xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 232b0b08)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41 
42 #undef SCRAMBLE_DELAYED_REFS
43 
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59 	CHUNK_ALLOC_NO_FORCE = 0,
60 	CHUNK_ALLOC_LIMITED = 1,
61 	CHUNK_ALLOC_FORCE = 2,
62 };
63 
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 			      struct btrfs_fs_info *fs_info, u64 bytenr,
66 			      u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 			       struct btrfs_fs_info *fs_info,
69 				struct btrfs_delayed_ref_node *node, u64 parent,
70 				u64 root_objectid, u64 owner_objectid,
71 				u64 owner_offset, int refs_to_drop,
72 				struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 				    struct extent_buffer *leaf,
75 				    struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 				      struct btrfs_fs_info *fs_info,
78 				      u64 parent, u64 root_objectid,
79 				      u64 flags, u64 owner, u64 offset,
80 				      struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 				     struct btrfs_fs_info *fs_info,
83 				     u64 parent, u64 root_objectid,
84 				     u64 flags, struct btrfs_disk_key *key,
85 				     int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 			  struct btrfs_fs_info *fs_info, u64 flags,
88 			  int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 			 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 			    struct btrfs_space_info *info, u64 bytes,
93 			    int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 				    u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 				     u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 			       u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 				    struct btrfs_space_info *space_info,
102 				    u64 orig_bytes,
103 				    enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 				     struct btrfs_space_info *space_info,
106 				     u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 				     struct btrfs_space_info *space_info,
109 				     u64 num_bytes);
110 
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 	smp_mb();
115 	return cache->cached == BTRFS_CACHE_FINISHED ||
116 		cache->cached == BTRFS_CACHE_ERROR;
117 }
118 
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 	return (cache->flags & bits) == bits;
122 }
123 
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	atomic_inc(&cache->count);
127 }
128 
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 	if (atomic_dec_and_test(&cache->count)) {
132 		WARN_ON(cache->pinned > 0);
133 		WARN_ON(cache->reserved > 0);
134 		kfree(cache->free_space_ctl);
135 		kfree(cache);
136 	}
137 }
138 
139 /*
140  * this adds the block group to the fs_info rb tree for the block group
141  * cache
142  */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 				struct btrfs_block_group_cache *block_group)
145 {
146 	struct rb_node **p;
147 	struct rb_node *parent = NULL;
148 	struct btrfs_block_group_cache *cache;
149 
150 	spin_lock(&info->block_group_cache_lock);
151 	p = &info->block_group_cache_tree.rb_node;
152 
153 	while (*p) {
154 		parent = *p;
155 		cache = rb_entry(parent, struct btrfs_block_group_cache,
156 				 cache_node);
157 		if (block_group->key.objectid < cache->key.objectid) {
158 			p = &(*p)->rb_left;
159 		} else if (block_group->key.objectid > cache->key.objectid) {
160 			p = &(*p)->rb_right;
161 		} else {
162 			spin_unlock(&info->block_group_cache_lock);
163 			return -EEXIST;
164 		}
165 	}
166 
167 	rb_link_node(&block_group->cache_node, parent, p);
168 	rb_insert_color(&block_group->cache_node,
169 			&info->block_group_cache_tree);
170 
171 	if (info->first_logical_byte > block_group->key.objectid)
172 		info->first_logical_byte = block_group->key.objectid;
173 
174 	spin_unlock(&info->block_group_cache_lock);
175 
176 	return 0;
177 }
178 
179 /*
180  * This will return the block group at or after bytenr if contains is 0, else
181  * it will return the block group that contains the bytenr
182  */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 			      int contains)
186 {
187 	struct btrfs_block_group_cache *cache, *ret = NULL;
188 	struct rb_node *n;
189 	u64 end, start;
190 
191 	spin_lock(&info->block_group_cache_lock);
192 	n = info->block_group_cache_tree.rb_node;
193 
194 	while (n) {
195 		cache = rb_entry(n, struct btrfs_block_group_cache,
196 				 cache_node);
197 		end = cache->key.objectid + cache->key.offset - 1;
198 		start = cache->key.objectid;
199 
200 		if (bytenr < start) {
201 			if (!contains && (!ret || start < ret->key.objectid))
202 				ret = cache;
203 			n = n->rb_left;
204 		} else if (bytenr > start) {
205 			if (contains && bytenr <= end) {
206 				ret = cache;
207 				break;
208 			}
209 			n = n->rb_right;
210 		} else {
211 			ret = cache;
212 			break;
213 		}
214 	}
215 	if (ret) {
216 		btrfs_get_block_group(ret);
217 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 			info->first_logical_byte = ret->key.objectid;
219 	}
220 	spin_unlock(&info->block_group_cache_lock);
221 
222 	return ret;
223 }
224 
225 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
226 			       u64 start, u64 num_bytes)
227 {
228 	u64 end = start + num_bytes - 1;
229 	set_extent_bits(&fs_info->freed_extents[0],
230 			start, end, EXTENT_UPTODATE);
231 	set_extent_bits(&fs_info->freed_extents[1],
232 			start, end, EXTENT_UPTODATE);
233 	return 0;
234 }
235 
236 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
237 				  struct btrfs_block_group_cache *cache)
238 {
239 	u64 start, end;
240 
241 	start = cache->key.objectid;
242 	end = start + cache->key.offset - 1;
243 
244 	clear_extent_bits(&fs_info->freed_extents[0],
245 			  start, end, EXTENT_UPTODATE);
246 	clear_extent_bits(&fs_info->freed_extents[1],
247 			  start, end, EXTENT_UPTODATE);
248 }
249 
250 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
251 				 struct btrfs_block_group_cache *cache)
252 {
253 	u64 bytenr;
254 	u64 *logical;
255 	int stripe_len;
256 	int i, nr, ret;
257 
258 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 		cache->bytes_super += stripe_len;
261 		ret = add_excluded_extent(fs_info, cache->key.objectid,
262 					  stripe_len);
263 		if (ret)
264 			return ret;
265 	}
266 
267 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 		bytenr = btrfs_sb_offset(i);
269 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
270 				       bytenr, 0, &logical, &nr, &stripe_len);
271 		if (ret)
272 			return ret;
273 
274 		while (nr--) {
275 			u64 start, len;
276 
277 			if (logical[nr] > cache->key.objectid +
278 			    cache->key.offset)
279 				continue;
280 
281 			if (logical[nr] + stripe_len <= cache->key.objectid)
282 				continue;
283 
284 			start = logical[nr];
285 			if (start < cache->key.objectid) {
286 				start = cache->key.objectid;
287 				len = (logical[nr] + stripe_len) - start;
288 			} else {
289 				len = min_t(u64, stripe_len,
290 					    cache->key.objectid +
291 					    cache->key.offset - start);
292 			}
293 
294 			cache->bytes_super += len;
295 			ret = add_excluded_extent(fs_info, start, len);
296 			if (ret) {
297 				kfree(logical);
298 				return ret;
299 			}
300 		}
301 
302 		kfree(logical);
303 	}
304 	return 0;
305 }
306 
307 static struct btrfs_caching_control *
308 get_caching_control(struct btrfs_block_group_cache *cache)
309 {
310 	struct btrfs_caching_control *ctl;
311 
312 	spin_lock(&cache->lock);
313 	if (!cache->caching_ctl) {
314 		spin_unlock(&cache->lock);
315 		return NULL;
316 	}
317 
318 	ctl = cache->caching_ctl;
319 	atomic_inc(&ctl->count);
320 	spin_unlock(&cache->lock);
321 	return ctl;
322 }
323 
324 static void put_caching_control(struct btrfs_caching_control *ctl)
325 {
326 	if (atomic_dec_and_test(&ctl->count))
327 		kfree(ctl);
328 }
329 
330 #ifdef CONFIG_BTRFS_DEBUG
331 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
332 {
333 	struct btrfs_fs_info *fs_info = block_group->fs_info;
334 	u64 start = block_group->key.objectid;
335 	u64 len = block_group->key.offset;
336 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
337 		fs_info->nodesize : fs_info->sectorsize;
338 	u64 step = chunk << 1;
339 
340 	while (len > chunk) {
341 		btrfs_remove_free_space(block_group, start, chunk);
342 		start += step;
343 		if (len < step)
344 			len = 0;
345 		else
346 			len -= step;
347 	}
348 }
349 #endif
350 
351 /*
352  * this is only called by cache_block_group, since we could have freed extents
353  * we need to check the pinned_extents for any extents that can't be used yet
354  * since their free space will be released as soon as the transaction commits.
355  */
356 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
357 		       struct btrfs_fs_info *info, u64 start, u64 end)
358 {
359 	u64 extent_start, extent_end, size, total_added = 0;
360 	int ret;
361 
362 	while (start < end) {
363 		ret = find_first_extent_bit(info->pinned_extents, start,
364 					    &extent_start, &extent_end,
365 					    EXTENT_DIRTY | EXTENT_UPTODATE,
366 					    NULL);
367 		if (ret)
368 			break;
369 
370 		if (extent_start <= start) {
371 			start = extent_end + 1;
372 		} else if (extent_start > start && extent_start < end) {
373 			size = extent_start - start;
374 			total_added += size;
375 			ret = btrfs_add_free_space(block_group, start,
376 						   size);
377 			BUG_ON(ret); /* -ENOMEM or logic error */
378 			start = extent_end + 1;
379 		} else {
380 			break;
381 		}
382 	}
383 
384 	if (start < end) {
385 		size = end - start;
386 		total_added += size;
387 		ret = btrfs_add_free_space(block_group, start, size);
388 		BUG_ON(ret); /* -ENOMEM or logic error */
389 	}
390 
391 	return total_added;
392 }
393 
394 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
395 {
396 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
397 	struct btrfs_fs_info *fs_info = block_group->fs_info;
398 	struct btrfs_root *extent_root = fs_info->extent_root;
399 	struct btrfs_path *path;
400 	struct extent_buffer *leaf;
401 	struct btrfs_key key;
402 	u64 total_found = 0;
403 	u64 last = 0;
404 	u32 nritems;
405 	int ret;
406 	bool wakeup = true;
407 
408 	path = btrfs_alloc_path();
409 	if (!path)
410 		return -ENOMEM;
411 
412 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
413 
414 #ifdef CONFIG_BTRFS_DEBUG
415 	/*
416 	 * If we're fragmenting we don't want to make anybody think we can
417 	 * allocate from this block group until we've had a chance to fragment
418 	 * the free space.
419 	 */
420 	if (btrfs_should_fragment_free_space(block_group))
421 		wakeup = false;
422 #endif
423 	/*
424 	 * We don't want to deadlock with somebody trying to allocate a new
425 	 * extent for the extent root while also trying to search the extent
426 	 * root to add free space.  So we skip locking and search the commit
427 	 * root, since its read-only
428 	 */
429 	path->skip_locking = 1;
430 	path->search_commit_root = 1;
431 	path->reada = READA_FORWARD;
432 
433 	key.objectid = last;
434 	key.offset = 0;
435 	key.type = BTRFS_EXTENT_ITEM_KEY;
436 
437 next:
438 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
439 	if (ret < 0)
440 		goto out;
441 
442 	leaf = path->nodes[0];
443 	nritems = btrfs_header_nritems(leaf);
444 
445 	while (1) {
446 		if (btrfs_fs_closing(fs_info) > 1) {
447 			last = (u64)-1;
448 			break;
449 		}
450 
451 		if (path->slots[0] < nritems) {
452 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
453 		} else {
454 			ret = find_next_key(path, 0, &key);
455 			if (ret)
456 				break;
457 
458 			if (need_resched() ||
459 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
460 				if (wakeup)
461 					caching_ctl->progress = last;
462 				btrfs_release_path(path);
463 				up_read(&fs_info->commit_root_sem);
464 				mutex_unlock(&caching_ctl->mutex);
465 				cond_resched();
466 				mutex_lock(&caching_ctl->mutex);
467 				down_read(&fs_info->commit_root_sem);
468 				goto next;
469 			}
470 
471 			ret = btrfs_next_leaf(extent_root, path);
472 			if (ret < 0)
473 				goto out;
474 			if (ret)
475 				break;
476 			leaf = path->nodes[0];
477 			nritems = btrfs_header_nritems(leaf);
478 			continue;
479 		}
480 
481 		if (key.objectid < last) {
482 			key.objectid = last;
483 			key.offset = 0;
484 			key.type = BTRFS_EXTENT_ITEM_KEY;
485 
486 			if (wakeup)
487 				caching_ctl->progress = last;
488 			btrfs_release_path(path);
489 			goto next;
490 		}
491 
492 		if (key.objectid < block_group->key.objectid) {
493 			path->slots[0]++;
494 			continue;
495 		}
496 
497 		if (key.objectid >= block_group->key.objectid +
498 		    block_group->key.offset)
499 			break;
500 
501 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
502 		    key.type == BTRFS_METADATA_ITEM_KEY) {
503 			total_found += add_new_free_space(block_group,
504 							  fs_info, last,
505 							  key.objectid);
506 			if (key.type == BTRFS_METADATA_ITEM_KEY)
507 				last = key.objectid +
508 					fs_info->nodesize;
509 			else
510 				last = key.objectid + key.offset;
511 
512 			if (total_found > CACHING_CTL_WAKE_UP) {
513 				total_found = 0;
514 				if (wakeup)
515 					wake_up(&caching_ctl->wait);
516 			}
517 		}
518 		path->slots[0]++;
519 	}
520 	ret = 0;
521 
522 	total_found += add_new_free_space(block_group, fs_info, last,
523 					  block_group->key.objectid +
524 					  block_group->key.offset);
525 	caching_ctl->progress = (u64)-1;
526 
527 out:
528 	btrfs_free_path(path);
529 	return ret;
530 }
531 
532 static noinline void caching_thread(struct btrfs_work *work)
533 {
534 	struct btrfs_block_group_cache *block_group;
535 	struct btrfs_fs_info *fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	struct btrfs_root *extent_root;
538 	int ret;
539 
540 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
541 	block_group = caching_ctl->block_group;
542 	fs_info = block_group->fs_info;
543 	extent_root = fs_info->extent_root;
544 
545 	mutex_lock(&caching_ctl->mutex);
546 	down_read(&fs_info->commit_root_sem);
547 
548 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 		ret = load_free_space_tree(caching_ctl);
550 	else
551 		ret = load_extent_tree_free(caching_ctl);
552 
553 	spin_lock(&block_group->lock);
554 	block_group->caching_ctl = NULL;
555 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 	spin_unlock(&block_group->lock);
557 
558 #ifdef CONFIG_BTRFS_DEBUG
559 	if (btrfs_should_fragment_free_space(block_group)) {
560 		u64 bytes_used;
561 
562 		spin_lock(&block_group->space_info->lock);
563 		spin_lock(&block_group->lock);
564 		bytes_used = block_group->key.offset -
565 			btrfs_block_group_used(&block_group->item);
566 		block_group->space_info->bytes_used += bytes_used >> 1;
567 		spin_unlock(&block_group->lock);
568 		spin_unlock(&block_group->space_info->lock);
569 		fragment_free_space(block_group);
570 	}
571 #endif
572 
573 	caching_ctl->progress = (u64)-1;
574 
575 	up_read(&fs_info->commit_root_sem);
576 	free_excluded_extents(fs_info, block_group);
577 	mutex_unlock(&caching_ctl->mutex);
578 
579 	wake_up(&caching_ctl->wait);
580 
581 	put_caching_control(caching_ctl);
582 	btrfs_put_block_group(block_group);
583 }
584 
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586 			     int load_cache_only)
587 {
588 	DEFINE_WAIT(wait);
589 	struct btrfs_fs_info *fs_info = cache->fs_info;
590 	struct btrfs_caching_control *caching_ctl;
591 	int ret = 0;
592 
593 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594 	if (!caching_ctl)
595 		return -ENOMEM;
596 
597 	INIT_LIST_HEAD(&caching_ctl->list);
598 	mutex_init(&caching_ctl->mutex);
599 	init_waitqueue_head(&caching_ctl->wait);
600 	caching_ctl->block_group = cache;
601 	caching_ctl->progress = cache->key.objectid;
602 	atomic_set(&caching_ctl->count, 1);
603 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 			caching_thread, NULL, NULL);
605 
606 	spin_lock(&cache->lock);
607 	/*
608 	 * This should be a rare occasion, but this could happen I think in the
609 	 * case where one thread starts to load the space cache info, and then
610 	 * some other thread starts a transaction commit which tries to do an
611 	 * allocation while the other thread is still loading the space cache
612 	 * info.  The previous loop should have kept us from choosing this block
613 	 * group, but if we've moved to the state where we will wait on caching
614 	 * block groups we need to first check if we're doing a fast load here,
615 	 * so we can wait for it to finish, otherwise we could end up allocating
616 	 * from a block group who's cache gets evicted for one reason or
617 	 * another.
618 	 */
619 	while (cache->cached == BTRFS_CACHE_FAST) {
620 		struct btrfs_caching_control *ctl;
621 
622 		ctl = cache->caching_ctl;
623 		atomic_inc(&ctl->count);
624 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 		spin_unlock(&cache->lock);
626 
627 		schedule();
628 
629 		finish_wait(&ctl->wait, &wait);
630 		put_caching_control(ctl);
631 		spin_lock(&cache->lock);
632 	}
633 
634 	if (cache->cached != BTRFS_CACHE_NO) {
635 		spin_unlock(&cache->lock);
636 		kfree(caching_ctl);
637 		return 0;
638 	}
639 	WARN_ON(cache->caching_ctl);
640 	cache->caching_ctl = caching_ctl;
641 	cache->cached = BTRFS_CACHE_FAST;
642 	spin_unlock(&cache->lock);
643 
644 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
645 		mutex_lock(&caching_ctl->mutex);
646 		ret = load_free_space_cache(fs_info, cache);
647 
648 		spin_lock(&cache->lock);
649 		if (ret == 1) {
650 			cache->caching_ctl = NULL;
651 			cache->cached = BTRFS_CACHE_FINISHED;
652 			cache->last_byte_to_unpin = (u64)-1;
653 			caching_ctl->progress = (u64)-1;
654 		} else {
655 			if (load_cache_only) {
656 				cache->caching_ctl = NULL;
657 				cache->cached = BTRFS_CACHE_NO;
658 			} else {
659 				cache->cached = BTRFS_CACHE_STARTED;
660 				cache->has_caching_ctl = 1;
661 			}
662 		}
663 		spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665 		if (ret == 1 &&
666 		    btrfs_should_fragment_free_space(cache)) {
667 			u64 bytes_used;
668 
669 			spin_lock(&cache->space_info->lock);
670 			spin_lock(&cache->lock);
671 			bytes_used = cache->key.offset -
672 				btrfs_block_group_used(&cache->item);
673 			cache->space_info->bytes_used += bytes_used >> 1;
674 			spin_unlock(&cache->lock);
675 			spin_unlock(&cache->space_info->lock);
676 			fragment_free_space(cache);
677 		}
678 #endif
679 		mutex_unlock(&caching_ctl->mutex);
680 
681 		wake_up(&caching_ctl->wait);
682 		if (ret == 1) {
683 			put_caching_control(caching_ctl);
684 			free_excluded_extents(fs_info, cache);
685 			return 0;
686 		}
687 	} else {
688 		/*
689 		 * We're either using the free space tree or no caching at all.
690 		 * Set cached to the appropriate value and wakeup any waiters.
691 		 */
692 		spin_lock(&cache->lock);
693 		if (load_cache_only) {
694 			cache->caching_ctl = NULL;
695 			cache->cached = BTRFS_CACHE_NO;
696 		} else {
697 			cache->cached = BTRFS_CACHE_STARTED;
698 			cache->has_caching_ctl = 1;
699 		}
700 		spin_unlock(&cache->lock);
701 		wake_up(&caching_ctl->wait);
702 	}
703 
704 	if (load_cache_only) {
705 		put_caching_control(caching_ctl);
706 		return 0;
707 	}
708 
709 	down_write(&fs_info->commit_root_sem);
710 	atomic_inc(&caching_ctl->count);
711 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 	up_write(&fs_info->commit_root_sem);
713 
714 	btrfs_get_block_group(cache);
715 
716 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717 
718 	return ret;
719 }
720 
721 /*
722  * return the block group that starts at or after bytenr
723  */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727 	return block_group_cache_tree_search(info, bytenr, 0);
728 }
729 
730 /*
731  * return the block group that contains the given bytenr
732  */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 						 struct btrfs_fs_info *info,
735 						 u64 bytenr)
736 {
737 	return block_group_cache_tree_search(info, bytenr, 1);
738 }
739 
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 						  u64 flags)
742 {
743 	struct list_head *head = &info->space_info;
744 	struct btrfs_space_info *found;
745 
746 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747 
748 	rcu_read_lock();
749 	list_for_each_entry_rcu(found, head, list) {
750 		if (found->flags & flags) {
751 			rcu_read_unlock();
752 			return found;
753 		}
754 	}
755 	rcu_read_unlock();
756 	return NULL;
757 }
758 
759 /*
760  * after adding space to the filesystem, we need to clear the full flags
761  * on all the space infos.
762  */
763 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
764 {
765 	struct list_head *head = &info->space_info;
766 	struct btrfs_space_info *found;
767 
768 	rcu_read_lock();
769 	list_for_each_entry_rcu(found, head, list)
770 		found->full = 0;
771 	rcu_read_unlock();
772 }
773 
774 /* simple helper to search for an existing data extent at a given offset */
775 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
776 {
777 	int ret;
778 	struct btrfs_key key;
779 	struct btrfs_path *path;
780 
781 	path = btrfs_alloc_path();
782 	if (!path)
783 		return -ENOMEM;
784 
785 	key.objectid = start;
786 	key.offset = len;
787 	key.type = BTRFS_EXTENT_ITEM_KEY;
788 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
789 	btrfs_free_path(path);
790 	return ret;
791 }
792 
793 /*
794  * helper function to lookup reference count and flags of a tree block.
795  *
796  * the head node for delayed ref is used to store the sum of all the
797  * reference count modifications queued up in the rbtree. the head
798  * node may also store the extent flags to set. This way you can check
799  * to see what the reference count and extent flags would be if all of
800  * the delayed refs are not processed.
801  */
802 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
803 			     struct btrfs_fs_info *fs_info, u64 bytenr,
804 			     u64 offset, int metadata, u64 *refs, u64 *flags)
805 {
806 	struct btrfs_delayed_ref_head *head;
807 	struct btrfs_delayed_ref_root *delayed_refs;
808 	struct btrfs_path *path;
809 	struct btrfs_extent_item *ei;
810 	struct extent_buffer *leaf;
811 	struct btrfs_key key;
812 	u32 item_size;
813 	u64 num_refs;
814 	u64 extent_flags;
815 	int ret;
816 
817 	/*
818 	 * If we don't have skinny metadata, don't bother doing anything
819 	 * different
820 	 */
821 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
822 		offset = fs_info->nodesize;
823 		metadata = 0;
824 	}
825 
826 	path = btrfs_alloc_path();
827 	if (!path)
828 		return -ENOMEM;
829 
830 	if (!trans) {
831 		path->skip_locking = 1;
832 		path->search_commit_root = 1;
833 	}
834 
835 search_again:
836 	key.objectid = bytenr;
837 	key.offset = offset;
838 	if (metadata)
839 		key.type = BTRFS_METADATA_ITEM_KEY;
840 	else
841 		key.type = BTRFS_EXTENT_ITEM_KEY;
842 
843 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
844 	if (ret < 0)
845 		goto out_free;
846 
847 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
848 		if (path->slots[0]) {
849 			path->slots[0]--;
850 			btrfs_item_key_to_cpu(path->nodes[0], &key,
851 					      path->slots[0]);
852 			if (key.objectid == bytenr &&
853 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
854 			    key.offset == fs_info->nodesize)
855 				ret = 0;
856 		}
857 	}
858 
859 	if (ret == 0) {
860 		leaf = path->nodes[0];
861 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
862 		if (item_size >= sizeof(*ei)) {
863 			ei = btrfs_item_ptr(leaf, path->slots[0],
864 					    struct btrfs_extent_item);
865 			num_refs = btrfs_extent_refs(leaf, ei);
866 			extent_flags = btrfs_extent_flags(leaf, ei);
867 		} else {
868 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
869 			struct btrfs_extent_item_v0 *ei0;
870 			BUG_ON(item_size != sizeof(*ei0));
871 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
872 					     struct btrfs_extent_item_v0);
873 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
874 			/* FIXME: this isn't correct for data */
875 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
876 #else
877 			BUG();
878 #endif
879 		}
880 		BUG_ON(num_refs == 0);
881 	} else {
882 		num_refs = 0;
883 		extent_flags = 0;
884 		ret = 0;
885 	}
886 
887 	if (!trans)
888 		goto out;
889 
890 	delayed_refs = &trans->transaction->delayed_refs;
891 	spin_lock(&delayed_refs->lock);
892 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
893 	if (head) {
894 		if (!mutex_trylock(&head->mutex)) {
895 			atomic_inc(&head->node.refs);
896 			spin_unlock(&delayed_refs->lock);
897 
898 			btrfs_release_path(path);
899 
900 			/*
901 			 * Mutex was contended, block until it's released and try
902 			 * again
903 			 */
904 			mutex_lock(&head->mutex);
905 			mutex_unlock(&head->mutex);
906 			btrfs_put_delayed_ref(&head->node);
907 			goto search_again;
908 		}
909 		spin_lock(&head->lock);
910 		if (head->extent_op && head->extent_op->update_flags)
911 			extent_flags |= head->extent_op->flags_to_set;
912 		else
913 			BUG_ON(num_refs == 0);
914 
915 		num_refs += head->node.ref_mod;
916 		spin_unlock(&head->lock);
917 		mutex_unlock(&head->mutex);
918 	}
919 	spin_unlock(&delayed_refs->lock);
920 out:
921 	WARN_ON(num_refs == 0);
922 	if (refs)
923 		*refs = num_refs;
924 	if (flags)
925 		*flags = extent_flags;
926 out_free:
927 	btrfs_free_path(path);
928 	return ret;
929 }
930 
931 /*
932  * Back reference rules.  Back refs have three main goals:
933  *
934  * 1) differentiate between all holders of references to an extent so that
935  *    when a reference is dropped we can make sure it was a valid reference
936  *    before freeing the extent.
937  *
938  * 2) Provide enough information to quickly find the holders of an extent
939  *    if we notice a given block is corrupted or bad.
940  *
941  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
942  *    maintenance.  This is actually the same as #2, but with a slightly
943  *    different use case.
944  *
945  * There are two kinds of back refs. The implicit back refs is optimized
946  * for pointers in non-shared tree blocks. For a given pointer in a block,
947  * back refs of this kind provide information about the block's owner tree
948  * and the pointer's key. These information allow us to find the block by
949  * b-tree searching. The full back refs is for pointers in tree blocks not
950  * referenced by their owner trees. The location of tree block is recorded
951  * in the back refs. Actually the full back refs is generic, and can be
952  * used in all cases the implicit back refs is used. The major shortcoming
953  * of the full back refs is its overhead. Every time a tree block gets
954  * COWed, we have to update back refs entry for all pointers in it.
955  *
956  * For a newly allocated tree block, we use implicit back refs for
957  * pointers in it. This means most tree related operations only involve
958  * implicit back refs. For a tree block created in old transaction, the
959  * only way to drop a reference to it is COW it. So we can detect the
960  * event that tree block loses its owner tree's reference and do the
961  * back refs conversion.
962  *
963  * When a tree block is COWed through a tree, there are four cases:
964  *
965  * The reference count of the block is one and the tree is the block's
966  * owner tree. Nothing to do in this case.
967  *
968  * The reference count of the block is one and the tree is not the
969  * block's owner tree. In this case, full back refs is used for pointers
970  * in the block. Remove these full back refs, add implicit back refs for
971  * every pointers in the new block.
972  *
973  * The reference count of the block is greater than one and the tree is
974  * the block's owner tree. In this case, implicit back refs is used for
975  * pointers in the block. Add full back refs for every pointers in the
976  * block, increase lower level extents' reference counts. The original
977  * implicit back refs are entailed to the new block.
978  *
979  * The reference count of the block is greater than one and the tree is
980  * not the block's owner tree. Add implicit back refs for every pointer in
981  * the new block, increase lower level extents' reference count.
982  *
983  * Back Reference Key composing:
984  *
985  * The key objectid corresponds to the first byte in the extent,
986  * The key type is used to differentiate between types of back refs.
987  * There are different meanings of the key offset for different types
988  * of back refs.
989  *
990  * File extents can be referenced by:
991  *
992  * - multiple snapshots, subvolumes, or different generations in one subvol
993  * - different files inside a single subvolume
994  * - different offsets inside a file (bookend extents in file.c)
995  *
996  * The extent ref structure for the implicit back refs has fields for:
997  *
998  * - Objectid of the subvolume root
999  * - objectid of the file holding the reference
1000  * - original offset in the file
1001  * - how many bookend extents
1002  *
1003  * The key offset for the implicit back refs is hash of the first
1004  * three fields.
1005  *
1006  * The extent ref structure for the full back refs has field for:
1007  *
1008  * - number of pointers in the tree leaf
1009  *
1010  * The key offset for the implicit back refs is the first byte of
1011  * the tree leaf
1012  *
1013  * When a file extent is allocated, The implicit back refs is used.
1014  * the fields are filled in:
1015  *
1016  *     (root_key.objectid, inode objectid, offset in file, 1)
1017  *
1018  * When a file extent is removed file truncation, we find the
1019  * corresponding implicit back refs and check the following fields:
1020  *
1021  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1022  *
1023  * Btree extents can be referenced by:
1024  *
1025  * - Different subvolumes
1026  *
1027  * Both the implicit back refs and the full back refs for tree blocks
1028  * only consist of key. The key offset for the implicit back refs is
1029  * objectid of block's owner tree. The key offset for the full back refs
1030  * is the first byte of parent block.
1031  *
1032  * When implicit back refs is used, information about the lowest key and
1033  * level of the tree block are required. These information are stored in
1034  * tree block info structure.
1035  */
1036 
1037 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1038 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1039 				  struct btrfs_fs_info *fs_info,
1040 				  struct btrfs_path *path,
1041 				  u64 owner, u32 extra_size)
1042 {
1043 	struct btrfs_root *root = fs_info->extent_root;
1044 	struct btrfs_extent_item *item;
1045 	struct btrfs_extent_item_v0 *ei0;
1046 	struct btrfs_extent_ref_v0 *ref0;
1047 	struct btrfs_tree_block_info *bi;
1048 	struct extent_buffer *leaf;
1049 	struct btrfs_key key;
1050 	struct btrfs_key found_key;
1051 	u32 new_size = sizeof(*item);
1052 	u64 refs;
1053 	int ret;
1054 
1055 	leaf = path->nodes[0];
1056 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1057 
1058 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1059 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1060 			     struct btrfs_extent_item_v0);
1061 	refs = btrfs_extent_refs_v0(leaf, ei0);
1062 
1063 	if (owner == (u64)-1) {
1064 		while (1) {
1065 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1066 				ret = btrfs_next_leaf(root, path);
1067 				if (ret < 0)
1068 					return ret;
1069 				BUG_ON(ret > 0); /* Corruption */
1070 				leaf = path->nodes[0];
1071 			}
1072 			btrfs_item_key_to_cpu(leaf, &found_key,
1073 					      path->slots[0]);
1074 			BUG_ON(key.objectid != found_key.objectid);
1075 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1076 				path->slots[0]++;
1077 				continue;
1078 			}
1079 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1080 					      struct btrfs_extent_ref_v0);
1081 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1082 			break;
1083 		}
1084 	}
1085 	btrfs_release_path(path);
1086 
1087 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1088 		new_size += sizeof(*bi);
1089 
1090 	new_size -= sizeof(*ei0);
1091 	ret = btrfs_search_slot(trans, root, &key, path,
1092 				new_size + extra_size, 1);
1093 	if (ret < 0)
1094 		return ret;
1095 	BUG_ON(ret); /* Corruption */
1096 
1097 	btrfs_extend_item(fs_info, path, new_size);
1098 
1099 	leaf = path->nodes[0];
1100 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1101 	btrfs_set_extent_refs(leaf, item, refs);
1102 	/* FIXME: get real generation */
1103 	btrfs_set_extent_generation(leaf, item, 0);
1104 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1105 		btrfs_set_extent_flags(leaf, item,
1106 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1107 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1108 		bi = (struct btrfs_tree_block_info *)(item + 1);
1109 		/* FIXME: get first key of the block */
1110 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1111 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1112 	} else {
1113 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1114 	}
1115 	btrfs_mark_buffer_dirty(leaf);
1116 	return 0;
1117 }
1118 #endif
1119 
1120 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1121 {
1122 	u32 high_crc = ~(u32)0;
1123 	u32 low_crc = ~(u32)0;
1124 	__le64 lenum;
1125 
1126 	lenum = cpu_to_le64(root_objectid);
1127 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1128 	lenum = cpu_to_le64(owner);
1129 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1130 	lenum = cpu_to_le64(offset);
1131 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1132 
1133 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1134 }
1135 
1136 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1137 				     struct btrfs_extent_data_ref *ref)
1138 {
1139 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1140 				    btrfs_extent_data_ref_objectid(leaf, ref),
1141 				    btrfs_extent_data_ref_offset(leaf, ref));
1142 }
1143 
1144 static int match_extent_data_ref(struct extent_buffer *leaf,
1145 				 struct btrfs_extent_data_ref *ref,
1146 				 u64 root_objectid, u64 owner, u64 offset)
1147 {
1148 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1149 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1150 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1151 		return 0;
1152 	return 1;
1153 }
1154 
1155 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1156 					   struct btrfs_fs_info *fs_info,
1157 					   struct btrfs_path *path,
1158 					   u64 bytenr, u64 parent,
1159 					   u64 root_objectid,
1160 					   u64 owner, u64 offset)
1161 {
1162 	struct btrfs_root *root = fs_info->extent_root;
1163 	struct btrfs_key key;
1164 	struct btrfs_extent_data_ref *ref;
1165 	struct extent_buffer *leaf;
1166 	u32 nritems;
1167 	int ret;
1168 	int recow;
1169 	int err = -ENOENT;
1170 
1171 	key.objectid = bytenr;
1172 	if (parent) {
1173 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 		key.offset = parent;
1175 	} else {
1176 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 		key.offset = hash_extent_data_ref(root_objectid,
1178 						  owner, offset);
1179 	}
1180 again:
1181 	recow = 0;
1182 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1183 	if (ret < 0) {
1184 		err = ret;
1185 		goto fail;
1186 	}
1187 
1188 	if (parent) {
1189 		if (!ret)
1190 			return 0;
1191 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1192 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1193 		btrfs_release_path(path);
1194 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1195 		if (ret < 0) {
1196 			err = ret;
1197 			goto fail;
1198 		}
1199 		if (!ret)
1200 			return 0;
1201 #endif
1202 		goto fail;
1203 	}
1204 
1205 	leaf = path->nodes[0];
1206 	nritems = btrfs_header_nritems(leaf);
1207 	while (1) {
1208 		if (path->slots[0] >= nritems) {
1209 			ret = btrfs_next_leaf(root, path);
1210 			if (ret < 0)
1211 				err = ret;
1212 			if (ret)
1213 				goto fail;
1214 
1215 			leaf = path->nodes[0];
1216 			nritems = btrfs_header_nritems(leaf);
1217 			recow = 1;
1218 		}
1219 
1220 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1221 		if (key.objectid != bytenr ||
1222 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1223 			goto fail;
1224 
1225 		ref = btrfs_item_ptr(leaf, path->slots[0],
1226 				     struct btrfs_extent_data_ref);
1227 
1228 		if (match_extent_data_ref(leaf, ref, root_objectid,
1229 					  owner, offset)) {
1230 			if (recow) {
1231 				btrfs_release_path(path);
1232 				goto again;
1233 			}
1234 			err = 0;
1235 			break;
1236 		}
1237 		path->slots[0]++;
1238 	}
1239 fail:
1240 	return err;
1241 }
1242 
1243 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1244 					   struct btrfs_fs_info *fs_info,
1245 					   struct btrfs_path *path,
1246 					   u64 bytenr, u64 parent,
1247 					   u64 root_objectid, u64 owner,
1248 					   u64 offset, int refs_to_add)
1249 {
1250 	struct btrfs_root *root = fs_info->extent_root;
1251 	struct btrfs_key key;
1252 	struct extent_buffer *leaf;
1253 	u32 size;
1254 	u32 num_refs;
1255 	int ret;
1256 
1257 	key.objectid = bytenr;
1258 	if (parent) {
1259 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1260 		key.offset = parent;
1261 		size = sizeof(struct btrfs_shared_data_ref);
1262 	} else {
1263 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1264 		key.offset = hash_extent_data_ref(root_objectid,
1265 						  owner, offset);
1266 		size = sizeof(struct btrfs_extent_data_ref);
1267 	}
1268 
1269 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1270 	if (ret && ret != -EEXIST)
1271 		goto fail;
1272 
1273 	leaf = path->nodes[0];
1274 	if (parent) {
1275 		struct btrfs_shared_data_ref *ref;
1276 		ref = btrfs_item_ptr(leaf, path->slots[0],
1277 				     struct btrfs_shared_data_ref);
1278 		if (ret == 0) {
1279 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1280 		} else {
1281 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1282 			num_refs += refs_to_add;
1283 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1284 		}
1285 	} else {
1286 		struct btrfs_extent_data_ref *ref;
1287 		while (ret == -EEXIST) {
1288 			ref = btrfs_item_ptr(leaf, path->slots[0],
1289 					     struct btrfs_extent_data_ref);
1290 			if (match_extent_data_ref(leaf, ref, root_objectid,
1291 						  owner, offset))
1292 				break;
1293 			btrfs_release_path(path);
1294 			key.offset++;
1295 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1296 						      size);
1297 			if (ret && ret != -EEXIST)
1298 				goto fail;
1299 
1300 			leaf = path->nodes[0];
1301 		}
1302 		ref = btrfs_item_ptr(leaf, path->slots[0],
1303 				     struct btrfs_extent_data_ref);
1304 		if (ret == 0) {
1305 			btrfs_set_extent_data_ref_root(leaf, ref,
1306 						       root_objectid);
1307 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1308 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1309 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1310 		} else {
1311 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1312 			num_refs += refs_to_add;
1313 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1314 		}
1315 	}
1316 	btrfs_mark_buffer_dirty(leaf);
1317 	ret = 0;
1318 fail:
1319 	btrfs_release_path(path);
1320 	return ret;
1321 }
1322 
1323 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1324 					   struct btrfs_fs_info *fs_info,
1325 					   struct btrfs_path *path,
1326 					   int refs_to_drop, int *last_ref)
1327 {
1328 	struct btrfs_key key;
1329 	struct btrfs_extent_data_ref *ref1 = NULL;
1330 	struct btrfs_shared_data_ref *ref2 = NULL;
1331 	struct extent_buffer *leaf;
1332 	u32 num_refs = 0;
1333 	int ret = 0;
1334 
1335 	leaf = path->nodes[0];
1336 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1337 
1338 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1339 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1340 				      struct btrfs_extent_data_ref);
1341 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1342 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1343 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1344 				      struct btrfs_shared_data_ref);
1345 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1346 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1347 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1348 		struct btrfs_extent_ref_v0 *ref0;
1349 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1350 				      struct btrfs_extent_ref_v0);
1351 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1352 #endif
1353 	} else {
1354 		BUG();
1355 	}
1356 
1357 	BUG_ON(num_refs < refs_to_drop);
1358 	num_refs -= refs_to_drop;
1359 
1360 	if (num_refs == 0) {
1361 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1362 		*last_ref = 1;
1363 	} else {
1364 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1365 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1366 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1367 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1368 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1369 		else {
1370 			struct btrfs_extent_ref_v0 *ref0;
1371 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1372 					struct btrfs_extent_ref_v0);
1373 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1374 		}
1375 #endif
1376 		btrfs_mark_buffer_dirty(leaf);
1377 	}
1378 	return ret;
1379 }
1380 
1381 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1382 					  struct btrfs_extent_inline_ref *iref)
1383 {
1384 	struct btrfs_key key;
1385 	struct extent_buffer *leaf;
1386 	struct btrfs_extent_data_ref *ref1;
1387 	struct btrfs_shared_data_ref *ref2;
1388 	u32 num_refs = 0;
1389 
1390 	leaf = path->nodes[0];
1391 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1392 	if (iref) {
1393 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1394 		    BTRFS_EXTENT_DATA_REF_KEY) {
1395 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1396 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1397 		} else {
1398 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1399 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1400 		}
1401 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1402 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1403 				      struct btrfs_extent_data_ref);
1404 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1405 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1406 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1407 				      struct btrfs_shared_data_ref);
1408 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1410 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1411 		struct btrfs_extent_ref_v0 *ref0;
1412 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1413 				      struct btrfs_extent_ref_v0);
1414 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1415 #endif
1416 	} else {
1417 		WARN_ON(1);
1418 	}
1419 	return num_refs;
1420 }
1421 
1422 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1423 					  struct btrfs_fs_info *fs_info,
1424 					  struct btrfs_path *path,
1425 					  u64 bytenr, u64 parent,
1426 					  u64 root_objectid)
1427 {
1428 	struct btrfs_root *root = fs_info->extent_root;
1429 	struct btrfs_key key;
1430 	int ret;
1431 
1432 	key.objectid = bytenr;
1433 	if (parent) {
1434 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 		key.offset = parent;
1436 	} else {
1437 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438 		key.offset = root_objectid;
1439 	}
1440 
1441 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 	if (ret > 0)
1443 		ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 	if (ret == -ENOENT && parent) {
1446 		btrfs_release_path(path);
1447 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1448 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449 		if (ret > 0)
1450 			ret = -ENOENT;
1451 	}
1452 #endif
1453 	return ret;
1454 }
1455 
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457 					  struct btrfs_fs_info *fs_info,
1458 					  struct btrfs_path *path,
1459 					  u64 bytenr, u64 parent,
1460 					  u64 root_objectid)
1461 {
1462 	struct btrfs_key key;
1463 	int ret;
1464 
1465 	key.objectid = bytenr;
1466 	if (parent) {
1467 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468 		key.offset = parent;
1469 	} else {
1470 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471 		key.offset = root_objectid;
1472 	}
1473 
1474 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1475 				      path, &key, 0);
1476 	btrfs_release_path(path);
1477 	return ret;
1478 }
1479 
1480 static inline int extent_ref_type(u64 parent, u64 owner)
1481 {
1482 	int type;
1483 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1484 		if (parent > 0)
1485 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1486 		else
1487 			type = BTRFS_TREE_BLOCK_REF_KEY;
1488 	} else {
1489 		if (parent > 0)
1490 			type = BTRFS_SHARED_DATA_REF_KEY;
1491 		else
1492 			type = BTRFS_EXTENT_DATA_REF_KEY;
1493 	}
1494 	return type;
1495 }
1496 
1497 static int find_next_key(struct btrfs_path *path, int level,
1498 			 struct btrfs_key *key)
1499 
1500 {
1501 	for (; level < BTRFS_MAX_LEVEL; level++) {
1502 		if (!path->nodes[level])
1503 			break;
1504 		if (path->slots[level] + 1 >=
1505 		    btrfs_header_nritems(path->nodes[level]))
1506 			continue;
1507 		if (level == 0)
1508 			btrfs_item_key_to_cpu(path->nodes[level], key,
1509 					      path->slots[level] + 1);
1510 		else
1511 			btrfs_node_key_to_cpu(path->nodes[level], key,
1512 					      path->slots[level] + 1);
1513 		return 0;
1514 	}
1515 	return 1;
1516 }
1517 
1518 /*
1519  * look for inline back ref. if back ref is found, *ref_ret is set
1520  * to the address of inline back ref, and 0 is returned.
1521  *
1522  * if back ref isn't found, *ref_ret is set to the address where it
1523  * should be inserted, and -ENOENT is returned.
1524  *
1525  * if insert is true and there are too many inline back refs, the path
1526  * points to the extent item, and -EAGAIN is returned.
1527  *
1528  * NOTE: inline back refs are ordered in the same way that back ref
1529  *	 items in the tree are ordered.
1530  */
1531 static noinline_for_stack
1532 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1533 				 struct btrfs_fs_info *fs_info,
1534 				 struct btrfs_path *path,
1535 				 struct btrfs_extent_inline_ref **ref_ret,
1536 				 u64 bytenr, u64 num_bytes,
1537 				 u64 parent, u64 root_objectid,
1538 				 u64 owner, u64 offset, int insert)
1539 {
1540 	struct btrfs_root *root = fs_info->extent_root;
1541 	struct btrfs_key key;
1542 	struct extent_buffer *leaf;
1543 	struct btrfs_extent_item *ei;
1544 	struct btrfs_extent_inline_ref *iref;
1545 	u64 flags;
1546 	u64 item_size;
1547 	unsigned long ptr;
1548 	unsigned long end;
1549 	int extra_size;
1550 	int type;
1551 	int want;
1552 	int ret;
1553 	int err = 0;
1554 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1555 
1556 	key.objectid = bytenr;
1557 	key.type = BTRFS_EXTENT_ITEM_KEY;
1558 	key.offset = num_bytes;
1559 
1560 	want = extent_ref_type(parent, owner);
1561 	if (insert) {
1562 		extra_size = btrfs_extent_inline_ref_size(want);
1563 		path->keep_locks = 1;
1564 	} else
1565 		extra_size = -1;
1566 
1567 	/*
1568 	 * Owner is our parent level, so we can just add one to get the level
1569 	 * for the block we are interested in.
1570 	 */
1571 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1572 		key.type = BTRFS_METADATA_ITEM_KEY;
1573 		key.offset = owner;
1574 	}
1575 
1576 again:
1577 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1578 	if (ret < 0) {
1579 		err = ret;
1580 		goto out;
1581 	}
1582 
1583 	/*
1584 	 * We may be a newly converted file system which still has the old fat
1585 	 * extent entries for metadata, so try and see if we have one of those.
1586 	 */
1587 	if (ret > 0 && skinny_metadata) {
1588 		skinny_metadata = false;
1589 		if (path->slots[0]) {
1590 			path->slots[0]--;
1591 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 					      path->slots[0]);
1593 			if (key.objectid == bytenr &&
1594 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1595 			    key.offset == num_bytes)
1596 				ret = 0;
1597 		}
1598 		if (ret) {
1599 			key.objectid = bytenr;
1600 			key.type = BTRFS_EXTENT_ITEM_KEY;
1601 			key.offset = num_bytes;
1602 			btrfs_release_path(path);
1603 			goto again;
1604 		}
1605 	}
1606 
1607 	if (ret && !insert) {
1608 		err = -ENOENT;
1609 		goto out;
1610 	} else if (WARN_ON(ret)) {
1611 		err = -EIO;
1612 		goto out;
1613 	}
1614 
1615 	leaf = path->nodes[0];
1616 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1617 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1618 	if (item_size < sizeof(*ei)) {
1619 		if (!insert) {
1620 			err = -ENOENT;
1621 			goto out;
1622 		}
1623 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1624 					     extra_size);
1625 		if (ret < 0) {
1626 			err = ret;
1627 			goto out;
1628 		}
1629 		leaf = path->nodes[0];
1630 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1631 	}
1632 #endif
1633 	BUG_ON(item_size < sizeof(*ei));
1634 
1635 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 	flags = btrfs_extent_flags(leaf, ei);
1637 
1638 	ptr = (unsigned long)(ei + 1);
1639 	end = (unsigned long)ei + item_size;
1640 
1641 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1642 		ptr += sizeof(struct btrfs_tree_block_info);
1643 		BUG_ON(ptr > end);
1644 	}
1645 
1646 	err = -ENOENT;
1647 	while (1) {
1648 		if (ptr >= end) {
1649 			WARN_ON(ptr > end);
1650 			break;
1651 		}
1652 		iref = (struct btrfs_extent_inline_ref *)ptr;
1653 		type = btrfs_extent_inline_ref_type(leaf, iref);
1654 		if (want < type)
1655 			break;
1656 		if (want > type) {
1657 			ptr += btrfs_extent_inline_ref_size(type);
1658 			continue;
1659 		}
1660 
1661 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1662 			struct btrfs_extent_data_ref *dref;
1663 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1664 			if (match_extent_data_ref(leaf, dref, root_objectid,
1665 						  owner, offset)) {
1666 				err = 0;
1667 				break;
1668 			}
1669 			if (hash_extent_data_ref_item(leaf, dref) <
1670 			    hash_extent_data_ref(root_objectid, owner, offset))
1671 				break;
1672 		} else {
1673 			u64 ref_offset;
1674 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1675 			if (parent > 0) {
1676 				if (parent == ref_offset) {
1677 					err = 0;
1678 					break;
1679 				}
1680 				if (ref_offset < parent)
1681 					break;
1682 			} else {
1683 				if (root_objectid == ref_offset) {
1684 					err = 0;
1685 					break;
1686 				}
1687 				if (ref_offset < root_objectid)
1688 					break;
1689 			}
1690 		}
1691 		ptr += btrfs_extent_inline_ref_size(type);
1692 	}
1693 	if (err == -ENOENT && insert) {
1694 		if (item_size + extra_size >=
1695 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1696 			err = -EAGAIN;
1697 			goto out;
1698 		}
1699 		/*
1700 		 * To add new inline back ref, we have to make sure
1701 		 * there is no corresponding back ref item.
1702 		 * For simplicity, we just do not add new inline back
1703 		 * ref if there is any kind of item for this block
1704 		 */
1705 		if (find_next_key(path, 0, &key) == 0 &&
1706 		    key.objectid == bytenr &&
1707 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1708 			err = -EAGAIN;
1709 			goto out;
1710 		}
1711 	}
1712 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1713 out:
1714 	if (insert) {
1715 		path->keep_locks = 0;
1716 		btrfs_unlock_up_safe(path, 1);
1717 	}
1718 	return err;
1719 }
1720 
1721 /*
1722  * helper to add new inline back ref
1723  */
1724 static noinline_for_stack
1725 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1726 				 struct btrfs_path *path,
1727 				 struct btrfs_extent_inline_ref *iref,
1728 				 u64 parent, u64 root_objectid,
1729 				 u64 owner, u64 offset, int refs_to_add,
1730 				 struct btrfs_delayed_extent_op *extent_op)
1731 {
1732 	struct extent_buffer *leaf;
1733 	struct btrfs_extent_item *ei;
1734 	unsigned long ptr;
1735 	unsigned long end;
1736 	unsigned long item_offset;
1737 	u64 refs;
1738 	int size;
1739 	int type;
1740 
1741 	leaf = path->nodes[0];
1742 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1743 	item_offset = (unsigned long)iref - (unsigned long)ei;
1744 
1745 	type = extent_ref_type(parent, owner);
1746 	size = btrfs_extent_inline_ref_size(type);
1747 
1748 	btrfs_extend_item(fs_info, path, size);
1749 
1750 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1751 	refs = btrfs_extent_refs(leaf, ei);
1752 	refs += refs_to_add;
1753 	btrfs_set_extent_refs(leaf, ei, refs);
1754 	if (extent_op)
1755 		__run_delayed_extent_op(extent_op, leaf, ei);
1756 
1757 	ptr = (unsigned long)ei + item_offset;
1758 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1759 	if (ptr < end - size)
1760 		memmove_extent_buffer(leaf, ptr + size, ptr,
1761 				      end - size - ptr);
1762 
1763 	iref = (struct btrfs_extent_inline_ref *)ptr;
1764 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1765 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1766 		struct btrfs_extent_data_ref *dref;
1767 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1768 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1769 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1770 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1771 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1772 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1773 		struct btrfs_shared_data_ref *sref;
1774 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1775 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1776 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1777 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1778 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1779 	} else {
1780 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1781 	}
1782 	btrfs_mark_buffer_dirty(leaf);
1783 }
1784 
1785 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1786 				 struct btrfs_fs_info *fs_info,
1787 				 struct btrfs_path *path,
1788 				 struct btrfs_extent_inline_ref **ref_ret,
1789 				 u64 bytenr, u64 num_bytes, u64 parent,
1790 				 u64 root_objectid, u64 owner, u64 offset)
1791 {
1792 	int ret;
1793 
1794 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1795 					   bytenr, num_bytes, parent,
1796 					   root_objectid, owner, offset, 0);
1797 	if (ret != -ENOENT)
1798 		return ret;
1799 
1800 	btrfs_release_path(path);
1801 	*ref_ret = NULL;
1802 
1803 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1804 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1805 					    parent, root_objectid);
1806 	} else {
1807 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1808 					     parent, root_objectid, owner,
1809 					     offset);
1810 	}
1811 	return ret;
1812 }
1813 
1814 /*
1815  * helper to update/remove inline back ref
1816  */
1817 static noinline_for_stack
1818 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1819 				  struct btrfs_path *path,
1820 				  struct btrfs_extent_inline_ref *iref,
1821 				  int refs_to_mod,
1822 				  struct btrfs_delayed_extent_op *extent_op,
1823 				  int *last_ref)
1824 {
1825 	struct extent_buffer *leaf;
1826 	struct btrfs_extent_item *ei;
1827 	struct btrfs_extent_data_ref *dref = NULL;
1828 	struct btrfs_shared_data_ref *sref = NULL;
1829 	unsigned long ptr;
1830 	unsigned long end;
1831 	u32 item_size;
1832 	int size;
1833 	int type;
1834 	u64 refs;
1835 
1836 	leaf = path->nodes[0];
1837 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1838 	refs = btrfs_extent_refs(leaf, ei);
1839 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1840 	refs += refs_to_mod;
1841 	btrfs_set_extent_refs(leaf, ei, refs);
1842 	if (extent_op)
1843 		__run_delayed_extent_op(extent_op, leaf, ei);
1844 
1845 	type = btrfs_extent_inline_ref_type(leaf, iref);
1846 
1847 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1849 		refs = btrfs_extent_data_ref_count(leaf, dref);
1850 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1851 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1852 		refs = btrfs_shared_data_ref_count(leaf, sref);
1853 	} else {
1854 		refs = 1;
1855 		BUG_ON(refs_to_mod != -1);
1856 	}
1857 
1858 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1859 	refs += refs_to_mod;
1860 
1861 	if (refs > 0) {
1862 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1863 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1864 		else
1865 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1866 	} else {
1867 		*last_ref = 1;
1868 		size =  btrfs_extent_inline_ref_size(type);
1869 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1870 		ptr = (unsigned long)iref;
1871 		end = (unsigned long)ei + item_size;
1872 		if (ptr + size < end)
1873 			memmove_extent_buffer(leaf, ptr, ptr + size,
1874 					      end - ptr - size);
1875 		item_size -= size;
1876 		btrfs_truncate_item(fs_info, path, item_size, 1);
1877 	}
1878 	btrfs_mark_buffer_dirty(leaf);
1879 }
1880 
1881 static noinline_for_stack
1882 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1883 				 struct btrfs_fs_info *fs_info,
1884 				 struct btrfs_path *path,
1885 				 u64 bytenr, u64 num_bytes, u64 parent,
1886 				 u64 root_objectid, u64 owner,
1887 				 u64 offset, int refs_to_add,
1888 				 struct btrfs_delayed_extent_op *extent_op)
1889 {
1890 	struct btrfs_extent_inline_ref *iref;
1891 	int ret;
1892 
1893 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1894 					   bytenr, num_bytes, parent,
1895 					   root_objectid, owner, offset, 1);
1896 	if (ret == 0) {
1897 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1898 		update_inline_extent_backref(fs_info, path, iref,
1899 					     refs_to_add, extent_op, NULL);
1900 	} else if (ret == -ENOENT) {
1901 		setup_inline_extent_backref(fs_info, path, iref, parent,
1902 					    root_objectid, owner, offset,
1903 					    refs_to_add, extent_op);
1904 		ret = 0;
1905 	}
1906 	return ret;
1907 }
1908 
1909 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1910 				 struct btrfs_fs_info *fs_info,
1911 				 struct btrfs_path *path,
1912 				 u64 bytenr, u64 parent, u64 root_objectid,
1913 				 u64 owner, u64 offset, int refs_to_add)
1914 {
1915 	int ret;
1916 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1917 		BUG_ON(refs_to_add != 1);
1918 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1919 					    parent, root_objectid);
1920 	} else {
1921 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1922 					     parent, root_objectid,
1923 					     owner, offset, refs_to_add);
1924 	}
1925 	return ret;
1926 }
1927 
1928 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1929 				 struct btrfs_fs_info *fs_info,
1930 				 struct btrfs_path *path,
1931 				 struct btrfs_extent_inline_ref *iref,
1932 				 int refs_to_drop, int is_data, int *last_ref)
1933 {
1934 	int ret = 0;
1935 
1936 	BUG_ON(!is_data && refs_to_drop != 1);
1937 	if (iref) {
1938 		update_inline_extent_backref(fs_info, path, iref,
1939 					     -refs_to_drop, NULL, last_ref);
1940 	} else if (is_data) {
1941 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1942 					     last_ref);
1943 	} else {
1944 		*last_ref = 1;
1945 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1946 	}
1947 	return ret;
1948 }
1949 
1950 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1951 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1952 			       u64 *discarded_bytes)
1953 {
1954 	int j, ret = 0;
1955 	u64 bytes_left, end;
1956 	u64 aligned_start = ALIGN(start, 1 << 9);
1957 
1958 	if (WARN_ON(start != aligned_start)) {
1959 		len -= aligned_start - start;
1960 		len = round_down(len, 1 << 9);
1961 		start = aligned_start;
1962 	}
1963 
1964 	*discarded_bytes = 0;
1965 
1966 	if (!len)
1967 		return 0;
1968 
1969 	end = start + len;
1970 	bytes_left = len;
1971 
1972 	/* Skip any superblocks on this device. */
1973 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1974 		u64 sb_start = btrfs_sb_offset(j);
1975 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1976 		u64 size = sb_start - start;
1977 
1978 		if (!in_range(sb_start, start, bytes_left) &&
1979 		    !in_range(sb_end, start, bytes_left) &&
1980 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1981 			continue;
1982 
1983 		/*
1984 		 * Superblock spans beginning of range.  Adjust start and
1985 		 * try again.
1986 		 */
1987 		if (sb_start <= start) {
1988 			start += sb_end - start;
1989 			if (start > end) {
1990 				bytes_left = 0;
1991 				break;
1992 			}
1993 			bytes_left = end - start;
1994 			continue;
1995 		}
1996 
1997 		if (size) {
1998 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1999 						   GFP_NOFS, 0);
2000 			if (!ret)
2001 				*discarded_bytes += size;
2002 			else if (ret != -EOPNOTSUPP)
2003 				return ret;
2004 		}
2005 
2006 		start = sb_end;
2007 		if (start > end) {
2008 			bytes_left = 0;
2009 			break;
2010 		}
2011 		bytes_left = end - start;
2012 	}
2013 
2014 	if (bytes_left) {
2015 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2016 					   GFP_NOFS, 0);
2017 		if (!ret)
2018 			*discarded_bytes += bytes_left;
2019 	}
2020 	return ret;
2021 }
2022 
2023 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2024 			 u64 num_bytes, u64 *actual_bytes)
2025 {
2026 	int ret;
2027 	u64 discarded_bytes = 0;
2028 	struct btrfs_bio *bbio = NULL;
2029 
2030 
2031 	/*
2032 	 * Avoid races with device replace and make sure our bbio has devices
2033 	 * associated to its stripes that don't go away while we are discarding.
2034 	 */
2035 	btrfs_bio_counter_inc_blocked(fs_info);
2036 	/* Tell the block device(s) that the sectors can be discarded */
2037 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2038 			      &bbio, 0);
2039 	/* Error condition is -ENOMEM */
2040 	if (!ret) {
2041 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2042 		int i;
2043 
2044 
2045 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2046 			u64 bytes;
2047 			if (!stripe->dev->can_discard)
2048 				continue;
2049 
2050 			ret = btrfs_issue_discard(stripe->dev->bdev,
2051 						  stripe->physical,
2052 						  stripe->length,
2053 						  &bytes);
2054 			if (!ret)
2055 				discarded_bytes += bytes;
2056 			else if (ret != -EOPNOTSUPP)
2057 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2058 
2059 			/*
2060 			 * Just in case we get back EOPNOTSUPP for some reason,
2061 			 * just ignore the return value so we don't screw up
2062 			 * people calling discard_extent.
2063 			 */
2064 			ret = 0;
2065 		}
2066 		btrfs_put_bbio(bbio);
2067 	}
2068 	btrfs_bio_counter_dec(fs_info);
2069 
2070 	if (actual_bytes)
2071 		*actual_bytes = discarded_bytes;
2072 
2073 
2074 	if (ret == -EOPNOTSUPP)
2075 		ret = 0;
2076 	return ret;
2077 }
2078 
2079 /* Can return -ENOMEM */
2080 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2081 			 struct btrfs_fs_info *fs_info,
2082 			 u64 bytenr, u64 num_bytes, u64 parent,
2083 			 u64 root_objectid, u64 owner, u64 offset)
2084 {
2085 	int ret;
2086 
2087 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2088 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2089 
2090 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2091 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2092 					num_bytes,
2093 					parent, root_objectid, (int)owner,
2094 					BTRFS_ADD_DELAYED_REF, NULL);
2095 	} else {
2096 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2097 					num_bytes, parent, root_objectid,
2098 					owner, offset, 0,
2099 					BTRFS_ADD_DELAYED_REF);
2100 	}
2101 	return ret;
2102 }
2103 
2104 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 				  struct btrfs_fs_info *fs_info,
2106 				  struct btrfs_delayed_ref_node *node,
2107 				  u64 parent, u64 root_objectid,
2108 				  u64 owner, u64 offset, int refs_to_add,
2109 				  struct btrfs_delayed_extent_op *extent_op)
2110 {
2111 	struct btrfs_path *path;
2112 	struct extent_buffer *leaf;
2113 	struct btrfs_extent_item *item;
2114 	struct btrfs_key key;
2115 	u64 bytenr = node->bytenr;
2116 	u64 num_bytes = node->num_bytes;
2117 	u64 refs;
2118 	int ret;
2119 
2120 	path = btrfs_alloc_path();
2121 	if (!path)
2122 		return -ENOMEM;
2123 
2124 	path->reada = READA_FORWARD;
2125 	path->leave_spinning = 1;
2126 	/* this will setup the path even if it fails to insert the back ref */
2127 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2128 					   num_bytes, parent, root_objectid,
2129 					   owner, offset,
2130 					   refs_to_add, extent_op);
2131 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2132 		goto out;
2133 
2134 	/*
2135 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2136 	 * inline extent ref, so just update the reference count and add a
2137 	 * normal backref.
2138 	 */
2139 	leaf = path->nodes[0];
2140 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2141 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2142 	refs = btrfs_extent_refs(leaf, item);
2143 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2144 	if (extent_op)
2145 		__run_delayed_extent_op(extent_op, leaf, item);
2146 
2147 	btrfs_mark_buffer_dirty(leaf);
2148 	btrfs_release_path(path);
2149 
2150 	path->reada = READA_FORWARD;
2151 	path->leave_spinning = 1;
2152 	/* now insert the actual backref */
2153 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2154 				    root_objectid, owner, offset, refs_to_add);
2155 	if (ret)
2156 		btrfs_abort_transaction(trans, ret);
2157 out:
2158 	btrfs_free_path(path);
2159 	return ret;
2160 }
2161 
2162 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2163 				struct btrfs_fs_info *fs_info,
2164 				struct btrfs_delayed_ref_node *node,
2165 				struct btrfs_delayed_extent_op *extent_op,
2166 				int insert_reserved)
2167 {
2168 	int ret = 0;
2169 	struct btrfs_delayed_data_ref *ref;
2170 	struct btrfs_key ins;
2171 	u64 parent = 0;
2172 	u64 ref_root = 0;
2173 	u64 flags = 0;
2174 
2175 	ins.objectid = node->bytenr;
2176 	ins.offset = node->num_bytes;
2177 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2178 
2179 	ref = btrfs_delayed_node_to_data_ref(node);
2180 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2181 
2182 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2183 		parent = ref->parent;
2184 	ref_root = ref->root;
2185 
2186 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2187 		if (extent_op)
2188 			flags |= extent_op->flags_to_set;
2189 		ret = alloc_reserved_file_extent(trans, fs_info,
2190 						 parent, ref_root, flags,
2191 						 ref->objectid, ref->offset,
2192 						 &ins, node->ref_mod);
2193 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2194 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2195 					     ref_root, ref->objectid,
2196 					     ref->offset, node->ref_mod,
2197 					     extent_op);
2198 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2199 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2200 					  ref_root, ref->objectid,
2201 					  ref->offset, node->ref_mod,
2202 					  extent_op);
2203 	} else {
2204 		BUG();
2205 	}
2206 	return ret;
2207 }
2208 
2209 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2210 				    struct extent_buffer *leaf,
2211 				    struct btrfs_extent_item *ei)
2212 {
2213 	u64 flags = btrfs_extent_flags(leaf, ei);
2214 	if (extent_op->update_flags) {
2215 		flags |= extent_op->flags_to_set;
2216 		btrfs_set_extent_flags(leaf, ei, flags);
2217 	}
2218 
2219 	if (extent_op->update_key) {
2220 		struct btrfs_tree_block_info *bi;
2221 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2222 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2223 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2224 	}
2225 }
2226 
2227 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2228 				 struct btrfs_fs_info *fs_info,
2229 				 struct btrfs_delayed_ref_node *node,
2230 				 struct btrfs_delayed_extent_op *extent_op)
2231 {
2232 	struct btrfs_key key;
2233 	struct btrfs_path *path;
2234 	struct btrfs_extent_item *ei;
2235 	struct extent_buffer *leaf;
2236 	u32 item_size;
2237 	int ret;
2238 	int err = 0;
2239 	int metadata = !extent_op->is_data;
2240 
2241 	if (trans->aborted)
2242 		return 0;
2243 
2244 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2245 		metadata = 0;
2246 
2247 	path = btrfs_alloc_path();
2248 	if (!path)
2249 		return -ENOMEM;
2250 
2251 	key.objectid = node->bytenr;
2252 
2253 	if (metadata) {
2254 		key.type = BTRFS_METADATA_ITEM_KEY;
2255 		key.offset = extent_op->level;
2256 	} else {
2257 		key.type = BTRFS_EXTENT_ITEM_KEY;
2258 		key.offset = node->num_bytes;
2259 	}
2260 
2261 again:
2262 	path->reada = READA_FORWARD;
2263 	path->leave_spinning = 1;
2264 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2265 	if (ret < 0) {
2266 		err = ret;
2267 		goto out;
2268 	}
2269 	if (ret > 0) {
2270 		if (metadata) {
2271 			if (path->slots[0] > 0) {
2272 				path->slots[0]--;
2273 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2274 						      path->slots[0]);
2275 				if (key.objectid == node->bytenr &&
2276 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2277 				    key.offset == node->num_bytes)
2278 					ret = 0;
2279 			}
2280 			if (ret > 0) {
2281 				btrfs_release_path(path);
2282 				metadata = 0;
2283 
2284 				key.objectid = node->bytenr;
2285 				key.offset = node->num_bytes;
2286 				key.type = BTRFS_EXTENT_ITEM_KEY;
2287 				goto again;
2288 			}
2289 		} else {
2290 			err = -EIO;
2291 			goto out;
2292 		}
2293 	}
2294 
2295 	leaf = path->nodes[0];
2296 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2297 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2298 	if (item_size < sizeof(*ei)) {
2299 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2300 		if (ret < 0) {
2301 			err = ret;
2302 			goto out;
2303 		}
2304 		leaf = path->nodes[0];
2305 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306 	}
2307 #endif
2308 	BUG_ON(item_size < sizeof(*ei));
2309 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2310 	__run_delayed_extent_op(extent_op, leaf, ei);
2311 
2312 	btrfs_mark_buffer_dirty(leaf);
2313 out:
2314 	btrfs_free_path(path);
2315 	return err;
2316 }
2317 
2318 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2319 				struct btrfs_fs_info *fs_info,
2320 				struct btrfs_delayed_ref_node *node,
2321 				struct btrfs_delayed_extent_op *extent_op,
2322 				int insert_reserved)
2323 {
2324 	int ret = 0;
2325 	struct btrfs_delayed_tree_ref *ref;
2326 	struct btrfs_key ins;
2327 	u64 parent = 0;
2328 	u64 ref_root = 0;
2329 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2330 
2331 	ref = btrfs_delayed_node_to_tree_ref(node);
2332 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2333 
2334 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2335 		parent = ref->parent;
2336 	ref_root = ref->root;
2337 
2338 	ins.objectid = node->bytenr;
2339 	if (skinny_metadata) {
2340 		ins.offset = ref->level;
2341 		ins.type = BTRFS_METADATA_ITEM_KEY;
2342 	} else {
2343 		ins.offset = node->num_bytes;
2344 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2345 	}
2346 
2347 	if (node->ref_mod != 1) {
2348 		btrfs_err(fs_info,
2349 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2350 			  node->bytenr, node->ref_mod, node->action, ref_root,
2351 			  parent);
2352 		return -EIO;
2353 	}
2354 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2355 		BUG_ON(!extent_op || !extent_op->update_flags);
2356 		ret = alloc_reserved_tree_block(trans, fs_info,
2357 						parent, ref_root,
2358 						extent_op->flags_to_set,
2359 						&extent_op->key,
2360 						ref->level, &ins);
2361 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2362 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2363 					     parent, ref_root,
2364 					     ref->level, 0, 1,
2365 					     extent_op);
2366 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2367 		ret = __btrfs_free_extent(trans, fs_info, node,
2368 					  parent, ref_root,
2369 					  ref->level, 0, 1, extent_op);
2370 	} else {
2371 		BUG();
2372 	}
2373 	return ret;
2374 }
2375 
2376 /* helper function to actually process a single delayed ref entry */
2377 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2378 			       struct btrfs_fs_info *fs_info,
2379 			       struct btrfs_delayed_ref_node *node,
2380 			       struct btrfs_delayed_extent_op *extent_op,
2381 			       int insert_reserved)
2382 {
2383 	int ret = 0;
2384 
2385 	if (trans->aborted) {
2386 		if (insert_reserved)
2387 			btrfs_pin_extent(fs_info, node->bytenr,
2388 					 node->num_bytes, 1);
2389 		return 0;
2390 	}
2391 
2392 	if (btrfs_delayed_ref_is_head(node)) {
2393 		struct btrfs_delayed_ref_head *head;
2394 		/*
2395 		 * we've hit the end of the chain and we were supposed
2396 		 * to insert this extent into the tree.  But, it got
2397 		 * deleted before we ever needed to insert it, so all
2398 		 * we have to do is clean up the accounting
2399 		 */
2400 		BUG_ON(extent_op);
2401 		head = btrfs_delayed_node_to_head(node);
2402 		trace_run_delayed_ref_head(fs_info, node, head, node->action);
2403 
2404 		if (insert_reserved) {
2405 			btrfs_pin_extent(fs_info, node->bytenr,
2406 					 node->num_bytes, 1);
2407 			if (head->is_data) {
2408 				ret = btrfs_del_csums(trans, fs_info,
2409 						      node->bytenr,
2410 						      node->num_bytes);
2411 			}
2412 		}
2413 
2414 		/* Also free its reserved qgroup space */
2415 		btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2416 					      head->qgroup_reserved);
2417 		return ret;
2418 	}
2419 
2420 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2421 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2422 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2423 					   insert_reserved);
2424 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2425 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2426 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2427 					   insert_reserved);
2428 	else
2429 		BUG();
2430 	return ret;
2431 }
2432 
2433 static inline struct btrfs_delayed_ref_node *
2434 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2435 {
2436 	struct btrfs_delayed_ref_node *ref;
2437 
2438 	if (list_empty(&head->ref_list))
2439 		return NULL;
2440 
2441 	/*
2442 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2443 	 * This is to prevent a ref count from going down to zero, which deletes
2444 	 * the extent item from the extent tree, when there still are references
2445 	 * to add, which would fail because they would not find the extent item.
2446 	 */
2447 	if (!list_empty(&head->ref_add_list))
2448 		return list_first_entry(&head->ref_add_list,
2449 				struct btrfs_delayed_ref_node, add_list);
2450 
2451 	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2452 			       list);
2453 	ASSERT(list_empty(&ref->add_list));
2454 	return ref;
2455 }
2456 
2457 /*
2458  * Returns 0 on success or if called with an already aborted transaction.
2459  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2460  */
2461 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2462 					     struct btrfs_fs_info *fs_info,
2463 					     unsigned long nr)
2464 {
2465 	struct btrfs_delayed_ref_root *delayed_refs;
2466 	struct btrfs_delayed_ref_node *ref;
2467 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2468 	struct btrfs_delayed_extent_op *extent_op;
2469 	ktime_t start = ktime_get();
2470 	int ret;
2471 	unsigned long count = 0;
2472 	unsigned long actual_count = 0;
2473 	int must_insert_reserved = 0;
2474 
2475 	delayed_refs = &trans->transaction->delayed_refs;
2476 	while (1) {
2477 		if (!locked_ref) {
2478 			if (count >= nr)
2479 				break;
2480 
2481 			spin_lock(&delayed_refs->lock);
2482 			locked_ref = btrfs_select_ref_head(trans);
2483 			if (!locked_ref) {
2484 				spin_unlock(&delayed_refs->lock);
2485 				break;
2486 			}
2487 
2488 			/* grab the lock that says we are going to process
2489 			 * all the refs for this head */
2490 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2491 			spin_unlock(&delayed_refs->lock);
2492 			/*
2493 			 * we may have dropped the spin lock to get the head
2494 			 * mutex lock, and that might have given someone else
2495 			 * time to free the head.  If that's true, it has been
2496 			 * removed from our list and we can move on.
2497 			 */
2498 			if (ret == -EAGAIN) {
2499 				locked_ref = NULL;
2500 				count++;
2501 				continue;
2502 			}
2503 		}
2504 
2505 		/*
2506 		 * We need to try and merge add/drops of the same ref since we
2507 		 * can run into issues with relocate dropping the implicit ref
2508 		 * and then it being added back again before the drop can
2509 		 * finish.  If we merged anything we need to re-loop so we can
2510 		 * get a good ref.
2511 		 * Or we can get node references of the same type that weren't
2512 		 * merged when created due to bumps in the tree mod seq, and
2513 		 * we need to merge them to prevent adding an inline extent
2514 		 * backref before dropping it (triggering a BUG_ON at
2515 		 * insert_inline_extent_backref()).
2516 		 */
2517 		spin_lock(&locked_ref->lock);
2518 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2519 					 locked_ref);
2520 
2521 		/*
2522 		 * locked_ref is the head node, so we have to go one
2523 		 * node back for any delayed ref updates
2524 		 */
2525 		ref = select_delayed_ref(locked_ref);
2526 
2527 		if (ref && ref->seq &&
2528 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2529 			spin_unlock(&locked_ref->lock);
2530 			spin_lock(&delayed_refs->lock);
2531 			locked_ref->processing = 0;
2532 			delayed_refs->num_heads_ready++;
2533 			spin_unlock(&delayed_refs->lock);
2534 			btrfs_delayed_ref_unlock(locked_ref);
2535 			locked_ref = NULL;
2536 			cond_resched();
2537 			count++;
2538 			continue;
2539 		}
2540 
2541 		/*
2542 		 * record the must insert reserved flag before we
2543 		 * drop the spin lock.
2544 		 */
2545 		must_insert_reserved = locked_ref->must_insert_reserved;
2546 		locked_ref->must_insert_reserved = 0;
2547 
2548 		extent_op = locked_ref->extent_op;
2549 		locked_ref->extent_op = NULL;
2550 
2551 		if (!ref) {
2552 
2553 
2554 			/* All delayed refs have been processed, Go ahead
2555 			 * and send the head node to run_one_delayed_ref,
2556 			 * so that any accounting fixes can happen
2557 			 */
2558 			ref = &locked_ref->node;
2559 
2560 			if (extent_op && must_insert_reserved) {
2561 				btrfs_free_delayed_extent_op(extent_op);
2562 				extent_op = NULL;
2563 			}
2564 
2565 			if (extent_op) {
2566 				spin_unlock(&locked_ref->lock);
2567 				ret = run_delayed_extent_op(trans, fs_info,
2568 							    ref, extent_op);
2569 				btrfs_free_delayed_extent_op(extent_op);
2570 
2571 				if (ret) {
2572 					/*
2573 					 * Need to reset must_insert_reserved if
2574 					 * there was an error so the abort stuff
2575 					 * can cleanup the reserved space
2576 					 * properly.
2577 					 */
2578 					if (must_insert_reserved)
2579 						locked_ref->must_insert_reserved = 1;
2580 					spin_lock(&delayed_refs->lock);
2581 					locked_ref->processing = 0;
2582 					delayed_refs->num_heads_ready++;
2583 					spin_unlock(&delayed_refs->lock);
2584 					btrfs_debug(fs_info,
2585 						    "run_delayed_extent_op returned %d",
2586 						    ret);
2587 					btrfs_delayed_ref_unlock(locked_ref);
2588 					return ret;
2589 				}
2590 				continue;
2591 			}
2592 
2593 			/*
2594 			 * Need to drop our head ref lock and re-acquire the
2595 			 * delayed ref lock and then re-check to make sure
2596 			 * nobody got added.
2597 			 */
2598 			spin_unlock(&locked_ref->lock);
2599 			spin_lock(&delayed_refs->lock);
2600 			spin_lock(&locked_ref->lock);
2601 			if (!list_empty(&locked_ref->ref_list) ||
2602 			    locked_ref->extent_op) {
2603 				spin_unlock(&locked_ref->lock);
2604 				spin_unlock(&delayed_refs->lock);
2605 				continue;
2606 			}
2607 			ref->in_tree = 0;
2608 			delayed_refs->num_heads--;
2609 			rb_erase(&locked_ref->href_node,
2610 				 &delayed_refs->href_root);
2611 			spin_unlock(&delayed_refs->lock);
2612 		} else {
2613 			actual_count++;
2614 			ref->in_tree = 0;
2615 			list_del(&ref->list);
2616 			if (!list_empty(&ref->add_list))
2617 				list_del(&ref->add_list);
2618 		}
2619 		atomic_dec(&delayed_refs->num_entries);
2620 
2621 		if (!btrfs_delayed_ref_is_head(ref)) {
2622 			/*
2623 			 * when we play the delayed ref, also correct the
2624 			 * ref_mod on head
2625 			 */
2626 			switch (ref->action) {
2627 			case BTRFS_ADD_DELAYED_REF:
2628 			case BTRFS_ADD_DELAYED_EXTENT:
2629 				locked_ref->node.ref_mod -= ref->ref_mod;
2630 				break;
2631 			case BTRFS_DROP_DELAYED_REF:
2632 				locked_ref->node.ref_mod += ref->ref_mod;
2633 				break;
2634 			default:
2635 				WARN_ON(1);
2636 			}
2637 		}
2638 		spin_unlock(&locked_ref->lock);
2639 
2640 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2641 					  must_insert_reserved);
2642 
2643 		btrfs_free_delayed_extent_op(extent_op);
2644 		if (ret) {
2645 			spin_lock(&delayed_refs->lock);
2646 			locked_ref->processing = 0;
2647 			delayed_refs->num_heads_ready++;
2648 			spin_unlock(&delayed_refs->lock);
2649 			btrfs_delayed_ref_unlock(locked_ref);
2650 			btrfs_put_delayed_ref(ref);
2651 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 				    ret);
2653 			return ret;
2654 		}
2655 
2656 		/*
2657 		 * If this node is a head, that means all the refs in this head
2658 		 * have been dealt with, and we will pick the next head to deal
2659 		 * with, so we must unlock the head and drop it from the cluster
2660 		 * list before we release it.
2661 		 */
2662 		if (btrfs_delayed_ref_is_head(ref)) {
2663 			if (locked_ref->is_data &&
2664 			    locked_ref->total_ref_mod < 0) {
2665 				spin_lock(&delayed_refs->lock);
2666 				delayed_refs->pending_csums -= ref->num_bytes;
2667 				spin_unlock(&delayed_refs->lock);
2668 			}
2669 			btrfs_delayed_ref_unlock(locked_ref);
2670 			locked_ref = NULL;
2671 		}
2672 		btrfs_put_delayed_ref(ref);
2673 		count++;
2674 		cond_resched();
2675 	}
2676 
2677 	/*
2678 	 * We don't want to include ref heads since we can have empty ref heads
2679 	 * and those will drastically skew our runtime down since we just do
2680 	 * accounting, no actual extent tree updates.
2681 	 */
2682 	if (actual_count > 0) {
2683 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2684 		u64 avg;
2685 
2686 		/*
2687 		 * We weigh the current average higher than our current runtime
2688 		 * to avoid large swings in the average.
2689 		 */
2690 		spin_lock(&delayed_refs->lock);
2691 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2692 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2693 		spin_unlock(&delayed_refs->lock);
2694 	}
2695 	return 0;
2696 }
2697 
2698 #ifdef SCRAMBLE_DELAYED_REFS
2699 /*
2700  * Normally delayed refs get processed in ascending bytenr order. This
2701  * correlates in most cases to the order added. To expose dependencies on this
2702  * order, we start to process the tree in the middle instead of the beginning
2703  */
2704 static u64 find_middle(struct rb_root *root)
2705 {
2706 	struct rb_node *n = root->rb_node;
2707 	struct btrfs_delayed_ref_node *entry;
2708 	int alt = 1;
2709 	u64 middle;
2710 	u64 first = 0, last = 0;
2711 
2712 	n = rb_first(root);
2713 	if (n) {
2714 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715 		first = entry->bytenr;
2716 	}
2717 	n = rb_last(root);
2718 	if (n) {
2719 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2720 		last = entry->bytenr;
2721 	}
2722 	n = root->rb_node;
2723 
2724 	while (n) {
2725 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2726 		WARN_ON(!entry->in_tree);
2727 
2728 		middle = entry->bytenr;
2729 
2730 		if (alt)
2731 			n = n->rb_left;
2732 		else
2733 			n = n->rb_right;
2734 
2735 		alt = 1 - alt;
2736 	}
2737 	return middle;
2738 }
2739 #endif
2740 
2741 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2742 {
2743 	u64 num_bytes;
2744 
2745 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2746 			     sizeof(struct btrfs_extent_inline_ref));
2747 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2748 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2749 
2750 	/*
2751 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2752 	 * closer to what we're really going to want to use.
2753 	 */
2754 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2755 }
2756 
2757 /*
2758  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2759  * would require to store the csums for that many bytes.
2760  */
2761 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2762 {
2763 	u64 csum_size;
2764 	u64 num_csums_per_leaf;
2765 	u64 num_csums;
2766 
2767 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2768 	num_csums_per_leaf = div64_u64(csum_size,
2769 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2770 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2771 	num_csums += num_csums_per_leaf - 1;
2772 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2773 	return num_csums;
2774 }
2775 
2776 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2777 				       struct btrfs_fs_info *fs_info)
2778 {
2779 	struct btrfs_block_rsv *global_rsv;
2780 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2781 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2782 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2783 	u64 num_bytes, num_dirty_bgs_bytes;
2784 	int ret = 0;
2785 
2786 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2787 	num_heads = heads_to_leaves(fs_info, num_heads);
2788 	if (num_heads > 1)
2789 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2790 	num_bytes <<= 1;
2791 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2792 							fs_info->nodesize;
2793 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2794 							     num_dirty_bgs);
2795 	global_rsv = &fs_info->global_block_rsv;
2796 
2797 	/*
2798 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 	 * wiggle room since running delayed refs can create more delayed refs.
2800 	 */
2801 	if (global_rsv->space_info->full) {
2802 		num_dirty_bgs_bytes <<= 1;
2803 		num_bytes <<= 1;
2804 	}
2805 
2806 	spin_lock(&global_rsv->lock);
2807 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2808 		ret = 1;
2809 	spin_unlock(&global_rsv->lock);
2810 	return ret;
2811 }
2812 
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 				       struct btrfs_fs_info *fs_info)
2815 {
2816 	u64 num_entries =
2817 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2818 	u64 avg_runtime;
2819 	u64 val;
2820 
2821 	smp_mb();
2822 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2823 	val = num_entries * avg_runtime;
2824 	if (val >= NSEC_PER_SEC)
2825 		return 1;
2826 	if (val >= NSEC_PER_SEC / 2)
2827 		return 2;
2828 
2829 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2830 }
2831 
2832 struct async_delayed_refs {
2833 	struct btrfs_root *root;
2834 	u64 transid;
2835 	int count;
2836 	int error;
2837 	int sync;
2838 	struct completion wait;
2839 	struct btrfs_work work;
2840 };
2841 
2842 static inline struct async_delayed_refs *
2843 to_async_delayed_refs(struct btrfs_work *work)
2844 {
2845 	return container_of(work, struct async_delayed_refs, work);
2846 }
2847 
2848 static void delayed_ref_async_start(struct btrfs_work *work)
2849 {
2850 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2851 	struct btrfs_trans_handle *trans;
2852 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2853 	int ret;
2854 
2855 	/* if the commit is already started, we don't need to wait here */
2856 	if (btrfs_transaction_blocked(fs_info))
2857 		goto done;
2858 
2859 	trans = btrfs_join_transaction(async->root);
2860 	if (IS_ERR(trans)) {
2861 		async->error = PTR_ERR(trans);
2862 		goto done;
2863 	}
2864 
2865 	/*
2866 	 * trans->sync means that when we call end_transaction, we won't
2867 	 * wait on delayed refs
2868 	 */
2869 	trans->sync = true;
2870 
2871 	/* Don't bother flushing if we got into a different transaction */
2872 	if (trans->transid > async->transid)
2873 		goto end;
2874 
2875 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2876 	if (ret)
2877 		async->error = ret;
2878 end:
2879 	ret = btrfs_end_transaction(trans);
2880 	if (ret && !async->error)
2881 		async->error = ret;
2882 done:
2883 	if (async->sync)
2884 		complete(&async->wait);
2885 	else
2886 		kfree(async);
2887 }
2888 
2889 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2890 				 unsigned long count, u64 transid, int wait)
2891 {
2892 	struct async_delayed_refs *async;
2893 	int ret;
2894 
2895 	async = kmalloc(sizeof(*async), GFP_NOFS);
2896 	if (!async)
2897 		return -ENOMEM;
2898 
2899 	async->root = fs_info->tree_root;
2900 	async->count = count;
2901 	async->error = 0;
2902 	async->transid = transid;
2903 	if (wait)
2904 		async->sync = 1;
2905 	else
2906 		async->sync = 0;
2907 	init_completion(&async->wait);
2908 
2909 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2910 			delayed_ref_async_start, NULL, NULL);
2911 
2912 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2913 
2914 	if (wait) {
2915 		wait_for_completion(&async->wait);
2916 		ret = async->error;
2917 		kfree(async);
2918 		return ret;
2919 	}
2920 	return 0;
2921 }
2922 
2923 /*
2924  * this starts processing the delayed reference count updates and
2925  * extent insertions we have queued up so far.  count can be
2926  * 0, which means to process everything in the tree at the start
2927  * of the run (but not newly added entries), or it can be some target
2928  * number you'd like to process.
2929  *
2930  * Returns 0 on success or if called with an aborted transaction
2931  * Returns <0 on error and aborts the transaction
2932  */
2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2934 			   struct btrfs_fs_info *fs_info, unsigned long count)
2935 {
2936 	struct rb_node *node;
2937 	struct btrfs_delayed_ref_root *delayed_refs;
2938 	struct btrfs_delayed_ref_head *head;
2939 	int ret;
2940 	int run_all = count == (unsigned long)-1;
2941 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2942 
2943 	/* We'll clean this up in btrfs_cleanup_transaction */
2944 	if (trans->aborted)
2945 		return 0;
2946 
2947 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2948 		return 0;
2949 
2950 	delayed_refs = &trans->transaction->delayed_refs;
2951 	if (count == 0)
2952 		count = atomic_read(&delayed_refs->num_entries) * 2;
2953 
2954 again:
2955 #ifdef SCRAMBLE_DELAYED_REFS
2956 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2957 #endif
2958 	trans->can_flush_pending_bgs = false;
2959 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2960 	if (ret < 0) {
2961 		btrfs_abort_transaction(trans, ret);
2962 		return ret;
2963 	}
2964 
2965 	if (run_all) {
2966 		if (!list_empty(&trans->new_bgs))
2967 			btrfs_create_pending_block_groups(trans, fs_info);
2968 
2969 		spin_lock(&delayed_refs->lock);
2970 		node = rb_first(&delayed_refs->href_root);
2971 		if (!node) {
2972 			spin_unlock(&delayed_refs->lock);
2973 			goto out;
2974 		}
2975 
2976 		while (node) {
2977 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 					href_node);
2979 			if (btrfs_delayed_ref_is_head(&head->node)) {
2980 				struct btrfs_delayed_ref_node *ref;
2981 
2982 				ref = &head->node;
2983 				atomic_inc(&ref->refs);
2984 
2985 				spin_unlock(&delayed_refs->lock);
2986 				/*
2987 				 * Mutex was contended, block until it's
2988 				 * released and try again
2989 				 */
2990 				mutex_lock(&head->mutex);
2991 				mutex_unlock(&head->mutex);
2992 
2993 				btrfs_put_delayed_ref(ref);
2994 				cond_resched();
2995 				goto again;
2996 			} else {
2997 				WARN_ON(1);
2998 			}
2999 			node = rb_next(node);
3000 		}
3001 		spin_unlock(&delayed_refs->lock);
3002 		cond_resched();
3003 		goto again;
3004 	}
3005 out:
3006 	assert_qgroups_uptodate(trans);
3007 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3008 	return 0;
3009 }
3010 
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 				struct btrfs_fs_info *fs_info,
3013 				u64 bytenr, u64 num_bytes, u64 flags,
3014 				int level, int is_data)
3015 {
3016 	struct btrfs_delayed_extent_op *extent_op;
3017 	int ret;
3018 
3019 	extent_op = btrfs_alloc_delayed_extent_op();
3020 	if (!extent_op)
3021 		return -ENOMEM;
3022 
3023 	extent_op->flags_to_set = flags;
3024 	extent_op->update_flags = true;
3025 	extent_op->update_key = false;
3026 	extent_op->is_data = is_data ? true : false;
3027 	extent_op->level = level;
3028 
3029 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3030 					  num_bytes, extent_op);
3031 	if (ret)
3032 		btrfs_free_delayed_extent_op(extent_op);
3033 	return ret;
3034 }
3035 
3036 static noinline int check_delayed_ref(struct btrfs_root *root,
3037 				      struct btrfs_path *path,
3038 				      u64 objectid, u64 offset, u64 bytenr)
3039 {
3040 	struct btrfs_delayed_ref_head *head;
3041 	struct btrfs_delayed_ref_node *ref;
3042 	struct btrfs_delayed_data_ref *data_ref;
3043 	struct btrfs_delayed_ref_root *delayed_refs;
3044 	struct btrfs_transaction *cur_trans;
3045 	int ret = 0;
3046 
3047 	cur_trans = root->fs_info->running_transaction;
3048 	if (!cur_trans)
3049 		return 0;
3050 
3051 	delayed_refs = &cur_trans->delayed_refs;
3052 	spin_lock(&delayed_refs->lock);
3053 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3054 	if (!head) {
3055 		spin_unlock(&delayed_refs->lock);
3056 		return 0;
3057 	}
3058 
3059 	if (!mutex_trylock(&head->mutex)) {
3060 		atomic_inc(&head->node.refs);
3061 		spin_unlock(&delayed_refs->lock);
3062 
3063 		btrfs_release_path(path);
3064 
3065 		/*
3066 		 * Mutex was contended, block until it's released and let
3067 		 * caller try again
3068 		 */
3069 		mutex_lock(&head->mutex);
3070 		mutex_unlock(&head->mutex);
3071 		btrfs_put_delayed_ref(&head->node);
3072 		return -EAGAIN;
3073 	}
3074 	spin_unlock(&delayed_refs->lock);
3075 
3076 	spin_lock(&head->lock);
3077 	list_for_each_entry(ref, &head->ref_list, list) {
3078 		/* If it's a shared ref we know a cross reference exists */
3079 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3080 			ret = 1;
3081 			break;
3082 		}
3083 
3084 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3085 
3086 		/*
3087 		 * If our ref doesn't match the one we're currently looking at
3088 		 * then we have a cross reference.
3089 		 */
3090 		if (data_ref->root != root->root_key.objectid ||
3091 		    data_ref->objectid != objectid ||
3092 		    data_ref->offset != offset) {
3093 			ret = 1;
3094 			break;
3095 		}
3096 	}
3097 	spin_unlock(&head->lock);
3098 	mutex_unlock(&head->mutex);
3099 	return ret;
3100 }
3101 
3102 static noinline int check_committed_ref(struct btrfs_root *root,
3103 					struct btrfs_path *path,
3104 					u64 objectid, u64 offset, u64 bytenr)
3105 {
3106 	struct btrfs_fs_info *fs_info = root->fs_info;
3107 	struct btrfs_root *extent_root = fs_info->extent_root;
3108 	struct extent_buffer *leaf;
3109 	struct btrfs_extent_data_ref *ref;
3110 	struct btrfs_extent_inline_ref *iref;
3111 	struct btrfs_extent_item *ei;
3112 	struct btrfs_key key;
3113 	u32 item_size;
3114 	int ret;
3115 
3116 	key.objectid = bytenr;
3117 	key.offset = (u64)-1;
3118 	key.type = BTRFS_EXTENT_ITEM_KEY;
3119 
3120 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3121 	if (ret < 0)
3122 		goto out;
3123 	BUG_ON(ret == 0); /* Corruption */
3124 
3125 	ret = -ENOENT;
3126 	if (path->slots[0] == 0)
3127 		goto out;
3128 
3129 	path->slots[0]--;
3130 	leaf = path->nodes[0];
3131 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3132 
3133 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3134 		goto out;
3135 
3136 	ret = 1;
3137 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3139 	if (item_size < sizeof(*ei)) {
3140 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3141 		goto out;
3142 	}
3143 #endif
3144 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3145 
3146 	if (item_size != sizeof(*ei) +
3147 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3148 		goto out;
3149 
3150 	if (btrfs_extent_generation(leaf, ei) <=
3151 	    btrfs_root_last_snapshot(&root->root_item))
3152 		goto out;
3153 
3154 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3155 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3156 	    BTRFS_EXTENT_DATA_REF_KEY)
3157 		goto out;
3158 
3159 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3160 	if (btrfs_extent_refs(leaf, ei) !=
3161 	    btrfs_extent_data_ref_count(leaf, ref) ||
3162 	    btrfs_extent_data_ref_root(leaf, ref) !=
3163 	    root->root_key.objectid ||
3164 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3165 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3166 		goto out;
3167 
3168 	ret = 0;
3169 out:
3170 	return ret;
3171 }
3172 
3173 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3174 			  u64 bytenr)
3175 {
3176 	struct btrfs_path *path;
3177 	int ret;
3178 	int ret2;
3179 
3180 	path = btrfs_alloc_path();
3181 	if (!path)
3182 		return -ENOENT;
3183 
3184 	do {
3185 		ret = check_committed_ref(root, path, objectid,
3186 					  offset, bytenr);
3187 		if (ret && ret != -ENOENT)
3188 			goto out;
3189 
3190 		ret2 = check_delayed_ref(root, path, objectid,
3191 					 offset, bytenr);
3192 	} while (ret2 == -EAGAIN);
3193 
3194 	if (ret2 && ret2 != -ENOENT) {
3195 		ret = ret2;
3196 		goto out;
3197 	}
3198 
3199 	if (ret != -ENOENT || ret2 != -ENOENT)
3200 		ret = 0;
3201 out:
3202 	btrfs_free_path(path);
3203 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 		WARN_ON(ret > 0);
3205 	return ret;
3206 }
3207 
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209 			   struct btrfs_root *root,
3210 			   struct extent_buffer *buf,
3211 			   int full_backref, int inc)
3212 {
3213 	struct btrfs_fs_info *fs_info = root->fs_info;
3214 	u64 bytenr;
3215 	u64 num_bytes;
3216 	u64 parent;
3217 	u64 ref_root;
3218 	u32 nritems;
3219 	struct btrfs_key key;
3220 	struct btrfs_file_extent_item *fi;
3221 	int i;
3222 	int level;
3223 	int ret = 0;
3224 	int (*process_func)(struct btrfs_trans_handle *,
3225 			    struct btrfs_fs_info *,
3226 			    u64, u64, u64, u64, u64, u64);
3227 
3228 
3229 	if (btrfs_is_testing(fs_info))
3230 		return 0;
3231 
3232 	ref_root = btrfs_header_owner(buf);
3233 	nritems = btrfs_header_nritems(buf);
3234 	level = btrfs_header_level(buf);
3235 
3236 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3237 		return 0;
3238 
3239 	if (inc)
3240 		process_func = btrfs_inc_extent_ref;
3241 	else
3242 		process_func = btrfs_free_extent;
3243 
3244 	if (full_backref)
3245 		parent = buf->start;
3246 	else
3247 		parent = 0;
3248 
3249 	for (i = 0; i < nritems; i++) {
3250 		if (level == 0) {
3251 			btrfs_item_key_to_cpu(buf, &key, i);
3252 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3253 				continue;
3254 			fi = btrfs_item_ptr(buf, i,
3255 					    struct btrfs_file_extent_item);
3256 			if (btrfs_file_extent_type(buf, fi) ==
3257 			    BTRFS_FILE_EXTENT_INLINE)
3258 				continue;
3259 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3260 			if (bytenr == 0)
3261 				continue;
3262 
3263 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3264 			key.offset -= btrfs_file_extent_offset(buf, fi);
3265 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3266 					   parent, ref_root, key.objectid,
3267 					   key.offset);
3268 			if (ret)
3269 				goto fail;
3270 		} else {
3271 			bytenr = btrfs_node_blockptr(buf, i);
3272 			num_bytes = fs_info->nodesize;
3273 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3274 					   parent, ref_root, level - 1, 0);
3275 			if (ret)
3276 				goto fail;
3277 		}
3278 	}
3279 	return 0;
3280 fail:
3281 	return ret;
3282 }
3283 
3284 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3285 		  struct extent_buffer *buf, int full_backref)
3286 {
3287 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3288 }
3289 
3290 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3291 		  struct extent_buffer *buf, int full_backref)
3292 {
3293 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3294 }
3295 
3296 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3297 				 struct btrfs_fs_info *fs_info,
3298 				 struct btrfs_path *path,
3299 				 struct btrfs_block_group_cache *cache)
3300 {
3301 	int ret;
3302 	struct btrfs_root *extent_root = fs_info->extent_root;
3303 	unsigned long bi;
3304 	struct extent_buffer *leaf;
3305 
3306 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3307 	if (ret) {
3308 		if (ret > 0)
3309 			ret = -ENOENT;
3310 		goto fail;
3311 	}
3312 
3313 	leaf = path->nodes[0];
3314 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3315 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3316 	btrfs_mark_buffer_dirty(leaf);
3317 fail:
3318 	btrfs_release_path(path);
3319 	return ret;
3320 
3321 }
3322 
3323 static struct btrfs_block_group_cache *
3324 next_block_group(struct btrfs_fs_info *fs_info,
3325 		 struct btrfs_block_group_cache *cache)
3326 {
3327 	struct rb_node *node;
3328 
3329 	spin_lock(&fs_info->block_group_cache_lock);
3330 
3331 	/* If our block group was removed, we need a full search. */
3332 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3333 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3334 
3335 		spin_unlock(&fs_info->block_group_cache_lock);
3336 		btrfs_put_block_group(cache);
3337 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3338 	}
3339 	node = rb_next(&cache->cache_node);
3340 	btrfs_put_block_group(cache);
3341 	if (node) {
3342 		cache = rb_entry(node, struct btrfs_block_group_cache,
3343 				 cache_node);
3344 		btrfs_get_block_group(cache);
3345 	} else
3346 		cache = NULL;
3347 	spin_unlock(&fs_info->block_group_cache_lock);
3348 	return cache;
3349 }
3350 
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 			    struct btrfs_trans_handle *trans,
3353 			    struct btrfs_path *path)
3354 {
3355 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3356 	struct btrfs_root *root = fs_info->tree_root;
3357 	struct inode *inode = NULL;
3358 	u64 alloc_hint = 0;
3359 	int dcs = BTRFS_DC_ERROR;
3360 	u64 num_pages = 0;
3361 	int retries = 0;
3362 	int ret = 0;
3363 
3364 	/*
3365 	 * If this block group is smaller than 100 megs don't bother caching the
3366 	 * block group.
3367 	 */
3368 	if (block_group->key.offset < (100 * SZ_1M)) {
3369 		spin_lock(&block_group->lock);
3370 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3371 		spin_unlock(&block_group->lock);
3372 		return 0;
3373 	}
3374 
3375 	if (trans->aborted)
3376 		return 0;
3377 again:
3378 	inode = lookup_free_space_inode(fs_info, block_group, path);
3379 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3380 		ret = PTR_ERR(inode);
3381 		btrfs_release_path(path);
3382 		goto out;
3383 	}
3384 
3385 	if (IS_ERR(inode)) {
3386 		BUG_ON(retries);
3387 		retries++;
3388 
3389 		if (block_group->ro)
3390 			goto out_free;
3391 
3392 		ret = create_free_space_inode(fs_info, trans, block_group,
3393 					      path);
3394 		if (ret)
3395 			goto out_free;
3396 		goto again;
3397 	}
3398 
3399 	/* We've already setup this transaction, go ahead and exit */
3400 	if (block_group->cache_generation == trans->transid &&
3401 	    i_size_read(inode)) {
3402 		dcs = BTRFS_DC_SETUP;
3403 		goto out_put;
3404 	}
3405 
3406 	/*
3407 	 * We want to set the generation to 0, that way if anything goes wrong
3408 	 * from here on out we know not to trust this cache when we load up next
3409 	 * time.
3410 	 */
3411 	BTRFS_I(inode)->generation = 0;
3412 	ret = btrfs_update_inode(trans, root, inode);
3413 	if (ret) {
3414 		/*
3415 		 * So theoretically we could recover from this, simply set the
3416 		 * super cache generation to 0 so we know to invalidate the
3417 		 * cache, but then we'd have to keep track of the block groups
3418 		 * that fail this way so we know we _have_ to reset this cache
3419 		 * before the next commit or risk reading stale cache.  So to
3420 		 * limit our exposure to horrible edge cases lets just abort the
3421 		 * transaction, this only happens in really bad situations
3422 		 * anyway.
3423 		 */
3424 		btrfs_abort_transaction(trans, ret);
3425 		goto out_put;
3426 	}
3427 	WARN_ON(ret);
3428 
3429 	if (i_size_read(inode) > 0) {
3430 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3431 					&fs_info->global_block_rsv);
3432 		if (ret)
3433 			goto out_put;
3434 
3435 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3436 		if (ret)
3437 			goto out_put;
3438 	}
3439 
3440 	spin_lock(&block_group->lock);
3441 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3442 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3443 		/*
3444 		 * don't bother trying to write stuff out _if_
3445 		 * a) we're not cached,
3446 		 * b) we're with nospace_cache mount option.
3447 		 */
3448 		dcs = BTRFS_DC_WRITTEN;
3449 		spin_unlock(&block_group->lock);
3450 		goto out_put;
3451 	}
3452 	spin_unlock(&block_group->lock);
3453 
3454 	/*
3455 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3456 	 * skip doing the setup, we've already cleared the cache so we're safe.
3457 	 */
3458 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3459 		ret = -ENOSPC;
3460 		goto out_put;
3461 	}
3462 
3463 	/*
3464 	 * Try to preallocate enough space based on how big the block group is.
3465 	 * Keep in mind this has to include any pinned space which could end up
3466 	 * taking up quite a bit since it's not folded into the other space
3467 	 * cache.
3468 	 */
3469 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3470 	if (!num_pages)
3471 		num_pages = 1;
3472 
3473 	num_pages *= 16;
3474 	num_pages *= PAGE_SIZE;
3475 
3476 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3477 	if (ret)
3478 		goto out_put;
3479 
3480 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3481 					      num_pages, num_pages,
3482 					      &alloc_hint);
3483 	/*
3484 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3485 	 * of metadata or split extents when writing the cache out, which means
3486 	 * we can enospc if we are heavily fragmented in addition to just normal
3487 	 * out of space conditions.  So if we hit this just skip setting up any
3488 	 * other block groups for this transaction, maybe we'll unpin enough
3489 	 * space the next time around.
3490 	 */
3491 	if (!ret)
3492 		dcs = BTRFS_DC_SETUP;
3493 	else if (ret == -ENOSPC)
3494 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3495 
3496 out_put:
3497 	iput(inode);
3498 out_free:
3499 	btrfs_release_path(path);
3500 out:
3501 	spin_lock(&block_group->lock);
3502 	if (!ret && dcs == BTRFS_DC_SETUP)
3503 		block_group->cache_generation = trans->transid;
3504 	block_group->disk_cache_state = dcs;
3505 	spin_unlock(&block_group->lock);
3506 
3507 	return ret;
3508 }
3509 
3510 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3511 			    struct btrfs_fs_info *fs_info)
3512 {
3513 	struct btrfs_block_group_cache *cache, *tmp;
3514 	struct btrfs_transaction *cur_trans = trans->transaction;
3515 	struct btrfs_path *path;
3516 
3517 	if (list_empty(&cur_trans->dirty_bgs) ||
3518 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3519 		return 0;
3520 
3521 	path = btrfs_alloc_path();
3522 	if (!path)
3523 		return -ENOMEM;
3524 
3525 	/* Could add new block groups, use _safe just in case */
3526 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3527 				 dirty_list) {
3528 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3529 			cache_save_setup(cache, trans, path);
3530 	}
3531 
3532 	btrfs_free_path(path);
3533 	return 0;
3534 }
3535 
3536 /*
3537  * transaction commit does final block group cache writeback during a
3538  * critical section where nothing is allowed to change the FS.  This is
3539  * required in order for the cache to actually match the block group,
3540  * but can introduce a lot of latency into the commit.
3541  *
3542  * So, btrfs_start_dirty_block_groups is here to kick off block group
3543  * cache IO.  There's a chance we'll have to redo some of it if the
3544  * block group changes again during the commit, but it greatly reduces
3545  * the commit latency by getting rid of the easy block groups while
3546  * we're still allowing others to join the commit.
3547  */
3548 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3549 				   struct btrfs_fs_info *fs_info)
3550 {
3551 	struct btrfs_block_group_cache *cache;
3552 	struct btrfs_transaction *cur_trans = trans->transaction;
3553 	int ret = 0;
3554 	int should_put;
3555 	struct btrfs_path *path = NULL;
3556 	LIST_HEAD(dirty);
3557 	struct list_head *io = &cur_trans->io_bgs;
3558 	int num_started = 0;
3559 	int loops = 0;
3560 
3561 	spin_lock(&cur_trans->dirty_bgs_lock);
3562 	if (list_empty(&cur_trans->dirty_bgs)) {
3563 		spin_unlock(&cur_trans->dirty_bgs_lock);
3564 		return 0;
3565 	}
3566 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3567 	spin_unlock(&cur_trans->dirty_bgs_lock);
3568 
3569 again:
3570 	/*
3571 	 * make sure all the block groups on our dirty list actually
3572 	 * exist
3573 	 */
3574 	btrfs_create_pending_block_groups(trans, fs_info);
3575 
3576 	if (!path) {
3577 		path = btrfs_alloc_path();
3578 		if (!path)
3579 			return -ENOMEM;
3580 	}
3581 
3582 	/*
3583 	 * cache_write_mutex is here only to save us from balance or automatic
3584 	 * removal of empty block groups deleting this block group while we are
3585 	 * writing out the cache
3586 	 */
3587 	mutex_lock(&trans->transaction->cache_write_mutex);
3588 	while (!list_empty(&dirty)) {
3589 		cache = list_first_entry(&dirty,
3590 					 struct btrfs_block_group_cache,
3591 					 dirty_list);
3592 		/*
3593 		 * this can happen if something re-dirties a block
3594 		 * group that is already under IO.  Just wait for it to
3595 		 * finish and then do it all again
3596 		 */
3597 		if (!list_empty(&cache->io_list)) {
3598 			list_del_init(&cache->io_list);
3599 			btrfs_wait_cache_io(trans, cache, path);
3600 			btrfs_put_block_group(cache);
3601 		}
3602 
3603 
3604 		/*
3605 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 		 * if it should update the cache_state.  Don't delete
3607 		 * until after we wait.
3608 		 *
3609 		 * Since we're not running in the commit critical section
3610 		 * we need the dirty_bgs_lock to protect from update_block_group
3611 		 */
3612 		spin_lock(&cur_trans->dirty_bgs_lock);
3613 		list_del_init(&cache->dirty_list);
3614 		spin_unlock(&cur_trans->dirty_bgs_lock);
3615 
3616 		should_put = 1;
3617 
3618 		cache_save_setup(cache, trans, path);
3619 
3620 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3621 			cache->io_ctl.inode = NULL;
3622 			ret = btrfs_write_out_cache(fs_info, trans,
3623 						    cache, path);
3624 			if (ret == 0 && cache->io_ctl.inode) {
3625 				num_started++;
3626 				should_put = 0;
3627 
3628 				/*
3629 				 * the cache_write_mutex is protecting
3630 				 * the io_list
3631 				 */
3632 				list_add_tail(&cache->io_list, io);
3633 			} else {
3634 				/*
3635 				 * if we failed to write the cache, the
3636 				 * generation will be bad and life goes on
3637 				 */
3638 				ret = 0;
3639 			}
3640 		}
3641 		if (!ret) {
3642 			ret = write_one_cache_group(trans, fs_info,
3643 						    path, cache);
3644 			/*
3645 			 * Our block group might still be attached to the list
3646 			 * of new block groups in the transaction handle of some
3647 			 * other task (struct btrfs_trans_handle->new_bgs). This
3648 			 * means its block group item isn't yet in the extent
3649 			 * tree. If this happens ignore the error, as we will
3650 			 * try again later in the critical section of the
3651 			 * transaction commit.
3652 			 */
3653 			if (ret == -ENOENT) {
3654 				ret = 0;
3655 				spin_lock(&cur_trans->dirty_bgs_lock);
3656 				if (list_empty(&cache->dirty_list)) {
3657 					list_add_tail(&cache->dirty_list,
3658 						      &cur_trans->dirty_bgs);
3659 					btrfs_get_block_group(cache);
3660 				}
3661 				spin_unlock(&cur_trans->dirty_bgs_lock);
3662 			} else if (ret) {
3663 				btrfs_abort_transaction(trans, ret);
3664 			}
3665 		}
3666 
3667 		/* if its not on the io list, we need to put the block group */
3668 		if (should_put)
3669 			btrfs_put_block_group(cache);
3670 
3671 		if (ret)
3672 			break;
3673 
3674 		/*
3675 		 * Avoid blocking other tasks for too long. It might even save
3676 		 * us from writing caches for block groups that are going to be
3677 		 * removed.
3678 		 */
3679 		mutex_unlock(&trans->transaction->cache_write_mutex);
3680 		mutex_lock(&trans->transaction->cache_write_mutex);
3681 	}
3682 	mutex_unlock(&trans->transaction->cache_write_mutex);
3683 
3684 	/*
3685 	 * go through delayed refs for all the stuff we've just kicked off
3686 	 * and then loop back (just once)
3687 	 */
3688 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3689 	if (!ret && loops == 0) {
3690 		loops++;
3691 		spin_lock(&cur_trans->dirty_bgs_lock);
3692 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3693 		/*
3694 		 * dirty_bgs_lock protects us from concurrent block group
3695 		 * deletes too (not just cache_write_mutex).
3696 		 */
3697 		if (!list_empty(&dirty)) {
3698 			spin_unlock(&cur_trans->dirty_bgs_lock);
3699 			goto again;
3700 		}
3701 		spin_unlock(&cur_trans->dirty_bgs_lock);
3702 	} else if (ret < 0) {
3703 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3704 	}
3705 
3706 	btrfs_free_path(path);
3707 	return ret;
3708 }
3709 
3710 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3711 				   struct btrfs_fs_info *fs_info)
3712 {
3713 	struct btrfs_block_group_cache *cache;
3714 	struct btrfs_transaction *cur_trans = trans->transaction;
3715 	int ret = 0;
3716 	int should_put;
3717 	struct btrfs_path *path;
3718 	struct list_head *io = &cur_trans->io_bgs;
3719 	int num_started = 0;
3720 
3721 	path = btrfs_alloc_path();
3722 	if (!path)
3723 		return -ENOMEM;
3724 
3725 	/*
3726 	 * Even though we are in the critical section of the transaction commit,
3727 	 * we can still have concurrent tasks adding elements to this
3728 	 * transaction's list of dirty block groups. These tasks correspond to
3729 	 * endio free space workers started when writeback finishes for a
3730 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3731 	 * allocate new block groups as a result of COWing nodes of the root
3732 	 * tree when updating the free space inode. The writeback for the space
3733 	 * caches is triggered by an earlier call to
3734 	 * btrfs_start_dirty_block_groups() and iterations of the following
3735 	 * loop.
3736 	 * Also we want to do the cache_save_setup first and then run the
3737 	 * delayed refs to make sure we have the best chance at doing this all
3738 	 * in one shot.
3739 	 */
3740 	spin_lock(&cur_trans->dirty_bgs_lock);
3741 	while (!list_empty(&cur_trans->dirty_bgs)) {
3742 		cache = list_first_entry(&cur_trans->dirty_bgs,
3743 					 struct btrfs_block_group_cache,
3744 					 dirty_list);
3745 
3746 		/*
3747 		 * this can happen if cache_save_setup re-dirties a block
3748 		 * group that is already under IO.  Just wait for it to
3749 		 * finish and then do it all again
3750 		 */
3751 		if (!list_empty(&cache->io_list)) {
3752 			spin_unlock(&cur_trans->dirty_bgs_lock);
3753 			list_del_init(&cache->io_list);
3754 			btrfs_wait_cache_io(trans, cache, path);
3755 			btrfs_put_block_group(cache);
3756 			spin_lock(&cur_trans->dirty_bgs_lock);
3757 		}
3758 
3759 		/*
3760 		 * don't remove from the dirty list until after we've waited
3761 		 * on any pending IO
3762 		 */
3763 		list_del_init(&cache->dirty_list);
3764 		spin_unlock(&cur_trans->dirty_bgs_lock);
3765 		should_put = 1;
3766 
3767 		cache_save_setup(cache, trans, path);
3768 
3769 		if (!ret)
3770 			ret = btrfs_run_delayed_refs(trans, fs_info,
3771 						     (unsigned long) -1);
3772 
3773 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3774 			cache->io_ctl.inode = NULL;
3775 			ret = btrfs_write_out_cache(fs_info, trans,
3776 						    cache, path);
3777 			if (ret == 0 && cache->io_ctl.inode) {
3778 				num_started++;
3779 				should_put = 0;
3780 				list_add_tail(&cache->io_list, io);
3781 			} else {
3782 				/*
3783 				 * if we failed to write the cache, the
3784 				 * generation will be bad and life goes on
3785 				 */
3786 				ret = 0;
3787 			}
3788 		}
3789 		if (!ret) {
3790 			ret = write_one_cache_group(trans, fs_info,
3791 						    path, cache);
3792 			/*
3793 			 * One of the free space endio workers might have
3794 			 * created a new block group while updating a free space
3795 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796 			 * and hasn't released its transaction handle yet, in
3797 			 * which case the new block group is still attached to
3798 			 * its transaction handle and its creation has not
3799 			 * finished yet (no block group item in the extent tree
3800 			 * yet, etc). If this is the case, wait for all free
3801 			 * space endio workers to finish and retry. This is a
3802 			 * a very rare case so no need for a more efficient and
3803 			 * complex approach.
3804 			 */
3805 			if (ret == -ENOENT) {
3806 				wait_event(cur_trans->writer_wait,
3807 				   atomic_read(&cur_trans->num_writers) == 1);
3808 				ret = write_one_cache_group(trans, fs_info,
3809 							    path, cache);
3810 			}
3811 			if (ret)
3812 				btrfs_abort_transaction(trans, ret);
3813 		}
3814 
3815 		/* if its not on the io list, we need to put the block group */
3816 		if (should_put)
3817 			btrfs_put_block_group(cache);
3818 		spin_lock(&cur_trans->dirty_bgs_lock);
3819 	}
3820 	spin_unlock(&cur_trans->dirty_bgs_lock);
3821 
3822 	while (!list_empty(io)) {
3823 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3824 					 io_list);
3825 		list_del_init(&cache->io_list);
3826 		btrfs_wait_cache_io(trans, cache, path);
3827 		btrfs_put_block_group(cache);
3828 	}
3829 
3830 	btrfs_free_path(path);
3831 	return ret;
3832 }
3833 
3834 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3835 {
3836 	struct btrfs_block_group_cache *block_group;
3837 	int readonly = 0;
3838 
3839 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3840 	if (!block_group || block_group->ro)
3841 		readonly = 1;
3842 	if (block_group)
3843 		btrfs_put_block_group(block_group);
3844 	return readonly;
3845 }
3846 
3847 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3848 {
3849 	struct btrfs_block_group_cache *bg;
3850 	bool ret = true;
3851 
3852 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3853 	if (!bg)
3854 		return false;
3855 
3856 	spin_lock(&bg->lock);
3857 	if (bg->ro)
3858 		ret = false;
3859 	else
3860 		atomic_inc(&bg->nocow_writers);
3861 	spin_unlock(&bg->lock);
3862 
3863 	/* no put on block group, done by btrfs_dec_nocow_writers */
3864 	if (!ret)
3865 		btrfs_put_block_group(bg);
3866 
3867 	return ret;
3868 
3869 }
3870 
3871 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3872 {
3873 	struct btrfs_block_group_cache *bg;
3874 
3875 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3876 	ASSERT(bg);
3877 	if (atomic_dec_and_test(&bg->nocow_writers))
3878 		wake_up_atomic_t(&bg->nocow_writers);
3879 	/*
3880 	 * Once for our lookup and once for the lookup done by a previous call
3881 	 * to btrfs_inc_nocow_writers()
3882 	 */
3883 	btrfs_put_block_group(bg);
3884 	btrfs_put_block_group(bg);
3885 }
3886 
3887 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3888 {
3889 	schedule();
3890 	return 0;
3891 }
3892 
3893 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3894 {
3895 	wait_on_atomic_t(&bg->nocow_writers,
3896 			 btrfs_wait_nocow_writers_atomic_t,
3897 			 TASK_UNINTERRUPTIBLE);
3898 }
3899 
3900 static const char *alloc_name(u64 flags)
3901 {
3902 	switch (flags) {
3903 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3904 		return "mixed";
3905 	case BTRFS_BLOCK_GROUP_METADATA:
3906 		return "metadata";
3907 	case BTRFS_BLOCK_GROUP_DATA:
3908 		return "data";
3909 	case BTRFS_BLOCK_GROUP_SYSTEM:
3910 		return "system";
3911 	default:
3912 		WARN_ON(1);
3913 		return "invalid-combination";
3914 	};
3915 }
3916 
3917 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3918 			     u64 total_bytes, u64 bytes_used,
3919 			     u64 bytes_readonly,
3920 			     struct btrfs_space_info **space_info)
3921 {
3922 	struct btrfs_space_info *found;
3923 	int i;
3924 	int factor;
3925 	int ret;
3926 
3927 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3928 		     BTRFS_BLOCK_GROUP_RAID10))
3929 		factor = 2;
3930 	else
3931 		factor = 1;
3932 
3933 	found = __find_space_info(info, flags);
3934 	if (found) {
3935 		spin_lock(&found->lock);
3936 		found->total_bytes += total_bytes;
3937 		found->disk_total += total_bytes * factor;
3938 		found->bytes_used += bytes_used;
3939 		found->disk_used += bytes_used * factor;
3940 		found->bytes_readonly += bytes_readonly;
3941 		if (total_bytes > 0)
3942 			found->full = 0;
3943 		space_info_add_new_bytes(info, found, total_bytes -
3944 					 bytes_used - bytes_readonly);
3945 		spin_unlock(&found->lock);
3946 		*space_info = found;
3947 		return 0;
3948 	}
3949 	found = kzalloc(sizeof(*found), GFP_NOFS);
3950 	if (!found)
3951 		return -ENOMEM;
3952 
3953 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3954 	if (ret) {
3955 		kfree(found);
3956 		return ret;
3957 	}
3958 
3959 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3960 		INIT_LIST_HEAD(&found->block_groups[i]);
3961 	init_rwsem(&found->groups_sem);
3962 	spin_lock_init(&found->lock);
3963 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3964 	found->total_bytes = total_bytes;
3965 	found->disk_total = total_bytes * factor;
3966 	found->bytes_used = bytes_used;
3967 	found->disk_used = bytes_used * factor;
3968 	found->bytes_pinned = 0;
3969 	found->bytes_reserved = 0;
3970 	found->bytes_readonly = bytes_readonly;
3971 	found->bytes_may_use = 0;
3972 	found->full = 0;
3973 	found->max_extent_size = 0;
3974 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3975 	found->chunk_alloc = 0;
3976 	found->flush = 0;
3977 	init_waitqueue_head(&found->wait);
3978 	INIT_LIST_HEAD(&found->ro_bgs);
3979 	INIT_LIST_HEAD(&found->tickets);
3980 	INIT_LIST_HEAD(&found->priority_tickets);
3981 
3982 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3983 				    info->space_info_kobj, "%s",
3984 				    alloc_name(found->flags));
3985 	if (ret) {
3986 		kfree(found);
3987 		return ret;
3988 	}
3989 
3990 	*space_info = found;
3991 	list_add_rcu(&found->list, &info->space_info);
3992 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3993 		info->data_sinfo = found;
3994 
3995 	return ret;
3996 }
3997 
3998 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3999 {
4000 	u64 extra_flags = chunk_to_extended(flags) &
4001 				BTRFS_EXTENDED_PROFILE_MASK;
4002 
4003 	write_seqlock(&fs_info->profiles_lock);
4004 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4005 		fs_info->avail_data_alloc_bits |= extra_flags;
4006 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4007 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4008 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4009 		fs_info->avail_system_alloc_bits |= extra_flags;
4010 	write_sequnlock(&fs_info->profiles_lock);
4011 }
4012 
4013 /*
4014  * returns target flags in extended format or 0 if restripe for this
4015  * chunk_type is not in progress
4016  *
4017  * should be called with either volume_mutex or balance_lock held
4018  */
4019 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4020 {
4021 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4022 	u64 target = 0;
4023 
4024 	if (!bctl)
4025 		return 0;
4026 
4027 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4028 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4029 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4030 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4031 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4032 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4033 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4034 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4035 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4036 	}
4037 
4038 	return target;
4039 }
4040 
4041 /*
4042  * @flags: available profiles in extended format (see ctree.h)
4043  *
4044  * Returns reduced profile in chunk format.  If profile changing is in
4045  * progress (either running or paused) picks the target profile (if it's
4046  * already available), otherwise falls back to plain reducing.
4047  */
4048 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4049 {
4050 	u64 num_devices = fs_info->fs_devices->rw_devices;
4051 	u64 target;
4052 	u64 raid_type;
4053 	u64 allowed = 0;
4054 
4055 	/*
4056 	 * see if restripe for this chunk_type is in progress, if so
4057 	 * try to reduce to the target profile
4058 	 */
4059 	spin_lock(&fs_info->balance_lock);
4060 	target = get_restripe_target(fs_info, flags);
4061 	if (target) {
4062 		/* pick target profile only if it's already available */
4063 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4064 			spin_unlock(&fs_info->balance_lock);
4065 			return extended_to_chunk(target);
4066 		}
4067 	}
4068 	spin_unlock(&fs_info->balance_lock);
4069 
4070 	/* First, mask out the RAID levels which aren't possible */
4071 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4072 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4073 			allowed |= btrfs_raid_group[raid_type];
4074 	}
4075 	allowed &= flags;
4076 
4077 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4078 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4079 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4080 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4081 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4082 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4083 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4084 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4085 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4086 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4087 
4088 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4089 
4090 	return extended_to_chunk(flags | allowed);
4091 }
4092 
4093 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4094 {
4095 	unsigned seq;
4096 	u64 flags;
4097 
4098 	do {
4099 		flags = orig_flags;
4100 		seq = read_seqbegin(&fs_info->profiles_lock);
4101 
4102 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4103 			flags |= fs_info->avail_data_alloc_bits;
4104 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4105 			flags |= fs_info->avail_system_alloc_bits;
4106 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107 			flags |= fs_info->avail_metadata_alloc_bits;
4108 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4109 
4110 	return btrfs_reduce_alloc_profile(fs_info, flags);
4111 }
4112 
4113 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4114 {
4115 	struct btrfs_fs_info *fs_info = root->fs_info;
4116 	u64 flags;
4117 	u64 ret;
4118 
4119 	if (data)
4120 		flags = BTRFS_BLOCK_GROUP_DATA;
4121 	else if (root == fs_info->chunk_root)
4122 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4123 	else
4124 		flags = BTRFS_BLOCK_GROUP_METADATA;
4125 
4126 	ret = get_alloc_profile(fs_info, flags);
4127 	return ret;
4128 }
4129 
4130 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4131 				 bool may_use_included)
4132 {
4133 	ASSERT(s_info);
4134 	return s_info->bytes_used + s_info->bytes_reserved +
4135 		s_info->bytes_pinned + s_info->bytes_readonly +
4136 		(may_use_included ? s_info->bytes_may_use : 0);
4137 }
4138 
4139 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4140 {
4141 	struct btrfs_space_info *data_sinfo;
4142 	struct btrfs_root *root = inode->root;
4143 	struct btrfs_fs_info *fs_info = root->fs_info;
4144 	u64 used;
4145 	int ret = 0;
4146 	int need_commit = 2;
4147 	int have_pinned_space;
4148 
4149 	/* make sure bytes are sectorsize aligned */
4150 	bytes = ALIGN(bytes, fs_info->sectorsize);
4151 
4152 	if (btrfs_is_free_space_inode(inode)) {
4153 		need_commit = 0;
4154 		ASSERT(current->journal_info);
4155 	}
4156 
4157 	data_sinfo = fs_info->data_sinfo;
4158 	if (!data_sinfo)
4159 		goto alloc;
4160 
4161 again:
4162 	/* make sure we have enough space to handle the data first */
4163 	spin_lock(&data_sinfo->lock);
4164 	used = btrfs_space_info_used(data_sinfo, true);
4165 
4166 	if (used + bytes > data_sinfo->total_bytes) {
4167 		struct btrfs_trans_handle *trans;
4168 
4169 		/*
4170 		 * if we don't have enough free bytes in this space then we need
4171 		 * to alloc a new chunk.
4172 		 */
4173 		if (!data_sinfo->full) {
4174 			u64 alloc_target;
4175 
4176 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4177 			spin_unlock(&data_sinfo->lock);
4178 alloc:
4179 			alloc_target = btrfs_get_alloc_profile(root, 1);
4180 			/*
4181 			 * It is ugly that we don't call nolock join
4182 			 * transaction for the free space inode case here.
4183 			 * But it is safe because we only do the data space
4184 			 * reservation for the free space cache in the
4185 			 * transaction context, the common join transaction
4186 			 * just increase the counter of the current transaction
4187 			 * handler, doesn't try to acquire the trans_lock of
4188 			 * the fs.
4189 			 */
4190 			trans = btrfs_join_transaction(root);
4191 			if (IS_ERR(trans))
4192 				return PTR_ERR(trans);
4193 
4194 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4195 					     CHUNK_ALLOC_NO_FORCE);
4196 			btrfs_end_transaction(trans);
4197 			if (ret < 0) {
4198 				if (ret != -ENOSPC)
4199 					return ret;
4200 				else {
4201 					have_pinned_space = 1;
4202 					goto commit_trans;
4203 				}
4204 			}
4205 
4206 			if (!data_sinfo)
4207 				data_sinfo = fs_info->data_sinfo;
4208 
4209 			goto again;
4210 		}
4211 
4212 		/*
4213 		 * If we don't have enough pinned space to deal with this
4214 		 * allocation, and no removed chunk in current transaction,
4215 		 * don't bother committing the transaction.
4216 		 */
4217 		have_pinned_space = percpu_counter_compare(
4218 			&data_sinfo->total_bytes_pinned,
4219 			used + bytes - data_sinfo->total_bytes);
4220 		spin_unlock(&data_sinfo->lock);
4221 
4222 		/* commit the current transaction and try again */
4223 commit_trans:
4224 		if (need_commit &&
4225 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4226 			need_commit--;
4227 
4228 			if (need_commit > 0) {
4229 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4230 				btrfs_wait_ordered_roots(fs_info, -1, 0,
4231 							 (u64)-1);
4232 			}
4233 
4234 			trans = btrfs_join_transaction(root);
4235 			if (IS_ERR(trans))
4236 				return PTR_ERR(trans);
4237 			if (have_pinned_space >= 0 ||
4238 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4239 				     &trans->transaction->flags) ||
4240 			    need_commit > 0) {
4241 				ret = btrfs_commit_transaction(trans);
4242 				if (ret)
4243 					return ret;
4244 				/*
4245 				 * The cleaner kthread might still be doing iput
4246 				 * operations. Wait for it to finish so that
4247 				 * more space is released.
4248 				 */
4249 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4250 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4251 				goto again;
4252 			} else {
4253 				btrfs_end_transaction(trans);
4254 			}
4255 		}
4256 
4257 		trace_btrfs_space_reservation(fs_info,
4258 					      "space_info:enospc",
4259 					      data_sinfo->flags, bytes, 1);
4260 		return -ENOSPC;
4261 	}
4262 	data_sinfo->bytes_may_use += bytes;
4263 	trace_btrfs_space_reservation(fs_info, "space_info",
4264 				      data_sinfo->flags, bytes, 1);
4265 	spin_unlock(&data_sinfo->lock);
4266 
4267 	return ret;
4268 }
4269 
4270 /*
4271  * New check_data_free_space() with ability for precious data reservation
4272  * Will replace old btrfs_check_data_free_space(), but for patch split,
4273  * add a new function first and then replace it.
4274  */
4275 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4276 {
4277 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4278 	int ret;
4279 
4280 	/* align the range */
4281 	len = round_up(start + len, fs_info->sectorsize) -
4282 	      round_down(start, fs_info->sectorsize);
4283 	start = round_down(start, fs_info->sectorsize);
4284 
4285 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4286 	if (ret < 0)
4287 		return ret;
4288 
4289 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4290 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4291 	if (ret)
4292 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4293 	return ret;
4294 }
4295 
4296 /*
4297  * Called if we need to clear a data reservation for this inode
4298  * Normally in a error case.
4299  *
4300  * This one will *NOT* use accurate qgroup reserved space API, just for case
4301  * which we can't sleep and is sure it won't affect qgroup reserved space.
4302  * Like clear_bit_hook().
4303  */
4304 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4305 					    u64 len)
4306 {
4307 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4308 	struct btrfs_space_info *data_sinfo;
4309 
4310 	/* Make sure the range is aligned to sectorsize */
4311 	len = round_up(start + len, fs_info->sectorsize) -
4312 	      round_down(start, fs_info->sectorsize);
4313 	start = round_down(start, fs_info->sectorsize);
4314 
4315 	data_sinfo = fs_info->data_sinfo;
4316 	spin_lock(&data_sinfo->lock);
4317 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4318 		data_sinfo->bytes_may_use = 0;
4319 	else
4320 		data_sinfo->bytes_may_use -= len;
4321 	trace_btrfs_space_reservation(fs_info, "space_info",
4322 				      data_sinfo->flags, len, 0);
4323 	spin_unlock(&data_sinfo->lock);
4324 }
4325 
4326 /*
4327  * Called if we need to clear a data reservation for this inode
4328  * Normally in a error case.
4329  *
4330  * This one will handle the per-inode data rsv map for accurate reserved
4331  * space framework.
4332  */
4333 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4334 {
4335 	struct btrfs_root *root = BTRFS_I(inode)->root;
4336 
4337 	/* Make sure the range is aligned to sectorsize */
4338 	len = round_up(start + len, root->fs_info->sectorsize) -
4339 	      round_down(start, root->fs_info->sectorsize);
4340 	start = round_down(start, root->fs_info->sectorsize);
4341 
4342 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4343 	btrfs_qgroup_free_data(inode, start, len);
4344 }
4345 
4346 static void force_metadata_allocation(struct btrfs_fs_info *info)
4347 {
4348 	struct list_head *head = &info->space_info;
4349 	struct btrfs_space_info *found;
4350 
4351 	rcu_read_lock();
4352 	list_for_each_entry_rcu(found, head, list) {
4353 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4354 			found->force_alloc = CHUNK_ALLOC_FORCE;
4355 	}
4356 	rcu_read_unlock();
4357 }
4358 
4359 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4360 {
4361 	return (global->size << 1);
4362 }
4363 
4364 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4365 			      struct btrfs_space_info *sinfo, int force)
4366 {
4367 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4368 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4369 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4370 	u64 thresh;
4371 
4372 	if (force == CHUNK_ALLOC_FORCE)
4373 		return 1;
4374 
4375 	/*
4376 	 * We need to take into account the global rsv because for all intents
4377 	 * and purposes it's used space.  Don't worry about locking the
4378 	 * global_rsv, it doesn't change except when the transaction commits.
4379 	 */
4380 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4381 		num_allocated += calc_global_rsv_need_space(global_rsv);
4382 
4383 	/*
4384 	 * in limited mode, we want to have some free space up to
4385 	 * about 1% of the FS size.
4386 	 */
4387 	if (force == CHUNK_ALLOC_LIMITED) {
4388 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4389 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4390 
4391 		if (num_bytes - num_allocated < thresh)
4392 			return 1;
4393 	}
4394 
4395 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4396 		return 0;
4397 	return 1;
4398 }
4399 
4400 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4401 {
4402 	u64 num_dev;
4403 
4404 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4405 		    BTRFS_BLOCK_GROUP_RAID0 |
4406 		    BTRFS_BLOCK_GROUP_RAID5 |
4407 		    BTRFS_BLOCK_GROUP_RAID6))
4408 		num_dev = fs_info->fs_devices->rw_devices;
4409 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4410 		num_dev = 2;
4411 	else
4412 		num_dev = 1;	/* DUP or single */
4413 
4414 	return num_dev;
4415 }
4416 
4417 /*
4418  * If @is_allocation is true, reserve space in the system space info necessary
4419  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4420  * removing a chunk.
4421  */
4422 void check_system_chunk(struct btrfs_trans_handle *trans,
4423 			struct btrfs_fs_info *fs_info, u64 type)
4424 {
4425 	struct btrfs_space_info *info;
4426 	u64 left;
4427 	u64 thresh;
4428 	int ret = 0;
4429 	u64 num_devs;
4430 
4431 	/*
4432 	 * Needed because we can end up allocating a system chunk and for an
4433 	 * atomic and race free space reservation in the chunk block reserve.
4434 	 */
4435 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4436 
4437 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4438 	spin_lock(&info->lock);
4439 	left = info->total_bytes - btrfs_space_info_used(info, true);
4440 	spin_unlock(&info->lock);
4441 
4442 	num_devs = get_profile_num_devs(fs_info, type);
4443 
4444 	/* num_devs device items to update and 1 chunk item to add or remove */
4445 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4446 		btrfs_calc_trans_metadata_size(fs_info, 1);
4447 
4448 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4449 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4450 			   left, thresh, type);
4451 		dump_space_info(fs_info, info, 0, 0);
4452 	}
4453 
4454 	if (left < thresh) {
4455 		u64 flags;
4456 
4457 		flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4458 		/*
4459 		 * Ignore failure to create system chunk. We might end up not
4460 		 * needing it, as we might not need to COW all nodes/leafs from
4461 		 * the paths we visit in the chunk tree (they were already COWed
4462 		 * or created in the current transaction for example).
4463 		 */
4464 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4465 	}
4466 
4467 	if (!ret) {
4468 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4469 					  &fs_info->chunk_block_rsv,
4470 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4471 		if (!ret)
4472 			trans->chunk_bytes_reserved += thresh;
4473 	}
4474 }
4475 
4476 /*
4477  * If force is CHUNK_ALLOC_FORCE:
4478  *    - return 1 if it successfully allocates a chunk,
4479  *    - return errors including -ENOSPC otherwise.
4480  * If force is NOT CHUNK_ALLOC_FORCE:
4481  *    - return 0 if it doesn't need to allocate a new chunk,
4482  *    - return 1 if it successfully allocates a chunk,
4483  *    - return errors including -ENOSPC otherwise.
4484  */
4485 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4486 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4487 {
4488 	struct btrfs_space_info *space_info;
4489 	int wait_for_alloc = 0;
4490 	int ret = 0;
4491 
4492 	/* Don't re-enter if we're already allocating a chunk */
4493 	if (trans->allocating_chunk)
4494 		return -ENOSPC;
4495 
4496 	space_info = __find_space_info(fs_info, flags);
4497 	if (!space_info) {
4498 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4499 		BUG_ON(ret); /* -ENOMEM */
4500 	}
4501 	BUG_ON(!space_info); /* Logic error */
4502 
4503 again:
4504 	spin_lock(&space_info->lock);
4505 	if (force < space_info->force_alloc)
4506 		force = space_info->force_alloc;
4507 	if (space_info->full) {
4508 		if (should_alloc_chunk(fs_info, space_info, force))
4509 			ret = -ENOSPC;
4510 		else
4511 			ret = 0;
4512 		spin_unlock(&space_info->lock);
4513 		return ret;
4514 	}
4515 
4516 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4517 		spin_unlock(&space_info->lock);
4518 		return 0;
4519 	} else if (space_info->chunk_alloc) {
4520 		wait_for_alloc = 1;
4521 	} else {
4522 		space_info->chunk_alloc = 1;
4523 	}
4524 
4525 	spin_unlock(&space_info->lock);
4526 
4527 	mutex_lock(&fs_info->chunk_mutex);
4528 
4529 	/*
4530 	 * The chunk_mutex is held throughout the entirety of a chunk
4531 	 * allocation, so once we've acquired the chunk_mutex we know that the
4532 	 * other guy is done and we need to recheck and see if we should
4533 	 * allocate.
4534 	 */
4535 	if (wait_for_alloc) {
4536 		mutex_unlock(&fs_info->chunk_mutex);
4537 		wait_for_alloc = 0;
4538 		goto again;
4539 	}
4540 
4541 	trans->allocating_chunk = true;
4542 
4543 	/*
4544 	 * If we have mixed data/metadata chunks we want to make sure we keep
4545 	 * allocating mixed chunks instead of individual chunks.
4546 	 */
4547 	if (btrfs_mixed_space_info(space_info))
4548 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4549 
4550 	/*
4551 	 * if we're doing a data chunk, go ahead and make sure that
4552 	 * we keep a reasonable number of metadata chunks allocated in the
4553 	 * FS as well.
4554 	 */
4555 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4556 		fs_info->data_chunk_allocations++;
4557 		if (!(fs_info->data_chunk_allocations %
4558 		      fs_info->metadata_ratio))
4559 			force_metadata_allocation(fs_info);
4560 	}
4561 
4562 	/*
4563 	 * Check if we have enough space in SYSTEM chunk because we may need
4564 	 * to update devices.
4565 	 */
4566 	check_system_chunk(trans, fs_info, flags);
4567 
4568 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4569 	trans->allocating_chunk = false;
4570 
4571 	spin_lock(&space_info->lock);
4572 	if (ret < 0 && ret != -ENOSPC)
4573 		goto out;
4574 	if (ret)
4575 		space_info->full = 1;
4576 	else
4577 		ret = 1;
4578 
4579 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4580 out:
4581 	space_info->chunk_alloc = 0;
4582 	spin_unlock(&space_info->lock);
4583 	mutex_unlock(&fs_info->chunk_mutex);
4584 	/*
4585 	 * When we allocate a new chunk we reserve space in the chunk block
4586 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4587 	 * add new nodes/leafs to it if we end up needing to do it when
4588 	 * inserting the chunk item and updating device items as part of the
4589 	 * second phase of chunk allocation, performed by
4590 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4591 	 * large number of new block groups to create in our transaction
4592 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4593 	 * in extreme cases - like having a single transaction create many new
4594 	 * block groups when starting to write out the free space caches of all
4595 	 * the block groups that were made dirty during the lifetime of the
4596 	 * transaction.
4597 	 */
4598 	if (trans->can_flush_pending_bgs &&
4599 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4600 		btrfs_create_pending_block_groups(trans, fs_info);
4601 		btrfs_trans_release_chunk_metadata(trans);
4602 	}
4603 	return ret;
4604 }
4605 
4606 static int can_overcommit(struct btrfs_root *root,
4607 			  struct btrfs_space_info *space_info, u64 bytes,
4608 			  enum btrfs_reserve_flush_enum flush)
4609 {
4610 	struct btrfs_fs_info *fs_info = root->fs_info;
4611 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4612 	u64 profile;
4613 	u64 space_size;
4614 	u64 avail;
4615 	u64 used;
4616 
4617 	/* Don't overcommit when in mixed mode. */
4618 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4619 		return 0;
4620 
4621 	profile = btrfs_get_alloc_profile(root, 0);
4622 	used = btrfs_space_info_used(space_info, false);
4623 
4624 	/*
4625 	 * We only want to allow over committing if we have lots of actual space
4626 	 * free, but if we don't have enough space to handle the global reserve
4627 	 * space then we could end up having a real enospc problem when trying
4628 	 * to allocate a chunk or some other such important allocation.
4629 	 */
4630 	spin_lock(&global_rsv->lock);
4631 	space_size = calc_global_rsv_need_space(global_rsv);
4632 	spin_unlock(&global_rsv->lock);
4633 	if (used + space_size >= space_info->total_bytes)
4634 		return 0;
4635 
4636 	used += space_info->bytes_may_use;
4637 
4638 	spin_lock(&fs_info->free_chunk_lock);
4639 	avail = fs_info->free_chunk_space;
4640 	spin_unlock(&fs_info->free_chunk_lock);
4641 
4642 	/*
4643 	 * If we have dup, raid1 or raid10 then only half of the free
4644 	 * space is actually useable.  For raid56, the space info used
4645 	 * doesn't include the parity drive, so we don't have to
4646 	 * change the math
4647 	 */
4648 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4649 		       BTRFS_BLOCK_GROUP_RAID1 |
4650 		       BTRFS_BLOCK_GROUP_RAID10))
4651 		avail >>= 1;
4652 
4653 	/*
4654 	 * If we aren't flushing all things, let us overcommit up to
4655 	 * 1/2th of the space. If we can flush, don't let us overcommit
4656 	 * too much, let it overcommit up to 1/8 of the space.
4657 	 */
4658 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4659 		avail >>= 3;
4660 	else
4661 		avail >>= 1;
4662 
4663 	if (used + bytes < space_info->total_bytes + avail)
4664 		return 1;
4665 	return 0;
4666 }
4667 
4668 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4669 					 unsigned long nr_pages, int nr_items)
4670 {
4671 	struct super_block *sb = fs_info->sb;
4672 
4673 	if (down_read_trylock(&sb->s_umount)) {
4674 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4675 		up_read(&sb->s_umount);
4676 	} else {
4677 		/*
4678 		 * We needn't worry the filesystem going from r/w to r/o though
4679 		 * we don't acquire ->s_umount mutex, because the filesystem
4680 		 * should guarantee the delalloc inodes list be empty after
4681 		 * the filesystem is readonly(all dirty pages are written to
4682 		 * the disk).
4683 		 */
4684 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4685 		if (!current->journal_info)
4686 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4687 	}
4688 }
4689 
4690 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4691 					u64 to_reclaim)
4692 {
4693 	u64 bytes;
4694 	int nr;
4695 
4696 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4697 	nr = (int)div64_u64(to_reclaim, bytes);
4698 	if (!nr)
4699 		nr = 1;
4700 	return nr;
4701 }
4702 
4703 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4704 
4705 /*
4706  * shrink metadata reservation for delalloc
4707  */
4708 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4709 			    bool wait_ordered)
4710 {
4711 	struct btrfs_fs_info *fs_info = root->fs_info;
4712 	struct btrfs_block_rsv *block_rsv;
4713 	struct btrfs_space_info *space_info;
4714 	struct btrfs_trans_handle *trans;
4715 	u64 delalloc_bytes;
4716 	u64 max_reclaim;
4717 	long time_left;
4718 	unsigned long nr_pages;
4719 	int loops;
4720 	int items;
4721 	enum btrfs_reserve_flush_enum flush;
4722 
4723 	/* Calc the number of the pages we need flush for space reservation */
4724 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4725 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4726 
4727 	trans = (struct btrfs_trans_handle *)current->journal_info;
4728 	block_rsv = &fs_info->delalloc_block_rsv;
4729 	space_info = block_rsv->space_info;
4730 
4731 	delalloc_bytes = percpu_counter_sum_positive(
4732 						&fs_info->delalloc_bytes);
4733 	if (delalloc_bytes == 0) {
4734 		if (trans)
4735 			return;
4736 		if (wait_ordered)
4737 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4738 		return;
4739 	}
4740 
4741 	loops = 0;
4742 	while (delalloc_bytes && loops < 3) {
4743 		max_reclaim = min(delalloc_bytes, to_reclaim);
4744 		nr_pages = max_reclaim >> PAGE_SHIFT;
4745 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4746 		/*
4747 		 * We need to wait for the async pages to actually start before
4748 		 * we do anything.
4749 		 */
4750 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4751 		if (!max_reclaim)
4752 			goto skip_async;
4753 
4754 		if (max_reclaim <= nr_pages)
4755 			max_reclaim = 0;
4756 		else
4757 			max_reclaim -= nr_pages;
4758 
4759 		wait_event(fs_info->async_submit_wait,
4760 			   atomic_read(&fs_info->async_delalloc_pages) <=
4761 			   (int)max_reclaim);
4762 skip_async:
4763 		if (!trans)
4764 			flush = BTRFS_RESERVE_FLUSH_ALL;
4765 		else
4766 			flush = BTRFS_RESERVE_NO_FLUSH;
4767 		spin_lock(&space_info->lock);
4768 		if (can_overcommit(root, space_info, orig, flush)) {
4769 			spin_unlock(&space_info->lock);
4770 			break;
4771 		}
4772 		if (list_empty(&space_info->tickets) &&
4773 		    list_empty(&space_info->priority_tickets)) {
4774 			spin_unlock(&space_info->lock);
4775 			break;
4776 		}
4777 		spin_unlock(&space_info->lock);
4778 
4779 		loops++;
4780 		if (wait_ordered && !trans) {
4781 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4782 		} else {
4783 			time_left = schedule_timeout_killable(1);
4784 			if (time_left)
4785 				break;
4786 		}
4787 		delalloc_bytes = percpu_counter_sum_positive(
4788 						&fs_info->delalloc_bytes);
4789 	}
4790 }
4791 
4792 /**
4793  * maybe_commit_transaction - possibly commit the transaction if its ok to
4794  * @root - the root we're allocating for
4795  * @bytes - the number of bytes we want to reserve
4796  * @force - force the commit
4797  *
4798  * This will check to make sure that committing the transaction will actually
4799  * get us somewhere and then commit the transaction if it does.  Otherwise it
4800  * will return -ENOSPC.
4801  */
4802 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4803 				  struct btrfs_space_info *space_info,
4804 				  u64 bytes, int force)
4805 {
4806 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4807 	struct btrfs_trans_handle *trans;
4808 
4809 	trans = (struct btrfs_trans_handle *)current->journal_info;
4810 	if (trans)
4811 		return -EAGAIN;
4812 
4813 	if (force)
4814 		goto commit;
4815 
4816 	/* See if there is enough pinned space to make this reservation */
4817 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4818 				   bytes) >= 0)
4819 		goto commit;
4820 
4821 	/*
4822 	 * See if there is some space in the delayed insertion reservation for
4823 	 * this reservation.
4824 	 */
4825 	if (space_info != delayed_rsv->space_info)
4826 		return -ENOSPC;
4827 
4828 	spin_lock(&delayed_rsv->lock);
4829 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4830 				   bytes - delayed_rsv->size) >= 0) {
4831 		spin_unlock(&delayed_rsv->lock);
4832 		return -ENOSPC;
4833 	}
4834 	spin_unlock(&delayed_rsv->lock);
4835 
4836 commit:
4837 	trans = btrfs_join_transaction(fs_info->fs_root);
4838 	if (IS_ERR(trans))
4839 		return -ENOSPC;
4840 
4841 	return btrfs_commit_transaction(trans);
4842 }
4843 
4844 struct reserve_ticket {
4845 	u64 bytes;
4846 	int error;
4847 	struct list_head list;
4848 	wait_queue_head_t wait;
4849 };
4850 
4851 static int flush_space(struct btrfs_fs_info *fs_info,
4852 		       struct btrfs_space_info *space_info, u64 num_bytes,
4853 		       u64 orig_bytes, int state)
4854 {
4855 	struct btrfs_root *root = fs_info->fs_root;
4856 	struct btrfs_trans_handle *trans;
4857 	int nr;
4858 	int ret = 0;
4859 
4860 	switch (state) {
4861 	case FLUSH_DELAYED_ITEMS_NR:
4862 	case FLUSH_DELAYED_ITEMS:
4863 		if (state == FLUSH_DELAYED_ITEMS_NR)
4864 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4865 		else
4866 			nr = -1;
4867 
4868 		trans = btrfs_join_transaction(root);
4869 		if (IS_ERR(trans)) {
4870 			ret = PTR_ERR(trans);
4871 			break;
4872 		}
4873 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4874 		btrfs_end_transaction(trans);
4875 		break;
4876 	case FLUSH_DELALLOC:
4877 	case FLUSH_DELALLOC_WAIT:
4878 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4879 				state == FLUSH_DELALLOC_WAIT);
4880 		break;
4881 	case ALLOC_CHUNK:
4882 		trans = btrfs_join_transaction(root);
4883 		if (IS_ERR(trans)) {
4884 			ret = PTR_ERR(trans);
4885 			break;
4886 		}
4887 		ret = do_chunk_alloc(trans, fs_info,
4888 				     btrfs_get_alloc_profile(root, 0),
4889 				     CHUNK_ALLOC_NO_FORCE);
4890 		btrfs_end_transaction(trans);
4891 		if (ret > 0 || ret == -ENOSPC)
4892 			ret = 0;
4893 		break;
4894 	case COMMIT_TRANS:
4895 		ret = may_commit_transaction(fs_info, space_info,
4896 					     orig_bytes, 0);
4897 		break;
4898 	default:
4899 		ret = -ENOSPC;
4900 		break;
4901 	}
4902 
4903 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4904 				orig_bytes, state, ret);
4905 	return ret;
4906 }
4907 
4908 static inline u64
4909 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4910 				 struct btrfs_space_info *space_info)
4911 {
4912 	struct reserve_ticket *ticket;
4913 	u64 used;
4914 	u64 expected;
4915 	u64 to_reclaim = 0;
4916 
4917 	list_for_each_entry(ticket, &space_info->tickets, list)
4918 		to_reclaim += ticket->bytes;
4919 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4920 		to_reclaim += ticket->bytes;
4921 	if (to_reclaim)
4922 		return to_reclaim;
4923 
4924 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4925 	if (can_overcommit(root, space_info, to_reclaim,
4926 			   BTRFS_RESERVE_FLUSH_ALL))
4927 		return 0;
4928 
4929 	used = space_info->bytes_used + space_info->bytes_reserved +
4930 	       space_info->bytes_pinned + space_info->bytes_readonly +
4931 	       space_info->bytes_may_use;
4932 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4933 		expected = div_factor_fine(space_info->total_bytes, 95);
4934 	else
4935 		expected = div_factor_fine(space_info->total_bytes, 90);
4936 
4937 	if (used > expected)
4938 		to_reclaim = used - expected;
4939 	else
4940 		to_reclaim = 0;
4941 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4942 				     space_info->bytes_reserved);
4943 	return to_reclaim;
4944 }
4945 
4946 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4947 					struct btrfs_root *root, u64 used)
4948 {
4949 	struct btrfs_fs_info *fs_info = root->fs_info;
4950 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4951 
4952 	/* If we're just plain full then async reclaim just slows us down. */
4953 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4954 		return 0;
4955 
4956 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4957 		return 0;
4958 
4959 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4960 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4961 }
4962 
4963 static void wake_all_tickets(struct list_head *head)
4964 {
4965 	struct reserve_ticket *ticket;
4966 
4967 	while (!list_empty(head)) {
4968 		ticket = list_first_entry(head, struct reserve_ticket, list);
4969 		list_del_init(&ticket->list);
4970 		ticket->error = -ENOSPC;
4971 		wake_up(&ticket->wait);
4972 	}
4973 }
4974 
4975 /*
4976  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4977  * will loop and continuously try to flush as long as we are making progress.
4978  * We count progress as clearing off tickets each time we have to loop.
4979  */
4980 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4981 {
4982 	struct btrfs_fs_info *fs_info;
4983 	struct btrfs_space_info *space_info;
4984 	u64 to_reclaim;
4985 	int flush_state;
4986 	int commit_cycles = 0;
4987 	u64 last_tickets_id;
4988 
4989 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4990 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4991 
4992 	spin_lock(&space_info->lock);
4993 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4994 						      space_info);
4995 	if (!to_reclaim) {
4996 		space_info->flush = 0;
4997 		spin_unlock(&space_info->lock);
4998 		return;
4999 	}
5000 	last_tickets_id = space_info->tickets_id;
5001 	spin_unlock(&space_info->lock);
5002 
5003 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5004 	do {
5005 		struct reserve_ticket *ticket;
5006 		int ret;
5007 
5008 		ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5009 				  flush_state);
5010 		spin_lock(&space_info->lock);
5011 		if (list_empty(&space_info->tickets)) {
5012 			space_info->flush = 0;
5013 			spin_unlock(&space_info->lock);
5014 			return;
5015 		}
5016 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5017 							      space_info);
5018 		ticket = list_first_entry(&space_info->tickets,
5019 					  struct reserve_ticket, list);
5020 		if (last_tickets_id == space_info->tickets_id) {
5021 			flush_state++;
5022 		} else {
5023 			last_tickets_id = space_info->tickets_id;
5024 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 			if (commit_cycles)
5026 				commit_cycles--;
5027 		}
5028 
5029 		if (flush_state > COMMIT_TRANS) {
5030 			commit_cycles++;
5031 			if (commit_cycles > 2) {
5032 				wake_all_tickets(&space_info->tickets);
5033 				space_info->flush = 0;
5034 			} else {
5035 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 			}
5037 		}
5038 		spin_unlock(&space_info->lock);
5039 	} while (flush_state <= COMMIT_TRANS);
5040 }
5041 
5042 void btrfs_init_async_reclaim_work(struct work_struct *work)
5043 {
5044 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5045 }
5046 
5047 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5048 					    struct btrfs_space_info *space_info,
5049 					    struct reserve_ticket *ticket)
5050 {
5051 	u64 to_reclaim;
5052 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5053 
5054 	spin_lock(&space_info->lock);
5055 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5056 						      space_info);
5057 	if (!to_reclaim) {
5058 		spin_unlock(&space_info->lock);
5059 		return;
5060 	}
5061 	spin_unlock(&space_info->lock);
5062 
5063 	do {
5064 		flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5065 			    flush_state);
5066 		flush_state++;
5067 		spin_lock(&space_info->lock);
5068 		if (ticket->bytes == 0) {
5069 			spin_unlock(&space_info->lock);
5070 			return;
5071 		}
5072 		spin_unlock(&space_info->lock);
5073 
5074 		/*
5075 		 * Priority flushers can't wait on delalloc without
5076 		 * deadlocking.
5077 		 */
5078 		if (flush_state == FLUSH_DELALLOC ||
5079 		    flush_state == FLUSH_DELALLOC_WAIT)
5080 			flush_state = ALLOC_CHUNK;
5081 	} while (flush_state < COMMIT_TRANS);
5082 }
5083 
5084 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5085 			       struct btrfs_space_info *space_info,
5086 			       struct reserve_ticket *ticket, u64 orig_bytes)
5087 
5088 {
5089 	DEFINE_WAIT(wait);
5090 	int ret = 0;
5091 
5092 	spin_lock(&space_info->lock);
5093 	while (ticket->bytes > 0 && ticket->error == 0) {
5094 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5095 		if (ret) {
5096 			ret = -EINTR;
5097 			break;
5098 		}
5099 		spin_unlock(&space_info->lock);
5100 
5101 		schedule();
5102 
5103 		finish_wait(&ticket->wait, &wait);
5104 		spin_lock(&space_info->lock);
5105 	}
5106 	if (!ret)
5107 		ret = ticket->error;
5108 	if (!list_empty(&ticket->list))
5109 		list_del_init(&ticket->list);
5110 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5111 		u64 num_bytes = orig_bytes - ticket->bytes;
5112 		space_info->bytes_may_use -= num_bytes;
5113 		trace_btrfs_space_reservation(fs_info, "space_info",
5114 					      space_info->flags, num_bytes, 0);
5115 	}
5116 	spin_unlock(&space_info->lock);
5117 
5118 	return ret;
5119 }
5120 
5121 /**
5122  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5123  * @root - the root we're allocating for
5124  * @space_info - the space info we want to allocate from
5125  * @orig_bytes - the number of bytes we want
5126  * @flush - whether or not we can flush to make our reservation
5127  *
5128  * This will reserve orig_bytes number of bytes from the space info associated
5129  * with the block_rsv.  If there is not enough space it will make an attempt to
5130  * flush out space to make room.  It will do this by flushing delalloc if
5131  * possible or committing the transaction.  If flush is 0 then no attempts to
5132  * regain reservations will be made and this will fail if there is not enough
5133  * space already.
5134  */
5135 static int __reserve_metadata_bytes(struct btrfs_root *root,
5136 				    struct btrfs_space_info *space_info,
5137 				    u64 orig_bytes,
5138 				    enum btrfs_reserve_flush_enum flush)
5139 {
5140 	struct btrfs_fs_info *fs_info = root->fs_info;
5141 	struct reserve_ticket ticket;
5142 	u64 used;
5143 	int ret = 0;
5144 
5145 	ASSERT(orig_bytes);
5146 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5147 
5148 	spin_lock(&space_info->lock);
5149 	ret = -ENOSPC;
5150 	used = btrfs_space_info_used(space_info, true);
5151 
5152 	/*
5153 	 * If we have enough space then hooray, make our reservation and carry
5154 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5155 	 * If not things get more complicated.
5156 	 */
5157 	if (used + orig_bytes <= space_info->total_bytes) {
5158 		space_info->bytes_may_use += orig_bytes;
5159 		trace_btrfs_space_reservation(fs_info, "space_info",
5160 					      space_info->flags, orig_bytes, 1);
5161 		ret = 0;
5162 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5163 		space_info->bytes_may_use += orig_bytes;
5164 		trace_btrfs_space_reservation(fs_info, "space_info",
5165 					      space_info->flags, orig_bytes, 1);
5166 		ret = 0;
5167 	}
5168 
5169 	/*
5170 	 * If we couldn't make a reservation then setup our reservation ticket
5171 	 * and kick the async worker if it's not already running.
5172 	 *
5173 	 * If we are a priority flusher then we just need to add our ticket to
5174 	 * the list and we will do our own flushing further down.
5175 	 */
5176 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5177 		ticket.bytes = orig_bytes;
5178 		ticket.error = 0;
5179 		init_waitqueue_head(&ticket.wait);
5180 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5181 			list_add_tail(&ticket.list, &space_info->tickets);
5182 			if (!space_info->flush) {
5183 				space_info->flush = 1;
5184 				trace_btrfs_trigger_flush(fs_info,
5185 							  space_info->flags,
5186 							  orig_bytes, flush,
5187 							  "enospc");
5188 				queue_work(system_unbound_wq,
5189 					   &root->fs_info->async_reclaim_work);
5190 			}
5191 		} else {
5192 			list_add_tail(&ticket.list,
5193 				      &space_info->priority_tickets);
5194 		}
5195 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5196 		used += orig_bytes;
5197 		/*
5198 		 * We will do the space reservation dance during log replay,
5199 		 * which means we won't have fs_info->fs_root set, so don't do
5200 		 * the async reclaim as we will panic.
5201 		 */
5202 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5203 		    need_do_async_reclaim(space_info, root, used) &&
5204 		    !work_busy(&fs_info->async_reclaim_work)) {
5205 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5206 						  orig_bytes, flush, "preempt");
5207 			queue_work(system_unbound_wq,
5208 				   &fs_info->async_reclaim_work);
5209 		}
5210 	}
5211 	spin_unlock(&space_info->lock);
5212 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5213 		return ret;
5214 
5215 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5216 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5217 					   orig_bytes);
5218 
5219 	ret = 0;
5220 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5221 	spin_lock(&space_info->lock);
5222 	if (ticket.bytes) {
5223 		if (ticket.bytes < orig_bytes) {
5224 			u64 num_bytes = orig_bytes - ticket.bytes;
5225 			space_info->bytes_may_use -= num_bytes;
5226 			trace_btrfs_space_reservation(fs_info, "space_info",
5227 						      space_info->flags,
5228 						      num_bytes, 0);
5229 
5230 		}
5231 		list_del_init(&ticket.list);
5232 		ret = -ENOSPC;
5233 	}
5234 	spin_unlock(&space_info->lock);
5235 	ASSERT(list_empty(&ticket.list));
5236 	return ret;
5237 }
5238 
5239 /**
5240  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241  * @root - the root we're allocating for
5242  * @block_rsv - the block_rsv we're allocating for
5243  * @orig_bytes - the number of bytes we want
5244  * @flush - whether or not we can flush to make our reservation
5245  *
5246  * This will reserve orgi_bytes number of bytes from the space info associated
5247  * with the block_rsv.  If there is not enough space it will make an attempt to
5248  * flush out space to make room.  It will do this by flushing delalloc if
5249  * possible or committing the transaction.  If flush is 0 then no attempts to
5250  * regain reservations will be made and this will fail if there is not enough
5251  * space already.
5252  */
5253 static int reserve_metadata_bytes(struct btrfs_root *root,
5254 				  struct btrfs_block_rsv *block_rsv,
5255 				  u64 orig_bytes,
5256 				  enum btrfs_reserve_flush_enum flush)
5257 {
5258 	struct btrfs_fs_info *fs_info = root->fs_info;
5259 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5260 	int ret;
5261 
5262 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5263 				       flush);
5264 	if (ret == -ENOSPC &&
5265 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5266 		if (block_rsv != global_rsv &&
5267 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5268 			ret = 0;
5269 	}
5270 	if (ret == -ENOSPC)
5271 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5272 					      block_rsv->space_info->flags,
5273 					      orig_bytes, 1);
5274 	return ret;
5275 }
5276 
5277 static struct btrfs_block_rsv *get_block_rsv(
5278 					const struct btrfs_trans_handle *trans,
5279 					const struct btrfs_root *root)
5280 {
5281 	struct btrfs_fs_info *fs_info = root->fs_info;
5282 	struct btrfs_block_rsv *block_rsv = NULL;
5283 
5284 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5285 	    (root == fs_info->csum_root && trans->adding_csums) ||
5286 	    (root == fs_info->uuid_root))
5287 		block_rsv = trans->block_rsv;
5288 
5289 	if (!block_rsv)
5290 		block_rsv = root->block_rsv;
5291 
5292 	if (!block_rsv)
5293 		block_rsv = &fs_info->empty_block_rsv;
5294 
5295 	return block_rsv;
5296 }
5297 
5298 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5299 			       u64 num_bytes)
5300 {
5301 	int ret = -ENOSPC;
5302 	spin_lock(&block_rsv->lock);
5303 	if (block_rsv->reserved >= num_bytes) {
5304 		block_rsv->reserved -= num_bytes;
5305 		if (block_rsv->reserved < block_rsv->size)
5306 			block_rsv->full = 0;
5307 		ret = 0;
5308 	}
5309 	spin_unlock(&block_rsv->lock);
5310 	return ret;
5311 }
5312 
5313 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5314 				u64 num_bytes, int update_size)
5315 {
5316 	spin_lock(&block_rsv->lock);
5317 	block_rsv->reserved += num_bytes;
5318 	if (update_size)
5319 		block_rsv->size += num_bytes;
5320 	else if (block_rsv->reserved >= block_rsv->size)
5321 		block_rsv->full = 1;
5322 	spin_unlock(&block_rsv->lock);
5323 }
5324 
5325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5326 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5327 			     int min_factor)
5328 {
5329 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5330 	u64 min_bytes;
5331 
5332 	if (global_rsv->space_info != dest->space_info)
5333 		return -ENOSPC;
5334 
5335 	spin_lock(&global_rsv->lock);
5336 	min_bytes = div_factor(global_rsv->size, min_factor);
5337 	if (global_rsv->reserved < min_bytes + num_bytes) {
5338 		spin_unlock(&global_rsv->lock);
5339 		return -ENOSPC;
5340 	}
5341 	global_rsv->reserved -= num_bytes;
5342 	if (global_rsv->reserved < global_rsv->size)
5343 		global_rsv->full = 0;
5344 	spin_unlock(&global_rsv->lock);
5345 
5346 	block_rsv_add_bytes(dest, num_bytes, 1);
5347 	return 0;
5348 }
5349 
5350 /*
5351  * This is for space we already have accounted in space_info->bytes_may_use, so
5352  * basically when we're returning space from block_rsv's.
5353  */
5354 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5355 				     struct btrfs_space_info *space_info,
5356 				     u64 num_bytes)
5357 {
5358 	struct reserve_ticket *ticket;
5359 	struct list_head *head;
5360 	u64 used;
5361 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5362 	bool check_overcommit = false;
5363 
5364 	spin_lock(&space_info->lock);
5365 	head = &space_info->priority_tickets;
5366 
5367 	/*
5368 	 * If we are over our limit then we need to check and see if we can
5369 	 * overcommit, and if we can't then we just need to free up our space
5370 	 * and not satisfy any requests.
5371 	 */
5372 	used = space_info->bytes_used + space_info->bytes_reserved +
5373 		space_info->bytes_pinned + space_info->bytes_readonly +
5374 		space_info->bytes_may_use;
5375 	if (used - num_bytes >= space_info->total_bytes)
5376 		check_overcommit = true;
5377 again:
5378 	while (!list_empty(head) && num_bytes) {
5379 		ticket = list_first_entry(head, struct reserve_ticket,
5380 					  list);
5381 		/*
5382 		 * We use 0 bytes because this space is already reserved, so
5383 		 * adding the ticket space would be a double count.
5384 		 */
5385 		if (check_overcommit &&
5386 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5387 				    flush))
5388 			break;
5389 		if (num_bytes >= ticket->bytes) {
5390 			list_del_init(&ticket->list);
5391 			num_bytes -= ticket->bytes;
5392 			ticket->bytes = 0;
5393 			space_info->tickets_id++;
5394 			wake_up(&ticket->wait);
5395 		} else {
5396 			ticket->bytes -= num_bytes;
5397 			num_bytes = 0;
5398 		}
5399 	}
5400 
5401 	if (num_bytes && head == &space_info->priority_tickets) {
5402 		head = &space_info->tickets;
5403 		flush = BTRFS_RESERVE_FLUSH_ALL;
5404 		goto again;
5405 	}
5406 	space_info->bytes_may_use -= num_bytes;
5407 	trace_btrfs_space_reservation(fs_info, "space_info",
5408 				      space_info->flags, num_bytes, 0);
5409 	spin_unlock(&space_info->lock);
5410 }
5411 
5412 /*
5413  * This is for newly allocated space that isn't accounted in
5414  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5415  * we use this helper.
5416  */
5417 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5418 				     struct btrfs_space_info *space_info,
5419 				     u64 num_bytes)
5420 {
5421 	struct reserve_ticket *ticket;
5422 	struct list_head *head = &space_info->priority_tickets;
5423 
5424 again:
5425 	while (!list_empty(head) && num_bytes) {
5426 		ticket = list_first_entry(head, struct reserve_ticket,
5427 					  list);
5428 		if (num_bytes >= ticket->bytes) {
5429 			trace_btrfs_space_reservation(fs_info, "space_info",
5430 						      space_info->flags,
5431 						      ticket->bytes, 1);
5432 			list_del_init(&ticket->list);
5433 			num_bytes -= ticket->bytes;
5434 			space_info->bytes_may_use += ticket->bytes;
5435 			ticket->bytes = 0;
5436 			space_info->tickets_id++;
5437 			wake_up(&ticket->wait);
5438 		} else {
5439 			trace_btrfs_space_reservation(fs_info, "space_info",
5440 						      space_info->flags,
5441 						      num_bytes, 1);
5442 			space_info->bytes_may_use += num_bytes;
5443 			ticket->bytes -= num_bytes;
5444 			num_bytes = 0;
5445 		}
5446 	}
5447 
5448 	if (num_bytes && head == &space_info->priority_tickets) {
5449 		head = &space_info->tickets;
5450 		goto again;
5451 	}
5452 }
5453 
5454 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5455 				    struct btrfs_block_rsv *block_rsv,
5456 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5457 {
5458 	struct btrfs_space_info *space_info = block_rsv->space_info;
5459 
5460 	spin_lock(&block_rsv->lock);
5461 	if (num_bytes == (u64)-1)
5462 		num_bytes = block_rsv->size;
5463 	block_rsv->size -= num_bytes;
5464 	if (block_rsv->reserved >= block_rsv->size) {
5465 		num_bytes = block_rsv->reserved - block_rsv->size;
5466 		block_rsv->reserved = block_rsv->size;
5467 		block_rsv->full = 1;
5468 	} else {
5469 		num_bytes = 0;
5470 	}
5471 	spin_unlock(&block_rsv->lock);
5472 
5473 	if (num_bytes > 0) {
5474 		if (dest) {
5475 			spin_lock(&dest->lock);
5476 			if (!dest->full) {
5477 				u64 bytes_to_add;
5478 
5479 				bytes_to_add = dest->size - dest->reserved;
5480 				bytes_to_add = min(num_bytes, bytes_to_add);
5481 				dest->reserved += bytes_to_add;
5482 				if (dest->reserved >= dest->size)
5483 					dest->full = 1;
5484 				num_bytes -= bytes_to_add;
5485 			}
5486 			spin_unlock(&dest->lock);
5487 		}
5488 		if (num_bytes)
5489 			space_info_add_old_bytes(fs_info, space_info,
5490 						 num_bytes);
5491 	}
5492 }
5493 
5494 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5495 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5496 			    int update_size)
5497 {
5498 	int ret;
5499 
5500 	ret = block_rsv_use_bytes(src, num_bytes);
5501 	if (ret)
5502 		return ret;
5503 
5504 	block_rsv_add_bytes(dst, num_bytes, update_size);
5505 	return 0;
5506 }
5507 
5508 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5509 {
5510 	memset(rsv, 0, sizeof(*rsv));
5511 	spin_lock_init(&rsv->lock);
5512 	rsv->type = type;
5513 }
5514 
5515 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5516 					      unsigned short type)
5517 {
5518 	struct btrfs_block_rsv *block_rsv;
5519 
5520 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5521 	if (!block_rsv)
5522 		return NULL;
5523 
5524 	btrfs_init_block_rsv(block_rsv, type);
5525 	block_rsv->space_info = __find_space_info(fs_info,
5526 						  BTRFS_BLOCK_GROUP_METADATA);
5527 	return block_rsv;
5528 }
5529 
5530 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5531 			  struct btrfs_block_rsv *rsv)
5532 {
5533 	if (!rsv)
5534 		return;
5535 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5536 	kfree(rsv);
5537 }
5538 
5539 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5540 {
5541 	kfree(rsv);
5542 }
5543 
5544 int btrfs_block_rsv_add(struct btrfs_root *root,
5545 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5546 			enum btrfs_reserve_flush_enum flush)
5547 {
5548 	int ret;
5549 
5550 	if (num_bytes == 0)
5551 		return 0;
5552 
5553 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5554 	if (!ret) {
5555 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5556 		return 0;
5557 	}
5558 
5559 	return ret;
5560 }
5561 
5562 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5563 {
5564 	u64 num_bytes = 0;
5565 	int ret = -ENOSPC;
5566 
5567 	if (!block_rsv)
5568 		return 0;
5569 
5570 	spin_lock(&block_rsv->lock);
5571 	num_bytes = div_factor(block_rsv->size, min_factor);
5572 	if (block_rsv->reserved >= num_bytes)
5573 		ret = 0;
5574 	spin_unlock(&block_rsv->lock);
5575 
5576 	return ret;
5577 }
5578 
5579 int btrfs_block_rsv_refill(struct btrfs_root *root,
5580 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5581 			   enum btrfs_reserve_flush_enum flush)
5582 {
5583 	u64 num_bytes = 0;
5584 	int ret = -ENOSPC;
5585 
5586 	if (!block_rsv)
5587 		return 0;
5588 
5589 	spin_lock(&block_rsv->lock);
5590 	num_bytes = min_reserved;
5591 	if (block_rsv->reserved >= num_bytes)
5592 		ret = 0;
5593 	else
5594 		num_bytes -= block_rsv->reserved;
5595 	spin_unlock(&block_rsv->lock);
5596 
5597 	if (!ret)
5598 		return 0;
5599 
5600 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5601 	if (!ret) {
5602 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5603 		return 0;
5604 	}
5605 
5606 	return ret;
5607 }
5608 
5609 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5610 			     struct btrfs_block_rsv *block_rsv,
5611 			     u64 num_bytes)
5612 {
5613 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5614 
5615 	if (global_rsv == block_rsv ||
5616 	    block_rsv->space_info != global_rsv->space_info)
5617 		global_rsv = NULL;
5618 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5619 }
5620 
5621 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5622 {
5623 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5624 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5625 	u64 num_bytes;
5626 
5627 	/*
5628 	 * The global block rsv is based on the size of the extent tree, the
5629 	 * checksum tree and the root tree.  If the fs is empty we want to set
5630 	 * it to a minimal amount for safety.
5631 	 */
5632 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5633 		btrfs_root_used(&fs_info->csum_root->root_item) +
5634 		btrfs_root_used(&fs_info->tree_root->root_item);
5635 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5636 
5637 	spin_lock(&sinfo->lock);
5638 	spin_lock(&block_rsv->lock);
5639 
5640 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5641 
5642 	if (block_rsv->reserved < block_rsv->size) {
5643 		num_bytes = btrfs_space_info_used(sinfo, true);
5644 		if (sinfo->total_bytes > num_bytes) {
5645 			num_bytes = sinfo->total_bytes - num_bytes;
5646 			num_bytes = min(num_bytes,
5647 					block_rsv->size - block_rsv->reserved);
5648 			block_rsv->reserved += num_bytes;
5649 			sinfo->bytes_may_use += num_bytes;
5650 			trace_btrfs_space_reservation(fs_info, "space_info",
5651 						      sinfo->flags, num_bytes,
5652 						      1);
5653 		}
5654 	} else if (block_rsv->reserved > block_rsv->size) {
5655 		num_bytes = block_rsv->reserved - block_rsv->size;
5656 		sinfo->bytes_may_use -= num_bytes;
5657 		trace_btrfs_space_reservation(fs_info, "space_info",
5658 				      sinfo->flags, num_bytes, 0);
5659 		block_rsv->reserved = block_rsv->size;
5660 	}
5661 
5662 	if (block_rsv->reserved == block_rsv->size)
5663 		block_rsv->full = 1;
5664 	else
5665 		block_rsv->full = 0;
5666 
5667 	spin_unlock(&block_rsv->lock);
5668 	spin_unlock(&sinfo->lock);
5669 }
5670 
5671 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5672 {
5673 	struct btrfs_space_info *space_info;
5674 
5675 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5676 	fs_info->chunk_block_rsv.space_info = space_info;
5677 
5678 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5679 	fs_info->global_block_rsv.space_info = space_info;
5680 	fs_info->delalloc_block_rsv.space_info = space_info;
5681 	fs_info->trans_block_rsv.space_info = space_info;
5682 	fs_info->empty_block_rsv.space_info = space_info;
5683 	fs_info->delayed_block_rsv.space_info = space_info;
5684 
5685 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5686 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5687 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5688 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5689 	if (fs_info->quota_root)
5690 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5691 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5692 
5693 	update_global_block_rsv(fs_info);
5694 }
5695 
5696 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5697 {
5698 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5699 				(u64)-1);
5700 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5701 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5702 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5703 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5704 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5705 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5706 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5707 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5708 }
5709 
5710 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5711 				  struct btrfs_fs_info *fs_info)
5712 {
5713 	if (!trans->block_rsv)
5714 		return;
5715 
5716 	if (!trans->bytes_reserved)
5717 		return;
5718 
5719 	trace_btrfs_space_reservation(fs_info, "transaction",
5720 				      trans->transid, trans->bytes_reserved, 0);
5721 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5722 				trans->bytes_reserved);
5723 	trans->bytes_reserved = 0;
5724 }
5725 
5726 /*
5727  * To be called after all the new block groups attached to the transaction
5728  * handle have been created (btrfs_create_pending_block_groups()).
5729  */
5730 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5731 {
5732 	struct btrfs_fs_info *fs_info = trans->fs_info;
5733 
5734 	if (!trans->chunk_bytes_reserved)
5735 		return;
5736 
5737 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5738 
5739 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5740 				trans->chunk_bytes_reserved);
5741 	trans->chunk_bytes_reserved = 0;
5742 }
5743 
5744 /* Can only return 0 or -ENOSPC */
5745 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5746 				  struct btrfs_inode *inode)
5747 {
5748 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5749 	struct btrfs_root *root = inode->root;
5750 	/*
5751 	 * We always use trans->block_rsv here as we will have reserved space
5752 	 * for our orphan when starting the transaction, using get_block_rsv()
5753 	 * here will sometimes make us choose the wrong block rsv as we could be
5754 	 * doing a reloc inode for a non refcounted root.
5755 	 */
5756 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5757 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5758 
5759 	/*
5760 	 * We need to hold space in order to delete our orphan item once we've
5761 	 * added it, so this takes the reservation so we can release it later
5762 	 * when we are truly done with the orphan item.
5763 	 */
5764 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5765 
5766 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5767 			num_bytes, 1);
5768 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5769 }
5770 
5771 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5772 {
5773 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5774 	struct btrfs_root *root = inode->root;
5775 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5776 
5777 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5778 			num_bytes, 0);
5779 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5780 }
5781 
5782 /*
5783  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5784  * root: the root of the parent directory
5785  * rsv: block reservation
5786  * items: the number of items that we need do reservation
5787  * qgroup_reserved: used to return the reserved size in qgroup
5788  *
5789  * This function is used to reserve the space for snapshot/subvolume
5790  * creation and deletion. Those operations are different with the
5791  * common file/directory operations, they change two fs/file trees
5792  * and root tree, the number of items that the qgroup reserves is
5793  * different with the free space reservation. So we can not use
5794  * the space reservation mechanism in start_transaction().
5795  */
5796 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5797 				     struct btrfs_block_rsv *rsv,
5798 				     int items,
5799 				     u64 *qgroup_reserved,
5800 				     bool use_global_rsv)
5801 {
5802 	u64 num_bytes;
5803 	int ret;
5804 	struct btrfs_fs_info *fs_info = root->fs_info;
5805 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5806 
5807 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5808 		/* One for parent inode, two for dir entries */
5809 		num_bytes = 3 * fs_info->nodesize;
5810 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5811 		if (ret)
5812 			return ret;
5813 	} else {
5814 		num_bytes = 0;
5815 	}
5816 
5817 	*qgroup_reserved = num_bytes;
5818 
5819 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5820 	rsv->space_info = __find_space_info(fs_info,
5821 					    BTRFS_BLOCK_GROUP_METADATA);
5822 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5823 				  BTRFS_RESERVE_FLUSH_ALL);
5824 
5825 	if (ret == -ENOSPC && use_global_rsv)
5826 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5827 
5828 	if (ret && *qgroup_reserved)
5829 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5830 
5831 	return ret;
5832 }
5833 
5834 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5835 				      struct btrfs_block_rsv *rsv)
5836 {
5837 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5838 }
5839 
5840 /**
5841  * drop_outstanding_extent - drop an outstanding extent
5842  * @inode: the inode we're dropping the extent for
5843  * @num_bytes: the number of bytes we're releasing.
5844  *
5845  * This is called when we are freeing up an outstanding extent, either called
5846  * after an error or after an extent is written.  This will return the number of
5847  * reserved extents that need to be freed.  This must be called with
5848  * BTRFS_I(inode)->lock held.
5849  */
5850 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5851 		u64 num_bytes)
5852 {
5853 	unsigned drop_inode_space = 0;
5854 	unsigned dropped_extents = 0;
5855 	unsigned num_extents;
5856 
5857 	num_extents = count_max_extents(num_bytes);
5858 	ASSERT(num_extents);
5859 	ASSERT(inode->outstanding_extents >= num_extents);
5860 	inode->outstanding_extents -= num_extents;
5861 
5862 	if (inode->outstanding_extents == 0 &&
5863 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5864 			       &inode->runtime_flags))
5865 		drop_inode_space = 1;
5866 
5867 	/*
5868 	 * If we have more or the same amount of outstanding extents than we have
5869 	 * reserved then we need to leave the reserved extents count alone.
5870 	 */
5871 	if (inode->outstanding_extents >= inode->reserved_extents)
5872 		return drop_inode_space;
5873 
5874 	dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5875 	inode->reserved_extents -= dropped_extents;
5876 	return dropped_extents + drop_inode_space;
5877 }
5878 
5879 /**
5880  * calc_csum_metadata_size - return the amount of metadata space that must be
5881  *	reserved/freed for the given bytes.
5882  * @inode: the inode we're manipulating
5883  * @num_bytes: the number of bytes in question
5884  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885  *
5886  * This adjusts the number of csum_bytes in the inode and then returns the
5887  * correct amount of metadata that must either be reserved or freed.  We
5888  * calculate how many checksums we can fit into one leaf and then divide the
5889  * number of bytes that will need to be checksumed by this value to figure out
5890  * how many checksums will be required.  If we are adding bytes then the number
5891  * may go up and we will return the number of additional bytes that must be
5892  * reserved.  If it is going down we will return the number of bytes that must
5893  * be freed.
5894  *
5895  * This must be called with BTRFS_I(inode)->lock held.
5896  */
5897 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5898 				   int reserve)
5899 {
5900 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5901 	u64 old_csums, num_csums;
5902 
5903 	if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5904 		return 0;
5905 
5906 	old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5907 	if (reserve)
5908 		inode->csum_bytes += num_bytes;
5909 	else
5910 		inode->csum_bytes -= num_bytes;
5911 	num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5912 
5913 	/* No change, no need to reserve more */
5914 	if (old_csums == num_csums)
5915 		return 0;
5916 
5917 	if (reserve)
5918 		return btrfs_calc_trans_metadata_size(fs_info,
5919 						      num_csums - old_csums);
5920 
5921 	return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5922 }
5923 
5924 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5925 {
5926 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5927 	struct btrfs_root *root = inode->root;
5928 	struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5929 	u64 to_reserve = 0;
5930 	u64 csum_bytes;
5931 	unsigned nr_extents;
5932 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5933 	int ret = 0;
5934 	bool delalloc_lock = true;
5935 	u64 to_free = 0;
5936 	unsigned dropped;
5937 	bool release_extra = false;
5938 
5939 	/* If we are a free space inode we need to not flush since we will be in
5940 	 * the middle of a transaction commit.  We also don't need the delalloc
5941 	 * mutex since we won't race with anybody.  We need this mostly to make
5942 	 * lockdep shut its filthy mouth.
5943 	 *
5944 	 * If we have a transaction open (can happen if we call truncate_block
5945 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5946 	 */
5947 	if (btrfs_is_free_space_inode(inode)) {
5948 		flush = BTRFS_RESERVE_NO_FLUSH;
5949 		delalloc_lock = false;
5950 	} else if (current->journal_info) {
5951 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5952 	}
5953 
5954 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5955 	    btrfs_transaction_in_commit(fs_info))
5956 		schedule_timeout(1);
5957 
5958 	if (delalloc_lock)
5959 		mutex_lock(&inode->delalloc_mutex);
5960 
5961 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5962 
5963 	spin_lock(&inode->lock);
5964 	nr_extents = count_max_extents(num_bytes);
5965 	inode->outstanding_extents += nr_extents;
5966 
5967 	nr_extents = 0;
5968 	if (inode->outstanding_extents > inode->reserved_extents)
5969 		nr_extents += inode->outstanding_extents -
5970 			inode->reserved_extents;
5971 
5972 	/* We always want to reserve a slot for updating the inode. */
5973 	to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5974 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5975 	csum_bytes = inode->csum_bytes;
5976 	spin_unlock(&inode->lock);
5977 
5978 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5979 		ret = btrfs_qgroup_reserve_meta(root,
5980 				nr_extents * fs_info->nodesize, true);
5981 		if (ret)
5982 			goto out_fail;
5983 	}
5984 
5985 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5986 	if (unlikely(ret)) {
5987 		btrfs_qgroup_free_meta(root,
5988 				       nr_extents * fs_info->nodesize);
5989 		goto out_fail;
5990 	}
5991 
5992 	spin_lock(&inode->lock);
5993 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5994 			     &inode->runtime_flags)) {
5995 		to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
5996 		release_extra = true;
5997 	}
5998 	inode->reserved_extents += nr_extents;
5999 	spin_unlock(&inode->lock);
6000 
6001 	if (delalloc_lock)
6002 		mutex_unlock(&inode->delalloc_mutex);
6003 
6004 	if (to_reserve)
6005 		trace_btrfs_space_reservation(fs_info, "delalloc",
6006 					      btrfs_ino(inode), to_reserve, 1);
6007 	if (release_extra)
6008 		btrfs_block_rsv_release(fs_info, block_rsv,
6009 				btrfs_calc_trans_metadata_size(fs_info, 1));
6010 	return 0;
6011 
6012 out_fail:
6013 	spin_lock(&inode->lock);
6014 	dropped = drop_outstanding_extent(inode, num_bytes);
6015 	/*
6016 	 * If the inodes csum_bytes is the same as the original
6017 	 * csum_bytes then we know we haven't raced with any free()ers
6018 	 * so we can just reduce our inodes csum bytes and carry on.
6019 	 */
6020 	if (inode->csum_bytes == csum_bytes) {
6021 		calc_csum_metadata_size(inode, num_bytes, 0);
6022 	} else {
6023 		u64 orig_csum_bytes = inode->csum_bytes;
6024 		u64 bytes;
6025 
6026 		/*
6027 		 * This is tricky, but first we need to figure out how much we
6028 		 * freed from any free-ers that occurred during this
6029 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 		 * before we dropped our lock, and then call the free for the
6031 		 * number of bytes that were freed while we were trying our
6032 		 * reservation.
6033 		 */
6034 		bytes = csum_bytes - inode->csum_bytes;
6035 		inode->csum_bytes = csum_bytes;
6036 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6037 
6038 
6039 		/*
6040 		 * Now we need to see how much we would have freed had we not
6041 		 * been making this reservation and our ->csum_bytes were not
6042 		 * artificially inflated.
6043 		 */
6044 		inode->csum_bytes = csum_bytes - num_bytes;
6045 		bytes = csum_bytes - orig_csum_bytes;
6046 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6047 
6048 		/*
6049 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6050 		 * more than to_free then we would have freed more space had we
6051 		 * not had an artificially high ->csum_bytes, so we need to free
6052 		 * the remainder.  If bytes is the same or less then we don't
6053 		 * need to do anything, the other free-ers did the correct
6054 		 * thing.
6055 		 */
6056 		inode->csum_bytes = orig_csum_bytes - num_bytes;
6057 		if (bytes > to_free)
6058 			to_free = bytes - to_free;
6059 		else
6060 			to_free = 0;
6061 	}
6062 	spin_unlock(&inode->lock);
6063 	if (dropped)
6064 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6065 
6066 	if (to_free) {
6067 		btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6068 		trace_btrfs_space_reservation(fs_info, "delalloc",
6069 					      btrfs_ino(inode), to_free, 0);
6070 	}
6071 	if (delalloc_lock)
6072 		mutex_unlock(&inode->delalloc_mutex);
6073 	return ret;
6074 }
6075 
6076 /**
6077  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078  * @inode: the inode to release the reservation for
6079  * @num_bytes: the number of bytes we're releasing
6080  *
6081  * This will release the metadata reservation for an inode.  This can be called
6082  * once we complete IO for a given set of bytes to release their metadata
6083  * reservations.
6084  */
6085 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6086 {
6087 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6088 	u64 to_free = 0;
6089 	unsigned dropped;
6090 
6091 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6092 	spin_lock(&inode->lock);
6093 	dropped = drop_outstanding_extent(inode, num_bytes);
6094 
6095 	if (num_bytes)
6096 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6097 	spin_unlock(&inode->lock);
6098 	if (dropped > 0)
6099 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6100 
6101 	if (btrfs_is_testing(fs_info))
6102 		return;
6103 
6104 	trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6105 				      to_free, 0);
6106 
6107 	btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6108 }
6109 
6110 /**
6111  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6112  * delalloc
6113  * @inode: inode we're writing to
6114  * @start: start range we are writing to
6115  * @len: how long the range we are writing to
6116  *
6117  * This will do the following things
6118  *
6119  * o reserve space in data space info for num bytes
6120  *   and reserve precious corresponding qgroup space
6121  *   (Done in check_data_free_space)
6122  *
6123  * o reserve space for metadata space, based on the number of outstanding
6124  *   extents and how much csums will be needed
6125  *   also reserve metadata space in a per root over-reserve method.
6126  * o add to the inodes->delalloc_bytes
6127  * o add it to the fs_info's delalloc inodes list.
6128  *   (Above 3 all done in delalloc_reserve_metadata)
6129  *
6130  * Return 0 for success
6131  * Return <0 for error(-ENOSPC or -EQUOT)
6132  */
6133 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6134 {
6135 	int ret;
6136 
6137 	ret = btrfs_check_data_free_space(inode, start, len);
6138 	if (ret < 0)
6139 		return ret;
6140 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6141 	if (ret < 0)
6142 		btrfs_free_reserved_data_space(inode, start, len);
6143 	return ret;
6144 }
6145 
6146 /**
6147  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6148  * @inode: inode we're releasing space for
6149  * @start: start position of the space already reserved
6150  * @len: the len of the space already reserved
6151  *
6152  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6153  * called in the case that we don't need the metadata AND data reservations
6154  * anymore.  So if there is an error or we insert an inline extent.
6155  *
6156  * This function will release the metadata space that was not used and will
6157  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6158  * list if there are no delalloc bytes left.
6159  * Also it will handle the qgroup reserved space.
6160  */
6161 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6162 {
6163 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6164 	btrfs_free_reserved_data_space(inode, start, len);
6165 }
6166 
6167 static int update_block_group(struct btrfs_trans_handle *trans,
6168 			      struct btrfs_fs_info *info, u64 bytenr,
6169 			      u64 num_bytes, int alloc)
6170 {
6171 	struct btrfs_block_group_cache *cache = NULL;
6172 	u64 total = num_bytes;
6173 	u64 old_val;
6174 	u64 byte_in_group;
6175 	int factor;
6176 
6177 	/* block accounting for super block */
6178 	spin_lock(&info->delalloc_root_lock);
6179 	old_val = btrfs_super_bytes_used(info->super_copy);
6180 	if (alloc)
6181 		old_val += num_bytes;
6182 	else
6183 		old_val -= num_bytes;
6184 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6185 	spin_unlock(&info->delalloc_root_lock);
6186 
6187 	while (total) {
6188 		cache = btrfs_lookup_block_group(info, bytenr);
6189 		if (!cache)
6190 			return -ENOENT;
6191 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6192 				    BTRFS_BLOCK_GROUP_RAID1 |
6193 				    BTRFS_BLOCK_GROUP_RAID10))
6194 			factor = 2;
6195 		else
6196 			factor = 1;
6197 		/*
6198 		 * If this block group has free space cache written out, we
6199 		 * need to make sure to load it if we are removing space.  This
6200 		 * is because we need the unpinning stage to actually add the
6201 		 * space back to the block group, otherwise we will leak space.
6202 		 */
6203 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6204 			cache_block_group(cache, 1);
6205 
6206 		byte_in_group = bytenr - cache->key.objectid;
6207 		WARN_ON(byte_in_group > cache->key.offset);
6208 
6209 		spin_lock(&cache->space_info->lock);
6210 		spin_lock(&cache->lock);
6211 
6212 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6213 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6214 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6215 
6216 		old_val = btrfs_block_group_used(&cache->item);
6217 		num_bytes = min(total, cache->key.offset - byte_in_group);
6218 		if (alloc) {
6219 			old_val += num_bytes;
6220 			btrfs_set_block_group_used(&cache->item, old_val);
6221 			cache->reserved -= num_bytes;
6222 			cache->space_info->bytes_reserved -= num_bytes;
6223 			cache->space_info->bytes_used += num_bytes;
6224 			cache->space_info->disk_used += num_bytes * factor;
6225 			spin_unlock(&cache->lock);
6226 			spin_unlock(&cache->space_info->lock);
6227 		} else {
6228 			old_val -= num_bytes;
6229 			btrfs_set_block_group_used(&cache->item, old_val);
6230 			cache->pinned += num_bytes;
6231 			cache->space_info->bytes_pinned += num_bytes;
6232 			cache->space_info->bytes_used -= num_bytes;
6233 			cache->space_info->disk_used -= num_bytes * factor;
6234 			spin_unlock(&cache->lock);
6235 			spin_unlock(&cache->space_info->lock);
6236 
6237 			trace_btrfs_space_reservation(info, "pinned",
6238 						      cache->space_info->flags,
6239 						      num_bytes, 1);
6240 			set_extent_dirty(info->pinned_extents,
6241 					 bytenr, bytenr + num_bytes - 1,
6242 					 GFP_NOFS | __GFP_NOFAIL);
6243 		}
6244 
6245 		spin_lock(&trans->transaction->dirty_bgs_lock);
6246 		if (list_empty(&cache->dirty_list)) {
6247 			list_add_tail(&cache->dirty_list,
6248 				      &trans->transaction->dirty_bgs);
6249 				trans->transaction->num_dirty_bgs++;
6250 			btrfs_get_block_group(cache);
6251 		}
6252 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6253 
6254 		/*
6255 		 * No longer have used bytes in this block group, queue it for
6256 		 * deletion. We do this after adding the block group to the
6257 		 * dirty list to avoid races between cleaner kthread and space
6258 		 * cache writeout.
6259 		 */
6260 		if (!alloc && old_val == 0) {
6261 			spin_lock(&info->unused_bgs_lock);
6262 			if (list_empty(&cache->bg_list)) {
6263 				btrfs_get_block_group(cache);
6264 				list_add_tail(&cache->bg_list,
6265 					      &info->unused_bgs);
6266 			}
6267 			spin_unlock(&info->unused_bgs_lock);
6268 		}
6269 
6270 		btrfs_put_block_group(cache);
6271 		total -= num_bytes;
6272 		bytenr += num_bytes;
6273 	}
6274 	return 0;
6275 }
6276 
6277 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6278 {
6279 	struct btrfs_block_group_cache *cache;
6280 	u64 bytenr;
6281 
6282 	spin_lock(&fs_info->block_group_cache_lock);
6283 	bytenr = fs_info->first_logical_byte;
6284 	spin_unlock(&fs_info->block_group_cache_lock);
6285 
6286 	if (bytenr < (u64)-1)
6287 		return bytenr;
6288 
6289 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6290 	if (!cache)
6291 		return 0;
6292 
6293 	bytenr = cache->key.objectid;
6294 	btrfs_put_block_group(cache);
6295 
6296 	return bytenr;
6297 }
6298 
6299 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6300 			   struct btrfs_block_group_cache *cache,
6301 			   u64 bytenr, u64 num_bytes, int reserved)
6302 {
6303 	spin_lock(&cache->space_info->lock);
6304 	spin_lock(&cache->lock);
6305 	cache->pinned += num_bytes;
6306 	cache->space_info->bytes_pinned += num_bytes;
6307 	if (reserved) {
6308 		cache->reserved -= num_bytes;
6309 		cache->space_info->bytes_reserved -= num_bytes;
6310 	}
6311 	spin_unlock(&cache->lock);
6312 	spin_unlock(&cache->space_info->lock);
6313 
6314 	trace_btrfs_space_reservation(fs_info, "pinned",
6315 				      cache->space_info->flags, num_bytes, 1);
6316 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6317 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6318 	return 0;
6319 }
6320 
6321 /*
6322  * this function must be called within transaction
6323  */
6324 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6325 		     u64 bytenr, u64 num_bytes, int reserved)
6326 {
6327 	struct btrfs_block_group_cache *cache;
6328 
6329 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6330 	BUG_ON(!cache); /* Logic error */
6331 
6332 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6333 
6334 	btrfs_put_block_group(cache);
6335 	return 0;
6336 }
6337 
6338 /*
6339  * this function must be called within transaction
6340  */
6341 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6342 				    u64 bytenr, u64 num_bytes)
6343 {
6344 	struct btrfs_block_group_cache *cache;
6345 	int ret;
6346 
6347 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6348 	if (!cache)
6349 		return -EINVAL;
6350 
6351 	/*
6352 	 * pull in the free space cache (if any) so that our pin
6353 	 * removes the free space from the cache.  We have load_only set
6354 	 * to one because the slow code to read in the free extents does check
6355 	 * the pinned extents.
6356 	 */
6357 	cache_block_group(cache, 1);
6358 
6359 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6360 
6361 	/* remove us from the free space cache (if we're there at all) */
6362 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6363 	btrfs_put_block_group(cache);
6364 	return ret;
6365 }
6366 
6367 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6368 				   u64 start, u64 num_bytes)
6369 {
6370 	int ret;
6371 	struct btrfs_block_group_cache *block_group;
6372 	struct btrfs_caching_control *caching_ctl;
6373 
6374 	block_group = btrfs_lookup_block_group(fs_info, start);
6375 	if (!block_group)
6376 		return -EINVAL;
6377 
6378 	cache_block_group(block_group, 0);
6379 	caching_ctl = get_caching_control(block_group);
6380 
6381 	if (!caching_ctl) {
6382 		/* Logic error */
6383 		BUG_ON(!block_group_cache_done(block_group));
6384 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6385 	} else {
6386 		mutex_lock(&caching_ctl->mutex);
6387 
6388 		if (start >= caching_ctl->progress) {
6389 			ret = add_excluded_extent(fs_info, start, num_bytes);
6390 		} else if (start + num_bytes <= caching_ctl->progress) {
6391 			ret = btrfs_remove_free_space(block_group,
6392 						      start, num_bytes);
6393 		} else {
6394 			num_bytes = caching_ctl->progress - start;
6395 			ret = btrfs_remove_free_space(block_group,
6396 						      start, num_bytes);
6397 			if (ret)
6398 				goto out_lock;
6399 
6400 			num_bytes = (start + num_bytes) -
6401 				caching_ctl->progress;
6402 			start = caching_ctl->progress;
6403 			ret = add_excluded_extent(fs_info, start, num_bytes);
6404 		}
6405 out_lock:
6406 		mutex_unlock(&caching_ctl->mutex);
6407 		put_caching_control(caching_ctl);
6408 	}
6409 	btrfs_put_block_group(block_group);
6410 	return ret;
6411 }
6412 
6413 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6414 				 struct extent_buffer *eb)
6415 {
6416 	struct btrfs_file_extent_item *item;
6417 	struct btrfs_key key;
6418 	int found_type;
6419 	int i;
6420 
6421 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6422 		return 0;
6423 
6424 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6425 		btrfs_item_key_to_cpu(eb, &key, i);
6426 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6427 			continue;
6428 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6429 		found_type = btrfs_file_extent_type(eb, item);
6430 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6431 			continue;
6432 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6433 			continue;
6434 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6435 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6436 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6437 	}
6438 
6439 	return 0;
6440 }
6441 
6442 static void
6443 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6444 {
6445 	atomic_inc(&bg->reservations);
6446 }
6447 
6448 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6449 					const u64 start)
6450 {
6451 	struct btrfs_block_group_cache *bg;
6452 
6453 	bg = btrfs_lookup_block_group(fs_info, start);
6454 	ASSERT(bg);
6455 	if (atomic_dec_and_test(&bg->reservations))
6456 		wake_up_atomic_t(&bg->reservations);
6457 	btrfs_put_block_group(bg);
6458 }
6459 
6460 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6461 {
6462 	schedule();
6463 	return 0;
6464 }
6465 
6466 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6467 {
6468 	struct btrfs_space_info *space_info = bg->space_info;
6469 
6470 	ASSERT(bg->ro);
6471 
6472 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6473 		return;
6474 
6475 	/*
6476 	 * Our block group is read only but before we set it to read only,
6477 	 * some task might have had allocated an extent from it already, but it
6478 	 * has not yet created a respective ordered extent (and added it to a
6479 	 * root's list of ordered extents).
6480 	 * Therefore wait for any task currently allocating extents, since the
6481 	 * block group's reservations counter is incremented while a read lock
6482 	 * on the groups' semaphore is held and decremented after releasing
6483 	 * the read access on that semaphore and creating the ordered extent.
6484 	 */
6485 	down_write(&space_info->groups_sem);
6486 	up_write(&space_info->groups_sem);
6487 
6488 	wait_on_atomic_t(&bg->reservations,
6489 			 btrfs_wait_bg_reservations_atomic_t,
6490 			 TASK_UNINTERRUPTIBLE);
6491 }
6492 
6493 /**
6494  * btrfs_add_reserved_bytes - update the block_group and space info counters
6495  * @cache:	The cache we are manipulating
6496  * @ram_bytes:  The number of bytes of file content, and will be same to
6497  *              @num_bytes except for the compress path.
6498  * @num_bytes:	The number of bytes in question
6499  * @delalloc:   The blocks are allocated for the delalloc write
6500  *
6501  * This is called by the allocator when it reserves space. If this is a
6502  * reservation and the block group has become read only we cannot make the
6503  * reservation and return -EAGAIN, otherwise this function always succeeds.
6504  */
6505 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6506 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6507 {
6508 	struct btrfs_space_info *space_info = cache->space_info;
6509 	int ret = 0;
6510 
6511 	spin_lock(&space_info->lock);
6512 	spin_lock(&cache->lock);
6513 	if (cache->ro) {
6514 		ret = -EAGAIN;
6515 	} else {
6516 		cache->reserved += num_bytes;
6517 		space_info->bytes_reserved += num_bytes;
6518 
6519 		trace_btrfs_space_reservation(cache->fs_info,
6520 				"space_info", space_info->flags,
6521 				ram_bytes, 0);
6522 		space_info->bytes_may_use -= ram_bytes;
6523 		if (delalloc)
6524 			cache->delalloc_bytes += num_bytes;
6525 	}
6526 	spin_unlock(&cache->lock);
6527 	spin_unlock(&space_info->lock);
6528 	return ret;
6529 }
6530 
6531 /**
6532  * btrfs_free_reserved_bytes - update the block_group and space info counters
6533  * @cache:      The cache we are manipulating
6534  * @num_bytes:  The number of bytes in question
6535  * @delalloc:   The blocks are allocated for the delalloc write
6536  *
6537  * This is called by somebody who is freeing space that was never actually used
6538  * on disk.  For example if you reserve some space for a new leaf in transaction
6539  * A and before transaction A commits you free that leaf, you call this with
6540  * reserve set to 0 in order to clear the reservation.
6541  */
6542 
6543 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6544 				     u64 num_bytes, int delalloc)
6545 {
6546 	struct btrfs_space_info *space_info = cache->space_info;
6547 	int ret = 0;
6548 
6549 	spin_lock(&space_info->lock);
6550 	spin_lock(&cache->lock);
6551 	if (cache->ro)
6552 		space_info->bytes_readonly += num_bytes;
6553 	cache->reserved -= num_bytes;
6554 	space_info->bytes_reserved -= num_bytes;
6555 
6556 	if (delalloc)
6557 		cache->delalloc_bytes -= num_bytes;
6558 	spin_unlock(&cache->lock);
6559 	spin_unlock(&space_info->lock);
6560 	return ret;
6561 }
6562 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6563 {
6564 	struct btrfs_caching_control *next;
6565 	struct btrfs_caching_control *caching_ctl;
6566 	struct btrfs_block_group_cache *cache;
6567 
6568 	down_write(&fs_info->commit_root_sem);
6569 
6570 	list_for_each_entry_safe(caching_ctl, next,
6571 				 &fs_info->caching_block_groups, list) {
6572 		cache = caching_ctl->block_group;
6573 		if (block_group_cache_done(cache)) {
6574 			cache->last_byte_to_unpin = (u64)-1;
6575 			list_del_init(&caching_ctl->list);
6576 			put_caching_control(caching_ctl);
6577 		} else {
6578 			cache->last_byte_to_unpin = caching_ctl->progress;
6579 		}
6580 	}
6581 
6582 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6583 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6584 	else
6585 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6586 
6587 	up_write(&fs_info->commit_root_sem);
6588 
6589 	update_global_block_rsv(fs_info);
6590 }
6591 
6592 /*
6593  * Returns the free cluster for the given space info and sets empty_cluster to
6594  * what it should be based on the mount options.
6595  */
6596 static struct btrfs_free_cluster *
6597 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6598 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6599 {
6600 	struct btrfs_free_cluster *ret = NULL;
6601 	bool ssd = btrfs_test_opt(fs_info, SSD);
6602 
6603 	*empty_cluster = 0;
6604 	if (btrfs_mixed_space_info(space_info))
6605 		return ret;
6606 
6607 	if (ssd)
6608 		*empty_cluster = SZ_2M;
6609 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6610 		ret = &fs_info->meta_alloc_cluster;
6611 		if (!ssd)
6612 			*empty_cluster = SZ_64K;
6613 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6614 		ret = &fs_info->data_alloc_cluster;
6615 	}
6616 
6617 	return ret;
6618 }
6619 
6620 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6621 			      u64 start, u64 end,
6622 			      const bool return_free_space)
6623 {
6624 	struct btrfs_block_group_cache *cache = NULL;
6625 	struct btrfs_space_info *space_info;
6626 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6627 	struct btrfs_free_cluster *cluster = NULL;
6628 	u64 len;
6629 	u64 total_unpinned = 0;
6630 	u64 empty_cluster = 0;
6631 	bool readonly;
6632 
6633 	while (start <= end) {
6634 		readonly = false;
6635 		if (!cache ||
6636 		    start >= cache->key.objectid + cache->key.offset) {
6637 			if (cache)
6638 				btrfs_put_block_group(cache);
6639 			total_unpinned = 0;
6640 			cache = btrfs_lookup_block_group(fs_info, start);
6641 			BUG_ON(!cache); /* Logic error */
6642 
6643 			cluster = fetch_cluster_info(fs_info,
6644 						     cache->space_info,
6645 						     &empty_cluster);
6646 			empty_cluster <<= 1;
6647 		}
6648 
6649 		len = cache->key.objectid + cache->key.offset - start;
6650 		len = min(len, end + 1 - start);
6651 
6652 		if (start < cache->last_byte_to_unpin) {
6653 			len = min(len, cache->last_byte_to_unpin - start);
6654 			if (return_free_space)
6655 				btrfs_add_free_space(cache, start, len);
6656 		}
6657 
6658 		start += len;
6659 		total_unpinned += len;
6660 		space_info = cache->space_info;
6661 
6662 		/*
6663 		 * If this space cluster has been marked as fragmented and we've
6664 		 * unpinned enough in this block group to potentially allow a
6665 		 * cluster to be created inside of it go ahead and clear the
6666 		 * fragmented check.
6667 		 */
6668 		if (cluster && cluster->fragmented &&
6669 		    total_unpinned > empty_cluster) {
6670 			spin_lock(&cluster->lock);
6671 			cluster->fragmented = 0;
6672 			spin_unlock(&cluster->lock);
6673 		}
6674 
6675 		spin_lock(&space_info->lock);
6676 		spin_lock(&cache->lock);
6677 		cache->pinned -= len;
6678 		space_info->bytes_pinned -= len;
6679 
6680 		trace_btrfs_space_reservation(fs_info, "pinned",
6681 					      space_info->flags, len, 0);
6682 		space_info->max_extent_size = 0;
6683 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6684 		if (cache->ro) {
6685 			space_info->bytes_readonly += len;
6686 			readonly = true;
6687 		}
6688 		spin_unlock(&cache->lock);
6689 		if (!readonly && return_free_space &&
6690 		    global_rsv->space_info == space_info) {
6691 			u64 to_add = len;
6692 			WARN_ON(!return_free_space);
6693 			spin_lock(&global_rsv->lock);
6694 			if (!global_rsv->full) {
6695 				to_add = min(len, global_rsv->size -
6696 					     global_rsv->reserved);
6697 				global_rsv->reserved += to_add;
6698 				space_info->bytes_may_use += to_add;
6699 				if (global_rsv->reserved >= global_rsv->size)
6700 					global_rsv->full = 1;
6701 				trace_btrfs_space_reservation(fs_info,
6702 							      "space_info",
6703 							      space_info->flags,
6704 							      to_add, 1);
6705 				len -= to_add;
6706 			}
6707 			spin_unlock(&global_rsv->lock);
6708 			/* Add to any tickets we may have */
6709 			if (len)
6710 				space_info_add_new_bytes(fs_info, space_info,
6711 							 len);
6712 		}
6713 		spin_unlock(&space_info->lock);
6714 	}
6715 
6716 	if (cache)
6717 		btrfs_put_block_group(cache);
6718 	return 0;
6719 }
6720 
6721 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6722 			       struct btrfs_fs_info *fs_info)
6723 {
6724 	struct btrfs_block_group_cache *block_group, *tmp;
6725 	struct list_head *deleted_bgs;
6726 	struct extent_io_tree *unpin;
6727 	u64 start;
6728 	u64 end;
6729 	int ret;
6730 
6731 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6732 		unpin = &fs_info->freed_extents[1];
6733 	else
6734 		unpin = &fs_info->freed_extents[0];
6735 
6736 	while (!trans->aborted) {
6737 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6738 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6739 					    EXTENT_DIRTY, NULL);
6740 		if (ret) {
6741 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6742 			break;
6743 		}
6744 
6745 		if (btrfs_test_opt(fs_info, DISCARD))
6746 			ret = btrfs_discard_extent(fs_info, start,
6747 						   end + 1 - start, NULL);
6748 
6749 		clear_extent_dirty(unpin, start, end);
6750 		unpin_extent_range(fs_info, start, end, true);
6751 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752 		cond_resched();
6753 	}
6754 
6755 	/*
6756 	 * Transaction is finished.  We don't need the lock anymore.  We
6757 	 * do need to clean up the block groups in case of a transaction
6758 	 * abort.
6759 	 */
6760 	deleted_bgs = &trans->transaction->deleted_bgs;
6761 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6762 		u64 trimmed = 0;
6763 
6764 		ret = -EROFS;
6765 		if (!trans->aborted)
6766 			ret = btrfs_discard_extent(fs_info,
6767 						   block_group->key.objectid,
6768 						   block_group->key.offset,
6769 						   &trimmed);
6770 
6771 		list_del_init(&block_group->bg_list);
6772 		btrfs_put_block_group_trimming(block_group);
6773 		btrfs_put_block_group(block_group);
6774 
6775 		if (ret) {
6776 			const char *errstr = btrfs_decode_error(ret);
6777 			btrfs_warn(fs_info,
6778 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6779 				   ret, errstr);
6780 		}
6781 	}
6782 
6783 	return 0;
6784 }
6785 
6786 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6787 			     u64 owner, u64 root_objectid)
6788 {
6789 	struct btrfs_space_info *space_info;
6790 	u64 flags;
6791 
6792 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6793 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6794 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6795 		else
6796 			flags = BTRFS_BLOCK_GROUP_METADATA;
6797 	} else {
6798 		flags = BTRFS_BLOCK_GROUP_DATA;
6799 	}
6800 
6801 	space_info = __find_space_info(fs_info, flags);
6802 	BUG_ON(!space_info); /* Logic bug */
6803 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6804 }
6805 
6806 
6807 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6808 				struct btrfs_fs_info *info,
6809 				struct btrfs_delayed_ref_node *node, u64 parent,
6810 				u64 root_objectid, u64 owner_objectid,
6811 				u64 owner_offset, int refs_to_drop,
6812 				struct btrfs_delayed_extent_op *extent_op)
6813 {
6814 	struct btrfs_key key;
6815 	struct btrfs_path *path;
6816 	struct btrfs_root *extent_root = info->extent_root;
6817 	struct extent_buffer *leaf;
6818 	struct btrfs_extent_item *ei;
6819 	struct btrfs_extent_inline_ref *iref;
6820 	int ret;
6821 	int is_data;
6822 	int extent_slot = 0;
6823 	int found_extent = 0;
6824 	int num_to_del = 1;
6825 	u32 item_size;
6826 	u64 refs;
6827 	u64 bytenr = node->bytenr;
6828 	u64 num_bytes = node->num_bytes;
6829 	int last_ref = 0;
6830 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6831 
6832 	path = btrfs_alloc_path();
6833 	if (!path)
6834 		return -ENOMEM;
6835 
6836 	path->reada = READA_FORWARD;
6837 	path->leave_spinning = 1;
6838 
6839 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6840 	BUG_ON(!is_data && refs_to_drop != 1);
6841 
6842 	if (is_data)
6843 		skinny_metadata = 0;
6844 
6845 	ret = lookup_extent_backref(trans, info, path, &iref,
6846 				    bytenr, num_bytes, parent,
6847 				    root_objectid, owner_objectid,
6848 				    owner_offset);
6849 	if (ret == 0) {
6850 		extent_slot = path->slots[0];
6851 		while (extent_slot >= 0) {
6852 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6853 					      extent_slot);
6854 			if (key.objectid != bytenr)
6855 				break;
6856 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6857 			    key.offset == num_bytes) {
6858 				found_extent = 1;
6859 				break;
6860 			}
6861 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6862 			    key.offset == owner_objectid) {
6863 				found_extent = 1;
6864 				break;
6865 			}
6866 			if (path->slots[0] - extent_slot > 5)
6867 				break;
6868 			extent_slot--;
6869 		}
6870 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6871 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6872 		if (found_extent && item_size < sizeof(*ei))
6873 			found_extent = 0;
6874 #endif
6875 		if (!found_extent) {
6876 			BUG_ON(iref);
6877 			ret = remove_extent_backref(trans, info, path, NULL,
6878 						    refs_to_drop,
6879 						    is_data, &last_ref);
6880 			if (ret) {
6881 				btrfs_abort_transaction(trans, ret);
6882 				goto out;
6883 			}
6884 			btrfs_release_path(path);
6885 			path->leave_spinning = 1;
6886 
6887 			key.objectid = bytenr;
6888 			key.type = BTRFS_EXTENT_ITEM_KEY;
6889 			key.offset = num_bytes;
6890 
6891 			if (!is_data && skinny_metadata) {
6892 				key.type = BTRFS_METADATA_ITEM_KEY;
6893 				key.offset = owner_objectid;
6894 			}
6895 
6896 			ret = btrfs_search_slot(trans, extent_root,
6897 						&key, path, -1, 1);
6898 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6899 				/*
6900 				 * Couldn't find our skinny metadata item,
6901 				 * see if we have ye olde extent item.
6902 				 */
6903 				path->slots[0]--;
6904 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6905 						      path->slots[0]);
6906 				if (key.objectid == bytenr &&
6907 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6908 				    key.offset == num_bytes)
6909 					ret = 0;
6910 			}
6911 
6912 			if (ret > 0 && skinny_metadata) {
6913 				skinny_metadata = false;
6914 				key.objectid = bytenr;
6915 				key.type = BTRFS_EXTENT_ITEM_KEY;
6916 				key.offset = num_bytes;
6917 				btrfs_release_path(path);
6918 				ret = btrfs_search_slot(trans, extent_root,
6919 							&key, path, -1, 1);
6920 			}
6921 
6922 			if (ret) {
6923 				btrfs_err(info,
6924 					  "umm, got %d back from search, was looking for %llu",
6925 					  ret, bytenr);
6926 				if (ret > 0)
6927 					btrfs_print_leaf(info, path->nodes[0]);
6928 			}
6929 			if (ret < 0) {
6930 				btrfs_abort_transaction(trans, ret);
6931 				goto out;
6932 			}
6933 			extent_slot = path->slots[0];
6934 		}
6935 	} else if (WARN_ON(ret == -ENOENT)) {
6936 		btrfs_print_leaf(info, path->nodes[0]);
6937 		btrfs_err(info,
6938 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6939 			bytenr, parent, root_objectid, owner_objectid,
6940 			owner_offset);
6941 		btrfs_abort_transaction(trans, ret);
6942 		goto out;
6943 	} else {
6944 		btrfs_abort_transaction(trans, ret);
6945 		goto out;
6946 	}
6947 
6948 	leaf = path->nodes[0];
6949 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6951 	if (item_size < sizeof(*ei)) {
6952 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6953 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6954 					     0);
6955 		if (ret < 0) {
6956 			btrfs_abort_transaction(trans, ret);
6957 			goto out;
6958 		}
6959 
6960 		btrfs_release_path(path);
6961 		path->leave_spinning = 1;
6962 
6963 		key.objectid = bytenr;
6964 		key.type = BTRFS_EXTENT_ITEM_KEY;
6965 		key.offset = num_bytes;
6966 
6967 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6968 					-1, 1);
6969 		if (ret) {
6970 			btrfs_err(info,
6971 				  "umm, got %d back from search, was looking for %llu",
6972 				ret, bytenr);
6973 			btrfs_print_leaf(info, path->nodes[0]);
6974 		}
6975 		if (ret < 0) {
6976 			btrfs_abort_transaction(trans, ret);
6977 			goto out;
6978 		}
6979 
6980 		extent_slot = path->slots[0];
6981 		leaf = path->nodes[0];
6982 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6983 	}
6984 #endif
6985 	BUG_ON(item_size < sizeof(*ei));
6986 	ei = btrfs_item_ptr(leaf, extent_slot,
6987 			    struct btrfs_extent_item);
6988 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6989 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6990 		struct btrfs_tree_block_info *bi;
6991 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6992 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6993 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6994 	}
6995 
6996 	refs = btrfs_extent_refs(leaf, ei);
6997 	if (refs < refs_to_drop) {
6998 		btrfs_err(info,
6999 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7000 			  refs_to_drop, refs, bytenr);
7001 		ret = -EINVAL;
7002 		btrfs_abort_transaction(trans, ret);
7003 		goto out;
7004 	}
7005 	refs -= refs_to_drop;
7006 
7007 	if (refs > 0) {
7008 		if (extent_op)
7009 			__run_delayed_extent_op(extent_op, leaf, ei);
7010 		/*
7011 		 * In the case of inline back ref, reference count will
7012 		 * be updated by remove_extent_backref
7013 		 */
7014 		if (iref) {
7015 			BUG_ON(!found_extent);
7016 		} else {
7017 			btrfs_set_extent_refs(leaf, ei, refs);
7018 			btrfs_mark_buffer_dirty(leaf);
7019 		}
7020 		if (found_extent) {
7021 			ret = remove_extent_backref(trans, info, path,
7022 						    iref, refs_to_drop,
7023 						    is_data, &last_ref);
7024 			if (ret) {
7025 				btrfs_abort_transaction(trans, ret);
7026 				goto out;
7027 			}
7028 		}
7029 		add_pinned_bytes(info, -num_bytes, owner_objectid,
7030 				 root_objectid);
7031 	} else {
7032 		if (found_extent) {
7033 			BUG_ON(is_data && refs_to_drop !=
7034 			       extent_data_ref_count(path, iref));
7035 			if (iref) {
7036 				BUG_ON(path->slots[0] != extent_slot);
7037 			} else {
7038 				BUG_ON(path->slots[0] != extent_slot + 1);
7039 				path->slots[0] = extent_slot;
7040 				num_to_del = 2;
7041 			}
7042 		}
7043 
7044 		last_ref = 1;
7045 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7046 				      num_to_del);
7047 		if (ret) {
7048 			btrfs_abort_transaction(trans, ret);
7049 			goto out;
7050 		}
7051 		btrfs_release_path(path);
7052 
7053 		if (is_data) {
7054 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7055 			if (ret) {
7056 				btrfs_abort_transaction(trans, ret);
7057 				goto out;
7058 			}
7059 		}
7060 
7061 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7062 		if (ret) {
7063 			btrfs_abort_transaction(trans, ret);
7064 			goto out;
7065 		}
7066 
7067 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7068 		if (ret) {
7069 			btrfs_abort_transaction(trans, ret);
7070 			goto out;
7071 		}
7072 	}
7073 	btrfs_release_path(path);
7074 
7075 out:
7076 	btrfs_free_path(path);
7077 	return ret;
7078 }
7079 
7080 /*
7081  * when we free an block, it is possible (and likely) that we free the last
7082  * delayed ref for that extent as well.  This searches the delayed ref tree for
7083  * a given extent, and if there are no other delayed refs to be processed, it
7084  * removes it from the tree.
7085  */
7086 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7087 				      u64 bytenr)
7088 {
7089 	struct btrfs_delayed_ref_head *head;
7090 	struct btrfs_delayed_ref_root *delayed_refs;
7091 	int ret = 0;
7092 
7093 	delayed_refs = &trans->transaction->delayed_refs;
7094 	spin_lock(&delayed_refs->lock);
7095 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7096 	if (!head)
7097 		goto out_delayed_unlock;
7098 
7099 	spin_lock(&head->lock);
7100 	if (!list_empty(&head->ref_list))
7101 		goto out;
7102 
7103 	if (head->extent_op) {
7104 		if (!head->must_insert_reserved)
7105 			goto out;
7106 		btrfs_free_delayed_extent_op(head->extent_op);
7107 		head->extent_op = NULL;
7108 	}
7109 
7110 	/*
7111 	 * waiting for the lock here would deadlock.  If someone else has it
7112 	 * locked they are already in the process of dropping it anyway
7113 	 */
7114 	if (!mutex_trylock(&head->mutex))
7115 		goto out;
7116 
7117 	/*
7118 	 * at this point we have a head with no other entries.  Go
7119 	 * ahead and process it.
7120 	 */
7121 	head->node.in_tree = 0;
7122 	rb_erase(&head->href_node, &delayed_refs->href_root);
7123 
7124 	atomic_dec(&delayed_refs->num_entries);
7125 
7126 	/*
7127 	 * we don't take a ref on the node because we're removing it from the
7128 	 * tree, so we just steal the ref the tree was holding.
7129 	 */
7130 	delayed_refs->num_heads--;
7131 	if (head->processing == 0)
7132 		delayed_refs->num_heads_ready--;
7133 	head->processing = 0;
7134 	spin_unlock(&head->lock);
7135 	spin_unlock(&delayed_refs->lock);
7136 
7137 	BUG_ON(head->extent_op);
7138 	if (head->must_insert_reserved)
7139 		ret = 1;
7140 
7141 	mutex_unlock(&head->mutex);
7142 	btrfs_put_delayed_ref(&head->node);
7143 	return ret;
7144 out:
7145 	spin_unlock(&head->lock);
7146 
7147 out_delayed_unlock:
7148 	spin_unlock(&delayed_refs->lock);
7149 	return 0;
7150 }
7151 
7152 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7153 			   struct btrfs_root *root,
7154 			   struct extent_buffer *buf,
7155 			   u64 parent, int last_ref)
7156 {
7157 	struct btrfs_fs_info *fs_info = root->fs_info;
7158 	int pin = 1;
7159 	int ret;
7160 
7161 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7162 		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7163 						 buf->start, buf->len,
7164 						 parent,
7165 						 root->root_key.objectid,
7166 						 btrfs_header_level(buf),
7167 						 BTRFS_DROP_DELAYED_REF, NULL);
7168 		BUG_ON(ret); /* -ENOMEM */
7169 	}
7170 
7171 	if (!last_ref)
7172 		return;
7173 
7174 	if (btrfs_header_generation(buf) == trans->transid) {
7175 		struct btrfs_block_group_cache *cache;
7176 
7177 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7178 			ret = check_ref_cleanup(trans, buf->start);
7179 			if (!ret)
7180 				goto out;
7181 		}
7182 
7183 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7184 
7185 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7186 			pin_down_extent(fs_info, cache, buf->start,
7187 					buf->len, 1);
7188 			btrfs_put_block_group(cache);
7189 			goto out;
7190 		}
7191 
7192 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7193 
7194 		btrfs_add_free_space(cache, buf->start, buf->len);
7195 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7196 		btrfs_put_block_group(cache);
7197 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7198 		pin = 0;
7199 	}
7200 out:
7201 	if (pin)
7202 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7203 				 root->root_key.objectid);
7204 
7205 	/*
7206 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7207 	 * anymore.
7208 	 */
7209 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7210 }
7211 
7212 /* Can return -ENOMEM */
7213 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7214 		      struct btrfs_fs_info *fs_info,
7215 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7216 		      u64 owner, u64 offset)
7217 {
7218 	int ret;
7219 
7220 	if (btrfs_is_testing(fs_info))
7221 		return 0;
7222 
7223 	add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7224 
7225 	/*
7226 	 * tree log blocks never actually go into the extent allocation
7227 	 * tree, just update pinning info and exit early.
7228 	 */
7229 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7230 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7231 		/* unlocks the pinned mutex */
7232 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7233 		ret = 0;
7234 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7235 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7236 					num_bytes,
7237 					parent, root_objectid, (int)owner,
7238 					BTRFS_DROP_DELAYED_REF, NULL);
7239 	} else {
7240 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7241 						num_bytes,
7242 						parent, root_objectid, owner,
7243 						offset, 0,
7244 						BTRFS_DROP_DELAYED_REF);
7245 	}
7246 	return ret;
7247 }
7248 
7249 /*
7250  * when we wait for progress in the block group caching, its because
7251  * our allocation attempt failed at least once.  So, we must sleep
7252  * and let some progress happen before we try again.
7253  *
7254  * This function will sleep at least once waiting for new free space to
7255  * show up, and then it will check the block group free space numbers
7256  * for our min num_bytes.  Another option is to have it go ahead
7257  * and look in the rbtree for a free extent of a given size, but this
7258  * is a good start.
7259  *
7260  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261  * any of the information in this block group.
7262  */
7263 static noinline void
7264 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7265 				u64 num_bytes)
7266 {
7267 	struct btrfs_caching_control *caching_ctl;
7268 
7269 	caching_ctl = get_caching_control(cache);
7270 	if (!caching_ctl)
7271 		return;
7272 
7273 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7274 		   (cache->free_space_ctl->free_space >= num_bytes));
7275 
7276 	put_caching_control(caching_ctl);
7277 }
7278 
7279 static noinline int
7280 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7281 {
7282 	struct btrfs_caching_control *caching_ctl;
7283 	int ret = 0;
7284 
7285 	caching_ctl = get_caching_control(cache);
7286 	if (!caching_ctl)
7287 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7288 
7289 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7290 	if (cache->cached == BTRFS_CACHE_ERROR)
7291 		ret = -EIO;
7292 	put_caching_control(caching_ctl);
7293 	return ret;
7294 }
7295 
7296 int __get_raid_index(u64 flags)
7297 {
7298 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7299 		return BTRFS_RAID_RAID10;
7300 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7301 		return BTRFS_RAID_RAID1;
7302 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7303 		return BTRFS_RAID_DUP;
7304 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7305 		return BTRFS_RAID_RAID0;
7306 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7307 		return BTRFS_RAID_RAID5;
7308 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7309 		return BTRFS_RAID_RAID6;
7310 
7311 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7312 }
7313 
7314 int get_block_group_index(struct btrfs_block_group_cache *cache)
7315 {
7316 	return __get_raid_index(cache->flags);
7317 }
7318 
7319 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7320 	[BTRFS_RAID_RAID10]	= "raid10",
7321 	[BTRFS_RAID_RAID1]	= "raid1",
7322 	[BTRFS_RAID_DUP]	= "dup",
7323 	[BTRFS_RAID_RAID0]	= "raid0",
7324 	[BTRFS_RAID_SINGLE]	= "single",
7325 	[BTRFS_RAID_RAID5]	= "raid5",
7326 	[BTRFS_RAID_RAID6]	= "raid6",
7327 };
7328 
7329 static const char *get_raid_name(enum btrfs_raid_types type)
7330 {
7331 	if (type >= BTRFS_NR_RAID_TYPES)
7332 		return NULL;
7333 
7334 	return btrfs_raid_type_names[type];
7335 }
7336 
7337 enum btrfs_loop_type {
7338 	LOOP_CACHING_NOWAIT = 0,
7339 	LOOP_CACHING_WAIT = 1,
7340 	LOOP_ALLOC_CHUNK = 2,
7341 	LOOP_NO_EMPTY_SIZE = 3,
7342 };
7343 
7344 static inline void
7345 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7346 		       int delalloc)
7347 {
7348 	if (delalloc)
7349 		down_read(&cache->data_rwsem);
7350 }
7351 
7352 static inline void
7353 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7354 		       int delalloc)
7355 {
7356 	btrfs_get_block_group(cache);
7357 	if (delalloc)
7358 		down_read(&cache->data_rwsem);
7359 }
7360 
7361 static struct btrfs_block_group_cache *
7362 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7363 		   struct btrfs_free_cluster *cluster,
7364 		   int delalloc)
7365 {
7366 	struct btrfs_block_group_cache *used_bg = NULL;
7367 
7368 	spin_lock(&cluster->refill_lock);
7369 	while (1) {
7370 		used_bg = cluster->block_group;
7371 		if (!used_bg)
7372 			return NULL;
7373 
7374 		if (used_bg == block_group)
7375 			return used_bg;
7376 
7377 		btrfs_get_block_group(used_bg);
7378 
7379 		if (!delalloc)
7380 			return used_bg;
7381 
7382 		if (down_read_trylock(&used_bg->data_rwsem))
7383 			return used_bg;
7384 
7385 		spin_unlock(&cluster->refill_lock);
7386 
7387 		/* We should only have one-level nested. */
7388 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7389 
7390 		spin_lock(&cluster->refill_lock);
7391 		if (used_bg == cluster->block_group)
7392 			return used_bg;
7393 
7394 		up_read(&used_bg->data_rwsem);
7395 		btrfs_put_block_group(used_bg);
7396 	}
7397 }
7398 
7399 static inline void
7400 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7401 			 int delalloc)
7402 {
7403 	if (delalloc)
7404 		up_read(&cache->data_rwsem);
7405 	btrfs_put_block_group(cache);
7406 }
7407 
7408 /*
7409  * walks the btree of allocated extents and find a hole of a given size.
7410  * The key ins is changed to record the hole:
7411  * ins->objectid == start position
7412  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7413  * ins->offset == the size of the hole.
7414  * Any available blocks before search_start are skipped.
7415  *
7416  * If there is no suitable free space, we will record the max size of
7417  * the free space extent currently.
7418  */
7419 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7420 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7421 				u64 hint_byte, struct btrfs_key *ins,
7422 				u64 flags, int delalloc)
7423 {
7424 	int ret = 0;
7425 	struct btrfs_root *root = fs_info->extent_root;
7426 	struct btrfs_free_cluster *last_ptr = NULL;
7427 	struct btrfs_block_group_cache *block_group = NULL;
7428 	u64 search_start = 0;
7429 	u64 max_extent_size = 0;
7430 	u64 empty_cluster = 0;
7431 	struct btrfs_space_info *space_info;
7432 	int loop = 0;
7433 	int index = __get_raid_index(flags);
7434 	bool failed_cluster_refill = false;
7435 	bool failed_alloc = false;
7436 	bool use_cluster = true;
7437 	bool have_caching_bg = false;
7438 	bool orig_have_caching_bg = false;
7439 	bool full_search = false;
7440 
7441 	WARN_ON(num_bytes < fs_info->sectorsize);
7442 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7443 	ins->objectid = 0;
7444 	ins->offset = 0;
7445 
7446 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7447 
7448 	space_info = __find_space_info(fs_info, flags);
7449 	if (!space_info) {
7450 		btrfs_err(fs_info, "No space info for %llu", flags);
7451 		return -ENOSPC;
7452 	}
7453 
7454 	/*
7455 	 * If our free space is heavily fragmented we may not be able to make
7456 	 * big contiguous allocations, so instead of doing the expensive search
7457 	 * for free space, simply return ENOSPC with our max_extent_size so we
7458 	 * can go ahead and search for a more manageable chunk.
7459 	 *
7460 	 * If our max_extent_size is large enough for our allocation simply
7461 	 * disable clustering since we will likely not be able to find enough
7462 	 * space to create a cluster and induce latency trying.
7463 	 */
7464 	if (unlikely(space_info->max_extent_size)) {
7465 		spin_lock(&space_info->lock);
7466 		if (space_info->max_extent_size &&
7467 		    num_bytes > space_info->max_extent_size) {
7468 			ins->offset = space_info->max_extent_size;
7469 			spin_unlock(&space_info->lock);
7470 			return -ENOSPC;
7471 		} else if (space_info->max_extent_size) {
7472 			use_cluster = false;
7473 		}
7474 		spin_unlock(&space_info->lock);
7475 	}
7476 
7477 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7478 	if (last_ptr) {
7479 		spin_lock(&last_ptr->lock);
7480 		if (last_ptr->block_group)
7481 			hint_byte = last_ptr->window_start;
7482 		if (last_ptr->fragmented) {
7483 			/*
7484 			 * We still set window_start so we can keep track of the
7485 			 * last place we found an allocation to try and save
7486 			 * some time.
7487 			 */
7488 			hint_byte = last_ptr->window_start;
7489 			use_cluster = false;
7490 		}
7491 		spin_unlock(&last_ptr->lock);
7492 	}
7493 
7494 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7495 	search_start = max(search_start, hint_byte);
7496 	if (search_start == hint_byte) {
7497 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7498 		/*
7499 		 * we don't want to use the block group if it doesn't match our
7500 		 * allocation bits, or if its not cached.
7501 		 *
7502 		 * However if we are re-searching with an ideal block group
7503 		 * picked out then we don't care that the block group is cached.
7504 		 */
7505 		if (block_group && block_group_bits(block_group, flags) &&
7506 		    block_group->cached != BTRFS_CACHE_NO) {
7507 			down_read(&space_info->groups_sem);
7508 			if (list_empty(&block_group->list) ||
7509 			    block_group->ro) {
7510 				/*
7511 				 * someone is removing this block group,
7512 				 * we can't jump into the have_block_group
7513 				 * target because our list pointers are not
7514 				 * valid
7515 				 */
7516 				btrfs_put_block_group(block_group);
7517 				up_read(&space_info->groups_sem);
7518 			} else {
7519 				index = get_block_group_index(block_group);
7520 				btrfs_lock_block_group(block_group, delalloc);
7521 				goto have_block_group;
7522 			}
7523 		} else if (block_group) {
7524 			btrfs_put_block_group(block_group);
7525 		}
7526 	}
7527 search:
7528 	have_caching_bg = false;
7529 	if (index == 0 || index == __get_raid_index(flags))
7530 		full_search = true;
7531 	down_read(&space_info->groups_sem);
7532 	list_for_each_entry(block_group, &space_info->block_groups[index],
7533 			    list) {
7534 		u64 offset;
7535 		int cached;
7536 
7537 		btrfs_grab_block_group(block_group, delalloc);
7538 		search_start = block_group->key.objectid;
7539 
7540 		/*
7541 		 * this can happen if we end up cycling through all the
7542 		 * raid types, but we want to make sure we only allocate
7543 		 * for the proper type.
7544 		 */
7545 		if (!block_group_bits(block_group, flags)) {
7546 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7547 				BTRFS_BLOCK_GROUP_RAID1 |
7548 				BTRFS_BLOCK_GROUP_RAID5 |
7549 				BTRFS_BLOCK_GROUP_RAID6 |
7550 				BTRFS_BLOCK_GROUP_RAID10;
7551 
7552 			/*
7553 			 * if they asked for extra copies and this block group
7554 			 * doesn't provide them, bail.  This does allow us to
7555 			 * fill raid0 from raid1.
7556 			 */
7557 			if ((flags & extra) && !(block_group->flags & extra))
7558 				goto loop;
7559 		}
7560 
7561 have_block_group:
7562 		cached = block_group_cache_done(block_group);
7563 		if (unlikely(!cached)) {
7564 			have_caching_bg = true;
7565 			ret = cache_block_group(block_group, 0);
7566 			BUG_ON(ret < 0);
7567 			ret = 0;
7568 		}
7569 
7570 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7571 			goto loop;
7572 		if (unlikely(block_group->ro))
7573 			goto loop;
7574 
7575 		/*
7576 		 * Ok we want to try and use the cluster allocator, so
7577 		 * lets look there
7578 		 */
7579 		if (last_ptr && use_cluster) {
7580 			struct btrfs_block_group_cache *used_block_group;
7581 			unsigned long aligned_cluster;
7582 			/*
7583 			 * the refill lock keeps out other
7584 			 * people trying to start a new cluster
7585 			 */
7586 			used_block_group = btrfs_lock_cluster(block_group,
7587 							      last_ptr,
7588 							      delalloc);
7589 			if (!used_block_group)
7590 				goto refill_cluster;
7591 
7592 			if (used_block_group != block_group &&
7593 			    (used_block_group->ro ||
7594 			     !block_group_bits(used_block_group, flags)))
7595 				goto release_cluster;
7596 
7597 			offset = btrfs_alloc_from_cluster(used_block_group,
7598 						last_ptr,
7599 						num_bytes,
7600 						used_block_group->key.objectid,
7601 						&max_extent_size);
7602 			if (offset) {
7603 				/* we have a block, we're done */
7604 				spin_unlock(&last_ptr->refill_lock);
7605 				trace_btrfs_reserve_extent_cluster(fs_info,
7606 						used_block_group,
7607 						search_start, num_bytes);
7608 				if (used_block_group != block_group) {
7609 					btrfs_release_block_group(block_group,
7610 								  delalloc);
7611 					block_group = used_block_group;
7612 				}
7613 				goto checks;
7614 			}
7615 
7616 			WARN_ON(last_ptr->block_group != used_block_group);
7617 release_cluster:
7618 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7619 			 * set up a new clusters, so lets just skip it
7620 			 * and let the allocator find whatever block
7621 			 * it can find.  If we reach this point, we
7622 			 * will have tried the cluster allocator
7623 			 * plenty of times and not have found
7624 			 * anything, so we are likely way too
7625 			 * fragmented for the clustering stuff to find
7626 			 * anything.
7627 			 *
7628 			 * However, if the cluster is taken from the
7629 			 * current block group, release the cluster
7630 			 * first, so that we stand a better chance of
7631 			 * succeeding in the unclustered
7632 			 * allocation.  */
7633 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7634 			    used_block_group != block_group) {
7635 				spin_unlock(&last_ptr->refill_lock);
7636 				btrfs_release_block_group(used_block_group,
7637 							  delalloc);
7638 				goto unclustered_alloc;
7639 			}
7640 
7641 			/*
7642 			 * this cluster didn't work out, free it and
7643 			 * start over
7644 			 */
7645 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7646 
7647 			if (used_block_group != block_group)
7648 				btrfs_release_block_group(used_block_group,
7649 							  delalloc);
7650 refill_cluster:
7651 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7652 				spin_unlock(&last_ptr->refill_lock);
7653 				goto unclustered_alloc;
7654 			}
7655 
7656 			aligned_cluster = max_t(unsigned long,
7657 						empty_cluster + empty_size,
7658 					      block_group->full_stripe_len);
7659 
7660 			/* allocate a cluster in this block group */
7661 			ret = btrfs_find_space_cluster(fs_info, block_group,
7662 						       last_ptr, search_start,
7663 						       num_bytes,
7664 						       aligned_cluster);
7665 			if (ret == 0) {
7666 				/*
7667 				 * now pull our allocation out of this
7668 				 * cluster
7669 				 */
7670 				offset = btrfs_alloc_from_cluster(block_group,
7671 							last_ptr,
7672 							num_bytes,
7673 							search_start,
7674 							&max_extent_size);
7675 				if (offset) {
7676 					/* we found one, proceed */
7677 					spin_unlock(&last_ptr->refill_lock);
7678 					trace_btrfs_reserve_extent_cluster(fs_info,
7679 						block_group, search_start,
7680 						num_bytes);
7681 					goto checks;
7682 				}
7683 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7684 				   && !failed_cluster_refill) {
7685 				spin_unlock(&last_ptr->refill_lock);
7686 
7687 				failed_cluster_refill = true;
7688 				wait_block_group_cache_progress(block_group,
7689 				       num_bytes + empty_cluster + empty_size);
7690 				goto have_block_group;
7691 			}
7692 
7693 			/*
7694 			 * at this point we either didn't find a cluster
7695 			 * or we weren't able to allocate a block from our
7696 			 * cluster.  Free the cluster we've been trying
7697 			 * to use, and go to the next block group
7698 			 */
7699 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7700 			spin_unlock(&last_ptr->refill_lock);
7701 			goto loop;
7702 		}
7703 
7704 unclustered_alloc:
7705 		/*
7706 		 * We are doing an unclustered alloc, set the fragmented flag so
7707 		 * we don't bother trying to setup a cluster again until we get
7708 		 * more space.
7709 		 */
7710 		if (unlikely(last_ptr)) {
7711 			spin_lock(&last_ptr->lock);
7712 			last_ptr->fragmented = 1;
7713 			spin_unlock(&last_ptr->lock);
7714 		}
7715 		if (cached) {
7716 			struct btrfs_free_space_ctl *ctl =
7717 				block_group->free_space_ctl;
7718 
7719 			spin_lock(&ctl->tree_lock);
7720 			if (ctl->free_space <
7721 			    num_bytes + empty_cluster + empty_size) {
7722 				if (ctl->free_space > max_extent_size)
7723 					max_extent_size = ctl->free_space;
7724 				spin_unlock(&ctl->tree_lock);
7725 				goto loop;
7726 			}
7727 			spin_unlock(&ctl->tree_lock);
7728 		}
7729 
7730 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7731 						    num_bytes, empty_size,
7732 						    &max_extent_size);
7733 		/*
7734 		 * If we didn't find a chunk, and we haven't failed on this
7735 		 * block group before, and this block group is in the middle of
7736 		 * caching and we are ok with waiting, then go ahead and wait
7737 		 * for progress to be made, and set failed_alloc to true.
7738 		 *
7739 		 * If failed_alloc is true then we've already waited on this
7740 		 * block group once and should move on to the next block group.
7741 		 */
7742 		if (!offset && !failed_alloc && !cached &&
7743 		    loop > LOOP_CACHING_NOWAIT) {
7744 			wait_block_group_cache_progress(block_group,
7745 						num_bytes + empty_size);
7746 			failed_alloc = true;
7747 			goto have_block_group;
7748 		} else if (!offset) {
7749 			goto loop;
7750 		}
7751 checks:
7752 		search_start = ALIGN(offset, fs_info->stripesize);
7753 
7754 		/* move on to the next group */
7755 		if (search_start + num_bytes >
7756 		    block_group->key.objectid + block_group->key.offset) {
7757 			btrfs_add_free_space(block_group, offset, num_bytes);
7758 			goto loop;
7759 		}
7760 
7761 		if (offset < search_start)
7762 			btrfs_add_free_space(block_group, offset,
7763 					     search_start - offset);
7764 		BUG_ON(offset > search_start);
7765 
7766 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7767 				num_bytes, delalloc);
7768 		if (ret == -EAGAIN) {
7769 			btrfs_add_free_space(block_group, offset, num_bytes);
7770 			goto loop;
7771 		}
7772 		btrfs_inc_block_group_reservations(block_group);
7773 
7774 		/* we are all good, lets return */
7775 		ins->objectid = search_start;
7776 		ins->offset = num_bytes;
7777 
7778 		trace_btrfs_reserve_extent(fs_info, block_group,
7779 					   search_start, num_bytes);
7780 		btrfs_release_block_group(block_group, delalloc);
7781 		break;
7782 loop:
7783 		failed_cluster_refill = false;
7784 		failed_alloc = false;
7785 		BUG_ON(index != get_block_group_index(block_group));
7786 		btrfs_release_block_group(block_group, delalloc);
7787 	}
7788 	up_read(&space_info->groups_sem);
7789 
7790 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791 		&& !orig_have_caching_bg)
7792 		orig_have_caching_bg = true;
7793 
7794 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795 		goto search;
7796 
7797 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798 		goto search;
7799 
7800 	/*
7801 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 	 *			caching kthreads as we move along
7803 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 	 *			again
7807 	 */
7808 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7809 		index = 0;
7810 		if (loop == LOOP_CACHING_NOWAIT) {
7811 			/*
7812 			 * We want to skip the LOOP_CACHING_WAIT step if we
7813 			 * don't have any uncached bgs and we've already done a
7814 			 * full search through.
7815 			 */
7816 			if (orig_have_caching_bg || !full_search)
7817 				loop = LOOP_CACHING_WAIT;
7818 			else
7819 				loop = LOOP_ALLOC_CHUNK;
7820 		} else {
7821 			loop++;
7822 		}
7823 
7824 		if (loop == LOOP_ALLOC_CHUNK) {
7825 			struct btrfs_trans_handle *trans;
7826 			int exist = 0;
7827 
7828 			trans = current->journal_info;
7829 			if (trans)
7830 				exist = 1;
7831 			else
7832 				trans = btrfs_join_transaction(root);
7833 
7834 			if (IS_ERR(trans)) {
7835 				ret = PTR_ERR(trans);
7836 				goto out;
7837 			}
7838 
7839 			ret = do_chunk_alloc(trans, fs_info, flags,
7840 					     CHUNK_ALLOC_FORCE);
7841 
7842 			/*
7843 			 * If we can't allocate a new chunk we've already looped
7844 			 * through at least once, move on to the NO_EMPTY_SIZE
7845 			 * case.
7846 			 */
7847 			if (ret == -ENOSPC)
7848 				loop = LOOP_NO_EMPTY_SIZE;
7849 
7850 			/*
7851 			 * Do not bail out on ENOSPC since we
7852 			 * can do more things.
7853 			 */
7854 			if (ret < 0 && ret != -ENOSPC)
7855 				btrfs_abort_transaction(trans, ret);
7856 			else
7857 				ret = 0;
7858 			if (!exist)
7859 				btrfs_end_transaction(trans);
7860 			if (ret)
7861 				goto out;
7862 		}
7863 
7864 		if (loop == LOOP_NO_EMPTY_SIZE) {
7865 			/*
7866 			 * Don't loop again if we already have no empty_size and
7867 			 * no empty_cluster.
7868 			 */
7869 			if (empty_size == 0 &&
7870 			    empty_cluster == 0) {
7871 				ret = -ENOSPC;
7872 				goto out;
7873 			}
7874 			empty_size = 0;
7875 			empty_cluster = 0;
7876 		}
7877 
7878 		goto search;
7879 	} else if (!ins->objectid) {
7880 		ret = -ENOSPC;
7881 	} else if (ins->objectid) {
7882 		if (!use_cluster && last_ptr) {
7883 			spin_lock(&last_ptr->lock);
7884 			last_ptr->window_start = ins->objectid;
7885 			spin_unlock(&last_ptr->lock);
7886 		}
7887 		ret = 0;
7888 	}
7889 out:
7890 	if (ret == -ENOSPC) {
7891 		spin_lock(&space_info->lock);
7892 		space_info->max_extent_size = max_extent_size;
7893 		spin_unlock(&space_info->lock);
7894 		ins->offset = max_extent_size;
7895 	}
7896 	return ret;
7897 }
7898 
7899 static void dump_space_info(struct btrfs_fs_info *fs_info,
7900 			    struct btrfs_space_info *info, u64 bytes,
7901 			    int dump_block_groups)
7902 {
7903 	struct btrfs_block_group_cache *cache;
7904 	int index = 0;
7905 
7906 	spin_lock(&info->lock);
7907 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7908 		   info->flags,
7909 		   info->total_bytes - btrfs_space_info_used(info, true),
7910 		   info->full ? "" : "not ");
7911 	btrfs_info(fs_info,
7912 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7913 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7914 		info->bytes_reserved, info->bytes_may_use,
7915 		info->bytes_readonly);
7916 	spin_unlock(&info->lock);
7917 
7918 	if (!dump_block_groups)
7919 		return;
7920 
7921 	down_read(&info->groups_sem);
7922 again:
7923 	list_for_each_entry(cache, &info->block_groups[index], list) {
7924 		spin_lock(&cache->lock);
7925 		btrfs_info(fs_info,
7926 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7927 			cache->key.objectid, cache->key.offset,
7928 			btrfs_block_group_used(&cache->item), cache->pinned,
7929 			cache->reserved, cache->ro ? "[readonly]" : "");
7930 		btrfs_dump_free_space(cache, bytes);
7931 		spin_unlock(&cache->lock);
7932 	}
7933 	if (++index < BTRFS_NR_RAID_TYPES)
7934 		goto again;
7935 	up_read(&info->groups_sem);
7936 }
7937 
7938 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7939 			 u64 num_bytes, u64 min_alloc_size,
7940 			 u64 empty_size, u64 hint_byte,
7941 			 struct btrfs_key *ins, int is_data, int delalloc)
7942 {
7943 	struct btrfs_fs_info *fs_info = root->fs_info;
7944 	bool final_tried = num_bytes == min_alloc_size;
7945 	u64 flags;
7946 	int ret;
7947 
7948 	flags = btrfs_get_alloc_profile(root, is_data);
7949 again:
7950 	WARN_ON(num_bytes < fs_info->sectorsize);
7951 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7952 			       hint_byte, ins, flags, delalloc);
7953 	if (!ret && !is_data) {
7954 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7955 	} else if (ret == -ENOSPC) {
7956 		if (!final_tried && ins->offset) {
7957 			num_bytes = min(num_bytes >> 1, ins->offset);
7958 			num_bytes = round_down(num_bytes,
7959 					       fs_info->sectorsize);
7960 			num_bytes = max(num_bytes, min_alloc_size);
7961 			ram_bytes = num_bytes;
7962 			if (num_bytes == min_alloc_size)
7963 				final_tried = true;
7964 			goto again;
7965 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7966 			struct btrfs_space_info *sinfo;
7967 
7968 			sinfo = __find_space_info(fs_info, flags);
7969 			btrfs_err(fs_info,
7970 				  "allocation failed flags %llu, wanted %llu",
7971 				  flags, num_bytes);
7972 			if (sinfo)
7973 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7974 		}
7975 	}
7976 
7977 	return ret;
7978 }
7979 
7980 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7981 					u64 start, u64 len,
7982 					int pin, int delalloc)
7983 {
7984 	struct btrfs_block_group_cache *cache;
7985 	int ret = 0;
7986 
7987 	cache = btrfs_lookup_block_group(fs_info, start);
7988 	if (!cache) {
7989 		btrfs_err(fs_info, "Unable to find block group for %llu",
7990 			  start);
7991 		return -ENOSPC;
7992 	}
7993 
7994 	if (pin)
7995 		pin_down_extent(fs_info, cache, start, len, 1);
7996 	else {
7997 		if (btrfs_test_opt(fs_info, DISCARD))
7998 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
7999 		btrfs_add_free_space(cache, start, len);
8000 		btrfs_free_reserved_bytes(cache, len, delalloc);
8001 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8002 	}
8003 
8004 	btrfs_put_block_group(cache);
8005 	return ret;
8006 }
8007 
8008 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8009 			       u64 start, u64 len, int delalloc)
8010 {
8011 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8012 }
8013 
8014 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8015 				       u64 start, u64 len)
8016 {
8017 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8018 }
8019 
8020 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8021 				      struct btrfs_fs_info *fs_info,
8022 				      u64 parent, u64 root_objectid,
8023 				      u64 flags, u64 owner, u64 offset,
8024 				      struct btrfs_key *ins, int ref_mod)
8025 {
8026 	int ret;
8027 	struct btrfs_extent_item *extent_item;
8028 	struct btrfs_extent_inline_ref *iref;
8029 	struct btrfs_path *path;
8030 	struct extent_buffer *leaf;
8031 	int type;
8032 	u32 size;
8033 
8034 	if (parent > 0)
8035 		type = BTRFS_SHARED_DATA_REF_KEY;
8036 	else
8037 		type = BTRFS_EXTENT_DATA_REF_KEY;
8038 
8039 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8040 
8041 	path = btrfs_alloc_path();
8042 	if (!path)
8043 		return -ENOMEM;
8044 
8045 	path->leave_spinning = 1;
8046 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8047 				      ins, size);
8048 	if (ret) {
8049 		btrfs_free_path(path);
8050 		return ret;
8051 	}
8052 
8053 	leaf = path->nodes[0];
8054 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8055 				     struct btrfs_extent_item);
8056 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8057 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8058 	btrfs_set_extent_flags(leaf, extent_item,
8059 			       flags | BTRFS_EXTENT_FLAG_DATA);
8060 
8061 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8062 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8063 	if (parent > 0) {
8064 		struct btrfs_shared_data_ref *ref;
8065 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8066 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8067 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8068 	} else {
8069 		struct btrfs_extent_data_ref *ref;
8070 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8071 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8072 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8073 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8074 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8075 	}
8076 
8077 	btrfs_mark_buffer_dirty(path->nodes[0]);
8078 	btrfs_free_path(path);
8079 
8080 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8081 					  ins->offset);
8082 	if (ret)
8083 		return ret;
8084 
8085 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8086 	if (ret) { /* -ENOENT, logic error */
8087 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8088 			ins->objectid, ins->offset);
8089 		BUG();
8090 	}
8091 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8092 	return ret;
8093 }
8094 
8095 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8096 				     struct btrfs_fs_info *fs_info,
8097 				     u64 parent, u64 root_objectid,
8098 				     u64 flags, struct btrfs_disk_key *key,
8099 				     int level, struct btrfs_key *ins)
8100 {
8101 	int ret;
8102 	struct btrfs_extent_item *extent_item;
8103 	struct btrfs_tree_block_info *block_info;
8104 	struct btrfs_extent_inline_ref *iref;
8105 	struct btrfs_path *path;
8106 	struct extent_buffer *leaf;
8107 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8108 	u64 num_bytes = ins->offset;
8109 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8110 
8111 	if (!skinny_metadata)
8112 		size += sizeof(*block_info);
8113 
8114 	path = btrfs_alloc_path();
8115 	if (!path) {
8116 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8117 						   fs_info->nodesize);
8118 		return -ENOMEM;
8119 	}
8120 
8121 	path->leave_spinning = 1;
8122 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8123 				      ins, size);
8124 	if (ret) {
8125 		btrfs_free_path(path);
8126 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8127 						   fs_info->nodesize);
8128 		return ret;
8129 	}
8130 
8131 	leaf = path->nodes[0];
8132 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8133 				     struct btrfs_extent_item);
8134 	btrfs_set_extent_refs(leaf, extent_item, 1);
8135 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8136 	btrfs_set_extent_flags(leaf, extent_item,
8137 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8138 
8139 	if (skinny_metadata) {
8140 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8141 		num_bytes = fs_info->nodesize;
8142 	} else {
8143 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8144 		btrfs_set_tree_block_key(leaf, block_info, key);
8145 		btrfs_set_tree_block_level(leaf, block_info, level);
8146 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8147 	}
8148 
8149 	if (parent > 0) {
8150 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8151 		btrfs_set_extent_inline_ref_type(leaf, iref,
8152 						 BTRFS_SHARED_BLOCK_REF_KEY);
8153 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8154 	} else {
8155 		btrfs_set_extent_inline_ref_type(leaf, iref,
8156 						 BTRFS_TREE_BLOCK_REF_KEY);
8157 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8158 	}
8159 
8160 	btrfs_mark_buffer_dirty(leaf);
8161 	btrfs_free_path(path);
8162 
8163 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8164 					  num_bytes);
8165 	if (ret)
8166 		return ret;
8167 
8168 	ret = update_block_group(trans, fs_info, ins->objectid,
8169 				 fs_info->nodesize, 1);
8170 	if (ret) { /* -ENOENT, logic error */
8171 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8172 			ins->objectid, ins->offset);
8173 		BUG();
8174 	}
8175 
8176 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8177 					  fs_info->nodesize);
8178 	return ret;
8179 }
8180 
8181 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8182 				     u64 root_objectid, u64 owner,
8183 				     u64 offset, u64 ram_bytes,
8184 				     struct btrfs_key *ins)
8185 {
8186 	struct btrfs_fs_info *fs_info = trans->fs_info;
8187 	int ret;
8188 
8189 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190 
8191 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8192 					 ins->offset, 0,
8193 					 root_objectid, owner, offset,
8194 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8195 	return ret;
8196 }
8197 
8198 /*
8199  * this is used by the tree logging recovery code.  It records that
8200  * an extent has been allocated and makes sure to clear the free
8201  * space cache bits as well
8202  */
8203 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8204 				   struct btrfs_fs_info *fs_info,
8205 				   u64 root_objectid, u64 owner, u64 offset,
8206 				   struct btrfs_key *ins)
8207 {
8208 	int ret;
8209 	struct btrfs_block_group_cache *block_group;
8210 	struct btrfs_space_info *space_info;
8211 
8212 	/*
8213 	 * Mixed block groups will exclude before processing the log so we only
8214 	 * need to do the exclude dance if this fs isn't mixed.
8215 	 */
8216 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8217 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8218 					      ins->offset);
8219 		if (ret)
8220 			return ret;
8221 	}
8222 
8223 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8224 	if (!block_group)
8225 		return -EINVAL;
8226 
8227 	space_info = block_group->space_info;
8228 	spin_lock(&space_info->lock);
8229 	spin_lock(&block_group->lock);
8230 	space_info->bytes_reserved += ins->offset;
8231 	block_group->reserved += ins->offset;
8232 	spin_unlock(&block_group->lock);
8233 	spin_unlock(&space_info->lock);
8234 
8235 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8236 					 0, owner, offset, ins, 1);
8237 	btrfs_put_block_group(block_group);
8238 	return ret;
8239 }
8240 
8241 static struct extent_buffer *
8242 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8243 		      u64 bytenr, int level)
8244 {
8245 	struct btrfs_fs_info *fs_info = root->fs_info;
8246 	struct extent_buffer *buf;
8247 
8248 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8249 	if (IS_ERR(buf))
8250 		return buf;
8251 
8252 	btrfs_set_header_generation(buf, trans->transid);
8253 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8254 	btrfs_tree_lock(buf);
8255 	clean_tree_block(fs_info, buf);
8256 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8257 
8258 	btrfs_set_lock_blocking(buf);
8259 	set_extent_buffer_uptodate(buf);
8260 
8261 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8262 		buf->log_index = root->log_transid % 2;
8263 		/*
8264 		 * we allow two log transactions at a time, use different
8265 		 * EXENT bit to differentiate dirty pages.
8266 		 */
8267 		if (buf->log_index == 0)
8268 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8269 					buf->start + buf->len - 1, GFP_NOFS);
8270 		else
8271 			set_extent_new(&root->dirty_log_pages, buf->start,
8272 					buf->start + buf->len - 1);
8273 	} else {
8274 		buf->log_index = -1;
8275 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8276 			 buf->start + buf->len - 1, GFP_NOFS);
8277 	}
8278 	trans->dirty = true;
8279 	/* this returns a buffer locked for blocking */
8280 	return buf;
8281 }
8282 
8283 static struct btrfs_block_rsv *
8284 use_block_rsv(struct btrfs_trans_handle *trans,
8285 	      struct btrfs_root *root, u32 blocksize)
8286 {
8287 	struct btrfs_fs_info *fs_info = root->fs_info;
8288 	struct btrfs_block_rsv *block_rsv;
8289 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8290 	int ret;
8291 	bool global_updated = false;
8292 
8293 	block_rsv = get_block_rsv(trans, root);
8294 
8295 	if (unlikely(block_rsv->size == 0))
8296 		goto try_reserve;
8297 again:
8298 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8299 	if (!ret)
8300 		return block_rsv;
8301 
8302 	if (block_rsv->failfast)
8303 		return ERR_PTR(ret);
8304 
8305 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306 		global_updated = true;
8307 		update_global_block_rsv(fs_info);
8308 		goto again;
8309 	}
8310 
8311 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8312 		static DEFINE_RATELIMIT_STATE(_rs,
8313 				DEFAULT_RATELIMIT_INTERVAL * 10,
8314 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8315 		if (__ratelimit(&_rs))
8316 			WARN(1, KERN_DEBUG
8317 				"BTRFS: block rsv returned %d\n", ret);
8318 	}
8319 try_reserve:
8320 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321 				     BTRFS_RESERVE_NO_FLUSH);
8322 	if (!ret)
8323 		return block_rsv;
8324 	/*
8325 	 * If we couldn't reserve metadata bytes try and use some from
8326 	 * the global reserve if its space type is the same as the global
8327 	 * reservation.
8328 	 */
8329 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330 	    block_rsv->space_info == global_rsv->space_info) {
8331 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8332 		if (!ret)
8333 			return global_rsv;
8334 	}
8335 	return ERR_PTR(ret);
8336 }
8337 
8338 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8340 {
8341 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8342 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8343 }
8344 
8345 /*
8346  * finds a free extent and does all the dirty work required for allocation
8347  * returns the tree buffer or an ERR_PTR on error.
8348  */
8349 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8350 					     struct btrfs_root *root,
8351 					     u64 parent, u64 root_objectid,
8352 					     const struct btrfs_disk_key *key,
8353 					     int level, u64 hint,
8354 					     u64 empty_size)
8355 {
8356 	struct btrfs_fs_info *fs_info = root->fs_info;
8357 	struct btrfs_key ins;
8358 	struct btrfs_block_rsv *block_rsv;
8359 	struct extent_buffer *buf;
8360 	struct btrfs_delayed_extent_op *extent_op;
8361 	u64 flags = 0;
8362 	int ret;
8363 	u32 blocksize = fs_info->nodesize;
8364 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8365 
8366 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8367 	if (btrfs_is_testing(fs_info)) {
8368 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8369 					    level);
8370 		if (!IS_ERR(buf))
8371 			root->alloc_bytenr += blocksize;
8372 		return buf;
8373 	}
8374 #endif
8375 
8376 	block_rsv = use_block_rsv(trans, root, blocksize);
8377 	if (IS_ERR(block_rsv))
8378 		return ERR_CAST(block_rsv);
8379 
8380 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8381 				   empty_size, hint, &ins, 0, 0);
8382 	if (ret)
8383 		goto out_unuse;
8384 
8385 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8386 	if (IS_ERR(buf)) {
8387 		ret = PTR_ERR(buf);
8388 		goto out_free_reserved;
8389 	}
8390 
8391 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8392 		if (parent == 0)
8393 			parent = ins.objectid;
8394 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8395 	} else
8396 		BUG_ON(parent > 0);
8397 
8398 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8399 		extent_op = btrfs_alloc_delayed_extent_op();
8400 		if (!extent_op) {
8401 			ret = -ENOMEM;
8402 			goto out_free_buf;
8403 		}
8404 		if (key)
8405 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8406 		else
8407 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8408 		extent_op->flags_to_set = flags;
8409 		extent_op->update_key = skinny_metadata ? false : true;
8410 		extent_op->update_flags = true;
8411 		extent_op->is_data = false;
8412 		extent_op->level = level;
8413 
8414 		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8415 						 ins.objectid, ins.offset,
8416 						 parent, root_objectid, level,
8417 						 BTRFS_ADD_DELAYED_EXTENT,
8418 						 extent_op);
8419 		if (ret)
8420 			goto out_free_delayed;
8421 	}
8422 	return buf;
8423 
8424 out_free_delayed:
8425 	btrfs_free_delayed_extent_op(extent_op);
8426 out_free_buf:
8427 	free_extent_buffer(buf);
8428 out_free_reserved:
8429 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8430 out_unuse:
8431 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8432 	return ERR_PTR(ret);
8433 }
8434 
8435 struct walk_control {
8436 	u64 refs[BTRFS_MAX_LEVEL];
8437 	u64 flags[BTRFS_MAX_LEVEL];
8438 	struct btrfs_key update_progress;
8439 	int stage;
8440 	int level;
8441 	int shared_level;
8442 	int update_ref;
8443 	int keep_locks;
8444 	int reada_slot;
8445 	int reada_count;
8446 	int for_reloc;
8447 };
8448 
8449 #define DROP_REFERENCE	1
8450 #define UPDATE_BACKREF	2
8451 
8452 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8453 				     struct btrfs_root *root,
8454 				     struct walk_control *wc,
8455 				     struct btrfs_path *path)
8456 {
8457 	struct btrfs_fs_info *fs_info = root->fs_info;
8458 	u64 bytenr;
8459 	u64 generation;
8460 	u64 refs;
8461 	u64 flags;
8462 	u32 nritems;
8463 	struct btrfs_key key;
8464 	struct extent_buffer *eb;
8465 	int ret;
8466 	int slot;
8467 	int nread = 0;
8468 
8469 	if (path->slots[wc->level] < wc->reada_slot) {
8470 		wc->reada_count = wc->reada_count * 2 / 3;
8471 		wc->reada_count = max(wc->reada_count, 2);
8472 	} else {
8473 		wc->reada_count = wc->reada_count * 3 / 2;
8474 		wc->reada_count = min_t(int, wc->reada_count,
8475 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8476 	}
8477 
8478 	eb = path->nodes[wc->level];
8479 	nritems = btrfs_header_nritems(eb);
8480 
8481 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482 		if (nread >= wc->reada_count)
8483 			break;
8484 
8485 		cond_resched();
8486 		bytenr = btrfs_node_blockptr(eb, slot);
8487 		generation = btrfs_node_ptr_generation(eb, slot);
8488 
8489 		if (slot == path->slots[wc->level])
8490 			goto reada;
8491 
8492 		if (wc->stage == UPDATE_BACKREF &&
8493 		    generation <= root->root_key.offset)
8494 			continue;
8495 
8496 		/* We don't lock the tree block, it's OK to be racy here */
8497 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8498 					       wc->level - 1, 1, &refs,
8499 					       &flags);
8500 		/* We don't care about errors in readahead. */
8501 		if (ret < 0)
8502 			continue;
8503 		BUG_ON(refs == 0);
8504 
8505 		if (wc->stage == DROP_REFERENCE) {
8506 			if (refs == 1)
8507 				goto reada;
8508 
8509 			if (wc->level == 1 &&
8510 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511 				continue;
8512 			if (!wc->update_ref ||
8513 			    generation <= root->root_key.offset)
8514 				continue;
8515 			btrfs_node_key_to_cpu(eb, &key, slot);
8516 			ret = btrfs_comp_cpu_keys(&key,
8517 						  &wc->update_progress);
8518 			if (ret < 0)
8519 				continue;
8520 		} else {
8521 			if (wc->level == 1 &&
8522 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 				continue;
8524 		}
8525 reada:
8526 		readahead_tree_block(fs_info, bytenr);
8527 		nread++;
8528 	}
8529 	wc->reada_slot = slot;
8530 }
8531 
8532 /*
8533  * helper to process tree block while walking down the tree.
8534  *
8535  * when wc->stage == UPDATE_BACKREF, this function updates
8536  * back refs for pointers in the block.
8537  *
8538  * NOTE: return value 1 means we should stop walking down.
8539  */
8540 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8541 				   struct btrfs_root *root,
8542 				   struct btrfs_path *path,
8543 				   struct walk_control *wc, int lookup_info)
8544 {
8545 	struct btrfs_fs_info *fs_info = root->fs_info;
8546 	int level = wc->level;
8547 	struct extent_buffer *eb = path->nodes[level];
8548 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8549 	int ret;
8550 
8551 	if (wc->stage == UPDATE_BACKREF &&
8552 	    btrfs_header_owner(eb) != root->root_key.objectid)
8553 		return 1;
8554 
8555 	/*
8556 	 * when reference count of tree block is 1, it won't increase
8557 	 * again. once full backref flag is set, we never clear it.
8558 	 */
8559 	if (lookup_info &&
8560 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8561 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8562 		BUG_ON(!path->locks[level]);
8563 		ret = btrfs_lookup_extent_info(trans, fs_info,
8564 					       eb->start, level, 1,
8565 					       &wc->refs[level],
8566 					       &wc->flags[level]);
8567 		BUG_ON(ret == -ENOMEM);
8568 		if (ret)
8569 			return ret;
8570 		BUG_ON(wc->refs[level] == 0);
8571 	}
8572 
8573 	if (wc->stage == DROP_REFERENCE) {
8574 		if (wc->refs[level] > 1)
8575 			return 1;
8576 
8577 		if (path->locks[level] && !wc->keep_locks) {
8578 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8579 			path->locks[level] = 0;
8580 		}
8581 		return 0;
8582 	}
8583 
8584 	/* wc->stage == UPDATE_BACKREF */
8585 	if (!(wc->flags[level] & flag)) {
8586 		BUG_ON(!path->locks[level]);
8587 		ret = btrfs_inc_ref(trans, root, eb, 1);
8588 		BUG_ON(ret); /* -ENOMEM */
8589 		ret = btrfs_dec_ref(trans, root, eb, 0);
8590 		BUG_ON(ret); /* -ENOMEM */
8591 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8592 						  eb->len, flag,
8593 						  btrfs_header_level(eb), 0);
8594 		BUG_ON(ret); /* -ENOMEM */
8595 		wc->flags[level] |= flag;
8596 	}
8597 
8598 	/*
8599 	 * the block is shared by multiple trees, so it's not good to
8600 	 * keep the tree lock
8601 	 */
8602 	if (path->locks[level] && level > 0) {
8603 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8604 		path->locks[level] = 0;
8605 	}
8606 	return 0;
8607 }
8608 
8609 /*
8610  * helper to process tree block pointer.
8611  *
8612  * when wc->stage == DROP_REFERENCE, this function checks
8613  * reference count of the block pointed to. if the block
8614  * is shared and we need update back refs for the subtree
8615  * rooted at the block, this function changes wc->stage to
8616  * UPDATE_BACKREF. if the block is shared and there is no
8617  * need to update back, this function drops the reference
8618  * to the block.
8619  *
8620  * NOTE: return value 1 means we should stop walking down.
8621  */
8622 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8623 				 struct btrfs_root *root,
8624 				 struct btrfs_path *path,
8625 				 struct walk_control *wc, int *lookup_info)
8626 {
8627 	struct btrfs_fs_info *fs_info = root->fs_info;
8628 	u64 bytenr;
8629 	u64 generation;
8630 	u64 parent;
8631 	u32 blocksize;
8632 	struct btrfs_key key;
8633 	struct extent_buffer *next;
8634 	int level = wc->level;
8635 	int reada = 0;
8636 	int ret = 0;
8637 	bool need_account = false;
8638 
8639 	generation = btrfs_node_ptr_generation(path->nodes[level],
8640 					       path->slots[level]);
8641 	/*
8642 	 * if the lower level block was created before the snapshot
8643 	 * was created, we know there is no need to update back refs
8644 	 * for the subtree
8645 	 */
8646 	if (wc->stage == UPDATE_BACKREF &&
8647 	    generation <= root->root_key.offset) {
8648 		*lookup_info = 1;
8649 		return 1;
8650 	}
8651 
8652 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8653 	blocksize = fs_info->nodesize;
8654 
8655 	next = find_extent_buffer(fs_info, bytenr);
8656 	if (!next) {
8657 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8658 		if (IS_ERR(next))
8659 			return PTR_ERR(next);
8660 
8661 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8662 					       level - 1);
8663 		reada = 1;
8664 	}
8665 	btrfs_tree_lock(next);
8666 	btrfs_set_lock_blocking(next);
8667 
8668 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8669 				       &wc->refs[level - 1],
8670 				       &wc->flags[level - 1]);
8671 	if (ret < 0)
8672 		goto out_unlock;
8673 
8674 	if (unlikely(wc->refs[level - 1] == 0)) {
8675 		btrfs_err(fs_info, "Missing references.");
8676 		ret = -EIO;
8677 		goto out_unlock;
8678 	}
8679 	*lookup_info = 0;
8680 
8681 	if (wc->stage == DROP_REFERENCE) {
8682 		if (wc->refs[level - 1] > 1) {
8683 			need_account = true;
8684 			if (level == 1 &&
8685 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8686 				goto skip;
8687 
8688 			if (!wc->update_ref ||
8689 			    generation <= root->root_key.offset)
8690 				goto skip;
8691 
8692 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8693 					      path->slots[level]);
8694 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8695 			if (ret < 0)
8696 				goto skip;
8697 
8698 			wc->stage = UPDATE_BACKREF;
8699 			wc->shared_level = level - 1;
8700 		}
8701 	} else {
8702 		if (level == 1 &&
8703 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8704 			goto skip;
8705 	}
8706 
8707 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8708 		btrfs_tree_unlock(next);
8709 		free_extent_buffer(next);
8710 		next = NULL;
8711 		*lookup_info = 1;
8712 	}
8713 
8714 	if (!next) {
8715 		if (reada && level == 1)
8716 			reada_walk_down(trans, root, wc, path);
8717 		next = read_tree_block(fs_info, bytenr, generation);
8718 		if (IS_ERR(next)) {
8719 			return PTR_ERR(next);
8720 		} else if (!extent_buffer_uptodate(next)) {
8721 			free_extent_buffer(next);
8722 			return -EIO;
8723 		}
8724 		btrfs_tree_lock(next);
8725 		btrfs_set_lock_blocking(next);
8726 	}
8727 
8728 	level--;
8729 	ASSERT(level == btrfs_header_level(next));
8730 	if (level != btrfs_header_level(next)) {
8731 		btrfs_err(root->fs_info, "mismatched level");
8732 		ret = -EIO;
8733 		goto out_unlock;
8734 	}
8735 	path->nodes[level] = next;
8736 	path->slots[level] = 0;
8737 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8738 	wc->level = level;
8739 	if (wc->level == 1)
8740 		wc->reada_slot = 0;
8741 	return 0;
8742 skip:
8743 	wc->refs[level - 1] = 0;
8744 	wc->flags[level - 1] = 0;
8745 	if (wc->stage == DROP_REFERENCE) {
8746 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8747 			parent = path->nodes[level]->start;
8748 		} else {
8749 			ASSERT(root->root_key.objectid ==
8750 			       btrfs_header_owner(path->nodes[level]));
8751 			if (root->root_key.objectid !=
8752 			    btrfs_header_owner(path->nodes[level])) {
8753 				btrfs_err(root->fs_info,
8754 						"mismatched block owner");
8755 				ret = -EIO;
8756 				goto out_unlock;
8757 			}
8758 			parent = 0;
8759 		}
8760 
8761 		if (need_account) {
8762 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8763 							 generation, level - 1);
8764 			if (ret) {
8765 				btrfs_err_rl(fs_info,
8766 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8767 					     ret);
8768 			}
8769 		}
8770 		ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8771 					parent, root->root_key.objectid,
8772 					level - 1, 0);
8773 		if (ret)
8774 			goto out_unlock;
8775 	}
8776 
8777 	*lookup_info = 1;
8778 	ret = 1;
8779 
8780 out_unlock:
8781 	btrfs_tree_unlock(next);
8782 	free_extent_buffer(next);
8783 
8784 	return ret;
8785 }
8786 
8787 /*
8788  * helper to process tree block while walking up the tree.
8789  *
8790  * when wc->stage == DROP_REFERENCE, this function drops
8791  * reference count on the block.
8792  *
8793  * when wc->stage == UPDATE_BACKREF, this function changes
8794  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795  * to UPDATE_BACKREF previously while processing the block.
8796  *
8797  * NOTE: return value 1 means we should stop walking up.
8798  */
8799 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800 				 struct btrfs_root *root,
8801 				 struct btrfs_path *path,
8802 				 struct walk_control *wc)
8803 {
8804 	struct btrfs_fs_info *fs_info = root->fs_info;
8805 	int ret;
8806 	int level = wc->level;
8807 	struct extent_buffer *eb = path->nodes[level];
8808 	u64 parent = 0;
8809 
8810 	if (wc->stage == UPDATE_BACKREF) {
8811 		BUG_ON(wc->shared_level < level);
8812 		if (level < wc->shared_level)
8813 			goto out;
8814 
8815 		ret = find_next_key(path, level + 1, &wc->update_progress);
8816 		if (ret > 0)
8817 			wc->update_ref = 0;
8818 
8819 		wc->stage = DROP_REFERENCE;
8820 		wc->shared_level = -1;
8821 		path->slots[level] = 0;
8822 
8823 		/*
8824 		 * check reference count again if the block isn't locked.
8825 		 * we should start walking down the tree again if reference
8826 		 * count is one.
8827 		 */
8828 		if (!path->locks[level]) {
8829 			BUG_ON(level == 0);
8830 			btrfs_tree_lock(eb);
8831 			btrfs_set_lock_blocking(eb);
8832 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8833 
8834 			ret = btrfs_lookup_extent_info(trans, fs_info,
8835 						       eb->start, level, 1,
8836 						       &wc->refs[level],
8837 						       &wc->flags[level]);
8838 			if (ret < 0) {
8839 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8840 				path->locks[level] = 0;
8841 				return ret;
8842 			}
8843 			BUG_ON(wc->refs[level] == 0);
8844 			if (wc->refs[level] == 1) {
8845 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8846 				path->locks[level] = 0;
8847 				return 1;
8848 			}
8849 		}
8850 	}
8851 
8852 	/* wc->stage == DROP_REFERENCE */
8853 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8854 
8855 	if (wc->refs[level] == 1) {
8856 		if (level == 0) {
8857 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8858 				ret = btrfs_dec_ref(trans, root, eb, 1);
8859 			else
8860 				ret = btrfs_dec_ref(trans, root, eb, 0);
8861 			BUG_ON(ret); /* -ENOMEM */
8862 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8863 			if (ret) {
8864 				btrfs_err_rl(fs_info,
8865 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8866 					     ret);
8867 			}
8868 		}
8869 		/* make block locked assertion in clean_tree_block happy */
8870 		if (!path->locks[level] &&
8871 		    btrfs_header_generation(eb) == trans->transid) {
8872 			btrfs_tree_lock(eb);
8873 			btrfs_set_lock_blocking(eb);
8874 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8875 		}
8876 		clean_tree_block(fs_info, eb);
8877 	}
8878 
8879 	if (eb == root->node) {
8880 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8881 			parent = eb->start;
8882 		else
8883 			BUG_ON(root->root_key.objectid !=
8884 			       btrfs_header_owner(eb));
8885 	} else {
8886 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8887 			parent = path->nodes[level + 1]->start;
8888 		else
8889 			BUG_ON(root->root_key.objectid !=
8890 			       btrfs_header_owner(path->nodes[level + 1]));
8891 	}
8892 
8893 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8894 out:
8895 	wc->refs[level] = 0;
8896 	wc->flags[level] = 0;
8897 	return 0;
8898 }
8899 
8900 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8901 				   struct btrfs_root *root,
8902 				   struct btrfs_path *path,
8903 				   struct walk_control *wc)
8904 {
8905 	int level = wc->level;
8906 	int lookup_info = 1;
8907 	int ret;
8908 
8909 	while (level >= 0) {
8910 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8911 		if (ret > 0)
8912 			break;
8913 
8914 		if (level == 0)
8915 			break;
8916 
8917 		if (path->slots[level] >=
8918 		    btrfs_header_nritems(path->nodes[level]))
8919 			break;
8920 
8921 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8922 		if (ret > 0) {
8923 			path->slots[level]++;
8924 			continue;
8925 		} else if (ret < 0)
8926 			return ret;
8927 		level = wc->level;
8928 	}
8929 	return 0;
8930 }
8931 
8932 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8933 				 struct btrfs_root *root,
8934 				 struct btrfs_path *path,
8935 				 struct walk_control *wc, int max_level)
8936 {
8937 	int level = wc->level;
8938 	int ret;
8939 
8940 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8941 	while (level < max_level && path->nodes[level]) {
8942 		wc->level = level;
8943 		if (path->slots[level] + 1 <
8944 		    btrfs_header_nritems(path->nodes[level])) {
8945 			path->slots[level]++;
8946 			return 0;
8947 		} else {
8948 			ret = walk_up_proc(trans, root, path, wc);
8949 			if (ret > 0)
8950 				return 0;
8951 
8952 			if (path->locks[level]) {
8953 				btrfs_tree_unlock_rw(path->nodes[level],
8954 						     path->locks[level]);
8955 				path->locks[level] = 0;
8956 			}
8957 			free_extent_buffer(path->nodes[level]);
8958 			path->nodes[level] = NULL;
8959 			level++;
8960 		}
8961 	}
8962 	return 1;
8963 }
8964 
8965 /*
8966  * drop a subvolume tree.
8967  *
8968  * this function traverses the tree freeing any blocks that only
8969  * referenced by the tree.
8970  *
8971  * when a shared tree block is found. this function decreases its
8972  * reference count by one. if update_ref is true, this function
8973  * also make sure backrefs for the shared block and all lower level
8974  * blocks are properly updated.
8975  *
8976  * If called with for_reloc == 0, may exit early with -EAGAIN
8977  */
8978 int btrfs_drop_snapshot(struct btrfs_root *root,
8979 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8980 			 int for_reloc)
8981 {
8982 	struct btrfs_fs_info *fs_info = root->fs_info;
8983 	struct btrfs_path *path;
8984 	struct btrfs_trans_handle *trans;
8985 	struct btrfs_root *tree_root = fs_info->tree_root;
8986 	struct btrfs_root_item *root_item = &root->root_item;
8987 	struct walk_control *wc;
8988 	struct btrfs_key key;
8989 	int err = 0;
8990 	int ret;
8991 	int level;
8992 	bool root_dropped = false;
8993 
8994 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8995 
8996 	path = btrfs_alloc_path();
8997 	if (!path) {
8998 		err = -ENOMEM;
8999 		goto out;
9000 	}
9001 
9002 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9003 	if (!wc) {
9004 		btrfs_free_path(path);
9005 		err = -ENOMEM;
9006 		goto out;
9007 	}
9008 
9009 	trans = btrfs_start_transaction(tree_root, 0);
9010 	if (IS_ERR(trans)) {
9011 		err = PTR_ERR(trans);
9012 		goto out_free;
9013 	}
9014 
9015 	if (block_rsv)
9016 		trans->block_rsv = block_rsv;
9017 
9018 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9019 		level = btrfs_header_level(root->node);
9020 		path->nodes[level] = btrfs_lock_root_node(root);
9021 		btrfs_set_lock_blocking(path->nodes[level]);
9022 		path->slots[level] = 0;
9023 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9024 		memset(&wc->update_progress, 0,
9025 		       sizeof(wc->update_progress));
9026 	} else {
9027 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9028 		memcpy(&wc->update_progress, &key,
9029 		       sizeof(wc->update_progress));
9030 
9031 		level = root_item->drop_level;
9032 		BUG_ON(level == 0);
9033 		path->lowest_level = level;
9034 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035 		path->lowest_level = 0;
9036 		if (ret < 0) {
9037 			err = ret;
9038 			goto out_end_trans;
9039 		}
9040 		WARN_ON(ret > 0);
9041 
9042 		/*
9043 		 * unlock our path, this is safe because only this
9044 		 * function is allowed to delete this snapshot
9045 		 */
9046 		btrfs_unlock_up_safe(path, 0);
9047 
9048 		level = btrfs_header_level(root->node);
9049 		while (1) {
9050 			btrfs_tree_lock(path->nodes[level]);
9051 			btrfs_set_lock_blocking(path->nodes[level]);
9052 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053 
9054 			ret = btrfs_lookup_extent_info(trans, fs_info,
9055 						path->nodes[level]->start,
9056 						level, 1, &wc->refs[level],
9057 						&wc->flags[level]);
9058 			if (ret < 0) {
9059 				err = ret;
9060 				goto out_end_trans;
9061 			}
9062 			BUG_ON(wc->refs[level] == 0);
9063 
9064 			if (level == root_item->drop_level)
9065 				break;
9066 
9067 			btrfs_tree_unlock(path->nodes[level]);
9068 			path->locks[level] = 0;
9069 			WARN_ON(wc->refs[level] != 1);
9070 			level--;
9071 		}
9072 	}
9073 
9074 	wc->level = level;
9075 	wc->shared_level = -1;
9076 	wc->stage = DROP_REFERENCE;
9077 	wc->update_ref = update_ref;
9078 	wc->keep_locks = 0;
9079 	wc->for_reloc = for_reloc;
9080 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9081 
9082 	while (1) {
9083 
9084 		ret = walk_down_tree(trans, root, path, wc);
9085 		if (ret < 0) {
9086 			err = ret;
9087 			break;
9088 		}
9089 
9090 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091 		if (ret < 0) {
9092 			err = ret;
9093 			break;
9094 		}
9095 
9096 		if (ret > 0) {
9097 			BUG_ON(wc->stage != DROP_REFERENCE);
9098 			break;
9099 		}
9100 
9101 		if (wc->stage == DROP_REFERENCE) {
9102 			level = wc->level;
9103 			btrfs_node_key(path->nodes[level],
9104 				       &root_item->drop_progress,
9105 				       path->slots[level]);
9106 			root_item->drop_level = level;
9107 		}
9108 
9109 		BUG_ON(wc->level == 0);
9110 		if (btrfs_should_end_transaction(trans) ||
9111 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9112 			ret = btrfs_update_root(trans, tree_root,
9113 						&root->root_key,
9114 						root_item);
9115 			if (ret) {
9116 				btrfs_abort_transaction(trans, ret);
9117 				err = ret;
9118 				goto out_end_trans;
9119 			}
9120 
9121 			btrfs_end_transaction_throttle(trans);
9122 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9123 				btrfs_debug(fs_info,
9124 					    "drop snapshot early exit");
9125 				err = -EAGAIN;
9126 				goto out_free;
9127 			}
9128 
9129 			trans = btrfs_start_transaction(tree_root, 0);
9130 			if (IS_ERR(trans)) {
9131 				err = PTR_ERR(trans);
9132 				goto out_free;
9133 			}
9134 			if (block_rsv)
9135 				trans->block_rsv = block_rsv;
9136 		}
9137 	}
9138 	btrfs_release_path(path);
9139 	if (err)
9140 		goto out_end_trans;
9141 
9142 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9143 	if (ret) {
9144 		btrfs_abort_transaction(trans, ret);
9145 		goto out_end_trans;
9146 	}
9147 
9148 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9149 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9150 				      NULL, NULL);
9151 		if (ret < 0) {
9152 			btrfs_abort_transaction(trans, ret);
9153 			err = ret;
9154 			goto out_end_trans;
9155 		} else if (ret > 0) {
9156 			/* if we fail to delete the orphan item this time
9157 			 * around, it'll get picked up the next time.
9158 			 *
9159 			 * The most common failure here is just -ENOENT.
9160 			 */
9161 			btrfs_del_orphan_item(trans, tree_root,
9162 					      root->root_key.objectid);
9163 		}
9164 	}
9165 
9166 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9167 		btrfs_add_dropped_root(trans, root);
9168 	} else {
9169 		free_extent_buffer(root->node);
9170 		free_extent_buffer(root->commit_root);
9171 		btrfs_put_fs_root(root);
9172 	}
9173 	root_dropped = true;
9174 out_end_trans:
9175 	btrfs_end_transaction_throttle(trans);
9176 out_free:
9177 	kfree(wc);
9178 	btrfs_free_path(path);
9179 out:
9180 	/*
9181 	 * So if we need to stop dropping the snapshot for whatever reason we
9182 	 * need to make sure to add it back to the dead root list so that we
9183 	 * keep trying to do the work later.  This also cleans up roots if we
9184 	 * don't have it in the radix (like when we recover after a power fail
9185 	 * or unmount) so we don't leak memory.
9186 	 */
9187 	if (!for_reloc && root_dropped == false)
9188 		btrfs_add_dead_root(root);
9189 	if (err && err != -EAGAIN)
9190 		btrfs_handle_fs_error(fs_info, err, NULL);
9191 	return err;
9192 }
9193 
9194 /*
9195  * drop subtree rooted at tree block 'node'.
9196  *
9197  * NOTE: this function will unlock and release tree block 'node'
9198  * only used by relocation code
9199  */
9200 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9201 			struct btrfs_root *root,
9202 			struct extent_buffer *node,
9203 			struct extent_buffer *parent)
9204 {
9205 	struct btrfs_fs_info *fs_info = root->fs_info;
9206 	struct btrfs_path *path;
9207 	struct walk_control *wc;
9208 	int level;
9209 	int parent_level;
9210 	int ret = 0;
9211 	int wret;
9212 
9213 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9214 
9215 	path = btrfs_alloc_path();
9216 	if (!path)
9217 		return -ENOMEM;
9218 
9219 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9220 	if (!wc) {
9221 		btrfs_free_path(path);
9222 		return -ENOMEM;
9223 	}
9224 
9225 	btrfs_assert_tree_locked(parent);
9226 	parent_level = btrfs_header_level(parent);
9227 	extent_buffer_get(parent);
9228 	path->nodes[parent_level] = parent;
9229 	path->slots[parent_level] = btrfs_header_nritems(parent);
9230 
9231 	btrfs_assert_tree_locked(node);
9232 	level = btrfs_header_level(node);
9233 	path->nodes[level] = node;
9234 	path->slots[level] = 0;
9235 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9236 
9237 	wc->refs[parent_level] = 1;
9238 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9239 	wc->level = level;
9240 	wc->shared_level = -1;
9241 	wc->stage = DROP_REFERENCE;
9242 	wc->update_ref = 0;
9243 	wc->keep_locks = 1;
9244 	wc->for_reloc = 1;
9245 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9246 
9247 	while (1) {
9248 		wret = walk_down_tree(trans, root, path, wc);
9249 		if (wret < 0) {
9250 			ret = wret;
9251 			break;
9252 		}
9253 
9254 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9255 		if (wret < 0)
9256 			ret = wret;
9257 		if (wret != 0)
9258 			break;
9259 	}
9260 
9261 	kfree(wc);
9262 	btrfs_free_path(path);
9263 	return ret;
9264 }
9265 
9266 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9267 {
9268 	u64 num_devices;
9269 	u64 stripped;
9270 
9271 	/*
9272 	 * if restripe for this chunk_type is on pick target profile and
9273 	 * return, otherwise do the usual balance
9274 	 */
9275 	stripped = get_restripe_target(fs_info, flags);
9276 	if (stripped)
9277 		return extended_to_chunk(stripped);
9278 
9279 	num_devices = fs_info->fs_devices->rw_devices;
9280 
9281 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9282 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9283 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9284 
9285 	if (num_devices == 1) {
9286 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9287 		stripped = flags & ~stripped;
9288 
9289 		/* turn raid0 into single device chunks */
9290 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9291 			return stripped;
9292 
9293 		/* turn mirroring into duplication */
9294 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9295 			     BTRFS_BLOCK_GROUP_RAID10))
9296 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9297 	} else {
9298 		/* they already had raid on here, just return */
9299 		if (flags & stripped)
9300 			return flags;
9301 
9302 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9303 		stripped = flags & ~stripped;
9304 
9305 		/* switch duplicated blocks with raid1 */
9306 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9307 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9308 
9309 		/* this is drive concat, leave it alone */
9310 	}
9311 
9312 	return flags;
9313 }
9314 
9315 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9316 {
9317 	struct btrfs_space_info *sinfo = cache->space_info;
9318 	u64 num_bytes;
9319 	u64 min_allocable_bytes;
9320 	int ret = -ENOSPC;
9321 
9322 	/*
9323 	 * We need some metadata space and system metadata space for
9324 	 * allocating chunks in some corner cases until we force to set
9325 	 * it to be readonly.
9326 	 */
9327 	if ((sinfo->flags &
9328 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9329 	    !force)
9330 		min_allocable_bytes = SZ_1M;
9331 	else
9332 		min_allocable_bytes = 0;
9333 
9334 	spin_lock(&sinfo->lock);
9335 	spin_lock(&cache->lock);
9336 
9337 	if (cache->ro) {
9338 		cache->ro++;
9339 		ret = 0;
9340 		goto out;
9341 	}
9342 
9343 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9344 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9345 
9346 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9347 	    min_allocable_bytes <= sinfo->total_bytes) {
9348 		sinfo->bytes_readonly += num_bytes;
9349 		cache->ro++;
9350 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9351 		ret = 0;
9352 	}
9353 out:
9354 	spin_unlock(&cache->lock);
9355 	spin_unlock(&sinfo->lock);
9356 	return ret;
9357 }
9358 
9359 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9360 			     struct btrfs_block_group_cache *cache)
9361 
9362 {
9363 	struct btrfs_trans_handle *trans;
9364 	u64 alloc_flags;
9365 	int ret;
9366 
9367 again:
9368 	trans = btrfs_join_transaction(fs_info->extent_root);
9369 	if (IS_ERR(trans))
9370 		return PTR_ERR(trans);
9371 
9372 	/*
9373 	 * we're not allowed to set block groups readonly after the dirty
9374 	 * block groups cache has started writing.  If it already started,
9375 	 * back off and let this transaction commit
9376 	 */
9377 	mutex_lock(&fs_info->ro_block_group_mutex);
9378 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9379 		u64 transid = trans->transid;
9380 
9381 		mutex_unlock(&fs_info->ro_block_group_mutex);
9382 		btrfs_end_transaction(trans);
9383 
9384 		ret = btrfs_wait_for_commit(fs_info, transid);
9385 		if (ret)
9386 			return ret;
9387 		goto again;
9388 	}
9389 
9390 	/*
9391 	 * if we are changing raid levels, try to allocate a corresponding
9392 	 * block group with the new raid level.
9393 	 */
9394 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9395 	if (alloc_flags != cache->flags) {
9396 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9397 				     CHUNK_ALLOC_FORCE);
9398 		/*
9399 		 * ENOSPC is allowed here, we may have enough space
9400 		 * already allocated at the new raid level to
9401 		 * carry on
9402 		 */
9403 		if (ret == -ENOSPC)
9404 			ret = 0;
9405 		if (ret < 0)
9406 			goto out;
9407 	}
9408 
9409 	ret = inc_block_group_ro(cache, 0);
9410 	if (!ret)
9411 		goto out;
9412 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9413 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9414 			     CHUNK_ALLOC_FORCE);
9415 	if (ret < 0)
9416 		goto out;
9417 	ret = inc_block_group_ro(cache, 0);
9418 out:
9419 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9420 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9421 		mutex_lock(&fs_info->chunk_mutex);
9422 		check_system_chunk(trans, fs_info, alloc_flags);
9423 		mutex_unlock(&fs_info->chunk_mutex);
9424 	}
9425 	mutex_unlock(&fs_info->ro_block_group_mutex);
9426 
9427 	btrfs_end_transaction(trans);
9428 	return ret;
9429 }
9430 
9431 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9432 			    struct btrfs_fs_info *fs_info, u64 type)
9433 {
9434 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9435 
9436 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9437 }
9438 
9439 /*
9440  * helper to account the unused space of all the readonly block group in the
9441  * space_info. takes mirrors into account.
9442  */
9443 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9444 {
9445 	struct btrfs_block_group_cache *block_group;
9446 	u64 free_bytes = 0;
9447 	int factor;
9448 
9449 	/* It's df, we don't care if it's racy */
9450 	if (list_empty(&sinfo->ro_bgs))
9451 		return 0;
9452 
9453 	spin_lock(&sinfo->lock);
9454 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9455 		spin_lock(&block_group->lock);
9456 
9457 		if (!block_group->ro) {
9458 			spin_unlock(&block_group->lock);
9459 			continue;
9460 		}
9461 
9462 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9463 					  BTRFS_BLOCK_GROUP_RAID10 |
9464 					  BTRFS_BLOCK_GROUP_DUP))
9465 			factor = 2;
9466 		else
9467 			factor = 1;
9468 
9469 		free_bytes += (block_group->key.offset -
9470 			       btrfs_block_group_used(&block_group->item)) *
9471 			       factor;
9472 
9473 		spin_unlock(&block_group->lock);
9474 	}
9475 	spin_unlock(&sinfo->lock);
9476 
9477 	return free_bytes;
9478 }
9479 
9480 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9481 {
9482 	struct btrfs_space_info *sinfo = cache->space_info;
9483 	u64 num_bytes;
9484 
9485 	BUG_ON(!cache->ro);
9486 
9487 	spin_lock(&sinfo->lock);
9488 	spin_lock(&cache->lock);
9489 	if (!--cache->ro) {
9490 		num_bytes = cache->key.offset - cache->reserved -
9491 			    cache->pinned - cache->bytes_super -
9492 			    btrfs_block_group_used(&cache->item);
9493 		sinfo->bytes_readonly -= num_bytes;
9494 		list_del_init(&cache->ro_list);
9495 	}
9496 	spin_unlock(&cache->lock);
9497 	spin_unlock(&sinfo->lock);
9498 }
9499 
9500 /*
9501  * checks to see if its even possible to relocate this block group.
9502  *
9503  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504  * ok to go ahead and try.
9505  */
9506 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9507 {
9508 	struct btrfs_root *root = fs_info->extent_root;
9509 	struct btrfs_block_group_cache *block_group;
9510 	struct btrfs_space_info *space_info;
9511 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9512 	struct btrfs_device *device;
9513 	struct btrfs_trans_handle *trans;
9514 	u64 min_free;
9515 	u64 dev_min = 1;
9516 	u64 dev_nr = 0;
9517 	u64 target;
9518 	int debug;
9519 	int index;
9520 	int full = 0;
9521 	int ret = 0;
9522 
9523 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9524 
9525 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9526 
9527 	/* odd, couldn't find the block group, leave it alone */
9528 	if (!block_group) {
9529 		if (debug)
9530 			btrfs_warn(fs_info,
9531 				   "can't find block group for bytenr %llu",
9532 				   bytenr);
9533 		return -1;
9534 	}
9535 
9536 	min_free = btrfs_block_group_used(&block_group->item);
9537 
9538 	/* no bytes used, we're good */
9539 	if (!min_free)
9540 		goto out;
9541 
9542 	space_info = block_group->space_info;
9543 	spin_lock(&space_info->lock);
9544 
9545 	full = space_info->full;
9546 
9547 	/*
9548 	 * if this is the last block group we have in this space, we can't
9549 	 * relocate it unless we're able to allocate a new chunk below.
9550 	 *
9551 	 * Otherwise, we need to make sure we have room in the space to handle
9552 	 * all of the extents from this block group.  If we can, we're good
9553 	 */
9554 	if ((space_info->total_bytes != block_group->key.offset) &&
9555 	    (btrfs_space_info_used(space_info, false) + min_free <
9556 	     space_info->total_bytes)) {
9557 		spin_unlock(&space_info->lock);
9558 		goto out;
9559 	}
9560 	spin_unlock(&space_info->lock);
9561 
9562 	/*
9563 	 * ok we don't have enough space, but maybe we have free space on our
9564 	 * devices to allocate new chunks for relocation, so loop through our
9565 	 * alloc devices and guess if we have enough space.  if this block
9566 	 * group is going to be restriped, run checks against the target
9567 	 * profile instead of the current one.
9568 	 */
9569 	ret = -1;
9570 
9571 	/*
9572 	 * index:
9573 	 *      0: raid10
9574 	 *      1: raid1
9575 	 *      2: dup
9576 	 *      3: raid0
9577 	 *      4: single
9578 	 */
9579 	target = get_restripe_target(fs_info, block_group->flags);
9580 	if (target) {
9581 		index = __get_raid_index(extended_to_chunk(target));
9582 	} else {
9583 		/*
9584 		 * this is just a balance, so if we were marked as full
9585 		 * we know there is no space for a new chunk
9586 		 */
9587 		if (full) {
9588 			if (debug)
9589 				btrfs_warn(fs_info,
9590 					   "no space to alloc new chunk for block group %llu",
9591 					   block_group->key.objectid);
9592 			goto out;
9593 		}
9594 
9595 		index = get_block_group_index(block_group);
9596 	}
9597 
9598 	if (index == BTRFS_RAID_RAID10) {
9599 		dev_min = 4;
9600 		/* Divide by 2 */
9601 		min_free >>= 1;
9602 	} else if (index == BTRFS_RAID_RAID1) {
9603 		dev_min = 2;
9604 	} else if (index == BTRFS_RAID_DUP) {
9605 		/* Multiply by 2 */
9606 		min_free <<= 1;
9607 	} else if (index == BTRFS_RAID_RAID0) {
9608 		dev_min = fs_devices->rw_devices;
9609 		min_free = div64_u64(min_free, dev_min);
9610 	}
9611 
9612 	/* We need to do this so that we can look at pending chunks */
9613 	trans = btrfs_join_transaction(root);
9614 	if (IS_ERR(trans)) {
9615 		ret = PTR_ERR(trans);
9616 		goto out;
9617 	}
9618 
9619 	mutex_lock(&fs_info->chunk_mutex);
9620 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9621 		u64 dev_offset;
9622 
9623 		/*
9624 		 * check to make sure we can actually find a chunk with enough
9625 		 * space to fit our block group in.
9626 		 */
9627 		if (device->total_bytes > device->bytes_used + min_free &&
9628 		    !device->is_tgtdev_for_dev_replace) {
9629 			ret = find_free_dev_extent(trans, device, min_free,
9630 						   &dev_offset, NULL);
9631 			if (!ret)
9632 				dev_nr++;
9633 
9634 			if (dev_nr >= dev_min)
9635 				break;
9636 
9637 			ret = -1;
9638 		}
9639 	}
9640 	if (debug && ret == -1)
9641 		btrfs_warn(fs_info,
9642 			   "no space to allocate a new chunk for block group %llu",
9643 			   block_group->key.objectid);
9644 	mutex_unlock(&fs_info->chunk_mutex);
9645 	btrfs_end_transaction(trans);
9646 out:
9647 	btrfs_put_block_group(block_group);
9648 	return ret;
9649 }
9650 
9651 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9652 				  struct btrfs_path *path,
9653 				  struct btrfs_key *key)
9654 {
9655 	struct btrfs_root *root = fs_info->extent_root;
9656 	int ret = 0;
9657 	struct btrfs_key found_key;
9658 	struct extent_buffer *leaf;
9659 	int slot;
9660 
9661 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9662 	if (ret < 0)
9663 		goto out;
9664 
9665 	while (1) {
9666 		slot = path->slots[0];
9667 		leaf = path->nodes[0];
9668 		if (slot >= btrfs_header_nritems(leaf)) {
9669 			ret = btrfs_next_leaf(root, path);
9670 			if (ret == 0)
9671 				continue;
9672 			if (ret < 0)
9673 				goto out;
9674 			break;
9675 		}
9676 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9677 
9678 		if (found_key.objectid >= key->objectid &&
9679 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9680 			struct extent_map_tree *em_tree;
9681 			struct extent_map *em;
9682 
9683 			em_tree = &root->fs_info->mapping_tree.map_tree;
9684 			read_lock(&em_tree->lock);
9685 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9686 						   found_key.offset);
9687 			read_unlock(&em_tree->lock);
9688 			if (!em) {
9689 				btrfs_err(fs_info,
9690 			"logical %llu len %llu found bg but no related chunk",
9691 					  found_key.objectid, found_key.offset);
9692 				ret = -ENOENT;
9693 			} else {
9694 				ret = 0;
9695 			}
9696 			free_extent_map(em);
9697 			goto out;
9698 		}
9699 		path->slots[0]++;
9700 	}
9701 out:
9702 	return ret;
9703 }
9704 
9705 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9706 {
9707 	struct btrfs_block_group_cache *block_group;
9708 	u64 last = 0;
9709 
9710 	while (1) {
9711 		struct inode *inode;
9712 
9713 		block_group = btrfs_lookup_first_block_group(info, last);
9714 		while (block_group) {
9715 			spin_lock(&block_group->lock);
9716 			if (block_group->iref)
9717 				break;
9718 			spin_unlock(&block_group->lock);
9719 			block_group = next_block_group(info, block_group);
9720 		}
9721 		if (!block_group) {
9722 			if (last == 0)
9723 				break;
9724 			last = 0;
9725 			continue;
9726 		}
9727 
9728 		inode = block_group->inode;
9729 		block_group->iref = 0;
9730 		block_group->inode = NULL;
9731 		spin_unlock(&block_group->lock);
9732 		ASSERT(block_group->io_ctl.inode == NULL);
9733 		iput(inode);
9734 		last = block_group->key.objectid + block_group->key.offset;
9735 		btrfs_put_block_group(block_group);
9736 	}
9737 }
9738 
9739 /*
9740  * Must be called only after stopping all workers, since we could have block
9741  * group caching kthreads running, and therefore they could race with us if we
9742  * freed the block groups before stopping them.
9743  */
9744 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9745 {
9746 	struct btrfs_block_group_cache *block_group;
9747 	struct btrfs_space_info *space_info;
9748 	struct btrfs_caching_control *caching_ctl;
9749 	struct rb_node *n;
9750 
9751 	down_write(&info->commit_root_sem);
9752 	while (!list_empty(&info->caching_block_groups)) {
9753 		caching_ctl = list_entry(info->caching_block_groups.next,
9754 					 struct btrfs_caching_control, list);
9755 		list_del(&caching_ctl->list);
9756 		put_caching_control(caching_ctl);
9757 	}
9758 	up_write(&info->commit_root_sem);
9759 
9760 	spin_lock(&info->unused_bgs_lock);
9761 	while (!list_empty(&info->unused_bgs)) {
9762 		block_group = list_first_entry(&info->unused_bgs,
9763 					       struct btrfs_block_group_cache,
9764 					       bg_list);
9765 		list_del_init(&block_group->bg_list);
9766 		btrfs_put_block_group(block_group);
9767 	}
9768 	spin_unlock(&info->unused_bgs_lock);
9769 
9770 	spin_lock(&info->block_group_cache_lock);
9771 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9772 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9773 				       cache_node);
9774 		rb_erase(&block_group->cache_node,
9775 			 &info->block_group_cache_tree);
9776 		RB_CLEAR_NODE(&block_group->cache_node);
9777 		spin_unlock(&info->block_group_cache_lock);
9778 
9779 		down_write(&block_group->space_info->groups_sem);
9780 		list_del(&block_group->list);
9781 		up_write(&block_group->space_info->groups_sem);
9782 
9783 		/*
9784 		 * We haven't cached this block group, which means we could
9785 		 * possibly have excluded extents on this block group.
9786 		 */
9787 		if (block_group->cached == BTRFS_CACHE_NO ||
9788 		    block_group->cached == BTRFS_CACHE_ERROR)
9789 			free_excluded_extents(info, block_group);
9790 
9791 		btrfs_remove_free_space_cache(block_group);
9792 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9793 		ASSERT(list_empty(&block_group->dirty_list));
9794 		ASSERT(list_empty(&block_group->io_list));
9795 		ASSERT(list_empty(&block_group->bg_list));
9796 		ASSERT(atomic_read(&block_group->count) == 1);
9797 		btrfs_put_block_group(block_group);
9798 
9799 		spin_lock(&info->block_group_cache_lock);
9800 	}
9801 	spin_unlock(&info->block_group_cache_lock);
9802 
9803 	/* now that all the block groups are freed, go through and
9804 	 * free all the space_info structs.  This is only called during
9805 	 * the final stages of unmount, and so we know nobody is
9806 	 * using them.  We call synchronize_rcu() once before we start,
9807 	 * just to be on the safe side.
9808 	 */
9809 	synchronize_rcu();
9810 
9811 	release_global_block_rsv(info);
9812 
9813 	while (!list_empty(&info->space_info)) {
9814 		int i;
9815 
9816 		space_info = list_entry(info->space_info.next,
9817 					struct btrfs_space_info,
9818 					list);
9819 
9820 		/*
9821 		 * Do not hide this behind enospc_debug, this is actually
9822 		 * important and indicates a real bug if this happens.
9823 		 */
9824 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9825 			    space_info->bytes_reserved > 0 ||
9826 			    space_info->bytes_may_use > 0))
9827 			dump_space_info(info, space_info, 0, 0);
9828 		list_del(&space_info->list);
9829 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9830 			struct kobject *kobj;
9831 			kobj = space_info->block_group_kobjs[i];
9832 			space_info->block_group_kobjs[i] = NULL;
9833 			if (kobj) {
9834 				kobject_del(kobj);
9835 				kobject_put(kobj);
9836 			}
9837 		}
9838 		kobject_del(&space_info->kobj);
9839 		kobject_put(&space_info->kobj);
9840 	}
9841 	return 0;
9842 }
9843 
9844 static void __link_block_group(struct btrfs_space_info *space_info,
9845 			       struct btrfs_block_group_cache *cache)
9846 {
9847 	int index = get_block_group_index(cache);
9848 	bool first = false;
9849 
9850 	down_write(&space_info->groups_sem);
9851 	if (list_empty(&space_info->block_groups[index]))
9852 		first = true;
9853 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9854 	up_write(&space_info->groups_sem);
9855 
9856 	if (first) {
9857 		struct raid_kobject *rkobj;
9858 		int ret;
9859 
9860 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9861 		if (!rkobj)
9862 			goto out_err;
9863 		rkobj->raid_type = index;
9864 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9865 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9866 				  "%s", get_raid_name(index));
9867 		if (ret) {
9868 			kobject_put(&rkobj->kobj);
9869 			goto out_err;
9870 		}
9871 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9872 	}
9873 
9874 	return;
9875 out_err:
9876 	btrfs_warn(cache->fs_info,
9877 		   "failed to add kobject for block cache, ignoring");
9878 }
9879 
9880 static struct btrfs_block_group_cache *
9881 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9882 			       u64 start, u64 size)
9883 {
9884 	struct btrfs_block_group_cache *cache;
9885 
9886 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9887 	if (!cache)
9888 		return NULL;
9889 
9890 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9891 					GFP_NOFS);
9892 	if (!cache->free_space_ctl) {
9893 		kfree(cache);
9894 		return NULL;
9895 	}
9896 
9897 	cache->key.objectid = start;
9898 	cache->key.offset = size;
9899 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9900 
9901 	cache->sectorsize = fs_info->sectorsize;
9902 	cache->fs_info = fs_info;
9903 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9904 						       &fs_info->mapping_tree,
9905 						       start);
9906 	set_free_space_tree_thresholds(cache);
9907 
9908 	atomic_set(&cache->count, 1);
9909 	spin_lock_init(&cache->lock);
9910 	init_rwsem(&cache->data_rwsem);
9911 	INIT_LIST_HEAD(&cache->list);
9912 	INIT_LIST_HEAD(&cache->cluster_list);
9913 	INIT_LIST_HEAD(&cache->bg_list);
9914 	INIT_LIST_HEAD(&cache->ro_list);
9915 	INIT_LIST_HEAD(&cache->dirty_list);
9916 	INIT_LIST_HEAD(&cache->io_list);
9917 	btrfs_init_free_space_ctl(cache);
9918 	atomic_set(&cache->trimming, 0);
9919 	mutex_init(&cache->free_space_lock);
9920 
9921 	return cache;
9922 }
9923 
9924 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9925 {
9926 	struct btrfs_path *path;
9927 	int ret;
9928 	struct btrfs_block_group_cache *cache;
9929 	struct btrfs_space_info *space_info;
9930 	struct btrfs_key key;
9931 	struct btrfs_key found_key;
9932 	struct extent_buffer *leaf;
9933 	int need_clear = 0;
9934 	u64 cache_gen;
9935 	u64 feature;
9936 	int mixed;
9937 
9938 	feature = btrfs_super_incompat_flags(info->super_copy);
9939 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9940 
9941 	key.objectid = 0;
9942 	key.offset = 0;
9943 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9944 	path = btrfs_alloc_path();
9945 	if (!path)
9946 		return -ENOMEM;
9947 	path->reada = READA_FORWARD;
9948 
9949 	cache_gen = btrfs_super_cache_generation(info->super_copy);
9950 	if (btrfs_test_opt(info, SPACE_CACHE) &&
9951 	    btrfs_super_generation(info->super_copy) != cache_gen)
9952 		need_clear = 1;
9953 	if (btrfs_test_opt(info, CLEAR_CACHE))
9954 		need_clear = 1;
9955 
9956 	while (1) {
9957 		ret = find_first_block_group(info, path, &key);
9958 		if (ret > 0)
9959 			break;
9960 		if (ret != 0)
9961 			goto error;
9962 
9963 		leaf = path->nodes[0];
9964 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9965 
9966 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
9967 						       found_key.offset);
9968 		if (!cache) {
9969 			ret = -ENOMEM;
9970 			goto error;
9971 		}
9972 
9973 		if (need_clear) {
9974 			/*
9975 			 * When we mount with old space cache, we need to
9976 			 * set BTRFS_DC_CLEAR and set dirty flag.
9977 			 *
9978 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9979 			 *    truncate the old free space cache inode and
9980 			 *    setup a new one.
9981 			 * b) Setting 'dirty flag' makes sure that we flush
9982 			 *    the new space cache info onto disk.
9983 			 */
9984 			if (btrfs_test_opt(info, SPACE_CACHE))
9985 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9986 		}
9987 
9988 		read_extent_buffer(leaf, &cache->item,
9989 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9990 				   sizeof(cache->item));
9991 		cache->flags = btrfs_block_group_flags(&cache->item);
9992 		if (!mixed &&
9993 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9994 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9995 			btrfs_err(info,
9996 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9997 				  cache->key.objectid);
9998 			ret = -EINVAL;
9999 			goto error;
10000 		}
10001 
10002 		key.objectid = found_key.objectid + found_key.offset;
10003 		btrfs_release_path(path);
10004 
10005 		/*
10006 		 * We need to exclude the super stripes now so that the space
10007 		 * info has super bytes accounted for, otherwise we'll think
10008 		 * we have more space than we actually do.
10009 		 */
10010 		ret = exclude_super_stripes(info, cache);
10011 		if (ret) {
10012 			/*
10013 			 * We may have excluded something, so call this just in
10014 			 * case.
10015 			 */
10016 			free_excluded_extents(info, cache);
10017 			btrfs_put_block_group(cache);
10018 			goto error;
10019 		}
10020 
10021 		/*
10022 		 * check for two cases, either we are full, and therefore
10023 		 * don't need to bother with the caching work since we won't
10024 		 * find any space, or we are empty, and we can just add all
10025 		 * the space in and be done with it.  This saves us _alot_ of
10026 		 * time, particularly in the full case.
10027 		 */
10028 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10029 			cache->last_byte_to_unpin = (u64)-1;
10030 			cache->cached = BTRFS_CACHE_FINISHED;
10031 			free_excluded_extents(info, cache);
10032 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10033 			cache->last_byte_to_unpin = (u64)-1;
10034 			cache->cached = BTRFS_CACHE_FINISHED;
10035 			add_new_free_space(cache, info,
10036 					   found_key.objectid,
10037 					   found_key.objectid +
10038 					   found_key.offset);
10039 			free_excluded_extents(info, cache);
10040 		}
10041 
10042 		ret = btrfs_add_block_group_cache(info, cache);
10043 		if (ret) {
10044 			btrfs_remove_free_space_cache(cache);
10045 			btrfs_put_block_group(cache);
10046 			goto error;
10047 		}
10048 
10049 		trace_btrfs_add_block_group(info, cache, 0);
10050 		ret = update_space_info(info, cache->flags, found_key.offset,
10051 					btrfs_block_group_used(&cache->item),
10052 					cache->bytes_super, &space_info);
10053 		if (ret) {
10054 			btrfs_remove_free_space_cache(cache);
10055 			spin_lock(&info->block_group_cache_lock);
10056 			rb_erase(&cache->cache_node,
10057 				 &info->block_group_cache_tree);
10058 			RB_CLEAR_NODE(&cache->cache_node);
10059 			spin_unlock(&info->block_group_cache_lock);
10060 			btrfs_put_block_group(cache);
10061 			goto error;
10062 		}
10063 
10064 		cache->space_info = space_info;
10065 
10066 		__link_block_group(space_info, cache);
10067 
10068 		set_avail_alloc_bits(info, cache->flags);
10069 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10070 			inc_block_group_ro(cache, 1);
10071 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10072 			spin_lock(&info->unused_bgs_lock);
10073 			/* Should always be true but just in case. */
10074 			if (list_empty(&cache->bg_list)) {
10075 				btrfs_get_block_group(cache);
10076 				list_add_tail(&cache->bg_list,
10077 					      &info->unused_bgs);
10078 			}
10079 			spin_unlock(&info->unused_bgs_lock);
10080 		}
10081 	}
10082 
10083 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10084 		if (!(get_alloc_profile(info, space_info->flags) &
10085 		      (BTRFS_BLOCK_GROUP_RAID10 |
10086 		       BTRFS_BLOCK_GROUP_RAID1 |
10087 		       BTRFS_BLOCK_GROUP_RAID5 |
10088 		       BTRFS_BLOCK_GROUP_RAID6 |
10089 		       BTRFS_BLOCK_GROUP_DUP)))
10090 			continue;
10091 		/*
10092 		 * avoid allocating from un-mirrored block group if there are
10093 		 * mirrored block groups.
10094 		 */
10095 		list_for_each_entry(cache,
10096 				&space_info->block_groups[BTRFS_RAID_RAID0],
10097 				list)
10098 			inc_block_group_ro(cache, 1);
10099 		list_for_each_entry(cache,
10100 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10101 				list)
10102 			inc_block_group_ro(cache, 1);
10103 	}
10104 
10105 	init_global_block_rsv(info);
10106 	ret = 0;
10107 error:
10108 	btrfs_free_path(path);
10109 	return ret;
10110 }
10111 
10112 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10113 				       struct btrfs_fs_info *fs_info)
10114 {
10115 	struct btrfs_block_group_cache *block_group, *tmp;
10116 	struct btrfs_root *extent_root = fs_info->extent_root;
10117 	struct btrfs_block_group_item item;
10118 	struct btrfs_key key;
10119 	int ret = 0;
10120 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10121 
10122 	trans->can_flush_pending_bgs = false;
10123 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10124 		if (ret)
10125 			goto next;
10126 
10127 		spin_lock(&block_group->lock);
10128 		memcpy(&item, &block_group->item, sizeof(item));
10129 		memcpy(&key, &block_group->key, sizeof(key));
10130 		spin_unlock(&block_group->lock);
10131 
10132 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10133 					sizeof(item));
10134 		if (ret)
10135 			btrfs_abort_transaction(trans, ret);
10136 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10137 					       key.offset);
10138 		if (ret)
10139 			btrfs_abort_transaction(trans, ret);
10140 		add_block_group_free_space(trans, fs_info, block_group);
10141 		/* already aborted the transaction if it failed. */
10142 next:
10143 		list_del_init(&block_group->bg_list);
10144 	}
10145 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10146 }
10147 
10148 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10149 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10150 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10151 			   u64 size)
10152 {
10153 	struct btrfs_block_group_cache *cache;
10154 	int ret;
10155 
10156 	btrfs_set_log_full_commit(fs_info, trans);
10157 
10158 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10159 	if (!cache)
10160 		return -ENOMEM;
10161 
10162 	btrfs_set_block_group_used(&cache->item, bytes_used);
10163 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10164 	btrfs_set_block_group_flags(&cache->item, type);
10165 
10166 	cache->flags = type;
10167 	cache->last_byte_to_unpin = (u64)-1;
10168 	cache->cached = BTRFS_CACHE_FINISHED;
10169 	cache->needs_free_space = 1;
10170 	ret = exclude_super_stripes(fs_info, cache);
10171 	if (ret) {
10172 		/*
10173 		 * We may have excluded something, so call this just in
10174 		 * case.
10175 		 */
10176 		free_excluded_extents(fs_info, cache);
10177 		btrfs_put_block_group(cache);
10178 		return ret;
10179 	}
10180 
10181 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10182 
10183 	free_excluded_extents(fs_info, cache);
10184 
10185 #ifdef CONFIG_BTRFS_DEBUG
10186 	if (btrfs_should_fragment_free_space(cache)) {
10187 		u64 new_bytes_used = size - bytes_used;
10188 
10189 		bytes_used += new_bytes_used >> 1;
10190 		fragment_free_space(cache);
10191 	}
10192 #endif
10193 	/*
10194 	 * Call to ensure the corresponding space_info object is created and
10195 	 * assigned to our block group, but don't update its counters just yet.
10196 	 * We want our bg to be added to the rbtree with its ->space_info set.
10197 	 */
10198 	ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10199 				&cache->space_info);
10200 	if (ret) {
10201 		btrfs_remove_free_space_cache(cache);
10202 		btrfs_put_block_group(cache);
10203 		return ret;
10204 	}
10205 
10206 	ret = btrfs_add_block_group_cache(fs_info, cache);
10207 	if (ret) {
10208 		btrfs_remove_free_space_cache(cache);
10209 		btrfs_put_block_group(cache);
10210 		return ret;
10211 	}
10212 
10213 	/*
10214 	 * Now that our block group has its ->space_info set and is inserted in
10215 	 * the rbtree, update the space info's counters.
10216 	 */
10217 	trace_btrfs_add_block_group(fs_info, cache, 1);
10218 	ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10219 				cache->bytes_super, &cache->space_info);
10220 	if (ret) {
10221 		btrfs_remove_free_space_cache(cache);
10222 		spin_lock(&fs_info->block_group_cache_lock);
10223 		rb_erase(&cache->cache_node,
10224 			 &fs_info->block_group_cache_tree);
10225 		RB_CLEAR_NODE(&cache->cache_node);
10226 		spin_unlock(&fs_info->block_group_cache_lock);
10227 		btrfs_put_block_group(cache);
10228 		return ret;
10229 	}
10230 	update_global_block_rsv(fs_info);
10231 
10232 	__link_block_group(cache->space_info, cache);
10233 
10234 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10235 
10236 	set_avail_alloc_bits(fs_info, type);
10237 	return 0;
10238 }
10239 
10240 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10241 {
10242 	u64 extra_flags = chunk_to_extended(flags) &
10243 				BTRFS_EXTENDED_PROFILE_MASK;
10244 
10245 	write_seqlock(&fs_info->profiles_lock);
10246 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10247 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10248 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10249 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10250 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10251 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10252 	write_sequnlock(&fs_info->profiles_lock);
10253 }
10254 
10255 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10256 			     struct btrfs_fs_info *fs_info, u64 group_start,
10257 			     struct extent_map *em)
10258 {
10259 	struct btrfs_root *root = fs_info->extent_root;
10260 	struct btrfs_path *path;
10261 	struct btrfs_block_group_cache *block_group;
10262 	struct btrfs_free_cluster *cluster;
10263 	struct btrfs_root *tree_root = fs_info->tree_root;
10264 	struct btrfs_key key;
10265 	struct inode *inode;
10266 	struct kobject *kobj = NULL;
10267 	int ret;
10268 	int index;
10269 	int factor;
10270 	struct btrfs_caching_control *caching_ctl = NULL;
10271 	bool remove_em;
10272 
10273 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10274 	BUG_ON(!block_group);
10275 	BUG_ON(!block_group->ro);
10276 
10277 	/*
10278 	 * Free the reserved super bytes from this block group before
10279 	 * remove it.
10280 	 */
10281 	free_excluded_extents(fs_info, block_group);
10282 
10283 	memcpy(&key, &block_group->key, sizeof(key));
10284 	index = get_block_group_index(block_group);
10285 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10286 				  BTRFS_BLOCK_GROUP_RAID1 |
10287 				  BTRFS_BLOCK_GROUP_RAID10))
10288 		factor = 2;
10289 	else
10290 		factor = 1;
10291 
10292 	/* make sure this block group isn't part of an allocation cluster */
10293 	cluster = &fs_info->data_alloc_cluster;
10294 	spin_lock(&cluster->refill_lock);
10295 	btrfs_return_cluster_to_free_space(block_group, cluster);
10296 	spin_unlock(&cluster->refill_lock);
10297 
10298 	/*
10299 	 * make sure this block group isn't part of a metadata
10300 	 * allocation cluster
10301 	 */
10302 	cluster = &fs_info->meta_alloc_cluster;
10303 	spin_lock(&cluster->refill_lock);
10304 	btrfs_return_cluster_to_free_space(block_group, cluster);
10305 	spin_unlock(&cluster->refill_lock);
10306 
10307 	path = btrfs_alloc_path();
10308 	if (!path) {
10309 		ret = -ENOMEM;
10310 		goto out;
10311 	}
10312 
10313 	/*
10314 	 * get the inode first so any iput calls done for the io_list
10315 	 * aren't the final iput (no unlinks allowed now)
10316 	 */
10317 	inode = lookup_free_space_inode(fs_info, block_group, path);
10318 
10319 	mutex_lock(&trans->transaction->cache_write_mutex);
10320 	/*
10321 	 * make sure our free spache cache IO is done before remove the
10322 	 * free space inode
10323 	 */
10324 	spin_lock(&trans->transaction->dirty_bgs_lock);
10325 	if (!list_empty(&block_group->io_list)) {
10326 		list_del_init(&block_group->io_list);
10327 
10328 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10329 
10330 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10331 		btrfs_wait_cache_io(trans, block_group, path);
10332 		btrfs_put_block_group(block_group);
10333 		spin_lock(&trans->transaction->dirty_bgs_lock);
10334 	}
10335 
10336 	if (!list_empty(&block_group->dirty_list)) {
10337 		list_del_init(&block_group->dirty_list);
10338 		btrfs_put_block_group(block_group);
10339 	}
10340 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10341 	mutex_unlock(&trans->transaction->cache_write_mutex);
10342 
10343 	if (!IS_ERR(inode)) {
10344 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10345 		if (ret) {
10346 			btrfs_add_delayed_iput(inode);
10347 			goto out;
10348 		}
10349 		clear_nlink(inode);
10350 		/* One for the block groups ref */
10351 		spin_lock(&block_group->lock);
10352 		if (block_group->iref) {
10353 			block_group->iref = 0;
10354 			block_group->inode = NULL;
10355 			spin_unlock(&block_group->lock);
10356 			iput(inode);
10357 		} else {
10358 			spin_unlock(&block_group->lock);
10359 		}
10360 		/* One for our lookup ref */
10361 		btrfs_add_delayed_iput(inode);
10362 	}
10363 
10364 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10365 	key.offset = block_group->key.objectid;
10366 	key.type = 0;
10367 
10368 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10369 	if (ret < 0)
10370 		goto out;
10371 	if (ret > 0)
10372 		btrfs_release_path(path);
10373 	if (ret == 0) {
10374 		ret = btrfs_del_item(trans, tree_root, path);
10375 		if (ret)
10376 			goto out;
10377 		btrfs_release_path(path);
10378 	}
10379 
10380 	spin_lock(&fs_info->block_group_cache_lock);
10381 	rb_erase(&block_group->cache_node,
10382 		 &fs_info->block_group_cache_tree);
10383 	RB_CLEAR_NODE(&block_group->cache_node);
10384 
10385 	if (fs_info->first_logical_byte == block_group->key.objectid)
10386 		fs_info->first_logical_byte = (u64)-1;
10387 	spin_unlock(&fs_info->block_group_cache_lock);
10388 
10389 	down_write(&block_group->space_info->groups_sem);
10390 	/*
10391 	 * we must use list_del_init so people can check to see if they
10392 	 * are still on the list after taking the semaphore
10393 	 */
10394 	list_del_init(&block_group->list);
10395 	if (list_empty(&block_group->space_info->block_groups[index])) {
10396 		kobj = block_group->space_info->block_group_kobjs[index];
10397 		block_group->space_info->block_group_kobjs[index] = NULL;
10398 		clear_avail_alloc_bits(fs_info, block_group->flags);
10399 	}
10400 	up_write(&block_group->space_info->groups_sem);
10401 	if (kobj) {
10402 		kobject_del(kobj);
10403 		kobject_put(kobj);
10404 	}
10405 
10406 	if (block_group->has_caching_ctl)
10407 		caching_ctl = get_caching_control(block_group);
10408 	if (block_group->cached == BTRFS_CACHE_STARTED)
10409 		wait_block_group_cache_done(block_group);
10410 	if (block_group->has_caching_ctl) {
10411 		down_write(&fs_info->commit_root_sem);
10412 		if (!caching_ctl) {
10413 			struct btrfs_caching_control *ctl;
10414 
10415 			list_for_each_entry(ctl,
10416 				    &fs_info->caching_block_groups, list)
10417 				if (ctl->block_group == block_group) {
10418 					caching_ctl = ctl;
10419 					atomic_inc(&caching_ctl->count);
10420 					break;
10421 				}
10422 		}
10423 		if (caching_ctl)
10424 			list_del_init(&caching_ctl->list);
10425 		up_write(&fs_info->commit_root_sem);
10426 		if (caching_ctl) {
10427 			/* Once for the caching bgs list and once for us. */
10428 			put_caching_control(caching_ctl);
10429 			put_caching_control(caching_ctl);
10430 		}
10431 	}
10432 
10433 	spin_lock(&trans->transaction->dirty_bgs_lock);
10434 	if (!list_empty(&block_group->dirty_list)) {
10435 		WARN_ON(1);
10436 	}
10437 	if (!list_empty(&block_group->io_list)) {
10438 		WARN_ON(1);
10439 	}
10440 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10441 	btrfs_remove_free_space_cache(block_group);
10442 
10443 	spin_lock(&block_group->space_info->lock);
10444 	list_del_init(&block_group->ro_list);
10445 
10446 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10447 		WARN_ON(block_group->space_info->total_bytes
10448 			< block_group->key.offset);
10449 		WARN_ON(block_group->space_info->bytes_readonly
10450 			< block_group->key.offset);
10451 		WARN_ON(block_group->space_info->disk_total
10452 			< block_group->key.offset * factor);
10453 	}
10454 	block_group->space_info->total_bytes -= block_group->key.offset;
10455 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10456 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10457 
10458 	spin_unlock(&block_group->space_info->lock);
10459 
10460 	memcpy(&key, &block_group->key, sizeof(key));
10461 
10462 	mutex_lock(&fs_info->chunk_mutex);
10463 	if (!list_empty(&em->list)) {
10464 		/* We're in the transaction->pending_chunks list. */
10465 		free_extent_map(em);
10466 	}
10467 	spin_lock(&block_group->lock);
10468 	block_group->removed = 1;
10469 	/*
10470 	 * At this point trimming can't start on this block group, because we
10471 	 * removed the block group from the tree fs_info->block_group_cache_tree
10472 	 * so no one can't find it anymore and even if someone already got this
10473 	 * block group before we removed it from the rbtree, they have already
10474 	 * incremented block_group->trimming - if they didn't, they won't find
10475 	 * any free space entries because we already removed them all when we
10476 	 * called btrfs_remove_free_space_cache().
10477 	 *
10478 	 * And we must not remove the extent map from the fs_info->mapping_tree
10479 	 * to prevent the same logical address range and physical device space
10480 	 * ranges from being reused for a new block group. This is because our
10481 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10482 	 * completely transactionless, so while it is trimming a range the
10483 	 * currently running transaction might finish and a new one start,
10484 	 * allowing for new block groups to be created that can reuse the same
10485 	 * physical device locations unless we take this special care.
10486 	 *
10487 	 * There may also be an implicit trim operation if the file system
10488 	 * is mounted with -odiscard. The same protections must remain
10489 	 * in place until the extents have been discarded completely when
10490 	 * the transaction commit has completed.
10491 	 */
10492 	remove_em = (atomic_read(&block_group->trimming) == 0);
10493 	/*
10494 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10495 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10496 	 * before checking block_group->removed).
10497 	 */
10498 	if (!remove_em) {
10499 		/*
10500 		 * Our em might be in trans->transaction->pending_chunks which
10501 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10502 		 * and so is the fs_info->pinned_chunks list.
10503 		 *
10504 		 * So at this point we must be holding the chunk_mutex to avoid
10505 		 * any races with chunk allocation (more specifically at
10506 		 * volumes.c:contains_pending_extent()), to ensure it always
10507 		 * sees the em, either in the pending_chunks list or in the
10508 		 * pinned_chunks list.
10509 		 */
10510 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10511 	}
10512 	spin_unlock(&block_group->lock);
10513 
10514 	if (remove_em) {
10515 		struct extent_map_tree *em_tree;
10516 
10517 		em_tree = &fs_info->mapping_tree.map_tree;
10518 		write_lock(&em_tree->lock);
10519 		/*
10520 		 * The em might be in the pending_chunks list, so make sure the
10521 		 * chunk mutex is locked, since remove_extent_mapping() will
10522 		 * delete us from that list.
10523 		 */
10524 		remove_extent_mapping(em_tree, em);
10525 		write_unlock(&em_tree->lock);
10526 		/* once for the tree */
10527 		free_extent_map(em);
10528 	}
10529 
10530 	mutex_unlock(&fs_info->chunk_mutex);
10531 
10532 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10533 	if (ret)
10534 		goto out;
10535 
10536 	btrfs_put_block_group(block_group);
10537 	btrfs_put_block_group(block_group);
10538 
10539 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10540 	if (ret > 0)
10541 		ret = -EIO;
10542 	if (ret < 0)
10543 		goto out;
10544 
10545 	ret = btrfs_del_item(trans, root, path);
10546 out:
10547 	btrfs_free_path(path);
10548 	return ret;
10549 }
10550 
10551 struct btrfs_trans_handle *
10552 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10553 				     const u64 chunk_offset)
10554 {
10555 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10556 	struct extent_map *em;
10557 	struct map_lookup *map;
10558 	unsigned int num_items;
10559 
10560 	read_lock(&em_tree->lock);
10561 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10562 	read_unlock(&em_tree->lock);
10563 	ASSERT(em && em->start == chunk_offset);
10564 
10565 	/*
10566 	 * We need to reserve 3 + N units from the metadata space info in order
10567 	 * to remove a block group (done at btrfs_remove_chunk() and at
10568 	 * btrfs_remove_block_group()), which are used for:
10569 	 *
10570 	 * 1 unit for adding the free space inode's orphan (located in the tree
10571 	 * of tree roots).
10572 	 * 1 unit for deleting the block group item (located in the extent
10573 	 * tree).
10574 	 * 1 unit for deleting the free space item (located in tree of tree
10575 	 * roots).
10576 	 * N units for deleting N device extent items corresponding to each
10577 	 * stripe (located in the device tree).
10578 	 *
10579 	 * In order to remove a block group we also need to reserve units in the
10580 	 * system space info in order to update the chunk tree (update one or
10581 	 * more device items and remove one chunk item), but this is done at
10582 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10583 	 */
10584 	map = em->map_lookup;
10585 	num_items = 3 + map->num_stripes;
10586 	free_extent_map(em);
10587 
10588 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10589 							   num_items, 1);
10590 }
10591 
10592 /*
10593  * Process the unused_bgs list and remove any that don't have any allocated
10594  * space inside of them.
10595  */
10596 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10597 {
10598 	struct btrfs_block_group_cache *block_group;
10599 	struct btrfs_space_info *space_info;
10600 	struct btrfs_trans_handle *trans;
10601 	int ret = 0;
10602 
10603 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10604 		return;
10605 
10606 	spin_lock(&fs_info->unused_bgs_lock);
10607 	while (!list_empty(&fs_info->unused_bgs)) {
10608 		u64 start, end;
10609 		int trimming;
10610 
10611 		block_group = list_first_entry(&fs_info->unused_bgs,
10612 					       struct btrfs_block_group_cache,
10613 					       bg_list);
10614 		list_del_init(&block_group->bg_list);
10615 
10616 		space_info = block_group->space_info;
10617 
10618 		if (ret || btrfs_mixed_space_info(space_info)) {
10619 			btrfs_put_block_group(block_group);
10620 			continue;
10621 		}
10622 		spin_unlock(&fs_info->unused_bgs_lock);
10623 
10624 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10625 
10626 		/* Don't want to race with allocators so take the groups_sem */
10627 		down_write(&space_info->groups_sem);
10628 		spin_lock(&block_group->lock);
10629 		if (block_group->reserved ||
10630 		    btrfs_block_group_used(&block_group->item) ||
10631 		    block_group->ro ||
10632 		    list_is_singular(&block_group->list)) {
10633 			/*
10634 			 * We want to bail if we made new allocations or have
10635 			 * outstanding allocations in this block group.  We do
10636 			 * the ro check in case balance is currently acting on
10637 			 * this block group.
10638 			 */
10639 			spin_unlock(&block_group->lock);
10640 			up_write(&space_info->groups_sem);
10641 			goto next;
10642 		}
10643 		spin_unlock(&block_group->lock);
10644 
10645 		/* We don't want to force the issue, only flip if it's ok. */
10646 		ret = inc_block_group_ro(block_group, 0);
10647 		up_write(&space_info->groups_sem);
10648 		if (ret < 0) {
10649 			ret = 0;
10650 			goto next;
10651 		}
10652 
10653 		/*
10654 		 * Want to do this before we do anything else so we can recover
10655 		 * properly if we fail to join the transaction.
10656 		 */
10657 		trans = btrfs_start_trans_remove_block_group(fs_info,
10658 						     block_group->key.objectid);
10659 		if (IS_ERR(trans)) {
10660 			btrfs_dec_block_group_ro(block_group);
10661 			ret = PTR_ERR(trans);
10662 			goto next;
10663 		}
10664 
10665 		/*
10666 		 * We could have pending pinned extents for this block group,
10667 		 * just delete them, we don't care about them anymore.
10668 		 */
10669 		start = block_group->key.objectid;
10670 		end = start + block_group->key.offset - 1;
10671 		/*
10672 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10673 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10674 		 * another task might be running finish_extent_commit() for the
10675 		 * previous transaction N - 1, and have seen a range belonging
10676 		 * to the block group in freed_extents[] before we were able to
10677 		 * clear the whole block group range from freed_extents[]. This
10678 		 * means that task can lookup for the block group after we
10679 		 * unpinned it from freed_extents[] and removed it, leading to
10680 		 * a BUG_ON() at btrfs_unpin_extent_range().
10681 		 */
10682 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10683 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10684 				  EXTENT_DIRTY);
10685 		if (ret) {
10686 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10687 			btrfs_dec_block_group_ro(block_group);
10688 			goto end_trans;
10689 		}
10690 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10691 				  EXTENT_DIRTY);
10692 		if (ret) {
10693 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10694 			btrfs_dec_block_group_ro(block_group);
10695 			goto end_trans;
10696 		}
10697 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10698 
10699 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10700 		spin_lock(&space_info->lock);
10701 		spin_lock(&block_group->lock);
10702 
10703 		space_info->bytes_pinned -= block_group->pinned;
10704 		space_info->bytes_readonly += block_group->pinned;
10705 		percpu_counter_add(&space_info->total_bytes_pinned,
10706 				   -block_group->pinned);
10707 		block_group->pinned = 0;
10708 
10709 		spin_unlock(&block_group->lock);
10710 		spin_unlock(&space_info->lock);
10711 
10712 		/* DISCARD can flip during remount */
10713 		trimming = btrfs_test_opt(fs_info, DISCARD);
10714 
10715 		/* Implicit trim during transaction commit. */
10716 		if (trimming)
10717 			btrfs_get_block_group_trimming(block_group);
10718 
10719 		/*
10720 		 * Btrfs_remove_chunk will abort the transaction if things go
10721 		 * horribly wrong.
10722 		 */
10723 		ret = btrfs_remove_chunk(trans, fs_info,
10724 					 block_group->key.objectid);
10725 
10726 		if (ret) {
10727 			if (trimming)
10728 				btrfs_put_block_group_trimming(block_group);
10729 			goto end_trans;
10730 		}
10731 
10732 		/*
10733 		 * If we're not mounted with -odiscard, we can just forget
10734 		 * about this block group. Otherwise we'll need to wait
10735 		 * until transaction commit to do the actual discard.
10736 		 */
10737 		if (trimming) {
10738 			spin_lock(&fs_info->unused_bgs_lock);
10739 			/*
10740 			 * A concurrent scrub might have added us to the list
10741 			 * fs_info->unused_bgs, so use a list_move operation
10742 			 * to add the block group to the deleted_bgs list.
10743 			 */
10744 			list_move(&block_group->bg_list,
10745 				  &trans->transaction->deleted_bgs);
10746 			spin_unlock(&fs_info->unused_bgs_lock);
10747 			btrfs_get_block_group(block_group);
10748 		}
10749 end_trans:
10750 		btrfs_end_transaction(trans);
10751 next:
10752 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10753 		btrfs_put_block_group(block_group);
10754 		spin_lock(&fs_info->unused_bgs_lock);
10755 	}
10756 	spin_unlock(&fs_info->unused_bgs_lock);
10757 }
10758 
10759 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10760 {
10761 	struct btrfs_space_info *space_info;
10762 	struct btrfs_super_block *disk_super;
10763 	u64 features;
10764 	u64 flags;
10765 	int mixed = 0;
10766 	int ret;
10767 
10768 	disk_super = fs_info->super_copy;
10769 	if (!btrfs_super_root(disk_super))
10770 		return -EINVAL;
10771 
10772 	features = btrfs_super_incompat_flags(disk_super);
10773 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10774 		mixed = 1;
10775 
10776 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10777 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10778 	if (ret)
10779 		goto out;
10780 
10781 	if (mixed) {
10782 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10783 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10784 	} else {
10785 		flags = BTRFS_BLOCK_GROUP_METADATA;
10786 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10787 		if (ret)
10788 			goto out;
10789 
10790 		flags = BTRFS_BLOCK_GROUP_DATA;
10791 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10792 	}
10793 out:
10794 	return ret;
10795 }
10796 
10797 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10798 				   u64 start, u64 end)
10799 {
10800 	return unpin_extent_range(fs_info, start, end, false);
10801 }
10802 
10803 /*
10804  * It used to be that old block groups would be left around forever.
10805  * Iterating over them would be enough to trim unused space.  Since we
10806  * now automatically remove them, we also need to iterate over unallocated
10807  * space.
10808  *
10809  * We don't want a transaction for this since the discard may take a
10810  * substantial amount of time.  We don't require that a transaction be
10811  * running, but we do need to take a running transaction into account
10812  * to ensure that we're not discarding chunks that were released in
10813  * the current transaction.
10814  *
10815  * Holding the chunks lock will prevent other threads from allocating
10816  * or releasing chunks, but it won't prevent a running transaction
10817  * from committing and releasing the memory that the pending chunks
10818  * list head uses.  For that, we need to take a reference to the
10819  * transaction.
10820  */
10821 static int btrfs_trim_free_extents(struct btrfs_device *device,
10822 				   u64 minlen, u64 *trimmed)
10823 {
10824 	u64 start = 0, len = 0;
10825 	int ret;
10826 
10827 	*trimmed = 0;
10828 
10829 	/* Not writeable = nothing to do. */
10830 	if (!device->writeable)
10831 		return 0;
10832 
10833 	/* No free space = nothing to do. */
10834 	if (device->total_bytes <= device->bytes_used)
10835 		return 0;
10836 
10837 	ret = 0;
10838 
10839 	while (1) {
10840 		struct btrfs_fs_info *fs_info = device->fs_info;
10841 		struct btrfs_transaction *trans;
10842 		u64 bytes;
10843 
10844 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10845 		if (ret)
10846 			return ret;
10847 
10848 		down_read(&fs_info->commit_root_sem);
10849 
10850 		spin_lock(&fs_info->trans_lock);
10851 		trans = fs_info->running_transaction;
10852 		if (trans)
10853 			atomic_inc(&trans->use_count);
10854 		spin_unlock(&fs_info->trans_lock);
10855 
10856 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10857 						 &start, &len);
10858 		if (trans)
10859 			btrfs_put_transaction(trans);
10860 
10861 		if (ret) {
10862 			up_read(&fs_info->commit_root_sem);
10863 			mutex_unlock(&fs_info->chunk_mutex);
10864 			if (ret == -ENOSPC)
10865 				ret = 0;
10866 			break;
10867 		}
10868 
10869 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10870 		up_read(&fs_info->commit_root_sem);
10871 		mutex_unlock(&fs_info->chunk_mutex);
10872 
10873 		if (ret)
10874 			break;
10875 
10876 		start += len;
10877 		*trimmed += bytes;
10878 
10879 		if (fatal_signal_pending(current)) {
10880 			ret = -ERESTARTSYS;
10881 			break;
10882 		}
10883 
10884 		cond_resched();
10885 	}
10886 
10887 	return ret;
10888 }
10889 
10890 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10891 {
10892 	struct btrfs_block_group_cache *cache = NULL;
10893 	struct btrfs_device *device;
10894 	struct list_head *devices;
10895 	u64 group_trimmed;
10896 	u64 start;
10897 	u64 end;
10898 	u64 trimmed = 0;
10899 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10900 	int ret = 0;
10901 
10902 	/*
10903 	 * try to trim all FS space, our block group may start from non-zero.
10904 	 */
10905 	if (range->len == total_bytes)
10906 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10907 	else
10908 		cache = btrfs_lookup_block_group(fs_info, range->start);
10909 
10910 	while (cache) {
10911 		if (cache->key.objectid >= (range->start + range->len)) {
10912 			btrfs_put_block_group(cache);
10913 			break;
10914 		}
10915 
10916 		start = max(range->start, cache->key.objectid);
10917 		end = min(range->start + range->len,
10918 				cache->key.objectid + cache->key.offset);
10919 
10920 		if (end - start >= range->minlen) {
10921 			if (!block_group_cache_done(cache)) {
10922 				ret = cache_block_group(cache, 0);
10923 				if (ret) {
10924 					btrfs_put_block_group(cache);
10925 					break;
10926 				}
10927 				ret = wait_block_group_cache_done(cache);
10928 				if (ret) {
10929 					btrfs_put_block_group(cache);
10930 					break;
10931 				}
10932 			}
10933 			ret = btrfs_trim_block_group(cache,
10934 						     &group_trimmed,
10935 						     start,
10936 						     end,
10937 						     range->minlen);
10938 
10939 			trimmed += group_trimmed;
10940 			if (ret) {
10941 				btrfs_put_block_group(cache);
10942 				break;
10943 			}
10944 		}
10945 
10946 		cache = next_block_group(fs_info, cache);
10947 	}
10948 
10949 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10950 	devices = &fs_info->fs_devices->alloc_list;
10951 	list_for_each_entry(device, devices, dev_alloc_list) {
10952 		ret = btrfs_trim_free_extents(device, range->minlen,
10953 					      &group_trimmed);
10954 		if (ret)
10955 			break;
10956 
10957 		trimmed += group_trimmed;
10958 	}
10959 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10960 
10961 	range->len = trimmed;
10962 	return ret;
10963 }
10964 
10965 /*
10966  * btrfs_{start,end}_write_no_snapshoting() are similar to
10967  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10968  * data into the page cache through nocow before the subvolume is snapshoted,
10969  * but flush the data into disk after the snapshot creation, or to prevent
10970  * operations while snapshoting is ongoing and that cause the snapshot to be
10971  * inconsistent (writes followed by expanding truncates for example).
10972  */
10973 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10974 {
10975 	percpu_counter_dec(&root->subv_writers->counter);
10976 	/*
10977 	 * Make sure counter is updated before we wake up waiters.
10978 	 */
10979 	smp_mb();
10980 	if (waitqueue_active(&root->subv_writers->wait))
10981 		wake_up(&root->subv_writers->wait);
10982 }
10983 
10984 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10985 {
10986 	if (atomic_read(&root->will_be_snapshoted))
10987 		return 0;
10988 
10989 	percpu_counter_inc(&root->subv_writers->counter);
10990 	/*
10991 	 * Make sure counter is updated before we check for snapshot creation.
10992 	 */
10993 	smp_mb();
10994 	if (atomic_read(&root->will_be_snapshoted)) {
10995 		btrfs_end_write_no_snapshoting(root);
10996 		return 0;
10997 	}
10998 	return 1;
10999 }
11000 
11001 static int wait_snapshoting_atomic_t(atomic_t *a)
11002 {
11003 	schedule();
11004 	return 0;
11005 }
11006 
11007 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11008 {
11009 	while (true) {
11010 		int ret;
11011 
11012 		ret = btrfs_start_write_no_snapshoting(root);
11013 		if (ret)
11014 			break;
11015 		wait_on_atomic_t(&root->will_be_snapshoted,
11016 				 wait_snapshoting_atomic_t,
11017 				 TASK_UNINTERRUPTIBLE);
11018 	}
11019 }
11020