xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 160b8e75)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61 	CHUNK_ALLOC_NO_FORCE = 0,
62 	CHUNK_ALLOC_LIMITED = 1,
63 	CHUNK_ALLOC_FORCE = 2,
64 };
65 
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 			       struct btrfs_fs_info *fs_info,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_fs_info *fs_info,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_fs_info *fs_info,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_fs_info *fs_info, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 			       u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 				     struct btrfs_space_info *space_info,
97 				     u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 				     struct btrfs_space_info *space_info,
100 				     u64 num_bytes);
101 
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105 	smp_mb();
106 	return cache->cached == BTRFS_CACHE_FINISHED ||
107 		cache->cached == BTRFS_CACHE_ERROR;
108 }
109 
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 	return (cache->flags & bits) == bits;
113 }
114 
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 	atomic_inc(&cache->count);
118 }
119 
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 	if (atomic_dec_and_test(&cache->count)) {
123 		WARN_ON(cache->pinned > 0);
124 		WARN_ON(cache->reserved > 0);
125 
126 		/*
127 		 * If not empty, someone is still holding mutex of
128 		 * full_stripe_lock, which can only be released by caller.
129 		 * And it will definitely cause use-after-free when caller
130 		 * tries to release full stripe lock.
131 		 *
132 		 * No better way to resolve, but only to warn.
133 		 */
134 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE);
232 	set_extent_bits(&fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE);
247 	clear_extent_bits(&fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(fs_info, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 				       bytenr, 0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(fs_info, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	refcount_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (refcount_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334 	struct btrfs_fs_info *fs_info = block_group->fs_info;
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		fs_info->nodesize : fs_info->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 	struct btrfs_fs_info *fs_info = block_group->fs_info;
399 	struct btrfs_root *extent_root = fs_info->extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	path = btrfs_alloc_path();
410 	if (!path)
411 		return -ENOMEM;
412 
413 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414 
415 #ifdef CONFIG_BTRFS_DEBUG
416 	/*
417 	 * If we're fragmenting we don't want to make anybody think we can
418 	 * allocate from this block group until we've had a chance to fragment
419 	 * the free space.
420 	 */
421 	if (btrfs_should_fragment_free_space(block_group))
422 		wakeup = false;
423 #endif
424 	/*
425 	 * We don't want to deadlock with somebody trying to allocate a new
426 	 * extent for the extent root while also trying to search the extent
427 	 * root to add free space.  So we skip locking and search the commit
428 	 * root, since its read-only
429 	 */
430 	path->skip_locking = 1;
431 	path->search_commit_root = 1;
432 	path->reada = READA_FORWARD;
433 
434 	key.objectid = last;
435 	key.offset = 0;
436 	key.type = BTRFS_EXTENT_ITEM_KEY;
437 
438 next:
439 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 	if (ret < 0)
441 		goto out;
442 
443 	leaf = path->nodes[0];
444 	nritems = btrfs_header_nritems(leaf);
445 
446 	while (1) {
447 		if (btrfs_fs_closing(fs_info) > 1) {
448 			last = (u64)-1;
449 			break;
450 		}
451 
452 		if (path->slots[0] < nritems) {
453 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 		} else {
455 			ret = find_next_key(path, 0, &key);
456 			if (ret)
457 				break;
458 
459 			if (need_resched() ||
460 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
461 				if (wakeup)
462 					caching_ctl->progress = last;
463 				btrfs_release_path(path);
464 				up_read(&fs_info->commit_root_sem);
465 				mutex_unlock(&caching_ctl->mutex);
466 				cond_resched();
467 				mutex_lock(&caching_ctl->mutex);
468 				down_read(&fs_info->commit_root_sem);
469 				goto next;
470 			}
471 
472 			ret = btrfs_next_leaf(extent_root, path);
473 			if (ret < 0)
474 				goto out;
475 			if (ret)
476 				break;
477 			leaf = path->nodes[0];
478 			nritems = btrfs_header_nritems(leaf);
479 			continue;
480 		}
481 
482 		if (key.objectid < last) {
483 			key.objectid = last;
484 			key.offset = 0;
485 			key.type = BTRFS_EXTENT_ITEM_KEY;
486 
487 			if (wakeup)
488 				caching_ctl->progress = last;
489 			btrfs_release_path(path);
490 			goto next;
491 		}
492 
493 		if (key.objectid < block_group->key.objectid) {
494 			path->slots[0]++;
495 			continue;
496 		}
497 
498 		if (key.objectid >= block_group->key.objectid +
499 		    block_group->key.offset)
500 			break;
501 
502 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 		    key.type == BTRFS_METADATA_ITEM_KEY) {
504 			total_found += add_new_free_space(block_group,
505 							  fs_info, last,
506 							  key.objectid);
507 			if (key.type == BTRFS_METADATA_ITEM_KEY)
508 				last = key.objectid +
509 					fs_info->nodesize;
510 			else
511 				last = key.objectid + key.offset;
512 
513 			if (total_found > CACHING_CTL_WAKE_UP) {
514 				total_found = 0;
515 				if (wakeup)
516 					wake_up(&caching_ctl->wait);
517 			}
518 		}
519 		path->slots[0]++;
520 	}
521 	ret = 0;
522 
523 	total_found += add_new_free_space(block_group, fs_info, last,
524 					  block_group->key.objectid +
525 					  block_group->key.offset);
526 	caching_ctl->progress = (u64)-1;
527 
528 out:
529 	btrfs_free_path(path);
530 	return ret;
531 }
532 
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535 	struct btrfs_block_group_cache *block_group;
536 	struct btrfs_fs_info *fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	struct btrfs_root *extent_root;
539 	int ret;
540 
541 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 	block_group = caching_ctl->block_group;
543 	fs_info = block_group->fs_info;
544 	extent_root = fs_info->extent_root;
545 
546 	mutex_lock(&caching_ctl->mutex);
547 	down_read(&fs_info->commit_root_sem);
548 
549 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 		ret = load_free_space_tree(caching_ctl);
551 	else
552 		ret = load_extent_tree_free(caching_ctl);
553 
554 	spin_lock(&block_group->lock);
555 	block_group->caching_ctl = NULL;
556 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 	spin_unlock(&block_group->lock);
558 
559 #ifdef CONFIG_BTRFS_DEBUG
560 	if (btrfs_should_fragment_free_space(block_group)) {
561 		u64 bytes_used;
562 
563 		spin_lock(&block_group->space_info->lock);
564 		spin_lock(&block_group->lock);
565 		bytes_used = block_group->key.offset -
566 			btrfs_block_group_used(&block_group->item);
567 		block_group->space_info->bytes_used += bytes_used >> 1;
568 		spin_unlock(&block_group->lock);
569 		spin_unlock(&block_group->space_info->lock);
570 		fragment_free_space(block_group);
571 	}
572 #endif
573 
574 	caching_ctl->progress = (u64)-1;
575 
576 	up_read(&fs_info->commit_root_sem);
577 	free_excluded_extents(fs_info, block_group);
578 	mutex_unlock(&caching_ctl->mutex);
579 
580 	wake_up(&caching_ctl->wait);
581 
582 	put_caching_control(caching_ctl);
583 	btrfs_put_block_group(block_group);
584 }
585 
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 			     int load_cache_only)
588 {
589 	DEFINE_WAIT(wait);
590 	struct btrfs_fs_info *fs_info = cache->fs_info;
591 	struct btrfs_caching_control *caching_ctl;
592 	int ret = 0;
593 
594 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 	if (!caching_ctl)
596 		return -ENOMEM;
597 
598 	INIT_LIST_HEAD(&caching_ctl->list);
599 	mutex_init(&caching_ctl->mutex);
600 	init_waitqueue_head(&caching_ctl->wait);
601 	caching_ctl->block_group = cache;
602 	caching_ctl->progress = cache->key.objectid;
603 	refcount_set(&caching_ctl->count, 1);
604 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 			caching_thread, NULL, NULL);
606 
607 	spin_lock(&cache->lock);
608 	/*
609 	 * This should be a rare occasion, but this could happen I think in the
610 	 * case where one thread starts to load the space cache info, and then
611 	 * some other thread starts a transaction commit which tries to do an
612 	 * allocation while the other thread is still loading the space cache
613 	 * info.  The previous loop should have kept us from choosing this block
614 	 * group, but if we've moved to the state where we will wait on caching
615 	 * block groups we need to first check if we're doing a fast load here,
616 	 * so we can wait for it to finish, otherwise we could end up allocating
617 	 * from a block group who's cache gets evicted for one reason or
618 	 * another.
619 	 */
620 	while (cache->cached == BTRFS_CACHE_FAST) {
621 		struct btrfs_caching_control *ctl;
622 
623 		ctl = cache->caching_ctl;
624 		refcount_inc(&ctl->count);
625 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 		spin_unlock(&cache->lock);
627 
628 		schedule();
629 
630 		finish_wait(&ctl->wait, &wait);
631 		put_caching_control(ctl);
632 		spin_lock(&cache->lock);
633 	}
634 
635 	if (cache->cached != BTRFS_CACHE_NO) {
636 		spin_unlock(&cache->lock);
637 		kfree(caching_ctl);
638 		return 0;
639 	}
640 	WARN_ON(cache->caching_ctl);
641 	cache->caching_ctl = caching_ctl;
642 	cache->cached = BTRFS_CACHE_FAST;
643 	spin_unlock(&cache->lock);
644 
645 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 		mutex_lock(&caching_ctl->mutex);
647 		ret = load_free_space_cache(fs_info, cache);
648 
649 		spin_lock(&cache->lock);
650 		if (ret == 1) {
651 			cache->caching_ctl = NULL;
652 			cache->cached = BTRFS_CACHE_FINISHED;
653 			cache->last_byte_to_unpin = (u64)-1;
654 			caching_ctl->progress = (u64)-1;
655 		} else {
656 			if (load_cache_only) {
657 				cache->caching_ctl = NULL;
658 				cache->cached = BTRFS_CACHE_NO;
659 			} else {
660 				cache->cached = BTRFS_CACHE_STARTED;
661 				cache->has_caching_ctl = 1;
662 			}
663 		}
664 		spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 		if (ret == 1 &&
667 		    btrfs_should_fragment_free_space(cache)) {
668 			u64 bytes_used;
669 
670 			spin_lock(&cache->space_info->lock);
671 			spin_lock(&cache->lock);
672 			bytes_used = cache->key.offset -
673 				btrfs_block_group_used(&cache->item);
674 			cache->space_info->bytes_used += bytes_used >> 1;
675 			spin_unlock(&cache->lock);
676 			spin_unlock(&cache->space_info->lock);
677 			fragment_free_space(cache);
678 		}
679 #endif
680 		mutex_unlock(&caching_ctl->mutex);
681 
682 		wake_up(&caching_ctl->wait);
683 		if (ret == 1) {
684 			put_caching_control(caching_ctl);
685 			free_excluded_extents(fs_info, cache);
686 			return 0;
687 		}
688 	} else {
689 		/*
690 		 * We're either using the free space tree or no caching at all.
691 		 * Set cached to the appropriate value and wakeup any waiters.
692 		 */
693 		spin_lock(&cache->lock);
694 		if (load_cache_only) {
695 			cache->caching_ctl = NULL;
696 			cache->cached = BTRFS_CACHE_NO;
697 		} else {
698 			cache->cached = BTRFS_CACHE_STARTED;
699 			cache->has_caching_ctl = 1;
700 		}
701 		spin_unlock(&cache->lock);
702 		wake_up(&caching_ctl->wait);
703 	}
704 
705 	if (load_cache_only) {
706 		put_caching_control(caching_ctl);
707 		return 0;
708 	}
709 
710 	down_write(&fs_info->commit_root_sem);
711 	refcount_inc(&caching_ctl->count);
712 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 	up_write(&fs_info->commit_root_sem);
714 
715 	btrfs_get_block_group(cache);
716 
717 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718 
719 	return ret;
720 }
721 
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728 	return block_group_cache_tree_search(info, bytenr, 0);
729 }
730 
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 						 struct btrfs_fs_info *info,
736 						 u64 bytenr)
737 {
738 	return block_group_cache_tree_search(info, bytenr, 1);
739 }
740 
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 						  u64 flags)
743 {
744 	struct list_head *head = &info->space_info;
745 	struct btrfs_space_info *found;
746 
747 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748 
749 	rcu_read_lock();
750 	list_for_each_entry_rcu(found, head, list) {
751 		if (found->flags & flags) {
752 			rcu_read_unlock();
753 			return found;
754 		}
755 	}
756 	rcu_read_unlock();
757 	return NULL;
758 }
759 
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 			     u64 owner, u64 root_objectid)
762 {
763 	struct btrfs_space_info *space_info;
764 	u64 flags;
765 
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 		else
770 			flags = BTRFS_BLOCK_GROUP_METADATA;
771 	} else {
772 		flags = BTRFS_BLOCK_GROUP_DATA;
773 	}
774 
775 	space_info = __find_space_info(fs_info, flags);
776 	ASSERT(space_info);
777 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779 
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 	struct list_head *head = &info->space_info;
787 	struct btrfs_space_info *found;
788 
789 	rcu_read_lock();
790 	list_for_each_entry_rcu(found, head, list)
791 		found->full = 0;
792 	rcu_read_unlock();
793 }
794 
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 	int ret;
799 	struct btrfs_key key;
800 	struct btrfs_path *path;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 
806 	key.objectid = start;
807 	key.offset = len;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 	btrfs_free_path(path);
811 	return ret;
812 }
813 
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 			     struct btrfs_fs_info *fs_info, u64 bytenr,
825 			     u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 	struct btrfs_delayed_ref_head *head;
828 	struct btrfs_delayed_ref_root *delayed_refs;
829 	struct btrfs_path *path;
830 	struct btrfs_extent_item *ei;
831 	struct extent_buffer *leaf;
832 	struct btrfs_key key;
833 	u32 item_size;
834 	u64 num_refs;
835 	u64 extent_flags;
836 	int ret;
837 
838 	/*
839 	 * If we don't have skinny metadata, don't bother doing anything
840 	 * different
841 	 */
842 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 		offset = fs_info->nodesize;
844 		metadata = 0;
845 	}
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return -ENOMEM;
850 
851 	if (!trans) {
852 		path->skip_locking = 1;
853 		path->search_commit_root = 1;
854 	}
855 
856 search_again:
857 	key.objectid = bytenr;
858 	key.offset = offset;
859 	if (metadata)
860 		key.type = BTRFS_METADATA_ITEM_KEY;
861 	else
862 		key.type = BTRFS_EXTENT_ITEM_KEY;
863 
864 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 	if (ret < 0)
866 		goto out_free;
867 
868 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 		if (path->slots[0]) {
870 			path->slots[0]--;
871 			btrfs_item_key_to_cpu(path->nodes[0], &key,
872 					      path->slots[0]);
873 			if (key.objectid == bytenr &&
874 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
875 			    key.offset == fs_info->nodesize)
876 				ret = 0;
877 		}
878 	}
879 
880 	if (ret == 0) {
881 		leaf = path->nodes[0];
882 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 		if (item_size >= sizeof(*ei)) {
884 			ei = btrfs_item_ptr(leaf, path->slots[0],
885 					    struct btrfs_extent_item);
886 			num_refs = btrfs_extent_refs(leaf, ei);
887 			extent_flags = btrfs_extent_flags(leaf, ei);
888 		} else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 			struct btrfs_extent_item_v0 *ei0;
891 			BUG_ON(item_size != sizeof(*ei0));
892 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 					     struct btrfs_extent_item_v0);
894 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 			/* FIXME: this isn't correct for data */
896 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 			BUG();
899 #endif
900 		}
901 		BUG_ON(num_refs == 0);
902 	} else {
903 		num_refs = 0;
904 		extent_flags = 0;
905 		ret = 0;
906 	}
907 
908 	if (!trans)
909 		goto out;
910 
911 	delayed_refs = &trans->transaction->delayed_refs;
912 	spin_lock(&delayed_refs->lock);
913 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 	if (head) {
915 		if (!mutex_trylock(&head->mutex)) {
916 			refcount_inc(&head->refs);
917 			spin_unlock(&delayed_refs->lock);
918 
919 			btrfs_release_path(path);
920 
921 			/*
922 			 * Mutex was contended, block until it's released and try
923 			 * again
924 			 */
925 			mutex_lock(&head->mutex);
926 			mutex_unlock(&head->mutex);
927 			btrfs_put_delayed_ref_head(head);
928 			goto search_again;
929 		}
930 		spin_lock(&head->lock);
931 		if (head->extent_op && head->extent_op->update_flags)
932 			extent_flags |= head->extent_op->flags_to_set;
933 		else
934 			BUG_ON(num_refs == 0);
935 
936 		num_refs += head->ref_mod;
937 		spin_unlock(&head->lock);
938 		mutex_unlock(&head->mutex);
939 	}
940 	spin_unlock(&delayed_refs->lock);
941 out:
942 	WARN_ON(num_refs == 0);
943 	if (refs)
944 		*refs = num_refs;
945 	if (flags)
946 		*flags = extent_flags;
947 out_free:
948 	btrfs_free_path(path);
949 	return ret;
950 }
951 
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057 
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 				  struct btrfs_fs_info *fs_info,
1061 				  struct btrfs_path *path,
1062 				  u64 owner, u32 extra_size)
1063 {
1064 	struct btrfs_root *root = fs_info->extent_root;
1065 	struct btrfs_extent_item *item;
1066 	struct btrfs_extent_item_v0 *ei0;
1067 	struct btrfs_extent_ref_v0 *ref0;
1068 	struct btrfs_tree_block_info *bi;
1069 	struct extent_buffer *leaf;
1070 	struct btrfs_key key;
1071 	struct btrfs_key found_key;
1072 	u32 new_size = sizeof(*item);
1073 	u64 refs;
1074 	int ret;
1075 
1076 	leaf = path->nodes[0];
1077 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078 
1079 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 			     struct btrfs_extent_item_v0);
1082 	refs = btrfs_extent_refs_v0(leaf, ei0);
1083 
1084 	if (owner == (u64)-1) {
1085 		while (1) {
1086 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 				ret = btrfs_next_leaf(root, path);
1088 				if (ret < 0)
1089 					return ret;
1090 				BUG_ON(ret > 0); /* Corruption */
1091 				leaf = path->nodes[0];
1092 			}
1093 			btrfs_item_key_to_cpu(leaf, &found_key,
1094 					      path->slots[0]);
1095 			BUG_ON(key.objectid != found_key.objectid);
1096 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 				path->slots[0]++;
1098 				continue;
1099 			}
1100 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 					      struct btrfs_extent_ref_v0);
1102 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 			break;
1104 		}
1105 	}
1106 	btrfs_release_path(path);
1107 
1108 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 		new_size += sizeof(*bi);
1110 
1111 	new_size -= sizeof(*ei0);
1112 	ret = btrfs_search_slot(trans, root, &key, path,
1113 				new_size + extra_size, 1);
1114 	if (ret < 0)
1115 		return ret;
1116 	BUG_ON(ret); /* Corruption */
1117 
1118 	btrfs_extend_item(fs_info, path, new_size);
1119 
1120 	leaf = path->nodes[0];
1121 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 	btrfs_set_extent_refs(leaf, item, refs);
1123 	/* FIXME: get real generation */
1124 	btrfs_set_extent_generation(leaf, item, 0);
1125 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 		btrfs_set_extent_flags(leaf, item,
1127 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 		bi = (struct btrfs_tree_block_info *)(item + 1);
1130 		/* FIXME: get first key of the block */
1131 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 	} else {
1134 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 	}
1136 	btrfs_mark_buffer_dirty(leaf);
1137 	return 0;
1138 }
1139 #endif
1140 
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 				     struct btrfs_extent_inline_ref *iref,
1148 				     enum btrfs_inline_ref_type is_data)
1149 {
1150 	int type = btrfs_extent_inline_ref_type(eb, iref);
1151 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152 
1153 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1156 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 				return type;
1174 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 				ASSERT(eb->fs_info);
1176 				/*
1177 				 * Every shared one has parent tree
1178 				 * block, which must be aligned to
1179 				 * nodesize.
1180 				 */
1181 				if (offset &&
1182 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 					return type;
1184 			}
1185 		} else {
1186 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 			return type;
1188 		}
1189 	}
1190 
1191 	btrfs_print_leaf((struct extent_buffer *)eb);
1192 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 		  eb->start, type);
1194 	WARN_ON(1);
1195 
1196 	return BTRFS_REF_TYPE_INVALID;
1197 }
1198 
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201 	u32 high_crc = ~(u32)0;
1202 	u32 low_crc = ~(u32)0;
1203 	__le64 lenum;
1204 
1205 	lenum = cpu_to_le64(root_objectid);
1206 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 	lenum = cpu_to_le64(owner);
1208 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 	lenum = cpu_to_le64(offset);
1210 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211 
1212 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214 
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 				     struct btrfs_extent_data_ref *ref)
1217 {
1218 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 				    btrfs_extent_data_ref_objectid(leaf, ref),
1220 				    btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222 
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 				 struct btrfs_extent_data_ref *ref,
1225 				 u64 root_objectid, u64 owner, u64 offset)
1226 {
1227 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 		return 0;
1231 	return 1;
1232 }
1233 
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 					   struct btrfs_fs_info *fs_info,
1236 					   struct btrfs_path *path,
1237 					   u64 bytenr, u64 parent,
1238 					   u64 root_objectid,
1239 					   u64 owner, u64 offset)
1240 {
1241 	struct btrfs_root *root = fs_info->extent_root;
1242 	struct btrfs_key key;
1243 	struct btrfs_extent_data_ref *ref;
1244 	struct extent_buffer *leaf;
1245 	u32 nritems;
1246 	int ret;
1247 	int recow;
1248 	int err = -ENOENT;
1249 
1250 	key.objectid = bytenr;
1251 	if (parent) {
1252 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 		key.offset = parent;
1254 	} else {
1255 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 		key.offset = hash_extent_data_ref(root_objectid,
1257 						  owner, offset);
1258 	}
1259 again:
1260 	recow = 0;
1261 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 	if (ret < 0) {
1263 		err = ret;
1264 		goto fail;
1265 	}
1266 
1267 	if (parent) {
1268 		if (!ret)
1269 			return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 		btrfs_release_path(path);
1273 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 		if (ret < 0) {
1275 			err = ret;
1276 			goto fail;
1277 		}
1278 		if (!ret)
1279 			return 0;
1280 #endif
1281 		goto fail;
1282 	}
1283 
1284 	leaf = path->nodes[0];
1285 	nritems = btrfs_header_nritems(leaf);
1286 	while (1) {
1287 		if (path->slots[0] >= nritems) {
1288 			ret = btrfs_next_leaf(root, path);
1289 			if (ret < 0)
1290 				err = ret;
1291 			if (ret)
1292 				goto fail;
1293 
1294 			leaf = path->nodes[0];
1295 			nritems = btrfs_header_nritems(leaf);
1296 			recow = 1;
1297 		}
1298 
1299 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 		if (key.objectid != bytenr ||
1301 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 			goto fail;
1303 
1304 		ref = btrfs_item_ptr(leaf, path->slots[0],
1305 				     struct btrfs_extent_data_ref);
1306 
1307 		if (match_extent_data_ref(leaf, ref, root_objectid,
1308 					  owner, offset)) {
1309 			if (recow) {
1310 				btrfs_release_path(path);
1311 				goto again;
1312 			}
1313 			err = 0;
1314 			break;
1315 		}
1316 		path->slots[0]++;
1317 	}
1318 fail:
1319 	return err;
1320 }
1321 
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 					   struct btrfs_fs_info *fs_info,
1324 					   struct btrfs_path *path,
1325 					   u64 bytenr, u64 parent,
1326 					   u64 root_objectid, u64 owner,
1327 					   u64 offset, int refs_to_add)
1328 {
1329 	struct btrfs_root *root = fs_info->extent_root;
1330 	struct btrfs_key key;
1331 	struct extent_buffer *leaf;
1332 	u32 size;
1333 	u32 num_refs;
1334 	int ret;
1335 
1336 	key.objectid = bytenr;
1337 	if (parent) {
1338 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 		key.offset = parent;
1340 		size = sizeof(struct btrfs_shared_data_ref);
1341 	} else {
1342 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 		key.offset = hash_extent_data_ref(root_objectid,
1344 						  owner, offset);
1345 		size = sizeof(struct btrfs_extent_data_ref);
1346 	}
1347 
1348 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 	if (ret && ret != -EEXIST)
1350 		goto fail;
1351 
1352 	leaf = path->nodes[0];
1353 	if (parent) {
1354 		struct btrfs_shared_data_ref *ref;
1355 		ref = btrfs_item_ptr(leaf, path->slots[0],
1356 				     struct btrfs_shared_data_ref);
1357 		if (ret == 0) {
1358 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 		} else {
1360 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 			num_refs += refs_to_add;
1362 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363 		}
1364 	} else {
1365 		struct btrfs_extent_data_ref *ref;
1366 		while (ret == -EEXIST) {
1367 			ref = btrfs_item_ptr(leaf, path->slots[0],
1368 					     struct btrfs_extent_data_ref);
1369 			if (match_extent_data_ref(leaf, ref, root_objectid,
1370 						  owner, offset))
1371 				break;
1372 			btrfs_release_path(path);
1373 			key.offset++;
1374 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 						      size);
1376 			if (ret && ret != -EEXIST)
1377 				goto fail;
1378 
1379 			leaf = path->nodes[0];
1380 		}
1381 		ref = btrfs_item_ptr(leaf, path->slots[0],
1382 				     struct btrfs_extent_data_ref);
1383 		if (ret == 0) {
1384 			btrfs_set_extent_data_ref_root(leaf, ref,
1385 						       root_objectid);
1386 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 		} else {
1390 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 			num_refs += refs_to_add;
1392 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393 		}
1394 	}
1395 	btrfs_mark_buffer_dirty(leaf);
1396 	ret = 0;
1397 fail:
1398 	btrfs_release_path(path);
1399 	return ret;
1400 }
1401 
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 					   struct btrfs_fs_info *fs_info,
1404 					   struct btrfs_path *path,
1405 					   int refs_to_drop, int *last_ref)
1406 {
1407 	struct btrfs_key key;
1408 	struct btrfs_extent_data_ref *ref1 = NULL;
1409 	struct btrfs_shared_data_ref *ref2 = NULL;
1410 	struct extent_buffer *leaf;
1411 	u32 num_refs = 0;
1412 	int ret = 0;
1413 
1414 	leaf = path->nodes[0];
1415 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416 
1417 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 				      struct btrfs_extent_data_ref);
1420 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 				      struct btrfs_shared_data_ref);
1424 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 		struct btrfs_extent_ref_v0 *ref0;
1428 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 				      struct btrfs_extent_ref_v0);
1430 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 	} else {
1433 		BUG();
1434 	}
1435 
1436 	BUG_ON(num_refs < refs_to_drop);
1437 	num_refs -= refs_to_drop;
1438 
1439 	if (num_refs == 0) {
1440 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 		*last_ref = 1;
1442 	} else {
1443 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 		else {
1449 			struct btrfs_extent_ref_v0 *ref0;
1450 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 					struct btrfs_extent_ref_v0);
1452 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 		}
1454 #endif
1455 		btrfs_mark_buffer_dirty(leaf);
1456 	}
1457 	return ret;
1458 }
1459 
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 					  struct btrfs_extent_inline_ref *iref)
1462 {
1463 	struct btrfs_key key;
1464 	struct extent_buffer *leaf;
1465 	struct btrfs_extent_data_ref *ref1;
1466 	struct btrfs_shared_data_ref *ref2;
1467 	u32 num_refs = 0;
1468 	int type;
1469 
1470 	leaf = path->nodes[0];
1471 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 	if (iref) {
1473 		/*
1474 		 * If type is invalid, we should have bailed out earlier than
1475 		 * this call.
1476 		 */
1477 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 		} else {
1483 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 		}
1486 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 				      struct btrfs_extent_data_ref);
1489 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 				      struct btrfs_shared_data_ref);
1493 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 		struct btrfs_extent_ref_v0 *ref0;
1497 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 				      struct btrfs_extent_ref_v0);
1499 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 	} else {
1502 		WARN_ON(1);
1503 	}
1504 	return num_refs;
1505 }
1506 
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 					  struct btrfs_fs_info *fs_info,
1509 					  struct btrfs_path *path,
1510 					  u64 bytenr, u64 parent,
1511 					  u64 root_objectid)
1512 {
1513 	struct btrfs_root *root = fs_info->extent_root;
1514 	struct btrfs_key key;
1515 	int ret;
1516 
1517 	key.objectid = bytenr;
1518 	if (parent) {
1519 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 		key.offset = parent;
1521 	} else {
1522 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 		key.offset = root_objectid;
1524 	}
1525 
1526 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 	if (ret > 0)
1528 		ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 	if (ret == -ENOENT && parent) {
1531 		btrfs_release_path(path);
1532 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 		if (ret > 0)
1535 			ret = -ENOENT;
1536 	}
1537 #endif
1538 	return ret;
1539 }
1540 
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 					  struct btrfs_fs_info *fs_info,
1543 					  struct btrfs_path *path,
1544 					  u64 bytenr, u64 parent,
1545 					  u64 root_objectid)
1546 {
1547 	struct btrfs_key key;
1548 	int ret;
1549 
1550 	key.objectid = bytenr;
1551 	if (parent) {
1552 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 		key.offset = parent;
1554 	} else {
1555 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 		key.offset = root_objectid;
1557 	}
1558 
1559 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 				      path, &key, 0);
1561 	btrfs_release_path(path);
1562 	return ret;
1563 }
1564 
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567 	int type;
1568 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 		if (parent > 0)
1570 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 		else
1572 			type = BTRFS_TREE_BLOCK_REF_KEY;
1573 	} else {
1574 		if (parent > 0)
1575 			type = BTRFS_SHARED_DATA_REF_KEY;
1576 		else
1577 			type = BTRFS_EXTENT_DATA_REF_KEY;
1578 	}
1579 	return type;
1580 }
1581 
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 			 struct btrfs_key *key)
1584 
1585 {
1586 	for (; level < BTRFS_MAX_LEVEL; level++) {
1587 		if (!path->nodes[level])
1588 			break;
1589 		if (path->slots[level] + 1 >=
1590 		    btrfs_header_nritems(path->nodes[level]))
1591 			continue;
1592 		if (level == 0)
1593 			btrfs_item_key_to_cpu(path->nodes[level], key,
1594 					      path->slots[level] + 1);
1595 		else
1596 			btrfs_node_key_to_cpu(path->nodes[level], key,
1597 					      path->slots[level] + 1);
1598 		return 0;
1599 	}
1600 	return 1;
1601 }
1602 
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *	 items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 				 struct btrfs_fs_info *fs_info,
1619 				 struct btrfs_path *path,
1620 				 struct btrfs_extent_inline_ref **ref_ret,
1621 				 u64 bytenr, u64 num_bytes,
1622 				 u64 parent, u64 root_objectid,
1623 				 u64 owner, u64 offset, int insert)
1624 {
1625 	struct btrfs_root *root = fs_info->extent_root;
1626 	struct btrfs_key key;
1627 	struct extent_buffer *leaf;
1628 	struct btrfs_extent_item *ei;
1629 	struct btrfs_extent_inline_ref *iref;
1630 	u64 flags;
1631 	u64 item_size;
1632 	unsigned long ptr;
1633 	unsigned long end;
1634 	int extra_size;
1635 	int type;
1636 	int want;
1637 	int ret;
1638 	int err = 0;
1639 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 	int needed;
1641 
1642 	key.objectid = bytenr;
1643 	key.type = BTRFS_EXTENT_ITEM_KEY;
1644 	key.offset = num_bytes;
1645 
1646 	want = extent_ref_type(parent, owner);
1647 	if (insert) {
1648 		extra_size = btrfs_extent_inline_ref_size(want);
1649 		path->keep_locks = 1;
1650 	} else
1651 		extra_size = -1;
1652 
1653 	/*
1654 	 * Owner is our parent level, so we can just add one to get the level
1655 	 * for the block we are interested in.
1656 	 */
1657 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 		key.type = BTRFS_METADATA_ITEM_KEY;
1659 		key.offset = owner;
1660 	}
1661 
1662 again:
1663 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 	if (ret < 0) {
1665 		err = ret;
1666 		goto out;
1667 	}
1668 
1669 	/*
1670 	 * We may be a newly converted file system which still has the old fat
1671 	 * extent entries for metadata, so try and see if we have one of those.
1672 	 */
1673 	if (ret > 0 && skinny_metadata) {
1674 		skinny_metadata = false;
1675 		if (path->slots[0]) {
1676 			path->slots[0]--;
1677 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 					      path->slots[0]);
1679 			if (key.objectid == bytenr &&
1680 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 			    key.offset == num_bytes)
1682 				ret = 0;
1683 		}
1684 		if (ret) {
1685 			key.objectid = bytenr;
1686 			key.type = BTRFS_EXTENT_ITEM_KEY;
1687 			key.offset = num_bytes;
1688 			btrfs_release_path(path);
1689 			goto again;
1690 		}
1691 	}
1692 
1693 	if (ret && !insert) {
1694 		err = -ENOENT;
1695 		goto out;
1696 	} else if (WARN_ON(ret)) {
1697 		err = -EIO;
1698 		goto out;
1699 	}
1700 
1701 	leaf = path->nodes[0];
1702 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 	if (item_size < sizeof(*ei)) {
1705 		if (!insert) {
1706 			err = -ENOENT;
1707 			goto out;
1708 		}
1709 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 					     extra_size);
1711 		if (ret < 0) {
1712 			err = ret;
1713 			goto out;
1714 		}
1715 		leaf = path->nodes[0];
1716 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 	}
1718 #endif
1719 	BUG_ON(item_size < sizeof(*ei));
1720 
1721 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 	flags = btrfs_extent_flags(leaf, ei);
1723 
1724 	ptr = (unsigned long)(ei + 1);
1725 	end = (unsigned long)ei + item_size;
1726 
1727 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 		ptr += sizeof(struct btrfs_tree_block_info);
1729 		BUG_ON(ptr > end);
1730 	}
1731 
1732 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 		needed = BTRFS_REF_TYPE_DATA;
1734 	else
1735 		needed = BTRFS_REF_TYPE_BLOCK;
1736 
1737 	err = -ENOENT;
1738 	while (1) {
1739 		if (ptr >= end) {
1740 			WARN_ON(ptr > end);
1741 			break;
1742 		}
1743 		iref = (struct btrfs_extent_inline_ref *)ptr;
1744 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 		if (type == BTRFS_REF_TYPE_INVALID) {
1746 			err = -EINVAL;
1747 			goto out;
1748 		}
1749 
1750 		if (want < type)
1751 			break;
1752 		if (want > type) {
1753 			ptr += btrfs_extent_inline_ref_size(type);
1754 			continue;
1755 		}
1756 
1757 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 			struct btrfs_extent_data_ref *dref;
1759 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 			if (match_extent_data_ref(leaf, dref, root_objectid,
1761 						  owner, offset)) {
1762 				err = 0;
1763 				break;
1764 			}
1765 			if (hash_extent_data_ref_item(leaf, dref) <
1766 			    hash_extent_data_ref(root_objectid, owner, offset))
1767 				break;
1768 		} else {
1769 			u64 ref_offset;
1770 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 			if (parent > 0) {
1772 				if (parent == ref_offset) {
1773 					err = 0;
1774 					break;
1775 				}
1776 				if (ref_offset < parent)
1777 					break;
1778 			} else {
1779 				if (root_objectid == ref_offset) {
1780 					err = 0;
1781 					break;
1782 				}
1783 				if (ref_offset < root_objectid)
1784 					break;
1785 			}
1786 		}
1787 		ptr += btrfs_extent_inline_ref_size(type);
1788 	}
1789 	if (err == -ENOENT && insert) {
1790 		if (item_size + extra_size >=
1791 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 			err = -EAGAIN;
1793 			goto out;
1794 		}
1795 		/*
1796 		 * To add new inline back ref, we have to make sure
1797 		 * there is no corresponding back ref item.
1798 		 * For simplicity, we just do not add new inline back
1799 		 * ref if there is any kind of item for this block
1800 		 */
1801 		if (find_next_key(path, 0, &key) == 0 &&
1802 		    key.objectid == bytenr &&
1803 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 			err = -EAGAIN;
1805 			goto out;
1806 		}
1807 	}
1808 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 	if (insert) {
1811 		path->keep_locks = 0;
1812 		btrfs_unlock_up_safe(path, 1);
1813 	}
1814 	return err;
1815 }
1816 
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 				 struct btrfs_path *path,
1823 				 struct btrfs_extent_inline_ref *iref,
1824 				 u64 parent, u64 root_objectid,
1825 				 u64 owner, u64 offset, int refs_to_add,
1826 				 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_extent_item *ei;
1830 	unsigned long ptr;
1831 	unsigned long end;
1832 	unsigned long item_offset;
1833 	u64 refs;
1834 	int size;
1835 	int type;
1836 
1837 	leaf = path->nodes[0];
1838 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 	item_offset = (unsigned long)iref - (unsigned long)ei;
1840 
1841 	type = extent_ref_type(parent, owner);
1842 	size = btrfs_extent_inline_ref_size(type);
1843 
1844 	btrfs_extend_item(fs_info, path, size);
1845 
1846 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 	refs = btrfs_extent_refs(leaf, ei);
1848 	refs += refs_to_add;
1849 	btrfs_set_extent_refs(leaf, ei, refs);
1850 	if (extent_op)
1851 		__run_delayed_extent_op(extent_op, leaf, ei);
1852 
1853 	ptr = (unsigned long)ei + item_offset;
1854 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 	if (ptr < end - size)
1856 		memmove_extent_buffer(leaf, ptr + size, ptr,
1857 				      end - size - ptr);
1858 
1859 	iref = (struct btrfs_extent_inline_ref *)ptr;
1860 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 		struct btrfs_extent_data_ref *dref;
1863 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 		struct btrfs_shared_data_ref *sref;
1870 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 	} else {
1876 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 	}
1878 	btrfs_mark_buffer_dirty(leaf);
1879 }
1880 
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 				 struct btrfs_fs_info *fs_info,
1883 				 struct btrfs_path *path,
1884 				 struct btrfs_extent_inline_ref **ref_ret,
1885 				 u64 bytenr, u64 num_bytes, u64 parent,
1886 				 u64 root_objectid, u64 owner, u64 offset)
1887 {
1888 	int ret;
1889 
1890 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 					   bytenr, num_bytes, parent,
1892 					   root_objectid, owner, offset, 0);
1893 	if (ret != -ENOENT)
1894 		return ret;
1895 
1896 	btrfs_release_path(path);
1897 	*ref_ret = NULL;
1898 
1899 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 					    parent, root_objectid);
1902 	} else {
1903 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 					     parent, root_objectid, owner,
1905 					     offset);
1906 	}
1907 	return ret;
1908 }
1909 
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 				  struct btrfs_path *path,
1916 				  struct btrfs_extent_inline_ref *iref,
1917 				  int refs_to_mod,
1918 				  struct btrfs_delayed_extent_op *extent_op,
1919 				  int *last_ref)
1920 {
1921 	struct extent_buffer *leaf;
1922 	struct btrfs_extent_item *ei;
1923 	struct btrfs_extent_data_ref *dref = NULL;
1924 	struct btrfs_shared_data_ref *sref = NULL;
1925 	unsigned long ptr;
1926 	unsigned long end;
1927 	u32 item_size;
1928 	int size;
1929 	int type;
1930 	u64 refs;
1931 
1932 	leaf = path->nodes[0];
1933 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 	refs = btrfs_extent_refs(leaf, ei);
1935 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 	refs += refs_to_mod;
1937 	btrfs_set_extent_refs(leaf, ei, refs);
1938 	if (extent_op)
1939 		__run_delayed_extent_op(extent_op, leaf, ei);
1940 
1941 	/*
1942 	 * If type is invalid, we should have bailed out after
1943 	 * lookup_inline_extent_backref().
1944 	 */
1945 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947 
1948 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 		refs = btrfs_extent_data_ref_count(leaf, dref);
1951 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 		refs = btrfs_shared_data_ref_count(leaf, sref);
1954 	} else {
1955 		refs = 1;
1956 		BUG_ON(refs_to_mod != -1);
1957 	}
1958 
1959 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 	refs += refs_to_mod;
1961 
1962 	if (refs > 0) {
1963 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 		else
1966 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 	} else {
1968 		*last_ref = 1;
1969 		size =  btrfs_extent_inline_ref_size(type);
1970 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 		ptr = (unsigned long)iref;
1972 		end = (unsigned long)ei + item_size;
1973 		if (ptr + size < end)
1974 			memmove_extent_buffer(leaf, ptr, ptr + size,
1975 					      end - ptr - size);
1976 		item_size -= size;
1977 		btrfs_truncate_item(fs_info, path, item_size, 1);
1978 	}
1979 	btrfs_mark_buffer_dirty(leaf);
1980 }
1981 
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 				 struct btrfs_fs_info *fs_info,
1985 				 struct btrfs_path *path,
1986 				 u64 bytenr, u64 num_bytes, u64 parent,
1987 				 u64 root_objectid, u64 owner,
1988 				 u64 offset, int refs_to_add,
1989 				 struct btrfs_delayed_extent_op *extent_op)
1990 {
1991 	struct btrfs_extent_inline_ref *iref;
1992 	int ret;
1993 
1994 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 					   bytenr, num_bytes, parent,
1996 					   root_objectid, owner, offset, 1);
1997 	if (ret == 0) {
1998 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 		update_inline_extent_backref(fs_info, path, iref,
2000 					     refs_to_add, extent_op, NULL);
2001 	} else if (ret == -ENOENT) {
2002 		setup_inline_extent_backref(fs_info, path, iref, parent,
2003 					    root_objectid, owner, offset,
2004 					    refs_to_add, extent_op);
2005 		ret = 0;
2006 	}
2007 	return ret;
2008 }
2009 
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 				 struct btrfs_fs_info *fs_info,
2012 				 struct btrfs_path *path,
2013 				 u64 bytenr, u64 parent, u64 root_objectid,
2014 				 u64 owner, u64 offset, int refs_to_add)
2015 {
2016 	int ret;
2017 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 		BUG_ON(refs_to_add != 1);
2019 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 					    parent, root_objectid);
2021 	} else {
2022 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 					     parent, root_objectid,
2024 					     owner, offset, refs_to_add);
2025 	}
2026 	return ret;
2027 }
2028 
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 				 struct btrfs_fs_info *fs_info,
2031 				 struct btrfs_path *path,
2032 				 struct btrfs_extent_inline_ref *iref,
2033 				 int refs_to_drop, int is_data, int *last_ref)
2034 {
2035 	int ret = 0;
2036 
2037 	BUG_ON(!is_data && refs_to_drop != 1);
2038 	if (iref) {
2039 		update_inline_extent_backref(fs_info, path, iref,
2040 					     -refs_to_drop, NULL, last_ref);
2041 	} else if (is_data) {
2042 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 					     last_ref);
2044 	} else {
2045 		*last_ref = 1;
2046 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047 	}
2048 	return ret;
2049 }
2050 
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 			       u64 *discarded_bytes)
2054 {
2055 	int j, ret = 0;
2056 	u64 bytes_left, end;
2057 	u64 aligned_start = ALIGN(start, 1 << 9);
2058 
2059 	if (WARN_ON(start != aligned_start)) {
2060 		len -= aligned_start - start;
2061 		len = round_down(len, 1 << 9);
2062 		start = aligned_start;
2063 	}
2064 
2065 	*discarded_bytes = 0;
2066 
2067 	if (!len)
2068 		return 0;
2069 
2070 	end = start + len;
2071 	bytes_left = len;
2072 
2073 	/* Skip any superblocks on this device. */
2074 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 		u64 sb_start = btrfs_sb_offset(j);
2076 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 		u64 size = sb_start - start;
2078 
2079 		if (!in_range(sb_start, start, bytes_left) &&
2080 		    !in_range(sb_end, start, bytes_left) &&
2081 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 			continue;
2083 
2084 		/*
2085 		 * Superblock spans beginning of range.  Adjust start and
2086 		 * try again.
2087 		 */
2088 		if (sb_start <= start) {
2089 			start += sb_end - start;
2090 			if (start > end) {
2091 				bytes_left = 0;
2092 				break;
2093 			}
2094 			bytes_left = end - start;
2095 			continue;
2096 		}
2097 
2098 		if (size) {
2099 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 						   GFP_NOFS, 0);
2101 			if (!ret)
2102 				*discarded_bytes += size;
2103 			else if (ret != -EOPNOTSUPP)
2104 				return ret;
2105 		}
2106 
2107 		start = sb_end;
2108 		if (start > end) {
2109 			bytes_left = 0;
2110 			break;
2111 		}
2112 		bytes_left = end - start;
2113 	}
2114 
2115 	if (bytes_left) {
2116 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 					   GFP_NOFS, 0);
2118 		if (!ret)
2119 			*discarded_bytes += bytes_left;
2120 	}
2121 	return ret;
2122 }
2123 
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 			 u64 num_bytes, u64 *actual_bytes)
2126 {
2127 	int ret;
2128 	u64 discarded_bytes = 0;
2129 	struct btrfs_bio *bbio = NULL;
2130 
2131 
2132 	/*
2133 	 * Avoid races with device replace and make sure our bbio has devices
2134 	 * associated to its stripes that don't go away while we are discarding.
2135 	 */
2136 	btrfs_bio_counter_inc_blocked(fs_info);
2137 	/* Tell the block device(s) that the sectors can be discarded */
2138 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 			      &bbio, 0);
2140 	/* Error condition is -ENOMEM */
2141 	if (!ret) {
2142 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 		int i;
2144 
2145 
2146 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 			u64 bytes;
2148 			struct request_queue *req_q;
2149 
2150 			req_q = bdev_get_queue(stripe->dev->bdev);
2151 			if (!blk_queue_discard(req_q))
2152 				continue;
2153 
2154 			ret = btrfs_issue_discard(stripe->dev->bdev,
2155 						  stripe->physical,
2156 						  stripe->length,
2157 						  &bytes);
2158 			if (!ret)
2159 				discarded_bytes += bytes;
2160 			else if (ret != -EOPNOTSUPP)
2161 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2162 
2163 			/*
2164 			 * Just in case we get back EOPNOTSUPP for some reason,
2165 			 * just ignore the return value so we don't screw up
2166 			 * people calling discard_extent.
2167 			 */
2168 			ret = 0;
2169 		}
2170 		btrfs_put_bbio(bbio);
2171 	}
2172 	btrfs_bio_counter_dec(fs_info);
2173 
2174 	if (actual_bytes)
2175 		*actual_bytes = discarded_bytes;
2176 
2177 
2178 	if (ret == -EOPNOTSUPP)
2179 		ret = 0;
2180 	return ret;
2181 }
2182 
2183 /* Can return -ENOMEM */
2184 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2185 			 struct btrfs_root *root,
2186 			 u64 bytenr, u64 num_bytes, u64 parent,
2187 			 u64 root_objectid, u64 owner, u64 offset)
2188 {
2189 	struct btrfs_fs_info *fs_info = root->fs_info;
2190 	int old_ref_mod, new_ref_mod;
2191 	int ret;
2192 
2193 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2194 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2195 
2196 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2197 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2198 
2199 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2200 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2201 						 num_bytes, parent,
2202 						 root_objectid, (int)owner,
2203 						 BTRFS_ADD_DELAYED_REF, NULL,
2204 						 &old_ref_mod, &new_ref_mod);
2205 	} else {
2206 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2207 						 num_bytes, parent,
2208 						 root_objectid, owner, offset,
2209 						 0, BTRFS_ADD_DELAYED_REF,
2210 						 &old_ref_mod, &new_ref_mod);
2211 	}
2212 
2213 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2214 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2215 
2216 	return ret;
2217 }
2218 
2219 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2220 				  struct btrfs_fs_info *fs_info,
2221 				  struct btrfs_delayed_ref_node *node,
2222 				  u64 parent, u64 root_objectid,
2223 				  u64 owner, u64 offset, int refs_to_add,
2224 				  struct btrfs_delayed_extent_op *extent_op)
2225 {
2226 	struct btrfs_path *path;
2227 	struct extent_buffer *leaf;
2228 	struct btrfs_extent_item *item;
2229 	struct btrfs_key key;
2230 	u64 bytenr = node->bytenr;
2231 	u64 num_bytes = node->num_bytes;
2232 	u64 refs;
2233 	int ret;
2234 
2235 	path = btrfs_alloc_path();
2236 	if (!path)
2237 		return -ENOMEM;
2238 
2239 	path->reada = READA_FORWARD;
2240 	path->leave_spinning = 1;
2241 	/* this will setup the path even if it fails to insert the back ref */
2242 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2243 					   num_bytes, parent, root_objectid,
2244 					   owner, offset,
2245 					   refs_to_add, extent_op);
2246 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2247 		goto out;
2248 
2249 	/*
2250 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2251 	 * inline extent ref, so just update the reference count and add a
2252 	 * normal backref.
2253 	 */
2254 	leaf = path->nodes[0];
2255 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2256 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2257 	refs = btrfs_extent_refs(leaf, item);
2258 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2259 	if (extent_op)
2260 		__run_delayed_extent_op(extent_op, leaf, item);
2261 
2262 	btrfs_mark_buffer_dirty(leaf);
2263 	btrfs_release_path(path);
2264 
2265 	path->reada = READA_FORWARD;
2266 	path->leave_spinning = 1;
2267 	/* now insert the actual backref */
2268 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2269 				    root_objectid, owner, offset, refs_to_add);
2270 	if (ret)
2271 		btrfs_abort_transaction(trans, ret);
2272 out:
2273 	btrfs_free_path(path);
2274 	return ret;
2275 }
2276 
2277 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2278 				struct btrfs_fs_info *fs_info,
2279 				struct btrfs_delayed_ref_node *node,
2280 				struct btrfs_delayed_extent_op *extent_op,
2281 				int insert_reserved)
2282 {
2283 	int ret = 0;
2284 	struct btrfs_delayed_data_ref *ref;
2285 	struct btrfs_key ins;
2286 	u64 parent = 0;
2287 	u64 ref_root = 0;
2288 	u64 flags = 0;
2289 
2290 	ins.objectid = node->bytenr;
2291 	ins.offset = node->num_bytes;
2292 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2293 
2294 	ref = btrfs_delayed_node_to_data_ref(node);
2295 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2296 
2297 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2298 		parent = ref->parent;
2299 	ref_root = ref->root;
2300 
2301 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2302 		if (extent_op)
2303 			flags |= extent_op->flags_to_set;
2304 		ret = alloc_reserved_file_extent(trans, fs_info,
2305 						 parent, ref_root, flags,
2306 						 ref->objectid, ref->offset,
2307 						 &ins, node->ref_mod);
2308 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2309 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2310 					     ref_root, ref->objectid,
2311 					     ref->offset, node->ref_mod,
2312 					     extent_op);
2313 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2314 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2315 					  ref_root, ref->objectid,
2316 					  ref->offset, node->ref_mod,
2317 					  extent_op);
2318 	} else {
2319 		BUG();
2320 	}
2321 	return ret;
2322 }
2323 
2324 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2325 				    struct extent_buffer *leaf,
2326 				    struct btrfs_extent_item *ei)
2327 {
2328 	u64 flags = btrfs_extent_flags(leaf, ei);
2329 	if (extent_op->update_flags) {
2330 		flags |= extent_op->flags_to_set;
2331 		btrfs_set_extent_flags(leaf, ei, flags);
2332 	}
2333 
2334 	if (extent_op->update_key) {
2335 		struct btrfs_tree_block_info *bi;
2336 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2337 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2338 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2339 	}
2340 }
2341 
2342 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2343 				 struct btrfs_fs_info *fs_info,
2344 				 struct btrfs_delayed_ref_head *head,
2345 				 struct btrfs_delayed_extent_op *extent_op)
2346 {
2347 	struct btrfs_key key;
2348 	struct btrfs_path *path;
2349 	struct btrfs_extent_item *ei;
2350 	struct extent_buffer *leaf;
2351 	u32 item_size;
2352 	int ret;
2353 	int err = 0;
2354 	int metadata = !extent_op->is_data;
2355 
2356 	if (trans->aborted)
2357 		return 0;
2358 
2359 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2360 		metadata = 0;
2361 
2362 	path = btrfs_alloc_path();
2363 	if (!path)
2364 		return -ENOMEM;
2365 
2366 	key.objectid = head->bytenr;
2367 
2368 	if (metadata) {
2369 		key.type = BTRFS_METADATA_ITEM_KEY;
2370 		key.offset = extent_op->level;
2371 	} else {
2372 		key.type = BTRFS_EXTENT_ITEM_KEY;
2373 		key.offset = head->num_bytes;
2374 	}
2375 
2376 again:
2377 	path->reada = READA_FORWARD;
2378 	path->leave_spinning = 1;
2379 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2380 	if (ret < 0) {
2381 		err = ret;
2382 		goto out;
2383 	}
2384 	if (ret > 0) {
2385 		if (metadata) {
2386 			if (path->slots[0] > 0) {
2387 				path->slots[0]--;
2388 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2389 						      path->slots[0]);
2390 				if (key.objectid == head->bytenr &&
2391 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2392 				    key.offset == head->num_bytes)
2393 					ret = 0;
2394 			}
2395 			if (ret > 0) {
2396 				btrfs_release_path(path);
2397 				metadata = 0;
2398 
2399 				key.objectid = head->bytenr;
2400 				key.offset = head->num_bytes;
2401 				key.type = BTRFS_EXTENT_ITEM_KEY;
2402 				goto again;
2403 			}
2404 		} else {
2405 			err = -EIO;
2406 			goto out;
2407 		}
2408 	}
2409 
2410 	leaf = path->nodes[0];
2411 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2412 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2413 	if (item_size < sizeof(*ei)) {
2414 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2415 		if (ret < 0) {
2416 			err = ret;
2417 			goto out;
2418 		}
2419 		leaf = path->nodes[0];
2420 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2421 	}
2422 #endif
2423 	BUG_ON(item_size < sizeof(*ei));
2424 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2425 	__run_delayed_extent_op(extent_op, leaf, ei);
2426 
2427 	btrfs_mark_buffer_dirty(leaf);
2428 out:
2429 	btrfs_free_path(path);
2430 	return err;
2431 }
2432 
2433 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2434 				struct btrfs_fs_info *fs_info,
2435 				struct btrfs_delayed_ref_node *node,
2436 				struct btrfs_delayed_extent_op *extent_op,
2437 				int insert_reserved)
2438 {
2439 	int ret = 0;
2440 	struct btrfs_delayed_tree_ref *ref;
2441 	struct btrfs_key ins;
2442 	u64 parent = 0;
2443 	u64 ref_root = 0;
2444 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2445 
2446 	ref = btrfs_delayed_node_to_tree_ref(node);
2447 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2448 
2449 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2450 		parent = ref->parent;
2451 	ref_root = ref->root;
2452 
2453 	ins.objectid = node->bytenr;
2454 	if (skinny_metadata) {
2455 		ins.offset = ref->level;
2456 		ins.type = BTRFS_METADATA_ITEM_KEY;
2457 	} else {
2458 		ins.offset = node->num_bytes;
2459 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2460 	}
2461 
2462 	if (node->ref_mod != 1) {
2463 		btrfs_err(fs_info,
2464 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2465 			  node->bytenr, node->ref_mod, node->action, ref_root,
2466 			  parent);
2467 		return -EIO;
2468 	}
2469 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2470 		BUG_ON(!extent_op || !extent_op->update_flags);
2471 		ret = alloc_reserved_tree_block(trans, fs_info,
2472 						parent, ref_root,
2473 						extent_op->flags_to_set,
2474 						&extent_op->key,
2475 						ref->level, &ins);
2476 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2477 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2478 					     parent, ref_root,
2479 					     ref->level, 0, 1,
2480 					     extent_op);
2481 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2482 		ret = __btrfs_free_extent(trans, fs_info, node,
2483 					  parent, ref_root,
2484 					  ref->level, 0, 1, extent_op);
2485 	} else {
2486 		BUG();
2487 	}
2488 	return ret;
2489 }
2490 
2491 /* helper function to actually process a single delayed ref entry */
2492 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2493 			       struct btrfs_fs_info *fs_info,
2494 			       struct btrfs_delayed_ref_node *node,
2495 			       struct btrfs_delayed_extent_op *extent_op,
2496 			       int insert_reserved)
2497 {
2498 	int ret = 0;
2499 
2500 	if (trans->aborted) {
2501 		if (insert_reserved)
2502 			btrfs_pin_extent(fs_info, node->bytenr,
2503 					 node->num_bytes, 1);
2504 		return 0;
2505 	}
2506 
2507 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2508 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2509 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2510 					   insert_reserved);
2511 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2512 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2513 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2514 					   insert_reserved);
2515 	else
2516 		BUG();
2517 	return ret;
2518 }
2519 
2520 static inline struct btrfs_delayed_ref_node *
2521 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2522 {
2523 	struct btrfs_delayed_ref_node *ref;
2524 
2525 	if (RB_EMPTY_ROOT(&head->ref_tree))
2526 		return NULL;
2527 
2528 	/*
2529 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2530 	 * This is to prevent a ref count from going down to zero, which deletes
2531 	 * the extent item from the extent tree, when there still are references
2532 	 * to add, which would fail because they would not find the extent item.
2533 	 */
2534 	if (!list_empty(&head->ref_add_list))
2535 		return list_first_entry(&head->ref_add_list,
2536 				struct btrfs_delayed_ref_node, add_list);
2537 
2538 	ref = rb_entry(rb_first(&head->ref_tree),
2539 		       struct btrfs_delayed_ref_node, ref_node);
2540 	ASSERT(list_empty(&ref->add_list));
2541 	return ref;
2542 }
2543 
2544 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2545 				      struct btrfs_delayed_ref_head *head)
2546 {
2547 	spin_lock(&delayed_refs->lock);
2548 	head->processing = 0;
2549 	delayed_refs->num_heads_ready++;
2550 	spin_unlock(&delayed_refs->lock);
2551 	btrfs_delayed_ref_unlock(head);
2552 }
2553 
2554 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2555 			     struct btrfs_fs_info *fs_info,
2556 			     struct btrfs_delayed_ref_head *head)
2557 {
2558 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2559 	int ret;
2560 
2561 	if (!extent_op)
2562 		return 0;
2563 	head->extent_op = NULL;
2564 	if (head->must_insert_reserved) {
2565 		btrfs_free_delayed_extent_op(extent_op);
2566 		return 0;
2567 	}
2568 	spin_unlock(&head->lock);
2569 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2570 	btrfs_free_delayed_extent_op(extent_op);
2571 	return ret ? ret : 1;
2572 }
2573 
2574 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2575 			    struct btrfs_fs_info *fs_info,
2576 			    struct btrfs_delayed_ref_head *head)
2577 {
2578 	struct btrfs_delayed_ref_root *delayed_refs;
2579 	int ret;
2580 
2581 	delayed_refs = &trans->transaction->delayed_refs;
2582 
2583 	ret = cleanup_extent_op(trans, fs_info, head);
2584 	if (ret < 0) {
2585 		unselect_delayed_ref_head(delayed_refs, head);
2586 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2587 		return ret;
2588 	} else if (ret) {
2589 		return ret;
2590 	}
2591 
2592 	/*
2593 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2594 	 * and then re-check to make sure nobody got added.
2595 	 */
2596 	spin_unlock(&head->lock);
2597 	spin_lock(&delayed_refs->lock);
2598 	spin_lock(&head->lock);
2599 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2600 		spin_unlock(&head->lock);
2601 		spin_unlock(&delayed_refs->lock);
2602 		return 1;
2603 	}
2604 	delayed_refs->num_heads--;
2605 	rb_erase(&head->href_node, &delayed_refs->href_root);
2606 	RB_CLEAR_NODE(&head->href_node);
2607 	spin_unlock(&delayed_refs->lock);
2608 	spin_unlock(&head->lock);
2609 	atomic_dec(&delayed_refs->num_entries);
2610 
2611 	trace_run_delayed_ref_head(fs_info, head, 0);
2612 
2613 	if (head->total_ref_mod < 0) {
2614 		struct btrfs_block_group_cache *cache;
2615 
2616 		cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2617 		ASSERT(cache);
2618 		percpu_counter_add(&cache->space_info->total_bytes_pinned,
2619 				   -head->num_bytes);
2620 		btrfs_put_block_group(cache);
2621 
2622 		if (head->is_data) {
2623 			spin_lock(&delayed_refs->lock);
2624 			delayed_refs->pending_csums -= head->num_bytes;
2625 			spin_unlock(&delayed_refs->lock);
2626 		}
2627 	}
2628 
2629 	if (head->must_insert_reserved) {
2630 		btrfs_pin_extent(fs_info, head->bytenr,
2631 				 head->num_bytes, 1);
2632 		if (head->is_data) {
2633 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2634 					      head->num_bytes);
2635 		}
2636 	}
2637 
2638 	/* Also free its reserved qgroup space */
2639 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2640 				      head->qgroup_reserved);
2641 	btrfs_delayed_ref_unlock(head);
2642 	btrfs_put_delayed_ref_head(head);
2643 	return 0;
2644 }
2645 
2646 /*
2647  * Returns 0 on success or if called with an already aborted transaction.
2648  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2649  */
2650 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2651 					     struct btrfs_fs_info *fs_info,
2652 					     unsigned long nr)
2653 {
2654 	struct btrfs_delayed_ref_root *delayed_refs;
2655 	struct btrfs_delayed_ref_node *ref;
2656 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2657 	struct btrfs_delayed_extent_op *extent_op;
2658 	ktime_t start = ktime_get();
2659 	int ret;
2660 	unsigned long count = 0;
2661 	unsigned long actual_count = 0;
2662 	int must_insert_reserved = 0;
2663 
2664 	delayed_refs = &trans->transaction->delayed_refs;
2665 	while (1) {
2666 		if (!locked_ref) {
2667 			if (count >= nr)
2668 				break;
2669 
2670 			spin_lock(&delayed_refs->lock);
2671 			locked_ref = btrfs_select_ref_head(trans);
2672 			if (!locked_ref) {
2673 				spin_unlock(&delayed_refs->lock);
2674 				break;
2675 			}
2676 
2677 			/* grab the lock that says we are going to process
2678 			 * all the refs for this head */
2679 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2680 			spin_unlock(&delayed_refs->lock);
2681 			/*
2682 			 * we may have dropped the spin lock to get the head
2683 			 * mutex lock, and that might have given someone else
2684 			 * time to free the head.  If that's true, it has been
2685 			 * removed from our list and we can move on.
2686 			 */
2687 			if (ret == -EAGAIN) {
2688 				locked_ref = NULL;
2689 				count++;
2690 				continue;
2691 			}
2692 		}
2693 
2694 		/*
2695 		 * We need to try and merge add/drops of the same ref since we
2696 		 * can run into issues with relocate dropping the implicit ref
2697 		 * and then it being added back again before the drop can
2698 		 * finish.  If we merged anything we need to re-loop so we can
2699 		 * get a good ref.
2700 		 * Or we can get node references of the same type that weren't
2701 		 * merged when created due to bumps in the tree mod seq, and
2702 		 * we need to merge them to prevent adding an inline extent
2703 		 * backref before dropping it (triggering a BUG_ON at
2704 		 * insert_inline_extent_backref()).
2705 		 */
2706 		spin_lock(&locked_ref->lock);
2707 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2708 					 locked_ref);
2709 
2710 		/*
2711 		 * locked_ref is the head node, so we have to go one
2712 		 * node back for any delayed ref updates
2713 		 */
2714 		ref = select_delayed_ref(locked_ref);
2715 
2716 		if (ref && ref->seq &&
2717 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2718 			spin_unlock(&locked_ref->lock);
2719 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2720 			locked_ref = NULL;
2721 			cond_resched();
2722 			count++;
2723 			continue;
2724 		}
2725 
2726 		/*
2727 		 * We're done processing refs in this ref_head, clean everything
2728 		 * up and move on to the next ref_head.
2729 		 */
2730 		if (!ref) {
2731 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2732 			if (ret > 0 ) {
2733 				/* We dropped our lock, we need to loop. */
2734 				ret = 0;
2735 				continue;
2736 			} else if (ret) {
2737 				return ret;
2738 			}
2739 			locked_ref = NULL;
2740 			count++;
2741 			continue;
2742 		}
2743 
2744 		actual_count++;
2745 		ref->in_tree = 0;
2746 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2747 		RB_CLEAR_NODE(&ref->ref_node);
2748 		if (!list_empty(&ref->add_list))
2749 			list_del(&ref->add_list);
2750 		/*
2751 		 * When we play the delayed ref, also correct the ref_mod on
2752 		 * head
2753 		 */
2754 		switch (ref->action) {
2755 		case BTRFS_ADD_DELAYED_REF:
2756 		case BTRFS_ADD_DELAYED_EXTENT:
2757 			locked_ref->ref_mod -= ref->ref_mod;
2758 			break;
2759 		case BTRFS_DROP_DELAYED_REF:
2760 			locked_ref->ref_mod += ref->ref_mod;
2761 			break;
2762 		default:
2763 			WARN_ON(1);
2764 		}
2765 		atomic_dec(&delayed_refs->num_entries);
2766 
2767 		/*
2768 		 * Record the must-insert_reserved flag before we drop the spin
2769 		 * lock.
2770 		 */
2771 		must_insert_reserved = locked_ref->must_insert_reserved;
2772 		locked_ref->must_insert_reserved = 0;
2773 
2774 		extent_op = locked_ref->extent_op;
2775 		locked_ref->extent_op = NULL;
2776 		spin_unlock(&locked_ref->lock);
2777 
2778 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2779 					  must_insert_reserved);
2780 
2781 		btrfs_free_delayed_extent_op(extent_op);
2782 		if (ret) {
2783 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2784 			btrfs_put_delayed_ref(ref);
2785 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2786 				    ret);
2787 			return ret;
2788 		}
2789 
2790 		btrfs_put_delayed_ref(ref);
2791 		count++;
2792 		cond_resched();
2793 	}
2794 
2795 	/*
2796 	 * We don't want to include ref heads since we can have empty ref heads
2797 	 * and those will drastically skew our runtime down since we just do
2798 	 * accounting, no actual extent tree updates.
2799 	 */
2800 	if (actual_count > 0) {
2801 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2802 		u64 avg;
2803 
2804 		/*
2805 		 * We weigh the current average higher than our current runtime
2806 		 * to avoid large swings in the average.
2807 		 */
2808 		spin_lock(&delayed_refs->lock);
2809 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2810 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2811 		spin_unlock(&delayed_refs->lock);
2812 	}
2813 	return 0;
2814 }
2815 
2816 #ifdef SCRAMBLE_DELAYED_REFS
2817 /*
2818  * Normally delayed refs get processed in ascending bytenr order. This
2819  * correlates in most cases to the order added. To expose dependencies on this
2820  * order, we start to process the tree in the middle instead of the beginning
2821  */
2822 static u64 find_middle(struct rb_root *root)
2823 {
2824 	struct rb_node *n = root->rb_node;
2825 	struct btrfs_delayed_ref_node *entry;
2826 	int alt = 1;
2827 	u64 middle;
2828 	u64 first = 0, last = 0;
2829 
2830 	n = rb_first(root);
2831 	if (n) {
2832 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2833 		first = entry->bytenr;
2834 	}
2835 	n = rb_last(root);
2836 	if (n) {
2837 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2838 		last = entry->bytenr;
2839 	}
2840 	n = root->rb_node;
2841 
2842 	while (n) {
2843 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2844 		WARN_ON(!entry->in_tree);
2845 
2846 		middle = entry->bytenr;
2847 
2848 		if (alt)
2849 			n = n->rb_left;
2850 		else
2851 			n = n->rb_right;
2852 
2853 		alt = 1 - alt;
2854 	}
2855 	return middle;
2856 }
2857 #endif
2858 
2859 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2860 {
2861 	u64 num_bytes;
2862 
2863 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2864 			     sizeof(struct btrfs_extent_inline_ref));
2865 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2866 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2867 
2868 	/*
2869 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2870 	 * closer to what we're really going to want to use.
2871 	 */
2872 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2873 }
2874 
2875 /*
2876  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2877  * would require to store the csums for that many bytes.
2878  */
2879 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2880 {
2881 	u64 csum_size;
2882 	u64 num_csums_per_leaf;
2883 	u64 num_csums;
2884 
2885 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2886 	num_csums_per_leaf = div64_u64(csum_size,
2887 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2888 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2889 	num_csums += num_csums_per_leaf - 1;
2890 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2891 	return num_csums;
2892 }
2893 
2894 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2895 				       struct btrfs_fs_info *fs_info)
2896 {
2897 	struct btrfs_block_rsv *global_rsv;
2898 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2899 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2900 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2901 	u64 num_bytes, num_dirty_bgs_bytes;
2902 	int ret = 0;
2903 
2904 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2905 	num_heads = heads_to_leaves(fs_info, num_heads);
2906 	if (num_heads > 1)
2907 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2908 	num_bytes <<= 1;
2909 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2910 							fs_info->nodesize;
2911 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2912 							     num_dirty_bgs);
2913 	global_rsv = &fs_info->global_block_rsv;
2914 
2915 	/*
2916 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2917 	 * wiggle room since running delayed refs can create more delayed refs.
2918 	 */
2919 	if (global_rsv->space_info->full) {
2920 		num_dirty_bgs_bytes <<= 1;
2921 		num_bytes <<= 1;
2922 	}
2923 
2924 	spin_lock(&global_rsv->lock);
2925 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2926 		ret = 1;
2927 	spin_unlock(&global_rsv->lock);
2928 	return ret;
2929 }
2930 
2931 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2932 				       struct btrfs_fs_info *fs_info)
2933 {
2934 	u64 num_entries =
2935 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2936 	u64 avg_runtime;
2937 	u64 val;
2938 
2939 	smp_mb();
2940 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2941 	val = num_entries * avg_runtime;
2942 	if (val >= NSEC_PER_SEC)
2943 		return 1;
2944 	if (val >= NSEC_PER_SEC / 2)
2945 		return 2;
2946 
2947 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2948 }
2949 
2950 struct async_delayed_refs {
2951 	struct btrfs_root *root;
2952 	u64 transid;
2953 	int count;
2954 	int error;
2955 	int sync;
2956 	struct completion wait;
2957 	struct btrfs_work work;
2958 };
2959 
2960 static inline struct async_delayed_refs *
2961 to_async_delayed_refs(struct btrfs_work *work)
2962 {
2963 	return container_of(work, struct async_delayed_refs, work);
2964 }
2965 
2966 static void delayed_ref_async_start(struct btrfs_work *work)
2967 {
2968 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2969 	struct btrfs_trans_handle *trans;
2970 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2971 	int ret;
2972 
2973 	/* if the commit is already started, we don't need to wait here */
2974 	if (btrfs_transaction_blocked(fs_info))
2975 		goto done;
2976 
2977 	trans = btrfs_join_transaction(async->root);
2978 	if (IS_ERR(trans)) {
2979 		async->error = PTR_ERR(trans);
2980 		goto done;
2981 	}
2982 
2983 	/*
2984 	 * trans->sync means that when we call end_transaction, we won't
2985 	 * wait on delayed refs
2986 	 */
2987 	trans->sync = true;
2988 
2989 	/* Don't bother flushing if we got into a different transaction */
2990 	if (trans->transid > async->transid)
2991 		goto end;
2992 
2993 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2994 	if (ret)
2995 		async->error = ret;
2996 end:
2997 	ret = btrfs_end_transaction(trans);
2998 	if (ret && !async->error)
2999 		async->error = ret;
3000 done:
3001 	if (async->sync)
3002 		complete(&async->wait);
3003 	else
3004 		kfree(async);
3005 }
3006 
3007 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3008 				 unsigned long count, u64 transid, int wait)
3009 {
3010 	struct async_delayed_refs *async;
3011 	int ret;
3012 
3013 	async = kmalloc(sizeof(*async), GFP_NOFS);
3014 	if (!async)
3015 		return -ENOMEM;
3016 
3017 	async->root = fs_info->tree_root;
3018 	async->count = count;
3019 	async->error = 0;
3020 	async->transid = transid;
3021 	if (wait)
3022 		async->sync = 1;
3023 	else
3024 		async->sync = 0;
3025 	init_completion(&async->wait);
3026 
3027 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3028 			delayed_ref_async_start, NULL, NULL);
3029 
3030 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3031 
3032 	if (wait) {
3033 		wait_for_completion(&async->wait);
3034 		ret = async->error;
3035 		kfree(async);
3036 		return ret;
3037 	}
3038 	return 0;
3039 }
3040 
3041 /*
3042  * this starts processing the delayed reference count updates and
3043  * extent insertions we have queued up so far.  count can be
3044  * 0, which means to process everything in the tree at the start
3045  * of the run (but not newly added entries), or it can be some target
3046  * number you'd like to process.
3047  *
3048  * Returns 0 on success or if called with an aborted transaction
3049  * Returns <0 on error and aborts the transaction
3050  */
3051 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3052 			   struct btrfs_fs_info *fs_info, unsigned long count)
3053 {
3054 	struct rb_node *node;
3055 	struct btrfs_delayed_ref_root *delayed_refs;
3056 	struct btrfs_delayed_ref_head *head;
3057 	int ret;
3058 	int run_all = count == (unsigned long)-1;
3059 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3060 
3061 	/* We'll clean this up in btrfs_cleanup_transaction */
3062 	if (trans->aborted)
3063 		return 0;
3064 
3065 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3066 		return 0;
3067 
3068 	delayed_refs = &trans->transaction->delayed_refs;
3069 	if (count == 0)
3070 		count = atomic_read(&delayed_refs->num_entries) * 2;
3071 
3072 again:
3073 #ifdef SCRAMBLE_DELAYED_REFS
3074 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3075 #endif
3076 	trans->can_flush_pending_bgs = false;
3077 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3078 	if (ret < 0) {
3079 		btrfs_abort_transaction(trans, ret);
3080 		return ret;
3081 	}
3082 
3083 	if (run_all) {
3084 		if (!list_empty(&trans->new_bgs))
3085 			btrfs_create_pending_block_groups(trans, fs_info);
3086 
3087 		spin_lock(&delayed_refs->lock);
3088 		node = rb_first(&delayed_refs->href_root);
3089 		if (!node) {
3090 			spin_unlock(&delayed_refs->lock);
3091 			goto out;
3092 		}
3093 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3094 				href_node);
3095 		refcount_inc(&head->refs);
3096 		spin_unlock(&delayed_refs->lock);
3097 
3098 		/* Mutex was contended, block until it's released and retry. */
3099 		mutex_lock(&head->mutex);
3100 		mutex_unlock(&head->mutex);
3101 
3102 		btrfs_put_delayed_ref_head(head);
3103 		cond_resched();
3104 		goto again;
3105 	}
3106 out:
3107 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3108 	return 0;
3109 }
3110 
3111 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3112 				struct btrfs_fs_info *fs_info,
3113 				u64 bytenr, u64 num_bytes, u64 flags,
3114 				int level, int is_data)
3115 {
3116 	struct btrfs_delayed_extent_op *extent_op;
3117 	int ret;
3118 
3119 	extent_op = btrfs_alloc_delayed_extent_op();
3120 	if (!extent_op)
3121 		return -ENOMEM;
3122 
3123 	extent_op->flags_to_set = flags;
3124 	extent_op->update_flags = true;
3125 	extent_op->update_key = false;
3126 	extent_op->is_data = is_data ? true : false;
3127 	extent_op->level = level;
3128 
3129 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3130 					  num_bytes, extent_op);
3131 	if (ret)
3132 		btrfs_free_delayed_extent_op(extent_op);
3133 	return ret;
3134 }
3135 
3136 static noinline int check_delayed_ref(struct btrfs_root *root,
3137 				      struct btrfs_path *path,
3138 				      u64 objectid, u64 offset, u64 bytenr)
3139 {
3140 	struct btrfs_delayed_ref_head *head;
3141 	struct btrfs_delayed_ref_node *ref;
3142 	struct btrfs_delayed_data_ref *data_ref;
3143 	struct btrfs_delayed_ref_root *delayed_refs;
3144 	struct btrfs_transaction *cur_trans;
3145 	struct rb_node *node;
3146 	int ret = 0;
3147 
3148 	cur_trans = root->fs_info->running_transaction;
3149 	if (!cur_trans)
3150 		return 0;
3151 
3152 	delayed_refs = &cur_trans->delayed_refs;
3153 	spin_lock(&delayed_refs->lock);
3154 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3155 	if (!head) {
3156 		spin_unlock(&delayed_refs->lock);
3157 		return 0;
3158 	}
3159 
3160 	if (!mutex_trylock(&head->mutex)) {
3161 		refcount_inc(&head->refs);
3162 		spin_unlock(&delayed_refs->lock);
3163 
3164 		btrfs_release_path(path);
3165 
3166 		/*
3167 		 * Mutex was contended, block until it's released and let
3168 		 * caller try again
3169 		 */
3170 		mutex_lock(&head->mutex);
3171 		mutex_unlock(&head->mutex);
3172 		btrfs_put_delayed_ref_head(head);
3173 		return -EAGAIN;
3174 	}
3175 	spin_unlock(&delayed_refs->lock);
3176 
3177 	spin_lock(&head->lock);
3178 	/*
3179 	 * XXX: We should replace this with a proper search function in the
3180 	 * future.
3181 	 */
3182 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3183 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3184 		/* If it's a shared ref we know a cross reference exists */
3185 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3186 			ret = 1;
3187 			break;
3188 		}
3189 
3190 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3191 
3192 		/*
3193 		 * If our ref doesn't match the one we're currently looking at
3194 		 * then we have a cross reference.
3195 		 */
3196 		if (data_ref->root != root->root_key.objectid ||
3197 		    data_ref->objectid != objectid ||
3198 		    data_ref->offset != offset) {
3199 			ret = 1;
3200 			break;
3201 		}
3202 	}
3203 	spin_unlock(&head->lock);
3204 	mutex_unlock(&head->mutex);
3205 	return ret;
3206 }
3207 
3208 static noinline int check_committed_ref(struct btrfs_root *root,
3209 					struct btrfs_path *path,
3210 					u64 objectid, u64 offset, u64 bytenr)
3211 {
3212 	struct btrfs_fs_info *fs_info = root->fs_info;
3213 	struct btrfs_root *extent_root = fs_info->extent_root;
3214 	struct extent_buffer *leaf;
3215 	struct btrfs_extent_data_ref *ref;
3216 	struct btrfs_extent_inline_ref *iref;
3217 	struct btrfs_extent_item *ei;
3218 	struct btrfs_key key;
3219 	u32 item_size;
3220 	int type;
3221 	int ret;
3222 
3223 	key.objectid = bytenr;
3224 	key.offset = (u64)-1;
3225 	key.type = BTRFS_EXTENT_ITEM_KEY;
3226 
3227 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3228 	if (ret < 0)
3229 		goto out;
3230 	BUG_ON(ret == 0); /* Corruption */
3231 
3232 	ret = -ENOENT;
3233 	if (path->slots[0] == 0)
3234 		goto out;
3235 
3236 	path->slots[0]--;
3237 	leaf = path->nodes[0];
3238 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3239 
3240 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3241 		goto out;
3242 
3243 	ret = 1;
3244 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3246 	if (item_size < sizeof(*ei)) {
3247 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3248 		goto out;
3249 	}
3250 #endif
3251 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3252 
3253 	if (item_size != sizeof(*ei) +
3254 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3255 		goto out;
3256 
3257 	if (btrfs_extent_generation(leaf, ei) <=
3258 	    btrfs_root_last_snapshot(&root->root_item))
3259 		goto out;
3260 
3261 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3262 
3263 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3264 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3265 		goto out;
3266 
3267 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3268 	if (btrfs_extent_refs(leaf, ei) !=
3269 	    btrfs_extent_data_ref_count(leaf, ref) ||
3270 	    btrfs_extent_data_ref_root(leaf, ref) !=
3271 	    root->root_key.objectid ||
3272 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3273 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3274 		goto out;
3275 
3276 	ret = 0;
3277 out:
3278 	return ret;
3279 }
3280 
3281 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3282 			  u64 bytenr)
3283 {
3284 	struct btrfs_path *path;
3285 	int ret;
3286 	int ret2;
3287 
3288 	path = btrfs_alloc_path();
3289 	if (!path)
3290 		return -ENOENT;
3291 
3292 	do {
3293 		ret = check_committed_ref(root, path, objectid,
3294 					  offset, bytenr);
3295 		if (ret && ret != -ENOENT)
3296 			goto out;
3297 
3298 		ret2 = check_delayed_ref(root, path, objectid,
3299 					 offset, bytenr);
3300 	} while (ret2 == -EAGAIN);
3301 
3302 	if (ret2 && ret2 != -ENOENT) {
3303 		ret = ret2;
3304 		goto out;
3305 	}
3306 
3307 	if (ret != -ENOENT || ret2 != -ENOENT)
3308 		ret = 0;
3309 out:
3310 	btrfs_free_path(path);
3311 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3312 		WARN_ON(ret > 0);
3313 	return ret;
3314 }
3315 
3316 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3317 			   struct btrfs_root *root,
3318 			   struct extent_buffer *buf,
3319 			   int full_backref, int inc)
3320 {
3321 	struct btrfs_fs_info *fs_info = root->fs_info;
3322 	u64 bytenr;
3323 	u64 num_bytes;
3324 	u64 parent;
3325 	u64 ref_root;
3326 	u32 nritems;
3327 	struct btrfs_key key;
3328 	struct btrfs_file_extent_item *fi;
3329 	int i;
3330 	int level;
3331 	int ret = 0;
3332 	int (*process_func)(struct btrfs_trans_handle *,
3333 			    struct btrfs_root *,
3334 			    u64, u64, u64, u64, u64, u64);
3335 
3336 
3337 	if (btrfs_is_testing(fs_info))
3338 		return 0;
3339 
3340 	ref_root = btrfs_header_owner(buf);
3341 	nritems = btrfs_header_nritems(buf);
3342 	level = btrfs_header_level(buf);
3343 
3344 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3345 		return 0;
3346 
3347 	if (inc)
3348 		process_func = btrfs_inc_extent_ref;
3349 	else
3350 		process_func = btrfs_free_extent;
3351 
3352 	if (full_backref)
3353 		parent = buf->start;
3354 	else
3355 		parent = 0;
3356 
3357 	for (i = 0; i < nritems; i++) {
3358 		if (level == 0) {
3359 			btrfs_item_key_to_cpu(buf, &key, i);
3360 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3361 				continue;
3362 			fi = btrfs_item_ptr(buf, i,
3363 					    struct btrfs_file_extent_item);
3364 			if (btrfs_file_extent_type(buf, fi) ==
3365 			    BTRFS_FILE_EXTENT_INLINE)
3366 				continue;
3367 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3368 			if (bytenr == 0)
3369 				continue;
3370 
3371 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3372 			key.offset -= btrfs_file_extent_offset(buf, fi);
3373 			ret = process_func(trans, root, bytenr, num_bytes,
3374 					   parent, ref_root, key.objectid,
3375 					   key.offset);
3376 			if (ret)
3377 				goto fail;
3378 		} else {
3379 			bytenr = btrfs_node_blockptr(buf, i);
3380 			num_bytes = fs_info->nodesize;
3381 			ret = process_func(trans, root, bytenr, num_bytes,
3382 					   parent, ref_root, level - 1, 0);
3383 			if (ret)
3384 				goto fail;
3385 		}
3386 	}
3387 	return 0;
3388 fail:
3389 	return ret;
3390 }
3391 
3392 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3393 		  struct extent_buffer *buf, int full_backref)
3394 {
3395 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3396 }
3397 
3398 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3399 		  struct extent_buffer *buf, int full_backref)
3400 {
3401 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3402 }
3403 
3404 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3405 				 struct btrfs_fs_info *fs_info,
3406 				 struct btrfs_path *path,
3407 				 struct btrfs_block_group_cache *cache)
3408 {
3409 	int ret;
3410 	struct btrfs_root *extent_root = fs_info->extent_root;
3411 	unsigned long bi;
3412 	struct extent_buffer *leaf;
3413 
3414 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3415 	if (ret) {
3416 		if (ret > 0)
3417 			ret = -ENOENT;
3418 		goto fail;
3419 	}
3420 
3421 	leaf = path->nodes[0];
3422 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3423 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3424 	btrfs_mark_buffer_dirty(leaf);
3425 fail:
3426 	btrfs_release_path(path);
3427 	return ret;
3428 
3429 }
3430 
3431 static struct btrfs_block_group_cache *
3432 next_block_group(struct btrfs_fs_info *fs_info,
3433 		 struct btrfs_block_group_cache *cache)
3434 {
3435 	struct rb_node *node;
3436 
3437 	spin_lock(&fs_info->block_group_cache_lock);
3438 
3439 	/* If our block group was removed, we need a full search. */
3440 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3441 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3442 
3443 		spin_unlock(&fs_info->block_group_cache_lock);
3444 		btrfs_put_block_group(cache);
3445 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3446 	}
3447 	node = rb_next(&cache->cache_node);
3448 	btrfs_put_block_group(cache);
3449 	if (node) {
3450 		cache = rb_entry(node, struct btrfs_block_group_cache,
3451 				 cache_node);
3452 		btrfs_get_block_group(cache);
3453 	} else
3454 		cache = NULL;
3455 	spin_unlock(&fs_info->block_group_cache_lock);
3456 	return cache;
3457 }
3458 
3459 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3460 			    struct btrfs_trans_handle *trans,
3461 			    struct btrfs_path *path)
3462 {
3463 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3464 	struct btrfs_root *root = fs_info->tree_root;
3465 	struct inode *inode = NULL;
3466 	struct extent_changeset *data_reserved = NULL;
3467 	u64 alloc_hint = 0;
3468 	int dcs = BTRFS_DC_ERROR;
3469 	u64 num_pages = 0;
3470 	int retries = 0;
3471 	int ret = 0;
3472 
3473 	/*
3474 	 * If this block group is smaller than 100 megs don't bother caching the
3475 	 * block group.
3476 	 */
3477 	if (block_group->key.offset < (100 * SZ_1M)) {
3478 		spin_lock(&block_group->lock);
3479 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3480 		spin_unlock(&block_group->lock);
3481 		return 0;
3482 	}
3483 
3484 	if (trans->aborted)
3485 		return 0;
3486 again:
3487 	inode = lookup_free_space_inode(fs_info, block_group, path);
3488 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3489 		ret = PTR_ERR(inode);
3490 		btrfs_release_path(path);
3491 		goto out;
3492 	}
3493 
3494 	if (IS_ERR(inode)) {
3495 		BUG_ON(retries);
3496 		retries++;
3497 
3498 		if (block_group->ro)
3499 			goto out_free;
3500 
3501 		ret = create_free_space_inode(fs_info, trans, block_group,
3502 					      path);
3503 		if (ret)
3504 			goto out_free;
3505 		goto again;
3506 	}
3507 
3508 	/*
3509 	 * We want to set the generation to 0, that way if anything goes wrong
3510 	 * from here on out we know not to trust this cache when we load up next
3511 	 * time.
3512 	 */
3513 	BTRFS_I(inode)->generation = 0;
3514 	ret = btrfs_update_inode(trans, root, inode);
3515 	if (ret) {
3516 		/*
3517 		 * So theoretically we could recover from this, simply set the
3518 		 * super cache generation to 0 so we know to invalidate the
3519 		 * cache, but then we'd have to keep track of the block groups
3520 		 * that fail this way so we know we _have_ to reset this cache
3521 		 * before the next commit or risk reading stale cache.  So to
3522 		 * limit our exposure to horrible edge cases lets just abort the
3523 		 * transaction, this only happens in really bad situations
3524 		 * anyway.
3525 		 */
3526 		btrfs_abort_transaction(trans, ret);
3527 		goto out_put;
3528 	}
3529 	WARN_ON(ret);
3530 
3531 	/* We've already setup this transaction, go ahead and exit */
3532 	if (block_group->cache_generation == trans->transid &&
3533 	    i_size_read(inode)) {
3534 		dcs = BTRFS_DC_SETUP;
3535 		goto out_put;
3536 	}
3537 
3538 	if (i_size_read(inode) > 0) {
3539 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3540 					&fs_info->global_block_rsv);
3541 		if (ret)
3542 			goto out_put;
3543 
3544 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3545 		if (ret)
3546 			goto out_put;
3547 	}
3548 
3549 	spin_lock(&block_group->lock);
3550 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3551 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3552 		/*
3553 		 * don't bother trying to write stuff out _if_
3554 		 * a) we're not cached,
3555 		 * b) we're with nospace_cache mount option,
3556 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3557 		 */
3558 		dcs = BTRFS_DC_WRITTEN;
3559 		spin_unlock(&block_group->lock);
3560 		goto out_put;
3561 	}
3562 	spin_unlock(&block_group->lock);
3563 
3564 	/*
3565 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3566 	 * skip doing the setup, we've already cleared the cache so we're safe.
3567 	 */
3568 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3569 		ret = -ENOSPC;
3570 		goto out_put;
3571 	}
3572 
3573 	/*
3574 	 * Try to preallocate enough space based on how big the block group is.
3575 	 * Keep in mind this has to include any pinned space which could end up
3576 	 * taking up quite a bit since it's not folded into the other space
3577 	 * cache.
3578 	 */
3579 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3580 	if (!num_pages)
3581 		num_pages = 1;
3582 
3583 	num_pages *= 16;
3584 	num_pages *= PAGE_SIZE;
3585 
3586 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3587 	if (ret)
3588 		goto out_put;
3589 
3590 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3591 					      num_pages, num_pages,
3592 					      &alloc_hint);
3593 	/*
3594 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3595 	 * of metadata or split extents when writing the cache out, which means
3596 	 * we can enospc if we are heavily fragmented in addition to just normal
3597 	 * out of space conditions.  So if we hit this just skip setting up any
3598 	 * other block groups for this transaction, maybe we'll unpin enough
3599 	 * space the next time around.
3600 	 */
3601 	if (!ret)
3602 		dcs = BTRFS_DC_SETUP;
3603 	else if (ret == -ENOSPC)
3604 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3605 
3606 out_put:
3607 	iput(inode);
3608 out_free:
3609 	btrfs_release_path(path);
3610 out:
3611 	spin_lock(&block_group->lock);
3612 	if (!ret && dcs == BTRFS_DC_SETUP)
3613 		block_group->cache_generation = trans->transid;
3614 	block_group->disk_cache_state = dcs;
3615 	spin_unlock(&block_group->lock);
3616 
3617 	extent_changeset_free(data_reserved);
3618 	return ret;
3619 }
3620 
3621 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3622 			    struct btrfs_fs_info *fs_info)
3623 {
3624 	struct btrfs_block_group_cache *cache, *tmp;
3625 	struct btrfs_transaction *cur_trans = trans->transaction;
3626 	struct btrfs_path *path;
3627 
3628 	if (list_empty(&cur_trans->dirty_bgs) ||
3629 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3630 		return 0;
3631 
3632 	path = btrfs_alloc_path();
3633 	if (!path)
3634 		return -ENOMEM;
3635 
3636 	/* Could add new block groups, use _safe just in case */
3637 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3638 				 dirty_list) {
3639 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3640 			cache_save_setup(cache, trans, path);
3641 	}
3642 
3643 	btrfs_free_path(path);
3644 	return 0;
3645 }
3646 
3647 /*
3648  * transaction commit does final block group cache writeback during a
3649  * critical section where nothing is allowed to change the FS.  This is
3650  * required in order for the cache to actually match the block group,
3651  * but can introduce a lot of latency into the commit.
3652  *
3653  * So, btrfs_start_dirty_block_groups is here to kick off block group
3654  * cache IO.  There's a chance we'll have to redo some of it if the
3655  * block group changes again during the commit, but it greatly reduces
3656  * the commit latency by getting rid of the easy block groups while
3657  * we're still allowing others to join the commit.
3658  */
3659 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3660 				   struct btrfs_fs_info *fs_info)
3661 {
3662 	struct btrfs_block_group_cache *cache;
3663 	struct btrfs_transaction *cur_trans = trans->transaction;
3664 	int ret = 0;
3665 	int should_put;
3666 	struct btrfs_path *path = NULL;
3667 	LIST_HEAD(dirty);
3668 	struct list_head *io = &cur_trans->io_bgs;
3669 	int num_started = 0;
3670 	int loops = 0;
3671 
3672 	spin_lock(&cur_trans->dirty_bgs_lock);
3673 	if (list_empty(&cur_trans->dirty_bgs)) {
3674 		spin_unlock(&cur_trans->dirty_bgs_lock);
3675 		return 0;
3676 	}
3677 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3678 	spin_unlock(&cur_trans->dirty_bgs_lock);
3679 
3680 again:
3681 	/*
3682 	 * make sure all the block groups on our dirty list actually
3683 	 * exist
3684 	 */
3685 	btrfs_create_pending_block_groups(trans, fs_info);
3686 
3687 	if (!path) {
3688 		path = btrfs_alloc_path();
3689 		if (!path)
3690 			return -ENOMEM;
3691 	}
3692 
3693 	/*
3694 	 * cache_write_mutex is here only to save us from balance or automatic
3695 	 * removal of empty block groups deleting this block group while we are
3696 	 * writing out the cache
3697 	 */
3698 	mutex_lock(&trans->transaction->cache_write_mutex);
3699 	while (!list_empty(&dirty)) {
3700 		cache = list_first_entry(&dirty,
3701 					 struct btrfs_block_group_cache,
3702 					 dirty_list);
3703 		/*
3704 		 * this can happen if something re-dirties a block
3705 		 * group that is already under IO.  Just wait for it to
3706 		 * finish and then do it all again
3707 		 */
3708 		if (!list_empty(&cache->io_list)) {
3709 			list_del_init(&cache->io_list);
3710 			btrfs_wait_cache_io(trans, cache, path);
3711 			btrfs_put_block_group(cache);
3712 		}
3713 
3714 
3715 		/*
3716 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3717 		 * if it should update the cache_state.  Don't delete
3718 		 * until after we wait.
3719 		 *
3720 		 * Since we're not running in the commit critical section
3721 		 * we need the dirty_bgs_lock to protect from update_block_group
3722 		 */
3723 		spin_lock(&cur_trans->dirty_bgs_lock);
3724 		list_del_init(&cache->dirty_list);
3725 		spin_unlock(&cur_trans->dirty_bgs_lock);
3726 
3727 		should_put = 1;
3728 
3729 		cache_save_setup(cache, trans, path);
3730 
3731 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3732 			cache->io_ctl.inode = NULL;
3733 			ret = btrfs_write_out_cache(fs_info, trans,
3734 						    cache, path);
3735 			if (ret == 0 && cache->io_ctl.inode) {
3736 				num_started++;
3737 				should_put = 0;
3738 
3739 				/*
3740 				 * the cache_write_mutex is protecting
3741 				 * the io_list
3742 				 */
3743 				list_add_tail(&cache->io_list, io);
3744 			} else {
3745 				/*
3746 				 * if we failed to write the cache, the
3747 				 * generation will be bad and life goes on
3748 				 */
3749 				ret = 0;
3750 			}
3751 		}
3752 		if (!ret) {
3753 			ret = write_one_cache_group(trans, fs_info,
3754 						    path, cache);
3755 			/*
3756 			 * Our block group might still be attached to the list
3757 			 * of new block groups in the transaction handle of some
3758 			 * other task (struct btrfs_trans_handle->new_bgs). This
3759 			 * means its block group item isn't yet in the extent
3760 			 * tree. If this happens ignore the error, as we will
3761 			 * try again later in the critical section of the
3762 			 * transaction commit.
3763 			 */
3764 			if (ret == -ENOENT) {
3765 				ret = 0;
3766 				spin_lock(&cur_trans->dirty_bgs_lock);
3767 				if (list_empty(&cache->dirty_list)) {
3768 					list_add_tail(&cache->dirty_list,
3769 						      &cur_trans->dirty_bgs);
3770 					btrfs_get_block_group(cache);
3771 				}
3772 				spin_unlock(&cur_trans->dirty_bgs_lock);
3773 			} else if (ret) {
3774 				btrfs_abort_transaction(trans, ret);
3775 			}
3776 		}
3777 
3778 		/* if its not on the io list, we need to put the block group */
3779 		if (should_put)
3780 			btrfs_put_block_group(cache);
3781 
3782 		if (ret)
3783 			break;
3784 
3785 		/*
3786 		 * Avoid blocking other tasks for too long. It might even save
3787 		 * us from writing caches for block groups that are going to be
3788 		 * removed.
3789 		 */
3790 		mutex_unlock(&trans->transaction->cache_write_mutex);
3791 		mutex_lock(&trans->transaction->cache_write_mutex);
3792 	}
3793 	mutex_unlock(&trans->transaction->cache_write_mutex);
3794 
3795 	/*
3796 	 * go through delayed refs for all the stuff we've just kicked off
3797 	 * and then loop back (just once)
3798 	 */
3799 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3800 	if (!ret && loops == 0) {
3801 		loops++;
3802 		spin_lock(&cur_trans->dirty_bgs_lock);
3803 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3804 		/*
3805 		 * dirty_bgs_lock protects us from concurrent block group
3806 		 * deletes too (not just cache_write_mutex).
3807 		 */
3808 		if (!list_empty(&dirty)) {
3809 			spin_unlock(&cur_trans->dirty_bgs_lock);
3810 			goto again;
3811 		}
3812 		spin_unlock(&cur_trans->dirty_bgs_lock);
3813 	} else if (ret < 0) {
3814 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3815 	}
3816 
3817 	btrfs_free_path(path);
3818 	return ret;
3819 }
3820 
3821 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3822 				   struct btrfs_fs_info *fs_info)
3823 {
3824 	struct btrfs_block_group_cache *cache;
3825 	struct btrfs_transaction *cur_trans = trans->transaction;
3826 	int ret = 0;
3827 	int should_put;
3828 	struct btrfs_path *path;
3829 	struct list_head *io = &cur_trans->io_bgs;
3830 	int num_started = 0;
3831 
3832 	path = btrfs_alloc_path();
3833 	if (!path)
3834 		return -ENOMEM;
3835 
3836 	/*
3837 	 * Even though we are in the critical section of the transaction commit,
3838 	 * we can still have concurrent tasks adding elements to this
3839 	 * transaction's list of dirty block groups. These tasks correspond to
3840 	 * endio free space workers started when writeback finishes for a
3841 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3842 	 * allocate new block groups as a result of COWing nodes of the root
3843 	 * tree when updating the free space inode. The writeback for the space
3844 	 * caches is triggered by an earlier call to
3845 	 * btrfs_start_dirty_block_groups() and iterations of the following
3846 	 * loop.
3847 	 * Also we want to do the cache_save_setup first and then run the
3848 	 * delayed refs to make sure we have the best chance at doing this all
3849 	 * in one shot.
3850 	 */
3851 	spin_lock(&cur_trans->dirty_bgs_lock);
3852 	while (!list_empty(&cur_trans->dirty_bgs)) {
3853 		cache = list_first_entry(&cur_trans->dirty_bgs,
3854 					 struct btrfs_block_group_cache,
3855 					 dirty_list);
3856 
3857 		/*
3858 		 * this can happen if cache_save_setup re-dirties a block
3859 		 * group that is already under IO.  Just wait for it to
3860 		 * finish and then do it all again
3861 		 */
3862 		if (!list_empty(&cache->io_list)) {
3863 			spin_unlock(&cur_trans->dirty_bgs_lock);
3864 			list_del_init(&cache->io_list);
3865 			btrfs_wait_cache_io(trans, cache, path);
3866 			btrfs_put_block_group(cache);
3867 			spin_lock(&cur_trans->dirty_bgs_lock);
3868 		}
3869 
3870 		/*
3871 		 * don't remove from the dirty list until after we've waited
3872 		 * on any pending IO
3873 		 */
3874 		list_del_init(&cache->dirty_list);
3875 		spin_unlock(&cur_trans->dirty_bgs_lock);
3876 		should_put = 1;
3877 
3878 		cache_save_setup(cache, trans, path);
3879 
3880 		if (!ret)
3881 			ret = btrfs_run_delayed_refs(trans, fs_info,
3882 						     (unsigned long) -1);
3883 
3884 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3885 			cache->io_ctl.inode = NULL;
3886 			ret = btrfs_write_out_cache(fs_info, trans,
3887 						    cache, path);
3888 			if (ret == 0 && cache->io_ctl.inode) {
3889 				num_started++;
3890 				should_put = 0;
3891 				list_add_tail(&cache->io_list, io);
3892 			} else {
3893 				/*
3894 				 * if we failed to write the cache, the
3895 				 * generation will be bad and life goes on
3896 				 */
3897 				ret = 0;
3898 			}
3899 		}
3900 		if (!ret) {
3901 			ret = write_one_cache_group(trans, fs_info,
3902 						    path, cache);
3903 			/*
3904 			 * One of the free space endio workers might have
3905 			 * created a new block group while updating a free space
3906 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3907 			 * and hasn't released its transaction handle yet, in
3908 			 * which case the new block group is still attached to
3909 			 * its transaction handle and its creation has not
3910 			 * finished yet (no block group item in the extent tree
3911 			 * yet, etc). If this is the case, wait for all free
3912 			 * space endio workers to finish and retry. This is a
3913 			 * a very rare case so no need for a more efficient and
3914 			 * complex approach.
3915 			 */
3916 			if (ret == -ENOENT) {
3917 				wait_event(cur_trans->writer_wait,
3918 				   atomic_read(&cur_trans->num_writers) == 1);
3919 				ret = write_one_cache_group(trans, fs_info,
3920 							    path, cache);
3921 			}
3922 			if (ret)
3923 				btrfs_abort_transaction(trans, ret);
3924 		}
3925 
3926 		/* if its not on the io list, we need to put the block group */
3927 		if (should_put)
3928 			btrfs_put_block_group(cache);
3929 		spin_lock(&cur_trans->dirty_bgs_lock);
3930 	}
3931 	spin_unlock(&cur_trans->dirty_bgs_lock);
3932 
3933 	while (!list_empty(io)) {
3934 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3935 					 io_list);
3936 		list_del_init(&cache->io_list);
3937 		btrfs_wait_cache_io(trans, cache, path);
3938 		btrfs_put_block_group(cache);
3939 	}
3940 
3941 	btrfs_free_path(path);
3942 	return ret;
3943 }
3944 
3945 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3946 {
3947 	struct btrfs_block_group_cache *block_group;
3948 	int readonly = 0;
3949 
3950 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3951 	if (!block_group || block_group->ro)
3952 		readonly = 1;
3953 	if (block_group)
3954 		btrfs_put_block_group(block_group);
3955 	return readonly;
3956 }
3957 
3958 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3959 {
3960 	struct btrfs_block_group_cache *bg;
3961 	bool ret = true;
3962 
3963 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3964 	if (!bg)
3965 		return false;
3966 
3967 	spin_lock(&bg->lock);
3968 	if (bg->ro)
3969 		ret = false;
3970 	else
3971 		atomic_inc(&bg->nocow_writers);
3972 	spin_unlock(&bg->lock);
3973 
3974 	/* no put on block group, done by btrfs_dec_nocow_writers */
3975 	if (!ret)
3976 		btrfs_put_block_group(bg);
3977 
3978 	return ret;
3979 
3980 }
3981 
3982 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3983 {
3984 	struct btrfs_block_group_cache *bg;
3985 
3986 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3987 	ASSERT(bg);
3988 	if (atomic_dec_and_test(&bg->nocow_writers))
3989 		wake_up_atomic_t(&bg->nocow_writers);
3990 	/*
3991 	 * Once for our lookup and once for the lookup done by a previous call
3992 	 * to btrfs_inc_nocow_writers()
3993 	 */
3994 	btrfs_put_block_group(bg);
3995 	btrfs_put_block_group(bg);
3996 }
3997 
3998 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3999 {
4000 	wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4001 			 TASK_UNINTERRUPTIBLE);
4002 }
4003 
4004 static const char *alloc_name(u64 flags)
4005 {
4006 	switch (flags) {
4007 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4008 		return "mixed";
4009 	case BTRFS_BLOCK_GROUP_METADATA:
4010 		return "metadata";
4011 	case BTRFS_BLOCK_GROUP_DATA:
4012 		return "data";
4013 	case BTRFS_BLOCK_GROUP_SYSTEM:
4014 		return "system";
4015 	default:
4016 		WARN_ON(1);
4017 		return "invalid-combination";
4018 	};
4019 }
4020 
4021 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4022 			     struct btrfs_space_info **new)
4023 {
4024 
4025 	struct btrfs_space_info *space_info;
4026 	int i;
4027 	int ret;
4028 
4029 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4030 	if (!space_info)
4031 		return -ENOMEM;
4032 
4033 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4034 				 GFP_KERNEL);
4035 	if (ret) {
4036 		kfree(space_info);
4037 		return ret;
4038 	}
4039 
4040 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4041 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4042 	init_rwsem(&space_info->groups_sem);
4043 	spin_lock_init(&space_info->lock);
4044 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4045 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4046 	init_waitqueue_head(&space_info->wait);
4047 	INIT_LIST_HEAD(&space_info->ro_bgs);
4048 	INIT_LIST_HEAD(&space_info->tickets);
4049 	INIT_LIST_HEAD(&space_info->priority_tickets);
4050 
4051 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4052 				    info->space_info_kobj, "%s",
4053 				    alloc_name(space_info->flags));
4054 	if (ret) {
4055 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4056 		kfree(space_info);
4057 		return ret;
4058 	}
4059 
4060 	*new = space_info;
4061 	list_add_rcu(&space_info->list, &info->space_info);
4062 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4063 		info->data_sinfo = space_info;
4064 
4065 	return ret;
4066 }
4067 
4068 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4069 			     u64 total_bytes, u64 bytes_used,
4070 			     u64 bytes_readonly,
4071 			     struct btrfs_space_info **space_info)
4072 {
4073 	struct btrfs_space_info *found;
4074 	int factor;
4075 
4076 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4077 		     BTRFS_BLOCK_GROUP_RAID10))
4078 		factor = 2;
4079 	else
4080 		factor = 1;
4081 
4082 	found = __find_space_info(info, flags);
4083 	ASSERT(found);
4084 	spin_lock(&found->lock);
4085 	found->total_bytes += total_bytes;
4086 	found->disk_total += total_bytes * factor;
4087 	found->bytes_used += bytes_used;
4088 	found->disk_used += bytes_used * factor;
4089 	found->bytes_readonly += bytes_readonly;
4090 	if (total_bytes > 0)
4091 		found->full = 0;
4092 	space_info_add_new_bytes(info, found, total_bytes -
4093 				 bytes_used - bytes_readonly);
4094 	spin_unlock(&found->lock);
4095 	*space_info = found;
4096 }
4097 
4098 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4099 {
4100 	u64 extra_flags = chunk_to_extended(flags) &
4101 				BTRFS_EXTENDED_PROFILE_MASK;
4102 
4103 	write_seqlock(&fs_info->profiles_lock);
4104 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4105 		fs_info->avail_data_alloc_bits |= extra_flags;
4106 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4107 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4108 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4109 		fs_info->avail_system_alloc_bits |= extra_flags;
4110 	write_sequnlock(&fs_info->profiles_lock);
4111 }
4112 
4113 /*
4114  * returns target flags in extended format or 0 if restripe for this
4115  * chunk_type is not in progress
4116  *
4117  * should be called with either volume_mutex or balance_lock held
4118  */
4119 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4120 {
4121 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4122 	u64 target = 0;
4123 
4124 	if (!bctl)
4125 		return 0;
4126 
4127 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4128 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4130 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4131 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4133 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4134 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4135 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4136 	}
4137 
4138 	return target;
4139 }
4140 
4141 /*
4142  * @flags: available profiles in extended format (see ctree.h)
4143  *
4144  * Returns reduced profile in chunk format.  If profile changing is in
4145  * progress (either running or paused) picks the target profile (if it's
4146  * already available), otherwise falls back to plain reducing.
4147  */
4148 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4149 {
4150 	u64 num_devices = fs_info->fs_devices->rw_devices;
4151 	u64 target;
4152 	u64 raid_type;
4153 	u64 allowed = 0;
4154 
4155 	/*
4156 	 * see if restripe for this chunk_type is in progress, if so
4157 	 * try to reduce to the target profile
4158 	 */
4159 	spin_lock(&fs_info->balance_lock);
4160 	target = get_restripe_target(fs_info, flags);
4161 	if (target) {
4162 		/* pick target profile only if it's already available */
4163 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4164 			spin_unlock(&fs_info->balance_lock);
4165 			return extended_to_chunk(target);
4166 		}
4167 	}
4168 	spin_unlock(&fs_info->balance_lock);
4169 
4170 	/* First, mask out the RAID levels which aren't possible */
4171 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4172 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4173 			allowed |= btrfs_raid_group[raid_type];
4174 	}
4175 	allowed &= flags;
4176 
4177 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4178 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4179 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4180 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4181 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4182 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4183 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4184 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4185 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4186 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4187 
4188 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4189 
4190 	return extended_to_chunk(flags | allowed);
4191 }
4192 
4193 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4194 {
4195 	unsigned seq;
4196 	u64 flags;
4197 
4198 	do {
4199 		flags = orig_flags;
4200 		seq = read_seqbegin(&fs_info->profiles_lock);
4201 
4202 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4203 			flags |= fs_info->avail_data_alloc_bits;
4204 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4205 			flags |= fs_info->avail_system_alloc_bits;
4206 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4207 			flags |= fs_info->avail_metadata_alloc_bits;
4208 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4209 
4210 	return btrfs_reduce_alloc_profile(fs_info, flags);
4211 }
4212 
4213 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4214 {
4215 	struct btrfs_fs_info *fs_info = root->fs_info;
4216 	u64 flags;
4217 	u64 ret;
4218 
4219 	if (data)
4220 		flags = BTRFS_BLOCK_GROUP_DATA;
4221 	else if (root == fs_info->chunk_root)
4222 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4223 	else
4224 		flags = BTRFS_BLOCK_GROUP_METADATA;
4225 
4226 	ret = get_alloc_profile(fs_info, flags);
4227 	return ret;
4228 }
4229 
4230 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4231 {
4232 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4233 }
4234 
4235 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4236 {
4237 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4238 }
4239 
4240 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4241 {
4242 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4243 }
4244 
4245 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4246 				 bool may_use_included)
4247 {
4248 	ASSERT(s_info);
4249 	return s_info->bytes_used + s_info->bytes_reserved +
4250 		s_info->bytes_pinned + s_info->bytes_readonly +
4251 		(may_use_included ? s_info->bytes_may_use : 0);
4252 }
4253 
4254 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4255 {
4256 	struct btrfs_root *root = inode->root;
4257 	struct btrfs_fs_info *fs_info = root->fs_info;
4258 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4259 	u64 used;
4260 	int ret = 0;
4261 	int need_commit = 2;
4262 	int have_pinned_space;
4263 
4264 	/* make sure bytes are sectorsize aligned */
4265 	bytes = ALIGN(bytes, fs_info->sectorsize);
4266 
4267 	if (btrfs_is_free_space_inode(inode)) {
4268 		need_commit = 0;
4269 		ASSERT(current->journal_info);
4270 	}
4271 
4272 again:
4273 	/* make sure we have enough space to handle the data first */
4274 	spin_lock(&data_sinfo->lock);
4275 	used = btrfs_space_info_used(data_sinfo, true);
4276 
4277 	if (used + bytes > data_sinfo->total_bytes) {
4278 		struct btrfs_trans_handle *trans;
4279 
4280 		/*
4281 		 * if we don't have enough free bytes in this space then we need
4282 		 * to alloc a new chunk.
4283 		 */
4284 		if (!data_sinfo->full) {
4285 			u64 alloc_target;
4286 
4287 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4288 			spin_unlock(&data_sinfo->lock);
4289 
4290 			alloc_target = btrfs_data_alloc_profile(fs_info);
4291 			/*
4292 			 * It is ugly that we don't call nolock join
4293 			 * transaction for the free space inode case here.
4294 			 * But it is safe because we only do the data space
4295 			 * reservation for the free space cache in the
4296 			 * transaction context, the common join transaction
4297 			 * just increase the counter of the current transaction
4298 			 * handler, doesn't try to acquire the trans_lock of
4299 			 * the fs.
4300 			 */
4301 			trans = btrfs_join_transaction(root);
4302 			if (IS_ERR(trans))
4303 				return PTR_ERR(trans);
4304 
4305 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4306 					     CHUNK_ALLOC_NO_FORCE);
4307 			btrfs_end_transaction(trans);
4308 			if (ret < 0) {
4309 				if (ret != -ENOSPC)
4310 					return ret;
4311 				else {
4312 					have_pinned_space = 1;
4313 					goto commit_trans;
4314 				}
4315 			}
4316 
4317 			goto again;
4318 		}
4319 
4320 		/*
4321 		 * If we don't have enough pinned space to deal with this
4322 		 * allocation, and no removed chunk in current transaction,
4323 		 * don't bother committing the transaction.
4324 		 */
4325 		have_pinned_space = percpu_counter_compare(
4326 			&data_sinfo->total_bytes_pinned,
4327 			used + bytes - data_sinfo->total_bytes);
4328 		spin_unlock(&data_sinfo->lock);
4329 
4330 		/* commit the current transaction and try again */
4331 commit_trans:
4332 		if (need_commit &&
4333 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4334 			need_commit--;
4335 
4336 			if (need_commit > 0) {
4337 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4338 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4339 							 (u64)-1);
4340 			}
4341 
4342 			trans = btrfs_join_transaction(root);
4343 			if (IS_ERR(trans))
4344 				return PTR_ERR(trans);
4345 			if (have_pinned_space >= 0 ||
4346 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4347 				     &trans->transaction->flags) ||
4348 			    need_commit > 0) {
4349 				ret = btrfs_commit_transaction(trans);
4350 				if (ret)
4351 					return ret;
4352 				/*
4353 				 * The cleaner kthread might still be doing iput
4354 				 * operations. Wait for it to finish so that
4355 				 * more space is released.
4356 				 */
4357 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4358 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4359 				goto again;
4360 			} else {
4361 				btrfs_end_transaction(trans);
4362 			}
4363 		}
4364 
4365 		trace_btrfs_space_reservation(fs_info,
4366 					      "space_info:enospc",
4367 					      data_sinfo->flags, bytes, 1);
4368 		return -ENOSPC;
4369 	}
4370 	data_sinfo->bytes_may_use += bytes;
4371 	trace_btrfs_space_reservation(fs_info, "space_info",
4372 				      data_sinfo->flags, bytes, 1);
4373 	spin_unlock(&data_sinfo->lock);
4374 
4375 	return ret;
4376 }
4377 
4378 int btrfs_check_data_free_space(struct inode *inode,
4379 			struct extent_changeset **reserved, u64 start, u64 len)
4380 {
4381 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4382 	int ret;
4383 
4384 	/* align the range */
4385 	len = round_up(start + len, fs_info->sectorsize) -
4386 	      round_down(start, fs_info->sectorsize);
4387 	start = round_down(start, fs_info->sectorsize);
4388 
4389 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4390 	if (ret < 0)
4391 		return ret;
4392 
4393 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4394 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4395 	if (ret < 0)
4396 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4397 	else
4398 		ret = 0;
4399 	return ret;
4400 }
4401 
4402 /*
4403  * Called if we need to clear a data reservation for this inode
4404  * Normally in a error case.
4405  *
4406  * This one will *NOT* use accurate qgroup reserved space API, just for case
4407  * which we can't sleep and is sure it won't affect qgroup reserved space.
4408  * Like clear_bit_hook().
4409  */
4410 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4411 					    u64 len)
4412 {
4413 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4414 	struct btrfs_space_info *data_sinfo;
4415 
4416 	/* Make sure the range is aligned to sectorsize */
4417 	len = round_up(start + len, fs_info->sectorsize) -
4418 	      round_down(start, fs_info->sectorsize);
4419 	start = round_down(start, fs_info->sectorsize);
4420 
4421 	data_sinfo = fs_info->data_sinfo;
4422 	spin_lock(&data_sinfo->lock);
4423 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4424 		data_sinfo->bytes_may_use = 0;
4425 	else
4426 		data_sinfo->bytes_may_use -= len;
4427 	trace_btrfs_space_reservation(fs_info, "space_info",
4428 				      data_sinfo->flags, len, 0);
4429 	spin_unlock(&data_sinfo->lock);
4430 }
4431 
4432 /*
4433  * Called if we need to clear a data reservation for this inode
4434  * Normally in a error case.
4435  *
4436  * This one will handle the per-inode data rsv map for accurate reserved
4437  * space framework.
4438  */
4439 void btrfs_free_reserved_data_space(struct inode *inode,
4440 			struct extent_changeset *reserved, u64 start, u64 len)
4441 {
4442 	struct btrfs_root *root = BTRFS_I(inode)->root;
4443 
4444 	/* Make sure the range is aligned to sectorsize */
4445 	len = round_up(start + len, root->fs_info->sectorsize) -
4446 	      round_down(start, root->fs_info->sectorsize);
4447 	start = round_down(start, root->fs_info->sectorsize);
4448 
4449 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4450 	btrfs_qgroup_free_data(inode, reserved, start, len);
4451 }
4452 
4453 static void force_metadata_allocation(struct btrfs_fs_info *info)
4454 {
4455 	struct list_head *head = &info->space_info;
4456 	struct btrfs_space_info *found;
4457 
4458 	rcu_read_lock();
4459 	list_for_each_entry_rcu(found, head, list) {
4460 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4461 			found->force_alloc = CHUNK_ALLOC_FORCE;
4462 	}
4463 	rcu_read_unlock();
4464 }
4465 
4466 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4467 {
4468 	return (global->size << 1);
4469 }
4470 
4471 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4472 			      struct btrfs_space_info *sinfo, int force)
4473 {
4474 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4475 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4476 	u64 thresh;
4477 
4478 	if (force == CHUNK_ALLOC_FORCE)
4479 		return 1;
4480 
4481 	/*
4482 	 * We need to take into account the global rsv because for all intents
4483 	 * and purposes it's used space.  Don't worry about locking the
4484 	 * global_rsv, it doesn't change except when the transaction commits.
4485 	 */
4486 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4487 		bytes_used += calc_global_rsv_need_space(global_rsv);
4488 
4489 	/*
4490 	 * in limited mode, we want to have some free space up to
4491 	 * about 1% of the FS size.
4492 	 */
4493 	if (force == CHUNK_ALLOC_LIMITED) {
4494 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4495 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4496 
4497 		if (sinfo->total_bytes - bytes_used < thresh)
4498 			return 1;
4499 	}
4500 
4501 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4502 		return 0;
4503 	return 1;
4504 }
4505 
4506 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4507 {
4508 	u64 num_dev;
4509 
4510 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4511 		    BTRFS_BLOCK_GROUP_RAID0 |
4512 		    BTRFS_BLOCK_GROUP_RAID5 |
4513 		    BTRFS_BLOCK_GROUP_RAID6))
4514 		num_dev = fs_info->fs_devices->rw_devices;
4515 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4516 		num_dev = 2;
4517 	else
4518 		num_dev = 1;	/* DUP or single */
4519 
4520 	return num_dev;
4521 }
4522 
4523 /*
4524  * If @is_allocation is true, reserve space in the system space info necessary
4525  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4526  * removing a chunk.
4527  */
4528 void check_system_chunk(struct btrfs_trans_handle *trans,
4529 			struct btrfs_fs_info *fs_info, u64 type)
4530 {
4531 	struct btrfs_space_info *info;
4532 	u64 left;
4533 	u64 thresh;
4534 	int ret = 0;
4535 	u64 num_devs;
4536 
4537 	/*
4538 	 * Needed because we can end up allocating a system chunk and for an
4539 	 * atomic and race free space reservation in the chunk block reserve.
4540 	 */
4541 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4542 
4543 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4544 	spin_lock(&info->lock);
4545 	left = info->total_bytes - btrfs_space_info_used(info, true);
4546 	spin_unlock(&info->lock);
4547 
4548 	num_devs = get_profile_num_devs(fs_info, type);
4549 
4550 	/* num_devs device items to update and 1 chunk item to add or remove */
4551 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4552 		btrfs_calc_trans_metadata_size(fs_info, 1);
4553 
4554 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4555 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4556 			   left, thresh, type);
4557 		dump_space_info(fs_info, info, 0, 0);
4558 	}
4559 
4560 	if (left < thresh) {
4561 		u64 flags = btrfs_system_alloc_profile(fs_info);
4562 
4563 		/*
4564 		 * Ignore failure to create system chunk. We might end up not
4565 		 * needing it, as we might not need to COW all nodes/leafs from
4566 		 * the paths we visit in the chunk tree (they were already COWed
4567 		 * or created in the current transaction for example).
4568 		 */
4569 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4570 	}
4571 
4572 	if (!ret) {
4573 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4574 					  &fs_info->chunk_block_rsv,
4575 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4576 		if (!ret)
4577 			trans->chunk_bytes_reserved += thresh;
4578 	}
4579 }
4580 
4581 /*
4582  * If force is CHUNK_ALLOC_FORCE:
4583  *    - return 1 if it successfully allocates a chunk,
4584  *    - return errors including -ENOSPC otherwise.
4585  * If force is NOT CHUNK_ALLOC_FORCE:
4586  *    - return 0 if it doesn't need to allocate a new chunk,
4587  *    - return 1 if it successfully allocates a chunk,
4588  *    - return errors including -ENOSPC otherwise.
4589  */
4590 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4591 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4592 {
4593 	struct btrfs_space_info *space_info;
4594 	int wait_for_alloc = 0;
4595 	int ret = 0;
4596 
4597 	/* Don't re-enter if we're already allocating a chunk */
4598 	if (trans->allocating_chunk)
4599 		return -ENOSPC;
4600 
4601 	space_info = __find_space_info(fs_info, flags);
4602 	if (!space_info) {
4603 		ret = create_space_info(fs_info, flags, &space_info);
4604 		if (ret)
4605 			return ret;
4606 	}
4607 
4608 again:
4609 	spin_lock(&space_info->lock);
4610 	if (force < space_info->force_alloc)
4611 		force = space_info->force_alloc;
4612 	if (space_info->full) {
4613 		if (should_alloc_chunk(fs_info, space_info, force))
4614 			ret = -ENOSPC;
4615 		else
4616 			ret = 0;
4617 		spin_unlock(&space_info->lock);
4618 		return ret;
4619 	}
4620 
4621 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4622 		spin_unlock(&space_info->lock);
4623 		return 0;
4624 	} else if (space_info->chunk_alloc) {
4625 		wait_for_alloc = 1;
4626 	} else {
4627 		space_info->chunk_alloc = 1;
4628 	}
4629 
4630 	spin_unlock(&space_info->lock);
4631 
4632 	mutex_lock(&fs_info->chunk_mutex);
4633 
4634 	/*
4635 	 * The chunk_mutex is held throughout the entirety of a chunk
4636 	 * allocation, so once we've acquired the chunk_mutex we know that the
4637 	 * other guy is done and we need to recheck and see if we should
4638 	 * allocate.
4639 	 */
4640 	if (wait_for_alloc) {
4641 		mutex_unlock(&fs_info->chunk_mutex);
4642 		wait_for_alloc = 0;
4643 		goto again;
4644 	}
4645 
4646 	trans->allocating_chunk = true;
4647 
4648 	/*
4649 	 * If we have mixed data/metadata chunks we want to make sure we keep
4650 	 * allocating mixed chunks instead of individual chunks.
4651 	 */
4652 	if (btrfs_mixed_space_info(space_info))
4653 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4654 
4655 	/*
4656 	 * if we're doing a data chunk, go ahead and make sure that
4657 	 * we keep a reasonable number of metadata chunks allocated in the
4658 	 * FS as well.
4659 	 */
4660 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4661 		fs_info->data_chunk_allocations++;
4662 		if (!(fs_info->data_chunk_allocations %
4663 		      fs_info->metadata_ratio))
4664 			force_metadata_allocation(fs_info);
4665 	}
4666 
4667 	/*
4668 	 * Check if we have enough space in SYSTEM chunk because we may need
4669 	 * to update devices.
4670 	 */
4671 	check_system_chunk(trans, fs_info, flags);
4672 
4673 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4674 	trans->allocating_chunk = false;
4675 
4676 	spin_lock(&space_info->lock);
4677 	if (ret < 0 && ret != -ENOSPC)
4678 		goto out;
4679 	if (ret)
4680 		space_info->full = 1;
4681 	else
4682 		ret = 1;
4683 
4684 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4685 out:
4686 	space_info->chunk_alloc = 0;
4687 	spin_unlock(&space_info->lock);
4688 	mutex_unlock(&fs_info->chunk_mutex);
4689 	/*
4690 	 * When we allocate a new chunk we reserve space in the chunk block
4691 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4692 	 * add new nodes/leafs to it if we end up needing to do it when
4693 	 * inserting the chunk item and updating device items as part of the
4694 	 * second phase of chunk allocation, performed by
4695 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4696 	 * large number of new block groups to create in our transaction
4697 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4698 	 * in extreme cases - like having a single transaction create many new
4699 	 * block groups when starting to write out the free space caches of all
4700 	 * the block groups that were made dirty during the lifetime of the
4701 	 * transaction.
4702 	 */
4703 	if (trans->can_flush_pending_bgs &&
4704 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4705 		btrfs_create_pending_block_groups(trans, fs_info);
4706 		btrfs_trans_release_chunk_metadata(trans);
4707 	}
4708 	return ret;
4709 }
4710 
4711 static int can_overcommit(struct btrfs_fs_info *fs_info,
4712 			  struct btrfs_space_info *space_info, u64 bytes,
4713 			  enum btrfs_reserve_flush_enum flush,
4714 			  bool system_chunk)
4715 {
4716 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4717 	u64 profile;
4718 	u64 space_size;
4719 	u64 avail;
4720 	u64 used;
4721 
4722 	/* Don't overcommit when in mixed mode. */
4723 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4724 		return 0;
4725 
4726 	if (system_chunk)
4727 		profile = btrfs_system_alloc_profile(fs_info);
4728 	else
4729 		profile = btrfs_metadata_alloc_profile(fs_info);
4730 
4731 	used = btrfs_space_info_used(space_info, false);
4732 
4733 	/*
4734 	 * We only want to allow over committing if we have lots of actual space
4735 	 * free, but if we don't have enough space to handle the global reserve
4736 	 * space then we could end up having a real enospc problem when trying
4737 	 * to allocate a chunk or some other such important allocation.
4738 	 */
4739 	spin_lock(&global_rsv->lock);
4740 	space_size = calc_global_rsv_need_space(global_rsv);
4741 	spin_unlock(&global_rsv->lock);
4742 	if (used + space_size >= space_info->total_bytes)
4743 		return 0;
4744 
4745 	used += space_info->bytes_may_use;
4746 
4747 	avail = atomic64_read(&fs_info->free_chunk_space);
4748 
4749 	/*
4750 	 * If we have dup, raid1 or raid10 then only half of the free
4751 	 * space is actually useable.  For raid56, the space info used
4752 	 * doesn't include the parity drive, so we don't have to
4753 	 * change the math
4754 	 */
4755 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4756 		       BTRFS_BLOCK_GROUP_RAID1 |
4757 		       BTRFS_BLOCK_GROUP_RAID10))
4758 		avail >>= 1;
4759 
4760 	/*
4761 	 * If we aren't flushing all things, let us overcommit up to
4762 	 * 1/2th of the space. If we can flush, don't let us overcommit
4763 	 * too much, let it overcommit up to 1/8 of the space.
4764 	 */
4765 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4766 		avail >>= 3;
4767 	else
4768 		avail >>= 1;
4769 
4770 	if (used + bytes < space_info->total_bytes + avail)
4771 		return 1;
4772 	return 0;
4773 }
4774 
4775 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4776 					 unsigned long nr_pages, int nr_items)
4777 {
4778 	struct super_block *sb = fs_info->sb;
4779 
4780 	if (down_read_trylock(&sb->s_umount)) {
4781 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4782 		up_read(&sb->s_umount);
4783 	} else {
4784 		/*
4785 		 * We needn't worry the filesystem going from r/w to r/o though
4786 		 * we don't acquire ->s_umount mutex, because the filesystem
4787 		 * should guarantee the delalloc inodes list be empty after
4788 		 * the filesystem is readonly(all dirty pages are written to
4789 		 * the disk).
4790 		 */
4791 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4792 		if (!current->journal_info)
4793 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4794 	}
4795 }
4796 
4797 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4798 					u64 to_reclaim)
4799 {
4800 	u64 bytes;
4801 	u64 nr;
4802 
4803 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4804 	nr = div64_u64(to_reclaim, bytes);
4805 	if (!nr)
4806 		nr = 1;
4807 	return nr;
4808 }
4809 
4810 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4811 
4812 /*
4813  * shrink metadata reservation for delalloc
4814  */
4815 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4816 			    u64 orig, bool wait_ordered)
4817 {
4818 	struct btrfs_space_info *space_info;
4819 	struct btrfs_trans_handle *trans;
4820 	u64 delalloc_bytes;
4821 	u64 max_reclaim;
4822 	u64 items;
4823 	long time_left;
4824 	unsigned long nr_pages;
4825 	int loops;
4826 	enum btrfs_reserve_flush_enum flush;
4827 
4828 	/* Calc the number of the pages we need flush for space reservation */
4829 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4830 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4831 
4832 	trans = (struct btrfs_trans_handle *)current->journal_info;
4833 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4834 
4835 	delalloc_bytes = percpu_counter_sum_positive(
4836 						&fs_info->delalloc_bytes);
4837 	if (delalloc_bytes == 0) {
4838 		if (trans)
4839 			return;
4840 		if (wait_ordered)
4841 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4842 		return;
4843 	}
4844 
4845 	loops = 0;
4846 	while (delalloc_bytes && loops < 3) {
4847 		max_reclaim = min(delalloc_bytes, to_reclaim);
4848 		nr_pages = max_reclaim >> PAGE_SHIFT;
4849 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4850 		/*
4851 		 * We need to wait for the async pages to actually start before
4852 		 * we do anything.
4853 		 */
4854 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4855 		if (!max_reclaim)
4856 			goto skip_async;
4857 
4858 		if (max_reclaim <= nr_pages)
4859 			max_reclaim = 0;
4860 		else
4861 			max_reclaim -= nr_pages;
4862 
4863 		wait_event(fs_info->async_submit_wait,
4864 			   atomic_read(&fs_info->async_delalloc_pages) <=
4865 			   (int)max_reclaim);
4866 skip_async:
4867 		if (!trans)
4868 			flush = BTRFS_RESERVE_FLUSH_ALL;
4869 		else
4870 			flush = BTRFS_RESERVE_NO_FLUSH;
4871 		spin_lock(&space_info->lock);
4872 		if (list_empty(&space_info->tickets) &&
4873 		    list_empty(&space_info->priority_tickets)) {
4874 			spin_unlock(&space_info->lock);
4875 			break;
4876 		}
4877 		spin_unlock(&space_info->lock);
4878 
4879 		loops++;
4880 		if (wait_ordered && !trans) {
4881 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4882 		} else {
4883 			time_left = schedule_timeout_killable(1);
4884 			if (time_left)
4885 				break;
4886 		}
4887 		delalloc_bytes = percpu_counter_sum_positive(
4888 						&fs_info->delalloc_bytes);
4889 	}
4890 }
4891 
4892 struct reserve_ticket {
4893 	u64 bytes;
4894 	int error;
4895 	struct list_head list;
4896 	wait_queue_head_t wait;
4897 };
4898 
4899 /**
4900  * maybe_commit_transaction - possibly commit the transaction if its ok to
4901  * @root - the root we're allocating for
4902  * @bytes - the number of bytes we want to reserve
4903  * @force - force the commit
4904  *
4905  * This will check to make sure that committing the transaction will actually
4906  * get us somewhere and then commit the transaction if it does.  Otherwise it
4907  * will return -ENOSPC.
4908  */
4909 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4910 				  struct btrfs_space_info *space_info)
4911 {
4912 	struct reserve_ticket *ticket = NULL;
4913 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4914 	struct btrfs_trans_handle *trans;
4915 	u64 bytes;
4916 
4917 	trans = (struct btrfs_trans_handle *)current->journal_info;
4918 	if (trans)
4919 		return -EAGAIN;
4920 
4921 	spin_lock(&space_info->lock);
4922 	if (!list_empty(&space_info->priority_tickets))
4923 		ticket = list_first_entry(&space_info->priority_tickets,
4924 					  struct reserve_ticket, list);
4925 	else if (!list_empty(&space_info->tickets))
4926 		ticket = list_first_entry(&space_info->tickets,
4927 					  struct reserve_ticket, list);
4928 	bytes = (ticket) ? ticket->bytes : 0;
4929 	spin_unlock(&space_info->lock);
4930 
4931 	if (!bytes)
4932 		return 0;
4933 
4934 	/* See if there is enough pinned space to make this reservation */
4935 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4936 				   bytes) >= 0)
4937 		goto commit;
4938 
4939 	/*
4940 	 * See if there is some space in the delayed insertion reservation for
4941 	 * this reservation.
4942 	 */
4943 	if (space_info != delayed_rsv->space_info)
4944 		return -ENOSPC;
4945 
4946 	spin_lock(&delayed_rsv->lock);
4947 	if (delayed_rsv->size > bytes)
4948 		bytes = 0;
4949 	else
4950 		bytes -= delayed_rsv->size;
4951 	spin_unlock(&delayed_rsv->lock);
4952 
4953 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4954 				   bytes) < 0) {
4955 		return -ENOSPC;
4956 	}
4957 
4958 commit:
4959 	trans = btrfs_join_transaction(fs_info->extent_root);
4960 	if (IS_ERR(trans))
4961 		return -ENOSPC;
4962 
4963 	return btrfs_commit_transaction(trans);
4964 }
4965 
4966 /*
4967  * Try to flush some data based on policy set by @state. This is only advisory
4968  * and may fail for various reasons. The caller is supposed to examine the
4969  * state of @space_info to detect the outcome.
4970  */
4971 static void flush_space(struct btrfs_fs_info *fs_info,
4972 		       struct btrfs_space_info *space_info, u64 num_bytes,
4973 		       int state)
4974 {
4975 	struct btrfs_root *root = fs_info->extent_root;
4976 	struct btrfs_trans_handle *trans;
4977 	int nr;
4978 	int ret = 0;
4979 
4980 	switch (state) {
4981 	case FLUSH_DELAYED_ITEMS_NR:
4982 	case FLUSH_DELAYED_ITEMS:
4983 		if (state == FLUSH_DELAYED_ITEMS_NR)
4984 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4985 		else
4986 			nr = -1;
4987 
4988 		trans = btrfs_join_transaction(root);
4989 		if (IS_ERR(trans)) {
4990 			ret = PTR_ERR(trans);
4991 			break;
4992 		}
4993 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4994 		btrfs_end_transaction(trans);
4995 		break;
4996 	case FLUSH_DELALLOC:
4997 	case FLUSH_DELALLOC_WAIT:
4998 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4999 				state == FLUSH_DELALLOC_WAIT);
5000 		break;
5001 	case ALLOC_CHUNK:
5002 		trans = btrfs_join_transaction(root);
5003 		if (IS_ERR(trans)) {
5004 			ret = PTR_ERR(trans);
5005 			break;
5006 		}
5007 		ret = do_chunk_alloc(trans, fs_info,
5008 				     btrfs_metadata_alloc_profile(fs_info),
5009 				     CHUNK_ALLOC_NO_FORCE);
5010 		btrfs_end_transaction(trans);
5011 		if (ret > 0 || ret == -ENOSPC)
5012 			ret = 0;
5013 		break;
5014 	case COMMIT_TRANS:
5015 		ret = may_commit_transaction(fs_info, space_info);
5016 		break;
5017 	default:
5018 		ret = -ENOSPC;
5019 		break;
5020 	}
5021 
5022 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5023 				ret);
5024 	return;
5025 }
5026 
5027 static inline u64
5028 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5029 				 struct btrfs_space_info *space_info,
5030 				 bool system_chunk)
5031 {
5032 	struct reserve_ticket *ticket;
5033 	u64 used;
5034 	u64 expected;
5035 	u64 to_reclaim = 0;
5036 
5037 	list_for_each_entry(ticket, &space_info->tickets, list)
5038 		to_reclaim += ticket->bytes;
5039 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5040 		to_reclaim += ticket->bytes;
5041 	if (to_reclaim)
5042 		return to_reclaim;
5043 
5044 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5045 	if (can_overcommit(fs_info, space_info, to_reclaim,
5046 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5047 		return 0;
5048 
5049 	used = btrfs_space_info_used(space_info, true);
5050 
5051 	if (can_overcommit(fs_info, space_info, SZ_1M,
5052 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5053 		expected = div_factor_fine(space_info->total_bytes, 95);
5054 	else
5055 		expected = div_factor_fine(space_info->total_bytes, 90);
5056 
5057 	if (used > expected)
5058 		to_reclaim = used - expected;
5059 	else
5060 		to_reclaim = 0;
5061 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5062 				     space_info->bytes_reserved);
5063 	return to_reclaim;
5064 }
5065 
5066 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5067 					struct btrfs_space_info *space_info,
5068 					u64 used, bool system_chunk)
5069 {
5070 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5071 
5072 	/* If we're just plain full then async reclaim just slows us down. */
5073 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5074 		return 0;
5075 
5076 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5077 					      system_chunk))
5078 		return 0;
5079 
5080 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5081 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5082 }
5083 
5084 static void wake_all_tickets(struct list_head *head)
5085 {
5086 	struct reserve_ticket *ticket;
5087 
5088 	while (!list_empty(head)) {
5089 		ticket = list_first_entry(head, struct reserve_ticket, list);
5090 		list_del_init(&ticket->list);
5091 		ticket->error = -ENOSPC;
5092 		wake_up(&ticket->wait);
5093 	}
5094 }
5095 
5096 /*
5097  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5098  * will loop and continuously try to flush as long as we are making progress.
5099  * We count progress as clearing off tickets each time we have to loop.
5100  */
5101 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5102 {
5103 	struct btrfs_fs_info *fs_info;
5104 	struct btrfs_space_info *space_info;
5105 	u64 to_reclaim;
5106 	int flush_state;
5107 	int commit_cycles = 0;
5108 	u64 last_tickets_id;
5109 
5110 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5111 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5112 
5113 	spin_lock(&space_info->lock);
5114 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5115 						      false);
5116 	if (!to_reclaim) {
5117 		space_info->flush = 0;
5118 		spin_unlock(&space_info->lock);
5119 		return;
5120 	}
5121 	last_tickets_id = space_info->tickets_id;
5122 	spin_unlock(&space_info->lock);
5123 
5124 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5125 	do {
5126 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5127 		spin_lock(&space_info->lock);
5128 		if (list_empty(&space_info->tickets)) {
5129 			space_info->flush = 0;
5130 			spin_unlock(&space_info->lock);
5131 			return;
5132 		}
5133 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5134 							      space_info,
5135 							      false);
5136 		if (last_tickets_id == space_info->tickets_id) {
5137 			flush_state++;
5138 		} else {
5139 			last_tickets_id = space_info->tickets_id;
5140 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5141 			if (commit_cycles)
5142 				commit_cycles--;
5143 		}
5144 
5145 		if (flush_state > COMMIT_TRANS) {
5146 			commit_cycles++;
5147 			if (commit_cycles > 2) {
5148 				wake_all_tickets(&space_info->tickets);
5149 				space_info->flush = 0;
5150 			} else {
5151 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5152 			}
5153 		}
5154 		spin_unlock(&space_info->lock);
5155 	} while (flush_state <= COMMIT_TRANS);
5156 }
5157 
5158 void btrfs_init_async_reclaim_work(struct work_struct *work)
5159 {
5160 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5161 }
5162 
5163 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5164 					    struct btrfs_space_info *space_info,
5165 					    struct reserve_ticket *ticket)
5166 {
5167 	u64 to_reclaim;
5168 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5169 
5170 	spin_lock(&space_info->lock);
5171 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5172 						      false);
5173 	if (!to_reclaim) {
5174 		spin_unlock(&space_info->lock);
5175 		return;
5176 	}
5177 	spin_unlock(&space_info->lock);
5178 
5179 	do {
5180 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5181 		flush_state++;
5182 		spin_lock(&space_info->lock);
5183 		if (ticket->bytes == 0) {
5184 			spin_unlock(&space_info->lock);
5185 			return;
5186 		}
5187 		spin_unlock(&space_info->lock);
5188 
5189 		/*
5190 		 * Priority flushers can't wait on delalloc without
5191 		 * deadlocking.
5192 		 */
5193 		if (flush_state == FLUSH_DELALLOC ||
5194 		    flush_state == FLUSH_DELALLOC_WAIT)
5195 			flush_state = ALLOC_CHUNK;
5196 	} while (flush_state < COMMIT_TRANS);
5197 }
5198 
5199 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5200 			       struct btrfs_space_info *space_info,
5201 			       struct reserve_ticket *ticket, u64 orig_bytes)
5202 
5203 {
5204 	DEFINE_WAIT(wait);
5205 	int ret = 0;
5206 
5207 	spin_lock(&space_info->lock);
5208 	while (ticket->bytes > 0 && ticket->error == 0) {
5209 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5210 		if (ret) {
5211 			ret = -EINTR;
5212 			break;
5213 		}
5214 		spin_unlock(&space_info->lock);
5215 
5216 		schedule();
5217 
5218 		finish_wait(&ticket->wait, &wait);
5219 		spin_lock(&space_info->lock);
5220 	}
5221 	if (!ret)
5222 		ret = ticket->error;
5223 	if (!list_empty(&ticket->list))
5224 		list_del_init(&ticket->list);
5225 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5226 		u64 num_bytes = orig_bytes - ticket->bytes;
5227 		space_info->bytes_may_use -= num_bytes;
5228 		trace_btrfs_space_reservation(fs_info, "space_info",
5229 					      space_info->flags, num_bytes, 0);
5230 	}
5231 	spin_unlock(&space_info->lock);
5232 
5233 	return ret;
5234 }
5235 
5236 /**
5237  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5238  * @root - the root we're allocating for
5239  * @space_info - the space info we want to allocate from
5240  * @orig_bytes - the number of bytes we want
5241  * @flush - whether or not we can flush to make our reservation
5242  *
5243  * This will reserve orig_bytes number of bytes from the space info associated
5244  * with the block_rsv.  If there is not enough space it will make an attempt to
5245  * flush out space to make room.  It will do this by flushing delalloc if
5246  * possible or committing the transaction.  If flush is 0 then no attempts to
5247  * regain reservations will be made and this will fail if there is not enough
5248  * space already.
5249  */
5250 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5251 				    struct btrfs_space_info *space_info,
5252 				    u64 orig_bytes,
5253 				    enum btrfs_reserve_flush_enum flush,
5254 				    bool system_chunk)
5255 {
5256 	struct reserve_ticket ticket;
5257 	u64 used;
5258 	int ret = 0;
5259 
5260 	ASSERT(orig_bytes);
5261 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5262 
5263 	spin_lock(&space_info->lock);
5264 	ret = -ENOSPC;
5265 	used = btrfs_space_info_used(space_info, true);
5266 
5267 	/*
5268 	 * If we have enough space then hooray, make our reservation and carry
5269 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5270 	 * If not things get more complicated.
5271 	 */
5272 	if (used + orig_bytes <= space_info->total_bytes) {
5273 		space_info->bytes_may_use += orig_bytes;
5274 		trace_btrfs_space_reservation(fs_info, "space_info",
5275 					      space_info->flags, orig_bytes, 1);
5276 		ret = 0;
5277 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5278 				  system_chunk)) {
5279 		space_info->bytes_may_use += orig_bytes;
5280 		trace_btrfs_space_reservation(fs_info, "space_info",
5281 					      space_info->flags, orig_bytes, 1);
5282 		ret = 0;
5283 	}
5284 
5285 	/*
5286 	 * If we couldn't make a reservation then setup our reservation ticket
5287 	 * and kick the async worker if it's not already running.
5288 	 *
5289 	 * If we are a priority flusher then we just need to add our ticket to
5290 	 * the list and we will do our own flushing further down.
5291 	 */
5292 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5293 		ticket.bytes = orig_bytes;
5294 		ticket.error = 0;
5295 		init_waitqueue_head(&ticket.wait);
5296 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5297 			list_add_tail(&ticket.list, &space_info->tickets);
5298 			if (!space_info->flush) {
5299 				space_info->flush = 1;
5300 				trace_btrfs_trigger_flush(fs_info,
5301 							  space_info->flags,
5302 							  orig_bytes, flush,
5303 							  "enospc");
5304 				queue_work(system_unbound_wq,
5305 					   &fs_info->async_reclaim_work);
5306 			}
5307 		} else {
5308 			list_add_tail(&ticket.list,
5309 				      &space_info->priority_tickets);
5310 		}
5311 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5312 		used += orig_bytes;
5313 		/*
5314 		 * We will do the space reservation dance during log replay,
5315 		 * which means we won't have fs_info->fs_root set, so don't do
5316 		 * the async reclaim as we will panic.
5317 		 */
5318 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5319 		    need_do_async_reclaim(fs_info, space_info,
5320 					  used, system_chunk) &&
5321 		    !work_busy(&fs_info->async_reclaim_work)) {
5322 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5323 						  orig_bytes, flush, "preempt");
5324 			queue_work(system_unbound_wq,
5325 				   &fs_info->async_reclaim_work);
5326 		}
5327 	}
5328 	spin_unlock(&space_info->lock);
5329 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5330 		return ret;
5331 
5332 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5333 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5334 					   orig_bytes);
5335 
5336 	ret = 0;
5337 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5338 	spin_lock(&space_info->lock);
5339 	if (ticket.bytes) {
5340 		if (ticket.bytes < orig_bytes) {
5341 			u64 num_bytes = orig_bytes - ticket.bytes;
5342 			space_info->bytes_may_use -= num_bytes;
5343 			trace_btrfs_space_reservation(fs_info, "space_info",
5344 						      space_info->flags,
5345 						      num_bytes, 0);
5346 
5347 		}
5348 		list_del_init(&ticket.list);
5349 		ret = -ENOSPC;
5350 	}
5351 	spin_unlock(&space_info->lock);
5352 	ASSERT(list_empty(&ticket.list));
5353 	return ret;
5354 }
5355 
5356 /**
5357  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5358  * @root - the root we're allocating for
5359  * @block_rsv - the block_rsv we're allocating for
5360  * @orig_bytes - the number of bytes we want
5361  * @flush - whether or not we can flush to make our reservation
5362  *
5363  * This will reserve orgi_bytes number of bytes from the space info associated
5364  * with the block_rsv.  If there is not enough space it will make an attempt to
5365  * flush out space to make room.  It will do this by flushing delalloc if
5366  * possible or committing the transaction.  If flush is 0 then no attempts to
5367  * regain reservations will be made and this will fail if there is not enough
5368  * space already.
5369  */
5370 static int reserve_metadata_bytes(struct btrfs_root *root,
5371 				  struct btrfs_block_rsv *block_rsv,
5372 				  u64 orig_bytes,
5373 				  enum btrfs_reserve_flush_enum flush)
5374 {
5375 	struct btrfs_fs_info *fs_info = root->fs_info;
5376 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5377 	int ret;
5378 	bool system_chunk = (root == fs_info->chunk_root);
5379 
5380 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5381 				       orig_bytes, flush, system_chunk);
5382 	if (ret == -ENOSPC &&
5383 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5384 		if (block_rsv != global_rsv &&
5385 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5386 			ret = 0;
5387 	}
5388 	if (ret == -ENOSPC)
5389 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5390 					      block_rsv->space_info->flags,
5391 					      orig_bytes, 1);
5392 	return ret;
5393 }
5394 
5395 static struct btrfs_block_rsv *get_block_rsv(
5396 					const struct btrfs_trans_handle *trans,
5397 					const struct btrfs_root *root)
5398 {
5399 	struct btrfs_fs_info *fs_info = root->fs_info;
5400 	struct btrfs_block_rsv *block_rsv = NULL;
5401 
5402 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5403 	    (root == fs_info->csum_root && trans->adding_csums) ||
5404 	    (root == fs_info->uuid_root))
5405 		block_rsv = trans->block_rsv;
5406 
5407 	if (!block_rsv)
5408 		block_rsv = root->block_rsv;
5409 
5410 	if (!block_rsv)
5411 		block_rsv = &fs_info->empty_block_rsv;
5412 
5413 	return block_rsv;
5414 }
5415 
5416 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5417 			       u64 num_bytes)
5418 {
5419 	int ret = -ENOSPC;
5420 	spin_lock(&block_rsv->lock);
5421 	if (block_rsv->reserved >= num_bytes) {
5422 		block_rsv->reserved -= num_bytes;
5423 		if (block_rsv->reserved < block_rsv->size)
5424 			block_rsv->full = 0;
5425 		ret = 0;
5426 	}
5427 	spin_unlock(&block_rsv->lock);
5428 	return ret;
5429 }
5430 
5431 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5432 				u64 num_bytes, int update_size)
5433 {
5434 	spin_lock(&block_rsv->lock);
5435 	block_rsv->reserved += num_bytes;
5436 	if (update_size)
5437 		block_rsv->size += num_bytes;
5438 	else if (block_rsv->reserved >= block_rsv->size)
5439 		block_rsv->full = 1;
5440 	spin_unlock(&block_rsv->lock);
5441 }
5442 
5443 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5444 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5445 			     int min_factor)
5446 {
5447 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5448 	u64 min_bytes;
5449 
5450 	if (global_rsv->space_info != dest->space_info)
5451 		return -ENOSPC;
5452 
5453 	spin_lock(&global_rsv->lock);
5454 	min_bytes = div_factor(global_rsv->size, min_factor);
5455 	if (global_rsv->reserved < min_bytes + num_bytes) {
5456 		spin_unlock(&global_rsv->lock);
5457 		return -ENOSPC;
5458 	}
5459 	global_rsv->reserved -= num_bytes;
5460 	if (global_rsv->reserved < global_rsv->size)
5461 		global_rsv->full = 0;
5462 	spin_unlock(&global_rsv->lock);
5463 
5464 	block_rsv_add_bytes(dest, num_bytes, 1);
5465 	return 0;
5466 }
5467 
5468 /*
5469  * This is for space we already have accounted in space_info->bytes_may_use, so
5470  * basically when we're returning space from block_rsv's.
5471  */
5472 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5473 				     struct btrfs_space_info *space_info,
5474 				     u64 num_bytes)
5475 {
5476 	struct reserve_ticket *ticket;
5477 	struct list_head *head;
5478 	u64 used;
5479 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5480 	bool check_overcommit = false;
5481 
5482 	spin_lock(&space_info->lock);
5483 	head = &space_info->priority_tickets;
5484 
5485 	/*
5486 	 * If we are over our limit then we need to check and see if we can
5487 	 * overcommit, and if we can't then we just need to free up our space
5488 	 * and not satisfy any requests.
5489 	 */
5490 	used = btrfs_space_info_used(space_info, true);
5491 	if (used - num_bytes >= space_info->total_bytes)
5492 		check_overcommit = true;
5493 again:
5494 	while (!list_empty(head) && num_bytes) {
5495 		ticket = list_first_entry(head, struct reserve_ticket,
5496 					  list);
5497 		/*
5498 		 * We use 0 bytes because this space is already reserved, so
5499 		 * adding the ticket space would be a double count.
5500 		 */
5501 		if (check_overcommit &&
5502 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5503 			break;
5504 		if (num_bytes >= ticket->bytes) {
5505 			list_del_init(&ticket->list);
5506 			num_bytes -= ticket->bytes;
5507 			ticket->bytes = 0;
5508 			space_info->tickets_id++;
5509 			wake_up(&ticket->wait);
5510 		} else {
5511 			ticket->bytes -= num_bytes;
5512 			num_bytes = 0;
5513 		}
5514 	}
5515 
5516 	if (num_bytes && head == &space_info->priority_tickets) {
5517 		head = &space_info->tickets;
5518 		flush = BTRFS_RESERVE_FLUSH_ALL;
5519 		goto again;
5520 	}
5521 	space_info->bytes_may_use -= num_bytes;
5522 	trace_btrfs_space_reservation(fs_info, "space_info",
5523 				      space_info->flags, num_bytes, 0);
5524 	spin_unlock(&space_info->lock);
5525 }
5526 
5527 /*
5528  * This is for newly allocated space that isn't accounted in
5529  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5530  * we use this helper.
5531  */
5532 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5533 				     struct btrfs_space_info *space_info,
5534 				     u64 num_bytes)
5535 {
5536 	struct reserve_ticket *ticket;
5537 	struct list_head *head = &space_info->priority_tickets;
5538 
5539 again:
5540 	while (!list_empty(head) && num_bytes) {
5541 		ticket = list_first_entry(head, struct reserve_ticket,
5542 					  list);
5543 		if (num_bytes >= ticket->bytes) {
5544 			trace_btrfs_space_reservation(fs_info, "space_info",
5545 						      space_info->flags,
5546 						      ticket->bytes, 1);
5547 			list_del_init(&ticket->list);
5548 			num_bytes -= ticket->bytes;
5549 			space_info->bytes_may_use += ticket->bytes;
5550 			ticket->bytes = 0;
5551 			space_info->tickets_id++;
5552 			wake_up(&ticket->wait);
5553 		} else {
5554 			trace_btrfs_space_reservation(fs_info, "space_info",
5555 						      space_info->flags,
5556 						      num_bytes, 1);
5557 			space_info->bytes_may_use += num_bytes;
5558 			ticket->bytes -= num_bytes;
5559 			num_bytes = 0;
5560 		}
5561 	}
5562 
5563 	if (num_bytes && head == &space_info->priority_tickets) {
5564 		head = &space_info->tickets;
5565 		goto again;
5566 	}
5567 }
5568 
5569 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5570 				    struct btrfs_block_rsv *block_rsv,
5571 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5572 {
5573 	struct btrfs_space_info *space_info = block_rsv->space_info;
5574 	u64 ret;
5575 
5576 	spin_lock(&block_rsv->lock);
5577 	if (num_bytes == (u64)-1)
5578 		num_bytes = block_rsv->size;
5579 	block_rsv->size -= num_bytes;
5580 	if (block_rsv->reserved >= block_rsv->size) {
5581 		num_bytes = block_rsv->reserved - block_rsv->size;
5582 		block_rsv->reserved = block_rsv->size;
5583 		block_rsv->full = 1;
5584 	} else {
5585 		num_bytes = 0;
5586 	}
5587 	spin_unlock(&block_rsv->lock);
5588 
5589 	ret = num_bytes;
5590 	if (num_bytes > 0) {
5591 		if (dest) {
5592 			spin_lock(&dest->lock);
5593 			if (!dest->full) {
5594 				u64 bytes_to_add;
5595 
5596 				bytes_to_add = dest->size - dest->reserved;
5597 				bytes_to_add = min(num_bytes, bytes_to_add);
5598 				dest->reserved += bytes_to_add;
5599 				if (dest->reserved >= dest->size)
5600 					dest->full = 1;
5601 				num_bytes -= bytes_to_add;
5602 			}
5603 			spin_unlock(&dest->lock);
5604 		}
5605 		if (num_bytes)
5606 			space_info_add_old_bytes(fs_info, space_info,
5607 						 num_bytes);
5608 	}
5609 	return ret;
5610 }
5611 
5612 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5613 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5614 			    int update_size)
5615 {
5616 	int ret;
5617 
5618 	ret = block_rsv_use_bytes(src, num_bytes);
5619 	if (ret)
5620 		return ret;
5621 
5622 	block_rsv_add_bytes(dst, num_bytes, update_size);
5623 	return 0;
5624 }
5625 
5626 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5627 {
5628 	memset(rsv, 0, sizeof(*rsv));
5629 	spin_lock_init(&rsv->lock);
5630 	rsv->type = type;
5631 }
5632 
5633 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5634 				   struct btrfs_block_rsv *rsv,
5635 				   unsigned short type)
5636 {
5637 	btrfs_init_block_rsv(rsv, type);
5638 	rsv->space_info = __find_space_info(fs_info,
5639 					    BTRFS_BLOCK_GROUP_METADATA);
5640 }
5641 
5642 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5643 					      unsigned short type)
5644 {
5645 	struct btrfs_block_rsv *block_rsv;
5646 
5647 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5648 	if (!block_rsv)
5649 		return NULL;
5650 
5651 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5652 	return block_rsv;
5653 }
5654 
5655 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5656 			  struct btrfs_block_rsv *rsv)
5657 {
5658 	if (!rsv)
5659 		return;
5660 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5661 	kfree(rsv);
5662 }
5663 
5664 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5665 {
5666 	kfree(rsv);
5667 }
5668 
5669 int btrfs_block_rsv_add(struct btrfs_root *root,
5670 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5671 			enum btrfs_reserve_flush_enum flush)
5672 {
5673 	int ret;
5674 
5675 	if (num_bytes == 0)
5676 		return 0;
5677 
5678 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5679 	if (!ret) {
5680 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5681 		return 0;
5682 	}
5683 
5684 	return ret;
5685 }
5686 
5687 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5688 {
5689 	u64 num_bytes = 0;
5690 	int ret = -ENOSPC;
5691 
5692 	if (!block_rsv)
5693 		return 0;
5694 
5695 	spin_lock(&block_rsv->lock);
5696 	num_bytes = div_factor(block_rsv->size, min_factor);
5697 	if (block_rsv->reserved >= num_bytes)
5698 		ret = 0;
5699 	spin_unlock(&block_rsv->lock);
5700 
5701 	return ret;
5702 }
5703 
5704 int btrfs_block_rsv_refill(struct btrfs_root *root,
5705 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5706 			   enum btrfs_reserve_flush_enum flush)
5707 {
5708 	u64 num_bytes = 0;
5709 	int ret = -ENOSPC;
5710 
5711 	if (!block_rsv)
5712 		return 0;
5713 
5714 	spin_lock(&block_rsv->lock);
5715 	num_bytes = min_reserved;
5716 	if (block_rsv->reserved >= num_bytes)
5717 		ret = 0;
5718 	else
5719 		num_bytes -= block_rsv->reserved;
5720 	spin_unlock(&block_rsv->lock);
5721 
5722 	if (!ret)
5723 		return 0;
5724 
5725 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5726 	if (!ret) {
5727 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5728 		return 0;
5729 	}
5730 
5731 	return ret;
5732 }
5733 
5734 /**
5735  * btrfs_inode_rsv_refill - refill the inode block rsv.
5736  * @inode - the inode we are refilling.
5737  * @flush - the flusing restriction.
5738  *
5739  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5740  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5741  * or return if we already have enough space.  This will also handle the resreve
5742  * tracepoint for the reserved amount.
5743  */
5744 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5745 				  enum btrfs_reserve_flush_enum flush)
5746 {
5747 	struct btrfs_root *root = inode->root;
5748 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5749 	u64 num_bytes = 0;
5750 	int ret = -ENOSPC;
5751 
5752 	spin_lock(&block_rsv->lock);
5753 	if (block_rsv->reserved < block_rsv->size)
5754 		num_bytes = block_rsv->size - block_rsv->reserved;
5755 	spin_unlock(&block_rsv->lock);
5756 
5757 	if (num_bytes == 0)
5758 		return 0;
5759 
5760 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5761 	if (!ret) {
5762 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5763 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5764 					      btrfs_ino(inode), num_bytes, 1);
5765 	}
5766 	return ret;
5767 }
5768 
5769 /**
5770  * btrfs_inode_rsv_release - release any excessive reservation.
5771  * @inode - the inode we need to release from.
5772  *
5773  * This is the same as btrfs_block_rsv_release, except that it handles the
5774  * tracepoint for the reservation.
5775  */
5776 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5777 {
5778 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5779 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5780 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5781 	u64 released = 0;
5782 
5783 	/*
5784 	 * Since we statically set the block_rsv->size we just want to say we
5785 	 * are releasing 0 bytes, and then we'll just get the reservation over
5786 	 * the size free'd.
5787 	 */
5788 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5789 	if (released > 0)
5790 		trace_btrfs_space_reservation(fs_info, "delalloc",
5791 					      btrfs_ino(inode), released, 0);
5792 }
5793 
5794 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5795 			     struct btrfs_block_rsv *block_rsv,
5796 			     u64 num_bytes)
5797 {
5798 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5799 
5800 	if (global_rsv == block_rsv ||
5801 	    block_rsv->space_info != global_rsv->space_info)
5802 		global_rsv = NULL;
5803 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5804 }
5805 
5806 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5807 {
5808 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5809 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5810 	u64 num_bytes;
5811 
5812 	/*
5813 	 * The global block rsv is based on the size of the extent tree, the
5814 	 * checksum tree and the root tree.  If the fs is empty we want to set
5815 	 * it to a minimal amount for safety.
5816 	 */
5817 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5818 		btrfs_root_used(&fs_info->csum_root->root_item) +
5819 		btrfs_root_used(&fs_info->tree_root->root_item);
5820 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5821 
5822 	spin_lock(&sinfo->lock);
5823 	spin_lock(&block_rsv->lock);
5824 
5825 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5826 
5827 	if (block_rsv->reserved < block_rsv->size) {
5828 		num_bytes = btrfs_space_info_used(sinfo, true);
5829 		if (sinfo->total_bytes > num_bytes) {
5830 			num_bytes = sinfo->total_bytes - num_bytes;
5831 			num_bytes = min(num_bytes,
5832 					block_rsv->size - block_rsv->reserved);
5833 			block_rsv->reserved += num_bytes;
5834 			sinfo->bytes_may_use += num_bytes;
5835 			trace_btrfs_space_reservation(fs_info, "space_info",
5836 						      sinfo->flags, num_bytes,
5837 						      1);
5838 		}
5839 	} else if (block_rsv->reserved > block_rsv->size) {
5840 		num_bytes = block_rsv->reserved - block_rsv->size;
5841 		sinfo->bytes_may_use -= num_bytes;
5842 		trace_btrfs_space_reservation(fs_info, "space_info",
5843 				      sinfo->flags, num_bytes, 0);
5844 		block_rsv->reserved = block_rsv->size;
5845 	}
5846 
5847 	if (block_rsv->reserved == block_rsv->size)
5848 		block_rsv->full = 1;
5849 	else
5850 		block_rsv->full = 0;
5851 
5852 	spin_unlock(&block_rsv->lock);
5853 	spin_unlock(&sinfo->lock);
5854 }
5855 
5856 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5857 {
5858 	struct btrfs_space_info *space_info;
5859 
5860 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5861 	fs_info->chunk_block_rsv.space_info = space_info;
5862 
5863 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5864 	fs_info->global_block_rsv.space_info = space_info;
5865 	fs_info->trans_block_rsv.space_info = space_info;
5866 	fs_info->empty_block_rsv.space_info = space_info;
5867 	fs_info->delayed_block_rsv.space_info = space_info;
5868 
5869 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5870 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5871 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5872 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5873 	if (fs_info->quota_root)
5874 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5875 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5876 
5877 	update_global_block_rsv(fs_info);
5878 }
5879 
5880 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5881 {
5882 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5883 				(u64)-1);
5884 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5885 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5886 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5887 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5888 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5889 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5890 }
5891 
5892 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5893 				  struct btrfs_fs_info *fs_info)
5894 {
5895 	if (!trans->block_rsv) {
5896 		ASSERT(!trans->bytes_reserved);
5897 		return;
5898 	}
5899 
5900 	if (!trans->bytes_reserved)
5901 		return;
5902 
5903 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5904 	trace_btrfs_space_reservation(fs_info, "transaction",
5905 				      trans->transid, trans->bytes_reserved, 0);
5906 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5907 				trans->bytes_reserved);
5908 	trans->bytes_reserved = 0;
5909 }
5910 
5911 /*
5912  * To be called after all the new block groups attached to the transaction
5913  * handle have been created (btrfs_create_pending_block_groups()).
5914  */
5915 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5916 {
5917 	struct btrfs_fs_info *fs_info = trans->fs_info;
5918 
5919 	if (!trans->chunk_bytes_reserved)
5920 		return;
5921 
5922 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5923 
5924 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5925 				trans->chunk_bytes_reserved);
5926 	trans->chunk_bytes_reserved = 0;
5927 }
5928 
5929 /* Can only return 0 or -ENOSPC */
5930 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5931 				  struct btrfs_inode *inode)
5932 {
5933 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5934 	struct btrfs_root *root = inode->root;
5935 	/*
5936 	 * We always use trans->block_rsv here as we will have reserved space
5937 	 * for our orphan when starting the transaction, using get_block_rsv()
5938 	 * here will sometimes make us choose the wrong block rsv as we could be
5939 	 * doing a reloc inode for a non refcounted root.
5940 	 */
5941 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5942 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5943 
5944 	/*
5945 	 * We need to hold space in order to delete our orphan item once we've
5946 	 * added it, so this takes the reservation so we can release it later
5947 	 * when we are truly done with the orphan item.
5948 	 */
5949 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5950 
5951 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5952 			num_bytes, 1);
5953 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5954 }
5955 
5956 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5957 {
5958 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5959 	struct btrfs_root *root = inode->root;
5960 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5961 
5962 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5963 			num_bytes, 0);
5964 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5965 }
5966 
5967 /*
5968  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5969  * root: the root of the parent directory
5970  * rsv: block reservation
5971  * items: the number of items that we need do reservation
5972  * qgroup_reserved: used to return the reserved size in qgroup
5973  *
5974  * This function is used to reserve the space for snapshot/subvolume
5975  * creation and deletion. Those operations are different with the
5976  * common file/directory operations, they change two fs/file trees
5977  * and root tree, the number of items that the qgroup reserves is
5978  * different with the free space reservation. So we can not use
5979  * the space reservation mechanism in start_transaction().
5980  */
5981 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5982 				     struct btrfs_block_rsv *rsv,
5983 				     int items,
5984 				     u64 *qgroup_reserved,
5985 				     bool use_global_rsv)
5986 {
5987 	u64 num_bytes;
5988 	int ret;
5989 	struct btrfs_fs_info *fs_info = root->fs_info;
5990 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5991 
5992 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5993 		/* One for parent inode, two for dir entries */
5994 		num_bytes = 3 * fs_info->nodesize;
5995 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5996 		if (ret)
5997 			return ret;
5998 	} else {
5999 		num_bytes = 0;
6000 	}
6001 
6002 	*qgroup_reserved = num_bytes;
6003 
6004 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6005 	rsv->space_info = __find_space_info(fs_info,
6006 					    BTRFS_BLOCK_GROUP_METADATA);
6007 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6008 				  BTRFS_RESERVE_FLUSH_ALL);
6009 
6010 	if (ret == -ENOSPC && use_global_rsv)
6011 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6012 
6013 	if (ret && *qgroup_reserved)
6014 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
6015 
6016 	return ret;
6017 }
6018 
6019 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6020 				      struct btrfs_block_rsv *rsv)
6021 {
6022 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6023 }
6024 
6025 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6026 						 struct btrfs_inode *inode)
6027 {
6028 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6029 	u64 reserve_size = 0;
6030 	u64 csum_leaves;
6031 	unsigned outstanding_extents;
6032 
6033 	lockdep_assert_held(&inode->lock);
6034 	outstanding_extents = inode->outstanding_extents;
6035 	if (outstanding_extents)
6036 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6037 						outstanding_extents + 1);
6038 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6039 						 inode->csum_bytes);
6040 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6041 						       csum_leaves);
6042 
6043 	spin_lock(&block_rsv->lock);
6044 	block_rsv->size = reserve_size;
6045 	spin_unlock(&block_rsv->lock);
6046 }
6047 
6048 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6049 {
6050 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6051 	struct btrfs_root *root = inode->root;
6052 	unsigned nr_extents;
6053 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6054 	int ret = 0;
6055 	bool delalloc_lock = true;
6056 
6057 	/* If we are a free space inode we need to not flush since we will be in
6058 	 * the middle of a transaction commit.  We also don't need the delalloc
6059 	 * mutex since we won't race with anybody.  We need this mostly to make
6060 	 * lockdep shut its filthy mouth.
6061 	 *
6062 	 * If we have a transaction open (can happen if we call truncate_block
6063 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6064 	 */
6065 	if (btrfs_is_free_space_inode(inode)) {
6066 		flush = BTRFS_RESERVE_NO_FLUSH;
6067 		delalloc_lock = false;
6068 	} else if (current->journal_info) {
6069 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
6070 	}
6071 
6072 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
6073 	    btrfs_transaction_in_commit(fs_info))
6074 		schedule_timeout(1);
6075 
6076 	if (delalloc_lock)
6077 		mutex_lock(&inode->delalloc_mutex);
6078 
6079 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6080 
6081 	/* Add our new extents and calculate the new rsv size. */
6082 	spin_lock(&inode->lock);
6083 	nr_extents = count_max_extents(num_bytes);
6084 	btrfs_mod_outstanding_extents(inode, nr_extents);
6085 	inode->csum_bytes += num_bytes;
6086 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6087 	spin_unlock(&inode->lock);
6088 
6089 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6090 		ret = btrfs_qgroup_reserve_meta(root,
6091 				nr_extents * fs_info->nodesize, true);
6092 		if (ret)
6093 			goto out_fail;
6094 	}
6095 
6096 	ret = btrfs_inode_rsv_refill(inode, flush);
6097 	if (unlikely(ret)) {
6098 		btrfs_qgroup_free_meta(root,
6099 				       nr_extents * fs_info->nodesize);
6100 		goto out_fail;
6101 	}
6102 
6103 	if (delalloc_lock)
6104 		mutex_unlock(&inode->delalloc_mutex);
6105 	return 0;
6106 
6107 out_fail:
6108 	spin_lock(&inode->lock);
6109 	nr_extents = count_max_extents(num_bytes);
6110 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6111 	inode->csum_bytes -= num_bytes;
6112 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6113 	spin_unlock(&inode->lock);
6114 
6115 	btrfs_inode_rsv_release(inode);
6116 	if (delalloc_lock)
6117 		mutex_unlock(&inode->delalloc_mutex);
6118 	return ret;
6119 }
6120 
6121 /**
6122  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6123  * @inode: the inode to release the reservation for.
6124  * @num_bytes: the number of bytes we are releasing.
6125  *
6126  * This will release the metadata reservation for an inode.  This can be called
6127  * once we complete IO for a given set of bytes to release their metadata
6128  * reservations, or on error for the same reason.
6129  */
6130 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6131 {
6132 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6133 
6134 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6135 	spin_lock(&inode->lock);
6136 	inode->csum_bytes -= num_bytes;
6137 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6138 	spin_unlock(&inode->lock);
6139 
6140 	if (btrfs_is_testing(fs_info))
6141 		return;
6142 
6143 	btrfs_inode_rsv_release(inode);
6144 }
6145 
6146 /**
6147  * btrfs_delalloc_release_extents - release our outstanding_extents
6148  * @inode: the inode to balance the reservation for.
6149  * @num_bytes: the number of bytes we originally reserved with
6150  *
6151  * When we reserve space we increase outstanding_extents for the extents we may
6152  * add.  Once we've set the range as delalloc or created our ordered extents we
6153  * have outstanding_extents to track the real usage, so we use this to free our
6154  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6155  * with btrfs_delalloc_reserve_metadata.
6156  */
6157 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6158 {
6159 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6160 	unsigned num_extents;
6161 
6162 	spin_lock(&inode->lock);
6163 	num_extents = count_max_extents(num_bytes);
6164 	btrfs_mod_outstanding_extents(inode, -num_extents);
6165 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6166 	spin_unlock(&inode->lock);
6167 
6168 	if (btrfs_is_testing(fs_info))
6169 		return;
6170 
6171 	btrfs_inode_rsv_release(inode);
6172 }
6173 
6174 /**
6175  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6176  * delalloc
6177  * @inode: inode we're writing to
6178  * @start: start range we are writing to
6179  * @len: how long the range we are writing to
6180  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6181  * 	      current reservation.
6182  *
6183  * This will do the following things
6184  *
6185  * o reserve space in data space info for num bytes
6186  *   and reserve precious corresponding qgroup space
6187  *   (Done in check_data_free_space)
6188  *
6189  * o reserve space for metadata space, based on the number of outstanding
6190  *   extents and how much csums will be needed
6191  *   also reserve metadata space in a per root over-reserve method.
6192  * o add to the inodes->delalloc_bytes
6193  * o add it to the fs_info's delalloc inodes list.
6194  *   (Above 3 all done in delalloc_reserve_metadata)
6195  *
6196  * Return 0 for success
6197  * Return <0 for error(-ENOSPC or -EQUOT)
6198  */
6199 int btrfs_delalloc_reserve_space(struct inode *inode,
6200 			struct extent_changeset **reserved, u64 start, u64 len)
6201 {
6202 	int ret;
6203 
6204 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6205 	if (ret < 0)
6206 		return ret;
6207 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6208 	if (ret < 0)
6209 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6210 	return ret;
6211 }
6212 
6213 /**
6214  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6215  * @inode: inode we're releasing space for
6216  * @start: start position of the space already reserved
6217  * @len: the len of the space already reserved
6218  * @release_bytes: the len of the space we consumed or didn't use
6219  *
6220  * This function will release the metadata space that was not used and will
6221  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6222  * list if there are no delalloc bytes left.
6223  * Also it will handle the qgroup reserved space.
6224  */
6225 void btrfs_delalloc_release_space(struct inode *inode,
6226 				  struct extent_changeset *reserved,
6227 				  u64 start, u64 len)
6228 {
6229 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6230 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6231 }
6232 
6233 static int update_block_group(struct btrfs_trans_handle *trans,
6234 			      struct btrfs_fs_info *info, u64 bytenr,
6235 			      u64 num_bytes, int alloc)
6236 {
6237 	struct btrfs_block_group_cache *cache = NULL;
6238 	u64 total = num_bytes;
6239 	u64 old_val;
6240 	u64 byte_in_group;
6241 	int factor;
6242 
6243 	/* block accounting for super block */
6244 	spin_lock(&info->delalloc_root_lock);
6245 	old_val = btrfs_super_bytes_used(info->super_copy);
6246 	if (alloc)
6247 		old_val += num_bytes;
6248 	else
6249 		old_val -= num_bytes;
6250 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6251 	spin_unlock(&info->delalloc_root_lock);
6252 
6253 	while (total) {
6254 		cache = btrfs_lookup_block_group(info, bytenr);
6255 		if (!cache)
6256 			return -ENOENT;
6257 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6258 				    BTRFS_BLOCK_GROUP_RAID1 |
6259 				    BTRFS_BLOCK_GROUP_RAID10))
6260 			factor = 2;
6261 		else
6262 			factor = 1;
6263 		/*
6264 		 * If this block group has free space cache written out, we
6265 		 * need to make sure to load it if we are removing space.  This
6266 		 * is because we need the unpinning stage to actually add the
6267 		 * space back to the block group, otherwise we will leak space.
6268 		 */
6269 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6270 			cache_block_group(cache, 1);
6271 
6272 		byte_in_group = bytenr - cache->key.objectid;
6273 		WARN_ON(byte_in_group > cache->key.offset);
6274 
6275 		spin_lock(&cache->space_info->lock);
6276 		spin_lock(&cache->lock);
6277 
6278 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6279 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6280 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6281 
6282 		old_val = btrfs_block_group_used(&cache->item);
6283 		num_bytes = min(total, cache->key.offset - byte_in_group);
6284 		if (alloc) {
6285 			old_val += num_bytes;
6286 			btrfs_set_block_group_used(&cache->item, old_val);
6287 			cache->reserved -= num_bytes;
6288 			cache->space_info->bytes_reserved -= num_bytes;
6289 			cache->space_info->bytes_used += num_bytes;
6290 			cache->space_info->disk_used += num_bytes * factor;
6291 			spin_unlock(&cache->lock);
6292 			spin_unlock(&cache->space_info->lock);
6293 		} else {
6294 			old_val -= num_bytes;
6295 			btrfs_set_block_group_used(&cache->item, old_val);
6296 			cache->pinned += num_bytes;
6297 			cache->space_info->bytes_pinned += num_bytes;
6298 			cache->space_info->bytes_used -= num_bytes;
6299 			cache->space_info->disk_used -= num_bytes * factor;
6300 			spin_unlock(&cache->lock);
6301 			spin_unlock(&cache->space_info->lock);
6302 
6303 			trace_btrfs_space_reservation(info, "pinned",
6304 						      cache->space_info->flags,
6305 						      num_bytes, 1);
6306 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6307 					   num_bytes);
6308 			set_extent_dirty(info->pinned_extents,
6309 					 bytenr, bytenr + num_bytes - 1,
6310 					 GFP_NOFS | __GFP_NOFAIL);
6311 		}
6312 
6313 		spin_lock(&trans->transaction->dirty_bgs_lock);
6314 		if (list_empty(&cache->dirty_list)) {
6315 			list_add_tail(&cache->dirty_list,
6316 				      &trans->transaction->dirty_bgs);
6317 				trans->transaction->num_dirty_bgs++;
6318 			btrfs_get_block_group(cache);
6319 		}
6320 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6321 
6322 		/*
6323 		 * No longer have used bytes in this block group, queue it for
6324 		 * deletion. We do this after adding the block group to the
6325 		 * dirty list to avoid races between cleaner kthread and space
6326 		 * cache writeout.
6327 		 */
6328 		if (!alloc && old_val == 0) {
6329 			spin_lock(&info->unused_bgs_lock);
6330 			if (list_empty(&cache->bg_list)) {
6331 				btrfs_get_block_group(cache);
6332 				list_add_tail(&cache->bg_list,
6333 					      &info->unused_bgs);
6334 			}
6335 			spin_unlock(&info->unused_bgs_lock);
6336 		}
6337 
6338 		btrfs_put_block_group(cache);
6339 		total -= num_bytes;
6340 		bytenr += num_bytes;
6341 	}
6342 	return 0;
6343 }
6344 
6345 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6346 {
6347 	struct btrfs_block_group_cache *cache;
6348 	u64 bytenr;
6349 
6350 	spin_lock(&fs_info->block_group_cache_lock);
6351 	bytenr = fs_info->first_logical_byte;
6352 	spin_unlock(&fs_info->block_group_cache_lock);
6353 
6354 	if (bytenr < (u64)-1)
6355 		return bytenr;
6356 
6357 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6358 	if (!cache)
6359 		return 0;
6360 
6361 	bytenr = cache->key.objectid;
6362 	btrfs_put_block_group(cache);
6363 
6364 	return bytenr;
6365 }
6366 
6367 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6368 			   struct btrfs_block_group_cache *cache,
6369 			   u64 bytenr, u64 num_bytes, int reserved)
6370 {
6371 	spin_lock(&cache->space_info->lock);
6372 	spin_lock(&cache->lock);
6373 	cache->pinned += num_bytes;
6374 	cache->space_info->bytes_pinned += num_bytes;
6375 	if (reserved) {
6376 		cache->reserved -= num_bytes;
6377 		cache->space_info->bytes_reserved -= num_bytes;
6378 	}
6379 	spin_unlock(&cache->lock);
6380 	spin_unlock(&cache->space_info->lock);
6381 
6382 	trace_btrfs_space_reservation(fs_info, "pinned",
6383 				      cache->space_info->flags, num_bytes, 1);
6384 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6385 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6386 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6387 	return 0;
6388 }
6389 
6390 /*
6391  * this function must be called within transaction
6392  */
6393 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6394 		     u64 bytenr, u64 num_bytes, int reserved)
6395 {
6396 	struct btrfs_block_group_cache *cache;
6397 
6398 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6399 	BUG_ON(!cache); /* Logic error */
6400 
6401 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6402 
6403 	btrfs_put_block_group(cache);
6404 	return 0;
6405 }
6406 
6407 /*
6408  * this function must be called within transaction
6409  */
6410 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6411 				    u64 bytenr, u64 num_bytes)
6412 {
6413 	struct btrfs_block_group_cache *cache;
6414 	int ret;
6415 
6416 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6417 	if (!cache)
6418 		return -EINVAL;
6419 
6420 	/*
6421 	 * pull in the free space cache (if any) so that our pin
6422 	 * removes the free space from the cache.  We have load_only set
6423 	 * to one because the slow code to read in the free extents does check
6424 	 * the pinned extents.
6425 	 */
6426 	cache_block_group(cache, 1);
6427 
6428 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6429 
6430 	/* remove us from the free space cache (if we're there at all) */
6431 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6432 	btrfs_put_block_group(cache);
6433 	return ret;
6434 }
6435 
6436 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6437 				   u64 start, u64 num_bytes)
6438 {
6439 	int ret;
6440 	struct btrfs_block_group_cache *block_group;
6441 	struct btrfs_caching_control *caching_ctl;
6442 
6443 	block_group = btrfs_lookup_block_group(fs_info, start);
6444 	if (!block_group)
6445 		return -EINVAL;
6446 
6447 	cache_block_group(block_group, 0);
6448 	caching_ctl = get_caching_control(block_group);
6449 
6450 	if (!caching_ctl) {
6451 		/* Logic error */
6452 		BUG_ON(!block_group_cache_done(block_group));
6453 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6454 	} else {
6455 		mutex_lock(&caching_ctl->mutex);
6456 
6457 		if (start >= caching_ctl->progress) {
6458 			ret = add_excluded_extent(fs_info, start, num_bytes);
6459 		} else if (start + num_bytes <= caching_ctl->progress) {
6460 			ret = btrfs_remove_free_space(block_group,
6461 						      start, num_bytes);
6462 		} else {
6463 			num_bytes = caching_ctl->progress - start;
6464 			ret = btrfs_remove_free_space(block_group,
6465 						      start, num_bytes);
6466 			if (ret)
6467 				goto out_lock;
6468 
6469 			num_bytes = (start + num_bytes) -
6470 				caching_ctl->progress;
6471 			start = caching_ctl->progress;
6472 			ret = add_excluded_extent(fs_info, start, num_bytes);
6473 		}
6474 out_lock:
6475 		mutex_unlock(&caching_ctl->mutex);
6476 		put_caching_control(caching_ctl);
6477 	}
6478 	btrfs_put_block_group(block_group);
6479 	return ret;
6480 }
6481 
6482 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6483 				 struct extent_buffer *eb)
6484 {
6485 	struct btrfs_file_extent_item *item;
6486 	struct btrfs_key key;
6487 	int found_type;
6488 	int i;
6489 
6490 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6491 		return 0;
6492 
6493 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6494 		btrfs_item_key_to_cpu(eb, &key, i);
6495 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6496 			continue;
6497 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6498 		found_type = btrfs_file_extent_type(eb, item);
6499 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6500 			continue;
6501 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6502 			continue;
6503 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6504 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6505 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6506 	}
6507 
6508 	return 0;
6509 }
6510 
6511 static void
6512 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6513 {
6514 	atomic_inc(&bg->reservations);
6515 }
6516 
6517 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6518 					const u64 start)
6519 {
6520 	struct btrfs_block_group_cache *bg;
6521 
6522 	bg = btrfs_lookup_block_group(fs_info, start);
6523 	ASSERT(bg);
6524 	if (atomic_dec_and_test(&bg->reservations))
6525 		wake_up_atomic_t(&bg->reservations);
6526 	btrfs_put_block_group(bg);
6527 }
6528 
6529 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6530 {
6531 	struct btrfs_space_info *space_info = bg->space_info;
6532 
6533 	ASSERT(bg->ro);
6534 
6535 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6536 		return;
6537 
6538 	/*
6539 	 * Our block group is read only but before we set it to read only,
6540 	 * some task might have had allocated an extent from it already, but it
6541 	 * has not yet created a respective ordered extent (and added it to a
6542 	 * root's list of ordered extents).
6543 	 * Therefore wait for any task currently allocating extents, since the
6544 	 * block group's reservations counter is incremented while a read lock
6545 	 * on the groups' semaphore is held and decremented after releasing
6546 	 * the read access on that semaphore and creating the ordered extent.
6547 	 */
6548 	down_write(&space_info->groups_sem);
6549 	up_write(&space_info->groups_sem);
6550 
6551 	wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6552 			 TASK_UNINTERRUPTIBLE);
6553 }
6554 
6555 /**
6556  * btrfs_add_reserved_bytes - update the block_group and space info counters
6557  * @cache:	The cache we are manipulating
6558  * @ram_bytes:  The number of bytes of file content, and will be same to
6559  *              @num_bytes except for the compress path.
6560  * @num_bytes:	The number of bytes in question
6561  * @delalloc:   The blocks are allocated for the delalloc write
6562  *
6563  * This is called by the allocator when it reserves space. If this is a
6564  * reservation and the block group has become read only we cannot make the
6565  * reservation and return -EAGAIN, otherwise this function always succeeds.
6566  */
6567 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6568 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6569 {
6570 	struct btrfs_space_info *space_info = cache->space_info;
6571 	int ret = 0;
6572 
6573 	spin_lock(&space_info->lock);
6574 	spin_lock(&cache->lock);
6575 	if (cache->ro) {
6576 		ret = -EAGAIN;
6577 	} else {
6578 		cache->reserved += num_bytes;
6579 		space_info->bytes_reserved += num_bytes;
6580 
6581 		trace_btrfs_space_reservation(cache->fs_info,
6582 				"space_info", space_info->flags,
6583 				ram_bytes, 0);
6584 		space_info->bytes_may_use -= ram_bytes;
6585 		if (delalloc)
6586 			cache->delalloc_bytes += num_bytes;
6587 	}
6588 	spin_unlock(&cache->lock);
6589 	spin_unlock(&space_info->lock);
6590 	return ret;
6591 }
6592 
6593 /**
6594  * btrfs_free_reserved_bytes - update the block_group and space info counters
6595  * @cache:      The cache we are manipulating
6596  * @num_bytes:  The number of bytes in question
6597  * @delalloc:   The blocks are allocated for the delalloc write
6598  *
6599  * This is called by somebody who is freeing space that was never actually used
6600  * on disk.  For example if you reserve some space for a new leaf in transaction
6601  * A and before transaction A commits you free that leaf, you call this with
6602  * reserve set to 0 in order to clear the reservation.
6603  */
6604 
6605 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6606 				     u64 num_bytes, int delalloc)
6607 {
6608 	struct btrfs_space_info *space_info = cache->space_info;
6609 	int ret = 0;
6610 
6611 	spin_lock(&space_info->lock);
6612 	spin_lock(&cache->lock);
6613 	if (cache->ro)
6614 		space_info->bytes_readonly += num_bytes;
6615 	cache->reserved -= num_bytes;
6616 	space_info->bytes_reserved -= num_bytes;
6617 
6618 	if (delalloc)
6619 		cache->delalloc_bytes -= num_bytes;
6620 	spin_unlock(&cache->lock);
6621 	spin_unlock(&space_info->lock);
6622 	return ret;
6623 }
6624 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6625 {
6626 	struct btrfs_caching_control *next;
6627 	struct btrfs_caching_control *caching_ctl;
6628 	struct btrfs_block_group_cache *cache;
6629 
6630 	down_write(&fs_info->commit_root_sem);
6631 
6632 	list_for_each_entry_safe(caching_ctl, next,
6633 				 &fs_info->caching_block_groups, list) {
6634 		cache = caching_ctl->block_group;
6635 		if (block_group_cache_done(cache)) {
6636 			cache->last_byte_to_unpin = (u64)-1;
6637 			list_del_init(&caching_ctl->list);
6638 			put_caching_control(caching_ctl);
6639 		} else {
6640 			cache->last_byte_to_unpin = caching_ctl->progress;
6641 		}
6642 	}
6643 
6644 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6645 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6646 	else
6647 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6648 
6649 	up_write(&fs_info->commit_root_sem);
6650 
6651 	update_global_block_rsv(fs_info);
6652 }
6653 
6654 /*
6655  * Returns the free cluster for the given space info and sets empty_cluster to
6656  * what it should be based on the mount options.
6657  */
6658 static struct btrfs_free_cluster *
6659 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6660 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6661 {
6662 	struct btrfs_free_cluster *ret = NULL;
6663 
6664 	*empty_cluster = 0;
6665 	if (btrfs_mixed_space_info(space_info))
6666 		return ret;
6667 
6668 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6669 		ret = &fs_info->meta_alloc_cluster;
6670 		if (btrfs_test_opt(fs_info, SSD))
6671 			*empty_cluster = SZ_2M;
6672 		else
6673 			*empty_cluster = SZ_64K;
6674 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6675 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6676 		*empty_cluster = SZ_2M;
6677 		ret = &fs_info->data_alloc_cluster;
6678 	}
6679 
6680 	return ret;
6681 }
6682 
6683 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6684 			      u64 start, u64 end,
6685 			      const bool return_free_space)
6686 {
6687 	struct btrfs_block_group_cache *cache = NULL;
6688 	struct btrfs_space_info *space_info;
6689 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6690 	struct btrfs_free_cluster *cluster = NULL;
6691 	u64 len;
6692 	u64 total_unpinned = 0;
6693 	u64 empty_cluster = 0;
6694 	bool readonly;
6695 
6696 	while (start <= end) {
6697 		readonly = false;
6698 		if (!cache ||
6699 		    start >= cache->key.objectid + cache->key.offset) {
6700 			if (cache)
6701 				btrfs_put_block_group(cache);
6702 			total_unpinned = 0;
6703 			cache = btrfs_lookup_block_group(fs_info, start);
6704 			BUG_ON(!cache); /* Logic error */
6705 
6706 			cluster = fetch_cluster_info(fs_info,
6707 						     cache->space_info,
6708 						     &empty_cluster);
6709 			empty_cluster <<= 1;
6710 		}
6711 
6712 		len = cache->key.objectid + cache->key.offset - start;
6713 		len = min(len, end + 1 - start);
6714 
6715 		if (start < cache->last_byte_to_unpin) {
6716 			len = min(len, cache->last_byte_to_unpin - start);
6717 			if (return_free_space)
6718 				btrfs_add_free_space(cache, start, len);
6719 		}
6720 
6721 		start += len;
6722 		total_unpinned += len;
6723 		space_info = cache->space_info;
6724 
6725 		/*
6726 		 * If this space cluster has been marked as fragmented and we've
6727 		 * unpinned enough in this block group to potentially allow a
6728 		 * cluster to be created inside of it go ahead and clear the
6729 		 * fragmented check.
6730 		 */
6731 		if (cluster && cluster->fragmented &&
6732 		    total_unpinned > empty_cluster) {
6733 			spin_lock(&cluster->lock);
6734 			cluster->fragmented = 0;
6735 			spin_unlock(&cluster->lock);
6736 		}
6737 
6738 		spin_lock(&space_info->lock);
6739 		spin_lock(&cache->lock);
6740 		cache->pinned -= len;
6741 		space_info->bytes_pinned -= len;
6742 
6743 		trace_btrfs_space_reservation(fs_info, "pinned",
6744 					      space_info->flags, len, 0);
6745 		space_info->max_extent_size = 0;
6746 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6747 		if (cache->ro) {
6748 			space_info->bytes_readonly += len;
6749 			readonly = true;
6750 		}
6751 		spin_unlock(&cache->lock);
6752 		if (!readonly && return_free_space &&
6753 		    global_rsv->space_info == space_info) {
6754 			u64 to_add = len;
6755 
6756 			spin_lock(&global_rsv->lock);
6757 			if (!global_rsv->full) {
6758 				to_add = min(len, global_rsv->size -
6759 					     global_rsv->reserved);
6760 				global_rsv->reserved += to_add;
6761 				space_info->bytes_may_use += to_add;
6762 				if (global_rsv->reserved >= global_rsv->size)
6763 					global_rsv->full = 1;
6764 				trace_btrfs_space_reservation(fs_info,
6765 							      "space_info",
6766 							      space_info->flags,
6767 							      to_add, 1);
6768 				len -= to_add;
6769 			}
6770 			spin_unlock(&global_rsv->lock);
6771 			/* Add to any tickets we may have */
6772 			if (len)
6773 				space_info_add_new_bytes(fs_info, space_info,
6774 							 len);
6775 		}
6776 		spin_unlock(&space_info->lock);
6777 	}
6778 
6779 	if (cache)
6780 		btrfs_put_block_group(cache);
6781 	return 0;
6782 }
6783 
6784 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6785 			       struct btrfs_fs_info *fs_info)
6786 {
6787 	struct btrfs_block_group_cache *block_group, *tmp;
6788 	struct list_head *deleted_bgs;
6789 	struct extent_io_tree *unpin;
6790 	u64 start;
6791 	u64 end;
6792 	int ret;
6793 
6794 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6795 		unpin = &fs_info->freed_extents[1];
6796 	else
6797 		unpin = &fs_info->freed_extents[0];
6798 
6799 	while (!trans->aborted) {
6800 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6801 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6802 					    EXTENT_DIRTY, NULL);
6803 		if (ret) {
6804 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6805 			break;
6806 		}
6807 
6808 		if (btrfs_test_opt(fs_info, DISCARD))
6809 			ret = btrfs_discard_extent(fs_info, start,
6810 						   end + 1 - start, NULL);
6811 
6812 		clear_extent_dirty(unpin, start, end);
6813 		unpin_extent_range(fs_info, start, end, true);
6814 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6815 		cond_resched();
6816 	}
6817 
6818 	/*
6819 	 * Transaction is finished.  We don't need the lock anymore.  We
6820 	 * do need to clean up the block groups in case of a transaction
6821 	 * abort.
6822 	 */
6823 	deleted_bgs = &trans->transaction->deleted_bgs;
6824 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6825 		u64 trimmed = 0;
6826 
6827 		ret = -EROFS;
6828 		if (!trans->aborted)
6829 			ret = btrfs_discard_extent(fs_info,
6830 						   block_group->key.objectid,
6831 						   block_group->key.offset,
6832 						   &trimmed);
6833 
6834 		list_del_init(&block_group->bg_list);
6835 		btrfs_put_block_group_trimming(block_group);
6836 		btrfs_put_block_group(block_group);
6837 
6838 		if (ret) {
6839 			const char *errstr = btrfs_decode_error(ret);
6840 			btrfs_warn(fs_info,
6841 			   "discard failed while removing blockgroup: errno=%d %s",
6842 				   ret, errstr);
6843 		}
6844 	}
6845 
6846 	return 0;
6847 }
6848 
6849 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6850 				struct btrfs_fs_info *info,
6851 				struct btrfs_delayed_ref_node *node, u64 parent,
6852 				u64 root_objectid, u64 owner_objectid,
6853 				u64 owner_offset, int refs_to_drop,
6854 				struct btrfs_delayed_extent_op *extent_op)
6855 {
6856 	struct btrfs_key key;
6857 	struct btrfs_path *path;
6858 	struct btrfs_root *extent_root = info->extent_root;
6859 	struct extent_buffer *leaf;
6860 	struct btrfs_extent_item *ei;
6861 	struct btrfs_extent_inline_ref *iref;
6862 	int ret;
6863 	int is_data;
6864 	int extent_slot = 0;
6865 	int found_extent = 0;
6866 	int num_to_del = 1;
6867 	u32 item_size;
6868 	u64 refs;
6869 	u64 bytenr = node->bytenr;
6870 	u64 num_bytes = node->num_bytes;
6871 	int last_ref = 0;
6872 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6873 
6874 	path = btrfs_alloc_path();
6875 	if (!path)
6876 		return -ENOMEM;
6877 
6878 	path->reada = READA_FORWARD;
6879 	path->leave_spinning = 1;
6880 
6881 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6882 	BUG_ON(!is_data && refs_to_drop != 1);
6883 
6884 	if (is_data)
6885 		skinny_metadata = false;
6886 
6887 	ret = lookup_extent_backref(trans, info, path, &iref,
6888 				    bytenr, num_bytes, parent,
6889 				    root_objectid, owner_objectid,
6890 				    owner_offset);
6891 	if (ret == 0) {
6892 		extent_slot = path->slots[0];
6893 		while (extent_slot >= 0) {
6894 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6895 					      extent_slot);
6896 			if (key.objectid != bytenr)
6897 				break;
6898 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6899 			    key.offset == num_bytes) {
6900 				found_extent = 1;
6901 				break;
6902 			}
6903 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6904 			    key.offset == owner_objectid) {
6905 				found_extent = 1;
6906 				break;
6907 			}
6908 			if (path->slots[0] - extent_slot > 5)
6909 				break;
6910 			extent_slot--;
6911 		}
6912 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6913 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6914 		if (found_extent && item_size < sizeof(*ei))
6915 			found_extent = 0;
6916 #endif
6917 		if (!found_extent) {
6918 			BUG_ON(iref);
6919 			ret = remove_extent_backref(trans, info, path, NULL,
6920 						    refs_to_drop,
6921 						    is_data, &last_ref);
6922 			if (ret) {
6923 				btrfs_abort_transaction(trans, ret);
6924 				goto out;
6925 			}
6926 			btrfs_release_path(path);
6927 			path->leave_spinning = 1;
6928 
6929 			key.objectid = bytenr;
6930 			key.type = BTRFS_EXTENT_ITEM_KEY;
6931 			key.offset = num_bytes;
6932 
6933 			if (!is_data && skinny_metadata) {
6934 				key.type = BTRFS_METADATA_ITEM_KEY;
6935 				key.offset = owner_objectid;
6936 			}
6937 
6938 			ret = btrfs_search_slot(trans, extent_root,
6939 						&key, path, -1, 1);
6940 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6941 				/*
6942 				 * Couldn't find our skinny metadata item,
6943 				 * see if we have ye olde extent item.
6944 				 */
6945 				path->slots[0]--;
6946 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6947 						      path->slots[0]);
6948 				if (key.objectid == bytenr &&
6949 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6950 				    key.offset == num_bytes)
6951 					ret = 0;
6952 			}
6953 
6954 			if (ret > 0 && skinny_metadata) {
6955 				skinny_metadata = false;
6956 				key.objectid = bytenr;
6957 				key.type = BTRFS_EXTENT_ITEM_KEY;
6958 				key.offset = num_bytes;
6959 				btrfs_release_path(path);
6960 				ret = btrfs_search_slot(trans, extent_root,
6961 							&key, path, -1, 1);
6962 			}
6963 
6964 			if (ret) {
6965 				btrfs_err(info,
6966 					  "umm, got %d back from search, was looking for %llu",
6967 					  ret, bytenr);
6968 				if (ret > 0)
6969 					btrfs_print_leaf(path->nodes[0]);
6970 			}
6971 			if (ret < 0) {
6972 				btrfs_abort_transaction(trans, ret);
6973 				goto out;
6974 			}
6975 			extent_slot = path->slots[0];
6976 		}
6977 	} else if (WARN_ON(ret == -ENOENT)) {
6978 		btrfs_print_leaf(path->nodes[0]);
6979 		btrfs_err(info,
6980 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6981 			bytenr, parent, root_objectid, owner_objectid,
6982 			owner_offset);
6983 		btrfs_abort_transaction(trans, ret);
6984 		goto out;
6985 	} else {
6986 		btrfs_abort_transaction(trans, ret);
6987 		goto out;
6988 	}
6989 
6990 	leaf = path->nodes[0];
6991 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6993 	if (item_size < sizeof(*ei)) {
6994 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6995 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6996 					     0);
6997 		if (ret < 0) {
6998 			btrfs_abort_transaction(trans, ret);
6999 			goto out;
7000 		}
7001 
7002 		btrfs_release_path(path);
7003 		path->leave_spinning = 1;
7004 
7005 		key.objectid = bytenr;
7006 		key.type = BTRFS_EXTENT_ITEM_KEY;
7007 		key.offset = num_bytes;
7008 
7009 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7010 					-1, 1);
7011 		if (ret) {
7012 			btrfs_err(info,
7013 				  "umm, got %d back from search, was looking for %llu",
7014 				ret, bytenr);
7015 			btrfs_print_leaf(path->nodes[0]);
7016 		}
7017 		if (ret < 0) {
7018 			btrfs_abort_transaction(trans, ret);
7019 			goto out;
7020 		}
7021 
7022 		extent_slot = path->slots[0];
7023 		leaf = path->nodes[0];
7024 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7025 	}
7026 #endif
7027 	BUG_ON(item_size < sizeof(*ei));
7028 	ei = btrfs_item_ptr(leaf, extent_slot,
7029 			    struct btrfs_extent_item);
7030 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7031 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7032 		struct btrfs_tree_block_info *bi;
7033 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7034 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7035 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7036 	}
7037 
7038 	refs = btrfs_extent_refs(leaf, ei);
7039 	if (refs < refs_to_drop) {
7040 		btrfs_err(info,
7041 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7042 			  refs_to_drop, refs, bytenr);
7043 		ret = -EINVAL;
7044 		btrfs_abort_transaction(trans, ret);
7045 		goto out;
7046 	}
7047 	refs -= refs_to_drop;
7048 
7049 	if (refs > 0) {
7050 		if (extent_op)
7051 			__run_delayed_extent_op(extent_op, leaf, ei);
7052 		/*
7053 		 * In the case of inline back ref, reference count will
7054 		 * be updated by remove_extent_backref
7055 		 */
7056 		if (iref) {
7057 			BUG_ON(!found_extent);
7058 		} else {
7059 			btrfs_set_extent_refs(leaf, ei, refs);
7060 			btrfs_mark_buffer_dirty(leaf);
7061 		}
7062 		if (found_extent) {
7063 			ret = remove_extent_backref(trans, info, path,
7064 						    iref, refs_to_drop,
7065 						    is_data, &last_ref);
7066 			if (ret) {
7067 				btrfs_abort_transaction(trans, ret);
7068 				goto out;
7069 			}
7070 		}
7071 	} else {
7072 		if (found_extent) {
7073 			BUG_ON(is_data && refs_to_drop !=
7074 			       extent_data_ref_count(path, iref));
7075 			if (iref) {
7076 				BUG_ON(path->slots[0] != extent_slot);
7077 			} else {
7078 				BUG_ON(path->slots[0] != extent_slot + 1);
7079 				path->slots[0] = extent_slot;
7080 				num_to_del = 2;
7081 			}
7082 		}
7083 
7084 		last_ref = 1;
7085 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7086 				      num_to_del);
7087 		if (ret) {
7088 			btrfs_abort_transaction(trans, ret);
7089 			goto out;
7090 		}
7091 		btrfs_release_path(path);
7092 
7093 		if (is_data) {
7094 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7095 			if (ret) {
7096 				btrfs_abort_transaction(trans, ret);
7097 				goto out;
7098 			}
7099 		}
7100 
7101 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7102 		if (ret) {
7103 			btrfs_abort_transaction(trans, ret);
7104 			goto out;
7105 		}
7106 
7107 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7108 		if (ret) {
7109 			btrfs_abort_transaction(trans, ret);
7110 			goto out;
7111 		}
7112 	}
7113 	btrfs_release_path(path);
7114 
7115 out:
7116 	btrfs_free_path(path);
7117 	return ret;
7118 }
7119 
7120 /*
7121  * when we free an block, it is possible (and likely) that we free the last
7122  * delayed ref for that extent as well.  This searches the delayed ref tree for
7123  * a given extent, and if there are no other delayed refs to be processed, it
7124  * removes it from the tree.
7125  */
7126 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7127 				      u64 bytenr)
7128 {
7129 	struct btrfs_delayed_ref_head *head;
7130 	struct btrfs_delayed_ref_root *delayed_refs;
7131 	int ret = 0;
7132 
7133 	delayed_refs = &trans->transaction->delayed_refs;
7134 	spin_lock(&delayed_refs->lock);
7135 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7136 	if (!head)
7137 		goto out_delayed_unlock;
7138 
7139 	spin_lock(&head->lock);
7140 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7141 		goto out;
7142 
7143 	if (head->extent_op) {
7144 		if (!head->must_insert_reserved)
7145 			goto out;
7146 		btrfs_free_delayed_extent_op(head->extent_op);
7147 		head->extent_op = NULL;
7148 	}
7149 
7150 	/*
7151 	 * waiting for the lock here would deadlock.  If someone else has it
7152 	 * locked they are already in the process of dropping it anyway
7153 	 */
7154 	if (!mutex_trylock(&head->mutex))
7155 		goto out;
7156 
7157 	/*
7158 	 * at this point we have a head with no other entries.  Go
7159 	 * ahead and process it.
7160 	 */
7161 	rb_erase(&head->href_node, &delayed_refs->href_root);
7162 	RB_CLEAR_NODE(&head->href_node);
7163 	atomic_dec(&delayed_refs->num_entries);
7164 
7165 	/*
7166 	 * we don't take a ref on the node because we're removing it from the
7167 	 * tree, so we just steal the ref the tree was holding.
7168 	 */
7169 	delayed_refs->num_heads--;
7170 	if (head->processing == 0)
7171 		delayed_refs->num_heads_ready--;
7172 	head->processing = 0;
7173 	spin_unlock(&head->lock);
7174 	spin_unlock(&delayed_refs->lock);
7175 
7176 	BUG_ON(head->extent_op);
7177 	if (head->must_insert_reserved)
7178 		ret = 1;
7179 
7180 	mutex_unlock(&head->mutex);
7181 	btrfs_put_delayed_ref_head(head);
7182 	return ret;
7183 out:
7184 	spin_unlock(&head->lock);
7185 
7186 out_delayed_unlock:
7187 	spin_unlock(&delayed_refs->lock);
7188 	return 0;
7189 }
7190 
7191 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7192 			   struct btrfs_root *root,
7193 			   struct extent_buffer *buf,
7194 			   u64 parent, int last_ref)
7195 {
7196 	struct btrfs_fs_info *fs_info = root->fs_info;
7197 	int pin = 1;
7198 	int ret;
7199 
7200 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7201 		int old_ref_mod, new_ref_mod;
7202 
7203 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7204 				   root->root_key.objectid,
7205 				   btrfs_header_level(buf), 0,
7206 				   BTRFS_DROP_DELAYED_REF);
7207 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7208 						 buf->len, parent,
7209 						 root->root_key.objectid,
7210 						 btrfs_header_level(buf),
7211 						 BTRFS_DROP_DELAYED_REF, NULL,
7212 						 &old_ref_mod, &new_ref_mod);
7213 		BUG_ON(ret); /* -ENOMEM */
7214 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7215 	}
7216 
7217 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7218 		struct btrfs_block_group_cache *cache;
7219 
7220 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7221 			ret = check_ref_cleanup(trans, buf->start);
7222 			if (!ret)
7223 				goto out;
7224 		}
7225 
7226 		pin = 0;
7227 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7228 
7229 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7230 			pin_down_extent(fs_info, cache, buf->start,
7231 					buf->len, 1);
7232 			btrfs_put_block_group(cache);
7233 			goto out;
7234 		}
7235 
7236 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7237 
7238 		btrfs_add_free_space(cache, buf->start, buf->len);
7239 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7240 		btrfs_put_block_group(cache);
7241 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7242 	}
7243 out:
7244 	if (pin)
7245 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7246 				 root->root_key.objectid);
7247 
7248 	if (last_ref) {
7249 		/*
7250 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7251 		 * matter anymore.
7252 		 */
7253 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7254 	}
7255 }
7256 
7257 /* Can return -ENOMEM */
7258 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7259 		      struct btrfs_root *root,
7260 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7261 		      u64 owner, u64 offset)
7262 {
7263 	struct btrfs_fs_info *fs_info = root->fs_info;
7264 	int old_ref_mod, new_ref_mod;
7265 	int ret;
7266 
7267 	if (btrfs_is_testing(fs_info))
7268 		return 0;
7269 
7270 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7271 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7272 				   root_objectid, owner, offset,
7273 				   BTRFS_DROP_DELAYED_REF);
7274 
7275 	/*
7276 	 * tree log blocks never actually go into the extent allocation
7277 	 * tree, just update pinning info and exit early.
7278 	 */
7279 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7280 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7281 		/* unlocks the pinned mutex */
7282 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7283 		old_ref_mod = new_ref_mod = 0;
7284 		ret = 0;
7285 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7286 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7287 						 num_bytes, parent,
7288 						 root_objectid, (int)owner,
7289 						 BTRFS_DROP_DELAYED_REF, NULL,
7290 						 &old_ref_mod, &new_ref_mod);
7291 	} else {
7292 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7293 						 num_bytes, parent,
7294 						 root_objectid, owner, offset,
7295 						 0, BTRFS_DROP_DELAYED_REF,
7296 						 &old_ref_mod, &new_ref_mod);
7297 	}
7298 
7299 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7300 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7301 
7302 	return ret;
7303 }
7304 
7305 /*
7306  * when we wait for progress in the block group caching, its because
7307  * our allocation attempt failed at least once.  So, we must sleep
7308  * and let some progress happen before we try again.
7309  *
7310  * This function will sleep at least once waiting for new free space to
7311  * show up, and then it will check the block group free space numbers
7312  * for our min num_bytes.  Another option is to have it go ahead
7313  * and look in the rbtree for a free extent of a given size, but this
7314  * is a good start.
7315  *
7316  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7317  * any of the information in this block group.
7318  */
7319 static noinline void
7320 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7321 				u64 num_bytes)
7322 {
7323 	struct btrfs_caching_control *caching_ctl;
7324 
7325 	caching_ctl = get_caching_control(cache);
7326 	if (!caching_ctl)
7327 		return;
7328 
7329 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7330 		   (cache->free_space_ctl->free_space >= num_bytes));
7331 
7332 	put_caching_control(caching_ctl);
7333 }
7334 
7335 static noinline int
7336 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7337 {
7338 	struct btrfs_caching_control *caching_ctl;
7339 	int ret = 0;
7340 
7341 	caching_ctl = get_caching_control(cache);
7342 	if (!caching_ctl)
7343 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7344 
7345 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7346 	if (cache->cached == BTRFS_CACHE_ERROR)
7347 		ret = -EIO;
7348 	put_caching_control(caching_ctl);
7349 	return ret;
7350 }
7351 
7352 int __get_raid_index(u64 flags)
7353 {
7354 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7355 		return BTRFS_RAID_RAID10;
7356 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7357 		return BTRFS_RAID_RAID1;
7358 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7359 		return BTRFS_RAID_DUP;
7360 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7361 		return BTRFS_RAID_RAID0;
7362 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7363 		return BTRFS_RAID_RAID5;
7364 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7365 		return BTRFS_RAID_RAID6;
7366 
7367 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7368 }
7369 
7370 int get_block_group_index(struct btrfs_block_group_cache *cache)
7371 {
7372 	return __get_raid_index(cache->flags);
7373 }
7374 
7375 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7376 	[BTRFS_RAID_RAID10]	= "raid10",
7377 	[BTRFS_RAID_RAID1]	= "raid1",
7378 	[BTRFS_RAID_DUP]	= "dup",
7379 	[BTRFS_RAID_RAID0]	= "raid0",
7380 	[BTRFS_RAID_SINGLE]	= "single",
7381 	[BTRFS_RAID_RAID5]	= "raid5",
7382 	[BTRFS_RAID_RAID6]	= "raid6",
7383 };
7384 
7385 static const char *get_raid_name(enum btrfs_raid_types type)
7386 {
7387 	if (type >= BTRFS_NR_RAID_TYPES)
7388 		return NULL;
7389 
7390 	return btrfs_raid_type_names[type];
7391 }
7392 
7393 enum btrfs_loop_type {
7394 	LOOP_CACHING_NOWAIT = 0,
7395 	LOOP_CACHING_WAIT = 1,
7396 	LOOP_ALLOC_CHUNK = 2,
7397 	LOOP_NO_EMPTY_SIZE = 3,
7398 };
7399 
7400 static inline void
7401 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7402 		       int delalloc)
7403 {
7404 	if (delalloc)
7405 		down_read(&cache->data_rwsem);
7406 }
7407 
7408 static inline void
7409 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7410 		       int delalloc)
7411 {
7412 	btrfs_get_block_group(cache);
7413 	if (delalloc)
7414 		down_read(&cache->data_rwsem);
7415 }
7416 
7417 static struct btrfs_block_group_cache *
7418 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7419 		   struct btrfs_free_cluster *cluster,
7420 		   int delalloc)
7421 {
7422 	struct btrfs_block_group_cache *used_bg = NULL;
7423 
7424 	spin_lock(&cluster->refill_lock);
7425 	while (1) {
7426 		used_bg = cluster->block_group;
7427 		if (!used_bg)
7428 			return NULL;
7429 
7430 		if (used_bg == block_group)
7431 			return used_bg;
7432 
7433 		btrfs_get_block_group(used_bg);
7434 
7435 		if (!delalloc)
7436 			return used_bg;
7437 
7438 		if (down_read_trylock(&used_bg->data_rwsem))
7439 			return used_bg;
7440 
7441 		spin_unlock(&cluster->refill_lock);
7442 
7443 		/* We should only have one-level nested. */
7444 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7445 
7446 		spin_lock(&cluster->refill_lock);
7447 		if (used_bg == cluster->block_group)
7448 			return used_bg;
7449 
7450 		up_read(&used_bg->data_rwsem);
7451 		btrfs_put_block_group(used_bg);
7452 	}
7453 }
7454 
7455 static inline void
7456 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7457 			 int delalloc)
7458 {
7459 	if (delalloc)
7460 		up_read(&cache->data_rwsem);
7461 	btrfs_put_block_group(cache);
7462 }
7463 
7464 /*
7465  * walks the btree of allocated extents and find a hole of a given size.
7466  * The key ins is changed to record the hole:
7467  * ins->objectid == start position
7468  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7469  * ins->offset == the size of the hole.
7470  * Any available blocks before search_start are skipped.
7471  *
7472  * If there is no suitable free space, we will record the max size of
7473  * the free space extent currently.
7474  */
7475 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7476 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7477 				u64 hint_byte, struct btrfs_key *ins,
7478 				u64 flags, int delalloc)
7479 {
7480 	int ret = 0;
7481 	struct btrfs_root *root = fs_info->extent_root;
7482 	struct btrfs_free_cluster *last_ptr = NULL;
7483 	struct btrfs_block_group_cache *block_group = NULL;
7484 	u64 search_start = 0;
7485 	u64 max_extent_size = 0;
7486 	u64 empty_cluster = 0;
7487 	struct btrfs_space_info *space_info;
7488 	int loop = 0;
7489 	int index = __get_raid_index(flags);
7490 	bool failed_cluster_refill = false;
7491 	bool failed_alloc = false;
7492 	bool use_cluster = true;
7493 	bool have_caching_bg = false;
7494 	bool orig_have_caching_bg = false;
7495 	bool full_search = false;
7496 
7497 	WARN_ON(num_bytes < fs_info->sectorsize);
7498 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7499 	ins->objectid = 0;
7500 	ins->offset = 0;
7501 
7502 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7503 
7504 	space_info = __find_space_info(fs_info, flags);
7505 	if (!space_info) {
7506 		btrfs_err(fs_info, "No space info for %llu", flags);
7507 		return -ENOSPC;
7508 	}
7509 
7510 	/*
7511 	 * If our free space is heavily fragmented we may not be able to make
7512 	 * big contiguous allocations, so instead of doing the expensive search
7513 	 * for free space, simply return ENOSPC with our max_extent_size so we
7514 	 * can go ahead and search for a more manageable chunk.
7515 	 *
7516 	 * If our max_extent_size is large enough for our allocation simply
7517 	 * disable clustering since we will likely not be able to find enough
7518 	 * space to create a cluster and induce latency trying.
7519 	 */
7520 	if (unlikely(space_info->max_extent_size)) {
7521 		spin_lock(&space_info->lock);
7522 		if (space_info->max_extent_size &&
7523 		    num_bytes > space_info->max_extent_size) {
7524 			ins->offset = space_info->max_extent_size;
7525 			spin_unlock(&space_info->lock);
7526 			return -ENOSPC;
7527 		} else if (space_info->max_extent_size) {
7528 			use_cluster = false;
7529 		}
7530 		spin_unlock(&space_info->lock);
7531 	}
7532 
7533 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7534 	if (last_ptr) {
7535 		spin_lock(&last_ptr->lock);
7536 		if (last_ptr->block_group)
7537 			hint_byte = last_ptr->window_start;
7538 		if (last_ptr->fragmented) {
7539 			/*
7540 			 * We still set window_start so we can keep track of the
7541 			 * last place we found an allocation to try and save
7542 			 * some time.
7543 			 */
7544 			hint_byte = last_ptr->window_start;
7545 			use_cluster = false;
7546 		}
7547 		spin_unlock(&last_ptr->lock);
7548 	}
7549 
7550 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7551 	search_start = max(search_start, hint_byte);
7552 	if (search_start == hint_byte) {
7553 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7554 		/*
7555 		 * we don't want to use the block group if it doesn't match our
7556 		 * allocation bits, or if its not cached.
7557 		 *
7558 		 * However if we are re-searching with an ideal block group
7559 		 * picked out then we don't care that the block group is cached.
7560 		 */
7561 		if (block_group && block_group_bits(block_group, flags) &&
7562 		    block_group->cached != BTRFS_CACHE_NO) {
7563 			down_read(&space_info->groups_sem);
7564 			if (list_empty(&block_group->list) ||
7565 			    block_group->ro) {
7566 				/*
7567 				 * someone is removing this block group,
7568 				 * we can't jump into the have_block_group
7569 				 * target because our list pointers are not
7570 				 * valid
7571 				 */
7572 				btrfs_put_block_group(block_group);
7573 				up_read(&space_info->groups_sem);
7574 			} else {
7575 				index = get_block_group_index(block_group);
7576 				btrfs_lock_block_group(block_group, delalloc);
7577 				goto have_block_group;
7578 			}
7579 		} else if (block_group) {
7580 			btrfs_put_block_group(block_group);
7581 		}
7582 	}
7583 search:
7584 	have_caching_bg = false;
7585 	if (index == 0 || index == __get_raid_index(flags))
7586 		full_search = true;
7587 	down_read(&space_info->groups_sem);
7588 	list_for_each_entry(block_group, &space_info->block_groups[index],
7589 			    list) {
7590 		u64 offset;
7591 		int cached;
7592 
7593 		/* If the block group is read-only, we can skip it entirely. */
7594 		if (unlikely(block_group->ro))
7595 			continue;
7596 
7597 		btrfs_grab_block_group(block_group, delalloc);
7598 		search_start = block_group->key.objectid;
7599 
7600 		/*
7601 		 * this can happen if we end up cycling through all the
7602 		 * raid types, but we want to make sure we only allocate
7603 		 * for the proper type.
7604 		 */
7605 		if (!block_group_bits(block_group, flags)) {
7606 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7607 				BTRFS_BLOCK_GROUP_RAID1 |
7608 				BTRFS_BLOCK_GROUP_RAID5 |
7609 				BTRFS_BLOCK_GROUP_RAID6 |
7610 				BTRFS_BLOCK_GROUP_RAID10;
7611 
7612 			/*
7613 			 * if they asked for extra copies and this block group
7614 			 * doesn't provide them, bail.  This does allow us to
7615 			 * fill raid0 from raid1.
7616 			 */
7617 			if ((flags & extra) && !(block_group->flags & extra))
7618 				goto loop;
7619 		}
7620 
7621 have_block_group:
7622 		cached = block_group_cache_done(block_group);
7623 		if (unlikely(!cached)) {
7624 			have_caching_bg = true;
7625 			ret = cache_block_group(block_group, 0);
7626 			BUG_ON(ret < 0);
7627 			ret = 0;
7628 		}
7629 
7630 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7631 			goto loop;
7632 
7633 		/*
7634 		 * Ok we want to try and use the cluster allocator, so
7635 		 * lets look there
7636 		 */
7637 		if (last_ptr && use_cluster) {
7638 			struct btrfs_block_group_cache *used_block_group;
7639 			unsigned long aligned_cluster;
7640 			/*
7641 			 * the refill lock keeps out other
7642 			 * people trying to start a new cluster
7643 			 */
7644 			used_block_group = btrfs_lock_cluster(block_group,
7645 							      last_ptr,
7646 							      delalloc);
7647 			if (!used_block_group)
7648 				goto refill_cluster;
7649 
7650 			if (used_block_group != block_group &&
7651 			    (used_block_group->ro ||
7652 			     !block_group_bits(used_block_group, flags)))
7653 				goto release_cluster;
7654 
7655 			offset = btrfs_alloc_from_cluster(used_block_group,
7656 						last_ptr,
7657 						num_bytes,
7658 						used_block_group->key.objectid,
7659 						&max_extent_size);
7660 			if (offset) {
7661 				/* we have a block, we're done */
7662 				spin_unlock(&last_ptr->refill_lock);
7663 				trace_btrfs_reserve_extent_cluster(fs_info,
7664 						used_block_group,
7665 						search_start, num_bytes);
7666 				if (used_block_group != block_group) {
7667 					btrfs_release_block_group(block_group,
7668 								  delalloc);
7669 					block_group = used_block_group;
7670 				}
7671 				goto checks;
7672 			}
7673 
7674 			WARN_ON(last_ptr->block_group != used_block_group);
7675 release_cluster:
7676 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7677 			 * set up a new clusters, so lets just skip it
7678 			 * and let the allocator find whatever block
7679 			 * it can find.  If we reach this point, we
7680 			 * will have tried the cluster allocator
7681 			 * plenty of times and not have found
7682 			 * anything, so we are likely way too
7683 			 * fragmented for the clustering stuff to find
7684 			 * anything.
7685 			 *
7686 			 * However, if the cluster is taken from the
7687 			 * current block group, release the cluster
7688 			 * first, so that we stand a better chance of
7689 			 * succeeding in the unclustered
7690 			 * allocation.  */
7691 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7692 			    used_block_group != block_group) {
7693 				spin_unlock(&last_ptr->refill_lock);
7694 				btrfs_release_block_group(used_block_group,
7695 							  delalloc);
7696 				goto unclustered_alloc;
7697 			}
7698 
7699 			/*
7700 			 * this cluster didn't work out, free it and
7701 			 * start over
7702 			 */
7703 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7704 
7705 			if (used_block_group != block_group)
7706 				btrfs_release_block_group(used_block_group,
7707 							  delalloc);
7708 refill_cluster:
7709 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7710 				spin_unlock(&last_ptr->refill_lock);
7711 				goto unclustered_alloc;
7712 			}
7713 
7714 			aligned_cluster = max_t(unsigned long,
7715 						empty_cluster + empty_size,
7716 					      block_group->full_stripe_len);
7717 
7718 			/* allocate a cluster in this block group */
7719 			ret = btrfs_find_space_cluster(fs_info, block_group,
7720 						       last_ptr, search_start,
7721 						       num_bytes,
7722 						       aligned_cluster);
7723 			if (ret == 0) {
7724 				/*
7725 				 * now pull our allocation out of this
7726 				 * cluster
7727 				 */
7728 				offset = btrfs_alloc_from_cluster(block_group,
7729 							last_ptr,
7730 							num_bytes,
7731 							search_start,
7732 							&max_extent_size);
7733 				if (offset) {
7734 					/* we found one, proceed */
7735 					spin_unlock(&last_ptr->refill_lock);
7736 					trace_btrfs_reserve_extent_cluster(fs_info,
7737 						block_group, search_start,
7738 						num_bytes);
7739 					goto checks;
7740 				}
7741 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7742 				   && !failed_cluster_refill) {
7743 				spin_unlock(&last_ptr->refill_lock);
7744 
7745 				failed_cluster_refill = true;
7746 				wait_block_group_cache_progress(block_group,
7747 				       num_bytes + empty_cluster + empty_size);
7748 				goto have_block_group;
7749 			}
7750 
7751 			/*
7752 			 * at this point we either didn't find a cluster
7753 			 * or we weren't able to allocate a block from our
7754 			 * cluster.  Free the cluster we've been trying
7755 			 * to use, and go to the next block group
7756 			 */
7757 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7758 			spin_unlock(&last_ptr->refill_lock);
7759 			goto loop;
7760 		}
7761 
7762 unclustered_alloc:
7763 		/*
7764 		 * We are doing an unclustered alloc, set the fragmented flag so
7765 		 * we don't bother trying to setup a cluster again until we get
7766 		 * more space.
7767 		 */
7768 		if (unlikely(last_ptr)) {
7769 			spin_lock(&last_ptr->lock);
7770 			last_ptr->fragmented = 1;
7771 			spin_unlock(&last_ptr->lock);
7772 		}
7773 		if (cached) {
7774 			struct btrfs_free_space_ctl *ctl =
7775 				block_group->free_space_ctl;
7776 
7777 			spin_lock(&ctl->tree_lock);
7778 			if (ctl->free_space <
7779 			    num_bytes + empty_cluster + empty_size) {
7780 				if (ctl->free_space > max_extent_size)
7781 					max_extent_size = ctl->free_space;
7782 				spin_unlock(&ctl->tree_lock);
7783 				goto loop;
7784 			}
7785 			spin_unlock(&ctl->tree_lock);
7786 		}
7787 
7788 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7789 						    num_bytes, empty_size,
7790 						    &max_extent_size);
7791 		/*
7792 		 * If we didn't find a chunk, and we haven't failed on this
7793 		 * block group before, and this block group is in the middle of
7794 		 * caching and we are ok with waiting, then go ahead and wait
7795 		 * for progress to be made, and set failed_alloc to true.
7796 		 *
7797 		 * If failed_alloc is true then we've already waited on this
7798 		 * block group once and should move on to the next block group.
7799 		 */
7800 		if (!offset && !failed_alloc && !cached &&
7801 		    loop > LOOP_CACHING_NOWAIT) {
7802 			wait_block_group_cache_progress(block_group,
7803 						num_bytes + empty_size);
7804 			failed_alloc = true;
7805 			goto have_block_group;
7806 		} else if (!offset) {
7807 			goto loop;
7808 		}
7809 checks:
7810 		search_start = ALIGN(offset, fs_info->stripesize);
7811 
7812 		/* move on to the next group */
7813 		if (search_start + num_bytes >
7814 		    block_group->key.objectid + block_group->key.offset) {
7815 			btrfs_add_free_space(block_group, offset, num_bytes);
7816 			goto loop;
7817 		}
7818 
7819 		if (offset < search_start)
7820 			btrfs_add_free_space(block_group, offset,
7821 					     search_start - offset);
7822 		BUG_ON(offset > search_start);
7823 
7824 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7825 				num_bytes, delalloc);
7826 		if (ret == -EAGAIN) {
7827 			btrfs_add_free_space(block_group, offset, num_bytes);
7828 			goto loop;
7829 		}
7830 		btrfs_inc_block_group_reservations(block_group);
7831 
7832 		/* we are all good, lets return */
7833 		ins->objectid = search_start;
7834 		ins->offset = num_bytes;
7835 
7836 		trace_btrfs_reserve_extent(fs_info, block_group,
7837 					   search_start, num_bytes);
7838 		btrfs_release_block_group(block_group, delalloc);
7839 		break;
7840 loop:
7841 		failed_cluster_refill = false;
7842 		failed_alloc = false;
7843 		BUG_ON(index != get_block_group_index(block_group));
7844 		btrfs_release_block_group(block_group, delalloc);
7845 		cond_resched();
7846 	}
7847 	up_read(&space_info->groups_sem);
7848 
7849 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7850 		&& !orig_have_caching_bg)
7851 		orig_have_caching_bg = true;
7852 
7853 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7854 		goto search;
7855 
7856 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7857 		goto search;
7858 
7859 	/*
7860 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7861 	 *			caching kthreads as we move along
7862 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7863 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7864 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7865 	 *			again
7866 	 */
7867 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7868 		index = 0;
7869 		if (loop == LOOP_CACHING_NOWAIT) {
7870 			/*
7871 			 * We want to skip the LOOP_CACHING_WAIT step if we
7872 			 * don't have any uncached bgs and we've already done a
7873 			 * full search through.
7874 			 */
7875 			if (orig_have_caching_bg || !full_search)
7876 				loop = LOOP_CACHING_WAIT;
7877 			else
7878 				loop = LOOP_ALLOC_CHUNK;
7879 		} else {
7880 			loop++;
7881 		}
7882 
7883 		if (loop == LOOP_ALLOC_CHUNK) {
7884 			struct btrfs_trans_handle *trans;
7885 			int exist = 0;
7886 
7887 			trans = current->journal_info;
7888 			if (trans)
7889 				exist = 1;
7890 			else
7891 				trans = btrfs_join_transaction(root);
7892 
7893 			if (IS_ERR(trans)) {
7894 				ret = PTR_ERR(trans);
7895 				goto out;
7896 			}
7897 
7898 			ret = do_chunk_alloc(trans, fs_info, flags,
7899 					     CHUNK_ALLOC_FORCE);
7900 
7901 			/*
7902 			 * If we can't allocate a new chunk we've already looped
7903 			 * through at least once, move on to the NO_EMPTY_SIZE
7904 			 * case.
7905 			 */
7906 			if (ret == -ENOSPC)
7907 				loop = LOOP_NO_EMPTY_SIZE;
7908 
7909 			/*
7910 			 * Do not bail out on ENOSPC since we
7911 			 * can do more things.
7912 			 */
7913 			if (ret < 0 && ret != -ENOSPC)
7914 				btrfs_abort_transaction(trans, ret);
7915 			else
7916 				ret = 0;
7917 			if (!exist)
7918 				btrfs_end_transaction(trans);
7919 			if (ret)
7920 				goto out;
7921 		}
7922 
7923 		if (loop == LOOP_NO_EMPTY_SIZE) {
7924 			/*
7925 			 * Don't loop again if we already have no empty_size and
7926 			 * no empty_cluster.
7927 			 */
7928 			if (empty_size == 0 &&
7929 			    empty_cluster == 0) {
7930 				ret = -ENOSPC;
7931 				goto out;
7932 			}
7933 			empty_size = 0;
7934 			empty_cluster = 0;
7935 		}
7936 
7937 		goto search;
7938 	} else if (!ins->objectid) {
7939 		ret = -ENOSPC;
7940 	} else if (ins->objectid) {
7941 		if (!use_cluster && last_ptr) {
7942 			spin_lock(&last_ptr->lock);
7943 			last_ptr->window_start = ins->objectid;
7944 			spin_unlock(&last_ptr->lock);
7945 		}
7946 		ret = 0;
7947 	}
7948 out:
7949 	if (ret == -ENOSPC) {
7950 		spin_lock(&space_info->lock);
7951 		space_info->max_extent_size = max_extent_size;
7952 		spin_unlock(&space_info->lock);
7953 		ins->offset = max_extent_size;
7954 	}
7955 	return ret;
7956 }
7957 
7958 static void dump_space_info(struct btrfs_fs_info *fs_info,
7959 			    struct btrfs_space_info *info, u64 bytes,
7960 			    int dump_block_groups)
7961 {
7962 	struct btrfs_block_group_cache *cache;
7963 	int index = 0;
7964 
7965 	spin_lock(&info->lock);
7966 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7967 		   info->flags,
7968 		   info->total_bytes - btrfs_space_info_used(info, true),
7969 		   info->full ? "" : "not ");
7970 	btrfs_info(fs_info,
7971 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7972 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7973 		info->bytes_reserved, info->bytes_may_use,
7974 		info->bytes_readonly);
7975 	spin_unlock(&info->lock);
7976 
7977 	if (!dump_block_groups)
7978 		return;
7979 
7980 	down_read(&info->groups_sem);
7981 again:
7982 	list_for_each_entry(cache, &info->block_groups[index], list) {
7983 		spin_lock(&cache->lock);
7984 		btrfs_info(fs_info,
7985 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7986 			cache->key.objectid, cache->key.offset,
7987 			btrfs_block_group_used(&cache->item), cache->pinned,
7988 			cache->reserved, cache->ro ? "[readonly]" : "");
7989 		btrfs_dump_free_space(cache, bytes);
7990 		spin_unlock(&cache->lock);
7991 	}
7992 	if (++index < BTRFS_NR_RAID_TYPES)
7993 		goto again;
7994 	up_read(&info->groups_sem);
7995 }
7996 
7997 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7998 			 u64 num_bytes, u64 min_alloc_size,
7999 			 u64 empty_size, u64 hint_byte,
8000 			 struct btrfs_key *ins, int is_data, int delalloc)
8001 {
8002 	struct btrfs_fs_info *fs_info = root->fs_info;
8003 	bool final_tried = num_bytes == min_alloc_size;
8004 	u64 flags;
8005 	int ret;
8006 
8007 	flags = get_alloc_profile_by_root(root, is_data);
8008 again:
8009 	WARN_ON(num_bytes < fs_info->sectorsize);
8010 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8011 			       hint_byte, ins, flags, delalloc);
8012 	if (!ret && !is_data) {
8013 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8014 	} else if (ret == -ENOSPC) {
8015 		if (!final_tried && ins->offset) {
8016 			num_bytes = min(num_bytes >> 1, ins->offset);
8017 			num_bytes = round_down(num_bytes,
8018 					       fs_info->sectorsize);
8019 			num_bytes = max(num_bytes, min_alloc_size);
8020 			ram_bytes = num_bytes;
8021 			if (num_bytes == min_alloc_size)
8022 				final_tried = true;
8023 			goto again;
8024 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8025 			struct btrfs_space_info *sinfo;
8026 
8027 			sinfo = __find_space_info(fs_info, flags);
8028 			btrfs_err(fs_info,
8029 				  "allocation failed flags %llu, wanted %llu",
8030 				  flags, num_bytes);
8031 			if (sinfo)
8032 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8033 		}
8034 	}
8035 
8036 	return ret;
8037 }
8038 
8039 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8040 					u64 start, u64 len,
8041 					int pin, int delalloc)
8042 {
8043 	struct btrfs_block_group_cache *cache;
8044 	int ret = 0;
8045 
8046 	cache = btrfs_lookup_block_group(fs_info, start);
8047 	if (!cache) {
8048 		btrfs_err(fs_info, "Unable to find block group for %llu",
8049 			  start);
8050 		return -ENOSPC;
8051 	}
8052 
8053 	if (pin)
8054 		pin_down_extent(fs_info, cache, start, len, 1);
8055 	else {
8056 		if (btrfs_test_opt(fs_info, DISCARD))
8057 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8058 		btrfs_add_free_space(cache, start, len);
8059 		btrfs_free_reserved_bytes(cache, len, delalloc);
8060 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8061 	}
8062 
8063 	btrfs_put_block_group(cache);
8064 	return ret;
8065 }
8066 
8067 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8068 			       u64 start, u64 len, int delalloc)
8069 {
8070 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8071 }
8072 
8073 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8074 				       u64 start, u64 len)
8075 {
8076 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8077 }
8078 
8079 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8080 				      struct btrfs_fs_info *fs_info,
8081 				      u64 parent, u64 root_objectid,
8082 				      u64 flags, u64 owner, u64 offset,
8083 				      struct btrfs_key *ins, int ref_mod)
8084 {
8085 	int ret;
8086 	struct btrfs_extent_item *extent_item;
8087 	struct btrfs_extent_inline_ref *iref;
8088 	struct btrfs_path *path;
8089 	struct extent_buffer *leaf;
8090 	int type;
8091 	u32 size;
8092 
8093 	if (parent > 0)
8094 		type = BTRFS_SHARED_DATA_REF_KEY;
8095 	else
8096 		type = BTRFS_EXTENT_DATA_REF_KEY;
8097 
8098 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8099 
8100 	path = btrfs_alloc_path();
8101 	if (!path)
8102 		return -ENOMEM;
8103 
8104 	path->leave_spinning = 1;
8105 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8106 				      ins, size);
8107 	if (ret) {
8108 		btrfs_free_path(path);
8109 		return ret;
8110 	}
8111 
8112 	leaf = path->nodes[0];
8113 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8114 				     struct btrfs_extent_item);
8115 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8116 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8117 	btrfs_set_extent_flags(leaf, extent_item,
8118 			       flags | BTRFS_EXTENT_FLAG_DATA);
8119 
8120 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8121 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8122 	if (parent > 0) {
8123 		struct btrfs_shared_data_ref *ref;
8124 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8125 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8126 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8127 	} else {
8128 		struct btrfs_extent_data_ref *ref;
8129 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8130 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8131 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8132 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8133 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8134 	}
8135 
8136 	btrfs_mark_buffer_dirty(path->nodes[0]);
8137 	btrfs_free_path(path);
8138 
8139 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8140 					  ins->offset);
8141 	if (ret)
8142 		return ret;
8143 
8144 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8145 	if (ret) { /* -ENOENT, logic error */
8146 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8147 			ins->objectid, ins->offset);
8148 		BUG();
8149 	}
8150 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8151 	return ret;
8152 }
8153 
8154 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8155 				     struct btrfs_fs_info *fs_info,
8156 				     u64 parent, u64 root_objectid,
8157 				     u64 flags, struct btrfs_disk_key *key,
8158 				     int level, struct btrfs_key *ins)
8159 {
8160 	int ret;
8161 	struct btrfs_extent_item *extent_item;
8162 	struct btrfs_tree_block_info *block_info;
8163 	struct btrfs_extent_inline_ref *iref;
8164 	struct btrfs_path *path;
8165 	struct extent_buffer *leaf;
8166 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8167 	u64 num_bytes = ins->offset;
8168 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8169 
8170 	if (!skinny_metadata)
8171 		size += sizeof(*block_info);
8172 
8173 	path = btrfs_alloc_path();
8174 	if (!path) {
8175 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8176 						   fs_info->nodesize);
8177 		return -ENOMEM;
8178 	}
8179 
8180 	path->leave_spinning = 1;
8181 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8182 				      ins, size);
8183 	if (ret) {
8184 		btrfs_free_path(path);
8185 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8186 						   fs_info->nodesize);
8187 		return ret;
8188 	}
8189 
8190 	leaf = path->nodes[0];
8191 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8192 				     struct btrfs_extent_item);
8193 	btrfs_set_extent_refs(leaf, extent_item, 1);
8194 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8195 	btrfs_set_extent_flags(leaf, extent_item,
8196 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8197 
8198 	if (skinny_metadata) {
8199 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8200 		num_bytes = fs_info->nodesize;
8201 	} else {
8202 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8203 		btrfs_set_tree_block_key(leaf, block_info, key);
8204 		btrfs_set_tree_block_level(leaf, block_info, level);
8205 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8206 	}
8207 
8208 	if (parent > 0) {
8209 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8210 		btrfs_set_extent_inline_ref_type(leaf, iref,
8211 						 BTRFS_SHARED_BLOCK_REF_KEY);
8212 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8213 	} else {
8214 		btrfs_set_extent_inline_ref_type(leaf, iref,
8215 						 BTRFS_TREE_BLOCK_REF_KEY);
8216 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8217 	}
8218 
8219 	btrfs_mark_buffer_dirty(leaf);
8220 	btrfs_free_path(path);
8221 
8222 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8223 					  num_bytes);
8224 	if (ret)
8225 		return ret;
8226 
8227 	ret = update_block_group(trans, fs_info, ins->objectid,
8228 				 fs_info->nodesize, 1);
8229 	if (ret) { /* -ENOENT, logic error */
8230 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8231 			ins->objectid, ins->offset);
8232 		BUG();
8233 	}
8234 
8235 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8236 					  fs_info->nodesize);
8237 	return ret;
8238 }
8239 
8240 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8241 				     struct btrfs_root *root, u64 owner,
8242 				     u64 offset, u64 ram_bytes,
8243 				     struct btrfs_key *ins)
8244 {
8245 	struct btrfs_fs_info *fs_info = root->fs_info;
8246 	int ret;
8247 
8248 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8249 
8250 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8251 			   root->root_key.objectid, owner, offset,
8252 			   BTRFS_ADD_DELAYED_EXTENT);
8253 
8254 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8255 					 ins->offset, 0,
8256 					 root->root_key.objectid, owner,
8257 					 offset, ram_bytes,
8258 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8259 	return ret;
8260 }
8261 
8262 /*
8263  * this is used by the tree logging recovery code.  It records that
8264  * an extent has been allocated and makes sure to clear the free
8265  * space cache bits as well
8266  */
8267 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8268 				   struct btrfs_fs_info *fs_info,
8269 				   u64 root_objectid, u64 owner, u64 offset,
8270 				   struct btrfs_key *ins)
8271 {
8272 	int ret;
8273 	struct btrfs_block_group_cache *block_group;
8274 	struct btrfs_space_info *space_info;
8275 
8276 	/*
8277 	 * Mixed block groups will exclude before processing the log so we only
8278 	 * need to do the exclude dance if this fs isn't mixed.
8279 	 */
8280 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8281 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8282 					      ins->offset);
8283 		if (ret)
8284 			return ret;
8285 	}
8286 
8287 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8288 	if (!block_group)
8289 		return -EINVAL;
8290 
8291 	space_info = block_group->space_info;
8292 	spin_lock(&space_info->lock);
8293 	spin_lock(&block_group->lock);
8294 	space_info->bytes_reserved += ins->offset;
8295 	block_group->reserved += ins->offset;
8296 	spin_unlock(&block_group->lock);
8297 	spin_unlock(&space_info->lock);
8298 
8299 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8300 					 0, owner, offset, ins, 1);
8301 	btrfs_put_block_group(block_group);
8302 	return ret;
8303 }
8304 
8305 static struct extent_buffer *
8306 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8307 		      u64 bytenr, int level)
8308 {
8309 	struct btrfs_fs_info *fs_info = root->fs_info;
8310 	struct extent_buffer *buf;
8311 
8312 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8313 	if (IS_ERR(buf))
8314 		return buf;
8315 
8316 	btrfs_set_header_generation(buf, trans->transid);
8317 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8318 	btrfs_tree_lock(buf);
8319 	clean_tree_block(fs_info, buf);
8320 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8321 
8322 	btrfs_set_lock_blocking(buf);
8323 	set_extent_buffer_uptodate(buf);
8324 
8325 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8326 		buf->log_index = root->log_transid % 2;
8327 		/*
8328 		 * we allow two log transactions at a time, use different
8329 		 * EXENT bit to differentiate dirty pages.
8330 		 */
8331 		if (buf->log_index == 0)
8332 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8333 					buf->start + buf->len - 1, GFP_NOFS);
8334 		else
8335 			set_extent_new(&root->dirty_log_pages, buf->start,
8336 					buf->start + buf->len - 1);
8337 	} else {
8338 		buf->log_index = -1;
8339 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8340 			 buf->start + buf->len - 1, GFP_NOFS);
8341 	}
8342 	trans->dirty = true;
8343 	/* this returns a buffer locked for blocking */
8344 	return buf;
8345 }
8346 
8347 static struct btrfs_block_rsv *
8348 use_block_rsv(struct btrfs_trans_handle *trans,
8349 	      struct btrfs_root *root, u32 blocksize)
8350 {
8351 	struct btrfs_fs_info *fs_info = root->fs_info;
8352 	struct btrfs_block_rsv *block_rsv;
8353 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8354 	int ret;
8355 	bool global_updated = false;
8356 
8357 	block_rsv = get_block_rsv(trans, root);
8358 
8359 	if (unlikely(block_rsv->size == 0))
8360 		goto try_reserve;
8361 again:
8362 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8363 	if (!ret)
8364 		return block_rsv;
8365 
8366 	if (block_rsv->failfast)
8367 		return ERR_PTR(ret);
8368 
8369 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8370 		global_updated = true;
8371 		update_global_block_rsv(fs_info);
8372 		goto again;
8373 	}
8374 
8375 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8376 		static DEFINE_RATELIMIT_STATE(_rs,
8377 				DEFAULT_RATELIMIT_INTERVAL * 10,
8378 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8379 		if (__ratelimit(&_rs))
8380 			WARN(1, KERN_DEBUG
8381 				"BTRFS: block rsv returned %d\n", ret);
8382 	}
8383 try_reserve:
8384 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8385 				     BTRFS_RESERVE_NO_FLUSH);
8386 	if (!ret)
8387 		return block_rsv;
8388 	/*
8389 	 * If we couldn't reserve metadata bytes try and use some from
8390 	 * the global reserve if its space type is the same as the global
8391 	 * reservation.
8392 	 */
8393 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8394 	    block_rsv->space_info == global_rsv->space_info) {
8395 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8396 		if (!ret)
8397 			return global_rsv;
8398 	}
8399 	return ERR_PTR(ret);
8400 }
8401 
8402 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8403 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8404 {
8405 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8406 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8407 }
8408 
8409 /*
8410  * finds a free extent and does all the dirty work required for allocation
8411  * returns the tree buffer or an ERR_PTR on error.
8412  */
8413 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8414 					     struct btrfs_root *root,
8415 					     u64 parent, u64 root_objectid,
8416 					     const struct btrfs_disk_key *key,
8417 					     int level, u64 hint,
8418 					     u64 empty_size)
8419 {
8420 	struct btrfs_fs_info *fs_info = root->fs_info;
8421 	struct btrfs_key ins;
8422 	struct btrfs_block_rsv *block_rsv;
8423 	struct extent_buffer *buf;
8424 	struct btrfs_delayed_extent_op *extent_op;
8425 	u64 flags = 0;
8426 	int ret;
8427 	u32 blocksize = fs_info->nodesize;
8428 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8429 
8430 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8431 	if (btrfs_is_testing(fs_info)) {
8432 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8433 					    level);
8434 		if (!IS_ERR(buf))
8435 			root->alloc_bytenr += blocksize;
8436 		return buf;
8437 	}
8438 #endif
8439 
8440 	block_rsv = use_block_rsv(trans, root, blocksize);
8441 	if (IS_ERR(block_rsv))
8442 		return ERR_CAST(block_rsv);
8443 
8444 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8445 				   empty_size, hint, &ins, 0, 0);
8446 	if (ret)
8447 		goto out_unuse;
8448 
8449 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8450 	if (IS_ERR(buf)) {
8451 		ret = PTR_ERR(buf);
8452 		goto out_free_reserved;
8453 	}
8454 
8455 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8456 		if (parent == 0)
8457 			parent = ins.objectid;
8458 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8459 	} else
8460 		BUG_ON(parent > 0);
8461 
8462 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8463 		extent_op = btrfs_alloc_delayed_extent_op();
8464 		if (!extent_op) {
8465 			ret = -ENOMEM;
8466 			goto out_free_buf;
8467 		}
8468 		if (key)
8469 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8470 		else
8471 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8472 		extent_op->flags_to_set = flags;
8473 		extent_op->update_key = skinny_metadata ? false : true;
8474 		extent_op->update_flags = true;
8475 		extent_op->is_data = false;
8476 		extent_op->level = level;
8477 
8478 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8479 				   root_objectid, level, 0,
8480 				   BTRFS_ADD_DELAYED_EXTENT);
8481 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8482 						 ins.offset, parent,
8483 						 root_objectid, level,
8484 						 BTRFS_ADD_DELAYED_EXTENT,
8485 						 extent_op, NULL, NULL);
8486 		if (ret)
8487 			goto out_free_delayed;
8488 	}
8489 	return buf;
8490 
8491 out_free_delayed:
8492 	btrfs_free_delayed_extent_op(extent_op);
8493 out_free_buf:
8494 	free_extent_buffer(buf);
8495 out_free_reserved:
8496 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8497 out_unuse:
8498 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8499 	return ERR_PTR(ret);
8500 }
8501 
8502 struct walk_control {
8503 	u64 refs[BTRFS_MAX_LEVEL];
8504 	u64 flags[BTRFS_MAX_LEVEL];
8505 	struct btrfs_key update_progress;
8506 	int stage;
8507 	int level;
8508 	int shared_level;
8509 	int update_ref;
8510 	int keep_locks;
8511 	int reada_slot;
8512 	int reada_count;
8513 	int for_reloc;
8514 };
8515 
8516 #define DROP_REFERENCE	1
8517 #define UPDATE_BACKREF	2
8518 
8519 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8520 				     struct btrfs_root *root,
8521 				     struct walk_control *wc,
8522 				     struct btrfs_path *path)
8523 {
8524 	struct btrfs_fs_info *fs_info = root->fs_info;
8525 	u64 bytenr;
8526 	u64 generation;
8527 	u64 refs;
8528 	u64 flags;
8529 	u32 nritems;
8530 	struct btrfs_key key;
8531 	struct extent_buffer *eb;
8532 	int ret;
8533 	int slot;
8534 	int nread = 0;
8535 
8536 	if (path->slots[wc->level] < wc->reada_slot) {
8537 		wc->reada_count = wc->reada_count * 2 / 3;
8538 		wc->reada_count = max(wc->reada_count, 2);
8539 	} else {
8540 		wc->reada_count = wc->reada_count * 3 / 2;
8541 		wc->reada_count = min_t(int, wc->reada_count,
8542 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8543 	}
8544 
8545 	eb = path->nodes[wc->level];
8546 	nritems = btrfs_header_nritems(eb);
8547 
8548 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8549 		if (nread >= wc->reada_count)
8550 			break;
8551 
8552 		cond_resched();
8553 		bytenr = btrfs_node_blockptr(eb, slot);
8554 		generation = btrfs_node_ptr_generation(eb, slot);
8555 
8556 		if (slot == path->slots[wc->level])
8557 			goto reada;
8558 
8559 		if (wc->stage == UPDATE_BACKREF &&
8560 		    generation <= root->root_key.offset)
8561 			continue;
8562 
8563 		/* We don't lock the tree block, it's OK to be racy here */
8564 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8565 					       wc->level - 1, 1, &refs,
8566 					       &flags);
8567 		/* We don't care about errors in readahead. */
8568 		if (ret < 0)
8569 			continue;
8570 		BUG_ON(refs == 0);
8571 
8572 		if (wc->stage == DROP_REFERENCE) {
8573 			if (refs == 1)
8574 				goto reada;
8575 
8576 			if (wc->level == 1 &&
8577 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 				continue;
8579 			if (!wc->update_ref ||
8580 			    generation <= root->root_key.offset)
8581 				continue;
8582 			btrfs_node_key_to_cpu(eb, &key, slot);
8583 			ret = btrfs_comp_cpu_keys(&key,
8584 						  &wc->update_progress);
8585 			if (ret < 0)
8586 				continue;
8587 		} else {
8588 			if (wc->level == 1 &&
8589 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8590 				continue;
8591 		}
8592 reada:
8593 		readahead_tree_block(fs_info, bytenr);
8594 		nread++;
8595 	}
8596 	wc->reada_slot = slot;
8597 }
8598 
8599 /*
8600  * helper to process tree block while walking down the tree.
8601  *
8602  * when wc->stage == UPDATE_BACKREF, this function updates
8603  * back refs for pointers in the block.
8604  *
8605  * NOTE: return value 1 means we should stop walking down.
8606  */
8607 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8608 				   struct btrfs_root *root,
8609 				   struct btrfs_path *path,
8610 				   struct walk_control *wc, int lookup_info)
8611 {
8612 	struct btrfs_fs_info *fs_info = root->fs_info;
8613 	int level = wc->level;
8614 	struct extent_buffer *eb = path->nodes[level];
8615 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8616 	int ret;
8617 
8618 	if (wc->stage == UPDATE_BACKREF &&
8619 	    btrfs_header_owner(eb) != root->root_key.objectid)
8620 		return 1;
8621 
8622 	/*
8623 	 * when reference count of tree block is 1, it won't increase
8624 	 * again. once full backref flag is set, we never clear it.
8625 	 */
8626 	if (lookup_info &&
8627 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8628 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8629 		BUG_ON(!path->locks[level]);
8630 		ret = btrfs_lookup_extent_info(trans, fs_info,
8631 					       eb->start, level, 1,
8632 					       &wc->refs[level],
8633 					       &wc->flags[level]);
8634 		BUG_ON(ret == -ENOMEM);
8635 		if (ret)
8636 			return ret;
8637 		BUG_ON(wc->refs[level] == 0);
8638 	}
8639 
8640 	if (wc->stage == DROP_REFERENCE) {
8641 		if (wc->refs[level] > 1)
8642 			return 1;
8643 
8644 		if (path->locks[level] && !wc->keep_locks) {
8645 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8646 			path->locks[level] = 0;
8647 		}
8648 		return 0;
8649 	}
8650 
8651 	/* wc->stage == UPDATE_BACKREF */
8652 	if (!(wc->flags[level] & flag)) {
8653 		BUG_ON(!path->locks[level]);
8654 		ret = btrfs_inc_ref(trans, root, eb, 1);
8655 		BUG_ON(ret); /* -ENOMEM */
8656 		ret = btrfs_dec_ref(trans, root, eb, 0);
8657 		BUG_ON(ret); /* -ENOMEM */
8658 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8659 						  eb->len, flag,
8660 						  btrfs_header_level(eb), 0);
8661 		BUG_ON(ret); /* -ENOMEM */
8662 		wc->flags[level] |= flag;
8663 	}
8664 
8665 	/*
8666 	 * the block is shared by multiple trees, so it's not good to
8667 	 * keep the tree lock
8668 	 */
8669 	if (path->locks[level] && level > 0) {
8670 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8671 		path->locks[level] = 0;
8672 	}
8673 	return 0;
8674 }
8675 
8676 /*
8677  * helper to process tree block pointer.
8678  *
8679  * when wc->stage == DROP_REFERENCE, this function checks
8680  * reference count of the block pointed to. if the block
8681  * is shared and we need update back refs for the subtree
8682  * rooted at the block, this function changes wc->stage to
8683  * UPDATE_BACKREF. if the block is shared and there is no
8684  * need to update back, this function drops the reference
8685  * to the block.
8686  *
8687  * NOTE: return value 1 means we should stop walking down.
8688  */
8689 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8690 				 struct btrfs_root *root,
8691 				 struct btrfs_path *path,
8692 				 struct walk_control *wc, int *lookup_info)
8693 {
8694 	struct btrfs_fs_info *fs_info = root->fs_info;
8695 	u64 bytenr;
8696 	u64 generation;
8697 	u64 parent;
8698 	u32 blocksize;
8699 	struct btrfs_key key;
8700 	struct extent_buffer *next;
8701 	int level = wc->level;
8702 	int reada = 0;
8703 	int ret = 0;
8704 	bool need_account = false;
8705 
8706 	generation = btrfs_node_ptr_generation(path->nodes[level],
8707 					       path->slots[level]);
8708 	/*
8709 	 * if the lower level block was created before the snapshot
8710 	 * was created, we know there is no need to update back refs
8711 	 * for the subtree
8712 	 */
8713 	if (wc->stage == UPDATE_BACKREF &&
8714 	    generation <= root->root_key.offset) {
8715 		*lookup_info = 1;
8716 		return 1;
8717 	}
8718 
8719 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8720 	blocksize = fs_info->nodesize;
8721 
8722 	next = find_extent_buffer(fs_info, bytenr);
8723 	if (!next) {
8724 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8725 		if (IS_ERR(next))
8726 			return PTR_ERR(next);
8727 
8728 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8729 					       level - 1);
8730 		reada = 1;
8731 	}
8732 	btrfs_tree_lock(next);
8733 	btrfs_set_lock_blocking(next);
8734 
8735 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8736 				       &wc->refs[level - 1],
8737 				       &wc->flags[level - 1]);
8738 	if (ret < 0)
8739 		goto out_unlock;
8740 
8741 	if (unlikely(wc->refs[level - 1] == 0)) {
8742 		btrfs_err(fs_info, "Missing references.");
8743 		ret = -EIO;
8744 		goto out_unlock;
8745 	}
8746 	*lookup_info = 0;
8747 
8748 	if (wc->stage == DROP_REFERENCE) {
8749 		if (wc->refs[level - 1] > 1) {
8750 			need_account = true;
8751 			if (level == 1 &&
8752 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8753 				goto skip;
8754 
8755 			if (!wc->update_ref ||
8756 			    generation <= root->root_key.offset)
8757 				goto skip;
8758 
8759 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8760 					      path->slots[level]);
8761 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8762 			if (ret < 0)
8763 				goto skip;
8764 
8765 			wc->stage = UPDATE_BACKREF;
8766 			wc->shared_level = level - 1;
8767 		}
8768 	} else {
8769 		if (level == 1 &&
8770 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8771 			goto skip;
8772 	}
8773 
8774 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8775 		btrfs_tree_unlock(next);
8776 		free_extent_buffer(next);
8777 		next = NULL;
8778 		*lookup_info = 1;
8779 	}
8780 
8781 	if (!next) {
8782 		if (reada && level == 1)
8783 			reada_walk_down(trans, root, wc, path);
8784 		next = read_tree_block(fs_info, bytenr, generation);
8785 		if (IS_ERR(next)) {
8786 			return PTR_ERR(next);
8787 		} else if (!extent_buffer_uptodate(next)) {
8788 			free_extent_buffer(next);
8789 			return -EIO;
8790 		}
8791 		btrfs_tree_lock(next);
8792 		btrfs_set_lock_blocking(next);
8793 	}
8794 
8795 	level--;
8796 	ASSERT(level == btrfs_header_level(next));
8797 	if (level != btrfs_header_level(next)) {
8798 		btrfs_err(root->fs_info, "mismatched level");
8799 		ret = -EIO;
8800 		goto out_unlock;
8801 	}
8802 	path->nodes[level] = next;
8803 	path->slots[level] = 0;
8804 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8805 	wc->level = level;
8806 	if (wc->level == 1)
8807 		wc->reada_slot = 0;
8808 	return 0;
8809 skip:
8810 	wc->refs[level - 1] = 0;
8811 	wc->flags[level - 1] = 0;
8812 	if (wc->stage == DROP_REFERENCE) {
8813 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8814 			parent = path->nodes[level]->start;
8815 		} else {
8816 			ASSERT(root->root_key.objectid ==
8817 			       btrfs_header_owner(path->nodes[level]));
8818 			if (root->root_key.objectid !=
8819 			    btrfs_header_owner(path->nodes[level])) {
8820 				btrfs_err(root->fs_info,
8821 						"mismatched block owner");
8822 				ret = -EIO;
8823 				goto out_unlock;
8824 			}
8825 			parent = 0;
8826 		}
8827 
8828 		if (need_account) {
8829 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8830 							 generation, level - 1);
8831 			if (ret) {
8832 				btrfs_err_rl(fs_info,
8833 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8834 					     ret);
8835 			}
8836 		}
8837 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8838 					parent, root->root_key.objectid,
8839 					level - 1, 0);
8840 		if (ret)
8841 			goto out_unlock;
8842 	}
8843 
8844 	*lookup_info = 1;
8845 	ret = 1;
8846 
8847 out_unlock:
8848 	btrfs_tree_unlock(next);
8849 	free_extent_buffer(next);
8850 
8851 	return ret;
8852 }
8853 
8854 /*
8855  * helper to process tree block while walking up the tree.
8856  *
8857  * when wc->stage == DROP_REFERENCE, this function drops
8858  * reference count on the block.
8859  *
8860  * when wc->stage == UPDATE_BACKREF, this function changes
8861  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8862  * to UPDATE_BACKREF previously while processing the block.
8863  *
8864  * NOTE: return value 1 means we should stop walking up.
8865  */
8866 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8867 				 struct btrfs_root *root,
8868 				 struct btrfs_path *path,
8869 				 struct walk_control *wc)
8870 {
8871 	struct btrfs_fs_info *fs_info = root->fs_info;
8872 	int ret;
8873 	int level = wc->level;
8874 	struct extent_buffer *eb = path->nodes[level];
8875 	u64 parent = 0;
8876 
8877 	if (wc->stage == UPDATE_BACKREF) {
8878 		BUG_ON(wc->shared_level < level);
8879 		if (level < wc->shared_level)
8880 			goto out;
8881 
8882 		ret = find_next_key(path, level + 1, &wc->update_progress);
8883 		if (ret > 0)
8884 			wc->update_ref = 0;
8885 
8886 		wc->stage = DROP_REFERENCE;
8887 		wc->shared_level = -1;
8888 		path->slots[level] = 0;
8889 
8890 		/*
8891 		 * check reference count again if the block isn't locked.
8892 		 * we should start walking down the tree again if reference
8893 		 * count is one.
8894 		 */
8895 		if (!path->locks[level]) {
8896 			BUG_ON(level == 0);
8897 			btrfs_tree_lock(eb);
8898 			btrfs_set_lock_blocking(eb);
8899 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8900 
8901 			ret = btrfs_lookup_extent_info(trans, fs_info,
8902 						       eb->start, level, 1,
8903 						       &wc->refs[level],
8904 						       &wc->flags[level]);
8905 			if (ret < 0) {
8906 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8907 				path->locks[level] = 0;
8908 				return ret;
8909 			}
8910 			BUG_ON(wc->refs[level] == 0);
8911 			if (wc->refs[level] == 1) {
8912 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8913 				path->locks[level] = 0;
8914 				return 1;
8915 			}
8916 		}
8917 	}
8918 
8919 	/* wc->stage == DROP_REFERENCE */
8920 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8921 
8922 	if (wc->refs[level] == 1) {
8923 		if (level == 0) {
8924 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8925 				ret = btrfs_dec_ref(trans, root, eb, 1);
8926 			else
8927 				ret = btrfs_dec_ref(trans, root, eb, 0);
8928 			BUG_ON(ret); /* -ENOMEM */
8929 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8930 			if (ret) {
8931 				btrfs_err_rl(fs_info,
8932 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8933 					     ret);
8934 			}
8935 		}
8936 		/* make block locked assertion in clean_tree_block happy */
8937 		if (!path->locks[level] &&
8938 		    btrfs_header_generation(eb) == trans->transid) {
8939 			btrfs_tree_lock(eb);
8940 			btrfs_set_lock_blocking(eb);
8941 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8942 		}
8943 		clean_tree_block(fs_info, eb);
8944 	}
8945 
8946 	if (eb == root->node) {
8947 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8948 			parent = eb->start;
8949 		else
8950 			BUG_ON(root->root_key.objectid !=
8951 			       btrfs_header_owner(eb));
8952 	} else {
8953 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8954 			parent = path->nodes[level + 1]->start;
8955 		else
8956 			BUG_ON(root->root_key.objectid !=
8957 			       btrfs_header_owner(path->nodes[level + 1]));
8958 	}
8959 
8960 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8961 out:
8962 	wc->refs[level] = 0;
8963 	wc->flags[level] = 0;
8964 	return 0;
8965 }
8966 
8967 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8968 				   struct btrfs_root *root,
8969 				   struct btrfs_path *path,
8970 				   struct walk_control *wc)
8971 {
8972 	int level = wc->level;
8973 	int lookup_info = 1;
8974 	int ret;
8975 
8976 	while (level >= 0) {
8977 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8978 		if (ret > 0)
8979 			break;
8980 
8981 		if (level == 0)
8982 			break;
8983 
8984 		if (path->slots[level] >=
8985 		    btrfs_header_nritems(path->nodes[level]))
8986 			break;
8987 
8988 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8989 		if (ret > 0) {
8990 			path->slots[level]++;
8991 			continue;
8992 		} else if (ret < 0)
8993 			return ret;
8994 		level = wc->level;
8995 	}
8996 	return 0;
8997 }
8998 
8999 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9000 				 struct btrfs_root *root,
9001 				 struct btrfs_path *path,
9002 				 struct walk_control *wc, int max_level)
9003 {
9004 	int level = wc->level;
9005 	int ret;
9006 
9007 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9008 	while (level < max_level && path->nodes[level]) {
9009 		wc->level = level;
9010 		if (path->slots[level] + 1 <
9011 		    btrfs_header_nritems(path->nodes[level])) {
9012 			path->slots[level]++;
9013 			return 0;
9014 		} else {
9015 			ret = walk_up_proc(trans, root, path, wc);
9016 			if (ret > 0)
9017 				return 0;
9018 
9019 			if (path->locks[level]) {
9020 				btrfs_tree_unlock_rw(path->nodes[level],
9021 						     path->locks[level]);
9022 				path->locks[level] = 0;
9023 			}
9024 			free_extent_buffer(path->nodes[level]);
9025 			path->nodes[level] = NULL;
9026 			level++;
9027 		}
9028 	}
9029 	return 1;
9030 }
9031 
9032 /*
9033  * drop a subvolume tree.
9034  *
9035  * this function traverses the tree freeing any blocks that only
9036  * referenced by the tree.
9037  *
9038  * when a shared tree block is found. this function decreases its
9039  * reference count by one. if update_ref is true, this function
9040  * also make sure backrefs for the shared block and all lower level
9041  * blocks are properly updated.
9042  *
9043  * If called with for_reloc == 0, may exit early with -EAGAIN
9044  */
9045 int btrfs_drop_snapshot(struct btrfs_root *root,
9046 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9047 			 int for_reloc)
9048 {
9049 	struct btrfs_fs_info *fs_info = root->fs_info;
9050 	struct btrfs_path *path;
9051 	struct btrfs_trans_handle *trans;
9052 	struct btrfs_root *tree_root = fs_info->tree_root;
9053 	struct btrfs_root_item *root_item = &root->root_item;
9054 	struct walk_control *wc;
9055 	struct btrfs_key key;
9056 	int err = 0;
9057 	int ret;
9058 	int level;
9059 	bool root_dropped = false;
9060 
9061 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9062 
9063 	path = btrfs_alloc_path();
9064 	if (!path) {
9065 		err = -ENOMEM;
9066 		goto out;
9067 	}
9068 
9069 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9070 	if (!wc) {
9071 		btrfs_free_path(path);
9072 		err = -ENOMEM;
9073 		goto out;
9074 	}
9075 
9076 	trans = btrfs_start_transaction(tree_root, 0);
9077 	if (IS_ERR(trans)) {
9078 		err = PTR_ERR(trans);
9079 		goto out_free;
9080 	}
9081 
9082 	if (block_rsv)
9083 		trans->block_rsv = block_rsv;
9084 
9085 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9086 		level = btrfs_header_level(root->node);
9087 		path->nodes[level] = btrfs_lock_root_node(root);
9088 		btrfs_set_lock_blocking(path->nodes[level]);
9089 		path->slots[level] = 0;
9090 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9091 		memset(&wc->update_progress, 0,
9092 		       sizeof(wc->update_progress));
9093 	} else {
9094 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9095 		memcpy(&wc->update_progress, &key,
9096 		       sizeof(wc->update_progress));
9097 
9098 		level = root_item->drop_level;
9099 		BUG_ON(level == 0);
9100 		path->lowest_level = level;
9101 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9102 		path->lowest_level = 0;
9103 		if (ret < 0) {
9104 			err = ret;
9105 			goto out_end_trans;
9106 		}
9107 		WARN_ON(ret > 0);
9108 
9109 		/*
9110 		 * unlock our path, this is safe because only this
9111 		 * function is allowed to delete this snapshot
9112 		 */
9113 		btrfs_unlock_up_safe(path, 0);
9114 
9115 		level = btrfs_header_level(root->node);
9116 		while (1) {
9117 			btrfs_tree_lock(path->nodes[level]);
9118 			btrfs_set_lock_blocking(path->nodes[level]);
9119 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9120 
9121 			ret = btrfs_lookup_extent_info(trans, fs_info,
9122 						path->nodes[level]->start,
9123 						level, 1, &wc->refs[level],
9124 						&wc->flags[level]);
9125 			if (ret < 0) {
9126 				err = ret;
9127 				goto out_end_trans;
9128 			}
9129 			BUG_ON(wc->refs[level] == 0);
9130 
9131 			if (level == root_item->drop_level)
9132 				break;
9133 
9134 			btrfs_tree_unlock(path->nodes[level]);
9135 			path->locks[level] = 0;
9136 			WARN_ON(wc->refs[level] != 1);
9137 			level--;
9138 		}
9139 	}
9140 
9141 	wc->level = level;
9142 	wc->shared_level = -1;
9143 	wc->stage = DROP_REFERENCE;
9144 	wc->update_ref = update_ref;
9145 	wc->keep_locks = 0;
9146 	wc->for_reloc = for_reloc;
9147 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9148 
9149 	while (1) {
9150 
9151 		ret = walk_down_tree(trans, root, path, wc);
9152 		if (ret < 0) {
9153 			err = ret;
9154 			break;
9155 		}
9156 
9157 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9158 		if (ret < 0) {
9159 			err = ret;
9160 			break;
9161 		}
9162 
9163 		if (ret > 0) {
9164 			BUG_ON(wc->stage != DROP_REFERENCE);
9165 			break;
9166 		}
9167 
9168 		if (wc->stage == DROP_REFERENCE) {
9169 			level = wc->level;
9170 			btrfs_node_key(path->nodes[level],
9171 				       &root_item->drop_progress,
9172 				       path->slots[level]);
9173 			root_item->drop_level = level;
9174 		}
9175 
9176 		BUG_ON(wc->level == 0);
9177 		if (btrfs_should_end_transaction(trans) ||
9178 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9179 			ret = btrfs_update_root(trans, tree_root,
9180 						&root->root_key,
9181 						root_item);
9182 			if (ret) {
9183 				btrfs_abort_transaction(trans, ret);
9184 				err = ret;
9185 				goto out_end_trans;
9186 			}
9187 
9188 			btrfs_end_transaction_throttle(trans);
9189 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9190 				btrfs_debug(fs_info,
9191 					    "drop snapshot early exit");
9192 				err = -EAGAIN;
9193 				goto out_free;
9194 			}
9195 
9196 			trans = btrfs_start_transaction(tree_root, 0);
9197 			if (IS_ERR(trans)) {
9198 				err = PTR_ERR(trans);
9199 				goto out_free;
9200 			}
9201 			if (block_rsv)
9202 				trans->block_rsv = block_rsv;
9203 		}
9204 	}
9205 	btrfs_release_path(path);
9206 	if (err)
9207 		goto out_end_trans;
9208 
9209 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9210 	if (ret) {
9211 		btrfs_abort_transaction(trans, ret);
9212 		err = ret;
9213 		goto out_end_trans;
9214 	}
9215 
9216 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9217 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9218 				      NULL, NULL);
9219 		if (ret < 0) {
9220 			btrfs_abort_transaction(trans, ret);
9221 			err = ret;
9222 			goto out_end_trans;
9223 		} else if (ret > 0) {
9224 			/* if we fail to delete the orphan item this time
9225 			 * around, it'll get picked up the next time.
9226 			 *
9227 			 * The most common failure here is just -ENOENT.
9228 			 */
9229 			btrfs_del_orphan_item(trans, tree_root,
9230 					      root->root_key.objectid);
9231 		}
9232 	}
9233 
9234 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9235 		btrfs_add_dropped_root(trans, root);
9236 	} else {
9237 		free_extent_buffer(root->node);
9238 		free_extent_buffer(root->commit_root);
9239 		btrfs_put_fs_root(root);
9240 	}
9241 	root_dropped = true;
9242 out_end_trans:
9243 	btrfs_end_transaction_throttle(trans);
9244 out_free:
9245 	kfree(wc);
9246 	btrfs_free_path(path);
9247 out:
9248 	/*
9249 	 * So if we need to stop dropping the snapshot for whatever reason we
9250 	 * need to make sure to add it back to the dead root list so that we
9251 	 * keep trying to do the work later.  This also cleans up roots if we
9252 	 * don't have it in the radix (like when we recover after a power fail
9253 	 * or unmount) so we don't leak memory.
9254 	 */
9255 	if (!for_reloc && !root_dropped)
9256 		btrfs_add_dead_root(root);
9257 	if (err && err != -EAGAIN)
9258 		btrfs_handle_fs_error(fs_info, err, NULL);
9259 	return err;
9260 }
9261 
9262 /*
9263  * drop subtree rooted at tree block 'node'.
9264  *
9265  * NOTE: this function will unlock and release tree block 'node'
9266  * only used by relocation code
9267  */
9268 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9269 			struct btrfs_root *root,
9270 			struct extent_buffer *node,
9271 			struct extent_buffer *parent)
9272 {
9273 	struct btrfs_fs_info *fs_info = root->fs_info;
9274 	struct btrfs_path *path;
9275 	struct walk_control *wc;
9276 	int level;
9277 	int parent_level;
9278 	int ret = 0;
9279 	int wret;
9280 
9281 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9282 
9283 	path = btrfs_alloc_path();
9284 	if (!path)
9285 		return -ENOMEM;
9286 
9287 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9288 	if (!wc) {
9289 		btrfs_free_path(path);
9290 		return -ENOMEM;
9291 	}
9292 
9293 	btrfs_assert_tree_locked(parent);
9294 	parent_level = btrfs_header_level(parent);
9295 	extent_buffer_get(parent);
9296 	path->nodes[parent_level] = parent;
9297 	path->slots[parent_level] = btrfs_header_nritems(parent);
9298 
9299 	btrfs_assert_tree_locked(node);
9300 	level = btrfs_header_level(node);
9301 	path->nodes[level] = node;
9302 	path->slots[level] = 0;
9303 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9304 
9305 	wc->refs[parent_level] = 1;
9306 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9307 	wc->level = level;
9308 	wc->shared_level = -1;
9309 	wc->stage = DROP_REFERENCE;
9310 	wc->update_ref = 0;
9311 	wc->keep_locks = 1;
9312 	wc->for_reloc = 1;
9313 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9314 
9315 	while (1) {
9316 		wret = walk_down_tree(trans, root, path, wc);
9317 		if (wret < 0) {
9318 			ret = wret;
9319 			break;
9320 		}
9321 
9322 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9323 		if (wret < 0)
9324 			ret = wret;
9325 		if (wret != 0)
9326 			break;
9327 	}
9328 
9329 	kfree(wc);
9330 	btrfs_free_path(path);
9331 	return ret;
9332 }
9333 
9334 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9335 {
9336 	u64 num_devices;
9337 	u64 stripped;
9338 
9339 	/*
9340 	 * if restripe for this chunk_type is on pick target profile and
9341 	 * return, otherwise do the usual balance
9342 	 */
9343 	stripped = get_restripe_target(fs_info, flags);
9344 	if (stripped)
9345 		return extended_to_chunk(stripped);
9346 
9347 	num_devices = fs_info->fs_devices->rw_devices;
9348 
9349 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9350 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9351 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9352 
9353 	if (num_devices == 1) {
9354 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9355 		stripped = flags & ~stripped;
9356 
9357 		/* turn raid0 into single device chunks */
9358 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9359 			return stripped;
9360 
9361 		/* turn mirroring into duplication */
9362 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9363 			     BTRFS_BLOCK_GROUP_RAID10))
9364 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9365 	} else {
9366 		/* they already had raid on here, just return */
9367 		if (flags & stripped)
9368 			return flags;
9369 
9370 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9371 		stripped = flags & ~stripped;
9372 
9373 		/* switch duplicated blocks with raid1 */
9374 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9375 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9376 
9377 		/* this is drive concat, leave it alone */
9378 	}
9379 
9380 	return flags;
9381 }
9382 
9383 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9384 {
9385 	struct btrfs_space_info *sinfo = cache->space_info;
9386 	u64 num_bytes;
9387 	u64 min_allocable_bytes;
9388 	int ret = -ENOSPC;
9389 
9390 	/*
9391 	 * We need some metadata space and system metadata space for
9392 	 * allocating chunks in some corner cases until we force to set
9393 	 * it to be readonly.
9394 	 */
9395 	if ((sinfo->flags &
9396 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9397 	    !force)
9398 		min_allocable_bytes = SZ_1M;
9399 	else
9400 		min_allocable_bytes = 0;
9401 
9402 	spin_lock(&sinfo->lock);
9403 	spin_lock(&cache->lock);
9404 
9405 	if (cache->ro) {
9406 		cache->ro++;
9407 		ret = 0;
9408 		goto out;
9409 	}
9410 
9411 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9412 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9413 
9414 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9415 	    min_allocable_bytes <= sinfo->total_bytes) {
9416 		sinfo->bytes_readonly += num_bytes;
9417 		cache->ro++;
9418 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9419 		ret = 0;
9420 	}
9421 out:
9422 	spin_unlock(&cache->lock);
9423 	spin_unlock(&sinfo->lock);
9424 	return ret;
9425 }
9426 
9427 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9428 			     struct btrfs_block_group_cache *cache)
9429 
9430 {
9431 	struct btrfs_trans_handle *trans;
9432 	u64 alloc_flags;
9433 	int ret;
9434 
9435 again:
9436 	trans = btrfs_join_transaction(fs_info->extent_root);
9437 	if (IS_ERR(trans))
9438 		return PTR_ERR(trans);
9439 
9440 	/*
9441 	 * we're not allowed to set block groups readonly after the dirty
9442 	 * block groups cache has started writing.  If it already started,
9443 	 * back off and let this transaction commit
9444 	 */
9445 	mutex_lock(&fs_info->ro_block_group_mutex);
9446 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9447 		u64 transid = trans->transid;
9448 
9449 		mutex_unlock(&fs_info->ro_block_group_mutex);
9450 		btrfs_end_transaction(trans);
9451 
9452 		ret = btrfs_wait_for_commit(fs_info, transid);
9453 		if (ret)
9454 			return ret;
9455 		goto again;
9456 	}
9457 
9458 	/*
9459 	 * if we are changing raid levels, try to allocate a corresponding
9460 	 * block group with the new raid level.
9461 	 */
9462 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9463 	if (alloc_flags != cache->flags) {
9464 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9465 				     CHUNK_ALLOC_FORCE);
9466 		/*
9467 		 * ENOSPC is allowed here, we may have enough space
9468 		 * already allocated at the new raid level to
9469 		 * carry on
9470 		 */
9471 		if (ret == -ENOSPC)
9472 			ret = 0;
9473 		if (ret < 0)
9474 			goto out;
9475 	}
9476 
9477 	ret = inc_block_group_ro(cache, 0);
9478 	if (!ret)
9479 		goto out;
9480 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9481 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9482 			     CHUNK_ALLOC_FORCE);
9483 	if (ret < 0)
9484 		goto out;
9485 	ret = inc_block_group_ro(cache, 0);
9486 out:
9487 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9488 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9489 		mutex_lock(&fs_info->chunk_mutex);
9490 		check_system_chunk(trans, fs_info, alloc_flags);
9491 		mutex_unlock(&fs_info->chunk_mutex);
9492 	}
9493 	mutex_unlock(&fs_info->ro_block_group_mutex);
9494 
9495 	btrfs_end_transaction(trans);
9496 	return ret;
9497 }
9498 
9499 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9500 			    struct btrfs_fs_info *fs_info, u64 type)
9501 {
9502 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9503 
9504 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9505 }
9506 
9507 /*
9508  * helper to account the unused space of all the readonly block group in the
9509  * space_info. takes mirrors into account.
9510  */
9511 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9512 {
9513 	struct btrfs_block_group_cache *block_group;
9514 	u64 free_bytes = 0;
9515 	int factor;
9516 
9517 	/* It's df, we don't care if it's racy */
9518 	if (list_empty(&sinfo->ro_bgs))
9519 		return 0;
9520 
9521 	spin_lock(&sinfo->lock);
9522 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9523 		spin_lock(&block_group->lock);
9524 
9525 		if (!block_group->ro) {
9526 			spin_unlock(&block_group->lock);
9527 			continue;
9528 		}
9529 
9530 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9531 					  BTRFS_BLOCK_GROUP_RAID10 |
9532 					  BTRFS_BLOCK_GROUP_DUP))
9533 			factor = 2;
9534 		else
9535 			factor = 1;
9536 
9537 		free_bytes += (block_group->key.offset -
9538 			       btrfs_block_group_used(&block_group->item)) *
9539 			       factor;
9540 
9541 		spin_unlock(&block_group->lock);
9542 	}
9543 	spin_unlock(&sinfo->lock);
9544 
9545 	return free_bytes;
9546 }
9547 
9548 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9549 {
9550 	struct btrfs_space_info *sinfo = cache->space_info;
9551 	u64 num_bytes;
9552 
9553 	BUG_ON(!cache->ro);
9554 
9555 	spin_lock(&sinfo->lock);
9556 	spin_lock(&cache->lock);
9557 	if (!--cache->ro) {
9558 		num_bytes = cache->key.offset - cache->reserved -
9559 			    cache->pinned - cache->bytes_super -
9560 			    btrfs_block_group_used(&cache->item);
9561 		sinfo->bytes_readonly -= num_bytes;
9562 		list_del_init(&cache->ro_list);
9563 	}
9564 	spin_unlock(&cache->lock);
9565 	spin_unlock(&sinfo->lock);
9566 }
9567 
9568 /*
9569  * checks to see if its even possible to relocate this block group.
9570  *
9571  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9572  * ok to go ahead and try.
9573  */
9574 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9575 {
9576 	struct btrfs_root *root = fs_info->extent_root;
9577 	struct btrfs_block_group_cache *block_group;
9578 	struct btrfs_space_info *space_info;
9579 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9580 	struct btrfs_device *device;
9581 	struct btrfs_trans_handle *trans;
9582 	u64 min_free;
9583 	u64 dev_min = 1;
9584 	u64 dev_nr = 0;
9585 	u64 target;
9586 	int debug;
9587 	int index;
9588 	int full = 0;
9589 	int ret = 0;
9590 
9591 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9592 
9593 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9594 
9595 	/* odd, couldn't find the block group, leave it alone */
9596 	if (!block_group) {
9597 		if (debug)
9598 			btrfs_warn(fs_info,
9599 				   "can't find block group for bytenr %llu",
9600 				   bytenr);
9601 		return -1;
9602 	}
9603 
9604 	min_free = btrfs_block_group_used(&block_group->item);
9605 
9606 	/* no bytes used, we're good */
9607 	if (!min_free)
9608 		goto out;
9609 
9610 	space_info = block_group->space_info;
9611 	spin_lock(&space_info->lock);
9612 
9613 	full = space_info->full;
9614 
9615 	/*
9616 	 * if this is the last block group we have in this space, we can't
9617 	 * relocate it unless we're able to allocate a new chunk below.
9618 	 *
9619 	 * Otherwise, we need to make sure we have room in the space to handle
9620 	 * all of the extents from this block group.  If we can, we're good
9621 	 */
9622 	if ((space_info->total_bytes != block_group->key.offset) &&
9623 	    (btrfs_space_info_used(space_info, false) + min_free <
9624 	     space_info->total_bytes)) {
9625 		spin_unlock(&space_info->lock);
9626 		goto out;
9627 	}
9628 	spin_unlock(&space_info->lock);
9629 
9630 	/*
9631 	 * ok we don't have enough space, but maybe we have free space on our
9632 	 * devices to allocate new chunks for relocation, so loop through our
9633 	 * alloc devices and guess if we have enough space.  if this block
9634 	 * group is going to be restriped, run checks against the target
9635 	 * profile instead of the current one.
9636 	 */
9637 	ret = -1;
9638 
9639 	/*
9640 	 * index:
9641 	 *      0: raid10
9642 	 *      1: raid1
9643 	 *      2: dup
9644 	 *      3: raid0
9645 	 *      4: single
9646 	 */
9647 	target = get_restripe_target(fs_info, block_group->flags);
9648 	if (target) {
9649 		index = __get_raid_index(extended_to_chunk(target));
9650 	} else {
9651 		/*
9652 		 * this is just a balance, so if we were marked as full
9653 		 * we know there is no space for a new chunk
9654 		 */
9655 		if (full) {
9656 			if (debug)
9657 				btrfs_warn(fs_info,
9658 					   "no space to alloc new chunk for block group %llu",
9659 					   block_group->key.objectid);
9660 			goto out;
9661 		}
9662 
9663 		index = get_block_group_index(block_group);
9664 	}
9665 
9666 	if (index == BTRFS_RAID_RAID10) {
9667 		dev_min = 4;
9668 		/* Divide by 2 */
9669 		min_free >>= 1;
9670 	} else if (index == BTRFS_RAID_RAID1) {
9671 		dev_min = 2;
9672 	} else if (index == BTRFS_RAID_DUP) {
9673 		/* Multiply by 2 */
9674 		min_free <<= 1;
9675 	} else if (index == BTRFS_RAID_RAID0) {
9676 		dev_min = fs_devices->rw_devices;
9677 		min_free = div64_u64(min_free, dev_min);
9678 	}
9679 
9680 	/* We need to do this so that we can look at pending chunks */
9681 	trans = btrfs_join_transaction(root);
9682 	if (IS_ERR(trans)) {
9683 		ret = PTR_ERR(trans);
9684 		goto out;
9685 	}
9686 
9687 	mutex_lock(&fs_info->chunk_mutex);
9688 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9689 		u64 dev_offset;
9690 
9691 		/*
9692 		 * check to make sure we can actually find a chunk with enough
9693 		 * space to fit our block group in.
9694 		 */
9695 		if (device->total_bytes > device->bytes_used + min_free &&
9696 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9697 			ret = find_free_dev_extent(trans, device, min_free,
9698 						   &dev_offset, NULL);
9699 			if (!ret)
9700 				dev_nr++;
9701 
9702 			if (dev_nr >= dev_min)
9703 				break;
9704 
9705 			ret = -1;
9706 		}
9707 	}
9708 	if (debug && ret == -1)
9709 		btrfs_warn(fs_info,
9710 			   "no space to allocate a new chunk for block group %llu",
9711 			   block_group->key.objectid);
9712 	mutex_unlock(&fs_info->chunk_mutex);
9713 	btrfs_end_transaction(trans);
9714 out:
9715 	btrfs_put_block_group(block_group);
9716 	return ret;
9717 }
9718 
9719 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9720 				  struct btrfs_path *path,
9721 				  struct btrfs_key *key)
9722 {
9723 	struct btrfs_root *root = fs_info->extent_root;
9724 	int ret = 0;
9725 	struct btrfs_key found_key;
9726 	struct extent_buffer *leaf;
9727 	int slot;
9728 
9729 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9730 	if (ret < 0)
9731 		goto out;
9732 
9733 	while (1) {
9734 		slot = path->slots[0];
9735 		leaf = path->nodes[0];
9736 		if (slot >= btrfs_header_nritems(leaf)) {
9737 			ret = btrfs_next_leaf(root, path);
9738 			if (ret == 0)
9739 				continue;
9740 			if (ret < 0)
9741 				goto out;
9742 			break;
9743 		}
9744 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9745 
9746 		if (found_key.objectid >= key->objectid &&
9747 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9748 			struct extent_map_tree *em_tree;
9749 			struct extent_map *em;
9750 
9751 			em_tree = &root->fs_info->mapping_tree.map_tree;
9752 			read_lock(&em_tree->lock);
9753 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9754 						   found_key.offset);
9755 			read_unlock(&em_tree->lock);
9756 			if (!em) {
9757 				btrfs_err(fs_info,
9758 			"logical %llu len %llu found bg but no related chunk",
9759 					  found_key.objectid, found_key.offset);
9760 				ret = -ENOENT;
9761 			} else {
9762 				ret = 0;
9763 			}
9764 			free_extent_map(em);
9765 			goto out;
9766 		}
9767 		path->slots[0]++;
9768 	}
9769 out:
9770 	return ret;
9771 }
9772 
9773 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9774 {
9775 	struct btrfs_block_group_cache *block_group;
9776 	u64 last = 0;
9777 
9778 	while (1) {
9779 		struct inode *inode;
9780 
9781 		block_group = btrfs_lookup_first_block_group(info, last);
9782 		while (block_group) {
9783 			spin_lock(&block_group->lock);
9784 			if (block_group->iref)
9785 				break;
9786 			spin_unlock(&block_group->lock);
9787 			block_group = next_block_group(info, block_group);
9788 		}
9789 		if (!block_group) {
9790 			if (last == 0)
9791 				break;
9792 			last = 0;
9793 			continue;
9794 		}
9795 
9796 		inode = block_group->inode;
9797 		block_group->iref = 0;
9798 		block_group->inode = NULL;
9799 		spin_unlock(&block_group->lock);
9800 		ASSERT(block_group->io_ctl.inode == NULL);
9801 		iput(inode);
9802 		last = block_group->key.objectid + block_group->key.offset;
9803 		btrfs_put_block_group(block_group);
9804 	}
9805 }
9806 
9807 /*
9808  * Must be called only after stopping all workers, since we could have block
9809  * group caching kthreads running, and therefore they could race with us if we
9810  * freed the block groups before stopping them.
9811  */
9812 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9813 {
9814 	struct btrfs_block_group_cache *block_group;
9815 	struct btrfs_space_info *space_info;
9816 	struct btrfs_caching_control *caching_ctl;
9817 	struct rb_node *n;
9818 
9819 	down_write(&info->commit_root_sem);
9820 	while (!list_empty(&info->caching_block_groups)) {
9821 		caching_ctl = list_entry(info->caching_block_groups.next,
9822 					 struct btrfs_caching_control, list);
9823 		list_del(&caching_ctl->list);
9824 		put_caching_control(caching_ctl);
9825 	}
9826 	up_write(&info->commit_root_sem);
9827 
9828 	spin_lock(&info->unused_bgs_lock);
9829 	while (!list_empty(&info->unused_bgs)) {
9830 		block_group = list_first_entry(&info->unused_bgs,
9831 					       struct btrfs_block_group_cache,
9832 					       bg_list);
9833 		list_del_init(&block_group->bg_list);
9834 		btrfs_put_block_group(block_group);
9835 	}
9836 	spin_unlock(&info->unused_bgs_lock);
9837 
9838 	spin_lock(&info->block_group_cache_lock);
9839 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9840 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9841 				       cache_node);
9842 		rb_erase(&block_group->cache_node,
9843 			 &info->block_group_cache_tree);
9844 		RB_CLEAR_NODE(&block_group->cache_node);
9845 		spin_unlock(&info->block_group_cache_lock);
9846 
9847 		down_write(&block_group->space_info->groups_sem);
9848 		list_del(&block_group->list);
9849 		up_write(&block_group->space_info->groups_sem);
9850 
9851 		/*
9852 		 * We haven't cached this block group, which means we could
9853 		 * possibly have excluded extents on this block group.
9854 		 */
9855 		if (block_group->cached == BTRFS_CACHE_NO ||
9856 		    block_group->cached == BTRFS_CACHE_ERROR)
9857 			free_excluded_extents(info, block_group);
9858 
9859 		btrfs_remove_free_space_cache(block_group);
9860 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9861 		ASSERT(list_empty(&block_group->dirty_list));
9862 		ASSERT(list_empty(&block_group->io_list));
9863 		ASSERT(list_empty(&block_group->bg_list));
9864 		ASSERT(atomic_read(&block_group->count) == 1);
9865 		btrfs_put_block_group(block_group);
9866 
9867 		spin_lock(&info->block_group_cache_lock);
9868 	}
9869 	spin_unlock(&info->block_group_cache_lock);
9870 
9871 	/* now that all the block groups are freed, go through and
9872 	 * free all the space_info structs.  This is only called during
9873 	 * the final stages of unmount, and so we know nobody is
9874 	 * using them.  We call synchronize_rcu() once before we start,
9875 	 * just to be on the safe side.
9876 	 */
9877 	synchronize_rcu();
9878 
9879 	release_global_block_rsv(info);
9880 
9881 	while (!list_empty(&info->space_info)) {
9882 		int i;
9883 
9884 		space_info = list_entry(info->space_info.next,
9885 					struct btrfs_space_info,
9886 					list);
9887 
9888 		/*
9889 		 * Do not hide this behind enospc_debug, this is actually
9890 		 * important and indicates a real bug if this happens.
9891 		 */
9892 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9893 			    space_info->bytes_reserved > 0 ||
9894 			    space_info->bytes_may_use > 0))
9895 			dump_space_info(info, space_info, 0, 0);
9896 		list_del(&space_info->list);
9897 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9898 			struct kobject *kobj;
9899 			kobj = space_info->block_group_kobjs[i];
9900 			space_info->block_group_kobjs[i] = NULL;
9901 			if (kobj) {
9902 				kobject_del(kobj);
9903 				kobject_put(kobj);
9904 			}
9905 		}
9906 		kobject_del(&space_info->kobj);
9907 		kobject_put(&space_info->kobj);
9908 	}
9909 	return 0;
9910 }
9911 
9912 static void link_block_group(struct btrfs_block_group_cache *cache)
9913 {
9914 	struct btrfs_space_info *space_info = cache->space_info;
9915 	int index = get_block_group_index(cache);
9916 	bool first = false;
9917 
9918 	down_write(&space_info->groups_sem);
9919 	if (list_empty(&space_info->block_groups[index]))
9920 		first = true;
9921 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9922 	up_write(&space_info->groups_sem);
9923 
9924 	if (first) {
9925 		struct raid_kobject *rkobj;
9926 		int ret;
9927 
9928 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9929 		if (!rkobj)
9930 			goto out_err;
9931 		rkobj->raid_type = index;
9932 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9933 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9934 				  "%s", get_raid_name(index));
9935 		if (ret) {
9936 			kobject_put(&rkobj->kobj);
9937 			goto out_err;
9938 		}
9939 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9940 	}
9941 
9942 	return;
9943 out_err:
9944 	btrfs_warn(cache->fs_info,
9945 		   "failed to add kobject for block cache, ignoring");
9946 }
9947 
9948 static struct btrfs_block_group_cache *
9949 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9950 			       u64 start, u64 size)
9951 {
9952 	struct btrfs_block_group_cache *cache;
9953 
9954 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9955 	if (!cache)
9956 		return NULL;
9957 
9958 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9959 					GFP_NOFS);
9960 	if (!cache->free_space_ctl) {
9961 		kfree(cache);
9962 		return NULL;
9963 	}
9964 
9965 	cache->key.objectid = start;
9966 	cache->key.offset = size;
9967 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9968 
9969 	cache->fs_info = fs_info;
9970 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9971 	set_free_space_tree_thresholds(cache);
9972 
9973 	atomic_set(&cache->count, 1);
9974 	spin_lock_init(&cache->lock);
9975 	init_rwsem(&cache->data_rwsem);
9976 	INIT_LIST_HEAD(&cache->list);
9977 	INIT_LIST_HEAD(&cache->cluster_list);
9978 	INIT_LIST_HEAD(&cache->bg_list);
9979 	INIT_LIST_HEAD(&cache->ro_list);
9980 	INIT_LIST_HEAD(&cache->dirty_list);
9981 	INIT_LIST_HEAD(&cache->io_list);
9982 	btrfs_init_free_space_ctl(cache);
9983 	atomic_set(&cache->trimming, 0);
9984 	mutex_init(&cache->free_space_lock);
9985 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9986 
9987 	return cache;
9988 }
9989 
9990 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9991 {
9992 	struct btrfs_path *path;
9993 	int ret;
9994 	struct btrfs_block_group_cache *cache;
9995 	struct btrfs_space_info *space_info;
9996 	struct btrfs_key key;
9997 	struct btrfs_key found_key;
9998 	struct extent_buffer *leaf;
9999 	int need_clear = 0;
10000 	u64 cache_gen;
10001 	u64 feature;
10002 	int mixed;
10003 
10004 	feature = btrfs_super_incompat_flags(info->super_copy);
10005 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10006 
10007 	key.objectid = 0;
10008 	key.offset = 0;
10009 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10010 	path = btrfs_alloc_path();
10011 	if (!path)
10012 		return -ENOMEM;
10013 	path->reada = READA_FORWARD;
10014 
10015 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10016 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10017 	    btrfs_super_generation(info->super_copy) != cache_gen)
10018 		need_clear = 1;
10019 	if (btrfs_test_opt(info, CLEAR_CACHE))
10020 		need_clear = 1;
10021 
10022 	while (1) {
10023 		ret = find_first_block_group(info, path, &key);
10024 		if (ret > 0)
10025 			break;
10026 		if (ret != 0)
10027 			goto error;
10028 
10029 		leaf = path->nodes[0];
10030 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10031 
10032 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10033 						       found_key.offset);
10034 		if (!cache) {
10035 			ret = -ENOMEM;
10036 			goto error;
10037 		}
10038 
10039 		if (need_clear) {
10040 			/*
10041 			 * When we mount with old space cache, we need to
10042 			 * set BTRFS_DC_CLEAR and set dirty flag.
10043 			 *
10044 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10045 			 *    truncate the old free space cache inode and
10046 			 *    setup a new one.
10047 			 * b) Setting 'dirty flag' makes sure that we flush
10048 			 *    the new space cache info onto disk.
10049 			 */
10050 			if (btrfs_test_opt(info, SPACE_CACHE))
10051 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10052 		}
10053 
10054 		read_extent_buffer(leaf, &cache->item,
10055 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10056 				   sizeof(cache->item));
10057 		cache->flags = btrfs_block_group_flags(&cache->item);
10058 		if (!mixed &&
10059 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10060 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10061 			btrfs_err(info,
10062 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10063 				  cache->key.objectid);
10064 			ret = -EINVAL;
10065 			goto error;
10066 		}
10067 
10068 		key.objectid = found_key.objectid + found_key.offset;
10069 		btrfs_release_path(path);
10070 
10071 		/*
10072 		 * We need to exclude the super stripes now so that the space
10073 		 * info has super bytes accounted for, otherwise we'll think
10074 		 * we have more space than we actually do.
10075 		 */
10076 		ret = exclude_super_stripes(info, cache);
10077 		if (ret) {
10078 			/*
10079 			 * We may have excluded something, so call this just in
10080 			 * case.
10081 			 */
10082 			free_excluded_extents(info, cache);
10083 			btrfs_put_block_group(cache);
10084 			goto error;
10085 		}
10086 
10087 		/*
10088 		 * check for two cases, either we are full, and therefore
10089 		 * don't need to bother with the caching work since we won't
10090 		 * find any space, or we are empty, and we can just add all
10091 		 * the space in and be done with it.  This saves us _alot_ of
10092 		 * time, particularly in the full case.
10093 		 */
10094 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10095 			cache->last_byte_to_unpin = (u64)-1;
10096 			cache->cached = BTRFS_CACHE_FINISHED;
10097 			free_excluded_extents(info, cache);
10098 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10099 			cache->last_byte_to_unpin = (u64)-1;
10100 			cache->cached = BTRFS_CACHE_FINISHED;
10101 			add_new_free_space(cache, info,
10102 					   found_key.objectid,
10103 					   found_key.objectid +
10104 					   found_key.offset);
10105 			free_excluded_extents(info, cache);
10106 		}
10107 
10108 		ret = btrfs_add_block_group_cache(info, cache);
10109 		if (ret) {
10110 			btrfs_remove_free_space_cache(cache);
10111 			btrfs_put_block_group(cache);
10112 			goto error;
10113 		}
10114 
10115 		trace_btrfs_add_block_group(info, cache, 0);
10116 		update_space_info(info, cache->flags, found_key.offset,
10117 				  btrfs_block_group_used(&cache->item),
10118 				  cache->bytes_super, &space_info);
10119 
10120 		cache->space_info = space_info;
10121 
10122 		link_block_group(cache);
10123 
10124 		set_avail_alloc_bits(info, cache->flags);
10125 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10126 			inc_block_group_ro(cache, 1);
10127 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10128 			spin_lock(&info->unused_bgs_lock);
10129 			/* Should always be true but just in case. */
10130 			if (list_empty(&cache->bg_list)) {
10131 				btrfs_get_block_group(cache);
10132 				list_add_tail(&cache->bg_list,
10133 					      &info->unused_bgs);
10134 			}
10135 			spin_unlock(&info->unused_bgs_lock);
10136 		}
10137 	}
10138 
10139 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10140 		if (!(get_alloc_profile(info, space_info->flags) &
10141 		      (BTRFS_BLOCK_GROUP_RAID10 |
10142 		       BTRFS_BLOCK_GROUP_RAID1 |
10143 		       BTRFS_BLOCK_GROUP_RAID5 |
10144 		       BTRFS_BLOCK_GROUP_RAID6 |
10145 		       BTRFS_BLOCK_GROUP_DUP)))
10146 			continue;
10147 		/*
10148 		 * avoid allocating from un-mirrored block group if there are
10149 		 * mirrored block groups.
10150 		 */
10151 		list_for_each_entry(cache,
10152 				&space_info->block_groups[BTRFS_RAID_RAID0],
10153 				list)
10154 			inc_block_group_ro(cache, 1);
10155 		list_for_each_entry(cache,
10156 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10157 				list)
10158 			inc_block_group_ro(cache, 1);
10159 	}
10160 
10161 	init_global_block_rsv(info);
10162 	ret = 0;
10163 error:
10164 	btrfs_free_path(path);
10165 	return ret;
10166 }
10167 
10168 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10169 				       struct btrfs_fs_info *fs_info)
10170 {
10171 	struct btrfs_block_group_cache *block_group, *tmp;
10172 	struct btrfs_root *extent_root = fs_info->extent_root;
10173 	struct btrfs_block_group_item item;
10174 	struct btrfs_key key;
10175 	int ret = 0;
10176 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10177 
10178 	trans->can_flush_pending_bgs = false;
10179 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10180 		if (ret)
10181 			goto next;
10182 
10183 		spin_lock(&block_group->lock);
10184 		memcpy(&item, &block_group->item, sizeof(item));
10185 		memcpy(&key, &block_group->key, sizeof(key));
10186 		spin_unlock(&block_group->lock);
10187 
10188 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10189 					sizeof(item));
10190 		if (ret)
10191 			btrfs_abort_transaction(trans, ret);
10192 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10193 					       key.offset);
10194 		if (ret)
10195 			btrfs_abort_transaction(trans, ret);
10196 		add_block_group_free_space(trans, fs_info, block_group);
10197 		/* already aborted the transaction if it failed. */
10198 next:
10199 		list_del_init(&block_group->bg_list);
10200 	}
10201 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10202 }
10203 
10204 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10205 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10206 			   u64 type, u64 chunk_offset, u64 size)
10207 {
10208 	struct btrfs_block_group_cache *cache;
10209 	int ret;
10210 
10211 	btrfs_set_log_full_commit(fs_info, trans);
10212 
10213 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10214 	if (!cache)
10215 		return -ENOMEM;
10216 
10217 	btrfs_set_block_group_used(&cache->item, bytes_used);
10218 	btrfs_set_block_group_chunk_objectid(&cache->item,
10219 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10220 	btrfs_set_block_group_flags(&cache->item, type);
10221 
10222 	cache->flags = type;
10223 	cache->last_byte_to_unpin = (u64)-1;
10224 	cache->cached = BTRFS_CACHE_FINISHED;
10225 	cache->needs_free_space = 1;
10226 	ret = exclude_super_stripes(fs_info, cache);
10227 	if (ret) {
10228 		/*
10229 		 * We may have excluded something, so call this just in
10230 		 * case.
10231 		 */
10232 		free_excluded_extents(fs_info, cache);
10233 		btrfs_put_block_group(cache);
10234 		return ret;
10235 	}
10236 
10237 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10238 
10239 	free_excluded_extents(fs_info, cache);
10240 
10241 #ifdef CONFIG_BTRFS_DEBUG
10242 	if (btrfs_should_fragment_free_space(cache)) {
10243 		u64 new_bytes_used = size - bytes_used;
10244 
10245 		bytes_used += new_bytes_used >> 1;
10246 		fragment_free_space(cache);
10247 	}
10248 #endif
10249 	/*
10250 	 * Ensure the corresponding space_info object is created and
10251 	 * assigned to our block group. We want our bg to be added to the rbtree
10252 	 * with its ->space_info set.
10253 	 */
10254 	cache->space_info = __find_space_info(fs_info, cache->flags);
10255 	if (!cache->space_info) {
10256 		ret = create_space_info(fs_info, cache->flags,
10257 				       &cache->space_info);
10258 		if (ret) {
10259 			btrfs_remove_free_space_cache(cache);
10260 			btrfs_put_block_group(cache);
10261 			return ret;
10262 		}
10263 	}
10264 
10265 	ret = btrfs_add_block_group_cache(fs_info, cache);
10266 	if (ret) {
10267 		btrfs_remove_free_space_cache(cache);
10268 		btrfs_put_block_group(cache);
10269 		return ret;
10270 	}
10271 
10272 	/*
10273 	 * Now that our block group has its ->space_info set and is inserted in
10274 	 * the rbtree, update the space info's counters.
10275 	 */
10276 	trace_btrfs_add_block_group(fs_info, cache, 1);
10277 	update_space_info(fs_info, cache->flags, size, bytes_used,
10278 				cache->bytes_super, &cache->space_info);
10279 	update_global_block_rsv(fs_info);
10280 
10281 	link_block_group(cache);
10282 
10283 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10284 
10285 	set_avail_alloc_bits(fs_info, type);
10286 	return 0;
10287 }
10288 
10289 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10290 {
10291 	u64 extra_flags = chunk_to_extended(flags) &
10292 				BTRFS_EXTENDED_PROFILE_MASK;
10293 
10294 	write_seqlock(&fs_info->profiles_lock);
10295 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10296 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10297 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10298 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10299 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10300 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10301 	write_sequnlock(&fs_info->profiles_lock);
10302 }
10303 
10304 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10305 			     struct btrfs_fs_info *fs_info, u64 group_start,
10306 			     struct extent_map *em)
10307 {
10308 	struct btrfs_root *root = fs_info->extent_root;
10309 	struct btrfs_path *path;
10310 	struct btrfs_block_group_cache *block_group;
10311 	struct btrfs_free_cluster *cluster;
10312 	struct btrfs_root *tree_root = fs_info->tree_root;
10313 	struct btrfs_key key;
10314 	struct inode *inode;
10315 	struct kobject *kobj = NULL;
10316 	int ret;
10317 	int index;
10318 	int factor;
10319 	struct btrfs_caching_control *caching_ctl = NULL;
10320 	bool remove_em;
10321 
10322 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10323 	BUG_ON(!block_group);
10324 	BUG_ON(!block_group->ro);
10325 
10326 	/*
10327 	 * Free the reserved super bytes from this block group before
10328 	 * remove it.
10329 	 */
10330 	free_excluded_extents(fs_info, block_group);
10331 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10332 				  block_group->key.offset);
10333 
10334 	memcpy(&key, &block_group->key, sizeof(key));
10335 	index = get_block_group_index(block_group);
10336 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10337 				  BTRFS_BLOCK_GROUP_RAID1 |
10338 				  BTRFS_BLOCK_GROUP_RAID10))
10339 		factor = 2;
10340 	else
10341 		factor = 1;
10342 
10343 	/* make sure this block group isn't part of an allocation cluster */
10344 	cluster = &fs_info->data_alloc_cluster;
10345 	spin_lock(&cluster->refill_lock);
10346 	btrfs_return_cluster_to_free_space(block_group, cluster);
10347 	spin_unlock(&cluster->refill_lock);
10348 
10349 	/*
10350 	 * make sure this block group isn't part of a metadata
10351 	 * allocation cluster
10352 	 */
10353 	cluster = &fs_info->meta_alloc_cluster;
10354 	spin_lock(&cluster->refill_lock);
10355 	btrfs_return_cluster_to_free_space(block_group, cluster);
10356 	spin_unlock(&cluster->refill_lock);
10357 
10358 	path = btrfs_alloc_path();
10359 	if (!path) {
10360 		ret = -ENOMEM;
10361 		goto out;
10362 	}
10363 
10364 	/*
10365 	 * get the inode first so any iput calls done for the io_list
10366 	 * aren't the final iput (no unlinks allowed now)
10367 	 */
10368 	inode = lookup_free_space_inode(fs_info, block_group, path);
10369 
10370 	mutex_lock(&trans->transaction->cache_write_mutex);
10371 	/*
10372 	 * make sure our free spache cache IO is done before remove the
10373 	 * free space inode
10374 	 */
10375 	spin_lock(&trans->transaction->dirty_bgs_lock);
10376 	if (!list_empty(&block_group->io_list)) {
10377 		list_del_init(&block_group->io_list);
10378 
10379 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10380 
10381 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10382 		btrfs_wait_cache_io(trans, block_group, path);
10383 		btrfs_put_block_group(block_group);
10384 		spin_lock(&trans->transaction->dirty_bgs_lock);
10385 	}
10386 
10387 	if (!list_empty(&block_group->dirty_list)) {
10388 		list_del_init(&block_group->dirty_list);
10389 		btrfs_put_block_group(block_group);
10390 	}
10391 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10392 	mutex_unlock(&trans->transaction->cache_write_mutex);
10393 
10394 	if (!IS_ERR(inode)) {
10395 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10396 		if (ret) {
10397 			btrfs_add_delayed_iput(inode);
10398 			goto out;
10399 		}
10400 		clear_nlink(inode);
10401 		/* One for the block groups ref */
10402 		spin_lock(&block_group->lock);
10403 		if (block_group->iref) {
10404 			block_group->iref = 0;
10405 			block_group->inode = NULL;
10406 			spin_unlock(&block_group->lock);
10407 			iput(inode);
10408 		} else {
10409 			spin_unlock(&block_group->lock);
10410 		}
10411 		/* One for our lookup ref */
10412 		btrfs_add_delayed_iput(inode);
10413 	}
10414 
10415 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10416 	key.offset = block_group->key.objectid;
10417 	key.type = 0;
10418 
10419 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10420 	if (ret < 0)
10421 		goto out;
10422 	if (ret > 0)
10423 		btrfs_release_path(path);
10424 	if (ret == 0) {
10425 		ret = btrfs_del_item(trans, tree_root, path);
10426 		if (ret)
10427 			goto out;
10428 		btrfs_release_path(path);
10429 	}
10430 
10431 	spin_lock(&fs_info->block_group_cache_lock);
10432 	rb_erase(&block_group->cache_node,
10433 		 &fs_info->block_group_cache_tree);
10434 	RB_CLEAR_NODE(&block_group->cache_node);
10435 
10436 	if (fs_info->first_logical_byte == block_group->key.objectid)
10437 		fs_info->first_logical_byte = (u64)-1;
10438 	spin_unlock(&fs_info->block_group_cache_lock);
10439 
10440 	down_write(&block_group->space_info->groups_sem);
10441 	/*
10442 	 * we must use list_del_init so people can check to see if they
10443 	 * are still on the list after taking the semaphore
10444 	 */
10445 	list_del_init(&block_group->list);
10446 	if (list_empty(&block_group->space_info->block_groups[index])) {
10447 		kobj = block_group->space_info->block_group_kobjs[index];
10448 		block_group->space_info->block_group_kobjs[index] = NULL;
10449 		clear_avail_alloc_bits(fs_info, block_group->flags);
10450 	}
10451 	up_write(&block_group->space_info->groups_sem);
10452 	if (kobj) {
10453 		kobject_del(kobj);
10454 		kobject_put(kobj);
10455 	}
10456 
10457 	if (block_group->has_caching_ctl)
10458 		caching_ctl = get_caching_control(block_group);
10459 	if (block_group->cached == BTRFS_CACHE_STARTED)
10460 		wait_block_group_cache_done(block_group);
10461 	if (block_group->has_caching_ctl) {
10462 		down_write(&fs_info->commit_root_sem);
10463 		if (!caching_ctl) {
10464 			struct btrfs_caching_control *ctl;
10465 
10466 			list_for_each_entry(ctl,
10467 				    &fs_info->caching_block_groups, list)
10468 				if (ctl->block_group == block_group) {
10469 					caching_ctl = ctl;
10470 					refcount_inc(&caching_ctl->count);
10471 					break;
10472 				}
10473 		}
10474 		if (caching_ctl)
10475 			list_del_init(&caching_ctl->list);
10476 		up_write(&fs_info->commit_root_sem);
10477 		if (caching_ctl) {
10478 			/* Once for the caching bgs list and once for us. */
10479 			put_caching_control(caching_ctl);
10480 			put_caching_control(caching_ctl);
10481 		}
10482 	}
10483 
10484 	spin_lock(&trans->transaction->dirty_bgs_lock);
10485 	if (!list_empty(&block_group->dirty_list)) {
10486 		WARN_ON(1);
10487 	}
10488 	if (!list_empty(&block_group->io_list)) {
10489 		WARN_ON(1);
10490 	}
10491 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10492 	btrfs_remove_free_space_cache(block_group);
10493 
10494 	spin_lock(&block_group->space_info->lock);
10495 	list_del_init(&block_group->ro_list);
10496 
10497 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10498 		WARN_ON(block_group->space_info->total_bytes
10499 			< block_group->key.offset);
10500 		WARN_ON(block_group->space_info->bytes_readonly
10501 			< block_group->key.offset);
10502 		WARN_ON(block_group->space_info->disk_total
10503 			< block_group->key.offset * factor);
10504 	}
10505 	block_group->space_info->total_bytes -= block_group->key.offset;
10506 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10507 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10508 
10509 	spin_unlock(&block_group->space_info->lock);
10510 
10511 	memcpy(&key, &block_group->key, sizeof(key));
10512 
10513 	mutex_lock(&fs_info->chunk_mutex);
10514 	if (!list_empty(&em->list)) {
10515 		/* We're in the transaction->pending_chunks list. */
10516 		free_extent_map(em);
10517 	}
10518 	spin_lock(&block_group->lock);
10519 	block_group->removed = 1;
10520 	/*
10521 	 * At this point trimming can't start on this block group, because we
10522 	 * removed the block group from the tree fs_info->block_group_cache_tree
10523 	 * so no one can't find it anymore and even if someone already got this
10524 	 * block group before we removed it from the rbtree, they have already
10525 	 * incremented block_group->trimming - if they didn't, they won't find
10526 	 * any free space entries because we already removed them all when we
10527 	 * called btrfs_remove_free_space_cache().
10528 	 *
10529 	 * And we must not remove the extent map from the fs_info->mapping_tree
10530 	 * to prevent the same logical address range and physical device space
10531 	 * ranges from being reused for a new block group. This is because our
10532 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10533 	 * completely transactionless, so while it is trimming a range the
10534 	 * currently running transaction might finish and a new one start,
10535 	 * allowing for new block groups to be created that can reuse the same
10536 	 * physical device locations unless we take this special care.
10537 	 *
10538 	 * There may also be an implicit trim operation if the file system
10539 	 * is mounted with -odiscard. The same protections must remain
10540 	 * in place until the extents have been discarded completely when
10541 	 * the transaction commit has completed.
10542 	 */
10543 	remove_em = (atomic_read(&block_group->trimming) == 0);
10544 	/*
10545 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10546 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10547 	 * before checking block_group->removed).
10548 	 */
10549 	if (!remove_em) {
10550 		/*
10551 		 * Our em might be in trans->transaction->pending_chunks which
10552 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10553 		 * and so is the fs_info->pinned_chunks list.
10554 		 *
10555 		 * So at this point we must be holding the chunk_mutex to avoid
10556 		 * any races with chunk allocation (more specifically at
10557 		 * volumes.c:contains_pending_extent()), to ensure it always
10558 		 * sees the em, either in the pending_chunks list or in the
10559 		 * pinned_chunks list.
10560 		 */
10561 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10562 	}
10563 	spin_unlock(&block_group->lock);
10564 
10565 	if (remove_em) {
10566 		struct extent_map_tree *em_tree;
10567 
10568 		em_tree = &fs_info->mapping_tree.map_tree;
10569 		write_lock(&em_tree->lock);
10570 		/*
10571 		 * The em might be in the pending_chunks list, so make sure the
10572 		 * chunk mutex is locked, since remove_extent_mapping() will
10573 		 * delete us from that list.
10574 		 */
10575 		remove_extent_mapping(em_tree, em);
10576 		write_unlock(&em_tree->lock);
10577 		/* once for the tree */
10578 		free_extent_map(em);
10579 	}
10580 
10581 	mutex_unlock(&fs_info->chunk_mutex);
10582 
10583 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10584 	if (ret)
10585 		goto out;
10586 
10587 	btrfs_put_block_group(block_group);
10588 	btrfs_put_block_group(block_group);
10589 
10590 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10591 	if (ret > 0)
10592 		ret = -EIO;
10593 	if (ret < 0)
10594 		goto out;
10595 
10596 	ret = btrfs_del_item(trans, root, path);
10597 out:
10598 	btrfs_free_path(path);
10599 	return ret;
10600 }
10601 
10602 struct btrfs_trans_handle *
10603 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10604 				     const u64 chunk_offset)
10605 {
10606 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10607 	struct extent_map *em;
10608 	struct map_lookup *map;
10609 	unsigned int num_items;
10610 
10611 	read_lock(&em_tree->lock);
10612 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10613 	read_unlock(&em_tree->lock);
10614 	ASSERT(em && em->start == chunk_offset);
10615 
10616 	/*
10617 	 * We need to reserve 3 + N units from the metadata space info in order
10618 	 * to remove a block group (done at btrfs_remove_chunk() and at
10619 	 * btrfs_remove_block_group()), which are used for:
10620 	 *
10621 	 * 1 unit for adding the free space inode's orphan (located in the tree
10622 	 * of tree roots).
10623 	 * 1 unit for deleting the block group item (located in the extent
10624 	 * tree).
10625 	 * 1 unit for deleting the free space item (located in tree of tree
10626 	 * roots).
10627 	 * N units for deleting N device extent items corresponding to each
10628 	 * stripe (located in the device tree).
10629 	 *
10630 	 * In order to remove a block group we also need to reserve units in the
10631 	 * system space info in order to update the chunk tree (update one or
10632 	 * more device items and remove one chunk item), but this is done at
10633 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10634 	 */
10635 	map = em->map_lookup;
10636 	num_items = 3 + map->num_stripes;
10637 	free_extent_map(em);
10638 
10639 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10640 							   num_items, 1);
10641 }
10642 
10643 /*
10644  * Process the unused_bgs list and remove any that don't have any allocated
10645  * space inside of them.
10646  */
10647 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10648 {
10649 	struct btrfs_block_group_cache *block_group;
10650 	struct btrfs_space_info *space_info;
10651 	struct btrfs_trans_handle *trans;
10652 	int ret = 0;
10653 
10654 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10655 		return;
10656 
10657 	spin_lock(&fs_info->unused_bgs_lock);
10658 	while (!list_empty(&fs_info->unused_bgs)) {
10659 		u64 start, end;
10660 		int trimming;
10661 
10662 		block_group = list_first_entry(&fs_info->unused_bgs,
10663 					       struct btrfs_block_group_cache,
10664 					       bg_list);
10665 		list_del_init(&block_group->bg_list);
10666 
10667 		space_info = block_group->space_info;
10668 
10669 		if (ret || btrfs_mixed_space_info(space_info)) {
10670 			btrfs_put_block_group(block_group);
10671 			continue;
10672 		}
10673 		spin_unlock(&fs_info->unused_bgs_lock);
10674 
10675 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10676 
10677 		/* Don't want to race with allocators so take the groups_sem */
10678 		down_write(&space_info->groups_sem);
10679 		spin_lock(&block_group->lock);
10680 		if (block_group->reserved ||
10681 		    btrfs_block_group_used(&block_group->item) ||
10682 		    block_group->ro ||
10683 		    list_is_singular(&block_group->list)) {
10684 			/*
10685 			 * We want to bail if we made new allocations or have
10686 			 * outstanding allocations in this block group.  We do
10687 			 * the ro check in case balance is currently acting on
10688 			 * this block group.
10689 			 */
10690 			spin_unlock(&block_group->lock);
10691 			up_write(&space_info->groups_sem);
10692 			goto next;
10693 		}
10694 		spin_unlock(&block_group->lock);
10695 
10696 		/* We don't want to force the issue, only flip if it's ok. */
10697 		ret = inc_block_group_ro(block_group, 0);
10698 		up_write(&space_info->groups_sem);
10699 		if (ret < 0) {
10700 			ret = 0;
10701 			goto next;
10702 		}
10703 
10704 		/*
10705 		 * Want to do this before we do anything else so we can recover
10706 		 * properly if we fail to join the transaction.
10707 		 */
10708 		trans = btrfs_start_trans_remove_block_group(fs_info,
10709 						     block_group->key.objectid);
10710 		if (IS_ERR(trans)) {
10711 			btrfs_dec_block_group_ro(block_group);
10712 			ret = PTR_ERR(trans);
10713 			goto next;
10714 		}
10715 
10716 		/*
10717 		 * We could have pending pinned extents for this block group,
10718 		 * just delete them, we don't care about them anymore.
10719 		 */
10720 		start = block_group->key.objectid;
10721 		end = start + block_group->key.offset - 1;
10722 		/*
10723 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10724 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10725 		 * another task might be running finish_extent_commit() for the
10726 		 * previous transaction N - 1, and have seen a range belonging
10727 		 * to the block group in freed_extents[] before we were able to
10728 		 * clear the whole block group range from freed_extents[]. This
10729 		 * means that task can lookup for the block group after we
10730 		 * unpinned it from freed_extents[] and removed it, leading to
10731 		 * a BUG_ON() at btrfs_unpin_extent_range().
10732 		 */
10733 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10734 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10735 				  EXTENT_DIRTY);
10736 		if (ret) {
10737 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10738 			btrfs_dec_block_group_ro(block_group);
10739 			goto end_trans;
10740 		}
10741 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10742 				  EXTENT_DIRTY);
10743 		if (ret) {
10744 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10745 			btrfs_dec_block_group_ro(block_group);
10746 			goto end_trans;
10747 		}
10748 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10749 
10750 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10751 		spin_lock(&space_info->lock);
10752 		spin_lock(&block_group->lock);
10753 
10754 		space_info->bytes_pinned -= block_group->pinned;
10755 		space_info->bytes_readonly += block_group->pinned;
10756 		percpu_counter_add(&space_info->total_bytes_pinned,
10757 				   -block_group->pinned);
10758 		block_group->pinned = 0;
10759 
10760 		spin_unlock(&block_group->lock);
10761 		spin_unlock(&space_info->lock);
10762 
10763 		/* DISCARD can flip during remount */
10764 		trimming = btrfs_test_opt(fs_info, DISCARD);
10765 
10766 		/* Implicit trim during transaction commit. */
10767 		if (trimming)
10768 			btrfs_get_block_group_trimming(block_group);
10769 
10770 		/*
10771 		 * Btrfs_remove_chunk will abort the transaction if things go
10772 		 * horribly wrong.
10773 		 */
10774 		ret = btrfs_remove_chunk(trans, fs_info,
10775 					 block_group->key.objectid);
10776 
10777 		if (ret) {
10778 			if (trimming)
10779 				btrfs_put_block_group_trimming(block_group);
10780 			goto end_trans;
10781 		}
10782 
10783 		/*
10784 		 * If we're not mounted with -odiscard, we can just forget
10785 		 * about this block group. Otherwise we'll need to wait
10786 		 * until transaction commit to do the actual discard.
10787 		 */
10788 		if (trimming) {
10789 			spin_lock(&fs_info->unused_bgs_lock);
10790 			/*
10791 			 * A concurrent scrub might have added us to the list
10792 			 * fs_info->unused_bgs, so use a list_move operation
10793 			 * to add the block group to the deleted_bgs list.
10794 			 */
10795 			list_move(&block_group->bg_list,
10796 				  &trans->transaction->deleted_bgs);
10797 			spin_unlock(&fs_info->unused_bgs_lock);
10798 			btrfs_get_block_group(block_group);
10799 		}
10800 end_trans:
10801 		btrfs_end_transaction(trans);
10802 next:
10803 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10804 		btrfs_put_block_group(block_group);
10805 		spin_lock(&fs_info->unused_bgs_lock);
10806 	}
10807 	spin_unlock(&fs_info->unused_bgs_lock);
10808 }
10809 
10810 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10811 {
10812 	struct btrfs_space_info *space_info;
10813 	struct btrfs_super_block *disk_super;
10814 	u64 features;
10815 	u64 flags;
10816 	int mixed = 0;
10817 	int ret;
10818 
10819 	disk_super = fs_info->super_copy;
10820 	if (!btrfs_super_root(disk_super))
10821 		return -EINVAL;
10822 
10823 	features = btrfs_super_incompat_flags(disk_super);
10824 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10825 		mixed = 1;
10826 
10827 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10828 	ret = create_space_info(fs_info, flags, &space_info);
10829 	if (ret)
10830 		goto out;
10831 
10832 	if (mixed) {
10833 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10834 		ret = create_space_info(fs_info, flags, &space_info);
10835 	} else {
10836 		flags = BTRFS_BLOCK_GROUP_METADATA;
10837 		ret = create_space_info(fs_info, flags, &space_info);
10838 		if (ret)
10839 			goto out;
10840 
10841 		flags = BTRFS_BLOCK_GROUP_DATA;
10842 		ret = create_space_info(fs_info, flags, &space_info);
10843 	}
10844 out:
10845 	return ret;
10846 }
10847 
10848 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10849 				   u64 start, u64 end)
10850 {
10851 	return unpin_extent_range(fs_info, start, end, false);
10852 }
10853 
10854 /*
10855  * It used to be that old block groups would be left around forever.
10856  * Iterating over them would be enough to trim unused space.  Since we
10857  * now automatically remove them, we also need to iterate over unallocated
10858  * space.
10859  *
10860  * We don't want a transaction for this since the discard may take a
10861  * substantial amount of time.  We don't require that a transaction be
10862  * running, but we do need to take a running transaction into account
10863  * to ensure that we're not discarding chunks that were released in
10864  * the current transaction.
10865  *
10866  * Holding the chunks lock will prevent other threads from allocating
10867  * or releasing chunks, but it won't prevent a running transaction
10868  * from committing and releasing the memory that the pending chunks
10869  * list head uses.  For that, we need to take a reference to the
10870  * transaction.
10871  */
10872 static int btrfs_trim_free_extents(struct btrfs_device *device,
10873 				   u64 minlen, u64 *trimmed)
10874 {
10875 	u64 start = 0, len = 0;
10876 	int ret;
10877 
10878 	*trimmed = 0;
10879 
10880 	/* Not writeable = nothing to do. */
10881 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10882 		return 0;
10883 
10884 	/* No free space = nothing to do. */
10885 	if (device->total_bytes <= device->bytes_used)
10886 		return 0;
10887 
10888 	ret = 0;
10889 
10890 	while (1) {
10891 		struct btrfs_fs_info *fs_info = device->fs_info;
10892 		struct btrfs_transaction *trans;
10893 		u64 bytes;
10894 
10895 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10896 		if (ret)
10897 			return ret;
10898 
10899 		down_read(&fs_info->commit_root_sem);
10900 
10901 		spin_lock(&fs_info->trans_lock);
10902 		trans = fs_info->running_transaction;
10903 		if (trans)
10904 			refcount_inc(&trans->use_count);
10905 		spin_unlock(&fs_info->trans_lock);
10906 
10907 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10908 						 &start, &len);
10909 		if (trans)
10910 			btrfs_put_transaction(trans);
10911 
10912 		if (ret) {
10913 			up_read(&fs_info->commit_root_sem);
10914 			mutex_unlock(&fs_info->chunk_mutex);
10915 			if (ret == -ENOSPC)
10916 				ret = 0;
10917 			break;
10918 		}
10919 
10920 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10921 		up_read(&fs_info->commit_root_sem);
10922 		mutex_unlock(&fs_info->chunk_mutex);
10923 
10924 		if (ret)
10925 			break;
10926 
10927 		start += len;
10928 		*trimmed += bytes;
10929 
10930 		if (fatal_signal_pending(current)) {
10931 			ret = -ERESTARTSYS;
10932 			break;
10933 		}
10934 
10935 		cond_resched();
10936 	}
10937 
10938 	return ret;
10939 }
10940 
10941 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10942 {
10943 	struct btrfs_block_group_cache *cache = NULL;
10944 	struct btrfs_device *device;
10945 	struct list_head *devices;
10946 	u64 group_trimmed;
10947 	u64 start;
10948 	u64 end;
10949 	u64 trimmed = 0;
10950 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10951 	int ret = 0;
10952 
10953 	/*
10954 	 * try to trim all FS space, our block group may start from non-zero.
10955 	 */
10956 	if (range->len == total_bytes)
10957 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10958 	else
10959 		cache = btrfs_lookup_block_group(fs_info, range->start);
10960 
10961 	while (cache) {
10962 		if (cache->key.objectid >= (range->start + range->len)) {
10963 			btrfs_put_block_group(cache);
10964 			break;
10965 		}
10966 
10967 		start = max(range->start, cache->key.objectid);
10968 		end = min(range->start + range->len,
10969 				cache->key.objectid + cache->key.offset);
10970 
10971 		if (end - start >= range->minlen) {
10972 			if (!block_group_cache_done(cache)) {
10973 				ret = cache_block_group(cache, 0);
10974 				if (ret) {
10975 					btrfs_put_block_group(cache);
10976 					break;
10977 				}
10978 				ret = wait_block_group_cache_done(cache);
10979 				if (ret) {
10980 					btrfs_put_block_group(cache);
10981 					break;
10982 				}
10983 			}
10984 			ret = btrfs_trim_block_group(cache,
10985 						     &group_trimmed,
10986 						     start,
10987 						     end,
10988 						     range->minlen);
10989 
10990 			trimmed += group_trimmed;
10991 			if (ret) {
10992 				btrfs_put_block_group(cache);
10993 				break;
10994 			}
10995 		}
10996 
10997 		cache = next_block_group(fs_info, cache);
10998 	}
10999 
11000 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11001 	devices = &fs_info->fs_devices->alloc_list;
11002 	list_for_each_entry(device, devices, dev_alloc_list) {
11003 		ret = btrfs_trim_free_extents(device, range->minlen,
11004 					      &group_trimmed);
11005 		if (ret)
11006 			break;
11007 
11008 		trimmed += group_trimmed;
11009 	}
11010 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11011 
11012 	range->len = trimmed;
11013 	return ret;
11014 }
11015 
11016 /*
11017  * btrfs_{start,end}_write_no_snapshotting() are similar to
11018  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11019  * data into the page cache through nocow before the subvolume is snapshoted,
11020  * but flush the data into disk after the snapshot creation, or to prevent
11021  * operations while snapshotting is ongoing and that cause the snapshot to be
11022  * inconsistent (writes followed by expanding truncates for example).
11023  */
11024 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11025 {
11026 	percpu_counter_dec(&root->subv_writers->counter);
11027 	/*
11028 	 * Make sure counter is updated before we wake up waiters.
11029 	 */
11030 	smp_mb();
11031 	if (waitqueue_active(&root->subv_writers->wait))
11032 		wake_up(&root->subv_writers->wait);
11033 }
11034 
11035 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11036 {
11037 	if (atomic_read(&root->will_be_snapshotted))
11038 		return 0;
11039 
11040 	percpu_counter_inc(&root->subv_writers->counter);
11041 	/*
11042 	 * Make sure counter is updated before we check for snapshot creation.
11043 	 */
11044 	smp_mb();
11045 	if (atomic_read(&root->will_be_snapshotted)) {
11046 		btrfs_end_write_no_snapshotting(root);
11047 		return 0;
11048 	}
11049 	return 1;
11050 }
11051 
11052 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11053 {
11054 	while (true) {
11055 		int ret;
11056 
11057 		ret = btrfs_start_write_no_snapshotting(root);
11058 		if (ret)
11059 			break;
11060 		wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11061 				 TASK_UNINTERRUPTIBLE);
11062 	}
11063 }
11064