1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 37 #undef SCRAMBLE_DELAYED_REFS 38 39 40 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 41 struct btrfs_delayed_ref_node *node, u64 parent, 42 u64 root_objectid, u64 owner_objectid, 43 u64 owner_offset, int refs_to_drop, 44 struct btrfs_delayed_extent_op *extra_op); 45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 46 struct extent_buffer *leaf, 47 struct btrfs_extent_item *ei); 48 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 49 u64 parent, u64 root_objectid, 50 u64 flags, u64 owner, u64 offset, 51 struct btrfs_key *ins, int ref_mod); 52 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 53 struct btrfs_delayed_ref_node *node, 54 struct btrfs_delayed_extent_op *extent_op); 55 static int find_next_key(struct btrfs_path *path, int level, 56 struct btrfs_key *key); 57 58 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 59 { 60 return (cache->flags & bits) == bits; 61 } 62 63 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 64 u64 start, u64 num_bytes) 65 { 66 u64 end = start + num_bytes - 1; 67 set_extent_bits(&fs_info->freed_extents[0], 68 start, end, EXTENT_UPTODATE); 69 set_extent_bits(&fs_info->freed_extents[1], 70 start, end, EXTENT_UPTODATE); 71 return 0; 72 } 73 74 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 75 { 76 struct btrfs_fs_info *fs_info = cache->fs_info; 77 u64 start, end; 78 79 start = cache->start; 80 end = start + cache->length - 1; 81 82 clear_extent_bits(&fs_info->freed_extents[0], 83 start, end, EXTENT_UPTODATE); 84 clear_extent_bits(&fs_info->freed_extents[1], 85 start, end, EXTENT_UPTODATE); 86 } 87 88 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 89 { 90 if (ref->type == BTRFS_REF_METADATA) { 91 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 92 return BTRFS_BLOCK_GROUP_SYSTEM; 93 else 94 return BTRFS_BLOCK_GROUP_METADATA; 95 } 96 return BTRFS_BLOCK_GROUP_DATA; 97 } 98 99 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 100 struct btrfs_ref *ref) 101 { 102 struct btrfs_space_info *space_info; 103 u64 flags = generic_ref_to_space_flags(ref); 104 105 space_info = btrfs_find_space_info(fs_info, flags); 106 ASSERT(space_info); 107 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 108 BTRFS_TOTAL_BYTES_PINNED_BATCH); 109 } 110 111 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 112 struct btrfs_ref *ref) 113 { 114 struct btrfs_space_info *space_info; 115 u64 flags = generic_ref_to_space_flags(ref); 116 117 space_info = btrfs_find_space_info(fs_info, flags); 118 ASSERT(space_info); 119 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 120 BTRFS_TOTAL_BYTES_PINNED_BATCH); 121 } 122 123 /* simple helper to search for an existing data extent at a given offset */ 124 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 125 { 126 int ret; 127 struct btrfs_key key; 128 struct btrfs_path *path; 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 key.objectid = start; 135 key.offset = len; 136 key.type = BTRFS_EXTENT_ITEM_KEY; 137 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 138 btrfs_free_path(path); 139 return ret; 140 } 141 142 /* 143 * helper function to lookup reference count and flags of a tree block. 144 * 145 * the head node for delayed ref is used to store the sum of all the 146 * reference count modifications queued up in the rbtree. the head 147 * node may also store the extent flags to set. This way you can check 148 * to see what the reference count and extent flags would be if all of 149 * the delayed refs are not processed. 150 */ 151 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 152 struct btrfs_fs_info *fs_info, u64 bytenr, 153 u64 offset, int metadata, u64 *refs, u64 *flags) 154 { 155 struct btrfs_delayed_ref_head *head; 156 struct btrfs_delayed_ref_root *delayed_refs; 157 struct btrfs_path *path; 158 struct btrfs_extent_item *ei; 159 struct extent_buffer *leaf; 160 struct btrfs_key key; 161 u32 item_size; 162 u64 num_refs; 163 u64 extent_flags; 164 int ret; 165 166 /* 167 * If we don't have skinny metadata, don't bother doing anything 168 * different 169 */ 170 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 171 offset = fs_info->nodesize; 172 metadata = 0; 173 } 174 175 path = btrfs_alloc_path(); 176 if (!path) 177 return -ENOMEM; 178 179 if (!trans) { 180 path->skip_locking = 1; 181 path->search_commit_root = 1; 182 } 183 184 search_again: 185 key.objectid = bytenr; 186 key.offset = offset; 187 if (metadata) 188 key.type = BTRFS_METADATA_ITEM_KEY; 189 else 190 key.type = BTRFS_EXTENT_ITEM_KEY; 191 192 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 193 if (ret < 0) 194 goto out_free; 195 196 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 197 if (path->slots[0]) { 198 path->slots[0]--; 199 btrfs_item_key_to_cpu(path->nodes[0], &key, 200 path->slots[0]); 201 if (key.objectid == bytenr && 202 key.type == BTRFS_EXTENT_ITEM_KEY && 203 key.offset == fs_info->nodesize) 204 ret = 0; 205 } 206 } 207 208 if (ret == 0) { 209 leaf = path->nodes[0]; 210 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 211 if (item_size >= sizeof(*ei)) { 212 ei = btrfs_item_ptr(leaf, path->slots[0], 213 struct btrfs_extent_item); 214 num_refs = btrfs_extent_refs(leaf, ei); 215 extent_flags = btrfs_extent_flags(leaf, ei); 216 } else { 217 ret = -EINVAL; 218 btrfs_print_v0_err(fs_info); 219 if (trans) 220 btrfs_abort_transaction(trans, ret); 221 else 222 btrfs_handle_fs_error(fs_info, ret, NULL); 223 224 goto out_free; 225 } 226 227 BUG_ON(num_refs == 0); 228 } else { 229 num_refs = 0; 230 extent_flags = 0; 231 ret = 0; 232 } 233 234 if (!trans) 235 goto out; 236 237 delayed_refs = &trans->transaction->delayed_refs; 238 spin_lock(&delayed_refs->lock); 239 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 240 if (head) { 241 if (!mutex_trylock(&head->mutex)) { 242 refcount_inc(&head->refs); 243 spin_unlock(&delayed_refs->lock); 244 245 btrfs_release_path(path); 246 247 /* 248 * Mutex was contended, block until it's released and try 249 * again 250 */ 251 mutex_lock(&head->mutex); 252 mutex_unlock(&head->mutex); 253 btrfs_put_delayed_ref_head(head); 254 goto search_again; 255 } 256 spin_lock(&head->lock); 257 if (head->extent_op && head->extent_op->update_flags) 258 extent_flags |= head->extent_op->flags_to_set; 259 else 260 BUG_ON(num_refs == 0); 261 262 num_refs += head->ref_mod; 263 spin_unlock(&head->lock); 264 mutex_unlock(&head->mutex); 265 } 266 spin_unlock(&delayed_refs->lock); 267 out: 268 WARN_ON(num_refs == 0); 269 if (refs) 270 *refs = num_refs; 271 if (flags) 272 *flags = extent_flags; 273 out_free: 274 btrfs_free_path(path); 275 return ret; 276 } 277 278 /* 279 * Back reference rules. Back refs have three main goals: 280 * 281 * 1) differentiate between all holders of references to an extent so that 282 * when a reference is dropped we can make sure it was a valid reference 283 * before freeing the extent. 284 * 285 * 2) Provide enough information to quickly find the holders of an extent 286 * if we notice a given block is corrupted or bad. 287 * 288 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 289 * maintenance. This is actually the same as #2, but with a slightly 290 * different use case. 291 * 292 * There are two kinds of back refs. The implicit back refs is optimized 293 * for pointers in non-shared tree blocks. For a given pointer in a block, 294 * back refs of this kind provide information about the block's owner tree 295 * and the pointer's key. These information allow us to find the block by 296 * b-tree searching. The full back refs is for pointers in tree blocks not 297 * referenced by their owner trees. The location of tree block is recorded 298 * in the back refs. Actually the full back refs is generic, and can be 299 * used in all cases the implicit back refs is used. The major shortcoming 300 * of the full back refs is its overhead. Every time a tree block gets 301 * COWed, we have to update back refs entry for all pointers in it. 302 * 303 * For a newly allocated tree block, we use implicit back refs for 304 * pointers in it. This means most tree related operations only involve 305 * implicit back refs. For a tree block created in old transaction, the 306 * only way to drop a reference to it is COW it. So we can detect the 307 * event that tree block loses its owner tree's reference and do the 308 * back refs conversion. 309 * 310 * When a tree block is COWed through a tree, there are four cases: 311 * 312 * The reference count of the block is one and the tree is the block's 313 * owner tree. Nothing to do in this case. 314 * 315 * The reference count of the block is one and the tree is not the 316 * block's owner tree. In this case, full back refs is used for pointers 317 * in the block. Remove these full back refs, add implicit back refs for 318 * every pointers in the new block. 319 * 320 * The reference count of the block is greater than one and the tree is 321 * the block's owner tree. In this case, implicit back refs is used for 322 * pointers in the block. Add full back refs for every pointers in the 323 * block, increase lower level extents' reference counts. The original 324 * implicit back refs are entailed to the new block. 325 * 326 * The reference count of the block is greater than one and the tree is 327 * not the block's owner tree. Add implicit back refs for every pointer in 328 * the new block, increase lower level extents' reference count. 329 * 330 * Back Reference Key composing: 331 * 332 * The key objectid corresponds to the first byte in the extent, 333 * The key type is used to differentiate between types of back refs. 334 * There are different meanings of the key offset for different types 335 * of back refs. 336 * 337 * File extents can be referenced by: 338 * 339 * - multiple snapshots, subvolumes, or different generations in one subvol 340 * - different files inside a single subvolume 341 * - different offsets inside a file (bookend extents in file.c) 342 * 343 * The extent ref structure for the implicit back refs has fields for: 344 * 345 * - Objectid of the subvolume root 346 * - objectid of the file holding the reference 347 * - original offset in the file 348 * - how many bookend extents 349 * 350 * The key offset for the implicit back refs is hash of the first 351 * three fields. 352 * 353 * The extent ref structure for the full back refs has field for: 354 * 355 * - number of pointers in the tree leaf 356 * 357 * The key offset for the implicit back refs is the first byte of 358 * the tree leaf 359 * 360 * When a file extent is allocated, The implicit back refs is used. 361 * the fields are filled in: 362 * 363 * (root_key.objectid, inode objectid, offset in file, 1) 364 * 365 * When a file extent is removed file truncation, we find the 366 * corresponding implicit back refs and check the following fields: 367 * 368 * (btrfs_header_owner(leaf), inode objectid, offset in file) 369 * 370 * Btree extents can be referenced by: 371 * 372 * - Different subvolumes 373 * 374 * Both the implicit back refs and the full back refs for tree blocks 375 * only consist of key. The key offset for the implicit back refs is 376 * objectid of block's owner tree. The key offset for the full back refs 377 * is the first byte of parent block. 378 * 379 * When implicit back refs is used, information about the lowest key and 380 * level of the tree block are required. These information are stored in 381 * tree block info structure. 382 */ 383 384 /* 385 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 386 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 387 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 388 */ 389 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 390 struct btrfs_extent_inline_ref *iref, 391 enum btrfs_inline_ref_type is_data) 392 { 393 int type = btrfs_extent_inline_ref_type(eb, iref); 394 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 395 396 if (type == BTRFS_TREE_BLOCK_REF_KEY || 397 type == BTRFS_SHARED_BLOCK_REF_KEY || 398 type == BTRFS_SHARED_DATA_REF_KEY || 399 type == BTRFS_EXTENT_DATA_REF_KEY) { 400 if (is_data == BTRFS_REF_TYPE_BLOCK) { 401 if (type == BTRFS_TREE_BLOCK_REF_KEY) 402 return type; 403 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 404 ASSERT(eb->fs_info); 405 /* 406 * Every shared one has parent tree 407 * block, which must be aligned to 408 * nodesize. 409 */ 410 if (offset && 411 IS_ALIGNED(offset, eb->fs_info->nodesize)) 412 return type; 413 } 414 } else if (is_data == BTRFS_REF_TYPE_DATA) { 415 if (type == BTRFS_EXTENT_DATA_REF_KEY) 416 return type; 417 if (type == BTRFS_SHARED_DATA_REF_KEY) { 418 ASSERT(eb->fs_info); 419 /* 420 * Every shared one has parent tree 421 * block, which must be aligned to 422 * nodesize. 423 */ 424 if (offset && 425 IS_ALIGNED(offset, eb->fs_info->nodesize)) 426 return type; 427 } 428 } else { 429 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 430 return type; 431 } 432 } 433 434 btrfs_print_leaf((struct extent_buffer *)eb); 435 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 436 eb->start, type); 437 WARN_ON(1); 438 439 return BTRFS_REF_TYPE_INVALID; 440 } 441 442 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 443 { 444 u32 high_crc = ~(u32)0; 445 u32 low_crc = ~(u32)0; 446 __le64 lenum; 447 448 lenum = cpu_to_le64(root_objectid); 449 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 450 lenum = cpu_to_le64(owner); 451 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 452 lenum = cpu_to_le64(offset); 453 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 454 455 return ((u64)high_crc << 31) ^ (u64)low_crc; 456 } 457 458 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 459 struct btrfs_extent_data_ref *ref) 460 { 461 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 462 btrfs_extent_data_ref_objectid(leaf, ref), 463 btrfs_extent_data_ref_offset(leaf, ref)); 464 } 465 466 static int match_extent_data_ref(struct extent_buffer *leaf, 467 struct btrfs_extent_data_ref *ref, 468 u64 root_objectid, u64 owner, u64 offset) 469 { 470 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 471 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 472 btrfs_extent_data_ref_offset(leaf, ref) != offset) 473 return 0; 474 return 1; 475 } 476 477 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 478 struct btrfs_path *path, 479 u64 bytenr, u64 parent, 480 u64 root_objectid, 481 u64 owner, u64 offset) 482 { 483 struct btrfs_root *root = trans->fs_info->extent_root; 484 struct btrfs_key key; 485 struct btrfs_extent_data_ref *ref; 486 struct extent_buffer *leaf; 487 u32 nritems; 488 int ret; 489 int recow; 490 int err = -ENOENT; 491 492 key.objectid = bytenr; 493 if (parent) { 494 key.type = BTRFS_SHARED_DATA_REF_KEY; 495 key.offset = parent; 496 } else { 497 key.type = BTRFS_EXTENT_DATA_REF_KEY; 498 key.offset = hash_extent_data_ref(root_objectid, 499 owner, offset); 500 } 501 again: 502 recow = 0; 503 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 504 if (ret < 0) { 505 err = ret; 506 goto fail; 507 } 508 509 if (parent) { 510 if (!ret) 511 return 0; 512 goto fail; 513 } 514 515 leaf = path->nodes[0]; 516 nritems = btrfs_header_nritems(leaf); 517 while (1) { 518 if (path->slots[0] >= nritems) { 519 ret = btrfs_next_leaf(root, path); 520 if (ret < 0) 521 err = ret; 522 if (ret) 523 goto fail; 524 525 leaf = path->nodes[0]; 526 nritems = btrfs_header_nritems(leaf); 527 recow = 1; 528 } 529 530 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 531 if (key.objectid != bytenr || 532 key.type != BTRFS_EXTENT_DATA_REF_KEY) 533 goto fail; 534 535 ref = btrfs_item_ptr(leaf, path->slots[0], 536 struct btrfs_extent_data_ref); 537 538 if (match_extent_data_ref(leaf, ref, root_objectid, 539 owner, offset)) { 540 if (recow) { 541 btrfs_release_path(path); 542 goto again; 543 } 544 err = 0; 545 break; 546 } 547 path->slots[0]++; 548 } 549 fail: 550 return err; 551 } 552 553 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 554 struct btrfs_path *path, 555 u64 bytenr, u64 parent, 556 u64 root_objectid, u64 owner, 557 u64 offset, int refs_to_add) 558 { 559 struct btrfs_root *root = trans->fs_info->extent_root; 560 struct btrfs_key key; 561 struct extent_buffer *leaf; 562 u32 size; 563 u32 num_refs; 564 int ret; 565 566 key.objectid = bytenr; 567 if (parent) { 568 key.type = BTRFS_SHARED_DATA_REF_KEY; 569 key.offset = parent; 570 size = sizeof(struct btrfs_shared_data_ref); 571 } else { 572 key.type = BTRFS_EXTENT_DATA_REF_KEY; 573 key.offset = hash_extent_data_ref(root_objectid, 574 owner, offset); 575 size = sizeof(struct btrfs_extent_data_ref); 576 } 577 578 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 579 if (ret && ret != -EEXIST) 580 goto fail; 581 582 leaf = path->nodes[0]; 583 if (parent) { 584 struct btrfs_shared_data_ref *ref; 585 ref = btrfs_item_ptr(leaf, path->slots[0], 586 struct btrfs_shared_data_ref); 587 if (ret == 0) { 588 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 589 } else { 590 num_refs = btrfs_shared_data_ref_count(leaf, ref); 591 num_refs += refs_to_add; 592 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 593 } 594 } else { 595 struct btrfs_extent_data_ref *ref; 596 while (ret == -EEXIST) { 597 ref = btrfs_item_ptr(leaf, path->slots[0], 598 struct btrfs_extent_data_ref); 599 if (match_extent_data_ref(leaf, ref, root_objectid, 600 owner, offset)) 601 break; 602 btrfs_release_path(path); 603 key.offset++; 604 ret = btrfs_insert_empty_item(trans, root, path, &key, 605 size); 606 if (ret && ret != -EEXIST) 607 goto fail; 608 609 leaf = path->nodes[0]; 610 } 611 ref = btrfs_item_ptr(leaf, path->slots[0], 612 struct btrfs_extent_data_ref); 613 if (ret == 0) { 614 btrfs_set_extent_data_ref_root(leaf, ref, 615 root_objectid); 616 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 617 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 618 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 619 } else { 620 num_refs = btrfs_extent_data_ref_count(leaf, ref); 621 num_refs += refs_to_add; 622 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 623 } 624 } 625 btrfs_mark_buffer_dirty(leaf); 626 ret = 0; 627 fail: 628 btrfs_release_path(path); 629 return ret; 630 } 631 632 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 633 struct btrfs_path *path, 634 int refs_to_drop, int *last_ref) 635 { 636 struct btrfs_key key; 637 struct btrfs_extent_data_ref *ref1 = NULL; 638 struct btrfs_shared_data_ref *ref2 = NULL; 639 struct extent_buffer *leaf; 640 u32 num_refs = 0; 641 int ret = 0; 642 643 leaf = path->nodes[0]; 644 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 645 646 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 647 ref1 = btrfs_item_ptr(leaf, path->slots[0], 648 struct btrfs_extent_data_ref); 649 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 650 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 651 ref2 = btrfs_item_ptr(leaf, path->slots[0], 652 struct btrfs_shared_data_ref); 653 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 654 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 655 btrfs_print_v0_err(trans->fs_info); 656 btrfs_abort_transaction(trans, -EINVAL); 657 return -EINVAL; 658 } else { 659 BUG(); 660 } 661 662 BUG_ON(num_refs < refs_to_drop); 663 num_refs -= refs_to_drop; 664 665 if (num_refs == 0) { 666 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 667 *last_ref = 1; 668 } else { 669 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 670 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 671 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 672 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 673 btrfs_mark_buffer_dirty(leaf); 674 } 675 return ret; 676 } 677 678 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 679 struct btrfs_extent_inline_ref *iref) 680 { 681 struct btrfs_key key; 682 struct extent_buffer *leaf; 683 struct btrfs_extent_data_ref *ref1; 684 struct btrfs_shared_data_ref *ref2; 685 u32 num_refs = 0; 686 int type; 687 688 leaf = path->nodes[0]; 689 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 690 691 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 692 if (iref) { 693 /* 694 * If type is invalid, we should have bailed out earlier than 695 * this call. 696 */ 697 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 698 ASSERT(type != BTRFS_REF_TYPE_INVALID); 699 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 700 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 701 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 702 } else { 703 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 704 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 705 } 706 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 707 ref1 = btrfs_item_ptr(leaf, path->slots[0], 708 struct btrfs_extent_data_ref); 709 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 710 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 711 ref2 = btrfs_item_ptr(leaf, path->slots[0], 712 struct btrfs_shared_data_ref); 713 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 714 } else { 715 WARN_ON(1); 716 } 717 return num_refs; 718 } 719 720 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 721 struct btrfs_path *path, 722 u64 bytenr, u64 parent, 723 u64 root_objectid) 724 { 725 struct btrfs_root *root = trans->fs_info->extent_root; 726 struct btrfs_key key; 727 int ret; 728 729 key.objectid = bytenr; 730 if (parent) { 731 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 732 key.offset = parent; 733 } else { 734 key.type = BTRFS_TREE_BLOCK_REF_KEY; 735 key.offset = root_objectid; 736 } 737 738 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 739 if (ret > 0) 740 ret = -ENOENT; 741 return ret; 742 } 743 744 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 745 struct btrfs_path *path, 746 u64 bytenr, u64 parent, 747 u64 root_objectid) 748 { 749 struct btrfs_key key; 750 int ret; 751 752 key.objectid = bytenr; 753 if (parent) { 754 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 755 key.offset = parent; 756 } else { 757 key.type = BTRFS_TREE_BLOCK_REF_KEY; 758 key.offset = root_objectid; 759 } 760 761 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 762 path, &key, 0); 763 btrfs_release_path(path); 764 return ret; 765 } 766 767 static inline int extent_ref_type(u64 parent, u64 owner) 768 { 769 int type; 770 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 771 if (parent > 0) 772 type = BTRFS_SHARED_BLOCK_REF_KEY; 773 else 774 type = BTRFS_TREE_BLOCK_REF_KEY; 775 } else { 776 if (parent > 0) 777 type = BTRFS_SHARED_DATA_REF_KEY; 778 else 779 type = BTRFS_EXTENT_DATA_REF_KEY; 780 } 781 return type; 782 } 783 784 static int find_next_key(struct btrfs_path *path, int level, 785 struct btrfs_key *key) 786 787 { 788 for (; level < BTRFS_MAX_LEVEL; level++) { 789 if (!path->nodes[level]) 790 break; 791 if (path->slots[level] + 1 >= 792 btrfs_header_nritems(path->nodes[level])) 793 continue; 794 if (level == 0) 795 btrfs_item_key_to_cpu(path->nodes[level], key, 796 path->slots[level] + 1); 797 else 798 btrfs_node_key_to_cpu(path->nodes[level], key, 799 path->slots[level] + 1); 800 return 0; 801 } 802 return 1; 803 } 804 805 /* 806 * look for inline back ref. if back ref is found, *ref_ret is set 807 * to the address of inline back ref, and 0 is returned. 808 * 809 * if back ref isn't found, *ref_ret is set to the address where it 810 * should be inserted, and -ENOENT is returned. 811 * 812 * if insert is true and there are too many inline back refs, the path 813 * points to the extent item, and -EAGAIN is returned. 814 * 815 * NOTE: inline back refs are ordered in the same way that back ref 816 * items in the tree are ordered. 817 */ 818 static noinline_for_stack 819 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 820 struct btrfs_path *path, 821 struct btrfs_extent_inline_ref **ref_ret, 822 u64 bytenr, u64 num_bytes, 823 u64 parent, u64 root_objectid, 824 u64 owner, u64 offset, int insert) 825 { 826 struct btrfs_fs_info *fs_info = trans->fs_info; 827 struct btrfs_root *root = fs_info->extent_root; 828 struct btrfs_key key; 829 struct extent_buffer *leaf; 830 struct btrfs_extent_item *ei; 831 struct btrfs_extent_inline_ref *iref; 832 u64 flags; 833 u64 item_size; 834 unsigned long ptr; 835 unsigned long end; 836 int extra_size; 837 int type; 838 int want; 839 int ret; 840 int err = 0; 841 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 842 int needed; 843 844 key.objectid = bytenr; 845 key.type = BTRFS_EXTENT_ITEM_KEY; 846 key.offset = num_bytes; 847 848 want = extent_ref_type(parent, owner); 849 if (insert) { 850 extra_size = btrfs_extent_inline_ref_size(want); 851 path->keep_locks = 1; 852 } else 853 extra_size = -1; 854 855 /* 856 * Owner is our level, so we can just add one to get the level for the 857 * block we are interested in. 858 */ 859 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 860 key.type = BTRFS_METADATA_ITEM_KEY; 861 key.offset = owner; 862 } 863 864 again: 865 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 866 if (ret < 0) { 867 err = ret; 868 goto out; 869 } 870 871 /* 872 * We may be a newly converted file system which still has the old fat 873 * extent entries for metadata, so try and see if we have one of those. 874 */ 875 if (ret > 0 && skinny_metadata) { 876 skinny_metadata = false; 877 if (path->slots[0]) { 878 path->slots[0]--; 879 btrfs_item_key_to_cpu(path->nodes[0], &key, 880 path->slots[0]); 881 if (key.objectid == bytenr && 882 key.type == BTRFS_EXTENT_ITEM_KEY && 883 key.offset == num_bytes) 884 ret = 0; 885 } 886 if (ret) { 887 key.objectid = bytenr; 888 key.type = BTRFS_EXTENT_ITEM_KEY; 889 key.offset = num_bytes; 890 btrfs_release_path(path); 891 goto again; 892 } 893 } 894 895 if (ret && !insert) { 896 err = -ENOENT; 897 goto out; 898 } else if (WARN_ON(ret)) { 899 err = -EIO; 900 goto out; 901 } 902 903 leaf = path->nodes[0]; 904 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 905 if (unlikely(item_size < sizeof(*ei))) { 906 err = -EINVAL; 907 btrfs_print_v0_err(fs_info); 908 btrfs_abort_transaction(trans, err); 909 goto out; 910 } 911 912 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 913 flags = btrfs_extent_flags(leaf, ei); 914 915 ptr = (unsigned long)(ei + 1); 916 end = (unsigned long)ei + item_size; 917 918 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 919 ptr += sizeof(struct btrfs_tree_block_info); 920 BUG_ON(ptr > end); 921 } 922 923 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 924 needed = BTRFS_REF_TYPE_DATA; 925 else 926 needed = BTRFS_REF_TYPE_BLOCK; 927 928 err = -ENOENT; 929 while (1) { 930 if (ptr >= end) { 931 WARN_ON(ptr > end); 932 break; 933 } 934 iref = (struct btrfs_extent_inline_ref *)ptr; 935 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 936 if (type == BTRFS_REF_TYPE_INVALID) { 937 err = -EUCLEAN; 938 goto out; 939 } 940 941 if (want < type) 942 break; 943 if (want > type) { 944 ptr += btrfs_extent_inline_ref_size(type); 945 continue; 946 } 947 948 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 949 struct btrfs_extent_data_ref *dref; 950 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 951 if (match_extent_data_ref(leaf, dref, root_objectid, 952 owner, offset)) { 953 err = 0; 954 break; 955 } 956 if (hash_extent_data_ref_item(leaf, dref) < 957 hash_extent_data_ref(root_objectid, owner, offset)) 958 break; 959 } else { 960 u64 ref_offset; 961 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 962 if (parent > 0) { 963 if (parent == ref_offset) { 964 err = 0; 965 break; 966 } 967 if (ref_offset < parent) 968 break; 969 } else { 970 if (root_objectid == ref_offset) { 971 err = 0; 972 break; 973 } 974 if (ref_offset < root_objectid) 975 break; 976 } 977 } 978 ptr += btrfs_extent_inline_ref_size(type); 979 } 980 if (err == -ENOENT && insert) { 981 if (item_size + extra_size >= 982 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 983 err = -EAGAIN; 984 goto out; 985 } 986 /* 987 * To add new inline back ref, we have to make sure 988 * there is no corresponding back ref item. 989 * For simplicity, we just do not add new inline back 990 * ref if there is any kind of item for this block 991 */ 992 if (find_next_key(path, 0, &key) == 0 && 993 key.objectid == bytenr && 994 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 995 err = -EAGAIN; 996 goto out; 997 } 998 } 999 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1000 out: 1001 if (insert) { 1002 path->keep_locks = 0; 1003 btrfs_unlock_up_safe(path, 1); 1004 } 1005 return err; 1006 } 1007 1008 /* 1009 * helper to add new inline back ref 1010 */ 1011 static noinline_for_stack 1012 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1013 struct btrfs_path *path, 1014 struct btrfs_extent_inline_ref *iref, 1015 u64 parent, u64 root_objectid, 1016 u64 owner, u64 offset, int refs_to_add, 1017 struct btrfs_delayed_extent_op *extent_op) 1018 { 1019 struct extent_buffer *leaf; 1020 struct btrfs_extent_item *ei; 1021 unsigned long ptr; 1022 unsigned long end; 1023 unsigned long item_offset; 1024 u64 refs; 1025 int size; 1026 int type; 1027 1028 leaf = path->nodes[0]; 1029 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1030 item_offset = (unsigned long)iref - (unsigned long)ei; 1031 1032 type = extent_ref_type(parent, owner); 1033 size = btrfs_extent_inline_ref_size(type); 1034 1035 btrfs_extend_item(path, size); 1036 1037 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1038 refs = btrfs_extent_refs(leaf, ei); 1039 refs += refs_to_add; 1040 btrfs_set_extent_refs(leaf, ei, refs); 1041 if (extent_op) 1042 __run_delayed_extent_op(extent_op, leaf, ei); 1043 1044 ptr = (unsigned long)ei + item_offset; 1045 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1046 if (ptr < end - size) 1047 memmove_extent_buffer(leaf, ptr + size, ptr, 1048 end - size - ptr); 1049 1050 iref = (struct btrfs_extent_inline_ref *)ptr; 1051 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1052 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1053 struct btrfs_extent_data_ref *dref; 1054 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1055 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1056 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1057 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1058 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1059 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1060 struct btrfs_shared_data_ref *sref; 1061 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1062 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1063 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1064 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1065 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1066 } else { 1067 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1068 } 1069 btrfs_mark_buffer_dirty(leaf); 1070 } 1071 1072 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1073 struct btrfs_path *path, 1074 struct btrfs_extent_inline_ref **ref_ret, 1075 u64 bytenr, u64 num_bytes, u64 parent, 1076 u64 root_objectid, u64 owner, u64 offset) 1077 { 1078 int ret; 1079 1080 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1081 num_bytes, parent, root_objectid, 1082 owner, offset, 0); 1083 if (ret != -ENOENT) 1084 return ret; 1085 1086 btrfs_release_path(path); 1087 *ref_ret = NULL; 1088 1089 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1090 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1091 root_objectid); 1092 } else { 1093 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1094 root_objectid, owner, offset); 1095 } 1096 return ret; 1097 } 1098 1099 /* 1100 * helper to update/remove inline back ref 1101 */ 1102 static noinline_for_stack 1103 void update_inline_extent_backref(struct btrfs_path *path, 1104 struct btrfs_extent_inline_ref *iref, 1105 int refs_to_mod, 1106 struct btrfs_delayed_extent_op *extent_op, 1107 int *last_ref) 1108 { 1109 struct extent_buffer *leaf = path->nodes[0]; 1110 struct btrfs_extent_item *ei; 1111 struct btrfs_extent_data_ref *dref = NULL; 1112 struct btrfs_shared_data_ref *sref = NULL; 1113 unsigned long ptr; 1114 unsigned long end; 1115 u32 item_size; 1116 int size; 1117 int type; 1118 u64 refs; 1119 1120 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1121 refs = btrfs_extent_refs(leaf, ei); 1122 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1123 refs += refs_to_mod; 1124 btrfs_set_extent_refs(leaf, ei, refs); 1125 if (extent_op) 1126 __run_delayed_extent_op(extent_op, leaf, ei); 1127 1128 /* 1129 * If type is invalid, we should have bailed out after 1130 * lookup_inline_extent_backref(). 1131 */ 1132 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1133 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1134 1135 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1136 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1137 refs = btrfs_extent_data_ref_count(leaf, dref); 1138 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1139 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1140 refs = btrfs_shared_data_ref_count(leaf, sref); 1141 } else { 1142 refs = 1; 1143 BUG_ON(refs_to_mod != -1); 1144 } 1145 1146 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1147 refs += refs_to_mod; 1148 1149 if (refs > 0) { 1150 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1151 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1152 else 1153 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1154 } else { 1155 *last_ref = 1; 1156 size = btrfs_extent_inline_ref_size(type); 1157 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1158 ptr = (unsigned long)iref; 1159 end = (unsigned long)ei + item_size; 1160 if (ptr + size < end) 1161 memmove_extent_buffer(leaf, ptr, ptr + size, 1162 end - ptr - size); 1163 item_size -= size; 1164 btrfs_truncate_item(path, item_size, 1); 1165 } 1166 btrfs_mark_buffer_dirty(leaf); 1167 } 1168 1169 static noinline_for_stack 1170 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1171 struct btrfs_path *path, 1172 u64 bytenr, u64 num_bytes, u64 parent, 1173 u64 root_objectid, u64 owner, 1174 u64 offset, int refs_to_add, 1175 struct btrfs_delayed_extent_op *extent_op) 1176 { 1177 struct btrfs_extent_inline_ref *iref; 1178 int ret; 1179 1180 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1181 num_bytes, parent, root_objectid, 1182 owner, offset, 1); 1183 if (ret == 0) { 1184 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1185 update_inline_extent_backref(path, iref, refs_to_add, 1186 extent_op, NULL); 1187 } else if (ret == -ENOENT) { 1188 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1189 root_objectid, owner, offset, 1190 refs_to_add, extent_op); 1191 ret = 0; 1192 } 1193 return ret; 1194 } 1195 1196 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1197 struct btrfs_path *path, 1198 u64 bytenr, u64 parent, u64 root_objectid, 1199 u64 owner, u64 offset, int refs_to_add) 1200 { 1201 int ret; 1202 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1203 BUG_ON(refs_to_add != 1); 1204 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1205 root_objectid); 1206 } else { 1207 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1208 root_objectid, owner, offset, 1209 refs_to_add); 1210 } 1211 return ret; 1212 } 1213 1214 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1215 struct btrfs_path *path, 1216 struct btrfs_extent_inline_ref *iref, 1217 int refs_to_drop, int is_data, int *last_ref) 1218 { 1219 int ret = 0; 1220 1221 BUG_ON(!is_data && refs_to_drop != 1); 1222 if (iref) { 1223 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1224 last_ref); 1225 } else if (is_data) { 1226 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1227 last_ref); 1228 } else { 1229 *last_ref = 1; 1230 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1231 } 1232 return ret; 1233 } 1234 1235 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1236 u64 *discarded_bytes) 1237 { 1238 int j, ret = 0; 1239 u64 bytes_left, end; 1240 u64 aligned_start = ALIGN(start, 1 << 9); 1241 1242 if (WARN_ON(start != aligned_start)) { 1243 len -= aligned_start - start; 1244 len = round_down(len, 1 << 9); 1245 start = aligned_start; 1246 } 1247 1248 *discarded_bytes = 0; 1249 1250 if (!len) 1251 return 0; 1252 1253 end = start + len; 1254 bytes_left = len; 1255 1256 /* Skip any superblocks on this device. */ 1257 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1258 u64 sb_start = btrfs_sb_offset(j); 1259 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1260 u64 size = sb_start - start; 1261 1262 if (!in_range(sb_start, start, bytes_left) && 1263 !in_range(sb_end, start, bytes_left) && 1264 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1265 continue; 1266 1267 /* 1268 * Superblock spans beginning of range. Adjust start and 1269 * try again. 1270 */ 1271 if (sb_start <= start) { 1272 start += sb_end - start; 1273 if (start > end) { 1274 bytes_left = 0; 1275 break; 1276 } 1277 bytes_left = end - start; 1278 continue; 1279 } 1280 1281 if (size) { 1282 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1283 GFP_NOFS, 0); 1284 if (!ret) 1285 *discarded_bytes += size; 1286 else if (ret != -EOPNOTSUPP) 1287 return ret; 1288 } 1289 1290 start = sb_end; 1291 if (start > end) { 1292 bytes_left = 0; 1293 break; 1294 } 1295 bytes_left = end - start; 1296 } 1297 1298 if (bytes_left) { 1299 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1300 GFP_NOFS, 0); 1301 if (!ret) 1302 *discarded_bytes += bytes_left; 1303 } 1304 return ret; 1305 } 1306 1307 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1308 u64 num_bytes, u64 *actual_bytes) 1309 { 1310 int ret = 0; 1311 u64 discarded_bytes = 0; 1312 u64 end = bytenr + num_bytes; 1313 u64 cur = bytenr; 1314 struct btrfs_bio *bbio = NULL; 1315 1316 1317 /* 1318 * Avoid races with device replace and make sure our bbio has devices 1319 * associated to its stripes that don't go away while we are discarding. 1320 */ 1321 btrfs_bio_counter_inc_blocked(fs_info); 1322 while (cur < end) { 1323 struct btrfs_bio_stripe *stripe; 1324 int i; 1325 1326 num_bytes = end - cur; 1327 /* Tell the block device(s) that the sectors can be discarded */ 1328 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1329 &num_bytes, &bbio, 0); 1330 /* 1331 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1332 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1333 * thus we can't continue anyway. 1334 */ 1335 if (ret < 0) 1336 goto out; 1337 1338 stripe = bbio->stripes; 1339 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1340 u64 bytes; 1341 struct request_queue *req_q; 1342 1343 if (!stripe->dev->bdev) { 1344 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1345 continue; 1346 } 1347 req_q = bdev_get_queue(stripe->dev->bdev); 1348 if (!blk_queue_discard(req_q)) 1349 continue; 1350 1351 ret = btrfs_issue_discard(stripe->dev->bdev, 1352 stripe->physical, 1353 stripe->length, 1354 &bytes); 1355 if (!ret) { 1356 discarded_bytes += bytes; 1357 } else if (ret != -EOPNOTSUPP) { 1358 /* 1359 * Logic errors or -ENOMEM, or -EIO, but 1360 * unlikely to happen. 1361 * 1362 * And since there are two loops, explicitly 1363 * go to out to avoid confusion. 1364 */ 1365 btrfs_put_bbio(bbio); 1366 goto out; 1367 } 1368 1369 /* 1370 * Just in case we get back EOPNOTSUPP for some reason, 1371 * just ignore the return value so we don't screw up 1372 * people calling discard_extent. 1373 */ 1374 ret = 0; 1375 } 1376 btrfs_put_bbio(bbio); 1377 cur += num_bytes; 1378 } 1379 out: 1380 btrfs_bio_counter_dec(fs_info); 1381 1382 if (actual_bytes) 1383 *actual_bytes = discarded_bytes; 1384 1385 1386 if (ret == -EOPNOTSUPP) 1387 ret = 0; 1388 return ret; 1389 } 1390 1391 /* Can return -ENOMEM */ 1392 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1393 struct btrfs_ref *generic_ref) 1394 { 1395 struct btrfs_fs_info *fs_info = trans->fs_info; 1396 int old_ref_mod, new_ref_mod; 1397 int ret; 1398 1399 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1400 generic_ref->action); 1401 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1402 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1403 1404 if (generic_ref->type == BTRFS_REF_METADATA) 1405 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1406 NULL, &old_ref_mod, &new_ref_mod); 1407 else 1408 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1409 &old_ref_mod, &new_ref_mod); 1410 1411 btrfs_ref_tree_mod(fs_info, generic_ref); 1412 1413 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1414 sub_pinned_bytes(fs_info, generic_ref); 1415 1416 return ret; 1417 } 1418 1419 /* 1420 * __btrfs_inc_extent_ref - insert backreference for a given extent 1421 * 1422 * @trans: Handle of transaction 1423 * 1424 * @node: The delayed ref node used to get the bytenr/length for 1425 * extent whose references are incremented. 1426 * 1427 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1428 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1429 * bytenr of the parent block. Since new extents are always 1430 * created with indirect references, this will only be the case 1431 * when relocating a shared extent. In that case, root_objectid 1432 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1433 * be 0 1434 * 1435 * @root_objectid: The id of the root where this modification has originated, 1436 * this can be either one of the well-known metadata trees or 1437 * the subvolume id which references this extent. 1438 * 1439 * @owner: For data extents it is the inode number of the owning file. 1440 * For metadata extents this parameter holds the level in the 1441 * tree of the extent. 1442 * 1443 * @offset: For metadata extents the offset is ignored and is currently 1444 * always passed as 0. For data extents it is the fileoffset 1445 * this extent belongs to. 1446 * 1447 * @refs_to_add Number of references to add 1448 * 1449 * @extent_op Pointer to a structure, holding information necessary when 1450 * updating a tree block's flags 1451 * 1452 */ 1453 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1454 struct btrfs_delayed_ref_node *node, 1455 u64 parent, u64 root_objectid, 1456 u64 owner, u64 offset, int refs_to_add, 1457 struct btrfs_delayed_extent_op *extent_op) 1458 { 1459 struct btrfs_path *path; 1460 struct extent_buffer *leaf; 1461 struct btrfs_extent_item *item; 1462 struct btrfs_key key; 1463 u64 bytenr = node->bytenr; 1464 u64 num_bytes = node->num_bytes; 1465 u64 refs; 1466 int ret; 1467 1468 path = btrfs_alloc_path(); 1469 if (!path) 1470 return -ENOMEM; 1471 1472 path->reada = READA_FORWARD; 1473 path->leave_spinning = 1; 1474 /* this will setup the path even if it fails to insert the back ref */ 1475 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1476 parent, root_objectid, owner, 1477 offset, refs_to_add, extent_op); 1478 if ((ret < 0 && ret != -EAGAIN) || !ret) 1479 goto out; 1480 1481 /* 1482 * Ok we had -EAGAIN which means we didn't have space to insert and 1483 * inline extent ref, so just update the reference count and add a 1484 * normal backref. 1485 */ 1486 leaf = path->nodes[0]; 1487 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1488 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1489 refs = btrfs_extent_refs(leaf, item); 1490 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1491 if (extent_op) 1492 __run_delayed_extent_op(extent_op, leaf, item); 1493 1494 btrfs_mark_buffer_dirty(leaf); 1495 btrfs_release_path(path); 1496 1497 path->reada = READA_FORWARD; 1498 path->leave_spinning = 1; 1499 /* now insert the actual backref */ 1500 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, 1501 owner, offset, refs_to_add); 1502 if (ret) 1503 btrfs_abort_transaction(trans, ret); 1504 out: 1505 btrfs_free_path(path); 1506 return ret; 1507 } 1508 1509 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1510 struct btrfs_delayed_ref_node *node, 1511 struct btrfs_delayed_extent_op *extent_op, 1512 int insert_reserved) 1513 { 1514 int ret = 0; 1515 struct btrfs_delayed_data_ref *ref; 1516 struct btrfs_key ins; 1517 u64 parent = 0; 1518 u64 ref_root = 0; 1519 u64 flags = 0; 1520 1521 ins.objectid = node->bytenr; 1522 ins.offset = node->num_bytes; 1523 ins.type = BTRFS_EXTENT_ITEM_KEY; 1524 1525 ref = btrfs_delayed_node_to_data_ref(node); 1526 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1527 1528 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1529 parent = ref->parent; 1530 ref_root = ref->root; 1531 1532 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1533 if (extent_op) 1534 flags |= extent_op->flags_to_set; 1535 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1536 flags, ref->objectid, 1537 ref->offset, &ins, 1538 node->ref_mod); 1539 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1540 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1541 ref->objectid, ref->offset, 1542 node->ref_mod, extent_op); 1543 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1544 ret = __btrfs_free_extent(trans, node, parent, 1545 ref_root, ref->objectid, 1546 ref->offset, node->ref_mod, 1547 extent_op); 1548 } else { 1549 BUG(); 1550 } 1551 return ret; 1552 } 1553 1554 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1555 struct extent_buffer *leaf, 1556 struct btrfs_extent_item *ei) 1557 { 1558 u64 flags = btrfs_extent_flags(leaf, ei); 1559 if (extent_op->update_flags) { 1560 flags |= extent_op->flags_to_set; 1561 btrfs_set_extent_flags(leaf, ei, flags); 1562 } 1563 1564 if (extent_op->update_key) { 1565 struct btrfs_tree_block_info *bi; 1566 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1567 bi = (struct btrfs_tree_block_info *)(ei + 1); 1568 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1569 } 1570 } 1571 1572 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1573 struct btrfs_delayed_ref_head *head, 1574 struct btrfs_delayed_extent_op *extent_op) 1575 { 1576 struct btrfs_fs_info *fs_info = trans->fs_info; 1577 struct btrfs_key key; 1578 struct btrfs_path *path; 1579 struct btrfs_extent_item *ei; 1580 struct extent_buffer *leaf; 1581 u32 item_size; 1582 int ret; 1583 int err = 0; 1584 int metadata = !extent_op->is_data; 1585 1586 if (trans->aborted) 1587 return 0; 1588 1589 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1590 metadata = 0; 1591 1592 path = btrfs_alloc_path(); 1593 if (!path) 1594 return -ENOMEM; 1595 1596 key.objectid = head->bytenr; 1597 1598 if (metadata) { 1599 key.type = BTRFS_METADATA_ITEM_KEY; 1600 key.offset = extent_op->level; 1601 } else { 1602 key.type = BTRFS_EXTENT_ITEM_KEY; 1603 key.offset = head->num_bytes; 1604 } 1605 1606 again: 1607 path->reada = READA_FORWARD; 1608 path->leave_spinning = 1; 1609 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1610 if (ret < 0) { 1611 err = ret; 1612 goto out; 1613 } 1614 if (ret > 0) { 1615 if (metadata) { 1616 if (path->slots[0] > 0) { 1617 path->slots[0]--; 1618 btrfs_item_key_to_cpu(path->nodes[0], &key, 1619 path->slots[0]); 1620 if (key.objectid == head->bytenr && 1621 key.type == BTRFS_EXTENT_ITEM_KEY && 1622 key.offset == head->num_bytes) 1623 ret = 0; 1624 } 1625 if (ret > 0) { 1626 btrfs_release_path(path); 1627 metadata = 0; 1628 1629 key.objectid = head->bytenr; 1630 key.offset = head->num_bytes; 1631 key.type = BTRFS_EXTENT_ITEM_KEY; 1632 goto again; 1633 } 1634 } else { 1635 err = -EIO; 1636 goto out; 1637 } 1638 } 1639 1640 leaf = path->nodes[0]; 1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1642 1643 if (unlikely(item_size < sizeof(*ei))) { 1644 err = -EINVAL; 1645 btrfs_print_v0_err(fs_info); 1646 btrfs_abort_transaction(trans, err); 1647 goto out; 1648 } 1649 1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1651 __run_delayed_extent_op(extent_op, leaf, ei); 1652 1653 btrfs_mark_buffer_dirty(leaf); 1654 out: 1655 btrfs_free_path(path); 1656 return err; 1657 } 1658 1659 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1660 struct btrfs_delayed_ref_node *node, 1661 struct btrfs_delayed_extent_op *extent_op, 1662 int insert_reserved) 1663 { 1664 int ret = 0; 1665 struct btrfs_delayed_tree_ref *ref; 1666 u64 parent = 0; 1667 u64 ref_root = 0; 1668 1669 ref = btrfs_delayed_node_to_tree_ref(node); 1670 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1671 1672 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1673 parent = ref->parent; 1674 ref_root = ref->root; 1675 1676 if (node->ref_mod != 1) { 1677 btrfs_err(trans->fs_info, 1678 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1679 node->bytenr, node->ref_mod, node->action, ref_root, 1680 parent); 1681 return -EIO; 1682 } 1683 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1684 BUG_ON(!extent_op || !extent_op->update_flags); 1685 ret = alloc_reserved_tree_block(trans, node, extent_op); 1686 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1687 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1688 ref->level, 0, 1, extent_op); 1689 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1690 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1691 ref->level, 0, 1, extent_op); 1692 } else { 1693 BUG(); 1694 } 1695 return ret; 1696 } 1697 1698 /* helper function to actually process a single delayed ref entry */ 1699 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1700 struct btrfs_delayed_ref_node *node, 1701 struct btrfs_delayed_extent_op *extent_op, 1702 int insert_reserved) 1703 { 1704 int ret = 0; 1705 1706 if (trans->aborted) { 1707 if (insert_reserved) 1708 btrfs_pin_extent(trans->fs_info, node->bytenr, 1709 node->num_bytes, 1); 1710 return 0; 1711 } 1712 1713 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1714 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1715 ret = run_delayed_tree_ref(trans, node, extent_op, 1716 insert_reserved); 1717 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1718 node->type == BTRFS_SHARED_DATA_REF_KEY) 1719 ret = run_delayed_data_ref(trans, node, extent_op, 1720 insert_reserved); 1721 else 1722 BUG(); 1723 if (ret && insert_reserved) 1724 btrfs_pin_extent(trans->fs_info, node->bytenr, 1725 node->num_bytes, 1); 1726 return ret; 1727 } 1728 1729 static inline struct btrfs_delayed_ref_node * 1730 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1731 { 1732 struct btrfs_delayed_ref_node *ref; 1733 1734 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1735 return NULL; 1736 1737 /* 1738 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1739 * This is to prevent a ref count from going down to zero, which deletes 1740 * the extent item from the extent tree, when there still are references 1741 * to add, which would fail because they would not find the extent item. 1742 */ 1743 if (!list_empty(&head->ref_add_list)) 1744 return list_first_entry(&head->ref_add_list, 1745 struct btrfs_delayed_ref_node, add_list); 1746 1747 ref = rb_entry(rb_first_cached(&head->ref_tree), 1748 struct btrfs_delayed_ref_node, ref_node); 1749 ASSERT(list_empty(&ref->add_list)); 1750 return ref; 1751 } 1752 1753 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1754 struct btrfs_delayed_ref_head *head) 1755 { 1756 spin_lock(&delayed_refs->lock); 1757 head->processing = 0; 1758 delayed_refs->num_heads_ready++; 1759 spin_unlock(&delayed_refs->lock); 1760 btrfs_delayed_ref_unlock(head); 1761 } 1762 1763 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1764 struct btrfs_delayed_ref_head *head) 1765 { 1766 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1767 1768 if (!extent_op) 1769 return NULL; 1770 1771 if (head->must_insert_reserved) { 1772 head->extent_op = NULL; 1773 btrfs_free_delayed_extent_op(extent_op); 1774 return NULL; 1775 } 1776 return extent_op; 1777 } 1778 1779 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1780 struct btrfs_delayed_ref_head *head) 1781 { 1782 struct btrfs_delayed_extent_op *extent_op; 1783 int ret; 1784 1785 extent_op = cleanup_extent_op(head); 1786 if (!extent_op) 1787 return 0; 1788 head->extent_op = NULL; 1789 spin_unlock(&head->lock); 1790 ret = run_delayed_extent_op(trans, head, extent_op); 1791 btrfs_free_delayed_extent_op(extent_op); 1792 return ret ? ret : 1; 1793 } 1794 1795 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1796 struct btrfs_delayed_ref_root *delayed_refs, 1797 struct btrfs_delayed_ref_head *head) 1798 { 1799 int nr_items = 1; /* Dropping this ref head update. */ 1800 1801 if (head->total_ref_mod < 0) { 1802 struct btrfs_space_info *space_info; 1803 u64 flags; 1804 1805 if (head->is_data) 1806 flags = BTRFS_BLOCK_GROUP_DATA; 1807 else if (head->is_system) 1808 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1809 else 1810 flags = BTRFS_BLOCK_GROUP_METADATA; 1811 space_info = btrfs_find_space_info(fs_info, flags); 1812 ASSERT(space_info); 1813 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1814 -head->num_bytes, 1815 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1816 1817 /* 1818 * We had csum deletions accounted for in our delayed refs rsv, 1819 * we need to drop the csum leaves for this update from our 1820 * delayed_refs_rsv. 1821 */ 1822 if (head->is_data) { 1823 spin_lock(&delayed_refs->lock); 1824 delayed_refs->pending_csums -= head->num_bytes; 1825 spin_unlock(&delayed_refs->lock); 1826 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1827 head->num_bytes); 1828 } 1829 } 1830 1831 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1832 } 1833 1834 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1835 struct btrfs_delayed_ref_head *head) 1836 { 1837 1838 struct btrfs_fs_info *fs_info = trans->fs_info; 1839 struct btrfs_delayed_ref_root *delayed_refs; 1840 int ret; 1841 1842 delayed_refs = &trans->transaction->delayed_refs; 1843 1844 ret = run_and_cleanup_extent_op(trans, head); 1845 if (ret < 0) { 1846 unselect_delayed_ref_head(delayed_refs, head); 1847 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1848 return ret; 1849 } else if (ret) { 1850 return ret; 1851 } 1852 1853 /* 1854 * Need to drop our head ref lock and re-acquire the delayed ref lock 1855 * and then re-check to make sure nobody got added. 1856 */ 1857 spin_unlock(&head->lock); 1858 spin_lock(&delayed_refs->lock); 1859 spin_lock(&head->lock); 1860 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1861 spin_unlock(&head->lock); 1862 spin_unlock(&delayed_refs->lock); 1863 return 1; 1864 } 1865 btrfs_delete_ref_head(delayed_refs, head); 1866 spin_unlock(&head->lock); 1867 spin_unlock(&delayed_refs->lock); 1868 1869 if (head->must_insert_reserved) { 1870 btrfs_pin_extent(fs_info, head->bytenr, 1871 head->num_bytes, 1); 1872 if (head->is_data) { 1873 ret = btrfs_del_csums(trans, fs_info->csum_root, 1874 head->bytenr, head->num_bytes); 1875 } 1876 } 1877 1878 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1879 1880 trace_run_delayed_ref_head(fs_info, head, 0); 1881 btrfs_delayed_ref_unlock(head); 1882 btrfs_put_delayed_ref_head(head); 1883 return 0; 1884 } 1885 1886 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1887 struct btrfs_trans_handle *trans) 1888 { 1889 struct btrfs_delayed_ref_root *delayed_refs = 1890 &trans->transaction->delayed_refs; 1891 struct btrfs_delayed_ref_head *head = NULL; 1892 int ret; 1893 1894 spin_lock(&delayed_refs->lock); 1895 head = btrfs_select_ref_head(delayed_refs); 1896 if (!head) { 1897 spin_unlock(&delayed_refs->lock); 1898 return head; 1899 } 1900 1901 /* 1902 * Grab the lock that says we are going to process all the refs for 1903 * this head 1904 */ 1905 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1906 spin_unlock(&delayed_refs->lock); 1907 1908 /* 1909 * We may have dropped the spin lock to get the head mutex lock, and 1910 * that might have given someone else time to free the head. If that's 1911 * true, it has been removed from our list and we can move on. 1912 */ 1913 if (ret == -EAGAIN) 1914 head = ERR_PTR(-EAGAIN); 1915 1916 return head; 1917 } 1918 1919 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1920 struct btrfs_delayed_ref_head *locked_ref, 1921 unsigned long *run_refs) 1922 { 1923 struct btrfs_fs_info *fs_info = trans->fs_info; 1924 struct btrfs_delayed_ref_root *delayed_refs; 1925 struct btrfs_delayed_extent_op *extent_op; 1926 struct btrfs_delayed_ref_node *ref; 1927 int must_insert_reserved = 0; 1928 int ret; 1929 1930 delayed_refs = &trans->transaction->delayed_refs; 1931 1932 lockdep_assert_held(&locked_ref->mutex); 1933 lockdep_assert_held(&locked_ref->lock); 1934 1935 while ((ref = select_delayed_ref(locked_ref))) { 1936 if (ref->seq && 1937 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1938 spin_unlock(&locked_ref->lock); 1939 unselect_delayed_ref_head(delayed_refs, locked_ref); 1940 return -EAGAIN; 1941 } 1942 1943 (*run_refs)++; 1944 ref->in_tree = 0; 1945 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1946 RB_CLEAR_NODE(&ref->ref_node); 1947 if (!list_empty(&ref->add_list)) 1948 list_del(&ref->add_list); 1949 /* 1950 * When we play the delayed ref, also correct the ref_mod on 1951 * head 1952 */ 1953 switch (ref->action) { 1954 case BTRFS_ADD_DELAYED_REF: 1955 case BTRFS_ADD_DELAYED_EXTENT: 1956 locked_ref->ref_mod -= ref->ref_mod; 1957 break; 1958 case BTRFS_DROP_DELAYED_REF: 1959 locked_ref->ref_mod += ref->ref_mod; 1960 break; 1961 default: 1962 WARN_ON(1); 1963 } 1964 atomic_dec(&delayed_refs->num_entries); 1965 1966 /* 1967 * Record the must_insert_reserved flag before we drop the 1968 * spin lock. 1969 */ 1970 must_insert_reserved = locked_ref->must_insert_reserved; 1971 locked_ref->must_insert_reserved = 0; 1972 1973 extent_op = locked_ref->extent_op; 1974 locked_ref->extent_op = NULL; 1975 spin_unlock(&locked_ref->lock); 1976 1977 ret = run_one_delayed_ref(trans, ref, extent_op, 1978 must_insert_reserved); 1979 1980 btrfs_free_delayed_extent_op(extent_op); 1981 if (ret) { 1982 unselect_delayed_ref_head(delayed_refs, locked_ref); 1983 btrfs_put_delayed_ref(ref); 1984 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1985 ret); 1986 return ret; 1987 } 1988 1989 btrfs_put_delayed_ref(ref); 1990 cond_resched(); 1991 1992 spin_lock(&locked_ref->lock); 1993 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1994 } 1995 1996 return 0; 1997 } 1998 1999 /* 2000 * Returns 0 on success or if called with an already aborted transaction. 2001 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2002 */ 2003 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2004 unsigned long nr) 2005 { 2006 struct btrfs_fs_info *fs_info = trans->fs_info; 2007 struct btrfs_delayed_ref_root *delayed_refs; 2008 struct btrfs_delayed_ref_head *locked_ref = NULL; 2009 ktime_t start = ktime_get(); 2010 int ret; 2011 unsigned long count = 0; 2012 unsigned long actual_count = 0; 2013 2014 delayed_refs = &trans->transaction->delayed_refs; 2015 do { 2016 if (!locked_ref) { 2017 locked_ref = btrfs_obtain_ref_head(trans); 2018 if (IS_ERR_OR_NULL(locked_ref)) { 2019 if (PTR_ERR(locked_ref) == -EAGAIN) { 2020 continue; 2021 } else { 2022 break; 2023 } 2024 } 2025 count++; 2026 } 2027 /* 2028 * We need to try and merge add/drops of the same ref since we 2029 * can run into issues with relocate dropping the implicit ref 2030 * and then it being added back again before the drop can 2031 * finish. If we merged anything we need to re-loop so we can 2032 * get a good ref. 2033 * Or we can get node references of the same type that weren't 2034 * merged when created due to bumps in the tree mod seq, and 2035 * we need to merge them to prevent adding an inline extent 2036 * backref before dropping it (triggering a BUG_ON at 2037 * insert_inline_extent_backref()). 2038 */ 2039 spin_lock(&locked_ref->lock); 2040 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2041 2042 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2043 &actual_count); 2044 if (ret < 0 && ret != -EAGAIN) { 2045 /* 2046 * Error, btrfs_run_delayed_refs_for_head already 2047 * unlocked everything so just bail out 2048 */ 2049 return ret; 2050 } else if (!ret) { 2051 /* 2052 * Success, perform the usual cleanup of a processed 2053 * head 2054 */ 2055 ret = cleanup_ref_head(trans, locked_ref); 2056 if (ret > 0 ) { 2057 /* We dropped our lock, we need to loop. */ 2058 ret = 0; 2059 continue; 2060 } else if (ret) { 2061 return ret; 2062 } 2063 } 2064 2065 /* 2066 * Either success case or btrfs_run_delayed_refs_for_head 2067 * returned -EAGAIN, meaning we need to select another head 2068 */ 2069 2070 locked_ref = NULL; 2071 cond_resched(); 2072 } while ((nr != -1 && count < nr) || locked_ref); 2073 2074 /* 2075 * We don't want to include ref heads since we can have empty ref heads 2076 * and those will drastically skew our runtime down since we just do 2077 * accounting, no actual extent tree updates. 2078 */ 2079 if (actual_count > 0) { 2080 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2081 u64 avg; 2082 2083 /* 2084 * We weigh the current average higher than our current runtime 2085 * to avoid large swings in the average. 2086 */ 2087 spin_lock(&delayed_refs->lock); 2088 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2089 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2090 spin_unlock(&delayed_refs->lock); 2091 } 2092 return 0; 2093 } 2094 2095 #ifdef SCRAMBLE_DELAYED_REFS 2096 /* 2097 * Normally delayed refs get processed in ascending bytenr order. This 2098 * correlates in most cases to the order added. To expose dependencies on this 2099 * order, we start to process the tree in the middle instead of the beginning 2100 */ 2101 static u64 find_middle(struct rb_root *root) 2102 { 2103 struct rb_node *n = root->rb_node; 2104 struct btrfs_delayed_ref_node *entry; 2105 int alt = 1; 2106 u64 middle; 2107 u64 first = 0, last = 0; 2108 2109 n = rb_first(root); 2110 if (n) { 2111 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2112 first = entry->bytenr; 2113 } 2114 n = rb_last(root); 2115 if (n) { 2116 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2117 last = entry->bytenr; 2118 } 2119 n = root->rb_node; 2120 2121 while (n) { 2122 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2123 WARN_ON(!entry->in_tree); 2124 2125 middle = entry->bytenr; 2126 2127 if (alt) 2128 n = n->rb_left; 2129 else 2130 n = n->rb_right; 2131 2132 alt = 1 - alt; 2133 } 2134 return middle; 2135 } 2136 #endif 2137 2138 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2139 { 2140 u64 num_bytes; 2141 2142 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2143 sizeof(struct btrfs_extent_inline_ref)); 2144 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2145 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2146 2147 /* 2148 * We don't ever fill up leaves all the way so multiply by 2 just to be 2149 * closer to what we're really going to want to use. 2150 */ 2151 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2152 } 2153 2154 /* 2155 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2156 * would require to store the csums for that many bytes. 2157 */ 2158 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2159 { 2160 u64 csum_size; 2161 u64 num_csums_per_leaf; 2162 u64 num_csums; 2163 2164 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2165 num_csums_per_leaf = div64_u64(csum_size, 2166 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2167 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2168 num_csums += num_csums_per_leaf - 1; 2169 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2170 return num_csums; 2171 } 2172 2173 /* 2174 * this starts processing the delayed reference count updates and 2175 * extent insertions we have queued up so far. count can be 2176 * 0, which means to process everything in the tree at the start 2177 * of the run (but not newly added entries), or it can be some target 2178 * number you'd like to process. 2179 * 2180 * Returns 0 on success or if called with an aborted transaction 2181 * Returns <0 on error and aborts the transaction 2182 */ 2183 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2184 unsigned long count) 2185 { 2186 struct btrfs_fs_info *fs_info = trans->fs_info; 2187 struct rb_node *node; 2188 struct btrfs_delayed_ref_root *delayed_refs; 2189 struct btrfs_delayed_ref_head *head; 2190 int ret; 2191 int run_all = count == (unsigned long)-1; 2192 2193 /* We'll clean this up in btrfs_cleanup_transaction */ 2194 if (trans->aborted) 2195 return 0; 2196 2197 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2198 return 0; 2199 2200 delayed_refs = &trans->transaction->delayed_refs; 2201 if (count == 0) 2202 count = atomic_read(&delayed_refs->num_entries) * 2; 2203 2204 again: 2205 #ifdef SCRAMBLE_DELAYED_REFS 2206 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2207 #endif 2208 ret = __btrfs_run_delayed_refs(trans, count); 2209 if (ret < 0) { 2210 btrfs_abort_transaction(trans, ret); 2211 return ret; 2212 } 2213 2214 if (run_all) { 2215 btrfs_create_pending_block_groups(trans); 2216 2217 spin_lock(&delayed_refs->lock); 2218 node = rb_first_cached(&delayed_refs->href_root); 2219 if (!node) { 2220 spin_unlock(&delayed_refs->lock); 2221 goto out; 2222 } 2223 head = rb_entry(node, struct btrfs_delayed_ref_head, 2224 href_node); 2225 refcount_inc(&head->refs); 2226 spin_unlock(&delayed_refs->lock); 2227 2228 /* Mutex was contended, block until it's released and retry. */ 2229 mutex_lock(&head->mutex); 2230 mutex_unlock(&head->mutex); 2231 2232 btrfs_put_delayed_ref_head(head); 2233 cond_resched(); 2234 goto again; 2235 } 2236 out: 2237 return 0; 2238 } 2239 2240 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2241 u64 bytenr, u64 num_bytes, u64 flags, 2242 int level, int is_data) 2243 { 2244 struct btrfs_delayed_extent_op *extent_op; 2245 int ret; 2246 2247 extent_op = btrfs_alloc_delayed_extent_op(); 2248 if (!extent_op) 2249 return -ENOMEM; 2250 2251 extent_op->flags_to_set = flags; 2252 extent_op->update_flags = true; 2253 extent_op->update_key = false; 2254 extent_op->is_data = is_data ? true : false; 2255 extent_op->level = level; 2256 2257 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2258 if (ret) 2259 btrfs_free_delayed_extent_op(extent_op); 2260 return ret; 2261 } 2262 2263 static noinline int check_delayed_ref(struct btrfs_root *root, 2264 struct btrfs_path *path, 2265 u64 objectid, u64 offset, u64 bytenr) 2266 { 2267 struct btrfs_delayed_ref_head *head; 2268 struct btrfs_delayed_ref_node *ref; 2269 struct btrfs_delayed_data_ref *data_ref; 2270 struct btrfs_delayed_ref_root *delayed_refs; 2271 struct btrfs_transaction *cur_trans; 2272 struct rb_node *node; 2273 int ret = 0; 2274 2275 spin_lock(&root->fs_info->trans_lock); 2276 cur_trans = root->fs_info->running_transaction; 2277 if (cur_trans) 2278 refcount_inc(&cur_trans->use_count); 2279 spin_unlock(&root->fs_info->trans_lock); 2280 if (!cur_trans) 2281 return 0; 2282 2283 delayed_refs = &cur_trans->delayed_refs; 2284 spin_lock(&delayed_refs->lock); 2285 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2286 if (!head) { 2287 spin_unlock(&delayed_refs->lock); 2288 btrfs_put_transaction(cur_trans); 2289 return 0; 2290 } 2291 2292 if (!mutex_trylock(&head->mutex)) { 2293 refcount_inc(&head->refs); 2294 spin_unlock(&delayed_refs->lock); 2295 2296 btrfs_release_path(path); 2297 2298 /* 2299 * Mutex was contended, block until it's released and let 2300 * caller try again 2301 */ 2302 mutex_lock(&head->mutex); 2303 mutex_unlock(&head->mutex); 2304 btrfs_put_delayed_ref_head(head); 2305 btrfs_put_transaction(cur_trans); 2306 return -EAGAIN; 2307 } 2308 spin_unlock(&delayed_refs->lock); 2309 2310 spin_lock(&head->lock); 2311 /* 2312 * XXX: We should replace this with a proper search function in the 2313 * future. 2314 */ 2315 for (node = rb_first_cached(&head->ref_tree); node; 2316 node = rb_next(node)) { 2317 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2318 /* If it's a shared ref we know a cross reference exists */ 2319 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2320 ret = 1; 2321 break; 2322 } 2323 2324 data_ref = btrfs_delayed_node_to_data_ref(ref); 2325 2326 /* 2327 * If our ref doesn't match the one we're currently looking at 2328 * then we have a cross reference. 2329 */ 2330 if (data_ref->root != root->root_key.objectid || 2331 data_ref->objectid != objectid || 2332 data_ref->offset != offset) { 2333 ret = 1; 2334 break; 2335 } 2336 } 2337 spin_unlock(&head->lock); 2338 mutex_unlock(&head->mutex); 2339 btrfs_put_transaction(cur_trans); 2340 return ret; 2341 } 2342 2343 static noinline int check_committed_ref(struct btrfs_root *root, 2344 struct btrfs_path *path, 2345 u64 objectid, u64 offset, u64 bytenr) 2346 { 2347 struct btrfs_fs_info *fs_info = root->fs_info; 2348 struct btrfs_root *extent_root = fs_info->extent_root; 2349 struct extent_buffer *leaf; 2350 struct btrfs_extent_data_ref *ref; 2351 struct btrfs_extent_inline_ref *iref; 2352 struct btrfs_extent_item *ei; 2353 struct btrfs_key key; 2354 u32 item_size; 2355 int type; 2356 int ret; 2357 2358 key.objectid = bytenr; 2359 key.offset = (u64)-1; 2360 key.type = BTRFS_EXTENT_ITEM_KEY; 2361 2362 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2363 if (ret < 0) 2364 goto out; 2365 BUG_ON(ret == 0); /* Corruption */ 2366 2367 ret = -ENOENT; 2368 if (path->slots[0] == 0) 2369 goto out; 2370 2371 path->slots[0]--; 2372 leaf = path->nodes[0]; 2373 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2374 2375 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2376 goto out; 2377 2378 ret = 1; 2379 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2380 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2381 2382 /* If extent item has more than 1 inline ref then it's shared */ 2383 if (item_size != sizeof(*ei) + 2384 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2385 goto out; 2386 2387 /* If extent created before last snapshot => it's definitely shared */ 2388 if (btrfs_extent_generation(leaf, ei) <= 2389 btrfs_root_last_snapshot(&root->root_item)) 2390 goto out; 2391 2392 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2393 2394 /* If this extent has SHARED_DATA_REF then it's shared */ 2395 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2396 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2397 goto out; 2398 2399 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2400 if (btrfs_extent_refs(leaf, ei) != 2401 btrfs_extent_data_ref_count(leaf, ref) || 2402 btrfs_extent_data_ref_root(leaf, ref) != 2403 root->root_key.objectid || 2404 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2405 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2406 goto out; 2407 2408 ret = 0; 2409 out: 2410 return ret; 2411 } 2412 2413 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2414 u64 bytenr) 2415 { 2416 struct btrfs_path *path; 2417 int ret; 2418 2419 path = btrfs_alloc_path(); 2420 if (!path) 2421 return -ENOMEM; 2422 2423 do { 2424 ret = check_committed_ref(root, path, objectid, 2425 offset, bytenr); 2426 if (ret && ret != -ENOENT) 2427 goto out; 2428 2429 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2430 } while (ret == -EAGAIN); 2431 2432 out: 2433 btrfs_free_path(path); 2434 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2435 WARN_ON(ret > 0); 2436 return ret; 2437 } 2438 2439 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2440 struct btrfs_root *root, 2441 struct extent_buffer *buf, 2442 int full_backref, int inc) 2443 { 2444 struct btrfs_fs_info *fs_info = root->fs_info; 2445 u64 bytenr; 2446 u64 num_bytes; 2447 u64 parent; 2448 u64 ref_root; 2449 u32 nritems; 2450 struct btrfs_key key; 2451 struct btrfs_file_extent_item *fi; 2452 struct btrfs_ref generic_ref = { 0 }; 2453 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2454 int i; 2455 int action; 2456 int level; 2457 int ret = 0; 2458 2459 if (btrfs_is_testing(fs_info)) 2460 return 0; 2461 2462 ref_root = btrfs_header_owner(buf); 2463 nritems = btrfs_header_nritems(buf); 2464 level = btrfs_header_level(buf); 2465 2466 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 2467 return 0; 2468 2469 if (full_backref) 2470 parent = buf->start; 2471 else 2472 parent = 0; 2473 if (inc) 2474 action = BTRFS_ADD_DELAYED_REF; 2475 else 2476 action = BTRFS_DROP_DELAYED_REF; 2477 2478 for (i = 0; i < nritems; i++) { 2479 if (level == 0) { 2480 btrfs_item_key_to_cpu(buf, &key, i); 2481 if (key.type != BTRFS_EXTENT_DATA_KEY) 2482 continue; 2483 fi = btrfs_item_ptr(buf, i, 2484 struct btrfs_file_extent_item); 2485 if (btrfs_file_extent_type(buf, fi) == 2486 BTRFS_FILE_EXTENT_INLINE) 2487 continue; 2488 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2489 if (bytenr == 0) 2490 continue; 2491 2492 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2493 key.offset -= btrfs_file_extent_offset(buf, fi); 2494 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2495 num_bytes, parent); 2496 generic_ref.real_root = root->root_key.objectid; 2497 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2498 key.offset); 2499 generic_ref.skip_qgroup = for_reloc; 2500 if (inc) 2501 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2502 else 2503 ret = btrfs_free_extent(trans, &generic_ref); 2504 if (ret) 2505 goto fail; 2506 } else { 2507 bytenr = btrfs_node_blockptr(buf, i); 2508 num_bytes = fs_info->nodesize; 2509 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2510 num_bytes, parent); 2511 generic_ref.real_root = root->root_key.objectid; 2512 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2513 generic_ref.skip_qgroup = for_reloc; 2514 if (inc) 2515 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2516 else 2517 ret = btrfs_free_extent(trans, &generic_ref); 2518 if (ret) 2519 goto fail; 2520 } 2521 } 2522 return 0; 2523 fail: 2524 return ret; 2525 } 2526 2527 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2528 struct extent_buffer *buf, int full_backref) 2529 { 2530 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2531 } 2532 2533 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2534 struct extent_buffer *buf, int full_backref) 2535 { 2536 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2537 } 2538 2539 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2540 { 2541 struct btrfs_block_group *block_group; 2542 int readonly = 0; 2543 2544 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2545 if (!block_group || block_group->ro) 2546 readonly = 1; 2547 if (block_group) 2548 btrfs_put_block_group(block_group); 2549 return readonly; 2550 } 2551 2552 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2553 { 2554 struct btrfs_fs_info *fs_info = root->fs_info; 2555 u64 flags; 2556 u64 ret; 2557 2558 if (data) 2559 flags = BTRFS_BLOCK_GROUP_DATA; 2560 else if (root == fs_info->chunk_root) 2561 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2562 else 2563 flags = BTRFS_BLOCK_GROUP_METADATA; 2564 2565 ret = btrfs_get_alloc_profile(fs_info, flags); 2566 return ret; 2567 } 2568 2569 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2570 { 2571 struct btrfs_block_group *cache; 2572 u64 bytenr; 2573 2574 spin_lock(&fs_info->block_group_cache_lock); 2575 bytenr = fs_info->first_logical_byte; 2576 spin_unlock(&fs_info->block_group_cache_lock); 2577 2578 if (bytenr < (u64)-1) 2579 return bytenr; 2580 2581 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2582 if (!cache) 2583 return 0; 2584 2585 bytenr = cache->start; 2586 btrfs_put_block_group(cache); 2587 2588 return bytenr; 2589 } 2590 2591 static int pin_down_extent(struct btrfs_block_group *cache, 2592 u64 bytenr, u64 num_bytes, int reserved) 2593 { 2594 struct btrfs_fs_info *fs_info = cache->fs_info; 2595 2596 spin_lock(&cache->space_info->lock); 2597 spin_lock(&cache->lock); 2598 cache->pinned += num_bytes; 2599 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2600 num_bytes); 2601 if (reserved) { 2602 cache->reserved -= num_bytes; 2603 cache->space_info->bytes_reserved -= num_bytes; 2604 } 2605 spin_unlock(&cache->lock); 2606 spin_unlock(&cache->space_info->lock); 2607 2608 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2609 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2610 set_extent_dirty(fs_info->pinned_extents, bytenr, 2611 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2612 return 0; 2613 } 2614 2615 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 2616 u64 bytenr, u64 num_bytes, int reserved) 2617 { 2618 struct btrfs_block_group *cache; 2619 2620 ASSERT(fs_info->running_transaction); 2621 2622 cache = btrfs_lookup_block_group(fs_info, bytenr); 2623 BUG_ON(!cache); /* Logic error */ 2624 2625 pin_down_extent(cache, bytenr, num_bytes, reserved); 2626 2627 btrfs_put_block_group(cache); 2628 return 0; 2629 } 2630 2631 /* 2632 * this function must be called within transaction 2633 */ 2634 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 2635 u64 bytenr, u64 num_bytes) 2636 { 2637 struct btrfs_block_group *cache; 2638 int ret; 2639 2640 cache = btrfs_lookup_block_group(fs_info, bytenr); 2641 if (!cache) 2642 return -EINVAL; 2643 2644 /* 2645 * pull in the free space cache (if any) so that our pin 2646 * removes the free space from the cache. We have load_only set 2647 * to one because the slow code to read in the free extents does check 2648 * the pinned extents. 2649 */ 2650 btrfs_cache_block_group(cache, 1); 2651 2652 pin_down_extent(cache, bytenr, num_bytes, 0); 2653 2654 /* remove us from the free space cache (if we're there at all) */ 2655 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2656 btrfs_put_block_group(cache); 2657 return ret; 2658 } 2659 2660 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2661 u64 start, u64 num_bytes) 2662 { 2663 int ret; 2664 struct btrfs_block_group *block_group; 2665 struct btrfs_caching_control *caching_ctl; 2666 2667 block_group = btrfs_lookup_block_group(fs_info, start); 2668 if (!block_group) 2669 return -EINVAL; 2670 2671 btrfs_cache_block_group(block_group, 0); 2672 caching_ctl = btrfs_get_caching_control(block_group); 2673 2674 if (!caching_ctl) { 2675 /* Logic error */ 2676 BUG_ON(!btrfs_block_group_done(block_group)); 2677 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2678 } else { 2679 mutex_lock(&caching_ctl->mutex); 2680 2681 if (start >= caching_ctl->progress) { 2682 ret = btrfs_add_excluded_extent(fs_info, start, 2683 num_bytes); 2684 } else if (start + num_bytes <= caching_ctl->progress) { 2685 ret = btrfs_remove_free_space(block_group, 2686 start, num_bytes); 2687 } else { 2688 num_bytes = caching_ctl->progress - start; 2689 ret = btrfs_remove_free_space(block_group, 2690 start, num_bytes); 2691 if (ret) 2692 goto out_lock; 2693 2694 num_bytes = (start + num_bytes) - 2695 caching_ctl->progress; 2696 start = caching_ctl->progress; 2697 ret = btrfs_add_excluded_extent(fs_info, start, 2698 num_bytes); 2699 } 2700 out_lock: 2701 mutex_unlock(&caching_ctl->mutex); 2702 btrfs_put_caching_control(caching_ctl); 2703 } 2704 btrfs_put_block_group(block_group); 2705 return ret; 2706 } 2707 2708 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2709 { 2710 struct btrfs_fs_info *fs_info = eb->fs_info; 2711 struct btrfs_file_extent_item *item; 2712 struct btrfs_key key; 2713 int found_type; 2714 int i; 2715 int ret = 0; 2716 2717 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2718 return 0; 2719 2720 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2721 btrfs_item_key_to_cpu(eb, &key, i); 2722 if (key.type != BTRFS_EXTENT_DATA_KEY) 2723 continue; 2724 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2725 found_type = btrfs_file_extent_type(eb, item); 2726 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2727 continue; 2728 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2729 continue; 2730 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2731 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2732 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2733 if (ret) 2734 break; 2735 } 2736 2737 return ret; 2738 } 2739 2740 static void 2741 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2742 { 2743 atomic_inc(&bg->reservations); 2744 } 2745 2746 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2747 { 2748 struct btrfs_caching_control *next; 2749 struct btrfs_caching_control *caching_ctl; 2750 struct btrfs_block_group *cache; 2751 2752 down_write(&fs_info->commit_root_sem); 2753 2754 list_for_each_entry_safe(caching_ctl, next, 2755 &fs_info->caching_block_groups, list) { 2756 cache = caching_ctl->block_group; 2757 if (btrfs_block_group_done(cache)) { 2758 cache->last_byte_to_unpin = (u64)-1; 2759 list_del_init(&caching_ctl->list); 2760 btrfs_put_caching_control(caching_ctl); 2761 } else { 2762 cache->last_byte_to_unpin = caching_ctl->progress; 2763 } 2764 } 2765 2766 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 2767 fs_info->pinned_extents = &fs_info->freed_extents[1]; 2768 else 2769 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2770 2771 up_write(&fs_info->commit_root_sem); 2772 2773 btrfs_update_global_block_rsv(fs_info); 2774 } 2775 2776 /* 2777 * Returns the free cluster for the given space info and sets empty_cluster to 2778 * what it should be based on the mount options. 2779 */ 2780 static struct btrfs_free_cluster * 2781 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2782 struct btrfs_space_info *space_info, u64 *empty_cluster) 2783 { 2784 struct btrfs_free_cluster *ret = NULL; 2785 2786 *empty_cluster = 0; 2787 if (btrfs_mixed_space_info(space_info)) 2788 return ret; 2789 2790 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2791 ret = &fs_info->meta_alloc_cluster; 2792 if (btrfs_test_opt(fs_info, SSD)) 2793 *empty_cluster = SZ_2M; 2794 else 2795 *empty_cluster = SZ_64K; 2796 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2797 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2798 *empty_cluster = SZ_2M; 2799 ret = &fs_info->data_alloc_cluster; 2800 } 2801 2802 return ret; 2803 } 2804 2805 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2806 u64 start, u64 end, 2807 const bool return_free_space) 2808 { 2809 struct btrfs_block_group *cache = NULL; 2810 struct btrfs_space_info *space_info; 2811 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2812 struct btrfs_free_cluster *cluster = NULL; 2813 u64 len; 2814 u64 total_unpinned = 0; 2815 u64 empty_cluster = 0; 2816 bool readonly; 2817 2818 while (start <= end) { 2819 readonly = false; 2820 if (!cache || 2821 start >= cache->start + cache->length) { 2822 if (cache) 2823 btrfs_put_block_group(cache); 2824 total_unpinned = 0; 2825 cache = btrfs_lookup_block_group(fs_info, start); 2826 BUG_ON(!cache); /* Logic error */ 2827 2828 cluster = fetch_cluster_info(fs_info, 2829 cache->space_info, 2830 &empty_cluster); 2831 empty_cluster <<= 1; 2832 } 2833 2834 len = cache->start + cache->length - start; 2835 len = min(len, end + 1 - start); 2836 2837 if (start < cache->last_byte_to_unpin) { 2838 len = min(len, cache->last_byte_to_unpin - start); 2839 if (return_free_space) 2840 btrfs_add_free_space(cache, start, len); 2841 } 2842 2843 start += len; 2844 total_unpinned += len; 2845 space_info = cache->space_info; 2846 2847 /* 2848 * If this space cluster has been marked as fragmented and we've 2849 * unpinned enough in this block group to potentially allow a 2850 * cluster to be created inside of it go ahead and clear the 2851 * fragmented check. 2852 */ 2853 if (cluster && cluster->fragmented && 2854 total_unpinned > empty_cluster) { 2855 spin_lock(&cluster->lock); 2856 cluster->fragmented = 0; 2857 spin_unlock(&cluster->lock); 2858 } 2859 2860 spin_lock(&space_info->lock); 2861 spin_lock(&cache->lock); 2862 cache->pinned -= len; 2863 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2864 space_info->max_extent_size = 0; 2865 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2866 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2867 if (cache->ro) { 2868 space_info->bytes_readonly += len; 2869 readonly = true; 2870 } 2871 spin_unlock(&cache->lock); 2872 if (!readonly && return_free_space && 2873 global_rsv->space_info == space_info) { 2874 u64 to_add = len; 2875 2876 spin_lock(&global_rsv->lock); 2877 if (!global_rsv->full) { 2878 to_add = min(len, global_rsv->size - 2879 global_rsv->reserved); 2880 global_rsv->reserved += to_add; 2881 btrfs_space_info_update_bytes_may_use(fs_info, 2882 space_info, to_add); 2883 if (global_rsv->reserved >= global_rsv->size) 2884 global_rsv->full = 1; 2885 len -= to_add; 2886 } 2887 spin_unlock(&global_rsv->lock); 2888 /* Add to any tickets we may have */ 2889 if (len) 2890 btrfs_try_granting_tickets(fs_info, 2891 space_info); 2892 } 2893 spin_unlock(&space_info->lock); 2894 } 2895 2896 if (cache) 2897 btrfs_put_block_group(cache); 2898 return 0; 2899 } 2900 2901 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2902 { 2903 struct btrfs_fs_info *fs_info = trans->fs_info; 2904 struct btrfs_block_group *block_group, *tmp; 2905 struct list_head *deleted_bgs; 2906 struct extent_io_tree *unpin; 2907 u64 start; 2908 u64 end; 2909 int ret; 2910 2911 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 2912 unpin = &fs_info->freed_extents[1]; 2913 else 2914 unpin = &fs_info->freed_extents[0]; 2915 2916 while (!trans->aborted) { 2917 struct extent_state *cached_state = NULL; 2918 2919 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2920 ret = find_first_extent_bit(unpin, 0, &start, &end, 2921 EXTENT_DIRTY, &cached_state); 2922 if (ret) { 2923 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2924 break; 2925 } 2926 2927 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2928 ret = btrfs_discard_extent(fs_info, start, 2929 end + 1 - start, NULL); 2930 2931 clear_extent_dirty(unpin, start, end, &cached_state); 2932 unpin_extent_range(fs_info, start, end, true); 2933 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2934 free_extent_state(cached_state); 2935 cond_resched(); 2936 } 2937 2938 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2939 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2940 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2941 } 2942 2943 /* 2944 * Transaction is finished. We don't need the lock anymore. We 2945 * do need to clean up the block groups in case of a transaction 2946 * abort. 2947 */ 2948 deleted_bgs = &trans->transaction->deleted_bgs; 2949 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2950 u64 trimmed = 0; 2951 2952 ret = -EROFS; 2953 if (!trans->aborted) 2954 ret = btrfs_discard_extent(fs_info, 2955 block_group->start, 2956 block_group->length, 2957 &trimmed); 2958 2959 list_del_init(&block_group->bg_list); 2960 btrfs_put_block_group_trimming(block_group); 2961 btrfs_put_block_group(block_group); 2962 2963 if (ret) { 2964 const char *errstr = btrfs_decode_error(ret); 2965 btrfs_warn(fs_info, 2966 "discard failed while removing blockgroup: errno=%d %s", 2967 ret, errstr); 2968 } 2969 } 2970 2971 return 0; 2972 } 2973 2974 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2975 struct btrfs_delayed_ref_node *node, u64 parent, 2976 u64 root_objectid, u64 owner_objectid, 2977 u64 owner_offset, int refs_to_drop, 2978 struct btrfs_delayed_extent_op *extent_op) 2979 { 2980 struct btrfs_fs_info *info = trans->fs_info; 2981 struct btrfs_key key; 2982 struct btrfs_path *path; 2983 struct btrfs_root *extent_root = info->extent_root; 2984 struct extent_buffer *leaf; 2985 struct btrfs_extent_item *ei; 2986 struct btrfs_extent_inline_ref *iref; 2987 int ret; 2988 int is_data; 2989 int extent_slot = 0; 2990 int found_extent = 0; 2991 int num_to_del = 1; 2992 u32 item_size; 2993 u64 refs; 2994 u64 bytenr = node->bytenr; 2995 u64 num_bytes = node->num_bytes; 2996 int last_ref = 0; 2997 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2998 2999 path = btrfs_alloc_path(); 3000 if (!path) 3001 return -ENOMEM; 3002 3003 path->reada = READA_FORWARD; 3004 path->leave_spinning = 1; 3005 3006 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3007 BUG_ON(!is_data && refs_to_drop != 1); 3008 3009 if (is_data) 3010 skinny_metadata = false; 3011 3012 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3013 parent, root_objectid, owner_objectid, 3014 owner_offset); 3015 if (ret == 0) { 3016 extent_slot = path->slots[0]; 3017 while (extent_slot >= 0) { 3018 btrfs_item_key_to_cpu(path->nodes[0], &key, 3019 extent_slot); 3020 if (key.objectid != bytenr) 3021 break; 3022 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3023 key.offset == num_bytes) { 3024 found_extent = 1; 3025 break; 3026 } 3027 if (key.type == BTRFS_METADATA_ITEM_KEY && 3028 key.offset == owner_objectid) { 3029 found_extent = 1; 3030 break; 3031 } 3032 if (path->slots[0] - extent_slot > 5) 3033 break; 3034 extent_slot--; 3035 } 3036 3037 if (!found_extent) { 3038 BUG_ON(iref); 3039 ret = remove_extent_backref(trans, path, NULL, 3040 refs_to_drop, 3041 is_data, &last_ref); 3042 if (ret) { 3043 btrfs_abort_transaction(trans, ret); 3044 goto out; 3045 } 3046 btrfs_release_path(path); 3047 path->leave_spinning = 1; 3048 3049 key.objectid = bytenr; 3050 key.type = BTRFS_EXTENT_ITEM_KEY; 3051 key.offset = num_bytes; 3052 3053 if (!is_data && skinny_metadata) { 3054 key.type = BTRFS_METADATA_ITEM_KEY; 3055 key.offset = owner_objectid; 3056 } 3057 3058 ret = btrfs_search_slot(trans, extent_root, 3059 &key, path, -1, 1); 3060 if (ret > 0 && skinny_metadata && path->slots[0]) { 3061 /* 3062 * Couldn't find our skinny metadata item, 3063 * see if we have ye olde extent item. 3064 */ 3065 path->slots[0]--; 3066 btrfs_item_key_to_cpu(path->nodes[0], &key, 3067 path->slots[0]); 3068 if (key.objectid == bytenr && 3069 key.type == BTRFS_EXTENT_ITEM_KEY && 3070 key.offset == num_bytes) 3071 ret = 0; 3072 } 3073 3074 if (ret > 0 && skinny_metadata) { 3075 skinny_metadata = false; 3076 key.objectid = bytenr; 3077 key.type = BTRFS_EXTENT_ITEM_KEY; 3078 key.offset = num_bytes; 3079 btrfs_release_path(path); 3080 ret = btrfs_search_slot(trans, extent_root, 3081 &key, path, -1, 1); 3082 } 3083 3084 if (ret) { 3085 btrfs_err(info, 3086 "umm, got %d back from search, was looking for %llu", 3087 ret, bytenr); 3088 if (ret > 0) 3089 btrfs_print_leaf(path->nodes[0]); 3090 } 3091 if (ret < 0) { 3092 btrfs_abort_transaction(trans, ret); 3093 goto out; 3094 } 3095 extent_slot = path->slots[0]; 3096 } 3097 } else if (WARN_ON(ret == -ENOENT)) { 3098 btrfs_print_leaf(path->nodes[0]); 3099 btrfs_err(info, 3100 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3101 bytenr, parent, root_objectid, owner_objectid, 3102 owner_offset); 3103 btrfs_abort_transaction(trans, ret); 3104 goto out; 3105 } else { 3106 btrfs_abort_transaction(trans, ret); 3107 goto out; 3108 } 3109 3110 leaf = path->nodes[0]; 3111 item_size = btrfs_item_size_nr(leaf, extent_slot); 3112 if (unlikely(item_size < sizeof(*ei))) { 3113 ret = -EINVAL; 3114 btrfs_print_v0_err(info); 3115 btrfs_abort_transaction(trans, ret); 3116 goto out; 3117 } 3118 ei = btrfs_item_ptr(leaf, extent_slot, 3119 struct btrfs_extent_item); 3120 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3121 key.type == BTRFS_EXTENT_ITEM_KEY) { 3122 struct btrfs_tree_block_info *bi; 3123 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3124 bi = (struct btrfs_tree_block_info *)(ei + 1); 3125 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3126 } 3127 3128 refs = btrfs_extent_refs(leaf, ei); 3129 if (refs < refs_to_drop) { 3130 btrfs_err(info, 3131 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3132 refs_to_drop, refs, bytenr); 3133 ret = -EINVAL; 3134 btrfs_abort_transaction(trans, ret); 3135 goto out; 3136 } 3137 refs -= refs_to_drop; 3138 3139 if (refs > 0) { 3140 if (extent_op) 3141 __run_delayed_extent_op(extent_op, leaf, ei); 3142 /* 3143 * In the case of inline back ref, reference count will 3144 * be updated by remove_extent_backref 3145 */ 3146 if (iref) { 3147 BUG_ON(!found_extent); 3148 } else { 3149 btrfs_set_extent_refs(leaf, ei, refs); 3150 btrfs_mark_buffer_dirty(leaf); 3151 } 3152 if (found_extent) { 3153 ret = remove_extent_backref(trans, path, iref, 3154 refs_to_drop, is_data, 3155 &last_ref); 3156 if (ret) { 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 } 3161 } else { 3162 if (found_extent) { 3163 BUG_ON(is_data && refs_to_drop != 3164 extent_data_ref_count(path, iref)); 3165 if (iref) { 3166 BUG_ON(path->slots[0] != extent_slot); 3167 } else { 3168 BUG_ON(path->slots[0] != extent_slot + 1); 3169 path->slots[0] = extent_slot; 3170 num_to_del = 2; 3171 } 3172 } 3173 3174 last_ref = 1; 3175 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3176 num_to_del); 3177 if (ret) { 3178 btrfs_abort_transaction(trans, ret); 3179 goto out; 3180 } 3181 btrfs_release_path(path); 3182 3183 if (is_data) { 3184 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3185 num_bytes); 3186 if (ret) { 3187 btrfs_abort_transaction(trans, ret); 3188 goto out; 3189 } 3190 } 3191 3192 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3193 if (ret) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 3198 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3199 if (ret) { 3200 btrfs_abort_transaction(trans, ret); 3201 goto out; 3202 } 3203 } 3204 btrfs_release_path(path); 3205 3206 out: 3207 btrfs_free_path(path); 3208 return ret; 3209 } 3210 3211 /* 3212 * when we free an block, it is possible (and likely) that we free the last 3213 * delayed ref for that extent as well. This searches the delayed ref tree for 3214 * a given extent, and if there are no other delayed refs to be processed, it 3215 * removes it from the tree. 3216 */ 3217 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3218 u64 bytenr) 3219 { 3220 struct btrfs_delayed_ref_head *head; 3221 struct btrfs_delayed_ref_root *delayed_refs; 3222 int ret = 0; 3223 3224 delayed_refs = &trans->transaction->delayed_refs; 3225 spin_lock(&delayed_refs->lock); 3226 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3227 if (!head) 3228 goto out_delayed_unlock; 3229 3230 spin_lock(&head->lock); 3231 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3232 goto out; 3233 3234 if (cleanup_extent_op(head) != NULL) 3235 goto out; 3236 3237 /* 3238 * waiting for the lock here would deadlock. If someone else has it 3239 * locked they are already in the process of dropping it anyway 3240 */ 3241 if (!mutex_trylock(&head->mutex)) 3242 goto out; 3243 3244 btrfs_delete_ref_head(delayed_refs, head); 3245 head->processing = 0; 3246 3247 spin_unlock(&head->lock); 3248 spin_unlock(&delayed_refs->lock); 3249 3250 BUG_ON(head->extent_op); 3251 if (head->must_insert_reserved) 3252 ret = 1; 3253 3254 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3255 mutex_unlock(&head->mutex); 3256 btrfs_put_delayed_ref_head(head); 3257 return ret; 3258 out: 3259 spin_unlock(&head->lock); 3260 3261 out_delayed_unlock: 3262 spin_unlock(&delayed_refs->lock); 3263 return 0; 3264 } 3265 3266 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3267 struct btrfs_root *root, 3268 struct extent_buffer *buf, 3269 u64 parent, int last_ref) 3270 { 3271 struct btrfs_fs_info *fs_info = root->fs_info; 3272 struct btrfs_ref generic_ref = { 0 }; 3273 int pin = 1; 3274 int ret; 3275 3276 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3277 buf->start, buf->len, parent); 3278 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3279 root->root_key.objectid); 3280 3281 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3282 int old_ref_mod, new_ref_mod; 3283 3284 btrfs_ref_tree_mod(fs_info, &generic_ref); 3285 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3286 &old_ref_mod, &new_ref_mod); 3287 BUG_ON(ret); /* -ENOMEM */ 3288 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3289 } 3290 3291 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3292 struct btrfs_block_group *cache; 3293 3294 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3295 ret = check_ref_cleanup(trans, buf->start); 3296 if (!ret) 3297 goto out; 3298 } 3299 3300 pin = 0; 3301 cache = btrfs_lookup_block_group(fs_info, buf->start); 3302 3303 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3304 pin_down_extent(cache, buf->start, buf->len, 1); 3305 btrfs_put_block_group(cache); 3306 goto out; 3307 } 3308 3309 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3310 3311 btrfs_add_free_space(cache, buf->start, buf->len); 3312 btrfs_free_reserved_bytes(cache, buf->len, 0); 3313 btrfs_put_block_group(cache); 3314 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3315 } 3316 out: 3317 if (pin) 3318 add_pinned_bytes(fs_info, &generic_ref); 3319 3320 if (last_ref) { 3321 /* 3322 * Deleting the buffer, clear the corrupt flag since it doesn't 3323 * matter anymore. 3324 */ 3325 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3326 } 3327 } 3328 3329 /* Can return -ENOMEM */ 3330 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3331 { 3332 struct btrfs_fs_info *fs_info = trans->fs_info; 3333 int old_ref_mod, new_ref_mod; 3334 int ret; 3335 3336 if (btrfs_is_testing(fs_info)) 3337 return 0; 3338 3339 /* 3340 * tree log blocks never actually go into the extent allocation 3341 * tree, just update pinning info and exit early. 3342 */ 3343 if ((ref->type == BTRFS_REF_METADATA && 3344 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3345 (ref->type == BTRFS_REF_DATA && 3346 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3347 /* unlocks the pinned mutex */ 3348 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1); 3349 old_ref_mod = new_ref_mod = 0; 3350 ret = 0; 3351 } else if (ref->type == BTRFS_REF_METADATA) { 3352 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3353 &old_ref_mod, &new_ref_mod); 3354 } else { 3355 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3356 &old_ref_mod, &new_ref_mod); 3357 } 3358 3359 if (!((ref->type == BTRFS_REF_METADATA && 3360 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3361 (ref->type == BTRFS_REF_DATA && 3362 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3363 btrfs_ref_tree_mod(fs_info, ref); 3364 3365 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3366 add_pinned_bytes(fs_info, ref); 3367 3368 return ret; 3369 } 3370 3371 enum btrfs_loop_type { 3372 LOOP_CACHING_NOWAIT, 3373 LOOP_CACHING_WAIT, 3374 LOOP_ALLOC_CHUNK, 3375 LOOP_NO_EMPTY_SIZE, 3376 }; 3377 3378 static inline void 3379 btrfs_lock_block_group(struct btrfs_block_group *cache, 3380 int delalloc) 3381 { 3382 if (delalloc) 3383 down_read(&cache->data_rwsem); 3384 } 3385 3386 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3387 int delalloc) 3388 { 3389 btrfs_get_block_group(cache); 3390 if (delalloc) 3391 down_read(&cache->data_rwsem); 3392 } 3393 3394 static struct btrfs_block_group *btrfs_lock_cluster( 3395 struct btrfs_block_group *block_group, 3396 struct btrfs_free_cluster *cluster, 3397 int delalloc) 3398 { 3399 struct btrfs_block_group *used_bg = NULL; 3400 3401 spin_lock(&cluster->refill_lock); 3402 while (1) { 3403 used_bg = cluster->block_group; 3404 if (!used_bg) 3405 return NULL; 3406 3407 if (used_bg == block_group) 3408 return used_bg; 3409 3410 btrfs_get_block_group(used_bg); 3411 3412 if (!delalloc) 3413 return used_bg; 3414 3415 if (down_read_trylock(&used_bg->data_rwsem)) 3416 return used_bg; 3417 3418 spin_unlock(&cluster->refill_lock); 3419 3420 /* We should only have one-level nested. */ 3421 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3422 3423 spin_lock(&cluster->refill_lock); 3424 if (used_bg == cluster->block_group) 3425 return used_bg; 3426 3427 up_read(&used_bg->data_rwsem); 3428 btrfs_put_block_group(used_bg); 3429 } 3430 } 3431 3432 static inline void 3433 btrfs_release_block_group(struct btrfs_block_group *cache, 3434 int delalloc) 3435 { 3436 if (delalloc) 3437 up_read(&cache->data_rwsem); 3438 btrfs_put_block_group(cache); 3439 } 3440 3441 /* 3442 * Structure used internally for find_free_extent() function. Wraps needed 3443 * parameters. 3444 */ 3445 struct find_free_extent_ctl { 3446 /* Basic allocation info */ 3447 u64 num_bytes; 3448 u64 empty_size; 3449 u64 flags; 3450 int delalloc; 3451 3452 /* Where to start the search inside the bg */ 3453 u64 search_start; 3454 3455 /* For clustered allocation */ 3456 u64 empty_cluster; 3457 3458 bool have_caching_bg; 3459 bool orig_have_caching_bg; 3460 3461 /* RAID index, converted from flags */ 3462 int index; 3463 3464 /* 3465 * Current loop number, check find_free_extent_update_loop() for details 3466 */ 3467 int loop; 3468 3469 /* 3470 * Whether we're refilling a cluster, if true we need to re-search 3471 * current block group but don't try to refill the cluster again. 3472 */ 3473 bool retry_clustered; 3474 3475 /* 3476 * Whether we're updating free space cache, if true we need to re-search 3477 * current block group but don't try updating free space cache again. 3478 */ 3479 bool retry_unclustered; 3480 3481 /* If current block group is cached */ 3482 int cached; 3483 3484 /* Max contiguous hole found */ 3485 u64 max_extent_size; 3486 3487 /* Total free space from free space cache, not always contiguous */ 3488 u64 total_free_space; 3489 3490 /* Found result */ 3491 u64 found_offset; 3492 }; 3493 3494 3495 /* 3496 * Helper function for find_free_extent(). 3497 * 3498 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3499 * Return -EAGAIN to inform caller that we need to re-search this block group 3500 * Return >0 to inform caller that we find nothing 3501 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3502 */ 3503 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3504 struct btrfs_free_cluster *last_ptr, 3505 struct find_free_extent_ctl *ffe_ctl, 3506 struct btrfs_block_group **cluster_bg_ret) 3507 { 3508 struct btrfs_block_group *cluster_bg; 3509 u64 aligned_cluster; 3510 u64 offset; 3511 int ret; 3512 3513 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3514 if (!cluster_bg) 3515 goto refill_cluster; 3516 if (cluster_bg != bg && (cluster_bg->ro || 3517 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3518 goto release_cluster; 3519 3520 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3521 ffe_ctl->num_bytes, cluster_bg->start, 3522 &ffe_ctl->max_extent_size); 3523 if (offset) { 3524 /* We have a block, we're done */ 3525 spin_unlock(&last_ptr->refill_lock); 3526 trace_btrfs_reserve_extent_cluster(cluster_bg, 3527 ffe_ctl->search_start, ffe_ctl->num_bytes); 3528 *cluster_bg_ret = cluster_bg; 3529 ffe_ctl->found_offset = offset; 3530 return 0; 3531 } 3532 WARN_ON(last_ptr->block_group != cluster_bg); 3533 3534 release_cluster: 3535 /* 3536 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3537 * lets just skip it and let the allocator find whatever block it can 3538 * find. If we reach this point, we will have tried the cluster 3539 * allocator plenty of times and not have found anything, so we are 3540 * likely way too fragmented for the clustering stuff to find anything. 3541 * 3542 * However, if the cluster is taken from the current block group, 3543 * release the cluster first, so that we stand a better chance of 3544 * succeeding in the unclustered allocation. 3545 */ 3546 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3547 spin_unlock(&last_ptr->refill_lock); 3548 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3549 return -ENOENT; 3550 } 3551 3552 /* This cluster didn't work out, free it and start over */ 3553 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3554 3555 if (cluster_bg != bg) 3556 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3557 3558 refill_cluster: 3559 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3560 spin_unlock(&last_ptr->refill_lock); 3561 return -ENOENT; 3562 } 3563 3564 aligned_cluster = max_t(u64, 3565 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3566 bg->full_stripe_len); 3567 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3568 ffe_ctl->num_bytes, aligned_cluster); 3569 if (ret == 0) { 3570 /* Now pull our allocation out of this cluster */ 3571 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3572 ffe_ctl->num_bytes, ffe_ctl->search_start, 3573 &ffe_ctl->max_extent_size); 3574 if (offset) { 3575 /* We found one, proceed */ 3576 spin_unlock(&last_ptr->refill_lock); 3577 trace_btrfs_reserve_extent_cluster(bg, 3578 ffe_ctl->search_start, 3579 ffe_ctl->num_bytes); 3580 ffe_ctl->found_offset = offset; 3581 return 0; 3582 } 3583 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3584 !ffe_ctl->retry_clustered) { 3585 spin_unlock(&last_ptr->refill_lock); 3586 3587 ffe_ctl->retry_clustered = true; 3588 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3589 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3590 return -EAGAIN; 3591 } 3592 /* 3593 * At this point we either didn't find a cluster or we weren't able to 3594 * allocate a block from our cluster. Free the cluster we've been 3595 * trying to use, and go to the next block group. 3596 */ 3597 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3598 spin_unlock(&last_ptr->refill_lock); 3599 return 1; 3600 } 3601 3602 /* 3603 * Return >0 to inform caller that we find nothing 3604 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3605 * Return -EAGAIN to inform caller that we need to re-search this block group 3606 */ 3607 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3608 struct btrfs_free_cluster *last_ptr, 3609 struct find_free_extent_ctl *ffe_ctl) 3610 { 3611 u64 offset; 3612 3613 /* 3614 * We are doing an unclustered allocation, set the fragmented flag so 3615 * we don't bother trying to setup a cluster again until we get more 3616 * space. 3617 */ 3618 if (unlikely(last_ptr)) { 3619 spin_lock(&last_ptr->lock); 3620 last_ptr->fragmented = 1; 3621 spin_unlock(&last_ptr->lock); 3622 } 3623 if (ffe_ctl->cached) { 3624 struct btrfs_free_space_ctl *free_space_ctl; 3625 3626 free_space_ctl = bg->free_space_ctl; 3627 spin_lock(&free_space_ctl->tree_lock); 3628 if (free_space_ctl->free_space < 3629 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3630 ffe_ctl->empty_size) { 3631 ffe_ctl->total_free_space = max_t(u64, 3632 ffe_ctl->total_free_space, 3633 free_space_ctl->free_space); 3634 spin_unlock(&free_space_ctl->tree_lock); 3635 return 1; 3636 } 3637 spin_unlock(&free_space_ctl->tree_lock); 3638 } 3639 3640 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3641 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3642 &ffe_ctl->max_extent_size); 3643 3644 /* 3645 * If we didn't find a chunk, and we haven't failed on this block group 3646 * before, and this block group is in the middle of caching and we are 3647 * ok with waiting, then go ahead and wait for progress to be made, and 3648 * set @retry_unclustered to true. 3649 * 3650 * If @retry_unclustered is true then we've already waited on this 3651 * block group once and should move on to the next block group. 3652 */ 3653 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3654 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3655 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3656 ffe_ctl->empty_size); 3657 ffe_ctl->retry_unclustered = true; 3658 return -EAGAIN; 3659 } else if (!offset) { 3660 return 1; 3661 } 3662 ffe_ctl->found_offset = offset; 3663 return 0; 3664 } 3665 3666 /* 3667 * Return >0 means caller needs to re-search for free extent 3668 * Return 0 means we have the needed free extent. 3669 * Return <0 means we failed to locate any free extent. 3670 */ 3671 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3672 struct btrfs_free_cluster *last_ptr, 3673 struct btrfs_key *ins, 3674 struct find_free_extent_ctl *ffe_ctl, 3675 int full_search, bool use_cluster) 3676 { 3677 struct btrfs_root *root = fs_info->extent_root; 3678 int ret; 3679 3680 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3681 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3682 ffe_ctl->orig_have_caching_bg = true; 3683 3684 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3685 ffe_ctl->have_caching_bg) 3686 return 1; 3687 3688 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3689 return 1; 3690 3691 if (ins->objectid) { 3692 if (!use_cluster && last_ptr) { 3693 spin_lock(&last_ptr->lock); 3694 last_ptr->window_start = ins->objectid; 3695 spin_unlock(&last_ptr->lock); 3696 } 3697 return 0; 3698 } 3699 3700 /* 3701 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3702 * caching kthreads as we move along 3703 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3704 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3705 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3706 * again 3707 */ 3708 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3709 ffe_ctl->index = 0; 3710 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3711 /* 3712 * We want to skip the LOOP_CACHING_WAIT step if we 3713 * don't have any uncached bgs and we've already done a 3714 * full search through. 3715 */ 3716 if (ffe_ctl->orig_have_caching_bg || !full_search) 3717 ffe_ctl->loop = LOOP_CACHING_WAIT; 3718 else 3719 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3720 } else { 3721 ffe_ctl->loop++; 3722 } 3723 3724 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3725 struct btrfs_trans_handle *trans; 3726 int exist = 0; 3727 3728 trans = current->journal_info; 3729 if (trans) 3730 exist = 1; 3731 else 3732 trans = btrfs_join_transaction(root); 3733 3734 if (IS_ERR(trans)) { 3735 ret = PTR_ERR(trans); 3736 return ret; 3737 } 3738 3739 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3740 CHUNK_ALLOC_FORCE); 3741 3742 /* 3743 * If we can't allocate a new chunk we've already looped 3744 * through at least once, move on to the NO_EMPTY_SIZE 3745 * case. 3746 */ 3747 if (ret == -ENOSPC) 3748 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3749 3750 /* Do not bail out on ENOSPC since we can do more. */ 3751 if (ret < 0 && ret != -ENOSPC) 3752 btrfs_abort_transaction(trans, ret); 3753 else 3754 ret = 0; 3755 if (!exist) 3756 btrfs_end_transaction(trans); 3757 if (ret) 3758 return ret; 3759 } 3760 3761 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3762 /* 3763 * Don't loop again if we already have no empty_size and 3764 * no empty_cluster. 3765 */ 3766 if (ffe_ctl->empty_size == 0 && 3767 ffe_ctl->empty_cluster == 0) 3768 return -ENOSPC; 3769 ffe_ctl->empty_size = 0; 3770 ffe_ctl->empty_cluster = 0; 3771 } 3772 return 1; 3773 } 3774 return -ENOSPC; 3775 } 3776 3777 /* 3778 * walks the btree of allocated extents and find a hole of a given size. 3779 * The key ins is changed to record the hole: 3780 * ins->objectid == start position 3781 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3782 * ins->offset == the size of the hole. 3783 * Any available blocks before search_start are skipped. 3784 * 3785 * If there is no suitable free space, we will record the max size of 3786 * the free space extent currently. 3787 * 3788 * The overall logic and call chain: 3789 * 3790 * find_free_extent() 3791 * |- Iterate through all block groups 3792 * | |- Get a valid block group 3793 * | |- Try to do clustered allocation in that block group 3794 * | |- Try to do unclustered allocation in that block group 3795 * | |- Check if the result is valid 3796 * | | |- If valid, then exit 3797 * | |- Jump to next block group 3798 * | 3799 * |- Push harder to find free extents 3800 * |- If not found, re-iterate all block groups 3801 */ 3802 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3803 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3804 u64 hint_byte, struct btrfs_key *ins, 3805 u64 flags, int delalloc) 3806 { 3807 int ret = 0; 3808 int cache_block_group_error = 0; 3809 struct btrfs_free_cluster *last_ptr = NULL; 3810 struct btrfs_block_group *block_group = NULL; 3811 struct find_free_extent_ctl ffe_ctl = {0}; 3812 struct btrfs_space_info *space_info; 3813 bool use_cluster = true; 3814 bool full_search = false; 3815 3816 WARN_ON(num_bytes < fs_info->sectorsize); 3817 3818 ffe_ctl.num_bytes = num_bytes; 3819 ffe_ctl.empty_size = empty_size; 3820 ffe_ctl.flags = flags; 3821 ffe_ctl.search_start = 0; 3822 ffe_ctl.retry_clustered = false; 3823 ffe_ctl.retry_unclustered = false; 3824 ffe_ctl.delalloc = delalloc; 3825 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3826 ffe_ctl.have_caching_bg = false; 3827 ffe_ctl.orig_have_caching_bg = false; 3828 ffe_ctl.found_offset = 0; 3829 3830 ins->type = BTRFS_EXTENT_ITEM_KEY; 3831 ins->objectid = 0; 3832 ins->offset = 0; 3833 3834 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3835 3836 space_info = btrfs_find_space_info(fs_info, flags); 3837 if (!space_info) { 3838 btrfs_err(fs_info, "No space info for %llu", flags); 3839 return -ENOSPC; 3840 } 3841 3842 /* 3843 * If our free space is heavily fragmented we may not be able to make 3844 * big contiguous allocations, so instead of doing the expensive search 3845 * for free space, simply return ENOSPC with our max_extent_size so we 3846 * can go ahead and search for a more manageable chunk. 3847 * 3848 * If our max_extent_size is large enough for our allocation simply 3849 * disable clustering since we will likely not be able to find enough 3850 * space to create a cluster and induce latency trying. 3851 */ 3852 if (unlikely(space_info->max_extent_size)) { 3853 spin_lock(&space_info->lock); 3854 if (space_info->max_extent_size && 3855 num_bytes > space_info->max_extent_size) { 3856 ins->offset = space_info->max_extent_size; 3857 spin_unlock(&space_info->lock); 3858 return -ENOSPC; 3859 } else if (space_info->max_extent_size) { 3860 use_cluster = false; 3861 } 3862 spin_unlock(&space_info->lock); 3863 } 3864 3865 last_ptr = fetch_cluster_info(fs_info, space_info, 3866 &ffe_ctl.empty_cluster); 3867 if (last_ptr) { 3868 spin_lock(&last_ptr->lock); 3869 if (last_ptr->block_group) 3870 hint_byte = last_ptr->window_start; 3871 if (last_ptr->fragmented) { 3872 /* 3873 * We still set window_start so we can keep track of the 3874 * last place we found an allocation to try and save 3875 * some time. 3876 */ 3877 hint_byte = last_ptr->window_start; 3878 use_cluster = false; 3879 } 3880 spin_unlock(&last_ptr->lock); 3881 } 3882 3883 ffe_ctl.search_start = max(ffe_ctl.search_start, 3884 first_logical_byte(fs_info, 0)); 3885 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte); 3886 if (ffe_ctl.search_start == hint_byte) { 3887 block_group = btrfs_lookup_block_group(fs_info, 3888 ffe_ctl.search_start); 3889 /* 3890 * we don't want to use the block group if it doesn't match our 3891 * allocation bits, or if its not cached. 3892 * 3893 * However if we are re-searching with an ideal block group 3894 * picked out then we don't care that the block group is cached. 3895 */ 3896 if (block_group && block_group_bits(block_group, flags) && 3897 block_group->cached != BTRFS_CACHE_NO) { 3898 down_read(&space_info->groups_sem); 3899 if (list_empty(&block_group->list) || 3900 block_group->ro) { 3901 /* 3902 * someone is removing this block group, 3903 * we can't jump into the have_block_group 3904 * target because our list pointers are not 3905 * valid 3906 */ 3907 btrfs_put_block_group(block_group); 3908 up_read(&space_info->groups_sem); 3909 } else { 3910 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 3911 block_group->flags); 3912 btrfs_lock_block_group(block_group, delalloc); 3913 goto have_block_group; 3914 } 3915 } else if (block_group) { 3916 btrfs_put_block_group(block_group); 3917 } 3918 } 3919 search: 3920 ffe_ctl.have_caching_bg = false; 3921 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 3922 ffe_ctl.index == 0) 3923 full_search = true; 3924 down_read(&space_info->groups_sem); 3925 list_for_each_entry(block_group, 3926 &space_info->block_groups[ffe_ctl.index], list) { 3927 /* If the block group is read-only, we can skip it entirely. */ 3928 if (unlikely(block_group->ro)) 3929 continue; 3930 3931 btrfs_grab_block_group(block_group, delalloc); 3932 ffe_ctl.search_start = block_group->start; 3933 3934 /* 3935 * this can happen if we end up cycling through all the 3936 * raid types, but we want to make sure we only allocate 3937 * for the proper type. 3938 */ 3939 if (!block_group_bits(block_group, flags)) { 3940 u64 extra = BTRFS_BLOCK_GROUP_DUP | 3941 BTRFS_BLOCK_GROUP_RAID1_MASK | 3942 BTRFS_BLOCK_GROUP_RAID56_MASK | 3943 BTRFS_BLOCK_GROUP_RAID10; 3944 3945 /* 3946 * if they asked for extra copies and this block group 3947 * doesn't provide them, bail. This does allow us to 3948 * fill raid0 from raid1. 3949 */ 3950 if ((flags & extra) && !(block_group->flags & extra)) 3951 goto loop; 3952 3953 /* 3954 * This block group has different flags than we want. 3955 * It's possible that we have MIXED_GROUP flag but no 3956 * block group is mixed. Just skip such block group. 3957 */ 3958 btrfs_release_block_group(block_group, delalloc); 3959 continue; 3960 } 3961 3962 have_block_group: 3963 ffe_ctl.cached = btrfs_block_group_done(block_group); 3964 if (unlikely(!ffe_ctl.cached)) { 3965 ffe_ctl.have_caching_bg = true; 3966 ret = btrfs_cache_block_group(block_group, 0); 3967 3968 /* 3969 * If we get ENOMEM here or something else we want to 3970 * try other block groups, because it may not be fatal. 3971 * However if we can't find anything else we need to 3972 * save our return here so that we return the actual 3973 * error that caused problems, not ENOSPC. 3974 */ 3975 if (ret < 0) { 3976 if (!cache_block_group_error) 3977 cache_block_group_error = ret; 3978 ret = 0; 3979 goto loop; 3980 } 3981 ret = 0; 3982 } 3983 3984 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 3985 goto loop; 3986 3987 /* 3988 * Ok we want to try and use the cluster allocator, so 3989 * lets look there 3990 */ 3991 if (last_ptr && use_cluster) { 3992 struct btrfs_block_group *cluster_bg = NULL; 3993 3994 ret = find_free_extent_clustered(block_group, last_ptr, 3995 &ffe_ctl, &cluster_bg); 3996 3997 if (ret == 0) { 3998 if (cluster_bg && cluster_bg != block_group) { 3999 btrfs_release_block_group(block_group, 4000 delalloc); 4001 block_group = cluster_bg; 4002 } 4003 goto checks; 4004 } else if (ret == -EAGAIN) { 4005 goto have_block_group; 4006 } else if (ret > 0) { 4007 goto loop; 4008 } 4009 /* ret == -ENOENT case falls through */ 4010 } 4011 4012 ret = find_free_extent_unclustered(block_group, last_ptr, 4013 &ffe_ctl); 4014 if (ret == -EAGAIN) 4015 goto have_block_group; 4016 else if (ret > 0) 4017 goto loop; 4018 /* ret == 0 case falls through */ 4019 checks: 4020 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 4021 fs_info->stripesize); 4022 4023 /* move on to the next group */ 4024 if (ffe_ctl.search_start + num_bytes > 4025 block_group->start + block_group->length) { 4026 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4027 num_bytes); 4028 goto loop; 4029 } 4030 4031 if (ffe_ctl.found_offset < ffe_ctl.search_start) 4032 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4033 ffe_ctl.search_start - ffe_ctl.found_offset); 4034 4035 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 4036 num_bytes, delalloc); 4037 if (ret == -EAGAIN) { 4038 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4039 num_bytes); 4040 goto loop; 4041 } 4042 btrfs_inc_block_group_reservations(block_group); 4043 4044 /* we are all good, lets return */ 4045 ins->objectid = ffe_ctl.search_start; 4046 ins->offset = num_bytes; 4047 4048 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4049 num_bytes); 4050 btrfs_release_block_group(block_group, delalloc); 4051 break; 4052 loop: 4053 ffe_ctl.retry_clustered = false; 4054 ffe_ctl.retry_unclustered = false; 4055 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4056 ffe_ctl.index); 4057 btrfs_release_block_group(block_group, delalloc); 4058 cond_resched(); 4059 } 4060 up_read(&space_info->groups_sem); 4061 4062 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl, 4063 full_search, use_cluster); 4064 if (ret > 0) 4065 goto search; 4066 4067 if (ret == -ENOSPC && !cache_block_group_error) { 4068 /* 4069 * Use ffe_ctl->total_free_space as fallback if we can't find 4070 * any contiguous hole. 4071 */ 4072 if (!ffe_ctl.max_extent_size) 4073 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4074 spin_lock(&space_info->lock); 4075 space_info->max_extent_size = ffe_ctl.max_extent_size; 4076 spin_unlock(&space_info->lock); 4077 ins->offset = ffe_ctl.max_extent_size; 4078 } else if (ret == -ENOSPC) { 4079 ret = cache_block_group_error; 4080 } 4081 return ret; 4082 } 4083 4084 /* 4085 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4086 * hole that is at least as big as @num_bytes. 4087 * 4088 * @root - The root that will contain this extent 4089 * 4090 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4091 * is used for accounting purposes. This value differs 4092 * from @num_bytes only in the case of compressed extents. 4093 * 4094 * @num_bytes - Number of bytes to allocate on-disk. 4095 * 4096 * @min_alloc_size - Indicates the minimum amount of space that the 4097 * allocator should try to satisfy. In some cases 4098 * @num_bytes may be larger than what is required and if 4099 * the filesystem is fragmented then allocation fails. 4100 * However, the presence of @min_alloc_size gives a 4101 * chance to try and satisfy the smaller allocation. 4102 * 4103 * @empty_size - A hint that you plan on doing more COW. This is the 4104 * size in bytes the allocator should try to find free 4105 * next to the block it returns. This is just a hint and 4106 * may be ignored by the allocator. 4107 * 4108 * @hint_byte - Hint to the allocator to start searching above the byte 4109 * address passed. It might be ignored. 4110 * 4111 * @ins - This key is modified to record the found hole. It will 4112 * have the following values: 4113 * ins->objectid == start position 4114 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4115 * ins->offset == the size of the hole. 4116 * 4117 * @is_data - Boolean flag indicating whether an extent is 4118 * allocated for data (true) or metadata (false) 4119 * 4120 * @delalloc - Boolean flag indicating whether this allocation is for 4121 * delalloc or not. If 'true' data_rwsem of block groups 4122 * is going to be acquired. 4123 * 4124 * 4125 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4126 * case -ENOSPC is returned then @ins->offset will contain the size of the 4127 * largest available hole the allocator managed to find. 4128 */ 4129 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4130 u64 num_bytes, u64 min_alloc_size, 4131 u64 empty_size, u64 hint_byte, 4132 struct btrfs_key *ins, int is_data, int delalloc) 4133 { 4134 struct btrfs_fs_info *fs_info = root->fs_info; 4135 bool final_tried = num_bytes == min_alloc_size; 4136 u64 flags; 4137 int ret; 4138 4139 flags = get_alloc_profile_by_root(root, is_data); 4140 again: 4141 WARN_ON(num_bytes < fs_info->sectorsize); 4142 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4143 hint_byte, ins, flags, delalloc); 4144 if (!ret && !is_data) { 4145 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4146 } else if (ret == -ENOSPC) { 4147 if (!final_tried && ins->offset) { 4148 num_bytes = min(num_bytes >> 1, ins->offset); 4149 num_bytes = round_down(num_bytes, 4150 fs_info->sectorsize); 4151 num_bytes = max(num_bytes, min_alloc_size); 4152 ram_bytes = num_bytes; 4153 if (num_bytes == min_alloc_size) 4154 final_tried = true; 4155 goto again; 4156 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4157 struct btrfs_space_info *sinfo; 4158 4159 sinfo = btrfs_find_space_info(fs_info, flags); 4160 btrfs_err(fs_info, 4161 "allocation failed flags %llu, wanted %llu", 4162 flags, num_bytes); 4163 if (sinfo) 4164 btrfs_dump_space_info(fs_info, sinfo, 4165 num_bytes, 1); 4166 } 4167 } 4168 4169 return ret; 4170 } 4171 4172 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4173 u64 start, u64 len, int delalloc) 4174 { 4175 struct btrfs_block_group *cache; 4176 4177 cache = btrfs_lookup_block_group(fs_info, start); 4178 if (!cache) { 4179 btrfs_err(fs_info, "Unable to find block group for %llu", 4180 start); 4181 return -ENOSPC; 4182 } 4183 4184 btrfs_add_free_space(cache, start, len); 4185 btrfs_free_reserved_bytes(cache, len, delalloc); 4186 trace_btrfs_reserved_extent_free(fs_info, start, len); 4187 4188 btrfs_put_block_group(cache); 4189 return 0; 4190 } 4191 4192 int btrfs_pin_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 4193 { 4194 struct btrfs_block_group *cache; 4195 int ret = 0; 4196 4197 cache = btrfs_lookup_block_group(fs_info, start); 4198 if (!cache) { 4199 btrfs_err(fs_info, "unable to find block group for %llu", start); 4200 return -ENOSPC; 4201 } 4202 4203 ret = pin_down_extent(cache, start, len, 1); 4204 btrfs_put_block_group(cache); 4205 return ret; 4206 } 4207 4208 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4209 u64 parent, u64 root_objectid, 4210 u64 flags, u64 owner, u64 offset, 4211 struct btrfs_key *ins, int ref_mod) 4212 { 4213 struct btrfs_fs_info *fs_info = trans->fs_info; 4214 int ret; 4215 struct btrfs_extent_item *extent_item; 4216 struct btrfs_extent_inline_ref *iref; 4217 struct btrfs_path *path; 4218 struct extent_buffer *leaf; 4219 int type; 4220 u32 size; 4221 4222 if (parent > 0) 4223 type = BTRFS_SHARED_DATA_REF_KEY; 4224 else 4225 type = BTRFS_EXTENT_DATA_REF_KEY; 4226 4227 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4228 4229 path = btrfs_alloc_path(); 4230 if (!path) 4231 return -ENOMEM; 4232 4233 path->leave_spinning = 1; 4234 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4235 ins, size); 4236 if (ret) { 4237 btrfs_free_path(path); 4238 return ret; 4239 } 4240 4241 leaf = path->nodes[0]; 4242 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4243 struct btrfs_extent_item); 4244 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4245 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4246 btrfs_set_extent_flags(leaf, extent_item, 4247 flags | BTRFS_EXTENT_FLAG_DATA); 4248 4249 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4250 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4251 if (parent > 0) { 4252 struct btrfs_shared_data_ref *ref; 4253 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4254 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4255 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4256 } else { 4257 struct btrfs_extent_data_ref *ref; 4258 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4259 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4260 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4261 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4262 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4263 } 4264 4265 btrfs_mark_buffer_dirty(path->nodes[0]); 4266 btrfs_free_path(path); 4267 4268 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4269 if (ret) 4270 return ret; 4271 4272 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4273 if (ret) { /* -ENOENT, logic error */ 4274 btrfs_err(fs_info, "update block group failed for %llu %llu", 4275 ins->objectid, ins->offset); 4276 BUG(); 4277 } 4278 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4279 return ret; 4280 } 4281 4282 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4283 struct btrfs_delayed_ref_node *node, 4284 struct btrfs_delayed_extent_op *extent_op) 4285 { 4286 struct btrfs_fs_info *fs_info = trans->fs_info; 4287 int ret; 4288 struct btrfs_extent_item *extent_item; 4289 struct btrfs_key extent_key; 4290 struct btrfs_tree_block_info *block_info; 4291 struct btrfs_extent_inline_ref *iref; 4292 struct btrfs_path *path; 4293 struct extent_buffer *leaf; 4294 struct btrfs_delayed_tree_ref *ref; 4295 u32 size = sizeof(*extent_item) + sizeof(*iref); 4296 u64 num_bytes; 4297 u64 flags = extent_op->flags_to_set; 4298 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4299 4300 ref = btrfs_delayed_node_to_tree_ref(node); 4301 4302 extent_key.objectid = node->bytenr; 4303 if (skinny_metadata) { 4304 extent_key.offset = ref->level; 4305 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4306 num_bytes = fs_info->nodesize; 4307 } else { 4308 extent_key.offset = node->num_bytes; 4309 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4310 size += sizeof(*block_info); 4311 num_bytes = node->num_bytes; 4312 } 4313 4314 path = btrfs_alloc_path(); 4315 if (!path) 4316 return -ENOMEM; 4317 4318 path->leave_spinning = 1; 4319 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4320 &extent_key, size); 4321 if (ret) { 4322 btrfs_free_path(path); 4323 return ret; 4324 } 4325 4326 leaf = path->nodes[0]; 4327 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4328 struct btrfs_extent_item); 4329 btrfs_set_extent_refs(leaf, extent_item, 1); 4330 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4331 btrfs_set_extent_flags(leaf, extent_item, 4332 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4333 4334 if (skinny_metadata) { 4335 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4336 } else { 4337 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4338 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4339 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4340 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4341 } 4342 4343 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4344 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4345 btrfs_set_extent_inline_ref_type(leaf, iref, 4346 BTRFS_SHARED_BLOCK_REF_KEY); 4347 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4348 } else { 4349 btrfs_set_extent_inline_ref_type(leaf, iref, 4350 BTRFS_TREE_BLOCK_REF_KEY); 4351 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4352 } 4353 4354 btrfs_mark_buffer_dirty(leaf); 4355 btrfs_free_path(path); 4356 4357 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4358 num_bytes); 4359 if (ret) 4360 return ret; 4361 4362 ret = btrfs_update_block_group(trans, extent_key.objectid, 4363 fs_info->nodesize, 1); 4364 if (ret) { /* -ENOENT, logic error */ 4365 btrfs_err(fs_info, "update block group failed for %llu %llu", 4366 extent_key.objectid, extent_key.offset); 4367 BUG(); 4368 } 4369 4370 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4371 fs_info->nodesize); 4372 return ret; 4373 } 4374 4375 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4376 struct btrfs_root *root, u64 owner, 4377 u64 offset, u64 ram_bytes, 4378 struct btrfs_key *ins) 4379 { 4380 struct btrfs_ref generic_ref = { 0 }; 4381 int ret; 4382 4383 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4384 4385 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4386 ins->objectid, ins->offset, 0); 4387 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4388 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4389 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4390 ram_bytes, NULL, NULL); 4391 return ret; 4392 } 4393 4394 /* 4395 * this is used by the tree logging recovery code. It records that 4396 * an extent has been allocated and makes sure to clear the free 4397 * space cache bits as well 4398 */ 4399 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4400 u64 root_objectid, u64 owner, u64 offset, 4401 struct btrfs_key *ins) 4402 { 4403 struct btrfs_fs_info *fs_info = trans->fs_info; 4404 int ret; 4405 struct btrfs_block_group *block_group; 4406 struct btrfs_space_info *space_info; 4407 4408 /* 4409 * Mixed block groups will exclude before processing the log so we only 4410 * need to do the exclude dance if this fs isn't mixed. 4411 */ 4412 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4413 ret = __exclude_logged_extent(fs_info, ins->objectid, 4414 ins->offset); 4415 if (ret) 4416 return ret; 4417 } 4418 4419 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4420 if (!block_group) 4421 return -EINVAL; 4422 4423 space_info = block_group->space_info; 4424 spin_lock(&space_info->lock); 4425 spin_lock(&block_group->lock); 4426 space_info->bytes_reserved += ins->offset; 4427 block_group->reserved += ins->offset; 4428 spin_unlock(&block_group->lock); 4429 spin_unlock(&space_info->lock); 4430 4431 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4432 offset, ins, 1); 4433 btrfs_put_block_group(block_group); 4434 return ret; 4435 } 4436 4437 static struct extent_buffer * 4438 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4439 u64 bytenr, int level, u64 owner) 4440 { 4441 struct btrfs_fs_info *fs_info = root->fs_info; 4442 struct extent_buffer *buf; 4443 4444 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4445 if (IS_ERR(buf)) 4446 return buf; 4447 4448 /* 4449 * Extra safety check in case the extent tree is corrupted and extent 4450 * allocator chooses to use a tree block which is already used and 4451 * locked. 4452 */ 4453 if (buf->lock_owner == current->pid) { 4454 btrfs_err_rl(fs_info, 4455 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4456 buf->start, btrfs_header_owner(buf), current->pid); 4457 free_extent_buffer(buf); 4458 return ERR_PTR(-EUCLEAN); 4459 } 4460 4461 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 4462 btrfs_tree_lock(buf); 4463 btrfs_clean_tree_block(buf); 4464 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4465 4466 btrfs_set_lock_blocking_write(buf); 4467 set_extent_buffer_uptodate(buf); 4468 4469 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4470 btrfs_set_header_level(buf, level); 4471 btrfs_set_header_bytenr(buf, buf->start); 4472 btrfs_set_header_generation(buf, trans->transid); 4473 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4474 btrfs_set_header_owner(buf, owner); 4475 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4476 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4477 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4478 buf->log_index = root->log_transid % 2; 4479 /* 4480 * we allow two log transactions at a time, use different 4481 * EXTENT bit to differentiate dirty pages. 4482 */ 4483 if (buf->log_index == 0) 4484 set_extent_dirty(&root->dirty_log_pages, buf->start, 4485 buf->start + buf->len - 1, GFP_NOFS); 4486 else 4487 set_extent_new(&root->dirty_log_pages, buf->start, 4488 buf->start + buf->len - 1); 4489 } else { 4490 buf->log_index = -1; 4491 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4492 buf->start + buf->len - 1, GFP_NOFS); 4493 } 4494 trans->dirty = true; 4495 /* this returns a buffer locked for blocking */ 4496 return buf; 4497 } 4498 4499 /* 4500 * finds a free extent and does all the dirty work required for allocation 4501 * returns the tree buffer or an ERR_PTR on error. 4502 */ 4503 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4504 struct btrfs_root *root, 4505 u64 parent, u64 root_objectid, 4506 const struct btrfs_disk_key *key, 4507 int level, u64 hint, 4508 u64 empty_size) 4509 { 4510 struct btrfs_fs_info *fs_info = root->fs_info; 4511 struct btrfs_key ins; 4512 struct btrfs_block_rsv *block_rsv; 4513 struct extent_buffer *buf; 4514 struct btrfs_delayed_extent_op *extent_op; 4515 struct btrfs_ref generic_ref = { 0 }; 4516 u64 flags = 0; 4517 int ret; 4518 u32 blocksize = fs_info->nodesize; 4519 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4520 4521 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4522 if (btrfs_is_testing(fs_info)) { 4523 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4524 level, root_objectid); 4525 if (!IS_ERR(buf)) 4526 root->alloc_bytenr += blocksize; 4527 return buf; 4528 } 4529 #endif 4530 4531 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4532 if (IS_ERR(block_rsv)) 4533 return ERR_CAST(block_rsv); 4534 4535 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4536 empty_size, hint, &ins, 0, 0); 4537 if (ret) 4538 goto out_unuse; 4539 4540 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4541 root_objectid); 4542 if (IS_ERR(buf)) { 4543 ret = PTR_ERR(buf); 4544 goto out_free_reserved; 4545 } 4546 4547 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4548 if (parent == 0) 4549 parent = ins.objectid; 4550 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4551 } else 4552 BUG_ON(parent > 0); 4553 4554 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4555 extent_op = btrfs_alloc_delayed_extent_op(); 4556 if (!extent_op) { 4557 ret = -ENOMEM; 4558 goto out_free_buf; 4559 } 4560 if (key) 4561 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4562 else 4563 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4564 extent_op->flags_to_set = flags; 4565 extent_op->update_key = skinny_metadata ? false : true; 4566 extent_op->update_flags = true; 4567 extent_op->is_data = false; 4568 extent_op->level = level; 4569 4570 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4571 ins.objectid, ins.offset, parent); 4572 generic_ref.real_root = root->root_key.objectid; 4573 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4574 btrfs_ref_tree_mod(fs_info, &generic_ref); 4575 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4576 extent_op, NULL, NULL); 4577 if (ret) 4578 goto out_free_delayed; 4579 } 4580 return buf; 4581 4582 out_free_delayed: 4583 btrfs_free_delayed_extent_op(extent_op); 4584 out_free_buf: 4585 free_extent_buffer(buf); 4586 out_free_reserved: 4587 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4588 out_unuse: 4589 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4590 return ERR_PTR(ret); 4591 } 4592 4593 struct walk_control { 4594 u64 refs[BTRFS_MAX_LEVEL]; 4595 u64 flags[BTRFS_MAX_LEVEL]; 4596 struct btrfs_key update_progress; 4597 struct btrfs_key drop_progress; 4598 int drop_level; 4599 int stage; 4600 int level; 4601 int shared_level; 4602 int update_ref; 4603 int keep_locks; 4604 int reada_slot; 4605 int reada_count; 4606 int restarted; 4607 }; 4608 4609 #define DROP_REFERENCE 1 4610 #define UPDATE_BACKREF 2 4611 4612 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4613 struct btrfs_root *root, 4614 struct walk_control *wc, 4615 struct btrfs_path *path) 4616 { 4617 struct btrfs_fs_info *fs_info = root->fs_info; 4618 u64 bytenr; 4619 u64 generation; 4620 u64 refs; 4621 u64 flags; 4622 u32 nritems; 4623 struct btrfs_key key; 4624 struct extent_buffer *eb; 4625 int ret; 4626 int slot; 4627 int nread = 0; 4628 4629 if (path->slots[wc->level] < wc->reada_slot) { 4630 wc->reada_count = wc->reada_count * 2 / 3; 4631 wc->reada_count = max(wc->reada_count, 2); 4632 } else { 4633 wc->reada_count = wc->reada_count * 3 / 2; 4634 wc->reada_count = min_t(int, wc->reada_count, 4635 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4636 } 4637 4638 eb = path->nodes[wc->level]; 4639 nritems = btrfs_header_nritems(eb); 4640 4641 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4642 if (nread >= wc->reada_count) 4643 break; 4644 4645 cond_resched(); 4646 bytenr = btrfs_node_blockptr(eb, slot); 4647 generation = btrfs_node_ptr_generation(eb, slot); 4648 4649 if (slot == path->slots[wc->level]) 4650 goto reada; 4651 4652 if (wc->stage == UPDATE_BACKREF && 4653 generation <= root->root_key.offset) 4654 continue; 4655 4656 /* We don't lock the tree block, it's OK to be racy here */ 4657 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4658 wc->level - 1, 1, &refs, 4659 &flags); 4660 /* We don't care about errors in readahead. */ 4661 if (ret < 0) 4662 continue; 4663 BUG_ON(refs == 0); 4664 4665 if (wc->stage == DROP_REFERENCE) { 4666 if (refs == 1) 4667 goto reada; 4668 4669 if (wc->level == 1 && 4670 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4671 continue; 4672 if (!wc->update_ref || 4673 generation <= root->root_key.offset) 4674 continue; 4675 btrfs_node_key_to_cpu(eb, &key, slot); 4676 ret = btrfs_comp_cpu_keys(&key, 4677 &wc->update_progress); 4678 if (ret < 0) 4679 continue; 4680 } else { 4681 if (wc->level == 1 && 4682 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4683 continue; 4684 } 4685 reada: 4686 readahead_tree_block(fs_info, bytenr); 4687 nread++; 4688 } 4689 wc->reada_slot = slot; 4690 } 4691 4692 /* 4693 * helper to process tree block while walking down the tree. 4694 * 4695 * when wc->stage == UPDATE_BACKREF, this function updates 4696 * back refs for pointers in the block. 4697 * 4698 * NOTE: return value 1 means we should stop walking down. 4699 */ 4700 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4701 struct btrfs_root *root, 4702 struct btrfs_path *path, 4703 struct walk_control *wc, int lookup_info) 4704 { 4705 struct btrfs_fs_info *fs_info = root->fs_info; 4706 int level = wc->level; 4707 struct extent_buffer *eb = path->nodes[level]; 4708 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4709 int ret; 4710 4711 if (wc->stage == UPDATE_BACKREF && 4712 btrfs_header_owner(eb) != root->root_key.objectid) 4713 return 1; 4714 4715 /* 4716 * when reference count of tree block is 1, it won't increase 4717 * again. once full backref flag is set, we never clear it. 4718 */ 4719 if (lookup_info && 4720 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4721 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4722 BUG_ON(!path->locks[level]); 4723 ret = btrfs_lookup_extent_info(trans, fs_info, 4724 eb->start, level, 1, 4725 &wc->refs[level], 4726 &wc->flags[level]); 4727 BUG_ON(ret == -ENOMEM); 4728 if (ret) 4729 return ret; 4730 BUG_ON(wc->refs[level] == 0); 4731 } 4732 4733 if (wc->stage == DROP_REFERENCE) { 4734 if (wc->refs[level] > 1) 4735 return 1; 4736 4737 if (path->locks[level] && !wc->keep_locks) { 4738 btrfs_tree_unlock_rw(eb, path->locks[level]); 4739 path->locks[level] = 0; 4740 } 4741 return 0; 4742 } 4743 4744 /* wc->stage == UPDATE_BACKREF */ 4745 if (!(wc->flags[level] & flag)) { 4746 BUG_ON(!path->locks[level]); 4747 ret = btrfs_inc_ref(trans, root, eb, 1); 4748 BUG_ON(ret); /* -ENOMEM */ 4749 ret = btrfs_dec_ref(trans, root, eb, 0); 4750 BUG_ON(ret); /* -ENOMEM */ 4751 ret = btrfs_set_disk_extent_flags(trans, eb->start, 4752 eb->len, flag, 4753 btrfs_header_level(eb), 0); 4754 BUG_ON(ret); /* -ENOMEM */ 4755 wc->flags[level] |= flag; 4756 } 4757 4758 /* 4759 * the block is shared by multiple trees, so it's not good to 4760 * keep the tree lock 4761 */ 4762 if (path->locks[level] && level > 0) { 4763 btrfs_tree_unlock_rw(eb, path->locks[level]); 4764 path->locks[level] = 0; 4765 } 4766 return 0; 4767 } 4768 4769 /* 4770 * This is used to verify a ref exists for this root to deal with a bug where we 4771 * would have a drop_progress key that hadn't been updated properly. 4772 */ 4773 static int check_ref_exists(struct btrfs_trans_handle *trans, 4774 struct btrfs_root *root, u64 bytenr, u64 parent, 4775 int level) 4776 { 4777 struct btrfs_path *path; 4778 struct btrfs_extent_inline_ref *iref; 4779 int ret; 4780 4781 path = btrfs_alloc_path(); 4782 if (!path) 4783 return -ENOMEM; 4784 4785 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4786 root->fs_info->nodesize, parent, 4787 root->root_key.objectid, level, 0); 4788 btrfs_free_path(path); 4789 if (ret == -ENOENT) 4790 return 0; 4791 if (ret < 0) 4792 return ret; 4793 return 1; 4794 } 4795 4796 /* 4797 * helper to process tree block pointer. 4798 * 4799 * when wc->stage == DROP_REFERENCE, this function checks 4800 * reference count of the block pointed to. if the block 4801 * is shared and we need update back refs for the subtree 4802 * rooted at the block, this function changes wc->stage to 4803 * UPDATE_BACKREF. if the block is shared and there is no 4804 * need to update back, this function drops the reference 4805 * to the block. 4806 * 4807 * NOTE: return value 1 means we should stop walking down. 4808 */ 4809 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4810 struct btrfs_root *root, 4811 struct btrfs_path *path, 4812 struct walk_control *wc, int *lookup_info) 4813 { 4814 struct btrfs_fs_info *fs_info = root->fs_info; 4815 u64 bytenr; 4816 u64 generation; 4817 u64 parent; 4818 struct btrfs_key key; 4819 struct btrfs_key first_key; 4820 struct btrfs_ref ref = { 0 }; 4821 struct extent_buffer *next; 4822 int level = wc->level; 4823 int reada = 0; 4824 int ret = 0; 4825 bool need_account = false; 4826 4827 generation = btrfs_node_ptr_generation(path->nodes[level], 4828 path->slots[level]); 4829 /* 4830 * if the lower level block was created before the snapshot 4831 * was created, we know there is no need to update back refs 4832 * for the subtree 4833 */ 4834 if (wc->stage == UPDATE_BACKREF && 4835 generation <= root->root_key.offset) { 4836 *lookup_info = 1; 4837 return 1; 4838 } 4839 4840 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4841 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4842 path->slots[level]); 4843 4844 next = find_extent_buffer(fs_info, bytenr); 4845 if (!next) { 4846 next = btrfs_find_create_tree_block(fs_info, bytenr); 4847 if (IS_ERR(next)) 4848 return PTR_ERR(next); 4849 4850 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4851 level - 1); 4852 reada = 1; 4853 } 4854 btrfs_tree_lock(next); 4855 btrfs_set_lock_blocking_write(next); 4856 4857 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4858 &wc->refs[level - 1], 4859 &wc->flags[level - 1]); 4860 if (ret < 0) 4861 goto out_unlock; 4862 4863 if (unlikely(wc->refs[level - 1] == 0)) { 4864 btrfs_err(fs_info, "Missing references."); 4865 ret = -EIO; 4866 goto out_unlock; 4867 } 4868 *lookup_info = 0; 4869 4870 if (wc->stage == DROP_REFERENCE) { 4871 if (wc->refs[level - 1] > 1) { 4872 need_account = true; 4873 if (level == 1 && 4874 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4875 goto skip; 4876 4877 if (!wc->update_ref || 4878 generation <= root->root_key.offset) 4879 goto skip; 4880 4881 btrfs_node_key_to_cpu(path->nodes[level], &key, 4882 path->slots[level]); 4883 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4884 if (ret < 0) 4885 goto skip; 4886 4887 wc->stage = UPDATE_BACKREF; 4888 wc->shared_level = level - 1; 4889 } 4890 } else { 4891 if (level == 1 && 4892 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4893 goto skip; 4894 } 4895 4896 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4897 btrfs_tree_unlock(next); 4898 free_extent_buffer(next); 4899 next = NULL; 4900 *lookup_info = 1; 4901 } 4902 4903 if (!next) { 4904 if (reada && level == 1) 4905 reada_walk_down(trans, root, wc, path); 4906 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4907 &first_key); 4908 if (IS_ERR(next)) { 4909 return PTR_ERR(next); 4910 } else if (!extent_buffer_uptodate(next)) { 4911 free_extent_buffer(next); 4912 return -EIO; 4913 } 4914 btrfs_tree_lock(next); 4915 btrfs_set_lock_blocking_write(next); 4916 } 4917 4918 level--; 4919 ASSERT(level == btrfs_header_level(next)); 4920 if (level != btrfs_header_level(next)) { 4921 btrfs_err(root->fs_info, "mismatched level"); 4922 ret = -EIO; 4923 goto out_unlock; 4924 } 4925 path->nodes[level] = next; 4926 path->slots[level] = 0; 4927 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 4928 wc->level = level; 4929 if (wc->level == 1) 4930 wc->reada_slot = 0; 4931 return 0; 4932 skip: 4933 wc->refs[level - 1] = 0; 4934 wc->flags[level - 1] = 0; 4935 if (wc->stage == DROP_REFERENCE) { 4936 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 4937 parent = path->nodes[level]->start; 4938 } else { 4939 ASSERT(root->root_key.objectid == 4940 btrfs_header_owner(path->nodes[level])); 4941 if (root->root_key.objectid != 4942 btrfs_header_owner(path->nodes[level])) { 4943 btrfs_err(root->fs_info, 4944 "mismatched block owner"); 4945 ret = -EIO; 4946 goto out_unlock; 4947 } 4948 parent = 0; 4949 } 4950 4951 /* 4952 * If we had a drop_progress we need to verify the refs are set 4953 * as expected. If we find our ref then we know that from here 4954 * on out everything should be correct, and we can clear the 4955 * ->restarted flag. 4956 */ 4957 if (wc->restarted) { 4958 ret = check_ref_exists(trans, root, bytenr, parent, 4959 level - 1); 4960 if (ret < 0) 4961 goto out_unlock; 4962 if (ret == 0) 4963 goto no_delete; 4964 ret = 0; 4965 wc->restarted = 0; 4966 } 4967 4968 /* 4969 * Reloc tree doesn't contribute to qgroup numbers, and we have 4970 * already accounted them at merge time (replace_path), 4971 * thus we could skip expensive subtree trace here. 4972 */ 4973 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 4974 need_account) { 4975 ret = btrfs_qgroup_trace_subtree(trans, next, 4976 generation, level - 1); 4977 if (ret) { 4978 btrfs_err_rl(fs_info, 4979 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 4980 ret); 4981 } 4982 } 4983 4984 /* 4985 * We need to update the next key in our walk control so we can 4986 * update the drop_progress key accordingly. We don't care if 4987 * find_next_key doesn't find a key because that means we're at 4988 * the end and are going to clean up now. 4989 */ 4990 wc->drop_level = level; 4991 find_next_key(path, level, &wc->drop_progress); 4992 4993 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 4994 fs_info->nodesize, parent); 4995 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 4996 ret = btrfs_free_extent(trans, &ref); 4997 if (ret) 4998 goto out_unlock; 4999 } 5000 no_delete: 5001 *lookup_info = 1; 5002 ret = 1; 5003 5004 out_unlock: 5005 btrfs_tree_unlock(next); 5006 free_extent_buffer(next); 5007 5008 return ret; 5009 } 5010 5011 /* 5012 * helper to process tree block while walking up the tree. 5013 * 5014 * when wc->stage == DROP_REFERENCE, this function drops 5015 * reference count on the block. 5016 * 5017 * when wc->stage == UPDATE_BACKREF, this function changes 5018 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5019 * to UPDATE_BACKREF previously while processing the block. 5020 * 5021 * NOTE: return value 1 means we should stop walking up. 5022 */ 5023 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5024 struct btrfs_root *root, 5025 struct btrfs_path *path, 5026 struct walk_control *wc) 5027 { 5028 struct btrfs_fs_info *fs_info = root->fs_info; 5029 int ret; 5030 int level = wc->level; 5031 struct extent_buffer *eb = path->nodes[level]; 5032 u64 parent = 0; 5033 5034 if (wc->stage == UPDATE_BACKREF) { 5035 BUG_ON(wc->shared_level < level); 5036 if (level < wc->shared_level) 5037 goto out; 5038 5039 ret = find_next_key(path, level + 1, &wc->update_progress); 5040 if (ret > 0) 5041 wc->update_ref = 0; 5042 5043 wc->stage = DROP_REFERENCE; 5044 wc->shared_level = -1; 5045 path->slots[level] = 0; 5046 5047 /* 5048 * check reference count again if the block isn't locked. 5049 * we should start walking down the tree again if reference 5050 * count is one. 5051 */ 5052 if (!path->locks[level]) { 5053 BUG_ON(level == 0); 5054 btrfs_tree_lock(eb); 5055 btrfs_set_lock_blocking_write(eb); 5056 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5057 5058 ret = btrfs_lookup_extent_info(trans, fs_info, 5059 eb->start, level, 1, 5060 &wc->refs[level], 5061 &wc->flags[level]); 5062 if (ret < 0) { 5063 btrfs_tree_unlock_rw(eb, path->locks[level]); 5064 path->locks[level] = 0; 5065 return ret; 5066 } 5067 BUG_ON(wc->refs[level] == 0); 5068 if (wc->refs[level] == 1) { 5069 btrfs_tree_unlock_rw(eb, path->locks[level]); 5070 path->locks[level] = 0; 5071 return 1; 5072 } 5073 } 5074 } 5075 5076 /* wc->stage == DROP_REFERENCE */ 5077 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5078 5079 if (wc->refs[level] == 1) { 5080 if (level == 0) { 5081 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5082 ret = btrfs_dec_ref(trans, root, eb, 1); 5083 else 5084 ret = btrfs_dec_ref(trans, root, eb, 0); 5085 BUG_ON(ret); /* -ENOMEM */ 5086 if (is_fstree(root->root_key.objectid)) { 5087 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5088 if (ret) { 5089 btrfs_err_rl(fs_info, 5090 "error %d accounting leaf items, quota is out of sync, rescan required", 5091 ret); 5092 } 5093 } 5094 } 5095 /* make block locked assertion in btrfs_clean_tree_block happy */ 5096 if (!path->locks[level] && 5097 btrfs_header_generation(eb) == trans->transid) { 5098 btrfs_tree_lock(eb); 5099 btrfs_set_lock_blocking_write(eb); 5100 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5101 } 5102 btrfs_clean_tree_block(eb); 5103 } 5104 5105 if (eb == root->node) { 5106 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5107 parent = eb->start; 5108 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5109 goto owner_mismatch; 5110 } else { 5111 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5112 parent = path->nodes[level + 1]->start; 5113 else if (root->root_key.objectid != 5114 btrfs_header_owner(path->nodes[level + 1])) 5115 goto owner_mismatch; 5116 } 5117 5118 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5119 out: 5120 wc->refs[level] = 0; 5121 wc->flags[level] = 0; 5122 return 0; 5123 5124 owner_mismatch: 5125 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5126 btrfs_header_owner(eb), root->root_key.objectid); 5127 return -EUCLEAN; 5128 } 5129 5130 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5131 struct btrfs_root *root, 5132 struct btrfs_path *path, 5133 struct walk_control *wc) 5134 { 5135 int level = wc->level; 5136 int lookup_info = 1; 5137 int ret; 5138 5139 while (level >= 0) { 5140 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5141 if (ret > 0) 5142 break; 5143 5144 if (level == 0) 5145 break; 5146 5147 if (path->slots[level] >= 5148 btrfs_header_nritems(path->nodes[level])) 5149 break; 5150 5151 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5152 if (ret > 0) { 5153 path->slots[level]++; 5154 continue; 5155 } else if (ret < 0) 5156 return ret; 5157 level = wc->level; 5158 } 5159 return 0; 5160 } 5161 5162 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5163 struct btrfs_root *root, 5164 struct btrfs_path *path, 5165 struct walk_control *wc, int max_level) 5166 { 5167 int level = wc->level; 5168 int ret; 5169 5170 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5171 while (level < max_level && path->nodes[level]) { 5172 wc->level = level; 5173 if (path->slots[level] + 1 < 5174 btrfs_header_nritems(path->nodes[level])) { 5175 path->slots[level]++; 5176 return 0; 5177 } else { 5178 ret = walk_up_proc(trans, root, path, wc); 5179 if (ret > 0) 5180 return 0; 5181 if (ret < 0) 5182 return ret; 5183 5184 if (path->locks[level]) { 5185 btrfs_tree_unlock_rw(path->nodes[level], 5186 path->locks[level]); 5187 path->locks[level] = 0; 5188 } 5189 free_extent_buffer(path->nodes[level]); 5190 path->nodes[level] = NULL; 5191 level++; 5192 } 5193 } 5194 return 1; 5195 } 5196 5197 /* 5198 * drop a subvolume tree. 5199 * 5200 * this function traverses the tree freeing any blocks that only 5201 * referenced by the tree. 5202 * 5203 * when a shared tree block is found. this function decreases its 5204 * reference count by one. if update_ref is true, this function 5205 * also make sure backrefs for the shared block and all lower level 5206 * blocks are properly updated. 5207 * 5208 * If called with for_reloc == 0, may exit early with -EAGAIN 5209 */ 5210 int btrfs_drop_snapshot(struct btrfs_root *root, 5211 struct btrfs_block_rsv *block_rsv, int update_ref, 5212 int for_reloc) 5213 { 5214 struct btrfs_fs_info *fs_info = root->fs_info; 5215 struct btrfs_path *path; 5216 struct btrfs_trans_handle *trans; 5217 struct btrfs_root *tree_root = fs_info->tree_root; 5218 struct btrfs_root_item *root_item = &root->root_item; 5219 struct walk_control *wc; 5220 struct btrfs_key key; 5221 int err = 0; 5222 int ret; 5223 int level; 5224 bool root_dropped = false; 5225 5226 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5227 5228 path = btrfs_alloc_path(); 5229 if (!path) { 5230 err = -ENOMEM; 5231 goto out; 5232 } 5233 5234 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5235 if (!wc) { 5236 btrfs_free_path(path); 5237 err = -ENOMEM; 5238 goto out; 5239 } 5240 5241 trans = btrfs_start_transaction(tree_root, 0); 5242 if (IS_ERR(trans)) { 5243 err = PTR_ERR(trans); 5244 goto out_free; 5245 } 5246 5247 err = btrfs_run_delayed_items(trans); 5248 if (err) 5249 goto out_end_trans; 5250 5251 if (block_rsv) 5252 trans->block_rsv = block_rsv; 5253 5254 /* 5255 * This will help us catch people modifying the fs tree while we're 5256 * dropping it. It is unsafe to mess with the fs tree while it's being 5257 * dropped as we unlock the root node and parent nodes as we walk down 5258 * the tree, assuming nothing will change. If something does change 5259 * then we'll have stale information and drop references to blocks we've 5260 * already dropped. 5261 */ 5262 set_bit(BTRFS_ROOT_DELETING, &root->state); 5263 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5264 level = btrfs_header_level(root->node); 5265 path->nodes[level] = btrfs_lock_root_node(root); 5266 btrfs_set_lock_blocking_write(path->nodes[level]); 5267 path->slots[level] = 0; 5268 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5269 memset(&wc->update_progress, 0, 5270 sizeof(wc->update_progress)); 5271 } else { 5272 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5273 memcpy(&wc->update_progress, &key, 5274 sizeof(wc->update_progress)); 5275 5276 level = root_item->drop_level; 5277 BUG_ON(level == 0); 5278 path->lowest_level = level; 5279 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5280 path->lowest_level = 0; 5281 if (ret < 0) { 5282 err = ret; 5283 goto out_end_trans; 5284 } 5285 WARN_ON(ret > 0); 5286 5287 /* 5288 * unlock our path, this is safe because only this 5289 * function is allowed to delete this snapshot 5290 */ 5291 btrfs_unlock_up_safe(path, 0); 5292 5293 level = btrfs_header_level(root->node); 5294 while (1) { 5295 btrfs_tree_lock(path->nodes[level]); 5296 btrfs_set_lock_blocking_write(path->nodes[level]); 5297 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5298 5299 ret = btrfs_lookup_extent_info(trans, fs_info, 5300 path->nodes[level]->start, 5301 level, 1, &wc->refs[level], 5302 &wc->flags[level]); 5303 if (ret < 0) { 5304 err = ret; 5305 goto out_end_trans; 5306 } 5307 BUG_ON(wc->refs[level] == 0); 5308 5309 if (level == root_item->drop_level) 5310 break; 5311 5312 btrfs_tree_unlock(path->nodes[level]); 5313 path->locks[level] = 0; 5314 WARN_ON(wc->refs[level] != 1); 5315 level--; 5316 } 5317 } 5318 5319 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5320 wc->level = level; 5321 wc->shared_level = -1; 5322 wc->stage = DROP_REFERENCE; 5323 wc->update_ref = update_ref; 5324 wc->keep_locks = 0; 5325 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5326 5327 while (1) { 5328 5329 ret = walk_down_tree(trans, root, path, wc); 5330 if (ret < 0) { 5331 err = ret; 5332 break; 5333 } 5334 5335 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5336 if (ret < 0) { 5337 err = ret; 5338 break; 5339 } 5340 5341 if (ret > 0) { 5342 BUG_ON(wc->stage != DROP_REFERENCE); 5343 break; 5344 } 5345 5346 if (wc->stage == DROP_REFERENCE) { 5347 wc->drop_level = wc->level; 5348 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5349 &wc->drop_progress, 5350 path->slots[wc->drop_level]); 5351 } 5352 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5353 &wc->drop_progress); 5354 root_item->drop_level = wc->drop_level; 5355 5356 BUG_ON(wc->level == 0); 5357 if (btrfs_should_end_transaction(trans) || 5358 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5359 ret = btrfs_update_root(trans, tree_root, 5360 &root->root_key, 5361 root_item); 5362 if (ret) { 5363 btrfs_abort_transaction(trans, ret); 5364 err = ret; 5365 goto out_end_trans; 5366 } 5367 5368 btrfs_end_transaction_throttle(trans); 5369 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5370 btrfs_debug(fs_info, 5371 "drop snapshot early exit"); 5372 err = -EAGAIN; 5373 goto out_free; 5374 } 5375 5376 trans = btrfs_start_transaction(tree_root, 0); 5377 if (IS_ERR(trans)) { 5378 err = PTR_ERR(trans); 5379 goto out_free; 5380 } 5381 if (block_rsv) 5382 trans->block_rsv = block_rsv; 5383 } 5384 } 5385 btrfs_release_path(path); 5386 if (err) 5387 goto out_end_trans; 5388 5389 ret = btrfs_del_root(trans, &root->root_key); 5390 if (ret) { 5391 btrfs_abort_transaction(trans, ret); 5392 err = ret; 5393 goto out_end_trans; 5394 } 5395 5396 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5397 ret = btrfs_find_root(tree_root, &root->root_key, path, 5398 NULL, NULL); 5399 if (ret < 0) { 5400 btrfs_abort_transaction(trans, ret); 5401 err = ret; 5402 goto out_end_trans; 5403 } else if (ret > 0) { 5404 /* if we fail to delete the orphan item this time 5405 * around, it'll get picked up the next time. 5406 * 5407 * The most common failure here is just -ENOENT. 5408 */ 5409 btrfs_del_orphan_item(trans, tree_root, 5410 root->root_key.objectid); 5411 } 5412 } 5413 5414 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 5415 btrfs_add_dropped_root(trans, root); 5416 } else { 5417 free_extent_buffer(root->node); 5418 free_extent_buffer(root->commit_root); 5419 btrfs_put_fs_root(root); 5420 } 5421 root_dropped = true; 5422 out_end_trans: 5423 btrfs_end_transaction_throttle(trans); 5424 out_free: 5425 kfree(wc); 5426 btrfs_free_path(path); 5427 out: 5428 /* 5429 * So if we need to stop dropping the snapshot for whatever reason we 5430 * need to make sure to add it back to the dead root list so that we 5431 * keep trying to do the work later. This also cleans up roots if we 5432 * don't have it in the radix (like when we recover after a power fail 5433 * or unmount) so we don't leak memory. 5434 */ 5435 if (!for_reloc && !root_dropped) 5436 btrfs_add_dead_root(root); 5437 if (err && err != -EAGAIN) 5438 btrfs_handle_fs_error(fs_info, err, NULL); 5439 return err; 5440 } 5441 5442 /* 5443 * drop subtree rooted at tree block 'node'. 5444 * 5445 * NOTE: this function will unlock and release tree block 'node' 5446 * only used by relocation code 5447 */ 5448 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5449 struct btrfs_root *root, 5450 struct extent_buffer *node, 5451 struct extent_buffer *parent) 5452 { 5453 struct btrfs_fs_info *fs_info = root->fs_info; 5454 struct btrfs_path *path; 5455 struct walk_control *wc; 5456 int level; 5457 int parent_level; 5458 int ret = 0; 5459 int wret; 5460 5461 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5462 5463 path = btrfs_alloc_path(); 5464 if (!path) 5465 return -ENOMEM; 5466 5467 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5468 if (!wc) { 5469 btrfs_free_path(path); 5470 return -ENOMEM; 5471 } 5472 5473 btrfs_assert_tree_locked(parent); 5474 parent_level = btrfs_header_level(parent); 5475 atomic_inc(&parent->refs); 5476 path->nodes[parent_level] = parent; 5477 path->slots[parent_level] = btrfs_header_nritems(parent); 5478 5479 btrfs_assert_tree_locked(node); 5480 level = btrfs_header_level(node); 5481 path->nodes[level] = node; 5482 path->slots[level] = 0; 5483 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5484 5485 wc->refs[parent_level] = 1; 5486 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5487 wc->level = level; 5488 wc->shared_level = -1; 5489 wc->stage = DROP_REFERENCE; 5490 wc->update_ref = 0; 5491 wc->keep_locks = 1; 5492 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5493 5494 while (1) { 5495 wret = walk_down_tree(trans, root, path, wc); 5496 if (wret < 0) { 5497 ret = wret; 5498 break; 5499 } 5500 5501 wret = walk_up_tree(trans, root, path, wc, parent_level); 5502 if (wret < 0) 5503 ret = wret; 5504 if (wret != 0) 5505 break; 5506 } 5507 5508 kfree(wc); 5509 btrfs_free_path(path); 5510 return ret; 5511 } 5512 5513 /* 5514 * helper to account the unused space of all the readonly block group in the 5515 * space_info. takes mirrors into account. 5516 */ 5517 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5518 { 5519 struct btrfs_block_group *block_group; 5520 u64 free_bytes = 0; 5521 int factor; 5522 5523 /* It's df, we don't care if it's racy */ 5524 if (list_empty(&sinfo->ro_bgs)) 5525 return 0; 5526 5527 spin_lock(&sinfo->lock); 5528 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5529 spin_lock(&block_group->lock); 5530 5531 if (!block_group->ro) { 5532 spin_unlock(&block_group->lock); 5533 continue; 5534 } 5535 5536 factor = btrfs_bg_type_to_factor(block_group->flags); 5537 free_bytes += (block_group->length - 5538 block_group->used) * factor; 5539 5540 spin_unlock(&block_group->lock); 5541 } 5542 spin_unlock(&sinfo->lock); 5543 5544 return free_bytes; 5545 } 5546 5547 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5548 u64 start, u64 end) 5549 { 5550 return unpin_extent_range(fs_info, start, end, false); 5551 } 5552 5553 /* 5554 * It used to be that old block groups would be left around forever. 5555 * Iterating over them would be enough to trim unused space. Since we 5556 * now automatically remove them, we also need to iterate over unallocated 5557 * space. 5558 * 5559 * We don't want a transaction for this since the discard may take a 5560 * substantial amount of time. We don't require that a transaction be 5561 * running, but we do need to take a running transaction into account 5562 * to ensure that we're not discarding chunks that were released or 5563 * allocated in the current transaction. 5564 * 5565 * Holding the chunks lock will prevent other threads from allocating 5566 * or releasing chunks, but it won't prevent a running transaction 5567 * from committing and releasing the memory that the pending chunks 5568 * list head uses. For that, we need to take a reference to the 5569 * transaction and hold the commit root sem. We only need to hold 5570 * it while performing the free space search since we have already 5571 * held back allocations. 5572 */ 5573 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5574 { 5575 u64 start = SZ_1M, len = 0, end = 0; 5576 int ret; 5577 5578 *trimmed = 0; 5579 5580 /* Discard not supported = nothing to do. */ 5581 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5582 return 0; 5583 5584 /* Not writable = nothing to do. */ 5585 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5586 return 0; 5587 5588 /* No free space = nothing to do. */ 5589 if (device->total_bytes <= device->bytes_used) 5590 return 0; 5591 5592 ret = 0; 5593 5594 while (1) { 5595 struct btrfs_fs_info *fs_info = device->fs_info; 5596 u64 bytes; 5597 5598 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5599 if (ret) 5600 break; 5601 5602 find_first_clear_extent_bit(&device->alloc_state, start, 5603 &start, &end, 5604 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5605 5606 /* Ensure we skip the reserved area in the first 1M */ 5607 start = max_t(u64, start, SZ_1M); 5608 5609 /* 5610 * If find_first_clear_extent_bit find a range that spans the 5611 * end of the device it will set end to -1, in this case it's up 5612 * to the caller to trim the value to the size of the device. 5613 */ 5614 end = min(end, device->total_bytes - 1); 5615 5616 len = end - start + 1; 5617 5618 /* We didn't find any extents */ 5619 if (!len) { 5620 mutex_unlock(&fs_info->chunk_mutex); 5621 ret = 0; 5622 break; 5623 } 5624 5625 ret = btrfs_issue_discard(device->bdev, start, len, 5626 &bytes); 5627 if (!ret) 5628 set_extent_bits(&device->alloc_state, start, 5629 start + bytes - 1, 5630 CHUNK_TRIMMED); 5631 mutex_unlock(&fs_info->chunk_mutex); 5632 5633 if (ret) 5634 break; 5635 5636 start += len; 5637 *trimmed += bytes; 5638 5639 if (fatal_signal_pending(current)) { 5640 ret = -ERESTARTSYS; 5641 break; 5642 } 5643 5644 cond_resched(); 5645 } 5646 5647 return ret; 5648 } 5649 5650 /* 5651 * Trim the whole filesystem by: 5652 * 1) trimming the free space in each block group 5653 * 2) trimming the unallocated space on each device 5654 * 5655 * This will also continue trimming even if a block group or device encounters 5656 * an error. The return value will be the last error, or 0 if nothing bad 5657 * happens. 5658 */ 5659 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5660 { 5661 struct btrfs_block_group *cache = NULL; 5662 struct btrfs_device *device; 5663 struct list_head *devices; 5664 u64 group_trimmed; 5665 u64 range_end = U64_MAX; 5666 u64 start; 5667 u64 end; 5668 u64 trimmed = 0; 5669 u64 bg_failed = 0; 5670 u64 dev_failed = 0; 5671 int bg_ret = 0; 5672 int dev_ret = 0; 5673 int ret = 0; 5674 5675 /* 5676 * Check range overflow if range->len is set. 5677 * The default range->len is U64_MAX. 5678 */ 5679 if (range->len != U64_MAX && 5680 check_add_overflow(range->start, range->len, &range_end)) 5681 return -EINVAL; 5682 5683 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5684 for (; cache; cache = btrfs_next_block_group(cache)) { 5685 if (cache->start >= range_end) { 5686 btrfs_put_block_group(cache); 5687 break; 5688 } 5689 5690 start = max(range->start, cache->start); 5691 end = min(range_end, cache->start + cache->length); 5692 5693 if (end - start >= range->minlen) { 5694 if (!btrfs_block_group_done(cache)) { 5695 ret = btrfs_cache_block_group(cache, 0); 5696 if (ret) { 5697 bg_failed++; 5698 bg_ret = ret; 5699 continue; 5700 } 5701 ret = btrfs_wait_block_group_cache_done(cache); 5702 if (ret) { 5703 bg_failed++; 5704 bg_ret = ret; 5705 continue; 5706 } 5707 } 5708 ret = btrfs_trim_block_group(cache, 5709 &group_trimmed, 5710 start, 5711 end, 5712 range->minlen); 5713 5714 trimmed += group_trimmed; 5715 if (ret) { 5716 bg_failed++; 5717 bg_ret = ret; 5718 continue; 5719 } 5720 } 5721 } 5722 5723 if (bg_failed) 5724 btrfs_warn(fs_info, 5725 "failed to trim %llu block group(s), last error %d", 5726 bg_failed, bg_ret); 5727 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5728 devices = &fs_info->fs_devices->devices; 5729 list_for_each_entry(device, devices, dev_list) { 5730 ret = btrfs_trim_free_extents(device, &group_trimmed); 5731 if (ret) { 5732 dev_failed++; 5733 dev_ret = ret; 5734 break; 5735 } 5736 5737 trimmed += group_trimmed; 5738 } 5739 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5740 5741 if (dev_failed) 5742 btrfs_warn(fs_info, 5743 "failed to trim %llu device(s), last error %d", 5744 dev_failed, dev_ret); 5745 range->len = trimmed; 5746 if (bg_ret) 5747 return bg_ret; 5748 return dev_ret; 5749 } 5750 5751 /* 5752 * btrfs_{start,end}_write_no_snapshotting() are similar to 5753 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 5754 * data into the page cache through nocow before the subvolume is snapshoted, 5755 * but flush the data into disk after the snapshot creation, or to prevent 5756 * operations while snapshotting is ongoing and that cause the snapshot to be 5757 * inconsistent (writes followed by expanding truncates for example). 5758 */ 5759 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 5760 { 5761 percpu_counter_dec(&root->subv_writers->counter); 5762 cond_wake_up(&root->subv_writers->wait); 5763 } 5764 5765 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 5766 { 5767 if (atomic_read(&root->will_be_snapshotted)) 5768 return 0; 5769 5770 percpu_counter_inc(&root->subv_writers->counter); 5771 /* 5772 * Make sure counter is updated before we check for snapshot creation. 5773 */ 5774 smp_mb(); 5775 if (atomic_read(&root->will_be_snapshotted)) { 5776 btrfs_end_write_no_snapshotting(root); 5777 return 0; 5778 } 5779 return 1; 5780 } 5781 5782 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 5783 { 5784 while (true) { 5785 int ret; 5786 5787 ret = btrfs_start_write_no_snapshotting(root); 5788 if (ret) 5789 break; 5790 wait_var_event(&root->will_be_snapshotted, 5791 !atomic_read(&root->will_be_snapshotted)); 5792 } 5793 } 5794