xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 174cd4b1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 			      struct btrfs_fs_info *fs_info, u64 bytenr,
65 			      u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 			       struct btrfs_fs_info *fs_info,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_fs_info *fs_info,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_fs_info *fs_info,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_fs_info *fs_info, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
94 				    u64 ram_bytes, u64 num_bytes, int delalloc);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 				     u64 num_bytes, int delalloc);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 			       u64 num_bytes);
99 static int __reserve_metadata_bytes(struct btrfs_root *root,
100 				    struct btrfs_space_info *space_info,
101 				    u64 orig_bytes,
102 				    enum btrfs_reserve_flush_enum flush);
103 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
104 				     struct btrfs_space_info *space_info,
105 				     u64 num_bytes);
106 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
107 				     struct btrfs_space_info *space_info,
108 				     u64 num_bytes);
109 
110 static noinline int
111 block_group_cache_done(struct btrfs_block_group_cache *cache)
112 {
113 	smp_mb();
114 	return cache->cached == BTRFS_CACHE_FINISHED ||
115 		cache->cached == BTRFS_CACHE_ERROR;
116 }
117 
118 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
119 {
120 	return (cache->flags & bits) == bits;
121 }
122 
123 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124 {
125 	atomic_inc(&cache->count);
126 }
127 
128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	if (atomic_dec_and_test(&cache->count)) {
131 		WARN_ON(cache->pinned > 0);
132 		WARN_ON(cache->reserved > 0);
133 		kfree(cache->free_space_ctl);
134 		kfree(cache);
135 	}
136 }
137 
138 /*
139  * this adds the block group to the fs_info rb tree for the block group
140  * cache
141  */
142 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
143 				struct btrfs_block_group_cache *block_group)
144 {
145 	struct rb_node **p;
146 	struct rb_node *parent = NULL;
147 	struct btrfs_block_group_cache *cache;
148 
149 	spin_lock(&info->block_group_cache_lock);
150 	p = &info->block_group_cache_tree.rb_node;
151 
152 	while (*p) {
153 		parent = *p;
154 		cache = rb_entry(parent, struct btrfs_block_group_cache,
155 				 cache_node);
156 		if (block_group->key.objectid < cache->key.objectid) {
157 			p = &(*p)->rb_left;
158 		} else if (block_group->key.objectid > cache->key.objectid) {
159 			p = &(*p)->rb_right;
160 		} else {
161 			spin_unlock(&info->block_group_cache_lock);
162 			return -EEXIST;
163 		}
164 	}
165 
166 	rb_link_node(&block_group->cache_node, parent, p);
167 	rb_insert_color(&block_group->cache_node,
168 			&info->block_group_cache_tree);
169 
170 	if (info->first_logical_byte > block_group->key.objectid)
171 		info->first_logical_byte = block_group->key.objectid;
172 
173 	spin_unlock(&info->block_group_cache_lock);
174 
175 	return 0;
176 }
177 
178 /*
179  * This will return the block group at or after bytenr if contains is 0, else
180  * it will return the block group that contains the bytenr
181  */
182 static struct btrfs_block_group_cache *
183 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
184 			      int contains)
185 {
186 	struct btrfs_block_group_cache *cache, *ret = NULL;
187 	struct rb_node *n;
188 	u64 end, start;
189 
190 	spin_lock(&info->block_group_cache_lock);
191 	n = info->block_group_cache_tree.rb_node;
192 
193 	while (n) {
194 		cache = rb_entry(n, struct btrfs_block_group_cache,
195 				 cache_node);
196 		end = cache->key.objectid + cache->key.offset - 1;
197 		start = cache->key.objectid;
198 
199 		if (bytenr < start) {
200 			if (!contains && (!ret || start < ret->key.objectid))
201 				ret = cache;
202 			n = n->rb_left;
203 		} else if (bytenr > start) {
204 			if (contains && bytenr <= end) {
205 				ret = cache;
206 				break;
207 			}
208 			n = n->rb_right;
209 		} else {
210 			ret = cache;
211 			break;
212 		}
213 	}
214 	if (ret) {
215 		btrfs_get_block_group(ret);
216 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
217 			info->first_logical_byte = ret->key.objectid;
218 	}
219 	spin_unlock(&info->block_group_cache_lock);
220 
221 	return ret;
222 }
223 
224 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
225 			       u64 start, u64 num_bytes)
226 {
227 	u64 end = start + num_bytes - 1;
228 	set_extent_bits(&fs_info->freed_extents[0],
229 			start, end, EXTENT_UPTODATE);
230 	set_extent_bits(&fs_info->freed_extents[1],
231 			start, end, EXTENT_UPTODATE);
232 	return 0;
233 }
234 
235 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
236 				  struct btrfs_block_group_cache *cache)
237 {
238 	u64 start, end;
239 
240 	start = cache->key.objectid;
241 	end = start + cache->key.offset - 1;
242 
243 	clear_extent_bits(&fs_info->freed_extents[0],
244 			  start, end, EXTENT_UPTODATE);
245 	clear_extent_bits(&fs_info->freed_extents[1],
246 			  start, end, EXTENT_UPTODATE);
247 }
248 
249 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
250 				 struct btrfs_block_group_cache *cache)
251 {
252 	u64 bytenr;
253 	u64 *logical;
254 	int stripe_len;
255 	int i, nr, ret;
256 
257 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
258 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
259 		cache->bytes_super += stripe_len;
260 		ret = add_excluded_extent(fs_info, cache->key.objectid,
261 					  stripe_len);
262 		if (ret)
263 			return ret;
264 	}
265 
266 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
267 		bytenr = btrfs_sb_offset(i);
268 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
269 				       bytenr, 0, &logical, &nr, &stripe_len);
270 		if (ret)
271 			return ret;
272 
273 		while (nr--) {
274 			u64 start, len;
275 
276 			if (logical[nr] > cache->key.objectid +
277 			    cache->key.offset)
278 				continue;
279 
280 			if (logical[nr] + stripe_len <= cache->key.objectid)
281 				continue;
282 
283 			start = logical[nr];
284 			if (start < cache->key.objectid) {
285 				start = cache->key.objectid;
286 				len = (logical[nr] + stripe_len) - start;
287 			} else {
288 				len = min_t(u64, stripe_len,
289 					    cache->key.objectid +
290 					    cache->key.offset - start);
291 			}
292 
293 			cache->bytes_super += len;
294 			ret = add_excluded_extent(fs_info, start, len);
295 			if (ret) {
296 				kfree(logical);
297 				return ret;
298 			}
299 		}
300 
301 		kfree(logical);
302 	}
303 	return 0;
304 }
305 
306 static struct btrfs_caching_control *
307 get_caching_control(struct btrfs_block_group_cache *cache)
308 {
309 	struct btrfs_caching_control *ctl;
310 
311 	spin_lock(&cache->lock);
312 	if (!cache->caching_ctl) {
313 		spin_unlock(&cache->lock);
314 		return NULL;
315 	}
316 
317 	ctl = cache->caching_ctl;
318 	atomic_inc(&ctl->count);
319 	spin_unlock(&cache->lock);
320 	return ctl;
321 }
322 
323 static void put_caching_control(struct btrfs_caching_control *ctl)
324 {
325 	if (atomic_dec_and_test(&ctl->count))
326 		kfree(ctl);
327 }
328 
329 #ifdef CONFIG_BTRFS_DEBUG
330 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
331 {
332 	struct btrfs_fs_info *fs_info = block_group->fs_info;
333 	u64 start = block_group->key.objectid;
334 	u64 len = block_group->key.offset;
335 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
336 		fs_info->nodesize : fs_info->sectorsize;
337 	u64 step = chunk << 1;
338 
339 	while (len > chunk) {
340 		btrfs_remove_free_space(block_group, start, chunk);
341 		start += step;
342 		if (len < step)
343 			len = 0;
344 		else
345 			len -= step;
346 	}
347 }
348 #endif
349 
350 /*
351  * this is only called by cache_block_group, since we could have freed extents
352  * we need to check the pinned_extents for any extents that can't be used yet
353  * since their free space will be released as soon as the transaction commits.
354  */
355 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
356 		       struct btrfs_fs_info *info, u64 start, u64 end)
357 {
358 	u64 extent_start, extent_end, size, total_added = 0;
359 	int ret;
360 
361 	while (start < end) {
362 		ret = find_first_extent_bit(info->pinned_extents, start,
363 					    &extent_start, &extent_end,
364 					    EXTENT_DIRTY | EXTENT_UPTODATE,
365 					    NULL);
366 		if (ret)
367 			break;
368 
369 		if (extent_start <= start) {
370 			start = extent_end + 1;
371 		} else if (extent_start > start && extent_start < end) {
372 			size = extent_start - start;
373 			total_added += size;
374 			ret = btrfs_add_free_space(block_group, start,
375 						   size);
376 			BUG_ON(ret); /* -ENOMEM or logic error */
377 			start = extent_end + 1;
378 		} else {
379 			break;
380 		}
381 	}
382 
383 	if (start < end) {
384 		size = end - start;
385 		total_added += size;
386 		ret = btrfs_add_free_space(block_group, start, size);
387 		BUG_ON(ret); /* -ENOMEM or logic error */
388 	}
389 
390 	return total_added;
391 }
392 
393 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
394 {
395 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
396 	struct btrfs_fs_info *fs_info = block_group->fs_info;
397 	struct btrfs_root *extent_root = fs_info->extent_root;
398 	struct btrfs_path *path;
399 	struct extent_buffer *leaf;
400 	struct btrfs_key key;
401 	u64 total_found = 0;
402 	u64 last = 0;
403 	u32 nritems;
404 	int ret;
405 	bool wakeup = true;
406 
407 	path = btrfs_alloc_path();
408 	if (!path)
409 		return -ENOMEM;
410 
411 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
412 
413 #ifdef CONFIG_BTRFS_DEBUG
414 	/*
415 	 * If we're fragmenting we don't want to make anybody think we can
416 	 * allocate from this block group until we've had a chance to fragment
417 	 * the free space.
418 	 */
419 	if (btrfs_should_fragment_free_space(block_group))
420 		wakeup = false;
421 #endif
422 	/*
423 	 * We don't want to deadlock with somebody trying to allocate a new
424 	 * extent for the extent root while also trying to search the extent
425 	 * root to add free space.  So we skip locking and search the commit
426 	 * root, since its read-only
427 	 */
428 	path->skip_locking = 1;
429 	path->search_commit_root = 1;
430 	path->reada = READA_FORWARD;
431 
432 	key.objectid = last;
433 	key.offset = 0;
434 	key.type = BTRFS_EXTENT_ITEM_KEY;
435 
436 next:
437 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
438 	if (ret < 0)
439 		goto out;
440 
441 	leaf = path->nodes[0];
442 	nritems = btrfs_header_nritems(leaf);
443 
444 	while (1) {
445 		if (btrfs_fs_closing(fs_info) > 1) {
446 			last = (u64)-1;
447 			break;
448 		}
449 
450 		if (path->slots[0] < nritems) {
451 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
452 		} else {
453 			ret = find_next_key(path, 0, &key);
454 			if (ret)
455 				break;
456 
457 			if (need_resched() ||
458 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
459 				if (wakeup)
460 					caching_ctl->progress = last;
461 				btrfs_release_path(path);
462 				up_read(&fs_info->commit_root_sem);
463 				mutex_unlock(&caching_ctl->mutex);
464 				cond_resched();
465 				mutex_lock(&caching_ctl->mutex);
466 				down_read(&fs_info->commit_root_sem);
467 				goto next;
468 			}
469 
470 			ret = btrfs_next_leaf(extent_root, path);
471 			if (ret < 0)
472 				goto out;
473 			if (ret)
474 				break;
475 			leaf = path->nodes[0];
476 			nritems = btrfs_header_nritems(leaf);
477 			continue;
478 		}
479 
480 		if (key.objectid < last) {
481 			key.objectid = last;
482 			key.offset = 0;
483 			key.type = BTRFS_EXTENT_ITEM_KEY;
484 
485 			if (wakeup)
486 				caching_ctl->progress = last;
487 			btrfs_release_path(path);
488 			goto next;
489 		}
490 
491 		if (key.objectid < block_group->key.objectid) {
492 			path->slots[0]++;
493 			continue;
494 		}
495 
496 		if (key.objectid >= block_group->key.objectid +
497 		    block_group->key.offset)
498 			break;
499 
500 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
501 		    key.type == BTRFS_METADATA_ITEM_KEY) {
502 			total_found += add_new_free_space(block_group,
503 							  fs_info, last,
504 							  key.objectid);
505 			if (key.type == BTRFS_METADATA_ITEM_KEY)
506 				last = key.objectid +
507 					fs_info->nodesize;
508 			else
509 				last = key.objectid + key.offset;
510 
511 			if (total_found > CACHING_CTL_WAKE_UP) {
512 				total_found = 0;
513 				if (wakeup)
514 					wake_up(&caching_ctl->wait);
515 			}
516 		}
517 		path->slots[0]++;
518 	}
519 	ret = 0;
520 
521 	total_found += add_new_free_space(block_group, fs_info, last,
522 					  block_group->key.objectid +
523 					  block_group->key.offset);
524 	caching_ctl->progress = (u64)-1;
525 
526 out:
527 	btrfs_free_path(path);
528 	return ret;
529 }
530 
531 static noinline void caching_thread(struct btrfs_work *work)
532 {
533 	struct btrfs_block_group_cache *block_group;
534 	struct btrfs_fs_info *fs_info;
535 	struct btrfs_caching_control *caching_ctl;
536 	struct btrfs_root *extent_root;
537 	int ret;
538 
539 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
540 	block_group = caching_ctl->block_group;
541 	fs_info = block_group->fs_info;
542 	extent_root = fs_info->extent_root;
543 
544 	mutex_lock(&caching_ctl->mutex);
545 	down_read(&fs_info->commit_root_sem);
546 
547 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
548 		ret = load_free_space_tree(caching_ctl);
549 	else
550 		ret = load_extent_tree_free(caching_ctl);
551 
552 	spin_lock(&block_group->lock);
553 	block_group->caching_ctl = NULL;
554 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
555 	spin_unlock(&block_group->lock);
556 
557 #ifdef CONFIG_BTRFS_DEBUG
558 	if (btrfs_should_fragment_free_space(block_group)) {
559 		u64 bytes_used;
560 
561 		spin_lock(&block_group->space_info->lock);
562 		spin_lock(&block_group->lock);
563 		bytes_used = block_group->key.offset -
564 			btrfs_block_group_used(&block_group->item);
565 		block_group->space_info->bytes_used += bytes_used >> 1;
566 		spin_unlock(&block_group->lock);
567 		spin_unlock(&block_group->space_info->lock);
568 		fragment_free_space(block_group);
569 	}
570 #endif
571 
572 	caching_ctl->progress = (u64)-1;
573 
574 	up_read(&fs_info->commit_root_sem);
575 	free_excluded_extents(fs_info, block_group);
576 	mutex_unlock(&caching_ctl->mutex);
577 
578 	wake_up(&caching_ctl->wait);
579 
580 	put_caching_control(caching_ctl);
581 	btrfs_put_block_group(block_group);
582 }
583 
584 static int cache_block_group(struct btrfs_block_group_cache *cache,
585 			     int load_cache_only)
586 {
587 	DEFINE_WAIT(wait);
588 	struct btrfs_fs_info *fs_info = cache->fs_info;
589 	struct btrfs_caching_control *caching_ctl;
590 	int ret = 0;
591 
592 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
593 	if (!caching_ctl)
594 		return -ENOMEM;
595 
596 	INIT_LIST_HEAD(&caching_ctl->list);
597 	mutex_init(&caching_ctl->mutex);
598 	init_waitqueue_head(&caching_ctl->wait);
599 	caching_ctl->block_group = cache;
600 	caching_ctl->progress = cache->key.objectid;
601 	atomic_set(&caching_ctl->count, 1);
602 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
603 			caching_thread, NULL, NULL);
604 
605 	spin_lock(&cache->lock);
606 	/*
607 	 * This should be a rare occasion, but this could happen I think in the
608 	 * case where one thread starts to load the space cache info, and then
609 	 * some other thread starts a transaction commit which tries to do an
610 	 * allocation while the other thread is still loading the space cache
611 	 * info.  The previous loop should have kept us from choosing this block
612 	 * group, but if we've moved to the state where we will wait on caching
613 	 * block groups we need to first check if we're doing a fast load here,
614 	 * so we can wait for it to finish, otherwise we could end up allocating
615 	 * from a block group who's cache gets evicted for one reason or
616 	 * another.
617 	 */
618 	while (cache->cached == BTRFS_CACHE_FAST) {
619 		struct btrfs_caching_control *ctl;
620 
621 		ctl = cache->caching_ctl;
622 		atomic_inc(&ctl->count);
623 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
624 		spin_unlock(&cache->lock);
625 
626 		schedule();
627 
628 		finish_wait(&ctl->wait, &wait);
629 		put_caching_control(ctl);
630 		spin_lock(&cache->lock);
631 	}
632 
633 	if (cache->cached != BTRFS_CACHE_NO) {
634 		spin_unlock(&cache->lock);
635 		kfree(caching_ctl);
636 		return 0;
637 	}
638 	WARN_ON(cache->caching_ctl);
639 	cache->caching_ctl = caching_ctl;
640 	cache->cached = BTRFS_CACHE_FAST;
641 	spin_unlock(&cache->lock);
642 
643 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
644 		mutex_lock(&caching_ctl->mutex);
645 		ret = load_free_space_cache(fs_info, cache);
646 
647 		spin_lock(&cache->lock);
648 		if (ret == 1) {
649 			cache->caching_ctl = NULL;
650 			cache->cached = BTRFS_CACHE_FINISHED;
651 			cache->last_byte_to_unpin = (u64)-1;
652 			caching_ctl->progress = (u64)-1;
653 		} else {
654 			if (load_cache_only) {
655 				cache->caching_ctl = NULL;
656 				cache->cached = BTRFS_CACHE_NO;
657 			} else {
658 				cache->cached = BTRFS_CACHE_STARTED;
659 				cache->has_caching_ctl = 1;
660 			}
661 		}
662 		spin_unlock(&cache->lock);
663 #ifdef CONFIG_BTRFS_DEBUG
664 		if (ret == 1 &&
665 		    btrfs_should_fragment_free_space(cache)) {
666 			u64 bytes_used;
667 
668 			spin_lock(&cache->space_info->lock);
669 			spin_lock(&cache->lock);
670 			bytes_used = cache->key.offset -
671 				btrfs_block_group_used(&cache->item);
672 			cache->space_info->bytes_used += bytes_used >> 1;
673 			spin_unlock(&cache->lock);
674 			spin_unlock(&cache->space_info->lock);
675 			fragment_free_space(cache);
676 		}
677 #endif
678 		mutex_unlock(&caching_ctl->mutex);
679 
680 		wake_up(&caching_ctl->wait);
681 		if (ret == 1) {
682 			put_caching_control(caching_ctl);
683 			free_excluded_extents(fs_info, cache);
684 			return 0;
685 		}
686 	} else {
687 		/*
688 		 * We're either using the free space tree or no caching at all.
689 		 * Set cached to the appropriate value and wakeup any waiters.
690 		 */
691 		spin_lock(&cache->lock);
692 		if (load_cache_only) {
693 			cache->caching_ctl = NULL;
694 			cache->cached = BTRFS_CACHE_NO;
695 		} else {
696 			cache->cached = BTRFS_CACHE_STARTED;
697 			cache->has_caching_ctl = 1;
698 		}
699 		spin_unlock(&cache->lock);
700 		wake_up(&caching_ctl->wait);
701 	}
702 
703 	if (load_cache_only) {
704 		put_caching_control(caching_ctl);
705 		return 0;
706 	}
707 
708 	down_write(&fs_info->commit_root_sem);
709 	atomic_inc(&caching_ctl->count);
710 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
711 	up_write(&fs_info->commit_root_sem);
712 
713 	btrfs_get_block_group(cache);
714 
715 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
716 
717 	return ret;
718 }
719 
720 /*
721  * return the block group that starts at or after bytenr
722  */
723 static struct btrfs_block_group_cache *
724 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
725 {
726 	return block_group_cache_tree_search(info, bytenr, 0);
727 }
728 
729 /*
730  * return the block group that contains the given bytenr
731  */
732 struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 						 struct btrfs_fs_info *info,
734 						 u64 bytenr)
735 {
736 	return block_group_cache_tree_search(info, bytenr, 1);
737 }
738 
739 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
740 						  u64 flags)
741 {
742 	struct list_head *head = &info->space_info;
743 	struct btrfs_space_info *found;
744 
745 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
746 
747 	rcu_read_lock();
748 	list_for_each_entry_rcu(found, head, list) {
749 		if (found->flags & flags) {
750 			rcu_read_unlock();
751 			return found;
752 		}
753 	}
754 	rcu_read_unlock();
755 	return NULL;
756 }
757 
758 /*
759  * after adding space to the filesystem, we need to clear the full flags
760  * on all the space infos.
761  */
762 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
763 {
764 	struct list_head *head = &info->space_info;
765 	struct btrfs_space_info *found;
766 
767 	rcu_read_lock();
768 	list_for_each_entry_rcu(found, head, list)
769 		found->full = 0;
770 	rcu_read_unlock();
771 }
772 
773 /* simple helper to search for an existing data extent at a given offset */
774 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
775 {
776 	int ret;
777 	struct btrfs_key key;
778 	struct btrfs_path *path;
779 
780 	path = btrfs_alloc_path();
781 	if (!path)
782 		return -ENOMEM;
783 
784 	key.objectid = start;
785 	key.offset = len;
786 	key.type = BTRFS_EXTENT_ITEM_KEY;
787 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
788 	btrfs_free_path(path);
789 	return ret;
790 }
791 
792 /*
793  * helper function to lookup reference count and flags of a tree block.
794  *
795  * the head node for delayed ref is used to store the sum of all the
796  * reference count modifications queued up in the rbtree. the head
797  * node may also store the extent flags to set. This way you can check
798  * to see what the reference count and extent flags would be if all of
799  * the delayed refs are not processed.
800  */
801 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
802 			     struct btrfs_fs_info *fs_info, u64 bytenr,
803 			     u64 offset, int metadata, u64 *refs, u64 *flags)
804 {
805 	struct btrfs_delayed_ref_head *head;
806 	struct btrfs_delayed_ref_root *delayed_refs;
807 	struct btrfs_path *path;
808 	struct btrfs_extent_item *ei;
809 	struct extent_buffer *leaf;
810 	struct btrfs_key key;
811 	u32 item_size;
812 	u64 num_refs;
813 	u64 extent_flags;
814 	int ret;
815 
816 	/*
817 	 * If we don't have skinny metadata, don't bother doing anything
818 	 * different
819 	 */
820 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
821 		offset = fs_info->nodesize;
822 		metadata = 0;
823 	}
824 
825 	path = btrfs_alloc_path();
826 	if (!path)
827 		return -ENOMEM;
828 
829 	if (!trans) {
830 		path->skip_locking = 1;
831 		path->search_commit_root = 1;
832 	}
833 
834 search_again:
835 	key.objectid = bytenr;
836 	key.offset = offset;
837 	if (metadata)
838 		key.type = BTRFS_METADATA_ITEM_KEY;
839 	else
840 		key.type = BTRFS_EXTENT_ITEM_KEY;
841 
842 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
843 	if (ret < 0)
844 		goto out_free;
845 
846 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
847 		if (path->slots[0]) {
848 			path->slots[0]--;
849 			btrfs_item_key_to_cpu(path->nodes[0], &key,
850 					      path->slots[0]);
851 			if (key.objectid == bytenr &&
852 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
853 			    key.offset == fs_info->nodesize)
854 				ret = 0;
855 		}
856 	}
857 
858 	if (ret == 0) {
859 		leaf = path->nodes[0];
860 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
861 		if (item_size >= sizeof(*ei)) {
862 			ei = btrfs_item_ptr(leaf, path->slots[0],
863 					    struct btrfs_extent_item);
864 			num_refs = btrfs_extent_refs(leaf, ei);
865 			extent_flags = btrfs_extent_flags(leaf, ei);
866 		} else {
867 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
868 			struct btrfs_extent_item_v0 *ei0;
869 			BUG_ON(item_size != sizeof(*ei0));
870 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
871 					     struct btrfs_extent_item_v0);
872 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
873 			/* FIXME: this isn't correct for data */
874 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
875 #else
876 			BUG();
877 #endif
878 		}
879 		BUG_ON(num_refs == 0);
880 	} else {
881 		num_refs = 0;
882 		extent_flags = 0;
883 		ret = 0;
884 	}
885 
886 	if (!trans)
887 		goto out;
888 
889 	delayed_refs = &trans->transaction->delayed_refs;
890 	spin_lock(&delayed_refs->lock);
891 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
892 	if (head) {
893 		if (!mutex_trylock(&head->mutex)) {
894 			atomic_inc(&head->node.refs);
895 			spin_unlock(&delayed_refs->lock);
896 
897 			btrfs_release_path(path);
898 
899 			/*
900 			 * Mutex was contended, block until it's released and try
901 			 * again
902 			 */
903 			mutex_lock(&head->mutex);
904 			mutex_unlock(&head->mutex);
905 			btrfs_put_delayed_ref(&head->node);
906 			goto search_again;
907 		}
908 		spin_lock(&head->lock);
909 		if (head->extent_op && head->extent_op->update_flags)
910 			extent_flags |= head->extent_op->flags_to_set;
911 		else
912 			BUG_ON(num_refs == 0);
913 
914 		num_refs += head->node.ref_mod;
915 		spin_unlock(&head->lock);
916 		mutex_unlock(&head->mutex);
917 	}
918 	spin_unlock(&delayed_refs->lock);
919 out:
920 	WARN_ON(num_refs == 0);
921 	if (refs)
922 		*refs = num_refs;
923 	if (flags)
924 		*flags = extent_flags;
925 out_free:
926 	btrfs_free_path(path);
927 	return ret;
928 }
929 
930 /*
931  * Back reference rules.  Back refs have three main goals:
932  *
933  * 1) differentiate between all holders of references to an extent so that
934  *    when a reference is dropped we can make sure it was a valid reference
935  *    before freeing the extent.
936  *
937  * 2) Provide enough information to quickly find the holders of an extent
938  *    if we notice a given block is corrupted or bad.
939  *
940  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
941  *    maintenance.  This is actually the same as #2, but with a slightly
942  *    different use case.
943  *
944  * There are two kinds of back refs. The implicit back refs is optimized
945  * for pointers in non-shared tree blocks. For a given pointer in a block,
946  * back refs of this kind provide information about the block's owner tree
947  * and the pointer's key. These information allow us to find the block by
948  * b-tree searching. The full back refs is for pointers in tree blocks not
949  * referenced by their owner trees. The location of tree block is recorded
950  * in the back refs. Actually the full back refs is generic, and can be
951  * used in all cases the implicit back refs is used. The major shortcoming
952  * of the full back refs is its overhead. Every time a tree block gets
953  * COWed, we have to update back refs entry for all pointers in it.
954  *
955  * For a newly allocated tree block, we use implicit back refs for
956  * pointers in it. This means most tree related operations only involve
957  * implicit back refs. For a tree block created in old transaction, the
958  * only way to drop a reference to it is COW it. So we can detect the
959  * event that tree block loses its owner tree's reference and do the
960  * back refs conversion.
961  *
962  * When a tree block is COWed through a tree, there are four cases:
963  *
964  * The reference count of the block is one and the tree is the block's
965  * owner tree. Nothing to do in this case.
966  *
967  * The reference count of the block is one and the tree is not the
968  * block's owner tree. In this case, full back refs is used for pointers
969  * in the block. Remove these full back refs, add implicit back refs for
970  * every pointers in the new block.
971  *
972  * The reference count of the block is greater than one and the tree is
973  * the block's owner tree. In this case, implicit back refs is used for
974  * pointers in the block. Add full back refs for every pointers in the
975  * block, increase lower level extents' reference counts. The original
976  * implicit back refs are entailed to the new block.
977  *
978  * The reference count of the block is greater than one and the tree is
979  * not the block's owner tree. Add implicit back refs for every pointer in
980  * the new block, increase lower level extents' reference count.
981  *
982  * Back Reference Key composing:
983  *
984  * The key objectid corresponds to the first byte in the extent,
985  * The key type is used to differentiate between types of back refs.
986  * There are different meanings of the key offset for different types
987  * of back refs.
988  *
989  * File extents can be referenced by:
990  *
991  * - multiple snapshots, subvolumes, or different generations in one subvol
992  * - different files inside a single subvolume
993  * - different offsets inside a file (bookend extents in file.c)
994  *
995  * The extent ref structure for the implicit back refs has fields for:
996  *
997  * - Objectid of the subvolume root
998  * - objectid of the file holding the reference
999  * - original offset in the file
1000  * - how many bookend extents
1001  *
1002  * The key offset for the implicit back refs is hash of the first
1003  * three fields.
1004  *
1005  * The extent ref structure for the full back refs has field for:
1006  *
1007  * - number of pointers in the tree leaf
1008  *
1009  * The key offset for the implicit back refs is the first byte of
1010  * the tree leaf
1011  *
1012  * When a file extent is allocated, The implicit back refs is used.
1013  * the fields are filled in:
1014  *
1015  *     (root_key.objectid, inode objectid, offset in file, 1)
1016  *
1017  * When a file extent is removed file truncation, we find the
1018  * corresponding implicit back refs and check the following fields:
1019  *
1020  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1021  *
1022  * Btree extents can be referenced by:
1023  *
1024  * - Different subvolumes
1025  *
1026  * Both the implicit back refs and the full back refs for tree blocks
1027  * only consist of key. The key offset for the implicit back refs is
1028  * objectid of block's owner tree. The key offset for the full back refs
1029  * is the first byte of parent block.
1030  *
1031  * When implicit back refs is used, information about the lowest key and
1032  * level of the tree block are required. These information are stored in
1033  * tree block info structure.
1034  */
1035 
1036 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1037 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1038 				  struct btrfs_fs_info *fs_info,
1039 				  struct btrfs_path *path,
1040 				  u64 owner, u32 extra_size)
1041 {
1042 	struct btrfs_root *root = fs_info->extent_root;
1043 	struct btrfs_extent_item *item;
1044 	struct btrfs_extent_item_v0 *ei0;
1045 	struct btrfs_extent_ref_v0 *ref0;
1046 	struct btrfs_tree_block_info *bi;
1047 	struct extent_buffer *leaf;
1048 	struct btrfs_key key;
1049 	struct btrfs_key found_key;
1050 	u32 new_size = sizeof(*item);
1051 	u64 refs;
1052 	int ret;
1053 
1054 	leaf = path->nodes[0];
1055 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1056 
1057 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1059 			     struct btrfs_extent_item_v0);
1060 	refs = btrfs_extent_refs_v0(leaf, ei0);
1061 
1062 	if (owner == (u64)-1) {
1063 		while (1) {
1064 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1065 				ret = btrfs_next_leaf(root, path);
1066 				if (ret < 0)
1067 					return ret;
1068 				BUG_ON(ret > 0); /* Corruption */
1069 				leaf = path->nodes[0];
1070 			}
1071 			btrfs_item_key_to_cpu(leaf, &found_key,
1072 					      path->slots[0]);
1073 			BUG_ON(key.objectid != found_key.objectid);
1074 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1075 				path->slots[0]++;
1076 				continue;
1077 			}
1078 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1079 					      struct btrfs_extent_ref_v0);
1080 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1081 			break;
1082 		}
1083 	}
1084 	btrfs_release_path(path);
1085 
1086 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1087 		new_size += sizeof(*bi);
1088 
1089 	new_size -= sizeof(*ei0);
1090 	ret = btrfs_search_slot(trans, root, &key, path,
1091 				new_size + extra_size, 1);
1092 	if (ret < 0)
1093 		return ret;
1094 	BUG_ON(ret); /* Corruption */
1095 
1096 	btrfs_extend_item(fs_info, path, new_size);
1097 
1098 	leaf = path->nodes[0];
1099 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 	btrfs_set_extent_refs(leaf, item, refs);
1101 	/* FIXME: get real generation */
1102 	btrfs_set_extent_generation(leaf, item, 0);
1103 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1104 		btrfs_set_extent_flags(leaf, item,
1105 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1106 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1107 		bi = (struct btrfs_tree_block_info *)(item + 1);
1108 		/* FIXME: get first key of the block */
1109 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1110 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1111 	} else {
1112 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1113 	}
1114 	btrfs_mark_buffer_dirty(leaf);
1115 	return 0;
1116 }
1117 #endif
1118 
1119 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1120 {
1121 	u32 high_crc = ~(u32)0;
1122 	u32 low_crc = ~(u32)0;
1123 	__le64 lenum;
1124 
1125 	lenum = cpu_to_le64(root_objectid);
1126 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1127 	lenum = cpu_to_le64(owner);
1128 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1129 	lenum = cpu_to_le64(offset);
1130 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1131 
1132 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1133 }
1134 
1135 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1136 				     struct btrfs_extent_data_ref *ref)
1137 {
1138 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1139 				    btrfs_extent_data_ref_objectid(leaf, ref),
1140 				    btrfs_extent_data_ref_offset(leaf, ref));
1141 }
1142 
1143 static int match_extent_data_ref(struct extent_buffer *leaf,
1144 				 struct btrfs_extent_data_ref *ref,
1145 				 u64 root_objectid, u64 owner, u64 offset)
1146 {
1147 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1148 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1149 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1150 		return 0;
1151 	return 1;
1152 }
1153 
1154 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1155 					   struct btrfs_fs_info *fs_info,
1156 					   struct btrfs_path *path,
1157 					   u64 bytenr, u64 parent,
1158 					   u64 root_objectid,
1159 					   u64 owner, u64 offset)
1160 {
1161 	struct btrfs_root *root = fs_info->extent_root;
1162 	struct btrfs_key key;
1163 	struct btrfs_extent_data_ref *ref;
1164 	struct extent_buffer *leaf;
1165 	u32 nritems;
1166 	int ret;
1167 	int recow;
1168 	int err = -ENOENT;
1169 
1170 	key.objectid = bytenr;
1171 	if (parent) {
1172 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 		key.offset = parent;
1174 	} else {
1175 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1176 		key.offset = hash_extent_data_ref(root_objectid,
1177 						  owner, offset);
1178 	}
1179 again:
1180 	recow = 0;
1181 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1182 	if (ret < 0) {
1183 		err = ret;
1184 		goto fail;
1185 	}
1186 
1187 	if (parent) {
1188 		if (!ret)
1189 			return 0;
1190 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1191 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1192 		btrfs_release_path(path);
1193 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1194 		if (ret < 0) {
1195 			err = ret;
1196 			goto fail;
1197 		}
1198 		if (!ret)
1199 			return 0;
1200 #endif
1201 		goto fail;
1202 	}
1203 
1204 	leaf = path->nodes[0];
1205 	nritems = btrfs_header_nritems(leaf);
1206 	while (1) {
1207 		if (path->slots[0] >= nritems) {
1208 			ret = btrfs_next_leaf(root, path);
1209 			if (ret < 0)
1210 				err = ret;
1211 			if (ret)
1212 				goto fail;
1213 
1214 			leaf = path->nodes[0];
1215 			nritems = btrfs_header_nritems(leaf);
1216 			recow = 1;
1217 		}
1218 
1219 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1220 		if (key.objectid != bytenr ||
1221 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1222 			goto fail;
1223 
1224 		ref = btrfs_item_ptr(leaf, path->slots[0],
1225 				     struct btrfs_extent_data_ref);
1226 
1227 		if (match_extent_data_ref(leaf, ref, root_objectid,
1228 					  owner, offset)) {
1229 			if (recow) {
1230 				btrfs_release_path(path);
1231 				goto again;
1232 			}
1233 			err = 0;
1234 			break;
1235 		}
1236 		path->slots[0]++;
1237 	}
1238 fail:
1239 	return err;
1240 }
1241 
1242 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1243 					   struct btrfs_fs_info *fs_info,
1244 					   struct btrfs_path *path,
1245 					   u64 bytenr, u64 parent,
1246 					   u64 root_objectid, u64 owner,
1247 					   u64 offset, int refs_to_add)
1248 {
1249 	struct btrfs_root *root = fs_info->extent_root;
1250 	struct btrfs_key key;
1251 	struct extent_buffer *leaf;
1252 	u32 size;
1253 	u32 num_refs;
1254 	int ret;
1255 
1256 	key.objectid = bytenr;
1257 	if (parent) {
1258 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1259 		key.offset = parent;
1260 		size = sizeof(struct btrfs_shared_data_ref);
1261 	} else {
1262 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1263 		key.offset = hash_extent_data_ref(root_objectid,
1264 						  owner, offset);
1265 		size = sizeof(struct btrfs_extent_data_ref);
1266 	}
1267 
1268 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1269 	if (ret && ret != -EEXIST)
1270 		goto fail;
1271 
1272 	leaf = path->nodes[0];
1273 	if (parent) {
1274 		struct btrfs_shared_data_ref *ref;
1275 		ref = btrfs_item_ptr(leaf, path->slots[0],
1276 				     struct btrfs_shared_data_ref);
1277 		if (ret == 0) {
1278 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1279 		} else {
1280 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1281 			num_refs += refs_to_add;
1282 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1283 		}
1284 	} else {
1285 		struct btrfs_extent_data_ref *ref;
1286 		while (ret == -EEXIST) {
1287 			ref = btrfs_item_ptr(leaf, path->slots[0],
1288 					     struct btrfs_extent_data_ref);
1289 			if (match_extent_data_ref(leaf, ref, root_objectid,
1290 						  owner, offset))
1291 				break;
1292 			btrfs_release_path(path);
1293 			key.offset++;
1294 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1295 						      size);
1296 			if (ret && ret != -EEXIST)
1297 				goto fail;
1298 
1299 			leaf = path->nodes[0];
1300 		}
1301 		ref = btrfs_item_ptr(leaf, path->slots[0],
1302 				     struct btrfs_extent_data_ref);
1303 		if (ret == 0) {
1304 			btrfs_set_extent_data_ref_root(leaf, ref,
1305 						       root_objectid);
1306 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1307 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1308 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1309 		} else {
1310 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1311 			num_refs += refs_to_add;
1312 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1313 		}
1314 	}
1315 	btrfs_mark_buffer_dirty(leaf);
1316 	ret = 0;
1317 fail:
1318 	btrfs_release_path(path);
1319 	return ret;
1320 }
1321 
1322 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1323 					   struct btrfs_fs_info *fs_info,
1324 					   struct btrfs_path *path,
1325 					   int refs_to_drop, int *last_ref)
1326 {
1327 	struct btrfs_key key;
1328 	struct btrfs_extent_data_ref *ref1 = NULL;
1329 	struct btrfs_shared_data_ref *ref2 = NULL;
1330 	struct extent_buffer *leaf;
1331 	u32 num_refs = 0;
1332 	int ret = 0;
1333 
1334 	leaf = path->nodes[0];
1335 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1336 
1337 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1338 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1339 				      struct btrfs_extent_data_ref);
1340 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1341 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1342 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1343 				      struct btrfs_shared_data_ref);
1344 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1345 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1346 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1347 		struct btrfs_extent_ref_v0 *ref0;
1348 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1349 				      struct btrfs_extent_ref_v0);
1350 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1351 #endif
1352 	} else {
1353 		BUG();
1354 	}
1355 
1356 	BUG_ON(num_refs < refs_to_drop);
1357 	num_refs -= refs_to_drop;
1358 
1359 	if (num_refs == 0) {
1360 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1361 		*last_ref = 1;
1362 	} else {
1363 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1364 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1365 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1366 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1367 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1368 		else {
1369 			struct btrfs_extent_ref_v0 *ref0;
1370 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1371 					struct btrfs_extent_ref_v0);
1372 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1373 		}
1374 #endif
1375 		btrfs_mark_buffer_dirty(leaf);
1376 	}
1377 	return ret;
1378 }
1379 
1380 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1381 					  struct btrfs_extent_inline_ref *iref)
1382 {
1383 	struct btrfs_key key;
1384 	struct extent_buffer *leaf;
1385 	struct btrfs_extent_data_ref *ref1;
1386 	struct btrfs_shared_data_ref *ref2;
1387 	u32 num_refs = 0;
1388 
1389 	leaf = path->nodes[0];
1390 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1391 	if (iref) {
1392 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1393 		    BTRFS_EXTENT_DATA_REF_KEY) {
1394 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1395 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1396 		} else {
1397 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1398 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1399 		}
1400 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1401 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1402 				      struct btrfs_extent_data_ref);
1403 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1404 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1405 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1406 				      struct btrfs_shared_data_ref);
1407 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1408 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1409 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1410 		struct btrfs_extent_ref_v0 *ref0;
1411 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1412 				      struct btrfs_extent_ref_v0);
1413 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1414 #endif
1415 	} else {
1416 		WARN_ON(1);
1417 	}
1418 	return num_refs;
1419 }
1420 
1421 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1422 					  struct btrfs_fs_info *fs_info,
1423 					  struct btrfs_path *path,
1424 					  u64 bytenr, u64 parent,
1425 					  u64 root_objectid)
1426 {
1427 	struct btrfs_root *root = fs_info->extent_root;
1428 	struct btrfs_key key;
1429 	int ret;
1430 
1431 	key.objectid = bytenr;
1432 	if (parent) {
1433 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1434 		key.offset = parent;
1435 	} else {
1436 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1437 		key.offset = root_objectid;
1438 	}
1439 
1440 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1441 	if (ret > 0)
1442 		ret = -ENOENT;
1443 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1444 	if (ret == -ENOENT && parent) {
1445 		btrfs_release_path(path);
1446 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1447 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1448 		if (ret > 0)
1449 			ret = -ENOENT;
1450 	}
1451 #endif
1452 	return ret;
1453 }
1454 
1455 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1456 					  struct btrfs_fs_info *fs_info,
1457 					  struct btrfs_path *path,
1458 					  u64 bytenr, u64 parent,
1459 					  u64 root_objectid)
1460 {
1461 	struct btrfs_key key;
1462 	int ret;
1463 
1464 	key.objectid = bytenr;
1465 	if (parent) {
1466 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1467 		key.offset = parent;
1468 	} else {
1469 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1470 		key.offset = root_objectid;
1471 	}
1472 
1473 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1474 				      path, &key, 0);
1475 	btrfs_release_path(path);
1476 	return ret;
1477 }
1478 
1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481 	int type;
1482 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483 		if (parent > 0)
1484 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1485 		else
1486 			type = BTRFS_TREE_BLOCK_REF_KEY;
1487 	} else {
1488 		if (parent > 0)
1489 			type = BTRFS_SHARED_DATA_REF_KEY;
1490 		else
1491 			type = BTRFS_EXTENT_DATA_REF_KEY;
1492 	}
1493 	return type;
1494 }
1495 
1496 static int find_next_key(struct btrfs_path *path, int level,
1497 			 struct btrfs_key *key)
1498 
1499 {
1500 	for (; level < BTRFS_MAX_LEVEL; level++) {
1501 		if (!path->nodes[level])
1502 			break;
1503 		if (path->slots[level] + 1 >=
1504 		    btrfs_header_nritems(path->nodes[level]))
1505 			continue;
1506 		if (level == 0)
1507 			btrfs_item_key_to_cpu(path->nodes[level], key,
1508 					      path->slots[level] + 1);
1509 		else
1510 			btrfs_node_key_to_cpu(path->nodes[level], key,
1511 					      path->slots[level] + 1);
1512 		return 0;
1513 	}
1514 	return 1;
1515 }
1516 
1517 /*
1518  * look for inline back ref. if back ref is found, *ref_ret is set
1519  * to the address of inline back ref, and 0 is returned.
1520  *
1521  * if back ref isn't found, *ref_ret is set to the address where it
1522  * should be inserted, and -ENOENT is returned.
1523  *
1524  * if insert is true and there are too many inline back refs, the path
1525  * points to the extent item, and -EAGAIN is returned.
1526  *
1527  * NOTE: inline back refs are ordered in the same way that back ref
1528  *	 items in the tree are ordered.
1529  */
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532 				 struct btrfs_fs_info *fs_info,
1533 				 struct btrfs_path *path,
1534 				 struct btrfs_extent_inline_ref **ref_ret,
1535 				 u64 bytenr, u64 num_bytes,
1536 				 u64 parent, u64 root_objectid,
1537 				 u64 owner, u64 offset, int insert)
1538 {
1539 	struct btrfs_root *root = fs_info->extent_root;
1540 	struct btrfs_key key;
1541 	struct extent_buffer *leaf;
1542 	struct btrfs_extent_item *ei;
1543 	struct btrfs_extent_inline_ref *iref;
1544 	u64 flags;
1545 	u64 item_size;
1546 	unsigned long ptr;
1547 	unsigned long end;
1548 	int extra_size;
1549 	int type;
1550 	int want;
1551 	int ret;
1552 	int err = 0;
1553 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1554 
1555 	key.objectid = bytenr;
1556 	key.type = BTRFS_EXTENT_ITEM_KEY;
1557 	key.offset = num_bytes;
1558 
1559 	want = extent_ref_type(parent, owner);
1560 	if (insert) {
1561 		extra_size = btrfs_extent_inline_ref_size(want);
1562 		path->keep_locks = 1;
1563 	} else
1564 		extra_size = -1;
1565 
1566 	/*
1567 	 * Owner is our parent level, so we can just add one to get the level
1568 	 * for the block we are interested in.
1569 	 */
1570 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571 		key.type = BTRFS_METADATA_ITEM_KEY;
1572 		key.offset = owner;
1573 	}
1574 
1575 again:
1576 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577 	if (ret < 0) {
1578 		err = ret;
1579 		goto out;
1580 	}
1581 
1582 	/*
1583 	 * We may be a newly converted file system which still has the old fat
1584 	 * extent entries for metadata, so try and see if we have one of those.
1585 	 */
1586 	if (ret > 0 && skinny_metadata) {
1587 		skinny_metadata = false;
1588 		if (path->slots[0]) {
1589 			path->slots[0]--;
1590 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1591 					      path->slots[0]);
1592 			if (key.objectid == bytenr &&
1593 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1594 			    key.offset == num_bytes)
1595 				ret = 0;
1596 		}
1597 		if (ret) {
1598 			key.objectid = bytenr;
1599 			key.type = BTRFS_EXTENT_ITEM_KEY;
1600 			key.offset = num_bytes;
1601 			btrfs_release_path(path);
1602 			goto again;
1603 		}
1604 	}
1605 
1606 	if (ret && !insert) {
1607 		err = -ENOENT;
1608 		goto out;
1609 	} else if (WARN_ON(ret)) {
1610 		err = -EIO;
1611 		goto out;
1612 	}
1613 
1614 	leaf = path->nodes[0];
1615 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 	if (item_size < sizeof(*ei)) {
1618 		if (!insert) {
1619 			err = -ENOENT;
1620 			goto out;
1621 		}
1622 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1623 					     extra_size);
1624 		if (ret < 0) {
1625 			err = ret;
1626 			goto out;
1627 		}
1628 		leaf = path->nodes[0];
1629 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630 	}
1631 #endif
1632 	BUG_ON(item_size < sizeof(*ei));
1633 
1634 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635 	flags = btrfs_extent_flags(leaf, ei);
1636 
1637 	ptr = (unsigned long)(ei + 1);
1638 	end = (unsigned long)ei + item_size;
1639 
1640 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641 		ptr += sizeof(struct btrfs_tree_block_info);
1642 		BUG_ON(ptr > end);
1643 	}
1644 
1645 	err = -ENOENT;
1646 	while (1) {
1647 		if (ptr >= end) {
1648 			WARN_ON(ptr > end);
1649 			break;
1650 		}
1651 		iref = (struct btrfs_extent_inline_ref *)ptr;
1652 		type = btrfs_extent_inline_ref_type(leaf, iref);
1653 		if (want < type)
1654 			break;
1655 		if (want > type) {
1656 			ptr += btrfs_extent_inline_ref_size(type);
1657 			continue;
1658 		}
1659 
1660 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661 			struct btrfs_extent_data_ref *dref;
1662 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663 			if (match_extent_data_ref(leaf, dref, root_objectid,
1664 						  owner, offset)) {
1665 				err = 0;
1666 				break;
1667 			}
1668 			if (hash_extent_data_ref_item(leaf, dref) <
1669 			    hash_extent_data_ref(root_objectid, owner, offset))
1670 				break;
1671 		} else {
1672 			u64 ref_offset;
1673 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674 			if (parent > 0) {
1675 				if (parent == ref_offset) {
1676 					err = 0;
1677 					break;
1678 				}
1679 				if (ref_offset < parent)
1680 					break;
1681 			} else {
1682 				if (root_objectid == ref_offset) {
1683 					err = 0;
1684 					break;
1685 				}
1686 				if (ref_offset < root_objectid)
1687 					break;
1688 			}
1689 		}
1690 		ptr += btrfs_extent_inline_ref_size(type);
1691 	}
1692 	if (err == -ENOENT && insert) {
1693 		if (item_size + extra_size >=
1694 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695 			err = -EAGAIN;
1696 			goto out;
1697 		}
1698 		/*
1699 		 * To add new inline back ref, we have to make sure
1700 		 * there is no corresponding back ref item.
1701 		 * For simplicity, we just do not add new inline back
1702 		 * ref if there is any kind of item for this block
1703 		 */
1704 		if (find_next_key(path, 0, &key) == 0 &&
1705 		    key.objectid == bytenr &&
1706 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707 			err = -EAGAIN;
1708 			goto out;
1709 		}
1710 	}
1711 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713 	if (insert) {
1714 		path->keep_locks = 0;
1715 		btrfs_unlock_up_safe(path, 1);
1716 	}
1717 	return err;
1718 }
1719 
1720 /*
1721  * helper to add new inline back ref
1722  */
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1725 				 struct btrfs_path *path,
1726 				 struct btrfs_extent_inline_ref *iref,
1727 				 u64 parent, u64 root_objectid,
1728 				 u64 owner, u64 offset, int refs_to_add,
1729 				 struct btrfs_delayed_extent_op *extent_op)
1730 {
1731 	struct extent_buffer *leaf;
1732 	struct btrfs_extent_item *ei;
1733 	unsigned long ptr;
1734 	unsigned long end;
1735 	unsigned long item_offset;
1736 	u64 refs;
1737 	int size;
1738 	int type;
1739 
1740 	leaf = path->nodes[0];
1741 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742 	item_offset = (unsigned long)iref - (unsigned long)ei;
1743 
1744 	type = extent_ref_type(parent, owner);
1745 	size = btrfs_extent_inline_ref_size(type);
1746 
1747 	btrfs_extend_item(fs_info, path, size);
1748 
1749 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750 	refs = btrfs_extent_refs(leaf, ei);
1751 	refs += refs_to_add;
1752 	btrfs_set_extent_refs(leaf, ei, refs);
1753 	if (extent_op)
1754 		__run_delayed_extent_op(extent_op, leaf, ei);
1755 
1756 	ptr = (unsigned long)ei + item_offset;
1757 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758 	if (ptr < end - size)
1759 		memmove_extent_buffer(leaf, ptr + size, ptr,
1760 				      end - size - ptr);
1761 
1762 	iref = (struct btrfs_extent_inline_ref *)ptr;
1763 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765 		struct btrfs_extent_data_ref *dref;
1766 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772 		struct btrfs_shared_data_ref *sref;
1773 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778 	} else {
1779 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780 	}
1781 	btrfs_mark_buffer_dirty(leaf);
1782 }
1783 
1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785 				 struct btrfs_fs_info *fs_info,
1786 				 struct btrfs_path *path,
1787 				 struct btrfs_extent_inline_ref **ref_ret,
1788 				 u64 bytenr, u64 num_bytes, u64 parent,
1789 				 u64 root_objectid, u64 owner, u64 offset)
1790 {
1791 	int ret;
1792 
1793 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1794 					   bytenr, num_bytes, parent,
1795 					   root_objectid, owner, offset, 0);
1796 	if (ret != -ENOENT)
1797 		return ret;
1798 
1799 	btrfs_release_path(path);
1800 	*ref_ret = NULL;
1801 
1802 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1804 					    parent, root_objectid);
1805 	} else {
1806 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1807 					     parent, root_objectid, owner,
1808 					     offset);
1809 	}
1810 	return ret;
1811 }
1812 
1813 /*
1814  * helper to update/remove inline back ref
1815  */
1816 static noinline_for_stack
1817 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1818 				  struct btrfs_path *path,
1819 				  struct btrfs_extent_inline_ref *iref,
1820 				  int refs_to_mod,
1821 				  struct btrfs_delayed_extent_op *extent_op,
1822 				  int *last_ref)
1823 {
1824 	struct extent_buffer *leaf;
1825 	struct btrfs_extent_item *ei;
1826 	struct btrfs_extent_data_ref *dref = NULL;
1827 	struct btrfs_shared_data_ref *sref = NULL;
1828 	unsigned long ptr;
1829 	unsigned long end;
1830 	u32 item_size;
1831 	int size;
1832 	int type;
1833 	u64 refs;
1834 
1835 	leaf = path->nodes[0];
1836 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1837 	refs = btrfs_extent_refs(leaf, ei);
1838 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1839 	refs += refs_to_mod;
1840 	btrfs_set_extent_refs(leaf, ei, refs);
1841 	if (extent_op)
1842 		__run_delayed_extent_op(extent_op, leaf, ei);
1843 
1844 	type = btrfs_extent_inline_ref_type(leaf, iref);
1845 
1846 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1847 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1848 		refs = btrfs_extent_data_ref_count(leaf, dref);
1849 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1850 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1851 		refs = btrfs_shared_data_ref_count(leaf, sref);
1852 	} else {
1853 		refs = 1;
1854 		BUG_ON(refs_to_mod != -1);
1855 	}
1856 
1857 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1858 	refs += refs_to_mod;
1859 
1860 	if (refs > 0) {
1861 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1862 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1863 		else
1864 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1865 	} else {
1866 		*last_ref = 1;
1867 		size =  btrfs_extent_inline_ref_size(type);
1868 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1869 		ptr = (unsigned long)iref;
1870 		end = (unsigned long)ei + item_size;
1871 		if (ptr + size < end)
1872 			memmove_extent_buffer(leaf, ptr, ptr + size,
1873 					      end - ptr - size);
1874 		item_size -= size;
1875 		btrfs_truncate_item(fs_info, path, item_size, 1);
1876 	}
1877 	btrfs_mark_buffer_dirty(leaf);
1878 }
1879 
1880 static noinline_for_stack
1881 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1882 				 struct btrfs_fs_info *fs_info,
1883 				 struct btrfs_path *path,
1884 				 u64 bytenr, u64 num_bytes, u64 parent,
1885 				 u64 root_objectid, u64 owner,
1886 				 u64 offset, int refs_to_add,
1887 				 struct btrfs_delayed_extent_op *extent_op)
1888 {
1889 	struct btrfs_extent_inline_ref *iref;
1890 	int ret;
1891 
1892 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1893 					   bytenr, num_bytes, parent,
1894 					   root_objectid, owner, offset, 1);
1895 	if (ret == 0) {
1896 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1897 		update_inline_extent_backref(fs_info, path, iref,
1898 					     refs_to_add, extent_op, NULL);
1899 	} else if (ret == -ENOENT) {
1900 		setup_inline_extent_backref(fs_info, path, iref, parent,
1901 					    root_objectid, owner, offset,
1902 					    refs_to_add, extent_op);
1903 		ret = 0;
1904 	}
1905 	return ret;
1906 }
1907 
1908 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1909 				 struct btrfs_fs_info *fs_info,
1910 				 struct btrfs_path *path,
1911 				 u64 bytenr, u64 parent, u64 root_objectid,
1912 				 u64 owner, u64 offset, int refs_to_add)
1913 {
1914 	int ret;
1915 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1916 		BUG_ON(refs_to_add != 1);
1917 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1918 					    parent, root_objectid);
1919 	} else {
1920 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1921 					     parent, root_objectid,
1922 					     owner, offset, refs_to_add);
1923 	}
1924 	return ret;
1925 }
1926 
1927 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1928 				 struct btrfs_fs_info *fs_info,
1929 				 struct btrfs_path *path,
1930 				 struct btrfs_extent_inline_ref *iref,
1931 				 int refs_to_drop, int is_data, int *last_ref)
1932 {
1933 	int ret = 0;
1934 
1935 	BUG_ON(!is_data && refs_to_drop != 1);
1936 	if (iref) {
1937 		update_inline_extent_backref(fs_info, path, iref,
1938 					     -refs_to_drop, NULL, last_ref);
1939 	} else if (is_data) {
1940 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1941 					     last_ref);
1942 	} else {
1943 		*last_ref = 1;
1944 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1945 	}
1946 	return ret;
1947 }
1948 
1949 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1950 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1951 			       u64 *discarded_bytes)
1952 {
1953 	int j, ret = 0;
1954 	u64 bytes_left, end;
1955 	u64 aligned_start = ALIGN(start, 1 << 9);
1956 
1957 	if (WARN_ON(start != aligned_start)) {
1958 		len -= aligned_start - start;
1959 		len = round_down(len, 1 << 9);
1960 		start = aligned_start;
1961 	}
1962 
1963 	*discarded_bytes = 0;
1964 
1965 	if (!len)
1966 		return 0;
1967 
1968 	end = start + len;
1969 	bytes_left = len;
1970 
1971 	/* Skip any superblocks on this device. */
1972 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1973 		u64 sb_start = btrfs_sb_offset(j);
1974 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1975 		u64 size = sb_start - start;
1976 
1977 		if (!in_range(sb_start, start, bytes_left) &&
1978 		    !in_range(sb_end, start, bytes_left) &&
1979 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1980 			continue;
1981 
1982 		/*
1983 		 * Superblock spans beginning of range.  Adjust start and
1984 		 * try again.
1985 		 */
1986 		if (sb_start <= start) {
1987 			start += sb_end - start;
1988 			if (start > end) {
1989 				bytes_left = 0;
1990 				break;
1991 			}
1992 			bytes_left = end - start;
1993 			continue;
1994 		}
1995 
1996 		if (size) {
1997 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1998 						   GFP_NOFS, 0);
1999 			if (!ret)
2000 				*discarded_bytes += size;
2001 			else if (ret != -EOPNOTSUPP)
2002 				return ret;
2003 		}
2004 
2005 		start = sb_end;
2006 		if (start > end) {
2007 			bytes_left = 0;
2008 			break;
2009 		}
2010 		bytes_left = end - start;
2011 	}
2012 
2013 	if (bytes_left) {
2014 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2015 					   GFP_NOFS, 0);
2016 		if (!ret)
2017 			*discarded_bytes += bytes_left;
2018 	}
2019 	return ret;
2020 }
2021 
2022 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2023 			 u64 num_bytes, u64 *actual_bytes)
2024 {
2025 	int ret;
2026 	u64 discarded_bytes = 0;
2027 	struct btrfs_bio *bbio = NULL;
2028 
2029 
2030 	/*
2031 	 * Avoid races with device replace and make sure our bbio has devices
2032 	 * associated to its stripes that don't go away while we are discarding.
2033 	 */
2034 	btrfs_bio_counter_inc_blocked(fs_info);
2035 	/* Tell the block device(s) that the sectors can be discarded */
2036 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2037 			      &bbio, 0);
2038 	/* Error condition is -ENOMEM */
2039 	if (!ret) {
2040 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2041 		int i;
2042 
2043 
2044 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2045 			u64 bytes;
2046 			if (!stripe->dev->can_discard)
2047 				continue;
2048 
2049 			ret = btrfs_issue_discard(stripe->dev->bdev,
2050 						  stripe->physical,
2051 						  stripe->length,
2052 						  &bytes);
2053 			if (!ret)
2054 				discarded_bytes += bytes;
2055 			else if (ret != -EOPNOTSUPP)
2056 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2057 
2058 			/*
2059 			 * Just in case we get back EOPNOTSUPP for some reason,
2060 			 * just ignore the return value so we don't screw up
2061 			 * people calling discard_extent.
2062 			 */
2063 			ret = 0;
2064 		}
2065 		btrfs_put_bbio(bbio);
2066 	}
2067 	btrfs_bio_counter_dec(fs_info);
2068 
2069 	if (actual_bytes)
2070 		*actual_bytes = discarded_bytes;
2071 
2072 
2073 	if (ret == -EOPNOTSUPP)
2074 		ret = 0;
2075 	return ret;
2076 }
2077 
2078 /* Can return -ENOMEM */
2079 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2080 			 struct btrfs_fs_info *fs_info,
2081 			 u64 bytenr, u64 num_bytes, u64 parent,
2082 			 u64 root_objectid, u64 owner, u64 offset)
2083 {
2084 	int ret;
2085 
2086 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2087 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2088 
2089 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2090 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2091 					num_bytes,
2092 					parent, root_objectid, (int)owner,
2093 					BTRFS_ADD_DELAYED_REF, NULL);
2094 	} else {
2095 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2096 					num_bytes, parent, root_objectid,
2097 					owner, offset, 0,
2098 					BTRFS_ADD_DELAYED_REF);
2099 	}
2100 	return ret;
2101 }
2102 
2103 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2104 				  struct btrfs_fs_info *fs_info,
2105 				  struct btrfs_delayed_ref_node *node,
2106 				  u64 parent, u64 root_objectid,
2107 				  u64 owner, u64 offset, int refs_to_add,
2108 				  struct btrfs_delayed_extent_op *extent_op)
2109 {
2110 	struct btrfs_path *path;
2111 	struct extent_buffer *leaf;
2112 	struct btrfs_extent_item *item;
2113 	struct btrfs_key key;
2114 	u64 bytenr = node->bytenr;
2115 	u64 num_bytes = node->num_bytes;
2116 	u64 refs;
2117 	int ret;
2118 
2119 	path = btrfs_alloc_path();
2120 	if (!path)
2121 		return -ENOMEM;
2122 
2123 	path->reada = READA_FORWARD;
2124 	path->leave_spinning = 1;
2125 	/* this will setup the path even if it fails to insert the back ref */
2126 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2127 					   num_bytes, parent, root_objectid,
2128 					   owner, offset,
2129 					   refs_to_add, extent_op);
2130 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2131 		goto out;
2132 
2133 	/*
2134 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2135 	 * inline extent ref, so just update the reference count and add a
2136 	 * normal backref.
2137 	 */
2138 	leaf = path->nodes[0];
2139 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2140 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2141 	refs = btrfs_extent_refs(leaf, item);
2142 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2143 	if (extent_op)
2144 		__run_delayed_extent_op(extent_op, leaf, item);
2145 
2146 	btrfs_mark_buffer_dirty(leaf);
2147 	btrfs_release_path(path);
2148 
2149 	path->reada = READA_FORWARD;
2150 	path->leave_spinning = 1;
2151 	/* now insert the actual backref */
2152 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2153 				    root_objectid, owner, offset, refs_to_add);
2154 	if (ret)
2155 		btrfs_abort_transaction(trans, ret);
2156 out:
2157 	btrfs_free_path(path);
2158 	return ret;
2159 }
2160 
2161 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2162 				struct btrfs_fs_info *fs_info,
2163 				struct btrfs_delayed_ref_node *node,
2164 				struct btrfs_delayed_extent_op *extent_op,
2165 				int insert_reserved)
2166 {
2167 	int ret = 0;
2168 	struct btrfs_delayed_data_ref *ref;
2169 	struct btrfs_key ins;
2170 	u64 parent = 0;
2171 	u64 ref_root = 0;
2172 	u64 flags = 0;
2173 
2174 	ins.objectid = node->bytenr;
2175 	ins.offset = node->num_bytes;
2176 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2177 
2178 	ref = btrfs_delayed_node_to_data_ref(node);
2179 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2180 
2181 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2182 		parent = ref->parent;
2183 	ref_root = ref->root;
2184 
2185 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2186 		if (extent_op)
2187 			flags |= extent_op->flags_to_set;
2188 		ret = alloc_reserved_file_extent(trans, fs_info,
2189 						 parent, ref_root, flags,
2190 						 ref->objectid, ref->offset,
2191 						 &ins, node->ref_mod);
2192 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2193 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2194 					     ref_root, ref->objectid,
2195 					     ref->offset, node->ref_mod,
2196 					     extent_op);
2197 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2198 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2199 					  ref_root, ref->objectid,
2200 					  ref->offset, node->ref_mod,
2201 					  extent_op);
2202 	} else {
2203 		BUG();
2204 	}
2205 	return ret;
2206 }
2207 
2208 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2209 				    struct extent_buffer *leaf,
2210 				    struct btrfs_extent_item *ei)
2211 {
2212 	u64 flags = btrfs_extent_flags(leaf, ei);
2213 	if (extent_op->update_flags) {
2214 		flags |= extent_op->flags_to_set;
2215 		btrfs_set_extent_flags(leaf, ei, flags);
2216 	}
2217 
2218 	if (extent_op->update_key) {
2219 		struct btrfs_tree_block_info *bi;
2220 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2221 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2222 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2223 	}
2224 }
2225 
2226 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2227 				 struct btrfs_fs_info *fs_info,
2228 				 struct btrfs_delayed_ref_node *node,
2229 				 struct btrfs_delayed_extent_op *extent_op)
2230 {
2231 	struct btrfs_key key;
2232 	struct btrfs_path *path;
2233 	struct btrfs_extent_item *ei;
2234 	struct extent_buffer *leaf;
2235 	u32 item_size;
2236 	int ret;
2237 	int err = 0;
2238 	int metadata = !extent_op->is_data;
2239 
2240 	if (trans->aborted)
2241 		return 0;
2242 
2243 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2244 		metadata = 0;
2245 
2246 	path = btrfs_alloc_path();
2247 	if (!path)
2248 		return -ENOMEM;
2249 
2250 	key.objectid = node->bytenr;
2251 
2252 	if (metadata) {
2253 		key.type = BTRFS_METADATA_ITEM_KEY;
2254 		key.offset = extent_op->level;
2255 	} else {
2256 		key.type = BTRFS_EXTENT_ITEM_KEY;
2257 		key.offset = node->num_bytes;
2258 	}
2259 
2260 again:
2261 	path->reada = READA_FORWARD;
2262 	path->leave_spinning = 1;
2263 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2264 	if (ret < 0) {
2265 		err = ret;
2266 		goto out;
2267 	}
2268 	if (ret > 0) {
2269 		if (metadata) {
2270 			if (path->slots[0] > 0) {
2271 				path->slots[0]--;
2272 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2273 						      path->slots[0]);
2274 				if (key.objectid == node->bytenr &&
2275 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2276 				    key.offset == node->num_bytes)
2277 					ret = 0;
2278 			}
2279 			if (ret > 0) {
2280 				btrfs_release_path(path);
2281 				metadata = 0;
2282 
2283 				key.objectid = node->bytenr;
2284 				key.offset = node->num_bytes;
2285 				key.type = BTRFS_EXTENT_ITEM_KEY;
2286 				goto again;
2287 			}
2288 		} else {
2289 			err = -EIO;
2290 			goto out;
2291 		}
2292 	}
2293 
2294 	leaf = path->nodes[0];
2295 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2296 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2297 	if (item_size < sizeof(*ei)) {
2298 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2299 		if (ret < 0) {
2300 			err = ret;
2301 			goto out;
2302 		}
2303 		leaf = path->nodes[0];
2304 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2305 	}
2306 #endif
2307 	BUG_ON(item_size < sizeof(*ei));
2308 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2309 	__run_delayed_extent_op(extent_op, leaf, ei);
2310 
2311 	btrfs_mark_buffer_dirty(leaf);
2312 out:
2313 	btrfs_free_path(path);
2314 	return err;
2315 }
2316 
2317 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2318 				struct btrfs_fs_info *fs_info,
2319 				struct btrfs_delayed_ref_node *node,
2320 				struct btrfs_delayed_extent_op *extent_op,
2321 				int insert_reserved)
2322 {
2323 	int ret = 0;
2324 	struct btrfs_delayed_tree_ref *ref;
2325 	struct btrfs_key ins;
2326 	u64 parent = 0;
2327 	u64 ref_root = 0;
2328 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2329 
2330 	ref = btrfs_delayed_node_to_tree_ref(node);
2331 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2332 
2333 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2334 		parent = ref->parent;
2335 	ref_root = ref->root;
2336 
2337 	ins.objectid = node->bytenr;
2338 	if (skinny_metadata) {
2339 		ins.offset = ref->level;
2340 		ins.type = BTRFS_METADATA_ITEM_KEY;
2341 	} else {
2342 		ins.offset = node->num_bytes;
2343 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2344 	}
2345 
2346 	if (node->ref_mod != 1) {
2347 		btrfs_err(fs_info,
2348 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2349 			  node->bytenr, node->ref_mod, node->action, ref_root,
2350 			  parent);
2351 		return -EIO;
2352 	}
2353 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2354 		BUG_ON(!extent_op || !extent_op->update_flags);
2355 		ret = alloc_reserved_tree_block(trans, fs_info,
2356 						parent, ref_root,
2357 						extent_op->flags_to_set,
2358 						&extent_op->key,
2359 						ref->level, &ins);
2360 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2361 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2362 					     parent, ref_root,
2363 					     ref->level, 0, 1,
2364 					     extent_op);
2365 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2366 		ret = __btrfs_free_extent(trans, fs_info, node,
2367 					  parent, ref_root,
2368 					  ref->level, 0, 1, extent_op);
2369 	} else {
2370 		BUG();
2371 	}
2372 	return ret;
2373 }
2374 
2375 /* helper function to actually process a single delayed ref entry */
2376 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2377 			       struct btrfs_fs_info *fs_info,
2378 			       struct btrfs_delayed_ref_node *node,
2379 			       struct btrfs_delayed_extent_op *extent_op,
2380 			       int insert_reserved)
2381 {
2382 	int ret = 0;
2383 
2384 	if (trans->aborted) {
2385 		if (insert_reserved)
2386 			btrfs_pin_extent(fs_info, node->bytenr,
2387 					 node->num_bytes, 1);
2388 		return 0;
2389 	}
2390 
2391 	if (btrfs_delayed_ref_is_head(node)) {
2392 		struct btrfs_delayed_ref_head *head;
2393 		/*
2394 		 * we've hit the end of the chain and we were supposed
2395 		 * to insert this extent into the tree.  But, it got
2396 		 * deleted before we ever needed to insert it, so all
2397 		 * we have to do is clean up the accounting
2398 		 */
2399 		BUG_ON(extent_op);
2400 		head = btrfs_delayed_node_to_head(node);
2401 		trace_run_delayed_ref_head(fs_info, node, head, node->action);
2402 
2403 		if (insert_reserved) {
2404 			btrfs_pin_extent(fs_info, node->bytenr,
2405 					 node->num_bytes, 1);
2406 			if (head->is_data) {
2407 				ret = btrfs_del_csums(trans, fs_info,
2408 						      node->bytenr,
2409 						      node->num_bytes);
2410 			}
2411 		}
2412 
2413 		/* Also free its reserved qgroup space */
2414 		btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2415 					      head->qgroup_reserved);
2416 		return ret;
2417 	}
2418 
2419 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2420 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2421 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2422 					   insert_reserved);
2423 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2424 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2425 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2426 					   insert_reserved);
2427 	else
2428 		BUG();
2429 	return ret;
2430 }
2431 
2432 static inline struct btrfs_delayed_ref_node *
2433 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2434 {
2435 	struct btrfs_delayed_ref_node *ref;
2436 
2437 	if (list_empty(&head->ref_list))
2438 		return NULL;
2439 
2440 	/*
2441 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2442 	 * This is to prevent a ref count from going down to zero, which deletes
2443 	 * the extent item from the extent tree, when there still are references
2444 	 * to add, which would fail because they would not find the extent item.
2445 	 */
2446 	if (!list_empty(&head->ref_add_list))
2447 		return list_first_entry(&head->ref_add_list,
2448 				struct btrfs_delayed_ref_node, add_list);
2449 
2450 	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2451 			       list);
2452 	ASSERT(list_empty(&ref->add_list));
2453 	return ref;
2454 }
2455 
2456 /*
2457  * Returns 0 on success or if called with an already aborted transaction.
2458  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2459  */
2460 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2461 					     struct btrfs_fs_info *fs_info,
2462 					     unsigned long nr)
2463 {
2464 	struct btrfs_delayed_ref_root *delayed_refs;
2465 	struct btrfs_delayed_ref_node *ref;
2466 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2467 	struct btrfs_delayed_extent_op *extent_op;
2468 	ktime_t start = ktime_get();
2469 	int ret;
2470 	unsigned long count = 0;
2471 	unsigned long actual_count = 0;
2472 	int must_insert_reserved = 0;
2473 
2474 	delayed_refs = &trans->transaction->delayed_refs;
2475 	while (1) {
2476 		if (!locked_ref) {
2477 			if (count >= nr)
2478 				break;
2479 
2480 			spin_lock(&delayed_refs->lock);
2481 			locked_ref = btrfs_select_ref_head(trans);
2482 			if (!locked_ref) {
2483 				spin_unlock(&delayed_refs->lock);
2484 				break;
2485 			}
2486 
2487 			/* grab the lock that says we are going to process
2488 			 * all the refs for this head */
2489 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2490 			spin_unlock(&delayed_refs->lock);
2491 			/*
2492 			 * we may have dropped the spin lock to get the head
2493 			 * mutex lock, and that might have given someone else
2494 			 * time to free the head.  If that's true, it has been
2495 			 * removed from our list and we can move on.
2496 			 */
2497 			if (ret == -EAGAIN) {
2498 				locked_ref = NULL;
2499 				count++;
2500 				continue;
2501 			}
2502 		}
2503 
2504 		/*
2505 		 * We need to try and merge add/drops of the same ref since we
2506 		 * can run into issues with relocate dropping the implicit ref
2507 		 * and then it being added back again before the drop can
2508 		 * finish.  If we merged anything we need to re-loop so we can
2509 		 * get a good ref.
2510 		 * Or we can get node references of the same type that weren't
2511 		 * merged when created due to bumps in the tree mod seq, and
2512 		 * we need to merge them to prevent adding an inline extent
2513 		 * backref before dropping it (triggering a BUG_ON at
2514 		 * insert_inline_extent_backref()).
2515 		 */
2516 		spin_lock(&locked_ref->lock);
2517 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2518 					 locked_ref);
2519 
2520 		/*
2521 		 * locked_ref is the head node, so we have to go one
2522 		 * node back for any delayed ref updates
2523 		 */
2524 		ref = select_delayed_ref(locked_ref);
2525 
2526 		if (ref && ref->seq &&
2527 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2528 			spin_unlock(&locked_ref->lock);
2529 			spin_lock(&delayed_refs->lock);
2530 			locked_ref->processing = 0;
2531 			delayed_refs->num_heads_ready++;
2532 			spin_unlock(&delayed_refs->lock);
2533 			btrfs_delayed_ref_unlock(locked_ref);
2534 			locked_ref = NULL;
2535 			cond_resched();
2536 			count++;
2537 			continue;
2538 		}
2539 
2540 		/*
2541 		 * record the must insert reserved flag before we
2542 		 * drop the spin lock.
2543 		 */
2544 		must_insert_reserved = locked_ref->must_insert_reserved;
2545 		locked_ref->must_insert_reserved = 0;
2546 
2547 		extent_op = locked_ref->extent_op;
2548 		locked_ref->extent_op = NULL;
2549 
2550 		if (!ref) {
2551 
2552 
2553 			/* All delayed refs have been processed, Go ahead
2554 			 * and send the head node to run_one_delayed_ref,
2555 			 * so that any accounting fixes can happen
2556 			 */
2557 			ref = &locked_ref->node;
2558 
2559 			if (extent_op && must_insert_reserved) {
2560 				btrfs_free_delayed_extent_op(extent_op);
2561 				extent_op = NULL;
2562 			}
2563 
2564 			if (extent_op) {
2565 				spin_unlock(&locked_ref->lock);
2566 				ret = run_delayed_extent_op(trans, fs_info,
2567 							    ref, extent_op);
2568 				btrfs_free_delayed_extent_op(extent_op);
2569 
2570 				if (ret) {
2571 					/*
2572 					 * Need to reset must_insert_reserved if
2573 					 * there was an error so the abort stuff
2574 					 * can cleanup the reserved space
2575 					 * properly.
2576 					 */
2577 					if (must_insert_reserved)
2578 						locked_ref->must_insert_reserved = 1;
2579 					spin_lock(&delayed_refs->lock);
2580 					locked_ref->processing = 0;
2581 					delayed_refs->num_heads_ready++;
2582 					spin_unlock(&delayed_refs->lock);
2583 					btrfs_debug(fs_info,
2584 						    "run_delayed_extent_op returned %d",
2585 						    ret);
2586 					btrfs_delayed_ref_unlock(locked_ref);
2587 					return ret;
2588 				}
2589 				continue;
2590 			}
2591 
2592 			/*
2593 			 * Need to drop our head ref lock and re-acquire the
2594 			 * delayed ref lock and then re-check to make sure
2595 			 * nobody got added.
2596 			 */
2597 			spin_unlock(&locked_ref->lock);
2598 			spin_lock(&delayed_refs->lock);
2599 			spin_lock(&locked_ref->lock);
2600 			if (!list_empty(&locked_ref->ref_list) ||
2601 			    locked_ref->extent_op) {
2602 				spin_unlock(&locked_ref->lock);
2603 				spin_unlock(&delayed_refs->lock);
2604 				continue;
2605 			}
2606 			ref->in_tree = 0;
2607 			delayed_refs->num_heads--;
2608 			rb_erase(&locked_ref->href_node,
2609 				 &delayed_refs->href_root);
2610 			spin_unlock(&delayed_refs->lock);
2611 		} else {
2612 			actual_count++;
2613 			ref->in_tree = 0;
2614 			list_del(&ref->list);
2615 			if (!list_empty(&ref->add_list))
2616 				list_del(&ref->add_list);
2617 		}
2618 		atomic_dec(&delayed_refs->num_entries);
2619 
2620 		if (!btrfs_delayed_ref_is_head(ref)) {
2621 			/*
2622 			 * when we play the delayed ref, also correct the
2623 			 * ref_mod on head
2624 			 */
2625 			switch (ref->action) {
2626 			case BTRFS_ADD_DELAYED_REF:
2627 			case BTRFS_ADD_DELAYED_EXTENT:
2628 				locked_ref->node.ref_mod -= ref->ref_mod;
2629 				break;
2630 			case BTRFS_DROP_DELAYED_REF:
2631 				locked_ref->node.ref_mod += ref->ref_mod;
2632 				break;
2633 			default:
2634 				WARN_ON(1);
2635 			}
2636 		}
2637 		spin_unlock(&locked_ref->lock);
2638 
2639 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2640 					  must_insert_reserved);
2641 
2642 		btrfs_free_delayed_extent_op(extent_op);
2643 		if (ret) {
2644 			spin_lock(&delayed_refs->lock);
2645 			locked_ref->processing = 0;
2646 			delayed_refs->num_heads_ready++;
2647 			spin_unlock(&delayed_refs->lock);
2648 			btrfs_delayed_ref_unlock(locked_ref);
2649 			btrfs_put_delayed_ref(ref);
2650 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2651 				    ret);
2652 			return ret;
2653 		}
2654 
2655 		/*
2656 		 * If this node is a head, that means all the refs in this head
2657 		 * have been dealt with, and we will pick the next head to deal
2658 		 * with, so we must unlock the head and drop it from the cluster
2659 		 * list before we release it.
2660 		 */
2661 		if (btrfs_delayed_ref_is_head(ref)) {
2662 			if (locked_ref->is_data &&
2663 			    locked_ref->total_ref_mod < 0) {
2664 				spin_lock(&delayed_refs->lock);
2665 				delayed_refs->pending_csums -= ref->num_bytes;
2666 				spin_unlock(&delayed_refs->lock);
2667 			}
2668 			btrfs_delayed_ref_unlock(locked_ref);
2669 			locked_ref = NULL;
2670 		}
2671 		btrfs_put_delayed_ref(ref);
2672 		count++;
2673 		cond_resched();
2674 	}
2675 
2676 	/*
2677 	 * We don't want to include ref heads since we can have empty ref heads
2678 	 * and those will drastically skew our runtime down since we just do
2679 	 * accounting, no actual extent tree updates.
2680 	 */
2681 	if (actual_count > 0) {
2682 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2683 		u64 avg;
2684 
2685 		/*
2686 		 * We weigh the current average higher than our current runtime
2687 		 * to avoid large swings in the average.
2688 		 */
2689 		spin_lock(&delayed_refs->lock);
2690 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2691 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2692 		spin_unlock(&delayed_refs->lock);
2693 	}
2694 	return 0;
2695 }
2696 
2697 #ifdef SCRAMBLE_DELAYED_REFS
2698 /*
2699  * Normally delayed refs get processed in ascending bytenr order. This
2700  * correlates in most cases to the order added. To expose dependencies on this
2701  * order, we start to process the tree in the middle instead of the beginning
2702  */
2703 static u64 find_middle(struct rb_root *root)
2704 {
2705 	struct rb_node *n = root->rb_node;
2706 	struct btrfs_delayed_ref_node *entry;
2707 	int alt = 1;
2708 	u64 middle;
2709 	u64 first = 0, last = 0;
2710 
2711 	n = rb_first(root);
2712 	if (n) {
2713 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2714 		first = entry->bytenr;
2715 	}
2716 	n = rb_last(root);
2717 	if (n) {
2718 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 		last = entry->bytenr;
2720 	}
2721 	n = root->rb_node;
2722 
2723 	while (n) {
2724 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725 		WARN_ON(!entry->in_tree);
2726 
2727 		middle = entry->bytenr;
2728 
2729 		if (alt)
2730 			n = n->rb_left;
2731 		else
2732 			n = n->rb_right;
2733 
2734 		alt = 1 - alt;
2735 	}
2736 	return middle;
2737 }
2738 #endif
2739 
2740 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2741 {
2742 	u64 num_bytes;
2743 
2744 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2745 			     sizeof(struct btrfs_extent_inline_ref));
2746 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2747 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2748 
2749 	/*
2750 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2751 	 * closer to what we're really going to want to use.
2752 	 */
2753 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2754 }
2755 
2756 /*
2757  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2758  * would require to store the csums for that many bytes.
2759  */
2760 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2761 {
2762 	u64 csum_size;
2763 	u64 num_csums_per_leaf;
2764 	u64 num_csums;
2765 
2766 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2767 	num_csums_per_leaf = div64_u64(csum_size,
2768 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2769 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2770 	num_csums += num_csums_per_leaf - 1;
2771 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2772 	return num_csums;
2773 }
2774 
2775 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2776 				       struct btrfs_fs_info *fs_info)
2777 {
2778 	struct btrfs_block_rsv *global_rsv;
2779 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2780 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2781 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2782 	u64 num_bytes, num_dirty_bgs_bytes;
2783 	int ret = 0;
2784 
2785 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2786 	num_heads = heads_to_leaves(fs_info, num_heads);
2787 	if (num_heads > 1)
2788 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2789 	num_bytes <<= 1;
2790 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2791 							fs_info->nodesize;
2792 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2793 							     num_dirty_bgs);
2794 	global_rsv = &fs_info->global_block_rsv;
2795 
2796 	/*
2797 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2798 	 * wiggle room since running delayed refs can create more delayed refs.
2799 	 */
2800 	if (global_rsv->space_info->full) {
2801 		num_dirty_bgs_bytes <<= 1;
2802 		num_bytes <<= 1;
2803 	}
2804 
2805 	spin_lock(&global_rsv->lock);
2806 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2807 		ret = 1;
2808 	spin_unlock(&global_rsv->lock);
2809 	return ret;
2810 }
2811 
2812 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2813 				       struct btrfs_fs_info *fs_info)
2814 {
2815 	u64 num_entries =
2816 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2817 	u64 avg_runtime;
2818 	u64 val;
2819 
2820 	smp_mb();
2821 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2822 	val = num_entries * avg_runtime;
2823 	if (val >= NSEC_PER_SEC)
2824 		return 1;
2825 	if (val >= NSEC_PER_SEC / 2)
2826 		return 2;
2827 
2828 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2829 }
2830 
2831 struct async_delayed_refs {
2832 	struct btrfs_root *root;
2833 	u64 transid;
2834 	int count;
2835 	int error;
2836 	int sync;
2837 	struct completion wait;
2838 	struct btrfs_work work;
2839 };
2840 
2841 static inline struct async_delayed_refs *
2842 to_async_delayed_refs(struct btrfs_work *work)
2843 {
2844 	return container_of(work, struct async_delayed_refs, work);
2845 }
2846 
2847 static void delayed_ref_async_start(struct btrfs_work *work)
2848 {
2849 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2850 	struct btrfs_trans_handle *trans;
2851 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2852 	int ret;
2853 
2854 	/* if the commit is already started, we don't need to wait here */
2855 	if (btrfs_transaction_blocked(fs_info))
2856 		goto done;
2857 
2858 	trans = btrfs_join_transaction(async->root);
2859 	if (IS_ERR(trans)) {
2860 		async->error = PTR_ERR(trans);
2861 		goto done;
2862 	}
2863 
2864 	/*
2865 	 * trans->sync means that when we call end_transaction, we won't
2866 	 * wait on delayed refs
2867 	 */
2868 	trans->sync = true;
2869 
2870 	/* Don't bother flushing if we got into a different transaction */
2871 	if (trans->transid > async->transid)
2872 		goto end;
2873 
2874 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2875 	if (ret)
2876 		async->error = ret;
2877 end:
2878 	ret = btrfs_end_transaction(trans);
2879 	if (ret && !async->error)
2880 		async->error = ret;
2881 done:
2882 	if (async->sync)
2883 		complete(&async->wait);
2884 	else
2885 		kfree(async);
2886 }
2887 
2888 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2889 				 unsigned long count, u64 transid, int wait)
2890 {
2891 	struct async_delayed_refs *async;
2892 	int ret;
2893 
2894 	async = kmalloc(sizeof(*async), GFP_NOFS);
2895 	if (!async)
2896 		return -ENOMEM;
2897 
2898 	async->root = fs_info->tree_root;
2899 	async->count = count;
2900 	async->error = 0;
2901 	async->transid = transid;
2902 	if (wait)
2903 		async->sync = 1;
2904 	else
2905 		async->sync = 0;
2906 	init_completion(&async->wait);
2907 
2908 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 			delayed_ref_async_start, NULL, NULL);
2910 
2911 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2912 
2913 	if (wait) {
2914 		wait_for_completion(&async->wait);
2915 		ret = async->error;
2916 		kfree(async);
2917 		return ret;
2918 	}
2919 	return 0;
2920 }
2921 
2922 /*
2923  * this starts processing the delayed reference count updates and
2924  * extent insertions we have queued up so far.  count can be
2925  * 0, which means to process everything in the tree at the start
2926  * of the run (but not newly added entries), or it can be some target
2927  * number you'd like to process.
2928  *
2929  * Returns 0 on success or if called with an aborted transaction
2930  * Returns <0 on error and aborts the transaction
2931  */
2932 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 			   struct btrfs_fs_info *fs_info, unsigned long count)
2934 {
2935 	struct rb_node *node;
2936 	struct btrfs_delayed_ref_root *delayed_refs;
2937 	struct btrfs_delayed_ref_head *head;
2938 	int ret;
2939 	int run_all = count == (unsigned long)-1;
2940 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2941 
2942 	/* We'll clean this up in btrfs_cleanup_transaction */
2943 	if (trans->aborted)
2944 		return 0;
2945 
2946 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2947 		return 0;
2948 
2949 	delayed_refs = &trans->transaction->delayed_refs;
2950 	if (count == 0)
2951 		count = atomic_read(&delayed_refs->num_entries) * 2;
2952 
2953 again:
2954 #ifdef SCRAMBLE_DELAYED_REFS
2955 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2956 #endif
2957 	trans->can_flush_pending_bgs = false;
2958 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2959 	if (ret < 0) {
2960 		btrfs_abort_transaction(trans, ret);
2961 		return ret;
2962 	}
2963 
2964 	if (run_all) {
2965 		if (!list_empty(&trans->new_bgs))
2966 			btrfs_create_pending_block_groups(trans, fs_info);
2967 
2968 		spin_lock(&delayed_refs->lock);
2969 		node = rb_first(&delayed_refs->href_root);
2970 		if (!node) {
2971 			spin_unlock(&delayed_refs->lock);
2972 			goto out;
2973 		}
2974 
2975 		while (node) {
2976 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2977 					href_node);
2978 			if (btrfs_delayed_ref_is_head(&head->node)) {
2979 				struct btrfs_delayed_ref_node *ref;
2980 
2981 				ref = &head->node;
2982 				atomic_inc(&ref->refs);
2983 
2984 				spin_unlock(&delayed_refs->lock);
2985 				/*
2986 				 * Mutex was contended, block until it's
2987 				 * released and try again
2988 				 */
2989 				mutex_lock(&head->mutex);
2990 				mutex_unlock(&head->mutex);
2991 
2992 				btrfs_put_delayed_ref(ref);
2993 				cond_resched();
2994 				goto again;
2995 			} else {
2996 				WARN_ON(1);
2997 			}
2998 			node = rb_next(node);
2999 		}
3000 		spin_unlock(&delayed_refs->lock);
3001 		cond_resched();
3002 		goto again;
3003 	}
3004 out:
3005 	assert_qgroups_uptodate(trans);
3006 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3007 	return 0;
3008 }
3009 
3010 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3011 				struct btrfs_fs_info *fs_info,
3012 				u64 bytenr, u64 num_bytes, u64 flags,
3013 				int level, int is_data)
3014 {
3015 	struct btrfs_delayed_extent_op *extent_op;
3016 	int ret;
3017 
3018 	extent_op = btrfs_alloc_delayed_extent_op();
3019 	if (!extent_op)
3020 		return -ENOMEM;
3021 
3022 	extent_op->flags_to_set = flags;
3023 	extent_op->update_flags = true;
3024 	extent_op->update_key = false;
3025 	extent_op->is_data = is_data ? true : false;
3026 	extent_op->level = level;
3027 
3028 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3029 					  num_bytes, extent_op);
3030 	if (ret)
3031 		btrfs_free_delayed_extent_op(extent_op);
3032 	return ret;
3033 }
3034 
3035 static noinline int check_delayed_ref(struct btrfs_root *root,
3036 				      struct btrfs_path *path,
3037 				      u64 objectid, u64 offset, u64 bytenr)
3038 {
3039 	struct btrfs_delayed_ref_head *head;
3040 	struct btrfs_delayed_ref_node *ref;
3041 	struct btrfs_delayed_data_ref *data_ref;
3042 	struct btrfs_delayed_ref_root *delayed_refs;
3043 	struct btrfs_transaction *cur_trans;
3044 	int ret = 0;
3045 
3046 	cur_trans = root->fs_info->running_transaction;
3047 	if (!cur_trans)
3048 		return 0;
3049 
3050 	delayed_refs = &cur_trans->delayed_refs;
3051 	spin_lock(&delayed_refs->lock);
3052 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3053 	if (!head) {
3054 		spin_unlock(&delayed_refs->lock);
3055 		return 0;
3056 	}
3057 
3058 	if (!mutex_trylock(&head->mutex)) {
3059 		atomic_inc(&head->node.refs);
3060 		spin_unlock(&delayed_refs->lock);
3061 
3062 		btrfs_release_path(path);
3063 
3064 		/*
3065 		 * Mutex was contended, block until it's released and let
3066 		 * caller try again
3067 		 */
3068 		mutex_lock(&head->mutex);
3069 		mutex_unlock(&head->mutex);
3070 		btrfs_put_delayed_ref(&head->node);
3071 		return -EAGAIN;
3072 	}
3073 	spin_unlock(&delayed_refs->lock);
3074 
3075 	spin_lock(&head->lock);
3076 	list_for_each_entry(ref, &head->ref_list, list) {
3077 		/* If it's a shared ref we know a cross reference exists */
3078 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 			ret = 1;
3080 			break;
3081 		}
3082 
3083 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3084 
3085 		/*
3086 		 * If our ref doesn't match the one we're currently looking at
3087 		 * then we have a cross reference.
3088 		 */
3089 		if (data_ref->root != root->root_key.objectid ||
3090 		    data_ref->objectid != objectid ||
3091 		    data_ref->offset != offset) {
3092 			ret = 1;
3093 			break;
3094 		}
3095 	}
3096 	spin_unlock(&head->lock);
3097 	mutex_unlock(&head->mutex);
3098 	return ret;
3099 }
3100 
3101 static noinline int check_committed_ref(struct btrfs_root *root,
3102 					struct btrfs_path *path,
3103 					u64 objectid, u64 offset, u64 bytenr)
3104 {
3105 	struct btrfs_fs_info *fs_info = root->fs_info;
3106 	struct btrfs_root *extent_root = fs_info->extent_root;
3107 	struct extent_buffer *leaf;
3108 	struct btrfs_extent_data_ref *ref;
3109 	struct btrfs_extent_inline_ref *iref;
3110 	struct btrfs_extent_item *ei;
3111 	struct btrfs_key key;
3112 	u32 item_size;
3113 	int ret;
3114 
3115 	key.objectid = bytenr;
3116 	key.offset = (u64)-1;
3117 	key.type = BTRFS_EXTENT_ITEM_KEY;
3118 
3119 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 	if (ret < 0)
3121 		goto out;
3122 	BUG_ON(ret == 0); /* Corruption */
3123 
3124 	ret = -ENOENT;
3125 	if (path->slots[0] == 0)
3126 		goto out;
3127 
3128 	path->slots[0]--;
3129 	leaf = path->nodes[0];
3130 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131 
3132 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133 		goto out;
3134 
3135 	ret = 1;
3136 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 	if (item_size < sizeof(*ei)) {
3139 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 		goto out;
3141 	}
3142 #endif
3143 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144 
3145 	if (item_size != sizeof(*ei) +
3146 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 		goto out;
3148 
3149 	if (btrfs_extent_generation(leaf, ei) <=
3150 	    btrfs_root_last_snapshot(&root->root_item))
3151 		goto out;
3152 
3153 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 	    BTRFS_EXTENT_DATA_REF_KEY)
3156 		goto out;
3157 
3158 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 	if (btrfs_extent_refs(leaf, ei) !=
3160 	    btrfs_extent_data_ref_count(leaf, ref) ||
3161 	    btrfs_extent_data_ref_root(leaf, ref) !=
3162 	    root->root_key.objectid ||
3163 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 		goto out;
3166 
3167 	ret = 0;
3168 out:
3169 	return ret;
3170 }
3171 
3172 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3173 			  u64 bytenr)
3174 {
3175 	struct btrfs_path *path;
3176 	int ret;
3177 	int ret2;
3178 
3179 	path = btrfs_alloc_path();
3180 	if (!path)
3181 		return -ENOENT;
3182 
3183 	do {
3184 		ret = check_committed_ref(root, path, objectid,
3185 					  offset, bytenr);
3186 		if (ret && ret != -ENOENT)
3187 			goto out;
3188 
3189 		ret2 = check_delayed_ref(root, path, objectid,
3190 					 offset, bytenr);
3191 	} while (ret2 == -EAGAIN);
3192 
3193 	if (ret2 && ret2 != -ENOENT) {
3194 		ret = ret2;
3195 		goto out;
3196 	}
3197 
3198 	if (ret != -ENOENT || ret2 != -ENOENT)
3199 		ret = 0;
3200 out:
3201 	btrfs_free_path(path);
3202 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3203 		WARN_ON(ret > 0);
3204 	return ret;
3205 }
3206 
3207 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3208 			   struct btrfs_root *root,
3209 			   struct extent_buffer *buf,
3210 			   int full_backref, int inc)
3211 {
3212 	struct btrfs_fs_info *fs_info = root->fs_info;
3213 	u64 bytenr;
3214 	u64 num_bytes;
3215 	u64 parent;
3216 	u64 ref_root;
3217 	u32 nritems;
3218 	struct btrfs_key key;
3219 	struct btrfs_file_extent_item *fi;
3220 	int i;
3221 	int level;
3222 	int ret = 0;
3223 	int (*process_func)(struct btrfs_trans_handle *,
3224 			    struct btrfs_fs_info *,
3225 			    u64, u64, u64, u64, u64, u64);
3226 
3227 
3228 	if (btrfs_is_testing(fs_info))
3229 		return 0;
3230 
3231 	ref_root = btrfs_header_owner(buf);
3232 	nritems = btrfs_header_nritems(buf);
3233 	level = btrfs_header_level(buf);
3234 
3235 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3236 		return 0;
3237 
3238 	if (inc)
3239 		process_func = btrfs_inc_extent_ref;
3240 	else
3241 		process_func = btrfs_free_extent;
3242 
3243 	if (full_backref)
3244 		parent = buf->start;
3245 	else
3246 		parent = 0;
3247 
3248 	for (i = 0; i < nritems; i++) {
3249 		if (level == 0) {
3250 			btrfs_item_key_to_cpu(buf, &key, i);
3251 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3252 				continue;
3253 			fi = btrfs_item_ptr(buf, i,
3254 					    struct btrfs_file_extent_item);
3255 			if (btrfs_file_extent_type(buf, fi) ==
3256 			    BTRFS_FILE_EXTENT_INLINE)
3257 				continue;
3258 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3259 			if (bytenr == 0)
3260 				continue;
3261 
3262 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3263 			key.offset -= btrfs_file_extent_offset(buf, fi);
3264 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3265 					   parent, ref_root, key.objectid,
3266 					   key.offset);
3267 			if (ret)
3268 				goto fail;
3269 		} else {
3270 			bytenr = btrfs_node_blockptr(buf, i);
3271 			num_bytes = fs_info->nodesize;
3272 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3273 					   parent, ref_root, level - 1, 0);
3274 			if (ret)
3275 				goto fail;
3276 		}
3277 	}
3278 	return 0;
3279 fail:
3280 	return ret;
3281 }
3282 
3283 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3284 		  struct extent_buffer *buf, int full_backref)
3285 {
3286 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3287 }
3288 
3289 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3290 		  struct extent_buffer *buf, int full_backref)
3291 {
3292 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3293 }
3294 
3295 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3296 				 struct btrfs_fs_info *fs_info,
3297 				 struct btrfs_path *path,
3298 				 struct btrfs_block_group_cache *cache)
3299 {
3300 	int ret;
3301 	struct btrfs_root *extent_root = fs_info->extent_root;
3302 	unsigned long bi;
3303 	struct extent_buffer *leaf;
3304 
3305 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3306 	if (ret) {
3307 		if (ret > 0)
3308 			ret = -ENOENT;
3309 		goto fail;
3310 	}
3311 
3312 	leaf = path->nodes[0];
3313 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3314 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3315 	btrfs_mark_buffer_dirty(leaf);
3316 fail:
3317 	btrfs_release_path(path);
3318 	return ret;
3319 
3320 }
3321 
3322 static struct btrfs_block_group_cache *
3323 next_block_group(struct btrfs_fs_info *fs_info,
3324 		 struct btrfs_block_group_cache *cache)
3325 {
3326 	struct rb_node *node;
3327 
3328 	spin_lock(&fs_info->block_group_cache_lock);
3329 
3330 	/* If our block group was removed, we need a full search. */
3331 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3332 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3333 
3334 		spin_unlock(&fs_info->block_group_cache_lock);
3335 		btrfs_put_block_group(cache);
3336 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3337 	}
3338 	node = rb_next(&cache->cache_node);
3339 	btrfs_put_block_group(cache);
3340 	if (node) {
3341 		cache = rb_entry(node, struct btrfs_block_group_cache,
3342 				 cache_node);
3343 		btrfs_get_block_group(cache);
3344 	} else
3345 		cache = NULL;
3346 	spin_unlock(&fs_info->block_group_cache_lock);
3347 	return cache;
3348 }
3349 
3350 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3351 			    struct btrfs_trans_handle *trans,
3352 			    struct btrfs_path *path)
3353 {
3354 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3355 	struct btrfs_root *root = fs_info->tree_root;
3356 	struct inode *inode = NULL;
3357 	u64 alloc_hint = 0;
3358 	int dcs = BTRFS_DC_ERROR;
3359 	u64 num_pages = 0;
3360 	int retries = 0;
3361 	int ret = 0;
3362 
3363 	/*
3364 	 * If this block group is smaller than 100 megs don't bother caching the
3365 	 * block group.
3366 	 */
3367 	if (block_group->key.offset < (100 * SZ_1M)) {
3368 		spin_lock(&block_group->lock);
3369 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 		spin_unlock(&block_group->lock);
3371 		return 0;
3372 	}
3373 
3374 	if (trans->aborted)
3375 		return 0;
3376 again:
3377 	inode = lookup_free_space_inode(fs_info, block_group, path);
3378 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 		ret = PTR_ERR(inode);
3380 		btrfs_release_path(path);
3381 		goto out;
3382 	}
3383 
3384 	if (IS_ERR(inode)) {
3385 		BUG_ON(retries);
3386 		retries++;
3387 
3388 		if (block_group->ro)
3389 			goto out_free;
3390 
3391 		ret = create_free_space_inode(fs_info, trans, block_group,
3392 					      path);
3393 		if (ret)
3394 			goto out_free;
3395 		goto again;
3396 	}
3397 
3398 	/* We've already setup this transaction, go ahead and exit */
3399 	if (block_group->cache_generation == trans->transid &&
3400 	    i_size_read(inode)) {
3401 		dcs = BTRFS_DC_SETUP;
3402 		goto out_put;
3403 	}
3404 
3405 	/*
3406 	 * We want to set the generation to 0, that way if anything goes wrong
3407 	 * from here on out we know not to trust this cache when we load up next
3408 	 * time.
3409 	 */
3410 	BTRFS_I(inode)->generation = 0;
3411 	ret = btrfs_update_inode(trans, root, inode);
3412 	if (ret) {
3413 		/*
3414 		 * So theoretically we could recover from this, simply set the
3415 		 * super cache generation to 0 so we know to invalidate the
3416 		 * cache, but then we'd have to keep track of the block groups
3417 		 * that fail this way so we know we _have_ to reset this cache
3418 		 * before the next commit or risk reading stale cache.  So to
3419 		 * limit our exposure to horrible edge cases lets just abort the
3420 		 * transaction, this only happens in really bad situations
3421 		 * anyway.
3422 		 */
3423 		btrfs_abort_transaction(trans, ret);
3424 		goto out_put;
3425 	}
3426 	WARN_ON(ret);
3427 
3428 	if (i_size_read(inode) > 0) {
3429 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3430 					&fs_info->global_block_rsv);
3431 		if (ret)
3432 			goto out_put;
3433 
3434 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3435 		if (ret)
3436 			goto out_put;
3437 	}
3438 
3439 	spin_lock(&block_group->lock);
3440 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3441 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3442 		/*
3443 		 * don't bother trying to write stuff out _if_
3444 		 * a) we're not cached,
3445 		 * b) we're with nospace_cache mount option.
3446 		 */
3447 		dcs = BTRFS_DC_WRITTEN;
3448 		spin_unlock(&block_group->lock);
3449 		goto out_put;
3450 	}
3451 	spin_unlock(&block_group->lock);
3452 
3453 	/*
3454 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3455 	 * skip doing the setup, we've already cleared the cache so we're safe.
3456 	 */
3457 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3458 		ret = -ENOSPC;
3459 		goto out_put;
3460 	}
3461 
3462 	/*
3463 	 * Try to preallocate enough space based on how big the block group is.
3464 	 * Keep in mind this has to include any pinned space which could end up
3465 	 * taking up quite a bit since it's not folded into the other space
3466 	 * cache.
3467 	 */
3468 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3469 	if (!num_pages)
3470 		num_pages = 1;
3471 
3472 	num_pages *= 16;
3473 	num_pages *= PAGE_SIZE;
3474 
3475 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3476 	if (ret)
3477 		goto out_put;
3478 
3479 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3480 					      num_pages, num_pages,
3481 					      &alloc_hint);
3482 	/*
3483 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3484 	 * of metadata or split extents when writing the cache out, which means
3485 	 * we can enospc if we are heavily fragmented in addition to just normal
3486 	 * out of space conditions.  So if we hit this just skip setting up any
3487 	 * other block groups for this transaction, maybe we'll unpin enough
3488 	 * space the next time around.
3489 	 */
3490 	if (!ret)
3491 		dcs = BTRFS_DC_SETUP;
3492 	else if (ret == -ENOSPC)
3493 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3494 
3495 out_put:
3496 	iput(inode);
3497 out_free:
3498 	btrfs_release_path(path);
3499 out:
3500 	spin_lock(&block_group->lock);
3501 	if (!ret && dcs == BTRFS_DC_SETUP)
3502 		block_group->cache_generation = trans->transid;
3503 	block_group->disk_cache_state = dcs;
3504 	spin_unlock(&block_group->lock);
3505 
3506 	return ret;
3507 }
3508 
3509 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510 			    struct btrfs_fs_info *fs_info)
3511 {
3512 	struct btrfs_block_group_cache *cache, *tmp;
3513 	struct btrfs_transaction *cur_trans = trans->transaction;
3514 	struct btrfs_path *path;
3515 
3516 	if (list_empty(&cur_trans->dirty_bgs) ||
3517 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3518 		return 0;
3519 
3520 	path = btrfs_alloc_path();
3521 	if (!path)
3522 		return -ENOMEM;
3523 
3524 	/* Could add new block groups, use _safe just in case */
3525 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526 				 dirty_list) {
3527 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528 			cache_save_setup(cache, trans, path);
3529 	}
3530 
3531 	btrfs_free_path(path);
3532 	return 0;
3533 }
3534 
3535 /*
3536  * transaction commit does final block group cache writeback during a
3537  * critical section where nothing is allowed to change the FS.  This is
3538  * required in order for the cache to actually match the block group,
3539  * but can introduce a lot of latency into the commit.
3540  *
3541  * So, btrfs_start_dirty_block_groups is here to kick off block group
3542  * cache IO.  There's a chance we'll have to redo some of it if the
3543  * block group changes again during the commit, but it greatly reduces
3544  * the commit latency by getting rid of the easy block groups while
3545  * we're still allowing others to join the commit.
3546  */
3547 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3548 				   struct btrfs_fs_info *fs_info)
3549 {
3550 	struct btrfs_block_group_cache *cache;
3551 	struct btrfs_transaction *cur_trans = trans->transaction;
3552 	int ret = 0;
3553 	int should_put;
3554 	struct btrfs_path *path = NULL;
3555 	LIST_HEAD(dirty);
3556 	struct list_head *io = &cur_trans->io_bgs;
3557 	int num_started = 0;
3558 	int loops = 0;
3559 
3560 	spin_lock(&cur_trans->dirty_bgs_lock);
3561 	if (list_empty(&cur_trans->dirty_bgs)) {
3562 		spin_unlock(&cur_trans->dirty_bgs_lock);
3563 		return 0;
3564 	}
3565 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3566 	spin_unlock(&cur_trans->dirty_bgs_lock);
3567 
3568 again:
3569 	/*
3570 	 * make sure all the block groups on our dirty list actually
3571 	 * exist
3572 	 */
3573 	btrfs_create_pending_block_groups(trans, fs_info);
3574 
3575 	if (!path) {
3576 		path = btrfs_alloc_path();
3577 		if (!path)
3578 			return -ENOMEM;
3579 	}
3580 
3581 	/*
3582 	 * cache_write_mutex is here only to save us from balance or automatic
3583 	 * removal of empty block groups deleting this block group while we are
3584 	 * writing out the cache
3585 	 */
3586 	mutex_lock(&trans->transaction->cache_write_mutex);
3587 	while (!list_empty(&dirty)) {
3588 		cache = list_first_entry(&dirty,
3589 					 struct btrfs_block_group_cache,
3590 					 dirty_list);
3591 		/*
3592 		 * this can happen if something re-dirties a block
3593 		 * group that is already under IO.  Just wait for it to
3594 		 * finish and then do it all again
3595 		 */
3596 		if (!list_empty(&cache->io_list)) {
3597 			list_del_init(&cache->io_list);
3598 			btrfs_wait_cache_io(trans, cache, path);
3599 			btrfs_put_block_group(cache);
3600 		}
3601 
3602 
3603 		/*
3604 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3605 		 * if it should update the cache_state.  Don't delete
3606 		 * until after we wait.
3607 		 *
3608 		 * Since we're not running in the commit critical section
3609 		 * we need the dirty_bgs_lock to protect from update_block_group
3610 		 */
3611 		spin_lock(&cur_trans->dirty_bgs_lock);
3612 		list_del_init(&cache->dirty_list);
3613 		spin_unlock(&cur_trans->dirty_bgs_lock);
3614 
3615 		should_put = 1;
3616 
3617 		cache_save_setup(cache, trans, path);
3618 
3619 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3620 			cache->io_ctl.inode = NULL;
3621 			ret = btrfs_write_out_cache(fs_info, trans,
3622 						    cache, path);
3623 			if (ret == 0 && cache->io_ctl.inode) {
3624 				num_started++;
3625 				should_put = 0;
3626 
3627 				/*
3628 				 * the cache_write_mutex is protecting
3629 				 * the io_list
3630 				 */
3631 				list_add_tail(&cache->io_list, io);
3632 			} else {
3633 				/*
3634 				 * if we failed to write the cache, the
3635 				 * generation will be bad and life goes on
3636 				 */
3637 				ret = 0;
3638 			}
3639 		}
3640 		if (!ret) {
3641 			ret = write_one_cache_group(trans, fs_info,
3642 						    path, cache);
3643 			/*
3644 			 * Our block group might still be attached to the list
3645 			 * of new block groups in the transaction handle of some
3646 			 * other task (struct btrfs_trans_handle->new_bgs). This
3647 			 * means its block group item isn't yet in the extent
3648 			 * tree. If this happens ignore the error, as we will
3649 			 * try again later in the critical section of the
3650 			 * transaction commit.
3651 			 */
3652 			if (ret == -ENOENT) {
3653 				ret = 0;
3654 				spin_lock(&cur_trans->dirty_bgs_lock);
3655 				if (list_empty(&cache->dirty_list)) {
3656 					list_add_tail(&cache->dirty_list,
3657 						      &cur_trans->dirty_bgs);
3658 					btrfs_get_block_group(cache);
3659 				}
3660 				spin_unlock(&cur_trans->dirty_bgs_lock);
3661 			} else if (ret) {
3662 				btrfs_abort_transaction(trans, ret);
3663 			}
3664 		}
3665 
3666 		/* if its not on the io list, we need to put the block group */
3667 		if (should_put)
3668 			btrfs_put_block_group(cache);
3669 
3670 		if (ret)
3671 			break;
3672 
3673 		/*
3674 		 * Avoid blocking other tasks for too long. It might even save
3675 		 * us from writing caches for block groups that are going to be
3676 		 * removed.
3677 		 */
3678 		mutex_unlock(&trans->transaction->cache_write_mutex);
3679 		mutex_lock(&trans->transaction->cache_write_mutex);
3680 	}
3681 	mutex_unlock(&trans->transaction->cache_write_mutex);
3682 
3683 	/*
3684 	 * go through delayed refs for all the stuff we've just kicked off
3685 	 * and then loop back (just once)
3686 	 */
3687 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3688 	if (!ret && loops == 0) {
3689 		loops++;
3690 		spin_lock(&cur_trans->dirty_bgs_lock);
3691 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3692 		/*
3693 		 * dirty_bgs_lock protects us from concurrent block group
3694 		 * deletes too (not just cache_write_mutex).
3695 		 */
3696 		if (!list_empty(&dirty)) {
3697 			spin_unlock(&cur_trans->dirty_bgs_lock);
3698 			goto again;
3699 		}
3700 		spin_unlock(&cur_trans->dirty_bgs_lock);
3701 	} else if (ret < 0) {
3702 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3703 	}
3704 
3705 	btrfs_free_path(path);
3706 	return ret;
3707 }
3708 
3709 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3710 				   struct btrfs_fs_info *fs_info)
3711 {
3712 	struct btrfs_block_group_cache *cache;
3713 	struct btrfs_transaction *cur_trans = trans->transaction;
3714 	int ret = 0;
3715 	int should_put;
3716 	struct btrfs_path *path;
3717 	struct list_head *io = &cur_trans->io_bgs;
3718 	int num_started = 0;
3719 
3720 	path = btrfs_alloc_path();
3721 	if (!path)
3722 		return -ENOMEM;
3723 
3724 	/*
3725 	 * Even though we are in the critical section of the transaction commit,
3726 	 * we can still have concurrent tasks adding elements to this
3727 	 * transaction's list of dirty block groups. These tasks correspond to
3728 	 * endio free space workers started when writeback finishes for a
3729 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3730 	 * allocate new block groups as a result of COWing nodes of the root
3731 	 * tree when updating the free space inode. The writeback for the space
3732 	 * caches is triggered by an earlier call to
3733 	 * btrfs_start_dirty_block_groups() and iterations of the following
3734 	 * loop.
3735 	 * Also we want to do the cache_save_setup first and then run the
3736 	 * delayed refs to make sure we have the best chance at doing this all
3737 	 * in one shot.
3738 	 */
3739 	spin_lock(&cur_trans->dirty_bgs_lock);
3740 	while (!list_empty(&cur_trans->dirty_bgs)) {
3741 		cache = list_first_entry(&cur_trans->dirty_bgs,
3742 					 struct btrfs_block_group_cache,
3743 					 dirty_list);
3744 
3745 		/*
3746 		 * this can happen if cache_save_setup re-dirties a block
3747 		 * group that is already under IO.  Just wait for it to
3748 		 * finish and then do it all again
3749 		 */
3750 		if (!list_empty(&cache->io_list)) {
3751 			spin_unlock(&cur_trans->dirty_bgs_lock);
3752 			list_del_init(&cache->io_list);
3753 			btrfs_wait_cache_io(trans, cache, path);
3754 			btrfs_put_block_group(cache);
3755 			spin_lock(&cur_trans->dirty_bgs_lock);
3756 		}
3757 
3758 		/*
3759 		 * don't remove from the dirty list until after we've waited
3760 		 * on any pending IO
3761 		 */
3762 		list_del_init(&cache->dirty_list);
3763 		spin_unlock(&cur_trans->dirty_bgs_lock);
3764 		should_put = 1;
3765 
3766 		cache_save_setup(cache, trans, path);
3767 
3768 		if (!ret)
3769 			ret = btrfs_run_delayed_refs(trans, fs_info,
3770 						     (unsigned long) -1);
3771 
3772 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3773 			cache->io_ctl.inode = NULL;
3774 			ret = btrfs_write_out_cache(fs_info, trans,
3775 						    cache, path);
3776 			if (ret == 0 && cache->io_ctl.inode) {
3777 				num_started++;
3778 				should_put = 0;
3779 				list_add_tail(&cache->io_list, io);
3780 			} else {
3781 				/*
3782 				 * if we failed to write the cache, the
3783 				 * generation will be bad and life goes on
3784 				 */
3785 				ret = 0;
3786 			}
3787 		}
3788 		if (!ret) {
3789 			ret = write_one_cache_group(trans, fs_info,
3790 						    path, cache);
3791 			/*
3792 			 * One of the free space endio workers might have
3793 			 * created a new block group while updating a free space
3794 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3795 			 * and hasn't released its transaction handle yet, in
3796 			 * which case the new block group is still attached to
3797 			 * its transaction handle and its creation has not
3798 			 * finished yet (no block group item in the extent tree
3799 			 * yet, etc). If this is the case, wait for all free
3800 			 * space endio workers to finish and retry. This is a
3801 			 * a very rare case so no need for a more efficient and
3802 			 * complex approach.
3803 			 */
3804 			if (ret == -ENOENT) {
3805 				wait_event(cur_trans->writer_wait,
3806 				   atomic_read(&cur_trans->num_writers) == 1);
3807 				ret = write_one_cache_group(trans, fs_info,
3808 							    path, cache);
3809 			}
3810 			if (ret)
3811 				btrfs_abort_transaction(trans, ret);
3812 		}
3813 
3814 		/* if its not on the io list, we need to put the block group */
3815 		if (should_put)
3816 			btrfs_put_block_group(cache);
3817 		spin_lock(&cur_trans->dirty_bgs_lock);
3818 	}
3819 	spin_unlock(&cur_trans->dirty_bgs_lock);
3820 
3821 	while (!list_empty(io)) {
3822 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3823 					 io_list);
3824 		list_del_init(&cache->io_list);
3825 		btrfs_wait_cache_io(trans, cache, path);
3826 		btrfs_put_block_group(cache);
3827 	}
3828 
3829 	btrfs_free_path(path);
3830 	return ret;
3831 }
3832 
3833 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3834 {
3835 	struct btrfs_block_group_cache *block_group;
3836 	int readonly = 0;
3837 
3838 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3839 	if (!block_group || block_group->ro)
3840 		readonly = 1;
3841 	if (block_group)
3842 		btrfs_put_block_group(block_group);
3843 	return readonly;
3844 }
3845 
3846 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3847 {
3848 	struct btrfs_block_group_cache *bg;
3849 	bool ret = true;
3850 
3851 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3852 	if (!bg)
3853 		return false;
3854 
3855 	spin_lock(&bg->lock);
3856 	if (bg->ro)
3857 		ret = false;
3858 	else
3859 		atomic_inc(&bg->nocow_writers);
3860 	spin_unlock(&bg->lock);
3861 
3862 	/* no put on block group, done by btrfs_dec_nocow_writers */
3863 	if (!ret)
3864 		btrfs_put_block_group(bg);
3865 
3866 	return ret;
3867 
3868 }
3869 
3870 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3871 {
3872 	struct btrfs_block_group_cache *bg;
3873 
3874 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3875 	ASSERT(bg);
3876 	if (atomic_dec_and_test(&bg->nocow_writers))
3877 		wake_up_atomic_t(&bg->nocow_writers);
3878 	/*
3879 	 * Once for our lookup and once for the lookup done by a previous call
3880 	 * to btrfs_inc_nocow_writers()
3881 	 */
3882 	btrfs_put_block_group(bg);
3883 	btrfs_put_block_group(bg);
3884 }
3885 
3886 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3887 {
3888 	schedule();
3889 	return 0;
3890 }
3891 
3892 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3893 {
3894 	wait_on_atomic_t(&bg->nocow_writers,
3895 			 btrfs_wait_nocow_writers_atomic_t,
3896 			 TASK_UNINTERRUPTIBLE);
3897 }
3898 
3899 static const char *alloc_name(u64 flags)
3900 {
3901 	switch (flags) {
3902 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3903 		return "mixed";
3904 	case BTRFS_BLOCK_GROUP_METADATA:
3905 		return "metadata";
3906 	case BTRFS_BLOCK_GROUP_DATA:
3907 		return "data";
3908 	case BTRFS_BLOCK_GROUP_SYSTEM:
3909 		return "system";
3910 	default:
3911 		WARN_ON(1);
3912 		return "invalid-combination";
3913 	};
3914 }
3915 
3916 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3917 			     u64 total_bytes, u64 bytes_used,
3918 			     u64 bytes_readonly,
3919 			     struct btrfs_space_info **space_info)
3920 {
3921 	struct btrfs_space_info *found;
3922 	int i;
3923 	int factor;
3924 	int ret;
3925 
3926 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3927 		     BTRFS_BLOCK_GROUP_RAID10))
3928 		factor = 2;
3929 	else
3930 		factor = 1;
3931 
3932 	found = __find_space_info(info, flags);
3933 	if (found) {
3934 		spin_lock(&found->lock);
3935 		found->total_bytes += total_bytes;
3936 		found->disk_total += total_bytes * factor;
3937 		found->bytes_used += bytes_used;
3938 		found->disk_used += bytes_used * factor;
3939 		found->bytes_readonly += bytes_readonly;
3940 		if (total_bytes > 0)
3941 			found->full = 0;
3942 		space_info_add_new_bytes(info, found, total_bytes -
3943 					 bytes_used - bytes_readonly);
3944 		spin_unlock(&found->lock);
3945 		*space_info = found;
3946 		return 0;
3947 	}
3948 	found = kzalloc(sizeof(*found), GFP_NOFS);
3949 	if (!found)
3950 		return -ENOMEM;
3951 
3952 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3953 	if (ret) {
3954 		kfree(found);
3955 		return ret;
3956 	}
3957 
3958 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3959 		INIT_LIST_HEAD(&found->block_groups[i]);
3960 	init_rwsem(&found->groups_sem);
3961 	spin_lock_init(&found->lock);
3962 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3963 	found->total_bytes = total_bytes;
3964 	found->disk_total = total_bytes * factor;
3965 	found->bytes_used = bytes_used;
3966 	found->disk_used = bytes_used * factor;
3967 	found->bytes_pinned = 0;
3968 	found->bytes_reserved = 0;
3969 	found->bytes_readonly = bytes_readonly;
3970 	found->bytes_may_use = 0;
3971 	found->full = 0;
3972 	found->max_extent_size = 0;
3973 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3974 	found->chunk_alloc = 0;
3975 	found->flush = 0;
3976 	init_waitqueue_head(&found->wait);
3977 	INIT_LIST_HEAD(&found->ro_bgs);
3978 	INIT_LIST_HEAD(&found->tickets);
3979 	INIT_LIST_HEAD(&found->priority_tickets);
3980 
3981 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3982 				    info->space_info_kobj, "%s",
3983 				    alloc_name(found->flags));
3984 	if (ret) {
3985 		kfree(found);
3986 		return ret;
3987 	}
3988 
3989 	*space_info = found;
3990 	list_add_rcu(&found->list, &info->space_info);
3991 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3992 		info->data_sinfo = found;
3993 
3994 	return ret;
3995 }
3996 
3997 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3998 {
3999 	u64 extra_flags = chunk_to_extended(flags) &
4000 				BTRFS_EXTENDED_PROFILE_MASK;
4001 
4002 	write_seqlock(&fs_info->profiles_lock);
4003 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4004 		fs_info->avail_data_alloc_bits |= extra_flags;
4005 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4006 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4007 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4008 		fs_info->avail_system_alloc_bits |= extra_flags;
4009 	write_sequnlock(&fs_info->profiles_lock);
4010 }
4011 
4012 /*
4013  * returns target flags in extended format or 0 if restripe for this
4014  * chunk_type is not in progress
4015  *
4016  * should be called with either volume_mutex or balance_lock held
4017  */
4018 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4019 {
4020 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4021 	u64 target = 0;
4022 
4023 	if (!bctl)
4024 		return 0;
4025 
4026 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4027 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4029 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4030 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4031 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4032 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4033 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4034 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4035 	}
4036 
4037 	return target;
4038 }
4039 
4040 /*
4041  * @flags: available profiles in extended format (see ctree.h)
4042  *
4043  * Returns reduced profile in chunk format.  If profile changing is in
4044  * progress (either running or paused) picks the target profile (if it's
4045  * already available), otherwise falls back to plain reducing.
4046  */
4047 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4048 {
4049 	u64 num_devices = fs_info->fs_devices->rw_devices;
4050 	u64 target;
4051 	u64 raid_type;
4052 	u64 allowed = 0;
4053 
4054 	/*
4055 	 * see if restripe for this chunk_type is in progress, if so
4056 	 * try to reduce to the target profile
4057 	 */
4058 	spin_lock(&fs_info->balance_lock);
4059 	target = get_restripe_target(fs_info, flags);
4060 	if (target) {
4061 		/* pick target profile only if it's already available */
4062 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4063 			spin_unlock(&fs_info->balance_lock);
4064 			return extended_to_chunk(target);
4065 		}
4066 	}
4067 	spin_unlock(&fs_info->balance_lock);
4068 
4069 	/* First, mask out the RAID levels which aren't possible */
4070 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4071 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4072 			allowed |= btrfs_raid_group[raid_type];
4073 	}
4074 	allowed &= flags;
4075 
4076 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4077 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4078 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4079 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4080 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4081 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4082 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4083 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4084 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4085 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4086 
4087 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4088 
4089 	return extended_to_chunk(flags | allowed);
4090 }
4091 
4092 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4093 {
4094 	unsigned seq;
4095 	u64 flags;
4096 
4097 	do {
4098 		flags = orig_flags;
4099 		seq = read_seqbegin(&fs_info->profiles_lock);
4100 
4101 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4102 			flags |= fs_info->avail_data_alloc_bits;
4103 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4104 			flags |= fs_info->avail_system_alloc_bits;
4105 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4106 			flags |= fs_info->avail_metadata_alloc_bits;
4107 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4108 
4109 	return btrfs_reduce_alloc_profile(fs_info, flags);
4110 }
4111 
4112 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4113 {
4114 	struct btrfs_fs_info *fs_info = root->fs_info;
4115 	u64 flags;
4116 	u64 ret;
4117 
4118 	if (data)
4119 		flags = BTRFS_BLOCK_GROUP_DATA;
4120 	else if (root == fs_info->chunk_root)
4121 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4122 	else
4123 		flags = BTRFS_BLOCK_GROUP_METADATA;
4124 
4125 	ret = get_alloc_profile(fs_info, flags);
4126 	return ret;
4127 }
4128 
4129 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4130 				 bool may_use_included)
4131 {
4132 	ASSERT(s_info);
4133 	return s_info->bytes_used + s_info->bytes_reserved +
4134 		s_info->bytes_pinned + s_info->bytes_readonly +
4135 		(may_use_included ? s_info->bytes_may_use : 0);
4136 }
4137 
4138 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4139 {
4140 	struct btrfs_space_info *data_sinfo;
4141 	struct btrfs_root *root = BTRFS_I(inode)->root;
4142 	struct btrfs_fs_info *fs_info = root->fs_info;
4143 	u64 used;
4144 	int ret = 0;
4145 	int need_commit = 2;
4146 	int have_pinned_space;
4147 
4148 	/* make sure bytes are sectorsize aligned */
4149 	bytes = ALIGN(bytes, fs_info->sectorsize);
4150 
4151 	if (btrfs_is_free_space_inode(inode)) {
4152 		need_commit = 0;
4153 		ASSERT(current->journal_info);
4154 	}
4155 
4156 	data_sinfo = fs_info->data_sinfo;
4157 	if (!data_sinfo)
4158 		goto alloc;
4159 
4160 again:
4161 	/* make sure we have enough space to handle the data first */
4162 	spin_lock(&data_sinfo->lock);
4163 	used = btrfs_space_info_used(data_sinfo, true);
4164 
4165 	if (used + bytes > data_sinfo->total_bytes) {
4166 		struct btrfs_trans_handle *trans;
4167 
4168 		/*
4169 		 * if we don't have enough free bytes in this space then we need
4170 		 * to alloc a new chunk.
4171 		 */
4172 		if (!data_sinfo->full) {
4173 			u64 alloc_target;
4174 
4175 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4176 			spin_unlock(&data_sinfo->lock);
4177 alloc:
4178 			alloc_target = btrfs_get_alloc_profile(root, 1);
4179 			/*
4180 			 * It is ugly that we don't call nolock join
4181 			 * transaction for the free space inode case here.
4182 			 * But it is safe because we only do the data space
4183 			 * reservation for the free space cache in the
4184 			 * transaction context, the common join transaction
4185 			 * just increase the counter of the current transaction
4186 			 * handler, doesn't try to acquire the trans_lock of
4187 			 * the fs.
4188 			 */
4189 			trans = btrfs_join_transaction(root);
4190 			if (IS_ERR(trans))
4191 				return PTR_ERR(trans);
4192 
4193 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4194 					     CHUNK_ALLOC_NO_FORCE);
4195 			btrfs_end_transaction(trans);
4196 			if (ret < 0) {
4197 				if (ret != -ENOSPC)
4198 					return ret;
4199 				else {
4200 					have_pinned_space = 1;
4201 					goto commit_trans;
4202 				}
4203 			}
4204 
4205 			if (!data_sinfo)
4206 				data_sinfo = fs_info->data_sinfo;
4207 
4208 			goto again;
4209 		}
4210 
4211 		/*
4212 		 * If we don't have enough pinned space to deal with this
4213 		 * allocation, and no removed chunk in current transaction,
4214 		 * don't bother committing the transaction.
4215 		 */
4216 		have_pinned_space = percpu_counter_compare(
4217 			&data_sinfo->total_bytes_pinned,
4218 			used + bytes - data_sinfo->total_bytes);
4219 		spin_unlock(&data_sinfo->lock);
4220 
4221 		/* commit the current transaction and try again */
4222 commit_trans:
4223 		if (need_commit &&
4224 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4225 			need_commit--;
4226 
4227 			if (need_commit > 0) {
4228 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4229 				btrfs_wait_ordered_roots(fs_info, -1, 0,
4230 							 (u64)-1);
4231 			}
4232 
4233 			trans = btrfs_join_transaction(root);
4234 			if (IS_ERR(trans))
4235 				return PTR_ERR(trans);
4236 			if (have_pinned_space >= 0 ||
4237 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4238 				     &trans->transaction->flags) ||
4239 			    need_commit > 0) {
4240 				ret = btrfs_commit_transaction(trans);
4241 				if (ret)
4242 					return ret;
4243 				/*
4244 				 * The cleaner kthread might still be doing iput
4245 				 * operations. Wait for it to finish so that
4246 				 * more space is released.
4247 				 */
4248 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4249 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4250 				goto again;
4251 			} else {
4252 				btrfs_end_transaction(trans);
4253 			}
4254 		}
4255 
4256 		trace_btrfs_space_reservation(fs_info,
4257 					      "space_info:enospc",
4258 					      data_sinfo->flags, bytes, 1);
4259 		return -ENOSPC;
4260 	}
4261 	data_sinfo->bytes_may_use += bytes;
4262 	trace_btrfs_space_reservation(fs_info, "space_info",
4263 				      data_sinfo->flags, bytes, 1);
4264 	spin_unlock(&data_sinfo->lock);
4265 
4266 	return ret;
4267 }
4268 
4269 /*
4270  * New check_data_free_space() with ability for precious data reservation
4271  * Will replace old btrfs_check_data_free_space(), but for patch split,
4272  * add a new function first and then replace it.
4273  */
4274 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4275 {
4276 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4277 	int ret;
4278 
4279 	/* align the range */
4280 	len = round_up(start + len, fs_info->sectorsize) -
4281 	      round_down(start, fs_info->sectorsize);
4282 	start = round_down(start, fs_info->sectorsize);
4283 
4284 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4285 	if (ret < 0)
4286 		return ret;
4287 
4288 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4289 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4290 	if (ret)
4291 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4292 	return ret;
4293 }
4294 
4295 /*
4296  * Called if we need to clear a data reservation for this inode
4297  * Normally in a error case.
4298  *
4299  * This one will *NOT* use accurate qgroup reserved space API, just for case
4300  * which we can't sleep and is sure it won't affect qgroup reserved space.
4301  * Like clear_bit_hook().
4302  */
4303 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4304 					    u64 len)
4305 {
4306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4307 	struct btrfs_space_info *data_sinfo;
4308 
4309 	/* Make sure the range is aligned to sectorsize */
4310 	len = round_up(start + len, fs_info->sectorsize) -
4311 	      round_down(start, fs_info->sectorsize);
4312 	start = round_down(start, fs_info->sectorsize);
4313 
4314 	data_sinfo = fs_info->data_sinfo;
4315 	spin_lock(&data_sinfo->lock);
4316 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4317 		data_sinfo->bytes_may_use = 0;
4318 	else
4319 		data_sinfo->bytes_may_use -= len;
4320 	trace_btrfs_space_reservation(fs_info, "space_info",
4321 				      data_sinfo->flags, len, 0);
4322 	spin_unlock(&data_sinfo->lock);
4323 }
4324 
4325 /*
4326  * Called if we need to clear a data reservation for this inode
4327  * Normally in a error case.
4328  *
4329  * This one will handle the per-inode data rsv map for accurate reserved
4330  * space framework.
4331  */
4332 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4333 {
4334 	struct btrfs_root *root = BTRFS_I(inode)->root;
4335 
4336 	/* Make sure the range is aligned to sectorsize */
4337 	len = round_up(start + len, root->fs_info->sectorsize) -
4338 	      round_down(start, root->fs_info->sectorsize);
4339 	start = round_down(start, root->fs_info->sectorsize);
4340 
4341 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4342 	btrfs_qgroup_free_data(inode, start, len);
4343 }
4344 
4345 static void force_metadata_allocation(struct btrfs_fs_info *info)
4346 {
4347 	struct list_head *head = &info->space_info;
4348 	struct btrfs_space_info *found;
4349 
4350 	rcu_read_lock();
4351 	list_for_each_entry_rcu(found, head, list) {
4352 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4353 			found->force_alloc = CHUNK_ALLOC_FORCE;
4354 	}
4355 	rcu_read_unlock();
4356 }
4357 
4358 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4359 {
4360 	return (global->size << 1);
4361 }
4362 
4363 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4364 			      struct btrfs_space_info *sinfo, int force)
4365 {
4366 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4367 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4368 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4369 	u64 thresh;
4370 
4371 	if (force == CHUNK_ALLOC_FORCE)
4372 		return 1;
4373 
4374 	/*
4375 	 * We need to take into account the global rsv because for all intents
4376 	 * and purposes it's used space.  Don't worry about locking the
4377 	 * global_rsv, it doesn't change except when the transaction commits.
4378 	 */
4379 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4380 		num_allocated += calc_global_rsv_need_space(global_rsv);
4381 
4382 	/*
4383 	 * in limited mode, we want to have some free space up to
4384 	 * about 1% of the FS size.
4385 	 */
4386 	if (force == CHUNK_ALLOC_LIMITED) {
4387 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4388 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4389 
4390 		if (num_bytes - num_allocated < thresh)
4391 			return 1;
4392 	}
4393 
4394 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4395 		return 0;
4396 	return 1;
4397 }
4398 
4399 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4400 {
4401 	u64 num_dev;
4402 
4403 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4404 		    BTRFS_BLOCK_GROUP_RAID0 |
4405 		    BTRFS_BLOCK_GROUP_RAID5 |
4406 		    BTRFS_BLOCK_GROUP_RAID6))
4407 		num_dev = fs_info->fs_devices->rw_devices;
4408 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4409 		num_dev = 2;
4410 	else
4411 		num_dev = 1;	/* DUP or single */
4412 
4413 	return num_dev;
4414 }
4415 
4416 /*
4417  * If @is_allocation is true, reserve space in the system space info necessary
4418  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4419  * removing a chunk.
4420  */
4421 void check_system_chunk(struct btrfs_trans_handle *trans,
4422 			struct btrfs_fs_info *fs_info, u64 type)
4423 {
4424 	struct btrfs_space_info *info;
4425 	u64 left;
4426 	u64 thresh;
4427 	int ret = 0;
4428 	u64 num_devs;
4429 
4430 	/*
4431 	 * Needed because we can end up allocating a system chunk and for an
4432 	 * atomic and race free space reservation in the chunk block reserve.
4433 	 */
4434 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4435 
4436 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4437 	spin_lock(&info->lock);
4438 	left = info->total_bytes - btrfs_space_info_used(info, true);
4439 	spin_unlock(&info->lock);
4440 
4441 	num_devs = get_profile_num_devs(fs_info, type);
4442 
4443 	/* num_devs device items to update and 1 chunk item to add or remove */
4444 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4445 		btrfs_calc_trans_metadata_size(fs_info, 1);
4446 
4447 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4448 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4449 			   left, thresh, type);
4450 		dump_space_info(fs_info, info, 0, 0);
4451 	}
4452 
4453 	if (left < thresh) {
4454 		u64 flags;
4455 
4456 		flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4457 		/*
4458 		 * Ignore failure to create system chunk. We might end up not
4459 		 * needing it, as we might not need to COW all nodes/leafs from
4460 		 * the paths we visit in the chunk tree (they were already COWed
4461 		 * or created in the current transaction for example).
4462 		 */
4463 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4464 	}
4465 
4466 	if (!ret) {
4467 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4468 					  &fs_info->chunk_block_rsv,
4469 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4470 		if (!ret)
4471 			trans->chunk_bytes_reserved += thresh;
4472 	}
4473 }
4474 
4475 /*
4476  * If force is CHUNK_ALLOC_FORCE:
4477  *    - return 1 if it successfully allocates a chunk,
4478  *    - return errors including -ENOSPC otherwise.
4479  * If force is NOT CHUNK_ALLOC_FORCE:
4480  *    - return 0 if it doesn't need to allocate a new chunk,
4481  *    - return 1 if it successfully allocates a chunk,
4482  *    - return errors including -ENOSPC otherwise.
4483  */
4484 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4485 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4486 {
4487 	struct btrfs_space_info *space_info;
4488 	int wait_for_alloc = 0;
4489 	int ret = 0;
4490 
4491 	/* Don't re-enter if we're already allocating a chunk */
4492 	if (trans->allocating_chunk)
4493 		return -ENOSPC;
4494 
4495 	space_info = __find_space_info(fs_info, flags);
4496 	if (!space_info) {
4497 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4498 		BUG_ON(ret); /* -ENOMEM */
4499 	}
4500 	BUG_ON(!space_info); /* Logic error */
4501 
4502 again:
4503 	spin_lock(&space_info->lock);
4504 	if (force < space_info->force_alloc)
4505 		force = space_info->force_alloc;
4506 	if (space_info->full) {
4507 		if (should_alloc_chunk(fs_info, space_info, force))
4508 			ret = -ENOSPC;
4509 		else
4510 			ret = 0;
4511 		spin_unlock(&space_info->lock);
4512 		return ret;
4513 	}
4514 
4515 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4516 		spin_unlock(&space_info->lock);
4517 		return 0;
4518 	} else if (space_info->chunk_alloc) {
4519 		wait_for_alloc = 1;
4520 	} else {
4521 		space_info->chunk_alloc = 1;
4522 	}
4523 
4524 	spin_unlock(&space_info->lock);
4525 
4526 	mutex_lock(&fs_info->chunk_mutex);
4527 
4528 	/*
4529 	 * The chunk_mutex is held throughout the entirety of a chunk
4530 	 * allocation, so once we've acquired the chunk_mutex we know that the
4531 	 * other guy is done and we need to recheck and see if we should
4532 	 * allocate.
4533 	 */
4534 	if (wait_for_alloc) {
4535 		mutex_unlock(&fs_info->chunk_mutex);
4536 		wait_for_alloc = 0;
4537 		goto again;
4538 	}
4539 
4540 	trans->allocating_chunk = true;
4541 
4542 	/*
4543 	 * If we have mixed data/metadata chunks we want to make sure we keep
4544 	 * allocating mixed chunks instead of individual chunks.
4545 	 */
4546 	if (btrfs_mixed_space_info(space_info))
4547 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4548 
4549 	/*
4550 	 * if we're doing a data chunk, go ahead and make sure that
4551 	 * we keep a reasonable number of metadata chunks allocated in the
4552 	 * FS as well.
4553 	 */
4554 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4555 		fs_info->data_chunk_allocations++;
4556 		if (!(fs_info->data_chunk_allocations %
4557 		      fs_info->metadata_ratio))
4558 			force_metadata_allocation(fs_info);
4559 	}
4560 
4561 	/*
4562 	 * Check if we have enough space in SYSTEM chunk because we may need
4563 	 * to update devices.
4564 	 */
4565 	check_system_chunk(trans, fs_info, flags);
4566 
4567 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4568 	trans->allocating_chunk = false;
4569 
4570 	spin_lock(&space_info->lock);
4571 	if (ret < 0 && ret != -ENOSPC)
4572 		goto out;
4573 	if (ret)
4574 		space_info->full = 1;
4575 	else
4576 		ret = 1;
4577 
4578 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4579 out:
4580 	space_info->chunk_alloc = 0;
4581 	spin_unlock(&space_info->lock);
4582 	mutex_unlock(&fs_info->chunk_mutex);
4583 	/*
4584 	 * When we allocate a new chunk we reserve space in the chunk block
4585 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4586 	 * add new nodes/leafs to it if we end up needing to do it when
4587 	 * inserting the chunk item and updating device items as part of the
4588 	 * second phase of chunk allocation, performed by
4589 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4590 	 * large number of new block groups to create in our transaction
4591 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4592 	 * in extreme cases - like having a single transaction create many new
4593 	 * block groups when starting to write out the free space caches of all
4594 	 * the block groups that were made dirty during the lifetime of the
4595 	 * transaction.
4596 	 */
4597 	if (trans->can_flush_pending_bgs &&
4598 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4599 		btrfs_create_pending_block_groups(trans, fs_info);
4600 		btrfs_trans_release_chunk_metadata(trans);
4601 	}
4602 	return ret;
4603 }
4604 
4605 static int can_overcommit(struct btrfs_root *root,
4606 			  struct btrfs_space_info *space_info, u64 bytes,
4607 			  enum btrfs_reserve_flush_enum flush)
4608 {
4609 	struct btrfs_fs_info *fs_info = root->fs_info;
4610 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4611 	u64 profile;
4612 	u64 space_size;
4613 	u64 avail;
4614 	u64 used;
4615 
4616 	/* Don't overcommit when in mixed mode. */
4617 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4618 		return 0;
4619 
4620 	profile = btrfs_get_alloc_profile(root, 0);
4621 	used = btrfs_space_info_used(space_info, false);
4622 
4623 	/*
4624 	 * We only want to allow over committing if we have lots of actual space
4625 	 * free, but if we don't have enough space to handle the global reserve
4626 	 * space then we could end up having a real enospc problem when trying
4627 	 * to allocate a chunk or some other such important allocation.
4628 	 */
4629 	spin_lock(&global_rsv->lock);
4630 	space_size = calc_global_rsv_need_space(global_rsv);
4631 	spin_unlock(&global_rsv->lock);
4632 	if (used + space_size >= space_info->total_bytes)
4633 		return 0;
4634 
4635 	used += space_info->bytes_may_use;
4636 
4637 	spin_lock(&fs_info->free_chunk_lock);
4638 	avail = fs_info->free_chunk_space;
4639 	spin_unlock(&fs_info->free_chunk_lock);
4640 
4641 	/*
4642 	 * If we have dup, raid1 or raid10 then only half of the free
4643 	 * space is actually useable.  For raid56, the space info used
4644 	 * doesn't include the parity drive, so we don't have to
4645 	 * change the math
4646 	 */
4647 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4648 		       BTRFS_BLOCK_GROUP_RAID1 |
4649 		       BTRFS_BLOCK_GROUP_RAID10))
4650 		avail >>= 1;
4651 
4652 	/*
4653 	 * If we aren't flushing all things, let us overcommit up to
4654 	 * 1/2th of the space. If we can flush, don't let us overcommit
4655 	 * too much, let it overcommit up to 1/8 of the space.
4656 	 */
4657 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4658 		avail >>= 3;
4659 	else
4660 		avail >>= 1;
4661 
4662 	if (used + bytes < space_info->total_bytes + avail)
4663 		return 1;
4664 	return 0;
4665 }
4666 
4667 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4668 					 unsigned long nr_pages, int nr_items)
4669 {
4670 	struct super_block *sb = fs_info->sb;
4671 
4672 	if (down_read_trylock(&sb->s_umount)) {
4673 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4674 		up_read(&sb->s_umount);
4675 	} else {
4676 		/*
4677 		 * We needn't worry the filesystem going from r/w to r/o though
4678 		 * we don't acquire ->s_umount mutex, because the filesystem
4679 		 * should guarantee the delalloc inodes list be empty after
4680 		 * the filesystem is readonly(all dirty pages are written to
4681 		 * the disk).
4682 		 */
4683 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4684 		if (!current->journal_info)
4685 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4686 	}
4687 }
4688 
4689 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4690 					u64 to_reclaim)
4691 {
4692 	u64 bytes;
4693 	int nr;
4694 
4695 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4696 	nr = (int)div64_u64(to_reclaim, bytes);
4697 	if (!nr)
4698 		nr = 1;
4699 	return nr;
4700 }
4701 
4702 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4703 
4704 /*
4705  * shrink metadata reservation for delalloc
4706  */
4707 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4708 			    bool wait_ordered)
4709 {
4710 	struct btrfs_fs_info *fs_info = root->fs_info;
4711 	struct btrfs_block_rsv *block_rsv;
4712 	struct btrfs_space_info *space_info;
4713 	struct btrfs_trans_handle *trans;
4714 	u64 delalloc_bytes;
4715 	u64 max_reclaim;
4716 	long time_left;
4717 	unsigned long nr_pages;
4718 	int loops;
4719 	int items;
4720 	enum btrfs_reserve_flush_enum flush;
4721 
4722 	/* Calc the number of the pages we need flush for space reservation */
4723 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4724 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4725 
4726 	trans = (struct btrfs_trans_handle *)current->journal_info;
4727 	block_rsv = &fs_info->delalloc_block_rsv;
4728 	space_info = block_rsv->space_info;
4729 
4730 	delalloc_bytes = percpu_counter_sum_positive(
4731 						&fs_info->delalloc_bytes);
4732 	if (delalloc_bytes == 0) {
4733 		if (trans)
4734 			return;
4735 		if (wait_ordered)
4736 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4737 		return;
4738 	}
4739 
4740 	loops = 0;
4741 	while (delalloc_bytes && loops < 3) {
4742 		max_reclaim = min(delalloc_bytes, to_reclaim);
4743 		nr_pages = max_reclaim >> PAGE_SHIFT;
4744 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4745 		/*
4746 		 * We need to wait for the async pages to actually start before
4747 		 * we do anything.
4748 		 */
4749 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4750 		if (!max_reclaim)
4751 			goto skip_async;
4752 
4753 		if (max_reclaim <= nr_pages)
4754 			max_reclaim = 0;
4755 		else
4756 			max_reclaim -= nr_pages;
4757 
4758 		wait_event(fs_info->async_submit_wait,
4759 			   atomic_read(&fs_info->async_delalloc_pages) <=
4760 			   (int)max_reclaim);
4761 skip_async:
4762 		if (!trans)
4763 			flush = BTRFS_RESERVE_FLUSH_ALL;
4764 		else
4765 			flush = BTRFS_RESERVE_NO_FLUSH;
4766 		spin_lock(&space_info->lock);
4767 		if (can_overcommit(root, space_info, orig, flush)) {
4768 			spin_unlock(&space_info->lock);
4769 			break;
4770 		}
4771 		if (list_empty(&space_info->tickets) &&
4772 		    list_empty(&space_info->priority_tickets)) {
4773 			spin_unlock(&space_info->lock);
4774 			break;
4775 		}
4776 		spin_unlock(&space_info->lock);
4777 
4778 		loops++;
4779 		if (wait_ordered && !trans) {
4780 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4781 		} else {
4782 			time_left = schedule_timeout_killable(1);
4783 			if (time_left)
4784 				break;
4785 		}
4786 		delalloc_bytes = percpu_counter_sum_positive(
4787 						&fs_info->delalloc_bytes);
4788 	}
4789 }
4790 
4791 /**
4792  * maybe_commit_transaction - possibly commit the transaction if its ok to
4793  * @root - the root we're allocating for
4794  * @bytes - the number of bytes we want to reserve
4795  * @force - force the commit
4796  *
4797  * This will check to make sure that committing the transaction will actually
4798  * get us somewhere and then commit the transaction if it does.  Otherwise it
4799  * will return -ENOSPC.
4800  */
4801 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4802 				  struct btrfs_space_info *space_info,
4803 				  u64 bytes, int force)
4804 {
4805 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4806 	struct btrfs_trans_handle *trans;
4807 
4808 	trans = (struct btrfs_trans_handle *)current->journal_info;
4809 	if (trans)
4810 		return -EAGAIN;
4811 
4812 	if (force)
4813 		goto commit;
4814 
4815 	/* See if there is enough pinned space to make this reservation */
4816 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4817 				   bytes) >= 0)
4818 		goto commit;
4819 
4820 	/*
4821 	 * See if there is some space in the delayed insertion reservation for
4822 	 * this reservation.
4823 	 */
4824 	if (space_info != delayed_rsv->space_info)
4825 		return -ENOSPC;
4826 
4827 	spin_lock(&delayed_rsv->lock);
4828 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4829 				   bytes - delayed_rsv->size) >= 0) {
4830 		spin_unlock(&delayed_rsv->lock);
4831 		return -ENOSPC;
4832 	}
4833 	spin_unlock(&delayed_rsv->lock);
4834 
4835 commit:
4836 	trans = btrfs_join_transaction(fs_info->fs_root);
4837 	if (IS_ERR(trans))
4838 		return -ENOSPC;
4839 
4840 	return btrfs_commit_transaction(trans);
4841 }
4842 
4843 struct reserve_ticket {
4844 	u64 bytes;
4845 	int error;
4846 	struct list_head list;
4847 	wait_queue_head_t wait;
4848 };
4849 
4850 static int flush_space(struct btrfs_fs_info *fs_info,
4851 		       struct btrfs_space_info *space_info, u64 num_bytes,
4852 		       u64 orig_bytes, int state)
4853 {
4854 	struct btrfs_root *root = fs_info->fs_root;
4855 	struct btrfs_trans_handle *trans;
4856 	int nr;
4857 	int ret = 0;
4858 
4859 	switch (state) {
4860 	case FLUSH_DELAYED_ITEMS_NR:
4861 	case FLUSH_DELAYED_ITEMS:
4862 		if (state == FLUSH_DELAYED_ITEMS_NR)
4863 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4864 		else
4865 			nr = -1;
4866 
4867 		trans = btrfs_join_transaction(root);
4868 		if (IS_ERR(trans)) {
4869 			ret = PTR_ERR(trans);
4870 			break;
4871 		}
4872 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4873 		btrfs_end_transaction(trans);
4874 		break;
4875 	case FLUSH_DELALLOC:
4876 	case FLUSH_DELALLOC_WAIT:
4877 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4878 				state == FLUSH_DELALLOC_WAIT);
4879 		break;
4880 	case ALLOC_CHUNK:
4881 		trans = btrfs_join_transaction(root);
4882 		if (IS_ERR(trans)) {
4883 			ret = PTR_ERR(trans);
4884 			break;
4885 		}
4886 		ret = do_chunk_alloc(trans, fs_info,
4887 				     btrfs_get_alloc_profile(root, 0),
4888 				     CHUNK_ALLOC_NO_FORCE);
4889 		btrfs_end_transaction(trans);
4890 		if (ret > 0 || ret == -ENOSPC)
4891 			ret = 0;
4892 		break;
4893 	case COMMIT_TRANS:
4894 		ret = may_commit_transaction(fs_info, space_info,
4895 					     orig_bytes, 0);
4896 		break;
4897 	default:
4898 		ret = -ENOSPC;
4899 		break;
4900 	}
4901 
4902 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4903 				orig_bytes, state, ret);
4904 	return ret;
4905 }
4906 
4907 static inline u64
4908 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4909 				 struct btrfs_space_info *space_info)
4910 {
4911 	struct reserve_ticket *ticket;
4912 	u64 used;
4913 	u64 expected;
4914 	u64 to_reclaim = 0;
4915 
4916 	list_for_each_entry(ticket, &space_info->tickets, list)
4917 		to_reclaim += ticket->bytes;
4918 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4919 		to_reclaim += ticket->bytes;
4920 	if (to_reclaim)
4921 		return to_reclaim;
4922 
4923 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4924 	if (can_overcommit(root, space_info, to_reclaim,
4925 			   BTRFS_RESERVE_FLUSH_ALL))
4926 		return 0;
4927 
4928 	used = space_info->bytes_used + space_info->bytes_reserved +
4929 	       space_info->bytes_pinned + space_info->bytes_readonly +
4930 	       space_info->bytes_may_use;
4931 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4932 		expected = div_factor_fine(space_info->total_bytes, 95);
4933 	else
4934 		expected = div_factor_fine(space_info->total_bytes, 90);
4935 
4936 	if (used > expected)
4937 		to_reclaim = used - expected;
4938 	else
4939 		to_reclaim = 0;
4940 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4941 				     space_info->bytes_reserved);
4942 	return to_reclaim;
4943 }
4944 
4945 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4946 					struct btrfs_root *root, u64 used)
4947 {
4948 	struct btrfs_fs_info *fs_info = root->fs_info;
4949 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4950 
4951 	/* If we're just plain full then async reclaim just slows us down. */
4952 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4953 		return 0;
4954 
4955 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4956 		return 0;
4957 
4958 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4959 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4960 }
4961 
4962 static void wake_all_tickets(struct list_head *head)
4963 {
4964 	struct reserve_ticket *ticket;
4965 
4966 	while (!list_empty(head)) {
4967 		ticket = list_first_entry(head, struct reserve_ticket, list);
4968 		list_del_init(&ticket->list);
4969 		ticket->error = -ENOSPC;
4970 		wake_up(&ticket->wait);
4971 	}
4972 }
4973 
4974 /*
4975  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4976  * will loop and continuously try to flush as long as we are making progress.
4977  * We count progress as clearing off tickets each time we have to loop.
4978  */
4979 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4980 {
4981 	struct btrfs_fs_info *fs_info;
4982 	struct btrfs_space_info *space_info;
4983 	u64 to_reclaim;
4984 	int flush_state;
4985 	int commit_cycles = 0;
4986 	u64 last_tickets_id;
4987 
4988 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4989 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4990 
4991 	spin_lock(&space_info->lock);
4992 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4993 						      space_info);
4994 	if (!to_reclaim) {
4995 		space_info->flush = 0;
4996 		spin_unlock(&space_info->lock);
4997 		return;
4998 	}
4999 	last_tickets_id = space_info->tickets_id;
5000 	spin_unlock(&space_info->lock);
5001 
5002 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5003 	do {
5004 		struct reserve_ticket *ticket;
5005 		int ret;
5006 
5007 		ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5008 				  flush_state);
5009 		spin_lock(&space_info->lock);
5010 		if (list_empty(&space_info->tickets)) {
5011 			space_info->flush = 0;
5012 			spin_unlock(&space_info->lock);
5013 			return;
5014 		}
5015 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5016 							      space_info);
5017 		ticket = list_first_entry(&space_info->tickets,
5018 					  struct reserve_ticket, list);
5019 		if (last_tickets_id == space_info->tickets_id) {
5020 			flush_state++;
5021 		} else {
5022 			last_tickets_id = space_info->tickets_id;
5023 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5024 			if (commit_cycles)
5025 				commit_cycles--;
5026 		}
5027 
5028 		if (flush_state > COMMIT_TRANS) {
5029 			commit_cycles++;
5030 			if (commit_cycles > 2) {
5031 				wake_all_tickets(&space_info->tickets);
5032 				space_info->flush = 0;
5033 			} else {
5034 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5035 			}
5036 		}
5037 		spin_unlock(&space_info->lock);
5038 	} while (flush_state <= COMMIT_TRANS);
5039 }
5040 
5041 void btrfs_init_async_reclaim_work(struct work_struct *work)
5042 {
5043 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5044 }
5045 
5046 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5047 					    struct btrfs_space_info *space_info,
5048 					    struct reserve_ticket *ticket)
5049 {
5050 	u64 to_reclaim;
5051 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5052 
5053 	spin_lock(&space_info->lock);
5054 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5055 						      space_info);
5056 	if (!to_reclaim) {
5057 		spin_unlock(&space_info->lock);
5058 		return;
5059 	}
5060 	spin_unlock(&space_info->lock);
5061 
5062 	do {
5063 		flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5064 			    flush_state);
5065 		flush_state++;
5066 		spin_lock(&space_info->lock);
5067 		if (ticket->bytes == 0) {
5068 			spin_unlock(&space_info->lock);
5069 			return;
5070 		}
5071 		spin_unlock(&space_info->lock);
5072 
5073 		/*
5074 		 * Priority flushers can't wait on delalloc without
5075 		 * deadlocking.
5076 		 */
5077 		if (flush_state == FLUSH_DELALLOC ||
5078 		    flush_state == FLUSH_DELALLOC_WAIT)
5079 			flush_state = ALLOC_CHUNK;
5080 	} while (flush_state < COMMIT_TRANS);
5081 }
5082 
5083 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5084 			       struct btrfs_space_info *space_info,
5085 			       struct reserve_ticket *ticket, u64 orig_bytes)
5086 
5087 {
5088 	DEFINE_WAIT(wait);
5089 	int ret = 0;
5090 
5091 	spin_lock(&space_info->lock);
5092 	while (ticket->bytes > 0 && ticket->error == 0) {
5093 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5094 		if (ret) {
5095 			ret = -EINTR;
5096 			break;
5097 		}
5098 		spin_unlock(&space_info->lock);
5099 
5100 		schedule();
5101 
5102 		finish_wait(&ticket->wait, &wait);
5103 		spin_lock(&space_info->lock);
5104 	}
5105 	if (!ret)
5106 		ret = ticket->error;
5107 	if (!list_empty(&ticket->list))
5108 		list_del_init(&ticket->list);
5109 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5110 		u64 num_bytes = orig_bytes - ticket->bytes;
5111 		space_info->bytes_may_use -= num_bytes;
5112 		trace_btrfs_space_reservation(fs_info, "space_info",
5113 					      space_info->flags, num_bytes, 0);
5114 	}
5115 	spin_unlock(&space_info->lock);
5116 
5117 	return ret;
5118 }
5119 
5120 /**
5121  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5122  * @root - the root we're allocating for
5123  * @space_info - the space info we want to allocate from
5124  * @orig_bytes - the number of bytes we want
5125  * @flush - whether or not we can flush to make our reservation
5126  *
5127  * This will reserve orig_bytes number of bytes from the space info associated
5128  * with the block_rsv.  If there is not enough space it will make an attempt to
5129  * flush out space to make room.  It will do this by flushing delalloc if
5130  * possible or committing the transaction.  If flush is 0 then no attempts to
5131  * regain reservations will be made and this will fail if there is not enough
5132  * space already.
5133  */
5134 static int __reserve_metadata_bytes(struct btrfs_root *root,
5135 				    struct btrfs_space_info *space_info,
5136 				    u64 orig_bytes,
5137 				    enum btrfs_reserve_flush_enum flush)
5138 {
5139 	struct btrfs_fs_info *fs_info = root->fs_info;
5140 	struct reserve_ticket ticket;
5141 	u64 used;
5142 	int ret = 0;
5143 
5144 	ASSERT(orig_bytes);
5145 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5146 
5147 	spin_lock(&space_info->lock);
5148 	ret = -ENOSPC;
5149 	used = btrfs_space_info_used(space_info, true);
5150 
5151 	/*
5152 	 * If we have enough space then hooray, make our reservation and carry
5153 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5154 	 * If not things get more complicated.
5155 	 */
5156 	if (used + orig_bytes <= space_info->total_bytes) {
5157 		space_info->bytes_may_use += orig_bytes;
5158 		trace_btrfs_space_reservation(fs_info, "space_info",
5159 					      space_info->flags, orig_bytes, 1);
5160 		ret = 0;
5161 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5162 		space_info->bytes_may_use += orig_bytes;
5163 		trace_btrfs_space_reservation(fs_info, "space_info",
5164 					      space_info->flags, orig_bytes, 1);
5165 		ret = 0;
5166 	}
5167 
5168 	/*
5169 	 * If we couldn't make a reservation then setup our reservation ticket
5170 	 * and kick the async worker if it's not already running.
5171 	 *
5172 	 * If we are a priority flusher then we just need to add our ticket to
5173 	 * the list and we will do our own flushing further down.
5174 	 */
5175 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5176 		ticket.bytes = orig_bytes;
5177 		ticket.error = 0;
5178 		init_waitqueue_head(&ticket.wait);
5179 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5180 			list_add_tail(&ticket.list, &space_info->tickets);
5181 			if (!space_info->flush) {
5182 				space_info->flush = 1;
5183 				trace_btrfs_trigger_flush(fs_info,
5184 							  space_info->flags,
5185 							  orig_bytes, flush,
5186 							  "enospc");
5187 				queue_work(system_unbound_wq,
5188 					   &root->fs_info->async_reclaim_work);
5189 			}
5190 		} else {
5191 			list_add_tail(&ticket.list,
5192 				      &space_info->priority_tickets);
5193 		}
5194 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5195 		used += orig_bytes;
5196 		/*
5197 		 * We will do the space reservation dance during log replay,
5198 		 * which means we won't have fs_info->fs_root set, so don't do
5199 		 * the async reclaim as we will panic.
5200 		 */
5201 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5202 		    need_do_async_reclaim(space_info, root, used) &&
5203 		    !work_busy(&fs_info->async_reclaim_work)) {
5204 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5205 						  orig_bytes, flush, "preempt");
5206 			queue_work(system_unbound_wq,
5207 				   &fs_info->async_reclaim_work);
5208 		}
5209 	}
5210 	spin_unlock(&space_info->lock);
5211 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5212 		return ret;
5213 
5214 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5215 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5216 					   orig_bytes);
5217 
5218 	ret = 0;
5219 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5220 	spin_lock(&space_info->lock);
5221 	if (ticket.bytes) {
5222 		if (ticket.bytes < orig_bytes) {
5223 			u64 num_bytes = orig_bytes - ticket.bytes;
5224 			space_info->bytes_may_use -= num_bytes;
5225 			trace_btrfs_space_reservation(fs_info, "space_info",
5226 						      space_info->flags,
5227 						      num_bytes, 0);
5228 
5229 		}
5230 		list_del_init(&ticket.list);
5231 		ret = -ENOSPC;
5232 	}
5233 	spin_unlock(&space_info->lock);
5234 	ASSERT(list_empty(&ticket.list));
5235 	return ret;
5236 }
5237 
5238 /**
5239  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5240  * @root - the root we're allocating for
5241  * @block_rsv - the block_rsv we're allocating for
5242  * @orig_bytes - the number of bytes we want
5243  * @flush - whether or not we can flush to make our reservation
5244  *
5245  * This will reserve orgi_bytes number of bytes from the space info associated
5246  * with the block_rsv.  If there is not enough space it will make an attempt to
5247  * flush out space to make room.  It will do this by flushing delalloc if
5248  * possible or committing the transaction.  If flush is 0 then no attempts to
5249  * regain reservations will be made and this will fail if there is not enough
5250  * space already.
5251  */
5252 static int reserve_metadata_bytes(struct btrfs_root *root,
5253 				  struct btrfs_block_rsv *block_rsv,
5254 				  u64 orig_bytes,
5255 				  enum btrfs_reserve_flush_enum flush)
5256 {
5257 	struct btrfs_fs_info *fs_info = root->fs_info;
5258 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5259 	int ret;
5260 
5261 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5262 				       flush);
5263 	if (ret == -ENOSPC &&
5264 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5265 		if (block_rsv != global_rsv &&
5266 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5267 			ret = 0;
5268 	}
5269 	if (ret == -ENOSPC)
5270 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5271 					      block_rsv->space_info->flags,
5272 					      orig_bytes, 1);
5273 	return ret;
5274 }
5275 
5276 static struct btrfs_block_rsv *get_block_rsv(
5277 					const struct btrfs_trans_handle *trans,
5278 					const struct btrfs_root *root)
5279 {
5280 	struct btrfs_fs_info *fs_info = root->fs_info;
5281 	struct btrfs_block_rsv *block_rsv = NULL;
5282 
5283 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5284 	    (root == fs_info->csum_root && trans->adding_csums) ||
5285 	    (root == fs_info->uuid_root))
5286 		block_rsv = trans->block_rsv;
5287 
5288 	if (!block_rsv)
5289 		block_rsv = root->block_rsv;
5290 
5291 	if (!block_rsv)
5292 		block_rsv = &fs_info->empty_block_rsv;
5293 
5294 	return block_rsv;
5295 }
5296 
5297 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5298 			       u64 num_bytes)
5299 {
5300 	int ret = -ENOSPC;
5301 	spin_lock(&block_rsv->lock);
5302 	if (block_rsv->reserved >= num_bytes) {
5303 		block_rsv->reserved -= num_bytes;
5304 		if (block_rsv->reserved < block_rsv->size)
5305 			block_rsv->full = 0;
5306 		ret = 0;
5307 	}
5308 	spin_unlock(&block_rsv->lock);
5309 	return ret;
5310 }
5311 
5312 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5313 				u64 num_bytes, int update_size)
5314 {
5315 	spin_lock(&block_rsv->lock);
5316 	block_rsv->reserved += num_bytes;
5317 	if (update_size)
5318 		block_rsv->size += num_bytes;
5319 	else if (block_rsv->reserved >= block_rsv->size)
5320 		block_rsv->full = 1;
5321 	spin_unlock(&block_rsv->lock);
5322 }
5323 
5324 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5325 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5326 			     int min_factor)
5327 {
5328 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5329 	u64 min_bytes;
5330 
5331 	if (global_rsv->space_info != dest->space_info)
5332 		return -ENOSPC;
5333 
5334 	spin_lock(&global_rsv->lock);
5335 	min_bytes = div_factor(global_rsv->size, min_factor);
5336 	if (global_rsv->reserved < min_bytes + num_bytes) {
5337 		spin_unlock(&global_rsv->lock);
5338 		return -ENOSPC;
5339 	}
5340 	global_rsv->reserved -= num_bytes;
5341 	if (global_rsv->reserved < global_rsv->size)
5342 		global_rsv->full = 0;
5343 	spin_unlock(&global_rsv->lock);
5344 
5345 	block_rsv_add_bytes(dest, num_bytes, 1);
5346 	return 0;
5347 }
5348 
5349 /*
5350  * This is for space we already have accounted in space_info->bytes_may_use, so
5351  * basically when we're returning space from block_rsv's.
5352  */
5353 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5354 				     struct btrfs_space_info *space_info,
5355 				     u64 num_bytes)
5356 {
5357 	struct reserve_ticket *ticket;
5358 	struct list_head *head;
5359 	u64 used;
5360 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5361 	bool check_overcommit = false;
5362 
5363 	spin_lock(&space_info->lock);
5364 	head = &space_info->priority_tickets;
5365 
5366 	/*
5367 	 * If we are over our limit then we need to check and see if we can
5368 	 * overcommit, and if we can't then we just need to free up our space
5369 	 * and not satisfy any requests.
5370 	 */
5371 	used = space_info->bytes_used + space_info->bytes_reserved +
5372 		space_info->bytes_pinned + space_info->bytes_readonly +
5373 		space_info->bytes_may_use;
5374 	if (used - num_bytes >= space_info->total_bytes)
5375 		check_overcommit = true;
5376 again:
5377 	while (!list_empty(head) && num_bytes) {
5378 		ticket = list_first_entry(head, struct reserve_ticket,
5379 					  list);
5380 		/*
5381 		 * We use 0 bytes because this space is already reserved, so
5382 		 * adding the ticket space would be a double count.
5383 		 */
5384 		if (check_overcommit &&
5385 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5386 				    flush))
5387 			break;
5388 		if (num_bytes >= ticket->bytes) {
5389 			list_del_init(&ticket->list);
5390 			num_bytes -= ticket->bytes;
5391 			ticket->bytes = 0;
5392 			space_info->tickets_id++;
5393 			wake_up(&ticket->wait);
5394 		} else {
5395 			ticket->bytes -= num_bytes;
5396 			num_bytes = 0;
5397 		}
5398 	}
5399 
5400 	if (num_bytes && head == &space_info->priority_tickets) {
5401 		head = &space_info->tickets;
5402 		flush = BTRFS_RESERVE_FLUSH_ALL;
5403 		goto again;
5404 	}
5405 	space_info->bytes_may_use -= num_bytes;
5406 	trace_btrfs_space_reservation(fs_info, "space_info",
5407 				      space_info->flags, num_bytes, 0);
5408 	spin_unlock(&space_info->lock);
5409 }
5410 
5411 /*
5412  * This is for newly allocated space that isn't accounted in
5413  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5414  * we use this helper.
5415  */
5416 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5417 				     struct btrfs_space_info *space_info,
5418 				     u64 num_bytes)
5419 {
5420 	struct reserve_ticket *ticket;
5421 	struct list_head *head = &space_info->priority_tickets;
5422 
5423 again:
5424 	while (!list_empty(head) && num_bytes) {
5425 		ticket = list_first_entry(head, struct reserve_ticket,
5426 					  list);
5427 		if (num_bytes >= ticket->bytes) {
5428 			trace_btrfs_space_reservation(fs_info, "space_info",
5429 						      space_info->flags,
5430 						      ticket->bytes, 1);
5431 			list_del_init(&ticket->list);
5432 			num_bytes -= ticket->bytes;
5433 			space_info->bytes_may_use += ticket->bytes;
5434 			ticket->bytes = 0;
5435 			space_info->tickets_id++;
5436 			wake_up(&ticket->wait);
5437 		} else {
5438 			trace_btrfs_space_reservation(fs_info, "space_info",
5439 						      space_info->flags,
5440 						      num_bytes, 1);
5441 			space_info->bytes_may_use += num_bytes;
5442 			ticket->bytes -= num_bytes;
5443 			num_bytes = 0;
5444 		}
5445 	}
5446 
5447 	if (num_bytes && head == &space_info->priority_tickets) {
5448 		head = &space_info->tickets;
5449 		goto again;
5450 	}
5451 }
5452 
5453 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5454 				    struct btrfs_block_rsv *block_rsv,
5455 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5456 {
5457 	struct btrfs_space_info *space_info = block_rsv->space_info;
5458 
5459 	spin_lock(&block_rsv->lock);
5460 	if (num_bytes == (u64)-1)
5461 		num_bytes = block_rsv->size;
5462 	block_rsv->size -= num_bytes;
5463 	if (block_rsv->reserved >= block_rsv->size) {
5464 		num_bytes = block_rsv->reserved - block_rsv->size;
5465 		block_rsv->reserved = block_rsv->size;
5466 		block_rsv->full = 1;
5467 	} else {
5468 		num_bytes = 0;
5469 	}
5470 	spin_unlock(&block_rsv->lock);
5471 
5472 	if (num_bytes > 0) {
5473 		if (dest) {
5474 			spin_lock(&dest->lock);
5475 			if (!dest->full) {
5476 				u64 bytes_to_add;
5477 
5478 				bytes_to_add = dest->size - dest->reserved;
5479 				bytes_to_add = min(num_bytes, bytes_to_add);
5480 				dest->reserved += bytes_to_add;
5481 				if (dest->reserved >= dest->size)
5482 					dest->full = 1;
5483 				num_bytes -= bytes_to_add;
5484 			}
5485 			spin_unlock(&dest->lock);
5486 		}
5487 		if (num_bytes)
5488 			space_info_add_old_bytes(fs_info, space_info,
5489 						 num_bytes);
5490 	}
5491 }
5492 
5493 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5494 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5495 			    int update_size)
5496 {
5497 	int ret;
5498 
5499 	ret = block_rsv_use_bytes(src, num_bytes);
5500 	if (ret)
5501 		return ret;
5502 
5503 	block_rsv_add_bytes(dst, num_bytes, update_size);
5504 	return 0;
5505 }
5506 
5507 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5508 {
5509 	memset(rsv, 0, sizeof(*rsv));
5510 	spin_lock_init(&rsv->lock);
5511 	rsv->type = type;
5512 }
5513 
5514 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5515 					      unsigned short type)
5516 {
5517 	struct btrfs_block_rsv *block_rsv;
5518 
5519 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5520 	if (!block_rsv)
5521 		return NULL;
5522 
5523 	btrfs_init_block_rsv(block_rsv, type);
5524 	block_rsv->space_info = __find_space_info(fs_info,
5525 						  BTRFS_BLOCK_GROUP_METADATA);
5526 	return block_rsv;
5527 }
5528 
5529 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5530 			  struct btrfs_block_rsv *rsv)
5531 {
5532 	if (!rsv)
5533 		return;
5534 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5535 	kfree(rsv);
5536 }
5537 
5538 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5539 {
5540 	kfree(rsv);
5541 }
5542 
5543 int btrfs_block_rsv_add(struct btrfs_root *root,
5544 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5545 			enum btrfs_reserve_flush_enum flush)
5546 {
5547 	int ret;
5548 
5549 	if (num_bytes == 0)
5550 		return 0;
5551 
5552 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5553 	if (!ret) {
5554 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5555 		return 0;
5556 	}
5557 
5558 	return ret;
5559 }
5560 
5561 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5562 {
5563 	u64 num_bytes = 0;
5564 	int ret = -ENOSPC;
5565 
5566 	if (!block_rsv)
5567 		return 0;
5568 
5569 	spin_lock(&block_rsv->lock);
5570 	num_bytes = div_factor(block_rsv->size, min_factor);
5571 	if (block_rsv->reserved >= num_bytes)
5572 		ret = 0;
5573 	spin_unlock(&block_rsv->lock);
5574 
5575 	return ret;
5576 }
5577 
5578 int btrfs_block_rsv_refill(struct btrfs_root *root,
5579 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5580 			   enum btrfs_reserve_flush_enum flush)
5581 {
5582 	u64 num_bytes = 0;
5583 	int ret = -ENOSPC;
5584 
5585 	if (!block_rsv)
5586 		return 0;
5587 
5588 	spin_lock(&block_rsv->lock);
5589 	num_bytes = min_reserved;
5590 	if (block_rsv->reserved >= num_bytes)
5591 		ret = 0;
5592 	else
5593 		num_bytes -= block_rsv->reserved;
5594 	spin_unlock(&block_rsv->lock);
5595 
5596 	if (!ret)
5597 		return 0;
5598 
5599 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5600 	if (!ret) {
5601 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5602 		return 0;
5603 	}
5604 
5605 	return ret;
5606 }
5607 
5608 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5609 			     struct btrfs_block_rsv *block_rsv,
5610 			     u64 num_bytes)
5611 {
5612 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5613 
5614 	if (global_rsv == block_rsv ||
5615 	    block_rsv->space_info != global_rsv->space_info)
5616 		global_rsv = NULL;
5617 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5618 }
5619 
5620 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5621 {
5622 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5623 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5624 	u64 num_bytes;
5625 
5626 	/*
5627 	 * The global block rsv is based on the size of the extent tree, the
5628 	 * checksum tree and the root tree.  If the fs is empty we want to set
5629 	 * it to a minimal amount for safety.
5630 	 */
5631 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5632 		btrfs_root_used(&fs_info->csum_root->root_item) +
5633 		btrfs_root_used(&fs_info->tree_root->root_item);
5634 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5635 
5636 	spin_lock(&sinfo->lock);
5637 	spin_lock(&block_rsv->lock);
5638 
5639 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5640 
5641 	if (block_rsv->reserved < block_rsv->size) {
5642 		num_bytes = btrfs_space_info_used(sinfo, true);
5643 		if (sinfo->total_bytes > num_bytes) {
5644 			num_bytes = sinfo->total_bytes - num_bytes;
5645 			num_bytes = min(num_bytes,
5646 					block_rsv->size - block_rsv->reserved);
5647 			block_rsv->reserved += num_bytes;
5648 			sinfo->bytes_may_use += num_bytes;
5649 			trace_btrfs_space_reservation(fs_info, "space_info",
5650 						      sinfo->flags, num_bytes,
5651 						      1);
5652 		}
5653 	} else if (block_rsv->reserved > block_rsv->size) {
5654 		num_bytes = block_rsv->reserved - block_rsv->size;
5655 		sinfo->bytes_may_use -= num_bytes;
5656 		trace_btrfs_space_reservation(fs_info, "space_info",
5657 				      sinfo->flags, num_bytes, 0);
5658 		block_rsv->reserved = block_rsv->size;
5659 	}
5660 
5661 	if (block_rsv->reserved == block_rsv->size)
5662 		block_rsv->full = 1;
5663 	else
5664 		block_rsv->full = 0;
5665 
5666 	spin_unlock(&block_rsv->lock);
5667 	spin_unlock(&sinfo->lock);
5668 }
5669 
5670 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5671 {
5672 	struct btrfs_space_info *space_info;
5673 
5674 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5675 	fs_info->chunk_block_rsv.space_info = space_info;
5676 
5677 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5678 	fs_info->global_block_rsv.space_info = space_info;
5679 	fs_info->delalloc_block_rsv.space_info = space_info;
5680 	fs_info->trans_block_rsv.space_info = space_info;
5681 	fs_info->empty_block_rsv.space_info = space_info;
5682 	fs_info->delayed_block_rsv.space_info = space_info;
5683 
5684 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5685 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5686 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5687 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5688 	if (fs_info->quota_root)
5689 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5690 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5691 
5692 	update_global_block_rsv(fs_info);
5693 }
5694 
5695 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5696 {
5697 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5698 				(u64)-1);
5699 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5700 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5701 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5702 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5703 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5704 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5705 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5706 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5707 }
5708 
5709 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5710 				  struct btrfs_fs_info *fs_info)
5711 {
5712 	if (!trans->block_rsv)
5713 		return;
5714 
5715 	if (!trans->bytes_reserved)
5716 		return;
5717 
5718 	trace_btrfs_space_reservation(fs_info, "transaction",
5719 				      trans->transid, trans->bytes_reserved, 0);
5720 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5721 				trans->bytes_reserved);
5722 	trans->bytes_reserved = 0;
5723 }
5724 
5725 /*
5726  * To be called after all the new block groups attached to the transaction
5727  * handle have been created (btrfs_create_pending_block_groups()).
5728  */
5729 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5730 {
5731 	struct btrfs_fs_info *fs_info = trans->fs_info;
5732 
5733 	if (!trans->chunk_bytes_reserved)
5734 		return;
5735 
5736 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5737 
5738 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5739 				trans->chunk_bytes_reserved);
5740 	trans->chunk_bytes_reserved = 0;
5741 }
5742 
5743 /* Can only return 0 or -ENOSPC */
5744 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5745 				  struct inode *inode)
5746 {
5747 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5748 	struct btrfs_root *root = BTRFS_I(inode)->root;
5749 	/*
5750 	 * We always use trans->block_rsv here as we will have reserved space
5751 	 * for our orphan when starting the transaction, using get_block_rsv()
5752 	 * here will sometimes make us choose the wrong block rsv as we could be
5753 	 * doing a reloc inode for a non refcounted root.
5754 	 */
5755 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5756 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5757 
5758 	/*
5759 	 * We need to hold space in order to delete our orphan item once we've
5760 	 * added it, so this takes the reservation so we can release it later
5761 	 * when we are truly done with the orphan item.
5762 	 */
5763 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5764 
5765 	trace_btrfs_space_reservation(fs_info, "orphan",
5766 				      btrfs_ino(BTRFS_I(inode)), num_bytes, 1);
5767 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5768 }
5769 
5770 void btrfs_orphan_release_metadata(struct inode *inode)
5771 {
5772 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5773 	struct btrfs_root *root = BTRFS_I(inode)->root;
5774 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5775 
5776 	trace_btrfs_space_reservation(fs_info, "orphan",
5777 				      btrfs_ino(BTRFS_I(inode)), num_bytes, 0);
5778 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5779 }
5780 
5781 /*
5782  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5783  * root: the root of the parent directory
5784  * rsv: block reservation
5785  * items: the number of items that we need do reservation
5786  * qgroup_reserved: used to return the reserved size in qgroup
5787  *
5788  * This function is used to reserve the space for snapshot/subvolume
5789  * creation and deletion. Those operations are different with the
5790  * common file/directory operations, they change two fs/file trees
5791  * and root tree, the number of items that the qgroup reserves is
5792  * different with the free space reservation. So we can not use
5793  * the space reservation mechanism in start_transaction().
5794  */
5795 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5796 				     struct btrfs_block_rsv *rsv,
5797 				     int items,
5798 				     u64 *qgroup_reserved,
5799 				     bool use_global_rsv)
5800 {
5801 	u64 num_bytes;
5802 	int ret;
5803 	struct btrfs_fs_info *fs_info = root->fs_info;
5804 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5805 
5806 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5807 		/* One for parent inode, two for dir entries */
5808 		num_bytes = 3 * fs_info->nodesize;
5809 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5810 		if (ret)
5811 			return ret;
5812 	} else {
5813 		num_bytes = 0;
5814 	}
5815 
5816 	*qgroup_reserved = num_bytes;
5817 
5818 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5819 	rsv->space_info = __find_space_info(fs_info,
5820 					    BTRFS_BLOCK_GROUP_METADATA);
5821 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5822 				  BTRFS_RESERVE_FLUSH_ALL);
5823 
5824 	if (ret == -ENOSPC && use_global_rsv)
5825 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5826 
5827 	if (ret && *qgroup_reserved)
5828 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5829 
5830 	return ret;
5831 }
5832 
5833 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5834 				      struct btrfs_block_rsv *rsv)
5835 {
5836 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5837 }
5838 
5839 /**
5840  * drop_outstanding_extent - drop an outstanding extent
5841  * @inode: the inode we're dropping the extent for
5842  * @num_bytes: the number of bytes we're releasing.
5843  *
5844  * This is called when we are freeing up an outstanding extent, either called
5845  * after an error or after an extent is written.  This will return the number of
5846  * reserved extents that need to be freed.  This must be called with
5847  * BTRFS_I(inode)->lock held.
5848  */
5849 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5850 {
5851 	unsigned drop_inode_space = 0;
5852 	unsigned dropped_extents = 0;
5853 	unsigned num_extents;
5854 
5855 	num_extents = count_max_extents(num_bytes);
5856 	ASSERT(num_extents);
5857 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5858 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5859 
5860 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5861 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5862 			       &BTRFS_I(inode)->runtime_flags))
5863 		drop_inode_space = 1;
5864 
5865 	/*
5866 	 * If we have more or the same amount of outstanding extents than we have
5867 	 * reserved then we need to leave the reserved extents count alone.
5868 	 */
5869 	if (BTRFS_I(inode)->outstanding_extents >=
5870 	    BTRFS_I(inode)->reserved_extents)
5871 		return drop_inode_space;
5872 
5873 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5874 		BTRFS_I(inode)->outstanding_extents;
5875 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5876 	return dropped_extents + drop_inode_space;
5877 }
5878 
5879 /**
5880  * calc_csum_metadata_size - return the amount of metadata space that must be
5881  *	reserved/freed for the given bytes.
5882  * @inode: the inode we're manipulating
5883  * @num_bytes: the number of bytes in question
5884  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885  *
5886  * This adjusts the number of csum_bytes in the inode and then returns the
5887  * correct amount of metadata that must either be reserved or freed.  We
5888  * calculate how many checksums we can fit into one leaf and then divide the
5889  * number of bytes that will need to be checksumed by this value to figure out
5890  * how many checksums will be required.  If we are adding bytes then the number
5891  * may go up and we will return the number of additional bytes that must be
5892  * reserved.  If it is going down we will return the number of bytes that must
5893  * be freed.
5894  *
5895  * This must be called with BTRFS_I(inode)->lock held.
5896  */
5897 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5898 				   int reserve)
5899 {
5900 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5901 	u64 old_csums, num_csums;
5902 
5903 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5904 	    BTRFS_I(inode)->csum_bytes == 0)
5905 		return 0;
5906 
5907 	old_csums = btrfs_csum_bytes_to_leaves(fs_info,
5908 					       BTRFS_I(inode)->csum_bytes);
5909 	if (reserve)
5910 		BTRFS_I(inode)->csum_bytes += num_bytes;
5911 	else
5912 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5913 	num_csums = btrfs_csum_bytes_to_leaves(fs_info,
5914 					       BTRFS_I(inode)->csum_bytes);
5915 
5916 	/* No change, no need to reserve more */
5917 	if (old_csums == num_csums)
5918 		return 0;
5919 
5920 	if (reserve)
5921 		return btrfs_calc_trans_metadata_size(fs_info,
5922 						      num_csums - old_csums);
5923 
5924 	return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5925 }
5926 
5927 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5928 {
5929 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5930 	struct btrfs_root *root = BTRFS_I(inode)->root;
5931 	struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5932 	u64 to_reserve = 0;
5933 	u64 csum_bytes;
5934 	unsigned nr_extents;
5935 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5936 	int ret = 0;
5937 	bool delalloc_lock = true;
5938 	u64 to_free = 0;
5939 	unsigned dropped;
5940 	bool release_extra = false;
5941 
5942 	/* If we are a free space inode we need to not flush since we will be in
5943 	 * the middle of a transaction commit.  We also don't need the delalloc
5944 	 * mutex since we won't race with anybody.  We need this mostly to make
5945 	 * lockdep shut its filthy mouth.
5946 	 *
5947 	 * If we have a transaction open (can happen if we call truncate_block
5948 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5949 	 */
5950 	if (btrfs_is_free_space_inode(inode)) {
5951 		flush = BTRFS_RESERVE_NO_FLUSH;
5952 		delalloc_lock = false;
5953 	} else if (current->journal_info) {
5954 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5955 	}
5956 
5957 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5958 	    btrfs_transaction_in_commit(fs_info))
5959 		schedule_timeout(1);
5960 
5961 	if (delalloc_lock)
5962 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5963 
5964 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5965 
5966 	spin_lock(&BTRFS_I(inode)->lock);
5967 	nr_extents = count_max_extents(num_bytes);
5968 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5969 
5970 	nr_extents = 0;
5971 	if (BTRFS_I(inode)->outstanding_extents >
5972 	    BTRFS_I(inode)->reserved_extents)
5973 		nr_extents += BTRFS_I(inode)->outstanding_extents -
5974 			BTRFS_I(inode)->reserved_extents;
5975 
5976 	/* We always want to reserve a slot for updating the inode. */
5977 	to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5978 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5979 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5980 	spin_unlock(&BTRFS_I(inode)->lock);
5981 
5982 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5983 		ret = btrfs_qgroup_reserve_meta(root,
5984 				nr_extents * fs_info->nodesize, true);
5985 		if (ret)
5986 			goto out_fail;
5987 	}
5988 
5989 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5990 	if (unlikely(ret)) {
5991 		btrfs_qgroup_free_meta(root,
5992 				       nr_extents * fs_info->nodesize);
5993 		goto out_fail;
5994 	}
5995 
5996 	spin_lock(&BTRFS_I(inode)->lock);
5997 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5998 			     &BTRFS_I(inode)->runtime_flags)) {
5999 		to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6000 		release_extra = true;
6001 	}
6002 	BTRFS_I(inode)->reserved_extents += nr_extents;
6003 	spin_unlock(&BTRFS_I(inode)->lock);
6004 
6005 	if (delalloc_lock)
6006 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6007 
6008 	if (to_reserve)
6009 		trace_btrfs_space_reservation(fs_info, "delalloc",
6010 				      btrfs_ino(BTRFS_I(inode)), to_reserve, 1);
6011 	if (release_extra)
6012 		btrfs_block_rsv_release(fs_info, block_rsv,
6013 				btrfs_calc_trans_metadata_size(fs_info, 1));
6014 	return 0;
6015 
6016 out_fail:
6017 	spin_lock(&BTRFS_I(inode)->lock);
6018 	dropped = drop_outstanding_extent(inode, num_bytes);
6019 	/*
6020 	 * If the inodes csum_bytes is the same as the original
6021 	 * csum_bytes then we know we haven't raced with any free()ers
6022 	 * so we can just reduce our inodes csum bytes and carry on.
6023 	 */
6024 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6025 		calc_csum_metadata_size(inode, num_bytes, 0);
6026 	} else {
6027 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6028 		u64 bytes;
6029 
6030 		/*
6031 		 * This is tricky, but first we need to figure out how much we
6032 		 * freed from any free-ers that occurred during this
6033 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6034 		 * before we dropped our lock, and then call the free for the
6035 		 * number of bytes that were freed while we were trying our
6036 		 * reservation.
6037 		 */
6038 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6039 		BTRFS_I(inode)->csum_bytes = csum_bytes;
6040 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6041 
6042 
6043 		/*
6044 		 * Now we need to see how much we would have freed had we not
6045 		 * been making this reservation and our ->csum_bytes were not
6046 		 * artificially inflated.
6047 		 */
6048 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6049 		bytes = csum_bytes - orig_csum_bytes;
6050 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6051 
6052 		/*
6053 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6054 		 * more than to_free then we would have freed more space had we
6055 		 * not had an artificially high ->csum_bytes, so we need to free
6056 		 * the remainder.  If bytes is the same or less then we don't
6057 		 * need to do anything, the other free-ers did the correct
6058 		 * thing.
6059 		 */
6060 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6061 		if (bytes > to_free)
6062 			to_free = bytes - to_free;
6063 		else
6064 			to_free = 0;
6065 	}
6066 	spin_unlock(&BTRFS_I(inode)->lock);
6067 	if (dropped)
6068 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6069 
6070 	if (to_free) {
6071 		btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6072 		trace_btrfs_space_reservation(fs_info, "delalloc",
6073 				      btrfs_ino(BTRFS_I(inode)), to_free, 0);
6074 	}
6075 	if (delalloc_lock)
6076 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6077 	return ret;
6078 }
6079 
6080 /**
6081  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6082  * @inode: the inode to release the reservation for
6083  * @num_bytes: the number of bytes we're releasing
6084  *
6085  * This will release the metadata reservation for an inode.  This can be called
6086  * once we complete IO for a given set of bytes to release their metadata
6087  * reservations.
6088  */
6089 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6090 {
6091 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6092 	u64 to_free = 0;
6093 	unsigned dropped;
6094 
6095 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6096 	spin_lock(&BTRFS_I(inode)->lock);
6097 	dropped = drop_outstanding_extent(inode, num_bytes);
6098 
6099 	if (num_bytes)
6100 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6101 	spin_unlock(&BTRFS_I(inode)->lock);
6102 	if (dropped > 0)
6103 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6104 
6105 	if (btrfs_is_testing(fs_info))
6106 		return;
6107 
6108 	trace_btrfs_space_reservation(fs_info, "delalloc",
6109 				      btrfs_ino(BTRFS_I(inode)), to_free, 0);
6110 
6111 	btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6112 }
6113 
6114 /**
6115  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6116  * delalloc
6117  * @inode: inode we're writing to
6118  * @start: start range we are writing to
6119  * @len: how long the range we are writing to
6120  *
6121  * This will do the following things
6122  *
6123  * o reserve space in data space info for num bytes
6124  *   and reserve precious corresponding qgroup space
6125  *   (Done in check_data_free_space)
6126  *
6127  * o reserve space for metadata space, based on the number of outstanding
6128  *   extents and how much csums will be needed
6129  *   also reserve metadata space in a per root over-reserve method.
6130  * o add to the inodes->delalloc_bytes
6131  * o add it to the fs_info's delalloc inodes list.
6132  *   (Above 3 all done in delalloc_reserve_metadata)
6133  *
6134  * Return 0 for success
6135  * Return <0 for error(-ENOSPC or -EQUOT)
6136  */
6137 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6138 {
6139 	int ret;
6140 
6141 	ret = btrfs_check_data_free_space(inode, start, len);
6142 	if (ret < 0)
6143 		return ret;
6144 	ret = btrfs_delalloc_reserve_metadata(inode, len);
6145 	if (ret < 0)
6146 		btrfs_free_reserved_data_space(inode, start, len);
6147 	return ret;
6148 }
6149 
6150 /**
6151  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6152  * @inode: inode we're releasing space for
6153  * @start: start position of the space already reserved
6154  * @len: the len of the space already reserved
6155  *
6156  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6157  * called in the case that we don't need the metadata AND data reservations
6158  * anymore.  So if there is an error or we insert an inline extent.
6159  *
6160  * This function will release the metadata space that was not used and will
6161  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6162  * list if there are no delalloc bytes left.
6163  * Also it will handle the qgroup reserved space.
6164  */
6165 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6166 {
6167 	btrfs_delalloc_release_metadata(inode, len);
6168 	btrfs_free_reserved_data_space(inode, start, len);
6169 }
6170 
6171 static int update_block_group(struct btrfs_trans_handle *trans,
6172 			      struct btrfs_fs_info *info, u64 bytenr,
6173 			      u64 num_bytes, int alloc)
6174 {
6175 	struct btrfs_block_group_cache *cache = NULL;
6176 	u64 total = num_bytes;
6177 	u64 old_val;
6178 	u64 byte_in_group;
6179 	int factor;
6180 
6181 	/* block accounting for super block */
6182 	spin_lock(&info->delalloc_root_lock);
6183 	old_val = btrfs_super_bytes_used(info->super_copy);
6184 	if (alloc)
6185 		old_val += num_bytes;
6186 	else
6187 		old_val -= num_bytes;
6188 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6189 	spin_unlock(&info->delalloc_root_lock);
6190 
6191 	while (total) {
6192 		cache = btrfs_lookup_block_group(info, bytenr);
6193 		if (!cache)
6194 			return -ENOENT;
6195 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6196 				    BTRFS_BLOCK_GROUP_RAID1 |
6197 				    BTRFS_BLOCK_GROUP_RAID10))
6198 			factor = 2;
6199 		else
6200 			factor = 1;
6201 		/*
6202 		 * If this block group has free space cache written out, we
6203 		 * need to make sure to load it if we are removing space.  This
6204 		 * is because we need the unpinning stage to actually add the
6205 		 * space back to the block group, otherwise we will leak space.
6206 		 */
6207 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6208 			cache_block_group(cache, 1);
6209 
6210 		byte_in_group = bytenr - cache->key.objectid;
6211 		WARN_ON(byte_in_group > cache->key.offset);
6212 
6213 		spin_lock(&cache->space_info->lock);
6214 		spin_lock(&cache->lock);
6215 
6216 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6217 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6218 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6219 
6220 		old_val = btrfs_block_group_used(&cache->item);
6221 		num_bytes = min(total, cache->key.offset - byte_in_group);
6222 		if (alloc) {
6223 			old_val += num_bytes;
6224 			btrfs_set_block_group_used(&cache->item, old_val);
6225 			cache->reserved -= num_bytes;
6226 			cache->space_info->bytes_reserved -= num_bytes;
6227 			cache->space_info->bytes_used += num_bytes;
6228 			cache->space_info->disk_used += num_bytes * factor;
6229 			spin_unlock(&cache->lock);
6230 			spin_unlock(&cache->space_info->lock);
6231 		} else {
6232 			old_val -= num_bytes;
6233 			btrfs_set_block_group_used(&cache->item, old_val);
6234 			cache->pinned += num_bytes;
6235 			cache->space_info->bytes_pinned += num_bytes;
6236 			cache->space_info->bytes_used -= num_bytes;
6237 			cache->space_info->disk_used -= num_bytes * factor;
6238 			spin_unlock(&cache->lock);
6239 			spin_unlock(&cache->space_info->lock);
6240 
6241 			trace_btrfs_space_reservation(info, "pinned",
6242 						      cache->space_info->flags,
6243 						      num_bytes, 1);
6244 			set_extent_dirty(info->pinned_extents,
6245 					 bytenr, bytenr + num_bytes - 1,
6246 					 GFP_NOFS | __GFP_NOFAIL);
6247 		}
6248 
6249 		spin_lock(&trans->transaction->dirty_bgs_lock);
6250 		if (list_empty(&cache->dirty_list)) {
6251 			list_add_tail(&cache->dirty_list,
6252 				      &trans->transaction->dirty_bgs);
6253 				trans->transaction->num_dirty_bgs++;
6254 			btrfs_get_block_group(cache);
6255 		}
6256 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6257 
6258 		/*
6259 		 * No longer have used bytes in this block group, queue it for
6260 		 * deletion. We do this after adding the block group to the
6261 		 * dirty list to avoid races between cleaner kthread and space
6262 		 * cache writeout.
6263 		 */
6264 		if (!alloc && old_val == 0) {
6265 			spin_lock(&info->unused_bgs_lock);
6266 			if (list_empty(&cache->bg_list)) {
6267 				btrfs_get_block_group(cache);
6268 				list_add_tail(&cache->bg_list,
6269 					      &info->unused_bgs);
6270 			}
6271 			spin_unlock(&info->unused_bgs_lock);
6272 		}
6273 
6274 		btrfs_put_block_group(cache);
6275 		total -= num_bytes;
6276 		bytenr += num_bytes;
6277 	}
6278 	return 0;
6279 }
6280 
6281 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6282 {
6283 	struct btrfs_block_group_cache *cache;
6284 	u64 bytenr;
6285 
6286 	spin_lock(&fs_info->block_group_cache_lock);
6287 	bytenr = fs_info->first_logical_byte;
6288 	spin_unlock(&fs_info->block_group_cache_lock);
6289 
6290 	if (bytenr < (u64)-1)
6291 		return bytenr;
6292 
6293 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6294 	if (!cache)
6295 		return 0;
6296 
6297 	bytenr = cache->key.objectid;
6298 	btrfs_put_block_group(cache);
6299 
6300 	return bytenr;
6301 }
6302 
6303 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6304 			   struct btrfs_block_group_cache *cache,
6305 			   u64 bytenr, u64 num_bytes, int reserved)
6306 {
6307 	spin_lock(&cache->space_info->lock);
6308 	spin_lock(&cache->lock);
6309 	cache->pinned += num_bytes;
6310 	cache->space_info->bytes_pinned += num_bytes;
6311 	if (reserved) {
6312 		cache->reserved -= num_bytes;
6313 		cache->space_info->bytes_reserved -= num_bytes;
6314 	}
6315 	spin_unlock(&cache->lock);
6316 	spin_unlock(&cache->space_info->lock);
6317 
6318 	trace_btrfs_space_reservation(fs_info, "pinned",
6319 				      cache->space_info->flags, num_bytes, 1);
6320 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6321 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6322 	return 0;
6323 }
6324 
6325 /*
6326  * this function must be called within transaction
6327  */
6328 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6329 		     u64 bytenr, u64 num_bytes, int reserved)
6330 {
6331 	struct btrfs_block_group_cache *cache;
6332 
6333 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6334 	BUG_ON(!cache); /* Logic error */
6335 
6336 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6337 
6338 	btrfs_put_block_group(cache);
6339 	return 0;
6340 }
6341 
6342 /*
6343  * this function must be called within transaction
6344  */
6345 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6346 				    u64 bytenr, u64 num_bytes)
6347 {
6348 	struct btrfs_block_group_cache *cache;
6349 	int ret;
6350 
6351 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6352 	if (!cache)
6353 		return -EINVAL;
6354 
6355 	/*
6356 	 * pull in the free space cache (if any) so that our pin
6357 	 * removes the free space from the cache.  We have load_only set
6358 	 * to one because the slow code to read in the free extents does check
6359 	 * the pinned extents.
6360 	 */
6361 	cache_block_group(cache, 1);
6362 
6363 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6364 
6365 	/* remove us from the free space cache (if we're there at all) */
6366 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6367 	btrfs_put_block_group(cache);
6368 	return ret;
6369 }
6370 
6371 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6372 				   u64 start, u64 num_bytes)
6373 {
6374 	int ret;
6375 	struct btrfs_block_group_cache *block_group;
6376 	struct btrfs_caching_control *caching_ctl;
6377 
6378 	block_group = btrfs_lookup_block_group(fs_info, start);
6379 	if (!block_group)
6380 		return -EINVAL;
6381 
6382 	cache_block_group(block_group, 0);
6383 	caching_ctl = get_caching_control(block_group);
6384 
6385 	if (!caching_ctl) {
6386 		/* Logic error */
6387 		BUG_ON(!block_group_cache_done(block_group));
6388 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6389 	} else {
6390 		mutex_lock(&caching_ctl->mutex);
6391 
6392 		if (start >= caching_ctl->progress) {
6393 			ret = add_excluded_extent(fs_info, start, num_bytes);
6394 		} else if (start + num_bytes <= caching_ctl->progress) {
6395 			ret = btrfs_remove_free_space(block_group,
6396 						      start, num_bytes);
6397 		} else {
6398 			num_bytes = caching_ctl->progress - start;
6399 			ret = btrfs_remove_free_space(block_group,
6400 						      start, num_bytes);
6401 			if (ret)
6402 				goto out_lock;
6403 
6404 			num_bytes = (start + num_bytes) -
6405 				caching_ctl->progress;
6406 			start = caching_ctl->progress;
6407 			ret = add_excluded_extent(fs_info, start, num_bytes);
6408 		}
6409 out_lock:
6410 		mutex_unlock(&caching_ctl->mutex);
6411 		put_caching_control(caching_ctl);
6412 	}
6413 	btrfs_put_block_group(block_group);
6414 	return ret;
6415 }
6416 
6417 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6418 				 struct extent_buffer *eb)
6419 {
6420 	struct btrfs_file_extent_item *item;
6421 	struct btrfs_key key;
6422 	int found_type;
6423 	int i;
6424 
6425 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6426 		return 0;
6427 
6428 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6429 		btrfs_item_key_to_cpu(eb, &key, i);
6430 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6431 			continue;
6432 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6433 		found_type = btrfs_file_extent_type(eb, item);
6434 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6435 			continue;
6436 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6437 			continue;
6438 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6439 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6440 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6441 	}
6442 
6443 	return 0;
6444 }
6445 
6446 static void
6447 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6448 {
6449 	atomic_inc(&bg->reservations);
6450 }
6451 
6452 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6453 					const u64 start)
6454 {
6455 	struct btrfs_block_group_cache *bg;
6456 
6457 	bg = btrfs_lookup_block_group(fs_info, start);
6458 	ASSERT(bg);
6459 	if (atomic_dec_and_test(&bg->reservations))
6460 		wake_up_atomic_t(&bg->reservations);
6461 	btrfs_put_block_group(bg);
6462 }
6463 
6464 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6465 {
6466 	schedule();
6467 	return 0;
6468 }
6469 
6470 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6471 {
6472 	struct btrfs_space_info *space_info = bg->space_info;
6473 
6474 	ASSERT(bg->ro);
6475 
6476 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6477 		return;
6478 
6479 	/*
6480 	 * Our block group is read only but before we set it to read only,
6481 	 * some task might have had allocated an extent from it already, but it
6482 	 * has not yet created a respective ordered extent (and added it to a
6483 	 * root's list of ordered extents).
6484 	 * Therefore wait for any task currently allocating extents, since the
6485 	 * block group's reservations counter is incremented while a read lock
6486 	 * on the groups' semaphore is held and decremented after releasing
6487 	 * the read access on that semaphore and creating the ordered extent.
6488 	 */
6489 	down_write(&space_info->groups_sem);
6490 	up_write(&space_info->groups_sem);
6491 
6492 	wait_on_atomic_t(&bg->reservations,
6493 			 btrfs_wait_bg_reservations_atomic_t,
6494 			 TASK_UNINTERRUPTIBLE);
6495 }
6496 
6497 /**
6498  * btrfs_add_reserved_bytes - update the block_group and space info counters
6499  * @cache:	The cache we are manipulating
6500  * @ram_bytes:  The number of bytes of file content, and will be same to
6501  *              @num_bytes except for the compress path.
6502  * @num_bytes:	The number of bytes in question
6503  * @delalloc:   The blocks are allocated for the delalloc write
6504  *
6505  * This is called by the allocator when it reserves space. If this is a
6506  * reservation and the block group has become read only we cannot make the
6507  * reservation and return -EAGAIN, otherwise this function always succeeds.
6508  */
6509 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6510 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6511 {
6512 	struct btrfs_space_info *space_info = cache->space_info;
6513 	int ret = 0;
6514 
6515 	spin_lock(&space_info->lock);
6516 	spin_lock(&cache->lock);
6517 	if (cache->ro) {
6518 		ret = -EAGAIN;
6519 	} else {
6520 		cache->reserved += num_bytes;
6521 		space_info->bytes_reserved += num_bytes;
6522 
6523 		trace_btrfs_space_reservation(cache->fs_info,
6524 				"space_info", space_info->flags,
6525 				ram_bytes, 0);
6526 		space_info->bytes_may_use -= ram_bytes;
6527 		if (delalloc)
6528 			cache->delalloc_bytes += num_bytes;
6529 	}
6530 	spin_unlock(&cache->lock);
6531 	spin_unlock(&space_info->lock);
6532 	return ret;
6533 }
6534 
6535 /**
6536  * btrfs_free_reserved_bytes - update the block_group and space info counters
6537  * @cache:      The cache we are manipulating
6538  * @num_bytes:  The number of bytes in question
6539  * @delalloc:   The blocks are allocated for the delalloc write
6540  *
6541  * This is called by somebody who is freeing space that was never actually used
6542  * on disk.  For example if you reserve some space for a new leaf in transaction
6543  * A and before transaction A commits you free that leaf, you call this with
6544  * reserve set to 0 in order to clear the reservation.
6545  */
6546 
6547 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6548 				     u64 num_bytes, int delalloc)
6549 {
6550 	struct btrfs_space_info *space_info = cache->space_info;
6551 	int ret = 0;
6552 
6553 	spin_lock(&space_info->lock);
6554 	spin_lock(&cache->lock);
6555 	if (cache->ro)
6556 		space_info->bytes_readonly += num_bytes;
6557 	cache->reserved -= num_bytes;
6558 	space_info->bytes_reserved -= num_bytes;
6559 
6560 	if (delalloc)
6561 		cache->delalloc_bytes -= num_bytes;
6562 	spin_unlock(&cache->lock);
6563 	spin_unlock(&space_info->lock);
6564 	return ret;
6565 }
6566 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6567 {
6568 	struct btrfs_caching_control *next;
6569 	struct btrfs_caching_control *caching_ctl;
6570 	struct btrfs_block_group_cache *cache;
6571 
6572 	down_write(&fs_info->commit_root_sem);
6573 
6574 	list_for_each_entry_safe(caching_ctl, next,
6575 				 &fs_info->caching_block_groups, list) {
6576 		cache = caching_ctl->block_group;
6577 		if (block_group_cache_done(cache)) {
6578 			cache->last_byte_to_unpin = (u64)-1;
6579 			list_del_init(&caching_ctl->list);
6580 			put_caching_control(caching_ctl);
6581 		} else {
6582 			cache->last_byte_to_unpin = caching_ctl->progress;
6583 		}
6584 	}
6585 
6586 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6587 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6588 	else
6589 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6590 
6591 	up_write(&fs_info->commit_root_sem);
6592 
6593 	update_global_block_rsv(fs_info);
6594 }
6595 
6596 /*
6597  * Returns the free cluster for the given space info and sets empty_cluster to
6598  * what it should be based on the mount options.
6599  */
6600 static struct btrfs_free_cluster *
6601 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6602 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6603 {
6604 	struct btrfs_free_cluster *ret = NULL;
6605 	bool ssd = btrfs_test_opt(fs_info, SSD);
6606 
6607 	*empty_cluster = 0;
6608 	if (btrfs_mixed_space_info(space_info))
6609 		return ret;
6610 
6611 	if (ssd)
6612 		*empty_cluster = SZ_2M;
6613 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6614 		ret = &fs_info->meta_alloc_cluster;
6615 		if (!ssd)
6616 			*empty_cluster = SZ_64K;
6617 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6618 		ret = &fs_info->data_alloc_cluster;
6619 	}
6620 
6621 	return ret;
6622 }
6623 
6624 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6625 			      u64 start, u64 end,
6626 			      const bool return_free_space)
6627 {
6628 	struct btrfs_block_group_cache *cache = NULL;
6629 	struct btrfs_space_info *space_info;
6630 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6631 	struct btrfs_free_cluster *cluster = NULL;
6632 	u64 len;
6633 	u64 total_unpinned = 0;
6634 	u64 empty_cluster = 0;
6635 	bool readonly;
6636 
6637 	while (start <= end) {
6638 		readonly = false;
6639 		if (!cache ||
6640 		    start >= cache->key.objectid + cache->key.offset) {
6641 			if (cache)
6642 				btrfs_put_block_group(cache);
6643 			total_unpinned = 0;
6644 			cache = btrfs_lookup_block_group(fs_info, start);
6645 			BUG_ON(!cache); /* Logic error */
6646 
6647 			cluster = fetch_cluster_info(fs_info,
6648 						     cache->space_info,
6649 						     &empty_cluster);
6650 			empty_cluster <<= 1;
6651 		}
6652 
6653 		len = cache->key.objectid + cache->key.offset - start;
6654 		len = min(len, end + 1 - start);
6655 
6656 		if (start < cache->last_byte_to_unpin) {
6657 			len = min(len, cache->last_byte_to_unpin - start);
6658 			if (return_free_space)
6659 				btrfs_add_free_space(cache, start, len);
6660 		}
6661 
6662 		start += len;
6663 		total_unpinned += len;
6664 		space_info = cache->space_info;
6665 
6666 		/*
6667 		 * If this space cluster has been marked as fragmented and we've
6668 		 * unpinned enough in this block group to potentially allow a
6669 		 * cluster to be created inside of it go ahead and clear the
6670 		 * fragmented check.
6671 		 */
6672 		if (cluster && cluster->fragmented &&
6673 		    total_unpinned > empty_cluster) {
6674 			spin_lock(&cluster->lock);
6675 			cluster->fragmented = 0;
6676 			spin_unlock(&cluster->lock);
6677 		}
6678 
6679 		spin_lock(&space_info->lock);
6680 		spin_lock(&cache->lock);
6681 		cache->pinned -= len;
6682 		space_info->bytes_pinned -= len;
6683 
6684 		trace_btrfs_space_reservation(fs_info, "pinned",
6685 					      space_info->flags, len, 0);
6686 		space_info->max_extent_size = 0;
6687 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6688 		if (cache->ro) {
6689 			space_info->bytes_readonly += len;
6690 			readonly = true;
6691 		}
6692 		spin_unlock(&cache->lock);
6693 		if (!readonly && return_free_space &&
6694 		    global_rsv->space_info == space_info) {
6695 			u64 to_add = len;
6696 			WARN_ON(!return_free_space);
6697 			spin_lock(&global_rsv->lock);
6698 			if (!global_rsv->full) {
6699 				to_add = min(len, global_rsv->size -
6700 					     global_rsv->reserved);
6701 				global_rsv->reserved += to_add;
6702 				space_info->bytes_may_use += to_add;
6703 				if (global_rsv->reserved >= global_rsv->size)
6704 					global_rsv->full = 1;
6705 				trace_btrfs_space_reservation(fs_info,
6706 							      "space_info",
6707 							      space_info->flags,
6708 							      to_add, 1);
6709 				len -= to_add;
6710 			}
6711 			spin_unlock(&global_rsv->lock);
6712 			/* Add to any tickets we may have */
6713 			if (len)
6714 				space_info_add_new_bytes(fs_info, space_info,
6715 							 len);
6716 		}
6717 		spin_unlock(&space_info->lock);
6718 	}
6719 
6720 	if (cache)
6721 		btrfs_put_block_group(cache);
6722 	return 0;
6723 }
6724 
6725 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6726 			       struct btrfs_fs_info *fs_info)
6727 {
6728 	struct btrfs_block_group_cache *block_group, *tmp;
6729 	struct list_head *deleted_bgs;
6730 	struct extent_io_tree *unpin;
6731 	u64 start;
6732 	u64 end;
6733 	int ret;
6734 
6735 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6736 		unpin = &fs_info->freed_extents[1];
6737 	else
6738 		unpin = &fs_info->freed_extents[0];
6739 
6740 	while (!trans->aborted) {
6741 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6742 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6743 					    EXTENT_DIRTY, NULL);
6744 		if (ret) {
6745 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6746 			break;
6747 		}
6748 
6749 		if (btrfs_test_opt(fs_info, DISCARD))
6750 			ret = btrfs_discard_extent(fs_info, start,
6751 						   end + 1 - start, NULL);
6752 
6753 		clear_extent_dirty(unpin, start, end);
6754 		unpin_extent_range(fs_info, start, end, true);
6755 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6756 		cond_resched();
6757 	}
6758 
6759 	/*
6760 	 * Transaction is finished.  We don't need the lock anymore.  We
6761 	 * do need to clean up the block groups in case of a transaction
6762 	 * abort.
6763 	 */
6764 	deleted_bgs = &trans->transaction->deleted_bgs;
6765 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6766 		u64 trimmed = 0;
6767 
6768 		ret = -EROFS;
6769 		if (!trans->aborted)
6770 			ret = btrfs_discard_extent(fs_info,
6771 						   block_group->key.objectid,
6772 						   block_group->key.offset,
6773 						   &trimmed);
6774 
6775 		list_del_init(&block_group->bg_list);
6776 		btrfs_put_block_group_trimming(block_group);
6777 		btrfs_put_block_group(block_group);
6778 
6779 		if (ret) {
6780 			const char *errstr = btrfs_decode_error(ret);
6781 			btrfs_warn(fs_info,
6782 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6783 				   ret, errstr);
6784 		}
6785 	}
6786 
6787 	return 0;
6788 }
6789 
6790 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6791 			     u64 owner, u64 root_objectid)
6792 {
6793 	struct btrfs_space_info *space_info;
6794 	u64 flags;
6795 
6796 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6797 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6798 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6799 		else
6800 			flags = BTRFS_BLOCK_GROUP_METADATA;
6801 	} else {
6802 		flags = BTRFS_BLOCK_GROUP_DATA;
6803 	}
6804 
6805 	space_info = __find_space_info(fs_info, flags);
6806 	BUG_ON(!space_info); /* Logic bug */
6807 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6808 }
6809 
6810 
6811 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6812 				struct btrfs_fs_info *info,
6813 				struct btrfs_delayed_ref_node *node, u64 parent,
6814 				u64 root_objectid, u64 owner_objectid,
6815 				u64 owner_offset, int refs_to_drop,
6816 				struct btrfs_delayed_extent_op *extent_op)
6817 {
6818 	struct btrfs_key key;
6819 	struct btrfs_path *path;
6820 	struct btrfs_root *extent_root = info->extent_root;
6821 	struct extent_buffer *leaf;
6822 	struct btrfs_extent_item *ei;
6823 	struct btrfs_extent_inline_ref *iref;
6824 	int ret;
6825 	int is_data;
6826 	int extent_slot = 0;
6827 	int found_extent = 0;
6828 	int num_to_del = 1;
6829 	u32 item_size;
6830 	u64 refs;
6831 	u64 bytenr = node->bytenr;
6832 	u64 num_bytes = node->num_bytes;
6833 	int last_ref = 0;
6834 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6835 
6836 	path = btrfs_alloc_path();
6837 	if (!path)
6838 		return -ENOMEM;
6839 
6840 	path->reada = READA_FORWARD;
6841 	path->leave_spinning = 1;
6842 
6843 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6844 	BUG_ON(!is_data && refs_to_drop != 1);
6845 
6846 	if (is_data)
6847 		skinny_metadata = 0;
6848 
6849 	ret = lookup_extent_backref(trans, info, path, &iref,
6850 				    bytenr, num_bytes, parent,
6851 				    root_objectid, owner_objectid,
6852 				    owner_offset);
6853 	if (ret == 0) {
6854 		extent_slot = path->slots[0];
6855 		while (extent_slot >= 0) {
6856 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6857 					      extent_slot);
6858 			if (key.objectid != bytenr)
6859 				break;
6860 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6861 			    key.offset == num_bytes) {
6862 				found_extent = 1;
6863 				break;
6864 			}
6865 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6866 			    key.offset == owner_objectid) {
6867 				found_extent = 1;
6868 				break;
6869 			}
6870 			if (path->slots[0] - extent_slot > 5)
6871 				break;
6872 			extent_slot--;
6873 		}
6874 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6875 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6876 		if (found_extent && item_size < sizeof(*ei))
6877 			found_extent = 0;
6878 #endif
6879 		if (!found_extent) {
6880 			BUG_ON(iref);
6881 			ret = remove_extent_backref(trans, info, path, NULL,
6882 						    refs_to_drop,
6883 						    is_data, &last_ref);
6884 			if (ret) {
6885 				btrfs_abort_transaction(trans, ret);
6886 				goto out;
6887 			}
6888 			btrfs_release_path(path);
6889 			path->leave_spinning = 1;
6890 
6891 			key.objectid = bytenr;
6892 			key.type = BTRFS_EXTENT_ITEM_KEY;
6893 			key.offset = num_bytes;
6894 
6895 			if (!is_data && skinny_metadata) {
6896 				key.type = BTRFS_METADATA_ITEM_KEY;
6897 				key.offset = owner_objectid;
6898 			}
6899 
6900 			ret = btrfs_search_slot(trans, extent_root,
6901 						&key, path, -1, 1);
6902 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6903 				/*
6904 				 * Couldn't find our skinny metadata item,
6905 				 * see if we have ye olde extent item.
6906 				 */
6907 				path->slots[0]--;
6908 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6909 						      path->slots[0]);
6910 				if (key.objectid == bytenr &&
6911 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6912 				    key.offset == num_bytes)
6913 					ret = 0;
6914 			}
6915 
6916 			if (ret > 0 && skinny_metadata) {
6917 				skinny_metadata = false;
6918 				key.objectid = bytenr;
6919 				key.type = BTRFS_EXTENT_ITEM_KEY;
6920 				key.offset = num_bytes;
6921 				btrfs_release_path(path);
6922 				ret = btrfs_search_slot(trans, extent_root,
6923 							&key, path, -1, 1);
6924 			}
6925 
6926 			if (ret) {
6927 				btrfs_err(info,
6928 					  "umm, got %d back from search, was looking for %llu",
6929 					  ret, bytenr);
6930 				if (ret > 0)
6931 					btrfs_print_leaf(info, path->nodes[0]);
6932 			}
6933 			if (ret < 0) {
6934 				btrfs_abort_transaction(trans, ret);
6935 				goto out;
6936 			}
6937 			extent_slot = path->slots[0];
6938 		}
6939 	} else if (WARN_ON(ret == -ENOENT)) {
6940 		btrfs_print_leaf(info, path->nodes[0]);
6941 		btrfs_err(info,
6942 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6943 			bytenr, parent, root_objectid, owner_objectid,
6944 			owner_offset);
6945 		btrfs_abort_transaction(trans, ret);
6946 		goto out;
6947 	} else {
6948 		btrfs_abort_transaction(trans, ret);
6949 		goto out;
6950 	}
6951 
6952 	leaf = path->nodes[0];
6953 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6955 	if (item_size < sizeof(*ei)) {
6956 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6957 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6958 					     0);
6959 		if (ret < 0) {
6960 			btrfs_abort_transaction(trans, ret);
6961 			goto out;
6962 		}
6963 
6964 		btrfs_release_path(path);
6965 		path->leave_spinning = 1;
6966 
6967 		key.objectid = bytenr;
6968 		key.type = BTRFS_EXTENT_ITEM_KEY;
6969 		key.offset = num_bytes;
6970 
6971 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6972 					-1, 1);
6973 		if (ret) {
6974 			btrfs_err(info,
6975 				  "umm, got %d back from search, was looking for %llu",
6976 				ret, bytenr);
6977 			btrfs_print_leaf(info, path->nodes[0]);
6978 		}
6979 		if (ret < 0) {
6980 			btrfs_abort_transaction(trans, ret);
6981 			goto out;
6982 		}
6983 
6984 		extent_slot = path->slots[0];
6985 		leaf = path->nodes[0];
6986 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6987 	}
6988 #endif
6989 	BUG_ON(item_size < sizeof(*ei));
6990 	ei = btrfs_item_ptr(leaf, extent_slot,
6991 			    struct btrfs_extent_item);
6992 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6993 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6994 		struct btrfs_tree_block_info *bi;
6995 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6996 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6997 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6998 	}
6999 
7000 	refs = btrfs_extent_refs(leaf, ei);
7001 	if (refs < refs_to_drop) {
7002 		btrfs_err(info,
7003 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7004 			  refs_to_drop, refs, bytenr);
7005 		ret = -EINVAL;
7006 		btrfs_abort_transaction(trans, ret);
7007 		goto out;
7008 	}
7009 	refs -= refs_to_drop;
7010 
7011 	if (refs > 0) {
7012 		if (extent_op)
7013 			__run_delayed_extent_op(extent_op, leaf, ei);
7014 		/*
7015 		 * In the case of inline back ref, reference count will
7016 		 * be updated by remove_extent_backref
7017 		 */
7018 		if (iref) {
7019 			BUG_ON(!found_extent);
7020 		} else {
7021 			btrfs_set_extent_refs(leaf, ei, refs);
7022 			btrfs_mark_buffer_dirty(leaf);
7023 		}
7024 		if (found_extent) {
7025 			ret = remove_extent_backref(trans, info, path,
7026 						    iref, refs_to_drop,
7027 						    is_data, &last_ref);
7028 			if (ret) {
7029 				btrfs_abort_transaction(trans, ret);
7030 				goto out;
7031 			}
7032 		}
7033 		add_pinned_bytes(info, -num_bytes, owner_objectid,
7034 				 root_objectid);
7035 	} else {
7036 		if (found_extent) {
7037 			BUG_ON(is_data && refs_to_drop !=
7038 			       extent_data_ref_count(path, iref));
7039 			if (iref) {
7040 				BUG_ON(path->slots[0] != extent_slot);
7041 			} else {
7042 				BUG_ON(path->slots[0] != extent_slot + 1);
7043 				path->slots[0] = extent_slot;
7044 				num_to_del = 2;
7045 			}
7046 		}
7047 
7048 		last_ref = 1;
7049 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7050 				      num_to_del);
7051 		if (ret) {
7052 			btrfs_abort_transaction(trans, ret);
7053 			goto out;
7054 		}
7055 		btrfs_release_path(path);
7056 
7057 		if (is_data) {
7058 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7059 			if (ret) {
7060 				btrfs_abort_transaction(trans, ret);
7061 				goto out;
7062 			}
7063 		}
7064 
7065 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7066 		if (ret) {
7067 			btrfs_abort_transaction(trans, ret);
7068 			goto out;
7069 		}
7070 
7071 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7072 		if (ret) {
7073 			btrfs_abort_transaction(trans, ret);
7074 			goto out;
7075 		}
7076 	}
7077 	btrfs_release_path(path);
7078 
7079 out:
7080 	btrfs_free_path(path);
7081 	return ret;
7082 }
7083 
7084 /*
7085  * when we free an block, it is possible (and likely) that we free the last
7086  * delayed ref for that extent as well.  This searches the delayed ref tree for
7087  * a given extent, and if there are no other delayed refs to be processed, it
7088  * removes it from the tree.
7089  */
7090 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7091 				      u64 bytenr)
7092 {
7093 	struct btrfs_delayed_ref_head *head;
7094 	struct btrfs_delayed_ref_root *delayed_refs;
7095 	int ret = 0;
7096 
7097 	delayed_refs = &trans->transaction->delayed_refs;
7098 	spin_lock(&delayed_refs->lock);
7099 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7100 	if (!head)
7101 		goto out_delayed_unlock;
7102 
7103 	spin_lock(&head->lock);
7104 	if (!list_empty(&head->ref_list))
7105 		goto out;
7106 
7107 	if (head->extent_op) {
7108 		if (!head->must_insert_reserved)
7109 			goto out;
7110 		btrfs_free_delayed_extent_op(head->extent_op);
7111 		head->extent_op = NULL;
7112 	}
7113 
7114 	/*
7115 	 * waiting for the lock here would deadlock.  If someone else has it
7116 	 * locked they are already in the process of dropping it anyway
7117 	 */
7118 	if (!mutex_trylock(&head->mutex))
7119 		goto out;
7120 
7121 	/*
7122 	 * at this point we have a head with no other entries.  Go
7123 	 * ahead and process it.
7124 	 */
7125 	head->node.in_tree = 0;
7126 	rb_erase(&head->href_node, &delayed_refs->href_root);
7127 
7128 	atomic_dec(&delayed_refs->num_entries);
7129 
7130 	/*
7131 	 * we don't take a ref on the node because we're removing it from the
7132 	 * tree, so we just steal the ref the tree was holding.
7133 	 */
7134 	delayed_refs->num_heads--;
7135 	if (head->processing == 0)
7136 		delayed_refs->num_heads_ready--;
7137 	head->processing = 0;
7138 	spin_unlock(&head->lock);
7139 	spin_unlock(&delayed_refs->lock);
7140 
7141 	BUG_ON(head->extent_op);
7142 	if (head->must_insert_reserved)
7143 		ret = 1;
7144 
7145 	mutex_unlock(&head->mutex);
7146 	btrfs_put_delayed_ref(&head->node);
7147 	return ret;
7148 out:
7149 	spin_unlock(&head->lock);
7150 
7151 out_delayed_unlock:
7152 	spin_unlock(&delayed_refs->lock);
7153 	return 0;
7154 }
7155 
7156 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7157 			   struct btrfs_root *root,
7158 			   struct extent_buffer *buf,
7159 			   u64 parent, int last_ref)
7160 {
7161 	struct btrfs_fs_info *fs_info = root->fs_info;
7162 	int pin = 1;
7163 	int ret;
7164 
7165 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7166 		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7167 						 buf->start, buf->len,
7168 						 parent,
7169 						 root->root_key.objectid,
7170 						 btrfs_header_level(buf),
7171 						 BTRFS_DROP_DELAYED_REF, NULL);
7172 		BUG_ON(ret); /* -ENOMEM */
7173 	}
7174 
7175 	if (!last_ref)
7176 		return;
7177 
7178 	if (btrfs_header_generation(buf) == trans->transid) {
7179 		struct btrfs_block_group_cache *cache;
7180 
7181 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7182 			ret = check_ref_cleanup(trans, buf->start);
7183 			if (!ret)
7184 				goto out;
7185 		}
7186 
7187 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7188 
7189 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7190 			pin_down_extent(fs_info, cache, buf->start,
7191 					buf->len, 1);
7192 			btrfs_put_block_group(cache);
7193 			goto out;
7194 		}
7195 
7196 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7197 
7198 		btrfs_add_free_space(cache, buf->start, buf->len);
7199 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7200 		btrfs_put_block_group(cache);
7201 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7202 		pin = 0;
7203 	}
7204 out:
7205 	if (pin)
7206 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7207 				 root->root_key.objectid);
7208 
7209 	/*
7210 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7211 	 * anymore.
7212 	 */
7213 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7214 }
7215 
7216 /* Can return -ENOMEM */
7217 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7218 		      struct btrfs_fs_info *fs_info,
7219 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7220 		      u64 owner, u64 offset)
7221 {
7222 	int ret;
7223 
7224 	if (btrfs_is_testing(fs_info))
7225 		return 0;
7226 
7227 	add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7228 
7229 	/*
7230 	 * tree log blocks never actually go into the extent allocation
7231 	 * tree, just update pinning info and exit early.
7232 	 */
7233 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7234 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7235 		/* unlocks the pinned mutex */
7236 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7237 		ret = 0;
7238 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7239 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7240 					num_bytes,
7241 					parent, root_objectid, (int)owner,
7242 					BTRFS_DROP_DELAYED_REF, NULL);
7243 	} else {
7244 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7245 						num_bytes,
7246 						parent, root_objectid, owner,
7247 						offset, 0,
7248 						BTRFS_DROP_DELAYED_REF);
7249 	}
7250 	return ret;
7251 }
7252 
7253 /*
7254  * when we wait for progress in the block group caching, its because
7255  * our allocation attempt failed at least once.  So, we must sleep
7256  * and let some progress happen before we try again.
7257  *
7258  * This function will sleep at least once waiting for new free space to
7259  * show up, and then it will check the block group free space numbers
7260  * for our min num_bytes.  Another option is to have it go ahead
7261  * and look in the rbtree for a free extent of a given size, but this
7262  * is a good start.
7263  *
7264  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7265  * any of the information in this block group.
7266  */
7267 static noinline void
7268 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7269 				u64 num_bytes)
7270 {
7271 	struct btrfs_caching_control *caching_ctl;
7272 
7273 	caching_ctl = get_caching_control(cache);
7274 	if (!caching_ctl)
7275 		return;
7276 
7277 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7278 		   (cache->free_space_ctl->free_space >= num_bytes));
7279 
7280 	put_caching_control(caching_ctl);
7281 }
7282 
7283 static noinline int
7284 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7285 {
7286 	struct btrfs_caching_control *caching_ctl;
7287 	int ret = 0;
7288 
7289 	caching_ctl = get_caching_control(cache);
7290 	if (!caching_ctl)
7291 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7292 
7293 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7294 	if (cache->cached == BTRFS_CACHE_ERROR)
7295 		ret = -EIO;
7296 	put_caching_control(caching_ctl);
7297 	return ret;
7298 }
7299 
7300 int __get_raid_index(u64 flags)
7301 {
7302 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7303 		return BTRFS_RAID_RAID10;
7304 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7305 		return BTRFS_RAID_RAID1;
7306 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7307 		return BTRFS_RAID_DUP;
7308 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7309 		return BTRFS_RAID_RAID0;
7310 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7311 		return BTRFS_RAID_RAID5;
7312 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7313 		return BTRFS_RAID_RAID6;
7314 
7315 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7316 }
7317 
7318 int get_block_group_index(struct btrfs_block_group_cache *cache)
7319 {
7320 	return __get_raid_index(cache->flags);
7321 }
7322 
7323 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7324 	[BTRFS_RAID_RAID10]	= "raid10",
7325 	[BTRFS_RAID_RAID1]	= "raid1",
7326 	[BTRFS_RAID_DUP]	= "dup",
7327 	[BTRFS_RAID_RAID0]	= "raid0",
7328 	[BTRFS_RAID_SINGLE]	= "single",
7329 	[BTRFS_RAID_RAID5]	= "raid5",
7330 	[BTRFS_RAID_RAID6]	= "raid6",
7331 };
7332 
7333 static const char *get_raid_name(enum btrfs_raid_types type)
7334 {
7335 	if (type >= BTRFS_NR_RAID_TYPES)
7336 		return NULL;
7337 
7338 	return btrfs_raid_type_names[type];
7339 }
7340 
7341 enum btrfs_loop_type {
7342 	LOOP_CACHING_NOWAIT = 0,
7343 	LOOP_CACHING_WAIT = 1,
7344 	LOOP_ALLOC_CHUNK = 2,
7345 	LOOP_NO_EMPTY_SIZE = 3,
7346 };
7347 
7348 static inline void
7349 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7350 		       int delalloc)
7351 {
7352 	if (delalloc)
7353 		down_read(&cache->data_rwsem);
7354 }
7355 
7356 static inline void
7357 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7358 		       int delalloc)
7359 {
7360 	btrfs_get_block_group(cache);
7361 	if (delalloc)
7362 		down_read(&cache->data_rwsem);
7363 }
7364 
7365 static struct btrfs_block_group_cache *
7366 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7367 		   struct btrfs_free_cluster *cluster,
7368 		   int delalloc)
7369 {
7370 	struct btrfs_block_group_cache *used_bg = NULL;
7371 
7372 	spin_lock(&cluster->refill_lock);
7373 	while (1) {
7374 		used_bg = cluster->block_group;
7375 		if (!used_bg)
7376 			return NULL;
7377 
7378 		if (used_bg == block_group)
7379 			return used_bg;
7380 
7381 		btrfs_get_block_group(used_bg);
7382 
7383 		if (!delalloc)
7384 			return used_bg;
7385 
7386 		if (down_read_trylock(&used_bg->data_rwsem))
7387 			return used_bg;
7388 
7389 		spin_unlock(&cluster->refill_lock);
7390 
7391 		/* We should only have one-level nested. */
7392 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7393 
7394 		spin_lock(&cluster->refill_lock);
7395 		if (used_bg == cluster->block_group)
7396 			return used_bg;
7397 
7398 		up_read(&used_bg->data_rwsem);
7399 		btrfs_put_block_group(used_bg);
7400 	}
7401 }
7402 
7403 static inline void
7404 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7405 			 int delalloc)
7406 {
7407 	if (delalloc)
7408 		up_read(&cache->data_rwsem);
7409 	btrfs_put_block_group(cache);
7410 }
7411 
7412 /*
7413  * walks the btree of allocated extents and find a hole of a given size.
7414  * The key ins is changed to record the hole:
7415  * ins->objectid == start position
7416  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7417  * ins->offset == the size of the hole.
7418  * Any available blocks before search_start are skipped.
7419  *
7420  * If there is no suitable free space, we will record the max size of
7421  * the free space extent currently.
7422  */
7423 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7424 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7425 				u64 hint_byte, struct btrfs_key *ins,
7426 				u64 flags, int delalloc)
7427 {
7428 	int ret = 0;
7429 	struct btrfs_root *root = fs_info->extent_root;
7430 	struct btrfs_free_cluster *last_ptr = NULL;
7431 	struct btrfs_block_group_cache *block_group = NULL;
7432 	u64 search_start = 0;
7433 	u64 max_extent_size = 0;
7434 	u64 empty_cluster = 0;
7435 	struct btrfs_space_info *space_info;
7436 	int loop = 0;
7437 	int index = __get_raid_index(flags);
7438 	bool failed_cluster_refill = false;
7439 	bool failed_alloc = false;
7440 	bool use_cluster = true;
7441 	bool have_caching_bg = false;
7442 	bool orig_have_caching_bg = false;
7443 	bool full_search = false;
7444 
7445 	WARN_ON(num_bytes < fs_info->sectorsize);
7446 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7447 	ins->objectid = 0;
7448 	ins->offset = 0;
7449 
7450 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7451 
7452 	space_info = __find_space_info(fs_info, flags);
7453 	if (!space_info) {
7454 		btrfs_err(fs_info, "No space info for %llu", flags);
7455 		return -ENOSPC;
7456 	}
7457 
7458 	/*
7459 	 * If our free space is heavily fragmented we may not be able to make
7460 	 * big contiguous allocations, so instead of doing the expensive search
7461 	 * for free space, simply return ENOSPC with our max_extent_size so we
7462 	 * can go ahead and search for a more manageable chunk.
7463 	 *
7464 	 * If our max_extent_size is large enough for our allocation simply
7465 	 * disable clustering since we will likely not be able to find enough
7466 	 * space to create a cluster and induce latency trying.
7467 	 */
7468 	if (unlikely(space_info->max_extent_size)) {
7469 		spin_lock(&space_info->lock);
7470 		if (space_info->max_extent_size &&
7471 		    num_bytes > space_info->max_extent_size) {
7472 			ins->offset = space_info->max_extent_size;
7473 			spin_unlock(&space_info->lock);
7474 			return -ENOSPC;
7475 		} else if (space_info->max_extent_size) {
7476 			use_cluster = false;
7477 		}
7478 		spin_unlock(&space_info->lock);
7479 	}
7480 
7481 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7482 	if (last_ptr) {
7483 		spin_lock(&last_ptr->lock);
7484 		if (last_ptr->block_group)
7485 			hint_byte = last_ptr->window_start;
7486 		if (last_ptr->fragmented) {
7487 			/*
7488 			 * We still set window_start so we can keep track of the
7489 			 * last place we found an allocation to try and save
7490 			 * some time.
7491 			 */
7492 			hint_byte = last_ptr->window_start;
7493 			use_cluster = false;
7494 		}
7495 		spin_unlock(&last_ptr->lock);
7496 	}
7497 
7498 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7499 	search_start = max(search_start, hint_byte);
7500 	if (search_start == hint_byte) {
7501 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7502 		/*
7503 		 * we don't want to use the block group if it doesn't match our
7504 		 * allocation bits, or if its not cached.
7505 		 *
7506 		 * However if we are re-searching with an ideal block group
7507 		 * picked out then we don't care that the block group is cached.
7508 		 */
7509 		if (block_group && block_group_bits(block_group, flags) &&
7510 		    block_group->cached != BTRFS_CACHE_NO) {
7511 			down_read(&space_info->groups_sem);
7512 			if (list_empty(&block_group->list) ||
7513 			    block_group->ro) {
7514 				/*
7515 				 * someone is removing this block group,
7516 				 * we can't jump into the have_block_group
7517 				 * target because our list pointers are not
7518 				 * valid
7519 				 */
7520 				btrfs_put_block_group(block_group);
7521 				up_read(&space_info->groups_sem);
7522 			} else {
7523 				index = get_block_group_index(block_group);
7524 				btrfs_lock_block_group(block_group, delalloc);
7525 				goto have_block_group;
7526 			}
7527 		} else if (block_group) {
7528 			btrfs_put_block_group(block_group);
7529 		}
7530 	}
7531 search:
7532 	have_caching_bg = false;
7533 	if (index == 0 || index == __get_raid_index(flags))
7534 		full_search = true;
7535 	down_read(&space_info->groups_sem);
7536 	list_for_each_entry(block_group, &space_info->block_groups[index],
7537 			    list) {
7538 		u64 offset;
7539 		int cached;
7540 
7541 		btrfs_grab_block_group(block_group, delalloc);
7542 		search_start = block_group->key.objectid;
7543 
7544 		/*
7545 		 * this can happen if we end up cycling through all the
7546 		 * raid types, but we want to make sure we only allocate
7547 		 * for the proper type.
7548 		 */
7549 		if (!block_group_bits(block_group, flags)) {
7550 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7551 				BTRFS_BLOCK_GROUP_RAID1 |
7552 				BTRFS_BLOCK_GROUP_RAID5 |
7553 				BTRFS_BLOCK_GROUP_RAID6 |
7554 				BTRFS_BLOCK_GROUP_RAID10;
7555 
7556 			/*
7557 			 * if they asked for extra copies and this block group
7558 			 * doesn't provide them, bail.  This does allow us to
7559 			 * fill raid0 from raid1.
7560 			 */
7561 			if ((flags & extra) && !(block_group->flags & extra))
7562 				goto loop;
7563 		}
7564 
7565 have_block_group:
7566 		cached = block_group_cache_done(block_group);
7567 		if (unlikely(!cached)) {
7568 			have_caching_bg = true;
7569 			ret = cache_block_group(block_group, 0);
7570 			BUG_ON(ret < 0);
7571 			ret = 0;
7572 		}
7573 
7574 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7575 			goto loop;
7576 		if (unlikely(block_group->ro))
7577 			goto loop;
7578 
7579 		/*
7580 		 * Ok we want to try and use the cluster allocator, so
7581 		 * lets look there
7582 		 */
7583 		if (last_ptr && use_cluster) {
7584 			struct btrfs_block_group_cache *used_block_group;
7585 			unsigned long aligned_cluster;
7586 			/*
7587 			 * the refill lock keeps out other
7588 			 * people trying to start a new cluster
7589 			 */
7590 			used_block_group = btrfs_lock_cluster(block_group,
7591 							      last_ptr,
7592 							      delalloc);
7593 			if (!used_block_group)
7594 				goto refill_cluster;
7595 
7596 			if (used_block_group != block_group &&
7597 			    (used_block_group->ro ||
7598 			     !block_group_bits(used_block_group, flags)))
7599 				goto release_cluster;
7600 
7601 			offset = btrfs_alloc_from_cluster(used_block_group,
7602 						last_ptr,
7603 						num_bytes,
7604 						used_block_group->key.objectid,
7605 						&max_extent_size);
7606 			if (offset) {
7607 				/* we have a block, we're done */
7608 				spin_unlock(&last_ptr->refill_lock);
7609 				trace_btrfs_reserve_extent_cluster(fs_info,
7610 						used_block_group,
7611 						search_start, num_bytes);
7612 				if (used_block_group != block_group) {
7613 					btrfs_release_block_group(block_group,
7614 								  delalloc);
7615 					block_group = used_block_group;
7616 				}
7617 				goto checks;
7618 			}
7619 
7620 			WARN_ON(last_ptr->block_group != used_block_group);
7621 release_cluster:
7622 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7623 			 * set up a new clusters, so lets just skip it
7624 			 * and let the allocator find whatever block
7625 			 * it can find.  If we reach this point, we
7626 			 * will have tried the cluster allocator
7627 			 * plenty of times and not have found
7628 			 * anything, so we are likely way too
7629 			 * fragmented for the clustering stuff to find
7630 			 * anything.
7631 			 *
7632 			 * However, if the cluster is taken from the
7633 			 * current block group, release the cluster
7634 			 * first, so that we stand a better chance of
7635 			 * succeeding in the unclustered
7636 			 * allocation.  */
7637 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7638 			    used_block_group != block_group) {
7639 				spin_unlock(&last_ptr->refill_lock);
7640 				btrfs_release_block_group(used_block_group,
7641 							  delalloc);
7642 				goto unclustered_alloc;
7643 			}
7644 
7645 			/*
7646 			 * this cluster didn't work out, free it and
7647 			 * start over
7648 			 */
7649 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7650 
7651 			if (used_block_group != block_group)
7652 				btrfs_release_block_group(used_block_group,
7653 							  delalloc);
7654 refill_cluster:
7655 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7656 				spin_unlock(&last_ptr->refill_lock);
7657 				goto unclustered_alloc;
7658 			}
7659 
7660 			aligned_cluster = max_t(unsigned long,
7661 						empty_cluster + empty_size,
7662 					      block_group->full_stripe_len);
7663 
7664 			/* allocate a cluster in this block group */
7665 			ret = btrfs_find_space_cluster(fs_info, block_group,
7666 						       last_ptr, search_start,
7667 						       num_bytes,
7668 						       aligned_cluster);
7669 			if (ret == 0) {
7670 				/*
7671 				 * now pull our allocation out of this
7672 				 * cluster
7673 				 */
7674 				offset = btrfs_alloc_from_cluster(block_group,
7675 							last_ptr,
7676 							num_bytes,
7677 							search_start,
7678 							&max_extent_size);
7679 				if (offset) {
7680 					/* we found one, proceed */
7681 					spin_unlock(&last_ptr->refill_lock);
7682 					trace_btrfs_reserve_extent_cluster(fs_info,
7683 						block_group, search_start,
7684 						num_bytes);
7685 					goto checks;
7686 				}
7687 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7688 				   && !failed_cluster_refill) {
7689 				spin_unlock(&last_ptr->refill_lock);
7690 
7691 				failed_cluster_refill = true;
7692 				wait_block_group_cache_progress(block_group,
7693 				       num_bytes + empty_cluster + empty_size);
7694 				goto have_block_group;
7695 			}
7696 
7697 			/*
7698 			 * at this point we either didn't find a cluster
7699 			 * or we weren't able to allocate a block from our
7700 			 * cluster.  Free the cluster we've been trying
7701 			 * to use, and go to the next block group
7702 			 */
7703 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7704 			spin_unlock(&last_ptr->refill_lock);
7705 			goto loop;
7706 		}
7707 
7708 unclustered_alloc:
7709 		/*
7710 		 * We are doing an unclustered alloc, set the fragmented flag so
7711 		 * we don't bother trying to setup a cluster again until we get
7712 		 * more space.
7713 		 */
7714 		if (unlikely(last_ptr)) {
7715 			spin_lock(&last_ptr->lock);
7716 			last_ptr->fragmented = 1;
7717 			spin_unlock(&last_ptr->lock);
7718 		}
7719 		if (cached) {
7720 			struct btrfs_free_space_ctl *ctl =
7721 				block_group->free_space_ctl;
7722 
7723 			spin_lock(&ctl->tree_lock);
7724 			if (ctl->free_space <
7725 			    num_bytes + empty_cluster + empty_size) {
7726 				if (ctl->free_space > max_extent_size)
7727 					max_extent_size = ctl->free_space;
7728 				spin_unlock(&ctl->tree_lock);
7729 				goto loop;
7730 			}
7731 			spin_unlock(&ctl->tree_lock);
7732 		}
7733 
7734 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7735 						    num_bytes, empty_size,
7736 						    &max_extent_size);
7737 		/*
7738 		 * If we didn't find a chunk, and we haven't failed on this
7739 		 * block group before, and this block group is in the middle of
7740 		 * caching and we are ok with waiting, then go ahead and wait
7741 		 * for progress to be made, and set failed_alloc to true.
7742 		 *
7743 		 * If failed_alloc is true then we've already waited on this
7744 		 * block group once and should move on to the next block group.
7745 		 */
7746 		if (!offset && !failed_alloc && !cached &&
7747 		    loop > LOOP_CACHING_NOWAIT) {
7748 			wait_block_group_cache_progress(block_group,
7749 						num_bytes + empty_size);
7750 			failed_alloc = true;
7751 			goto have_block_group;
7752 		} else if (!offset) {
7753 			goto loop;
7754 		}
7755 checks:
7756 		search_start = ALIGN(offset, fs_info->stripesize);
7757 
7758 		/* move on to the next group */
7759 		if (search_start + num_bytes >
7760 		    block_group->key.objectid + block_group->key.offset) {
7761 			btrfs_add_free_space(block_group, offset, num_bytes);
7762 			goto loop;
7763 		}
7764 
7765 		if (offset < search_start)
7766 			btrfs_add_free_space(block_group, offset,
7767 					     search_start - offset);
7768 		BUG_ON(offset > search_start);
7769 
7770 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7771 				num_bytes, delalloc);
7772 		if (ret == -EAGAIN) {
7773 			btrfs_add_free_space(block_group, offset, num_bytes);
7774 			goto loop;
7775 		}
7776 		btrfs_inc_block_group_reservations(block_group);
7777 
7778 		/* we are all good, lets return */
7779 		ins->objectid = search_start;
7780 		ins->offset = num_bytes;
7781 
7782 		trace_btrfs_reserve_extent(fs_info, block_group,
7783 					   search_start, num_bytes);
7784 		btrfs_release_block_group(block_group, delalloc);
7785 		break;
7786 loop:
7787 		failed_cluster_refill = false;
7788 		failed_alloc = false;
7789 		BUG_ON(index != get_block_group_index(block_group));
7790 		btrfs_release_block_group(block_group, delalloc);
7791 	}
7792 	up_read(&space_info->groups_sem);
7793 
7794 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7795 		&& !orig_have_caching_bg)
7796 		orig_have_caching_bg = true;
7797 
7798 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7799 		goto search;
7800 
7801 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7802 		goto search;
7803 
7804 	/*
7805 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7806 	 *			caching kthreads as we move along
7807 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7808 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7809 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7810 	 *			again
7811 	 */
7812 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7813 		index = 0;
7814 		if (loop == LOOP_CACHING_NOWAIT) {
7815 			/*
7816 			 * We want to skip the LOOP_CACHING_WAIT step if we
7817 			 * don't have any uncached bgs and we've already done a
7818 			 * full search through.
7819 			 */
7820 			if (orig_have_caching_bg || !full_search)
7821 				loop = LOOP_CACHING_WAIT;
7822 			else
7823 				loop = LOOP_ALLOC_CHUNK;
7824 		} else {
7825 			loop++;
7826 		}
7827 
7828 		if (loop == LOOP_ALLOC_CHUNK) {
7829 			struct btrfs_trans_handle *trans;
7830 			int exist = 0;
7831 
7832 			trans = current->journal_info;
7833 			if (trans)
7834 				exist = 1;
7835 			else
7836 				trans = btrfs_join_transaction(root);
7837 
7838 			if (IS_ERR(trans)) {
7839 				ret = PTR_ERR(trans);
7840 				goto out;
7841 			}
7842 
7843 			ret = do_chunk_alloc(trans, fs_info, flags,
7844 					     CHUNK_ALLOC_FORCE);
7845 
7846 			/*
7847 			 * If we can't allocate a new chunk we've already looped
7848 			 * through at least once, move on to the NO_EMPTY_SIZE
7849 			 * case.
7850 			 */
7851 			if (ret == -ENOSPC)
7852 				loop = LOOP_NO_EMPTY_SIZE;
7853 
7854 			/*
7855 			 * Do not bail out on ENOSPC since we
7856 			 * can do more things.
7857 			 */
7858 			if (ret < 0 && ret != -ENOSPC)
7859 				btrfs_abort_transaction(trans, ret);
7860 			else
7861 				ret = 0;
7862 			if (!exist)
7863 				btrfs_end_transaction(trans);
7864 			if (ret)
7865 				goto out;
7866 		}
7867 
7868 		if (loop == LOOP_NO_EMPTY_SIZE) {
7869 			/*
7870 			 * Don't loop again if we already have no empty_size and
7871 			 * no empty_cluster.
7872 			 */
7873 			if (empty_size == 0 &&
7874 			    empty_cluster == 0) {
7875 				ret = -ENOSPC;
7876 				goto out;
7877 			}
7878 			empty_size = 0;
7879 			empty_cluster = 0;
7880 		}
7881 
7882 		goto search;
7883 	} else if (!ins->objectid) {
7884 		ret = -ENOSPC;
7885 	} else if (ins->objectid) {
7886 		if (!use_cluster && last_ptr) {
7887 			spin_lock(&last_ptr->lock);
7888 			last_ptr->window_start = ins->objectid;
7889 			spin_unlock(&last_ptr->lock);
7890 		}
7891 		ret = 0;
7892 	}
7893 out:
7894 	if (ret == -ENOSPC) {
7895 		spin_lock(&space_info->lock);
7896 		space_info->max_extent_size = max_extent_size;
7897 		spin_unlock(&space_info->lock);
7898 		ins->offset = max_extent_size;
7899 	}
7900 	return ret;
7901 }
7902 
7903 static void dump_space_info(struct btrfs_fs_info *fs_info,
7904 			    struct btrfs_space_info *info, u64 bytes,
7905 			    int dump_block_groups)
7906 {
7907 	struct btrfs_block_group_cache *cache;
7908 	int index = 0;
7909 
7910 	spin_lock(&info->lock);
7911 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7912 		   info->flags,
7913 		   info->total_bytes - btrfs_space_info_used(info, true),
7914 		   info->full ? "" : "not ");
7915 	btrfs_info(fs_info,
7916 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7917 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7918 		info->bytes_reserved, info->bytes_may_use,
7919 		info->bytes_readonly);
7920 	spin_unlock(&info->lock);
7921 
7922 	if (!dump_block_groups)
7923 		return;
7924 
7925 	down_read(&info->groups_sem);
7926 again:
7927 	list_for_each_entry(cache, &info->block_groups[index], list) {
7928 		spin_lock(&cache->lock);
7929 		btrfs_info(fs_info,
7930 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7931 			cache->key.objectid, cache->key.offset,
7932 			btrfs_block_group_used(&cache->item), cache->pinned,
7933 			cache->reserved, cache->ro ? "[readonly]" : "");
7934 		btrfs_dump_free_space(cache, bytes);
7935 		spin_unlock(&cache->lock);
7936 	}
7937 	if (++index < BTRFS_NR_RAID_TYPES)
7938 		goto again;
7939 	up_read(&info->groups_sem);
7940 }
7941 
7942 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7943 			 u64 num_bytes, u64 min_alloc_size,
7944 			 u64 empty_size, u64 hint_byte,
7945 			 struct btrfs_key *ins, int is_data, int delalloc)
7946 {
7947 	struct btrfs_fs_info *fs_info = root->fs_info;
7948 	bool final_tried = num_bytes == min_alloc_size;
7949 	u64 flags;
7950 	int ret;
7951 
7952 	flags = btrfs_get_alloc_profile(root, is_data);
7953 again:
7954 	WARN_ON(num_bytes < fs_info->sectorsize);
7955 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7956 			       hint_byte, ins, flags, delalloc);
7957 	if (!ret && !is_data) {
7958 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7959 	} else if (ret == -ENOSPC) {
7960 		if (!final_tried && ins->offset) {
7961 			num_bytes = min(num_bytes >> 1, ins->offset);
7962 			num_bytes = round_down(num_bytes,
7963 					       fs_info->sectorsize);
7964 			num_bytes = max(num_bytes, min_alloc_size);
7965 			ram_bytes = num_bytes;
7966 			if (num_bytes == min_alloc_size)
7967 				final_tried = true;
7968 			goto again;
7969 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7970 			struct btrfs_space_info *sinfo;
7971 
7972 			sinfo = __find_space_info(fs_info, flags);
7973 			btrfs_err(fs_info,
7974 				  "allocation failed flags %llu, wanted %llu",
7975 				  flags, num_bytes);
7976 			if (sinfo)
7977 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7978 		}
7979 	}
7980 
7981 	return ret;
7982 }
7983 
7984 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7985 					u64 start, u64 len,
7986 					int pin, int delalloc)
7987 {
7988 	struct btrfs_block_group_cache *cache;
7989 	int ret = 0;
7990 
7991 	cache = btrfs_lookup_block_group(fs_info, start);
7992 	if (!cache) {
7993 		btrfs_err(fs_info, "Unable to find block group for %llu",
7994 			  start);
7995 		return -ENOSPC;
7996 	}
7997 
7998 	if (pin)
7999 		pin_down_extent(fs_info, cache, start, len, 1);
8000 	else {
8001 		if (btrfs_test_opt(fs_info, DISCARD))
8002 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8003 		btrfs_add_free_space(cache, start, len);
8004 		btrfs_free_reserved_bytes(cache, len, delalloc);
8005 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8006 	}
8007 
8008 	btrfs_put_block_group(cache);
8009 	return ret;
8010 }
8011 
8012 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8013 			       u64 start, u64 len, int delalloc)
8014 {
8015 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8016 }
8017 
8018 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8019 				       u64 start, u64 len)
8020 {
8021 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8022 }
8023 
8024 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8025 				      struct btrfs_fs_info *fs_info,
8026 				      u64 parent, u64 root_objectid,
8027 				      u64 flags, u64 owner, u64 offset,
8028 				      struct btrfs_key *ins, int ref_mod)
8029 {
8030 	int ret;
8031 	struct btrfs_extent_item *extent_item;
8032 	struct btrfs_extent_inline_ref *iref;
8033 	struct btrfs_path *path;
8034 	struct extent_buffer *leaf;
8035 	int type;
8036 	u32 size;
8037 
8038 	if (parent > 0)
8039 		type = BTRFS_SHARED_DATA_REF_KEY;
8040 	else
8041 		type = BTRFS_EXTENT_DATA_REF_KEY;
8042 
8043 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8044 
8045 	path = btrfs_alloc_path();
8046 	if (!path)
8047 		return -ENOMEM;
8048 
8049 	path->leave_spinning = 1;
8050 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8051 				      ins, size);
8052 	if (ret) {
8053 		btrfs_free_path(path);
8054 		return ret;
8055 	}
8056 
8057 	leaf = path->nodes[0];
8058 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8059 				     struct btrfs_extent_item);
8060 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8061 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8062 	btrfs_set_extent_flags(leaf, extent_item,
8063 			       flags | BTRFS_EXTENT_FLAG_DATA);
8064 
8065 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8066 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8067 	if (parent > 0) {
8068 		struct btrfs_shared_data_ref *ref;
8069 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8070 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8071 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8072 	} else {
8073 		struct btrfs_extent_data_ref *ref;
8074 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8075 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8076 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8077 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8078 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8079 	}
8080 
8081 	btrfs_mark_buffer_dirty(path->nodes[0]);
8082 	btrfs_free_path(path);
8083 
8084 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8085 					  ins->offset);
8086 	if (ret)
8087 		return ret;
8088 
8089 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8090 	if (ret) { /* -ENOENT, logic error */
8091 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8092 			ins->objectid, ins->offset);
8093 		BUG();
8094 	}
8095 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8096 	return ret;
8097 }
8098 
8099 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8100 				     struct btrfs_fs_info *fs_info,
8101 				     u64 parent, u64 root_objectid,
8102 				     u64 flags, struct btrfs_disk_key *key,
8103 				     int level, struct btrfs_key *ins)
8104 {
8105 	int ret;
8106 	struct btrfs_extent_item *extent_item;
8107 	struct btrfs_tree_block_info *block_info;
8108 	struct btrfs_extent_inline_ref *iref;
8109 	struct btrfs_path *path;
8110 	struct extent_buffer *leaf;
8111 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8112 	u64 num_bytes = ins->offset;
8113 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8114 
8115 	if (!skinny_metadata)
8116 		size += sizeof(*block_info);
8117 
8118 	path = btrfs_alloc_path();
8119 	if (!path) {
8120 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8121 						   fs_info->nodesize);
8122 		return -ENOMEM;
8123 	}
8124 
8125 	path->leave_spinning = 1;
8126 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8127 				      ins, size);
8128 	if (ret) {
8129 		btrfs_free_path(path);
8130 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8131 						   fs_info->nodesize);
8132 		return ret;
8133 	}
8134 
8135 	leaf = path->nodes[0];
8136 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8137 				     struct btrfs_extent_item);
8138 	btrfs_set_extent_refs(leaf, extent_item, 1);
8139 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8140 	btrfs_set_extent_flags(leaf, extent_item,
8141 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8142 
8143 	if (skinny_metadata) {
8144 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8145 		num_bytes = fs_info->nodesize;
8146 	} else {
8147 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8148 		btrfs_set_tree_block_key(leaf, block_info, key);
8149 		btrfs_set_tree_block_level(leaf, block_info, level);
8150 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8151 	}
8152 
8153 	if (parent > 0) {
8154 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8155 		btrfs_set_extent_inline_ref_type(leaf, iref,
8156 						 BTRFS_SHARED_BLOCK_REF_KEY);
8157 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8158 	} else {
8159 		btrfs_set_extent_inline_ref_type(leaf, iref,
8160 						 BTRFS_TREE_BLOCK_REF_KEY);
8161 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8162 	}
8163 
8164 	btrfs_mark_buffer_dirty(leaf);
8165 	btrfs_free_path(path);
8166 
8167 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8168 					  num_bytes);
8169 	if (ret)
8170 		return ret;
8171 
8172 	ret = update_block_group(trans, fs_info, ins->objectid,
8173 				 fs_info->nodesize, 1);
8174 	if (ret) { /* -ENOENT, logic error */
8175 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8176 			ins->objectid, ins->offset);
8177 		BUG();
8178 	}
8179 
8180 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8181 					  fs_info->nodesize);
8182 	return ret;
8183 }
8184 
8185 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8186 				     u64 root_objectid, u64 owner,
8187 				     u64 offset, u64 ram_bytes,
8188 				     struct btrfs_key *ins)
8189 {
8190 	struct btrfs_fs_info *fs_info = trans->fs_info;
8191 	int ret;
8192 
8193 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8194 
8195 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8196 					 ins->offset, 0,
8197 					 root_objectid, owner, offset,
8198 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8199 	return ret;
8200 }
8201 
8202 /*
8203  * this is used by the tree logging recovery code.  It records that
8204  * an extent has been allocated and makes sure to clear the free
8205  * space cache bits as well
8206  */
8207 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8208 				   struct btrfs_fs_info *fs_info,
8209 				   u64 root_objectid, u64 owner, u64 offset,
8210 				   struct btrfs_key *ins)
8211 {
8212 	int ret;
8213 	struct btrfs_block_group_cache *block_group;
8214 	struct btrfs_space_info *space_info;
8215 
8216 	/*
8217 	 * Mixed block groups will exclude before processing the log so we only
8218 	 * need to do the exclude dance if this fs isn't mixed.
8219 	 */
8220 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8221 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8222 					      ins->offset);
8223 		if (ret)
8224 			return ret;
8225 	}
8226 
8227 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8228 	if (!block_group)
8229 		return -EINVAL;
8230 
8231 	space_info = block_group->space_info;
8232 	spin_lock(&space_info->lock);
8233 	spin_lock(&block_group->lock);
8234 	space_info->bytes_reserved += ins->offset;
8235 	block_group->reserved += ins->offset;
8236 	spin_unlock(&block_group->lock);
8237 	spin_unlock(&space_info->lock);
8238 
8239 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8240 					 0, owner, offset, ins, 1);
8241 	btrfs_put_block_group(block_group);
8242 	return ret;
8243 }
8244 
8245 static struct extent_buffer *
8246 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8247 		      u64 bytenr, int level)
8248 {
8249 	struct btrfs_fs_info *fs_info = root->fs_info;
8250 	struct extent_buffer *buf;
8251 
8252 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8253 	if (IS_ERR(buf))
8254 		return buf;
8255 
8256 	btrfs_set_header_generation(buf, trans->transid);
8257 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8258 	btrfs_tree_lock(buf);
8259 	clean_tree_block(fs_info, buf);
8260 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8261 
8262 	btrfs_set_lock_blocking(buf);
8263 	set_extent_buffer_uptodate(buf);
8264 
8265 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8266 		buf->log_index = root->log_transid % 2;
8267 		/*
8268 		 * we allow two log transactions at a time, use different
8269 		 * EXENT bit to differentiate dirty pages.
8270 		 */
8271 		if (buf->log_index == 0)
8272 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8273 					buf->start + buf->len - 1, GFP_NOFS);
8274 		else
8275 			set_extent_new(&root->dirty_log_pages, buf->start,
8276 					buf->start + buf->len - 1);
8277 	} else {
8278 		buf->log_index = -1;
8279 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8280 			 buf->start + buf->len - 1, GFP_NOFS);
8281 	}
8282 	trans->dirty = true;
8283 	/* this returns a buffer locked for blocking */
8284 	return buf;
8285 }
8286 
8287 static struct btrfs_block_rsv *
8288 use_block_rsv(struct btrfs_trans_handle *trans,
8289 	      struct btrfs_root *root, u32 blocksize)
8290 {
8291 	struct btrfs_fs_info *fs_info = root->fs_info;
8292 	struct btrfs_block_rsv *block_rsv;
8293 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8294 	int ret;
8295 	bool global_updated = false;
8296 
8297 	block_rsv = get_block_rsv(trans, root);
8298 
8299 	if (unlikely(block_rsv->size == 0))
8300 		goto try_reserve;
8301 again:
8302 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8303 	if (!ret)
8304 		return block_rsv;
8305 
8306 	if (block_rsv->failfast)
8307 		return ERR_PTR(ret);
8308 
8309 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8310 		global_updated = true;
8311 		update_global_block_rsv(fs_info);
8312 		goto again;
8313 	}
8314 
8315 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8316 		static DEFINE_RATELIMIT_STATE(_rs,
8317 				DEFAULT_RATELIMIT_INTERVAL * 10,
8318 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8319 		if (__ratelimit(&_rs))
8320 			WARN(1, KERN_DEBUG
8321 				"BTRFS: block rsv returned %d\n", ret);
8322 	}
8323 try_reserve:
8324 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8325 				     BTRFS_RESERVE_NO_FLUSH);
8326 	if (!ret)
8327 		return block_rsv;
8328 	/*
8329 	 * If we couldn't reserve metadata bytes try and use some from
8330 	 * the global reserve if its space type is the same as the global
8331 	 * reservation.
8332 	 */
8333 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8334 	    block_rsv->space_info == global_rsv->space_info) {
8335 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8336 		if (!ret)
8337 			return global_rsv;
8338 	}
8339 	return ERR_PTR(ret);
8340 }
8341 
8342 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8343 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8344 {
8345 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8346 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8347 }
8348 
8349 /*
8350  * finds a free extent and does all the dirty work required for allocation
8351  * returns the tree buffer or an ERR_PTR on error.
8352  */
8353 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8354 					     struct btrfs_root *root,
8355 					     u64 parent, u64 root_objectid,
8356 					     const struct btrfs_disk_key *key,
8357 					     int level, u64 hint,
8358 					     u64 empty_size)
8359 {
8360 	struct btrfs_fs_info *fs_info = root->fs_info;
8361 	struct btrfs_key ins;
8362 	struct btrfs_block_rsv *block_rsv;
8363 	struct extent_buffer *buf;
8364 	struct btrfs_delayed_extent_op *extent_op;
8365 	u64 flags = 0;
8366 	int ret;
8367 	u32 blocksize = fs_info->nodesize;
8368 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8369 
8370 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8371 	if (btrfs_is_testing(fs_info)) {
8372 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8373 					    level);
8374 		if (!IS_ERR(buf))
8375 			root->alloc_bytenr += blocksize;
8376 		return buf;
8377 	}
8378 #endif
8379 
8380 	block_rsv = use_block_rsv(trans, root, blocksize);
8381 	if (IS_ERR(block_rsv))
8382 		return ERR_CAST(block_rsv);
8383 
8384 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8385 				   empty_size, hint, &ins, 0, 0);
8386 	if (ret)
8387 		goto out_unuse;
8388 
8389 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8390 	if (IS_ERR(buf)) {
8391 		ret = PTR_ERR(buf);
8392 		goto out_free_reserved;
8393 	}
8394 
8395 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8396 		if (parent == 0)
8397 			parent = ins.objectid;
8398 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8399 	} else
8400 		BUG_ON(parent > 0);
8401 
8402 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8403 		extent_op = btrfs_alloc_delayed_extent_op();
8404 		if (!extent_op) {
8405 			ret = -ENOMEM;
8406 			goto out_free_buf;
8407 		}
8408 		if (key)
8409 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8410 		else
8411 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8412 		extent_op->flags_to_set = flags;
8413 		extent_op->update_key = skinny_metadata ? false : true;
8414 		extent_op->update_flags = true;
8415 		extent_op->is_data = false;
8416 		extent_op->level = level;
8417 
8418 		ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8419 						 ins.objectid, ins.offset,
8420 						 parent, root_objectid, level,
8421 						 BTRFS_ADD_DELAYED_EXTENT,
8422 						 extent_op);
8423 		if (ret)
8424 			goto out_free_delayed;
8425 	}
8426 	return buf;
8427 
8428 out_free_delayed:
8429 	btrfs_free_delayed_extent_op(extent_op);
8430 out_free_buf:
8431 	free_extent_buffer(buf);
8432 out_free_reserved:
8433 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8434 out_unuse:
8435 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8436 	return ERR_PTR(ret);
8437 }
8438 
8439 struct walk_control {
8440 	u64 refs[BTRFS_MAX_LEVEL];
8441 	u64 flags[BTRFS_MAX_LEVEL];
8442 	struct btrfs_key update_progress;
8443 	int stage;
8444 	int level;
8445 	int shared_level;
8446 	int update_ref;
8447 	int keep_locks;
8448 	int reada_slot;
8449 	int reada_count;
8450 	int for_reloc;
8451 };
8452 
8453 #define DROP_REFERENCE	1
8454 #define UPDATE_BACKREF	2
8455 
8456 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8457 				     struct btrfs_root *root,
8458 				     struct walk_control *wc,
8459 				     struct btrfs_path *path)
8460 {
8461 	struct btrfs_fs_info *fs_info = root->fs_info;
8462 	u64 bytenr;
8463 	u64 generation;
8464 	u64 refs;
8465 	u64 flags;
8466 	u32 nritems;
8467 	struct btrfs_key key;
8468 	struct extent_buffer *eb;
8469 	int ret;
8470 	int slot;
8471 	int nread = 0;
8472 
8473 	if (path->slots[wc->level] < wc->reada_slot) {
8474 		wc->reada_count = wc->reada_count * 2 / 3;
8475 		wc->reada_count = max(wc->reada_count, 2);
8476 	} else {
8477 		wc->reada_count = wc->reada_count * 3 / 2;
8478 		wc->reada_count = min_t(int, wc->reada_count,
8479 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8480 	}
8481 
8482 	eb = path->nodes[wc->level];
8483 	nritems = btrfs_header_nritems(eb);
8484 
8485 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8486 		if (nread >= wc->reada_count)
8487 			break;
8488 
8489 		cond_resched();
8490 		bytenr = btrfs_node_blockptr(eb, slot);
8491 		generation = btrfs_node_ptr_generation(eb, slot);
8492 
8493 		if (slot == path->slots[wc->level])
8494 			goto reada;
8495 
8496 		if (wc->stage == UPDATE_BACKREF &&
8497 		    generation <= root->root_key.offset)
8498 			continue;
8499 
8500 		/* We don't lock the tree block, it's OK to be racy here */
8501 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8502 					       wc->level - 1, 1, &refs,
8503 					       &flags);
8504 		/* We don't care about errors in readahead. */
8505 		if (ret < 0)
8506 			continue;
8507 		BUG_ON(refs == 0);
8508 
8509 		if (wc->stage == DROP_REFERENCE) {
8510 			if (refs == 1)
8511 				goto reada;
8512 
8513 			if (wc->level == 1 &&
8514 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8515 				continue;
8516 			if (!wc->update_ref ||
8517 			    generation <= root->root_key.offset)
8518 				continue;
8519 			btrfs_node_key_to_cpu(eb, &key, slot);
8520 			ret = btrfs_comp_cpu_keys(&key,
8521 						  &wc->update_progress);
8522 			if (ret < 0)
8523 				continue;
8524 		} else {
8525 			if (wc->level == 1 &&
8526 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8527 				continue;
8528 		}
8529 reada:
8530 		readahead_tree_block(fs_info, bytenr);
8531 		nread++;
8532 	}
8533 	wc->reada_slot = slot;
8534 }
8535 
8536 /*
8537  * helper to process tree block while walking down the tree.
8538  *
8539  * when wc->stage == UPDATE_BACKREF, this function updates
8540  * back refs for pointers in the block.
8541  *
8542  * NOTE: return value 1 means we should stop walking down.
8543  */
8544 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8545 				   struct btrfs_root *root,
8546 				   struct btrfs_path *path,
8547 				   struct walk_control *wc, int lookup_info)
8548 {
8549 	struct btrfs_fs_info *fs_info = root->fs_info;
8550 	int level = wc->level;
8551 	struct extent_buffer *eb = path->nodes[level];
8552 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8553 	int ret;
8554 
8555 	if (wc->stage == UPDATE_BACKREF &&
8556 	    btrfs_header_owner(eb) != root->root_key.objectid)
8557 		return 1;
8558 
8559 	/*
8560 	 * when reference count of tree block is 1, it won't increase
8561 	 * again. once full backref flag is set, we never clear it.
8562 	 */
8563 	if (lookup_info &&
8564 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8565 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8566 		BUG_ON(!path->locks[level]);
8567 		ret = btrfs_lookup_extent_info(trans, fs_info,
8568 					       eb->start, level, 1,
8569 					       &wc->refs[level],
8570 					       &wc->flags[level]);
8571 		BUG_ON(ret == -ENOMEM);
8572 		if (ret)
8573 			return ret;
8574 		BUG_ON(wc->refs[level] == 0);
8575 	}
8576 
8577 	if (wc->stage == DROP_REFERENCE) {
8578 		if (wc->refs[level] > 1)
8579 			return 1;
8580 
8581 		if (path->locks[level] && !wc->keep_locks) {
8582 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8583 			path->locks[level] = 0;
8584 		}
8585 		return 0;
8586 	}
8587 
8588 	/* wc->stage == UPDATE_BACKREF */
8589 	if (!(wc->flags[level] & flag)) {
8590 		BUG_ON(!path->locks[level]);
8591 		ret = btrfs_inc_ref(trans, root, eb, 1);
8592 		BUG_ON(ret); /* -ENOMEM */
8593 		ret = btrfs_dec_ref(trans, root, eb, 0);
8594 		BUG_ON(ret); /* -ENOMEM */
8595 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8596 						  eb->len, flag,
8597 						  btrfs_header_level(eb), 0);
8598 		BUG_ON(ret); /* -ENOMEM */
8599 		wc->flags[level] |= flag;
8600 	}
8601 
8602 	/*
8603 	 * the block is shared by multiple trees, so it's not good to
8604 	 * keep the tree lock
8605 	 */
8606 	if (path->locks[level] && level > 0) {
8607 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8608 		path->locks[level] = 0;
8609 	}
8610 	return 0;
8611 }
8612 
8613 /*
8614  * helper to process tree block pointer.
8615  *
8616  * when wc->stage == DROP_REFERENCE, this function checks
8617  * reference count of the block pointed to. if the block
8618  * is shared and we need update back refs for the subtree
8619  * rooted at the block, this function changes wc->stage to
8620  * UPDATE_BACKREF. if the block is shared and there is no
8621  * need to update back, this function drops the reference
8622  * to the block.
8623  *
8624  * NOTE: return value 1 means we should stop walking down.
8625  */
8626 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8627 				 struct btrfs_root *root,
8628 				 struct btrfs_path *path,
8629 				 struct walk_control *wc, int *lookup_info)
8630 {
8631 	struct btrfs_fs_info *fs_info = root->fs_info;
8632 	u64 bytenr;
8633 	u64 generation;
8634 	u64 parent;
8635 	u32 blocksize;
8636 	struct btrfs_key key;
8637 	struct extent_buffer *next;
8638 	int level = wc->level;
8639 	int reada = 0;
8640 	int ret = 0;
8641 	bool need_account = false;
8642 
8643 	generation = btrfs_node_ptr_generation(path->nodes[level],
8644 					       path->slots[level]);
8645 	/*
8646 	 * if the lower level block was created before the snapshot
8647 	 * was created, we know there is no need to update back refs
8648 	 * for the subtree
8649 	 */
8650 	if (wc->stage == UPDATE_BACKREF &&
8651 	    generation <= root->root_key.offset) {
8652 		*lookup_info = 1;
8653 		return 1;
8654 	}
8655 
8656 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8657 	blocksize = fs_info->nodesize;
8658 
8659 	next = find_extent_buffer(fs_info, bytenr);
8660 	if (!next) {
8661 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8662 		if (IS_ERR(next))
8663 			return PTR_ERR(next);
8664 
8665 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8666 					       level - 1);
8667 		reada = 1;
8668 	}
8669 	btrfs_tree_lock(next);
8670 	btrfs_set_lock_blocking(next);
8671 
8672 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8673 				       &wc->refs[level - 1],
8674 				       &wc->flags[level - 1]);
8675 	if (ret < 0)
8676 		goto out_unlock;
8677 
8678 	if (unlikely(wc->refs[level - 1] == 0)) {
8679 		btrfs_err(fs_info, "Missing references.");
8680 		ret = -EIO;
8681 		goto out_unlock;
8682 	}
8683 	*lookup_info = 0;
8684 
8685 	if (wc->stage == DROP_REFERENCE) {
8686 		if (wc->refs[level - 1] > 1) {
8687 			need_account = true;
8688 			if (level == 1 &&
8689 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8690 				goto skip;
8691 
8692 			if (!wc->update_ref ||
8693 			    generation <= root->root_key.offset)
8694 				goto skip;
8695 
8696 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8697 					      path->slots[level]);
8698 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8699 			if (ret < 0)
8700 				goto skip;
8701 
8702 			wc->stage = UPDATE_BACKREF;
8703 			wc->shared_level = level - 1;
8704 		}
8705 	} else {
8706 		if (level == 1 &&
8707 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8708 			goto skip;
8709 	}
8710 
8711 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8712 		btrfs_tree_unlock(next);
8713 		free_extent_buffer(next);
8714 		next = NULL;
8715 		*lookup_info = 1;
8716 	}
8717 
8718 	if (!next) {
8719 		if (reada && level == 1)
8720 			reada_walk_down(trans, root, wc, path);
8721 		next = read_tree_block(fs_info, bytenr, generation);
8722 		if (IS_ERR(next)) {
8723 			return PTR_ERR(next);
8724 		} else if (!extent_buffer_uptodate(next)) {
8725 			free_extent_buffer(next);
8726 			return -EIO;
8727 		}
8728 		btrfs_tree_lock(next);
8729 		btrfs_set_lock_blocking(next);
8730 	}
8731 
8732 	level--;
8733 	ASSERT(level == btrfs_header_level(next));
8734 	if (level != btrfs_header_level(next)) {
8735 		btrfs_err(root->fs_info, "mismatched level");
8736 		ret = -EIO;
8737 		goto out_unlock;
8738 	}
8739 	path->nodes[level] = next;
8740 	path->slots[level] = 0;
8741 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8742 	wc->level = level;
8743 	if (wc->level == 1)
8744 		wc->reada_slot = 0;
8745 	return 0;
8746 skip:
8747 	wc->refs[level - 1] = 0;
8748 	wc->flags[level - 1] = 0;
8749 	if (wc->stage == DROP_REFERENCE) {
8750 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8751 			parent = path->nodes[level]->start;
8752 		} else {
8753 			ASSERT(root->root_key.objectid ==
8754 			       btrfs_header_owner(path->nodes[level]));
8755 			if (root->root_key.objectid !=
8756 			    btrfs_header_owner(path->nodes[level])) {
8757 				btrfs_err(root->fs_info,
8758 						"mismatched block owner");
8759 				ret = -EIO;
8760 				goto out_unlock;
8761 			}
8762 			parent = 0;
8763 		}
8764 
8765 		if (need_account) {
8766 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8767 							 generation, level - 1);
8768 			if (ret) {
8769 				btrfs_err_rl(fs_info,
8770 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8771 					     ret);
8772 			}
8773 		}
8774 		ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8775 					parent, root->root_key.objectid,
8776 					level - 1, 0);
8777 		if (ret)
8778 			goto out_unlock;
8779 	}
8780 
8781 	*lookup_info = 1;
8782 	ret = 1;
8783 
8784 out_unlock:
8785 	btrfs_tree_unlock(next);
8786 	free_extent_buffer(next);
8787 
8788 	return ret;
8789 }
8790 
8791 /*
8792  * helper to process tree block while walking up the tree.
8793  *
8794  * when wc->stage == DROP_REFERENCE, this function drops
8795  * reference count on the block.
8796  *
8797  * when wc->stage == UPDATE_BACKREF, this function changes
8798  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8799  * to UPDATE_BACKREF previously while processing the block.
8800  *
8801  * NOTE: return value 1 means we should stop walking up.
8802  */
8803 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8804 				 struct btrfs_root *root,
8805 				 struct btrfs_path *path,
8806 				 struct walk_control *wc)
8807 {
8808 	struct btrfs_fs_info *fs_info = root->fs_info;
8809 	int ret;
8810 	int level = wc->level;
8811 	struct extent_buffer *eb = path->nodes[level];
8812 	u64 parent = 0;
8813 
8814 	if (wc->stage == UPDATE_BACKREF) {
8815 		BUG_ON(wc->shared_level < level);
8816 		if (level < wc->shared_level)
8817 			goto out;
8818 
8819 		ret = find_next_key(path, level + 1, &wc->update_progress);
8820 		if (ret > 0)
8821 			wc->update_ref = 0;
8822 
8823 		wc->stage = DROP_REFERENCE;
8824 		wc->shared_level = -1;
8825 		path->slots[level] = 0;
8826 
8827 		/*
8828 		 * check reference count again if the block isn't locked.
8829 		 * we should start walking down the tree again if reference
8830 		 * count is one.
8831 		 */
8832 		if (!path->locks[level]) {
8833 			BUG_ON(level == 0);
8834 			btrfs_tree_lock(eb);
8835 			btrfs_set_lock_blocking(eb);
8836 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8837 
8838 			ret = btrfs_lookup_extent_info(trans, fs_info,
8839 						       eb->start, level, 1,
8840 						       &wc->refs[level],
8841 						       &wc->flags[level]);
8842 			if (ret < 0) {
8843 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8844 				path->locks[level] = 0;
8845 				return ret;
8846 			}
8847 			BUG_ON(wc->refs[level] == 0);
8848 			if (wc->refs[level] == 1) {
8849 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8850 				path->locks[level] = 0;
8851 				return 1;
8852 			}
8853 		}
8854 	}
8855 
8856 	/* wc->stage == DROP_REFERENCE */
8857 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8858 
8859 	if (wc->refs[level] == 1) {
8860 		if (level == 0) {
8861 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8862 				ret = btrfs_dec_ref(trans, root, eb, 1);
8863 			else
8864 				ret = btrfs_dec_ref(trans, root, eb, 0);
8865 			BUG_ON(ret); /* -ENOMEM */
8866 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8867 			if (ret) {
8868 				btrfs_err_rl(fs_info,
8869 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8870 					     ret);
8871 			}
8872 		}
8873 		/* make block locked assertion in clean_tree_block happy */
8874 		if (!path->locks[level] &&
8875 		    btrfs_header_generation(eb) == trans->transid) {
8876 			btrfs_tree_lock(eb);
8877 			btrfs_set_lock_blocking(eb);
8878 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8879 		}
8880 		clean_tree_block(fs_info, eb);
8881 	}
8882 
8883 	if (eb == root->node) {
8884 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8885 			parent = eb->start;
8886 		else
8887 			BUG_ON(root->root_key.objectid !=
8888 			       btrfs_header_owner(eb));
8889 	} else {
8890 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8891 			parent = path->nodes[level + 1]->start;
8892 		else
8893 			BUG_ON(root->root_key.objectid !=
8894 			       btrfs_header_owner(path->nodes[level + 1]));
8895 	}
8896 
8897 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8898 out:
8899 	wc->refs[level] = 0;
8900 	wc->flags[level] = 0;
8901 	return 0;
8902 }
8903 
8904 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8905 				   struct btrfs_root *root,
8906 				   struct btrfs_path *path,
8907 				   struct walk_control *wc)
8908 {
8909 	int level = wc->level;
8910 	int lookup_info = 1;
8911 	int ret;
8912 
8913 	while (level >= 0) {
8914 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8915 		if (ret > 0)
8916 			break;
8917 
8918 		if (level == 0)
8919 			break;
8920 
8921 		if (path->slots[level] >=
8922 		    btrfs_header_nritems(path->nodes[level]))
8923 			break;
8924 
8925 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8926 		if (ret > 0) {
8927 			path->slots[level]++;
8928 			continue;
8929 		} else if (ret < 0)
8930 			return ret;
8931 		level = wc->level;
8932 	}
8933 	return 0;
8934 }
8935 
8936 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8937 				 struct btrfs_root *root,
8938 				 struct btrfs_path *path,
8939 				 struct walk_control *wc, int max_level)
8940 {
8941 	int level = wc->level;
8942 	int ret;
8943 
8944 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8945 	while (level < max_level && path->nodes[level]) {
8946 		wc->level = level;
8947 		if (path->slots[level] + 1 <
8948 		    btrfs_header_nritems(path->nodes[level])) {
8949 			path->slots[level]++;
8950 			return 0;
8951 		} else {
8952 			ret = walk_up_proc(trans, root, path, wc);
8953 			if (ret > 0)
8954 				return 0;
8955 
8956 			if (path->locks[level]) {
8957 				btrfs_tree_unlock_rw(path->nodes[level],
8958 						     path->locks[level]);
8959 				path->locks[level] = 0;
8960 			}
8961 			free_extent_buffer(path->nodes[level]);
8962 			path->nodes[level] = NULL;
8963 			level++;
8964 		}
8965 	}
8966 	return 1;
8967 }
8968 
8969 /*
8970  * drop a subvolume tree.
8971  *
8972  * this function traverses the tree freeing any blocks that only
8973  * referenced by the tree.
8974  *
8975  * when a shared tree block is found. this function decreases its
8976  * reference count by one. if update_ref is true, this function
8977  * also make sure backrefs for the shared block and all lower level
8978  * blocks are properly updated.
8979  *
8980  * If called with for_reloc == 0, may exit early with -EAGAIN
8981  */
8982 int btrfs_drop_snapshot(struct btrfs_root *root,
8983 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8984 			 int for_reloc)
8985 {
8986 	struct btrfs_fs_info *fs_info = root->fs_info;
8987 	struct btrfs_path *path;
8988 	struct btrfs_trans_handle *trans;
8989 	struct btrfs_root *tree_root = fs_info->tree_root;
8990 	struct btrfs_root_item *root_item = &root->root_item;
8991 	struct walk_control *wc;
8992 	struct btrfs_key key;
8993 	int err = 0;
8994 	int ret;
8995 	int level;
8996 	bool root_dropped = false;
8997 
8998 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8999 
9000 	path = btrfs_alloc_path();
9001 	if (!path) {
9002 		err = -ENOMEM;
9003 		goto out;
9004 	}
9005 
9006 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9007 	if (!wc) {
9008 		btrfs_free_path(path);
9009 		err = -ENOMEM;
9010 		goto out;
9011 	}
9012 
9013 	trans = btrfs_start_transaction(tree_root, 0);
9014 	if (IS_ERR(trans)) {
9015 		err = PTR_ERR(trans);
9016 		goto out_free;
9017 	}
9018 
9019 	if (block_rsv)
9020 		trans->block_rsv = block_rsv;
9021 
9022 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9023 		level = btrfs_header_level(root->node);
9024 		path->nodes[level] = btrfs_lock_root_node(root);
9025 		btrfs_set_lock_blocking(path->nodes[level]);
9026 		path->slots[level] = 0;
9027 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9028 		memset(&wc->update_progress, 0,
9029 		       sizeof(wc->update_progress));
9030 	} else {
9031 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9032 		memcpy(&wc->update_progress, &key,
9033 		       sizeof(wc->update_progress));
9034 
9035 		level = root_item->drop_level;
9036 		BUG_ON(level == 0);
9037 		path->lowest_level = level;
9038 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9039 		path->lowest_level = 0;
9040 		if (ret < 0) {
9041 			err = ret;
9042 			goto out_end_trans;
9043 		}
9044 		WARN_ON(ret > 0);
9045 
9046 		/*
9047 		 * unlock our path, this is safe because only this
9048 		 * function is allowed to delete this snapshot
9049 		 */
9050 		btrfs_unlock_up_safe(path, 0);
9051 
9052 		level = btrfs_header_level(root->node);
9053 		while (1) {
9054 			btrfs_tree_lock(path->nodes[level]);
9055 			btrfs_set_lock_blocking(path->nodes[level]);
9056 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9057 
9058 			ret = btrfs_lookup_extent_info(trans, fs_info,
9059 						path->nodes[level]->start,
9060 						level, 1, &wc->refs[level],
9061 						&wc->flags[level]);
9062 			if (ret < 0) {
9063 				err = ret;
9064 				goto out_end_trans;
9065 			}
9066 			BUG_ON(wc->refs[level] == 0);
9067 
9068 			if (level == root_item->drop_level)
9069 				break;
9070 
9071 			btrfs_tree_unlock(path->nodes[level]);
9072 			path->locks[level] = 0;
9073 			WARN_ON(wc->refs[level] != 1);
9074 			level--;
9075 		}
9076 	}
9077 
9078 	wc->level = level;
9079 	wc->shared_level = -1;
9080 	wc->stage = DROP_REFERENCE;
9081 	wc->update_ref = update_ref;
9082 	wc->keep_locks = 0;
9083 	wc->for_reloc = for_reloc;
9084 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9085 
9086 	while (1) {
9087 
9088 		ret = walk_down_tree(trans, root, path, wc);
9089 		if (ret < 0) {
9090 			err = ret;
9091 			break;
9092 		}
9093 
9094 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9095 		if (ret < 0) {
9096 			err = ret;
9097 			break;
9098 		}
9099 
9100 		if (ret > 0) {
9101 			BUG_ON(wc->stage != DROP_REFERENCE);
9102 			break;
9103 		}
9104 
9105 		if (wc->stage == DROP_REFERENCE) {
9106 			level = wc->level;
9107 			btrfs_node_key(path->nodes[level],
9108 				       &root_item->drop_progress,
9109 				       path->slots[level]);
9110 			root_item->drop_level = level;
9111 		}
9112 
9113 		BUG_ON(wc->level == 0);
9114 		if (btrfs_should_end_transaction(trans) ||
9115 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9116 			ret = btrfs_update_root(trans, tree_root,
9117 						&root->root_key,
9118 						root_item);
9119 			if (ret) {
9120 				btrfs_abort_transaction(trans, ret);
9121 				err = ret;
9122 				goto out_end_trans;
9123 			}
9124 
9125 			btrfs_end_transaction_throttle(trans);
9126 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9127 				btrfs_debug(fs_info,
9128 					    "drop snapshot early exit");
9129 				err = -EAGAIN;
9130 				goto out_free;
9131 			}
9132 
9133 			trans = btrfs_start_transaction(tree_root, 0);
9134 			if (IS_ERR(trans)) {
9135 				err = PTR_ERR(trans);
9136 				goto out_free;
9137 			}
9138 			if (block_rsv)
9139 				trans->block_rsv = block_rsv;
9140 		}
9141 	}
9142 	btrfs_release_path(path);
9143 	if (err)
9144 		goto out_end_trans;
9145 
9146 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9147 	if (ret) {
9148 		btrfs_abort_transaction(trans, ret);
9149 		goto out_end_trans;
9150 	}
9151 
9152 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9153 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9154 				      NULL, NULL);
9155 		if (ret < 0) {
9156 			btrfs_abort_transaction(trans, ret);
9157 			err = ret;
9158 			goto out_end_trans;
9159 		} else if (ret > 0) {
9160 			/* if we fail to delete the orphan item this time
9161 			 * around, it'll get picked up the next time.
9162 			 *
9163 			 * The most common failure here is just -ENOENT.
9164 			 */
9165 			btrfs_del_orphan_item(trans, tree_root,
9166 					      root->root_key.objectid);
9167 		}
9168 	}
9169 
9170 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9171 		btrfs_add_dropped_root(trans, root);
9172 	} else {
9173 		free_extent_buffer(root->node);
9174 		free_extent_buffer(root->commit_root);
9175 		btrfs_put_fs_root(root);
9176 	}
9177 	root_dropped = true;
9178 out_end_trans:
9179 	btrfs_end_transaction_throttle(trans);
9180 out_free:
9181 	kfree(wc);
9182 	btrfs_free_path(path);
9183 out:
9184 	/*
9185 	 * So if we need to stop dropping the snapshot for whatever reason we
9186 	 * need to make sure to add it back to the dead root list so that we
9187 	 * keep trying to do the work later.  This also cleans up roots if we
9188 	 * don't have it in the radix (like when we recover after a power fail
9189 	 * or unmount) so we don't leak memory.
9190 	 */
9191 	if (!for_reloc && root_dropped == false)
9192 		btrfs_add_dead_root(root);
9193 	if (err && err != -EAGAIN)
9194 		btrfs_handle_fs_error(fs_info, err, NULL);
9195 	return err;
9196 }
9197 
9198 /*
9199  * drop subtree rooted at tree block 'node'.
9200  *
9201  * NOTE: this function will unlock and release tree block 'node'
9202  * only used by relocation code
9203  */
9204 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9205 			struct btrfs_root *root,
9206 			struct extent_buffer *node,
9207 			struct extent_buffer *parent)
9208 {
9209 	struct btrfs_fs_info *fs_info = root->fs_info;
9210 	struct btrfs_path *path;
9211 	struct walk_control *wc;
9212 	int level;
9213 	int parent_level;
9214 	int ret = 0;
9215 	int wret;
9216 
9217 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9218 
9219 	path = btrfs_alloc_path();
9220 	if (!path)
9221 		return -ENOMEM;
9222 
9223 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9224 	if (!wc) {
9225 		btrfs_free_path(path);
9226 		return -ENOMEM;
9227 	}
9228 
9229 	btrfs_assert_tree_locked(parent);
9230 	parent_level = btrfs_header_level(parent);
9231 	extent_buffer_get(parent);
9232 	path->nodes[parent_level] = parent;
9233 	path->slots[parent_level] = btrfs_header_nritems(parent);
9234 
9235 	btrfs_assert_tree_locked(node);
9236 	level = btrfs_header_level(node);
9237 	path->nodes[level] = node;
9238 	path->slots[level] = 0;
9239 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9240 
9241 	wc->refs[parent_level] = 1;
9242 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9243 	wc->level = level;
9244 	wc->shared_level = -1;
9245 	wc->stage = DROP_REFERENCE;
9246 	wc->update_ref = 0;
9247 	wc->keep_locks = 1;
9248 	wc->for_reloc = 1;
9249 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9250 
9251 	while (1) {
9252 		wret = walk_down_tree(trans, root, path, wc);
9253 		if (wret < 0) {
9254 			ret = wret;
9255 			break;
9256 		}
9257 
9258 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9259 		if (wret < 0)
9260 			ret = wret;
9261 		if (wret != 0)
9262 			break;
9263 	}
9264 
9265 	kfree(wc);
9266 	btrfs_free_path(path);
9267 	return ret;
9268 }
9269 
9270 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9271 {
9272 	u64 num_devices;
9273 	u64 stripped;
9274 
9275 	/*
9276 	 * if restripe for this chunk_type is on pick target profile and
9277 	 * return, otherwise do the usual balance
9278 	 */
9279 	stripped = get_restripe_target(fs_info, flags);
9280 	if (stripped)
9281 		return extended_to_chunk(stripped);
9282 
9283 	num_devices = fs_info->fs_devices->rw_devices;
9284 
9285 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9286 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9287 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9288 
9289 	if (num_devices == 1) {
9290 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9291 		stripped = flags & ~stripped;
9292 
9293 		/* turn raid0 into single device chunks */
9294 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9295 			return stripped;
9296 
9297 		/* turn mirroring into duplication */
9298 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9299 			     BTRFS_BLOCK_GROUP_RAID10))
9300 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9301 	} else {
9302 		/* they already had raid on here, just return */
9303 		if (flags & stripped)
9304 			return flags;
9305 
9306 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9307 		stripped = flags & ~stripped;
9308 
9309 		/* switch duplicated blocks with raid1 */
9310 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9311 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9312 
9313 		/* this is drive concat, leave it alone */
9314 	}
9315 
9316 	return flags;
9317 }
9318 
9319 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9320 {
9321 	struct btrfs_space_info *sinfo = cache->space_info;
9322 	u64 num_bytes;
9323 	u64 min_allocable_bytes;
9324 	int ret = -ENOSPC;
9325 
9326 	/*
9327 	 * We need some metadata space and system metadata space for
9328 	 * allocating chunks in some corner cases until we force to set
9329 	 * it to be readonly.
9330 	 */
9331 	if ((sinfo->flags &
9332 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9333 	    !force)
9334 		min_allocable_bytes = SZ_1M;
9335 	else
9336 		min_allocable_bytes = 0;
9337 
9338 	spin_lock(&sinfo->lock);
9339 	spin_lock(&cache->lock);
9340 
9341 	if (cache->ro) {
9342 		cache->ro++;
9343 		ret = 0;
9344 		goto out;
9345 	}
9346 
9347 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9348 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9349 
9350 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9351 	    min_allocable_bytes <= sinfo->total_bytes) {
9352 		sinfo->bytes_readonly += num_bytes;
9353 		cache->ro++;
9354 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9355 		ret = 0;
9356 	}
9357 out:
9358 	spin_unlock(&cache->lock);
9359 	spin_unlock(&sinfo->lock);
9360 	return ret;
9361 }
9362 
9363 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9364 			     struct btrfs_block_group_cache *cache)
9365 
9366 {
9367 	struct btrfs_trans_handle *trans;
9368 	u64 alloc_flags;
9369 	int ret;
9370 
9371 again:
9372 	trans = btrfs_join_transaction(fs_info->extent_root);
9373 	if (IS_ERR(trans))
9374 		return PTR_ERR(trans);
9375 
9376 	/*
9377 	 * we're not allowed to set block groups readonly after the dirty
9378 	 * block groups cache has started writing.  If it already started,
9379 	 * back off and let this transaction commit
9380 	 */
9381 	mutex_lock(&fs_info->ro_block_group_mutex);
9382 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9383 		u64 transid = trans->transid;
9384 
9385 		mutex_unlock(&fs_info->ro_block_group_mutex);
9386 		btrfs_end_transaction(trans);
9387 
9388 		ret = btrfs_wait_for_commit(fs_info, transid);
9389 		if (ret)
9390 			return ret;
9391 		goto again;
9392 	}
9393 
9394 	/*
9395 	 * if we are changing raid levels, try to allocate a corresponding
9396 	 * block group with the new raid level.
9397 	 */
9398 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9399 	if (alloc_flags != cache->flags) {
9400 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9401 				     CHUNK_ALLOC_FORCE);
9402 		/*
9403 		 * ENOSPC is allowed here, we may have enough space
9404 		 * already allocated at the new raid level to
9405 		 * carry on
9406 		 */
9407 		if (ret == -ENOSPC)
9408 			ret = 0;
9409 		if (ret < 0)
9410 			goto out;
9411 	}
9412 
9413 	ret = inc_block_group_ro(cache, 0);
9414 	if (!ret)
9415 		goto out;
9416 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9417 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9418 			     CHUNK_ALLOC_FORCE);
9419 	if (ret < 0)
9420 		goto out;
9421 	ret = inc_block_group_ro(cache, 0);
9422 out:
9423 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9424 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9425 		mutex_lock(&fs_info->chunk_mutex);
9426 		check_system_chunk(trans, fs_info, alloc_flags);
9427 		mutex_unlock(&fs_info->chunk_mutex);
9428 	}
9429 	mutex_unlock(&fs_info->ro_block_group_mutex);
9430 
9431 	btrfs_end_transaction(trans);
9432 	return ret;
9433 }
9434 
9435 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9436 			    struct btrfs_fs_info *fs_info, u64 type)
9437 {
9438 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9439 
9440 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9441 }
9442 
9443 /*
9444  * helper to account the unused space of all the readonly block group in the
9445  * space_info. takes mirrors into account.
9446  */
9447 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9448 {
9449 	struct btrfs_block_group_cache *block_group;
9450 	u64 free_bytes = 0;
9451 	int factor;
9452 
9453 	/* It's df, we don't care if it's racy */
9454 	if (list_empty(&sinfo->ro_bgs))
9455 		return 0;
9456 
9457 	spin_lock(&sinfo->lock);
9458 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9459 		spin_lock(&block_group->lock);
9460 
9461 		if (!block_group->ro) {
9462 			spin_unlock(&block_group->lock);
9463 			continue;
9464 		}
9465 
9466 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9467 					  BTRFS_BLOCK_GROUP_RAID10 |
9468 					  BTRFS_BLOCK_GROUP_DUP))
9469 			factor = 2;
9470 		else
9471 			factor = 1;
9472 
9473 		free_bytes += (block_group->key.offset -
9474 			       btrfs_block_group_used(&block_group->item)) *
9475 			       factor;
9476 
9477 		spin_unlock(&block_group->lock);
9478 	}
9479 	spin_unlock(&sinfo->lock);
9480 
9481 	return free_bytes;
9482 }
9483 
9484 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9485 {
9486 	struct btrfs_space_info *sinfo = cache->space_info;
9487 	u64 num_bytes;
9488 
9489 	BUG_ON(!cache->ro);
9490 
9491 	spin_lock(&sinfo->lock);
9492 	spin_lock(&cache->lock);
9493 	if (!--cache->ro) {
9494 		num_bytes = cache->key.offset - cache->reserved -
9495 			    cache->pinned - cache->bytes_super -
9496 			    btrfs_block_group_used(&cache->item);
9497 		sinfo->bytes_readonly -= num_bytes;
9498 		list_del_init(&cache->ro_list);
9499 	}
9500 	spin_unlock(&cache->lock);
9501 	spin_unlock(&sinfo->lock);
9502 }
9503 
9504 /*
9505  * checks to see if its even possible to relocate this block group.
9506  *
9507  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9508  * ok to go ahead and try.
9509  */
9510 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9511 {
9512 	struct btrfs_root *root = fs_info->extent_root;
9513 	struct btrfs_block_group_cache *block_group;
9514 	struct btrfs_space_info *space_info;
9515 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9516 	struct btrfs_device *device;
9517 	struct btrfs_trans_handle *trans;
9518 	u64 min_free;
9519 	u64 dev_min = 1;
9520 	u64 dev_nr = 0;
9521 	u64 target;
9522 	int debug;
9523 	int index;
9524 	int full = 0;
9525 	int ret = 0;
9526 
9527 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9528 
9529 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9530 
9531 	/* odd, couldn't find the block group, leave it alone */
9532 	if (!block_group) {
9533 		if (debug)
9534 			btrfs_warn(fs_info,
9535 				   "can't find block group for bytenr %llu",
9536 				   bytenr);
9537 		return -1;
9538 	}
9539 
9540 	min_free = btrfs_block_group_used(&block_group->item);
9541 
9542 	/* no bytes used, we're good */
9543 	if (!min_free)
9544 		goto out;
9545 
9546 	space_info = block_group->space_info;
9547 	spin_lock(&space_info->lock);
9548 
9549 	full = space_info->full;
9550 
9551 	/*
9552 	 * if this is the last block group we have in this space, we can't
9553 	 * relocate it unless we're able to allocate a new chunk below.
9554 	 *
9555 	 * Otherwise, we need to make sure we have room in the space to handle
9556 	 * all of the extents from this block group.  If we can, we're good
9557 	 */
9558 	if ((space_info->total_bytes != block_group->key.offset) &&
9559 	    (btrfs_space_info_used(space_info, false) + min_free <
9560 	     space_info->total_bytes)) {
9561 		spin_unlock(&space_info->lock);
9562 		goto out;
9563 	}
9564 	spin_unlock(&space_info->lock);
9565 
9566 	/*
9567 	 * ok we don't have enough space, but maybe we have free space on our
9568 	 * devices to allocate new chunks for relocation, so loop through our
9569 	 * alloc devices and guess if we have enough space.  if this block
9570 	 * group is going to be restriped, run checks against the target
9571 	 * profile instead of the current one.
9572 	 */
9573 	ret = -1;
9574 
9575 	/*
9576 	 * index:
9577 	 *      0: raid10
9578 	 *      1: raid1
9579 	 *      2: dup
9580 	 *      3: raid0
9581 	 *      4: single
9582 	 */
9583 	target = get_restripe_target(fs_info, block_group->flags);
9584 	if (target) {
9585 		index = __get_raid_index(extended_to_chunk(target));
9586 	} else {
9587 		/*
9588 		 * this is just a balance, so if we were marked as full
9589 		 * we know there is no space for a new chunk
9590 		 */
9591 		if (full) {
9592 			if (debug)
9593 				btrfs_warn(fs_info,
9594 					   "no space to alloc new chunk for block group %llu",
9595 					   block_group->key.objectid);
9596 			goto out;
9597 		}
9598 
9599 		index = get_block_group_index(block_group);
9600 	}
9601 
9602 	if (index == BTRFS_RAID_RAID10) {
9603 		dev_min = 4;
9604 		/* Divide by 2 */
9605 		min_free >>= 1;
9606 	} else if (index == BTRFS_RAID_RAID1) {
9607 		dev_min = 2;
9608 	} else if (index == BTRFS_RAID_DUP) {
9609 		/* Multiply by 2 */
9610 		min_free <<= 1;
9611 	} else if (index == BTRFS_RAID_RAID0) {
9612 		dev_min = fs_devices->rw_devices;
9613 		min_free = div64_u64(min_free, dev_min);
9614 	}
9615 
9616 	/* We need to do this so that we can look at pending chunks */
9617 	trans = btrfs_join_transaction(root);
9618 	if (IS_ERR(trans)) {
9619 		ret = PTR_ERR(trans);
9620 		goto out;
9621 	}
9622 
9623 	mutex_lock(&fs_info->chunk_mutex);
9624 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9625 		u64 dev_offset;
9626 
9627 		/*
9628 		 * check to make sure we can actually find a chunk with enough
9629 		 * space to fit our block group in.
9630 		 */
9631 		if (device->total_bytes > device->bytes_used + min_free &&
9632 		    !device->is_tgtdev_for_dev_replace) {
9633 			ret = find_free_dev_extent(trans, device, min_free,
9634 						   &dev_offset, NULL);
9635 			if (!ret)
9636 				dev_nr++;
9637 
9638 			if (dev_nr >= dev_min)
9639 				break;
9640 
9641 			ret = -1;
9642 		}
9643 	}
9644 	if (debug && ret == -1)
9645 		btrfs_warn(fs_info,
9646 			   "no space to allocate a new chunk for block group %llu",
9647 			   block_group->key.objectid);
9648 	mutex_unlock(&fs_info->chunk_mutex);
9649 	btrfs_end_transaction(trans);
9650 out:
9651 	btrfs_put_block_group(block_group);
9652 	return ret;
9653 }
9654 
9655 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9656 				  struct btrfs_path *path,
9657 				  struct btrfs_key *key)
9658 {
9659 	struct btrfs_root *root = fs_info->extent_root;
9660 	int ret = 0;
9661 	struct btrfs_key found_key;
9662 	struct extent_buffer *leaf;
9663 	int slot;
9664 
9665 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9666 	if (ret < 0)
9667 		goto out;
9668 
9669 	while (1) {
9670 		slot = path->slots[0];
9671 		leaf = path->nodes[0];
9672 		if (slot >= btrfs_header_nritems(leaf)) {
9673 			ret = btrfs_next_leaf(root, path);
9674 			if (ret == 0)
9675 				continue;
9676 			if (ret < 0)
9677 				goto out;
9678 			break;
9679 		}
9680 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9681 
9682 		if (found_key.objectid >= key->objectid &&
9683 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9684 			struct extent_map_tree *em_tree;
9685 			struct extent_map *em;
9686 
9687 			em_tree = &root->fs_info->mapping_tree.map_tree;
9688 			read_lock(&em_tree->lock);
9689 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9690 						   found_key.offset);
9691 			read_unlock(&em_tree->lock);
9692 			if (!em) {
9693 				btrfs_err(fs_info,
9694 			"logical %llu len %llu found bg but no related chunk",
9695 					  found_key.objectid, found_key.offset);
9696 				ret = -ENOENT;
9697 			} else {
9698 				ret = 0;
9699 			}
9700 			free_extent_map(em);
9701 			goto out;
9702 		}
9703 		path->slots[0]++;
9704 	}
9705 out:
9706 	return ret;
9707 }
9708 
9709 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9710 {
9711 	struct btrfs_block_group_cache *block_group;
9712 	u64 last = 0;
9713 
9714 	while (1) {
9715 		struct inode *inode;
9716 
9717 		block_group = btrfs_lookup_first_block_group(info, last);
9718 		while (block_group) {
9719 			spin_lock(&block_group->lock);
9720 			if (block_group->iref)
9721 				break;
9722 			spin_unlock(&block_group->lock);
9723 			block_group = next_block_group(info, block_group);
9724 		}
9725 		if (!block_group) {
9726 			if (last == 0)
9727 				break;
9728 			last = 0;
9729 			continue;
9730 		}
9731 
9732 		inode = block_group->inode;
9733 		block_group->iref = 0;
9734 		block_group->inode = NULL;
9735 		spin_unlock(&block_group->lock);
9736 		ASSERT(block_group->io_ctl.inode == NULL);
9737 		iput(inode);
9738 		last = block_group->key.objectid + block_group->key.offset;
9739 		btrfs_put_block_group(block_group);
9740 	}
9741 }
9742 
9743 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9744 {
9745 	struct btrfs_block_group_cache *block_group;
9746 	struct btrfs_space_info *space_info;
9747 	struct btrfs_caching_control *caching_ctl;
9748 	struct rb_node *n;
9749 
9750 	down_write(&info->commit_root_sem);
9751 	while (!list_empty(&info->caching_block_groups)) {
9752 		caching_ctl = list_entry(info->caching_block_groups.next,
9753 					 struct btrfs_caching_control, list);
9754 		list_del(&caching_ctl->list);
9755 		put_caching_control(caching_ctl);
9756 	}
9757 	up_write(&info->commit_root_sem);
9758 
9759 	spin_lock(&info->unused_bgs_lock);
9760 	while (!list_empty(&info->unused_bgs)) {
9761 		block_group = list_first_entry(&info->unused_bgs,
9762 					       struct btrfs_block_group_cache,
9763 					       bg_list);
9764 		list_del_init(&block_group->bg_list);
9765 		btrfs_put_block_group(block_group);
9766 	}
9767 	spin_unlock(&info->unused_bgs_lock);
9768 
9769 	spin_lock(&info->block_group_cache_lock);
9770 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9771 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9772 				       cache_node);
9773 		rb_erase(&block_group->cache_node,
9774 			 &info->block_group_cache_tree);
9775 		RB_CLEAR_NODE(&block_group->cache_node);
9776 		spin_unlock(&info->block_group_cache_lock);
9777 
9778 		down_write(&block_group->space_info->groups_sem);
9779 		list_del(&block_group->list);
9780 		up_write(&block_group->space_info->groups_sem);
9781 
9782 		if (block_group->cached == BTRFS_CACHE_STARTED)
9783 			wait_block_group_cache_done(block_group);
9784 
9785 		/*
9786 		 * We haven't cached this block group, which means we could
9787 		 * possibly have excluded extents on this block group.
9788 		 */
9789 		if (block_group->cached == BTRFS_CACHE_NO ||
9790 		    block_group->cached == BTRFS_CACHE_ERROR)
9791 			free_excluded_extents(info, block_group);
9792 
9793 		btrfs_remove_free_space_cache(block_group);
9794 		ASSERT(list_empty(&block_group->dirty_list));
9795 		ASSERT(list_empty(&block_group->io_list));
9796 		ASSERT(list_empty(&block_group->bg_list));
9797 		ASSERT(atomic_read(&block_group->count) == 1);
9798 		btrfs_put_block_group(block_group);
9799 
9800 		spin_lock(&info->block_group_cache_lock);
9801 	}
9802 	spin_unlock(&info->block_group_cache_lock);
9803 
9804 	/* now that all the block groups are freed, go through and
9805 	 * free all the space_info structs.  This is only called during
9806 	 * the final stages of unmount, and so we know nobody is
9807 	 * using them.  We call synchronize_rcu() once before we start,
9808 	 * just to be on the safe side.
9809 	 */
9810 	synchronize_rcu();
9811 
9812 	release_global_block_rsv(info);
9813 
9814 	while (!list_empty(&info->space_info)) {
9815 		int i;
9816 
9817 		space_info = list_entry(info->space_info.next,
9818 					struct btrfs_space_info,
9819 					list);
9820 
9821 		/*
9822 		 * Do not hide this behind enospc_debug, this is actually
9823 		 * important and indicates a real bug if this happens.
9824 		 */
9825 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9826 			    space_info->bytes_reserved > 0 ||
9827 			    space_info->bytes_may_use > 0))
9828 			dump_space_info(info, space_info, 0, 0);
9829 		list_del(&space_info->list);
9830 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9831 			struct kobject *kobj;
9832 			kobj = space_info->block_group_kobjs[i];
9833 			space_info->block_group_kobjs[i] = NULL;
9834 			if (kobj) {
9835 				kobject_del(kobj);
9836 				kobject_put(kobj);
9837 			}
9838 		}
9839 		kobject_del(&space_info->kobj);
9840 		kobject_put(&space_info->kobj);
9841 	}
9842 	return 0;
9843 }
9844 
9845 static void __link_block_group(struct btrfs_space_info *space_info,
9846 			       struct btrfs_block_group_cache *cache)
9847 {
9848 	int index = get_block_group_index(cache);
9849 	bool first = false;
9850 
9851 	down_write(&space_info->groups_sem);
9852 	if (list_empty(&space_info->block_groups[index]))
9853 		first = true;
9854 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9855 	up_write(&space_info->groups_sem);
9856 
9857 	if (first) {
9858 		struct raid_kobject *rkobj;
9859 		int ret;
9860 
9861 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9862 		if (!rkobj)
9863 			goto out_err;
9864 		rkobj->raid_type = index;
9865 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9866 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9867 				  "%s", get_raid_name(index));
9868 		if (ret) {
9869 			kobject_put(&rkobj->kobj);
9870 			goto out_err;
9871 		}
9872 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9873 	}
9874 
9875 	return;
9876 out_err:
9877 	btrfs_warn(cache->fs_info,
9878 		   "failed to add kobject for block cache, ignoring");
9879 }
9880 
9881 static struct btrfs_block_group_cache *
9882 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9883 			       u64 start, u64 size)
9884 {
9885 	struct btrfs_block_group_cache *cache;
9886 
9887 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9888 	if (!cache)
9889 		return NULL;
9890 
9891 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9892 					GFP_NOFS);
9893 	if (!cache->free_space_ctl) {
9894 		kfree(cache);
9895 		return NULL;
9896 	}
9897 
9898 	cache->key.objectid = start;
9899 	cache->key.offset = size;
9900 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9901 
9902 	cache->sectorsize = fs_info->sectorsize;
9903 	cache->fs_info = fs_info;
9904 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9905 						       &fs_info->mapping_tree,
9906 						       start);
9907 	set_free_space_tree_thresholds(cache);
9908 
9909 	atomic_set(&cache->count, 1);
9910 	spin_lock_init(&cache->lock);
9911 	init_rwsem(&cache->data_rwsem);
9912 	INIT_LIST_HEAD(&cache->list);
9913 	INIT_LIST_HEAD(&cache->cluster_list);
9914 	INIT_LIST_HEAD(&cache->bg_list);
9915 	INIT_LIST_HEAD(&cache->ro_list);
9916 	INIT_LIST_HEAD(&cache->dirty_list);
9917 	INIT_LIST_HEAD(&cache->io_list);
9918 	btrfs_init_free_space_ctl(cache);
9919 	atomic_set(&cache->trimming, 0);
9920 	mutex_init(&cache->free_space_lock);
9921 
9922 	return cache;
9923 }
9924 
9925 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9926 {
9927 	struct btrfs_path *path;
9928 	int ret;
9929 	struct btrfs_block_group_cache *cache;
9930 	struct btrfs_space_info *space_info;
9931 	struct btrfs_key key;
9932 	struct btrfs_key found_key;
9933 	struct extent_buffer *leaf;
9934 	int need_clear = 0;
9935 	u64 cache_gen;
9936 	u64 feature;
9937 	int mixed;
9938 
9939 	feature = btrfs_super_incompat_flags(info->super_copy);
9940 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9941 
9942 	key.objectid = 0;
9943 	key.offset = 0;
9944 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9945 	path = btrfs_alloc_path();
9946 	if (!path)
9947 		return -ENOMEM;
9948 	path->reada = READA_FORWARD;
9949 
9950 	cache_gen = btrfs_super_cache_generation(info->super_copy);
9951 	if (btrfs_test_opt(info, SPACE_CACHE) &&
9952 	    btrfs_super_generation(info->super_copy) != cache_gen)
9953 		need_clear = 1;
9954 	if (btrfs_test_opt(info, CLEAR_CACHE))
9955 		need_clear = 1;
9956 
9957 	while (1) {
9958 		ret = find_first_block_group(info, path, &key);
9959 		if (ret > 0)
9960 			break;
9961 		if (ret != 0)
9962 			goto error;
9963 
9964 		leaf = path->nodes[0];
9965 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9966 
9967 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
9968 						       found_key.offset);
9969 		if (!cache) {
9970 			ret = -ENOMEM;
9971 			goto error;
9972 		}
9973 
9974 		if (need_clear) {
9975 			/*
9976 			 * When we mount with old space cache, we need to
9977 			 * set BTRFS_DC_CLEAR and set dirty flag.
9978 			 *
9979 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9980 			 *    truncate the old free space cache inode and
9981 			 *    setup a new one.
9982 			 * b) Setting 'dirty flag' makes sure that we flush
9983 			 *    the new space cache info onto disk.
9984 			 */
9985 			if (btrfs_test_opt(info, SPACE_CACHE))
9986 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9987 		}
9988 
9989 		read_extent_buffer(leaf, &cache->item,
9990 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9991 				   sizeof(cache->item));
9992 		cache->flags = btrfs_block_group_flags(&cache->item);
9993 		if (!mixed &&
9994 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9995 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9996 			btrfs_err(info,
9997 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9998 				  cache->key.objectid);
9999 			ret = -EINVAL;
10000 			goto error;
10001 		}
10002 
10003 		key.objectid = found_key.objectid + found_key.offset;
10004 		btrfs_release_path(path);
10005 
10006 		/*
10007 		 * We need to exclude the super stripes now so that the space
10008 		 * info has super bytes accounted for, otherwise we'll think
10009 		 * we have more space than we actually do.
10010 		 */
10011 		ret = exclude_super_stripes(info, cache);
10012 		if (ret) {
10013 			/*
10014 			 * We may have excluded something, so call this just in
10015 			 * case.
10016 			 */
10017 			free_excluded_extents(info, cache);
10018 			btrfs_put_block_group(cache);
10019 			goto error;
10020 		}
10021 
10022 		/*
10023 		 * check for two cases, either we are full, and therefore
10024 		 * don't need to bother with the caching work since we won't
10025 		 * find any space, or we are empty, and we can just add all
10026 		 * the space in and be done with it.  This saves us _alot_ of
10027 		 * time, particularly in the full case.
10028 		 */
10029 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10030 			cache->last_byte_to_unpin = (u64)-1;
10031 			cache->cached = BTRFS_CACHE_FINISHED;
10032 			free_excluded_extents(info, cache);
10033 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10034 			cache->last_byte_to_unpin = (u64)-1;
10035 			cache->cached = BTRFS_CACHE_FINISHED;
10036 			add_new_free_space(cache, info,
10037 					   found_key.objectid,
10038 					   found_key.objectid +
10039 					   found_key.offset);
10040 			free_excluded_extents(info, cache);
10041 		}
10042 
10043 		ret = btrfs_add_block_group_cache(info, cache);
10044 		if (ret) {
10045 			btrfs_remove_free_space_cache(cache);
10046 			btrfs_put_block_group(cache);
10047 			goto error;
10048 		}
10049 
10050 		trace_btrfs_add_block_group(info, cache, 0);
10051 		ret = update_space_info(info, cache->flags, found_key.offset,
10052 					btrfs_block_group_used(&cache->item),
10053 					cache->bytes_super, &space_info);
10054 		if (ret) {
10055 			btrfs_remove_free_space_cache(cache);
10056 			spin_lock(&info->block_group_cache_lock);
10057 			rb_erase(&cache->cache_node,
10058 				 &info->block_group_cache_tree);
10059 			RB_CLEAR_NODE(&cache->cache_node);
10060 			spin_unlock(&info->block_group_cache_lock);
10061 			btrfs_put_block_group(cache);
10062 			goto error;
10063 		}
10064 
10065 		cache->space_info = space_info;
10066 
10067 		__link_block_group(space_info, cache);
10068 
10069 		set_avail_alloc_bits(info, cache->flags);
10070 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10071 			inc_block_group_ro(cache, 1);
10072 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10073 			spin_lock(&info->unused_bgs_lock);
10074 			/* Should always be true but just in case. */
10075 			if (list_empty(&cache->bg_list)) {
10076 				btrfs_get_block_group(cache);
10077 				list_add_tail(&cache->bg_list,
10078 					      &info->unused_bgs);
10079 			}
10080 			spin_unlock(&info->unused_bgs_lock);
10081 		}
10082 	}
10083 
10084 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10085 		if (!(get_alloc_profile(info, space_info->flags) &
10086 		      (BTRFS_BLOCK_GROUP_RAID10 |
10087 		       BTRFS_BLOCK_GROUP_RAID1 |
10088 		       BTRFS_BLOCK_GROUP_RAID5 |
10089 		       BTRFS_BLOCK_GROUP_RAID6 |
10090 		       BTRFS_BLOCK_GROUP_DUP)))
10091 			continue;
10092 		/*
10093 		 * avoid allocating from un-mirrored block group if there are
10094 		 * mirrored block groups.
10095 		 */
10096 		list_for_each_entry(cache,
10097 				&space_info->block_groups[BTRFS_RAID_RAID0],
10098 				list)
10099 			inc_block_group_ro(cache, 1);
10100 		list_for_each_entry(cache,
10101 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10102 				list)
10103 			inc_block_group_ro(cache, 1);
10104 	}
10105 
10106 	init_global_block_rsv(info);
10107 	ret = 0;
10108 error:
10109 	btrfs_free_path(path);
10110 	return ret;
10111 }
10112 
10113 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10114 				       struct btrfs_fs_info *fs_info)
10115 {
10116 	struct btrfs_block_group_cache *block_group, *tmp;
10117 	struct btrfs_root *extent_root = fs_info->extent_root;
10118 	struct btrfs_block_group_item item;
10119 	struct btrfs_key key;
10120 	int ret = 0;
10121 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10122 
10123 	trans->can_flush_pending_bgs = false;
10124 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10125 		if (ret)
10126 			goto next;
10127 
10128 		spin_lock(&block_group->lock);
10129 		memcpy(&item, &block_group->item, sizeof(item));
10130 		memcpy(&key, &block_group->key, sizeof(key));
10131 		spin_unlock(&block_group->lock);
10132 
10133 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10134 					sizeof(item));
10135 		if (ret)
10136 			btrfs_abort_transaction(trans, ret);
10137 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10138 					       key.offset);
10139 		if (ret)
10140 			btrfs_abort_transaction(trans, ret);
10141 		add_block_group_free_space(trans, fs_info, block_group);
10142 		/* already aborted the transaction if it failed. */
10143 next:
10144 		list_del_init(&block_group->bg_list);
10145 	}
10146 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10147 }
10148 
10149 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10150 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10151 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10152 			   u64 size)
10153 {
10154 	struct btrfs_block_group_cache *cache;
10155 	int ret;
10156 
10157 	btrfs_set_log_full_commit(fs_info, trans);
10158 
10159 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10160 	if (!cache)
10161 		return -ENOMEM;
10162 
10163 	btrfs_set_block_group_used(&cache->item, bytes_used);
10164 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10165 	btrfs_set_block_group_flags(&cache->item, type);
10166 
10167 	cache->flags = type;
10168 	cache->last_byte_to_unpin = (u64)-1;
10169 	cache->cached = BTRFS_CACHE_FINISHED;
10170 	cache->needs_free_space = 1;
10171 	ret = exclude_super_stripes(fs_info, cache);
10172 	if (ret) {
10173 		/*
10174 		 * We may have excluded something, so call this just in
10175 		 * case.
10176 		 */
10177 		free_excluded_extents(fs_info, cache);
10178 		btrfs_put_block_group(cache);
10179 		return ret;
10180 	}
10181 
10182 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10183 
10184 	free_excluded_extents(fs_info, cache);
10185 
10186 #ifdef CONFIG_BTRFS_DEBUG
10187 	if (btrfs_should_fragment_free_space(cache)) {
10188 		u64 new_bytes_used = size - bytes_used;
10189 
10190 		bytes_used += new_bytes_used >> 1;
10191 		fragment_free_space(cache);
10192 	}
10193 #endif
10194 	/*
10195 	 * Call to ensure the corresponding space_info object is created and
10196 	 * assigned to our block group, but don't update its counters just yet.
10197 	 * We want our bg to be added to the rbtree with its ->space_info set.
10198 	 */
10199 	ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10200 				&cache->space_info);
10201 	if (ret) {
10202 		btrfs_remove_free_space_cache(cache);
10203 		btrfs_put_block_group(cache);
10204 		return ret;
10205 	}
10206 
10207 	ret = btrfs_add_block_group_cache(fs_info, cache);
10208 	if (ret) {
10209 		btrfs_remove_free_space_cache(cache);
10210 		btrfs_put_block_group(cache);
10211 		return ret;
10212 	}
10213 
10214 	/*
10215 	 * Now that our block group has its ->space_info set and is inserted in
10216 	 * the rbtree, update the space info's counters.
10217 	 */
10218 	trace_btrfs_add_block_group(fs_info, cache, 1);
10219 	ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10220 				cache->bytes_super, &cache->space_info);
10221 	if (ret) {
10222 		btrfs_remove_free_space_cache(cache);
10223 		spin_lock(&fs_info->block_group_cache_lock);
10224 		rb_erase(&cache->cache_node,
10225 			 &fs_info->block_group_cache_tree);
10226 		RB_CLEAR_NODE(&cache->cache_node);
10227 		spin_unlock(&fs_info->block_group_cache_lock);
10228 		btrfs_put_block_group(cache);
10229 		return ret;
10230 	}
10231 	update_global_block_rsv(fs_info);
10232 
10233 	__link_block_group(cache->space_info, cache);
10234 
10235 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10236 
10237 	set_avail_alloc_bits(fs_info, type);
10238 	return 0;
10239 }
10240 
10241 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10242 {
10243 	u64 extra_flags = chunk_to_extended(flags) &
10244 				BTRFS_EXTENDED_PROFILE_MASK;
10245 
10246 	write_seqlock(&fs_info->profiles_lock);
10247 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10248 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10249 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10250 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10251 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10252 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10253 	write_sequnlock(&fs_info->profiles_lock);
10254 }
10255 
10256 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10257 			     struct btrfs_fs_info *fs_info, u64 group_start,
10258 			     struct extent_map *em)
10259 {
10260 	struct btrfs_root *root = fs_info->extent_root;
10261 	struct btrfs_path *path;
10262 	struct btrfs_block_group_cache *block_group;
10263 	struct btrfs_free_cluster *cluster;
10264 	struct btrfs_root *tree_root = fs_info->tree_root;
10265 	struct btrfs_key key;
10266 	struct inode *inode;
10267 	struct kobject *kobj = NULL;
10268 	int ret;
10269 	int index;
10270 	int factor;
10271 	struct btrfs_caching_control *caching_ctl = NULL;
10272 	bool remove_em;
10273 
10274 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10275 	BUG_ON(!block_group);
10276 	BUG_ON(!block_group->ro);
10277 
10278 	/*
10279 	 * Free the reserved super bytes from this block group before
10280 	 * remove it.
10281 	 */
10282 	free_excluded_extents(fs_info, block_group);
10283 
10284 	memcpy(&key, &block_group->key, sizeof(key));
10285 	index = get_block_group_index(block_group);
10286 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10287 				  BTRFS_BLOCK_GROUP_RAID1 |
10288 				  BTRFS_BLOCK_GROUP_RAID10))
10289 		factor = 2;
10290 	else
10291 		factor = 1;
10292 
10293 	/* make sure this block group isn't part of an allocation cluster */
10294 	cluster = &fs_info->data_alloc_cluster;
10295 	spin_lock(&cluster->refill_lock);
10296 	btrfs_return_cluster_to_free_space(block_group, cluster);
10297 	spin_unlock(&cluster->refill_lock);
10298 
10299 	/*
10300 	 * make sure this block group isn't part of a metadata
10301 	 * allocation cluster
10302 	 */
10303 	cluster = &fs_info->meta_alloc_cluster;
10304 	spin_lock(&cluster->refill_lock);
10305 	btrfs_return_cluster_to_free_space(block_group, cluster);
10306 	spin_unlock(&cluster->refill_lock);
10307 
10308 	path = btrfs_alloc_path();
10309 	if (!path) {
10310 		ret = -ENOMEM;
10311 		goto out;
10312 	}
10313 
10314 	/*
10315 	 * get the inode first so any iput calls done for the io_list
10316 	 * aren't the final iput (no unlinks allowed now)
10317 	 */
10318 	inode = lookup_free_space_inode(fs_info, block_group, path);
10319 
10320 	mutex_lock(&trans->transaction->cache_write_mutex);
10321 	/*
10322 	 * make sure our free spache cache IO is done before remove the
10323 	 * free space inode
10324 	 */
10325 	spin_lock(&trans->transaction->dirty_bgs_lock);
10326 	if (!list_empty(&block_group->io_list)) {
10327 		list_del_init(&block_group->io_list);
10328 
10329 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10330 
10331 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10332 		btrfs_wait_cache_io(trans, block_group, path);
10333 		btrfs_put_block_group(block_group);
10334 		spin_lock(&trans->transaction->dirty_bgs_lock);
10335 	}
10336 
10337 	if (!list_empty(&block_group->dirty_list)) {
10338 		list_del_init(&block_group->dirty_list);
10339 		btrfs_put_block_group(block_group);
10340 	}
10341 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10342 	mutex_unlock(&trans->transaction->cache_write_mutex);
10343 
10344 	if (!IS_ERR(inode)) {
10345 		ret = btrfs_orphan_add(trans, inode);
10346 		if (ret) {
10347 			btrfs_add_delayed_iput(inode);
10348 			goto out;
10349 		}
10350 		clear_nlink(inode);
10351 		/* One for the block groups ref */
10352 		spin_lock(&block_group->lock);
10353 		if (block_group->iref) {
10354 			block_group->iref = 0;
10355 			block_group->inode = NULL;
10356 			spin_unlock(&block_group->lock);
10357 			iput(inode);
10358 		} else {
10359 			spin_unlock(&block_group->lock);
10360 		}
10361 		/* One for our lookup ref */
10362 		btrfs_add_delayed_iput(inode);
10363 	}
10364 
10365 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10366 	key.offset = block_group->key.objectid;
10367 	key.type = 0;
10368 
10369 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10370 	if (ret < 0)
10371 		goto out;
10372 	if (ret > 0)
10373 		btrfs_release_path(path);
10374 	if (ret == 0) {
10375 		ret = btrfs_del_item(trans, tree_root, path);
10376 		if (ret)
10377 			goto out;
10378 		btrfs_release_path(path);
10379 	}
10380 
10381 	spin_lock(&fs_info->block_group_cache_lock);
10382 	rb_erase(&block_group->cache_node,
10383 		 &fs_info->block_group_cache_tree);
10384 	RB_CLEAR_NODE(&block_group->cache_node);
10385 
10386 	if (fs_info->first_logical_byte == block_group->key.objectid)
10387 		fs_info->first_logical_byte = (u64)-1;
10388 	spin_unlock(&fs_info->block_group_cache_lock);
10389 
10390 	down_write(&block_group->space_info->groups_sem);
10391 	/*
10392 	 * we must use list_del_init so people can check to see if they
10393 	 * are still on the list after taking the semaphore
10394 	 */
10395 	list_del_init(&block_group->list);
10396 	if (list_empty(&block_group->space_info->block_groups[index])) {
10397 		kobj = block_group->space_info->block_group_kobjs[index];
10398 		block_group->space_info->block_group_kobjs[index] = NULL;
10399 		clear_avail_alloc_bits(fs_info, block_group->flags);
10400 	}
10401 	up_write(&block_group->space_info->groups_sem);
10402 	if (kobj) {
10403 		kobject_del(kobj);
10404 		kobject_put(kobj);
10405 	}
10406 
10407 	if (block_group->has_caching_ctl)
10408 		caching_ctl = get_caching_control(block_group);
10409 	if (block_group->cached == BTRFS_CACHE_STARTED)
10410 		wait_block_group_cache_done(block_group);
10411 	if (block_group->has_caching_ctl) {
10412 		down_write(&fs_info->commit_root_sem);
10413 		if (!caching_ctl) {
10414 			struct btrfs_caching_control *ctl;
10415 
10416 			list_for_each_entry(ctl,
10417 				    &fs_info->caching_block_groups, list)
10418 				if (ctl->block_group == block_group) {
10419 					caching_ctl = ctl;
10420 					atomic_inc(&caching_ctl->count);
10421 					break;
10422 				}
10423 		}
10424 		if (caching_ctl)
10425 			list_del_init(&caching_ctl->list);
10426 		up_write(&fs_info->commit_root_sem);
10427 		if (caching_ctl) {
10428 			/* Once for the caching bgs list and once for us. */
10429 			put_caching_control(caching_ctl);
10430 			put_caching_control(caching_ctl);
10431 		}
10432 	}
10433 
10434 	spin_lock(&trans->transaction->dirty_bgs_lock);
10435 	if (!list_empty(&block_group->dirty_list)) {
10436 		WARN_ON(1);
10437 	}
10438 	if (!list_empty(&block_group->io_list)) {
10439 		WARN_ON(1);
10440 	}
10441 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10442 	btrfs_remove_free_space_cache(block_group);
10443 
10444 	spin_lock(&block_group->space_info->lock);
10445 	list_del_init(&block_group->ro_list);
10446 
10447 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10448 		WARN_ON(block_group->space_info->total_bytes
10449 			< block_group->key.offset);
10450 		WARN_ON(block_group->space_info->bytes_readonly
10451 			< block_group->key.offset);
10452 		WARN_ON(block_group->space_info->disk_total
10453 			< block_group->key.offset * factor);
10454 	}
10455 	block_group->space_info->total_bytes -= block_group->key.offset;
10456 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10457 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10458 
10459 	spin_unlock(&block_group->space_info->lock);
10460 
10461 	memcpy(&key, &block_group->key, sizeof(key));
10462 
10463 	mutex_lock(&fs_info->chunk_mutex);
10464 	if (!list_empty(&em->list)) {
10465 		/* We're in the transaction->pending_chunks list. */
10466 		free_extent_map(em);
10467 	}
10468 	spin_lock(&block_group->lock);
10469 	block_group->removed = 1;
10470 	/*
10471 	 * At this point trimming can't start on this block group, because we
10472 	 * removed the block group from the tree fs_info->block_group_cache_tree
10473 	 * so no one can't find it anymore and even if someone already got this
10474 	 * block group before we removed it from the rbtree, they have already
10475 	 * incremented block_group->trimming - if they didn't, they won't find
10476 	 * any free space entries because we already removed them all when we
10477 	 * called btrfs_remove_free_space_cache().
10478 	 *
10479 	 * And we must not remove the extent map from the fs_info->mapping_tree
10480 	 * to prevent the same logical address range and physical device space
10481 	 * ranges from being reused for a new block group. This is because our
10482 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10483 	 * completely transactionless, so while it is trimming a range the
10484 	 * currently running transaction might finish and a new one start,
10485 	 * allowing for new block groups to be created that can reuse the same
10486 	 * physical device locations unless we take this special care.
10487 	 *
10488 	 * There may also be an implicit trim operation if the file system
10489 	 * is mounted with -odiscard. The same protections must remain
10490 	 * in place until the extents have been discarded completely when
10491 	 * the transaction commit has completed.
10492 	 */
10493 	remove_em = (atomic_read(&block_group->trimming) == 0);
10494 	/*
10495 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10496 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10497 	 * before checking block_group->removed).
10498 	 */
10499 	if (!remove_em) {
10500 		/*
10501 		 * Our em might be in trans->transaction->pending_chunks which
10502 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10503 		 * and so is the fs_info->pinned_chunks list.
10504 		 *
10505 		 * So at this point we must be holding the chunk_mutex to avoid
10506 		 * any races with chunk allocation (more specifically at
10507 		 * volumes.c:contains_pending_extent()), to ensure it always
10508 		 * sees the em, either in the pending_chunks list or in the
10509 		 * pinned_chunks list.
10510 		 */
10511 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10512 	}
10513 	spin_unlock(&block_group->lock);
10514 
10515 	if (remove_em) {
10516 		struct extent_map_tree *em_tree;
10517 
10518 		em_tree = &fs_info->mapping_tree.map_tree;
10519 		write_lock(&em_tree->lock);
10520 		/*
10521 		 * The em might be in the pending_chunks list, so make sure the
10522 		 * chunk mutex is locked, since remove_extent_mapping() will
10523 		 * delete us from that list.
10524 		 */
10525 		remove_extent_mapping(em_tree, em);
10526 		write_unlock(&em_tree->lock);
10527 		/* once for the tree */
10528 		free_extent_map(em);
10529 	}
10530 
10531 	mutex_unlock(&fs_info->chunk_mutex);
10532 
10533 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10534 	if (ret)
10535 		goto out;
10536 
10537 	btrfs_put_block_group(block_group);
10538 	btrfs_put_block_group(block_group);
10539 
10540 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10541 	if (ret > 0)
10542 		ret = -EIO;
10543 	if (ret < 0)
10544 		goto out;
10545 
10546 	ret = btrfs_del_item(trans, root, path);
10547 out:
10548 	btrfs_free_path(path);
10549 	return ret;
10550 }
10551 
10552 struct btrfs_trans_handle *
10553 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10554 				     const u64 chunk_offset)
10555 {
10556 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10557 	struct extent_map *em;
10558 	struct map_lookup *map;
10559 	unsigned int num_items;
10560 
10561 	read_lock(&em_tree->lock);
10562 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10563 	read_unlock(&em_tree->lock);
10564 	ASSERT(em && em->start == chunk_offset);
10565 
10566 	/*
10567 	 * We need to reserve 3 + N units from the metadata space info in order
10568 	 * to remove a block group (done at btrfs_remove_chunk() and at
10569 	 * btrfs_remove_block_group()), which are used for:
10570 	 *
10571 	 * 1 unit for adding the free space inode's orphan (located in the tree
10572 	 * of tree roots).
10573 	 * 1 unit for deleting the block group item (located in the extent
10574 	 * tree).
10575 	 * 1 unit for deleting the free space item (located in tree of tree
10576 	 * roots).
10577 	 * N units for deleting N device extent items corresponding to each
10578 	 * stripe (located in the device tree).
10579 	 *
10580 	 * In order to remove a block group we also need to reserve units in the
10581 	 * system space info in order to update the chunk tree (update one or
10582 	 * more device items and remove one chunk item), but this is done at
10583 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10584 	 */
10585 	map = em->map_lookup;
10586 	num_items = 3 + map->num_stripes;
10587 	free_extent_map(em);
10588 
10589 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10590 							   num_items, 1);
10591 }
10592 
10593 /*
10594  * Process the unused_bgs list and remove any that don't have any allocated
10595  * space inside of them.
10596  */
10597 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10598 {
10599 	struct btrfs_block_group_cache *block_group;
10600 	struct btrfs_space_info *space_info;
10601 	struct btrfs_trans_handle *trans;
10602 	int ret = 0;
10603 
10604 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10605 		return;
10606 
10607 	spin_lock(&fs_info->unused_bgs_lock);
10608 	while (!list_empty(&fs_info->unused_bgs)) {
10609 		u64 start, end;
10610 		int trimming;
10611 
10612 		block_group = list_first_entry(&fs_info->unused_bgs,
10613 					       struct btrfs_block_group_cache,
10614 					       bg_list);
10615 		list_del_init(&block_group->bg_list);
10616 
10617 		space_info = block_group->space_info;
10618 
10619 		if (ret || btrfs_mixed_space_info(space_info)) {
10620 			btrfs_put_block_group(block_group);
10621 			continue;
10622 		}
10623 		spin_unlock(&fs_info->unused_bgs_lock);
10624 
10625 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10626 
10627 		/* Don't want to race with allocators so take the groups_sem */
10628 		down_write(&space_info->groups_sem);
10629 		spin_lock(&block_group->lock);
10630 		if (block_group->reserved ||
10631 		    btrfs_block_group_used(&block_group->item) ||
10632 		    block_group->ro ||
10633 		    list_is_singular(&block_group->list)) {
10634 			/*
10635 			 * We want to bail if we made new allocations or have
10636 			 * outstanding allocations in this block group.  We do
10637 			 * the ro check in case balance is currently acting on
10638 			 * this block group.
10639 			 */
10640 			spin_unlock(&block_group->lock);
10641 			up_write(&space_info->groups_sem);
10642 			goto next;
10643 		}
10644 		spin_unlock(&block_group->lock);
10645 
10646 		/* We don't want to force the issue, only flip if it's ok. */
10647 		ret = inc_block_group_ro(block_group, 0);
10648 		up_write(&space_info->groups_sem);
10649 		if (ret < 0) {
10650 			ret = 0;
10651 			goto next;
10652 		}
10653 
10654 		/*
10655 		 * Want to do this before we do anything else so we can recover
10656 		 * properly if we fail to join the transaction.
10657 		 */
10658 		trans = btrfs_start_trans_remove_block_group(fs_info,
10659 						     block_group->key.objectid);
10660 		if (IS_ERR(trans)) {
10661 			btrfs_dec_block_group_ro(block_group);
10662 			ret = PTR_ERR(trans);
10663 			goto next;
10664 		}
10665 
10666 		/*
10667 		 * We could have pending pinned extents for this block group,
10668 		 * just delete them, we don't care about them anymore.
10669 		 */
10670 		start = block_group->key.objectid;
10671 		end = start + block_group->key.offset - 1;
10672 		/*
10673 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10674 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10675 		 * another task might be running finish_extent_commit() for the
10676 		 * previous transaction N - 1, and have seen a range belonging
10677 		 * to the block group in freed_extents[] before we were able to
10678 		 * clear the whole block group range from freed_extents[]. This
10679 		 * means that task can lookup for the block group after we
10680 		 * unpinned it from freed_extents[] and removed it, leading to
10681 		 * a BUG_ON() at btrfs_unpin_extent_range().
10682 		 */
10683 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10684 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10685 				  EXTENT_DIRTY);
10686 		if (ret) {
10687 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10688 			btrfs_dec_block_group_ro(block_group);
10689 			goto end_trans;
10690 		}
10691 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10692 				  EXTENT_DIRTY);
10693 		if (ret) {
10694 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10695 			btrfs_dec_block_group_ro(block_group);
10696 			goto end_trans;
10697 		}
10698 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10699 
10700 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10701 		spin_lock(&space_info->lock);
10702 		spin_lock(&block_group->lock);
10703 
10704 		space_info->bytes_pinned -= block_group->pinned;
10705 		space_info->bytes_readonly += block_group->pinned;
10706 		percpu_counter_add(&space_info->total_bytes_pinned,
10707 				   -block_group->pinned);
10708 		block_group->pinned = 0;
10709 
10710 		spin_unlock(&block_group->lock);
10711 		spin_unlock(&space_info->lock);
10712 
10713 		/* DISCARD can flip during remount */
10714 		trimming = btrfs_test_opt(fs_info, DISCARD);
10715 
10716 		/* Implicit trim during transaction commit. */
10717 		if (trimming)
10718 			btrfs_get_block_group_trimming(block_group);
10719 
10720 		/*
10721 		 * Btrfs_remove_chunk will abort the transaction if things go
10722 		 * horribly wrong.
10723 		 */
10724 		ret = btrfs_remove_chunk(trans, fs_info,
10725 					 block_group->key.objectid);
10726 
10727 		if (ret) {
10728 			if (trimming)
10729 				btrfs_put_block_group_trimming(block_group);
10730 			goto end_trans;
10731 		}
10732 
10733 		/*
10734 		 * If we're not mounted with -odiscard, we can just forget
10735 		 * about this block group. Otherwise we'll need to wait
10736 		 * until transaction commit to do the actual discard.
10737 		 */
10738 		if (trimming) {
10739 			spin_lock(&fs_info->unused_bgs_lock);
10740 			/*
10741 			 * A concurrent scrub might have added us to the list
10742 			 * fs_info->unused_bgs, so use a list_move operation
10743 			 * to add the block group to the deleted_bgs list.
10744 			 */
10745 			list_move(&block_group->bg_list,
10746 				  &trans->transaction->deleted_bgs);
10747 			spin_unlock(&fs_info->unused_bgs_lock);
10748 			btrfs_get_block_group(block_group);
10749 		}
10750 end_trans:
10751 		btrfs_end_transaction(trans);
10752 next:
10753 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10754 		btrfs_put_block_group(block_group);
10755 		spin_lock(&fs_info->unused_bgs_lock);
10756 	}
10757 	spin_unlock(&fs_info->unused_bgs_lock);
10758 }
10759 
10760 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10761 {
10762 	struct btrfs_space_info *space_info;
10763 	struct btrfs_super_block *disk_super;
10764 	u64 features;
10765 	u64 flags;
10766 	int mixed = 0;
10767 	int ret;
10768 
10769 	disk_super = fs_info->super_copy;
10770 	if (!btrfs_super_root(disk_super))
10771 		return -EINVAL;
10772 
10773 	features = btrfs_super_incompat_flags(disk_super);
10774 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10775 		mixed = 1;
10776 
10777 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10778 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10779 	if (ret)
10780 		goto out;
10781 
10782 	if (mixed) {
10783 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10784 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10785 	} else {
10786 		flags = BTRFS_BLOCK_GROUP_METADATA;
10787 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10788 		if (ret)
10789 			goto out;
10790 
10791 		flags = BTRFS_BLOCK_GROUP_DATA;
10792 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10793 	}
10794 out:
10795 	return ret;
10796 }
10797 
10798 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10799 				   u64 start, u64 end)
10800 {
10801 	return unpin_extent_range(fs_info, start, end, false);
10802 }
10803 
10804 /*
10805  * It used to be that old block groups would be left around forever.
10806  * Iterating over them would be enough to trim unused space.  Since we
10807  * now automatically remove them, we also need to iterate over unallocated
10808  * space.
10809  *
10810  * We don't want a transaction for this since the discard may take a
10811  * substantial amount of time.  We don't require that a transaction be
10812  * running, but we do need to take a running transaction into account
10813  * to ensure that we're not discarding chunks that were released in
10814  * the current transaction.
10815  *
10816  * Holding the chunks lock will prevent other threads from allocating
10817  * or releasing chunks, but it won't prevent a running transaction
10818  * from committing and releasing the memory that the pending chunks
10819  * list head uses.  For that, we need to take a reference to the
10820  * transaction.
10821  */
10822 static int btrfs_trim_free_extents(struct btrfs_device *device,
10823 				   u64 minlen, u64 *trimmed)
10824 {
10825 	u64 start = 0, len = 0;
10826 	int ret;
10827 
10828 	*trimmed = 0;
10829 
10830 	/* Not writeable = nothing to do. */
10831 	if (!device->writeable)
10832 		return 0;
10833 
10834 	/* No free space = nothing to do. */
10835 	if (device->total_bytes <= device->bytes_used)
10836 		return 0;
10837 
10838 	ret = 0;
10839 
10840 	while (1) {
10841 		struct btrfs_fs_info *fs_info = device->fs_info;
10842 		struct btrfs_transaction *trans;
10843 		u64 bytes;
10844 
10845 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10846 		if (ret)
10847 			return ret;
10848 
10849 		down_read(&fs_info->commit_root_sem);
10850 
10851 		spin_lock(&fs_info->trans_lock);
10852 		trans = fs_info->running_transaction;
10853 		if (trans)
10854 			atomic_inc(&trans->use_count);
10855 		spin_unlock(&fs_info->trans_lock);
10856 
10857 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10858 						 &start, &len);
10859 		if (trans)
10860 			btrfs_put_transaction(trans);
10861 
10862 		if (ret) {
10863 			up_read(&fs_info->commit_root_sem);
10864 			mutex_unlock(&fs_info->chunk_mutex);
10865 			if (ret == -ENOSPC)
10866 				ret = 0;
10867 			break;
10868 		}
10869 
10870 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10871 		up_read(&fs_info->commit_root_sem);
10872 		mutex_unlock(&fs_info->chunk_mutex);
10873 
10874 		if (ret)
10875 			break;
10876 
10877 		start += len;
10878 		*trimmed += bytes;
10879 
10880 		if (fatal_signal_pending(current)) {
10881 			ret = -ERESTARTSYS;
10882 			break;
10883 		}
10884 
10885 		cond_resched();
10886 	}
10887 
10888 	return ret;
10889 }
10890 
10891 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10892 {
10893 	struct btrfs_block_group_cache *cache = NULL;
10894 	struct btrfs_device *device;
10895 	struct list_head *devices;
10896 	u64 group_trimmed;
10897 	u64 start;
10898 	u64 end;
10899 	u64 trimmed = 0;
10900 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10901 	int ret = 0;
10902 
10903 	/*
10904 	 * try to trim all FS space, our block group may start from non-zero.
10905 	 */
10906 	if (range->len == total_bytes)
10907 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10908 	else
10909 		cache = btrfs_lookup_block_group(fs_info, range->start);
10910 
10911 	while (cache) {
10912 		if (cache->key.objectid >= (range->start + range->len)) {
10913 			btrfs_put_block_group(cache);
10914 			break;
10915 		}
10916 
10917 		start = max(range->start, cache->key.objectid);
10918 		end = min(range->start + range->len,
10919 				cache->key.objectid + cache->key.offset);
10920 
10921 		if (end - start >= range->minlen) {
10922 			if (!block_group_cache_done(cache)) {
10923 				ret = cache_block_group(cache, 0);
10924 				if (ret) {
10925 					btrfs_put_block_group(cache);
10926 					break;
10927 				}
10928 				ret = wait_block_group_cache_done(cache);
10929 				if (ret) {
10930 					btrfs_put_block_group(cache);
10931 					break;
10932 				}
10933 			}
10934 			ret = btrfs_trim_block_group(cache,
10935 						     &group_trimmed,
10936 						     start,
10937 						     end,
10938 						     range->minlen);
10939 
10940 			trimmed += group_trimmed;
10941 			if (ret) {
10942 				btrfs_put_block_group(cache);
10943 				break;
10944 			}
10945 		}
10946 
10947 		cache = next_block_group(fs_info, cache);
10948 	}
10949 
10950 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10951 	devices = &fs_info->fs_devices->alloc_list;
10952 	list_for_each_entry(device, devices, dev_alloc_list) {
10953 		ret = btrfs_trim_free_extents(device, range->minlen,
10954 					      &group_trimmed);
10955 		if (ret)
10956 			break;
10957 
10958 		trimmed += group_trimmed;
10959 	}
10960 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10961 
10962 	range->len = trimmed;
10963 	return ret;
10964 }
10965 
10966 /*
10967  * btrfs_{start,end}_write_no_snapshoting() are similar to
10968  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10969  * data into the page cache through nocow before the subvolume is snapshoted,
10970  * but flush the data into disk after the snapshot creation, or to prevent
10971  * operations while snapshoting is ongoing and that cause the snapshot to be
10972  * inconsistent (writes followed by expanding truncates for example).
10973  */
10974 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10975 {
10976 	percpu_counter_dec(&root->subv_writers->counter);
10977 	/*
10978 	 * Make sure counter is updated before we wake up waiters.
10979 	 */
10980 	smp_mb();
10981 	if (waitqueue_active(&root->subv_writers->wait))
10982 		wake_up(&root->subv_writers->wait);
10983 }
10984 
10985 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10986 {
10987 	if (atomic_read(&root->will_be_snapshoted))
10988 		return 0;
10989 
10990 	percpu_counter_inc(&root->subv_writers->counter);
10991 	/*
10992 	 * Make sure counter is updated before we check for snapshot creation.
10993 	 */
10994 	smp_mb();
10995 	if (atomic_read(&root->will_be_snapshoted)) {
10996 		btrfs_end_write_no_snapshoting(root);
10997 		return 0;
10998 	}
10999 	return 1;
11000 }
11001 
11002 static int wait_snapshoting_atomic_t(atomic_t *a)
11003 {
11004 	schedule();
11005 	return 0;
11006 }
11007 
11008 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11009 {
11010 	while (true) {
11011 		int ret;
11012 
11013 		ret = btrfs_start_write_no_snapshoting(root);
11014 		if (ret)
11015 			break;
11016 		wait_on_atomic_t(&root->will_be_snapshoted,
11017 				 wait_snapshoting_atomic_t,
11018 				 TASK_UNINTERRUPTIBLE);
11019 	}
11020 }
11021