xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	int ret;
91 	struct btrfs_key key;
92 	struct btrfs_path *path;
93 
94 	path = btrfs_alloc_path();
95 	if (!path)
96 		return -ENOMEM;
97 
98 	key.objectid = start;
99 	key.offset = len;
100 	key.type = BTRFS_EXTENT_ITEM_KEY;
101 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
102 	btrfs_free_path(path);
103 	return ret;
104 }
105 
106 /*
107  * helper function to lookup reference count and flags of a tree block.
108  *
109  * the head node for delayed ref is used to store the sum of all the
110  * reference count modifications queued up in the rbtree. the head
111  * node may also store the extent flags to set. This way you can check
112  * to see what the reference count and extent flags would be if all of
113  * the delayed refs are not processed.
114  */
115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
116 			     struct btrfs_fs_info *fs_info, u64 bytenr,
117 			     u64 offset, int metadata, u64 *refs, u64 *flags)
118 {
119 	struct btrfs_delayed_ref_head *head;
120 	struct btrfs_delayed_ref_root *delayed_refs;
121 	struct btrfs_path *path;
122 	struct btrfs_extent_item *ei;
123 	struct extent_buffer *leaf;
124 	struct btrfs_key key;
125 	u32 item_size;
126 	u64 num_refs;
127 	u64 extent_flags;
128 	int ret;
129 
130 	/*
131 	 * If we don't have skinny metadata, don't bother doing anything
132 	 * different
133 	 */
134 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
135 		offset = fs_info->nodesize;
136 		metadata = 0;
137 	}
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	if (!trans) {
144 		path->skip_locking = 1;
145 		path->search_commit_root = 1;
146 	}
147 
148 search_again:
149 	key.objectid = bytenr;
150 	key.offset = offset;
151 	if (metadata)
152 		key.type = BTRFS_METADATA_ITEM_KEY;
153 	else
154 		key.type = BTRFS_EXTENT_ITEM_KEY;
155 
156 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
157 	if (ret < 0)
158 		goto out_free;
159 
160 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
161 		if (path->slots[0]) {
162 			path->slots[0]--;
163 			btrfs_item_key_to_cpu(path->nodes[0], &key,
164 					      path->slots[0]);
165 			if (key.objectid == bytenr &&
166 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
167 			    key.offset == fs_info->nodesize)
168 				ret = 0;
169 		}
170 	}
171 
172 	if (ret == 0) {
173 		leaf = path->nodes[0];
174 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
175 		if (item_size >= sizeof(*ei)) {
176 			ei = btrfs_item_ptr(leaf, path->slots[0],
177 					    struct btrfs_extent_item);
178 			num_refs = btrfs_extent_refs(leaf, ei);
179 			extent_flags = btrfs_extent_flags(leaf, ei);
180 		} else {
181 			ret = -EINVAL;
182 			btrfs_print_v0_err(fs_info);
183 			if (trans)
184 				btrfs_abort_transaction(trans, ret);
185 			else
186 				btrfs_handle_fs_error(fs_info, ret, NULL);
187 
188 			goto out_free;
189 		}
190 
191 		BUG_ON(num_refs == 0);
192 	} else {
193 		num_refs = 0;
194 		extent_flags = 0;
195 		ret = 0;
196 	}
197 
198 	if (!trans)
199 		goto out;
200 
201 	delayed_refs = &trans->transaction->delayed_refs;
202 	spin_lock(&delayed_refs->lock);
203 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
204 	if (head) {
205 		if (!mutex_trylock(&head->mutex)) {
206 			refcount_inc(&head->refs);
207 			spin_unlock(&delayed_refs->lock);
208 
209 			btrfs_release_path(path);
210 
211 			/*
212 			 * Mutex was contended, block until it's released and try
213 			 * again
214 			 */
215 			mutex_lock(&head->mutex);
216 			mutex_unlock(&head->mutex);
217 			btrfs_put_delayed_ref_head(head);
218 			goto search_again;
219 		}
220 		spin_lock(&head->lock);
221 		if (head->extent_op && head->extent_op->update_flags)
222 			extent_flags |= head->extent_op->flags_to_set;
223 		else
224 			BUG_ON(num_refs == 0);
225 
226 		num_refs += head->ref_mod;
227 		spin_unlock(&head->lock);
228 		mutex_unlock(&head->mutex);
229 	}
230 	spin_unlock(&delayed_refs->lock);
231 out:
232 	WARN_ON(num_refs == 0);
233 	if (refs)
234 		*refs = num_refs;
235 	if (flags)
236 		*flags = extent_flags;
237 out_free:
238 	btrfs_free_path(path);
239 	return ret;
240 }
241 
242 /*
243  * Back reference rules.  Back refs have three main goals:
244  *
245  * 1) differentiate between all holders of references to an extent so that
246  *    when a reference is dropped we can make sure it was a valid reference
247  *    before freeing the extent.
248  *
249  * 2) Provide enough information to quickly find the holders of an extent
250  *    if we notice a given block is corrupted or bad.
251  *
252  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
253  *    maintenance.  This is actually the same as #2, but with a slightly
254  *    different use case.
255  *
256  * There are two kinds of back refs. The implicit back refs is optimized
257  * for pointers in non-shared tree blocks. For a given pointer in a block,
258  * back refs of this kind provide information about the block's owner tree
259  * and the pointer's key. These information allow us to find the block by
260  * b-tree searching. The full back refs is for pointers in tree blocks not
261  * referenced by their owner trees. The location of tree block is recorded
262  * in the back refs. Actually the full back refs is generic, and can be
263  * used in all cases the implicit back refs is used. The major shortcoming
264  * of the full back refs is its overhead. Every time a tree block gets
265  * COWed, we have to update back refs entry for all pointers in it.
266  *
267  * For a newly allocated tree block, we use implicit back refs for
268  * pointers in it. This means most tree related operations only involve
269  * implicit back refs. For a tree block created in old transaction, the
270  * only way to drop a reference to it is COW it. So we can detect the
271  * event that tree block loses its owner tree's reference and do the
272  * back refs conversion.
273  *
274  * When a tree block is COWed through a tree, there are four cases:
275  *
276  * The reference count of the block is one and the tree is the block's
277  * owner tree. Nothing to do in this case.
278  *
279  * The reference count of the block is one and the tree is not the
280  * block's owner tree. In this case, full back refs is used for pointers
281  * in the block. Remove these full back refs, add implicit back refs for
282  * every pointers in the new block.
283  *
284  * The reference count of the block is greater than one and the tree is
285  * the block's owner tree. In this case, implicit back refs is used for
286  * pointers in the block. Add full back refs for every pointers in the
287  * block, increase lower level extents' reference counts. The original
288  * implicit back refs are entailed to the new block.
289  *
290  * The reference count of the block is greater than one and the tree is
291  * not the block's owner tree. Add implicit back refs for every pointer in
292  * the new block, increase lower level extents' reference count.
293  *
294  * Back Reference Key composing:
295  *
296  * The key objectid corresponds to the first byte in the extent,
297  * The key type is used to differentiate between types of back refs.
298  * There are different meanings of the key offset for different types
299  * of back refs.
300  *
301  * File extents can be referenced by:
302  *
303  * - multiple snapshots, subvolumes, or different generations in one subvol
304  * - different files inside a single subvolume
305  * - different offsets inside a file (bookend extents in file.c)
306  *
307  * The extent ref structure for the implicit back refs has fields for:
308  *
309  * - Objectid of the subvolume root
310  * - objectid of the file holding the reference
311  * - original offset in the file
312  * - how many bookend extents
313  *
314  * The key offset for the implicit back refs is hash of the first
315  * three fields.
316  *
317  * The extent ref structure for the full back refs has field for:
318  *
319  * - number of pointers in the tree leaf
320  *
321  * The key offset for the implicit back refs is the first byte of
322  * the tree leaf
323  *
324  * When a file extent is allocated, The implicit back refs is used.
325  * the fields are filled in:
326  *
327  *     (root_key.objectid, inode objectid, offset in file, 1)
328  *
329  * When a file extent is removed file truncation, we find the
330  * corresponding implicit back refs and check the following fields:
331  *
332  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
333  *
334  * Btree extents can be referenced by:
335  *
336  * - Different subvolumes
337  *
338  * Both the implicit back refs and the full back refs for tree blocks
339  * only consist of key. The key offset for the implicit back refs is
340  * objectid of block's owner tree. The key offset for the full back refs
341  * is the first byte of parent block.
342  *
343  * When implicit back refs is used, information about the lowest key and
344  * level of the tree block are required. These information are stored in
345  * tree block info structure.
346  */
347 
348 /*
349  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
350  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
351  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
352  */
353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
354 				     struct btrfs_extent_inline_ref *iref,
355 				     enum btrfs_inline_ref_type is_data)
356 {
357 	int type = btrfs_extent_inline_ref_type(eb, iref);
358 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
359 
360 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
361 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
362 	    type == BTRFS_SHARED_DATA_REF_KEY ||
363 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
364 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
365 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
366 				return type;
367 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
368 				ASSERT(eb->fs_info);
369 				/*
370 				 * Every shared one has parent tree block,
371 				 * which must be aligned to sector size.
372 				 */
373 				if (offset &&
374 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
375 					return type;
376 			}
377 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
378 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
379 				return type;
380 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
381 				ASSERT(eb->fs_info);
382 				/*
383 				 * Every shared one has parent tree block,
384 				 * which must be aligned to sector size.
385 				 */
386 				if (offset &&
387 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
388 					return type;
389 			}
390 		} else {
391 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
392 			return type;
393 		}
394 	}
395 
396 	btrfs_print_leaf((struct extent_buffer *)eb);
397 	btrfs_err(eb->fs_info,
398 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
399 		  eb->start, (unsigned long)iref, type);
400 	WARN_ON(1);
401 
402 	return BTRFS_REF_TYPE_INVALID;
403 }
404 
405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
406 {
407 	u32 high_crc = ~(u32)0;
408 	u32 low_crc = ~(u32)0;
409 	__le64 lenum;
410 
411 	lenum = cpu_to_le64(root_objectid);
412 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
413 	lenum = cpu_to_le64(owner);
414 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
415 	lenum = cpu_to_le64(offset);
416 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
417 
418 	return ((u64)high_crc << 31) ^ (u64)low_crc;
419 }
420 
421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
422 				     struct btrfs_extent_data_ref *ref)
423 {
424 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
425 				    btrfs_extent_data_ref_objectid(leaf, ref),
426 				    btrfs_extent_data_ref_offset(leaf, ref));
427 }
428 
429 static int match_extent_data_ref(struct extent_buffer *leaf,
430 				 struct btrfs_extent_data_ref *ref,
431 				 u64 root_objectid, u64 owner, u64 offset)
432 {
433 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
434 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
435 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
436 		return 0;
437 	return 1;
438 }
439 
440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
441 					   struct btrfs_path *path,
442 					   u64 bytenr, u64 parent,
443 					   u64 root_objectid,
444 					   u64 owner, u64 offset)
445 {
446 	struct btrfs_root *root = trans->fs_info->extent_root;
447 	struct btrfs_key key;
448 	struct btrfs_extent_data_ref *ref;
449 	struct extent_buffer *leaf;
450 	u32 nritems;
451 	int ret;
452 	int recow;
453 	int err = -ENOENT;
454 
455 	key.objectid = bytenr;
456 	if (parent) {
457 		key.type = BTRFS_SHARED_DATA_REF_KEY;
458 		key.offset = parent;
459 	} else {
460 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
461 		key.offset = hash_extent_data_ref(root_objectid,
462 						  owner, offset);
463 	}
464 again:
465 	recow = 0;
466 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
467 	if (ret < 0) {
468 		err = ret;
469 		goto fail;
470 	}
471 
472 	if (parent) {
473 		if (!ret)
474 			return 0;
475 		goto fail;
476 	}
477 
478 	leaf = path->nodes[0];
479 	nritems = btrfs_header_nritems(leaf);
480 	while (1) {
481 		if (path->slots[0] >= nritems) {
482 			ret = btrfs_next_leaf(root, path);
483 			if (ret < 0)
484 				err = ret;
485 			if (ret)
486 				goto fail;
487 
488 			leaf = path->nodes[0];
489 			nritems = btrfs_header_nritems(leaf);
490 			recow = 1;
491 		}
492 
493 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
494 		if (key.objectid != bytenr ||
495 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
496 			goto fail;
497 
498 		ref = btrfs_item_ptr(leaf, path->slots[0],
499 				     struct btrfs_extent_data_ref);
500 
501 		if (match_extent_data_ref(leaf, ref, root_objectid,
502 					  owner, offset)) {
503 			if (recow) {
504 				btrfs_release_path(path);
505 				goto again;
506 			}
507 			err = 0;
508 			break;
509 		}
510 		path->slots[0]++;
511 	}
512 fail:
513 	return err;
514 }
515 
516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
517 					   struct btrfs_path *path,
518 					   u64 bytenr, u64 parent,
519 					   u64 root_objectid, u64 owner,
520 					   u64 offset, int refs_to_add)
521 {
522 	struct btrfs_root *root = trans->fs_info->extent_root;
523 	struct btrfs_key key;
524 	struct extent_buffer *leaf;
525 	u32 size;
526 	u32 num_refs;
527 	int ret;
528 
529 	key.objectid = bytenr;
530 	if (parent) {
531 		key.type = BTRFS_SHARED_DATA_REF_KEY;
532 		key.offset = parent;
533 		size = sizeof(struct btrfs_shared_data_ref);
534 	} else {
535 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
536 		key.offset = hash_extent_data_ref(root_objectid,
537 						  owner, offset);
538 		size = sizeof(struct btrfs_extent_data_ref);
539 	}
540 
541 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
542 	if (ret && ret != -EEXIST)
543 		goto fail;
544 
545 	leaf = path->nodes[0];
546 	if (parent) {
547 		struct btrfs_shared_data_ref *ref;
548 		ref = btrfs_item_ptr(leaf, path->slots[0],
549 				     struct btrfs_shared_data_ref);
550 		if (ret == 0) {
551 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
552 		} else {
553 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
554 			num_refs += refs_to_add;
555 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
556 		}
557 	} else {
558 		struct btrfs_extent_data_ref *ref;
559 		while (ret == -EEXIST) {
560 			ref = btrfs_item_ptr(leaf, path->slots[0],
561 					     struct btrfs_extent_data_ref);
562 			if (match_extent_data_ref(leaf, ref, root_objectid,
563 						  owner, offset))
564 				break;
565 			btrfs_release_path(path);
566 			key.offset++;
567 			ret = btrfs_insert_empty_item(trans, root, path, &key,
568 						      size);
569 			if (ret && ret != -EEXIST)
570 				goto fail;
571 
572 			leaf = path->nodes[0];
573 		}
574 		ref = btrfs_item_ptr(leaf, path->slots[0],
575 				     struct btrfs_extent_data_ref);
576 		if (ret == 0) {
577 			btrfs_set_extent_data_ref_root(leaf, ref,
578 						       root_objectid);
579 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
580 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
581 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
582 		} else {
583 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
584 			num_refs += refs_to_add;
585 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
586 		}
587 	}
588 	btrfs_mark_buffer_dirty(leaf);
589 	ret = 0;
590 fail:
591 	btrfs_release_path(path);
592 	return ret;
593 }
594 
595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
596 					   struct btrfs_path *path,
597 					   int refs_to_drop, int *last_ref)
598 {
599 	struct btrfs_key key;
600 	struct btrfs_extent_data_ref *ref1 = NULL;
601 	struct btrfs_shared_data_ref *ref2 = NULL;
602 	struct extent_buffer *leaf;
603 	u32 num_refs = 0;
604 	int ret = 0;
605 
606 	leaf = path->nodes[0];
607 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
608 
609 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
610 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
611 				      struct btrfs_extent_data_ref);
612 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
613 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
614 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_shared_data_ref);
616 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
617 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
618 		btrfs_print_v0_err(trans->fs_info);
619 		btrfs_abort_transaction(trans, -EINVAL);
620 		return -EINVAL;
621 	} else {
622 		BUG();
623 	}
624 
625 	BUG_ON(num_refs < refs_to_drop);
626 	num_refs -= refs_to_drop;
627 
628 	if (num_refs == 0) {
629 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
630 		*last_ref = 1;
631 	} else {
632 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
633 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
634 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
635 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
636 		btrfs_mark_buffer_dirty(leaf);
637 	}
638 	return ret;
639 }
640 
641 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
642 					  struct btrfs_extent_inline_ref *iref)
643 {
644 	struct btrfs_key key;
645 	struct extent_buffer *leaf;
646 	struct btrfs_extent_data_ref *ref1;
647 	struct btrfs_shared_data_ref *ref2;
648 	u32 num_refs = 0;
649 	int type;
650 
651 	leaf = path->nodes[0];
652 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
653 
654 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
655 	if (iref) {
656 		/*
657 		 * If type is invalid, we should have bailed out earlier than
658 		 * this call.
659 		 */
660 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
661 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
662 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
663 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
664 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
665 		} else {
666 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
667 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
668 		}
669 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
670 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
671 				      struct btrfs_extent_data_ref);
672 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
673 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
674 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
675 				      struct btrfs_shared_data_ref);
676 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 	} else {
678 		WARN_ON(1);
679 	}
680 	return num_refs;
681 }
682 
683 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
684 					  struct btrfs_path *path,
685 					  u64 bytenr, u64 parent,
686 					  u64 root_objectid)
687 {
688 	struct btrfs_root *root = trans->fs_info->extent_root;
689 	struct btrfs_key key;
690 	int ret;
691 
692 	key.objectid = bytenr;
693 	if (parent) {
694 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
695 		key.offset = parent;
696 	} else {
697 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
698 		key.offset = root_objectid;
699 	}
700 
701 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
702 	if (ret > 0)
703 		ret = -ENOENT;
704 	return ret;
705 }
706 
707 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
708 					  struct btrfs_path *path,
709 					  u64 bytenr, u64 parent,
710 					  u64 root_objectid)
711 {
712 	struct btrfs_key key;
713 	int ret;
714 
715 	key.objectid = bytenr;
716 	if (parent) {
717 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
718 		key.offset = parent;
719 	} else {
720 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
721 		key.offset = root_objectid;
722 	}
723 
724 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
725 				      path, &key, 0);
726 	btrfs_release_path(path);
727 	return ret;
728 }
729 
730 static inline int extent_ref_type(u64 parent, u64 owner)
731 {
732 	int type;
733 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
734 		if (parent > 0)
735 			type = BTRFS_SHARED_BLOCK_REF_KEY;
736 		else
737 			type = BTRFS_TREE_BLOCK_REF_KEY;
738 	} else {
739 		if (parent > 0)
740 			type = BTRFS_SHARED_DATA_REF_KEY;
741 		else
742 			type = BTRFS_EXTENT_DATA_REF_KEY;
743 	}
744 	return type;
745 }
746 
747 static int find_next_key(struct btrfs_path *path, int level,
748 			 struct btrfs_key *key)
749 
750 {
751 	for (; level < BTRFS_MAX_LEVEL; level++) {
752 		if (!path->nodes[level])
753 			break;
754 		if (path->slots[level] + 1 >=
755 		    btrfs_header_nritems(path->nodes[level]))
756 			continue;
757 		if (level == 0)
758 			btrfs_item_key_to_cpu(path->nodes[level], key,
759 					      path->slots[level] + 1);
760 		else
761 			btrfs_node_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		return 0;
764 	}
765 	return 1;
766 }
767 
768 /*
769  * look for inline back ref. if back ref is found, *ref_ret is set
770  * to the address of inline back ref, and 0 is returned.
771  *
772  * if back ref isn't found, *ref_ret is set to the address where it
773  * should be inserted, and -ENOENT is returned.
774  *
775  * if insert is true and there are too many inline back refs, the path
776  * points to the extent item, and -EAGAIN is returned.
777  *
778  * NOTE: inline back refs are ordered in the same way that back ref
779  *	 items in the tree are ordered.
780  */
781 static noinline_for_stack
782 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
783 				 struct btrfs_path *path,
784 				 struct btrfs_extent_inline_ref **ref_ret,
785 				 u64 bytenr, u64 num_bytes,
786 				 u64 parent, u64 root_objectid,
787 				 u64 owner, u64 offset, int insert)
788 {
789 	struct btrfs_fs_info *fs_info = trans->fs_info;
790 	struct btrfs_root *root = fs_info->extent_root;
791 	struct btrfs_key key;
792 	struct extent_buffer *leaf;
793 	struct btrfs_extent_item *ei;
794 	struct btrfs_extent_inline_ref *iref;
795 	u64 flags;
796 	u64 item_size;
797 	unsigned long ptr;
798 	unsigned long end;
799 	int extra_size;
800 	int type;
801 	int want;
802 	int ret;
803 	int err = 0;
804 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
805 	int needed;
806 
807 	key.objectid = bytenr;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	key.offset = num_bytes;
810 
811 	want = extent_ref_type(parent, owner);
812 	if (insert) {
813 		extra_size = btrfs_extent_inline_ref_size(want);
814 		path->search_for_extension = 1;
815 		path->keep_locks = 1;
816 	} else
817 		extra_size = -1;
818 
819 	/*
820 	 * Owner is our level, so we can just add one to get the level for the
821 	 * block we are interested in.
822 	 */
823 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
824 		key.type = BTRFS_METADATA_ITEM_KEY;
825 		key.offset = owner;
826 	}
827 
828 again:
829 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
830 	if (ret < 0) {
831 		err = ret;
832 		goto out;
833 	}
834 
835 	/*
836 	 * We may be a newly converted file system which still has the old fat
837 	 * extent entries for metadata, so try and see if we have one of those.
838 	 */
839 	if (ret > 0 && skinny_metadata) {
840 		skinny_metadata = false;
841 		if (path->slots[0]) {
842 			path->slots[0]--;
843 			btrfs_item_key_to_cpu(path->nodes[0], &key,
844 					      path->slots[0]);
845 			if (key.objectid == bytenr &&
846 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
847 			    key.offset == num_bytes)
848 				ret = 0;
849 		}
850 		if (ret) {
851 			key.objectid = bytenr;
852 			key.type = BTRFS_EXTENT_ITEM_KEY;
853 			key.offset = num_bytes;
854 			btrfs_release_path(path);
855 			goto again;
856 		}
857 	}
858 
859 	if (ret && !insert) {
860 		err = -ENOENT;
861 		goto out;
862 	} else if (WARN_ON(ret)) {
863 		err = -EIO;
864 		goto out;
865 	}
866 
867 	leaf = path->nodes[0];
868 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 	if (unlikely(item_size < sizeof(*ei))) {
870 		err = -EINVAL;
871 		btrfs_print_v0_err(fs_info);
872 		btrfs_abort_transaction(trans, err);
873 		goto out;
874 	}
875 
876 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
877 	flags = btrfs_extent_flags(leaf, ei);
878 
879 	ptr = (unsigned long)(ei + 1);
880 	end = (unsigned long)ei + item_size;
881 
882 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
883 		ptr += sizeof(struct btrfs_tree_block_info);
884 		BUG_ON(ptr > end);
885 	}
886 
887 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
888 		needed = BTRFS_REF_TYPE_DATA;
889 	else
890 		needed = BTRFS_REF_TYPE_BLOCK;
891 
892 	err = -ENOENT;
893 	while (1) {
894 		if (ptr >= end) {
895 			WARN_ON(ptr > end);
896 			break;
897 		}
898 		iref = (struct btrfs_extent_inline_ref *)ptr;
899 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
900 		if (type == BTRFS_REF_TYPE_INVALID) {
901 			err = -EUCLEAN;
902 			goto out;
903 		}
904 
905 		if (want < type)
906 			break;
907 		if (want > type) {
908 			ptr += btrfs_extent_inline_ref_size(type);
909 			continue;
910 		}
911 
912 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
913 			struct btrfs_extent_data_ref *dref;
914 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
915 			if (match_extent_data_ref(leaf, dref, root_objectid,
916 						  owner, offset)) {
917 				err = 0;
918 				break;
919 			}
920 			if (hash_extent_data_ref_item(leaf, dref) <
921 			    hash_extent_data_ref(root_objectid, owner, offset))
922 				break;
923 		} else {
924 			u64 ref_offset;
925 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
926 			if (parent > 0) {
927 				if (parent == ref_offset) {
928 					err = 0;
929 					break;
930 				}
931 				if (ref_offset < parent)
932 					break;
933 			} else {
934 				if (root_objectid == ref_offset) {
935 					err = 0;
936 					break;
937 				}
938 				if (ref_offset < root_objectid)
939 					break;
940 			}
941 		}
942 		ptr += btrfs_extent_inline_ref_size(type);
943 	}
944 	if (err == -ENOENT && insert) {
945 		if (item_size + extra_size >=
946 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
947 			err = -EAGAIN;
948 			goto out;
949 		}
950 		/*
951 		 * To add new inline back ref, we have to make sure
952 		 * there is no corresponding back ref item.
953 		 * For simplicity, we just do not add new inline back
954 		 * ref if there is any kind of item for this block
955 		 */
956 		if (find_next_key(path, 0, &key) == 0 &&
957 		    key.objectid == bytenr &&
958 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
959 			err = -EAGAIN;
960 			goto out;
961 		}
962 	}
963 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
964 out:
965 	if (insert) {
966 		path->keep_locks = 0;
967 		path->search_for_extension = 0;
968 		btrfs_unlock_up_safe(path, 1);
969 	}
970 	return err;
971 }
972 
973 /*
974  * helper to add new inline back ref
975  */
976 static noinline_for_stack
977 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
978 				 struct btrfs_path *path,
979 				 struct btrfs_extent_inline_ref *iref,
980 				 u64 parent, u64 root_objectid,
981 				 u64 owner, u64 offset, int refs_to_add,
982 				 struct btrfs_delayed_extent_op *extent_op)
983 {
984 	struct extent_buffer *leaf;
985 	struct btrfs_extent_item *ei;
986 	unsigned long ptr;
987 	unsigned long end;
988 	unsigned long item_offset;
989 	u64 refs;
990 	int size;
991 	int type;
992 
993 	leaf = path->nodes[0];
994 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
995 	item_offset = (unsigned long)iref - (unsigned long)ei;
996 
997 	type = extent_ref_type(parent, owner);
998 	size = btrfs_extent_inline_ref_size(type);
999 
1000 	btrfs_extend_item(path, size);
1001 
1002 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1003 	refs = btrfs_extent_refs(leaf, ei);
1004 	refs += refs_to_add;
1005 	btrfs_set_extent_refs(leaf, ei, refs);
1006 	if (extent_op)
1007 		__run_delayed_extent_op(extent_op, leaf, ei);
1008 
1009 	ptr = (unsigned long)ei + item_offset;
1010 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1011 	if (ptr < end - size)
1012 		memmove_extent_buffer(leaf, ptr + size, ptr,
1013 				      end - size - ptr);
1014 
1015 	iref = (struct btrfs_extent_inline_ref *)ptr;
1016 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1017 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1018 		struct btrfs_extent_data_ref *dref;
1019 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1021 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1022 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1023 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1024 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1025 		struct btrfs_shared_data_ref *sref;
1026 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1028 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1029 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1033 	}
1034 	btrfs_mark_buffer_dirty(leaf);
1035 }
1036 
1037 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1038 				 struct btrfs_path *path,
1039 				 struct btrfs_extent_inline_ref **ref_ret,
1040 				 u64 bytenr, u64 num_bytes, u64 parent,
1041 				 u64 root_objectid, u64 owner, u64 offset)
1042 {
1043 	int ret;
1044 
1045 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1046 					   num_bytes, parent, root_objectid,
1047 					   owner, offset, 0);
1048 	if (ret != -ENOENT)
1049 		return ret;
1050 
1051 	btrfs_release_path(path);
1052 	*ref_ret = NULL;
1053 
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1056 					    root_objectid);
1057 	} else {
1058 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1059 					     root_objectid, owner, offset);
1060 	}
1061 	return ret;
1062 }
1063 
1064 /*
1065  * helper to update/remove inline back ref
1066  */
1067 static noinline_for_stack
1068 void update_inline_extent_backref(struct btrfs_path *path,
1069 				  struct btrfs_extent_inline_ref *iref,
1070 				  int refs_to_mod,
1071 				  struct btrfs_delayed_extent_op *extent_op,
1072 				  int *last_ref)
1073 {
1074 	struct extent_buffer *leaf = path->nodes[0];
1075 	struct btrfs_extent_item *ei;
1076 	struct btrfs_extent_data_ref *dref = NULL;
1077 	struct btrfs_shared_data_ref *sref = NULL;
1078 	unsigned long ptr;
1079 	unsigned long end;
1080 	u32 item_size;
1081 	int size;
1082 	int type;
1083 	u64 refs;
1084 
1085 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1086 	refs = btrfs_extent_refs(leaf, ei);
1087 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1088 	refs += refs_to_mod;
1089 	btrfs_set_extent_refs(leaf, ei, refs);
1090 	if (extent_op)
1091 		__run_delayed_extent_op(extent_op, leaf, ei);
1092 
1093 	/*
1094 	 * If type is invalid, we should have bailed out after
1095 	 * lookup_inline_extent_backref().
1096 	 */
1097 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1098 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1099 
1100 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1101 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1102 		refs = btrfs_extent_data_ref_count(leaf, dref);
1103 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1104 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1105 		refs = btrfs_shared_data_ref_count(leaf, sref);
1106 	} else {
1107 		refs = 1;
1108 		BUG_ON(refs_to_mod != -1);
1109 	}
1110 
1111 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1112 	refs += refs_to_mod;
1113 
1114 	if (refs > 0) {
1115 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1116 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1117 		else
1118 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1119 	} else {
1120 		*last_ref = 1;
1121 		size =  btrfs_extent_inline_ref_size(type);
1122 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1123 		ptr = (unsigned long)iref;
1124 		end = (unsigned long)ei + item_size;
1125 		if (ptr + size < end)
1126 			memmove_extent_buffer(leaf, ptr, ptr + size,
1127 					      end - ptr - size);
1128 		item_size -= size;
1129 		btrfs_truncate_item(path, item_size, 1);
1130 	}
1131 	btrfs_mark_buffer_dirty(leaf);
1132 }
1133 
1134 static noinline_for_stack
1135 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1136 				 struct btrfs_path *path,
1137 				 u64 bytenr, u64 num_bytes, u64 parent,
1138 				 u64 root_objectid, u64 owner,
1139 				 u64 offset, int refs_to_add,
1140 				 struct btrfs_delayed_extent_op *extent_op)
1141 {
1142 	struct btrfs_extent_inline_ref *iref;
1143 	int ret;
1144 
1145 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1146 					   num_bytes, parent, root_objectid,
1147 					   owner, offset, 1);
1148 	if (ret == 0) {
1149 		/*
1150 		 * We're adding refs to a tree block we already own, this
1151 		 * should not happen at all.
1152 		 */
1153 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1154 			btrfs_crit(trans->fs_info,
1155 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1156 				   bytenr, num_bytes, root_objectid);
1157 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1158 				WARN_ON(1);
1159 				btrfs_crit(trans->fs_info,
1160 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1161 				btrfs_print_leaf(path->nodes[0]);
1162 			}
1163 			return -EUCLEAN;
1164 		}
1165 		update_inline_extent_backref(path, iref, refs_to_add,
1166 					     extent_op, NULL);
1167 	} else if (ret == -ENOENT) {
1168 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1169 					    root_objectid, owner, offset,
1170 					    refs_to_add, extent_op);
1171 		ret = 0;
1172 	}
1173 	return ret;
1174 }
1175 
1176 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1177 				 struct btrfs_path *path,
1178 				 struct btrfs_extent_inline_ref *iref,
1179 				 int refs_to_drop, int is_data, int *last_ref)
1180 {
1181 	int ret = 0;
1182 
1183 	BUG_ON(!is_data && refs_to_drop != 1);
1184 	if (iref) {
1185 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1186 					     last_ref);
1187 	} else if (is_data) {
1188 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1189 					     last_ref);
1190 	} else {
1191 		*last_ref = 1;
1192 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1193 	}
1194 	return ret;
1195 }
1196 
1197 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1198 			       u64 *discarded_bytes)
1199 {
1200 	int j, ret = 0;
1201 	u64 bytes_left, end;
1202 	u64 aligned_start = ALIGN(start, 1 << 9);
1203 
1204 	if (WARN_ON(start != aligned_start)) {
1205 		len -= aligned_start - start;
1206 		len = round_down(len, 1 << 9);
1207 		start = aligned_start;
1208 	}
1209 
1210 	*discarded_bytes = 0;
1211 
1212 	if (!len)
1213 		return 0;
1214 
1215 	end = start + len;
1216 	bytes_left = len;
1217 
1218 	/* Skip any superblocks on this device. */
1219 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1220 		u64 sb_start = btrfs_sb_offset(j);
1221 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1222 		u64 size = sb_start - start;
1223 
1224 		if (!in_range(sb_start, start, bytes_left) &&
1225 		    !in_range(sb_end, start, bytes_left) &&
1226 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1227 			continue;
1228 
1229 		/*
1230 		 * Superblock spans beginning of range.  Adjust start and
1231 		 * try again.
1232 		 */
1233 		if (sb_start <= start) {
1234 			start += sb_end - start;
1235 			if (start > end) {
1236 				bytes_left = 0;
1237 				break;
1238 			}
1239 			bytes_left = end - start;
1240 			continue;
1241 		}
1242 
1243 		if (size) {
1244 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1245 						   GFP_NOFS, 0);
1246 			if (!ret)
1247 				*discarded_bytes += size;
1248 			else if (ret != -EOPNOTSUPP)
1249 				return ret;
1250 		}
1251 
1252 		start = sb_end;
1253 		if (start > end) {
1254 			bytes_left = 0;
1255 			break;
1256 		}
1257 		bytes_left = end - start;
1258 	}
1259 
1260 	if (bytes_left) {
1261 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1262 					   GFP_NOFS, 0);
1263 		if (!ret)
1264 			*discarded_bytes += bytes_left;
1265 	}
1266 	return ret;
1267 }
1268 
1269 static int do_discard_extent(struct btrfs_bio_stripe *stripe, u64 *bytes)
1270 {
1271 	struct btrfs_device *dev = stripe->dev;
1272 	struct btrfs_fs_info *fs_info = dev->fs_info;
1273 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1274 	u64 phys = stripe->physical;
1275 	u64 len = stripe->length;
1276 	u64 discarded = 0;
1277 	int ret = 0;
1278 
1279 	/* Zone reset on a zoned filesystem */
1280 	if (btrfs_can_zone_reset(dev, phys, len)) {
1281 		u64 src_disc;
1282 
1283 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1284 		if (ret)
1285 			goto out;
1286 
1287 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1288 		    dev != dev_replace->srcdev)
1289 			goto out;
1290 
1291 		src_disc = discarded;
1292 
1293 		/* Send to replace target as well */
1294 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1295 					      &discarded);
1296 		discarded += src_disc;
1297 	} else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) {
1298 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1299 	} else {
1300 		ret = 0;
1301 		*bytes = 0;
1302 	}
1303 
1304 out:
1305 	*bytes = discarded;
1306 	return ret;
1307 }
1308 
1309 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1310 			 u64 num_bytes, u64 *actual_bytes)
1311 {
1312 	int ret = 0;
1313 	u64 discarded_bytes = 0;
1314 	u64 end = bytenr + num_bytes;
1315 	u64 cur = bytenr;
1316 	struct btrfs_bio *bbio = NULL;
1317 
1318 
1319 	/*
1320 	 * Avoid races with device replace and make sure our bbio has devices
1321 	 * associated to its stripes that don't go away while we are discarding.
1322 	 */
1323 	btrfs_bio_counter_inc_blocked(fs_info);
1324 	while (cur < end) {
1325 		struct btrfs_bio_stripe *stripe;
1326 		int i;
1327 
1328 		num_bytes = end - cur;
1329 		/* Tell the block device(s) that the sectors can be discarded */
1330 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1331 				      &num_bytes, &bbio, 0);
1332 		/*
1333 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1334 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1335 		 * thus we can't continue anyway.
1336 		 */
1337 		if (ret < 0)
1338 			goto out;
1339 
1340 		stripe = bbio->stripes;
1341 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1342 			u64 bytes;
1343 			struct btrfs_device *device = stripe->dev;
1344 
1345 			if (!device->bdev) {
1346 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1347 				continue;
1348 			}
1349 
1350 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1351 				continue;
1352 
1353 			ret = do_discard_extent(stripe, &bytes);
1354 			if (!ret) {
1355 				discarded_bytes += bytes;
1356 			} else if (ret != -EOPNOTSUPP) {
1357 				/*
1358 				 * Logic errors or -ENOMEM, or -EIO, but
1359 				 * unlikely to happen.
1360 				 *
1361 				 * And since there are two loops, explicitly
1362 				 * go to out to avoid confusion.
1363 				 */
1364 				btrfs_put_bbio(bbio);
1365 				goto out;
1366 			}
1367 
1368 			/*
1369 			 * Just in case we get back EOPNOTSUPP for some reason,
1370 			 * just ignore the return value so we don't screw up
1371 			 * people calling discard_extent.
1372 			 */
1373 			ret = 0;
1374 		}
1375 		btrfs_put_bbio(bbio);
1376 		cur += num_bytes;
1377 	}
1378 out:
1379 	btrfs_bio_counter_dec(fs_info);
1380 
1381 	if (actual_bytes)
1382 		*actual_bytes = discarded_bytes;
1383 
1384 
1385 	if (ret == -EOPNOTSUPP)
1386 		ret = 0;
1387 	return ret;
1388 }
1389 
1390 /* Can return -ENOMEM */
1391 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1392 			 struct btrfs_ref *generic_ref)
1393 {
1394 	struct btrfs_fs_info *fs_info = trans->fs_info;
1395 	int ret;
1396 
1397 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1398 	       generic_ref->action);
1399 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1400 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1401 
1402 	if (generic_ref->type == BTRFS_REF_METADATA)
1403 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1404 	else
1405 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1406 
1407 	btrfs_ref_tree_mod(fs_info, generic_ref);
1408 
1409 	return ret;
1410 }
1411 
1412 /*
1413  * __btrfs_inc_extent_ref - insert backreference for a given extent
1414  *
1415  * The counterpart is in __btrfs_free_extent(), with examples and more details
1416  * how it works.
1417  *
1418  * @trans:	    Handle of transaction
1419  *
1420  * @node:	    The delayed ref node used to get the bytenr/length for
1421  *		    extent whose references are incremented.
1422  *
1423  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1424  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1425  *		    bytenr of the parent block. Since new extents are always
1426  *		    created with indirect references, this will only be the case
1427  *		    when relocating a shared extent. In that case, root_objectid
1428  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1429  *		    be 0
1430  *
1431  * @root_objectid:  The id of the root where this modification has originated,
1432  *		    this can be either one of the well-known metadata trees or
1433  *		    the subvolume id which references this extent.
1434  *
1435  * @owner:	    For data extents it is the inode number of the owning file.
1436  *		    For metadata extents this parameter holds the level in the
1437  *		    tree of the extent.
1438  *
1439  * @offset:	    For metadata extents the offset is ignored and is currently
1440  *		    always passed as 0. For data extents it is the fileoffset
1441  *		    this extent belongs to.
1442  *
1443  * @refs_to_add     Number of references to add
1444  *
1445  * @extent_op       Pointer to a structure, holding information necessary when
1446  *                  updating a tree block's flags
1447  *
1448  */
1449 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1450 				  struct btrfs_delayed_ref_node *node,
1451 				  u64 parent, u64 root_objectid,
1452 				  u64 owner, u64 offset, int refs_to_add,
1453 				  struct btrfs_delayed_extent_op *extent_op)
1454 {
1455 	struct btrfs_path *path;
1456 	struct extent_buffer *leaf;
1457 	struct btrfs_extent_item *item;
1458 	struct btrfs_key key;
1459 	u64 bytenr = node->bytenr;
1460 	u64 num_bytes = node->num_bytes;
1461 	u64 refs;
1462 	int ret;
1463 
1464 	path = btrfs_alloc_path();
1465 	if (!path)
1466 		return -ENOMEM;
1467 
1468 	/* this will setup the path even if it fails to insert the back ref */
1469 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1470 					   parent, root_objectid, owner,
1471 					   offset, refs_to_add, extent_op);
1472 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1473 		goto out;
1474 
1475 	/*
1476 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1477 	 * inline extent ref, so just update the reference count and add a
1478 	 * normal backref.
1479 	 */
1480 	leaf = path->nodes[0];
1481 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1482 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1483 	refs = btrfs_extent_refs(leaf, item);
1484 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1485 	if (extent_op)
1486 		__run_delayed_extent_op(extent_op, leaf, item);
1487 
1488 	btrfs_mark_buffer_dirty(leaf);
1489 	btrfs_release_path(path);
1490 
1491 	/* now insert the actual backref */
1492 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1493 		BUG_ON(refs_to_add != 1);
1494 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1495 					    root_objectid);
1496 	} else {
1497 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1498 					     root_objectid, owner, offset,
1499 					     refs_to_add);
1500 	}
1501 	if (ret)
1502 		btrfs_abort_transaction(trans, ret);
1503 out:
1504 	btrfs_free_path(path);
1505 	return ret;
1506 }
1507 
1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1509 				struct btrfs_delayed_ref_node *node,
1510 				struct btrfs_delayed_extent_op *extent_op,
1511 				int insert_reserved)
1512 {
1513 	int ret = 0;
1514 	struct btrfs_delayed_data_ref *ref;
1515 	struct btrfs_key ins;
1516 	u64 parent = 0;
1517 	u64 ref_root = 0;
1518 	u64 flags = 0;
1519 
1520 	ins.objectid = node->bytenr;
1521 	ins.offset = node->num_bytes;
1522 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1523 
1524 	ref = btrfs_delayed_node_to_data_ref(node);
1525 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1526 
1527 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1528 		parent = ref->parent;
1529 	ref_root = ref->root;
1530 
1531 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1532 		if (extent_op)
1533 			flags |= extent_op->flags_to_set;
1534 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1535 						 flags, ref->objectid,
1536 						 ref->offset, &ins,
1537 						 node->ref_mod);
1538 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1539 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1540 					     ref->objectid, ref->offset,
1541 					     node->ref_mod, extent_op);
1542 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1543 		ret = __btrfs_free_extent(trans, node, parent,
1544 					  ref_root, ref->objectid,
1545 					  ref->offset, node->ref_mod,
1546 					  extent_op);
1547 	} else {
1548 		BUG();
1549 	}
1550 	return ret;
1551 }
1552 
1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1554 				    struct extent_buffer *leaf,
1555 				    struct btrfs_extent_item *ei)
1556 {
1557 	u64 flags = btrfs_extent_flags(leaf, ei);
1558 	if (extent_op->update_flags) {
1559 		flags |= extent_op->flags_to_set;
1560 		btrfs_set_extent_flags(leaf, ei, flags);
1561 	}
1562 
1563 	if (extent_op->update_key) {
1564 		struct btrfs_tree_block_info *bi;
1565 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1566 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1567 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1568 	}
1569 }
1570 
1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1572 				 struct btrfs_delayed_ref_head *head,
1573 				 struct btrfs_delayed_extent_op *extent_op)
1574 {
1575 	struct btrfs_fs_info *fs_info = trans->fs_info;
1576 	struct btrfs_key key;
1577 	struct btrfs_path *path;
1578 	struct btrfs_extent_item *ei;
1579 	struct extent_buffer *leaf;
1580 	u32 item_size;
1581 	int ret;
1582 	int err = 0;
1583 	int metadata = !extent_op->is_data;
1584 
1585 	if (TRANS_ABORTED(trans))
1586 		return 0;
1587 
1588 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1589 		metadata = 0;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	key.objectid = head->bytenr;
1596 
1597 	if (metadata) {
1598 		key.type = BTRFS_METADATA_ITEM_KEY;
1599 		key.offset = extent_op->level;
1600 	} else {
1601 		key.type = BTRFS_EXTENT_ITEM_KEY;
1602 		key.offset = head->num_bytes;
1603 	}
1604 
1605 again:
1606 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1607 	if (ret < 0) {
1608 		err = ret;
1609 		goto out;
1610 	}
1611 	if (ret > 0) {
1612 		if (metadata) {
1613 			if (path->slots[0] > 0) {
1614 				path->slots[0]--;
1615 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1616 						      path->slots[0]);
1617 				if (key.objectid == head->bytenr &&
1618 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1619 				    key.offset == head->num_bytes)
1620 					ret = 0;
1621 			}
1622 			if (ret > 0) {
1623 				btrfs_release_path(path);
1624 				metadata = 0;
1625 
1626 				key.objectid = head->bytenr;
1627 				key.offset = head->num_bytes;
1628 				key.type = BTRFS_EXTENT_ITEM_KEY;
1629 				goto again;
1630 			}
1631 		} else {
1632 			err = -EIO;
1633 			goto out;
1634 		}
1635 	}
1636 
1637 	leaf = path->nodes[0];
1638 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1639 
1640 	if (unlikely(item_size < sizeof(*ei))) {
1641 		err = -EINVAL;
1642 		btrfs_print_v0_err(fs_info);
1643 		btrfs_abort_transaction(trans, err);
1644 		goto out;
1645 	}
1646 
1647 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1648 	__run_delayed_extent_op(extent_op, leaf, ei);
1649 
1650 	btrfs_mark_buffer_dirty(leaf);
1651 out:
1652 	btrfs_free_path(path);
1653 	return err;
1654 }
1655 
1656 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1657 				struct btrfs_delayed_ref_node *node,
1658 				struct btrfs_delayed_extent_op *extent_op,
1659 				int insert_reserved)
1660 {
1661 	int ret = 0;
1662 	struct btrfs_delayed_tree_ref *ref;
1663 	u64 parent = 0;
1664 	u64 ref_root = 0;
1665 
1666 	ref = btrfs_delayed_node_to_tree_ref(node);
1667 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1668 
1669 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1670 		parent = ref->parent;
1671 	ref_root = ref->root;
1672 
1673 	if (node->ref_mod != 1) {
1674 		btrfs_err(trans->fs_info,
1675 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1676 			  node->bytenr, node->ref_mod, node->action, ref_root,
1677 			  parent);
1678 		return -EIO;
1679 	}
1680 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1681 		BUG_ON(!extent_op || !extent_op->update_flags);
1682 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1683 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1684 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1685 					     ref->level, 0, 1, extent_op);
1686 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1687 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1688 					  ref->level, 0, 1, extent_op);
1689 	} else {
1690 		BUG();
1691 	}
1692 	return ret;
1693 }
1694 
1695 /* helper function to actually process a single delayed ref entry */
1696 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1697 			       struct btrfs_delayed_ref_node *node,
1698 			       struct btrfs_delayed_extent_op *extent_op,
1699 			       int insert_reserved)
1700 {
1701 	int ret = 0;
1702 
1703 	if (TRANS_ABORTED(trans)) {
1704 		if (insert_reserved)
1705 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1706 		return 0;
1707 	}
1708 
1709 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1710 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1711 		ret = run_delayed_tree_ref(trans, node, extent_op,
1712 					   insert_reserved);
1713 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1714 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1715 		ret = run_delayed_data_ref(trans, node, extent_op,
1716 					   insert_reserved);
1717 	else
1718 		BUG();
1719 	if (ret && insert_reserved)
1720 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1721 	return ret;
1722 }
1723 
1724 static inline struct btrfs_delayed_ref_node *
1725 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1726 {
1727 	struct btrfs_delayed_ref_node *ref;
1728 
1729 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1730 		return NULL;
1731 
1732 	/*
1733 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1734 	 * This is to prevent a ref count from going down to zero, which deletes
1735 	 * the extent item from the extent tree, when there still are references
1736 	 * to add, which would fail because they would not find the extent item.
1737 	 */
1738 	if (!list_empty(&head->ref_add_list))
1739 		return list_first_entry(&head->ref_add_list,
1740 				struct btrfs_delayed_ref_node, add_list);
1741 
1742 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1743 		       struct btrfs_delayed_ref_node, ref_node);
1744 	ASSERT(list_empty(&ref->add_list));
1745 	return ref;
1746 }
1747 
1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1749 				      struct btrfs_delayed_ref_head *head)
1750 {
1751 	spin_lock(&delayed_refs->lock);
1752 	head->processing = 0;
1753 	delayed_refs->num_heads_ready++;
1754 	spin_unlock(&delayed_refs->lock);
1755 	btrfs_delayed_ref_unlock(head);
1756 }
1757 
1758 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1759 				struct btrfs_delayed_ref_head *head)
1760 {
1761 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1762 
1763 	if (!extent_op)
1764 		return NULL;
1765 
1766 	if (head->must_insert_reserved) {
1767 		head->extent_op = NULL;
1768 		btrfs_free_delayed_extent_op(extent_op);
1769 		return NULL;
1770 	}
1771 	return extent_op;
1772 }
1773 
1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1775 				     struct btrfs_delayed_ref_head *head)
1776 {
1777 	struct btrfs_delayed_extent_op *extent_op;
1778 	int ret;
1779 
1780 	extent_op = cleanup_extent_op(head);
1781 	if (!extent_op)
1782 		return 0;
1783 	head->extent_op = NULL;
1784 	spin_unlock(&head->lock);
1785 	ret = run_delayed_extent_op(trans, head, extent_op);
1786 	btrfs_free_delayed_extent_op(extent_op);
1787 	return ret ? ret : 1;
1788 }
1789 
1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1791 				  struct btrfs_delayed_ref_root *delayed_refs,
1792 				  struct btrfs_delayed_ref_head *head)
1793 {
1794 	int nr_items = 1;	/* Dropping this ref head update. */
1795 
1796 	/*
1797 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1798 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1799 	 */
1800 	if (head->total_ref_mod < 0 && head->is_data) {
1801 		spin_lock(&delayed_refs->lock);
1802 		delayed_refs->pending_csums -= head->num_bytes;
1803 		spin_unlock(&delayed_refs->lock);
1804 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1805 	}
1806 
1807 	/*
1808 	 * We were dropping refs, or had a new ref and dropped it, and thus must
1809 	 * adjust down our total_bytes_pinned, the space may or may not have
1810 	 * been pinned and so is accounted for properly in the pinned space by
1811 	 * now.
1812 	 */
1813 	if (head->total_ref_mod < 0 ||
1814 	    (head->total_ref_mod == 0 && head->must_insert_reserved)) {
1815 		u64 flags = btrfs_ref_head_to_space_flags(head);
1816 
1817 		btrfs_mod_total_bytes_pinned(fs_info, flags, -head->num_bytes);
1818 	}
1819 
1820 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1821 }
1822 
1823 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1824 			    struct btrfs_delayed_ref_head *head)
1825 {
1826 
1827 	struct btrfs_fs_info *fs_info = trans->fs_info;
1828 	struct btrfs_delayed_ref_root *delayed_refs;
1829 	int ret;
1830 
1831 	delayed_refs = &trans->transaction->delayed_refs;
1832 
1833 	ret = run_and_cleanup_extent_op(trans, head);
1834 	if (ret < 0) {
1835 		unselect_delayed_ref_head(delayed_refs, head);
1836 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1837 		return ret;
1838 	} else if (ret) {
1839 		return ret;
1840 	}
1841 
1842 	/*
1843 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1844 	 * and then re-check to make sure nobody got added.
1845 	 */
1846 	spin_unlock(&head->lock);
1847 	spin_lock(&delayed_refs->lock);
1848 	spin_lock(&head->lock);
1849 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1850 		spin_unlock(&head->lock);
1851 		spin_unlock(&delayed_refs->lock);
1852 		return 1;
1853 	}
1854 	btrfs_delete_ref_head(delayed_refs, head);
1855 	spin_unlock(&head->lock);
1856 	spin_unlock(&delayed_refs->lock);
1857 
1858 	if (head->must_insert_reserved) {
1859 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1860 		if (head->is_data) {
1861 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1862 					      head->bytenr, head->num_bytes);
1863 		}
1864 	}
1865 
1866 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1867 
1868 	trace_run_delayed_ref_head(fs_info, head, 0);
1869 	btrfs_delayed_ref_unlock(head);
1870 	btrfs_put_delayed_ref_head(head);
1871 	return 0;
1872 }
1873 
1874 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1875 					struct btrfs_trans_handle *trans)
1876 {
1877 	struct btrfs_delayed_ref_root *delayed_refs =
1878 		&trans->transaction->delayed_refs;
1879 	struct btrfs_delayed_ref_head *head = NULL;
1880 	int ret;
1881 
1882 	spin_lock(&delayed_refs->lock);
1883 	head = btrfs_select_ref_head(delayed_refs);
1884 	if (!head) {
1885 		spin_unlock(&delayed_refs->lock);
1886 		return head;
1887 	}
1888 
1889 	/*
1890 	 * Grab the lock that says we are going to process all the refs for
1891 	 * this head
1892 	 */
1893 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1894 	spin_unlock(&delayed_refs->lock);
1895 
1896 	/*
1897 	 * We may have dropped the spin lock to get the head mutex lock, and
1898 	 * that might have given someone else time to free the head.  If that's
1899 	 * true, it has been removed from our list and we can move on.
1900 	 */
1901 	if (ret == -EAGAIN)
1902 		head = ERR_PTR(-EAGAIN);
1903 
1904 	return head;
1905 }
1906 
1907 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1908 				    struct btrfs_delayed_ref_head *locked_ref,
1909 				    unsigned long *run_refs)
1910 {
1911 	struct btrfs_fs_info *fs_info = trans->fs_info;
1912 	struct btrfs_delayed_ref_root *delayed_refs;
1913 	struct btrfs_delayed_extent_op *extent_op;
1914 	struct btrfs_delayed_ref_node *ref;
1915 	int must_insert_reserved = 0;
1916 	int ret;
1917 
1918 	delayed_refs = &trans->transaction->delayed_refs;
1919 
1920 	lockdep_assert_held(&locked_ref->mutex);
1921 	lockdep_assert_held(&locked_ref->lock);
1922 
1923 	while ((ref = select_delayed_ref(locked_ref))) {
1924 		if (ref->seq &&
1925 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1926 			spin_unlock(&locked_ref->lock);
1927 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1928 			return -EAGAIN;
1929 		}
1930 
1931 		(*run_refs)++;
1932 		ref->in_tree = 0;
1933 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1934 		RB_CLEAR_NODE(&ref->ref_node);
1935 		if (!list_empty(&ref->add_list))
1936 			list_del(&ref->add_list);
1937 		/*
1938 		 * When we play the delayed ref, also correct the ref_mod on
1939 		 * head
1940 		 */
1941 		switch (ref->action) {
1942 		case BTRFS_ADD_DELAYED_REF:
1943 		case BTRFS_ADD_DELAYED_EXTENT:
1944 			locked_ref->ref_mod -= ref->ref_mod;
1945 			break;
1946 		case BTRFS_DROP_DELAYED_REF:
1947 			locked_ref->ref_mod += ref->ref_mod;
1948 			break;
1949 		default:
1950 			WARN_ON(1);
1951 		}
1952 		atomic_dec(&delayed_refs->num_entries);
1953 
1954 		/*
1955 		 * Record the must_insert_reserved flag before we drop the
1956 		 * spin lock.
1957 		 */
1958 		must_insert_reserved = locked_ref->must_insert_reserved;
1959 		locked_ref->must_insert_reserved = 0;
1960 
1961 		extent_op = locked_ref->extent_op;
1962 		locked_ref->extent_op = NULL;
1963 		spin_unlock(&locked_ref->lock);
1964 
1965 		ret = run_one_delayed_ref(trans, ref, extent_op,
1966 					  must_insert_reserved);
1967 
1968 		btrfs_free_delayed_extent_op(extent_op);
1969 		if (ret) {
1970 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1971 			btrfs_put_delayed_ref(ref);
1972 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1973 				    ret);
1974 			return ret;
1975 		}
1976 
1977 		btrfs_put_delayed_ref(ref);
1978 		cond_resched();
1979 
1980 		spin_lock(&locked_ref->lock);
1981 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 /*
1988  * Returns 0 on success or if called with an already aborted transaction.
1989  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1990  */
1991 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1992 					     unsigned long nr)
1993 {
1994 	struct btrfs_fs_info *fs_info = trans->fs_info;
1995 	struct btrfs_delayed_ref_root *delayed_refs;
1996 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1997 	ktime_t start = ktime_get();
1998 	int ret;
1999 	unsigned long count = 0;
2000 	unsigned long actual_count = 0;
2001 
2002 	delayed_refs = &trans->transaction->delayed_refs;
2003 	do {
2004 		if (!locked_ref) {
2005 			locked_ref = btrfs_obtain_ref_head(trans);
2006 			if (IS_ERR_OR_NULL(locked_ref)) {
2007 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2008 					continue;
2009 				} else {
2010 					break;
2011 				}
2012 			}
2013 			count++;
2014 		}
2015 		/*
2016 		 * We need to try and merge add/drops of the same ref since we
2017 		 * can run into issues with relocate dropping the implicit ref
2018 		 * and then it being added back again before the drop can
2019 		 * finish.  If we merged anything we need to re-loop so we can
2020 		 * get a good ref.
2021 		 * Or we can get node references of the same type that weren't
2022 		 * merged when created due to bumps in the tree mod seq, and
2023 		 * we need to merge them to prevent adding an inline extent
2024 		 * backref before dropping it (triggering a BUG_ON at
2025 		 * insert_inline_extent_backref()).
2026 		 */
2027 		spin_lock(&locked_ref->lock);
2028 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2029 
2030 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2031 						      &actual_count);
2032 		if (ret < 0 && ret != -EAGAIN) {
2033 			/*
2034 			 * Error, btrfs_run_delayed_refs_for_head already
2035 			 * unlocked everything so just bail out
2036 			 */
2037 			return ret;
2038 		} else if (!ret) {
2039 			/*
2040 			 * Success, perform the usual cleanup of a processed
2041 			 * head
2042 			 */
2043 			ret = cleanup_ref_head(trans, locked_ref);
2044 			if (ret > 0 ) {
2045 				/* We dropped our lock, we need to loop. */
2046 				ret = 0;
2047 				continue;
2048 			} else if (ret) {
2049 				return ret;
2050 			}
2051 		}
2052 
2053 		/*
2054 		 * Either success case or btrfs_run_delayed_refs_for_head
2055 		 * returned -EAGAIN, meaning we need to select another head
2056 		 */
2057 
2058 		locked_ref = NULL;
2059 		cond_resched();
2060 	} while ((nr != -1 && count < nr) || locked_ref);
2061 
2062 	/*
2063 	 * We don't want to include ref heads since we can have empty ref heads
2064 	 * and those will drastically skew our runtime down since we just do
2065 	 * accounting, no actual extent tree updates.
2066 	 */
2067 	if (actual_count > 0) {
2068 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2069 		u64 avg;
2070 
2071 		/*
2072 		 * We weigh the current average higher than our current runtime
2073 		 * to avoid large swings in the average.
2074 		 */
2075 		spin_lock(&delayed_refs->lock);
2076 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2077 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2078 		spin_unlock(&delayed_refs->lock);
2079 	}
2080 	return 0;
2081 }
2082 
2083 #ifdef SCRAMBLE_DELAYED_REFS
2084 /*
2085  * Normally delayed refs get processed in ascending bytenr order. This
2086  * correlates in most cases to the order added. To expose dependencies on this
2087  * order, we start to process the tree in the middle instead of the beginning
2088  */
2089 static u64 find_middle(struct rb_root *root)
2090 {
2091 	struct rb_node *n = root->rb_node;
2092 	struct btrfs_delayed_ref_node *entry;
2093 	int alt = 1;
2094 	u64 middle;
2095 	u64 first = 0, last = 0;
2096 
2097 	n = rb_first(root);
2098 	if (n) {
2099 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100 		first = entry->bytenr;
2101 	}
2102 	n = rb_last(root);
2103 	if (n) {
2104 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 		last = entry->bytenr;
2106 	}
2107 	n = root->rb_node;
2108 
2109 	while (n) {
2110 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111 		WARN_ON(!entry->in_tree);
2112 
2113 		middle = entry->bytenr;
2114 
2115 		if (alt)
2116 			n = n->rb_left;
2117 		else
2118 			n = n->rb_right;
2119 
2120 		alt = 1 - alt;
2121 	}
2122 	return middle;
2123 }
2124 #endif
2125 
2126 /*
2127  * this starts processing the delayed reference count updates and
2128  * extent insertions we have queued up so far.  count can be
2129  * 0, which means to process everything in the tree at the start
2130  * of the run (but not newly added entries), or it can be some target
2131  * number you'd like to process.
2132  *
2133  * Returns 0 on success or if called with an aborted transaction
2134  * Returns <0 on error and aborts the transaction
2135  */
2136 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2137 			   unsigned long count)
2138 {
2139 	struct btrfs_fs_info *fs_info = trans->fs_info;
2140 	struct rb_node *node;
2141 	struct btrfs_delayed_ref_root *delayed_refs;
2142 	struct btrfs_delayed_ref_head *head;
2143 	int ret;
2144 	int run_all = count == (unsigned long)-1;
2145 
2146 	/* We'll clean this up in btrfs_cleanup_transaction */
2147 	if (TRANS_ABORTED(trans))
2148 		return 0;
2149 
2150 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2151 		return 0;
2152 
2153 	delayed_refs = &trans->transaction->delayed_refs;
2154 	if (count == 0)
2155 		count = delayed_refs->num_heads_ready;
2156 
2157 again:
2158 #ifdef SCRAMBLE_DELAYED_REFS
2159 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2160 #endif
2161 	ret = __btrfs_run_delayed_refs(trans, count);
2162 	if (ret < 0) {
2163 		btrfs_abort_transaction(trans, ret);
2164 		return ret;
2165 	}
2166 
2167 	if (run_all) {
2168 		btrfs_create_pending_block_groups(trans);
2169 
2170 		spin_lock(&delayed_refs->lock);
2171 		node = rb_first_cached(&delayed_refs->href_root);
2172 		if (!node) {
2173 			spin_unlock(&delayed_refs->lock);
2174 			goto out;
2175 		}
2176 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2177 				href_node);
2178 		refcount_inc(&head->refs);
2179 		spin_unlock(&delayed_refs->lock);
2180 
2181 		/* Mutex was contended, block until it's released and retry. */
2182 		mutex_lock(&head->mutex);
2183 		mutex_unlock(&head->mutex);
2184 
2185 		btrfs_put_delayed_ref_head(head);
2186 		cond_resched();
2187 		goto again;
2188 	}
2189 out:
2190 	return 0;
2191 }
2192 
2193 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2194 				struct extent_buffer *eb, u64 flags,
2195 				int level, int is_data)
2196 {
2197 	struct btrfs_delayed_extent_op *extent_op;
2198 	int ret;
2199 
2200 	extent_op = btrfs_alloc_delayed_extent_op();
2201 	if (!extent_op)
2202 		return -ENOMEM;
2203 
2204 	extent_op->flags_to_set = flags;
2205 	extent_op->update_flags = true;
2206 	extent_op->update_key = false;
2207 	extent_op->is_data = is_data ? true : false;
2208 	extent_op->level = level;
2209 
2210 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2211 	if (ret)
2212 		btrfs_free_delayed_extent_op(extent_op);
2213 	return ret;
2214 }
2215 
2216 static noinline int check_delayed_ref(struct btrfs_root *root,
2217 				      struct btrfs_path *path,
2218 				      u64 objectid, u64 offset, u64 bytenr)
2219 {
2220 	struct btrfs_delayed_ref_head *head;
2221 	struct btrfs_delayed_ref_node *ref;
2222 	struct btrfs_delayed_data_ref *data_ref;
2223 	struct btrfs_delayed_ref_root *delayed_refs;
2224 	struct btrfs_transaction *cur_trans;
2225 	struct rb_node *node;
2226 	int ret = 0;
2227 
2228 	spin_lock(&root->fs_info->trans_lock);
2229 	cur_trans = root->fs_info->running_transaction;
2230 	if (cur_trans)
2231 		refcount_inc(&cur_trans->use_count);
2232 	spin_unlock(&root->fs_info->trans_lock);
2233 	if (!cur_trans)
2234 		return 0;
2235 
2236 	delayed_refs = &cur_trans->delayed_refs;
2237 	spin_lock(&delayed_refs->lock);
2238 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2239 	if (!head) {
2240 		spin_unlock(&delayed_refs->lock);
2241 		btrfs_put_transaction(cur_trans);
2242 		return 0;
2243 	}
2244 
2245 	if (!mutex_trylock(&head->mutex)) {
2246 		refcount_inc(&head->refs);
2247 		spin_unlock(&delayed_refs->lock);
2248 
2249 		btrfs_release_path(path);
2250 
2251 		/*
2252 		 * Mutex was contended, block until it's released and let
2253 		 * caller try again
2254 		 */
2255 		mutex_lock(&head->mutex);
2256 		mutex_unlock(&head->mutex);
2257 		btrfs_put_delayed_ref_head(head);
2258 		btrfs_put_transaction(cur_trans);
2259 		return -EAGAIN;
2260 	}
2261 	spin_unlock(&delayed_refs->lock);
2262 
2263 	spin_lock(&head->lock);
2264 	/*
2265 	 * XXX: We should replace this with a proper search function in the
2266 	 * future.
2267 	 */
2268 	for (node = rb_first_cached(&head->ref_tree); node;
2269 	     node = rb_next(node)) {
2270 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2271 		/* If it's a shared ref we know a cross reference exists */
2272 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2273 			ret = 1;
2274 			break;
2275 		}
2276 
2277 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2278 
2279 		/*
2280 		 * If our ref doesn't match the one we're currently looking at
2281 		 * then we have a cross reference.
2282 		 */
2283 		if (data_ref->root != root->root_key.objectid ||
2284 		    data_ref->objectid != objectid ||
2285 		    data_ref->offset != offset) {
2286 			ret = 1;
2287 			break;
2288 		}
2289 	}
2290 	spin_unlock(&head->lock);
2291 	mutex_unlock(&head->mutex);
2292 	btrfs_put_transaction(cur_trans);
2293 	return ret;
2294 }
2295 
2296 static noinline int check_committed_ref(struct btrfs_root *root,
2297 					struct btrfs_path *path,
2298 					u64 objectid, u64 offset, u64 bytenr,
2299 					bool strict)
2300 {
2301 	struct btrfs_fs_info *fs_info = root->fs_info;
2302 	struct btrfs_root *extent_root = fs_info->extent_root;
2303 	struct extent_buffer *leaf;
2304 	struct btrfs_extent_data_ref *ref;
2305 	struct btrfs_extent_inline_ref *iref;
2306 	struct btrfs_extent_item *ei;
2307 	struct btrfs_key key;
2308 	u32 item_size;
2309 	int type;
2310 	int ret;
2311 
2312 	key.objectid = bytenr;
2313 	key.offset = (u64)-1;
2314 	key.type = BTRFS_EXTENT_ITEM_KEY;
2315 
2316 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2317 	if (ret < 0)
2318 		goto out;
2319 	BUG_ON(ret == 0); /* Corruption */
2320 
2321 	ret = -ENOENT;
2322 	if (path->slots[0] == 0)
2323 		goto out;
2324 
2325 	path->slots[0]--;
2326 	leaf = path->nodes[0];
2327 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2328 
2329 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2330 		goto out;
2331 
2332 	ret = 1;
2333 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2334 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2335 
2336 	/* If extent item has more than 1 inline ref then it's shared */
2337 	if (item_size != sizeof(*ei) +
2338 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2339 		goto out;
2340 
2341 	/*
2342 	 * If extent created before last snapshot => it's shared unless the
2343 	 * snapshot has been deleted. Use the heuristic if strict is false.
2344 	 */
2345 	if (!strict &&
2346 	    (btrfs_extent_generation(leaf, ei) <=
2347 	     btrfs_root_last_snapshot(&root->root_item)))
2348 		goto out;
2349 
2350 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2351 
2352 	/* If this extent has SHARED_DATA_REF then it's shared */
2353 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2354 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2355 		goto out;
2356 
2357 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2358 	if (btrfs_extent_refs(leaf, ei) !=
2359 	    btrfs_extent_data_ref_count(leaf, ref) ||
2360 	    btrfs_extent_data_ref_root(leaf, ref) !=
2361 	    root->root_key.objectid ||
2362 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2363 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2364 		goto out;
2365 
2366 	ret = 0;
2367 out:
2368 	return ret;
2369 }
2370 
2371 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2372 			  u64 bytenr, bool strict)
2373 {
2374 	struct btrfs_path *path;
2375 	int ret;
2376 
2377 	path = btrfs_alloc_path();
2378 	if (!path)
2379 		return -ENOMEM;
2380 
2381 	do {
2382 		ret = check_committed_ref(root, path, objectid,
2383 					  offset, bytenr, strict);
2384 		if (ret && ret != -ENOENT)
2385 			goto out;
2386 
2387 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2388 	} while (ret == -EAGAIN);
2389 
2390 out:
2391 	btrfs_free_path(path);
2392 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2393 		WARN_ON(ret > 0);
2394 	return ret;
2395 }
2396 
2397 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2398 			   struct btrfs_root *root,
2399 			   struct extent_buffer *buf,
2400 			   int full_backref, int inc)
2401 {
2402 	struct btrfs_fs_info *fs_info = root->fs_info;
2403 	u64 bytenr;
2404 	u64 num_bytes;
2405 	u64 parent;
2406 	u64 ref_root;
2407 	u32 nritems;
2408 	struct btrfs_key key;
2409 	struct btrfs_file_extent_item *fi;
2410 	struct btrfs_ref generic_ref = { 0 };
2411 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2412 	int i;
2413 	int action;
2414 	int level;
2415 	int ret = 0;
2416 
2417 	if (btrfs_is_testing(fs_info))
2418 		return 0;
2419 
2420 	ref_root = btrfs_header_owner(buf);
2421 	nritems = btrfs_header_nritems(buf);
2422 	level = btrfs_header_level(buf);
2423 
2424 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2425 		return 0;
2426 
2427 	if (full_backref)
2428 		parent = buf->start;
2429 	else
2430 		parent = 0;
2431 	if (inc)
2432 		action = BTRFS_ADD_DELAYED_REF;
2433 	else
2434 		action = BTRFS_DROP_DELAYED_REF;
2435 
2436 	for (i = 0; i < nritems; i++) {
2437 		if (level == 0) {
2438 			btrfs_item_key_to_cpu(buf, &key, i);
2439 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2440 				continue;
2441 			fi = btrfs_item_ptr(buf, i,
2442 					    struct btrfs_file_extent_item);
2443 			if (btrfs_file_extent_type(buf, fi) ==
2444 			    BTRFS_FILE_EXTENT_INLINE)
2445 				continue;
2446 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2447 			if (bytenr == 0)
2448 				continue;
2449 
2450 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2451 			key.offset -= btrfs_file_extent_offset(buf, fi);
2452 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2453 					       num_bytes, parent);
2454 			generic_ref.real_root = root->root_key.objectid;
2455 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2456 					    key.offset);
2457 			generic_ref.skip_qgroup = for_reloc;
2458 			if (inc)
2459 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2460 			else
2461 				ret = btrfs_free_extent(trans, &generic_ref);
2462 			if (ret)
2463 				goto fail;
2464 		} else {
2465 			bytenr = btrfs_node_blockptr(buf, i);
2466 			num_bytes = fs_info->nodesize;
2467 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2468 					       num_bytes, parent);
2469 			generic_ref.real_root = root->root_key.objectid;
2470 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2471 			generic_ref.skip_qgroup = for_reloc;
2472 			if (inc)
2473 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2474 			else
2475 				ret = btrfs_free_extent(trans, &generic_ref);
2476 			if (ret)
2477 				goto fail;
2478 		}
2479 	}
2480 	return 0;
2481 fail:
2482 	return ret;
2483 }
2484 
2485 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2486 		  struct extent_buffer *buf, int full_backref)
2487 {
2488 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2489 }
2490 
2491 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2492 		  struct extent_buffer *buf, int full_backref)
2493 {
2494 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2495 }
2496 
2497 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2498 {
2499 	struct btrfs_fs_info *fs_info = root->fs_info;
2500 	u64 flags;
2501 	u64 ret;
2502 
2503 	if (data)
2504 		flags = BTRFS_BLOCK_GROUP_DATA;
2505 	else if (root == fs_info->chunk_root)
2506 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2507 	else
2508 		flags = BTRFS_BLOCK_GROUP_METADATA;
2509 
2510 	ret = btrfs_get_alloc_profile(fs_info, flags);
2511 	return ret;
2512 }
2513 
2514 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2515 {
2516 	struct btrfs_block_group *cache;
2517 	u64 bytenr;
2518 
2519 	spin_lock(&fs_info->block_group_cache_lock);
2520 	bytenr = fs_info->first_logical_byte;
2521 	spin_unlock(&fs_info->block_group_cache_lock);
2522 
2523 	if (bytenr < (u64)-1)
2524 		return bytenr;
2525 
2526 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2527 	if (!cache)
2528 		return 0;
2529 
2530 	bytenr = cache->start;
2531 	btrfs_put_block_group(cache);
2532 
2533 	return bytenr;
2534 }
2535 
2536 static int pin_down_extent(struct btrfs_trans_handle *trans,
2537 			   struct btrfs_block_group *cache,
2538 			   u64 bytenr, u64 num_bytes, int reserved)
2539 {
2540 	struct btrfs_fs_info *fs_info = cache->fs_info;
2541 
2542 	spin_lock(&cache->space_info->lock);
2543 	spin_lock(&cache->lock);
2544 	cache->pinned += num_bytes;
2545 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2546 					     num_bytes);
2547 	if (reserved) {
2548 		cache->reserved -= num_bytes;
2549 		cache->space_info->bytes_reserved -= num_bytes;
2550 	}
2551 	spin_unlock(&cache->lock);
2552 	spin_unlock(&cache->space_info->lock);
2553 
2554 	__btrfs_mod_total_bytes_pinned(cache->space_info, num_bytes);
2555 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2556 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2557 	return 0;
2558 }
2559 
2560 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2561 		     u64 bytenr, u64 num_bytes, int reserved)
2562 {
2563 	struct btrfs_block_group *cache;
2564 
2565 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2566 	BUG_ON(!cache); /* Logic error */
2567 
2568 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2569 
2570 	btrfs_put_block_group(cache);
2571 	return 0;
2572 }
2573 
2574 /*
2575  * this function must be called within transaction
2576  */
2577 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2578 				    u64 bytenr, u64 num_bytes)
2579 {
2580 	struct btrfs_block_group *cache;
2581 	int ret;
2582 
2583 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2584 	if (!cache)
2585 		return -EINVAL;
2586 
2587 	/*
2588 	 * pull in the free space cache (if any) so that our pin
2589 	 * removes the free space from the cache.  We have load_only set
2590 	 * to one because the slow code to read in the free extents does check
2591 	 * the pinned extents.
2592 	 */
2593 	btrfs_cache_block_group(cache, 1);
2594 	/*
2595 	 * Make sure we wait until the cache is completely built in case it is
2596 	 * missing or is invalid and therefore needs to be rebuilt.
2597 	 */
2598 	ret = btrfs_wait_block_group_cache_done(cache);
2599 	if (ret)
2600 		goto out;
2601 
2602 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2603 
2604 	/* remove us from the free space cache (if we're there at all) */
2605 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2606 out:
2607 	btrfs_put_block_group(cache);
2608 	return ret;
2609 }
2610 
2611 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2612 				   u64 start, u64 num_bytes)
2613 {
2614 	int ret;
2615 	struct btrfs_block_group *block_group;
2616 
2617 	block_group = btrfs_lookup_block_group(fs_info, start);
2618 	if (!block_group)
2619 		return -EINVAL;
2620 
2621 	btrfs_cache_block_group(block_group, 1);
2622 	/*
2623 	 * Make sure we wait until the cache is completely built in case it is
2624 	 * missing or is invalid and therefore needs to be rebuilt.
2625 	 */
2626 	ret = btrfs_wait_block_group_cache_done(block_group);
2627 	if (ret)
2628 		goto out;
2629 
2630 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2631 out:
2632 	btrfs_put_block_group(block_group);
2633 	return ret;
2634 }
2635 
2636 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2637 {
2638 	struct btrfs_fs_info *fs_info = eb->fs_info;
2639 	struct btrfs_file_extent_item *item;
2640 	struct btrfs_key key;
2641 	int found_type;
2642 	int i;
2643 	int ret = 0;
2644 
2645 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2646 		return 0;
2647 
2648 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2649 		btrfs_item_key_to_cpu(eb, &key, i);
2650 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2651 			continue;
2652 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2653 		found_type = btrfs_file_extent_type(eb, item);
2654 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2655 			continue;
2656 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2657 			continue;
2658 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2659 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2660 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2661 		if (ret)
2662 			break;
2663 	}
2664 
2665 	return ret;
2666 }
2667 
2668 static void
2669 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2670 {
2671 	atomic_inc(&bg->reservations);
2672 }
2673 
2674 /*
2675  * Returns the free cluster for the given space info and sets empty_cluster to
2676  * what it should be based on the mount options.
2677  */
2678 static struct btrfs_free_cluster *
2679 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2680 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2681 {
2682 	struct btrfs_free_cluster *ret = NULL;
2683 
2684 	*empty_cluster = 0;
2685 	if (btrfs_mixed_space_info(space_info))
2686 		return ret;
2687 
2688 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2689 		ret = &fs_info->meta_alloc_cluster;
2690 		if (btrfs_test_opt(fs_info, SSD))
2691 			*empty_cluster = SZ_2M;
2692 		else
2693 			*empty_cluster = SZ_64K;
2694 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2695 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2696 		*empty_cluster = SZ_2M;
2697 		ret = &fs_info->data_alloc_cluster;
2698 	}
2699 
2700 	return ret;
2701 }
2702 
2703 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2704 			      u64 start, u64 end,
2705 			      const bool return_free_space)
2706 {
2707 	struct btrfs_block_group *cache = NULL;
2708 	struct btrfs_space_info *space_info;
2709 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2710 	struct btrfs_free_cluster *cluster = NULL;
2711 	u64 len;
2712 	u64 total_unpinned = 0;
2713 	u64 empty_cluster = 0;
2714 	bool readonly;
2715 
2716 	while (start <= end) {
2717 		readonly = false;
2718 		if (!cache ||
2719 		    start >= cache->start + cache->length) {
2720 			if (cache)
2721 				btrfs_put_block_group(cache);
2722 			total_unpinned = 0;
2723 			cache = btrfs_lookup_block_group(fs_info, start);
2724 			BUG_ON(!cache); /* Logic error */
2725 
2726 			cluster = fetch_cluster_info(fs_info,
2727 						     cache->space_info,
2728 						     &empty_cluster);
2729 			empty_cluster <<= 1;
2730 		}
2731 
2732 		len = cache->start + cache->length - start;
2733 		len = min(len, end + 1 - start);
2734 
2735 		down_read(&fs_info->commit_root_sem);
2736 		if (start < cache->last_byte_to_unpin && return_free_space) {
2737 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2738 
2739 			btrfs_add_free_space(cache, start, add_len);
2740 		}
2741 		up_read(&fs_info->commit_root_sem);
2742 
2743 		start += len;
2744 		total_unpinned += len;
2745 		space_info = cache->space_info;
2746 
2747 		/*
2748 		 * If this space cluster has been marked as fragmented and we've
2749 		 * unpinned enough in this block group to potentially allow a
2750 		 * cluster to be created inside of it go ahead and clear the
2751 		 * fragmented check.
2752 		 */
2753 		if (cluster && cluster->fragmented &&
2754 		    total_unpinned > empty_cluster) {
2755 			spin_lock(&cluster->lock);
2756 			cluster->fragmented = 0;
2757 			spin_unlock(&cluster->lock);
2758 		}
2759 
2760 		spin_lock(&space_info->lock);
2761 		spin_lock(&cache->lock);
2762 		cache->pinned -= len;
2763 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2764 		space_info->max_extent_size = 0;
2765 		__btrfs_mod_total_bytes_pinned(space_info, -len);
2766 		if (cache->ro) {
2767 			space_info->bytes_readonly += len;
2768 			readonly = true;
2769 		} else if (btrfs_is_zoned(fs_info)) {
2770 			/* Need reset before reusing in a zoned block group */
2771 			space_info->bytes_zone_unusable += len;
2772 			readonly = true;
2773 		}
2774 		spin_unlock(&cache->lock);
2775 		if (!readonly && return_free_space &&
2776 		    global_rsv->space_info == space_info) {
2777 			u64 to_add = len;
2778 
2779 			spin_lock(&global_rsv->lock);
2780 			if (!global_rsv->full) {
2781 				to_add = min(len, global_rsv->size -
2782 					     global_rsv->reserved);
2783 				global_rsv->reserved += to_add;
2784 				btrfs_space_info_update_bytes_may_use(fs_info,
2785 						space_info, to_add);
2786 				if (global_rsv->reserved >= global_rsv->size)
2787 					global_rsv->full = 1;
2788 				len -= to_add;
2789 			}
2790 			spin_unlock(&global_rsv->lock);
2791 		}
2792 		/* Add to any tickets we may have */
2793 		if (!readonly && return_free_space && len)
2794 			btrfs_try_granting_tickets(fs_info, space_info);
2795 		spin_unlock(&space_info->lock);
2796 	}
2797 
2798 	if (cache)
2799 		btrfs_put_block_group(cache);
2800 	return 0;
2801 }
2802 
2803 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2804 {
2805 	struct btrfs_fs_info *fs_info = trans->fs_info;
2806 	struct btrfs_block_group *block_group, *tmp;
2807 	struct list_head *deleted_bgs;
2808 	struct extent_io_tree *unpin;
2809 	u64 start;
2810 	u64 end;
2811 	int ret;
2812 
2813 	unpin = &trans->transaction->pinned_extents;
2814 
2815 	while (!TRANS_ABORTED(trans)) {
2816 		struct extent_state *cached_state = NULL;
2817 
2818 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2819 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2820 					    EXTENT_DIRTY, &cached_state);
2821 		if (ret) {
2822 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2823 			break;
2824 		}
2825 
2826 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2827 			ret = btrfs_discard_extent(fs_info, start,
2828 						   end + 1 - start, NULL);
2829 
2830 		clear_extent_dirty(unpin, start, end, &cached_state);
2831 		unpin_extent_range(fs_info, start, end, true);
2832 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2833 		free_extent_state(cached_state);
2834 		cond_resched();
2835 	}
2836 
2837 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2838 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2839 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2840 	}
2841 
2842 	/*
2843 	 * Transaction is finished.  We don't need the lock anymore.  We
2844 	 * do need to clean up the block groups in case of a transaction
2845 	 * abort.
2846 	 */
2847 	deleted_bgs = &trans->transaction->deleted_bgs;
2848 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2849 		u64 trimmed = 0;
2850 
2851 		ret = -EROFS;
2852 		if (!TRANS_ABORTED(trans))
2853 			ret = btrfs_discard_extent(fs_info,
2854 						   block_group->start,
2855 						   block_group->length,
2856 						   &trimmed);
2857 
2858 		list_del_init(&block_group->bg_list);
2859 		btrfs_unfreeze_block_group(block_group);
2860 		btrfs_put_block_group(block_group);
2861 
2862 		if (ret) {
2863 			const char *errstr = btrfs_decode_error(ret);
2864 			btrfs_warn(fs_info,
2865 			   "discard failed while removing blockgroup: errno=%d %s",
2866 				   ret, errstr);
2867 		}
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 /*
2874  * Drop one or more refs of @node.
2875  *
2876  * 1. Locate the extent refs.
2877  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2878  *    Locate it, then reduce the refs number or remove the ref line completely.
2879  *
2880  * 2. Update the refs count in EXTENT/METADATA_ITEM
2881  *
2882  * Inline backref case:
2883  *
2884  * in extent tree we have:
2885  *
2886  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2887  *		refs 2 gen 6 flags DATA
2888  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2889  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2890  *
2891  * This function gets called with:
2892  *
2893  *    node->bytenr = 13631488
2894  *    node->num_bytes = 1048576
2895  *    root_objectid = FS_TREE
2896  *    owner_objectid = 257
2897  *    owner_offset = 0
2898  *    refs_to_drop = 1
2899  *
2900  * Then we should get some like:
2901  *
2902  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2903  *		refs 1 gen 6 flags DATA
2904  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2905  *
2906  * Keyed backref case:
2907  *
2908  * in extent tree we have:
2909  *
2910  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2911  *		refs 754 gen 6 flags DATA
2912  *	[...]
2913  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2914  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2915  *
2916  * This function get called with:
2917  *
2918  *    node->bytenr = 13631488
2919  *    node->num_bytes = 1048576
2920  *    root_objectid = FS_TREE
2921  *    owner_objectid = 866
2922  *    owner_offset = 0
2923  *    refs_to_drop = 1
2924  *
2925  * Then we should get some like:
2926  *
2927  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2928  *		refs 753 gen 6 flags DATA
2929  *
2930  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2931  */
2932 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2933 			       struct btrfs_delayed_ref_node *node, u64 parent,
2934 			       u64 root_objectid, u64 owner_objectid,
2935 			       u64 owner_offset, int refs_to_drop,
2936 			       struct btrfs_delayed_extent_op *extent_op)
2937 {
2938 	struct btrfs_fs_info *info = trans->fs_info;
2939 	struct btrfs_key key;
2940 	struct btrfs_path *path;
2941 	struct btrfs_root *extent_root = info->extent_root;
2942 	struct extent_buffer *leaf;
2943 	struct btrfs_extent_item *ei;
2944 	struct btrfs_extent_inline_ref *iref;
2945 	int ret;
2946 	int is_data;
2947 	int extent_slot = 0;
2948 	int found_extent = 0;
2949 	int num_to_del = 1;
2950 	u32 item_size;
2951 	u64 refs;
2952 	u64 bytenr = node->bytenr;
2953 	u64 num_bytes = node->num_bytes;
2954 	int last_ref = 0;
2955 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2956 
2957 	path = btrfs_alloc_path();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2962 
2963 	if (!is_data && refs_to_drop != 1) {
2964 		btrfs_crit(info,
2965 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2966 			   node->bytenr, refs_to_drop);
2967 		ret = -EINVAL;
2968 		btrfs_abort_transaction(trans, ret);
2969 		goto out;
2970 	}
2971 
2972 	if (is_data)
2973 		skinny_metadata = false;
2974 
2975 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2976 				    parent, root_objectid, owner_objectid,
2977 				    owner_offset);
2978 	if (ret == 0) {
2979 		/*
2980 		 * Either the inline backref or the SHARED_DATA_REF/
2981 		 * SHARED_BLOCK_REF is found
2982 		 *
2983 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2984 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2985 		 */
2986 		extent_slot = path->slots[0];
2987 		while (extent_slot >= 0) {
2988 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2989 					      extent_slot);
2990 			if (key.objectid != bytenr)
2991 				break;
2992 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2993 			    key.offset == num_bytes) {
2994 				found_extent = 1;
2995 				break;
2996 			}
2997 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2998 			    key.offset == owner_objectid) {
2999 				found_extent = 1;
3000 				break;
3001 			}
3002 
3003 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3004 			if (path->slots[0] - extent_slot > 5)
3005 				break;
3006 			extent_slot--;
3007 		}
3008 
3009 		if (!found_extent) {
3010 			if (iref) {
3011 				btrfs_crit(info,
3012 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3013 				btrfs_abort_transaction(trans, -EUCLEAN);
3014 				goto err_dump;
3015 			}
3016 			/* Must be SHARED_* item, remove the backref first */
3017 			ret = remove_extent_backref(trans, path, NULL,
3018 						    refs_to_drop,
3019 						    is_data, &last_ref);
3020 			if (ret) {
3021 				btrfs_abort_transaction(trans, ret);
3022 				goto out;
3023 			}
3024 			btrfs_release_path(path);
3025 
3026 			/* Slow path to locate EXTENT/METADATA_ITEM */
3027 			key.objectid = bytenr;
3028 			key.type = BTRFS_EXTENT_ITEM_KEY;
3029 			key.offset = num_bytes;
3030 
3031 			if (!is_data && skinny_metadata) {
3032 				key.type = BTRFS_METADATA_ITEM_KEY;
3033 				key.offset = owner_objectid;
3034 			}
3035 
3036 			ret = btrfs_search_slot(trans, extent_root,
3037 						&key, path, -1, 1);
3038 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3039 				/*
3040 				 * Couldn't find our skinny metadata item,
3041 				 * see if we have ye olde extent item.
3042 				 */
3043 				path->slots[0]--;
3044 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3045 						      path->slots[0]);
3046 				if (key.objectid == bytenr &&
3047 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3048 				    key.offset == num_bytes)
3049 					ret = 0;
3050 			}
3051 
3052 			if (ret > 0 && skinny_metadata) {
3053 				skinny_metadata = false;
3054 				key.objectid = bytenr;
3055 				key.type = BTRFS_EXTENT_ITEM_KEY;
3056 				key.offset = num_bytes;
3057 				btrfs_release_path(path);
3058 				ret = btrfs_search_slot(trans, extent_root,
3059 							&key, path, -1, 1);
3060 			}
3061 
3062 			if (ret) {
3063 				btrfs_err(info,
3064 					  "umm, got %d back from search, was looking for %llu",
3065 					  ret, bytenr);
3066 				if (ret > 0)
3067 					btrfs_print_leaf(path->nodes[0]);
3068 			}
3069 			if (ret < 0) {
3070 				btrfs_abort_transaction(trans, ret);
3071 				goto out;
3072 			}
3073 			extent_slot = path->slots[0];
3074 		}
3075 	} else if (WARN_ON(ret == -ENOENT)) {
3076 		btrfs_print_leaf(path->nodes[0]);
3077 		btrfs_err(info,
3078 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3079 			bytenr, parent, root_objectid, owner_objectid,
3080 			owner_offset);
3081 		btrfs_abort_transaction(trans, ret);
3082 		goto out;
3083 	} else {
3084 		btrfs_abort_transaction(trans, ret);
3085 		goto out;
3086 	}
3087 
3088 	leaf = path->nodes[0];
3089 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3090 	if (unlikely(item_size < sizeof(*ei))) {
3091 		ret = -EINVAL;
3092 		btrfs_print_v0_err(info);
3093 		btrfs_abort_transaction(trans, ret);
3094 		goto out;
3095 	}
3096 	ei = btrfs_item_ptr(leaf, extent_slot,
3097 			    struct btrfs_extent_item);
3098 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3099 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3100 		struct btrfs_tree_block_info *bi;
3101 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3102 			btrfs_crit(info,
3103 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3104 				   key.objectid, key.type, key.offset,
3105 				   owner_objectid, item_size,
3106 				   sizeof(*ei) + sizeof(*bi));
3107 			btrfs_abort_transaction(trans, -EUCLEAN);
3108 			goto err_dump;
3109 		}
3110 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3111 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3112 	}
3113 
3114 	refs = btrfs_extent_refs(leaf, ei);
3115 	if (refs < refs_to_drop) {
3116 		btrfs_crit(info,
3117 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3118 			  refs_to_drop, refs, bytenr);
3119 		btrfs_abort_transaction(trans, -EUCLEAN);
3120 		goto err_dump;
3121 	}
3122 	refs -= refs_to_drop;
3123 
3124 	if (refs > 0) {
3125 		if (extent_op)
3126 			__run_delayed_extent_op(extent_op, leaf, ei);
3127 		/*
3128 		 * In the case of inline back ref, reference count will
3129 		 * be updated by remove_extent_backref
3130 		 */
3131 		if (iref) {
3132 			if (!found_extent) {
3133 				btrfs_crit(info,
3134 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3135 				btrfs_abort_transaction(trans, -EUCLEAN);
3136 				goto err_dump;
3137 			}
3138 		} else {
3139 			btrfs_set_extent_refs(leaf, ei, refs);
3140 			btrfs_mark_buffer_dirty(leaf);
3141 		}
3142 		if (found_extent) {
3143 			ret = remove_extent_backref(trans, path, iref,
3144 						    refs_to_drop, is_data,
3145 						    &last_ref);
3146 			if (ret) {
3147 				btrfs_abort_transaction(trans, ret);
3148 				goto out;
3149 			}
3150 		}
3151 	} else {
3152 		/* In this branch refs == 1 */
3153 		if (found_extent) {
3154 			if (is_data && refs_to_drop !=
3155 			    extent_data_ref_count(path, iref)) {
3156 				btrfs_crit(info,
3157 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3158 					   extent_data_ref_count(path, iref),
3159 					   refs_to_drop);
3160 				btrfs_abort_transaction(trans, -EUCLEAN);
3161 				goto err_dump;
3162 			}
3163 			if (iref) {
3164 				if (path->slots[0] != extent_slot) {
3165 					btrfs_crit(info,
3166 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3167 						   key.objectid, key.type,
3168 						   key.offset);
3169 					btrfs_abort_transaction(trans, -EUCLEAN);
3170 					goto err_dump;
3171 				}
3172 			} else {
3173 				/*
3174 				 * No inline ref, we must be at SHARED_* item,
3175 				 * And it's single ref, it must be:
3176 				 * |	extent_slot	  ||extent_slot + 1|
3177 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3178 				 */
3179 				if (path->slots[0] != extent_slot + 1) {
3180 					btrfs_crit(info,
3181 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3182 					btrfs_abort_transaction(trans, -EUCLEAN);
3183 					goto err_dump;
3184 				}
3185 				path->slots[0] = extent_slot;
3186 				num_to_del = 2;
3187 			}
3188 		}
3189 
3190 		last_ref = 1;
3191 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3192 				      num_to_del);
3193 		if (ret) {
3194 			btrfs_abort_transaction(trans, ret);
3195 			goto out;
3196 		}
3197 		btrfs_release_path(path);
3198 
3199 		if (is_data) {
3200 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3201 					      num_bytes);
3202 			if (ret) {
3203 				btrfs_abort_transaction(trans, ret);
3204 				goto out;
3205 			}
3206 		}
3207 
3208 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3209 		if (ret) {
3210 			btrfs_abort_transaction(trans, ret);
3211 			goto out;
3212 		}
3213 
3214 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3215 		if (ret) {
3216 			btrfs_abort_transaction(trans, ret);
3217 			goto out;
3218 		}
3219 	}
3220 	btrfs_release_path(path);
3221 
3222 out:
3223 	btrfs_free_path(path);
3224 	return ret;
3225 err_dump:
3226 	/*
3227 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3228 	 * dump for debug build.
3229 	 */
3230 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3231 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3232 			   path->slots[0], extent_slot);
3233 		btrfs_print_leaf(path->nodes[0]);
3234 	}
3235 
3236 	btrfs_free_path(path);
3237 	return -EUCLEAN;
3238 }
3239 
3240 /*
3241  * when we free an block, it is possible (and likely) that we free the last
3242  * delayed ref for that extent as well.  This searches the delayed ref tree for
3243  * a given extent, and if there are no other delayed refs to be processed, it
3244  * removes it from the tree.
3245  */
3246 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3247 				      u64 bytenr)
3248 {
3249 	struct btrfs_delayed_ref_head *head;
3250 	struct btrfs_delayed_ref_root *delayed_refs;
3251 	int ret = 0;
3252 
3253 	delayed_refs = &trans->transaction->delayed_refs;
3254 	spin_lock(&delayed_refs->lock);
3255 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3256 	if (!head)
3257 		goto out_delayed_unlock;
3258 
3259 	spin_lock(&head->lock);
3260 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3261 		goto out;
3262 
3263 	if (cleanup_extent_op(head) != NULL)
3264 		goto out;
3265 
3266 	/*
3267 	 * waiting for the lock here would deadlock.  If someone else has it
3268 	 * locked they are already in the process of dropping it anyway
3269 	 */
3270 	if (!mutex_trylock(&head->mutex))
3271 		goto out;
3272 
3273 	btrfs_delete_ref_head(delayed_refs, head);
3274 	head->processing = 0;
3275 
3276 	spin_unlock(&head->lock);
3277 	spin_unlock(&delayed_refs->lock);
3278 
3279 	BUG_ON(head->extent_op);
3280 	if (head->must_insert_reserved)
3281 		ret = 1;
3282 
3283 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3284 	mutex_unlock(&head->mutex);
3285 	btrfs_put_delayed_ref_head(head);
3286 	return ret;
3287 out:
3288 	spin_unlock(&head->lock);
3289 
3290 out_delayed_unlock:
3291 	spin_unlock(&delayed_refs->lock);
3292 	return 0;
3293 }
3294 
3295 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3296 			   struct btrfs_root *root,
3297 			   struct extent_buffer *buf,
3298 			   u64 parent, int last_ref)
3299 {
3300 	struct btrfs_fs_info *fs_info = root->fs_info;
3301 	struct btrfs_ref generic_ref = { 0 };
3302 	int ret;
3303 
3304 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3305 			       buf->start, buf->len, parent);
3306 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3307 			    root->root_key.objectid);
3308 
3309 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3310 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3311 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3312 		BUG_ON(ret); /* -ENOMEM */
3313 	}
3314 
3315 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3316 		struct btrfs_block_group *cache;
3317 		bool must_pin = false;
3318 
3319 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3320 			ret = check_ref_cleanup(trans, buf->start);
3321 			if (!ret) {
3322 				btrfs_redirty_list_add(trans->transaction, buf);
3323 				goto out;
3324 			}
3325 		}
3326 
3327 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3328 
3329 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3330 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3331 			btrfs_put_block_group(cache);
3332 			goto out;
3333 		}
3334 
3335 		/*
3336 		 * If this is a leaf and there are tree mod log users, we may
3337 		 * have recorded mod log operations that point to this leaf.
3338 		 * So we must make sure no one reuses this leaf's extent before
3339 		 * mod log operations are applied to a node, otherwise after
3340 		 * rewinding a node using the mod log operations we get an
3341 		 * inconsistent btree, as the leaf's extent may now be used as
3342 		 * a node or leaf for another different btree.
3343 		 * We are safe from races here because at this point no other
3344 		 * node or root points to this extent buffer, so if after this
3345 		 * check a new tree mod log user joins, it will not be able to
3346 		 * find a node pointing to this leaf and record operations that
3347 		 * point to this leaf.
3348 		 */
3349 		if (btrfs_header_level(buf) == 0 &&
3350 		    test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3351 			must_pin = true;
3352 
3353 		if (must_pin || btrfs_is_zoned(fs_info)) {
3354 			btrfs_redirty_list_add(trans->transaction, buf);
3355 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3356 			btrfs_put_block_group(cache);
3357 			goto out;
3358 		}
3359 
3360 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3361 
3362 		btrfs_add_free_space(cache, buf->start, buf->len);
3363 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3364 		btrfs_put_block_group(cache);
3365 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3366 	}
3367 out:
3368 	if (last_ref) {
3369 		/*
3370 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3371 		 * matter anymore.
3372 		 */
3373 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3374 	}
3375 }
3376 
3377 /* Can return -ENOMEM */
3378 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3379 {
3380 	struct btrfs_fs_info *fs_info = trans->fs_info;
3381 	int ret;
3382 
3383 	if (btrfs_is_testing(fs_info))
3384 		return 0;
3385 
3386 	/*
3387 	 * tree log blocks never actually go into the extent allocation
3388 	 * tree, just update pinning info and exit early.
3389 	 */
3390 	if ((ref->type == BTRFS_REF_METADATA &&
3391 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3392 	    (ref->type == BTRFS_REF_DATA &&
3393 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3394 		/* unlocks the pinned mutex */
3395 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3396 		ret = 0;
3397 	} else if (ref->type == BTRFS_REF_METADATA) {
3398 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3399 	} else {
3400 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3401 	}
3402 
3403 	if (!((ref->type == BTRFS_REF_METADATA &&
3404 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3405 	      (ref->type == BTRFS_REF_DATA &&
3406 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3407 		btrfs_ref_tree_mod(fs_info, ref);
3408 
3409 	return ret;
3410 }
3411 
3412 enum btrfs_loop_type {
3413 	LOOP_CACHING_NOWAIT,
3414 	LOOP_CACHING_WAIT,
3415 	LOOP_ALLOC_CHUNK,
3416 	LOOP_NO_EMPTY_SIZE,
3417 };
3418 
3419 static inline void
3420 btrfs_lock_block_group(struct btrfs_block_group *cache,
3421 		       int delalloc)
3422 {
3423 	if (delalloc)
3424 		down_read(&cache->data_rwsem);
3425 }
3426 
3427 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3428 		       int delalloc)
3429 {
3430 	btrfs_get_block_group(cache);
3431 	if (delalloc)
3432 		down_read(&cache->data_rwsem);
3433 }
3434 
3435 static struct btrfs_block_group *btrfs_lock_cluster(
3436 		   struct btrfs_block_group *block_group,
3437 		   struct btrfs_free_cluster *cluster,
3438 		   int delalloc)
3439 	__acquires(&cluster->refill_lock)
3440 {
3441 	struct btrfs_block_group *used_bg = NULL;
3442 
3443 	spin_lock(&cluster->refill_lock);
3444 	while (1) {
3445 		used_bg = cluster->block_group;
3446 		if (!used_bg)
3447 			return NULL;
3448 
3449 		if (used_bg == block_group)
3450 			return used_bg;
3451 
3452 		btrfs_get_block_group(used_bg);
3453 
3454 		if (!delalloc)
3455 			return used_bg;
3456 
3457 		if (down_read_trylock(&used_bg->data_rwsem))
3458 			return used_bg;
3459 
3460 		spin_unlock(&cluster->refill_lock);
3461 
3462 		/* We should only have one-level nested. */
3463 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3464 
3465 		spin_lock(&cluster->refill_lock);
3466 		if (used_bg == cluster->block_group)
3467 			return used_bg;
3468 
3469 		up_read(&used_bg->data_rwsem);
3470 		btrfs_put_block_group(used_bg);
3471 	}
3472 }
3473 
3474 static inline void
3475 btrfs_release_block_group(struct btrfs_block_group *cache,
3476 			 int delalloc)
3477 {
3478 	if (delalloc)
3479 		up_read(&cache->data_rwsem);
3480 	btrfs_put_block_group(cache);
3481 }
3482 
3483 enum btrfs_extent_allocation_policy {
3484 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3485 	BTRFS_EXTENT_ALLOC_ZONED,
3486 };
3487 
3488 /*
3489  * Structure used internally for find_free_extent() function.  Wraps needed
3490  * parameters.
3491  */
3492 struct find_free_extent_ctl {
3493 	/* Basic allocation info */
3494 	u64 num_bytes;
3495 	u64 empty_size;
3496 	u64 flags;
3497 	int delalloc;
3498 
3499 	/* Where to start the search inside the bg */
3500 	u64 search_start;
3501 
3502 	/* For clustered allocation */
3503 	u64 empty_cluster;
3504 	struct btrfs_free_cluster *last_ptr;
3505 	bool use_cluster;
3506 
3507 	bool have_caching_bg;
3508 	bool orig_have_caching_bg;
3509 
3510 	/* Allocation is called for tree-log */
3511 	bool for_treelog;
3512 
3513 	/* RAID index, converted from flags */
3514 	int index;
3515 
3516 	/*
3517 	 * Current loop number, check find_free_extent_update_loop() for details
3518 	 */
3519 	int loop;
3520 
3521 	/*
3522 	 * Whether we're refilling a cluster, if true we need to re-search
3523 	 * current block group but don't try to refill the cluster again.
3524 	 */
3525 	bool retry_clustered;
3526 
3527 	/*
3528 	 * Whether we're updating free space cache, if true we need to re-search
3529 	 * current block group but don't try updating free space cache again.
3530 	 */
3531 	bool retry_unclustered;
3532 
3533 	/* If current block group is cached */
3534 	int cached;
3535 
3536 	/* Max contiguous hole found */
3537 	u64 max_extent_size;
3538 
3539 	/* Total free space from free space cache, not always contiguous */
3540 	u64 total_free_space;
3541 
3542 	/* Found result */
3543 	u64 found_offset;
3544 
3545 	/* Hint where to start looking for an empty space */
3546 	u64 hint_byte;
3547 
3548 	/* Allocation policy */
3549 	enum btrfs_extent_allocation_policy policy;
3550 };
3551 
3552 
3553 /*
3554  * Helper function for find_free_extent().
3555  *
3556  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3557  * Return -EAGAIN to inform caller that we need to re-search this block group
3558  * Return >0 to inform caller that we find nothing
3559  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3560  */
3561 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3562 				      struct find_free_extent_ctl *ffe_ctl,
3563 				      struct btrfs_block_group **cluster_bg_ret)
3564 {
3565 	struct btrfs_block_group *cluster_bg;
3566 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3567 	u64 aligned_cluster;
3568 	u64 offset;
3569 	int ret;
3570 
3571 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3572 	if (!cluster_bg)
3573 		goto refill_cluster;
3574 	if (cluster_bg != bg && (cluster_bg->ro ||
3575 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3576 		goto release_cluster;
3577 
3578 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3579 			ffe_ctl->num_bytes, cluster_bg->start,
3580 			&ffe_ctl->max_extent_size);
3581 	if (offset) {
3582 		/* We have a block, we're done */
3583 		spin_unlock(&last_ptr->refill_lock);
3584 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3585 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3586 		*cluster_bg_ret = cluster_bg;
3587 		ffe_ctl->found_offset = offset;
3588 		return 0;
3589 	}
3590 	WARN_ON(last_ptr->block_group != cluster_bg);
3591 
3592 release_cluster:
3593 	/*
3594 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3595 	 * lets just skip it and let the allocator find whatever block it can
3596 	 * find. If we reach this point, we will have tried the cluster
3597 	 * allocator plenty of times and not have found anything, so we are
3598 	 * likely way too fragmented for the clustering stuff to find anything.
3599 	 *
3600 	 * However, if the cluster is taken from the current block group,
3601 	 * release the cluster first, so that we stand a better chance of
3602 	 * succeeding in the unclustered allocation.
3603 	 */
3604 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3605 		spin_unlock(&last_ptr->refill_lock);
3606 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3607 		return -ENOENT;
3608 	}
3609 
3610 	/* This cluster didn't work out, free it and start over */
3611 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3612 
3613 	if (cluster_bg != bg)
3614 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3615 
3616 refill_cluster:
3617 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3618 		spin_unlock(&last_ptr->refill_lock);
3619 		return -ENOENT;
3620 	}
3621 
3622 	aligned_cluster = max_t(u64,
3623 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3624 			bg->full_stripe_len);
3625 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3626 			ffe_ctl->num_bytes, aligned_cluster);
3627 	if (ret == 0) {
3628 		/* Now pull our allocation out of this cluster */
3629 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3630 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3631 				&ffe_ctl->max_extent_size);
3632 		if (offset) {
3633 			/* We found one, proceed */
3634 			spin_unlock(&last_ptr->refill_lock);
3635 			trace_btrfs_reserve_extent_cluster(bg,
3636 					ffe_ctl->search_start,
3637 					ffe_ctl->num_bytes);
3638 			ffe_ctl->found_offset = offset;
3639 			return 0;
3640 		}
3641 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3642 		   !ffe_ctl->retry_clustered) {
3643 		spin_unlock(&last_ptr->refill_lock);
3644 
3645 		ffe_ctl->retry_clustered = true;
3646 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3647 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3648 		return -EAGAIN;
3649 	}
3650 	/*
3651 	 * At this point we either didn't find a cluster or we weren't able to
3652 	 * allocate a block from our cluster.  Free the cluster we've been
3653 	 * trying to use, and go to the next block group.
3654 	 */
3655 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3656 	spin_unlock(&last_ptr->refill_lock);
3657 	return 1;
3658 }
3659 
3660 /*
3661  * Return >0 to inform caller that we find nothing
3662  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3663  * Return -EAGAIN to inform caller that we need to re-search this block group
3664  */
3665 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3666 					struct find_free_extent_ctl *ffe_ctl)
3667 {
3668 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3669 	u64 offset;
3670 
3671 	/*
3672 	 * We are doing an unclustered allocation, set the fragmented flag so
3673 	 * we don't bother trying to setup a cluster again until we get more
3674 	 * space.
3675 	 */
3676 	if (unlikely(last_ptr)) {
3677 		spin_lock(&last_ptr->lock);
3678 		last_ptr->fragmented = 1;
3679 		spin_unlock(&last_ptr->lock);
3680 	}
3681 	if (ffe_ctl->cached) {
3682 		struct btrfs_free_space_ctl *free_space_ctl;
3683 
3684 		free_space_ctl = bg->free_space_ctl;
3685 		spin_lock(&free_space_ctl->tree_lock);
3686 		if (free_space_ctl->free_space <
3687 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3688 		    ffe_ctl->empty_size) {
3689 			ffe_ctl->total_free_space = max_t(u64,
3690 					ffe_ctl->total_free_space,
3691 					free_space_ctl->free_space);
3692 			spin_unlock(&free_space_ctl->tree_lock);
3693 			return 1;
3694 		}
3695 		spin_unlock(&free_space_ctl->tree_lock);
3696 	}
3697 
3698 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3699 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3700 			&ffe_ctl->max_extent_size);
3701 
3702 	/*
3703 	 * If we didn't find a chunk, and we haven't failed on this block group
3704 	 * before, and this block group is in the middle of caching and we are
3705 	 * ok with waiting, then go ahead and wait for progress to be made, and
3706 	 * set @retry_unclustered to true.
3707 	 *
3708 	 * If @retry_unclustered is true then we've already waited on this
3709 	 * block group once and should move on to the next block group.
3710 	 */
3711 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3712 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3713 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3714 						      ffe_ctl->empty_size);
3715 		ffe_ctl->retry_unclustered = true;
3716 		return -EAGAIN;
3717 	} else if (!offset) {
3718 		return 1;
3719 	}
3720 	ffe_ctl->found_offset = offset;
3721 	return 0;
3722 }
3723 
3724 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3725 				   struct find_free_extent_ctl *ffe_ctl,
3726 				   struct btrfs_block_group **bg_ret)
3727 {
3728 	int ret;
3729 
3730 	/* We want to try and use the cluster allocator, so lets look there */
3731 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3732 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3733 		if (ret >= 0 || ret == -EAGAIN)
3734 			return ret;
3735 		/* ret == -ENOENT case falls through */
3736 	}
3737 
3738 	return find_free_extent_unclustered(block_group, ffe_ctl);
3739 }
3740 
3741 /*
3742  * Tree-log block group locking
3743  * ============================
3744  *
3745  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3746  * indicates the starting address of a block group, which is reserved only
3747  * for tree-log metadata.
3748  *
3749  * Lock nesting
3750  * ============
3751  *
3752  * space_info::lock
3753  *   block_group::lock
3754  *     fs_info::treelog_bg_lock
3755  */
3756 
3757 /*
3758  * Simple allocator for sequential-only block group. It only allows sequential
3759  * allocation. No need to play with trees. This function also reserves the
3760  * bytes as in btrfs_add_reserved_bytes.
3761  */
3762 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3763 			       struct find_free_extent_ctl *ffe_ctl,
3764 			       struct btrfs_block_group **bg_ret)
3765 {
3766 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3767 	struct btrfs_space_info *space_info = block_group->space_info;
3768 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3769 	u64 start = block_group->start;
3770 	u64 num_bytes = ffe_ctl->num_bytes;
3771 	u64 avail;
3772 	u64 bytenr = block_group->start;
3773 	u64 log_bytenr;
3774 	int ret = 0;
3775 	bool skip;
3776 
3777 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3778 
3779 	/*
3780 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3781 	 * group, and vice versa.
3782 	 */
3783 	spin_lock(&fs_info->treelog_bg_lock);
3784 	log_bytenr = fs_info->treelog_bg;
3785 	skip = log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3786 			      (!ffe_ctl->for_treelog && bytenr == log_bytenr));
3787 	spin_unlock(&fs_info->treelog_bg_lock);
3788 	if (skip)
3789 		return 1;
3790 
3791 	spin_lock(&space_info->lock);
3792 	spin_lock(&block_group->lock);
3793 	spin_lock(&fs_info->treelog_bg_lock);
3794 
3795 	ASSERT(!ffe_ctl->for_treelog ||
3796 	       block_group->start == fs_info->treelog_bg ||
3797 	       fs_info->treelog_bg == 0);
3798 
3799 	if (block_group->ro) {
3800 		ret = 1;
3801 		goto out;
3802 	}
3803 
3804 	/*
3805 	 * Do not allow currently using block group to be tree-log dedicated
3806 	 * block group.
3807 	 */
3808 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3809 	    (block_group->used || block_group->reserved)) {
3810 		ret = 1;
3811 		goto out;
3812 	}
3813 
3814 	avail = block_group->length - block_group->alloc_offset;
3815 	if (avail < num_bytes) {
3816 		if (ffe_ctl->max_extent_size < avail) {
3817 			/*
3818 			 * With sequential allocator, free space is always
3819 			 * contiguous
3820 			 */
3821 			ffe_ctl->max_extent_size = avail;
3822 			ffe_ctl->total_free_space = avail;
3823 		}
3824 		ret = 1;
3825 		goto out;
3826 	}
3827 
3828 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3829 		fs_info->treelog_bg = block_group->start;
3830 
3831 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3832 	block_group->alloc_offset += num_bytes;
3833 	spin_lock(&ctl->tree_lock);
3834 	ctl->free_space -= num_bytes;
3835 	spin_unlock(&ctl->tree_lock);
3836 
3837 	/*
3838 	 * We do not check if found_offset is aligned to stripesize. The
3839 	 * address is anyway rewritten when using zone append writing.
3840 	 */
3841 
3842 	ffe_ctl->search_start = ffe_ctl->found_offset;
3843 
3844 out:
3845 	if (ret && ffe_ctl->for_treelog)
3846 		fs_info->treelog_bg = 0;
3847 	spin_unlock(&fs_info->treelog_bg_lock);
3848 	spin_unlock(&block_group->lock);
3849 	spin_unlock(&space_info->lock);
3850 	return ret;
3851 }
3852 
3853 static int do_allocation(struct btrfs_block_group *block_group,
3854 			 struct find_free_extent_ctl *ffe_ctl,
3855 			 struct btrfs_block_group **bg_ret)
3856 {
3857 	switch (ffe_ctl->policy) {
3858 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3859 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3860 	case BTRFS_EXTENT_ALLOC_ZONED:
3861 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3862 	default:
3863 		BUG();
3864 	}
3865 }
3866 
3867 static void release_block_group(struct btrfs_block_group *block_group,
3868 				struct find_free_extent_ctl *ffe_ctl,
3869 				int delalloc)
3870 {
3871 	switch (ffe_ctl->policy) {
3872 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3873 		ffe_ctl->retry_clustered = false;
3874 		ffe_ctl->retry_unclustered = false;
3875 		break;
3876 	case BTRFS_EXTENT_ALLOC_ZONED:
3877 		/* Nothing to do */
3878 		break;
3879 	default:
3880 		BUG();
3881 	}
3882 
3883 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3884 	       ffe_ctl->index);
3885 	btrfs_release_block_group(block_group, delalloc);
3886 }
3887 
3888 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3889 				   struct btrfs_key *ins)
3890 {
3891 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3892 
3893 	if (!ffe_ctl->use_cluster && last_ptr) {
3894 		spin_lock(&last_ptr->lock);
3895 		last_ptr->window_start = ins->objectid;
3896 		spin_unlock(&last_ptr->lock);
3897 	}
3898 }
3899 
3900 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3901 			 struct btrfs_key *ins)
3902 {
3903 	switch (ffe_ctl->policy) {
3904 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3905 		found_extent_clustered(ffe_ctl, ins);
3906 		break;
3907 	case BTRFS_EXTENT_ALLOC_ZONED:
3908 		/* Nothing to do */
3909 		break;
3910 	default:
3911 		BUG();
3912 	}
3913 }
3914 
3915 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3916 {
3917 	switch (ffe_ctl->policy) {
3918 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3919 		/*
3920 		 * If we can't allocate a new chunk we've already looped through
3921 		 * at least once, move on to the NO_EMPTY_SIZE case.
3922 		 */
3923 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3924 		return 0;
3925 	case BTRFS_EXTENT_ALLOC_ZONED:
3926 		/* Give up here */
3927 		return -ENOSPC;
3928 	default:
3929 		BUG();
3930 	}
3931 }
3932 
3933 /*
3934  * Return >0 means caller needs to re-search for free extent
3935  * Return 0 means we have the needed free extent.
3936  * Return <0 means we failed to locate any free extent.
3937  */
3938 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3939 					struct btrfs_key *ins,
3940 					struct find_free_extent_ctl *ffe_ctl,
3941 					bool full_search)
3942 {
3943 	struct btrfs_root *root = fs_info->extent_root;
3944 	int ret;
3945 
3946 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3947 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3948 		ffe_ctl->orig_have_caching_bg = true;
3949 
3950 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3951 	    ffe_ctl->have_caching_bg)
3952 		return 1;
3953 
3954 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3955 		return 1;
3956 
3957 	if (ins->objectid) {
3958 		found_extent(ffe_ctl, ins);
3959 		return 0;
3960 	}
3961 
3962 	/*
3963 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3964 	 *			caching kthreads as we move along
3965 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3966 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3967 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3968 	 *		       again
3969 	 */
3970 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3971 		ffe_ctl->index = 0;
3972 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3973 			/*
3974 			 * We want to skip the LOOP_CACHING_WAIT step if we
3975 			 * don't have any uncached bgs and we've already done a
3976 			 * full search through.
3977 			 */
3978 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3979 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3980 			else
3981 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3982 		} else {
3983 			ffe_ctl->loop++;
3984 		}
3985 
3986 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3987 			struct btrfs_trans_handle *trans;
3988 			int exist = 0;
3989 
3990 			trans = current->journal_info;
3991 			if (trans)
3992 				exist = 1;
3993 			else
3994 				trans = btrfs_join_transaction(root);
3995 
3996 			if (IS_ERR(trans)) {
3997 				ret = PTR_ERR(trans);
3998 				return ret;
3999 			}
4000 
4001 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4002 						CHUNK_ALLOC_FORCE);
4003 
4004 			/* Do not bail out on ENOSPC since we can do more. */
4005 			if (ret == -ENOSPC)
4006 				ret = chunk_allocation_failed(ffe_ctl);
4007 			else if (ret < 0)
4008 				btrfs_abort_transaction(trans, ret);
4009 			else
4010 				ret = 0;
4011 			if (!exist)
4012 				btrfs_end_transaction(trans);
4013 			if (ret)
4014 				return ret;
4015 		}
4016 
4017 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4018 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4019 				return -ENOSPC;
4020 
4021 			/*
4022 			 * Don't loop again if we already have no empty_size and
4023 			 * no empty_cluster.
4024 			 */
4025 			if (ffe_ctl->empty_size == 0 &&
4026 			    ffe_ctl->empty_cluster == 0)
4027 				return -ENOSPC;
4028 			ffe_ctl->empty_size = 0;
4029 			ffe_ctl->empty_cluster = 0;
4030 		}
4031 		return 1;
4032 	}
4033 	return -ENOSPC;
4034 }
4035 
4036 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4037 					struct find_free_extent_ctl *ffe_ctl,
4038 					struct btrfs_space_info *space_info,
4039 					struct btrfs_key *ins)
4040 {
4041 	/*
4042 	 * If our free space is heavily fragmented we may not be able to make
4043 	 * big contiguous allocations, so instead of doing the expensive search
4044 	 * for free space, simply return ENOSPC with our max_extent_size so we
4045 	 * can go ahead and search for a more manageable chunk.
4046 	 *
4047 	 * If our max_extent_size is large enough for our allocation simply
4048 	 * disable clustering since we will likely not be able to find enough
4049 	 * space to create a cluster and induce latency trying.
4050 	 */
4051 	if (space_info->max_extent_size) {
4052 		spin_lock(&space_info->lock);
4053 		if (space_info->max_extent_size &&
4054 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4055 			ins->offset = space_info->max_extent_size;
4056 			spin_unlock(&space_info->lock);
4057 			return -ENOSPC;
4058 		} else if (space_info->max_extent_size) {
4059 			ffe_ctl->use_cluster = false;
4060 		}
4061 		spin_unlock(&space_info->lock);
4062 	}
4063 
4064 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4065 					       &ffe_ctl->empty_cluster);
4066 	if (ffe_ctl->last_ptr) {
4067 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4068 
4069 		spin_lock(&last_ptr->lock);
4070 		if (last_ptr->block_group)
4071 			ffe_ctl->hint_byte = last_ptr->window_start;
4072 		if (last_ptr->fragmented) {
4073 			/*
4074 			 * We still set window_start so we can keep track of the
4075 			 * last place we found an allocation to try and save
4076 			 * some time.
4077 			 */
4078 			ffe_ctl->hint_byte = last_ptr->window_start;
4079 			ffe_ctl->use_cluster = false;
4080 		}
4081 		spin_unlock(&last_ptr->lock);
4082 	}
4083 
4084 	return 0;
4085 }
4086 
4087 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4088 			      struct find_free_extent_ctl *ffe_ctl,
4089 			      struct btrfs_space_info *space_info,
4090 			      struct btrfs_key *ins)
4091 {
4092 	switch (ffe_ctl->policy) {
4093 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4094 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4095 						    space_info, ins);
4096 	case BTRFS_EXTENT_ALLOC_ZONED:
4097 		if (ffe_ctl->for_treelog) {
4098 			spin_lock(&fs_info->treelog_bg_lock);
4099 			if (fs_info->treelog_bg)
4100 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4101 			spin_unlock(&fs_info->treelog_bg_lock);
4102 		}
4103 		return 0;
4104 	default:
4105 		BUG();
4106 	}
4107 }
4108 
4109 /*
4110  * walks the btree of allocated extents and find a hole of a given size.
4111  * The key ins is changed to record the hole:
4112  * ins->objectid == start position
4113  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4114  * ins->offset == the size of the hole.
4115  * Any available blocks before search_start are skipped.
4116  *
4117  * If there is no suitable free space, we will record the max size of
4118  * the free space extent currently.
4119  *
4120  * The overall logic and call chain:
4121  *
4122  * find_free_extent()
4123  * |- Iterate through all block groups
4124  * |  |- Get a valid block group
4125  * |  |- Try to do clustered allocation in that block group
4126  * |  |- Try to do unclustered allocation in that block group
4127  * |  |- Check if the result is valid
4128  * |  |  |- If valid, then exit
4129  * |  |- Jump to next block group
4130  * |
4131  * |- Push harder to find free extents
4132  *    |- If not found, re-iterate all block groups
4133  */
4134 static noinline int find_free_extent(struct btrfs_root *root,
4135 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
4136 				u64 hint_byte_orig, struct btrfs_key *ins,
4137 				u64 flags, int delalloc)
4138 {
4139 	struct btrfs_fs_info *fs_info = root->fs_info;
4140 	int ret = 0;
4141 	int cache_block_group_error = 0;
4142 	struct btrfs_block_group *block_group = NULL;
4143 	struct find_free_extent_ctl ffe_ctl = {0};
4144 	struct btrfs_space_info *space_info;
4145 	bool full_search = false;
4146 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4147 
4148 	WARN_ON(num_bytes < fs_info->sectorsize);
4149 
4150 	ffe_ctl.num_bytes = num_bytes;
4151 	ffe_ctl.empty_size = empty_size;
4152 	ffe_ctl.flags = flags;
4153 	ffe_ctl.search_start = 0;
4154 	ffe_ctl.delalloc = delalloc;
4155 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
4156 	ffe_ctl.have_caching_bg = false;
4157 	ffe_ctl.orig_have_caching_bg = false;
4158 	ffe_ctl.found_offset = 0;
4159 	ffe_ctl.hint_byte = hint_byte_orig;
4160 	ffe_ctl.for_treelog = for_treelog;
4161 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4162 
4163 	/* For clustered allocation */
4164 	ffe_ctl.retry_clustered = false;
4165 	ffe_ctl.retry_unclustered = false;
4166 	ffe_ctl.last_ptr = NULL;
4167 	ffe_ctl.use_cluster = true;
4168 
4169 	if (btrfs_is_zoned(fs_info))
4170 		ffe_ctl.policy = BTRFS_EXTENT_ALLOC_ZONED;
4171 
4172 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4173 	ins->objectid = 0;
4174 	ins->offset = 0;
4175 
4176 	trace_find_free_extent(root, num_bytes, empty_size, flags);
4177 
4178 	space_info = btrfs_find_space_info(fs_info, flags);
4179 	if (!space_info) {
4180 		btrfs_err(fs_info, "No space info for %llu", flags);
4181 		return -ENOSPC;
4182 	}
4183 
4184 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
4185 	if (ret < 0)
4186 		return ret;
4187 
4188 	ffe_ctl.search_start = max(ffe_ctl.search_start,
4189 				   first_logical_byte(fs_info, 0));
4190 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
4191 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
4192 		block_group = btrfs_lookup_block_group(fs_info,
4193 						       ffe_ctl.search_start);
4194 		/*
4195 		 * we don't want to use the block group if it doesn't match our
4196 		 * allocation bits, or if its not cached.
4197 		 *
4198 		 * However if we are re-searching with an ideal block group
4199 		 * picked out then we don't care that the block group is cached.
4200 		 */
4201 		if (block_group && block_group_bits(block_group, flags) &&
4202 		    block_group->cached != BTRFS_CACHE_NO) {
4203 			down_read(&space_info->groups_sem);
4204 			if (list_empty(&block_group->list) ||
4205 			    block_group->ro) {
4206 				/*
4207 				 * someone is removing this block group,
4208 				 * we can't jump into the have_block_group
4209 				 * target because our list pointers are not
4210 				 * valid
4211 				 */
4212 				btrfs_put_block_group(block_group);
4213 				up_read(&space_info->groups_sem);
4214 			} else {
4215 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4216 						block_group->flags);
4217 				btrfs_lock_block_group(block_group, delalloc);
4218 				goto have_block_group;
4219 			}
4220 		} else if (block_group) {
4221 			btrfs_put_block_group(block_group);
4222 		}
4223 	}
4224 search:
4225 	ffe_ctl.have_caching_bg = false;
4226 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4227 	    ffe_ctl.index == 0)
4228 		full_search = true;
4229 	down_read(&space_info->groups_sem);
4230 	list_for_each_entry(block_group,
4231 			    &space_info->block_groups[ffe_ctl.index], list) {
4232 		struct btrfs_block_group *bg_ret;
4233 
4234 		/* If the block group is read-only, we can skip it entirely. */
4235 		if (unlikely(block_group->ro)) {
4236 			if (for_treelog)
4237 				btrfs_clear_treelog_bg(block_group);
4238 			continue;
4239 		}
4240 
4241 		btrfs_grab_block_group(block_group, delalloc);
4242 		ffe_ctl.search_start = block_group->start;
4243 
4244 		/*
4245 		 * this can happen if we end up cycling through all the
4246 		 * raid types, but we want to make sure we only allocate
4247 		 * for the proper type.
4248 		 */
4249 		if (!block_group_bits(block_group, flags)) {
4250 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4251 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4252 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4253 				BTRFS_BLOCK_GROUP_RAID10;
4254 
4255 			/*
4256 			 * if they asked for extra copies and this block group
4257 			 * doesn't provide them, bail.  This does allow us to
4258 			 * fill raid0 from raid1.
4259 			 */
4260 			if ((flags & extra) && !(block_group->flags & extra))
4261 				goto loop;
4262 
4263 			/*
4264 			 * This block group has different flags than we want.
4265 			 * It's possible that we have MIXED_GROUP flag but no
4266 			 * block group is mixed.  Just skip such block group.
4267 			 */
4268 			btrfs_release_block_group(block_group, delalloc);
4269 			continue;
4270 		}
4271 
4272 have_block_group:
4273 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4274 		if (unlikely(!ffe_ctl.cached)) {
4275 			ffe_ctl.have_caching_bg = true;
4276 			ret = btrfs_cache_block_group(block_group, 0);
4277 
4278 			/*
4279 			 * If we get ENOMEM here or something else we want to
4280 			 * try other block groups, because it may not be fatal.
4281 			 * However if we can't find anything else we need to
4282 			 * save our return here so that we return the actual
4283 			 * error that caused problems, not ENOSPC.
4284 			 */
4285 			if (ret < 0) {
4286 				if (!cache_block_group_error)
4287 					cache_block_group_error = ret;
4288 				ret = 0;
4289 				goto loop;
4290 			}
4291 			ret = 0;
4292 		}
4293 
4294 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4295 			goto loop;
4296 
4297 		bg_ret = NULL;
4298 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4299 		if (ret == 0) {
4300 			if (bg_ret && bg_ret != block_group) {
4301 				btrfs_release_block_group(block_group, delalloc);
4302 				block_group = bg_ret;
4303 			}
4304 		} else if (ret == -EAGAIN) {
4305 			goto have_block_group;
4306 		} else if (ret > 0) {
4307 			goto loop;
4308 		}
4309 
4310 		/* Checks */
4311 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4312 					     fs_info->stripesize);
4313 
4314 		/* move on to the next group */
4315 		if (ffe_ctl.search_start + num_bytes >
4316 		    block_group->start + block_group->length) {
4317 			btrfs_add_free_space_unused(block_group,
4318 					    ffe_ctl.found_offset, num_bytes);
4319 			goto loop;
4320 		}
4321 
4322 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4323 			btrfs_add_free_space_unused(block_group,
4324 					ffe_ctl.found_offset,
4325 					ffe_ctl.search_start - ffe_ctl.found_offset);
4326 
4327 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4328 				num_bytes, delalloc);
4329 		if (ret == -EAGAIN) {
4330 			btrfs_add_free_space_unused(block_group,
4331 					ffe_ctl.found_offset, num_bytes);
4332 			goto loop;
4333 		}
4334 		btrfs_inc_block_group_reservations(block_group);
4335 
4336 		/* we are all good, lets return */
4337 		ins->objectid = ffe_ctl.search_start;
4338 		ins->offset = num_bytes;
4339 
4340 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4341 					   num_bytes);
4342 		btrfs_release_block_group(block_group, delalloc);
4343 		break;
4344 loop:
4345 		release_block_group(block_group, &ffe_ctl, delalloc);
4346 		cond_resched();
4347 	}
4348 	up_read(&space_info->groups_sem);
4349 
4350 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4351 	if (ret > 0)
4352 		goto search;
4353 
4354 	if (ret == -ENOSPC && !cache_block_group_error) {
4355 		/*
4356 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4357 		 * any contiguous hole.
4358 		 */
4359 		if (!ffe_ctl.max_extent_size)
4360 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4361 		spin_lock(&space_info->lock);
4362 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4363 		spin_unlock(&space_info->lock);
4364 		ins->offset = ffe_ctl.max_extent_size;
4365 	} else if (ret == -ENOSPC) {
4366 		ret = cache_block_group_error;
4367 	}
4368 	return ret;
4369 }
4370 
4371 /*
4372  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4373  *			  hole that is at least as big as @num_bytes.
4374  *
4375  * @root           -	The root that will contain this extent
4376  *
4377  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4378  *			is used for accounting purposes. This value differs
4379  *			from @num_bytes only in the case of compressed extents.
4380  *
4381  * @num_bytes      -	Number of bytes to allocate on-disk.
4382  *
4383  * @min_alloc_size -	Indicates the minimum amount of space that the
4384  *			allocator should try to satisfy. In some cases
4385  *			@num_bytes may be larger than what is required and if
4386  *			the filesystem is fragmented then allocation fails.
4387  *			However, the presence of @min_alloc_size gives a
4388  *			chance to try and satisfy the smaller allocation.
4389  *
4390  * @empty_size     -	A hint that you plan on doing more COW. This is the
4391  *			size in bytes the allocator should try to find free
4392  *			next to the block it returns.  This is just a hint and
4393  *			may be ignored by the allocator.
4394  *
4395  * @hint_byte      -	Hint to the allocator to start searching above the byte
4396  *			address passed. It might be ignored.
4397  *
4398  * @ins            -	This key is modified to record the found hole. It will
4399  *			have the following values:
4400  *			ins->objectid == start position
4401  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4402  *			ins->offset == the size of the hole.
4403  *
4404  * @is_data        -	Boolean flag indicating whether an extent is
4405  *			allocated for data (true) or metadata (false)
4406  *
4407  * @delalloc       -	Boolean flag indicating whether this allocation is for
4408  *			delalloc or not. If 'true' data_rwsem of block groups
4409  *			is going to be acquired.
4410  *
4411  *
4412  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4413  * case -ENOSPC is returned then @ins->offset will contain the size of the
4414  * largest available hole the allocator managed to find.
4415  */
4416 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4417 			 u64 num_bytes, u64 min_alloc_size,
4418 			 u64 empty_size, u64 hint_byte,
4419 			 struct btrfs_key *ins, int is_data, int delalloc)
4420 {
4421 	struct btrfs_fs_info *fs_info = root->fs_info;
4422 	bool final_tried = num_bytes == min_alloc_size;
4423 	u64 flags;
4424 	int ret;
4425 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4426 
4427 	flags = get_alloc_profile_by_root(root, is_data);
4428 again:
4429 	WARN_ON(num_bytes < fs_info->sectorsize);
4430 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
4431 			       hint_byte, ins, flags, delalloc);
4432 	if (!ret && !is_data) {
4433 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4434 	} else if (ret == -ENOSPC) {
4435 		if (!final_tried && ins->offset) {
4436 			num_bytes = min(num_bytes >> 1, ins->offset);
4437 			num_bytes = round_down(num_bytes,
4438 					       fs_info->sectorsize);
4439 			num_bytes = max(num_bytes, min_alloc_size);
4440 			ram_bytes = num_bytes;
4441 			if (num_bytes == min_alloc_size)
4442 				final_tried = true;
4443 			goto again;
4444 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4445 			struct btrfs_space_info *sinfo;
4446 
4447 			sinfo = btrfs_find_space_info(fs_info, flags);
4448 			btrfs_err(fs_info,
4449 			"allocation failed flags %llu, wanted %llu tree-log %d",
4450 				  flags, num_bytes, for_treelog);
4451 			if (sinfo)
4452 				btrfs_dump_space_info(fs_info, sinfo,
4453 						      num_bytes, 1);
4454 		}
4455 	}
4456 
4457 	return ret;
4458 }
4459 
4460 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4461 			       u64 start, u64 len, int delalloc)
4462 {
4463 	struct btrfs_block_group *cache;
4464 
4465 	cache = btrfs_lookup_block_group(fs_info, start);
4466 	if (!cache) {
4467 		btrfs_err(fs_info, "Unable to find block group for %llu",
4468 			  start);
4469 		return -ENOSPC;
4470 	}
4471 
4472 	btrfs_add_free_space(cache, start, len);
4473 	btrfs_free_reserved_bytes(cache, len, delalloc);
4474 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4475 
4476 	btrfs_put_block_group(cache);
4477 	return 0;
4478 }
4479 
4480 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4481 			      u64 len)
4482 {
4483 	struct btrfs_block_group *cache;
4484 	int ret = 0;
4485 
4486 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4487 	if (!cache) {
4488 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4489 			  start);
4490 		return -ENOSPC;
4491 	}
4492 
4493 	ret = pin_down_extent(trans, cache, start, len, 1);
4494 	btrfs_put_block_group(cache);
4495 	return ret;
4496 }
4497 
4498 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4499 				      u64 parent, u64 root_objectid,
4500 				      u64 flags, u64 owner, u64 offset,
4501 				      struct btrfs_key *ins, int ref_mod)
4502 {
4503 	struct btrfs_fs_info *fs_info = trans->fs_info;
4504 	int ret;
4505 	struct btrfs_extent_item *extent_item;
4506 	struct btrfs_extent_inline_ref *iref;
4507 	struct btrfs_path *path;
4508 	struct extent_buffer *leaf;
4509 	int type;
4510 	u32 size;
4511 
4512 	if (parent > 0)
4513 		type = BTRFS_SHARED_DATA_REF_KEY;
4514 	else
4515 		type = BTRFS_EXTENT_DATA_REF_KEY;
4516 
4517 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4518 
4519 	path = btrfs_alloc_path();
4520 	if (!path)
4521 		return -ENOMEM;
4522 
4523 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4524 				      ins, size);
4525 	if (ret) {
4526 		btrfs_free_path(path);
4527 		return ret;
4528 	}
4529 
4530 	leaf = path->nodes[0];
4531 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4532 				     struct btrfs_extent_item);
4533 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4534 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4535 	btrfs_set_extent_flags(leaf, extent_item,
4536 			       flags | BTRFS_EXTENT_FLAG_DATA);
4537 
4538 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4539 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4540 	if (parent > 0) {
4541 		struct btrfs_shared_data_ref *ref;
4542 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4543 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4544 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4545 	} else {
4546 		struct btrfs_extent_data_ref *ref;
4547 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4548 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4549 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4550 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4551 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4552 	}
4553 
4554 	btrfs_mark_buffer_dirty(path->nodes[0]);
4555 	btrfs_free_path(path);
4556 
4557 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4558 	if (ret)
4559 		return ret;
4560 
4561 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4562 	if (ret) { /* -ENOENT, logic error */
4563 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4564 			ins->objectid, ins->offset);
4565 		BUG();
4566 	}
4567 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4568 	return ret;
4569 }
4570 
4571 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4572 				     struct btrfs_delayed_ref_node *node,
4573 				     struct btrfs_delayed_extent_op *extent_op)
4574 {
4575 	struct btrfs_fs_info *fs_info = trans->fs_info;
4576 	int ret;
4577 	struct btrfs_extent_item *extent_item;
4578 	struct btrfs_key extent_key;
4579 	struct btrfs_tree_block_info *block_info;
4580 	struct btrfs_extent_inline_ref *iref;
4581 	struct btrfs_path *path;
4582 	struct extent_buffer *leaf;
4583 	struct btrfs_delayed_tree_ref *ref;
4584 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4585 	u64 num_bytes;
4586 	u64 flags = extent_op->flags_to_set;
4587 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4588 
4589 	ref = btrfs_delayed_node_to_tree_ref(node);
4590 
4591 	extent_key.objectid = node->bytenr;
4592 	if (skinny_metadata) {
4593 		extent_key.offset = ref->level;
4594 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4595 		num_bytes = fs_info->nodesize;
4596 	} else {
4597 		extent_key.offset = node->num_bytes;
4598 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4599 		size += sizeof(*block_info);
4600 		num_bytes = node->num_bytes;
4601 	}
4602 
4603 	path = btrfs_alloc_path();
4604 	if (!path)
4605 		return -ENOMEM;
4606 
4607 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4608 				      &extent_key, size);
4609 	if (ret) {
4610 		btrfs_free_path(path);
4611 		return ret;
4612 	}
4613 
4614 	leaf = path->nodes[0];
4615 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4616 				     struct btrfs_extent_item);
4617 	btrfs_set_extent_refs(leaf, extent_item, 1);
4618 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4619 	btrfs_set_extent_flags(leaf, extent_item,
4620 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4621 
4622 	if (skinny_metadata) {
4623 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4624 	} else {
4625 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4626 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4627 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4628 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4629 	}
4630 
4631 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4632 		btrfs_set_extent_inline_ref_type(leaf, iref,
4633 						 BTRFS_SHARED_BLOCK_REF_KEY);
4634 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4635 	} else {
4636 		btrfs_set_extent_inline_ref_type(leaf, iref,
4637 						 BTRFS_TREE_BLOCK_REF_KEY);
4638 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4639 	}
4640 
4641 	btrfs_mark_buffer_dirty(leaf);
4642 	btrfs_free_path(path);
4643 
4644 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4645 					  num_bytes);
4646 	if (ret)
4647 		return ret;
4648 
4649 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4650 				       fs_info->nodesize, 1);
4651 	if (ret) { /* -ENOENT, logic error */
4652 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4653 			extent_key.objectid, extent_key.offset);
4654 		BUG();
4655 	}
4656 
4657 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4658 					  fs_info->nodesize);
4659 	return ret;
4660 }
4661 
4662 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4663 				     struct btrfs_root *root, u64 owner,
4664 				     u64 offset, u64 ram_bytes,
4665 				     struct btrfs_key *ins)
4666 {
4667 	struct btrfs_ref generic_ref = { 0 };
4668 
4669 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4670 
4671 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4672 			       ins->objectid, ins->offset, 0);
4673 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4674 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4675 
4676 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4677 }
4678 
4679 /*
4680  * this is used by the tree logging recovery code.  It records that
4681  * an extent has been allocated and makes sure to clear the free
4682  * space cache bits as well
4683  */
4684 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4685 				   u64 root_objectid, u64 owner, u64 offset,
4686 				   struct btrfs_key *ins)
4687 {
4688 	struct btrfs_fs_info *fs_info = trans->fs_info;
4689 	int ret;
4690 	struct btrfs_block_group *block_group;
4691 	struct btrfs_space_info *space_info;
4692 
4693 	/*
4694 	 * Mixed block groups will exclude before processing the log so we only
4695 	 * need to do the exclude dance if this fs isn't mixed.
4696 	 */
4697 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4698 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4699 					      ins->offset);
4700 		if (ret)
4701 			return ret;
4702 	}
4703 
4704 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4705 	if (!block_group)
4706 		return -EINVAL;
4707 
4708 	space_info = block_group->space_info;
4709 	spin_lock(&space_info->lock);
4710 	spin_lock(&block_group->lock);
4711 	space_info->bytes_reserved += ins->offset;
4712 	block_group->reserved += ins->offset;
4713 	spin_unlock(&block_group->lock);
4714 	spin_unlock(&space_info->lock);
4715 
4716 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4717 					 offset, ins, 1);
4718 	if (ret)
4719 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4720 	btrfs_put_block_group(block_group);
4721 	return ret;
4722 }
4723 
4724 static struct extent_buffer *
4725 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4726 		      u64 bytenr, int level, u64 owner,
4727 		      enum btrfs_lock_nesting nest)
4728 {
4729 	struct btrfs_fs_info *fs_info = root->fs_info;
4730 	struct extent_buffer *buf;
4731 
4732 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4733 	if (IS_ERR(buf))
4734 		return buf;
4735 
4736 	/*
4737 	 * Extra safety check in case the extent tree is corrupted and extent
4738 	 * allocator chooses to use a tree block which is already used and
4739 	 * locked.
4740 	 */
4741 	if (buf->lock_owner == current->pid) {
4742 		btrfs_err_rl(fs_info,
4743 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4744 			buf->start, btrfs_header_owner(buf), current->pid);
4745 		free_extent_buffer(buf);
4746 		return ERR_PTR(-EUCLEAN);
4747 	}
4748 
4749 	/*
4750 	 * This needs to stay, because we could allocate a freed block from an
4751 	 * old tree into a new tree, so we need to make sure this new block is
4752 	 * set to the appropriate level and owner.
4753 	 */
4754 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4755 	__btrfs_tree_lock(buf, nest);
4756 	btrfs_clean_tree_block(buf);
4757 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4758 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4759 
4760 	set_extent_buffer_uptodate(buf);
4761 
4762 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4763 	btrfs_set_header_level(buf, level);
4764 	btrfs_set_header_bytenr(buf, buf->start);
4765 	btrfs_set_header_generation(buf, trans->transid);
4766 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4767 	btrfs_set_header_owner(buf, owner);
4768 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4769 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4770 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4771 		buf->log_index = root->log_transid % 2;
4772 		/*
4773 		 * we allow two log transactions at a time, use different
4774 		 * EXTENT bit to differentiate dirty pages.
4775 		 */
4776 		if (buf->log_index == 0)
4777 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4778 					buf->start + buf->len - 1, GFP_NOFS);
4779 		else
4780 			set_extent_new(&root->dirty_log_pages, buf->start,
4781 					buf->start + buf->len - 1);
4782 	} else {
4783 		buf->log_index = -1;
4784 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4785 			 buf->start + buf->len - 1, GFP_NOFS);
4786 	}
4787 	trans->dirty = true;
4788 	/* this returns a buffer locked for blocking */
4789 	return buf;
4790 }
4791 
4792 /*
4793  * finds a free extent and does all the dirty work required for allocation
4794  * returns the tree buffer or an ERR_PTR on error.
4795  */
4796 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4797 					     struct btrfs_root *root,
4798 					     u64 parent, u64 root_objectid,
4799 					     const struct btrfs_disk_key *key,
4800 					     int level, u64 hint,
4801 					     u64 empty_size,
4802 					     enum btrfs_lock_nesting nest)
4803 {
4804 	struct btrfs_fs_info *fs_info = root->fs_info;
4805 	struct btrfs_key ins;
4806 	struct btrfs_block_rsv *block_rsv;
4807 	struct extent_buffer *buf;
4808 	struct btrfs_delayed_extent_op *extent_op;
4809 	struct btrfs_ref generic_ref = { 0 };
4810 	u64 flags = 0;
4811 	int ret;
4812 	u32 blocksize = fs_info->nodesize;
4813 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4814 
4815 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4816 	if (btrfs_is_testing(fs_info)) {
4817 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4818 					    level, root_objectid, nest);
4819 		if (!IS_ERR(buf))
4820 			root->alloc_bytenr += blocksize;
4821 		return buf;
4822 	}
4823 #endif
4824 
4825 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4826 	if (IS_ERR(block_rsv))
4827 		return ERR_CAST(block_rsv);
4828 
4829 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4830 				   empty_size, hint, &ins, 0, 0);
4831 	if (ret)
4832 		goto out_unuse;
4833 
4834 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4835 				    root_objectid, nest);
4836 	if (IS_ERR(buf)) {
4837 		ret = PTR_ERR(buf);
4838 		goto out_free_reserved;
4839 	}
4840 
4841 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4842 		if (parent == 0)
4843 			parent = ins.objectid;
4844 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4845 	} else
4846 		BUG_ON(parent > 0);
4847 
4848 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4849 		extent_op = btrfs_alloc_delayed_extent_op();
4850 		if (!extent_op) {
4851 			ret = -ENOMEM;
4852 			goto out_free_buf;
4853 		}
4854 		if (key)
4855 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4856 		else
4857 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4858 		extent_op->flags_to_set = flags;
4859 		extent_op->update_key = skinny_metadata ? false : true;
4860 		extent_op->update_flags = true;
4861 		extent_op->is_data = false;
4862 		extent_op->level = level;
4863 
4864 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4865 				       ins.objectid, ins.offset, parent);
4866 		generic_ref.real_root = root->root_key.objectid;
4867 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4868 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4869 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4870 		if (ret)
4871 			goto out_free_delayed;
4872 	}
4873 	return buf;
4874 
4875 out_free_delayed:
4876 	btrfs_free_delayed_extent_op(extent_op);
4877 out_free_buf:
4878 	free_extent_buffer(buf);
4879 out_free_reserved:
4880 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4881 out_unuse:
4882 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4883 	return ERR_PTR(ret);
4884 }
4885 
4886 struct walk_control {
4887 	u64 refs[BTRFS_MAX_LEVEL];
4888 	u64 flags[BTRFS_MAX_LEVEL];
4889 	struct btrfs_key update_progress;
4890 	struct btrfs_key drop_progress;
4891 	int drop_level;
4892 	int stage;
4893 	int level;
4894 	int shared_level;
4895 	int update_ref;
4896 	int keep_locks;
4897 	int reada_slot;
4898 	int reada_count;
4899 	int restarted;
4900 };
4901 
4902 #define DROP_REFERENCE	1
4903 #define UPDATE_BACKREF	2
4904 
4905 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4906 				     struct btrfs_root *root,
4907 				     struct walk_control *wc,
4908 				     struct btrfs_path *path)
4909 {
4910 	struct btrfs_fs_info *fs_info = root->fs_info;
4911 	u64 bytenr;
4912 	u64 generation;
4913 	u64 refs;
4914 	u64 flags;
4915 	u32 nritems;
4916 	struct btrfs_key key;
4917 	struct extent_buffer *eb;
4918 	int ret;
4919 	int slot;
4920 	int nread = 0;
4921 
4922 	if (path->slots[wc->level] < wc->reada_slot) {
4923 		wc->reada_count = wc->reada_count * 2 / 3;
4924 		wc->reada_count = max(wc->reada_count, 2);
4925 	} else {
4926 		wc->reada_count = wc->reada_count * 3 / 2;
4927 		wc->reada_count = min_t(int, wc->reada_count,
4928 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4929 	}
4930 
4931 	eb = path->nodes[wc->level];
4932 	nritems = btrfs_header_nritems(eb);
4933 
4934 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4935 		if (nread >= wc->reada_count)
4936 			break;
4937 
4938 		cond_resched();
4939 		bytenr = btrfs_node_blockptr(eb, slot);
4940 		generation = btrfs_node_ptr_generation(eb, slot);
4941 
4942 		if (slot == path->slots[wc->level])
4943 			goto reada;
4944 
4945 		if (wc->stage == UPDATE_BACKREF &&
4946 		    generation <= root->root_key.offset)
4947 			continue;
4948 
4949 		/* We don't lock the tree block, it's OK to be racy here */
4950 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4951 					       wc->level - 1, 1, &refs,
4952 					       &flags);
4953 		/* We don't care about errors in readahead. */
4954 		if (ret < 0)
4955 			continue;
4956 		BUG_ON(refs == 0);
4957 
4958 		if (wc->stage == DROP_REFERENCE) {
4959 			if (refs == 1)
4960 				goto reada;
4961 
4962 			if (wc->level == 1 &&
4963 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4964 				continue;
4965 			if (!wc->update_ref ||
4966 			    generation <= root->root_key.offset)
4967 				continue;
4968 			btrfs_node_key_to_cpu(eb, &key, slot);
4969 			ret = btrfs_comp_cpu_keys(&key,
4970 						  &wc->update_progress);
4971 			if (ret < 0)
4972 				continue;
4973 		} else {
4974 			if (wc->level == 1 &&
4975 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4976 				continue;
4977 		}
4978 reada:
4979 		btrfs_readahead_node_child(eb, slot);
4980 		nread++;
4981 	}
4982 	wc->reada_slot = slot;
4983 }
4984 
4985 /*
4986  * helper to process tree block while walking down the tree.
4987  *
4988  * when wc->stage == UPDATE_BACKREF, this function updates
4989  * back refs for pointers in the block.
4990  *
4991  * NOTE: return value 1 means we should stop walking down.
4992  */
4993 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4994 				   struct btrfs_root *root,
4995 				   struct btrfs_path *path,
4996 				   struct walk_control *wc, int lookup_info)
4997 {
4998 	struct btrfs_fs_info *fs_info = root->fs_info;
4999 	int level = wc->level;
5000 	struct extent_buffer *eb = path->nodes[level];
5001 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5002 	int ret;
5003 
5004 	if (wc->stage == UPDATE_BACKREF &&
5005 	    btrfs_header_owner(eb) != root->root_key.objectid)
5006 		return 1;
5007 
5008 	/*
5009 	 * when reference count of tree block is 1, it won't increase
5010 	 * again. once full backref flag is set, we never clear it.
5011 	 */
5012 	if (lookup_info &&
5013 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5014 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5015 		BUG_ON(!path->locks[level]);
5016 		ret = btrfs_lookup_extent_info(trans, fs_info,
5017 					       eb->start, level, 1,
5018 					       &wc->refs[level],
5019 					       &wc->flags[level]);
5020 		BUG_ON(ret == -ENOMEM);
5021 		if (ret)
5022 			return ret;
5023 		BUG_ON(wc->refs[level] == 0);
5024 	}
5025 
5026 	if (wc->stage == DROP_REFERENCE) {
5027 		if (wc->refs[level] > 1)
5028 			return 1;
5029 
5030 		if (path->locks[level] && !wc->keep_locks) {
5031 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5032 			path->locks[level] = 0;
5033 		}
5034 		return 0;
5035 	}
5036 
5037 	/* wc->stage == UPDATE_BACKREF */
5038 	if (!(wc->flags[level] & flag)) {
5039 		BUG_ON(!path->locks[level]);
5040 		ret = btrfs_inc_ref(trans, root, eb, 1);
5041 		BUG_ON(ret); /* -ENOMEM */
5042 		ret = btrfs_dec_ref(trans, root, eb, 0);
5043 		BUG_ON(ret); /* -ENOMEM */
5044 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5045 						  btrfs_header_level(eb), 0);
5046 		BUG_ON(ret); /* -ENOMEM */
5047 		wc->flags[level] |= flag;
5048 	}
5049 
5050 	/*
5051 	 * the block is shared by multiple trees, so it's not good to
5052 	 * keep the tree lock
5053 	 */
5054 	if (path->locks[level] && level > 0) {
5055 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5056 		path->locks[level] = 0;
5057 	}
5058 	return 0;
5059 }
5060 
5061 /*
5062  * This is used to verify a ref exists for this root to deal with a bug where we
5063  * would have a drop_progress key that hadn't been updated properly.
5064  */
5065 static int check_ref_exists(struct btrfs_trans_handle *trans,
5066 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5067 			    int level)
5068 {
5069 	struct btrfs_path *path;
5070 	struct btrfs_extent_inline_ref *iref;
5071 	int ret;
5072 
5073 	path = btrfs_alloc_path();
5074 	if (!path)
5075 		return -ENOMEM;
5076 
5077 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5078 				    root->fs_info->nodesize, parent,
5079 				    root->root_key.objectid, level, 0);
5080 	btrfs_free_path(path);
5081 	if (ret == -ENOENT)
5082 		return 0;
5083 	if (ret < 0)
5084 		return ret;
5085 	return 1;
5086 }
5087 
5088 /*
5089  * helper to process tree block pointer.
5090  *
5091  * when wc->stage == DROP_REFERENCE, this function checks
5092  * reference count of the block pointed to. if the block
5093  * is shared and we need update back refs for the subtree
5094  * rooted at the block, this function changes wc->stage to
5095  * UPDATE_BACKREF. if the block is shared and there is no
5096  * need to update back, this function drops the reference
5097  * to the block.
5098  *
5099  * NOTE: return value 1 means we should stop walking down.
5100  */
5101 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5102 				 struct btrfs_root *root,
5103 				 struct btrfs_path *path,
5104 				 struct walk_control *wc, int *lookup_info)
5105 {
5106 	struct btrfs_fs_info *fs_info = root->fs_info;
5107 	u64 bytenr;
5108 	u64 generation;
5109 	u64 parent;
5110 	struct btrfs_key key;
5111 	struct btrfs_key first_key;
5112 	struct btrfs_ref ref = { 0 };
5113 	struct extent_buffer *next;
5114 	int level = wc->level;
5115 	int reada = 0;
5116 	int ret = 0;
5117 	bool need_account = false;
5118 
5119 	generation = btrfs_node_ptr_generation(path->nodes[level],
5120 					       path->slots[level]);
5121 	/*
5122 	 * if the lower level block was created before the snapshot
5123 	 * was created, we know there is no need to update back refs
5124 	 * for the subtree
5125 	 */
5126 	if (wc->stage == UPDATE_BACKREF &&
5127 	    generation <= root->root_key.offset) {
5128 		*lookup_info = 1;
5129 		return 1;
5130 	}
5131 
5132 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5133 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5134 			      path->slots[level]);
5135 
5136 	next = find_extent_buffer(fs_info, bytenr);
5137 	if (!next) {
5138 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5139 				root->root_key.objectid, level - 1);
5140 		if (IS_ERR(next))
5141 			return PTR_ERR(next);
5142 		reada = 1;
5143 	}
5144 	btrfs_tree_lock(next);
5145 
5146 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5147 				       &wc->refs[level - 1],
5148 				       &wc->flags[level - 1]);
5149 	if (ret < 0)
5150 		goto out_unlock;
5151 
5152 	if (unlikely(wc->refs[level - 1] == 0)) {
5153 		btrfs_err(fs_info, "Missing references.");
5154 		ret = -EIO;
5155 		goto out_unlock;
5156 	}
5157 	*lookup_info = 0;
5158 
5159 	if (wc->stage == DROP_REFERENCE) {
5160 		if (wc->refs[level - 1] > 1) {
5161 			need_account = true;
5162 			if (level == 1 &&
5163 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5164 				goto skip;
5165 
5166 			if (!wc->update_ref ||
5167 			    generation <= root->root_key.offset)
5168 				goto skip;
5169 
5170 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5171 					      path->slots[level]);
5172 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5173 			if (ret < 0)
5174 				goto skip;
5175 
5176 			wc->stage = UPDATE_BACKREF;
5177 			wc->shared_level = level - 1;
5178 		}
5179 	} else {
5180 		if (level == 1 &&
5181 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5182 			goto skip;
5183 	}
5184 
5185 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5186 		btrfs_tree_unlock(next);
5187 		free_extent_buffer(next);
5188 		next = NULL;
5189 		*lookup_info = 1;
5190 	}
5191 
5192 	if (!next) {
5193 		if (reada && level == 1)
5194 			reada_walk_down(trans, root, wc, path);
5195 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5196 				       generation, level - 1, &first_key);
5197 		if (IS_ERR(next)) {
5198 			return PTR_ERR(next);
5199 		} else if (!extent_buffer_uptodate(next)) {
5200 			free_extent_buffer(next);
5201 			return -EIO;
5202 		}
5203 		btrfs_tree_lock(next);
5204 	}
5205 
5206 	level--;
5207 	ASSERT(level == btrfs_header_level(next));
5208 	if (level != btrfs_header_level(next)) {
5209 		btrfs_err(root->fs_info, "mismatched level");
5210 		ret = -EIO;
5211 		goto out_unlock;
5212 	}
5213 	path->nodes[level] = next;
5214 	path->slots[level] = 0;
5215 	path->locks[level] = BTRFS_WRITE_LOCK;
5216 	wc->level = level;
5217 	if (wc->level == 1)
5218 		wc->reada_slot = 0;
5219 	return 0;
5220 skip:
5221 	wc->refs[level - 1] = 0;
5222 	wc->flags[level - 1] = 0;
5223 	if (wc->stage == DROP_REFERENCE) {
5224 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5225 			parent = path->nodes[level]->start;
5226 		} else {
5227 			ASSERT(root->root_key.objectid ==
5228 			       btrfs_header_owner(path->nodes[level]));
5229 			if (root->root_key.objectid !=
5230 			    btrfs_header_owner(path->nodes[level])) {
5231 				btrfs_err(root->fs_info,
5232 						"mismatched block owner");
5233 				ret = -EIO;
5234 				goto out_unlock;
5235 			}
5236 			parent = 0;
5237 		}
5238 
5239 		/*
5240 		 * If we had a drop_progress we need to verify the refs are set
5241 		 * as expected.  If we find our ref then we know that from here
5242 		 * on out everything should be correct, and we can clear the
5243 		 * ->restarted flag.
5244 		 */
5245 		if (wc->restarted) {
5246 			ret = check_ref_exists(trans, root, bytenr, parent,
5247 					       level - 1);
5248 			if (ret < 0)
5249 				goto out_unlock;
5250 			if (ret == 0)
5251 				goto no_delete;
5252 			ret = 0;
5253 			wc->restarted = 0;
5254 		}
5255 
5256 		/*
5257 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5258 		 * already accounted them at merge time (replace_path),
5259 		 * thus we could skip expensive subtree trace here.
5260 		 */
5261 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5262 		    need_account) {
5263 			ret = btrfs_qgroup_trace_subtree(trans, next,
5264 							 generation, level - 1);
5265 			if (ret) {
5266 				btrfs_err_rl(fs_info,
5267 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5268 					     ret);
5269 			}
5270 		}
5271 
5272 		/*
5273 		 * We need to update the next key in our walk control so we can
5274 		 * update the drop_progress key accordingly.  We don't care if
5275 		 * find_next_key doesn't find a key because that means we're at
5276 		 * the end and are going to clean up now.
5277 		 */
5278 		wc->drop_level = level;
5279 		find_next_key(path, level, &wc->drop_progress);
5280 
5281 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5282 				       fs_info->nodesize, parent);
5283 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5284 		ret = btrfs_free_extent(trans, &ref);
5285 		if (ret)
5286 			goto out_unlock;
5287 	}
5288 no_delete:
5289 	*lookup_info = 1;
5290 	ret = 1;
5291 
5292 out_unlock:
5293 	btrfs_tree_unlock(next);
5294 	free_extent_buffer(next);
5295 
5296 	return ret;
5297 }
5298 
5299 /*
5300  * helper to process tree block while walking up the tree.
5301  *
5302  * when wc->stage == DROP_REFERENCE, this function drops
5303  * reference count on the block.
5304  *
5305  * when wc->stage == UPDATE_BACKREF, this function changes
5306  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5307  * to UPDATE_BACKREF previously while processing the block.
5308  *
5309  * NOTE: return value 1 means we should stop walking up.
5310  */
5311 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5312 				 struct btrfs_root *root,
5313 				 struct btrfs_path *path,
5314 				 struct walk_control *wc)
5315 {
5316 	struct btrfs_fs_info *fs_info = root->fs_info;
5317 	int ret;
5318 	int level = wc->level;
5319 	struct extent_buffer *eb = path->nodes[level];
5320 	u64 parent = 0;
5321 
5322 	if (wc->stage == UPDATE_BACKREF) {
5323 		BUG_ON(wc->shared_level < level);
5324 		if (level < wc->shared_level)
5325 			goto out;
5326 
5327 		ret = find_next_key(path, level + 1, &wc->update_progress);
5328 		if (ret > 0)
5329 			wc->update_ref = 0;
5330 
5331 		wc->stage = DROP_REFERENCE;
5332 		wc->shared_level = -1;
5333 		path->slots[level] = 0;
5334 
5335 		/*
5336 		 * check reference count again if the block isn't locked.
5337 		 * we should start walking down the tree again if reference
5338 		 * count is one.
5339 		 */
5340 		if (!path->locks[level]) {
5341 			BUG_ON(level == 0);
5342 			btrfs_tree_lock(eb);
5343 			path->locks[level] = BTRFS_WRITE_LOCK;
5344 
5345 			ret = btrfs_lookup_extent_info(trans, fs_info,
5346 						       eb->start, level, 1,
5347 						       &wc->refs[level],
5348 						       &wc->flags[level]);
5349 			if (ret < 0) {
5350 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5351 				path->locks[level] = 0;
5352 				return ret;
5353 			}
5354 			BUG_ON(wc->refs[level] == 0);
5355 			if (wc->refs[level] == 1) {
5356 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5357 				path->locks[level] = 0;
5358 				return 1;
5359 			}
5360 		}
5361 	}
5362 
5363 	/* wc->stage == DROP_REFERENCE */
5364 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5365 
5366 	if (wc->refs[level] == 1) {
5367 		if (level == 0) {
5368 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5369 				ret = btrfs_dec_ref(trans, root, eb, 1);
5370 			else
5371 				ret = btrfs_dec_ref(trans, root, eb, 0);
5372 			BUG_ON(ret); /* -ENOMEM */
5373 			if (is_fstree(root->root_key.objectid)) {
5374 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5375 				if (ret) {
5376 					btrfs_err_rl(fs_info,
5377 	"error %d accounting leaf items, quota is out of sync, rescan required",
5378 					     ret);
5379 				}
5380 			}
5381 		}
5382 		/* make block locked assertion in btrfs_clean_tree_block happy */
5383 		if (!path->locks[level] &&
5384 		    btrfs_header_generation(eb) == trans->transid) {
5385 			btrfs_tree_lock(eb);
5386 			path->locks[level] = BTRFS_WRITE_LOCK;
5387 		}
5388 		btrfs_clean_tree_block(eb);
5389 	}
5390 
5391 	if (eb == root->node) {
5392 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5393 			parent = eb->start;
5394 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5395 			goto owner_mismatch;
5396 	} else {
5397 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5398 			parent = path->nodes[level + 1]->start;
5399 		else if (root->root_key.objectid !=
5400 			 btrfs_header_owner(path->nodes[level + 1]))
5401 			goto owner_mismatch;
5402 	}
5403 
5404 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5405 out:
5406 	wc->refs[level] = 0;
5407 	wc->flags[level] = 0;
5408 	return 0;
5409 
5410 owner_mismatch:
5411 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5412 		     btrfs_header_owner(eb), root->root_key.objectid);
5413 	return -EUCLEAN;
5414 }
5415 
5416 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5417 				   struct btrfs_root *root,
5418 				   struct btrfs_path *path,
5419 				   struct walk_control *wc)
5420 {
5421 	int level = wc->level;
5422 	int lookup_info = 1;
5423 	int ret;
5424 
5425 	while (level >= 0) {
5426 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5427 		if (ret > 0)
5428 			break;
5429 
5430 		if (level == 0)
5431 			break;
5432 
5433 		if (path->slots[level] >=
5434 		    btrfs_header_nritems(path->nodes[level]))
5435 			break;
5436 
5437 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5438 		if (ret > 0) {
5439 			path->slots[level]++;
5440 			continue;
5441 		} else if (ret < 0)
5442 			return ret;
5443 		level = wc->level;
5444 	}
5445 	return 0;
5446 }
5447 
5448 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5449 				 struct btrfs_root *root,
5450 				 struct btrfs_path *path,
5451 				 struct walk_control *wc, int max_level)
5452 {
5453 	int level = wc->level;
5454 	int ret;
5455 
5456 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5457 	while (level < max_level && path->nodes[level]) {
5458 		wc->level = level;
5459 		if (path->slots[level] + 1 <
5460 		    btrfs_header_nritems(path->nodes[level])) {
5461 			path->slots[level]++;
5462 			return 0;
5463 		} else {
5464 			ret = walk_up_proc(trans, root, path, wc);
5465 			if (ret > 0)
5466 				return 0;
5467 			if (ret < 0)
5468 				return ret;
5469 
5470 			if (path->locks[level]) {
5471 				btrfs_tree_unlock_rw(path->nodes[level],
5472 						     path->locks[level]);
5473 				path->locks[level] = 0;
5474 			}
5475 			free_extent_buffer(path->nodes[level]);
5476 			path->nodes[level] = NULL;
5477 			level++;
5478 		}
5479 	}
5480 	return 1;
5481 }
5482 
5483 /*
5484  * drop a subvolume tree.
5485  *
5486  * this function traverses the tree freeing any blocks that only
5487  * referenced by the tree.
5488  *
5489  * when a shared tree block is found. this function decreases its
5490  * reference count by one. if update_ref is true, this function
5491  * also make sure backrefs for the shared block and all lower level
5492  * blocks are properly updated.
5493  *
5494  * If called with for_reloc == 0, may exit early with -EAGAIN
5495  */
5496 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5497 {
5498 	struct btrfs_fs_info *fs_info = root->fs_info;
5499 	struct btrfs_path *path;
5500 	struct btrfs_trans_handle *trans;
5501 	struct btrfs_root *tree_root = fs_info->tree_root;
5502 	struct btrfs_root_item *root_item = &root->root_item;
5503 	struct walk_control *wc;
5504 	struct btrfs_key key;
5505 	int err = 0;
5506 	int ret;
5507 	int level;
5508 	bool root_dropped = false;
5509 
5510 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5511 
5512 	path = btrfs_alloc_path();
5513 	if (!path) {
5514 		err = -ENOMEM;
5515 		goto out;
5516 	}
5517 
5518 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5519 	if (!wc) {
5520 		btrfs_free_path(path);
5521 		err = -ENOMEM;
5522 		goto out;
5523 	}
5524 
5525 	/*
5526 	 * Use join to avoid potential EINTR from transaction start. See
5527 	 * wait_reserve_ticket and the whole reservation callchain.
5528 	 */
5529 	if (for_reloc)
5530 		trans = btrfs_join_transaction(tree_root);
5531 	else
5532 		trans = btrfs_start_transaction(tree_root, 0);
5533 	if (IS_ERR(trans)) {
5534 		err = PTR_ERR(trans);
5535 		goto out_free;
5536 	}
5537 
5538 	err = btrfs_run_delayed_items(trans);
5539 	if (err)
5540 		goto out_end_trans;
5541 
5542 	/*
5543 	 * This will help us catch people modifying the fs tree while we're
5544 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5545 	 * dropped as we unlock the root node and parent nodes as we walk down
5546 	 * the tree, assuming nothing will change.  If something does change
5547 	 * then we'll have stale information and drop references to blocks we've
5548 	 * already dropped.
5549 	 */
5550 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5551 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5552 		level = btrfs_header_level(root->node);
5553 		path->nodes[level] = btrfs_lock_root_node(root);
5554 		path->slots[level] = 0;
5555 		path->locks[level] = BTRFS_WRITE_LOCK;
5556 		memset(&wc->update_progress, 0,
5557 		       sizeof(wc->update_progress));
5558 	} else {
5559 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5560 		memcpy(&wc->update_progress, &key,
5561 		       sizeof(wc->update_progress));
5562 
5563 		level = btrfs_root_drop_level(root_item);
5564 		BUG_ON(level == 0);
5565 		path->lowest_level = level;
5566 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5567 		path->lowest_level = 0;
5568 		if (ret < 0) {
5569 			err = ret;
5570 			goto out_end_trans;
5571 		}
5572 		WARN_ON(ret > 0);
5573 
5574 		/*
5575 		 * unlock our path, this is safe because only this
5576 		 * function is allowed to delete this snapshot
5577 		 */
5578 		btrfs_unlock_up_safe(path, 0);
5579 
5580 		level = btrfs_header_level(root->node);
5581 		while (1) {
5582 			btrfs_tree_lock(path->nodes[level]);
5583 			path->locks[level] = BTRFS_WRITE_LOCK;
5584 
5585 			ret = btrfs_lookup_extent_info(trans, fs_info,
5586 						path->nodes[level]->start,
5587 						level, 1, &wc->refs[level],
5588 						&wc->flags[level]);
5589 			if (ret < 0) {
5590 				err = ret;
5591 				goto out_end_trans;
5592 			}
5593 			BUG_ON(wc->refs[level] == 0);
5594 
5595 			if (level == btrfs_root_drop_level(root_item))
5596 				break;
5597 
5598 			btrfs_tree_unlock(path->nodes[level]);
5599 			path->locks[level] = 0;
5600 			WARN_ON(wc->refs[level] != 1);
5601 			level--;
5602 		}
5603 	}
5604 
5605 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5606 	wc->level = level;
5607 	wc->shared_level = -1;
5608 	wc->stage = DROP_REFERENCE;
5609 	wc->update_ref = update_ref;
5610 	wc->keep_locks = 0;
5611 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5612 
5613 	while (1) {
5614 
5615 		ret = walk_down_tree(trans, root, path, wc);
5616 		if (ret < 0) {
5617 			err = ret;
5618 			break;
5619 		}
5620 
5621 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5622 		if (ret < 0) {
5623 			err = ret;
5624 			break;
5625 		}
5626 
5627 		if (ret > 0) {
5628 			BUG_ON(wc->stage != DROP_REFERENCE);
5629 			break;
5630 		}
5631 
5632 		if (wc->stage == DROP_REFERENCE) {
5633 			wc->drop_level = wc->level;
5634 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5635 					      &wc->drop_progress,
5636 					      path->slots[wc->drop_level]);
5637 		}
5638 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5639 				      &wc->drop_progress);
5640 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5641 
5642 		BUG_ON(wc->level == 0);
5643 		if (btrfs_should_end_transaction(trans) ||
5644 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5645 			ret = btrfs_update_root(trans, tree_root,
5646 						&root->root_key,
5647 						root_item);
5648 			if (ret) {
5649 				btrfs_abort_transaction(trans, ret);
5650 				err = ret;
5651 				goto out_end_trans;
5652 			}
5653 
5654 			btrfs_end_transaction_throttle(trans);
5655 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5656 				btrfs_debug(fs_info,
5657 					    "drop snapshot early exit");
5658 				err = -EAGAIN;
5659 				goto out_free;
5660 			}
5661 
5662 		       /*
5663 			* Use join to avoid potential EINTR from transaction
5664 			* start. See wait_reserve_ticket and the whole
5665 			* reservation callchain.
5666 			*/
5667 			if (for_reloc)
5668 				trans = btrfs_join_transaction(tree_root);
5669 			else
5670 				trans = btrfs_start_transaction(tree_root, 0);
5671 			if (IS_ERR(trans)) {
5672 				err = PTR_ERR(trans);
5673 				goto out_free;
5674 			}
5675 		}
5676 	}
5677 	btrfs_release_path(path);
5678 	if (err)
5679 		goto out_end_trans;
5680 
5681 	ret = btrfs_del_root(trans, &root->root_key);
5682 	if (ret) {
5683 		btrfs_abort_transaction(trans, ret);
5684 		err = ret;
5685 		goto out_end_trans;
5686 	}
5687 
5688 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5689 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5690 				      NULL, NULL);
5691 		if (ret < 0) {
5692 			btrfs_abort_transaction(trans, ret);
5693 			err = ret;
5694 			goto out_end_trans;
5695 		} else if (ret > 0) {
5696 			/* if we fail to delete the orphan item this time
5697 			 * around, it'll get picked up the next time.
5698 			 *
5699 			 * The most common failure here is just -ENOENT.
5700 			 */
5701 			btrfs_del_orphan_item(trans, tree_root,
5702 					      root->root_key.objectid);
5703 		}
5704 	}
5705 
5706 	/*
5707 	 * This subvolume is going to be completely dropped, and won't be
5708 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5709 	 * commit transaction time.  So free it here manually.
5710 	 */
5711 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5712 	btrfs_qgroup_free_meta_all_pertrans(root);
5713 
5714 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5715 		btrfs_add_dropped_root(trans, root);
5716 	else
5717 		btrfs_put_root(root);
5718 	root_dropped = true;
5719 out_end_trans:
5720 	btrfs_end_transaction_throttle(trans);
5721 out_free:
5722 	kfree(wc);
5723 	btrfs_free_path(path);
5724 out:
5725 	/*
5726 	 * So if we need to stop dropping the snapshot for whatever reason we
5727 	 * need to make sure to add it back to the dead root list so that we
5728 	 * keep trying to do the work later.  This also cleans up roots if we
5729 	 * don't have it in the radix (like when we recover after a power fail
5730 	 * or unmount) so we don't leak memory.
5731 	 */
5732 	if (!for_reloc && !root_dropped)
5733 		btrfs_add_dead_root(root);
5734 	return err;
5735 }
5736 
5737 /*
5738  * drop subtree rooted at tree block 'node'.
5739  *
5740  * NOTE: this function will unlock and release tree block 'node'
5741  * only used by relocation code
5742  */
5743 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5744 			struct btrfs_root *root,
5745 			struct extent_buffer *node,
5746 			struct extent_buffer *parent)
5747 {
5748 	struct btrfs_fs_info *fs_info = root->fs_info;
5749 	struct btrfs_path *path;
5750 	struct walk_control *wc;
5751 	int level;
5752 	int parent_level;
5753 	int ret = 0;
5754 	int wret;
5755 
5756 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5757 
5758 	path = btrfs_alloc_path();
5759 	if (!path)
5760 		return -ENOMEM;
5761 
5762 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5763 	if (!wc) {
5764 		btrfs_free_path(path);
5765 		return -ENOMEM;
5766 	}
5767 
5768 	btrfs_assert_tree_locked(parent);
5769 	parent_level = btrfs_header_level(parent);
5770 	atomic_inc(&parent->refs);
5771 	path->nodes[parent_level] = parent;
5772 	path->slots[parent_level] = btrfs_header_nritems(parent);
5773 
5774 	btrfs_assert_tree_locked(node);
5775 	level = btrfs_header_level(node);
5776 	path->nodes[level] = node;
5777 	path->slots[level] = 0;
5778 	path->locks[level] = BTRFS_WRITE_LOCK;
5779 
5780 	wc->refs[parent_level] = 1;
5781 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5782 	wc->level = level;
5783 	wc->shared_level = -1;
5784 	wc->stage = DROP_REFERENCE;
5785 	wc->update_ref = 0;
5786 	wc->keep_locks = 1;
5787 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5788 
5789 	while (1) {
5790 		wret = walk_down_tree(trans, root, path, wc);
5791 		if (wret < 0) {
5792 			ret = wret;
5793 			break;
5794 		}
5795 
5796 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5797 		if (wret < 0)
5798 			ret = wret;
5799 		if (wret != 0)
5800 			break;
5801 	}
5802 
5803 	kfree(wc);
5804 	btrfs_free_path(path);
5805 	return ret;
5806 }
5807 
5808 /*
5809  * helper to account the unused space of all the readonly block group in the
5810  * space_info. takes mirrors into account.
5811  */
5812 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5813 {
5814 	struct btrfs_block_group *block_group;
5815 	u64 free_bytes = 0;
5816 	int factor;
5817 
5818 	/* It's df, we don't care if it's racy */
5819 	if (list_empty(&sinfo->ro_bgs))
5820 		return 0;
5821 
5822 	spin_lock(&sinfo->lock);
5823 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5824 		spin_lock(&block_group->lock);
5825 
5826 		if (!block_group->ro) {
5827 			spin_unlock(&block_group->lock);
5828 			continue;
5829 		}
5830 
5831 		factor = btrfs_bg_type_to_factor(block_group->flags);
5832 		free_bytes += (block_group->length -
5833 			       block_group->used) * factor;
5834 
5835 		spin_unlock(&block_group->lock);
5836 	}
5837 	spin_unlock(&sinfo->lock);
5838 
5839 	return free_bytes;
5840 }
5841 
5842 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5843 				   u64 start, u64 end)
5844 {
5845 	return unpin_extent_range(fs_info, start, end, false);
5846 }
5847 
5848 /*
5849  * It used to be that old block groups would be left around forever.
5850  * Iterating over them would be enough to trim unused space.  Since we
5851  * now automatically remove them, we also need to iterate over unallocated
5852  * space.
5853  *
5854  * We don't want a transaction for this since the discard may take a
5855  * substantial amount of time.  We don't require that a transaction be
5856  * running, but we do need to take a running transaction into account
5857  * to ensure that we're not discarding chunks that were released or
5858  * allocated in the current transaction.
5859  *
5860  * Holding the chunks lock will prevent other threads from allocating
5861  * or releasing chunks, but it won't prevent a running transaction
5862  * from committing and releasing the memory that the pending chunks
5863  * list head uses.  For that, we need to take a reference to the
5864  * transaction and hold the commit root sem.  We only need to hold
5865  * it while performing the free space search since we have already
5866  * held back allocations.
5867  */
5868 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5869 {
5870 	u64 start = SZ_1M, len = 0, end = 0;
5871 	int ret;
5872 
5873 	*trimmed = 0;
5874 
5875 	/* Discard not supported = nothing to do. */
5876 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5877 		return 0;
5878 
5879 	/* Not writable = nothing to do. */
5880 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5881 		return 0;
5882 
5883 	/* No free space = nothing to do. */
5884 	if (device->total_bytes <= device->bytes_used)
5885 		return 0;
5886 
5887 	ret = 0;
5888 
5889 	while (1) {
5890 		struct btrfs_fs_info *fs_info = device->fs_info;
5891 		u64 bytes;
5892 
5893 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5894 		if (ret)
5895 			break;
5896 
5897 		find_first_clear_extent_bit(&device->alloc_state, start,
5898 					    &start, &end,
5899 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5900 
5901 		/* Check if there are any CHUNK_* bits left */
5902 		if (start > device->total_bytes) {
5903 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5904 			btrfs_warn_in_rcu(fs_info,
5905 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5906 					  start, end - start + 1,
5907 					  rcu_str_deref(device->name),
5908 					  device->total_bytes);
5909 			mutex_unlock(&fs_info->chunk_mutex);
5910 			ret = 0;
5911 			break;
5912 		}
5913 
5914 		/* Ensure we skip the reserved area in the first 1M */
5915 		start = max_t(u64, start, SZ_1M);
5916 
5917 		/*
5918 		 * If find_first_clear_extent_bit find a range that spans the
5919 		 * end of the device it will set end to -1, in this case it's up
5920 		 * to the caller to trim the value to the size of the device.
5921 		 */
5922 		end = min(end, device->total_bytes - 1);
5923 
5924 		len = end - start + 1;
5925 
5926 		/* We didn't find any extents */
5927 		if (!len) {
5928 			mutex_unlock(&fs_info->chunk_mutex);
5929 			ret = 0;
5930 			break;
5931 		}
5932 
5933 		ret = btrfs_issue_discard(device->bdev, start, len,
5934 					  &bytes);
5935 		if (!ret)
5936 			set_extent_bits(&device->alloc_state, start,
5937 					start + bytes - 1,
5938 					CHUNK_TRIMMED);
5939 		mutex_unlock(&fs_info->chunk_mutex);
5940 
5941 		if (ret)
5942 			break;
5943 
5944 		start += len;
5945 		*trimmed += bytes;
5946 
5947 		if (fatal_signal_pending(current)) {
5948 			ret = -ERESTARTSYS;
5949 			break;
5950 		}
5951 
5952 		cond_resched();
5953 	}
5954 
5955 	return ret;
5956 }
5957 
5958 /*
5959  * Trim the whole filesystem by:
5960  * 1) trimming the free space in each block group
5961  * 2) trimming the unallocated space on each device
5962  *
5963  * This will also continue trimming even if a block group or device encounters
5964  * an error.  The return value will be the last error, or 0 if nothing bad
5965  * happens.
5966  */
5967 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5968 {
5969 	struct btrfs_block_group *cache = NULL;
5970 	struct btrfs_device *device;
5971 	struct list_head *devices;
5972 	u64 group_trimmed;
5973 	u64 range_end = U64_MAX;
5974 	u64 start;
5975 	u64 end;
5976 	u64 trimmed = 0;
5977 	u64 bg_failed = 0;
5978 	u64 dev_failed = 0;
5979 	int bg_ret = 0;
5980 	int dev_ret = 0;
5981 	int ret = 0;
5982 
5983 	/*
5984 	 * Check range overflow if range->len is set.
5985 	 * The default range->len is U64_MAX.
5986 	 */
5987 	if (range->len != U64_MAX &&
5988 	    check_add_overflow(range->start, range->len, &range_end))
5989 		return -EINVAL;
5990 
5991 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5992 	for (; cache; cache = btrfs_next_block_group(cache)) {
5993 		if (cache->start >= range_end) {
5994 			btrfs_put_block_group(cache);
5995 			break;
5996 		}
5997 
5998 		start = max(range->start, cache->start);
5999 		end = min(range_end, cache->start + cache->length);
6000 
6001 		if (end - start >= range->minlen) {
6002 			if (!btrfs_block_group_done(cache)) {
6003 				ret = btrfs_cache_block_group(cache, 0);
6004 				if (ret) {
6005 					bg_failed++;
6006 					bg_ret = ret;
6007 					continue;
6008 				}
6009 				ret = btrfs_wait_block_group_cache_done(cache);
6010 				if (ret) {
6011 					bg_failed++;
6012 					bg_ret = ret;
6013 					continue;
6014 				}
6015 			}
6016 			ret = btrfs_trim_block_group(cache,
6017 						     &group_trimmed,
6018 						     start,
6019 						     end,
6020 						     range->minlen);
6021 
6022 			trimmed += group_trimmed;
6023 			if (ret) {
6024 				bg_failed++;
6025 				bg_ret = ret;
6026 				continue;
6027 			}
6028 		}
6029 	}
6030 
6031 	if (bg_failed)
6032 		btrfs_warn(fs_info,
6033 			"failed to trim %llu block group(s), last error %d",
6034 			bg_failed, bg_ret);
6035 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
6036 	devices = &fs_info->fs_devices->devices;
6037 	list_for_each_entry(device, devices, dev_list) {
6038 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6039 		if (ret) {
6040 			dev_failed++;
6041 			dev_ret = ret;
6042 			break;
6043 		}
6044 
6045 		trimmed += group_trimmed;
6046 	}
6047 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
6048 
6049 	if (dev_failed)
6050 		btrfs_warn(fs_info,
6051 			"failed to trim %llu device(s), last error %d",
6052 			dev_failed, dev_ret);
6053 	range->len = trimmed;
6054 	if (bg_ret)
6055 		return bg_ret;
6056 	return dev_ret;
6057 }
6058