1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "math.h" 38 #include "sysfs.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->commit_root_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched() || 446 rwsem_is_contended(&fs_info->commit_root_sem)) { 447 caching_ctl->progress = last; 448 btrfs_release_path(path); 449 up_read(&fs_info->commit_root_sem); 450 mutex_unlock(&caching_ctl->mutex); 451 cond_resched(); 452 goto again; 453 } 454 455 ret = btrfs_next_leaf(extent_root, path); 456 if (ret < 0) 457 goto err; 458 if (ret) 459 break; 460 leaf = path->nodes[0]; 461 nritems = btrfs_header_nritems(leaf); 462 continue; 463 } 464 465 if (key.objectid < last) { 466 key.objectid = last; 467 key.offset = 0; 468 key.type = BTRFS_EXTENT_ITEM_KEY; 469 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 goto next; 473 } 474 475 if (key.objectid < block_group->key.objectid) { 476 path->slots[0]++; 477 continue; 478 } 479 480 if (key.objectid >= block_group->key.objectid + 481 block_group->key.offset) 482 break; 483 484 if (key.type == BTRFS_EXTENT_ITEM_KEY || 485 key.type == BTRFS_METADATA_ITEM_KEY) { 486 total_found += add_new_free_space(block_group, 487 fs_info, last, 488 key.objectid); 489 if (key.type == BTRFS_METADATA_ITEM_KEY) 490 last = key.objectid + 491 fs_info->tree_root->leafsize; 492 else 493 last = key.objectid + key.offset; 494 495 if (total_found > (1024 * 1024 * 2)) { 496 total_found = 0; 497 wake_up(&caching_ctl->wait); 498 } 499 } 500 path->slots[0]++; 501 } 502 ret = 0; 503 504 total_found += add_new_free_space(block_group, fs_info, last, 505 block_group->key.objectid + 506 block_group->key.offset); 507 caching_ctl->progress = (u64)-1; 508 509 spin_lock(&block_group->lock); 510 block_group->caching_ctl = NULL; 511 block_group->cached = BTRFS_CACHE_FINISHED; 512 spin_unlock(&block_group->lock); 513 514 err: 515 btrfs_free_path(path); 516 up_read(&fs_info->commit_root_sem); 517 518 free_excluded_extents(extent_root, block_group); 519 520 mutex_unlock(&caching_ctl->mutex); 521 out: 522 if (ret) { 523 spin_lock(&block_group->lock); 524 block_group->caching_ctl = NULL; 525 block_group->cached = BTRFS_CACHE_ERROR; 526 spin_unlock(&block_group->lock); 527 } 528 wake_up(&caching_ctl->wait); 529 530 put_caching_control(caching_ctl); 531 btrfs_put_block_group(block_group); 532 } 533 534 static int cache_block_group(struct btrfs_block_group_cache *cache, 535 int load_cache_only) 536 { 537 DEFINE_WAIT(wait); 538 struct btrfs_fs_info *fs_info = cache->fs_info; 539 struct btrfs_caching_control *caching_ctl; 540 int ret = 0; 541 542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 543 if (!caching_ctl) 544 return -ENOMEM; 545 546 INIT_LIST_HEAD(&caching_ctl->list); 547 mutex_init(&caching_ctl->mutex); 548 init_waitqueue_head(&caching_ctl->wait); 549 caching_ctl->block_group = cache; 550 caching_ctl->progress = cache->key.objectid; 551 atomic_set(&caching_ctl->count, 1); 552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 553 554 spin_lock(&cache->lock); 555 /* 556 * This should be a rare occasion, but this could happen I think in the 557 * case where one thread starts to load the space cache info, and then 558 * some other thread starts a transaction commit which tries to do an 559 * allocation while the other thread is still loading the space cache 560 * info. The previous loop should have kept us from choosing this block 561 * group, but if we've moved to the state where we will wait on caching 562 * block groups we need to first check if we're doing a fast load here, 563 * so we can wait for it to finish, otherwise we could end up allocating 564 * from a block group who's cache gets evicted for one reason or 565 * another. 566 */ 567 while (cache->cached == BTRFS_CACHE_FAST) { 568 struct btrfs_caching_control *ctl; 569 570 ctl = cache->caching_ctl; 571 atomic_inc(&ctl->count); 572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 573 spin_unlock(&cache->lock); 574 575 schedule(); 576 577 finish_wait(&ctl->wait, &wait); 578 put_caching_control(ctl); 579 spin_lock(&cache->lock); 580 } 581 582 if (cache->cached != BTRFS_CACHE_NO) { 583 spin_unlock(&cache->lock); 584 kfree(caching_ctl); 585 return 0; 586 } 587 WARN_ON(cache->caching_ctl); 588 cache->caching_ctl = caching_ctl; 589 cache->cached = BTRFS_CACHE_FAST; 590 spin_unlock(&cache->lock); 591 592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 } 607 } 608 spin_unlock(&cache->lock); 609 wake_up(&caching_ctl->wait); 610 if (ret == 1) { 611 put_caching_control(caching_ctl); 612 free_excluded_extents(fs_info->extent_root, cache); 613 return 0; 614 } 615 } else { 616 /* 617 * We are not going to do the fast caching, set cached to the 618 * appropriate value and wakeup any waiters. 619 */ 620 spin_lock(&cache->lock); 621 if (load_cache_only) { 622 cache->caching_ctl = NULL; 623 cache->cached = BTRFS_CACHE_NO; 624 } else { 625 cache->cached = BTRFS_CACHE_STARTED; 626 } 627 spin_unlock(&cache->lock); 628 wake_up(&caching_ctl->wait); 629 } 630 631 if (load_cache_only) { 632 put_caching_control(caching_ctl); 633 return 0; 634 } 635 636 down_write(&fs_info->commit_root_sem); 637 atomic_inc(&caching_ctl->count); 638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 639 up_write(&fs_info->commit_root_sem); 640 641 btrfs_get_block_group(cache); 642 643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 644 645 return ret; 646 } 647 648 /* 649 * return the block group that starts at or after bytenr 650 */ 651 static struct btrfs_block_group_cache * 652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 653 { 654 struct btrfs_block_group_cache *cache; 655 656 cache = block_group_cache_tree_search(info, bytenr, 0); 657 658 return cache; 659 } 660 661 /* 662 * return the block group that contains the given bytenr 663 */ 664 struct btrfs_block_group_cache *btrfs_lookup_block_group( 665 struct btrfs_fs_info *info, 666 u64 bytenr) 667 { 668 struct btrfs_block_group_cache *cache; 669 670 cache = block_group_cache_tree_search(info, bytenr, 1); 671 672 return cache; 673 } 674 675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 676 u64 flags) 677 { 678 struct list_head *head = &info->space_info; 679 struct btrfs_space_info *found; 680 681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 682 683 rcu_read_lock(); 684 list_for_each_entry_rcu(found, head, list) { 685 if (found->flags & flags) { 686 rcu_read_unlock(); 687 return found; 688 } 689 } 690 rcu_read_unlock(); 691 return NULL; 692 } 693 694 /* 695 * after adding space to the filesystem, we need to clear the full flags 696 * on all the space infos. 697 */ 698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 699 { 700 struct list_head *head = &info->space_info; 701 struct btrfs_space_info *found; 702 703 rcu_read_lock(); 704 list_for_each_entry_rcu(found, head, list) 705 found->full = 0; 706 rcu_read_unlock(); 707 } 708 709 /* simple helper to search for an existing extent at a given offset */ 710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 711 { 712 int ret; 713 struct btrfs_key key; 714 struct btrfs_path *path; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 key.objectid = start; 721 key.offset = len; 722 key.type = BTRFS_EXTENT_ITEM_KEY; 723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 724 0, 0); 725 if (ret > 0) { 726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 727 if (key.objectid == start && 728 key.type == BTRFS_METADATA_ITEM_KEY) 729 ret = 0; 730 } 731 btrfs_free_path(path); 732 return ret; 733 } 734 735 /* 736 * helper function to lookup reference count and flags of a tree block. 737 * 738 * the head node for delayed ref is used to store the sum of all the 739 * reference count modifications queued up in the rbtree. the head 740 * node may also store the extent flags to set. This way you can check 741 * to see what the reference count and extent flags would be if all of 742 * the delayed refs are not processed. 743 */ 744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 745 struct btrfs_root *root, u64 bytenr, 746 u64 offset, int metadata, u64 *refs, u64 *flags) 747 { 748 struct btrfs_delayed_ref_head *head; 749 struct btrfs_delayed_ref_root *delayed_refs; 750 struct btrfs_path *path; 751 struct btrfs_extent_item *ei; 752 struct extent_buffer *leaf; 753 struct btrfs_key key; 754 u32 item_size; 755 u64 num_refs; 756 u64 extent_flags; 757 int ret; 758 759 /* 760 * If we don't have skinny metadata, don't bother doing anything 761 * different 762 */ 763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 764 offset = root->leafsize; 765 metadata = 0; 766 } 767 768 path = btrfs_alloc_path(); 769 if (!path) 770 return -ENOMEM; 771 772 if (!trans) { 773 path->skip_locking = 1; 774 path->search_commit_root = 1; 775 } 776 777 search_again: 778 key.objectid = bytenr; 779 key.offset = offset; 780 if (metadata) 781 key.type = BTRFS_METADATA_ITEM_KEY; 782 else 783 key.type = BTRFS_EXTENT_ITEM_KEY; 784 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 if (path->slots[0]) { 793 path->slots[0]--; 794 btrfs_item_key_to_cpu(path->nodes[0], &key, 795 path->slots[0]); 796 if (key.objectid == bytenr && 797 key.type == BTRFS_EXTENT_ITEM_KEY && 798 key.offset == root->leafsize) 799 ret = 0; 800 } 801 if (ret) { 802 key.objectid = bytenr; 803 key.type = BTRFS_EXTENT_ITEM_KEY; 804 key.offset = root->leafsize; 805 btrfs_release_path(path); 806 goto again; 807 } 808 } 809 810 if (ret == 0) { 811 leaf = path->nodes[0]; 812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 813 if (item_size >= sizeof(*ei)) { 814 ei = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_extent_item); 816 num_refs = btrfs_extent_refs(leaf, ei); 817 extent_flags = btrfs_extent_flags(leaf, ei); 818 } else { 819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 820 struct btrfs_extent_item_v0 *ei0; 821 BUG_ON(item_size != sizeof(*ei0)); 822 ei0 = btrfs_item_ptr(leaf, path->slots[0], 823 struct btrfs_extent_item_v0); 824 num_refs = btrfs_extent_refs_v0(leaf, ei0); 825 /* FIXME: this isn't correct for data */ 826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 827 #else 828 BUG(); 829 #endif 830 } 831 BUG_ON(num_refs == 0); 832 } else { 833 num_refs = 0; 834 extent_flags = 0; 835 ret = 0; 836 } 837 838 if (!trans) 839 goto out; 840 841 delayed_refs = &trans->transaction->delayed_refs; 842 spin_lock(&delayed_refs->lock); 843 head = btrfs_find_delayed_ref_head(trans, bytenr); 844 if (head) { 845 if (!mutex_trylock(&head->mutex)) { 846 atomic_inc(&head->node.refs); 847 spin_unlock(&delayed_refs->lock); 848 849 btrfs_release_path(path); 850 851 /* 852 * Mutex was contended, block until it's released and try 853 * again 854 */ 855 mutex_lock(&head->mutex); 856 mutex_unlock(&head->mutex); 857 btrfs_put_delayed_ref(&head->node); 858 goto search_again; 859 } 860 spin_lock(&head->lock); 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 spin_unlock(&head->lock); 868 mutex_unlock(&head->mutex); 869 } 870 spin_unlock(&delayed_refs->lock); 871 out: 872 WARN_ON(num_refs == 0); 873 if (refs) 874 *refs = num_refs; 875 if (flags) 876 *flags = extent_flags; 877 out_free: 878 btrfs_free_path(path); 879 return ret; 880 } 881 882 /* 883 * Back reference rules. Back refs have three main goals: 884 * 885 * 1) differentiate between all holders of references to an extent so that 886 * when a reference is dropped we can make sure it was a valid reference 887 * before freeing the extent. 888 * 889 * 2) Provide enough information to quickly find the holders of an extent 890 * if we notice a given block is corrupted or bad. 891 * 892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 893 * maintenance. This is actually the same as #2, but with a slightly 894 * different use case. 895 * 896 * There are two kinds of back refs. The implicit back refs is optimized 897 * for pointers in non-shared tree blocks. For a given pointer in a block, 898 * back refs of this kind provide information about the block's owner tree 899 * and the pointer's key. These information allow us to find the block by 900 * b-tree searching. The full back refs is for pointers in tree blocks not 901 * referenced by their owner trees. The location of tree block is recorded 902 * in the back refs. Actually the full back refs is generic, and can be 903 * used in all cases the implicit back refs is used. The major shortcoming 904 * of the full back refs is its overhead. Every time a tree block gets 905 * COWed, we have to update back refs entry for all pointers in it. 906 * 907 * For a newly allocated tree block, we use implicit back refs for 908 * pointers in it. This means most tree related operations only involve 909 * implicit back refs. For a tree block created in old transaction, the 910 * only way to drop a reference to it is COW it. So we can detect the 911 * event that tree block loses its owner tree's reference and do the 912 * back refs conversion. 913 * 914 * When a tree block is COW'd through a tree, there are four cases: 915 * 916 * The reference count of the block is one and the tree is the block's 917 * owner tree. Nothing to do in this case. 918 * 919 * The reference count of the block is one and the tree is not the 920 * block's owner tree. In this case, full back refs is used for pointers 921 * in the block. Remove these full back refs, add implicit back refs for 922 * every pointers in the new block. 923 * 924 * The reference count of the block is greater than one and the tree is 925 * the block's owner tree. In this case, implicit back refs is used for 926 * pointers in the block. Add full back refs for every pointers in the 927 * block, increase lower level extents' reference counts. The original 928 * implicit back refs are entailed to the new block. 929 * 930 * The reference count of the block is greater than one and the tree is 931 * not the block's owner tree. Add implicit back refs for every pointer in 932 * the new block, increase lower level extents' reference count. 933 * 934 * Back Reference Key composing: 935 * 936 * The key objectid corresponds to the first byte in the extent, 937 * The key type is used to differentiate between types of back refs. 938 * There are different meanings of the key offset for different types 939 * of back refs. 940 * 941 * File extents can be referenced by: 942 * 943 * - multiple snapshots, subvolumes, or different generations in one subvol 944 * - different files inside a single subvolume 945 * - different offsets inside a file (bookend extents in file.c) 946 * 947 * The extent ref structure for the implicit back refs has fields for: 948 * 949 * - Objectid of the subvolume root 950 * - objectid of the file holding the reference 951 * - original offset in the file 952 * - how many bookend extents 953 * 954 * The key offset for the implicit back refs is hash of the first 955 * three fields. 956 * 957 * The extent ref structure for the full back refs has field for: 958 * 959 * - number of pointers in the tree leaf 960 * 961 * The key offset for the implicit back refs is the first byte of 962 * the tree leaf 963 * 964 * When a file extent is allocated, The implicit back refs is used. 965 * the fields are filled in: 966 * 967 * (root_key.objectid, inode objectid, offset in file, 1) 968 * 969 * When a file extent is removed file truncation, we find the 970 * corresponding implicit back refs and check the following fields: 971 * 972 * (btrfs_header_owner(leaf), inode objectid, offset in file) 973 * 974 * Btree extents can be referenced by: 975 * 976 * - Different subvolumes 977 * 978 * Both the implicit back refs and the full back refs for tree blocks 979 * only consist of key. The key offset for the implicit back refs is 980 * objectid of block's owner tree. The key offset for the full back refs 981 * is the first byte of parent block. 982 * 983 * When implicit back refs is used, information about the lowest key and 984 * level of the tree block are required. These information are stored in 985 * tree block info structure. 986 */ 987 988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 990 struct btrfs_root *root, 991 struct btrfs_path *path, 992 u64 owner, u32 extra_size) 993 { 994 struct btrfs_extent_item *item; 995 struct btrfs_extent_item_v0 *ei0; 996 struct btrfs_extent_ref_v0 *ref0; 997 struct btrfs_tree_block_info *bi; 998 struct extent_buffer *leaf; 999 struct btrfs_key key; 1000 struct btrfs_key found_key; 1001 u32 new_size = sizeof(*item); 1002 u64 refs; 1003 int ret; 1004 1005 leaf = path->nodes[0]; 1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1007 1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1009 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1010 struct btrfs_extent_item_v0); 1011 refs = btrfs_extent_refs_v0(leaf, ei0); 1012 1013 if (owner == (u64)-1) { 1014 while (1) { 1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1016 ret = btrfs_next_leaf(root, path); 1017 if (ret < 0) 1018 return ret; 1019 BUG_ON(ret > 0); /* Corruption */ 1020 leaf = path->nodes[0]; 1021 } 1022 btrfs_item_key_to_cpu(leaf, &found_key, 1023 path->slots[0]); 1024 BUG_ON(key.objectid != found_key.objectid); 1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1026 path->slots[0]++; 1027 continue; 1028 } 1029 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_extent_ref_v0); 1031 owner = btrfs_ref_objectid_v0(leaf, ref0); 1032 break; 1033 } 1034 } 1035 btrfs_release_path(path); 1036 1037 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1038 new_size += sizeof(*bi); 1039 1040 new_size -= sizeof(*ei0); 1041 ret = btrfs_search_slot(trans, root, &key, path, 1042 new_size + extra_size, 1); 1043 if (ret < 0) 1044 return ret; 1045 BUG_ON(ret); /* Corruption */ 1046 1047 btrfs_extend_item(root, path, new_size); 1048 1049 leaf = path->nodes[0]; 1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1051 btrfs_set_extent_refs(leaf, item, refs); 1052 /* FIXME: get real generation */ 1053 btrfs_set_extent_generation(leaf, item, 0); 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 btrfs_set_extent_flags(leaf, item, 1056 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1057 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1058 bi = (struct btrfs_tree_block_info *)(item + 1); 1059 /* FIXME: get first key of the block */ 1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1061 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1062 } else { 1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 return 0; 1067 } 1068 #endif 1069 1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1071 { 1072 u32 high_crc = ~(u32)0; 1073 u32 low_crc = ~(u32)0; 1074 __le64 lenum; 1075 1076 lenum = cpu_to_le64(root_objectid); 1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1078 lenum = cpu_to_le64(owner); 1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1080 lenum = cpu_to_le64(offset); 1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1082 1083 return ((u64)high_crc << 31) ^ (u64)low_crc; 1084 } 1085 1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1087 struct btrfs_extent_data_ref *ref) 1088 { 1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1090 btrfs_extent_data_ref_objectid(leaf, ref), 1091 btrfs_extent_data_ref_offset(leaf, ref)); 1092 } 1093 1094 static int match_extent_data_ref(struct extent_buffer *leaf, 1095 struct btrfs_extent_data_ref *ref, 1096 u64 root_objectid, u64 owner, u64 offset) 1097 { 1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1100 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1101 return 0; 1102 return 1; 1103 } 1104 1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root, 1107 struct btrfs_path *path, 1108 u64 bytenr, u64 parent, 1109 u64 root_objectid, 1110 u64 owner, u64 offset) 1111 { 1112 struct btrfs_key key; 1113 struct btrfs_extent_data_ref *ref; 1114 struct extent_buffer *leaf; 1115 u32 nritems; 1116 int ret; 1117 int recow; 1118 int err = -ENOENT; 1119 1120 key.objectid = bytenr; 1121 if (parent) { 1122 key.type = BTRFS_SHARED_DATA_REF_KEY; 1123 key.offset = parent; 1124 } else { 1125 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1126 key.offset = hash_extent_data_ref(root_objectid, 1127 owner, offset); 1128 } 1129 again: 1130 recow = 0; 1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1132 if (ret < 0) { 1133 err = ret; 1134 goto fail; 1135 } 1136 1137 if (parent) { 1138 if (!ret) 1139 return 0; 1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1141 key.type = BTRFS_EXTENT_REF_V0_KEY; 1142 btrfs_release_path(path); 1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1144 if (ret < 0) { 1145 err = ret; 1146 goto fail; 1147 } 1148 if (!ret) 1149 return 0; 1150 #endif 1151 goto fail; 1152 } 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 while (1) { 1157 if (path->slots[0] >= nritems) { 1158 ret = btrfs_next_leaf(root, path); 1159 if (ret < 0) 1160 err = ret; 1161 if (ret) 1162 goto fail; 1163 1164 leaf = path->nodes[0]; 1165 nritems = btrfs_header_nritems(leaf); 1166 recow = 1; 1167 } 1168 1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1170 if (key.objectid != bytenr || 1171 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1172 goto fail; 1173 1174 ref = btrfs_item_ptr(leaf, path->slots[0], 1175 struct btrfs_extent_data_ref); 1176 1177 if (match_extent_data_ref(leaf, ref, root_objectid, 1178 owner, offset)) { 1179 if (recow) { 1180 btrfs_release_path(path); 1181 goto again; 1182 } 1183 err = 0; 1184 break; 1185 } 1186 path->slots[0]++; 1187 } 1188 fail: 1189 return err; 1190 } 1191 1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1193 struct btrfs_root *root, 1194 struct btrfs_path *path, 1195 u64 bytenr, u64 parent, 1196 u64 root_objectid, u64 owner, 1197 u64 offset, int refs_to_add) 1198 { 1199 struct btrfs_key key; 1200 struct extent_buffer *leaf; 1201 u32 size; 1202 u32 num_refs; 1203 int ret; 1204 1205 key.objectid = bytenr; 1206 if (parent) { 1207 key.type = BTRFS_SHARED_DATA_REF_KEY; 1208 key.offset = parent; 1209 size = sizeof(struct btrfs_shared_data_ref); 1210 } else { 1211 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1212 key.offset = hash_extent_data_ref(root_objectid, 1213 owner, offset); 1214 size = sizeof(struct btrfs_extent_data_ref); 1215 } 1216 1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1218 if (ret && ret != -EEXIST) 1219 goto fail; 1220 1221 leaf = path->nodes[0]; 1222 if (parent) { 1223 struct btrfs_shared_data_ref *ref; 1224 ref = btrfs_item_ptr(leaf, path->slots[0], 1225 struct btrfs_shared_data_ref); 1226 if (ret == 0) { 1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1228 } else { 1229 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1230 num_refs += refs_to_add; 1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1232 } 1233 } else { 1234 struct btrfs_extent_data_ref *ref; 1235 while (ret == -EEXIST) { 1236 ref = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_extent_data_ref); 1238 if (match_extent_data_ref(leaf, ref, root_objectid, 1239 owner, offset)) 1240 break; 1241 btrfs_release_path(path); 1242 key.offset++; 1243 ret = btrfs_insert_empty_item(trans, root, path, &key, 1244 size); 1245 if (ret && ret != -EEXIST) 1246 goto fail; 1247 1248 leaf = path->nodes[0]; 1249 } 1250 ref = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_extent_data_ref); 1252 if (ret == 0) { 1253 btrfs_set_extent_data_ref_root(leaf, ref, 1254 root_objectid); 1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1258 } else { 1259 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1260 num_refs += refs_to_add; 1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1262 } 1263 } 1264 btrfs_mark_buffer_dirty(leaf); 1265 ret = 0; 1266 fail: 1267 btrfs_release_path(path); 1268 return ret; 1269 } 1270 1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1272 struct btrfs_root *root, 1273 struct btrfs_path *path, 1274 int refs_to_drop) 1275 { 1276 struct btrfs_key key; 1277 struct btrfs_extent_data_ref *ref1 = NULL; 1278 struct btrfs_shared_data_ref *ref2 = NULL; 1279 struct extent_buffer *leaf; 1280 u32 num_refs = 0; 1281 int ret = 0; 1282 1283 leaf = path->nodes[0]; 1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1285 1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1287 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_data_ref); 1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1291 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1292 struct btrfs_shared_data_ref); 1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1296 struct btrfs_extent_ref_v0 *ref0; 1297 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1298 struct btrfs_extent_ref_v0); 1299 num_refs = btrfs_ref_count_v0(leaf, ref0); 1300 #endif 1301 } else { 1302 BUG(); 1303 } 1304 1305 BUG_ON(num_refs < refs_to_drop); 1306 num_refs -= refs_to_drop; 1307 1308 if (num_refs == 0) { 1309 ret = btrfs_del_item(trans, root, path); 1310 } else { 1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1316 else { 1317 struct btrfs_extent_ref_v0 *ref0; 1318 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_extent_ref_v0); 1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1321 } 1322 #endif 1323 btrfs_mark_buffer_dirty(leaf); 1324 } 1325 return ret; 1326 } 1327 1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1329 struct btrfs_path *path, 1330 struct btrfs_extent_inline_ref *iref) 1331 { 1332 struct btrfs_key key; 1333 struct extent_buffer *leaf; 1334 struct btrfs_extent_data_ref *ref1; 1335 struct btrfs_shared_data_ref *ref2; 1336 u32 num_refs = 0; 1337 1338 leaf = path->nodes[0]; 1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1340 if (iref) { 1341 if (btrfs_extent_inline_ref_type(leaf, iref) == 1342 BTRFS_EXTENT_DATA_REF_KEY) { 1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else { 1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 } 1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1350 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_data_ref); 1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1354 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_shared_data_ref); 1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1359 struct btrfs_extent_ref_v0 *ref0; 1360 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_extent_ref_v0); 1362 num_refs = btrfs_ref_count_v0(leaf, ref0); 1363 #endif 1364 } else { 1365 WARN_ON(1); 1366 } 1367 return num_refs; 1368 } 1369 1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1389 if (ret > 0) 1390 ret = -ENOENT; 1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1392 if (ret == -ENOENT && parent) { 1393 btrfs_release_path(path); 1394 key.type = BTRFS_EXTENT_REF_V0_KEY; 1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1396 if (ret > 0) 1397 ret = -ENOENT; 1398 } 1399 #endif 1400 return ret; 1401 } 1402 1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1404 struct btrfs_root *root, 1405 struct btrfs_path *path, 1406 u64 bytenr, u64 parent, 1407 u64 root_objectid) 1408 { 1409 struct btrfs_key key; 1410 int ret; 1411 1412 key.objectid = bytenr; 1413 if (parent) { 1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1415 key.offset = parent; 1416 } else { 1417 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1418 key.offset = root_objectid; 1419 } 1420 1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1422 btrfs_release_path(path); 1423 return ret; 1424 } 1425 1426 static inline int extent_ref_type(u64 parent, u64 owner) 1427 { 1428 int type; 1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1430 if (parent > 0) 1431 type = BTRFS_SHARED_BLOCK_REF_KEY; 1432 else 1433 type = BTRFS_TREE_BLOCK_REF_KEY; 1434 } else { 1435 if (parent > 0) 1436 type = BTRFS_SHARED_DATA_REF_KEY; 1437 else 1438 type = BTRFS_EXTENT_DATA_REF_KEY; 1439 } 1440 return type; 1441 } 1442 1443 static int find_next_key(struct btrfs_path *path, int level, 1444 struct btrfs_key *key) 1445 1446 { 1447 for (; level < BTRFS_MAX_LEVEL; level++) { 1448 if (!path->nodes[level]) 1449 break; 1450 if (path->slots[level] + 1 >= 1451 btrfs_header_nritems(path->nodes[level])) 1452 continue; 1453 if (level == 0) 1454 btrfs_item_key_to_cpu(path->nodes[level], key, 1455 path->slots[level] + 1); 1456 else 1457 btrfs_node_key_to_cpu(path->nodes[level], key, 1458 path->slots[level] + 1); 1459 return 0; 1460 } 1461 return 1; 1462 } 1463 1464 /* 1465 * look for inline back ref. if back ref is found, *ref_ret is set 1466 * to the address of inline back ref, and 0 is returned. 1467 * 1468 * if back ref isn't found, *ref_ret is set to the address where it 1469 * should be inserted, and -ENOENT is returned. 1470 * 1471 * if insert is true and there are too many inline back refs, the path 1472 * points to the extent item, and -EAGAIN is returned. 1473 * 1474 * NOTE: inline back refs are ordered in the same way that back ref 1475 * items in the tree are ordered. 1476 */ 1477 static noinline_for_stack 1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root, 1480 struct btrfs_path *path, 1481 struct btrfs_extent_inline_ref **ref_ret, 1482 u64 bytenr, u64 num_bytes, 1483 u64 parent, u64 root_objectid, 1484 u64 owner, u64 offset, int insert) 1485 { 1486 struct btrfs_key key; 1487 struct extent_buffer *leaf; 1488 struct btrfs_extent_item *ei; 1489 struct btrfs_extent_inline_ref *iref; 1490 u64 flags; 1491 u64 item_size; 1492 unsigned long ptr; 1493 unsigned long end; 1494 int extra_size; 1495 int type; 1496 int want; 1497 int ret; 1498 int err = 0; 1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1500 SKINNY_METADATA); 1501 1502 key.objectid = bytenr; 1503 key.type = BTRFS_EXTENT_ITEM_KEY; 1504 key.offset = num_bytes; 1505 1506 want = extent_ref_type(parent, owner); 1507 if (insert) { 1508 extra_size = btrfs_extent_inline_ref_size(want); 1509 path->keep_locks = 1; 1510 } else 1511 extra_size = -1; 1512 1513 /* 1514 * Owner is our parent level, so we can just add one to get the level 1515 * for the block we are interested in. 1516 */ 1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1518 key.type = BTRFS_METADATA_ITEM_KEY; 1519 key.offset = owner; 1520 } 1521 1522 again: 1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1524 if (ret < 0) { 1525 err = ret; 1526 goto out; 1527 } 1528 1529 /* 1530 * We may be a newly converted file system which still has the old fat 1531 * extent entries for metadata, so try and see if we have one of those. 1532 */ 1533 if (ret > 0 && skinny_metadata) { 1534 skinny_metadata = false; 1535 if (path->slots[0]) { 1536 path->slots[0]--; 1537 btrfs_item_key_to_cpu(path->nodes[0], &key, 1538 path->slots[0]); 1539 if (key.objectid == bytenr && 1540 key.type == BTRFS_EXTENT_ITEM_KEY && 1541 key.offset == num_bytes) 1542 ret = 0; 1543 } 1544 if (ret) { 1545 key.type = BTRFS_EXTENT_ITEM_KEY; 1546 key.offset = num_bytes; 1547 btrfs_release_path(path); 1548 goto again; 1549 } 1550 } 1551 1552 if (ret && !insert) { 1553 err = -ENOENT; 1554 goto out; 1555 } else if (WARN_ON(ret)) { 1556 err = -EIO; 1557 goto out; 1558 } 1559 1560 leaf = path->nodes[0]; 1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1563 if (item_size < sizeof(*ei)) { 1564 if (!insert) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 ret = convert_extent_item_v0(trans, root, path, owner, 1569 extra_size); 1570 if (ret < 0) { 1571 err = ret; 1572 goto out; 1573 } 1574 leaf = path->nodes[0]; 1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1576 } 1577 #endif 1578 BUG_ON(item_size < sizeof(*ei)); 1579 1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1581 flags = btrfs_extent_flags(leaf, ei); 1582 1583 ptr = (unsigned long)(ei + 1); 1584 end = (unsigned long)ei + item_size; 1585 1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1587 ptr += sizeof(struct btrfs_tree_block_info); 1588 BUG_ON(ptr > end); 1589 } 1590 1591 err = -ENOENT; 1592 while (1) { 1593 if (ptr >= end) { 1594 WARN_ON(ptr > end); 1595 break; 1596 } 1597 iref = (struct btrfs_extent_inline_ref *)ptr; 1598 type = btrfs_extent_inline_ref_type(leaf, iref); 1599 if (want < type) 1600 break; 1601 if (want > type) { 1602 ptr += btrfs_extent_inline_ref_size(type); 1603 continue; 1604 } 1605 1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1607 struct btrfs_extent_data_ref *dref; 1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1609 if (match_extent_data_ref(leaf, dref, root_objectid, 1610 owner, offset)) { 1611 err = 0; 1612 break; 1613 } 1614 if (hash_extent_data_ref_item(leaf, dref) < 1615 hash_extent_data_ref(root_objectid, owner, offset)) 1616 break; 1617 } else { 1618 u64 ref_offset; 1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1620 if (parent > 0) { 1621 if (parent == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < parent) 1626 break; 1627 } else { 1628 if (root_objectid == ref_offset) { 1629 err = 0; 1630 break; 1631 } 1632 if (ref_offset < root_objectid) 1633 break; 1634 } 1635 } 1636 ptr += btrfs_extent_inline_ref_size(type); 1637 } 1638 if (err == -ENOENT && insert) { 1639 if (item_size + extra_size >= 1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1641 err = -EAGAIN; 1642 goto out; 1643 } 1644 /* 1645 * To add new inline back ref, we have to make sure 1646 * there is no corresponding back ref item. 1647 * For simplicity, we just do not add new inline back 1648 * ref if there is any kind of item for this block 1649 */ 1650 if (find_next_key(path, 0, &key) == 0 && 1651 key.objectid == bytenr && 1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1653 err = -EAGAIN; 1654 goto out; 1655 } 1656 } 1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1658 out: 1659 if (insert) { 1660 path->keep_locks = 0; 1661 btrfs_unlock_up_safe(path, 1); 1662 } 1663 return err; 1664 } 1665 1666 /* 1667 * helper to add new inline back ref 1668 */ 1669 static noinline_for_stack 1670 void setup_inline_extent_backref(struct btrfs_root *root, 1671 struct btrfs_path *path, 1672 struct btrfs_extent_inline_ref *iref, 1673 u64 parent, u64 root_objectid, 1674 u64 owner, u64 offset, int refs_to_add, 1675 struct btrfs_delayed_extent_op *extent_op) 1676 { 1677 struct extent_buffer *leaf; 1678 struct btrfs_extent_item *ei; 1679 unsigned long ptr; 1680 unsigned long end; 1681 unsigned long item_offset; 1682 u64 refs; 1683 int size; 1684 int type; 1685 1686 leaf = path->nodes[0]; 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 item_offset = (unsigned long)iref - (unsigned long)ei; 1689 1690 type = extent_ref_type(parent, owner); 1691 size = btrfs_extent_inline_ref_size(type); 1692 1693 btrfs_extend_item(root, path, size); 1694 1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1696 refs = btrfs_extent_refs(leaf, ei); 1697 refs += refs_to_add; 1698 btrfs_set_extent_refs(leaf, ei, refs); 1699 if (extent_op) 1700 __run_delayed_extent_op(extent_op, leaf, ei); 1701 1702 ptr = (unsigned long)ei + item_offset; 1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1704 if (ptr < end - size) 1705 memmove_extent_buffer(leaf, ptr + size, ptr, 1706 end - size - ptr); 1707 1708 iref = (struct btrfs_extent_inline_ref *)ptr; 1709 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1711 struct btrfs_extent_data_ref *dref; 1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1718 struct btrfs_shared_data_ref *sref; 1719 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1724 } else { 1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1726 } 1727 btrfs_mark_buffer_dirty(leaf); 1728 } 1729 1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1731 struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref **ref_ret, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1740 bytenr, num_bytes, parent, 1741 root_objectid, owner, offset, 0); 1742 if (ret != -ENOENT) 1743 return ret; 1744 1745 btrfs_release_path(path); 1746 *ref_ret = NULL; 1747 1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1750 root_objectid); 1751 } else { 1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1753 root_objectid, owner, offset); 1754 } 1755 return ret; 1756 } 1757 1758 /* 1759 * helper to update/remove inline back ref 1760 */ 1761 static noinline_for_stack 1762 void update_inline_extent_backref(struct btrfs_root *root, 1763 struct btrfs_path *path, 1764 struct btrfs_extent_inline_ref *iref, 1765 int refs_to_mod, 1766 struct btrfs_delayed_extent_op *extent_op) 1767 { 1768 struct extent_buffer *leaf; 1769 struct btrfs_extent_item *ei; 1770 struct btrfs_extent_data_ref *dref = NULL; 1771 struct btrfs_shared_data_ref *sref = NULL; 1772 unsigned long ptr; 1773 unsigned long end; 1774 u32 item_size; 1775 int size; 1776 int type; 1777 u64 refs; 1778 1779 leaf = path->nodes[0]; 1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1781 refs = btrfs_extent_refs(leaf, ei); 1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1783 refs += refs_to_mod; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 type = btrfs_extent_inline_ref_type(leaf, iref); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 size = btrfs_extent_inline_ref_size(type); 1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1812 ptr = (unsigned long)iref; 1813 end = (unsigned long)ei + item_size; 1814 if (ptr + size < end) 1815 memmove_extent_buffer(leaf, ptr, ptr + size, 1816 end - ptr - size); 1817 item_size -= size; 1818 btrfs_truncate_item(root, path, item_size, 1); 1819 } 1820 btrfs_mark_buffer_dirty(leaf); 1821 } 1822 1823 static noinline_for_stack 1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1825 struct btrfs_root *root, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1836 bytenr, num_bytes, parent, 1837 root_objectid, owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(root, path, iref, 1841 refs_to_add, extent_op); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(root, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_root *root, 1853 struct btrfs_path *path, 1854 u64 bytenr, u64 parent, u64 root_objectid, 1855 u64 owner, u64 offset, int refs_to_add) 1856 { 1857 int ret; 1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1859 BUG_ON(refs_to_add != 1); 1860 ret = insert_tree_block_ref(trans, root, path, bytenr, 1861 parent, root_objectid); 1862 } else { 1863 ret = insert_extent_data_ref(trans, root, path, bytenr, 1864 parent, root_objectid, 1865 owner, offset, refs_to_add); 1866 } 1867 return ret; 1868 } 1869 1870 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1871 struct btrfs_root *root, 1872 struct btrfs_path *path, 1873 struct btrfs_extent_inline_ref *iref, 1874 int refs_to_drop, int is_data) 1875 { 1876 int ret = 0; 1877 1878 BUG_ON(!is_data && refs_to_drop != 1); 1879 if (iref) { 1880 update_inline_extent_backref(root, path, iref, 1881 -refs_to_drop, NULL); 1882 } else if (is_data) { 1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1884 } else { 1885 ret = btrfs_del_item(trans, root, path); 1886 } 1887 return ret; 1888 } 1889 1890 static int btrfs_issue_discard(struct block_device *bdev, 1891 u64 start, u64 len) 1892 { 1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1894 } 1895 1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1897 u64 num_bytes, u64 *actual_bytes) 1898 { 1899 int ret; 1900 u64 discarded_bytes = 0; 1901 struct btrfs_bio *bbio = NULL; 1902 1903 1904 /* Tell the block device(s) that the sectors can be discarded */ 1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1906 bytenr, &num_bytes, &bbio, 0); 1907 /* Error condition is -ENOMEM */ 1908 if (!ret) { 1909 struct btrfs_bio_stripe *stripe = bbio->stripes; 1910 int i; 1911 1912 1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1914 if (!stripe->dev->can_discard) 1915 continue; 1916 1917 ret = btrfs_issue_discard(stripe->dev->bdev, 1918 stripe->physical, 1919 stripe->length); 1920 if (!ret) 1921 discarded_bytes += stripe->length; 1922 else if (ret != -EOPNOTSUPP) 1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1924 1925 /* 1926 * Just in case we get back EOPNOTSUPP for some reason, 1927 * just ignore the return value so we don't screw up 1928 * people calling discard_extent. 1929 */ 1930 ret = 0; 1931 } 1932 kfree(bbio); 1933 } 1934 1935 if (actual_bytes) 1936 *actual_bytes = discarded_bytes; 1937 1938 1939 if (ret == -EOPNOTSUPP) 1940 ret = 0; 1941 return ret; 1942 } 1943 1944 /* Can return -ENOMEM */ 1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1946 struct btrfs_root *root, 1947 u64 bytenr, u64 num_bytes, u64 parent, 1948 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1949 { 1950 int ret; 1951 struct btrfs_fs_info *fs_info = root->fs_info; 1952 1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1954 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1955 1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1958 num_bytes, 1959 parent, root_objectid, (int)owner, 1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1961 } else { 1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1963 num_bytes, 1964 parent, root_objectid, owner, offset, 1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1966 } 1967 return ret; 1968 } 1969 1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1971 struct btrfs_root *root, 1972 u64 bytenr, u64 num_bytes, 1973 u64 parent, u64 root_objectid, 1974 u64 owner, u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 u64 refs; 1981 int ret; 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) 1985 return -ENOMEM; 1986 1987 path->reada = 1; 1988 path->leave_spinning = 1; 1989 /* this will setup the path even if it fails to insert the back ref */ 1990 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1991 path, bytenr, num_bytes, parent, 1992 root_objectid, owner, offset, 1993 refs_to_add, extent_op); 1994 if (ret != -EAGAIN) 1995 goto out; 1996 1997 leaf = path->nodes[0]; 1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1999 refs = btrfs_extent_refs(leaf, item); 2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2001 if (extent_op) 2002 __run_delayed_extent_op(extent_op, leaf, item); 2003 2004 btrfs_mark_buffer_dirty(leaf); 2005 btrfs_release_path(path); 2006 2007 path->reada = 1; 2008 path->leave_spinning = 1; 2009 2010 /* now insert the actual backref */ 2011 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2012 path, bytenr, parent, root_objectid, 2013 owner, offset, refs_to_add); 2014 if (ret) 2015 btrfs_abort_transaction(trans, root, ret); 2016 out: 2017 btrfs_free_path(path); 2018 return ret; 2019 } 2020 2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2022 struct btrfs_root *root, 2023 struct btrfs_delayed_ref_node *node, 2024 struct btrfs_delayed_extent_op *extent_op, 2025 int insert_reserved) 2026 { 2027 int ret = 0; 2028 struct btrfs_delayed_data_ref *ref; 2029 struct btrfs_key ins; 2030 u64 parent = 0; 2031 u64 ref_root = 0; 2032 u64 flags = 0; 2033 2034 ins.objectid = node->bytenr; 2035 ins.offset = node->num_bytes; 2036 ins.type = BTRFS_EXTENT_ITEM_KEY; 2037 2038 ref = btrfs_delayed_node_to_data_ref(node); 2039 trace_run_delayed_data_ref(node, ref, node->action); 2040 2041 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2042 parent = ref->parent; 2043 else 2044 ref_root = ref->root; 2045 2046 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2047 if (extent_op) 2048 flags |= extent_op->flags_to_set; 2049 ret = alloc_reserved_file_extent(trans, root, 2050 parent, ref_root, flags, 2051 ref->objectid, ref->offset, 2052 &ins, node->ref_mod); 2053 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2054 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2055 node->num_bytes, parent, 2056 ref_root, ref->objectid, 2057 ref->offset, node->ref_mod, 2058 extent_op); 2059 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2060 ret = __btrfs_free_extent(trans, root, node->bytenr, 2061 node->num_bytes, parent, 2062 ref_root, ref->objectid, 2063 ref->offset, node->ref_mod, 2064 extent_op); 2065 } else { 2066 BUG(); 2067 } 2068 return ret; 2069 } 2070 2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2072 struct extent_buffer *leaf, 2073 struct btrfs_extent_item *ei) 2074 { 2075 u64 flags = btrfs_extent_flags(leaf, ei); 2076 if (extent_op->update_flags) { 2077 flags |= extent_op->flags_to_set; 2078 btrfs_set_extent_flags(leaf, ei, flags); 2079 } 2080 2081 if (extent_op->update_key) { 2082 struct btrfs_tree_block_info *bi; 2083 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2084 bi = (struct btrfs_tree_block_info *)(ei + 1); 2085 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2086 } 2087 } 2088 2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2090 struct btrfs_root *root, 2091 struct btrfs_delayed_ref_node *node, 2092 struct btrfs_delayed_extent_op *extent_op) 2093 { 2094 struct btrfs_key key; 2095 struct btrfs_path *path; 2096 struct btrfs_extent_item *ei; 2097 struct extent_buffer *leaf; 2098 u32 item_size; 2099 int ret; 2100 int err = 0; 2101 int metadata = !extent_op->is_data; 2102 2103 if (trans->aborted) 2104 return 0; 2105 2106 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2107 metadata = 0; 2108 2109 path = btrfs_alloc_path(); 2110 if (!path) 2111 return -ENOMEM; 2112 2113 key.objectid = node->bytenr; 2114 2115 if (metadata) { 2116 key.type = BTRFS_METADATA_ITEM_KEY; 2117 key.offset = extent_op->level; 2118 } else { 2119 key.type = BTRFS_EXTENT_ITEM_KEY; 2120 key.offset = node->num_bytes; 2121 } 2122 2123 again: 2124 path->reada = 1; 2125 path->leave_spinning = 1; 2126 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2127 path, 0, 1); 2128 if (ret < 0) { 2129 err = ret; 2130 goto out; 2131 } 2132 if (ret > 0) { 2133 if (metadata) { 2134 if (path->slots[0] > 0) { 2135 path->slots[0]--; 2136 btrfs_item_key_to_cpu(path->nodes[0], &key, 2137 path->slots[0]); 2138 if (key.objectid == node->bytenr && 2139 key.type == BTRFS_EXTENT_ITEM_KEY && 2140 key.offset == node->num_bytes) 2141 ret = 0; 2142 } 2143 if (ret > 0) { 2144 btrfs_release_path(path); 2145 metadata = 0; 2146 2147 key.objectid = node->bytenr; 2148 key.offset = node->num_bytes; 2149 key.type = BTRFS_EXTENT_ITEM_KEY; 2150 goto again; 2151 } 2152 } else { 2153 err = -EIO; 2154 goto out; 2155 } 2156 } 2157 2158 leaf = path->nodes[0]; 2159 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2161 if (item_size < sizeof(*ei)) { 2162 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2163 path, (u64)-1, 0); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 leaf = path->nodes[0]; 2169 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2170 } 2171 #endif 2172 BUG_ON(item_size < sizeof(*ei)); 2173 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2174 __run_delayed_extent_op(extent_op, leaf, ei); 2175 2176 btrfs_mark_buffer_dirty(leaf); 2177 out: 2178 btrfs_free_path(path); 2179 return err; 2180 } 2181 2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2183 struct btrfs_root *root, 2184 struct btrfs_delayed_ref_node *node, 2185 struct btrfs_delayed_extent_op *extent_op, 2186 int insert_reserved) 2187 { 2188 int ret = 0; 2189 struct btrfs_delayed_tree_ref *ref; 2190 struct btrfs_key ins; 2191 u64 parent = 0; 2192 u64 ref_root = 0; 2193 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2194 SKINNY_METADATA); 2195 2196 ref = btrfs_delayed_node_to_tree_ref(node); 2197 trace_run_delayed_tree_ref(node, ref, node->action); 2198 2199 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2200 parent = ref->parent; 2201 else 2202 ref_root = ref->root; 2203 2204 ins.objectid = node->bytenr; 2205 if (skinny_metadata) { 2206 ins.offset = ref->level; 2207 ins.type = BTRFS_METADATA_ITEM_KEY; 2208 } else { 2209 ins.offset = node->num_bytes; 2210 ins.type = BTRFS_EXTENT_ITEM_KEY; 2211 } 2212 2213 BUG_ON(node->ref_mod != 1); 2214 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2215 BUG_ON(!extent_op || !extent_op->update_flags); 2216 ret = alloc_reserved_tree_block(trans, root, 2217 parent, ref_root, 2218 extent_op->flags_to_set, 2219 &extent_op->key, 2220 ref->level, &ins); 2221 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2222 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2223 node->num_bytes, parent, ref_root, 2224 ref->level, 0, 1, extent_op); 2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2226 ret = __btrfs_free_extent(trans, root, node->bytenr, 2227 node->num_bytes, parent, ref_root, 2228 ref->level, 0, 1, extent_op); 2229 } else { 2230 BUG(); 2231 } 2232 return ret; 2233 } 2234 2235 /* helper function to actually process a single delayed ref entry */ 2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2237 struct btrfs_root *root, 2238 struct btrfs_delayed_ref_node *node, 2239 struct btrfs_delayed_extent_op *extent_op, 2240 int insert_reserved) 2241 { 2242 int ret = 0; 2243 2244 if (trans->aborted) { 2245 if (insert_reserved) 2246 btrfs_pin_extent(root, node->bytenr, 2247 node->num_bytes, 1); 2248 return 0; 2249 } 2250 2251 if (btrfs_delayed_ref_is_head(node)) { 2252 struct btrfs_delayed_ref_head *head; 2253 /* 2254 * we've hit the end of the chain and we were supposed 2255 * to insert this extent into the tree. But, it got 2256 * deleted before we ever needed to insert it, so all 2257 * we have to do is clean up the accounting 2258 */ 2259 BUG_ON(extent_op); 2260 head = btrfs_delayed_node_to_head(node); 2261 trace_run_delayed_ref_head(node, head, node->action); 2262 2263 if (insert_reserved) { 2264 btrfs_pin_extent(root, node->bytenr, 2265 node->num_bytes, 1); 2266 if (head->is_data) { 2267 ret = btrfs_del_csums(trans, root, 2268 node->bytenr, 2269 node->num_bytes); 2270 } 2271 } 2272 return ret; 2273 } 2274 2275 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2276 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2277 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2278 insert_reserved); 2279 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2280 node->type == BTRFS_SHARED_DATA_REF_KEY) 2281 ret = run_delayed_data_ref(trans, root, node, extent_op, 2282 insert_reserved); 2283 else 2284 BUG(); 2285 return ret; 2286 } 2287 2288 static noinline struct btrfs_delayed_ref_node * 2289 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2290 { 2291 struct rb_node *node; 2292 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2293 2294 /* 2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2296 * this prevents ref count from going down to zero when 2297 * there still are pending delayed ref. 2298 */ 2299 node = rb_first(&head->ref_root); 2300 while (node) { 2301 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2302 rb_node); 2303 if (ref->action == BTRFS_ADD_DELAYED_REF) 2304 return ref; 2305 else if (last == NULL) 2306 last = ref; 2307 node = rb_next(node); 2308 } 2309 return last; 2310 } 2311 2312 /* 2313 * Returns 0 on success or if called with an already aborted transaction. 2314 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2315 */ 2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2317 struct btrfs_root *root, 2318 unsigned long nr) 2319 { 2320 struct btrfs_delayed_ref_root *delayed_refs; 2321 struct btrfs_delayed_ref_node *ref; 2322 struct btrfs_delayed_ref_head *locked_ref = NULL; 2323 struct btrfs_delayed_extent_op *extent_op; 2324 struct btrfs_fs_info *fs_info = root->fs_info; 2325 ktime_t start = ktime_get(); 2326 int ret; 2327 unsigned long count = 0; 2328 unsigned long actual_count = 0; 2329 int must_insert_reserved = 0; 2330 2331 delayed_refs = &trans->transaction->delayed_refs; 2332 while (1) { 2333 if (!locked_ref) { 2334 if (count >= nr) 2335 break; 2336 2337 spin_lock(&delayed_refs->lock); 2338 locked_ref = btrfs_select_ref_head(trans); 2339 if (!locked_ref) { 2340 spin_unlock(&delayed_refs->lock); 2341 break; 2342 } 2343 2344 /* grab the lock that says we are going to process 2345 * all the refs for this head */ 2346 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2347 spin_unlock(&delayed_refs->lock); 2348 /* 2349 * we may have dropped the spin lock to get the head 2350 * mutex lock, and that might have given someone else 2351 * time to free the head. If that's true, it has been 2352 * removed from our list and we can move on. 2353 */ 2354 if (ret == -EAGAIN) { 2355 locked_ref = NULL; 2356 count++; 2357 continue; 2358 } 2359 } 2360 2361 /* 2362 * We need to try and merge add/drops of the same ref since we 2363 * can run into issues with relocate dropping the implicit ref 2364 * and then it being added back again before the drop can 2365 * finish. If we merged anything we need to re-loop so we can 2366 * get a good ref. 2367 */ 2368 spin_lock(&locked_ref->lock); 2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2370 locked_ref); 2371 2372 /* 2373 * locked_ref is the head node, so we have to go one 2374 * node back for any delayed ref updates 2375 */ 2376 ref = select_delayed_ref(locked_ref); 2377 2378 if (ref && ref->seq && 2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2380 spin_unlock(&locked_ref->lock); 2381 btrfs_delayed_ref_unlock(locked_ref); 2382 spin_lock(&delayed_refs->lock); 2383 locked_ref->processing = 0; 2384 delayed_refs->num_heads_ready++; 2385 spin_unlock(&delayed_refs->lock); 2386 locked_ref = NULL; 2387 cond_resched(); 2388 count++; 2389 continue; 2390 } 2391 2392 /* 2393 * record the must insert reserved flag before we 2394 * drop the spin lock. 2395 */ 2396 must_insert_reserved = locked_ref->must_insert_reserved; 2397 locked_ref->must_insert_reserved = 0; 2398 2399 extent_op = locked_ref->extent_op; 2400 locked_ref->extent_op = NULL; 2401 2402 if (!ref) { 2403 2404 2405 /* All delayed refs have been processed, Go ahead 2406 * and send the head node to run_one_delayed_ref, 2407 * so that any accounting fixes can happen 2408 */ 2409 ref = &locked_ref->node; 2410 2411 if (extent_op && must_insert_reserved) { 2412 btrfs_free_delayed_extent_op(extent_op); 2413 extent_op = NULL; 2414 } 2415 2416 if (extent_op) { 2417 spin_unlock(&locked_ref->lock); 2418 ret = run_delayed_extent_op(trans, root, 2419 ref, extent_op); 2420 btrfs_free_delayed_extent_op(extent_op); 2421 2422 if (ret) { 2423 /* 2424 * Need to reset must_insert_reserved if 2425 * there was an error so the abort stuff 2426 * can cleanup the reserved space 2427 * properly. 2428 */ 2429 if (must_insert_reserved) 2430 locked_ref->must_insert_reserved = 1; 2431 locked_ref->processing = 0; 2432 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2433 btrfs_delayed_ref_unlock(locked_ref); 2434 return ret; 2435 } 2436 continue; 2437 } 2438 2439 /* 2440 * Need to drop our head ref lock and re-aqcuire the 2441 * delayed ref lock and then re-check to make sure 2442 * nobody got added. 2443 */ 2444 spin_unlock(&locked_ref->lock); 2445 spin_lock(&delayed_refs->lock); 2446 spin_lock(&locked_ref->lock); 2447 if (rb_first(&locked_ref->ref_root) || 2448 locked_ref->extent_op) { 2449 spin_unlock(&locked_ref->lock); 2450 spin_unlock(&delayed_refs->lock); 2451 continue; 2452 } 2453 ref->in_tree = 0; 2454 delayed_refs->num_heads--; 2455 rb_erase(&locked_ref->href_node, 2456 &delayed_refs->href_root); 2457 spin_unlock(&delayed_refs->lock); 2458 } else { 2459 actual_count++; 2460 ref->in_tree = 0; 2461 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2462 } 2463 atomic_dec(&delayed_refs->num_entries); 2464 2465 if (!btrfs_delayed_ref_is_head(ref)) { 2466 /* 2467 * when we play the delayed ref, also correct the 2468 * ref_mod on head 2469 */ 2470 switch (ref->action) { 2471 case BTRFS_ADD_DELAYED_REF: 2472 case BTRFS_ADD_DELAYED_EXTENT: 2473 locked_ref->node.ref_mod -= ref->ref_mod; 2474 break; 2475 case BTRFS_DROP_DELAYED_REF: 2476 locked_ref->node.ref_mod += ref->ref_mod; 2477 break; 2478 default: 2479 WARN_ON(1); 2480 } 2481 } 2482 spin_unlock(&locked_ref->lock); 2483 2484 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2485 must_insert_reserved); 2486 2487 btrfs_free_delayed_extent_op(extent_op); 2488 if (ret) { 2489 locked_ref->processing = 0; 2490 btrfs_delayed_ref_unlock(locked_ref); 2491 btrfs_put_delayed_ref(ref); 2492 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2493 return ret; 2494 } 2495 2496 /* 2497 * If this node is a head, that means all the refs in this head 2498 * have been dealt with, and we will pick the next head to deal 2499 * with, so we must unlock the head and drop it from the cluster 2500 * list before we release it. 2501 */ 2502 if (btrfs_delayed_ref_is_head(ref)) { 2503 btrfs_delayed_ref_unlock(locked_ref); 2504 locked_ref = NULL; 2505 } 2506 btrfs_put_delayed_ref(ref); 2507 count++; 2508 cond_resched(); 2509 } 2510 2511 /* 2512 * We don't want to include ref heads since we can have empty ref heads 2513 * and those will drastically skew our runtime down since we just do 2514 * accounting, no actual extent tree updates. 2515 */ 2516 if (actual_count > 0) { 2517 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2518 u64 avg; 2519 2520 /* 2521 * We weigh the current average higher than our current runtime 2522 * to avoid large swings in the average. 2523 */ 2524 spin_lock(&delayed_refs->lock); 2525 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2526 avg = div64_u64(avg, 4); 2527 fs_info->avg_delayed_ref_runtime = avg; 2528 spin_unlock(&delayed_refs->lock); 2529 } 2530 return 0; 2531 } 2532 2533 #ifdef SCRAMBLE_DELAYED_REFS 2534 /* 2535 * Normally delayed refs get processed in ascending bytenr order. This 2536 * correlates in most cases to the order added. To expose dependencies on this 2537 * order, we start to process the tree in the middle instead of the beginning 2538 */ 2539 static u64 find_middle(struct rb_root *root) 2540 { 2541 struct rb_node *n = root->rb_node; 2542 struct btrfs_delayed_ref_node *entry; 2543 int alt = 1; 2544 u64 middle; 2545 u64 first = 0, last = 0; 2546 2547 n = rb_first(root); 2548 if (n) { 2549 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2550 first = entry->bytenr; 2551 } 2552 n = rb_last(root); 2553 if (n) { 2554 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2555 last = entry->bytenr; 2556 } 2557 n = root->rb_node; 2558 2559 while (n) { 2560 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2561 WARN_ON(!entry->in_tree); 2562 2563 middle = entry->bytenr; 2564 2565 if (alt) 2566 n = n->rb_left; 2567 else 2568 n = n->rb_right; 2569 2570 alt = 1 - alt; 2571 } 2572 return middle; 2573 } 2574 #endif 2575 2576 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2577 struct btrfs_fs_info *fs_info) 2578 { 2579 struct qgroup_update *qgroup_update; 2580 int ret = 0; 2581 2582 if (list_empty(&trans->qgroup_ref_list) != 2583 !trans->delayed_ref_elem.seq) { 2584 /* list without seq or seq without list */ 2585 btrfs_err(fs_info, 2586 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2587 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2588 (u32)(trans->delayed_ref_elem.seq >> 32), 2589 (u32)trans->delayed_ref_elem.seq); 2590 BUG(); 2591 } 2592 2593 if (!trans->delayed_ref_elem.seq) 2594 return 0; 2595 2596 while (!list_empty(&trans->qgroup_ref_list)) { 2597 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2598 struct qgroup_update, list); 2599 list_del(&qgroup_update->list); 2600 if (!ret) 2601 ret = btrfs_qgroup_account_ref( 2602 trans, fs_info, qgroup_update->node, 2603 qgroup_update->extent_op); 2604 kfree(qgroup_update); 2605 } 2606 2607 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2608 2609 return ret; 2610 } 2611 2612 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2613 { 2614 u64 num_bytes; 2615 2616 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2617 sizeof(struct btrfs_extent_inline_ref)); 2618 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2619 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2620 2621 /* 2622 * We don't ever fill up leaves all the way so multiply by 2 just to be 2623 * closer to what we're really going to want to ouse. 2624 */ 2625 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2626 } 2627 2628 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2629 struct btrfs_root *root) 2630 { 2631 struct btrfs_block_rsv *global_rsv; 2632 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2633 u64 num_bytes; 2634 int ret = 0; 2635 2636 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2637 num_heads = heads_to_leaves(root, num_heads); 2638 if (num_heads > 1) 2639 num_bytes += (num_heads - 1) * root->leafsize; 2640 num_bytes <<= 1; 2641 global_rsv = &root->fs_info->global_block_rsv; 2642 2643 /* 2644 * If we can't allocate any more chunks lets make sure we have _lots_ of 2645 * wiggle room since running delayed refs can create more delayed refs. 2646 */ 2647 if (global_rsv->space_info->full) 2648 num_bytes <<= 1; 2649 2650 spin_lock(&global_rsv->lock); 2651 if (global_rsv->reserved <= num_bytes) 2652 ret = 1; 2653 spin_unlock(&global_rsv->lock); 2654 return ret; 2655 } 2656 2657 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2658 struct btrfs_root *root) 2659 { 2660 struct btrfs_fs_info *fs_info = root->fs_info; 2661 u64 num_entries = 2662 atomic_read(&trans->transaction->delayed_refs.num_entries); 2663 u64 avg_runtime; 2664 2665 smp_mb(); 2666 avg_runtime = fs_info->avg_delayed_ref_runtime; 2667 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2668 return 1; 2669 2670 return btrfs_check_space_for_delayed_refs(trans, root); 2671 } 2672 2673 /* 2674 * this starts processing the delayed reference count updates and 2675 * extent insertions we have queued up so far. count can be 2676 * 0, which means to process everything in the tree at the start 2677 * of the run (but not newly added entries), or it can be some target 2678 * number you'd like to process. 2679 * 2680 * Returns 0 on success or if called with an aborted transaction 2681 * Returns <0 on error and aborts the transaction 2682 */ 2683 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2684 struct btrfs_root *root, unsigned long count) 2685 { 2686 struct rb_node *node; 2687 struct btrfs_delayed_ref_root *delayed_refs; 2688 struct btrfs_delayed_ref_head *head; 2689 int ret; 2690 int run_all = count == (unsigned long)-1; 2691 int run_most = 0; 2692 2693 /* We'll clean this up in btrfs_cleanup_transaction */ 2694 if (trans->aborted) 2695 return 0; 2696 2697 if (root == root->fs_info->extent_root) 2698 root = root->fs_info->tree_root; 2699 2700 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2701 2702 delayed_refs = &trans->transaction->delayed_refs; 2703 if (count == 0) { 2704 count = atomic_read(&delayed_refs->num_entries) * 2; 2705 run_most = 1; 2706 } 2707 2708 again: 2709 #ifdef SCRAMBLE_DELAYED_REFS 2710 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2711 #endif 2712 ret = __btrfs_run_delayed_refs(trans, root, count); 2713 if (ret < 0) { 2714 btrfs_abort_transaction(trans, root, ret); 2715 return ret; 2716 } 2717 2718 if (run_all) { 2719 if (!list_empty(&trans->new_bgs)) 2720 btrfs_create_pending_block_groups(trans, root); 2721 2722 spin_lock(&delayed_refs->lock); 2723 node = rb_first(&delayed_refs->href_root); 2724 if (!node) { 2725 spin_unlock(&delayed_refs->lock); 2726 goto out; 2727 } 2728 count = (unsigned long)-1; 2729 2730 while (node) { 2731 head = rb_entry(node, struct btrfs_delayed_ref_head, 2732 href_node); 2733 if (btrfs_delayed_ref_is_head(&head->node)) { 2734 struct btrfs_delayed_ref_node *ref; 2735 2736 ref = &head->node; 2737 atomic_inc(&ref->refs); 2738 2739 spin_unlock(&delayed_refs->lock); 2740 /* 2741 * Mutex was contended, block until it's 2742 * released and try again 2743 */ 2744 mutex_lock(&head->mutex); 2745 mutex_unlock(&head->mutex); 2746 2747 btrfs_put_delayed_ref(ref); 2748 cond_resched(); 2749 goto again; 2750 } else { 2751 WARN_ON(1); 2752 } 2753 node = rb_next(node); 2754 } 2755 spin_unlock(&delayed_refs->lock); 2756 cond_resched(); 2757 goto again; 2758 } 2759 out: 2760 assert_qgroups_uptodate(trans); 2761 return 0; 2762 } 2763 2764 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2765 struct btrfs_root *root, 2766 u64 bytenr, u64 num_bytes, u64 flags, 2767 int level, int is_data) 2768 { 2769 struct btrfs_delayed_extent_op *extent_op; 2770 int ret; 2771 2772 extent_op = btrfs_alloc_delayed_extent_op(); 2773 if (!extent_op) 2774 return -ENOMEM; 2775 2776 extent_op->flags_to_set = flags; 2777 extent_op->update_flags = 1; 2778 extent_op->update_key = 0; 2779 extent_op->is_data = is_data ? 1 : 0; 2780 extent_op->level = level; 2781 2782 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2783 num_bytes, extent_op); 2784 if (ret) 2785 btrfs_free_delayed_extent_op(extent_op); 2786 return ret; 2787 } 2788 2789 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2790 struct btrfs_root *root, 2791 struct btrfs_path *path, 2792 u64 objectid, u64 offset, u64 bytenr) 2793 { 2794 struct btrfs_delayed_ref_head *head; 2795 struct btrfs_delayed_ref_node *ref; 2796 struct btrfs_delayed_data_ref *data_ref; 2797 struct btrfs_delayed_ref_root *delayed_refs; 2798 struct rb_node *node; 2799 int ret = 0; 2800 2801 delayed_refs = &trans->transaction->delayed_refs; 2802 spin_lock(&delayed_refs->lock); 2803 head = btrfs_find_delayed_ref_head(trans, bytenr); 2804 if (!head) { 2805 spin_unlock(&delayed_refs->lock); 2806 return 0; 2807 } 2808 2809 if (!mutex_trylock(&head->mutex)) { 2810 atomic_inc(&head->node.refs); 2811 spin_unlock(&delayed_refs->lock); 2812 2813 btrfs_release_path(path); 2814 2815 /* 2816 * Mutex was contended, block until it's released and let 2817 * caller try again 2818 */ 2819 mutex_lock(&head->mutex); 2820 mutex_unlock(&head->mutex); 2821 btrfs_put_delayed_ref(&head->node); 2822 return -EAGAIN; 2823 } 2824 spin_unlock(&delayed_refs->lock); 2825 2826 spin_lock(&head->lock); 2827 node = rb_first(&head->ref_root); 2828 while (node) { 2829 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2830 node = rb_next(node); 2831 2832 /* If it's a shared ref we know a cross reference exists */ 2833 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2834 ret = 1; 2835 break; 2836 } 2837 2838 data_ref = btrfs_delayed_node_to_data_ref(ref); 2839 2840 /* 2841 * If our ref doesn't match the one we're currently looking at 2842 * then we have a cross reference. 2843 */ 2844 if (data_ref->root != root->root_key.objectid || 2845 data_ref->objectid != objectid || 2846 data_ref->offset != offset) { 2847 ret = 1; 2848 break; 2849 } 2850 } 2851 spin_unlock(&head->lock); 2852 mutex_unlock(&head->mutex); 2853 return ret; 2854 } 2855 2856 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, 2859 u64 objectid, u64 offset, u64 bytenr) 2860 { 2861 struct btrfs_root *extent_root = root->fs_info->extent_root; 2862 struct extent_buffer *leaf; 2863 struct btrfs_extent_data_ref *ref; 2864 struct btrfs_extent_inline_ref *iref; 2865 struct btrfs_extent_item *ei; 2866 struct btrfs_key key; 2867 u32 item_size; 2868 int ret; 2869 2870 key.objectid = bytenr; 2871 key.offset = (u64)-1; 2872 key.type = BTRFS_EXTENT_ITEM_KEY; 2873 2874 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2875 if (ret < 0) 2876 goto out; 2877 BUG_ON(ret == 0); /* Corruption */ 2878 2879 ret = -ENOENT; 2880 if (path->slots[0] == 0) 2881 goto out; 2882 2883 path->slots[0]--; 2884 leaf = path->nodes[0]; 2885 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2886 2887 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2888 goto out; 2889 2890 ret = 1; 2891 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2892 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2893 if (item_size < sizeof(*ei)) { 2894 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2895 goto out; 2896 } 2897 #endif 2898 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2899 2900 if (item_size != sizeof(*ei) + 2901 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2902 goto out; 2903 2904 if (btrfs_extent_generation(leaf, ei) <= 2905 btrfs_root_last_snapshot(&root->root_item)) 2906 goto out; 2907 2908 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2909 if (btrfs_extent_inline_ref_type(leaf, iref) != 2910 BTRFS_EXTENT_DATA_REF_KEY) 2911 goto out; 2912 2913 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2914 if (btrfs_extent_refs(leaf, ei) != 2915 btrfs_extent_data_ref_count(leaf, ref) || 2916 btrfs_extent_data_ref_root(leaf, ref) != 2917 root->root_key.objectid || 2918 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2919 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2920 goto out; 2921 2922 ret = 0; 2923 out: 2924 return ret; 2925 } 2926 2927 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2928 struct btrfs_root *root, 2929 u64 objectid, u64 offset, u64 bytenr) 2930 { 2931 struct btrfs_path *path; 2932 int ret; 2933 int ret2; 2934 2935 path = btrfs_alloc_path(); 2936 if (!path) 2937 return -ENOENT; 2938 2939 do { 2940 ret = check_committed_ref(trans, root, path, objectid, 2941 offset, bytenr); 2942 if (ret && ret != -ENOENT) 2943 goto out; 2944 2945 ret2 = check_delayed_ref(trans, root, path, objectid, 2946 offset, bytenr); 2947 } while (ret2 == -EAGAIN); 2948 2949 if (ret2 && ret2 != -ENOENT) { 2950 ret = ret2; 2951 goto out; 2952 } 2953 2954 if (ret != -ENOENT || ret2 != -ENOENT) 2955 ret = 0; 2956 out: 2957 btrfs_free_path(path); 2958 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2959 WARN_ON(ret > 0); 2960 return ret; 2961 } 2962 2963 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2964 struct btrfs_root *root, 2965 struct extent_buffer *buf, 2966 int full_backref, int inc, int for_cow) 2967 { 2968 u64 bytenr; 2969 u64 num_bytes; 2970 u64 parent; 2971 u64 ref_root; 2972 u32 nritems; 2973 struct btrfs_key key; 2974 struct btrfs_file_extent_item *fi; 2975 int i; 2976 int level; 2977 int ret = 0; 2978 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2979 u64, u64, u64, u64, u64, u64, int); 2980 2981 ref_root = btrfs_header_owner(buf); 2982 nritems = btrfs_header_nritems(buf); 2983 level = btrfs_header_level(buf); 2984 2985 if (!root->ref_cows && level == 0) 2986 return 0; 2987 2988 if (inc) 2989 process_func = btrfs_inc_extent_ref; 2990 else 2991 process_func = btrfs_free_extent; 2992 2993 if (full_backref) 2994 parent = buf->start; 2995 else 2996 parent = 0; 2997 2998 for (i = 0; i < nritems; i++) { 2999 if (level == 0) { 3000 btrfs_item_key_to_cpu(buf, &key, i); 3001 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3002 continue; 3003 fi = btrfs_item_ptr(buf, i, 3004 struct btrfs_file_extent_item); 3005 if (btrfs_file_extent_type(buf, fi) == 3006 BTRFS_FILE_EXTENT_INLINE) 3007 continue; 3008 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3009 if (bytenr == 0) 3010 continue; 3011 3012 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3013 key.offset -= btrfs_file_extent_offset(buf, fi); 3014 ret = process_func(trans, root, bytenr, num_bytes, 3015 parent, ref_root, key.objectid, 3016 key.offset, for_cow); 3017 if (ret) 3018 goto fail; 3019 } else { 3020 bytenr = btrfs_node_blockptr(buf, i); 3021 num_bytes = btrfs_level_size(root, level - 1); 3022 ret = process_func(trans, root, bytenr, num_bytes, 3023 parent, ref_root, level - 1, 0, 3024 for_cow); 3025 if (ret) 3026 goto fail; 3027 } 3028 } 3029 return 0; 3030 fail: 3031 return ret; 3032 } 3033 3034 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3035 struct extent_buffer *buf, int full_backref, int for_cow) 3036 { 3037 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3038 } 3039 3040 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3041 struct extent_buffer *buf, int full_backref, int for_cow) 3042 { 3043 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3044 } 3045 3046 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3047 struct btrfs_root *root, 3048 struct btrfs_path *path, 3049 struct btrfs_block_group_cache *cache) 3050 { 3051 int ret; 3052 struct btrfs_root *extent_root = root->fs_info->extent_root; 3053 unsigned long bi; 3054 struct extent_buffer *leaf; 3055 3056 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3057 if (ret < 0) 3058 goto fail; 3059 BUG_ON(ret); /* Corruption */ 3060 3061 leaf = path->nodes[0]; 3062 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3063 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3064 btrfs_mark_buffer_dirty(leaf); 3065 btrfs_release_path(path); 3066 fail: 3067 if (ret) { 3068 btrfs_abort_transaction(trans, root, ret); 3069 return ret; 3070 } 3071 return 0; 3072 3073 } 3074 3075 static struct btrfs_block_group_cache * 3076 next_block_group(struct btrfs_root *root, 3077 struct btrfs_block_group_cache *cache) 3078 { 3079 struct rb_node *node; 3080 spin_lock(&root->fs_info->block_group_cache_lock); 3081 node = rb_next(&cache->cache_node); 3082 btrfs_put_block_group(cache); 3083 if (node) { 3084 cache = rb_entry(node, struct btrfs_block_group_cache, 3085 cache_node); 3086 btrfs_get_block_group(cache); 3087 } else 3088 cache = NULL; 3089 spin_unlock(&root->fs_info->block_group_cache_lock); 3090 return cache; 3091 } 3092 3093 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3094 struct btrfs_trans_handle *trans, 3095 struct btrfs_path *path) 3096 { 3097 struct btrfs_root *root = block_group->fs_info->tree_root; 3098 struct inode *inode = NULL; 3099 u64 alloc_hint = 0; 3100 int dcs = BTRFS_DC_ERROR; 3101 int num_pages = 0; 3102 int retries = 0; 3103 int ret = 0; 3104 3105 /* 3106 * If this block group is smaller than 100 megs don't bother caching the 3107 * block group. 3108 */ 3109 if (block_group->key.offset < (100 * 1024 * 1024)) { 3110 spin_lock(&block_group->lock); 3111 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3112 spin_unlock(&block_group->lock); 3113 return 0; 3114 } 3115 3116 again: 3117 inode = lookup_free_space_inode(root, block_group, path); 3118 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3119 ret = PTR_ERR(inode); 3120 btrfs_release_path(path); 3121 goto out; 3122 } 3123 3124 if (IS_ERR(inode)) { 3125 BUG_ON(retries); 3126 retries++; 3127 3128 if (block_group->ro) 3129 goto out_free; 3130 3131 ret = create_free_space_inode(root, trans, block_group, path); 3132 if (ret) 3133 goto out_free; 3134 goto again; 3135 } 3136 3137 /* We've already setup this transaction, go ahead and exit */ 3138 if (block_group->cache_generation == trans->transid && 3139 i_size_read(inode)) { 3140 dcs = BTRFS_DC_SETUP; 3141 goto out_put; 3142 } 3143 3144 /* 3145 * We want to set the generation to 0, that way if anything goes wrong 3146 * from here on out we know not to trust this cache when we load up next 3147 * time. 3148 */ 3149 BTRFS_I(inode)->generation = 0; 3150 ret = btrfs_update_inode(trans, root, inode); 3151 WARN_ON(ret); 3152 3153 if (i_size_read(inode) > 0) { 3154 ret = btrfs_check_trunc_cache_free_space(root, 3155 &root->fs_info->global_block_rsv); 3156 if (ret) 3157 goto out_put; 3158 3159 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3160 if (ret) 3161 goto out_put; 3162 } 3163 3164 spin_lock(&block_group->lock); 3165 if (block_group->cached != BTRFS_CACHE_FINISHED || 3166 !btrfs_test_opt(root, SPACE_CACHE)) { 3167 /* 3168 * don't bother trying to write stuff out _if_ 3169 * a) we're not cached, 3170 * b) we're with nospace_cache mount option. 3171 */ 3172 dcs = BTRFS_DC_WRITTEN; 3173 spin_unlock(&block_group->lock); 3174 goto out_put; 3175 } 3176 spin_unlock(&block_group->lock); 3177 3178 /* 3179 * Try to preallocate enough space based on how big the block group is. 3180 * Keep in mind this has to include any pinned space which could end up 3181 * taking up quite a bit since it's not folded into the other space 3182 * cache. 3183 */ 3184 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3185 if (!num_pages) 3186 num_pages = 1; 3187 3188 num_pages *= 16; 3189 num_pages *= PAGE_CACHE_SIZE; 3190 3191 ret = btrfs_check_data_free_space(inode, num_pages); 3192 if (ret) 3193 goto out_put; 3194 3195 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3196 num_pages, num_pages, 3197 &alloc_hint); 3198 if (!ret) 3199 dcs = BTRFS_DC_SETUP; 3200 btrfs_free_reserved_data_space(inode, num_pages); 3201 3202 out_put: 3203 iput(inode); 3204 out_free: 3205 btrfs_release_path(path); 3206 out: 3207 spin_lock(&block_group->lock); 3208 if (!ret && dcs == BTRFS_DC_SETUP) 3209 block_group->cache_generation = trans->transid; 3210 block_group->disk_cache_state = dcs; 3211 spin_unlock(&block_group->lock); 3212 3213 return ret; 3214 } 3215 3216 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root) 3218 { 3219 struct btrfs_block_group_cache *cache; 3220 int err = 0; 3221 struct btrfs_path *path; 3222 u64 last = 0; 3223 3224 path = btrfs_alloc_path(); 3225 if (!path) 3226 return -ENOMEM; 3227 3228 again: 3229 while (1) { 3230 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3231 while (cache) { 3232 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3233 break; 3234 cache = next_block_group(root, cache); 3235 } 3236 if (!cache) { 3237 if (last == 0) 3238 break; 3239 last = 0; 3240 continue; 3241 } 3242 err = cache_save_setup(cache, trans, path); 3243 last = cache->key.objectid + cache->key.offset; 3244 btrfs_put_block_group(cache); 3245 } 3246 3247 while (1) { 3248 if (last == 0) { 3249 err = btrfs_run_delayed_refs(trans, root, 3250 (unsigned long)-1); 3251 if (err) /* File system offline */ 3252 goto out; 3253 } 3254 3255 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3256 while (cache) { 3257 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3258 btrfs_put_block_group(cache); 3259 goto again; 3260 } 3261 3262 if (cache->dirty) 3263 break; 3264 cache = next_block_group(root, cache); 3265 } 3266 if (!cache) { 3267 if (last == 0) 3268 break; 3269 last = 0; 3270 continue; 3271 } 3272 3273 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3274 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3275 cache->dirty = 0; 3276 last = cache->key.objectid + cache->key.offset; 3277 3278 err = write_one_cache_group(trans, root, path, cache); 3279 btrfs_put_block_group(cache); 3280 if (err) /* File system offline */ 3281 goto out; 3282 } 3283 3284 while (1) { 3285 /* 3286 * I don't think this is needed since we're just marking our 3287 * preallocated extent as written, but just in case it can't 3288 * hurt. 3289 */ 3290 if (last == 0) { 3291 err = btrfs_run_delayed_refs(trans, root, 3292 (unsigned long)-1); 3293 if (err) /* File system offline */ 3294 goto out; 3295 } 3296 3297 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3298 while (cache) { 3299 /* 3300 * Really this shouldn't happen, but it could if we 3301 * couldn't write the entire preallocated extent and 3302 * splitting the extent resulted in a new block. 3303 */ 3304 if (cache->dirty) { 3305 btrfs_put_block_group(cache); 3306 goto again; 3307 } 3308 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3309 break; 3310 cache = next_block_group(root, cache); 3311 } 3312 if (!cache) { 3313 if (last == 0) 3314 break; 3315 last = 0; 3316 continue; 3317 } 3318 3319 err = btrfs_write_out_cache(root, trans, cache, path); 3320 3321 /* 3322 * If we didn't have an error then the cache state is still 3323 * NEED_WRITE, so we can set it to WRITTEN. 3324 */ 3325 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3326 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3327 last = cache->key.objectid + cache->key.offset; 3328 btrfs_put_block_group(cache); 3329 } 3330 out: 3331 3332 btrfs_free_path(path); 3333 return err; 3334 } 3335 3336 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3337 { 3338 struct btrfs_block_group_cache *block_group; 3339 int readonly = 0; 3340 3341 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3342 if (!block_group || block_group->ro) 3343 readonly = 1; 3344 if (block_group) 3345 btrfs_put_block_group(block_group); 3346 return readonly; 3347 } 3348 3349 static const char *alloc_name(u64 flags) 3350 { 3351 switch (flags) { 3352 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3353 return "mixed"; 3354 case BTRFS_BLOCK_GROUP_METADATA: 3355 return "metadata"; 3356 case BTRFS_BLOCK_GROUP_DATA: 3357 return "data"; 3358 case BTRFS_BLOCK_GROUP_SYSTEM: 3359 return "system"; 3360 default: 3361 WARN_ON(1); 3362 return "invalid-combination"; 3363 }; 3364 } 3365 3366 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3367 u64 total_bytes, u64 bytes_used, 3368 struct btrfs_space_info **space_info) 3369 { 3370 struct btrfs_space_info *found; 3371 int i; 3372 int factor; 3373 int ret; 3374 3375 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3376 BTRFS_BLOCK_GROUP_RAID10)) 3377 factor = 2; 3378 else 3379 factor = 1; 3380 3381 found = __find_space_info(info, flags); 3382 if (found) { 3383 spin_lock(&found->lock); 3384 found->total_bytes += total_bytes; 3385 found->disk_total += total_bytes * factor; 3386 found->bytes_used += bytes_used; 3387 found->disk_used += bytes_used * factor; 3388 found->full = 0; 3389 spin_unlock(&found->lock); 3390 *space_info = found; 3391 return 0; 3392 } 3393 found = kzalloc(sizeof(*found), GFP_NOFS); 3394 if (!found) 3395 return -ENOMEM; 3396 3397 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3398 if (ret) { 3399 kfree(found); 3400 return ret; 3401 } 3402 3403 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 3404 INIT_LIST_HEAD(&found->block_groups[i]); 3405 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype); 3406 } 3407 init_rwsem(&found->groups_sem); 3408 spin_lock_init(&found->lock); 3409 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3410 found->total_bytes = total_bytes; 3411 found->disk_total = total_bytes * factor; 3412 found->bytes_used = bytes_used; 3413 found->disk_used = bytes_used * factor; 3414 found->bytes_pinned = 0; 3415 found->bytes_reserved = 0; 3416 found->bytes_readonly = 0; 3417 found->bytes_may_use = 0; 3418 found->full = 0; 3419 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3420 found->chunk_alloc = 0; 3421 found->flush = 0; 3422 init_waitqueue_head(&found->wait); 3423 3424 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3425 info->space_info_kobj, "%s", 3426 alloc_name(found->flags)); 3427 if (ret) { 3428 kfree(found); 3429 return ret; 3430 } 3431 3432 *space_info = found; 3433 list_add_rcu(&found->list, &info->space_info); 3434 if (flags & BTRFS_BLOCK_GROUP_DATA) 3435 info->data_sinfo = found; 3436 3437 return ret; 3438 } 3439 3440 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3441 { 3442 u64 extra_flags = chunk_to_extended(flags) & 3443 BTRFS_EXTENDED_PROFILE_MASK; 3444 3445 write_seqlock(&fs_info->profiles_lock); 3446 if (flags & BTRFS_BLOCK_GROUP_DATA) 3447 fs_info->avail_data_alloc_bits |= extra_flags; 3448 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3449 fs_info->avail_metadata_alloc_bits |= extra_flags; 3450 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3451 fs_info->avail_system_alloc_bits |= extra_flags; 3452 write_sequnlock(&fs_info->profiles_lock); 3453 } 3454 3455 /* 3456 * returns target flags in extended format or 0 if restripe for this 3457 * chunk_type is not in progress 3458 * 3459 * should be called with either volume_mutex or balance_lock held 3460 */ 3461 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3462 { 3463 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3464 u64 target = 0; 3465 3466 if (!bctl) 3467 return 0; 3468 3469 if (flags & BTRFS_BLOCK_GROUP_DATA && 3470 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3471 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3472 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3473 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3474 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3475 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3476 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3477 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3478 } 3479 3480 return target; 3481 } 3482 3483 /* 3484 * @flags: available profiles in extended format (see ctree.h) 3485 * 3486 * Returns reduced profile in chunk format. If profile changing is in 3487 * progress (either running or paused) picks the target profile (if it's 3488 * already available), otherwise falls back to plain reducing. 3489 */ 3490 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3491 { 3492 /* 3493 * we add in the count of missing devices because we want 3494 * to make sure that any RAID levels on a degraded FS 3495 * continue to be honored. 3496 */ 3497 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3498 root->fs_info->fs_devices->missing_devices; 3499 u64 target; 3500 u64 tmp; 3501 3502 /* 3503 * see if restripe for this chunk_type is in progress, if so 3504 * try to reduce to the target profile 3505 */ 3506 spin_lock(&root->fs_info->balance_lock); 3507 target = get_restripe_target(root->fs_info, flags); 3508 if (target) { 3509 /* pick target profile only if it's already available */ 3510 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3511 spin_unlock(&root->fs_info->balance_lock); 3512 return extended_to_chunk(target); 3513 } 3514 } 3515 spin_unlock(&root->fs_info->balance_lock); 3516 3517 /* First, mask out the RAID levels which aren't possible */ 3518 if (num_devices == 1) 3519 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3520 BTRFS_BLOCK_GROUP_RAID5); 3521 if (num_devices < 3) 3522 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3523 if (num_devices < 4) 3524 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3525 3526 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3527 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3528 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3529 flags &= ~tmp; 3530 3531 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3532 tmp = BTRFS_BLOCK_GROUP_RAID6; 3533 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3534 tmp = BTRFS_BLOCK_GROUP_RAID5; 3535 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3536 tmp = BTRFS_BLOCK_GROUP_RAID10; 3537 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3538 tmp = BTRFS_BLOCK_GROUP_RAID1; 3539 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3540 tmp = BTRFS_BLOCK_GROUP_RAID0; 3541 3542 return extended_to_chunk(flags | tmp); 3543 } 3544 3545 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3546 { 3547 unsigned seq; 3548 3549 do { 3550 seq = read_seqbegin(&root->fs_info->profiles_lock); 3551 3552 if (flags & BTRFS_BLOCK_GROUP_DATA) 3553 flags |= root->fs_info->avail_data_alloc_bits; 3554 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3555 flags |= root->fs_info->avail_system_alloc_bits; 3556 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3557 flags |= root->fs_info->avail_metadata_alloc_bits; 3558 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3559 3560 return btrfs_reduce_alloc_profile(root, flags); 3561 } 3562 3563 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3564 { 3565 u64 flags; 3566 u64 ret; 3567 3568 if (data) 3569 flags = BTRFS_BLOCK_GROUP_DATA; 3570 else if (root == root->fs_info->chunk_root) 3571 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3572 else 3573 flags = BTRFS_BLOCK_GROUP_METADATA; 3574 3575 ret = get_alloc_profile(root, flags); 3576 return ret; 3577 } 3578 3579 /* 3580 * This will check the space that the inode allocates from to make sure we have 3581 * enough space for bytes. 3582 */ 3583 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3584 { 3585 struct btrfs_space_info *data_sinfo; 3586 struct btrfs_root *root = BTRFS_I(inode)->root; 3587 struct btrfs_fs_info *fs_info = root->fs_info; 3588 u64 used; 3589 int ret = 0, committed = 0, alloc_chunk = 1; 3590 3591 /* make sure bytes are sectorsize aligned */ 3592 bytes = ALIGN(bytes, root->sectorsize); 3593 3594 if (btrfs_is_free_space_inode(inode)) { 3595 committed = 1; 3596 ASSERT(current->journal_info); 3597 } 3598 3599 data_sinfo = fs_info->data_sinfo; 3600 if (!data_sinfo) 3601 goto alloc; 3602 3603 again: 3604 /* make sure we have enough space to handle the data first */ 3605 spin_lock(&data_sinfo->lock); 3606 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3607 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3608 data_sinfo->bytes_may_use; 3609 3610 if (used + bytes > data_sinfo->total_bytes) { 3611 struct btrfs_trans_handle *trans; 3612 3613 /* 3614 * if we don't have enough free bytes in this space then we need 3615 * to alloc a new chunk. 3616 */ 3617 if (!data_sinfo->full && alloc_chunk) { 3618 u64 alloc_target; 3619 3620 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3621 spin_unlock(&data_sinfo->lock); 3622 alloc: 3623 alloc_target = btrfs_get_alloc_profile(root, 1); 3624 /* 3625 * It is ugly that we don't call nolock join 3626 * transaction for the free space inode case here. 3627 * But it is safe because we only do the data space 3628 * reservation for the free space cache in the 3629 * transaction context, the common join transaction 3630 * just increase the counter of the current transaction 3631 * handler, doesn't try to acquire the trans_lock of 3632 * the fs. 3633 */ 3634 trans = btrfs_join_transaction(root); 3635 if (IS_ERR(trans)) 3636 return PTR_ERR(trans); 3637 3638 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3639 alloc_target, 3640 CHUNK_ALLOC_NO_FORCE); 3641 btrfs_end_transaction(trans, root); 3642 if (ret < 0) { 3643 if (ret != -ENOSPC) 3644 return ret; 3645 else 3646 goto commit_trans; 3647 } 3648 3649 if (!data_sinfo) 3650 data_sinfo = fs_info->data_sinfo; 3651 3652 goto again; 3653 } 3654 3655 /* 3656 * If we don't have enough pinned space to deal with this 3657 * allocation don't bother committing the transaction. 3658 */ 3659 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3660 bytes) < 0) 3661 committed = 1; 3662 spin_unlock(&data_sinfo->lock); 3663 3664 /* commit the current transaction and try again */ 3665 commit_trans: 3666 if (!committed && 3667 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3668 committed = 1; 3669 3670 trans = btrfs_join_transaction(root); 3671 if (IS_ERR(trans)) 3672 return PTR_ERR(trans); 3673 ret = btrfs_commit_transaction(trans, root); 3674 if (ret) 3675 return ret; 3676 goto again; 3677 } 3678 3679 trace_btrfs_space_reservation(root->fs_info, 3680 "space_info:enospc", 3681 data_sinfo->flags, bytes, 1); 3682 return -ENOSPC; 3683 } 3684 data_sinfo->bytes_may_use += bytes; 3685 trace_btrfs_space_reservation(root->fs_info, "space_info", 3686 data_sinfo->flags, bytes, 1); 3687 spin_unlock(&data_sinfo->lock); 3688 3689 return 0; 3690 } 3691 3692 /* 3693 * Called if we need to clear a data reservation for this inode. 3694 */ 3695 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3696 { 3697 struct btrfs_root *root = BTRFS_I(inode)->root; 3698 struct btrfs_space_info *data_sinfo; 3699 3700 /* make sure bytes are sectorsize aligned */ 3701 bytes = ALIGN(bytes, root->sectorsize); 3702 3703 data_sinfo = root->fs_info->data_sinfo; 3704 spin_lock(&data_sinfo->lock); 3705 WARN_ON(data_sinfo->bytes_may_use < bytes); 3706 data_sinfo->bytes_may_use -= bytes; 3707 trace_btrfs_space_reservation(root->fs_info, "space_info", 3708 data_sinfo->flags, bytes, 0); 3709 spin_unlock(&data_sinfo->lock); 3710 } 3711 3712 static void force_metadata_allocation(struct btrfs_fs_info *info) 3713 { 3714 struct list_head *head = &info->space_info; 3715 struct btrfs_space_info *found; 3716 3717 rcu_read_lock(); 3718 list_for_each_entry_rcu(found, head, list) { 3719 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3720 found->force_alloc = CHUNK_ALLOC_FORCE; 3721 } 3722 rcu_read_unlock(); 3723 } 3724 3725 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3726 { 3727 return (global->size << 1); 3728 } 3729 3730 static int should_alloc_chunk(struct btrfs_root *root, 3731 struct btrfs_space_info *sinfo, int force) 3732 { 3733 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3734 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3735 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3736 u64 thresh; 3737 3738 if (force == CHUNK_ALLOC_FORCE) 3739 return 1; 3740 3741 /* 3742 * We need to take into account the global rsv because for all intents 3743 * and purposes it's used space. Don't worry about locking the 3744 * global_rsv, it doesn't change except when the transaction commits. 3745 */ 3746 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3747 num_allocated += calc_global_rsv_need_space(global_rsv); 3748 3749 /* 3750 * in limited mode, we want to have some free space up to 3751 * about 1% of the FS size. 3752 */ 3753 if (force == CHUNK_ALLOC_LIMITED) { 3754 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3755 thresh = max_t(u64, 64 * 1024 * 1024, 3756 div_factor_fine(thresh, 1)); 3757 3758 if (num_bytes - num_allocated < thresh) 3759 return 1; 3760 } 3761 3762 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3763 return 0; 3764 return 1; 3765 } 3766 3767 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3768 { 3769 u64 num_dev; 3770 3771 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3772 BTRFS_BLOCK_GROUP_RAID0 | 3773 BTRFS_BLOCK_GROUP_RAID5 | 3774 BTRFS_BLOCK_GROUP_RAID6)) 3775 num_dev = root->fs_info->fs_devices->rw_devices; 3776 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3777 num_dev = 2; 3778 else 3779 num_dev = 1; /* DUP or single */ 3780 3781 /* metadata for updaing devices and chunk tree */ 3782 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3783 } 3784 3785 static void check_system_chunk(struct btrfs_trans_handle *trans, 3786 struct btrfs_root *root, u64 type) 3787 { 3788 struct btrfs_space_info *info; 3789 u64 left; 3790 u64 thresh; 3791 3792 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3793 spin_lock(&info->lock); 3794 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3795 info->bytes_reserved - info->bytes_readonly; 3796 spin_unlock(&info->lock); 3797 3798 thresh = get_system_chunk_thresh(root, type); 3799 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3800 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3801 left, thresh, type); 3802 dump_space_info(info, 0, 0); 3803 } 3804 3805 if (left < thresh) { 3806 u64 flags; 3807 3808 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3809 btrfs_alloc_chunk(trans, root, flags); 3810 } 3811 } 3812 3813 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3814 struct btrfs_root *extent_root, u64 flags, int force) 3815 { 3816 struct btrfs_space_info *space_info; 3817 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3818 int wait_for_alloc = 0; 3819 int ret = 0; 3820 3821 /* Don't re-enter if we're already allocating a chunk */ 3822 if (trans->allocating_chunk) 3823 return -ENOSPC; 3824 3825 space_info = __find_space_info(extent_root->fs_info, flags); 3826 if (!space_info) { 3827 ret = update_space_info(extent_root->fs_info, flags, 3828 0, 0, &space_info); 3829 BUG_ON(ret); /* -ENOMEM */ 3830 } 3831 BUG_ON(!space_info); /* Logic error */ 3832 3833 again: 3834 spin_lock(&space_info->lock); 3835 if (force < space_info->force_alloc) 3836 force = space_info->force_alloc; 3837 if (space_info->full) { 3838 if (should_alloc_chunk(extent_root, space_info, force)) 3839 ret = -ENOSPC; 3840 else 3841 ret = 0; 3842 spin_unlock(&space_info->lock); 3843 return ret; 3844 } 3845 3846 if (!should_alloc_chunk(extent_root, space_info, force)) { 3847 spin_unlock(&space_info->lock); 3848 return 0; 3849 } else if (space_info->chunk_alloc) { 3850 wait_for_alloc = 1; 3851 } else { 3852 space_info->chunk_alloc = 1; 3853 } 3854 3855 spin_unlock(&space_info->lock); 3856 3857 mutex_lock(&fs_info->chunk_mutex); 3858 3859 /* 3860 * The chunk_mutex is held throughout the entirety of a chunk 3861 * allocation, so once we've acquired the chunk_mutex we know that the 3862 * other guy is done and we need to recheck and see if we should 3863 * allocate. 3864 */ 3865 if (wait_for_alloc) { 3866 mutex_unlock(&fs_info->chunk_mutex); 3867 wait_for_alloc = 0; 3868 goto again; 3869 } 3870 3871 trans->allocating_chunk = true; 3872 3873 /* 3874 * If we have mixed data/metadata chunks we want to make sure we keep 3875 * allocating mixed chunks instead of individual chunks. 3876 */ 3877 if (btrfs_mixed_space_info(space_info)) 3878 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3879 3880 /* 3881 * if we're doing a data chunk, go ahead and make sure that 3882 * we keep a reasonable number of metadata chunks allocated in the 3883 * FS as well. 3884 */ 3885 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3886 fs_info->data_chunk_allocations++; 3887 if (!(fs_info->data_chunk_allocations % 3888 fs_info->metadata_ratio)) 3889 force_metadata_allocation(fs_info); 3890 } 3891 3892 /* 3893 * Check if we have enough space in SYSTEM chunk because we may need 3894 * to update devices. 3895 */ 3896 check_system_chunk(trans, extent_root, flags); 3897 3898 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3899 trans->allocating_chunk = false; 3900 3901 spin_lock(&space_info->lock); 3902 if (ret < 0 && ret != -ENOSPC) 3903 goto out; 3904 if (ret) 3905 space_info->full = 1; 3906 else 3907 ret = 1; 3908 3909 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3910 out: 3911 space_info->chunk_alloc = 0; 3912 spin_unlock(&space_info->lock); 3913 mutex_unlock(&fs_info->chunk_mutex); 3914 return ret; 3915 } 3916 3917 static int can_overcommit(struct btrfs_root *root, 3918 struct btrfs_space_info *space_info, u64 bytes, 3919 enum btrfs_reserve_flush_enum flush) 3920 { 3921 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3922 u64 profile = btrfs_get_alloc_profile(root, 0); 3923 u64 space_size; 3924 u64 avail; 3925 u64 used; 3926 3927 used = space_info->bytes_used + space_info->bytes_reserved + 3928 space_info->bytes_pinned + space_info->bytes_readonly; 3929 3930 /* 3931 * We only want to allow over committing if we have lots of actual space 3932 * free, but if we don't have enough space to handle the global reserve 3933 * space then we could end up having a real enospc problem when trying 3934 * to allocate a chunk or some other such important allocation. 3935 */ 3936 spin_lock(&global_rsv->lock); 3937 space_size = calc_global_rsv_need_space(global_rsv); 3938 spin_unlock(&global_rsv->lock); 3939 if (used + space_size >= space_info->total_bytes) 3940 return 0; 3941 3942 used += space_info->bytes_may_use; 3943 3944 spin_lock(&root->fs_info->free_chunk_lock); 3945 avail = root->fs_info->free_chunk_space; 3946 spin_unlock(&root->fs_info->free_chunk_lock); 3947 3948 /* 3949 * If we have dup, raid1 or raid10 then only half of the free 3950 * space is actually useable. For raid56, the space info used 3951 * doesn't include the parity drive, so we don't have to 3952 * change the math 3953 */ 3954 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3955 BTRFS_BLOCK_GROUP_RAID1 | 3956 BTRFS_BLOCK_GROUP_RAID10)) 3957 avail >>= 1; 3958 3959 /* 3960 * If we aren't flushing all things, let us overcommit up to 3961 * 1/2th of the space. If we can flush, don't let us overcommit 3962 * too much, let it overcommit up to 1/8 of the space. 3963 */ 3964 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3965 avail >>= 3; 3966 else 3967 avail >>= 1; 3968 3969 if (used + bytes < space_info->total_bytes + avail) 3970 return 1; 3971 return 0; 3972 } 3973 3974 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3975 unsigned long nr_pages, int nr_items) 3976 { 3977 struct super_block *sb = root->fs_info->sb; 3978 3979 if (down_read_trylock(&sb->s_umount)) { 3980 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3981 up_read(&sb->s_umount); 3982 } else { 3983 /* 3984 * We needn't worry the filesystem going from r/w to r/o though 3985 * we don't acquire ->s_umount mutex, because the filesystem 3986 * should guarantee the delalloc inodes list be empty after 3987 * the filesystem is readonly(all dirty pages are written to 3988 * the disk). 3989 */ 3990 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 3991 if (!current->journal_info) 3992 btrfs_wait_ordered_roots(root->fs_info, nr_items); 3993 } 3994 } 3995 3996 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 3997 { 3998 u64 bytes; 3999 int nr; 4000 4001 bytes = btrfs_calc_trans_metadata_size(root, 1); 4002 nr = (int)div64_u64(to_reclaim, bytes); 4003 if (!nr) 4004 nr = 1; 4005 return nr; 4006 } 4007 4008 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4009 4010 /* 4011 * shrink metadata reservation for delalloc 4012 */ 4013 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4014 bool wait_ordered) 4015 { 4016 struct btrfs_block_rsv *block_rsv; 4017 struct btrfs_space_info *space_info; 4018 struct btrfs_trans_handle *trans; 4019 u64 delalloc_bytes; 4020 u64 max_reclaim; 4021 long time_left; 4022 unsigned long nr_pages; 4023 int loops; 4024 int items; 4025 enum btrfs_reserve_flush_enum flush; 4026 4027 /* Calc the number of the pages we need flush for space reservation */ 4028 items = calc_reclaim_items_nr(root, to_reclaim); 4029 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4030 4031 trans = (struct btrfs_trans_handle *)current->journal_info; 4032 block_rsv = &root->fs_info->delalloc_block_rsv; 4033 space_info = block_rsv->space_info; 4034 4035 delalloc_bytes = percpu_counter_sum_positive( 4036 &root->fs_info->delalloc_bytes); 4037 if (delalloc_bytes == 0) { 4038 if (trans) 4039 return; 4040 if (wait_ordered) 4041 btrfs_wait_ordered_roots(root->fs_info, items); 4042 return; 4043 } 4044 4045 loops = 0; 4046 while (delalloc_bytes && loops < 3) { 4047 max_reclaim = min(delalloc_bytes, to_reclaim); 4048 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4049 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4050 /* 4051 * We need to wait for the async pages to actually start before 4052 * we do anything. 4053 */ 4054 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4055 if (!max_reclaim) 4056 goto skip_async; 4057 4058 if (max_reclaim <= nr_pages) 4059 max_reclaim = 0; 4060 else 4061 max_reclaim -= nr_pages; 4062 4063 wait_event(root->fs_info->async_submit_wait, 4064 atomic_read(&root->fs_info->async_delalloc_pages) <= 4065 (int)max_reclaim); 4066 skip_async: 4067 if (!trans) 4068 flush = BTRFS_RESERVE_FLUSH_ALL; 4069 else 4070 flush = BTRFS_RESERVE_NO_FLUSH; 4071 spin_lock(&space_info->lock); 4072 if (can_overcommit(root, space_info, orig, flush)) { 4073 spin_unlock(&space_info->lock); 4074 break; 4075 } 4076 spin_unlock(&space_info->lock); 4077 4078 loops++; 4079 if (wait_ordered && !trans) { 4080 btrfs_wait_ordered_roots(root->fs_info, items); 4081 } else { 4082 time_left = schedule_timeout_killable(1); 4083 if (time_left) 4084 break; 4085 } 4086 delalloc_bytes = percpu_counter_sum_positive( 4087 &root->fs_info->delalloc_bytes); 4088 } 4089 } 4090 4091 /** 4092 * maybe_commit_transaction - possibly commit the transaction if its ok to 4093 * @root - the root we're allocating for 4094 * @bytes - the number of bytes we want to reserve 4095 * @force - force the commit 4096 * 4097 * This will check to make sure that committing the transaction will actually 4098 * get us somewhere and then commit the transaction if it does. Otherwise it 4099 * will return -ENOSPC. 4100 */ 4101 static int may_commit_transaction(struct btrfs_root *root, 4102 struct btrfs_space_info *space_info, 4103 u64 bytes, int force) 4104 { 4105 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4106 struct btrfs_trans_handle *trans; 4107 4108 trans = (struct btrfs_trans_handle *)current->journal_info; 4109 if (trans) 4110 return -EAGAIN; 4111 4112 if (force) 4113 goto commit; 4114 4115 /* See if there is enough pinned space to make this reservation */ 4116 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4117 bytes) >= 0) 4118 goto commit; 4119 4120 /* 4121 * See if there is some space in the delayed insertion reservation for 4122 * this reservation. 4123 */ 4124 if (space_info != delayed_rsv->space_info) 4125 return -ENOSPC; 4126 4127 spin_lock(&delayed_rsv->lock); 4128 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4129 bytes - delayed_rsv->size) >= 0) { 4130 spin_unlock(&delayed_rsv->lock); 4131 return -ENOSPC; 4132 } 4133 spin_unlock(&delayed_rsv->lock); 4134 4135 commit: 4136 trans = btrfs_join_transaction(root); 4137 if (IS_ERR(trans)) 4138 return -ENOSPC; 4139 4140 return btrfs_commit_transaction(trans, root); 4141 } 4142 4143 enum flush_state { 4144 FLUSH_DELAYED_ITEMS_NR = 1, 4145 FLUSH_DELAYED_ITEMS = 2, 4146 FLUSH_DELALLOC = 3, 4147 FLUSH_DELALLOC_WAIT = 4, 4148 ALLOC_CHUNK = 5, 4149 COMMIT_TRANS = 6, 4150 }; 4151 4152 static int flush_space(struct btrfs_root *root, 4153 struct btrfs_space_info *space_info, u64 num_bytes, 4154 u64 orig_bytes, int state) 4155 { 4156 struct btrfs_trans_handle *trans; 4157 int nr; 4158 int ret = 0; 4159 4160 switch (state) { 4161 case FLUSH_DELAYED_ITEMS_NR: 4162 case FLUSH_DELAYED_ITEMS: 4163 if (state == FLUSH_DELAYED_ITEMS_NR) 4164 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4165 else 4166 nr = -1; 4167 4168 trans = btrfs_join_transaction(root); 4169 if (IS_ERR(trans)) { 4170 ret = PTR_ERR(trans); 4171 break; 4172 } 4173 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4174 btrfs_end_transaction(trans, root); 4175 break; 4176 case FLUSH_DELALLOC: 4177 case FLUSH_DELALLOC_WAIT: 4178 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4179 state == FLUSH_DELALLOC_WAIT); 4180 break; 4181 case ALLOC_CHUNK: 4182 trans = btrfs_join_transaction(root); 4183 if (IS_ERR(trans)) { 4184 ret = PTR_ERR(trans); 4185 break; 4186 } 4187 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4188 btrfs_get_alloc_profile(root, 0), 4189 CHUNK_ALLOC_NO_FORCE); 4190 btrfs_end_transaction(trans, root); 4191 if (ret == -ENOSPC) 4192 ret = 0; 4193 break; 4194 case COMMIT_TRANS: 4195 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4196 break; 4197 default: 4198 ret = -ENOSPC; 4199 break; 4200 } 4201 4202 return ret; 4203 } 4204 /** 4205 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4206 * @root - the root we're allocating for 4207 * @block_rsv - the block_rsv we're allocating for 4208 * @orig_bytes - the number of bytes we want 4209 * @flush - whether or not we can flush to make our reservation 4210 * 4211 * This will reserve orgi_bytes number of bytes from the space info associated 4212 * with the block_rsv. If there is not enough space it will make an attempt to 4213 * flush out space to make room. It will do this by flushing delalloc if 4214 * possible or committing the transaction. If flush is 0 then no attempts to 4215 * regain reservations will be made and this will fail if there is not enough 4216 * space already. 4217 */ 4218 static int reserve_metadata_bytes(struct btrfs_root *root, 4219 struct btrfs_block_rsv *block_rsv, 4220 u64 orig_bytes, 4221 enum btrfs_reserve_flush_enum flush) 4222 { 4223 struct btrfs_space_info *space_info = block_rsv->space_info; 4224 u64 used; 4225 u64 num_bytes = orig_bytes; 4226 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4227 int ret = 0; 4228 bool flushing = false; 4229 4230 again: 4231 ret = 0; 4232 spin_lock(&space_info->lock); 4233 /* 4234 * We only want to wait if somebody other than us is flushing and we 4235 * are actually allowed to flush all things. 4236 */ 4237 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4238 space_info->flush) { 4239 spin_unlock(&space_info->lock); 4240 /* 4241 * If we have a trans handle we can't wait because the flusher 4242 * may have to commit the transaction, which would mean we would 4243 * deadlock since we are waiting for the flusher to finish, but 4244 * hold the current transaction open. 4245 */ 4246 if (current->journal_info) 4247 return -EAGAIN; 4248 ret = wait_event_killable(space_info->wait, !space_info->flush); 4249 /* Must have been killed, return */ 4250 if (ret) 4251 return -EINTR; 4252 4253 spin_lock(&space_info->lock); 4254 } 4255 4256 ret = -ENOSPC; 4257 used = space_info->bytes_used + space_info->bytes_reserved + 4258 space_info->bytes_pinned + space_info->bytes_readonly + 4259 space_info->bytes_may_use; 4260 4261 /* 4262 * The idea here is that we've not already over-reserved the block group 4263 * then we can go ahead and save our reservation first and then start 4264 * flushing if we need to. Otherwise if we've already overcommitted 4265 * lets start flushing stuff first and then come back and try to make 4266 * our reservation. 4267 */ 4268 if (used <= space_info->total_bytes) { 4269 if (used + orig_bytes <= space_info->total_bytes) { 4270 space_info->bytes_may_use += orig_bytes; 4271 trace_btrfs_space_reservation(root->fs_info, 4272 "space_info", space_info->flags, orig_bytes, 1); 4273 ret = 0; 4274 } else { 4275 /* 4276 * Ok set num_bytes to orig_bytes since we aren't 4277 * overocmmitted, this way we only try and reclaim what 4278 * we need. 4279 */ 4280 num_bytes = orig_bytes; 4281 } 4282 } else { 4283 /* 4284 * Ok we're over committed, set num_bytes to the overcommitted 4285 * amount plus the amount of bytes that we need for this 4286 * reservation. 4287 */ 4288 num_bytes = used - space_info->total_bytes + 4289 (orig_bytes * 2); 4290 } 4291 4292 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4293 space_info->bytes_may_use += orig_bytes; 4294 trace_btrfs_space_reservation(root->fs_info, "space_info", 4295 space_info->flags, orig_bytes, 4296 1); 4297 ret = 0; 4298 } 4299 4300 /* 4301 * Couldn't make our reservation, save our place so while we're trying 4302 * to reclaim space we can actually use it instead of somebody else 4303 * stealing it from us. 4304 * 4305 * We make the other tasks wait for the flush only when we can flush 4306 * all things. 4307 */ 4308 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4309 flushing = true; 4310 space_info->flush = 1; 4311 } 4312 4313 spin_unlock(&space_info->lock); 4314 4315 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4316 goto out; 4317 4318 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4319 flush_state); 4320 flush_state++; 4321 4322 /* 4323 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4324 * would happen. So skip delalloc flush. 4325 */ 4326 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4327 (flush_state == FLUSH_DELALLOC || 4328 flush_state == FLUSH_DELALLOC_WAIT)) 4329 flush_state = ALLOC_CHUNK; 4330 4331 if (!ret) 4332 goto again; 4333 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4334 flush_state < COMMIT_TRANS) 4335 goto again; 4336 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4337 flush_state <= COMMIT_TRANS) 4338 goto again; 4339 4340 out: 4341 if (ret == -ENOSPC && 4342 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4343 struct btrfs_block_rsv *global_rsv = 4344 &root->fs_info->global_block_rsv; 4345 4346 if (block_rsv != global_rsv && 4347 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4348 ret = 0; 4349 } 4350 if (ret == -ENOSPC) 4351 trace_btrfs_space_reservation(root->fs_info, 4352 "space_info:enospc", 4353 space_info->flags, orig_bytes, 1); 4354 if (flushing) { 4355 spin_lock(&space_info->lock); 4356 space_info->flush = 0; 4357 wake_up_all(&space_info->wait); 4358 spin_unlock(&space_info->lock); 4359 } 4360 return ret; 4361 } 4362 4363 static struct btrfs_block_rsv *get_block_rsv( 4364 const struct btrfs_trans_handle *trans, 4365 const struct btrfs_root *root) 4366 { 4367 struct btrfs_block_rsv *block_rsv = NULL; 4368 4369 if (root->ref_cows) 4370 block_rsv = trans->block_rsv; 4371 4372 if (root == root->fs_info->csum_root && trans->adding_csums) 4373 block_rsv = trans->block_rsv; 4374 4375 if (root == root->fs_info->uuid_root) 4376 block_rsv = trans->block_rsv; 4377 4378 if (!block_rsv) 4379 block_rsv = root->block_rsv; 4380 4381 if (!block_rsv) 4382 block_rsv = &root->fs_info->empty_block_rsv; 4383 4384 return block_rsv; 4385 } 4386 4387 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4388 u64 num_bytes) 4389 { 4390 int ret = -ENOSPC; 4391 spin_lock(&block_rsv->lock); 4392 if (block_rsv->reserved >= num_bytes) { 4393 block_rsv->reserved -= num_bytes; 4394 if (block_rsv->reserved < block_rsv->size) 4395 block_rsv->full = 0; 4396 ret = 0; 4397 } 4398 spin_unlock(&block_rsv->lock); 4399 return ret; 4400 } 4401 4402 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4403 u64 num_bytes, int update_size) 4404 { 4405 spin_lock(&block_rsv->lock); 4406 block_rsv->reserved += num_bytes; 4407 if (update_size) 4408 block_rsv->size += num_bytes; 4409 else if (block_rsv->reserved >= block_rsv->size) 4410 block_rsv->full = 1; 4411 spin_unlock(&block_rsv->lock); 4412 } 4413 4414 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4415 struct btrfs_block_rsv *dest, u64 num_bytes, 4416 int min_factor) 4417 { 4418 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4419 u64 min_bytes; 4420 4421 if (global_rsv->space_info != dest->space_info) 4422 return -ENOSPC; 4423 4424 spin_lock(&global_rsv->lock); 4425 min_bytes = div_factor(global_rsv->size, min_factor); 4426 if (global_rsv->reserved < min_bytes + num_bytes) { 4427 spin_unlock(&global_rsv->lock); 4428 return -ENOSPC; 4429 } 4430 global_rsv->reserved -= num_bytes; 4431 if (global_rsv->reserved < global_rsv->size) 4432 global_rsv->full = 0; 4433 spin_unlock(&global_rsv->lock); 4434 4435 block_rsv_add_bytes(dest, num_bytes, 1); 4436 return 0; 4437 } 4438 4439 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4440 struct btrfs_block_rsv *block_rsv, 4441 struct btrfs_block_rsv *dest, u64 num_bytes) 4442 { 4443 struct btrfs_space_info *space_info = block_rsv->space_info; 4444 4445 spin_lock(&block_rsv->lock); 4446 if (num_bytes == (u64)-1) 4447 num_bytes = block_rsv->size; 4448 block_rsv->size -= num_bytes; 4449 if (block_rsv->reserved >= block_rsv->size) { 4450 num_bytes = block_rsv->reserved - block_rsv->size; 4451 block_rsv->reserved = block_rsv->size; 4452 block_rsv->full = 1; 4453 } else { 4454 num_bytes = 0; 4455 } 4456 spin_unlock(&block_rsv->lock); 4457 4458 if (num_bytes > 0) { 4459 if (dest) { 4460 spin_lock(&dest->lock); 4461 if (!dest->full) { 4462 u64 bytes_to_add; 4463 4464 bytes_to_add = dest->size - dest->reserved; 4465 bytes_to_add = min(num_bytes, bytes_to_add); 4466 dest->reserved += bytes_to_add; 4467 if (dest->reserved >= dest->size) 4468 dest->full = 1; 4469 num_bytes -= bytes_to_add; 4470 } 4471 spin_unlock(&dest->lock); 4472 } 4473 if (num_bytes) { 4474 spin_lock(&space_info->lock); 4475 space_info->bytes_may_use -= num_bytes; 4476 trace_btrfs_space_reservation(fs_info, "space_info", 4477 space_info->flags, num_bytes, 0); 4478 spin_unlock(&space_info->lock); 4479 } 4480 } 4481 } 4482 4483 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4484 struct btrfs_block_rsv *dst, u64 num_bytes) 4485 { 4486 int ret; 4487 4488 ret = block_rsv_use_bytes(src, num_bytes); 4489 if (ret) 4490 return ret; 4491 4492 block_rsv_add_bytes(dst, num_bytes, 1); 4493 return 0; 4494 } 4495 4496 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4497 { 4498 memset(rsv, 0, sizeof(*rsv)); 4499 spin_lock_init(&rsv->lock); 4500 rsv->type = type; 4501 } 4502 4503 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4504 unsigned short type) 4505 { 4506 struct btrfs_block_rsv *block_rsv; 4507 struct btrfs_fs_info *fs_info = root->fs_info; 4508 4509 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4510 if (!block_rsv) 4511 return NULL; 4512 4513 btrfs_init_block_rsv(block_rsv, type); 4514 block_rsv->space_info = __find_space_info(fs_info, 4515 BTRFS_BLOCK_GROUP_METADATA); 4516 return block_rsv; 4517 } 4518 4519 void btrfs_free_block_rsv(struct btrfs_root *root, 4520 struct btrfs_block_rsv *rsv) 4521 { 4522 if (!rsv) 4523 return; 4524 btrfs_block_rsv_release(root, rsv, (u64)-1); 4525 kfree(rsv); 4526 } 4527 4528 int btrfs_block_rsv_add(struct btrfs_root *root, 4529 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4530 enum btrfs_reserve_flush_enum flush) 4531 { 4532 int ret; 4533 4534 if (num_bytes == 0) 4535 return 0; 4536 4537 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4538 if (!ret) { 4539 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4540 return 0; 4541 } 4542 4543 return ret; 4544 } 4545 4546 int btrfs_block_rsv_check(struct btrfs_root *root, 4547 struct btrfs_block_rsv *block_rsv, int min_factor) 4548 { 4549 u64 num_bytes = 0; 4550 int ret = -ENOSPC; 4551 4552 if (!block_rsv) 4553 return 0; 4554 4555 spin_lock(&block_rsv->lock); 4556 num_bytes = div_factor(block_rsv->size, min_factor); 4557 if (block_rsv->reserved >= num_bytes) 4558 ret = 0; 4559 spin_unlock(&block_rsv->lock); 4560 4561 return ret; 4562 } 4563 4564 int btrfs_block_rsv_refill(struct btrfs_root *root, 4565 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4566 enum btrfs_reserve_flush_enum flush) 4567 { 4568 u64 num_bytes = 0; 4569 int ret = -ENOSPC; 4570 4571 if (!block_rsv) 4572 return 0; 4573 4574 spin_lock(&block_rsv->lock); 4575 num_bytes = min_reserved; 4576 if (block_rsv->reserved >= num_bytes) 4577 ret = 0; 4578 else 4579 num_bytes -= block_rsv->reserved; 4580 spin_unlock(&block_rsv->lock); 4581 4582 if (!ret) 4583 return 0; 4584 4585 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4586 if (!ret) { 4587 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4588 return 0; 4589 } 4590 4591 return ret; 4592 } 4593 4594 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4595 struct btrfs_block_rsv *dst_rsv, 4596 u64 num_bytes) 4597 { 4598 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4599 } 4600 4601 void btrfs_block_rsv_release(struct btrfs_root *root, 4602 struct btrfs_block_rsv *block_rsv, 4603 u64 num_bytes) 4604 { 4605 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4606 if (global_rsv == block_rsv || 4607 block_rsv->space_info != global_rsv->space_info) 4608 global_rsv = NULL; 4609 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4610 num_bytes); 4611 } 4612 4613 /* 4614 * helper to calculate size of global block reservation. 4615 * the desired value is sum of space used by extent tree, 4616 * checksum tree and root tree 4617 */ 4618 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4619 { 4620 struct btrfs_space_info *sinfo; 4621 u64 num_bytes; 4622 u64 meta_used; 4623 u64 data_used; 4624 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4625 4626 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4627 spin_lock(&sinfo->lock); 4628 data_used = sinfo->bytes_used; 4629 spin_unlock(&sinfo->lock); 4630 4631 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4632 spin_lock(&sinfo->lock); 4633 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4634 data_used = 0; 4635 meta_used = sinfo->bytes_used; 4636 spin_unlock(&sinfo->lock); 4637 4638 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4639 csum_size * 2; 4640 num_bytes += div64_u64(data_used + meta_used, 50); 4641 4642 if (num_bytes * 3 > meta_used) 4643 num_bytes = div64_u64(meta_used, 3); 4644 4645 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4646 } 4647 4648 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4649 { 4650 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4651 struct btrfs_space_info *sinfo = block_rsv->space_info; 4652 u64 num_bytes; 4653 4654 num_bytes = calc_global_metadata_size(fs_info); 4655 4656 spin_lock(&sinfo->lock); 4657 spin_lock(&block_rsv->lock); 4658 4659 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4660 4661 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4662 sinfo->bytes_reserved + sinfo->bytes_readonly + 4663 sinfo->bytes_may_use; 4664 4665 if (sinfo->total_bytes > num_bytes) { 4666 num_bytes = sinfo->total_bytes - num_bytes; 4667 block_rsv->reserved += num_bytes; 4668 sinfo->bytes_may_use += num_bytes; 4669 trace_btrfs_space_reservation(fs_info, "space_info", 4670 sinfo->flags, num_bytes, 1); 4671 } 4672 4673 if (block_rsv->reserved >= block_rsv->size) { 4674 num_bytes = block_rsv->reserved - block_rsv->size; 4675 sinfo->bytes_may_use -= num_bytes; 4676 trace_btrfs_space_reservation(fs_info, "space_info", 4677 sinfo->flags, num_bytes, 0); 4678 block_rsv->reserved = block_rsv->size; 4679 block_rsv->full = 1; 4680 } 4681 4682 spin_unlock(&block_rsv->lock); 4683 spin_unlock(&sinfo->lock); 4684 } 4685 4686 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4687 { 4688 struct btrfs_space_info *space_info; 4689 4690 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4691 fs_info->chunk_block_rsv.space_info = space_info; 4692 4693 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4694 fs_info->global_block_rsv.space_info = space_info; 4695 fs_info->delalloc_block_rsv.space_info = space_info; 4696 fs_info->trans_block_rsv.space_info = space_info; 4697 fs_info->empty_block_rsv.space_info = space_info; 4698 fs_info->delayed_block_rsv.space_info = space_info; 4699 4700 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4701 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4702 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4703 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4704 if (fs_info->quota_root) 4705 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4706 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4707 4708 update_global_block_rsv(fs_info); 4709 } 4710 4711 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4712 { 4713 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4714 (u64)-1); 4715 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4716 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4717 WARN_ON(fs_info->trans_block_rsv.size > 0); 4718 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4719 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4720 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4721 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4722 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4723 } 4724 4725 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4726 struct btrfs_root *root) 4727 { 4728 if (!trans->block_rsv) 4729 return; 4730 4731 if (!trans->bytes_reserved) 4732 return; 4733 4734 trace_btrfs_space_reservation(root->fs_info, "transaction", 4735 trans->transid, trans->bytes_reserved, 0); 4736 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4737 trans->bytes_reserved = 0; 4738 } 4739 4740 /* Can only return 0 or -ENOSPC */ 4741 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4742 struct inode *inode) 4743 { 4744 struct btrfs_root *root = BTRFS_I(inode)->root; 4745 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4746 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4747 4748 /* 4749 * We need to hold space in order to delete our orphan item once we've 4750 * added it, so this takes the reservation so we can release it later 4751 * when we are truly done with the orphan item. 4752 */ 4753 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4754 trace_btrfs_space_reservation(root->fs_info, "orphan", 4755 btrfs_ino(inode), num_bytes, 1); 4756 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4757 } 4758 4759 void btrfs_orphan_release_metadata(struct inode *inode) 4760 { 4761 struct btrfs_root *root = BTRFS_I(inode)->root; 4762 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4763 trace_btrfs_space_reservation(root->fs_info, "orphan", 4764 btrfs_ino(inode), num_bytes, 0); 4765 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4766 } 4767 4768 /* 4769 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4770 * root: the root of the parent directory 4771 * rsv: block reservation 4772 * items: the number of items that we need do reservation 4773 * qgroup_reserved: used to return the reserved size in qgroup 4774 * 4775 * This function is used to reserve the space for snapshot/subvolume 4776 * creation and deletion. Those operations are different with the 4777 * common file/directory operations, they change two fs/file trees 4778 * and root tree, the number of items that the qgroup reserves is 4779 * different with the free space reservation. So we can not use 4780 * the space reseravtion mechanism in start_transaction(). 4781 */ 4782 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4783 struct btrfs_block_rsv *rsv, 4784 int items, 4785 u64 *qgroup_reserved, 4786 bool use_global_rsv) 4787 { 4788 u64 num_bytes; 4789 int ret; 4790 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4791 4792 if (root->fs_info->quota_enabled) { 4793 /* One for parent inode, two for dir entries */ 4794 num_bytes = 3 * root->leafsize; 4795 ret = btrfs_qgroup_reserve(root, num_bytes); 4796 if (ret) 4797 return ret; 4798 } else { 4799 num_bytes = 0; 4800 } 4801 4802 *qgroup_reserved = num_bytes; 4803 4804 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4805 rsv->space_info = __find_space_info(root->fs_info, 4806 BTRFS_BLOCK_GROUP_METADATA); 4807 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4808 BTRFS_RESERVE_FLUSH_ALL); 4809 4810 if (ret == -ENOSPC && use_global_rsv) 4811 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4812 4813 if (ret) { 4814 if (*qgroup_reserved) 4815 btrfs_qgroup_free(root, *qgroup_reserved); 4816 } 4817 4818 return ret; 4819 } 4820 4821 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4822 struct btrfs_block_rsv *rsv, 4823 u64 qgroup_reserved) 4824 { 4825 btrfs_block_rsv_release(root, rsv, (u64)-1); 4826 if (qgroup_reserved) 4827 btrfs_qgroup_free(root, qgroup_reserved); 4828 } 4829 4830 /** 4831 * drop_outstanding_extent - drop an outstanding extent 4832 * @inode: the inode we're dropping the extent for 4833 * 4834 * This is called when we are freeing up an outstanding extent, either called 4835 * after an error or after an extent is written. This will return the number of 4836 * reserved extents that need to be freed. This must be called with 4837 * BTRFS_I(inode)->lock held. 4838 */ 4839 static unsigned drop_outstanding_extent(struct inode *inode) 4840 { 4841 unsigned drop_inode_space = 0; 4842 unsigned dropped_extents = 0; 4843 4844 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4845 BTRFS_I(inode)->outstanding_extents--; 4846 4847 if (BTRFS_I(inode)->outstanding_extents == 0 && 4848 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4849 &BTRFS_I(inode)->runtime_flags)) 4850 drop_inode_space = 1; 4851 4852 /* 4853 * If we have more or the same amount of outsanding extents than we have 4854 * reserved then we need to leave the reserved extents count alone. 4855 */ 4856 if (BTRFS_I(inode)->outstanding_extents >= 4857 BTRFS_I(inode)->reserved_extents) 4858 return drop_inode_space; 4859 4860 dropped_extents = BTRFS_I(inode)->reserved_extents - 4861 BTRFS_I(inode)->outstanding_extents; 4862 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4863 return dropped_extents + drop_inode_space; 4864 } 4865 4866 /** 4867 * calc_csum_metadata_size - return the amount of metada space that must be 4868 * reserved/free'd for the given bytes. 4869 * @inode: the inode we're manipulating 4870 * @num_bytes: the number of bytes in question 4871 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4872 * 4873 * This adjusts the number of csum_bytes in the inode and then returns the 4874 * correct amount of metadata that must either be reserved or freed. We 4875 * calculate how many checksums we can fit into one leaf and then divide the 4876 * number of bytes that will need to be checksumed by this value to figure out 4877 * how many checksums will be required. If we are adding bytes then the number 4878 * may go up and we will return the number of additional bytes that must be 4879 * reserved. If it is going down we will return the number of bytes that must 4880 * be freed. 4881 * 4882 * This must be called with BTRFS_I(inode)->lock held. 4883 */ 4884 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4885 int reserve) 4886 { 4887 struct btrfs_root *root = BTRFS_I(inode)->root; 4888 u64 csum_size; 4889 int num_csums_per_leaf; 4890 int num_csums; 4891 int old_csums; 4892 4893 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4894 BTRFS_I(inode)->csum_bytes == 0) 4895 return 0; 4896 4897 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4898 if (reserve) 4899 BTRFS_I(inode)->csum_bytes += num_bytes; 4900 else 4901 BTRFS_I(inode)->csum_bytes -= num_bytes; 4902 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4903 num_csums_per_leaf = (int)div64_u64(csum_size, 4904 sizeof(struct btrfs_csum_item) + 4905 sizeof(struct btrfs_disk_key)); 4906 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4907 num_csums = num_csums + num_csums_per_leaf - 1; 4908 num_csums = num_csums / num_csums_per_leaf; 4909 4910 old_csums = old_csums + num_csums_per_leaf - 1; 4911 old_csums = old_csums / num_csums_per_leaf; 4912 4913 /* No change, no need to reserve more */ 4914 if (old_csums == num_csums) 4915 return 0; 4916 4917 if (reserve) 4918 return btrfs_calc_trans_metadata_size(root, 4919 num_csums - old_csums); 4920 4921 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4922 } 4923 4924 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4925 { 4926 struct btrfs_root *root = BTRFS_I(inode)->root; 4927 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4928 u64 to_reserve = 0; 4929 u64 csum_bytes; 4930 unsigned nr_extents = 0; 4931 int extra_reserve = 0; 4932 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4933 int ret = 0; 4934 bool delalloc_lock = true; 4935 u64 to_free = 0; 4936 unsigned dropped; 4937 4938 /* If we are a free space inode we need to not flush since we will be in 4939 * the middle of a transaction commit. We also don't need the delalloc 4940 * mutex since we won't race with anybody. We need this mostly to make 4941 * lockdep shut its filthy mouth. 4942 */ 4943 if (btrfs_is_free_space_inode(inode)) { 4944 flush = BTRFS_RESERVE_NO_FLUSH; 4945 delalloc_lock = false; 4946 } 4947 4948 if (flush != BTRFS_RESERVE_NO_FLUSH && 4949 btrfs_transaction_in_commit(root->fs_info)) 4950 schedule_timeout(1); 4951 4952 if (delalloc_lock) 4953 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4954 4955 num_bytes = ALIGN(num_bytes, root->sectorsize); 4956 4957 spin_lock(&BTRFS_I(inode)->lock); 4958 BTRFS_I(inode)->outstanding_extents++; 4959 4960 if (BTRFS_I(inode)->outstanding_extents > 4961 BTRFS_I(inode)->reserved_extents) 4962 nr_extents = BTRFS_I(inode)->outstanding_extents - 4963 BTRFS_I(inode)->reserved_extents; 4964 4965 /* 4966 * Add an item to reserve for updating the inode when we complete the 4967 * delalloc io. 4968 */ 4969 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4970 &BTRFS_I(inode)->runtime_flags)) { 4971 nr_extents++; 4972 extra_reserve = 1; 4973 } 4974 4975 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4976 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4977 csum_bytes = BTRFS_I(inode)->csum_bytes; 4978 spin_unlock(&BTRFS_I(inode)->lock); 4979 4980 if (root->fs_info->quota_enabled) { 4981 ret = btrfs_qgroup_reserve(root, num_bytes + 4982 nr_extents * root->leafsize); 4983 if (ret) 4984 goto out_fail; 4985 } 4986 4987 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4988 if (unlikely(ret)) { 4989 if (root->fs_info->quota_enabled) 4990 btrfs_qgroup_free(root, num_bytes + 4991 nr_extents * root->leafsize); 4992 goto out_fail; 4993 } 4994 4995 spin_lock(&BTRFS_I(inode)->lock); 4996 if (extra_reserve) { 4997 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4998 &BTRFS_I(inode)->runtime_flags); 4999 nr_extents--; 5000 } 5001 BTRFS_I(inode)->reserved_extents += nr_extents; 5002 spin_unlock(&BTRFS_I(inode)->lock); 5003 5004 if (delalloc_lock) 5005 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5006 5007 if (to_reserve) 5008 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5009 btrfs_ino(inode), to_reserve, 1); 5010 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5011 5012 return 0; 5013 5014 out_fail: 5015 spin_lock(&BTRFS_I(inode)->lock); 5016 dropped = drop_outstanding_extent(inode); 5017 /* 5018 * If the inodes csum_bytes is the same as the original 5019 * csum_bytes then we know we haven't raced with any free()ers 5020 * so we can just reduce our inodes csum bytes and carry on. 5021 */ 5022 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5023 calc_csum_metadata_size(inode, num_bytes, 0); 5024 } else { 5025 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5026 u64 bytes; 5027 5028 /* 5029 * This is tricky, but first we need to figure out how much we 5030 * free'd from any free-ers that occured during this 5031 * reservation, so we reset ->csum_bytes to the csum_bytes 5032 * before we dropped our lock, and then call the free for the 5033 * number of bytes that were freed while we were trying our 5034 * reservation. 5035 */ 5036 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5037 BTRFS_I(inode)->csum_bytes = csum_bytes; 5038 to_free = calc_csum_metadata_size(inode, bytes, 0); 5039 5040 5041 /* 5042 * Now we need to see how much we would have freed had we not 5043 * been making this reservation and our ->csum_bytes were not 5044 * artificially inflated. 5045 */ 5046 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5047 bytes = csum_bytes - orig_csum_bytes; 5048 bytes = calc_csum_metadata_size(inode, bytes, 0); 5049 5050 /* 5051 * Now reset ->csum_bytes to what it should be. If bytes is 5052 * more than to_free then we would have free'd more space had we 5053 * not had an artificially high ->csum_bytes, so we need to free 5054 * the remainder. If bytes is the same or less then we don't 5055 * need to do anything, the other free-ers did the correct 5056 * thing. 5057 */ 5058 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5059 if (bytes > to_free) 5060 to_free = bytes - to_free; 5061 else 5062 to_free = 0; 5063 } 5064 spin_unlock(&BTRFS_I(inode)->lock); 5065 if (dropped) 5066 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5067 5068 if (to_free) { 5069 btrfs_block_rsv_release(root, block_rsv, to_free); 5070 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5071 btrfs_ino(inode), to_free, 0); 5072 } 5073 if (delalloc_lock) 5074 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5075 return ret; 5076 } 5077 5078 /** 5079 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5080 * @inode: the inode to release the reservation for 5081 * @num_bytes: the number of bytes we're releasing 5082 * 5083 * This will release the metadata reservation for an inode. This can be called 5084 * once we complete IO for a given set of bytes to release their metadata 5085 * reservations. 5086 */ 5087 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5088 { 5089 struct btrfs_root *root = BTRFS_I(inode)->root; 5090 u64 to_free = 0; 5091 unsigned dropped; 5092 5093 num_bytes = ALIGN(num_bytes, root->sectorsize); 5094 spin_lock(&BTRFS_I(inode)->lock); 5095 dropped = drop_outstanding_extent(inode); 5096 5097 if (num_bytes) 5098 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5099 spin_unlock(&BTRFS_I(inode)->lock); 5100 if (dropped > 0) 5101 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5102 5103 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5104 btrfs_ino(inode), to_free, 0); 5105 if (root->fs_info->quota_enabled) { 5106 btrfs_qgroup_free(root, num_bytes + 5107 dropped * root->leafsize); 5108 } 5109 5110 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5111 to_free); 5112 } 5113 5114 /** 5115 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5116 * @inode: inode we're writing to 5117 * @num_bytes: the number of bytes we want to allocate 5118 * 5119 * This will do the following things 5120 * 5121 * o reserve space in the data space info for num_bytes 5122 * o reserve space in the metadata space info based on number of outstanding 5123 * extents and how much csums will be needed 5124 * o add to the inodes ->delalloc_bytes 5125 * o add it to the fs_info's delalloc inodes list. 5126 * 5127 * This will return 0 for success and -ENOSPC if there is no space left. 5128 */ 5129 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5130 { 5131 int ret; 5132 5133 ret = btrfs_check_data_free_space(inode, num_bytes); 5134 if (ret) 5135 return ret; 5136 5137 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5138 if (ret) { 5139 btrfs_free_reserved_data_space(inode, num_bytes); 5140 return ret; 5141 } 5142 5143 return 0; 5144 } 5145 5146 /** 5147 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5148 * @inode: inode we're releasing space for 5149 * @num_bytes: the number of bytes we want to free up 5150 * 5151 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5152 * called in the case that we don't need the metadata AND data reservations 5153 * anymore. So if there is an error or we insert an inline extent. 5154 * 5155 * This function will release the metadata space that was not used and will 5156 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5157 * list if there are no delalloc bytes left. 5158 */ 5159 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5160 { 5161 btrfs_delalloc_release_metadata(inode, num_bytes); 5162 btrfs_free_reserved_data_space(inode, num_bytes); 5163 } 5164 5165 static int update_block_group(struct btrfs_root *root, 5166 u64 bytenr, u64 num_bytes, int alloc) 5167 { 5168 struct btrfs_block_group_cache *cache = NULL; 5169 struct btrfs_fs_info *info = root->fs_info; 5170 u64 total = num_bytes; 5171 u64 old_val; 5172 u64 byte_in_group; 5173 int factor; 5174 5175 /* block accounting for super block */ 5176 spin_lock(&info->delalloc_root_lock); 5177 old_val = btrfs_super_bytes_used(info->super_copy); 5178 if (alloc) 5179 old_val += num_bytes; 5180 else 5181 old_val -= num_bytes; 5182 btrfs_set_super_bytes_used(info->super_copy, old_val); 5183 spin_unlock(&info->delalloc_root_lock); 5184 5185 while (total) { 5186 cache = btrfs_lookup_block_group(info, bytenr); 5187 if (!cache) 5188 return -ENOENT; 5189 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5190 BTRFS_BLOCK_GROUP_RAID1 | 5191 BTRFS_BLOCK_GROUP_RAID10)) 5192 factor = 2; 5193 else 5194 factor = 1; 5195 /* 5196 * If this block group has free space cache written out, we 5197 * need to make sure to load it if we are removing space. This 5198 * is because we need the unpinning stage to actually add the 5199 * space back to the block group, otherwise we will leak space. 5200 */ 5201 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5202 cache_block_group(cache, 1); 5203 5204 byte_in_group = bytenr - cache->key.objectid; 5205 WARN_ON(byte_in_group > cache->key.offset); 5206 5207 spin_lock(&cache->space_info->lock); 5208 spin_lock(&cache->lock); 5209 5210 if (btrfs_test_opt(root, SPACE_CACHE) && 5211 cache->disk_cache_state < BTRFS_DC_CLEAR) 5212 cache->disk_cache_state = BTRFS_DC_CLEAR; 5213 5214 cache->dirty = 1; 5215 old_val = btrfs_block_group_used(&cache->item); 5216 num_bytes = min(total, cache->key.offset - byte_in_group); 5217 if (alloc) { 5218 old_val += num_bytes; 5219 btrfs_set_block_group_used(&cache->item, old_val); 5220 cache->reserved -= num_bytes; 5221 cache->space_info->bytes_reserved -= num_bytes; 5222 cache->space_info->bytes_used += num_bytes; 5223 cache->space_info->disk_used += num_bytes * factor; 5224 spin_unlock(&cache->lock); 5225 spin_unlock(&cache->space_info->lock); 5226 } else { 5227 old_val -= num_bytes; 5228 btrfs_set_block_group_used(&cache->item, old_val); 5229 cache->pinned += num_bytes; 5230 cache->space_info->bytes_pinned += num_bytes; 5231 cache->space_info->bytes_used -= num_bytes; 5232 cache->space_info->disk_used -= num_bytes * factor; 5233 spin_unlock(&cache->lock); 5234 spin_unlock(&cache->space_info->lock); 5235 5236 set_extent_dirty(info->pinned_extents, 5237 bytenr, bytenr + num_bytes - 1, 5238 GFP_NOFS | __GFP_NOFAIL); 5239 } 5240 btrfs_put_block_group(cache); 5241 total -= num_bytes; 5242 bytenr += num_bytes; 5243 } 5244 return 0; 5245 } 5246 5247 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5248 { 5249 struct btrfs_block_group_cache *cache; 5250 u64 bytenr; 5251 5252 spin_lock(&root->fs_info->block_group_cache_lock); 5253 bytenr = root->fs_info->first_logical_byte; 5254 spin_unlock(&root->fs_info->block_group_cache_lock); 5255 5256 if (bytenr < (u64)-1) 5257 return bytenr; 5258 5259 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5260 if (!cache) 5261 return 0; 5262 5263 bytenr = cache->key.objectid; 5264 btrfs_put_block_group(cache); 5265 5266 return bytenr; 5267 } 5268 5269 static int pin_down_extent(struct btrfs_root *root, 5270 struct btrfs_block_group_cache *cache, 5271 u64 bytenr, u64 num_bytes, int reserved) 5272 { 5273 spin_lock(&cache->space_info->lock); 5274 spin_lock(&cache->lock); 5275 cache->pinned += num_bytes; 5276 cache->space_info->bytes_pinned += num_bytes; 5277 if (reserved) { 5278 cache->reserved -= num_bytes; 5279 cache->space_info->bytes_reserved -= num_bytes; 5280 } 5281 spin_unlock(&cache->lock); 5282 spin_unlock(&cache->space_info->lock); 5283 5284 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5285 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5286 if (reserved) 5287 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5288 return 0; 5289 } 5290 5291 /* 5292 * this function must be called within transaction 5293 */ 5294 int btrfs_pin_extent(struct btrfs_root *root, 5295 u64 bytenr, u64 num_bytes, int reserved) 5296 { 5297 struct btrfs_block_group_cache *cache; 5298 5299 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5300 BUG_ON(!cache); /* Logic error */ 5301 5302 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5303 5304 btrfs_put_block_group(cache); 5305 return 0; 5306 } 5307 5308 /* 5309 * this function must be called within transaction 5310 */ 5311 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5312 u64 bytenr, u64 num_bytes) 5313 { 5314 struct btrfs_block_group_cache *cache; 5315 int ret; 5316 5317 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5318 if (!cache) 5319 return -EINVAL; 5320 5321 /* 5322 * pull in the free space cache (if any) so that our pin 5323 * removes the free space from the cache. We have load_only set 5324 * to one because the slow code to read in the free extents does check 5325 * the pinned extents. 5326 */ 5327 cache_block_group(cache, 1); 5328 5329 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5330 5331 /* remove us from the free space cache (if we're there at all) */ 5332 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5333 btrfs_put_block_group(cache); 5334 return ret; 5335 } 5336 5337 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5338 { 5339 int ret; 5340 struct btrfs_block_group_cache *block_group; 5341 struct btrfs_caching_control *caching_ctl; 5342 5343 block_group = btrfs_lookup_block_group(root->fs_info, start); 5344 if (!block_group) 5345 return -EINVAL; 5346 5347 cache_block_group(block_group, 0); 5348 caching_ctl = get_caching_control(block_group); 5349 5350 if (!caching_ctl) { 5351 /* Logic error */ 5352 BUG_ON(!block_group_cache_done(block_group)); 5353 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5354 } else { 5355 mutex_lock(&caching_ctl->mutex); 5356 5357 if (start >= caching_ctl->progress) { 5358 ret = add_excluded_extent(root, start, num_bytes); 5359 } else if (start + num_bytes <= caching_ctl->progress) { 5360 ret = btrfs_remove_free_space(block_group, 5361 start, num_bytes); 5362 } else { 5363 num_bytes = caching_ctl->progress - start; 5364 ret = btrfs_remove_free_space(block_group, 5365 start, num_bytes); 5366 if (ret) 5367 goto out_lock; 5368 5369 num_bytes = (start + num_bytes) - 5370 caching_ctl->progress; 5371 start = caching_ctl->progress; 5372 ret = add_excluded_extent(root, start, num_bytes); 5373 } 5374 out_lock: 5375 mutex_unlock(&caching_ctl->mutex); 5376 put_caching_control(caching_ctl); 5377 } 5378 btrfs_put_block_group(block_group); 5379 return ret; 5380 } 5381 5382 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5383 struct extent_buffer *eb) 5384 { 5385 struct btrfs_file_extent_item *item; 5386 struct btrfs_key key; 5387 int found_type; 5388 int i; 5389 5390 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5391 return 0; 5392 5393 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5394 btrfs_item_key_to_cpu(eb, &key, i); 5395 if (key.type != BTRFS_EXTENT_DATA_KEY) 5396 continue; 5397 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5398 found_type = btrfs_file_extent_type(eb, item); 5399 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5400 continue; 5401 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5402 continue; 5403 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5404 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5405 __exclude_logged_extent(log, key.objectid, key.offset); 5406 } 5407 5408 return 0; 5409 } 5410 5411 /** 5412 * btrfs_update_reserved_bytes - update the block_group and space info counters 5413 * @cache: The cache we are manipulating 5414 * @num_bytes: The number of bytes in question 5415 * @reserve: One of the reservation enums 5416 * 5417 * This is called by the allocator when it reserves space, or by somebody who is 5418 * freeing space that was never actually used on disk. For example if you 5419 * reserve some space for a new leaf in transaction A and before transaction A 5420 * commits you free that leaf, you call this with reserve set to 0 in order to 5421 * clear the reservation. 5422 * 5423 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5424 * ENOSPC accounting. For data we handle the reservation through clearing the 5425 * delalloc bits in the io_tree. We have to do this since we could end up 5426 * allocating less disk space for the amount of data we have reserved in the 5427 * case of compression. 5428 * 5429 * If this is a reservation and the block group has become read only we cannot 5430 * make the reservation and return -EAGAIN, otherwise this function always 5431 * succeeds. 5432 */ 5433 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5434 u64 num_bytes, int reserve) 5435 { 5436 struct btrfs_space_info *space_info = cache->space_info; 5437 int ret = 0; 5438 5439 spin_lock(&space_info->lock); 5440 spin_lock(&cache->lock); 5441 if (reserve != RESERVE_FREE) { 5442 if (cache->ro) { 5443 ret = -EAGAIN; 5444 } else { 5445 cache->reserved += num_bytes; 5446 space_info->bytes_reserved += num_bytes; 5447 if (reserve == RESERVE_ALLOC) { 5448 trace_btrfs_space_reservation(cache->fs_info, 5449 "space_info", space_info->flags, 5450 num_bytes, 0); 5451 space_info->bytes_may_use -= num_bytes; 5452 } 5453 } 5454 } else { 5455 if (cache->ro) 5456 space_info->bytes_readonly += num_bytes; 5457 cache->reserved -= num_bytes; 5458 space_info->bytes_reserved -= num_bytes; 5459 } 5460 spin_unlock(&cache->lock); 5461 spin_unlock(&space_info->lock); 5462 return ret; 5463 } 5464 5465 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5466 struct btrfs_root *root) 5467 { 5468 struct btrfs_fs_info *fs_info = root->fs_info; 5469 struct btrfs_caching_control *next; 5470 struct btrfs_caching_control *caching_ctl; 5471 struct btrfs_block_group_cache *cache; 5472 struct btrfs_space_info *space_info; 5473 5474 down_write(&fs_info->commit_root_sem); 5475 5476 list_for_each_entry_safe(caching_ctl, next, 5477 &fs_info->caching_block_groups, list) { 5478 cache = caching_ctl->block_group; 5479 if (block_group_cache_done(cache)) { 5480 cache->last_byte_to_unpin = (u64)-1; 5481 list_del_init(&caching_ctl->list); 5482 put_caching_control(caching_ctl); 5483 } else { 5484 cache->last_byte_to_unpin = caching_ctl->progress; 5485 } 5486 } 5487 5488 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5489 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5490 else 5491 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5492 5493 up_write(&fs_info->commit_root_sem); 5494 5495 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5496 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5497 5498 update_global_block_rsv(fs_info); 5499 } 5500 5501 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5502 { 5503 struct btrfs_fs_info *fs_info = root->fs_info; 5504 struct btrfs_block_group_cache *cache = NULL; 5505 struct btrfs_space_info *space_info; 5506 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5507 u64 len; 5508 bool readonly; 5509 5510 while (start <= end) { 5511 readonly = false; 5512 if (!cache || 5513 start >= cache->key.objectid + cache->key.offset) { 5514 if (cache) 5515 btrfs_put_block_group(cache); 5516 cache = btrfs_lookup_block_group(fs_info, start); 5517 BUG_ON(!cache); /* Logic error */ 5518 } 5519 5520 len = cache->key.objectid + cache->key.offset - start; 5521 len = min(len, end + 1 - start); 5522 5523 if (start < cache->last_byte_to_unpin) { 5524 len = min(len, cache->last_byte_to_unpin - start); 5525 btrfs_add_free_space(cache, start, len); 5526 } 5527 5528 start += len; 5529 space_info = cache->space_info; 5530 5531 spin_lock(&space_info->lock); 5532 spin_lock(&cache->lock); 5533 cache->pinned -= len; 5534 space_info->bytes_pinned -= len; 5535 if (cache->ro) { 5536 space_info->bytes_readonly += len; 5537 readonly = true; 5538 } 5539 spin_unlock(&cache->lock); 5540 if (!readonly && global_rsv->space_info == space_info) { 5541 spin_lock(&global_rsv->lock); 5542 if (!global_rsv->full) { 5543 len = min(len, global_rsv->size - 5544 global_rsv->reserved); 5545 global_rsv->reserved += len; 5546 space_info->bytes_may_use += len; 5547 if (global_rsv->reserved >= global_rsv->size) 5548 global_rsv->full = 1; 5549 } 5550 spin_unlock(&global_rsv->lock); 5551 } 5552 spin_unlock(&space_info->lock); 5553 } 5554 5555 if (cache) 5556 btrfs_put_block_group(cache); 5557 return 0; 5558 } 5559 5560 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5561 struct btrfs_root *root) 5562 { 5563 struct btrfs_fs_info *fs_info = root->fs_info; 5564 struct extent_io_tree *unpin; 5565 u64 start; 5566 u64 end; 5567 int ret; 5568 5569 if (trans->aborted) 5570 return 0; 5571 5572 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5573 unpin = &fs_info->freed_extents[1]; 5574 else 5575 unpin = &fs_info->freed_extents[0]; 5576 5577 while (1) { 5578 ret = find_first_extent_bit(unpin, 0, &start, &end, 5579 EXTENT_DIRTY, NULL); 5580 if (ret) 5581 break; 5582 5583 if (btrfs_test_opt(root, DISCARD)) 5584 ret = btrfs_discard_extent(root, start, 5585 end + 1 - start, NULL); 5586 5587 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5588 unpin_extent_range(root, start, end); 5589 cond_resched(); 5590 } 5591 5592 return 0; 5593 } 5594 5595 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5596 u64 owner, u64 root_objectid) 5597 { 5598 struct btrfs_space_info *space_info; 5599 u64 flags; 5600 5601 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5602 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5603 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5604 else 5605 flags = BTRFS_BLOCK_GROUP_METADATA; 5606 } else { 5607 flags = BTRFS_BLOCK_GROUP_DATA; 5608 } 5609 5610 space_info = __find_space_info(fs_info, flags); 5611 BUG_ON(!space_info); /* Logic bug */ 5612 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5613 } 5614 5615 5616 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5617 struct btrfs_root *root, 5618 u64 bytenr, u64 num_bytes, u64 parent, 5619 u64 root_objectid, u64 owner_objectid, 5620 u64 owner_offset, int refs_to_drop, 5621 struct btrfs_delayed_extent_op *extent_op) 5622 { 5623 struct btrfs_key key; 5624 struct btrfs_path *path; 5625 struct btrfs_fs_info *info = root->fs_info; 5626 struct btrfs_root *extent_root = info->extent_root; 5627 struct extent_buffer *leaf; 5628 struct btrfs_extent_item *ei; 5629 struct btrfs_extent_inline_ref *iref; 5630 int ret; 5631 int is_data; 5632 int extent_slot = 0; 5633 int found_extent = 0; 5634 int num_to_del = 1; 5635 u32 item_size; 5636 u64 refs; 5637 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5638 SKINNY_METADATA); 5639 5640 path = btrfs_alloc_path(); 5641 if (!path) 5642 return -ENOMEM; 5643 5644 path->reada = 1; 5645 path->leave_spinning = 1; 5646 5647 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5648 BUG_ON(!is_data && refs_to_drop != 1); 5649 5650 if (is_data) 5651 skinny_metadata = 0; 5652 5653 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5654 bytenr, num_bytes, parent, 5655 root_objectid, owner_objectid, 5656 owner_offset); 5657 if (ret == 0) { 5658 extent_slot = path->slots[0]; 5659 while (extent_slot >= 0) { 5660 btrfs_item_key_to_cpu(path->nodes[0], &key, 5661 extent_slot); 5662 if (key.objectid != bytenr) 5663 break; 5664 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5665 key.offset == num_bytes) { 5666 found_extent = 1; 5667 break; 5668 } 5669 if (key.type == BTRFS_METADATA_ITEM_KEY && 5670 key.offset == owner_objectid) { 5671 found_extent = 1; 5672 break; 5673 } 5674 if (path->slots[0] - extent_slot > 5) 5675 break; 5676 extent_slot--; 5677 } 5678 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5679 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5680 if (found_extent && item_size < sizeof(*ei)) 5681 found_extent = 0; 5682 #endif 5683 if (!found_extent) { 5684 BUG_ON(iref); 5685 ret = remove_extent_backref(trans, extent_root, path, 5686 NULL, refs_to_drop, 5687 is_data); 5688 if (ret) { 5689 btrfs_abort_transaction(trans, extent_root, ret); 5690 goto out; 5691 } 5692 btrfs_release_path(path); 5693 path->leave_spinning = 1; 5694 5695 key.objectid = bytenr; 5696 key.type = BTRFS_EXTENT_ITEM_KEY; 5697 key.offset = num_bytes; 5698 5699 if (!is_data && skinny_metadata) { 5700 key.type = BTRFS_METADATA_ITEM_KEY; 5701 key.offset = owner_objectid; 5702 } 5703 5704 ret = btrfs_search_slot(trans, extent_root, 5705 &key, path, -1, 1); 5706 if (ret > 0 && skinny_metadata && path->slots[0]) { 5707 /* 5708 * Couldn't find our skinny metadata item, 5709 * see if we have ye olde extent item. 5710 */ 5711 path->slots[0]--; 5712 btrfs_item_key_to_cpu(path->nodes[0], &key, 5713 path->slots[0]); 5714 if (key.objectid == bytenr && 5715 key.type == BTRFS_EXTENT_ITEM_KEY && 5716 key.offset == num_bytes) 5717 ret = 0; 5718 } 5719 5720 if (ret > 0 && skinny_metadata) { 5721 skinny_metadata = false; 5722 key.type = BTRFS_EXTENT_ITEM_KEY; 5723 key.offset = num_bytes; 5724 btrfs_release_path(path); 5725 ret = btrfs_search_slot(trans, extent_root, 5726 &key, path, -1, 1); 5727 } 5728 5729 if (ret) { 5730 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5731 ret, bytenr); 5732 if (ret > 0) 5733 btrfs_print_leaf(extent_root, 5734 path->nodes[0]); 5735 } 5736 if (ret < 0) { 5737 btrfs_abort_transaction(trans, extent_root, ret); 5738 goto out; 5739 } 5740 extent_slot = path->slots[0]; 5741 } 5742 } else if (WARN_ON(ret == -ENOENT)) { 5743 btrfs_print_leaf(extent_root, path->nodes[0]); 5744 btrfs_err(info, 5745 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5746 bytenr, parent, root_objectid, owner_objectid, 5747 owner_offset); 5748 btrfs_abort_transaction(trans, extent_root, ret); 5749 goto out; 5750 } else { 5751 btrfs_abort_transaction(trans, extent_root, ret); 5752 goto out; 5753 } 5754 5755 leaf = path->nodes[0]; 5756 item_size = btrfs_item_size_nr(leaf, extent_slot); 5757 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5758 if (item_size < sizeof(*ei)) { 5759 BUG_ON(found_extent || extent_slot != path->slots[0]); 5760 ret = convert_extent_item_v0(trans, extent_root, path, 5761 owner_objectid, 0); 5762 if (ret < 0) { 5763 btrfs_abort_transaction(trans, extent_root, ret); 5764 goto out; 5765 } 5766 5767 btrfs_release_path(path); 5768 path->leave_spinning = 1; 5769 5770 key.objectid = bytenr; 5771 key.type = BTRFS_EXTENT_ITEM_KEY; 5772 key.offset = num_bytes; 5773 5774 ret = btrfs_search_slot(trans, extent_root, &key, path, 5775 -1, 1); 5776 if (ret) { 5777 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5778 ret, bytenr); 5779 btrfs_print_leaf(extent_root, path->nodes[0]); 5780 } 5781 if (ret < 0) { 5782 btrfs_abort_transaction(trans, extent_root, ret); 5783 goto out; 5784 } 5785 5786 extent_slot = path->slots[0]; 5787 leaf = path->nodes[0]; 5788 item_size = btrfs_item_size_nr(leaf, extent_slot); 5789 } 5790 #endif 5791 BUG_ON(item_size < sizeof(*ei)); 5792 ei = btrfs_item_ptr(leaf, extent_slot, 5793 struct btrfs_extent_item); 5794 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5795 key.type == BTRFS_EXTENT_ITEM_KEY) { 5796 struct btrfs_tree_block_info *bi; 5797 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5798 bi = (struct btrfs_tree_block_info *)(ei + 1); 5799 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5800 } 5801 5802 refs = btrfs_extent_refs(leaf, ei); 5803 if (refs < refs_to_drop) { 5804 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5805 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5806 ret = -EINVAL; 5807 btrfs_abort_transaction(trans, extent_root, ret); 5808 goto out; 5809 } 5810 refs -= refs_to_drop; 5811 5812 if (refs > 0) { 5813 if (extent_op) 5814 __run_delayed_extent_op(extent_op, leaf, ei); 5815 /* 5816 * In the case of inline back ref, reference count will 5817 * be updated by remove_extent_backref 5818 */ 5819 if (iref) { 5820 BUG_ON(!found_extent); 5821 } else { 5822 btrfs_set_extent_refs(leaf, ei, refs); 5823 btrfs_mark_buffer_dirty(leaf); 5824 } 5825 if (found_extent) { 5826 ret = remove_extent_backref(trans, extent_root, path, 5827 iref, refs_to_drop, 5828 is_data); 5829 if (ret) { 5830 btrfs_abort_transaction(trans, extent_root, ret); 5831 goto out; 5832 } 5833 } 5834 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5835 root_objectid); 5836 } else { 5837 if (found_extent) { 5838 BUG_ON(is_data && refs_to_drop != 5839 extent_data_ref_count(root, path, iref)); 5840 if (iref) { 5841 BUG_ON(path->slots[0] != extent_slot); 5842 } else { 5843 BUG_ON(path->slots[0] != extent_slot + 1); 5844 path->slots[0] = extent_slot; 5845 num_to_del = 2; 5846 } 5847 } 5848 5849 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5850 num_to_del); 5851 if (ret) { 5852 btrfs_abort_transaction(trans, extent_root, ret); 5853 goto out; 5854 } 5855 btrfs_release_path(path); 5856 5857 if (is_data) { 5858 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5859 if (ret) { 5860 btrfs_abort_transaction(trans, extent_root, ret); 5861 goto out; 5862 } 5863 } 5864 5865 ret = update_block_group(root, bytenr, num_bytes, 0); 5866 if (ret) { 5867 btrfs_abort_transaction(trans, extent_root, ret); 5868 goto out; 5869 } 5870 } 5871 out: 5872 btrfs_free_path(path); 5873 return ret; 5874 } 5875 5876 /* 5877 * when we free an block, it is possible (and likely) that we free the last 5878 * delayed ref for that extent as well. This searches the delayed ref tree for 5879 * a given extent, and if there are no other delayed refs to be processed, it 5880 * removes it from the tree. 5881 */ 5882 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5883 struct btrfs_root *root, u64 bytenr) 5884 { 5885 struct btrfs_delayed_ref_head *head; 5886 struct btrfs_delayed_ref_root *delayed_refs; 5887 int ret = 0; 5888 5889 delayed_refs = &trans->transaction->delayed_refs; 5890 spin_lock(&delayed_refs->lock); 5891 head = btrfs_find_delayed_ref_head(trans, bytenr); 5892 if (!head) 5893 goto out_delayed_unlock; 5894 5895 spin_lock(&head->lock); 5896 if (rb_first(&head->ref_root)) 5897 goto out; 5898 5899 if (head->extent_op) { 5900 if (!head->must_insert_reserved) 5901 goto out; 5902 btrfs_free_delayed_extent_op(head->extent_op); 5903 head->extent_op = NULL; 5904 } 5905 5906 /* 5907 * waiting for the lock here would deadlock. If someone else has it 5908 * locked they are already in the process of dropping it anyway 5909 */ 5910 if (!mutex_trylock(&head->mutex)) 5911 goto out; 5912 5913 /* 5914 * at this point we have a head with no other entries. Go 5915 * ahead and process it. 5916 */ 5917 head->node.in_tree = 0; 5918 rb_erase(&head->href_node, &delayed_refs->href_root); 5919 5920 atomic_dec(&delayed_refs->num_entries); 5921 5922 /* 5923 * we don't take a ref on the node because we're removing it from the 5924 * tree, so we just steal the ref the tree was holding. 5925 */ 5926 delayed_refs->num_heads--; 5927 if (head->processing == 0) 5928 delayed_refs->num_heads_ready--; 5929 head->processing = 0; 5930 spin_unlock(&head->lock); 5931 spin_unlock(&delayed_refs->lock); 5932 5933 BUG_ON(head->extent_op); 5934 if (head->must_insert_reserved) 5935 ret = 1; 5936 5937 mutex_unlock(&head->mutex); 5938 btrfs_put_delayed_ref(&head->node); 5939 return ret; 5940 out: 5941 spin_unlock(&head->lock); 5942 5943 out_delayed_unlock: 5944 spin_unlock(&delayed_refs->lock); 5945 return 0; 5946 } 5947 5948 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5949 struct btrfs_root *root, 5950 struct extent_buffer *buf, 5951 u64 parent, int last_ref) 5952 { 5953 struct btrfs_block_group_cache *cache = NULL; 5954 int pin = 1; 5955 int ret; 5956 5957 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5958 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5959 buf->start, buf->len, 5960 parent, root->root_key.objectid, 5961 btrfs_header_level(buf), 5962 BTRFS_DROP_DELAYED_REF, NULL, 0); 5963 BUG_ON(ret); /* -ENOMEM */ 5964 } 5965 5966 if (!last_ref) 5967 return; 5968 5969 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5970 5971 if (btrfs_header_generation(buf) == trans->transid) { 5972 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5973 ret = check_ref_cleanup(trans, root, buf->start); 5974 if (!ret) 5975 goto out; 5976 } 5977 5978 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5979 pin_down_extent(root, cache, buf->start, buf->len, 1); 5980 goto out; 5981 } 5982 5983 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5984 5985 btrfs_add_free_space(cache, buf->start, buf->len); 5986 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5987 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 5988 pin = 0; 5989 } 5990 out: 5991 if (pin) 5992 add_pinned_bytes(root->fs_info, buf->len, 5993 btrfs_header_level(buf), 5994 root->root_key.objectid); 5995 5996 /* 5997 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5998 * anymore. 5999 */ 6000 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6001 btrfs_put_block_group(cache); 6002 } 6003 6004 /* Can return -ENOMEM */ 6005 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6006 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6007 u64 owner, u64 offset, int for_cow) 6008 { 6009 int ret; 6010 struct btrfs_fs_info *fs_info = root->fs_info; 6011 6012 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6013 6014 /* 6015 * tree log blocks never actually go into the extent allocation 6016 * tree, just update pinning info and exit early. 6017 */ 6018 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6019 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6020 /* unlocks the pinned mutex */ 6021 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6022 ret = 0; 6023 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6024 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6025 num_bytes, 6026 parent, root_objectid, (int)owner, 6027 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6028 } else { 6029 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6030 num_bytes, 6031 parent, root_objectid, owner, 6032 offset, BTRFS_DROP_DELAYED_REF, 6033 NULL, for_cow); 6034 } 6035 return ret; 6036 } 6037 6038 static u64 stripe_align(struct btrfs_root *root, 6039 struct btrfs_block_group_cache *cache, 6040 u64 val, u64 num_bytes) 6041 { 6042 u64 ret = ALIGN(val, root->stripesize); 6043 return ret; 6044 } 6045 6046 /* 6047 * when we wait for progress in the block group caching, its because 6048 * our allocation attempt failed at least once. So, we must sleep 6049 * and let some progress happen before we try again. 6050 * 6051 * This function will sleep at least once waiting for new free space to 6052 * show up, and then it will check the block group free space numbers 6053 * for our min num_bytes. Another option is to have it go ahead 6054 * and look in the rbtree for a free extent of a given size, but this 6055 * is a good start. 6056 * 6057 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6058 * any of the information in this block group. 6059 */ 6060 static noinline void 6061 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6062 u64 num_bytes) 6063 { 6064 struct btrfs_caching_control *caching_ctl; 6065 6066 caching_ctl = get_caching_control(cache); 6067 if (!caching_ctl) 6068 return; 6069 6070 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6071 (cache->free_space_ctl->free_space >= num_bytes)); 6072 6073 put_caching_control(caching_ctl); 6074 } 6075 6076 static noinline int 6077 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6078 { 6079 struct btrfs_caching_control *caching_ctl; 6080 int ret = 0; 6081 6082 caching_ctl = get_caching_control(cache); 6083 if (!caching_ctl) 6084 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6085 6086 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6087 if (cache->cached == BTRFS_CACHE_ERROR) 6088 ret = -EIO; 6089 put_caching_control(caching_ctl); 6090 return ret; 6091 } 6092 6093 int __get_raid_index(u64 flags) 6094 { 6095 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6096 return BTRFS_RAID_RAID10; 6097 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6098 return BTRFS_RAID_RAID1; 6099 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6100 return BTRFS_RAID_DUP; 6101 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6102 return BTRFS_RAID_RAID0; 6103 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6104 return BTRFS_RAID_RAID5; 6105 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6106 return BTRFS_RAID_RAID6; 6107 6108 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6109 } 6110 6111 int get_block_group_index(struct btrfs_block_group_cache *cache) 6112 { 6113 return __get_raid_index(cache->flags); 6114 } 6115 6116 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6117 [BTRFS_RAID_RAID10] = "raid10", 6118 [BTRFS_RAID_RAID1] = "raid1", 6119 [BTRFS_RAID_DUP] = "dup", 6120 [BTRFS_RAID_RAID0] = "raid0", 6121 [BTRFS_RAID_SINGLE] = "single", 6122 [BTRFS_RAID_RAID5] = "raid5", 6123 [BTRFS_RAID_RAID6] = "raid6", 6124 }; 6125 6126 static const char *get_raid_name(enum btrfs_raid_types type) 6127 { 6128 if (type >= BTRFS_NR_RAID_TYPES) 6129 return NULL; 6130 6131 return btrfs_raid_type_names[type]; 6132 } 6133 6134 enum btrfs_loop_type { 6135 LOOP_CACHING_NOWAIT = 0, 6136 LOOP_CACHING_WAIT = 1, 6137 LOOP_ALLOC_CHUNK = 2, 6138 LOOP_NO_EMPTY_SIZE = 3, 6139 }; 6140 6141 /* 6142 * walks the btree of allocated extents and find a hole of a given size. 6143 * The key ins is changed to record the hole: 6144 * ins->objectid == start position 6145 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6146 * ins->offset == the size of the hole. 6147 * Any available blocks before search_start are skipped. 6148 * 6149 * If there is no suitable free space, we will record the max size of 6150 * the free space extent currently. 6151 */ 6152 static noinline int find_free_extent(struct btrfs_root *orig_root, 6153 u64 num_bytes, u64 empty_size, 6154 u64 hint_byte, struct btrfs_key *ins, 6155 u64 flags) 6156 { 6157 int ret = 0; 6158 struct btrfs_root *root = orig_root->fs_info->extent_root; 6159 struct btrfs_free_cluster *last_ptr = NULL; 6160 struct btrfs_block_group_cache *block_group = NULL; 6161 u64 search_start = 0; 6162 u64 max_extent_size = 0; 6163 int empty_cluster = 2 * 1024 * 1024; 6164 struct btrfs_space_info *space_info; 6165 int loop = 0; 6166 int index = __get_raid_index(flags); 6167 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6168 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6169 bool failed_cluster_refill = false; 6170 bool failed_alloc = false; 6171 bool use_cluster = true; 6172 bool have_caching_bg = false; 6173 6174 WARN_ON(num_bytes < root->sectorsize); 6175 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6176 ins->objectid = 0; 6177 ins->offset = 0; 6178 6179 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6180 6181 space_info = __find_space_info(root->fs_info, flags); 6182 if (!space_info) { 6183 btrfs_err(root->fs_info, "No space info for %llu", flags); 6184 return -ENOSPC; 6185 } 6186 6187 /* 6188 * If the space info is for both data and metadata it means we have a 6189 * small filesystem and we can't use the clustering stuff. 6190 */ 6191 if (btrfs_mixed_space_info(space_info)) 6192 use_cluster = false; 6193 6194 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6195 last_ptr = &root->fs_info->meta_alloc_cluster; 6196 if (!btrfs_test_opt(root, SSD)) 6197 empty_cluster = 64 * 1024; 6198 } 6199 6200 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6201 btrfs_test_opt(root, SSD)) { 6202 last_ptr = &root->fs_info->data_alloc_cluster; 6203 } 6204 6205 if (last_ptr) { 6206 spin_lock(&last_ptr->lock); 6207 if (last_ptr->block_group) 6208 hint_byte = last_ptr->window_start; 6209 spin_unlock(&last_ptr->lock); 6210 } 6211 6212 search_start = max(search_start, first_logical_byte(root, 0)); 6213 search_start = max(search_start, hint_byte); 6214 6215 if (!last_ptr) 6216 empty_cluster = 0; 6217 6218 if (search_start == hint_byte) { 6219 block_group = btrfs_lookup_block_group(root->fs_info, 6220 search_start); 6221 /* 6222 * we don't want to use the block group if it doesn't match our 6223 * allocation bits, or if its not cached. 6224 * 6225 * However if we are re-searching with an ideal block group 6226 * picked out then we don't care that the block group is cached. 6227 */ 6228 if (block_group && block_group_bits(block_group, flags) && 6229 block_group->cached != BTRFS_CACHE_NO) { 6230 down_read(&space_info->groups_sem); 6231 if (list_empty(&block_group->list) || 6232 block_group->ro) { 6233 /* 6234 * someone is removing this block group, 6235 * we can't jump into the have_block_group 6236 * target because our list pointers are not 6237 * valid 6238 */ 6239 btrfs_put_block_group(block_group); 6240 up_read(&space_info->groups_sem); 6241 } else { 6242 index = get_block_group_index(block_group); 6243 goto have_block_group; 6244 } 6245 } else if (block_group) { 6246 btrfs_put_block_group(block_group); 6247 } 6248 } 6249 search: 6250 have_caching_bg = false; 6251 down_read(&space_info->groups_sem); 6252 list_for_each_entry(block_group, &space_info->block_groups[index], 6253 list) { 6254 u64 offset; 6255 int cached; 6256 6257 btrfs_get_block_group(block_group); 6258 search_start = block_group->key.objectid; 6259 6260 /* 6261 * this can happen if we end up cycling through all the 6262 * raid types, but we want to make sure we only allocate 6263 * for the proper type. 6264 */ 6265 if (!block_group_bits(block_group, flags)) { 6266 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6267 BTRFS_BLOCK_GROUP_RAID1 | 6268 BTRFS_BLOCK_GROUP_RAID5 | 6269 BTRFS_BLOCK_GROUP_RAID6 | 6270 BTRFS_BLOCK_GROUP_RAID10; 6271 6272 /* 6273 * if they asked for extra copies and this block group 6274 * doesn't provide them, bail. This does allow us to 6275 * fill raid0 from raid1. 6276 */ 6277 if ((flags & extra) && !(block_group->flags & extra)) 6278 goto loop; 6279 } 6280 6281 have_block_group: 6282 cached = block_group_cache_done(block_group); 6283 if (unlikely(!cached)) { 6284 ret = cache_block_group(block_group, 0); 6285 BUG_ON(ret < 0); 6286 ret = 0; 6287 } 6288 6289 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6290 goto loop; 6291 if (unlikely(block_group->ro)) 6292 goto loop; 6293 6294 /* 6295 * Ok we want to try and use the cluster allocator, so 6296 * lets look there 6297 */ 6298 if (last_ptr) { 6299 struct btrfs_block_group_cache *used_block_group; 6300 unsigned long aligned_cluster; 6301 /* 6302 * the refill lock keeps out other 6303 * people trying to start a new cluster 6304 */ 6305 spin_lock(&last_ptr->refill_lock); 6306 used_block_group = last_ptr->block_group; 6307 if (used_block_group != block_group && 6308 (!used_block_group || 6309 used_block_group->ro || 6310 !block_group_bits(used_block_group, flags))) 6311 goto refill_cluster; 6312 6313 if (used_block_group != block_group) 6314 btrfs_get_block_group(used_block_group); 6315 6316 offset = btrfs_alloc_from_cluster(used_block_group, 6317 last_ptr, 6318 num_bytes, 6319 used_block_group->key.objectid, 6320 &max_extent_size); 6321 if (offset) { 6322 /* we have a block, we're done */ 6323 spin_unlock(&last_ptr->refill_lock); 6324 trace_btrfs_reserve_extent_cluster(root, 6325 used_block_group, 6326 search_start, num_bytes); 6327 if (used_block_group != block_group) { 6328 btrfs_put_block_group(block_group); 6329 block_group = used_block_group; 6330 } 6331 goto checks; 6332 } 6333 6334 WARN_ON(last_ptr->block_group != used_block_group); 6335 if (used_block_group != block_group) 6336 btrfs_put_block_group(used_block_group); 6337 refill_cluster: 6338 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6339 * set up a new clusters, so lets just skip it 6340 * and let the allocator find whatever block 6341 * it can find. If we reach this point, we 6342 * will have tried the cluster allocator 6343 * plenty of times and not have found 6344 * anything, so we are likely way too 6345 * fragmented for the clustering stuff to find 6346 * anything. 6347 * 6348 * However, if the cluster is taken from the 6349 * current block group, release the cluster 6350 * first, so that we stand a better chance of 6351 * succeeding in the unclustered 6352 * allocation. */ 6353 if (loop >= LOOP_NO_EMPTY_SIZE && 6354 last_ptr->block_group != block_group) { 6355 spin_unlock(&last_ptr->refill_lock); 6356 goto unclustered_alloc; 6357 } 6358 6359 /* 6360 * this cluster didn't work out, free it and 6361 * start over 6362 */ 6363 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6364 6365 if (loop >= LOOP_NO_EMPTY_SIZE) { 6366 spin_unlock(&last_ptr->refill_lock); 6367 goto unclustered_alloc; 6368 } 6369 6370 aligned_cluster = max_t(unsigned long, 6371 empty_cluster + empty_size, 6372 block_group->full_stripe_len); 6373 6374 /* allocate a cluster in this block group */ 6375 ret = btrfs_find_space_cluster(root, block_group, 6376 last_ptr, search_start, 6377 num_bytes, 6378 aligned_cluster); 6379 if (ret == 0) { 6380 /* 6381 * now pull our allocation out of this 6382 * cluster 6383 */ 6384 offset = btrfs_alloc_from_cluster(block_group, 6385 last_ptr, 6386 num_bytes, 6387 search_start, 6388 &max_extent_size); 6389 if (offset) { 6390 /* we found one, proceed */ 6391 spin_unlock(&last_ptr->refill_lock); 6392 trace_btrfs_reserve_extent_cluster(root, 6393 block_group, search_start, 6394 num_bytes); 6395 goto checks; 6396 } 6397 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6398 && !failed_cluster_refill) { 6399 spin_unlock(&last_ptr->refill_lock); 6400 6401 failed_cluster_refill = true; 6402 wait_block_group_cache_progress(block_group, 6403 num_bytes + empty_cluster + empty_size); 6404 goto have_block_group; 6405 } 6406 6407 /* 6408 * at this point we either didn't find a cluster 6409 * or we weren't able to allocate a block from our 6410 * cluster. Free the cluster we've been trying 6411 * to use, and go to the next block group 6412 */ 6413 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6414 spin_unlock(&last_ptr->refill_lock); 6415 goto loop; 6416 } 6417 6418 unclustered_alloc: 6419 spin_lock(&block_group->free_space_ctl->tree_lock); 6420 if (cached && 6421 block_group->free_space_ctl->free_space < 6422 num_bytes + empty_cluster + empty_size) { 6423 if (block_group->free_space_ctl->free_space > 6424 max_extent_size) 6425 max_extent_size = 6426 block_group->free_space_ctl->free_space; 6427 spin_unlock(&block_group->free_space_ctl->tree_lock); 6428 goto loop; 6429 } 6430 spin_unlock(&block_group->free_space_ctl->tree_lock); 6431 6432 offset = btrfs_find_space_for_alloc(block_group, search_start, 6433 num_bytes, empty_size, 6434 &max_extent_size); 6435 /* 6436 * If we didn't find a chunk, and we haven't failed on this 6437 * block group before, and this block group is in the middle of 6438 * caching and we are ok with waiting, then go ahead and wait 6439 * for progress to be made, and set failed_alloc to true. 6440 * 6441 * If failed_alloc is true then we've already waited on this 6442 * block group once and should move on to the next block group. 6443 */ 6444 if (!offset && !failed_alloc && !cached && 6445 loop > LOOP_CACHING_NOWAIT) { 6446 wait_block_group_cache_progress(block_group, 6447 num_bytes + empty_size); 6448 failed_alloc = true; 6449 goto have_block_group; 6450 } else if (!offset) { 6451 if (!cached) 6452 have_caching_bg = true; 6453 goto loop; 6454 } 6455 checks: 6456 search_start = stripe_align(root, block_group, 6457 offset, num_bytes); 6458 6459 /* move on to the next group */ 6460 if (search_start + num_bytes > 6461 block_group->key.objectid + block_group->key.offset) { 6462 btrfs_add_free_space(block_group, offset, num_bytes); 6463 goto loop; 6464 } 6465 6466 if (offset < search_start) 6467 btrfs_add_free_space(block_group, offset, 6468 search_start - offset); 6469 BUG_ON(offset > search_start); 6470 6471 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 6472 alloc_type); 6473 if (ret == -EAGAIN) { 6474 btrfs_add_free_space(block_group, offset, num_bytes); 6475 goto loop; 6476 } 6477 6478 /* we are all good, lets return */ 6479 ins->objectid = search_start; 6480 ins->offset = num_bytes; 6481 6482 trace_btrfs_reserve_extent(orig_root, block_group, 6483 search_start, num_bytes); 6484 btrfs_put_block_group(block_group); 6485 break; 6486 loop: 6487 failed_cluster_refill = false; 6488 failed_alloc = false; 6489 BUG_ON(index != get_block_group_index(block_group)); 6490 btrfs_put_block_group(block_group); 6491 } 6492 up_read(&space_info->groups_sem); 6493 6494 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6495 goto search; 6496 6497 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6498 goto search; 6499 6500 /* 6501 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6502 * caching kthreads as we move along 6503 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6504 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6505 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6506 * again 6507 */ 6508 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6509 index = 0; 6510 loop++; 6511 if (loop == LOOP_ALLOC_CHUNK) { 6512 struct btrfs_trans_handle *trans; 6513 6514 trans = btrfs_join_transaction(root); 6515 if (IS_ERR(trans)) { 6516 ret = PTR_ERR(trans); 6517 goto out; 6518 } 6519 6520 ret = do_chunk_alloc(trans, root, flags, 6521 CHUNK_ALLOC_FORCE); 6522 /* 6523 * Do not bail out on ENOSPC since we 6524 * can do more things. 6525 */ 6526 if (ret < 0 && ret != -ENOSPC) 6527 btrfs_abort_transaction(trans, 6528 root, ret); 6529 else 6530 ret = 0; 6531 btrfs_end_transaction(trans, root); 6532 if (ret) 6533 goto out; 6534 } 6535 6536 if (loop == LOOP_NO_EMPTY_SIZE) { 6537 empty_size = 0; 6538 empty_cluster = 0; 6539 } 6540 6541 goto search; 6542 } else if (!ins->objectid) { 6543 ret = -ENOSPC; 6544 } else if (ins->objectid) { 6545 ret = 0; 6546 } 6547 out: 6548 if (ret == -ENOSPC) 6549 ins->offset = max_extent_size; 6550 return ret; 6551 } 6552 6553 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6554 int dump_block_groups) 6555 { 6556 struct btrfs_block_group_cache *cache; 6557 int index = 0; 6558 6559 spin_lock(&info->lock); 6560 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 6561 info->flags, 6562 info->total_bytes - info->bytes_used - info->bytes_pinned - 6563 info->bytes_reserved - info->bytes_readonly, 6564 (info->full) ? "" : "not "); 6565 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 6566 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6567 info->total_bytes, info->bytes_used, info->bytes_pinned, 6568 info->bytes_reserved, info->bytes_may_use, 6569 info->bytes_readonly); 6570 spin_unlock(&info->lock); 6571 6572 if (!dump_block_groups) 6573 return; 6574 6575 down_read(&info->groups_sem); 6576 again: 6577 list_for_each_entry(cache, &info->block_groups[index], list) { 6578 spin_lock(&cache->lock); 6579 printk(KERN_INFO "BTRFS: " 6580 "block group %llu has %llu bytes, " 6581 "%llu used %llu pinned %llu reserved %s\n", 6582 cache->key.objectid, cache->key.offset, 6583 btrfs_block_group_used(&cache->item), cache->pinned, 6584 cache->reserved, cache->ro ? "[readonly]" : ""); 6585 btrfs_dump_free_space(cache, bytes); 6586 spin_unlock(&cache->lock); 6587 } 6588 if (++index < BTRFS_NR_RAID_TYPES) 6589 goto again; 6590 up_read(&info->groups_sem); 6591 } 6592 6593 int btrfs_reserve_extent(struct btrfs_root *root, 6594 u64 num_bytes, u64 min_alloc_size, 6595 u64 empty_size, u64 hint_byte, 6596 struct btrfs_key *ins, int is_data) 6597 { 6598 bool final_tried = false; 6599 u64 flags; 6600 int ret; 6601 6602 flags = btrfs_get_alloc_profile(root, is_data); 6603 again: 6604 WARN_ON(num_bytes < root->sectorsize); 6605 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6606 flags); 6607 6608 if (ret == -ENOSPC) { 6609 if (!final_tried && ins->offset) { 6610 num_bytes = min(num_bytes >> 1, ins->offset); 6611 num_bytes = round_down(num_bytes, root->sectorsize); 6612 num_bytes = max(num_bytes, min_alloc_size); 6613 if (num_bytes == min_alloc_size) 6614 final_tried = true; 6615 goto again; 6616 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6617 struct btrfs_space_info *sinfo; 6618 6619 sinfo = __find_space_info(root->fs_info, flags); 6620 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6621 flags, num_bytes); 6622 if (sinfo) 6623 dump_space_info(sinfo, num_bytes, 1); 6624 } 6625 } 6626 6627 return ret; 6628 } 6629 6630 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6631 u64 start, u64 len, int pin) 6632 { 6633 struct btrfs_block_group_cache *cache; 6634 int ret = 0; 6635 6636 cache = btrfs_lookup_block_group(root->fs_info, start); 6637 if (!cache) { 6638 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6639 start); 6640 return -ENOSPC; 6641 } 6642 6643 if (btrfs_test_opt(root, DISCARD)) 6644 ret = btrfs_discard_extent(root, start, len, NULL); 6645 6646 if (pin) 6647 pin_down_extent(root, cache, start, len, 1); 6648 else { 6649 btrfs_add_free_space(cache, start, len); 6650 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6651 } 6652 btrfs_put_block_group(cache); 6653 6654 trace_btrfs_reserved_extent_free(root, start, len); 6655 6656 return ret; 6657 } 6658 6659 int btrfs_free_reserved_extent(struct btrfs_root *root, 6660 u64 start, u64 len) 6661 { 6662 return __btrfs_free_reserved_extent(root, start, len, 0); 6663 } 6664 6665 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6666 u64 start, u64 len) 6667 { 6668 return __btrfs_free_reserved_extent(root, start, len, 1); 6669 } 6670 6671 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6672 struct btrfs_root *root, 6673 u64 parent, u64 root_objectid, 6674 u64 flags, u64 owner, u64 offset, 6675 struct btrfs_key *ins, int ref_mod) 6676 { 6677 int ret; 6678 struct btrfs_fs_info *fs_info = root->fs_info; 6679 struct btrfs_extent_item *extent_item; 6680 struct btrfs_extent_inline_ref *iref; 6681 struct btrfs_path *path; 6682 struct extent_buffer *leaf; 6683 int type; 6684 u32 size; 6685 6686 if (parent > 0) 6687 type = BTRFS_SHARED_DATA_REF_KEY; 6688 else 6689 type = BTRFS_EXTENT_DATA_REF_KEY; 6690 6691 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6692 6693 path = btrfs_alloc_path(); 6694 if (!path) 6695 return -ENOMEM; 6696 6697 path->leave_spinning = 1; 6698 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6699 ins, size); 6700 if (ret) { 6701 btrfs_free_path(path); 6702 return ret; 6703 } 6704 6705 leaf = path->nodes[0]; 6706 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6707 struct btrfs_extent_item); 6708 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6709 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6710 btrfs_set_extent_flags(leaf, extent_item, 6711 flags | BTRFS_EXTENT_FLAG_DATA); 6712 6713 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6714 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6715 if (parent > 0) { 6716 struct btrfs_shared_data_ref *ref; 6717 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6718 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6719 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6720 } else { 6721 struct btrfs_extent_data_ref *ref; 6722 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6723 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6724 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6725 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6726 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6727 } 6728 6729 btrfs_mark_buffer_dirty(path->nodes[0]); 6730 btrfs_free_path(path); 6731 6732 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6733 if (ret) { /* -ENOENT, logic error */ 6734 btrfs_err(fs_info, "update block group failed for %llu %llu", 6735 ins->objectid, ins->offset); 6736 BUG(); 6737 } 6738 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6739 return ret; 6740 } 6741 6742 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6743 struct btrfs_root *root, 6744 u64 parent, u64 root_objectid, 6745 u64 flags, struct btrfs_disk_key *key, 6746 int level, struct btrfs_key *ins) 6747 { 6748 int ret; 6749 struct btrfs_fs_info *fs_info = root->fs_info; 6750 struct btrfs_extent_item *extent_item; 6751 struct btrfs_tree_block_info *block_info; 6752 struct btrfs_extent_inline_ref *iref; 6753 struct btrfs_path *path; 6754 struct extent_buffer *leaf; 6755 u32 size = sizeof(*extent_item) + sizeof(*iref); 6756 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6757 SKINNY_METADATA); 6758 6759 if (!skinny_metadata) 6760 size += sizeof(*block_info); 6761 6762 path = btrfs_alloc_path(); 6763 if (!path) { 6764 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6765 root->leafsize); 6766 return -ENOMEM; 6767 } 6768 6769 path->leave_spinning = 1; 6770 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6771 ins, size); 6772 if (ret) { 6773 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6774 root->leafsize); 6775 btrfs_free_path(path); 6776 return ret; 6777 } 6778 6779 leaf = path->nodes[0]; 6780 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6781 struct btrfs_extent_item); 6782 btrfs_set_extent_refs(leaf, extent_item, 1); 6783 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6784 btrfs_set_extent_flags(leaf, extent_item, 6785 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6786 6787 if (skinny_metadata) { 6788 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6789 } else { 6790 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6791 btrfs_set_tree_block_key(leaf, block_info, key); 6792 btrfs_set_tree_block_level(leaf, block_info, level); 6793 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6794 } 6795 6796 if (parent > 0) { 6797 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6798 btrfs_set_extent_inline_ref_type(leaf, iref, 6799 BTRFS_SHARED_BLOCK_REF_KEY); 6800 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6801 } else { 6802 btrfs_set_extent_inline_ref_type(leaf, iref, 6803 BTRFS_TREE_BLOCK_REF_KEY); 6804 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6805 } 6806 6807 btrfs_mark_buffer_dirty(leaf); 6808 btrfs_free_path(path); 6809 6810 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6811 if (ret) { /* -ENOENT, logic error */ 6812 btrfs_err(fs_info, "update block group failed for %llu %llu", 6813 ins->objectid, ins->offset); 6814 BUG(); 6815 } 6816 6817 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize); 6818 return ret; 6819 } 6820 6821 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6822 struct btrfs_root *root, 6823 u64 root_objectid, u64 owner, 6824 u64 offset, struct btrfs_key *ins) 6825 { 6826 int ret; 6827 6828 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6829 6830 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6831 ins->offset, 0, 6832 root_objectid, owner, offset, 6833 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6834 return ret; 6835 } 6836 6837 /* 6838 * this is used by the tree logging recovery code. It records that 6839 * an extent has been allocated and makes sure to clear the free 6840 * space cache bits as well 6841 */ 6842 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6843 struct btrfs_root *root, 6844 u64 root_objectid, u64 owner, u64 offset, 6845 struct btrfs_key *ins) 6846 { 6847 int ret; 6848 struct btrfs_block_group_cache *block_group; 6849 6850 /* 6851 * Mixed block groups will exclude before processing the log so we only 6852 * need to do the exlude dance if this fs isn't mixed. 6853 */ 6854 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6855 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6856 if (ret) 6857 return ret; 6858 } 6859 6860 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6861 if (!block_group) 6862 return -EINVAL; 6863 6864 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6865 RESERVE_ALLOC_NO_ACCOUNT); 6866 BUG_ON(ret); /* logic error */ 6867 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6868 0, owner, offset, ins, 1); 6869 btrfs_put_block_group(block_group); 6870 return ret; 6871 } 6872 6873 static struct extent_buffer * 6874 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6875 u64 bytenr, u32 blocksize, int level) 6876 { 6877 struct extent_buffer *buf; 6878 6879 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6880 if (!buf) 6881 return ERR_PTR(-ENOMEM); 6882 btrfs_set_header_generation(buf, trans->transid); 6883 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6884 btrfs_tree_lock(buf); 6885 clean_tree_block(trans, root, buf); 6886 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6887 6888 btrfs_set_lock_blocking(buf); 6889 btrfs_set_buffer_uptodate(buf); 6890 6891 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6892 /* 6893 * we allow two log transactions at a time, use different 6894 * EXENT bit to differentiate dirty pages. 6895 */ 6896 if (root->log_transid % 2 == 0) 6897 set_extent_dirty(&root->dirty_log_pages, buf->start, 6898 buf->start + buf->len - 1, GFP_NOFS); 6899 else 6900 set_extent_new(&root->dirty_log_pages, buf->start, 6901 buf->start + buf->len - 1, GFP_NOFS); 6902 } else { 6903 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6904 buf->start + buf->len - 1, GFP_NOFS); 6905 } 6906 trans->blocks_used++; 6907 /* this returns a buffer locked for blocking */ 6908 return buf; 6909 } 6910 6911 static struct btrfs_block_rsv * 6912 use_block_rsv(struct btrfs_trans_handle *trans, 6913 struct btrfs_root *root, u32 blocksize) 6914 { 6915 struct btrfs_block_rsv *block_rsv; 6916 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6917 int ret; 6918 bool global_updated = false; 6919 6920 block_rsv = get_block_rsv(trans, root); 6921 6922 if (unlikely(block_rsv->size == 0)) 6923 goto try_reserve; 6924 again: 6925 ret = block_rsv_use_bytes(block_rsv, blocksize); 6926 if (!ret) 6927 return block_rsv; 6928 6929 if (block_rsv->failfast) 6930 return ERR_PTR(ret); 6931 6932 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6933 global_updated = true; 6934 update_global_block_rsv(root->fs_info); 6935 goto again; 6936 } 6937 6938 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6939 static DEFINE_RATELIMIT_STATE(_rs, 6940 DEFAULT_RATELIMIT_INTERVAL * 10, 6941 /*DEFAULT_RATELIMIT_BURST*/ 1); 6942 if (__ratelimit(&_rs)) 6943 WARN(1, KERN_DEBUG 6944 "BTRFS: block rsv returned %d\n", ret); 6945 } 6946 try_reserve: 6947 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6948 BTRFS_RESERVE_NO_FLUSH); 6949 if (!ret) 6950 return block_rsv; 6951 /* 6952 * If we couldn't reserve metadata bytes try and use some from 6953 * the global reserve if its space type is the same as the global 6954 * reservation. 6955 */ 6956 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6957 block_rsv->space_info == global_rsv->space_info) { 6958 ret = block_rsv_use_bytes(global_rsv, blocksize); 6959 if (!ret) 6960 return global_rsv; 6961 } 6962 return ERR_PTR(ret); 6963 } 6964 6965 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6966 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6967 { 6968 block_rsv_add_bytes(block_rsv, blocksize, 0); 6969 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6970 } 6971 6972 /* 6973 * finds a free extent and does all the dirty work required for allocation 6974 * returns the key for the extent through ins, and a tree buffer for 6975 * the first block of the extent through buf. 6976 * 6977 * returns the tree buffer or NULL. 6978 */ 6979 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6980 struct btrfs_root *root, u32 blocksize, 6981 u64 parent, u64 root_objectid, 6982 struct btrfs_disk_key *key, int level, 6983 u64 hint, u64 empty_size) 6984 { 6985 struct btrfs_key ins; 6986 struct btrfs_block_rsv *block_rsv; 6987 struct extent_buffer *buf; 6988 u64 flags = 0; 6989 int ret; 6990 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6991 SKINNY_METADATA); 6992 6993 block_rsv = use_block_rsv(trans, root, blocksize); 6994 if (IS_ERR(block_rsv)) 6995 return ERR_CAST(block_rsv); 6996 6997 ret = btrfs_reserve_extent(root, blocksize, blocksize, 6998 empty_size, hint, &ins, 0); 6999 if (ret) { 7000 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7001 return ERR_PTR(ret); 7002 } 7003 7004 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7005 blocksize, level); 7006 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7007 7008 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7009 if (parent == 0) 7010 parent = ins.objectid; 7011 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7012 } else 7013 BUG_ON(parent > 0); 7014 7015 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7016 struct btrfs_delayed_extent_op *extent_op; 7017 extent_op = btrfs_alloc_delayed_extent_op(); 7018 BUG_ON(!extent_op); /* -ENOMEM */ 7019 if (key) 7020 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7021 else 7022 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7023 extent_op->flags_to_set = flags; 7024 if (skinny_metadata) 7025 extent_op->update_key = 0; 7026 else 7027 extent_op->update_key = 1; 7028 extent_op->update_flags = 1; 7029 extent_op->is_data = 0; 7030 extent_op->level = level; 7031 7032 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7033 ins.objectid, 7034 ins.offset, parent, root_objectid, 7035 level, BTRFS_ADD_DELAYED_EXTENT, 7036 extent_op, 0); 7037 BUG_ON(ret); /* -ENOMEM */ 7038 } 7039 return buf; 7040 } 7041 7042 struct walk_control { 7043 u64 refs[BTRFS_MAX_LEVEL]; 7044 u64 flags[BTRFS_MAX_LEVEL]; 7045 struct btrfs_key update_progress; 7046 int stage; 7047 int level; 7048 int shared_level; 7049 int update_ref; 7050 int keep_locks; 7051 int reada_slot; 7052 int reada_count; 7053 int for_reloc; 7054 }; 7055 7056 #define DROP_REFERENCE 1 7057 #define UPDATE_BACKREF 2 7058 7059 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7060 struct btrfs_root *root, 7061 struct walk_control *wc, 7062 struct btrfs_path *path) 7063 { 7064 u64 bytenr; 7065 u64 generation; 7066 u64 refs; 7067 u64 flags; 7068 u32 nritems; 7069 u32 blocksize; 7070 struct btrfs_key key; 7071 struct extent_buffer *eb; 7072 int ret; 7073 int slot; 7074 int nread = 0; 7075 7076 if (path->slots[wc->level] < wc->reada_slot) { 7077 wc->reada_count = wc->reada_count * 2 / 3; 7078 wc->reada_count = max(wc->reada_count, 2); 7079 } else { 7080 wc->reada_count = wc->reada_count * 3 / 2; 7081 wc->reada_count = min_t(int, wc->reada_count, 7082 BTRFS_NODEPTRS_PER_BLOCK(root)); 7083 } 7084 7085 eb = path->nodes[wc->level]; 7086 nritems = btrfs_header_nritems(eb); 7087 blocksize = btrfs_level_size(root, wc->level - 1); 7088 7089 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7090 if (nread >= wc->reada_count) 7091 break; 7092 7093 cond_resched(); 7094 bytenr = btrfs_node_blockptr(eb, slot); 7095 generation = btrfs_node_ptr_generation(eb, slot); 7096 7097 if (slot == path->slots[wc->level]) 7098 goto reada; 7099 7100 if (wc->stage == UPDATE_BACKREF && 7101 generation <= root->root_key.offset) 7102 continue; 7103 7104 /* We don't lock the tree block, it's OK to be racy here */ 7105 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7106 wc->level - 1, 1, &refs, 7107 &flags); 7108 /* We don't care about errors in readahead. */ 7109 if (ret < 0) 7110 continue; 7111 BUG_ON(refs == 0); 7112 7113 if (wc->stage == DROP_REFERENCE) { 7114 if (refs == 1) 7115 goto reada; 7116 7117 if (wc->level == 1 && 7118 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7119 continue; 7120 if (!wc->update_ref || 7121 generation <= root->root_key.offset) 7122 continue; 7123 btrfs_node_key_to_cpu(eb, &key, slot); 7124 ret = btrfs_comp_cpu_keys(&key, 7125 &wc->update_progress); 7126 if (ret < 0) 7127 continue; 7128 } else { 7129 if (wc->level == 1 && 7130 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7131 continue; 7132 } 7133 reada: 7134 ret = readahead_tree_block(root, bytenr, blocksize, 7135 generation); 7136 if (ret) 7137 break; 7138 nread++; 7139 } 7140 wc->reada_slot = slot; 7141 } 7142 7143 /* 7144 * helper to process tree block while walking down the tree. 7145 * 7146 * when wc->stage == UPDATE_BACKREF, this function updates 7147 * back refs for pointers in the block. 7148 * 7149 * NOTE: return value 1 means we should stop walking down. 7150 */ 7151 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7152 struct btrfs_root *root, 7153 struct btrfs_path *path, 7154 struct walk_control *wc, int lookup_info) 7155 { 7156 int level = wc->level; 7157 struct extent_buffer *eb = path->nodes[level]; 7158 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7159 int ret; 7160 7161 if (wc->stage == UPDATE_BACKREF && 7162 btrfs_header_owner(eb) != root->root_key.objectid) 7163 return 1; 7164 7165 /* 7166 * when reference count of tree block is 1, it won't increase 7167 * again. once full backref flag is set, we never clear it. 7168 */ 7169 if (lookup_info && 7170 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7171 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7172 BUG_ON(!path->locks[level]); 7173 ret = btrfs_lookup_extent_info(trans, root, 7174 eb->start, level, 1, 7175 &wc->refs[level], 7176 &wc->flags[level]); 7177 BUG_ON(ret == -ENOMEM); 7178 if (ret) 7179 return ret; 7180 BUG_ON(wc->refs[level] == 0); 7181 } 7182 7183 if (wc->stage == DROP_REFERENCE) { 7184 if (wc->refs[level] > 1) 7185 return 1; 7186 7187 if (path->locks[level] && !wc->keep_locks) { 7188 btrfs_tree_unlock_rw(eb, path->locks[level]); 7189 path->locks[level] = 0; 7190 } 7191 return 0; 7192 } 7193 7194 /* wc->stage == UPDATE_BACKREF */ 7195 if (!(wc->flags[level] & flag)) { 7196 BUG_ON(!path->locks[level]); 7197 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7198 BUG_ON(ret); /* -ENOMEM */ 7199 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7200 BUG_ON(ret); /* -ENOMEM */ 7201 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7202 eb->len, flag, 7203 btrfs_header_level(eb), 0); 7204 BUG_ON(ret); /* -ENOMEM */ 7205 wc->flags[level] |= flag; 7206 } 7207 7208 /* 7209 * the block is shared by multiple trees, so it's not good to 7210 * keep the tree lock 7211 */ 7212 if (path->locks[level] && level > 0) { 7213 btrfs_tree_unlock_rw(eb, path->locks[level]); 7214 path->locks[level] = 0; 7215 } 7216 return 0; 7217 } 7218 7219 /* 7220 * helper to process tree block pointer. 7221 * 7222 * when wc->stage == DROP_REFERENCE, this function checks 7223 * reference count of the block pointed to. if the block 7224 * is shared and we need update back refs for the subtree 7225 * rooted at the block, this function changes wc->stage to 7226 * UPDATE_BACKREF. if the block is shared and there is no 7227 * need to update back, this function drops the reference 7228 * to the block. 7229 * 7230 * NOTE: return value 1 means we should stop walking down. 7231 */ 7232 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7233 struct btrfs_root *root, 7234 struct btrfs_path *path, 7235 struct walk_control *wc, int *lookup_info) 7236 { 7237 u64 bytenr; 7238 u64 generation; 7239 u64 parent; 7240 u32 blocksize; 7241 struct btrfs_key key; 7242 struct extent_buffer *next; 7243 int level = wc->level; 7244 int reada = 0; 7245 int ret = 0; 7246 7247 generation = btrfs_node_ptr_generation(path->nodes[level], 7248 path->slots[level]); 7249 /* 7250 * if the lower level block was created before the snapshot 7251 * was created, we know there is no need to update back refs 7252 * for the subtree 7253 */ 7254 if (wc->stage == UPDATE_BACKREF && 7255 generation <= root->root_key.offset) { 7256 *lookup_info = 1; 7257 return 1; 7258 } 7259 7260 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7261 blocksize = btrfs_level_size(root, level - 1); 7262 7263 next = btrfs_find_tree_block(root, bytenr, blocksize); 7264 if (!next) { 7265 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7266 if (!next) 7267 return -ENOMEM; 7268 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7269 level - 1); 7270 reada = 1; 7271 } 7272 btrfs_tree_lock(next); 7273 btrfs_set_lock_blocking(next); 7274 7275 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7276 &wc->refs[level - 1], 7277 &wc->flags[level - 1]); 7278 if (ret < 0) { 7279 btrfs_tree_unlock(next); 7280 return ret; 7281 } 7282 7283 if (unlikely(wc->refs[level - 1] == 0)) { 7284 btrfs_err(root->fs_info, "Missing references."); 7285 BUG(); 7286 } 7287 *lookup_info = 0; 7288 7289 if (wc->stage == DROP_REFERENCE) { 7290 if (wc->refs[level - 1] > 1) { 7291 if (level == 1 && 7292 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7293 goto skip; 7294 7295 if (!wc->update_ref || 7296 generation <= root->root_key.offset) 7297 goto skip; 7298 7299 btrfs_node_key_to_cpu(path->nodes[level], &key, 7300 path->slots[level]); 7301 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7302 if (ret < 0) 7303 goto skip; 7304 7305 wc->stage = UPDATE_BACKREF; 7306 wc->shared_level = level - 1; 7307 } 7308 } else { 7309 if (level == 1 && 7310 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7311 goto skip; 7312 } 7313 7314 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7315 btrfs_tree_unlock(next); 7316 free_extent_buffer(next); 7317 next = NULL; 7318 *lookup_info = 1; 7319 } 7320 7321 if (!next) { 7322 if (reada && level == 1) 7323 reada_walk_down(trans, root, wc, path); 7324 next = read_tree_block(root, bytenr, blocksize, generation); 7325 if (!next || !extent_buffer_uptodate(next)) { 7326 free_extent_buffer(next); 7327 return -EIO; 7328 } 7329 btrfs_tree_lock(next); 7330 btrfs_set_lock_blocking(next); 7331 } 7332 7333 level--; 7334 BUG_ON(level != btrfs_header_level(next)); 7335 path->nodes[level] = next; 7336 path->slots[level] = 0; 7337 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7338 wc->level = level; 7339 if (wc->level == 1) 7340 wc->reada_slot = 0; 7341 return 0; 7342 skip: 7343 wc->refs[level - 1] = 0; 7344 wc->flags[level - 1] = 0; 7345 if (wc->stage == DROP_REFERENCE) { 7346 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7347 parent = path->nodes[level]->start; 7348 } else { 7349 BUG_ON(root->root_key.objectid != 7350 btrfs_header_owner(path->nodes[level])); 7351 parent = 0; 7352 } 7353 7354 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7355 root->root_key.objectid, level - 1, 0, 0); 7356 BUG_ON(ret); /* -ENOMEM */ 7357 } 7358 btrfs_tree_unlock(next); 7359 free_extent_buffer(next); 7360 *lookup_info = 1; 7361 return 1; 7362 } 7363 7364 /* 7365 * helper to process tree block while walking up the tree. 7366 * 7367 * when wc->stage == DROP_REFERENCE, this function drops 7368 * reference count on the block. 7369 * 7370 * when wc->stage == UPDATE_BACKREF, this function changes 7371 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7372 * to UPDATE_BACKREF previously while processing the block. 7373 * 7374 * NOTE: return value 1 means we should stop walking up. 7375 */ 7376 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7377 struct btrfs_root *root, 7378 struct btrfs_path *path, 7379 struct walk_control *wc) 7380 { 7381 int ret; 7382 int level = wc->level; 7383 struct extent_buffer *eb = path->nodes[level]; 7384 u64 parent = 0; 7385 7386 if (wc->stage == UPDATE_BACKREF) { 7387 BUG_ON(wc->shared_level < level); 7388 if (level < wc->shared_level) 7389 goto out; 7390 7391 ret = find_next_key(path, level + 1, &wc->update_progress); 7392 if (ret > 0) 7393 wc->update_ref = 0; 7394 7395 wc->stage = DROP_REFERENCE; 7396 wc->shared_level = -1; 7397 path->slots[level] = 0; 7398 7399 /* 7400 * check reference count again if the block isn't locked. 7401 * we should start walking down the tree again if reference 7402 * count is one. 7403 */ 7404 if (!path->locks[level]) { 7405 BUG_ON(level == 0); 7406 btrfs_tree_lock(eb); 7407 btrfs_set_lock_blocking(eb); 7408 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7409 7410 ret = btrfs_lookup_extent_info(trans, root, 7411 eb->start, level, 1, 7412 &wc->refs[level], 7413 &wc->flags[level]); 7414 if (ret < 0) { 7415 btrfs_tree_unlock_rw(eb, path->locks[level]); 7416 path->locks[level] = 0; 7417 return ret; 7418 } 7419 BUG_ON(wc->refs[level] == 0); 7420 if (wc->refs[level] == 1) { 7421 btrfs_tree_unlock_rw(eb, path->locks[level]); 7422 path->locks[level] = 0; 7423 return 1; 7424 } 7425 } 7426 } 7427 7428 /* wc->stage == DROP_REFERENCE */ 7429 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7430 7431 if (wc->refs[level] == 1) { 7432 if (level == 0) { 7433 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7434 ret = btrfs_dec_ref(trans, root, eb, 1, 7435 wc->for_reloc); 7436 else 7437 ret = btrfs_dec_ref(trans, root, eb, 0, 7438 wc->for_reloc); 7439 BUG_ON(ret); /* -ENOMEM */ 7440 } 7441 /* make block locked assertion in clean_tree_block happy */ 7442 if (!path->locks[level] && 7443 btrfs_header_generation(eb) == trans->transid) { 7444 btrfs_tree_lock(eb); 7445 btrfs_set_lock_blocking(eb); 7446 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7447 } 7448 clean_tree_block(trans, root, eb); 7449 } 7450 7451 if (eb == root->node) { 7452 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7453 parent = eb->start; 7454 else 7455 BUG_ON(root->root_key.objectid != 7456 btrfs_header_owner(eb)); 7457 } else { 7458 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7459 parent = path->nodes[level + 1]->start; 7460 else 7461 BUG_ON(root->root_key.objectid != 7462 btrfs_header_owner(path->nodes[level + 1])); 7463 } 7464 7465 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7466 out: 7467 wc->refs[level] = 0; 7468 wc->flags[level] = 0; 7469 return 0; 7470 } 7471 7472 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7473 struct btrfs_root *root, 7474 struct btrfs_path *path, 7475 struct walk_control *wc) 7476 { 7477 int level = wc->level; 7478 int lookup_info = 1; 7479 int ret; 7480 7481 while (level >= 0) { 7482 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7483 if (ret > 0) 7484 break; 7485 7486 if (level == 0) 7487 break; 7488 7489 if (path->slots[level] >= 7490 btrfs_header_nritems(path->nodes[level])) 7491 break; 7492 7493 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7494 if (ret > 0) { 7495 path->slots[level]++; 7496 continue; 7497 } else if (ret < 0) 7498 return ret; 7499 level = wc->level; 7500 } 7501 return 0; 7502 } 7503 7504 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7505 struct btrfs_root *root, 7506 struct btrfs_path *path, 7507 struct walk_control *wc, int max_level) 7508 { 7509 int level = wc->level; 7510 int ret; 7511 7512 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7513 while (level < max_level && path->nodes[level]) { 7514 wc->level = level; 7515 if (path->slots[level] + 1 < 7516 btrfs_header_nritems(path->nodes[level])) { 7517 path->slots[level]++; 7518 return 0; 7519 } else { 7520 ret = walk_up_proc(trans, root, path, wc); 7521 if (ret > 0) 7522 return 0; 7523 7524 if (path->locks[level]) { 7525 btrfs_tree_unlock_rw(path->nodes[level], 7526 path->locks[level]); 7527 path->locks[level] = 0; 7528 } 7529 free_extent_buffer(path->nodes[level]); 7530 path->nodes[level] = NULL; 7531 level++; 7532 } 7533 } 7534 return 1; 7535 } 7536 7537 /* 7538 * drop a subvolume tree. 7539 * 7540 * this function traverses the tree freeing any blocks that only 7541 * referenced by the tree. 7542 * 7543 * when a shared tree block is found. this function decreases its 7544 * reference count by one. if update_ref is true, this function 7545 * also make sure backrefs for the shared block and all lower level 7546 * blocks are properly updated. 7547 * 7548 * If called with for_reloc == 0, may exit early with -EAGAIN 7549 */ 7550 int btrfs_drop_snapshot(struct btrfs_root *root, 7551 struct btrfs_block_rsv *block_rsv, int update_ref, 7552 int for_reloc) 7553 { 7554 struct btrfs_path *path; 7555 struct btrfs_trans_handle *trans; 7556 struct btrfs_root *tree_root = root->fs_info->tree_root; 7557 struct btrfs_root_item *root_item = &root->root_item; 7558 struct walk_control *wc; 7559 struct btrfs_key key; 7560 int err = 0; 7561 int ret; 7562 int level; 7563 bool root_dropped = false; 7564 7565 path = btrfs_alloc_path(); 7566 if (!path) { 7567 err = -ENOMEM; 7568 goto out; 7569 } 7570 7571 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7572 if (!wc) { 7573 btrfs_free_path(path); 7574 err = -ENOMEM; 7575 goto out; 7576 } 7577 7578 trans = btrfs_start_transaction(tree_root, 0); 7579 if (IS_ERR(trans)) { 7580 err = PTR_ERR(trans); 7581 goto out_free; 7582 } 7583 7584 if (block_rsv) 7585 trans->block_rsv = block_rsv; 7586 7587 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7588 level = btrfs_header_level(root->node); 7589 path->nodes[level] = btrfs_lock_root_node(root); 7590 btrfs_set_lock_blocking(path->nodes[level]); 7591 path->slots[level] = 0; 7592 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7593 memset(&wc->update_progress, 0, 7594 sizeof(wc->update_progress)); 7595 } else { 7596 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7597 memcpy(&wc->update_progress, &key, 7598 sizeof(wc->update_progress)); 7599 7600 level = root_item->drop_level; 7601 BUG_ON(level == 0); 7602 path->lowest_level = level; 7603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7604 path->lowest_level = 0; 7605 if (ret < 0) { 7606 err = ret; 7607 goto out_end_trans; 7608 } 7609 WARN_ON(ret > 0); 7610 7611 /* 7612 * unlock our path, this is safe because only this 7613 * function is allowed to delete this snapshot 7614 */ 7615 btrfs_unlock_up_safe(path, 0); 7616 7617 level = btrfs_header_level(root->node); 7618 while (1) { 7619 btrfs_tree_lock(path->nodes[level]); 7620 btrfs_set_lock_blocking(path->nodes[level]); 7621 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7622 7623 ret = btrfs_lookup_extent_info(trans, root, 7624 path->nodes[level]->start, 7625 level, 1, &wc->refs[level], 7626 &wc->flags[level]); 7627 if (ret < 0) { 7628 err = ret; 7629 goto out_end_trans; 7630 } 7631 BUG_ON(wc->refs[level] == 0); 7632 7633 if (level == root_item->drop_level) 7634 break; 7635 7636 btrfs_tree_unlock(path->nodes[level]); 7637 path->locks[level] = 0; 7638 WARN_ON(wc->refs[level] != 1); 7639 level--; 7640 } 7641 } 7642 7643 wc->level = level; 7644 wc->shared_level = -1; 7645 wc->stage = DROP_REFERENCE; 7646 wc->update_ref = update_ref; 7647 wc->keep_locks = 0; 7648 wc->for_reloc = for_reloc; 7649 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7650 7651 while (1) { 7652 7653 ret = walk_down_tree(trans, root, path, wc); 7654 if (ret < 0) { 7655 err = ret; 7656 break; 7657 } 7658 7659 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7660 if (ret < 0) { 7661 err = ret; 7662 break; 7663 } 7664 7665 if (ret > 0) { 7666 BUG_ON(wc->stage != DROP_REFERENCE); 7667 break; 7668 } 7669 7670 if (wc->stage == DROP_REFERENCE) { 7671 level = wc->level; 7672 btrfs_node_key(path->nodes[level], 7673 &root_item->drop_progress, 7674 path->slots[level]); 7675 root_item->drop_level = level; 7676 } 7677 7678 BUG_ON(wc->level == 0); 7679 if (btrfs_should_end_transaction(trans, tree_root) || 7680 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7681 ret = btrfs_update_root(trans, tree_root, 7682 &root->root_key, 7683 root_item); 7684 if (ret) { 7685 btrfs_abort_transaction(trans, tree_root, ret); 7686 err = ret; 7687 goto out_end_trans; 7688 } 7689 7690 btrfs_end_transaction_throttle(trans, tree_root); 7691 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7692 pr_debug("BTRFS: drop snapshot early exit\n"); 7693 err = -EAGAIN; 7694 goto out_free; 7695 } 7696 7697 trans = btrfs_start_transaction(tree_root, 0); 7698 if (IS_ERR(trans)) { 7699 err = PTR_ERR(trans); 7700 goto out_free; 7701 } 7702 if (block_rsv) 7703 trans->block_rsv = block_rsv; 7704 } 7705 } 7706 btrfs_release_path(path); 7707 if (err) 7708 goto out_end_trans; 7709 7710 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7711 if (ret) { 7712 btrfs_abort_transaction(trans, tree_root, ret); 7713 goto out_end_trans; 7714 } 7715 7716 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7717 ret = btrfs_find_root(tree_root, &root->root_key, path, 7718 NULL, NULL); 7719 if (ret < 0) { 7720 btrfs_abort_transaction(trans, tree_root, ret); 7721 err = ret; 7722 goto out_end_trans; 7723 } else if (ret > 0) { 7724 /* if we fail to delete the orphan item this time 7725 * around, it'll get picked up the next time. 7726 * 7727 * The most common failure here is just -ENOENT. 7728 */ 7729 btrfs_del_orphan_item(trans, tree_root, 7730 root->root_key.objectid); 7731 } 7732 } 7733 7734 if (root->in_radix) { 7735 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7736 } else { 7737 free_extent_buffer(root->node); 7738 free_extent_buffer(root->commit_root); 7739 btrfs_put_fs_root(root); 7740 } 7741 root_dropped = true; 7742 out_end_trans: 7743 btrfs_end_transaction_throttle(trans, tree_root); 7744 out_free: 7745 kfree(wc); 7746 btrfs_free_path(path); 7747 out: 7748 /* 7749 * So if we need to stop dropping the snapshot for whatever reason we 7750 * need to make sure to add it back to the dead root list so that we 7751 * keep trying to do the work later. This also cleans up roots if we 7752 * don't have it in the radix (like when we recover after a power fail 7753 * or unmount) so we don't leak memory. 7754 */ 7755 if (!for_reloc && root_dropped == false) 7756 btrfs_add_dead_root(root); 7757 if (err && err != -EAGAIN) 7758 btrfs_std_error(root->fs_info, err); 7759 return err; 7760 } 7761 7762 /* 7763 * drop subtree rooted at tree block 'node'. 7764 * 7765 * NOTE: this function will unlock and release tree block 'node' 7766 * only used by relocation code 7767 */ 7768 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7769 struct btrfs_root *root, 7770 struct extent_buffer *node, 7771 struct extent_buffer *parent) 7772 { 7773 struct btrfs_path *path; 7774 struct walk_control *wc; 7775 int level; 7776 int parent_level; 7777 int ret = 0; 7778 int wret; 7779 7780 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7781 7782 path = btrfs_alloc_path(); 7783 if (!path) 7784 return -ENOMEM; 7785 7786 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7787 if (!wc) { 7788 btrfs_free_path(path); 7789 return -ENOMEM; 7790 } 7791 7792 btrfs_assert_tree_locked(parent); 7793 parent_level = btrfs_header_level(parent); 7794 extent_buffer_get(parent); 7795 path->nodes[parent_level] = parent; 7796 path->slots[parent_level] = btrfs_header_nritems(parent); 7797 7798 btrfs_assert_tree_locked(node); 7799 level = btrfs_header_level(node); 7800 path->nodes[level] = node; 7801 path->slots[level] = 0; 7802 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7803 7804 wc->refs[parent_level] = 1; 7805 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7806 wc->level = level; 7807 wc->shared_level = -1; 7808 wc->stage = DROP_REFERENCE; 7809 wc->update_ref = 0; 7810 wc->keep_locks = 1; 7811 wc->for_reloc = 1; 7812 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7813 7814 while (1) { 7815 wret = walk_down_tree(trans, root, path, wc); 7816 if (wret < 0) { 7817 ret = wret; 7818 break; 7819 } 7820 7821 wret = walk_up_tree(trans, root, path, wc, parent_level); 7822 if (wret < 0) 7823 ret = wret; 7824 if (wret != 0) 7825 break; 7826 } 7827 7828 kfree(wc); 7829 btrfs_free_path(path); 7830 return ret; 7831 } 7832 7833 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7834 { 7835 u64 num_devices; 7836 u64 stripped; 7837 7838 /* 7839 * if restripe for this chunk_type is on pick target profile and 7840 * return, otherwise do the usual balance 7841 */ 7842 stripped = get_restripe_target(root->fs_info, flags); 7843 if (stripped) 7844 return extended_to_chunk(stripped); 7845 7846 /* 7847 * we add in the count of missing devices because we want 7848 * to make sure that any RAID levels on a degraded FS 7849 * continue to be honored. 7850 */ 7851 num_devices = root->fs_info->fs_devices->rw_devices + 7852 root->fs_info->fs_devices->missing_devices; 7853 7854 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7855 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7856 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7857 7858 if (num_devices == 1) { 7859 stripped |= BTRFS_BLOCK_GROUP_DUP; 7860 stripped = flags & ~stripped; 7861 7862 /* turn raid0 into single device chunks */ 7863 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7864 return stripped; 7865 7866 /* turn mirroring into duplication */ 7867 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7868 BTRFS_BLOCK_GROUP_RAID10)) 7869 return stripped | BTRFS_BLOCK_GROUP_DUP; 7870 } else { 7871 /* they already had raid on here, just return */ 7872 if (flags & stripped) 7873 return flags; 7874 7875 stripped |= BTRFS_BLOCK_GROUP_DUP; 7876 stripped = flags & ~stripped; 7877 7878 /* switch duplicated blocks with raid1 */ 7879 if (flags & BTRFS_BLOCK_GROUP_DUP) 7880 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7881 7882 /* this is drive concat, leave it alone */ 7883 } 7884 7885 return flags; 7886 } 7887 7888 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7889 { 7890 struct btrfs_space_info *sinfo = cache->space_info; 7891 u64 num_bytes; 7892 u64 min_allocable_bytes; 7893 int ret = -ENOSPC; 7894 7895 7896 /* 7897 * We need some metadata space and system metadata space for 7898 * allocating chunks in some corner cases until we force to set 7899 * it to be readonly. 7900 */ 7901 if ((sinfo->flags & 7902 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7903 !force) 7904 min_allocable_bytes = 1 * 1024 * 1024; 7905 else 7906 min_allocable_bytes = 0; 7907 7908 spin_lock(&sinfo->lock); 7909 spin_lock(&cache->lock); 7910 7911 if (cache->ro) { 7912 ret = 0; 7913 goto out; 7914 } 7915 7916 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7917 cache->bytes_super - btrfs_block_group_used(&cache->item); 7918 7919 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7920 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7921 min_allocable_bytes <= sinfo->total_bytes) { 7922 sinfo->bytes_readonly += num_bytes; 7923 cache->ro = 1; 7924 ret = 0; 7925 } 7926 out: 7927 spin_unlock(&cache->lock); 7928 spin_unlock(&sinfo->lock); 7929 return ret; 7930 } 7931 7932 int btrfs_set_block_group_ro(struct btrfs_root *root, 7933 struct btrfs_block_group_cache *cache) 7934 7935 { 7936 struct btrfs_trans_handle *trans; 7937 u64 alloc_flags; 7938 int ret; 7939 7940 BUG_ON(cache->ro); 7941 7942 trans = btrfs_join_transaction(root); 7943 if (IS_ERR(trans)) 7944 return PTR_ERR(trans); 7945 7946 alloc_flags = update_block_group_flags(root, cache->flags); 7947 if (alloc_flags != cache->flags) { 7948 ret = do_chunk_alloc(trans, root, alloc_flags, 7949 CHUNK_ALLOC_FORCE); 7950 if (ret < 0) 7951 goto out; 7952 } 7953 7954 ret = set_block_group_ro(cache, 0); 7955 if (!ret) 7956 goto out; 7957 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7958 ret = do_chunk_alloc(trans, root, alloc_flags, 7959 CHUNK_ALLOC_FORCE); 7960 if (ret < 0) 7961 goto out; 7962 ret = set_block_group_ro(cache, 0); 7963 out: 7964 btrfs_end_transaction(trans, root); 7965 return ret; 7966 } 7967 7968 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7969 struct btrfs_root *root, u64 type) 7970 { 7971 u64 alloc_flags = get_alloc_profile(root, type); 7972 return do_chunk_alloc(trans, root, alloc_flags, 7973 CHUNK_ALLOC_FORCE); 7974 } 7975 7976 /* 7977 * helper to account the unused space of all the readonly block group in the 7978 * list. takes mirrors into account. 7979 */ 7980 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7981 { 7982 struct btrfs_block_group_cache *block_group; 7983 u64 free_bytes = 0; 7984 int factor; 7985 7986 list_for_each_entry(block_group, groups_list, list) { 7987 spin_lock(&block_group->lock); 7988 7989 if (!block_group->ro) { 7990 spin_unlock(&block_group->lock); 7991 continue; 7992 } 7993 7994 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7995 BTRFS_BLOCK_GROUP_RAID10 | 7996 BTRFS_BLOCK_GROUP_DUP)) 7997 factor = 2; 7998 else 7999 factor = 1; 8000 8001 free_bytes += (block_group->key.offset - 8002 btrfs_block_group_used(&block_group->item)) * 8003 factor; 8004 8005 spin_unlock(&block_group->lock); 8006 } 8007 8008 return free_bytes; 8009 } 8010 8011 /* 8012 * helper to account the unused space of all the readonly block group in the 8013 * space_info. takes mirrors into account. 8014 */ 8015 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8016 { 8017 int i; 8018 u64 free_bytes = 0; 8019 8020 spin_lock(&sinfo->lock); 8021 8022 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8023 if (!list_empty(&sinfo->block_groups[i])) 8024 free_bytes += __btrfs_get_ro_block_group_free_space( 8025 &sinfo->block_groups[i]); 8026 8027 spin_unlock(&sinfo->lock); 8028 8029 return free_bytes; 8030 } 8031 8032 void btrfs_set_block_group_rw(struct btrfs_root *root, 8033 struct btrfs_block_group_cache *cache) 8034 { 8035 struct btrfs_space_info *sinfo = cache->space_info; 8036 u64 num_bytes; 8037 8038 BUG_ON(!cache->ro); 8039 8040 spin_lock(&sinfo->lock); 8041 spin_lock(&cache->lock); 8042 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8043 cache->bytes_super - btrfs_block_group_used(&cache->item); 8044 sinfo->bytes_readonly -= num_bytes; 8045 cache->ro = 0; 8046 spin_unlock(&cache->lock); 8047 spin_unlock(&sinfo->lock); 8048 } 8049 8050 /* 8051 * checks to see if its even possible to relocate this block group. 8052 * 8053 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8054 * ok to go ahead and try. 8055 */ 8056 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8057 { 8058 struct btrfs_block_group_cache *block_group; 8059 struct btrfs_space_info *space_info; 8060 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8061 struct btrfs_device *device; 8062 struct btrfs_trans_handle *trans; 8063 u64 min_free; 8064 u64 dev_min = 1; 8065 u64 dev_nr = 0; 8066 u64 target; 8067 int index; 8068 int full = 0; 8069 int ret = 0; 8070 8071 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8072 8073 /* odd, couldn't find the block group, leave it alone */ 8074 if (!block_group) 8075 return -1; 8076 8077 min_free = btrfs_block_group_used(&block_group->item); 8078 8079 /* no bytes used, we're good */ 8080 if (!min_free) 8081 goto out; 8082 8083 space_info = block_group->space_info; 8084 spin_lock(&space_info->lock); 8085 8086 full = space_info->full; 8087 8088 /* 8089 * if this is the last block group we have in this space, we can't 8090 * relocate it unless we're able to allocate a new chunk below. 8091 * 8092 * Otherwise, we need to make sure we have room in the space to handle 8093 * all of the extents from this block group. If we can, we're good 8094 */ 8095 if ((space_info->total_bytes != block_group->key.offset) && 8096 (space_info->bytes_used + space_info->bytes_reserved + 8097 space_info->bytes_pinned + space_info->bytes_readonly + 8098 min_free < space_info->total_bytes)) { 8099 spin_unlock(&space_info->lock); 8100 goto out; 8101 } 8102 spin_unlock(&space_info->lock); 8103 8104 /* 8105 * ok we don't have enough space, but maybe we have free space on our 8106 * devices to allocate new chunks for relocation, so loop through our 8107 * alloc devices and guess if we have enough space. if this block 8108 * group is going to be restriped, run checks against the target 8109 * profile instead of the current one. 8110 */ 8111 ret = -1; 8112 8113 /* 8114 * index: 8115 * 0: raid10 8116 * 1: raid1 8117 * 2: dup 8118 * 3: raid0 8119 * 4: single 8120 */ 8121 target = get_restripe_target(root->fs_info, block_group->flags); 8122 if (target) { 8123 index = __get_raid_index(extended_to_chunk(target)); 8124 } else { 8125 /* 8126 * this is just a balance, so if we were marked as full 8127 * we know there is no space for a new chunk 8128 */ 8129 if (full) 8130 goto out; 8131 8132 index = get_block_group_index(block_group); 8133 } 8134 8135 if (index == BTRFS_RAID_RAID10) { 8136 dev_min = 4; 8137 /* Divide by 2 */ 8138 min_free >>= 1; 8139 } else if (index == BTRFS_RAID_RAID1) { 8140 dev_min = 2; 8141 } else if (index == BTRFS_RAID_DUP) { 8142 /* Multiply by 2 */ 8143 min_free <<= 1; 8144 } else if (index == BTRFS_RAID_RAID0) { 8145 dev_min = fs_devices->rw_devices; 8146 do_div(min_free, dev_min); 8147 } 8148 8149 /* We need to do this so that we can look at pending chunks */ 8150 trans = btrfs_join_transaction(root); 8151 if (IS_ERR(trans)) { 8152 ret = PTR_ERR(trans); 8153 goto out; 8154 } 8155 8156 mutex_lock(&root->fs_info->chunk_mutex); 8157 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8158 u64 dev_offset; 8159 8160 /* 8161 * check to make sure we can actually find a chunk with enough 8162 * space to fit our block group in. 8163 */ 8164 if (device->total_bytes > device->bytes_used + min_free && 8165 !device->is_tgtdev_for_dev_replace) { 8166 ret = find_free_dev_extent(trans, device, min_free, 8167 &dev_offset, NULL); 8168 if (!ret) 8169 dev_nr++; 8170 8171 if (dev_nr >= dev_min) 8172 break; 8173 8174 ret = -1; 8175 } 8176 } 8177 mutex_unlock(&root->fs_info->chunk_mutex); 8178 btrfs_end_transaction(trans, root); 8179 out: 8180 btrfs_put_block_group(block_group); 8181 return ret; 8182 } 8183 8184 static int find_first_block_group(struct btrfs_root *root, 8185 struct btrfs_path *path, struct btrfs_key *key) 8186 { 8187 int ret = 0; 8188 struct btrfs_key found_key; 8189 struct extent_buffer *leaf; 8190 int slot; 8191 8192 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8193 if (ret < 0) 8194 goto out; 8195 8196 while (1) { 8197 slot = path->slots[0]; 8198 leaf = path->nodes[0]; 8199 if (slot >= btrfs_header_nritems(leaf)) { 8200 ret = btrfs_next_leaf(root, path); 8201 if (ret == 0) 8202 continue; 8203 if (ret < 0) 8204 goto out; 8205 break; 8206 } 8207 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8208 8209 if (found_key.objectid >= key->objectid && 8210 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8211 ret = 0; 8212 goto out; 8213 } 8214 path->slots[0]++; 8215 } 8216 out: 8217 return ret; 8218 } 8219 8220 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8221 { 8222 struct btrfs_block_group_cache *block_group; 8223 u64 last = 0; 8224 8225 while (1) { 8226 struct inode *inode; 8227 8228 block_group = btrfs_lookup_first_block_group(info, last); 8229 while (block_group) { 8230 spin_lock(&block_group->lock); 8231 if (block_group->iref) 8232 break; 8233 spin_unlock(&block_group->lock); 8234 block_group = next_block_group(info->tree_root, 8235 block_group); 8236 } 8237 if (!block_group) { 8238 if (last == 0) 8239 break; 8240 last = 0; 8241 continue; 8242 } 8243 8244 inode = block_group->inode; 8245 block_group->iref = 0; 8246 block_group->inode = NULL; 8247 spin_unlock(&block_group->lock); 8248 iput(inode); 8249 last = block_group->key.objectid + block_group->key.offset; 8250 btrfs_put_block_group(block_group); 8251 } 8252 } 8253 8254 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8255 { 8256 struct btrfs_block_group_cache *block_group; 8257 struct btrfs_space_info *space_info; 8258 struct btrfs_caching_control *caching_ctl; 8259 struct rb_node *n; 8260 8261 down_write(&info->commit_root_sem); 8262 while (!list_empty(&info->caching_block_groups)) { 8263 caching_ctl = list_entry(info->caching_block_groups.next, 8264 struct btrfs_caching_control, list); 8265 list_del(&caching_ctl->list); 8266 put_caching_control(caching_ctl); 8267 } 8268 up_write(&info->commit_root_sem); 8269 8270 spin_lock(&info->block_group_cache_lock); 8271 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8272 block_group = rb_entry(n, struct btrfs_block_group_cache, 8273 cache_node); 8274 rb_erase(&block_group->cache_node, 8275 &info->block_group_cache_tree); 8276 spin_unlock(&info->block_group_cache_lock); 8277 8278 down_write(&block_group->space_info->groups_sem); 8279 list_del(&block_group->list); 8280 up_write(&block_group->space_info->groups_sem); 8281 8282 if (block_group->cached == BTRFS_CACHE_STARTED) 8283 wait_block_group_cache_done(block_group); 8284 8285 /* 8286 * We haven't cached this block group, which means we could 8287 * possibly have excluded extents on this block group. 8288 */ 8289 if (block_group->cached == BTRFS_CACHE_NO || 8290 block_group->cached == BTRFS_CACHE_ERROR) 8291 free_excluded_extents(info->extent_root, block_group); 8292 8293 btrfs_remove_free_space_cache(block_group); 8294 btrfs_put_block_group(block_group); 8295 8296 spin_lock(&info->block_group_cache_lock); 8297 } 8298 spin_unlock(&info->block_group_cache_lock); 8299 8300 /* now that all the block groups are freed, go through and 8301 * free all the space_info structs. This is only called during 8302 * the final stages of unmount, and so we know nobody is 8303 * using them. We call synchronize_rcu() once before we start, 8304 * just to be on the safe side. 8305 */ 8306 synchronize_rcu(); 8307 8308 release_global_block_rsv(info); 8309 8310 while (!list_empty(&info->space_info)) { 8311 int i; 8312 8313 space_info = list_entry(info->space_info.next, 8314 struct btrfs_space_info, 8315 list); 8316 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8317 if (WARN_ON(space_info->bytes_pinned > 0 || 8318 space_info->bytes_reserved > 0 || 8319 space_info->bytes_may_use > 0)) { 8320 dump_space_info(space_info, 0, 0); 8321 } 8322 } 8323 list_del(&space_info->list); 8324 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 8325 struct kobject *kobj; 8326 kobj = &space_info->block_group_kobjs[i]; 8327 if (kobj->parent) { 8328 kobject_del(kobj); 8329 kobject_put(kobj); 8330 } 8331 } 8332 kobject_del(&space_info->kobj); 8333 kobject_put(&space_info->kobj); 8334 } 8335 return 0; 8336 } 8337 8338 static void __link_block_group(struct btrfs_space_info *space_info, 8339 struct btrfs_block_group_cache *cache) 8340 { 8341 int index = get_block_group_index(cache); 8342 bool first = false; 8343 8344 down_write(&space_info->groups_sem); 8345 if (list_empty(&space_info->block_groups[index])) 8346 first = true; 8347 list_add_tail(&cache->list, &space_info->block_groups[index]); 8348 up_write(&space_info->groups_sem); 8349 8350 if (first) { 8351 struct kobject *kobj = &space_info->block_group_kobjs[index]; 8352 int ret; 8353 8354 kobject_get(&space_info->kobj); /* put in release */ 8355 ret = kobject_add(kobj, &space_info->kobj, "%s", 8356 get_raid_name(index)); 8357 if (ret) { 8358 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 8359 kobject_put(&space_info->kobj); 8360 } 8361 } 8362 } 8363 8364 static struct btrfs_block_group_cache * 8365 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 8366 { 8367 struct btrfs_block_group_cache *cache; 8368 8369 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8370 if (!cache) 8371 return NULL; 8372 8373 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8374 GFP_NOFS); 8375 if (!cache->free_space_ctl) { 8376 kfree(cache); 8377 return NULL; 8378 } 8379 8380 cache->key.objectid = start; 8381 cache->key.offset = size; 8382 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8383 8384 cache->sectorsize = root->sectorsize; 8385 cache->fs_info = root->fs_info; 8386 cache->full_stripe_len = btrfs_full_stripe_len(root, 8387 &root->fs_info->mapping_tree, 8388 start); 8389 atomic_set(&cache->count, 1); 8390 spin_lock_init(&cache->lock); 8391 INIT_LIST_HEAD(&cache->list); 8392 INIT_LIST_HEAD(&cache->cluster_list); 8393 INIT_LIST_HEAD(&cache->new_bg_list); 8394 btrfs_init_free_space_ctl(cache); 8395 8396 return cache; 8397 } 8398 8399 int btrfs_read_block_groups(struct btrfs_root *root) 8400 { 8401 struct btrfs_path *path; 8402 int ret; 8403 struct btrfs_block_group_cache *cache; 8404 struct btrfs_fs_info *info = root->fs_info; 8405 struct btrfs_space_info *space_info; 8406 struct btrfs_key key; 8407 struct btrfs_key found_key; 8408 struct extent_buffer *leaf; 8409 int need_clear = 0; 8410 u64 cache_gen; 8411 8412 root = info->extent_root; 8413 key.objectid = 0; 8414 key.offset = 0; 8415 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8416 path = btrfs_alloc_path(); 8417 if (!path) 8418 return -ENOMEM; 8419 path->reada = 1; 8420 8421 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8422 if (btrfs_test_opt(root, SPACE_CACHE) && 8423 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8424 need_clear = 1; 8425 if (btrfs_test_opt(root, CLEAR_CACHE)) 8426 need_clear = 1; 8427 8428 while (1) { 8429 ret = find_first_block_group(root, path, &key); 8430 if (ret > 0) 8431 break; 8432 if (ret != 0) 8433 goto error; 8434 8435 leaf = path->nodes[0]; 8436 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8437 8438 cache = btrfs_create_block_group_cache(root, found_key.objectid, 8439 found_key.offset); 8440 if (!cache) { 8441 ret = -ENOMEM; 8442 goto error; 8443 } 8444 8445 if (need_clear) { 8446 /* 8447 * When we mount with old space cache, we need to 8448 * set BTRFS_DC_CLEAR and set dirty flag. 8449 * 8450 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8451 * truncate the old free space cache inode and 8452 * setup a new one. 8453 * b) Setting 'dirty flag' makes sure that we flush 8454 * the new space cache info onto disk. 8455 */ 8456 cache->disk_cache_state = BTRFS_DC_CLEAR; 8457 if (btrfs_test_opt(root, SPACE_CACHE)) 8458 cache->dirty = 1; 8459 } 8460 8461 read_extent_buffer(leaf, &cache->item, 8462 btrfs_item_ptr_offset(leaf, path->slots[0]), 8463 sizeof(cache->item)); 8464 cache->flags = btrfs_block_group_flags(&cache->item); 8465 8466 key.objectid = found_key.objectid + found_key.offset; 8467 btrfs_release_path(path); 8468 8469 /* 8470 * We need to exclude the super stripes now so that the space 8471 * info has super bytes accounted for, otherwise we'll think 8472 * we have more space than we actually do. 8473 */ 8474 ret = exclude_super_stripes(root, cache); 8475 if (ret) { 8476 /* 8477 * We may have excluded something, so call this just in 8478 * case. 8479 */ 8480 free_excluded_extents(root, cache); 8481 btrfs_put_block_group(cache); 8482 goto error; 8483 } 8484 8485 /* 8486 * check for two cases, either we are full, and therefore 8487 * don't need to bother with the caching work since we won't 8488 * find any space, or we are empty, and we can just add all 8489 * the space in and be done with it. This saves us _alot_ of 8490 * time, particularly in the full case. 8491 */ 8492 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8493 cache->last_byte_to_unpin = (u64)-1; 8494 cache->cached = BTRFS_CACHE_FINISHED; 8495 free_excluded_extents(root, cache); 8496 } else if (btrfs_block_group_used(&cache->item) == 0) { 8497 cache->last_byte_to_unpin = (u64)-1; 8498 cache->cached = BTRFS_CACHE_FINISHED; 8499 add_new_free_space(cache, root->fs_info, 8500 found_key.objectid, 8501 found_key.objectid + 8502 found_key.offset); 8503 free_excluded_extents(root, cache); 8504 } 8505 8506 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8507 if (ret) { 8508 btrfs_remove_free_space_cache(cache); 8509 btrfs_put_block_group(cache); 8510 goto error; 8511 } 8512 8513 ret = update_space_info(info, cache->flags, found_key.offset, 8514 btrfs_block_group_used(&cache->item), 8515 &space_info); 8516 if (ret) { 8517 btrfs_remove_free_space_cache(cache); 8518 spin_lock(&info->block_group_cache_lock); 8519 rb_erase(&cache->cache_node, 8520 &info->block_group_cache_tree); 8521 spin_unlock(&info->block_group_cache_lock); 8522 btrfs_put_block_group(cache); 8523 goto error; 8524 } 8525 8526 cache->space_info = space_info; 8527 spin_lock(&cache->space_info->lock); 8528 cache->space_info->bytes_readonly += cache->bytes_super; 8529 spin_unlock(&cache->space_info->lock); 8530 8531 __link_block_group(space_info, cache); 8532 8533 set_avail_alloc_bits(root->fs_info, cache->flags); 8534 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8535 set_block_group_ro(cache, 1); 8536 } 8537 8538 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8539 if (!(get_alloc_profile(root, space_info->flags) & 8540 (BTRFS_BLOCK_GROUP_RAID10 | 8541 BTRFS_BLOCK_GROUP_RAID1 | 8542 BTRFS_BLOCK_GROUP_RAID5 | 8543 BTRFS_BLOCK_GROUP_RAID6 | 8544 BTRFS_BLOCK_GROUP_DUP))) 8545 continue; 8546 /* 8547 * avoid allocating from un-mirrored block group if there are 8548 * mirrored block groups. 8549 */ 8550 list_for_each_entry(cache, 8551 &space_info->block_groups[BTRFS_RAID_RAID0], 8552 list) 8553 set_block_group_ro(cache, 1); 8554 list_for_each_entry(cache, 8555 &space_info->block_groups[BTRFS_RAID_SINGLE], 8556 list) 8557 set_block_group_ro(cache, 1); 8558 } 8559 8560 init_global_block_rsv(info); 8561 ret = 0; 8562 error: 8563 btrfs_free_path(path); 8564 return ret; 8565 } 8566 8567 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8568 struct btrfs_root *root) 8569 { 8570 struct btrfs_block_group_cache *block_group, *tmp; 8571 struct btrfs_root *extent_root = root->fs_info->extent_root; 8572 struct btrfs_block_group_item item; 8573 struct btrfs_key key; 8574 int ret = 0; 8575 8576 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8577 new_bg_list) { 8578 list_del_init(&block_group->new_bg_list); 8579 8580 if (ret) 8581 continue; 8582 8583 spin_lock(&block_group->lock); 8584 memcpy(&item, &block_group->item, sizeof(item)); 8585 memcpy(&key, &block_group->key, sizeof(key)); 8586 spin_unlock(&block_group->lock); 8587 8588 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8589 sizeof(item)); 8590 if (ret) 8591 btrfs_abort_transaction(trans, extent_root, ret); 8592 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8593 key.objectid, key.offset); 8594 if (ret) 8595 btrfs_abort_transaction(trans, extent_root, ret); 8596 } 8597 } 8598 8599 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8600 struct btrfs_root *root, u64 bytes_used, 8601 u64 type, u64 chunk_objectid, u64 chunk_offset, 8602 u64 size) 8603 { 8604 int ret; 8605 struct btrfs_root *extent_root; 8606 struct btrfs_block_group_cache *cache; 8607 8608 extent_root = root->fs_info->extent_root; 8609 8610 root->fs_info->last_trans_log_full_commit = trans->transid; 8611 8612 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 8613 if (!cache) 8614 return -ENOMEM; 8615 8616 btrfs_set_block_group_used(&cache->item, bytes_used); 8617 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8618 btrfs_set_block_group_flags(&cache->item, type); 8619 8620 cache->flags = type; 8621 cache->last_byte_to_unpin = (u64)-1; 8622 cache->cached = BTRFS_CACHE_FINISHED; 8623 ret = exclude_super_stripes(root, cache); 8624 if (ret) { 8625 /* 8626 * We may have excluded something, so call this just in 8627 * case. 8628 */ 8629 free_excluded_extents(root, cache); 8630 btrfs_put_block_group(cache); 8631 return ret; 8632 } 8633 8634 add_new_free_space(cache, root->fs_info, chunk_offset, 8635 chunk_offset + size); 8636 8637 free_excluded_extents(root, cache); 8638 8639 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8640 if (ret) { 8641 btrfs_remove_free_space_cache(cache); 8642 btrfs_put_block_group(cache); 8643 return ret; 8644 } 8645 8646 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8647 &cache->space_info); 8648 if (ret) { 8649 btrfs_remove_free_space_cache(cache); 8650 spin_lock(&root->fs_info->block_group_cache_lock); 8651 rb_erase(&cache->cache_node, 8652 &root->fs_info->block_group_cache_tree); 8653 spin_unlock(&root->fs_info->block_group_cache_lock); 8654 btrfs_put_block_group(cache); 8655 return ret; 8656 } 8657 update_global_block_rsv(root->fs_info); 8658 8659 spin_lock(&cache->space_info->lock); 8660 cache->space_info->bytes_readonly += cache->bytes_super; 8661 spin_unlock(&cache->space_info->lock); 8662 8663 __link_block_group(cache->space_info, cache); 8664 8665 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8666 8667 set_avail_alloc_bits(extent_root->fs_info, type); 8668 8669 return 0; 8670 } 8671 8672 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8673 { 8674 u64 extra_flags = chunk_to_extended(flags) & 8675 BTRFS_EXTENDED_PROFILE_MASK; 8676 8677 write_seqlock(&fs_info->profiles_lock); 8678 if (flags & BTRFS_BLOCK_GROUP_DATA) 8679 fs_info->avail_data_alloc_bits &= ~extra_flags; 8680 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8681 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8682 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8683 fs_info->avail_system_alloc_bits &= ~extra_flags; 8684 write_sequnlock(&fs_info->profiles_lock); 8685 } 8686 8687 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8688 struct btrfs_root *root, u64 group_start) 8689 { 8690 struct btrfs_path *path; 8691 struct btrfs_block_group_cache *block_group; 8692 struct btrfs_free_cluster *cluster; 8693 struct btrfs_root *tree_root = root->fs_info->tree_root; 8694 struct btrfs_key key; 8695 struct inode *inode; 8696 int ret; 8697 int index; 8698 int factor; 8699 8700 root = root->fs_info->extent_root; 8701 8702 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8703 BUG_ON(!block_group); 8704 BUG_ON(!block_group->ro); 8705 8706 /* 8707 * Free the reserved super bytes from this block group before 8708 * remove it. 8709 */ 8710 free_excluded_extents(root, block_group); 8711 8712 memcpy(&key, &block_group->key, sizeof(key)); 8713 index = get_block_group_index(block_group); 8714 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8715 BTRFS_BLOCK_GROUP_RAID1 | 8716 BTRFS_BLOCK_GROUP_RAID10)) 8717 factor = 2; 8718 else 8719 factor = 1; 8720 8721 /* make sure this block group isn't part of an allocation cluster */ 8722 cluster = &root->fs_info->data_alloc_cluster; 8723 spin_lock(&cluster->refill_lock); 8724 btrfs_return_cluster_to_free_space(block_group, cluster); 8725 spin_unlock(&cluster->refill_lock); 8726 8727 /* 8728 * make sure this block group isn't part of a metadata 8729 * allocation cluster 8730 */ 8731 cluster = &root->fs_info->meta_alloc_cluster; 8732 spin_lock(&cluster->refill_lock); 8733 btrfs_return_cluster_to_free_space(block_group, cluster); 8734 spin_unlock(&cluster->refill_lock); 8735 8736 path = btrfs_alloc_path(); 8737 if (!path) { 8738 ret = -ENOMEM; 8739 goto out; 8740 } 8741 8742 inode = lookup_free_space_inode(tree_root, block_group, path); 8743 if (!IS_ERR(inode)) { 8744 ret = btrfs_orphan_add(trans, inode); 8745 if (ret) { 8746 btrfs_add_delayed_iput(inode); 8747 goto out; 8748 } 8749 clear_nlink(inode); 8750 /* One for the block groups ref */ 8751 spin_lock(&block_group->lock); 8752 if (block_group->iref) { 8753 block_group->iref = 0; 8754 block_group->inode = NULL; 8755 spin_unlock(&block_group->lock); 8756 iput(inode); 8757 } else { 8758 spin_unlock(&block_group->lock); 8759 } 8760 /* One for our lookup ref */ 8761 btrfs_add_delayed_iput(inode); 8762 } 8763 8764 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8765 key.offset = block_group->key.objectid; 8766 key.type = 0; 8767 8768 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8769 if (ret < 0) 8770 goto out; 8771 if (ret > 0) 8772 btrfs_release_path(path); 8773 if (ret == 0) { 8774 ret = btrfs_del_item(trans, tree_root, path); 8775 if (ret) 8776 goto out; 8777 btrfs_release_path(path); 8778 } 8779 8780 spin_lock(&root->fs_info->block_group_cache_lock); 8781 rb_erase(&block_group->cache_node, 8782 &root->fs_info->block_group_cache_tree); 8783 8784 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8785 root->fs_info->first_logical_byte = (u64)-1; 8786 spin_unlock(&root->fs_info->block_group_cache_lock); 8787 8788 down_write(&block_group->space_info->groups_sem); 8789 /* 8790 * we must use list_del_init so people can check to see if they 8791 * are still on the list after taking the semaphore 8792 */ 8793 list_del_init(&block_group->list); 8794 if (list_empty(&block_group->space_info->block_groups[index])) { 8795 kobject_del(&block_group->space_info->block_group_kobjs[index]); 8796 kobject_put(&block_group->space_info->block_group_kobjs[index]); 8797 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8798 } 8799 up_write(&block_group->space_info->groups_sem); 8800 8801 if (block_group->cached == BTRFS_CACHE_STARTED) 8802 wait_block_group_cache_done(block_group); 8803 8804 btrfs_remove_free_space_cache(block_group); 8805 8806 spin_lock(&block_group->space_info->lock); 8807 block_group->space_info->total_bytes -= block_group->key.offset; 8808 block_group->space_info->bytes_readonly -= block_group->key.offset; 8809 block_group->space_info->disk_total -= block_group->key.offset * factor; 8810 spin_unlock(&block_group->space_info->lock); 8811 8812 memcpy(&key, &block_group->key, sizeof(key)); 8813 8814 btrfs_clear_space_info_full(root->fs_info); 8815 8816 btrfs_put_block_group(block_group); 8817 btrfs_put_block_group(block_group); 8818 8819 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8820 if (ret > 0) 8821 ret = -EIO; 8822 if (ret < 0) 8823 goto out; 8824 8825 ret = btrfs_del_item(trans, root, path); 8826 out: 8827 btrfs_free_path(path); 8828 return ret; 8829 } 8830 8831 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8832 { 8833 struct btrfs_space_info *space_info; 8834 struct btrfs_super_block *disk_super; 8835 u64 features; 8836 u64 flags; 8837 int mixed = 0; 8838 int ret; 8839 8840 disk_super = fs_info->super_copy; 8841 if (!btrfs_super_root(disk_super)) 8842 return 1; 8843 8844 features = btrfs_super_incompat_flags(disk_super); 8845 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8846 mixed = 1; 8847 8848 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8849 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8850 if (ret) 8851 goto out; 8852 8853 if (mixed) { 8854 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8855 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8856 } else { 8857 flags = BTRFS_BLOCK_GROUP_METADATA; 8858 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8859 if (ret) 8860 goto out; 8861 8862 flags = BTRFS_BLOCK_GROUP_DATA; 8863 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8864 } 8865 out: 8866 return ret; 8867 } 8868 8869 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8870 { 8871 return unpin_extent_range(root, start, end); 8872 } 8873 8874 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8875 u64 num_bytes, u64 *actual_bytes) 8876 { 8877 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8878 } 8879 8880 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8881 { 8882 struct btrfs_fs_info *fs_info = root->fs_info; 8883 struct btrfs_block_group_cache *cache = NULL; 8884 u64 group_trimmed; 8885 u64 start; 8886 u64 end; 8887 u64 trimmed = 0; 8888 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8889 int ret = 0; 8890 8891 /* 8892 * try to trim all FS space, our block group may start from non-zero. 8893 */ 8894 if (range->len == total_bytes) 8895 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8896 else 8897 cache = btrfs_lookup_block_group(fs_info, range->start); 8898 8899 while (cache) { 8900 if (cache->key.objectid >= (range->start + range->len)) { 8901 btrfs_put_block_group(cache); 8902 break; 8903 } 8904 8905 start = max(range->start, cache->key.objectid); 8906 end = min(range->start + range->len, 8907 cache->key.objectid + cache->key.offset); 8908 8909 if (end - start >= range->minlen) { 8910 if (!block_group_cache_done(cache)) { 8911 ret = cache_block_group(cache, 0); 8912 if (ret) { 8913 btrfs_put_block_group(cache); 8914 break; 8915 } 8916 ret = wait_block_group_cache_done(cache); 8917 if (ret) { 8918 btrfs_put_block_group(cache); 8919 break; 8920 } 8921 } 8922 ret = btrfs_trim_block_group(cache, 8923 &group_trimmed, 8924 start, 8925 end, 8926 range->minlen); 8927 8928 trimmed += group_trimmed; 8929 if (ret) { 8930 btrfs_put_block_group(cache); 8931 break; 8932 } 8933 } 8934 8935 cache = next_block_group(fs_info->tree_root, cache); 8936 } 8937 8938 range->len = trimmed; 8939 return ret; 8940 } 8941 8942 /* 8943 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(), 8944 * they are used to prevent the some tasks writing data into the page cache 8945 * by nocow before the subvolume is snapshoted, but flush the data into 8946 * the disk after the snapshot creation. 8947 */ 8948 void btrfs_end_nocow_write(struct btrfs_root *root) 8949 { 8950 percpu_counter_dec(&root->subv_writers->counter); 8951 /* 8952 * Make sure counter is updated before we wake up 8953 * waiters. 8954 */ 8955 smp_mb(); 8956 if (waitqueue_active(&root->subv_writers->wait)) 8957 wake_up(&root->subv_writers->wait); 8958 } 8959 8960 int btrfs_start_nocow_write(struct btrfs_root *root) 8961 { 8962 if (unlikely(atomic_read(&root->will_be_snapshoted))) 8963 return 0; 8964 8965 percpu_counter_inc(&root->subv_writers->counter); 8966 /* 8967 * Make sure counter is updated before we check for snapshot creation. 8968 */ 8969 smp_mb(); 8970 if (unlikely(atomic_read(&root->will_be_snapshoted))) { 8971 btrfs_end_nocow_write(root); 8972 return 0; 8973 } 8974 return 1; 8975 } 8976