xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 206204a1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op,
85 				int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110 			       u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112 		     u64 bytenr, u64 num_bytes, int reserved);
113 
114 static noinline int
115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117 	smp_mb();
118 	return cache->cached == BTRFS_CACHE_FINISHED ||
119 		cache->cached == BTRFS_CACHE_ERROR;
120 }
121 
122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124 	return (cache->flags & bits) == bits;
125 }
126 
127 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129 	atomic_inc(&cache->count);
130 }
131 
132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134 	if (atomic_dec_and_test(&cache->count)) {
135 		WARN_ON(cache->pinned > 0);
136 		WARN_ON(cache->reserved > 0);
137 		kfree(cache->free_space_ctl);
138 		kfree(cache);
139 	}
140 }
141 
142 /*
143  * this adds the block group to the fs_info rb tree for the block group
144  * cache
145  */
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147 				struct btrfs_block_group_cache *block_group)
148 {
149 	struct rb_node **p;
150 	struct rb_node *parent = NULL;
151 	struct btrfs_block_group_cache *cache;
152 
153 	spin_lock(&info->block_group_cache_lock);
154 	p = &info->block_group_cache_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		cache = rb_entry(parent, struct btrfs_block_group_cache,
159 				 cache_node);
160 		if (block_group->key.objectid < cache->key.objectid) {
161 			p = &(*p)->rb_left;
162 		} else if (block_group->key.objectid > cache->key.objectid) {
163 			p = &(*p)->rb_right;
164 		} else {
165 			spin_unlock(&info->block_group_cache_lock);
166 			return -EEXIST;
167 		}
168 	}
169 
170 	rb_link_node(&block_group->cache_node, parent, p);
171 	rb_insert_color(&block_group->cache_node,
172 			&info->block_group_cache_tree);
173 
174 	if (info->first_logical_byte > block_group->key.objectid)
175 		info->first_logical_byte = block_group->key.objectid;
176 
177 	spin_unlock(&info->block_group_cache_lock);
178 
179 	return 0;
180 }
181 
182 /*
183  * This will return the block group at or after bytenr if contains is 0, else
184  * it will return the block group that contains the bytenr
185  */
186 static struct btrfs_block_group_cache *
187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188 			      int contains)
189 {
190 	struct btrfs_block_group_cache *cache, *ret = NULL;
191 	struct rb_node *n;
192 	u64 end, start;
193 
194 	spin_lock(&info->block_group_cache_lock);
195 	n = info->block_group_cache_tree.rb_node;
196 
197 	while (n) {
198 		cache = rb_entry(n, struct btrfs_block_group_cache,
199 				 cache_node);
200 		end = cache->key.objectid + cache->key.offset - 1;
201 		start = cache->key.objectid;
202 
203 		if (bytenr < start) {
204 			if (!contains && (!ret || start < ret->key.objectid))
205 				ret = cache;
206 			n = n->rb_left;
207 		} else if (bytenr > start) {
208 			if (contains && bytenr <= end) {
209 				ret = cache;
210 				break;
211 			}
212 			n = n->rb_right;
213 		} else {
214 			ret = cache;
215 			break;
216 		}
217 	}
218 	if (ret) {
219 		btrfs_get_block_group(ret);
220 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221 			info->first_logical_byte = ret->key.objectid;
222 	}
223 	spin_unlock(&info->block_group_cache_lock);
224 
225 	return ret;
226 }
227 
228 static int add_excluded_extent(struct btrfs_root *root,
229 			       u64 start, u64 num_bytes)
230 {
231 	u64 end = start + num_bytes - 1;
232 	set_extent_bits(&root->fs_info->freed_extents[0],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	set_extent_bits(&root->fs_info->freed_extents[1],
235 			start, end, EXTENT_UPTODATE, GFP_NOFS);
236 	return 0;
237 }
238 
239 static void free_excluded_extents(struct btrfs_root *root,
240 				  struct btrfs_block_group_cache *cache)
241 {
242 	u64 start, end;
243 
244 	start = cache->key.objectid;
245 	end = start + cache->key.offset - 1;
246 
247 	clear_extent_bits(&root->fs_info->freed_extents[0],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 	clear_extent_bits(&root->fs_info->freed_extents[1],
250 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252 
253 static int exclude_super_stripes(struct btrfs_root *root,
254 				 struct btrfs_block_group_cache *cache)
255 {
256 	u64 bytenr;
257 	u64 *logical;
258 	int stripe_len;
259 	int i, nr, ret;
260 
261 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263 		cache->bytes_super += stripe_len;
264 		ret = add_excluded_extent(root, cache->key.objectid,
265 					  stripe_len);
266 		if (ret)
267 			return ret;
268 	}
269 
270 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271 		bytenr = btrfs_sb_offset(i);
272 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273 				       cache->key.objectid, bytenr,
274 				       0, &logical, &nr, &stripe_len);
275 		if (ret)
276 			return ret;
277 
278 		while (nr--) {
279 			u64 start, len;
280 
281 			if (logical[nr] > cache->key.objectid +
282 			    cache->key.offset)
283 				continue;
284 
285 			if (logical[nr] + stripe_len <= cache->key.objectid)
286 				continue;
287 
288 			start = logical[nr];
289 			if (start < cache->key.objectid) {
290 				start = cache->key.objectid;
291 				len = (logical[nr] + stripe_len) - start;
292 			} else {
293 				len = min_t(u64, stripe_len,
294 					    cache->key.objectid +
295 					    cache->key.offset - start);
296 			}
297 
298 			cache->bytes_super += len;
299 			ret = add_excluded_extent(root, start, len);
300 			if (ret) {
301 				kfree(logical);
302 				return ret;
303 			}
304 		}
305 
306 		kfree(logical);
307 	}
308 	return 0;
309 }
310 
311 static struct btrfs_caching_control *
312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314 	struct btrfs_caching_control *ctl;
315 
316 	spin_lock(&cache->lock);
317 	if (cache->cached != BTRFS_CACHE_STARTED) {
318 		spin_unlock(&cache->lock);
319 		return NULL;
320 	}
321 
322 	/* We're loading it the fast way, so we don't have a caching_ctl. */
323 	if (!cache->caching_ctl) {
324 		spin_unlock(&cache->lock);
325 		return NULL;
326 	}
327 
328 	ctl = cache->caching_ctl;
329 	atomic_inc(&ctl->count);
330 	spin_unlock(&cache->lock);
331 	return ctl;
332 }
333 
334 static void put_caching_control(struct btrfs_caching_control *ctl)
335 {
336 	if (atomic_dec_and_test(&ctl->count))
337 		kfree(ctl);
338 }
339 
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 			      struct btrfs_fs_info *info, u64 start, u64 end)
347 {
348 	u64 extent_start, extent_end, size, total_added = 0;
349 	int ret;
350 
351 	while (start < end) {
352 		ret = find_first_extent_bit(info->pinned_extents, start,
353 					    &extent_start, &extent_end,
354 					    EXTENT_DIRTY | EXTENT_UPTODATE,
355 					    NULL);
356 		if (ret)
357 			break;
358 
359 		if (extent_start <= start) {
360 			start = extent_end + 1;
361 		} else if (extent_start > start && extent_start < end) {
362 			size = extent_start - start;
363 			total_added += size;
364 			ret = btrfs_add_free_space(block_group, start,
365 						   size);
366 			BUG_ON(ret); /* -ENOMEM or logic error */
367 			start = extent_end + 1;
368 		} else {
369 			break;
370 		}
371 	}
372 
373 	if (start < end) {
374 		size = end - start;
375 		total_added += size;
376 		ret = btrfs_add_free_space(block_group, start, size);
377 		BUG_ON(ret); /* -ENOMEM or logic error */
378 	}
379 
380 	return total_added;
381 }
382 
383 static noinline void caching_thread(struct btrfs_work *work)
384 {
385 	struct btrfs_block_group_cache *block_group;
386 	struct btrfs_fs_info *fs_info;
387 	struct btrfs_caching_control *caching_ctl;
388 	struct btrfs_root *extent_root;
389 	struct btrfs_path *path;
390 	struct extent_buffer *leaf;
391 	struct btrfs_key key;
392 	u64 total_found = 0;
393 	u64 last = 0;
394 	u32 nritems;
395 	int ret = -ENOMEM;
396 
397 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
398 	block_group = caching_ctl->block_group;
399 	fs_info = block_group->fs_info;
400 	extent_root = fs_info->extent_root;
401 
402 	path = btrfs_alloc_path();
403 	if (!path)
404 		goto out;
405 
406 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
407 
408 	/*
409 	 * We don't want to deadlock with somebody trying to allocate a new
410 	 * extent for the extent root while also trying to search the extent
411 	 * root to add free space.  So we skip locking and search the commit
412 	 * root, since its read-only
413 	 */
414 	path->skip_locking = 1;
415 	path->search_commit_root = 1;
416 	path->reada = 1;
417 
418 	key.objectid = last;
419 	key.offset = 0;
420 	key.type = BTRFS_EXTENT_ITEM_KEY;
421 again:
422 	mutex_lock(&caching_ctl->mutex);
423 	/* need to make sure the commit_root doesn't disappear */
424 	down_read(&fs_info->commit_root_sem);
425 
426 next:
427 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
428 	if (ret < 0)
429 		goto err;
430 
431 	leaf = path->nodes[0];
432 	nritems = btrfs_header_nritems(leaf);
433 
434 	while (1) {
435 		if (btrfs_fs_closing(fs_info) > 1) {
436 			last = (u64)-1;
437 			break;
438 		}
439 
440 		if (path->slots[0] < nritems) {
441 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 		} else {
443 			ret = find_next_key(path, 0, &key);
444 			if (ret)
445 				break;
446 
447 			if (need_resched() ||
448 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
449 				caching_ctl->progress = last;
450 				btrfs_release_path(path);
451 				up_read(&fs_info->commit_root_sem);
452 				mutex_unlock(&caching_ctl->mutex);
453 				cond_resched();
454 				goto again;
455 			}
456 
457 			ret = btrfs_next_leaf(extent_root, path);
458 			if (ret < 0)
459 				goto err;
460 			if (ret)
461 				break;
462 			leaf = path->nodes[0];
463 			nritems = btrfs_header_nritems(leaf);
464 			continue;
465 		}
466 
467 		if (key.objectid < last) {
468 			key.objectid = last;
469 			key.offset = 0;
470 			key.type = BTRFS_EXTENT_ITEM_KEY;
471 
472 			caching_ctl->progress = last;
473 			btrfs_release_path(path);
474 			goto next;
475 		}
476 
477 		if (key.objectid < block_group->key.objectid) {
478 			path->slots[0]++;
479 			continue;
480 		}
481 
482 		if (key.objectid >= block_group->key.objectid +
483 		    block_group->key.offset)
484 			break;
485 
486 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 		    key.type == BTRFS_METADATA_ITEM_KEY) {
488 			total_found += add_new_free_space(block_group,
489 							  fs_info, last,
490 							  key.objectid);
491 			if (key.type == BTRFS_METADATA_ITEM_KEY)
492 				last = key.objectid +
493 					fs_info->tree_root->leafsize;
494 			else
495 				last = key.objectid + key.offset;
496 
497 			if (total_found > (1024 * 1024 * 2)) {
498 				total_found = 0;
499 				wake_up(&caching_ctl->wait);
500 			}
501 		}
502 		path->slots[0]++;
503 	}
504 	ret = 0;
505 
506 	total_found += add_new_free_space(block_group, fs_info, last,
507 					  block_group->key.objectid +
508 					  block_group->key.offset);
509 	caching_ctl->progress = (u64)-1;
510 
511 	spin_lock(&block_group->lock);
512 	block_group->caching_ctl = NULL;
513 	block_group->cached = BTRFS_CACHE_FINISHED;
514 	spin_unlock(&block_group->lock);
515 
516 err:
517 	btrfs_free_path(path);
518 	up_read(&fs_info->commit_root_sem);
519 
520 	free_excluded_extents(extent_root, block_group);
521 
522 	mutex_unlock(&caching_ctl->mutex);
523 out:
524 	if (ret) {
525 		spin_lock(&block_group->lock);
526 		block_group->caching_ctl = NULL;
527 		block_group->cached = BTRFS_CACHE_ERROR;
528 		spin_unlock(&block_group->lock);
529 	}
530 	wake_up(&caching_ctl->wait);
531 
532 	put_caching_control(caching_ctl);
533 	btrfs_put_block_group(block_group);
534 }
535 
536 static int cache_block_group(struct btrfs_block_group_cache *cache,
537 			     int load_cache_only)
538 {
539 	DEFINE_WAIT(wait);
540 	struct btrfs_fs_info *fs_info = cache->fs_info;
541 	struct btrfs_caching_control *caching_ctl;
542 	int ret = 0;
543 
544 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
545 	if (!caching_ctl)
546 		return -ENOMEM;
547 
548 	INIT_LIST_HEAD(&caching_ctl->list);
549 	mutex_init(&caching_ctl->mutex);
550 	init_waitqueue_head(&caching_ctl->wait);
551 	caching_ctl->block_group = cache;
552 	caching_ctl->progress = cache->key.objectid;
553 	atomic_set(&caching_ctl->count, 1);
554 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
555 
556 	spin_lock(&cache->lock);
557 	/*
558 	 * This should be a rare occasion, but this could happen I think in the
559 	 * case where one thread starts to load the space cache info, and then
560 	 * some other thread starts a transaction commit which tries to do an
561 	 * allocation while the other thread is still loading the space cache
562 	 * info.  The previous loop should have kept us from choosing this block
563 	 * group, but if we've moved to the state where we will wait on caching
564 	 * block groups we need to first check if we're doing a fast load here,
565 	 * so we can wait for it to finish, otherwise we could end up allocating
566 	 * from a block group who's cache gets evicted for one reason or
567 	 * another.
568 	 */
569 	while (cache->cached == BTRFS_CACHE_FAST) {
570 		struct btrfs_caching_control *ctl;
571 
572 		ctl = cache->caching_ctl;
573 		atomic_inc(&ctl->count);
574 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
575 		spin_unlock(&cache->lock);
576 
577 		schedule();
578 
579 		finish_wait(&ctl->wait, &wait);
580 		put_caching_control(ctl);
581 		spin_lock(&cache->lock);
582 	}
583 
584 	if (cache->cached != BTRFS_CACHE_NO) {
585 		spin_unlock(&cache->lock);
586 		kfree(caching_ctl);
587 		return 0;
588 	}
589 	WARN_ON(cache->caching_ctl);
590 	cache->caching_ctl = caching_ctl;
591 	cache->cached = BTRFS_CACHE_FAST;
592 	spin_unlock(&cache->lock);
593 
594 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
595 		ret = load_free_space_cache(fs_info, cache);
596 
597 		spin_lock(&cache->lock);
598 		if (ret == 1) {
599 			cache->caching_ctl = NULL;
600 			cache->cached = BTRFS_CACHE_FINISHED;
601 			cache->last_byte_to_unpin = (u64)-1;
602 		} else {
603 			if (load_cache_only) {
604 				cache->caching_ctl = NULL;
605 				cache->cached = BTRFS_CACHE_NO;
606 			} else {
607 				cache->cached = BTRFS_CACHE_STARTED;
608 			}
609 		}
610 		spin_unlock(&cache->lock);
611 		wake_up(&caching_ctl->wait);
612 		if (ret == 1) {
613 			put_caching_control(caching_ctl);
614 			free_excluded_extents(fs_info->extent_root, cache);
615 			return 0;
616 		}
617 	} else {
618 		/*
619 		 * We are not going to do the fast caching, set cached to the
620 		 * appropriate value and wakeup any waiters.
621 		 */
622 		spin_lock(&cache->lock);
623 		if (load_cache_only) {
624 			cache->caching_ctl = NULL;
625 			cache->cached = BTRFS_CACHE_NO;
626 		} else {
627 			cache->cached = BTRFS_CACHE_STARTED;
628 		}
629 		spin_unlock(&cache->lock);
630 		wake_up(&caching_ctl->wait);
631 	}
632 
633 	if (load_cache_only) {
634 		put_caching_control(caching_ctl);
635 		return 0;
636 	}
637 
638 	down_write(&fs_info->commit_root_sem);
639 	atomic_inc(&caching_ctl->count);
640 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
641 	up_write(&fs_info->commit_root_sem);
642 
643 	btrfs_get_block_group(cache);
644 
645 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
646 
647 	return ret;
648 }
649 
650 /*
651  * return the block group that starts at or after bytenr
652  */
653 static struct btrfs_block_group_cache *
654 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
655 {
656 	struct btrfs_block_group_cache *cache;
657 
658 	cache = block_group_cache_tree_search(info, bytenr, 0);
659 
660 	return cache;
661 }
662 
663 /*
664  * return the block group that contains the given bytenr
665  */
666 struct btrfs_block_group_cache *btrfs_lookup_block_group(
667 						 struct btrfs_fs_info *info,
668 						 u64 bytenr)
669 {
670 	struct btrfs_block_group_cache *cache;
671 
672 	cache = block_group_cache_tree_search(info, bytenr, 1);
673 
674 	return cache;
675 }
676 
677 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
678 						  u64 flags)
679 {
680 	struct list_head *head = &info->space_info;
681 	struct btrfs_space_info *found;
682 
683 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
684 
685 	rcu_read_lock();
686 	list_for_each_entry_rcu(found, head, list) {
687 		if (found->flags & flags) {
688 			rcu_read_unlock();
689 			return found;
690 		}
691 	}
692 	rcu_read_unlock();
693 	return NULL;
694 }
695 
696 /*
697  * after adding space to the filesystem, we need to clear the full flags
698  * on all the space infos.
699  */
700 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
701 {
702 	struct list_head *head = &info->space_info;
703 	struct btrfs_space_info *found;
704 
705 	rcu_read_lock();
706 	list_for_each_entry_rcu(found, head, list)
707 		found->full = 0;
708 	rcu_read_unlock();
709 }
710 
711 /* simple helper to search for an existing extent at a given offset */
712 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
713 {
714 	int ret;
715 	struct btrfs_key key;
716 	struct btrfs_path *path;
717 
718 	path = btrfs_alloc_path();
719 	if (!path)
720 		return -ENOMEM;
721 
722 	key.objectid = start;
723 	key.offset = len;
724 	key.type = BTRFS_EXTENT_ITEM_KEY;
725 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
726 				0, 0);
727 	if (ret > 0) {
728 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
729 		if (key.objectid == start &&
730 		    key.type == BTRFS_METADATA_ITEM_KEY)
731 			ret = 0;
732 	}
733 	btrfs_free_path(path);
734 	return ret;
735 }
736 
737 /*
738  * helper function to lookup reference count and flags of a tree block.
739  *
740  * the head node for delayed ref is used to store the sum of all the
741  * reference count modifications queued up in the rbtree. the head
742  * node may also store the extent flags to set. This way you can check
743  * to see what the reference count and extent flags would be if all of
744  * the delayed refs are not processed.
745  */
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 			     struct btrfs_root *root, u64 bytenr,
748 			     u64 offset, int metadata, u64 *refs, u64 *flags)
749 {
750 	struct btrfs_delayed_ref_head *head;
751 	struct btrfs_delayed_ref_root *delayed_refs;
752 	struct btrfs_path *path;
753 	struct btrfs_extent_item *ei;
754 	struct extent_buffer *leaf;
755 	struct btrfs_key key;
756 	u32 item_size;
757 	u64 num_refs;
758 	u64 extent_flags;
759 	int ret;
760 
761 	/*
762 	 * If we don't have skinny metadata, don't bother doing anything
763 	 * different
764 	 */
765 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
766 		offset = root->leafsize;
767 		metadata = 0;
768 	}
769 
770 	path = btrfs_alloc_path();
771 	if (!path)
772 		return -ENOMEM;
773 
774 	if (!trans) {
775 		path->skip_locking = 1;
776 		path->search_commit_root = 1;
777 	}
778 
779 search_again:
780 	key.objectid = bytenr;
781 	key.offset = offset;
782 	if (metadata)
783 		key.type = BTRFS_METADATA_ITEM_KEY;
784 	else
785 		key.type = BTRFS_EXTENT_ITEM_KEY;
786 
787 again:
788 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
789 				&key, path, 0, 0);
790 	if (ret < 0)
791 		goto out_free;
792 
793 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
794 		if (path->slots[0]) {
795 			path->slots[0]--;
796 			btrfs_item_key_to_cpu(path->nodes[0], &key,
797 					      path->slots[0]);
798 			if (key.objectid == bytenr &&
799 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
800 			    key.offset == root->leafsize)
801 				ret = 0;
802 		}
803 		if (ret) {
804 			key.objectid = bytenr;
805 			key.type = BTRFS_EXTENT_ITEM_KEY;
806 			key.offset = root->leafsize;
807 			btrfs_release_path(path);
808 			goto again;
809 		}
810 	}
811 
812 	if (ret == 0) {
813 		leaf = path->nodes[0];
814 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
815 		if (item_size >= sizeof(*ei)) {
816 			ei = btrfs_item_ptr(leaf, path->slots[0],
817 					    struct btrfs_extent_item);
818 			num_refs = btrfs_extent_refs(leaf, ei);
819 			extent_flags = btrfs_extent_flags(leaf, ei);
820 		} else {
821 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
822 			struct btrfs_extent_item_v0 *ei0;
823 			BUG_ON(item_size != sizeof(*ei0));
824 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
825 					     struct btrfs_extent_item_v0);
826 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
827 			/* FIXME: this isn't correct for data */
828 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
829 #else
830 			BUG();
831 #endif
832 		}
833 		BUG_ON(num_refs == 0);
834 	} else {
835 		num_refs = 0;
836 		extent_flags = 0;
837 		ret = 0;
838 	}
839 
840 	if (!trans)
841 		goto out;
842 
843 	delayed_refs = &trans->transaction->delayed_refs;
844 	spin_lock(&delayed_refs->lock);
845 	head = btrfs_find_delayed_ref_head(trans, bytenr);
846 	if (head) {
847 		if (!mutex_trylock(&head->mutex)) {
848 			atomic_inc(&head->node.refs);
849 			spin_unlock(&delayed_refs->lock);
850 
851 			btrfs_release_path(path);
852 
853 			/*
854 			 * Mutex was contended, block until it's released and try
855 			 * again
856 			 */
857 			mutex_lock(&head->mutex);
858 			mutex_unlock(&head->mutex);
859 			btrfs_put_delayed_ref(&head->node);
860 			goto search_again;
861 		}
862 		spin_lock(&head->lock);
863 		if (head->extent_op && head->extent_op->update_flags)
864 			extent_flags |= head->extent_op->flags_to_set;
865 		else
866 			BUG_ON(num_refs == 0);
867 
868 		num_refs += head->node.ref_mod;
869 		spin_unlock(&head->lock);
870 		mutex_unlock(&head->mutex);
871 	}
872 	spin_unlock(&delayed_refs->lock);
873 out:
874 	WARN_ON(num_refs == 0);
875 	if (refs)
876 		*refs = num_refs;
877 	if (flags)
878 		*flags = extent_flags;
879 out_free:
880 	btrfs_free_path(path);
881 	return ret;
882 }
883 
884 /*
885  * Back reference rules.  Back refs have three main goals:
886  *
887  * 1) differentiate between all holders of references to an extent so that
888  *    when a reference is dropped we can make sure it was a valid reference
889  *    before freeing the extent.
890  *
891  * 2) Provide enough information to quickly find the holders of an extent
892  *    if we notice a given block is corrupted or bad.
893  *
894  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
895  *    maintenance.  This is actually the same as #2, but with a slightly
896  *    different use case.
897  *
898  * There are two kinds of back refs. The implicit back refs is optimized
899  * for pointers in non-shared tree blocks. For a given pointer in a block,
900  * back refs of this kind provide information about the block's owner tree
901  * and the pointer's key. These information allow us to find the block by
902  * b-tree searching. The full back refs is for pointers in tree blocks not
903  * referenced by their owner trees. The location of tree block is recorded
904  * in the back refs. Actually the full back refs is generic, and can be
905  * used in all cases the implicit back refs is used. The major shortcoming
906  * of the full back refs is its overhead. Every time a tree block gets
907  * COWed, we have to update back refs entry for all pointers in it.
908  *
909  * For a newly allocated tree block, we use implicit back refs for
910  * pointers in it. This means most tree related operations only involve
911  * implicit back refs. For a tree block created in old transaction, the
912  * only way to drop a reference to it is COW it. So we can detect the
913  * event that tree block loses its owner tree's reference and do the
914  * back refs conversion.
915  *
916  * When a tree block is COW'd through a tree, there are four cases:
917  *
918  * The reference count of the block is one and the tree is the block's
919  * owner tree. Nothing to do in this case.
920  *
921  * The reference count of the block is one and the tree is not the
922  * block's owner tree. In this case, full back refs is used for pointers
923  * in the block. Remove these full back refs, add implicit back refs for
924  * every pointers in the new block.
925  *
926  * The reference count of the block is greater than one and the tree is
927  * the block's owner tree. In this case, implicit back refs is used for
928  * pointers in the block. Add full back refs for every pointers in the
929  * block, increase lower level extents' reference counts. The original
930  * implicit back refs are entailed to the new block.
931  *
932  * The reference count of the block is greater than one and the tree is
933  * not the block's owner tree. Add implicit back refs for every pointer in
934  * the new block, increase lower level extents' reference count.
935  *
936  * Back Reference Key composing:
937  *
938  * The key objectid corresponds to the first byte in the extent,
939  * The key type is used to differentiate between types of back refs.
940  * There are different meanings of the key offset for different types
941  * of back refs.
942  *
943  * File extents can be referenced by:
944  *
945  * - multiple snapshots, subvolumes, or different generations in one subvol
946  * - different files inside a single subvolume
947  * - different offsets inside a file (bookend extents in file.c)
948  *
949  * The extent ref structure for the implicit back refs has fields for:
950  *
951  * - Objectid of the subvolume root
952  * - objectid of the file holding the reference
953  * - original offset in the file
954  * - how many bookend extents
955  *
956  * The key offset for the implicit back refs is hash of the first
957  * three fields.
958  *
959  * The extent ref structure for the full back refs has field for:
960  *
961  * - number of pointers in the tree leaf
962  *
963  * The key offset for the implicit back refs is the first byte of
964  * the tree leaf
965  *
966  * When a file extent is allocated, The implicit back refs is used.
967  * the fields are filled in:
968  *
969  *     (root_key.objectid, inode objectid, offset in file, 1)
970  *
971  * When a file extent is removed file truncation, we find the
972  * corresponding implicit back refs and check the following fields:
973  *
974  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
975  *
976  * Btree extents can be referenced by:
977  *
978  * - Different subvolumes
979  *
980  * Both the implicit back refs and the full back refs for tree blocks
981  * only consist of key. The key offset for the implicit back refs is
982  * objectid of block's owner tree. The key offset for the full back refs
983  * is the first byte of parent block.
984  *
985  * When implicit back refs is used, information about the lowest key and
986  * level of the tree block are required. These information are stored in
987  * tree block info structure.
988  */
989 
990 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
991 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
992 				  struct btrfs_root *root,
993 				  struct btrfs_path *path,
994 				  u64 owner, u32 extra_size)
995 {
996 	struct btrfs_extent_item *item;
997 	struct btrfs_extent_item_v0 *ei0;
998 	struct btrfs_extent_ref_v0 *ref0;
999 	struct btrfs_tree_block_info *bi;
1000 	struct extent_buffer *leaf;
1001 	struct btrfs_key key;
1002 	struct btrfs_key found_key;
1003 	u32 new_size = sizeof(*item);
1004 	u64 refs;
1005 	int ret;
1006 
1007 	leaf = path->nodes[0];
1008 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1009 
1010 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1011 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1012 			     struct btrfs_extent_item_v0);
1013 	refs = btrfs_extent_refs_v0(leaf, ei0);
1014 
1015 	if (owner == (u64)-1) {
1016 		while (1) {
1017 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1018 				ret = btrfs_next_leaf(root, path);
1019 				if (ret < 0)
1020 					return ret;
1021 				BUG_ON(ret > 0); /* Corruption */
1022 				leaf = path->nodes[0];
1023 			}
1024 			btrfs_item_key_to_cpu(leaf, &found_key,
1025 					      path->slots[0]);
1026 			BUG_ON(key.objectid != found_key.objectid);
1027 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1028 				path->slots[0]++;
1029 				continue;
1030 			}
1031 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1032 					      struct btrfs_extent_ref_v0);
1033 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1034 			break;
1035 		}
1036 	}
1037 	btrfs_release_path(path);
1038 
1039 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1040 		new_size += sizeof(*bi);
1041 
1042 	new_size -= sizeof(*ei0);
1043 	ret = btrfs_search_slot(trans, root, &key, path,
1044 				new_size + extra_size, 1);
1045 	if (ret < 0)
1046 		return ret;
1047 	BUG_ON(ret); /* Corruption */
1048 
1049 	btrfs_extend_item(root, path, new_size);
1050 
1051 	leaf = path->nodes[0];
1052 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1053 	btrfs_set_extent_refs(leaf, item, refs);
1054 	/* FIXME: get real generation */
1055 	btrfs_set_extent_generation(leaf, item, 0);
1056 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 		btrfs_set_extent_flags(leaf, item,
1058 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1059 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1060 		bi = (struct btrfs_tree_block_info *)(item + 1);
1061 		/* FIXME: get first key of the block */
1062 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1063 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1064 	} else {
1065 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1066 	}
1067 	btrfs_mark_buffer_dirty(leaf);
1068 	return 0;
1069 }
1070 #endif
1071 
1072 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1073 {
1074 	u32 high_crc = ~(u32)0;
1075 	u32 low_crc = ~(u32)0;
1076 	__le64 lenum;
1077 
1078 	lenum = cpu_to_le64(root_objectid);
1079 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1080 	lenum = cpu_to_le64(owner);
1081 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082 	lenum = cpu_to_le64(offset);
1083 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1084 
1085 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1086 }
1087 
1088 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1089 				     struct btrfs_extent_data_ref *ref)
1090 {
1091 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1092 				    btrfs_extent_data_ref_objectid(leaf, ref),
1093 				    btrfs_extent_data_ref_offset(leaf, ref));
1094 }
1095 
1096 static int match_extent_data_ref(struct extent_buffer *leaf,
1097 				 struct btrfs_extent_data_ref *ref,
1098 				 u64 root_objectid, u64 owner, u64 offset)
1099 {
1100 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1101 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1102 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1103 		return 0;
1104 	return 1;
1105 }
1106 
1107 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1108 					   struct btrfs_root *root,
1109 					   struct btrfs_path *path,
1110 					   u64 bytenr, u64 parent,
1111 					   u64 root_objectid,
1112 					   u64 owner, u64 offset)
1113 {
1114 	struct btrfs_key key;
1115 	struct btrfs_extent_data_ref *ref;
1116 	struct extent_buffer *leaf;
1117 	u32 nritems;
1118 	int ret;
1119 	int recow;
1120 	int err = -ENOENT;
1121 
1122 	key.objectid = bytenr;
1123 	if (parent) {
1124 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1125 		key.offset = parent;
1126 	} else {
1127 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1128 		key.offset = hash_extent_data_ref(root_objectid,
1129 						  owner, offset);
1130 	}
1131 again:
1132 	recow = 0;
1133 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 	if (ret < 0) {
1135 		err = ret;
1136 		goto fail;
1137 	}
1138 
1139 	if (parent) {
1140 		if (!ret)
1141 			return 0;
1142 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1143 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1144 		btrfs_release_path(path);
1145 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1146 		if (ret < 0) {
1147 			err = ret;
1148 			goto fail;
1149 		}
1150 		if (!ret)
1151 			return 0;
1152 #endif
1153 		goto fail;
1154 	}
1155 
1156 	leaf = path->nodes[0];
1157 	nritems = btrfs_header_nritems(leaf);
1158 	while (1) {
1159 		if (path->slots[0] >= nritems) {
1160 			ret = btrfs_next_leaf(root, path);
1161 			if (ret < 0)
1162 				err = ret;
1163 			if (ret)
1164 				goto fail;
1165 
1166 			leaf = path->nodes[0];
1167 			nritems = btrfs_header_nritems(leaf);
1168 			recow = 1;
1169 		}
1170 
1171 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1172 		if (key.objectid != bytenr ||
1173 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1174 			goto fail;
1175 
1176 		ref = btrfs_item_ptr(leaf, path->slots[0],
1177 				     struct btrfs_extent_data_ref);
1178 
1179 		if (match_extent_data_ref(leaf, ref, root_objectid,
1180 					  owner, offset)) {
1181 			if (recow) {
1182 				btrfs_release_path(path);
1183 				goto again;
1184 			}
1185 			err = 0;
1186 			break;
1187 		}
1188 		path->slots[0]++;
1189 	}
1190 fail:
1191 	return err;
1192 }
1193 
1194 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1195 					   struct btrfs_root *root,
1196 					   struct btrfs_path *path,
1197 					   u64 bytenr, u64 parent,
1198 					   u64 root_objectid, u64 owner,
1199 					   u64 offset, int refs_to_add)
1200 {
1201 	struct btrfs_key key;
1202 	struct extent_buffer *leaf;
1203 	u32 size;
1204 	u32 num_refs;
1205 	int ret;
1206 
1207 	key.objectid = bytenr;
1208 	if (parent) {
1209 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1210 		key.offset = parent;
1211 		size = sizeof(struct btrfs_shared_data_ref);
1212 	} else {
1213 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1214 		key.offset = hash_extent_data_ref(root_objectid,
1215 						  owner, offset);
1216 		size = sizeof(struct btrfs_extent_data_ref);
1217 	}
1218 
1219 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1220 	if (ret && ret != -EEXIST)
1221 		goto fail;
1222 
1223 	leaf = path->nodes[0];
1224 	if (parent) {
1225 		struct btrfs_shared_data_ref *ref;
1226 		ref = btrfs_item_ptr(leaf, path->slots[0],
1227 				     struct btrfs_shared_data_ref);
1228 		if (ret == 0) {
1229 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1230 		} else {
1231 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1232 			num_refs += refs_to_add;
1233 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1234 		}
1235 	} else {
1236 		struct btrfs_extent_data_ref *ref;
1237 		while (ret == -EEXIST) {
1238 			ref = btrfs_item_ptr(leaf, path->slots[0],
1239 					     struct btrfs_extent_data_ref);
1240 			if (match_extent_data_ref(leaf, ref, root_objectid,
1241 						  owner, offset))
1242 				break;
1243 			btrfs_release_path(path);
1244 			key.offset++;
1245 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1246 						      size);
1247 			if (ret && ret != -EEXIST)
1248 				goto fail;
1249 
1250 			leaf = path->nodes[0];
1251 		}
1252 		ref = btrfs_item_ptr(leaf, path->slots[0],
1253 				     struct btrfs_extent_data_ref);
1254 		if (ret == 0) {
1255 			btrfs_set_extent_data_ref_root(leaf, ref,
1256 						       root_objectid);
1257 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1258 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1259 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1260 		} else {
1261 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1262 			num_refs += refs_to_add;
1263 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1264 		}
1265 	}
1266 	btrfs_mark_buffer_dirty(leaf);
1267 	ret = 0;
1268 fail:
1269 	btrfs_release_path(path);
1270 	return ret;
1271 }
1272 
1273 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1274 					   struct btrfs_root *root,
1275 					   struct btrfs_path *path,
1276 					   int refs_to_drop, int *last_ref)
1277 {
1278 	struct btrfs_key key;
1279 	struct btrfs_extent_data_ref *ref1 = NULL;
1280 	struct btrfs_shared_data_ref *ref2 = NULL;
1281 	struct extent_buffer *leaf;
1282 	u32 num_refs = 0;
1283 	int ret = 0;
1284 
1285 	leaf = path->nodes[0];
1286 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1287 
1288 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1289 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1290 				      struct btrfs_extent_data_ref);
1291 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1292 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1293 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1294 				      struct btrfs_shared_data_ref);
1295 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1296 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1297 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1298 		struct btrfs_extent_ref_v0 *ref0;
1299 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1300 				      struct btrfs_extent_ref_v0);
1301 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1302 #endif
1303 	} else {
1304 		BUG();
1305 	}
1306 
1307 	BUG_ON(num_refs < refs_to_drop);
1308 	num_refs -= refs_to_drop;
1309 
1310 	if (num_refs == 0) {
1311 		ret = btrfs_del_item(trans, root, path);
1312 		*last_ref = 1;
1313 	} else {
1314 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1315 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1316 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1317 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1318 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1319 		else {
1320 			struct btrfs_extent_ref_v0 *ref0;
1321 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1322 					struct btrfs_extent_ref_v0);
1323 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1324 		}
1325 #endif
1326 		btrfs_mark_buffer_dirty(leaf);
1327 	}
1328 	return ret;
1329 }
1330 
1331 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1332 					  struct btrfs_path *path,
1333 					  struct btrfs_extent_inline_ref *iref)
1334 {
1335 	struct btrfs_key key;
1336 	struct extent_buffer *leaf;
1337 	struct btrfs_extent_data_ref *ref1;
1338 	struct btrfs_shared_data_ref *ref2;
1339 	u32 num_refs = 0;
1340 
1341 	leaf = path->nodes[0];
1342 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1343 	if (iref) {
1344 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1345 		    BTRFS_EXTENT_DATA_REF_KEY) {
1346 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1347 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1348 		} else {
1349 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1350 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351 		}
1352 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1353 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1354 				      struct btrfs_extent_data_ref);
1355 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1357 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1358 				      struct btrfs_shared_data_ref);
1359 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1360 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1361 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1362 		struct btrfs_extent_ref_v0 *ref0;
1363 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1364 				      struct btrfs_extent_ref_v0);
1365 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1366 #endif
1367 	} else {
1368 		WARN_ON(1);
1369 	}
1370 	return num_refs;
1371 }
1372 
1373 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1374 					  struct btrfs_root *root,
1375 					  struct btrfs_path *path,
1376 					  u64 bytenr, u64 parent,
1377 					  u64 root_objectid)
1378 {
1379 	struct btrfs_key key;
1380 	int ret;
1381 
1382 	key.objectid = bytenr;
1383 	if (parent) {
1384 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1385 		key.offset = parent;
1386 	} else {
1387 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1388 		key.offset = root_objectid;
1389 	}
1390 
1391 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1392 	if (ret > 0)
1393 		ret = -ENOENT;
1394 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1395 	if (ret == -ENOENT && parent) {
1396 		btrfs_release_path(path);
1397 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1398 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1399 		if (ret > 0)
1400 			ret = -ENOENT;
1401 	}
1402 #endif
1403 	return ret;
1404 }
1405 
1406 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1407 					  struct btrfs_root *root,
1408 					  struct btrfs_path *path,
1409 					  u64 bytenr, u64 parent,
1410 					  u64 root_objectid)
1411 {
1412 	struct btrfs_key key;
1413 	int ret;
1414 
1415 	key.objectid = bytenr;
1416 	if (parent) {
1417 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1418 		key.offset = parent;
1419 	} else {
1420 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1421 		key.offset = root_objectid;
1422 	}
1423 
1424 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1425 	btrfs_release_path(path);
1426 	return ret;
1427 }
1428 
1429 static inline int extent_ref_type(u64 parent, u64 owner)
1430 {
1431 	int type;
1432 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1433 		if (parent > 0)
1434 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1435 		else
1436 			type = BTRFS_TREE_BLOCK_REF_KEY;
1437 	} else {
1438 		if (parent > 0)
1439 			type = BTRFS_SHARED_DATA_REF_KEY;
1440 		else
1441 			type = BTRFS_EXTENT_DATA_REF_KEY;
1442 	}
1443 	return type;
1444 }
1445 
1446 static int find_next_key(struct btrfs_path *path, int level,
1447 			 struct btrfs_key *key)
1448 
1449 {
1450 	for (; level < BTRFS_MAX_LEVEL; level++) {
1451 		if (!path->nodes[level])
1452 			break;
1453 		if (path->slots[level] + 1 >=
1454 		    btrfs_header_nritems(path->nodes[level]))
1455 			continue;
1456 		if (level == 0)
1457 			btrfs_item_key_to_cpu(path->nodes[level], key,
1458 					      path->slots[level] + 1);
1459 		else
1460 			btrfs_node_key_to_cpu(path->nodes[level], key,
1461 					      path->slots[level] + 1);
1462 		return 0;
1463 	}
1464 	return 1;
1465 }
1466 
1467 /*
1468  * look for inline back ref. if back ref is found, *ref_ret is set
1469  * to the address of inline back ref, and 0 is returned.
1470  *
1471  * if back ref isn't found, *ref_ret is set to the address where it
1472  * should be inserted, and -ENOENT is returned.
1473  *
1474  * if insert is true and there are too many inline back refs, the path
1475  * points to the extent item, and -EAGAIN is returned.
1476  *
1477  * NOTE: inline back refs are ordered in the same way that back ref
1478  *	 items in the tree are ordered.
1479  */
1480 static noinline_for_stack
1481 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1482 				 struct btrfs_root *root,
1483 				 struct btrfs_path *path,
1484 				 struct btrfs_extent_inline_ref **ref_ret,
1485 				 u64 bytenr, u64 num_bytes,
1486 				 u64 parent, u64 root_objectid,
1487 				 u64 owner, u64 offset, int insert)
1488 {
1489 	struct btrfs_key key;
1490 	struct extent_buffer *leaf;
1491 	struct btrfs_extent_item *ei;
1492 	struct btrfs_extent_inline_ref *iref;
1493 	u64 flags;
1494 	u64 item_size;
1495 	unsigned long ptr;
1496 	unsigned long end;
1497 	int extra_size;
1498 	int type;
1499 	int want;
1500 	int ret;
1501 	int err = 0;
1502 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1503 						 SKINNY_METADATA);
1504 
1505 	key.objectid = bytenr;
1506 	key.type = BTRFS_EXTENT_ITEM_KEY;
1507 	key.offset = num_bytes;
1508 
1509 	want = extent_ref_type(parent, owner);
1510 	if (insert) {
1511 		extra_size = btrfs_extent_inline_ref_size(want);
1512 		path->keep_locks = 1;
1513 	} else
1514 		extra_size = -1;
1515 
1516 	/*
1517 	 * Owner is our parent level, so we can just add one to get the level
1518 	 * for the block we are interested in.
1519 	 */
1520 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1521 		key.type = BTRFS_METADATA_ITEM_KEY;
1522 		key.offset = owner;
1523 	}
1524 
1525 again:
1526 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1527 	if (ret < 0) {
1528 		err = ret;
1529 		goto out;
1530 	}
1531 
1532 	/*
1533 	 * We may be a newly converted file system which still has the old fat
1534 	 * extent entries for metadata, so try and see if we have one of those.
1535 	 */
1536 	if (ret > 0 && skinny_metadata) {
1537 		skinny_metadata = false;
1538 		if (path->slots[0]) {
1539 			path->slots[0]--;
1540 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1541 					      path->slots[0]);
1542 			if (key.objectid == bytenr &&
1543 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1544 			    key.offset == num_bytes)
1545 				ret = 0;
1546 		}
1547 		if (ret) {
1548 			key.objectid = bytenr;
1549 			key.type = BTRFS_EXTENT_ITEM_KEY;
1550 			key.offset = num_bytes;
1551 			btrfs_release_path(path);
1552 			goto again;
1553 		}
1554 	}
1555 
1556 	if (ret && !insert) {
1557 		err = -ENOENT;
1558 		goto out;
1559 	} else if (WARN_ON(ret)) {
1560 		err = -EIO;
1561 		goto out;
1562 	}
1563 
1564 	leaf = path->nodes[0];
1565 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1566 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1567 	if (item_size < sizeof(*ei)) {
1568 		if (!insert) {
1569 			err = -ENOENT;
1570 			goto out;
1571 		}
1572 		ret = convert_extent_item_v0(trans, root, path, owner,
1573 					     extra_size);
1574 		if (ret < 0) {
1575 			err = ret;
1576 			goto out;
1577 		}
1578 		leaf = path->nodes[0];
1579 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1580 	}
1581 #endif
1582 	BUG_ON(item_size < sizeof(*ei));
1583 
1584 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 	flags = btrfs_extent_flags(leaf, ei);
1586 
1587 	ptr = (unsigned long)(ei + 1);
1588 	end = (unsigned long)ei + item_size;
1589 
1590 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1591 		ptr += sizeof(struct btrfs_tree_block_info);
1592 		BUG_ON(ptr > end);
1593 	}
1594 
1595 	err = -ENOENT;
1596 	while (1) {
1597 		if (ptr >= end) {
1598 			WARN_ON(ptr > end);
1599 			break;
1600 		}
1601 		iref = (struct btrfs_extent_inline_ref *)ptr;
1602 		type = btrfs_extent_inline_ref_type(leaf, iref);
1603 		if (want < type)
1604 			break;
1605 		if (want > type) {
1606 			ptr += btrfs_extent_inline_ref_size(type);
1607 			continue;
1608 		}
1609 
1610 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1611 			struct btrfs_extent_data_ref *dref;
1612 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1613 			if (match_extent_data_ref(leaf, dref, root_objectid,
1614 						  owner, offset)) {
1615 				err = 0;
1616 				break;
1617 			}
1618 			if (hash_extent_data_ref_item(leaf, dref) <
1619 			    hash_extent_data_ref(root_objectid, owner, offset))
1620 				break;
1621 		} else {
1622 			u64 ref_offset;
1623 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1624 			if (parent > 0) {
1625 				if (parent == ref_offset) {
1626 					err = 0;
1627 					break;
1628 				}
1629 				if (ref_offset < parent)
1630 					break;
1631 			} else {
1632 				if (root_objectid == ref_offset) {
1633 					err = 0;
1634 					break;
1635 				}
1636 				if (ref_offset < root_objectid)
1637 					break;
1638 			}
1639 		}
1640 		ptr += btrfs_extent_inline_ref_size(type);
1641 	}
1642 	if (err == -ENOENT && insert) {
1643 		if (item_size + extra_size >=
1644 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1645 			err = -EAGAIN;
1646 			goto out;
1647 		}
1648 		/*
1649 		 * To add new inline back ref, we have to make sure
1650 		 * there is no corresponding back ref item.
1651 		 * For simplicity, we just do not add new inline back
1652 		 * ref if there is any kind of item for this block
1653 		 */
1654 		if (find_next_key(path, 0, &key) == 0 &&
1655 		    key.objectid == bytenr &&
1656 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1657 			err = -EAGAIN;
1658 			goto out;
1659 		}
1660 	}
1661 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1662 out:
1663 	if (insert) {
1664 		path->keep_locks = 0;
1665 		btrfs_unlock_up_safe(path, 1);
1666 	}
1667 	return err;
1668 }
1669 
1670 /*
1671  * helper to add new inline back ref
1672  */
1673 static noinline_for_stack
1674 void setup_inline_extent_backref(struct btrfs_root *root,
1675 				 struct btrfs_path *path,
1676 				 struct btrfs_extent_inline_ref *iref,
1677 				 u64 parent, u64 root_objectid,
1678 				 u64 owner, u64 offset, int refs_to_add,
1679 				 struct btrfs_delayed_extent_op *extent_op)
1680 {
1681 	struct extent_buffer *leaf;
1682 	struct btrfs_extent_item *ei;
1683 	unsigned long ptr;
1684 	unsigned long end;
1685 	unsigned long item_offset;
1686 	u64 refs;
1687 	int size;
1688 	int type;
1689 
1690 	leaf = path->nodes[0];
1691 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 	item_offset = (unsigned long)iref - (unsigned long)ei;
1693 
1694 	type = extent_ref_type(parent, owner);
1695 	size = btrfs_extent_inline_ref_size(type);
1696 
1697 	btrfs_extend_item(root, path, size);
1698 
1699 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1700 	refs = btrfs_extent_refs(leaf, ei);
1701 	refs += refs_to_add;
1702 	btrfs_set_extent_refs(leaf, ei, refs);
1703 	if (extent_op)
1704 		__run_delayed_extent_op(extent_op, leaf, ei);
1705 
1706 	ptr = (unsigned long)ei + item_offset;
1707 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1708 	if (ptr < end - size)
1709 		memmove_extent_buffer(leaf, ptr + size, ptr,
1710 				      end - size - ptr);
1711 
1712 	iref = (struct btrfs_extent_inline_ref *)ptr;
1713 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1714 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1715 		struct btrfs_extent_data_ref *dref;
1716 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1717 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1718 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1719 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1720 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1721 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1722 		struct btrfs_shared_data_ref *sref;
1723 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1724 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1725 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1726 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1727 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1728 	} else {
1729 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1730 	}
1731 	btrfs_mark_buffer_dirty(leaf);
1732 }
1733 
1734 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1735 				 struct btrfs_root *root,
1736 				 struct btrfs_path *path,
1737 				 struct btrfs_extent_inline_ref **ref_ret,
1738 				 u64 bytenr, u64 num_bytes, u64 parent,
1739 				 u64 root_objectid, u64 owner, u64 offset)
1740 {
1741 	int ret;
1742 
1743 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1744 					   bytenr, num_bytes, parent,
1745 					   root_objectid, owner, offset, 0);
1746 	if (ret != -ENOENT)
1747 		return ret;
1748 
1749 	btrfs_release_path(path);
1750 	*ref_ret = NULL;
1751 
1752 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1753 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1754 					    root_objectid);
1755 	} else {
1756 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1757 					     root_objectid, owner, offset);
1758 	}
1759 	return ret;
1760 }
1761 
1762 /*
1763  * helper to update/remove inline back ref
1764  */
1765 static noinline_for_stack
1766 void update_inline_extent_backref(struct btrfs_root *root,
1767 				  struct btrfs_path *path,
1768 				  struct btrfs_extent_inline_ref *iref,
1769 				  int refs_to_mod,
1770 				  struct btrfs_delayed_extent_op *extent_op,
1771 				  int *last_ref)
1772 {
1773 	struct extent_buffer *leaf;
1774 	struct btrfs_extent_item *ei;
1775 	struct btrfs_extent_data_ref *dref = NULL;
1776 	struct btrfs_shared_data_ref *sref = NULL;
1777 	unsigned long ptr;
1778 	unsigned long end;
1779 	u32 item_size;
1780 	int size;
1781 	int type;
1782 	u64 refs;
1783 
1784 	leaf = path->nodes[0];
1785 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1786 	refs = btrfs_extent_refs(leaf, ei);
1787 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1788 	refs += refs_to_mod;
1789 	btrfs_set_extent_refs(leaf, ei, refs);
1790 	if (extent_op)
1791 		__run_delayed_extent_op(extent_op, leaf, ei);
1792 
1793 	type = btrfs_extent_inline_ref_type(leaf, iref);
1794 
1795 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1796 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1797 		refs = btrfs_extent_data_ref_count(leaf, dref);
1798 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1799 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1800 		refs = btrfs_shared_data_ref_count(leaf, sref);
1801 	} else {
1802 		refs = 1;
1803 		BUG_ON(refs_to_mod != -1);
1804 	}
1805 
1806 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1807 	refs += refs_to_mod;
1808 
1809 	if (refs > 0) {
1810 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1811 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1812 		else
1813 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1814 	} else {
1815 		*last_ref = 1;
1816 		size =  btrfs_extent_inline_ref_size(type);
1817 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1818 		ptr = (unsigned long)iref;
1819 		end = (unsigned long)ei + item_size;
1820 		if (ptr + size < end)
1821 			memmove_extent_buffer(leaf, ptr, ptr + size,
1822 					      end - ptr - size);
1823 		item_size -= size;
1824 		btrfs_truncate_item(root, path, item_size, 1);
1825 	}
1826 	btrfs_mark_buffer_dirty(leaf);
1827 }
1828 
1829 static noinline_for_stack
1830 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1831 				 struct btrfs_root *root,
1832 				 struct btrfs_path *path,
1833 				 u64 bytenr, u64 num_bytes, u64 parent,
1834 				 u64 root_objectid, u64 owner,
1835 				 u64 offset, int refs_to_add,
1836 				 struct btrfs_delayed_extent_op *extent_op)
1837 {
1838 	struct btrfs_extent_inline_ref *iref;
1839 	int ret;
1840 
1841 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1842 					   bytenr, num_bytes, parent,
1843 					   root_objectid, owner, offset, 1);
1844 	if (ret == 0) {
1845 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1846 		update_inline_extent_backref(root, path, iref,
1847 					     refs_to_add, extent_op, NULL);
1848 	} else if (ret == -ENOENT) {
1849 		setup_inline_extent_backref(root, path, iref, parent,
1850 					    root_objectid, owner, offset,
1851 					    refs_to_add, extent_op);
1852 		ret = 0;
1853 	}
1854 	return ret;
1855 }
1856 
1857 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1858 				 struct btrfs_root *root,
1859 				 struct btrfs_path *path,
1860 				 u64 bytenr, u64 parent, u64 root_objectid,
1861 				 u64 owner, u64 offset, int refs_to_add)
1862 {
1863 	int ret;
1864 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1865 		BUG_ON(refs_to_add != 1);
1866 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1867 					    parent, root_objectid);
1868 	} else {
1869 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1870 					     parent, root_objectid,
1871 					     owner, offset, refs_to_add);
1872 	}
1873 	return ret;
1874 }
1875 
1876 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1877 				 struct btrfs_root *root,
1878 				 struct btrfs_path *path,
1879 				 struct btrfs_extent_inline_ref *iref,
1880 				 int refs_to_drop, int is_data, int *last_ref)
1881 {
1882 	int ret = 0;
1883 
1884 	BUG_ON(!is_data && refs_to_drop != 1);
1885 	if (iref) {
1886 		update_inline_extent_backref(root, path, iref,
1887 					     -refs_to_drop, NULL, last_ref);
1888 	} else if (is_data) {
1889 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1890 					     last_ref);
1891 	} else {
1892 		*last_ref = 1;
1893 		ret = btrfs_del_item(trans, root, path);
1894 	}
1895 	return ret;
1896 }
1897 
1898 static int btrfs_issue_discard(struct block_device *bdev,
1899 				u64 start, u64 len)
1900 {
1901 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1902 }
1903 
1904 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1905 				u64 num_bytes, u64 *actual_bytes)
1906 {
1907 	int ret;
1908 	u64 discarded_bytes = 0;
1909 	struct btrfs_bio *bbio = NULL;
1910 
1911 
1912 	/* Tell the block device(s) that the sectors can be discarded */
1913 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1914 			      bytenr, &num_bytes, &bbio, 0);
1915 	/* Error condition is -ENOMEM */
1916 	if (!ret) {
1917 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1918 		int i;
1919 
1920 
1921 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1922 			if (!stripe->dev->can_discard)
1923 				continue;
1924 
1925 			ret = btrfs_issue_discard(stripe->dev->bdev,
1926 						  stripe->physical,
1927 						  stripe->length);
1928 			if (!ret)
1929 				discarded_bytes += stripe->length;
1930 			else if (ret != -EOPNOTSUPP)
1931 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1932 
1933 			/*
1934 			 * Just in case we get back EOPNOTSUPP for some reason,
1935 			 * just ignore the return value so we don't screw up
1936 			 * people calling discard_extent.
1937 			 */
1938 			ret = 0;
1939 		}
1940 		kfree(bbio);
1941 	}
1942 
1943 	if (actual_bytes)
1944 		*actual_bytes = discarded_bytes;
1945 
1946 
1947 	if (ret == -EOPNOTSUPP)
1948 		ret = 0;
1949 	return ret;
1950 }
1951 
1952 /* Can return -ENOMEM */
1953 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1954 			 struct btrfs_root *root,
1955 			 u64 bytenr, u64 num_bytes, u64 parent,
1956 			 u64 root_objectid, u64 owner, u64 offset,
1957 			 int no_quota)
1958 {
1959 	int ret;
1960 	struct btrfs_fs_info *fs_info = root->fs_info;
1961 
1962 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1963 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1964 
1965 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1966 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1967 					num_bytes,
1968 					parent, root_objectid, (int)owner,
1969 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1970 	} else {
1971 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1972 					num_bytes,
1973 					parent, root_objectid, owner, offset,
1974 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1975 	}
1976 	return ret;
1977 }
1978 
1979 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1980 				  struct btrfs_root *root,
1981 				  u64 bytenr, u64 num_bytes,
1982 				  u64 parent, u64 root_objectid,
1983 				  u64 owner, u64 offset, int refs_to_add,
1984 				  int no_quota,
1985 				  struct btrfs_delayed_extent_op *extent_op)
1986 {
1987 	struct btrfs_fs_info *fs_info = root->fs_info;
1988 	struct btrfs_path *path;
1989 	struct extent_buffer *leaf;
1990 	struct btrfs_extent_item *item;
1991 	struct btrfs_key key;
1992 	u64 refs;
1993 	int ret;
1994 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1995 
1996 	path = btrfs_alloc_path();
1997 	if (!path)
1998 		return -ENOMEM;
1999 
2000 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2001 		no_quota = 1;
2002 
2003 	path->reada = 1;
2004 	path->leave_spinning = 1;
2005 	/* this will setup the path even if it fails to insert the back ref */
2006 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2007 					   bytenr, num_bytes, parent,
2008 					   root_objectid, owner, offset,
2009 					   refs_to_add, extent_op);
2010 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2011 		goto out;
2012 	/*
2013 	 * Ok we were able to insert an inline extent and it appears to be a new
2014 	 * reference, deal with the qgroup accounting.
2015 	 */
2016 	if (!ret && !no_quota) {
2017 		ASSERT(root->fs_info->quota_enabled);
2018 		leaf = path->nodes[0];
2019 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2020 		item = btrfs_item_ptr(leaf, path->slots[0],
2021 				      struct btrfs_extent_item);
2022 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2023 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2024 		btrfs_release_path(path);
2025 
2026 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2027 					      bytenr, num_bytes, type, 0);
2028 		goto out;
2029 	}
2030 
2031 	/*
2032 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2033 	 * inline extent ref, so just update the reference count and add a
2034 	 * normal backref.
2035 	 */
2036 	leaf = path->nodes[0];
2037 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2038 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2039 	refs = btrfs_extent_refs(leaf, item);
2040 	if (refs)
2041 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2042 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2043 	if (extent_op)
2044 		__run_delayed_extent_op(extent_op, leaf, item);
2045 
2046 	btrfs_mark_buffer_dirty(leaf);
2047 	btrfs_release_path(path);
2048 
2049 	if (!no_quota) {
2050 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2051 					      bytenr, num_bytes, type, 0);
2052 		if (ret)
2053 			goto out;
2054 	}
2055 
2056 	path->reada = 1;
2057 	path->leave_spinning = 1;
2058 	/* now insert the actual backref */
2059 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2060 				    path, bytenr, parent, root_objectid,
2061 				    owner, offset, refs_to_add);
2062 	if (ret)
2063 		btrfs_abort_transaction(trans, root, ret);
2064 out:
2065 	btrfs_free_path(path);
2066 	return ret;
2067 }
2068 
2069 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2070 				struct btrfs_root *root,
2071 				struct btrfs_delayed_ref_node *node,
2072 				struct btrfs_delayed_extent_op *extent_op,
2073 				int insert_reserved)
2074 {
2075 	int ret = 0;
2076 	struct btrfs_delayed_data_ref *ref;
2077 	struct btrfs_key ins;
2078 	u64 parent = 0;
2079 	u64 ref_root = 0;
2080 	u64 flags = 0;
2081 
2082 	ins.objectid = node->bytenr;
2083 	ins.offset = node->num_bytes;
2084 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2085 
2086 	ref = btrfs_delayed_node_to_data_ref(node);
2087 	trace_run_delayed_data_ref(node, ref, node->action);
2088 
2089 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2090 		parent = ref->parent;
2091 	ref_root = ref->root;
2092 
2093 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2094 		if (extent_op)
2095 			flags |= extent_op->flags_to_set;
2096 		ret = alloc_reserved_file_extent(trans, root,
2097 						 parent, ref_root, flags,
2098 						 ref->objectid, ref->offset,
2099 						 &ins, node->ref_mod);
2100 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2101 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2102 					     node->num_bytes, parent,
2103 					     ref_root, ref->objectid,
2104 					     ref->offset, node->ref_mod,
2105 					     node->no_quota, extent_op);
2106 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2107 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2108 					  node->num_bytes, parent,
2109 					  ref_root, ref->objectid,
2110 					  ref->offset, node->ref_mod,
2111 					  extent_op, node->no_quota);
2112 	} else {
2113 		BUG();
2114 	}
2115 	return ret;
2116 }
2117 
2118 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2119 				    struct extent_buffer *leaf,
2120 				    struct btrfs_extent_item *ei)
2121 {
2122 	u64 flags = btrfs_extent_flags(leaf, ei);
2123 	if (extent_op->update_flags) {
2124 		flags |= extent_op->flags_to_set;
2125 		btrfs_set_extent_flags(leaf, ei, flags);
2126 	}
2127 
2128 	if (extent_op->update_key) {
2129 		struct btrfs_tree_block_info *bi;
2130 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2131 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2132 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2133 	}
2134 }
2135 
2136 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2137 				 struct btrfs_root *root,
2138 				 struct btrfs_delayed_ref_node *node,
2139 				 struct btrfs_delayed_extent_op *extent_op)
2140 {
2141 	struct btrfs_key key;
2142 	struct btrfs_path *path;
2143 	struct btrfs_extent_item *ei;
2144 	struct extent_buffer *leaf;
2145 	u32 item_size;
2146 	int ret;
2147 	int err = 0;
2148 	int metadata = !extent_op->is_data;
2149 
2150 	if (trans->aborted)
2151 		return 0;
2152 
2153 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2154 		metadata = 0;
2155 
2156 	path = btrfs_alloc_path();
2157 	if (!path)
2158 		return -ENOMEM;
2159 
2160 	key.objectid = node->bytenr;
2161 
2162 	if (metadata) {
2163 		key.type = BTRFS_METADATA_ITEM_KEY;
2164 		key.offset = extent_op->level;
2165 	} else {
2166 		key.type = BTRFS_EXTENT_ITEM_KEY;
2167 		key.offset = node->num_bytes;
2168 	}
2169 
2170 again:
2171 	path->reada = 1;
2172 	path->leave_spinning = 1;
2173 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2174 				path, 0, 1);
2175 	if (ret < 0) {
2176 		err = ret;
2177 		goto out;
2178 	}
2179 	if (ret > 0) {
2180 		if (metadata) {
2181 			if (path->slots[0] > 0) {
2182 				path->slots[0]--;
2183 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2184 						      path->slots[0]);
2185 				if (key.objectid == node->bytenr &&
2186 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2187 				    key.offset == node->num_bytes)
2188 					ret = 0;
2189 			}
2190 			if (ret > 0) {
2191 				btrfs_release_path(path);
2192 				metadata = 0;
2193 
2194 				key.objectid = node->bytenr;
2195 				key.offset = node->num_bytes;
2196 				key.type = BTRFS_EXTENT_ITEM_KEY;
2197 				goto again;
2198 			}
2199 		} else {
2200 			err = -EIO;
2201 			goto out;
2202 		}
2203 	}
2204 
2205 	leaf = path->nodes[0];
2206 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2207 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2208 	if (item_size < sizeof(*ei)) {
2209 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2210 					     path, (u64)-1, 0);
2211 		if (ret < 0) {
2212 			err = ret;
2213 			goto out;
2214 		}
2215 		leaf = path->nodes[0];
2216 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2217 	}
2218 #endif
2219 	BUG_ON(item_size < sizeof(*ei));
2220 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2221 	__run_delayed_extent_op(extent_op, leaf, ei);
2222 
2223 	btrfs_mark_buffer_dirty(leaf);
2224 out:
2225 	btrfs_free_path(path);
2226 	return err;
2227 }
2228 
2229 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2230 				struct btrfs_root *root,
2231 				struct btrfs_delayed_ref_node *node,
2232 				struct btrfs_delayed_extent_op *extent_op,
2233 				int insert_reserved)
2234 {
2235 	int ret = 0;
2236 	struct btrfs_delayed_tree_ref *ref;
2237 	struct btrfs_key ins;
2238 	u64 parent = 0;
2239 	u64 ref_root = 0;
2240 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2241 						 SKINNY_METADATA);
2242 
2243 	ref = btrfs_delayed_node_to_tree_ref(node);
2244 	trace_run_delayed_tree_ref(node, ref, node->action);
2245 
2246 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2247 		parent = ref->parent;
2248 	ref_root = ref->root;
2249 
2250 	ins.objectid = node->bytenr;
2251 	if (skinny_metadata) {
2252 		ins.offset = ref->level;
2253 		ins.type = BTRFS_METADATA_ITEM_KEY;
2254 	} else {
2255 		ins.offset = node->num_bytes;
2256 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2257 	}
2258 
2259 	BUG_ON(node->ref_mod != 1);
2260 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2261 		BUG_ON(!extent_op || !extent_op->update_flags);
2262 		ret = alloc_reserved_tree_block(trans, root,
2263 						parent, ref_root,
2264 						extent_op->flags_to_set,
2265 						&extent_op->key,
2266 						ref->level, &ins,
2267 						node->no_quota);
2268 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2269 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2270 					     node->num_bytes, parent, ref_root,
2271 					     ref->level, 0, 1, node->no_quota,
2272 					     extent_op);
2273 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2274 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2275 					  node->num_bytes, parent, ref_root,
2276 					  ref->level, 0, 1, extent_op,
2277 					  node->no_quota);
2278 	} else {
2279 		BUG();
2280 	}
2281 	return ret;
2282 }
2283 
2284 /* helper function to actually process a single delayed ref entry */
2285 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2286 			       struct btrfs_root *root,
2287 			       struct btrfs_delayed_ref_node *node,
2288 			       struct btrfs_delayed_extent_op *extent_op,
2289 			       int insert_reserved)
2290 {
2291 	int ret = 0;
2292 
2293 	if (trans->aborted) {
2294 		if (insert_reserved)
2295 			btrfs_pin_extent(root, node->bytenr,
2296 					 node->num_bytes, 1);
2297 		return 0;
2298 	}
2299 
2300 	if (btrfs_delayed_ref_is_head(node)) {
2301 		struct btrfs_delayed_ref_head *head;
2302 		/*
2303 		 * we've hit the end of the chain and we were supposed
2304 		 * to insert this extent into the tree.  But, it got
2305 		 * deleted before we ever needed to insert it, so all
2306 		 * we have to do is clean up the accounting
2307 		 */
2308 		BUG_ON(extent_op);
2309 		head = btrfs_delayed_node_to_head(node);
2310 		trace_run_delayed_ref_head(node, head, node->action);
2311 
2312 		if (insert_reserved) {
2313 			btrfs_pin_extent(root, node->bytenr,
2314 					 node->num_bytes, 1);
2315 			if (head->is_data) {
2316 				ret = btrfs_del_csums(trans, root,
2317 						      node->bytenr,
2318 						      node->num_bytes);
2319 			}
2320 		}
2321 		return ret;
2322 	}
2323 
2324 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2325 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2326 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2327 					   insert_reserved);
2328 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2329 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2330 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2331 					   insert_reserved);
2332 	else
2333 		BUG();
2334 	return ret;
2335 }
2336 
2337 static noinline struct btrfs_delayed_ref_node *
2338 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2339 {
2340 	struct rb_node *node;
2341 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2342 
2343 	/*
2344 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2345 	 * this prevents ref count from going down to zero when
2346 	 * there still are pending delayed ref.
2347 	 */
2348 	node = rb_first(&head->ref_root);
2349 	while (node) {
2350 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2351 				rb_node);
2352 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2353 			return ref;
2354 		else if (last == NULL)
2355 			last = ref;
2356 		node = rb_next(node);
2357 	}
2358 	return last;
2359 }
2360 
2361 /*
2362  * Returns 0 on success or if called with an already aborted transaction.
2363  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2364  */
2365 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2366 					     struct btrfs_root *root,
2367 					     unsigned long nr)
2368 {
2369 	struct btrfs_delayed_ref_root *delayed_refs;
2370 	struct btrfs_delayed_ref_node *ref;
2371 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2372 	struct btrfs_delayed_extent_op *extent_op;
2373 	struct btrfs_fs_info *fs_info = root->fs_info;
2374 	ktime_t start = ktime_get();
2375 	int ret;
2376 	unsigned long count = 0;
2377 	unsigned long actual_count = 0;
2378 	int must_insert_reserved = 0;
2379 
2380 	delayed_refs = &trans->transaction->delayed_refs;
2381 	while (1) {
2382 		if (!locked_ref) {
2383 			if (count >= nr)
2384 				break;
2385 
2386 			spin_lock(&delayed_refs->lock);
2387 			locked_ref = btrfs_select_ref_head(trans);
2388 			if (!locked_ref) {
2389 				spin_unlock(&delayed_refs->lock);
2390 				break;
2391 			}
2392 
2393 			/* grab the lock that says we are going to process
2394 			 * all the refs for this head */
2395 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2396 			spin_unlock(&delayed_refs->lock);
2397 			/*
2398 			 * we may have dropped the spin lock to get the head
2399 			 * mutex lock, and that might have given someone else
2400 			 * time to free the head.  If that's true, it has been
2401 			 * removed from our list and we can move on.
2402 			 */
2403 			if (ret == -EAGAIN) {
2404 				locked_ref = NULL;
2405 				count++;
2406 				continue;
2407 			}
2408 		}
2409 
2410 		/*
2411 		 * We need to try and merge add/drops of the same ref since we
2412 		 * can run into issues with relocate dropping the implicit ref
2413 		 * and then it being added back again before the drop can
2414 		 * finish.  If we merged anything we need to re-loop so we can
2415 		 * get a good ref.
2416 		 */
2417 		spin_lock(&locked_ref->lock);
2418 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2419 					 locked_ref);
2420 
2421 		/*
2422 		 * locked_ref is the head node, so we have to go one
2423 		 * node back for any delayed ref updates
2424 		 */
2425 		ref = select_delayed_ref(locked_ref);
2426 
2427 		if (ref && ref->seq &&
2428 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2429 			spin_unlock(&locked_ref->lock);
2430 			btrfs_delayed_ref_unlock(locked_ref);
2431 			spin_lock(&delayed_refs->lock);
2432 			locked_ref->processing = 0;
2433 			delayed_refs->num_heads_ready++;
2434 			spin_unlock(&delayed_refs->lock);
2435 			locked_ref = NULL;
2436 			cond_resched();
2437 			count++;
2438 			continue;
2439 		}
2440 
2441 		/*
2442 		 * record the must insert reserved flag before we
2443 		 * drop the spin lock.
2444 		 */
2445 		must_insert_reserved = locked_ref->must_insert_reserved;
2446 		locked_ref->must_insert_reserved = 0;
2447 
2448 		extent_op = locked_ref->extent_op;
2449 		locked_ref->extent_op = NULL;
2450 
2451 		if (!ref) {
2452 
2453 
2454 			/* All delayed refs have been processed, Go ahead
2455 			 * and send the head node to run_one_delayed_ref,
2456 			 * so that any accounting fixes can happen
2457 			 */
2458 			ref = &locked_ref->node;
2459 
2460 			if (extent_op && must_insert_reserved) {
2461 				btrfs_free_delayed_extent_op(extent_op);
2462 				extent_op = NULL;
2463 			}
2464 
2465 			if (extent_op) {
2466 				spin_unlock(&locked_ref->lock);
2467 				ret = run_delayed_extent_op(trans, root,
2468 							    ref, extent_op);
2469 				btrfs_free_delayed_extent_op(extent_op);
2470 
2471 				if (ret) {
2472 					/*
2473 					 * Need to reset must_insert_reserved if
2474 					 * there was an error so the abort stuff
2475 					 * can cleanup the reserved space
2476 					 * properly.
2477 					 */
2478 					if (must_insert_reserved)
2479 						locked_ref->must_insert_reserved = 1;
2480 					locked_ref->processing = 0;
2481 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2482 					btrfs_delayed_ref_unlock(locked_ref);
2483 					return ret;
2484 				}
2485 				continue;
2486 			}
2487 
2488 			/*
2489 			 * Need to drop our head ref lock and re-aqcuire the
2490 			 * delayed ref lock and then re-check to make sure
2491 			 * nobody got added.
2492 			 */
2493 			spin_unlock(&locked_ref->lock);
2494 			spin_lock(&delayed_refs->lock);
2495 			spin_lock(&locked_ref->lock);
2496 			if (rb_first(&locked_ref->ref_root) ||
2497 			    locked_ref->extent_op) {
2498 				spin_unlock(&locked_ref->lock);
2499 				spin_unlock(&delayed_refs->lock);
2500 				continue;
2501 			}
2502 			ref->in_tree = 0;
2503 			delayed_refs->num_heads--;
2504 			rb_erase(&locked_ref->href_node,
2505 				 &delayed_refs->href_root);
2506 			spin_unlock(&delayed_refs->lock);
2507 		} else {
2508 			actual_count++;
2509 			ref->in_tree = 0;
2510 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2511 		}
2512 		atomic_dec(&delayed_refs->num_entries);
2513 
2514 		if (!btrfs_delayed_ref_is_head(ref)) {
2515 			/*
2516 			 * when we play the delayed ref, also correct the
2517 			 * ref_mod on head
2518 			 */
2519 			switch (ref->action) {
2520 			case BTRFS_ADD_DELAYED_REF:
2521 			case BTRFS_ADD_DELAYED_EXTENT:
2522 				locked_ref->node.ref_mod -= ref->ref_mod;
2523 				break;
2524 			case BTRFS_DROP_DELAYED_REF:
2525 				locked_ref->node.ref_mod += ref->ref_mod;
2526 				break;
2527 			default:
2528 				WARN_ON(1);
2529 			}
2530 		}
2531 		spin_unlock(&locked_ref->lock);
2532 
2533 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2534 					  must_insert_reserved);
2535 
2536 		btrfs_free_delayed_extent_op(extent_op);
2537 		if (ret) {
2538 			locked_ref->processing = 0;
2539 			btrfs_delayed_ref_unlock(locked_ref);
2540 			btrfs_put_delayed_ref(ref);
2541 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2542 			return ret;
2543 		}
2544 
2545 		/*
2546 		 * If this node is a head, that means all the refs in this head
2547 		 * have been dealt with, and we will pick the next head to deal
2548 		 * with, so we must unlock the head and drop it from the cluster
2549 		 * list before we release it.
2550 		 */
2551 		if (btrfs_delayed_ref_is_head(ref)) {
2552 			btrfs_delayed_ref_unlock(locked_ref);
2553 			locked_ref = NULL;
2554 		}
2555 		btrfs_put_delayed_ref(ref);
2556 		count++;
2557 		cond_resched();
2558 	}
2559 
2560 	/*
2561 	 * We don't want to include ref heads since we can have empty ref heads
2562 	 * and those will drastically skew our runtime down since we just do
2563 	 * accounting, no actual extent tree updates.
2564 	 */
2565 	if (actual_count > 0) {
2566 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2567 		u64 avg;
2568 
2569 		/*
2570 		 * We weigh the current average higher than our current runtime
2571 		 * to avoid large swings in the average.
2572 		 */
2573 		spin_lock(&delayed_refs->lock);
2574 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2575 		avg = div64_u64(avg, 4);
2576 		fs_info->avg_delayed_ref_runtime = avg;
2577 		spin_unlock(&delayed_refs->lock);
2578 	}
2579 	return 0;
2580 }
2581 
2582 #ifdef SCRAMBLE_DELAYED_REFS
2583 /*
2584  * Normally delayed refs get processed in ascending bytenr order. This
2585  * correlates in most cases to the order added. To expose dependencies on this
2586  * order, we start to process the tree in the middle instead of the beginning
2587  */
2588 static u64 find_middle(struct rb_root *root)
2589 {
2590 	struct rb_node *n = root->rb_node;
2591 	struct btrfs_delayed_ref_node *entry;
2592 	int alt = 1;
2593 	u64 middle;
2594 	u64 first = 0, last = 0;
2595 
2596 	n = rb_first(root);
2597 	if (n) {
2598 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2599 		first = entry->bytenr;
2600 	}
2601 	n = rb_last(root);
2602 	if (n) {
2603 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 		last = entry->bytenr;
2605 	}
2606 	n = root->rb_node;
2607 
2608 	while (n) {
2609 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2610 		WARN_ON(!entry->in_tree);
2611 
2612 		middle = entry->bytenr;
2613 
2614 		if (alt)
2615 			n = n->rb_left;
2616 		else
2617 			n = n->rb_right;
2618 
2619 		alt = 1 - alt;
2620 	}
2621 	return middle;
2622 }
2623 #endif
2624 
2625 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2626 {
2627 	u64 num_bytes;
2628 
2629 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2630 			     sizeof(struct btrfs_extent_inline_ref));
2631 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2632 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2633 
2634 	/*
2635 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2636 	 * closer to what we're really going to want to ouse.
2637 	 */
2638 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2639 }
2640 
2641 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2642 				       struct btrfs_root *root)
2643 {
2644 	struct btrfs_block_rsv *global_rsv;
2645 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2646 	u64 num_bytes;
2647 	int ret = 0;
2648 
2649 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2650 	num_heads = heads_to_leaves(root, num_heads);
2651 	if (num_heads > 1)
2652 		num_bytes += (num_heads - 1) * root->leafsize;
2653 	num_bytes <<= 1;
2654 	global_rsv = &root->fs_info->global_block_rsv;
2655 
2656 	/*
2657 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2658 	 * wiggle room since running delayed refs can create more delayed refs.
2659 	 */
2660 	if (global_rsv->space_info->full)
2661 		num_bytes <<= 1;
2662 
2663 	spin_lock(&global_rsv->lock);
2664 	if (global_rsv->reserved <= num_bytes)
2665 		ret = 1;
2666 	spin_unlock(&global_rsv->lock);
2667 	return ret;
2668 }
2669 
2670 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2671 				       struct btrfs_root *root)
2672 {
2673 	struct btrfs_fs_info *fs_info = root->fs_info;
2674 	u64 num_entries =
2675 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2676 	u64 avg_runtime;
2677 	u64 val;
2678 
2679 	smp_mb();
2680 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2681 	val = num_entries * avg_runtime;
2682 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2683 		return 1;
2684 	if (val >= NSEC_PER_SEC / 2)
2685 		return 2;
2686 
2687 	return btrfs_check_space_for_delayed_refs(trans, root);
2688 }
2689 
2690 struct async_delayed_refs {
2691 	struct btrfs_root *root;
2692 	int count;
2693 	int error;
2694 	int sync;
2695 	struct completion wait;
2696 	struct btrfs_work work;
2697 };
2698 
2699 static void delayed_ref_async_start(struct btrfs_work *work)
2700 {
2701 	struct async_delayed_refs *async;
2702 	struct btrfs_trans_handle *trans;
2703 	int ret;
2704 
2705 	async = container_of(work, struct async_delayed_refs, work);
2706 
2707 	trans = btrfs_join_transaction(async->root);
2708 	if (IS_ERR(trans)) {
2709 		async->error = PTR_ERR(trans);
2710 		goto done;
2711 	}
2712 
2713 	/*
2714 	 * trans->sync means that when we call end_transaciton, we won't
2715 	 * wait on delayed refs
2716 	 */
2717 	trans->sync = true;
2718 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2719 	if (ret)
2720 		async->error = ret;
2721 
2722 	ret = btrfs_end_transaction(trans, async->root);
2723 	if (ret && !async->error)
2724 		async->error = ret;
2725 done:
2726 	if (async->sync)
2727 		complete(&async->wait);
2728 	else
2729 		kfree(async);
2730 }
2731 
2732 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2733 				 unsigned long count, int wait)
2734 {
2735 	struct async_delayed_refs *async;
2736 	int ret;
2737 
2738 	async = kmalloc(sizeof(*async), GFP_NOFS);
2739 	if (!async)
2740 		return -ENOMEM;
2741 
2742 	async->root = root->fs_info->tree_root;
2743 	async->count = count;
2744 	async->error = 0;
2745 	if (wait)
2746 		async->sync = 1;
2747 	else
2748 		async->sync = 0;
2749 	init_completion(&async->wait);
2750 
2751 	btrfs_init_work(&async->work, delayed_ref_async_start,
2752 			NULL, NULL);
2753 
2754 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2755 
2756 	if (wait) {
2757 		wait_for_completion(&async->wait);
2758 		ret = async->error;
2759 		kfree(async);
2760 		return ret;
2761 	}
2762 	return 0;
2763 }
2764 
2765 /*
2766  * this starts processing the delayed reference count updates and
2767  * extent insertions we have queued up so far.  count can be
2768  * 0, which means to process everything in the tree at the start
2769  * of the run (but not newly added entries), or it can be some target
2770  * number you'd like to process.
2771  *
2772  * Returns 0 on success or if called with an aborted transaction
2773  * Returns <0 on error and aborts the transaction
2774  */
2775 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2776 			   struct btrfs_root *root, unsigned long count)
2777 {
2778 	struct rb_node *node;
2779 	struct btrfs_delayed_ref_root *delayed_refs;
2780 	struct btrfs_delayed_ref_head *head;
2781 	int ret;
2782 	int run_all = count == (unsigned long)-1;
2783 	int run_most = 0;
2784 
2785 	/* We'll clean this up in btrfs_cleanup_transaction */
2786 	if (trans->aborted)
2787 		return 0;
2788 
2789 	if (root == root->fs_info->extent_root)
2790 		root = root->fs_info->tree_root;
2791 
2792 	delayed_refs = &trans->transaction->delayed_refs;
2793 	if (count == 0) {
2794 		count = atomic_read(&delayed_refs->num_entries) * 2;
2795 		run_most = 1;
2796 	}
2797 
2798 again:
2799 #ifdef SCRAMBLE_DELAYED_REFS
2800 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2801 #endif
2802 	ret = __btrfs_run_delayed_refs(trans, root, count);
2803 	if (ret < 0) {
2804 		btrfs_abort_transaction(trans, root, ret);
2805 		return ret;
2806 	}
2807 
2808 	if (run_all) {
2809 		if (!list_empty(&trans->new_bgs))
2810 			btrfs_create_pending_block_groups(trans, root);
2811 
2812 		spin_lock(&delayed_refs->lock);
2813 		node = rb_first(&delayed_refs->href_root);
2814 		if (!node) {
2815 			spin_unlock(&delayed_refs->lock);
2816 			goto out;
2817 		}
2818 		count = (unsigned long)-1;
2819 
2820 		while (node) {
2821 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2822 					href_node);
2823 			if (btrfs_delayed_ref_is_head(&head->node)) {
2824 				struct btrfs_delayed_ref_node *ref;
2825 
2826 				ref = &head->node;
2827 				atomic_inc(&ref->refs);
2828 
2829 				spin_unlock(&delayed_refs->lock);
2830 				/*
2831 				 * Mutex was contended, block until it's
2832 				 * released and try again
2833 				 */
2834 				mutex_lock(&head->mutex);
2835 				mutex_unlock(&head->mutex);
2836 
2837 				btrfs_put_delayed_ref(ref);
2838 				cond_resched();
2839 				goto again;
2840 			} else {
2841 				WARN_ON(1);
2842 			}
2843 			node = rb_next(node);
2844 		}
2845 		spin_unlock(&delayed_refs->lock);
2846 		cond_resched();
2847 		goto again;
2848 	}
2849 out:
2850 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2851 	if (ret)
2852 		return ret;
2853 	assert_qgroups_uptodate(trans);
2854 	return 0;
2855 }
2856 
2857 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2858 				struct btrfs_root *root,
2859 				u64 bytenr, u64 num_bytes, u64 flags,
2860 				int level, int is_data)
2861 {
2862 	struct btrfs_delayed_extent_op *extent_op;
2863 	int ret;
2864 
2865 	extent_op = btrfs_alloc_delayed_extent_op();
2866 	if (!extent_op)
2867 		return -ENOMEM;
2868 
2869 	extent_op->flags_to_set = flags;
2870 	extent_op->update_flags = 1;
2871 	extent_op->update_key = 0;
2872 	extent_op->is_data = is_data ? 1 : 0;
2873 	extent_op->level = level;
2874 
2875 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2876 					  num_bytes, extent_op);
2877 	if (ret)
2878 		btrfs_free_delayed_extent_op(extent_op);
2879 	return ret;
2880 }
2881 
2882 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2883 				      struct btrfs_root *root,
2884 				      struct btrfs_path *path,
2885 				      u64 objectid, u64 offset, u64 bytenr)
2886 {
2887 	struct btrfs_delayed_ref_head *head;
2888 	struct btrfs_delayed_ref_node *ref;
2889 	struct btrfs_delayed_data_ref *data_ref;
2890 	struct btrfs_delayed_ref_root *delayed_refs;
2891 	struct rb_node *node;
2892 	int ret = 0;
2893 
2894 	delayed_refs = &trans->transaction->delayed_refs;
2895 	spin_lock(&delayed_refs->lock);
2896 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2897 	if (!head) {
2898 		spin_unlock(&delayed_refs->lock);
2899 		return 0;
2900 	}
2901 
2902 	if (!mutex_trylock(&head->mutex)) {
2903 		atomic_inc(&head->node.refs);
2904 		spin_unlock(&delayed_refs->lock);
2905 
2906 		btrfs_release_path(path);
2907 
2908 		/*
2909 		 * Mutex was contended, block until it's released and let
2910 		 * caller try again
2911 		 */
2912 		mutex_lock(&head->mutex);
2913 		mutex_unlock(&head->mutex);
2914 		btrfs_put_delayed_ref(&head->node);
2915 		return -EAGAIN;
2916 	}
2917 	spin_unlock(&delayed_refs->lock);
2918 
2919 	spin_lock(&head->lock);
2920 	node = rb_first(&head->ref_root);
2921 	while (node) {
2922 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2923 		node = rb_next(node);
2924 
2925 		/* If it's a shared ref we know a cross reference exists */
2926 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2927 			ret = 1;
2928 			break;
2929 		}
2930 
2931 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2932 
2933 		/*
2934 		 * If our ref doesn't match the one we're currently looking at
2935 		 * then we have a cross reference.
2936 		 */
2937 		if (data_ref->root != root->root_key.objectid ||
2938 		    data_ref->objectid != objectid ||
2939 		    data_ref->offset != offset) {
2940 			ret = 1;
2941 			break;
2942 		}
2943 	}
2944 	spin_unlock(&head->lock);
2945 	mutex_unlock(&head->mutex);
2946 	return ret;
2947 }
2948 
2949 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2950 					struct btrfs_root *root,
2951 					struct btrfs_path *path,
2952 					u64 objectid, u64 offset, u64 bytenr)
2953 {
2954 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2955 	struct extent_buffer *leaf;
2956 	struct btrfs_extent_data_ref *ref;
2957 	struct btrfs_extent_inline_ref *iref;
2958 	struct btrfs_extent_item *ei;
2959 	struct btrfs_key key;
2960 	u32 item_size;
2961 	int ret;
2962 
2963 	key.objectid = bytenr;
2964 	key.offset = (u64)-1;
2965 	key.type = BTRFS_EXTENT_ITEM_KEY;
2966 
2967 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2968 	if (ret < 0)
2969 		goto out;
2970 	BUG_ON(ret == 0); /* Corruption */
2971 
2972 	ret = -ENOENT;
2973 	if (path->slots[0] == 0)
2974 		goto out;
2975 
2976 	path->slots[0]--;
2977 	leaf = path->nodes[0];
2978 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2979 
2980 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2981 		goto out;
2982 
2983 	ret = 1;
2984 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2985 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2986 	if (item_size < sizeof(*ei)) {
2987 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2988 		goto out;
2989 	}
2990 #endif
2991 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2992 
2993 	if (item_size != sizeof(*ei) +
2994 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2995 		goto out;
2996 
2997 	if (btrfs_extent_generation(leaf, ei) <=
2998 	    btrfs_root_last_snapshot(&root->root_item))
2999 		goto out;
3000 
3001 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3002 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3003 	    BTRFS_EXTENT_DATA_REF_KEY)
3004 		goto out;
3005 
3006 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3007 	if (btrfs_extent_refs(leaf, ei) !=
3008 	    btrfs_extent_data_ref_count(leaf, ref) ||
3009 	    btrfs_extent_data_ref_root(leaf, ref) !=
3010 	    root->root_key.objectid ||
3011 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3012 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3013 		goto out;
3014 
3015 	ret = 0;
3016 out:
3017 	return ret;
3018 }
3019 
3020 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3021 			  struct btrfs_root *root,
3022 			  u64 objectid, u64 offset, u64 bytenr)
3023 {
3024 	struct btrfs_path *path;
3025 	int ret;
3026 	int ret2;
3027 
3028 	path = btrfs_alloc_path();
3029 	if (!path)
3030 		return -ENOENT;
3031 
3032 	do {
3033 		ret = check_committed_ref(trans, root, path, objectid,
3034 					  offset, bytenr);
3035 		if (ret && ret != -ENOENT)
3036 			goto out;
3037 
3038 		ret2 = check_delayed_ref(trans, root, path, objectid,
3039 					 offset, bytenr);
3040 	} while (ret2 == -EAGAIN);
3041 
3042 	if (ret2 && ret2 != -ENOENT) {
3043 		ret = ret2;
3044 		goto out;
3045 	}
3046 
3047 	if (ret != -ENOENT || ret2 != -ENOENT)
3048 		ret = 0;
3049 out:
3050 	btrfs_free_path(path);
3051 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3052 		WARN_ON(ret > 0);
3053 	return ret;
3054 }
3055 
3056 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3057 			   struct btrfs_root *root,
3058 			   struct extent_buffer *buf,
3059 			   int full_backref, int inc, int no_quota)
3060 {
3061 	u64 bytenr;
3062 	u64 num_bytes;
3063 	u64 parent;
3064 	u64 ref_root;
3065 	u32 nritems;
3066 	struct btrfs_key key;
3067 	struct btrfs_file_extent_item *fi;
3068 	int i;
3069 	int level;
3070 	int ret = 0;
3071 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3072 			    u64, u64, u64, u64, u64, u64, int);
3073 
3074 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3075 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
3076 		return 0;
3077 #endif
3078 	ref_root = btrfs_header_owner(buf);
3079 	nritems = btrfs_header_nritems(buf);
3080 	level = btrfs_header_level(buf);
3081 
3082 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3083 		return 0;
3084 
3085 	if (inc)
3086 		process_func = btrfs_inc_extent_ref;
3087 	else
3088 		process_func = btrfs_free_extent;
3089 
3090 	if (full_backref)
3091 		parent = buf->start;
3092 	else
3093 		parent = 0;
3094 
3095 	for (i = 0; i < nritems; i++) {
3096 		if (level == 0) {
3097 			btrfs_item_key_to_cpu(buf, &key, i);
3098 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3099 				continue;
3100 			fi = btrfs_item_ptr(buf, i,
3101 					    struct btrfs_file_extent_item);
3102 			if (btrfs_file_extent_type(buf, fi) ==
3103 			    BTRFS_FILE_EXTENT_INLINE)
3104 				continue;
3105 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3106 			if (bytenr == 0)
3107 				continue;
3108 
3109 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3110 			key.offset -= btrfs_file_extent_offset(buf, fi);
3111 			ret = process_func(trans, root, bytenr, num_bytes,
3112 					   parent, ref_root, key.objectid,
3113 					   key.offset, no_quota);
3114 			if (ret)
3115 				goto fail;
3116 		} else {
3117 			bytenr = btrfs_node_blockptr(buf, i);
3118 			num_bytes = btrfs_level_size(root, level - 1);
3119 			ret = process_func(trans, root, bytenr, num_bytes,
3120 					   parent, ref_root, level - 1, 0,
3121 					   no_quota);
3122 			if (ret)
3123 				goto fail;
3124 		}
3125 	}
3126 	return 0;
3127 fail:
3128 	return ret;
3129 }
3130 
3131 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3132 		  struct extent_buffer *buf, int full_backref, int no_quota)
3133 {
3134 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, no_quota);
3135 }
3136 
3137 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3138 		  struct extent_buffer *buf, int full_backref, int no_quota)
3139 {
3140 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, no_quota);
3141 }
3142 
3143 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3144 				 struct btrfs_root *root,
3145 				 struct btrfs_path *path,
3146 				 struct btrfs_block_group_cache *cache)
3147 {
3148 	int ret;
3149 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3150 	unsigned long bi;
3151 	struct extent_buffer *leaf;
3152 
3153 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3154 	if (ret < 0)
3155 		goto fail;
3156 	BUG_ON(ret); /* Corruption */
3157 
3158 	leaf = path->nodes[0];
3159 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3160 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3161 	btrfs_mark_buffer_dirty(leaf);
3162 	btrfs_release_path(path);
3163 fail:
3164 	if (ret) {
3165 		btrfs_abort_transaction(trans, root, ret);
3166 		return ret;
3167 	}
3168 	return 0;
3169 
3170 }
3171 
3172 static struct btrfs_block_group_cache *
3173 next_block_group(struct btrfs_root *root,
3174 		 struct btrfs_block_group_cache *cache)
3175 {
3176 	struct rb_node *node;
3177 	spin_lock(&root->fs_info->block_group_cache_lock);
3178 	node = rb_next(&cache->cache_node);
3179 	btrfs_put_block_group(cache);
3180 	if (node) {
3181 		cache = rb_entry(node, struct btrfs_block_group_cache,
3182 				 cache_node);
3183 		btrfs_get_block_group(cache);
3184 	} else
3185 		cache = NULL;
3186 	spin_unlock(&root->fs_info->block_group_cache_lock);
3187 	return cache;
3188 }
3189 
3190 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3191 			    struct btrfs_trans_handle *trans,
3192 			    struct btrfs_path *path)
3193 {
3194 	struct btrfs_root *root = block_group->fs_info->tree_root;
3195 	struct inode *inode = NULL;
3196 	u64 alloc_hint = 0;
3197 	int dcs = BTRFS_DC_ERROR;
3198 	int num_pages = 0;
3199 	int retries = 0;
3200 	int ret = 0;
3201 
3202 	/*
3203 	 * If this block group is smaller than 100 megs don't bother caching the
3204 	 * block group.
3205 	 */
3206 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3207 		spin_lock(&block_group->lock);
3208 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3209 		spin_unlock(&block_group->lock);
3210 		return 0;
3211 	}
3212 
3213 again:
3214 	inode = lookup_free_space_inode(root, block_group, path);
3215 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3216 		ret = PTR_ERR(inode);
3217 		btrfs_release_path(path);
3218 		goto out;
3219 	}
3220 
3221 	if (IS_ERR(inode)) {
3222 		BUG_ON(retries);
3223 		retries++;
3224 
3225 		if (block_group->ro)
3226 			goto out_free;
3227 
3228 		ret = create_free_space_inode(root, trans, block_group, path);
3229 		if (ret)
3230 			goto out_free;
3231 		goto again;
3232 	}
3233 
3234 	/* We've already setup this transaction, go ahead and exit */
3235 	if (block_group->cache_generation == trans->transid &&
3236 	    i_size_read(inode)) {
3237 		dcs = BTRFS_DC_SETUP;
3238 		goto out_put;
3239 	}
3240 
3241 	/*
3242 	 * We want to set the generation to 0, that way if anything goes wrong
3243 	 * from here on out we know not to trust this cache when we load up next
3244 	 * time.
3245 	 */
3246 	BTRFS_I(inode)->generation = 0;
3247 	ret = btrfs_update_inode(trans, root, inode);
3248 	WARN_ON(ret);
3249 
3250 	if (i_size_read(inode) > 0) {
3251 		ret = btrfs_check_trunc_cache_free_space(root,
3252 					&root->fs_info->global_block_rsv);
3253 		if (ret)
3254 			goto out_put;
3255 
3256 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3257 		if (ret)
3258 			goto out_put;
3259 	}
3260 
3261 	spin_lock(&block_group->lock);
3262 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3263 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3264 		/*
3265 		 * don't bother trying to write stuff out _if_
3266 		 * a) we're not cached,
3267 		 * b) we're with nospace_cache mount option.
3268 		 */
3269 		dcs = BTRFS_DC_WRITTEN;
3270 		spin_unlock(&block_group->lock);
3271 		goto out_put;
3272 	}
3273 	spin_unlock(&block_group->lock);
3274 
3275 	/*
3276 	 * Try to preallocate enough space based on how big the block group is.
3277 	 * Keep in mind this has to include any pinned space which could end up
3278 	 * taking up quite a bit since it's not folded into the other space
3279 	 * cache.
3280 	 */
3281 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3282 	if (!num_pages)
3283 		num_pages = 1;
3284 
3285 	num_pages *= 16;
3286 	num_pages *= PAGE_CACHE_SIZE;
3287 
3288 	ret = btrfs_check_data_free_space(inode, num_pages);
3289 	if (ret)
3290 		goto out_put;
3291 
3292 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3293 					      num_pages, num_pages,
3294 					      &alloc_hint);
3295 	if (!ret)
3296 		dcs = BTRFS_DC_SETUP;
3297 	btrfs_free_reserved_data_space(inode, num_pages);
3298 
3299 out_put:
3300 	iput(inode);
3301 out_free:
3302 	btrfs_release_path(path);
3303 out:
3304 	spin_lock(&block_group->lock);
3305 	if (!ret && dcs == BTRFS_DC_SETUP)
3306 		block_group->cache_generation = trans->transid;
3307 	block_group->disk_cache_state = dcs;
3308 	spin_unlock(&block_group->lock);
3309 
3310 	return ret;
3311 }
3312 
3313 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3314 				   struct btrfs_root *root)
3315 {
3316 	struct btrfs_block_group_cache *cache;
3317 	int err = 0;
3318 	struct btrfs_path *path;
3319 	u64 last = 0;
3320 
3321 	path = btrfs_alloc_path();
3322 	if (!path)
3323 		return -ENOMEM;
3324 
3325 again:
3326 	while (1) {
3327 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3328 		while (cache) {
3329 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3330 				break;
3331 			cache = next_block_group(root, cache);
3332 		}
3333 		if (!cache) {
3334 			if (last == 0)
3335 				break;
3336 			last = 0;
3337 			continue;
3338 		}
3339 		err = cache_save_setup(cache, trans, path);
3340 		last = cache->key.objectid + cache->key.offset;
3341 		btrfs_put_block_group(cache);
3342 	}
3343 
3344 	while (1) {
3345 		if (last == 0) {
3346 			err = btrfs_run_delayed_refs(trans, root,
3347 						     (unsigned long)-1);
3348 			if (err) /* File system offline */
3349 				goto out;
3350 		}
3351 
3352 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3353 		while (cache) {
3354 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3355 				btrfs_put_block_group(cache);
3356 				goto again;
3357 			}
3358 
3359 			if (cache->dirty)
3360 				break;
3361 			cache = next_block_group(root, cache);
3362 		}
3363 		if (!cache) {
3364 			if (last == 0)
3365 				break;
3366 			last = 0;
3367 			continue;
3368 		}
3369 
3370 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3371 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3372 		cache->dirty = 0;
3373 		last = cache->key.objectid + cache->key.offset;
3374 
3375 		err = write_one_cache_group(trans, root, path, cache);
3376 		btrfs_put_block_group(cache);
3377 		if (err) /* File system offline */
3378 			goto out;
3379 	}
3380 
3381 	while (1) {
3382 		/*
3383 		 * I don't think this is needed since we're just marking our
3384 		 * preallocated extent as written, but just in case it can't
3385 		 * hurt.
3386 		 */
3387 		if (last == 0) {
3388 			err = btrfs_run_delayed_refs(trans, root,
3389 						     (unsigned long)-1);
3390 			if (err) /* File system offline */
3391 				goto out;
3392 		}
3393 
3394 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3395 		while (cache) {
3396 			/*
3397 			 * Really this shouldn't happen, but it could if we
3398 			 * couldn't write the entire preallocated extent and
3399 			 * splitting the extent resulted in a new block.
3400 			 */
3401 			if (cache->dirty) {
3402 				btrfs_put_block_group(cache);
3403 				goto again;
3404 			}
3405 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3406 				break;
3407 			cache = next_block_group(root, cache);
3408 		}
3409 		if (!cache) {
3410 			if (last == 0)
3411 				break;
3412 			last = 0;
3413 			continue;
3414 		}
3415 
3416 		err = btrfs_write_out_cache(root, trans, cache, path);
3417 
3418 		/*
3419 		 * If we didn't have an error then the cache state is still
3420 		 * NEED_WRITE, so we can set it to WRITTEN.
3421 		 */
3422 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3423 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3424 		last = cache->key.objectid + cache->key.offset;
3425 		btrfs_put_block_group(cache);
3426 	}
3427 out:
3428 
3429 	btrfs_free_path(path);
3430 	return err;
3431 }
3432 
3433 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3434 {
3435 	struct btrfs_block_group_cache *block_group;
3436 	int readonly = 0;
3437 
3438 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3439 	if (!block_group || block_group->ro)
3440 		readonly = 1;
3441 	if (block_group)
3442 		btrfs_put_block_group(block_group);
3443 	return readonly;
3444 }
3445 
3446 static const char *alloc_name(u64 flags)
3447 {
3448 	switch (flags) {
3449 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3450 		return "mixed";
3451 	case BTRFS_BLOCK_GROUP_METADATA:
3452 		return "metadata";
3453 	case BTRFS_BLOCK_GROUP_DATA:
3454 		return "data";
3455 	case BTRFS_BLOCK_GROUP_SYSTEM:
3456 		return "system";
3457 	default:
3458 		WARN_ON(1);
3459 		return "invalid-combination";
3460 	};
3461 }
3462 
3463 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3464 			     u64 total_bytes, u64 bytes_used,
3465 			     struct btrfs_space_info **space_info)
3466 {
3467 	struct btrfs_space_info *found;
3468 	int i;
3469 	int factor;
3470 	int ret;
3471 
3472 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3473 		     BTRFS_BLOCK_GROUP_RAID10))
3474 		factor = 2;
3475 	else
3476 		factor = 1;
3477 
3478 	found = __find_space_info(info, flags);
3479 	if (found) {
3480 		spin_lock(&found->lock);
3481 		found->total_bytes += total_bytes;
3482 		found->disk_total += total_bytes * factor;
3483 		found->bytes_used += bytes_used;
3484 		found->disk_used += bytes_used * factor;
3485 		found->full = 0;
3486 		spin_unlock(&found->lock);
3487 		*space_info = found;
3488 		return 0;
3489 	}
3490 	found = kzalloc(sizeof(*found), GFP_NOFS);
3491 	if (!found)
3492 		return -ENOMEM;
3493 
3494 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3495 	if (ret) {
3496 		kfree(found);
3497 		return ret;
3498 	}
3499 
3500 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3501 		INIT_LIST_HEAD(&found->block_groups[i]);
3502 	init_rwsem(&found->groups_sem);
3503 	spin_lock_init(&found->lock);
3504 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3505 	found->total_bytes = total_bytes;
3506 	found->disk_total = total_bytes * factor;
3507 	found->bytes_used = bytes_used;
3508 	found->disk_used = bytes_used * factor;
3509 	found->bytes_pinned = 0;
3510 	found->bytes_reserved = 0;
3511 	found->bytes_readonly = 0;
3512 	found->bytes_may_use = 0;
3513 	found->full = 0;
3514 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3515 	found->chunk_alloc = 0;
3516 	found->flush = 0;
3517 	init_waitqueue_head(&found->wait);
3518 
3519 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3520 				    info->space_info_kobj, "%s",
3521 				    alloc_name(found->flags));
3522 	if (ret) {
3523 		kfree(found);
3524 		return ret;
3525 	}
3526 
3527 	*space_info = found;
3528 	list_add_rcu(&found->list, &info->space_info);
3529 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3530 		info->data_sinfo = found;
3531 
3532 	return ret;
3533 }
3534 
3535 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3536 {
3537 	u64 extra_flags = chunk_to_extended(flags) &
3538 				BTRFS_EXTENDED_PROFILE_MASK;
3539 
3540 	write_seqlock(&fs_info->profiles_lock);
3541 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3542 		fs_info->avail_data_alloc_bits |= extra_flags;
3543 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3544 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3545 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3546 		fs_info->avail_system_alloc_bits |= extra_flags;
3547 	write_sequnlock(&fs_info->profiles_lock);
3548 }
3549 
3550 /*
3551  * returns target flags in extended format or 0 if restripe for this
3552  * chunk_type is not in progress
3553  *
3554  * should be called with either volume_mutex or balance_lock held
3555  */
3556 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3557 {
3558 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3559 	u64 target = 0;
3560 
3561 	if (!bctl)
3562 		return 0;
3563 
3564 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3565 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3566 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3567 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3568 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3569 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3570 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3571 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3572 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3573 	}
3574 
3575 	return target;
3576 }
3577 
3578 /*
3579  * @flags: available profiles in extended format (see ctree.h)
3580  *
3581  * Returns reduced profile in chunk format.  If profile changing is in
3582  * progress (either running or paused) picks the target profile (if it's
3583  * already available), otherwise falls back to plain reducing.
3584  */
3585 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3586 {
3587 	/*
3588 	 * we add in the count of missing devices because we want
3589 	 * to make sure that any RAID levels on a degraded FS
3590 	 * continue to be honored.
3591 	 */
3592 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3593 		root->fs_info->fs_devices->missing_devices;
3594 	u64 target;
3595 	u64 tmp;
3596 
3597 	/*
3598 	 * see if restripe for this chunk_type is in progress, if so
3599 	 * try to reduce to the target profile
3600 	 */
3601 	spin_lock(&root->fs_info->balance_lock);
3602 	target = get_restripe_target(root->fs_info, flags);
3603 	if (target) {
3604 		/* pick target profile only if it's already available */
3605 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3606 			spin_unlock(&root->fs_info->balance_lock);
3607 			return extended_to_chunk(target);
3608 		}
3609 	}
3610 	spin_unlock(&root->fs_info->balance_lock);
3611 
3612 	/* First, mask out the RAID levels which aren't possible */
3613 	if (num_devices == 1)
3614 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3615 			   BTRFS_BLOCK_GROUP_RAID5);
3616 	if (num_devices < 3)
3617 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3618 	if (num_devices < 4)
3619 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3620 
3621 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3622 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3623 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3624 	flags &= ~tmp;
3625 
3626 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3627 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3628 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3629 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3630 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3631 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3632 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3633 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3634 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3635 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3636 
3637 	return extended_to_chunk(flags | tmp);
3638 }
3639 
3640 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3641 {
3642 	unsigned seq;
3643 	u64 flags;
3644 
3645 	do {
3646 		flags = orig_flags;
3647 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3648 
3649 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3650 			flags |= root->fs_info->avail_data_alloc_bits;
3651 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3652 			flags |= root->fs_info->avail_system_alloc_bits;
3653 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3654 			flags |= root->fs_info->avail_metadata_alloc_bits;
3655 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3656 
3657 	return btrfs_reduce_alloc_profile(root, flags);
3658 }
3659 
3660 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3661 {
3662 	u64 flags;
3663 	u64 ret;
3664 
3665 	if (data)
3666 		flags = BTRFS_BLOCK_GROUP_DATA;
3667 	else if (root == root->fs_info->chunk_root)
3668 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3669 	else
3670 		flags = BTRFS_BLOCK_GROUP_METADATA;
3671 
3672 	ret = get_alloc_profile(root, flags);
3673 	return ret;
3674 }
3675 
3676 /*
3677  * This will check the space that the inode allocates from to make sure we have
3678  * enough space for bytes.
3679  */
3680 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3681 {
3682 	struct btrfs_space_info *data_sinfo;
3683 	struct btrfs_root *root = BTRFS_I(inode)->root;
3684 	struct btrfs_fs_info *fs_info = root->fs_info;
3685 	u64 used;
3686 	int ret = 0, committed = 0, alloc_chunk = 1;
3687 
3688 	/* make sure bytes are sectorsize aligned */
3689 	bytes = ALIGN(bytes, root->sectorsize);
3690 
3691 	if (btrfs_is_free_space_inode(inode)) {
3692 		committed = 1;
3693 		ASSERT(current->journal_info);
3694 	}
3695 
3696 	data_sinfo = fs_info->data_sinfo;
3697 	if (!data_sinfo)
3698 		goto alloc;
3699 
3700 again:
3701 	/* make sure we have enough space to handle the data first */
3702 	spin_lock(&data_sinfo->lock);
3703 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3704 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3705 		data_sinfo->bytes_may_use;
3706 
3707 	if (used + bytes > data_sinfo->total_bytes) {
3708 		struct btrfs_trans_handle *trans;
3709 
3710 		/*
3711 		 * if we don't have enough free bytes in this space then we need
3712 		 * to alloc a new chunk.
3713 		 */
3714 		if (!data_sinfo->full && alloc_chunk) {
3715 			u64 alloc_target;
3716 
3717 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3718 			spin_unlock(&data_sinfo->lock);
3719 alloc:
3720 			alloc_target = btrfs_get_alloc_profile(root, 1);
3721 			/*
3722 			 * It is ugly that we don't call nolock join
3723 			 * transaction for the free space inode case here.
3724 			 * But it is safe because we only do the data space
3725 			 * reservation for the free space cache in the
3726 			 * transaction context, the common join transaction
3727 			 * just increase the counter of the current transaction
3728 			 * handler, doesn't try to acquire the trans_lock of
3729 			 * the fs.
3730 			 */
3731 			trans = btrfs_join_transaction(root);
3732 			if (IS_ERR(trans))
3733 				return PTR_ERR(trans);
3734 
3735 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3736 					     alloc_target,
3737 					     CHUNK_ALLOC_NO_FORCE);
3738 			btrfs_end_transaction(trans, root);
3739 			if (ret < 0) {
3740 				if (ret != -ENOSPC)
3741 					return ret;
3742 				else
3743 					goto commit_trans;
3744 			}
3745 
3746 			if (!data_sinfo)
3747 				data_sinfo = fs_info->data_sinfo;
3748 
3749 			goto again;
3750 		}
3751 
3752 		/*
3753 		 * If we don't have enough pinned space to deal with this
3754 		 * allocation don't bother committing the transaction.
3755 		 */
3756 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3757 					   bytes) < 0)
3758 			committed = 1;
3759 		spin_unlock(&data_sinfo->lock);
3760 
3761 		/* commit the current transaction and try again */
3762 commit_trans:
3763 		if (!committed &&
3764 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3765 			committed = 1;
3766 
3767 			trans = btrfs_join_transaction(root);
3768 			if (IS_ERR(trans))
3769 				return PTR_ERR(trans);
3770 			ret = btrfs_commit_transaction(trans, root);
3771 			if (ret)
3772 				return ret;
3773 			goto again;
3774 		}
3775 
3776 		trace_btrfs_space_reservation(root->fs_info,
3777 					      "space_info:enospc",
3778 					      data_sinfo->flags, bytes, 1);
3779 		return -ENOSPC;
3780 	}
3781 	data_sinfo->bytes_may_use += bytes;
3782 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3783 				      data_sinfo->flags, bytes, 1);
3784 	spin_unlock(&data_sinfo->lock);
3785 
3786 	return 0;
3787 }
3788 
3789 /*
3790  * Called if we need to clear a data reservation for this inode.
3791  */
3792 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3793 {
3794 	struct btrfs_root *root = BTRFS_I(inode)->root;
3795 	struct btrfs_space_info *data_sinfo;
3796 
3797 	/* make sure bytes are sectorsize aligned */
3798 	bytes = ALIGN(bytes, root->sectorsize);
3799 
3800 	data_sinfo = root->fs_info->data_sinfo;
3801 	spin_lock(&data_sinfo->lock);
3802 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3803 	data_sinfo->bytes_may_use -= bytes;
3804 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3805 				      data_sinfo->flags, bytes, 0);
3806 	spin_unlock(&data_sinfo->lock);
3807 }
3808 
3809 static void force_metadata_allocation(struct btrfs_fs_info *info)
3810 {
3811 	struct list_head *head = &info->space_info;
3812 	struct btrfs_space_info *found;
3813 
3814 	rcu_read_lock();
3815 	list_for_each_entry_rcu(found, head, list) {
3816 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3817 			found->force_alloc = CHUNK_ALLOC_FORCE;
3818 	}
3819 	rcu_read_unlock();
3820 }
3821 
3822 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3823 {
3824 	return (global->size << 1);
3825 }
3826 
3827 static int should_alloc_chunk(struct btrfs_root *root,
3828 			      struct btrfs_space_info *sinfo, int force)
3829 {
3830 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3831 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3832 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3833 	u64 thresh;
3834 
3835 	if (force == CHUNK_ALLOC_FORCE)
3836 		return 1;
3837 
3838 	/*
3839 	 * We need to take into account the global rsv because for all intents
3840 	 * and purposes it's used space.  Don't worry about locking the
3841 	 * global_rsv, it doesn't change except when the transaction commits.
3842 	 */
3843 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3844 		num_allocated += calc_global_rsv_need_space(global_rsv);
3845 
3846 	/*
3847 	 * in limited mode, we want to have some free space up to
3848 	 * about 1% of the FS size.
3849 	 */
3850 	if (force == CHUNK_ALLOC_LIMITED) {
3851 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3852 		thresh = max_t(u64, 64 * 1024 * 1024,
3853 			       div_factor_fine(thresh, 1));
3854 
3855 		if (num_bytes - num_allocated < thresh)
3856 			return 1;
3857 	}
3858 
3859 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3860 		return 0;
3861 	return 1;
3862 }
3863 
3864 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3865 {
3866 	u64 num_dev;
3867 
3868 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3869 		    BTRFS_BLOCK_GROUP_RAID0 |
3870 		    BTRFS_BLOCK_GROUP_RAID5 |
3871 		    BTRFS_BLOCK_GROUP_RAID6))
3872 		num_dev = root->fs_info->fs_devices->rw_devices;
3873 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3874 		num_dev = 2;
3875 	else
3876 		num_dev = 1;	/* DUP or single */
3877 
3878 	/* metadata for updaing devices and chunk tree */
3879 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3880 }
3881 
3882 static void check_system_chunk(struct btrfs_trans_handle *trans,
3883 			       struct btrfs_root *root, u64 type)
3884 {
3885 	struct btrfs_space_info *info;
3886 	u64 left;
3887 	u64 thresh;
3888 
3889 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3890 	spin_lock(&info->lock);
3891 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3892 		info->bytes_reserved - info->bytes_readonly;
3893 	spin_unlock(&info->lock);
3894 
3895 	thresh = get_system_chunk_thresh(root, type);
3896 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3897 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3898 			left, thresh, type);
3899 		dump_space_info(info, 0, 0);
3900 	}
3901 
3902 	if (left < thresh) {
3903 		u64 flags;
3904 
3905 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3906 		btrfs_alloc_chunk(trans, root, flags);
3907 	}
3908 }
3909 
3910 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3911 			  struct btrfs_root *extent_root, u64 flags, int force)
3912 {
3913 	struct btrfs_space_info *space_info;
3914 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3915 	int wait_for_alloc = 0;
3916 	int ret = 0;
3917 
3918 	/* Don't re-enter if we're already allocating a chunk */
3919 	if (trans->allocating_chunk)
3920 		return -ENOSPC;
3921 
3922 	space_info = __find_space_info(extent_root->fs_info, flags);
3923 	if (!space_info) {
3924 		ret = update_space_info(extent_root->fs_info, flags,
3925 					0, 0, &space_info);
3926 		BUG_ON(ret); /* -ENOMEM */
3927 	}
3928 	BUG_ON(!space_info); /* Logic error */
3929 
3930 again:
3931 	spin_lock(&space_info->lock);
3932 	if (force < space_info->force_alloc)
3933 		force = space_info->force_alloc;
3934 	if (space_info->full) {
3935 		if (should_alloc_chunk(extent_root, space_info, force))
3936 			ret = -ENOSPC;
3937 		else
3938 			ret = 0;
3939 		spin_unlock(&space_info->lock);
3940 		return ret;
3941 	}
3942 
3943 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3944 		spin_unlock(&space_info->lock);
3945 		return 0;
3946 	} else if (space_info->chunk_alloc) {
3947 		wait_for_alloc = 1;
3948 	} else {
3949 		space_info->chunk_alloc = 1;
3950 	}
3951 
3952 	spin_unlock(&space_info->lock);
3953 
3954 	mutex_lock(&fs_info->chunk_mutex);
3955 
3956 	/*
3957 	 * The chunk_mutex is held throughout the entirety of a chunk
3958 	 * allocation, so once we've acquired the chunk_mutex we know that the
3959 	 * other guy is done and we need to recheck and see if we should
3960 	 * allocate.
3961 	 */
3962 	if (wait_for_alloc) {
3963 		mutex_unlock(&fs_info->chunk_mutex);
3964 		wait_for_alloc = 0;
3965 		goto again;
3966 	}
3967 
3968 	trans->allocating_chunk = true;
3969 
3970 	/*
3971 	 * If we have mixed data/metadata chunks we want to make sure we keep
3972 	 * allocating mixed chunks instead of individual chunks.
3973 	 */
3974 	if (btrfs_mixed_space_info(space_info))
3975 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3976 
3977 	/*
3978 	 * if we're doing a data chunk, go ahead and make sure that
3979 	 * we keep a reasonable number of metadata chunks allocated in the
3980 	 * FS as well.
3981 	 */
3982 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3983 		fs_info->data_chunk_allocations++;
3984 		if (!(fs_info->data_chunk_allocations %
3985 		      fs_info->metadata_ratio))
3986 			force_metadata_allocation(fs_info);
3987 	}
3988 
3989 	/*
3990 	 * Check if we have enough space in SYSTEM chunk because we may need
3991 	 * to update devices.
3992 	 */
3993 	check_system_chunk(trans, extent_root, flags);
3994 
3995 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3996 	trans->allocating_chunk = false;
3997 
3998 	spin_lock(&space_info->lock);
3999 	if (ret < 0 && ret != -ENOSPC)
4000 		goto out;
4001 	if (ret)
4002 		space_info->full = 1;
4003 	else
4004 		ret = 1;
4005 
4006 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4007 out:
4008 	space_info->chunk_alloc = 0;
4009 	spin_unlock(&space_info->lock);
4010 	mutex_unlock(&fs_info->chunk_mutex);
4011 	return ret;
4012 }
4013 
4014 static int can_overcommit(struct btrfs_root *root,
4015 			  struct btrfs_space_info *space_info, u64 bytes,
4016 			  enum btrfs_reserve_flush_enum flush)
4017 {
4018 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4019 	u64 profile = btrfs_get_alloc_profile(root, 0);
4020 	u64 space_size;
4021 	u64 avail;
4022 	u64 used;
4023 
4024 	used = space_info->bytes_used + space_info->bytes_reserved +
4025 		space_info->bytes_pinned + space_info->bytes_readonly;
4026 
4027 	/*
4028 	 * We only want to allow over committing if we have lots of actual space
4029 	 * free, but if we don't have enough space to handle the global reserve
4030 	 * space then we could end up having a real enospc problem when trying
4031 	 * to allocate a chunk or some other such important allocation.
4032 	 */
4033 	spin_lock(&global_rsv->lock);
4034 	space_size = calc_global_rsv_need_space(global_rsv);
4035 	spin_unlock(&global_rsv->lock);
4036 	if (used + space_size >= space_info->total_bytes)
4037 		return 0;
4038 
4039 	used += space_info->bytes_may_use;
4040 
4041 	spin_lock(&root->fs_info->free_chunk_lock);
4042 	avail = root->fs_info->free_chunk_space;
4043 	spin_unlock(&root->fs_info->free_chunk_lock);
4044 
4045 	/*
4046 	 * If we have dup, raid1 or raid10 then only half of the free
4047 	 * space is actually useable.  For raid56, the space info used
4048 	 * doesn't include the parity drive, so we don't have to
4049 	 * change the math
4050 	 */
4051 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4052 		       BTRFS_BLOCK_GROUP_RAID1 |
4053 		       BTRFS_BLOCK_GROUP_RAID10))
4054 		avail >>= 1;
4055 
4056 	/*
4057 	 * If we aren't flushing all things, let us overcommit up to
4058 	 * 1/2th of the space. If we can flush, don't let us overcommit
4059 	 * too much, let it overcommit up to 1/8 of the space.
4060 	 */
4061 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4062 		avail >>= 3;
4063 	else
4064 		avail >>= 1;
4065 
4066 	if (used + bytes < space_info->total_bytes + avail)
4067 		return 1;
4068 	return 0;
4069 }
4070 
4071 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4072 					 unsigned long nr_pages, int nr_items)
4073 {
4074 	struct super_block *sb = root->fs_info->sb;
4075 
4076 	if (down_read_trylock(&sb->s_umount)) {
4077 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4078 		up_read(&sb->s_umount);
4079 	} else {
4080 		/*
4081 		 * We needn't worry the filesystem going from r/w to r/o though
4082 		 * we don't acquire ->s_umount mutex, because the filesystem
4083 		 * should guarantee the delalloc inodes list be empty after
4084 		 * the filesystem is readonly(all dirty pages are written to
4085 		 * the disk).
4086 		 */
4087 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4088 		if (!current->journal_info)
4089 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4090 	}
4091 }
4092 
4093 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4094 {
4095 	u64 bytes;
4096 	int nr;
4097 
4098 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4099 	nr = (int)div64_u64(to_reclaim, bytes);
4100 	if (!nr)
4101 		nr = 1;
4102 	return nr;
4103 }
4104 
4105 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4106 
4107 /*
4108  * shrink metadata reservation for delalloc
4109  */
4110 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4111 			    bool wait_ordered)
4112 {
4113 	struct btrfs_block_rsv *block_rsv;
4114 	struct btrfs_space_info *space_info;
4115 	struct btrfs_trans_handle *trans;
4116 	u64 delalloc_bytes;
4117 	u64 max_reclaim;
4118 	long time_left;
4119 	unsigned long nr_pages;
4120 	int loops;
4121 	int items;
4122 	enum btrfs_reserve_flush_enum flush;
4123 
4124 	/* Calc the number of the pages we need flush for space reservation */
4125 	items = calc_reclaim_items_nr(root, to_reclaim);
4126 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4127 
4128 	trans = (struct btrfs_trans_handle *)current->journal_info;
4129 	block_rsv = &root->fs_info->delalloc_block_rsv;
4130 	space_info = block_rsv->space_info;
4131 
4132 	delalloc_bytes = percpu_counter_sum_positive(
4133 						&root->fs_info->delalloc_bytes);
4134 	if (delalloc_bytes == 0) {
4135 		if (trans)
4136 			return;
4137 		if (wait_ordered)
4138 			btrfs_wait_ordered_roots(root->fs_info, items);
4139 		return;
4140 	}
4141 
4142 	loops = 0;
4143 	while (delalloc_bytes && loops < 3) {
4144 		max_reclaim = min(delalloc_bytes, to_reclaim);
4145 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4146 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4147 		/*
4148 		 * We need to wait for the async pages to actually start before
4149 		 * we do anything.
4150 		 */
4151 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4152 		if (!max_reclaim)
4153 			goto skip_async;
4154 
4155 		if (max_reclaim <= nr_pages)
4156 			max_reclaim = 0;
4157 		else
4158 			max_reclaim -= nr_pages;
4159 
4160 		wait_event(root->fs_info->async_submit_wait,
4161 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4162 			   (int)max_reclaim);
4163 skip_async:
4164 		if (!trans)
4165 			flush = BTRFS_RESERVE_FLUSH_ALL;
4166 		else
4167 			flush = BTRFS_RESERVE_NO_FLUSH;
4168 		spin_lock(&space_info->lock);
4169 		if (can_overcommit(root, space_info, orig, flush)) {
4170 			spin_unlock(&space_info->lock);
4171 			break;
4172 		}
4173 		spin_unlock(&space_info->lock);
4174 
4175 		loops++;
4176 		if (wait_ordered && !trans) {
4177 			btrfs_wait_ordered_roots(root->fs_info, items);
4178 		} else {
4179 			time_left = schedule_timeout_killable(1);
4180 			if (time_left)
4181 				break;
4182 		}
4183 		delalloc_bytes = percpu_counter_sum_positive(
4184 						&root->fs_info->delalloc_bytes);
4185 	}
4186 }
4187 
4188 /**
4189  * maybe_commit_transaction - possibly commit the transaction if its ok to
4190  * @root - the root we're allocating for
4191  * @bytes - the number of bytes we want to reserve
4192  * @force - force the commit
4193  *
4194  * This will check to make sure that committing the transaction will actually
4195  * get us somewhere and then commit the transaction if it does.  Otherwise it
4196  * will return -ENOSPC.
4197  */
4198 static int may_commit_transaction(struct btrfs_root *root,
4199 				  struct btrfs_space_info *space_info,
4200 				  u64 bytes, int force)
4201 {
4202 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4203 	struct btrfs_trans_handle *trans;
4204 
4205 	trans = (struct btrfs_trans_handle *)current->journal_info;
4206 	if (trans)
4207 		return -EAGAIN;
4208 
4209 	if (force)
4210 		goto commit;
4211 
4212 	/* See if there is enough pinned space to make this reservation */
4213 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4214 				   bytes) >= 0)
4215 		goto commit;
4216 
4217 	/*
4218 	 * See if there is some space in the delayed insertion reservation for
4219 	 * this reservation.
4220 	 */
4221 	if (space_info != delayed_rsv->space_info)
4222 		return -ENOSPC;
4223 
4224 	spin_lock(&delayed_rsv->lock);
4225 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4226 				   bytes - delayed_rsv->size) >= 0) {
4227 		spin_unlock(&delayed_rsv->lock);
4228 		return -ENOSPC;
4229 	}
4230 	spin_unlock(&delayed_rsv->lock);
4231 
4232 commit:
4233 	trans = btrfs_join_transaction(root);
4234 	if (IS_ERR(trans))
4235 		return -ENOSPC;
4236 
4237 	return btrfs_commit_transaction(trans, root);
4238 }
4239 
4240 enum flush_state {
4241 	FLUSH_DELAYED_ITEMS_NR	=	1,
4242 	FLUSH_DELAYED_ITEMS	=	2,
4243 	FLUSH_DELALLOC		=	3,
4244 	FLUSH_DELALLOC_WAIT	=	4,
4245 	ALLOC_CHUNK		=	5,
4246 	COMMIT_TRANS		=	6,
4247 };
4248 
4249 static int flush_space(struct btrfs_root *root,
4250 		       struct btrfs_space_info *space_info, u64 num_bytes,
4251 		       u64 orig_bytes, int state)
4252 {
4253 	struct btrfs_trans_handle *trans;
4254 	int nr;
4255 	int ret = 0;
4256 
4257 	switch (state) {
4258 	case FLUSH_DELAYED_ITEMS_NR:
4259 	case FLUSH_DELAYED_ITEMS:
4260 		if (state == FLUSH_DELAYED_ITEMS_NR)
4261 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4262 		else
4263 			nr = -1;
4264 
4265 		trans = btrfs_join_transaction(root);
4266 		if (IS_ERR(trans)) {
4267 			ret = PTR_ERR(trans);
4268 			break;
4269 		}
4270 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4271 		btrfs_end_transaction(trans, root);
4272 		break;
4273 	case FLUSH_DELALLOC:
4274 	case FLUSH_DELALLOC_WAIT:
4275 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4276 				state == FLUSH_DELALLOC_WAIT);
4277 		break;
4278 	case ALLOC_CHUNK:
4279 		trans = btrfs_join_transaction(root);
4280 		if (IS_ERR(trans)) {
4281 			ret = PTR_ERR(trans);
4282 			break;
4283 		}
4284 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4285 				     btrfs_get_alloc_profile(root, 0),
4286 				     CHUNK_ALLOC_NO_FORCE);
4287 		btrfs_end_transaction(trans, root);
4288 		if (ret == -ENOSPC)
4289 			ret = 0;
4290 		break;
4291 	case COMMIT_TRANS:
4292 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4293 		break;
4294 	default:
4295 		ret = -ENOSPC;
4296 		break;
4297 	}
4298 
4299 	return ret;
4300 }
4301 
4302 static inline u64
4303 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4304 				 struct btrfs_space_info *space_info)
4305 {
4306 	u64 used;
4307 	u64 expected;
4308 	u64 to_reclaim;
4309 
4310 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4311 				16 * 1024 * 1024);
4312 	spin_lock(&space_info->lock);
4313 	if (can_overcommit(root, space_info, to_reclaim,
4314 			   BTRFS_RESERVE_FLUSH_ALL)) {
4315 		to_reclaim = 0;
4316 		goto out;
4317 	}
4318 
4319 	used = space_info->bytes_used + space_info->bytes_reserved +
4320 	       space_info->bytes_pinned + space_info->bytes_readonly +
4321 	       space_info->bytes_may_use;
4322 	if (can_overcommit(root, space_info, 1024 * 1024,
4323 			   BTRFS_RESERVE_FLUSH_ALL))
4324 		expected = div_factor_fine(space_info->total_bytes, 95);
4325 	else
4326 		expected = div_factor_fine(space_info->total_bytes, 90);
4327 
4328 	if (used > expected)
4329 		to_reclaim = used - expected;
4330 	else
4331 		to_reclaim = 0;
4332 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4333 				     space_info->bytes_reserved);
4334 out:
4335 	spin_unlock(&space_info->lock);
4336 
4337 	return to_reclaim;
4338 }
4339 
4340 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4341 					struct btrfs_fs_info *fs_info, u64 used)
4342 {
4343 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4344 		!btrfs_fs_closing(fs_info) &&
4345 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4346 }
4347 
4348 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4349 				       struct btrfs_fs_info *fs_info)
4350 {
4351 	u64 used;
4352 
4353 	spin_lock(&space_info->lock);
4354 	used = space_info->bytes_used + space_info->bytes_reserved +
4355 	       space_info->bytes_pinned + space_info->bytes_readonly +
4356 	       space_info->bytes_may_use;
4357 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4358 		spin_unlock(&space_info->lock);
4359 		return 1;
4360 	}
4361 	spin_unlock(&space_info->lock);
4362 
4363 	return 0;
4364 }
4365 
4366 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4367 {
4368 	struct btrfs_fs_info *fs_info;
4369 	struct btrfs_space_info *space_info;
4370 	u64 to_reclaim;
4371 	int flush_state;
4372 
4373 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4374 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4375 
4376 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4377 						      space_info);
4378 	if (!to_reclaim)
4379 		return;
4380 
4381 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4382 	do {
4383 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4384 			    to_reclaim, flush_state);
4385 		flush_state++;
4386 		if (!btrfs_need_do_async_reclaim(space_info, fs_info))
4387 			return;
4388 	} while (flush_state <= COMMIT_TRANS);
4389 
4390 	if (btrfs_need_do_async_reclaim(space_info, fs_info))
4391 		queue_work(system_unbound_wq, work);
4392 }
4393 
4394 void btrfs_init_async_reclaim_work(struct work_struct *work)
4395 {
4396 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4397 }
4398 
4399 /**
4400  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4401  * @root - the root we're allocating for
4402  * @block_rsv - the block_rsv we're allocating for
4403  * @orig_bytes - the number of bytes we want
4404  * @flush - whether or not we can flush to make our reservation
4405  *
4406  * This will reserve orgi_bytes number of bytes from the space info associated
4407  * with the block_rsv.  If there is not enough space it will make an attempt to
4408  * flush out space to make room.  It will do this by flushing delalloc if
4409  * possible or committing the transaction.  If flush is 0 then no attempts to
4410  * regain reservations will be made and this will fail if there is not enough
4411  * space already.
4412  */
4413 static int reserve_metadata_bytes(struct btrfs_root *root,
4414 				  struct btrfs_block_rsv *block_rsv,
4415 				  u64 orig_bytes,
4416 				  enum btrfs_reserve_flush_enum flush)
4417 {
4418 	struct btrfs_space_info *space_info = block_rsv->space_info;
4419 	u64 used;
4420 	u64 num_bytes = orig_bytes;
4421 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4422 	int ret = 0;
4423 	bool flushing = false;
4424 
4425 again:
4426 	ret = 0;
4427 	spin_lock(&space_info->lock);
4428 	/*
4429 	 * We only want to wait if somebody other than us is flushing and we
4430 	 * are actually allowed to flush all things.
4431 	 */
4432 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4433 	       space_info->flush) {
4434 		spin_unlock(&space_info->lock);
4435 		/*
4436 		 * If we have a trans handle we can't wait because the flusher
4437 		 * may have to commit the transaction, which would mean we would
4438 		 * deadlock since we are waiting for the flusher to finish, but
4439 		 * hold the current transaction open.
4440 		 */
4441 		if (current->journal_info)
4442 			return -EAGAIN;
4443 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4444 		/* Must have been killed, return */
4445 		if (ret)
4446 			return -EINTR;
4447 
4448 		spin_lock(&space_info->lock);
4449 	}
4450 
4451 	ret = -ENOSPC;
4452 	used = space_info->bytes_used + space_info->bytes_reserved +
4453 		space_info->bytes_pinned + space_info->bytes_readonly +
4454 		space_info->bytes_may_use;
4455 
4456 	/*
4457 	 * The idea here is that we've not already over-reserved the block group
4458 	 * then we can go ahead and save our reservation first and then start
4459 	 * flushing if we need to.  Otherwise if we've already overcommitted
4460 	 * lets start flushing stuff first and then come back and try to make
4461 	 * our reservation.
4462 	 */
4463 	if (used <= space_info->total_bytes) {
4464 		if (used + orig_bytes <= space_info->total_bytes) {
4465 			space_info->bytes_may_use += orig_bytes;
4466 			trace_btrfs_space_reservation(root->fs_info,
4467 				"space_info", space_info->flags, orig_bytes, 1);
4468 			ret = 0;
4469 		} else {
4470 			/*
4471 			 * Ok set num_bytes to orig_bytes since we aren't
4472 			 * overocmmitted, this way we only try and reclaim what
4473 			 * we need.
4474 			 */
4475 			num_bytes = orig_bytes;
4476 		}
4477 	} else {
4478 		/*
4479 		 * Ok we're over committed, set num_bytes to the overcommitted
4480 		 * amount plus the amount of bytes that we need for this
4481 		 * reservation.
4482 		 */
4483 		num_bytes = used - space_info->total_bytes +
4484 			(orig_bytes * 2);
4485 	}
4486 
4487 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4488 		space_info->bytes_may_use += orig_bytes;
4489 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4490 					      space_info->flags, orig_bytes,
4491 					      1);
4492 		ret = 0;
4493 	}
4494 
4495 	/*
4496 	 * Couldn't make our reservation, save our place so while we're trying
4497 	 * to reclaim space we can actually use it instead of somebody else
4498 	 * stealing it from us.
4499 	 *
4500 	 * We make the other tasks wait for the flush only when we can flush
4501 	 * all things.
4502 	 */
4503 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4504 		flushing = true;
4505 		space_info->flush = 1;
4506 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4507 		used += orig_bytes;
4508 		if (need_do_async_reclaim(space_info, root->fs_info, used) &&
4509 		    !work_busy(&root->fs_info->async_reclaim_work))
4510 			queue_work(system_unbound_wq,
4511 				   &root->fs_info->async_reclaim_work);
4512 	}
4513 	spin_unlock(&space_info->lock);
4514 
4515 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4516 		goto out;
4517 
4518 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4519 			  flush_state);
4520 	flush_state++;
4521 
4522 	/*
4523 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4524 	 * would happen. So skip delalloc flush.
4525 	 */
4526 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4527 	    (flush_state == FLUSH_DELALLOC ||
4528 	     flush_state == FLUSH_DELALLOC_WAIT))
4529 		flush_state = ALLOC_CHUNK;
4530 
4531 	if (!ret)
4532 		goto again;
4533 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4534 		 flush_state < COMMIT_TRANS)
4535 		goto again;
4536 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4537 		 flush_state <= COMMIT_TRANS)
4538 		goto again;
4539 
4540 out:
4541 	if (ret == -ENOSPC &&
4542 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4543 		struct btrfs_block_rsv *global_rsv =
4544 			&root->fs_info->global_block_rsv;
4545 
4546 		if (block_rsv != global_rsv &&
4547 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4548 			ret = 0;
4549 	}
4550 	if (ret == -ENOSPC)
4551 		trace_btrfs_space_reservation(root->fs_info,
4552 					      "space_info:enospc",
4553 					      space_info->flags, orig_bytes, 1);
4554 	if (flushing) {
4555 		spin_lock(&space_info->lock);
4556 		space_info->flush = 0;
4557 		wake_up_all(&space_info->wait);
4558 		spin_unlock(&space_info->lock);
4559 	}
4560 	return ret;
4561 }
4562 
4563 static struct btrfs_block_rsv *get_block_rsv(
4564 					const struct btrfs_trans_handle *trans,
4565 					const struct btrfs_root *root)
4566 {
4567 	struct btrfs_block_rsv *block_rsv = NULL;
4568 
4569 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4570 		block_rsv = trans->block_rsv;
4571 
4572 	if (root == root->fs_info->csum_root && trans->adding_csums)
4573 		block_rsv = trans->block_rsv;
4574 
4575 	if (root == root->fs_info->uuid_root)
4576 		block_rsv = trans->block_rsv;
4577 
4578 	if (!block_rsv)
4579 		block_rsv = root->block_rsv;
4580 
4581 	if (!block_rsv)
4582 		block_rsv = &root->fs_info->empty_block_rsv;
4583 
4584 	return block_rsv;
4585 }
4586 
4587 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4588 			       u64 num_bytes)
4589 {
4590 	int ret = -ENOSPC;
4591 	spin_lock(&block_rsv->lock);
4592 	if (block_rsv->reserved >= num_bytes) {
4593 		block_rsv->reserved -= num_bytes;
4594 		if (block_rsv->reserved < block_rsv->size)
4595 			block_rsv->full = 0;
4596 		ret = 0;
4597 	}
4598 	spin_unlock(&block_rsv->lock);
4599 	return ret;
4600 }
4601 
4602 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4603 				u64 num_bytes, int update_size)
4604 {
4605 	spin_lock(&block_rsv->lock);
4606 	block_rsv->reserved += num_bytes;
4607 	if (update_size)
4608 		block_rsv->size += num_bytes;
4609 	else if (block_rsv->reserved >= block_rsv->size)
4610 		block_rsv->full = 1;
4611 	spin_unlock(&block_rsv->lock);
4612 }
4613 
4614 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4615 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4616 			     int min_factor)
4617 {
4618 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4619 	u64 min_bytes;
4620 
4621 	if (global_rsv->space_info != dest->space_info)
4622 		return -ENOSPC;
4623 
4624 	spin_lock(&global_rsv->lock);
4625 	min_bytes = div_factor(global_rsv->size, min_factor);
4626 	if (global_rsv->reserved < min_bytes + num_bytes) {
4627 		spin_unlock(&global_rsv->lock);
4628 		return -ENOSPC;
4629 	}
4630 	global_rsv->reserved -= num_bytes;
4631 	if (global_rsv->reserved < global_rsv->size)
4632 		global_rsv->full = 0;
4633 	spin_unlock(&global_rsv->lock);
4634 
4635 	block_rsv_add_bytes(dest, num_bytes, 1);
4636 	return 0;
4637 }
4638 
4639 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4640 				    struct btrfs_block_rsv *block_rsv,
4641 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4642 {
4643 	struct btrfs_space_info *space_info = block_rsv->space_info;
4644 
4645 	spin_lock(&block_rsv->lock);
4646 	if (num_bytes == (u64)-1)
4647 		num_bytes = block_rsv->size;
4648 	block_rsv->size -= num_bytes;
4649 	if (block_rsv->reserved >= block_rsv->size) {
4650 		num_bytes = block_rsv->reserved - block_rsv->size;
4651 		block_rsv->reserved = block_rsv->size;
4652 		block_rsv->full = 1;
4653 	} else {
4654 		num_bytes = 0;
4655 	}
4656 	spin_unlock(&block_rsv->lock);
4657 
4658 	if (num_bytes > 0) {
4659 		if (dest) {
4660 			spin_lock(&dest->lock);
4661 			if (!dest->full) {
4662 				u64 bytes_to_add;
4663 
4664 				bytes_to_add = dest->size - dest->reserved;
4665 				bytes_to_add = min(num_bytes, bytes_to_add);
4666 				dest->reserved += bytes_to_add;
4667 				if (dest->reserved >= dest->size)
4668 					dest->full = 1;
4669 				num_bytes -= bytes_to_add;
4670 			}
4671 			spin_unlock(&dest->lock);
4672 		}
4673 		if (num_bytes) {
4674 			spin_lock(&space_info->lock);
4675 			space_info->bytes_may_use -= num_bytes;
4676 			trace_btrfs_space_reservation(fs_info, "space_info",
4677 					space_info->flags, num_bytes, 0);
4678 			spin_unlock(&space_info->lock);
4679 		}
4680 	}
4681 }
4682 
4683 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4684 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4685 {
4686 	int ret;
4687 
4688 	ret = block_rsv_use_bytes(src, num_bytes);
4689 	if (ret)
4690 		return ret;
4691 
4692 	block_rsv_add_bytes(dst, num_bytes, 1);
4693 	return 0;
4694 }
4695 
4696 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4697 {
4698 	memset(rsv, 0, sizeof(*rsv));
4699 	spin_lock_init(&rsv->lock);
4700 	rsv->type = type;
4701 }
4702 
4703 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4704 					      unsigned short type)
4705 {
4706 	struct btrfs_block_rsv *block_rsv;
4707 	struct btrfs_fs_info *fs_info = root->fs_info;
4708 
4709 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4710 	if (!block_rsv)
4711 		return NULL;
4712 
4713 	btrfs_init_block_rsv(block_rsv, type);
4714 	block_rsv->space_info = __find_space_info(fs_info,
4715 						  BTRFS_BLOCK_GROUP_METADATA);
4716 	return block_rsv;
4717 }
4718 
4719 void btrfs_free_block_rsv(struct btrfs_root *root,
4720 			  struct btrfs_block_rsv *rsv)
4721 {
4722 	if (!rsv)
4723 		return;
4724 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4725 	kfree(rsv);
4726 }
4727 
4728 int btrfs_block_rsv_add(struct btrfs_root *root,
4729 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4730 			enum btrfs_reserve_flush_enum flush)
4731 {
4732 	int ret;
4733 
4734 	if (num_bytes == 0)
4735 		return 0;
4736 
4737 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4738 	if (!ret) {
4739 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4740 		return 0;
4741 	}
4742 
4743 	return ret;
4744 }
4745 
4746 int btrfs_block_rsv_check(struct btrfs_root *root,
4747 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4748 {
4749 	u64 num_bytes = 0;
4750 	int ret = -ENOSPC;
4751 
4752 	if (!block_rsv)
4753 		return 0;
4754 
4755 	spin_lock(&block_rsv->lock);
4756 	num_bytes = div_factor(block_rsv->size, min_factor);
4757 	if (block_rsv->reserved >= num_bytes)
4758 		ret = 0;
4759 	spin_unlock(&block_rsv->lock);
4760 
4761 	return ret;
4762 }
4763 
4764 int btrfs_block_rsv_refill(struct btrfs_root *root,
4765 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4766 			   enum btrfs_reserve_flush_enum flush)
4767 {
4768 	u64 num_bytes = 0;
4769 	int ret = -ENOSPC;
4770 
4771 	if (!block_rsv)
4772 		return 0;
4773 
4774 	spin_lock(&block_rsv->lock);
4775 	num_bytes = min_reserved;
4776 	if (block_rsv->reserved >= num_bytes)
4777 		ret = 0;
4778 	else
4779 		num_bytes -= block_rsv->reserved;
4780 	spin_unlock(&block_rsv->lock);
4781 
4782 	if (!ret)
4783 		return 0;
4784 
4785 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4786 	if (!ret) {
4787 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4788 		return 0;
4789 	}
4790 
4791 	return ret;
4792 }
4793 
4794 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4795 			    struct btrfs_block_rsv *dst_rsv,
4796 			    u64 num_bytes)
4797 {
4798 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4799 }
4800 
4801 void btrfs_block_rsv_release(struct btrfs_root *root,
4802 			     struct btrfs_block_rsv *block_rsv,
4803 			     u64 num_bytes)
4804 {
4805 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4806 	if (global_rsv == block_rsv ||
4807 	    block_rsv->space_info != global_rsv->space_info)
4808 		global_rsv = NULL;
4809 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4810 				num_bytes);
4811 }
4812 
4813 /*
4814  * helper to calculate size of global block reservation.
4815  * the desired value is sum of space used by extent tree,
4816  * checksum tree and root tree
4817  */
4818 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4819 {
4820 	struct btrfs_space_info *sinfo;
4821 	u64 num_bytes;
4822 	u64 meta_used;
4823 	u64 data_used;
4824 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4825 
4826 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4827 	spin_lock(&sinfo->lock);
4828 	data_used = sinfo->bytes_used;
4829 	spin_unlock(&sinfo->lock);
4830 
4831 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4832 	spin_lock(&sinfo->lock);
4833 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4834 		data_used = 0;
4835 	meta_used = sinfo->bytes_used;
4836 	spin_unlock(&sinfo->lock);
4837 
4838 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4839 		    csum_size * 2;
4840 	num_bytes += div64_u64(data_used + meta_used, 50);
4841 
4842 	if (num_bytes * 3 > meta_used)
4843 		num_bytes = div64_u64(meta_used, 3);
4844 
4845 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4846 }
4847 
4848 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4849 {
4850 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4851 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4852 	u64 num_bytes;
4853 
4854 	num_bytes = calc_global_metadata_size(fs_info);
4855 
4856 	spin_lock(&sinfo->lock);
4857 	spin_lock(&block_rsv->lock);
4858 
4859 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4860 
4861 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4862 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4863 		    sinfo->bytes_may_use;
4864 
4865 	if (sinfo->total_bytes > num_bytes) {
4866 		num_bytes = sinfo->total_bytes - num_bytes;
4867 		block_rsv->reserved += num_bytes;
4868 		sinfo->bytes_may_use += num_bytes;
4869 		trace_btrfs_space_reservation(fs_info, "space_info",
4870 				      sinfo->flags, num_bytes, 1);
4871 	}
4872 
4873 	if (block_rsv->reserved >= block_rsv->size) {
4874 		num_bytes = block_rsv->reserved - block_rsv->size;
4875 		sinfo->bytes_may_use -= num_bytes;
4876 		trace_btrfs_space_reservation(fs_info, "space_info",
4877 				      sinfo->flags, num_bytes, 0);
4878 		block_rsv->reserved = block_rsv->size;
4879 		block_rsv->full = 1;
4880 	}
4881 
4882 	spin_unlock(&block_rsv->lock);
4883 	spin_unlock(&sinfo->lock);
4884 }
4885 
4886 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4887 {
4888 	struct btrfs_space_info *space_info;
4889 
4890 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4891 	fs_info->chunk_block_rsv.space_info = space_info;
4892 
4893 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4894 	fs_info->global_block_rsv.space_info = space_info;
4895 	fs_info->delalloc_block_rsv.space_info = space_info;
4896 	fs_info->trans_block_rsv.space_info = space_info;
4897 	fs_info->empty_block_rsv.space_info = space_info;
4898 	fs_info->delayed_block_rsv.space_info = space_info;
4899 
4900 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4901 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4902 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4903 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4904 	if (fs_info->quota_root)
4905 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4906 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4907 
4908 	update_global_block_rsv(fs_info);
4909 }
4910 
4911 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4912 {
4913 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4914 				(u64)-1);
4915 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4916 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4917 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4918 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4919 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4920 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4921 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4922 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4923 }
4924 
4925 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4926 				  struct btrfs_root *root)
4927 {
4928 	if (!trans->block_rsv)
4929 		return;
4930 
4931 	if (!trans->bytes_reserved)
4932 		return;
4933 
4934 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4935 				      trans->transid, trans->bytes_reserved, 0);
4936 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4937 	trans->bytes_reserved = 0;
4938 }
4939 
4940 /* Can only return 0 or -ENOSPC */
4941 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4942 				  struct inode *inode)
4943 {
4944 	struct btrfs_root *root = BTRFS_I(inode)->root;
4945 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4946 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4947 
4948 	/*
4949 	 * We need to hold space in order to delete our orphan item once we've
4950 	 * added it, so this takes the reservation so we can release it later
4951 	 * when we are truly done with the orphan item.
4952 	 */
4953 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4954 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4955 				      btrfs_ino(inode), num_bytes, 1);
4956 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4957 }
4958 
4959 void btrfs_orphan_release_metadata(struct inode *inode)
4960 {
4961 	struct btrfs_root *root = BTRFS_I(inode)->root;
4962 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4963 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4964 				      btrfs_ino(inode), num_bytes, 0);
4965 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4966 }
4967 
4968 /*
4969  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4970  * root: the root of the parent directory
4971  * rsv: block reservation
4972  * items: the number of items that we need do reservation
4973  * qgroup_reserved: used to return the reserved size in qgroup
4974  *
4975  * This function is used to reserve the space for snapshot/subvolume
4976  * creation and deletion. Those operations are different with the
4977  * common file/directory operations, they change two fs/file trees
4978  * and root tree, the number of items that the qgroup reserves is
4979  * different with the free space reservation. So we can not use
4980  * the space reseravtion mechanism in start_transaction().
4981  */
4982 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4983 				     struct btrfs_block_rsv *rsv,
4984 				     int items,
4985 				     u64 *qgroup_reserved,
4986 				     bool use_global_rsv)
4987 {
4988 	u64 num_bytes;
4989 	int ret;
4990 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4991 
4992 	if (root->fs_info->quota_enabled) {
4993 		/* One for parent inode, two for dir entries */
4994 		num_bytes = 3 * root->leafsize;
4995 		ret = btrfs_qgroup_reserve(root, num_bytes);
4996 		if (ret)
4997 			return ret;
4998 	} else {
4999 		num_bytes = 0;
5000 	}
5001 
5002 	*qgroup_reserved = num_bytes;
5003 
5004 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5005 	rsv->space_info = __find_space_info(root->fs_info,
5006 					    BTRFS_BLOCK_GROUP_METADATA);
5007 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5008 				  BTRFS_RESERVE_FLUSH_ALL);
5009 
5010 	if (ret == -ENOSPC && use_global_rsv)
5011 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5012 
5013 	if (ret) {
5014 		if (*qgroup_reserved)
5015 			btrfs_qgroup_free(root, *qgroup_reserved);
5016 	}
5017 
5018 	return ret;
5019 }
5020 
5021 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5022 				      struct btrfs_block_rsv *rsv,
5023 				      u64 qgroup_reserved)
5024 {
5025 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5026 	if (qgroup_reserved)
5027 		btrfs_qgroup_free(root, qgroup_reserved);
5028 }
5029 
5030 /**
5031  * drop_outstanding_extent - drop an outstanding extent
5032  * @inode: the inode we're dropping the extent for
5033  *
5034  * This is called when we are freeing up an outstanding extent, either called
5035  * after an error or after an extent is written.  This will return the number of
5036  * reserved extents that need to be freed.  This must be called with
5037  * BTRFS_I(inode)->lock held.
5038  */
5039 static unsigned drop_outstanding_extent(struct inode *inode)
5040 {
5041 	unsigned drop_inode_space = 0;
5042 	unsigned dropped_extents = 0;
5043 
5044 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5045 	BTRFS_I(inode)->outstanding_extents--;
5046 
5047 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5048 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5049 			       &BTRFS_I(inode)->runtime_flags))
5050 		drop_inode_space = 1;
5051 
5052 	/*
5053 	 * If we have more or the same amount of outsanding extents than we have
5054 	 * reserved then we need to leave the reserved extents count alone.
5055 	 */
5056 	if (BTRFS_I(inode)->outstanding_extents >=
5057 	    BTRFS_I(inode)->reserved_extents)
5058 		return drop_inode_space;
5059 
5060 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5061 		BTRFS_I(inode)->outstanding_extents;
5062 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5063 	return dropped_extents + drop_inode_space;
5064 }
5065 
5066 /**
5067  * calc_csum_metadata_size - return the amount of metada space that must be
5068  *	reserved/free'd for the given bytes.
5069  * @inode: the inode we're manipulating
5070  * @num_bytes: the number of bytes in question
5071  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5072  *
5073  * This adjusts the number of csum_bytes in the inode and then returns the
5074  * correct amount of metadata that must either be reserved or freed.  We
5075  * calculate how many checksums we can fit into one leaf and then divide the
5076  * number of bytes that will need to be checksumed by this value to figure out
5077  * how many checksums will be required.  If we are adding bytes then the number
5078  * may go up and we will return the number of additional bytes that must be
5079  * reserved.  If it is going down we will return the number of bytes that must
5080  * be freed.
5081  *
5082  * This must be called with BTRFS_I(inode)->lock held.
5083  */
5084 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5085 				   int reserve)
5086 {
5087 	struct btrfs_root *root = BTRFS_I(inode)->root;
5088 	u64 csum_size;
5089 	int num_csums_per_leaf;
5090 	int num_csums;
5091 	int old_csums;
5092 
5093 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5094 	    BTRFS_I(inode)->csum_bytes == 0)
5095 		return 0;
5096 
5097 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5098 	if (reserve)
5099 		BTRFS_I(inode)->csum_bytes += num_bytes;
5100 	else
5101 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5102 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5103 	num_csums_per_leaf = (int)div64_u64(csum_size,
5104 					    sizeof(struct btrfs_csum_item) +
5105 					    sizeof(struct btrfs_disk_key));
5106 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5107 	num_csums = num_csums + num_csums_per_leaf - 1;
5108 	num_csums = num_csums / num_csums_per_leaf;
5109 
5110 	old_csums = old_csums + num_csums_per_leaf - 1;
5111 	old_csums = old_csums / num_csums_per_leaf;
5112 
5113 	/* No change, no need to reserve more */
5114 	if (old_csums == num_csums)
5115 		return 0;
5116 
5117 	if (reserve)
5118 		return btrfs_calc_trans_metadata_size(root,
5119 						      num_csums - old_csums);
5120 
5121 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5122 }
5123 
5124 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5125 {
5126 	struct btrfs_root *root = BTRFS_I(inode)->root;
5127 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5128 	u64 to_reserve = 0;
5129 	u64 csum_bytes;
5130 	unsigned nr_extents = 0;
5131 	int extra_reserve = 0;
5132 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5133 	int ret = 0;
5134 	bool delalloc_lock = true;
5135 	u64 to_free = 0;
5136 	unsigned dropped;
5137 
5138 	/* If we are a free space inode we need to not flush since we will be in
5139 	 * the middle of a transaction commit.  We also don't need the delalloc
5140 	 * mutex since we won't race with anybody.  We need this mostly to make
5141 	 * lockdep shut its filthy mouth.
5142 	 */
5143 	if (btrfs_is_free_space_inode(inode)) {
5144 		flush = BTRFS_RESERVE_NO_FLUSH;
5145 		delalloc_lock = false;
5146 	}
5147 
5148 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5149 	    btrfs_transaction_in_commit(root->fs_info))
5150 		schedule_timeout(1);
5151 
5152 	if (delalloc_lock)
5153 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5154 
5155 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5156 
5157 	spin_lock(&BTRFS_I(inode)->lock);
5158 	BTRFS_I(inode)->outstanding_extents++;
5159 
5160 	if (BTRFS_I(inode)->outstanding_extents >
5161 	    BTRFS_I(inode)->reserved_extents)
5162 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5163 			BTRFS_I(inode)->reserved_extents;
5164 
5165 	/*
5166 	 * Add an item to reserve for updating the inode when we complete the
5167 	 * delalloc io.
5168 	 */
5169 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5170 		      &BTRFS_I(inode)->runtime_flags)) {
5171 		nr_extents++;
5172 		extra_reserve = 1;
5173 	}
5174 
5175 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5176 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5177 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5178 	spin_unlock(&BTRFS_I(inode)->lock);
5179 
5180 	if (root->fs_info->quota_enabled) {
5181 		ret = btrfs_qgroup_reserve(root, num_bytes +
5182 					   nr_extents * root->leafsize);
5183 		if (ret)
5184 			goto out_fail;
5185 	}
5186 
5187 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5188 	if (unlikely(ret)) {
5189 		if (root->fs_info->quota_enabled)
5190 			btrfs_qgroup_free(root, num_bytes +
5191 						nr_extents * root->leafsize);
5192 		goto out_fail;
5193 	}
5194 
5195 	spin_lock(&BTRFS_I(inode)->lock);
5196 	if (extra_reserve) {
5197 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5198 			&BTRFS_I(inode)->runtime_flags);
5199 		nr_extents--;
5200 	}
5201 	BTRFS_I(inode)->reserved_extents += nr_extents;
5202 	spin_unlock(&BTRFS_I(inode)->lock);
5203 
5204 	if (delalloc_lock)
5205 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5206 
5207 	if (to_reserve)
5208 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5209 					      btrfs_ino(inode), to_reserve, 1);
5210 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5211 
5212 	return 0;
5213 
5214 out_fail:
5215 	spin_lock(&BTRFS_I(inode)->lock);
5216 	dropped = drop_outstanding_extent(inode);
5217 	/*
5218 	 * If the inodes csum_bytes is the same as the original
5219 	 * csum_bytes then we know we haven't raced with any free()ers
5220 	 * so we can just reduce our inodes csum bytes and carry on.
5221 	 */
5222 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5223 		calc_csum_metadata_size(inode, num_bytes, 0);
5224 	} else {
5225 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5226 		u64 bytes;
5227 
5228 		/*
5229 		 * This is tricky, but first we need to figure out how much we
5230 		 * free'd from any free-ers that occured during this
5231 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5232 		 * before we dropped our lock, and then call the free for the
5233 		 * number of bytes that were freed while we were trying our
5234 		 * reservation.
5235 		 */
5236 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5237 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5238 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5239 
5240 
5241 		/*
5242 		 * Now we need to see how much we would have freed had we not
5243 		 * been making this reservation and our ->csum_bytes were not
5244 		 * artificially inflated.
5245 		 */
5246 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5247 		bytes = csum_bytes - orig_csum_bytes;
5248 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5249 
5250 		/*
5251 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5252 		 * more than to_free then we would have free'd more space had we
5253 		 * not had an artificially high ->csum_bytes, so we need to free
5254 		 * the remainder.  If bytes is the same or less then we don't
5255 		 * need to do anything, the other free-ers did the correct
5256 		 * thing.
5257 		 */
5258 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5259 		if (bytes > to_free)
5260 			to_free = bytes - to_free;
5261 		else
5262 			to_free = 0;
5263 	}
5264 	spin_unlock(&BTRFS_I(inode)->lock);
5265 	if (dropped)
5266 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5267 
5268 	if (to_free) {
5269 		btrfs_block_rsv_release(root, block_rsv, to_free);
5270 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5271 					      btrfs_ino(inode), to_free, 0);
5272 	}
5273 	if (delalloc_lock)
5274 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5275 	return ret;
5276 }
5277 
5278 /**
5279  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5280  * @inode: the inode to release the reservation for
5281  * @num_bytes: the number of bytes we're releasing
5282  *
5283  * This will release the metadata reservation for an inode.  This can be called
5284  * once we complete IO for a given set of bytes to release their metadata
5285  * reservations.
5286  */
5287 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5288 {
5289 	struct btrfs_root *root = BTRFS_I(inode)->root;
5290 	u64 to_free = 0;
5291 	unsigned dropped;
5292 
5293 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5294 	spin_lock(&BTRFS_I(inode)->lock);
5295 	dropped = drop_outstanding_extent(inode);
5296 
5297 	if (num_bytes)
5298 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5299 	spin_unlock(&BTRFS_I(inode)->lock);
5300 	if (dropped > 0)
5301 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5302 
5303 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5304 				      btrfs_ino(inode), to_free, 0);
5305 	if (root->fs_info->quota_enabled) {
5306 		btrfs_qgroup_free(root, num_bytes +
5307 					dropped * root->leafsize);
5308 	}
5309 
5310 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5311 				to_free);
5312 }
5313 
5314 /**
5315  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5316  * @inode: inode we're writing to
5317  * @num_bytes: the number of bytes we want to allocate
5318  *
5319  * This will do the following things
5320  *
5321  * o reserve space in the data space info for num_bytes
5322  * o reserve space in the metadata space info based on number of outstanding
5323  *   extents and how much csums will be needed
5324  * o add to the inodes ->delalloc_bytes
5325  * o add it to the fs_info's delalloc inodes list.
5326  *
5327  * This will return 0 for success and -ENOSPC if there is no space left.
5328  */
5329 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5330 {
5331 	int ret;
5332 
5333 	ret = btrfs_check_data_free_space(inode, num_bytes);
5334 	if (ret)
5335 		return ret;
5336 
5337 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5338 	if (ret) {
5339 		btrfs_free_reserved_data_space(inode, num_bytes);
5340 		return ret;
5341 	}
5342 
5343 	return 0;
5344 }
5345 
5346 /**
5347  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5348  * @inode: inode we're releasing space for
5349  * @num_bytes: the number of bytes we want to free up
5350  *
5351  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5352  * called in the case that we don't need the metadata AND data reservations
5353  * anymore.  So if there is an error or we insert an inline extent.
5354  *
5355  * This function will release the metadata space that was not used and will
5356  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5357  * list if there are no delalloc bytes left.
5358  */
5359 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5360 {
5361 	btrfs_delalloc_release_metadata(inode, num_bytes);
5362 	btrfs_free_reserved_data_space(inode, num_bytes);
5363 }
5364 
5365 static int update_block_group(struct btrfs_root *root,
5366 			      u64 bytenr, u64 num_bytes, int alloc)
5367 {
5368 	struct btrfs_block_group_cache *cache = NULL;
5369 	struct btrfs_fs_info *info = root->fs_info;
5370 	u64 total = num_bytes;
5371 	u64 old_val;
5372 	u64 byte_in_group;
5373 	int factor;
5374 
5375 	/* block accounting for super block */
5376 	spin_lock(&info->delalloc_root_lock);
5377 	old_val = btrfs_super_bytes_used(info->super_copy);
5378 	if (alloc)
5379 		old_val += num_bytes;
5380 	else
5381 		old_val -= num_bytes;
5382 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5383 	spin_unlock(&info->delalloc_root_lock);
5384 
5385 	while (total) {
5386 		cache = btrfs_lookup_block_group(info, bytenr);
5387 		if (!cache)
5388 			return -ENOENT;
5389 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5390 				    BTRFS_BLOCK_GROUP_RAID1 |
5391 				    BTRFS_BLOCK_GROUP_RAID10))
5392 			factor = 2;
5393 		else
5394 			factor = 1;
5395 		/*
5396 		 * If this block group has free space cache written out, we
5397 		 * need to make sure to load it if we are removing space.  This
5398 		 * is because we need the unpinning stage to actually add the
5399 		 * space back to the block group, otherwise we will leak space.
5400 		 */
5401 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5402 			cache_block_group(cache, 1);
5403 
5404 		byte_in_group = bytenr - cache->key.objectid;
5405 		WARN_ON(byte_in_group > cache->key.offset);
5406 
5407 		spin_lock(&cache->space_info->lock);
5408 		spin_lock(&cache->lock);
5409 
5410 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5411 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5412 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5413 
5414 		cache->dirty = 1;
5415 		old_val = btrfs_block_group_used(&cache->item);
5416 		num_bytes = min(total, cache->key.offset - byte_in_group);
5417 		if (alloc) {
5418 			old_val += num_bytes;
5419 			btrfs_set_block_group_used(&cache->item, old_val);
5420 			cache->reserved -= num_bytes;
5421 			cache->space_info->bytes_reserved -= num_bytes;
5422 			cache->space_info->bytes_used += num_bytes;
5423 			cache->space_info->disk_used += num_bytes * factor;
5424 			spin_unlock(&cache->lock);
5425 			spin_unlock(&cache->space_info->lock);
5426 		} else {
5427 			old_val -= num_bytes;
5428 			btrfs_set_block_group_used(&cache->item, old_val);
5429 			cache->pinned += num_bytes;
5430 			cache->space_info->bytes_pinned += num_bytes;
5431 			cache->space_info->bytes_used -= num_bytes;
5432 			cache->space_info->disk_used -= num_bytes * factor;
5433 			spin_unlock(&cache->lock);
5434 			spin_unlock(&cache->space_info->lock);
5435 
5436 			set_extent_dirty(info->pinned_extents,
5437 					 bytenr, bytenr + num_bytes - 1,
5438 					 GFP_NOFS | __GFP_NOFAIL);
5439 		}
5440 		btrfs_put_block_group(cache);
5441 		total -= num_bytes;
5442 		bytenr += num_bytes;
5443 	}
5444 	return 0;
5445 }
5446 
5447 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5448 {
5449 	struct btrfs_block_group_cache *cache;
5450 	u64 bytenr;
5451 
5452 	spin_lock(&root->fs_info->block_group_cache_lock);
5453 	bytenr = root->fs_info->first_logical_byte;
5454 	spin_unlock(&root->fs_info->block_group_cache_lock);
5455 
5456 	if (bytenr < (u64)-1)
5457 		return bytenr;
5458 
5459 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5460 	if (!cache)
5461 		return 0;
5462 
5463 	bytenr = cache->key.objectid;
5464 	btrfs_put_block_group(cache);
5465 
5466 	return bytenr;
5467 }
5468 
5469 static int pin_down_extent(struct btrfs_root *root,
5470 			   struct btrfs_block_group_cache *cache,
5471 			   u64 bytenr, u64 num_bytes, int reserved)
5472 {
5473 	spin_lock(&cache->space_info->lock);
5474 	spin_lock(&cache->lock);
5475 	cache->pinned += num_bytes;
5476 	cache->space_info->bytes_pinned += num_bytes;
5477 	if (reserved) {
5478 		cache->reserved -= num_bytes;
5479 		cache->space_info->bytes_reserved -= num_bytes;
5480 	}
5481 	spin_unlock(&cache->lock);
5482 	spin_unlock(&cache->space_info->lock);
5483 
5484 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5485 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5486 	if (reserved)
5487 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5488 	return 0;
5489 }
5490 
5491 /*
5492  * this function must be called within transaction
5493  */
5494 int btrfs_pin_extent(struct btrfs_root *root,
5495 		     u64 bytenr, u64 num_bytes, int reserved)
5496 {
5497 	struct btrfs_block_group_cache *cache;
5498 
5499 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5500 	BUG_ON(!cache); /* Logic error */
5501 
5502 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5503 
5504 	btrfs_put_block_group(cache);
5505 	return 0;
5506 }
5507 
5508 /*
5509  * this function must be called within transaction
5510  */
5511 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5512 				    u64 bytenr, u64 num_bytes)
5513 {
5514 	struct btrfs_block_group_cache *cache;
5515 	int ret;
5516 
5517 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5518 	if (!cache)
5519 		return -EINVAL;
5520 
5521 	/*
5522 	 * pull in the free space cache (if any) so that our pin
5523 	 * removes the free space from the cache.  We have load_only set
5524 	 * to one because the slow code to read in the free extents does check
5525 	 * the pinned extents.
5526 	 */
5527 	cache_block_group(cache, 1);
5528 
5529 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5530 
5531 	/* remove us from the free space cache (if we're there at all) */
5532 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5533 	btrfs_put_block_group(cache);
5534 	return ret;
5535 }
5536 
5537 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5538 {
5539 	int ret;
5540 	struct btrfs_block_group_cache *block_group;
5541 	struct btrfs_caching_control *caching_ctl;
5542 
5543 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5544 	if (!block_group)
5545 		return -EINVAL;
5546 
5547 	cache_block_group(block_group, 0);
5548 	caching_ctl = get_caching_control(block_group);
5549 
5550 	if (!caching_ctl) {
5551 		/* Logic error */
5552 		BUG_ON(!block_group_cache_done(block_group));
5553 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5554 	} else {
5555 		mutex_lock(&caching_ctl->mutex);
5556 
5557 		if (start >= caching_ctl->progress) {
5558 			ret = add_excluded_extent(root, start, num_bytes);
5559 		} else if (start + num_bytes <= caching_ctl->progress) {
5560 			ret = btrfs_remove_free_space(block_group,
5561 						      start, num_bytes);
5562 		} else {
5563 			num_bytes = caching_ctl->progress - start;
5564 			ret = btrfs_remove_free_space(block_group,
5565 						      start, num_bytes);
5566 			if (ret)
5567 				goto out_lock;
5568 
5569 			num_bytes = (start + num_bytes) -
5570 				caching_ctl->progress;
5571 			start = caching_ctl->progress;
5572 			ret = add_excluded_extent(root, start, num_bytes);
5573 		}
5574 out_lock:
5575 		mutex_unlock(&caching_ctl->mutex);
5576 		put_caching_control(caching_ctl);
5577 	}
5578 	btrfs_put_block_group(block_group);
5579 	return ret;
5580 }
5581 
5582 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5583 				 struct extent_buffer *eb)
5584 {
5585 	struct btrfs_file_extent_item *item;
5586 	struct btrfs_key key;
5587 	int found_type;
5588 	int i;
5589 
5590 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5591 		return 0;
5592 
5593 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5594 		btrfs_item_key_to_cpu(eb, &key, i);
5595 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5596 			continue;
5597 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5598 		found_type = btrfs_file_extent_type(eb, item);
5599 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5600 			continue;
5601 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5602 			continue;
5603 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5604 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5605 		__exclude_logged_extent(log, key.objectid, key.offset);
5606 	}
5607 
5608 	return 0;
5609 }
5610 
5611 /**
5612  * btrfs_update_reserved_bytes - update the block_group and space info counters
5613  * @cache:	The cache we are manipulating
5614  * @num_bytes:	The number of bytes in question
5615  * @reserve:	One of the reservation enums
5616  *
5617  * This is called by the allocator when it reserves space, or by somebody who is
5618  * freeing space that was never actually used on disk.  For example if you
5619  * reserve some space for a new leaf in transaction A and before transaction A
5620  * commits you free that leaf, you call this with reserve set to 0 in order to
5621  * clear the reservation.
5622  *
5623  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5624  * ENOSPC accounting.  For data we handle the reservation through clearing the
5625  * delalloc bits in the io_tree.  We have to do this since we could end up
5626  * allocating less disk space for the amount of data we have reserved in the
5627  * case of compression.
5628  *
5629  * If this is a reservation and the block group has become read only we cannot
5630  * make the reservation and return -EAGAIN, otherwise this function always
5631  * succeeds.
5632  */
5633 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5634 				       u64 num_bytes, int reserve)
5635 {
5636 	struct btrfs_space_info *space_info = cache->space_info;
5637 	int ret = 0;
5638 
5639 	spin_lock(&space_info->lock);
5640 	spin_lock(&cache->lock);
5641 	if (reserve != RESERVE_FREE) {
5642 		if (cache->ro) {
5643 			ret = -EAGAIN;
5644 		} else {
5645 			cache->reserved += num_bytes;
5646 			space_info->bytes_reserved += num_bytes;
5647 			if (reserve == RESERVE_ALLOC) {
5648 				trace_btrfs_space_reservation(cache->fs_info,
5649 						"space_info", space_info->flags,
5650 						num_bytes, 0);
5651 				space_info->bytes_may_use -= num_bytes;
5652 			}
5653 		}
5654 	} else {
5655 		if (cache->ro)
5656 			space_info->bytes_readonly += num_bytes;
5657 		cache->reserved -= num_bytes;
5658 		space_info->bytes_reserved -= num_bytes;
5659 	}
5660 	spin_unlock(&cache->lock);
5661 	spin_unlock(&space_info->lock);
5662 	return ret;
5663 }
5664 
5665 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5666 				struct btrfs_root *root)
5667 {
5668 	struct btrfs_fs_info *fs_info = root->fs_info;
5669 	struct btrfs_caching_control *next;
5670 	struct btrfs_caching_control *caching_ctl;
5671 	struct btrfs_block_group_cache *cache;
5672 	struct btrfs_space_info *space_info;
5673 
5674 	down_write(&fs_info->commit_root_sem);
5675 
5676 	list_for_each_entry_safe(caching_ctl, next,
5677 				 &fs_info->caching_block_groups, list) {
5678 		cache = caching_ctl->block_group;
5679 		if (block_group_cache_done(cache)) {
5680 			cache->last_byte_to_unpin = (u64)-1;
5681 			list_del_init(&caching_ctl->list);
5682 			put_caching_control(caching_ctl);
5683 		} else {
5684 			cache->last_byte_to_unpin = caching_ctl->progress;
5685 		}
5686 	}
5687 
5688 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5689 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5690 	else
5691 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5692 
5693 	up_write(&fs_info->commit_root_sem);
5694 
5695 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5696 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5697 
5698 	update_global_block_rsv(fs_info);
5699 }
5700 
5701 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5702 {
5703 	struct btrfs_fs_info *fs_info = root->fs_info;
5704 	struct btrfs_block_group_cache *cache = NULL;
5705 	struct btrfs_space_info *space_info;
5706 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5707 	u64 len;
5708 	bool readonly;
5709 
5710 	while (start <= end) {
5711 		readonly = false;
5712 		if (!cache ||
5713 		    start >= cache->key.objectid + cache->key.offset) {
5714 			if (cache)
5715 				btrfs_put_block_group(cache);
5716 			cache = btrfs_lookup_block_group(fs_info, start);
5717 			BUG_ON(!cache); /* Logic error */
5718 		}
5719 
5720 		len = cache->key.objectid + cache->key.offset - start;
5721 		len = min(len, end + 1 - start);
5722 
5723 		if (start < cache->last_byte_to_unpin) {
5724 			len = min(len, cache->last_byte_to_unpin - start);
5725 			btrfs_add_free_space(cache, start, len);
5726 		}
5727 
5728 		start += len;
5729 		space_info = cache->space_info;
5730 
5731 		spin_lock(&space_info->lock);
5732 		spin_lock(&cache->lock);
5733 		cache->pinned -= len;
5734 		space_info->bytes_pinned -= len;
5735 		if (cache->ro) {
5736 			space_info->bytes_readonly += len;
5737 			readonly = true;
5738 		}
5739 		spin_unlock(&cache->lock);
5740 		if (!readonly && global_rsv->space_info == space_info) {
5741 			spin_lock(&global_rsv->lock);
5742 			if (!global_rsv->full) {
5743 				len = min(len, global_rsv->size -
5744 					  global_rsv->reserved);
5745 				global_rsv->reserved += len;
5746 				space_info->bytes_may_use += len;
5747 				if (global_rsv->reserved >= global_rsv->size)
5748 					global_rsv->full = 1;
5749 			}
5750 			spin_unlock(&global_rsv->lock);
5751 		}
5752 		spin_unlock(&space_info->lock);
5753 	}
5754 
5755 	if (cache)
5756 		btrfs_put_block_group(cache);
5757 	return 0;
5758 }
5759 
5760 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5761 			       struct btrfs_root *root)
5762 {
5763 	struct btrfs_fs_info *fs_info = root->fs_info;
5764 	struct extent_io_tree *unpin;
5765 	u64 start;
5766 	u64 end;
5767 	int ret;
5768 
5769 	if (trans->aborted)
5770 		return 0;
5771 
5772 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5773 		unpin = &fs_info->freed_extents[1];
5774 	else
5775 		unpin = &fs_info->freed_extents[0];
5776 
5777 	while (1) {
5778 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5779 					    EXTENT_DIRTY, NULL);
5780 		if (ret)
5781 			break;
5782 
5783 		if (btrfs_test_opt(root, DISCARD))
5784 			ret = btrfs_discard_extent(root, start,
5785 						   end + 1 - start, NULL);
5786 
5787 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5788 		unpin_extent_range(root, start, end);
5789 		cond_resched();
5790 	}
5791 
5792 	return 0;
5793 }
5794 
5795 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5796 			     u64 owner, u64 root_objectid)
5797 {
5798 	struct btrfs_space_info *space_info;
5799 	u64 flags;
5800 
5801 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5802 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5803 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5804 		else
5805 			flags = BTRFS_BLOCK_GROUP_METADATA;
5806 	} else {
5807 		flags = BTRFS_BLOCK_GROUP_DATA;
5808 	}
5809 
5810 	space_info = __find_space_info(fs_info, flags);
5811 	BUG_ON(!space_info); /* Logic bug */
5812 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5813 }
5814 
5815 
5816 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5817 				struct btrfs_root *root,
5818 				u64 bytenr, u64 num_bytes, u64 parent,
5819 				u64 root_objectid, u64 owner_objectid,
5820 				u64 owner_offset, int refs_to_drop,
5821 				struct btrfs_delayed_extent_op *extent_op,
5822 				int no_quota)
5823 {
5824 	struct btrfs_key key;
5825 	struct btrfs_path *path;
5826 	struct btrfs_fs_info *info = root->fs_info;
5827 	struct btrfs_root *extent_root = info->extent_root;
5828 	struct extent_buffer *leaf;
5829 	struct btrfs_extent_item *ei;
5830 	struct btrfs_extent_inline_ref *iref;
5831 	int ret;
5832 	int is_data;
5833 	int extent_slot = 0;
5834 	int found_extent = 0;
5835 	int num_to_del = 1;
5836 	u32 item_size;
5837 	u64 refs;
5838 	int last_ref = 0;
5839 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5840 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5841 						 SKINNY_METADATA);
5842 
5843 	if (!info->quota_enabled || !is_fstree(root_objectid))
5844 		no_quota = 1;
5845 
5846 	path = btrfs_alloc_path();
5847 	if (!path)
5848 		return -ENOMEM;
5849 
5850 	path->reada = 1;
5851 	path->leave_spinning = 1;
5852 
5853 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5854 	BUG_ON(!is_data && refs_to_drop != 1);
5855 
5856 	if (is_data)
5857 		skinny_metadata = 0;
5858 
5859 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5860 				    bytenr, num_bytes, parent,
5861 				    root_objectid, owner_objectid,
5862 				    owner_offset);
5863 	if (ret == 0) {
5864 		extent_slot = path->slots[0];
5865 		while (extent_slot >= 0) {
5866 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5867 					      extent_slot);
5868 			if (key.objectid != bytenr)
5869 				break;
5870 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5871 			    key.offset == num_bytes) {
5872 				found_extent = 1;
5873 				break;
5874 			}
5875 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5876 			    key.offset == owner_objectid) {
5877 				found_extent = 1;
5878 				break;
5879 			}
5880 			if (path->slots[0] - extent_slot > 5)
5881 				break;
5882 			extent_slot--;
5883 		}
5884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5885 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5886 		if (found_extent && item_size < sizeof(*ei))
5887 			found_extent = 0;
5888 #endif
5889 		if (!found_extent) {
5890 			BUG_ON(iref);
5891 			ret = remove_extent_backref(trans, extent_root, path,
5892 						    NULL, refs_to_drop,
5893 						    is_data, &last_ref);
5894 			if (ret) {
5895 				btrfs_abort_transaction(trans, extent_root, ret);
5896 				goto out;
5897 			}
5898 			btrfs_release_path(path);
5899 			path->leave_spinning = 1;
5900 
5901 			key.objectid = bytenr;
5902 			key.type = BTRFS_EXTENT_ITEM_KEY;
5903 			key.offset = num_bytes;
5904 
5905 			if (!is_data && skinny_metadata) {
5906 				key.type = BTRFS_METADATA_ITEM_KEY;
5907 				key.offset = owner_objectid;
5908 			}
5909 
5910 			ret = btrfs_search_slot(trans, extent_root,
5911 						&key, path, -1, 1);
5912 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5913 				/*
5914 				 * Couldn't find our skinny metadata item,
5915 				 * see if we have ye olde extent item.
5916 				 */
5917 				path->slots[0]--;
5918 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5919 						      path->slots[0]);
5920 				if (key.objectid == bytenr &&
5921 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5922 				    key.offset == num_bytes)
5923 					ret = 0;
5924 			}
5925 
5926 			if (ret > 0 && skinny_metadata) {
5927 				skinny_metadata = false;
5928 				key.objectid = bytenr;
5929 				key.type = BTRFS_EXTENT_ITEM_KEY;
5930 				key.offset = num_bytes;
5931 				btrfs_release_path(path);
5932 				ret = btrfs_search_slot(trans, extent_root,
5933 							&key, path, -1, 1);
5934 			}
5935 
5936 			if (ret) {
5937 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5938 					ret, bytenr);
5939 				if (ret > 0)
5940 					btrfs_print_leaf(extent_root,
5941 							 path->nodes[0]);
5942 			}
5943 			if (ret < 0) {
5944 				btrfs_abort_transaction(trans, extent_root, ret);
5945 				goto out;
5946 			}
5947 			extent_slot = path->slots[0];
5948 		}
5949 	} else if (WARN_ON(ret == -ENOENT)) {
5950 		btrfs_print_leaf(extent_root, path->nodes[0]);
5951 		btrfs_err(info,
5952 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5953 			bytenr, parent, root_objectid, owner_objectid,
5954 			owner_offset);
5955 		btrfs_abort_transaction(trans, extent_root, ret);
5956 		goto out;
5957 	} else {
5958 		btrfs_abort_transaction(trans, extent_root, ret);
5959 		goto out;
5960 	}
5961 
5962 	leaf = path->nodes[0];
5963 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5965 	if (item_size < sizeof(*ei)) {
5966 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5967 		ret = convert_extent_item_v0(trans, extent_root, path,
5968 					     owner_objectid, 0);
5969 		if (ret < 0) {
5970 			btrfs_abort_transaction(trans, extent_root, ret);
5971 			goto out;
5972 		}
5973 
5974 		btrfs_release_path(path);
5975 		path->leave_spinning = 1;
5976 
5977 		key.objectid = bytenr;
5978 		key.type = BTRFS_EXTENT_ITEM_KEY;
5979 		key.offset = num_bytes;
5980 
5981 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5982 					-1, 1);
5983 		if (ret) {
5984 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5985 				ret, bytenr);
5986 			btrfs_print_leaf(extent_root, path->nodes[0]);
5987 		}
5988 		if (ret < 0) {
5989 			btrfs_abort_transaction(trans, extent_root, ret);
5990 			goto out;
5991 		}
5992 
5993 		extent_slot = path->slots[0];
5994 		leaf = path->nodes[0];
5995 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5996 	}
5997 #endif
5998 	BUG_ON(item_size < sizeof(*ei));
5999 	ei = btrfs_item_ptr(leaf, extent_slot,
6000 			    struct btrfs_extent_item);
6001 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6002 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6003 		struct btrfs_tree_block_info *bi;
6004 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6005 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6006 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6007 	}
6008 
6009 	refs = btrfs_extent_refs(leaf, ei);
6010 	if (refs < refs_to_drop) {
6011 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6012 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6013 		ret = -EINVAL;
6014 		btrfs_abort_transaction(trans, extent_root, ret);
6015 		goto out;
6016 	}
6017 	refs -= refs_to_drop;
6018 
6019 	if (refs > 0) {
6020 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6021 		if (extent_op)
6022 			__run_delayed_extent_op(extent_op, leaf, ei);
6023 		/*
6024 		 * In the case of inline back ref, reference count will
6025 		 * be updated by remove_extent_backref
6026 		 */
6027 		if (iref) {
6028 			BUG_ON(!found_extent);
6029 		} else {
6030 			btrfs_set_extent_refs(leaf, ei, refs);
6031 			btrfs_mark_buffer_dirty(leaf);
6032 		}
6033 		if (found_extent) {
6034 			ret = remove_extent_backref(trans, extent_root, path,
6035 						    iref, refs_to_drop,
6036 						    is_data, &last_ref);
6037 			if (ret) {
6038 				btrfs_abort_transaction(trans, extent_root, ret);
6039 				goto out;
6040 			}
6041 		}
6042 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6043 				 root_objectid);
6044 	} else {
6045 		if (found_extent) {
6046 			BUG_ON(is_data && refs_to_drop !=
6047 			       extent_data_ref_count(root, path, iref));
6048 			if (iref) {
6049 				BUG_ON(path->slots[0] != extent_slot);
6050 			} else {
6051 				BUG_ON(path->slots[0] != extent_slot + 1);
6052 				path->slots[0] = extent_slot;
6053 				num_to_del = 2;
6054 			}
6055 		}
6056 
6057 		last_ref = 1;
6058 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6059 				      num_to_del);
6060 		if (ret) {
6061 			btrfs_abort_transaction(trans, extent_root, ret);
6062 			goto out;
6063 		}
6064 		btrfs_release_path(path);
6065 
6066 		if (is_data) {
6067 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6068 			if (ret) {
6069 				btrfs_abort_transaction(trans, extent_root, ret);
6070 				goto out;
6071 			}
6072 		}
6073 
6074 		ret = update_block_group(root, bytenr, num_bytes, 0);
6075 		if (ret) {
6076 			btrfs_abort_transaction(trans, extent_root, ret);
6077 			goto out;
6078 		}
6079 	}
6080 	btrfs_release_path(path);
6081 
6082 	/* Deal with the quota accounting */
6083 	if (!ret && last_ref && !no_quota) {
6084 		int mod_seq = 0;
6085 
6086 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6087 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6088 			mod_seq = 1;
6089 
6090 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6091 					      bytenr, num_bytes, type,
6092 					      mod_seq);
6093 	}
6094 out:
6095 	btrfs_free_path(path);
6096 	return ret;
6097 }
6098 
6099 /*
6100  * when we free an block, it is possible (and likely) that we free the last
6101  * delayed ref for that extent as well.  This searches the delayed ref tree for
6102  * a given extent, and if there are no other delayed refs to be processed, it
6103  * removes it from the tree.
6104  */
6105 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6106 				      struct btrfs_root *root, u64 bytenr)
6107 {
6108 	struct btrfs_delayed_ref_head *head;
6109 	struct btrfs_delayed_ref_root *delayed_refs;
6110 	int ret = 0;
6111 
6112 	delayed_refs = &trans->transaction->delayed_refs;
6113 	spin_lock(&delayed_refs->lock);
6114 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6115 	if (!head)
6116 		goto out_delayed_unlock;
6117 
6118 	spin_lock(&head->lock);
6119 	if (rb_first(&head->ref_root))
6120 		goto out;
6121 
6122 	if (head->extent_op) {
6123 		if (!head->must_insert_reserved)
6124 			goto out;
6125 		btrfs_free_delayed_extent_op(head->extent_op);
6126 		head->extent_op = NULL;
6127 	}
6128 
6129 	/*
6130 	 * waiting for the lock here would deadlock.  If someone else has it
6131 	 * locked they are already in the process of dropping it anyway
6132 	 */
6133 	if (!mutex_trylock(&head->mutex))
6134 		goto out;
6135 
6136 	/*
6137 	 * at this point we have a head with no other entries.  Go
6138 	 * ahead and process it.
6139 	 */
6140 	head->node.in_tree = 0;
6141 	rb_erase(&head->href_node, &delayed_refs->href_root);
6142 
6143 	atomic_dec(&delayed_refs->num_entries);
6144 
6145 	/*
6146 	 * we don't take a ref on the node because we're removing it from the
6147 	 * tree, so we just steal the ref the tree was holding.
6148 	 */
6149 	delayed_refs->num_heads--;
6150 	if (head->processing == 0)
6151 		delayed_refs->num_heads_ready--;
6152 	head->processing = 0;
6153 	spin_unlock(&head->lock);
6154 	spin_unlock(&delayed_refs->lock);
6155 
6156 	BUG_ON(head->extent_op);
6157 	if (head->must_insert_reserved)
6158 		ret = 1;
6159 
6160 	mutex_unlock(&head->mutex);
6161 	btrfs_put_delayed_ref(&head->node);
6162 	return ret;
6163 out:
6164 	spin_unlock(&head->lock);
6165 
6166 out_delayed_unlock:
6167 	spin_unlock(&delayed_refs->lock);
6168 	return 0;
6169 }
6170 
6171 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6172 			   struct btrfs_root *root,
6173 			   struct extent_buffer *buf,
6174 			   u64 parent, int last_ref)
6175 {
6176 	struct btrfs_block_group_cache *cache = NULL;
6177 	int pin = 1;
6178 	int ret;
6179 
6180 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6181 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6182 					buf->start, buf->len,
6183 					parent, root->root_key.objectid,
6184 					btrfs_header_level(buf),
6185 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6186 		BUG_ON(ret); /* -ENOMEM */
6187 	}
6188 
6189 	if (!last_ref)
6190 		return;
6191 
6192 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6193 
6194 	if (btrfs_header_generation(buf) == trans->transid) {
6195 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6196 			ret = check_ref_cleanup(trans, root, buf->start);
6197 			if (!ret)
6198 				goto out;
6199 		}
6200 
6201 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6202 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6203 			goto out;
6204 		}
6205 
6206 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6207 
6208 		btrfs_add_free_space(cache, buf->start, buf->len);
6209 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6210 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6211 		pin = 0;
6212 	}
6213 out:
6214 	if (pin)
6215 		add_pinned_bytes(root->fs_info, buf->len,
6216 				 btrfs_header_level(buf),
6217 				 root->root_key.objectid);
6218 
6219 	/*
6220 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6221 	 * anymore.
6222 	 */
6223 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6224 	btrfs_put_block_group(cache);
6225 }
6226 
6227 /* Can return -ENOMEM */
6228 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6229 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6230 		      u64 owner, u64 offset, int no_quota)
6231 {
6232 	int ret;
6233 	struct btrfs_fs_info *fs_info = root->fs_info;
6234 
6235 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6236 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
6237 		return 0;
6238 #endif
6239 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6240 
6241 	/*
6242 	 * tree log blocks never actually go into the extent allocation
6243 	 * tree, just update pinning info and exit early.
6244 	 */
6245 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6246 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6247 		/* unlocks the pinned mutex */
6248 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6249 		ret = 0;
6250 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6251 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6252 					num_bytes,
6253 					parent, root_objectid, (int)owner,
6254 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6255 	} else {
6256 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6257 						num_bytes,
6258 						parent, root_objectid, owner,
6259 						offset, BTRFS_DROP_DELAYED_REF,
6260 						NULL, no_quota);
6261 	}
6262 	return ret;
6263 }
6264 
6265 static u64 stripe_align(struct btrfs_root *root,
6266 			struct btrfs_block_group_cache *cache,
6267 			u64 val, u64 num_bytes)
6268 {
6269 	u64 ret = ALIGN(val, root->stripesize);
6270 	return ret;
6271 }
6272 
6273 /*
6274  * when we wait for progress in the block group caching, its because
6275  * our allocation attempt failed at least once.  So, we must sleep
6276  * and let some progress happen before we try again.
6277  *
6278  * This function will sleep at least once waiting for new free space to
6279  * show up, and then it will check the block group free space numbers
6280  * for our min num_bytes.  Another option is to have it go ahead
6281  * and look in the rbtree for a free extent of a given size, but this
6282  * is a good start.
6283  *
6284  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6285  * any of the information in this block group.
6286  */
6287 static noinline void
6288 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6289 				u64 num_bytes)
6290 {
6291 	struct btrfs_caching_control *caching_ctl;
6292 
6293 	caching_ctl = get_caching_control(cache);
6294 	if (!caching_ctl)
6295 		return;
6296 
6297 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6298 		   (cache->free_space_ctl->free_space >= num_bytes));
6299 
6300 	put_caching_control(caching_ctl);
6301 }
6302 
6303 static noinline int
6304 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6305 {
6306 	struct btrfs_caching_control *caching_ctl;
6307 	int ret = 0;
6308 
6309 	caching_ctl = get_caching_control(cache);
6310 	if (!caching_ctl)
6311 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6312 
6313 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6314 	if (cache->cached == BTRFS_CACHE_ERROR)
6315 		ret = -EIO;
6316 	put_caching_control(caching_ctl);
6317 	return ret;
6318 }
6319 
6320 int __get_raid_index(u64 flags)
6321 {
6322 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6323 		return BTRFS_RAID_RAID10;
6324 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6325 		return BTRFS_RAID_RAID1;
6326 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6327 		return BTRFS_RAID_DUP;
6328 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6329 		return BTRFS_RAID_RAID0;
6330 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6331 		return BTRFS_RAID_RAID5;
6332 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6333 		return BTRFS_RAID_RAID6;
6334 
6335 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6336 }
6337 
6338 int get_block_group_index(struct btrfs_block_group_cache *cache)
6339 {
6340 	return __get_raid_index(cache->flags);
6341 }
6342 
6343 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6344 	[BTRFS_RAID_RAID10]	= "raid10",
6345 	[BTRFS_RAID_RAID1]	= "raid1",
6346 	[BTRFS_RAID_DUP]	= "dup",
6347 	[BTRFS_RAID_RAID0]	= "raid0",
6348 	[BTRFS_RAID_SINGLE]	= "single",
6349 	[BTRFS_RAID_RAID5]	= "raid5",
6350 	[BTRFS_RAID_RAID6]	= "raid6",
6351 };
6352 
6353 static const char *get_raid_name(enum btrfs_raid_types type)
6354 {
6355 	if (type >= BTRFS_NR_RAID_TYPES)
6356 		return NULL;
6357 
6358 	return btrfs_raid_type_names[type];
6359 }
6360 
6361 enum btrfs_loop_type {
6362 	LOOP_CACHING_NOWAIT = 0,
6363 	LOOP_CACHING_WAIT = 1,
6364 	LOOP_ALLOC_CHUNK = 2,
6365 	LOOP_NO_EMPTY_SIZE = 3,
6366 };
6367 
6368 /*
6369  * walks the btree of allocated extents and find a hole of a given size.
6370  * The key ins is changed to record the hole:
6371  * ins->objectid == start position
6372  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6373  * ins->offset == the size of the hole.
6374  * Any available blocks before search_start are skipped.
6375  *
6376  * If there is no suitable free space, we will record the max size of
6377  * the free space extent currently.
6378  */
6379 static noinline int find_free_extent(struct btrfs_root *orig_root,
6380 				     u64 num_bytes, u64 empty_size,
6381 				     u64 hint_byte, struct btrfs_key *ins,
6382 				     u64 flags)
6383 {
6384 	int ret = 0;
6385 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6386 	struct btrfs_free_cluster *last_ptr = NULL;
6387 	struct btrfs_block_group_cache *block_group = NULL;
6388 	u64 search_start = 0;
6389 	u64 max_extent_size = 0;
6390 	int empty_cluster = 2 * 1024 * 1024;
6391 	struct btrfs_space_info *space_info;
6392 	int loop = 0;
6393 	int index = __get_raid_index(flags);
6394 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6395 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6396 	bool failed_cluster_refill = false;
6397 	bool failed_alloc = false;
6398 	bool use_cluster = true;
6399 	bool have_caching_bg = false;
6400 
6401 	WARN_ON(num_bytes < root->sectorsize);
6402 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6403 	ins->objectid = 0;
6404 	ins->offset = 0;
6405 
6406 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6407 
6408 	space_info = __find_space_info(root->fs_info, flags);
6409 	if (!space_info) {
6410 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6411 		return -ENOSPC;
6412 	}
6413 
6414 	/*
6415 	 * If the space info is for both data and metadata it means we have a
6416 	 * small filesystem and we can't use the clustering stuff.
6417 	 */
6418 	if (btrfs_mixed_space_info(space_info))
6419 		use_cluster = false;
6420 
6421 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6422 		last_ptr = &root->fs_info->meta_alloc_cluster;
6423 		if (!btrfs_test_opt(root, SSD))
6424 			empty_cluster = 64 * 1024;
6425 	}
6426 
6427 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6428 	    btrfs_test_opt(root, SSD)) {
6429 		last_ptr = &root->fs_info->data_alloc_cluster;
6430 	}
6431 
6432 	if (last_ptr) {
6433 		spin_lock(&last_ptr->lock);
6434 		if (last_ptr->block_group)
6435 			hint_byte = last_ptr->window_start;
6436 		spin_unlock(&last_ptr->lock);
6437 	}
6438 
6439 	search_start = max(search_start, first_logical_byte(root, 0));
6440 	search_start = max(search_start, hint_byte);
6441 
6442 	if (!last_ptr)
6443 		empty_cluster = 0;
6444 
6445 	if (search_start == hint_byte) {
6446 		block_group = btrfs_lookup_block_group(root->fs_info,
6447 						       search_start);
6448 		/*
6449 		 * we don't want to use the block group if it doesn't match our
6450 		 * allocation bits, or if its not cached.
6451 		 *
6452 		 * However if we are re-searching with an ideal block group
6453 		 * picked out then we don't care that the block group is cached.
6454 		 */
6455 		if (block_group && block_group_bits(block_group, flags) &&
6456 		    block_group->cached != BTRFS_CACHE_NO) {
6457 			down_read(&space_info->groups_sem);
6458 			if (list_empty(&block_group->list) ||
6459 			    block_group->ro) {
6460 				/*
6461 				 * someone is removing this block group,
6462 				 * we can't jump into the have_block_group
6463 				 * target because our list pointers are not
6464 				 * valid
6465 				 */
6466 				btrfs_put_block_group(block_group);
6467 				up_read(&space_info->groups_sem);
6468 			} else {
6469 				index = get_block_group_index(block_group);
6470 				goto have_block_group;
6471 			}
6472 		} else if (block_group) {
6473 			btrfs_put_block_group(block_group);
6474 		}
6475 	}
6476 search:
6477 	have_caching_bg = false;
6478 	down_read(&space_info->groups_sem);
6479 	list_for_each_entry(block_group, &space_info->block_groups[index],
6480 			    list) {
6481 		u64 offset;
6482 		int cached;
6483 
6484 		btrfs_get_block_group(block_group);
6485 		search_start = block_group->key.objectid;
6486 
6487 		/*
6488 		 * this can happen if we end up cycling through all the
6489 		 * raid types, but we want to make sure we only allocate
6490 		 * for the proper type.
6491 		 */
6492 		if (!block_group_bits(block_group, flags)) {
6493 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6494 				BTRFS_BLOCK_GROUP_RAID1 |
6495 				BTRFS_BLOCK_GROUP_RAID5 |
6496 				BTRFS_BLOCK_GROUP_RAID6 |
6497 				BTRFS_BLOCK_GROUP_RAID10;
6498 
6499 			/*
6500 			 * if they asked for extra copies and this block group
6501 			 * doesn't provide them, bail.  This does allow us to
6502 			 * fill raid0 from raid1.
6503 			 */
6504 			if ((flags & extra) && !(block_group->flags & extra))
6505 				goto loop;
6506 		}
6507 
6508 have_block_group:
6509 		cached = block_group_cache_done(block_group);
6510 		if (unlikely(!cached)) {
6511 			ret = cache_block_group(block_group, 0);
6512 			BUG_ON(ret < 0);
6513 			ret = 0;
6514 		}
6515 
6516 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6517 			goto loop;
6518 		if (unlikely(block_group->ro))
6519 			goto loop;
6520 
6521 		/*
6522 		 * Ok we want to try and use the cluster allocator, so
6523 		 * lets look there
6524 		 */
6525 		if (last_ptr) {
6526 			struct btrfs_block_group_cache *used_block_group;
6527 			unsigned long aligned_cluster;
6528 			/*
6529 			 * the refill lock keeps out other
6530 			 * people trying to start a new cluster
6531 			 */
6532 			spin_lock(&last_ptr->refill_lock);
6533 			used_block_group = last_ptr->block_group;
6534 			if (used_block_group != block_group &&
6535 			    (!used_block_group ||
6536 			     used_block_group->ro ||
6537 			     !block_group_bits(used_block_group, flags)))
6538 				goto refill_cluster;
6539 
6540 			if (used_block_group != block_group)
6541 				btrfs_get_block_group(used_block_group);
6542 
6543 			offset = btrfs_alloc_from_cluster(used_block_group,
6544 						last_ptr,
6545 						num_bytes,
6546 						used_block_group->key.objectid,
6547 						&max_extent_size);
6548 			if (offset) {
6549 				/* we have a block, we're done */
6550 				spin_unlock(&last_ptr->refill_lock);
6551 				trace_btrfs_reserve_extent_cluster(root,
6552 						used_block_group,
6553 						search_start, num_bytes);
6554 				if (used_block_group != block_group) {
6555 					btrfs_put_block_group(block_group);
6556 					block_group = used_block_group;
6557 				}
6558 				goto checks;
6559 			}
6560 
6561 			WARN_ON(last_ptr->block_group != used_block_group);
6562 			if (used_block_group != block_group)
6563 				btrfs_put_block_group(used_block_group);
6564 refill_cluster:
6565 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6566 			 * set up a new clusters, so lets just skip it
6567 			 * and let the allocator find whatever block
6568 			 * it can find.  If we reach this point, we
6569 			 * will have tried the cluster allocator
6570 			 * plenty of times and not have found
6571 			 * anything, so we are likely way too
6572 			 * fragmented for the clustering stuff to find
6573 			 * anything.
6574 			 *
6575 			 * However, if the cluster is taken from the
6576 			 * current block group, release the cluster
6577 			 * first, so that we stand a better chance of
6578 			 * succeeding in the unclustered
6579 			 * allocation.  */
6580 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6581 			    last_ptr->block_group != block_group) {
6582 				spin_unlock(&last_ptr->refill_lock);
6583 				goto unclustered_alloc;
6584 			}
6585 
6586 			/*
6587 			 * this cluster didn't work out, free it and
6588 			 * start over
6589 			 */
6590 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6591 
6592 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6593 				spin_unlock(&last_ptr->refill_lock);
6594 				goto unclustered_alloc;
6595 			}
6596 
6597 			aligned_cluster = max_t(unsigned long,
6598 						empty_cluster + empty_size,
6599 					      block_group->full_stripe_len);
6600 
6601 			/* allocate a cluster in this block group */
6602 			ret = btrfs_find_space_cluster(root, block_group,
6603 						       last_ptr, search_start,
6604 						       num_bytes,
6605 						       aligned_cluster);
6606 			if (ret == 0) {
6607 				/*
6608 				 * now pull our allocation out of this
6609 				 * cluster
6610 				 */
6611 				offset = btrfs_alloc_from_cluster(block_group,
6612 							last_ptr,
6613 							num_bytes,
6614 							search_start,
6615 							&max_extent_size);
6616 				if (offset) {
6617 					/* we found one, proceed */
6618 					spin_unlock(&last_ptr->refill_lock);
6619 					trace_btrfs_reserve_extent_cluster(root,
6620 						block_group, search_start,
6621 						num_bytes);
6622 					goto checks;
6623 				}
6624 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6625 				   && !failed_cluster_refill) {
6626 				spin_unlock(&last_ptr->refill_lock);
6627 
6628 				failed_cluster_refill = true;
6629 				wait_block_group_cache_progress(block_group,
6630 				       num_bytes + empty_cluster + empty_size);
6631 				goto have_block_group;
6632 			}
6633 
6634 			/*
6635 			 * at this point we either didn't find a cluster
6636 			 * or we weren't able to allocate a block from our
6637 			 * cluster.  Free the cluster we've been trying
6638 			 * to use, and go to the next block group
6639 			 */
6640 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6641 			spin_unlock(&last_ptr->refill_lock);
6642 			goto loop;
6643 		}
6644 
6645 unclustered_alloc:
6646 		spin_lock(&block_group->free_space_ctl->tree_lock);
6647 		if (cached &&
6648 		    block_group->free_space_ctl->free_space <
6649 		    num_bytes + empty_cluster + empty_size) {
6650 			if (block_group->free_space_ctl->free_space >
6651 			    max_extent_size)
6652 				max_extent_size =
6653 					block_group->free_space_ctl->free_space;
6654 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6655 			goto loop;
6656 		}
6657 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6658 
6659 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6660 						    num_bytes, empty_size,
6661 						    &max_extent_size);
6662 		/*
6663 		 * If we didn't find a chunk, and we haven't failed on this
6664 		 * block group before, and this block group is in the middle of
6665 		 * caching and we are ok with waiting, then go ahead and wait
6666 		 * for progress to be made, and set failed_alloc to true.
6667 		 *
6668 		 * If failed_alloc is true then we've already waited on this
6669 		 * block group once and should move on to the next block group.
6670 		 */
6671 		if (!offset && !failed_alloc && !cached &&
6672 		    loop > LOOP_CACHING_NOWAIT) {
6673 			wait_block_group_cache_progress(block_group,
6674 						num_bytes + empty_size);
6675 			failed_alloc = true;
6676 			goto have_block_group;
6677 		} else if (!offset) {
6678 			if (!cached)
6679 				have_caching_bg = true;
6680 			goto loop;
6681 		}
6682 checks:
6683 		search_start = stripe_align(root, block_group,
6684 					    offset, num_bytes);
6685 
6686 		/* move on to the next group */
6687 		if (search_start + num_bytes >
6688 		    block_group->key.objectid + block_group->key.offset) {
6689 			btrfs_add_free_space(block_group, offset, num_bytes);
6690 			goto loop;
6691 		}
6692 
6693 		if (offset < search_start)
6694 			btrfs_add_free_space(block_group, offset,
6695 					     search_start - offset);
6696 		BUG_ON(offset > search_start);
6697 
6698 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6699 						  alloc_type);
6700 		if (ret == -EAGAIN) {
6701 			btrfs_add_free_space(block_group, offset, num_bytes);
6702 			goto loop;
6703 		}
6704 
6705 		/* we are all good, lets return */
6706 		ins->objectid = search_start;
6707 		ins->offset = num_bytes;
6708 
6709 		trace_btrfs_reserve_extent(orig_root, block_group,
6710 					   search_start, num_bytes);
6711 		btrfs_put_block_group(block_group);
6712 		break;
6713 loop:
6714 		failed_cluster_refill = false;
6715 		failed_alloc = false;
6716 		BUG_ON(index != get_block_group_index(block_group));
6717 		btrfs_put_block_group(block_group);
6718 	}
6719 	up_read(&space_info->groups_sem);
6720 
6721 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6722 		goto search;
6723 
6724 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6725 		goto search;
6726 
6727 	/*
6728 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6729 	 *			caching kthreads as we move along
6730 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6731 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6732 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6733 	 *			again
6734 	 */
6735 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6736 		index = 0;
6737 		loop++;
6738 		if (loop == LOOP_ALLOC_CHUNK) {
6739 			struct btrfs_trans_handle *trans;
6740 			int exist = 0;
6741 
6742 			trans = current->journal_info;
6743 			if (trans)
6744 				exist = 1;
6745 			else
6746 				trans = btrfs_join_transaction(root);
6747 
6748 			if (IS_ERR(trans)) {
6749 				ret = PTR_ERR(trans);
6750 				goto out;
6751 			}
6752 
6753 			ret = do_chunk_alloc(trans, root, flags,
6754 					     CHUNK_ALLOC_FORCE);
6755 			/*
6756 			 * Do not bail out on ENOSPC since we
6757 			 * can do more things.
6758 			 */
6759 			if (ret < 0 && ret != -ENOSPC)
6760 				btrfs_abort_transaction(trans,
6761 							root, ret);
6762 			else
6763 				ret = 0;
6764 			if (!exist)
6765 				btrfs_end_transaction(trans, root);
6766 			if (ret)
6767 				goto out;
6768 		}
6769 
6770 		if (loop == LOOP_NO_EMPTY_SIZE) {
6771 			empty_size = 0;
6772 			empty_cluster = 0;
6773 		}
6774 
6775 		goto search;
6776 	} else if (!ins->objectid) {
6777 		ret = -ENOSPC;
6778 	} else if (ins->objectid) {
6779 		ret = 0;
6780 	}
6781 out:
6782 	if (ret == -ENOSPC)
6783 		ins->offset = max_extent_size;
6784 	return ret;
6785 }
6786 
6787 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6788 			    int dump_block_groups)
6789 {
6790 	struct btrfs_block_group_cache *cache;
6791 	int index = 0;
6792 
6793 	spin_lock(&info->lock);
6794 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6795 	       info->flags,
6796 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6797 	       info->bytes_reserved - info->bytes_readonly,
6798 	       (info->full) ? "" : "not ");
6799 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6800 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6801 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6802 	       info->bytes_reserved, info->bytes_may_use,
6803 	       info->bytes_readonly);
6804 	spin_unlock(&info->lock);
6805 
6806 	if (!dump_block_groups)
6807 		return;
6808 
6809 	down_read(&info->groups_sem);
6810 again:
6811 	list_for_each_entry(cache, &info->block_groups[index], list) {
6812 		spin_lock(&cache->lock);
6813 		printk(KERN_INFO "BTRFS: "
6814 			   "block group %llu has %llu bytes, "
6815 			   "%llu used %llu pinned %llu reserved %s\n",
6816 		       cache->key.objectid, cache->key.offset,
6817 		       btrfs_block_group_used(&cache->item), cache->pinned,
6818 		       cache->reserved, cache->ro ? "[readonly]" : "");
6819 		btrfs_dump_free_space(cache, bytes);
6820 		spin_unlock(&cache->lock);
6821 	}
6822 	if (++index < BTRFS_NR_RAID_TYPES)
6823 		goto again;
6824 	up_read(&info->groups_sem);
6825 }
6826 
6827 int btrfs_reserve_extent(struct btrfs_root *root,
6828 			 u64 num_bytes, u64 min_alloc_size,
6829 			 u64 empty_size, u64 hint_byte,
6830 			 struct btrfs_key *ins, int is_data)
6831 {
6832 	bool final_tried = false;
6833 	u64 flags;
6834 	int ret;
6835 
6836 	flags = btrfs_get_alloc_profile(root, is_data);
6837 again:
6838 	WARN_ON(num_bytes < root->sectorsize);
6839 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6840 			       flags);
6841 
6842 	if (ret == -ENOSPC) {
6843 		if (!final_tried && ins->offset) {
6844 			num_bytes = min(num_bytes >> 1, ins->offset);
6845 			num_bytes = round_down(num_bytes, root->sectorsize);
6846 			num_bytes = max(num_bytes, min_alloc_size);
6847 			if (num_bytes == min_alloc_size)
6848 				final_tried = true;
6849 			goto again;
6850 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6851 			struct btrfs_space_info *sinfo;
6852 
6853 			sinfo = __find_space_info(root->fs_info, flags);
6854 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6855 				flags, num_bytes);
6856 			if (sinfo)
6857 				dump_space_info(sinfo, num_bytes, 1);
6858 		}
6859 	}
6860 
6861 	return ret;
6862 }
6863 
6864 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6865 					u64 start, u64 len, int pin)
6866 {
6867 	struct btrfs_block_group_cache *cache;
6868 	int ret = 0;
6869 
6870 	cache = btrfs_lookup_block_group(root->fs_info, start);
6871 	if (!cache) {
6872 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6873 			start);
6874 		return -ENOSPC;
6875 	}
6876 
6877 	if (btrfs_test_opt(root, DISCARD))
6878 		ret = btrfs_discard_extent(root, start, len, NULL);
6879 
6880 	if (pin)
6881 		pin_down_extent(root, cache, start, len, 1);
6882 	else {
6883 		btrfs_add_free_space(cache, start, len);
6884 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6885 	}
6886 	btrfs_put_block_group(cache);
6887 
6888 	trace_btrfs_reserved_extent_free(root, start, len);
6889 
6890 	return ret;
6891 }
6892 
6893 int btrfs_free_reserved_extent(struct btrfs_root *root,
6894 					u64 start, u64 len)
6895 {
6896 	return __btrfs_free_reserved_extent(root, start, len, 0);
6897 }
6898 
6899 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6900 				       u64 start, u64 len)
6901 {
6902 	return __btrfs_free_reserved_extent(root, start, len, 1);
6903 }
6904 
6905 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6906 				      struct btrfs_root *root,
6907 				      u64 parent, u64 root_objectid,
6908 				      u64 flags, u64 owner, u64 offset,
6909 				      struct btrfs_key *ins, int ref_mod)
6910 {
6911 	int ret;
6912 	struct btrfs_fs_info *fs_info = root->fs_info;
6913 	struct btrfs_extent_item *extent_item;
6914 	struct btrfs_extent_inline_ref *iref;
6915 	struct btrfs_path *path;
6916 	struct extent_buffer *leaf;
6917 	int type;
6918 	u32 size;
6919 
6920 	if (parent > 0)
6921 		type = BTRFS_SHARED_DATA_REF_KEY;
6922 	else
6923 		type = BTRFS_EXTENT_DATA_REF_KEY;
6924 
6925 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6926 
6927 	path = btrfs_alloc_path();
6928 	if (!path)
6929 		return -ENOMEM;
6930 
6931 	path->leave_spinning = 1;
6932 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6933 				      ins, size);
6934 	if (ret) {
6935 		btrfs_free_path(path);
6936 		return ret;
6937 	}
6938 
6939 	leaf = path->nodes[0];
6940 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6941 				     struct btrfs_extent_item);
6942 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6943 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6944 	btrfs_set_extent_flags(leaf, extent_item,
6945 			       flags | BTRFS_EXTENT_FLAG_DATA);
6946 
6947 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6948 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6949 	if (parent > 0) {
6950 		struct btrfs_shared_data_ref *ref;
6951 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6952 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6953 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6954 	} else {
6955 		struct btrfs_extent_data_ref *ref;
6956 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6957 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6958 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6959 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6960 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6961 	}
6962 
6963 	btrfs_mark_buffer_dirty(path->nodes[0]);
6964 	btrfs_free_path(path);
6965 
6966 	/* Always set parent to 0 here since its exclusive anyway. */
6967 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
6968 				      ins->objectid, ins->offset,
6969 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
6970 	if (ret)
6971 		return ret;
6972 
6973 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6974 	if (ret) { /* -ENOENT, logic error */
6975 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6976 			ins->objectid, ins->offset);
6977 		BUG();
6978 	}
6979 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6980 	return ret;
6981 }
6982 
6983 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6984 				     struct btrfs_root *root,
6985 				     u64 parent, u64 root_objectid,
6986 				     u64 flags, struct btrfs_disk_key *key,
6987 				     int level, struct btrfs_key *ins,
6988 				     int no_quota)
6989 {
6990 	int ret;
6991 	struct btrfs_fs_info *fs_info = root->fs_info;
6992 	struct btrfs_extent_item *extent_item;
6993 	struct btrfs_tree_block_info *block_info;
6994 	struct btrfs_extent_inline_ref *iref;
6995 	struct btrfs_path *path;
6996 	struct extent_buffer *leaf;
6997 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6998 	u64 num_bytes = ins->offset;
6999 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7000 						 SKINNY_METADATA);
7001 
7002 	if (!skinny_metadata)
7003 		size += sizeof(*block_info);
7004 
7005 	path = btrfs_alloc_path();
7006 	if (!path) {
7007 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7008 						   root->leafsize);
7009 		return -ENOMEM;
7010 	}
7011 
7012 	path->leave_spinning = 1;
7013 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7014 				      ins, size);
7015 	if (ret) {
7016 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7017 						   root->leafsize);
7018 		btrfs_free_path(path);
7019 		return ret;
7020 	}
7021 
7022 	leaf = path->nodes[0];
7023 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7024 				     struct btrfs_extent_item);
7025 	btrfs_set_extent_refs(leaf, extent_item, 1);
7026 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7027 	btrfs_set_extent_flags(leaf, extent_item,
7028 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7029 
7030 	if (skinny_metadata) {
7031 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7032 		num_bytes = root->leafsize;
7033 	} else {
7034 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7035 		btrfs_set_tree_block_key(leaf, block_info, key);
7036 		btrfs_set_tree_block_level(leaf, block_info, level);
7037 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7038 	}
7039 
7040 	if (parent > 0) {
7041 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7042 		btrfs_set_extent_inline_ref_type(leaf, iref,
7043 						 BTRFS_SHARED_BLOCK_REF_KEY);
7044 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7045 	} else {
7046 		btrfs_set_extent_inline_ref_type(leaf, iref,
7047 						 BTRFS_TREE_BLOCK_REF_KEY);
7048 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7049 	}
7050 
7051 	btrfs_mark_buffer_dirty(leaf);
7052 	btrfs_free_path(path);
7053 
7054 	if (!no_quota) {
7055 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7056 					      ins->objectid, num_bytes,
7057 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7058 		if (ret)
7059 			return ret;
7060 	}
7061 
7062 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
7063 	if (ret) { /* -ENOENT, logic error */
7064 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7065 			ins->objectid, ins->offset);
7066 		BUG();
7067 	}
7068 
7069 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
7070 	return ret;
7071 }
7072 
7073 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7074 				     struct btrfs_root *root,
7075 				     u64 root_objectid, u64 owner,
7076 				     u64 offset, struct btrfs_key *ins)
7077 {
7078 	int ret;
7079 
7080 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7081 
7082 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7083 					 ins->offset, 0,
7084 					 root_objectid, owner, offset,
7085 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7086 	return ret;
7087 }
7088 
7089 /*
7090  * this is used by the tree logging recovery code.  It records that
7091  * an extent has been allocated and makes sure to clear the free
7092  * space cache bits as well
7093  */
7094 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7095 				   struct btrfs_root *root,
7096 				   u64 root_objectid, u64 owner, u64 offset,
7097 				   struct btrfs_key *ins)
7098 {
7099 	int ret;
7100 	struct btrfs_block_group_cache *block_group;
7101 
7102 	/*
7103 	 * Mixed block groups will exclude before processing the log so we only
7104 	 * need to do the exlude dance if this fs isn't mixed.
7105 	 */
7106 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7107 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7108 		if (ret)
7109 			return ret;
7110 	}
7111 
7112 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7113 	if (!block_group)
7114 		return -EINVAL;
7115 
7116 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7117 					  RESERVE_ALLOC_NO_ACCOUNT);
7118 	BUG_ON(ret); /* logic error */
7119 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7120 					 0, owner, offset, ins, 1);
7121 	btrfs_put_block_group(block_group);
7122 	return ret;
7123 }
7124 
7125 static struct extent_buffer *
7126 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7127 		      u64 bytenr, u32 blocksize, int level)
7128 {
7129 	struct extent_buffer *buf;
7130 
7131 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7132 	if (!buf)
7133 		return ERR_PTR(-ENOMEM);
7134 	btrfs_set_header_generation(buf, trans->transid);
7135 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7136 	btrfs_tree_lock(buf);
7137 	clean_tree_block(trans, root, buf);
7138 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7139 
7140 	btrfs_set_lock_blocking(buf);
7141 	btrfs_set_buffer_uptodate(buf);
7142 
7143 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7144 		/*
7145 		 * we allow two log transactions at a time, use different
7146 		 * EXENT bit to differentiate dirty pages.
7147 		 */
7148 		if (root->log_transid % 2 == 0)
7149 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7150 					buf->start + buf->len - 1, GFP_NOFS);
7151 		else
7152 			set_extent_new(&root->dirty_log_pages, buf->start,
7153 					buf->start + buf->len - 1, GFP_NOFS);
7154 	} else {
7155 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7156 			 buf->start + buf->len - 1, GFP_NOFS);
7157 	}
7158 	trans->blocks_used++;
7159 	/* this returns a buffer locked for blocking */
7160 	return buf;
7161 }
7162 
7163 static struct btrfs_block_rsv *
7164 use_block_rsv(struct btrfs_trans_handle *trans,
7165 	      struct btrfs_root *root, u32 blocksize)
7166 {
7167 	struct btrfs_block_rsv *block_rsv;
7168 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7169 	int ret;
7170 	bool global_updated = false;
7171 
7172 	block_rsv = get_block_rsv(trans, root);
7173 
7174 	if (unlikely(block_rsv->size == 0))
7175 		goto try_reserve;
7176 again:
7177 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7178 	if (!ret)
7179 		return block_rsv;
7180 
7181 	if (block_rsv->failfast)
7182 		return ERR_PTR(ret);
7183 
7184 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7185 		global_updated = true;
7186 		update_global_block_rsv(root->fs_info);
7187 		goto again;
7188 	}
7189 
7190 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7191 		static DEFINE_RATELIMIT_STATE(_rs,
7192 				DEFAULT_RATELIMIT_INTERVAL * 10,
7193 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7194 		if (__ratelimit(&_rs))
7195 			WARN(1, KERN_DEBUG
7196 				"BTRFS: block rsv returned %d\n", ret);
7197 	}
7198 try_reserve:
7199 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7200 				     BTRFS_RESERVE_NO_FLUSH);
7201 	if (!ret)
7202 		return block_rsv;
7203 	/*
7204 	 * If we couldn't reserve metadata bytes try and use some from
7205 	 * the global reserve if its space type is the same as the global
7206 	 * reservation.
7207 	 */
7208 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7209 	    block_rsv->space_info == global_rsv->space_info) {
7210 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7211 		if (!ret)
7212 			return global_rsv;
7213 	}
7214 	return ERR_PTR(ret);
7215 }
7216 
7217 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7218 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7219 {
7220 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7221 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7222 }
7223 
7224 /*
7225  * finds a free extent and does all the dirty work required for allocation
7226  * returns the key for the extent through ins, and a tree buffer for
7227  * the first block of the extent through buf.
7228  *
7229  * returns the tree buffer or NULL.
7230  */
7231 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7232 					struct btrfs_root *root, u32 blocksize,
7233 					u64 parent, u64 root_objectid,
7234 					struct btrfs_disk_key *key, int level,
7235 					u64 hint, u64 empty_size)
7236 {
7237 	struct btrfs_key ins;
7238 	struct btrfs_block_rsv *block_rsv;
7239 	struct extent_buffer *buf;
7240 	u64 flags = 0;
7241 	int ret;
7242 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7243 						 SKINNY_METADATA);
7244 
7245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7246 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) {
7247 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7248 					    blocksize, level);
7249 		if (!IS_ERR(buf))
7250 			root->alloc_bytenr += blocksize;
7251 		return buf;
7252 	}
7253 #endif
7254 	block_rsv = use_block_rsv(trans, root, blocksize);
7255 	if (IS_ERR(block_rsv))
7256 		return ERR_CAST(block_rsv);
7257 
7258 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7259 				   empty_size, hint, &ins, 0);
7260 	if (ret) {
7261 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7262 		return ERR_PTR(ret);
7263 	}
7264 
7265 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7266 				    blocksize, level);
7267 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7268 
7269 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7270 		if (parent == 0)
7271 			parent = ins.objectid;
7272 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7273 	} else
7274 		BUG_ON(parent > 0);
7275 
7276 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7277 		struct btrfs_delayed_extent_op *extent_op;
7278 		extent_op = btrfs_alloc_delayed_extent_op();
7279 		BUG_ON(!extent_op); /* -ENOMEM */
7280 		if (key)
7281 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7282 		else
7283 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7284 		extent_op->flags_to_set = flags;
7285 		if (skinny_metadata)
7286 			extent_op->update_key = 0;
7287 		else
7288 			extent_op->update_key = 1;
7289 		extent_op->update_flags = 1;
7290 		extent_op->is_data = 0;
7291 		extent_op->level = level;
7292 
7293 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7294 					ins.objectid,
7295 					ins.offset, parent, root_objectid,
7296 					level, BTRFS_ADD_DELAYED_EXTENT,
7297 					extent_op, 0);
7298 		BUG_ON(ret); /* -ENOMEM */
7299 	}
7300 	return buf;
7301 }
7302 
7303 struct walk_control {
7304 	u64 refs[BTRFS_MAX_LEVEL];
7305 	u64 flags[BTRFS_MAX_LEVEL];
7306 	struct btrfs_key update_progress;
7307 	int stage;
7308 	int level;
7309 	int shared_level;
7310 	int update_ref;
7311 	int keep_locks;
7312 	int reada_slot;
7313 	int reada_count;
7314 	int for_reloc;
7315 };
7316 
7317 #define DROP_REFERENCE	1
7318 #define UPDATE_BACKREF	2
7319 
7320 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7321 				     struct btrfs_root *root,
7322 				     struct walk_control *wc,
7323 				     struct btrfs_path *path)
7324 {
7325 	u64 bytenr;
7326 	u64 generation;
7327 	u64 refs;
7328 	u64 flags;
7329 	u32 nritems;
7330 	u32 blocksize;
7331 	struct btrfs_key key;
7332 	struct extent_buffer *eb;
7333 	int ret;
7334 	int slot;
7335 	int nread = 0;
7336 
7337 	if (path->slots[wc->level] < wc->reada_slot) {
7338 		wc->reada_count = wc->reada_count * 2 / 3;
7339 		wc->reada_count = max(wc->reada_count, 2);
7340 	} else {
7341 		wc->reada_count = wc->reada_count * 3 / 2;
7342 		wc->reada_count = min_t(int, wc->reada_count,
7343 					BTRFS_NODEPTRS_PER_BLOCK(root));
7344 	}
7345 
7346 	eb = path->nodes[wc->level];
7347 	nritems = btrfs_header_nritems(eb);
7348 	blocksize = btrfs_level_size(root, wc->level - 1);
7349 
7350 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7351 		if (nread >= wc->reada_count)
7352 			break;
7353 
7354 		cond_resched();
7355 		bytenr = btrfs_node_blockptr(eb, slot);
7356 		generation = btrfs_node_ptr_generation(eb, slot);
7357 
7358 		if (slot == path->slots[wc->level])
7359 			goto reada;
7360 
7361 		if (wc->stage == UPDATE_BACKREF &&
7362 		    generation <= root->root_key.offset)
7363 			continue;
7364 
7365 		/* We don't lock the tree block, it's OK to be racy here */
7366 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7367 					       wc->level - 1, 1, &refs,
7368 					       &flags);
7369 		/* We don't care about errors in readahead. */
7370 		if (ret < 0)
7371 			continue;
7372 		BUG_ON(refs == 0);
7373 
7374 		if (wc->stage == DROP_REFERENCE) {
7375 			if (refs == 1)
7376 				goto reada;
7377 
7378 			if (wc->level == 1 &&
7379 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7380 				continue;
7381 			if (!wc->update_ref ||
7382 			    generation <= root->root_key.offset)
7383 				continue;
7384 			btrfs_node_key_to_cpu(eb, &key, slot);
7385 			ret = btrfs_comp_cpu_keys(&key,
7386 						  &wc->update_progress);
7387 			if (ret < 0)
7388 				continue;
7389 		} else {
7390 			if (wc->level == 1 &&
7391 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7392 				continue;
7393 		}
7394 reada:
7395 		ret = readahead_tree_block(root, bytenr, blocksize,
7396 					   generation);
7397 		if (ret)
7398 			break;
7399 		nread++;
7400 	}
7401 	wc->reada_slot = slot;
7402 }
7403 
7404 /*
7405  * helper to process tree block while walking down the tree.
7406  *
7407  * when wc->stage == UPDATE_BACKREF, this function updates
7408  * back refs for pointers in the block.
7409  *
7410  * NOTE: return value 1 means we should stop walking down.
7411  */
7412 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7413 				   struct btrfs_root *root,
7414 				   struct btrfs_path *path,
7415 				   struct walk_control *wc, int lookup_info)
7416 {
7417 	int level = wc->level;
7418 	struct extent_buffer *eb = path->nodes[level];
7419 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7420 	int ret;
7421 
7422 	if (wc->stage == UPDATE_BACKREF &&
7423 	    btrfs_header_owner(eb) != root->root_key.objectid)
7424 		return 1;
7425 
7426 	/*
7427 	 * when reference count of tree block is 1, it won't increase
7428 	 * again. once full backref flag is set, we never clear it.
7429 	 */
7430 	if (lookup_info &&
7431 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7432 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7433 		BUG_ON(!path->locks[level]);
7434 		ret = btrfs_lookup_extent_info(trans, root,
7435 					       eb->start, level, 1,
7436 					       &wc->refs[level],
7437 					       &wc->flags[level]);
7438 		BUG_ON(ret == -ENOMEM);
7439 		if (ret)
7440 			return ret;
7441 		BUG_ON(wc->refs[level] == 0);
7442 	}
7443 
7444 	if (wc->stage == DROP_REFERENCE) {
7445 		if (wc->refs[level] > 1)
7446 			return 1;
7447 
7448 		if (path->locks[level] && !wc->keep_locks) {
7449 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7450 			path->locks[level] = 0;
7451 		}
7452 		return 0;
7453 	}
7454 
7455 	/* wc->stage == UPDATE_BACKREF */
7456 	if (!(wc->flags[level] & flag)) {
7457 		BUG_ON(!path->locks[level]);
7458 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7459 		BUG_ON(ret); /* -ENOMEM */
7460 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7461 		BUG_ON(ret); /* -ENOMEM */
7462 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7463 						  eb->len, flag,
7464 						  btrfs_header_level(eb), 0);
7465 		BUG_ON(ret); /* -ENOMEM */
7466 		wc->flags[level] |= flag;
7467 	}
7468 
7469 	/*
7470 	 * the block is shared by multiple trees, so it's not good to
7471 	 * keep the tree lock
7472 	 */
7473 	if (path->locks[level] && level > 0) {
7474 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7475 		path->locks[level] = 0;
7476 	}
7477 	return 0;
7478 }
7479 
7480 /*
7481  * helper to process tree block pointer.
7482  *
7483  * when wc->stage == DROP_REFERENCE, this function checks
7484  * reference count of the block pointed to. if the block
7485  * is shared and we need update back refs for the subtree
7486  * rooted at the block, this function changes wc->stage to
7487  * UPDATE_BACKREF. if the block is shared and there is no
7488  * need to update back, this function drops the reference
7489  * to the block.
7490  *
7491  * NOTE: return value 1 means we should stop walking down.
7492  */
7493 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7494 				 struct btrfs_root *root,
7495 				 struct btrfs_path *path,
7496 				 struct walk_control *wc, int *lookup_info)
7497 {
7498 	u64 bytenr;
7499 	u64 generation;
7500 	u64 parent;
7501 	u32 blocksize;
7502 	struct btrfs_key key;
7503 	struct extent_buffer *next;
7504 	int level = wc->level;
7505 	int reada = 0;
7506 	int ret = 0;
7507 
7508 	generation = btrfs_node_ptr_generation(path->nodes[level],
7509 					       path->slots[level]);
7510 	/*
7511 	 * if the lower level block was created before the snapshot
7512 	 * was created, we know there is no need to update back refs
7513 	 * for the subtree
7514 	 */
7515 	if (wc->stage == UPDATE_BACKREF &&
7516 	    generation <= root->root_key.offset) {
7517 		*lookup_info = 1;
7518 		return 1;
7519 	}
7520 
7521 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7522 	blocksize = btrfs_level_size(root, level - 1);
7523 
7524 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7525 	if (!next) {
7526 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7527 		if (!next)
7528 			return -ENOMEM;
7529 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7530 					       level - 1);
7531 		reada = 1;
7532 	}
7533 	btrfs_tree_lock(next);
7534 	btrfs_set_lock_blocking(next);
7535 
7536 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7537 				       &wc->refs[level - 1],
7538 				       &wc->flags[level - 1]);
7539 	if (ret < 0) {
7540 		btrfs_tree_unlock(next);
7541 		return ret;
7542 	}
7543 
7544 	if (unlikely(wc->refs[level - 1] == 0)) {
7545 		btrfs_err(root->fs_info, "Missing references.");
7546 		BUG();
7547 	}
7548 	*lookup_info = 0;
7549 
7550 	if (wc->stage == DROP_REFERENCE) {
7551 		if (wc->refs[level - 1] > 1) {
7552 			if (level == 1 &&
7553 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7554 				goto skip;
7555 
7556 			if (!wc->update_ref ||
7557 			    generation <= root->root_key.offset)
7558 				goto skip;
7559 
7560 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7561 					      path->slots[level]);
7562 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7563 			if (ret < 0)
7564 				goto skip;
7565 
7566 			wc->stage = UPDATE_BACKREF;
7567 			wc->shared_level = level - 1;
7568 		}
7569 	} else {
7570 		if (level == 1 &&
7571 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7572 			goto skip;
7573 	}
7574 
7575 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7576 		btrfs_tree_unlock(next);
7577 		free_extent_buffer(next);
7578 		next = NULL;
7579 		*lookup_info = 1;
7580 	}
7581 
7582 	if (!next) {
7583 		if (reada && level == 1)
7584 			reada_walk_down(trans, root, wc, path);
7585 		next = read_tree_block(root, bytenr, blocksize, generation);
7586 		if (!next || !extent_buffer_uptodate(next)) {
7587 			free_extent_buffer(next);
7588 			return -EIO;
7589 		}
7590 		btrfs_tree_lock(next);
7591 		btrfs_set_lock_blocking(next);
7592 	}
7593 
7594 	level--;
7595 	BUG_ON(level != btrfs_header_level(next));
7596 	path->nodes[level] = next;
7597 	path->slots[level] = 0;
7598 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7599 	wc->level = level;
7600 	if (wc->level == 1)
7601 		wc->reada_slot = 0;
7602 	return 0;
7603 skip:
7604 	wc->refs[level - 1] = 0;
7605 	wc->flags[level - 1] = 0;
7606 	if (wc->stage == DROP_REFERENCE) {
7607 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7608 			parent = path->nodes[level]->start;
7609 		} else {
7610 			BUG_ON(root->root_key.objectid !=
7611 			       btrfs_header_owner(path->nodes[level]));
7612 			parent = 0;
7613 		}
7614 
7615 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7616 				root->root_key.objectid, level - 1, 0, 0);
7617 		BUG_ON(ret); /* -ENOMEM */
7618 	}
7619 	btrfs_tree_unlock(next);
7620 	free_extent_buffer(next);
7621 	*lookup_info = 1;
7622 	return 1;
7623 }
7624 
7625 /*
7626  * helper to process tree block while walking up the tree.
7627  *
7628  * when wc->stage == DROP_REFERENCE, this function drops
7629  * reference count on the block.
7630  *
7631  * when wc->stage == UPDATE_BACKREF, this function changes
7632  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7633  * to UPDATE_BACKREF previously while processing the block.
7634  *
7635  * NOTE: return value 1 means we should stop walking up.
7636  */
7637 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7638 				 struct btrfs_root *root,
7639 				 struct btrfs_path *path,
7640 				 struct walk_control *wc)
7641 {
7642 	int ret;
7643 	int level = wc->level;
7644 	struct extent_buffer *eb = path->nodes[level];
7645 	u64 parent = 0;
7646 
7647 	if (wc->stage == UPDATE_BACKREF) {
7648 		BUG_ON(wc->shared_level < level);
7649 		if (level < wc->shared_level)
7650 			goto out;
7651 
7652 		ret = find_next_key(path, level + 1, &wc->update_progress);
7653 		if (ret > 0)
7654 			wc->update_ref = 0;
7655 
7656 		wc->stage = DROP_REFERENCE;
7657 		wc->shared_level = -1;
7658 		path->slots[level] = 0;
7659 
7660 		/*
7661 		 * check reference count again if the block isn't locked.
7662 		 * we should start walking down the tree again if reference
7663 		 * count is one.
7664 		 */
7665 		if (!path->locks[level]) {
7666 			BUG_ON(level == 0);
7667 			btrfs_tree_lock(eb);
7668 			btrfs_set_lock_blocking(eb);
7669 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7670 
7671 			ret = btrfs_lookup_extent_info(trans, root,
7672 						       eb->start, level, 1,
7673 						       &wc->refs[level],
7674 						       &wc->flags[level]);
7675 			if (ret < 0) {
7676 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7677 				path->locks[level] = 0;
7678 				return ret;
7679 			}
7680 			BUG_ON(wc->refs[level] == 0);
7681 			if (wc->refs[level] == 1) {
7682 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7683 				path->locks[level] = 0;
7684 				return 1;
7685 			}
7686 		}
7687 	}
7688 
7689 	/* wc->stage == DROP_REFERENCE */
7690 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7691 
7692 	if (wc->refs[level] == 1) {
7693 		if (level == 0) {
7694 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7695 				ret = btrfs_dec_ref(trans, root, eb, 1,
7696 						    wc->for_reloc);
7697 			else
7698 				ret = btrfs_dec_ref(trans, root, eb, 0,
7699 						    wc->for_reloc);
7700 			BUG_ON(ret); /* -ENOMEM */
7701 		}
7702 		/* make block locked assertion in clean_tree_block happy */
7703 		if (!path->locks[level] &&
7704 		    btrfs_header_generation(eb) == trans->transid) {
7705 			btrfs_tree_lock(eb);
7706 			btrfs_set_lock_blocking(eb);
7707 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7708 		}
7709 		clean_tree_block(trans, root, eb);
7710 	}
7711 
7712 	if (eb == root->node) {
7713 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7714 			parent = eb->start;
7715 		else
7716 			BUG_ON(root->root_key.objectid !=
7717 			       btrfs_header_owner(eb));
7718 	} else {
7719 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7720 			parent = path->nodes[level + 1]->start;
7721 		else
7722 			BUG_ON(root->root_key.objectid !=
7723 			       btrfs_header_owner(path->nodes[level + 1]));
7724 	}
7725 
7726 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7727 out:
7728 	wc->refs[level] = 0;
7729 	wc->flags[level] = 0;
7730 	return 0;
7731 }
7732 
7733 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7734 				   struct btrfs_root *root,
7735 				   struct btrfs_path *path,
7736 				   struct walk_control *wc)
7737 {
7738 	int level = wc->level;
7739 	int lookup_info = 1;
7740 	int ret;
7741 
7742 	while (level >= 0) {
7743 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7744 		if (ret > 0)
7745 			break;
7746 
7747 		if (level == 0)
7748 			break;
7749 
7750 		if (path->slots[level] >=
7751 		    btrfs_header_nritems(path->nodes[level]))
7752 			break;
7753 
7754 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7755 		if (ret > 0) {
7756 			path->slots[level]++;
7757 			continue;
7758 		} else if (ret < 0)
7759 			return ret;
7760 		level = wc->level;
7761 	}
7762 	return 0;
7763 }
7764 
7765 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7766 				 struct btrfs_root *root,
7767 				 struct btrfs_path *path,
7768 				 struct walk_control *wc, int max_level)
7769 {
7770 	int level = wc->level;
7771 	int ret;
7772 
7773 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7774 	while (level < max_level && path->nodes[level]) {
7775 		wc->level = level;
7776 		if (path->slots[level] + 1 <
7777 		    btrfs_header_nritems(path->nodes[level])) {
7778 			path->slots[level]++;
7779 			return 0;
7780 		} else {
7781 			ret = walk_up_proc(trans, root, path, wc);
7782 			if (ret > 0)
7783 				return 0;
7784 
7785 			if (path->locks[level]) {
7786 				btrfs_tree_unlock_rw(path->nodes[level],
7787 						     path->locks[level]);
7788 				path->locks[level] = 0;
7789 			}
7790 			free_extent_buffer(path->nodes[level]);
7791 			path->nodes[level] = NULL;
7792 			level++;
7793 		}
7794 	}
7795 	return 1;
7796 }
7797 
7798 /*
7799  * drop a subvolume tree.
7800  *
7801  * this function traverses the tree freeing any blocks that only
7802  * referenced by the tree.
7803  *
7804  * when a shared tree block is found. this function decreases its
7805  * reference count by one. if update_ref is true, this function
7806  * also make sure backrefs for the shared block and all lower level
7807  * blocks are properly updated.
7808  *
7809  * If called with for_reloc == 0, may exit early with -EAGAIN
7810  */
7811 int btrfs_drop_snapshot(struct btrfs_root *root,
7812 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7813 			 int for_reloc)
7814 {
7815 	struct btrfs_path *path;
7816 	struct btrfs_trans_handle *trans;
7817 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7818 	struct btrfs_root_item *root_item = &root->root_item;
7819 	struct walk_control *wc;
7820 	struct btrfs_key key;
7821 	int err = 0;
7822 	int ret;
7823 	int level;
7824 	bool root_dropped = false;
7825 
7826 	path = btrfs_alloc_path();
7827 	if (!path) {
7828 		err = -ENOMEM;
7829 		goto out;
7830 	}
7831 
7832 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7833 	if (!wc) {
7834 		btrfs_free_path(path);
7835 		err = -ENOMEM;
7836 		goto out;
7837 	}
7838 
7839 	trans = btrfs_start_transaction(tree_root, 0);
7840 	if (IS_ERR(trans)) {
7841 		err = PTR_ERR(trans);
7842 		goto out_free;
7843 	}
7844 
7845 	if (block_rsv)
7846 		trans->block_rsv = block_rsv;
7847 
7848 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7849 		level = btrfs_header_level(root->node);
7850 		path->nodes[level] = btrfs_lock_root_node(root);
7851 		btrfs_set_lock_blocking(path->nodes[level]);
7852 		path->slots[level] = 0;
7853 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7854 		memset(&wc->update_progress, 0,
7855 		       sizeof(wc->update_progress));
7856 	} else {
7857 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7858 		memcpy(&wc->update_progress, &key,
7859 		       sizeof(wc->update_progress));
7860 
7861 		level = root_item->drop_level;
7862 		BUG_ON(level == 0);
7863 		path->lowest_level = level;
7864 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7865 		path->lowest_level = 0;
7866 		if (ret < 0) {
7867 			err = ret;
7868 			goto out_end_trans;
7869 		}
7870 		WARN_ON(ret > 0);
7871 
7872 		/*
7873 		 * unlock our path, this is safe because only this
7874 		 * function is allowed to delete this snapshot
7875 		 */
7876 		btrfs_unlock_up_safe(path, 0);
7877 
7878 		level = btrfs_header_level(root->node);
7879 		while (1) {
7880 			btrfs_tree_lock(path->nodes[level]);
7881 			btrfs_set_lock_blocking(path->nodes[level]);
7882 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7883 
7884 			ret = btrfs_lookup_extent_info(trans, root,
7885 						path->nodes[level]->start,
7886 						level, 1, &wc->refs[level],
7887 						&wc->flags[level]);
7888 			if (ret < 0) {
7889 				err = ret;
7890 				goto out_end_trans;
7891 			}
7892 			BUG_ON(wc->refs[level] == 0);
7893 
7894 			if (level == root_item->drop_level)
7895 				break;
7896 
7897 			btrfs_tree_unlock(path->nodes[level]);
7898 			path->locks[level] = 0;
7899 			WARN_ON(wc->refs[level] != 1);
7900 			level--;
7901 		}
7902 	}
7903 
7904 	wc->level = level;
7905 	wc->shared_level = -1;
7906 	wc->stage = DROP_REFERENCE;
7907 	wc->update_ref = update_ref;
7908 	wc->keep_locks = 0;
7909 	wc->for_reloc = for_reloc;
7910 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7911 
7912 	while (1) {
7913 
7914 		ret = walk_down_tree(trans, root, path, wc);
7915 		if (ret < 0) {
7916 			err = ret;
7917 			break;
7918 		}
7919 
7920 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7921 		if (ret < 0) {
7922 			err = ret;
7923 			break;
7924 		}
7925 
7926 		if (ret > 0) {
7927 			BUG_ON(wc->stage != DROP_REFERENCE);
7928 			break;
7929 		}
7930 
7931 		if (wc->stage == DROP_REFERENCE) {
7932 			level = wc->level;
7933 			btrfs_node_key(path->nodes[level],
7934 				       &root_item->drop_progress,
7935 				       path->slots[level]);
7936 			root_item->drop_level = level;
7937 		}
7938 
7939 		BUG_ON(wc->level == 0);
7940 		if (btrfs_should_end_transaction(trans, tree_root) ||
7941 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7942 			ret = btrfs_update_root(trans, tree_root,
7943 						&root->root_key,
7944 						root_item);
7945 			if (ret) {
7946 				btrfs_abort_transaction(trans, tree_root, ret);
7947 				err = ret;
7948 				goto out_end_trans;
7949 			}
7950 
7951 			btrfs_end_transaction_throttle(trans, tree_root);
7952 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7953 				pr_debug("BTRFS: drop snapshot early exit\n");
7954 				err = -EAGAIN;
7955 				goto out_free;
7956 			}
7957 
7958 			trans = btrfs_start_transaction(tree_root, 0);
7959 			if (IS_ERR(trans)) {
7960 				err = PTR_ERR(trans);
7961 				goto out_free;
7962 			}
7963 			if (block_rsv)
7964 				trans->block_rsv = block_rsv;
7965 		}
7966 	}
7967 	btrfs_release_path(path);
7968 	if (err)
7969 		goto out_end_trans;
7970 
7971 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7972 	if (ret) {
7973 		btrfs_abort_transaction(trans, tree_root, ret);
7974 		goto out_end_trans;
7975 	}
7976 
7977 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7978 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7979 				      NULL, NULL);
7980 		if (ret < 0) {
7981 			btrfs_abort_transaction(trans, tree_root, ret);
7982 			err = ret;
7983 			goto out_end_trans;
7984 		} else if (ret > 0) {
7985 			/* if we fail to delete the orphan item this time
7986 			 * around, it'll get picked up the next time.
7987 			 *
7988 			 * The most common failure here is just -ENOENT.
7989 			 */
7990 			btrfs_del_orphan_item(trans, tree_root,
7991 					      root->root_key.objectid);
7992 		}
7993 	}
7994 
7995 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
7996 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7997 	} else {
7998 		free_extent_buffer(root->node);
7999 		free_extent_buffer(root->commit_root);
8000 		btrfs_put_fs_root(root);
8001 	}
8002 	root_dropped = true;
8003 out_end_trans:
8004 	btrfs_end_transaction_throttle(trans, tree_root);
8005 out_free:
8006 	kfree(wc);
8007 	btrfs_free_path(path);
8008 out:
8009 	/*
8010 	 * So if we need to stop dropping the snapshot for whatever reason we
8011 	 * need to make sure to add it back to the dead root list so that we
8012 	 * keep trying to do the work later.  This also cleans up roots if we
8013 	 * don't have it in the radix (like when we recover after a power fail
8014 	 * or unmount) so we don't leak memory.
8015 	 */
8016 	if (!for_reloc && root_dropped == false)
8017 		btrfs_add_dead_root(root);
8018 	if (err && err != -EAGAIN)
8019 		btrfs_std_error(root->fs_info, err);
8020 	return err;
8021 }
8022 
8023 /*
8024  * drop subtree rooted at tree block 'node'.
8025  *
8026  * NOTE: this function will unlock and release tree block 'node'
8027  * only used by relocation code
8028  */
8029 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8030 			struct btrfs_root *root,
8031 			struct extent_buffer *node,
8032 			struct extent_buffer *parent)
8033 {
8034 	struct btrfs_path *path;
8035 	struct walk_control *wc;
8036 	int level;
8037 	int parent_level;
8038 	int ret = 0;
8039 	int wret;
8040 
8041 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8042 
8043 	path = btrfs_alloc_path();
8044 	if (!path)
8045 		return -ENOMEM;
8046 
8047 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8048 	if (!wc) {
8049 		btrfs_free_path(path);
8050 		return -ENOMEM;
8051 	}
8052 
8053 	btrfs_assert_tree_locked(parent);
8054 	parent_level = btrfs_header_level(parent);
8055 	extent_buffer_get(parent);
8056 	path->nodes[parent_level] = parent;
8057 	path->slots[parent_level] = btrfs_header_nritems(parent);
8058 
8059 	btrfs_assert_tree_locked(node);
8060 	level = btrfs_header_level(node);
8061 	path->nodes[level] = node;
8062 	path->slots[level] = 0;
8063 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8064 
8065 	wc->refs[parent_level] = 1;
8066 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8067 	wc->level = level;
8068 	wc->shared_level = -1;
8069 	wc->stage = DROP_REFERENCE;
8070 	wc->update_ref = 0;
8071 	wc->keep_locks = 1;
8072 	wc->for_reloc = 1;
8073 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8074 
8075 	while (1) {
8076 		wret = walk_down_tree(trans, root, path, wc);
8077 		if (wret < 0) {
8078 			ret = wret;
8079 			break;
8080 		}
8081 
8082 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8083 		if (wret < 0)
8084 			ret = wret;
8085 		if (wret != 0)
8086 			break;
8087 	}
8088 
8089 	kfree(wc);
8090 	btrfs_free_path(path);
8091 	return ret;
8092 }
8093 
8094 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8095 {
8096 	u64 num_devices;
8097 	u64 stripped;
8098 
8099 	/*
8100 	 * if restripe for this chunk_type is on pick target profile and
8101 	 * return, otherwise do the usual balance
8102 	 */
8103 	stripped = get_restripe_target(root->fs_info, flags);
8104 	if (stripped)
8105 		return extended_to_chunk(stripped);
8106 
8107 	/*
8108 	 * we add in the count of missing devices because we want
8109 	 * to make sure that any RAID levels on a degraded FS
8110 	 * continue to be honored.
8111 	 */
8112 	num_devices = root->fs_info->fs_devices->rw_devices +
8113 		root->fs_info->fs_devices->missing_devices;
8114 
8115 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8116 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8117 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8118 
8119 	if (num_devices == 1) {
8120 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8121 		stripped = flags & ~stripped;
8122 
8123 		/* turn raid0 into single device chunks */
8124 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8125 			return stripped;
8126 
8127 		/* turn mirroring into duplication */
8128 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8129 			     BTRFS_BLOCK_GROUP_RAID10))
8130 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8131 	} else {
8132 		/* they already had raid on here, just return */
8133 		if (flags & stripped)
8134 			return flags;
8135 
8136 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8137 		stripped = flags & ~stripped;
8138 
8139 		/* switch duplicated blocks with raid1 */
8140 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8141 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8142 
8143 		/* this is drive concat, leave it alone */
8144 	}
8145 
8146 	return flags;
8147 }
8148 
8149 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8150 {
8151 	struct btrfs_space_info *sinfo = cache->space_info;
8152 	u64 num_bytes;
8153 	u64 min_allocable_bytes;
8154 	int ret = -ENOSPC;
8155 
8156 
8157 	/*
8158 	 * We need some metadata space and system metadata space for
8159 	 * allocating chunks in some corner cases until we force to set
8160 	 * it to be readonly.
8161 	 */
8162 	if ((sinfo->flags &
8163 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8164 	    !force)
8165 		min_allocable_bytes = 1 * 1024 * 1024;
8166 	else
8167 		min_allocable_bytes = 0;
8168 
8169 	spin_lock(&sinfo->lock);
8170 	spin_lock(&cache->lock);
8171 
8172 	if (cache->ro) {
8173 		ret = 0;
8174 		goto out;
8175 	}
8176 
8177 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8178 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8179 
8180 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8181 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8182 	    min_allocable_bytes <= sinfo->total_bytes) {
8183 		sinfo->bytes_readonly += num_bytes;
8184 		cache->ro = 1;
8185 		ret = 0;
8186 	}
8187 out:
8188 	spin_unlock(&cache->lock);
8189 	spin_unlock(&sinfo->lock);
8190 	return ret;
8191 }
8192 
8193 int btrfs_set_block_group_ro(struct btrfs_root *root,
8194 			     struct btrfs_block_group_cache *cache)
8195 
8196 {
8197 	struct btrfs_trans_handle *trans;
8198 	u64 alloc_flags;
8199 	int ret;
8200 
8201 	BUG_ON(cache->ro);
8202 
8203 	trans = btrfs_join_transaction(root);
8204 	if (IS_ERR(trans))
8205 		return PTR_ERR(trans);
8206 
8207 	alloc_flags = update_block_group_flags(root, cache->flags);
8208 	if (alloc_flags != cache->flags) {
8209 		ret = do_chunk_alloc(trans, root, alloc_flags,
8210 				     CHUNK_ALLOC_FORCE);
8211 		if (ret < 0)
8212 			goto out;
8213 	}
8214 
8215 	ret = set_block_group_ro(cache, 0);
8216 	if (!ret)
8217 		goto out;
8218 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8219 	ret = do_chunk_alloc(trans, root, alloc_flags,
8220 			     CHUNK_ALLOC_FORCE);
8221 	if (ret < 0)
8222 		goto out;
8223 	ret = set_block_group_ro(cache, 0);
8224 out:
8225 	btrfs_end_transaction(trans, root);
8226 	return ret;
8227 }
8228 
8229 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8230 			    struct btrfs_root *root, u64 type)
8231 {
8232 	u64 alloc_flags = get_alloc_profile(root, type);
8233 	return do_chunk_alloc(trans, root, alloc_flags,
8234 			      CHUNK_ALLOC_FORCE);
8235 }
8236 
8237 /*
8238  * helper to account the unused space of all the readonly block group in the
8239  * list. takes mirrors into account.
8240  */
8241 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8242 {
8243 	struct btrfs_block_group_cache *block_group;
8244 	u64 free_bytes = 0;
8245 	int factor;
8246 
8247 	list_for_each_entry(block_group, groups_list, list) {
8248 		spin_lock(&block_group->lock);
8249 
8250 		if (!block_group->ro) {
8251 			spin_unlock(&block_group->lock);
8252 			continue;
8253 		}
8254 
8255 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8256 					  BTRFS_BLOCK_GROUP_RAID10 |
8257 					  BTRFS_BLOCK_GROUP_DUP))
8258 			factor = 2;
8259 		else
8260 			factor = 1;
8261 
8262 		free_bytes += (block_group->key.offset -
8263 			       btrfs_block_group_used(&block_group->item)) *
8264 			       factor;
8265 
8266 		spin_unlock(&block_group->lock);
8267 	}
8268 
8269 	return free_bytes;
8270 }
8271 
8272 /*
8273  * helper to account the unused space of all the readonly block group in the
8274  * space_info. takes mirrors into account.
8275  */
8276 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8277 {
8278 	int i;
8279 	u64 free_bytes = 0;
8280 
8281 	spin_lock(&sinfo->lock);
8282 
8283 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8284 		if (!list_empty(&sinfo->block_groups[i]))
8285 			free_bytes += __btrfs_get_ro_block_group_free_space(
8286 						&sinfo->block_groups[i]);
8287 
8288 	spin_unlock(&sinfo->lock);
8289 
8290 	return free_bytes;
8291 }
8292 
8293 void btrfs_set_block_group_rw(struct btrfs_root *root,
8294 			      struct btrfs_block_group_cache *cache)
8295 {
8296 	struct btrfs_space_info *sinfo = cache->space_info;
8297 	u64 num_bytes;
8298 
8299 	BUG_ON(!cache->ro);
8300 
8301 	spin_lock(&sinfo->lock);
8302 	spin_lock(&cache->lock);
8303 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8304 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8305 	sinfo->bytes_readonly -= num_bytes;
8306 	cache->ro = 0;
8307 	spin_unlock(&cache->lock);
8308 	spin_unlock(&sinfo->lock);
8309 }
8310 
8311 /*
8312  * checks to see if its even possible to relocate this block group.
8313  *
8314  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8315  * ok to go ahead and try.
8316  */
8317 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8318 {
8319 	struct btrfs_block_group_cache *block_group;
8320 	struct btrfs_space_info *space_info;
8321 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8322 	struct btrfs_device *device;
8323 	struct btrfs_trans_handle *trans;
8324 	u64 min_free;
8325 	u64 dev_min = 1;
8326 	u64 dev_nr = 0;
8327 	u64 target;
8328 	int index;
8329 	int full = 0;
8330 	int ret = 0;
8331 
8332 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8333 
8334 	/* odd, couldn't find the block group, leave it alone */
8335 	if (!block_group)
8336 		return -1;
8337 
8338 	min_free = btrfs_block_group_used(&block_group->item);
8339 
8340 	/* no bytes used, we're good */
8341 	if (!min_free)
8342 		goto out;
8343 
8344 	space_info = block_group->space_info;
8345 	spin_lock(&space_info->lock);
8346 
8347 	full = space_info->full;
8348 
8349 	/*
8350 	 * if this is the last block group we have in this space, we can't
8351 	 * relocate it unless we're able to allocate a new chunk below.
8352 	 *
8353 	 * Otherwise, we need to make sure we have room in the space to handle
8354 	 * all of the extents from this block group.  If we can, we're good
8355 	 */
8356 	if ((space_info->total_bytes != block_group->key.offset) &&
8357 	    (space_info->bytes_used + space_info->bytes_reserved +
8358 	     space_info->bytes_pinned + space_info->bytes_readonly +
8359 	     min_free < space_info->total_bytes)) {
8360 		spin_unlock(&space_info->lock);
8361 		goto out;
8362 	}
8363 	spin_unlock(&space_info->lock);
8364 
8365 	/*
8366 	 * ok we don't have enough space, but maybe we have free space on our
8367 	 * devices to allocate new chunks for relocation, so loop through our
8368 	 * alloc devices and guess if we have enough space.  if this block
8369 	 * group is going to be restriped, run checks against the target
8370 	 * profile instead of the current one.
8371 	 */
8372 	ret = -1;
8373 
8374 	/*
8375 	 * index:
8376 	 *      0: raid10
8377 	 *      1: raid1
8378 	 *      2: dup
8379 	 *      3: raid0
8380 	 *      4: single
8381 	 */
8382 	target = get_restripe_target(root->fs_info, block_group->flags);
8383 	if (target) {
8384 		index = __get_raid_index(extended_to_chunk(target));
8385 	} else {
8386 		/*
8387 		 * this is just a balance, so if we were marked as full
8388 		 * we know there is no space for a new chunk
8389 		 */
8390 		if (full)
8391 			goto out;
8392 
8393 		index = get_block_group_index(block_group);
8394 	}
8395 
8396 	if (index == BTRFS_RAID_RAID10) {
8397 		dev_min = 4;
8398 		/* Divide by 2 */
8399 		min_free >>= 1;
8400 	} else if (index == BTRFS_RAID_RAID1) {
8401 		dev_min = 2;
8402 	} else if (index == BTRFS_RAID_DUP) {
8403 		/* Multiply by 2 */
8404 		min_free <<= 1;
8405 	} else if (index == BTRFS_RAID_RAID0) {
8406 		dev_min = fs_devices->rw_devices;
8407 		do_div(min_free, dev_min);
8408 	}
8409 
8410 	/* We need to do this so that we can look at pending chunks */
8411 	trans = btrfs_join_transaction(root);
8412 	if (IS_ERR(trans)) {
8413 		ret = PTR_ERR(trans);
8414 		goto out;
8415 	}
8416 
8417 	mutex_lock(&root->fs_info->chunk_mutex);
8418 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8419 		u64 dev_offset;
8420 
8421 		/*
8422 		 * check to make sure we can actually find a chunk with enough
8423 		 * space to fit our block group in.
8424 		 */
8425 		if (device->total_bytes > device->bytes_used + min_free &&
8426 		    !device->is_tgtdev_for_dev_replace) {
8427 			ret = find_free_dev_extent(trans, device, min_free,
8428 						   &dev_offset, NULL);
8429 			if (!ret)
8430 				dev_nr++;
8431 
8432 			if (dev_nr >= dev_min)
8433 				break;
8434 
8435 			ret = -1;
8436 		}
8437 	}
8438 	mutex_unlock(&root->fs_info->chunk_mutex);
8439 	btrfs_end_transaction(trans, root);
8440 out:
8441 	btrfs_put_block_group(block_group);
8442 	return ret;
8443 }
8444 
8445 static int find_first_block_group(struct btrfs_root *root,
8446 		struct btrfs_path *path, struct btrfs_key *key)
8447 {
8448 	int ret = 0;
8449 	struct btrfs_key found_key;
8450 	struct extent_buffer *leaf;
8451 	int slot;
8452 
8453 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8454 	if (ret < 0)
8455 		goto out;
8456 
8457 	while (1) {
8458 		slot = path->slots[0];
8459 		leaf = path->nodes[0];
8460 		if (slot >= btrfs_header_nritems(leaf)) {
8461 			ret = btrfs_next_leaf(root, path);
8462 			if (ret == 0)
8463 				continue;
8464 			if (ret < 0)
8465 				goto out;
8466 			break;
8467 		}
8468 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8469 
8470 		if (found_key.objectid >= key->objectid &&
8471 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8472 			ret = 0;
8473 			goto out;
8474 		}
8475 		path->slots[0]++;
8476 	}
8477 out:
8478 	return ret;
8479 }
8480 
8481 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8482 {
8483 	struct btrfs_block_group_cache *block_group;
8484 	u64 last = 0;
8485 
8486 	while (1) {
8487 		struct inode *inode;
8488 
8489 		block_group = btrfs_lookup_first_block_group(info, last);
8490 		while (block_group) {
8491 			spin_lock(&block_group->lock);
8492 			if (block_group->iref)
8493 				break;
8494 			spin_unlock(&block_group->lock);
8495 			block_group = next_block_group(info->tree_root,
8496 						       block_group);
8497 		}
8498 		if (!block_group) {
8499 			if (last == 0)
8500 				break;
8501 			last = 0;
8502 			continue;
8503 		}
8504 
8505 		inode = block_group->inode;
8506 		block_group->iref = 0;
8507 		block_group->inode = NULL;
8508 		spin_unlock(&block_group->lock);
8509 		iput(inode);
8510 		last = block_group->key.objectid + block_group->key.offset;
8511 		btrfs_put_block_group(block_group);
8512 	}
8513 }
8514 
8515 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8516 {
8517 	struct btrfs_block_group_cache *block_group;
8518 	struct btrfs_space_info *space_info;
8519 	struct btrfs_caching_control *caching_ctl;
8520 	struct rb_node *n;
8521 
8522 	down_write(&info->commit_root_sem);
8523 	while (!list_empty(&info->caching_block_groups)) {
8524 		caching_ctl = list_entry(info->caching_block_groups.next,
8525 					 struct btrfs_caching_control, list);
8526 		list_del(&caching_ctl->list);
8527 		put_caching_control(caching_ctl);
8528 	}
8529 	up_write(&info->commit_root_sem);
8530 
8531 	spin_lock(&info->block_group_cache_lock);
8532 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8533 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8534 				       cache_node);
8535 		rb_erase(&block_group->cache_node,
8536 			 &info->block_group_cache_tree);
8537 		spin_unlock(&info->block_group_cache_lock);
8538 
8539 		down_write(&block_group->space_info->groups_sem);
8540 		list_del(&block_group->list);
8541 		up_write(&block_group->space_info->groups_sem);
8542 
8543 		if (block_group->cached == BTRFS_CACHE_STARTED)
8544 			wait_block_group_cache_done(block_group);
8545 
8546 		/*
8547 		 * We haven't cached this block group, which means we could
8548 		 * possibly have excluded extents on this block group.
8549 		 */
8550 		if (block_group->cached == BTRFS_CACHE_NO ||
8551 		    block_group->cached == BTRFS_CACHE_ERROR)
8552 			free_excluded_extents(info->extent_root, block_group);
8553 
8554 		btrfs_remove_free_space_cache(block_group);
8555 		btrfs_put_block_group(block_group);
8556 
8557 		spin_lock(&info->block_group_cache_lock);
8558 	}
8559 	spin_unlock(&info->block_group_cache_lock);
8560 
8561 	/* now that all the block groups are freed, go through and
8562 	 * free all the space_info structs.  This is only called during
8563 	 * the final stages of unmount, and so we know nobody is
8564 	 * using them.  We call synchronize_rcu() once before we start,
8565 	 * just to be on the safe side.
8566 	 */
8567 	synchronize_rcu();
8568 
8569 	release_global_block_rsv(info);
8570 
8571 	while (!list_empty(&info->space_info)) {
8572 		int i;
8573 
8574 		space_info = list_entry(info->space_info.next,
8575 					struct btrfs_space_info,
8576 					list);
8577 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8578 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8579 			    space_info->bytes_reserved > 0 ||
8580 			    space_info->bytes_may_use > 0)) {
8581 				dump_space_info(space_info, 0, 0);
8582 			}
8583 		}
8584 		list_del(&space_info->list);
8585 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8586 			struct kobject *kobj;
8587 			kobj = space_info->block_group_kobjs[i];
8588 			space_info->block_group_kobjs[i] = NULL;
8589 			if (kobj) {
8590 				kobject_del(kobj);
8591 				kobject_put(kobj);
8592 			}
8593 		}
8594 		kobject_del(&space_info->kobj);
8595 		kobject_put(&space_info->kobj);
8596 	}
8597 	return 0;
8598 }
8599 
8600 static void __link_block_group(struct btrfs_space_info *space_info,
8601 			       struct btrfs_block_group_cache *cache)
8602 {
8603 	int index = get_block_group_index(cache);
8604 	bool first = false;
8605 
8606 	down_write(&space_info->groups_sem);
8607 	if (list_empty(&space_info->block_groups[index]))
8608 		first = true;
8609 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8610 	up_write(&space_info->groups_sem);
8611 
8612 	if (first) {
8613 		struct raid_kobject *rkobj;
8614 		int ret;
8615 
8616 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8617 		if (!rkobj)
8618 			goto out_err;
8619 		rkobj->raid_type = index;
8620 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8621 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8622 				  "%s", get_raid_name(index));
8623 		if (ret) {
8624 			kobject_put(&rkobj->kobj);
8625 			goto out_err;
8626 		}
8627 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8628 	}
8629 
8630 	return;
8631 out_err:
8632 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8633 }
8634 
8635 static struct btrfs_block_group_cache *
8636 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8637 {
8638 	struct btrfs_block_group_cache *cache;
8639 
8640 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8641 	if (!cache)
8642 		return NULL;
8643 
8644 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8645 					GFP_NOFS);
8646 	if (!cache->free_space_ctl) {
8647 		kfree(cache);
8648 		return NULL;
8649 	}
8650 
8651 	cache->key.objectid = start;
8652 	cache->key.offset = size;
8653 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8654 
8655 	cache->sectorsize = root->sectorsize;
8656 	cache->fs_info = root->fs_info;
8657 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8658 					       &root->fs_info->mapping_tree,
8659 					       start);
8660 	atomic_set(&cache->count, 1);
8661 	spin_lock_init(&cache->lock);
8662 	INIT_LIST_HEAD(&cache->list);
8663 	INIT_LIST_HEAD(&cache->cluster_list);
8664 	INIT_LIST_HEAD(&cache->new_bg_list);
8665 	btrfs_init_free_space_ctl(cache);
8666 
8667 	return cache;
8668 }
8669 
8670 int btrfs_read_block_groups(struct btrfs_root *root)
8671 {
8672 	struct btrfs_path *path;
8673 	int ret;
8674 	struct btrfs_block_group_cache *cache;
8675 	struct btrfs_fs_info *info = root->fs_info;
8676 	struct btrfs_space_info *space_info;
8677 	struct btrfs_key key;
8678 	struct btrfs_key found_key;
8679 	struct extent_buffer *leaf;
8680 	int need_clear = 0;
8681 	u64 cache_gen;
8682 
8683 	root = info->extent_root;
8684 	key.objectid = 0;
8685 	key.offset = 0;
8686 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8687 	path = btrfs_alloc_path();
8688 	if (!path)
8689 		return -ENOMEM;
8690 	path->reada = 1;
8691 
8692 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8693 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8694 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8695 		need_clear = 1;
8696 	if (btrfs_test_opt(root, CLEAR_CACHE))
8697 		need_clear = 1;
8698 
8699 	while (1) {
8700 		ret = find_first_block_group(root, path, &key);
8701 		if (ret > 0)
8702 			break;
8703 		if (ret != 0)
8704 			goto error;
8705 
8706 		leaf = path->nodes[0];
8707 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8708 
8709 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8710 						       found_key.offset);
8711 		if (!cache) {
8712 			ret = -ENOMEM;
8713 			goto error;
8714 		}
8715 
8716 		if (need_clear) {
8717 			/*
8718 			 * When we mount with old space cache, we need to
8719 			 * set BTRFS_DC_CLEAR and set dirty flag.
8720 			 *
8721 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8722 			 *    truncate the old free space cache inode and
8723 			 *    setup a new one.
8724 			 * b) Setting 'dirty flag' makes sure that we flush
8725 			 *    the new space cache info onto disk.
8726 			 */
8727 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8728 			if (btrfs_test_opt(root, SPACE_CACHE))
8729 				cache->dirty = 1;
8730 		}
8731 
8732 		read_extent_buffer(leaf, &cache->item,
8733 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8734 				   sizeof(cache->item));
8735 		cache->flags = btrfs_block_group_flags(&cache->item);
8736 
8737 		key.objectid = found_key.objectid + found_key.offset;
8738 		btrfs_release_path(path);
8739 
8740 		/*
8741 		 * We need to exclude the super stripes now so that the space
8742 		 * info has super bytes accounted for, otherwise we'll think
8743 		 * we have more space than we actually do.
8744 		 */
8745 		ret = exclude_super_stripes(root, cache);
8746 		if (ret) {
8747 			/*
8748 			 * We may have excluded something, so call this just in
8749 			 * case.
8750 			 */
8751 			free_excluded_extents(root, cache);
8752 			btrfs_put_block_group(cache);
8753 			goto error;
8754 		}
8755 
8756 		/*
8757 		 * check for two cases, either we are full, and therefore
8758 		 * don't need to bother with the caching work since we won't
8759 		 * find any space, or we are empty, and we can just add all
8760 		 * the space in and be done with it.  This saves us _alot_ of
8761 		 * time, particularly in the full case.
8762 		 */
8763 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8764 			cache->last_byte_to_unpin = (u64)-1;
8765 			cache->cached = BTRFS_CACHE_FINISHED;
8766 			free_excluded_extents(root, cache);
8767 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8768 			cache->last_byte_to_unpin = (u64)-1;
8769 			cache->cached = BTRFS_CACHE_FINISHED;
8770 			add_new_free_space(cache, root->fs_info,
8771 					   found_key.objectid,
8772 					   found_key.objectid +
8773 					   found_key.offset);
8774 			free_excluded_extents(root, cache);
8775 		}
8776 
8777 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8778 		if (ret) {
8779 			btrfs_remove_free_space_cache(cache);
8780 			btrfs_put_block_group(cache);
8781 			goto error;
8782 		}
8783 
8784 		ret = update_space_info(info, cache->flags, found_key.offset,
8785 					btrfs_block_group_used(&cache->item),
8786 					&space_info);
8787 		if (ret) {
8788 			btrfs_remove_free_space_cache(cache);
8789 			spin_lock(&info->block_group_cache_lock);
8790 			rb_erase(&cache->cache_node,
8791 				 &info->block_group_cache_tree);
8792 			spin_unlock(&info->block_group_cache_lock);
8793 			btrfs_put_block_group(cache);
8794 			goto error;
8795 		}
8796 
8797 		cache->space_info = space_info;
8798 		spin_lock(&cache->space_info->lock);
8799 		cache->space_info->bytes_readonly += cache->bytes_super;
8800 		spin_unlock(&cache->space_info->lock);
8801 
8802 		__link_block_group(space_info, cache);
8803 
8804 		set_avail_alloc_bits(root->fs_info, cache->flags);
8805 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8806 			set_block_group_ro(cache, 1);
8807 	}
8808 
8809 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8810 		if (!(get_alloc_profile(root, space_info->flags) &
8811 		      (BTRFS_BLOCK_GROUP_RAID10 |
8812 		       BTRFS_BLOCK_GROUP_RAID1 |
8813 		       BTRFS_BLOCK_GROUP_RAID5 |
8814 		       BTRFS_BLOCK_GROUP_RAID6 |
8815 		       BTRFS_BLOCK_GROUP_DUP)))
8816 			continue;
8817 		/*
8818 		 * avoid allocating from un-mirrored block group if there are
8819 		 * mirrored block groups.
8820 		 */
8821 		list_for_each_entry(cache,
8822 				&space_info->block_groups[BTRFS_RAID_RAID0],
8823 				list)
8824 			set_block_group_ro(cache, 1);
8825 		list_for_each_entry(cache,
8826 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8827 				list)
8828 			set_block_group_ro(cache, 1);
8829 	}
8830 
8831 	init_global_block_rsv(info);
8832 	ret = 0;
8833 error:
8834 	btrfs_free_path(path);
8835 	return ret;
8836 }
8837 
8838 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8839 				       struct btrfs_root *root)
8840 {
8841 	struct btrfs_block_group_cache *block_group, *tmp;
8842 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8843 	struct btrfs_block_group_item item;
8844 	struct btrfs_key key;
8845 	int ret = 0;
8846 
8847 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8848 				 new_bg_list) {
8849 		list_del_init(&block_group->new_bg_list);
8850 
8851 		if (ret)
8852 			continue;
8853 
8854 		spin_lock(&block_group->lock);
8855 		memcpy(&item, &block_group->item, sizeof(item));
8856 		memcpy(&key, &block_group->key, sizeof(key));
8857 		spin_unlock(&block_group->lock);
8858 
8859 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8860 					sizeof(item));
8861 		if (ret)
8862 			btrfs_abort_transaction(trans, extent_root, ret);
8863 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8864 					       key.objectid, key.offset);
8865 		if (ret)
8866 			btrfs_abort_transaction(trans, extent_root, ret);
8867 	}
8868 }
8869 
8870 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8871 			   struct btrfs_root *root, u64 bytes_used,
8872 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8873 			   u64 size)
8874 {
8875 	int ret;
8876 	struct btrfs_root *extent_root;
8877 	struct btrfs_block_group_cache *cache;
8878 
8879 	extent_root = root->fs_info->extent_root;
8880 
8881 	btrfs_set_log_full_commit(root->fs_info, trans);
8882 
8883 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8884 	if (!cache)
8885 		return -ENOMEM;
8886 
8887 	btrfs_set_block_group_used(&cache->item, bytes_used);
8888 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8889 	btrfs_set_block_group_flags(&cache->item, type);
8890 
8891 	cache->flags = type;
8892 	cache->last_byte_to_unpin = (u64)-1;
8893 	cache->cached = BTRFS_CACHE_FINISHED;
8894 	ret = exclude_super_stripes(root, cache);
8895 	if (ret) {
8896 		/*
8897 		 * We may have excluded something, so call this just in
8898 		 * case.
8899 		 */
8900 		free_excluded_extents(root, cache);
8901 		btrfs_put_block_group(cache);
8902 		return ret;
8903 	}
8904 
8905 	add_new_free_space(cache, root->fs_info, chunk_offset,
8906 			   chunk_offset + size);
8907 
8908 	free_excluded_extents(root, cache);
8909 
8910 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8911 	if (ret) {
8912 		btrfs_remove_free_space_cache(cache);
8913 		btrfs_put_block_group(cache);
8914 		return ret;
8915 	}
8916 
8917 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8918 				&cache->space_info);
8919 	if (ret) {
8920 		btrfs_remove_free_space_cache(cache);
8921 		spin_lock(&root->fs_info->block_group_cache_lock);
8922 		rb_erase(&cache->cache_node,
8923 			 &root->fs_info->block_group_cache_tree);
8924 		spin_unlock(&root->fs_info->block_group_cache_lock);
8925 		btrfs_put_block_group(cache);
8926 		return ret;
8927 	}
8928 	update_global_block_rsv(root->fs_info);
8929 
8930 	spin_lock(&cache->space_info->lock);
8931 	cache->space_info->bytes_readonly += cache->bytes_super;
8932 	spin_unlock(&cache->space_info->lock);
8933 
8934 	__link_block_group(cache->space_info, cache);
8935 
8936 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8937 
8938 	set_avail_alloc_bits(extent_root->fs_info, type);
8939 
8940 	return 0;
8941 }
8942 
8943 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8944 {
8945 	u64 extra_flags = chunk_to_extended(flags) &
8946 				BTRFS_EXTENDED_PROFILE_MASK;
8947 
8948 	write_seqlock(&fs_info->profiles_lock);
8949 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8950 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8951 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8952 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8953 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8954 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8955 	write_sequnlock(&fs_info->profiles_lock);
8956 }
8957 
8958 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8959 			     struct btrfs_root *root, u64 group_start)
8960 {
8961 	struct btrfs_path *path;
8962 	struct btrfs_block_group_cache *block_group;
8963 	struct btrfs_free_cluster *cluster;
8964 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8965 	struct btrfs_key key;
8966 	struct inode *inode;
8967 	struct kobject *kobj = NULL;
8968 	int ret;
8969 	int index;
8970 	int factor;
8971 
8972 	root = root->fs_info->extent_root;
8973 
8974 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8975 	BUG_ON(!block_group);
8976 	BUG_ON(!block_group->ro);
8977 
8978 	/*
8979 	 * Free the reserved super bytes from this block group before
8980 	 * remove it.
8981 	 */
8982 	free_excluded_extents(root, block_group);
8983 
8984 	memcpy(&key, &block_group->key, sizeof(key));
8985 	index = get_block_group_index(block_group);
8986 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8987 				  BTRFS_BLOCK_GROUP_RAID1 |
8988 				  BTRFS_BLOCK_GROUP_RAID10))
8989 		factor = 2;
8990 	else
8991 		factor = 1;
8992 
8993 	/* make sure this block group isn't part of an allocation cluster */
8994 	cluster = &root->fs_info->data_alloc_cluster;
8995 	spin_lock(&cluster->refill_lock);
8996 	btrfs_return_cluster_to_free_space(block_group, cluster);
8997 	spin_unlock(&cluster->refill_lock);
8998 
8999 	/*
9000 	 * make sure this block group isn't part of a metadata
9001 	 * allocation cluster
9002 	 */
9003 	cluster = &root->fs_info->meta_alloc_cluster;
9004 	spin_lock(&cluster->refill_lock);
9005 	btrfs_return_cluster_to_free_space(block_group, cluster);
9006 	spin_unlock(&cluster->refill_lock);
9007 
9008 	path = btrfs_alloc_path();
9009 	if (!path) {
9010 		ret = -ENOMEM;
9011 		goto out;
9012 	}
9013 
9014 	inode = lookup_free_space_inode(tree_root, block_group, path);
9015 	if (!IS_ERR(inode)) {
9016 		ret = btrfs_orphan_add(trans, inode);
9017 		if (ret) {
9018 			btrfs_add_delayed_iput(inode);
9019 			goto out;
9020 		}
9021 		clear_nlink(inode);
9022 		/* One for the block groups ref */
9023 		spin_lock(&block_group->lock);
9024 		if (block_group->iref) {
9025 			block_group->iref = 0;
9026 			block_group->inode = NULL;
9027 			spin_unlock(&block_group->lock);
9028 			iput(inode);
9029 		} else {
9030 			spin_unlock(&block_group->lock);
9031 		}
9032 		/* One for our lookup ref */
9033 		btrfs_add_delayed_iput(inode);
9034 	}
9035 
9036 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9037 	key.offset = block_group->key.objectid;
9038 	key.type = 0;
9039 
9040 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9041 	if (ret < 0)
9042 		goto out;
9043 	if (ret > 0)
9044 		btrfs_release_path(path);
9045 	if (ret == 0) {
9046 		ret = btrfs_del_item(trans, tree_root, path);
9047 		if (ret)
9048 			goto out;
9049 		btrfs_release_path(path);
9050 	}
9051 
9052 	spin_lock(&root->fs_info->block_group_cache_lock);
9053 	rb_erase(&block_group->cache_node,
9054 		 &root->fs_info->block_group_cache_tree);
9055 
9056 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9057 		root->fs_info->first_logical_byte = (u64)-1;
9058 	spin_unlock(&root->fs_info->block_group_cache_lock);
9059 
9060 	down_write(&block_group->space_info->groups_sem);
9061 	/*
9062 	 * we must use list_del_init so people can check to see if they
9063 	 * are still on the list after taking the semaphore
9064 	 */
9065 	list_del_init(&block_group->list);
9066 	if (list_empty(&block_group->space_info->block_groups[index])) {
9067 		kobj = block_group->space_info->block_group_kobjs[index];
9068 		block_group->space_info->block_group_kobjs[index] = NULL;
9069 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9070 	}
9071 	up_write(&block_group->space_info->groups_sem);
9072 	if (kobj) {
9073 		kobject_del(kobj);
9074 		kobject_put(kobj);
9075 	}
9076 
9077 	if (block_group->cached == BTRFS_CACHE_STARTED)
9078 		wait_block_group_cache_done(block_group);
9079 
9080 	btrfs_remove_free_space_cache(block_group);
9081 
9082 	spin_lock(&block_group->space_info->lock);
9083 	block_group->space_info->total_bytes -= block_group->key.offset;
9084 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9085 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9086 	spin_unlock(&block_group->space_info->lock);
9087 
9088 	memcpy(&key, &block_group->key, sizeof(key));
9089 
9090 	btrfs_clear_space_info_full(root->fs_info);
9091 
9092 	btrfs_put_block_group(block_group);
9093 	btrfs_put_block_group(block_group);
9094 
9095 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9096 	if (ret > 0)
9097 		ret = -EIO;
9098 	if (ret < 0)
9099 		goto out;
9100 
9101 	ret = btrfs_del_item(trans, root, path);
9102 out:
9103 	btrfs_free_path(path);
9104 	return ret;
9105 }
9106 
9107 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9108 {
9109 	struct btrfs_space_info *space_info;
9110 	struct btrfs_super_block *disk_super;
9111 	u64 features;
9112 	u64 flags;
9113 	int mixed = 0;
9114 	int ret;
9115 
9116 	disk_super = fs_info->super_copy;
9117 	if (!btrfs_super_root(disk_super))
9118 		return 1;
9119 
9120 	features = btrfs_super_incompat_flags(disk_super);
9121 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9122 		mixed = 1;
9123 
9124 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9125 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9126 	if (ret)
9127 		goto out;
9128 
9129 	if (mixed) {
9130 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9131 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9132 	} else {
9133 		flags = BTRFS_BLOCK_GROUP_METADATA;
9134 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9135 		if (ret)
9136 			goto out;
9137 
9138 		flags = BTRFS_BLOCK_GROUP_DATA;
9139 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9140 	}
9141 out:
9142 	return ret;
9143 }
9144 
9145 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9146 {
9147 	return unpin_extent_range(root, start, end);
9148 }
9149 
9150 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9151 			       u64 num_bytes, u64 *actual_bytes)
9152 {
9153 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9154 }
9155 
9156 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9157 {
9158 	struct btrfs_fs_info *fs_info = root->fs_info;
9159 	struct btrfs_block_group_cache *cache = NULL;
9160 	u64 group_trimmed;
9161 	u64 start;
9162 	u64 end;
9163 	u64 trimmed = 0;
9164 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9165 	int ret = 0;
9166 
9167 	/*
9168 	 * try to trim all FS space, our block group may start from non-zero.
9169 	 */
9170 	if (range->len == total_bytes)
9171 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9172 	else
9173 		cache = btrfs_lookup_block_group(fs_info, range->start);
9174 
9175 	while (cache) {
9176 		if (cache->key.objectid >= (range->start + range->len)) {
9177 			btrfs_put_block_group(cache);
9178 			break;
9179 		}
9180 
9181 		start = max(range->start, cache->key.objectid);
9182 		end = min(range->start + range->len,
9183 				cache->key.objectid + cache->key.offset);
9184 
9185 		if (end - start >= range->minlen) {
9186 			if (!block_group_cache_done(cache)) {
9187 				ret = cache_block_group(cache, 0);
9188 				if (ret) {
9189 					btrfs_put_block_group(cache);
9190 					break;
9191 				}
9192 				ret = wait_block_group_cache_done(cache);
9193 				if (ret) {
9194 					btrfs_put_block_group(cache);
9195 					break;
9196 				}
9197 			}
9198 			ret = btrfs_trim_block_group(cache,
9199 						     &group_trimmed,
9200 						     start,
9201 						     end,
9202 						     range->minlen);
9203 
9204 			trimmed += group_trimmed;
9205 			if (ret) {
9206 				btrfs_put_block_group(cache);
9207 				break;
9208 			}
9209 		}
9210 
9211 		cache = next_block_group(fs_info->tree_root, cache);
9212 	}
9213 
9214 	range->len = trimmed;
9215 	return ret;
9216 }
9217 
9218 /*
9219  * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9220  * they are used to prevent the some tasks writing data into the page cache
9221  * by nocow before the subvolume is snapshoted, but flush the data into
9222  * the disk after the snapshot creation.
9223  */
9224 void btrfs_end_nocow_write(struct btrfs_root *root)
9225 {
9226 	percpu_counter_dec(&root->subv_writers->counter);
9227 	/*
9228 	 * Make sure counter is updated before we wake up
9229 	 * waiters.
9230 	 */
9231 	smp_mb();
9232 	if (waitqueue_active(&root->subv_writers->wait))
9233 		wake_up(&root->subv_writers->wait);
9234 }
9235 
9236 int btrfs_start_nocow_write(struct btrfs_root *root)
9237 {
9238 	if (unlikely(atomic_read(&root->will_be_snapshoted)))
9239 		return 0;
9240 
9241 	percpu_counter_inc(&root->subv_writers->counter);
9242 	/*
9243 	 * Make sure counter is updated before we check for snapshot creation.
9244 	 */
9245 	smp_mb();
9246 	if (unlikely(atomic_read(&root->will_be_snapshoted))) {
9247 		btrfs_end_nocow_write(root);
9248 		return 0;
9249 	}
9250 	return 1;
9251 }
9252