xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 
37 #undef SCRAMBLE_DELAYED_REFS
38 
39 
40 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
41 			       struct btrfs_delayed_ref_node *node, u64 parent,
42 			       u64 root_objectid, u64 owner_objectid,
43 			       u64 owner_offset, int refs_to_drop,
44 			       struct btrfs_delayed_extent_op *extra_op);
45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
46 				    struct extent_buffer *leaf,
47 				    struct btrfs_extent_item *ei);
48 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
49 				      u64 parent, u64 root_objectid,
50 				      u64 flags, u64 owner, u64 offset,
51 				      struct btrfs_key *ins, int ref_mod);
52 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
53 				     struct btrfs_delayed_ref_node *node,
54 				     struct btrfs_delayed_extent_op *extent_op);
55 static int find_next_key(struct btrfs_path *path, int level,
56 			 struct btrfs_key *key);
57 
58 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
59 {
60 	return (cache->flags & bits) == bits;
61 }
62 
63 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
64 			      u64 start, u64 num_bytes)
65 {
66 	u64 end = start + num_bytes - 1;
67 	set_extent_bits(&fs_info->excluded_extents, start, end,
68 			EXTENT_UPTODATE);
69 	return 0;
70 }
71 
72 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
73 {
74 	struct btrfs_fs_info *fs_info = cache->fs_info;
75 	u64 start, end;
76 
77 	start = cache->start;
78 	end = start + cache->length - 1;
79 
80 	clear_extent_bits(&fs_info->excluded_extents, start, end,
81 			  EXTENT_UPTODATE);
82 }
83 
84 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
85 {
86 	if (ref->type == BTRFS_REF_METADATA) {
87 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
88 			return BTRFS_BLOCK_GROUP_SYSTEM;
89 		else
90 			return BTRFS_BLOCK_GROUP_METADATA;
91 	}
92 	return BTRFS_BLOCK_GROUP_DATA;
93 }
94 
95 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
96 			     struct btrfs_ref *ref)
97 {
98 	struct btrfs_space_info *space_info;
99 	u64 flags = generic_ref_to_space_flags(ref);
100 
101 	space_info = btrfs_find_space_info(fs_info, flags);
102 	ASSERT(space_info);
103 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
104 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
105 }
106 
107 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
108 			     struct btrfs_ref *ref)
109 {
110 	struct btrfs_space_info *space_info;
111 	u64 flags = generic_ref_to_space_flags(ref);
112 
113 	space_info = btrfs_find_space_info(fs_info, flags);
114 	ASSERT(space_info);
115 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
116 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
117 }
118 
119 /* simple helper to search for an existing data extent at a given offset */
120 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
121 {
122 	int ret;
123 	struct btrfs_key key;
124 	struct btrfs_path *path;
125 
126 	path = btrfs_alloc_path();
127 	if (!path)
128 		return -ENOMEM;
129 
130 	key.objectid = start;
131 	key.offset = len;
132 	key.type = BTRFS_EXTENT_ITEM_KEY;
133 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
134 	btrfs_free_path(path);
135 	return ret;
136 }
137 
138 /*
139  * helper function to lookup reference count and flags of a tree block.
140  *
141  * the head node for delayed ref is used to store the sum of all the
142  * reference count modifications queued up in the rbtree. the head
143  * node may also store the extent flags to set. This way you can check
144  * to see what the reference count and extent flags would be if all of
145  * the delayed refs are not processed.
146  */
147 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
148 			     struct btrfs_fs_info *fs_info, u64 bytenr,
149 			     u64 offset, int metadata, u64 *refs, u64 *flags)
150 {
151 	struct btrfs_delayed_ref_head *head;
152 	struct btrfs_delayed_ref_root *delayed_refs;
153 	struct btrfs_path *path;
154 	struct btrfs_extent_item *ei;
155 	struct extent_buffer *leaf;
156 	struct btrfs_key key;
157 	u32 item_size;
158 	u64 num_refs;
159 	u64 extent_flags;
160 	int ret;
161 
162 	/*
163 	 * If we don't have skinny metadata, don't bother doing anything
164 	 * different
165 	 */
166 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
167 		offset = fs_info->nodesize;
168 		metadata = 0;
169 	}
170 
171 	path = btrfs_alloc_path();
172 	if (!path)
173 		return -ENOMEM;
174 
175 	if (!trans) {
176 		path->skip_locking = 1;
177 		path->search_commit_root = 1;
178 	}
179 
180 search_again:
181 	key.objectid = bytenr;
182 	key.offset = offset;
183 	if (metadata)
184 		key.type = BTRFS_METADATA_ITEM_KEY;
185 	else
186 		key.type = BTRFS_EXTENT_ITEM_KEY;
187 
188 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
189 	if (ret < 0)
190 		goto out_free;
191 
192 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
193 		if (path->slots[0]) {
194 			path->slots[0]--;
195 			btrfs_item_key_to_cpu(path->nodes[0], &key,
196 					      path->slots[0]);
197 			if (key.objectid == bytenr &&
198 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
199 			    key.offset == fs_info->nodesize)
200 				ret = 0;
201 		}
202 	}
203 
204 	if (ret == 0) {
205 		leaf = path->nodes[0];
206 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
207 		if (item_size >= sizeof(*ei)) {
208 			ei = btrfs_item_ptr(leaf, path->slots[0],
209 					    struct btrfs_extent_item);
210 			num_refs = btrfs_extent_refs(leaf, ei);
211 			extent_flags = btrfs_extent_flags(leaf, ei);
212 		} else {
213 			ret = -EINVAL;
214 			btrfs_print_v0_err(fs_info);
215 			if (trans)
216 				btrfs_abort_transaction(trans, ret);
217 			else
218 				btrfs_handle_fs_error(fs_info, ret, NULL);
219 
220 			goto out_free;
221 		}
222 
223 		BUG_ON(num_refs == 0);
224 	} else {
225 		num_refs = 0;
226 		extent_flags = 0;
227 		ret = 0;
228 	}
229 
230 	if (!trans)
231 		goto out;
232 
233 	delayed_refs = &trans->transaction->delayed_refs;
234 	spin_lock(&delayed_refs->lock);
235 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
236 	if (head) {
237 		if (!mutex_trylock(&head->mutex)) {
238 			refcount_inc(&head->refs);
239 			spin_unlock(&delayed_refs->lock);
240 
241 			btrfs_release_path(path);
242 
243 			/*
244 			 * Mutex was contended, block until it's released and try
245 			 * again
246 			 */
247 			mutex_lock(&head->mutex);
248 			mutex_unlock(&head->mutex);
249 			btrfs_put_delayed_ref_head(head);
250 			goto search_again;
251 		}
252 		spin_lock(&head->lock);
253 		if (head->extent_op && head->extent_op->update_flags)
254 			extent_flags |= head->extent_op->flags_to_set;
255 		else
256 			BUG_ON(num_refs == 0);
257 
258 		num_refs += head->ref_mod;
259 		spin_unlock(&head->lock);
260 		mutex_unlock(&head->mutex);
261 	}
262 	spin_unlock(&delayed_refs->lock);
263 out:
264 	WARN_ON(num_refs == 0);
265 	if (refs)
266 		*refs = num_refs;
267 	if (flags)
268 		*flags = extent_flags;
269 out_free:
270 	btrfs_free_path(path);
271 	return ret;
272 }
273 
274 /*
275  * Back reference rules.  Back refs have three main goals:
276  *
277  * 1) differentiate between all holders of references to an extent so that
278  *    when a reference is dropped we can make sure it was a valid reference
279  *    before freeing the extent.
280  *
281  * 2) Provide enough information to quickly find the holders of an extent
282  *    if we notice a given block is corrupted or bad.
283  *
284  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
285  *    maintenance.  This is actually the same as #2, but with a slightly
286  *    different use case.
287  *
288  * There are two kinds of back refs. The implicit back refs is optimized
289  * for pointers in non-shared tree blocks. For a given pointer in a block,
290  * back refs of this kind provide information about the block's owner tree
291  * and the pointer's key. These information allow us to find the block by
292  * b-tree searching. The full back refs is for pointers in tree blocks not
293  * referenced by their owner trees. The location of tree block is recorded
294  * in the back refs. Actually the full back refs is generic, and can be
295  * used in all cases the implicit back refs is used. The major shortcoming
296  * of the full back refs is its overhead. Every time a tree block gets
297  * COWed, we have to update back refs entry for all pointers in it.
298  *
299  * For a newly allocated tree block, we use implicit back refs for
300  * pointers in it. This means most tree related operations only involve
301  * implicit back refs. For a tree block created in old transaction, the
302  * only way to drop a reference to it is COW it. So we can detect the
303  * event that tree block loses its owner tree's reference and do the
304  * back refs conversion.
305  *
306  * When a tree block is COWed through a tree, there are four cases:
307  *
308  * The reference count of the block is one and the tree is the block's
309  * owner tree. Nothing to do in this case.
310  *
311  * The reference count of the block is one and the tree is not the
312  * block's owner tree. In this case, full back refs is used for pointers
313  * in the block. Remove these full back refs, add implicit back refs for
314  * every pointers in the new block.
315  *
316  * The reference count of the block is greater than one and the tree is
317  * the block's owner tree. In this case, implicit back refs is used for
318  * pointers in the block. Add full back refs for every pointers in the
319  * block, increase lower level extents' reference counts. The original
320  * implicit back refs are entailed to the new block.
321  *
322  * The reference count of the block is greater than one and the tree is
323  * not the block's owner tree. Add implicit back refs for every pointer in
324  * the new block, increase lower level extents' reference count.
325  *
326  * Back Reference Key composing:
327  *
328  * The key objectid corresponds to the first byte in the extent,
329  * The key type is used to differentiate between types of back refs.
330  * There are different meanings of the key offset for different types
331  * of back refs.
332  *
333  * File extents can be referenced by:
334  *
335  * - multiple snapshots, subvolumes, or different generations in one subvol
336  * - different files inside a single subvolume
337  * - different offsets inside a file (bookend extents in file.c)
338  *
339  * The extent ref structure for the implicit back refs has fields for:
340  *
341  * - Objectid of the subvolume root
342  * - objectid of the file holding the reference
343  * - original offset in the file
344  * - how many bookend extents
345  *
346  * The key offset for the implicit back refs is hash of the first
347  * three fields.
348  *
349  * The extent ref structure for the full back refs has field for:
350  *
351  * - number of pointers in the tree leaf
352  *
353  * The key offset for the implicit back refs is the first byte of
354  * the tree leaf
355  *
356  * When a file extent is allocated, The implicit back refs is used.
357  * the fields are filled in:
358  *
359  *     (root_key.objectid, inode objectid, offset in file, 1)
360  *
361  * When a file extent is removed file truncation, we find the
362  * corresponding implicit back refs and check the following fields:
363  *
364  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
365  *
366  * Btree extents can be referenced by:
367  *
368  * - Different subvolumes
369  *
370  * Both the implicit back refs and the full back refs for tree blocks
371  * only consist of key. The key offset for the implicit back refs is
372  * objectid of block's owner tree. The key offset for the full back refs
373  * is the first byte of parent block.
374  *
375  * When implicit back refs is used, information about the lowest key and
376  * level of the tree block are required. These information are stored in
377  * tree block info structure.
378  */
379 
380 /*
381  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
382  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
383  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
384  */
385 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
386 				     struct btrfs_extent_inline_ref *iref,
387 				     enum btrfs_inline_ref_type is_data)
388 {
389 	int type = btrfs_extent_inline_ref_type(eb, iref);
390 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
391 
392 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
393 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
394 	    type == BTRFS_SHARED_DATA_REF_KEY ||
395 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
396 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
397 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
398 				return type;
399 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
400 				ASSERT(eb->fs_info);
401 				/*
402 				 * Every shared one has parent tree
403 				 * block, which must be aligned to
404 				 * nodesize.
405 				 */
406 				if (offset &&
407 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
408 					return type;
409 			}
410 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
411 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
412 				return type;
413 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
414 				ASSERT(eb->fs_info);
415 				/*
416 				 * Every shared one has parent tree
417 				 * block, which must be aligned to
418 				 * nodesize.
419 				 */
420 				if (offset &&
421 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
422 					return type;
423 			}
424 		} else {
425 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
426 			return type;
427 		}
428 	}
429 
430 	btrfs_print_leaf((struct extent_buffer *)eb);
431 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
432 		  eb->start, type);
433 	WARN_ON(1);
434 
435 	return BTRFS_REF_TYPE_INVALID;
436 }
437 
438 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
439 {
440 	u32 high_crc = ~(u32)0;
441 	u32 low_crc = ~(u32)0;
442 	__le64 lenum;
443 
444 	lenum = cpu_to_le64(root_objectid);
445 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
446 	lenum = cpu_to_le64(owner);
447 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
448 	lenum = cpu_to_le64(offset);
449 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
450 
451 	return ((u64)high_crc << 31) ^ (u64)low_crc;
452 }
453 
454 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
455 				     struct btrfs_extent_data_ref *ref)
456 {
457 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
458 				    btrfs_extent_data_ref_objectid(leaf, ref),
459 				    btrfs_extent_data_ref_offset(leaf, ref));
460 }
461 
462 static int match_extent_data_ref(struct extent_buffer *leaf,
463 				 struct btrfs_extent_data_ref *ref,
464 				 u64 root_objectid, u64 owner, u64 offset)
465 {
466 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
467 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
468 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
469 		return 0;
470 	return 1;
471 }
472 
473 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
474 					   struct btrfs_path *path,
475 					   u64 bytenr, u64 parent,
476 					   u64 root_objectid,
477 					   u64 owner, u64 offset)
478 {
479 	struct btrfs_root *root = trans->fs_info->extent_root;
480 	struct btrfs_key key;
481 	struct btrfs_extent_data_ref *ref;
482 	struct extent_buffer *leaf;
483 	u32 nritems;
484 	int ret;
485 	int recow;
486 	int err = -ENOENT;
487 
488 	key.objectid = bytenr;
489 	if (parent) {
490 		key.type = BTRFS_SHARED_DATA_REF_KEY;
491 		key.offset = parent;
492 	} else {
493 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
494 		key.offset = hash_extent_data_ref(root_objectid,
495 						  owner, offset);
496 	}
497 again:
498 	recow = 0;
499 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
500 	if (ret < 0) {
501 		err = ret;
502 		goto fail;
503 	}
504 
505 	if (parent) {
506 		if (!ret)
507 			return 0;
508 		goto fail;
509 	}
510 
511 	leaf = path->nodes[0];
512 	nritems = btrfs_header_nritems(leaf);
513 	while (1) {
514 		if (path->slots[0] >= nritems) {
515 			ret = btrfs_next_leaf(root, path);
516 			if (ret < 0)
517 				err = ret;
518 			if (ret)
519 				goto fail;
520 
521 			leaf = path->nodes[0];
522 			nritems = btrfs_header_nritems(leaf);
523 			recow = 1;
524 		}
525 
526 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
527 		if (key.objectid != bytenr ||
528 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
529 			goto fail;
530 
531 		ref = btrfs_item_ptr(leaf, path->slots[0],
532 				     struct btrfs_extent_data_ref);
533 
534 		if (match_extent_data_ref(leaf, ref, root_objectid,
535 					  owner, offset)) {
536 			if (recow) {
537 				btrfs_release_path(path);
538 				goto again;
539 			}
540 			err = 0;
541 			break;
542 		}
543 		path->slots[0]++;
544 	}
545 fail:
546 	return err;
547 }
548 
549 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
550 					   struct btrfs_path *path,
551 					   u64 bytenr, u64 parent,
552 					   u64 root_objectid, u64 owner,
553 					   u64 offset, int refs_to_add)
554 {
555 	struct btrfs_root *root = trans->fs_info->extent_root;
556 	struct btrfs_key key;
557 	struct extent_buffer *leaf;
558 	u32 size;
559 	u32 num_refs;
560 	int ret;
561 
562 	key.objectid = bytenr;
563 	if (parent) {
564 		key.type = BTRFS_SHARED_DATA_REF_KEY;
565 		key.offset = parent;
566 		size = sizeof(struct btrfs_shared_data_ref);
567 	} else {
568 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
569 		key.offset = hash_extent_data_ref(root_objectid,
570 						  owner, offset);
571 		size = sizeof(struct btrfs_extent_data_ref);
572 	}
573 
574 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
575 	if (ret && ret != -EEXIST)
576 		goto fail;
577 
578 	leaf = path->nodes[0];
579 	if (parent) {
580 		struct btrfs_shared_data_ref *ref;
581 		ref = btrfs_item_ptr(leaf, path->slots[0],
582 				     struct btrfs_shared_data_ref);
583 		if (ret == 0) {
584 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
589 		}
590 	} else {
591 		struct btrfs_extent_data_ref *ref;
592 		while (ret == -EEXIST) {
593 			ref = btrfs_item_ptr(leaf, path->slots[0],
594 					     struct btrfs_extent_data_ref);
595 			if (match_extent_data_ref(leaf, ref, root_objectid,
596 						  owner, offset))
597 				break;
598 			btrfs_release_path(path);
599 			key.offset++;
600 			ret = btrfs_insert_empty_item(trans, root, path, &key,
601 						      size);
602 			if (ret && ret != -EEXIST)
603 				goto fail;
604 
605 			leaf = path->nodes[0];
606 		}
607 		ref = btrfs_item_ptr(leaf, path->slots[0],
608 				     struct btrfs_extent_data_ref);
609 		if (ret == 0) {
610 			btrfs_set_extent_data_ref_root(leaf, ref,
611 						       root_objectid);
612 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
613 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
614 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
615 		} else {
616 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
617 			num_refs += refs_to_add;
618 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
619 		}
620 	}
621 	btrfs_mark_buffer_dirty(leaf);
622 	ret = 0;
623 fail:
624 	btrfs_release_path(path);
625 	return ret;
626 }
627 
628 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
629 					   struct btrfs_path *path,
630 					   int refs_to_drop, int *last_ref)
631 {
632 	struct btrfs_key key;
633 	struct btrfs_extent_data_ref *ref1 = NULL;
634 	struct btrfs_shared_data_ref *ref2 = NULL;
635 	struct extent_buffer *leaf;
636 	u32 num_refs = 0;
637 	int ret = 0;
638 
639 	leaf = path->nodes[0];
640 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
641 
642 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
643 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
644 				      struct btrfs_extent_data_ref);
645 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
646 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
647 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
648 				      struct btrfs_shared_data_ref);
649 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
650 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
651 		btrfs_print_v0_err(trans->fs_info);
652 		btrfs_abort_transaction(trans, -EINVAL);
653 		return -EINVAL;
654 	} else {
655 		BUG();
656 	}
657 
658 	BUG_ON(num_refs < refs_to_drop);
659 	num_refs -= refs_to_drop;
660 
661 	if (num_refs == 0) {
662 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
663 		*last_ref = 1;
664 	} else {
665 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
666 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
667 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
668 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
669 		btrfs_mark_buffer_dirty(leaf);
670 	}
671 	return ret;
672 }
673 
674 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
675 					  struct btrfs_extent_inline_ref *iref)
676 {
677 	struct btrfs_key key;
678 	struct extent_buffer *leaf;
679 	struct btrfs_extent_data_ref *ref1;
680 	struct btrfs_shared_data_ref *ref2;
681 	u32 num_refs = 0;
682 	int type;
683 
684 	leaf = path->nodes[0];
685 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
686 
687 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
688 	if (iref) {
689 		/*
690 		 * If type is invalid, we should have bailed out earlier than
691 		 * this call.
692 		 */
693 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
694 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
695 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
696 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
697 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
698 		} else {
699 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
700 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
701 		}
702 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
703 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
704 				      struct btrfs_extent_data_ref);
705 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
706 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
707 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
708 				      struct btrfs_shared_data_ref);
709 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
710 	} else {
711 		WARN_ON(1);
712 	}
713 	return num_refs;
714 }
715 
716 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = trans->fs_info->extent_root;
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
735 	if (ret > 0)
736 		ret = -ENOENT;
737 	return ret;
738 }
739 
740 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
741 					  struct btrfs_path *path,
742 					  u64 bytenr, u64 parent,
743 					  u64 root_objectid)
744 {
745 	struct btrfs_key key;
746 	int ret;
747 
748 	key.objectid = bytenr;
749 	if (parent) {
750 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
751 		key.offset = parent;
752 	} else {
753 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
754 		key.offset = root_objectid;
755 	}
756 
757 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
758 				      path, &key, 0);
759 	btrfs_release_path(path);
760 	return ret;
761 }
762 
763 static inline int extent_ref_type(u64 parent, u64 owner)
764 {
765 	int type;
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (parent > 0)
768 			type = BTRFS_SHARED_BLOCK_REF_KEY;
769 		else
770 			type = BTRFS_TREE_BLOCK_REF_KEY;
771 	} else {
772 		if (parent > 0)
773 			type = BTRFS_SHARED_DATA_REF_KEY;
774 		else
775 			type = BTRFS_EXTENT_DATA_REF_KEY;
776 	}
777 	return type;
778 }
779 
780 static int find_next_key(struct btrfs_path *path, int level,
781 			 struct btrfs_key *key)
782 
783 {
784 	for (; level < BTRFS_MAX_LEVEL; level++) {
785 		if (!path->nodes[level])
786 			break;
787 		if (path->slots[level] + 1 >=
788 		    btrfs_header_nritems(path->nodes[level]))
789 			continue;
790 		if (level == 0)
791 			btrfs_item_key_to_cpu(path->nodes[level], key,
792 					      path->slots[level] + 1);
793 		else
794 			btrfs_node_key_to_cpu(path->nodes[level], key,
795 					      path->slots[level] + 1);
796 		return 0;
797 	}
798 	return 1;
799 }
800 
801 /*
802  * look for inline back ref. if back ref is found, *ref_ret is set
803  * to the address of inline back ref, and 0 is returned.
804  *
805  * if back ref isn't found, *ref_ret is set to the address where it
806  * should be inserted, and -ENOENT is returned.
807  *
808  * if insert is true and there are too many inline back refs, the path
809  * points to the extent item, and -EAGAIN is returned.
810  *
811  * NOTE: inline back refs are ordered in the same way that back ref
812  *	 items in the tree are ordered.
813  */
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
816 				 struct btrfs_path *path,
817 				 struct btrfs_extent_inline_ref **ref_ret,
818 				 u64 bytenr, u64 num_bytes,
819 				 u64 parent, u64 root_objectid,
820 				 u64 owner, u64 offset, int insert)
821 {
822 	struct btrfs_fs_info *fs_info = trans->fs_info;
823 	struct btrfs_root *root = fs_info->extent_root;
824 	struct btrfs_key key;
825 	struct extent_buffer *leaf;
826 	struct btrfs_extent_item *ei;
827 	struct btrfs_extent_inline_ref *iref;
828 	u64 flags;
829 	u64 item_size;
830 	unsigned long ptr;
831 	unsigned long end;
832 	int extra_size;
833 	int type;
834 	int want;
835 	int ret;
836 	int err = 0;
837 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
838 	int needed;
839 
840 	key.objectid = bytenr;
841 	key.type = BTRFS_EXTENT_ITEM_KEY;
842 	key.offset = num_bytes;
843 
844 	want = extent_ref_type(parent, owner);
845 	if (insert) {
846 		extra_size = btrfs_extent_inline_ref_size(want);
847 		path->keep_locks = 1;
848 	} else
849 		extra_size = -1;
850 
851 	/*
852 	 * Owner is our level, so we can just add one to get the level for the
853 	 * block we are interested in.
854 	 */
855 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
856 		key.type = BTRFS_METADATA_ITEM_KEY;
857 		key.offset = owner;
858 	}
859 
860 again:
861 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
862 	if (ret < 0) {
863 		err = ret;
864 		goto out;
865 	}
866 
867 	/*
868 	 * We may be a newly converted file system which still has the old fat
869 	 * extent entries for metadata, so try and see if we have one of those.
870 	 */
871 	if (ret > 0 && skinny_metadata) {
872 		skinny_metadata = false;
873 		if (path->slots[0]) {
874 			path->slots[0]--;
875 			btrfs_item_key_to_cpu(path->nodes[0], &key,
876 					      path->slots[0]);
877 			if (key.objectid == bytenr &&
878 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
879 			    key.offset == num_bytes)
880 				ret = 0;
881 		}
882 		if (ret) {
883 			key.objectid = bytenr;
884 			key.type = BTRFS_EXTENT_ITEM_KEY;
885 			key.offset = num_bytes;
886 			btrfs_release_path(path);
887 			goto again;
888 		}
889 	}
890 
891 	if (ret && !insert) {
892 		err = -ENOENT;
893 		goto out;
894 	} else if (WARN_ON(ret)) {
895 		err = -EIO;
896 		goto out;
897 	}
898 
899 	leaf = path->nodes[0];
900 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
901 	if (unlikely(item_size < sizeof(*ei))) {
902 		err = -EINVAL;
903 		btrfs_print_v0_err(fs_info);
904 		btrfs_abort_transaction(trans, err);
905 		goto out;
906 	}
907 
908 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
909 	flags = btrfs_extent_flags(leaf, ei);
910 
911 	ptr = (unsigned long)(ei + 1);
912 	end = (unsigned long)ei + item_size;
913 
914 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
915 		ptr += sizeof(struct btrfs_tree_block_info);
916 		BUG_ON(ptr > end);
917 	}
918 
919 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
920 		needed = BTRFS_REF_TYPE_DATA;
921 	else
922 		needed = BTRFS_REF_TYPE_BLOCK;
923 
924 	err = -ENOENT;
925 	while (1) {
926 		if (ptr >= end) {
927 			WARN_ON(ptr > end);
928 			break;
929 		}
930 		iref = (struct btrfs_extent_inline_ref *)ptr;
931 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
932 		if (type == BTRFS_REF_TYPE_INVALID) {
933 			err = -EUCLEAN;
934 			goto out;
935 		}
936 
937 		if (want < type)
938 			break;
939 		if (want > type) {
940 			ptr += btrfs_extent_inline_ref_size(type);
941 			continue;
942 		}
943 
944 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
945 			struct btrfs_extent_data_ref *dref;
946 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
947 			if (match_extent_data_ref(leaf, dref, root_objectid,
948 						  owner, offset)) {
949 				err = 0;
950 				break;
951 			}
952 			if (hash_extent_data_ref_item(leaf, dref) <
953 			    hash_extent_data_ref(root_objectid, owner, offset))
954 				break;
955 		} else {
956 			u64 ref_offset;
957 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
958 			if (parent > 0) {
959 				if (parent == ref_offset) {
960 					err = 0;
961 					break;
962 				}
963 				if (ref_offset < parent)
964 					break;
965 			} else {
966 				if (root_objectid == ref_offset) {
967 					err = 0;
968 					break;
969 				}
970 				if (ref_offset < root_objectid)
971 					break;
972 			}
973 		}
974 		ptr += btrfs_extent_inline_ref_size(type);
975 	}
976 	if (err == -ENOENT && insert) {
977 		if (item_size + extra_size >=
978 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
979 			err = -EAGAIN;
980 			goto out;
981 		}
982 		/*
983 		 * To add new inline back ref, we have to make sure
984 		 * there is no corresponding back ref item.
985 		 * For simplicity, we just do not add new inline back
986 		 * ref if there is any kind of item for this block
987 		 */
988 		if (find_next_key(path, 0, &key) == 0 &&
989 		    key.objectid == bytenr &&
990 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
991 			err = -EAGAIN;
992 			goto out;
993 		}
994 	}
995 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
996 out:
997 	if (insert) {
998 		path->keep_locks = 0;
999 		btrfs_unlock_up_safe(path, 1);
1000 	}
1001 	return err;
1002 }
1003 
1004 /*
1005  * helper to add new inline back ref
1006  */
1007 static noinline_for_stack
1008 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1009 				 struct btrfs_path *path,
1010 				 struct btrfs_extent_inline_ref *iref,
1011 				 u64 parent, u64 root_objectid,
1012 				 u64 owner, u64 offset, int refs_to_add,
1013 				 struct btrfs_delayed_extent_op *extent_op)
1014 {
1015 	struct extent_buffer *leaf;
1016 	struct btrfs_extent_item *ei;
1017 	unsigned long ptr;
1018 	unsigned long end;
1019 	unsigned long item_offset;
1020 	u64 refs;
1021 	int size;
1022 	int type;
1023 
1024 	leaf = path->nodes[0];
1025 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1026 	item_offset = (unsigned long)iref - (unsigned long)ei;
1027 
1028 	type = extent_ref_type(parent, owner);
1029 	size = btrfs_extent_inline_ref_size(type);
1030 
1031 	btrfs_extend_item(path, size);
1032 
1033 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1034 	refs = btrfs_extent_refs(leaf, ei);
1035 	refs += refs_to_add;
1036 	btrfs_set_extent_refs(leaf, ei, refs);
1037 	if (extent_op)
1038 		__run_delayed_extent_op(extent_op, leaf, ei);
1039 
1040 	ptr = (unsigned long)ei + item_offset;
1041 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1042 	if (ptr < end - size)
1043 		memmove_extent_buffer(leaf, ptr + size, ptr,
1044 				      end - size - ptr);
1045 
1046 	iref = (struct btrfs_extent_inline_ref *)ptr;
1047 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1048 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1049 		struct btrfs_extent_data_ref *dref;
1050 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1051 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1052 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1053 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1054 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1055 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1056 		struct btrfs_shared_data_ref *sref;
1057 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1058 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1059 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1060 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1061 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1062 	} else {
1063 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 }
1067 
1068 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1069 				 struct btrfs_path *path,
1070 				 struct btrfs_extent_inline_ref **ref_ret,
1071 				 u64 bytenr, u64 num_bytes, u64 parent,
1072 				 u64 root_objectid, u64 owner, u64 offset)
1073 {
1074 	int ret;
1075 
1076 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1077 					   num_bytes, parent, root_objectid,
1078 					   owner, offset, 0);
1079 	if (ret != -ENOENT)
1080 		return ret;
1081 
1082 	btrfs_release_path(path);
1083 	*ref_ret = NULL;
1084 
1085 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1086 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1087 					    root_objectid);
1088 	} else {
1089 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1090 					     root_objectid, owner, offset);
1091 	}
1092 	return ret;
1093 }
1094 
1095 /*
1096  * helper to update/remove inline back ref
1097  */
1098 static noinline_for_stack
1099 void update_inline_extent_backref(struct btrfs_path *path,
1100 				  struct btrfs_extent_inline_ref *iref,
1101 				  int refs_to_mod,
1102 				  struct btrfs_delayed_extent_op *extent_op,
1103 				  int *last_ref)
1104 {
1105 	struct extent_buffer *leaf = path->nodes[0];
1106 	struct btrfs_extent_item *ei;
1107 	struct btrfs_extent_data_ref *dref = NULL;
1108 	struct btrfs_shared_data_ref *sref = NULL;
1109 	unsigned long ptr;
1110 	unsigned long end;
1111 	u32 item_size;
1112 	int size;
1113 	int type;
1114 	u64 refs;
1115 
1116 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1117 	refs = btrfs_extent_refs(leaf, ei);
1118 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1119 	refs += refs_to_mod;
1120 	btrfs_set_extent_refs(leaf, ei, refs);
1121 	if (extent_op)
1122 		__run_delayed_extent_op(extent_op, leaf, ei);
1123 
1124 	/*
1125 	 * If type is invalid, we should have bailed out after
1126 	 * lookup_inline_extent_backref().
1127 	 */
1128 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1129 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1130 
1131 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1132 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1133 		refs = btrfs_extent_data_ref_count(leaf, dref);
1134 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1135 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1136 		refs = btrfs_shared_data_ref_count(leaf, sref);
1137 	} else {
1138 		refs = 1;
1139 		BUG_ON(refs_to_mod != -1);
1140 	}
1141 
1142 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1143 	refs += refs_to_mod;
1144 
1145 	if (refs > 0) {
1146 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1147 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1148 		else
1149 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1150 	} else {
1151 		*last_ref = 1;
1152 		size =  btrfs_extent_inline_ref_size(type);
1153 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1154 		ptr = (unsigned long)iref;
1155 		end = (unsigned long)ei + item_size;
1156 		if (ptr + size < end)
1157 			memmove_extent_buffer(leaf, ptr, ptr + size,
1158 					      end - ptr - size);
1159 		item_size -= size;
1160 		btrfs_truncate_item(path, item_size, 1);
1161 	}
1162 	btrfs_mark_buffer_dirty(leaf);
1163 }
1164 
1165 static noinline_for_stack
1166 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1167 				 struct btrfs_path *path,
1168 				 u64 bytenr, u64 num_bytes, u64 parent,
1169 				 u64 root_objectid, u64 owner,
1170 				 u64 offset, int refs_to_add,
1171 				 struct btrfs_delayed_extent_op *extent_op)
1172 {
1173 	struct btrfs_extent_inline_ref *iref;
1174 	int ret;
1175 
1176 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1177 					   num_bytes, parent, root_objectid,
1178 					   owner, offset, 1);
1179 	if (ret == 0) {
1180 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1181 		update_inline_extent_backref(path, iref, refs_to_add,
1182 					     extent_op, NULL);
1183 	} else if (ret == -ENOENT) {
1184 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1185 					    root_objectid, owner, offset,
1186 					    refs_to_add, extent_op);
1187 		ret = 0;
1188 	}
1189 	return ret;
1190 }
1191 
1192 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1193 				 struct btrfs_path *path,
1194 				 struct btrfs_extent_inline_ref *iref,
1195 				 int refs_to_drop, int is_data, int *last_ref)
1196 {
1197 	int ret = 0;
1198 
1199 	BUG_ON(!is_data && refs_to_drop != 1);
1200 	if (iref) {
1201 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1202 					     last_ref);
1203 	} else if (is_data) {
1204 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1205 					     last_ref);
1206 	} else {
1207 		*last_ref = 1;
1208 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1209 	}
1210 	return ret;
1211 }
1212 
1213 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1214 			       u64 *discarded_bytes)
1215 {
1216 	int j, ret = 0;
1217 	u64 bytes_left, end;
1218 	u64 aligned_start = ALIGN(start, 1 << 9);
1219 
1220 	if (WARN_ON(start != aligned_start)) {
1221 		len -= aligned_start - start;
1222 		len = round_down(len, 1 << 9);
1223 		start = aligned_start;
1224 	}
1225 
1226 	*discarded_bytes = 0;
1227 
1228 	if (!len)
1229 		return 0;
1230 
1231 	end = start + len;
1232 	bytes_left = len;
1233 
1234 	/* Skip any superblocks on this device. */
1235 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1236 		u64 sb_start = btrfs_sb_offset(j);
1237 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1238 		u64 size = sb_start - start;
1239 
1240 		if (!in_range(sb_start, start, bytes_left) &&
1241 		    !in_range(sb_end, start, bytes_left) &&
1242 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1243 			continue;
1244 
1245 		/*
1246 		 * Superblock spans beginning of range.  Adjust start and
1247 		 * try again.
1248 		 */
1249 		if (sb_start <= start) {
1250 			start += sb_end - start;
1251 			if (start > end) {
1252 				bytes_left = 0;
1253 				break;
1254 			}
1255 			bytes_left = end - start;
1256 			continue;
1257 		}
1258 
1259 		if (size) {
1260 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1261 						   GFP_NOFS, 0);
1262 			if (!ret)
1263 				*discarded_bytes += size;
1264 			else if (ret != -EOPNOTSUPP)
1265 				return ret;
1266 		}
1267 
1268 		start = sb_end;
1269 		if (start > end) {
1270 			bytes_left = 0;
1271 			break;
1272 		}
1273 		bytes_left = end - start;
1274 	}
1275 
1276 	if (bytes_left) {
1277 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1278 					   GFP_NOFS, 0);
1279 		if (!ret)
1280 			*discarded_bytes += bytes_left;
1281 	}
1282 	return ret;
1283 }
1284 
1285 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1286 			 u64 num_bytes, u64 *actual_bytes)
1287 {
1288 	int ret = 0;
1289 	u64 discarded_bytes = 0;
1290 	u64 end = bytenr + num_bytes;
1291 	u64 cur = bytenr;
1292 	struct btrfs_bio *bbio = NULL;
1293 
1294 
1295 	/*
1296 	 * Avoid races with device replace and make sure our bbio has devices
1297 	 * associated to its stripes that don't go away while we are discarding.
1298 	 */
1299 	btrfs_bio_counter_inc_blocked(fs_info);
1300 	while (cur < end) {
1301 		struct btrfs_bio_stripe *stripe;
1302 		int i;
1303 
1304 		num_bytes = end - cur;
1305 		/* Tell the block device(s) that the sectors can be discarded */
1306 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1307 				      &num_bytes, &bbio, 0);
1308 		/*
1309 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1310 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1311 		 * thus we can't continue anyway.
1312 		 */
1313 		if (ret < 0)
1314 			goto out;
1315 
1316 		stripe = bbio->stripes;
1317 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1318 			u64 bytes;
1319 			struct request_queue *req_q;
1320 
1321 			if (!stripe->dev->bdev) {
1322 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1323 				continue;
1324 			}
1325 			req_q = bdev_get_queue(stripe->dev->bdev);
1326 			if (!blk_queue_discard(req_q))
1327 				continue;
1328 
1329 			ret = btrfs_issue_discard(stripe->dev->bdev,
1330 						  stripe->physical,
1331 						  stripe->length,
1332 						  &bytes);
1333 			if (!ret) {
1334 				discarded_bytes += bytes;
1335 			} else if (ret != -EOPNOTSUPP) {
1336 				/*
1337 				 * Logic errors or -ENOMEM, or -EIO, but
1338 				 * unlikely to happen.
1339 				 *
1340 				 * And since there are two loops, explicitly
1341 				 * go to out to avoid confusion.
1342 				 */
1343 				btrfs_put_bbio(bbio);
1344 				goto out;
1345 			}
1346 
1347 			/*
1348 			 * Just in case we get back EOPNOTSUPP for some reason,
1349 			 * just ignore the return value so we don't screw up
1350 			 * people calling discard_extent.
1351 			 */
1352 			ret = 0;
1353 		}
1354 		btrfs_put_bbio(bbio);
1355 		cur += num_bytes;
1356 	}
1357 out:
1358 	btrfs_bio_counter_dec(fs_info);
1359 
1360 	if (actual_bytes)
1361 		*actual_bytes = discarded_bytes;
1362 
1363 
1364 	if (ret == -EOPNOTSUPP)
1365 		ret = 0;
1366 	return ret;
1367 }
1368 
1369 /* Can return -ENOMEM */
1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1371 			 struct btrfs_ref *generic_ref)
1372 {
1373 	struct btrfs_fs_info *fs_info = trans->fs_info;
1374 	int old_ref_mod, new_ref_mod;
1375 	int ret;
1376 
1377 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1378 	       generic_ref->action);
1379 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1380 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1381 
1382 	if (generic_ref->type == BTRFS_REF_METADATA)
1383 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1384 				NULL, &old_ref_mod, &new_ref_mod);
1385 	else
1386 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1387 						 &old_ref_mod, &new_ref_mod);
1388 
1389 	btrfs_ref_tree_mod(fs_info, generic_ref);
1390 
1391 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1392 		sub_pinned_bytes(fs_info, generic_ref);
1393 
1394 	return ret;
1395 }
1396 
1397 /*
1398  * __btrfs_inc_extent_ref - insert backreference for a given extent
1399  *
1400  * @trans:	    Handle of transaction
1401  *
1402  * @node:	    The delayed ref node used to get the bytenr/length for
1403  *		    extent whose references are incremented.
1404  *
1405  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407  *		    bytenr of the parent block. Since new extents are always
1408  *		    created with indirect references, this will only be the case
1409  *		    when relocating a shared extent. In that case, root_objectid
1410  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1411  *		    be 0
1412  *
1413  * @root_objectid:  The id of the root where this modification has originated,
1414  *		    this can be either one of the well-known metadata trees or
1415  *		    the subvolume id which references this extent.
1416  *
1417  * @owner:	    For data extents it is the inode number of the owning file.
1418  *		    For metadata extents this parameter holds the level in the
1419  *		    tree of the extent.
1420  *
1421  * @offset:	    For metadata extents the offset is ignored and is currently
1422  *		    always passed as 0. For data extents it is the fileoffset
1423  *		    this extent belongs to.
1424  *
1425  * @refs_to_add     Number of references to add
1426  *
1427  * @extent_op       Pointer to a structure, holding information necessary when
1428  *                  updating a tree block's flags
1429  *
1430  */
1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1432 				  struct btrfs_delayed_ref_node *node,
1433 				  u64 parent, u64 root_objectid,
1434 				  u64 owner, u64 offset, int refs_to_add,
1435 				  struct btrfs_delayed_extent_op *extent_op)
1436 {
1437 	struct btrfs_path *path;
1438 	struct extent_buffer *leaf;
1439 	struct btrfs_extent_item *item;
1440 	struct btrfs_key key;
1441 	u64 bytenr = node->bytenr;
1442 	u64 num_bytes = node->num_bytes;
1443 	u64 refs;
1444 	int ret;
1445 
1446 	path = btrfs_alloc_path();
1447 	if (!path)
1448 		return -ENOMEM;
1449 
1450 	path->leave_spinning = 1;
1451 	/* this will setup the path even if it fails to insert the back ref */
1452 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1453 					   parent, root_objectid, owner,
1454 					   offset, refs_to_add, extent_op);
1455 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1456 		goto out;
1457 
1458 	/*
1459 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1460 	 * inline extent ref, so just update the reference count and add a
1461 	 * normal backref.
1462 	 */
1463 	leaf = path->nodes[0];
1464 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1465 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1466 	refs = btrfs_extent_refs(leaf, item);
1467 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1468 	if (extent_op)
1469 		__run_delayed_extent_op(extent_op, leaf, item);
1470 
1471 	btrfs_mark_buffer_dirty(leaf);
1472 	btrfs_release_path(path);
1473 
1474 	path->leave_spinning = 1;
1475 	/* now insert the actual backref */
1476 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1477 		BUG_ON(refs_to_add != 1);
1478 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1479 					    root_objectid);
1480 	} else {
1481 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1482 					     root_objectid, owner, offset,
1483 					     refs_to_add);
1484 	}
1485 	if (ret)
1486 		btrfs_abort_transaction(trans, ret);
1487 out:
1488 	btrfs_free_path(path);
1489 	return ret;
1490 }
1491 
1492 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1493 				struct btrfs_delayed_ref_node *node,
1494 				struct btrfs_delayed_extent_op *extent_op,
1495 				int insert_reserved)
1496 {
1497 	int ret = 0;
1498 	struct btrfs_delayed_data_ref *ref;
1499 	struct btrfs_key ins;
1500 	u64 parent = 0;
1501 	u64 ref_root = 0;
1502 	u64 flags = 0;
1503 
1504 	ins.objectid = node->bytenr;
1505 	ins.offset = node->num_bytes;
1506 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1507 
1508 	ref = btrfs_delayed_node_to_data_ref(node);
1509 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1510 
1511 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1512 		parent = ref->parent;
1513 	ref_root = ref->root;
1514 
1515 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1516 		if (extent_op)
1517 			flags |= extent_op->flags_to_set;
1518 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1519 						 flags, ref->objectid,
1520 						 ref->offset, &ins,
1521 						 node->ref_mod);
1522 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1523 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1524 					     ref->objectid, ref->offset,
1525 					     node->ref_mod, extent_op);
1526 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1527 		ret = __btrfs_free_extent(trans, node, parent,
1528 					  ref_root, ref->objectid,
1529 					  ref->offset, node->ref_mod,
1530 					  extent_op);
1531 	} else {
1532 		BUG();
1533 	}
1534 	return ret;
1535 }
1536 
1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1538 				    struct extent_buffer *leaf,
1539 				    struct btrfs_extent_item *ei)
1540 {
1541 	u64 flags = btrfs_extent_flags(leaf, ei);
1542 	if (extent_op->update_flags) {
1543 		flags |= extent_op->flags_to_set;
1544 		btrfs_set_extent_flags(leaf, ei, flags);
1545 	}
1546 
1547 	if (extent_op->update_key) {
1548 		struct btrfs_tree_block_info *bi;
1549 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1550 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1551 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1552 	}
1553 }
1554 
1555 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1556 				 struct btrfs_delayed_ref_head *head,
1557 				 struct btrfs_delayed_extent_op *extent_op)
1558 {
1559 	struct btrfs_fs_info *fs_info = trans->fs_info;
1560 	struct btrfs_key key;
1561 	struct btrfs_path *path;
1562 	struct btrfs_extent_item *ei;
1563 	struct extent_buffer *leaf;
1564 	u32 item_size;
1565 	int ret;
1566 	int err = 0;
1567 	int metadata = !extent_op->is_data;
1568 
1569 	if (TRANS_ABORTED(trans))
1570 		return 0;
1571 
1572 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1573 		metadata = 0;
1574 
1575 	path = btrfs_alloc_path();
1576 	if (!path)
1577 		return -ENOMEM;
1578 
1579 	key.objectid = head->bytenr;
1580 
1581 	if (metadata) {
1582 		key.type = BTRFS_METADATA_ITEM_KEY;
1583 		key.offset = extent_op->level;
1584 	} else {
1585 		key.type = BTRFS_EXTENT_ITEM_KEY;
1586 		key.offset = head->num_bytes;
1587 	}
1588 
1589 again:
1590 	path->leave_spinning = 1;
1591 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1592 	if (ret < 0) {
1593 		err = ret;
1594 		goto out;
1595 	}
1596 	if (ret > 0) {
1597 		if (metadata) {
1598 			if (path->slots[0] > 0) {
1599 				path->slots[0]--;
1600 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1601 						      path->slots[0]);
1602 				if (key.objectid == head->bytenr &&
1603 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1604 				    key.offset == head->num_bytes)
1605 					ret = 0;
1606 			}
1607 			if (ret > 0) {
1608 				btrfs_release_path(path);
1609 				metadata = 0;
1610 
1611 				key.objectid = head->bytenr;
1612 				key.offset = head->num_bytes;
1613 				key.type = BTRFS_EXTENT_ITEM_KEY;
1614 				goto again;
1615 			}
1616 		} else {
1617 			err = -EIO;
1618 			goto out;
1619 		}
1620 	}
1621 
1622 	leaf = path->nodes[0];
1623 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1624 
1625 	if (unlikely(item_size < sizeof(*ei))) {
1626 		err = -EINVAL;
1627 		btrfs_print_v0_err(fs_info);
1628 		btrfs_abort_transaction(trans, err);
1629 		goto out;
1630 	}
1631 
1632 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1633 	__run_delayed_extent_op(extent_op, leaf, ei);
1634 
1635 	btrfs_mark_buffer_dirty(leaf);
1636 out:
1637 	btrfs_free_path(path);
1638 	return err;
1639 }
1640 
1641 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1642 				struct btrfs_delayed_ref_node *node,
1643 				struct btrfs_delayed_extent_op *extent_op,
1644 				int insert_reserved)
1645 {
1646 	int ret = 0;
1647 	struct btrfs_delayed_tree_ref *ref;
1648 	u64 parent = 0;
1649 	u64 ref_root = 0;
1650 
1651 	ref = btrfs_delayed_node_to_tree_ref(node);
1652 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1653 
1654 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1655 		parent = ref->parent;
1656 	ref_root = ref->root;
1657 
1658 	if (node->ref_mod != 1) {
1659 		btrfs_err(trans->fs_info,
1660 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1661 			  node->bytenr, node->ref_mod, node->action, ref_root,
1662 			  parent);
1663 		return -EIO;
1664 	}
1665 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1666 		BUG_ON(!extent_op || !extent_op->update_flags);
1667 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1668 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1669 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1670 					     ref->level, 0, 1, extent_op);
1671 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1672 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1673 					  ref->level, 0, 1, extent_op);
1674 	} else {
1675 		BUG();
1676 	}
1677 	return ret;
1678 }
1679 
1680 /* helper function to actually process a single delayed ref entry */
1681 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1682 			       struct btrfs_delayed_ref_node *node,
1683 			       struct btrfs_delayed_extent_op *extent_op,
1684 			       int insert_reserved)
1685 {
1686 	int ret = 0;
1687 
1688 	if (TRANS_ABORTED(trans)) {
1689 		if (insert_reserved)
1690 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1691 		return 0;
1692 	}
1693 
1694 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1695 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1696 		ret = run_delayed_tree_ref(trans, node, extent_op,
1697 					   insert_reserved);
1698 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1699 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1700 		ret = run_delayed_data_ref(trans, node, extent_op,
1701 					   insert_reserved);
1702 	else
1703 		BUG();
1704 	if (ret && insert_reserved)
1705 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1706 	return ret;
1707 }
1708 
1709 static inline struct btrfs_delayed_ref_node *
1710 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1711 {
1712 	struct btrfs_delayed_ref_node *ref;
1713 
1714 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1715 		return NULL;
1716 
1717 	/*
1718 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1719 	 * This is to prevent a ref count from going down to zero, which deletes
1720 	 * the extent item from the extent tree, when there still are references
1721 	 * to add, which would fail because they would not find the extent item.
1722 	 */
1723 	if (!list_empty(&head->ref_add_list))
1724 		return list_first_entry(&head->ref_add_list,
1725 				struct btrfs_delayed_ref_node, add_list);
1726 
1727 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1728 		       struct btrfs_delayed_ref_node, ref_node);
1729 	ASSERT(list_empty(&ref->add_list));
1730 	return ref;
1731 }
1732 
1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1734 				      struct btrfs_delayed_ref_head *head)
1735 {
1736 	spin_lock(&delayed_refs->lock);
1737 	head->processing = 0;
1738 	delayed_refs->num_heads_ready++;
1739 	spin_unlock(&delayed_refs->lock);
1740 	btrfs_delayed_ref_unlock(head);
1741 }
1742 
1743 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1744 				struct btrfs_delayed_ref_head *head)
1745 {
1746 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1747 
1748 	if (!extent_op)
1749 		return NULL;
1750 
1751 	if (head->must_insert_reserved) {
1752 		head->extent_op = NULL;
1753 		btrfs_free_delayed_extent_op(extent_op);
1754 		return NULL;
1755 	}
1756 	return extent_op;
1757 }
1758 
1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1760 				     struct btrfs_delayed_ref_head *head)
1761 {
1762 	struct btrfs_delayed_extent_op *extent_op;
1763 	int ret;
1764 
1765 	extent_op = cleanup_extent_op(head);
1766 	if (!extent_op)
1767 		return 0;
1768 	head->extent_op = NULL;
1769 	spin_unlock(&head->lock);
1770 	ret = run_delayed_extent_op(trans, head, extent_op);
1771 	btrfs_free_delayed_extent_op(extent_op);
1772 	return ret ? ret : 1;
1773 }
1774 
1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1776 				  struct btrfs_delayed_ref_root *delayed_refs,
1777 				  struct btrfs_delayed_ref_head *head)
1778 {
1779 	int nr_items = 1;	/* Dropping this ref head update. */
1780 
1781 	if (head->total_ref_mod < 0) {
1782 		struct btrfs_space_info *space_info;
1783 		u64 flags;
1784 
1785 		if (head->is_data)
1786 			flags = BTRFS_BLOCK_GROUP_DATA;
1787 		else if (head->is_system)
1788 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1789 		else
1790 			flags = BTRFS_BLOCK_GROUP_METADATA;
1791 		space_info = btrfs_find_space_info(fs_info, flags);
1792 		ASSERT(space_info);
1793 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1794 				   -head->num_bytes,
1795 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1796 
1797 		/*
1798 		 * We had csum deletions accounted for in our delayed refs rsv,
1799 		 * we need to drop the csum leaves for this update from our
1800 		 * delayed_refs_rsv.
1801 		 */
1802 		if (head->is_data) {
1803 			spin_lock(&delayed_refs->lock);
1804 			delayed_refs->pending_csums -= head->num_bytes;
1805 			spin_unlock(&delayed_refs->lock);
1806 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1807 				head->num_bytes);
1808 		}
1809 	}
1810 
1811 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1812 }
1813 
1814 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1815 			    struct btrfs_delayed_ref_head *head)
1816 {
1817 
1818 	struct btrfs_fs_info *fs_info = trans->fs_info;
1819 	struct btrfs_delayed_ref_root *delayed_refs;
1820 	int ret;
1821 
1822 	delayed_refs = &trans->transaction->delayed_refs;
1823 
1824 	ret = run_and_cleanup_extent_op(trans, head);
1825 	if (ret < 0) {
1826 		unselect_delayed_ref_head(delayed_refs, head);
1827 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1828 		return ret;
1829 	} else if (ret) {
1830 		return ret;
1831 	}
1832 
1833 	/*
1834 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 	 * and then re-check to make sure nobody got added.
1836 	 */
1837 	spin_unlock(&head->lock);
1838 	spin_lock(&delayed_refs->lock);
1839 	spin_lock(&head->lock);
1840 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1841 		spin_unlock(&head->lock);
1842 		spin_unlock(&delayed_refs->lock);
1843 		return 1;
1844 	}
1845 	btrfs_delete_ref_head(delayed_refs, head);
1846 	spin_unlock(&head->lock);
1847 	spin_unlock(&delayed_refs->lock);
1848 
1849 	if (head->must_insert_reserved) {
1850 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1851 		if (head->is_data) {
1852 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1853 					      head->bytenr, head->num_bytes);
1854 		}
1855 	}
1856 
1857 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1858 
1859 	trace_run_delayed_ref_head(fs_info, head, 0);
1860 	btrfs_delayed_ref_unlock(head);
1861 	btrfs_put_delayed_ref_head(head);
1862 	return 0;
1863 }
1864 
1865 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1866 					struct btrfs_trans_handle *trans)
1867 {
1868 	struct btrfs_delayed_ref_root *delayed_refs =
1869 		&trans->transaction->delayed_refs;
1870 	struct btrfs_delayed_ref_head *head = NULL;
1871 	int ret;
1872 
1873 	spin_lock(&delayed_refs->lock);
1874 	head = btrfs_select_ref_head(delayed_refs);
1875 	if (!head) {
1876 		spin_unlock(&delayed_refs->lock);
1877 		return head;
1878 	}
1879 
1880 	/*
1881 	 * Grab the lock that says we are going to process all the refs for
1882 	 * this head
1883 	 */
1884 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1885 	spin_unlock(&delayed_refs->lock);
1886 
1887 	/*
1888 	 * We may have dropped the spin lock to get the head mutex lock, and
1889 	 * that might have given someone else time to free the head.  If that's
1890 	 * true, it has been removed from our list and we can move on.
1891 	 */
1892 	if (ret == -EAGAIN)
1893 		head = ERR_PTR(-EAGAIN);
1894 
1895 	return head;
1896 }
1897 
1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1899 				    struct btrfs_delayed_ref_head *locked_ref,
1900 				    unsigned long *run_refs)
1901 {
1902 	struct btrfs_fs_info *fs_info = trans->fs_info;
1903 	struct btrfs_delayed_ref_root *delayed_refs;
1904 	struct btrfs_delayed_extent_op *extent_op;
1905 	struct btrfs_delayed_ref_node *ref;
1906 	int must_insert_reserved = 0;
1907 	int ret;
1908 
1909 	delayed_refs = &trans->transaction->delayed_refs;
1910 
1911 	lockdep_assert_held(&locked_ref->mutex);
1912 	lockdep_assert_held(&locked_ref->lock);
1913 
1914 	while ((ref = select_delayed_ref(locked_ref))) {
1915 		if (ref->seq &&
1916 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1917 			spin_unlock(&locked_ref->lock);
1918 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1919 			return -EAGAIN;
1920 		}
1921 
1922 		(*run_refs)++;
1923 		ref->in_tree = 0;
1924 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1925 		RB_CLEAR_NODE(&ref->ref_node);
1926 		if (!list_empty(&ref->add_list))
1927 			list_del(&ref->add_list);
1928 		/*
1929 		 * When we play the delayed ref, also correct the ref_mod on
1930 		 * head
1931 		 */
1932 		switch (ref->action) {
1933 		case BTRFS_ADD_DELAYED_REF:
1934 		case BTRFS_ADD_DELAYED_EXTENT:
1935 			locked_ref->ref_mod -= ref->ref_mod;
1936 			break;
1937 		case BTRFS_DROP_DELAYED_REF:
1938 			locked_ref->ref_mod += ref->ref_mod;
1939 			break;
1940 		default:
1941 			WARN_ON(1);
1942 		}
1943 		atomic_dec(&delayed_refs->num_entries);
1944 
1945 		/*
1946 		 * Record the must_insert_reserved flag before we drop the
1947 		 * spin lock.
1948 		 */
1949 		must_insert_reserved = locked_ref->must_insert_reserved;
1950 		locked_ref->must_insert_reserved = 0;
1951 
1952 		extent_op = locked_ref->extent_op;
1953 		locked_ref->extent_op = NULL;
1954 		spin_unlock(&locked_ref->lock);
1955 
1956 		ret = run_one_delayed_ref(trans, ref, extent_op,
1957 					  must_insert_reserved);
1958 
1959 		btrfs_free_delayed_extent_op(extent_op);
1960 		if (ret) {
1961 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1962 			btrfs_put_delayed_ref(ref);
1963 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1964 				    ret);
1965 			return ret;
1966 		}
1967 
1968 		btrfs_put_delayed_ref(ref);
1969 		cond_resched();
1970 
1971 		spin_lock(&locked_ref->lock);
1972 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 /*
1979  * Returns 0 on success or if called with an already aborted transaction.
1980  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1981  */
1982 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1983 					     unsigned long nr)
1984 {
1985 	struct btrfs_fs_info *fs_info = trans->fs_info;
1986 	struct btrfs_delayed_ref_root *delayed_refs;
1987 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1988 	ktime_t start = ktime_get();
1989 	int ret;
1990 	unsigned long count = 0;
1991 	unsigned long actual_count = 0;
1992 
1993 	delayed_refs = &trans->transaction->delayed_refs;
1994 	do {
1995 		if (!locked_ref) {
1996 			locked_ref = btrfs_obtain_ref_head(trans);
1997 			if (IS_ERR_OR_NULL(locked_ref)) {
1998 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1999 					continue;
2000 				} else {
2001 					break;
2002 				}
2003 			}
2004 			count++;
2005 		}
2006 		/*
2007 		 * We need to try and merge add/drops of the same ref since we
2008 		 * can run into issues with relocate dropping the implicit ref
2009 		 * and then it being added back again before the drop can
2010 		 * finish.  If we merged anything we need to re-loop so we can
2011 		 * get a good ref.
2012 		 * Or we can get node references of the same type that weren't
2013 		 * merged when created due to bumps in the tree mod seq, and
2014 		 * we need to merge them to prevent adding an inline extent
2015 		 * backref before dropping it (triggering a BUG_ON at
2016 		 * insert_inline_extent_backref()).
2017 		 */
2018 		spin_lock(&locked_ref->lock);
2019 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2020 
2021 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2022 						      &actual_count);
2023 		if (ret < 0 && ret != -EAGAIN) {
2024 			/*
2025 			 * Error, btrfs_run_delayed_refs_for_head already
2026 			 * unlocked everything so just bail out
2027 			 */
2028 			return ret;
2029 		} else if (!ret) {
2030 			/*
2031 			 * Success, perform the usual cleanup of a processed
2032 			 * head
2033 			 */
2034 			ret = cleanup_ref_head(trans, locked_ref);
2035 			if (ret > 0 ) {
2036 				/* We dropped our lock, we need to loop. */
2037 				ret = 0;
2038 				continue;
2039 			} else if (ret) {
2040 				return ret;
2041 			}
2042 		}
2043 
2044 		/*
2045 		 * Either success case or btrfs_run_delayed_refs_for_head
2046 		 * returned -EAGAIN, meaning we need to select another head
2047 		 */
2048 
2049 		locked_ref = NULL;
2050 		cond_resched();
2051 	} while ((nr != -1 && count < nr) || locked_ref);
2052 
2053 	/*
2054 	 * We don't want to include ref heads since we can have empty ref heads
2055 	 * and those will drastically skew our runtime down since we just do
2056 	 * accounting, no actual extent tree updates.
2057 	 */
2058 	if (actual_count > 0) {
2059 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2060 		u64 avg;
2061 
2062 		/*
2063 		 * We weigh the current average higher than our current runtime
2064 		 * to avoid large swings in the average.
2065 		 */
2066 		spin_lock(&delayed_refs->lock);
2067 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2068 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2069 		spin_unlock(&delayed_refs->lock);
2070 	}
2071 	return 0;
2072 }
2073 
2074 #ifdef SCRAMBLE_DELAYED_REFS
2075 /*
2076  * Normally delayed refs get processed in ascending bytenr order. This
2077  * correlates in most cases to the order added. To expose dependencies on this
2078  * order, we start to process the tree in the middle instead of the beginning
2079  */
2080 static u64 find_middle(struct rb_root *root)
2081 {
2082 	struct rb_node *n = root->rb_node;
2083 	struct btrfs_delayed_ref_node *entry;
2084 	int alt = 1;
2085 	u64 middle;
2086 	u64 first = 0, last = 0;
2087 
2088 	n = rb_first(root);
2089 	if (n) {
2090 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2091 		first = entry->bytenr;
2092 	}
2093 	n = rb_last(root);
2094 	if (n) {
2095 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2096 		last = entry->bytenr;
2097 	}
2098 	n = root->rb_node;
2099 
2100 	while (n) {
2101 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2102 		WARN_ON(!entry->in_tree);
2103 
2104 		middle = entry->bytenr;
2105 
2106 		if (alt)
2107 			n = n->rb_left;
2108 		else
2109 			n = n->rb_right;
2110 
2111 		alt = 1 - alt;
2112 	}
2113 	return middle;
2114 }
2115 #endif
2116 
2117 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2118 {
2119 	u64 num_bytes;
2120 
2121 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2122 			     sizeof(struct btrfs_extent_inline_ref));
2123 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2124 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2125 
2126 	/*
2127 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2128 	 * closer to what we're really going to want to use.
2129 	 */
2130 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2131 }
2132 
2133 /*
2134  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2135  * would require to store the csums for that many bytes.
2136  */
2137 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2138 {
2139 	u64 csum_size;
2140 	u64 num_csums_per_leaf;
2141 	u64 num_csums;
2142 
2143 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2144 	num_csums_per_leaf = div64_u64(csum_size,
2145 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2146 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2147 	num_csums += num_csums_per_leaf - 1;
2148 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2149 	return num_csums;
2150 }
2151 
2152 /*
2153  * this starts processing the delayed reference count updates and
2154  * extent insertions we have queued up so far.  count can be
2155  * 0, which means to process everything in the tree at the start
2156  * of the run (but not newly added entries), or it can be some target
2157  * number you'd like to process.
2158  *
2159  * Returns 0 on success or if called with an aborted transaction
2160  * Returns <0 on error and aborts the transaction
2161  */
2162 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2163 			   unsigned long count)
2164 {
2165 	struct btrfs_fs_info *fs_info = trans->fs_info;
2166 	struct rb_node *node;
2167 	struct btrfs_delayed_ref_root *delayed_refs;
2168 	struct btrfs_delayed_ref_head *head;
2169 	int ret;
2170 	int run_all = count == (unsigned long)-1;
2171 
2172 	/* We'll clean this up in btrfs_cleanup_transaction */
2173 	if (TRANS_ABORTED(trans))
2174 		return 0;
2175 
2176 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2177 		return 0;
2178 
2179 	delayed_refs = &trans->transaction->delayed_refs;
2180 	if (count == 0)
2181 		count = atomic_read(&delayed_refs->num_entries) * 2;
2182 
2183 again:
2184 #ifdef SCRAMBLE_DELAYED_REFS
2185 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2186 #endif
2187 	ret = __btrfs_run_delayed_refs(trans, count);
2188 	if (ret < 0) {
2189 		btrfs_abort_transaction(trans, ret);
2190 		return ret;
2191 	}
2192 
2193 	if (run_all) {
2194 		btrfs_create_pending_block_groups(trans);
2195 
2196 		spin_lock(&delayed_refs->lock);
2197 		node = rb_first_cached(&delayed_refs->href_root);
2198 		if (!node) {
2199 			spin_unlock(&delayed_refs->lock);
2200 			goto out;
2201 		}
2202 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2203 				href_node);
2204 		refcount_inc(&head->refs);
2205 		spin_unlock(&delayed_refs->lock);
2206 
2207 		/* Mutex was contended, block until it's released and retry. */
2208 		mutex_lock(&head->mutex);
2209 		mutex_unlock(&head->mutex);
2210 
2211 		btrfs_put_delayed_ref_head(head);
2212 		cond_resched();
2213 		goto again;
2214 	}
2215 out:
2216 	return 0;
2217 }
2218 
2219 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2220 				struct extent_buffer *eb, u64 flags,
2221 				int level, int is_data)
2222 {
2223 	struct btrfs_delayed_extent_op *extent_op;
2224 	int ret;
2225 
2226 	extent_op = btrfs_alloc_delayed_extent_op();
2227 	if (!extent_op)
2228 		return -ENOMEM;
2229 
2230 	extent_op->flags_to_set = flags;
2231 	extent_op->update_flags = true;
2232 	extent_op->update_key = false;
2233 	extent_op->is_data = is_data ? true : false;
2234 	extent_op->level = level;
2235 
2236 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2237 	if (ret)
2238 		btrfs_free_delayed_extent_op(extent_op);
2239 	return ret;
2240 }
2241 
2242 static noinline int check_delayed_ref(struct btrfs_root *root,
2243 				      struct btrfs_path *path,
2244 				      u64 objectid, u64 offset, u64 bytenr)
2245 {
2246 	struct btrfs_delayed_ref_head *head;
2247 	struct btrfs_delayed_ref_node *ref;
2248 	struct btrfs_delayed_data_ref *data_ref;
2249 	struct btrfs_delayed_ref_root *delayed_refs;
2250 	struct btrfs_transaction *cur_trans;
2251 	struct rb_node *node;
2252 	int ret = 0;
2253 
2254 	spin_lock(&root->fs_info->trans_lock);
2255 	cur_trans = root->fs_info->running_transaction;
2256 	if (cur_trans)
2257 		refcount_inc(&cur_trans->use_count);
2258 	spin_unlock(&root->fs_info->trans_lock);
2259 	if (!cur_trans)
2260 		return 0;
2261 
2262 	delayed_refs = &cur_trans->delayed_refs;
2263 	spin_lock(&delayed_refs->lock);
2264 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2265 	if (!head) {
2266 		spin_unlock(&delayed_refs->lock);
2267 		btrfs_put_transaction(cur_trans);
2268 		return 0;
2269 	}
2270 
2271 	if (!mutex_trylock(&head->mutex)) {
2272 		refcount_inc(&head->refs);
2273 		spin_unlock(&delayed_refs->lock);
2274 
2275 		btrfs_release_path(path);
2276 
2277 		/*
2278 		 * Mutex was contended, block until it's released and let
2279 		 * caller try again
2280 		 */
2281 		mutex_lock(&head->mutex);
2282 		mutex_unlock(&head->mutex);
2283 		btrfs_put_delayed_ref_head(head);
2284 		btrfs_put_transaction(cur_trans);
2285 		return -EAGAIN;
2286 	}
2287 	spin_unlock(&delayed_refs->lock);
2288 
2289 	spin_lock(&head->lock);
2290 	/*
2291 	 * XXX: We should replace this with a proper search function in the
2292 	 * future.
2293 	 */
2294 	for (node = rb_first_cached(&head->ref_tree); node;
2295 	     node = rb_next(node)) {
2296 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2297 		/* If it's a shared ref we know a cross reference exists */
2298 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2299 			ret = 1;
2300 			break;
2301 		}
2302 
2303 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2304 
2305 		/*
2306 		 * If our ref doesn't match the one we're currently looking at
2307 		 * then we have a cross reference.
2308 		 */
2309 		if (data_ref->root != root->root_key.objectid ||
2310 		    data_ref->objectid != objectid ||
2311 		    data_ref->offset != offset) {
2312 			ret = 1;
2313 			break;
2314 		}
2315 	}
2316 	spin_unlock(&head->lock);
2317 	mutex_unlock(&head->mutex);
2318 	btrfs_put_transaction(cur_trans);
2319 	return ret;
2320 }
2321 
2322 static noinline int check_committed_ref(struct btrfs_root *root,
2323 					struct btrfs_path *path,
2324 					u64 objectid, u64 offset, u64 bytenr)
2325 {
2326 	struct btrfs_fs_info *fs_info = root->fs_info;
2327 	struct btrfs_root *extent_root = fs_info->extent_root;
2328 	struct extent_buffer *leaf;
2329 	struct btrfs_extent_data_ref *ref;
2330 	struct btrfs_extent_inline_ref *iref;
2331 	struct btrfs_extent_item *ei;
2332 	struct btrfs_key key;
2333 	u32 item_size;
2334 	int type;
2335 	int ret;
2336 
2337 	key.objectid = bytenr;
2338 	key.offset = (u64)-1;
2339 	key.type = BTRFS_EXTENT_ITEM_KEY;
2340 
2341 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2342 	if (ret < 0)
2343 		goto out;
2344 	BUG_ON(ret == 0); /* Corruption */
2345 
2346 	ret = -ENOENT;
2347 	if (path->slots[0] == 0)
2348 		goto out;
2349 
2350 	path->slots[0]--;
2351 	leaf = path->nodes[0];
2352 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2353 
2354 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2355 		goto out;
2356 
2357 	ret = 1;
2358 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2359 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2360 
2361 	/* If extent item has more than 1 inline ref then it's shared */
2362 	if (item_size != sizeof(*ei) +
2363 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2364 		goto out;
2365 
2366 	/* If extent created before last snapshot => it's definitely shared */
2367 	if (btrfs_extent_generation(leaf, ei) <=
2368 	    btrfs_root_last_snapshot(&root->root_item))
2369 		goto out;
2370 
2371 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2372 
2373 	/* If this extent has SHARED_DATA_REF then it's shared */
2374 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2375 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2376 		goto out;
2377 
2378 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2379 	if (btrfs_extent_refs(leaf, ei) !=
2380 	    btrfs_extent_data_ref_count(leaf, ref) ||
2381 	    btrfs_extent_data_ref_root(leaf, ref) !=
2382 	    root->root_key.objectid ||
2383 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2384 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2385 		goto out;
2386 
2387 	ret = 0;
2388 out:
2389 	return ret;
2390 }
2391 
2392 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2393 			  u64 bytenr)
2394 {
2395 	struct btrfs_path *path;
2396 	int ret;
2397 
2398 	path = btrfs_alloc_path();
2399 	if (!path)
2400 		return -ENOMEM;
2401 
2402 	do {
2403 		ret = check_committed_ref(root, path, objectid,
2404 					  offset, bytenr);
2405 		if (ret && ret != -ENOENT)
2406 			goto out;
2407 
2408 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2409 	} while (ret == -EAGAIN);
2410 
2411 out:
2412 	btrfs_free_path(path);
2413 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2414 		WARN_ON(ret > 0);
2415 	return ret;
2416 }
2417 
2418 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2419 			   struct btrfs_root *root,
2420 			   struct extent_buffer *buf,
2421 			   int full_backref, int inc)
2422 {
2423 	struct btrfs_fs_info *fs_info = root->fs_info;
2424 	u64 bytenr;
2425 	u64 num_bytes;
2426 	u64 parent;
2427 	u64 ref_root;
2428 	u32 nritems;
2429 	struct btrfs_key key;
2430 	struct btrfs_file_extent_item *fi;
2431 	struct btrfs_ref generic_ref = { 0 };
2432 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2433 	int i;
2434 	int action;
2435 	int level;
2436 	int ret = 0;
2437 
2438 	if (btrfs_is_testing(fs_info))
2439 		return 0;
2440 
2441 	ref_root = btrfs_header_owner(buf);
2442 	nritems = btrfs_header_nritems(buf);
2443 	level = btrfs_header_level(buf);
2444 
2445 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2446 		return 0;
2447 
2448 	if (full_backref)
2449 		parent = buf->start;
2450 	else
2451 		parent = 0;
2452 	if (inc)
2453 		action = BTRFS_ADD_DELAYED_REF;
2454 	else
2455 		action = BTRFS_DROP_DELAYED_REF;
2456 
2457 	for (i = 0; i < nritems; i++) {
2458 		if (level == 0) {
2459 			btrfs_item_key_to_cpu(buf, &key, i);
2460 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2461 				continue;
2462 			fi = btrfs_item_ptr(buf, i,
2463 					    struct btrfs_file_extent_item);
2464 			if (btrfs_file_extent_type(buf, fi) ==
2465 			    BTRFS_FILE_EXTENT_INLINE)
2466 				continue;
2467 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2468 			if (bytenr == 0)
2469 				continue;
2470 
2471 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2472 			key.offset -= btrfs_file_extent_offset(buf, fi);
2473 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2474 					       num_bytes, parent);
2475 			generic_ref.real_root = root->root_key.objectid;
2476 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2477 					    key.offset);
2478 			generic_ref.skip_qgroup = for_reloc;
2479 			if (inc)
2480 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2481 			else
2482 				ret = btrfs_free_extent(trans, &generic_ref);
2483 			if (ret)
2484 				goto fail;
2485 		} else {
2486 			bytenr = btrfs_node_blockptr(buf, i);
2487 			num_bytes = fs_info->nodesize;
2488 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2489 					       num_bytes, parent);
2490 			generic_ref.real_root = root->root_key.objectid;
2491 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2492 			generic_ref.skip_qgroup = for_reloc;
2493 			if (inc)
2494 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2495 			else
2496 				ret = btrfs_free_extent(trans, &generic_ref);
2497 			if (ret)
2498 				goto fail;
2499 		}
2500 	}
2501 	return 0;
2502 fail:
2503 	return ret;
2504 }
2505 
2506 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2507 		  struct extent_buffer *buf, int full_backref)
2508 {
2509 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2510 }
2511 
2512 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2513 		  struct extent_buffer *buf, int full_backref)
2514 {
2515 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2516 }
2517 
2518 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2519 {
2520 	struct btrfs_block_group *block_group;
2521 	int readonly = 0;
2522 
2523 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2524 	if (!block_group || block_group->ro)
2525 		readonly = 1;
2526 	if (block_group)
2527 		btrfs_put_block_group(block_group);
2528 	return readonly;
2529 }
2530 
2531 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2532 {
2533 	struct btrfs_fs_info *fs_info = root->fs_info;
2534 	u64 flags;
2535 	u64 ret;
2536 
2537 	if (data)
2538 		flags = BTRFS_BLOCK_GROUP_DATA;
2539 	else if (root == fs_info->chunk_root)
2540 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2541 	else
2542 		flags = BTRFS_BLOCK_GROUP_METADATA;
2543 
2544 	ret = btrfs_get_alloc_profile(fs_info, flags);
2545 	return ret;
2546 }
2547 
2548 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2549 {
2550 	struct btrfs_block_group *cache;
2551 	u64 bytenr;
2552 
2553 	spin_lock(&fs_info->block_group_cache_lock);
2554 	bytenr = fs_info->first_logical_byte;
2555 	spin_unlock(&fs_info->block_group_cache_lock);
2556 
2557 	if (bytenr < (u64)-1)
2558 		return bytenr;
2559 
2560 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2561 	if (!cache)
2562 		return 0;
2563 
2564 	bytenr = cache->start;
2565 	btrfs_put_block_group(cache);
2566 
2567 	return bytenr;
2568 }
2569 
2570 static int pin_down_extent(struct btrfs_trans_handle *trans,
2571 			   struct btrfs_block_group *cache,
2572 			   u64 bytenr, u64 num_bytes, int reserved)
2573 {
2574 	struct btrfs_fs_info *fs_info = cache->fs_info;
2575 
2576 	spin_lock(&cache->space_info->lock);
2577 	spin_lock(&cache->lock);
2578 	cache->pinned += num_bytes;
2579 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2580 					     num_bytes);
2581 	if (reserved) {
2582 		cache->reserved -= num_bytes;
2583 		cache->space_info->bytes_reserved -= num_bytes;
2584 	}
2585 	spin_unlock(&cache->lock);
2586 	spin_unlock(&cache->space_info->lock);
2587 
2588 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2589 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2590 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2591 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2592 	return 0;
2593 }
2594 
2595 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2596 		     u64 bytenr, u64 num_bytes, int reserved)
2597 {
2598 	struct btrfs_block_group *cache;
2599 
2600 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2601 	BUG_ON(!cache); /* Logic error */
2602 
2603 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2604 
2605 	btrfs_put_block_group(cache);
2606 	return 0;
2607 }
2608 
2609 /*
2610  * this function must be called within transaction
2611  */
2612 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2613 				    u64 bytenr, u64 num_bytes)
2614 {
2615 	struct btrfs_block_group *cache;
2616 	int ret;
2617 
2618 	btrfs_add_excluded_extent(trans->fs_info, bytenr, num_bytes);
2619 
2620 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2621 	if (!cache)
2622 		return -EINVAL;
2623 
2624 	/*
2625 	 * pull in the free space cache (if any) so that our pin
2626 	 * removes the free space from the cache.  We have load_only set
2627 	 * to one because the slow code to read in the free extents does check
2628 	 * the pinned extents.
2629 	 */
2630 	btrfs_cache_block_group(cache, 1);
2631 
2632 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2633 
2634 	/* remove us from the free space cache (if we're there at all) */
2635 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2636 	btrfs_put_block_group(cache);
2637 	return ret;
2638 }
2639 
2640 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2641 				   u64 start, u64 num_bytes)
2642 {
2643 	int ret;
2644 	struct btrfs_block_group *block_group;
2645 	struct btrfs_caching_control *caching_ctl;
2646 
2647 	block_group = btrfs_lookup_block_group(fs_info, start);
2648 	if (!block_group)
2649 		return -EINVAL;
2650 
2651 	btrfs_cache_block_group(block_group, 0);
2652 	caching_ctl = btrfs_get_caching_control(block_group);
2653 
2654 	if (!caching_ctl) {
2655 		/* Logic error */
2656 		BUG_ON(!btrfs_block_group_done(block_group));
2657 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2658 	} else {
2659 		mutex_lock(&caching_ctl->mutex);
2660 
2661 		if (start >= caching_ctl->progress) {
2662 			ret = btrfs_add_excluded_extent(fs_info, start,
2663 							num_bytes);
2664 		} else if (start + num_bytes <= caching_ctl->progress) {
2665 			ret = btrfs_remove_free_space(block_group,
2666 						      start, num_bytes);
2667 		} else {
2668 			num_bytes = caching_ctl->progress - start;
2669 			ret = btrfs_remove_free_space(block_group,
2670 						      start, num_bytes);
2671 			if (ret)
2672 				goto out_lock;
2673 
2674 			num_bytes = (start + num_bytes) -
2675 				caching_ctl->progress;
2676 			start = caching_ctl->progress;
2677 			ret = btrfs_add_excluded_extent(fs_info, start,
2678 							num_bytes);
2679 		}
2680 out_lock:
2681 		mutex_unlock(&caching_ctl->mutex);
2682 		btrfs_put_caching_control(caching_ctl);
2683 	}
2684 	btrfs_put_block_group(block_group);
2685 	return ret;
2686 }
2687 
2688 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2689 {
2690 	struct btrfs_fs_info *fs_info = eb->fs_info;
2691 	struct btrfs_file_extent_item *item;
2692 	struct btrfs_key key;
2693 	int found_type;
2694 	int i;
2695 	int ret = 0;
2696 
2697 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2698 		return 0;
2699 
2700 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2701 		btrfs_item_key_to_cpu(eb, &key, i);
2702 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2703 			continue;
2704 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2705 		found_type = btrfs_file_extent_type(eb, item);
2706 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2707 			continue;
2708 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2709 			continue;
2710 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2711 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2712 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2713 		if (ret)
2714 			break;
2715 	}
2716 
2717 	return ret;
2718 }
2719 
2720 static void
2721 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2722 {
2723 	atomic_inc(&bg->reservations);
2724 }
2725 
2726 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2727 {
2728 	struct btrfs_caching_control *next;
2729 	struct btrfs_caching_control *caching_ctl;
2730 	struct btrfs_block_group *cache;
2731 
2732 	down_write(&fs_info->commit_root_sem);
2733 
2734 	list_for_each_entry_safe(caching_ctl, next,
2735 				 &fs_info->caching_block_groups, list) {
2736 		cache = caching_ctl->block_group;
2737 		if (btrfs_block_group_done(cache)) {
2738 			cache->last_byte_to_unpin = (u64)-1;
2739 			list_del_init(&caching_ctl->list);
2740 			btrfs_put_caching_control(caching_ctl);
2741 		} else {
2742 			cache->last_byte_to_unpin = caching_ctl->progress;
2743 		}
2744 	}
2745 
2746 	up_write(&fs_info->commit_root_sem);
2747 
2748 	btrfs_update_global_block_rsv(fs_info);
2749 }
2750 
2751 /*
2752  * Returns the free cluster for the given space info and sets empty_cluster to
2753  * what it should be based on the mount options.
2754  */
2755 static struct btrfs_free_cluster *
2756 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2757 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2758 {
2759 	struct btrfs_free_cluster *ret = NULL;
2760 
2761 	*empty_cluster = 0;
2762 	if (btrfs_mixed_space_info(space_info))
2763 		return ret;
2764 
2765 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2766 		ret = &fs_info->meta_alloc_cluster;
2767 		if (btrfs_test_opt(fs_info, SSD))
2768 			*empty_cluster = SZ_2M;
2769 		else
2770 			*empty_cluster = SZ_64K;
2771 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2772 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2773 		*empty_cluster = SZ_2M;
2774 		ret = &fs_info->data_alloc_cluster;
2775 	}
2776 
2777 	return ret;
2778 }
2779 
2780 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2781 			      u64 start, u64 end,
2782 			      const bool return_free_space)
2783 {
2784 	struct btrfs_block_group *cache = NULL;
2785 	struct btrfs_space_info *space_info;
2786 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2787 	struct btrfs_free_cluster *cluster = NULL;
2788 	u64 len;
2789 	u64 total_unpinned = 0;
2790 	u64 empty_cluster = 0;
2791 	bool readonly;
2792 
2793 	while (start <= end) {
2794 		readonly = false;
2795 		if (!cache ||
2796 		    start >= cache->start + cache->length) {
2797 			if (cache)
2798 				btrfs_put_block_group(cache);
2799 			total_unpinned = 0;
2800 			cache = btrfs_lookup_block_group(fs_info, start);
2801 			BUG_ON(!cache); /* Logic error */
2802 
2803 			cluster = fetch_cluster_info(fs_info,
2804 						     cache->space_info,
2805 						     &empty_cluster);
2806 			empty_cluster <<= 1;
2807 		}
2808 
2809 		len = cache->start + cache->length - start;
2810 		len = min(len, end + 1 - start);
2811 
2812 		if (start < cache->last_byte_to_unpin) {
2813 			len = min(len, cache->last_byte_to_unpin - start);
2814 			if (return_free_space)
2815 				btrfs_add_free_space(cache, start, len);
2816 		}
2817 
2818 		start += len;
2819 		total_unpinned += len;
2820 		space_info = cache->space_info;
2821 
2822 		/*
2823 		 * If this space cluster has been marked as fragmented and we've
2824 		 * unpinned enough in this block group to potentially allow a
2825 		 * cluster to be created inside of it go ahead and clear the
2826 		 * fragmented check.
2827 		 */
2828 		if (cluster && cluster->fragmented &&
2829 		    total_unpinned > empty_cluster) {
2830 			spin_lock(&cluster->lock);
2831 			cluster->fragmented = 0;
2832 			spin_unlock(&cluster->lock);
2833 		}
2834 
2835 		spin_lock(&space_info->lock);
2836 		spin_lock(&cache->lock);
2837 		cache->pinned -= len;
2838 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2839 		space_info->max_extent_size = 0;
2840 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2841 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2842 		if (cache->ro) {
2843 			space_info->bytes_readonly += len;
2844 			readonly = true;
2845 		}
2846 		spin_unlock(&cache->lock);
2847 		if (!readonly && return_free_space &&
2848 		    global_rsv->space_info == space_info) {
2849 			u64 to_add = len;
2850 
2851 			spin_lock(&global_rsv->lock);
2852 			if (!global_rsv->full) {
2853 				to_add = min(len, global_rsv->size -
2854 					     global_rsv->reserved);
2855 				global_rsv->reserved += to_add;
2856 				btrfs_space_info_update_bytes_may_use(fs_info,
2857 						space_info, to_add);
2858 				if (global_rsv->reserved >= global_rsv->size)
2859 					global_rsv->full = 1;
2860 				len -= to_add;
2861 			}
2862 			spin_unlock(&global_rsv->lock);
2863 			/* Add to any tickets we may have */
2864 			if (len)
2865 				btrfs_try_granting_tickets(fs_info,
2866 							   space_info);
2867 		}
2868 		spin_unlock(&space_info->lock);
2869 	}
2870 
2871 	if (cache)
2872 		btrfs_put_block_group(cache);
2873 	return 0;
2874 }
2875 
2876 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2877 {
2878 	struct btrfs_fs_info *fs_info = trans->fs_info;
2879 	struct btrfs_block_group *block_group, *tmp;
2880 	struct list_head *deleted_bgs;
2881 	struct extent_io_tree *unpin;
2882 	u64 start;
2883 	u64 end;
2884 	int ret;
2885 
2886 	unpin = &trans->transaction->pinned_extents;
2887 
2888 	while (!TRANS_ABORTED(trans)) {
2889 		struct extent_state *cached_state = NULL;
2890 
2891 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2892 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2893 					    EXTENT_DIRTY, &cached_state);
2894 		if (ret) {
2895 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2896 			break;
2897 		}
2898 		if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
2899 			clear_extent_bits(&fs_info->excluded_extents, start,
2900 					  end, EXTENT_UPTODATE);
2901 
2902 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2903 			ret = btrfs_discard_extent(fs_info, start,
2904 						   end + 1 - start, NULL);
2905 
2906 		clear_extent_dirty(unpin, start, end, &cached_state);
2907 		unpin_extent_range(fs_info, start, end, true);
2908 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2909 		free_extent_state(cached_state);
2910 		cond_resched();
2911 	}
2912 
2913 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2914 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2915 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2916 	}
2917 
2918 	/*
2919 	 * Transaction is finished.  We don't need the lock anymore.  We
2920 	 * do need to clean up the block groups in case of a transaction
2921 	 * abort.
2922 	 */
2923 	deleted_bgs = &trans->transaction->deleted_bgs;
2924 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2925 		u64 trimmed = 0;
2926 
2927 		ret = -EROFS;
2928 		if (!TRANS_ABORTED(trans))
2929 			ret = btrfs_discard_extent(fs_info,
2930 						   block_group->start,
2931 						   block_group->length,
2932 						   &trimmed);
2933 
2934 		list_del_init(&block_group->bg_list);
2935 		btrfs_put_block_group_trimming(block_group);
2936 		btrfs_put_block_group(block_group);
2937 
2938 		if (ret) {
2939 			const char *errstr = btrfs_decode_error(ret);
2940 			btrfs_warn(fs_info,
2941 			   "discard failed while removing blockgroup: errno=%d %s",
2942 				   ret, errstr);
2943 		}
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2950 			       struct btrfs_delayed_ref_node *node, u64 parent,
2951 			       u64 root_objectid, u64 owner_objectid,
2952 			       u64 owner_offset, int refs_to_drop,
2953 			       struct btrfs_delayed_extent_op *extent_op)
2954 {
2955 	struct btrfs_fs_info *info = trans->fs_info;
2956 	struct btrfs_key key;
2957 	struct btrfs_path *path;
2958 	struct btrfs_root *extent_root = info->extent_root;
2959 	struct extent_buffer *leaf;
2960 	struct btrfs_extent_item *ei;
2961 	struct btrfs_extent_inline_ref *iref;
2962 	int ret;
2963 	int is_data;
2964 	int extent_slot = 0;
2965 	int found_extent = 0;
2966 	int num_to_del = 1;
2967 	u32 item_size;
2968 	u64 refs;
2969 	u64 bytenr = node->bytenr;
2970 	u64 num_bytes = node->num_bytes;
2971 	int last_ref = 0;
2972 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2973 
2974 	path = btrfs_alloc_path();
2975 	if (!path)
2976 		return -ENOMEM;
2977 
2978 	path->leave_spinning = 1;
2979 
2980 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2981 	BUG_ON(!is_data && refs_to_drop != 1);
2982 
2983 	if (is_data)
2984 		skinny_metadata = false;
2985 
2986 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2987 				    parent, root_objectid, owner_objectid,
2988 				    owner_offset);
2989 	if (ret == 0) {
2990 		extent_slot = path->slots[0];
2991 		while (extent_slot >= 0) {
2992 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2993 					      extent_slot);
2994 			if (key.objectid != bytenr)
2995 				break;
2996 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2997 			    key.offset == num_bytes) {
2998 				found_extent = 1;
2999 				break;
3000 			}
3001 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3002 			    key.offset == owner_objectid) {
3003 				found_extent = 1;
3004 				break;
3005 			}
3006 			if (path->slots[0] - extent_slot > 5)
3007 				break;
3008 			extent_slot--;
3009 		}
3010 
3011 		if (!found_extent) {
3012 			BUG_ON(iref);
3013 			ret = remove_extent_backref(trans, path, NULL,
3014 						    refs_to_drop,
3015 						    is_data, &last_ref);
3016 			if (ret) {
3017 				btrfs_abort_transaction(trans, ret);
3018 				goto out;
3019 			}
3020 			btrfs_release_path(path);
3021 			path->leave_spinning = 1;
3022 
3023 			key.objectid = bytenr;
3024 			key.type = BTRFS_EXTENT_ITEM_KEY;
3025 			key.offset = num_bytes;
3026 
3027 			if (!is_data && skinny_metadata) {
3028 				key.type = BTRFS_METADATA_ITEM_KEY;
3029 				key.offset = owner_objectid;
3030 			}
3031 
3032 			ret = btrfs_search_slot(trans, extent_root,
3033 						&key, path, -1, 1);
3034 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3035 				/*
3036 				 * Couldn't find our skinny metadata item,
3037 				 * see if we have ye olde extent item.
3038 				 */
3039 				path->slots[0]--;
3040 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3041 						      path->slots[0]);
3042 				if (key.objectid == bytenr &&
3043 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3044 				    key.offset == num_bytes)
3045 					ret = 0;
3046 			}
3047 
3048 			if (ret > 0 && skinny_metadata) {
3049 				skinny_metadata = false;
3050 				key.objectid = bytenr;
3051 				key.type = BTRFS_EXTENT_ITEM_KEY;
3052 				key.offset = num_bytes;
3053 				btrfs_release_path(path);
3054 				ret = btrfs_search_slot(trans, extent_root,
3055 							&key, path, -1, 1);
3056 			}
3057 
3058 			if (ret) {
3059 				btrfs_err(info,
3060 					  "umm, got %d back from search, was looking for %llu",
3061 					  ret, bytenr);
3062 				if (ret > 0)
3063 					btrfs_print_leaf(path->nodes[0]);
3064 			}
3065 			if (ret < 0) {
3066 				btrfs_abort_transaction(trans, ret);
3067 				goto out;
3068 			}
3069 			extent_slot = path->slots[0];
3070 		}
3071 	} else if (WARN_ON(ret == -ENOENT)) {
3072 		btrfs_print_leaf(path->nodes[0]);
3073 		btrfs_err(info,
3074 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3075 			bytenr, parent, root_objectid, owner_objectid,
3076 			owner_offset);
3077 		btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	} else {
3080 		btrfs_abort_transaction(trans, ret);
3081 		goto out;
3082 	}
3083 
3084 	leaf = path->nodes[0];
3085 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3086 	if (unlikely(item_size < sizeof(*ei))) {
3087 		ret = -EINVAL;
3088 		btrfs_print_v0_err(info);
3089 		btrfs_abort_transaction(trans, ret);
3090 		goto out;
3091 	}
3092 	ei = btrfs_item_ptr(leaf, extent_slot,
3093 			    struct btrfs_extent_item);
3094 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3095 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3096 		struct btrfs_tree_block_info *bi;
3097 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3098 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3099 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3100 	}
3101 
3102 	refs = btrfs_extent_refs(leaf, ei);
3103 	if (refs < refs_to_drop) {
3104 		btrfs_err(info,
3105 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3106 			  refs_to_drop, refs, bytenr);
3107 		ret = -EINVAL;
3108 		btrfs_abort_transaction(trans, ret);
3109 		goto out;
3110 	}
3111 	refs -= refs_to_drop;
3112 
3113 	if (refs > 0) {
3114 		if (extent_op)
3115 			__run_delayed_extent_op(extent_op, leaf, ei);
3116 		/*
3117 		 * In the case of inline back ref, reference count will
3118 		 * be updated by remove_extent_backref
3119 		 */
3120 		if (iref) {
3121 			BUG_ON(!found_extent);
3122 		} else {
3123 			btrfs_set_extent_refs(leaf, ei, refs);
3124 			btrfs_mark_buffer_dirty(leaf);
3125 		}
3126 		if (found_extent) {
3127 			ret = remove_extent_backref(trans, path, iref,
3128 						    refs_to_drop, is_data,
3129 						    &last_ref);
3130 			if (ret) {
3131 				btrfs_abort_transaction(trans, ret);
3132 				goto out;
3133 			}
3134 		}
3135 	} else {
3136 		if (found_extent) {
3137 			BUG_ON(is_data && refs_to_drop !=
3138 			       extent_data_ref_count(path, iref));
3139 			if (iref) {
3140 				BUG_ON(path->slots[0] != extent_slot);
3141 			} else {
3142 				BUG_ON(path->slots[0] != extent_slot + 1);
3143 				path->slots[0] = extent_slot;
3144 				num_to_del = 2;
3145 			}
3146 		}
3147 
3148 		last_ref = 1;
3149 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3150 				      num_to_del);
3151 		if (ret) {
3152 			btrfs_abort_transaction(trans, ret);
3153 			goto out;
3154 		}
3155 		btrfs_release_path(path);
3156 
3157 		if (is_data) {
3158 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3159 					      num_bytes);
3160 			if (ret) {
3161 				btrfs_abort_transaction(trans, ret);
3162 				goto out;
3163 			}
3164 		}
3165 
3166 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3167 		if (ret) {
3168 			btrfs_abort_transaction(trans, ret);
3169 			goto out;
3170 		}
3171 
3172 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3173 		if (ret) {
3174 			btrfs_abort_transaction(trans, ret);
3175 			goto out;
3176 		}
3177 	}
3178 	btrfs_release_path(path);
3179 
3180 out:
3181 	btrfs_free_path(path);
3182 	return ret;
3183 }
3184 
3185 /*
3186  * when we free an block, it is possible (and likely) that we free the last
3187  * delayed ref for that extent as well.  This searches the delayed ref tree for
3188  * a given extent, and if there are no other delayed refs to be processed, it
3189  * removes it from the tree.
3190  */
3191 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3192 				      u64 bytenr)
3193 {
3194 	struct btrfs_delayed_ref_head *head;
3195 	struct btrfs_delayed_ref_root *delayed_refs;
3196 	int ret = 0;
3197 
3198 	delayed_refs = &trans->transaction->delayed_refs;
3199 	spin_lock(&delayed_refs->lock);
3200 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3201 	if (!head)
3202 		goto out_delayed_unlock;
3203 
3204 	spin_lock(&head->lock);
3205 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3206 		goto out;
3207 
3208 	if (cleanup_extent_op(head) != NULL)
3209 		goto out;
3210 
3211 	/*
3212 	 * waiting for the lock here would deadlock.  If someone else has it
3213 	 * locked they are already in the process of dropping it anyway
3214 	 */
3215 	if (!mutex_trylock(&head->mutex))
3216 		goto out;
3217 
3218 	btrfs_delete_ref_head(delayed_refs, head);
3219 	head->processing = 0;
3220 
3221 	spin_unlock(&head->lock);
3222 	spin_unlock(&delayed_refs->lock);
3223 
3224 	BUG_ON(head->extent_op);
3225 	if (head->must_insert_reserved)
3226 		ret = 1;
3227 
3228 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3229 	mutex_unlock(&head->mutex);
3230 	btrfs_put_delayed_ref_head(head);
3231 	return ret;
3232 out:
3233 	spin_unlock(&head->lock);
3234 
3235 out_delayed_unlock:
3236 	spin_unlock(&delayed_refs->lock);
3237 	return 0;
3238 }
3239 
3240 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3241 			   struct btrfs_root *root,
3242 			   struct extent_buffer *buf,
3243 			   u64 parent, int last_ref)
3244 {
3245 	struct btrfs_fs_info *fs_info = root->fs_info;
3246 	struct btrfs_ref generic_ref = { 0 };
3247 	int pin = 1;
3248 	int ret;
3249 
3250 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3251 			       buf->start, buf->len, parent);
3252 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3253 			    root->root_key.objectid);
3254 
3255 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3256 		int old_ref_mod, new_ref_mod;
3257 
3258 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3259 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3260 						 &old_ref_mod, &new_ref_mod);
3261 		BUG_ON(ret); /* -ENOMEM */
3262 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3263 	}
3264 
3265 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3266 		struct btrfs_block_group *cache;
3267 
3268 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3269 			ret = check_ref_cleanup(trans, buf->start);
3270 			if (!ret)
3271 				goto out;
3272 		}
3273 
3274 		pin = 0;
3275 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3276 
3277 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3278 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3279 			btrfs_put_block_group(cache);
3280 			goto out;
3281 		}
3282 
3283 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3284 
3285 		btrfs_add_free_space(cache, buf->start, buf->len);
3286 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3287 		btrfs_put_block_group(cache);
3288 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3289 	}
3290 out:
3291 	if (pin)
3292 		add_pinned_bytes(fs_info, &generic_ref);
3293 
3294 	if (last_ref) {
3295 		/*
3296 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3297 		 * matter anymore.
3298 		 */
3299 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3300 	}
3301 }
3302 
3303 /* Can return -ENOMEM */
3304 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3305 {
3306 	struct btrfs_fs_info *fs_info = trans->fs_info;
3307 	int old_ref_mod, new_ref_mod;
3308 	int ret;
3309 
3310 	if (btrfs_is_testing(fs_info))
3311 		return 0;
3312 
3313 	/*
3314 	 * tree log blocks never actually go into the extent allocation
3315 	 * tree, just update pinning info and exit early.
3316 	 */
3317 	if ((ref->type == BTRFS_REF_METADATA &&
3318 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3319 	    (ref->type == BTRFS_REF_DATA &&
3320 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3321 		/* unlocks the pinned mutex */
3322 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3323 		old_ref_mod = new_ref_mod = 0;
3324 		ret = 0;
3325 	} else if (ref->type == BTRFS_REF_METADATA) {
3326 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3327 						 &old_ref_mod, &new_ref_mod);
3328 	} else {
3329 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3330 						 &old_ref_mod, &new_ref_mod);
3331 	}
3332 
3333 	if (!((ref->type == BTRFS_REF_METADATA &&
3334 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3335 	      (ref->type == BTRFS_REF_DATA &&
3336 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3337 		btrfs_ref_tree_mod(fs_info, ref);
3338 
3339 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3340 		add_pinned_bytes(fs_info, ref);
3341 
3342 	return ret;
3343 }
3344 
3345 enum btrfs_loop_type {
3346 	LOOP_CACHING_NOWAIT,
3347 	LOOP_CACHING_WAIT,
3348 	LOOP_ALLOC_CHUNK,
3349 	LOOP_NO_EMPTY_SIZE,
3350 };
3351 
3352 static inline void
3353 btrfs_lock_block_group(struct btrfs_block_group *cache,
3354 		       int delalloc)
3355 {
3356 	if (delalloc)
3357 		down_read(&cache->data_rwsem);
3358 }
3359 
3360 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3361 		       int delalloc)
3362 {
3363 	btrfs_get_block_group(cache);
3364 	if (delalloc)
3365 		down_read(&cache->data_rwsem);
3366 }
3367 
3368 static struct btrfs_block_group *btrfs_lock_cluster(
3369 		   struct btrfs_block_group *block_group,
3370 		   struct btrfs_free_cluster *cluster,
3371 		   int delalloc)
3372 {
3373 	struct btrfs_block_group *used_bg = NULL;
3374 
3375 	spin_lock(&cluster->refill_lock);
3376 	while (1) {
3377 		used_bg = cluster->block_group;
3378 		if (!used_bg)
3379 			return NULL;
3380 
3381 		if (used_bg == block_group)
3382 			return used_bg;
3383 
3384 		btrfs_get_block_group(used_bg);
3385 
3386 		if (!delalloc)
3387 			return used_bg;
3388 
3389 		if (down_read_trylock(&used_bg->data_rwsem))
3390 			return used_bg;
3391 
3392 		spin_unlock(&cluster->refill_lock);
3393 
3394 		/* We should only have one-level nested. */
3395 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3396 
3397 		spin_lock(&cluster->refill_lock);
3398 		if (used_bg == cluster->block_group)
3399 			return used_bg;
3400 
3401 		up_read(&used_bg->data_rwsem);
3402 		btrfs_put_block_group(used_bg);
3403 	}
3404 }
3405 
3406 static inline void
3407 btrfs_release_block_group(struct btrfs_block_group *cache,
3408 			 int delalloc)
3409 {
3410 	if (delalloc)
3411 		up_read(&cache->data_rwsem);
3412 	btrfs_put_block_group(cache);
3413 }
3414 
3415 enum btrfs_extent_allocation_policy {
3416 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3417 };
3418 
3419 /*
3420  * Structure used internally for find_free_extent() function.  Wraps needed
3421  * parameters.
3422  */
3423 struct find_free_extent_ctl {
3424 	/* Basic allocation info */
3425 	u64 num_bytes;
3426 	u64 empty_size;
3427 	u64 flags;
3428 	int delalloc;
3429 
3430 	/* Where to start the search inside the bg */
3431 	u64 search_start;
3432 
3433 	/* For clustered allocation */
3434 	u64 empty_cluster;
3435 	struct btrfs_free_cluster *last_ptr;
3436 	bool use_cluster;
3437 
3438 	bool have_caching_bg;
3439 	bool orig_have_caching_bg;
3440 
3441 	/* RAID index, converted from flags */
3442 	int index;
3443 
3444 	/*
3445 	 * Current loop number, check find_free_extent_update_loop() for details
3446 	 */
3447 	int loop;
3448 
3449 	/*
3450 	 * Whether we're refilling a cluster, if true we need to re-search
3451 	 * current block group but don't try to refill the cluster again.
3452 	 */
3453 	bool retry_clustered;
3454 
3455 	/*
3456 	 * Whether we're updating free space cache, if true we need to re-search
3457 	 * current block group but don't try updating free space cache again.
3458 	 */
3459 	bool retry_unclustered;
3460 
3461 	/* If current block group is cached */
3462 	int cached;
3463 
3464 	/* Max contiguous hole found */
3465 	u64 max_extent_size;
3466 
3467 	/* Total free space from free space cache, not always contiguous */
3468 	u64 total_free_space;
3469 
3470 	/* Found result */
3471 	u64 found_offset;
3472 
3473 	/* Hint where to start looking for an empty space */
3474 	u64 hint_byte;
3475 
3476 	/* Allocation policy */
3477 	enum btrfs_extent_allocation_policy policy;
3478 };
3479 
3480 
3481 /*
3482  * Helper function for find_free_extent().
3483  *
3484  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3485  * Return -EAGAIN to inform caller that we need to re-search this block group
3486  * Return >0 to inform caller that we find nothing
3487  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3488  */
3489 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3490 				      struct find_free_extent_ctl *ffe_ctl,
3491 				      struct btrfs_block_group **cluster_bg_ret)
3492 {
3493 	struct btrfs_block_group *cluster_bg;
3494 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3495 	u64 aligned_cluster;
3496 	u64 offset;
3497 	int ret;
3498 
3499 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3500 	if (!cluster_bg)
3501 		goto refill_cluster;
3502 	if (cluster_bg != bg && (cluster_bg->ro ||
3503 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3504 		goto release_cluster;
3505 
3506 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3507 			ffe_ctl->num_bytes, cluster_bg->start,
3508 			&ffe_ctl->max_extent_size);
3509 	if (offset) {
3510 		/* We have a block, we're done */
3511 		spin_unlock(&last_ptr->refill_lock);
3512 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3513 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3514 		*cluster_bg_ret = cluster_bg;
3515 		ffe_ctl->found_offset = offset;
3516 		return 0;
3517 	}
3518 	WARN_ON(last_ptr->block_group != cluster_bg);
3519 
3520 release_cluster:
3521 	/*
3522 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3523 	 * lets just skip it and let the allocator find whatever block it can
3524 	 * find. If we reach this point, we will have tried the cluster
3525 	 * allocator plenty of times and not have found anything, so we are
3526 	 * likely way too fragmented for the clustering stuff to find anything.
3527 	 *
3528 	 * However, if the cluster is taken from the current block group,
3529 	 * release the cluster first, so that we stand a better chance of
3530 	 * succeeding in the unclustered allocation.
3531 	 */
3532 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3533 		spin_unlock(&last_ptr->refill_lock);
3534 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3535 		return -ENOENT;
3536 	}
3537 
3538 	/* This cluster didn't work out, free it and start over */
3539 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3540 
3541 	if (cluster_bg != bg)
3542 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3543 
3544 refill_cluster:
3545 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3546 		spin_unlock(&last_ptr->refill_lock);
3547 		return -ENOENT;
3548 	}
3549 
3550 	aligned_cluster = max_t(u64,
3551 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3552 			bg->full_stripe_len);
3553 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3554 			ffe_ctl->num_bytes, aligned_cluster);
3555 	if (ret == 0) {
3556 		/* Now pull our allocation out of this cluster */
3557 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3558 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3559 				&ffe_ctl->max_extent_size);
3560 		if (offset) {
3561 			/* We found one, proceed */
3562 			spin_unlock(&last_ptr->refill_lock);
3563 			trace_btrfs_reserve_extent_cluster(bg,
3564 					ffe_ctl->search_start,
3565 					ffe_ctl->num_bytes);
3566 			ffe_ctl->found_offset = offset;
3567 			return 0;
3568 		}
3569 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3570 		   !ffe_ctl->retry_clustered) {
3571 		spin_unlock(&last_ptr->refill_lock);
3572 
3573 		ffe_ctl->retry_clustered = true;
3574 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3575 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3576 		return -EAGAIN;
3577 	}
3578 	/*
3579 	 * At this point we either didn't find a cluster or we weren't able to
3580 	 * allocate a block from our cluster.  Free the cluster we've been
3581 	 * trying to use, and go to the next block group.
3582 	 */
3583 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3584 	spin_unlock(&last_ptr->refill_lock);
3585 	return 1;
3586 }
3587 
3588 /*
3589  * Return >0 to inform caller that we find nothing
3590  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3591  * Return -EAGAIN to inform caller that we need to re-search this block group
3592  */
3593 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3594 					struct find_free_extent_ctl *ffe_ctl)
3595 {
3596 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3597 	u64 offset;
3598 
3599 	/*
3600 	 * We are doing an unclustered allocation, set the fragmented flag so
3601 	 * we don't bother trying to setup a cluster again until we get more
3602 	 * space.
3603 	 */
3604 	if (unlikely(last_ptr)) {
3605 		spin_lock(&last_ptr->lock);
3606 		last_ptr->fragmented = 1;
3607 		spin_unlock(&last_ptr->lock);
3608 	}
3609 	if (ffe_ctl->cached) {
3610 		struct btrfs_free_space_ctl *free_space_ctl;
3611 
3612 		free_space_ctl = bg->free_space_ctl;
3613 		spin_lock(&free_space_ctl->tree_lock);
3614 		if (free_space_ctl->free_space <
3615 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3616 		    ffe_ctl->empty_size) {
3617 			ffe_ctl->total_free_space = max_t(u64,
3618 					ffe_ctl->total_free_space,
3619 					free_space_ctl->free_space);
3620 			spin_unlock(&free_space_ctl->tree_lock);
3621 			return 1;
3622 		}
3623 		spin_unlock(&free_space_ctl->tree_lock);
3624 	}
3625 
3626 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3627 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3628 			&ffe_ctl->max_extent_size);
3629 
3630 	/*
3631 	 * If we didn't find a chunk, and we haven't failed on this block group
3632 	 * before, and this block group is in the middle of caching and we are
3633 	 * ok with waiting, then go ahead and wait for progress to be made, and
3634 	 * set @retry_unclustered to true.
3635 	 *
3636 	 * If @retry_unclustered is true then we've already waited on this
3637 	 * block group once and should move on to the next block group.
3638 	 */
3639 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3640 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3641 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3642 						      ffe_ctl->empty_size);
3643 		ffe_ctl->retry_unclustered = true;
3644 		return -EAGAIN;
3645 	} else if (!offset) {
3646 		return 1;
3647 	}
3648 	ffe_ctl->found_offset = offset;
3649 	return 0;
3650 }
3651 
3652 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3653 				   struct find_free_extent_ctl *ffe_ctl,
3654 				   struct btrfs_block_group **bg_ret)
3655 {
3656 	int ret;
3657 
3658 	/* We want to try and use the cluster allocator, so lets look there */
3659 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3660 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3661 		if (ret >= 0 || ret == -EAGAIN)
3662 			return ret;
3663 		/* ret == -ENOENT case falls through */
3664 	}
3665 
3666 	return find_free_extent_unclustered(block_group, ffe_ctl);
3667 }
3668 
3669 static int do_allocation(struct btrfs_block_group *block_group,
3670 			 struct find_free_extent_ctl *ffe_ctl,
3671 			 struct btrfs_block_group **bg_ret)
3672 {
3673 	switch (ffe_ctl->policy) {
3674 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3675 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3676 	default:
3677 		BUG();
3678 	}
3679 }
3680 
3681 static void release_block_group(struct btrfs_block_group *block_group,
3682 				struct find_free_extent_ctl *ffe_ctl,
3683 				int delalloc)
3684 {
3685 	switch (ffe_ctl->policy) {
3686 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3687 		ffe_ctl->retry_clustered = false;
3688 		ffe_ctl->retry_unclustered = false;
3689 		break;
3690 	default:
3691 		BUG();
3692 	}
3693 
3694 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3695 	       ffe_ctl->index);
3696 	btrfs_release_block_group(block_group, delalloc);
3697 }
3698 
3699 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3700 				   struct btrfs_key *ins)
3701 {
3702 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3703 
3704 	if (!ffe_ctl->use_cluster && last_ptr) {
3705 		spin_lock(&last_ptr->lock);
3706 		last_ptr->window_start = ins->objectid;
3707 		spin_unlock(&last_ptr->lock);
3708 	}
3709 }
3710 
3711 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3712 			 struct btrfs_key *ins)
3713 {
3714 	switch (ffe_ctl->policy) {
3715 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3716 		found_extent_clustered(ffe_ctl, ins);
3717 		break;
3718 	default:
3719 		BUG();
3720 	}
3721 }
3722 
3723 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
3724 {
3725 	switch (ffe_ctl->policy) {
3726 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3727 		/*
3728 		 * If we can't allocate a new chunk we've already looped through
3729 		 * at least once, move on to the NO_EMPTY_SIZE case.
3730 		 */
3731 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3732 		return 0;
3733 	default:
3734 		BUG();
3735 	}
3736 }
3737 
3738 /*
3739  * Return >0 means caller needs to re-search for free extent
3740  * Return 0 means we have the needed free extent.
3741  * Return <0 means we failed to locate any free extent.
3742  */
3743 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3744 					struct btrfs_key *ins,
3745 					struct find_free_extent_ctl *ffe_ctl,
3746 					bool full_search)
3747 {
3748 	struct btrfs_root *root = fs_info->extent_root;
3749 	int ret;
3750 
3751 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3752 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3753 		ffe_ctl->orig_have_caching_bg = true;
3754 
3755 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3756 	    ffe_ctl->have_caching_bg)
3757 		return 1;
3758 
3759 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3760 		return 1;
3761 
3762 	if (ins->objectid) {
3763 		found_extent(ffe_ctl, ins);
3764 		return 0;
3765 	}
3766 
3767 	/*
3768 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3769 	 *			caching kthreads as we move along
3770 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3771 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3772 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3773 	 *		       again
3774 	 */
3775 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3776 		ffe_ctl->index = 0;
3777 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3778 			/*
3779 			 * We want to skip the LOOP_CACHING_WAIT step if we
3780 			 * don't have any uncached bgs and we've already done a
3781 			 * full search through.
3782 			 */
3783 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3784 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3785 			else
3786 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3787 		} else {
3788 			ffe_ctl->loop++;
3789 		}
3790 
3791 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3792 			struct btrfs_trans_handle *trans;
3793 			int exist = 0;
3794 
3795 			trans = current->journal_info;
3796 			if (trans)
3797 				exist = 1;
3798 			else
3799 				trans = btrfs_join_transaction(root);
3800 
3801 			if (IS_ERR(trans)) {
3802 				ret = PTR_ERR(trans);
3803 				return ret;
3804 			}
3805 
3806 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3807 						CHUNK_ALLOC_FORCE);
3808 
3809 			/* Do not bail out on ENOSPC since we can do more. */
3810 			if (ret == -ENOSPC)
3811 				ret = chunk_allocation_failed(ffe_ctl);
3812 			else if (ret < 0)
3813 				btrfs_abort_transaction(trans, ret);
3814 			else
3815 				ret = 0;
3816 			if (!exist)
3817 				btrfs_end_transaction(trans);
3818 			if (ret)
3819 				return ret;
3820 		}
3821 
3822 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3823 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
3824 				return -ENOSPC;
3825 
3826 			/*
3827 			 * Don't loop again if we already have no empty_size and
3828 			 * no empty_cluster.
3829 			 */
3830 			if (ffe_ctl->empty_size == 0 &&
3831 			    ffe_ctl->empty_cluster == 0)
3832 				return -ENOSPC;
3833 			ffe_ctl->empty_size = 0;
3834 			ffe_ctl->empty_cluster = 0;
3835 		}
3836 		return 1;
3837 	}
3838 	return -ENOSPC;
3839 }
3840 
3841 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
3842 					struct find_free_extent_ctl *ffe_ctl,
3843 					struct btrfs_space_info *space_info,
3844 					struct btrfs_key *ins)
3845 {
3846 	/*
3847 	 * If our free space is heavily fragmented we may not be able to make
3848 	 * big contiguous allocations, so instead of doing the expensive search
3849 	 * for free space, simply return ENOSPC with our max_extent_size so we
3850 	 * can go ahead and search for a more manageable chunk.
3851 	 *
3852 	 * If our max_extent_size is large enough for our allocation simply
3853 	 * disable clustering since we will likely not be able to find enough
3854 	 * space to create a cluster and induce latency trying.
3855 	 */
3856 	if (space_info->max_extent_size) {
3857 		spin_lock(&space_info->lock);
3858 		if (space_info->max_extent_size &&
3859 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
3860 			ins->offset = space_info->max_extent_size;
3861 			spin_unlock(&space_info->lock);
3862 			return -ENOSPC;
3863 		} else if (space_info->max_extent_size) {
3864 			ffe_ctl->use_cluster = false;
3865 		}
3866 		spin_unlock(&space_info->lock);
3867 	}
3868 
3869 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
3870 					       &ffe_ctl->empty_cluster);
3871 	if (ffe_ctl->last_ptr) {
3872 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3873 
3874 		spin_lock(&last_ptr->lock);
3875 		if (last_ptr->block_group)
3876 			ffe_ctl->hint_byte = last_ptr->window_start;
3877 		if (last_ptr->fragmented) {
3878 			/*
3879 			 * We still set window_start so we can keep track of the
3880 			 * last place we found an allocation to try and save
3881 			 * some time.
3882 			 */
3883 			ffe_ctl->hint_byte = last_ptr->window_start;
3884 			ffe_ctl->use_cluster = false;
3885 		}
3886 		spin_unlock(&last_ptr->lock);
3887 	}
3888 
3889 	return 0;
3890 }
3891 
3892 static int prepare_allocation(struct btrfs_fs_info *fs_info,
3893 			      struct find_free_extent_ctl *ffe_ctl,
3894 			      struct btrfs_space_info *space_info,
3895 			      struct btrfs_key *ins)
3896 {
3897 	switch (ffe_ctl->policy) {
3898 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3899 		return prepare_allocation_clustered(fs_info, ffe_ctl,
3900 						    space_info, ins);
3901 	default:
3902 		BUG();
3903 	}
3904 }
3905 
3906 /*
3907  * walks the btree of allocated extents and find a hole of a given size.
3908  * The key ins is changed to record the hole:
3909  * ins->objectid == start position
3910  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3911  * ins->offset == the size of the hole.
3912  * Any available blocks before search_start are skipped.
3913  *
3914  * If there is no suitable free space, we will record the max size of
3915  * the free space extent currently.
3916  *
3917  * The overall logic and call chain:
3918  *
3919  * find_free_extent()
3920  * |- Iterate through all block groups
3921  * |  |- Get a valid block group
3922  * |  |- Try to do clustered allocation in that block group
3923  * |  |- Try to do unclustered allocation in that block group
3924  * |  |- Check if the result is valid
3925  * |  |  |- If valid, then exit
3926  * |  |- Jump to next block group
3927  * |
3928  * |- Push harder to find free extents
3929  *    |- If not found, re-iterate all block groups
3930  */
3931 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3932 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3933 				u64 hint_byte_orig, struct btrfs_key *ins,
3934 				u64 flags, int delalloc)
3935 {
3936 	int ret = 0;
3937 	int cache_block_group_error = 0;
3938 	struct btrfs_block_group *block_group = NULL;
3939 	struct find_free_extent_ctl ffe_ctl = {0};
3940 	struct btrfs_space_info *space_info;
3941 	bool full_search = false;
3942 
3943 	WARN_ON(num_bytes < fs_info->sectorsize);
3944 
3945 	ffe_ctl.num_bytes = num_bytes;
3946 	ffe_ctl.empty_size = empty_size;
3947 	ffe_ctl.flags = flags;
3948 	ffe_ctl.search_start = 0;
3949 	ffe_ctl.delalloc = delalloc;
3950 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3951 	ffe_ctl.have_caching_bg = false;
3952 	ffe_ctl.orig_have_caching_bg = false;
3953 	ffe_ctl.found_offset = 0;
3954 	ffe_ctl.hint_byte = hint_byte_orig;
3955 	ffe_ctl.policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
3956 
3957 	/* For clustered allocation */
3958 	ffe_ctl.retry_clustered = false;
3959 	ffe_ctl.retry_unclustered = false;
3960 	ffe_ctl.last_ptr = NULL;
3961 	ffe_ctl.use_cluster = true;
3962 
3963 	ins->type = BTRFS_EXTENT_ITEM_KEY;
3964 	ins->objectid = 0;
3965 	ins->offset = 0;
3966 
3967 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3968 
3969 	space_info = btrfs_find_space_info(fs_info, flags);
3970 	if (!space_info) {
3971 		btrfs_err(fs_info, "No space info for %llu", flags);
3972 		return -ENOSPC;
3973 	}
3974 
3975 	ret = prepare_allocation(fs_info, &ffe_ctl, space_info, ins);
3976 	if (ret < 0)
3977 		return ret;
3978 
3979 	ffe_ctl.search_start = max(ffe_ctl.search_start,
3980 				   first_logical_byte(fs_info, 0));
3981 	ffe_ctl.search_start = max(ffe_ctl.search_start, ffe_ctl.hint_byte);
3982 	if (ffe_ctl.search_start == ffe_ctl.hint_byte) {
3983 		block_group = btrfs_lookup_block_group(fs_info,
3984 						       ffe_ctl.search_start);
3985 		/*
3986 		 * we don't want to use the block group if it doesn't match our
3987 		 * allocation bits, or if its not cached.
3988 		 *
3989 		 * However if we are re-searching with an ideal block group
3990 		 * picked out then we don't care that the block group is cached.
3991 		 */
3992 		if (block_group && block_group_bits(block_group, flags) &&
3993 		    block_group->cached != BTRFS_CACHE_NO) {
3994 			down_read(&space_info->groups_sem);
3995 			if (list_empty(&block_group->list) ||
3996 			    block_group->ro) {
3997 				/*
3998 				 * someone is removing this block group,
3999 				 * we can't jump into the have_block_group
4000 				 * target because our list pointers are not
4001 				 * valid
4002 				 */
4003 				btrfs_put_block_group(block_group);
4004 				up_read(&space_info->groups_sem);
4005 			} else {
4006 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
4007 						block_group->flags);
4008 				btrfs_lock_block_group(block_group, delalloc);
4009 				goto have_block_group;
4010 			}
4011 		} else if (block_group) {
4012 			btrfs_put_block_group(block_group);
4013 		}
4014 	}
4015 search:
4016 	ffe_ctl.have_caching_bg = false;
4017 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
4018 	    ffe_ctl.index == 0)
4019 		full_search = true;
4020 	down_read(&space_info->groups_sem);
4021 	list_for_each_entry(block_group,
4022 			    &space_info->block_groups[ffe_ctl.index], list) {
4023 		struct btrfs_block_group *bg_ret;
4024 
4025 		/* If the block group is read-only, we can skip it entirely. */
4026 		if (unlikely(block_group->ro))
4027 			continue;
4028 
4029 		btrfs_grab_block_group(block_group, delalloc);
4030 		ffe_ctl.search_start = block_group->start;
4031 
4032 		/*
4033 		 * this can happen if we end up cycling through all the
4034 		 * raid types, but we want to make sure we only allocate
4035 		 * for the proper type.
4036 		 */
4037 		if (!block_group_bits(block_group, flags)) {
4038 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4039 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4040 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4041 				BTRFS_BLOCK_GROUP_RAID10;
4042 
4043 			/*
4044 			 * if they asked for extra copies and this block group
4045 			 * doesn't provide them, bail.  This does allow us to
4046 			 * fill raid0 from raid1.
4047 			 */
4048 			if ((flags & extra) && !(block_group->flags & extra))
4049 				goto loop;
4050 
4051 			/*
4052 			 * This block group has different flags than we want.
4053 			 * It's possible that we have MIXED_GROUP flag but no
4054 			 * block group is mixed.  Just skip such block group.
4055 			 */
4056 			btrfs_release_block_group(block_group, delalloc);
4057 			continue;
4058 		}
4059 
4060 have_block_group:
4061 		ffe_ctl.cached = btrfs_block_group_done(block_group);
4062 		if (unlikely(!ffe_ctl.cached)) {
4063 			ffe_ctl.have_caching_bg = true;
4064 			ret = btrfs_cache_block_group(block_group, 0);
4065 
4066 			/*
4067 			 * If we get ENOMEM here or something else we want to
4068 			 * try other block groups, because it may not be fatal.
4069 			 * However if we can't find anything else we need to
4070 			 * save our return here so that we return the actual
4071 			 * error that caused problems, not ENOSPC.
4072 			 */
4073 			if (ret < 0) {
4074 				if (!cache_block_group_error)
4075 					cache_block_group_error = ret;
4076 				ret = 0;
4077 				goto loop;
4078 			}
4079 			ret = 0;
4080 		}
4081 
4082 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4083 			goto loop;
4084 
4085 		bg_ret = NULL;
4086 		ret = do_allocation(block_group, &ffe_ctl, &bg_ret);
4087 		if (ret == 0) {
4088 			if (bg_ret && bg_ret != block_group) {
4089 				btrfs_release_block_group(block_group, delalloc);
4090 				block_group = bg_ret;
4091 			}
4092 		} else if (ret == -EAGAIN) {
4093 			goto have_block_group;
4094 		} else if (ret > 0) {
4095 			goto loop;
4096 		}
4097 
4098 		/* Checks */
4099 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4100 					     fs_info->stripesize);
4101 
4102 		/* move on to the next group */
4103 		if (ffe_ctl.search_start + num_bytes >
4104 		    block_group->start + block_group->length) {
4105 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4106 					     num_bytes);
4107 			goto loop;
4108 		}
4109 
4110 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4111 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4112 				ffe_ctl.search_start - ffe_ctl.found_offset);
4113 
4114 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4115 				num_bytes, delalloc);
4116 		if (ret == -EAGAIN) {
4117 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4118 					     num_bytes);
4119 			goto loop;
4120 		}
4121 		btrfs_inc_block_group_reservations(block_group);
4122 
4123 		/* we are all good, lets return */
4124 		ins->objectid = ffe_ctl.search_start;
4125 		ins->offset = num_bytes;
4126 
4127 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4128 					   num_bytes);
4129 		btrfs_release_block_group(block_group, delalloc);
4130 		break;
4131 loop:
4132 		release_block_group(block_group, &ffe_ctl, delalloc);
4133 		cond_resched();
4134 	}
4135 	up_read(&space_info->groups_sem);
4136 
4137 	ret = find_free_extent_update_loop(fs_info, ins, &ffe_ctl, full_search);
4138 	if (ret > 0)
4139 		goto search;
4140 
4141 	if (ret == -ENOSPC && !cache_block_group_error) {
4142 		/*
4143 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4144 		 * any contiguous hole.
4145 		 */
4146 		if (!ffe_ctl.max_extent_size)
4147 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4148 		spin_lock(&space_info->lock);
4149 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4150 		spin_unlock(&space_info->lock);
4151 		ins->offset = ffe_ctl.max_extent_size;
4152 	} else if (ret == -ENOSPC) {
4153 		ret = cache_block_group_error;
4154 	}
4155 	return ret;
4156 }
4157 
4158 /*
4159  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4160  *			  hole that is at least as big as @num_bytes.
4161  *
4162  * @root           -	The root that will contain this extent
4163  *
4164  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4165  *			is used for accounting purposes. This value differs
4166  *			from @num_bytes only in the case of compressed extents.
4167  *
4168  * @num_bytes      -	Number of bytes to allocate on-disk.
4169  *
4170  * @min_alloc_size -	Indicates the minimum amount of space that the
4171  *			allocator should try to satisfy. In some cases
4172  *			@num_bytes may be larger than what is required and if
4173  *			the filesystem is fragmented then allocation fails.
4174  *			However, the presence of @min_alloc_size gives a
4175  *			chance to try and satisfy the smaller allocation.
4176  *
4177  * @empty_size     -	A hint that you plan on doing more COW. This is the
4178  *			size in bytes the allocator should try to find free
4179  *			next to the block it returns.  This is just a hint and
4180  *			may be ignored by the allocator.
4181  *
4182  * @hint_byte      -	Hint to the allocator to start searching above the byte
4183  *			address passed. It might be ignored.
4184  *
4185  * @ins            -	This key is modified to record the found hole. It will
4186  *			have the following values:
4187  *			ins->objectid == start position
4188  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4189  *			ins->offset == the size of the hole.
4190  *
4191  * @is_data        -	Boolean flag indicating whether an extent is
4192  *			allocated for data (true) or metadata (false)
4193  *
4194  * @delalloc       -	Boolean flag indicating whether this allocation is for
4195  *			delalloc or not. If 'true' data_rwsem of block groups
4196  *			is going to be acquired.
4197  *
4198  *
4199  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4200  * case -ENOSPC is returned then @ins->offset will contain the size of the
4201  * largest available hole the allocator managed to find.
4202  */
4203 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4204 			 u64 num_bytes, u64 min_alloc_size,
4205 			 u64 empty_size, u64 hint_byte,
4206 			 struct btrfs_key *ins, int is_data, int delalloc)
4207 {
4208 	struct btrfs_fs_info *fs_info = root->fs_info;
4209 	bool final_tried = num_bytes == min_alloc_size;
4210 	u64 flags;
4211 	int ret;
4212 
4213 	flags = get_alloc_profile_by_root(root, is_data);
4214 again:
4215 	WARN_ON(num_bytes < fs_info->sectorsize);
4216 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4217 			       hint_byte, ins, flags, delalloc);
4218 	if (!ret && !is_data) {
4219 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4220 	} else if (ret == -ENOSPC) {
4221 		if (!final_tried && ins->offset) {
4222 			num_bytes = min(num_bytes >> 1, ins->offset);
4223 			num_bytes = round_down(num_bytes,
4224 					       fs_info->sectorsize);
4225 			num_bytes = max(num_bytes, min_alloc_size);
4226 			ram_bytes = num_bytes;
4227 			if (num_bytes == min_alloc_size)
4228 				final_tried = true;
4229 			goto again;
4230 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4231 			struct btrfs_space_info *sinfo;
4232 
4233 			sinfo = btrfs_find_space_info(fs_info, flags);
4234 			btrfs_err(fs_info,
4235 				  "allocation failed flags %llu, wanted %llu",
4236 				  flags, num_bytes);
4237 			if (sinfo)
4238 				btrfs_dump_space_info(fs_info, sinfo,
4239 						      num_bytes, 1);
4240 		}
4241 	}
4242 
4243 	return ret;
4244 }
4245 
4246 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4247 			       u64 start, u64 len, int delalloc)
4248 {
4249 	struct btrfs_block_group *cache;
4250 
4251 	cache = btrfs_lookup_block_group(fs_info, start);
4252 	if (!cache) {
4253 		btrfs_err(fs_info, "Unable to find block group for %llu",
4254 			  start);
4255 		return -ENOSPC;
4256 	}
4257 
4258 	btrfs_add_free_space(cache, start, len);
4259 	btrfs_free_reserved_bytes(cache, len, delalloc);
4260 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4261 
4262 	btrfs_put_block_group(cache);
4263 	return 0;
4264 }
4265 
4266 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4267 			      u64 len)
4268 {
4269 	struct btrfs_block_group *cache;
4270 	int ret = 0;
4271 
4272 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4273 	if (!cache) {
4274 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4275 			  start);
4276 		return -ENOSPC;
4277 	}
4278 
4279 	ret = pin_down_extent(trans, cache, start, len, 1);
4280 	btrfs_put_block_group(cache);
4281 	return ret;
4282 }
4283 
4284 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4285 				      u64 parent, u64 root_objectid,
4286 				      u64 flags, u64 owner, u64 offset,
4287 				      struct btrfs_key *ins, int ref_mod)
4288 {
4289 	struct btrfs_fs_info *fs_info = trans->fs_info;
4290 	int ret;
4291 	struct btrfs_extent_item *extent_item;
4292 	struct btrfs_extent_inline_ref *iref;
4293 	struct btrfs_path *path;
4294 	struct extent_buffer *leaf;
4295 	int type;
4296 	u32 size;
4297 
4298 	if (parent > 0)
4299 		type = BTRFS_SHARED_DATA_REF_KEY;
4300 	else
4301 		type = BTRFS_EXTENT_DATA_REF_KEY;
4302 
4303 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4304 
4305 	path = btrfs_alloc_path();
4306 	if (!path)
4307 		return -ENOMEM;
4308 
4309 	path->leave_spinning = 1;
4310 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4311 				      ins, size);
4312 	if (ret) {
4313 		btrfs_free_path(path);
4314 		return ret;
4315 	}
4316 
4317 	leaf = path->nodes[0];
4318 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4319 				     struct btrfs_extent_item);
4320 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4321 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4322 	btrfs_set_extent_flags(leaf, extent_item,
4323 			       flags | BTRFS_EXTENT_FLAG_DATA);
4324 
4325 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4326 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4327 	if (parent > 0) {
4328 		struct btrfs_shared_data_ref *ref;
4329 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4330 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4331 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4332 	} else {
4333 		struct btrfs_extent_data_ref *ref;
4334 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4335 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4336 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4337 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4338 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4339 	}
4340 
4341 	btrfs_mark_buffer_dirty(path->nodes[0]);
4342 	btrfs_free_path(path);
4343 
4344 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4345 	if (ret)
4346 		return ret;
4347 
4348 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4349 	if (ret) { /* -ENOENT, logic error */
4350 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4351 			ins->objectid, ins->offset);
4352 		BUG();
4353 	}
4354 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4355 	return ret;
4356 }
4357 
4358 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4359 				     struct btrfs_delayed_ref_node *node,
4360 				     struct btrfs_delayed_extent_op *extent_op)
4361 {
4362 	struct btrfs_fs_info *fs_info = trans->fs_info;
4363 	int ret;
4364 	struct btrfs_extent_item *extent_item;
4365 	struct btrfs_key extent_key;
4366 	struct btrfs_tree_block_info *block_info;
4367 	struct btrfs_extent_inline_ref *iref;
4368 	struct btrfs_path *path;
4369 	struct extent_buffer *leaf;
4370 	struct btrfs_delayed_tree_ref *ref;
4371 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4372 	u64 num_bytes;
4373 	u64 flags = extent_op->flags_to_set;
4374 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4375 
4376 	ref = btrfs_delayed_node_to_tree_ref(node);
4377 
4378 	extent_key.objectid = node->bytenr;
4379 	if (skinny_metadata) {
4380 		extent_key.offset = ref->level;
4381 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4382 		num_bytes = fs_info->nodesize;
4383 	} else {
4384 		extent_key.offset = node->num_bytes;
4385 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4386 		size += sizeof(*block_info);
4387 		num_bytes = node->num_bytes;
4388 	}
4389 
4390 	path = btrfs_alloc_path();
4391 	if (!path)
4392 		return -ENOMEM;
4393 
4394 	path->leave_spinning = 1;
4395 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4396 				      &extent_key, size);
4397 	if (ret) {
4398 		btrfs_free_path(path);
4399 		return ret;
4400 	}
4401 
4402 	leaf = path->nodes[0];
4403 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4404 				     struct btrfs_extent_item);
4405 	btrfs_set_extent_refs(leaf, extent_item, 1);
4406 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4407 	btrfs_set_extent_flags(leaf, extent_item,
4408 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4409 
4410 	if (skinny_metadata) {
4411 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4412 	} else {
4413 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4414 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4415 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4416 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4417 	}
4418 
4419 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4420 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4421 		btrfs_set_extent_inline_ref_type(leaf, iref,
4422 						 BTRFS_SHARED_BLOCK_REF_KEY);
4423 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4424 	} else {
4425 		btrfs_set_extent_inline_ref_type(leaf, iref,
4426 						 BTRFS_TREE_BLOCK_REF_KEY);
4427 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4428 	}
4429 
4430 	btrfs_mark_buffer_dirty(leaf);
4431 	btrfs_free_path(path);
4432 
4433 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4434 					  num_bytes);
4435 	if (ret)
4436 		return ret;
4437 
4438 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4439 				       fs_info->nodesize, 1);
4440 	if (ret) { /* -ENOENT, logic error */
4441 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4442 			extent_key.objectid, extent_key.offset);
4443 		BUG();
4444 	}
4445 
4446 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4447 					  fs_info->nodesize);
4448 	return ret;
4449 }
4450 
4451 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4452 				     struct btrfs_root *root, u64 owner,
4453 				     u64 offset, u64 ram_bytes,
4454 				     struct btrfs_key *ins)
4455 {
4456 	struct btrfs_ref generic_ref = { 0 };
4457 	int ret;
4458 
4459 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4460 
4461 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4462 			       ins->objectid, ins->offset, 0);
4463 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4464 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4465 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4466 					 ram_bytes, NULL, NULL);
4467 	return ret;
4468 }
4469 
4470 /*
4471  * this is used by the tree logging recovery code.  It records that
4472  * an extent has been allocated and makes sure to clear the free
4473  * space cache bits as well
4474  */
4475 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4476 				   u64 root_objectid, u64 owner, u64 offset,
4477 				   struct btrfs_key *ins)
4478 {
4479 	struct btrfs_fs_info *fs_info = trans->fs_info;
4480 	int ret;
4481 	struct btrfs_block_group *block_group;
4482 	struct btrfs_space_info *space_info;
4483 
4484 	/*
4485 	 * Mixed block groups will exclude before processing the log so we only
4486 	 * need to do the exclude dance if this fs isn't mixed.
4487 	 */
4488 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4489 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4490 					      ins->offset);
4491 		if (ret)
4492 			return ret;
4493 	}
4494 
4495 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4496 	if (!block_group)
4497 		return -EINVAL;
4498 
4499 	space_info = block_group->space_info;
4500 	spin_lock(&space_info->lock);
4501 	spin_lock(&block_group->lock);
4502 	space_info->bytes_reserved += ins->offset;
4503 	block_group->reserved += ins->offset;
4504 	spin_unlock(&block_group->lock);
4505 	spin_unlock(&space_info->lock);
4506 
4507 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4508 					 offset, ins, 1);
4509 	if (ret)
4510 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4511 	btrfs_put_block_group(block_group);
4512 	return ret;
4513 }
4514 
4515 static struct extent_buffer *
4516 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4517 		      u64 bytenr, int level, u64 owner)
4518 {
4519 	struct btrfs_fs_info *fs_info = root->fs_info;
4520 	struct extent_buffer *buf;
4521 
4522 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4523 	if (IS_ERR(buf))
4524 		return buf;
4525 
4526 	/*
4527 	 * Extra safety check in case the extent tree is corrupted and extent
4528 	 * allocator chooses to use a tree block which is already used and
4529 	 * locked.
4530 	 */
4531 	if (buf->lock_owner == current->pid) {
4532 		btrfs_err_rl(fs_info,
4533 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4534 			buf->start, btrfs_header_owner(buf), current->pid);
4535 		free_extent_buffer(buf);
4536 		return ERR_PTR(-EUCLEAN);
4537 	}
4538 
4539 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4540 	btrfs_tree_lock(buf);
4541 	btrfs_clean_tree_block(buf);
4542 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4543 
4544 	btrfs_set_lock_blocking_write(buf);
4545 	set_extent_buffer_uptodate(buf);
4546 
4547 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4548 	btrfs_set_header_level(buf, level);
4549 	btrfs_set_header_bytenr(buf, buf->start);
4550 	btrfs_set_header_generation(buf, trans->transid);
4551 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4552 	btrfs_set_header_owner(buf, owner);
4553 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4554 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4555 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4556 		buf->log_index = root->log_transid % 2;
4557 		/*
4558 		 * we allow two log transactions at a time, use different
4559 		 * EXTENT bit to differentiate dirty pages.
4560 		 */
4561 		if (buf->log_index == 0)
4562 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4563 					buf->start + buf->len - 1, GFP_NOFS);
4564 		else
4565 			set_extent_new(&root->dirty_log_pages, buf->start,
4566 					buf->start + buf->len - 1);
4567 	} else {
4568 		buf->log_index = -1;
4569 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4570 			 buf->start + buf->len - 1, GFP_NOFS);
4571 	}
4572 	trans->dirty = true;
4573 	/* this returns a buffer locked for blocking */
4574 	return buf;
4575 }
4576 
4577 /*
4578  * finds a free extent and does all the dirty work required for allocation
4579  * returns the tree buffer or an ERR_PTR on error.
4580  */
4581 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4582 					     struct btrfs_root *root,
4583 					     u64 parent, u64 root_objectid,
4584 					     const struct btrfs_disk_key *key,
4585 					     int level, u64 hint,
4586 					     u64 empty_size)
4587 {
4588 	struct btrfs_fs_info *fs_info = root->fs_info;
4589 	struct btrfs_key ins;
4590 	struct btrfs_block_rsv *block_rsv;
4591 	struct extent_buffer *buf;
4592 	struct btrfs_delayed_extent_op *extent_op;
4593 	struct btrfs_ref generic_ref = { 0 };
4594 	u64 flags = 0;
4595 	int ret;
4596 	u32 blocksize = fs_info->nodesize;
4597 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4598 
4599 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4600 	if (btrfs_is_testing(fs_info)) {
4601 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4602 					    level, root_objectid);
4603 		if (!IS_ERR(buf))
4604 			root->alloc_bytenr += blocksize;
4605 		return buf;
4606 	}
4607 #endif
4608 
4609 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4610 	if (IS_ERR(block_rsv))
4611 		return ERR_CAST(block_rsv);
4612 
4613 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4614 				   empty_size, hint, &ins, 0, 0);
4615 	if (ret)
4616 		goto out_unuse;
4617 
4618 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4619 				    root_objectid);
4620 	if (IS_ERR(buf)) {
4621 		ret = PTR_ERR(buf);
4622 		goto out_free_reserved;
4623 	}
4624 
4625 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4626 		if (parent == 0)
4627 			parent = ins.objectid;
4628 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4629 	} else
4630 		BUG_ON(parent > 0);
4631 
4632 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4633 		extent_op = btrfs_alloc_delayed_extent_op();
4634 		if (!extent_op) {
4635 			ret = -ENOMEM;
4636 			goto out_free_buf;
4637 		}
4638 		if (key)
4639 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4640 		else
4641 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4642 		extent_op->flags_to_set = flags;
4643 		extent_op->update_key = skinny_metadata ? false : true;
4644 		extent_op->update_flags = true;
4645 		extent_op->is_data = false;
4646 		extent_op->level = level;
4647 
4648 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4649 				       ins.objectid, ins.offset, parent);
4650 		generic_ref.real_root = root->root_key.objectid;
4651 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4652 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4653 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4654 						 extent_op, NULL, NULL);
4655 		if (ret)
4656 			goto out_free_delayed;
4657 	}
4658 	return buf;
4659 
4660 out_free_delayed:
4661 	btrfs_free_delayed_extent_op(extent_op);
4662 out_free_buf:
4663 	free_extent_buffer(buf);
4664 out_free_reserved:
4665 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4666 out_unuse:
4667 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4668 	return ERR_PTR(ret);
4669 }
4670 
4671 struct walk_control {
4672 	u64 refs[BTRFS_MAX_LEVEL];
4673 	u64 flags[BTRFS_MAX_LEVEL];
4674 	struct btrfs_key update_progress;
4675 	struct btrfs_key drop_progress;
4676 	int drop_level;
4677 	int stage;
4678 	int level;
4679 	int shared_level;
4680 	int update_ref;
4681 	int keep_locks;
4682 	int reada_slot;
4683 	int reada_count;
4684 	int restarted;
4685 };
4686 
4687 #define DROP_REFERENCE	1
4688 #define UPDATE_BACKREF	2
4689 
4690 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4691 				     struct btrfs_root *root,
4692 				     struct walk_control *wc,
4693 				     struct btrfs_path *path)
4694 {
4695 	struct btrfs_fs_info *fs_info = root->fs_info;
4696 	u64 bytenr;
4697 	u64 generation;
4698 	u64 refs;
4699 	u64 flags;
4700 	u32 nritems;
4701 	struct btrfs_key key;
4702 	struct extent_buffer *eb;
4703 	int ret;
4704 	int slot;
4705 	int nread = 0;
4706 
4707 	if (path->slots[wc->level] < wc->reada_slot) {
4708 		wc->reada_count = wc->reada_count * 2 / 3;
4709 		wc->reada_count = max(wc->reada_count, 2);
4710 	} else {
4711 		wc->reada_count = wc->reada_count * 3 / 2;
4712 		wc->reada_count = min_t(int, wc->reada_count,
4713 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4714 	}
4715 
4716 	eb = path->nodes[wc->level];
4717 	nritems = btrfs_header_nritems(eb);
4718 
4719 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4720 		if (nread >= wc->reada_count)
4721 			break;
4722 
4723 		cond_resched();
4724 		bytenr = btrfs_node_blockptr(eb, slot);
4725 		generation = btrfs_node_ptr_generation(eb, slot);
4726 
4727 		if (slot == path->slots[wc->level])
4728 			goto reada;
4729 
4730 		if (wc->stage == UPDATE_BACKREF &&
4731 		    generation <= root->root_key.offset)
4732 			continue;
4733 
4734 		/* We don't lock the tree block, it's OK to be racy here */
4735 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4736 					       wc->level - 1, 1, &refs,
4737 					       &flags);
4738 		/* We don't care about errors in readahead. */
4739 		if (ret < 0)
4740 			continue;
4741 		BUG_ON(refs == 0);
4742 
4743 		if (wc->stage == DROP_REFERENCE) {
4744 			if (refs == 1)
4745 				goto reada;
4746 
4747 			if (wc->level == 1 &&
4748 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4749 				continue;
4750 			if (!wc->update_ref ||
4751 			    generation <= root->root_key.offset)
4752 				continue;
4753 			btrfs_node_key_to_cpu(eb, &key, slot);
4754 			ret = btrfs_comp_cpu_keys(&key,
4755 						  &wc->update_progress);
4756 			if (ret < 0)
4757 				continue;
4758 		} else {
4759 			if (wc->level == 1 &&
4760 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4761 				continue;
4762 		}
4763 reada:
4764 		readahead_tree_block(fs_info, bytenr);
4765 		nread++;
4766 	}
4767 	wc->reada_slot = slot;
4768 }
4769 
4770 /*
4771  * helper to process tree block while walking down the tree.
4772  *
4773  * when wc->stage == UPDATE_BACKREF, this function updates
4774  * back refs for pointers in the block.
4775  *
4776  * NOTE: return value 1 means we should stop walking down.
4777  */
4778 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4779 				   struct btrfs_root *root,
4780 				   struct btrfs_path *path,
4781 				   struct walk_control *wc, int lookup_info)
4782 {
4783 	struct btrfs_fs_info *fs_info = root->fs_info;
4784 	int level = wc->level;
4785 	struct extent_buffer *eb = path->nodes[level];
4786 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4787 	int ret;
4788 
4789 	if (wc->stage == UPDATE_BACKREF &&
4790 	    btrfs_header_owner(eb) != root->root_key.objectid)
4791 		return 1;
4792 
4793 	/*
4794 	 * when reference count of tree block is 1, it won't increase
4795 	 * again. once full backref flag is set, we never clear it.
4796 	 */
4797 	if (lookup_info &&
4798 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4799 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4800 		BUG_ON(!path->locks[level]);
4801 		ret = btrfs_lookup_extent_info(trans, fs_info,
4802 					       eb->start, level, 1,
4803 					       &wc->refs[level],
4804 					       &wc->flags[level]);
4805 		BUG_ON(ret == -ENOMEM);
4806 		if (ret)
4807 			return ret;
4808 		BUG_ON(wc->refs[level] == 0);
4809 	}
4810 
4811 	if (wc->stage == DROP_REFERENCE) {
4812 		if (wc->refs[level] > 1)
4813 			return 1;
4814 
4815 		if (path->locks[level] && !wc->keep_locks) {
4816 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4817 			path->locks[level] = 0;
4818 		}
4819 		return 0;
4820 	}
4821 
4822 	/* wc->stage == UPDATE_BACKREF */
4823 	if (!(wc->flags[level] & flag)) {
4824 		BUG_ON(!path->locks[level]);
4825 		ret = btrfs_inc_ref(trans, root, eb, 1);
4826 		BUG_ON(ret); /* -ENOMEM */
4827 		ret = btrfs_dec_ref(trans, root, eb, 0);
4828 		BUG_ON(ret); /* -ENOMEM */
4829 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
4830 						  btrfs_header_level(eb), 0);
4831 		BUG_ON(ret); /* -ENOMEM */
4832 		wc->flags[level] |= flag;
4833 	}
4834 
4835 	/*
4836 	 * the block is shared by multiple trees, so it's not good to
4837 	 * keep the tree lock
4838 	 */
4839 	if (path->locks[level] && level > 0) {
4840 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4841 		path->locks[level] = 0;
4842 	}
4843 	return 0;
4844 }
4845 
4846 /*
4847  * This is used to verify a ref exists for this root to deal with a bug where we
4848  * would have a drop_progress key that hadn't been updated properly.
4849  */
4850 static int check_ref_exists(struct btrfs_trans_handle *trans,
4851 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4852 			    int level)
4853 {
4854 	struct btrfs_path *path;
4855 	struct btrfs_extent_inline_ref *iref;
4856 	int ret;
4857 
4858 	path = btrfs_alloc_path();
4859 	if (!path)
4860 		return -ENOMEM;
4861 
4862 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4863 				    root->fs_info->nodesize, parent,
4864 				    root->root_key.objectid, level, 0);
4865 	btrfs_free_path(path);
4866 	if (ret == -ENOENT)
4867 		return 0;
4868 	if (ret < 0)
4869 		return ret;
4870 	return 1;
4871 }
4872 
4873 /*
4874  * helper to process tree block pointer.
4875  *
4876  * when wc->stage == DROP_REFERENCE, this function checks
4877  * reference count of the block pointed to. if the block
4878  * is shared and we need update back refs for the subtree
4879  * rooted at the block, this function changes wc->stage to
4880  * UPDATE_BACKREF. if the block is shared and there is no
4881  * need to update back, this function drops the reference
4882  * to the block.
4883  *
4884  * NOTE: return value 1 means we should stop walking down.
4885  */
4886 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4887 				 struct btrfs_root *root,
4888 				 struct btrfs_path *path,
4889 				 struct walk_control *wc, int *lookup_info)
4890 {
4891 	struct btrfs_fs_info *fs_info = root->fs_info;
4892 	u64 bytenr;
4893 	u64 generation;
4894 	u64 parent;
4895 	struct btrfs_key key;
4896 	struct btrfs_key first_key;
4897 	struct btrfs_ref ref = { 0 };
4898 	struct extent_buffer *next;
4899 	int level = wc->level;
4900 	int reada = 0;
4901 	int ret = 0;
4902 	bool need_account = false;
4903 
4904 	generation = btrfs_node_ptr_generation(path->nodes[level],
4905 					       path->slots[level]);
4906 	/*
4907 	 * if the lower level block was created before the snapshot
4908 	 * was created, we know there is no need to update back refs
4909 	 * for the subtree
4910 	 */
4911 	if (wc->stage == UPDATE_BACKREF &&
4912 	    generation <= root->root_key.offset) {
4913 		*lookup_info = 1;
4914 		return 1;
4915 	}
4916 
4917 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4918 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4919 			      path->slots[level]);
4920 
4921 	next = find_extent_buffer(fs_info, bytenr);
4922 	if (!next) {
4923 		next = btrfs_find_create_tree_block(fs_info, bytenr);
4924 		if (IS_ERR(next))
4925 			return PTR_ERR(next);
4926 
4927 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4928 					       level - 1);
4929 		reada = 1;
4930 	}
4931 	btrfs_tree_lock(next);
4932 	btrfs_set_lock_blocking_write(next);
4933 
4934 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4935 				       &wc->refs[level - 1],
4936 				       &wc->flags[level - 1]);
4937 	if (ret < 0)
4938 		goto out_unlock;
4939 
4940 	if (unlikely(wc->refs[level - 1] == 0)) {
4941 		btrfs_err(fs_info, "Missing references.");
4942 		ret = -EIO;
4943 		goto out_unlock;
4944 	}
4945 	*lookup_info = 0;
4946 
4947 	if (wc->stage == DROP_REFERENCE) {
4948 		if (wc->refs[level - 1] > 1) {
4949 			need_account = true;
4950 			if (level == 1 &&
4951 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4952 				goto skip;
4953 
4954 			if (!wc->update_ref ||
4955 			    generation <= root->root_key.offset)
4956 				goto skip;
4957 
4958 			btrfs_node_key_to_cpu(path->nodes[level], &key,
4959 					      path->slots[level]);
4960 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4961 			if (ret < 0)
4962 				goto skip;
4963 
4964 			wc->stage = UPDATE_BACKREF;
4965 			wc->shared_level = level - 1;
4966 		}
4967 	} else {
4968 		if (level == 1 &&
4969 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4970 			goto skip;
4971 	}
4972 
4973 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4974 		btrfs_tree_unlock(next);
4975 		free_extent_buffer(next);
4976 		next = NULL;
4977 		*lookup_info = 1;
4978 	}
4979 
4980 	if (!next) {
4981 		if (reada && level == 1)
4982 			reada_walk_down(trans, root, wc, path);
4983 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4984 				       &first_key);
4985 		if (IS_ERR(next)) {
4986 			return PTR_ERR(next);
4987 		} else if (!extent_buffer_uptodate(next)) {
4988 			free_extent_buffer(next);
4989 			return -EIO;
4990 		}
4991 		btrfs_tree_lock(next);
4992 		btrfs_set_lock_blocking_write(next);
4993 	}
4994 
4995 	level--;
4996 	ASSERT(level == btrfs_header_level(next));
4997 	if (level != btrfs_header_level(next)) {
4998 		btrfs_err(root->fs_info, "mismatched level");
4999 		ret = -EIO;
5000 		goto out_unlock;
5001 	}
5002 	path->nodes[level] = next;
5003 	path->slots[level] = 0;
5004 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5005 	wc->level = level;
5006 	if (wc->level == 1)
5007 		wc->reada_slot = 0;
5008 	return 0;
5009 skip:
5010 	wc->refs[level - 1] = 0;
5011 	wc->flags[level - 1] = 0;
5012 	if (wc->stage == DROP_REFERENCE) {
5013 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5014 			parent = path->nodes[level]->start;
5015 		} else {
5016 			ASSERT(root->root_key.objectid ==
5017 			       btrfs_header_owner(path->nodes[level]));
5018 			if (root->root_key.objectid !=
5019 			    btrfs_header_owner(path->nodes[level])) {
5020 				btrfs_err(root->fs_info,
5021 						"mismatched block owner");
5022 				ret = -EIO;
5023 				goto out_unlock;
5024 			}
5025 			parent = 0;
5026 		}
5027 
5028 		/*
5029 		 * If we had a drop_progress we need to verify the refs are set
5030 		 * as expected.  If we find our ref then we know that from here
5031 		 * on out everything should be correct, and we can clear the
5032 		 * ->restarted flag.
5033 		 */
5034 		if (wc->restarted) {
5035 			ret = check_ref_exists(trans, root, bytenr, parent,
5036 					       level - 1);
5037 			if (ret < 0)
5038 				goto out_unlock;
5039 			if (ret == 0)
5040 				goto no_delete;
5041 			ret = 0;
5042 			wc->restarted = 0;
5043 		}
5044 
5045 		/*
5046 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5047 		 * already accounted them at merge time (replace_path),
5048 		 * thus we could skip expensive subtree trace here.
5049 		 */
5050 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5051 		    need_account) {
5052 			ret = btrfs_qgroup_trace_subtree(trans, next,
5053 							 generation, level - 1);
5054 			if (ret) {
5055 				btrfs_err_rl(fs_info,
5056 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5057 					     ret);
5058 			}
5059 		}
5060 
5061 		/*
5062 		 * We need to update the next key in our walk control so we can
5063 		 * update the drop_progress key accordingly.  We don't care if
5064 		 * find_next_key doesn't find a key because that means we're at
5065 		 * the end and are going to clean up now.
5066 		 */
5067 		wc->drop_level = level;
5068 		find_next_key(path, level, &wc->drop_progress);
5069 
5070 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5071 				       fs_info->nodesize, parent);
5072 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
5073 		ret = btrfs_free_extent(trans, &ref);
5074 		if (ret)
5075 			goto out_unlock;
5076 	}
5077 no_delete:
5078 	*lookup_info = 1;
5079 	ret = 1;
5080 
5081 out_unlock:
5082 	btrfs_tree_unlock(next);
5083 	free_extent_buffer(next);
5084 
5085 	return ret;
5086 }
5087 
5088 /*
5089  * helper to process tree block while walking up the tree.
5090  *
5091  * when wc->stage == DROP_REFERENCE, this function drops
5092  * reference count on the block.
5093  *
5094  * when wc->stage == UPDATE_BACKREF, this function changes
5095  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5096  * to UPDATE_BACKREF previously while processing the block.
5097  *
5098  * NOTE: return value 1 means we should stop walking up.
5099  */
5100 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5101 				 struct btrfs_root *root,
5102 				 struct btrfs_path *path,
5103 				 struct walk_control *wc)
5104 {
5105 	struct btrfs_fs_info *fs_info = root->fs_info;
5106 	int ret;
5107 	int level = wc->level;
5108 	struct extent_buffer *eb = path->nodes[level];
5109 	u64 parent = 0;
5110 
5111 	if (wc->stage == UPDATE_BACKREF) {
5112 		BUG_ON(wc->shared_level < level);
5113 		if (level < wc->shared_level)
5114 			goto out;
5115 
5116 		ret = find_next_key(path, level + 1, &wc->update_progress);
5117 		if (ret > 0)
5118 			wc->update_ref = 0;
5119 
5120 		wc->stage = DROP_REFERENCE;
5121 		wc->shared_level = -1;
5122 		path->slots[level] = 0;
5123 
5124 		/*
5125 		 * check reference count again if the block isn't locked.
5126 		 * we should start walking down the tree again if reference
5127 		 * count is one.
5128 		 */
5129 		if (!path->locks[level]) {
5130 			BUG_ON(level == 0);
5131 			btrfs_tree_lock(eb);
5132 			btrfs_set_lock_blocking_write(eb);
5133 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5134 
5135 			ret = btrfs_lookup_extent_info(trans, fs_info,
5136 						       eb->start, level, 1,
5137 						       &wc->refs[level],
5138 						       &wc->flags[level]);
5139 			if (ret < 0) {
5140 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5141 				path->locks[level] = 0;
5142 				return ret;
5143 			}
5144 			BUG_ON(wc->refs[level] == 0);
5145 			if (wc->refs[level] == 1) {
5146 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5147 				path->locks[level] = 0;
5148 				return 1;
5149 			}
5150 		}
5151 	}
5152 
5153 	/* wc->stage == DROP_REFERENCE */
5154 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5155 
5156 	if (wc->refs[level] == 1) {
5157 		if (level == 0) {
5158 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5159 				ret = btrfs_dec_ref(trans, root, eb, 1);
5160 			else
5161 				ret = btrfs_dec_ref(trans, root, eb, 0);
5162 			BUG_ON(ret); /* -ENOMEM */
5163 			if (is_fstree(root->root_key.objectid)) {
5164 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5165 				if (ret) {
5166 					btrfs_err_rl(fs_info,
5167 	"error %d accounting leaf items, quota is out of sync, rescan required",
5168 					     ret);
5169 				}
5170 			}
5171 		}
5172 		/* make block locked assertion in btrfs_clean_tree_block happy */
5173 		if (!path->locks[level] &&
5174 		    btrfs_header_generation(eb) == trans->transid) {
5175 			btrfs_tree_lock(eb);
5176 			btrfs_set_lock_blocking_write(eb);
5177 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5178 		}
5179 		btrfs_clean_tree_block(eb);
5180 	}
5181 
5182 	if (eb == root->node) {
5183 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5184 			parent = eb->start;
5185 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5186 			goto owner_mismatch;
5187 	} else {
5188 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5189 			parent = path->nodes[level + 1]->start;
5190 		else if (root->root_key.objectid !=
5191 			 btrfs_header_owner(path->nodes[level + 1]))
5192 			goto owner_mismatch;
5193 	}
5194 
5195 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5196 out:
5197 	wc->refs[level] = 0;
5198 	wc->flags[level] = 0;
5199 	return 0;
5200 
5201 owner_mismatch:
5202 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5203 		     btrfs_header_owner(eb), root->root_key.objectid);
5204 	return -EUCLEAN;
5205 }
5206 
5207 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5208 				   struct btrfs_root *root,
5209 				   struct btrfs_path *path,
5210 				   struct walk_control *wc)
5211 {
5212 	int level = wc->level;
5213 	int lookup_info = 1;
5214 	int ret;
5215 
5216 	while (level >= 0) {
5217 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5218 		if (ret > 0)
5219 			break;
5220 
5221 		if (level == 0)
5222 			break;
5223 
5224 		if (path->slots[level] >=
5225 		    btrfs_header_nritems(path->nodes[level]))
5226 			break;
5227 
5228 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5229 		if (ret > 0) {
5230 			path->slots[level]++;
5231 			continue;
5232 		} else if (ret < 0)
5233 			return ret;
5234 		level = wc->level;
5235 	}
5236 	return 0;
5237 }
5238 
5239 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5240 				 struct btrfs_root *root,
5241 				 struct btrfs_path *path,
5242 				 struct walk_control *wc, int max_level)
5243 {
5244 	int level = wc->level;
5245 	int ret;
5246 
5247 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5248 	while (level < max_level && path->nodes[level]) {
5249 		wc->level = level;
5250 		if (path->slots[level] + 1 <
5251 		    btrfs_header_nritems(path->nodes[level])) {
5252 			path->slots[level]++;
5253 			return 0;
5254 		} else {
5255 			ret = walk_up_proc(trans, root, path, wc);
5256 			if (ret > 0)
5257 				return 0;
5258 			if (ret < 0)
5259 				return ret;
5260 
5261 			if (path->locks[level]) {
5262 				btrfs_tree_unlock_rw(path->nodes[level],
5263 						     path->locks[level]);
5264 				path->locks[level] = 0;
5265 			}
5266 			free_extent_buffer(path->nodes[level]);
5267 			path->nodes[level] = NULL;
5268 			level++;
5269 		}
5270 	}
5271 	return 1;
5272 }
5273 
5274 /*
5275  * drop a subvolume tree.
5276  *
5277  * this function traverses the tree freeing any blocks that only
5278  * referenced by the tree.
5279  *
5280  * when a shared tree block is found. this function decreases its
5281  * reference count by one. if update_ref is true, this function
5282  * also make sure backrefs for the shared block and all lower level
5283  * blocks are properly updated.
5284  *
5285  * If called with for_reloc == 0, may exit early with -EAGAIN
5286  */
5287 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5288 {
5289 	struct btrfs_fs_info *fs_info = root->fs_info;
5290 	struct btrfs_path *path;
5291 	struct btrfs_trans_handle *trans;
5292 	struct btrfs_root *tree_root = fs_info->tree_root;
5293 	struct btrfs_root_item *root_item = &root->root_item;
5294 	struct walk_control *wc;
5295 	struct btrfs_key key;
5296 	int err = 0;
5297 	int ret;
5298 	int level;
5299 	bool root_dropped = false;
5300 
5301 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5302 
5303 	path = btrfs_alloc_path();
5304 	if (!path) {
5305 		err = -ENOMEM;
5306 		goto out;
5307 	}
5308 
5309 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5310 	if (!wc) {
5311 		btrfs_free_path(path);
5312 		err = -ENOMEM;
5313 		goto out;
5314 	}
5315 
5316 	trans = btrfs_start_transaction(tree_root, 0);
5317 	if (IS_ERR(trans)) {
5318 		err = PTR_ERR(trans);
5319 		goto out_free;
5320 	}
5321 
5322 	err = btrfs_run_delayed_items(trans);
5323 	if (err)
5324 		goto out_end_trans;
5325 
5326 	/*
5327 	 * This will help us catch people modifying the fs tree while we're
5328 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5329 	 * dropped as we unlock the root node and parent nodes as we walk down
5330 	 * the tree, assuming nothing will change.  If something does change
5331 	 * then we'll have stale information and drop references to blocks we've
5332 	 * already dropped.
5333 	 */
5334 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5335 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5336 		level = btrfs_header_level(root->node);
5337 		path->nodes[level] = btrfs_lock_root_node(root);
5338 		btrfs_set_lock_blocking_write(path->nodes[level]);
5339 		path->slots[level] = 0;
5340 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5341 		memset(&wc->update_progress, 0,
5342 		       sizeof(wc->update_progress));
5343 	} else {
5344 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5345 		memcpy(&wc->update_progress, &key,
5346 		       sizeof(wc->update_progress));
5347 
5348 		level = root_item->drop_level;
5349 		BUG_ON(level == 0);
5350 		path->lowest_level = level;
5351 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5352 		path->lowest_level = 0;
5353 		if (ret < 0) {
5354 			err = ret;
5355 			goto out_end_trans;
5356 		}
5357 		WARN_ON(ret > 0);
5358 
5359 		/*
5360 		 * unlock our path, this is safe because only this
5361 		 * function is allowed to delete this snapshot
5362 		 */
5363 		btrfs_unlock_up_safe(path, 0);
5364 
5365 		level = btrfs_header_level(root->node);
5366 		while (1) {
5367 			btrfs_tree_lock(path->nodes[level]);
5368 			btrfs_set_lock_blocking_write(path->nodes[level]);
5369 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5370 
5371 			ret = btrfs_lookup_extent_info(trans, fs_info,
5372 						path->nodes[level]->start,
5373 						level, 1, &wc->refs[level],
5374 						&wc->flags[level]);
5375 			if (ret < 0) {
5376 				err = ret;
5377 				goto out_end_trans;
5378 			}
5379 			BUG_ON(wc->refs[level] == 0);
5380 
5381 			if (level == root_item->drop_level)
5382 				break;
5383 
5384 			btrfs_tree_unlock(path->nodes[level]);
5385 			path->locks[level] = 0;
5386 			WARN_ON(wc->refs[level] != 1);
5387 			level--;
5388 		}
5389 	}
5390 
5391 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5392 	wc->level = level;
5393 	wc->shared_level = -1;
5394 	wc->stage = DROP_REFERENCE;
5395 	wc->update_ref = update_ref;
5396 	wc->keep_locks = 0;
5397 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5398 
5399 	while (1) {
5400 
5401 		ret = walk_down_tree(trans, root, path, wc);
5402 		if (ret < 0) {
5403 			err = ret;
5404 			break;
5405 		}
5406 
5407 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5408 		if (ret < 0) {
5409 			err = ret;
5410 			break;
5411 		}
5412 
5413 		if (ret > 0) {
5414 			BUG_ON(wc->stage != DROP_REFERENCE);
5415 			break;
5416 		}
5417 
5418 		if (wc->stage == DROP_REFERENCE) {
5419 			wc->drop_level = wc->level;
5420 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5421 					      &wc->drop_progress,
5422 					      path->slots[wc->drop_level]);
5423 		}
5424 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5425 				      &wc->drop_progress);
5426 		root_item->drop_level = wc->drop_level;
5427 
5428 		BUG_ON(wc->level == 0);
5429 		if (btrfs_should_end_transaction(trans) ||
5430 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5431 			ret = btrfs_update_root(trans, tree_root,
5432 						&root->root_key,
5433 						root_item);
5434 			if (ret) {
5435 				btrfs_abort_transaction(trans, ret);
5436 				err = ret;
5437 				goto out_end_trans;
5438 			}
5439 
5440 			btrfs_end_transaction_throttle(trans);
5441 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5442 				btrfs_debug(fs_info,
5443 					    "drop snapshot early exit");
5444 				err = -EAGAIN;
5445 				goto out_free;
5446 			}
5447 
5448 			trans = btrfs_start_transaction(tree_root, 0);
5449 			if (IS_ERR(trans)) {
5450 				err = PTR_ERR(trans);
5451 				goto out_free;
5452 			}
5453 		}
5454 	}
5455 	btrfs_release_path(path);
5456 	if (err)
5457 		goto out_end_trans;
5458 
5459 	ret = btrfs_del_root(trans, &root->root_key);
5460 	if (ret) {
5461 		btrfs_abort_transaction(trans, ret);
5462 		err = ret;
5463 		goto out_end_trans;
5464 	}
5465 
5466 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5467 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5468 				      NULL, NULL);
5469 		if (ret < 0) {
5470 			btrfs_abort_transaction(trans, ret);
5471 			err = ret;
5472 			goto out_end_trans;
5473 		} else if (ret > 0) {
5474 			/* if we fail to delete the orphan item this time
5475 			 * around, it'll get picked up the next time.
5476 			 *
5477 			 * The most common failure here is just -ENOENT.
5478 			 */
5479 			btrfs_del_orphan_item(trans, tree_root,
5480 					      root->root_key.objectid);
5481 		}
5482 	}
5483 
5484 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5485 		btrfs_add_dropped_root(trans, root);
5486 	else
5487 		btrfs_put_root(root);
5488 	root_dropped = true;
5489 out_end_trans:
5490 	btrfs_end_transaction_throttle(trans);
5491 out_free:
5492 	kfree(wc);
5493 	btrfs_free_path(path);
5494 out:
5495 	/*
5496 	 * So if we need to stop dropping the snapshot for whatever reason we
5497 	 * need to make sure to add it back to the dead root list so that we
5498 	 * keep trying to do the work later.  This also cleans up roots if we
5499 	 * don't have it in the radix (like when we recover after a power fail
5500 	 * or unmount) so we don't leak memory.
5501 	 */
5502 	if (!for_reloc && !root_dropped)
5503 		btrfs_add_dead_root(root);
5504 	if (err && err != -EAGAIN)
5505 		btrfs_handle_fs_error(fs_info, err, NULL);
5506 	return err;
5507 }
5508 
5509 /*
5510  * drop subtree rooted at tree block 'node'.
5511  *
5512  * NOTE: this function will unlock and release tree block 'node'
5513  * only used by relocation code
5514  */
5515 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5516 			struct btrfs_root *root,
5517 			struct extent_buffer *node,
5518 			struct extent_buffer *parent)
5519 {
5520 	struct btrfs_fs_info *fs_info = root->fs_info;
5521 	struct btrfs_path *path;
5522 	struct walk_control *wc;
5523 	int level;
5524 	int parent_level;
5525 	int ret = 0;
5526 	int wret;
5527 
5528 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5529 
5530 	path = btrfs_alloc_path();
5531 	if (!path)
5532 		return -ENOMEM;
5533 
5534 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5535 	if (!wc) {
5536 		btrfs_free_path(path);
5537 		return -ENOMEM;
5538 	}
5539 
5540 	btrfs_assert_tree_locked(parent);
5541 	parent_level = btrfs_header_level(parent);
5542 	atomic_inc(&parent->refs);
5543 	path->nodes[parent_level] = parent;
5544 	path->slots[parent_level] = btrfs_header_nritems(parent);
5545 
5546 	btrfs_assert_tree_locked(node);
5547 	level = btrfs_header_level(node);
5548 	path->nodes[level] = node;
5549 	path->slots[level] = 0;
5550 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5551 
5552 	wc->refs[parent_level] = 1;
5553 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5554 	wc->level = level;
5555 	wc->shared_level = -1;
5556 	wc->stage = DROP_REFERENCE;
5557 	wc->update_ref = 0;
5558 	wc->keep_locks = 1;
5559 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5560 
5561 	while (1) {
5562 		wret = walk_down_tree(trans, root, path, wc);
5563 		if (wret < 0) {
5564 			ret = wret;
5565 			break;
5566 		}
5567 
5568 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5569 		if (wret < 0)
5570 			ret = wret;
5571 		if (wret != 0)
5572 			break;
5573 	}
5574 
5575 	kfree(wc);
5576 	btrfs_free_path(path);
5577 	return ret;
5578 }
5579 
5580 /*
5581  * helper to account the unused space of all the readonly block group in the
5582  * space_info. takes mirrors into account.
5583  */
5584 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5585 {
5586 	struct btrfs_block_group *block_group;
5587 	u64 free_bytes = 0;
5588 	int factor;
5589 
5590 	/* It's df, we don't care if it's racy */
5591 	if (list_empty(&sinfo->ro_bgs))
5592 		return 0;
5593 
5594 	spin_lock(&sinfo->lock);
5595 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5596 		spin_lock(&block_group->lock);
5597 
5598 		if (!block_group->ro) {
5599 			spin_unlock(&block_group->lock);
5600 			continue;
5601 		}
5602 
5603 		factor = btrfs_bg_type_to_factor(block_group->flags);
5604 		free_bytes += (block_group->length -
5605 			       block_group->used) * factor;
5606 
5607 		spin_unlock(&block_group->lock);
5608 	}
5609 	spin_unlock(&sinfo->lock);
5610 
5611 	return free_bytes;
5612 }
5613 
5614 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5615 				   u64 start, u64 end)
5616 {
5617 	return unpin_extent_range(fs_info, start, end, false);
5618 }
5619 
5620 /*
5621  * It used to be that old block groups would be left around forever.
5622  * Iterating over them would be enough to trim unused space.  Since we
5623  * now automatically remove them, we also need to iterate over unallocated
5624  * space.
5625  *
5626  * We don't want a transaction for this since the discard may take a
5627  * substantial amount of time.  We don't require that a transaction be
5628  * running, but we do need to take a running transaction into account
5629  * to ensure that we're not discarding chunks that were released or
5630  * allocated in the current transaction.
5631  *
5632  * Holding the chunks lock will prevent other threads from allocating
5633  * or releasing chunks, but it won't prevent a running transaction
5634  * from committing and releasing the memory that the pending chunks
5635  * list head uses.  For that, we need to take a reference to the
5636  * transaction and hold the commit root sem.  We only need to hold
5637  * it while performing the free space search since we have already
5638  * held back allocations.
5639  */
5640 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5641 {
5642 	u64 start = SZ_1M, len = 0, end = 0;
5643 	int ret;
5644 
5645 	*trimmed = 0;
5646 
5647 	/* Discard not supported = nothing to do. */
5648 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5649 		return 0;
5650 
5651 	/* Not writable = nothing to do. */
5652 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5653 		return 0;
5654 
5655 	/* No free space = nothing to do. */
5656 	if (device->total_bytes <= device->bytes_used)
5657 		return 0;
5658 
5659 	ret = 0;
5660 
5661 	while (1) {
5662 		struct btrfs_fs_info *fs_info = device->fs_info;
5663 		u64 bytes;
5664 
5665 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5666 		if (ret)
5667 			break;
5668 
5669 		find_first_clear_extent_bit(&device->alloc_state, start,
5670 					    &start, &end,
5671 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5672 
5673 		/* Ensure we skip the reserved area in the first 1M */
5674 		start = max_t(u64, start, SZ_1M);
5675 
5676 		/*
5677 		 * If find_first_clear_extent_bit find a range that spans the
5678 		 * end of the device it will set end to -1, in this case it's up
5679 		 * to the caller to trim the value to the size of the device.
5680 		 */
5681 		end = min(end, device->total_bytes - 1);
5682 
5683 		len = end - start + 1;
5684 
5685 		/* We didn't find any extents */
5686 		if (!len) {
5687 			mutex_unlock(&fs_info->chunk_mutex);
5688 			ret = 0;
5689 			break;
5690 		}
5691 
5692 		ret = btrfs_issue_discard(device->bdev, start, len,
5693 					  &bytes);
5694 		if (!ret)
5695 			set_extent_bits(&device->alloc_state, start,
5696 					start + bytes - 1,
5697 					CHUNK_TRIMMED);
5698 		mutex_unlock(&fs_info->chunk_mutex);
5699 
5700 		if (ret)
5701 			break;
5702 
5703 		start += len;
5704 		*trimmed += bytes;
5705 
5706 		if (fatal_signal_pending(current)) {
5707 			ret = -ERESTARTSYS;
5708 			break;
5709 		}
5710 
5711 		cond_resched();
5712 	}
5713 
5714 	return ret;
5715 }
5716 
5717 /*
5718  * Trim the whole filesystem by:
5719  * 1) trimming the free space in each block group
5720  * 2) trimming the unallocated space on each device
5721  *
5722  * This will also continue trimming even if a block group or device encounters
5723  * an error.  The return value will be the last error, or 0 if nothing bad
5724  * happens.
5725  */
5726 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5727 {
5728 	struct btrfs_block_group *cache = NULL;
5729 	struct btrfs_device *device;
5730 	struct list_head *devices;
5731 	u64 group_trimmed;
5732 	u64 range_end = U64_MAX;
5733 	u64 start;
5734 	u64 end;
5735 	u64 trimmed = 0;
5736 	u64 bg_failed = 0;
5737 	u64 dev_failed = 0;
5738 	int bg_ret = 0;
5739 	int dev_ret = 0;
5740 	int ret = 0;
5741 
5742 	/*
5743 	 * Check range overflow if range->len is set.
5744 	 * The default range->len is U64_MAX.
5745 	 */
5746 	if (range->len != U64_MAX &&
5747 	    check_add_overflow(range->start, range->len, &range_end))
5748 		return -EINVAL;
5749 
5750 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5751 	for (; cache; cache = btrfs_next_block_group(cache)) {
5752 		if (cache->start >= range_end) {
5753 			btrfs_put_block_group(cache);
5754 			break;
5755 		}
5756 
5757 		start = max(range->start, cache->start);
5758 		end = min(range_end, cache->start + cache->length);
5759 
5760 		if (end - start >= range->minlen) {
5761 			if (!btrfs_block_group_done(cache)) {
5762 				ret = btrfs_cache_block_group(cache, 0);
5763 				if (ret) {
5764 					bg_failed++;
5765 					bg_ret = ret;
5766 					continue;
5767 				}
5768 				ret = btrfs_wait_block_group_cache_done(cache);
5769 				if (ret) {
5770 					bg_failed++;
5771 					bg_ret = ret;
5772 					continue;
5773 				}
5774 			}
5775 			ret = btrfs_trim_block_group(cache,
5776 						     &group_trimmed,
5777 						     start,
5778 						     end,
5779 						     range->minlen);
5780 
5781 			trimmed += group_trimmed;
5782 			if (ret) {
5783 				bg_failed++;
5784 				bg_ret = ret;
5785 				continue;
5786 			}
5787 		}
5788 	}
5789 
5790 	if (bg_failed)
5791 		btrfs_warn(fs_info,
5792 			"failed to trim %llu block group(s), last error %d",
5793 			bg_failed, bg_ret);
5794 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5795 	devices = &fs_info->fs_devices->devices;
5796 	list_for_each_entry(device, devices, dev_list) {
5797 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5798 		if (ret) {
5799 			dev_failed++;
5800 			dev_ret = ret;
5801 			break;
5802 		}
5803 
5804 		trimmed += group_trimmed;
5805 	}
5806 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5807 
5808 	if (dev_failed)
5809 		btrfs_warn(fs_info,
5810 			"failed to trim %llu device(s), last error %d",
5811 			dev_failed, dev_ret);
5812 	range->len = trimmed;
5813 	if (bg_ret)
5814 		return bg_ret;
5815 	return dev_ret;
5816 }
5817