1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "free-space-tree.h" 37 #include "math.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 41 #undef SCRAMBLE_DELAYED_REFS 42 43 /* 44 * control flags for do_chunk_alloc's force field 45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 46 * if we really need one. 47 * 48 * CHUNK_ALLOC_LIMITED means to only try and allocate one 49 * if we have very few chunks already allocated. This is 50 * used as part of the clustering code to help make sure 51 * we have a good pool of storage to cluster in, without 52 * filling the FS with empty chunks 53 * 54 * CHUNK_ALLOC_FORCE means it must try to allocate one 55 * 56 */ 57 enum { 58 CHUNK_ALLOC_NO_FORCE = 0, 59 CHUNK_ALLOC_LIMITED = 1, 60 CHUNK_ALLOC_FORCE = 2, 61 }; 62 63 /* 64 * Control how reservations are dealt with. 65 * 66 * RESERVE_FREE - freeing a reservation. 67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 68 * ENOSPC accounting 69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 70 * bytes_may_use as the ENOSPC accounting is done elsewhere 71 */ 72 enum { 73 RESERVE_FREE = 0, 74 RESERVE_ALLOC = 1, 75 RESERVE_ALLOC_NO_ACCOUNT = 2, 76 }; 77 78 static int update_block_group(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, u64 bytenr, 80 u64 num_bytes, int alloc); 81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 82 struct btrfs_root *root, 83 struct btrfs_delayed_ref_node *node, u64 parent, 84 u64 root_objectid, u64 owner_objectid, 85 u64 owner_offset, int refs_to_drop, 86 struct btrfs_delayed_extent_op *extra_op); 87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 88 struct extent_buffer *leaf, 89 struct btrfs_extent_item *ei); 90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 91 struct btrfs_root *root, 92 u64 parent, u64 root_objectid, 93 u64 flags, u64 owner, u64 offset, 94 struct btrfs_key *ins, int ref_mod); 95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 u64 parent, u64 root_objectid, 98 u64 flags, struct btrfs_disk_key *key, 99 int level, struct btrfs_key *ins); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 #ifdef CONFIG_BTRFS_DEBUG 336 static void fragment_free_space(struct btrfs_root *root, 337 struct btrfs_block_group_cache *block_group) 338 { 339 u64 start = block_group->key.objectid; 340 u64 len = block_group->key.offset; 341 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 342 root->nodesize : root->sectorsize; 343 u64 step = chunk << 1; 344 345 while (len > chunk) { 346 btrfs_remove_free_space(block_group, start, chunk); 347 start += step; 348 if (len < step) 349 len = 0; 350 else 351 len -= step; 352 } 353 } 354 #endif 355 356 /* 357 * this is only called by cache_block_group, since we could have freed extents 358 * we need to check the pinned_extents for any extents that can't be used yet 359 * since their free space will be released as soon as the transaction commits. 360 */ 361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 362 struct btrfs_fs_info *info, u64 start, u64 end) 363 { 364 u64 extent_start, extent_end, size, total_added = 0; 365 int ret; 366 367 while (start < end) { 368 ret = find_first_extent_bit(info->pinned_extents, start, 369 &extent_start, &extent_end, 370 EXTENT_DIRTY | EXTENT_UPTODATE, 371 NULL); 372 if (ret) 373 break; 374 375 if (extent_start <= start) { 376 start = extent_end + 1; 377 } else if (extent_start > start && extent_start < end) { 378 size = extent_start - start; 379 total_added += size; 380 ret = btrfs_add_free_space(block_group, start, 381 size); 382 BUG_ON(ret); /* -ENOMEM or logic error */ 383 start = extent_end + 1; 384 } else { 385 break; 386 } 387 } 388 389 if (start < end) { 390 size = end - start; 391 total_added += size; 392 ret = btrfs_add_free_space(block_group, start, size); 393 BUG_ON(ret); /* -ENOMEM or logic error */ 394 } 395 396 return total_added; 397 } 398 399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 400 { 401 struct btrfs_block_group_cache *block_group; 402 struct btrfs_fs_info *fs_info; 403 struct btrfs_root *extent_root; 404 struct btrfs_path *path; 405 struct extent_buffer *leaf; 406 struct btrfs_key key; 407 u64 total_found = 0; 408 u64 last = 0; 409 u32 nritems; 410 int ret; 411 bool wakeup = true; 412 413 block_group = caching_ctl->block_group; 414 fs_info = block_group->fs_info; 415 extent_root = fs_info->extent_root; 416 417 path = btrfs_alloc_path(); 418 if (!path) 419 return -ENOMEM; 420 421 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 422 423 #ifdef CONFIG_BTRFS_DEBUG 424 /* 425 * If we're fragmenting we don't want to make anybody think we can 426 * allocate from this block group until we've had a chance to fragment 427 * the free space. 428 */ 429 if (btrfs_should_fragment_free_space(extent_root, block_group)) 430 wakeup = false; 431 #endif 432 /* 433 * We don't want to deadlock with somebody trying to allocate a new 434 * extent for the extent root while also trying to search the extent 435 * root to add free space. So we skip locking and search the commit 436 * root, since its read-only 437 */ 438 path->skip_locking = 1; 439 path->search_commit_root = 1; 440 path->reada = READA_FORWARD; 441 442 key.objectid = last; 443 key.offset = 0; 444 key.type = BTRFS_EXTENT_ITEM_KEY; 445 446 next: 447 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 448 if (ret < 0) 449 goto out; 450 451 leaf = path->nodes[0]; 452 nritems = btrfs_header_nritems(leaf); 453 454 while (1) { 455 if (btrfs_fs_closing(fs_info) > 1) { 456 last = (u64)-1; 457 break; 458 } 459 460 if (path->slots[0] < nritems) { 461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 462 } else { 463 ret = find_next_key(path, 0, &key); 464 if (ret) 465 break; 466 467 if (need_resched() || 468 rwsem_is_contended(&fs_info->commit_root_sem)) { 469 if (wakeup) 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 up_read(&fs_info->commit_root_sem); 473 mutex_unlock(&caching_ctl->mutex); 474 cond_resched(); 475 mutex_lock(&caching_ctl->mutex); 476 down_read(&fs_info->commit_root_sem); 477 goto next; 478 } 479 480 ret = btrfs_next_leaf(extent_root, path); 481 if (ret < 0) 482 goto out; 483 if (ret) 484 break; 485 leaf = path->nodes[0]; 486 nritems = btrfs_header_nritems(leaf); 487 continue; 488 } 489 490 if (key.objectid < last) { 491 key.objectid = last; 492 key.offset = 0; 493 key.type = BTRFS_EXTENT_ITEM_KEY; 494 495 if (wakeup) 496 caching_ctl->progress = last; 497 btrfs_release_path(path); 498 goto next; 499 } 500 501 if (key.objectid < block_group->key.objectid) { 502 path->slots[0]++; 503 continue; 504 } 505 506 if (key.objectid >= block_group->key.objectid + 507 block_group->key.offset) 508 break; 509 510 if (key.type == BTRFS_EXTENT_ITEM_KEY || 511 key.type == BTRFS_METADATA_ITEM_KEY) { 512 total_found += add_new_free_space(block_group, 513 fs_info, last, 514 key.objectid); 515 if (key.type == BTRFS_METADATA_ITEM_KEY) 516 last = key.objectid + 517 fs_info->tree_root->nodesize; 518 else 519 last = key.objectid + key.offset; 520 521 if (total_found > CACHING_CTL_WAKE_UP) { 522 total_found = 0; 523 if (wakeup) 524 wake_up(&caching_ctl->wait); 525 } 526 } 527 path->slots[0]++; 528 } 529 ret = 0; 530 531 total_found += add_new_free_space(block_group, fs_info, last, 532 block_group->key.objectid + 533 block_group->key.offset); 534 caching_ctl->progress = (u64)-1; 535 536 out: 537 btrfs_free_path(path); 538 return ret; 539 } 540 541 static noinline void caching_thread(struct btrfs_work *work) 542 { 543 struct btrfs_block_group_cache *block_group; 544 struct btrfs_fs_info *fs_info; 545 struct btrfs_caching_control *caching_ctl; 546 struct btrfs_root *extent_root; 547 int ret; 548 549 caching_ctl = container_of(work, struct btrfs_caching_control, work); 550 block_group = caching_ctl->block_group; 551 fs_info = block_group->fs_info; 552 extent_root = fs_info->extent_root; 553 554 mutex_lock(&caching_ctl->mutex); 555 down_read(&fs_info->commit_root_sem); 556 557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 558 ret = load_free_space_tree(caching_ctl); 559 else 560 ret = load_extent_tree_free(caching_ctl); 561 562 spin_lock(&block_group->lock); 563 block_group->caching_ctl = NULL; 564 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 565 spin_unlock(&block_group->lock); 566 567 #ifdef CONFIG_BTRFS_DEBUG 568 if (btrfs_should_fragment_free_space(extent_root, block_group)) { 569 u64 bytes_used; 570 571 spin_lock(&block_group->space_info->lock); 572 spin_lock(&block_group->lock); 573 bytes_used = block_group->key.offset - 574 btrfs_block_group_used(&block_group->item); 575 block_group->space_info->bytes_used += bytes_used >> 1; 576 spin_unlock(&block_group->lock); 577 spin_unlock(&block_group->space_info->lock); 578 fragment_free_space(extent_root, block_group); 579 } 580 #endif 581 582 caching_ctl->progress = (u64)-1; 583 584 up_read(&fs_info->commit_root_sem); 585 free_excluded_extents(fs_info->extent_root, block_group); 586 mutex_unlock(&caching_ctl->mutex); 587 588 wake_up(&caching_ctl->wait); 589 590 put_caching_control(caching_ctl); 591 btrfs_put_block_group(block_group); 592 } 593 594 static int cache_block_group(struct btrfs_block_group_cache *cache, 595 int load_cache_only) 596 { 597 DEFINE_WAIT(wait); 598 struct btrfs_fs_info *fs_info = cache->fs_info; 599 struct btrfs_caching_control *caching_ctl; 600 int ret = 0; 601 602 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 603 if (!caching_ctl) 604 return -ENOMEM; 605 606 INIT_LIST_HEAD(&caching_ctl->list); 607 mutex_init(&caching_ctl->mutex); 608 init_waitqueue_head(&caching_ctl->wait); 609 caching_ctl->block_group = cache; 610 caching_ctl->progress = cache->key.objectid; 611 atomic_set(&caching_ctl->count, 1); 612 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 613 caching_thread, NULL, NULL); 614 615 spin_lock(&cache->lock); 616 /* 617 * This should be a rare occasion, but this could happen I think in the 618 * case where one thread starts to load the space cache info, and then 619 * some other thread starts a transaction commit which tries to do an 620 * allocation while the other thread is still loading the space cache 621 * info. The previous loop should have kept us from choosing this block 622 * group, but if we've moved to the state where we will wait on caching 623 * block groups we need to first check if we're doing a fast load here, 624 * so we can wait for it to finish, otherwise we could end up allocating 625 * from a block group who's cache gets evicted for one reason or 626 * another. 627 */ 628 while (cache->cached == BTRFS_CACHE_FAST) { 629 struct btrfs_caching_control *ctl; 630 631 ctl = cache->caching_ctl; 632 atomic_inc(&ctl->count); 633 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 634 spin_unlock(&cache->lock); 635 636 schedule(); 637 638 finish_wait(&ctl->wait, &wait); 639 put_caching_control(ctl); 640 spin_lock(&cache->lock); 641 } 642 643 if (cache->cached != BTRFS_CACHE_NO) { 644 spin_unlock(&cache->lock); 645 kfree(caching_ctl); 646 return 0; 647 } 648 WARN_ON(cache->caching_ctl); 649 cache->caching_ctl = caching_ctl; 650 cache->cached = BTRFS_CACHE_FAST; 651 spin_unlock(&cache->lock); 652 653 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 654 mutex_lock(&caching_ctl->mutex); 655 ret = load_free_space_cache(fs_info, cache); 656 657 spin_lock(&cache->lock); 658 if (ret == 1) { 659 cache->caching_ctl = NULL; 660 cache->cached = BTRFS_CACHE_FINISHED; 661 cache->last_byte_to_unpin = (u64)-1; 662 caching_ctl->progress = (u64)-1; 663 } else { 664 if (load_cache_only) { 665 cache->caching_ctl = NULL; 666 cache->cached = BTRFS_CACHE_NO; 667 } else { 668 cache->cached = BTRFS_CACHE_STARTED; 669 cache->has_caching_ctl = 1; 670 } 671 } 672 spin_unlock(&cache->lock); 673 #ifdef CONFIG_BTRFS_DEBUG 674 if (ret == 1 && 675 btrfs_should_fragment_free_space(fs_info->extent_root, 676 cache)) { 677 u64 bytes_used; 678 679 spin_lock(&cache->space_info->lock); 680 spin_lock(&cache->lock); 681 bytes_used = cache->key.offset - 682 btrfs_block_group_used(&cache->item); 683 cache->space_info->bytes_used += bytes_used >> 1; 684 spin_unlock(&cache->lock); 685 spin_unlock(&cache->space_info->lock); 686 fragment_free_space(fs_info->extent_root, cache); 687 } 688 #endif 689 mutex_unlock(&caching_ctl->mutex); 690 691 wake_up(&caching_ctl->wait); 692 if (ret == 1) { 693 put_caching_control(caching_ctl); 694 free_excluded_extents(fs_info->extent_root, cache); 695 return 0; 696 } 697 } else { 698 /* 699 * We're either using the free space tree or no caching at all. 700 * Set cached to the appropriate value and wakeup any waiters. 701 */ 702 spin_lock(&cache->lock); 703 if (load_cache_only) { 704 cache->caching_ctl = NULL; 705 cache->cached = BTRFS_CACHE_NO; 706 } else { 707 cache->cached = BTRFS_CACHE_STARTED; 708 cache->has_caching_ctl = 1; 709 } 710 spin_unlock(&cache->lock); 711 wake_up(&caching_ctl->wait); 712 } 713 714 if (load_cache_only) { 715 put_caching_control(caching_ctl); 716 return 0; 717 } 718 719 down_write(&fs_info->commit_root_sem); 720 atomic_inc(&caching_ctl->count); 721 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 722 up_write(&fs_info->commit_root_sem); 723 724 btrfs_get_block_group(cache); 725 726 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 727 728 return ret; 729 } 730 731 /* 732 * return the block group that starts at or after bytenr 733 */ 734 static struct btrfs_block_group_cache * 735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 736 { 737 struct btrfs_block_group_cache *cache; 738 739 cache = block_group_cache_tree_search(info, bytenr, 0); 740 741 return cache; 742 } 743 744 /* 745 * return the block group that contains the given bytenr 746 */ 747 struct btrfs_block_group_cache *btrfs_lookup_block_group( 748 struct btrfs_fs_info *info, 749 u64 bytenr) 750 { 751 struct btrfs_block_group_cache *cache; 752 753 cache = block_group_cache_tree_search(info, bytenr, 1); 754 755 return cache; 756 } 757 758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 759 u64 flags) 760 { 761 struct list_head *head = &info->space_info; 762 struct btrfs_space_info *found; 763 764 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 765 766 rcu_read_lock(); 767 list_for_each_entry_rcu(found, head, list) { 768 if (found->flags & flags) { 769 rcu_read_unlock(); 770 return found; 771 } 772 } 773 rcu_read_unlock(); 774 return NULL; 775 } 776 777 /* 778 * after adding space to the filesystem, we need to clear the full flags 779 * on all the space infos. 780 */ 781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 782 { 783 struct list_head *head = &info->space_info; 784 struct btrfs_space_info *found; 785 786 rcu_read_lock(); 787 list_for_each_entry_rcu(found, head, list) 788 found->full = 0; 789 rcu_read_unlock(); 790 } 791 792 /* simple helper to search for an existing data extent at a given offset */ 793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 794 { 795 int ret; 796 struct btrfs_key key; 797 struct btrfs_path *path; 798 799 path = btrfs_alloc_path(); 800 if (!path) 801 return -ENOMEM; 802 803 key.objectid = start; 804 key.offset = len; 805 key.type = BTRFS_EXTENT_ITEM_KEY; 806 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 807 0, 0); 808 btrfs_free_path(path); 809 return ret; 810 } 811 812 /* 813 * helper function to lookup reference count and flags of a tree block. 814 * 815 * the head node for delayed ref is used to store the sum of all the 816 * reference count modifications queued up in the rbtree. the head 817 * node may also store the extent flags to set. This way you can check 818 * to see what the reference count and extent flags would be if all of 819 * the delayed refs are not processed. 820 */ 821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 822 struct btrfs_root *root, u64 bytenr, 823 u64 offset, int metadata, u64 *refs, u64 *flags) 824 { 825 struct btrfs_delayed_ref_head *head; 826 struct btrfs_delayed_ref_root *delayed_refs; 827 struct btrfs_path *path; 828 struct btrfs_extent_item *ei; 829 struct extent_buffer *leaf; 830 struct btrfs_key key; 831 u32 item_size; 832 u64 num_refs; 833 u64 extent_flags; 834 int ret; 835 836 /* 837 * If we don't have skinny metadata, don't bother doing anything 838 * different 839 */ 840 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 841 offset = root->nodesize; 842 metadata = 0; 843 } 844 845 path = btrfs_alloc_path(); 846 if (!path) 847 return -ENOMEM; 848 849 if (!trans) { 850 path->skip_locking = 1; 851 path->search_commit_root = 1; 852 } 853 854 search_again: 855 key.objectid = bytenr; 856 key.offset = offset; 857 if (metadata) 858 key.type = BTRFS_METADATA_ITEM_KEY; 859 else 860 key.type = BTRFS_EXTENT_ITEM_KEY; 861 862 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 863 &key, path, 0, 0); 864 if (ret < 0) 865 goto out_free; 866 867 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 868 if (path->slots[0]) { 869 path->slots[0]--; 870 btrfs_item_key_to_cpu(path->nodes[0], &key, 871 path->slots[0]); 872 if (key.objectid == bytenr && 873 key.type == BTRFS_EXTENT_ITEM_KEY && 874 key.offset == root->nodesize) 875 ret = 0; 876 } 877 } 878 879 if (ret == 0) { 880 leaf = path->nodes[0]; 881 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 882 if (item_size >= sizeof(*ei)) { 883 ei = btrfs_item_ptr(leaf, path->slots[0], 884 struct btrfs_extent_item); 885 num_refs = btrfs_extent_refs(leaf, ei); 886 extent_flags = btrfs_extent_flags(leaf, ei); 887 } else { 888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 889 struct btrfs_extent_item_v0 *ei0; 890 BUG_ON(item_size != sizeof(*ei0)); 891 ei0 = btrfs_item_ptr(leaf, path->slots[0], 892 struct btrfs_extent_item_v0); 893 num_refs = btrfs_extent_refs_v0(leaf, ei0); 894 /* FIXME: this isn't correct for data */ 895 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 896 #else 897 BUG(); 898 #endif 899 } 900 BUG_ON(num_refs == 0); 901 } else { 902 num_refs = 0; 903 extent_flags = 0; 904 ret = 0; 905 } 906 907 if (!trans) 908 goto out; 909 910 delayed_refs = &trans->transaction->delayed_refs; 911 spin_lock(&delayed_refs->lock); 912 head = btrfs_find_delayed_ref_head(trans, bytenr); 913 if (head) { 914 if (!mutex_trylock(&head->mutex)) { 915 atomic_inc(&head->node.refs); 916 spin_unlock(&delayed_refs->lock); 917 918 btrfs_release_path(path); 919 920 /* 921 * Mutex was contended, block until it's released and try 922 * again 923 */ 924 mutex_lock(&head->mutex); 925 mutex_unlock(&head->mutex); 926 btrfs_put_delayed_ref(&head->node); 927 goto search_again; 928 } 929 spin_lock(&head->lock); 930 if (head->extent_op && head->extent_op->update_flags) 931 extent_flags |= head->extent_op->flags_to_set; 932 else 933 BUG_ON(num_refs == 0); 934 935 num_refs += head->node.ref_mod; 936 spin_unlock(&head->lock); 937 mutex_unlock(&head->mutex); 938 } 939 spin_unlock(&delayed_refs->lock); 940 out: 941 WARN_ON(num_refs == 0); 942 if (refs) 943 *refs = num_refs; 944 if (flags) 945 *flags = extent_flags; 946 out_free: 947 btrfs_free_path(path); 948 return ret; 949 } 950 951 /* 952 * Back reference rules. Back refs have three main goals: 953 * 954 * 1) differentiate between all holders of references to an extent so that 955 * when a reference is dropped we can make sure it was a valid reference 956 * before freeing the extent. 957 * 958 * 2) Provide enough information to quickly find the holders of an extent 959 * if we notice a given block is corrupted or bad. 960 * 961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 962 * maintenance. This is actually the same as #2, but with a slightly 963 * different use case. 964 * 965 * There are two kinds of back refs. The implicit back refs is optimized 966 * for pointers in non-shared tree blocks. For a given pointer in a block, 967 * back refs of this kind provide information about the block's owner tree 968 * and the pointer's key. These information allow us to find the block by 969 * b-tree searching. The full back refs is for pointers in tree blocks not 970 * referenced by their owner trees. The location of tree block is recorded 971 * in the back refs. Actually the full back refs is generic, and can be 972 * used in all cases the implicit back refs is used. The major shortcoming 973 * of the full back refs is its overhead. Every time a tree block gets 974 * COWed, we have to update back refs entry for all pointers in it. 975 * 976 * For a newly allocated tree block, we use implicit back refs for 977 * pointers in it. This means most tree related operations only involve 978 * implicit back refs. For a tree block created in old transaction, the 979 * only way to drop a reference to it is COW it. So we can detect the 980 * event that tree block loses its owner tree's reference and do the 981 * back refs conversion. 982 * 983 * When a tree block is COWed through a tree, there are four cases: 984 * 985 * The reference count of the block is one and the tree is the block's 986 * owner tree. Nothing to do in this case. 987 * 988 * The reference count of the block is one and the tree is not the 989 * block's owner tree. In this case, full back refs is used for pointers 990 * in the block. Remove these full back refs, add implicit back refs for 991 * every pointers in the new block. 992 * 993 * The reference count of the block is greater than one and the tree is 994 * the block's owner tree. In this case, implicit back refs is used for 995 * pointers in the block. Add full back refs for every pointers in the 996 * block, increase lower level extents' reference counts. The original 997 * implicit back refs are entailed to the new block. 998 * 999 * The reference count of the block is greater than one and the tree is 1000 * not the block's owner tree. Add implicit back refs for every pointer in 1001 * the new block, increase lower level extents' reference count. 1002 * 1003 * Back Reference Key composing: 1004 * 1005 * The key objectid corresponds to the first byte in the extent, 1006 * The key type is used to differentiate between types of back refs. 1007 * There are different meanings of the key offset for different types 1008 * of back refs. 1009 * 1010 * File extents can be referenced by: 1011 * 1012 * - multiple snapshots, subvolumes, or different generations in one subvol 1013 * - different files inside a single subvolume 1014 * - different offsets inside a file (bookend extents in file.c) 1015 * 1016 * The extent ref structure for the implicit back refs has fields for: 1017 * 1018 * - Objectid of the subvolume root 1019 * - objectid of the file holding the reference 1020 * - original offset in the file 1021 * - how many bookend extents 1022 * 1023 * The key offset for the implicit back refs is hash of the first 1024 * three fields. 1025 * 1026 * The extent ref structure for the full back refs has field for: 1027 * 1028 * - number of pointers in the tree leaf 1029 * 1030 * The key offset for the implicit back refs is the first byte of 1031 * the tree leaf 1032 * 1033 * When a file extent is allocated, The implicit back refs is used. 1034 * the fields are filled in: 1035 * 1036 * (root_key.objectid, inode objectid, offset in file, 1) 1037 * 1038 * When a file extent is removed file truncation, we find the 1039 * corresponding implicit back refs and check the following fields: 1040 * 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1042 * 1043 * Btree extents can be referenced by: 1044 * 1045 * - Different subvolumes 1046 * 1047 * Both the implicit back refs and the full back refs for tree blocks 1048 * only consist of key. The key offset for the implicit back refs is 1049 * objectid of block's owner tree. The key offset for the full back refs 1050 * is the first byte of parent block. 1051 * 1052 * When implicit back refs is used, information about the lowest key and 1053 * level of the tree block are required. These information are stored in 1054 * tree block info structure. 1055 */ 1056 1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1059 struct btrfs_root *root, 1060 struct btrfs_path *path, 1061 u64 owner, u32 extra_size) 1062 { 1063 struct btrfs_extent_item *item; 1064 struct btrfs_extent_item_v0 *ei0; 1065 struct btrfs_extent_ref_v0 *ref0; 1066 struct btrfs_tree_block_info *bi; 1067 struct extent_buffer *leaf; 1068 struct btrfs_key key; 1069 struct btrfs_key found_key; 1070 u32 new_size = sizeof(*item); 1071 u64 refs; 1072 int ret; 1073 1074 leaf = path->nodes[0]; 1075 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1076 1077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1078 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1079 struct btrfs_extent_item_v0); 1080 refs = btrfs_extent_refs_v0(leaf, ei0); 1081 1082 if (owner == (u64)-1) { 1083 while (1) { 1084 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1085 ret = btrfs_next_leaf(root, path); 1086 if (ret < 0) 1087 return ret; 1088 BUG_ON(ret > 0); /* Corruption */ 1089 leaf = path->nodes[0]; 1090 } 1091 btrfs_item_key_to_cpu(leaf, &found_key, 1092 path->slots[0]); 1093 BUG_ON(key.objectid != found_key.objectid); 1094 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1095 path->slots[0]++; 1096 continue; 1097 } 1098 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1099 struct btrfs_extent_ref_v0); 1100 owner = btrfs_ref_objectid_v0(leaf, ref0); 1101 break; 1102 } 1103 } 1104 btrfs_release_path(path); 1105 1106 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1107 new_size += sizeof(*bi); 1108 1109 new_size -= sizeof(*ei0); 1110 ret = btrfs_search_slot(trans, root, &key, path, 1111 new_size + extra_size, 1); 1112 if (ret < 0) 1113 return ret; 1114 BUG_ON(ret); /* Corruption */ 1115 1116 btrfs_extend_item(root, path, new_size); 1117 1118 leaf = path->nodes[0]; 1119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1120 btrfs_set_extent_refs(leaf, item, refs); 1121 /* FIXME: get real generation */ 1122 btrfs_set_extent_generation(leaf, item, 0); 1123 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1124 btrfs_set_extent_flags(leaf, item, 1125 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1126 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1127 bi = (struct btrfs_tree_block_info *)(item + 1); 1128 /* FIXME: get first key of the block */ 1129 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1130 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1131 } else { 1132 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1133 } 1134 btrfs_mark_buffer_dirty(leaf); 1135 return 0; 1136 } 1137 #endif 1138 1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1140 { 1141 u32 high_crc = ~(u32)0; 1142 u32 low_crc = ~(u32)0; 1143 __le64 lenum; 1144 1145 lenum = cpu_to_le64(root_objectid); 1146 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1147 lenum = cpu_to_le64(owner); 1148 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1149 lenum = cpu_to_le64(offset); 1150 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1151 1152 return ((u64)high_crc << 31) ^ (u64)low_crc; 1153 } 1154 1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1156 struct btrfs_extent_data_ref *ref) 1157 { 1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1159 btrfs_extent_data_ref_objectid(leaf, ref), 1160 btrfs_extent_data_ref_offset(leaf, ref)); 1161 } 1162 1163 static int match_extent_data_ref(struct extent_buffer *leaf, 1164 struct btrfs_extent_data_ref *ref, 1165 u64 root_objectid, u64 owner, u64 offset) 1166 { 1167 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1168 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1169 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1170 return 0; 1171 return 1; 1172 } 1173 1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1175 struct btrfs_root *root, 1176 struct btrfs_path *path, 1177 u64 bytenr, u64 parent, 1178 u64 root_objectid, 1179 u64 owner, u64 offset) 1180 { 1181 struct btrfs_key key; 1182 struct btrfs_extent_data_ref *ref; 1183 struct extent_buffer *leaf; 1184 u32 nritems; 1185 int ret; 1186 int recow; 1187 int err = -ENOENT; 1188 1189 key.objectid = bytenr; 1190 if (parent) { 1191 key.type = BTRFS_SHARED_DATA_REF_KEY; 1192 key.offset = parent; 1193 } else { 1194 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1195 key.offset = hash_extent_data_ref(root_objectid, 1196 owner, offset); 1197 } 1198 again: 1199 recow = 0; 1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1201 if (ret < 0) { 1202 err = ret; 1203 goto fail; 1204 } 1205 1206 if (parent) { 1207 if (!ret) 1208 return 0; 1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1210 key.type = BTRFS_EXTENT_REF_V0_KEY; 1211 btrfs_release_path(path); 1212 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1213 if (ret < 0) { 1214 err = ret; 1215 goto fail; 1216 } 1217 if (!ret) 1218 return 0; 1219 #endif 1220 goto fail; 1221 } 1222 1223 leaf = path->nodes[0]; 1224 nritems = btrfs_header_nritems(leaf); 1225 while (1) { 1226 if (path->slots[0] >= nritems) { 1227 ret = btrfs_next_leaf(root, path); 1228 if (ret < 0) 1229 err = ret; 1230 if (ret) 1231 goto fail; 1232 1233 leaf = path->nodes[0]; 1234 nritems = btrfs_header_nritems(leaf); 1235 recow = 1; 1236 } 1237 1238 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1239 if (key.objectid != bytenr || 1240 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1241 goto fail; 1242 1243 ref = btrfs_item_ptr(leaf, path->slots[0], 1244 struct btrfs_extent_data_ref); 1245 1246 if (match_extent_data_ref(leaf, ref, root_objectid, 1247 owner, offset)) { 1248 if (recow) { 1249 btrfs_release_path(path); 1250 goto again; 1251 } 1252 err = 0; 1253 break; 1254 } 1255 path->slots[0]++; 1256 } 1257 fail: 1258 return err; 1259 } 1260 1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 u64 bytenr, u64 parent, 1265 u64 root_objectid, u64 owner, 1266 u64 offset, int refs_to_add) 1267 { 1268 struct btrfs_key key; 1269 struct extent_buffer *leaf; 1270 u32 size; 1271 u32 num_refs; 1272 int ret; 1273 1274 key.objectid = bytenr; 1275 if (parent) { 1276 key.type = BTRFS_SHARED_DATA_REF_KEY; 1277 key.offset = parent; 1278 size = sizeof(struct btrfs_shared_data_ref); 1279 } else { 1280 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1281 key.offset = hash_extent_data_ref(root_objectid, 1282 owner, offset); 1283 size = sizeof(struct btrfs_extent_data_ref); 1284 } 1285 1286 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1287 if (ret && ret != -EEXIST) 1288 goto fail; 1289 1290 leaf = path->nodes[0]; 1291 if (parent) { 1292 struct btrfs_shared_data_ref *ref; 1293 ref = btrfs_item_ptr(leaf, path->slots[0], 1294 struct btrfs_shared_data_ref); 1295 if (ret == 0) { 1296 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1297 } else { 1298 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1299 num_refs += refs_to_add; 1300 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1301 } 1302 } else { 1303 struct btrfs_extent_data_ref *ref; 1304 while (ret == -EEXIST) { 1305 ref = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_extent_data_ref); 1307 if (match_extent_data_ref(leaf, ref, root_objectid, 1308 owner, offset)) 1309 break; 1310 btrfs_release_path(path); 1311 key.offset++; 1312 ret = btrfs_insert_empty_item(trans, root, path, &key, 1313 size); 1314 if (ret && ret != -EEXIST) 1315 goto fail; 1316 1317 leaf = path->nodes[0]; 1318 } 1319 ref = btrfs_item_ptr(leaf, path->slots[0], 1320 struct btrfs_extent_data_ref); 1321 if (ret == 0) { 1322 btrfs_set_extent_data_ref_root(leaf, ref, 1323 root_objectid); 1324 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1325 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1326 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1327 } else { 1328 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1329 num_refs += refs_to_add; 1330 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1331 } 1332 } 1333 btrfs_mark_buffer_dirty(leaf); 1334 ret = 0; 1335 fail: 1336 btrfs_release_path(path); 1337 return ret; 1338 } 1339 1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1341 struct btrfs_root *root, 1342 struct btrfs_path *path, 1343 int refs_to_drop, int *last_ref) 1344 { 1345 struct btrfs_key key; 1346 struct btrfs_extent_data_ref *ref1 = NULL; 1347 struct btrfs_shared_data_ref *ref2 = NULL; 1348 struct extent_buffer *leaf; 1349 u32 num_refs = 0; 1350 int ret = 0; 1351 1352 leaf = path->nodes[0]; 1353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1354 1355 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1356 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1357 struct btrfs_extent_data_ref); 1358 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1359 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1360 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_shared_data_ref); 1362 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1364 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1365 struct btrfs_extent_ref_v0 *ref0; 1366 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1367 struct btrfs_extent_ref_v0); 1368 num_refs = btrfs_ref_count_v0(leaf, ref0); 1369 #endif 1370 } else { 1371 BUG(); 1372 } 1373 1374 BUG_ON(num_refs < refs_to_drop); 1375 num_refs -= refs_to_drop; 1376 1377 if (num_refs == 0) { 1378 ret = btrfs_del_item(trans, root, path); 1379 *last_ref = 1; 1380 } else { 1381 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1382 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1383 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1384 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1386 else { 1387 struct btrfs_extent_ref_v0 *ref0; 1388 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1389 struct btrfs_extent_ref_v0); 1390 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1391 } 1392 #endif 1393 btrfs_mark_buffer_dirty(leaf); 1394 } 1395 return ret; 1396 } 1397 1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1399 struct btrfs_extent_inline_ref *iref) 1400 { 1401 struct btrfs_key key; 1402 struct extent_buffer *leaf; 1403 struct btrfs_extent_data_ref *ref1; 1404 struct btrfs_shared_data_ref *ref2; 1405 u32 num_refs = 0; 1406 1407 leaf = path->nodes[0]; 1408 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1409 if (iref) { 1410 if (btrfs_extent_inline_ref_type(leaf, iref) == 1411 BTRFS_EXTENT_DATA_REF_KEY) { 1412 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1413 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1414 } else { 1415 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1416 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1417 } 1418 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1419 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1420 struct btrfs_extent_data_ref); 1421 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1422 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1423 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1424 struct btrfs_shared_data_ref); 1425 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1427 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1428 struct btrfs_extent_ref_v0 *ref0; 1429 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1430 struct btrfs_extent_ref_v0); 1431 num_refs = btrfs_ref_count_v0(leaf, ref0); 1432 #endif 1433 } else { 1434 WARN_ON(1); 1435 } 1436 return num_refs; 1437 } 1438 1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1440 struct btrfs_root *root, 1441 struct btrfs_path *path, 1442 u64 bytenr, u64 parent, 1443 u64 root_objectid) 1444 { 1445 struct btrfs_key key; 1446 int ret; 1447 1448 key.objectid = bytenr; 1449 if (parent) { 1450 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1451 key.offset = parent; 1452 } else { 1453 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1454 key.offset = root_objectid; 1455 } 1456 1457 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1458 if (ret > 0) 1459 ret = -ENOENT; 1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1461 if (ret == -ENOENT && parent) { 1462 btrfs_release_path(path); 1463 key.type = BTRFS_EXTENT_REF_V0_KEY; 1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1465 if (ret > 0) 1466 ret = -ENOENT; 1467 } 1468 #endif 1469 return ret; 1470 } 1471 1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1473 struct btrfs_root *root, 1474 struct btrfs_path *path, 1475 u64 bytenr, u64 parent, 1476 u64 root_objectid) 1477 { 1478 struct btrfs_key key; 1479 int ret; 1480 1481 key.objectid = bytenr; 1482 if (parent) { 1483 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1484 key.offset = parent; 1485 } else { 1486 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1487 key.offset = root_objectid; 1488 } 1489 1490 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1491 btrfs_release_path(path); 1492 return ret; 1493 } 1494 1495 static inline int extent_ref_type(u64 parent, u64 owner) 1496 { 1497 int type; 1498 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1499 if (parent > 0) 1500 type = BTRFS_SHARED_BLOCK_REF_KEY; 1501 else 1502 type = BTRFS_TREE_BLOCK_REF_KEY; 1503 } else { 1504 if (parent > 0) 1505 type = BTRFS_SHARED_DATA_REF_KEY; 1506 else 1507 type = BTRFS_EXTENT_DATA_REF_KEY; 1508 } 1509 return type; 1510 } 1511 1512 static int find_next_key(struct btrfs_path *path, int level, 1513 struct btrfs_key *key) 1514 1515 { 1516 for (; level < BTRFS_MAX_LEVEL; level++) { 1517 if (!path->nodes[level]) 1518 break; 1519 if (path->slots[level] + 1 >= 1520 btrfs_header_nritems(path->nodes[level])) 1521 continue; 1522 if (level == 0) 1523 btrfs_item_key_to_cpu(path->nodes[level], key, 1524 path->slots[level] + 1); 1525 else 1526 btrfs_node_key_to_cpu(path->nodes[level], key, 1527 path->slots[level] + 1); 1528 return 0; 1529 } 1530 return 1; 1531 } 1532 1533 /* 1534 * look for inline back ref. if back ref is found, *ref_ret is set 1535 * to the address of inline back ref, and 0 is returned. 1536 * 1537 * if back ref isn't found, *ref_ret is set to the address where it 1538 * should be inserted, and -ENOENT is returned. 1539 * 1540 * if insert is true and there are too many inline back refs, the path 1541 * points to the extent item, and -EAGAIN is returned. 1542 * 1543 * NOTE: inline back refs are ordered in the same way that back ref 1544 * items in the tree are ordered. 1545 */ 1546 static noinline_for_stack 1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1548 struct btrfs_root *root, 1549 struct btrfs_path *path, 1550 struct btrfs_extent_inline_ref **ref_ret, 1551 u64 bytenr, u64 num_bytes, 1552 u64 parent, u64 root_objectid, 1553 u64 owner, u64 offset, int insert) 1554 { 1555 struct btrfs_key key; 1556 struct extent_buffer *leaf; 1557 struct btrfs_extent_item *ei; 1558 struct btrfs_extent_inline_ref *iref; 1559 u64 flags; 1560 u64 item_size; 1561 unsigned long ptr; 1562 unsigned long end; 1563 int extra_size; 1564 int type; 1565 int want; 1566 int ret; 1567 int err = 0; 1568 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1569 SKINNY_METADATA); 1570 1571 key.objectid = bytenr; 1572 key.type = BTRFS_EXTENT_ITEM_KEY; 1573 key.offset = num_bytes; 1574 1575 want = extent_ref_type(parent, owner); 1576 if (insert) { 1577 extra_size = btrfs_extent_inline_ref_size(want); 1578 path->keep_locks = 1; 1579 } else 1580 extra_size = -1; 1581 1582 /* 1583 * Owner is our parent level, so we can just add one to get the level 1584 * for the block we are interested in. 1585 */ 1586 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1587 key.type = BTRFS_METADATA_ITEM_KEY; 1588 key.offset = owner; 1589 } 1590 1591 again: 1592 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1593 if (ret < 0) { 1594 err = ret; 1595 goto out; 1596 } 1597 1598 /* 1599 * We may be a newly converted file system which still has the old fat 1600 * extent entries for metadata, so try and see if we have one of those. 1601 */ 1602 if (ret > 0 && skinny_metadata) { 1603 skinny_metadata = false; 1604 if (path->slots[0]) { 1605 path->slots[0]--; 1606 btrfs_item_key_to_cpu(path->nodes[0], &key, 1607 path->slots[0]); 1608 if (key.objectid == bytenr && 1609 key.type == BTRFS_EXTENT_ITEM_KEY && 1610 key.offset == num_bytes) 1611 ret = 0; 1612 } 1613 if (ret) { 1614 key.objectid = bytenr; 1615 key.type = BTRFS_EXTENT_ITEM_KEY; 1616 key.offset = num_bytes; 1617 btrfs_release_path(path); 1618 goto again; 1619 } 1620 } 1621 1622 if (ret && !insert) { 1623 err = -ENOENT; 1624 goto out; 1625 } else if (WARN_ON(ret)) { 1626 err = -EIO; 1627 goto out; 1628 } 1629 1630 leaf = path->nodes[0]; 1631 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1633 if (item_size < sizeof(*ei)) { 1634 if (!insert) { 1635 err = -ENOENT; 1636 goto out; 1637 } 1638 ret = convert_extent_item_v0(trans, root, path, owner, 1639 extra_size); 1640 if (ret < 0) { 1641 err = ret; 1642 goto out; 1643 } 1644 leaf = path->nodes[0]; 1645 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1646 } 1647 #endif 1648 BUG_ON(item_size < sizeof(*ei)); 1649 1650 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1651 flags = btrfs_extent_flags(leaf, ei); 1652 1653 ptr = (unsigned long)(ei + 1); 1654 end = (unsigned long)ei + item_size; 1655 1656 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1657 ptr += sizeof(struct btrfs_tree_block_info); 1658 BUG_ON(ptr > end); 1659 } 1660 1661 err = -ENOENT; 1662 while (1) { 1663 if (ptr >= end) { 1664 WARN_ON(ptr > end); 1665 break; 1666 } 1667 iref = (struct btrfs_extent_inline_ref *)ptr; 1668 type = btrfs_extent_inline_ref_type(leaf, iref); 1669 if (want < type) 1670 break; 1671 if (want > type) { 1672 ptr += btrfs_extent_inline_ref_size(type); 1673 continue; 1674 } 1675 1676 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1677 struct btrfs_extent_data_ref *dref; 1678 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1679 if (match_extent_data_ref(leaf, dref, root_objectid, 1680 owner, offset)) { 1681 err = 0; 1682 break; 1683 } 1684 if (hash_extent_data_ref_item(leaf, dref) < 1685 hash_extent_data_ref(root_objectid, owner, offset)) 1686 break; 1687 } else { 1688 u64 ref_offset; 1689 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1690 if (parent > 0) { 1691 if (parent == ref_offset) { 1692 err = 0; 1693 break; 1694 } 1695 if (ref_offset < parent) 1696 break; 1697 } else { 1698 if (root_objectid == ref_offset) { 1699 err = 0; 1700 break; 1701 } 1702 if (ref_offset < root_objectid) 1703 break; 1704 } 1705 } 1706 ptr += btrfs_extent_inline_ref_size(type); 1707 } 1708 if (err == -ENOENT && insert) { 1709 if (item_size + extra_size >= 1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1711 err = -EAGAIN; 1712 goto out; 1713 } 1714 /* 1715 * To add new inline back ref, we have to make sure 1716 * there is no corresponding back ref item. 1717 * For simplicity, we just do not add new inline back 1718 * ref if there is any kind of item for this block 1719 */ 1720 if (find_next_key(path, 0, &key) == 0 && 1721 key.objectid == bytenr && 1722 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1723 err = -EAGAIN; 1724 goto out; 1725 } 1726 } 1727 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1728 out: 1729 if (insert) { 1730 path->keep_locks = 0; 1731 btrfs_unlock_up_safe(path, 1); 1732 } 1733 return err; 1734 } 1735 1736 /* 1737 * helper to add new inline back ref 1738 */ 1739 static noinline_for_stack 1740 void setup_inline_extent_backref(struct btrfs_root *root, 1741 struct btrfs_path *path, 1742 struct btrfs_extent_inline_ref *iref, 1743 u64 parent, u64 root_objectid, 1744 u64 owner, u64 offset, int refs_to_add, 1745 struct btrfs_delayed_extent_op *extent_op) 1746 { 1747 struct extent_buffer *leaf; 1748 struct btrfs_extent_item *ei; 1749 unsigned long ptr; 1750 unsigned long end; 1751 unsigned long item_offset; 1752 u64 refs; 1753 int size; 1754 int type; 1755 1756 leaf = path->nodes[0]; 1757 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1758 item_offset = (unsigned long)iref - (unsigned long)ei; 1759 1760 type = extent_ref_type(parent, owner); 1761 size = btrfs_extent_inline_ref_size(type); 1762 1763 btrfs_extend_item(root, path, size); 1764 1765 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1766 refs = btrfs_extent_refs(leaf, ei); 1767 refs += refs_to_add; 1768 btrfs_set_extent_refs(leaf, ei, refs); 1769 if (extent_op) 1770 __run_delayed_extent_op(extent_op, leaf, ei); 1771 1772 ptr = (unsigned long)ei + item_offset; 1773 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1774 if (ptr < end - size) 1775 memmove_extent_buffer(leaf, ptr + size, ptr, 1776 end - size - ptr); 1777 1778 iref = (struct btrfs_extent_inline_ref *)ptr; 1779 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1780 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1781 struct btrfs_extent_data_ref *dref; 1782 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1783 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1784 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1785 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1786 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1788 struct btrfs_shared_data_ref *sref; 1789 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1790 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1791 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1792 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1793 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1794 } else { 1795 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1796 } 1797 btrfs_mark_buffer_dirty(leaf); 1798 } 1799 1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 struct btrfs_path *path, 1803 struct btrfs_extent_inline_ref **ref_ret, 1804 u64 bytenr, u64 num_bytes, u64 parent, 1805 u64 root_objectid, u64 owner, u64 offset) 1806 { 1807 int ret; 1808 1809 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1810 bytenr, num_bytes, parent, 1811 root_objectid, owner, offset, 0); 1812 if (ret != -ENOENT) 1813 return ret; 1814 1815 btrfs_release_path(path); 1816 *ref_ret = NULL; 1817 1818 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1819 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1820 root_objectid); 1821 } else { 1822 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1823 root_objectid, owner, offset); 1824 } 1825 return ret; 1826 } 1827 1828 /* 1829 * helper to update/remove inline back ref 1830 */ 1831 static noinline_for_stack 1832 void update_inline_extent_backref(struct btrfs_root *root, 1833 struct btrfs_path *path, 1834 struct btrfs_extent_inline_ref *iref, 1835 int refs_to_mod, 1836 struct btrfs_delayed_extent_op *extent_op, 1837 int *last_ref) 1838 { 1839 struct extent_buffer *leaf; 1840 struct btrfs_extent_item *ei; 1841 struct btrfs_extent_data_ref *dref = NULL; 1842 struct btrfs_shared_data_ref *sref = NULL; 1843 unsigned long ptr; 1844 unsigned long end; 1845 u32 item_size; 1846 int size; 1847 int type; 1848 u64 refs; 1849 1850 leaf = path->nodes[0]; 1851 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1852 refs = btrfs_extent_refs(leaf, ei); 1853 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1854 refs += refs_to_mod; 1855 btrfs_set_extent_refs(leaf, ei, refs); 1856 if (extent_op) 1857 __run_delayed_extent_op(extent_op, leaf, ei); 1858 1859 type = btrfs_extent_inline_ref_type(leaf, iref); 1860 1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1862 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1863 refs = btrfs_extent_data_ref_count(leaf, dref); 1864 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1865 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1866 refs = btrfs_shared_data_ref_count(leaf, sref); 1867 } else { 1868 refs = 1; 1869 BUG_ON(refs_to_mod != -1); 1870 } 1871 1872 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1873 refs += refs_to_mod; 1874 1875 if (refs > 0) { 1876 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1877 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1878 else 1879 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1880 } else { 1881 *last_ref = 1; 1882 size = btrfs_extent_inline_ref_size(type); 1883 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1884 ptr = (unsigned long)iref; 1885 end = (unsigned long)ei + item_size; 1886 if (ptr + size < end) 1887 memmove_extent_buffer(leaf, ptr, ptr + size, 1888 end - ptr - size); 1889 item_size -= size; 1890 btrfs_truncate_item(root, path, item_size, 1); 1891 } 1892 btrfs_mark_buffer_dirty(leaf); 1893 } 1894 1895 static noinline_for_stack 1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1897 struct btrfs_root *root, 1898 struct btrfs_path *path, 1899 u64 bytenr, u64 num_bytes, u64 parent, 1900 u64 root_objectid, u64 owner, 1901 u64 offset, int refs_to_add, 1902 struct btrfs_delayed_extent_op *extent_op) 1903 { 1904 struct btrfs_extent_inline_ref *iref; 1905 int ret; 1906 1907 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1908 bytenr, num_bytes, parent, 1909 root_objectid, owner, offset, 1); 1910 if (ret == 0) { 1911 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1912 update_inline_extent_backref(root, path, iref, 1913 refs_to_add, extent_op, NULL); 1914 } else if (ret == -ENOENT) { 1915 setup_inline_extent_backref(root, path, iref, parent, 1916 root_objectid, owner, offset, 1917 refs_to_add, extent_op); 1918 ret = 0; 1919 } 1920 return ret; 1921 } 1922 1923 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1924 struct btrfs_root *root, 1925 struct btrfs_path *path, 1926 u64 bytenr, u64 parent, u64 root_objectid, 1927 u64 owner, u64 offset, int refs_to_add) 1928 { 1929 int ret; 1930 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1931 BUG_ON(refs_to_add != 1); 1932 ret = insert_tree_block_ref(trans, root, path, bytenr, 1933 parent, root_objectid); 1934 } else { 1935 ret = insert_extent_data_ref(trans, root, path, bytenr, 1936 parent, root_objectid, 1937 owner, offset, refs_to_add); 1938 } 1939 return ret; 1940 } 1941 1942 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, 1944 struct btrfs_path *path, 1945 struct btrfs_extent_inline_ref *iref, 1946 int refs_to_drop, int is_data, int *last_ref) 1947 { 1948 int ret = 0; 1949 1950 BUG_ON(!is_data && refs_to_drop != 1); 1951 if (iref) { 1952 update_inline_extent_backref(root, path, iref, 1953 -refs_to_drop, NULL, last_ref); 1954 } else if (is_data) { 1955 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1956 last_ref); 1957 } else { 1958 *last_ref = 1; 1959 ret = btrfs_del_item(trans, root, path); 1960 } 1961 return ret; 1962 } 1963 1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1966 u64 *discarded_bytes) 1967 { 1968 int j, ret = 0; 1969 u64 bytes_left, end; 1970 u64 aligned_start = ALIGN(start, 1 << 9); 1971 1972 if (WARN_ON(start != aligned_start)) { 1973 len -= aligned_start - start; 1974 len = round_down(len, 1 << 9); 1975 start = aligned_start; 1976 } 1977 1978 *discarded_bytes = 0; 1979 1980 if (!len) 1981 return 0; 1982 1983 end = start + len; 1984 bytes_left = len; 1985 1986 /* Skip any superblocks on this device. */ 1987 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1988 u64 sb_start = btrfs_sb_offset(j); 1989 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1990 u64 size = sb_start - start; 1991 1992 if (!in_range(sb_start, start, bytes_left) && 1993 !in_range(sb_end, start, bytes_left) && 1994 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1995 continue; 1996 1997 /* 1998 * Superblock spans beginning of range. Adjust start and 1999 * try again. 2000 */ 2001 if (sb_start <= start) { 2002 start += sb_end - start; 2003 if (start > end) { 2004 bytes_left = 0; 2005 break; 2006 } 2007 bytes_left = end - start; 2008 continue; 2009 } 2010 2011 if (size) { 2012 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2013 GFP_NOFS, 0); 2014 if (!ret) 2015 *discarded_bytes += size; 2016 else if (ret != -EOPNOTSUPP) 2017 return ret; 2018 } 2019 2020 start = sb_end; 2021 if (start > end) { 2022 bytes_left = 0; 2023 break; 2024 } 2025 bytes_left = end - start; 2026 } 2027 2028 if (bytes_left) { 2029 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2030 GFP_NOFS, 0); 2031 if (!ret) 2032 *discarded_bytes += bytes_left; 2033 } 2034 return ret; 2035 } 2036 2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 2038 u64 num_bytes, u64 *actual_bytes) 2039 { 2040 int ret; 2041 u64 discarded_bytes = 0; 2042 struct btrfs_bio *bbio = NULL; 2043 2044 2045 /* 2046 * Avoid races with device replace and make sure our bbio has devices 2047 * associated to its stripes that don't go away while we are discarding. 2048 */ 2049 btrfs_bio_counter_inc_blocked(root->fs_info); 2050 /* Tell the block device(s) that the sectors can be discarded */ 2051 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 2052 bytenr, &num_bytes, &bbio, 0); 2053 /* Error condition is -ENOMEM */ 2054 if (!ret) { 2055 struct btrfs_bio_stripe *stripe = bbio->stripes; 2056 int i; 2057 2058 2059 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2060 u64 bytes; 2061 if (!stripe->dev->can_discard) 2062 continue; 2063 2064 ret = btrfs_issue_discard(stripe->dev->bdev, 2065 stripe->physical, 2066 stripe->length, 2067 &bytes); 2068 if (!ret) 2069 discarded_bytes += bytes; 2070 else if (ret != -EOPNOTSUPP) 2071 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2072 2073 /* 2074 * Just in case we get back EOPNOTSUPP for some reason, 2075 * just ignore the return value so we don't screw up 2076 * people calling discard_extent. 2077 */ 2078 ret = 0; 2079 } 2080 btrfs_put_bbio(bbio); 2081 } 2082 btrfs_bio_counter_dec(root->fs_info); 2083 2084 if (actual_bytes) 2085 *actual_bytes = discarded_bytes; 2086 2087 2088 if (ret == -EOPNOTSUPP) 2089 ret = 0; 2090 return ret; 2091 } 2092 2093 /* Can return -ENOMEM */ 2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2095 struct btrfs_root *root, 2096 u64 bytenr, u64 num_bytes, u64 parent, 2097 u64 root_objectid, u64 owner, u64 offset) 2098 { 2099 int ret; 2100 struct btrfs_fs_info *fs_info = root->fs_info; 2101 2102 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2103 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2104 2105 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2106 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2107 num_bytes, 2108 parent, root_objectid, (int)owner, 2109 BTRFS_ADD_DELAYED_REF, NULL); 2110 } else { 2111 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2112 num_bytes, parent, root_objectid, 2113 owner, offset, 0, 2114 BTRFS_ADD_DELAYED_REF, NULL); 2115 } 2116 return ret; 2117 } 2118 2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2120 struct btrfs_root *root, 2121 struct btrfs_delayed_ref_node *node, 2122 u64 parent, u64 root_objectid, 2123 u64 owner, u64 offset, int refs_to_add, 2124 struct btrfs_delayed_extent_op *extent_op) 2125 { 2126 struct btrfs_fs_info *fs_info = root->fs_info; 2127 struct btrfs_path *path; 2128 struct extent_buffer *leaf; 2129 struct btrfs_extent_item *item; 2130 struct btrfs_key key; 2131 u64 bytenr = node->bytenr; 2132 u64 num_bytes = node->num_bytes; 2133 u64 refs; 2134 int ret; 2135 2136 path = btrfs_alloc_path(); 2137 if (!path) 2138 return -ENOMEM; 2139 2140 path->reada = READA_FORWARD; 2141 path->leave_spinning = 1; 2142 /* this will setup the path even if it fails to insert the back ref */ 2143 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2144 bytenr, num_bytes, parent, 2145 root_objectid, owner, offset, 2146 refs_to_add, extent_op); 2147 if ((ret < 0 && ret != -EAGAIN) || !ret) 2148 goto out; 2149 2150 /* 2151 * Ok we had -EAGAIN which means we didn't have space to insert and 2152 * inline extent ref, so just update the reference count and add a 2153 * normal backref. 2154 */ 2155 leaf = path->nodes[0]; 2156 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2157 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2158 refs = btrfs_extent_refs(leaf, item); 2159 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2160 if (extent_op) 2161 __run_delayed_extent_op(extent_op, leaf, item); 2162 2163 btrfs_mark_buffer_dirty(leaf); 2164 btrfs_release_path(path); 2165 2166 path->reada = READA_FORWARD; 2167 path->leave_spinning = 1; 2168 /* now insert the actual backref */ 2169 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2170 path, bytenr, parent, root_objectid, 2171 owner, offset, refs_to_add); 2172 if (ret) 2173 btrfs_abort_transaction(trans, root, ret); 2174 out: 2175 btrfs_free_path(path); 2176 return ret; 2177 } 2178 2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2180 struct btrfs_root *root, 2181 struct btrfs_delayed_ref_node *node, 2182 struct btrfs_delayed_extent_op *extent_op, 2183 int insert_reserved) 2184 { 2185 int ret = 0; 2186 struct btrfs_delayed_data_ref *ref; 2187 struct btrfs_key ins; 2188 u64 parent = 0; 2189 u64 ref_root = 0; 2190 u64 flags = 0; 2191 2192 ins.objectid = node->bytenr; 2193 ins.offset = node->num_bytes; 2194 ins.type = BTRFS_EXTENT_ITEM_KEY; 2195 2196 ref = btrfs_delayed_node_to_data_ref(node); 2197 trace_run_delayed_data_ref(node, ref, node->action); 2198 2199 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2200 parent = ref->parent; 2201 ref_root = ref->root; 2202 2203 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2204 if (extent_op) 2205 flags |= extent_op->flags_to_set; 2206 ret = alloc_reserved_file_extent(trans, root, 2207 parent, ref_root, flags, 2208 ref->objectid, ref->offset, 2209 &ins, node->ref_mod); 2210 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2211 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2212 ref_root, ref->objectid, 2213 ref->offset, node->ref_mod, 2214 extent_op); 2215 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2216 ret = __btrfs_free_extent(trans, root, node, parent, 2217 ref_root, ref->objectid, 2218 ref->offset, node->ref_mod, 2219 extent_op); 2220 } else { 2221 BUG(); 2222 } 2223 return ret; 2224 } 2225 2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2227 struct extent_buffer *leaf, 2228 struct btrfs_extent_item *ei) 2229 { 2230 u64 flags = btrfs_extent_flags(leaf, ei); 2231 if (extent_op->update_flags) { 2232 flags |= extent_op->flags_to_set; 2233 btrfs_set_extent_flags(leaf, ei, flags); 2234 } 2235 2236 if (extent_op->update_key) { 2237 struct btrfs_tree_block_info *bi; 2238 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2239 bi = (struct btrfs_tree_block_info *)(ei + 1); 2240 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2241 } 2242 } 2243 2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2245 struct btrfs_root *root, 2246 struct btrfs_delayed_ref_node *node, 2247 struct btrfs_delayed_extent_op *extent_op) 2248 { 2249 struct btrfs_key key; 2250 struct btrfs_path *path; 2251 struct btrfs_extent_item *ei; 2252 struct extent_buffer *leaf; 2253 u32 item_size; 2254 int ret; 2255 int err = 0; 2256 int metadata = !extent_op->is_data; 2257 2258 if (trans->aborted) 2259 return 0; 2260 2261 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2262 metadata = 0; 2263 2264 path = btrfs_alloc_path(); 2265 if (!path) 2266 return -ENOMEM; 2267 2268 key.objectid = node->bytenr; 2269 2270 if (metadata) { 2271 key.type = BTRFS_METADATA_ITEM_KEY; 2272 key.offset = extent_op->level; 2273 } else { 2274 key.type = BTRFS_EXTENT_ITEM_KEY; 2275 key.offset = node->num_bytes; 2276 } 2277 2278 again: 2279 path->reada = READA_FORWARD; 2280 path->leave_spinning = 1; 2281 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2282 path, 0, 1); 2283 if (ret < 0) { 2284 err = ret; 2285 goto out; 2286 } 2287 if (ret > 0) { 2288 if (metadata) { 2289 if (path->slots[0] > 0) { 2290 path->slots[0]--; 2291 btrfs_item_key_to_cpu(path->nodes[0], &key, 2292 path->slots[0]); 2293 if (key.objectid == node->bytenr && 2294 key.type == BTRFS_EXTENT_ITEM_KEY && 2295 key.offset == node->num_bytes) 2296 ret = 0; 2297 } 2298 if (ret > 0) { 2299 btrfs_release_path(path); 2300 metadata = 0; 2301 2302 key.objectid = node->bytenr; 2303 key.offset = node->num_bytes; 2304 key.type = BTRFS_EXTENT_ITEM_KEY; 2305 goto again; 2306 } 2307 } else { 2308 err = -EIO; 2309 goto out; 2310 } 2311 } 2312 2313 leaf = path->nodes[0]; 2314 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2316 if (item_size < sizeof(*ei)) { 2317 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2318 path, (u64)-1, 0); 2319 if (ret < 0) { 2320 err = ret; 2321 goto out; 2322 } 2323 leaf = path->nodes[0]; 2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2325 } 2326 #endif 2327 BUG_ON(item_size < sizeof(*ei)); 2328 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2329 __run_delayed_extent_op(extent_op, leaf, ei); 2330 2331 btrfs_mark_buffer_dirty(leaf); 2332 out: 2333 btrfs_free_path(path); 2334 return err; 2335 } 2336 2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2338 struct btrfs_root *root, 2339 struct btrfs_delayed_ref_node *node, 2340 struct btrfs_delayed_extent_op *extent_op, 2341 int insert_reserved) 2342 { 2343 int ret = 0; 2344 struct btrfs_delayed_tree_ref *ref; 2345 struct btrfs_key ins; 2346 u64 parent = 0; 2347 u64 ref_root = 0; 2348 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2349 SKINNY_METADATA); 2350 2351 ref = btrfs_delayed_node_to_tree_ref(node); 2352 trace_run_delayed_tree_ref(node, ref, node->action); 2353 2354 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2355 parent = ref->parent; 2356 ref_root = ref->root; 2357 2358 ins.objectid = node->bytenr; 2359 if (skinny_metadata) { 2360 ins.offset = ref->level; 2361 ins.type = BTRFS_METADATA_ITEM_KEY; 2362 } else { 2363 ins.offset = node->num_bytes; 2364 ins.type = BTRFS_EXTENT_ITEM_KEY; 2365 } 2366 2367 BUG_ON(node->ref_mod != 1); 2368 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2369 BUG_ON(!extent_op || !extent_op->update_flags); 2370 ret = alloc_reserved_tree_block(trans, root, 2371 parent, ref_root, 2372 extent_op->flags_to_set, 2373 &extent_op->key, 2374 ref->level, &ins); 2375 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2376 ret = __btrfs_inc_extent_ref(trans, root, node, 2377 parent, ref_root, 2378 ref->level, 0, 1, 2379 extent_op); 2380 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2381 ret = __btrfs_free_extent(trans, root, node, 2382 parent, ref_root, 2383 ref->level, 0, 1, extent_op); 2384 } else { 2385 BUG(); 2386 } 2387 return ret; 2388 } 2389 2390 /* helper function to actually process a single delayed ref entry */ 2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2392 struct btrfs_root *root, 2393 struct btrfs_delayed_ref_node *node, 2394 struct btrfs_delayed_extent_op *extent_op, 2395 int insert_reserved) 2396 { 2397 int ret = 0; 2398 2399 if (trans->aborted) { 2400 if (insert_reserved) 2401 btrfs_pin_extent(root, node->bytenr, 2402 node->num_bytes, 1); 2403 return 0; 2404 } 2405 2406 if (btrfs_delayed_ref_is_head(node)) { 2407 struct btrfs_delayed_ref_head *head; 2408 /* 2409 * we've hit the end of the chain and we were supposed 2410 * to insert this extent into the tree. But, it got 2411 * deleted before we ever needed to insert it, so all 2412 * we have to do is clean up the accounting 2413 */ 2414 BUG_ON(extent_op); 2415 head = btrfs_delayed_node_to_head(node); 2416 trace_run_delayed_ref_head(node, head, node->action); 2417 2418 if (insert_reserved) { 2419 btrfs_pin_extent(root, node->bytenr, 2420 node->num_bytes, 1); 2421 if (head->is_data) { 2422 ret = btrfs_del_csums(trans, root, 2423 node->bytenr, 2424 node->num_bytes); 2425 } 2426 } 2427 2428 /* Also free its reserved qgroup space */ 2429 btrfs_qgroup_free_delayed_ref(root->fs_info, 2430 head->qgroup_ref_root, 2431 head->qgroup_reserved); 2432 return ret; 2433 } 2434 2435 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2436 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2437 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2438 insert_reserved); 2439 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2440 node->type == BTRFS_SHARED_DATA_REF_KEY) 2441 ret = run_delayed_data_ref(trans, root, node, extent_op, 2442 insert_reserved); 2443 else 2444 BUG(); 2445 return ret; 2446 } 2447 2448 static inline struct btrfs_delayed_ref_node * 2449 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2450 { 2451 struct btrfs_delayed_ref_node *ref; 2452 2453 if (list_empty(&head->ref_list)) 2454 return NULL; 2455 2456 /* 2457 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2458 * This is to prevent a ref count from going down to zero, which deletes 2459 * the extent item from the extent tree, when there still are references 2460 * to add, which would fail because they would not find the extent item. 2461 */ 2462 list_for_each_entry(ref, &head->ref_list, list) { 2463 if (ref->action == BTRFS_ADD_DELAYED_REF) 2464 return ref; 2465 } 2466 2467 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2468 list); 2469 } 2470 2471 /* 2472 * Returns 0 on success or if called with an already aborted transaction. 2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2474 */ 2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2476 struct btrfs_root *root, 2477 unsigned long nr) 2478 { 2479 struct btrfs_delayed_ref_root *delayed_refs; 2480 struct btrfs_delayed_ref_node *ref; 2481 struct btrfs_delayed_ref_head *locked_ref = NULL; 2482 struct btrfs_delayed_extent_op *extent_op; 2483 struct btrfs_fs_info *fs_info = root->fs_info; 2484 ktime_t start = ktime_get(); 2485 int ret; 2486 unsigned long count = 0; 2487 unsigned long actual_count = 0; 2488 int must_insert_reserved = 0; 2489 2490 delayed_refs = &trans->transaction->delayed_refs; 2491 while (1) { 2492 if (!locked_ref) { 2493 if (count >= nr) 2494 break; 2495 2496 spin_lock(&delayed_refs->lock); 2497 locked_ref = btrfs_select_ref_head(trans); 2498 if (!locked_ref) { 2499 spin_unlock(&delayed_refs->lock); 2500 break; 2501 } 2502 2503 /* grab the lock that says we are going to process 2504 * all the refs for this head */ 2505 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2506 spin_unlock(&delayed_refs->lock); 2507 /* 2508 * we may have dropped the spin lock to get the head 2509 * mutex lock, and that might have given someone else 2510 * time to free the head. If that's true, it has been 2511 * removed from our list and we can move on. 2512 */ 2513 if (ret == -EAGAIN) { 2514 locked_ref = NULL; 2515 count++; 2516 continue; 2517 } 2518 } 2519 2520 /* 2521 * We need to try and merge add/drops of the same ref since we 2522 * can run into issues with relocate dropping the implicit ref 2523 * and then it being added back again before the drop can 2524 * finish. If we merged anything we need to re-loop so we can 2525 * get a good ref. 2526 * Or we can get node references of the same type that weren't 2527 * merged when created due to bumps in the tree mod seq, and 2528 * we need to merge them to prevent adding an inline extent 2529 * backref before dropping it (triggering a BUG_ON at 2530 * insert_inline_extent_backref()). 2531 */ 2532 spin_lock(&locked_ref->lock); 2533 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2534 locked_ref); 2535 2536 /* 2537 * locked_ref is the head node, so we have to go one 2538 * node back for any delayed ref updates 2539 */ 2540 ref = select_delayed_ref(locked_ref); 2541 2542 if (ref && ref->seq && 2543 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2544 spin_unlock(&locked_ref->lock); 2545 btrfs_delayed_ref_unlock(locked_ref); 2546 spin_lock(&delayed_refs->lock); 2547 locked_ref->processing = 0; 2548 delayed_refs->num_heads_ready++; 2549 spin_unlock(&delayed_refs->lock); 2550 locked_ref = NULL; 2551 cond_resched(); 2552 count++; 2553 continue; 2554 } 2555 2556 /* 2557 * record the must insert reserved flag before we 2558 * drop the spin lock. 2559 */ 2560 must_insert_reserved = locked_ref->must_insert_reserved; 2561 locked_ref->must_insert_reserved = 0; 2562 2563 extent_op = locked_ref->extent_op; 2564 locked_ref->extent_op = NULL; 2565 2566 if (!ref) { 2567 2568 2569 /* All delayed refs have been processed, Go ahead 2570 * and send the head node to run_one_delayed_ref, 2571 * so that any accounting fixes can happen 2572 */ 2573 ref = &locked_ref->node; 2574 2575 if (extent_op && must_insert_reserved) { 2576 btrfs_free_delayed_extent_op(extent_op); 2577 extent_op = NULL; 2578 } 2579 2580 if (extent_op) { 2581 spin_unlock(&locked_ref->lock); 2582 ret = run_delayed_extent_op(trans, root, 2583 ref, extent_op); 2584 btrfs_free_delayed_extent_op(extent_op); 2585 2586 if (ret) { 2587 /* 2588 * Need to reset must_insert_reserved if 2589 * there was an error so the abort stuff 2590 * can cleanup the reserved space 2591 * properly. 2592 */ 2593 if (must_insert_reserved) 2594 locked_ref->must_insert_reserved = 1; 2595 locked_ref->processing = 0; 2596 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2597 btrfs_delayed_ref_unlock(locked_ref); 2598 return ret; 2599 } 2600 continue; 2601 } 2602 2603 /* 2604 * Need to drop our head ref lock and re-acquire the 2605 * delayed ref lock and then re-check to make sure 2606 * nobody got added. 2607 */ 2608 spin_unlock(&locked_ref->lock); 2609 spin_lock(&delayed_refs->lock); 2610 spin_lock(&locked_ref->lock); 2611 if (!list_empty(&locked_ref->ref_list) || 2612 locked_ref->extent_op) { 2613 spin_unlock(&locked_ref->lock); 2614 spin_unlock(&delayed_refs->lock); 2615 continue; 2616 } 2617 ref->in_tree = 0; 2618 delayed_refs->num_heads--; 2619 rb_erase(&locked_ref->href_node, 2620 &delayed_refs->href_root); 2621 spin_unlock(&delayed_refs->lock); 2622 } else { 2623 actual_count++; 2624 ref->in_tree = 0; 2625 list_del(&ref->list); 2626 } 2627 atomic_dec(&delayed_refs->num_entries); 2628 2629 if (!btrfs_delayed_ref_is_head(ref)) { 2630 /* 2631 * when we play the delayed ref, also correct the 2632 * ref_mod on head 2633 */ 2634 switch (ref->action) { 2635 case BTRFS_ADD_DELAYED_REF: 2636 case BTRFS_ADD_DELAYED_EXTENT: 2637 locked_ref->node.ref_mod -= ref->ref_mod; 2638 break; 2639 case BTRFS_DROP_DELAYED_REF: 2640 locked_ref->node.ref_mod += ref->ref_mod; 2641 break; 2642 default: 2643 WARN_ON(1); 2644 } 2645 } 2646 spin_unlock(&locked_ref->lock); 2647 2648 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2649 must_insert_reserved); 2650 2651 btrfs_free_delayed_extent_op(extent_op); 2652 if (ret) { 2653 locked_ref->processing = 0; 2654 btrfs_delayed_ref_unlock(locked_ref); 2655 btrfs_put_delayed_ref(ref); 2656 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2657 return ret; 2658 } 2659 2660 /* 2661 * If this node is a head, that means all the refs in this head 2662 * have been dealt with, and we will pick the next head to deal 2663 * with, so we must unlock the head and drop it from the cluster 2664 * list before we release it. 2665 */ 2666 if (btrfs_delayed_ref_is_head(ref)) { 2667 if (locked_ref->is_data && 2668 locked_ref->total_ref_mod < 0) { 2669 spin_lock(&delayed_refs->lock); 2670 delayed_refs->pending_csums -= ref->num_bytes; 2671 spin_unlock(&delayed_refs->lock); 2672 } 2673 btrfs_delayed_ref_unlock(locked_ref); 2674 locked_ref = NULL; 2675 } 2676 btrfs_put_delayed_ref(ref); 2677 count++; 2678 cond_resched(); 2679 } 2680 2681 /* 2682 * We don't want to include ref heads since we can have empty ref heads 2683 * and those will drastically skew our runtime down since we just do 2684 * accounting, no actual extent tree updates. 2685 */ 2686 if (actual_count > 0) { 2687 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2688 u64 avg; 2689 2690 /* 2691 * We weigh the current average higher than our current runtime 2692 * to avoid large swings in the average. 2693 */ 2694 spin_lock(&delayed_refs->lock); 2695 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2696 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2697 spin_unlock(&delayed_refs->lock); 2698 } 2699 return 0; 2700 } 2701 2702 #ifdef SCRAMBLE_DELAYED_REFS 2703 /* 2704 * Normally delayed refs get processed in ascending bytenr order. This 2705 * correlates in most cases to the order added. To expose dependencies on this 2706 * order, we start to process the tree in the middle instead of the beginning 2707 */ 2708 static u64 find_middle(struct rb_root *root) 2709 { 2710 struct rb_node *n = root->rb_node; 2711 struct btrfs_delayed_ref_node *entry; 2712 int alt = 1; 2713 u64 middle; 2714 u64 first = 0, last = 0; 2715 2716 n = rb_first(root); 2717 if (n) { 2718 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2719 first = entry->bytenr; 2720 } 2721 n = rb_last(root); 2722 if (n) { 2723 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2724 last = entry->bytenr; 2725 } 2726 n = root->rb_node; 2727 2728 while (n) { 2729 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2730 WARN_ON(!entry->in_tree); 2731 2732 middle = entry->bytenr; 2733 2734 if (alt) 2735 n = n->rb_left; 2736 else 2737 n = n->rb_right; 2738 2739 alt = 1 - alt; 2740 } 2741 return middle; 2742 } 2743 #endif 2744 2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2746 { 2747 u64 num_bytes; 2748 2749 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2750 sizeof(struct btrfs_extent_inline_ref)); 2751 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2752 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2753 2754 /* 2755 * We don't ever fill up leaves all the way so multiply by 2 just to be 2756 * closer to what we're really going to want to use. 2757 */ 2758 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2759 } 2760 2761 /* 2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2763 * would require to store the csums for that many bytes. 2764 */ 2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2766 { 2767 u64 csum_size; 2768 u64 num_csums_per_leaf; 2769 u64 num_csums; 2770 2771 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2772 num_csums_per_leaf = div64_u64(csum_size, 2773 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2774 num_csums = div64_u64(csum_bytes, root->sectorsize); 2775 num_csums += num_csums_per_leaf - 1; 2776 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2777 return num_csums; 2778 } 2779 2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2781 struct btrfs_root *root) 2782 { 2783 struct btrfs_block_rsv *global_rsv; 2784 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2785 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2786 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2787 u64 num_bytes, num_dirty_bgs_bytes; 2788 int ret = 0; 2789 2790 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2791 num_heads = heads_to_leaves(root, num_heads); 2792 if (num_heads > 1) 2793 num_bytes += (num_heads - 1) * root->nodesize; 2794 num_bytes <<= 1; 2795 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2796 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2797 num_dirty_bgs); 2798 global_rsv = &root->fs_info->global_block_rsv; 2799 2800 /* 2801 * If we can't allocate any more chunks lets make sure we have _lots_ of 2802 * wiggle room since running delayed refs can create more delayed refs. 2803 */ 2804 if (global_rsv->space_info->full) { 2805 num_dirty_bgs_bytes <<= 1; 2806 num_bytes <<= 1; 2807 } 2808 2809 spin_lock(&global_rsv->lock); 2810 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2811 ret = 1; 2812 spin_unlock(&global_rsv->lock); 2813 return ret; 2814 } 2815 2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2817 struct btrfs_root *root) 2818 { 2819 struct btrfs_fs_info *fs_info = root->fs_info; 2820 u64 num_entries = 2821 atomic_read(&trans->transaction->delayed_refs.num_entries); 2822 u64 avg_runtime; 2823 u64 val; 2824 2825 smp_mb(); 2826 avg_runtime = fs_info->avg_delayed_ref_runtime; 2827 val = num_entries * avg_runtime; 2828 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2829 return 1; 2830 if (val >= NSEC_PER_SEC / 2) 2831 return 2; 2832 2833 return btrfs_check_space_for_delayed_refs(trans, root); 2834 } 2835 2836 struct async_delayed_refs { 2837 struct btrfs_root *root; 2838 u64 transid; 2839 int count; 2840 int error; 2841 int sync; 2842 struct completion wait; 2843 struct btrfs_work work; 2844 }; 2845 2846 static void delayed_ref_async_start(struct btrfs_work *work) 2847 { 2848 struct async_delayed_refs *async; 2849 struct btrfs_trans_handle *trans; 2850 int ret; 2851 2852 async = container_of(work, struct async_delayed_refs, work); 2853 2854 /* if the commit is already started, we don't need to wait here */ 2855 if (btrfs_transaction_blocked(async->root->fs_info)) 2856 goto done; 2857 2858 trans = btrfs_join_transaction(async->root); 2859 if (IS_ERR(trans)) { 2860 async->error = PTR_ERR(trans); 2861 goto done; 2862 } 2863 2864 /* 2865 * trans->sync means that when we call end_transaction, we won't 2866 * wait on delayed refs 2867 */ 2868 trans->sync = true; 2869 2870 /* Don't bother flushing if we got into a different transaction */ 2871 if (trans->transid > async->transid) 2872 goto end; 2873 2874 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2875 if (ret) 2876 async->error = ret; 2877 end: 2878 ret = btrfs_end_transaction(trans, async->root); 2879 if (ret && !async->error) 2880 async->error = ret; 2881 done: 2882 if (async->sync) 2883 complete(&async->wait); 2884 else 2885 kfree(async); 2886 } 2887 2888 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2889 unsigned long count, u64 transid, int wait) 2890 { 2891 struct async_delayed_refs *async; 2892 int ret; 2893 2894 async = kmalloc(sizeof(*async), GFP_NOFS); 2895 if (!async) 2896 return -ENOMEM; 2897 2898 async->root = root->fs_info->tree_root; 2899 async->count = count; 2900 async->error = 0; 2901 async->transid = transid; 2902 if (wait) 2903 async->sync = 1; 2904 else 2905 async->sync = 0; 2906 init_completion(&async->wait); 2907 2908 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2909 delayed_ref_async_start, NULL, NULL); 2910 2911 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2912 2913 if (wait) { 2914 wait_for_completion(&async->wait); 2915 ret = async->error; 2916 kfree(async); 2917 return ret; 2918 } 2919 return 0; 2920 } 2921 2922 /* 2923 * this starts processing the delayed reference count updates and 2924 * extent insertions we have queued up so far. count can be 2925 * 0, which means to process everything in the tree at the start 2926 * of the run (but not newly added entries), or it can be some target 2927 * number you'd like to process. 2928 * 2929 * Returns 0 on success or if called with an aborted transaction 2930 * Returns <0 on error and aborts the transaction 2931 */ 2932 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2933 struct btrfs_root *root, unsigned long count) 2934 { 2935 struct rb_node *node; 2936 struct btrfs_delayed_ref_root *delayed_refs; 2937 struct btrfs_delayed_ref_head *head; 2938 int ret; 2939 int run_all = count == (unsigned long)-1; 2940 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2941 2942 /* We'll clean this up in btrfs_cleanup_transaction */ 2943 if (trans->aborted) 2944 return 0; 2945 2946 if (root->fs_info->creating_free_space_tree) 2947 return 0; 2948 2949 if (root == root->fs_info->extent_root) 2950 root = root->fs_info->tree_root; 2951 2952 delayed_refs = &trans->transaction->delayed_refs; 2953 if (count == 0) 2954 count = atomic_read(&delayed_refs->num_entries) * 2; 2955 2956 again: 2957 #ifdef SCRAMBLE_DELAYED_REFS 2958 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2959 #endif 2960 trans->can_flush_pending_bgs = false; 2961 ret = __btrfs_run_delayed_refs(trans, root, count); 2962 if (ret < 0) { 2963 btrfs_abort_transaction(trans, root, ret); 2964 return ret; 2965 } 2966 2967 if (run_all) { 2968 if (!list_empty(&trans->new_bgs)) 2969 btrfs_create_pending_block_groups(trans, root); 2970 2971 spin_lock(&delayed_refs->lock); 2972 node = rb_first(&delayed_refs->href_root); 2973 if (!node) { 2974 spin_unlock(&delayed_refs->lock); 2975 goto out; 2976 } 2977 count = (unsigned long)-1; 2978 2979 while (node) { 2980 head = rb_entry(node, struct btrfs_delayed_ref_head, 2981 href_node); 2982 if (btrfs_delayed_ref_is_head(&head->node)) { 2983 struct btrfs_delayed_ref_node *ref; 2984 2985 ref = &head->node; 2986 atomic_inc(&ref->refs); 2987 2988 spin_unlock(&delayed_refs->lock); 2989 /* 2990 * Mutex was contended, block until it's 2991 * released and try again 2992 */ 2993 mutex_lock(&head->mutex); 2994 mutex_unlock(&head->mutex); 2995 2996 btrfs_put_delayed_ref(ref); 2997 cond_resched(); 2998 goto again; 2999 } else { 3000 WARN_ON(1); 3001 } 3002 node = rb_next(node); 3003 } 3004 spin_unlock(&delayed_refs->lock); 3005 cond_resched(); 3006 goto again; 3007 } 3008 out: 3009 assert_qgroups_uptodate(trans); 3010 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3011 return 0; 3012 } 3013 3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3015 struct btrfs_root *root, 3016 u64 bytenr, u64 num_bytes, u64 flags, 3017 int level, int is_data) 3018 { 3019 struct btrfs_delayed_extent_op *extent_op; 3020 int ret; 3021 3022 extent_op = btrfs_alloc_delayed_extent_op(); 3023 if (!extent_op) 3024 return -ENOMEM; 3025 3026 extent_op->flags_to_set = flags; 3027 extent_op->update_flags = true; 3028 extent_op->update_key = false; 3029 extent_op->is_data = is_data ? true : false; 3030 extent_op->level = level; 3031 3032 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 3033 num_bytes, extent_op); 3034 if (ret) 3035 btrfs_free_delayed_extent_op(extent_op); 3036 return ret; 3037 } 3038 3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 3040 struct btrfs_root *root, 3041 struct btrfs_path *path, 3042 u64 objectid, u64 offset, u64 bytenr) 3043 { 3044 struct btrfs_delayed_ref_head *head; 3045 struct btrfs_delayed_ref_node *ref; 3046 struct btrfs_delayed_data_ref *data_ref; 3047 struct btrfs_delayed_ref_root *delayed_refs; 3048 int ret = 0; 3049 3050 delayed_refs = &trans->transaction->delayed_refs; 3051 spin_lock(&delayed_refs->lock); 3052 head = btrfs_find_delayed_ref_head(trans, bytenr); 3053 if (!head) { 3054 spin_unlock(&delayed_refs->lock); 3055 return 0; 3056 } 3057 3058 if (!mutex_trylock(&head->mutex)) { 3059 atomic_inc(&head->node.refs); 3060 spin_unlock(&delayed_refs->lock); 3061 3062 btrfs_release_path(path); 3063 3064 /* 3065 * Mutex was contended, block until it's released and let 3066 * caller try again 3067 */ 3068 mutex_lock(&head->mutex); 3069 mutex_unlock(&head->mutex); 3070 btrfs_put_delayed_ref(&head->node); 3071 return -EAGAIN; 3072 } 3073 spin_unlock(&delayed_refs->lock); 3074 3075 spin_lock(&head->lock); 3076 list_for_each_entry(ref, &head->ref_list, list) { 3077 /* If it's a shared ref we know a cross reference exists */ 3078 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3079 ret = 1; 3080 break; 3081 } 3082 3083 data_ref = btrfs_delayed_node_to_data_ref(ref); 3084 3085 /* 3086 * If our ref doesn't match the one we're currently looking at 3087 * then we have a cross reference. 3088 */ 3089 if (data_ref->root != root->root_key.objectid || 3090 data_ref->objectid != objectid || 3091 data_ref->offset != offset) { 3092 ret = 1; 3093 break; 3094 } 3095 } 3096 spin_unlock(&head->lock); 3097 mutex_unlock(&head->mutex); 3098 return ret; 3099 } 3100 3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 3102 struct btrfs_root *root, 3103 struct btrfs_path *path, 3104 u64 objectid, u64 offset, u64 bytenr) 3105 { 3106 struct btrfs_root *extent_root = root->fs_info->extent_root; 3107 struct extent_buffer *leaf; 3108 struct btrfs_extent_data_ref *ref; 3109 struct btrfs_extent_inline_ref *iref; 3110 struct btrfs_extent_item *ei; 3111 struct btrfs_key key; 3112 u32 item_size; 3113 int ret; 3114 3115 key.objectid = bytenr; 3116 key.offset = (u64)-1; 3117 key.type = BTRFS_EXTENT_ITEM_KEY; 3118 3119 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3120 if (ret < 0) 3121 goto out; 3122 BUG_ON(ret == 0); /* Corruption */ 3123 3124 ret = -ENOENT; 3125 if (path->slots[0] == 0) 3126 goto out; 3127 3128 path->slots[0]--; 3129 leaf = path->nodes[0]; 3130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3131 3132 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3133 goto out; 3134 3135 ret = 1; 3136 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3138 if (item_size < sizeof(*ei)) { 3139 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3140 goto out; 3141 } 3142 #endif 3143 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3144 3145 if (item_size != sizeof(*ei) + 3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3147 goto out; 3148 3149 if (btrfs_extent_generation(leaf, ei) <= 3150 btrfs_root_last_snapshot(&root->root_item)) 3151 goto out; 3152 3153 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3154 if (btrfs_extent_inline_ref_type(leaf, iref) != 3155 BTRFS_EXTENT_DATA_REF_KEY) 3156 goto out; 3157 3158 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3159 if (btrfs_extent_refs(leaf, ei) != 3160 btrfs_extent_data_ref_count(leaf, ref) || 3161 btrfs_extent_data_ref_root(leaf, ref) != 3162 root->root_key.objectid || 3163 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3164 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3165 goto out; 3166 3167 ret = 0; 3168 out: 3169 return ret; 3170 } 3171 3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3173 struct btrfs_root *root, 3174 u64 objectid, u64 offset, u64 bytenr) 3175 { 3176 struct btrfs_path *path; 3177 int ret; 3178 int ret2; 3179 3180 path = btrfs_alloc_path(); 3181 if (!path) 3182 return -ENOENT; 3183 3184 do { 3185 ret = check_committed_ref(trans, root, path, objectid, 3186 offset, bytenr); 3187 if (ret && ret != -ENOENT) 3188 goto out; 3189 3190 ret2 = check_delayed_ref(trans, root, path, objectid, 3191 offset, bytenr); 3192 } while (ret2 == -EAGAIN); 3193 3194 if (ret2 && ret2 != -ENOENT) { 3195 ret = ret2; 3196 goto out; 3197 } 3198 3199 if (ret != -ENOENT || ret2 != -ENOENT) 3200 ret = 0; 3201 out: 3202 btrfs_free_path(path); 3203 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3204 WARN_ON(ret > 0); 3205 return ret; 3206 } 3207 3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3209 struct btrfs_root *root, 3210 struct extent_buffer *buf, 3211 int full_backref, int inc) 3212 { 3213 u64 bytenr; 3214 u64 num_bytes; 3215 u64 parent; 3216 u64 ref_root; 3217 u32 nritems; 3218 struct btrfs_key key; 3219 struct btrfs_file_extent_item *fi; 3220 int i; 3221 int level; 3222 int ret = 0; 3223 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3224 u64, u64, u64, u64, u64, u64); 3225 3226 3227 if (btrfs_test_is_dummy_root(root)) 3228 return 0; 3229 3230 ref_root = btrfs_header_owner(buf); 3231 nritems = btrfs_header_nritems(buf); 3232 level = btrfs_header_level(buf); 3233 3234 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3235 return 0; 3236 3237 if (inc) 3238 process_func = btrfs_inc_extent_ref; 3239 else 3240 process_func = btrfs_free_extent; 3241 3242 if (full_backref) 3243 parent = buf->start; 3244 else 3245 parent = 0; 3246 3247 for (i = 0; i < nritems; i++) { 3248 if (level == 0) { 3249 btrfs_item_key_to_cpu(buf, &key, i); 3250 if (key.type != BTRFS_EXTENT_DATA_KEY) 3251 continue; 3252 fi = btrfs_item_ptr(buf, i, 3253 struct btrfs_file_extent_item); 3254 if (btrfs_file_extent_type(buf, fi) == 3255 BTRFS_FILE_EXTENT_INLINE) 3256 continue; 3257 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3258 if (bytenr == 0) 3259 continue; 3260 3261 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3262 key.offset -= btrfs_file_extent_offset(buf, fi); 3263 ret = process_func(trans, root, bytenr, num_bytes, 3264 parent, ref_root, key.objectid, 3265 key.offset); 3266 if (ret) 3267 goto fail; 3268 } else { 3269 bytenr = btrfs_node_blockptr(buf, i); 3270 num_bytes = root->nodesize; 3271 ret = process_func(trans, root, bytenr, num_bytes, 3272 parent, ref_root, level - 1, 0); 3273 if (ret) 3274 goto fail; 3275 } 3276 } 3277 return 0; 3278 fail: 3279 return ret; 3280 } 3281 3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3283 struct extent_buffer *buf, int full_backref) 3284 { 3285 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3286 } 3287 3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3289 struct extent_buffer *buf, int full_backref) 3290 { 3291 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3292 } 3293 3294 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3295 struct btrfs_root *root, 3296 struct btrfs_path *path, 3297 struct btrfs_block_group_cache *cache) 3298 { 3299 int ret; 3300 struct btrfs_root *extent_root = root->fs_info->extent_root; 3301 unsigned long bi; 3302 struct extent_buffer *leaf; 3303 3304 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3305 if (ret) { 3306 if (ret > 0) 3307 ret = -ENOENT; 3308 goto fail; 3309 } 3310 3311 leaf = path->nodes[0]; 3312 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3313 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3314 btrfs_mark_buffer_dirty(leaf); 3315 fail: 3316 btrfs_release_path(path); 3317 return ret; 3318 3319 } 3320 3321 static struct btrfs_block_group_cache * 3322 next_block_group(struct btrfs_root *root, 3323 struct btrfs_block_group_cache *cache) 3324 { 3325 struct rb_node *node; 3326 3327 spin_lock(&root->fs_info->block_group_cache_lock); 3328 3329 /* If our block group was removed, we need a full search. */ 3330 if (RB_EMPTY_NODE(&cache->cache_node)) { 3331 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3332 3333 spin_unlock(&root->fs_info->block_group_cache_lock); 3334 btrfs_put_block_group(cache); 3335 cache = btrfs_lookup_first_block_group(root->fs_info, 3336 next_bytenr); 3337 return cache; 3338 } 3339 node = rb_next(&cache->cache_node); 3340 btrfs_put_block_group(cache); 3341 if (node) { 3342 cache = rb_entry(node, struct btrfs_block_group_cache, 3343 cache_node); 3344 btrfs_get_block_group(cache); 3345 } else 3346 cache = NULL; 3347 spin_unlock(&root->fs_info->block_group_cache_lock); 3348 return cache; 3349 } 3350 3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3352 struct btrfs_trans_handle *trans, 3353 struct btrfs_path *path) 3354 { 3355 struct btrfs_root *root = block_group->fs_info->tree_root; 3356 struct inode *inode = NULL; 3357 u64 alloc_hint = 0; 3358 int dcs = BTRFS_DC_ERROR; 3359 u64 num_pages = 0; 3360 int retries = 0; 3361 int ret = 0; 3362 3363 /* 3364 * If this block group is smaller than 100 megs don't bother caching the 3365 * block group. 3366 */ 3367 if (block_group->key.offset < (100 * SZ_1M)) { 3368 spin_lock(&block_group->lock); 3369 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3370 spin_unlock(&block_group->lock); 3371 return 0; 3372 } 3373 3374 if (trans->aborted) 3375 return 0; 3376 again: 3377 inode = lookup_free_space_inode(root, block_group, path); 3378 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3379 ret = PTR_ERR(inode); 3380 btrfs_release_path(path); 3381 goto out; 3382 } 3383 3384 if (IS_ERR(inode)) { 3385 BUG_ON(retries); 3386 retries++; 3387 3388 if (block_group->ro) 3389 goto out_free; 3390 3391 ret = create_free_space_inode(root, trans, block_group, path); 3392 if (ret) 3393 goto out_free; 3394 goto again; 3395 } 3396 3397 /* We've already setup this transaction, go ahead and exit */ 3398 if (block_group->cache_generation == trans->transid && 3399 i_size_read(inode)) { 3400 dcs = BTRFS_DC_SETUP; 3401 goto out_put; 3402 } 3403 3404 /* 3405 * We want to set the generation to 0, that way if anything goes wrong 3406 * from here on out we know not to trust this cache when we load up next 3407 * time. 3408 */ 3409 BTRFS_I(inode)->generation = 0; 3410 ret = btrfs_update_inode(trans, root, inode); 3411 if (ret) { 3412 /* 3413 * So theoretically we could recover from this, simply set the 3414 * super cache generation to 0 so we know to invalidate the 3415 * cache, but then we'd have to keep track of the block groups 3416 * that fail this way so we know we _have_ to reset this cache 3417 * before the next commit or risk reading stale cache. So to 3418 * limit our exposure to horrible edge cases lets just abort the 3419 * transaction, this only happens in really bad situations 3420 * anyway. 3421 */ 3422 btrfs_abort_transaction(trans, root, ret); 3423 goto out_put; 3424 } 3425 WARN_ON(ret); 3426 3427 if (i_size_read(inode) > 0) { 3428 ret = btrfs_check_trunc_cache_free_space(root, 3429 &root->fs_info->global_block_rsv); 3430 if (ret) 3431 goto out_put; 3432 3433 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3434 if (ret) 3435 goto out_put; 3436 } 3437 3438 spin_lock(&block_group->lock); 3439 if (block_group->cached != BTRFS_CACHE_FINISHED || 3440 !btrfs_test_opt(root, SPACE_CACHE)) { 3441 /* 3442 * don't bother trying to write stuff out _if_ 3443 * a) we're not cached, 3444 * b) we're with nospace_cache mount option. 3445 */ 3446 dcs = BTRFS_DC_WRITTEN; 3447 spin_unlock(&block_group->lock); 3448 goto out_put; 3449 } 3450 spin_unlock(&block_group->lock); 3451 3452 /* 3453 * We hit an ENOSPC when setting up the cache in this transaction, just 3454 * skip doing the setup, we've already cleared the cache so we're safe. 3455 */ 3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3457 ret = -ENOSPC; 3458 goto out_put; 3459 } 3460 3461 /* 3462 * Try to preallocate enough space based on how big the block group is. 3463 * Keep in mind this has to include any pinned space which could end up 3464 * taking up quite a bit since it's not folded into the other space 3465 * cache. 3466 */ 3467 num_pages = div_u64(block_group->key.offset, SZ_256M); 3468 if (!num_pages) 3469 num_pages = 1; 3470 3471 num_pages *= 16; 3472 num_pages *= PAGE_SIZE; 3473 3474 ret = btrfs_check_data_free_space(inode, 0, num_pages); 3475 if (ret) 3476 goto out_put; 3477 3478 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3479 num_pages, num_pages, 3480 &alloc_hint); 3481 /* 3482 * Our cache requires contiguous chunks so that we don't modify a bunch 3483 * of metadata or split extents when writing the cache out, which means 3484 * we can enospc if we are heavily fragmented in addition to just normal 3485 * out of space conditions. So if we hit this just skip setting up any 3486 * other block groups for this transaction, maybe we'll unpin enough 3487 * space the next time around. 3488 */ 3489 if (!ret) 3490 dcs = BTRFS_DC_SETUP; 3491 else if (ret == -ENOSPC) 3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3493 btrfs_free_reserved_data_space(inode, 0, num_pages); 3494 3495 out_put: 3496 iput(inode); 3497 out_free: 3498 btrfs_release_path(path); 3499 out: 3500 spin_lock(&block_group->lock); 3501 if (!ret && dcs == BTRFS_DC_SETUP) 3502 block_group->cache_generation = trans->transid; 3503 block_group->disk_cache_state = dcs; 3504 spin_unlock(&block_group->lock); 3505 3506 return ret; 3507 } 3508 3509 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3510 struct btrfs_root *root) 3511 { 3512 struct btrfs_block_group_cache *cache, *tmp; 3513 struct btrfs_transaction *cur_trans = trans->transaction; 3514 struct btrfs_path *path; 3515 3516 if (list_empty(&cur_trans->dirty_bgs) || 3517 !btrfs_test_opt(root, SPACE_CACHE)) 3518 return 0; 3519 3520 path = btrfs_alloc_path(); 3521 if (!path) 3522 return -ENOMEM; 3523 3524 /* Could add new block groups, use _safe just in case */ 3525 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3526 dirty_list) { 3527 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3528 cache_save_setup(cache, trans, path); 3529 } 3530 3531 btrfs_free_path(path); 3532 return 0; 3533 } 3534 3535 /* 3536 * transaction commit does final block group cache writeback during a 3537 * critical section where nothing is allowed to change the FS. This is 3538 * required in order for the cache to actually match the block group, 3539 * but can introduce a lot of latency into the commit. 3540 * 3541 * So, btrfs_start_dirty_block_groups is here to kick off block group 3542 * cache IO. There's a chance we'll have to redo some of it if the 3543 * block group changes again during the commit, but it greatly reduces 3544 * the commit latency by getting rid of the easy block groups while 3545 * we're still allowing others to join the commit. 3546 */ 3547 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3548 struct btrfs_root *root) 3549 { 3550 struct btrfs_block_group_cache *cache; 3551 struct btrfs_transaction *cur_trans = trans->transaction; 3552 int ret = 0; 3553 int should_put; 3554 struct btrfs_path *path = NULL; 3555 LIST_HEAD(dirty); 3556 struct list_head *io = &cur_trans->io_bgs; 3557 int num_started = 0; 3558 int loops = 0; 3559 3560 spin_lock(&cur_trans->dirty_bgs_lock); 3561 if (list_empty(&cur_trans->dirty_bgs)) { 3562 spin_unlock(&cur_trans->dirty_bgs_lock); 3563 return 0; 3564 } 3565 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3566 spin_unlock(&cur_trans->dirty_bgs_lock); 3567 3568 again: 3569 /* 3570 * make sure all the block groups on our dirty list actually 3571 * exist 3572 */ 3573 btrfs_create_pending_block_groups(trans, root); 3574 3575 if (!path) { 3576 path = btrfs_alloc_path(); 3577 if (!path) 3578 return -ENOMEM; 3579 } 3580 3581 /* 3582 * cache_write_mutex is here only to save us from balance or automatic 3583 * removal of empty block groups deleting this block group while we are 3584 * writing out the cache 3585 */ 3586 mutex_lock(&trans->transaction->cache_write_mutex); 3587 while (!list_empty(&dirty)) { 3588 cache = list_first_entry(&dirty, 3589 struct btrfs_block_group_cache, 3590 dirty_list); 3591 /* 3592 * this can happen if something re-dirties a block 3593 * group that is already under IO. Just wait for it to 3594 * finish and then do it all again 3595 */ 3596 if (!list_empty(&cache->io_list)) { 3597 list_del_init(&cache->io_list); 3598 btrfs_wait_cache_io(root, trans, cache, 3599 &cache->io_ctl, path, 3600 cache->key.objectid); 3601 btrfs_put_block_group(cache); 3602 } 3603 3604 3605 /* 3606 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3607 * if it should update the cache_state. Don't delete 3608 * until after we wait. 3609 * 3610 * Since we're not running in the commit critical section 3611 * we need the dirty_bgs_lock to protect from update_block_group 3612 */ 3613 spin_lock(&cur_trans->dirty_bgs_lock); 3614 list_del_init(&cache->dirty_list); 3615 spin_unlock(&cur_trans->dirty_bgs_lock); 3616 3617 should_put = 1; 3618 3619 cache_save_setup(cache, trans, path); 3620 3621 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3622 cache->io_ctl.inode = NULL; 3623 ret = btrfs_write_out_cache(root, trans, cache, path); 3624 if (ret == 0 && cache->io_ctl.inode) { 3625 num_started++; 3626 should_put = 0; 3627 3628 /* 3629 * the cache_write_mutex is protecting 3630 * the io_list 3631 */ 3632 list_add_tail(&cache->io_list, io); 3633 } else { 3634 /* 3635 * if we failed to write the cache, the 3636 * generation will be bad and life goes on 3637 */ 3638 ret = 0; 3639 } 3640 } 3641 if (!ret) { 3642 ret = write_one_cache_group(trans, root, path, cache); 3643 /* 3644 * Our block group might still be attached to the list 3645 * of new block groups in the transaction handle of some 3646 * other task (struct btrfs_trans_handle->new_bgs). This 3647 * means its block group item isn't yet in the extent 3648 * tree. If this happens ignore the error, as we will 3649 * try again later in the critical section of the 3650 * transaction commit. 3651 */ 3652 if (ret == -ENOENT) { 3653 ret = 0; 3654 spin_lock(&cur_trans->dirty_bgs_lock); 3655 if (list_empty(&cache->dirty_list)) { 3656 list_add_tail(&cache->dirty_list, 3657 &cur_trans->dirty_bgs); 3658 btrfs_get_block_group(cache); 3659 } 3660 spin_unlock(&cur_trans->dirty_bgs_lock); 3661 } else if (ret) { 3662 btrfs_abort_transaction(trans, root, ret); 3663 } 3664 } 3665 3666 /* if its not on the io list, we need to put the block group */ 3667 if (should_put) 3668 btrfs_put_block_group(cache); 3669 3670 if (ret) 3671 break; 3672 3673 /* 3674 * Avoid blocking other tasks for too long. It might even save 3675 * us from writing caches for block groups that are going to be 3676 * removed. 3677 */ 3678 mutex_unlock(&trans->transaction->cache_write_mutex); 3679 mutex_lock(&trans->transaction->cache_write_mutex); 3680 } 3681 mutex_unlock(&trans->transaction->cache_write_mutex); 3682 3683 /* 3684 * go through delayed refs for all the stuff we've just kicked off 3685 * and then loop back (just once) 3686 */ 3687 ret = btrfs_run_delayed_refs(trans, root, 0); 3688 if (!ret && loops == 0) { 3689 loops++; 3690 spin_lock(&cur_trans->dirty_bgs_lock); 3691 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3692 /* 3693 * dirty_bgs_lock protects us from concurrent block group 3694 * deletes too (not just cache_write_mutex). 3695 */ 3696 if (!list_empty(&dirty)) { 3697 spin_unlock(&cur_trans->dirty_bgs_lock); 3698 goto again; 3699 } 3700 spin_unlock(&cur_trans->dirty_bgs_lock); 3701 } 3702 3703 btrfs_free_path(path); 3704 return ret; 3705 } 3706 3707 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3708 struct btrfs_root *root) 3709 { 3710 struct btrfs_block_group_cache *cache; 3711 struct btrfs_transaction *cur_trans = trans->transaction; 3712 int ret = 0; 3713 int should_put; 3714 struct btrfs_path *path; 3715 struct list_head *io = &cur_trans->io_bgs; 3716 int num_started = 0; 3717 3718 path = btrfs_alloc_path(); 3719 if (!path) 3720 return -ENOMEM; 3721 3722 /* 3723 * Even though we are in the critical section of the transaction commit, 3724 * we can still have concurrent tasks adding elements to this 3725 * transaction's list of dirty block groups. These tasks correspond to 3726 * endio free space workers started when writeback finishes for a 3727 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3728 * allocate new block groups as a result of COWing nodes of the root 3729 * tree when updating the free space inode. The writeback for the space 3730 * caches is triggered by an earlier call to 3731 * btrfs_start_dirty_block_groups() and iterations of the following 3732 * loop. 3733 * Also we want to do the cache_save_setup first and then run the 3734 * delayed refs to make sure we have the best chance at doing this all 3735 * in one shot. 3736 */ 3737 spin_lock(&cur_trans->dirty_bgs_lock); 3738 while (!list_empty(&cur_trans->dirty_bgs)) { 3739 cache = list_first_entry(&cur_trans->dirty_bgs, 3740 struct btrfs_block_group_cache, 3741 dirty_list); 3742 3743 /* 3744 * this can happen if cache_save_setup re-dirties a block 3745 * group that is already under IO. Just wait for it to 3746 * finish and then do it all again 3747 */ 3748 if (!list_empty(&cache->io_list)) { 3749 spin_unlock(&cur_trans->dirty_bgs_lock); 3750 list_del_init(&cache->io_list); 3751 btrfs_wait_cache_io(root, trans, cache, 3752 &cache->io_ctl, path, 3753 cache->key.objectid); 3754 btrfs_put_block_group(cache); 3755 spin_lock(&cur_trans->dirty_bgs_lock); 3756 } 3757 3758 /* 3759 * don't remove from the dirty list until after we've waited 3760 * on any pending IO 3761 */ 3762 list_del_init(&cache->dirty_list); 3763 spin_unlock(&cur_trans->dirty_bgs_lock); 3764 should_put = 1; 3765 3766 cache_save_setup(cache, trans, path); 3767 3768 if (!ret) 3769 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3770 3771 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3772 cache->io_ctl.inode = NULL; 3773 ret = btrfs_write_out_cache(root, trans, cache, path); 3774 if (ret == 0 && cache->io_ctl.inode) { 3775 num_started++; 3776 should_put = 0; 3777 list_add_tail(&cache->io_list, io); 3778 } else { 3779 /* 3780 * if we failed to write the cache, the 3781 * generation will be bad and life goes on 3782 */ 3783 ret = 0; 3784 } 3785 } 3786 if (!ret) { 3787 ret = write_one_cache_group(trans, root, path, cache); 3788 /* 3789 * One of the free space endio workers might have 3790 * created a new block group while updating a free space 3791 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3792 * and hasn't released its transaction handle yet, in 3793 * which case the new block group is still attached to 3794 * its transaction handle and its creation has not 3795 * finished yet (no block group item in the extent tree 3796 * yet, etc). If this is the case, wait for all free 3797 * space endio workers to finish and retry. This is a 3798 * a very rare case so no need for a more efficient and 3799 * complex approach. 3800 */ 3801 if (ret == -ENOENT) { 3802 wait_event(cur_trans->writer_wait, 3803 atomic_read(&cur_trans->num_writers) == 1); 3804 ret = write_one_cache_group(trans, root, path, 3805 cache); 3806 } 3807 if (ret) 3808 btrfs_abort_transaction(trans, root, ret); 3809 } 3810 3811 /* if its not on the io list, we need to put the block group */ 3812 if (should_put) 3813 btrfs_put_block_group(cache); 3814 spin_lock(&cur_trans->dirty_bgs_lock); 3815 } 3816 spin_unlock(&cur_trans->dirty_bgs_lock); 3817 3818 while (!list_empty(io)) { 3819 cache = list_first_entry(io, struct btrfs_block_group_cache, 3820 io_list); 3821 list_del_init(&cache->io_list); 3822 btrfs_wait_cache_io(root, trans, cache, 3823 &cache->io_ctl, path, cache->key.objectid); 3824 btrfs_put_block_group(cache); 3825 } 3826 3827 btrfs_free_path(path); 3828 return ret; 3829 } 3830 3831 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3832 { 3833 struct btrfs_block_group_cache *block_group; 3834 int readonly = 0; 3835 3836 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3837 if (!block_group || block_group->ro) 3838 readonly = 1; 3839 if (block_group) 3840 btrfs_put_block_group(block_group); 3841 return readonly; 3842 } 3843 3844 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3845 { 3846 struct btrfs_block_group_cache *bg; 3847 bool ret = true; 3848 3849 bg = btrfs_lookup_block_group(fs_info, bytenr); 3850 if (!bg) 3851 return false; 3852 3853 spin_lock(&bg->lock); 3854 if (bg->ro) 3855 ret = false; 3856 else 3857 atomic_inc(&bg->nocow_writers); 3858 spin_unlock(&bg->lock); 3859 3860 /* no put on block group, done by btrfs_dec_nocow_writers */ 3861 if (!ret) 3862 btrfs_put_block_group(bg); 3863 3864 return ret; 3865 3866 } 3867 3868 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3869 { 3870 struct btrfs_block_group_cache *bg; 3871 3872 bg = btrfs_lookup_block_group(fs_info, bytenr); 3873 ASSERT(bg); 3874 if (atomic_dec_and_test(&bg->nocow_writers)) 3875 wake_up_atomic_t(&bg->nocow_writers); 3876 /* 3877 * Once for our lookup and once for the lookup done by a previous call 3878 * to btrfs_inc_nocow_writers() 3879 */ 3880 btrfs_put_block_group(bg); 3881 btrfs_put_block_group(bg); 3882 } 3883 3884 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3885 { 3886 schedule(); 3887 return 0; 3888 } 3889 3890 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3891 { 3892 wait_on_atomic_t(&bg->nocow_writers, 3893 btrfs_wait_nocow_writers_atomic_t, 3894 TASK_UNINTERRUPTIBLE); 3895 } 3896 3897 static const char *alloc_name(u64 flags) 3898 { 3899 switch (flags) { 3900 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3901 return "mixed"; 3902 case BTRFS_BLOCK_GROUP_METADATA: 3903 return "metadata"; 3904 case BTRFS_BLOCK_GROUP_DATA: 3905 return "data"; 3906 case BTRFS_BLOCK_GROUP_SYSTEM: 3907 return "system"; 3908 default: 3909 WARN_ON(1); 3910 return "invalid-combination"; 3911 }; 3912 } 3913 3914 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3915 u64 total_bytes, u64 bytes_used, 3916 struct btrfs_space_info **space_info) 3917 { 3918 struct btrfs_space_info *found; 3919 int i; 3920 int factor; 3921 int ret; 3922 3923 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3924 BTRFS_BLOCK_GROUP_RAID10)) 3925 factor = 2; 3926 else 3927 factor = 1; 3928 3929 found = __find_space_info(info, flags); 3930 if (found) { 3931 spin_lock(&found->lock); 3932 found->total_bytes += total_bytes; 3933 found->disk_total += total_bytes * factor; 3934 found->bytes_used += bytes_used; 3935 found->disk_used += bytes_used * factor; 3936 if (total_bytes > 0) 3937 found->full = 0; 3938 spin_unlock(&found->lock); 3939 *space_info = found; 3940 return 0; 3941 } 3942 found = kzalloc(sizeof(*found), GFP_NOFS); 3943 if (!found) 3944 return -ENOMEM; 3945 3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3947 if (ret) { 3948 kfree(found); 3949 return ret; 3950 } 3951 3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3953 INIT_LIST_HEAD(&found->block_groups[i]); 3954 init_rwsem(&found->groups_sem); 3955 spin_lock_init(&found->lock); 3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3957 found->total_bytes = total_bytes; 3958 found->disk_total = total_bytes * factor; 3959 found->bytes_used = bytes_used; 3960 found->disk_used = bytes_used * factor; 3961 found->bytes_pinned = 0; 3962 found->bytes_reserved = 0; 3963 found->bytes_readonly = 0; 3964 found->bytes_may_use = 0; 3965 found->full = 0; 3966 found->max_extent_size = 0; 3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3968 found->chunk_alloc = 0; 3969 found->flush = 0; 3970 init_waitqueue_head(&found->wait); 3971 INIT_LIST_HEAD(&found->ro_bgs); 3972 3973 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3974 info->space_info_kobj, "%s", 3975 alloc_name(found->flags)); 3976 if (ret) { 3977 kfree(found); 3978 return ret; 3979 } 3980 3981 *space_info = found; 3982 list_add_rcu(&found->list, &info->space_info); 3983 if (flags & BTRFS_BLOCK_GROUP_DATA) 3984 info->data_sinfo = found; 3985 3986 return ret; 3987 } 3988 3989 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3990 { 3991 u64 extra_flags = chunk_to_extended(flags) & 3992 BTRFS_EXTENDED_PROFILE_MASK; 3993 3994 write_seqlock(&fs_info->profiles_lock); 3995 if (flags & BTRFS_BLOCK_GROUP_DATA) 3996 fs_info->avail_data_alloc_bits |= extra_flags; 3997 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3998 fs_info->avail_metadata_alloc_bits |= extra_flags; 3999 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4000 fs_info->avail_system_alloc_bits |= extra_flags; 4001 write_sequnlock(&fs_info->profiles_lock); 4002 } 4003 4004 /* 4005 * returns target flags in extended format or 0 if restripe for this 4006 * chunk_type is not in progress 4007 * 4008 * should be called with either volume_mutex or balance_lock held 4009 */ 4010 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4011 { 4012 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4013 u64 target = 0; 4014 4015 if (!bctl) 4016 return 0; 4017 4018 if (flags & BTRFS_BLOCK_GROUP_DATA && 4019 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4020 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4021 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4022 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4023 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4024 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4025 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4026 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4027 } 4028 4029 return target; 4030 } 4031 4032 /* 4033 * @flags: available profiles in extended format (see ctree.h) 4034 * 4035 * Returns reduced profile in chunk format. If profile changing is in 4036 * progress (either running or paused) picks the target profile (if it's 4037 * already available), otherwise falls back to plain reducing. 4038 */ 4039 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 4040 { 4041 u64 num_devices = root->fs_info->fs_devices->rw_devices; 4042 u64 target; 4043 u64 raid_type; 4044 u64 allowed = 0; 4045 4046 /* 4047 * see if restripe for this chunk_type is in progress, if so 4048 * try to reduce to the target profile 4049 */ 4050 spin_lock(&root->fs_info->balance_lock); 4051 target = get_restripe_target(root->fs_info, flags); 4052 if (target) { 4053 /* pick target profile only if it's already available */ 4054 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4055 spin_unlock(&root->fs_info->balance_lock); 4056 return extended_to_chunk(target); 4057 } 4058 } 4059 spin_unlock(&root->fs_info->balance_lock); 4060 4061 /* First, mask out the RAID levels which aren't possible */ 4062 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4063 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4064 allowed |= btrfs_raid_group[raid_type]; 4065 } 4066 allowed &= flags; 4067 4068 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4069 allowed = BTRFS_BLOCK_GROUP_RAID6; 4070 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4071 allowed = BTRFS_BLOCK_GROUP_RAID5; 4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4073 allowed = BTRFS_BLOCK_GROUP_RAID10; 4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4075 allowed = BTRFS_BLOCK_GROUP_RAID1; 4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4077 allowed = BTRFS_BLOCK_GROUP_RAID0; 4078 4079 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4080 4081 return extended_to_chunk(flags | allowed); 4082 } 4083 4084 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 4085 { 4086 unsigned seq; 4087 u64 flags; 4088 4089 do { 4090 flags = orig_flags; 4091 seq = read_seqbegin(&root->fs_info->profiles_lock); 4092 4093 if (flags & BTRFS_BLOCK_GROUP_DATA) 4094 flags |= root->fs_info->avail_data_alloc_bits; 4095 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4096 flags |= root->fs_info->avail_system_alloc_bits; 4097 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4098 flags |= root->fs_info->avail_metadata_alloc_bits; 4099 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 4100 4101 return btrfs_reduce_alloc_profile(root, flags); 4102 } 4103 4104 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 4105 { 4106 u64 flags; 4107 u64 ret; 4108 4109 if (data) 4110 flags = BTRFS_BLOCK_GROUP_DATA; 4111 else if (root == root->fs_info->chunk_root) 4112 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4113 else 4114 flags = BTRFS_BLOCK_GROUP_METADATA; 4115 4116 ret = get_alloc_profile(root, flags); 4117 return ret; 4118 } 4119 4120 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes) 4121 { 4122 struct btrfs_space_info *data_sinfo; 4123 struct btrfs_root *root = BTRFS_I(inode)->root; 4124 struct btrfs_fs_info *fs_info = root->fs_info; 4125 u64 used; 4126 int ret = 0; 4127 int need_commit = 2; 4128 int have_pinned_space; 4129 4130 /* make sure bytes are sectorsize aligned */ 4131 bytes = ALIGN(bytes, root->sectorsize); 4132 4133 if (btrfs_is_free_space_inode(inode)) { 4134 need_commit = 0; 4135 ASSERT(current->journal_info); 4136 } 4137 4138 data_sinfo = fs_info->data_sinfo; 4139 if (!data_sinfo) 4140 goto alloc; 4141 4142 again: 4143 /* make sure we have enough space to handle the data first */ 4144 spin_lock(&data_sinfo->lock); 4145 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 4146 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 4147 data_sinfo->bytes_may_use; 4148 4149 if (used + bytes > data_sinfo->total_bytes) { 4150 struct btrfs_trans_handle *trans; 4151 4152 /* 4153 * if we don't have enough free bytes in this space then we need 4154 * to alloc a new chunk. 4155 */ 4156 if (!data_sinfo->full) { 4157 u64 alloc_target; 4158 4159 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4160 spin_unlock(&data_sinfo->lock); 4161 alloc: 4162 alloc_target = btrfs_get_alloc_profile(root, 1); 4163 /* 4164 * It is ugly that we don't call nolock join 4165 * transaction for the free space inode case here. 4166 * But it is safe because we only do the data space 4167 * reservation for the free space cache in the 4168 * transaction context, the common join transaction 4169 * just increase the counter of the current transaction 4170 * handler, doesn't try to acquire the trans_lock of 4171 * the fs. 4172 */ 4173 trans = btrfs_join_transaction(root); 4174 if (IS_ERR(trans)) 4175 return PTR_ERR(trans); 4176 4177 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4178 alloc_target, 4179 CHUNK_ALLOC_NO_FORCE); 4180 btrfs_end_transaction(trans, root); 4181 if (ret < 0) { 4182 if (ret != -ENOSPC) 4183 return ret; 4184 else { 4185 have_pinned_space = 1; 4186 goto commit_trans; 4187 } 4188 } 4189 4190 if (!data_sinfo) 4191 data_sinfo = fs_info->data_sinfo; 4192 4193 goto again; 4194 } 4195 4196 /* 4197 * If we don't have enough pinned space to deal with this 4198 * allocation, and no removed chunk in current transaction, 4199 * don't bother committing the transaction. 4200 */ 4201 have_pinned_space = percpu_counter_compare( 4202 &data_sinfo->total_bytes_pinned, 4203 used + bytes - data_sinfo->total_bytes); 4204 spin_unlock(&data_sinfo->lock); 4205 4206 /* commit the current transaction and try again */ 4207 commit_trans: 4208 if (need_commit && 4209 !atomic_read(&root->fs_info->open_ioctl_trans)) { 4210 need_commit--; 4211 4212 if (need_commit > 0) { 4213 btrfs_start_delalloc_roots(fs_info, 0, -1); 4214 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 4215 } 4216 4217 trans = btrfs_join_transaction(root); 4218 if (IS_ERR(trans)) 4219 return PTR_ERR(trans); 4220 if (have_pinned_space >= 0 || 4221 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4222 &trans->transaction->flags) || 4223 need_commit > 0) { 4224 ret = btrfs_commit_transaction(trans, root); 4225 if (ret) 4226 return ret; 4227 /* 4228 * The cleaner kthread might still be doing iput 4229 * operations. Wait for it to finish so that 4230 * more space is released. 4231 */ 4232 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 4233 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 4234 goto again; 4235 } else { 4236 btrfs_end_transaction(trans, root); 4237 } 4238 } 4239 4240 trace_btrfs_space_reservation(root->fs_info, 4241 "space_info:enospc", 4242 data_sinfo->flags, bytes, 1); 4243 return -ENOSPC; 4244 } 4245 data_sinfo->bytes_may_use += bytes; 4246 trace_btrfs_space_reservation(root->fs_info, "space_info", 4247 data_sinfo->flags, bytes, 1); 4248 spin_unlock(&data_sinfo->lock); 4249 4250 return ret; 4251 } 4252 4253 /* 4254 * New check_data_free_space() with ability for precious data reservation 4255 * Will replace old btrfs_check_data_free_space(), but for patch split, 4256 * add a new function first and then replace it. 4257 */ 4258 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len) 4259 { 4260 struct btrfs_root *root = BTRFS_I(inode)->root; 4261 int ret; 4262 4263 /* align the range */ 4264 len = round_up(start + len, root->sectorsize) - 4265 round_down(start, root->sectorsize); 4266 start = round_down(start, root->sectorsize); 4267 4268 ret = btrfs_alloc_data_chunk_ondemand(inode, len); 4269 if (ret < 0) 4270 return ret; 4271 4272 /* 4273 * Use new btrfs_qgroup_reserve_data to reserve precious data space 4274 * 4275 * TODO: Find a good method to avoid reserve data space for NOCOW 4276 * range, but don't impact performance on quota disable case. 4277 */ 4278 ret = btrfs_qgroup_reserve_data(inode, start, len); 4279 return ret; 4280 } 4281 4282 /* 4283 * Called if we need to clear a data reservation for this inode 4284 * Normally in a error case. 4285 * 4286 * This one will *NOT* use accurate qgroup reserved space API, just for case 4287 * which we can't sleep and is sure it won't affect qgroup reserved space. 4288 * Like clear_bit_hook(). 4289 */ 4290 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4291 u64 len) 4292 { 4293 struct btrfs_root *root = BTRFS_I(inode)->root; 4294 struct btrfs_space_info *data_sinfo; 4295 4296 /* Make sure the range is aligned to sectorsize */ 4297 len = round_up(start + len, root->sectorsize) - 4298 round_down(start, root->sectorsize); 4299 start = round_down(start, root->sectorsize); 4300 4301 data_sinfo = root->fs_info->data_sinfo; 4302 spin_lock(&data_sinfo->lock); 4303 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4304 data_sinfo->bytes_may_use = 0; 4305 else 4306 data_sinfo->bytes_may_use -= len; 4307 trace_btrfs_space_reservation(root->fs_info, "space_info", 4308 data_sinfo->flags, len, 0); 4309 spin_unlock(&data_sinfo->lock); 4310 } 4311 4312 /* 4313 * Called if we need to clear a data reservation for this inode 4314 * Normally in a error case. 4315 * 4316 * This one will handle the per-inode data rsv map for accurate reserved 4317 * space framework. 4318 */ 4319 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len) 4320 { 4321 btrfs_free_reserved_data_space_noquota(inode, start, len); 4322 btrfs_qgroup_free_data(inode, start, len); 4323 } 4324 4325 static void force_metadata_allocation(struct btrfs_fs_info *info) 4326 { 4327 struct list_head *head = &info->space_info; 4328 struct btrfs_space_info *found; 4329 4330 rcu_read_lock(); 4331 list_for_each_entry_rcu(found, head, list) { 4332 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4333 found->force_alloc = CHUNK_ALLOC_FORCE; 4334 } 4335 rcu_read_unlock(); 4336 } 4337 4338 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4339 { 4340 return (global->size << 1); 4341 } 4342 4343 static int should_alloc_chunk(struct btrfs_root *root, 4344 struct btrfs_space_info *sinfo, int force) 4345 { 4346 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4347 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4348 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4349 u64 thresh; 4350 4351 if (force == CHUNK_ALLOC_FORCE) 4352 return 1; 4353 4354 /* 4355 * We need to take into account the global rsv because for all intents 4356 * and purposes it's used space. Don't worry about locking the 4357 * global_rsv, it doesn't change except when the transaction commits. 4358 */ 4359 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4360 num_allocated += calc_global_rsv_need_space(global_rsv); 4361 4362 /* 4363 * in limited mode, we want to have some free space up to 4364 * about 1% of the FS size. 4365 */ 4366 if (force == CHUNK_ALLOC_LIMITED) { 4367 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4368 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4369 4370 if (num_bytes - num_allocated < thresh) 4371 return 1; 4372 } 4373 4374 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4375 return 0; 4376 return 1; 4377 } 4378 4379 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4380 { 4381 u64 num_dev; 4382 4383 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4384 BTRFS_BLOCK_GROUP_RAID0 | 4385 BTRFS_BLOCK_GROUP_RAID5 | 4386 BTRFS_BLOCK_GROUP_RAID6)) 4387 num_dev = root->fs_info->fs_devices->rw_devices; 4388 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4389 num_dev = 2; 4390 else 4391 num_dev = 1; /* DUP or single */ 4392 4393 return num_dev; 4394 } 4395 4396 /* 4397 * If @is_allocation is true, reserve space in the system space info necessary 4398 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4399 * removing a chunk. 4400 */ 4401 void check_system_chunk(struct btrfs_trans_handle *trans, 4402 struct btrfs_root *root, 4403 u64 type) 4404 { 4405 struct btrfs_space_info *info; 4406 u64 left; 4407 u64 thresh; 4408 int ret = 0; 4409 u64 num_devs; 4410 4411 /* 4412 * Needed because we can end up allocating a system chunk and for an 4413 * atomic and race free space reservation in the chunk block reserve. 4414 */ 4415 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4416 4417 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4418 spin_lock(&info->lock); 4419 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4420 info->bytes_reserved - info->bytes_readonly - 4421 info->bytes_may_use; 4422 spin_unlock(&info->lock); 4423 4424 num_devs = get_profile_num_devs(root, type); 4425 4426 /* num_devs device items to update and 1 chunk item to add or remove */ 4427 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4428 btrfs_calc_trans_metadata_size(root, 1); 4429 4430 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4431 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4432 left, thresh, type); 4433 dump_space_info(info, 0, 0); 4434 } 4435 4436 if (left < thresh) { 4437 u64 flags; 4438 4439 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4440 /* 4441 * Ignore failure to create system chunk. We might end up not 4442 * needing it, as we might not need to COW all nodes/leafs from 4443 * the paths we visit in the chunk tree (they were already COWed 4444 * or created in the current transaction for example). 4445 */ 4446 ret = btrfs_alloc_chunk(trans, root, flags); 4447 } 4448 4449 if (!ret) { 4450 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4451 &root->fs_info->chunk_block_rsv, 4452 thresh, BTRFS_RESERVE_NO_FLUSH); 4453 if (!ret) 4454 trans->chunk_bytes_reserved += thresh; 4455 } 4456 } 4457 4458 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4459 struct btrfs_root *extent_root, u64 flags, int force) 4460 { 4461 struct btrfs_space_info *space_info; 4462 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4463 int wait_for_alloc = 0; 4464 int ret = 0; 4465 4466 /* Don't re-enter if we're already allocating a chunk */ 4467 if (trans->allocating_chunk) 4468 return -ENOSPC; 4469 4470 space_info = __find_space_info(extent_root->fs_info, flags); 4471 if (!space_info) { 4472 ret = update_space_info(extent_root->fs_info, flags, 4473 0, 0, &space_info); 4474 BUG_ON(ret); /* -ENOMEM */ 4475 } 4476 BUG_ON(!space_info); /* Logic error */ 4477 4478 again: 4479 spin_lock(&space_info->lock); 4480 if (force < space_info->force_alloc) 4481 force = space_info->force_alloc; 4482 if (space_info->full) { 4483 if (should_alloc_chunk(extent_root, space_info, force)) 4484 ret = -ENOSPC; 4485 else 4486 ret = 0; 4487 spin_unlock(&space_info->lock); 4488 return ret; 4489 } 4490 4491 if (!should_alloc_chunk(extent_root, space_info, force)) { 4492 spin_unlock(&space_info->lock); 4493 return 0; 4494 } else if (space_info->chunk_alloc) { 4495 wait_for_alloc = 1; 4496 } else { 4497 space_info->chunk_alloc = 1; 4498 } 4499 4500 spin_unlock(&space_info->lock); 4501 4502 mutex_lock(&fs_info->chunk_mutex); 4503 4504 /* 4505 * The chunk_mutex is held throughout the entirety of a chunk 4506 * allocation, so once we've acquired the chunk_mutex we know that the 4507 * other guy is done and we need to recheck and see if we should 4508 * allocate. 4509 */ 4510 if (wait_for_alloc) { 4511 mutex_unlock(&fs_info->chunk_mutex); 4512 wait_for_alloc = 0; 4513 goto again; 4514 } 4515 4516 trans->allocating_chunk = true; 4517 4518 /* 4519 * If we have mixed data/metadata chunks we want to make sure we keep 4520 * allocating mixed chunks instead of individual chunks. 4521 */ 4522 if (btrfs_mixed_space_info(space_info)) 4523 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4524 4525 /* 4526 * if we're doing a data chunk, go ahead and make sure that 4527 * we keep a reasonable number of metadata chunks allocated in the 4528 * FS as well. 4529 */ 4530 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4531 fs_info->data_chunk_allocations++; 4532 if (!(fs_info->data_chunk_allocations % 4533 fs_info->metadata_ratio)) 4534 force_metadata_allocation(fs_info); 4535 } 4536 4537 /* 4538 * Check if we have enough space in SYSTEM chunk because we may need 4539 * to update devices. 4540 */ 4541 check_system_chunk(trans, extent_root, flags); 4542 4543 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4544 trans->allocating_chunk = false; 4545 4546 spin_lock(&space_info->lock); 4547 if (ret < 0 && ret != -ENOSPC) 4548 goto out; 4549 if (ret) 4550 space_info->full = 1; 4551 else 4552 ret = 1; 4553 4554 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4555 out: 4556 space_info->chunk_alloc = 0; 4557 spin_unlock(&space_info->lock); 4558 mutex_unlock(&fs_info->chunk_mutex); 4559 /* 4560 * When we allocate a new chunk we reserve space in the chunk block 4561 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4562 * add new nodes/leafs to it if we end up needing to do it when 4563 * inserting the chunk item and updating device items as part of the 4564 * second phase of chunk allocation, performed by 4565 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4566 * large number of new block groups to create in our transaction 4567 * handle's new_bgs list to avoid exhausting the chunk block reserve 4568 * in extreme cases - like having a single transaction create many new 4569 * block groups when starting to write out the free space caches of all 4570 * the block groups that were made dirty during the lifetime of the 4571 * transaction. 4572 */ 4573 if (trans->can_flush_pending_bgs && 4574 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4575 btrfs_create_pending_block_groups(trans, trans->root); 4576 btrfs_trans_release_chunk_metadata(trans); 4577 } 4578 return ret; 4579 } 4580 4581 static int can_overcommit(struct btrfs_root *root, 4582 struct btrfs_space_info *space_info, u64 bytes, 4583 enum btrfs_reserve_flush_enum flush) 4584 { 4585 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4586 u64 profile = btrfs_get_alloc_profile(root, 0); 4587 u64 space_size; 4588 u64 avail; 4589 u64 used; 4590 4591 used = space_info->bytes_used + space_info->bytes_reserved + 4592 space_info->bytes_pinned + space_info->bytes_readonly; 4593 4594 /* 4595 * We only want to allow over committing if we have lots of actual space 4596 * free, but if we don't have enough space to handle the global reserve 4597 * space then we could end up having a real enospc problem when trying 4598 * to allocate a chunk or some other such important allocation. 4599 */ 4600 spin_lock(&global_rsv->lock); 4601 space_size = calc_global_rsv_need_space(global_rsv); 4602 spin_unlock(&global_rsv->lock); 4603 if (used + space_size >= space_info->total_bytes) 4604 return 0; 4605 4606 used += space_info->bytes_may_use; 4607 4608 spin_lock(&root->fs_info->free_chunk_lock); 4609 avail = root->fs_info->free_chunk_space; 4610 spin_unlock(&root->fs_info->free_chunk_lock); 4611 4612 /* 4613 * If we have dup, raid1 or raid10 then only half of the free 4614 * space is actually useable. For raid56, the space info used 4615 * doesn't include the parity drive, so we don't have to 4616 * change the math 4617 */ 4618 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4619 BTRFS_BLOCK_GROUP_RAID1 | 4620 BTRFS_BLOCK_GROUP_RAID10)) 4621 avail >>= 1; 4622 4623 /* 4624 * If we aren't flushing all things, let us overcommit up to 4625 * 1/2th of the space. If we can flush, don't let us overcommit 4626 * too much, let it overcommit up to 1/8 of the space. 4627 */ 4628 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4629 avail >>= 3; 4630 else 4631 avail >>= 1; 4632 4633 if (used + bytes < space_info->total_bytes + avail) 4634 return 1; 4635 return 0; 4636 } 4637 4638 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4639 unsigned long nr_pages, int nr_items) 4640 { 4641 struct super_block *sb = root->fs_info->sb; 4642 4643 if (down_read_trylock(&sb->s_umount)) { 4644 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4645 up_read(&sb->s_umount); 4646 } else { 4647 /* 4648 * We needn't worry the filesystem going from r/w to r/o though 4649 * we don't acquire ->s_umount mutex, because the filesystem 4650 * should guarantee the delalloc inodes list be empty after 4651 * the filesystem is readonly(all dirty pages are written to 4652 * the disk). 4653 */ 4654 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4655 if (!current->journal_info) 4656 btrfs_wait_ordered_roots(root->fs_info, nr_items, 4657 0, (u64)-1); 4658 } 4659 } 4660 4661 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4662 { 4663 u64 bytes; 4664 int nr; 4665 4666 bytes = btrfs_calc_trans_metadata_size(root, 1); 4667 nr = (int)div64_u64(to_reclaim, bytes); 4668 if (!nr) 4669 nr = 1; 4670 return nr; 4671 } 4672 4673 #define EXTENT_SIZE_PER_ITEM SZ_256K 4674 4675 /* 4676 * shrink metadata reservation for delalloc 4677 */ 4678 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4679 bool wait_ordered) 4680 { 4681 struct btrfs_block_rsv *block_rsv; 4682 struct btrfs_space_info *space_info; 4683 struct btrfs_trans_handle *trans; 4684 u64 delalloc_bytes; 4685 u64 max_reclaim; 4686 long time_left; 4687 unsigned long nr_pages; 4688 int loops; 4689 int items; 4690 enum btrfs_reserve_flush_enum flush; 4691 4692 /* Calc the number of the pages we need flush for space reservation */ 4693 items = calc_reclaim_items_nr(root, to_reclaim); 4694 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM; 4695 4696 trans = (struct btrfs_trans_handle *)current->journal_info; 4697 block_rsv = &root->fs_info->delalloc_block_rsv; 4698 space_info = block_rsv->space_info; 4699 4700 delalloc_bytes = percpu_counter_sum_positive( 4701 &root->fs_info->delalloc_bytes); 4702 if (delalloc_bytes == 0) { 4703 if (trans) 4704 return; 4705 if (wait_ordered) 4706 btrfs_wait_ordered_roots(root->fs_info, items, 4707 0, (u64)-1); 4708 return; 4709 } 4710 4711 loops = 0; 4712 while (delalloc_bytes && loops < 3) { 4713 max_reclaim = min(delalloc_bytes, to_reclaim); 4714 nr_pages = max_reclaim >> PAGE_SHIFT; 4715 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4716 /* 4717 * We need to wait for the async pages to actually start before 4718 * we do anything. 4719 */ 4720 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4721 if (!max_reclaim) 4722 goto skip_async; 4723 4724 if (max_reclaim <= nr_pages) 4725 max_reclaim = 0; 4726 else 4727 max_reclaim -= nr_pages; 4728 4729 wait_event(root->fs_info->async_submit_wait, 4730 atomic_read(&root->fs_info->async_delalloc_pages) <= 4731 (int)max_reclaim); 4732 skip_async: 4733 if (!trans) 4734 flush = BTRFS_RESERVE_FLUSH_ALL; 4735 else 4736 flush = BTRFS_RESERVE_NO_FLUSH; 4737 spin_lock(&space_info->lock); 4738 if (can_overcommit(root, space_info, orig, flush)) { 4739 spin_unlock(&space_info->lock); 4740 break; 4741 } 4742 spin_unlock(&space_info->lock); 4743 4744 loops++; 4745 if (wait_ordered && !trans) { 4746 btrfs_wait_ordered_roots(root->fs_info, items, 4747 0, (u64)-1); 4748 } else { 4749 time_left = schedule_timeout_killable(1); 4750 if (time_left) 4751 break; 4752 } 4753 delalloc_bytes = percpu_counter_sum_positive( 4754 &root->fs_info->delalloc_bytes); 4755 } 4756 } 4757 4758 /** 4759 * maybe_commit_transaction - possibly commit the transaction if its ok to 4760 * @root - the root we're allocating for 4761 * @bytes - the number of bytes we want to reserve 4762 * @force - force the commit 4763 * 4764 * This will check to make sure that committing the transaction will actually 4765 * get us somewhere and then commit the transaction if it does. Otherwise it 4766 * will return -ENOSPC. 4767 */ 4768 static int may_commit_transaction(struct btrfs_root *root, 4769 struct btrfs_space_info *space_info, 4770 u64 bytes, int force) 4771 { 4772 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4773 struct btrfs_trans_handle *trans; 4774 4775 trans = (struct btrfs_trans_handle *)current->journal_info; 4776 if (trans) 4777 return -EAGAIN; 4778 4779 if (force) 4780 goto commit; 4781 4782 /* See if there is enough pinned space to make this reservation */ 4783 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4784 bytes) >= 0) 4785 goto commit; 4786 4787 /* 4788 * See if there is some space in the delayed insertion reservation for 4789 * this reservation. 4790 */ 4791 if (space_info != delayed_rsv->space_info) 4792 return -ENOSPC; 4793 4794 spin_lock(&delayed_rsv->lock); 4795 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4796 bytes - delayed_rsv->size) >= 0) { 4797 spin_unlock(&delayed_rsv->lock); 4798 return -ENOSPC; 4799 } 4800 spin_unlock(&delayed_rsv->lock); 4801 4802 commit: 4803 trans = btrfs_join_transaction(root); 4804 if (IS_ERR(trans)) 4805 return -ENOSPC; 4806 4807 return btrfs_commit_transaction(trans, root); 4808 } 4809 4810 enum flush_state { 4811 FLUSH_DELAYED_ITEMS_NR = 1, 4812 FLUSH_DELAYED_ITEMS = 2, 4813 FLUSH_DELALLOC = 3, 4814 FLUSH_DELALLOC_WAIT = 4, 4815 ALLOC_CHUNK = 5, 4816 COMMIT_TRANS = 6, 4817 }; 4818 4819 static int flush_space(struct btrfs_root *root, 4820 struct btrfs_space_info *space_info, u64 num_bytes, 4821 u64 orig_bytes, int state) 4822 { 4823 struct btrfs_trans_handle *trans; 4824 int nr; 4825 int ret = 0; 4826 4827 switch (state) { 4828 case FLUSH_DELAYED_ITEMS_NR: 4829 case FLUSH_DELAYED_ITEMS: 4830 if (state == FLUSH_DELAYED_ITEMS_NR) 4831 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4832 else 4833 nr = -1; 4834 4835 trans = btrfs_join_transaction(root); 4836 if (IS_ERR(trans)) { 4837 ret = PTR_ERR(trans); 4838 break; 4839 } 4840 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4841 btrfs_end_transaction(trans, root); 4842 break; 4843 case FLUSH_DELALLOC: 4844 case FLUSH_DELALLOC_WAIT: 4845 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4846 state == FLUSH_DELALLOC_WAIT); 4847 break; 4848 case ALLOC_CHUNK: 4849 trans = btrfs_join_transaction(root); 4850 if (IS_ERR(trans)) { 4851 ret = PTR_ERR(trans); 4852 break; 4853 } 4854 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4855 btrfs_get_alloc_profile(root, 0), 4856 CHUNK_ALLOC_NO_FORCE); 4857 btrfs_end_transaction(trans, root); 4858 if (ret == -ENOSPC) 4859 ret = 0; 4860 break; 4861 case COMMIT_TRANS: 4862 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4863 break; 4864 default: 4865 ret = -ENOSPC; 4866 break; 4867 } 4868 4869 return ret; 4870 } 4871 4872 static inline u64 4873 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4874 struct btrfs_space_info *space_info) 4875 { 4876 u64 used; 4877 u64 expected; 4878 u64 to_reclaim; 4879 4880 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4881 spin_lock(&space_info->lock); 4882 if (can_overcommit(root, space_info, to_reclaim, 4883 BTRFS_RESERVE_FLUSH_ALL)) { 4884 to_reclaim = 0; 4885 goto out; 4886 } 4887 4888 used = space_info->bytes_used + space_info->bytes_reserved + 4889 space_info->bytes_pinned + space_info->bytes_readonly + 4890 space_info->bytes_may_use; 4891 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL)) 4892 expected = div_factor_fine(space_info->total_bytes, 95); 4893 else 4894 expected = div_factor_fine(space_info->total_bytes, 90); 4895 4896 if (used > expected) 4897 to_reclaim = used - expected; 4898 else 4899 to_reclaim = 0; 4900 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4901 space_info->bytes_reserved); 4902 out: 4903 spin_unlock(&space_info->lock); 4904 4905 return to_reclaim; 4906 } 4907 4908 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4909 struct btrfs_fs_info *fs_info, u64 used) 4910 { 4911 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4912 4913 /* If we're just plain full then async reclaim just slows us down. */ 4914 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 4915 return 0; 4916 4917 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4918 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4919 } 4920 4921 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4922 struct btrfs_fs_info *fs_info, 4923 int flush_state) 4924 { 4925 u64 used; 4926 4927 spin_lock(&space_info->lock); 4928 /* 4929 * We run out of space and have not got any free space via flush_space, 4930 * so don't bother doing async reclaim. 4931 */ 4932 if (flush_state > COMMIT_TRANS && space_info->full) { 4933 spin_unlock(&space_info->lock); 4934 return 0; 4935 } 4936 4937 used = space_info->bytes_used + space_info->bytes_reserved + 4938 space_info->bytes_pinned + space_info->bytes_readonly + 4939 space_info->bytes_may_use; 4940 if (need_do_async_reclaim(space_info, fs_info, used)) { 4941 spin_unlock(&space_info->lock); 4942 return 1; 4943 } 4944 spin_unlock(&space_info->lock); 4945 4946 return 0; 4947 } 4948 4949 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4950 { 4951 struct btrfs_fs_info *fs_info; 4952 struct btrfs_space_info *space_info; 4953 u64 to_reclaim; 4954 int flush_state; 4955 4956 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4957 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4958 4959 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4960 space_info); 4961 if (!to_reclaim) 4962 return; 4963 4964 flush_state = FLUSH_DELAYED_ITEMS_NR; 4965 do { 4966 flush_space(fs_info->fs_root, space_info, to_reclaim, 4967 to_reclaim, flush_state); 4968 flush_state++; 4969 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4970 flush_state)) 4971 return; 4972 } while (flush_state < COMMIT_TRANS); 4973 } 4974 4975 void btrfs_init_async_reclaim_work(struct work_struct *work) 4976 { 4977 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4978 } 4979 4980 /** 4981 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4982 * @root - the root we're allocating for 4983 * @block_rsv - the block_rsv we're allocating for 4984 * @orig_bytes - the number of bytes we want 4985 * @flush - whether or not we can flush to make our reservation 4986 * 4987 * This will reserve orig_bytes number of bytes from the space info associated 4988 * with the block_rsv. If there is not enough space it will make an attempt to 4989 * flush out space to make room. It will do this by flushing delalloc if 4990 * possible or committing the transaction. If flush is 0 then no attempts to 4991 * regain reservations will be made and this will fail if there is not enough 4992 * space already. 4993 */ 4994 static int reserve_metadata_bytes(struct btrfs_root *root, 4995 struct btrfs_block_rsv *block_rsv, 4996 u64 orig_bytes, 4997 enum btrfs_reserve_flush_enum flush) 4998 { 4999 struct btrfs_space_info *space_info = block_rsv->space_info; 5000 u64 used; 5001 u64 num_bytes = orig_bytes; 5002 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5003 int ret = 0; 5004 bool flushing = false; 5005 5006 again: 5007 ret = 0; 5008 spin_lock(&space_info->lock); 5009 /* 5010 * We only want to wait if somebody other than us is flushing and we 5011 * are actually allowed to flush all things. 5012 */ 5013 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 5014 space_info->flush) { 5015 spin_unlock(&space_info->lock); 5016 /* 5017 * If we have a trans handle we can't wait because the flusher 5018 * may have to commit the transaction, which would mean we would 5019 * deadlock since we are waiting for the flusher to finish, but 5020 * hold the current transaction open. 5021 */ 5022 if (current->journal_info) 5023 return -EAGAIN; 5024 ret = wait_event_killable(space_info->wait, !space_info->flush); 5025 /* Must have been killed, return */ 5026 if (ret) 5027 return -EINTR; 5028 5029 spin_lock(&space_info->lock); 5030 } 5031 5032 ret = -ENOSPC; 5033 used = space_info->bytes_used + space_info->bytes_reserved + 5034 space_info->bytes_pinned + space_info->bytes_readonly + 5035 space_info->bytes_may_use; 5036 5037 /* 5038 * The idea here is that we've not already over-reserved the block group 5039 * then we can go ahead and save our reservation first and then start 5040 * flushing if we need to. Otherwise if we've already overcommitted 5041 * lets start flushing stuff first and then come back and try to make 5042 * our reservation. 5043 */ 5044 if (used <= space_info->total_bytes) { 5045 if (used + orig_bytes <= space_info->total_bytes) { 5046 space_info->bytes_may_use += orig_bytes; 5047 trace_btrfs_space_reservation(root->fs_info, 5048 "space_info", space_info->flags, orig_bytes, 1); 5049 ret = 0; 5050 } else { 5051 /* 5052 * Ok set num_bytes to orig_bytes since we aren't 5053 * overocmmitted, this way we only try and reclaim what 5054 * we need. 5055 */ 5056 num_bytes = orig_bytes; 5057 } 5058 } else { 5059 /* 5060 * Ok we're over committed, set num_bytes to the overcommitted 5061 * amount plus the amount of bytes that we need for this 5062 * reservation. 5063 */ 5064 num_bytes = used - space_info->total_bytes + 5065 (orig_bytes * 2); 5066 } 5067 5068 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 5069 space_info->bytes_may_use += orig_bytes; 5070 trace_btrfs_space_reservation(root->fs_info, "space_info", 5071 space_info->flags, orig_bytes, 5072 1); 5073 ret = 0; 5074 } 5075 5076 /* 5077 * Couldn't make our reservation, save our place so while we're trying 5078 * to reclaim space we can actually use it instead of somebody else 5079 * stealing it from us. 5080 * 5081 * We make the other tasks wait for the flush only when we can flush 5082 * all things. 5083 */ 5084 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5085 flushing = true; 5086 space_info->flush = 1; 5087 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5088 used += orig_bytes; 5089 /* 5090 * We will do the space reservation dance during log replay, 5091 * which means we won't have fs_info->fs_root set, so don't do 5092 * the async reclaim as we will panic. 5093 */ 5094 if (!root->fs_info->log_root_recovering && 5095 need_do_async_reclaim(space_info, root->fs_info, used) && 5096 !work_busy(&root->fs_info->async_reclaim_work)) 5097 queue_work(system_unbound_wq, 5098 &root->fs_info->async_reclaim_work); 5099 } 5100 spin_unlock(&space_info->lock); 5101 5102 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5103 goto out; 5104 5105 ret = flush_space(root, space_info, num_bytes, orig_bytes, 5106 flush_state); 5107 flush_state++; 5108 5109 /* 5110 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 5111 * would happen. So skip delalloc flush. 5112 */ 5113 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 5114 (flush_state == FLUSH_DELALLOC || 5115 flush_state == FLUSH_DELALLOC_WAIT)) 5116 flush_state = ALLOC_CHUNK; 5117 5118 if (!ret) 5119 goto again; 5120 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 5121 flush_state < COMMIT_TRANS) 5122 goto again; 5123 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 5124 flush_state <= COMMIT_TRANS) 5125 goto again; 5126 5127 out: 5128 if (ret == -ENOSPC && 5129 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5130 struct btrfs_block_rsv *global_rsv = 5131 &root->fs_info->global_block_rsv; 5132 5133 if (block_rsv != global_rsv && 5134 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5135 ret = 0; 5136 } 5137 if (ret == -ENOSPC) 5138 trace_btrfs_space_reservation(root->fs_info, 5139 "space_info:enospc", 5140 space_info->flags, orig_bytes, 1); 5141 if (flushing) { 5142 spin_lock(&space_info->lock); 5143 space_info->flush = 0; 5144 wake_up_all(&space_info->wait); 5145 spin_unlock(&space_info->lock); 5146 } 5147 return ret; 5148 } 5149 5150 static struct btrfs_block_rsv *get_block_rsv( 5151 const struct btrfs_trans_handle *trans, 5152 const struct btrfs_root *root) 5153 { 5154 struct btrfs_block_rsv *block_rsv = NULL; 5155 5156 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5157 (root == root->fs_info->csum_root && trans->adding_csums) || 5158 (root == root->fs_info->uuid_root)) 5159 block_rsv = trans->block_rsv; 5160 5161 if (!block_rsv) 5162 block_rsv = root->block_rsv; 5163 5164 if (!block_rsv) 5165 block_rsv = &root->fs_info->empty_block_rsv; 5166 5167 return block_rsv; 5168 } 5169 5170 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5171 u64 num_bytes) 5172 { 5173 int ret = -ENOSPC; 5174 spin_lock(&block_rsv->lock); 5175 if (block_rsv->reserved >= num_bytes) { 5176 block_rsv->reserved -= num_bytes; 5177 if (block_rsv->reserved < block_rsv->size) 5178 block_rsv->full = 0; 5179 ret = 0; 5180 } 5181 spin_unlock(&block_rsv->lock); 5182 return ret; 5183 } 5184 5185 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5186 u64 num_bytes, int update_size) 5187 { 5188 spin_lock(&block_rsv->lock); 5189 block_rsv->reserved += num_bytes; 5190 if (update_size) 5191 block_rsv->size += num_bytes; 5192 else if (block_rsv->reserved >= block_rsv->size) 5193 block_rsv->full = 1; 5194 spin_unlock(&block_rsv->lock); 5195 } 5196 5197 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5198 struct btrfs_block_rsv *dest, u64 num_bytes, 5199 int min_factor) 5200 { 5201 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5202 u64 min_bytes; 5203 5204 if (global_rsv->space_info != dest->space_info) 5205 return -ENOSPC; 5206 5207 spin_lock(&global_rsv->lock); 5208 min_bytes = div_factor(global_rsv->size, min_factor); 5209 if (global_rsv->reserved < min_bytes + num_bytes) { 5210 spin_unlock(&global_rsv->lock); 5211 return -ENOSPC; 5212 } 5213 global_rsv->reserved -= num_bytes; 5214 if (global_rsv->reserved < global_rsv->size) 5215 global_rsv->full = 0; 5216 spin_unlock(&global_rsv->lock); 5217 5218 block_rsv_add_bytes(dest, num_bytes, 1); 5219 return 0; 5220 } 5221 5222 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5223 struct btrfs_block_rsv *block_rsv, 5224 struct btrfs_block_rsv *dest, u64 num_bytes) 5225 { 5226 struct btrfs_space_info *space_info = block_rsv->space_info; 5227 5228 spin_lock(&block_rsv->lock); 5229 if (num_bytes == (u64)-1) 5230 num_bytes = block_rsv->size; 5231 block_rsv->size -= num_bytes; 5232 if (block_rsv->reserved >= block_rsv->size) { 5233 num_bytes = block_rsv->reserved - block_rsv->size; 5234 block_rsv->reserved = block_rsv->size; 5235 block_rsv->full = 1; 5236 } else { 5237 num_bytes = 0; 5238 } 5239 spin_unlock(&block_rsv->lock); 5240 5241 if (num_bytes > 0) { 5242 if (dest) { 5243 spin_lock(&dest->lock); 5244 if (!dest->full) { 5245 u64 bytes_to_add; 5246 5247 bytes_to_add = dest->size - dest->reserved; 5248 bytes_to_add = min(num_bytes, bytes_to_add); 5249 dest->reserved += bytes_to_add; 5250 if (dest->reserved >= dest->size) 5251 dest->full = 1; 5252 num_bytes -= bytes_to_add; 5253 } 5254 spin_unlock(&dest->lock); 5255 } 5256 if (num_bytes) { 5257 spin_lock(&space_info->lock); 5258 space_info->bytes_may_use -= num_bytes; 5259 trace_btrfs_space_reservation(fs_info, "space_info", 5260 space_info->flags, num_bytes, 0); 5261 spin_unlock(&space_info->lock); 5262 } 5263 } 5264 } 5265 5266 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 5267 struct btrfs_block_rsv *dst, u64 num_bytes) 5268 { 5269 int ret; 5270 5271 ret = block_rsv_use_bytes(src, num_bytes); 5272 if (ret) 5273 return ret; 5274 5275 block_rsv_add_bytes(dst, num_bytes, 1); 5276 return 0; 5277 } 5278 5279 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5280 { 5281 memset(rsv, 0, sizeof(*rsv)); 5282 spin_lock_init(&rsv->lock); 5283 rsv->type = type; 5284 } 5285 5286 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 5287 unsigned short type) 5288 { 5289 struct btrfs_block_rsv *block_rsv; 5290 struct btrfs_fs_info *fs_info = root->fs_info; 5291 5292 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5293 if (!block_rsv) 5294 return NULL; 5295 5296 btrfs_init_block_rsv(block_rsv, type); 5297 block_rsv->space_info = __find_space_info(fs_info, 5298 BTRFS_BLOCK_GROUP_METADATA); 5299 return block_rsv; 5300 } 5301 5302 void btrfs_free_block_rsv(struct btrfs_root *root, 5303 struct btrfs_block_rsv *rsv) 5304 { 5305 if (!rsv) 5306 return; 5307 btrfs_block_rsv_release(root, rsv, (u64)-1); 5308 kfree(rsv); 5309 } 5310 5311 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5312 { 5313 kfree(rsv); 5314 } 5315 5316 int btrfs_block_rsv_add(struct btrfs_root *root, 5317 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5318 enum btrfs_reserve_flush_enum flush) 5319 { 5320 int ret; 5321 5322 if (num_bytes == 0) 5323 return 0; 5324 5325 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5326 if (!ret) { 5327 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5328 return 0; 5329 } 5330 5331 return ret; 5332 } 5333 5334 int btrfs_block_rsv_check(struct btrfs_root *root, 5335 struct btrfs_block_rsv *block_rsv, int min_factor) 5336 { 5337 u64 num_bytes = 0; 5338 int ret = -ENOSPC; 5339 5340 if (!block_rsv) 5341 return 0; 5342 5343 spin_lock(&block_rsv->lock); 5344 num_bytes = div_factor(block_rsv->size, min_factor); 5345 if (block_rsv->reserved >= num_bytes) 5346 ret = 0; 5347 spin_unlock(&block_rsv->lock); 5348 5349 return ret; 5350 } 5351 5352 int btrfs_block_rsv_refill(struct btrfs_root *root, 5353 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5354 enum btrfs_reserve_flush_enum flush) 5355 { 5356 u64 num_bytes = 0; 5357 int ret = -ENOSPC; 5358 5359 if (!block_rsv) 5360 return 0; 5361 5362 spin_lock(&block_rsv->lock); 5363 num_bytes = min_reserved; 5364 if (block_rsv->reserved >= num_bytes) 5365 ret = 0; 5366 else 5367 num_bytes -= block_rsv->reserved; 5368 spin_unlock(&block_rsv->lock); 5369 5370 if (!ret) 5371 return 0; 5372 5373 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5374 if (!ret) { 5375 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5376 return 0; 5377 } 5378 5379 return ret; 5380 } 5381 5382 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5383 struct btrfs_block_rsv *dst_rsv, 5384 u64 num_bytes) 5385 { 5386 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5387 } 5388 5389 void btrfs_block_rsv_release(struct btrfs_root *root, 5390 struct btrfs_block_rsv *block_rsv, 5391 u64 num_bytes) 5392 { 5393 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5394 if (global_rsv == block_rsv || 5395 block_rsv->space_info != global_rsv->space_info) 5396 global_rsv = NULL; 5397 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5398 num_bytes); 5399 } 5400 5401 /* 5402 * helper to calculate size of global block reservation. 5403 * the desired value is sum of space used by extent tree, 5404 * checksum tree and root tree 5405 */ 5406 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5407 { 5408 struct btrfs_space_info *sinfo; 5409 u64 num_bytes; 5410 u64 meta_used; 5411 u64 data_used; 5412 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5413 5414 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5415 spin_lock(&sinfo->lock); 5416 data_used = sinfo->bytes_used; 5417 spin_unlock(&sinfo->lock); 5418 5419 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5420 spin_lock(&sinfo->lock); 5421 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5422 data_used = 0; 5423 meta_used = sinfo->bytes_used; 5424 spin_unlock(&sinfo->lock); 5425 5426 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5427 csum_size * 2; 5428 num_bytes += div_u64(data_used + meta_used, 50); 5429 5430 if (num_bytes * 3 > meta_used) 5431 num_bytes = div_u64(meta_used, 3); 5432 5433 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5434 } 5435 5436 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5437 { 5438 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5439 struct btrfs_space_info *sinfo = block_rsv->space_info; 5440 u64 num_bytes; 5441 5442 num_bytes = calc_global_metadata_size(fs_info); 5443 5444 spin_lock(&sinfo->lock); 5445 spin_lock(&block_rsv->lock); 5446 5447 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5448 5449 if (block_rsv->reserved < block_rsv->size) { 5450 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5451 sinfo->bytes_reserved + sinfo->bytes_readonly + 5452 sinfo->bytes_may_use; 5453 if (sinfo->total_bytes > num_bytes) { 5454 num_bytes = sinfo->total_bytes - num_bytes; 5455 num_bytes = min(num_bytes, 5456 block_rsv->size - block_rsv->reserved); 5457 block_rsv->reserved += num_bytes; 5458 sinfo->bytes_may_use += num_bytes; 5459 trace_btrfs_space_reservation(fs_info, "space_info", 5460 sinfo->flags, num_bytes, 5461 1); 5462 } 5463 } else if (block_rsv->reserved > block_rsv->size) { 5464 num_bytes = block_rsv->reserved - block_rsv->size; 5465 sinfo->bytes_may_use -= num_bytes; 5466 trace_btrfs_space_reservation(fs_info, "space_info", 5467 sinfo->flags, num_bytes, 0); 5468 block_rsv->reserved = block_rsv->size; 5469 } 5470 5471 if (block_rsv->reserved == block_rsv->size) 5472 block_rsv->full = 1; 5473 else 5474 block_rsv->full = 0; 5475 5476 spin_unlock(&block_rsv->lock); 5477 spin_unlock(&sinfo->lock); 5478 } 5479 5480 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5481 { 5482 struct btrfs_space_info *space_info; 5483 5484 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5485 fs_info->chunk_block_rsv.space_info = space_info; 5486 5487 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5488 fs_info->global_block_rsv.space_info = space_info; 5489 fs_info->delalloc_block_rsv.space_info = space_info; 5490 fs_info->trans_block_rsv.space_info = space_info; 5491 fs_info->empty_block_rsv.space_info = space_info; 5492 fs_info->delayed_block_rsv.space_info = space_info; 5493 5494 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5495 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5496 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5497 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5498 if (fs_info->quota_root) 5499 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5500 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5501 5502 update_global_block_rsv(fs_info); 5503 } 5504 5505 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5506 { 5507 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5508 (u64)-1); 5509 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5510 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5511 WARN_ON(fs_info->trans_block_rsv.size > 0); 5512 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5513 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5514 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5515 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5516 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5517 } 5518 5519 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5520 struct btrfs_root *root) 5521 { 5522 if (!trans->block_rsv) 5523 return; 5524 5525 if (!trans->bytes_reserved) 5526 return; 5527 5528 trace_btrfs_space_reservation(root->fs_info, "transaction", 5529 trans->transid, trans->bytes_reserved, 0); 5530 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5531 trans->bytes_reserved = 0; 5532 } 5533 5534 /* 5535 * To be called after all the new block groups attached to the transaction 5536 * handle have been created (btrfs_create_pending_block_groups()). 5537 */ 5538 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5539 { 5540 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5541 5542 if (!trans->chunk_bytes_reserved) 5543 return; 5544 5545 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5546 5547 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5548 trans->chunk_bytes_reserved); 5549 trans->chunk_bytes_reserved = 0; 5550 } 5551 5552 /* Can only return 0 or -ENOSPC */ 5553 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5554 struct inode *inode) 5555 { 5556 struct btrfs_root *root = BTRFS_I(inode)->root; 5557 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5558 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5559 5560 /* 5561 * We need to hold space in order to delete our orphan item once we've 5562 * added it, so this takes the reservation so we can release it later 5563 * when we are truly done with the orphan item. 5564 */ 5565 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5566 trace_btrfs_space_reservation(root->fs_info, "orphan", 5567 btrfs_ino(inode), num_bytes, 1); 5568 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5569 } 5570 5571 void btrfs_orphan_release_metadata(struct inode *inode) 5572 { 5573 struct btrfs_root *root = BTRFS_I(inode)->root; 5574 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5575 trace_btrfs_space_reservation(root->fs_info, "orphan", 5576 btrfs_ino(inode), num_bytes, 0); 5577 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5578 } 5579 5580 /* 5581 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5582 * root: the root of the parent directory 5583 * rsv: block reservation 5584 * items: the number of items that we need do reservation 5585 * qgroup_reserved: used to return the reserved size in qgroup 5586 * 5587 * This function is used to reserve the space for snapshot/subvolume 5588 * creation and deletion. Those operations are different with the 5589 * common file/directory operations, they change two fs/file trees 5590 * and root tree, the number of items that the qgroup reserves is 5591 * different with the free space reservation. So we can not use 5592 * the space reservation mechanism in start_transaction(). 5593 */ 5594 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5595 struct btrfs_block_rsv *rsv, 5596 int items, 5597 u64 *qgroup_reserved, 5598 bool use_global_rsv) 5599 { 5600 u64 num_bytes; 5601 int ret; 5602 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5603 5604 if (root->fs_info->quota_enabled) { 5605 /* One for parent inode, two for dir entries */ 5606 num_bytes = 3 * root->nodesize; 5607 ret = btrfs_qgroup_reserve_meta(root, num_bytes); 5608 if (ret) 5609 return ret; 5610 } else { 5611 num_bytes = 0; 5612 } 5613 5614 *qgroup_reserved = num_bytes; 5615 5616 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5617 rsv->space_info = __find_space_info(root->fs_info, 5618 BTRFS_BLOCK_GROUP_METADATA); 5619 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5620 BTRFS_RESERVE_FLUSH_ALL); 5621 5622 if (ret == -ENOSPC && use_global_rsv) 5623 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5624 5625 if (ret && *qgroup_reserved) 5626 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5627 5628 return ret; 5629 } 5630 5631 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5632 struct btrfs_block_rsv *rsv, 5633 u64 qgroup_reserved) 5634 { 5635 btrfs_block_rsv_release(root, rsv, (u64)-1); 5636 } 5637 5638 /** 5639 * drop_outstanding_extent - drop an outstanding extent 5640 * @inode: the inode we're dropping the extent for 5641 * @num_bytes: the number of bytes we're releasing. 5642 * 5643 * This is called when we are freeing up an outstanding extent, either called 5644 * after an error or after an extent is written. This will return the number of 5645 * reserved extents that need to be freed. This must be called with 5646 * BTRFS_I(inode)->lock held. 5647 */ 5648 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5649 { 5650 unsigned drop_inode_space = 0; 5651 unsigned dropped_extents = 0; 5652 unsigned num_extents = 0; 5653 5654 num_extents = (unsigned)div64_u64(num_bytes + 5655 BTRFS_MAX_EXTENT_SIZE - 1, 5656 BTRFS_MAX_EXTENT_SIZE); 5657 ASSERT(num_extents); 5658 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5659 BTRFS_I(inode)->outstanding_extents -= num_extents; 5660 5661 if (BTRFS_I(inode)->outstanding_extents == 0 && 5662 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5663 &BTRFS_I(inode)->runtime_flags)) 5664 drop_inode_space = 1; 5665 5666 /* 5667 * If we have more or the same amount of outstanding extents than we have 5668 * reserved then we need to leave the reserved extents count alone. 5669 */ 5670 if (BTRFS_I(inode)->outstanding_extents >= 5671 BTRFS_I(inode)->reserved_extents) 5672 return drop_inode_space; 5673 5674 dropped_extents = BTRFS_I(inode)->reserved_extents - 5675 BTRFS_I(inode)->outstanding_extents; 5676 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5677 return dropped_extents + drop_inode_space; 5678 } 5679 5680 /** 5681 * calc_csum_metadata_size - return the amount of metadata space that must be 5682 * reserved/freed for the given bytes. 5683 * @inode: the inode we're manipulating 5684 * @num_bytes: the number of bytes in question 5685 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5686 * 5687 * This adjusts the number of csum_bytes in the inode and then returns the 5688 * correct amount of metadata that must either be reserved or freed. We 5689 * calculate how many checksums we can fit into one leaf and then divide the 5690 * number of bytes that will need to be checksumed by this value to figure out 5691 * how many checksums will be required. If we are adding bytes then the number 5692 * may go up and we will return the number of additional bytes that must be 5693 * reserved. If it is going down we will return the number of bytes that must 5694 * be freed. 5695 * 5696 * This must be called with BTRFS_I(inode)->lock held. 5697 */ 5698 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5699 int reserve) 5700 { 5701 struct btrfs_root *root = BTRFS_I(inode)->root; 5702 u64 old_csums, num_csums; 5703 5704 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5705 BTRFS_I(inode)->csum_bytes == 0) 5706 return 0; 5707 5708 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5709 if (reserve) 5710 BTRFS_I(inode)->csum_bytes += num_bytes; 5711 else 5712 BTRFS_I(inode)->csum_bytes -= num_bytes; 5713 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5714 5715 /* No change, no need to reserve more */ 5716 if (old_csums == num_csums) 5717 return 0; 5718 5719 if (reserve) 5720 return btrfs_calc_trans_metadata_size(root, 5721 num_csums - old_csums); 5722 5723 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5724 } 5725 5726 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5727 { 5728 struct btrfs_root *root = BTRFS_I(inode)->root; 5729 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5730 u64 to_reserve = 0; 5731 u64 csum_bytes; 5732 unsigned nr_extents = 0; 5733 int extra_reserve = 0; 5734 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5735 int ret = 0; 5736 bool delalloc_lock = true; 5737 u64 to_free = 0; 5738 unsigned dropped; 5739 5740 /* If we are a free space inode we need to not flush since we will be in 5741 * the middle of a transaction commit. We also don't need the delalloc 5742 * mutex since we won't race with anybody. We need this mostly to make 5743 * lockdep shut its filthy mouth. 5744 */ 5745 if (btrfs_is_free_space_inode(inode)) { 5746 flush = BTRFS_RESERVE_NO_FLUSH; 5747 delalloc_lock = false; 5748 } 5749 5750 if (flush != BTRFS_RESERVE_NO_FLUSH && 5751 btrfs_transaction_in_commit(root->fs_info)) 5752 schedule_timeout(1); 5753 5754 if (delalloc_lock) 5755 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5756 5757 num_bytes = ALIGN(num_bytes, root->sectorsize); 5758 5759 spin_lock(&BTRFS_I(inode)->lock); 5760 nr_extents = (unsigned)div64_u64(num_bytes + 5761 BTRFS_MAX_EXTENT_SIZE - 1, 5762 BTRFS_MAX_EXTENT_SIZE); 5763 BTRFS_I(inode)->outstanding_extents += nr_extents; 5764 nr_extents = 0; 5765 5766 if (BTRFS_I(inode)->outstanding_extents > 5767 BTRFS_I(inode)->reserved_extents) 5768 nr_extents = BTRFS_I(inode)->outstanding_extents - 5769 BTRFS_I(inode)->reserved_extents; 5770 5771 /* 5772 * Add an item to reserve for updating the inode when we complete the 5773 * delalloc io. 5774 */ 5775 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5776 &BTRFS_I(inode)->runtime_flags)) { 5777 nr_extents++; 5778 extra_reserve = 1; 5779 } 5780 5781 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5782 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5783 csum_bytes = BTRFS_I(inode)->csum_bytes; 5784 spin_unlock(&BTRFS_I(inode)->lock); 5785 5786 if (root->fs_info->quota_enabled) { 5787 ret = btrfs_qgroup_reserve_meta(root, 5788 nr_extents * root->nodesize); 5789 if (ret) 5790 goto out_fail; 5791 } 5792 5793 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5794 if (unlikely(ret)) { 5795 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize); 5796 goto out_fail; 5797 } 5798 5799 spin_lock(&BTRFS_I(inode)->lock); 5800 if (extra_reserve) { 5801 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5802 &BTRFS_I(inode)->runtime_flags); 5803 nr_extents--; 5804 } 5805 BTRFS_I(inode)->reserved_extents += nr_extents; 5806 spin_unlock(&BTRFS_I(inode)->lock); 5807 5808 if (delalloc_lock) 5809 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5810 5811 if (to_reserve) 5812 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5813 btrfs_ino(inode), to_reserve, 1); 5814 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5815 5816 return 0; 5817 5818 out_fail: 5819 spin_lock(&BTRFS_I(inode)->lock); 5820 dropped = drop_outstanding_extent(inode, num_bytes); 5821 /* 5822 * If the inodes csum_bytes is the same as the original 5823 * csum_bytes then we know we haven't raced with any free()ers 5824 * so we can just reduce our inodes csum bytes and carry on. 5825 */ 5826 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5827 calc_csum_metadata_size(inode, num_bytes, 0); 5828 } else { 5829 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5830 u64 bytes; 5831 5832 /* 5833 * This is tricky, but first we need to figure out how much we 5834 * freed from any free-ers that occurred during this 5835 * reservation, so we reset ->csum_bytes to the csum_bytes 5836 * before we dropped our lock, and then call the free for the 5837 * number of bytes that were freed while we were trying our 5838 * reservation. 5839 */ 5840 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5841 BTRFS_I(inode)->csum_bytes = csum_bytes; 5842 to_free = calc_csum_metadata_size(inode, bytes, 0); 5843 5844 5845 /* 5846 * Now we need to see how much we would have freed had we not 5847 * been making this reservation and our ->csum_bytes were not 5848 * artificially inflated. 5849 */ 5850 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5851 bytes = csum_bytes - orig_csum_bytes; 5852 bytes = calc_csum_metadata_size(inode, bytes, 0); 5853 5854 /* 5855 * Now reset ->csum_bytes to what it should be. If bytes is 5856 * more than to_free then we would have freed more space had we 5857 * not had an artificially high ->csum_bytes, so we need to free 5858 * the remainder. If bytes is the same or less then we don't 5859 * need to do anything, the other free-ers did the correct 5860 * thing. 5861 */ 5862 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5863 if (bytes > to_free) 5864 to_free = bytes - to_free; 5865 else 5866 to_free = 0; 5867 } 5868 spin_unlock(&BTRFS_I(inode)->lock); 5869 if (dropped) 5870 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5871 5872 if (to_free) { 5873 btrfs_block_rsv_release(root, block_rsv, to_free); 5874 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5875 btrfs_ino(inode), to_free, 0); 5876 } 5877 if (delalloc_lock) 5878 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5879 return ret; 5880 } 5881 5882 /** 5883 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5884 * @inode: the inode to release the reservation for 5885 * @num_bytes: the number of bytes we're releasing 5886 * 5887 * This will release the metadata reservation for an inode. This can be called 5888 * once we complete IO for a given set of bytes to release their metadata 5889 * reservations. 5890 */ 5891 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5892 { 5893 struct btrfs_root *root = BTRFS_I(inode)->root; 5894 u64 to_free = 0; 5895 unsigned dropped; 5896 5897 num_bytes = ALIGN(num_bytes, root->sectorsize); 5898 spin_lock(&BTRFS_I(inode)->lock); 5899 dropped = drop_outstanding_extent(inode, num_bytes); 5900 5901 if (num_bytes) 5902 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5903 spin_unlock(&BTRFS_I(inode)->lock); 5904 if (dropped > 0) 5905 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5906 5907 if (btrfs_test_is_dummy_root(root)) 5908 return; 5909 5910 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5911 btrfs_ino(inode), to_free, 0); 5912 5913 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5914 to_free); 5915 } 5916 5917 /** 5918 * btrfs_delalloc_reserve_space - reserve data and metadata space for 5919 * delalloc 5920 * @inode: inode we're writing to 5921 * @start: start range we are writing to 5922 * @len: how long the range we are writing to 5923 * 5924 * TODO: This function will finally replace old btrfs_delalloc_reserve_space() 5925 * 5926 * This will do the following things 5927 * 5928 * o reserve space in data space info for num bytes 5929 * and reserve precious corresponding qgroup space 5930 * (Done in check_data_free_space) 5931 * 5932 * o reserve space for metadata space, based on the number of outstanding 5933 * extents and how much csums will be needed 5934 * also reserve metadata space in a per root over-reserve method. 5935 * o add to the inodes->delalloc_bytes 5936 * o add it to the fs_info's delalloc inodes list. 5937 * (Above 3 all done in delalloc_reserve_metadata) 5938 * 5939 * Return 0 for success 5940 * Return <0 for error(-ENOSPC or -EQUOT) 5941 */ 5942 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len) 5943 { 5944 int ret; 5945 5946 ret = btrfs_check_data_free_space(inode, start, len); 5947 if (ret < 0) 5948 return ret; 5949 ret = btrfs_delalloc_reserve_metadata(inode, len); 5950 if (ret < 0) 5951 btrfs_free_reserved_data_space(inode, start, len); 5952 return ret; 5953 } 5954 5955 /** 5956 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5957 * @inode: inode we're releasing space for 5958 * @start: start position of the space already reserved 5959 * @len: the len of the space already reserved 5960 * 5961 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5962 * called in the case that we don't need the metadata AND data reservations 5963 * anymore. So if there is an error or we insert an inline extent. 5964 * 5965 * This function will release the metadata space that was not used and will 5966 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5967 * list if there are no delalloc bytes left. 5968 * Also it will handle the qgroup reserved space. 5969 */ 5970 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len) 5971 { 5972 btrfs_delalloc_release_metadata(inode, len); 5973 btrfs_free_reserved_data_space(inode, start, len); 5974 } 5975 5976 static int update_block_group(struct btrfs_trans_handle *trans, 5977 struct btrfs_root *root, u64 bytenr, 5978 u64 num_bytes, int alloc) 5979 { 5980 struct btrfs_block_group_cache *cache = NULL; 5981 struct btrfs_fs_info *info = root->fs_info; 5982 u64 total = num_bytes; 5983 u64 old_val; 5984 u64 byte_in_group; 5985 int factor; 5986 5987 /* block accounting for super block */ 5988 spin_lock(&info->delalloc_root_lock); 5989 old_val = btrfs_super_bytes_used(info->super_copy); 5990 if (alloc) 5991 old_val += num_bytes; 5992 else 5993 old_val -= num_bytes; 5994 btrfs_set_super_bytes_used(info->super_copy, old_val); 5995 spin_unlock(&info->delalloc_root_lock); 5996 5997 while (total) { 5998 cache = btrfs_lookup_block_group(info, bytenr); 5999 if (!cache) 6000 return -ENOENT; 6001 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6002 BTRFS_BLOCK_GROUP_RAID1 | 6003 BTRFS_BLOCK_GROUP_RAID10)) 6004 factor = 2; 6005 else 6006 factor = 1; 6007 /* 6008 * If this block group has free space cache written out, we 6009 * need to make sure to load it if we are removing space. This 6010 * is because we need the unpinning stage to actually add the 6011 * space back to the block group, otherwise we will leak space. 6012 */ 6013 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6014 cache_block_group(cache, 1); 6015 6016 byte_in_group = bytenr - cache->key.objectid; 6017 WARN_ON(byte_in_group > cache->key.offset); 6018 6019 spin_lock(&cache->space_info->lock); 6020 spin_lock(&cache->lock); 6021 6022 if (btrfs_test_opt(root, SPACE_CACHE) && 6023 cache->disk_cache_state < BTRFS_DC_CLEAR) 6024 cache->disk_cache_state = BTRFS_DC_CLEAR; 6025 6026 old_val = btrfs_block_group_used(&cache->item); 6027 num_bytes = min(total, cache->key.offset - byte_in_group); 6028 if (alloc) { 6029 old_val += num_bytes; 6030 btrfs_set_block_group_used(&cache->item, old_val); 6031 cache->reserved -= num_bytes; 6032 cache->space_info->bytes_reserved -= num_bytes; 6033 cache->space_info->bytes_used += num_bytes; 6034 cache->space_info->disk_used += num_bytes * factor; 6035 spin_unlock(&cache->lock); 6036 spin_unlock(&cache->space_info->lock); 6037 } else { 6038 old_val -= num_bytes; 6039 btrfs_set_block_group_used(&cache->item, old_val); 6040 cache->pinned += num_bytes; 6041 cache->space_info->bytes_pinned += num_bytes; 6042 cache->space_info->bytes_used -= num_bytes; 6043 cache->space_info->disk_used -= num_bytes * factor; 6044 spin_unlock(&cache->lock); 6045 spin_unlock(&cache->space_info->lock); 6046 6047 set_extent_dirty(info->pinned_extents, 6048 bytenr, bytenr + num_bytes - 1, 6049 GFP_NOFS | __GFP_NOFAIL); 6050 } 6051 6052 spin_lock(&trans->transaction->dirty_bgs_lock); 6053 if (list_empty(&cache->dirty_list)) { 6054 list_add_tail(&cache->dirty_list, 6055 &trans->transaction->dirty_bgs); 6056 trans->transaction->num_dirty_bgs++; 6057 btrfs_get_block_group(cache); 6058 } 6059 spin_unlock(&trans->transaction->dirty_bgs_lock); 6060 6061 /* 6062 * No longer have used bytes in this block group, queue it for 6063 * deletion. We do this after adding the block group to the 6064 * dirty list to avoid races between cleaner kthread and space 6065 * cache writeout. 6066 */ 6067 if (!alloc && old_val == 0) { 6068 spin_lock(&info->unused_bgs_lock); 6069 if (list_empty(&cache->bg_list)) { 6070 btrfs_get_block_group(cache); 6071 list_add_tail(&cache->bg_list, 6072 &info->unused_bgs); 6073 } 6074 spin_unlock(&info->unused_bgs_lock); 6075 } 6076 6077 btrfs_put_block_group(cache); 6078 total -= num_bytes; 6079 bytenr += num_bytes; 6080 } 6081 return 0; 6082 } 6083 6084 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 6085 { 6086 struct btrfs_block_group_cache *cache; 6087 u64 bytenr; 6088 6089 spin_lock(&root->fs_info->block_group_cache_lock); 6090 bytenr = root->fs_info->first_logical_byte; 6091 spin_unlock(&root->fs_info->block_group_cache_lock); 6092 6093 if (bytenr < (u64)-1) 6094 return bytenr; 6095 6096 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 6097 if (!cache) 6098 return 0; 6099 6100 bytenr = cache->key.objectid; 6101 btrfs_put_block_group(cache); 6102 6103 return bytenr; 6104 } 6105 6106 static int pin_down_extent(struct btrfs_root *root, 6107 struct btrfs_block_group_cache *cache, 6108 u64 bytenr, u64 num_bytes, int reserved) 6109 { 6110 spin_lock(&cache->space_info->lock); 6111 spin_lock(&cache->lock); 6112 cache->pinned += num_bytes; 6113 cache->space_info->bytes_pinned += num_bytes; 6114 if (reserved) { 6115 cache->reserved -= num_bytes; 6116 cache->space_info->bytes_reserved -= num_bytes; 6117 } 6118 spin_unlock(&cache->lock); 6119 spin_unlock(&cache->space_info->lock); 6120 6121 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 6122 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6123 if (reserved) 6124 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 6125 return 0; 6126 } 6127 6128 /* 6129 * this function must be called within transaction 6130 */ 6131 int btrfs_pin_extent(struct btrfs_root *root, 6132 u64 bytenr, u64 num_bytes, int reserved) 6133 { 6134 struct btrfs_block_group_cache *cache; 6135 6136 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6137 BUG_ON(!cache); /* Logic error */ 6138 6139 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 6140 6141 btrfs_put_block_group(cache); 6142 return 0; 6143 } 6144 6145 /* 6146 * this function must be called within transaction 6147 */ 6148 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 6149 u64 bytenr, u64 num_bytes) 6150 { 6151 struct btrfs_block_group_cache *cache; 6152 int ret; 6153 6154 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 6155 if (!cache) 6156 return -EINVAL; 6157 6158 /* 6159 * pull in the free space cache (if any) so that our pin 6160 * removes the free space from the cache. We have load_only set 6161 * to one because the slow code to read in the free extents does check 6162 * the pinned extents. 6163 */ 6164 cache_block_group(cache, 1); 6165 6166 pin_down_extent(root, cache, bytenr, num_bytes, 0); 6167 6168 /* remove us from the free space cache (if we're there at all) */ 6169 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6170 btrfs_put_block_group(cache); 6171 return ret; 6172 } 6173 6174 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 6175 { 6176 int ret; 6177 struct btrfs_block_group_cache *block_group; 6178 struct btrfs_caching_control *caching_ctl; 6179 6180 block_group = btrfs_lookup_block_group(root->fs_info, start); 6181 if (!block_group) 6182 return -EINVAL; 6183 6184 cache_block_group(block_group, 0); 6185 caching_ctl = get_caching_control(block_group); 6186 6187 if (!caching_ctl) { 6188 /* Logic error */ 6189 BUG_ON(!block_group_cache_done(block_group)); 6190 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6191 } else { 6192 mutex_lock(&caching_ctl->mutex); 6193 6194 if (start >= caching_ctl->progress) { 6195 ret = add_excluded_extent(root, start, num_bytes); 6196 } else if (start + num_bytes <= caching_ctl->progress) { 6197 ret = btrfs_remove_free_space(block_group, 6198 start, num_bytes); 6199 } else { 6200 num_bytes = caching_ctl->progress - start; 6201 ret = btrfs_remove_free_space(block_group, 6202 start, num_bytes); 6203 if (ret) 6204 goto out_lock; 6205 6206 num_bytes = (start + num_bytes) - 6207 caching_ctl->progress; 6208 start = caching_ctl->progress; 6209 ret = add_excluded_extent(root, start, num_bytes); 6210 } 6211 out_lock: 6212 mutex_unlock(&caching_ctl->mutex); 6213 put_caching_control(caching_ctl); 6214 } 6215 btrfs_put_block_group(block_group); 6216 return ret; 6217 } 6218 6219 int btrfs_exclude_logged_extents(struct btrfs_root *log, 6220 struct extent_buffer *eb) 6221 { 6222 struct btrfs_file_extent_item *item; 6223 struct btrfs_key key; 6224 int found_type; 6225 int i; 6226 6227 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 6228 return 0; 6229 6230 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6231 btrfs_item_key_to_cpu(eb, &key, i); 6232 if (key.type != BTRFS_EXTENT_DATA_KEY) 6233 continue; 6234 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6235 found_type = btrfs_file_extent_type(eb, item); 6236 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6237 continue; 6238 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6239 continue; 6240 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6241 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6242 __exclude_logged_extent(log, key.objectid, key.offset); 6243 } 6244 6245 return 0; 6246 } 6247 6248 static void 6249 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6250 { 6251 atomic_inc(&bg->reservations); 6252 } 6253 6254 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6255 const u64 start) 6256 { 6257 struct btrfs_block_group_cache *bg; 6258 6259 bg = btrfs_lookup_block_group(fs_info, start); 6260 ASSERT(bg); 6261 if (atomic_dec_and_test(&bg->reservations)) 6262 wake_up_atomic_t(&bg->reservations); 6263 btrfs_put_block_group(bg); 6264 } 6265 6266 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6267 { 6268 schedule(); 6269 return 0; 6270 } 6271 6272 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6273 { 6274 struct btrfs_space_info *space_info = bg->space_info; 6275 6276 ASSERT(bg->ro); 6277 6278 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6279 return; 6280 6281 /* 6282 * Our block group is read only but before we set it to read only, 6283 * some task might have had allocated an extent from it already, but it 6284 * has not yet created a respective ordered extent (and added it to a 6285 * root's list of ordered extents). 6286 * Therefore wait for any task currently allocating extents, since the 6287 * block group's reservations counter is incremented while a read lock 6288 * on the groups' semaphore is held and decremented after releasing 6289 * the read access on that semaphore and creating the ordered extent. 6290 */ 6291 down_write(&space_info->groups_sem); 6292 up_write(&space_info->groups_sem); 6293 6294 wait_on_atomic_t(&bg->reservations, 6295 btrfs_wait_bg_reservations_atomic_t, 6296 TASK_UNINTERRUPTIBLE); 6297 } 6298 6299 /** 6300 * btrfs_update_reserved_bytes - update the block_group and space info counters 6301 * @cache: The cache we are manipulating 6302 * @num_bytes: The number of bytes in question 6303 * @reserve: One of the reservation enums 6304 * @delalloc: The blocks are allocated for the delalloc write 6305 * 6306 * This is called by the allocator when it reserves space, or by somebody who is 6307 * freeing space that was never actually used on disk. For example if you 6308 * reserve some space for a new leaf in transaction A and before transaction A 6309 * commits you free that leaf, you call this with reserve set to 0 in order to 6310 * clear the reservation. 6311 * 6312 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 6313 * ENOSPC accounting. For data we handle the reservation through clearing the 6314 * delalloc bits in the io_tree. We have to do this since we could end up 6315 * allocating less disk space for the amount of data we have reserved in the 6316 * case of compression. 6317 * 6318 * If this is a reservation and the block group has become read only we cannot 6319 * make the reservation and return -EAGAIN, otherwise this function always 6320 * succeeds. 6321 */ 6322 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 6323 u64 num_bytes, int reserve, int delalloc) 6324 { 6325 struct btrfs_space_info *space_info = cache->space_info; 6326 int ret = 0; 6327 6328 spin_lock(&space_info->lock); 6329 spin_lock(&cache->lock); 6330 if (reserve != RESERVE_FREE) { 6331 if (cache->ro) { 6332 ret = -EAGAIN; 6333 } else { 6334 cache->reserved += num_bytes; 6335 space_info->bytes_reserved += num_bytes; 6336 if (reserve == RESERVE_ALLOC) { 6337 trace_btrfs_space_reservation(cache->fs_info, 6338 "space_info", space_info->flags, 6339 num_bytes, 0); 6340 space_info->bytes_may_use -= num_bytes; 6341 } 6342 6343 if (delalloc) 6344 cache->delalloc_bytes += num_bytes; 6345 } 6346 } else { 6347 if (cache->ro) 6348 space_info->bytes_readonly += num_bytes; 6349 cache->reserved -= num_bytes; 6350 space_info->bytes_reserved -= num_bytes; 6351 6352 if (delalloc) 6353 cache->delalloc_bytes -= num_bytes; 6354 } 6355 spin_unlock(&cache->lock); 6356 spin_unlock(&space_info->lock); 6357 return ret; 6358 } 6359 6360 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 6361 struct btrfs_root *root) 6362 { 6363 struct btrfs_fs_info *fs_info = root->fs_info; 6364 struct btrfs_caching_control *next; 6365 struct btrfs_caching_control *caching_ctl; 6366 struct btrfs_block_group_cache *cache; 6367 6368 down_write(&fs_info->commit_root_sem); 6369 6370 list_for_each_entry_safe(caching_ctl, next, 6371 &fs_info->caching_block_groups, list) { 6372 cache = caching_ctl->block_group; 6373 if (block_group_cache_done(cache)) { 6374 cache->last_byte_to_unpin = (u64)-1; 6375 list_del_init(&caching_ctl->list); 6376 put_caching_control(caching_ctl); 6377 } else { 6378 cache->last_byte_to_unpin = caching_ctl->progress; 6379 } 6380 } 6381 6382 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6383 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6384 else 6385 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6386 6387 up_write(&fs_info->commit_root_sem); 6388 6389 update_global_block_rsv(fs_info); 6390 } 6391 6392 /* 6393 * Returns the free cluster for the given space info and sets empty_cluster to 6394 * what it should be based on the mount options. 6395 */ 6396 static struct btrfs_free_cluster * 6397 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info, 6398 u64 *empty_cluster) 6399 { 6400 struct btrfs_free_cluster *ret = NULL; 6401 bool ssd = btrfs_test_opt(root, SSD); 6402 6403 *empty_cluster = 0; 6404 if (btrfs_mixed_space_info(space_info)) 6405 return ret; 6406 6407 if (ssd) 6408 *empty_cluster = SZ_2M; 6409 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6410 ret = &root->fs_info->meta_alloc_cluster; 6411 if (!ssd) 6412 *empty_cluster = SZ_64K; 6413 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6414 ret = &root->fs_info->data_alloc_cluster; 6415 } 6416 6417 return ret; 6418 } 6419 6420 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 6421 const bool return_free_space) 6422 { 6423 struct btrfs_fs_info *fs_info = root->fs_info; 6424 struct btrfs_block_group_cache *cache = NULL; 6425 struct btrfs_space_info *space_info; 6426 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6427 struct btrfs_free_cluster *cluster = NULL; 6428 u64 len; 6429 u64 total_unpinned = 0; 6430 u64 empty_cluster = 0; 6431 bool readonly; 6432 6433 while (start <= end) { 6434 readonly = false; 6435 if (!cache || 6436 start >= cache->key.objectid + cache->key.offset) { 6437 if (cache) 6438 btrfs_put_block_group(cache); 6439 total_unpinned = 0; 6440 cache = btrfs_lookup_block_group(fs_info, start); 6441 BUG_ON(!cache); /* Logic error */ 6442 6443 cluster = fetch_cluster_info(root, 6444 cache->space_info, 6445 &empty_cluster); 6446 empty_cluster <<= 1; 6447 } 6448 6449 len = cache->key.objectid + cache->key.offset - start; 6450 len = min(len, end + 1 - start); 6451 6452 if (start < cache->last_byte_to_unpin) { 6453 len = min(len, cache->last_byte_to_unpin - start); 6454 if (return_free_space) 6455 btrfs_add_free_space(cache, start, len); 6456 } 6457 6458 start += len; 6459 total_unpinned += len; 6460 space_info = cache->space_info; 6461 6462 /* 6463 * If this space cluster has been marked as fragmented and we've 6464 * unpinned enough in this block group to potentially allow a 6465 * cluster to be created inside of it go ahead and clear the 6466 * fragmented check. 6467 */ 6468 if (cluster && cluster->fragmented && 6469 total_unpinned > empty_cluster) { 6470 spin_lock(&cluster->lock); 6471 cluster->fragmented = 0; 6472 spin_unlock(&cluster->lock); 6473 } 6474 6475 spin_lock(&space_info->lock); 6476 spin_lock(&cache->lock); 6477 cache->pinned -= len; 6478 space_info->bytes_pinned -= len; 6479 space_info->max_extent_size = 0; 6480 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6481 if (cache->ro) { 6482 space_info->bytes_readonly += len; 6483 readonly = true; 6484 } 6485 spin_unlock(&cache->lock); 6486 if (!readonly && global_rsv->space_info == space_info) { 6487 spin_lock(&global_rsv->lock); 6488 if (!global_rsv->full) { 6489 len = min(len, global_rsv->size - 6490 global_rsv->reserved); 6491 global_rsv->reserved += len; 6492 space_info->bytes_may_use += len; 6493 if (global_rsv->reserved >= global_rsv->size) 6494 global_rsv->full = 1; 6495 } 6496 spin_unlock(&global_rsv->lock); 6497 } 6498 spin_unlock(&space_info->lock); 6499 } 6500 6501 if (cache) 6502 btrfs_put_block_group(cache); 6503 return 0; 6504 } 6505 6506 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6507 struct btrfs_root *root) 6508 { 6509 struct btrfs_fs_info *fs_info = root->fs_info; 6510 struct btrfs_block_group_cache *block_group, *tmp; 6511 struct list_head *deleted_bgs; 6512 struct extent_io_tree *unpin; 6513 u64 start; 6514 u64 end; 6515 int ret; 6516 6517 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6518 unpin = &fs_info->freed_extents[1]; 6519 else 6520 unpin = &fs_info->freed_extents[0]; 6521 6522 while (!trans->aborted) { 6523 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6524 ret = find_first_extent_bit(unpin, 0, &start, &end, 6525 EXTENT_DIRTY, NULL); 6526 if (ret) { 6527 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6528 break; 6529 } 6530 6531 if (btrfs_test_opt(root, DISCARD)) 6532 ret = btrfs_discard_extent(root, start, 6533 end + 1 - start, NULL); 6534 6535 clear_extent_dirty(unpin, start, end); 6536 unpin_extent_range(root, start, end, true); 6537 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6538 cond_resched(); 6539 } 6540 6541 /* 6542 * Transaction is finished. We don't need the lock anymore. We 6543 * do need to clean up the block groups in case of a transaction 6544 * abort. 6545 */ 6546 deleted_bgs = &trans->transaction->deleted_bgs; 6547 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6548 u64 trimmed = 0; 6549 6550 ret = -EROFS; 6551 if (!trans->aborted) 6552 ret = btrfs_discard_extent(root, 6553 block_group->key.objectid, 6554 block_group->key.offset, 6555 &trimmed); 6556 6557 list_del_init(&block_group->bg_list); 6558 btrfs_put_block_group_trimming(block_group); 6559 btrfs_put_block_group(block_group); 6560 6561 if (ret) { 6562 const char *errstr = btrfs_decode_error(ret); 6563 btrfs_warn(fs_info, 6564 "Discard failed while removing blockgroup: errno=%d %s\n", 6565 ret, errstr); 6566 } 6567 } 6568 6569 return 0; 6570 } 6571 6572 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6573 u64 owner, u64 root_objectid) 6574 { 6575 struct btrfs_space_info *space_info; 6576 u64 flags; 6577 6578 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6579 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6580 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6581 else 6582 flags = BTRFS_BLOCK_GROUP_METADATA; 6583 } else { 6584 flags = BTRFS_BLOCK_GROUP_DATA; 6585 } 6586 6587 space_info = __find_space_info(fs_info, flags); 6588 BUG_ON(!space_info); /* Logic bug */ 6589 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6590 } 6591 6592 6593 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6594 struct btrfs_root *root, 6595 struct btrfs_delayed_ref_node *node, u64 parent, 6596 u64 root_objectid, u64 owner_objectid, 6597 u64 owner_offset, int refs_to_drop, 6598 struct btrfs_delayed_extent_op *extent_op) 6599 { 6600 struct btrfs_key key; 6601 struct btrfs_path *path; 6602 struct btrfs_fs_info *info = root->fs_info; 6603 struct btrfs_root *extent_root = info->extent_root; 6604 struct extent_buffer *leaf; 6605 struct btrfs_extent_item *ei; 6606 struct btrfs_extent_inline_ref *iref; 6607 int ret; 6608 int is_data; 6609 int extent_slot = 0; 6610 int found_extent = 0; 6611 int num_to_del = 1; 6612 u32 item_size; 6613 u64 refs; 6614 u64 bytenr = node->bytenr; 6615 u64 num_bytes = node->num_bytes; 6616 int last_ref = 0; 6617 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6618 SKINNY_METADATA); 6619 6620 path = btrfs_alloc_path(); 6621 if (!path) 6622 return -ENOMEM; 6623 6624 path->reada = READA_FORWARD; 6625 path->leave_spinning = 1; 6626 6627 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6628 BUG_ON(!is_data && refs_to_drop != 1); 6629 6630 if (is_data) 6631 skinny_metadata = 0; 6632 6633 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6634 bytenr, num_bytes, parent, 6635 root_objectid, owner_objectid, 6636 owner_offset); 6637 if (ret == 0) { 6638 extent_slot = path->slots[0]; 6639 while (extent_slot >= 0) { 6640 btrfs_item_key_to_cpu(path->nodes[0], &key, 6641 extent_slot); 6642 if (key.objectid != bytenr) 6643 break; 6644 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6645 key.offset == num_bytes) { 6646 found_extent = 1; 6647 break; 6648 } 6649 if (key.type == BTRFS_METADATA_ITEM_KEY && 6650 key.offset == owner_objectid) { 6651 found_extent = 1; 6652 break; 6653 } 6654 if (path->slots[0] - extent_slot > 5) 6655 break; 6656 extent_slot--; 6657 } 6658 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6659 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6660 if (found_extent && item_size < sizeof(*ei)) 6661 found_extent = 0; 6662 #endif 6663 if (!found_extent) { 6664 BUG_ON(iref); 6665 ret = remove_extent_backref(trans, extent_root, path, 6666 NULL, refs_to_drop, 6667 is_data, &last_ref); 6668 if (ret) { 6669 btrfs_abort_transaction(trans, extent_root, ret); 6670 goto out; 6671 } 6672 btrfs_release_path(path); 6673 path->leave_spinning = 1; 6674 6675 key.objectid = bytenr; 6676 key.type = BTRFS_EXTENT_ITEM_KEY; 6677 key.offset = num_bytes; 6678 6679 if (!is_data && skinny_metadata) { 6680 key.type = BTRFS_METADATA_ITEM_KEY; 6681 key.offset = owner_objectid; 6682 } 6683 6684 ret = btrfs_search_slot(trans, extent_root, 6685 &key, path, -1, 1); 6686 if (ret > 0 && skinny_metadata && path->slots[0]) { 6687 /* 6688 * Couldn't find our skinny metadata item, 6689 * see if we have ye olde extent item. 6690 */ 6691 path->slots[0]--; 6692 btrfs_item_key_to_cpu(path->nodes[0], &key, 6693 path->slots[0]); 6694 if (key.objectid == bytenr && 6695 key.type == BTRFS_EXTENT_ITEM_KEY && 6696 key.offset == num_bytes) 6697 ret = 0; 6698 } 6699 6700 if (ret > 0 && skinny_metadata) { 6701 skinny_metadata = false; 6702 key.objectid = bytenr; 6703 key.type = BTRFS_EXTENT_ITEM_KEY; 6704 key.offset = num_bytes; 6705 btrfs_release_path(path); 6706 ret = btrfs_search_slot(trans, extent_root, 6707 &key, path, -1, 1); 6708 } 6709 6710 if (ret) { 6711 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6712 ret, bytenr); 6713 if (ret > 0) 6714 btrfs_print_leaf(extent_root, 6715 path->nodes[0]); 6716 } 6717 if (ret < 0) { 6718 btrfs_abort_transaction(trans, extent_root, ret); 6719 goto out; 6720 } 6721 extent_slot = path->slots[0]; 6722 } 6723 } else if (WARN_ON(ret == -ENOENT)) { 6724 btrfs_print_leaf(extent_root, path->nodes[0]); 6725 btrfs_err(info, 6726 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6727 bytenr, parent, root_objectid, owner_objectid, 6728 owner_offset); 6729 btrfs_abort_transaction(trans, extent_root, ret); 6730 goto out; 6731 } else { 6732 btrfs_abort_transaction(trans, extent_root, ret); 6733 goto out; 6734 } 6735 6736 leaf = path->nodes[0]; 6737 item_size = btrfs_item_size_nr(leaf, extent_slot); 6738 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6739 if (item_size < sizeof(*ei)) { 6740 BUG_ON(found_extent || extent_slot != path->slots[0]); 6741 ret = convert_extent_item_v0(trans, extent_root, path, 6742 owner_objectid, 0); 6743 if (ret < 0) { 6744 btrfs_abort_transaction(trans, extent_root, ret); 6745 goto out; 6746 } 6747 6748 btrfs_release_path(path); 6749 path->leave_spinning = 1; 6750 6751 key.objectid = bytenr; 6752 key.type = BTRFS_EXTENT_ITEM_KEY; 6753 key.offset = num_bytes; 6754 6755 ret = btrfs_search_slot(trans, extent_root, &key, path, 6756 -1, 1); 6757 if (ret) { 6758 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6759 ret, bytenr); 6760 btrfs_print_leaf(extent_root, path->nodes[0]); 6761 } 6762 if (ret < 0) { 6763 btrfs_abort_transaction(trans, extent_root, ret); 6764 goto out; 6765 } 6766 6767 extent_slot = path->slots[0]; 6768 leaf = path->nodes[0]; 6769 item_size = btrfs_item_size_nr(leaf, extent_slot); 6770 } 6771 #endif 6772 BUG_ON(item_size < sizeof(*ei)); 6773 ei = btrfs_item_ptr(leaf, extent_slot, 6774 struct btrfs_extent_item); 6775 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6776 key.type == BTRFS_EXTENT_ITEM_KEY) { 6777 struct btrfs_tree_block_info *bi; 6778 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6779 bi = (struct btrfs_tree_block_info *)(ei + 1); 6780 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6781 } 6782 6783 refs = btrfs_extent_refs(leaf, ei); 6784 if (refs < refs_to_drop) { 6785 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6786 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6787 ret = -EINVAL; 6788 btrfs_abort_transaction(trans, extent_root, ret); 6789 goto out; 6790 } 6791 refs -= refs_to_drop; 6792 6793 if (refs > 0) { 6794 if (extent_op) 6795 __run_delayed_extent_op(extent_op, leaf, ei); 6796 /* 6797 * In the case of inline back ref, reference count will 6798 * be updated by remove_extent_backref 6799 */ 6800 if (iref) { 6801 BUG_ON(!found_extent); 6802 } else { 6803 btrfs_set_extent_refs(leaf, ei, refs); 6804 btrfs_mark_buffer_dirty(leaf); 6805 } 6806 if (found_extent) { 6807 ret = remove_extent_backref(trans, extent_root, path, 6808 iref, refs_to_drop, 6809 is_data, &last_ref); 6810 if (ret) { 6811 btrfs_abort_transaction(trans, extent_root, ret); 6812 goto out; 6813 } 6814 } 6815 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6816 root_objectid); 6817 } else { 6818 if (found_extent) { 6819 BUG_ON(is_data && refs_to_drop != 6820 extent_data_ref_count(path, iref)); 6821 if (iref) { 6822 BUG_ON(path->slots[0] != extent_slot); 6823 } else { 6824 BUG_ON(path->slots[0] != extent_slot + 1); 6825 path->slots[0] = extent_slot; 6826 num_to_del = 2; 6827 } 6828 } 6829 6830 last_ref = 1; 6831 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6832 num_to_del); 6833 if (ret) { 6834 btrfs_abort_transaction(trans, extent_root, ret); 6835 goto out; 6836 } 6837 btrfs_release_path(path); 6838 6839 if (is_data) { 6840 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6841 if (ret) { 6842 btrfs_abort_transaction(trans, extent_root, ret); 6843 goto out; 6844 } 6845 } 6846 6847 ret = add_to_free_space_tree(trans, root->fs_info, bytenr, 6848 num_bytes); 6849 if (ret) { 6850 btrfs_abort_transaction(trans, extent_root, ret); 6851 goto out; 6852 } 6853 6854 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6855 if (ret) { 6856 btrfs_abort_transaction(trans, extent_root, ret); 6857 goto out; 6858 } 6859 } 6860 btrfs_release_path(path); 6861 6862 out: 6863 btrfs_free_path(path); 6864 return ret; 6865 } 6866 6867 /* 6868 * when we free an block, it is possible (and likely) that we free the last 6869 * delayed ref for that extent as well. This searches the delayed ref tree for 6870 * a given extent, and if there are no other delayed refs to be processed, it 6871 * removes it from the tree. 6872 */ 6873 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6874 struct btrfs_root *root, u64 bytenr) 6875 { 6876 struct btrfs_delayed_ref_head *head; 6877 struct btrfs_delayed_ref_root *delayed_refs; 6878 int ret = 0; 6879 6880 delayed_refs = &trans->transaction->delayed_refs; 6881 spin_lock(&delayed_refs->lock); 6882 head = btrfs_find_delayed_ref_head(trans, bytenr); 6883 if (!head) 6884 goto out_delayed_unlock; 6885 6886 spin_lock(&head->lock); 6887 if (!list_empty(&head->ref_list)) 6888 goto out; 6889 6890 if (head->extent_op) { 6891 if (!head->must_insert_reserved) 6892 goto out; 6893 btrfs_free_delayed_extent_op(head->extent_op); 6894 head->extent_op = NULL; 6895 } 6896 6897 /* 6898 * waiting for the lock here would deadlock. If someone else has it 6899 * locked they are already in the process of dropping it anyway 6900 */ 6901 if (!mutex_trylock(&head->mutex)) 6902 goto out; 6903 6904 /* 6905 * at this point we have a head with no other entries. Go 6906 * ahead and process it. 6907 */ 6908 head->node.in_tree = 0; 6909 rb_erase(&head->href_node, &delayed_refs->href_root); 6910 6911 atomic_dec(&delayed_refs->num_entries); 6912 6913 /* 6914 * we don't take a ref on the node because we're removing it from the 6915 * tree, so we just steal the ref the tree was holding. 6916 */ 6917 delayed_refs->num_heads--; 6918 if (head->processing == 0) 6919 delayed_refs->num_heads_ready--; 6920 head->processing = 0; 6921 spin_unlock(&head->lock); 6922 spin_unlock(&delayed_refs->lock); 6923 6924 BUG_ON(head->extent_op); 6925 if (head->must_insert_reserved) 6926 ret = 1; 6927 6928 mutex_unlock(&head->mutex); 6929 btrfs_put_delayed_ref(&head->node); 6930 return ret; 6931 out: 6932 spin_unlock(&head->lock); 6933 6934 out_delayed_unlock: 6935 spin_unlock(&delayed_refs->lock); 6936 return 0; 6937 } 6938 6939 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6940 struct btrfs_root *root, 6941 struct extent_buffer *buf, 6942 u64 parent, int last_ref) 6943 { 6944 int pin = 1; 6945 int ret; 6946 6947 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6948 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6949 buf->start, buf->len, 6950 parent, root->root_key.objectid, 6951 btrfs_header_level(buf), 6952 BTRFS_DROP_DELAYED_REF, NULL); 6953 BUG_ON(ret); /* -ENOMEM */ 6954 } 6955 6956 if (!last_ref) 6957 return; 6958 6959 if (btrfs_header_generation(buf) == trans->transid) { 6960 struct btrfs_block_group_cache *cache; 6961 6962 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6963 ret = check_ref_cleanup(trans, root, buf->start); 6964 if (!ret) 6965 goto out; 6966 } 6967 6968 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6969 6970 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6971 pin_down_extent(root, cache, buf->start, buf->len, 1); 6972 btrfs_put_block_group(cache); 6973 goto out; 6974 } 6975 6976 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6977 6978 btrfs_add_free_space(cache, buf->start, buf->len); 6979 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6980 btrfs_put_block_group(cache); 6981 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6982 pin = 0; 6983 } 6984 out: 6985 if (pin) 6986 add_pinned_bytes(root->fs_info, buf->len, 6987 btrfs_header_level(buf), 6988 root->root_key.objectid); 6989 6990 /* 6991 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6992 * anymore. 6993 */ 6994 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6995 } 6996 6997 /* Can return -ENOMEM */ 6998 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6999 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7000 u64 owner, u64 offset) 7001 { 7002 int ret; 7003 struct btrfs_fs_info *fs_info = root->fs_info; 7004 7005 if (btrfs_test_is_dummy_root(root)) 7006 return 0; 7007 7008 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 7009 7010 /* 7011 * tree log blocks never actually go into the extent allocation 7012 * tree, just update pinning info and exit early. 7013 */ 7014 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7015 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7016 /* unlocks the pinned mutex */ 7017 btrfs_pin_extent(root, bytenr, num_bytes, 1); 7018 ret = 0; 7019 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7020 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7021 num_bytes, 7022 parent, root_objectid, (int)owner, 7023 BTRFS_DROP_DELAYED_REF, NULL); 7024 } else { 7025 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7026 num_bytes, 7027 parent, root_objectid, owner, 7028 offset, 0, 7029 BTRFS_DROP_DELAYED_REF, NULL); 7030 } 7031 return ret; 7032 } 7033 7034 /* 7035 * when we wait for progress in the block group caching, its because 7036 * our allocation attempt failed at least once. So, we must sleep 7037 * and let some progress happen before we try again. 7038 * 7039 * This function will sleep at least once waiting for new free space to 7040 * show up, and then it will check the block group free space numbers 7041 * for our min num_bytes. Another option is to have it go ahead 7042 * and look in the rbtree for a free extent of a given size, but this 7043 * is a good start. 7044 * 7045 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7046 * any of the information in this block group. 7047 */ 7048 static noinline void 7049 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7050 u64 num_bytes) 7051 { 7052 struct btrfs_caching_control *caching_ctl; 7053 7054 caching_ctl = get_caching_control(cache); 7055 if (!caching_ctl) 7056 return; 7057 7058 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7059 (cache->free_space_ctl->free_space >= num_bytes)); 7060 7061 put_caching_control(caching_ctl); 7062 } 7063 7064 static noinline int 7065 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7066 { 7067 struct btrfs_caching_control *caching_ctl; 7068 int ret = 0; 7069 7070 caching_ctl = get_caching_control(cache); 7071 if (!caching_ctl) 7072 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7073 7074 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7075 if (cache->cached == BTRFS_CACHE_ERROR) 7076 ret = -EIO; 7077 put_caching_control(caching_ctl); 7078 return ret; 7079 } 7080 7081 int __get_raid_index(u64 flags) 7082 { 7083 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7084 return BTRFS_RAID_RAID10; 7085 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7086 return BTRFS_RAID_RAID1; 7087 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7088 return BTRFS_RAID_DUP; 7089 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7090 return BTRFS_RAID_RAID0; 7091 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7092 return BTRFS_RAID_RAID5; 7093 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7094 return BTRFS_RAID_RAID6; 7095 7096 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7097 } 7098 7099 int get_block_group_index(struct btrfs_block_group_cache *cache) 7100 { 7101 return __get_raid_index(cache->flags); 7102 } 7103 7104 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7105 [BTRFS_RAID_RAID10] = "raid10", 7106 [BTRFS_RAID_RAID1] = "raid1", 7107 [BTRFS_RAID_DUP] = "dup", 7108 [BTRFS_RAID_RAID0] = "raid0", 7109 [BTRFS_RAID_SINGLE] = "single", 7110 [BTRFS_RAID_RAID5] = "raid5", 7111 [BTRFS_RAID_RAID6] = "raid6", 7112 }; 7113 7114 static const char *get_raid_name(enum btrfs_raid_types type) 7115 { 7116 if (type >= BTRFS_NR_RAID_TYPES) 7117 return NULL; 7118 7119 return btrfs_raid_type_names[type]; 7120 } 7121 7122 enum btrfs_loop_type { 7123 LOOP_CACHING_NOWAIT = 0, 7124 LOOP_CACHING_WAIT = 1, 7125 LOOP_ALLOC_CHUNK = 2, 7126 LOOP_NO_EMPTY_SIZE = 3, 7127 }; 7128 7129 static inline void 7130 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7131 int delalloc) 7132 { 7133 if (delalloc) 7134 down_read(&cache->data_rwsem); 7135 } 7136 7137 static inline void 7138 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7139 int delalloc) 7140 { 7141 btrfs_get_block_group(cache); 7142 if (delalloc) 7143 down_read(&cache->data_rwsem); 7144 } 7145 7146 static struct btrfs_block_group_cache * 7147 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7148 struct btrfs_free_cluster *cluster, 7149 int delalloc) 7150 { 7151 struct btrfs_block_group_cache *used_bg = NULL; 7152 7153 spin_lock(&cluster->refill_lock); 7154 while (1) { 7155 used_bg = cluster->block_group; 7156 if (!used_bg) 7157 return NULL; 7158 7159 if (used_bg == block_group) 7160 return used_bg; 7161 7162 btrfs_get_block_group(used_bg); 7163 7164 if (!delalloc) 7165 return used_bg; 7166 7167 if (down_read_trylock(&used_bg->data_rwsem)) 7168 return used_bg; 7169 7170 spin_unlock(&cluster->refill_lock); 7171 7172 down_read(&used_bg->data_rwsem); 7173 7174 spin_lock(&cluster->refill_lock); 7175 if (used_bg == cluster->block_group) 7176 return used_bg; 7177 7178 up_read(&used_bg->data_rwsem); 7179 btrfs_put_block_group(used_bg); 7180 } 7181 } 7182 7183 static inline void 7184 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7185 int delalloc) 7186 { 7187 if (delalloc) 7188 up_read(&cache->data_rwsem); 7189 btrfs_put_block_group(cache); 7190 } 7191 7192 /* 7193 * walks the btree of allocated extents and find a hole of a given size. 7194 * The key ins is changed to record the hole: 7195 * ins->objectid == start position 7196 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7197 * ins->offset == the size of the hole. 7198 * Any available blocks before search_start are skipped. 7199 * 7200 * If there is no suitable free space, we will record the max size of 7201 * the free space extent currently. 7202 */ 7203 static noinline int find_free_extent(struct btrfs_root *orig_root, 7204 u64 num_bytes, u64 empty_size, 7205 u64 hint_byte, struct btrfs_key *ins, 7206 u64 flags, int delalloc) 7207 { 7208 int ret = 0; 7209 struct btrfs_root *root = orig_root->fs_info->extent_root; 7210 struct btrfs_free_cluster *last_ptr = NULL; 7211 struct btrfs_block_group_cache *block_group = NULL; 7212 u64 search_start = 0; 7213 u64 max_extent_size = 0; 7214 u64 empty_cluster = 0; 7215 struct btrfs_space_info *space_info; 7216 int loop = 0; 7217 int index = __get_raid_index(flags); 7218 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 7219 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 7220 bool failed_cluster_refill = false; 7221 bool failed_alloc = false; 7222 bool use_cluster = true; 7223 bool have_caching_bg = false; 7224 bool orig_have_caching_bg = false; 7225 bool full_search = false; 7226 7227 WARN_ON(num_bytes < root->sectorsize); 7228 ins->type = BTRFS_EXTENT_ITEM_KEY; 7229 ins->objectid = 0; 7230 ins->offset = 0; 7231 7232 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 7233 7234 space_info = __find_space_info(root->fs_info, flags); 7235 if (!space_info) { 7236 btrfs_err(root->fs_info, "No space info for %llu", flags); 7237 return -ENOSPC; 7238 } 7239 7240 /* 7241 * If our free space is heavily fragmented we may not be able to make 7242 * big contiguous allocations, so instead of doing the expensive search 7243 * for free space, simply return ENOSPC with our max_extent_size so we 7244 * can go ahead and search for a more manageable chunk. 7245 * 7246 * If our max_extent_size is large enough for our allocation simply 7247 * disable clustering since we will likely not be able to find enough 7248 * space to create a cluster and induce latency trying. 7249 */ 7250 if (unlikely(space_info->max_extent_size)) { 7251 spin_lock(&space_info->lock); 7252 if (space_info->max_extent_size && 7253 num_bytes > space_info->max_extent_size) { 7254 ins->offset = space_info->max_extent_size; 7255 spin_unlock(&space_info->lock); 7256 return -ENOSPC; 7257 } else if (space_info->max_extent_size) { 7258 use_cluster = false; 7259 } 7260 spin_unlock(&space_info->lock); 7261 } 7262 7263 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster); 7264 if (last_ptr) { 7265 spin_lock(&last_ptr->lock); 7266 if (last_ptr->block_group) 7267 hint_byte = last_ptr->window_start; 7268 if (last_ptr->fragmented) { 7269 /* 7270 * We still set window_start so we can keep track of the 7271 * last place we found an allocation to try and save 7272 * some time. 7273 */ 7274 hint_byte = last_ptr->window_start; 7275 use_cluster = false; 7276 } 7277 spin_unlock(&last_ptr->lock); 7278 } 7279 7280 search_start = max(search_start, first_logical_byte(root, 0)); 7281 search_start = max(search_start, hint_byte); 7282 if (search_start == hint_byte) { 7283 block_group = btrfs_lookup_block_group(root->fs_info, 7284 search_start); 7285 /* 7286 * we don't want to use the block group if it doesn't match our 7287 * allocation bits, or if its not cached. 7288 * 7289 * However if we are re-searching with an ideal block group 7290 * picked out then we don't care that the block group is cached. 7291 */ 7292 if (block_group && block_group_bits(block_group, flags) && 7293 block_group->cached != BTRFS_CACHE_NO) { 7294 down_read(&space_info->groups_sem); 7295 if (list_empty(&block_group->list) || 7296 block_group->ro) { 7297 /* 7298 * someone is removing this block group, 7299 * we can't jump into the have_block_group 7300 * target because our list pointers are not 7301 * valid 7302 */ 7303 btrfs_put_block_group(block_group); 7304 up_read(&space_info->groups_sem); 7305 } else { 7306 index = get_block_group_index(block_group); 7307 btrfs_lock_block_group(block_group, delalloc); 7308 goto have_block_group; 7309 } 7310 } else if (block_group) { 7311 btrfs_put_block_group(block_group); 7312 } 7313 } 7314 search: 7315 have_caching_bg = false; 7316 if (index == 0 || index == __get_raid_index(flags)) 7317 full_search = true; 7318 down_read(&space_info->groups_sem); 7319 list_for_each_entry(block_group, &space_info->block_groups[index], 7320 list) { 7321 u64 offset; 7322 int cached; 7323 7324 btrfs_grab_block_group(block_group, delalloc); 7325 search_start = block_group->key.objectid; 7326 7327 /* 7328 * this can happen if we end up cycling through all the 7329 * raid types, but we want to make sure we only allocate 7330 * for the proper type. 7331 */ 7332 if (!block_group_bits(block_group, flags)) { 7333 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7334 BTRFS_BLOCK_GROUP_RAID1 | 7335 BTRFS_BLOCK_GROUP_RAID5 | 7336 BTRFS_BLOCK_GROUP_RAID6 | 7337 BTRFS_BLOCK_GROUP_RAID10; 7338 7339 /* 7340 * if they asked for extra copies and this block group 7341 * doesn't provide them, bail. This does allow us to 7342 * fill raid0 from raid1. 7343 */ 7344 if ((flags & extra) && !(block_group->flags & extra)) 7345 goto loop; 7346 } 7347 7348 have_block_group: 7349 cached = block_group_cache_done(block_group); 7350 if (unlikely(!cached)) { 7351 have_caching_bg = true; 7352 ret = cache_block_group(block_group, 0); 7353 BUG_ON(ret < 0); 7354 ret = 0; 7355 } 7356 7357 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7358 goto loop; 7359 if (unlikely(block_group->ro)) 7360 goto loop; 7361 7362 /* 7363 * Ok we want to try and use the cluster allocator, so 7364 * lets look there 7365 */ 7366 if (last_ptr && use_cluster) { 7367 struct btrfs_block_group_cache *used_block_group; 7368 unsigned long aligned_cluster; 7369 /* 7370 * the refill lock keeps out other 7371 * people trying to start a new cluster 7372 */ 7373 used_block_group = btrfs_lock_cluster(block_group, 7374 last_ptr, 7375 delalloc); 7376 if (!used_block_group) 7377 goto refill_cluster; 7378 7379 if (used_block_group != block_group && 7380 (used_block_group->ro || 7381 !block_group_bits(used_block_group, flags))) 7382 goto release_cluster; 7383 7384 offset = btrfs_alloc_from_cluster(used_block_group, 7385 last_ptr, 7386 num_bytes, 7387 used_block_group->key.objectid, 7388 &max_extent_size); 7389 if (offset) { 7390 /* we have a block, we're done */ 7391 spin_unlock(&last_ptr->refill_lock); 7392 trace_btrfs_reserve_extent_cluster(root, 7393 used_block_group, 7394 search_start, num_bytes); 7395 if (used_block_group != block_group) { 7396 btrfs_release_block_group(block_group, 7397 delalloc); 7398 block_group = used_block_group; 7399 } 7400 goto checks; 7401 } 7402 7403 WARN_ON(last_ptr->block_group != used_block_group); 7404 release_cluster: 7405 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7406 * set up a new clusters, so lets just skip it 7407 * and let the allocator find whatever block 7408 * it can find. If we reach this point, we 7409 * will have tried the cluster allocator 7410 * plenty of times and not have found 7411 * anything, so we are likely way too 7412 * fragmented for the clustering stuff to find 7413 * anything. 7414 * 7415 * However, if the cluster is taken from the 7416 * current block group, release the cluster 7417 * first, so that we stand a better chance of 7418 * succeeding in the unclustered 7419 * allocation. */ 7420 if (loop >= LOOP_NO_EMPTY_SIZE && 7421 used_block_group != block_group) { 7422 spin_unlock(&last_ptr->refill_lock); 7423 btrfs_release_block_group(used_block_group, 7424 delalloc); 7425 goto unclustered_alloc; 7426 } 7427 7428 /* 7429 * this cluster didn't work out, free it and 7430 * start over 7431 */ 7432 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7433 7434 if (used_block_group != block_group) 7435 btrfs_release_block_group(used_block_group, 7436 delalloc); 7437 refill_cluster: 7438 if (loop >= LOOP_NO_EMPTY_SIZE) { 7439 spin_unlock(&last_ptr->refill_lock); 7440 goto unclustered_alloc; 7441 } 7442 7443 aligned_cluster = max_t(unsigned long, 7444 empty_cluster + empty_size, 7445 block_group->full_stripe_len); 7446 7447 /* allocate a cluster in this block group */ 7448 ret = btrfs_find_space_cluster(root, block_group, 7449 last_ptr, search_start, 7450 num_bytes, 7451 aligned_cluster); 7452 if (ret == 0) { 7453 /* 7454 * now pull our allocation out of this 7455 * cluster 7456 */ 7457 offset = btrfs_alloc_from_cluster(block_group, 7458 last_ptr, 7459 num_bytes, 7460 search_start, 7461 &max_extent_size); 7462 if (offset) { 7463 /* we found one, proceed */ 7464 spin_unlock(&last_ptr->refill_lock); 7465 trace_btrfs_reserve_extent_cluster(root, 7466 block_group, search_start, 7467 num_bytes); 7468 goto checks; 7469 } 7470 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7471 && !failed_cluster_refill) { 7472 spin_unlock(&last_ptr->refill_lock); 7473 7474 failed_cluster_refill = true; 7475 wait_block_group_cache_progress(block_group, 7476 num_bytes + empty_cluster + empty_size); 7477 goto have_block_group; 7478 } 7479 7480 /* 7481 * at this point we either didn't find a cluster 7482 * or we weren't able to allocate a block from our 7483 * cluster. Free the cluster we've been trying 7484 * to use, and go to the next block group 7485 */ 7486 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7487 spin_unlock(&last_ptr->refill_lock); 7488 goto loop; 7489 } 7490 7491 unclustered_alloc: 7492 /* 7493 * We are doing an unclustered alloc, set the fragmented flag so 7494 * we don't bother trying to setup a cluster again until we get 7495 * more space. 7496 */ 7497 if (unlikely(last_ptr)) { 7498 spin_lock(&last_ptr->lock); 7499 last_ptr->fragmented = 1; 7500 spin_unlock(&last_ptr->lock); 7501 } 7502 spin_lock(&block_group->free_space_ctl->tree_lock); 7503 if (cached && 7504 block_group->free_space_ctl->free_space < 7505 num_bytes + empty_cluster + empty_size) { 7506 if (block_group->free_space_ctl->free_space > 7507 max_extent_size) 7508 max_extent_size = 7509 block_group->free_space_ctl->free_space; 7510 spin_unlock(&block_group->free_space_ctl->tree_lock); 7511 goto loop; 7512 } 7513 spin_unlock(&block_group->free_space_ctl->tree_lock); 7514 7515 offset = btrfs_find_space_for_alloc(block_group, search_start, 7516 num_bytes, empty_size, 7517 &max_extent_size); 7518 /* 7519 * If we didn't find a chunk, and we haven't failed on this 7520 * block group before, and this block group is in the middle of 7521 * caching and we are ok with waiting, then go ahead and wait 7522 * for progress to be made, and set failed_alloc to true. 7523 * 7524 * If failed_alloc is true then we've already waited on this 7525 * block group once and should move on to the next block group. 7526 */ 7527 if (!offset && !failed_alloc && !cached && 7528 loop > LOOP_CACHING_NOWAIT) { 7529 wait_block_group_cache_progress(block_group, 7530 num_bytes + empty_size); 7531 failed_alloc = true; 7532 goto have_block_group; 7533 } else if (!offset) { 7534 goto loop; 7535 } 7536 checks: 7537 search_start = ALIGN(offset, root->stripesize); 7538 7539 /* move on to the next group */ 7540 if (search_start + num_bytes > 7541 block_group->key.objectid + block_group->key.offset) { 7542 btrfs_add_free_space(block_group, offset, num_bytes); 7543 goto loop; 7544 } 7545 7546 if (offset < search_start) 7547 btrfs_add_free_space(block_group, offset, 7548 search_start - offset); 7549 BUG_ON(offset > search_start); 7550 7551 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7552 alloc_type, delalloc); 7553 if (ret == -EAGAIN) { 7554 btrfs_add_free_space(block_group, offset, num_bytes); 7555 goto loop; 7556 } 7557 btrfs_inc_block_group_reservations(block_group); 7558 7559 /* we are all good, lets return */ 7560 ins->objectid = search_start; 7561 ins->offset = num_bytes; 7562 7563 trace_btrfs_reserve_extent(orig_root, block_group, 7564 search_start, num_bytes); 7565 btrfs_release_block_group(block_group, delalloc); 7566 break; 7567 loop: 7568 failed_cluster_refill = false; 7569 failed_alloc = false; 7570 BUG_ON(index != get_block_group_index(block_group)); 7571 btrfs_release_block_group(block_group, delalloc); 7572 } 7573 up_read(&space_info->groups_sem); 7574 7575 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7576 && !orig_have_caching_bg) 7577 orig_have_caching_bg = true; 7578 7579 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7580 goto search; 7581 7582 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7583 goto search; 7584 7585 /* 7586 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7587 * caching kthreads as we move along 7588 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7589 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7590 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7591 * again 7592 */ 7593 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7594 index = 0; 7595 if (loop == LOOP_CACHING_NOWAIT) { 7596 /* 7597 * We want to skip the LOOP_CACHING_WAIT step if we 7598 * don't have any uncached bgs and we've already done a 7599 * full search through. 7600 */ 7601 if (orig_have_caching_bg || !full_search) 7602 loop = LOOP_CACHING_WAIT; 7603 else 7604 loop = LOOP_ALLOC_CHUNK; 7605 } else { 7606 loop++; 7607 } 7608 7609 if (loop == LOOP_ALLOC_CHUNK) { 7610 struct btrfs_trans_handle *trans; 7611 int exist = 0; 7612 7613 trans = current->journal_info; 7614 if (trans) 7615 exist = 1; 7616 else 7617 trans = btrfs_join_transaction(root); 7618 7619 if (IS_ERR(trans)) { 7620 ret = PTR_ERR(trans); 7621 goto out; 7622 } 7623 7624 ret = do_chunk_alloc(trans, root, flags, 7625 CHUNK_ALLOC_FORCE); 7626 7627 /* 7628 * If we can't allocate a new chunk we've already looped 7629 * through at least once, move on to the NO_EMPTY_SIZE 7630 * case. 7631 */ 7632 if (ret == -ENOSPC) 7633 loop = LOOP_NO_EMPTY_SIZE; 7634 7635 /* 7636 * Do not bail out on ENOSPC since we 7637 * can do more things. 7638 */ 7639 if (ret < 0 && ret != -ENOSPC) 7640 btrfs_abort_transaction(trans, 7641 root, ret); 7642 else 7643 ret = 0; 7644 if (!exist) 7645 btrfs_end_transaction(trans, root); 7646 if (ret) 7647 goto out; 7648 } 7649 7650 if (loop == LOOP_NO_EMPTY_SIZE) { 7651 /* 7652 * Don't loop again if we already have no empty_size and 7653 * no empty_cluster. 7654 */ 7655 if (empty_size == 0 && 7656 empty_cluster == 0) { 7657 ret = -ENOSPC; 7658 goto out; 7659 } 7660 empty_size = 0; 7661 empty_cluster = 0; 7662 } 7663 7664 goto search; 7665 } else if (!ins->objectid) { 7666 ret = -ENOSPC; 7667 } else if (ins->objectid) { 7668 if (!use_cluster && last_ptr) { 7669 spin_lock(&last_ptr->lock); 7670 last_ptr->window_start = ins->objectid; 7671 spin_unlock(&last_ptr->lock); 7672 } 7673 ret = 0; 7674 } 7675 out: 7676 if (ret == -ENOSPC) { 7677 spin_lock(&space_info->lock); 7678 space_info->max_extent_size = max_extent_size; 7679 spin_unlock(&space_info->lock); 7680 ins->offset = max_extent_size; 7681 } 7682 return ret; 7683 } 7684 7685 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7686 int dump_block_groups) 7687 { 7688 struct btrfs_block_group_cache *cache; 7689 int index = 0; 7690 7691 spin_lock(&info->lock); 7692 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7693 info->flags, 7694 info->total_bytes - info->bytes_used - info->bytes_pinned - 7695 info->bytes_reserved - info->bytes_readonly, 7696 (info->full) ? "" : "not "); 7697 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7698 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7699 info->total_bytes, info->bytes_used, info->bytes_pinned, 7700 info->bytes_reserved, info->bytes_may_use, 7701 info->bytes_readonly); 7702 spin_unlock(&info->lock); 7703 7704 if (!dump_block_groups) 7705 return; 7706 7707 down_read(&info->groups_sem); 7708 again: 7709 list_for_each_entry(cache, &info->block_groups[index], list) { 7710 spin_lock(&cache->lock); 7711 printk(KERN_INFO "BTRFS: " 7712 "block group %llu has %llu bytes, " 7713 "%llu used %llu pinned %llu reserved %s\n", 7714 cache->key.objectid, cache->key.offset, 7715 btrfs_block_group_used(&cache->item), cache->pinned, 7716 cache->reserved, cache->ro ? "[readonly]" : ""); 7717 btrfs_dump_free_space(cache, bytes); 7718 spin_unlock(&cache->lock); 7719 } 7720 if (++index < BTRFS_NR_RAID_TYPES) 7721 goto again; 7722 up_read(&info->groups_sem); 7723 } 7724 7725 int btrfs_reserve_extent(struct btrfs_root *root, 7726 u64 num_bytes, u64 min_alloc_size, 7727 u64 empty_size, u64 hint_byte, 7728 struct btrfs_key *ins, int is_data, int delalloc) 7729 { 7730 bool final_tried = num_bytes == min_alloc_size; 7731 u64 flags; 7732 int ret; 7733 7734 flags = btrfs_get_alloc_profile(root, is_data); 7735 again: 7736 WARN_ON(num_bytes < root->sectorsize); 7737 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7738 flags, delalloc); 7739 if (!ret && !is_data) { 7740 btrfs_dec_block_group_reservations(root->fs_info, 7741 ins->objectid); 7742 } else if (ret == -ENOSPC) { 7743 if (!final_tried && ins->offset) { 7744 num_bytes = min(num_bytes >> 1, ins->offset); 7745 num_bytes = round_down(num_bytes, root->sectorsize); 7746 num_bytes = max(num_bytes, min_alloc_size); 7747 if (num_bytes == min_alloc_size) 7748 final_tried = true; 7749 goto again; 7750 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7751 struct btrfs_space_info *sinfo; 7752 7753 sinfo = __find_space_info(root->fs_info, flags); 7754 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7755 flags, num_bytes); 7756 if (sinfo) 7757 dump_space_info(sinfo, num_bytes, 1); 7758 } 7759 } 7760 7761 return ret; 7762 } 7763 7764 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7765 u64 start, u64 len, 7766 int pin, int delalloc) 7767 { 7768 struct btrfs_block_group_cache *cache; 7769 int ret = 0; 7770 7771 cache = btrfs_lookup_block_group(root->fs_info, start); 7772 if (!cache) { 7773 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7774 start); 7775 return -ENOSPC; 7776 } 7777 7778 if (pin) 7779 pin_down_extent(root, cache, start, len, 1); 7780 else { 7781 if (btrfs_test_opt(root, DISCARD)) 7782 ret = btrfs_discard_extent(root, start, len, NULL); 7783 btrfs_add_free_space(cache, start, len); 7784 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7785 } 7786 7787 btrfs_put_block_group(cache); 7788 7789 trace_btrfs_reserved_extent_free(root, start, len); 7790 7791 return ret; 7792 } 7793 7794 int btrfs_free_reserved_extent(struct btrfs_root *root, 7795 u64 start, u64 len, int delalloc) 7796 { 7797 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7798 } 7799 7800 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7801 u64 start, u64 len) 7802 { 7803 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7804 } 7805 7806 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7807 struct btrfs_root *root, 7808 u64 parent, u64 root_objectid, 7809 u64 flags, u64 owner, u64 offset, 7810 struct btrfs_key *ins, int ref_mod) 7811 { 7812 int ret; 7813 struct btrfs_fs_info *fs_info = root->fs_info; 7814 struct btrfs_extent_item *extent_item; 7815 struct btrfs_extent_inline_ref *iref; 7816 struct btrfs_path *path; 7817 struct extent_buffer *leaf; 7818 int type; 7819 u32 size; 7820 7821 if (parent > 0) 7822 type = BTRFS_SHARED_DATA_REF_KEY; 7823 else 7824 type = BTRFS_EXTENT_DATA_REF_KEY; 7825 7826 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7827 7828 path = btrfs_alloc_path(); 7829 if (!path) 7830 return -ENOMEM; 7831 7832 path->leave_spinning = 1; 7833 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7834 ins, size); 7835 if (ret) { 7836 btrfs_free_path(path); 7837 return ret; 7838 } 7839 7840 leaf = path->nodes[0]; 7841 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7842 struct btrfs_extent_item); 7843 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7844 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7845 btrfs_set_extent_flags(leaf, extent_item, 7846 flags | BTRFS_EXTENT_FLAG_DATA); 7847 7848 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7849 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7850 if (parent > 0) { 7851 struct btrfs_shared_data_ref *ref; 7852 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7853 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7854 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7855 } else { 7856 struct btrfs_extent_data_ref *ref; 7857 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7858 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7859 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7860 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7861 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7862 } 7863 7864 btrfs_mark_buffer_dirty(path->nodes[0]); 7865 btrfs_free_path(path); 7866 7867 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 7868 ins->offset); 7869 if (ret) 7870 return ret; 7871 7872 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7873 if (ret) { /* -ENOENT, logic error */ 7874 btrfs_err(fs_info, "update block group failed for %llu %llu", 7875 ins->objectid, ins->offset); 7876 BUG(); 7877 } 7878 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7879 return ret; 7880 } 7881 7882 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7883 struct btrfs_root *root, 7884 u64 parent, u64 root_objectid, 7885 u64 flags, struct btrfs_disk_key *key, 7886 int level, struct btrfs_key *ins) 7887 { 7888 int ret; 7889 struct btrfs_fs_info *fs_info = root->fs_info; 7890 struct btrfs_extent_item *extent_item; 7891 struct btrfs_tree_block_info *block_info; 7892 struct btrfs_extent_inline_ref *iref; 7893 struct btrfs_path *path; 7894 struct extent_buffer *leaf; 7895 u32 size = sizeof(*extent_item) + sizeof(*iref); 7896 u64 num_bytes = ins->offset; 7897 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7898 SKINNY_METADATA); 7899 7900 if (!skinny_metadata) 7901 size += sizeof(*block_info); 7902 7903 path = btrfs_alloc_path(); 7904 if (!path) { 7905 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7906 root->nodesize); 7907 return -ENOMEM; 7908 } 7909 7910 path->leave_spinning = 1; 7911 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7912 ins, size); 7913 if (ret) { 7914 btrfs_free_path(path); 7915 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7916 root->nodesize); 7917 return ret; 7918 } 7919 7920 leaf = path->nodes[0]; 7921 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7922 struct btrfs_extent_item); 7923 btrfs_set_extent_refs(leaf, extent_item, 1); 7924 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7925 btrfs_set_extent_flags(leaf, extent_item, 7926 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7927 7928 if (skinny_metadata) { 7929 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7930 num_bytes = root->nodesize; 7931 } else { 7932 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7933 btrfs_set_tree_block_key(leaf, block_info, key); 7934 btrfs_set_tree_block_level(leaf, block_info, level); 7935 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7936 } 7937 7938 if (parent > 0) { 7939 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7940 btrfs_set_extent_inline_ref_type(leaf, iref, 7941 BTRFS_SHARED_BLOCK_REF_KEY); 7942 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7943 } else { 7944 btrfs_set_extent_inline_ref_type(leaf, iref, 7945 BTRFS_TREE_BLOCK_REF_KEY); 7946 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7947 } 7948 7949 btrfs_mark_buffer_dirty(leaf); 7950 btrfs_free_path(path); 7951 7952 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 7953 num_bytes); 7954 if (ret) 7955 return ret; 7956 7957 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7958 1); 7959 if (ret) { /* -ENOENT, logic error */ 7960 btrfs_err(fs_info, "update block group failed for %llu %llu", 7961 ins->objectid, ins->offset); 7962 BUG(); 7963 } 7964 7965 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7966 return ret; 7967 } 7968 7969 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7970 struct btrfs_root *root, 7971 u64 root_objectid, u64 owner, 7972 u64 offset, u64 ram_bytes, 7973 struct btrfs_key *ins) 7974 { 7975 int ret; 7976 7977 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7978 7979 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7980 ins->offset, 0, 7981 root_objectid, owner, offset, 7982 ram_bytes, BTRFS_ADD_DELAYED_EXTENT, 7983 NULL); 7984 return ret; 7985 } 7986 7987 /* 7988 * this is used by the tree logging recovery code. It records that 7989 * an extent has been allocated and makes sure to clear the free 7990 * space cache bits as well 7991 */ 7992 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7993 struct btrfs_root *root, 7994 u64 root_objectid, u64 owner, u64 offset, 7995 struct btrfs_key *ins) 7996 { 7997 int ret; 7998 struct btrfs_block_group_cache *block_group; 7999 8000 /* 8001 * Mixed block groups will exclude before processing the log so we only 8002 * need to do the exclude dance if this fs isn't mixed. 8003 */ 8004 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 8005 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 8006 if (ret) 8007 return ret; 8008 } 8009 8010 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 8011 if (!block_group) 8012 return -EINVAL; 8013 8014 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 8015 RESERVE_ALLOC_NO_ACCOUNT, 0); 8016 BUG_ON(ret); /* logic error */ 8017 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 8018 0, owner, offset, ins, 1); 8019 btrfs_put_block_group(block_group); 8020 return ret; 8021 } 8022 8023 static struct extent_buffer * 8024 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8025 u64 bytenr, int level) 8026 { 8027 struct extent_buffer *buf; 8028 8029 buf = btrfs_find_create_tree_block(root, bytenr); 8030 if (IS_ERR(buf)) 8031 return buf; 8032 8033 btrfs_set_header_generation(buf, trans->transid); 8034 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8035 btrfs_tree_lock(buf); 8036 clean_tree_block(trans, root->fs_info, buf); 8037 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8038 8039 btrfs_set_lock_blocking(buf); 8040 set_extent_buffer_uptodate(buf); 8041 8042 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8043 buf->log_index = root->log_transid % 2; 8044 /* 8045 * we allow two log transactions at a time, use different 8046 * EXENT bit to differentiate dirty pages. 8047 */ 8048 if (buf->log_index == 0) 8049 set_extent_dirty(&root->dirty_log_pages, buf->start, 8050 buf->start + buf->len - 1, GFP_NOFS); 8051 else 8052 set_extent_new(&root->dirty_log_pages, buf->start, 8053 buf->start + buf->len - 1); 8054 } else { 8055 buf->log_index = -1; 8056 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8057 buf->start + buf->len - 1, GFP_NOFS); 8058 } 8059 trans->dirty = true; 8060 /* this returns a buffer locked for blocking */ 8061 return buf; 8062 } 8063 8064 static struct btrfs_block_rsv * 8065 use_block_rsv(struct btrfs_trans_handle *trans, 8066 struct btrfs_root *root, u32 blocksize) 8067 { 8068 struct btrfs_block_rsv *block_rsv; 8069 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 8070 int ret; 8071 bool global_updated = false; 8072 8073 block_rsv = get_block_rsv(trans, root); 8074 8075 if (unlikely(block_rsv->size == 0)) 8076 goto try_reserve; 8077 again: 8078 ret = block_rsv_use_bytes(block_rsv, blocksize); 8079 if (!ret) 8080 return block_rsv; 8081 8082 if (block_rsv->failfast) 8083 return ERR_PTR(ret); 8084 8085 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8086 global_updated = true; 8087 update_global_block_rsv(root->fs_info); 8088 goto again; 8089 } 8090 8091 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 8092 static DEFINE_RATELIMIT_STATE(_rs, 8093 DEFAULT_RATELIMIT_INTERVAL * 10, 8094 /*DEFAULT_RATELIMIT_BURST*/ 1); 8095 if (__ratelimit(&_rs)) 8096 WARN(1, KERN_DEBUG 8097 "BTRFS: block rsv returned %d\n", ret); 8098 } 8099 try_reserve: 8100 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8101 BTRFS_RESERVE_NO_FLUSH); 8102 if (!ret) 8103 return block_rsv; 8104 /* 8105 * If we couldn't reserve metadata bytes try and use some from 8106 * the global reserve if its space type is the same as the global 8107 * reservation. 8108 */ 8109 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8110 block_rsv->space_info == global_rsv->space_info) { 8111 ret = block_rsv_use_bytes(global_rsv, blocksize); 8112 if (!ret) 8113 return global_rsv; 8114 } 8115 return ERR_PTR(ret); 8116 } 8117 8118 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8119 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8120 { 8121 block_rsv_add_bytes(block_rsv, blocksize, 0); 8122 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8123 } 8124 8125 /* 8126 * finds a free extent and does all the dirty work required for allocation 8127 * returns the tree buffer or an ERR_PTR on error. 8128 */ 8129 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8130 struct btrfs_root *root, 8131 u64 parent, u64 root_objectid, 8132 struct btrfs_disk_key *key, int level, 8133 u64 hint, u64 empty_size) 8134 { 8135 struct btrfs_key ins; 8136 struct btrfs_block_rsv *block_rsv; 8137 struct extent_buffer *buf; 8138 struct btrfs_delayed_extent_op *extent_op; 8139 u64 flags = 0; 8140 int ret; 8141 u32 blocksize = root->nodesize; 8142 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 8143 SKINNY_METADATA); 8144 8145 if (btrfs_test_is_dummy_root(root)) { 8146 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8147 level); 8148 if (!IS_ERR(buf)) 8149 root->alloc_bytenr += blocksize; 8150 return buf; 8151 } 8152 8153 block_rsv = use_block_rsv(trans, root, blocksize); 8154 if (IS_ERR(block_rsv)) 8155 return ERR_CAST(block_rsv); 8156 8157 ret = btrfs_reserve_extent(root, blocksize, blocksize, 8158 empty_size, hint, &ins, 0, 0); 8159 if (ret) 8160 goto out_unuse; 8161 8162 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8163 if (IS_ERR(buf)) { 8164 ret = PTR_ERR(buf); 8165 goto out_free_reserved; 8166 } 8167 8168 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8169 if (parent == 0) 8170 parent = ins.objectid; 8171 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8172 } else 8173 BUG_ON(parent > 0); 8174 8175 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8176 extent_op = btrfs_alloc_delayed_extent_op(); 8177 if (!extent_op) { 8178 ret = -ENOMEM; 8179 goto out_free_buf; 8180 } 8181 if (key) 8182 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8183 else 8184 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8185 extent_op->flags_to_set = flags; 8186 extent_op->update_key = skinny_metadata ? false : true; 8187 extent_op->update_flags = true; 8188 extent_op->is_data = false; 8189 extent_op->level = level; 8190 8191 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 8192 ins.objectid, ins.offset, 8193 parent, root_objectid, level, 8194 BTRFS_ADD_DELAYED_EXTENT, 8195 extent_op); 8196 if (ret) 8197 goto out_free_delayed; 8198 } 8199 return buf; 8200 8201 out_free_delayed: 8202 btrfs_free_delayed_extent_op(extent_op); 8203 out_free_buf: 8204 free_extent_buffer(buf); 8205 out_free_reserved: 8206 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 8207 out_unuse: 8208 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 8209 return ERR_PTR(ret); 8210 } 8211 8212 struct walk_control { 8213 u64 refs[BTRFS_MAX_LEVEL]; 8214 u64 flags[BTRFS_MAX_LEVEL]; 8215 struct btrfs_key update_progress; 8216 int stage; 8217 int level; 8218 int shared_level; 8219 int update_ref; 8220 int keep_locks; 8221 int reada_slot; 8222 int reada_count; 8223 int for_reloc; 8224 }; 8225 8226 #define DROP_REFERENCE 1 8227 #define UPDATE_BACKREF 2 8228 8229 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8230 struct btrfs_root *root, 8231 struct walk_control *wc, 8232 struct btrfs_path *path) 8233 { 8234 u64 bytenr; 8235 u64 generation; 8236 u64 refs; 8237 u64 flags; 8238 u32 nritems; 8239 u32 blocksize; 8240 struct btrfs_key key; 8241 struct extent_buffer *eb; 8242 int ret; 8243 int slot; 8244 int nread = 0; 8245 8246 if (path->slots[wc->level] < wc->reada_slot) { 8247 wc->reada_count = wc->reada_count * 2 / 3; 8248 wc->reada_count = max(wc->reada_count, 2); 8249 } else { 8250 wc->reada_count = wc->reada_count * 3 / 2; 8251 wc->reada_count = min_t(int, wc->reada_count, 8252 BTRFS_NODEPTRS_PER_BLOCK(root)); 8253 } 8254 8255 eb = path->nodes[wc->level]; 8256 nritems = btrfs_header_nritems(eb); 8257 blocksize = root->nodesize; 8258 8259 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8260 if (nread >= wc->reada_count) 8261 break; 8262 8263 cond_resched(); 8264 bytenr = btrfs_node_blockptr(eb, slot); 8265 generation = btrfs_node_ptr_generation(eb, slot); 8266 8267 if (slot == path->slots[wc->level]) 8268 goto reada; 8269 8270 if (wc->stage == UPDATE_BACKREF && 8271 generation <= root->root_key.offset) 8272 continue; 8273 8274 /* We don't lock the tree block, it's OK to be racy here */ 8275 ret = btrfs_lookup_extent_info(trans, root, bytenr, 8276 wc->level - 1, 1, &refs, 8277 &flags); 8278 /* We don't care about errors in readahead. */ 8279 if (ret < 0) 8280 continue; 8281 BUG_ON(refs == 0); 8282 8283 if (wc->stage == DROP_REFERENCE) { 8284 if (refs == 1) 8285 goto reada; 8286 8287 if (wc->level == 1 && 8288 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8289 continue; 8290 if (!wc->update_ref || 8291 generation <= root->root_key.offset) 8292 continue; 8293 btrfs_node_key_to_cpu(eb, &key, slot); 8294 ret = btrfs_comp_cpu_keys(&key, 8295 &wc->update_progress); 8296 if (ret < 0) 8297 continue; 8298 } else { 8299 if (wc->level == 1 && 8300 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8301 continue; 8302 } 8303 reada: 8304 readahead_tree_block(root, bytenr); 8305 nread++; 8306 } 8307 wc->reada_slot = slot; 8308 } 8309 8310 /* 8311 * These may not be seen by the usual inc/dec ref code so we have to 8312 * add them here. 8313 */ 8314 static int record_one_subtree_extent(struct btrfs_trans_handle *trans, 8315 struct btrfs_root *root, u64 bytenr, 8316 u64 num_bytes) 8317 { 8318 struct btrfs_qgroup_extent_record *qrecord; 8319 struct btrfs_delayed_ref_root *delayed_refs; 8320 8321 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS); 8322 if (!qrecord) 8323 return -ENOMEM; 8324 8325 qrecord->bytenr = bytenr; 8326 qrecord->num_bytes = num_bytes; 8327 qrecord->old_roots = NULL; 8328 8329 delayed_refs = &trans->transaction->delayed_refs; 8330 spin_lock(&delayed_refs->lock); 8331 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord)) 8332 kfree(qrecord); 8333 spin_unlock(&delayed_refs->lock); 8334 8335 return 0; 8336 } 8337 8338 static int account_leaf_items(struct btrfs_trans_handle *trans, 8339 struct btrfs_root *root, 8340 struct extent_buffer *eb) 8341 { 8342 int nr = btrfs_header_nritems(eb); 8343 int i, extent_type, ret; 8344 struct btrfs_key key; 8345 struct btrfs_file_extent_item *fi; 8346 u64 bytenr, num_bytes; 8347 8348 /* We can be called directly from walk_up_proc() */ 8349 if (!root->fs_info->quota_enabled) 8350 return 0; 8351 8352 for (i = 0; i < nr; i++) { 8353 btrfs_item_key_to_cpu(eb, &key, i); 8354 8355 if (key.type != BTRFS_EXTENT_DATA_KEY) 8356 continue; 8357 8358 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 8359 /* filter out non qgroup-accountable extents */ 8360 extent_type = btrfs_file_extent_type(eb, fi); 8361 8362 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 8363 continue; 8364 8365 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 8366 if (!bytenr) 8367 continue; 8368 8369 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 8370 8371 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes); 8372 if (ret) 8373 return ret; 8374 } 8375 return 0; 8376 } 8377 8378 /* 8379 * Walk up the tree from the bottom, freeing leaves and any interior 8380 * nodes which have had all slots visited. If a node (leaf or 8381 * interior) is freed, the node above it will have it's slot 8382 * incremented. The root node will never be freed. 8383 * 8384 * At the end of this function, we should have a path which has all 8385 * slots incremented to the next position for a search. If we need to 8386 * read a new node it will be NULL and the node above it will have the 8387 * correct slot selected for a later read. 8388 * 8389 * If we increment the root nodes slot counter past the number of 8390 * elements, 1 is returned to signal completion of the search. 8391 */ 8392 static int adjust_slots_upwards(struct btrfs_root *root, 8393 struct btrfs_path *path, int root_level) 8394 { 8395 int level = 0; 8396 int nr, slot; 8397 struct extent_buffer *eb; 8398 8399 if (root_level == 0) 8400 return 1; 8401 8402 while (level <= root_level) { 8403 eb = path->nodes[level]; 8404 nr = btrfs_header_nritems(eb); 8405 path->slots[level]++; 8406 slot = path->slots[level]; 8407 if (slot >= nr || level == 0) { 8408 /* 8409 * Don't free the root - we will detect this 8410 * condition after our loop and return a 8411 * positive value for caller to stop walking the tree. 8412 */ 8413 if (level != root_level) { 8414 btrfs_tree_unlock_rw(eb, path->locks[level]); 8415 path->locks[level] = 0; 8416 8417 free_extent_buffer(eb); 8418 path->nodes[level] = NULL; 8419 path->slots[level] = 0; 8420 } 8421 } else { 8422 /* 8423 * We have a valid slot to walk back down 8424 * from. Stop here so caller can process these 8425 * new nodes. 8426 */ 8427 break; 8428 } 8429 8430 level++; 8431 } 8432 8433 eb = path->nodes[root_level]; 8434 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 8435 return 1; 8436 8437 return 0; 8438 } 8439 8440 /* 8441 * root_eb is the subtree root and is locked before this function is called. 8442 */ 8443 static int account_shared_subtree(struct btrfs_trans_handle *trans, 8444 struct btrfs_root *root, 8445 struct extent_buffer *root_eb, 8446 u64 root_gen, 8447 int root_level) 8448 { 8449 int ret = 0; 8450 int level; 8451 struct extent_buffer *eb = root_eb; 8452 struct btrfs_path *path = NULL; 8453 8454 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 8455 BUG_ON(root_eb == NULL); 8456 8457 if (!root->fs_info->quota_enabled) 8458 return 0; 8459 8460 if (!extent_buffer_uptodate(root_eb)) { 8461 ret = btrfs_read_buffer(root_eb, root_gen); 8462 if (ret) 8463 goto out; 8464 } 8465 8466 if (root_level == 0) { 8467 ret = account_leaf_items(trans, root, root_eb); 8468 goto out; 8469 } 8470 8471 path = btrfs_alloc_path(); 8472 if (!path) 8473 return -ENOMEM; 8474 8475 /* 8476 * Walk down the tree. Missing extent blocks are filled in as 8477 * we go. Metadata is accounted every time we read a new 8478 * extent block. 8479 * 8480 * When we reach a leaf, we account for file extent items in it, 8481 * walk back up the tree (adjusting slot pointers as we go) 8482 * and restart the search process. 8483 */ 8484 extent_buffer_get(root_eb); /* For path */ 8485 path->nodes[root_level] = root_eb; 8486 path->slots[root_level] = 0; 8487 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 8488 walk_down: 8489 level = root_level; 8490 while (level >= 0) { 8491 if (path->nodes[level] == NULL) { 8492 int parent_slot; 8493 u64 child_gen; 8494 u64 child_bytenr; 8495 8496 /* We need to get child blockptr/gen from 8497 * parent before we can read it. */ 8498 eb = path->nodes[level + 1]; 8499 parent_slot = path->slots[level + 1]; 8500 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 8501 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 8502 8503 eb = read_tree_block(root, child_bytenr, child_gen); 8504 if (IS_ERR(eb)) { 8505 ret = PTR_ERR(eb); 8506 goto out; 8507 } else if (!extent_buffer_uptodate(eb)) { 8508 free_extent_buffer(eb); 8509 ret = -EIO; 8510 goto out; 8511 } 8512 8513 path->nodes[level] = eb; 8514 path->slots[level] = 0; 8515 8516 btrfs_tree_read_lock(eb); 8517 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 8518 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 8519 8520 ret = record_one_subtree_extent(trans, root, child_bytenr, 8521 root->nodesize); 8522 if (ret) 8523 goto out; 8524 } 8525 8526 if (level == 0) { 8527 ret = account_leaf_items(trans, root, path->nodes[level]); 8528 if (ret) 8529 goto out; 8530 8531 /* Nonzero return here means we completed our search */ 8532 ret = adjust_slots_upwards(root, path, root_level); 8533 if (ret) 8534 break; 8535 8536 /* Restart search with new slots */ 8537 goto walk_down; 8538 } 8539 8540 level--; 8541 } 8542 8543 ret = 0; 8544 out: 8545 btrfs_free_path(path); 8546 8547 return ret; 8548 } 8549 8550 /* 8551 * helper to process tree block while walking down the tree. 8552 * 8553 * when wc->stage == UPDATE_BACKREF, this function updates 8554 * back refs for pointers in the block. 8555 * 8556 * NOTE: return value 1 means we should stop walking down. 8557 */ 8558 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8559 struct btrfs_root *root, 8560 struct btrfs_path *path, 8561 struct walk_control *wc, int lookup_info) 8562 { 8563 int level = wc->level; 8564 struct extent_buffer *eb = path->nodes[level]; 8565 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8566 int ret; 8567 8568 if (wc->stage == UPDATE_BACKREF && 8569 btrfs_header_owner(eb) != root->root_key.objectid) 8570 return 1; 8571 8572 /* 8573 * when reference count of tree block is 1, it won't increase 8574 * again. once full backref flag is set, we never clear it. 8575 */ 8576 if (lookup_info && 8577 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8578 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8579 BUG_ON(!path->locks[level]); 8580 ret = btrfs_lookup_extent_info(trans, root, 8581 eb->start, level, 1, 8582 &wc->refs[level], 8583 &wc->flags[level]); 8584 BUG_ON(ret == -ENOMEM); 8585 if (ret) 8586 return ret; 8587 BUG_ON(wc->refs[level] == 0); 8588 } 8589 8590 if (wc->stage == DROP_REFERENCE) { 8591 if (wc->refs[level] > 1) 8592 return 1; 8593 8594 if (path->locks[level] && !wc->keep_locks) { 8595 btrfs_tree_unlock_rw(eb, path->locks[level]); 8596 path->locks[level] = 0; 8597 } 8598 return 0; 8599 } 8600 8601 /* wc->stage == UPDATE_BACKREF */ 8602 if (!(wc->flags[level] & flag)) { 8603 BUG_ON(!path->locks[level]); 8604 ret = btrfs_inc_ref(trans, root, eb, 1); 8605 BUG_ON(ret); /* -ENOMEM */ 8606 ret = btrfs_dec_ref(trans, root, eb, 0); 8607 BUG_ON(ret); /* -ENOMEM */ 8608 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 8609 eb->len, flag, 8610 btrfs_header_level(eb), 0); 8611 BUG_ON(ret); /* -ENOMEM */ 8612 wc->flags[level] |= flag; 8613 } 8614 8615 /* 8616 * the block is shared by multiple trees, so it's not good to 8617 * keep the tree lock 8618 */ 8619 if (path->locks[level] && level > 0) { 8620 btrfs_tree_unlock_rw(eb, path->locks[level]); 8621 path->locks[level] = 0; 8622 } 8623 return 0; 8624 } 8625 8626 /* 8627 * helper to process tree block pointer. 8628 * 8629 * when wc->stage == DROP_REFERENCE, this function checks 8630 * reference count of the block pointed to. if the block 8631 * is shared and we need update back refs for the subtree 8632 * rooted at the block, this function changes wc->stage to 8633 * UPDATE_BACKREF. if the block is shared and there is no 8634 * need to update back, this function drops the reference 8635 * to the block. 8636 * 8637 * NOTE: return value 1 means we should stop walking down. 8638 */ 8639 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8640 struct btrfs_root *root, 8641 struct btrfs_path *path, 8642 struct walk_control *wc, int *lookup_info) 8643 { 8644 u64 bytenr; 8645 u64 generation; 8646 u64 parent; 8647 u32 blocksize; 8648 struct btrfs_key key; 8649 struct extent_buffer *next; 8650 int level = wc->level; 8651 int reada = 0; 8652 int ret = 0; 8653 bool need_account = false; 8654 8655 generation = btrfs_node_ptr_generation(path->nodes[level], 8656 path->slots[level]); 8657 /* 8658 * if the lower level block was created before the snapshot 8659 * was created, we know there is no need to update back refs 8660 * for the subtree 8661 */ 8662 if (wc->stage == UPDATE_BACKREF && 8663 generation <= root->root_key.offset) { 8664 *lookup_info = 1; 8665 return 1; 8666 } 8667 8668 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8669 blocksize = root->nodesize; 8670 8671 next = btrfs_find_tree_block(root->fs_info, bytenr); 8672 if (!next) { 8673 next = btrfs_find_create_tree_block(root, bytenr); 8674 if (IS_ERR(next)) 8675 return PTR_ERR(next); 8676 8677 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8678 level - 1); 8679 reada = 1; 8680 } 8681 btrfs_tree_lock(next); 8682 btrfs_set_lock_blocking(next); 8683 8684 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8685 &wc->refs[level - 1], 8686 &wc->flags[level - 1]); 8687 if (ret < 0) { 8688 btrfs_tree_unlock(next); 8689 return ret; 8690 } 8691 8692 if (unlikely(wc->refs[level - 1] == 0)) { 8693 btrfs_err(root->fs_info, "Missing references."); 8694 BUG(); 8695 } 8696 *lookup_info = 0; 8697 8698 if (wc->stage == DROP_REFERENCE) { 8699 if (wc->refs[level - 1] > 1) { 8700 need_account = true; 8701 if (level == 1 && 8702 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8703 goto skip; 8704 8705 if (!wc->update_ref || 8706 generation <= root->root_key.offset) 8707 goto skip; 8708 8709 btrfs_node_key_to_cpu(path->nodes[level], &key, 8710 path->slots[level]); 8711 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8712 if (ret < 0) 8713 goto skip; 8714 8715 wc->stage = UPDATE_BACKREF; 8716 wc->shared_level = level - 1; 8717 } 8718 } else { 8719 if (level == 1 && 8720 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8721 goto skip; 8722 } 8723 8724 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8725 btrfs_tree_unlock(next); 8726 free_extent_buffer(next); 8727 next = NULL; 8728 *lookup_info = 1; 8729 } 8730 8731 if (!next) { 8732 if (reada && level == 1) 8733 reada_walk_down(trans, root, wc, path); 8734 next = read_tree_block(root, bytenr, generation); 8735 if (IS_ERR(next)) { 8736 return PTR_ERR(next); 8737 } else if (!extent_buffer_uptodate(next)) { 8738 free_extent_buffer(next); 8739 return -EIO; 8740 } 8741 btrfs_tree_lock(next); 8742 btrfs_set_lock_blocking(next); 8743 } 8744 8745 level--; 8746 BUG_ON(level != btrfs_header_level(next)); 8747 path->nodes[level] = next; 8748 path->slots[level] = 0; 8749 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8750 wc->level = level; 8751 if (wc->level == 1) 8752 wc->reada_slot = 0; 8753 return 0; 8754 skip: 8755 wc->refs[level - 1] = 0; 8756 wc->flags[level - 1] = 0; 8757 if (wc->stage == DROP_REFERENCE) { 8758 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8759 parent = path->nodes[level]->start; 8760 } else { 8761 BUG_ON(root->root_key.objectid != 8762 btrfs_header_owner(path->nodes[level])); 8763 parent = 0; 8764 } 8765 8766 if (need_account) { 8767 ret = account_shared_subtree(trans, root, next, 8768 generation, level - 1); 8769 if (ret) { 8770 btrfs_err_rl(root->fs_info, 8771 "Error " 8772 "%d accounting shared subtree. Quota " 8773 "is out of sync, rescan required.", 8774 ret); 8775 } 8776 } 8777 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8778 root->root_key.objectid, level - 1, 0); 8779 BUG_ON(ret); /* -ENOMEM */ 8780 } 8781 btrfs_tree_unlock(next); 8782 free_extent_buffer(next); 8783 *lookup_info = 1; 8784 return 1; 8785 } 8786 8787 /* 8788 * helper to process tree block while walking up the tree. 8789 * 8790 * when wc->stage == DROP_REFERENCE, this function drops 8791 * reference count on the block. 8792 * 8793 * when wc->stage == UPDATE_BACKREF, this function changes 8794 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8795 * to UPDATE_BACKREF previously while processing the block. 8796 * 8797 * NOTE: return value 1 means we should stop walking up. 8798 */ 8799 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8800 struct btrfs_root *root, 8801 struct btrfs_path *path, 8802 struct walk_control *wc) 8803 { 8804 int ret; 8805 int level = wc->level; 8806 struct extent_buffer *eb = path->nodes[level]; 8807 u64 parent = 0; 8808 8809 if (wc->stage == UPDATE_BACKREF) { 8810 BUG_ON(wc->shared_level < level); 8811 if (level < wc->shared_level) 8812 goto out; 8813 8814 ret = find_next_key(path, level + 1, &wc->update_progress); 8815 if (ret > 0) 8816 wc->update_ref = 0; 8817 8818 wc->stage = DROP_REFERENCE; 8819 wc->shared_level = -1; 8820 path->slots[level] = 0; 8821 8822 /* 8823 * check reference count again if the block isn't locked. 8824 * we should start walking down the tree again if reference 8825 * count is one. 8826 */ 8827 if (!path->locks[level]) { 8828 BUG_ON(level == 0); 8829 btrfs_tree_lock(eb); 8830 btrfs_set_lock_blocking(eb); 8831 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8832 8833 ret = btrfs_lookup_extent_info(trans, root, 8834 eb->start, level, 1, 8835 &wc->refs[level], 8836 &wc->flags[level]); 8837 if (ret < 0) { 8838 btrfs_tree_unlock_rw(eb, path->locks[level]); 8839 path->locks[level] = 0; 8840 return ret; 8841 } 8842 BUG_ON(wc->refs[level] == 0); 8843 if (wc->refs[level] == 1) { 8844 btrfs_tree_unlock_rw(eb, path->locks[level]); 8845 path->locks[level] = 0; 8846 return 1; 8847 } 8848 } 8849 } 8850 8851 /* wc->stage == DROP_REFERENCE */ 8852 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8853 8854 if (wc->refs[level] == 1) { 8855 if (level == 0) { 8856 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8857 ret = btrfs_dec_ref(trans, root, eb, 1); 8858 else 8859 ret = btrfs_dec_ref(trans, root, eb, 0); 8860 BUG_ON(ret); /* -ENOMEM */ 8861 ret = account_leaf_items(trans, root, eb); 8862 if (ret) { 8863 btrfs_err_rl(root->fs_info, 8864 "error " 8865 "%d accounting leaf items. Quota " 8866 "is out of sync, rescan required.", 8867 ret); 8868 } 8869 } 8870 /* make block locked assertion in clean_tree_block happy */ 8871 if (!path->locks[level] && 8872 btrfs_header_generation(eb) == trans->transid) { 8873 btrfs_tree_lock(eb); 8874 btrfs_set_lock_blocking(eb); 8875 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8876 } 8877 clean_tree_block(trans, root->fs_info, eb); 8878 } 8879 8880 if (eb == root->node) { 8881 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8882 parent = eb->start; 8883 else 8884 BUG_ON(root->root_key.objectid != 8885 btrfs_header_owner(eb)); 8886 } else { 8887 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8888 parent = path->nodes[level + 1]->start; 8889 else 8890 BUG_ON(root->root_key.objectid != 8891 btrfs_header_owner(path->nodes[level + 1])); 8892 } 8893 8894 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8895 out: 8896 wc->refs[level] = 0; 8897 wc->flags[level] = 0; 8898 return 0; 8899 } 8900 8901 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8902 struct btrfs_root *root, 8903 struct btrfs_path *path, 8904 struct walk_control *wc) 8905 { 8906 int level = wc->level; 8907 int lookup_info = 1; 8908 int ret; 8909 8910 while (level >= 0) { 8911 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8912 if (ret > 0) 8913 break; 8914 8915 if (level == 0) 8916 break; 8917 8918 if (path->slots[level] >= 8919 btrfs_header_nritems(path->nodes[level])) 8920 break; 8921 8922 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8923 if (ret > 0) { 8924 path->slots[level]++; 8925 continue; 8926 } else if (ret < 0) 8927 return ret; 8928 level = wc->level; 8929 } 8930 return 0; 8931 } 8932 8933 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8934 struct btrfs_root *root, 8935 struct btrfs_path *path, 8936 struct walk_control *wc, int max_level) 8937 { 8938 int level = wc->level; 8939 int ret; 8940 8941 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8942 while (level < max_level && path->nodes[level]) { 8943 wc->level = level; 8944 if (path->slots[level] + 1 < 8945 btrfs_header_nritems(path->nodes[level])) { 8946 path->slots[level]++; 8947 return 0; 8948 } else { 8949 ret = walk_up_proc(trans, root, path, wc); 8950 if (ret > 0) 8951 return 0; 8952 8953 if (path->locks[level]) { 8954 btrfs_tree_unlock_rw(path->nodes[level], 8955 path->locks[level]); 8956 path->locks[level] = 0; 8957 } 8958 free_extent_buffer(path->nodes[level]); 8959 path->nodes[level] = NULL; 8960 level++; 8961 } 8962 } 8963 return 1; 8964 } 8965 8966 /* 8967 * drop a subvolume tree. 8968 * 8969 * this function traverses the tree freeing any blocks that only 8970 * referenced by the tree. 8971 * 8972 * when a shared tree block is found. this function decreases its 8973 * reference count by one. if update_ref is true, this function 8974 * also make sure backrefs for the shared block and all lower level 8975 * blocks are properly updated. 8976 * 8977 * If called with for_reloc == 0, may exit early with -EAGAIN 8978 */ 8979 int btrfs_drop_snapshot(struct btrfs_root *root, 8980 struct btrfs_block_rsv *block_rsv, int update_ref, 8981 int for_reloc) 8982 { 8983 struct btrfs_path *path; 8984 struct btrfs_trans_handle *trans; 8985 struct btrfs_root *tree_root = root->fs_info->tree_root; 8986 struct btrfs_root_item *root_item = &root->root_item; 8987 struct walk_control *wc; 8988 struct btrfs_key key; 8989 int err = 0; 8990 int ret; 8991 int level; 8992 bool root_dropped = false; 8993 8994 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8995 8996 path = btrfs_alloc_path(); 8997 if (!path) { 8998 err = -ENOMEM; 8999 goto out; 9000 } 9001 9002 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9003 if (!wc) { 9004 btrfs_free_path(path); 9005 err = -ENOMEM; 9006 goto out; 9007 } 9008 9009 trans = btrfs_start_transaction(tree_root, 0); 9010 if (IS_ERR(trans)) { 9011 err = PTR_ERR(trans); 9012 goto out_free; 9013 } 9014 9015 if (block_rsv) 9016 trans->block_rsv = block_rsv; 9017 9018 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9019 level = btrfs_header_level(root->node); 9020 path->nodes[level] = btrfs_lock_root_node(root); 9021 btrfs_set_lock_blocking(path->nodes[level]); 9022 path->slots[level] = 0; 9023 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9024 memset(&wc->update_progress, 0, 9025 sizeof(wc->update_progress)); 9026 } else { 9027 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9028 memcpy(&wc->update_progress, &key, 9029 sizeof(wc->update_progress)); 9030 9031 level = root_item->drop_level; 9032 BUG_ON(level == 0); 9033 path->lowest_level = level; 9034 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9035 path->lowest_level = 0; 9036 if (ret < 0) { 9037 err = ret; 9038 goto out_end_trans; 9039 } 9040 WARN_ON(ret > 0); 9041 9042 /* 9043 * unlock our path, this is safe because only this 9044 * function is allowed to delete this snapshot 9045 */ 9046 btrfs_unlock_up_safe(path, 0); 9047 9048 level = btrfs_header_level(root->node); 9049 while (1) { 9050 btrfs_tree_lock(path->nodes[level]); 9051 btrfs_set_lock_blocking(path->nodes[level]); 9052 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9053 9054 ret = btrfs_lookup_extent_info(trans, root, 9055 path->nodes[level]->start, 9056 level, 1, &wc->refs[level], 9057 &wc->flags[level]); 9058 if (ret < 0) { 9059 err = ret; 9060 goto out_end_trans; 9061 } 9062 BUG_ON(wc->refs[level] == 0); 9063 9064 if (level == root_item->drop_level) 9065 break; 9066 9067 btrfs_tree_unlock(path->nodes[level]); 9068 path->locks[level] = 0; 9069 WARN_ON(wc->refs[level] != 1); 9070 level--; 9071 } 9072 } 9073 9074 wc->level = level; 9075 wc->shared_level = -1; 9076 wc->stage = DROP_REFERENCE; 9077 wc->update_ref = update_ref; 9078 wc->keep_locks = 0; 9079 wc->for_reloc = for_reloc; 9080 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9081 9082 while (1) { 9083 9084 ret = walk_down_tree(trans, root, path, wc); 9085 if (ret < 0) { 9086 err = ret; 9087 break; 9088 } 9089 9090 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9091 if (ret < 0) { 9092 err = ret; 9093 break; 9094 } 9095 9096 if (ret > 0) { 9097 BUG_ON(wc->stage != DROP_REFERENCE); 9098 break; 9099 } 9100 9101 if (wc->stage == DROP_REFERENCE) { 9102 level = wc->level; 9103 btrfs_node_key(path->nodes[level], 9104 &root_item->drop_progress, 9105 path->slots[level]); 9106 root_item->drop_level = level; 9107 } 9108 9109 BUG_ON(wc->level == 0); 9110 if (btrfs_should_end_transaction(trans, tree_root) || 9111 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 9112 ret = btrfs_update_root(trans, tree_root, 9113 &root->root_key, 9114 root_item); 9115 if (ret) { 9116 btrfs_abort_transaction(trans, tree_root, ret); 9117 err = ret; 9118 goto out_end_trans; 9119 } 9120 9121 btrfs_end_transaction_throttle(trans, tree_root); 9122 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 9123 pr_debug("BTRFS: drop snapshot early exit\n"); 9124 err = -EAGAIN; 9125 goto out_free; 9126 } 9127 9128 trans = btrfs_start_transaction(tree_root, 0); 9129 if (IS_ERR(trans)) { 9130 err = PTR_ERR(trans); 9131 goto out_free; 9132 } 9133 if (block_rsv) 9134 trans->block_rsv = block_rsv; 9135 } 9136 } 9137 btrfs_release_path(path); 9138 if (err) 9139 goto out_end_trans; 9140 9141 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9142 if (ret) { 9143 btrfs_abort_transaction(trans, tree_root, ret); 9144 goto out_end_trans; 9145 } 9146 9147 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9148 ret = btrfs_find_root(tree_root, &root->root_key, path, 9149 NULL, NULL); 9150 if (ret < 0) { 9151 btrfs_abort_transaction(trans, tree_root, ret); 9152 err = ret; 9153 goto out_end_trans; 9154 } else if (ret > 0) { 9155 /* if we fail to delete the orphan item this time 9156 * around, it'll get picked up the next time. 9157 * 9158 * The most common failure here is just -ENOENT. 9159 */ 9160 btrfs_del_orphan_item(trans, tree_root, 9161 root->root_key.objectid); 9162 } 9163 } 9164 9165 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9166 btrfs_add_dropped_root(trans, root); 9167 } else { 9168 free_extent_buffer(root->node); 9169 free_extent_buffer(root->commit_root); 9170 btrfs_put_fs_root(root); 9171 } 9172 root_dropped = true; 9173 out_end_trans: 9174 btrfs_end_transaction_throttle(trans, tree_root); 9175 out_free: 9176 kfree(wc); 9177 btrfs_free_path(path); 9178 out: 9179 /* 9180 * So if we need to stop dropping the snapshot for whatever reason we 9181 * need to make sure to add it back to the dead root list so that we 9182 * keep trying to do the work later. This also cleans up roots if we 9183 * don't have it in the radix (like when we recover after a power fail 9184 * or unmount) so we don't leak memory. 9185 */ 9186 if (!for_reloc && root_dropped == false) 9187 btrfs_add_dead_root(root); 9188 if (err && err != -EAGAIN) 9189 btrfs_handle_fs_error(root->fs_info, err, NULL); 9190 return err; 9191 } 9192 9193 /* 9194 * drop subtree rooted at tree block 'node'. 9195 * 9196 * NOTE: this function will unlock and release tree block 'node' 9197 * only used by relocation code 9198 */ 9199 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9200 struct btrfs_root *root, 9201 struct extent_buffer *node, 9202 struct extent_buffer *parent) 9203 { 9204 struct btrfs_path *path; 9205 struct walk_control *wc; 9206 int level; 9207 int parent_level; 9208 int ret = 0; 9209 int wret; 9210 9211 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9212 9213 path = btrfs_alloc_path(); 9214 if (!path) 9215 return -ENOMEM; 9216 9217 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9218 if (!wc) { 9219 btrfs_free_path(path); 9220 return -ENOMEM; 9221 } 9222 9223 btrfs_assert_tree_locked(parent); 9224 parent_level = btrfs_header_level(parent); 9225 extent_buffer_get(parent); 9226 path->nodes[parent_level] = parent; 9227 path->slots[parent_level] = btrfs_header_nritems(parent); 9228 9229 btrfs_assert_tree_locked(node); 9230 level = btrfs_header_level(node); 9231 path->nodes[level] = node; 9232 path->slots[level] = 0; 9233 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9234 9235 wc->refs[parent_level] = 1; 9236 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9237 wc->level = level; 9238 wc->shared_level = -1; 9239 wc->stage = DROP_REFERENCE; 9240 wc->update_ref = 0; 9241 wc->keep_locks = 1; 9242 wc->for_reloc = 1; 9243 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 9244 9245 while (1) { 9246 wret = walk_down_tree(trans, root, path, wc); 9247 if (wret < 0) { 9248 ret = wret; 9249 break; 9250 } 9251 9252 wret = walk_up_tree(trans, root, path, wc, parent_level); 9253 if (wret < 0) 9254 ret = wret; 9255 if (wret != 0) 9256 break; 9257 } 9258 9259 kfree(wc); 9260 btrfs_free_path(path); 9261 return ret; 9262 } 9263 9264 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 9265 { 9266 u64 num_devices; 9267 u64 stripped; 9268 9269 /* 9270 * if restripe for this chunk_type is on pick target profile and 9271 * return, otherwise do the usual balance 9272 */ 9273 stripped = get_restripe_target(root->fs_info, flags); 9274 if (stripped) 9275 return extended_to_chunk(stripped); 9276 9277 num_devices = root->fs_info->fs_devices->rw_devices; 9278 9279 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9280 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9281 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9282 9283 if (num_devices == 1) { 9284 stripped |= BTRFS_BLOCK_GROUP_DUP; 9285 stripped = flags & ~stripped; 9286 9287 /* turn raid0 into single device chunks */ 9288 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9289 return stripped; 9290 9291 /* turn mirroring into duplication */ 9292 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9293 BTRFS_BLOCK_GROUP_RAID10)) 9294 return stripped | BTRFS_BLOCK_GROUP_DUP; 9295 } else { 9296 /* they already had raid on here, just return */ 9297 if (flags & stripped) 9298 return flags; 9299 9300 stripped |= BTRFS_BLOCK_GROUP_DUP; 9301 stripped = flags & ~stripped; 9302 9303 /* switch duplicated blocks with raid1 */ 9304 if (flags & BTRFS_BLOCK_GROUP_DUP) 9305 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9306 9307 /* this is drive concat, leave it alone */ 9308 } 9309 9310 return flags; 9311 } 9312 9313 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9314 { 9315 struct btrfs_space_info *sinfo = cache->space_info; 9316 u64 num_bytes; 9317 u64 min_allocable_bytes; 9318 int ret = -ENOSPC; 9319 9320 /* 9321 * We need some metadata space and system metadata space for 9322 * allocating chunks in some corner cases until we force to set 9323 * it to be readonly. 9324 */ 9325 if ((sinfo->flags & 9326 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9327 !force) 9328 min_allocable_bytes = SZ_1M; 9329 else 9330 min_allocable_bytes = 0; 9331 9332 spin_lock(&sinfo->lock); 9333 spin_lock(&cache->lock); 9334 9335 if (cache->ro) { 9336 cache->ro++; 9337 ret = 0; 9338 goto out; 9339 } 9340 9341 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9342 cache->bytes_super - btrfs_block_group_used(&cache->item); 9343 9344 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 9345 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 9346 min_allocable_bytes <= sinfo->total_bytes) { 9347 sinfo->bytes_readonly += num_bytes; 9348 cache->ro++; 9349 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9350 ret = 0; 9351 } 9352 out: 9353 spin_unlock(&cache->lock); 9354 spin_unlock(&sinfo->lock); 9355 return ret; 9356 } 9357 9358 int btrfs_inc_block_group_ro(struct btrfs_root *root, 9359 struct btrfs_block_group_cache *cache) 9360 9361 { 9362 struct btrfs_trans_handle *trans; 9363 u64 alloc_flags; 9364 int ret; 9365 9366 again: 9367 trans = btrfs_join_transaction(root); 9368 if (IS_ERR(trans)) 9369 return PTR_ERR(trans); 9370 9371 /* 9372 * we're not allowed to set block groups readonly after the dirty 9373 * block groups cache has started writing. If it already started, 9374 * back off and let this transaction commit 9375 */ 9376 mutex_lock(&root->fs_info->ro_block_group_mutex); 9377 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9378 u64 transid = trans->transid; 9379 9380 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9381 btrfs_end_transaction(trans, root); 9382 9383 ret = btrfs_wait_for_commit(root, transid); 9384 if (ret) 9385 return ret; 9386 goto again; 9387 } 9388 9389 /* 9390 * if we are changing raid levels, try to allocate a corresponding 9391 * block group with the new raid level. 9392 */ 9393 alloc_flags = update_block_group_flags(root, cache->flags); 9394 if (alloc_flags != cache->flags) { 9395 ret = do_chunk_alloc(trans, root, alloc_flags, 9396 CHUNK_ALLOC_FORCE); 9397 /* 9398 * ENOSPC is allowed here, we may have enough space 9399 * already allocated at the new raid level to 9400 * carry on 9401 */ 9402 if (ret == -ENOSPC) 9403 ret = 0; 9404 if (ret < 0) 9405 goto out; 9406 } 9407 9408 ret = inc_block_group_ro(cache, 0); 9409 if (!ret) 9410 goto out; 9411 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 9412 ret = do_chunk_alloc(trans, root, alloc_flags, 9413 CHUNK_ALLOC_FORCE); 9414 if (ret < 0) 9415 goto out; 9416 ret = inc_block_group_ro(cache, 0); 9417 out: 9418 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9419 alloc_flags = update_block_group_flags(root, cache->flags); 9420 lock_chunks(root->fs_info->chunk_root); 9421 check_system_chunk(trans, root, alloc_flags); 9422 unlock_chunks(root->fs_info->chunk_root); 9423 } 9424 mutex_unlock(&root->fs_info->ro_block_group_mutex); 9425 9426 btrfs_end_transaction(trans, root); 9427 return ret; 9428 } 9429 9430 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9431 struct btrfs_root *root, u64 type) 9432 { 9433 u64 alloc_flags = get_alloc_profile(root, type); 9434 return do_chunk_alloc(trans, root, alloc_flags, 9435 CHUNK_ALLOC_FORCE); 9436 } 9437 9438 /* 9439 * helper to account the unused space of all the readonly block group in the 9440 * space_info. takes mirrors into account. 9441 */ 9442 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9443 { 9444 struct btrfs_block_group_cache *block_group; 9445 u64 free_bytes = 0; 9446 int factor; 9447 9448 /* It's df, we don't care if it's racy */ 9449 if (list_empty(&sinfo->ro_bgs)) 9450 return 0; 9451 9452 spin_lock(&sinfo->lock); 9453 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9454 spin_lock(&block_group->lock); 9455 9456 if (!block_group->ro) { 9457 spin_unlock(&block_group->lock); 9458 continue; 9459 } 9460 9461 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9462 BTRFS_BLOCK_GROUP_RAID10 | 9463 BTRFS_BLOCK_GROUP_DUP)) 9464 factor = 2; 9465 else 9466 factor = 1; 9467 9468 free_bytes += (block_group->key.offset - 9469 btrfs_block_group_used(&block_group->item)) * 9470 factor; 9471 9472 spin_unlock(&block_group->lock); 9473 } 9474 spin_unlock(&sinfo->lock); 9475 9476 return free_bytes; 9477 } 9478 9479 void btrfs_dec_block_group_ro(struct btrfs_root *root, 9480 struct btrfs_block_group_cache *cache) 9481 { 9482 struct btrfs_space_info *sinfo = cache->space_info; 9483 u64 num_bytes; 9484 9485 BUG_ON(!cache->ro); 9486 9487 spin_lock(&sinfo->lock); 9488 spin_lock(&cache->lock); 9489 if (!--cache->ro) { 9490 num_bytes = cache->key.offset - cache->reserved - 9491 cache->pinned - cache->bytes_super - 9492 btrfs_block_group_used(&cache->item); 9493 sinfo->bytes_readonly -= num_bytes; 9494 list_del_init(&cache->ro_list); 9495 } 9496 spin_unlock(&cache->lock); 9497 spin_unlock(&sinfo->lock); 9498 } 9499 9500 /* 9501 * checks to see if its even possible to relocate this block group. 9502 * 9503 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9504 * ok to go ahead and try. 9505 */ 9506 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 9507 { 9508 struct btrfs_block_group_cache *block_group; 9509 struct btrfs_space_info *space_info; 9510 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 9511 struct btrfs_device *device; 9512 struct btrfs_trans_handle *trans; 9513 u64 min_free; 9514 u64 dev_min = 1; 9515 u64 dev_nr = 0; 9516 u64 target; 9517 int debug; 9518 int index; 9519 int full = 0; 9520 int ret = 0; 9521 9522 debug = btrfs_test_opt(root, ENOSPC_DEBUG); 9523 9524 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 9525 9526 /* odd, couldn't find the block group, leave it alone */ 9527 if (!block_group) { 9528 if (debug) 9529 btrfs_warn(root->fs_info, 9530 "can't find block group for bytenr %llu", 9531 bytenr); 9532 return -1; 9533 } 9534 9535 min_free = btrfs_block_group_used(&block_group->item); 9536 9537 /* no bytes used, we're good */ 9538 if (!min_free) 9539 goto out; 9540 9541 space_info = block_group->space_info; 9542 spin_lock(&space_info->lock); 9543 9544 full = space_info->full; 9545 9546 /* 9547 * if this is the last block group we have in this space, we can't 9548 * relocate it unless we're able to allocate a new chunk below. 9549 * 9550 * Otherwise, we need to make sure we have room in the space to handle 9551 * all of the extents from this block group. If we can, we're good 9552 */ 9553 if ((space_info->total_bytes != block_group->key.offset) && 9554 (space_info->bytes_used + space_info->bytes_reserved + 9555 space_info->bytes_pinned + space_info->bytes_readonly + 9556 min_free < space_info->total_bytes)) { 9557 spin_unlock(&space_info->lock); 9558 goto out; 9559 } 9560 spin_unlock(&space_info->lock); 9561 9562 /* 9563 * ok we don't have enough space, but maybe we have free space on our 9564 * devices to allocate new chunks for relocation, so loop through our 9565 * alloc devices and guess if we have enough space. if this block 9566 * group is going to be restriped, run checks against the target 9567 * profile instead of the current one. 9568 */ 9569 ret = -1; 9570 9571 /* 9572 * index: 9573 * 0: raid10 9574 * 1: raid1 9575 * 2: dup 9576 * 3: raid0 9577 * 4: single 9578 */ 9579 target = get_restripe_target(root->fs_info, block_group->flags); 9580 if (target) { 9581 index = __get_raid_index(extended_to_chunk(target)); 9582 } else { 9583 /* 9584 * this is just a balance, so if we were marked as full 9585 * we know there is no space for a new chunk 9586 */ 9587 if (full) { 9588 if (debug) 9589 btrfs_warn(root->fs_info, 9590 "no space to alloc new chunk for block group %llu", 9591 block_group->key.objectid); 9592 goto out; 9593 } 9594 9595 index = get_block_group_index(block_group); 9596 } 9597 9598 if (index == BTRFS_RAID_RAID10) { 9599 dev_min = 4; 9600 /* Divide by 2 */ 9601 min_free >>= 1; 9602 } else if (index == BTRFS_RAID_RAID1) { 9603 dev_min = 2; 9604 } else if (index == BTRFS_RAID_DUP) { 9605 /* Multiply by 2 */ 9606 min_free <<= 1; 9607 } else if (index == BTRFS_RAID_RAID0) { 9608 dev_min = fs_devices->rw_devices; 9609 min_free = div64_u64(min_free, dev_min); 9610 } 9611 9612 /* We need to do this so that we can look at pending chunks */ 9613 trans = btrfs_join_transaction(root); 9614 if (IS_ERR(trans)) { 9615 ret = PTR_ERR(trans); 9616 goto out; 9617 } 9618 9619 mutex_lock(&root->fs_info->chunk_mutex); 9620 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9621 u64 dev_offset; 9622 9623 /* 9624 * check to make sure we can actually find a chunk with enough 9625 * space to fit our block group in. 9626 */ 9627 if (device->total_bytes > device->bytes_used + min_free && 9628 !device->is_tgtdev_for_dev_replace) { 9629 ret = find_free_dev_extent(trans, device, min_free, 9630 &dev_offset, NULL); 9631 if (!ret) 9632 dev_nr++; 9633 9634 if (dev_nr >= dev_min) 9635 break; 9636 9637 ret = -1; 9638 } 9639 } 9640 if (debug && ret == -1) 9641 btrfs_warn(root->fs_info, 9642 "no space to allocate a new chunk for block group %llu", 9643 block_group->key.objectid); 9644 mutex_unlock(&root->fs_info->chunk_mutex); 9645 btrfs_end_transaction(trans, root); 9646 out: 9647 btrfs_put_block_group(block_group); 9648 return ret; 9649 } 9650 9651 static int find_first_block_group(struct btrfs_root *root, 9652 struct btrfs_path *path, struct btrfs_key *key) 9653 { 9654 int ret = 0; 9655 struct btrfs_key found_key; 9656 struct extent_buffer *leaf; 9657 int slot; 9658 9659 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9660 if (ret < 0) 9661 goto out; 9662 9663 while (1) { 9664 slot = path->slots[0]; 9665 leaf = path->nodes[0]; 9666 if (slot >= btrfs_header_nritems(leaf)) { 9667 ret = btrfs_next_leaf(root, path); 9668 if (ret == 0) 9669 continue; 9670 if (ret < 0) 9671 goto out; 9672 break; 9673 } 9674 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9675 9676 if (found_key.objectid >= key->objectid && 9677 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9678 ret = 0; 9679 goto out; 9680 } 9681 path->slots[0]++; 9682 } 9683 out: 9684 return ret; 9685 } 9686 9687 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9688 { 9689 struct btrfs_block_group_cache *block_group; 9690 u64 last = 0; 9691 9692 while (1) { 9693 struct inode *inode; 9694 9695 block_group = btrfs_lookup_first_block_group(info, last); 9696 while (block_group) { 9697 spin_lock(&block_group->lock); 9698 if (block_group->iref) 9699 break; 9700 spin_unlock(&block_group->lock); 9701 block_group = next_block_group(info->tree_root, 9702 block_group); 9703 } 9704 if (!block_group) { 9705 if (last == 0) 9706 break; 9707 last = 0; 9708 continue; 9709 } 9710 9711 inode = block_group->inode; 9712 block_group->iref = 0; 9713 block_group->inode = NULL; 9714 spin_unlock(&block_group->lock); 9715 iput(inode); 9716 last = block_group->key.objectid + block_group->key.offset; 9717 btrfs_put_block_group(block_group); 9718 } 9719 } 9720 9721 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9722 { 9723 struct btrfs_block_group_cache *block_group; 9724 struct btrfs_space_info *space_info; 9725 struct btrfs_caching_control *caching_ctl; 9726 struct rb_node *n; 9727 9728 down_write(&info->commit_root_sem); 9729 while (!list_empty(&info->caching_block_groups)) { 9730 caching_ctl = list_entry(info->caching_block_groups.next, 9731 struct btrfs_caching_control, list); 9732 list_del(&caching_ctl->list); 9733 put_caching_control(caching_ctl); 9734 } 9735 up_write(&info->commit_root_sem); 9736 9737 spin_lock(&info->unused_bgs_lock); 9738 while (!list_empty(&info->unused_bgs)) { 9739 block_group = list_first_entry(&info->unused_bgs, 9740 struct btrfs_block_group_cache, 9741 bg_list); 9742 list_del_init(&block_group->bg_list); 9743 btrfs_put_block_group(block_group); 9744 } 9745 spin_unlock(&info->unused_bgs_lock); 9746 9747 spin_lock(&info->block_group_cache_lock); 9748 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9749 block_group = rb_entry(n, struct btrfs_block_group_cache, 9750 cache_node); 9751 rb_erase(&block_group->cache_node, 9752 &info->block_group_cache_tree); 9753 RB_CLEAR_NODE(&block_group->cache_node); 9754 spin_unlock(&info->block_group_cache_lock); 9755 9756 down_write(&block_group->space_info->groups_sem); 9757 list_del(&block_group->list); 9758 up_write(&block_group->space_info->groups_sem); 9759 9760 if (block_group->cached == BTRFS_CACHE_STARTED) 9761 wait_block_group_cache_done(block_group); 9762 9763 /* 9764 * We haven't cached this block group, which means we could 9765 * possibly have excluded extents on this block group. 9766 */ 9767 if (block_group->cached == BTRFS_CACHE_NO || 9768 block_group->cached == BTRFS_CACHE_ERROR) 9769 free_excluded_extents(info->extent_root, block_group); 9770 9771 btrfs_remove_free_space_cache(block_group); 9772 btrfs_put_block_group(block_group); 9773 9774 spin_lock(&info->block_group_cache_lock); 9775 } 9776 spin_unlock(&info->block_group_cache_lock); 9777 9778 /* now that all the block groups are freed, go through and 9779 * free all the space_info structs. This is only called during 9780 * the final stages of unmount, and so we know nobody is 9781 * using them. We call synchronize_rcu() once before we start, 9782 * just to be on the safe side. 9783 */ 9784 synchronize_rcu(); 9785 9786 release_global_block_rsv(info); 9787 9788 while (!list_empty(&info->space_info)) { 9789 int i; 9790 9791 space_info = list_entry(info->space_info.next, 9792 struct btrfs_space_info, 9793 list); 9794 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9795 if (WARN_ON(space_info->bytes_pinned > 0 || 9796 space_info->bytes_reserved > 0 || 9797 space_info->bytes_may_use > 0)) { 9798 dump_space_info(space_info, 0, 0); 9799 } 9800 } 9801 list_del(&space_info->list); 9802 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9803 struct kobject *kobj; 9804 kobj = space_info->block_group_kobjs[i]; 9805 space_info->block_group_kobjs[i] = NULL; 9806 if (kobj) { 9807 kobject_del(kobj); 9808 kobject_put(kobj); 9809 } 9810 } 9811 kobject_del(&space_info->kobj); 9812 kobject_put(&space_info->kobj); 9813 } 9814 return 0; 9815 } 9816 9817 static void __link_block_group(struct btrfs_space_info *space_info, 9818 struct btrfs_block_group_cache *cache) 9819 { 9820 int index = get_block_group_index(cache); 9821 bool first = false; 9822 9823 down_write(&space_info->groups_sem); 9824 if (list_empty(&space_info->block_groups[index])) 9825 first = true; 9826 list_add_tail(&cache->list, &space_info->block_groups[index]); 9827 up_write(&space_info->groups_sem); 9828 9829 if (first) { 9830 struct raid_kobject *rkobj; 9831 int ret; 9832 9833 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9834 if (!rkobj) 9835 goto out_err; 9836 rkobj->raid_type = index; 9837 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9838 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9839 "%s", get_raid_name(index)); 9840 if (ret) { 9841 kobject_put(&rkobj->kobj); 9842 goto out_err; 9843 } 9844 space_info->block_group_kobjs[index] = &rkobj->kobj; 9845 } 9846 9847 return; 9848 out_err: 9849 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9850 } 9851 9852 static struct btrfs_block_group_cache * 9853 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9854 { 9855 struct btrfs_block_group_cache *cache; 9856 9857 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9858 if (!cache) 9859 return NULL; 9860 9861 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9862 GFP_NOFS); 9863 if (!cache->free_space_ctl) { 9864 kfree(cache); 9865 return NULL; 9866 } 9867 9868 cache->key.objectid = start; 9869 cache->key.offset = size; 9870 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9871 9872 cache->sectorsize = root->sectorsize; 9873 cache->fs_info = root->fs_info; 9874 cache->full_stripe_len = btrfs_full_stripe_len(root, 9875 &root->fs_info->mapping_tree, 9876 start); 9877 set_free_space_tree_thresholds(cache); 9878 9879 atomic_set(&cache->count, 1); 9880 spin_lock_init(&cache->lock); 9881 init_rwsem(&cache->data_rwsem); 9882 INIT_LIST_HEAD(&cache->list); 9883 INIT_LIST_HEAD(&cache->cluster_list); 9884 INIT_LIST_HEAD(&cache->bg_list); 9885 INIT_LIST_HEAD(&cache->ro_list); 9886 INIT_LIST_HEAD(&cache->dirty_list); 9887 INIT_LIST_HEAD(&cache->io_list); 9888 btrfs_init_free_space_ctl(cache); 9889 atomic_set(&cache->trimming, 0); 9890 mutex_init(&cache->free_space_lock); 9891 9892 return cache; 9893 } 9894 9895 int btrfs_read_block_groups(struct btrfs_root *root) 9896 { 9897 struct btrfs_path *path; 9898 int ret; 9899 struct btrfs_block_group_cache *cache; 9900 struct btrfs_fs_info *info = root->fs_info; 9901 struct btrfs_space_info *space_info; 9902 struct btrfs_key key; 9903 struct btrfs_key found_key; 9904 struct extent_buffer *leaf; 9905 int need_clear = 0; 9906 u64 cache_gen; 9907 9908 root = info->extent_root; 9909 key.objectid = 0; 9910 key.offset = 0; 9911 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9912 path = btrfs_alloc_path(); 9913 if (!path) 9914 return -ENOMEM; 9915 path->reada = READA_FORWARD; 9916 9917 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9918 if (btrfs_test_opt(root, SPACE_CACHE) && 9919 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9920 need_clear = 1; 9921 if (btrfs_test_opt(root, CLEAR_CACHE)) 9922 need_clear = 1; 9923 9924 while (1) { 9925 ret = find_first_block_group(root, path, &key); 9926 if (ret > 0) 9927 break; 9928 if (ret != 0) 9929 goto error; 9930 9931 leaf = path->nodes[0]; 9932 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9933 9934 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9935 found_key.offset); 9936 if (!cache) { 9937 ret = -ENOMEM; 9938 goto error; 9939 } 9940 9941 if (need_clear) { 9942 /* 9943 * When we mount with old space cache, we need to 9944 * set BTRFS_DC_CLEAR and set dirty flag. 9945 * 9946 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9947 * truncate the old free space cache inode and 9948 * setup a new one. 9949 * b) Setting 'dirty flag' makes sure that we flush 9950 * the new space cache info onto disk. 9951 */ 9952 if (btrfs_test_opt(root, SPACE_CACHE)) 9953 cache->disk_cache_state = BTRFS_DC_CLEAR; 9954 } 9955 9956 read_extent_buffer(leaf, &cache->item, 9957 btrfs_item_ptr_offset(leaf, path->slots[0]), 9958 sizeof(cache->item)); 9959 cache->flags = btrfs_block_group_flags(&cache->item); 9960 9961 key.objectid = found_key.objectid + found_key.offset; 9962 btrfs_release_path(path); 9963 9964 /* 9965 * We need to exclude the super stripes now so that the space 9966 * info has super bytes accounted for, otherwise we'll think 9967 * we have more space than we actually do. 9968 */ 9969 ret = exclude_super_stripes(root, cache); 9970 if (ret) { 9971 /* 9972 * We may have excluded something, so call this just in 9973 * case. 9974 */ 9975 free_excluded_extents(root, cache); 9976 btrfs_put_block_group(cache); 9977 goto error; 9978 } 9979 9980 /* 9981 * check for two cases, either we are full, and therefore 9982 * don't need to bother with the caching work since we won't 9983 * find any space, or we are empty, and we can just add all 9984 * the space in and be done with it. This saves us _alot_ of 9985 * time, particularly in the full case. 9986 */ 9987 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9988 cache->last_byte_to_unpin = (u64)-1; 9989 cache->cached = BTRFS_CACHE_FINISHED; 9990 free_excluded_extents(root, cache); 9991 } else if (btrfs_block_group_used(&cache->item) == 0) { 9992 cache->last_byte_to_unpin = (u64)-1; 9993 cache->cached = BTRFS_CACHE_FINISHED; 9994 add_new_free_space(cache, root->fs_info, 9995 found_key.objectid, 9996 found_key.objectid + 9997 found_key.offset); 9998 free_excluded_extents(root, cache); 9999 } 10000 10001 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10002 if (ret) { 10003 btrfs_remove_free_space_cache(cache); 10004 btrfs_put_block_group(cache); 10005 goto error; 10006 } 10007 10008 ret = update_space_info(info, cache->flags, found_key.offset, 10009 btrfs_block_group_used(&cache->item), 10010 &space_info); 10011 if (ret) { 10012 btrfs_remove_free_space_cache(cache); 10013 spin_lock(&info->block_group_cache_lock); 10014 rb_erase(&cache->cache_node, 10015 &info->block_group_cache_tree); 10016 RB_CLEAR_NODE(&cache->cache_node); 10017 spin_unlock(&info->block_group_cache_lock); 10018 btrfs_put_block_group(cache); 10019 goto error; 10020 } 10021 10022 cache->space_info = space_info; 10023 spin_lock(&cache->space_info->lock); 10024 cache->space_info->bytes_readonly += cache->bytes_super; 10025 spin_unlock(&cache->space_info->lock); 10026 10027 __link_block_group(space_info, cache); 10028 10029 set_avail_alloc_bits(root->fs_info, cache->flags); 10030 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 10031 inc_block_group_ro(cache, 1); 10032 } else if (btrfs_block_group_used(&cache->item) == 0) { 10033 spin_lock(&info->unused_bgs_lock); 10034 /* Should always be true but just in case. */ 10035 if (list_empty(&cache->bg_list)) { 10036 btrfs_get_block_group(cache); 10037 list_add_tail(&cache->bg_list, 10038 &info->unused_bgs); 10039 } 10040 spin_unlock(&info->unused_bgs_lock); 10041 } 10042 } 10043 10044 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 10045 if (!(get_alloc_profile(root, space_info->flags) & 10046 (BTRFS_BLOCK_GROUP_RAID10 | 10047 BTRFS_BLOCK_GROUP_RAID1 | 10048 BTRFS_BLOCK_GROUP_RAID5 | 10049 BTRFS_BLOCK_GROUP_RAID6 | 10050 BTRFS_BLOCK_GROUP_DUP))) 10051 continue; 10052 /* 10053 * avoid allocating from un-mirrored block group if there are 10054 * mirrored block groups. 10055 */ 10056 list_for_each_entry(cache, 10057 &space_info->block_groups[BTRFS_RAID_RAID0], 10058 list) 10059 inc_block_group_ro(cache, 1); 10060 list_for_each_entry(cache, 10061 &space_info->block_groups[BTRFS_RAID_SINGLE], 10062 list) 10063 inc_block_group_ro(cache, 1); 10064 } 10065 10066 init_global_block_rsv(info); 10067 ret = 0; 10068 error: 10069 btrfs_free_path(path); 10070 return ret; 10071 } 10072 10073 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10074 struct btrfs_root *root) 10075 { 10076 struct btrfs_block_group_cache *block_group, *tmp; 10077 struct btrfs_root *extent_root = root->fs_info->extent_root; 10078 struct btrfs_block_group_item item; 10079 struct btrfs_key key; 10080 int ret = 0; 10081 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10082 10083 trans->can_flush_pending_bgs = false; 10084 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10085 if (ret) 10086 goto next; 10087 10088 spin_lock(&block_group->lock); 10089 memcpy(&item, &block_group->item, sizeof(item)); 10090 memcpy(&key, &block_group->key, sizeof(key)); 10091 spin_unlock(&block_group->lock); 10092 10093 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10094 sizeof(item)); 10095 if (ret) 10096 btrfs_abort_transaction(trans, extent_root, ret); 10097 ret = btrfs_finish_chunk_alloc(trans, extent_root, 10098 key.objectid, key.offset); 10099 if (ret) 10100 btrfs_abort_transaction(trans, extent_root, ret); 10101 add_block_group_free_space(trans, root->fs_info, block_group); 10102 /* already aborted the transaction if it failed. */ 10103 next: 10104 list_del_init(&block_group->bg_list); 10105 } 10106 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10107 } 10108 10109 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10110 struct btrfs_root *root, u64 bytes_used, 10111 u64 type, u64 chunk_objectid, u64 chunk_offset, 10112 u64 size) 10113 { 10114 int ret; 10115 struct btrfs_root *extent_root; 10116 struct btrfs_block_group_cache *cache; 10117 10118 extent_root = root->fs_info->extent_root; 10119 10120 btrfs_set_log_full_commit(root->fs_info, trans); 10121 10122 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 10123 if (!cache) 10124 return -ENOMEM; 10125 10126 btrfs_set_block_group_used(&cache->item, bytes_used); 10127 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10128 btrfs_set_block_group_flags(&cache->item, type); 10129 10130 cache->flags = type; 10131 cache->last_byte_to_unpin = (u64)-1; 10132 cache->cached = BTRFS_CACHE_FINISHED; 10133 cache->needs_free_space = 1; 10134 ret = exclude_super_stripes(root, cache); 10135 if (ret) { 10136 /* 10137 * We may have excluded something, so call this just in 10138 * case. 10139 */ 10140 free_excluded_extents(root, cache); 10141 btrfs_put_block_group(cache); 10142 return ret; 10143 } 10144 10145 add_new_free_space(cache, root->fs_info, chunk_offset, 10146 chunk_offset + size); 10147 10148 free_excluded_extents(root, cache); 10149 10150 #ifdef CONFIG_BTRFS_DEBUG 10151 if (btrfs_should_fragment_free_space(root, cache)) { 10152 u64 new_bytes_used = size - bytes_used; 10153 10154 bytes_used += new_bytes_used >> 1; 10155 fragment_free_space(root, cache); 10156 } 10157 #endif 10158 /* 10159 * Call to ensure the corresponding space_info object is created and 10160 * assigned to our block group, but don't update its counters just yet. 10161 * We want our bg to be added to the rbtree with its ->space_info set. 10162 */ 10163 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 10164 &cache->space_info); 10165 if (ret) { 10166 btrfs_remove_free_space_cache(cache); 10167 btrfs_put_block_group(cache); 10168 return ret; 10169 } 10170 10171 ret = btrfs_add_block_group_cache(root->fs_info, cache); 10172 if (ret) { 10173 btrfs_remove_free_space_cache(cache); 10174 btrfs_put_block_group(cache); 10175 return ret; 10176 } 10177 10178 /* 10179 * Now that our block group has its ->space_info set and is inserted in 10180 * the rbtree, update the space info's counters. 10181 */ 10182 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 10183 &cache->space_info); 10184 if (ret) { 10185 btrfs_remove_free_space_cache(cache); 10186 spin_lock(&root->fs_info->block_group_cache_lock); 10187 rb_erase(&cache->cache_node, 10188 &root->fs_info->block_group_cache_tree); 10189 RB_CLEAR_NODE(&cache->cache_node); 10190 spin_unlock(&root->fs_info->block_group_cache_lock); 10191 btrfs_put_block_group(cache); 10192 return ret; 10193 } 10194 update_global_block_rsv(root->fs_info); 10195 10196 spin_lock(&cache->space_info->lock); 10197 cache->space_info->bytes_readonly += cache->bytes_super; 10198 spin_unlock(&cache->space_info->lock); 10199 10200 __link_block_group(cache->space_info, cache); 10201 10202 list_add_tail(&cache->bg_list, &trans->new_bgs); 10203 10204 set_avail_alloc_bits(extent_root->fs_info, type); 10205 10206 return 0; 10207 } 10208 10209 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10210 { 10211 u64 extra_flags = chunk_to_extended(flags) & 10212 BTRFS_EXTENDED_PROFILE_MASK; 10213 10214 write_seqlock(&fs_info->profiles_lock); 10215 if (flags & BTRFS_BLOCK_GROUP_DATA) 10216 fs_info->avail_data_alloc_bits &= ~extra_flags; 10217 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10218 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10219 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10220 fs_info->avail_system_alloc_bits &= ~extra_flags; 10221 write_sequnlock(&fs_info->profiles_lock); 10222 } 10223 10224 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10225 struct btrfs_root *root, u64 group_start, 10226 struct extent_map *em) 10227 { 10228 struct btrfs_path *path; 10229 struct btrfs_block_group_cache *block_group; 10230 struct btrfs_free_cluster *cluster; 10231 struct btrfs_root *tree_root = root->fs_info->tree_root; 10232 struct btrfs_key key; 10233 struct inode *inode; 10234 struct kobject *kobj = NULL; 10235 int ret; 10236 int index; 10237 int factor; 10238 struct btrfs_caching_control *caching_ctl = NULL; 10239 bool remove_em; 10240 10241 root = root->fs_info->extent_root; 10242 10243 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 10244 BUG_ON(!block_group); 10245 BUG_ON(!block_group->ro); 10246 10247 /* 10248 * Free the reserved super bytes from this block group before 10249 * remove it. 10250 */ 10251 free_excluded_extents(root, block_group); 10252 10253 memcpy(&key, &block_group->key, sizeof(key)); 10254 index = get_block_group_index(block_group); 10255 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10256 BTRFS_BLOCK_GROUP_RAID1 | 10257 BTRFS_BLOCK_GROUP_RAID10)) 10258 factor = 2; 10259 else 10260 factor = 1; 10261 10262 /* make sure this block group isn't part of an allocation cluster */ 10263 cluster = &root->fs_info->data_alloc_cluster; 10264 spin_lock(&cluster->refill_lock); 10265 btrfs_return_cluster_to_free_space(block_group, cluster); 10266 spin_unlock(&cluster->refill_lock); 10267 10268 /* 10269 * make sure this block group isn't part of a metadata 10270 * allocation cluster 10271 */ 10272 cluster = &root->fs_info->meta_alloc_cluster; 10273 spin_lock(&cluster->refill_lock); 10274 btrfs_return_cluster_to_free_space(block_group, cluster); 10275 spin_unlock(&cluster->refill_lock); 10276 10277 path = btrfs_alloc_path(); 10278 if (!path) { 10279 ret = -ENOMEM; 10280 goto out; 10281 } 10282 10283 /* 10284 * get the inode first so any iput calls done for the io_list 10285 * aren't the final iput (no unlinks allowed now) 10286 */ 10287 inode = lookup_free_space_inode(tree_root, block_group, path); 10288 10289 mutex_lock(&trans->transaction->cache_write_mutex); 10290 /* 10291 * make sure our free spache cache IO is done before remove the 10292 * free space inode 10293 */ 10294 spin_lock(&trans->transaction->dirty_bgs_lock); 10295 if (!list_empty(&block_group->io_list)) { 10296 list_del_init(&block_group->io_list); 10297 10298 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10299 10300 spin_unlock(&trans->transaction->dirty_bgs_lock); 10301 btrfs_wait_cache_io(root, trans, block_group, 10302 &block_group->io_ctl, path, 10303 block_group->key.objectid); 10304 btrfs_put_block_group(block_group); 10305 spin_lock(&trans->transaction->dirty_bgs_lock); 10306 } 10307 10308 if (!list_empty(&block_group->dirty_list)) { 10309 list_del_init(&block_group->dirty_list); 10310 btrfs_put_block_group(block_group); 10311 } 10312 spin_unlock(&trans->transaction->dirty_bgs_lock); 10313 mutex_unlock(&trans->transaction->cache_write_mutex); 10314 10315 if (!IS_ERR(inode)) { 10316 ret = btrfs_orphan_add(trans, inode); 10317 if (ret) { 10318 btrfs_add_delayed_iput(inode); 10319 goto out; 10320 } 10321 clear_nlink(inode); 10322 /* One for the block groups ref */ 10323 spin_lock(&block_group->lock); 10324 if (block_group->iref) { 10325 block_group->iref = 0; 10326 block_group->inode = NULL; 10327 spin_unlock(&block_group->lock); 10328 iput(inode); 10329 } else { 10330 spin_unlock(&block_group->lock); 10331 } 10332 /* One for our lookup ref */ 10333 btrfs_add_delayed_iput(inode); 10334 } 10335 10336 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10337 key.offset = block_group->key.objectid; 10338 key.type = 0; 10339 10340 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10341 if (ret < 0) 10342 goto out; 10343 if (ret > 0) 10344 btrfs_release_path(path); 10345 if (ret == 0) { 10346 ret = btrfs_del_item(trans, tree_root, path); 10347 if (ret) 10348 goto out; 10349 btrfs_release_path(path); 10350 } 10351 10352 spin_lock(&root->fs_info->block_group_cache_lock); 10353 rb_erase(&block_group->cache_node, 10354 &root->fs_info->block_group_cache_tree); 10355 RB_CLEAR_NODE(&block_group->cache_node); 10356 10357 if (root->fs_info->first_logical_byte == block_group->key.objectid) 10358 root->fs_info->first_logical_byte = (u64)-1; 10359 spin_unlock(&root->fs_info->block_group_cache_lock); 10360 10361 down_write(&block_group->space_info->groups_sem); 10362 /* 10363 * we must use list_del_init so people can check to see if they 10364 * are still on the list after taking the semaphore 10365 */ 10366 list_del_init(&block_group->list); 10367 if (list_empty(&block_group->space_info->block_groups[index])) { 10368 kobj = block_group->space_info->block_group_kobjs[index]; 10369 block_group->space_info->block_group_kobjs[index] = NULL; 10370 clear_avail_alloc_bits(root->fs_info, block_group->flags); 10371 } 10372 up_write(&block_group->space_info->groups_sem); 10373 if (kobj) { 10374 kobject_del(kobj); 10375 kobject_put(kobj); 10376 } 10377 10378 if (block_group->has_caching_ctl) 10379 caching_ctl = get_caching_control(block_group); 10380 if (block_group->cached == BTRFS_CACHE_STARTED) 10381 wait_block_group_cache_done(block_group); 10382 if (block_group->has_caching_ctl) { 10383 down_write(&root->fs_info->commit_root_sem); 10384 if (!caching_ctl) { 10385 struct btrfs_caching_control *ctl; 10386 10387 list_for_each_entry(ctl, 10388 &root->fs_info->caching_block_groups, list) 10389 if (ctl->block_group == block_group) { 10390 caching_ctl = ctl; 10391 atomic_inc(&caching_ctl->count); 10392 break; 10393 } 10394 } 10395 if (caching_ctl) 10396 list_del_init(&caching_ctl->list); 10397 up_write(&root->fs_info->commit_root_sem); 10398 if (caching_ctl) { 10399 /* Once for the caching bgs list and once for us. */ 10400 put_caching_control(caching_ctl); 10401 put_caching_control(caching_ctl); 10402 } 10403 } 10404 10405 spin_lock(&trans->transaction->dirty_bgs_lock); 10406 if (!list_empty(&block_group->dirty_list)) { 10407 WARN_ON(1); 10408 } 10409 if (!list_empty(&block_group->io_list)) { 10410 WARN_ON(1); 10411 } 10412 spin_unlock(&trans->transaction->dirty_bgs_lock); 10413 btrfs_remove_free_space_cache(block_group); 10414 10415 spin_lock(&block_group->space_info->lock); 10416 list_del_init(&block_group->ro_list); 10417 10418 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 10419 WARN_ON(block_group->space_info->total_bytes 10420 < block_group->key.offset); 10421 WARN_ON(block_group->space_info->bytes_readonly 10422 < block_group->key.offset); 10423 WARN_ON(block_group->space_info->disk_total 10424 < block_group->key.offset * factor); 10425 } 10426 block_group->space_info->total_bytes -= block_group->key.offset; 10427 block_group->space_info->bytes_readonly -= block_group->key.offset; 10428 block_group->space_info->disk_total -= block_group->key.offset * factor; 10429 10430 spin_unlock(&block_group->space_info->lock); 10431 10432 memcpy(&key, &block_group->key, sizeof(key)); 10433 10434 lock_chunks(root); 10435 if (!list_empty(&em->list)) { 10436 /* We're in the transaction->pending_chunks list. */ 10437 free_extent_map(em); 10438 } 10439 spin_lock(&block_group->lock); 10440 block_group->removed = 1; 10441 /* 10442 * At this point trimming can't start on this block group, because we 10443 * removed the block group from the tree fs_info->block_group_cache_tree 10444 * so no one can't find it anymore and even if someone already got this 10445 * block group before we removed it from the rbtree, they have already 10446 * incremented block_group->trimming - if they didn't, they won't find 10447 * any free space entries because we already removed them all when we 10448 * called btrfs_remove_free_space_cache(). 10449 * 10450 * And we must not remove the extent map from the fs_info->mapping_tree 10451 * to prevent the same logical address range and physical device space 10452 * ranges from being reused for a new block group. This is because our 10453 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10454 * completely transactionless, so while it is trimming a range the 10455 * currently running transaction might finish and a new one start, 10456 * allowing for new block groups to be created that can reuse the same 10457 * physical device locations unless we take this special care. 10458 * 10459 * There may also be an implicit trim operation if the file system 10460 * is mounted with -odiscard. The same protections must remain 10461 * in place until the extents have been discarded completely when 10462 * the transaction commit has completed. 10463 */ 10464 remove_em = (atomic_read(&block_group->trimming) == 0); 10465 /* 10466 * Make sure a trimmer task always sees the em in the pinned_chunks list 10467 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10468 * before checking block_group->removed). 10469 */ 10470 if (!remove_em) { 10471 /* 10472 * Our em might be in trans->transaction->pending_chunks which 10473 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10474 * and so is the fs_info->pinned_chunks list. 10475 * 10476 * So at this point we must be holding the chunk_mutex to avoid 10477 * any races with chunk allocation (more specifically at 10478 * volumes.c:contains_pending_extent()), to ensure it always 10479 * sees the em, either in the pending_chunks list or in the 10480 * pinned_chunks list. 10481 */ 10482 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 10483 } 10484 spin_unlock(&block_group->lock); 10485 10486 if (remove_em) { 10487 struct extent_map_tree *em_tree; 10488 10489 em_tree = &root->fs_info->mapping_tree.map_tree; 10490 write_lock(&em_tree->lock); 10491 /* 10492 * The em might be in the pending_chunks list, so make sure the 10493 * chunk mutex is locked, since remove_extent_mapping() will 10494 * delete us from that list. 10495 */ 10496 remove_extent_mapping(em_tree, em); 10497 write_unlock(&em_tree->lock); 10498 /* once for the tree */ 10499 free_extent_map(em); 10500 } 10501 10502 unlock_chunks(root); 10503 10504 ret = remove_block_group_free_space(trans, root->fs_info, block_group); 10505 if (ret) 10506 goto out; 10507 10508 btrfs_put_block_group(block_group); 10509 btrfs_put_block_group(block_group); 10510 10511 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10512 if (ret > 0) 10513 ret = -EIO; 10514 if (ret < 0) 10515 goto out; 10516 10517 ret = btrfs_del_item(trans, root, path); 10518 out: 10519 btrfs_free_path(path); 10520 return ret; 10521 } 10522 10523 struct btrfs_trans_handle * 10524 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10525 const u64 chunk_offset) 10526 { 10527 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10528 struct extent_map *em; 10529 struct map_lookup *map; 10530 unsigned int num_items; 10531 10532 read_lock(&em_tree->lock); 10533 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10534 read_unlock(&em_tree->lock); 10535 ASSERT(em && em->start == chunk_offset); 10536 10537 /* 10538 * We need to reserve 3 + N units from the metadata space info in order 10539 * to remove a block group (done at btrfs_remove_chunk() and at 10540 * btrfs_remove_block_group()), which are used for: 10541 * 10542 * 1 unit for adding the free space inode's orphan (located in the tree 10543 * of tree roots). 10544 * 1 unit for deleting the block group item (located in the extent 10545 * tree). 10546 * 1 unit for deleting the free space item (located in tree of tree 10547 * roots). 10548 * N units for deleting N device extent items corresponding to each 10549 * stripe (located in the device tree). 10550 * 10551 * In order to remove a block group we also need to reserve units in the 10552 * system space info in order to update the chunk tree (update one or 10553 * more device items and remove one chunk item), but this is done at 10554 * btrfs_remove_chunk() through a call to check_system_chunk(). 10555 */ 10556 map = em->map_lookup; 10557 num_items = 3 + map->num_stripes; 10558 free_extent_map(em); 10559 10560 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10561 num_items, 1); 10562 } 10563 10564 /* 10565 * Process the unused_bgs list and remove any that don't have any allocated 10566 * space inside of them. 10567 */ 10568 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10569 { 10570 struct btrfs_block_group_cache *block_group; 10571 struct btrfs_space_info *space_info; 10572 struct btrfs_root *root = fs_info->extent_root; 10573 struct btrfs_trans_handle *trans; 10574 int ret = 0; 10575 10576 if (!fs_info->open) 10577 return; 10578 10579 spin_lock(&fs_info->unused_bgs_lock); 10580 while (!list_empty(&fs_info->unused_bgs)) { 10581 u64 start, end; 10582 int trimming; 10583 10584 block_group = list_first_entry(&fs_info->unused_bgs, 10585 struct btrfs_block_group_cache, 10586 bg_list); 10587 list_del_init(&block_group->bg_list); 10588 10589 space_info = block_group->space_info; 10590 10591 if (ret || btrfs_mixed_space_info(space_info)) { 10592 btrfs_put_block_group(block_group); 10593 continue; 10594 } 10595 spin_unlock(&fs_info->unused_bgs_lock); 10596 10597 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10598 10599 /* Don't want to race with allocators so take the groups_sem */ 10600 down_write(&space_info->groups_sem); 10601 spin_lock(&block_group->lock); 10602 if (block_group->reserved || 10603 btrfs_block_group_used(&block_group->item) || 10604 block_group->ro || 10605 list_is_singular(&block_group->list)) { 10606 /* 10607 * We want to bail if we made new allocations or have 10608 * outstanding allocations in this block group. We do 10609 * the ro check in case balance is currently acting on 10610 * this block group. 10611 */ 10612 spin_unlock(&block_group->lock); 10613 up_write(&space_info->groups_sem); 10614 goto next; 10615 } 10616 spin_unlock(&block_group->lock); 10617 10618 /* We don't want to force the issue, only flip if it's ok. */ 10619 ret = inc_block_group_ro(block_group, 0); 10620 up_write(&space_info->groups_sem); 10621 if (ret < 0) { 10622 ret = 0; 10623 goto next; 10624 } 10625 10626 /* 10627 * Want to do this before we do anything else so we can recover 10628 * properly if we fail to join the transaction. 10629 */ 10630 trans = btrfs_start_trans_remove_block_group(fs_info, 10631 block_group->key.objectid); 10632 if (IS_ERR(trans)) { 10633 btrfs_dec_block_group_ro(root, block_group); 10634 ret = PTR_ERR(trans); 10635 goto next; 10636 } 10637 10638 /* 10639 * We could have pending pinned extents for this block group, 10640 * just delete them, we don't care about them anymore. 10641 */ 10642 start = block_group->key.objectid; 10643 end = start + block_group->key.offset - 1; 10644 /* 10645 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10646 * btrfs_finish_extent_commit(). If we are at transaction N, 10647 * another task might be running finish_extent_commit() for the 10648 * previous transaction N - 1, and have seen a range belonging 10649 * to the block group in freed_extents[] before we were able to 10650 * clear the whole block group range from freed_extents[]. This 10651 * means that task can lookup for the block group after we 10652 * unpinned it from freed_extents[] and removed it, leading to 10653 * a BUG_ON() at btrfs_unpin_extent_range(). 10654 */ 10655 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10656 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10657 EXTENT_DIRTY); 10658 if (ret) { 10659 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10660 btrfs_dec_block_group_ro(root, block_group); 10661 goto end_trans; 10662 } 10663 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10664 EXTENT_DIRTY); 10665 if (ret) { 10666 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10667 btrfs_dec_block_group_ro(root, block_group); 10668 goto end_trans; 10669 } 10670 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10671 10672 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10673 spin_lock(&space_info->lock); 10674 spin_lock(&block_group->lock); 10675 10676 space_info->bytes_pinned -= block_group->pinned; 10677 space_info->bytes_readonly += block_group->pinned; 10678 percpu_counter_add(&space_info->total_bytes_pinned, 10679 -block_group->pinned); 10680 block_group->pinned = 0; 10681 10682 spin_unlock(&block_group->lock); 10683 spin_unlock(&space_info->lock); 10684 10685 /* DISCARD can flip during remount */ 10686 trimming = btrfs_test_opt(root, DISCARD); 10687 10688 /* Implicit trim during transaction commit. */ 10689 if (trimming) 10690 btrfs_get_block_group_trimming(block_group); 10691 10692 /* 10693 * Btrfs_remove_chunk will abort the transaction if things go 10694 * horribly wrong. 10695 */ 10696 ret = btrfs_remove_chunk(trans, root, 10697 block_group->key.objectid); 10698 10699 if (ret) { 10700 if (trimming) 10701 btrfs_put_block_group_trimming(block_group); 10702 goto end_trans; 10703 } 10704 10705 /* 10706 * If we're not mounted with -odiscard, we can just forget 10707 * about this block group. Otherwise we'll need to wait 10708 * until transaction commit to do the actual discard. 10709 */ 10710 if (trimming) { 10711 spin_lock(&fs_info->unused_bgs_lock); 10712 /* 10713 * A concurrent scrub might have added us to the list 10714 * fs_info->unused_bgs, so use a list_move operation 10715 * to add the block group to the deleted_bgs list. 10716 */ 10717 list_move(&block_group->bg_list, 10718 &trans->transaction->deleted_bgs); 10719 spin_unlock(&fs_info->unused_bgs_lock); 10720 btrfs_get_block_group(block_group); 10721 } 10722 end_trans: 10723 btrfs_end_transaction(trans, root); 10724 next: 10725 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10726 btrfs_put_block_group(block_group); 10727 spin_lock(&fs_info->unused_bgs_lock); 10728 } 10729 spin_unlock(&fs_info->unused_bgs_lock); 10730 } 10731 10732 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10733 { 10734 struct btrfs_space_info *space_info; 10735 struct btrfs_super_block *disk_super; 10736 u64 features; 10737 u64 flags; 10738 int mixed = 0; 10739 int ret; 10740 10741 disk_super = fs_info->super_copy; 10742 if (!btrfs_super_root(disk_super)) 10743 return -EINVAL; 10744 10745 features = btrfs_super_incompat_flags(disk_super); 10746 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10747 mixed = 1; 10748 10749 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10750 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10751 if (ret) 10752 goto out; 10753 10754 if (mixed) { 10755 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10756 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10757 } else { 10758 flags = BTRFS_BLOCK_GROUP_METADATA; 10759 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10760 if (ret) 10761 goto out; 10762 10763 flags = BTRFS_BLOCK_GROUP_DATA; 10764 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10765 } 10766 out: 10767 return ret; 10768 } 10769 10770 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10771 { 10772 return unpin_extent_range(root, start, end, false); 10773 } 10774 10775 /* 10776 * It used to be that old block groups would be left around forever. 10777 * Iterating over them would be enough to trim unused space. Since we 10778 * now automatically remove them, we also need to iterate over unallocated 10779 * space. 10780 * 10781 * We don't want a transaction for this since the discard may take a 10782 * substantial amount of time. We don't require that a transaction be 10783 * running, but we do need to take a running transaction into account 10784 * to ensure that we're not discarding chunks that were released in 10785 * the current transaction. 10786 * 10787 * Holding the chunks lock will prevent other threads from allocating 10788 * or releasing chunks, but it won't prevent a running transaction 10789 * from committing and releasing the memory that the pending chunks 10790 * list head uses. For that, we need to take a reference to the 10791 * transaction. 10792 */ 10793 static int btrfs_trim_free_extents(struct btrfs_device *device, 10794 u64 minlen, u64 *trimmed) 10795 { 10796 u64 start = 0, len = 0; 10797 int ret; 10798 10799 *trimmed = 0; 10800 10801 /* Not writeable = nothing to do. */ 10802 if (!device->writeable) 10803 return 0; 10804 10805 /* No free space = nothing to do. */ 10806 if (device->total_bytes <= device->bytes_used) 10807 return 0; 10808 10809 ret = 0; 10810 10811 while (1) { 10812 struct btrfs_fs_info *fs_info = device->dev_root->fs_info; 10813 struct btrfs_transaction *trans; 10814 u64 bytes; 10815 10816 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10817 if (ret) 10818 return ret; 10819 10820 down_read(&fs_info->commit_root_sem); 10821 10822 spin_lock(&fs_info->trans_lock); 10823 trans = fs_info->running_transaction; 10824 if (trans) 10825 atomic_inc(&trans->use_count); 10826 spin_unlock(&fs_info->trans_lock); 10827 10828 ret = find_free_dev_extent_start(trans, device, minlen, start, 10829 &start, &len); 10830 if (trans) 10831 btrfs_put_transaction(trans); 10832 10833 if (ret) { 10834 up_read(&fs_info->commit_root_sem); 10835 mutex_unlock(&fs_info->chunk_mutex); 10836 if (ret == -ENOSPC) 10837 ret = 0; 10838 break; 10839 } 10840 10841 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10842 up_read(&fs_info->commit_root_sem); 10843 mutex_unlock(&fs_info->chunk_mutex); 10844 10845 if (ret) 10846 break; 10847 10848 start += len; 10849 *trimmed += bytes; 10850 10851 if (fatal_signal_pending(current)) { 10852 ret = -ERESTARTSYS; 10853 break; 10854 } 10855 10856 cond_resched(); 10857 } 10858 10859 return ret; 10860 } 10861 10862 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10863 { 10864 struct btrfs_fs_info *fs_info = root->fs_info; 10865 struct btrfs_block_group_cache *cache = NULL; 10866 struct btrfs_device *device; 10867 struct list_head *devices; 10868 u64 group_trimmed; 10869 u64 start; 10870 u64 end; 10871 u64 trimmed = 0; 10872 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10873 int ret = 0; 10874 10875 /* 10876 * try to trim all FS space, our block group may start from non-zero. 10877 */ 10878 if (range->len == total_bytes) 10879 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10880 else 10881 cache = btrfs_lookup_block_group(fs_info, range->start); 10882 10883 while (cache) { 10884 if (cache->key.objectid >= (range->start + range->len)) { 10885 btrfs_put_block_group(cache); 10886 break; 10887 } 10888 10889 start = max(range->start, cache->key.objectid); 10890 end = min(range->start + range->len, 10891 cache->key.objectid + cache->key.offset); 10892 10893 if (end - start >= range->minlen) { 10894 if (!block_group_cache_done(cache)) { 10895 ret = cache_block_group(cache, 0); 10896 if (ret) { 10897 btrfs_put_block_group(cache); 10898 break; 10899 } 10900 ret = wait_block_group_cache_done(cache); 10901 if (ret) { 10902 btrfs_put_block_group(cache); 10903 break; 10904 } 10905 } 10906 ret = btrfs_trim_block_group(cache, 10907 &group_trimmed, 10908 start, 10909 end, 10910 range->minlen); 10911 10912 trimmed += group_trimmed; 10913 if (ret) { 10914 btrfs_put_block_group(cache); 10915 break; 10916 } 10917 } 10918 10919 cache = next_block_group(fs_info->tree_root, cache); 10920 } 10921 10922 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 10923 devices = &root->fs_info->fs_devices->alloc_list; 10924 list_for_each_entry(device, devices, dev_alloc_list) { 10925 ret = btrfs_trim_free_extents(device, range->minlen, 10926 &group_trimmed); 10927 if (ret) 10928 break; 10929 10930 trimmed += group_trimmed; 10931 } 10932 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 10933 10934 range->len = trimmed; 10935 return ret; 10936 } 10937 10938 /* 10939 * btrfs_{start,end}_write_no_snapshoting() are similar to 10940 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10941 * data into the page cache through nocow before the subvolume is snapshoted, 10942 * but flush the data into disk after the snapshot creation, or to prevent 10943 * operations while snapshoting is ongoing and that cause the snapshot to be 10944 * inconsistent (writes followed by expanding truncates for example). 10945 */ 10946 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10947 { 10948 percpu_counter_dec(&root->subv_writers->counter); 10949 /* 10950 * Make sure counter is updated before we wake up waiters. 10951 */ 10952 smp_mb(); 10953 if (waitqueue_active(&root->subv_writers->wait)) 10954 wake_up(&root->subv_writers->wait); 10955 } 10956 10957 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10958 { 10959 if (atomic_read(&root->will_be_snapshoted)) 10960 return 0; 10961 10962 percpu_counter_inc(&root->subv_writers->counter); 10963 /* 10964 * Make sure counter is updated before we check for snapshot creation. 10965 */ 10966 smp_mb(); 10967 if (atomic_read(&root->will_be_snapshoted)) { 10968 btrfs_end_write_no_snapshoting(root); 10969 return 0; 10970 } 10971 return 1; 10972 } 10973 10974 static int wait_snapshoting_atomic_t(atomic_t *a) 10975 { 10976 schedule(); 10977 return 0; 10978 } 10979 10980 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 10981 { 10982 while (true) { 10983 int ret; 10984 10985 ret = btrfs_start_write_no_snapshoting(root); 10986 if (ret) 10987 break; 10988 wait_on_atomic_t(&root->will_be_snapshoted, 10989 wait_snapshoting_atomic_t, 10990 TASK_UNINTERRUPTIBLE); 10991 } 10992 } 10993