xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 /* simple helper to search for an existing data extent at a given offset */
73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 	int ret;
77 	struct btrfs_key key;
78 	struct btrfs_path *path;
79 
80 	path = btrfs_alloc_path();
81 	if (!path)
82 		return -ENOMEM;
83 
84 	key.objectid = start;
85 	key.offset = len;
86 	key.type = BTRFS_EXTENT_ITEM_KEY;
87 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 	btrfs_free_path(path);
89 	return ret;
90 }
91 
92 /*
93  * helper function to lookup reference count and flags of a tree block.
94  *
95  * the head node for delayed ref is used to store the sum of all the
96  * reference count modifications queued up in the rbtree. the head
97  * node may also store the extent flags to set. This way you can check
98  * to see what the reference count and extent flags would be if all of
99  * the delayed refs are not processed.
100  */
101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 			     struct btrfs_fs_info *fs_info, u64 bytenr,
103 			     u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 	struct btrfs_root *extent_root;
106 	struct btrfs_delayed_ref_head *head;
107 	struct btrfs_delayed_ref_root *delayed_refs;
108 	struct btrfs_path *path;
109 	struct btrfs_extent_item *ei;
110 	struct extent_buffer *leaf;
111 	struct btrfs_key key;
112 	u32 item_size;
113 	u64 num_refs;
114 	u64 extent_flags;
115 	int ret;
116 
117 	/*
118 	 * If we don't have skinny metadata, don't bother doing anything
119 	 * different
120 	 */
121 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 		offset = fs_info->nodesize;
123 		metadata = 0;
124 	}
125 
126 	path = btrfs_alloc_path();
127 	if (!path)
128 		return -ENOMEM;
129 
130 	if (!trans) {
131 		path->skip_locking = 1;
132 		path->search_commit_root = 1;
133 	}
134 
135 search_again:
136 	key.objectid = bytenr;
137 	key.offset = offset;
138 	if (metadata)
139 		key.type = BTRFS_METADATA_ITEM_KEY;
140 	else
141 		key.type = BTRFS_EXTENT_ITEM_KEY;
142 
143 	extent_root = btrfs_extent_root(fs_info, bytenr);
144 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 	if (ret < 0)
146 		goto out_free;
147 
148 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 		if (path->slots[0]) {
150 			path->slots[0]--;
151 			btrfs_item_key_to_cpu(path->nodes[0], &key,
152 					      path->slots[0]);
153 			if (key.objectid == bytenr &&
154 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
155 			    key.offset == fs_info->nodesize)
156 				ret = 0;
157 		}
158 	}
159 
160 	if (ret == 0) {
161 		leaf = path->nodes[0];
162 		item_size = btrfs_item_size(leaf, path->slots[0]);
163 		if (item_size >= sizeof(*ei)) {
164 			ei = btrfs_item_ptr(leaf, path->slots[0],
165 					    struct btrfs_extent_item);
166 			num_refs = btrfs_extent_refs(leaf, ei);
167 			extent_flags = btrfs_extent_flags(leaf, ei);
168 		} else {
169 			ret = -EUCLEAN;
170 			btrfs_err(fs_info,
171 			"unexpected extent item size, has %u expect >= %zu",
172 				  item_size, sizeof(*ei));
173 			if (trans)
174 				btrfs_abort_transaction(trans, ret);
175 			else
176 				btrfs_handle_fs_error(fs_info, ret, NULL);
177 
178 			goto out_free;
179 		}
180 
181 		BUG_ON(num_refs == 0);
182 	} else {
183 		num_refs = 0;
184 		extent_flags = 0;
185 		ret = 0;
186 	}
187 
188 	if (!trans)
189 		goto out;
190 
191 	delayed_refs = &trans->transaction->delayed_refs;
192 	spin_lock(&delayed_refs->lock);
193 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 	if (head) {
195 		if (!mutex_trylock(&head->mutex)) {
196 			refcount_inc(&head->refs);
197 			spin_unlock(&delayed_refs->lock);
198 
199 			btrfs_release_path(path);
200 
201 			/*
202 			 * Mutex was contended, block until it's released and try
203 			 * again
204 			 */
205 			mutex_lock(&head->mutex);
206 			mutex_unlock(&head->mutex);
207 			btrfs_put_delayed_ref_head(head);
208 			goto search_again;
209 		}
210 		spin_lock(&head->lock);
211 		if (head->extent_op && head->extent_op->update_flags)
212 			extent_flags |= head->extent_op->flags_to_set;
213 		else
214 			BUG_ON(num_refs == 0);
215 
216 		num_refs += head->ref_mod;
217 		spin_unlock(&head->lock);
218 		mutex_unlock(&head->mutex);
219 	}
220 	spin_unlock(&delayed_refs->lock);
221 out:
222 	WARN_ON(num_refs == 0);
223 	if (refs)
224 		*refs = num_refs;
225 	if (flags)
226 		*flags = extent_flags;
227 out_free:
228 	btrfs_free_path(path);
229 	return ret;
230 }
231 
232 /*
233  * Back reference rules.  Back refs have three main goals:
234  *
235  * 1) differentiate between all holders of references to an extent so that
236  *    when a reference is dropped we can make sure it was a valid reference
237  *    before freeing the extent.
238  *
239  * 2) Provide enough information to quickly find the holders of an extent
240  *    if we notice a given block is corrupted or bad.
241  *
242  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243  *    maintenance.  This is actually the same as #2, but with a slightly
244  *    different use case.
245  *
246  * There are two kinds of back refs. The implicit back refs is optimized
247  * for pointers in non-shared tree blocks. For a given pointer in a block,
248  * back refs of this kind provide information about the block's owner tree
249  * and the pointer's key. These information allow us to find the block by
250  * b-tree searching. The full back refs is for pointers in tree blocks not
251  * referenced by their owner trees. The location of tree block is recorded
252  * in the back refs. Actually the full back refs is generic, and can be
253  * used in all cases the implicit back refs is used. The major shortcoming
254  * of the full back refs is its overhead. Every time a tree block gets
255  * COWed, we have to update back refs entry for all pointers in it.
256  *
257  * For a newly allocated tree block, we use implicit back refs for
258  * pointers in it. This means most tree related operations only involve
259  * implicit back refs. For a tree block created in old transaction, the
260  * only way to drop a reference to it is COW it. So we can detect the
261  * event that tree block loses its owner tree's reference and do the
262  * back refs conversion.
263  *
264  * When a tree block is COWed through a tree, there are four cases:
265  *
266  * The reference count of the block is one and the tree is the block's
267  * owner tree. Nothing to do in this case.
268  *
269  * The reference count of the block is one and the tree is not the
270  * block's owner tree. In this case, full back refs is used for pointers
271  * in the block. Remove these full back refs, add implicit back refs for
272  * every pointers in the new block.
273  *
274  * The reference count of the block is greater than one and the tree is
275  * the block's owner tree. In this case, implicit back refs is used for
276  * pointers in the block. Add full back refs for every pointers in the
277  * block, increase lower level extents' reference counts. The original
278  * implicit back refs are entailed to the new block.
279  *
280  * The reference count of the block is greater than one and the tree is
281  * not the block's owner tree. Add implicit back refs for every pointer in
282  * the new block, increase lower level extents' reference count.
283  *
284  * Back Reference Key composing:
285  *
286  * The key objectid corresponds to the first byte in the extent,
287  * The key type is used to differentiate between types of back refs.
288  * There are different meanings of the key offset for different types
289  * of back refs.
290  *
291  * File extents can be referenced by:
292  *
293  * - multiple snapshots, subvolumes, or different generations in one subvol
294  * - different files inside a single subvolume
295  * - different offsets inside a file (bookend extents in file.c)
296  *
297  * The extent ref structure for the implicit back refs has fields for:
298  *
299  * - Objectid of the subvolume root
300  * - objectid of the file holding the reference
301  * - original offset in the file
302  * - how many bookend extents
303  *
304  * The key offset for the implicit back refs is hash of the first
305  * three fields.
306  *
307  * The extent ref structure for the full back refs has field for:
308  *
309  * - number of pointers in the tree leaf
310  *
311  * The key offset for the implicit back refs is the first byte of
312  * the tree leaf
313  *
314  * When a file extent is allocated, The implicit back refs is used.
315  * the fields are filled in:
316  *
317  *     (root_key.objectid, inode objectid, offset in file, 1)
318  *
319  * When a file extent is removed file truncation, we find the
320  * corresponding implicit back refs and check the following fields:
321  *
322  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
323  *
324  * Btree extents can be referenced by:
325  *
326  * - Different subvolumes
327  *
328  * Both the implicit back refs and the full back refs for tree blocks
329  * only consist of key. The key offset for the implicit back refs is
330  * objectid of block's owner tree. The key offset for the full back refs
331  * is the first byte of parent block.
332  *
333  * When implicit back refs is used, information about the lowest key and
334  * level of the tree block are required. These information are stored in
335  * tree block info structure.
336  */
337 
338 /*
339  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342  */
343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 				     struct btrfs_extent_inline_ref *iref,
345 				     enum btrfs_inline_ref_type is_data)
346 {
347 	int type = btrfs_extent_inline_ref_type(eb, iref);
348 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349 
350 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 	    type == BTRFS_SHARED_DATA_REF_KEY ||
353 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
354 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 				return type;
357 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 				ASSERT(eb->fs_info);
359 				/*
360 				 * Every shared one has parent tree block,
361 				 * which must be aligned to sector size.
362 				 */
363 				if (offset &&
364 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 					return type;
366 			}
367 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
368 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else {
381 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 			return type;
383 		}
384 	}
385 
386 	WARN_ON(1);
387 	btrfs_print_leaf(eb);
388 	btrfs_err(eb->fs_info,
389 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 		  eb->start, (unsigned long)iref, type);
391 
392 	return BTRFS_REF_TYPE_INVALID;
393 }
394 
395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 	u32 high_crc = ~(u32)0;
398 	u32 low_crc = ~(u32)0;
399 	__le64 lenum;
400 
401 	lenum = cpu_to_le64(root_objectid);
402 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 	lenum = cpu_to_le64(owner);
404 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 	lenum = cpu_to_le64(offset);
406 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407 
408 	return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410 
411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 				     struct btrfs_extent_data_ref *ref)
413 {
414 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 				    btrfs_extent_data_ref_objectid(leaf, ref),
416 				    btrfs_extent_data_ref_offset(leaf, ref));
417 }
418 
419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 				 struct btrfs_extent_data_ref *ref,
421 				 u64 root_objectid, u64 owner, u64 offset)
422 {
423 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 		return 0;
427 	return 1;
428 }
429 
430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 					   struct btrfs_path *path,
432 					   u64 bytenr, u64 parent,
433 					   u64 root_objectid,
434 					   u64 owner, u64 offset)
435 {
436 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 	struct btrfs_key key;
438 	struct btrfs_extent_data_ref *ref;
439 	struct extent_buffer *leaf;
440 	u32 nritems;
441 	int ret;
442 	int recow;
443 	int err = -ENOENT;
444 
445 	key.objectid = bytenr;
446 	if (parent) {
447 		key.type = BTRFS_SHARED_DATA_REF_KEY;
448 		key.offset = parent;
449 	} else {
450 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 		key.offset = hash_extent_data_ref(root_objectid,
452 						  owner, offset);
453 	}
454 again:
455 	recow = 0;
456 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 	if (ret < 0) {
458 		err = ret;
459 		goto fail;
460 	}
461 
462 	if (parent) {
463 		if (!ret)
464 			return 0;
465 		goto fail;
466 	}
467 
468 	leaf = path->nodes[0];
469 	nritems = btrfs_header_nritems(leaf);
470 	while (1) {
471 		if (path->slots[0] >= nritems) {
472 			ret = btrfs_next_leaf(root, path);
473 			if (ret < 0)
474 				err = ret;
475 			if (ret)
476 				goto fail;
477 
478 			leaf = path->nodes[0];
479 			nritems = btrfs_header_nritems(leaf);
480 			recow = 1;
481 		}
482 
483 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 		if (key.objectid != bytenr ||
485 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 			goto fail;
487 
488 		ref = btrfs_item_ptr(leaf, path->slots[0],
489 				     struct btrfs_extent_data_ref);
490 
491 		if (match_extent_data_ref(leaf, ref, root_objectid,
492 					  owner, offset)) {
493 			if (recow) {
494 				btrfs_release_path(path);
495 				goto again;
496 			}
497 			err = 0;
498 			break;
499 		}
500 		path->slots[0]++;
501 	}
502 fail:
503 	return err;
504 }
505 
506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 					   struct btrfs_path *path,
508 					   u64 bytenr, u64 parent,
509 					   u64 root_objectid, u64 owner,
510 					   u64 offset, int refs_to_add)
511 {
512 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 	struct btrfs_key key;
514 	struct extent_buffer *leaf;
515 	u32 size;
516 	u32 num_refs;
517 	int ret;
518 
519 	key.objectid = bytenr;
520 	if (parent) {
521 		key.type = BTRFS_SHARED_DATA_REF_KEY;
522 		key.offset = parent;
523 		size = sizeof(struct btrfs_shared_data_ref);
524 	} else {
525 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 		key.offset = hash_extent_data_ref(root_objectid,
527 						  owner, offset);
528 		size = sizeof(struct btrfs_extent_data_ref);
529 	}
530 
531 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 	if (ret && ret != -EEXIST)
533 		goto fail;
534 
535 	leaf = path->nodes[0];
536 	if (parent) {
537 		struct btrfs_shared_data_ref *ref;
538 		ref = btrfs_item_ptr(leaf, path->slots[0],
539 				     struct btrfs_shared_data_ref);
540 		if (ret == 0) {
541 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 		} else {
543 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 			num_refs += refs_to_add;
545 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 		}
547 	} else {
548 		struct btrfs_extent_data_ref *ref;
549 		while (ret == -EEXIST) {
550 			ref = btrfs_item_ptr(leaf, path->slots[0],
551 					     struct btrfs_extent_data_ref);
552 			if (match_extent_data_ref(leaf, ref, root_objectid,
553 						  owner, offset))
554 				break;
555 			btrfs_release_path(path);
556 			key.offset++;
557 			ret = btrfs_insert_empty_item(trans, root, path, &key,
558 						      size);
559 			if (ret && ret != -EEXIST)
560 				goto fail;
561 
562 			leaf = path->nodes[0];
563 		}
564 		ref = btrfs_item_ptr(leaf, path->slots[0],
565 				     struct btrfs_extent_data_ref);
566 		if (ret == 0) {
567 			btrfs_set_extent_data_ref_root(leaf, ref,
568 						       root_objectid);
569 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 		} else {
573 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 			num_refs += refs_to_add;
575 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 		}
577 	}
578 	btrfs_mark_buffer_dirty(trans, leaf);
579 	ret = 0;
580 fail:
581 	btrfs_release_path(path);
582 	return ret;
583 }
584 
585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 					   struct btrfs_root *root,
587 					   struct btrfs_path *path,
588 					   int refs_to_drop)
589 {
590 	struct btrfs_key key;
591 	struct btrfs_extent_data_ref *ref1 = NULL;
592 	struct btrfs_shared_data_ref *ref2 = NULL;
593 	struct extent_buffer *leaf;
594 	u32 num_refs = 0;
595 	int ret = 0;
596 
597 	leaf = path->nodes[0];
598 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599 
600 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 				      struct btrfs_extent_data_ref);
603 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 				      struct btrfs_shared_data_ref);
607 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 	} else {
609 		btrfs_err(trans->fs_info,
610 			  "unrecognized backref key (%llu %u %llu)",
611 			  key.objectid, key.type, key.offset);
612 		btrfs_abort_transaction(trans, -EUCLEAN);
613 		return -EUCLEAN;
614 	}
615 
616 	BUG_ON(num_refs < refs_to_drop);
617 	num_refs -= refs_to_drop;
618 
619 	if (num_refs == 0) {
620 		ret = btrfs_del_item(trans, root, path);
621 	} else {
622 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 		btrfs_mark_buffer_dirty(trans, leaf);
627 	}
628 	return ret;
629 }
630 
631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 					  struct btrfs_extent_inline_ref *iref)
633 {
634 	struct btrfs_key key;
635 	struct extent_buffer *leaf;
636 	struct btrfs_extent_data_ref *ref1;
637 	struct btrfs_shared_data_ref *ref2;
638 	u32 num_refs = 0;
639 	int type;
640 
641 	leaf = path->nodes[0];
642 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643 
644 	if (iref) {
645 		/*
646 		 * If type is invalid, we should have bailed out earlier than
647 		 * this call.
648 		 */
649 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 		} else {
655 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 		}
658 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 				      struct btrfs_extent_data_ref);
661 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 				      struct btrfs_shared_data_ref);
665 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 	} else {
667 		WARN_ON(1);
668 	}
669 	return num_refs;
670 }
671 
672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 					  struct btrfs_path *path,
674 					  u64 bytenr, u64 parent,
675 					  u64 root_objectid)
676 {
677 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 	struct btrfs_key key;
679 	int ret;
680 
681 	key.objectid = bytenr;
682 	if (parent) {
683 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 		key.offset = parent;
685 	} else {
686 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 		key.offset = root_objectid;
688 	}
689 
690 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 	if (ret > 0)
692 		ret = -ENOENT;
693 	return ret;
694 }
695 
696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 					  struct btrfs_path *path,
698 					  u64 bytenr, u64 parent,
699 					  u64 root_objectid)
700 {
701 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 	struct btrfs_key key;
703 	int ret;
704 
705 	key.objectid = bytenr;
706 	if (parent) {
707 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 		key.offset = parent;
709 	} else {
710 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 		key.offset = root_objectid;
712 	}
713 
714 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 	btrfs_release_path(path);
716 	return ret;
717 }
718 
719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 	int type;
722 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 		if (parent > 0)
724 			type = BTRFS_SHARED_BLOCK_REF_KEY;
725 		else
726 			type = BTRFS_TREE_BLOCK_REF_KEY;
727 	} else {
728 		if (parent > 0)
729 			type = BTRFS_SHARED_DATA_REF_KEY;
730 		else
731 			type = BTRFS_EXTENT_DATA_REF_KEY;
732 	}
733 	return type;
734 }
735 
736 static int find_next_key(struct btrfs_path *path, int level,
737 			 struct btrfs_key *key)
738 
739 {
740 	for (; level < BTRFS_MAX_LEVEL; level++) {
741 		if (!path->nodes[level])
742 			break;
743 		if (path->slots[level] + 1 >=
744 		    btrfs_header_nritems(path->nodes[level]))
745 			continue;
746 		if (level == 0)
747 			btrfs_item_key_to_cpu(path->nodes[level], key,
748 					      path->slots[level] + 1);
749 		else
750 			btrfs_node_key_to_cpu(path->nodes[level], key,
751 					      path->slots[level] + 1);
752 		return 0;
753 	}
754 	return 1;
755 }
756 
757 /*
758  * look for inline back ref. if back ref is found, *ref_ret is set
759  * to the address of inline back ref, and 0 is returned.
760  *
761  * if back ref isn't found, *ref_ret is set to the address where it
762  * should be inserted, and -ENOENT is returned.
763  *
764  * if insert is true and there are too many inline back refs, the path
765  * points to the extent item, and -EAGAIN is returned.
766  *
767  * NOTE: inline back refs are ordered in the same way that back ref
768  *	 items in the tree are ordered.
769  */
770 static noinline_for_stack
771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 				 struct btrfs_path *path,
773 				 struct btrfs_extent_inline_ref **ref_ret,
774 				 u64 bytenr, u64 num_bytes,
775 				 u64 parent, u64 root_objectid,
776 				 u64 owner, u64 offset, int insert)
777 {
778 	struct btrfs_fs_info *fs_info = trans->fs_info;
779 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 	struct btrfs_key key;
781 	struct extent_buffer *leaf;
782 	struct btrfs_extent_item *ei;
783 	struct btrfs_extent_inline_ref *iref;
784 	u64 flags;
785 	u64 item_size;
786 	unsigned long ptr;
787 	unsigned long end;
788 	int extra_size;
789 	int type;
790 	int want;
791 	int ret;
792 	int err = 0;
793 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 	int needed;
795 
796 	key.objectid = bytenr;
797 	key.type = BTRFS_EXTENT_ITEM_KEY;
798 	key.offset = num_bytes;
799 
800 	want = extent_ref_type(parent, owner);
801 	if (insert) {
802 		extra_size = btrfs_extent_inline_ref_size(want);
803 		path->search_for_extension = 1;
804 		path->keep_locks = 1;
805 	} else
806 		extra_size = -1;
807 
808 	/*
809 	 * Owner is our level, so we can just add one to get the level for the
810 	 * block we are interested in.
811 	 */
812 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 		key.type = BTRFS_METADATA_ITEM_KEY;
814 		key.offset = owner;
815 	}
816 
817 again:
818 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 	if (ret < 0) {
820 		err = ret;
821 		goto out;
822 	}
823 
824 	/*
825 	 * We may be a newly converted file system which still has the old fat
826 	 * extent entries for metadata, so try and see if we have one of those.
827 	 */
828 	if (ret > 0 && skinny_metadata) {
829 		skinny_metadata = false;
830 		if (path->slots[0]) {
831 			path->slots[0]--;
832 			btrfs_item_key_to_cpu(path->nodes[0], &key,
833 					      path->slots[0]);
834 			if (key.objectid == bytenr &&
835 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
836 			    key.offset == num_bytes)
837 				ret = 0;
838 		}
839 		if (ret) {
840 			key.objectid = bytenr;
841 			key.type = BTRFS_EXTENT_ITEM_KEY;
842 			key.offset = num_bytes;
843 			btrfs_release_path(path);
844 			goto again;
845 		}
846 	}
847 
848 	if (ret && !insert) {
849 		err = -ENOENT;
850 		goto out;
851 	} else if (WARN_ON(ret)) {
852 		btrfs_print_leaf(path->nodes[0]);
853 		btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 			  bytenr, num_bytes, parent, root_objectid, owner,
856 			  offset);
857 		err = -EIO;
858 		goto out;
859 	}
860 
861 	leaf = path->nodes[0];
862 	item_size = btrfs_item_size(leaf, path->slots[0]);
863 	if (unlikely(item_size < sizeof(*ei))) {
864 		err = -EUCLEAN;
865 		btrfs_err(fs_info,
866 			  "unexpected extent item size, has %llu expect >= %zu",
867 			  item_size, sizeof(*ei));
868 		btrfs_abort_transaction(trans, err);
869 		goto out;
870 	}
871 
872 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 	flags = btrfs_extent_flags(leaf, ei);
874 
875 	ptr = (unsigned long)(ei + 1);
876 	end = (unsigned long)ei + item_size;
877 
878 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 		ptr += sizeof(struct btrfs_tree_block_info);
880 		BUG_ON(ptr > end);
881 	}
882 
883 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 		needed = BTRFS_REF_TYPE_DATA;
885 	else
886 		needed = BTRFS_REF_TYPE_BLOCK;
887 
888 	err = -ENOENT;
889 	while (1) {
890 		if (ptr >= end) {
891 			if (ptr > end) {
892 				err = -EUCLEAN;
893 				btrfs_print_leaf(path->nodes[0]);
894 				btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 					path->slots[0], root_objectid, owner, offset, parent);
897 			}
898 			break;
899 		}
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_REF_TYPE_INVALID) {
903 			err = -EUCLEAN;
904 			goto out;
905 		}
906 
907 		if (want < type)
908 			break;
909 		if (want > type) {
910 			ptr += btrfs_extent_inline_ref_size(type);
911 			continue;
912 		}
913 
914 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 			struct btrfs_extent_data_ref *dref;
916 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 			if (match_extent_data_ref(leaf, dref, root_objectid,
918 						  owner, offset)) {
919 				err = 0;
920 				break;
921 			}
922 			if (hash_extent_data_ref_item(leaf, dref) <
923 			    hash_extent_data_ref(root_objectid, owner, offset))
924 				break;
925 		} else {
926 			u64 ref_offset;
927 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 			if (parent > 0) {
929 				if (parent == ref_offset) {
930 					err = 0;
931 					break;
932 				}
933 				if (ref_offset < parent)
934 					break;
935 			} else {
936 				if (root_objectid == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < root_objectid)
941 					break;
942 			}
943 		}
944 		ptr += btrfs_extent_inline_ref_size(type);
945 	}
946 	if (err == -ENOENT && insert) {
947 		if (item_size + extra_size >=
948 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 			err = -EAGAIN;
950 			goto out;
951 		}
952 		/*
953 		 * To add new inline back ref, we have to make sure
954 		 * there is no corresponding back ref item.
955 		 * For simplicity, we just do not add new inline back
956 		 * ref if there is any kind of item for this block
957 		 */
958 		if (find_next_key(path, 0, &key) == 0 &&
959 		    key.objectid == bytenr &&
960 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 			err = -EAGAIN;
962 			goto out;
963 		}
964 	}
965 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 	if (insert) {
968 		path->keep_locks = 0;
969 		path->search_for_extension = 0;
970 		btrfs_unlock_up_safe(path, 1);
971 	}
972 	return err;
973 }
974 
975 /*
976  * helper to add new inline back ref
977  */
978 static noinline_for_stack
979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
980 				 struct btrfs_path *path,
981 				 struct btrfs_extent_inline_ref *iref,
982 				 u64 parent, u64 root_objectid,
983 				 u64 owner, u64 offset, int refs_to_add,
984 				 struct btrfs_delayed_extent_op *extent_op)
985 {
986 	struct extent_buffer *leaf;
987 	struct btrfs_extent_item *ei;
988 	unsigned long ptr;
989 	unsigned long end;
990 	unsigned long item_offset;
991 	u64 refs;
992 	int size;
993 	int type;
994 
995 	leaf = path->nodes[0];
996 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 	item_offset = (unsigned long)iref - (unsigned long)ei;
998 
999 	type = extent_ref_type(parent, owner);
1000 	size = btrfs_extent_inline_ref_size(type);
1001 
1002 	btrfs_extend_item(trans, path, size);
1003 
1004 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 	refs = btrfs_extent_refs(leaf, ei);
1006 	refs += refs_to_add;
1007 	btrfs_set_extent_refs(leaf, ei, refs);
1008 	if (extent_op)
1009 		__run_delayed_extent_op(extent_op, leaf, ei);
1010 
1011 	ptr = (unsigned long)ei + item_offset;
1012 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 	if (ptr < end - size)
1014 		memmove_extent_buffer(leaf, ptr + size, ptr,
1015 				      end - size - ptr);
1016 
1017 	iref = (struct btrfs_extent_inline_ref *)ptr;
1018 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 		struct btrfs_extent_data_ref *dref;
1021 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 		struct btrfs_shared_data_ref *sref;
1028 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 	} else {
1034 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 	}
1036 	btrfs_mark_buffer_dirty(trans, leaf);
1037 }
1038 
1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 				 struct btrfs_path *path,
1041 				 struct btrfs_extent_inline_ref **ref_ret,
1042 				 u64 bytenr, u64 num_bytes, u64 parent,
1043 				 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 	int ret;
1046 
1047 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 					   num_bytes, parent, root_objectid,
1049 					   owner, offset, 0);
1050 	if (ret != -ENOENT)
1051 		return ret;
1052 
1053 	btrfs_release_path(path);
1054 	*ref_ret = NULL;
1055 
1056 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 					    root_objectid);
1059 	} else {
1060 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 					     root_objectid, owner, offset);
1062 	}
1063 	return ret;
1064 }
1065 
1066 /*
1067  * helper to update/remove inline back ref
1068  */
1069 static noinline_for_stack int update_inline_extent_backref(
1070 				  struct btrfs_trans_handle *trans,
1071 				  struct btrfs_path *path,
1072 				  struct btrfs_extent_inline_ref *iref,
1073 				  int refs_to_mod,
1074 				  struct btrfs_delayed_extent_op *extent_op)
1075 {
1076 	struct extent_buffer *leaf = path->nodes[0];
1077 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1078 	struct btrfs_extent_item *ei;
1079 	struct btrfs_extent_data_ref *dref = NULL;
1080 	struct btrfs_shared_data_ref *sref = NULL;
1081 	unsigned long ptr;
1082 	unsigned long end;
1083 	u32 item_size;
1084 	int size;
1085 	int type;
1086 	u64 refs;
1087 
1088 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1089 	refs = btrfs_extent_refs(leaf, ei);
1090 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1091 		struct btrfs_key key;
1092 		u32 extent_size;
1093 
1094 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1096 			extent_size = fs_info->nodesize;
1097 		else
1098 			extent_size = key.offset;
1099 		btrfs_print_leaf(leaf);
1100 		btrfs_err(fs_info,
1101 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1102 			  key.objectid, extent_size, refs_to_mod, refs);
1103 		return -EUCLEAN;
1104 	}
1105 	refs += refs_to_mod;
1106 	btrfs_set_extent_refs(leaf, ei, refs);
1107 	if (extent_op)
1108 		__run_delayed_extent_op(extent_op, leaf, ei);
1109 
1110 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111 	/*
1112 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1113 	 * error messages.
1114 	 */
1115 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1116 		return -EUCLEAN;
1117 
1118 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1119 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1120 		refs = btrfs_extent_data_ref_count(leaf, dref);
1121 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1122 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1123 		refs = btrfs_shared_data_ref_count(leaf, sref);
1124 	} else {
1125 		refs = 1;
1126 		/*
1127 		 * For tree blocks we can only drop one ref for it, and tree
1128 		 * blocks should not have refs > 1.
1129 		 *
1130 		 * Furthermore if we're inserting a new inline backref, we
1131 		 * won't reach this path either. That would be
1132 		 * setup_inline_extent_backref().
1133 		 */
1134 		if (unlikely(refs_to_mod != -1)) {
1135 			struct btrfs_key key;
1136 
1137 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138 
1139 			btrfs_print_leaf(leaf);
1140 			btrfs_err(fs_info,
1141 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1142 				  key.objectid, refs_to_mod);
1143 			return -EUCLEAN;
1144 		}
1145 	}
1146 
1147 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1148 		struct btrfs_key key;
1149 		u32 extent_size;
1150 
1151 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1153 			extent_size = fs_info->nodesize;
1154 		else
1155 			extent_size = key.offset;
1156 		btrfs_print_leaf(leaf);
1157 		btrfs_err(fs_info,
1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1159 			  (unsigned long)iref, key.objectid, extent_size,
1160 			  refs_to_mod, refs);
1161 		return -EUCLEAN;
1162 	}
1163 	refs += refs_to_mod;
1164 
1165 	if (refs > 0) {
1166 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1167 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1168 		else
1169 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1170 	} else {
1171 		size =  btrfs_extent_inline_ref_size(type);
1172 		item_size = btrfs_item_size(leaf, path->slots[0]);
1173 		ptr = (unsigned long)iref;
1174 		end = (unsigned long)ei + item_size;
1175 		if (ptr + size < end)
1176 			memmove_extent_buffer(leaf, ptr, ptr + size,
1177 					      end - ptr - size);
1178 		item_size -= size;
1179 		btrfs_truncate_item(trans, path, item_size, 1);
1180 	}
1181 	btrfs_mark_buffer_dirty(trans, leaf);
1182 	return 0;
1183 }
1184 
1185 static noinline_for_stack
1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1187 				 struct btrfs_path *path,
1188 				 u64 bytenr, u64 num_bytes, u64 parent,
1189 				 u64 root_objectid, u64 owner,
1190 				 u64 offset, int refs_to_add,
1191 				 struct btrfs_delayed_extent_op *extent_op)
1192 {
1193 	struct btrfs_extent_inline_ref *iref;
1194 	int ret;
1195 
1196 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1197 					   num_bytes, parent, root_objectid,
1198 					   owner, offset, 1);
1199 	if (ret == 0) {
1200 		/*
1201 		 * We're adding refs to a tree block we already own, this
1202 		 * should not happen at all.
1203 		 */
1204 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1205 			btrfs_print_leaf(path->nodes[0]);
1206 			btrfs_crit(trans->fs_info,
1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1208 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1209 			return -EUCLEAN;
1210 		}
1211 		ret = update_inline_extent_backref(trans, path, iref,
1212 						   refs_to_add, extent_op);
1213 	} else if (ret == -ENOENT) {
1214 		setup_inline_extent_backref(trans, path, iref, parent,
1215 					    root_objectid, owner, offset,
1216 					    refs_to_add, extent_op);
1217 		ret = 0;
1218 	}
1219 	return ret;
1220 }
1221 
1222 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1223 				 struct btrfs_root *root,
1224 				 struct btrfs_path *path,
1225 				 struct btrfs_extent_inline_ref *iref,
1226 				 int refs_to_drop, int is_data)
1227 {
1228 	int ret = 0;
1229 
1230 	BUG_ON(!is_data && refs_to_drop != 1);
1231 	if (iref)
1232 		ret = update_inline_extent_backref(trans, path, iref,
1233 						   -refs_to_drop, NULL);
1234 	else if (is_data)
1235 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1236 	else
1237 		ret = btrfs_del_item(trans, root, path);
1238 	return ret;
1239 }
1240 
1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1242 			       u64 *discarded_bytes)
1243 {
1244 	int j, ret = 0;
1245 	u64 bytes_left, end;
1246 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1247 
1248 	if (WARN_ON(start != aligned_start)) {
1249 		len -= aligned_start - start;
1250 		len = round_down(len, 1 << SECTOR_SHIFT);
1251 		start = aligned_start;
1252 	}
1253 
1254 	*discarded_bytes = 0;
1255 
1256 	if (!len)
1257 		return 0;
1258 
1259 	end = start + len;
1260 	bytes_left = len;
1261 
1262 	/* Skip any superblocks on this device. */
1263 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1264 		u64 sb_start = btrfs_sb_offset(j);
1265 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1266 		u64 size = sb_start - start;
1267 
1268 		if (!in_range(sb_start, start, bytes_left) &&
1269 		    !in_range(sb_end, start, bytes_left) &&
1270 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1271 			continue;
1272 
1273 		/*
1274 		 * Superblock spans beginning of range.  Adjust start and
1275 		 * try again.
1276 		 */
1277 		if (sb_start <= start) {
1278 			start += sb_end - start;
1279 			if (start > end) {
1280 				bytes_left = 0;
1281 				break;
1282 			}
1283 			bytes_left = end - start;
1284 			continue;
1285 		}
1286 
1287 		if (size) {
1288 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1289 						   size >> SECTOR_SHIFT,
1290 						   GFP_NOFS);
1291 			if (!ret)
1292 				*discarded_bytes += size;
1293 			else if (ret != -EOPNOTSUPP)
1294 				return ret;
1295 		}
1296 
1297 		start = sb_end;
1298 		if (start > end) {
1299 			bytes_left = 0;
1300 			break;
1301 		}
1302 		bytes_left = end - start;
1303 	}
1304 
1305 	if (bytes_left) {
1306 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1307 					   bytes_left >> SECTOR_SHIFT,
1308 					   GFP_NOFS);
1309 		if (!ret)
1310 			*discarded_bytes += bytes_left;
1311 	}
1312 	return ret;
1313 }
1314 
1315 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1316 {
1317 	struct btrfs_device *dev = stripe->dev;
1318 	struct btrfs_fs_info *fs_info = dev->fs_info;
1319 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1320 	u64 phys = stripe->physical;
1321 	u64 len = stripe->length;
1322 	u64 discarded = 0;
1323 	int ret = 0;
1324 
1325 	/* Zone reset on a zoned filesystem */
1326 	if (btrfs_can_zone_reset(dev, phys, len)) {
1327 		u64 src_disc;
1328 
1329 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1330 		if (ret)
1331 			goto out;
1332 
1333 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1334 		    dev != dev_replace->srcdev)
1335 			goto out;
1336 
1337 		src_disc = discarded;
1338 
1339 		/* Send to replace target as well */
1340 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1341 					      &discarded);
1342 		discarded += src_disc;
1343 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1344 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1345 	} else {
1346 		ret = 0;
1347 		*bytes = 0;
1348 	}
1349 
1350 out:
1351 	*bytes = discarded;
1352 	return ret;
1353 }
1354 
1355 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1356 			 u64 num_bytes, u64 *actual_bytes)
1357 {
1358 	int ret = 0;
1359 	u64 discarded_bytes = 0;
1360 	u64 end = bytenr + num_bytes;
1361 	u64 cur = bytenr;
1362 
1363 	/*
1364 	 * Avoid races with device replace and make sure the devices in the
1365 	 * stripes don't go away while we are discarding.
1366 	 */
1367 	btrfs_bio_counter_inc_blocked(fs_info);
1368 	while (cur < end) {
1369 		struct btrfs_discard_stripe *stripes;
1370 		unsigned int num_stripes;
1371 		int i;
1372 
1373 		num_bytes = end - cur;
1374 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1375 		if (IS_ERR(stripes)) {
1376 			ret = PTR_ERR(stripes);
1377 			if (ret == -EOPNOTSUPP)
1378 				ret = 0;
1379 			break;
1380 		}
1381 
1382 		for (i = 0; i < num_stripes; i++) {
1383 			struct btrfs_discard_stripe *stripe = stripes + i;
1384 			u64 bytes;
1385 
1386 			if (!stripe->dev->bdev) {
1387 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1388 				continue;
1389 			}
1390 
1391 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1392 					&stripe->dev->dev_state))
1393 				continue;
1394 
1395 			ret = do_discard_extent(stripe, &bytes);
1396 			if (ret) {
1397 				/*
1398 				 * Keep going if discard is not supported by the
1399 				 * device.
1400 				 */
1401 				if (ret != -EOPNOTSUPP)
1402 					break;
1403 				ret = 0;
1404 			} else {
1405 				discarded_bytes += bytes;
1406 			}
1407 		}
1408 		kfree(stripes);
1409 		if (ret)
1410 			break;
1411 		cur += num_bytes;
1412 	}
1413 	btrfs_bio_counter_dec(fs_info);
1414 	if (actual_bytes)
1415 		*actual_bytes = discarded_bytes;
1416 	return ret;
1417 }
1418 
1419 /* Can return -ENOMEM */
1420 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1421 			 struct btrfs_ref *generic_ref)
1422 {
1423 	struct btrfs_fs_info *fs_info = trans->fs_info;
1424 	int ret;
1425 
1426 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1427 	       generic_ref->action);
1428 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1429 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1430 
1431 	if (generic_ref->type == BTRFS_REF_METADATA)
1432 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1433 	else
1434 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1435 
1436 	btrfs_ref_tree_mod(fs_info, generic_ref);
1437 
1438 	return ret;
1439 }
1440 
1441 /*
1442  * __btrfs_inc_extent_ref - insert backreference for a given extent
1443  *
1444  * The counterpart is in __btrfs_free_extent(), with examples and more details
1445  * how it works.
1446  *
1447  * @trans:	    Handle of transaction
1448  *
1449  * @node:	    The delayed ref node used to get the bytenr/length for
1450  *		    extent whose references are incremented.
1451  *
1452  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1453  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1454  *		    bytenr of the parent block. Since new extents are always
1455  *		    created with indirect references, this will only be the case
1456  *		    when relocating a shared extent. In that case, root_objectid
1457  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1458  *		    be 0
1459  *
1460  * @root_objectid:  The id of the root where this modification has originated,
1461  *		    this can be either one of the well-known metadata trees or
1462  *		    the subvolume id which references this extent.
1463  *
1464  * @owner:	    For data extents it is the inode number of the owning file.
1465  *		    For metadata extents this parameter holds the level in the
1466  *		    tree of the extent.
1467  *
1468  * @offset:	    For metadata extents the offset is ignored and is currently
1469  *		    always passed as 0. For data extents it is the fileoffset
1470  *		    this extent belongs to.
1471  *
1472  * @refs_to_add     Number of references to add
1473  *
1474  * @extent_op       Pointer to a structure, holding information necessary when
1475  *                  updating a tree block's flags
1476  *
1477  */
1478 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1479 				  struct btrfs_delayed_ref_node *node,
1480 				  u64 parent, u64 root_objectid,
1481 				  u64 owner, u64 offset, int refs_to_add,
1482 				  struct btrfs_delayed_extent_op *extent_op)
1483 {
1484 	struct btrfs_path *path;
1485 	struct extent_buffer *leaf;
1486 	struct btrfs_extent_item *item;
1487 	struct btrfs_key key;
1488 	u64 bytenr = node->bytenr;
1489 	u64 num_bytes = node->num_bytes;
1490 	u64 refs;
1491 	int ret;
1492 
1493 	path = btrfs_alloc_path();
1494 	if (!path)
1495 		return -ENOMEM;
1496 
1497 	/* this will setup the path even if it fails to insert the back ref */
1498 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1499 					   parent, root_objectid, owner,
1500 					   offset, refs_to_add, extent_op);
1501 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1502 		goto out;
1503 
1504 	/*
1505 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1506 	 * inline extent ref, so just update the reference count and add a
1507 	 * normal backref.
1508 	 */
1509 	leaf = path->nodes[0];
1510 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1511 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1512 	refs = btrfs_extent_refs(leaf, item);
1513 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1514 	if (extent_op)
1515 		__run_delayed_extent_op(extent_op, leaf, item);
1516 
1517 	btrfs_mark_buffer_dirty(trans, leaf);
1518 	btrfs_release_path(path);
1519 
1520 	/* now insert the actual backref */
1521 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1522 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1523 					    root_objectid);
1524 	else
1525 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1526 					     root_objectid, owner, offset,
1527 					     refs_to_add);
1528 
1529 	if (ret)
1530 		btrfs_abort_transaction(trans, ret);
1531 out:
1532 	btrfs_free_path(path);
1533 	return ret;
1534 }
1535 
1536 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1537 				struct btrfs_delayed_ref_node *node,
1538 				struct btrfs_delayed_extent_op *extent_op,
1539 				bool insert_reserved)
1540 {
1541 	int ret = 0;
1542 	struct btrfs_delayed_data_ref *ref;
1543 	struct btrfs_key ins;
1544 	u64 parent = 0;
1545 	u64 ref_root = 0;
1546 	u64 flags = 0;
1547 
1548 	ins.objectid = node->bytenr;
1549 	ins.offset = node->num_bytes;
1550 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1551 
1552 	ref = btrfs_delayed_node_to_data_ref(node);
1553 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1554 
1555 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1556 		parent = ref->parent;
1557 	ref_root = ref->root;
1558 
1559 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1560 		if (extent_op)
1561 			flags |= extent_op->flags_to_set;
1562 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1563 						 flags, ref->objectid,
1564 						 ref->offset, &ins,
1565 						 node->ref_mod);
1566 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1567 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1568 					     ref->objectid, ref->offset,
1569 					     node->ref_mod, extent_op);
1570 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1571 		ret = __btrfs_free_extent(trans, node, parent,
1572 					  ref_root, ref->objectid,
1573 					  ref->offset, node->ref_mod,
1574 					  extent_op);
1575 	} else {
1576 		BUG();
1577 	}
1578 	return ret;
1579 }
1580 
1581 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1582 				    struct extent_buffer *leaf,
1583 				    struct btrfs_extent_item *ei)
1584 {
1585 	u64 flags = btrfs_extent_flags(leaf, ei);
1586 	if (extent_op->update_flags) {
1587 		flags |= extent_op->flags_to_set;
1588 		btrfs_set_extent_flags(leaf, ei, flags);
1589 	}
1590 
1591 	if (extent_op->update_key) {
1592 		struct btrfs_tree_block_info *bi;
1593 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1594 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1595 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1596 	}
1597 }
1598 
1599 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1600 				 struct btrfs_delayed_ref_head *head,
1601 				 struct btrfs_delayed_extent_op *extent_op)
1602 {
1603 	struct btrfs_fs_info *fs_info = trans->fs_info;
1604 	struct btrfs_root *root;
1605 	struct btrfs_key key;
1606 	struct btrfs_path *path;
1607 	struct btrfs_extent_item *ei;
1608 	struct extent_buffer *leaf;
1609 	u32 item_size;
1610 	int ret;
1611 	int err = 0;
1612 	int metadata = 1;
1613 
1614 	if (TRANS_ABORTED(trans))
1615 		return 0;
1616 
1617 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1618 		metadata = 0;
1619 
1620 	path = btrfs_alloc_path();
1621 	if (!path)
1622 		return -ENOMEM;
1623 
1624 	key.objectid = head->bytenr;
1625 
1626 	if (metadata) {
1627 		key.type = BTRFS_METADATA_ITEM_KEY;
1628 		key.offset = extent_op->level;
1629 	} else {
1630 		key.type = BTRFS_EXTENT_ITEM_KEY;
1631 		key.offset = head->num_bytes;
1632 	}
1633 
1634 	root = btrfs_extent_root(fs_info, key.objectid);
1635 again:
1636 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1637 	if (ret < 0) {
1638 		err = ret;
1639 		goto out;
1640 	}
1641 	if (ret > 0) {
1642 		if (metadata) {
1643 			if (path->slots[0] > 0) {
1644 				path->slots[0]--;
1645 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1646 						      path->slots[0]);
1647 				if (key.objectid == head->bytenr &&
1648 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1649 				    key.offset == head->num_bytes)
1650 					ret = 0;
1651 			}
1652 			if (ret > 0) {
1653 				btrfs_release_path(path);
1654 				metadata = 0;
1655 
1656 				key.objectid = head->bytenr;
1657 				key.offset = head->num_bytes;
1658 				key.type = BTRFS_EXTENT_ITEM_KEY;
1659 				goto again;
1660 			}
1661 		} else {
1662 			err = -EUCLEAN;
1663 			btrfs_err(fs_info,
1664 		  "missing extent item for extent %llu num_bytes %llu level %d",
1665 				  head->bytenr, head->num_bytes, extent_op->level);
1666 			goto out;
1667 		}
1668 	}
1669 
1670 	leaf = path->nodes[0];
1671 	item_size = btrfs_item_size(leaf, path->slots[0]);
1672 
1673 	if (unlikely(item_size < sizeof(*ei))) {
1674 		err = -EUCLEAN;
1675 		btrfs_err(fs_info,
1676 			  "unexpected extent item size, has %u expect >= %zu",
1677 			  item_size, sizeof(*ei));
1678 		btrfs_abort_transaction(trans, err);
1679 		goto out;
1680 	}
1681 
1682 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1683 	__run_delayed_extent_op(extent_op, leaf, ei);
1684 
1685 	btrfs_mark_buffer_dirty(trans, leaf);
1686 out:
1687 	btrfs_free_path(path);
1688 	return err;
1689 }
1690 
1691 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1692 				struct btrfs_delayed_ref_node *node,
1693 				struct btrfs_delayed_extent_op *extent_op,
1694 				bool insert_reserved)
1695 {
1696 	int ret = 0;
1697 	struct btrfs_delayed_tree_ref *ref;
1698 	u64 parent = 0;
1699 	u64 ref_root = 0;
1700 
1701 	ref = btrfs_delayed_node_to_tree_ref(node);
1702 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1703 
1704 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1705 		parent = ref->parent;
1706 	ref_root = ref->root;
1707 
1708 	if (unlikely(node->ref_mod != 1)) {
1709 		btrfs_err(trans->fs_info,
1710 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1711 			  node->bytenr, node->ref_mod, node->action, ref_root,
1712 			  parent);
1713 		return -EUCLEAN;
1714 	}
1715 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1716 		BUG_ON(!extent_op || !extent_op->update_flags);
1717 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1718 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1719 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1720 					     ref->level, 0, 1, extent_op);
1721 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1722 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1723 					  ref->level, 0, 1, extent_op);
1724 	} else {
1725 		BUG();
1726 	}
1727 	return ret;
1728 }
1729 
1730 /* helper function to actually process a single delayed ref entry */
1731 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1732 			       struct btrfs_delayed_ref_node *node,
1733 			       struct btrfs_delayed_extent_op *extent_op,
1734 			       bool insert_reserved)
1735 {
1736 	int ret = 0;
1737 
1738 	if (TRANS_ABORTED(trans)) {
1739 		if (insert_reserved)
1740 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1741 		return 0;
1742 	}
1743 
1744 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1745 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1746 		ret = run_delayed_tree_ref(trans, node, extent_op,
1747 					   insert_reserved);
1748 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1749 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1750 		ret = run_delayed_data_ref(trans, node, extent_op,
1751 					   insert_reserved);
1752 	else
1753 		BUG();
1754 	if (ret && insert_reserved)
1755 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1756 	if (ret < 0)
1757 		btrfs_err(trans->fs_info,
1758 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1759 			  node->bytenr, node->num_bytes, node->type,
1760 			  node->action, node->ref_mod, ret);
1761 	return ret;
1762 }
1763 
1764 static inline struct btrfs_delayed_ref_node *
1765 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1766 {
1767 	struct btrfs_delayed_ref_node *ref;
1768 
1769 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1770 		return NULL;
1771 
1772 	/*
1773 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1774 	 * This is to prevent a ref count from going down to zero, which deletes
1775 	 * the extent item from the extent tree, when there still are references
1776 	 * to add, which would fail because they would not find the extent item.
1777 	 */
1778 	if (!list_empty(&head->ref_add_list))
1779 		return list_first_entry(&head->ref_add_list,
1780 				struct btrfs_delayed_ref_node, add_list);
1781 
1782 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1783 		       struct btrfs_delayed_ref_node, ref_node);
1784 	ASSERT(list_empty(&ref->add_list));
1785 	return ref;
1786 }
1787 
1788 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1789 				      struct btrfs_delayed_ref_head *head)
1790 {
1791 	spin_lock(&delayed_refs->lock);
1792 	head->processing = false;
1793 	delayed_refs->num_heads_ready++;
1794 	spin_unlock(&delayed_refs->lock);
1795 	btrfs_delayed_ref_unlock(head);
1796 }
1797 
1798 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1799 				struct btrfs_delayed_ref_head *head)
1800 {
1801 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1802 
1803 	if (!extent_op)
1804 		return NULL;
1805 
1806 	if (head->must_insert_reserved) {
1807 		head->extent_op = NULL;
1808 		btrfs_free_delayed_extent_op(extent_op);
1809 		return NULL;
1810 	}
1811 	return extent_op;
1812 }
1813 
1814 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1815 				     struct btrfs_delayed_ref_head *head)
1816 {
1817 	struct btrfs_delayed_extent_op *extent_op;
1818 	int ret;
1819 
1820 	extent_op = cleanup_extent_op(head);
1821 	if (!extent_op)
1822 		return 0;
1823 	head->extent_op = NULL;
1824 	spin_unlock(&head->lock);
1825 	ret = run_delayed_extent_op(trans, head, extent_op);
1826 	btrfs_free_delayed_extent_op(extent_op);
1827 	return ret ? ret : 1;
1828 }
1829 
1830 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1831 				  struct btrfs_delayed_ref_root *delayed_refs,
1832 				  struct btrfs_delayed_ref_head *head)
1833 {
1834 	int nr_items = 1;	/* Dropping this ref head update. */
1835 
1836 	/*
1837 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1838 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1839 	 */
1840 	if (head->total_ref_mod < 0 && head->is_data) {
1841 		spin_lock(&delayed_refs->lock);
1842 		delayed_refs->pending_csums -= head->num_bytes;
1843 		spin_unlock(&delayed_refs->lock);
1844 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1845 	}
1846 
1847 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1848 }
1849 
1850 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1851 			    struct btrfs_delayed_ref_head *head)
1852 {
1853 
1854 	struct btrfs_fs_info *fs_info = trans->fs_info;
1855 	struct btrfs_delayed_ref_root *delayed_refs;
1856 	int ret;
1857 
1858 	delayed_refs = &trans->transaction->delayed_refs;
1859 
1860 	ret = run_and_cleanup_extent_op(trans, head);
1861 	if (ret < 0) {
1862 		unselect_delayed_ref_head(delayed_refs, head);
1863 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1864 		return ret;
1865 	} else if (ret) {
1866 		return ret;
1867 	}
1868 
1869 	/*
1870 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1871 	 * and then re-check to make sure nobody got added.
1872 	 */
1873 	spin_unlock(&head->lock);
1874 	spin_lock(&delayed_refs->lock);
1875 	spin_lock(&head->lock);
1876 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1877 		spin_unlock(&head->lock);
1878 		spin_unlock(&delayed_refs->lock);
1879 		return 1;
1880 	}
1881 	btrfs_delete_ref_head(delayed_refs, head);
1882 	spin_unlock(&head->lock);
1883 	spin_unlock(&delayed_refs->lock);
1884 
1885 	if (head->must_insert_reserved) {
1886 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1887 		if (head->is_data) {
1888 			struct btrfs_root *csum_root;
1889 
1890 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1891 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1892 					      head->num_bytes);
1893 		}
1894 	}
1895 
1896 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1897 
1898 	trace_run_delayed_ref_head(fs_info, head, 0);
1899 	btrfs_delayed_ref_unlock(head);
1900 	btrfs_put_delayed_ref_head(head);
1901 	return ret;
1902 }
1903 
1904 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1905 					struct btrfs_trans_handle *trans)
1906 {
1907 	struct btrfs_delayed_ref_root *delayed_refs =
1908 		&trans->transaction->delayed_refs;
1909 	struct btrfs_delayed_ref_head *head = NULL;
1910 	int ret;
1911 
1912 	spin_lock(&delayed_refs->lock);
1913 	head = btrfs_select_ref_head(delayed_refs);
1914 	if (!head) {
1915 		spin_unlock(&delayed_refs->lock);
1916 		return head;
1917 	}
1918 
1919 	/*
1920 	 * Grab the lock that says we are going to process all the refs for
1921 	 * this head
1922 	 */
1923 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1924 	spin_unlock(&delayed_refs->lock);
1925 
1926 	/*
1927 	 * We may have dropped the spin lock to get the head mutex lock, and
1928 	 * that might have given someone else time to free the head.  If that's
1929 	 * true, it has been removed from our list and we can move on.
1930 	 */
1931 	if (ret == -EAGAIN)
1932 		head = ERR_PTR(-EAGAIN);
1933 
1934 	return head;
1935 }
1936 
1937 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1938 					   struct btrfs_delayed_ref_head *locked_ref)
1939 {
1940 	struct btrfs_fs_info *fs_info = trans->fs_info;
1941 	struct btrfs_delayed_ref_root *delayed_refs;
1942 	struct btrfs_delayed_extent_op *extent_op;
1943 	struct btrfs_delayed_ref_node *ref;
1944 	bool must_insert_reserved;
1945 	int ret;
1946 
1947 	delayed_refs = &trans->transaction->delayed_refs;
1948 
1949 	lockdep_assert_held(&locked_ref->mutex);
1950 	lockdep_assert_held(&locked_ref->lock);
1951 
1952 	while ((ref = select_delayed_ref(locked_ref))) {
1953 		if (ref->seq &&
1954 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1955 			spin_unlock(&locked_ref->lock);
1956 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1957 			return -EAGAIN;
1958 		}
1959 
1960 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1961 		RB_CLEAR_NODE(&ref->ref_node);
1962 		if (!list_empty(&ref->add_list))
1963 			list_del(&ref->add_list);
1964 		/*
1965 		 * When we play the delayed ref, also correct the ref_mod on
1966 		 * head
1967 		 */
1968 		switch (ref->action) {
1969 		case BTRFS_ADD_DELAYED_REF:
1970 		case BTRFS_ADD_DELAYED_EXTENT:
1971 			locked_ref->ref_mod -= ref->ref_mod;
1972 			break;
1973 		case BTRFS_DROP_DELAYED_REF:
1974 			locked_ref->ref_mod += ref->ref_mod;
1975 			break;
1976 		default:
1977 			WARN_ON(1);
1978 		}
1979 		atomic_dec(&delayed_refs->num_entries);
1980 
1981 		/*
1982 		 * Record the must_insert_reserved flag before we drop the
1983 		 * spin lock.
1984 		 */
1985 		must_insert_reserved = locked_ref->must_insert_reserved;
1986 		locked_ref->must_insert_reserved = false;
1987 
1988 		extent_op = locked_ref->extent_op;
1989 		locked_ref->extent_op = NULL;
1990 		spin_unlock(&locked_ref->lock);
1991 
1992 		ret = run_one_delayed_ref(trans, ref, extent_op,
1993 					  must_insert_reserved);
1994 
1995 		btrfs_free_delayed_extent_op(extent_op);
1996 		if (ret) {
1997 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1998 			btrfs_put_delayed_ref(ref);
1999 			return ret;
2000 		}
2001 
2002 		btrfs_put_delayed_ref(ref);
2003 		cond_resched();
2004 
2005 		spin_lock(&locked_ref->lock);
2006 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 /*
2013  * Returns 0 on success or if called with an already aborted transaction.
2014  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2015  */
2016 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2017 					     unsigned long nr)
2018 {
2019 	struct btrfs_fs_info *fs_info = trans->fs_info;
2020 	struct btrfs_delayed_ref_root *delayed_refs;
2021 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2022 	int ret;
2023 	unsigned long count = 0;
2024 
2025 	delayed_refs = &trans->transaction->delayed_refs;
2026 	do {
2027 		if (!locked_ref) {
2028 			locked_ref = btrfs_obtain_ref_head(trans);
2029 			if (IS_ERR_OR_NULL(locked_ref)) {
2030 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2031 					continue;
2032 				} else {
2033 					break;
2034 				}
2035 			}
2036 			count++;
2037 		}
2038 		/*
2039 		 * We need to try and merge add/drops of the same ref since we
2040 		 * can run into issues with relocate dropping the implicit ref
2041 		 * and then it being added back again before the drop can
2042 		 * finish.  If we merged anything we need to re-loop so we can
2043 		 * get a good ref.
2044 		 * Or we can get node references of the same type that weren't
2045 		 * merged when created due to bumps in the tree mod seq, and
2046 		 * we need to merge them to prevent adding an inline extent
2047 		 * backref before dropping it (triggering a BUG_ON at
2048 		 * insert_inline_extent_backref()).
2049 		 */
2050 		spin_lock(&locked_ref->lock);
2051 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2052 
2053 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2054 		if (ret < 0 && ret != -EAGAIN) {
2055 			/*
2056 			 * Error, btrfs_run_delayed_refs_for_head already
2057 			 * unlocked everything so just bail out
2058 			 */
2059 			return ret;
2060 		} else if (!ret) {
2061 			/*
2062 			 * Success, perform the usual cleanup of a processed
2063 			 * head
2064 			 */
2065 			ret = cleanup_ref_head(trans, locked_ref);
2066 			if (ret > 0 ) {
2067 				/* We dropped our lock, we need to loop. */
2068 				ret = 0;
2069 				continue;
2070 			} else if (ret) {
2071 				return ret;
2072 			}
2073 		}
2074 
2075 		/*
2076 		 * Either success case or btrfs_run_delayed_refs_for_head
2077 		 * returned -EAGAIN, meaning we need to select another head
2078 		 */
2079 
2080 		locked_ref = NULL;
2081 		cond_resched();
2082 	} while ((nr != -1 && count < nr) || locked_ref);
2083 
2084 	return 0;
2085 }
2086 
2087 #ifdef SCRAMBLE_DELAYED_REFS
2088 /*
2089  * Normally delayed refs get processed in ascending bytenr order. This
2090  * correlates in most cases to the order added. To expose dependencies on this
2091  * order, we start to process the tree in the middle instead of the beginning
2092  */
2093 static u64 find_middle(struct rb_root *root)
2094 {
2095 	struct rb_node *n = root->rb_node;
2096 	struct btrfs_delayed_ref_node *entry;
2097 	int alt = 1;
2098 	u64 middle;
2099 	u64 first = 0, last = 0;
2100 
2101 	n = rb_first(root);
2102 	if (n) {
2103 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2104 		first = entry->bytenr;
2105 	}
2106 	n = rb_last(root);
2107 	if (n) {
2108 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2109 		last = entry->bytenr;
2110 	}
2111 	n = root->rb_node;
2112 
2113 	while (n) {
2114 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2115 		WARN_ON(!entry->in_tree);
2116 
2117 		middle = entry->bytenr;
2118 
2119 		if (alt)
2120 			n = n->rb_left;
2121 		else
2122 			n = n->rb_right;
2123 
2124 		alt = 1 - alt;
2125 	}
2126 	return middle;
2127 }
2128 #endif
2129 
2130 /*
2131  * this starts processing the delayed reference count updates and
2132  * extent insertions we have queued up so far.  count can be
2133  * 0, which means to process everything in the tree at the start
2134  * of the run (but not newly added entries), or it can be some target
2135  * number you'd like to process.
2136  *
2137  * Returns 0 on success or if called with an aborted transaction
2138  * Returns <0 on error and aborts the transaction
2139  */
2140 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2141 			   unsigned long count)
2142 {
2143 	struct btrfs_fs_info *fs_info = trans->fs_info;
2144 	struct rb_node *node;
2145 	struct btrfs_delayed_ref_root *delayed_refs;
2146 	struct btrfs_delayed_ref_head *head;
2147 	int ret;
2148 	int run_all = count == (unsigned long)-1;
2149 
2150 	/* We'll clean this up in btrfs_cleanup_transaction */
2151 	if (TRANS_ABORTED(trans))
2152 		return 0;
2153 
2154 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2155 		return 0;
2156 
2157 	delayed_refs = &trans->transaction->delayed_refs;
2158 	if (count == 0)
2159 		count = delayed_refs->num_heads_ready;
2160 
2161 again:
2162 #ifdef SCRAMBLE_DELAYED_REFS
2163 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2164 #endif
2165 	ret = __btrfs_run_delayed_refs(trans, count);
2166 	if (ret < 0) {
2167 		btrfs_abort_transaction(trans, ret);
2168 		return ret;
2169 	}
2170 
2171 	if (run_all) {
2172 		btrfs_create_pending_block_groups(trans);
2173 
2174 		spin_lock(&delayed_refs->lock);
2175 		node = rb_first_cached(&delayed_refs->href_root);
2176 		if (!node) {
2177 			spin_unlock(&delayed_refs->lock);
2178 			goto out;
2179 		}
2180 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2181 				href_node);
2182 		refcount_inc(&head->refs);
2183 		spin_unlock(&delayed_refs->lock);
2184 
2185 		/* Mutex was contended, block until it's released and retry. */
2186 		mutex_lock(&head->mutex);
2187 		mutex_unlock(&head->mutex);
2188 
2189 		btrfs_put_delayed_ref_head(head);
2190 		cond_resched();
2191 		goto again;
2192 	}
2193 out:
2194 	return 0;
2195 }
2196 
2197 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2198 				struct extent_buffer *eb, u64 flags)
2199 {
2200 	struct btrfs_delayed_extent_op *extent_op;
2201 	int level = btrfs_header_level(eb);
2202 	int ret;
2203 
2204 	extent_op = btrfs_alloc_delayed_extent_op();
2205 	if (!extent_op)
2206 		return -ENOMEM;
2207 
2208 	extent_op->flags_to_set = flags;
2209 	extent_op->update_flags = true;
2210 	extent_op->update_key = false;
2211 	extent_op->level = level;
2212 
2213 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2214 	if (ret)
2215 		btrfs_free_delayed_extent_op(extent_op);
2216 	return ret;
2217 }
2218 
2219 static noinline int check_delayed_ref(struct btrfs_root *root,
2220 				      struct btrfs_path *path,
2221 				      u64 objectid, u64 offset, u64 bytenr)
2222 {
2223 	struct btrfs_delayed_ref_head *head;
2224 	struct btrfs_delayed_ref_node *ref;
2225 	struct btrfs_delayed_data_ref *data_ref;
2226 	struct btrfs_delayed_ref_root *delayed_refs;
2227 	struct btrfs_transaction *cur_trans;
2228 	struct rb_node *node;
2229 	int ret = 0;
2230 
2231 	spin_lock(&root->fs_info->trans_lock);
2232 	cur_trans = root->fs_info->running_transaction;
2233 	if (cur_trans)
2234 		refcount_inc(&cur_trans->use_count);
2235 	spin_unlock(&root->fs_info->trans_lock);
2236 	if (!cur_trans)
2237 		return 0;
2238 
2239 	delayed_refs = &cur_trans->delayed_refs;
2240 	spin_lock(&delayed_refs->lock);
2241 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2242 	if (!head) {
2243 		spin_unlock(&delayed_refs->lock);
2244 		btrfs_put_transaction(cur_trans);
2245 		return 0;
2246 	}
2247 
2248 	if (!mutex_trylock(&head->mutex)) {
2249 		if (path->nowait) {
2250 			spin_unlock(&delayed_refs->lock);
2251 			btrfs_put_transaction(cur_trans);
2252 			return -EAGAIN;
2253 		}
2254 
2255 		refcount_inc(&head->refs);
2256 		spin_unlock(&delayed_refs->lock);
2257 
2258 		btrfs_release_path(path);
2259 
2260 		/*
2261 		 * Mutex was contended, block until it's released and let
2262 		 * caller try again
2263 		 */
2264 		mutex_lock(&head->mutex);
2265 		mutex_unlock(&head->mutex);
2266 		btrfs_put_delayed_ref_head(head);
2267 		btrfs_put_transaction(cur_trans);
2268 		return -EAGAIN;
2269 	}
2270 	spin_unlock(&delayed_refs->lock);
2271 
2272 	spin_lock(&head->lock);
2273 	/*
2274 	 * XXX: We should replace this with a proper search function in the
2275 	 * future.
2276 	 */
2277 	for (node = rb_first_cached(&head->ref_tree); node;
2278 	     node = rb_next(node)) {
2279 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2280 		/* If it's a shared ref we know a cross reference exists */
2281 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2282 			ret = 1;
2283 			break;
2284 		}
2285 
2286 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2287 
2288 		/*
2289 		 * If our ref doesn't match the one we're currently looking at
2290 		 * then we have a cross reference.
2291 		 */
2292 		if (data_ref->root != root->root_key.objectid ||
2293 		    data_ref->objectid != objectid ||
2294 		    data_ref->offset != offset) {
2295 			ret = 1;
2296 			break;
2297 		}
2298 	}
2299 	spin_unlock(&head->lock);
2300 	mutex_unlock(&head->mutex);
2301 	btrfs_put_transaction(cur_trans);
2302 	return ret;
2303 }
2304 
2305 static noinline int check_committed_ref(struct btrfs_root *root,
2306 					struct btrfs_path *path,
2307 					u64 objectid, u64 offset, u64 bytenr,
2308 					bool strict)
2309 {
2310 	struct btrfs_fs_info *fs_info = root->fs_info;
2311 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2312 	struct extent_buffer *leaf;
2313 	struct btrfs_extent_data_ref *ref;
2314 	struct btrfs_extent_inline_ref *iref;
2315 	struct btrfs_extent_item *ei;
2316 	struct btrfs_key key;
2317 	u32 item_size;
2318 	int type;
2319 	int ret;
2320 
2321 	key.objectid = bytenr;
2322 	key.offset = (u64)-1;
2323 	key.type = BTRFS_EXTENT_ITEM_KEY;
2324 
2325 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2326 	if (ret < 0)
2327 		goto out;
2328 	BUG_ON(ret == 0); /* Corruption */
2329 
2330 	ret = -ENOENT;
2331 	if (path->slots[0] == 0)
2332 		goto out;
2333 
2334 	path->slots[0]--;
2335 	leaf = path->nodes[0];
2336 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2337 
2338 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2339 		goto out;
2340 
2341 	ret = 1;
2342 	item_size = btrfs_item_size(leaf, path->slots[0]);
2343 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2344 
2345 	/* If extent item has more than 1 inline ref then it's shared */
2346 	if (item_size != sizeof(*ei) +
2347 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2348 		goto out;
2349 
2350 	/*
2351 	 * If extent created before last snapshot => it's shared unless the
2352 	 * snapshot has been deleted. Use the heuristic if strict is false.
2353 	 */
2354 	if (!strict &&
2355 	    (btrfs_extent_generation(leaf, ei) <=
2356 	     btrfs_root_last_snapshot(&root->root_item)))
2357 		goto out;
2358 
2359 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2360 
2361 	/* If this extent has SHARED_DATA_REF then it's shared */
2362 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2363 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2364 		goto out;
2365 
2366 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2367 	if (btrfs_extent_refs(leaf, ei) !=
2368 	    btrfs_extent_data_ref_count(leaf, ref) ||
2369 	    btrfs_extent_data_ref_root(leaf, ref) !=
2370 	    root->root_key.objectid ||
2371 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2372 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2373 		goto out;
2374 
2375 	ret = 0;
2376 out:
2377 	return ret;
2378 }
2379 
2380 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2381 			  u64 bytenr, bool strict, struct btrfs_path *path)
2382 {
2383 	int ret;
2384 
2385 	do {
2386 		ret = check_committed_ref(root, path, objectid,
2387 					  offset, bytenr, strict);
2388 		if (ret && ret != -ENOENT)
2389 			goto out;
2390 
2391 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2392 	} while (ret == -EAGAIN);
2393 
2394 out:
2395 	btrfs_release_path(path);
2396 	if (btrfs_is_data_reloc_root(root))
2397 		WARN_ON(ret > 0);
2398 	return ret;
2399 }
2400 
2401 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2402 			   struct btrfs_root *root,
2403 			   struct extent_buffer *buf,
2404 			   int full_backref, int inc)
2405 {
2406 	struct btrfs_fs_info *fs_info = root->fs_info;
2407 	u64 bytenr;
2408 	u64 num_bytes;
2409 	u64 parent;
2410 	u64 ref_root;
2411 	u32 nritems;
2412 	struct btrfs_key key;
2413 	struct btrfs_file_extent_item *fi;
2414 	struct btrfs_ref generic_ref = { 0 };
2415 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2416 	int i;
2417 	int action;
2418 	int level;
2419 	int ret = 0;
2420 
2421 	if (btrfs_is_testing(fs_info))
2422 		return 0;
2423 
2424 	ref_root = btrfs_header_owner(buf);
2425 	nritems = btrfs_header_nritems(buf);
2426 	level = btrfs_header_level(buf);
2427 
2428 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2429 		return 0;
2430 
2431 	if (full_backref)
2432 		parent = buf->start;
2433 	else
2434 		parent = 0;
2435 	if (inc)
2436 		action = BTRFS_ADD_DELAYED_REF;
2437 	else
2438 		action = BTRFS_DROP_DELAYED_REF;
2439 
2440 	for (i = 0; i < nritems; i++) {
2441 		if (level == 0) {
2442 			btrfs_item_key_to_cpu(buf, &key, i);
2443 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2444 				continue;
2445 			fi = btrfs_item_ptr(buf, i,
2446 					    struct btrfs_file_extent_item);
2447 			if (btrfs_file_extent_type(buf, fi) ==
2448 			    BTRFS_FILE_EXTENT_INLINE)
2449 				continue;
2450 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2451 			if (bytenr == 0)
2452 				continue;
2453 
2454 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2455 			key.offset -= btrfs_file_extent_offset(buf, fi);
2456 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2457 					       num_bytes, parent);
2458 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2459 					    key.offset, root->root_key.objectid,
2460 					    for_reloc);
2461 			if (inc)
2462 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2463 			else
2464 				ret = btrfs_free_extent(trans, &generic_ref);
2465 			if (ret)
2466 				goto fail;
2467 		} else {
2468 			bytenr = btrfs_node_blockptr(buf, i);
2469 			num_bytes = fs_info->nodesize;
2470 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2471 					       num_bytes, parent);
2472 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2473 					    root->root_key.objectid, for_reloc);
2474 			if (inc)
2475 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2476 			else
2477 				ret = btrfs_free_extent(trans, &generic_ref);
2478 			if (ret)
2479 				goto fail;
2480 		}
2481 	}
2482 	return 0;
2483 fail:
2484 	return ret;
2485 }
2486 
2487 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2488 		  struct extent_buffer *buf, int full_backref)
2489 {
2490 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2491 }
2492 
2493 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2494 		  struct extent_buffer *buf, int full_backref)
2495 {
2496 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2497 }
2498 
2499 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2500 {
2501 	struct btrfs_fs_info *fs_info = root->fs_info;
2502 	u64 flags;
2503 	u64 ret;
2504 
2505 	if (data)
2506 		flags = BTRFS_BLOCK_GROUP_DATA;
2507 	else if (root == fs_info->chunk_root)
2508 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2509 	else
2510 		flags = BTRFS_BLOCK_GROUP_METADATA;
2511 
2512 	ret = btrfs_get_alloc_profile(fs_info, flags);
2513 	return ret;
2514 }
2515 
2516 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2517 {
2518 	struct rb_node *leftmost;
2519 	u64 bytenr = 0;
2520 
2521 	read_lock(&fs_info->block_group_cache_lock);
2522 	/* Get the block group with the lowest logical start address. */
2523 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2524 	if (leftmost) {
2525 		struct btrfs_block_group *bg;
2526 
2527 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2528 		bytenr = bg->start;
2529 	}
2530 	read_unlock(&fs_info->block_group_cache_lock);
2531 
2532 	return bytenr;
2533 }
2534 
2535 static int pin_down_extent(struct btrfs_trans_handle *trans,
2536 			   struct btrfs_block_group *cache,
2537 			   u64 bytenr, u64 num_bytes, int reserved)
2538 {
2539 	struct btrfs_fs_info *fs_info = cache->fs_info;
2540 
2541 	spin_lock(&cache->space_info->lock);
2542 	spin_lock(&cache->lock);
2543 	cache->pinned += num_bytes;
2544 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2545 					     num_bytes);
2546 	if (reserved) {
2547 		cache->reserved -= num_bytes;
2548 		cache->space_info->bytes_reserved -= num_bytes;
2549 	}
2550 	spin_unlock(&cache->lock);
2551 	spin_unlock(&cache->space_info->lock);
2552 
2553 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2554 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2555 	return 0;
2556 }
2557 
2558 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2559 		     u64 bytenr, u64 num_bytes, int reserved)
2560 {
2561 	struct btrfs_block_group *cache;
2562 
2563 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2564 	BUG_ON(!cache); /* Logic error */
2565 
2566 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2567 
2568 	btrfs_put_block_group(cache);
2569 	return 0;
2570 }
2571 
2572 /*
2573  * this function must be called within transaction
2574  */
2575 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2576 				    u64 bytenr, u64 num_bytes)
2577 {
2578 	struct btrfs_block_group *cache;
2579 	int ret;
2580 
2581 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2582 	if (!cache)
2583 		return -EINVAL;
2584 
2585 	/*
2586 	 * Fully cache the free space first so that our pin removes the free space
2587 	 * from the cache.
2588 	 */
2589 	ret = btrfs_cache_block_group(cache, true);
2590 	if (ret)
2591 		goto out;
2592 
2593 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2594 
2595 	/* remove us from the free space cache (if we're there at all) */
2596 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2597 out:
2598 	btrfs_put_block_group(cache);
2599 	return ret;
2600 }
2601 
2602 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2603 				   u64 start, u64 num_bytes)
2604 {
2605 	int ret;
2606 	struct btrfs_block_group *block_group;
2607 
2608 	block_group = btrfs_lookup_block_group(fs_info, start);
2609 	if (!block_group)
2610 		return -EINVAL;
2611 
2612 	ret = btrfs_cache_block_group(block_group, true);
2613 	if (ret)
2614 		goto out;
2615 
2616 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2617 out:
2618 	btrfs_put_block_group(block_group);
2619 	return ret;
2620 }
2621 
2622 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2623 {
2624 	struct btrfs_fs_info *fs_info = eb->fs_info;
2625 	struct btrfs_file_extent_item *item;
2626 	struct btrfs_key key;
2627 	int found_type;
2628 	int i;
2629 	int ret = 0;
2630 
2631 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2632 		return 0;
2633 
2634 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2635 		btrfs_item_key_to_cpu(eb, &key, i);
2636 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2637 			continue;
2638 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2639 		found_type = btrfs_file_extent_type(eb, item);
2640 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2641 			continue;
2642 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2643 			continue;
2644 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2645 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2646 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2647 		if (ret)
2648 			break;
2649 	}
2650 
2651 	return ret;
2652 }
2653 
2654 static void
2655 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2656 {
2657 	atomic_inc(&bg->reservations);
2658 }
2659 
2660 /*
2661  * Returns the free cluster for the given space info and sets empty_cluster to
2662  * what it should be based on the mount options.
2663  */
2664 static struct btrfs_free_cluster *
2665 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2666 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2667 {
2668 	struct btrfs_free_cluster *ret = NULL;
2669 
2670 	*empty_cluster = 0;
2671 	if (btrfs_mixed_space_info(space_info))
2672 		return ret;
2673 
2674 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2675 		ret = &fs_info->meta_alloc_cluster;
2676 		if (btrfs_test_opt(fs_info, SSD))
2677 			*empty_cluster = SZ_2M;
2678 		else
2679 			*empty_cluster = SZ_64K;
2680 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2681 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2682 		*empty_cluster = SZ_2M;
2683 		ret = &fs_info->data_alloc_cluster;
2684 	}
2685 
2686 	return ret;
2687 }
2688 
2689 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2690 			      u64 start, u64 end,
2691 			      const bool return_free_space)
2692 {
2693 	struct btrfs_block_group *cache = NULL;
2694 	struct btrfs_space_info *space_info;
2695 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2696 	struct btrfs_free_cluster *cluster = NULL;
2697 	u64 len;
2698 	u64 total_unpinned = 0;
2699 	u64 empty_cluster = 0;
2700 	bool readonly;
2701 
2702 	while (start <= end) {
2703 		readonly = false;
2704 		if (!cache ||
2705 		    start >= cache->start + cache->length) {
2706 			if (cache)
2707 				btrfs_put_block_group(cache);
2708 			total_unpinned = 0;
2709 			cache = btrfs_lookup_block_group(fs_info, start);
2710 			BUG_ON(!cache); /* Logic error */
2711 
2712 			cluster = fetch_cluster_info(fs_info,
2713 						     cache->space_info,
2714 						     &empty_cluster);
2715 			empty_cluster <<= 1;
2716 		}
2717 
2718 		len = cache->start + cache->length - start;
2719 		len = min(len, end + 1 - start);
2720 
2721 		if (return_free_space)
2722 			btrfs_add_free_space(cache, start, len);
2723 
2724 		start += len;
2725 		total_unpinned += len;
2726 		space_info = cache->space_info;
2727 
2728 		/*
2729 		 * If this space cluster has been marked as fragmented and we've
2730 		 * unpinned enough in this block group to potentially allow a
2731 		 * cluster to be created inside of it go ahead and clear the
2732 		 * fragmented check.
2733 		 */
2734 		if (cluster && cluster->fragmented &&
2735 		    total_unpinned > empty_cluster) {
2736 			spin_lock(&cluster->lock);
2737 			cluster->fragmented = 0;
2738 			spin_unlock(&cluster->lock);
2739 		}
2740 
2741 		spin_lock(&space_info->lock);
2742 		spin_lock(&cache->lock);
2743 		cache->pinned -= len;
2744 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2745 		space_info->max_extent_size = 0;
2746 		if (cache->ro) {
2747 			space_info->bytes_readonly += len;
2748 			readonly = true;
2749 		} else if (btrfs_is_zoned(fs_info)) {
2750 			/* Need reset before reusing in a zoned block group */
2751 			space_info->bytes_zone_unusable += len;
2752 			readonly = true;
2753 		}
2754 		spin_unlock(&cache->lock);
2755 		if (!readonly && return_free_space &&
2756 		    global_rsv->space_info == space_info) {
2757 			spin_lock(&global_rsv->lock);
2758 			if (!global_rsv->full) {
2759 				u64 to_add = min(len, global_rsv->size -
2760 						      global_rsv->reserved);
2761 
2762 				global_rsv->reserved += to_add;
2763 				btrfs_space_info_update_bytes_may_use(fs_info,
2764 						space_info, to_add);
2765 				if (global_rsv->reserved >= global_rsv->size)
2766 					global_rsv->full = 1;
2767 				len -= to_add;
2768 			}
2769 			spin_unlock(&global_rsv->lock);
2770 		}
2771 		/* Add to any tickets we may have */
2772 		if (!readonly && return_free_space && len)
2773 			btrfs_try_granting_tickets(fs_info, space_info);
2774 		spin_unlock(&space_info->lock);
2775 	}
2776 
2777 	if (cache)
2778 		btrfs_put_block_group(cache);
2779 	return 0;
2780 }
2781 
2782 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2783 {
2784 	struct btrfs_fs_info *fs_info = trans->fs_info;
2785 	struct btrfs_block_group *block_group, *tmp;
2786 	struct list_head *deleted_bgs;
2787 	struct extent_io_tree *unpin;
2788 	u64 start;
2789 	u64 end;
2790 	int ret;
2791 
2792 	unpin = &trans->transaction->pinned_extents;
2793 
2794 	while (!TRANS_ABORTED(trans)) {
2795 		struct extent_state *cached_state = NULL;
2796 
2797 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2798 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2799 					   EXTENT_DIRTY, &cached_state)) {
2800 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2801 			break;
2802 		}
2803 
2804 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2805 			ret = btrfs_discard_extent(fs_info, start,
2806 						   end + 1 - start, NULL);
2807 
2808 		clear_extent_dirty(unpin, start, end, &cached_state);
2809 		unpin_extent_range(fs_info, start, end, true);
2810 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2811 		free_extent_state(cached_state);
2812 		cond_resched();
2813 	}
2814 
2815 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2816 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2817 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2818 	}
2819 
2820 	/*
2821 	 * Transaction is finished.  We don't need the lock anymore.  We
2822 	 * do need to clean up the block groups in case of a transaction
2823 	 * abort.
2824 	 */
2825 	deleted_bgs = &trans->transaction->deleted_bgs;
2826 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2827 		u64 trimmed = 0;
2828 
2829 		ret = -EROFS;
2830 		if (!TRANS_ABORTED(trans))
2831 			ret = btrfs_discard_extent(fs_info,
2832 						   block_group->start,
2833 						   block_group->length,
2834 						   &trimmed);
2835 
2836 		list_del_init(&block_group->bg_list);
2837 		btrfs_unfreeze_block_group(block_group);
2838 		btrfs_put_block_group(block_group);
2839 
2840 		if (ret) {
2841 			const char *errstr = btrfs_decode_error(ret);
2842 			btrfs_warn(fs_info,
2843 			   "discard failed while removing blockgroup: errno=%d %s",
2844 				   ret, errstr);
2845 		}
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2852 				     u64 bytenr, u64 num_bytes, bool is_data)
2853 {
2854 	int ret;
2855 
2856 	if (is_data) {
2857 		struct btrfs_root *csum_root;
2858 
2859 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2860 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2861 		if (ret) {
2862 			btrfs_abort_transaction(trans, ret);
2863 			return ret;
2864 		}
2865 	}
2866 
2867 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2868 	if (ret) {
2869 		btrfs_abort_transaction(trans, ret);
2870 		return ret;
2871 	}
2872 
2873 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2874 	if (ret)
2875 		btrfs_abort_transaction(trans, ret);
2876 
2877 	return ret;
2878 }
2879 
2880 #define abort_and_dump(trans, path, fmt, args...)	\
2881 ({							\
2882 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2883 	btrfs_print_leaf(path->nodes[0]);		\
2884 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2885 })
2886 
2887 /*
2888  * Drop one or more refs of @node.
2889  *
2890  * 1. Locate the extent refs.
2891  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2892  *    Locate it, then reduce the refs number or remove the ref line completely.
2893  *
2894  * 2. Update the refs count in EXTENT/METADATA_ITEM
2895  *
2896  * Inline backref case:
2897  *
2898  * in extent tree we have:
2899  *
2900  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2901  *		refs 2 gen 6 flags DATA
2902  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2903  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2904  *
2905  * This function gets called with:
2906  *
2907  *    node->bytenr = 13631488
2908  *    node->num_bytes = 1048576
2909  *    root_objectid = FS_TREE
2910  *    owner_objectid = 257
2911  *    owner_offset = 0
2912  *    refs_to_drop = 1
2913  *
2914  * Then we should get some like:
2915  *
2916  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2917  *		refs 1 gen 6 flags DATA
2918  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2919  *
2920  * Keyed backref case:
2921  *
2922  * in extent tree we have:
2923  *
2924  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2925  *		refs 754 gen 6 flags DATA
2926  *	[...]
2927  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2928  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2929  *
2930  * This function get called with:
2931  *
2932  *    node->bytenr = 13631488
2933  *    node->num_bytes = 1048576
2934  *    root_objectid = FS_TREE
2935  *    owner_objectid = 866
2936  *    owner_offset = 0
2937  *    refs_to_drop = 1
2938  *
2939  * Then we should get some like:
2940  *
2941  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2942  *		refs 753 gen 6 flags DATA
2943  *
2944  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2945  */
2946 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2947 			       struct btrfs_delayed_ref_node *node, u64 parent,
2948 			       u64 root_objectid, u64 owner_objectid,
2949 			       u64 owner_offset, int refs_to_drop,
2950 			       struct btrfs_delayed_extent_op *extent_op)
2951 {
2952 	struct btrfs_fs_info *info = trans->fs_info;
2953 	struct btrfs_key key;
2954 	struct btrfs_path *path;
2955 	struct btrfs_root *extent_root;
2956 	struct extent_buffer *leaf;
2957 	struct btrfs_extent_item *ei;
2958 	struct btrfs_extent_inline_ref *iref;
2959 	int ret;
2960 	int is_data;
2961 	int extent_slot = 0;
2962 	int found_extent = 0;
2963 	int num_to_del = 1;
2964 	u32 item_size;
2965 	u64 refs;
2966 	u64 bytenr = node->bytenr;
2967 	u64 num_bytes = node->num_bytes;
2968 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2969 
2970 	extent_root = btrfs_extent_root(info, bytenr);
2971 	ASSERT(extent_root);
2972 
2973 	path = btrfs_alloc_path();
2974 	if (!path)
2975 		return -ENOMEM;
2976 
2977 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2978 
2979 	if (!is_data && refs_to_drop != 1) {
2980 		btrfs_crit(info,
2981 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2982 			   node->bytenr, refs_to_drop);
2983 		ret = -EINVAL;
2984 		btrfs_abort_transaction(trans, ret);
2985 		goto out;
2986 	}
2987 
2988 	if (is_data)
2989 		skinny_metadata = false;
2990 
2991 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2992 				    parent, root_objectid, owner_objectid,
2993 				    owner_offset);
2994 	if (ret == 0) {
2995 		/*
2996 		 * Either the inline backref or the SHARED_DATA_REF/
2997 		 * SHARED_BLOCK_REF is found
2998 		 *
2999 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3000 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3001 		 */
3002 		extent_slot = path->slots[0];
3003 		while (extent_slot >= 0) {
3004 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3005 					      extent_slot);
3006 			if (key.objectid != bytenr)
3007 				break;
3008 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3009 			    key.offset == num_bytes) {
3010 				found_extent = 1;
3011 				break;
3012 			}
3013 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3014 			    key.offset == owner_objectid) {
3015 				found_extent = 1;
3016 				break;
3017 			}
3018 
3019 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3020 			if (path->slots[0] - extent_slot > 5)
3021 				break;
3022 			extent_slot--;
3023 		}
3024 
3025 		if (!found_extent) {
3026 			if (iref) {
3027 				abort_and_dump(trans, path,
3028 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3029 					   path->slots[0]);
3030 				ret = -EUCLEAN;
3031 				goto out;
3032 			}
3033 			/* Must be SHARED_* item, remove the backref first */
3034 			ret = remove_extent_backref(trans, extent_root, path,
3035 						    NULL, refs_to_drop, is_data);
3036 			if (ret) {
3037 				btrfs_abort_transaction(trans, ret);
3038 				goto out;
3039 			}
3040 			btrfs_release_path(path);
3041 
3042 			/* Slow path to locate EXTENT/METADATA_ITEM */
3043 			key.objectid = bytenr;
3044 			key.type = BTRFS_EXTENT_ITEM_KEY;
3045 			key.offset = num_bytes;
3046 
3047 			if (!is_data && skinny_metadata) {
3048 				key.type = BTRFS_METADATA_ITEM_KEY;
3049 				key.offset = owner_objectid;
3050 			}
3051 
3052 			ret = btrfs_search_slot(trans, extent_root,
3053 						&key, path, -1, 1);
3054 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3055 				/*
3056 				 * Couldn't find our skinny metadata item,
3057 				 * see if we have ye olde extent item.
3058 				 */
3059 				path->slots[0]--;
3060 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3061 						      path->slots[0]);
3062 				if (key.objectid == bytenr &&
3063 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3064 				    key.offset == num_bytes)
3065 					ret = 0;
3066 			}
3067 
3068 			if (ret > 0 && skinny_metadata) {
3069 				skinny_metadata = false;
3070 				key.objectid = bytenr;
3071 				key.type = BTRFS_EXTENT_ITEM_KEY;
3072 				key.offset = num_bytes;
3073 				btrfs_release_path(path);
3074 				ret = btrfs_search_slot(trans, extent_root,
3075 							&key, path, -1, 1);
3076 			}
3077 
3078 			if (ret) {
3079 				if (ret > 0)
3080 					btrfs_print_leaf(path->nodes[0]);
3081 				btrfs_err(info,
3082 			"umm, got %d back from search, was looking for %llu, slot %d",
3083 					  ret, bytenr, path->slots[0]);
3084 			}
3085 			if (ret < 0) {
3086 				btrfs_abort_transaction(trans, ret);
3087 				goto out;
3088 			}
3089 			extent_slot = path->slots[0];
3090 		}
3091 	} else if (WARN_ON(ret == -ENOENT)) {
3092 		abort_and_dump(trans, path,
3093 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3094 			       bytenr, parent, root_objectid, owner_objectid,
3095 			       owner_offset, path->slots[0]);
3096 		goto out;
3097 	} else {
3098 		btrfs_abort_transaction(trans, ret);
3099 		goto out;
3100 	}
3101 
3102 	leaf = path->nodes[0];
3103 	item_size = btrfs_item_size(leaf, extent_slot);
3104 	if (unlikely(item_size < sizeof(*ei))) {
3105 		ret = -EUCLEAN;
3106 		btrfs_err(trans->fs_info,
3107 			  "unexpected extent item size, has %u expect >= %zu",
3108 			  item_size, sizeof(*ei));
3109 		btrfs_abort_transaction(trans, ret);
3110 		goto out;
3111 	}
3112 	ei = btrfs_item_ptr(leaf, extent_slot,
3113 			    struct btrfs_extent_item);
3114 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3115 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3116 		struct btrfs_tree_block_info *bi;
3117 
3118 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3119 			abort_and_dump(trans, path,
3120 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3121 				       key.objectid, key.type, key.offset,
3122 				       path->slots[0], owner_objectid, item_size,
3123 				       sizeof(*ei) + sizeof(*bi));
3124 			ret = -EUCLEAN;
3125 			goto out;
3126 		}
3127 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3128 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3129 	}
3130 
3131 	refs = btrfs_extent_refs(leaf, ei);
3132 	if (refs < refs_to_drop) {
3133 		abort_and_dump(trans, path,
3134 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3135 			       refs_to_drop, refs, bytenr, path->slots[0]);
3136 		ret = -EUCLEAN;
3137 		goto out;
3138 	}
3139 	refs -= refs_to_drop;
3140 
3141 	if (refs > 0) {
3142 		if (extent_op)
3143 			__run_delayed_extent_op(extent_op, leaf, ei);
3144 		/*
3145 		 * In the case of inline back ref, reference count will
3146 		 * be updated by remove_extent_backref
3147 		 */
3148 		if (iref) {
3149 			if (!found_extent) {
3150 				abort_and_dump(trans, path,
3151 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3152 					       path->slots[0]);
3153 				ret = -EUCLEAN;
3154 				goto out;
3155 			}
3156 		} else {
3157 			btrfs_set_extent_refs(leaf, ei, refs);
3158 			btrfs_mark_buffer_dirty(trans, leaf);
3159 		}
3160 		if (found_extent) {
3161 			ret = remove_extent_backref(trans, extent_root, path,
3162 						    iref, refs_to_drop, is_data);
3163 			if (ret) {
3164 				btrfs_abort_transaction(trans, ret);
3165 				goto out;
3166 			}
3167 		}
3168 	} else {
3169 		/* In this branch refs == 1 */
3170 		if (found_extent) {
3171 			if (is_data && refs_to_drop !=
3172 			    extent_data_ref_count(path, iref)) {
3173 				abort_and_dump(trans, path,
3174 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3175 					       extent_data_ref_count(path, iref),
3176 					       refs_to_drop, path->slots[0]);
3177 				ret = -EUCLEAN;
3178 				goto out;
3179 			}
3180 			if (iref) {
3181 				if (path->slots[0] != extent_slot) {
3182 					abort_and_dump(trans, path,
3183 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3184 						       key.objectid, key.type,
3185 						       key.offset, path->slots[0]);
3186 					ret = -EUCLEAN;
3187 					goto out;
3188 				}
3189 			} else {
3190 				/*
3191 				 * No inline ref, we must be at SHARED_* item,
3192 				 * And it's single ref, it must be:
3193 				 * |	extent_slot	  ||extent_slot + 1|
3194 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3195 				 */
3196 				if (path->slots[0] != extent_slot + 1) {
3197 					abort_and_dump(trans, path,
3198 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3199 						       path->slots[0]);
3200 					ret = -EUCLEAN;
3201 					goto out;
3202 				}
3203 				path->slots[0] = extent_slot;
3204 				num_to_del = 2;
3205 			}
3206 		}
3207 
3208 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3209 				      num_to_del);
3210 		if (ret) {
3211 			btrfs_abort_transaction(trans, ret);
3212 			goto out;
3213 		}
3214 		btrfs_release_path(path);
3215 
3216 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3217 	}
3218 	btrfs_release_path(path);
3219 
3220 out:
3221 	btrfs_free_path(path);
3222 	return ret;
3223 }
3224 
3225 /*
3226  * when we free an block, it is possible (and likely) that we free the last
3227  * delayed ref for that extent as well.  This searches the delayed ref tree for
3228  * a given extent, and if there are no other delayed refs to be processed, it
3229  * removes it from the tree.
3230  */
3231 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3232 				      u64 bytenr)
3233 {
3234 	struct btrfs_delayed_ref_head *head;
3235 	struct btrfs_delayed_ref_root *delayed_refs;
3236 	int ret = 0;
3237 
3238 	delayed_refs = &trans->transaction->delayed_refs;
3239 	spin_lock(&delayed_refs->lock);
3240 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3241 	if (!head)
3242 		goto out_delayed_unlock;
3243 
3244 	spin_lock(&head->lock);
3245 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3246 		goto out;
3247 
3248 	if (cleanup_extent_op(head) != NULL)
3249 		goto out;
3250 
3251 	/*
3252 	 * waiting for the lock here would deadlock.  If someone else has it
3253 	 * locked they are already in the process of dropping it anyway
3254 	 */
3255 	if (!mutex_trylock(&head->mutex))
3256 		goto out;
3257 
3258 	btrfs_delete_ref_head(delayed_refs, head);
3259 	head->processing = false;
3260 
3261 	spin_unlock(&head->lock);
3262 	spin_unlock(&delayed_refs->lock);
3263 
3264 	BUG_ON(head->extent_op);
3265 	if (head->must_insert_reserved)
3266 		ret = 1;
3267 
3268 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3269 	mutex_unlock(&head->mutex);
3270 	btrfs_put_delayed_ref_head(head);
3271 	return ret;
3272 out:
3273 	spin_unlock(&head->lock);
3274 
3275 out_delayed_unlock:
3276 	spin_unlock(&delayed_refs->lock);
3277 	return 0;
3278 }
3279 
3280 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3281 			   u64 root_id,
3282 			   struct extent_buffer *buf,
3283 			   u64 parent, int last_ref)
3284 {
3285 	struct btrfs_fs_info *fs_info = trans->fs_info;
3286 	struct btrfs_ref generic_ref = { 0 };
3287 	int ret;
3288 
3289 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3290 			       buf->start, buf->len, parent);
3291 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3292 			    root_id, 0, false);
3293 
3294 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3295 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3296 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3297 		BUG_ON(ret); /* -ENOMEM */
3298 	}
3299 
3300 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3301 		struct btrfs_block_group *cache;
3302 		bool must_pin = false;
3303 
3304 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3305 			ret = check_ref_cleanup(trans, buf->start);
3306 			if (!ret) {
3307 				btrfs_redirty_list_add(trans->transaction, buf);
3308 				goto out;
3309 			}
3310 		}
3311 
3312 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3313 
3314 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3315 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3316 			btrfs_put_block_group(cache);
3317 			goto out;
3318 		}
3319 
3320 		/*
3321 		 * If there are tree mod log users we may have recorded mod log
3322 		 * operations for this node.  If we re-allocate this node we
3323 		 * could replay operations on this node that happened when it
3324 		 * existed in a completely different root.  For example if it
3325 		 * was part of root A, then was reallocated to root B, and we
3326 		 * are doing a btrfs_old_search_slot(root b), we could replay
3327 		 * operations that happened when the block was part of root A,
3328 		 * giving us an inconsistent view of the btree.
3329 		 *
3330 		 * We are safe from races here because at this point no other
3331 		 * node or root points to this extent buffer, so if after this
3332 		 * check a new tree mod log user joins we will not have an
3333 		 * existing log of operations on this node that we have to
3334 		 * contend with.
3335 		 */
3336 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3337 			must_pin = true;
3338 
3339 		if (must_pin || btrfs_is_zoned(fs_info)) {
3340 			btrfs_redirty_list_add(trans->transaction, buf);
3341 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3342 			btrfs_put_block_group(cache);
3343 			goto out;
3344 		}
3345 
3346 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3347 
3348 		btrfs_add_free_space(cache, buf->start, buf->len);
3349 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3350 		btrfs_put_block_group(cache);
3351 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3352 	}
3353 out:
3354 	if (last_ref) {
3355 		/*
3356 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3357 		 * matter anymore.
3358 		 */
3359 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3360 	}
3361 }
3362 
3363 /* Can return -ENOMEM */
3364 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3365 {
3366 	struct btrfs_fs_info *fs_info = trans->fs_info;
3367 	int ret;
3368 
3369 	if (btrfs_is_testing(fs_info))
3370 		return 0;
3371 
3372 	/*
3373 	 * tree log blocks never actually go into the extent allocation
3374 	 * tree, just update pinning info and exit early.
3375 	 */
3376 	if ((ref->type == BTRFS_REF_METADATA &&
3377 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3378 	    (ref->type == BTRFS_REF_DATA &&
3379 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3380 		/* unlocks the pinned mutex */
3381 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3382 		ret = 0;
3383 	} else if (ref->type == BTRFS_REF_METADATA) {
3384 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3385 	} else {
3386 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3387 	}
3388 
3389 	if (!((ref->type == BTRFS_REF_METADATA &&
3390 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3391 	      (ref->type == BTRFS_REF_DATA &&
3392 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3393 		btrfs_ref_tree_mod(fs_info, ref);
3394 
3395 	return ret;
3396 }
3397 
3398 enum btrfs_loop_type {
3399 	/*
3400 	 * Start caching block groups but do not wait for progress or for them
3401 	 * to be done.
3402 	 */
3403 	LOOP_CACHING_NOWAIT,
3404 
3405 	/*
3406 	 * Wait for the block group free_space >= the space we're waiting for if
3407 	 * the block group isn't cached.
3408 	 */
3409 	LOOP_CACHING_WAIT,
3410 
3411 	/*
3412 	 * Allow allocations to happen from block groups that do not yet have a
3413 	 * size classification.
3414 	 */
3415 	LOOP_UNSET_SIZE_CLASS,
3416 
3417 	/*
3418 	 * Allocate a chunk and then retry the allocation.
3419 	 */
3420 	LOOP_ALLOC_CHUNK,
3421 
3422 	/*
3423 	 * Ignore the size class restrictions for this allocation.
3424 	 */
3425 	LOOP_WRONG_SIZE_CLASS,
3426 
3427 	/*
3428 	 * Ignore the empty size, only try to allocate the number of bytes
3429 	 * needed for this allocation.
3430 	 */
3431 	LOOP_NO_EMPTY_SIZE,
3432 };
3433 
3434 static inline void
3435 btrfs_lock_block_group(struct btrfs_block_group *cache,
3436 		       int delalloc)
3437 {
3438 	if (delalloc)
3439 		down_read(&cache->data_rwsem);
3440 }
3441 
3442 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3443 		       int delalloc)
3444 {
3445 	btrfs_get_block_group(cache);
3446 	if (delalloc)
3447 		down_read(&cache->data_rwsem);
3448 }
3449 
3450 static struct btrfs_block_group *btrfs_lock_cluster(
3451 		   struct btrfs_block_group *block_group,
3452 		   struct btrfs_free_cluster *cluster,
3453 		   int delalloc)
3454 	__acquires(&cluster->refill_lock)
3455 {
3456 	struct btrfs_block_group *used_bg = NULL;
3457 
3458 	spin_lock(&cluster->refill_lock);
3459 	while (1) {
3460 		used_bg = cluster->block_group;
3461 		if (!used_bg)
3462 			return NULL;
3463 
3464 		if (used_bg == block_group)
3465 			return used_bg;
3466 
3467 		btrfs_get_block_group(used_bg);
3468 
3469 		if (!delalloc)
3470 			return used_bg;
3471 
3472 		if (down_read_trylock(&used_bg->data_rwsem))
3473 			return used_bg;
3474 
3475 		spin_unlock(&cluster->refill_lock);
3476 
3477 		/* We should only have one-level nested. */
3478 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3479 
3480 		spin_lock(&cluster->refill_lock);
3481 		if (used_bg == cluster->block_group)
3482 			return used_bg;
3483 
3484 		up_read(&used_bg->data_rwsem);
3485 		btrfs_put_block_group(used_bg);
3486 	}
3487 }
3488 
3489 static inline void
3490 btrfs_release_block_group(struct btrfs_block_group *cache,
3491 			 int delalloc)
3492 {
3493 	if (delalloc)
3494 		up_read(&cache->data_rwsem);
3495 	btrfs_put_block_group(cache);
3496 }
3497 
3498 /*
3499  * Helper function for find_free_extent().
3500  *
3501  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3502  * Return >0 to inform caller that we find nothing
3503  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3504  */
3505 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3506 				      struct find_free_extent_ctl *ffe_ctl,
3507 				      struct btrfs_block_group **cluster_bg_ret)
3508 {
3509 	struct btrfs_block_group *cluster_bg;
3510 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3511 	u64 aligned_cluster;
3512 	u64 offset;
3513 	int ret;
3514 
3515 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3516 	if (!cluster_bg)
3517 		goto refill_cluster;
3518 	if (cluster_bg != bg && (cluster_bg->ro ||
3519 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3520 		goto release_cluster;
3521 
3522 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3523 			ffe_ctl->num_bytes, cluster_bg->start,
3524 			&ffe_ctl->max_extent_size);
3525 	if (offset) {
3526 		/* We have a block, we're done */
3527 		spin_unlock(&last_ptr->refill_lock);
3528 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3529 		*cluster_bg_ret = cluster_bg;
3530 		ffe_ctl->found_offset = offset;
3531 		return 0;
3532 	}
3533 	WARN_ON(last_ptr->block_group != cluster_bg);
3534 
3535 release_cluster:
3536 	/*
3537 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3538 	 * lets just skip it and let the allocator find whatever block it can
3539 	 * find. If we reach this point, we will have tried the cluster
3540 	 * allocator plenty of times and not have found anything, so we are
3541 	 * likely way too fragmented for the clustering stuff to find anything.
3542 	 *
3543 	 * However, if the cluster is taken from the current block group,
3544 	 * release the cluster first, so that we stand a better chance of
3545 	 * succeeding in the unclustered allocation.
3546 	 */
3547 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3548 		spin_unlock(&last_ptr->refill_lock);
3549 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3550 		return -ENOENT;
3551 	}
3552 
3553 	/* This cluster didn't work out, free it and start over */
3554 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3555 
3556 	if (cluster_bg != bg)
3557 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3558 
3559 refill_cluster:
3560 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3561 		spin_unlock(&last_ptr->refill_lock);
3562 		return -ENOENT;
3563 	}
3564 
3565 	aligned_cluster = max_t(u64,
3566 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3567 			bg->full_stripe_len);
3568 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3569 			ffe_ctl->num_bytes, aligned_cluster);
3570 	if (ret == 0) {
3571 		/* Now pull our allocation out of this cluster */
3572 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3573 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3574 				&ffe_ctl->max_extent_size);
3575 		if (offset) {
3576 			/* We found one, proceed */
3577 			spin_unlock(&last_ptr->refill_lock);
3578 			ffe_ctl->found_offset = offset;
3579 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3580 			return 0;
3581 		}
3582 	}
3583 	/*
3584 	 * At this point we either didn't find a cluster or we weren't able to
3585 	 * allocate a block from our cluster.  Free the cluster we've been
3586 	 * trying to use, and go to the next block group.
3587 	 */
3588 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3589 	spin_unlock(&last_ptr->refill_lock);
3590 	return 1;
3591 }
3592 
3593 /*
3594  * Return >0 to inform caller that we find nothing
3595  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3596  */
3597 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3598 					struct find_free_extent_ctl *ffe_ctl)
3599 {
3600 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3601 	u64 offset;
3602 
3603 	/*
3604 	 * We are doing an unclustered allocation, set the fragmented flag so
3605 	 * we don't bother trying to setup a cluster again until we get more
3606 	 * space.
3607 	 */
3608 	if (unlikely(last_ptr)) {
3609 		spin_lock(&last_ptr->lock);
3610 		last_ptr->fragmented = 1;
3611 		spin_unlock(&last_ptr->lock);
3612 	}
3613 	if (ffe_ctl->cached) {
3614 		struct btrfs_free_space_ctl *free_space_ctl;
3615 
3616 		free_space_ctl = bg->free_space_ctl;
3617 		spin_lock(&free_space_ctl->tree_lock);
3618 		if (free_space_ctl->free_space <
3619 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3620 		    ffe_ctl->empty_size) {
3621 			ffe_ctl->total_free_space = max_t(u64,
3622 					ffe_ctl->total_free_space,
3623 					free_space_ctl->free_space);
3624 			spin_unlock(&free_space_ctl->tree_lock);
3625 			return 1;
3626 		}
3627 		spin_unlock(&free_space_ctl->tree_lock);
3628 	}
3629 
3630 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3631 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3632 			&ffe_ctl->max_extent_size);
3633 	if (!offset)
3634 		return 1;
3635 	ffe_ctl->found_offset = offset;
3636 	return 0;
3637 }
3638 
3639 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3640 				   struct find_free_extent_ctl *ffe_ctl,
3641 				   struct btrfs_block_group **bg_ret)
3642 {
3643 	int ret;
3644 
3645 	/* We want to try and use the cluster allocator, so lets look there */
3646 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3647 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3648 		if (ret >= 0)
3649 			return ret;
3650 		/* ret == -ENOENT case falls through */
3651 	}
3652 
3653 	return find_free_extent_unclustered(block_group, ffe_ctl);
3654 }
3655 
3656 /*
3657  * Tree-log block group locking
3658  * ============================
3659  *
3660  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3661  * indicates the starting address of a block group, which is reserved only
3662  * for tree-log metadata.
3663  *
3664  * Lock nesting
3665  * ============
3666  *
3667  * space_info::lock
3668  *   block_group::lock
3669  *     fs_info::treelog_bg_lock
3670  */
3671 
3672 /*
3673  * Simple allocator for sequential-only block group. It only allows sequential
3674  * allocation. No need to play with trees. This function also reserves the
3675  * bytes as in btrfs_add_reserved_bytes.
3676  */
3677 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3678 			       struct find_free_extent_ctl *ffe_ctl,
3679 			       struct btrfs_block_group **bg_ret)
3680 {
3681 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3682 	struct btrfs_space_info *space_info = block_group->space_info;
3683 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3684 	u64 start = block_group->start;
3685 	u64 num_bytes = ffe_ctl->num_bytes;
3686 	u64 avail;
3687 	u64 bytenr = block_group->start;
3688 	u64 log_bytenr;
3689 	u64 data_reloc_bytenr;
3690 	int ret = 0;
3691 	bool skip = false;
3692 
3693 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3694 
3695 	/*
3696 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3697 	 * group, and vice versa.
3698 	 */
3699 	spin_lock(&fs_info->treelog_bg_lock);
3700 	log_bytenr = fs_info->treelog_bg;
3701 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3702 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3703 		skip = true;
3704 	spin_unlock(&fs_info->treelog_bg_lock);
3705 	if (skip)
3706 		return 1;
3707 
3708 	/*
3709 	 * Do not allow non-relocation blocks in the dedicated relocation block
3710 	 * group, and vice versa.
3711 	 */
3712 	spin_lock(&fs_info->relocation_bg_lock);
3713 	data_reloc_bytenr = fs_info->data_reloc_bg;
3714 	if (data_reloc_bytenr &&
3715 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3716 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3717 		skip = true;
3718 	spin_unlock(&fs_info->relocation_bg_lock);
3719 	if (skip)
3720 		return 1;
3721 
3722 	/* Check RO and no space case before trying to activate it */
3723 	spin_lock(&block_group->lock);
3724 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3725 		ret = 1;
3726 		/*
3727 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3728 		 * Return the error after taking the locks.
3729 		 */
3730 	}
3731 	spin_unlock(&block_group->lock);
3732 
3733 	/* Metadata block group is activated at write time. */
3734 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3735 	    !btrfs_zone_activate(block_group)) {
3736 		ret = 1;
3737 		/*
3738 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3739 		 * Return the error after taking the locks.
3740 		 */
3741 	}
3742 
3743 	spin_lock(&space_info->lock);
3744 	spin_lock(&block_group->lock);
3745 	spin_lock(&fs_info->treelog_bg_lock);
3746 	spin_lock(&fs_info->relocation_bg_lock);
3747 
3748 	if (ret)
3749 		goto out;
3750 
3751 	ASSERT(!ffe_ctl->for_treelog ||
3752 	       block_group->start == fs_info->treelog_bg ||
3753 	       fs_info->treelog_bg == 0);
3754 	ASSERT(!ffe_ctl->for_data_reloc ||
3755 	       block_group->start == fs_info->data_reloc_bg ||
3756 	       fs_info->data_reloc_bg == 0);
3757 
3758 	if (block_group->ro ||
3759 	    (!ffe_ctl->for_data_reloc &&
3760 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3761 		ret = 1;
3762 		goto out;
3763 	}
3764 
3765 	/*
3766 	 * Do not allow currently using block group to be tree-log dedicated
3767 	 * block group.
3768 	 */
3769 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3770 	    (block_group->used || block_group->reserved)) {
3771 		ret = 1;
3772 		goto out;
3773 	}
3774 
3775 	/*
3776 	 * Do not allow currently used block group to be the data relocation
3777 	 * dedicated block group.
3778 	 */
3779 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3780 	    (block_group->used || block_group->reserved)) {
3781 		ret = 1;
3782 		goto out;
3783 	}
3784 
3785 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3786 	avail = block_group->zone_capacity - block_group->alloc_offset;
3787 	if (avail < num_bytes) {
3788 		if (ffe_ctl->max_extent_size < avail) {
3789 			/*
3790 			 * With sequential allocator, free space is always
3791 			 * contiguous
3792 			 */
3793 			ffe_ctl->max_extent_size = avail;
3794 			ffe_ctl->total_free_space = avail;
3795 		}
3796 		ret = 1;
3797 		goto out;
3798 	}
3799 
3800 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3801 		fs_info->treelog_bg = block_group->start;
3802 
3803 	if (ffe_ctl->for_data_reloc) {
3804 		if (!fs_info->data_reloc_bg)
3805 			fs_info->data_reloc_bg = block_group->start;
3806 		/*
3807 		 * Do not allow allocations from this block group, unless it is
3808 		 * for data relocation. Compared to increasing the ->ro, setting
3809 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3810 		 * writers to come in. See btrfs_inc_nocow_writers().
3811 		 *
3812 		 * We need to disable an allocation to avoid an allocation of
3813 		 * regular (non-relocation data) extent. With mix of relocation
3814 		 * extents and regular extents, we can dispatch WRITE commands
3815 		 * (for relocation extents) and ZONE APPEND commands (for
3816 		 * regular extents) at the same time to the same zone, which
3817 		 * easily break the write pointer.
3818 		 *
3819 		 * Also, this flag avoids this block group to be zone finished.
3820 		 */
3821 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3822 	}
3823 
3824 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3825 	block_group->alloc_offset += num_bytes;
3826 	spin_lock(&ctl->tree_lock);
3827 	ctl->free_space -= num_bytes;
3828 	spin_unlock(&ctl->tree_lock);
3829 
3830 	/*
3831 	 * We do not check if found_offset is aligned to stripesize. The
3832 	 * address is anyway rewritten when using zone append writing.
3833 	 */
3834 
3835 	ffe_ctl->search_start = ffe_ctl->found_offset;
3836 
3837 out:
3838 	if (ret && ffe_ctl->for_treelog)
3839 		fs_info->treelog_bg = 0;
3840 	if (ret && ffe_ctl->for_data_reloc)
3841 		fs_info->data_reloc_bg = 0;
3842 	spin_unlock(&fs_info->relocation_bg_lock);
3843 	spin_unlock(&fs_info->treelog_bg_lock);
3844 	spin_unlock(&block_group->lock);
3845 	spin_unlock(&space_info->lock);
3846 	return ret;
3847 }
3848 
3849 static int do_allocation(struct btrfs_block_group *block_group,
3850 			 struct find_free_extent_ctl *ffe_ctl,
3851 			 struct btrfs_block_group **bg_ret)
3852 {
3853 	switch (ffe_ctl->policy) {
3854 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3855 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3856 	case BTRFS_EXTENT_ALLOC_ZONED:
3857 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3858 	default:
3859 		BUG();
3860 	}
3861 }
3862 
3863 static void release_block_group(struct btrfs_block_group *block_group,
3864 				struct find_free_extent_ctl *ffe_ctl,
3865 				int delalloc)
3866 {
3867 	switch (ffe_ctl->policy) {
3868 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3869 		ffe_ctl->retry_uncached = false;
3870 		break;
3871 	case BTRFS_EXTENT_ALLOC_ZONED:
3872 		/* Nothing to do */
3873 		break;
3874 	default:
3875 		BUG();
3876 	}
3877 
3878 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3879 	       ffe_ctl->index);
3880 	btrfs_release_block_group(block_group, delalloc);
3881 }
3882 
3883 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3884 				   struct btrfs_key *ins)
3885 {
3886 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3887 
3888 	if (!ffe_ctl->use_cluster && last_ptr) {
3889 		spin_lock(&last_ptr->lock);
3890 		last_ptr->window_start = ins->objectid;
3891 		spin_unlock(&last_ptr->lock);
3892 	}
3893 }
3894 
3895 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3896 			 struct btrfs_key *ins)
3897 {
3898 	switch (ffe_ctl->policy) {
3899 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3900 		found_extent_clustered(ffe_ctl, ins);
3901 		break;
3902 	case BTRFS_EXTENT_ALLOC_ZONED:
3903 		/* Nothing to do */
3904 		break;
3905 	default:
3906 		BUG();
3907 	}
3908 }
3909 
3910 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3911 				    struct find_free_extent_ctl *ffe_ctl)
3912 {
3913 	/* Block group's activeness is not a requirement for METADATA block groups. */
3914 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3915 		return 0;
3916 
3917 	/* If we can activate new zone, just allocate a chunk and use it */
3918 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3919 		return 0;
3920 
3921 	/*
3922 	 * We already reached the max active zones. Try to finish one block
3923 	 * group to make a room for a new block group. This is only possible
3924 	 * for a data block group because btrfs_zone_finish() may need to wait
3925 	 * for a running transaction which can cause a deadlock for metadata
3926 	 * allocation.
3927 	 */
3928 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3929 		int ret = btrfs_zone_finish_one_bg(fs_info);
3930 
3931 		if (ret == 1)
3932 			return 0;
3933 		else if (ret < 0)
3934 			return ret;
3935 	}
3936 
3937 	/*
3938 	 * If we have enough free space left in an already active block group
3939 	 * and we can't activate any other zone now, do not allow allocating a
3940 	 * new chunk and let find_free_extent() retry with a smaller size.
3941 	 */
3942 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3943 		return -ENOSPC;
3944 
3945 	/*
3946 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3947 	 * activate a new block group, allocating it may not help. Let's tell a
3948 	 * caller to try again and hope it progress something by writing some
3949 	 * parts of the region. That is only possible for data block groups,
3950 	 * where a part of the region can be written.
3951 	 */
3952 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3953 		return -EAGAIN;
3954 
3955 	/*
3956 	 * We cannot activate a new block group and no enough space left in any
3957 	 * block groups. So, allocating a new block group may not help. But,
3958 	 * there is nothing to do anyway, so let's go with it.
3959 	 */
3960 	return 0;
3961 }
3962 
3963 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3964 			      struct find_free_extent_ctl *ffe_ctl)
3965 {
3966 	switch (ffe_ctl->policy) {
3967 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3968 		return 0;
3969 	case BTRFS_EXTENT_ALLOC_ZONED:
3970 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3971 	default:
3972 		BUG();
3973 	}
3974 }
3975 
3976 /*
3977  * Return >0 means caller needs to re-search for free extent
3978  * Return 0 means we have the needed free extent.
3979  * Return <0 means we failed to locate any free extent.
3980  */
3981 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3982 					struct btrfs_key *ins,
3983 					struct find_free_extent_ctl *ffe_ctl,
3984 					bool full_search)
3985 {
3986 	struct btrfs_root *root = fs_info->chunk_root;
3987 	int ret;
3988 
3989 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3990 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3991 		ffe_ctl->orig_have_caching_bg = true;
3992 
3993 	if (ins->objectid) {
3994 		found_extent(ffe_ctl, ins);
3995 		return 0;
3996 	}
3997 
3998 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3999 		return 1;
4000 
4001 	ffe_ctl->index++;
4002 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4003 		return 1;
4004 
4005 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4006 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4007 		ffe_ctl->index = 0;
4008 		/*
4009 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4010 		 * any uncached bgs and we've already done a full search
4011 		 * through.
4012 		 */
4013 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4014 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4015 			ffe_ctl->loop++;
4016 		ffe_ctl->loop++;
4017 
4018 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4019 			struct btrfs_trans_handle *trans;
4020 			int exist = 0;
4021 
4022 			/* Check if allocation policy allows to create a new chunk */
4023 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4024 			if (ret)
4025 				return ret;
4026 
4027 			trans = current->journal_info;
4028 			if (trans)
4029 				exist = 1;
4030 			else
4031 				trans = btrfs_join_transaction(root);
4032 
4033 			if (IS_ERR(trans)) {
4034 				ret = PTR_ERR(trans);
4035 				return ret;
4036 			}
4037 
4038 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4039 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4040 
4041 			/* Do not bail out on ENOSPC since we can do more. */
4042 			if (ret == -ENOSPC) {
4043 				ret = 0;
4044 				ffe_ctl->loop++;
4045 			}
4046 			else if (ret < 0)
4047 				btrfs_abort_transaction(trans, ret);
4048 			else
4049 				ret = 0;
4050 			if (!exist)
4051 				btrfs_end_transaction(trans);
4052 			if (ret)
4053 				return ret;
4054 		}
4055 
4056 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4057 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4058 				return -ENOSPC;
4059 
4060 			/*
4061 			 * Don't loop again if we already have no empty_size and
4062 			 * no empty_cluster.
4063 			 */
4064 			if (ffe_ctl->empty_size == 0 &&
4065 			    ffe_ctl->empty_cluster == 0)
4066 				return -ENOSPC;
4067 			ffe_ctl->empty_size = 0;
4068 			ffe_ctl->empty_cluster = 0;
4069 		}
4070 		return 1;
4071 	}
4072 	return -ENOSPC;
4073 }
4074 
4075 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4076 					      struct btrfs_block_group *bg)
4077 {
4078 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4079 		return true;
4080 	if (!btrfs_block_group_should_use_size_class(bg))
4081 		return true;
4082 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4083 		return true;
4084 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4085 	    bg->size_class == BTRFS_BG_SZ_NONE)
4086 		return true;
4087 	return ffe_ctl->size_class == bg->size_class;
4088 }
4089 
4090 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4091 					struct find_free_extent_ctl *ffe_ctl,
4092 					struct btrfs_space_info *space_info,
4093 					struct btrfs_key *ins)
4094 {
4095 	/*
4096 	 * If our free space is heavily fragmented we may not be able to make
4097 	 * big contiguous allocations, so instead of doing the expensive search
4098 	 * for free space, simply return ENOSPC with our max_extent_size so we
4099 	 * can go ahead and search for a more manageable chunk.
4100 	 *
4101 	 * If our max_extent_size is large enough for our allocation simply
4102 	 * disable clustering since we will likely not be able to find enough
4103 	 * space to create a cluster and induce latency trying.
4104 	 */
4105 	if (space_info->max_extent_size) {
4106 		spin_lock(&space_info->lock);
4107 		if (space_info->max_extent_size &&
4108 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4109 			ins->offset = space_info->max_extent_size;
4110 			spin_unlock(&space_info->lock);
4111 			return -ENOSPC;
4112 		} else if (space_info->max_extent_size) {
4113 			ffe_ctl->use_cluster = false;
4114 		}
4115 		spin_unlock(&space_info->lock);
4116 	}
4117 
4118 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4119 					       &ffe_ctl->empty_cluster);
4120 	if (ffe_ctl->last_ptr) {
4121 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4122 
4123 		spin_lock(&last_ptr->lock);
4124 		if (last_ptr->block_group)
4125 			ffe_ctl->hint_byte = last_ptr->window_start;
4126 		if (last_ptr->fragmented) {
4127 			/*
4128 			 * We still set window_start so we can keep track of the
4129 			 * last place we found an allocation to try and save
4130 			 * some time.
4131 			 */
4132 			ffe_ctl->hint_byte = last_ptr->window_start;
4133 			ffe_ctl->use_cluster = false;
4134 		}
4135 		spin_unlock(&last_ptr->lock);
4136 	}
4137 
4138 	return 0;
4139 }
4140 
4141 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4142 			      struct find_free_extent_ctl *ffe_ctl,
4143 			      struct btrfs_space_info *space_info,
4144 			      struct btrfs_key *ins)
4145 {
4146 	switch (ffe_ctl->policy) {
4147 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4148 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4149 						    space_info, ins);
4150 	case BTRFS_EXTENT_ALLOC_ZONED:
4151 		if (ffe_ctl->for_treelog) {
4152 			spin_lock(&fs_info->treelog_bg_lock);
4153 			if (fs_info->treelog_bg)
4154 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4155 			spin_unlock(&fs_info->treelog_bg_lock);
4156 		}
4157 		if (ffe_ctl->for_data_reloc) {
4158 			spin_lock(&fs_info->relocation_bg_lock);
4159 			if (fs_info->data_reloc_bg)
4160 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4161 			spin_unlock(&fs_info->relocation_bg_lock);
4162 		}
4163 		return 0;
4164 	default:
4165 		BUG();
4166 	}
4167 }
4168 
4169 /*
4170  * walks the btree of allocated extents and find a hole of a given size.
4171  * The key ins is changed to record the hole:
4172  * ins->objectid == start position
4173  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4174  * ins->offset == the size of the hole.
4175  * Any available blocks before search_start are skipped.
4176  *
4177  * If there is no suitable free space, we will record the max size of
4178  * the free space extent currently.
4179  *
4180  * The overall logic and call chain:
4181  *
4182  * find_free_extent()
4183  * |- Iterate through all block groups
4184  * |  |- Get a valid block group
4185  * |  |- Try to do clustered allocation in that block group
4186  * |  |- Try to do unclustered allocation in that block group
4187  * |  |- Check if the result is valid
4188  * |  |  |- If valid, then exit
4189  * |  |- Jump to next block group
4190  * |
4191  * |- Push harder to find free extents
4192  *    |- If not found, re-iterate all block groups
4193  */
4194 static noinline int find_free_extent(struct btrfs_root *root,
4195 				     struct btrfs_key *ins,
4196 				     struct find_free_extent_ctl *ffe_ctl)
4197 {
4198 	struct btrfs_fs_info *fs_info = root->fs_info;
4199 	int ret = 0;
4200 	int cache_block_group_error = 0;
4201 	struct btrfs_block_group *block_group = NULL;
4202 	struct btrfs_space_info *space_info;
4203 	bool full_search = false;
4204 
4205 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4206 
4207 	ffe_ctl->search_start = 0;
4208 	/* For clustered allocation */
4209 	ffe_ctl->empty_cluster = 0;
4210 	ffe_ctl->last_ptr = NULL;
4211 	ffe_ctl->use_cluster = true;
4212 	ffe_ctl->have_caching_bg = false;
4213 	ffe_ctl->orig_have_caching_bg = false;
4214 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4215 	ffe_ctl->loop = 0;
4216 	ffe_ctl->retry_uncached = false;
4217 	ffe_ctl->cached = 0;
4218 	ffe_ctl->max_extent_size = 0;
4219 	ffe_ctl->total_free_space = 0;
4220 	ffe_ctl->found_offset = 0;
4221 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4222 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4223 
4224 	if (btrfs_is_zoned(fs_info))
4225 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4226 
4227 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4228 	ins->objectid = 0;
4229 	ins->offset = 0;
4230 
4231 	trace_find_free_extent(root, ffe_ctl);
4232 
4233 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4234 	if (!space_info) {
4235 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4236 		return -ENOSPC;
4237 	}
4238 
4239 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4240 	if (ret < 0)
4241 		return ret;
4242 
4243 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4244 				    first_logical_byte(fs_info));
4245 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4246 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4247 		block_group = btrfs_lookup_block_group(fs_info,
4248 						       ffe_ctl->search_start);
4249 		/*
4250 		 * we don't want to use the block group if it doesn't match our
4251 		 * allocation bits, or if its not cached.
4252 		 *
4253 		 * However if we are re-searching with an ideal block group
4254 		 * picked out then we don't care that the block group is cached.
4255 		 */
4256 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4257 		    block_group->cached != BTRFS_CACHE_NO) {
4258 			down_read(&space_info->groups_sem);
4259 			if (list_empty(&block_group->list) ||
4260 			    block_group->ro) {
4261 				/*
4262 				 * someone is removing this block group,
4263 				 * we can't jump into the have_block_group
4264 				 * target because our list pointers are not
4265 				 * valid
4266 				 */
4267 				btrfs_put_block_group(block_group);
4268 				up_read(&space_info->groups_sem);
4269 			} else {
4270 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4271 							block_group->flags);
4272 				btrfs_lock_block_group(block_group,
4273 						       ffe_ctl->delalloc);
4274 				ffe_ctl->hinted = true;
4275 				goto have_block_group;
4276 			}
4277 		} else if (block_group) {
4278 			btrfs_put_block_group(block_group);
4279 		}
4280 	}
4281 search:
4282 	trace_find_free_extent_search_loop(root, ffe_ctl);
4283 	ffe_ctl->have_caching_bg = false;
4284 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4285 	    ffe_ctl->index == 0)
4286 		full_search = true;
4287 	down_read(&space_info->groups_sem);
4288 	list_for_each_entry(block_group,
4289 			    &space_info->block_groups[ffe_ctl->index], list) {
4290 		struct btrfs_block_group *bg_ret;
4291 
4292 		ffe_ctl->hinted = false;
4293 		/* If the block group is read-only, we can skip it entirely. */
4294 		if (unlikely(block_group->ro)) {
4295 			if (ffe_ctl->for_treelog)
4296 				btrfs_clear_treelog_bg(block_group);
4297 			if (ffe_ctl->for_data_reloc)
4298 				btrfs_clear_data_reloc_bg(block_group);
4299 			continue;
4300 		}
4301 
4302 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4303 		ffe_ctl->search_start = block_group->start;
4304 
4305 		/*
4306 		 * this can happen if we end up cycling through all the
4307 		 * raid types, but we want to make sure we only allocate
4308 		 * for the proper type.
4309 		 */
4310 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4311 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4312 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4313 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4314 				BTRFS_BLOCK_GROUP_RAID10;
4315 
4316 			/*
4317 			 * if they asked for extra copies and this block group
4318 			 * doesn't provide them, bail.  This does allow us to
4319 			 * fill raid0 from raid1.
4320 			 */
4321 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4322 				goto loop;
4323 
4324 			/*
4325 			 * This block group has different flags than we want.
4326 			 * It's possible that we have MIXED_GROUP flag but no
4327 			 * block group is mixed.  Just skip such block group.
4328 			 */
4329 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4330 			continue;
4331 		}
4332 
4333 have_block_group:
4334 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4335 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4336 		if (unlikely(!ffe_ctl->cached)) {
4337 			ffe_ctl->have_caching_bg = true;
4338 			ret = btrfs_cache_block_group(block_group, false);
4339 
4340 			/*
4341 			 * If we get ENOMEM here or something else we want to
4342 			 * try other block groups, because it may not be fatal.
4343 			 * However if we can't find anything else we need to
4344 			 * save our return here so that we return the actual
4345 			 * error that caused problems, not ENOSPC.
4346 			 */
4347 			if (ret < 0) {
4348 				if (!cache_block_group_error)
4349 					cache_block_group_error = ret;
4350 				ret = 0;
4351 				goto loop;
4352 			}
4353 			ret = 0;
4354 		}
4355 
4356 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4357 			if (!cache_block_group_error)
4358 				cache_block_group_error = -EIO;
4359 			goto loop;
4360 		}
4361 
4362 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4363 			goto loop;
4364 
4365 		bg_ret = NULL;
4366 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4367 		if (ret > 0)
4368 			goto loop;
4369 
4370 		if (bg_ret && bg_ret != block_group) {
4371 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4372 			block_group = bg_ret;
4373 		}
4374 
4375 		/* Checks */
4376 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4377 						 fs_info->stripesize);
4378 
4379 		/* move on to the next group */
4380 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4381 		    block_group->start + block_group->length) {
4382 			btrfs_add_free_space_unused(block_group,
4383 					    ffe_ctl->found_offset,
4384 					    ffe_ctl->num_bytes);
4385 			goto loop;
4386 		}
4387 
4388 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4389 			btrfs_add_free_space_unused(block_group,
4390 					ffe_ctl->found_offset,
4391 					ffe_ctl->search_start - ffe_ctl->found_offset);
4392 
4393 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4394 					       ffe_ctl->num_bytes,
4395 					       ffe_ctl->delalloc,
4396 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4397 		if (ret == -EAGAIN) {
4398 			btrfs_add_free_space_unused(block_group,
4399 					ffe_ctl->found_offset,
4400 					ffe_ctl->num_bytes);
4401 			goto loop;
4402 		}
4403 		btrfs_inc_block_group_reservations(block_group);
4404 
4405 		/* we are all good, lets return */
4406 		ins->objectid = ffe_ctl->search_start;
4407 		ins->offset = ffe_ctl->num_bytes;
4408 
4409 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4410 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4411 		break;
4412 loop:
4413 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4414 		    !ffe_ctl->retry_uncached) {
4415 			ffe_ctl->retry_uncached = true;
4416 			btrfs_wait_block_group_cache_progress(block_group,
4417 						ffe_ctl->num_bytes +
4418 						ffe_ctl->empty_cluster +
4419 						ffe_ctl->empty_size);
4420 			goto have_block_group;
4421 		}
4422 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4423 		cond_resched();
4424 	}
4425 	up_read(&space_info->groups_sem);
4426 
4427 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4428 	if (ret > 0)
4429 		goto search;
4430 
4431 	if (ret == -ENOSPC && !cache_block_group_error) {
4432 		/*
4433 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4434 		 * any contiguous hole.
4435 		 */
4436 		if (!ffe_ctl->max_extent_size)
4437 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4438 		spin_lock(&space_info->lock);
4439 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4440 		spin_unlock(&space_info->lock);
4441 		ins->offset = ffe_ctl->max_extent_size;
4442 	} else if (ret == -ENOSPC) {
4443 		ret = cache_block_group_error;
4444 	}
4445 	return ret;
4446 }
4447 
4448 /*
4449  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4450  *			  hole that is at least as big as @num_bytes.
4451  *
4452  * @root           -	The root that will contain this extent
4453  *
4454  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4455  *			is used for accounting purposes. This value differs
4456  *			from @num_bytes only in the case of compressed extents.
4457  *
4458  * @num_bytes      -	Number of bytes to allocate on-disk.
4459  *
4460  * @min_alloc_size -	Indicates the minimum amount of space that the
4461  *			allocator should try to satisfy. In some cases
4462  *			@num_bytes may be larger than what is required and if
4463  *			the filesystem is fragmented then allocation fails.
4464  *			However, the presence of @min_alloc_size gives a
4465  *			chance to try and satisfy the smaller allocation.
4466  *
4467  * @empty_size     -	A hint that you plan on doing more COW. This is the
4468  *			size in bytes the allocator should try to find free
4469  *			next to the block it returns.  This is just a hint and
4470  *			may be ignored by the allocator.
4471  *
4472  * @hint_byte      -	Hint to the allocator to start searching above the byte
4473  *			address passed. It might be ignored.
4474  *
4475  * @ins            -	This key is modified to record the found hole. It will
4476  *			have the following values:
4477  *			ins->objectid == start position
4478  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4479  *			ins->offset == the size of the hole.
4480  *
4481  * @is_data        -	Boolean flag indicating whether an extent is
4482  *			allocated for data (true) or metadata (false)
4483  *
4484  * @delalloc       -	Boolean flag indicating whether this allocation is for
4485  *			delalloc or not. If 'true' data_rwsem of block groups
4486  *			is going to be acquired.
4487  *
4488  *
4489  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4490  * case -ENOSPC is returned then @ins->offset will contain the size of the
4491  * largest available hole the allocator managed to find.
4492  */
4493 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4494 			 u64 num_bytes, u64 min_alloc_size,
4495 			 u64 empty_size, u64 hint_byte,
4496 			 struct btrfs_key *ins, int is_data, int delalloc)
4497 {
4498 	struct btrfs_fs_info *fs_info = root->fs_info;
4499 	struct find_free_extent_ctl ffe_ctl = {};
4500 	bool final_tried = num_bytes == min_alloc_size;
4501 	u64 flags;
4502 	int ret;
4503 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4504 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4505 
4506 	flags = get_alloc_profile_by_root(root, is_data);
4507 again:
4508 	WARN_ON(num_bytes < fs_info->sectorsize);
4509 
4510 	ffe_ctl.ram_bytes = ram_bytes;
4511 	ffe_ctl.num_bytes = num_bytes;
4512 	ffe_ctl.min_alloc_size = min_alloc_size;
4513 	ffe_ctl.empty_size = empty_size;
4514 	ffe_ctl.flags = flags;
4515 	ffe_ctl.delalloc = delalloc;
4516 	ffe_ctl.hint_byte = hint_byte;
4517 	ffe_ctl.for_treelog = for_treelog;
4518 	ffe_ctl.for_data_reloc = for_data_reloc;
4519 
4520 	ret = find_free_extent(root, ins, &ffe_ctl);
4521 	if (!ret && !is_data) {
4522 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4523 	} else if (ret == -ENOSPC) {
4524 		if (!final_tried && ins->offset) {
4525 			num_bytes = min(num_bytes >> 1, ins->offset);
4526 			num_bytes = round_down(num_bytes,
4527 					       fs_info->sectorsize);
4528 			num_bytes = max(num_bytes, min_alloc_size);
4529 			ram_bytes = num_bytes;
4530 			if (num_bytes == min_alloc_size)
4531 				final_tried = true;
4532 			goto again;
4533 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4534 			struct btrfs_space_info *sinfo;
4535 
4536 			sinfo = btrfs_find_space_info(fs_info, flags);
4537 			btrfs_err(fs_info,
4538 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4539 				  flags, num_bytes, for_treelog, for_data_reloc);
4540 			if (sinfo)
4541 				btrfs_dump_space_info(fs_info, sinfo,
4542 						      num_bytes, 1);
4543 		}
4544 	}
4545 
4546 	return ret;
4547 }
4548 
4549 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4550 			       u64 start, u64 len, int delalloc)
4551 {
4552 	struct btrfs_block_group *cache;
4553 
4554 	cache = btrfs_lookup_block_group(fs_info, start);
4555 	if (!cache) {
4556 		btrfs_err(fs_info, "Unable to find block group for %llu",
4557 			  start);
4558 		return -ENOSPC;
4559 	}
4560 
4561 	btrfs_add_free_space(cache, start, len);
4562 	btrfs_free_reserved_bytes(cache, len, delalloc);
4563 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4564 
4565 	btrfs_put_block_group(cache);
4566 	return 0;
4567 }
4568 
4569 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4570 			      u64 len)
4571 {
4572 	struct btrfs_block_group *cache;
4573 	int ret = 0;
4574 
4575 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4576 	if (!cache) {
4577 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4578 			  start);
4579 		return -ENOSPC;
4580 	}
4581 
4582 	ret = pin_down_extent(trans, cache, start, len, 1);
4583 	btrfs_put_block_group(cache);
4584 	return ret;
4585 }
4586 
4587 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4588 				 u64 num_bytes)
4589 {
4590 	struct btrfs_fs_info *fs_info = trans->fs_info;
4591 	int ret;
4592 
4593 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4594 	if (ret)
4595 		return ret;
4596 
4597 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4598 	if (ret) {
4599 		ASSERT(!ret);
4600 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4601 			  bytenr, num_bytes);
4602 		return ret;
4603 	}
4604 
4605 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4606 	return 0;
4607 }
4608 
4609 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4610 				      u64 parent, u64 root_objectid,
4611 				      u64 flags, u64 owner, u64 offset,
4612 				      struct btrfs_key *ins, int ref_mod)
4613 {
4614 	struct btrfs_fs_info *fs_info = trans->fs_info;
4615 	struct btrfs_root *extent_root;
4616 	int ret;
4617 	struct btrfs_extent_item *extent_item;
4618 	struct btrfs_extent_inline_ref *iref;
4619 	struct btrfs_path *path;
4620 	struct extent_buffer *leaf;
4621 	int type;
4622 	u32 size;
4623 
4624 	if (parent > 0)
4625 		type = BTRFS_SHARED_DATA_REF_KEY;
4626 	else
4627 		type = BTRFS_EXTENT_DATA_REF_KEY;
4628 
4629 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4630 
4631 	path = btrfs_alloc_path();
4632 	if (!path)
4633 		return -ENOMEM;
4634 
4635 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4636 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4637 	if (ret) {
4638 		btrfs_free_path(path);
4639 		return ret;
4640 	}
4641 
4642 	leaf = path->nodes[0];
4643 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4644 				     struct btrfs_extent_item);
4645 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4646 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4647 	btrfs_set_extent_flags(leaf, extent_item,
4648 			       flags | BTRFS_EXTENT_FLAG_DATA);
4649 
4650 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4651 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4652 	if (parent > 0) {
4653 		struct btrfs_shared_data_ref *ref;
4654 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4655 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4656 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4657 	} else {
4658 		struct btrfs_extent_data_ref *ref;
4659 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4660 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4661 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4662 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4663 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4664 	}
4665 
4666 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4667 	btrfs_free_path(path);
4668 
4669 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4670 }
4671 
4672 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4673 				     struct btrfs_delayed_ref_node *node,
4674 				     struct btrfs_delayed_extent_op *extent_op)
4675 {
4676 	struct btrfs_fs_info *fs_info = trans->fs_info;
4677 	struct btrfs_root *extent_root;
4678 	int ret;
4679 	struct btrfs_extent_item *extent_item;
4680 	struct btrfs_key extent_key;
4681 	struct btrfs_tree_block_info *block_info;
4682 	struct btrfs_extent_inline_ref *iref;
4683 	struct btrfs_path *path;
4684 	struct extent_buffer *leaf;
4685 	struct btrfs_delayed_tree_ref *ref;
4686 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4687 	u64 flags = extent_op->flags_to_set;
4688 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4689 
4690 	ref = btrfs_delayed_node_to_tree_ref(node);
4691 
4692 	extent_key.objectid = node->bytenr;
4693 	if (skinny_metadata) {
4694 		extent_key.offset = ref->level;
4695 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4696 	} else {
4697 		extent_key.offset = node->num_bytes;
4698 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4699 		size += sizeof(*block_info);
4700 	}
4701 
4702 	path = btrfs_alloc_path();
4703 	if (!path)
4704 		return -ENOMEM;
4705 
4706 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4707 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4708 				      size);
4709 	if (ret) {
4710 		btrfs_free_path(path);
4711 		return ret;
4712 	}
4713 
4714 	leaf = path->nodes[0];
4715 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4716 				     struct btrfs_extent_item);
4717 	btrfs_set_extent_refs(leaf, extent_item, 1);
4718 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4719 	btrfs_set_extent_flags(leaf, extent_item,
4720 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4721 
4722 	if (skinny_metadata) {
4723 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4724 	} else {
4725 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4726 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4727 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4728 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4729 	}
4730 
4731 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4732 		btrfs_set_extent_inline_ref_type(leaf, iref,
4733 						 BTRFS_SHARED_BLOCK_REF_KEY);
4734 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4735 	} else {
4736 		btrfs_set_extent_inline_ref_type(leaf, iref,
4737 						 BTRFS_TREE_BLOCK_REF_KEY);
4738 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4739 	}
4740 
4741 	btrfs_mark_buffer_dirty(trans, leaf);
4742 	btrfs_free_path(path);
4743 
4744 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4745 }
4746 
4747 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4748 				     struct btrfs_root *root, u64 owner,
4749 				     u64 offset, u64 ram_bytes,
4750 				     struct btrfs_key *ins)
4751 {
4752 	struct btrfs_ref generic_ref = { 0 };
4753 
4754 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4755 
4756 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4757 			       ins->objectid, ins->offset, 0);
4758 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4759 			    offset, 0, false);
4760 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4761 
4762 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4763 }
4764 
4765 /*
4766  * this is used by the tree logging recovery code.  It records that
4767  * an extent has been allocated and makes sure to clear the free
4768  * space cache bits as well
4769  */
4770 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4771 				   u64 root_objectid, u64 owner, u64 offset,
4772 				   struct btrfs_key *ins)
4773 {
4774 	struct btrfs_fs_info *fs_info = trans->fs_info;
4775 	int ret;
4776 	struct btrfs_block_group *block_group;
4777 	struct btrfs_space_info *space_info;
4778 
4779 	/*
4780 	 * Mixed block groups will exclude before processing the log so we only
4781 	 * need to do the exclude dance if this fs isn't mixed.
4782 	 */
4783 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4784 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4785 					      ins->offset);
4786 		if (ret)
4787 			return ret;
4788 	}
4789 
4790 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4791 	if (!block_group)
4792 		return -EINVAL;
4793 
4794 	space_info = block_group->space_info;
4795 	spin_lock(&space_info->lock);
4796 	spin_lock(&block_group->lock);
4797 	space_info->bytes_reserved += ins->offset;
4798 	block_group->reserved += ins->offset;
4799 	spin_unlock(&block_group->lock);
4800 	spin_unlock(&space_info->lock);
4801 
4802 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4803 					 offset, ins, 1);
4804 	if (ret)
4805 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4806 	btrfs_put_block_group(block_group);
4807 	return ret;
4808 }
4809 
4810 static struct extent_buffer *
4811 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4812 		      u64 bytenr, int level, u64 owner,
4813 		      enum btrfs_lock_nesting nest)
4814 {
4815 	struct btrfs_fs_info *fs_info = root->fs_info;
4816 	struct extent_buffer *buf;
4817 	u64 lockdep_owner = owner;
4818 
4819 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4820 	if (IS_ERR(buf))
4821 		return buf;
4822 
4823 	/*
4824 	 * Extra safety check in case the extent tree is corrupted and extent
4825 	 * allocator chooses to use a tree block which is already used and
4826 	 * locked.
4827 	 */
4828 	if (buf->lock_owner == current->pid) {
4829 		btrfs_err_rl(fs_info,
4830 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4831 			buf->start, btrfs_header_owner(buf), current->pid);
4832 		free_extent_buffer(buf);
4833 		return ERR_PTR(-EUCLEAN);
4834 	}
4835 
4836 	/*
4837 	 * The reloc trees are just snapshots, so we need them to appear to be
4838 	 * just like any other fs tree WRT lockdep.
4839 	 *
4840 	 * The exception however is in replace_path() in relocation, where we
4841 	 * hold the lock on the original fs root and then search for the reloc
4842 	 * root.  At that point we need to make sure any reloc root buffers are
4843 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4844 	 * lockdep happy.
4845 	 */
4846 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4847 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4848 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4849 
4850 	/* btrfs_clear_buffer_dirty() accesses generation field. */
4851 	btrfs_set_header_generation(buf, trans->transid);
4852 
4853 	/*
4854 	 * This needs to stay, because we could allocate a freed block from an
4855 	 * old tree into a new tree, so we need to make sure this new block is
4856 	 * set to the appropriate level and owner.
4857 	 */
4858 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4859 
4860 	__btrfs_tree_lock(buf, nest);
4861 	btrfs_clear_buffer_dirty(trans, buf);
4862 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4863 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4864 
4865 	set_extent_buffer_uptodate(buf);
4866 
4867 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4868 	btrfs_set_header_level(buf, level);
4869 	btrfs_set_header_bytenr(buf, buf->start);
4870 	btrfs_set_header_generation(buf, trans->transid);
4871 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4872 	btrfs_set_header_owner(buf, owner);
4873 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4874 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4875 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4876 		buf->log_index = root->log_transid % 2;
4877 		/*
4878 		 * we allow two log transactions at a time, use different
4879 		 * EXTENT bit to differentiate dirty pages.
4880 		 */
4881 		if (buf->log_index == 0)
4882 			set_extent_bit(&root->dirty_log_pages, buf->start,
4883 				       buf->start + buf->len - 1,
4884 				       EXTENT_DIRTY, NULL);
4885 		else
4886 			set_extent_bit(&root->dirty_log_pages, buf->start,
4887 				       buf->start + buf->len - 1,
4888 				       EXTENT_NEW, NULL);
4889 	} else {
4890 		buf->log_index = -1;
4891 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4892 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4893 	}
4894 	/* this returns a buffer locked for blocking */
4895 	return buf;
4896 }
4897 
4898 /*
4899  * finds a free extent and does all the dirty work required for allocation
4900  * returns the tree buffer or an ERR_PTR on error.
4901  */
4902 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4903 					     struct btrfs_root *root,
4904 					     u64 parent, u64 root_objectid,
4905 					     const struct btrfs_disk_key *key,
4906 					     int level, u64 hint,
4907 					     u64 empty_size,
4908 					     enum btrfs_lock_nesting nest)
4909 {
4910 	struct btrfs_fs_info *fs_info = root->fs_info;
4911 	struct btrfs_key ins;
4912 	struct btrfs_block_rsv *block_rsv;
4913 	struct extent_buffer *buf;
4914 	struct btrfs_delayed_extent_op *extent_op;
4915 	struct btrfs_ref generic_ref = { 0 };
4916 	u64 flags = 0;
4917 	int ret;
4918 	u32 blocksize = fs_info->nodesize;
4919 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4920 
4921 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4922 	if (btrfs_is_testing(fs_info)) {
4923 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4924 					    level, root_objectid, nest);
4925 		if (!IS_ERR(buf))
4926 			root->alloc_bytenr += blocksize;
4927 		return buf;
4928 	}
4929 #endif
4930 
4931 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4932 	if (IS_ERR(block_rsv))
4933 		return ERR_CAST(block_rsv);
4934 
4935 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4936 				   empty_size, hint, &ins, 0, 0);
4937 	if (ret)
4938 		goto out_unuse;
4939 
4940 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4941 				    root_objectid, nest);
4942 	if (IS_ERR(buf)) {
4943 		ret = PTR_ERR(buf);
4944 		goto out_free_reserved;
4945 	}
4946 
4947 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4948 		if (parent == 0)
4949 			parent = ins.objectid;
4950 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4951 	} else
4952 		BUG_ON(parent > 0);
4953 
4954 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4955 		extent_op = btrfs_alloc_delayed_extent_op();
4956 		if (!extent_op) {
4957 			ret = -ENOMEM;
4958 			goto out_free_buf;
4959 		}
4960 		if (key)
4961 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4962 		else
4963 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4964 		extent_op->flags_to_set = flags;
4965 		extent_op->update_key = skinny_metadata ? false : true;
4966 		extent_op->update_flags = true;
4967 		extent_op->level = level;
4968 
4969 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4970 				       ins.objectid, ins.offset, parent);
4971 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4972 				    root->root_key.objectid, false);
4973 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4974 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4975 		if (ret)
4976 			goto out_free_delayed;
4977 	}
4978 	return buf;
4979 
4980 out_free_delayed:
4981 	btrfs_free_delayed_extent_op(extent_op);
4982 out_free_buf:
4983 	btrfs_tree_unlock(buf);
4984 	free_extent_buffer(buf);
4985 out_free_reserved:
4986 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4987 out_unuse:
4988 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4989 	return ERR_PTR(ret);
4990 }
4991 
4992 struct walk_control {
4993 	u64 refs[BTRFS_MAX_LEVEL];
4994 	u64 flags[BTRFS_MAX_LEVEL];
4995 	struct btrfs_key update_progress;
4996 	struct btrfs_key drop_progress;
4997 	int drop_level;
4998 	int stage;
4999 	int level;
5000 	int shared_level;
5001 	int update_ref;
5002 	int keep_locks;
5003 	int reada_slot;
5004 	int reada_count;
5005 	int restarted;
5006 };
5007 
5008 #define DROP_REFERENCE	1
5009 #define UPDATE_BACKREF	2
5010 
5011 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5012 				     struct btrfs_root *root,
5013 				     struct walk_control *wc,
5014 				     struct btrfs_path *path)
5015 {
5016 	struct btrfs_fs_info *fs_info = root->fs_info;
5017 	u64 bytenr;
5018 	u64 generation;
5019 	u64 refs;
5020 	u64 flags;
5021 	u32 nritems;
5022 	struct btrfs_key key;
5023 	struct extent_buffer *eb;
5024 	int ret;
5025 	int slot;
5026 	int nread = 0;
5027 
5028 	if (path->slots[wc->level] < wc->reada_slot) {
5029 		wc->reada_count = wc->reada_count * 2 / 3;
5030 		wc->reada_count = max(wc->reada_count, 2);
5031 	} else {
5032 		wc->reada_count = wc->reada_count * 3 / 2;
5033 		wc->reada_count = min_t(int, wc->reada_count,
5034 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5035 	}
5036 
5037 	eb = path->nodes[wc->level];
5038 	nritems = btrfs_header_nritems(eb);
5039 
5040 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5041 		if (nread >= wc->reada_count)
5042 			break;
5043 
5044 		cond_resched();
5045 		bytenr = btrfs_node_blockptr(eb, slot);
5046 		generation = btrfs_node_ptr_generation(eb, slot);
5047 
5048 		if (slot == path->slots[wc->level])
5049 			goto reada;
5050 
5051 		if (wc->stage == UPDATE_BACKREF &&
5052 		    generation <= root->root_key.offset)
5053 			continue;
5054 
5055 		/* We don't lock the tree block, it's OK to be racy here */
5056 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5057 					       wc->level - 1, 1, &refs,
5058 					       &flags);
5059 		/* We don't care about errors in readahead. */
5060 		if (ret < 0)
5061 			continue;
5062 		BUG_ON(refs == 0);
5063 
5064 		if (wc->stage == DROP_REFERENCE) {
5065 			if (refs == 1)
5066 				goto reada;
5067 
5068 			if (wc->level == 1 &&
5069 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5070 				continue;
5071 			if (!wc->update_ref ||
5072 			    generation <= root->root_key.offset)
5073 				continue;
5074 			btrfs_node_key_to_cpu(eb, &key, slot);
5075 			ret = btrfs_comp_cpu_keys(&key,
5076 						  &wc->update_progress);
5077 			if (ret < 0)
5078 				continue;
5079 		} else {
5080 			if (wc->level == 1 &&
5081 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5082 				continue;
5083 		}
5084 reada:
5085 		btrfs_readahead_node_child(eb, slot);
5086 		nread++;
5087 	}
5088 	wc->reada_slot = slot;
5089 }
5090 
5091 /*
5092  * helper to process tree block while walking down the tree.
5093  *
5094  * when wc->stage == UPDATE_BACKREF, this function updates
5095  * back refs for pointers in the block.
5096  *
5097  * NOTE: return value 1 means we should stop walking down.
5098  */
5099 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5100 				   struct btrfs_root *root,
5101 				   struct btrfs_path *path,
5102 				   struct walk_control *wc, int lookup_info)
5103 {
5104 	struct btrfs_fs_info *fs_info = root->fs_info;
5105 	int level = wc->level;
5106 	struct extent_buffer *eb = path->nodes[level];
5107 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5108 	int ret;
5109 
5110 	if (wc->stage == UPDATE_BACKREF &&
5111 	    btrfs_header_owner(eb) != root->root_key.objectid)
5112 		return 1;
5113 
5114 	/*
5115 	 * when reference count of tree block is 1, it won't increase
5116 	 * again. once full backref flag is set, we never clear it.
5117 	 */
5118 	if (lookup_info &&
5119 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5120 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5121 		BUG_ON(!path->locks[level]);
5122 		ret = btrfs_lookup_extent_info(trans, fs_info,
5123 					       eb->start, level, 1,
5124 					       &wc->refs[level],
5125 					       &wc->flags[level]);
5126 		BUG_ON(ret == -ENOMEM);
5127 		if (ret)
5128 			return ret;
5129 		BUG_ON(wc->refs[level] == 0);
5130 	}
5131 
5132 	if (wc->stage == DROP_REFERENCE) {
5133 		if (wc->refs[level] > 1)
5134 			return 1;
5135 
5136 		if (path->locks[level] && !wc->keep_locks) {
5137 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5138 			path->locks[level] = 0;
5139 		}
5140 		return 0;
5141 	}
5142 
5143 	/* wc->stage == UPDATE_BACKREF */
5144 	if (!(wc->flags[level] & flag)) {
5145 		BUG_ON(!path->locks[level]);
5146 		ret = btrfs_inc_ref(trans, root, eb, 1);
5147 		BUG_ON(ret); /* -ENOMEM */
5148 		ret = btrfs_dec_ref(trans, root, eb, 0);
5149 		BUG_ON(ret); /* -ENOMEM */
5150 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5151 		BUG_ON(ret); /* -ENOMEM */
5152 		wc->flags[level] |= flag;
5153 	}
5154 
5155 	/*
5156 	 * the block is shared by multiple trees, so it's not good to
5157 	 * keep the tree lock
5158 	 */
5159 	if (path->locks[level] && level > 0) {
5160 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5161 		path->locks[level] = 0;
5162 	}
5163 	return 0;
5164 }
5165 
5166 /*
5167  * This is used to verify a ref exists for this root to deal with a bug where we
5168  * would have a drop_progress key that hadn't been updated properly.
5169  */
5170 static int check_ref_exists(struct btrfs_trans_handle *trans,
5171 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5172 			    int level)
5173 {
5174 	struct btrfs_path *path;
5175 	struct btrfs_extent_inline_ref *iref;
5176 	int ret;
5177 
5178 	path = btrfs_alloc_path();
5179 	if (!path)
5180 		return -ENOMEM;
5181 
5182 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5183 				    root->fs_info->nodesize, parent,
5184 				    root->root_key.objectid, level, 0);
5185 	btrfs_free_path(path);
5186 	if (ret == -ENOENT)
5187 		return 0;
5188 	if (ret < 0)
5189 		return ret;
5190 	return 1;
5191 }
5192 
5193 /*
5194  * helper to process tree block pointer.
5195  *
5196  * when wc->stage == DROP_REFERENCE, this function checks
5197  * reference count of the block pointed to. if the block
5198  * is shared and we need update back refs for the subtree
5199  * rooted at the block, this function changes wc->stage to
5200  * UPDATE_BACKREF. if the block is shared and there is no
5201  * need to update back, this function drops the reference
5202  * to the block.
5203  *
5204  * NOTE: return value 1 means we should stop walking down.
5205  */
5206 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5207 				 struct btrfs_root *root,
5208 				 struct btrfs_path *path,
5209 				 struct walk_control *wc, int *lookup_info)
5210 {
5211 	struct btrfs_fs_info *fs_info = root->fs_info;
5212 	u64 bytenr;
5213 	u64 generation;
5214 	u64 parent;
5215 	struct btrfs_tree_parent_check check = { 0 };
5216 	struct btrfs_key key;
5217 	struct btrfs_ref ref = { 0 };
5218 	struct extent_buffer *next;
5219 	int level = wc->level;
5220 	int reada = 0;
5221 	int ret = 0;
5222 	bool need_account = false;
5223 
5224 	generation = btrfs_node_ptr_generation(path->nodes[level],
5225 					       path->slots[level]);
5226 	/*
5227 	 * if the lower level block was created before the snapshot
5228 	 * was created, we know there is no need to update back refs
5229 	 * for the subtree
5230 	 */
5231 	if (wc->stage == UPDATE_BACKREF &&
5232 	    generation <= root->root_key.offset) {
5233 		*lookup_info = 1;
5234 		return 1;
5235 	}
5236 
5237 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5238 
5239 	check.level = level - 1;
5240 	check.transid = generation;
5241 	check.owner_root = root->root_key.objectid;
5242 	check.has_first_key = true;
5243 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5244 			      path->slots[level]);
5245 
5246 	next = find_extent_buffer(fs_info, bytenr);
5247 	if (!next) {
5248 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5249 				root->root_key.objectid, level - 1);
5250 		if (IS_ERR(next))
5251 			return PTR_ERR(next);
5252 		reada = 1;
5253 	}
5254 	btrfs_tree_lock(next);
5255 
5256 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5257 				       &wc->refs[level - 1],
5258 				       &wc->flags[level - 1]);
5259 	if (ret < 0)
5260 		goto out_unlock;
5261 
5262 	if (unlikely(wc->refs[level - 1] == 0)) {
5263 		btrfs_err(fs_info, "Missing references.");
5264 		ret = -EIO;
5265 		goto out_unlock;
5266 	}
5267 	*lookup_info = 0;
5268 
5269 	if (wc->stage == DROP_REFERENCE) {
5270 		if (wc->refs[level - 1] > 1) {
5271 			need_account = true;
5272 			if (level == 1 &&
5273 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5274 				goto skip;
5275 
5276 			if (!wc->update_ref ||
5277 			    generation <= root->root_key.offset)
5278 				goto skip;
5279 
5280 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5281 					      path->slots[level]);
5282 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5283 			if (ret < 0)
5284 				goto skip;
5285 
5286 			wc->stage = UPDATE_BACKREF;
5287 			wc->shared_level = level - 1;
5288 		}
5289 	} else {
5290 		if (level == 1 &&
5291 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5292 			goto skip;
5293 	}
5294 
5295 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5296 		btrfs_tree_unlock(next);
5297 		free_extent_buffer(next);
5298 		next = NULL;
5299 		*lookup_info = 1;
5300 	}
5301 
5302 	if (!next) {
5303 		if (reada && level == 1)
5304 			reada_walk_down(trans, root, wc, path);
5305 		next = read_tree_block(fs_info, bytenr, &check);
5306 		if (IS_ERR(next)) {
5307 			return PTR_ERR(next);
5308 		} else if (!extent_buffer_uptodate(next)) {
5309 			free_extent_buffer(next);
5310 			return -EIO;
5311 		}
5312 		btrfs_tree_lock(next);
5313 	}
5314 
5315 	level--;
5316 	ASSERT(level == btrfs_header_level(next));
5317 	if (level != btrfs_header_level(next)) {
5318 		btrfs_err(root->fs_info, "mismatched level");
5319 		ret = -EIO;
5320 		goto out_unlock;
5321 	}
5322 	path->nodes[level] = next;
5323 	path->slots[level] = 0;
5324 	path->locks[level] = BTRFS_WRITE_LOCK;
5325 	wc->level = level;
5326 	if (wc->level == 1)
5327 		wc->reada_slot = 0;
5328 	return 0;
5329 skip:
5330 	wc->refs[level - 1] = 0;
5331 	wc->flags[level - 1] = 0;
5332 	if (wc->stage == DROP_REFERENCE) {
5333 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5334 			parent = path->nodes[level]->start;
5335 		} else {
5336 			ASSERT(root->root_key.objectid ==
5337 			       btrfs_header_owner(path->nodes[level]));
5338 			if (root->root_key.objectid !=
5339 			    btrfs_header_owner(path->nodes[level])) {
5340 				btrfs_err(root->fs_info,
5341 						"mismatched block owner");
5342 				ret = -EIO;
5343 				goto out_unlock;
5344 			}
5345 			parent = 0;
5346 		}
5347 
5348 		/*
5349 		 * If we had a drop_progress we need to verify the refs are set
5350 		 * as expected.  If we find our ref then we know that from here
5351 		 * on out everything should be correct, and we can clear the
5352 		 * ->restarted flag.
5353 		 */
5354 		if (wc->restarted) {
5355 			ret = check_ref_exists(trans, root, bytenr, parent,
5356 					       level - 1);
5357 			if (ret < 0)
5358 				goto out_unlock;
5359 			if (ret == 0)
5360 				goto no_delete;
5361 			ret = 0;
5362 			wc->restarted = 0;
5363 		}
5364 
5365 		/*
5366 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5367 		 * already accounted them at merge time (replace_path),
5368 		 * thus we could skip expensive subtree trace here.
5369 		 */
5370 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5371 		    need_account) {
5372 			ret = btrfs_qgroup_trace_subtree(trans, next,
5373 							 generation, level - 1);
5374 			if (ret) {
5375 				btrfs_err_rl(fs_info,
5376 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5377 					     ret);
5378 			}
5379 		}
5380 
5381 		/*
5382 		 * We need to update the next key in our walk control so we can
5383 		 * update the drop_progress key accordingly.  We don't care if
5384 		 * find_next_key doesn't find a key because that means we're at
5385 		 * the end and are going to clean up now.
5386 		 */
5387 		wc->drop_level = level;
5388 		find_next_key(path, level, &wc->drop_progress);
5389 
5390 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5391 				       fs_info->nodesize, parent);
5392 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5393 				    0, false);
5394 		ret = btrfs_free_extent(trans, &ref);
5395 		if (ret)
5396 			goto out_unlock;
5397 	}
5398 no_delete:
5399 	*lookup_info = 1;
5400 	ret = 1;
5401 
5402 out_unlock:
5403 	btrfs_tree_unlock(next);
5404 	free_extent_buffer(next);
5405 
5406 	return ret;
5407 }
5408 
5409 /*
5410  * helper to process tree block while walking up the tree.
5411  *
5412  * when wc->stage == DROP_REFERENCE, this function drops
5413  * reference count on the block.
5414  *
5415  * when wc->stage == UPDATE_BACKREF, this function changes
5416  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5417  * to UPDATE_BACKREF previously while processing the block.
5418  *
5419  * NOTE: return value 1 means we should stop walking up.
5420  */
5421 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5422 				 struct btrfs_root *root,
5423 				 struct btrfs_path *path,
5424 				 struct walk_control *wc)
5425 {
5426 	struct btrfs_fs_info *fs_info = root->fs_info;
5427 	int ret;
5428 	int level = wc->level;
5429 	struct extent_buffer *eb = path->nodes[level];
5430 	u64 parent = 0;
5431 
5432 	if (wc->stage == UPDATE_BACKREF) {
5433 		BUG_ON(wc->shared_level < level);
5434 		if (level < wc->shared_level)
5435 			goto out;
5436 
5437 		ret = find_next_key(path, level + 1, &wc->update_progress);
5438 		if (ret > 0)
5439 			wc->update_ref = 0;
5440 
5441 		wc->stage = DROP_REFERENCE;
5442 		wc->shared_level = -1;
5443 		path->slots[level] = 0;
5444 
5445 		/*
5446 		 * check reference count again if the block isn't locked.
5447 		 * we should start walking down the tree again if reference
5448 		 * count is one.
5449 		 */
5450 		if (!path->locks[level]) {
5451 			BUG_ON(level == 0);
5452 			btrfs_tree_lock(eb);
5453 			path->locks[level] = BTRFS_WRITE_LOCK;
5454 
5455 			ret = btrfs_lookup_extent_info(trans, fs_info,
5456 						       eb->start, level, 1,
5457 						       &wc->refs[level],
5458 						       &wc->flags[level]);
5459 			if (ret < 0) {
5460 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5461 				path->locks[level] = 0;
5462 				return ret;
5463 			}
5464 			BUG_ON(wc->refs[level] == 0);
5465 			if (wc->refs[level] == 1) {
5466 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5467 				path->locks[level] = 0;
5468 				return 1;
5469 			}
5470 		}
5471 	}
5472 
5473 	/* wc->stage == DROP_REFERENCE */
5474 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5475 
5476 	if (wc->refs[level] == 1) {
5477 		if (level == 0) {
5478 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5479 				ret = btrfs_dec_ref(trans, root, eb, 1);
5480 			else
5481 				ret = btrfs_dec_ref(trans, root, eb, 0);
5482 			BUG_ON(ret); /* -ENOMEM */
5483 			if (is_fstree(root->root_key.objectid)) {
5484 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5485 				if (ret) {
5486 					btrfs_err_rl(fs_info,
5487 	"error %d accounting leaf items, quota is out of sync, rescan required",
5488 					     ret);
5489 				}
5490 			}
5491 		}
5492 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5493 		if (!path->locks[level]) {
5494 			btrfs_tree_lock(eb);
5495 			path->locks[level] = BTRFS_WRITE_LOCK;
5496 		}
5497 		btrfs_clear_buffer_dirty(trans, eb);
5498 	}
5499 
5500 	if (eb == root->node) {
5501 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5502 			parent = eb->start;
5503 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5504 			goto owner_mismatch;
5505 	} else {
5506 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5507 			parent = path->nodes[level + 1]->start;
5508 		else if (root->root_key.objectid !=
5509 			 btrfs_header_owner(path->nodes[level + 1]))
5510 			goto owner_mismatch;
5511 	}
5512 
5513 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5514 			      wc->refs[level] == 1);
5515 out:
5516 	wc->refs[level] = 0;
5517 	wc->flags[level] = 0;
5518 	return 0;
5519 
5520 owner_mismatch:
5521 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5522 		     btrfs_header_owner(eb), root->root_key.objectid);
5523 	return -EUCLEAN;
5524 }
5525 
5526 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5527 				   struct btrfs_root *root,
5528 				   struct btrfs_path *path,
5529 				   struct walk_control *wc)
5530 {
5531 	int level = wc->level;
5532 	int lookup_info = 1;
5533 	int ret = 0;
5534 
5535 	while (level >= 0) {
5536 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5537 		if (ret)
5538 			break;
5539 
5540 		if (level == 0)
5541 			break;
5542 
5543 		if (path->slots[level] >=
5544 		    btrfs_header_nritems(path->nodes[level]))
5545 			break;
5546 
5547 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5548 		if (ret > 0) {
5549 			path->slots[level]++;
5550 			continue;
5551 		} else if (ret < 0)
5552 			break;
5553 		level = wc->level;
5554 	}
5555 	return (ret == 1) ? 0 : ret;
5556 }
5557 
5558 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5559 				 struct btrfs_root *root,
5560 				 struct btrfs_path *path,
5561 				 struct walk_control *wc, int max_level)
5562 {
5563 	int level = wc->level;
5564 	int ret;
5565 
5566 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5567 	while (level < max_level && path->nodes[level]) {
5568 		wc->level = level;
5569 		if (path->slots[level] + 1 <
5570 		    btrfs_header_nritems(path->nodes[level])) {
5571 			path->slots[level]++;
5572 			return 0;
5573 		} else {
5574 			ret = walk_up_proc(trans, root, path, wc);
5575 			if (ret > 0)
5576 				return 0;
5577 			if (ret < 0)
5578 				return ret;
5579 
5580 			if (path->locks[level]) {
5581 				btrfs_tree_unlock_rw(path->nodes[level],
5582 						     path->locks[level]);
5583 				path->locks[level] = 0;
5584 			}
5585 			free_extent_buffer(path->nodes[level]);
5586 			path->nodes[level] = NULL;
5587 			level++;
5588 		}
5589 	}
5590 	return 1;
5591 }
5592 
5593 /*
5594  * drop a subvolume tree.
5595  *
5596  * this function traverses the tree freeing any blocks that only
5597  * referenced by the tree.
5598  *
5599  * when a shared tree block is found. this function decreases its
5600  * reference count by one. if update_ref is true, this function
5601  * also make sure backrefs for the shared block and all lower level
5602  * blocks are properly updated.
5603  *
5604  * If called with for_reloc == 0, may exit early with -EAGAIN
5605  */
5606 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5607 {
5608 	const bool is_reloc_root = (root->root_key.objectid ==
5609 				    BTRFS_TREE_RELOC_OBJECTID);
5610 	struct btrfs_fs_info *fs_info = root->fs_info;
5611 	struct btrfs_path *path;
5612 	struct btrfs_trans_handle *trans;
5613 	struct btrfs_root *tree_root = fs_info->tree_root;
5614 	struct btrfs_root_item *root_item = &root->root_item;
5615 	struct walk_control *wc;
5616 	struct btrfs_key key;
5617 	int err = 0;
5618 	int ret;
5619 	int level;
5620 	bool root_dropped = false;
5621 	bool unfinished_drop = false;
5622 
5623 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5624 
5625 	path = btrfs_alloc_path();
5626 	if (!path) {
5627 		err = -ENOMEM;
5628 		goto out;
5629 	}
5630 
5631 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5632 	if (!wc) {
5633 		btrfs_free_path(path);
5634 		err = -ENOMEM;
5635 		goto out;
5636 	}
5637 
5638 	/*
5639 	 * Use join to avoid potential EINTR from transaction start. See
5640 	 * wait_reserve_ticket and the whole reservation callchain.
5641 	 */
5642 	if (for_reloc)
5643 		trans = btrfs_join_transaction(tree_root);
5644 	else
5645 		trans = btrfs_start_transaction(tree_root, 0);
5646 	if (IS_ERR(trans)) {
5647 		err = PTR_ERR(trans);
5648 		goto out_free;
5649 	}
5650 
5651 	err = btrfs_run_delayed_items(trans);
5652 	if (err)
5653 		goto out_end_trans;
5654 
5655 	/*
5656 	 * This will help us catch people modifying the fs tree while we're
5657 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5658 	 * dropped as we unlock the root node and parent nodes as we walk down
5659 	 * the tree, assuming nothing will change.  If something does change
5660 	 * then we'll have stale information and drop references to blocks we've
5661 	 * already dropped.
5662 	 */
5663 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5664 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5665 
5666 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5667 		level = btrfs_header_level(root->node);
5668 		path->nodes[level] = btrfs_lock_root_node(root);
5669 		path->slots[level] = 0;
5670 		path->locks[level] = BTRFS_WRITE_LOCK;
5671 		memset(&wc->update_progress, 0,
5672 		       sizeof(wc->update_progress));
5673 	} else {
5674 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5675 		memcpy(&wc->update_progress, &key,
5676 		       sizeof(wc->update_progress));
5677 
5678 		level = btrfs_root_drop_level(root_item);
5679 		BUG_ON(level == 0);
5680 		path->lowest_level = level;
5681 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5682 		path->lowest_level = 0;
5683 		if (ret < 0) {
5684 			err = ret;
5685 			goto out_end_trans;
5686 		}
5687 		WARN_ON(ret > 0);
5688 
5689 		/*
5690 		 * unlock our path, this is safe because only this
5691 		 * function is allowed to delete this snapshot
5692 		 */
5693 		btrfs_unlock_up_safe(path, 0);
5694 
5695 		level = btrfs_header_level(root->node);
5696 		while (1) {
5697 			btrfs_tree_lock(path->nodes[level]);
5698 			path->locks[level] = BTRFS_WRITE_LOCK;
5699 
5700 			ret = btrfs_lookup_extent_info(trans, fs_info,
5701 						path->nodes[level]->start,
5702 						level, 1, &wc->refs[level],
5703 						&wc->flags[level]);
5704 			if (ret < 0) {
5705 				err = ret;
5706 				goto out_end_trans;
5707 			}
5708 			BUG_ON(wc->refs[level] == 0);
5709 
5710 			if (level == btrfs_root_drop_level(root_item))
5711 				break;
5712 
5713 			btrfs_tree_unlock(path->nodes[level]);
5714 			path->locks[level] = 0;
5715 			WARN_ON(wc->refs[level] != 1);
5716 			level--;
5717 		}
5718 	}
5719 
5720 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5721 	wc->level = level;
5722 	wc->shared_level = -1;
5723 	wc->stage = DROP_REFERENCE;
5724 	wc->update_ref = update_ref;
5725 	wc->keep_locks = 0;
5726 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5727 
5728 	while (1) {
5729 
5730 		ret = walk_down_tree(trans, root, path, wc);
5731 		if (ret < 0) {
5732 			btrfs_abort_transaction(trans, ret);
5733 			err = ret;
5734 			break;
5735 		}
5736 
5737 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5738 		if (ret < 0) {
5739 			btrfs_abort_transaction(trans, ret);
5740 			err = ret;
5741 			break;
5742 		}
5743 
5744 		if (ret > 0) {
5745 			BUG_ON(wc->stage != DROP_REFERENCE);
5746 			break;
5747 		}
5748 
5749 		if (wc->stage == DROP_REFERENCE) {
5750 			wc->drop_level = wc->level;
5751 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5752 					      &wc->drop_progress,
5753 					      path->slots[wc->drop_level]);
5754 		}
5755 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5756 				      &wc->drop_progress);
5757 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5758 
5759 		BUG_ON(wc->level == 0);
5760 		if (btrfs_should_end_transaction(trans) ||
5761 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5762 			ret = btrfs_update_root(trans, tree_root,
5763 						&root->root_key,
5764 						root_item);
5765 			if (ret) {
5766 				btrfs_abort_transaction(trans, ret);
5767 				err = ret;
5768 				goto out_end_trans;
5769 			}
5770 
5771 			if (!is_reloc_root)
5772 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5773 
5774 			btrfs_end_transaction_throttle(trans);
5775 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5776 				btrfs_debug(fs_info,
5777 					    "drop snapshot early exit");
5778 				err = -EAGAIN;
5779 				goto out_free;
5780 			}
5781 
5782 		       /*
5783 			* Use join to avoid potential EINTR from transaction
5784 			* start. See wait_reserve_ticket and the whole
5785 			* reservation callchain.
5786 			*/
5787 			if (for_reloc)
5788 				trans = btrfs_join_transaction(tree_root);
5789 			else
5790 				trans = btrfs_start_transaction(tree_root, 0);
5791 			if (IS_ERR(trans)) {
5792 				err = PTR_ERR(trans);
5793 				goto out_free;
5794 			}
5795 		}
5796 	}
5797 	btrfs_release_path(path);
5798 	if (err)
5799 		goto out_end_trans;
5800 
5801 	ret = btrfs_del_root(trans, &root->root_key);
5802 	if (ret) {
5803 		btrfs_abort_transaction(trans, ret);
5804 		err = ret;
5805 		goto out_end_trans;
5806 	}
5807 
5808 	if (!is_reloc_root) {
5809 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5810 				      NULL, NULL);
5811 		if (ret < 0) {
5812 			btrfs_abort_transaction(trans, ret);
5813 			err = ret;
5814 			goto out_end_trans;
5815 		} else if (ret > 0) {
5816 			/* if we fail to delete the orphan item this time
5817 			 * around, it'll get picked up the next time.
5818 			 *
5819 			 * The most common failure here is just -ENOENT.
5820 			 */
5821 			btrfs_del_orphan_item(trans, tree_root,
5822 					      root->root_key.objectid);
5823 		}
5824 	}
5825 
5826 	/*
5827 	 * This subvolume is going to be completely dropped, and won't be
5828 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5829 	 * commit transaction time.  So free it here manually.
5830 	 */
5831 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5832 	btrfs_qgroup_free_meta_all_pertrans(root);
5833 
5834 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5835 		btrfs_add_dropped_root(trans, root);
5836 	else
5837 		btrfs_put_root(root);
5838 	root_dropped = true;
5839 out_end_trans:
5840 	if (!is_reloc_root)
5841 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5842 
5843 	btrfs_end_transaction_throttle(trans);
5844 out_free:
5845 	kfree(wc);
5846 	btrfs_free_path(path);
5847 out:
5848 	/*
5849 	 * We were an unfinished drop root, check to see if there are any
5850 	 * pending, and if not clear and wake up any waiters.
5851 	 */
5852 	if (!err && unfinished_drop)
5853 		btrfs_maybe_wake_unfinished_drop(fs_info);
5854 
5855 	/*
5856 	 * So if we need to stop dropping the snapshot for whatever reason we
5857 	 * need to make sure to add it back to the dead root list so that we
5858 	 * keep trying to do the work later.  This also cleans up roots if we
5859 	 * don't have it in the radix (like when we recover after a power fail
5860 	 * or unmount) so we don't leak memory.
5861 	 */
5862 	if (!for_reloc && !root_dropped)
5863 		btrfs_add_dead_root(root);
5864 	return err;
5865 }
5866 
5867 /*
5868  * drop subtree rooted at tree block 'node'.
5869  *
5870  * NOTE: this function will unlock and release tree block 'node'
5871  * only used by relocation code
5872  */
5873 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5874 			struct btrfs_root *root,
5875 			struct extent_buffer *node,
5876 			struct extent_buffer *parent)
5877 {
5878 	struct btrfs_fs_info *fs_info = root->fs_info;
5879 	struct btrfs_path *path;
5880 	struct walk_control *wc;
5881 	int level;
5882 	int parent_level;
5883 	int ret = 0;
5884 	int wret;
5885 
5886 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5887 
5888 	path = btrfs_alloc_path();
5889 	if (!path)
5890 		return -ENOMEM;
5891 
5892 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5893 	if (!wc) {
5894 		btrfs_free_path(path);
5895 		return -ENOMEM;
5896 	}
5897 
5898 	btrfs_assert_tree_write_locked(parent);
5899 	parent_level = btrfs_header_level(parent);
5900 	atomic_inc(&parent->refs);
5901 	path->nodes[parent_level] = parent;
5902 	path->slots[parent_level] = btrfs_header_nritems(parent);
5903 
5904 	btrfs_assert_tree_write_locked(node);
5905 	level = btrfs_header_level(node);
5906 	path->nodes[level] = node;
5907 	path->slots[level] = 0;
5908 	path->locks[level] = BTRFS_WRITE_LOCK;
5909 
5910 	wc->refs[parent_level] = 1;
5911 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5912 	wc->level = level;
5913 	wc->shared_level = -1;
5914 	wc->stage = DROP_REFERENCE;
5915 	wc->update_ref = 0;
5916 	wc->keep_locks = 1;
5917 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5918 
5919 	while (1) {
5920 		wret = walk_down_tree(trans, root, path, wc);
5921 		if (wret < 0) {
5922 			ret = wret;
5923 			break;
5924 		}
5925 
5926 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5927 		if (wret < 0)
5928 			ret = wret;
5929 		if (wret != 0)
5930 			break;
5931 	}
5932 
5933 	kfree(wc);
5934 	btrfs_free_path(path);
5935 	return ret;
5936 }
5937 
5938 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5939 				   u64 start, u64 end)
5940 {
5941 	return unpin_extent_range(fs_info, start, end, false);
5942 }
5943 
5944 /*
5945  * It used to be that old block groups would be left around forever.
5946  * Iterating over them would be enough to trim unused space.  Since we
5947  * now automatically remove them, we also need to iterate over unallocated
5948  * space.
5949  *
5950  * We don't want a transaction for this since the discard may take a
5951  * substantial amount of time.  We don't require that a transaction be
5952  * running, but we do need to take a running transaction into account
5953  * to ensure that we're not discarding chunks that were released or
5954  * allocated in the current transaction.
5955  *
5956  * Holding the chunks lock will prevent other threads from allocating
5957  * or releasing chunks, but it won't prevent a running transaction
5958  * from committing and releasing the memory that the pending chunks
5959  * list head uses.  For that, we need to take a reference to the
5960  * transaction and hold the commit root sem.  We only need to hold
5961  * it while performing the free space search since we have already
5962  * held back allocations.
5963  */
5964 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5965 {
5966 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5967 	int ret;
5968 
5969 	*trimmed = 0;
5970 
5971 	/* Discard not supported = nothing to do. */
5972 	if (!bdev_max_discard_sectors(device->bdev))
5973 		return 0;
5974 
5975 	/* Not writable = nothing to do. */
5976 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5977 		return 0;
5978 
5979 	/* No free space = nothing to do. */
5980 	if (device->total_bytes <= device->bytes_used)
5981 		return 0;
5982 
5983 	ret = 0;
5984 
5985 	while (1) {
5986 		struct btrfs_fs_info *fs_info = device->fs_info;
5987 		u64 bytes;
5988 
5989 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5990 		if (ret)
5991 			break;
5992 
5993 		find_first_clear_extent_bit(&device->alloc_state, start,
5994 					    &start, &end,
5995 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5996 
5997 		/* Check if there are any CHUNK_* bits left */
5998 		if (start > device->total_bytes) {
5999 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6000 			btrfs_warn_in_rcu(fs_info,
6001 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6002 					  start, end - start + 1,
6003 					  btrfs_dev_name(device),
6004 					  device->total_bytes);
6005 			mutex_unlock(&fs_info->chunk_mutex);
6006 			ret = 0;
6007 			break;
6008 		}
6009 
6010 		/* Ensure we skip the reserved space on each device. */
6011 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6012 
6013 		/*
6014 		 * If find_first_clear_extent_bit find a range that spans the
6015 		 * end of the device it will set end to -1, in this case it's up
6016 		 * to the caller to trim the value to the size of the device.
6017 		 */
6018 		end = min(end, device->total_bytes - 1);
6019 
6020 		len = end - start + 1;
6021 
6022 		/* We didn't find any extents */
6023 		if (!len) {
6024 			mutex_unlock(&fs_info->chunk_mutex);
6025 			ret = 0;
6026 			break;
6027 		}
6028 
6029 		ret = btrfs_issue_discard(device->bdev, start, len,
6030 					  &bytes);
6031 		if (!ret)
6032 			set_extent_bit(&device->alloc_state, start,
6033 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6034 		mutex_unlock(&fs_info->chunk_mutex);
6035 
6036 		if (ret)
6037 			break;
6038 
6039 		start += len;
6040 		*trimmed += bytes;
6041 
6042 		if (fatal_signal_pending(current)) {
6043 			ret = -ERESTARTSYS;
6044 			break;
6045 		}
6046 
6047 		cond_resched();
6048 	}
6049 
6050 	return ret;
6051 }
6052 
6053 /*
6054  * Trim the whole filesystem by:
6055  * 1) trimming the free space in each block group
6056  * 2) trimming the unallocated space on each device
6057  *
6058  * This will also continue trimming even if a block group or device encounters
6059  * an error.  The return value will be the last error, or 0 if nothing bad
6060  * happens.
6061  */
6062 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6063 {
6064 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6065 	struct btrfs_block_group *cache = NULL;
6066 	struct btrfs_device *device;
6067 	u64 group_trimmed;
6068 	u64 range_end = U64_MAX;
6069 	u64 start;
6070 	u64 end;
6071 	u64 trimmed = 0;
6072 	u64 bg_failed = 0;
6073 	u64 dev_failed = 0;
6074 	int bg_ret = 0;
6075 	int dev_ret = 0;
6076 	int ret = 0;
6077 
6078 	if (range->start == U64_MAX)
6079 		return -EINVAL;
6080 
6081 	/*
6082 	 * Check range overflow if range->len is set.
6083 	 * The default range->len is U64_MAX.
6084 	 */
6085 	if (range->len != U64_MAX &&
6086 	    check_add_overflow(range->start, range->len, &range_end))
6087 		return -EINVAL;
6088 
6089 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6090 	for (; cache; cache = btrfs_next_block_group(cache)) {
6091 		if (cache->start >= range_end) {
6092 			btrfs_put_block_group(cache);
6093 			break;
6094 		}
6095 
6096 		start = max(range->start, cache->start);
6097 		end = min(range_end, cache->start + cache->length);
6098 
6099 		if (end - start >= range->minlen) {
6100 			if (!btrfs_block_group_done(cache)) {
6101 				ret = btrfs_cache_block_group(cache, true);
6102 				if (ret) {
6103 					bg_failed++;
6104 					bg_ret = ret;
6105 					continue;
6106 				}
6107 			}
6108 			ret = btrfs_trim_block_group(cache,
6109 						     &group_trimmed,
6110 						     start,
6111 						     end,
6112 						     range->minlen);
6113 
6114 			trimmed += group_trimmed;
6115 			if (ret) {
6116 				bg_failed++;
6117 				bg_ret = ret;
6118 				continue;
6119 			}
6120 		}
6121 	}
6122 
6123 	if (bg_failed)
6124 		btrfs_warn(fs_info,
6125 			"failed to trim %llu block group(s), last error %d",
6126 			bg_failed, bg_ret);
6127 
6128 	mutex_lock(&fs_devices->device_list_mutex);
6129 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6130 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6131 			continue;
6132 
6133 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6134 		if (ret) {
6135 			dev_failed++;
6136 			dev_ret = ret;
6137 			break;
6138 		}
6139 
6140 		trimmed += group_trimmed;
6141 	}
6142 	mutex_unlock(&fs_devices->device_list_mutex);
6143 
6144 	if (dev_failed)
6145 		btrfs_warn(fs_info,
6146 			"failed to trim %llu device(s), last error %d",
6147 			dev_failed, dev_ret);
6148 	range->len = trimmed;
6149 	if (bg_ret)
6150 		return bg_ret;
6151 	return dev_ret;
6152 }
6153