763 if (!extent_op) 1764 return NULL; 1765 1766 if (head->must_insert_reserved) { 1767 head->extent_op = NULL; 1768 btrfs_free_delayed_extent_op(extent_op); 1769 return NULL; 1770 } 1771 return extent_op; 1772 } 1773 1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1775 struct btrfs_delayed_ref_head *head) 1776 { 1777 struct btrfs_delayed_extent_op *extent_op; 1778 int ret; 1779 1780 extent_op = cleanup_extent_op(head); 1781 if (!extent_op) 1782 return 0; 1783 head->extent_op = NULL; 1784 spin_unlock(&head->lock); 1785 ret = run_delayed_extent_op(trans, head, extent_op); 1786 btrfs_free_delayed_extent_op(extent_op); 1787 return ret ? ret : 1; 1788 } 1789 1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1791 struct btrfs_delayed_ref_root *delayed_refs, 1792 struct btrfs_delayed_ref_head *head) 1793 { 1794 int nr_items = 1; /* Dropping this ref head update. */ 1795 1796 /* 1797 * We had csum deletions accounted for in our delayed refs rsv, we need 1798 * to drop the csum leaves for this update from our delayed_refs_rsv. 1799 */ 1800 if (head->total_ref_mod < 0 && head->is_data) { 1801 spin_lock(&delayed_refs->lock); 1802 delayed_refs->pending_csums -= head->num_bytes; 1803 spin_unlock(&delayed_refs->lock); 1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1805 } 1806 1807 /* 1808 * We were dropping refs, or had a new ref and dropped it, and thus must 1809 * adjust down our total_bytes_pinned, the space may or may not have 1810 * been pinned and so is accounted for properly in the pinned space by 1811 * now. 1812 */ 1813 if (head->total_ref_mod < 0 || 1814 (head->total_ref_mod == 0 && head->must_insert_reserved)) { 1815 u64 flags = btrfs_ref_head_to_space_flags(head); 1816 1817 btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes); 1818 } 1819 1820 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1821 } 1822 1823 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1824 struct btrfs_delayed_ref_head *head) 1825 { 1826 1827 struct btrfs_fs_info *fs_info = trans->fs_info; 1828 struct btrfs_delayed_ref_root *delayed_refs; 1829 int ret; 1830 1831 delayed_refs = &trans->transaction->delayed_refs; 1832 1833 ret = run_and_cleanup_extent_op(trans, head); 1834 if (ret < 0) { 1835 unselect_delayed_ref_head(delayed_refs, head); 1836 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1837 return ret; 1838 } else if (ret) { 1839 return ret; 1840 } 1841 1842 /* 1843 * Need to drop our head ref lock and re-acquire the delayed ref lock 1844 * and then re-check to make sure nobody got added. 1845 */ 1846 spin_unlock(&head->lock); 1847 spin_lock(&delayed_refs->lock); 1848 spin_lock(&head->lock); 1849 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1850 spin_unlock(&head->lock); 1851 spin_unlock(&delayed_refs->lock); 1852 return 1; 1853 } 1854 btrfs_delete_ref_head(delayed_refs, head); 1855 spin_unlock(&head->lock); 1856 spin_unlock(&delayed_refs->lock); 1857 1858 if (head->must_insert_reserved) { 1859 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1860 if (head->is_data) { 1861 ret = btrfs_del_csums(trans, fs_info->csum_root, 1862 head->bytenr, head->num_bytes); 1863 } 1864 } 1865 1866 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1867 1868 trace_run_delayed_ref_head(fs_info, head, 0); 1869 btrfs_delayed_ref_unlock(head); 1870 btrfs_put_delayed_ref_head(head); 1871 return 0; 1872 } 1873 1874 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1875 struct btrfs_trans_handle *trans) 1876 { 1877 struct btrfs_delayed_ref_root *delayed_refs = 1878 &trans->transaction->delayed_refs; 1879 struct btrfs_delayed_ref_head *head = NULL; 1880 int ret; 1881 1882 spin_lock(&delayed_refs->lock); 1883 head = btrfs_select_ref_head(delayed_refs); 1884 if (!head) { 1885 spin_unlock(&delayed_refs->lock); 1886 return head; 1887 } 1888 1889 /* 1890 * Grab the lock that says we are going to process all the refs for 1891 * this head 1892 */ 1893 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1894 spin_unlock(&delayed_refs->lock); 1895 1896 /* 1897 * We may have dropped the spin lock to get the head mutex lock, and 1898 * that might have given someone else time to free the head. If that's 1899 * true, it has been removed from our list and we can move on. 1900 */ 1901 if (ret == -EAGAIN) 1902 head = ERR_PTR(-EAGAIN); 1903 1904 return head; 1905 } 1906 1907 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1908 struct btrfs_delayed_ref_head *locked_ref, 1909 unsigned long *run_refs) 1910 { 1911 struct btrfs_fs_info *fs_info = trans->fs_info; 1912 struct btrfs_delayed_ref_root *delayed_refs; 1913 struct btrfs_delayed_extent_op *extent_op; 1914 struct btrfs_delayed_ref_node *ref; 1915 int must_insert_reserved = 0; 1916 int ret; 1917 1918 delayed_refs = &trans->transaction->delayed_refs; 1919 1920 lockdep_assert_held(&locked_ref->mutex); 1921 lockdep_assert_held(&locked_ref->lock); 1922 1923 while ((ref = select_delayed_ref(locked_ref))) { 1924 if (ref->seq && 1925 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1926 spin_unlock(&locked_ref->lock); 1927 unselect_delayed_ref_head(delayed_refs, locked_ref); 1928 return -EAGAIN; 1929 } 1930 1931 (*run_refs)++; 1932 ref->in_tree = 0; 1933 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1934 RB_CLEAR_NODE(&ref->ref_node); 1935 if (!list_empty(&ref->add_list)) 1936 list_del(&ref->add_list); 1937 /* 1938 * When we play the delayed ref, also correct the ref_mod on 1939 * head 1940 */ 1941 switch (ref->action) { 1942 case BTRFS_ADD_DELAYED_REF: 1943 case BTRFS_ADD_DELAYED_EXTENT: 1944 locked_ref->ref_mod -= ref->ref_mod; 1945 break; 1946 case BTRFS_DROP_DELAYED_REF: 1947 locked_ref->ref_mod += ref->ref_mod; 1948 break; 1949 default: 1950 WARN_ON(1); 1951 } 1952 atomic_dec(&delayed_refs->num_entries); 1953 1954 /* 1955 * Record the must_insert_reserved flag before we drop the 1956 * spin lock. 1957 */ 1958 must_insert_reserved = locked_ref->must_insert_reserved; 1959 locked_ref->must_insert_reserved = 0; 1960 1961 extent_op = locked_ref->extent_op; 1962 locked_ref->extent_op = NULL; 1963 spin_unlock(&locked_ref->lock); 1964 1965 ret = run_one_delayed_ref(trans, ref, extent_op, 1966 must_insert_reserved); 1967 1968 btrfs_free_delayed_extent_op(extent_op); 1969 if (ret) { 1970 unselect_delayed_ref_head(delayed_refs, locked_ref); 1971 btrfs_put_delayed_ref(ref); 1972 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1973 ret); 1974 return ret; 1975 } 1976 1977 btrfs_put_delayed_ref(ref); 1978 cond_resched(); 1979 1980 spin_lock(&locked_ref->lock); 1981 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1982 } 1983 1984 return 0; 1985 } 1986 1987 /* 1988 * Returns 0 on success or if called with an already aborted transaction. 1989 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1990 */ 1991 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1992 unsigned long nr) 1993 { 1994 struct btrfs_fs_info *fs_info = trans->fs_info; 1995 struct btrfs_delayed_ref_root *delayed_refs; 1996 struct btrfs_delayed_ref_head *locked_ref = NULL; 1997 ktime_t start = ktime_get(); 1998 int ret; 1999 unsigned long count = 0; 2000 unsigned long actual_count = 0; 2001 2002 delayed_refs = &trans->transaction->delayed_refs; 2003 do { 2004 if (!locked_ref) { 2005 locked_ref = btrfs_obtain_ref_head(trans); 2006 if (IS_ERR_OR_NULL(locked_ref)) { 2007 if (PTR_ERR(locked_ref) == -EAGAIN) { 2008 continue; 2009 } else { 2010 break; 2011 } 2012 } 2013 count++; 2014 } 2015 /* 2016 * We need to try and merge add/drops of the same ref since we 2017 * can run into issues with relocate dropping the implicit ref 2018 * and then it being added back again before the drop can 2019 * finish. If we merged anything we need to re-loop so we can 2020 * get a good ref. 2021 * Or we can get node references of the same type that weren't 2022 * merged when created due to bumps in the tree mod seq, and 2023 * we need to merge them to prevent adding an inline extent 2024 * backref before dropping it (triggering a BUG_ON at 2025 * insert_inline_extent_backref()). 2026 */ 2027 spin_lock(&locked_ref->lock); 2028 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2029 2030 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2031 &actual_count); 2032 if (ret < 0 && ret != -EAGAIN) { 2033 /* 2034 * Error, btrfs_run_delayed_refs_for_head already 2035 * unlocked everything so just bail out 2036 */ 2037 return ret; 2038 } else if (!ret) { 2039 /* 2040 * Success, perform the usual cleanup of a processed 2041 * head 2042 */ 2043 ret = cleanup_ref_head(trans, locked_ref); 2044 if (ret > 0 ) { 2045 /* We dropped our lock, we need to loop. */ 2046 ret = 0; 2047 continue; 2048 } else if (ret) { 2049 return ret; 2050 } 2051 } 2052 2053 /* 2054 * Either success case or btrfs_run_delayed_refs_for_head 2055 * returned -EAGAIN, meaning we need to select another head 2056 */ 2057 2058 locked_ref = NULL; 2059 cond_resched(); 2060 } while ((nr != -1 && count < nr) || locked_ref); 2061 2062 /* 2063 * We don't want to include ref heads since we can have empty ref heads 2064 * and those will drastically skew our runtime down since we just do 2065 * accounting, no actual extent tree updates. 2066 */ 2067 if (actual_count > 0) { 2068 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2069 u64 avg; 2070 2071 /* 2072 * We weigh the current average higher than our current runtime 2073 * to avoid large swings in the average. 2074 */ 2075 spin_lock(&delayed_refs->lock); 2076 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2077 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2078 spin_unlock(&delayed_refs->lock); 2079 } 2080 return 0; 2081 } 2082 2083 #ifdef SCRAMBLE_DELAYED_REFS 2084 /* 2085 * Normally delayed refs get processed in ascending bytenr order. This 2086 * correlates in most cases to the order added. To expose dependencies on this 2087 * order, we start to process the tree in the middle instead of the beginning 2088 */ 2089 static u64 find_middle(struct rb_root *root) 2090 { 2091 struct rb_node *n = root->rb_node; 2092 struct btrfs_delayed_ref_node *entry; 2093 int alt = 1; 2094 u64 middle; 2095 u64 first = 0, last = 0; 2096 2097 n = rb_first(root); 2098 if (n) { 2099 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2100 first = entry->bytenr; 2101 } 2102 n = rb_last(root); 2103 if (n) { 2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2105 last = entry->bytenr; 2106 } 2107 n = root->rb_node; 2108 2109 while (n) { 2110 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2111 WARN_ON(!entry->in_tree); 2112 2113 middle = entry->bytenr; 2114 2115 if (alt) 2116 n = n->rb_left; 2117 else 2118 n = n->rb_right; 2119 2120 alt = 1 - alt; 2121 } 2122 return middle; 2123 } 2124 #endif 2125 2126 /* 2127 * this starts processing the delayed reference count updates and 2128 * extent insertions we have queued up so far. count can be 2129 * 0, which means to process everything in the tree at the start 2130 * of the run (but not newly added entries), or it can be some target 2131 * number you'd like to process. 2132 * 2133 * Returns 0 on success or if called with an aborted transaction 2134 * Returns <0 on error and aborts the transaction 2135 */ 2136 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2137 unsigned long count) 2138 { 2139 struct btrfs_fs_info *fs_info = trans->fs_info; 2140 struct rb_node *node; 2141 struct btrfs_delayed_ref_root *delayed_refs; 2142 struct btrfs_delayed_ref_head *head; 2143 int ret; 2144 int run_all = count == (unsigned long)-1; 2145 2146 /* We'll clean this up in btrfs_cleanup_transaction */ 2147 if (TRANS_ABORTED(trans)) 2148 return 0; 2149 2150 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2151 return 0; 2152 2153 delayed_refs = &trans->transaction->delayed_refs; 2154 if (count == 0) 2155 count = delayed_refs->num_heads_ready; 2156 2157 again: 2158 #ifdef SCRAMBLE_DELAYED_REFS 2159 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2160 #endif 2161 ret = __btrfs_run_delayed_refs(trans, count); 2162 if (ret < 0) { 2163 btrfs_abort_transaction(trans, ret); 2164 return ret; 2165 } 2166 2167 if (run_all) { 2168 btrfs_create_pending_block_groups(trans); 2169 2170 spin_lock(&delayed_refs->lock); 2171 node = rb_first_cached(&delayed_refs->href_root); 2172 if (!node) { 2173 spin_unlock(&delayed_refs->lock); 2174 goto out; 2175 } 2176 head = rb_entry(node, struct btrfs_delayed_ref_head, 2177 href_node); 2178 refcount_inc(&head->refs); 2179 spin_unlock(&delayed_refs->lock); 2180 2181 /* Mutex was contended, block until it's released and retry. */ 2182 mutex_lock(&head->mutex); 2183 mutex_unlock(&head->mutex); 2184 2185 btrfs_put_delayed_ref_head(head); 2186 cond_resched(); 2187 goto again; 2188 } 2189 out: 2190 return 0; 2191 } 2192 2193 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2194 struct extent_buffer *eb, u64 flags, 2195 int level, int is_data) 2196 { 2197 struct btrfs_delayed_extent_op *extent_op; 2198 int ret; 2199 2200 extent_op = btrfs_alloc_delayed_extent_op(); 2201 if (!extent_op) 2202 return -ENOMEM; 2203 2204 extent_op->flags_to_set = flags; 2205 extent_op->update_flags = true; 2206 extent_op->update_key = false; 2207 extent_op->is_data = is_data ? true : false; 2208 extent_op->level = level; 2209 2210 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2211 if (ret) 2212 btrfs_free_delayed_extent_op(extent_op); 2213 return ret; 2214 } 2215 2216 static noinline int check_delayed_ref(struct btrfs_root *root, 2217 struct btrfs_path *path, 2218 u64 objectid, u64 offset, u64 bytenr) 2219 { 2220 struct btrfs_delayed_ref_head *head; 2221 struct btrfs_delayed_ref_node *ref; 2222 struct btrfs_delayed_data_ref *data_ref; 2223 struct btrfs_delayed_ref_root *delayed_refs; 2224 struct btrfs_transaction *cur_trans; 2225 struct rb_node *node; 2226 int ret = 0; 2227 2228 spin_lock(&root->fs_info->trans_lock); 2229 cur_trans = root->fs_info->running_transaction; 2230 if (cur_trans) 2231 refcount_inc(&cur_trans->use_count); 2232 spin_unlock(&root->fs_info->trans_lock); 2233 if (!cur_trans) 2234 return 0; 2235 2236 delayed_refs = &cur_trans->delayed_refs; 2237 spin_lock(&delayed_refs->lock); 2238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2239 if (!head) { 2240 spin_unlock(&delayed_refs->lock); 2241 btrfs_put_transaction(cur_trans); 2242 return 0; 2243 } 2244 2245 if (!mutex_trylock(&head->mutex)) { 2246 refcount_inc(&head->refs); 2247 spin_unlock(&delayed_refs->lock); 2248 2249 btrfs_release_path(path); 2250 2251 /* 2252 * Mutex was contended, block until it's released and let 2253 * caller try again 2254 */ 2255 mutex_lock(&head->mutex); 2256 mutex_unlock(&head->mutex); 2257 btrfs_put_delayed_ref_head(head); 2258 btrfs_put_transaction(cur_trans); 2259 return -EAGAIN; 2260 } 2261 spin_unlock(&delayed_refs->lock); 2262 2263 spin_lock(&head->lock); 2264 /* 2265 * XXX: We should replace this with a proper search function in the 2266 * future. 2267 */ 2268 for (node = rb_first_cached(&head->ref_tree); node; 2269 node = rb_next(node)) { 2270 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2271 /* If it's a shared ref we know a cross reference exists */ 2272 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2273 ret = 1; 2274 break; 2275 } 2276 2277 data_ref = btrfs_delayed_node_to_data_ref(ref); 2278 2279 /* 2280 * If our ref doesn't match the one we're currently looking at 2281 * then we have a cross reference. 2282 */ 2283 if (data_ref->root != root->root_key.objectid || 2284 data_ref->objectid != objectid || 2285 data_ref->offset != offset) { 2286 ret = 1; 2287 break; 2288 } 2289 } 2290 spin_unlock(&head->lock); 2291 mutex_unlock(&head->mutex); 2292 btrfs_put_transaction(cur_trans); 2293 return ret; 2294 } 2295 2296 static noinline int check_committed_ref(struct btrfs_root *root, 2297 struct btrfs_path *path, 2298 u64 objectid, u64 offset, u64 bytenr, 2299 bool strict) 2300 { 2301 struct btrfs_fs_info *fs_info = root->fs_info; 2302 struct btrfs_root *extent_root = fs_info->extent_root; 2303 struct extent_buffer *leaf; 2304 struct btrfs_extent_data_ref *ref; 2305 struct btrfs_extent_inline_ref *iref; 2306 struct btrfs_extent_item *ei; 2307 struct btrfs_key key; 2308 u32 item_size; 2309 int type; 2310 int ret; 2311 2312 key.objectid = bytenr; 2313 key.offset = (u64)-1; 2314 key.type = BTRFS_EXTENT_ITEM_KEY; 2315 2316 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2317 if (ret < 0) 2318 goto out; 2319 BUG_ON(ret == 0); /* Corruption */ 2320 2321 ret = -ENOENT; 2322 if (path->slots[0] == 0) 2323 goto out; 2324 2325 path->slots[0]--; 2326 leaf = path->nodes[0]; 2327 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2328 2329 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2330 goto out; 2331 2332 ret = 1; 2333 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2334 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2335 2336 /* If extent item has more than 1 inline ref then it's shared */ 2337 if (item_size != sizeof(*ei) + 2338 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2339 goto out; 2340 2341 /* 2342 * If extent created before last snapshot => it's shared unless the 2343 * snapshot has been deleted. Use the heuristic if strict is false. 2344 */ 2345 if (!strict && 2346 (btrfs_extent_generation(leaf, ei) <= 2347 btrfs_root_last_snapshot(&root->root_item))) 2348 goto out; 2349 2350 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2351 2352 /* If this extent has SHARED_DATA_REF then it's shared */ 2353 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2354 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2355 goto out; 2356 2357 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2358 if (btrfs_extent_refs(leaf, ei) != 2359 btrfs_extent_data_ref_count(leaf, ref) || 2360 btrfs_extent_data_ref_root(leaf, ref) != 2361 root->root_key.objectid || 2362 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2363 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2364 goto out; 2365 2366 ret = 0; 2367 out: 2368 return ret; 2369 } 2370 2371 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2372 u64 bytenr, bool strict) 2373 { 2374 struct btrfs_path *path; 2375 int ret; 2376 2377 path = btrfs_alloc_path(); 2378 if (!path) 2379 return -ENOMEM; 2380 2381 do { 2382 ret = check_committed_ref(root, path, objectid, 2383 offset, bytenr, strict); 2384 if (ret && ret != -ENOENT) 2385 goto out; 2386 2387 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2388 } while (ret == -EAGAIN); 2389 2390 out: 2391 btrfs_free_path(path); 2392 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2393 WARN_ON(ret > 0); 2394 return ret; 2395 } 2396 2397 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2398 struct btrfs_root *root, 2399 struct extent_buffer *buf, 2400 int full_backref, int inc) 2401 { 2402 struct btrfs_fs_info *fs_info = root->fs_info; 2403 u64 bytenr; 2404 u64 num_bytes; 2405 u64 parent; 2406 u64 ref_root; 2407 u32 nritems; 2408 struct btrfs_key key; 2409 struct btrfs_file_extent_item *fi; 2410 struct btrfs_ref generic_ref = { 0 }; 2411 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2412 int i; 2413 int action; 2414 int level; 2415 int ret = 0; 2416 2417 if (btrfs_is_testing(fs_info)) 2418 return 0; 2419 2420 ref_root = btrfs_header_owner(buf); 2421 nritems = btrfs_header_nritems(buf); 2422 level = btrfs_header_level(buf); 2423 2424 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2425 return 0; 2426 2427 if (full_backref) 2428 parent = buf->start; 2429 else 2430 parent = 0; 2431 if (inc) 2432 action = BTRFS_ADD_DELAYED_REF; 2433 else 2434 action = BTRFS_DROP_DELAYED_REF; 2435 2436 for (i = 0; i < nritems; i++) { 2437 if (level == 0) { 2438 btrfs_item_key_to_cpu(buf, &key, i); 2439 if (key.type != BTRFS_EXTENT_DATA_KEY) 2440 continue; 2441 fi = btrfs_item_ptr(buf, i, 2442 struct btrfs_file_extent_item); 2443 if (btrfs_file_extent_type(buf, fi) == 2444 BTRFS_FILE_EXTENT_INLINE) 2445 continue; 2446 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2447 if (bytenr == 0) 2448 continue; 2449 2450 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2451 key.offset -= btrfs_file_extent_offset(buf, fi); 2452 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2453 num_bytes, parent); 2454 generic_ref.real_root = root->root_key.objectid; 2455 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2456 key.offset); 2457 generic_ref.skip_qgroup = for_reloc; 2458 if (inc) 2459 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2460 else 2461 ret = btrfs_free_extent(trans, &generic_ref); 2462 if (ret) 2463 goto fail; 2464 } else { 2465 bytenr = btrfs_node_blockptr(buf, i); 2466 num_bytes = fs_info->nodesize; 2467 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2468 num_bytes, parent); 2469 generic_ref.real_root = root->root_key.objectid; 2470 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2471 generic_ref.skip_qgroup = for_reloc; 2472 if (inc) 2473 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2474 else 2475 ret = btrfs_free_extent(trans, &generic_ref); 2476 if (ret) 2477 goto fail; 2478 } 2479 } 2480 return 0; 2481 fail: 2482 return ret; 2483 } 2484 2485 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2486 struct extent_buffer *buf, int full_backref) 2487 { 2488 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2489 } 2490 2491 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2492 struct extent_buffer *buf, int full_backref) 2493 { 2494 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2495 } 2496 2497 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2498 { 2499 struct btrfs_fs_info *fs_info = root->fs_info; 2500 u64 flags; 2501 u64 ret; 2502 2503 if (data) 2504 flags = BTRFS_BLOCK_GROUP_DATA; 2505 else if (root == fs_info->chunk_root) 2506 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2507 else 2508 flags = BTRFS_BLOCK_GROUP_METADATA; 2509 2510 ret = btrfs_get_alloc_profile(fs_info, flags); 2511 return ret; 2512 } 2513 2514 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2515 { 2516 struct btrfs_block_group *cache; 2517 u64 bytenr; 2518 2519 spin_lock(&fs_info->block_group_cache_lock); 2520 bytenr = fs_info->first_logical_byte; 2521 spin_unlock(&fs_info->block_group_cache_lock); 2522 2523 if (bytenr < (u64)-1) 2524 return bytenr; 2525 2526 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2527 if (!cache) 2528 return 0; 2529 2530 bytenr = cache->start; 2531 btrfs_put_block_group(cache); 2532 2533 return bytenr; 2534 } 2535 2536 static int pin_down_extent(struct btrfs_trans_handle *trans, 2537 struct btrfs_block_group *cache, 2538 u64 bytenr, u64 num_bytes, int reserved) 2539 { 2540 struct btrfs_fs_info *fs_info = cache->fs_info; 2541 2542 spin_lock(&cache->space_info->lock); 2543 spin_lock(&cache->lock); 2544 cache->pinned += num_bytes; 2545 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2546 num_bytes); 2547 if (reserved) { 2548 cache->reserved -= num_bytes; 2549 cache->space_info->bytes_reserved -= num_bytes; 2550 } 2551 spin_unlock(&cache->lock); 2552 spin_unlock(&cache->space_info->lock); 2553 2554 __btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes); 2555 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2556 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2557 return 0; 2558 } 2559 2560 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2561 u64 bytenr, u64 num_bytes, int reserved) 2562 { 2563 struct btrfs_block_group *cache; 2564 2565 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2566 BUG_ON(!cache); /* Logic error */ 2567 2568 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2569 2570 btrfs_put_block_group(cache); 2571 return 0; 2572 } 2573 2574 /* 2575 * this function must be called within transaction 2576 */ 2577 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2578 u64 bytenr, u64 num_bytes) 2579 { 2580 struct btrfs_block_group *cache; 2581 int ret; 2582 2583 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2584 if (!cache) 2585 return -EINVAL; 2586 2587 /* 2588 * pull in the free space cache (if any) so that our pin 2589 * removes the free space from the cache. We have load_only set 2590 * to one because the slow code to read in the free extents does check 2591 * the pinned extents. 2592 */ 2593 btrfs_cache_block_group(cache, 1); 2594 /* 2595 * Make sure we wait until the cache is completely built in case it is 2596 * missing or is invalid and therefore needs to be rebuilt. 2597 */ 2598 ret = btrfs_wait_block_group_cache_done(cache); 2599 if (ret) 2600 goto out; 2601 2602 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2603 2604 /* remove us from the free space cache (if we're there at all) */ 2605 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2606 out: 2607 btrfs_put_block_group(cache); 2608 return ret; 2609 } 2610 2611 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2612 u64 start, u64 num_bytes) 2613 { 2614 int ret; 2615 struct btrfs_block_group *block_group; 2616 2617 block_group = btrfs_lookup_block_group(fs_info, start); 2618 if (!block_group) 2619 return -EINVAL; 2620 2621 btrfs_cache_block_group(block_group, 1); 2622 /* 2623 * Make sure we wait until the cache is completely built in case it is 2624 * missing or is invalid and therefore needs to be rebuilt. 2625 */ 2626 ret = btrfs_wait_block_group_cache_done(block_group); 2627 if (ret) 2628 goto out; 2629 2630 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2631 out: 2632 btrfs_put_block_group(block_group); 2633 return ret; 2634 } 2635 2636 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2637 { 2638 struct btrfs_fs_info *fs_info = eb->fs_info; 2639 struct btrfs_file_extent_item *item; 2640 struct btrfs_key key; 2641 int found_type; 2642 int i; 2643 int ret = 0; 2644 2645 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2646 return 0; 2647 2648 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2649 btrfs_item_key_to_cpu(eb, &key, i); 2650 if (key.type != BTRFS_EXTENT_DATA_KEY) 2651 continue; 2652 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2653 found_type = btrfs_file_extent_type(eb, item); 2654 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2655 continue; 2656 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2657 continue; 2658 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2659 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2660 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2661 if (ret) 2662 break; 2663 } 2664 2665 return ret; 2666 } 2667 2668 static void 2669 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2670 { 2671 atomic_inc(&bg->reservations); 2672 } 2673 2674 /* 2675 * Returns the free cluster for the given space info and sets empty_cluster to 2676 * what it should be based on the mount options. 2677 */ 2678 static struct btrfs_free_cluster * 2679 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2680 struct btrfs_space_info *space_info, u64 *empty_cluster) 2681 { 2682 struct btrfs_free_cluster *ret = NULL; 2683 2684 *empty_cluster = 0; 2685 if (btrfs_mixed_space_info(space_info)) 2686 return ret; 2687 2688 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2689 ret = &fs_info->meta_alloc_cluster; 2690 if (btrfs_test_opt(fs_info, SSD)) 2691 *empty_cluster = SZ_2M; 2692 else 2693 *empty_cluster = SZ_64K; 2694 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2695 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2696 *empty_cluster = SZ_2M; 2697 ret = &fs_info->data_alloc_cluster; 2698 } 2699 2700 return ret; 2701 } 2702 2703 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2704 u64 start, u64 end, 2705 const bool return_free_space) 2706 { 2707 struct btrfs_block_group *cache = NULL; 2708 struct btrfs_space_info *space_info; 2709 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2710 struct btrfs_free_cluster *cluster = NULL; 2711 u64 len; 2712 u64 total_unpinned = 0; 2713 u64 empty_cluster = 0; 2714 bool readonly; 2715 2716 while (start <= end) { 2717 readonly = false; 2718 if (!cache || 2719 start >= cache->start + cache->length) { 2720 if (cache) 2721 btrfs_put_block_group(cache); 2722 total_unpinned = 0; 2723 cache = btrfs_lookup_block_group(fs_info, start); 2724 BUG_ON(!cache); /* Logic error */ 2725 2726 cluster = fetch_cluster_info(fs_info, 2727 cache->space_info, 2728 &empty_cluster); 2729 empty_cluster <<= 1; 2730 } 2731 2732 len = cache->start + cache->length - start; 2733 len = min(len, end + 1 - start); 2734 2735 down_read(&fs_info->commit_root_sem); 2736 if (start < cache->last_byte_to_unpin && return_free_space) { 2737 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2738 2739 btrfs_add_free_space(cache, start, add_len); 2740 } 2741 up_read(&fs_info->commit_root_sem); 2742 2743 start += len; 2744 total_unpinned += len; 2745 space_info = cache->space_info; 2746 2747 /* 2748 * If this space cluster has been marked as fragmented and we've 2749 * unpinned enough in this block group to potentially allow a 2750 * cluster to be created inside of it go ahead and clear the 2751 * fragmented check. 2752 */ 2753 if (cluster && cluster->fragmented && 2754 total_unpinned > empty_cluster) { 2755 spin_lock(&cluster->lock); 2756 cluster->fragmented = 0; 2757 spin_unlock(&cluster->lock); 2758 } 2759 2760 spin_lock(&space_info->lock); 2761 spin_lock(&cache->lock); 2762 cache->pinned -= len; 2763 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2764 space_info->max_extent_size = 0; 2765 __btrfs_mod_total_bytes_pinned(space_info, -len); 2766 if (cache->ro) { 2767 space_info->bytes_readonly += len; 2768 readonly = true; 2769 } else if (btrfs_is_zoned(fs_info)) { 2770 /* Need reset before reusing in a zoned block group */ 2771 space_info->bytes_zone_unusable += len; 2772 readonly = true; 2773 } 2774 spin_unlock(&cache->lock); 2775 if (!readonly && return_free_space && 2776 global_rsv->space_info == space_info) { 2777 u64 to_add = len; 2778 2779 spin_lock(&global_rsv->lock); 2780 if (!global_rsv->full) { 2781 to_add = min(len, global_rsv->size - 2782 global_rsv->reserved); 2783 global_rsv->reserved += to_add; 2784 btrfs_space_info_update_bytes_may_use(fs_info, 2785 space_info, to_add); 2786 if (global_rsv->reserved >= global_rsv->size) 2787 global_rsv->full = 1; 2788 len -= to_add; 2789 } 2790 spin_unlock(&global_rsv->lock); 2791 } 2792 /* Add to any tickets we may have */ 2793 if (!readonly && return_free_space && len) 2794 btrfs_try_granting_tickets(fs_info, space_info); 2795 spin_unlock(&space_info->lock); 2796 } 2797 2798 if (cache) 2799 btrfs_put_block_group(cache); 2800 return 0; 2801 } 2802 2803 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2804 { 2805 struct btrfs_fs_info *fs_info = trans->fs_info; 2806 struct btrfs_block_group *block_group, *tmp; 2807 struct list_head *deleted_bgs; 2808 struct extent_io_tree *unpin; 2809 u64 start; 2810 u64 end; 2811 int ret; 2812 2813 unpin = &trans->transaction->pinned_extents; 2814 2815 while (!TRANS_ABORTED(trans)) { 2816 struct extent_state *cached_state = NULL; 2817 2818 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2819 ret = find_first_extent_bit(unpin, 0, &start, &end, 2820 EXTENT_DIRTY, &cached_state); 2821 if (ret) { 2822 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2823 break; 2824 } 2825 2826 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2827 ret = btrfs_discard_extent(fs_info, start, 2828 end + 1 - start, NULL); 2829 2830 clear_extent_dirty(unpin, start, end, &cached_state); 2831 unpin_extent_range(fs_info, start, end, true); 2832 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2833 free_extent_state(cached_state); 2834 cond_resched(); 2835 } 2836 2837 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2838 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2839 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2840 } 2841 2842 /* 2843 * Transaction is finished. We don't need the lock anymore. We 2844 * do need to clean up the block groups in case of a transaction 2845 * abort. 2846 */ 2847 deleted_bgs = &trans->transaction->deleted_bgs; 2848 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2849 u64 trimmed = 0; 2850 2851 ret = -EROFS; 2852 if (!TRANS_ABORTED(trans)) 2853 ret = btrfs_discard_extent(fs_info, 2854 block_group->start, 2855 block_group->length, 2856 &trimmed); 2857 2858 list_del_init(&block_group->bg_list); 2859 btrfs_unfreeze_block_group(block_group); 2860 btrfs_put_block_group(block_group); 2861 2862 if (ret) { 2863 const char *errstr = btrfs_decode_error(ret); 2864 btrfs_warn(fs_info, 2865 "discard failed while removing blockgroup: errno=%d %s", 2866 ret, errstr); 2867 } 2868 } 2869 2870 return 0; 2871 } 2872 2873 /* 2874 * Drop one or more refs of @node. 2875 * 2876 * 1. Locate the extent refs. 2877 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2878 * Locate it, then reduce the refs number or remove the ref line completely. 2879 * 2880 * 2. Update the refs count in EXTENT/METADATA_ITEM 2881 * 2882 * Inline backref case: 2883 * 2884 * in extent tree we have: 2885 * 2886 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2887 * refs 2 gen 6 flags DATA 2888 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2889 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2890 * 2891 * This function gets called with: 2892 * 2893 * node->bytenr = 13631488 2894 * node->num_bytes = 1048576 2895 * root_objectid = FS_TREE 2896 * owner_objectid = 257 2897 * owner_offset = 0 2898 * refs_to_drop = 1 2899 * 2900 * Then we should get some like: 2901 * 2902 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2903 * refs 1 gen 6 flags DATA 2904 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2905 * 2906 * Keyed backref case: 2907 * 2908 * in extent tree we have: 2909 * 2910 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2911 * refs 754 gen 6 flags DATA 2912 * [...] 2913 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2914 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2915 * 2916 * This function get called with: 2917 * 2918 * node->bytenr = 13631488 2919 * node->num_bytes = 1048576 2920 * root_objectid = FS_TREE 2921 * owner_objectid = 866 2922 * owner_offset = 0 2923 * refs_to_drop = 1 2924 * 2925 * Then we should get some like: 2926 * 2927 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2928 * refs 753 gen 6 flags DATA 2929 * 2930 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2931 */ 2932 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2933 struct btrfs_delayed_ref_node *node, u64 parent, 2934 u64 root_objectid, u64 owner_objectid, 2935 u64 owner_offset, int refs_to_drop, 2936 struct btrfs_delayed_extent_op *extent_op) 2937 { 2938 struct btrfs_fs_info *info = trans->fs_info; 2939 struct btrfs_key key; 2940 struct btrfs_path *path; 2941 struct btrfs_root *extent_root = info->extent_root; 2942 struct extent_buffer *leaf; 2943 struct btrfs_extent_item *ei; 2944 struct btrfs_extent_inline_ref *iref; 2945 int ret; 2946 int is_data; 2947 int extent_slot = 0; 2948 int found_extent = 0; 2949 int num_to_del = 1; 2950 u32 item_size; 2951 u64 refs; 2952 u64 bytenr = node->bytenr; 2953 u64 num_bytes = node->num_bytes; 2954 int last_ref = 0; 2955 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2956 2957 path = btrfs_alloc_path(); 2958 if (!path) 2959 return -ENOMEM; 2960 2961 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2962 2963 if (!is_data && refs_to_drop != 1) { 2964 btrfs_crit(info, 2965 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2966 node->bytenr, refs_to_drop); 2967 ret = -EINVAL; 2968 btrfs_abort_transaction(trans, ret); 2969 goto out; 2970 } 2971 2972 if (is_data) 2973 skinny_metadata = false; 2974 2975 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2976 parent, root_objectid, owner_objectid, 2977 owner_offset); 2978 if (ret == 0) { 2979 /* 2980 * Either the inline backref or the SHARED_DATA_REF/ 2981 * SHARED_BLOCK_REF is found 2982 * 2983 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2984 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2985 */ 2986 extent_slot = path->slots[0]; 2987 while (extent_slot >= 0) { 2988 btrfs_item_key_to_cpu(path->nodes[0], &key, 2989 extent_slot); 2990 if (key.objectid != bytenr) 2991 break; 2992 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2993 key.offset == num_bytes) { 2994 found_extent = 1; 2995 break; 2996 } 2997 if (key.type == BTRFS_METADATA_ITEM_KEY && 2998 key.offset == owner_objectid) { 2999 found_extent = 1; 3000 break; 3001 } 3002 3003 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3004 if (path->slots[0] - extent_slot > 5) 3005 break; 3006 extent_slot--; 3007 } 3008 3009 if (!found_extent) { 3010 if (iref) { 3011 btrfs_crit(info, 3012 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3013 btrfs_abort_transaction(trans, -EUCLEAN); 3014 goto err_dump; 3015 } 3016 /* Must be SHARED_* item, remove the backref first */ 3017 ret = remove_extent_backref(trans, path, NULL, 3018 refs_to_drop, 3019 is_data, &last_ref); 3020 if (ret) { 3021 btrfs_abort_transaction(trans, ret); 3022 goto out; 3023 } 3024 btrfs_release_path(path); 3025 3026 /* Slow path to locate EXTENT/METADATA_ITEM */ 3027 key.objectid = bytenr; 3028 key.type = BTRFS_EXTENT_ITEM_KEY; 3029 key.offset = num_bytes; 3030 3031 if (!is_data && skinny_metadata) { 3032 key.type = BTRFS_METADATA_ITEM_KEY; 3033 key.offset = owner_objectid; 3034 } 3035 3036 ret = btrfs_search_slot(trans, extent_root, 3037 &key, path, -1, 1); 3038 if (ret > 0 && skinny_metadata && path->slots[0]) { 3039 /* 3040 * Couldn't find our skinny metadata item, 3041 * see if we have ye olde extent item. 3042 */ 3043 path->slots[0]--; 3044 btrfs_item_key_to_cpu(path->nodes[0], &key, 3045 path->slots[0]); 3046 if (key.objectid == bytenr && 3047 key.type == BTRFS_EXTENT_ITEM_KEY && 3048 key.offset == num_bytes) 3049 ret = 0; 3050 } 3051 3052 if (ret > 0 && skinny_metadata) { 3053 skinny_metadata = false; 3054 key.objectid = bytenr; 3055 key.type = BTRFS_EXTENT_ITEM_KEY; 3056 key.offset = num_bytes; 3057 btrfs_release_path(path); 3058 ret = btrfs_search_slot(trans, extent_root, 3059 &key, path, -1, 1); 3060 } 3061 3062 if (ret) { 3063 btrfs_err(info, 3064 "umm, got %d back from search, was looking for %llu", 3065 ret, bytenr); 3066 if (ret > 0) 3067 btrfs_print_leaf(path->nodes[0]); 3068 } 3069 if (ret < 0) { 3070 btrfs_abort_transaction(trans, ret); 3071 goto out; 3072 } 3073 extent_slot = path->slots[0]; 3074 } 3075 } else if (WARN_ON(ret == -ENOENT)) { 3076 btrfs_print_leaf(path->nodes[0]); 3077 btrfs_err(info, 3078 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3079 bytenr, parent, root_objectid, owner_objectid, 3080 owner_offset); 3081 btrfs_abort_transaction(trans, ret); 3082 goto out; 3083 } else { 3084 btrfs_abort_transaction(trans, ret); 3085 goto out; 3086 } 3087 3088 leaf = path->nodes[0]; 3089 item_size = btrfs_item_size_nr(leaf, extent_slot); 3090 if (unlikely(item_size < sizeof(*ei))) { 3091 ret = -EINVAL; 3092 btrfs_print_v0_err(info); 3093 btrfs_abort_transaction(trans, ret); 3094 goto out; 3095 } 3096 ei = btrfs_item_ptr(leaf, extent_slot, 3097 struct btrfs_extent_item); 3098 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3099 key.type == BTRFS_EXTENT_ITEM_KEY) { 3100 struct btrfs_tree_block_info *bi; 3101 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3102 btrfs_crit(info, 3103 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3104 key.objectid, key.type, key.offset, 3105 owner_objectid, item_size, 3106 sizeof(*ei) + sizeof(*bi)); 3107 btrfs_abort_transaction(trans, -EUCLEAN); 3108 goto err_dump; 3109 } 3110 bi = (struct btrfs_tree_block_info *)(ei + 1); 3111 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3112 } 3113 3114 refs = btrfs_extent_refs(leaf, ei); 3115 if (refs < refs_to_drop) { 3116 btrfs_crit(info, 3117 "trying to drop %d refs but we only have %llu for bytenr %llu", 3118 refs_to_drop, refs, bytenr); 3119 btrfs_abort_transaction(trans, -EUCLEAN); 3120 goto err_dump; 3121 } 3122 refs -= refs_to_drop; 3123 3124 if (refs > 0) { 3125 if (extent_op) 3126 __run_delayed_extent_op(extent_op, leaf, ei); 3127 /* 3128 * In the case of inline back ref, reference count will 3129 * be updated by remove_extent_backref 3130 */ 3131 if (iref) { 3132 if (!found_extent) { 3133 btrfs_crit(info, 3134 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3135 btrfs_abort_transaction(trans, -EUCLEAN); 3136 goto err_dump; 3137 } 3138 } else { 3139 btrfs_set_extent_refs(leaf, ei, refs); 3140 btrfs_mark_buffer_dirty(leaf); 3141 } 3142 if (found_extent) { 3143 ret = remove_extent_backref(trans, path, iref, 3144 refs_to_drop, is_data, 3145 &last_ref); 3146 if (ret) { 3147 btrfs_abort_transaction(trans, ret); 3148 goto out; 3149 } 3150 } 3151 } else { 3152 /* In this branch refs == 1 */ 3153 if (found_extent) { 3154 if (is_data && refs_to_drop != 3155 extent_data_ref_count(path, iref)) { 3156 btrfs_crit(info, 3157 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3158 extent_data_ref_count(path, iref), 3159 refs_to_drop); 3160 btrfs_abort_transaction(trans, -EUCLEAN); 3161 goto err_dump; 3162 } 3163 if (iref) { 3164 if (path->slots[0] != extent_slot) { 3165 btrfs_crit(info, 3166 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3167 key.objectid, key.type, 3168 key.offset); 3169 btrfs_abort_transaction(trans, -EUCLEAN); 3170 goto err_dump; 3171 } 3172 } else { 3173 /* 3174 * No inline ref, we must be at SHARED_* item, 3175 * And it's single ref, it must be: 3176 * | extent_slot ||extent_slot + 1| 3177 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3178 */ 3179 if (path->slots[0] != extent_slot + 1) { 3180 btrfs_crit(info, 3181 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3182 btrfs_abort_transaction(trans, -EUCLEAN); 3183 goto err_dump; 3184 } 3185 path->slots[0] = extent_slot; 3186 num_to_del = 2; 3187 } 3188 } 3189 3190 last_ref = 1; 3191 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3192 num_to_del); 3193 if (ret) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 btrfs_release_path(path); 3198 3199 if (is_data) { 3200 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3201 num_bytes); 3202 if (ret) { 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 } 3207 3208 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3209 if (ret) { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 3214 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3215 if (ret) { 3216 btrfs_abort_transaction(trans, ret); 3217 goto out; 3218 } 3219 } 3220 btrfs_release_path(path); 3221 3222 out: 3223 btrfs_free_path(path); 3224 return ret; 3225 err_dump: 3226 /* 3227 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3228 * dump for debug build. 3229 */ 3230 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3231 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3232 path->slots[0], extent_slot); 3233 btrfs_print_leaf(path->nodes[0]); 3234 } 3235 3236 btrfs_free_path(path); 3237 return -EUCLEAN; 3238 } 3239 3240 /* 3241 * when we free an block, it is possible (and likely) that we free the last 3242 * delayed ref for that extent as well. This searches the delayed ref tree for 3243 * a given extent, and if there are no other delayed refs to be processed, it 3244 * removes it from the tree. 3245 */ 3246 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3247 u64 bytenr) 3248 { 3249 struct btrfs_delayed_ref_head *head; 3250 struct btrfs_delayed_ref_root *delayed_refs; 3251 int ret = 0; 3252 3253 delayed_refs = &trans->transaction->delayed_refs; 3254 spin_lock(&delayed_refs->lock); 3255 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3256 if (!head) 3257 goto out_delayed_unlock; 3258 3259 spin_lock(&head->lock); 3260 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3261 goto out; 3262 3263 if (cleanup_extent_op(head) != NULL) 3264 goto out; 3265 3266 /* 3267 * waiting for the lock here would deadlock. If someone else has it 3268 * locked they are already in the process of dropping it anyway 3269 */ 3270 if (!mutex_trylock(&head->mutex)) 3271 goto out; 3272 3273 btrfs_delete_ref_head(delayed_refs, head); 3274 head->processing = 0; 3275 3276 spin_unlock(&head->lock); 3277 spin_unlock(&delayed_refs->lock); 3278 3279 BUG_ON(head->extent_op); 3280 if (head->must_insert_reserved) 3281 ret = 1; 3282 3283 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3284 mutex_unlock(&head->mutex); 3285 btrfs_put_delayed_ref_head(head); 3286 return ret; 3287 out: 3288 spin_unlock(&head->lock); 3289 3290 out_delayed_unlock: 3291 spin_unlock(&delayed_refs->lock); 3292 return 0; 3293 } 3294 3295 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3296 struct btrfs_root *root, 3297 struct extent_buffer *buf, 3298 u64 parent, int last_ref) 3299 { 3300 struct btrfs_fs_info *fs_info = root->fs_info; 3301 struct btrfs_ref generic_ref = { 0 }; 3302 int ret; 3303 3304 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3305 buf->start, buf->len, parent); 3306 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3307 root->root_key.objectid); 3308 3309 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3310 btrfs_ref_tree_mod(fs_info, &generic_ref); 3311 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3312 BUG_ON(ret); /* -ENOMEM */ 3313 } 3314 3315 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3316 struct btrfs_block_group *cache; 3317 bool must_pin = false; 3318 3319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3320 ret = check_ref_cleanup(trans, buf->start); 3321 if (!ret) { 3322 btrfs_redirty_list_add(trans->transaction, buf); 3323 goto out; 3324 } 3325 } 3326 3327 cache = btrfs_lookup_block_group(fs_info, buf->start); 3328 3329 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3330 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3331 btrfs_put_block_group(cache); 3332 goto out; 3333 } 3334 3335 /* 3336 * If this is a leaf and there are tree mod log users, we may 3337 * have recorded mod log operations that point to this leaf. 3338 * So we must make sure no one reuses this leaf's extent before 3339 * mod log operations are applied to a node, otherwise after 3340 * rewinding a node using the mod log operations we get an 3341 * inconsistent btree, as the leaf's extent may now be used as 3342 * a node or leaf for another different btree. 3343 * We are safe from races here because at this point no other 3344 * node or root points to this extent buffer, so if after this 3345 * check a new tree mod log user joins, it will not be able to 3346 * find a node pointing to this leaf and record operations that 3347 * point to this leaf. 3348 */ 3349 if (btrfs_header_level(buf) == 0 && 3350 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3351 must_pin = true; 3352 3353 if (must_pin || btrfs_is_zoned(fs_info)) { 3354 btrfs_redirty_list_add(trans->transaction, buf); 3355 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3356 btrfs_put_block_group(cache); 3357 goto out; 3358 } 3359 3360 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3361 3362 btrfs_add_free_space(cache, buf->start, buf->len); 3363 btrfs_free_reserved_bytes(cache, buf->len, 0); 3364 btrfs_put_block_group(cache); 3365 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3366 } 3367 out: 3368 if (last_ref) { 3369 /* 3370 * Deleting the buffer, clear the corrupt flag since it doesn't 3371 * matter anymore. 3372 */ 3373 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3374 } 3375 } 3376 3377 /* Can return -ENOMEM */ 3378 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3379 { 3380 struct btrfs_fs_info *fs_info = trans->fs_info; 3381 int ret; 3382 3383 if (btrfs_is_testing(fs_info)) 3384 return 0; 3385 3386 /* 3387 * tree log blocks never actually go into the extent allocation 3388 * tree, just update pinning info and exit early. 3389 */ 3390 if ((ref->type == BTRFS_REF_METADATA && 3391 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3392 (ref->type == BTRFS_REF_DATA && 3393 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3394 /* unlocks the pinned mutex */ 3395 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3396 ret = 0; 3397 } else if (ref->type == BTRFS_REF_METADATA) { 3398 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3399 } else { 3400 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3401 } 3402 3403 if (!((ref->type == BTRFS_REF_METADATA && 3404 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3405 (ref->type == BTRFS_REF_DATA && 3406 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3407 btrfs_ref_tree_mod(fs_info, ref); 3408 3409 return ret; 3410 } 3411 3412 enum btrfs_loop_type { 3413 LOOP_CACHING_NOWAIT, 3414 LOOP_CACHING_WAIT, 3415 LOOP_ALLOC_CHUNK, 3416 LOOP_NO_EMPTY_SIZE, 3417 }; 3418 3419 static inline void 3420 btrfs_lock_block_group(struct btrfs_block_group *cache, 3421 int delalloc) 3422 { 3423 if (delalloc) 3424 down_read(&cache->data_rwsem); 3425 } 3426 3427 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3428 int delalloc) 3429 { 3430 btrfs_get_block_group(cache); 3431 if (delalloc) 3432 down_read(&cache->data_rwsem); 3433 } 3434 3435 static struct btrfs_block_group *btrfs_lock_cluster( 3436 struct btrfs_block_group *block_group, 3437 struct btrfs_free_cluster *cluster, 3438 int delalloc) 3439 __acquires(&cluster->refill_lock) 3440 { 3441 struct btrfs_block_group *used_bg = NULL; 3442 3443 spin_lock(&cluster->refill_lock); 3444 while (1) { 3445 used_bg = cluster->block_group; 3446 if (!used_bg) 3447 return NULL; 3448 3449 if (used_bg == block_group) 3450 return used_bg; 3451 3452 btrfs_get_block_group(used_bg); 3453 3454 if (!delalloc) 3455 return used_bg; 3456 3457 if (down_read_trylock(&used_bg->data_rwsem)) 3458 return used_bg; 3459 3460 spin_unlock(&cluster->refill_lock); 3461 3462 /* We should only have one-level nested. */ 3463 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3464 3465 spin_lock(&cluster->refill_lock); 3466 if (used_bg == cluster->block_group) 3467 return used_bg; 3468 3469 up_read(&used_bg->data_rwsem); 3470 btrfs_put_block_group(used_bg); 3471 } 3472 } 3473 3474 static inline void 3475 btrfs_release_block_group(struct btrfs_block_group *cache, 3476 int delalloc) 3477 { 3478 if (delalloc) 3479 up_read(&cache->data_rwsem); 3480 btrfs_put_block_group(cache); 3481 } 3482 3483 enum btrfs_extent_allocation_policy { 3484 BTRFS_EXTENT_ALLOC_CLUSTERED, 3485 BTRFS_EXTENT_ALLOC_ZONED, 3486 }; 3487 3488 /* 3489 * Structure used internally for find_free_extent() function. Wraps needed 3490 * parameters. 3491 */ 3492 struct find_free_extent_ctl { 3493 /* Basic allocation info */ 3494 u64 num_bytes; 3495 u64 empty_size; 3496 u64 flags; 3497 int delalloc; 3498 3499 /* Where to start the search inside the bg */ 3500 u64 search_start; 3501 3502 /* For clustered allocation */ 3503 u64 empty_cluster; 3504 struct btrfs_free_cluster *last_ptr; 3505 bool use_cluster; 3506 3507 bool have_caching_bg; 3508 bool orig_have_caching_bg; 3509 3510 /* Allocation is called for tree-log */ 3511 bool for_treelog; 3512 3513 /* RAID index, converted from flags */ 3514 int index; 3515 3516 /* 3517 * Current loop number, check find_free_extent_update_loop() for details 3518 */ 3519 int loop; 3520 3521 /* 3522 * Whether we're refilling a cluster, if true we need to re-search 3523 * current block group but don't try to refill the cluster again. 3524 */ 3525 bool retry_clustered; 3526 3527 /* 3528 * Whether we're updating free space cache, if true we need to re-search 3529 * current block group but don't try updating free space cache again. 3530 */ 3531 bool retry_unclustered; 3532 3533 /* If current block group is cached */ 3534 int cached; 3535 3536 /* Max contiguous hole found */ 3537 u64 max_extent_size; 3538 3539 /* Total free space from free space cache, not always contiguous */ 3540 u64 total_free_space; 3541 3542 /* Found result */ 3543 u64 found_offset; 3544 3545 /* Hint where to start looking for an empty space */ 3546 u64 hint_byte; 3547 3548 /* Allocation policy */ 3549 enum btrfs_extent_allocation_policy policy; 3550 }; 3551 3552 3553 /* 3554 * Helper function for find_free_extent(). 3555 * 3556 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3557 * Return -EAGAIN to inform caller that we need to re-search this block group 3558 * Return >0 to inform caller that we find nothing 3559 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3560 */ 3561 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3562 struct find_free_extent_ctl *ffe_ctl, 3563 struct btrfs_block_group **cluster_bg_ret) 3564 { 3565 struct btrfs_block_group *cluster_bg; 3566 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3567 u64 aligned_cluster; 3568 u64 offset; 3569 int ret; 3570 3571 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3572 if (!cluster_bg) 3573 goto refill_cluster; 3574 if (cluster_bg != bg && (cluster_bg->ro || 3575 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3576 goto release_cluster; 3577 3578 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3579 ffe_ctl->num_bytes, cluster_bg->start, 3580 &ffe_ctl->max_extent_size); 3581 if (offset) { 3582 /* We have a block, we're done */ 3583 spin_unlock(&last_ptr->refill_lock); 3584 trace_btrfs_reserve_extent_cluster(cluster_bg, 3585 ffe_ctl->search_start, ffe_ctl->num_bytes); 3586 *cluster_bg_ret = cluster_bg; 3587 ffe_ctl->found_offset = offset; 3588 return 0; 3589 } 3590 WARN_ON(last_ptr->block_group != cluster_bg); 3591 3592 release_cluster: 3593 /* 3594 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3595 * lets just skip it and let the allocator find whatever block it can 3596 * find. If we reach this point, we will have tried the cluster 3597 * allocator plenty of times and not have found anything, so we are 3598 * likely way too fragmented for the clustering stuff to find anything. 3599 * 3600 * However, if the cluster is taken from the current block group, 3601 * release the cluster first, so that we stand a better chance of 3602 * succeeding in the unclustered allocation. 3603 */ 3604 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3605 spin_unlock(&last_ptr->refill_lock); 3606 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3607 return -ENOENT; 3608 } 3609 3610 /* This cluster didn't work out, free it and start over */ 3611 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3612 3613 if (cluster_bg != bg) 3614 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3615 3616 refill_cluster: 3617 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3618 spin_unlock(&last_ptr->refill_lock); 3619 return -ENOENT; 3620 } 3621 3622 aligned_cluster = max_t(u64, 3623 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3624 bg->full_stripe_len); 3625 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3626 ffe_ctl->num_bytes, aligned_cluster); 3627 if (ret == 0) { 3628 /* Now pull our allocation out of this cluster */ 3629 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3630 ffe_ctl->num_bytes, ffe_ctl->search_start, 3631 &ffe_ctl->max_extent_size); 3632 if (offset) { 3633 /* We found one, proceed */ 3634 spin_unlock(&last_ptr->refill_lock); 3635 trace_btrfs_reserve_extent_cluster(bg, 3636 ffe_ctl->search_start, 3637 ffe_ctl->num_bytes); 3638 ffe_ctl->found_offset = offset; 3639 return 0; 3640 } 3641 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3642 !ffe_ctl->retry_clustered) { 3643 spin_unlock(&last_ptr->refill_lock); 3644 3645 ffe_ctl->retry_clustered = true; 3646 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3647 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3648 return -EAGAIN; 3649 } 3650 /* 3651 * At this point we either didn't find a cluster or we weren't able to 3652 * allocate a block from our cluster. Free the cluster we've been 3653 * trying to use, and go to the next block group. 3654 */ 3655 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3656 spin_unlock(&last_ptr->refill_lock); 3657 return 1; 3658 } 3659 3660 /* 3661 * Return >0 to inform caller that we find nothing 3662 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3663 * Return -EAGAIN to inform caller that we need to re-search this block group 3664 */ 3665 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3666 struct find_free_extent_ctl *ffe_ctl) 3667 { 3668 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3669 u64 offset; 3670 3671 /* 3672 * We are doing an unclustered allocation, set the fragmented flag so 3673 * we don't bother trying to setup a cluster again until we get more 3674 * space. 3675 */ 3676 if (unlikely(last_ptr)) { 3677 spin_lock(&last_ptr->lock); 3678 last_ptr->fragmented = 1; 3679 spin_unlock(&last_ptr->lock); 3680 } 3681 if (ffe_ctl->cached) { 3682 struct btrfs_free_space_ctl *free_space_ctl; 3683 3684 free_space_ctl = bg->free_space_ctl; 3685 spin_lock(&free_space_ctl->tree_lock); 3686 if (free_space_ctl->free_space < 3687 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3688 ffe_ctl->empty_size) { 3689 ffe_ctl->total_free_space = max_t(u64, 3690 ffe_ctl->total_free_space, 3691 free_space_ctl->free_space); 3692 spin_unlock(&free_space_ctl->tree_lock); 3693 return 1; 3694 } 3695 spin_unlock(&free_space_ctl->tree_lock); 3696 } 3697 3698 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3699 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3700 &ffe_ctl->max_extent_size); 3701 3702 /* 3703 * If we didn't find a chunk, and we haven't failed on this block group 3704 * before, and this block group is in the middle of caching and we are 3705 * ok with waiting, then go ahead and wait for progress to be made, and 3706 * set @retry_unclustered to true. 3707 * 3708 * If @retry_unclustered is true then we've already waited on this 3709 * block group once and should move on to the next block group. 3710 */ 3711 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3712 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3713 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3714 ffe_ctl->empty_size); 3715 ffe_ctl->retry_unclustered = true; 3716 return -EAGAIN; 3717 } else if (!offset) { 3718 return 1; 3719 } 3720 ffe_ctl->found_offset = offset; 3721 return 0; 3722 } 3723 3724 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3725 struct find_free_extent_ctl *ffe_ctl, 3726 struct btrfs_block_group **bg_ret) 3727 { 3728 int ret; 3729 3730 /* We want to try and use the cluster allocator, so lets look there */ 3731 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3732 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3733 if (ret >= 0 || ret == -EAGAIN) 3734 return ret; 3735 /* ret == -ENOENT case falls through */ 3736 } 3737 3738 return find_free_extent_unclustered(block_group, ffe_ctl); 3739 } 3740 3741 /* 3742 * Tree-log block group locking 3743 * ============================ 3744 * 3745 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3746 * indicates the starting address of a block group, which is reserved only 3747 * for tree-log metadata. 3748 * 3749 * Lock nesting 3750 * ============ 3751 * 3752 * space_info::lock 3753 * block_group::lock 3754 * fs_info::treelog_bg_lock 3755 */ 3756 3757 /* 3758 * Simple allocator for sequential-only block group. It only allows sequential 3759 * allocation. No need to play with trees. This function also reserves the 3760 * bytes as in btrfs_add_reserved_bytes. 3761 */ 3762 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3763 struct find_free_extent_ctl *ffe_ctl, 3764 struct btrfs_block_group **bg_ret) 3765 { 3766 struct btrfs_fs_info *fs_info = block_group->fs_info; 3767 struct btrfs_space_info *space_info = block_group->space_info; 3768 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3769 u64 start = block_group->start; 3770 u64 num_bytes = ffe_ctl->num_bytes; 3771 u64 avail; 3772 u64 bytenr = block_group->start; 3773 u64 log_bytenr; 3774 int ret = 0; 3775 bool skip; 3776 3777 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3778 3779 /* 3780 * Do not allow non-tree-log blocks in the dedicated tree-log block 3781 * group, and vice versa. 3782 */ 3783 spin_lock(&fs_info->treelog_bg_lock); 3784 log_bytenr = fs_info->treelog_bg; 3785 skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3786 (!ffe_ctl->for_treelog && bytenr == log_bytenr)); 3787 spin_unlock(&fs_info->treelog_bg_lock); 3788 if (skip) 3789 return 1; 3790 3791 spin_lock(&space_info->lock); 3792 spin_lock(&block_group->lock); 3793 spin_lock(&fs_info->treelog_bg_lock); 3794 3795 ASSERT(!ffe_ctl->for_treelog || 3796 block_group->start == fs_info->treelog_bg || 3797 fs_info->treelog_bg == 0); 3798 3799 if (block_group->ro) { 3800 ret = 1; 3801 goto out; 3802 } 3803 3804 /* 3805 * Do not allow currently using block group to be tree-log dedicated 3806 * block group. 3807 */ 3808 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3809 (block_group->used || block_group->reserved)) { 3810 ret = 1; 3811 goto out; 3812 } 3813 3814 avail = block_group->length - block_group->alloc_offset; 3815 if (avail < num_bytes) { 3816 if (ffe_ctl->max_extent_size < avail) { 3817 /* 3818 * With sequential allocator, free space is always 3819 * contiguous 3820 */ 3821 ffe_ctl->max_extent_size = avail; 3822 ffe_ctl->total_free_space = avail; 3823 } 3824 ret = 1; 3825 goto out; 3826 } 3827 3828 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3829 fs_info->treelog_bg = block_group->start; 3830 3831 ffe_ctl->found_offset = start + block_group->alloc_offset; 3832 block_group->alloc_offset += num_bytes; 3833 spin_lock(&ctl->tree_lock); 3834 ctl->free_space -= num_bytes; 3835 spin_unlock(&ctl->tree_lock); 3836 3837 /* 3838 * We do not check if found_offset is aligned to stripesize. The 3839 * address is anyway rewritten when using zone append writing. 3840 */ 3841 3842 ffe_ctl->search_start = ffe_ctl->found_offset; 3843 3844 out: 3845 if (ret && ffe_ctl->for_treelog) 3846 fs_info->treelog_bg = 0; 3847 spin_unlock(&fs_info->treelog_bg_lock); 3848 spin_unlock(&block_group->lock); 3849 spin_unlock(&space_info->lock); 3850 return ret; 3851 } 3852 3853 static int do_allocation(struct btrfs_block_group *block_group, 3854 struct find_free_extent_ctl *ffe_ctl, 3855 struct btrfs_block_group **bg_ret) 3856 { 3857 switch (ffe_ctl->policy) { 3858 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3859 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3860 case BTRFS_EXTENT_ALLOC_ZONED: 3861 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3862 default: 3863 BUG(); 3864 } 3865 } 3866 3867 static void release_block_group(struct btrfs_block_group *block_group, 3868 struct find_free_extent_ctl *ffe_ctl, 3869 int delalloc) 3870 { 3871 switch (ffe_ctl->policy) { 3872 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3873 ffe_ctl->retry_clustered = false; 3874 ffe_ctl->retry_unclustered = false; 3875 break; 3876 case BTRFS_EXTENT_ALLOC_ZONED: 3877 /* Nothing to do */ 3878 break; 3879 default: 3880 BUG(); 3881 } 3882 3883 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3884 ffe_ctl->index); 3885 btrfs_release_block_group(block_group, delalloc); 3886 } 3887 3888 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3889 struct btrfs_key *ins) 3890 { 3891 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3892 3893 if (!ffe_ctl->use_cluster && last_ptr) { 3894 spin_lock(&last_ptr->lock); 3895 last_ptr->window_start = ins->objectid; 3896 spin_unlock(&last_ptr->lock); 3897 } 3898 } 3899 3900 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3901 struct btrfs_key *ins) 3902 { 3903 switch (ffe_ctl->policy) { 3904 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3905 found_extent_clustered(ffe_ctl, ins); 3906 break; 3907 case BTRFS_EXTENT_ALLOC_ZONED: 3908 /* Nothing to do */ 3909 break; 3910 default: 3911 BUG(); 3912 } 3913 } 3914 3915 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3916 { 3917 switch (ffe_ctl->policy) { 3918 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3919 /* 3920 * If we can't allocate a new chunk we've already looped through 3921 * at least once, move on to the NO_EMPTY_SIZE case. 3922 */ 3923 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3924 return 0; 3925 case BTRFS_EXTENT_ALLOC_ZONED: 3926 /* Give up here */ 3927 return -ENOSPC; 3928 default: 3929 BUG(); 3930 } 3931 } 3932 3933 /* 3934 * Return >0 means caller needs to re-search for free extent 3935 * Return 0 means we have the needed free extent. 3936 * Return <0 means we failed to locate any free extent. 3937 */ 3938 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3939 struct btrfs_key *ins, 3940 struct find_free_extent_ctl *ffe_ctl, 3941 bool full_search) 3942 { 3943 struct btrfs_root *root = fs_info->extent_root; 3944 int ret; 3945 3946 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3947 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3948 ffe_ctl->orig_have_caching_bg = true; 3949 3950 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3951 ffe_ctl->have_caching_bg) 3952 return 1; 3953 3954 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3955 return 1; 3956 3957 if (ins->objectid) { 3958 found_extent(ffe_ctl, ins); 3959 return 0; 3960 } 3961 3962 /* 3963 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3964 * caching kthreads as we move along 3965 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3966 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3967 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3968 * again 3969 */ 3970 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3971 ffe_ctl->index = 0; 3972 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3973 /* 3974 * We want to skip the LOOP_CACHING_WAIT step if we 3975 * don't have any uncached bgs and we've already done a 3976 * full search through. 3977 */ 3978 if (ffe_ctl->orig_have_caching_bg || !full_search) 3979 ffe_ctl->loop = LOOP_CACHING_WAIT; 3980 else 3981 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3982 } else { 3983 ffe_ctl->loop++; 3984 } 3985 3986 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3987 struct btrfs_trans_handle *trans; 3988 int exist = 0; 3989 3990 trans = current->journal_info; 3991 if (trans) 3992 exist = 1; 3993 else 3994 trans = btrfs_join_transaction(root); 3995 3996 if (IS_ERR(trans)) { 3997 ret = PTR_ERR(trans); 3998 return ret; 3999 } 4000 4001 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4002 CHUNK_ALLOC_FORCE); 4003 4004 /* Do not bail out on ENOSPC since we can do more. */ 4005 if (ret == -ENOSPC) 4006 ret = chunk_allocation_failed(ffe_ctl); 4007 else if (ret < 0) 4008 btrfs_abort_transaction(trans, ret); 4009 else 4010 ret = 0; 4011 if (!exist) 4012 btrfs_end_transaction(trans); 4013 if (ret) 4014 return ret; 4015 } 4016 4017 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4018 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4019 return -ENOSPC; 4020 4021 /* 4022 * Don't loop again if we already have no empty_size and 4023 * no empty_cluster. 4024 */ 4025 if (ffe_ctl->empty_size == 0 && 4026 ffe_ctl->empty_cluster == 0) 4027 return -ENOSPC; 4028 ffe_ctl->empty_size = 0; 4029 ffe_ctl->empty_cluster = 0; 4030 } 4031 return 1; 4032 } 4033 return -ENOSPC; 4034 } 4035 4036 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4037 struct find_free_extent_ctl *ffe_ctl, 4038 struct btrfs_space_info *space_info, 4039 struct btrfs_key *ins) 4040 { 4041 /* 4042 * If our free space is heavily fragmented we may not be able to make 4043 * big contiguous allocations, so instead of doing the expensive search 4044 * for free space, simply return ENOSPC with our max_extent_size so we 4045 * can go ahead and search for a more manageable chunk. 4046 * 4047 * If our max_extent_size is large enough for our allocation simply 4048 * disable clustering since we will likely not be able to find enough 4049 * space to create a cluster and induce latency trying. 4050 */ 4051 if (space_info->max_extent_size) { 4052 spin_lock(&space_info->lock); 4053 if (space_info->max_extent_size && 4054 ffe_ctl->num_bytes > space_info->max_extent_size) { 4055 ins->offset = space_info->max_extent_size; 4056 spin_unlock(&space_info->lock); 4057 return -ENOSPC; 4058 } else if (space_info->max_extent_size) { 4059 ffe_ctl->use_cluster = false; 4060 } 4061 spin_unlock(&space_info->lock); 4062 } 4063 4064 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4065 &ffe_ctl->empty_cluster); 4066 if (ffe_ctl->last_ptr) { 4067 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4068 4069 spin_lock(&last_ptr->lock); 4070 if (last_ptr->block_group) 4071 ffe_ctl->hint_byte = last_ptr->window_start; 4072 if (last_ptr->fragmented) { 4073 /* 4074 * We still set window_start so we can keep track of the 4075 * last place we found an allocation to try and save 4076 * some time. 4077 */ 4078 ffe_ctl->hint_byte = last_ptr->window_start; 4079 ffe_ctl->use_cluster = false; 4080 } 4081 spin_unlock(&last_ptr->lock); 4082 } 4083 4084 return 0; 4085 } 4086 4087 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4088 struct find_free_extent_ctl *ffe_ctl, 4089 struct btrfs_space_info *space_info, 4090 struct btrfs_key *ins) 4091 { 4092 switch (ffe_ctl->policy) { 4093 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4094 return prepare_allocation_clustered(fs_info, ffe_ctl, 4095 space_info, ins); 4096 case BTRFS_EXTENT_ALLOC_ZONED: 4097 if (ffe_ctl->for_treelog) { 4098 spin_lock(&fs_info->treelog_bg_lock); 4099 if (fs_info->treelog_bg) 4100 ffe_ctl->hint_byte = fs_info->treelog_bg; 4101 spin_unlock(&fs_info->treelog_bg_lock); 4102 } 4103 return 0; 4104 default: 4105 BUG(); 4106 } 4107 } 4108 4109 /* 4110 * walks the btree of allocated extents and find a hole of a given size. 4111 * The key ins is changed to record the hole: 4112 * ins->objectid == start position 4113 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4114 * ins->offset == the size of the hole. 4115 * Any available blocks before search_start are skipped. 4116 * 4117 * If there is no suitable free space, we will record the max size of 4118 * the free space extent currently. 4119 * 4120 * The overall logic and call chain: 4121 * 4122 * find_free_extent() 4123 * |- Iterate through all block groups 4124 * | |- Get a valid block group 4125 * | |- Try to do clustered allocation in that block group 4126 * | |- Try to do unclustered allocation in that block group 4127 * | |- Check if the result is valid 4128 * | | |- If valid, then exit 4129 * | |- Jump to next block group 4130 * | 4131 * |- Push harder to find free extents 4132 * |- If not found, re-iterate all block groups 4133 */ 4134 static noinline int find_free_extent(struct btrfs_root *root, 4135 u64 ram_bytes, u64 num_bytes, u64 empty_size, 4136 u64 hint_byte_orig, struct btrfs_key *ins, 4137 u64 flags, int delalloc) 4138 { 4139 struct btrfs_fs_info *fs_info = root->fs_info; 4140 int ret = 0; 4141 int cache_block_group_error = 0; 4142 struct btrfs_block_group *block_group = NULL; 4143 struct find_free_extent_ctl ffe_ctl = {0}; 4144 struct btrfs_space_info *space_info; 4145 bool full_search = false; 4146 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4147 4148 WARN_ON(num_bytes < fs_info->sectorsize); 4149 4150 ffe_ctl.num_bytes = num_bytes; 4151 ffe_ctl.empty_size = empty_size; 4152 ffe_ctl.flags = flags; 4153 ffe_ctl.search_start = 0; 4154 ffe_ctl.delalloc = delalloc; 4155 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 4156 ffe_ctl.have_caching_bg = false; 4157 ffe_ctl.orig_have_caching_bg = false; 4158 ffe_ctl.found_offset = 0; 4159 ffe_ctl.hint_byte = hint_byte_orig; 4160 ffe_ctl.for_treelog = for_treelog; 4161 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4162 4163 /* For clustered allocation */ 4164 ffe_ctl.retry_clustered = false; 4165 ffe_ctl.retry_unclustered = false; 4166 ffe_ctl.last_ptr = NULL; 4167 ffe_ctl.use_cluster = true; 4168 4169 if (btrfs_is_zoned(fs_info)) 4170 ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED; 4171 4172 ins->type = BTRFS_EXTENT_ITEM_KEY; 4173 ins->objectid = 0; 4174 ins->offset = 0; 4175 4176 trace_find_free_extent(root, num_bytes, empty_size, flags); 4177 4178 space_info = btrfs_find_space_info(fs_info, flags); 4179 if (!space_info) { 4180 btrfs_err(fs_info, "No space info for %llu", flags); 4181 return -ENOSPC; 4182 } 4183 4184 ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins); 4185 if (ret < 0) 4186 return ret; 4187 4188 ffe_ctl.search_start = max(ffe_ctl.search_start, 4189 first_logical_byte(fs_info, 0)); 4190 ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte); 4191 if (ffe_ctl.search_start == ffe_ctl.hint_byte) { 4192 block_group = btrfs_lookup_block_group(fs_info, 4193 ffe_ctl.search_start); 4194 /* 4195 * we don't want to use the block group if it doesn't match our 4196 * allocation bits, or if its not cached. 4197 * 4198 * However if we are re-searching with an ideal block group 4199 * picked out then we don't care that the block group is cached. 4200 */ 4201 if (block_group && block_group_bits(block_group, flags) && 4202 block_group->cached != BTRFS_CACHE_NO) { 4203 down_read(&space_info->groups_sem); 4204 if (list_empty(&block_group->list) || 4205 block_group->ro) { 4206 /* 4207 * someone is removing this block group, 4208 * we can't jump into the have_block_group 4209 * target because our list pointers are not 4210 * valid 4211 */ 4212 btrfs_put_block_group(block_group); 4213 up_read(&space_info->groups_sem); 4214 } else { 4215 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 4216 block_group->flags); 4217 btrfs_lock_block_group(block_group, delalloc); 4218 goto have_block_group; 4219 } 4220 } else if (block_group) { 4221 btrfs_put_block_group(block_group); 4222 } 4223 } 4224 search: 4225 ffe_ctl.have_caching_bg = false; 4226 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 4227 ffe_ctl.index == 0) 4228 full_search = true; 4229 down_read(&space_info->groups_sem); 4230 list_for_each_entry(block_group, 4231 &space_info->block_groups[ffe_ctl.index], list) { 4232 struct btrfs_block_group *bg_ret; 4233 4234 /* If the block group is read-only, we can skip it entirely. */ 4235 if (unlikely(block_group->ro)) { 4236 if (for_treelog) 4237 btrfs_clear_treelog_bg(block_group); 4238 continue; 4239 } 4240 4241 btrfs_grab_block_group(block_group, delalloc); 4242 ffe_ctl.search_start = block_group->start; 4243 4244 /* 4245 * this can happen if we end up cycling through all the 4246 * raid types, but we want to make sure we only allocate 4247 * for the proper type. 4248 */ 4249 if (!block_group_bits(block_group, flags)) { 4250 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4251 BTRFS_BLOCK_GROUP_RAID1_MASK | 4252 BTRFS_BLOCK_GROUP_RAID56_MASK | 4253 BTRFS_BLOCK_GROUP_RAID10; 4254 4255 /* 4256 * if they asked for extra copies and this block group 4257 * doesn't provide them, bail. This does allow us to 4258 * fill raid0 from raid1. 4259 */ 4260 if ((flags & extra) && !(block_group->flags & extra)) 4261 goto loop; 4262 4263 /* 4264 * This block group has different flags than we want. 4265 * It's possible that we have MIXED_GROUP flag but no 4266 * block group is mixed. Just skip such block group. 4267 */ 4268 btrfs_release_block_group(block_group, delalloc); 4269 continue; 4270 } 4271 4272 have_block_group: 4273 ffe_ctl.cached = btrfs_block_group_done(block_group); 4274 if (unlikely(!ffe_ctl.cached)) { 4275 ffe_ctl.have_caching_bg = true; 4276 ret = btrfs_cache_block_group(block_group, 0); 4277 4278 /* 4279 * If we get ENOMEM here or something else we want to 4280 * try other block groups, because it may not be fatal. 4281 * However if we can't find anything else we need to 4282 * save our return here so that we return the actual 4283 * error that caused problems, not ENOSPC. 4284 */ 4285 if (ret < 0) { 4286 if (!cache_block_group_error) 4287 cache_block_group_error = ret; 4288 ret = 0; 4289 goto loop; 4290 } 4291 ret = 0; 4292 } 4293 4294 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4295 goto loop; 4296 4297 bg_ret = NULL; 4298 ret = do_allocation(block_group, &ffe_ctl, &bg_ret); 4299 if (ret == 0) { 4300 if (bg_ret && bg_ret != block_group) { 4301 btrfs_release_block_group(block_group, delalloc); 4302 block_group = bg_ret; 4303 } 4304 } else if (ret == -EAGAIN) { 4305 goto have_block_group; 4306 } else if (ret > 0) { 4307 goto loop; 4308 } 4309 4310 /* Checks */ 4311 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4312 fs_info->stripesize); 4313 4314 /* move on to the next group */ 4315 if (ffe_ctl.search_start + num_bytes > 4316 block_group->start + block_group->length) { 4317 btrfs_add_free_space_unused(block_group, 4318 ffe_ctl.found_offset, num_bytes); 4319 goto loop; 4320 } 4321 4322 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4323 btrfs_add_free_space_unused(block_group, 4324 ffe_ctl.found_offset, 4325 ffe_ctl.search_start - ffe_ctl.found_offset); 4326 4327 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4328 num_bytes, delalloc); 4329 if (ret == -EAGAIN) { 4330 btrfs_add_free_space_unused(block_group, 4331 ffe_ctl.found_offset, num_bytes); 4332 goto loop; 4333 } 4334 btrfs_inc_block_group_reservations(block_group); 4335 4336 /* we are all good, lets return */ 4337 ins->objectid = ffe_ctl.search_start; 4338 ins->offset = num_bytes; 4339 4340 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4341 num_bytes); 4342 btrfs_release_block_group(block_group, delalloc); 4343 break; 4344 loop: 4345 release_block_group(block_group, &ffe_ctl, delalloc); 4346 cond_resched(); 4347 } 4348 up_read(&space_info->groups_sem); 4349 4350 ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search); 4351 if (ret > 0) 4352 goto search; 4353 4354 if (ret == -ENOSPC && !cache_block_group_error) { 4355 /* 4356 * Use ffe_ctl->total_free_space as fallback if we can't find 4357 * any contiguous hole. 4358 */ 4359 if (!ffe_ctl.max_extent_size) 4360 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4361 spin_lock(&space_info->lock); 4362 space_info->max_extent_size = ffe_ctl.max_extent_size; 4363 spin_unlock(&space_info->lock); 4364 ins->offset = ffe_ctl.max_extent_size; 4365 } else if (ret == -ENOSPC) { 4366 ret = cache_block_group_error; 4367 } 4368 return ret; 4369 } 4370 4371 /* 4372 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4373 * hole that is at least as big as @num_bytes. 4374 * 4375 * @root - The root that will contain this extent 4376 * 4377 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4378 * is used for accounting purposes. This value differs 4379 * from @num_bytes only in the case of compressed extents. 4380 * 4381 * @num_bytes - Number of bytes to allocate on-disk. 4382 * 4383 * @min_alloc_size - Indicates the minimum amount of space that the 4384 * allocator should try to satisfy. In some cases 4385 * @num_bytes may be larger than what is required and if 4386 * the filesystem is fragmented then allocation fails. 4387 * However, the presence of @min_alloc_size gives a 4388 * chance to try and satisfy the smaller allocation. 4389 * 4390 * @empty_size - A hint that you plan on doing more COW. This is the 4391 * size in bytes the allocator should try to find free 4392 * next to the block it returns. This is just a hint and 4393 * may be ignored by the allocator. 4394 * 4395 * @hint_byte - Hint to the allocator to start searching above the byte 4396 * address passed. It might be ignored. 4397 * 4398 * @ins - This key is modified to record the found hole. It will 4399 * have the following values: 4400 * ins->objectid == start position 4401 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4402 * ins->offset == the size of the hole. 4403 * 4404 * @is_data - Boolean flag indicating whether an extent is 4405 * allocated for data (true) or metadata (false) 4406 * 4407 * @delalloc - Boolean flag indicating whether this allocation is for 4408 * delalloc or not. If 'true' data_rwsem of block groups 4409 * is going to be acquired. 4410 * 4411 * 4412 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4413 * case -ENOSPC is returned then @ins->offset will contain the size of the 4414 * largest available hole the allocator managed to find. 4415 */ 4416 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4417 u64 num_bytes, u64 min_alloc_size, 4418 u64 empty_size, u64 hint_byte, 4419 struct btrfs_key *ins, int is_data, int delalloc) 4420 { 4421 struct btrfs_fs_info *fs_info = root->fs_info; 4422 bool final_tried = num_bytes == min_alloc_size; 4423 u64 flags; 4424 int ret; 4425 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4426 4427 flags = get_alloc_profile_by_root(root, is_data); 4428 again: 4429 WARN_ON(num_bytes < fs_info->sectorsize); 4430 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size, 4431 hint_byte, ins, flags, delalloc); 4432 if (!ret && !is_data) { 4433 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4434 } else if (ret == -ENOSPC) { 4435 if (!final_tried && ins->offset) { 4436 num_bytes = min(num_bytes >> 1, ins->offset); 4437 num_bytes = round_down(num_bytes, 4438 fs_info->sectorsize); 4439 num_bytes = max(num_bytes, min_alloc_size); 4440 ram_bytes = num_bytes; 4441 if (num_bytes == min_alloc_size) 4442 final_tried = true; 4443 goto again; 4444 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4445 struct btrfs_space_info *sinfo; 4446 4447 sinfo = btrfs_find_space_info(fs_info, flags); 4448 btrfs_err(fs_info, 4449 "allocation failed flags %llu, wanted %llu tree-log %d", 4450 flags, num_bytes, for_treelog); 4451 if (sinfo) 4452 btrfs_dump_space_info(fs_info, sinfo, 4453 num_bytes, 1); 4454 } 4455 } 4456 4457 return ret; 4458 } 4459 4460 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4461 u64 start, u64 len, int delalloc) 4462 { 4463 struct btrfs_block_group *cache; 4464 4465 cache = btrfs_lookup_block_group(fs_info, start); 4466 if (!cache) { 4467 btrfs_err(fs_info, "Unable to find block group for %llu", 4468 start); 4469 return -ENOSPC; 4470 } 4471 4472 btrfs_add_free_space(cache, start, len); 4473 btrfs_free_reserved_bytes(cache, len, delalloc); 4474 trace_btrfs_reserved_extent_free(fs_info, start, len); 4475 4476 btrfs_put_block_group(cache); 4477 return 0; 4478 } 4479 4480 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4481 u64 len) 4482 { 4483 struct btrfs_block_group *cache; 4484 int ret = 0; 4485 4486 cache = btrfs_lookup_block_group(trans->fs_info, start); 4487 if (!cache) { 4488 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4489 start); 4490 return -ENOSPC; 4491 } 4492 4493 ret = pin_down_extent(trans, cache, start, len, 1); 4494 btrfs_put_block_group(cache); 4495 return ret; 4496 } 4497 4498 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4499 u64 parent, u64 root_objectid, 4500 u64 flags, u64 owner, u64 offset, 4501 struct btrfs_key *ins, int ref_mod) 4502 { 4503 struct btrfs_fs_info *fs_info = trans->fs_info; 4504 int ret; 4505 struct btrfs_extent_item *extent_item; 4506 struct btrfs_extent_inline_ref *iref; 4507 struct btrfs_path *path; 4508 struct extent_buffer *leaf; 4509 int type; 4510 u32 size; 4511 4512 if (parent > 0) 4513 type = BTRFS_SHARED_DATA_REF_KEY; 4514 else 4515 type = BTRFS_EXTENT_DATA_REF_KEY; 4516 4517 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4518 4519 path = btrfs_alloc_path(); 4520 if (!path) 4521 return -ENOMEM; 4522 4523 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4524 ins, size); 4525 if (ret) { 4526 btrfs_free_path(path); 4527 return ret; 4528 } 4529 4530 leaf = path->nodes[0]; 4531 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4532 struct btrfs_extent_item); 4533 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4534 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4535 btrfs_set_extent_flags(leaf, extent_item, 4536 flags | BTRFS_EXTENT_FLAG_DATA); 4537 4538 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4539 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4540 if (parent > 0) { 4541 struct btrfs_shared_data_ref *ref; 4542 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4543 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4544 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4545 } else { 4546 struct btrfs_extent_data_ref *ref; 4547 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4548 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4549 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4550 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4551 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4552 } 4553 4554 btrfs_mark_buffer_dirty(path->nodes[0]); 4555 btrfs_free_path(path); 4556 4557 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4558 if (ret) 4559 return ret; 4560 4561 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4562 if (ret) { /* -ENOENT, logic error */ 4563 btrfs_err(fs_info, "update block group failed for %llu %llu", 4564 ins->objectid, ins->offset); 4565 BUG(); 4566 } 4567 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4568 return ret; 4569 } 4570 4571 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4572 struct btrfs_delayed_ref_node *node, 4573 struct btrfs_delayed_extent_op *extent_op) 4574 { 4575 struct btrfs_fs_info *fs_info = trans->fs_info; 4576 int ret; 4577 struct btrfs_extent_item *extent_item; 4578 struct btrfs_key extent_key; 4579 struct btrfs_tree_block_info *block_info; 4580 struct btrfs_extent_inline_ref *iref; 4581 struct btrfs_path *path; 4582 struct extent_buffer *leaf; 4583 struct btrfs_delayed_tree_ref *ref; 4584 u32 size = sizeof(*extent_item) + sizeof(*iref); 4585 u64 num_bytes; 4586 u64 flags = extent_op->flags_to_set; 4587 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4588 4589 ref = btrfs_delayed_node_to_tree_ref(node); 4590 4591 extent_key.objectid = node->bytenr; 4592 if (skinny_metadata) { 4593 extent_key.offset = ref->level; 4594 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4595 num_bytes = fs_info->nodesize; 4596 } else { 4597 extent_key.offset = node->num_bytes; 4598 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4599 size += sizeof(*block_info); 4600 num_bytes = node->num_bytes; 4601 } 4602 4603 path = btrfs_alloc_path(); 4604 if (!path) 4605 return -ENOMEM; 4606 4607 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4608 &extent_key, size); 4609 if (ret) { 4610 btrfs_free_path(path); 4611 return ret; 4612 } 4613 4614 leaf = path->nodes[0]; 4615 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4616 struct btrfs_extent_item); 4617 btrfs_set_extent_refs(leaf, extent_item, 1); 4618 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4619 btrfs_set_extent_flags(leaf, extent_item, 4620 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4621 4622 if (skinny_metadata) { 4623 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4624 } else { 4625 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4626 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4627 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4628 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4629 } 4630 4631 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4632 btrfs_set_extent_inline_ref_type(leaf, iref, 4633 BTRFS_SHARED_BLOCK_REF_KEY); 4634 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4635 } else { 4636 btrfs_set_extent_inline_ref_type(leaf, iref, 4637 BTRFS_TREE_BLOCK_REF_KEY); 4638 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4639 } 4640 4641 btrfs_mark_buffer_dirty(leaf); 4642 btrfs_free_path(path); 4643 4644 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4645 num_bytes); 4646 if (ret) 4647 return ret; 4648 4649 ret = btrfs_update_block_group(trans, extent_key.objectid, 4650 fs_info->nodesize, 1); 4651 if (ret) { /* -ENOENT, logic error */ 4652 btrfs_err(fs_info, "update block group failed for %llu %llu", 4653 extent_key.objectid, extent_key.offset); 4654 BUG(); 4655 } 4656 4657 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4658 fs_info->nodesize); 4659 return ret; 4660 } 4661 4662 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4663 struct btrfs_root *root, u64 owner, 4664 u64 offset, u64 ram_bytes, 4665 struct btrfs_key *ins) 4666 { 4667 struct btrfs_ref generic_ref = { 0 }; 4668 4669 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4670 4671 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4672 ins->objectid, ins->offset, 0); 4673 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4674 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4675 4676 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4677 } 4678 4679 /* 4680 * this is used by the tree logging recovery code. It records that 4681 * an extent has been allocated and makes sure to clear the free 4682 * space cache bits as well 4683 */ 4684 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4685 u64 root_objectid, u64 owner, u64 offset, 4686 struct btrfs_key *ins) 4687 { 4688 struct btrfs_fs_info *fs_info = trans->fs_info; 4689 int ret; 4690 struct btrfs_block_group *block_group; 4691 struct btrfs_space_info *space_info; 4692 4693 /* 4694 * Mixed block groups will exclude before processing the log so we only 4695 * need to do the exclude dance if this fs isn't mixed. 4696 */ 4697 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4698 ret = __exclude_logged_extent(fs_info, ins->objectid, 4699 ins->offset); 4700 if (ret) 4701 return ret; 4702 } 4703 4704 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4705 if (!block_group) 4706 return -EINVAL; 4707 4708 space_info = block_group->space_info; 4709 spin_lock(&space_info->lock); 4710 spin_lock(&block_group->lock); 4711 space_info->bytes_reserved += ins->offset; 4712 block_group->reserved += ins->offset; 4713 spin_unlock(&block_group->lock); 4714 spin_unlock(&space_info->lock); 4715 4716 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4717 offset, ins, 1); 4718 if (ret) 4719 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4720 btrfs_put_block_group(block_group); 4721 return ret; 4722 } 4723 4724 static struct extent_buffer * 4725 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4726 u64 bytenr, int level, u64 owner, 4727 enum btrfs_lock_nesting nest) 4728 { 4729 struct btrfs_fs_info *fs_info = root->fs_info; 4730 struct extent_buffer *buf; 4731 4732 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4733 if (IS_ERR(buf)) 4734 return buf; 4735 4736 /* 4737 * Extra safety check in case the extent tree is corrupted and extent 4738 * allocator chooses to use a tree block which is already used and 4739 * locked. 4740 */ 4741 if (buf->lock_owner == current->pid) { 4742 btrfs_err_rl(fs_info, 4743 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4744 buf->start, btrfs_header_owner(buf), current->pid); 4745 free_extent_buffer(buf); 4746 return ERR_PTR(-EUCLEAN); 4747 } 4748 4749 /* 4750 * This needs to stay, because we could allocate a freed block from an 4751 * old tree into a new tree, so we need to make sure this new block is 4752 * set to the appropriate level and owner. 4753 */ 4754 btrfs_set_buffer_lockdep_class(owner, buf, level); 4755 __btrfs_tree_lock(buf, nest); 4756 btrfs_clean_tree_block(buf); 4757 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4758 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4759 4760 set_extent_buffer_uptodate(buf); 4761 4762 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4763 btrfs_set_header_level(buf, level); 4764 btrfs_set_header_bytenr(buf, buf->start); 4765 btrfs_set_header_generation(buf, trans->transid); 4766 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4767 btrfs_set_header_owner(buf, owner); 4768 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4769 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4770 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4771 buf->log_index = root->log_transid % 2; 4772 /* 4773 * we allow two log transactions at a time, use different 4774 * EXTENT bit to differentiate dirty pages. 4775 */ 4776 if (buf->log_index == 0) 4777 set_extent_dirty(&root->dirty_log_pages, buf->start, 4778 buf->start + buf->len - 1, GFP_NOFS); 4779 else 4780 set_extent_new(&root->dirty_log_pages, buf->start, 4781 buf->start + buf->len - 1); 4782 } else { 4783 buf->log_index = -1; 4784 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4785 buf->start + buf->len - 1, GFP_NOFS); 4786 } 4787 trans->dirty = true; 4788 /* this returns a buffer locked for blocking */ 4789 return buf; 4790 } 4791 4792 /* 4793 * finds a free extent and does all the dirty work required for allocation 4794 * returns the tree buffer or an ERR_PTR on error. 4795 */ 4796 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4797 struct btrfs_root *root, 4798 u64 parent, u64 root_objectid, 4799 const struct btrfs_disk_key *key, 4800 int level, u64 hint, 4801 u64 empty_size, 4802 enum btrfs_lock_nesting nest) 4803 { 4804 struct btrfs_fs_info *fs_info = root->fs_info; 4805 struct btrfs_key ins; 4806 struct btrfs_block_rsv *block_rsv; 4807 struct extent_buffer *buf; 4808 struct btrfs_delayed_extent_op *extent_op; 4809 struct btrfs_ref generic_ref = { 0 }; 4810 u64 flags = 0; 4811 int ret; 4812 u32 blocksize = fs_info->nodesize; 4813 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4814 4815 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4816 if (btrfs_is_testing(fs_info)) { 4817 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4818 level, root_objectid, nest); 4819 if (!IS_ERR(buf)) 4820 root->alloc_bytenr += blocksize; 4821 return buf; 4822 } 4823 #endif 4824 4825 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4826 if (IS_ERR(block_rsv)) 4827 return ERR_CAST(block_rsv); 4828 4829 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4830 empty_size, hint, &ins, 0, 0); 4831 if (ret) 4832 goto out_unuse; 4833 4834 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4835 root_objectid, nest); 4836 if (IS_ERR(buf)) { 4837 ret = PTR_ERR(buf); 4838 goto out_free_reserved; 4839 } 4840 4841 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4842 if (parent == 0) 4843 parent = ins.objectid; 4844 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4845 } else 4846 BUG_ON(parent > 0); 4847 4848 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4849 extent_op = btrfs_alloc_delayed_extent_op(); 4850 if (!extent_op) { 4851 ret = -ENOMEM; 4852 goto out_free_buf; 4853 } 4854 if (key) 4855 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4856 else 4857 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4858 extent_op->flags_to_set = flags; 4859 extent_op->update_key = skinny_metadata ? false : true; 4860 extent_op->update_flags = true; 4861 extent_op->is_data = false; 4862 extent_op->level = level; 4863 4864 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4865 ins.objectid, ins.offset, parent); 4866 generic_ref.real_root = root->root_key.objectid; 4867 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4868 btrfs_ref_tree_mod(fs_info, &generic_ref); 4869 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4870 if (ret) 4871 goto out_free_delayed; 4872 } 4873 return buf; 4874 4875 out_free_delayed: 4876 btrfs_free_delayed_extent_op(extent_op); 4877 out_free_buf: 4878 free_extent_buffer(buf); 4879 out_free_reserved: 4880 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4881 out_unuse: 4882 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4883 return ERR_PTR(ret); 4884 } 4885 4886 struct walk_control { 4887 u64 refs[BTRFS_MAX_LEVEL]; 4888 u64 flags[BTRFS_MAX_LEVEL]; 4889 struct btrfs_key update_progress; 4890 struct btrfs_key drop_progress; 4891 int drop_level; 4892 int stage; 4893 int level; 4894 int shared_level; 4895 int update_ref; 4896 int keep_locks; 4897 int reada_slot; 4898 int reada_count; 4899 int restarted; 4900 }; 4901 4902 #define DROP_REFERENCE 1 4903 #define UPDATE_BACKREF 2 4904 4905 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4906 struct btrfs_root *root, 4907 struct walk_control *wc, 4908 struct btrfs_path *path) 4909 { 4910 struct btrfs_fs_info *fs_info = root->fs_info; 4911 u64 bytenr; 4912 u64 generation; 4913 u64 refs; 4914 u64 flags; 4915 u32 nritems; 4916 struct btrfs_key key; 4917 struct extent_buffer *eb; 4918 int ret; 4919 int slot; 4920 int nread = 0; 4921 4922 if (path->slots[wc->level] < wc->reada_slot) { 4923 wc->reada_count = wc->reada_count * 2 / 3; 4924 wc->reada_count = max(wc->reada_count, 2); 4925 } else { 4926 wc->reada_count = wc->reada_count * 3 / 2; 4927 wc->reada_count = min_t(int, wc->reada_count, 4928 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4929 } 4930 4931 eb = path->nodes[wc->level]; 4932 nritems = btrfs_header_nritems(eb); 4933 4934 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4935 if (nread >= wc->reada_count) 4936 break; 4937 4938 cond_resched(); 4939 bytenr = btrfs_node_blockptr(eb, slot); 4940 generation = btrfs_node_ptr_generation(eb, slot); 4941 4942 if (slot == path->slots[wc->level]) 4943 goto reada; 4944 4945 if (wc->stage == UPDATE_BACKREF && 4946 generation <= root->root_key.offset) 4947 continue; 4948 4949 /* We don't lock the tree block, it's OK to be racy here */ 4950 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4951 wc->level - 1, 1, &refs, 4952 &flags); 4953 /* We don't care about errors in readahead. */ 4954 if (ret < 0) 4955 continue; 4956 BUG_ON(refs == 0); 4957 4958 if (wc->stage == DROP_REFERENCE) { 4959 if (refs == 1) 4960 goto reada; 4961 4962 if (wc->level == 1 && 4963 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4964 continue; 4965 if (!wc->update_ref || 4966 generation <= root->root_key.offset) 4967 continue; 4968 btrfs_node_key_to_cpu(eb, &key, slot); 4969 ret = btrfs_comp_cpu_keys(&key, 4970 &wc->update_progress); 4971 if (ret < 0) 4972 continue; 4973 } else { 4974 if (wc->level == 1 && 4975 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4976 continue; 4977 } 4978 reada: 4979 btrfs_readahead_node_child(eb, slot); 4980 nread++; 4981 } 4982 wc->reada_slot = slot; 4983 } 4984 4985 /* 4986 * helper to process tree block while walking down the tree. 4987 * 4988 * when wc->stage == UPDATE_BACKREF, this function updates 4989 * back refs for pointers in the block. 4990 * 4991 * NOTE: return value 1 means we should stop walking down. 4992 */ 4993 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4994 struct btrfs_root *root, 4995 struct btrfs_path *path, 4996 struct walk_control *wc, int lookup_info) 4997 { 4998 struct btrfs_fs_info *fs_info = root->fs_info; 4999 int level = wc->level; 5000 struct extent_buffer *eb = path->nodes[level]; 5001 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5002 int ret; 5003 5004 if (wc->stage == UPDATE_BACKREF && 5005 btrfs_header_owner(eb) != root->root_key.objectid) 5006 return 1; 5007 5008 /* 5009 * when reference count of tree block is 1, it won't increase 5010 * again. once full backref flag is set, we never clear it. 5011 */ 5012 if (lookup_info && 5013 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5014 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5015 BUG_ON(!path->locks[level]); 5016 ret = btrfs_lookup_extent_info(trans, fs_info, 5017 eb->start, level, 1, 5018 &wc->refs[level], 5019 &wc->flags[level]); 5020 BUG_ON(ret == -ENOMEM); 5021 if (ret) 5022 return ret; 5023 BUG_ON(wc->refs[level] == 0); 5024 } 5025 5026 if (wc->stage == DROP_REFERENCE) { 5027 if (wc->refs[level] > 1) 5028 return 1; 5029 5030 if (path->locks[level] && !wc->keep_locks) { 5031 btrfs_tree_unlock_rw(eb, path->locks[level]); 5032 path->locks[level] = 0; 5033 } 5034 return 0; 5035 } 5036 5037 /* wc->stage == UPDATE_BACKREF */ 5038 if (!(wc->flags[level] & flag)) { 5039 BUG_ON(!path->locks[level]); 5040 ret = btrfs_inc_ref(trans, root, eb, 1); 5041 BUG_ON(ret); /* -ENOMEM */ 5042 ret = btrfs_dec_ref(trans, root, eb, 0); 5043 BUG_ON(ret); /* -ENOMEM */ 5044 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5045 btrfs_header_level(eb), 0); 5046 BUG_ON(ret); /* -ENOMEM */ 5047 wc->flags[level] |= flag; 5048 } 5049 5050 /* 5051 * the block is shared by multiple trees, so it's not good to 5052 * keep the tree lock 5053 */ 5054 if (path->locks[level] && level > 0) { 5055 btrfs_tree_unlock_rw(eb, path->locks[level]); 5056 path->locks[level] = 0; 5057 } 5058 return 0; 5059 } 5060 5061 /* 5062 * This is used to verify a ref exists for this root to deal with a bug where we 5063 * would have a drop_progress key that hadn't been updated properly. 5064 */ 5065 static int check_ref_exists(struct btrfs_trans_handle *trans, 5066 struct btrfs_root *root, u64 bytenr, u64 parent, 5067 int level) 5068 { 5069 struct btrfs_path *path; 5070 struct btrfs_extent_inline_ref *iref; 5071 int ret; 5072 5073 path = btrfs_alloc_path(); 5074 if (!path) 5075 return -ENOMEM; 5076 5077 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5078 root->fs_info->nodesize, parent, 5079 root->root_key.objectid, level, 0); 5080 btrfs_free_path(path); 5081 if (ret == -ENOENT) 5082 return 0; 5083 if (ret < 0) 5084 return ret; 5085 return 1; 5086 } 5087 5088 /* 5089 * helper to process tree block pointer. 5090 * 5091 * when wc->stage == DROP_REFERENCE, this function checks 5092 * reference count of the block pointed to. if the block 5093 * is shared and we need update back refs for the subtree 5094 * rooted at the block, this function changes wc->stage to 5095 * UPDATE_BACKREF. if the block is shared and there is no 5096 * need to update back, this function drops the reference 5097 * to the block. 5098 * 5099 * NOTE: return value 1 means we should stop walking down. 5100 */ 5101 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5102 struct btrfs_root *root, 5103 struct btrfs_path *path, 5104 struct walk_control *wc, int *lookup_info) 5105 { 5106 struct btrfs_fs_info *fs_info = root->fs_info; 5107 u64 bytenr; 5108 u64 generation; 5109 u64 parent; 5110 struct btrfs_key key; 5111 struct btrfs_key first_key; 5112 struct btrfs_ref ref = { 0 }; 5113 struct extent_buffer *next; 5114 int level = wc->level; 5115 int reada = 0; 5116 int ret = 0; 5117 bool need_account = false; 5118 5119 generation = btrfs_node_ptr_generation(path->nodes[level], 5120 path->slots[level]); 5121 /* 5122 * if the lower level block was created before the snapshot 5123 * was created, we know there is no need to update back refs 5124 * for the subtree 5125 */ 5126 if (wc->stage == UPDATE_BACKREF && 5127 generation <= root->root_key.offset) { 5128 *lookup_info = 1; 5129 return 1; 5130 } 5131 5132 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5133 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5134 path->slots[level]); 5135 5136 next = find_extent_buffer(fs_info, bytenr); 5137 if (!next) { 5138 next = btrfs_find_create_tree_block(fs_info, bytenr, 5139 root->root_key.objectid, level - 1); 5140 if (IS_ERR(next)) 5141 return PTR_ERR(next); 5142 reada = 1; 5143 } 5144 btrfs_tree_lock(next); 5145 5146 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5147 &wc->refs[level - 1], 5148 &wc->flags[level - 1]); 5149 if (ret < 0) 5150 goto out_unlock; 5151 5152 if (unlikely(wc->refs[level - 1] == 0)) { 5153 btrfs_err(fs_info, "Missing references."); 5154 ret = -EIO; 5155 goto out_unlock; 5156 } 5157 *lookup_info = 0; 5158 5159 if (wc->stage == DROP_REFERENCE) { 5160 if (wc->refs[level - 1] > 1) { 5161 need_account = true; 5162 if (level == 1 && 5163 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5164 goto skip; 5165 5166 if (!wc->update_ref || 5167 generation <= root->root_key.offset) 5168 goto skip; 5169 5170 btrfs_node_key_to_cpu(path->nodes[level], &key, 5171 path->slots[level]); 5172 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5173 if (ret < 0) 5174 goto skip; 5175 5176 wc->stage = UPDATE_BACKREF; 5177 wc->shared_level = level - 1; 5178 } 5179 } else { 5180 if (level == 1 && 5181 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5182 goto skip; 5183 } 5184 5185 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5186 btrfs_tree_unlock(next); 5187 free_extent_buffer(next); 5188 next = NULL; 5189 *lookup_info = 1; 5190 } 5191 5192 if (!next) { 5193 if (reada && level == 1) 5194 reada_walk_down(trans, root, wc, path); 5195 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5196 generation, level - 1, &first_key); 5197 if (IS_ERR(next)) { 5198 return PTR_ERR(next); 5199 } else if (!extent_buffer_uptodate(next)) { 5200 free_extent_buffer(next); 5201 return -EIO; 5202 } 5203 btrfs_tree_lock(next); 5204 } 5205 5206 level--; 5207 ASSERT(level == btrfs_header_level(next)); 5208 if (level != btrfs_header_level(next)) { 5209 btrfs_err(root->fs_info, "mismatched level"); 5210 ret = -EIO; 5211 goto out_unlock; 5212 } 5213 path->nodes[level] = next; 5214 path->slots[level] = 0; 5215 path->locks[level] = BTRFS_WRITE_LOCK; 5216 wc->level = level; 5217 if (wc->level == 1) 5218 wc->reada_slot = 0; 5219 return 0; 5220 skip: 5221 wc->refs[level - 1] = 0; 5222 wc->flags[level - 1] = 0; 5223 if (wc->stage == DROP_REFERENCE) { 5224 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5225 parent = path->nodes[level]->start; 5226 } else { 5227 ASSERT(root->root_key.objectid == 5228 btrfs_header_owner(path->nodes[level])); 5229 if (root->root_key.objectid != 5230 btrfs_header_owner(path->nodes[level])) { 5231 btrfs_err(root->fs_info, 5232 "mismatched block owner"); 5233 ret = -EIO; 5234 goto out_unlock; 5235 } 5236 parent = 0; 5237 } 5238 5239 /* 5240 * If we had a drop_progress we need to verify the refs are set 5241 * as expected. If we find our ref then we know that from here 5242 * on out everything should be correct, and we can clear the 5243 * ->restarted flag. 5244 */ 5245 if (wc->restarted) { 5246 ret = check_ref_exists(trans, root, bytenr, parent, 5247 level - 1); 5248 if (ret < 0) 5249 goto out_unlock; 5250 if (ret == 0) 5251 goto no_delete; 5252 ret = 0; 5253 wc->restarted = 0; 5254 } 5255 5256 /* 5257 * Reloc tree doesn't contribute to qgroup numbers, and we have 5258 * already accounted them at merge time (replace_path), 5259 * thus we could skip expensive subtree trace here. 5260 */ 5261 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5262 need_account) { 5263 ret = btrfs_qgroup_trace_subtree(trans, next, 5264 generation, level - 1); 5265 if (ret) { 5266 btrfs_err_rl(fs_info, 5267 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5268 ret); 5269 } 5270 } 5271 5272 /* 5273 * We need to update the next key in our walk control so we can 5274 * update the drop_progress key accordingly. We don't care if 5275 * find_next_key doesn't find a key because that means we're at 5276 * the end and are going to clean up now. 5277 */ 5278 wc->drop_level = level; 5279 find_next_key(path, level, &wc->drop_progress); 5280 5281 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5282 fs_info->nodesize, parent); 5283 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 5284 ret = btrfs_free_extent(trans, &ref); 5285 if (ret) 5286 goto out_unlock; 5287 } 5288 no_delete: 5289 *lookup_info = 1; 5290 ret = 1; 5291 5292 out_unlock: 5293 btrfs_tree_unlock(next); 5294 free_extent_buffer(next); 5295 5296 return ret; 5297 } 5298 5299 /* 5300 * helper to process tree block while walking up the tree. 5301 * 5302 * when wc->stage == DROP_REFERENCE, this function drops 5303 * reference count on the block. 5304 * 5305 * when wc->stage == UPDATE_BACKREF, this function changes 5306 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5307 * to UPDATE_BACKREF previously while processing the block. 5308 * 5309 * NOTE: return value 1 means we should stop walking up. 5310 */ 5311 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5312 struct btrfs_root *root, 5313 struct btrfs_path *path, 5314 struct walk_control *wc) 5315 { 5316 struct btrfs_fs_info *fs_info = root->fs_info; 5317 int ret; 5318 int level = wc->level; 5319 struct extent_buffer *eb = path->nodes[level]; 5320 u64 parent = 0; 5321 5322 if (wc->stage == UPDATE_BACKREF) { 5323 BUG_ON(wc->shared_level < level); 5324 if (level < wc->shared_level) 5325 goto out; 5326 5327 ret = find_next_key(path, level + 1, &wc->update_progress); 5328 if (ret > 0) 5329 wc->update_ref = 0; 5330 5331 wc->stage = DROP_REFERENCE; 5332 wc->shared_level = -1; 5333 path->slots[level] = 0; 5334 5335 /* 5336 * check reference count again if the block isn't locked. 5337 * we should start walking down the tree again if reference 5338 * count is one. 5339 */ 5340 if (!path->locks[level]) { 5341 BUG_ON(level == 0); 5342 btrfs_tree_lock(eb); 5343 path->locks[level] = BTRFS_WRITE_LOCK; 5344 5345 ret = btrfs_lookup_extent_info(trans, fs_info, 5346 eb->start, level, 1, 5347 &wc->refs[level], 5348 &wc->flags[level]); 5349 if (ret < 0) { 5350 btrfs_tree_unlock_rw(eb, path->locks[level]); 5351 path->locks[level] = 0; 5352 return ret; 5353 } 5354 BUG_ON(wc->refs[level] == 0); 5355 if (wc->refs[level] == 1) { 5356 btrfs_tree_unlock_rw(eb, path->locks[level]); 5357 path->locks[level] = 0; 5358 return 1; 5359 } 5360 } 5361 } 5362 5363 /* wc->stage == DROP_REFERENCE */ 5364 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5365 5366 if (wc->refs[level] == 1) { 5367 if (level == 0) { 5368 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5369 ret = btrfs_dec_ref(trans, root, eb, 1); 5370 else 5371 ret = btrfs_dec_ref(trans, root, eb, 0); 5372 BUG_ON(ret); /* -ENOMEM */ 5373 if (is_fstree(root->root_key.objectid)) { 5374 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5375 if (ret) { 5376 btrfs_err_rl(fs_info, 5377 "error %d accounting leaf items, quota is out of sync, rescan required", 5378 ret); 5379 } 5380 } 5381 } 5382 /* make block locked assertion in btrfs_clean_tree_block happy */ 5383 if (!path->locks[level] && 5384 btrfs_header_generation(eb) == trans->transid) { 5385 btrfs_tree_lock(eb); 5386 path->locks[level] = BTRFS_WRITE_LOCK; 5387 } 5388 btrfs_clean_tree_block(eb); 5389 } 5390 5391 if (eb == root->node) { 5392 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5393 parent = eb->start; 5394 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5395 goto owner_mismatch; 5396 } else { 5397 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5398 parent = path->nodes[level + 1]->start; 5399 else if (root->root_key.objectid != 5400 btrfs_header_owner(path->nodes[level + 1])) 5401 goto owner_mismatch; 5402 } 5403 5404 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5405 out: 5406 wc->refs[level] = 0; 5407 wc->flags[level] = 0; 5408 return 0; 5409 5410 owner_mismatch: 5411 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5412 btrfs_header_owner(eb), root->root_key.objectid); 5413 return -EUCLEAN; 5414 } 5415 5416 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5417 struct btrfs_root *root, 5418 struct btrfs_path *path, 5419 struct walk_control *wc) 5420 { 5421 int level = wc->level; 5422 int lookup_info = 1; 5423 int ret; 5424 5425 while (level >= 0) { 5426 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5427 if (ret > 0) 5428 break; 5429 5430 if (level == 0) 5431 break; 5432 5433 if (path->slots[level] >= 5434 btrfs_header_nritems(path->nodes[level])) 5435 break; 5436 5437 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5438 if (ret > 0) { 5439 path->slots[level]++; 5440 continue; 5441 } else if (ret < 0) 5442 return ret; 5443 level = wc->level; 5444 } 5445 return 0; 5446 } 5447 5448 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5449 struct btrfs_root *root, 5450 struct btrfs_path *path, 5451 struct walk_control *wc, int max_level) 5452 { 5453 int level = wc->level; 5454 int ret; 5455 5456 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5457 while (level < max_level && path->nodes[level]) { 5458 wc->level = level; 5459 if (path->slots[level] + 1 < 5460 btrfs_header_nritems(path->nodes[level])) { 5461 path->slots[level]++; 5462 return 0; 5463 } else { 5464 ret = walk_up_proc(trans, root, path, wc); 5465 if (ret > 0) 5466 return 0; 5467 if (ret < 0) 5468 return ret; 5469 5470 if (path->locks[level]) { 5471 btrfs_tree_unlock_rw(path->nodes[level], 5472 path->locks[level]); 5473 path->locks[level] = 0; 5474 } 5475 free_extent_buffer(path->nodes[level]); 5476 path->nodes[level] = NULL; 5477 level++; 5478 } 5479 } 5480 return 1; 5481 } 5482 5483 /* 5484 * drop a subvolume tree. 5485 * 5486 * this function traverses the tree freeing any blocks that only 5487 * referenced by the tree. 5488 * 5489 * when a shared tree block is found. this function decreases its 5490 * reference count by one. if update_ref is true, this function 5491 * also make sure backrefs for the shared block and all lower level 5492 * blocks are properly updated. 5493 * 5494 * If called with for_reloc == 0, may exit early with -EAGAIN 5495 */ 5496 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5497 { 5498 struct btrfs_fs_info *fs_info = root->fs_info; 5499 struct btrfs_path *path; 5500 struct btrfs_trans_handle *trans; 5501 struct btrfs_root *tree_root = fs_info->tree_root; 5502 struct btrfs_root_item *root_item = &root->root_item; 5503 struct walk_control *wc; 5504 struct btrfs_key key; 5505 int err = 0; 5506 int ret; 5507 int level; 5508 bool root_dropped = false; 5509 5510 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5511 5512 path = btrfs_alloc_path(); 5513 if (!path) { 5514 err = -ENOMEM; 5515 goto out; 5516 } 5517 5518 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5519 if (!wc) { 5520 btrfs_free_path(path); 5521 err = -ENOMEM; 5522 goto out; 5523 } 5524 5525 /* 5526 * Use join to avoid potential EINTR from transaction start. See 5527 * wait_reserve_ticket and the whole reservation callchain. 5528 */ 5529 if (for_reloc) 5530 trans = btrfs_join_transaction(tree_root); 5531 else 5532 trans = btrfs_start_transaction(tree_root, 0); 5533 if (IS_ERR(trans)) { 5534 err = PTR_ERR(trans); 5535 goto out_free; 5536 } 5537 5538 err = btrfs_run_delayed_items(trans); 5539 if (err) 5540 goto out_end_trans; 5541 5542 /* 5543 * This will help us catch people modifying the fs tree while we're 5544 * dropping it. It is unsafe to mess with the fs tree while it's being 5545 * dropped as we unlock the root node and parent nodes as we walk down 5546 * the tree, assuming nothing will change. If something does change 5547 * then we'll have stale information and drop references to blocks we've 5548 * already dropped. 5549 */ 5550 set_bit(BTRFS_ROOT_DELETING, &root->state); 5551 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5552 level = btrfs_header_level(root->node); 5553 path->nodes[level] = btrfs_lock_root_node(root); 5554 path->slots[level] = 0; 5555 path->locks[level] = BTRFS_WRITE_LOCK; 5556 memset(&wc->update_progress, 0, 5557 sizeof(wc->update_progress)); 5558 } else { 5559 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5560 memcpy(&wc->update_progress, &key, 5561 sizeof(wc->update_progress)); 5562 5563 level = btrfs_root_drop_level(root_item); 5564 BUG_ON(level == 0); 5565 path->lowest_level = level; 5566 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5567 path->lowest_level = 0; 5568 if (ret < 0) { 5569 err = ret; 5570 goto out_end_trans; 5571 } 5572 WARN_ON(ret > 0); 5573 5574 /* 5575 * unlock our path, this is safe because only this 5576 * function is allowed to delete this snapshot 5577 */ 5578 btrfs_unlock_up_safe(path, 0); 5579 5580 level = btrfs_header_level(root->node); 5581 while (1) { 5582 btrfs_tree_lock(path->nodes[level]); 5583 path->locks[level] = BTRFS_WRITE_LOCK; 5584 5585 ret = btrfs_lookup_extent_info(trans, fs_info, 5586 path->nodes[level]->start, 5587 level, 1, &wc->refs[level], 5588 &wc->flags[level]); 5589 if (ret < 0) { 5590 err = ret; 5591 goto out_end_trans; 5592 } 5593 BUG_ON(wc->refs[level] == 0); 5594 5595 if (level == btrfs_root_drop_level(root_item)) 5596 break; 5597 5598 btrfs_tree_unlock(path->nodes[level]); 5599 path->locks[level] = 0; 5600 WARN_ON(wc->refs[level] != 1); 5601 level--; 5602 } 5603 } 5604 5605 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5606 wc->level = level; 5607 wc->shared_level = -1; 5608 wc->stage = DROP_REFERENCE; 5609 wc->update_ref = update_ref; 5610 wc->keep_locks = 0; 5611 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5612 5613 while (1) { 5614 5615 ret = walk_down_tree(trans, root, path, wc); 5616 if (ret < 0) { 5617 err = ret; 5618 break; 5619 } 5620 5621 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5622 if (ret < 0) { 5623 err = ret; 5624 break; 5625 } 5626 5627 if (ret > 0) { 5628 BUG_ON(wc->stage != DROP_REFERENCE); 5629 break; 5630 } 5631 5632 if (wc->stage == DROP_REFERENCE) { 5633 wc->drop_level = wc->level; 5634 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5635 &wc->drop_progress, 5636 path->slots[wc->drop_level]); 5637 } 5638 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5639 &wc->drop_progress); 5640 btrfs_set_root_drop_level(root_item, wc->drop_level); 5641 5642 BUG_ON(wc->level == 0); 5643 if (btrfs_should_end_transaction(trans) || 5644 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5645 ret = btrfs_update_root(trans, tree_root, 5646 &root->root_key, 5647 root_item); 5648 if (ret) { 5649 btrfs_abort_transaction(trans, ret); 5650 err = ret; 5651 goto out_end_trans; 5652 } 5653 5654 btrfs_end_transaction_throttle(trans); 5655 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5656 btrfs_debug(fs_info, 5657 "drop snapshot early exit"); 5658 err = -EAGAIN; 5659 goto out_free; 5660 } 5661 5662 /* 5663 * Use join to avoid potential EINTR from transaction 5664 * start. See wait_reserve_ticket and the whole 5665 * reservation callchain. 5666 */ 5667 if (for_reloc) 5668 trans = btrfs_join_transaction(tree_root); 5669 else 5670 trans = btrfs_start_transaction(tree_root, 0); 5671 if (IS_ERR(trans)) { 5672 err = PTR_ERR(trans); 5673 goto out_free; 5674 } 5675 } 5676 } 5677 btrfs_release_path(path); 5678 if (err) 5679 goto out_end_trans; 5680 5681 ret = btrfs_del_root(trans, &root->root_key); 5682 if (ret) { 5683 btrfs_abort_transaction(trans, ret); 5684 err = ret; 5685 goto out_end_trans; 5686 } 5687 5688 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5689 ret = btrfs_find_root(tree_root, &root->root_key, path, 5690 NULL, NULL); 5691 if (ret < 0) { 5692 btrfs_abort_transaction(trans, ret); 5693 err = ret; 5694 goto out_end_trans; 5695 } else if (ret > 0) { 5696 /* if we fail to delete the orphan item this time 5697 * around, it'll get picked up the next time. 5698 * 5699 * The most common failure here is just -ENOENT. 5700 */ 5701 btrfs_del_orphan_item(trans, tree_root, 5702 root->root_key.objectid); 5703 } 5704 } 5705 5706 /* 5707 * This subvolume is going to be completely dropped, and won't be 5708 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5709 * commit transaction time. So free it here manually. 5710 */ 5711 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5712 btrfs_qgroup_free_meta_all_pertrans(root); 5713 5714 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5715 btrfs_add_dropped_root(trans, root); 5716 else 5717 btrfs_put_root(root); 5718 root_dropped = true; 5719 out_end_trans: 5720 btrfs_end_transaction_throttle(trans); 5721 out_free: 5722 kfree(wc); 5723 btrfs_free_path(path); 5724 out: 5725 /* 5726 * So if we need to stop dropping the snapshot for whatever reason we 5727 * need to make sure to add it back to the dead root list so that we 5728 * keep trying to do the work later. This also cleans up roots if we 5729 * don't have it in the radix (like when we recover after a power fail 5730 * or unmount) so we don't leak memory. 5731 */ 5732 if (!for_reloc && !root_dropped) 5733 btrfs_add_dead_root(root); 5734 return err; 5735 } 5736 5737 /* 5738 * drop subtree rooted at tree block 'node'. 5739 * 5740 * NOTE: this function will unlock and release tree block 'node' 5741 * only used by relocation code 5742 */ 5743 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5744 struct btrfs_root *root, 5745 struct extent_buffer *node, 5746 struct extent_buffer *parent) 5747 { 5748 struct btrfs_fs_info *fs_info = root->fs_info; 5749 struct btrfs_path *path; 5750 struct walk_control *wc; 5751 int level; 5752 int parent_level; 5753 int ret = 0; 5754 int wret; 5755 5756 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5757 5758 path = btrfs_alloc_path(); 5759 if (!path) 5760 return -ENOMEM; 5761 5762 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5763 if (!wc) { 5764 btrfs_free_path(path); 5765 return -ENOMEM; 5766 } 5767 5768 btrfs_assert_tree_locked(parent); 5769 parent_level = btrfs_header_level(parent); 5770 atomic_inc(&parent->refs); 5771 path->nodes[parent_level] = parent; 5772 path->slots[parent_level] = btrfs_header_nritems(parent); 5773 5774 btrfs_assert_tree_locked(node); 5775 level = btrfs_header_level(node); 5776 path->nodes[level] = node; 5777 path->slots[level] = 0; 5778 path->locks[level] = BTRFS_WRITE_LOCK; 5779 5780 wc->refs[parent_level] = 1; 5781 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5782 wc->level = level; 5783 wc->shared_level = -1; 5784 wc->stage = DROP_REFERENCE; 5785 wc->update_ref = 0; 5786 wc->keep_locks = 1; 5787 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5788 5789 while (1) { 5790 wret = walk_down_tree(trans, root, path, wc); 5791 if (wret < 0) { 5792 ret = wret; 5793 break; 5794 } 5795 5796 wret = walk_up_tree(trans, root, path, wc, parent_level); 5797 if (wret < 0) 5798 ret = wret; 5799 if (wret != 0) 5800 break; 5801 } 5802 5803 kfree(wc); 5804 btrfs_free_path(path); 5805 return ret; 5806 } 5807 5808 /* 5809 * helper to account the unused space of all the readonly block group in the 5810 * space_info. takes mirrors into account. 5811 */ 5812 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5813 { 5814 struct btrfs_block_group *block_group; 5815 u64 free_bytes = 0; 5816 int factor; 5817 5818 /* It's df, we don't care if it's racy */ 5819 if (list_empty(&sinfo->ro_bgs)) 5820 return 0; 5821 5822 spin_lock(&sinfo->lock); 5823 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5824 spin_lock(&block_group->lock); 5825 5826 if (!block_group->ro) { 5827 spin_unlock(&block_group->lock); 5828 continue; 5829 } 5830 5831 factor = btrfs_bg_type_to_factor(block_group->flags); 5832 free_bytes += (block_group->length - 5833 block_group->used) * factor; 5834 5835 spin_unlock(&block_group->lock); 5836 } 5837 spin_unlock(&sinfo->lock); 5838 5839 return free_bytes; 5840 } 5841 5842 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5843 u64 start, u64 end) 5844 { 5845 return unpin_extent_range(fs_info, start, end, false); 5846 } 5847 5848 /* 5849 * It used to be that old block groups would be left around forever. 5850 * Iterating over them would be enough to trim unused space. Since we 5851 * now automatically remove them, we also need to iterate over unallocated 5852 * space. 5853 * 5854 * We don't want a transaction for this since the discard may take a 5855 * substantial amount of time. We don't require that a transaction be 5856 * running, but we do need to take a running transaction into account 5857 * to ensure that we're not discarding chunks that were released or 5858 * allocated in the current transaction. 5859 * 5860 * Holding the chunks lock will prevent other threads from allocating 5861 * or releasing chunks, but it won't prevent a running transaction 5862 * from committing and releasing the memory that the pending chunks 5863 * list head uses. For that, we need to take a reference to the 5864 * transaction and hold the commit root sem. We only need to hold 5865 * it while performing the free space search since we have already 5866 * held back allocations. 5867 */ 5868 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5869 { 5870 u64 start = SZ_1M, len = 0, end = 0; 5871 int ret; 5872 5873 *trimmed = 0; 5874 5875 /* Discard not supported = nothing to do. */ 5876 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5877 return 0; 5878 5879 /* Not writable = nothing to do. */ 5880 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5881 return 0; 5882 5883 /* No free space = nothing to do. */ 5884 if (device->total_bytes <= device->bytes_used) 5885 return 0; 5886 5887 ret = 0; 5888 5889 while (1) { 5890 struct btrfs_fs_info *fs_info = device->fs_info; 5891 u64 bytes; 5892 5893 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5894 if (ret) 5895 break; 5896 5897 find_first_clear_extent_bit(&device->alloc_state, start, 5898 &start, &end, 5899 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5900 5901 /* Check if there are any CHUNK_* bits left */ 5902 if (start > device->total_bytes) { 5903 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5904 btrfs_warn_in_rcu(fs_info, 5905 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5906 start, end - start + 1, 5907 rcu_str_deref(device->name), 5908 device->total_bytes); 5909 mutex_unlock(&fs_info->chunk_mutex); 5910 ret = 0; 5911 break; 5912 } 5913 5914 /* Ensure we skip the reserved area in the first 1M */ 5915 start = max_t(u64, start, SZ_1M); 5916 5917 /* 5918 * If find_first_clear_extent_bit find a range that spans the 5919 * end of the device it will set end to -1, in this case it's up 5920 * to the caller to trim the value to the size of the device. 5921 */ 5922 end = min(end, device->total_bytes - 1); 5923 5924 len = end - start + 1; 5925 5926 /* We didn't find any extents */ 5927 if (!len) { 5928 mutex_unlock(&fs_info->chunk_mutex); 5929 ret = 0; 5930 break; 5931 } 5932 5933 ret = btrfs_issue_discard(device->bdev, start, len, 5934 &bytes); 5935 if (!ret) 5936 set_extent_bits(&device->alloc_state, start, 5937 start + bytes - 1, 5938 CHUNK_TRIMMED); 5939 mutex_unlock(&fs_info->chunk_mutex); 5940 5941 if (ret) 5942 break; 5943 5944 start += len; 5945 *trimmed += bytes; 5946 5947 if (fatal_signal_pending(current)) { 5948 ret = -ERESTARTSYS; 5949 break; 5950 } 5951 5952 cond_resched(); 5953 } 5954 5955 return ret; 5956 } 5957 5958 /* 5959 * Trim the whole filesystem by: 5960 * 1) trimming the free space in each block group 5961 * 2) trimming the unallocated space on each device 5962 * 5963 * This will also continue trimming even if a block group or device encounters 5964 * an error. The return value will be the last error, or 0 if nothing bad 5965 * happens. 5966 */ 5967 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5968 { 5969 struct btrfs_block_group *cache = NULL; 5970 struct btrfs_device *device; 5971 struct list_head *devices; 5972 u64 group_trimmed; 5973 u64 range_end = U64_MAX; 5974 u64 start; 5975 u64 end; 5976 u64 trimmed = 0; 5977 u64 bg_failed = 0; 5978 u64 dev_failed = 0; 5979 int bg_ret = 0; 5980 int dev_ret = 0; 5981 int ret = 0; 5982 5983 /* 5984 * Check range overflow if range->len is set. 5985 * The default range->len is U64_MAX. 5986 */ 5987 if (range->len != U64_MAX && 5988 check_add_overflow(range->start, range->len, &range_end)) 5989 return -EINVAL; 5990 5991 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5992 for (; cache; cache = btrfs_next_block_group(cache)) { 5993 if (cache->start >= range_end) { 5994 btrfs_put_block_group(cache); 5995 break; 5996 } 5997 5998 start = max(range->start, cache->start); 5999 end = min(range_end, cache->start + cache->length); 6000 6001 if (end - start >= range->minlen) { 6002 if (!btrfs_block_group_done(cache)) { 6003 ret = btrfs_cache_block_group(cache, 0); 6004 if (ret) { 6005 bg_failed++; 6006 bg_ret = ret; 6007 continue; 6008 } 6009 ret = btrfs_wait_block_group_cache_done(cache); 6010 if (ret) { 6011 bg_failed++; 6012 bg_ret = ret; 6013 continue; 6014 } 6015 } 6016 ret = btrfs_trim_block_group(cache, 6017 &group_trimmed, 6018 start, 6019 end, 6020 range->minlen); 6021 6022 trimmed += group_trimmed; 6023 if (ret) { 6024 bg_failed++; 6025 bg_ret = ret; 6026 continue; 6027 } 6028 } 6029 } 6030 6031 if (bg_failed) 6032 btrfs_warn(fs_info, 6033 "failed to trim %llu block group(s), last error %d", 6034 bg_failed, bg_ret); 6035 mutex_lock(&fs_info->fs_devices->device_list_mutex); 6036 devices = &fs_info->fs_devices->devices; 6037 list_for_each_entry(device, devices, dev_list) { 6038 ret = btrfs_trim_free_extents(device, &group_trimmed); 6039 if (ret) { 6040 dev_failed++; 6041 dev_ret = ret; 6042 break; 6043 } 6044 6045 trimmed += group_trimmed; 6046 } 6047 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 6048 6049 if (dev_failed) 6050 btrfs_warn(fs_info, 6051 "failed to trim %llu device(s), last error %d", 6052 dev_failed, dev_ret); 6053 range->len = trimmed; 6054 if (bg_ret) 6055 return bg_ret; 6056 return dev_ret; 6057 } 6058