xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 0984d159)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 /*
64  * Control how reservations are dealt with.
65  *
66  * RESERVE_FREE - freeing a reservation.
67  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68  *   ENOSPC accounting
69  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70  *   bytes_may_use as the ENOSPC accounting is done elsewhere
71  */
72 enum {
73 	RESERVE_FREE = 0,
74 	RESERVE_ALLOC = 1,
75 	RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77 
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 			      struct btrfs_root *root, u64 bytenr,
80 			      u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 				struct btrfs_root *root,
83 				struct btrfs_delayed_ref_node *node, u64 parent,
84 				u64 root_objectid, u64 owner_objectid,
85 				u64 owner_offset, int refs_to_drop,
86 				struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 				struct btrfs_block_group_cache *block_group)
338 {
339 	u64 start = block_group->key.objectid;
340 	u64 len = block_group->key.offset;
341 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 		root->nodesize : root->sectorsize;
343 	u64 step = chunk << 1;
344 
345 	while (len > chunk) {
346 		btrfs_remove_free_space(block_group, start, chunk);
347 		start += step;
348 		if (len < step)
349 			len = 0;
350 		else
351 			len -= step;
352 	}
353 }
354 #endif
355 
356 /*
357  * this is only called by cache_block_group, since we could have freed extents
358  * we need to check the pinned_extents for any extents that can't be used yet
359  * since their free space will be released as soon as the transaction commits.
360  */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 		       struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364 	u64 extent_start, extent_end, size, total_added = 0;
365 	int ret;
366 
367 	while (start < end) {
368 		ret = find_first_extent_bit(info->pinned_extents, start,
369 					    &extent_start, &extent_end,
370 					    EXTENT_DIRTY | EXTENT_UPTODATE,
371 					    NULL);
372 		if (ret)
373 			break;
374 
375 		if (extent_start <= start) {
376 			start = extent_end + 1;
377 		} else if (extent_start > start && extent_start < end) {
378 			size = extent_start - start;
379 			total_added += size;
380 			ret = btrfs_add_free_space(block_group, start,
381 						   size);
382 			BUG_ON(ret); /* -ENOMEM or logic error */
383 			start = extent_end + 1;
384 		} else {
385 			break;
386 		}
387 	}
388 
389 	if (start < end) {
390 		size = end - start;
391 		total_added += size;
392 		ret = btrfs_add_free_space(block_group, start, size);
393 		BUG_ON(ret); /* -ENOMEM or logic error */
394 	}
395 
396 	return total_added;
397 }
398 
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401 	struct btrfs_block_group_cache *block_group;
402 	struct btrfs_fs_info *fs_info;
403 	struct btrfs_root *extent_root;
404 	struct btrfs_path *path;
405 	struct extent_buffer *leaf;
406 	struct btrfs_key key;
407 	u64 total_found = 0;
408 	u64 last = 0;
409 	u32 nritems;
410 	int ret;
411 	bool wakeup = true;
412 
413 	block_group = caching_ctl->block_group;
414 	fs_info = block_group->fs_info;
415 	extent_root = fs_info->extent_root;
416 
417 	path = btrfs_alloc_path();
418 	if (!path)
419 		return -ENOMEM;
420 
421 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422 
423 #ifdef CONFIG_BTRFS_DEBUG
424 	/*
425 	 * If we're fragmenting we don't want to make anybody think we can
426 	 * allocate from this block group until we've had a chance to fragment
427 	 * the free space.
428 	 */
429 	if (btrfs_should_fragment_free_space(extent_root, block_group))
430 		wakeup = false;
431 #endif
432 	/*
433 	 * We don't want to deadlock with somebody trying to allocate a new
434 	 * extent for the extent root while also trying to search the extent
435 	 * root to add free space.  So we skip locking and search the commit
436 	 * root, since its read-only
437 	 */
438 	path->skip_locking = 1;
439 	path->search_commit_root = 1;
440 	path->reada = READA_FORWARD;
441 
442 	key.objectid = last;
443 	key.offset = 0;
444 	key.type = BTRFS_EXTENT_ITEM_KEY;
445 
446 next:
447 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 	if (ret < 0)
449 		goto out;
450 
451 	leaf = path->nodes[0];
452 	nritems = btrfs_header_nritems(leaf);
453 
454 	while (1) {
455 		if (btrfs_fs_closing(fs_info) > 1) {
456 			last = (u64)-1;
457 			break;
458 		}
459 
460 		if (path->slots[0] < nritems) {
461 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 		} else {
463 			ret = find_next_key(path, 0, &key);
464 			if (ret)
465 				break;
466 
467 			if (need_resched() ||
468 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
469 				if (wakeup)
470 					caching_ctl->progress = last;
471 				btrfs_release_path(path);
472 				up_read(&fs_info->commit_root_sem);
473 				mutex_unlock(&caching_ctl->mutex);
474 				cond_resched();
475 				mutex_lock(&caching_ctl->mutex);
476 				down_read(&fs_info->commit_root_sem);
477 				goto next;
478 			}
479 
480 			ret = btrfs_next_leaf(extent_root, path);
481 			if (ret < 0)
482 				goto out;
483 			if (ret)
484 				break;
485 			leaf = path->nodes[0];
486 			nritems = btrfs_header_nritems(leaf);
487 			continue;
488 		}
489 
490 		if (key.objectid < last) {
491 			key.objectid = last;
492 			key.offset = 0;
493 			key.type = BTRFS_EXTENT_ITEM_KEY;
494 
495 			if (wakeup)
496 				caching_ctl->progress = last;
497 			btrfs_release_path(path);
498 			goto next;
499 		}
500 
501 		if (key.objectid < block_group->key.objectid) {
502 			path->slots[0]++;
503 			continue;
504 		}
505 
506 		if (key.objectid >= block_group->key.objectid +
507 		    block_group->key.offset)
508 			break;
509 
510 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 		    key.type == BTRFS_METADATA_ITEM_KEY) {
512 			total_found += add_new_free_space(block_group,
513 							  fs_info, last,
514 							  key.objectid);
515 			if (key.type == BTRFS_METADATA_ITEM_KEY)
516 				last = key.objectid +
517 					fs_info->tree_root->nodesize;
518 			else
519 				last = key.objectid + key.offset;
520 
521 			if (total_found > CACHING_CTL_WAKE_UP) {
522 				total_found = 0;
523 				if (wakeup)
524 					wake_up(&caching_ctl->wait);
525 			}
526 		}
527 		path->slots[0]++;
528 	}
529 	ret = 0;
530 
531 	total_found += add_new_free_space(block_group, fs_info, last,
532 					  block_group->key.objectid +
533 					  block_group->key.offset);
534 	caching_ctl->progress = (u64)-1;
535 
536 out:
537 	btrfs_free_path(path);
538 	return ret;
539 }
540 
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543 	struct btrfs_block_group_cache *block_group;
544 	struct btrfs_fs_info *fs_info;
545 	struct btrfs_caching_control *caching_ctl;
546 	struct btrfs_root *extent_root;
547 	int ret;
548 
549 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 	block_group = caching_ctl->block_group;
551 	fs_info = block_group->fs_info;
552 	extent_root = fs_info->extent_root;
553 
554 	mutex_lock(&caching_ctl->mutex);
555 	down_read(&fs_info->commit_root_sem);
556 
557 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 		ret = load_free_space_tree(caching_ctl);
559 	else
560 		ret = load_extent_tree_free(caching_ctl);
561 
562 	spin_lock(&block_group->lock);
563 	block_group->caching_ctl = NULL;
564 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 	spin_unlock(&block_group->lock);
566 
567 #ifdef CONFIG_BTRFS_DEBUG
568 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 		u64 bytes_used;
570 
571 		spin_lock(&block_group->space_info->lock);
572 		spin_lock(&block_group->lock);
573 		bytes_used = block_group->key.offset -
574 			btrfs_block_group_used(&block_group->item);
575 		block_group->space_info->bytes_used += bytes_used >> 1;
576 		spin_unlock(&block_group->lock);
577 		spin_unlock(&block_group->space_info->lock);
578 		fragment_free_space(extent_root, block_group);
579 	}
580 #endif
581 
582 	caching_ctl->progress = (u64)-1;
583 
584 	up_read(&fs_info->commit_root_sem);
585 	free_excluded_extents(fs_info->extent_root, block_group);
586 	mutex_unlock(&caching_ctl->mutex);
587 
588 	wake_up(&caching_ctl->wait);
589 
590 	put_caching_control(caching_ctl);
591 	btrfs_put_block_group(block_group);
592 }
593 
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595 			     int load_cache_only)
596 {
597 	DEFINE_WAIT(wait);
598 	struct btrfs_fs_info *fs_info = cache->fs_info;
599 	struct btrfs_caching_control *caching_ctl;
600 	int ret = 0;
601 
602 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 	if (!caching_ctl)
604 		return -ENOMEM;
605 
606 	INIT_LIST_HEAD(&caching_ctl->list);
607 	mutex_init(&caching_ctl->mutex);
608 	init_waitqueue_head(&caching_ctl->wait);
609 	caching_ctl->block_group = cache;
610 	caching_ctl->progress = cache->key.objectid;
611 	atomic_set(&caching_ctl->count, 1);
612 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 			caching_thread, NULL, NULL);
614 
615 	spin_lock(&cache->lock);
616 	/*
617 	 * This should be a rare occasion, but this could happen I think in the
618 	 * case where one thread starts to load the space cache info, and then
619 	 * some other thread starts a transaction commit which tries to do an
620 	 * allocation while the other thread is still loading the space cache
621 	 * info.  The previous loop should have kept us from choosing this block
622 	 * group, but if we've moved to the state where we will wait on caching
623 	 * block groups we need to first check if we're doing a fast load here,
624 	 * so we can wait for it to finish, otherwise we could end up allocating
625 	 * from a block group who's cache gets evicted for one reason or
626 	 * another.
627 	 */
628 	while (cache->cached == BTRFS_CACHE_FAST) {
629 		struct btrfs_caching_control *ctl;
630 
631 		ctl = cache->caching_ctl;
632 		atomic_inc(&ctl->count);
633 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 		spin_unlock(&cache->lock);
635 
636 		schedule();
637 
638 		finish_wait(&ctl->wait, &wait);
639 		put_caching_control(ctl);
640 		spin_lock(&cache->lock);
641 	}
642 
643 	if (cache->cached != BTRFS_CACHE_NO) {
644 		spin_unlock(&cache->lock);
645 		kfree(caching_ctl);
646 		return 0;
647 	}
648 	WARN_ON(cache->caching_ctl);
649 	cache->caching_ctl = caching_ctl;
650 	cache->cached = BTRFS_CACHE_FAST;
651 	spin_unlock(&cache->lock);
652 
653 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 		mutex_lock(&caching_ctl->mutex);
655 		ret = load_free_space_cache(fs_info, cache);
656 
657 		spin_lock(&cache->lock);
658 		if (ret == 1) {
659 			cache->caching_ctl = NULL;
660 			cache->cached = BTRFS_CACHE_FINISHED;
661 			cache->last_byte_to_unpin = (u64)-1;
662 			caching_ctl->progress = (u64)-1;
663 		} else {
664 			if (load_cache_only) {
665 				cache->caching_ctl = NULL;
666 				cache->cached = BTRFS_CACHE_NO;
667 			} else {
668 				cache->cached = BTRFS_CACHE_STARTED;
669 				cache->has_caching_ctl = 1;
670 			}
671 		}
672 		spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674 		if (ret == 1 &&
675 		    btrfs_should_fragment_free_space(fs_info->extent_root,
676 						     cache)) {
677 			u64 bytes_used;
678 
679 			spin_lock(&cache->space_info->lock);
680 			spin_lock(&cache->lock);
681 			bytes_used = cache->key.offset -
682 				btrfs_block_group_used(&cache->item);
683 			cache->space_info->bytes_used += bytes_used >> 1;
684 			spin_unlock(&cache->lock);
685 			spin_unlock(&cache->space_info->lock);
686 			fragment_free_space(fs_info->extent_root, cache);
687 		}
688 #endif
689 		mutex_unlock(&caching_ctl->mutex);
690 
691 		wake_up(&caching_ctl->wait);
692 		if (ret == 1) {
693 			put_caching_control(caching_ctl);
694 			free_excluded_extents(fs_info->extent_root, cache);
695 			return 0;
696 		}
697 	} else {
698 		/*
699 		 * We're either using the free space tree or no caching at all.
700 		 * Set cached to the appropriate value and wakeup any waiters.
701 		 */
702 		spin_lock(&cache->lock);
703 		if (load_cache_only) {
704 			cache->caching_ctl = NULL;
705 			cache->cached = BTRFS_CACHE_NO;
706 		} else {
707 			cache->cached = BTRFS_CACHE_STARTED;
708 			cache->has_caching_ctl = 1;
709 		}
710 		spin_unlock(&cache->lock);
711 		wake_up(&caching_ctl->wait);
712 	}
713 
714 	if (load_cache_only) {
715 		put_caching_control(caching_ctl);
716 		return 0;
717 	}
718 
719 	down_write(&fs_info->commit_root_sem);
720 	atomic_inc(&caching_ctl->count);
721 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 	up_write(&fs_info->commit_root_sem);
723 
724 	btrfs_get_block_group(cache);
725 
726 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727 
728 	return ret;
729 }
730 
731 /*
732  * return the block group that starts at or after bytenr
733  */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 	struct btrfs_block_group_cache *cache;
738 
739 	cache = block_group_cache_tree_search(info, bytenr, 0);
740 
741 	return cache;
742 }
743 
744 /*
745  * return the block group that contains the given bytenr
746  */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 						 struct btrfs_fs_info *info,
749 						 u64 bytenr)
750 {
751 	struct btrfs_block_group_cache *cache;
752 
753 	cache = block_group_cache_tree_search(info, bytenr, 1);
754 
755 	return cache;
756 }
757 
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 						  u64 flags)
760 {
761 	struct list_head *head = &info->space_info;
762 	struct btrfs_space_info *found;
763 
764 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765 
766 	rcu_read_lock();
767 	list_for_each_entry_rcu(found, head, list) {
768 		if (found->flags & flags) {
769 			rcu_read_unlock();
770 			return found;
771 		}
772 	}
773 	rcu_read_unlock();
774 	return NULL;
775 }
776 
777 /*
778  * after adding space to the filesystem, we need to clear the full flags
779  * on all the space infos.
780  */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783 	struct list_head *head = &info->space_info;
784 	struct btrfs_space_info *found;
785 
786 	rcu_read_lock();
787 	list_for_each_entry_rcu(found, head, list)
788 		found->full = 0;
789 	rcu_read_unlock();
790 }
791 
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795 	int ret;
796 	struct btrfs_key key;
797 	struct btrfs_path *path;
798 
799 	path = btrfs_alloc_path();
800 	if (!path)
801 		return -ENOMEM;
802 
803 	key.objectid = start;
804 	key.offset = len;
805 	key.type = BTRFS_EXTENT_ITEM_KEY;
806 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 				0, 0);
808 	btrfs_free_path(path);
809 	return ret;
810 }
811 
812 /*
813  * helper function to lookup reference count and flags of a tree block.
814  *
815  * the head node for delayed ref is used to store the sum of all the
816  * reference count modifications queued up in the rbtree. the head
817  * node may also store the extent flags to set. This way you can check
818  * to see what the reference count and extent flags would be if all of
819  * the delayed refs are not processed.
820  */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 			     struct btrfs_root *root, u64 bytenr,
823 			     u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 	struct btrfs_delayed_ref_head *head;
826 	struct btrfs_delayed_ref_root *delayed_refs;
827 	struct btrfs_path *path;
828 	struct btrfs_extent_item *ei;
829 	struct extent_buffer *leaf;
830 	struct btrfs_key key;
831 	u32 item_size;
832 	u64 num_refs;
833 	u64 extent_flags;
834 	int ret;
835 
836 	/*
837 	 * If we don't have skinny metadata, don't bother doing anything
838 	 * different
839 	 */
840 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 		offset = root->nodesize;
842 		metadata = 0;
843 	}
844 
845 	path = btrfs_alloc_path();
846 	if (!path)
847 		return -ENOMEM;
848 
849 	if (!trans) {
850 		path->skip_locking = 1;
851 		path->search_commit_root = 1;
852 	}
853 
854 search_again:
855 	key.objectid = bytenr;
856 	key.offset = offset;
857 	if (metadata)
858 		key.type = BTRFS_METADATA_ITEM_KEY;
859 	else
860 		key.type = BTRFS_EXTENT_ITEM_KEY;
861 
862 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 				&key, path, 0, 0);
864 	if (ret < 0)
865 		goto out_free;
866 
867 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 		if (path->slots[0]) {
869 			path->slots[0]--;
870 			btrfs_item_key_to_cpu(path->nodes[0], &key,
871 					      path->slots[0]);
872 			if (key.objectid == bytenr &&
873 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
874 			    key.offset == root->nodesize)
875 				ret = 0;
876 		}
877 	}
878 
879 	if (ret == 0) {
880 		leaf = path->nodes[0];
881 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 		if (item_size >= sizeof(*ei)) {
883 			ei = btrfs_item_ptr(leaf, path->slots[0],
884 					    struct btrfs_extent_item);
885 			num_refs = btrfs_extent_refs(leaf, ei);
886 			extent_flags = btrfs_extent_flags(leaf, ei);
887 		} else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 			struct btrfs_extent_item_v0 *ei0;
890 			BUG_ON(item_size != sizeof(*ei0));
891 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 					     struct btrfs_extent_item_v0);
893 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 			/* FIXME: this isn't correct for data */
895 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897 			BUG();
898 #endif
899 		}
900 		BUG_ON(num_refs == 0);
901 	} else {
902 		num_refs = 0;
903 		extent_flags = 0;
904 		ret = 0;
905 	}
906 
907 	if (!trans)
908 		goto out;
909 
910 	delayed_refs = &trans->transaction->delayed_refs;
911 	spin_lock(&delayed_refs->lock);
912 	head = btrfs_find_delayed_ref_head(trans, bytenr);
913 	if (head) {
914 		if (!mutex_trylock(&head->mutex)) {
915 			atomic_inc(&head->node.refs);
916 			spin_unlock(&delayed_refs->lock);
917 
918 			btrfs_release_path(path);
919 
920 			/*
921 			 * Mutex was contended, block until it's released and try
922 			 * again
923 			 */
924 			mutex_lock(&head->mutex);
925 			mutex_unlock(&head->mutex);
926 			btrfs_put_delayed_ref(&head->node);
927 			goto search_again;
928 		}
929 		spin_lock(&head->lock);
930 		if (head->extent_op && head->extent_op->update_flags)
931 			extent_flags |= head->extent_op->flags_to_set;
932 		else
933 			BUG_ON(num_refs == 0);
934 
935 		num_refs += head->node.ref_mod;
936 		spin_unlock(&head->lock);
937 		mutex_unlock(&head->mutex);
938 	}
939 	spin_unlock(&delayed_refs->lock);
940 out:
941 	WARN_ON(num_refs == 0);
942 	if (refs)
943 		*refs = num_refs;
944 	if (flags)
945 		*flags = extent_flags;
946 out_free:
947 	btrfs_free_path(path);
948 	return ret;
949 }
950 
951 /*
952  * Back reference rules.  Back refs have three main goals:
953  *
954  * 1) differentiate between all holders of references to an extent so that
955  *    when a reference is dropped we can make sure it was a valid reference
956  *    before freeing the extent.
957  *
958  * 2) Provide enough information to quickly find the holders of an extent
959  *    if we notice a given block is corrupted or bad.
960  *
961  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962  *    maintenance.  This is actually the same as #2, but with a slightly
963  *    different use case.
964  *
965  * There are two kinds of back refs. The implicit back refs is optimized
966  * for pointers in non-shared tree blocks. For a given pointer in a block,
967  * back refs of this kind provide information about the block's owner tree
968  * and the pointer's key. These information allow us to find the block by
969  * b-tree searching. The full back refs is for pointers in tree blocks not
970  * referenced by their owner trees. The location of tree block is recorded
971  * in the back refs. Actually the full back refs is generic, and can be
972  * used in all cases the implicit back refs is used. The major shortcoming
973  * of the full back refs is its overhead. Every time a tree block gets
974  * COWed, we have to update back refs entry for all pointers in it.
975  *
976  * For a newly allocated tree block, we use implicit back refs for
977  * pointers in it. This means most tree related operations only involve
978  * implicit back refs. For a tree block created in old transaction, the
979  * only way to drop a reference to it is COW it. So we can detect the
980  * event that tree block loses its owner tree's reference and do the
981  * back refs conversion.
982  *
983  * When a tree block is COWed through a tree, there are four cases:
984  *
985  * The reference count of the block is one and the tree is the block's
986  * owner tree. Nothing to do in this case.
987  *
988  * The reference count of the block is one and the tree is not the
989  * block's owner tree. In this case, full back refs is used for pointers
990  * in the block. Remove these full back refs, add implicit back refs for
991  * every pointers in the new block.
992  *
993  * The reference count of the block is greater than one and the tree is
994  * the block's owner tree. In this case, implicit back refs is used for
995  * pointers in the block. Add full back refs for every pointers in the
996  * block, increase lower level extents' reference counts. The original
997  * implicit back refs are entailed to the new block.
998  *
999  * The reference count of the block is greater than one and the tree is
1000  * not the block's owner tree. Add implicit back refs for every pointer in
1001  * the new block, increase lower level extents' reference count.
1002  *
1003  * Back Reference Key composing:
1004  *
1005  * The key objectid corresponds to the first byte in the extent,
1006  * The key type is used to differentiate between types of back refs.
1007  * There are different meanings of the key offset for different types
1008  * of back refs.
1009  *
1010  * File extents can be referenced by:
1011  *
1012  * - multiple snapshots, subvolumes, or different generations in one subvol
1013  * - different files inside a single subvolume
1014  * - different offsets inside a file (bookend extents in file.c)
1015  *
1016  * The extent ref structure for the implicit back refs has fields for:
1017  *
1018  * - Objectid of the subvolume root
1019  * - objectid of the file holding the reference
1020  * - original offset in the file
1021  * - how many bookend extents
1022  *
1023  * The key offset for the implicit back refs is hash of the first
1024  * three fields.
1025  *
1026  * The extent ref structure for the full back refs has field for:
1027  *
1028  * - number of pointers in the tree leaf
1029  *
1030  * The key offset for the implicit back refs is the first byte of
1031  * the tree leaf
1032  *
1033  * When a file extent is allocated, The implicit back refs is used.
1034  * the fields are filled in:
1035  *
1036  *     (root_key.objectid, inode objectid, offset in file, 1)
1037  *
1038  * When a file extent is removed file truncation, we find the
1039  * corresponding implicit back refs and check the following fields:
1040  *
1041  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1042  *
1043  * Btree extents can be referenced by:
1044  *
1045  * - Different subvolumes
1046  *
1047  * Both the implicit back refs and the full back refs for tree blocks
1048  * only consist of key. The key offset for the implicit back refs is
1049  * objectid of block's owner tree. The key offset for the full back refs
1050  * is the first byte of parent block.
1051  *
1052  * When implicit back refs is used, information about the lowest key and
1053  * level of the tree block are required. These information are stored in
1054  * tree block info structure.
1055  */
1056 
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 				  struct btrfs_root *root,
1060 				  struct btrfs_path *path,
1061 				  u64 owner, u32 extra_size)
1062 {
1063 	struct btrfs_extent_item *item;
1064 	struct btrfs_extent_item_v0 *ei0;
1065 	struct btrfs_extent_ref_v0 *ref0;
1066 	struct btrfs_tree_block_info *bi;
1067 	struct extent_buffer *leaf;
1068 	struct btrfs_key key;
1069 	struct btrfs_key found_key;
1070 	u32 new_size = sizeof(*item);
1071 	u64 refs;
1072 	int ret;
1073 
1074 	leaf = path->nodes[0];
1075 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076 
1077 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 			     struct btrfs_extent_item_v0);
1080 	refs = btrfs_extent_refs_v0(leaf, ei0);
1081 
1082 	if (owner == (u64)-1) {
1083 		while (1) {
1084 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 				ret = btrfs_next_leaf(root, path);
1086 				if (ret < 0)
1087 					return ret;
1088 				BUG_ON(ret > 0); /* Corruption */
1089 				leaf = path->nodes[0];
1090 			}
1091 			btrfs_item_key_to_cpu(leaf, &found_key,
1092 					      path->slots[0]);
1093 			BUG_ON(key.objectid != found_key.objectid);
1094 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 				path->slots[0]++;
1096 				continue;
1097 			}
1098 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 					      struct btrfs_extent_ref_v0);
1100 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 			break;
1102 		}
1103 	}
1104 	btrfs_release_path(path);
1105 
1106 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 		new_size += sizeof(*bi);
1108 
1109 	new_size -= sizeof(*ei0);
1110 	ret = btrfs_search_slot(trans, root, &key, path,
1111 				new_size + extra_size, 1);
1112 	if (ret < 0)
1113 		return ret;
1114 	BUG_ON(ret); /* Corruption */
1115 
1116 	btrfs_extend_item(root, path, new_size);
1117 
1118 	leaf = path->nodes[0];
1119 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 	btrfs_set_extent_refs(leaf, item, refs);
1121 	/* FIXME: get real generation */
1122 	btrfs_set_extent_generation(leaf, item, 0);
1123 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 		btrfs_set_extent_flags(leaf, item,
1125 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 		bi = (struct btrfs_tree_block_info *)(item + 1);
1128 		/* FIXME: get first key of the block */
1129 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 	} else {
1132 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 	}
1134 	btrfs_mark_buffer_dirty(leaf);
1135 	return 0;
1136 }
1137 #endif
1138 
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141 	u32 high_crc = ~(u32)0;
1142 	u32 low_crc = ~(u32)0;
1143 	__le64 lenum;
1144 
1145 	lenum = cpu_to_le64(root_objectid);
1146 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 	lenum = cpu_to_le64(owner);
1148 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 	lenum = cpu_to_le64(offset);
1150 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151 
1152 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154 
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 				     struct btrfs_extent_data_ref *ref)
1157 {
1158 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 				    btrfs_extent_data_ref_objectid(leaf, ref),
1160 				    btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162 
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 				 struct btrfs_extent_data_ref *ref,
1165 				 u64 root_objectid, u64 owner, u64 offset)
1166 {
1167 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 		return 0;
1171 	return 1;
1172 }
1173 
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 					   struct btrfs_root *root,
1176 					   struct btrfs_path *path,
1177 					   u64 bytenr, u64 parent,
1178 					   u64 root_objectid,
1179 					   u64 owner, u64 offset)
1180 {
1181 	struct btrfs_key key;
1182 	struct btrfs_extent_data_ref *ref;
1183 	struct extent_buffer *leaf;
1184 	u32 nritems;
1185 	int ret;
1186 	int recow;
1187 	int err = -ENOENT;
1188 
1189 	key.objectid = bytenr;
1190 	if (parent) {
1191 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 		key.offset = parent;
1193 	} else {
1194 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 		key.offset = hash_extent_data_ref(root_objectid,
1196 						  owner, offset);
1197 	}
1198 again:
1199 	recow = 0;
1200 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 	if (ret < 0) {
1202 		err = ret;
1203 		goto fail;
1204 	}
1205 
1206 	if (parent) {
1207 		if (!ret)
1208 			return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 		btrfs_release_path(path);
1212 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 		if (ret < 0) {
1214 			err = ret;
1215 			goto fail;
1216 		}
1217 		if (!ret)
1218 			return 0;
1219 #endif
1220 		goto fail;
1221 	}
1222 
1223 	leaf = path->nodes[0];
1224 	nritems = btrfs_header_nritems(leaf);
1225 	while (1) {
1226 		if (path->slots[0] >= nritems) {
1227 			ret = btrfs_next_leaf(root, path);
1228 			if (ret < 0)
1229 				err = ret;
1230 			if (ret)
1231 				goto fail;
1232 
1233 			leaf = path->nodes[0];
1234 			nritems = btrfs_header_nritems(leaf);
1235 			recow = 1;
1236 		}
1237 
1238 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 		if (key.objectid != bytenr ||
1240 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 			goto fail;
1242 
1243 		ref = btrfs_item_ptr(leaf, path->slots[0],
1244 				     struct btrfs_extent_data_ref);
1245 
1246 		if (match_extent_data_ref(leaf, ref, root_objectid,
1247 					  owner, offset)) {
1248 			if (recow) {
1249 				btrfs_release_path(path);
1250 				goto again;
1251 			}
1252 			err = 0;
1253 			break;
1254 		}
1255 		path->slots[0]++;
1256 	}
1257 fail:
1258 	return err;
1259 }
1260 
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   u64 bytenr, u64 parent,
1265 					   u64 root_objectid, u64 owner,
1266 					   u64 offset, int refs_to_add)
1267 {
1268 	struct btrfs_key key;
1269 	struct extent_buffer *leaf;
1270 	u32 size;
1271 	u32 num_refs;
1272 	int ret;
1273 
1274 	key.objectid = bytenr;
1275 	if (parent) {
1276 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 		key.offset = parent;
1278 		size = sizeof(struct btrfs_shared_data_ref);
1279 	} else {
1280 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 		key.offset = hash_extent_data_ref(root_objectid,
1282 						  owner, offset);
1283 		size = sizeof(struct btrfs_extent_data_ref);
1284 	}
1285 
1286 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 	if (ret && ret != -EEXIST)
1288 		goto fail;
1289 
1290 	leaf = path->nodes[0];
1291 	if (parent) {
1292 		struct btrfs_shared_data_ref *ref;
1293 		ref = btrfs_item_ptr(leaf, path->slots[0],
1294 				     struct btrfs_shared_data_ref);
1295 		if (ret == 0) {
1296 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 		} else {
1298 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 			num_refs += refs_to_add;
1300 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 		}
1302 	} else {
1303 		struct btrfs_extent_data_ref *ref;
1304 		while (ret == -EEXIST) {
1305 			ref = btrfs_item_ptr(leaf, path->slots[0],
1306 					     struct btrfs_extent_data_ref);
1307 			if (match_extent_data_ref(leaf, ref, root_objectid,
1308 						  owner, offset))
1309 				break;
1310 			btrfs_release_path(path);
1311 			key.offset++;
1312 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 						      size);
1314 			if (ret && ret != -EEXIST)
1315 				goto fail;
1316 
1317 			leaf = path->nodes[0];
1318 		}
1319 		ref = btrfs_item_ptr(leaf, path->slots[0],
1320 				     struct btrfs_extent_data_ref);
1321 		if (ret == 0) {
1322 			btrfs_set_extent_data_ref_root(leaf, ref,
1323 						       root_objectid);
1324 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 		} else {
1328 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 			num_refs += refs_to_add;
1330 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 		}
1332 	}
1333 	btrfs_mark_buffer_dirty(leaf);
1334 	ret = 0;
1335 fail:
1336 	btrfs_release_path(path);
1337 	return ret;
1338 }
1339 
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 					   struct btrfs_root *root,
1342 					   struct btrfs_path *path,
1343 					   int refs_to_drop, int *last_ref)
1344 {
1345 	struct btrfs_key key;
1346 	struct btrfs_extent_data_ref *ref1 = NULL;
1347 	struct btrfs_shared_data_ref *ref2 = NULL;
1348 	struct extent_buffer *leaf;
1349 	u32 num_refs = 0;
1350 	int ret = 0;
1351 
1352 	leaf = path->nodes[0];
1353 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354 
1355 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 				      struct btrfs_extent_data_ref);
1358 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_shared_data_ref);
1362 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 		struct btrfs_extent_ref_v0 *ref0;
1366 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 				      struct btrfs_extent_ref_v0);
1368 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370 	} else {
1371 		BUG();
1372 	}
1373 
1374 	BUG_ON(num_refs < refs_to_drop);
1375 	num_refs -= refs_to_drop;
1376 
1377 	if (num_refs == 0) {
1378 		ret = btrfs_del_item(trans, root, path);
1379 		*last_ref = 1;
1380 	} else {
1381 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 		else {
1387 			struct btrfs_extent_ref_v0 *ref0;
1388 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 					struct btrfs_extent_ref_v0);
1390 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 		}
1392 #endif
1393 		btrfs_mark_buffer_dirty(leaf);
1394 	}
1395 	return ret;
1396 }
1397 
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 					  struct btrfs_extent_inline_ref *iref)
1400 {
1401 	struct btrfs_key key;
1402 	struct extent_buffer *leaf;
1403 	struct btrfs_extent_data_ref *ref1;
1404 	struct btrfs_shared_data_ref *ref2;
1405 	u32 num_refs = 0;
1406 
1407 	leaf = path->nodes[0];
1408 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 	if (iref) {
1410 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 		    BTRFS_EXTENT_DATA_REF_KEY) {
1412 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 		} else {
1415 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 		}
1418 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 				      struct btrfs_extent_data_ref);
1421 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 				      struct btrfs_shared_data_ref);
1425 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 		struct btrfs_extent_ref_v0 *ref0;
1429 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 				      struct btrfs_extent_ref_v0);
1431 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433 	} else {
1434 		WARN_ON(1);
1435 	}
1436 	return num_refs;
1437 }
1438 
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 					  struct btrfs_root *root,
1441 					  struct btrfs_path *path,
1442 					  u64 bytenr, u64 parent,
1443 					  u64 root_objectid)
1444 {
1445 	struct btrfs_key key;
1446 	int ret;
1447 
1448 	key.objectid = bytenr;
1449 	if (parent) {
1450 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 		key.offset = parent;
1452 	} else {
1453 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 		key.offset = root_objectid;
1455 	}
1456 
1457 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 	if (ret > 0)
1459 		ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 	if (ret == -ENOENT && parent) {
1462 		btrfs_release_path(path);
1463 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 		if (ret > 0)
1466 			ret = -ENOENT;
1467 	}
1468 #endif
1469 	return ret;
1470 }
1471 
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 					  struct btrfs_root *root,
1474 					  struct btrfs_path *path,
1475 					  u64 bytenr, u64 parent,
1476 					  u64 root_objectid)
1477 {
1478 	struct btrfs_key key;
1479 	int ret;
1480 
1481 	key.objectid = bytenr;
1482 	if (parent) {
1483 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 		key.offset = parent;
1485 	} else {
1486 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 		key.offset = root_objectid;
1488 	}
1489 
1490 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 	btrfs_release_path(path);
1492 	return ret;
1493 }
1494 
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497 	int type;
1498 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 		if (parent > 0)
1500 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 		else
1502 			type = BTRFS_TREE_BLOCK_REF_KEY;
1503 	} else {
1504 		if (parent > 0)
1505 			type = BTRFS_SHARED_DATA_REF_KEY;
1506 		else
1507 			type = BTRFS_EXTENT_DATA_REF_KEY;
1508 	}
1509 	return type;
1510 }
1511 
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 			 struct btrfs_key *key)
1514 
1515 {
1516 	for (; level < BTRFS_MAX_LEVEL; level++) {
1517 		if (!path->nodes[level])
1518 			break;
1519 		if (path->slots[level] + 1 >=
1520 		    btrfs_header_nritems(path->nodes[level]))
1521 			continue;
1522 		if (level == 0)
1523 			btrfs_item_key_to_cpu(path->nodes[level], key,
1524 					      path->slots[level] + 1);
1525 		else
1526 			btrfs_node_key_to_cpu(path->nodes[level], key,
1527 					      path->slots[level] + 1);
1528 		return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 /*
1534  * look for inline back ref. if back ref is found, *ref_ret is set
1535  * to the address of inline back ref, and 0 is returned.
1536  *
1537  * if back ref isn't found, *ref_ret is set to the address where it
1538  * should be inserted, and -ENOENT is returned.
1539  *
1540  * if insert is true and there are too many inline back refs, the path
1541  * points to the extent item, and -EAGAIN is returned.
1542  *
1543  * NOTE: inline back refs are ordered in the same way that back ref
1544  *	 items in the tree are ordered.
1545  */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 				 struct btrfs_root *root,
1549 				 struct btrfs_path *path,
1550 				 struct btrfs_extent_inline_ref **ref_ret,
1551 				 u64 bytenr, u64 num_bytes,
1552 				 u64 parent, u64 root_objectid,
1553 				 u64 owner, u64 offset, int insert)
1554 {
1555 	struct btrfs_key key;
1556 	struct extent_buffer *leaf;
1557 	struct btrfs_extent_item *ei;
1558 	struct btrfs_extent_inline_ref *iref;
1559 	u64 flags;
1560 	u64 item_size;
1561 	unsigned long ptr;
1562 	unsigned long end;
1563 	int extra_size;
1564 	int type;
1565 	int want;
1566 	int ret;
1567 	int err = 0;
1568 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 						 SKINNY_METADATA);
1570 
1571 	key.objectid = bytenr;
1572 	key.type = BTRFS_EXTENT_ITEM_KEY;
1573 	key.offset = num_bytes;
1574 
1575 	want = extent_ref_type(parent, owner);
1576 	if (insert) {
1577 		extra_size = btrfs_extent_inline_ref_size(want);
1578 		path->keep_locks = 1;
1579 	} else
1580 		extra_size = -1;
1581 
1582 	/*
1583 	 * Owner is our parent level, so we can just add one to get the level
1584 	 * for the block we are interested in.
1585 	 */
1586 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 		key.type = BTRFS_METADATA_ITEM_KEY;
1588 		key.offset = owner;
1589 	}
1590 
1591 again:
1592 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 	if (ret < 0) {
1594 		err = ret;
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * We may be a newly converted file system which still has the old fat
1600 	 * extent entries for metadata, so try and see if we have one of those.
1601 	 */
1602 	if (ret > 0 && skinny_metadata) {
1603 		skinny_metadata = false;
1604 		if (path->slots[0]) {
1605 			path->slots[0]--;
1606 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 					      path->slots[0]);
1608 			if (key.objectid == bytenr &&
1609 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 			    key.offset == num_bytes)
1611 				ret = 0;
1612 		}
1613 		if (ret) {
1614 			key.objectid = bytenr;
1615 			key.type = BTRFS_EXTENT_ITEM_KEY;
1616 			key.offset = num_bytes;
1617 			btrfs_release_path(path);
1618 			goto again;
1619 		}
1620 	}
1621 
1622 	if (ret && !insert) {
1623 		err = -ENOENT;
1624 		goto out;
1625 	} else if (WARN_ON(ret)) {
1626 		err = -EIO;
1627 		goto out;
1628 	}
1629 
1630 	leaf = path->nodes[0];
1631 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 	if (item_size < sizeof(*ei)) {
1634 		if (!insert) {
1635 			err = -ENOENT;
1636 			goto out;
1637 		}
1638 		ret = convert_extent_item_v0(trans, root, path, owner,
1639 					     extra_size);
1640 		if (ret < 0) {
1641 			err = ret;
1642 			goto out;
1643 		}
1644 		leaf = path->nodes[0];
1645 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 	}
1647 #endif
1648 	BUG_ON(item_size < sizeof(*ei));
1649 
1650 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 	flags = btrfs_extent_flags(leaf, ei);
1652 
1653 	ptr = (unsigned long)(ei + 1);
1654 	end = (unsigned long)ei + item_size;
1655 
1656 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 		ptr += sizeof(struct btrfs_tree_block_info);
1658 		BUG_ON(ptr > end);
1659 	}
1660 
1661 	err = -ENOENT;
1662 	while (1) {
1663 		if (ptr >= end) {
1664 			WARN_ON(ptr > end);
1665 			break;
1666 		}
1667 		iref = (struct btrfs_extent_inline_ref *)ptr;
1668 		type = btrfs_extent_inline_ref_type(leaf, iref);
1669 		if (want < type)
1670 			break;
1671 		if (want > type) {
1672 			ptr += btrfs_extent_inline_ref_size(type);
1673 			continue;
1674 		}
1675 
1676 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 			struct btrfs_extent_data_ref *dref;
1678 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 			if (match_extent_data_ref(leaf, dref, root_objectid,
1680 						  owner, offset)) {
1681 				err = 0;
1682 				break;
1683 			}
1684 			if (hash_extent_data_ref_item(leaf, dref) <
1685 			    hash_extent_data_ref(root_objectid, owner, offset))
1686 				break;
1687 		} else {
1688 			u64 ref_offset;
1689 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 			if (parent > 0) {
1691 				if (parent == ref_offset) {
1692 					err = 0;
1693 					break;
1694 				}
1695 				if (ref_offset < parent)
1696 					break;
1697 			} else {
1698 				if (root_objectid == ref_offset) {
1699 					err = 0;
1700 					break;
1701 				}
1702 				if (ref_offset < root_objectid)
1703 					break;
1704 			}
1705 		}
1706 		ptr += btrfs_extent_inline_ref_size(type);
1707 	}
1708 	if (err == -ENOENT && insert) {
1709 		if (item_size + extra_size >=
1710 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 			err = -EAGAIN;
1712 			goto out;
1713 		}
1714 		/*
1715 		 * To add new inline back ref, we have to make sure
1716 		 * there is no corresponding back ref item.
1717 		 * For simplicity, we just do not add new inline back
1718 		 * ref if there is any kind of item for this block
1719 		 */
1720 		if (find_next_key(path, 0, &key) == 0 &&
1721 		    key.objectid == bytenr &&
1722 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 			err = -EAGAIN;
1724 			goto out;
1725 		}
1726 	}
1727 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729 	if (insert) {
1730 		path->keep_locks = 0;
1731 		btrfs_unlock_up_safe(path, 1);
1732 	}
1733 	return err;
1734 }
1735 
1736 /*
1737  * helper to add new inline back ref
1738  */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 				 struct btrfs_path *path,
1742 				 struct btrfs_extent_inline_ref *iref,
1743 				 u64 parent, u64 root_objectid,
1744 				 u64 owner, u64 offset, int refs_to_add,
1745 				 struct btrfs_delayed_extent_op *extent_op)
1746 {
1747 	struct extent_buffer *leaf;
1748 	struct btrfs_extent_item *ei;
1749 	unsigned long ptr;
1750 	unsigned long end;
1751 	unsigned long item_offset;
1752 	u64 refs;
1753 	int size;
1754 	int type;
1755 
1756 	leaf = path->nodes[0];
1757 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 	item_offset = (unsigned long)iref - (unsigned long)ei;
1759 
1760 	type = extent_ref_type(parent, owner);
1761 	size = btrfs_extent_inline_ref_size(type);
1762 
1763 	btrfs_extend_item(root, path, size);
1764 
1765 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 	refs = btrfs_extent_refs(leaf, ei);
1767 	refs += refs_to_add;
1768 	btrfs_set_extent_refs(leaf, ei, refs);
1769 	if (extent_op)
1770 		__run_delayed_extent_op(extent_op, leaf, ei);
1771 
1772 	ptr = (unsigned long)ei + item_offset;
1773 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 	if (ptr < end - size)
1775 		memmove_extent_buffer(leaf, ptr + size, ptr,
1776 				      end - size - ptr);
1777 
1778 	iref = (struct btrfs_extent_inline_ref *)ptr;
1779 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 		struct btrfs_extent_data_ref *dref;
1782 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		struct btrfs_shared_data_ref *sref;
1789 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 	} else {
1795 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 	}
1797 	btrfs_mark_buffer_dirty(leaf);
1798 }
1799 
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 				 struct btrfs_root *root,
1802 				 struct btrfs_path *path,
1803 				 struct btrfs_extent_inline_ref **ref_ret,
1804 				 u64 bytenr, u64 num_bytes, u64 parent,
1805 				 u64 root_objectid, u64 owner, u64 offset)
1806 {
1807 	int ret;
1808 
1809 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 					   bytenr, num_bytes, parent,
1811 					   root_objectid, owner, offset, 0);
1812 	if (ret != -ENOENT)
1813 		return ret;
1814 
1815 	btrfs_release_path(path);
1816 	*ref_ret = NULL;
1817 
1818 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 					    root_objectid);
1821 	} else {
1822 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 					     root_objectid, owner, offset);
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * helper to update/remove inline back ref
1830  */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 				  struct btrfs_path *path,
1834 				  struct btrfs_extent_inline_ref *iref,
1835 				  int refs_to_mod,
1836 				  struct btrfs_delayed_extent_op *extent_op,
1837 				  int *last_ref)
1838 {
1839 	struct extent_buffer *leaf;
1840 	struct btrfs_extent_item *ei;
1841 	struct btrfs_extent_data_ref *dref = NULL;
1842 	struct btrfs_shared_data_ref *sref = NULL;
1843 	unsigned long ptr;
1844 	unsigned long end;
1845 	u32 item_size;
1846 	int size;
1847 	int type;
1848 	u64 refs;
1849 
1850 	leaf = path->nodes[0];
1851 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 	refs = btrfs_extent_refs(leaf, ei);
1853 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 	refs += refs_to_mod;
1855 	btrfs_set_extent_refs(leaf, ei, refs);
1856 	if (extent_op)
1857 		__run_delayed_extent_op(extent_op, leaf, ei);
1858 
1859 	type = btrfs_extent_inline_ref_type(leaf, iref);
1860 
1861 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 		refs = btrfs_extent_data_ref_count(leaf, dref);
1864 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 		refs = btrfs_shared_data_ref_count(leaf, sref);
1867 	} else {
1868 		refs = 1;
1869 		BUG_ON(refs_to_mod != -1);
1870 	}
1871 
1872 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 	refs += refs_to_mod;
1874 
1875 	if (refs > 0) {
1876 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 		else
1879 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 	} else {
1881 		*last_ref = 1;
1882 		size =  btrfs_extent_inline_ref_size(type);
1883 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 		ptr = (unsigned long)iref;
1885 		end = (unsigned long)ei + item_size;
1886 		if (ptr + size < end)
1887 			memmove_extent_buffer(leaf, ptr, ptr + size,
1888 					      end - ptr - size);
1889 		item_size -= size;
1890 		btrfs_truncate_item(root, path, item_size, 1);
1891 	}
1892 	btrfs_mark_buffer_dirty(leaf);
1893 }
1894 
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 				 struct btrfs_root *root,
1898 				 struct btrfs_path *path,
1899 				 u64 bytenr, u64 num_bytes, u64 parent,
1900 				 u64 root_objectid, u64 owner,
1901 				 u64 offset, int refs_to_add,
1902 				 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 	struct btrfs_extent_inline_ref *iref;
1905 	int ret;
1906 
1907 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 					   bytenr, num_bytes, parent,
1909 					   root_objectid, owner, offset, 1);
1910 	if (ret == 0) {
1911 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 		update_inline_extent_backref(root, path, iref,
1913 					     refs_to_add, extent_op, NULL);
1914 	} else if (ret == -ENOENT) {
1915 		setup_inline_extent_backref(root, path, iref, parent,
1916 					    root_objectid, owner, offset,
1917 					    refs_to_add, extent_op);
1918 		ret = 0;
1919 	}
1920 	return ret;
1921 }
1922 
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 				 struct btrfs_root *root,
1925 				 struct btrfs_path *path,
1926 				 u64 bytenr, u64 parent, u64 root_objectid,
1927 				 u64 owner, u64 offset, int refs_to_add)
1928 {
1929 	int ret;
1930 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 		BUG_ON(refs_to_add != 1);
1932 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 					    parent, root_objectid);
1934 	} else {
1935 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 					     parent, root_objectid,
1937 					     owner, offset, refs_to_add);
1938 	}
1939 	return ret;
1940 }
1941 
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 				 struct btrfs_root *root,
1944 				 struct btrfs_path *path,
1945 				 struct btrfs_extent_inline_ref *iref,
1946 				 int refs_to_drop, int is_data, int *last_ref)
1947 {
1948 	int ret = 0;
1949 
1950 	BUG_ON(!is_data && refs_to_drop != 1);
1951 	if (iref) {
1952 		update_inline_extent_backref(root, path, iref,
1953 					     -refs_to_drop, NULL, last_ref);
1954 	} else if (is_data) {
1955 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 					     last_ref);
1957 	} else {
1958 		*last_ref = 1;
1959 		ret = btrfs_del_item(trans, root, path);
1960 	}
1961 	return ret;
1962 }
1963 
1964 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 			       u64 *discarded_bytes)
1967 {
1968 	int j, ret = 0;
1969 	u64 bytes_left, end;
1970 	u64 aligned_start = ALIGN(start, 1 << 9);
1971 
1972 	if (WARN_ON(start != aligned_start)) {
1973 		len -= aligned_start - start;
1974 		len = round_down(len, 1 << 9);
1975 		start = aligned_start;
1976 	}
1977 
1978 	*discarded_bytes = 0;
1979 
1980 	if (!len)
1981 		return 0;
1982 
1983 	end = start + len;
1984 	bytes_left = len;
1985 
1986 	/* Skip any superblocks on this device. */
1987 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 		u64 sb_start = btrfs_sb_offset(j);
1989 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 		u64 size = sb_start - start;
1991 
1992 		if (!in_range(sb_start, start, bytes_left) &&
1993 		    !in_range(sb_end, start, bytes_left) &&
1994 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 			continue;
1996 
1997 		/*
1998 		 * Superblock spans beginning of range.  Adjust start and
1999 		 * try again.
2000 		 */
2001 		if (sb_start <= start) {
2002 			start += sb_end - start;
2003 			if (start > end) {
2004 				bytes_left = 0;
2005 				break;
2006 			}
2007 			bytes_left = end - start;
2008 			continue;
2009 		}
2010 
2011 		if (size) {
2012 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 						   GFP_NOFS, 0);
2014 			if (!ret)
2015 				*discarded_bytes += size;
2016 			else if (ret != -EOPNOTSUPP)
2017 				return ret;
2018 		}
2019 
2020 		start = sb_end;
2021 		if (start > end) {
2022 			bytes_left = 0;
2023 			break;
2024 		}
2025 		bytes_left = end - start;
2026 	}
2027 
2028 	if (bytes_left) {
2029 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 					   GFP_NOFS, 0);
2031 		if (!ret)
2032 			*discarded_bytes += bytes_left;
2033 	}
2034 	return ret;
2035 }
2036 
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 			 u64 num_bytes, u64 *actual_bytes)
2039 {
2040 	int ret;
2041 	u64 discarded_bytes = 0;
2042 	struct btrfs_bio *bbio = NULL;
2043 
2044 
2045 	/*
2046 	 * Avoid races with device replace and make sure our bbio has devices
2047 	 * associated to its stripes that don't go away while we are discarding.
2048 	 */
2049 	btrfs_bio_counter_inc_blocked(root->fs_info);
2050 	/* Tell the block device(s) that the sectors can be discarded */
2051 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052 			      bytenr, &num_bytes, &bbio, 0);
2053 	/* Error condition is -ENOMEM */
2054 	if (!ret) {
2055 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2056 		int i;
2057 
2058 
2059 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2060 			u64 bytes;
2061 			if (!stripe->dev->can_discard)
2062 				continue;
2063 
2064 			ret = btrfs_issue_discard(stripe->dev->bdev,
2065 						  stripe->physical,
2066 						  stripe->length,
2067 						  &bytes);
2068 			if (!ret)
2069 				discarded_bytes += bytes;
2070 			else if (ret != -EOPNOTSUPP)
2071 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2072 
2073 			/*
2074 			 * Just in case we get back EOPNOTSUPP for some reason,
2075 			 * just ignore the return value so we don't screw up
2076 			 * people calling discard_extent.
2077 			 */
2078 			ret = 0;
2079 		}
2080 		btrfs_put_bbio(bbio);
2081 	}
2082 	btrfs_bio_counter_dec(root->fs_info);
2083 
2084 	if (actual_bytes)
2085 		*actual_bytes = discarded_bytes;
2086 
2087 
2088 	if (ret == -EOPNOTSUPP)
2089 		ret = 0;
2090 	return ret;
2091 }
2092 
2093 /* Can return -ENOMEM */
2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 			 struct btrfs_root *root,
2096 			 u64 bytenr, u64 num_bytes, u64 parent,
2097 			 u64 root_objectid, u64 owner, u64 offset)
2098 {
2099 	int ret;
2100 	struct btrfs_fs_info *fs_info = root->fs_info;
2101 
2102 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104 
2105 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 					num_bytes,
2108 					parent, root_objectid, (int)owner,
2109 					BTRFS_ADD_DELAYED_REF, NULL);
2110 	} else {
2111 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112 					num_bytes, parent, root_objectid,
2113 					owner, offset, 0,
2114 					BTRFS_ADD_DELAYED_REF, NULL);
2115 	}
2116 	return ret;
2117 }
2118 
2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 				  struct btrfs_root *root,
2121 				  struct btrfs_delayed_ref_node *node,
2122 				  u64 parent, u64 root_objectid,
2123 				  u64 owner, u64 offset, int refs_to_add,
2124 				  struct btrfs_delayed_extent_op *extent_op)
2125 {
2126 	struct btrfs_fs_info *fs_info = root->fs_info;
2127 	struct btrfs_path *path;
2128 	struct extent_buffer *leaf;
2129 	struct btrfs_extent_item *item;
2130 	struct btrfs_key key;
2131 	u64 bytenr = node->bytenr;
2132 	u64 num_bytes = node->num_bytes;
2133 	u64 refs;
2134 	int ret;
2135 
2136 	path = btrfs_alloc_path();
2137 	if (!path)
2138 		return -ENOMEM;
2139 
2140 	path->reada = READA_FORWARD;
2141 	path->leave_spinning = 1;
2142 	/* this will setup the path even if it fails to insert the back ref */
2143 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 					   bytenr, num_bytes, parent,
2145 					   root_objectid, owner, offset,
2146 					   refs_to_add, extent_op);
2147 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2148 		goto out;
2149 
2150 	/*
2151 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 	 * inline extent ref, so just update the reference count and add a
2153 	 * normal backref.
2154 	 */
2155 	leaf = path->nodes[0];
2156 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 	refs = btrfs_extent_refs(leaf, item);
2159 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 	if (extent_op)
2161 		__run_delayed_extent_op(extent_op, leaf, item);
2162 
2163 	btrfs_mark_buffer_dirty(leaf);
2164 	btrfs_release_path(path);
2165 
2166 	path->reada = READA_FORWARD;
2167 	path->leave_spinning = 1;
2168 	/* now insert the actual backref */
2169 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170 				    path, bytenr, parent, root_objectid,
2171 				    owner, offset, refs_to_add);
2172 	if (ret)
2173 		btrfs_abort_transaction(trans, root, ret);
2174 out:
2175 	btrfs_free_path(path);
2176 	return ret;
2177 }
2178 
2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 				struct btrfs_root *root,
2181 				struct btrfs_delayed_ref_node *node,
2182 				struct btrfs_delayed_extent_op *extent_op,
2183 				int insert_reserved)
2184 {
2185 	int ret = 0;
2186 	struct btrfs_delayed_data_ref *ref;
2187 	struct btrfs_key ins;
2188 	u64 parent = 0;
2189 	u64 ref_root = 0;
2190 	u64 flags = 0;
2191 
2192 	ins.objectid = node->bytenr;
2193 	ins.offset = node->num_bytes;
2194 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2195 
2196 	ref = btrfs_delayed_node_to_data_ref(node);
2197 	trace_run_delayed_data_ref(node, ref, node->action);
2198 
2199 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 		parent = ref->parent;
2201 	ref_root = ref->root;
2202 
2203 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2204 		if (extent_op)
2205 			flags |= extent_op->flags_to_set;
2206 		ret = alloc_reserved_file_extent(trans, root,
2207 						 parent, ref_root, flags,
2208 						 ref->objectid, ref->offset,
2209 						 &ins, node->ref_mod);
2210 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212 					     ref_root, ref->objectid,
2213 					     ref->offset, node->ref_mod,
2214 					     extent_op);
2215 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216 		ret = __btrfs_free_extent(trans, root, node, parent,
2217 					  ref_root, ref->objectid,
2218 					  ref->offset, node->ref_mod,
2219 					  extent_op);
2220 	} else {
2221 		BUG();
2222 	}
2223 	return ret;
2224 }
2225 
2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 				    struct extent_buffer *leaf,
2228 				    struct btrfs_extent_item *ei)
2229 {
2230 	u64 flags = btrfs_extent_flags(leaf, ei);
2231 	if (extent_op->update_flags) {
2232 		flags |= extent_op->flags_to_set;
2233 		btrfs_set_extent_flags(leaf, ei, flags);
2234 	}
2235 
2236 	if (extent_op->update_key) {
2237 		struct btrfs_tree_block_info *bi;
2238 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 	}
2242 }
2243 
2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 				 struct btrfs_root *root,
2246 				 struct btrfs_delayed_ref_node *node,
2247 				 struct btrfs_delayed_extent_op *extent_op)
2248 {
2249 	struct btrfs_key key;
2250 	struct btrfs_path *path;
2251 	struct btrfs_extent_item *ei;
2252 	struct extent_buffer *leaf;
2253 	u32 item_size;
2254 	int ret;
2255 	int err = 0;
2256 	int metadata = !extent_op->is_data;
2257 
2258 	if (trans->aborted)
2259 		return 0;
2260 
2261 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 		metadata = 0;
2263 
2264 	path = btrfs_alloc_path();
2265 	if (!path)
2266 		return -ENOMEM;
2267 
2268 	key.objectid = node->bytenr;
2269 
2270 	if (metadata) {
2271 		key.type = BTRFS_METADATA_ITEM_KEY;
2272 		key.offset = extent_op->level;
2273 	} else {
2274 		key.type = BTRFS_EXTENT_ITEM_KEY;
2275 		key.offset = node->num_bytes;
2276 	}
2277 
2278 again:
2279 	path->reada = READA_FORWARD;
2280 	path->leave_spinning = 1;
2281 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 				path, 0, 1);
2283 	if (ret < 0) {
2284 		err = ret;
2285 		goto out;
2286 	}
2287 	if (ret > 0) {
2288 		if (metadata) {
2289 			if (path->slots[0] > 0) {
2290 				path->slots[0]--;
2291 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 						      path->slots[0]);
2293 				if (key.objectid == node->bytenr &&
2294 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 				    key.offset == node->num_bytes)
2296 					ret = 0;
2297 			}
2298 			if (ret > 0) {
2299 				btrfs_release_path(path);
2300 				metadata = 0;
2301 
2302 				key.objectid = node->bytenr;
2303 				key.offset = node->num_bytes;
2304 				key.type = BTRFS_EXTENT_ITEM_KEY;
2305 				goto again;
2306 			}
2307 		} else {
2308 			err = -EIO;
2309 			goto out;
2310 		}
2311 	}
2312 
2313 	leaf = path->nodes[0];
2314 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 	if (item_size < sizeof(*ei)) {
2317 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 					     path, (u64)-1, 0);
2319 		if (ret < 0) {
2320 			err = ret;
2321 			goto out;
2322 		}
2323 		leaf = path->nodes[0];
2324 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 	}
2326 #endif
2327 	BUG_ON(item_size < sizeof(*ei));
2328 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 	__run_delayed_extent_op(extent_op, leaf, ei);
2330 
2331 	btrfs_mark_buffer_dirty(leaf);
2332 out:
2333 	btrfs_free_path(path);
2334 	return err;
2335 }
2336 
2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 				struct btrfs_root *root,
2339 				struct btrfs_delayed_ref_node *node,
2340 				struct btrfs_delayed_extent_op *extent_op,
2341 				int insert_reserved)
2342 {
2343 	int ret = 0;
2344 	struct btrfs_delayed_tree_ref *ref;
2345 	struct btrfs_key ins;
2346 	u64 parent = 0;
2347 	u64 ref_root = 0;
2348 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 						 SKINNY_METADATA);
2350 
2351 	ref = btrfs_delayed_node_to_tree_ref(node);
2352 	trace_run_delayed_tree_ref(node, ref, node->action);
2353 
2354 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 		parent = ref->parent;
2356 	ref_root = ref->root;
2357 
2358 	ins.objectid = node->bytenr;
2359 	if (skinny_metadata) {
2360 		ins.offset = ref->level;
2361 		ins.type = BTRFS_METADATA_ITEM_KEY;
2362 	} else {
2363 		ins.offset = node->num_bytes;
2364 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 	}
2366 
2367 	BUG_ON(node->ref_mod != 1);
2368 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369 		BUG_ON(!extent_op || !extent_op->update_flags);
2370 		ret = alloc_reserved_tree_block(trans, root,
2371 						parent, ref_root,
2372 						extent_op->flags_to_set,
2373 						&extent_op->key,
2374 						ref->level, &ins);
2375 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376 		ret = __btrfs_inc_extent_ref(trans, root, node,
2377 					     parent, ref_root,
2378 					     ref->level, 0, 1,
2379 					     extent_op);
2380 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381 		ret = __btrfs_free_extent(trans, root, node,
2382 					  parent, ref_root,
2383 					  ref->level, 0, 1, extent_op);
2384 	} else {
2385 		BUG();
2386 	}
2387 	return ret;
2388 }
2389 
2390 /* helper function to actually process a single delayed ref entry */
2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 			       struct btrfs_root *root,
2393 			       struct btrfs_delayed_ref_node *node,
2394 			       struct btrfs_delayed_extent_op *extent_op,
2395 			       int insert_reserved)
2396 {
2397 	int ret = 0;
2398 
2399 	if (trans->aborted) {
2400 		if (insert_reserved)
2401 			btrfs_pin_extent(root, node->bytenr,
2402 					 node->num_bytes, 1);
2403 		return 0;
2404 	}
2405 
2406 	if (btrfs_delayed_ref_is_head(node)) {
2407 		struct btrfs_delayed_ref_head *head;
2408 		/*
2409 		 * we've hit the end of the chain and we were supposed
2410 		 * to insert this extent into the tree.  But, it got
2411 		 * deleted before we ever needed to insert it, so all
2412 		 * we have to do is clean up the accounting
2413 		 */
2414 		BUG_ON(extent_op);
2415 		head = btrfs_delayed_node_to_head(node);
2416 		trace_run_delayed_ref_head(node, head, node->action);
2417 
2418 		if (insert_reserved) {
2419 			btrfs_pin_extent(root, node->bytenr,
2420 					 node->num_bytes, 1);
2421 			if (head->is_data) {
2422 				ret = btrfs_del_csums(trans, root,
2423 						      node->bytenr,
2424 						      node->num_bytes);
2425 			}
2426 		}
2427 
2428 		/* Also free its reserved qgroup space */
2429 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 					      head->qgroup_ref_root,
2431 					      head->qgroup_reserved);
2432 		return ret;
2433 	}
2434 
2435 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 					   insert_reserved);
2439 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 					   insert_reserved);
2443 	else
2444 		BUG();
2445 	return ret;
2446 }
2447 
2448 static inline struct btrfs_delayed_ref_node *
2449 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450 {
2451 	struct btrfs_delayed_ref_node *ref;
2452 
2453 	if (list_empty(&head->ref_list))
2454 		return NULL;
2455 
2456 	/*
2457 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 	 * This is to prevent a ref count from going down to zero, which deletes
2459 	 * the extent item from the extent tree, when there still are references
2460 	 * to add, which would fail because they would not find the extent item.
2461 	 */
2462 	list_for_each_entry(ref, &head->ref_list, list) {
2463 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 			return ref;
2465 	}
2466 
2467 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 			  list);
2469 }
2470 
2471 /*
2472  * Returns 0 on success or if called with an already aborted transaction.
2473  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474  */
2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 					     struct btrfs_root *root,
2477 					     unsigned long nr)
2478 {
2479 	struct btrfs_delayed_ref_root *delayed_refs;
2480 	struct btrfs_delayed_ref_node *ref;
2481 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2482 	struct btrfs_delayed_extent_op *extent_op;
2483 	struct btrfs_fs_info *fs_info = root->fs_info;
2484 	ktime_t start = ktime_get();
2485 	int ret;
2486 	unsigned long count = 0;
2487 	unsigned long actual_count = 0;
2488 	int must_insert_reserved = 0;
2489 
2490 	delayed_refs = &trans->transaction->delayed_refs;
2491 	while (1) {
2492 		if (!locked_ref) {
2493 			if (count >= nr)
2494 				break;
2495 
2496 			spin_lock(&delayed_refs->lock);
2497 			locked_ref = btrfs_select_ref_head(trans);
2498 			if (!locked_ref) {
2499 				spin_unlock(&delayed_refs->lock);
2500 				break;
2501 			}
2502 
2503 			/* grab the lock that says we are going to process
2504 			 * all the refs for this head */
2505 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506 			spin_unlock(&delayed_refs->lock);
2507 			/*
2508 			 * we may have dropped the spin lock to get the head
2509 			 * mutex lock, and that might have given someone else
2510 			 * time to free the head.  If that's true, it has been
2511 			 * removed from our list and we can move on.
2512 			 */
2513 			if (ret == -EAGAIN) {
2514 				locked_ref = NULL;
2515 				count++;
2516 				continue;
2517 			}
2518 		}
2519 
2520 		/*
2521 		 * We need to try and merge add/drops of the same ref since we
2522 		 * can run into issues with relocate dropping the implicit ref
2523 		 * and then it being added back again before the drop can
2524 		 * finish.  If we merged anything we need to re-loop so we can
2525 		 * get a good ref.
2526 		 * Or we can get node references of the same type that weren't
2527 		 * merged when created due to bumps in the tree mod seq, and
2528 		 * we need to merge them to prevent adding an inline extent
2529 		 * backref before dropping it (triggering a BUG_ON at
2530 		 * insert_inline_extent_backref()).
2531 		 */
2532 		spin_lock(&locked_ref->lock);
2533 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 					 locked_ref);
2535 
2536 		/*
2537 		 * locked_ref is the head node, so we have to go one
2538 		 * node back for any delayed ref updates
2539 		 */
2540 		ref = select_delayed_ref(locked_ref);
2541 
2542 		if (ref && ref->seq &&
2543 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544 			spin_unlock(&locked_ref->lock);
2545 			btrfs_delayed_ref_unlock(locked_ref);
2546 			spin_lock(&delayed_refs->lock);
2547 			locked_ref->processing = 0;
2548 			delayed_refs->num_heads_ready++;
2549 			spin_unlock(&delayed_refs->lock);
2550 			locked_ref = NULL;
2551 			cond_resched();
2552 			count++;
2553 			continue;
2554 		}
2555 
2556 		/*
2557 		 * record the must insert reserved flag before we
2558 		 * drop the spin lock.
2559 		 */
2560 		must_insert_reserved = locked_ref->must_insert_reserved;
2561 		locked_ref->must_insert_reserved = 0;
2562 
2563 		extent_op = locked_ref->extent_op;
2564 		locked_ref->extent_op = NULL;
2565 
2566 		if (!ref) {
2567 
2568 
2569 			/* All delayed refs have been processed, Go ahead
2570 			 * and send the head node to run_one_delayed_ref,
2571 			 * so that any accounting fixes can happen
2572 			 */
2573 			ref = &locked_ref->node;
2574 
2575 			if (extent_op && must_insert_reserved) {
2576 				btrfs_free_delayed_extent_op(extent_op);
2577 				extent_op = NULL;
2578 			}
2579 
2580 			if (extent_op) {
2581 				spin_unlock(&locked_ref->lock);
2582 				ret = run_delayed_extent_op(trans, root,
2583 							    ref, extent_op);
2584 				btrfs_free_delayed_extent_op(extent_op);
2585 
2586 				if (ret) {
2587 					/*
2588 					 * Need to reset must_insert_reserved if
2589 					 * there was an error so the abort stuff
2590 					 * can cleanup the reserved space
2591 					 * properly.
2592 					 */
2593 					if (must_insert_reserved)
2594 						locked_ref->must_insert_reserved = 1;
2595 					locked_ref->processing = 0;
2596 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597 					btrfs_delayed_ref_unlock(locked_ref);
2598 					return ret;
2599 				}
2600 				continue;
2601 			}
2602 
2603 			/*
2604 			 * Need to drop our head ref lock and re-acquire the
2605 			 * delayed ref lock and then re-check to make sure
2606 			 * nobody got added.
2607 			 */
2608 			spin_unlock(&locked_ref->lock);
2609 			spin_lock(&delayed_refs->lock);
2610 			spin_lock(&locked_ref->lock);
2611 			if (!list_empty(&locked_ref->ref_list) ||
2612 			    locked_ref->extent_op) {
2613 				spin_unlock(&locked_ref->lock);
2614 				spin_unlock(&delayed_refs->lock);
2615 				continue;
2616 			}
2617 			ref->in_tree = 0;
2618 			delayed_refs->num_heads--;
2619 			rb_erase(&locked_ref->href_node,
2620 				 &delayed_refs->href_root);
2621 			spin_unlock(&delayed_refs->lock);
2622 		} else {
2623 			actual_count++;
2624 			ref->in_tree = 0;
2625 			list_del(&ref->list);
2626 		}
2627 		atomic_dec(&delayed_refs->num_entries);
2628 
2629 		if (!btrfs_delayed_ref_is_head(ref)) {
2630 			/*
2631 			 * when we play the delayed ref, also correct the
2632 			 * ref_mod on head
2633 			 */
2634 			switch (ref->action) {
2635 			case BTRFS_ADD_DELAYED_REF:
2636 			case BTRFS_ADD_DELAYED_EXTENT:
2637 				locked_ref->node.ref_mod -= ref->ref_mod;
2638 				break;
2639 			case BTRFS_DROP_DELAYED_REF:
2640 				locked_ref->node.ref_mod += ref->ref_mod;
2641 				break;
2642 			default:
2643 				WARN_ON(1);
2644 			}
2645 		}
2646 		spin_unlock(&locked_ref->lock);
2647 
2648 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 					  must_insert_reserved);
2650 
2651 		btrfs_free_delayed_extent_op(extent_op);
2652 		if (ret) {
2653 			locked_ref->processing = 0;
2654 			btrfs_delayed_ref_unlock(locked_ref);
2655 			btrfs_put_delayed_ref(ref);
2656 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657 			return ret;
2658 		}
2659 
2660 		/*
2661 		 * If this node is a head, that means all the refs in this head
2662 		 * have been dealt with, and we will pick the next head to deal
2663 		 * with, so we must unlock the head and drop it from the cluster
2664 		 * list before we release it.
2665 		 */
2666 		if (btrfs_delayed_ref_is_head(ref)) {
2667 			if (locked_ref->is_data &&
2668 			    locked_ref->total_ref_mod < 0) {
2669 				spin_lock(&delayed_refs->lock);
2670 				delayed_refs->pending_csums -= ref->num_bytes;
2671 				spin_unlock(&delayed_refs->lock);
2672 			}
2673 			btrfs_delayed_ref_unlock(locked_ref);
2674 			locked_ref = NULL;
2675 		}
2676 		btrfs_put_delayed_ref(ref);
2677 		count++;
2678 		cond_resched();
2679 	}
2680 
2681 	/*
2682 	 * We don't want to include ref heads since we can have empty ref heads
2683 	 * and those will drastically skew our runtime down since we just do
2684 	 * accounting, no actual extent tree updates.
2685 	 */
2686 	if (actual_count > 0) {
2687 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 		u64 avg;
2689 
2690 		/*
2691 		 * We weigh the current average higher than our current runtime
2692 		 * to avoid large swings in the average.
2693 		 */
2694 		spin_lock(&delayed_refs->lock);
2695 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2697 		spin_unlock(&delayed_refs->lock);
2698 	}
2699 	return 0;
2700 }
2701 
2702 #ifdef SCRAMBLE_DELAYED_REFS
2703 /*
2704  * Normally delayed refs get processed in ascending bytenr order. This
2705  * correlates in most cases to the order added. To expose dependencies on this
2706  * order, we start to process the tree in the middle instead of the beginning
2707  */
2708 static u64 find_middle(struct rb_root *root)
2709 {
2710 	struct rb_node *n = root->rb_node;
2711 	struct btrfs_delayed_ref_node *entry;
2712 	int alt = 1;
2713 	u64 middle;
2714 	u64 first = 0, last = 0;
2715 
2716 	n = rb_first(root);
2717 	if (n) {
2718 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 		first = entry->bytenr;
2720 	}
2721 	n = rb_last(root);
2722 	if (n) {
2723 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 		last = entry->bytenr;
2725 	}
2726 	n = root->rb_node;
2727 
2728 	while (n) {
2729 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 		WARN_ON(!entry->in_tree);
2731 
2732 		middle = entry->bytenr;
2733 
2734 		if (alt)
2735 			n = n->rb_left;
2736 		else
2737 			n = n->rb_right;
2738 
2739 		alt = 1 - alt;
2740 	}
2741 	return middle;
2742 }
2743 #endif
2744 
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 {
2747 	u64 num_bytes;
2748 
2749 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 			     sizeof(struct btrfs_extent_inline_ref));
2751 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753 
2754 	/*
2755 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2756 	 * closer to what we're really going to want to use.
2757 	 */
2758 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 }
2760 
2761 /*
2762  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763  * would require to store the csums for that many bytes.
2764  */
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766 {
2767 	u64 csum_size;
2768 	u64 num_csums_per_leaf;
2769 	u64 num_csums;
2770 
2771 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 	num_csums_per_leaf = div64_u64(csum_size,
2773 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 	num_csums += num_csums_per_leaf - 1;
2776 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 	return num_csums;
2778 }
2779 
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781 				       struct btrfs_root *root)
2782 {
2783 	struct btrfs_block_rsv *global_rsv;
2784 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 	u64 num_bytes, num_dirty_bgs_bytes;
2788 	int ret = 0;
2789 
2790 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 	num_heads = heads_to_leaves(root, num_heads);
2792 	if (num_heads > 1)
2793 		num_bytes += (num_heads - 1) * root->nodesize;
2794 	num_bytes <<= 1;
2795 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 							     num_dirty_bgs);
2798 	global_rsv = &root->fs_info->global_block_rsv;
2799 
2800 	/*
2801 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 	 * wiggle room since running delayed refs can create more delayed refs.
2803 	 */
2804 	if (global_rsv->space_info->full) {
2805 		num_dirty_bgs_bytes <<= 1;
2806 		num_bytes <<= 1;
2807 	}
2808 
2809 	spin_lock(&global_rsv->lock);
2810 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811 		ret = 1;
2812 	spin_unlock(&global_rsv->lock);
2813 	return ret;
2814 }
2815 
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 				       struct btrfs_root *root)
2818 {
2819 	struct btrfs_fs_info *fs_info = root->fs_info;
2820 	u64 num_entries =
2821 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 	u64 avg_runtime;
2823 	u64 val;
2824 
2825 	smp_mb();
2826 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2827 	val = num_entries * avg_runtime;
2828 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 		return 1;
2830 	if (val >= NSEC_PER_SEC / 2)
2831 		return 2;
2832 
2833 	return btrfs_check_space_for_delayed_refs(trans, root);
2834 }
2835 
2836 struct async_delayed_refs {
2837 	struct btrfs_root *root;
2838 	u64 transid;
2839 	int count;
2840 	int error;
2841 	int sync;
2842 	struct completion wait;
2843 	struct btrfs_work work;
2844 };
2845 
2846 static void delayed_ref_async_start(struct btrfs_work *work)
2847 {
2848 	struct async_delayed_refs *async;
2849 	struct btrfs_trans_handle *trans;
2850 	int ret;
2851 
2852 	async = container_of(work, struct async_delayed_refs, work);
2853 
2854 	/* if the commit is already started, we don't need to wait here */
2855 	if (btrfs_transaction_blocked(async->root->fs_info))
2856 		goto done;
2857 
2858 	trans = btrfs_join_transaction(async->root);
2859 	if (IS_ERR(trans)) {
2860 		async->error = PTR_ERR(trans);
2861 		goto done;
2862 	}
2863 
2864 	/*
2865 	 * trans->sync means that when we call end_transaction, we won't
2866 	 * wait on delayed refs
2867 	 */
2868 	trans->sync = true;
2869 
2870 	/* Don't bother flushing if we got into a different transaction */
2871 	if (trans->transid > async->transid)
2872 		goto end;
2873 
2874 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875 	if (ret)
2876 		async->error = ret;
2877 end:
2878 	ret = btrfs_end_transaction(trans, async->root);
2879 	if (ret && !async->error)
2880 		async->error = ret;
2881 done:
2882 	if (async->sync)
2883 		complete(&async->wait);
2884 	else
2885 		kfree(async);
2886 }
2887 
2888 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2889 				 unsigned long count, u64 transid, int wait)
2890 {
2891 	struct async_delayed_refs *async;
2892 	int ret;
2893 
2894 	async = kmalloc(sizeof(*async), GFP_NOFS);
2895 	if (!async)
2896 		return -ENOMEM;
2897 
2898 	async->root = root->fs_info->tree_root;
2899 	async->count = count;
2900 	async->error = 0;
2901 	async->transid = transid;
2902 	if (wait)
2903 		async->sync = 1;
2904 	else
2905 		async->sync = 0;
2906 	init_completion(&async->wait);
2907 
2908 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909 			delayed_ref_async_start, NULL, NULL);
2910 
2911 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912 
2913 	if (wait) {
2914 		wait_for_completion(&async->wait);
2915 		ret = async->error;
2916 		kfree(async);
2917 		return ret;
2918 	}
2919 	return 0;
2920 }
2921 
2922 /*
2923  * this starts processing the delayed reference count updates and
2924  * extent insertions we have queued up so far.  count can be
2925  * 0, which means to process everything in the tree at the start
2926  * of the run (but not newly added entries), or it can be some target
2927  * number you'd like to process.
2928  *
2929  * Returns 0 on success or if called with an aborted transaction
2930  * Returns <0 on error and aborts the transaction
2931  */
2932 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933 			   struct btrfs_root *root, unsigned long count)
2934 {
2935 	struct rb_node *node;
2936 	struct btrfs_delayed_ref_root *delayed_refs;
2937 	struct btrfs_delayed_ref_head *head;
2938 	int ret;
2939 	int run_all = count == (unsigned long)-1;
2940 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2941 
2942 	/* We'll clean this up in btrfs_cleanup_transaction */
2943 	if (trans->aborted)
2944 		return 0;
2945 
2946 	if (root->fs_info->creating_free_space_tree)
2947 		return 0;
2948 
2949 	if (root == root->fs_info->extent_root)
2950 		root = root->fs_info->tree_root;
2951 
2952 	delayed_refs = &trans->transaction->delayed_refs;
2953 	if (count == 0)
2954 		count = atomic_read(&delayed_refs->num_entries) * 2;
2955 
2956 again:
2957 #ifdef SCRAMBLE_DELAYED_REFS
2958 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959 #endif
2960 	trans->can_flush_pending_bgs = false;
2961 	ret = __btrfs_run_delayed_refs(trans, root, count);
2962 	if (ret < 0) {
2963 		btrfs_abort_transaction(trans, root, ret);
2964 		return ret;
2965 	}
2966 
2967 	if (run_all) {
2968 		if (!list_empty(&trans->new_bgs))
2969 			btrfs_create_pending_block_groups(trans, root);
2970 
2971 		spin_lock(&delayed_refs->lock);
2972 		node = rb_first(&delayed_refs->href_root);
2973 		if (!node) {
2974 			spin_unlock(&delayed_refs->lock);
2975 			goto out;
2976 		}
2977 		count = (unsigned long)-1;
2978 
2979 		while (node) {
2980 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2981 					href_node);
2982 			if (btrfs_delayed_ref_is_head(&head->node)) {
2983 				struct btrfs_delayed_ref_node *ref;
2984 
2985 				ref = &head->node;
2986 				atomic_inc(&ref->refs);
2987 
2988 				spin_unlock(&delayed_refs->lock);
2989 				/*
2990 				 * Mutex was contended, block until it's
2991 				 * released and try again
2992 				 */
2993 				mutex_lock(&head->mutex);
2994 				mutex_unlock(&head->mutex);
2995 
2996 				btrfs_put_delayed_ref(ref);
2997 				cond_resched();
2998 				goto again;
2999 			} else {
3000 				WARN_ON(1);
3001 			}
3002 			node = rb_next(node);
3003 		}
3004 		spin_unlock(&delayed_refs->lock);
3005 		cond_resched();
3006 		goto again;
3007 	}
3008 out:
3009 	assert_qgroups_uptodate(trans);
3010 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011 	return 0;
3012 }
3013 
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015 				struct btrfs_root *root,
3016 				u64 bytenr, u64 num_bytes, u64 flags,
3017 				int level, int is_data)
3018 {
3019 	struct btrfs_delayed_extent_op *extent_op;
3020 	int ret;
3021 
3022 	extent_op = btrfs_alloc_delayed_extent_op();
3023 	if (!extent_op)
3024 		return -ENOMEM;
3025 
3026 	extent_op->flags_to_set = flags;
3027 	extent_op->update_flags = true;
3028 	extent_op->update_key = false;
3029 	extent_op->is_data = is_data ? true : false;
3030 	extent_op->level = level;
3031 
3032 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033 					  num_bytes, extent_op);
3034 	if (ret)
3035 		btrfs_free_delayed_extent_op(extent_op);
3036 	return ret;
3037 }
3038 
3039 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040 				      struct btrfs_root *root,
3041 				      struct btrfs_path *path,
3042 				      u64 objectid, u64 offset, u64 bytenr)
3043 {
3044 	struct btrfs_delayed_ref_head *head;
3045 	struct btrfs_delayed_ref_node *ref;
3046 	struct btrfs_delayed_data_ref *data_ref;
3047 	struct btrfs_delayed_ref_root *delayed_refs;
3048 	int ret = 0;
3049 
3050 	delayed_refs = &trans->transaction->delayed_refs;
3051 	spin_lock(&delayed_refs->lock);
3052 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3053 	if (!head) {
3054 		spin_unlock(&delayed_refs->lock);
3055 		return 0;
3056 	}
3057 
3058 	if (!mutex_trylock(&head->mutex)) {
3059 		atomic_inc(&head->node.refs);
3060 		spin_unlock(&delayed_refs->lock);
3061 
3062 		btrfs_release_path(path);
3063 
3064 		/*
3065 		 * Mutex was contended, block until it's released and let
3066 		 * caller try again
3067 		 */
3068 		mutex_lock(&head->mutex);
3069 		mutex_unlock(&head->mutex);
3070 		btrfs_put_delayed_ref(&head->node);
3071 		return -EAGAIN;
3072 	}
3073 	spin_unlock(&delayed_refs->lock);
3074 
3075 	spin_lock(&head->lock);
3076 	list_for_each_entry(ref, &head->ref_list, list) {
3077 		/* If it's a shared ref we know a cross reference exists */
3078 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079 			ret = 1;
3080 			break;
3081 		}
3082 
3083 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3084 
3085 		/*
3086 		 * If our ref doesn't match the one we're currently looking at
3087 		 * then we have a cross reference.
3088 		 */
3089 		if (data_ref->root != root->root_key.objectid ||
3090 		    data_ref->objectid != objectid ||
3091 		    data_ref->offset != offset) {
3092 			ret = 1;
3093 			break;
3094 		}
3095 	}
3096 	spin_unlock(&head->lock);
3097 	mutex_unlock(&head->mutex);
3098 	return ret;
3099 }
3100 
3101 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102 					struct btrfs_root *root,
3103 					struct btrfs_path *path,
3104 					u64 objectid, u64 offset, u64 bytenr)
3105 {
3106 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3107 	struct extent_buffer *leaf;
3108 	struct btrfs_extent_data_ref *ref;
3109 	struct btrfs_extent_inline_ref *iref;
3110 	struct btrfs_extent_item *ei;
3111 	struct btrfs_key key;
3112 	u32 item_size;
3113 	int ret;
3114 
3115 	key.objectid = bytenr;
3116 	key.offset = (u64)-1;
3117 	key.type = BTRFS_EXTENT_ITEM_KEY;
3118 
3119 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120 	if (ret < 0)
3121 		goto out;
3122 	BUG_ON(ret == 0); /* Corruption */
3123 
3124 	ret = -ENOENT;
3125 	if (path->slots[0] == 0)
3126 		goto out;
3127 
3128 	path->slots[0]--;
3129 	leaf = path->nodes[0];
3130 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131 
3132 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133 		goto out;
3134 
3135 	ret = 1;
3136 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 	if (item_size < sizeof(*ei)) {
3139 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140 		goto out;
3141 	}
3142 #endif
3143 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144 
3145 	if (item_size != sizeof(*ei) +
3146 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147 		goto out;
3148 
3149 	if (btrfs_extent_generation(leaf, ei) <=
3150 	    btrfs_root_last_snapshot(&root->root_item))
3151 		goto out;
3152 
3153 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155 	    BTRFS_EXTENT_DATA_REF_KEY)
3156 		goto out;
3157 
3158 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159 	if (btrfs_extent_refs(leaf, ei) !=
3160 	    btrfs_extent_data_ref_count(leaf, ref) ||
3161 	    btrfs_extent_data_ref_root(leaf, ref) !=
3162 	    root->root_key.objectid ||
3163 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165 		goto out;
3166 
3167 	ret = 0;
3168 out:
3169 	return ret;
3170 }
3171 
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173 			  struct btrfs_root *root,
3174 			  u64 objectid, u64 offset, u64 bytenr)
3175 {
3176 	struct btrfs_path *path;
3177 	int ret;
3178 	int ret2;
3179 
3180 	path = btrfs_alloc_path();
3181 	if (!path)
3182 		return -ENOENT;
3183 
3184 	do {
3185 		ret = check_committed_ref(trans, root, path, objectid,
3186 					  offset, bytenr);
3187 		if (ret && ret != -ENOENT)
3188 			goto out;
3189 
3190 		ret2 = check_delayed_ref(trans, root, path, objectid,
3191 					 offset, bytenr);
3192 	} while (ret2 == -EAGAIN);
3193 
3194 	if (ret2 && ret2 != -ENOENT) {
3195 		ret = ret2;
3196 		goto out;
3197 	}
3198 
3199 	if (ret != -ENOENT || ret2 != -ENOENT)
3200 		ret = 0;
3201 out:
3202 	btrfs_free_path(path);
3203 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204 		WARN_ON(ret > 0);
3205 	return ret;
3206 }
3207 
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209 			   struct btrfs_root *root,
3210 			   struct extent_buffer *buf,
3211 			   int full_backref, int inc)
3212 {
3213 	u64 bytenr;
3214 	u64 num_bytes;
3215 	u64 parent;
3216 	u64 ref_root;
3217 	u32 nritems;
3218 	struct btrfs_key key;
3219 	struct btrfs_file_extent_item *fi;
3220 	int i;
3221 	int level;
3222 	int ret = 0;
3223 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3224 			    u64, u64, u64, u64, u64, u64);
3225 
3226 
3227 	if (btrfs_test_is_dummy_root(root))
3228 		return 0;
3229 
3230 	ref_root = btrfs_header_owner(buf);
3231 	nritems = btrfs_header_nritems(buf);
3232 	level = btrfs_header_level(buf);
3233 
3234 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235 		return 0;
3236 
3237 	if (inc)
3238 		process_func = btrfs_inc_extent_ref;
3239 	else
3240 		process_func = btrfs_free_extent;
3241 
3242 	if (full_backref)
3243 		parent = buf->start;
3244 	else
3245 		parent = 0;
3246 
3247 	for (i = 0; i < nritems; i++) {
3248 		if (level == 0) {
3249 			btrfs_item_key_to_cpu(buf, &key, i);
3250 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3251 				continue;
3252 			fi = btrfs_item_ptr(buf, i,
3253 					    struct btrfs_file_extent_item);
3254 			if (btrfs_file_extent_type(buf, fi) ==
3255 			    BTRFS_FILE_EXTENT_INLINE)
3256 				continue;
3257 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258 			if (bytenr == 0)
3259 				continue;
3260 
3261 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262 			key.offset -= btrfs_file_extent_offset(buf, fi);
3263 			ret = process_func(trans, root, bytenr, num_bytes,
3264 					   parent, ref_root, key.objectid,
3265 					   key.offset);
3266 			if (ret)
3267 				goto fail;
3268 		} else {
3269 			bytenr = btrfs_node_blockptr(buf, i);
3270 			num_bytes = root->nodesize;
3271 			ret = process_func(trans, root, bytenr, num_bytes,
3272 					   parent, ref_root, level - 1, 0);
3273 			if (ret)
3274 				goto fail;
3275 		}
3276 	}
3277 	return 0;
3278 fail:
3279 	return ret;
3280 }
3281 
3282 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3283 		  struct extent_buffer *buf, int full_backref)
3284 {
3285 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3286 }
3287 
3288 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3289 		  struct extent_buffer *buf, int full_backref)
3290 {
3291 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3292 }
3293 
3294 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295 				 struct btrfs_root *root,
3296 				 struct btrfs_path *path,
3297 				 struct btrfs_block_group_cache *cache)
3298 {
3299 	int ret;
3300 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3301 	unsigned long bi;
3302 	struct extent_buffer *leaf;
3303 
3304 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3305 	if (ret) {
3306 		if (ret > 0)
3307 			ret = -ENOENT;
3308 		goto fail;
3309 	}
3310 
3311 	leaf = path->nodes[0];
3312 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314 	btrfs_mark_buffer_dirty(leaf);
3315 fail:
3316 	btrfs_release_path(path);
3317 	return ret;
3318 
3319 }
3320 
3321 static struct btrfs_block_group_cache *
3322 next_block_group(struct btrfs_root *root,
3323 		 struct btrfs_block_group_cache *cache)
3324 {
3325 	struct rb_node *node;
3326 
3327 	spin_lock(&root->fs_info->block_group_cache_lock);
3328 
3329 	/* If our block group was removed, we need a full search. */
3330 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3331 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332 
3333 		spin_unlock(&root->fs_info->block_group_cache_lock);
3334 		btrfs_put_block_group(cache);
3335 		cache = btrfs_lookup_first_block_group(root->fs_info,
3336 						       next_bytenr);
3337 		return cache;
3338 	}
3339 	node = rb_next(&cache->cache_node);
3340 	btrfs_put_block_group(cache);
3341 	if (node) {
3342 		cache = rb_entry(node, struct btrfs_block_group_cache,
3343 				 cache_node);
3344 		btrfs_get_block_group(cache);
3345 	} else
3346 		cache = NULL;
3347 	spin_unlock(&root->fs_info->block_group_cache_lock);
3348 	return cache;
3349 }
3350 
3351 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352 			    struct btrfs_trans_handle *trans,
3353 			    struct btrfs_path *path)
3354 {
3355 	struct btrfs_root *root = block_group->fs_info->tree_root;
3356 	struct inode *inode = NULL;
3357 	u64 alloc_hint = 0;
3358 	int dcs = BTRFS_DC_ERROR;
3359 	u64 num_pages = 0;
3360 	int retries = 0;
3361 	int ret = 0;
3362 
3363 	/*
3364 	 * If this block group is smaller than 100 megs don't bother caching the
3365 	 * block group.
3366 	 */
3367 	if (block_group->key.offset < (100 * SZ_1M)) {
3368 		spin_lock(&block_group->lock);
3369 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370 		spin_unlock(&block_group->lock);
3371 		return 0;
3372 	}
3373 
3374 	if (trans->aborted)
3375 		return 0;
3376 again:
3377 	inode = lookup_free_space_inode(root, block_group, path);
3378 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379 		ret = PTR_ERR(inode);
3380 		btrfs_release_path(path);
3381 		goto out;
3382 	}
3383 
3384 	if (IS_ERR(inode)) {
3385 		BUG_ON(retries);
3386 		retries++;
3387 
3388 		if (block_group->ro)
3389 			goto out_free;
3390 
3391 		ret = create_free_space_inode(root, trans, block_group, path);
3392 		if (ret)
3393 			goto out_free;
3394 		goto again;
3395 	}
3396 
3397 	/* We've already setup this transaction, go ahead and exit */
3398 	if (block_group->cache_generation == trans->transid &&
3399 	    i_size_read(inode)) {
3400 		dcs = BTRFS_DC_SETUP;
3401 		goto out_put;
3402 	}
3403 
3404 	/*
3405 	 * We want to set the generation to 0, that way if anything goes wrong
3406 	 * from here on out we know not to trust this cache when we load up next
3407 	 * time.
3408 	 */
3409 	BTRFS_I(inode)->generation = 0;
3410 	ret = btrfs_update_inode(trans, root, inode);
3411 	if (ret) {
3412 		/*
3413 		 * So theoretically we could recover from this, simply set the
3414 		 * super cache generation to 0 so we know to invalidate the
3415 		 * cache, but then we'd have to keep track of the block groups
3416 		 * that fail this way so we know we _have_ to reset this cache
3417 		 * before the next commit or risk reading stale cache.  So to
3418 		 * limit our exposure to horrible edge cases lets just abort the
3419 		 * transaction, this only happens in really bad situations
3420 		 * anyway.
3421 		 */
3422 		btrfs_abort_transaction(trans, root, ret);
3423 		goto out_put;
3424 	}
3425 	WARN_ON(ret);
3426 
3427 	if (i_size_read(inode) > 0) {
3428 		ret = btrfs_check_trunc_cache_free_space(root,
3429 					&root->fs_info->global_block_rsv);
3430 		if (ret)
3431 			goto out_put;
3432 
3433 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3434 		if (ret)
3435 			goto out_put;
3436 	}
3437 
3438 	spin_lock(&block_group->lock);
3439 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3440 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3441 		/*
3442 		 * don't bother trying to write stuff out _if_
3443 		 * a) we're not cached,
3444 		 * b) we're with nospace_cache mount option.
3445 		 */
3446 		dcs = BTRFS_DC_WRITTEN;
3447 		spin_unlock(&block_group->lock);
3448 		goto out_put;
3449 	}
3450 	spin_unlock(&block_group->lock);
3451 
3452 	/*
3453 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 	 * skip doing the setup, we've already cleared the cache so we're safe.
3455 	 */
3456 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457 		ret = -ENOSPC;
3458 		goto out_put;
3459 	}
3460 
3461 	/*
3462 	 * Try to preallocate enough space based on how big the block group is.
3463 	 * Keep in mind this has to include any pinned space which could end up
3464 	 * taking up quite a bit since it's not folded into the other space
3465 	 * cache.
3466 	 */
3467 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3468 	if (!num_pages)
3469 		num_pages = 1;
3470 
3471 	num_pages *= 16;
3472 	num_pages *= PAGE_SIZE;
3473 
3474 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475 	if (ret)
3476 		goto out_put;
3477 
3478 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479 					      num_pages, num_pages,
3480 					      &alloc_hint);
3481 	/*
3482 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 	 * of metadata or split extents when writing the cache out, which means
3484 	 * we can enospc if we are heavily fragmented in addition to just normal
3485 	 * out of space conditions.  So if we hit this just skip setting up any
3486 	 * other block groups for this transaction, maybe we'll unpin enough
3487 	 * space the next time around.
3488 	 */
3489 	if (!ret)
3490 		dcs = BTRFS_DC_SETUP;
3491 	else if (ret == -ENOSPC)
3492 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3493 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3494 
3495 out_put:
3496 	iput(inode);
3497 out_free:
3498 	btrfs_release_path(path);
3499 out:
3500 	spin_lock(&block_group->lock);
3501 	if (!ret && dcs == BTRFS_DC_SETUP)
3502 		block_group->cache_generation = trans->transid;
3503 	block_group->disk_cache_state = dcs;
3504 	spin_unlock(&block_group->lock);
3505 
3506 	return ret;
3507 }
3508 
3509 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510 			    struct btrfs_root *root)
3511 {
3512 	struct btrfs_block_group_cache *cache, *tmp;
3513 	struct btrfs_transaction *cur_trans = trans->transaction;
3514 	struct btrfs_path *path;
3515 
3516 	if (list_empty(&cur_trans->dirty_bgs) ||
3517 	    !btrfs_test_opt(root, SPACE_CACHE))
3518 		return 0;
3519 
3520 	path = btrfs_alloc_path();
3521 	if (!path)
3522 		return -ENOMEM;
3523 
3524 	/* Could add new block groups, use _safe just in case */
3525 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526 				 dirty_list) {
3527 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528 			cache_save_setup(cache, trans, path);
3529 	}
3530 
3531 	btrfs_free_path(path);
3532 	return 0;
3533 }
3534 
3535 /*
3536  * transaction commit does final block group cache writeback during a
3537  * critical section where nothing is allowed to change the FS.  This is
3538  * required in order for the cache to actually match the block group,
3539  * but can introduce a lot of latency into the commit.
3540  *
3541  * So, btrfs_start_dirty_block_groups is here to kick off block group
3542  * cache IO.  There's a chance we'll have to redo some of it if the
3543  * block group changes again during the commit, but it greatly reduces
3544  * the commit latency by getting rid of the easy block groups while
3545  * we're still allowing others to join the commit.
3546  */
3547 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3548 				   struct btrfs_root *root)
3549 {
3550 	struct btrfs_block_group_cache *cache;
3551 	struct btrfs_transaction *cur_trans = trans->transaction;
3552 	int ret = 0;
3553 	int should_put;
3554 	struct btrfs_path *path = NULL;
3555 	LIST_HEAD(dirty);
3556 	struct list_head *io = &cur_trans->io_bgs;
3557 	int num_started = 0;
3558 	int loops = 0;
3559 
3560 	spin_lock(&cur_trans->dirty_bgs_lock);
3561 	if (list_empty(&cur_trans->dirty_bgs)) {
3562 		spin_unlock(&cur_trans->dirty_bgs_lock);
3563 		return 0;
3564 	}
3565 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3566 	spin_unlock(&cur_trans->dirty_bgs_lock);
3567 
3568 again:
3569 	/*
3570 	 * make sure all the block groups on our dirty list actually
3571 	 * exist
3572 	 */
3573 	btrfs_create_pending_block_groups(trans, root);
3574 
3575 	if (!path) {
3576 		path = btrfs_alloc_path();
3577 		if (!path)
3578 			return -ENOMEM;
3579 	}
3580 
3581 	/*
3582 	 * cache_write_mutex is here only to save us from balance or automatic
3583 	 * removal of empty block groups deleting this block group while we are
3584 	 * writing out the cache
3585 	 */
3586 	mutex_lock(&trans->transaction->cache_write_mutex);
3587 	while (!list_empty(&dirty)) {
3588 		cache = list_first_entry(&dirty,
3589 					 struct btrfs_block_group_cache,
3590 					 dirty_list);
3591 		/*
3592 		 * this can happen if something re-dirties a block
3593 		 * group that is already under IO.  Just wait for it to
3594 		 * finish and then do it all again
3595 		 */
3596 		if (!list_empty(&cache->io_list)) {
3597 			list_del_init(&cache->io_list);
3598 			btrfs_wait_cache_io(root, trans, cache,
3599 					    &cache->io_ctl, path,
3600 					    cache->key.objectid);
3601 			btrfs_put_block_group(cache);
3602 		}
3603 
3604 
3605 		/*
3606 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3607 		 * if it should update the cache_state.  Don't delete
3608 		 * until after we wait.
3609 		 *
3610 		 * Since we're not running in the commit critical section
3611 		 * we need the dirty_bgs_lock to protect from update_block_group
3612 		 */
3613 		spin_lock(&cur_trans->dirty_bgs_lock);
3614 		list_del_init(&cache->dirty_list);
3615 		spin_unlock(&cur_trans->dirty_bgs_lock);
3616 
3617 		should_put = 1;
3618 
3619 		cache_save_setup(cache, trans, path);
3620 
3621 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3622 			cache->io_ctl.inode = NULL;
3623 			ret = btrfs_write_out_cache(root, trans, cache, path);
3624 			if (ret == 0 && cache->io_ctl.inode) {
3625 				num_started++;
3626 				should_put = 0;
3627 
3628 				/*
3629 				 * the cache_write_mutex is protecting
3630 				 * the io_list
3631 				 */
3632 				list_add_tail(&cache->io_list, io);
3633 			} else {
3634 				/*
3635 				 * if we failed to write the cache, the
3636 				 * generation will be bad and life goes on
3637 				 */
3638 				ret = 0;
3639 			}
3640 		}
3641 		if (!ret) {
3642 			ret = write_one_cache_group(trans, root, path, cache);
3643 			/*
3644 			 * Our block group might still be attached to the list
3645 			 * of new block groups in the transaction handle of some
3646 			 * other task (struct btrfs_trans_handle->new_bgs). This
3647 			 * means its block group item isn't yet in the extent
3648 			 * tree. If this happens ignore the error, as we will
3649 			 * try again later in the critical section of the
3650 			 * transaction commit.
3651 			 */
3652 			if (ret == -ENOENT) {
3653 				ret = 0;
3654 				spin_lock(&cur_trans->dirty_bgs_lock);
3655 				if (list_empty(&cache->dirty_list)) {
3656 					list_add_tail(&cache->dirty_list,
3657 						      &cur_trans->dirty_bgs);
3658 					btrfs_get_block_group(cache);
3659 				}
3660 				spin_unlock(&cur_trans->dirty_bgs_lock);
3661 			} else if (ret) {
3662 				btrfs_abort_transaction(trans, root, ret);
3663 			}
3664 		}
3665 
3666 		/* if its not on the io list, we need to put the block group */
3667 		if (should_put)
3668 			btrfs_put_block_group(cache);
3669 
3670 		if (ret)
3671 			break;
3672 
3673 		/*
3674 		 * Avoid blocking other tasks for too long. It might even save
3675 		 * us from writing caches for block groups that are going to be
3676 		 * removed.
3677 		 */
3678 		mutex_unlock(&trans->transaction->cache_write_mutex);
3679 		mutex_lock(&trans->transaction->cache_write_mutex);
3680 	}
3681 	mutex_unlock(&trans->transaction->cache_write_mutex);
3682 
3683 	/*
3684 	 * go through delayed refs for all the stuff we've just kicked off
3685 	 * and then loop back (just once)
3686 	 */
3687 	ret = btrfs_run_delayed_refs(trans, root, 0);
3688 	if (!ret && loops == 0) {
3689 		loops++;
3690 		spin_lock(&cur_trans->dirty_bgs_lock);
3691 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3692 		/*
3693 		 * dirty_bgs_lock protects us from concurrent block group
3694 		 * deletes too (not just cache_write_mutex).
3695 		 */
3696 		if (!list_empty(&dirty)) {
3697 			spin_unlock(&cur_trans->dirty_bgs_lock);
3698 			goto again;
3699 		}
3700 		spin_unlock(&cur_trans->dirty_bgs_lock);
3701 	}
3702 
3703 	btrfs_free_path(path);
3704 	return ret;
3705 }
3706 
3707 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3708 				   struct btrfs_root *root)
3709 {
3710 	struct btrfs_block_group_cache *cache;
3711 	struct btrfs_transaction *cur_trans = trans->transaction;
3712 	int ret = 0;
3713 	int should_put;
3714 	struct btrfs_path *path;
3715 	struct list_head *io = &cur_trans->io_bgs;
3716 	int num_started = 0;
3717 
3718 	path = btrfs_alloc_path();
3719 	if (!path)
3720 		return -ENOMEM;
3721 
3722 	/*
3723 	 * Even though we are in the critical section of the transaction commit,
3724 	 * we can still have concurrent tasks adding elements to this
3725 	 * transaction's list of dirty block groups. These tasks correspond to
3726 	 * endio free space workers started when writeback finishes for a
3727 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3728 	 * allocate new block groups as a result of COWing nodes of the root
3729 	 * tree when updating the free space inode. The writeback for the space
3730 	 * caches is triggered by an earlier call to
3731 	 * btrfs_start_dirty_block_groups() and iterations of the following
3732 	 * loop.
3733 	 * Also we want to do the cache_save_setup first and then run the
3734 	 * delayed refs to make sure we have the best chance at doing this all
3735 	 * in one shot.
3736 	 */
3737 	spin_lock(&cur_trans->dirty_bgs_lock);
3738 	while (!list_empty(&cur_trans->dirty_bgs)) {
3739 		cache = list_first_entry(&cur_trans->dirty_bgs,
3740 					 struct btrfs_block_group_cache,
3741 					 dirty_list);
3742 
3743 		/*
3744 		 * this can happen if cache_save_setup re-dirties a block
3745 		 * group that is already under IO.  Just wait for it to
3746 		 * finish and then do it all again
3747 		 */
3748 		if (!list_empty(&cache->io_list)) {
3749 			spin_unlock(&cur_trans->dirty_bgs_lock);
3750 			list_del_init(&cache->io_list);
3751 			btrfs_wait_cache_io(root, trans, cache,
3752 					    &cache->io_ctl, path,
3753 					    cache->key.objectid);
3754 			btrfs_put_block_group(cache);
3755 			spin_lock(&cur_trans->dirty_bgs_lock);
3756 		}
3757 
3758 		/*
3759 		 * don't remove from the dirty list until after we've waited
3760 		 * on any pending IO
3761 		 */
3762 		list_del_init(&cache->dirty_list);
3763 		spin_unlock(&cur_trans->dirty_bgs_lock);
3764 		should_put = 1;
3765 
3766 		cache_save_setup(cache, trans, path);
3767 
3768 		if (!ret)
3769 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3770 
3771 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3772 			cache->io_ctl.inode = NULL;
3773 			ret = btrfs_write_out_cache(root, trans, cache, path);
3774 			if (ret == 0 && cache->io_ctl.inode) {
3775 				num_started++;
3776 				should_put = 0;
3777 				list_add_tail(&cache->io_list, io);
3778 			} else {
3779 				/*
3780 				 * if we failed to write the cache, the
3781 				 * generation will be bad and life goes on
3782 				 */
3783 				ret = 0;
3784 			}
3785 		}
3786 		if (!ret) {
3787 			ret = write_one_cache_group(trans, root, path, cache);
3788 			/*
3789 			 * One of the free space endio workers might have
3790 			 * created a new block group while updating a free space
3791 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3792 			 * and hasn't released its transaction handle yet, in
3793 			 * which case the new block group is still attached to
3794 			 * its transaction handle and its creation has not
3795 			 * finished yet (no block group item in the extent tree
3796 			 * yet, etc). If this is the case, wait for all free
3797 			 * space endio workers to finish and retry. This is a
3798 			 * a very rare case so no need for a more efficient and
3799 			 * complex approach.
3800 			 */
3801 			if (ret == -ENOENT) {
3802 				wait_event(cur_trans->writer_wait,
3803 				   atomic_read(&cur_trans->num_writers) == 1);
3804 				ret = write_one_cache_group(trans, root, path,
3805 							    cache);
3806 			}
3807 			if (ret)
3808 				btrfs_abort_transaction(trans, root, ret);
3809 		}
3810 
3811 		/* if its not on the io list, we need to put the block group */
3812 		if (should_put)
3813 			btrfs_put_block_group(cache);
3814 		spin_lock(&cur_trans->dirty_bgs_lock);
3815 	}
3816 	spin_unlock(&cur_trans->dirty_bgs_lock);
3817 
3818 	while (!list_empty(io)) {
3819 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3820 					 io_list);
3821 		list_del_init(&cache->io_list);
3822 		btrfs_wait_cache_io(root, trans, cache,
3823 				    &cache->io_ctl, path, cache->key.objectid);
3824 		btrfs_put_block_group(cache);
3825 	}
3826 
3827 	btrfs_free_path(path);
3828 	return ret;
3829 }
3830 
3831 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3832 {
3833 	struct btrfs_block_group_cache *block_group;
3834 	int readonly = 0;
3835 
3836 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3837 	if (!block_group || block_group->ro)
3838 		readonly = 1;
3839 	if (block_group)
3840 		btrfs_put_block_group(block_group);
3841 	return readonly;
3842 }
3843 
3844 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846 	struct btrfs_block_group_cache *bg;
3847 	bool ret = true;
3848 
3849 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3850 	if (!bg)
3851 		return false;
3852 
3853 	spin_lock(&bg->lock);
3854 	if (bg->ro)
3855 		ret = false;
3856 	else
3857 		atomic_inc(&bg->nocow_writers);
3858 	spin_unlock(&bg->lock);
3859 
3860 	/* no put on block group, done by btrfs_dec_nocow_writers */
3861 	if (!ret)
3862 		btrfs_put_block_group(bg);
3863 
3864 	return ret;
3865 
3866 }
3867 
3868 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3869 {
3870 	struct btrfs_block_group_cache *bg;
3871 
3872 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3873 	ASSERT(bg);
3874 	if (atomic_dec_and_test(&bg->nocow_writers))
3875 		wake_up_atomic_t(&bg->nocow_writers);
3876 	/*
3877 	 * Once for our lookup and once for the lookup done by a previous call
3878 	 * to btrfs_inc_nocow_writers()
3879 	 */
3880 	btrfs_put_block_group(bg);
3881 	btrfs_put_block_group(bg);
3882 }
3883 
3884 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3885 {
3886 	schedule();
3887 	return 0;
3888 }
3889 
3890 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3891 {
3892 	wait_on_atomic_t(&bg->nocow_writers,
3893 			 btrfs_wait_nocow_writers_atomic_t,
3894 			 TASK_UNINTERRUPTIBLE);
3895 }
3896 
3897 static const char *alloc_name(u64 flags)
3898 {
3899 	switch (flags) {
3900 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3901 		return "mixed";
3902 	case BTRFS_BLOCK_GROUP_METADATA:
3903 		return "metadata";
3904 	case BTRFS_BLOCK_GROUP_DATA:
3905 		return "data";
3906 	case BTRFS_BLOCK_GROUP_SYSTEM:
3907 		return "system";
3908 	default:
3909 		WARN_ON(1);
3910 		return "invalid-combination";
3911 	};
3912 }
3913 
3914 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3915 			     u64 total_bytes, u64 bytes_used,
3916 			     struct btrfs_space_info **space_info)
3917 {
3918 	struct btrfs_space_info *found;
3919 	int i;
3920 	int factor;
3921 	int ret;
3922 
3923 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3924 		     BTRFS_BLOCK_GROUP_RAID10))
3925 		factor = 2;
3926 	else
3927 		factor = 1;
3928 
3929 	found = __find_space_info(info, flags);
3930 	if (found) {
3931 		spin_lock(&found->lock);
3932 		found->total_bytes += total_bytes;
3933 		found->disk_total += total_bytes * factor;
3934 		found->bytes_used += bytes_used;
3935 		found->disk_used += bytes_used * factor;
3936 		if (total_bytes > 0)
3937 			found->full = 0;
3938 		spin_unlock(&found->lock);
3939 		*space_info = found;
3940 		return 0;
3941 	}
3942 	found = kzalloc(sizeof(*found), GFP_NOFS);
3943 	if (!found)
3944 		return -ENOMEM;
3945 
3946 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3947 	if (ret) {
3948 		kfree(found);
3949 		return ret;
3950 	}
3951 
3952 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953 		INIT_LIST_HEAD(&found->block_groups[i]);
3954 	init_rwsem(&found->groups_sem);
3955 	spin_lock_init(&found->lock);
3956 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957 	found->total_bytes = total_bytes;
3958 	found->disk_total = total_bytes * factor;
3959 	found->bytes_used = bytes_used;
3960 	found->disk_used = bytes_used * factor;
3961 	found->bytes_pinned = 0;
3962 	found->bytes_reserved = 0;
3963 	found->bytes_readonly = 0;
3964 	found->bytes_may_use = 0;
3965 	found->full = 0;
3966 	found->max_extent_size = 0;
3967 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3968 	found->chunk_alloc = 0;
3969 	found->flush = 0;
3970 	init_waitqueue_head(&found->wait);
3971 	INIT_LIST_HEAD(&found->ro_bgs);
3972 
3973 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3974 				    info->space_info_kobj, "%s",
3975 				    alloc_name(found->flags));
3976 	if (ret) {
3977 		kfree(found);
3978 		return ret;
3979 	}
3980 
3981 	*space_info = found;
3982 	list_add_rcu(&found->list, &info->space_info);
3983 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3984 		info->data_sinfo = found;
3985 
3986 	return ret;
3987 }
3988 
3989 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3990 {
3991 	u64 extra_flags = chunk_to_extended(flags) &
3992 				BTRFS_EXTENDED_PROFILE_MASK;
3993 
3994 	write_seqlock(&fs_info->profiles_lock);
3995 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3996 		fs_info->avail_data_alloc_bits |= extra_flags;
3997 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3998 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3999 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4000 		fs_info->avail_system_alloc_bits |= extra_flags;
4001 	write_sequnlock(&fs_info->profiles_lock);
4002 }
4003 
4004 /*
4005  * returns target flags in extended format or 0 if restripe for this
4006  * chunk_type is not in progress
4007  *
4008  * should be called with either volume_mutex or balance_lock held
4009  */
4010 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4011 {
4012 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4013 	u64 target = 0;
4014 
4015 	if (!bctl)
4016 		return 0;
4017 
4018 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4019 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4020 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4021 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4022 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4023 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4024 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4025 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4026 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4027 	}
4028 
4029 	return target;
4030 }
4031 
4032 /*
4033  * @flags: available profiles in extended format (see ctree.h)
4034  *
4035  * Returns reduced profile in chunk format.  If profile changing is in
4036  * progress (either running or paused) picks the target profile (if it's
4037  * already available), otherwise falls back to plain reducing.
4038  */
4039 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4040 {
4041 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4042 	u64 target;
4043 	u64 raid_type;
4044 	u64 allowed = 0;
4045 
4046 	/*
4047 	 * see if restripe for this chunk_type is in progress, if so
4048 	 * try to reduce to the target profile
4049 	 */
4050 	spin_lock(&root->fs_info->balance_lock);
4051 	target = get_restripe_target(root->fs_info, flags);
4052 	if (target) {
4053 		/* pick target profile only if it's already available */
4054 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4055 			spin_unlock(&root->fs_info->balance_lock);
4056 			return extended_to_chunk(target);
4057 		}
4058 	}
4059 	spin_unlock(&root->fs_info->balance_lock);
4060 
4061 	/* First, mask out the RAID levels which aren't possible */
4062 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4063 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4064 			allowed |= btrfs_raid_group[raid_type];
4065 	}
4066 	allowed &= flags;
4067 
4068 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4069 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4070 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4071 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4072 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4073 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4074 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4075 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4076 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4077 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4078 
4079 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4080 
4081 	return extended_to_chunk(flags | allowed);
4082 }
4083 
4084 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4085 {
4086 	unsigned seq;
4087 	u64 flags;
4088 
4089 	do {
4090 		flags = orig_flags;
4091 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4092 
4093 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4094 			flags |= root->fs_info->avail_data_alloc_bits;
4095 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4096 			flags |= root->fs_info->avail_system_alloc_bits;
4097 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4098 			flags |= root->fs_info->avail_metadata_alloc_bits;
4099 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4100 
4101 	return btrfs_reduce_alloc_profile(root, flags);
4102 }
4103 
4104 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4105 {
4106 	u64 flags;
4107 	u64 ret;
4108 
4109 	if (data)
4110 		flags = BTRFS_BLOCK_GROUP_DATA;
4111 	else if (root == root->fs_info->chunk_root)
4112 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4113 	else
4114 		flags = BTRFS_BLOCK_GROUP_METADATA;
4115 
4116 	ret = get_alloc_profile(root, flags);
4117 	return ret;
4118 }
4119 
4120 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4121 {
4122 	struct btrfs_space_info *data_sinfo;
4123 	struct btrfs_root *root = BTRFS_I(inode)->root;
4124 	struct btrfs_fs_info *fs_info = root->fs_info;
4125 	u64 used;
4126 	int ret = 0;
4127 	int need_commit = 2;
4128 	int have_pinned_space;
4129 
4130 	/* make sure bytes are sectorsize aligned */
4131 	bytes = ALIGN(bytes, root->sectorsize);
4132 
4133 	if (btrfs_is_free_space_inode(inode)) {
4134 		need_commit = 0;
4135 		ASSERT(current->journal_info);
4136 	}
4137 
4138 	data_sinfo = fs_info->data_sinfo;
4139 	if (!data_sinfo)
4140 		goto alloc;
4141 
4142 again:
4143 	/* make sure we have enough space to handle the data first */
4144 	spin_lock(&data_sinfo->lock);
4145 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4146 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4147 		data_sinfo->bytes_may_use;
4148 
4149 	if (used + bytes > data_sinfo->total_bytes) {
4150 		struct btrfs_trans_handle *trans;
4151 
4152 		/*
4153 		 * if we don't have enough free bytes in this space then we need
4154 		 * to alloc a new chunk.
4155 		 */
4156 		if (!data_sinfo->full) {
4157 			u64 alloc_target;
4158 
4159 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4160 			spin_unlock(&data_sinfo->lock);
4161 alloc:
4162 			alloc_target = btrfs_get_alloc_profile(root, 1);
4163 			/*
4164 			 * It is ugly that we don't call nolock join
4165 			 * transaction for the free space inode case here.
4166 			 * But it is safe because we only do the data space
4167 			 * reservation for the free space cache in the
4168 			 * transaction context, the common join transaction
4169 			 * just increase the counter of the current transaction
4170 			 * handler, doesn't try to acquire the trans_lock of
4171 			 * the fs.
4172 			 */
4173 			trans = btrfs_join_transaction(root);
4174 			if (IS_ERR(trans))
4175 				return PTR_ERR(trans);
4176 
4177 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4178 					     alloc_target,
4179 					     CHUNK_ALLOC_NO_FORCE);
4180 			btrfs_end_transaction(trans, root);
4181 			if (ret < 0) {
4182 				if (ret != -ENOSPC)
4183 					return ret;
4184 				else {
4185 					have_pinned_space = 1;
4186 					goto commit_trans;
4187 				}
4188 			}
4189 
4190 			if (!data_sinfo)
4191 				data_sinfo = fs_info->data_sinfo;
4192 
4193 			goto again;
4194 		}
4195 
4196 		/*
4197 		 * If we don't have enough pinned space to deal with this
4198 		 * allocation, and no removed chunk in current transaction,
4199 		 * don't bother committing the transaction.
4200 		 */
4201 		have_pinned_space = percpu_counter_compare(
4202 			&data_sinfo->total_bytes_pinned,
4203 			used + bytes - data_sinfo->total_bytes);
4204 		spin_unlock(&data_sinfo->lock);
4205 
4206 		/* commit the current transaction and try again */
4207 commit_trans:
4208 		if (need_commit &&
4209 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4210 			need_commit--;
4211 
4212 			if (need_commit > 0) {
4213 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4214 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4215 			}
4216 
4217 			trans = btrfs_join_transaction(root);
4218 			if (IS_ERR(trans))
4219 				return PTR_ERR(trans);
4220 			if (have_pinned_space >= 0 ||
4221 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4222 				     &trans->transaction->flags) ||
4223 			    need_commit > 0) {
4224 				ret = btrfs_commit_transaction(trans, root);
4225 				if (ret)
4226 					return ret;
4227 				/*
4228 				 * The cleaner kthread might still be doing iput
4229 				 * operations. Wait for it to finish so that
4230 				 * more space is released.
4231 				 */
4232 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4233 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4234 				goto again;
4235 			} else {
4236 				btrfs_end_transaction(trans, root);
4237 			}
4238 		}
4239 
4240 		trace_btrfs_space_reservation(root->fs_info,
4241 					      "space_info:enospc",
4242 					      data_sinfo->flags, bytes, 1);
4243 		return -ENOSPC;
4244 	}
4245 	data_sinfo->bytes_may_use += bytes;
4246 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4247 				      data_sinfo->flags, bytes, 1);
4248 	spin_unlock(&data_sinfo->lock);
4249 
4250 	return ret;
4251 }
4252 
4253 /*
4254  * New check_data_free_space() with ability for precious data reservation
4255  * Will replace old btrfs_check_data_free_space(), but for patch split,
4256  * add a new function first and then replace it.
4257  */
4258 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4259 {
4260 	struct btrfs_root *root = BTRFS_I(inode)->root;
4261 	int ret;
4262 
4263 	/* align the range */
4264 	len = round_up(start + len, root->sectorsize) -
4265 	      round_down(start, root->sectorsize);
4266 	start = round_down(start, root->sectorsize);
4267 
4268 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4269 	if (ret < 0)
4270 		return ret;
4271 
4272 	/*
4273 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4274 	 *
4275 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4276 	 * range, but don't impact performance on quota disable case.
4277 	 */
4278 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4279 	return ret;
4280 }
4281 
4282 /*
4283  * Called if we need to clear a data reservation for this inode
4284  * Normally in a error case.
4285  *
4286  * This one will *NOT* use accurate qgroup reserved space API, just for case
4287  * which we can't sleep and is sure it won't affect qgroup reserved space.
4288  * Like clear_bit_hook().
4289  */
4290 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4291 					    u64 len)
4292 {
4293 	struct btrfs_root *root = BTRFS_I(inode)->root;
4294 	struct btrfs_space_info *data_sinfo;
4295 
4296 	/* Make sure the range is aligned to sectorsize */
4297 	len = round_up(start + len, root->sectorsize) -
4298 	      round_down(start, root->sectorsize);
4299 	start = round_down(start, root->sectorsize);
4300 
4301 	data_sinfo = root->fs_info->data_sinfo;
4302 	spin_lock(&data_sinfo->lock);
4303 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4304 		data_sinfo->bytes_may_use = 0;
4305 	else
4306 		data_sinfo->bytes_may_use -= len;
4307 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4308 				      data_sinfo->flags, len, 0);
4309 	spin_unlock(&data_sinfo->lock);
4310 }
4311 
4312 /*
4313  * Called if we need to clear a data reservation for this inode
4314  * Normally in a error case.
4315  *
4316  * This one will handle the per-inode data rsv map for accurate reserved
4317  * space framework.
4318  */
4319 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4320 {
4321 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4322 	btrfs_qgroup_free_data(inode, start, len);
4323 }
4324 
4325 static void force_metadata_allocation(struct btrfs_fs_info *info)
4326 {
4327 	struct list_head *head = &info->space_info;
4328 	struct btrfs_space_info *found;
4329 
4330 	rcu_read_lock();
4331 	list_for_each_entry_rcu(found, head, list) {
4332 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4333 			found->force_alloc = CHUNK_ALLOC_FORCE;
4334 	}
4335 	rcu_read_unlock();
4336 }
4337 
4338 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4339 {
4340 	return (global->size << 1);
4341 }
4342 
4343 static int should_alloc_chunk(struct btrfs_root *root,
4344 			      struct btrfs_space_info *sinfo, int force)
4345 {
4346 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4347 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4348 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4349 	u64 thresh;
4350 
4351 	if (force == CHUNK_ALLOC_FORCE)
4352 		return 1;
4353 
4354 	/*
4355 	 * We need to take into account the global rsv because for all intents
4356 	 * and purposes it's used space.  Don't worry about locking the
4357 	 * global_rsv, it doesn't change except when the transaction commits.
4358 	 */
4359 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4360 		num_allocated += calc_global_rsv_need_space(global_rsv);
4361 
4362 	/*
4363 	 * in limited mode, we want to have some free space up to
4364 	 * about 1% of the FS size.
4365 	 */
4366 	if (force == CHUNK_ALLOC_LIMITED) {
4367 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4368 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4369 
4370 		if (num_bytes - num_allocated < thresh)
4371 			return 1;
4372 	}
4373 
4374 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4375 		return 0;
4376 	return 1;
4377 }
4378 
4379 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4380 {
4381 	u64 num_dev;
4382 
4383 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4384 		    BTRFS_BLOCK_GROUP_RAID0 |
4385 		    BTRFS_BLOCK_GROUP_RAID5 |
4386 		    BTRFS_BLOCK_GROUP_RAID6))
4387 		num_dev = root->fs_info->fs_devices->rw_devices;
4388 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4389 		num_dev = 2;
4390 	else
4391 		num_dev = 1;	/* DUP or single */
4392 
4393 	return num_dev;
4394 }
4395 
4396 /*
4397  * If @is_allocation is true, reserve space in the system space info necessary
4398  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4399  * removing a chunk.
4400  */
4401 void check_system_chunk(struct btrfs_trans_handle *trans,
4402 			struct btrfs_root *root,
4403 			u64 type)
4404 {
4405 	struct btrfs_space_info *info;
4406 	u64 left;
4407 	u64 thresh;
4408 	int ret = 0;
4409 	u64 num_devs;
4410 
4411 	/*
4412 	 * Needed because we can end up allocating a system chunk and for an
4413 	 * atomic and race free space reservation in the chunk block reserve.
4414 	 */
4415 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4416 
4417 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4418 	spin_lock(&info->lock);
4419 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4420 		info->bytes_reserved - info->bytes_readonly -
4421 		info->bytes_may_use;
4422 	spin_unlock(&info->lock);
4423 
4424 	num_devs = get_profile_num_devs(root, type);
4425 
4426 	/* num_devs device items to update and 1 chunk item to add or remove */
4427 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4428 		btrfs_calc_trans_metadata_size(root, 1);
4429 
4430 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4431 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4432 			left, thresh, type);
4433 		dump_space_info(info, 0, 0);
4434 	}
4435 
4436 	if (left < thresh) {
4437 		u64 flags;
4438 
4439 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4440 		/*
4441 		 * Ignore failure to create system chunk. We might end up not
4442 		 * needing it, as we might not need to COW all nodes/leafs from
4443 		 * the paths we visit in the chunk tree (they were already COWed
4444 		 * or created in the current transaction for example).
4445 		 */
4446 		ret = btrfs_alloc_chunk(trans, root, flags);
4447 	}
4448 
4449 	if (!ret) {
4450 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4451 					  &root->fs_info->chunk_block_rsv,
4452 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4453 		if (!ret)
4454 			trans->chunk_bytes_reserved += thresh;
4455 	}
4456 }
4457 
4458 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4459 			  struct btrfs_root *extent_root, u64 flags, int force)
4460 {
4461 	struct btrfs_space_info *space_info;
4462 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4463 	int wait_for_alloc = 0;
4464 	int ret = 0;
4465 
4466 	/* Don't re-enter if we're already allocating a chunk */
4467 	if (trans->allocating_chunk)
4468 		return -ENOSPC;
4469 
4470 	space_info = __find_space_info(extent_root->fs_info, flags);
4471 	if (!space_info) {
4472 		ret = update_space_info(extent_root->fs_info, flags,
4473 					0, 0, &space_info);
4474 		BUG_ON(ret); /* -ENOMEM */
4475 	}
4476 	BUG_ON(!space_info); /* Logic error */
4477 
4478 again:
4479 	spin_lock(&space_info->lock);
4480 	if (force < space_info->force_alloc)
4481 		force = space_info->force_alloc;
4482 	if (space_info->full) {
4483 		if (should_alloc_chunk(extent_root, space_info, force))
4484 			ret = -ENOSPC;
4485 		else
4486 			ret = 0;
4487 		spin_unlock(&space_info->lock);
4488 		return ret;
4489 	}
4490 
4491 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4492 		spin_unlock(&space_info->lock);
4493 		return 0;
4494 	} else if (space_info->chunk_alloc) {
4495 		wait_for_alloc = 1;
4496 	} else {
4497 		space_info->chunk_alloc = 1;
4498 	}
4499 
4500 	spin_unlock(&space_info->lock);
4501 
4502 	mutex_lock(&fs_info->chunk_mutex);
4503 
4504 	/*
4505 	 * The chunk_mutex is held throughout the entirety of a chunk
4506 	 * allocation, so once we've acquired the chunk_mutex we know that the
4507 	 * other guy is done and we need to recheck and see if we should
4508 	 * allocate.
4509 	 */
4510 	if (wait_for_alloc) {
4511 		mutex_unlock(&fs_info->chunk_mutex);
4512 		wait_for_alloc = 0;
4513 		goto again;
4514 	}
4515 
4516 	trans->allocating_chunk = true;
4517 
4518 	/*
4519 	 * If we have mixed data/metadata chunks we want to make sure we keep
4520 	 * allocating mixed chunks instead of individual chunks.
4521 	 */
4522 	if (btrfs_mixed_space_info(space_info))
4523 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4524 
4525 	/*
4526 	 * if we're doing a data chunk, go ahead and make sure that
4527 	 * we keep a reasonable number of metadata chunks allocated in the
4528 	 * FS as well.
4529 	 */
4530 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4531 		fs_info->data_chunk_allocations++;
4532 		if (!(fs_info->data_chunk_allocations %
4533 		      fs_info->metadata_ratio))
4534 			force_metadata_allocation(fs_info);
4535 	}
4536 
4537 	/*
4538 	 * Check if we have enough space in SYSTEM chunk because we may need
4539 	 * to update devices.
4540 	 */
4541 	check_system_chunk(trans, extent_root, flags);
4542 
4543 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4544 	trans->allocating_chunk = false;
4545 
4546 	spin_lock(&space_info->lock);
4547 	if (ret < 0 && ret != -ENOSPC)
4548 		goto out;
4549 	if (ret)
4550 		space_info->full = 1;
4551 	else
4552 		ret = 1;
4553 
4554 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4555 out:
4556 	space_info->chunk_alloc = 0;
4557 	spin_unlock(&space_info->lock);
4558 	mutex_unlock(&fs_info->chunk_mutex);
4559 	/*
4560 	 * When we allocate a new chunk we reserve space in the chunk block
4561 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4562 	 * add new nodes/leafs to it if we end up needing to do it when
4563 	 * inserting the chunk item and updating device items as part of the
4564 	 * second phase of chunk allocation, performed by
4565 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4566 	 * large number of new block groups to create in our transaction
4567 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4568 	 * in extreme cases - like having a single transaction create many new
4569 	 * block groups when starting to write out the free space caches of all
4570 	 * the block groups that were made dirty during the lifetime of the
4571 	 * transaction.
4572 	 */
4573 	if (trans->can_flush_pending_bgs &&
4574 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4575 		btrfs_create_pending_block_groups(trans, trans->root);
4576 		btrfs_trans_release_chunk_metadata(trans);
4577 	}
4578 	return ret;
4579 }
4580 
4581 static int can_overcommit(struct btrfs_root *root,
4582 			  struct btrfs_space_info *space_info, u64 bytes,
4583 			  enum btrfs_reserve_flush_enum flush)
4584 {
4585 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4586 	u64 profile = btrfs_get_alloc_profile(root, 0);
4587 	u64 space_size;
4588 	u64 avail;
4589 	u64 used;
4590 
4591 	used = space_info->bytes_used + space_info->bytes_reserved +
4592 		space_info->bytes_pinned + space_info->bytes_readonly;
4593 
4594 	/*
4595 	 * We only want to allow over committing if we have lots of actual space
4596 	 * free, but if we don't have enough space to handle the global reserve
4597 	 * space then we could end up having a real enospc problem when trying
4598 	 * to allocate a chunk or some other such important allocation.
4599 	 */
4600 	spin_lock(&global_rsv->lock);
4601 	space_size = calc_global_rsv_need_space(global_rsv);
4602 	spin_unlock(&global_rsv->lock);
4603 	if (used + space_size >= space_info->total_bytes)
4604 		return 0;
4605 
4606 	used += space_info->bytes_may_use;
4607 
4608 	spin_lock(&root->fs_info->free_chunk_lock);
4609 	avail = root->fs_info->free_chunk_space;
4610 	spin_unlock(&root->fs_info->free_chunk_lock);
4611 
4612 	/*
4613 	 * If we have dup, raid1 or raid10 then only half of the free
4614 	 * space is actually useable.  For raid56, the space info used
4615 	 * doesn't include the parity drive, so we don't have to
4616 	 * change the math
4617 	 */
4618 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4619 		       BTRFS_BLOCK_GROUP_RAID1 |
4620 		       BTRFS_BLOCK_GROUP_RAID10))
4621 		avail >>= 1;
4622 
4623 	/*
4624 	 * If we aren't flushing all things, let us overcommit up to
4625 	 * 1/2th of the space. If we can flush, don't let us overcommit
4626 	 * too much, let it overcommit up to 1/8 of the space.
4627 	 */
4628 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4629 		avail >>= 3;
4630 	else
4631 		avail >>= 1;
4632 
4633 	if (used + bytes < space_info->total_bytes + avail)
4634 		return 1;
4635 	return 0;
4636 }
4637 
4638 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4639 					 unsigned long nr_pages, int nr_items)
4640 {
4641 	struct super_block *sb = root->fs_info->sb;
4642 
4643 	if (down_read_trylock(&sb->s_umount)) {
4644 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4645 		up_read(&sb->s_umount);
4646 	} else {
4647 		/*
4648 		 * We needn't worry the filesystem going from r/w to r/o though
4649 		 * we don't acquire ->s_umount mutex, because the filesystem
4650 		 * should guarantee the delalloc inodes list be empty after
4651 		 * the filesystem is readonly(all dirty pages are written to
4652 		 * the disk).
4653 		 */
4654 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4655 		if (!current->journal_info)
4656 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4657 						 0, (u64)-1);
4658 	}
4659 }
4660 
4661 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4662 {
4663 	u64 bytes;
4664 	int nr;
4665 
4666 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4667 	nr = (int)div64_u64(to_reclaim, bytes);
4668 	if (!nr)
4669 		nr = 1;
4670 	return nr;
4671 }
4672 
4673 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4674 
4675 /*
4676  * shrink metadata reservation for delalloc
4677  */
4678 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4679 			    bool wait_ordered)
4680 {
4681 	struct btrfs_block_rsv *block_rsv;
4682 	struct btrfs_space_info *space_info;
4683 	struct btrfs_trans_handle *trans;
4684 	u64 delalloc_bytes;
4685 	u64 max_reclaim;
4686 	long time_left;
4687 	unsigned long nr_pages;
4688 	int loops;
4689 	int items;
4690 	enum btrfs_reserve_flush_enum flush;
4691 
4692 	/* Calc the number of the pages we need flush for space reservation */
4693 	items = calc_reclaim_items_nr(root, to_reclaim);
4694 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4695 
4696 	trans = (struct btrfs_trans_handle *)current->journal_info;
4697 	block_rsv = &root->fs_info->delalloc_block_rsv;
4698 	space_info = block_rsv->space_info;
4699 
4700 	delalloc_bytes = percpu_counter_sum_positive(
4701 						&root->fs_info->delalloc_bytes);
4702 	if (delalloc_bytes == 0) {
4703 		if (trans)
4704 			return;
4705 		if (wait_ordered)
4706 			btrfs_wait_ordered_roots(root->fs_info, items,
4707 						 0, (u64)-1);
4708 		return;
4709 	}
4710 
4711 	loops = 0;
4712 	while (delalloc_bytes && loops < 3) {
4713 		max_reclaim = min(delalloc_bytes, to_reclaim);
4714 		nr_pages = max_reclaim >> PAGE_SHIFT;
4715 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4716 		/*
4717 		 * We need to wait for the async pages to actually start before
4718 		 * we do anything.
4719 		 */
4720 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4721 		if (!max_reclaim)
4722 			goto skip_async;
4723 
4724 		if (max_reclaim <= nr_pages)
4725 			max_reclaim = 0;
4726 		else
4727 			max_reclaim -= nr_pages;
4728 
4729 		wait_event(root->fs_info->async_submit_wait,
4730 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4731 			   (int)max_reclaim);
4732 skip_async:
4733 		if (!trans)
4734 			flush = BTRFS_RESERVE_FLUSH_ALL;
4735 		else
4736 			flush = BTRFS_RESERVE_NO_FLUSH;
4737 		spin_lock(&space_info->lock);
4738 		if (can_overcommit(root, space_info, orig, flush)) {
4739 			spin_unlock(&space_info->lock);
4740 			break;
4741 		}
4742 		spin_unlock(&space_info->lock);
4743 
4744 		loops++;
4745 		if (wait_ordered && !trans) {
4746 			btrfs_wait_ordered_roots(root->fs_info, items,
4747 						 0, (u64)-1);
4748 		} else {
4749 			time_left = schedule_timeout_killable(1);
4750 			if (time_left)
4751 				break;
4752 		}
4753 		delalloc_bytes = percpu_counter_sum_positive(
4754 						&root->fs_info->delalloc_bytes);
4755 	}
4756 }
4757 
4758 /**
4759  * maybe_commit_transaction - possibly commit the transaction if its ok to
4760  * @root - the root we're allocating for
4761  * @bytes - the number of bytes we want to reserve
4762  * @force - force the commit
4763  *
4764  * This will check to make sure that committing the transaction will actually
4765  * get us somewhere and then commit the transaction if it does.  Otherwise it
4766  * will return -ENOSPC.
4767  */
4768 static int may_commit_transaction(struct btrfs_root *root,
4769 				  struct btrfs_space_info *space_info,
4770 				  u64 bytes, int force)
4771 {
4772 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4773 	struct btrfs_trans_handle *trans;
4774 
4775 	trans = (struct btrfs_trans_handle *)current->journal_info;
4776 	if (trans)
4777 		return -EAGAIN;
4778 
4779 	if (force)
4780 		goto commit;
4781 
4782 	/* See if there is enough pinned space to make this reservation */
4783 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4784 				   bytes) >= 0)
4785 		goto commit;
4786 
4787 	/*
4788 	 * See if there is some space in the delayed insertion reservation for
4789 	 * this reservation.
4790 	 */
4791 	if (space_info != delayed_rsv->space_info)
4792 		return -ENOSPC;
4793 
4794 	spin_lock(&delayed_rsv->lock);
4795 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4796 				   bytes - delayed_rsv->size) >= 0) {
4797 		spin_unlock(&delayed_rsv->lock);
4798 		return -ENOSPC;
4799 	}
4800 	spin_unlock(&delayed_rsv->lock);
4801 
4802 commit:
4803 	trans = btrfs_join_transaction(root);
4804 	if (IS_ERR(trans))
4805 		return -ENOSPC;
4806 
4807 	return btrfs_commit_transaction(trans, root);
4808 }
4809 
4810 enum flush_state {
4811 	FLUSH_DELAYED_ITEMS_NR	=	1,
4812 	FLUSH_DELAYED_ITEMS	=	2,
4813 	FLUSH_DELALLOC		=	3,
4814 	FLUSH_DELALLOC_WAIT	=	4,
4815 	ALLOC_CHUNK		=	5,
4816 	COMMIT_TRANS		=	6,
4817 };
4818 
4819 static int flush_space(struct btrfs_root *root,
4820 		       struct btrfs_space_info *space_info, u64 num_bytes,
4821 		       u64 orig_bytes, int state)
4822 {
4823 	struct btrfs_trans_handle *trans;
4824 	int nr;
4825 	int ret = 0;
4826 
4827 	switch (state) {
4828 	case FLUSH_DELAYED_ITEMS_NR:
4829 	case FLUSH_DELAYED_ITEMS:
4830 		if (state == FLUSH_DELAYED_ITEMS_NR)
4831 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4832 		else
4833 			nr = -1;
4834 
4835 		trans = btrfs_join_transaction(root);
4836 		if (IS_ERR(trans)) {
4837 			ret = PTR_ERR(trans);
4838 			break;
4839 		}
4840 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4841 		btrfs_end_transaction(trans, root);
4842 		break;
4843 	case FLUSH_DELALLOC:
4844 	case FLUSH_DELALLOC_WAIT:
4845 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4846 				state == FLUSH_DELALLOC_WAIT);
4847 		break;
4848 	case ALLOC_CHUNK:
4849 		trans = btrfs_join_transaction(root);
4850 		if (IS_ERR(trans)) {
4851 			ret = PTR_ERR(trans);
4852 			break;
4853 		}
4854 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4855 				     btrfs_get_alloc_profile(root, 0),
4856 				     CHUNK_ALLOC_NO_FORCE);
4857 		btrfs_end_transaction(trans, root);
4858 		if (ret == -ENOSPC)
4859 			ret = 0;
4860 		break;
4861 	case COMMIT_TRANS:
4862 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4863 		break;
4864 	default:
4865 		ret = -ENOSPC;
4866 		break;
4867 	}
4868 
4869 	return ret;
4870 }
4871 
4872 static inline u64
4873 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4874 				 struct btrfs_space_info *space_info)
4875 {
4876 	u64 used;
4877 	u64 expected;
4878 	u64 to_reclaim;
4879 
4880 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4881 	spin_lock(&space_info->lock);
4882 	if (can_overcommit(root, space_info, to_reclaim,
4883 			   BTRFS_RESERVE_FLUSH_ALL)) {
4884 		to_reclaim = 0;
4885 		goto out;
4886 	}
4887 
4888 	used = space_info->bytes_used + space_info->bytes_reserved +
4889 	       space_info->bytes_pinned + space_info->bytes_readonly +
4890 	       space_info->bytes_may_use;
4891 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4892 		expected = div_factor_fine(space_info->total_bytes, 95);
4893 	else
4894 		expected = div_factor_fine(space_info->total_bytes, 90);
4895 
4896 	if (used > expected)
4897 		to_reclaim = used - expected;
4898 	else
4899 		to_reclaim = 0;
4900 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4901 				     space_info->bytes_reserved);
4902 out:
4903 	spin_unlock(&space_info->lock);
4904 
4905 	return to_reclaim;
4906 }
4907 
4908 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4909 					struct btrfs_fs_info *fs_info, u64 used)
4910 {
4911 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4912 
4913 	/* If we're just plain full then async reclaim just slows us down. */
4914 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4915 		return 0;
4916 
4917 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4918 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4919 }
4920 
4921 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4922 				       struct btrfs_fs_info *fs_info,
4923 				       int flush_state)
4924 {
4925 	u64 used;
4926 
4927 	spin_lock(&space_info->lock);
4928 	/*
4929 	 * We run out of space and have not got any free space via flush_space,
4930 	 * so don't bother doing async reclaim.
4931 	 */
4932 	if (flush_state > COMMIT_TRANS && space_info->full) {
4933 		spin_unlock(&space_info->lock);
4934 		return 0;
4935 	}
4936 
4937 	used = space_info->bytes_used + space_info->bytes_reserved +
4938 	       space_info->bytes_pinned + space_info->bytes_readonly +
4939 	       space_info->bytes_may_use;
4940 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4941 		spin_unlock(&space_info->lock);
4942 		return 1;
4943 	}
4944 	spin_unlock(&space_info->lock);
4945 
4946 	return 0;
4947 }
4948 
4949 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4950 {
4951 	struct btrfs_fs_info *fs_info;
4952 	struct btrfs_space_info *space_info;
4953 	u64 to_reclaim;
4954 	int flush_state;
4955 
4956 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4957 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4958 
4959 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4960 						      space_info);
4961 	if (!to_reclaim)
4962 		return;
4963 
4964 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4965 	do {
4966 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4967 			    to_reclaim, flush_state);
4968 		flush_state++;
4969 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4970 						 flush_state))
4971 			return;
4972 	} while (flush_state < COMMIT_TRANS);
4973 }
4974 
4975 void btrfs_init_async_reclaim_work(struct work_struct *work)
4976 {
4977 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4978 }
4979 
4980 /**
4981  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4982  * @root - the root we're allocating for
4983  * @block_rsv - the block_rsv we're allocating for
4984  * @orig_bytes - the number of bytes we want
4985  * @flush - whether or not we can flush to make our reservation
4986  *
4987  * This will reserve orig_bytes number of bytes from the space info associated
4988  * with the block_rsv.  If there is not enough space it will make an attempt to
4989  * flush out space to make room.  It will do this by flushing delalloc if
4990  * possible or committing the transaction.  If flush is 0 then no attempts to
4991  * regain reservations will be made and this will fail if there is not enough
4992  * space already.
4993  */
4994 static int reserve_metadata_bytes(struct btrfs_root *root,
4995 				  struct btrfs_block_rsv *block_rsv,
4996 				  u64 orig_bytes,
4997 				  enum btrfs_reserve_flush_enum flush)
4998 {
4999 	struct btrfs_space_info *space_info = block_rsv->space_info;
5000 	u64 used;
5001 	u64 num_bytes = orig_bytes;
5002 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5003 	int ret = 0;
5004 	bool flushing = false;
5005 
5006 again:
5007 	ret = 0;
5008 	spin_lock(&space_info->lock);
5009 	/*
5010 	 * We only want to wait if somebody other than us is flushing and we
5011 	 * are actually allowed to flush all things.
5012 	 */
5013 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5014 	       space_info->flush) {
5015 		spin_unlock(&space_info->lock);
5016 		/*
5017 		 * If we have a trans handle we can't wait because the flusher
5018 		 * may have to commit the transaction, which would mean we would
5019 		 * deadlock since we are waiting for the flusher to finish, but
5020 		 * hold the current transaction open.
5021 		 */
5022 		if (current->journal_info)
5023 			return -EAGAIN;
5024 		ret = wait_event_killable(space_info->wait, !space_info->flush);
5025 		/* Must have been killed, return */
5026 		if (ret)
5027 			return -EINTR;
5028 
5029 		spin_lock(&space_info->lock);
5030 	}
5031 
5032 	ret = -ENOSPC;
5033 	used = space_info->bytes_used + space_info->bytes_reserved +
5034 		space_info->bytes_pinned + space_info->bytes_readonly +
5035 		space_info->bytes_may_use;
5036 
5037 	/*
5038 	 * The idea here is that we've not already over-reserved the block group
5039 	 * then we can go ahead and save our reservation first and then start
5040 	 * flushing if we need to.  Otherwise if we've already overcommitted
5041 	 * lets start flushing stuff first and then come back and try to make
5042 	 * our reservation.
5043 	 */
5044 	if (used <= space_info->total_bytes) {
5045 		if (used + orig_bytes <= space_info->total_bytes) {
5046 			space_info->bytes_may_use += orig_bytes;
5047 			trace_btrfs_space_reservation(root->fs_info,
5048 				"space_info", space_info->flags, orig_bytes, 1);
5049 			ret = 0;
5050 		} else {
5051 			/*
5052 			 * Ok set num_bytes to orig_bytes since we aren't
5053 			 * overocmmitted, this way we only try and reclaim what
5054 			 * we need.
5055 			 */
5056 			num_bytes = orig_bytes;
5057 		}
5058 	} else {
5059 		/*
5060 		 * Ok we're over committed, set num_bytes to the overcommitted
5061 		 * amount plus the amount of bytes that we need for this
5062 		 * reservation.
5063 		 */
5064 		num_bytes = used - space_info->total_bytes +
5065 			(orig_bytes * 2);
5066 	}
5067 
5068 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5069 		space_info->bytes_may_use += orig_bytes;
5070 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5071 					      space_info->flags, orig_bytes,
5072 					      1);
5073 		ret = 0;
5074 	}
5075 
5076 	/*
5077 	 * Couldn't make our reservation, save our place so while we're trying
5078 	 * to reclaim space we can actually use it instead of somebody else
5079 	 * stealing it from us.
5080 	 *
5081 	 * We make the other tasks wait for the flush only when we can flush
5082 	 * all things.
5083 	 */
5084 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5085 		flushing = true;
5086 		space_info->flush = 1;
5087 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5088 		used += orig_bytes;
5089 		/*
5090 		 * We will do the space reservation dance during log replay,
5091 		 * which means we won't have fs_info->fs_root set, so don't do
5092 		 * the async reclaim as we will panic.
5093 		 */
5094 		if (!root->fs_info->log_root_recovering &&
5095 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
5096 		    !work_busy(&root->fs_info->async_reclaim_work))
5097 			queue_work(system_unbound_wq,
5098 				   &root->fs_info->async_reclaim_work);
5099 	}
5100 	spin_unlock(&space_info->lock);
5101 
5102 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5103 		goto out;
5104 
5105 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
5106 			  flush_state);
5107 	flush_state++;
5108 
5109 	/*
5110 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5111 	 * would happen. So skip delalloc flush.
5112 	 */
5113 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5114 	    (flush_state == FLUSH_DELALLOC ||
5115 	     flush_state == FLUSH_DELALLOC_WAIT))
5116 		flush_state = ALLOC_CHUNK;
5117 
5118 	if (!ret)
5119 		goto again;
5120 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5121 		 flush_state < COMMIT_TRANS)
5122 		goto again;
5123 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5124 		 flush_state <= COMMIT_TRANS)
5125 		goto again;
5126 
5127 out:
5128 	if (ret == -ENOSPC &&
5129 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5130 		struct btrfs_block_rsv *global_rsv =
5131 			&root->fs_info->global_block_rsv;
5132 
5133 		if (block_rsv != global_rsv &&
5134 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5135 			ret = 0;
5136 	}
5137 	if (ret == -ENOSPC)
5138 		trace_btrfs_space_reservation(root->fs_info,
5139 					      "space_info:enospc",
5140 					      space_info->flags, orig_bytes, 1);
5141 	if (flushing) {
5142 		spin_lock(&space_info->lock);
5143 		space_info->flush = 0;
5144 		wake_up_all(&space_info->wait);
5145 		spin_unlock(&space_info->lock);
5146 	}
5147 	return ret;
5148 }
5149 
5150 static struct btrfs_block_rsv *get_block_rsv(
5151 					const struct btrfs_trans_handle *trans,
5152 					const struct btrfs_root *root)
5153 {
5154 	struct btrfs_block_rsv *block_rsv = NULL;
5155 
5156 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5157 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5158 	     (root == root->fs_info->uuid_root))
5159 		block_rsv = trans->block_rsv;
5160 
5161 	if (!block_rsv)
5162 		block_rsv = root->block_rsv;
5163 
5164 	if (!block_rsv)
5165 		block_rsv = &root->fs_info->empty_block_rsv;
5166 
5167 	return block_rsv;
5168 }
5169 
5170 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5171 			       u64 num_bytes)
5172 {
5173 	int ret = -ENOSPC;
5174 	spin_lock(&block_rsv->lock);
5175 	if (block_rsv->reserved >= num_bytes) {
5176 		block_rsv->reserved -= num_bytes;
5177 		if (block_rsv->reserved < block_rsv->size)
5178 			block_rsv->full = 0;
5179 		ret = 0;
5180 	}
5181 	spin_unlock(&block_rsv->lock);
5182 	return ret;
5183 }
5184 
5185 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5186 				u64 num_bytes, int update_size)
5187 {
5188 	spin_lock(&block_rsv->lock);
5189 	block_rsv->reserved += num_bytes;
5190 	if (update_size)
5191 		block_rsv->size += num_bytes;
5192 	else if (block_rsv->reserved >= block_rsv->size)
5193 		block_rsv->full = 1;
5194 	spin_unlock(&block_rsv->lock);
5195 }
5196 
5197 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5198 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5199 			     int min_factor)
5200 {
5201 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5202 	u64 min_bytes;
5203 
5204 	if (global_rsv->space_info != dest->space_info)
5205 		return -ENOSPC;
5206 
5207 	spin_lock(&global_rsv->lock);
5208 	min_bytes = div_factor(global_rsv->size, min_factor);
5209 	if (global_rsv->reserved < min_bytes + num_bytes) {
5210 		spin_unlock(&global_rsv->lock);
5211 		return -ENOSPC;
5212 	}
5213 	global_rsv->reserved -= num_bytes;
5214 	if (global_rsv->reserved < global_rsv->size)
5215 		global_rsv->full = 0;
5216 	spin_unlock(&global_rsv->lock);
5217 
5218 	block_rsv_add_bytes(dest, num_bytes, 1);
5219 	return 0;
5220 }
5221 
5222 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5223 				    struct btrfs_block_rsv *block_rsv,
5224 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5225 {
5226 	struct btrfs_space_info *space_info = block_rsv->space_info;
5227 
5228 	spin_lock(&block_rsv->lock);
5229 	if (num_bytes == (u64)-1)
5230 		num_bytes = block_rsv->size;
5231 	block_rsv->size -= num_bytes;
5232 	if (block_rsv->reserved >= block_rsv->size) {
5233 		num_bytes = block_rsv->reserved - block_rsv->size;
5234 		block_rsv->reserved = block_rsv->size;
5235 		block_rsv->full = 1;
5236 	} else {
5237 		num_bytes = 0;
5238 	}
5239 	spin_unlock(&block_rsv->lock);
5240 
5241 	if (num_bytes > 0) {
5242 		if (dest) {
5243 			spin_lock(&dest->lock);
5244 			if (!dest->full) {
5245 				u64 bytes_to_add;
5246 
5247 				bytes_to_add = dest->size - dest->reserved;
5248 				bytes_to_add = min(num_bytes, bytes_to_add);
5249 				dest->reserved += bytes_to_add;
5250 				if (dest->reserved >= dest->size)
5251 					dest->full = 1;
5252 				num_bytes -= bytes_to_add;
5253 			}
5254 			spin_unlock(&dest->lock);
5255 		}
5256 		if (num_bytes) {
5257 			spin_lock(&space_info->lock);
5258 			space_info->bytes_may_use -= num_bytes;
5259 			trace_btrfs_space_reservation(fs_info, "space_info",
5260 					space_info->flags, num_bytes, 0);
5261 			spin_unlock(&space_info->lock);
5262 		}
5263 	}
5264 }
5265 
5266 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5267 				   struct btrfs_block_rsv *dst, u64 num_bytes)
5268 {
5269 	int ret;
5270 
5271 	ret = block_rsv_use_bytes(src, num_bytes);
5272 	if (ret)
5273 		return ret;
5274 
5275 	block_rsv_add_bytes(dst, num_bytes, 1);
5276 	return 0;
5277 }
5278 
5279 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5280 {
5281 	memset(rsv, 0, sizeof(*rsv));
5282 	spin_lock_init(&rsv->lock);
5283 	rsv->type = type;
5284 }
5285 
5286 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5287 					      unsigned short type)
5288 {
5289 	struct btrfs_block_rsv *block_rsv;
5290 	struct btrfs_fs_info *fs_info = root->fs_info;
5291 
5292 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5293 	if (!block_rsv)
5294 		return NULL;
5295 
5296 	btrfs_init_block_rsv(block_rsv, type);
5297 	block_rsv->space_info = __find_space_info(fs_info,
5298 						  BTRFS_BLOCK_GROUP_METADATA);
5299 	return block_rsv;
5300 }
5301 
5302 void btrfs_free_block_rsv(struct btrfs_root *root,
5303 			  struct btrfs_block_rsv *rsv)
5304 {
5305 	if (!rsv)
5306 		return;
5307 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5308 	kfree(rsv);
5309 }
5310 
5311 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5312 {
5313 	kfree(rsv);
5314 }
5315 
5316 int btrfs_block_rsv_add(struct btrfs_root *root,
5317 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5318 			enum btrfs_reserve_flush_enum flush)
5319 {
5320 	int ret;
5321 
5322 	if (num_bytes == 0)
5323 		return 0;
5324 
5325 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5326 	if (!ret) {
5327 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5328 		return 0;
5329 	}
5330 
5331 	return ret;
5332 }
5333 
5334 int btrfs_block_rsv_check(struct btrfs_root *root,
5335 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5336 {
5337 	u64 num_bytes = 0;
5338 	int ret = -ENOSPC;
5339 
5340 	if (!block_rsv)
5341 		return 0;
5342 
5343 	spin_lock(&block_rsv->lock);
5344 	num_bytes = div_factor(block_rsv->size, min_factor);
5345 	if (block_rsv->reserved >= num_bytes)
5346 		ret = 0;
5347 	spin_unlock(&block_rsv->lock);
5348 
5349 	return ret;
5350 }
5351 
5352 int btrfs_block_rsv_refill(struct btrfs_root *root,
5353 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5354 			   enum btrfs_reserve_flush_enum flush)
5355 {
5356 	u64 num_bytes = 0;
5357 	int ret = -ENOSPC;
5358 
5359 	if (!block_rsv)
5360 		return 0;
5361 
5362 	spin_lock(&block_rsv->lock);
5363 	num_bytes = min_reserved;
5364 	if (block_rsv->reserved >= num_bytes)
5365 		ret = 0;
5366 	else
5367 		num_bytes -= block_rsv->reserved;
5368 	spin_unlock(&block_rsv->lock);
5369 
5370 	if (!ret)
5371 		return 0;
5372 
5373 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5374 	if (!ret) {
5375 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5376 		return 0;
5377 	}
5378 
5379 	return ret;
5380 }
5381 
5382 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5383 			    struct btrfs_block_rsv *dst_rsv,
5384 			    u64 num_bytes)
5385 {
5386 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5387 }
5388 
5389 void btrfs_block_rsv_release(struct btrfs_root *root,
5390 			     struct btrfs_block_rsv *block_rsv,
5391 			     u64 num_bytes)
5392 {
5393 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5394 	if (global_rsv == block_rsv ||
5395 	    block_rsv->space_info != global_rsv->space_info)
5396 		global_rsv = NULL;
5397 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5398 				num_bytes);
5399 }
5400 
5401 /*
5402  * helper to calculate size of global block reservation.
5403  * the desired value is sum of space used by extent tree,
5404  * checksum tree and root tree
5405  */
5406 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5407 {
5408 	struct btrfs_space_info *sinfo;
5409 	u64 num_bytes;
5410 	u64 meta_used;
5411 	u64 data_used;
5412 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5413 
5414 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5415 	spin_lock(&sinfo->lock);
5416 	data_used = sinfo->bytes_used;
5417 	spin_unlock(&sinfo->lock);
5418 
5419 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5420 	spin_lock(&sinfo->lock);
5421 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5422 		data_used = 0;
5423 	meta_used = sinfo->bytes_used;
5424 	spin_unlock(&sinfo->lock);
5425 
5426 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5427 		    csum_size * 2;
5428 	num_bytes += div_u64(data_used + meta_used, 50);
5429 
5430 	if (num_bytes * 3 > meta_used)
5431 		num_bytes = div_u64(meta_used, 3);
5432 
5433 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5434 }
5435 
5436 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5437 {
5438 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5439 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5440 	u64 num_bytes;
5441 
5442 	num_bytes = calc_global_metadata_size(fs_info);
5443 
5444 	spin_lock(&sinfo->lock);
5445 	spin_lock(&block_rsv->lock);
5446 
5447 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5448 
5449 	if (block_rsv->reserved < block_rsv->size) {
5450 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5451 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5452 			sinfo->bytes_may_use;
5453 		if (sinfo->total_bytes > num_bytes) {
5454 			num_bytes = sinfo->total_bytes - num_bytes;
5455 			num_bytes = min(num_bytes,
5456 					block_rsv->size - block_rsv->reserved);
5457 			block_rsv->reserved += num_bytes;
5458 			sinfo->bytes_may_use += num_bytes;
5459 			trace_btrfs_space_reservation(fs_info, "space_info",
5460 						      sinfo->flags, num_bytes,
5461 						      1);
5462 		}
5463 	} else if (block_rsv->reserved > block_rsv->size) {
5464 		num_bytes = block_rsv->reserved - block_rsv->size;
5465 		sinfo->bytes_may_use -= num_bytes;
5466 		trace_btrfs_space_reservation(fs_info, "space_info",
5467 				      sinfo->flags, num_bytes, 0);
5468 		block_rsv->reserved = block_rsv->size;
5469 	}
5470 
5471 	if (block_rsv->reserved == block_rsv->size)
5472 		block_rsv->full = 1;
5473 	else
5474 		block_rsv->full = 0;
5475 
5476 	spin_unlock(&block_rsv->lock);
5477 	spin_unlock(&sinfo->lock);
5478 }
5479 
5480 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5481 {
5482 	struct btrfs_space_info *space_info;
5483 
5484 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5485 	fs_info->chunk_block_rsv.space_info = space_info;
5486 
5487 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5488 	fs_info->global_block_rsv.space_info = space_info;
5489 	fs_info->delalloc_block_rsv.space_info = space_info;
5490 	fs_info->trans_block_rsv.space_info = space_info;
5491 	fs_info->empty_block_rsv.space_info = space_info;
5492 	fs_info->delayed_block_rsv.space_info = space_info;
5493 
5494 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5495 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5496 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5497 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5498 	if (fs_info->quota_root)
5499 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5500 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5501 
5502 	update_global_block_rsv(fs_info);
5503 }
5504 
5505 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5506 {
5507 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5508 				(u64)-1);
5509 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5510 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5511 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5512 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5513 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5514 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5515 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5516 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5517 }
5518 
5519 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5520 				  struct btrfs_root *root)
5521 {
5522 	if (!trans->block_rsv)
5523 		return;
5524 
5525 	if (!trans->bytes_reserved)
5526 		return;
5527 
5528 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5529 				      trans->transid, trans->bytes_reserved, 0);
5530 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5531 	trans->bytes_reserved = 0;
5532 }
5533 
5534 /*
5535  * To be called after all the new block groups attached to the transaction
5536  * handle have been created (btrfs_create_pending_block_groups()).
5537  */
5538 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5539 {
5540 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5541 
5542 	if (!trans->chunk_bytes_reserved)
5543 		return;
5544 
5545 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5546 
5547 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5548 				trans->chunk_bytes_reserved);
5549 	trans->chunk_bytes_reserved = 0;
5550 }
5551 
5552 /* Can only return 0 or -ENOSPC */
5553 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5554 				  struct inode *inode)
5555 {
5556 	struct btrfs_root *root = BTRFS_I(inode)->root;
5557 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5558 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5559 
5560 	/*
5561 	 * We need to hold space in order to delete our orphan item once we've
5562 	 * added it, so this takes the reservation so we can release it later
5563 	 * when we are truly done with the orphan item.
5564 	 */
5565 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5566 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5567 				      btrfs_ino(inode), num_bytes, 1);
5568 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5569 }
5570 
5571 void btrfs_orphan_release_metadata(struct inode *inode)
5572 {
5573 	struct btrfs_root *root = BTRFS_I(inode)->root;
5574 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5575 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5576 				      btrfs_ino(inode), num_bytes, 0);
5577 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5578 }
5579 
5580 /*
5581  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5582  * root: the root of the parent directory
5583  * rsv: block reservation
5584  * items: the number of items that we need do reservation
5585  * qgroup_reserved: used to return the reserved size in qgroup
5586  *
5587  * This function is used to reserve the space for snapshot/subvolume
5588  * creation and deletion. Those operations are different with the
5589  * common file/directory operations, they change two fs/file trees
5590  * and root tree, the number of items that the qgroup reserves is
5591  * different with the free space reservation. So we can not use
5592  * the space reservation mechanism in start_transaction().
5593  */
5594 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5595 				     struct btrfs_block_rsv *rsv,
5596 				     int items,
5597 				     u64 *qgroup_reserved,
5598 				     bool use_global_rsv)
5599 {
5600 	u64 num_bytes;
5601 	int ret;
5602 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5603 
5604 	if (root->fs_info->quota_enabled) {
5605 		/* One for parent inode, two for dir entries */
5606 		num_bytes = 3 * root->nodesize;
5607 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5608 		if (ret)
5609 			return ret;
5610 	} else {
5611 		num_bytes = 0;
5612 	}
5613 
5614 	*qgroup_reserved = num_bytes;
5615 
5616 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5617 	rsv->space_info = __find_space_info(root->fs_info,
5618 					    BTRFS_BLOCK_GROUP_METADATA);
5619 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5620 				  BTRFS_RESERVE_FLUSH_ALL);
5621 
5622 	if (ret == -ENOSPC && use_global_rsv)
5623 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5624 
5625 	if (ret && *qgroup_reserved)
5626 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5627 
5628 	return ret;
5629 }
5630 
5631 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5632 				      struct btrfs_block_rsv *rsv,
5633 				      u64 qgroup_reserved)
5634 {
5635 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5636 }
5637 
5638 /**
5639  * drop_outstanding_extent - drop an outstanding extent
5640  * @inode: the inode we're dropping the extent for
5641  * @num_bytes: the number of bytes we're releasing.
5642  *
5643  * This is called when we are freeing up an outstanding extent, either called
5644  * after an error or after an extent is written.  This will return the number of
5645  * reserved extents that need to be freed.  This must be called with
5646  * BTRFS_I(inode)->lock held.
5647  */
5648 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5649 {
5650 	unsigned drop_inode_space = 0;
5651 	unsigned dropped_extents = 0;
5652 	unsigned num_extents = 0;
5653 
5654 	num_extents = (unsigned)div64_u64(num_bytes +
5655 					  BTRFS_MAX_EXTENT_SIZE - 1,
5656 					  BTRFS_MAX_EXTENT_SIZE);
5657 	ASSERT(num_extents);
5658 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5659 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5660 
5661 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5662 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5663 			       &BTRFS_I(inode)->runtime_flags))
5664 		drop_inode_space = 1;
5665 
5666 	/*
5667 	 * If we have more or the same amount of outstanding extents than we have
5668 	 * reserved then we need to leave the reserved extents count alone.
5669 	 */
5670 	if (BTRFS_I(inode)->outstanding_extents >=
5671 	    BTRFS_I(inode)->reserved_extents)
5672 		return drop_inode_space;
5673 
5674 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5675 		BTRFS_I(inode)->outstanding_extents;
5676 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5677 	return dropped_extents + drop_inode_space;
5678 }
5679 
5680 /**
5681  * calc_csum_metadata_size - return the amount of metadata space that must be
5682  *	reserved/freed for the given bytes.
5683  * @inode: the inode we're manipulating
5684  * @num_bytes: the number of bytes in question
5685  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5686  *
5687  * This adjusts the number of csum_bytes in the inode and then returns the
5688  * correct amount of metadata that must either be reserved or freed.  We
5689  * calculate how many checksums we can fit into one leaf and then divide the
5690  * number of bytes that will need to be checksumed by this value to figure out
5691  * how many checksums will be required.  If we are adding bytes then the number
5692  * may go up and we will return the number of additional bytes that must be
5693  * reserved.  If it is going down we will return the number of bytes that must
5694  * be freed.
5695  *
5696  * This must be called with BTRFS_I(inode)->lock held.
5697  */
5698 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5699 				   int reserve)
5700 {
5701 	struct btrfs_root *root = BTRFS_I(inode)->root;
5702 	u64 old_csums, num_csums;
5703 
5704 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5705 	    BTRFS_I(inode)->csum_bytes == 0)
5706 		return 0;
5707 
5708 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5709 	if (reserve)
5710 		BTRFS_I(inode)->csum_bytes += num_bytes;
5711 	else
5712 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5713 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5714 
5715 	/* No change, no need to reserve more */
5716 	if (old_csums == num_csums)
5717 		return 0;
5718 
5719 	if (reserve)
5720 		return btrfs_calc_trans_metadata_size(root,
5721 						      num_csums - old_csums);
5722 
5723 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5724 }
5725 
5726 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5727 {
5728 	struct btrfs_root *root = BTRFS_I(inode)->root;
5729 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5730 	u64 to_reserve = 0;
5731 	u64 csum_bytes;
5732 	unsigned nr_extents = 0;
5733 	int extra_reserve = 0;
5734 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5735 	int ret = 0;
5736 	bool delalloc_lock = true;
5737 	u64 to_free = 0;
5738 	unsigned dropped;
5739 
5740 	/* If we are a free space inode we need to not flush since we will be in
5741 	 * the middle of a transaction commit.  We also don't need the delalloc
5742 	 * mutex since we won't race with anybody.  We need this mostly to make
5743 	 * lockdep shut its filthy mouth.
5744 	 */
5745 	if (btrfs_is_free_space_inode(inode)) {
5746 		flush = BTRFS_RESERVE_NO_FLUSH;
5747 		delalloc_lock = false;
5748 	}
5749 
5750 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5751 	    btrfs_transaction_in_commit(root->fs_info))
5752 		schedule_timeout(1);
5753 
5754 	if (delalloc_lock)
5755 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5756 
5757 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5758 
5759 	spin_lock(&BTRFS_I(inode)->lock);
5760 	nr_extents = (unsigned)div64_u64(num_bytes +
5761 					 BTRFS_MAX_EXTENT_SIZE - 1,
5762 					 BTRFS_MAX_EXTENT_SIZE);
5763 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5764 	nr_extents = 0;
5765 
5766 	if (BTRFS_I(inode)->outstanding_extents >
5767 	    BTRFS_I(inode)->reserved_extents)
5768 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5769 			BTRFS_I(inode)->reserved_extents;
5770 
5771 	/*
5772 	 * Add an item to reserve for updating the inode when we complete the
5773 	 * delalloc io.
5774 	 */
5775 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5776 		      &BTRFS_I(inode)->runtime_flags)) {
5777 		nr_extents++;
5778 		extra_reserve = 1;
5779 	}
5780 
5781 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5782 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5783 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5784 	spin_unlock(&BTRFS_I(inode)->lock);
5785 
5786 	if (root->fs_info->quota_enabled) {
5787 		ret = btrfs_qgroup_reserve_meta(root,
5788 				nr_extents * root->nodesize);
5789 		if (ret)
5790 			goto out_fail;
5791 	}
5792 
5793 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5794 	if (unlikely(ret)) {
5795 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5796 		goto out_fail;
5797 	}
5798 
5799 	spin_lock(&BTRFS_I(inode)->lock);
5800 	if (extra_reserve) {
5801 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5802 			&BTRFS_I(inode)->runtime_flags);
5803 		nr_extents--;
5804 	}
5805 	BTRFS_I(inode)->reserved_extents += nr_extents;
5806 	spin_unlock(&BTRFS_I(inode)->lock);
5807 
5808 	if (delalloc_lock)
5809 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5810 
5811 	if (to_reserve)
5812 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5813 					      btrfs_ino(inode), to_reserve, 1);
5814 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5815 
5816 	return 0;
5817 
5818 out_fail:
5819 	spin_lock(&BTRFS_I(inode)->lock);
5820 	dropped = drop_outstanding_extent(inode, num_bytes);
5821 	/*
5822 	 * If the inodes csum_bytes is the same as the original
5823 	 * csum_bytes then we know we haven't raced with any free()ers
5824 	 * so we can just reduce our inodes csum bytes and carry on.
5825 	 */
5826 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5827 		calc_csum_metadata_size(inode, num_bytes, 0);
5828 	} else {
5829 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5830 		u64 bytes;
5831 
5832 		/*
5833 		 * This is tricky, but first we need to figure out how much we
5834 		 * freed from any free-ers that occurred during this
5835 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5836 		 * before we dropped our lock, and then call the free for the
5837 		 * number of bytes that were freed while we were trying our
5838 		 * reservation.
5839 		 */
5840 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5841 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5842 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5843 
5844 
5845 		/*
5846 		 * Now we need to see how much we would have freed had we not
5847 		 * been making this reservation and our ->csum_bytes were not
5848 		 * artificially inflated.
5849 		 */
5850 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5851 		bytes = csum_bytes - orig_csum_bytes;
5852 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5853 
5854 		/*
5855 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5856 		 * more than to_free then we would have freed more space had we
5857 		 * not had an artificially high ->csum_bytes, so we need to free
5858 		 * the remainder.  If bytes is the same or less then we don't
5859 		 * need to do anything, the other free-ers did the correct
5860 		 * thing.
5861 		 */
5862 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5863 		if (bytes > to_free)
5864 			to_free = bytes - to_free;
5865 		else
5866 			to_free = 0;
5867 	}
5868 	spin_unlock(&BTRFS_I(inode)->lock);
5869 	if (dropped)
5870 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5871 
5872 	if (to_free) {
5873 		btrfs_block_rsv_release(root, block_rsv, to_free);
5874 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5875 					      btrfs_ino(inode), to_free, 0);
5876 	}
5877 	if (delalloc_lock)
5878 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5879 	return ret;
5880 }
5881 
5882 /**
5883  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5884  * @inode: the inode to release the reservation for
5885  * @num_bytes: the number of bytes we're releasing
5886  *
5887  * This will release the metadata reservation for an inode.  This can be called
5888  * once we complete IO for a given set of bytes to release their metadata
5889  * reservations.
5890  */
5891 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5892 {
5893 	struct btrfs_root *root = BTRFS_I(inode)->root;
5894 	u64 to_free = 0;
5895 	unsigned dropped;
5896 
5897 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5898 	spin_lock(&BTRFS_I(inode)->lock);
5899 	dropped = drop_outstanding_extent(inode, num_bytes);
5900 
5901 	if (num_bytes)
5902 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5903 	spin_unlock(&BTRFS_I(inode)->lock);
5904 	if (dropped > 0)
5905 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5906 
5907 	if (btrfs_test_is_dummy_root(root))
5908 		return;
5909 
5910 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5911 				      btrfs_ino(inode), to_free, 0);
5912 
5913 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5914 				to_free);
5915 }
5916 
5917 /**
5918  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5919  * delalloc
5920  * @inode: inode we're writing to
5921  * @start: start range we are writing to
5922  * @len: how long the range we are writing to
5923  *
5924  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5925  *
5926  * This will do the following things
5927  *
5928  * o reserve space in data space info for num bytes
5929  *   and reserve precious corresponding qgroup space
5930  *   (Done in check_data_free_space)
5931  *
5932  * o reserve space for metadata space, based on the number of outstanding
5933  *   extents and how much csums will be needed
5934  *   also reserve metadata space in a per root over-reserve method.
5935  * o add to the inodes->delalloc_bytes
5936  * o add it to the fs_info's delalloc inodes list.
5937  *   (Above 3 all done in delalloc_reserve_metadata)
5938  *
5939  * Return 0 for success
5940  * Return <0 for error(-ENOSPC or -EQUOT)
5941  */
5942 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5943 {
5944 	int ret;
5945 
5946 	ret = btrfs_check_data_free_space(inode, start, len);
5947 	if (ret < 0)
5948 		return ret;
5949 	ret = btrfs_delalloc_reserve_metadata(inode, len);
5950 	if (ret < 0)
5951 		btrfs_free_reserved_data_space(inode, start, len);
5952 	return ret;
5953 }
5954 
5955 /**
5956  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5957  * @inode: inode we're releasing space for
5958  * @start: start position of the space already reserved
5959  * @len: the len of the space already reserved
5960  *
5961  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5962  * called in the case that we don't need the metadata AND data reservations
5963  * anymore.  So if there is an error or we insert an inline extent.
5964  *
5965  * This function will release the metadata space that was not used and will
5966  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5967  * list if there are no delalloc bytes left.
5968  * Also it will handle the qgroup reserved space.
5969  */
5970 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5971 {
5972 	btrfs_delalloc_release_metadata(inode, len);
5973 	btrfs_free_reserved_data_space(inode, start, len);
5974 }
5975 
5976 static int update_block_group(struct btrfs_trans_handle *trans,
5977 			      struct btrfs_root *root, u64 bytenr,
5978 			      u64 num_bytes, int alloc)
5979 {
5980 	struct btrfs_block_group_cache *cache = NULL;
5981 	struct btrfs_fs_info *info = root->fs_info;
5982 	u64 total = num_bytes;
5983 	u64 old_val;
5984 	u64 byte_in_group;
5985 	int factor;
5986 
5987 	/* block accounting for super block */
5988 	spin_lock(&info->delalloc_root_lock);
5989 	old_val = btrfs_super_bytes_used(info->super_copy);
5990 	if (alloc)
5991 		old_val += num_bytes;
5992 	else
5993 		old_val -= num_bytes;
5994 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5995 	spin_unlock(&info->delalloc_root_lock);
5996 
5997 	while (total) {
5998 		cache = btrfs_lookup_block_group(info, bytenr);
5999 		if (!cache)
6000 			return -ENOENT;
6001 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6002 				    BTRFS_BLOCK_GROUP_RAID1 |
6003 				    BTRFS_BLOCK_GROUP_RAID10))
6004 			factor = 2;
6005 		else
6006 			factor = 1;
6007 		/*
6008 		 * If this block group has free space cache written out, we
6009 		 * need to make sure to load it if we are removing space.  This
6010 		 * is because we need the unpinning stage to actually add the
6011 		 * space back to the block group, otherwise we will leak space.
6012 		 */
6013 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6014 			cache_block_group(cache, 1);
6015 
6016 		byte_in_group = bytenr - cache->key.objectid;
6017 		WARN_ON(byte_in_group > cache->key.offset);
6018 
6019 		spin_lock(&cache->space_info->lock);
6020 		spin_lock(&cache->lock);
6021 
6022 		if (btrfs_test_opt(root, SPACE_CACHE) &&
6023 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6024 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6025 
6026 		old_val = btrfs_block_group_used(&cache->item);
6027 		num_bytes = min(total, cache->key.offset - byte_in_group);
6028 		if (alloc) {
6029 			old_val += num_bytes;
6030 			btrfs_set_block_group_used(&cache->item, old_val);
6031 			cache->reserved -= num_bytes;
6032 			cache->space_info->bytes_reserved -= num_bytes;
6033 			cache->space_info->bytes_used += num_bytes;
6034 			cache->space_info->disk_used += num_bytes * factor;
6035 			spin_unlock(&cache->lock);
6036 			spin_unlock(&cache->space_info->lock);
6037 		} else {
6038 			old_val -= num_bytes;
6039 			btrfs_set_block_group_used(&cache->item, old_val);
6040 			cache->pinned += num_bytes;
6041 			cache->space_info->bytes_pinned += num_bytes;
6042 			cache->space_info->bytes_used -= num_bytes;
6043 			cache->space_info->disk_used -= num_bytes * factor;
6044 			spin_unlock(&cache->lock);
6045 			spin_unlock(&cache->space_info->lock);
6046 
6047 			set_extent_dirty(info->pinned_extents,
6048 					 bytenr, bytenr + num_bytes - 1,
6049 					 GFP_NOFS | __GFP_NOFAIL);
6050 		}
6051 
6052 		spin_lock(&trans->transaction->dirty_bgs_lock);
6053 		if (list_empty(&cache->dirty_list)) {
6054 			list_add_tail(&cache->dirty_list,
6055 				      &trans->transaction->dirty_bgs);
6056 				trans->transaction->num_dirty_bgs++;
6057 			btrfs_get_block_group(cache);
6058 		}
6059 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6060 
6061 		/*
6062 		 * No longer have used bytes in this block group, queue it for
6063 		 * deletion. We do this after adding the block group to the
6064 		 * dirty list to avoid races between cleaner kthread and space
6065 		 * cache writeout.
6066 		 */
6067 		if (!alloc && old_val == 0) {
6068 			spin_lock(&info->unused_bgs_lock);
6069 			if (list_empty(&cache->bg_list)) {
6070 				btrfs_get_block_group(cache);
6071 				list_add_tail(&cache->bg_list,
6072 					      &info->unused_bgs);
6073 			}
6074 			spin_unlock(&info->unused_bgs_lock);
6075 		}
6076 
6077 		btrfs_put_block_group(cache);
6078 		total -= num_bytes;
6079 		bytenr += num_bytes;
6080 	}
6081 	return 0;
6082 }
6083 
6084 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6085 {
6086 	struct btrfs_block_group_cache *cache;
6087 	u64 bytenr;
6088 
6089 	spin_lock(&root->fs_info->block_group_cache_lock);
6090 	bytenr = root->fs_info->first_logical_byte;
6091 	spin_unlock(&root->fs_info->block_group_cache_lock);
6092 
6093 	if (bytenr < (u64)-1)
6094 		return bytenr;
6095 
6096 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6097 	if (!cache)
6098 		return 0;
6099 
6100 	bytenr = cache->key.objectid;
6101 	btrfs_put_block_group(cache);
6102 
6103 	return bytenr;
6104 }
6105 
6106 static int pin_down_extent(struct btrfs_root *root,
6107 			   struct btrfs_block_group_cache *cache,
6108 			   u64 bytenr, u64 num_bytes, int reserved)
6109 {
6110 	spin_lock(&cache->space_info->lock);
6111 	spin_lock(&cache->lock);
6112 	cache->pinned += num_bytes;
6113 	cache->space_info->bytes_pinned += num_bytes;
6114 	if (reserved) {
6115 		cache->reserved -= num_bytes;
6116 		cache->space_info->bytes_reserved -= num_bytes;
6117 	}
6118 	spin_unlock(&cache->lock);
6119 	spin_unlock(&cache->space_info->lock);
6120 
6121 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6122 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6123 	if (reserved)
6124 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6125 	return 0;
6126 }
6127 
6128 /*
6129  * this function must be called within transaction
6130  */
6131 int btrfs_pin_extent(struct btrfs_root *root,
6132 		     u64 bytenr, u64 num_bytes, int reserved)
6133 {
6134 	struct btrfs_block_group_cache *cache;
6135 
6136 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6137 	BUG_ON(!cache); /* Logic error */
6138 
6139 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6140 
6141 	btrfs_put_block_group(cache);
6142 	return 0;
6143 }
6144 
6145 /*
6146  * this function must be called within transaction
6147  */
6148 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6149 				    u64 bytenr, u64 num_bytes)
6150 {
6151 	struct btrfs_block_group_cache *cache;
6152 	int ret;
6153 
6154 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6155 	if (!cache)
6156 		return -EINVAL;
6157 
6158 	/*
6159 	 * pull in the free space cache (if any) so that our pin
6160 	 * removes the free space from the cache.  We have load_only set
6161 	 * to one because the slow code to read in the free extents does check
6162 	 * the pinned extents.
6163 	 */
6164 	cache_block_group(cache, 1);
6165 
6166 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6167 
6168 	/* remove us from the free space cache (if we're there at all) */
6169 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6170 	btrfs_put_block_group(cache);
6171 	return ret;
6172 }
6173 
6174 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6175 {
6176 	int ret;
6177 	struct btrfs_block_group_cache *block_group;
6178 	struct btrfs_caching_control *caching_ctl;
6179 
6180 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6181 	if (!block_group)
6182 		return -EINVAL;
6183 
6184 	cache_block_group(block_group, 0);
6185 	caching_ctl = get_caching_control(block_group);
6186 
6187 	if (!caching_ctl) {
6188 		/* Logic error */
6189 		BUG_ON(!block_group_cache_done(block_group));
6190 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6191 	} else {
6192 		mutex_lock(&caching_ctl->mutex);
6193 
6194 		if (start >= caching_ctl->progress) {
6195 			ret = add_excluded_extent(root, start, num_bytes);
6196 		} else if (start + num_bytes <= caching_ctl->progress) {
6197 			ret = btrfs_remove_free_space(block_group,
6198 						      start, num_bytes);
6199 		} else {
6200 			num_bytes = caching_ctl->progress - start;
6201 			ret = btrfs_remove_free_space(block_group,
6202 						      start, num_bytes);
6203 			if (ret)
6204 				goto out_lock;
6205 
6206 			num_bytes = (start + num_bytes) -
6207 				caching_ctl->progress;
6208 			start = caching_ctl->progress;
6209 			ret = add_excluded_extent(root, start, num_bytes);
6210 		}
6211 out_lock:
6212 		mutex_unlock(&caching_ctl->mutex);
6213 		put_caching_control(caching_ctl);
6214 	}
6215 	btrfs_put_block_group(block_group);
6216 	return ret;
6217 }
6218 
6219 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6220 				 struct extent_buffer *eb)
6221 {
6222 	struct btrfs_file_extent_item *item;
6223 	struct btrfs_key key;
6224 	int found_type;
6225 	int i;
6226 
6227 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6228 		return 0;
6229 
6230 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6231 		btrfs_item_key_to_cpu(eb, &key, i);
6232 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6233 			continue;
6234 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6235 		found_type = btrfs_file_extent_type(eb, item);
6236 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6237 			continue;
6238 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6239 			continue;
6240 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6241 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6242 		__exclude_logged_extent(log, key.objectid, key.offset);
6243 	}
6244 
6245 	return 0;
6246 }
6247 
6248 static void
6249 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6250 {
6251 	atomic_inc(&bg->reservations);
6252 }
6253 
6254 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6255 					const u64 start)
6256 {
6257 	struct btrfs_block_group_cache *bg;
6258 
6259 	bg = btrfs_lookup_block_group(fs_info, start);
6260 	ASSERT(bg);
6261 	if (atomic_dec_and_test(&bg->reservations))
6262 		wake_up_atomic_t(&bg->reservations);
6263 	btrfs_put_block_group(bg);
6264 }
6265 
6266 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6267 {
6268 	schedule();
6269 	return 0;
6270 }
6271 
6272 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6273 {
6274 	struct btrfs_space_info *space_info = bg->space_info;
6275 
6276 	ASSERT(bg->ro);
6277 
6278 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6279 		return;
6280 
6281 	/*
6282 	 * Our block group is read only but before we set it to read only,
6283 	 * some task might have had allocated an extent from it already, but it
6284 	 * has not yet created a respective ordered extent (and added it to a
6285 	 * root's list of ordered extents).
6286 	 * Therefore wait for any task currently allocating extents, since the
6287 	 * block group's reservations counter is incremented while a read lock
6288 	 * on the groups' semaphore is held and decremented after releasing
6289 	 * the read access on that semaphore and creating the ordered extent.
6290 	 */
6291 	down_write(&space_info->groups_sem);
6292 	up_write(&space_info->groups_sem);
6293 
6294 	wait_on_atomic_t(&bg->reservations,
6295 			 btrfs_wait_bg_reservations_atomic_t,
6296 			 TASK_UNINTERRUPTIBLE);
6297 }
6298 
6299 /**
6300  * btrfs_update_reserved_bytes - update the block_group and space info counters
6301  * @cache:	The cache we are manipulating
6302  * @num_bytes:	The number of bytes in question
6303  * @reserve:	One of the reservation enums
6304  * @delalloc:   The blocks are allocated for the delalloc write
6305  *
6306  * This is called by the allocator when it reserves space, or by somebody who is
6307  * freeing space that was never actually used on disk.  For example if you
6308  * reserve some space for a new leaf in transaction A and before transaction A
6309  * commits you free that leaf, you call this with reserve set to 0 in order to
6310  * clear the reservation.
6311  *
6312  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6313  * ENOSPC accounting.  For data we handle the reservation through clearing the
6314  * delalloc bits in the io_tree.  We have to do this since we could end up
6315  * allocating less disk space for the amount of data we have reserved in the
6316  * case of compression.
6317  *
6318  * If this is a reservation and the block group has become read only we cannot
6319  * make the reservation and return -EAGAIN, otherwise this function always
6320  * succeeds.
6321  */
6322 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6323 				       u64 num_bytes, int reserve, int delalloc)
6324 {
6325 	struct btrfs_space_info *space_info = cache->space_info;
6326 	int ret = 0;
6327 
6328 	spin_lock(&space_info->lock);
6329 	spin_lock(&cache->lock);
6330 	if (reserve != RESERVE_FREE) {
6331 		if (cache->ro) {
6332 			ret = -EAGAIN;
6333 		} else {
6334 			cache->reserved += num_bytes;
6335 			space_info->bytes_reserved += num_bytes;
6336 			if (reserve == RESERVE_ALLOC) {
6337 				trace_btrfs_space_reservation(cache->fs_info,
6338 						"space_info", space_info->flags,
6339 						num_bytes, 0);
6340 				space_info->bytes_may_use -= num_bytes;
6341 			}
6342 
6343 			if (delalloc)
6344 				cache->delalloc_bytes += num_bytes;
6345 		}
6346 	} else {
6347 		if (cache->ro)
6348 			space_info->bytes_readonly += num_bytes;
6349 		cache->reserved -= num_bytes;
6350 		space_info->bytes_reserved -= num_bytes;
6351 
6352 		if (delalloc)
6353 			cache->delalloc_bytes -= num_bytes;
6354 	}
6355 	spin_unlock(&cache->lock);
6356 	spin_unlock(&space_info->lock);
6357 	return ret;
6358 }
6359 
6360 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6361 				struct btrfs_root *root)
6362 {
6363 	struct btrfs_fs_info *fs_info = root->fs_info;
6364 	struct btrfs_caching_control *next;
6365 	struct btrfs_caching_control *caching_ctl;
6366 	struct btrfs_block_group_cache *cache;
6367 
6368 	down_write(&fs_info->commit_root_sem);
6369 
6370 	list_for_each_entry_safe(caching_ctl, next,
6371 				 &fs_info->caching_block_groups, list) {
6372 		cache = caching_ctl->block_group;
6373 		if (block_group_cache_done(cache)) {
6374 			cache->last_byte_to_unpin = (u64)-1;
6375 			list_del_init(&caching_ctl->list);
6376 			put_caching_control(caching_ctl);
6377 		} else {
6378 			cache->last_byte_to_unpin = caching_ctl->progress;
6379 		}
6380 	}
6381 
6382 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6383 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6384 	else
6385 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6386 
6387 	up_write(&fs_info->commit_root_sem);
6388 
6389 	update_global_block_rsv(fs_info);
6390 }
6391 
6392 /*
6393  * Returns the free cluster for the given space info and sets empty_cluster to
6394  * what it should be based on the mount options.
6395  */
6396 static struct btrfs_free_cluster *
6397 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6398 		   u64 *empty_cluster)
6399 {
6400 	struct btrfs_free_cluster *ret = NULL;
6401 	bool ssd = btrfs_test_opt(root, SSD);
6402 
6403 	*empty_cluster = 0;
6404 	if (btrfs_mixed_space_info(space_info))
6405 		return ret;
6406 
6407 	if (ssd)
6408 		*empty_cluster = SZ_2M;
6409 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6410 		ret = &root->fs_info->meta_alloc_cluster;
6411 		if (!ssd)
6412 			*empty_cluster = SZ_64K;
6413 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6414 		ret = &root->fs_info->data_alloc_cluster;
6415 	}
6416 
6417 	return ret;
6418 }
6419 
6420 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6421 			      const bool return_free_space)
6422 {
6423 	struct btrfs_fs_info *fs_info = root->fs_info;
6424 	struct btrfs_block_group_cache *cache = NULL;
6425 	struct btrfs_space_info *space_info;
6426 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6427 	struct btrfs_free_cluster *cluster = NULL;
6428 	u64 len;
6429 	u64 total_unpinned = 0;
6430 	u64 empty_cluster = 0;
6431 	bool readonly;
6432 
6433 	while (start <= end) {
6434 		readonly = false;
6435 		if (!cache ||
6436 		    start >= cache->key.objectid + cache->key.offset) {
6437 			if (cache)
6438 				btrfs_put_block_group(cache);
6439 			total_unpinned = 0;
6440 			cache = btrfs_lookup_block_group(fs_info, start);
6441 			BUG_ON(!cache); /* Logic error */
6442 
6443 			cluster = fetch_cluster_info(root,
6444 						     cache->space_info,
6445 						     &empty_cluster);
6446 			empty_cluster <<= 1;
6447 		}
6448 
6449 		len = cache->key.objectid + cache->key.offset - start;
6450 		len = min(len, end + 1 - start);
6451 
6452 		if (start < cache->last_byte_to_unpin) {
6453 			len = min(len, cache->last_byte_to_unpin - start);
6454 			if (return_free_space)
6455 				btrfs_add_free_space(cache, start, len);
6456 		}
6457 
6458 		start += len;
6459 		total_unpinned += len;
6460 		space_info = cache->space_info;
6461 
6462 		/*
6463 		 * If this space cluster has been marked as fragmented and we've
6464 		 * unpinned enough in this block group to potentially allow a
6465 		 * cluster to be created inside of it go ahead and clear the
6466 		 * fragmented check.
6467 		 */
6468 		if (cluster && cluster->fragmented &&
6469 		    total_unpinned > empty_cluster) {
6470 			spin_lock(&cluster->lock);
6471 			cluster->fragmented = 0;
6472 			spin_unlock(&cluster->lock);
6473 		}
6474 
6475 		spin_lock(&space_info->lock);
6476 		spin_lock(&cache->lock);
6477 		cache->pinned -= len;
6478 		space_info->bytes_pinned -= len;
6479 		space_info->max_extent_size = 0;
6480 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6481 		if (cache->ro) {
6482 			space_info->bytes_readonly += len;
6483 			readonly = true;
6484 		}
6485 		spin_unlock(&cache->lock);
6486 		if (!readonly && global_rsv->space_info == space_info) {
6487 			spin_lock(&global_rsv->lock);
6488 			if (!global_rsv->full) {
6489 				len = min(len, global_rsv->size -
6490 					  global_rsv->reserved);
6491 				global_rsv->reserved += len;
6492 				space_info->bytes_may_use += len;
6493 				if (global_rsv->reserved >= global_rsv->size)
6494 					global_rsv->full = 1;
6495 			}
6496 			spin_unlock(&global_rsv->lock);
6497 		}
6498 		spin_unlock(&space_info->lock);
6499 	}
6500 
6501 	if (cache)
6502 		btrfs_put_block_group(cache);
6503 	return 0;
6504 }
6505 
6506 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6507 			       struct btrfs_root *root)
6508 {
6509 	struct btrfs_fs_info *fs_info = root->fs_info;
6510 	struct btrfs_block_group_cache *block_group, *tmp;
6511 	struct list_head *deleted_bgs;
6512 	struct extent_io_tree *unpin;
6513 	u64 start;
6514 	u64 end;
6515 	int ret;
6516 
6517 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6518 		unpin = &fs_info->freed_extents[1];
6519 	else
6520 		unpin = &fs_info->freed_extents[0];
6521 
6522 	while (!trans->aborted) {
6523 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6524 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6525 					    EXTENT_DIRTY, NULL);
6526 		if (ret) {
6527 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6528 			break;
6529 		}
6530 
6531 		if (btrfs_test_opt(root, DISCARD))
6532 			ret = btrfs_discard_extent(root, start,
6533 						   end + 1 - start, NULL);
6534 
6535 		clear_extent_dirty(unpin, start, end);
6536 		unpin_extent_range(root, start, end, true);
6537 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6538 		cond_resched();
6539 	}
6540 
6541 	/*
6542 	 * Transaction is finished.  We don't need the lock anymore.  We
6543 	 * do need to clean up the block groups in case of a transaction
6544 	 * abort.
6545 	 */
6546 	deleted_bgs = &trans->transaction->deleted_bgs;
6547 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6548 		u64 trimmed = 0;
6549 
6550 		ret = -EROFS;
6551 		if (!trans->aborted)
6552 			ret = btrfs_discard_extent(root,
6553 						   block_group->key.objectid,
6554 						   block_group->key.offset,
6555 						   &trimmed);
6556 
6557 		list_del_init(&block_group->bg_list);
6558 		btrfs_put_block_group_trimming(block_group);
6559 		btrfs_put_block_group(block_group);
6560 
6561 		if (ret) {
6562 			const char *errstr = btrfs_decode_error(ret);
6563 			btrfs_warn(fs_info,
6564 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6565 				   ret, errstr);
6566 		}
6567 	}
6568 
6569 	return 0;
6570 }
6571 
6572 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6573 			     u64 owner, u64 root_objectid)
6574 {
6575 	struct btrfs_space_info *space_info;
6576 	u64 flags;
6577 
6578 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6579 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6580 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6581 		else
6582 			flags = BTRFS_BLOCK_GROUP_METADATA;
6583 	} else {
6584 		flags = BTRFS_BLOCK_GROUP_DATA;
6585 	}
6586 
6587 	space_info = __find_space_info(fs_info, flags);
6588 	BUG_ON(!space_info); /* Logic bug */
6589 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6590 }
6591 
6592 
6593 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6594 				struct btrfs_root *root,
6595 				struct btrfs_delayed_ref_node *node, u64 parent,
6596 				u64 root_objectid, u64 owner_objectid,
6597 				u64 owner_offset, int refs_to_drop,
6598 				struct btrfs_delayed_extent_op *extent_op)
6599 {
6600 	struct btrfs_key key;
6601 	struct btrfs_path *path;
6602 	struct btrfs_fs_info *info = root->fs_info;
6603 	struct btrfs_root *extent_root = info->extent_root;
6604 	struct extent_buffer *leaf;
6605 	struct btrfs_extent_item *ei;
6606 	struct btrfs_extent_inline_ref *iref;
6607 	int ret;
6608 	int is_data;
6609 	int extent_slot = 0;
6610 	int found_extent = 0;
6611 	int num_to_del = 1;
6612 	u32 item_size;
6613 	u64 refs;
6614 	u64 bytenr = node->bytenr;
6615 	u64 num_bytes = node->num_bytes;
6616 	int last_ref = 0;
6617 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6618 						 SKINNY_METADATA);
6619 
6620 	path = btrfs_alloc_path();
6621 	if (!path)
6622 		return -ENOMEM;
6623 
6624 	path->reada = READA_FORWARD;
6625 	path->leave_spinning = 1;
6626 
6627 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6628 	BUG_ON(!is_data && refs_to_drop != 1);
6629 
6630 	if (is_data)
6631 		skinny_metadata = 0;
6632 
6633 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6634 				    bytenr, num_bytes, parent,
6635 				    root_objectid, owner_objectid,
6636 				    owner_offset);
6637 	if (ret == 0) {
6638 		extent_slot = path->slots[0];
6639 		while (extent_slot >= 0) {
6640 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6641 					      extent_slot);
6642 			if (key.objectid != bytenr)
6643 				break;
6644 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6645 			    key.offset == num_bytes) {
6646 				found_extent = 1;
6647 				break;
6648 			}
6649 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6650 			    key.offset == owner_objectid) {
6651 				found_extent = 1;
6652 				break;
6653 			}
6654 			if (path->slots[0] - extent_slot > 5)
6655 				break;
6656 			extent_slot--;
6657 		}
6658 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6659 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6660 		if (found_extent && item_size < sizeof(*ei))
6661 			found_extent = 0;
6662 #endif
6663 		if (!found_extent) {
6664 			BUG_ON(iref);
6665 			ret = remove_extent_backref(trans, extent_root, path,
6666 						    NULL, refs_to_drop,
6667 						    is_data, &last_ref);
6668 			if (ret) {
6669 				btrfs_abort_transaction(trans, extent_root, ret);
6670 				goto out;
6671 			}
6672 			btrfs_release_path(path);
6673 			path->leave_spinning = 1;
6674 
6675 			key.objectid = bytenr;
6676 			key.type = BTRFS_EXTENT_ITEM_KEY;
6677 			key.offset = num_bytes;
6678 
6679 			if (!is_data && skinny_metadata) {
6680 				key.type = BTRFS_METADATA_ITEM_KEY;
6681 				key.offset = owner_objectid;
6682 			}
6683 
6684 			ret = btrfs_search_slot(trans, extent_root,
6685 						&key, path, -1, 1);
6686 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6687 				/*
6688 				 * Couldn't find our skinny metadata item,
6689 				 * see if we have ye olde extent item.
6690 				 */
6691 				path->slots[0]--;
6692 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6693 						      path->slots[0]);
6694 				if (key.objectid == bytenr &&
6695 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6696 				    key.offset == num_bytes)
6697 					ret = 0;
6698 			}
6699 
6700 			if (ret > 0 && skinny_metadata) {
6701 				skinny_metadata = false;
6702 				key.objectid = bytenr;
6703 				key.type = BTRFS_EXTENT_ITEM_KEY;
6704 				key.offset = num_bytes;
6705 				btrfs_release_path(path);
6706 				ret = btrfs_search_slot(trans, extent_root,
6707 							&key, path, -1, 1);
6708 			}
6709 
6710 			if (ret) {
6711 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6712 					ret, bytenr);
6713 				if (ret > 0)
6714 					btrfs_print_leaf(extent_root,
6715 							 path->nodes[0]);
6716 			}
6717 			if (ret < 0) {
6718 				btrfs_abort_transaction(trans, extent_root, ret);
6719 				goto out;
6720 			}
6721 			extent_slot = path->slots[0];
6722 		}
6723 	} else if (WARN_ON(ret == -ENOENT)) {
6724 		btrfs_print_leaf(extent_root, path->nodes[0]);
6725 		btrfs_err(info,
6726 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6727 			bytenr, parent, root_objectid, owner_objectid,
6728 			owner_offset);
6729 		btrfs_abort_transaction(trans, extent_root, ret);
6730 		goto out;
6731 	} else {
6732 		btrfs_abort_transaction(trans, extent_root, ret);
6733 		goto out;
6734 	}
6735 
6736 	leaf = path->nodes[0];
6737 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6738 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6739 	if (item_size < sizeof(*ei)) {
6740 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6741 		ret = convert_extent_item_v0(trans, extent_root, path,
6742 					     owner_objectid, 0);
6743 		if (ret < 0) {
6744 			btrfs_abort_transaction(trans, extent_root, ret);
6745 			goto out;
6746 		}
6747 
6748 		btrfs_release_path(path);
6749 		path->leave_spinning = 1;
6750 
6751 		key.objectid = bytenr;
6752 		key.type = BTRFS_EXTENT_ITEM_KEY;
6753 		key.offset = num_bytes;
6754 
6755 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6756 					-1, 1);
6757 		if (ret) {
6758 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6759 				ret, bytenr);
6760 			btrfs_print_leaf(extent_root, path->nodes[0]);
6761 		}
6762 		if (ret < 0) {
6763 			btrfs_abort_transaction(trans, extent_root, ret);
6764 			goto out;
6765 		}
6766 
6767 		extent_slot = path->slots[0];
6768 		leaf = path->nodes[0];
6769 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6770 	}
6771 #endif
6772 	BUG_ON(item_size < sizeof(*ei));
6773 	ei = btrfs_item_ptr(leaf, extent_slot,
6774 			    struct btrfs_extent_item);
6775 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6776 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6777 		struct btrfs_tree_block_info *bi;
6778 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6779 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6780 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6781 	}
6782 
6783 	refs = btrfs_extent_refs(leaf, ei);
6784 	if (refs < refs_to_drop) {
6785 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6786 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6787 		ret = -EINVAL;
6788 		btrfs_abort_transaction(trans, extent_root, ret);
6789 		goto out;
6790 	}
6791 	refs -= refs_to_drop;
6792 
6793 	if (refs > 0) {
6794 		if (extent_op)
6795 			__run_delayed_extent_op(extent_op, leaf, ei);
6796 		/*
6797 		 * In the case of inline back ref, reference count will
6798 		 * be updated by remove_extent_backref
6799 		 */
6800 		if (iref) {
6801 			BUG_ON(!found_extent);
6802 		} else {
6803 			btrfs_set_extent_refs(leaf, ei, refs);
6804 			btrfs_mark_buffer_dirty(leaf);
6805 		}
6806 		if (found_extent) {
6807 			ret = remove_extent_backref(trans, extent_root, path,
6808 						    iref, refs_to_drop,
6809 						    is_data, &last_ref);
6810 			if (ret) {
6811 				btrfs_abort_transaction(trans, extent_root, ret);
6812 				goto out;
6813 			}
6814 		}
6815 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6816 				 root_objectid);
6817 	} else {
6818 		if (found_extent) {
6819 			BUG_ON(is_data && refs_to_drop !=
6820 			       extent_data_ref_count(path, iref));
6821 			if (iref) {
6822 				BUG_ON(path->slots[0] != extent_slot);
6823 			} else {
6824 				BUG_ON(path->slots[0] != extent_slot + 1);
6825 				path->slots[0] = extent_slot;
6826 				num_to_del = 2;
6827 			}
6828 		}
6829 
6830 		last_ref = 1;
6831 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6832 				      num_to_del);
6833 		if (ret) {
6834 			btrfs_abort_transaction(trans, extent_root, ret);
6835 			goto out;
6836 		}
6837 		btrfs_release_path(path);
6838 
6839 		if (is_data) {
6840 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6841 			if (ret) {
6842 				btrfs_abort_transaction(trans, extent_root, ret);
6843 				goto out;
6844 			}
6845 		}
6846 
6847 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6848 					     num_bytes);
6849 		if (ret) {
6850 			btrfs_abort_transaction(trans, extent_root, ret);
6851 			goto out;
6852 		}
6853 
6854 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6855 		if (ret) {
6856 			btrfs_abort_transaction(trans, extent_root, ret);
6857 			goto out;
6858 		}
6859 	}
6860 	btrfs_release_path(path);
6861 
6862 out:
6863 	btrfs_free_path(path);
6864 	return ret;
6865 }
6866 
6867 /*
6868  * when we free an block, it is possible (and likely) that we free the last
6869  * delayed ref for that extent as well.  This searches the delayed ref tree for
6870  * a given extent, and if there are no other delayed refs to be processed, it
6871  * removes it from the tree.
6872  */
6873 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6874 				      struct btrfs_root *root, u64 bytenr)
6875 {
6876 	struct btrfs_delayed_ref_head *head;
6877 	struct btrfs_delayed_ref_root *delayed_refs;
6878 	int ret = 0;
6879 
6880 	delayed_refs = &trans->transaction->delayed_refs;
6881 	spin_lock(&delayed_refs->lock);
6882 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6883 	if (!head)
6884 		goto out_delayed_unlock;
6885 
6886 	spin_lock(&head->lock);
6887 	if (!list_empty(&head->ref_list))
6888 		goto out;
6889 
6890 	if (head->extent_op) {
6891 		if (!head->must_insert_reserved)
6892 			goto out;
6893 		btrfs_free_delayed_extent_op(head->extent_op);
6894 		head->extent_op = NULL;
6895 	}
6896 
6897 	/*
6898 	 * waiting for the lock here would deadlock.  If someone else has it
6899 	 * locked they are already in the process of dropping it anyway
6900 	 */
6901 	if (!mutex_trylock(&head->mutex))
6902 		goto out;
6903 
6904 	/*
6905 	 * at this point we have a head with no other entries.  Go
6906 	 * ahead and process it.
6907 	 */
6908 	head->node.in_tree = 0;
6909 	rb_erase(&head->href_node, &delayed_refs->href_root);
6910 
6911 	atomic_dec(&delayed_refs->num_entries);
6912 
6913 	/*
6914 	 * we don't take a ref on the node because we're removing it from the
6915 	 * tree, so we just steal the ref the tree was holding.
6916 	 */
6917 	delayed_refs->num_heads--;
6918 	if (head->processing == 0)
6919 		delayed_refs->num_heads_ready--;
6920 	head->processing = 0;
6921 	spin_unlock(&head->lock);
6922 	spin_unlock(&delayed_refs->lock);
6923 
6924 	BUG_ON(head->extent_op);
6925 	if (head->must_insert_reserved)
6926 		ret = 1;
6927 
6928 	mutex_unlock(&head->mutex);
6929 	btrfs_put_delayed_ref(&head->node);
6930 	return ret;
6931 out:
6932 	spin_unlock(&head->lock);
6933 
6934 out_delayed_unlock:
6935 	spin_unlock(&delayed_refs->lock);
6936 	return 0;
6937 }
6938 
6939 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6940 			   struct btrfs_root *root,
6941 			   struct extent_buffer *buf,
6942 			   u64 parent, int last_ref)
6943 {
6944 	int pin = 1;
6945 	int ret;
6946 
6947 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6948 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6949 					buf->start, buf->len,
6950 					parent, root->root_key.objectid,
6951 					btrfs_header_level(buf),
6952 					BTRFS_DROP_DELAYED_REF, NULL);
6953 		BUG_ON(ret); /* -ENOMEM */
6954 	}
6955 
6956 	if (!last_ref)
6957 		return;
6958 
6959 	if (btrfs_header_generation(buf) == trans->transid) {
6960 		struct btrfs_block_group_cache *cache;
6961 
6962 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6963 			ret = check_ref_cleanup(trans, root, buf->start);
6964 			if (!ret)
6965 				goto out;
6966 		}
6967 
6968 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6969 
6970 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6971 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6972 			btrfs_put_block_group(cache);
6973 			goto out;
6974 		}
6975 
6976 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6977 
6978 		btrfs_add_free_space(cache, buf->start, buf->len);
6979 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6980 		btrfs_put_block_group(cache);
6981 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6982 		pin = 0;
6983 	}
6984 out:
6985 	if (pin)
6986 		add_pinned_bytes(root->fs_info, buf->len,
6987 				 btrfs_header_level(buf),
6988 				 root->root_key.objectid);
6989 
6990 	/*
6991 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6992 	 * anymore.
6993 	 */
6994 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6995 }
6996 
6997 /* Can return -ENOMEM */
6998 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6999 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7000 		      u64 owner, u64 offset)
7001 {
7002 	int ret;
7003 	struct btrfs_fs_info *fs_info = root->fs_info;
7004 
7005 	if (btrfs_test_is_dummy_root(root))
7006 		return 0;
7007 
7008 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7009 
7010 	/*
7011 	 * tree log blocks never actually go into the extent allocation
7012 	 * tree, just update pinning info and exit early.
7013 	 */
7014 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7015 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7016 		/* unlocks the pinned mutex */
7017 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7018 		ret = 0;
7019 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7020 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7021 					num_bytes,
7022 					parent, root_objectid, (int)owner,
7023 					BTRFS_DROP_DELAYED_REF, NULL);
7024 	} else {
7025 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7026 						num_bytes,
7027 						parent, root_objectid, owner,
7028 						offset, 0,
7029 						BTRFS_DROP_DELAYED_REF, NULL);
7030 	}
7031 	return ret;
7032 }
7033 
7034 /*
7035  * when we wait for progress in the block group caching, its because
7036  * our allocation attempt failed at least once.  So, we must sleep
7037  * and let some progress happen before we try again.
7038  *
7039  * This function will sleep at least once waiting for new free space to
7040  * show up, and then it will check the block group free space numbers
7041  * for our min num_bytes.  Another option is to have it go ahead
7042  * and look in the rbtree for a free extent of a given size, but this
7043  * is a good start.
7044  *
7045  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7046  * any of the information in this block group.
7047  */
7048 static noinline void
7049 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7050 				u64 num_bytes)
7051 {
7052 	struct btrfs_caching_control *caching_ctl;
7053 
7054 	caching_ctl = get_caching_control(cache);
7055 	if (!caching_ctl)
7056 		return;
7057 
7058 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7059 		   (cache->free_space_ctl->free_space >= num_bytes));
7060 
7061 	put_caching_control(caching_ctl);
7062 }
7063 
7064 static noinline int
7065 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7066 {
7067 	struct btrfs_caching_control *caching_ctl;
7068 	int ret = 0;
7069 
7070 	caching_ctl = get_caching_control(cache);
7071 	if (!caching_ctl)
7072 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7073 
7074 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7075 	if (cache->cached == BTRFS_CACHE_ERROR)
7076 		ret = -EIO;
7077 	put_caching_control(caching_ctl);
7078 	return ret;
7079 }
7080 
7081 int __get_raid_index(u64 flags)
7082 {
7083 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7084 		return BTRFS_RAID_RAID10;
7085 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7086 		return BTRFS_RAID_RAID1;
7087 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7088 		return BTRFS_RAID_DUP;
7089 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7090 		return BTRFS_RAID_RAID0;
7091 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7092 		return BTRFS_RAID_RAID5;
7093 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7094 		return BTRFS_RAID_RAID6;
7095 
7096 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7097 }
7098 
7099 int get_block_group_index(struct btrfs_block_group_cache *cache)
7100 {
7101 	return __get_raid_index(cache->flags);
7102 }
7103 
7104 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7105 	[BTRFS_RAID_RAID10]	= "raid10",
7106 	[BTRFS_RAID_RAID1]	= "raid1",
7107 	[BTRFS_RAID_DUP]	= "dup",
7108 	[BTRFS_RAID_RAID0]	= "raid0",
7109 	[BTRFS_RAID_SINGLE]	= "single",
7110 	[BTRFS_RAID_RAID5]	= "raid5",
7111 	[BTRFS_RAID_RAID6]	= "raid6",
7112 };
7113 
7114 static const char *get_raid_name(enum btrfs_raid_types type)
7115 {
7116 	if (type >= BTRFS_NR_RAID_TYPES)
7117 		return NULL;
7118 
7119 	return btrfs_raid_type_names[type];
7120 }
7121 
7122 enum btrfs_loop_type {
7123 	LOOP_CACHING_NOWAIT = 0,
7124 	LOOP_CACHING_WAIT = 1,
7125 	LOOP_ALLOC_CHUNK = 2,
7126 	LOOP_NO_EMPTY_SIZE = 3,
7127 };
7128 
7129 static inline void
7130 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7131 		       int delalloc)
7132 {
7133 	if (delalloc)
7134 		down_read(&cache->data_rwsem);
7135 }
7136 
7137 static inline void
7138 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7139 		       int delalloc)
7140 {
7141 	btrfs_get_block_group(cache);
7142 	if (delalloc)
7143 		down_read(&cache->data_rwsem);
7144 }
7145 
7146 static struct btrfs_block_group_cache *
7147 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7148 		   struct btrfs_free_cluster *cluster,
7149 		   int delalloc)
7150 {
7151 	struct btrfs_block_group_cache *used_bg = NULL;
7152 
7153 	spin_lock(&cluster->refill_lock);
7154 	while (1) {
7155 		used_bg = cluster->block_group;
7156 		if (!used_bg)
7157 			return NULL;
7158 
7159 		if (used_bg == block_group)
7160 			return used_bg;
7161 
7162 		btrfs_get_block_group(used_bg);
7163 
7164 		if (!delalloc)
7165 			return used_bg;
7166 
7167 		if (down_read_trylock(&used_bg->data_rwsem))
7168 			return used_bg;
7169 
7170 		spin_unlock(&cluster->refill_lock);
7171 
7172 		down_read(&used_bg->data_rwsem);
7173 
7174 		spin_lock(&cluster->refill_lock);
7175 		if (used_bg == cluster->block_group)
7176 			return used_bg;
7177 
7178 		up_read(&used_bg->data_rwsem);
7179 		btrfs_put_block_group(used_bg);
7180 	}
7181 }
7182 
7183 static inline void
7184 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7185 			 int delalloc)
7186 {
7187 	if (delalloc)
7188 		up_read(&cache->data_rwsem);
7189 	btrfs_put_block_group(cache);
7190 }
7191 
7192 /*
7193  * walks the btree of allocated extents and find a hole of a given size.
7194  * The key ins is changed to record the hole:
7195  * ins->objectid == start position
7196  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7197  * ins->offset == the size of the hole.
7198  * Any available blocks before search_start are skipped.
7199  *
7200  * If there is no suitable free space, we will record the max size of
7201  * the free space extent currently.
7202  */
7203 static noinline int find_free_extent(struct btrfs_root *orig_root,
7204 				     u64 num_bytes, u64 empty_size,
7205 				     u64 hint_byte, struct btrfs_key *ins,
7206 				     u64 flags, int delalloc)
7207 {
7208 	int ret = 0;
7209 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7210 	struct btrfs_free_cluster *last_ptr = NULL;
7211 	struct btrfs_block_group_cache *block_group = NULL;
7212 	u64 search_start = 0;
7213 	u64 max_extent_size = 0;
7214 	u64 empty_cluster = 0;
7215 	struct btrfs_space_info *space_info;
7216 	int loop = 0;
7217 	int index = __get_raid_index(flags);
7218 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7219 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7220 	bool failed_cluster_refill = false;
7221 	bool failed_alloc = false;
7222 	bool use_cluster = true;
7223 	bool have_caching_bg = false;
7224 	bool orig_have_caching_bg = false;
7225 	bool full_search = false;
7226 
7227 	WARN_ON(num_bytes < root->sectorsize);
7228 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7229 	ins->objectid = 0;
7230 	ins->offset = 0;
7231 
7232 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7233 
7234 	space_info = __find_space_info(root->fs_info, flags);
7235 	if (!space_info) {
7236 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7237 		return -ENOSPC;
7238 	}
7239 
7240 	/*
7241 	 * If our free space is heavily fragmented we may not be able to make
7242 	 * big contiguous allocations, so instead of doing the expensive search
7243 	 * for free space, simply return ENOSPC with our max_extent_size so we
7244 	 * can go ahead and search for a more manageable chunk.
7245 	 *
7246 	 * If our max_extent_size is large enough for our allocation simply
7247 	 * disable clustering since we will likely not be able to find enough
7248 	 * space to create a cluster and induce latency trying.
7249 	 */
7250 	if (unlikely(space_info->max_extent_size)) {
7251 		spin_lock(&space_info->lock);
7252 		if (space_info->max_extent_size &&
7253 		    num_bytes > space_info->max_extent_size) {
7254 			ins->offset = space_info->max_extent_size;
7255 			spin_unlock(&space_info->lock);
7256 			return -ENOSPC;
7257 		} else if (space_info->max_extent_size) {
7258 			use_cluster = false;
7259 		}
7260 		spin_unlock(&space_info->lock);
7261 	}
7262 
7263 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7264 	if (last_ptr) {
7265 		spin_lock(&last_ptr->lock);
7266 		if (last_ptr->block_group)
7267 			hint_byte = last_ptr->window_start;
7268 		if (last_ptr->fragmented) {
7269 			/*
7270 			 * We still set window_start so we can keep track of the
7271 			 * last place we found an allocation to try and save
7272 			 * some time.
7273 			 */
7274 			hint_byte = last_ptr->window_start;
7275 			use_cluster = false;
7276 		}
7277 		spin_unlock(&last_ptr->lock);
7278 	}
7279 
7280 	search_start = max(search_start, first_logical_byte(root, 0));
7281 	search_start = max(search_start, hint_byte);
7282 	if (search_start == hint_byte) {
7283 		block_group = btrfs_lookup_block_group(root->fs_info,
7284 						       search_start);
7285 		/*
7286 		 * we don't want to use the block group if it doesn't match our
7287 		 * allocation bits, or if its not cached.
7288 		 *
7289 		 * However if we are re-searching with an ideal block group
7290 		 * picked out then we don't care that the block group is cached.
7291 		 */
7292 		if (block_group && block_group_bits(block_group, flags) &&
7293 		    block_group->cached != BTRFS_CACHE_NO) {
7294 			down_read(&space_info->groups_sem);
7295 			if (list_empty(&block_group->list) ||
7296 			    block_group->ro) {
7297 				/*
7298 				 * someone is removing this block group,
7299 				 * we can't jump into the have_block_group
7300 				 * target because our list pointers are not
7301 				 * valid
7302 				 */
7303 				btrfs_put_block_group(block_group);
7304 				up_read(&space_info->groups_sem);
7305 			} else {
7306 				index = get_block_group_index(block_group);
7307 				btrfs_lock_block_group(block_group, delalloc);
7308 				goto have_block_group;
7309 			}
7310 		} else if (block_group) {
7311 			btrfs_put_block_group(block_group);
7312 		}
7313 	}
7314 search:
7315 	have_caching_bg = false;
7316 	if (index == 0 || index == __get_raid_index(flags))
7317 		full_search = true;
7318 	down_read(&space_info->groups_sem);
7319 	list_for_each_entry(block_group, &space_info->block_groups[index],
7320 			    list) {
7321 		u64 offset;
7322 		int cached;
7323 
7324 		btrfs_grab_block_group(block_group, delalloc);
7325 		search_start = block_group->key.objectid;
7326 
7327 		/*
7328 		 * this can happen if we end up cycling through all the
7329 		 * raid types, but we want to make sure we only allocate
7330 		 * for the proper type.
7331 		 */
7332 		if (!block_group_bits(block_group, flags)) {
7333 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7334 				BTRFS_BLOCK_GROUP_RAID1 |
7335 				BTRFS_BLOCK_GROUP_RAID5 |
7336 				BTRFS_BLOCK_GROUP_RAID6 |
7337 				BTRFS_BLOCK_GROUP_RAID10;
7338 
7339 			/*
7340 			 * if they asked for extra copies and this block group
7341 			 * doesn't provide them, bail.  This does allow us to
7342 			 * fill raid0 from raid1.
7343 			 */
7344 			if ((flags & extra) && !(block_group->flags & extra))
7345 				goto loop;
7346 		}
7347 
7348 have_block_group:
7349 		cached = block_group_cache_done(block_group);
7350 		if (unlikely(!cached)) {
7351 			have_caching_bg = true;
7352 			ret = cache_block_group(block_group, 0);
7353 			BUG_ON(ret < 0);
7354 			ret = 0;
7355 		}
7356 
7357 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7358 			goto loop;
7359 		if (unlikely(block_group->ro))
7360 			goto loop;
7361 
7362 		/*
7363 		 * Ok we want to try and use the cluster allocator, so
7364 		 * lets look there
7365 		 */
7366 		if (last_ptr && use_cluster) {
7367 			struct btrfs_block_group_cache *used_block_group;
7368 			unsigned long aligned_cluster;
7369 			/*
7370 			 * the refill lock keeps out other
7371 			 * people trying to start a new cluster
7372 			 */
7373 			used_block_group = btrfs_lock_cluster(block_group,
7374 							      last_ptr,
7375 							      delalloc);
7376 			if (!used_block_group)
7377 				goto refill_cluster;
7378 
7379 			if (used_block_group != block_group &&
7380 			    (used_block_group->ro ||
7381 			     !block_group_bits(used_block_group, flags)))
7382 				goto release_cluster;
7383 
7384 			offset = btrfs_alloc_from_cluster(used_block_group,
7385 						last_ptr,
7386 						num_bytes,
7387 						used_block_group->key.objectid,
7388 						&max_extent_size);
7389 			if (offset) {
7390 				/* we have a block, we're done */
7391 				spin_unlock(&last_ptr->refill_lock);
7392 				trace_btrfs_reserve_extent_cluster(root,
7393 						used_block_group,
7394 						search_start, num_bytes);
7395 				if (used_block_group != block_group) {
7396 					btrfs_release_block_group(block_group,
7397 								  delalloc);
7398 					block_group = used_block_group;
7399 				}
7400 				goto checks;
7401 			}
7402 
7403 			WARN_ON(last_ptr->block_group != used_block_group);
7404 release_cluster:
7405 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7406 			 * set up a new clusters, so lets just skip it
7407 			 * and let the allocator find whatever block
7408 			 * it can find.  If we reach this point, we
7409 			 * will have tried the cluster allocator
7410 			 * plenty of times and not have found
7411 			 * anything, so we are likely way too
7412 			 * fragmented for the clustering stuff to find
7413 			 * anything.
7414 			 *
7415 			 * However, if the cluster is taken from the
7416 			 * current block group, release the cluster
7417 			 * first, so that we stand a better chance of
7418 			 * succeeding in the unclustered
7419 			 * allocation.  */
7420 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7421 			    used_block_group != block_group) {
7422 				spin_unlock(&last_ptr->refill_lock);
7423 				btrfs_release_block_group(used_block_group,
7424 							  delalloc);
7425 				goto unclustered_alloc;
7426 			}
7427 
7428 			/*
7429 			 * this cluster didn't work out, free it and
7430 			 * start over
7431 			 */
7432 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7433 
7434 			if (used_block_group != block_group)
7435 				btrfs_release_block_group(used_block_group,
7436 							  delalloc);
7437 refill_cluster:
7438 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7439 				spin_unlock(&last_ptr->refill_lock);
7440 				goto unclustered_alloc;
7441 			}
7442 
7443 			aligned_cluster = max_t(unsigned long,
7444 						empty_cluster + empty_size,
7445 					      block_group->full_stripe_len);
7446 
7447 			/* allocate a cluster in this block group */
7448 			ret = btrfs_find_space_cluster(root, block_group,
7449 						       last_ptr, search_start,
7450 						       num_bytes,
7451 						       aligned_cluster);
7452 			if (ret == 0) {
7453 				/*
7454 				 * now pull our allocation out of this
7455 				 * cluster
7456 				 */
7457 				offset = btrfs_alloc_from_cluster(block_group,
7458 							last_ptr,
7459 							num_bytes,
7460 							search_start,
7461 							&max_extent_size);
7462 				if (offset) {
7463 					/* we found one, proceed */
7464 					spin_unlock(&last_ptr->refill_lock);
7465 					trace_btrfs_reserve_extent_cluster(root,
7466 						block_group, search_start,
7467 						num_bytes);
7468 					goto checks;
7469 				}
7470 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7471 				   && !failed_cluster_refill) {
7472 				spin_unlock(&last_ptr->refill_lock);
7473 
7474 				failed_cluster_refill = true;
7475 				wait_block_group_cache_progress(block_group,
7476 				       num_bytes + empty_cluster + empty_size);
7477 				goto have_block_group;
7478 			}
7479 
7480 			/*
7481 			 * at this point we either didn't find a cluster
7482 			 * or we weren't able to allocate a block from our
7483 			 * cluster.  Free the cluster we've been trying
7484 			 * to use, and go to the next block group
7485 			 */
7486 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7487 			spin_unlock(&last_ptr->refill_lock);
7488 			goto loop;
7489 		}
7490 
7491 unclustered_alloc:
7492 		/*
7493 		 * We are doing an unclustered alloc, set the fragmented flag so
7494 		 * we don't bother trying to setup a cluster again until we get
7495 		 * more space.
7496 		 */
7497 		if (unlikely(last_ptr)) {
7498 			spin_lock(&last_ptr->lock);
7499 			last_ptr->fragmented = 1;
7500 			spin_unlock(&last_ptr->lock);
7501 		}
7502 		spin_lock(&block_group->free_space_ctl->tree_lock);
7503 		if (cached &&
7504 		    block_group->free_space_ctl->free_space <
7505 		    num_bytes + empty_cluster + empty_size) {
7506 			if (block_group->free_space_ctl->free_space >
7507 			    max_extent_size)
7508 				max_extent_size =
7509 					block_group->free_space_ctl->free_space;
7510 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7511 			goto loop;
7512 		}
7513 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7514 
7515 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7516 						    num_bytes, empty_size,
7517 						    &max_extent_size);
7518 		/*
7519 		 * If we didn't find a chunk, and we haven't failed on this
7520 		 * block group before, and this block group is in the middle of
7521 		 * caching and we are ok with waiting, then go ahead and wait
7522 		 * for progress to be made, and set failed_alloc to true.
7523 		 *
7524 		 * If failed_alloc is true then we've already waited on this
7525 		 * block group once and should move on to the next block group.
7526 		 */
7527 		if (!offset && !failed_alloc && !cached &&
7528 		    loop > LOOP_CACHING_NOWAIT) {
7529 			wait_block_group_cache_progress(block_group,
7530 						num_bytes + empty_size);
7531 			failed_alloc = true;
7532 			goto have_block_group;
7533 		} else if (!offset) {
7534 			goto loop;
7535 		}
7536 checks:
7537 		search_start = ALIGN(offset, root->stripesize);
7538 
7539 		/* move on to the next group */
7540 		if (search_start + num_bytes >
7541 		    block_group->key.objectid + block_group->key.offset) {
7542 			btrfs_add_free_space(block_group, offset, num_bytes);
7543 			goto loop;
7544 		}
7545 
7546 		if (offset < search_start)
7547 			btrfs_add_free_space(block_group, offset,
7548 					     search_start - offset);
7549 		BUG_ON(offset > search_start);
7550 
7551 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7552 						  alloc_type, delalloc);
7553 		if (ret == -EAGAIN) {
7554 			btrfs_add_free_space(block_group, offset, num_bytes);
7555 			goto loop;
7556 		}
7557 		btrfs_inc_block_group_reservations(block_group);
7558 
7559 		/* we are all good, lets return */
7560 		ins->objectid = search_start;
7561 		ins->offset = num_bytes;
7562 
7563 		trace_btrfs_reserve_extent(orig_root, block_group,
7564 					   search_start, num_bytes);
7565 		btrfs_release_block_group(block_group, delalloc);
7566 		break;
7567 loop:
7568 		failed_cluster_refill = false;
7569 		failed_alloc = false;
7570 		BUG_ON(index != get_block_group_index(block_group));
7571 		btrfs_release_block_group(block_group, delalloc);
7572 	}
7573 	up_read(&space_info->groups_sem);
7574 
7575 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7576 		&& !orig_have_caching_bg)
7577 		orig_have_caching_bg = true;
7578 
7579 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7580 		goto search;
7581 
7582 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7583 		goto search;
7584 
7585 	/*
7586 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7587 	 *			caching kthreads as we move along
7588 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7589 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7590 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7591 	 *			again
7592 	 */
7593 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7594 		index = 0;
7595 		if (loop == LOOP_CACHING_NOWAIT) {
7596 			/*
7597 			 * We want to skip the LOOP_CACHING_WAIT step if we
7598 			 * don't have any uncached bgs and we've already done a
7599 			 * full search through.
7600 			 */
7601 			if (orig_have_caching_bg || !full_search)
7602 				loop = LOOP_CACHING_WAIT;
7603 			else
7604 				loop = LOOP_ALLOC_CHUNK;
7605 		} else {
7606 			loop++;
7607 		}
7608 
7609 		if (loop == LOOP_ALLOC_CHUNK) {
7610 			struct btrfs_trans_handle *trans;
7611 			int exist = 0;
7612 
7613 			trans = current->journal_info;
7614 			if (trans)
7615 				exist = 1;
7616 			else
7617 				trans = btrfs_join_transaction(root);
7618 
7619 			if (IS_ERR(trans)) {
7620 				ret = PTR_ERR(trans);
7621 				goto out;
7622 			}
7623 
7624 			ret = do_chunk_alloc(trans, root, flags,
7625 					     CHUNK_ALLOC_FORCE);
7626 
7627 			/*
7628 			 * If we can't allocate a new chunk we've already looped
7629 			 * through at least once, move on to the NO_EMPTY_SIZE
7630 			 * case.
7631 			 */
7632 			if (ret == -ENOSPC)
7633 				loop = LOOP_NO_EMPTY_SIZE;
7634 
7635 			/*
7636 			 * Do not bail out on ENOSPC since we
7637 			 * can do more things.
7638 			 */
7639 			if (ret < 0 && ret != -ENOSPC)
7640 				btrfs_abort_transaction(trans,
7641 							root, ret);
7642 			else
7643 				ret = 0;
7644 			if (!exist)
7645 				btrfs_end_transaction(trans, root);
7646 			if (ret)
7647 				goto out;
7648 		}
7649 
7650 		if (loop == LOOP_NO_EMPTY_SIZE) {
7651 			/*
7652 			 * Don't loop again if we already have no empty_size and
7653 			 * no empty_cluster.
7654 			 */
7655 			if (empty_size == 0 &&
7656 			    empty_cluster == 0) {
7657 				ret = -ENOSPC;
7658 				goto out;
7659 			}
7660 			empty_size = 0;
7661 			empty_cluster = 0;
7662 		}
7663 
7664 		goto search;
7665 	} else if (!ins->objectid) {
7666 		ret = -ENOSPC;
7667 	} else if (ins->objectid) {
7668 		if (!use_cluster && last_ptr) {
7669 			spin_lock(&last_ptr->lock);
7670 			last_ptr->window_start = ins->objectid;
7671 			spin_unlock(&last_ptr->lock);
7672 		}
7673 		ret = 0;
7674 	}
7675 out:
7676 	if (ret == -ENOSPC) {
7677 		spin_lock(&space_info->lock);
7678 		space_info->max_extent_size = max_extent_size;
7679 		spin_unlock(&space_info->lock);
7680 		ins->offset = max_extent_size;
7681 	}
7682 	return ret;
7683 }
7684 
7685 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7686 			    int dump_block_groups)
7687 {
7688 	struct btrfs_block_group_cache *cache;
7689 	int index = 0;
7690 
7691 	spin_lock(&info->lock);
7692 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7693 	       info->flags,
7694 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7695 	       info->bytes_reserved - info->bytes_readonly,
7696 	       (info->full) ? "" : "not ");
7697 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7698 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7699 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7700 	       info->bytes_reserved, info->bytes_may_use,
7701 	       info->bytes_readonly);
7702 	spin_unlock(&info->lock);
7703 
7704 	if (!dump_block_groups)
7705 		return;
7706 
7707 	down_read(&info->groups_sem);
7708 again:
7709 	list_for_each_entry(cache, &info->block_groups[index], list) {
7710 		spin_lock(&cache->lock);
7711 		printk(KERN_INFO "BTRFS: "
7712 			   "block group %llu has %llu bytes, "
7713 			   "%llu used %llu pinned %llu reserved %s\n",
7714 		       cache->key.objectid, cache->key.offset,
7715 		       btrfs_block_group_used(&cache->item), cache->pinned,
7716 		       cache->reserved, cache->ro ? "[readonly]" : "");
7717 		btrfs_dump_free_space(cache, bytes);
7718 		spin_unlock(&cache->lock);
7719 	}
7720 	if (++index < BTRFS_NR_RAID_TYPES)
7721 		goto again;
7722 	up_read(&info->groups_sem);
7723 }
7724 
7725 int btrfs_reserve_extent(struct btrfs_root *root,
7726 			 u64 num_bytes, u64 min_alloc_size,
7727 			 u64 empty_size, u64 hint_byte,
7728 			 struct btrfs_key *ins, int is_data, int delalloc)
7729 {
7730 	bool final_tried = num_bytes == min_alloc_size;
7731 	u64 flags;
7732 	int ret;
7733 
7734 	flags = btrfs_get_alloc_profile(root, is_data);
7735 again:
7736 	WARN_ON(num_bytes < root->sectorsize);
7737 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7738 			       flags, delalloc);
7739 	if (!ret && !is_data) {
7740 		btrfs_dec_block_group_reservations(root->fs_info,
7741 						   ins->objectid);
7742 	} else if (ret == -ENOSPC) {
7743 		if (!final_tried && ins->offset) {
7744 			num_bytes = min(num_bytes >> 1, ins->offset);
7745 			num_bytes = round_down(num_bytes, root->sectorsize);
7746 			num_bytes = max(num_bytes, min_alloc_size);
7747 			if (num_bytes == min_alloc_size)
7748 				final_tried = true;
7749 			goto again;
7750 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7751 			struct btrfs_space_info *sinfo;
7752 
7753 			sinfo = __find_space_info(root->fs_info, flags);
7754 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7755 				flags, num_bytes);
7756 			if (sinfo)
7757 				dump_space_info(sinfo, num_bytes, 1);
7758 		}
7759 	}
7760 
7761 	return ret;
7762 }
7763 
7764 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7765 					u64 start, u64 len,
7766 					int pin, int delalloc)
7767 {
7768 	struct btrfs_block_group_cache *cache;
7769 	int ret = 0;
7770 
7771 	cache = btrfs_lookup_block_group(root->fs_info, start);
7772 	if (!cache) {
7773 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7774 			start);
7775 		return -ENOSPC;
7776 	}
7777 
7778 	if (pin)
7779 		pin_down_extent(root, cache, start, len, 1);
7780 	else {
7781 		if (btrfs_test_opt(root, DISCARD))
7782 			ret = btrfs_discard_extent(root, start, len, NULL);
7783 		btrfs_add_free_space(cache, start, len);
7784 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7785 	}
7786 
7787 	btrfs_put_block_group(cache);
7788 
7789 	trace_btrfs_reserved_extent_free(root, start, len);
7790 
7791 	return ret;
7792 }
7793 
7794 int btrfs_free_reserved_extent(struct btrfs_root *root,
7795 			       u64 start, u64 len, int delalloc)
7796 {
7797 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7798 }
7799 
7800 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7801 				       u64 start, u64 len)
7802 {
7803 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7804 }
7805 
7806 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7807 				      struct btrfs_root *root,
7808 				      u64 parent, u64 root_objectid,
7809 				      u64 flags, u64 owner, u64 offset,
7810 				      struct btrfs_key *ins, int ref_mod)
7811 {
7812 	int ret;
7813 	struct btrfs_fs_info *fs_info = root->fs_info;
7814 	struct btrfs_extent_item *extent_item;
7815 	struct btrfs_extent_inline_ref *iref;
7816 	struct btrfs_path *path;
7817 	struct extent_buffer *leaf;
7818 	int type;
7819 	u32 size;
7820 
7821 	if (parent > 0)
7822 		type = BTRFS_SHARED_DATA_REF_KEY;
7823 	else
7824 		type = BTRFS_EXTENT_DATA_REF_KEY;
7825 
7826 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7827 
7828 	path = btrfs_alloc_path();
7829 	if (!path)
7830 		return -ENOMEM;
7831 
7832 	path->leave_spinning = 1;
7833 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7834 				      ins, size);
7835 	if (ret) {
7836 		btrfs_free_path(path);
7837 		return ret;
7838 	}
7839 
7840 	leaf = path->nodes[0];
7841 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7842 				     struct btrfs_extent_item);
7843 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7844 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7845 	btrfs_set_extent_flags(leaf, extent_item,
7846 			       flags | BTRFS_EXTENT_FLAG_DATA);
7847 
7848 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7849 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7850 	if (parent > 0) {
7851 		struct btrfs_shared_data_ref *ref;
7852 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7853 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7854 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7855 	} else {
7856 		struct btrfs_extent_data_ref *ref;
7857 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7858 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7859 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7860 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7861 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7862 	}
7863 
7864 	btrfs_mark_buffer_dirty(path->nodes[0]);
7865 	btrfs_free_path(path);
7866 
7867 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7868 					  ins->offset);
7869 	if (ret)
7870 		return ret;
7871 
7872 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7873 	if (ret) { /* -ENOENT, logic error */
7874 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7875 			ins->objectid, ins->offset);
7876 		BUG();
7877 	}
7878 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7879 	return ret;
7880 }
7881 
7882 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7883 				     struct btrfs_root *root,
7884 				     u64 parent, u64 root_objectid,
7885 				     u64 flags, struct btrfs_disk_key *key,
7886 				     int level, struct btrfs_key *ins)
7887 {
7888 	int ret;
7889 	struct btrfs_fs_info *fs_info = root->fs_info;
7890 	struct btrfs_extent_item *extent_item;
7891 	struct btrfs_tree_block_info *block_info;
7892 	struct btrfs_extent_inline_ref *iref;
7893 	struct btrfs_path *path;
7894 	struct extent_buffer *leaf;
7895 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7896 	u64 num_bytes = ins->offset;
7897 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7898 						 SKINNY_METADATA);
7899 
7900 	if (!skinny_metadata)
7901 		size += sizeof(*block_info);
7902 
7903 	path = btrfs_alloc_path();
7904 	if (!path) {
7905 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7906 						   root->nodesize);
7907 		return -ENOMEM;
7908 	}
7909 
7910 	path->leave_spinning = 1;
7911 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7912 				      ins, size);
7913 	if (ret) {
7914 		btrfs_free_path(path);
7915 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7916 						   root->nodesize);
7917 		return ret;
7918 	}
7919 
7920 	leaf = path->nodes[0];
7921 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7922 				     struct btrfs_extent_item);
7923 	btrfs_set_extent_refs(leaf, extent_item, 1);
7924 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7925 	btrfs_set_extent_flags(leaf, extent_item,
7926 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7927 
7928 	if (skinny_metadata) {
7929 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7930 		num_bytes = root->nodesize;
7931 	} else {
7932 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7933 		btrfs_set_tree_block_key(leaf, block_info, key);
7934 		btrfs_set_tree_block_level(leaf, block_info, level);
7935 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7936 	}
7937 
7938 	if (parent > 0) {
7939 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7940 		btrfs_set_extent_inline_ref_type(leaf, iref,
7941 						 BTRFS_SHARED_BLOCK_REF_KEY);
7942 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7943 	} else {
7944 		btrfs_set_extent_inline_ref_type(leaf, iref,
7945 						 BTRFS_TREE_BLOCK_REF_KEY);
7946 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7947 	}
7948 
7949 	btrfs_mark_buffer_dirty(leaf);
7950 	btrfs_free_path(path);
7951 
7952 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7953 					  num_bytes);
7954 	if (ret)
7955 		return ret;
7956 
7957 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7958 				 1);
7959 	if (ret) { /* -ENOENT, logic error */
7960 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7961 			ins->objectid, ins->offset);
7962 		BUG();
7963 	}
7964 
7965 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7966 	return ret;
7967 }
7968 
7969 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7970 				     struct btrfs_root *root,
7971 				     u64 root_objectid, u64 owner,
7972 				     u64 offset, u64 ram_bytes,
7973 				     struct btrfs_key *ins)
7974 {
7975 	int ret;
7976 
7977 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7978 
7979 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7980 					 ins->offset, 0,
7981 					 root_objectid, owner, offset,
7982 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7983 					 NULL);
7984 	return ret;
7985 }
7986 
7987 /*
7988  * this is used by the tree logging recovery code.  It records that
7989  * an extent has been allocated and makes sure to clear the free
7990  * space cache bits as well
7991  */
7992 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7993 				   struct btrfs_root *root,
7994 				   u64 root_objectid, u64 owner, u64 offset,
7995 				   struct btrfs_key *ins)
7996 {
7997 	int ret;
7998 	struct btrfs_block_group_cache *block_group;
7999 
8000 	/*
8001 	 * Mixed block groups will exclude before processing the log so we only
8002 	 * need to do the exclude dance if this fs isn't mixed.
8003 	 */
8004 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8005 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8006 		if (ret)
8007 			return ret;
8008 	}
8009 
8010 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8011 	if (!block_group)
8012 		return -EINVAL;
8013 
8014 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8015 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
8016 	BUG_ON(ret); /* logic error */
8017 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8018 					 0, owner, offset, ins, 1);
8019 	btrfs_put_block_group(block_group);
8020 	return ret;
8021 }
8022 
8023 static struct extent_buffer *
8024 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8025 		      u64 bytenr, int level)
8026 {
8027 	struct extent_buffer *buf;
8028 
8029 	buf = btrfs_find_create_tree_block(root, bytenr);
8030 	if (IS_ERR(buf))
8031 		return buf;
8032 
8033 	btrfs_set_header_generation(buf, trans->transid);
8034 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8035 	btrfs_tree_lock(buf);
8036 	clean_tree_block(trans, root->fs_info, buf);
8037 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8038 
8039 	btrfs_set_lock_blocking(buf);
8040 	set_extent_buffer_uptodate(buf);
8041 
8042 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8043 		buf->log_index = root->log_transid % 2;
8044 		/*
8045 		 * we allow two log transactions at a time, use different
8046 		 * EXENT bit to differentiate dirty pages.
8047 		 */
8048 		if (buf->log_index == 0)
8049 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8050 					buf->start + buf->len - 1, GFP_NOFS);
8051 		else
8052 			set_extent_new(&root->dirty_log_pages, buf->start,
8053 					buf->start + buf->len - 1);
8054 	} else {
8055 		buf->log_index = -1;
8056 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8057 			 buf->start + buf->len - 1, GFP_NOFS);
8058 	}
8059 	trans->dirty = true;
8060 	/* this returns a buffer locked for blocking */
8061 	return buf;
8062 }
8063 
8064 static struct btrfs_block_rsv *
8065 use_block_rsv(struct btrfs_trans_handle *trans,
8066 	      struct btrfs_root *root, u32 blocksize)
8067 {
8068 	struct btrfs_block_rsv *block_rsv;
8069 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8070 	int ret;
8071 	bool global_updated = false;
8072 
8073 	block_rsv = get_block_rsv(trans, root);
8074 
8075 	if (unlikely(block_rsv->size == 0))
8076 		goto try_reserve;
8077 again:
8078 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8079 	if (!ret)
8080 		return block_rsv;
8081 
8082 	if (block_rsv->failfast)
8083 		return ERR_PTR(ret);
8084 
8085 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8086 		global_updated = true;
8087 		update_global_block_rsv(root->fs_info);
8088 		goto again;
8089 	}
8090 
8091 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8092 		static DEFINE_RATELIMIT_STATE(_rs,
8093 				DEFAULT_RATELIMIT_INTERVAL * 10,
8094 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8095 		if (__ratelimit(&_rs))
8096 			WARN(1, KERN_DEBUG
8097 				"BTRFS: block rsv returned %d\n", ret);
8098 	}
8099 try_reserve:
8100 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8101 				     BTRFS_RESERVE_NO_FLUSH);
8102 	if (!ret)
8103 		return block_rsv;
8104 	/*
8105 	 * If we couldn't reserve metadata bytes try and use some from
8106 	 * the global reserve if its space type is the same as the global
8107 	 * reservation.
8108 	 */
8109 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8110 	    block_rsv->space_info == global_rsv->space_info) {
8111 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8112 		if (!ret)
8113 			return global_rsv;
8114 	}
8115 	return ERR_PTR(ret);
8116 }
8117 
8118 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8119 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8120 {
8121 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8122 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8123 }
8124 
8125 /*
8126  * finds a free extent and does all the dirty work required for allocation
8127  * returns the tree buffer or an ERR_PTR on error.
8128  */
8129 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8130 					struct btrfs_root *root,
8131 					u64 parent, u64 root_objectid,
8132 					struct btrfs_disk_key *key, int level,
8133 					u64 hint, u64 empty_size)
8134 {
8135 	struct btrfs_key ins;
8136 	struct btrfs_block_rsv *block_rsv;
8137 	struct extent_buffer *buf;
8138 	struct btrfs_delayed_extent_op *extent_op;
8139 	u64 flags = 0;
8140 	int ret;
8141 	u32 blocksize = root->nodesize;
8142 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8143 						 SKINNY_METADATA);
8144 
8145 	if (btrfs_test_is_dummy_root(root)) {
8146 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8147 					    level);
8148 		if (!IS_ERR(buf))
8149 			root->alloc_bytenr += blocksize;
8150 		return buf;
8151 	}
8152 
8153 	block_rsv = use_block_rsv(trans, root, blocksize);
8154 	if (IS_ERR(block_rsv))
8155 		return ERR_CAST(block_rsv);
8156 
8157 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
8158 				   empty_size, hint, &ins, 0, 0);
8159 	if (ret)
8160 		goto out_unuse;
8161 
8162 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8163 	if (IS_ERR(buf)) {
8164 		ret = PTR_ERR(buf);
8165 		goto out_free_reserved;
8166 	}
8167 
8168 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8169 		if (parent == 0)
8170 			parent = ins.objectid;
8171 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8172 	} else
8173 		BUG_ON(parent > 0);
8174 
8175 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8176 		extent_op = btrfs_alloc_delayed_extent_op();
8177 		if (!extent_op) {
8178 			ret = -ENOMEM;
8179 			goto out_free_buf;
8180 		}
8181 		if (key)
8182 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8183 		else
8184 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8185 		extent_op->flags_to_set = flags;
8186 		extent_op->update_key = skinny_metadata ? false : true;
8187 		extent_op->update_flags = true;
8188 		extent_op->is_data = false;
8189 		extent_op->level = level;
8190 
8191 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8192 						 ins.objectid, ins.offset,
8193 						 parent, root_objectid, level,
8194 						 BTRFS_ADD_DELAYED_EXTENT,
8195 						 extent_op);
8196 		if (ret)
8197 			goto out_free_delayed;
8198 	}
8199 	return buf;
8200 
8201 out_free_delayed:
8202 	btrfs_free_delayed_extent_op(extent_op);
8203 out_free_buf:
8204 	free_extent_buffer(buf);
8205 out_free_reserved:
8206 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8207 out_unuse:
8208 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8209 	return ERR_PTR(ret);
8210 }
8211 
8212 struct walk_control {
8213 	u64 refs[BTRFS_MAX_LEVEL];
8214 	u64 flags[BTRFS_MAX_LEVEL];
8215 	struct btrfs_key update_progress;
8216 	int stage;
8217 	int level;
8218 	int shared_level;
8219 	int update_ref;
8220 	int keep_locks;
8221 	int reada_slot;
8222 	int reada_count;
8223 	int for_reloc;
8224 };
8225 
8226 #define DROP_REFERENCE	1
8227 #define UPDATE_BACKREF	2
8228 
8229 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8230 				     struct btrfs_root *root,
8231 				     struct walk_control *wc,
8232 				     struct btrfs_path *path)
8233 {
8234 	u64 bytenr;
8235 	u64 generation;
8236 	u64 refs;
8237 	u64 flags;
8238 	u32 nritems;
8239 	u32 blocksize;
8240 	struct btrfs_key key;
8241 	struct extent_buffer *eb;
8242 	int ret;
8243 	int slot;
8244 	int nread = 0;
8245 
8246 	if (path->slots[wc->level] < wc->reada_slot) {
8247 		wc->reada_count = wc->reada_count * 2 / 3;
8248 		wc->reada_count = max(wc->reada_count, 2);
8249 	} else {
8250 		wc->reada_count = wc->reada_count * 3 / 2;
8251 		wc->reada_count = min_t(int, wc->reada_count,
8252 					BTRFS_NODEPTRS_PER_BLOCK(root));
8253 	}
8254 
8255 	eb = path->nodes[wc->level];
8256 	nritems = btrfs_header_nritems(eb);
8257 	blocksize = root->nodesize;
8258 
8259 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8260 		if (nread >= wc->reada_count)
8261 			break;
8262 
8263 		cond_resched();
8264 		bytenr = btrfs_node_blockptr(eb, slot);
8265 		generation = btrfs_node_ptr_generation(eb, slot);
8266 
8267 		if (slot == path->slots[wc->level])
8268 			goto reada;
8269 
8270 		if (wc->stage == UPDATE_BACKREF &&
8271 		    generation <= root->root_key.offset)
8272 			continue;
8273 
8274 		/* We don't lock the tree block, it's OK to be racy here */
8275 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8276 					       wc->level - 1, 1, &refs,
8277 					       &flags);
8278 		/* We don't care about errors in readahead. */
8279 		if (ret < 0)
8280 			continue;
8281 		BUG_ON(refs == 0);
8282 
8283 		if (wc->stage == DROP_REFERENCE) {
8284 			if (refs == 1)
8285 				goto reada;
8286 
8287 			if (wc->level == 1 &&
8288 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8289 				continue;
8290 			if (!wc->update_ref ||
8291 			    generation <= root->root_key.offset)
8292 				continue;
8293 			btrfs_node_key_to_cpu(eb, &key, slot);
8294 			ret = btrfs_comp_cpu_keys(&key,
8295 						  &wc->update_progress);
8296 			if (ret < 0)
8297 				continue;
8298 		} else {
8299 			if (wc->level == 1 &&
8300 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8301 				continue;
8302 		}
8303 reada:
8304 		readahead_tree_block(root, bytenr);
8305 		nread++;
8306 	}
8307 	wc->reada_slot = slot;
8308 }
8309 
8310 /*
8311  * These may not be seen by the usual inc/dec ref code so we have to
8312  * add them here.
8313  */
8314 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8315 				     struct btrfs_root *root, u64 bytenr,
8316 				     u64 num_bytes)
8317 {
8318 	struct btrfs_qgroup_extent_record *qrecord;
8319 	struct btrfs_delayed_ref_root *delayed_refs;
8320 
8321 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8322 	if (!qrecord)
8323 		return -ENOMEM;
8324 
8325 	qrecord->bytenr = bytenr;
8326 	qrecord->num_bytes = num_bytes;
8327 	qrecord->old_roots = NULL;
8328 
8329 	delayed_refs = &trans->transaction->delayed_refs;
8330 	spin_lock(&delayed_refs->lock);
8331 	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8332 		kfree(qrecord);
8333 	spin_unlock(&delayed_refs->lock);
8334 
8335 	return 0;
8336 }
8337 
8338 static int account_leaf_items(struct btrfs_trans_handle *trans,
8339 			      struct btrfs_root *root,
8340 			      struct extent_buffer *eb)
8341 {
8342 	int nr = btrfs_header_nritems(eb);
8343 	int i, extent_type, ret;
8344 	struct btrfs_key key;
8345 	struct btrfs_file_extent_item *fi;
8346 	u64 bytenr, num_bytes;
8347 
8348 	/* We can be called directly from walk_up_proc() */
8349 	if (!root->fs_info->quota_enabled)
8350 		return 0;
8351 
8352 	for (i = 0; i < nr; i++) {
8353 		btrfs_item_key_to_cpu(eb, &key, i);
8354 
8355 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8356 			continue;
8357 
8358 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8359 		/* filter out non qgroup-accountable extents  */
8360 		extent_type = btrfs_file_extent_type(eb, fi);
8361 
8362 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8363 			continue;
8364 
8365 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8366 		if (!bytenr)
8367 			continue;
8368 
8369 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8370 
8371 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8372 		if (ret)
8373 			return ret;
8374 	}
8375 	return 0;
8376 }
8377 
8378 /*
8379  * Walk up the tree from the bottom, freeing leaves and any interior
8380  * nodes which have had all slots visited. If a node (leaf or
8381  * interior) is freed, the node above it will have it's slot
8382  * incremented. The root node will never be freed.
8383  *
8384  * At the end of this function, we should have a path which has all
8385  * slots incremented to the next position for a search. If we need to
8386  * read a new node it will be NULL and the node above it will have the
8387  * correct slot selected for a later read.
8388  *
8389  * If we increment the root nodes slot counter past the number of
8390  * elements, 1 is returned to signal completion of the search.
8391  */
8392 static int adjust_slots_upwards(struct btrfs_root *root,
8393 				struct btrfs_path *path, int root_level)
8394 {
8395 	int level = 0;
8396 	int nr, slot;
8397 	struct extent_buffer *eb;
8398 
8399 	if (root_level == 0)
8400 		return 1;
8401 
8402 	while (level <= root_level) {
8403 		eb = path->nodes[level];
8404 		nr = btrfs_header_nritems(eb);
8405 		path->slots[level]++;
8406 		slot = path->slots[level];
8407 		if (slot >= nr || level == 0) {
8408 			/*
8409 			 * Don't free the root -  we will detect this
8410 			 * condition after our loop and return a
8411 			 * positive value for caller to stop walking the tree.
8412 			 */
8413 			if (level != root_level) {
8414 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8415 				path->locks[level] = 0;
8416 
8417 				free_extent_buffer(eb);
8418 				path->nodes[level] = NULL;
8419 				path->slots[level] = 0;
8420 			}
8421 		} else {
8422 			/*
8423 			 * We have a valid slot to walk back down
8424 			 * from. Stop here so caller can process these
8425 			 * new nodes.
8426 			 */
8427 			break;
8428 		}
8429 
8430 		level++;
8431 	}
8432 
8433 	eb = path->nodes[root_level];
8434 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8435 		return 1;
8436 
8437 	return 0;
8438 }
8439 
8440 /*
8441  * root_eb is the subtree root and is locked before this function is called.
8442  */
8443 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8444 				  struct btrfs_root *root,
8445 				  struct extent_buffer *root_eb,
8446 				  u64 root_gen,
8447 				  int root_level)
8448 {
8449 	int ret = 0;
8450 	int level;
8451 	struct extent_buffer *eb = root_eb;
8452 	struct btrfs_path *path = NULL;
8453 
8454 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8455 	BUG_ON(root_eb == NULL);
8456 
8457 	if (!root->fs_info->quota_enabled)
8458 		return 0;
8459 
8460 	if (!extent_buffer_uptodate(root_eb)) {
8461 		ret = btrfs_read_buffer(root_eb, root_gen);
8462 		if (ret)
8463 			goto out;
8464 	}
8465 
8466 	if (root_level == 0) {
8467 		ret = account_leaf_items(trans, root, root_eb);
8468 		goto out;
8469 	}
8470 
8471 	path = btrfs_alloc_path();
8472 	if (!path)
8473 		return -ENOMEM;
8474 
8475 	/*
8476 	 * Walk down the tree.  Missing extent blocks are filled in as
8477 	 * we go. Metadata is accounted every time we read a new
8478 	 * extent block.
8479 	 *
8480 	 * When we reach a leaf, we account for file extent items in it,
8481 	 * walk back up the tree (adjusting slot pointers as we go)
8482 	 * and restart the search process.
8483 	 */
8484 	extent_buffer_get(root_eb); /* For path */
8485 	path->nodes[root_level] = root_eb;
8486 	path->slots[root_level] = 0;
8487 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8488 walk_down:
8489 	level = root_level;
8490 	while (level >= 0) {
8491 		if (path->nodes[level] == NULL) {
8492 			int parent_slot;
8493 			u64 child_gen;
8494 			u64 child_bytenr;
8495 
8496 			/* We need to get child blockptr/gen from
8497 			 * parent before we can read it. */
8498 			eb = path->nodes[level + 1];
8499 			parent_slot = path->slots[level + 1];
8500 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8501 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8502 
8503 			eb = read_tree_block(root, child_bytenr, child_gen);
8504 			if (IS_ERR(eb)) {
8505 				ret = PTR_ERR(eb);
8506 				goto out;
8507 			} else if (!extent_buffer_uptodate(eb)) {
8508 				free_extent_buffer(eb);
8509 				ret = -EIO;
8510 				goto out;
8511 			}
8512 
8513 			path->nodes[level] = eb;
8514 			path->slots[level] = 0;
8515 
8516 			btrfs_tree_read_lock(eb);
8517 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8518 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8519 
8520 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8521 							root->nodesize);
8522 			if (ret)
8523 				goto out;
8524 		}
8525 
8526 		if (level == 0) {
8527 			ret = account_leaf_items(trans, root, path->nodes[level]);
8528 			if (ret)
8529 				goto out;
8530 
8531 			/* Nonzero return here means we completed our search */
8532 			ret = adjust_slots_upwards(root, path, root_level);
8533 			if (ret)
8534 				break;
8535 
8536 			/* Restart search with new slots */
8537 			goto walk_down;
8538 		}
8539 
8540 		level--;
8541 	}
8542 
8543 	ret = 0;
8544 out:
8545 	btrfs_free_path(path);
8546 
8547 	return ret;
8548 }
8549 
8550 /*
8551  * helper to process tree block while walking down the tree.
8552  *
8553  * when wc->stage == UPDATE_BACKREF, this function updates
8554  * back refs for pointers in the block.
8555  *
8556  * NOTE: return value 1 means we should stop walking down.
8557  */
8558 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8559 				   struct btrfs_root *root,
8560 				   struct btrfs_path *path,
8561 				   struct walk_control *wc, int lookup_info)
8562 {
8563 	int level = wc->level;
8564 	struct extent_buffer *eb = path->nodes[level];
8565 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8566 	int ret;
8567 
8568 	if (wc->stage == UPDATE_BACKREF &&
8569 	    btrfs_header_owner(eb) != root->root_key.objectid)
8570 		return 1;
8571 
8572 	/*
8573 	 * when reference count of tree block is 1, it won't increase
8574 	 * again. once full backref flag is set, we never clear it.
8575 	 */
8576 	if (lookup_info &&
8577 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8578 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8579 		BUG_ON(!path->locks[level]);
8580 		ret = btrfs_lookup_extent_info(trans, root,
8581 					       eb->start, level, 1,
8582 					       &wc->refs[level],
8583 					       &wc->flags[level]);
8584 		BUG_ON(ret == -ENOMEM);
8585 		if (ret)
8586 			return ret;
8587 		BUG_ON(wc->refs[level] == 0);
8588 	}
8589 
8590 	if (wc->stage == DROP_REFERENCE) {
8591 		if (wc->refs[level] > 1)
8592 			return 1;
8593 
8594 		if (path->locks[level] && !wc->keep_locks) {
8595 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8596 			path->locks[level] = 0;
8597 		}
8598 		return 0;
8599 	}
8600 
8601 	/* wc->stage == UPDATE_BACKREF */
8602 	if (!(wc->flags[level] & flag)) {
8603 		BUG_ON(!path->locks[level]);
8604 		ret = btrfs_inc_ref(trans, root, eb, 1);
8605 		BUG_ON(ret); /* -ENOMEM */
8606 		ret = btrfs_dec_ref(trans, root, eb, 0);
8607 		BUG_ON(ret); /* -ENOMEM */
8608 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8609 						  eb->len, flag,
8610 						  btrfs_header_level(eb), 0);
8611 		BUG_ON(ret); /* -ENOMEM */
8612 		wc->flags[level] |= flag;
8613 	}
8614 
8615 	/*
8616 	 * the block is shared by multiple trees, so it's not good to
8617 	 * keep the tree lock
8618 	 */
8619 	if (path->locks[level] && level > 0) {
8620 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8621 		path->locks[level] = 0;
8622 	}
8623 	return 0;
8624 }
8625 
8626 /*
8627  * helper to process tree block pointer.
8628  *
8629  * when wc->stage == DROP_REFERENCE, this function checks
8630  * reference count of the block pointed to. if the block
8631  * is shared and we need update back refs for the subtree
8632  * rooted at the block, this function changes wc->stage to
8633  * UPDATE_BACKREF. if the block is shared and there is no
8634  * need to update back, this function drops the reference
8635  * to the block.
8636  *
8637  * NOTE: return value 1 means we should stop walking down.
8638  */
8639 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8640 				 struct btrfs_root *root,
8641 				 struct btrfs_path *path,
8642 				 struct walk_control *wc, int *lookup_info)
8643 {
8644 	u64 bytenr;
8645 	u64 generation;
8646 	u64 parent;
8647 	u32 blocksize;
8648 	struct btrfs_key key;
8649 	struct extent_buffer *next;
8650 	int level = wc->level;
8651 	int reada = 0;
8652 	int ret = 0;
8653 	bool need_account = false;
8654 
8655 	generation = btrfs_node_ptr_generation(path->nodes[level],
8656 					       path->slots[level]);
8657 	/*
8658 	 * if the lower level block was created before the snapshot
8659 	 * was created, we know there is no need to update back refs
8660 	 * for the subtree
8661 	 */
8662 	if (wc->stage == UPDATE_BACKREF &&
8663 	    generation <= root->root_key.offset) {
8664 		*lookup_info = 1;
8665 		return 1;
8666 	}
8667 
8668 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8669 	blocksize = root->nodesize;
8670 
8671 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8672 	if (!next) {
8673 		next = btrfs_find_create_tree_block(root, bytenr);
8674 		if (IS_ERR(next))
8675 			return PTR_ERR(next);
8676 
8677 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8678 					       level - 1);
8679 		reada = 1;
8680 	}
8681 	btrfs_tree_lock(next);
8682 	btrfs_set_lock_blocking(next);
8683 
8684 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8685 				       &wc->refs[level - 1],
8686 				       &wc->flags[level - 1]);
8687 	if (ret < 0) {
8688 		btrfs_tree_unlock(next);
8689 		return ret;
8690 	}
8691 
8692 	if (unlikely(wc->refs[level - 1] == 0)) {
8693 		btrfs_err(root->fs_info, "Missing references.");
8694 		BUG();
8695 	}
8696 	*lookup_info = 0;
8697 
8698 	if (wc->stage == DROP_REFERENCE) {
8699 		if (wc->refs[level - 1] > 1) {
8700 			need_account = true;
8701 			if (level == 1 &&
8702 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8703 				goto skip;
8704 
8705 			if (!wc->update_ref ||
8706 			    generation <= root->root_key.offset)
8707 				goto skip;
8708 
8709 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8710 					      path->slots[level]);
8711 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8712 			if (ret < 0)
8713 				goto skip;
8714 
8715 			wc->stage = UPDATE_BACKREF;
8716 			wc->shared_level = level - 1;
8717 		}
8718 	} else {
8719 		if (level == 1 &&
8720 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8721 			goto skip;
8722 	}
8723 
8724 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8725 		btrfs_tree_unlock(next);
8726 		free_extent_buffer(next);
8727 		next = NULL;
8728 		*lookup_info = 1;
8729 	}
8730 
8731 	if (!next) {
8732 		if (reada && level == 1)
8733 			reada_walk_down(trans, root, wc, path);
8734 		next = read_tree_block(root, bytenr, generation);
8735 		if (IS_ERR(next)) {
8736 			return PTR_ERR(next);
8737 		} else if (!extent_buffer_uptodate(next)) {
8738 			free_extent_buffer(next);
8739 			return -EIO;
8740 		}
8741 		btrfs_tree_lock(next);
8742 		btrfs_set_lock_blocking(next);
8743 	}
8744 
8745 	level--;
8746 	BUG_ON(level != btrfs_header_level(next));
8747 	path->nodes[level] = next;
8748 	path->slots[level] = 0;
8749 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8750 	wc->level = level;
8751 	if (wc->level == 1)
8752 		wc->reada_slot = 0;
8753 	return 0;
8754 skip:
8755 	wc->refs[level - 1] = 0;
8756 	wc->flags[level - 1] = 0;
8757 	if (wc->stage == DROP_REFERENCE) {
8758 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8759 			parent = path->nodes[level]->start;
8760 		} else {
8761 			BUG_ON(root->root_key.objectid !=
8762 			       btrfs_header_owner(path->nodes[level]));
8763 			parent = 0;
8764 		}
8765 
8766 		if (need_account) {
8767 			ret = account_shared_subtree(trans, root, next,
8768 						     generation, level - 1);
8769 			if (ret) {
8770 				btrfs_err_rl(root->fs_info,
8771 					"Error "
8772 					"%d accounting shared subtree. Quota "
8773 					"is out of sync, rescan required.",
8774 					ret);
8775 			}
8776 		}
8777 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8778 				root->root_key.objectid, level - 1, 0);
8779 		BUG_ON(ret); /* -ENOMEM */
8780 	}
8781 	btrfs_tree_unlock(next);
8782 	free_extent_buffer(next);
8783 	*lookup_info = 1;
8784 	return 1;
8785 }
8786 
8787 /*
8788  * helper to process tree block while walking up the tree.
8789  *
8790  * when wc->stage == DROP_REFERENCE, this function drops
8791  * reference count on the block.
8792  *
8793  * when wc->stage == UPDATE_BACKREF, this function changes
8794  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795  * to UPDATE_BACKREF previously while processing the block.
8796  *
8797  * NOTE: return value 1 means we should stop walking up.
8798  */
8799 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800 				 struct btrfs_root *root,
8801 				 struct btrfs_path *path,
8802 				 struct walk_control *wc)
8803 {
8804 	int ret;
8805 	int level = wc->level;
8806 	struct extent_buffer *eb = path->nodes[level];
8807 	u64 parent = 0;
8808 
8809 	if (wc->stage == UPDATE_BACKREF) {
8810 		BUG_ON(wc->shared_level < level);
8811 		if (level < wc->shared_level)
8812 			goto out;
8813 
8814 		ret = find_next_key(path, level + 1, &wc->update_progress);
8815 		if (ret > 0)
8816 			wc->update_ref = 0;
8817 
8818 		wc->stage = DROP_REFERENCE;
8819 		wc->shared_level = -1;
8820 		path->slots[level] = 0;
8821 
8822 		/*
8823 		 * check reference count again if the block isn't locked.
8824 		 * we should start walking down the tree again if reference
8825 		 * count is one.
8826 		 */
8827 		if (!path->locks[level]) {
8828 			BUG_ON(level == 0);
8829 			btrfs_tree_lock(eb);
8830 			btrfs_set_lock_blocking(eb);
8831 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8832 
8833 			ret = btrfs_lookup_extent_info(trans, root,
8834 						       eb->start, level, 1,
8835 						       &wc->refs[level],
8836 						       &wc->flags[level]);
8837 			if (ret < 0) {
8838 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8839 				path->locks[level] = 0;
8840 				return ret;
8841 			}
8842 			BUG_ON(wc->refs[level] == 0);
8843 			if (wc->refs[level] == 1) {
8844 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8845 				path->locks[level] = 0;
8846 				return 1;
8847 			}
8848 		}
8849 	}
8850 
8851 	/* wc->stage == DROP_REFERENCE */
8852 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8853 
8854 	if (wc->refs[level] == 1) {
8855 		if (level == 0) {
8856 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8857 				ret = btrfs_dec_ref(trans, root, eb, 1);
8858 			else
8859 				ret = btrfs_dec_ref(trans, root, eb, 0);
8860 			BUG_ON(ret); /* -ENOMEM */
8861 			ret = account_leaf_items(trans, root, eb);
8862 			if (ret) {
8863 				btrfs_err_rl(root->fs_info,
8864 					"error "
8865 					"%d accounting leaf items. Quota "
8866 					"is out of sync, rescan required.",
8867 					ret);
8868 			}
8869 		}
8870 		/* make block locked assertion in clean_tree_block happy */
8871 		if (!path->locks[level] &&
8872 		    btrfs_header_generation(eb) == trans->transid) {
8873 			btrfs_tree_lock(eb);
8874 			btrfs_set_lock_blocking(eb);
8875 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8876 		}
8877 		clean_tree_block(trans, root->fs_info, eb);
8878 	}
8879 
8880 	if (eb == root->node) {
8881 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8882 			parent = eb->start;
8883 		else
8884 			BUG_ON(root->root_key.objectid !=
8885 			       btrfs_header_owner(eb));
8886 	} else {
8887 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8888 			parent = path->nodes[level + 1]->start;
8889 		else
8890 			BUG_ON(root->root_key.objectid !=
8891 			       btrfs_header_owner(path->nodes[level + 1]));
8892 	}
8893 
8894 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8895 out:
8896 	wc->refs[level] = 0;
8897 	wc->flags[level] = 0;
8898 	return 0;
8899 }
8900 
8901 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8902 				   struct btrfs_root *root,
8903 				   struct btrfs_path *path,
8904 				   struct walk_control *wc)
8905 {
8906 	int level = wc->level;
8907 	int lookup_info = 1;
8908 	int ret;
8909 
8910 	while (level >= 0) {
8911 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8912 		if (ret > 0)
8913 			break;
8914 
8915 		if (level == 0)
8916 			break;
8917 
8918 		if (path->slots[level] >=
8919 		    btrfs_header_nritems(path->nodes[level]))
8920 			break;
8921 
8922 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8923 		if (ret > 0) {
8924 			path->slots[level]++;
8925 			continue;
8926 		} else if (ret < 0)
8927 			return ret;
8928 		level = wc->level;
8929 	}
8930 	return 0;
8931 }
8932 
8933 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8934 				 struct btrfs_root *root,
8935 				 struct btrfs_path *path,
8936 				 struct walk_control *wc, int max_level)
8937 {
8938 	int level = wc->level;
8939 	int ret;
8940 
8941 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8942 	while (level < max_level && path->nodes[level]) {
8943 		wc->level = level;
8944 		if (path->slots[level] + 1 <
8945 		    btrfs_header_nritems(path->nodes[level])) {
8946 			path->slots[level]++;
8947 			return 0;
8948 		} else {
8949 			ret = walk_up_proc(trans, root, path, wc);
8950 			if (ret > 0)
8951 				return 0;
8952 
8953 			if (path->locks[level]) {
8954 				btrfs_tree_unlock_rw(path->nodes[level],
8955 						     path->locks[level]);
8956 				path->locks[level] = 0;
8957 			}
8958 			free_extent_buffer(path->nodes[level]);
8959 			path->nodes[level] = NULL;
8960 			level++;
8961 		}
8962 	}
8963 	return 1;
8964 }
8965 
8966 /*
8967  * drop a subvolume tree.
8968  *
8969  * this function traverses the tree freeing any blocks that only
8970  * referenced by the tree.
8971  *
8972  * when a shared tree block is found. this function decreases its
8973  * reference count by one. if update_ref is true, this function
8974  * also make sure backrefs for the shared block and all lower level
8975  * blocks are properly updated.
8976  *
8977  * If called with for_reloc == 0, may exit early with -EAGAIN
8978  */
8979 int btrfs_drop_snapshot(struct btrfs_root *root,
8980 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8981 			 int for_reloc)
8982 {
8983 	struct btrfs_path *path;
8984 	struct btrfs_trans_handle *trans;
8985 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8986 	struct btrfs_root_item *root_item = &root->root_item;
8987 	struct walk_control *wc;
8988 	struct btrfs_key key;
8989 	int err = 0;
8990 	int ret;
8991 	int level;
8992 	bool root_dropped = false;
8993 
8994 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8995 
8996 	path = btrfs_alloc_path();
8997 	if (!path) {
8998 		err = -ENOMEM;
8999 		goto out;
9000 	}
9001 
9002 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9003 	if (!wc) {
9004 		btrfs_free_path(path);
9005 		err = -ENOMEM;
9006 		goto out;
9007 	}
9008 
9009 	trans = btrfs_start_transaction(tree_root, 0);
9010 	if (IS_ERR(trans)) {
9011 		err = PTR_ERR(trans);
9012 		goto out_free;
9013 	}
9014 
9015 	if (block_rsv)
9016 		trans->block_rsv = block_rsv;
9017 
9018 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9019 		level = btrfs_header_level(root->node);
9020 		path->nodes[level] = btrfs_lock_root_node(root);
9021 		btrfs_set_lock_blocking(path->nodes[level]);
9022 		path->slots[level] = 0;
9023 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9024 		memset(&wc->update_progress, 0,
9025 		       sizeof(wc->update_progress));
9026 	} else {
9027 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9028 		memcpy(&wc->update_progress, &key,
9029 		       sizeof(wc->update_progress));
9030 
9031 		level = root_item->drop_level;
9032 		BUG_ON(level == 0);
9033 		path->lowest_level = level;
9034 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035 		path->lowest_level = 0;
9036 		if (ret < 0) {
9037 			err = ret;
9038 			goto out_end_trans;
9039 		}
9040 		WARN_ON(ret > 0);
9041 
9042 		/*
9043 		 * unlock our path, this is safe because only this
9044 		 * function is allowed to delete this snapshot
9045 		 */
9046 		btrfs_unlock_up_safe(path, 0);
9047 
9048 		level = btrfs_header_level(root->node);
9049 		while (1) {
9050 			btrfs_tree_lock(path->nodes[level]);
9051 			btrfs_set_lock_blocking(path->nodes[level]);
9052 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053 
9054 			ret = btrfs_lookup_extent_info(trans, root,
9055 						path->nodes[level]->start,
9056 						level, 1, &wc->refs[level],
9057 						&wc->flags[level]);
9058 			if (ret < 0) {
9059 				err = ret;
9060 				goto out_end_trans;
9061 			}
9062 			BUG_ON(wc->refs[level] == 0);
9063 
9064 			if (level == root_item->drop_level)
9065 				break;
9066 
9067 			btrfs_tree_unlock(path->nodes[level]);
9068 			path->locks[level] = 0;
9069 			WARN_ON(wc->refs[level] != 1);
9070 			level--;
9071 		}
9072 	}
9073 
9074 	wc->level = level;
9075 	wc->shared_level = -1;
9076 	wc->stage = DROP_REFERENCE;
9077 	wc->update_ref = update_ref;
9078 	wc->keep_locks = 0;
9079 	wc->for_reloc = for_reloc;
9080 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9081 
9082 	while (1) {
9083 
9084 		ret = walk_down_tree(trans, root, path, wc);
9085 		if (ret < 0) {
9086 			err = ret;
9087 			break;
9088 		}
9089 
9090 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091 		if (ret < 0) {
9092 			err = ret;
9093 			break;
9094 		}
9095 
9096 		if (ret > 0) {
9097 			BUG_ON(wc->stage != DROP_REFERENCE);
9098 			break;
9099 		}
9100 
9101 		if (wc->stage == DROP_REFERENCE) {
9102 			level = wc->level;
9103 			btrfs_node_key(path->nodes[level],
9104 				       &root_item->drop_progress,
9105 				       path->slots[level]);
9106 			root_item->drop_level = level;
9107 		}
9108 
9109 		BUG_ON(wc->level == 0);
9110 		if (btrfs_should_end_transaction(trans, tree_root) ||
9111 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9112 			ret = btrfs_update_root(trans, tree_root,
9113 						&root->root_key,
9114 						root_item);
9115 			if (ret) {
9116 				btrfs_abort_transaction(trans, tree_root, ret);
9117 				err = ret;
9118 				goto out_end_trans;
9119 			}
9120 
9121 			btrfs_end_transaction_throttle(trans, tree_root);
9122 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9123 				pr_debug("BTRFS: drop snapshot early exit\n");
9124 				err = -EAGAIN;
9125 				goto out_free;
9126 			}
9127 
9128 			trans = btrfs_start_transaction(tree_root, 0);
9129 			if (IS_ERR(trans)) {
9130 				err = PTR_ERR(trans);
9131 				goto out_free;
9132 			}
9133 			if (block_rsv)
9134 				trans->block_rsv = block_rsv;
9135 		}
9136 	}
9137 	btrfs_release_path(path);
9138 	if (err)
9139 		goto out_end_trans;
9140 
9141 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9142 	if (ret) {
9143 		btrfs_abort_transaction(trans, tree_root, ret);
9144 		goto out_end_trans;
9145 	}
9146 
9147 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9148 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9149 				      NULL, NULL);
9150 		if (ret < 0) {
9151 			btrfs_abort_transaction(trans, tree_root, ret);
9152 			err = ret;
9153 			goto out_end_trans;
9154 		} else if (ret > 0) {
9155 			/* if we fail to delete the orphan item this time
9156 			 * around, it'll get picked up the next time.
9157 			 *
9158 			 * The most common failure here is just -ENOENT.
9159 			 */
9160 			btrfs_del_orphan_item(trans, tree_root,
9161 					      root->root_key.objectid);
9162 		}
9163 	}
9164 
9165 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9166 		btrfs_add_dropped_root(trans, root);
9167 	} else {
9168 		free_extent_buffer(root->node);
9169 		free_extent_buffer(root->commit_root);
9170 		btrfs_put_fs_root(root);
9171 	}
9172 	root_dropped = true;
9173 out_end_trans:
9174 	btrfs_end_transaction_throttle(trans, tree_root);
9175 out_free:
9176 	kfree(wc);
9177 	btrfs_free_path(path);
9178 out:
9179 	/*
9180 	 * So if we need to stop dropping the snapshot for whatever reason we
9181 	 * need to make sure to add it back to the dead root list so that we
9182 	 * keep trying to do the work later.  This also cleans up roots if we
9183 	 * don't have it in the radix (like when we recover after a power fail
9184 	 * or unmount) so we don't leak memory.
9185 	 */
9186 	if (!for_reloc && root_dropped == false)
9187 		btrfs_add_dead_root(root);
9188 	if (err && err != -EAGAIN)
9189 		btrfs_handle_fs_error(root->fs_info, err, NULL);
9190 	return err;
9191 }
9192 
9193 /*
9194  * drop subtree rooted at tree block 'node'.
9195  *
9196  * NOTE: this function will unlock and release tree block 'node'
9197  * only used by relocation code
9198  */
9199 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9200 			struct btrfs_root *root,
9201 			struct extent_buffer *node,
9202 			struct extent_buffer *parent)
9203 {
9204 	struct btrfs_path *path;
9205 	struct walk_control *wc;
9206 	int level;
9207 	int parent_level;
9208 	int ret = 0;
9209 	int wret;
9210 
9211 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9212 
9213 	path = btrfs_alloc_path();
9214 	if (!path)
9215 		return -ENOMEM;
9216 
9217 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9218 	if (!wc) {
9219 		btrfs_free_path(path);
9220 		return -ENOMEM;
9221 	}
9222 
9223 	btrfs_assert_tree_locked(parent);
9224 	parent_level = btrfs_header_level(parent);
9225 	extent_buffer_get(parent);
9226 	path->nodes[parent_level] = parent;
9227 	path->slots[parent_level] = btrfs_header_nritems(parent);
9228 
9229 	btrfs_assert_tree_locked(node);
9230 	level = btrfs_header_level(node);
9231 	path->nodes[level] = node;
9232 	path->slots[level] = 0;
9233 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9234 
9235 	wc->refs[parent_level] = 1;
9236 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9237 	wc->level = level;
9238 	wc->shared_level = -1;
9239 	wc->stage = DROP_REFERENCE;
9240 	wc->update_ref = 0;
9241 	wc->keep_locks = 1;
9242 	wc->for_reloc = 1;
9243 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9244 
9245 	while (1) {
9246 		wret = walk_down_tree(trans, root, path, wc);
9247 		if (wret < 0) {
9248 			ret = wret;
9249 			break;
9250 		}
9251 
9252 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9253 		if (wret < 0)
9254 			ret = wret;
9255 		if (wret != 0)
9256 			break;
9257 	}
9258 
9259 	kfree(wc);
9260 	btrfs_free_path(path);
9261 	return ret;
9262 }
9263 
9264 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9265 {
9266 	u64 num_devices;
9267 	u64 stripped;
9268 
9269 	/*
9270 	 * if restripe for this chunk_type is on pick target profile and
9271 	 * return, otherwise do the usual balance
9272 	 */
9273 	stripped = get_restripe_target(root->fs_info, flags);
9274 	if (stripped)
9275 		return extended_to_chunk(stripped);
9276 
9277 	num_devices = root->fs_info->fs_devices->rw_devices;
9278 
9279 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9280 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9281 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9282 
9283 	if (num_devices == 1) {
9284 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9285 		stripped = flags & ~stripped;
9286 
9287 		/* turn raid0 into single device chunks */
9288 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9289 			return stripped;
9290 
9291 		/* turn mirroring into duplication */
9292 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9293 			     BTRFS_BLOCK_GROUP_RAID10))
9294 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9295 	} else {
9296 		/* they already had raid on here, just return */
9297 		if (flags & stripped)
9298 			return flags;
9299 
9300 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9301 		stripped = flags & ~stripped;
9302 
9303 		/* switch duplicated blocks with raid1 */
9304 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9305 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9306 
9307 		/* this is drive concat, leave it alone */
9308 	}
9309 
9310 	return flags;
9311 }
9312 
9313 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9314 {
9315 	struct btrfs_space_info *sinfo = cache->space_info;
9316 	u64 num_bytes;
9317 	u64 min_allocable_bytes;
9318 	int ret = -ENOSPC;
9319 
9320 	/*
9321 	 * We need some metadata space and system metadata space for
9322 	 * allocating chunks in some corner cases until we force to set
9323 	 * it to be readonly.
9324 	 */
9325 	if ((sinfo->flags &
9326 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9327 	    !force)
9328 		min_allocable_bytes = SZ_1M;
9329 	else
9330 		min_allocable_bytes = 0;
9331 
9332 	spin_lock(&sinfo->lock);
9333 	spin_lock(&cache->lock);
9334 
9335 	if (cache->ro) {
9336 		cache->ro++;
9337 		ret = 0;
9338 		goto out;
9339 	}
9340 
9341 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9342 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9343 
9344 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9345 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9346 	    min_allocable_bytes <= sinfo->total_bytes) {
9347 		sinfo->bytes_readonly += num_bytes;
9348 		cache->ro++;
9349 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9350 		ret = 0;
9351 	}
9352 out:
9353 	spin_unlock(&cache->lock);
9354 	spin_unlock(&sinfo->lock);
9355 	return ret;
9356 }
9357 
9358 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9359 			     struct btrfs_block_group_cache *cache)
9360 
9361 {
9362 	struct btrfs_trans_handle *trans;
9363 	u64 alloc_flags;
9364 	int ret;
9365 
9366 again:
9367 	trans = btrfs_join_transaction(root);
9368 	if (IS_ERR(trans))
9369 		return PTR_ERR(trans);
9370 
9371 	/*
9372 	 * we're not allowed to set block groups readonly after the dirty
9373 	 * block groups cache has started writing.  If it already started,
9374 	 * back off and let this transaction commit
9375 	 */
9376 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9377 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9378 		u64 transid = trans->transid;
9379 
9380 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9381 		btrfs_end_transaction(trans, root);
9382 
9383 		ret = btrfs_wait_for_commit(root, transid);
9384 		if (ret)
9385 			return ret;
9386 		goto again;
9387 	}
9388 
9389 	/*
9390 	 * if we are changing raid levels, try to allocate a corresponding
9391 	 * block group with the new raid level.
9392 	 */
9393 	alloc_flags = update_block_group_flags(root, cache->flags);
9394 	if (alloc_flags != cache->flags) {
9395 		ret = do_chunk_alloc(trans, root, alloc_flags,
9396 				     CHUNK_ALLOC_FORCE);
9397 		/*
9398 		 * ENOSPC is allowed here, we may have enough space
9399 		 * already allocated at the new raid level to
9400 		 * carry on
9401 		 */
9402 		if (ret == -ENOSPC)
9403 			ret = 0;
9404 		if (ret < 0)
9405 			goto out;
9406 	}
9407 
9408 	ret = inc_block_group_ro(cache, 0);
9409 	if (!ret)
9410 		goto out;
9411 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9412 	ret = do_chunk_alloc(trans, root, alloc_flags,
9413 			     CHUNK_ALLOC_FORCE);
9414 	if (ret < 0)
9415 		goto out;
9416 	ret = inc_block_group_ro(cache, 0);
9417 out:
9418 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9419 		alloc_flags = update_block_group_flags(root, cache->flags);
9420 		lock_chunks(root->fs_info->chunk_root);
9421 		check_system_chunk(trans, root, alloc_flags);
9422 		unlock_chunks(root->fs_info->chunk_root);
9423 	}
9424 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9425 
9426 	btrfs_end_transaction(trans, root);
9427 	return ret;
9428 }
9429 
9430 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9431 			    struct btrfs_root *root, u64 type)
9432 {
9433 	u64 alloc_flags = get_alloc_profile(root, type);
9434 	return do_chunk_alloc(trans, root, alloc_flags,
9435 			      CHUNK_ALLOC_FORCE);
9436 }
9437 
9438 /*
9439  * helper to account the unused space of all the readonly block group in the
9440  * space_info. takes mirrors into account.
9441  */
9442 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9443 {
9444 	struct btrfs_block_group_cache *block_group;
9445 	u64 free_bytes = 0;
9446 	int factor;
9447 
9448 	/* It's df, we don't care if it's racy */
9449 	if (list_empty(&sinfo->ro_bgs))
9450 		return 0;
9451 
9452 	spin_lock(&sinfo->lock);
9453 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9454 		spin_lock(&block_group->lock);
9455 
9456 		if (!block_group->ro) {
9457 			spin_unlock(&block_group->lock);
9458 			continue;
9459 		}
9460 
9461 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9462 					  BTRFS_BLOCK_GROUP_RAID10 |
9463 					  BTRFS_BLOCK_GROUP_DUP))
9464 			factor = 2;
9465 		else
9466 			factor = 1;
9467 
9468 		free_bytes += (block_group->key.offset -
9469 			       btrfs_block_group_used(&block_group->item)) *
9470 			       factor;
9471 
9472 		spin_unlock(&block_group->lock);
9473 	}
9474 	spin_unlock(&sinfo->lock);
9475 
9476 	return free_bytes;
9477 }
9478 
9479 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9480 			      struct btrfs_block_group_cache *cache)
9481 {
9482 	struct btrfs_space_info *sinfo = cache->space_info;
9483 	u64 num_bytes;
9484 
9485 	BUG_ON(!cache->ro);
9486 
9487 	spin_lock(&sinfo->lock);
9488 	spin_lock(&cache->lock);
9489 	if (!--cache->ro) {
9490 		num_bytes = cache->key.offset - cache->reserved -
9491 			    cache->pinned - cache->bytes_super -
9492 			    btrfs_block_group_used(&cache->item);
9493 		sinfo->bytes_readonly -= num_bytes;
9494 		list_del_init(&cache->ro_list);
9495 	}
9496 	spin_unlock(&cache->lock);
9497 	spin_unlock(&sinfo->lock);
9498 }
9499 
9500 /*
9501  * checks to see if its even possible to relocate this block group.
9502  *
9503  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504  * ok to go ahead and try.
9505  */
9506 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9507 {
9508 	struct btrfs_block_group_cache *block_group;
9509 	struct btrfs_space_info *space_info;
9510 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9511 	struct btrfs_device *device;
9512 	struct btrfs_trans_handle *trans;
9513 	u64 min_free;
9514 	u64 dev_min = 1;
9515 	u64 dev_nr = 0;
9516 	u64 target;
9517 	int debug;
9518 	int index;
9519 	int full = 0;
9520 	int ret = 0;
9521 
9522 	debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9523 
9524 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9525 
9526 	/* odd, couldn't find the block group, leave it alone */
9527 	if (!block_group) {
9528 		if (debug)
9529 			btrfs_warn(root->fs_info,
9530 				   "can't find block group for bytenr %llu",
9531 				   bytenr);
9532 		return -1;
9533 	}
9534 
9535 	min_free = btrfs_block_group_used(&block_group->item);
9536 
9537 	/* no bytes used, we're good */
9538 	if (!min_free)
9539 		goto out;
9540 
9541 	space_info = block_group->space_info;
9542 	spin_lock(&space_info->lock);
9543 
9544 	full = space_info->full;
9545 
9546 	/*
9547 	 * if this is the last block group we have in this space, we can't
9548 	 * relocate it unless we're able to allocate a new chunk below.
9549 	 *
9550 	 * Otherwise, we need to make sure we have room in the space to handle
9551 	 * all of the extents from this block group.  If we can, we're good
9552 	 */
9553 	if ((space_info->total_bytes != block_group->key.offset) &&
9554 	    (space_info->bytes_used + space_info->bytes_reserved +
9555 	     space_info->bytes_pinned + space_info->bytes_readonly +
9556 	     min_free < space_info->total_bytes)) {
9557 		spin_unlock(&space_info->lock);
9558 		goto out;
9559 	}
9560 	spin_unlock(&space_info->lock);
9561 
9562 	/*
9563 	 * ok we don't have enough space, but maybe we have free space on our
9564 	 * devices to allocate new chunks for relocation, so loop through our
9565 	 * alloc devices and guess if we have enough space.  if this block
9566 	 * group is going to be restriped, run checks against the target
9567 	 * profile instead of the current one.
9568 	 */
9569 	ret = -1;
9570 
9571 	/*
9572 	 * index:
9573 	 *      0: raid10
9574 	 *      1: raid1
9575 	 *      2: dup
9576 	 *      3: raid0
9577 	 *      4: single
9578 	 */
9579 	target = get_restripe_target(root->fs_info, block_group->flags);
9580 	if (target) {
9581 		index = __get_raid_index(extended_to_chunk(target));
9582 	} else {
9583 		/*
9584 		 * this is just a balance, so if we were marked as full
9585 		 * we know there is no space for a new chunk
9586 		 */
9587 		if (full) {
9588 			if (debug)
9589 				btrfs_warn(root->fs_info,
9590 					"no space to alloc new chunk for block group %llu",
9591 					block_group->key.objectid);
9592 			goto out;
9593 		}
9594 
9595 		index = get_block_group_index(block_group);
9596 	}
9597 
9598 	if (index == BTRFS_RAID_RAID10) {
9599 		dev_min = 4;
9600 		/* Divide by 2 */
9601 		min_free >>= 1;
9602 	} else if (index == BTRFS_RAID_RAID1) {
9603 		dev_min = 2;
9604 	} else if (index == BTRFS_RAID_DUP) {
9605 		/* Multiply by 2 */
9606 		min_free <<= 1;
9607 	} else if (index == BTRFS_RAID_RAID0) {
9608 		dev_min = fs_devices->rw_devices;
9609 		min_free = div64_u64(min_free, dev_min);
9610 	}
9611 
9612 	/* We need to do this so that we can look at pending chunks */
9613 	trans = btrfs_join_transaction(root);
9614 	if (IS_ERR(trans)) {
9615 		ret = PTR_ERR(trans);
9616 		goto out;
9617 	}
9618 
9619 	mutex_lock(&root->fs_info->chunk_mutex);
9620 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9621 		u64 dev_offset;
9622 
9623 		/*
9624 		 * check to make sure we can actually find a chunk with enough
9625 		 * space to fit our block group in.
9626 		 */
9627 		if (device->total_bytes > device->bytes_used + min_free &&
9628 		    !device->is_tgtdev_for_dev_replace) {
9629 			ret = find_free_dev_extent(trans, device, min_free,
9630 						   &dev_offset, NULL);
9631 			if (!ret)
9632 				dev_nr++;
9633 
9634 			if (dev_nr >= dev_min)
9635 				break;
9636 
9637 			ret = -1;
9638 		}
9639 	}
9640 	if (debug && ret == -1)
9641 		btrfs_warn(root->fs_info,
9642 			"no space to allocate a new chunk for block group %llu",
9643 			block_group->key.objectid);
9644 	mutex_unlock(&root->fs_info->chunk_mutex);
9645 	btrfs_end_transaction(trans, root);
9646 out:
9647 	btrfs_put_block_group(block_group);
9648 	return ret;
9649 }
9650 
9651 static int find_first_block_group(struct btrfs_root *root,
9652 		struct btrfs_path *path, struct btrfs_key *key)
9653 {
9654 	int ret = 0;
9655 	struct btrfs_key found_key;
9656 	struct extent_buffer *leaf;
9657 	int slot;
9658 
9659 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9660 	if (ret < 0)
9661 		goto out;
9662 
9663 	while (1) {
9664 		slot = path->slots[0];
9665 		leaf = path->nodes[0];
9666 		if (slot >= btrfs_header_nritems(leaf)) {
9667 			ret = btrfs_next_leaf(root, path);
9668 			if (ret == 0)
9669 				continue;
9670 			if (ret < 0)
9671 				goto out;
9672 			break;
9673 		}
9674 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9675 
9676 		if (found_key.objectid >= key->objectid &&
9677 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9678 			ret = 0;
9679 			goto out;
9680 		}
9681 		path->slots[0]++;
9682 	}
9683 out:
9684 	return ret;
9685 }
9686 
9687 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9688 {
9689 	struct btrfs_block_group_cache *block_group;
9690 	u64 last = 0;
9691 
9692 	while (1) {
9693 		struct inode *inode;
9694 
9695 		block_group = btrfs_lookup_first_block_group(info, last);
9696 		while (block_group) {
9697 			spin_lock(&block_group->lock);
9698 			if (block_group->iref)
9699 				break;
9700 			spin_unlock(&block_group->lock);
9701 			block_group = next_block_group(info->tree_root,
9702 						       block_group);
9703 		}
9704 		if (!block_group) {
9705 			if (last == 0)
9706 				break;
9707 			last = 0;
9708 			continue;
9709 		}
9710 
9711 		inode = block_group->inode;
9712 		block_group->iref = 0;
9713 		block_group->inode = NULL;
9714 		spin_unlock(&block_group->lock);
9715 		iput(inode);
9716 		last = block_group->key.objectid + block_group->key.offset;
9717 		btrfs_put_block_group(block_group);
9718 	}
9719 }
9720 
9721 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9722 {
9723 	struct btrfs_block_group_cache *block_group;
9724 	struct btrfs_space_info *space_info;
9725 	struct btrfs_caching_control *caching_ctl;
9726 	struct rb_node *n;
9727 
9728 	down_write(&info->commit_root_sem);
9729 	while (!list_empty(&info->caching_block_groups)) {
9730 		caching_ctl = list_entry(info->caching_block_groups.next,
9731 					 struct btrfs_caching_control, list);
9732 		list_del(&caching_ctl->list);
9733 		put_caching_control(caching_ctl);
9734 	}
9735 	up_write(&info->commit_root_sem);
9736 
9737 	spin_lock(&info->unused_bgs_lock);
9738 	while (!list_empty(&info->unused_bgs)) {
9739 		block_group = list_first_entry(&info->unused_bgs,
9740 					       struct btrfs_block_group_cache,
9741 					       bg_list);
9742 		list_del_init(&block_group->bg_list);
9743 		btrfs_put_block_group(block_group);
9744 	}
9745 	spin_unlock(&info->unused_bgs_lock);
9746 
9747 	spin_lock(&info->block_group_cache_lock);
9748 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9749 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9750 				       cache_node);
9751 		rb_erase(&block_group->cache_node,
9752 			 &info->block_group_cache_tree);
9753 		RB_CLEAR_NODE(&block_group->cache_node);
9754 		spin_unlock(&info->block_group_cache_lock);
9755 
9756 		down_write(&block_group->space_info->groups_sem);
9757 		list_del(&block_group->list);
9758 		up_write(&block_group->space_info->groups_sem);
9759 
9760 		if (block_group->cached == BTRFS_CACHE_STARTED)
9761 			wait_block_group_cache_done(block_group);
9762 
9763 		/*
9764 		 * We haven't cached this block group, which means we could
9765 		 * possibly have excluded extents on this block group.
9766 		 */
9767 		if (block_group->cached == BTRFS_CACHE_NO ||
9768 		    block_group->cached == BTRFS_CACHE_ERROR)
9769 			free_excluded_extents(info->extent_root, block_group);
9770 
9771 		btrfs_remove_free_space_cache(block_group);
9772 		btrfs_put_block_group(block_group);
9773 
9774 		spin_lock(&info->block_group_cache_lock);
9775 	}
9776 	spin_unlock(&info->block_group_cache_lock);
9777 
9778 	/* now that all the block groups are freed, go through and
9779 	 * free all the space_info structs.  This is only called during
9780 	 * the final stages of unmount, and so we know nobody is
9781 	 * using them.  We call synchronize_rcu() once before we start,
9782 	 * just to be on the safe side.
9783 	 */
9784 	synchronize_rcu();
9785 
9786 	release_global_block_rsv(info);
9787 
9788 	while (!list_empty(&info->space_info)) {
9789 		int i;
9790 
9791 		space_info = list_entry(info->space_info.next,
9792 					struct btrfs_space_info,
9793 					list);
9794 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9795 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9796 			    space_info->bytes_reserved > 0 ||
9797 			    space_info->bytes_may_use > 0)) {
9798 				dump_space_info(space_info, 0, 0);
9799 			}
9800 		}
9801 		list_del(&space_info->list);
9802 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9803 			struct kobject *kobj;
9804 			kobj = space_info->block_group_kobjs[i];
9805 			space_info->block_group_kobjs[i] = NULL;
9806 			if (kobj) {
9807 				kobject_del(kobj);
9808 				kobject_put(kobj);
9809 			}
9810 		}
9811 		kobject_del(&space_info->kobj);
9812 		kobject_put(&space_info->kobj);
9813 	}
9814 	return 0;
9815 }
9816 
9817 static void __link_block_group(struct btrfs_space_info *space_info,
9818 			       struct btrfs_block_group_cache *cache)
9819 {
9820 	int index = get_block_group_index(cache);
9821 	bool first = false;
9822 
9823 	down_write(&space_info->groups_sem);
9824 	if (list_empty(&space_info->block_groups[index]))
9825 		first = true;
9826 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9827 	up_write(&space_info->groups_sem);
9828 
9829 	if (first) {
9830 		struct raid_kobject *rkobj;
9831 		int ret;
9832 
9833 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9834 		if (!rkobj)
9835 			goto out_err;
9836 		rkobj->raid_type = index;
9837 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9838 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9839 				  "%s", get_raid_name(index));
9840 		if (ret) {
9841 			kobject_put(&rkobj->kobj);
9842 			goto out_err;
9843 		}
9844 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9845 	}
9846 
9847 	return;
9848 out_err:
9849 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9850 }
9851 
9852 static struct btrfs_block_group_cache *
9853 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9854 {
9855 	struct btrfs_block_group_cache *cache;
9856 
9857 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9858 	if (!cache)
9859 		return NULL;
9860 
9861 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9862 					GFP_NOFS);
9863 	if (!cache->free_space_ctl) {
9864 		kfree(cache);
9865 		return NULL;
9866 	}
9867 
9868 	cache->key.objectid = start;
9869 	cache->key.offset = size;
9870 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9871 
9872 	cache->sectorsize = root->sectorsize;
9873 	cache->fs_info = root->fs_info;
9874 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9875 					       &root->fs_info->mapping_tree,
9876 					       start);
9877 	set_free_space_tree_thresholds(cache);
9878 
9879 	atomic_set(&cache->count, 1);
9880 	spin_lock_init(&cache->lock);
9881 	init_rwsem(&cache->data_rwsem);
9882 	INIT_LIST_HEAD(&cache->list);
9883 	INIT_LIST_HEAD(&cache->cluster_list);
9884 	INIT_LIST_HEAD(&cache->bg_list);
9885 	INIT_LIST_HEAD(&cache->ro_list);
9886 	INIT_LIST_HEAD(&cache->dirty_list);
9887 	INIT_LIST_HEAD(&cache->io_list);
9888 	btrfs_init_free_space_ctl(cache);
9889 	atomic_set(&cache->trimming, 0);
9890 	mutex_init(&cache->free_space_lock);
9891 
9892 	return cache;
9893 }
9894 
9895 int btrfs_read_block_groups(struct btrfs_root *root)
9896 {
9897 	struct btrfs_path *path;
9898 	int ret;
9899 	struct btrfs_block_group_cache *cache;
9900 	struct btrfs_fs_info *info = root->fs_info;
9901 	struct btrfs_space_info *space_info;
9902 	struct btrfs_key key;
9903 	struct btrfs_key found_key;
9904 	struct extent_buffer *leaf;
9905 	int need_clear = 0;
9906 	u64 cache_gen;
9907 
9908 	root = info->extent_root;
9909 	key.objectid = 0;
9910 	key.offset = 0;
9911 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9912 	path = btrfs_alloc_path();
9913 	if (!path)
9914 		return -ENOMEM;
9915 	path->reada = READA_FORWARD;
9916 
9917 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9918 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9919 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9920 		need_clear = 1;
9921 	if (btrfs_test_opt(root, CLEAR_CACHE))
9922 		need_clear = 1;
9923 
9924 	while (1) {
9925 		ret = find_first_block_group(root, path, &key);
9926 		if (ret > 0)
9927 			break;
9928 		if (ret != 0)
9929 			goto error;
9930 
9931 		leaf = path->nodes[0];
9932 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9933 
9934 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9935 						       found_key.offset);
9936 		if (!cache) {
9937 			ret = -ENOMEM;
9938 			goto error;
9939 		}
9940 
9941 		if (need_clear) {
9942 			/*
9943 			 * When we mount with old space cache, we need to
9944 			 * set BTRFS_DC_CLEAR and set dirty flag.
9945 			 *
9946 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9947 			 *    truncate the old free space cache inode and
9948 			 *    setup a new one.
9949 			 * b) Setting 'dirty flag' makes sure that we flush
9950 			 *    the new space cache info onto disk.
9951 			 */
9952 			if (btrfs_test_opt(root, SPACE_CACHE))
9953 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9954 		}
9955 
9956 		read_extent_buffer(leaf, &cache->item,
9957 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9958 				   sizeof(cache->item));
9959 		cache->flags = btrfs_block_group_flags(&cache->item);
9960 
9961 		key.objectid = found_key.objectid + found_key.offset;
9962 		btrfs_release_path(path);
9963 
9964 		/*
9965 		 * We need to exclude the super stripes now so that the space
9966 		 * info has super bytes accounted for, otherwise we'll think
9967 		 * we have more space than we actually do.
9968 		 */
9969 		ret = exclude_super_stripes(root, cache);
9970 		if (ret) {
9971 			/*
9972 			 * We may have excluded something, so call this just in
9973 			 * case.
9974 			 */
9975 			free_excluded_extents(root, cache);
9976 			btrfs_put_block_group(cache);
9977 			goto error;
9978 		}
9979 
9980 		/*
9981 		 * check for two cases, either we are full, and therefore
9982 		 * don't need to bother with the caching work since we won't
9983 		 * find any space, or we are empty, and we can just add all
9984 		 * the space in and be done with it.  This saves us _alot_ of
9985 		 * time, particularly in the full case.
9986 		 */
9987 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9988 			cache->last_byte_to_unpin = (u64)-1;
9989 			cache->cached = BTRFS_CACHE_FINISHED;
9990 			free_excluded_extents(root, cache);
9991 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9992 			cache->last_byte_to_unpin = (u64)-1;
9993 			cache->cached = BTRFS_CACHE_FINISHED;
9994 			add_new_free_space(cache, root->fs_info,
9995 					   found_key.objectid,
9996 					   found_key.objectid +
9997 					   found_key.offset);
9998 			free_excluded_extents(root, cache);
9999 		}
10000 
10001 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
10002 		if (ret) {
10003 			btrfs_remove_free_space_cache(cache);
10004 			btrfs_put_block_group(cache);
10005 			goto error;
10006 		}
10007 
10008 		ret = update_space_info(info, cache->flags, found_key.offset,
10009 					btrfs_block_group_used(&cache->item),
10010 					&space_info);
10011 		if (ret) {
10012 			btrfs_remove_free_space_cache(cache);
10013 			spin_lock(&info->block_group_cache_lock);
10014 			rb_erase(&cache->cache_node,
10015 				 &info->block_group_cache_tree);
10016 			RB_CLEAR_NODE(&cache->cache_node);
10017 			spin_unlock(&info->block_group_cache_lock);
10018 			btrfs_put_block_group(cache);
10019 			goto error;
10020 		}
10021 
10022 		cache->space_info = space_info;
10023 		spin_lock(&cache->space_info->lock);
10024 		cache->space_info->bytes_readonly += cache->bytes_super;
10025 		spin_unlock(&cache->space_info->lock);
10026 
10027 		__link_block_group(space_info, cache);
10028 
10029 		set_avail_alloc_bits(root->fs_info, cache->flags);
10030 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10031 			inc_block_group_ro(cache, 1);
10032 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10033 			spin_lock(&info->unused_bgs_lock);
10034 			/* Should always be true but just in case. */
10035 			if (list_empty(&cache->bg_list)) {
10036 				btrfs_get_block_group(cache);
10037 				list_add_tail(&cache->bg_list,
10038 					      &info->unused_bgs);
10039 			}
10040 			spin_unlock(&info->unused_bgs_lock);
10041 		}
10042 	}
10043 
10044 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10045 		if (!(get_alloc_profile(root, space_info->flags) &
10046 		      (BTRFS_BLOCK_GROUP_RAID10 |
10047 		       BTRFS_BLOCK_GROUP_RAID1 |
10048 		       BTRFS_BLOCK_GROUP_RAID5 |
10049 		       BTRFS_BLOCK_GROUP_RAID6 |
10050 		       BTRFS_BLOCK_GROUP_DUP)))
10051 			continue;
10052 		/*
10053 		 * avoid allocating from un-mirrored block group if there are
10054 		 * mirrored block groups.
10055 		 */
10056 		list_for_each_entry(cache,
10057 				&space_info->block_groups[BTRFS_RAID_RAID0],
10058 				list)
10059 			inc_block_group_ro(cache, 1);
10060 		list_for_each_entry(cache,
10061 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10062 				list)
10063 			inc_block_group_ro(cache, 1);
10064 	}
10065 
10066 	init_global_block_rsv(info);
10067 	ret = 0;
10068 error:
10069 	btrfs_free_path(path);
10070 	return ret;
10071 }
10072 
10073 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10074 				       struct btrfs_root *root)
10075 {
10076 	struct btrfs_block_group_cache *block_group, *tmp;
10077 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10078 	struct btrfs_block_group_item item;
10079 	struct btrfs_key key;
10080 	int ret = 0;
10081 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10082 
10083 	trans->can_flush_pending_bgs = false;
10084 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10085 		if (ret)
10086 			goto next;
10087 
10088 		spin_lock(&block_group->lock);
10089 		memcpy(&item, &block_group->item, sizeof(item));
10090 		memcpy(&key, &block_group->key, sizeof(key));
10091 		spin_unlock(&block_group->lock);
10092 
10093 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10094 					sizeof(item));
10095 		if (ret)
10096 			btrfs_abort_transaction(trans, extent_root, ret);
10097 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10098 					       key.objectid, key.offset);
10099 		if (ret)
10100 			btrfs_abort_transaction(trans, extent_root, ret);
10101 		add_block_group_free_space(trans, root->fs_info, block_group);
10102 		/* already aborted the transaction if it failed. */
10103 next:
10104 		list_del_init(&block_group->bg_list);
10105 	}
10106 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10107 }
10108 
10109 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10110 			   struct btrfs_root *root, u64 bytes_used,
10111 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10112 			   u64 size)
10113 {
10114 	int ret;
10115 	struct btrfs_root *extent_root;
10116 	struct btrfs_block_group_cache *cache;
10117 
10118 	extent_root = root->fs_info->extent_root;
10119 
10120 	btrfs_set_log_full_commit(root->fs_info, trans);
10121 
10122 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10123 	if (!cache)
10124 		return -ENOMEM;
10125 
10126 	btrfs_set_block_group_used(&cache->item, bytes_used);
10127 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10128 	btrfs_set_block_group_flags(&cache->item, type);
10129 
10130 	cache->flags = type;
10131 	cache->last_byte_to_unpin = (u64)-1;
10132 	cache->cached = BTRFS_CACHE_FINISHED;
10133 	cache->needs_free_space = 1;
10134 	ret = exclude_super_stripes(root, cache);
10135 	if (ret) {
10136 		/*
10137 		 * We may have excluded something, so call this just in
10138 		 * case.
10139 		 */
10140 		free_excluded_extents(root, cache);
10141 		btrfs_put_block_group(cache);
10142 		return ret;
10143 	}
10144 
10145 	add_new_free_space(cache, root->fs_info, chunk_offset,
10146 			   chunk_offset + size);
10147 
10148 	free_excluded_extents(root, cache);
10149 
10150 #ifdef CONFIG_BTRFS_DEBUG
10151 	if (btrfs_should_fragment_free_space(root, cache)) {
10152 		u64 new_bytes_used = size - bytes_used;
10153 
10154 		bytes_used += new_bytes_used >> 1;
10155 		fragment_free_space(root, cache);
10156 	}
10157 #endif
10158 	/*
10159 	 * Call to ensure the corresponding space_info object is created and
10160 	 * assigned to our block group, but don't update its counters just yet.
10161 	 * We want our bg to be added to the rbtree with its ->space_info set.
10162 	 */
10163 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10164 				&cache->space_info);
10165 	if (ret) {
10166 		btrfs_remove_free_space_cache(cache);
10167 		btrfs_put_block_group(cache);
10168 		return ret;
10169 	}
10170 
10171 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10172 	if (ret) {
10173 		btrfs_remove_free_space_cache(cache);
10174 		btrfs_put_block_group(cache);
10175 		return ret;
10176 	}
10177 
10178 	/*
10179 	 * Now that our block group has its ->space_info set and is inserted in
10180 	 * the rbtree, update the space info's counters.
10181 	 */
10182 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10183 				&cache->space_info);
10184 	if (ret) {
10185 		btrfs_remove_free_space_cache(cache);
10186 		spin_lock(&root->fs_info->block_group_cache_lock);
10187 		rb_erase(&cache->cache_node,
10188 			 &root->fs_info->block_group_cache_tree);
10189 		RB_CLEAR_NODE(&cache->cache_node);
10190 		spin_unlock(&root->fs_info->block_group_cache_lock);
10191 		btrfs_put_block_group(cache);
10192 		return ret;
10193 	}
10194 	update_global_block_rsv(root->fs_info);
10195 
10196 	spin_lock(&cache->space_info->lock);
10197 	cache->space_info->bytes_readonly += cache->bytes_super;
10198 	spin_unlock(&cache->space_info->lock);
10199 
10200 	__link_block_group(cache->space_info, cache);
10201 
10202 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10203 
10204 	set_avail_alloc_bits(extent_root->fs_info, type);
10205 
10206 	return 0;
10207 }
10208 
10209 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10210 {
10211 	u64 extra_flags = chunk_to_extended(flags) &
10212 				BTRFS_EXTENDED_PROFILE_MASK;
10213 
10214 	write_seqlock(&fs_info->profiles_lock);
10215 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10216 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10217 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10218 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10219 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10220 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10221 	write_sequnlock(&fs_info->profiles_lock);
10222 }
10223 
10224 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10225 			     struct btrfs_root *root, u64 group_start,
10226 			     struct extent_map *em)
10227 {
10228 	struct btrfs_path *path;
10229 	struct btrfs_block_group_cache *block_group;
10230 	struct btrfs_free_cluster *cluster;
10231 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10232 	struct btrfs_key key;
10233 	struct inode *inode;
10234 	struct kobject *kobj = NULL;
10235 	int ret;
10236 	int index;
10237 	int factor;
10238 	struct btrfs_caching_control *caching_ctl = NULL;
10239 	bool remove_em;
10240 
10241 	root = root->fs_info->extent_root;
10242 
10243 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10244 	BUG_ON(!block_group);
10245 	BUG_ON(!block_group->ro);
10246 
10247 	/*
10248 	 * Free the reserved super bytes from this block group before
10249 	 * remove it.
10250 	 */
10251 	free_excluded_extents(root, block_group);
10252 
10253 	memcpy(&key, &block_group->key, sizeof(key));
10254 	index = get_block_group_index(block_group);
10255 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10256 				  BTRFS_BLOCK_GROUP_RAID1 |
10257 				  BTRFS_BLOCK_GROUP_RAID10))
10258 		factor = 2;
10259 	else
10260 		factor = 1;
10261 
10262 	/* make sure this block group isn't part of an allocation cluster */
10263 	cluster = &root->fs_info->data_alloc_cluster;
10264 	spin_lock(&cluster->refill_lock);
10265 	btrfs_return_cluster_to_free_space(block_group, cluster);
10266 	spin_unlock(&cluster->refill_lock);
10267 
10268 	/*
10269 	 * make sure this block group isn't part of a metadata
10270 	 * allocation cluster
10271 	 */
10272 	cluster = &root->fs_info->meta_alloc_cluster;
10273 	spin_lock(&cluster->refill_lock);
10274 	btrfs_return_cluster_to_free_space(block_group, cluster);
10275 	spin_unlock(&cluster->refill_lock);
10276 
10277 	path = btrfs_alloc_path();
10278 	if (!path) {
10279 		ret = -ENOMEM;
10280 		goto out;
10281 	}
10282 
10283 	/*
10284 	 * get the inode first so any iput calls done for the io_list
10285 	 * aren't the final iput (no unlinks allowed now)
10286 	 */
10287 	inode = lookup_free_space_inode(tree_root, block_group, path);
10288 
10289 	mutex_lock(&trans->transaction->cache_write_mutex);
10290 	/*
10291 	 * make sure our free spache cache IO is done before remove the
10292 	 * free space inode
10293 	 */
10294 	spin_lock(&trans->transaction->dirty_bgs_lock);
10295 	if (!list_empty(&block_group->io_list)) {
10296 		list_del_init(&block_group->io_list);
10297 
10298 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10299 
10300 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10301 		btrfs_wait_cache_io(root, trans, block_group,
10302 				    &block_group->io_ctl, path,
10303 				    block_group->key.objectid);
10304 		btrfs_put_block_group(block_group);
10305 		spin_lock(&trans->transaction->dirty_bgs_lock);
10306 	}
10307 
10308 	if (!list_empty(&block_group->dirty_list)) {
10309 		list_del_init(&block_group->dirty_list);
10310 		btrfs_put_block_group(block_group);
10311 	}
10312 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10313 	mutex_unlock(&trans->transaction->cache_write_mutex);
10314 
10315 	if (!IS_ERR(inode)) {
10316 		ret = btrfs_orphan_add(trans, inode);
10317 		if (ret) {
10318 			btrfs_add_delayed_iput(inode);
10319 			goto out;
10320 		}
10321 		clear_nlink(inode);
10322 		/* One for the block groups ref */
10323 		spin_lock(&block_group->lock);
10324 		if (block_group->iref) {
10325 			block_group->iref = 0;
10326 			block_group->inode = NULL;
10327 			spin_unlock(&block_group->lock);
10328 			iput(inode);
10329 		} else {
10330 			spin_unlock(&block_group->lock);
10331 		}
10332 		/* One for our lookup ref */
10333 		btrfs_add_delayed_iput(inode);
10334 	}
10335 
10336 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10337 	key.offset = block_group->key.objectid;
10338 	key.type = 0;
10339 
10340 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10341 	if (ret < 0)
10342 		goto out;
10343 	if (ret > 0)
10344 		btrfs_release_path(path);
10345 	if (ret == 0) {
10346 		ret = btrfs_del_item(trans, tree_root, path);
10347 		if (ret)
10348 			goto out;
10349 		btrfs_release_path(path);
10350 	}
10351 
10352 	spin_lock(&root->fs_info->block_group_cache_lock);
10353 	rb_erase(&block_group->cache_node,
10354 		 &root->fs_info->block_group_cache_tree);
10355 	RB_CLEAR_NODE(&block_group->cache_node);
10356 
10357 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10358 		root->fs_info->first_logical_byte = (u64)-1;
10359 	spin_unlock(&root->fs_info->block_group_cache_lock);
10360 
10361 	down_write(&block_group->space_info->groups_sem);
10362 	/*
10363 	 * we must use list_del_init so people can check to see if they
10364 	 * are still on the list after taking the semaphore
10365 	 */
10366 	list_del_init(&block_group->list);
10367 	if (list_empty(&block_group->space_info->block_groups[index])) {
10368 		kobj = block_group->space_info->block_group_kobjs[index];
10369 		block_group->space_info->block_group_kobjs[index] = NULL;
10370 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10371 	}
10372 	up_write(&block_group->space_info->groups_sem);
10373 	if (kobj) {
10374 		kobject_del(kobj);
10375 		kobject_put(kobj);
10376 	}
10377 
10378 	if (block_group->has_caching_ctl)
10379 		caching_ctl = get_caching_control(block_group);
10380 	if (block_group->cached == BTRFS_CACHE_STARTED)
10381 		wait_block_group_cache_done(block_group);
10382 	if (block_group->has_caching_ctl) {
10383 		down_write(&root->fs_info->commit_root_sem);
10384 		if (!caching_ctl) {
10385 			struct btrfs_caching_control *ctl;
10386 
10387 			list_for_each_entry(ctl,
10388 				    &root->fs_info->caching_block_groups, list)
10389 				if (ctl->block_group == block_group) {
10390 					caching_ctl = ctl;
10391 					atomic_inc(&caching_ctl->count);
10392 					break;
10393 				}
10394 		}
10395 		if (caching_ctl)
10396 			list_del_init(&caching_ctl->list);
10397 		up_write(&root->fs_info->commit_root_sem);
10398 		if (caching_ctl) {
10399 			/* Once for the caching bgs list and once for us. */
10400 			put_caching_control(caching_ctl);
10401 			put_caching_control(caching_ctl);
10402 		}
10403 	}
10404 
10405 	spin_lock(&trans->transaction->dirty_bgs_lock);
10406 	if (!list_empty(&block_group->dirty_list)) {
10407 		WARN_ON(1);
10408 	}
10409 	if (!list_empty(&block_group->io_list)) {
10410 		WARN_ON(1);
10411 	}
10412 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10413 	btrfs_remove_free_space_cache(block_group);
10414 
10415 	spin_lock(&block_group->space_info->lock);
10416 	list_del_init(&block_group->ro_list);
10417 
10418 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10419 		WARN_ON(block_group->space_info->total_bytes
10420 			< block_group->key.offset);
10421 		WARN_ON(block_group->space_info->bytes_readonly
10422 			< block_group->key.offset);
10423 		WARN_ON(block_group->space_info->disk_total
10424 			< block_group->key.offset * factor);
10425 	}
10426 	block_group->space_info->total_bytes -= block_group->key.offset;
10427 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10428 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10429 
10430 	spin_unlock(&block_group->space_info->lock);
10431 
10432 	memcpy(&key, &block_group->key, sizeof(key));
10433 
10434 	lock_chunks(root);
10435 	if (!list_empty(&em->list)) {
10436 		/* We're in the transaction->pending_chunks list. */
10437 		free_extent_map(em);
10438 	}
10439 	spin_lock(&block_group->lock);
10440 	block_group->removed = 1;
10441 	/*
10442 	 * At this point trimming can't start on this block group, because we
10443 	 * removed the block group from the tree fs_info->block_group_cache_tree
10444 	 * so no one can't find it anymore and even if someone already got this
10445 	 * block group before we removed it from the rbtree, they have already
10446 	 * incremented block_group->trimming - if they didn't, they won't find
10447 	 * any free space entries because we already removed them all when we
10448 	 * called btrfs_remove_free_space_cache().
10449 	 *
10450 	 * And we must not remove the extent map from the fs_info->mapping_tree
10451 	 * to prevent the same logical address range and physical device space
10452 	 * ranges from being reused for a new block group. This is because our
10453 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10454 	 * completely transactionless, so while it is trimming a range the
10455 	 * currently running transaction might finish and a new one start,
10456 	 * allowing for new block groups to be created that can reuse the same
10457 	 * physical device locations unless we take this special care.
10458 	 *
10459 	 * There may also be an implicit trim operation if the file system
10460 	 * is mounted with -odiscard. The same protections must remain
10461 	 * in place until the extents have been discarded completely when
10462 	 * the transaction commit has completed.
10463 	 */
10464 	remove_em = (atomic_read(&block_group->trimming) == 0);
10465 	/*
10466 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10467 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10468 	 * before checking block_group->removed).
10469 	 */
10470 	if (!remove_em) {
10471 		/*
10472 		 * Our em might be in trans->transaction->pending_chunks which
10473 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10474 		 * and so is the fs_info->pinned_chunks list.
10475 		 *
10476 		 * So at this point we must be holding the chunk_mutex to avoid
10477 		 * any races with chunk allocation (more specifically at
10478 		 * volumes.c:contains_pending_extent()), to ensure it always
10479 		 * sees the em, either in the pending_chunks list or in the
10480 		 * pinned_chunks list.
10481 		 */
10482 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10483 	}
10484 	spin_unlock(&block_group->lock);
10485 
10486 	if (remove_em) {
10487 		struct extent_map_tree *em_tree;
10488 
10489 		em_tree = &root->fs_info->mapping_tree.map_tree;
10490 		write_lock(&em_tree->lock);
10491 		/*
10492 		 * The em might be in the pending_chunks list, so make sure the
10493 		 * chunk mutex is locked, since remove_extent_mapping() will
10494 		 * delete us from that list.
10495 		 */
10496 		remove_extent_mapping(em_tree, em);
10497 		write_unlock(&em_tree->lock);
10498 		/* once for the tree */
10499 		free_extent_map(em);
10500 	}
10501 
10502 	unlock_chunks(root);
10503 
10504 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10505 	if (ret)
10506 		goto out;
10507 
10508 	btrfs_put_block_group(block_group);
10509 	btrfs_put_block_group(block_group);
10510 
10511 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10512 	if (ret > 0)
10513 		ret = -EIO;
10514 	if (ret < 0)
10515 		goto out;
10516 
10517 	ret = btrfs_del_item(trans, root, path);
10518 out:
10519 	btrfs_free_path(path);
10520 	return ret;
10521 }
10522 
10523 struct btrfs_trans_handle *
10524 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10525 				     const u64 chunk_offset)
10526 {
10527 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10528 	struct extent_map *em;
10529 	struct map_lookup *map;
10530 	unsigned int num_items;
10531 
10532 	read_lock(&em_tree->lock);
10533 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10534 	read_unlock(&em_tree->lock);
10535 	ASSERT(em && em->start == chunk_offset);
10536 
10537 	/*
10538 	 * We need to reserve 3 + N units from the metadata space info in order
10539 	 * to remove a block group (done at btrfs_remove_chunk() and at
10540 	 * btrfs_remove_block_group()), which are used for:
10541 	 *
10542 	 * 1 unit for adding the free space inode's orphan (located in the tree
10543 	 * of tree roots).
10544 	 * 1 unit for deleting the block group item (located in the extent
10545 	 * tree).
10546 	 * 1 unit for deleting the free space item (located in tree of tree
10547 	 * roots).
10548 	 * N units for deleting N device extent items corresponding to each
10549 	 * stripe (located in the device tree).
10550 	 *
10551 	 * In order to remove a block group we also need to reserve units in the
10552 	 * system space info in order to update the chunk tree (update one or
10553 	 * more device items and remove one chunk item), but this is done at
10554 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10555 	 */
10556 	map = em->map_lookup;
10557 	num_items = 3 + map->num_stripes;
10558 	free_extent_map(em);
10559 
10560 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10561 							   num_items, 1);
10562 }
10563 
10564 /*
10565  * Process the unused_bgs list and remove any that don't have any allocated
10566  * space inside of them.
10567  */
10568 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10569 {
10570 	struct btrfs_block_group_cache *block_group;
10571 	struct btrfs_space_info *space_info;
10572 	struct btrfs_root *root = fs_info->extent_root;
10573 	struct btrfs_trans_handle *trans;
10574 	int ret = 0;
10575 
10576 	if (!fs_info->open)
10577 		return;
10578 
10579 	spin_lock(&fs_info->unused_bgs_lock);
10580 	while (!list_empty(&fs_info->unused_bgs)) {
10581 		u64 start, end;
10582 		int trimming;
10583 
10584 		block_group = list_first_entry(&fs_info->unused_bgs,
10585 					       struct btrfs_block_group_cache,
10586 					       bg_list);
10587 		list_del_init(&block_group->bg_list);
10588 
10589 		space_info = block_group->space_info;
10590 
10591 		if (ret || btrfs_mixed_space_info(space_info)) {
10592 			btrfs_put_block_group(block_group);
10593 			continue;
10594 		}
10595 		spin_unlock(&fs_info->unused_bgs_lock);
10596 
10597 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10598 
10599 		/* Don't want to race with allocators so take the groups_sem */
10600 		down_write(&space_info->groups_sem);
10601 		spin_lock(&block_group->lock);
10602 		if (block_group->reserved ||
10603 		    btrfs_block_group_used(&block_group->item) ||
10604 		    block_group->ro ||
10605 		    list_is_singular(&block_group->list)) {
10606 			/*
10607 			 * We want to bail if we made new allocations or have
10608 			 * outstanding allocations in this block group.  We do
10609 			 * the ro check in case balance is currently acting on
10610 			 * this block group.
10611 			 */
10612 			spin_unlock(&block_group->lock);
10613 			up_write(&space_info->groups_sem);
10614 			goto next;
10615 		}
10616 		spin_unlock(&block_group->lock);
10617 
10618 		/* We don't want to force the issue, only flip if it's ok. */
10619 		ret = inc_block_group_ro(block_group, 0);
10620 		up_write(&space_info->groups_sem);
10621 		if (ret < 0) {
10622 			ret = 0;
10623 			goto next;
10624 		}
10625 
10626 		/*
10627 		 * Want to do this before we do anything else so we can recover
10628 		 * properly if we fail to join the transaction.
10629 		 */
10630 		trans = btrfs_start_trans_remove_block_group(fs_info,
10631 						     block_group->key.objectid);
10632 		if (IS_ERR(trans)) {
10633 			btrfs_dec_block_group_ro(root, block_group);
10634 			ret = PTR_ERR(trans);
10635 			goto next;
10636 		}
10637 
10638 		/*
10639 		 * We could have pending pinned extents for this block group,
10640 		 * just delete them, we don't care about them anymore.
10641 		 */
10642 		start = block_group->key.objectid;
10643 		end = start + block_group->key.offset - 1;
10644 		/*
10645 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10646 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10647 		 * another task might be running finish_extent_commit() for the
10648 		 * previous transaction N - 1, and have seen a range belonging
10649 		 * to the block group in freed_extents[] before we were able to
10650 		 * clear the whole block group range from freed_extents[]. This
10651 		 * means that task can lookup for the block group after we
10652 		 * unpinned it from freed_extents[] and removed it, leading to
10653 		 * a BUG_ON() at btrfs_unpin_extent_range().
10654 		 */
10655 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10656 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10657 				  EXTENT_DIRTY);
10658 		if (ret) {
10659 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10660 			btrfs_dec_block_group_ro(root, block_group);
10661 			goto end_trans;
10662 		}
10663 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10664 				  EXTENT_DIRTY);
10665 		if (ret) {
10666 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10667 			btrfs_dec_block_group_ro(root, block_group);
10668 			goto end_trans;
10669 		}
10670 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10671 
10672 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10673 		spin_lock(&space_info->lock);
10674 		spin_lock(&block_group->lock);
10675 
10676 		space_info->bytes_pinned -= block_group->pinned;
10677 		space_info->bytes_readonly += block_group->pinned;
10678 		percpu_counter_add(&space_info->total_bytes_pinned,
10679 				   -block_group->pinned);
10680 		block_group->pinned = 0;
10681 
10682 		spin_unlock(&block_group->lock);
10683 		spin_unlock(&space_info->lock);
10684 
10685 		/* DISCARD can flip during remount */
10686 		trimming = btrfs_test_opt(root, DISCARD);
10687 
10688 		/* Implicit trim during transaction commit. */
10689 		if (trimming)
10690 			btrfs_get_block_group_trimming(block_group);
10691 
10692 		/*
10693 		 * Btrfs_remove_chunk will abort the transaction if things go
10694 		 * horribly wrong.
10695 		 */
10696 		ret = btrfs_remove_chunk(trans, root,
10697 					 block_group->key.objectid);
10698 
10699 		if (ret) {
10700 			if (trimming)
10701 				btrfs_put_block_group_trimming(block_group);
10702 			goto end_trans;
10703 		}
10704 
10705 		/*
10706 		 * If we're not mounted with -odiscard, we can just forget
10707 		 * about this block group. Otherwise we'll need to wait
10708 		 * until transaction commit to do the actual discard.
10709 		 */
10710 		if (trimming) {
10711 			spin_lock(&fs_info->unused_bgs_lock);
10712 			/*
10713 			 * A concurrent scrub might have added us to the list
10714 			 * fs_info->unused_bgs, so use a list_move operation
10715 			 * to add the block group to the deleted_bgs list.
10716 			 */
10717 			list_move(&block_group->bg_list,
10718 				  &trans->transaction->deleted_bgs);
10719 			spin_unlock(&fs_info->unused_bgs_lock);
10720 			btrfs_get_block_group(block_group);
10721 		}
10722 end_trans:
10723 		btrfs_end_transaction(trans, root);
10724 next:
10725 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10726 		btrfs_put_block_group(block_group);
10727 		spin_lock(&fs_info->unused_bgs_lock);
10728 	}
10729 	spin_unlock(&fs_info->unused_bgs_lock);
10730 }
10731 
10732 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10733 {
10734 	struct btrfs_space_info *space_info;
10735 	struct btrfs_super_block *disk_super;
10736 	u64 features;
10737 	u64 flags;
10738 	int mixed = 0;
10739 	int ret;
10740 
10741 	disk_super = fs_info->super_copy;
10742 	if (!btrfs_super_root(disk_super))
10743 		return -EINVAL;
10744 
10745 	features = btrfs_super_incompat_flags(disk_super);
10746 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10747 		mixed = 1;
10748 
10749 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10750 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10751 	if (ret)
10752 		goto out;
10753 
10754 	if (mixed) {
10755 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10756 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10757 	} else {
10758 		flags = BTRFS_BLOCK_GROUP_METADATA;
10759 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10760 		if (ret)
10761 			goto out;
10762 
10763 		flags = BTRFS_BLOCK_GROUP_DATA;
10764 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10765 	}
10766 out:
10767 	return ret;
10768 }
10769 
10770 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10771 {
10772 	return unpin_extent_range(root, start, end, false);
10773 }
10774 
10775 /*
10776  * It used to be that old block groups would be left around forever.
10777  * Iterating over them would be enough to trim unused space.  Since we
10778  * now automatically remove them, we also need to iterate over unallocated
10779  * space.
10780  *
10781  * We don't want a transaction for this since the discard may take a
10782  * substantial amount of time.  We don't require that a transaction be
10783  * running, but we do need to take a running transaction into account
10784  * to ensure that we're not discarding chunks that were released in
10785  * the current transaction.
10786  *
10787  * Holding the chunks lock will prevent other threads from allocating
10788  * or releasing chunks, but it won't prevent a running transaction
10789  * from committing and releasing the memory that the pending chunks
10790  * list head uses.  For that, we need to take a reference to the
10791  * transaction.
10792  */
10793 static int btrfs_trim_free_extents(struct btrfs_device *device,
10794 				   u64 minlen, u64 *trimmed)
10795 {
10796 	u64 start = 0, len = 0;
10797 	int ret;
10798 
10799 	*trimmed = 0;
10800 
10801 	/* Not writeable = nothing to do. */
10802 	if (!device->writeable)
10803 		return 0;
10804 
10805 	/* No free space = nothing to do. */
10806 	if (device->total_bytes <= device->bytes_used)
10807 		return 0;
10808 
10809 	ret = 0;
10810 
10811 	while (1) {
10812 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10813 		struct btrfs_transaction *trans;
10814 		u64 bytes;
10815 
10816 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10817 		if (ret)
10818 			return ret;
10819 
10820 		down_read(&fs_info->commit_root_sem);
10821 
10822 		spin_lock(&fs_info->trans_lock);
10823 		trans = fs_info->running_transaction;
10824 		if (trans)
10825 			atomic_inc(&trans->use_count);
10826 		spin_unlock(&fs_info->trans_lock);
10827 
10828 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10829 						 &start, &len);
10830 		if (trans)
10831 			btrfs_put_transaction(trans);
10832 
10833 		if (ret) {
10834 			up_read(&fs_info->commit_root_sem);
10835 			mutex_unlock(&fs_info->chunk_mutex);
10836 			if (ret == -ENOSPC)
10837 				ret = 0;
10838 			break;
10839 		}
10840 
10841 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10842 		up_read(&fs_info->commit_root_sem);
10843 		mutex_unlock(&fs_info->chunk_mutex);
10844 
10845 		if (ret)
10846 			break;
10847 
10848 		start += len;
10849 		*trimmed += bytes;
10850 
10851 		if (fatal_signal_pending(current)) {
10852 			ret = -ERESTARTSYS;
10853 			break;
10854 		}
10855 
10856 		cond_resched();
10857 	}
10858 
10859 	return ret;
10860 }
10861 
10862 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10863 {
10864 	struct btrfs_fs_info *fs_info = root->fs_info;
10865 	struct btrfs_block_group_cache *cache = NULL;
10866 	struct btrfs_device *device;
10867 	struct list_head *devices;
10868 	u64 group_trimmed;
10869 	u64 start;
10870 	u64 end;
10871 	u64 trimmed = 0;
10872 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10873 	int ret = 0;
10874 
10875 	/*
10876 	 * try to trim all FS space, our block group may start from non-zero.
10877 	 */
10878 	if (range->len == total_bytes)
10879 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10880 	else
10881 		cache = btrfs_lookup_block_group(fs_info, range->start);
10882 
10883 	while (cache) {
10884 		if (cache->key.objectid >= (range->start + range->len)) {
10885 			btrfs_put_block_group(cache);
10886 			break;
10887 		}
10888 
10889 		start = max(range->start, cache->key.objectid);
10890 		end = min(range->start + range->len,
10891 				cache->key.objectid + cache->key.offset);
10892 
10893 		if (end - start >= range->minlen) {
10894 			if (!block_group_cache_done(cache)) {
10895 				ret = cache_block_group(cache, 0);
10896 				if (ret) {
10897 					btrfs_put_block_group(cache);
10898 					break;
10899 				}
10900 				ret = wait_block_group_cache_done(cache);
10901 				if (ret) {
10902 					btrfs_put_block_group(cache);
10903 					break;
10904 				}
10905 			}
10906 			ret = btrfs_trim_block_group(cache,
10907 						     &group_trimmed,
10908 						     start,
10909 						     end,
10910 						     range->minlen);
10911 
10912 			trimmed += group_trimmed;
10913 			if (ret) {
10914 				btrfs_put_block_group(cache);
10915 				break;
10916 			}
10917 		}
10918 
10919 		cache = next_block_group(fs_info->tree_root, cache);
10920 	}
10921 
10922 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10923 	devices = &root->fs_info->fs_devices->alloc_list;
10924 	list_for_each_entry(device, devices, dev_alloc_list) {
10925 		ret = btrfs_trim_free_extents(device, range->minlen,
10926 					      &group_trimmed);
10927 		if (ret)
10928 			break;
10929 
10930 		trimmed += group_trimmed;
10931 	}
10932 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10933 
10934 	range->len = trimmed;
10935 	return ret;
10936 }
10937 
10938 /*
10939  * btrfs_{start,end}_write_no_snapshoting() are similar to
10940  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10941  * data into the page cache through nocow before the subvolume is snapshoted,
10942  * but flush the data into disk after the snapshot creation, or to prevent
10943  * operations while snapshoting is ongoing and that cause the snapshot to be
10944  * inconsistent (writes followed by expanding truncates for example).
10945  */
10946 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10947 {
10948 	percpu_counter_dec(&root->subv_writers->counter);
10949 	/*
10950 	 * Make sure counter is updated before we wake up waiters.
10951 	 */
10952 	smp_mb();
10953 	if (waitqueue_active(&root->subv_writers->wait))
10954 		wake_up(&root->subv_writers->wait);
10955 }
10956 
10957 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10958 {
10959 	if (atomic_read(&root->will_be_snapshoted))
10960 		return 0;
10961 
10962 	percpu_counter_inc(&root->subv_writers->counter);
10963 	/*
10964 	 * Make sure counter is updated before we check for snapshot creation.
10965 	 */
10966 	smp_mb();
10967 	if (atomic_read(&root->will_be_snapshoted)) {
10968 		btrfs_end_write_no_snapshoting(root);
10969 		return 0;
10970 	}
10971 	return 1;
10972 }
10973 
10974 static int wait_snapshoting_atomic_t(atomic_t *a)
10975 {
10976 	schedule();
10977 	return 0;
10978 }
10979 
10980 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10981 {
10982 	while (true) {
10983 		int ret;
10984 
10985 		ret = btrfs_start_write_no_snapshoting(root);
10986 		if (ret)
10987 			break;
10988 		wait_on_atomic_t(&root->will_be_snapshoted,
10989 				 wait_snapshoting_atomic_t,
10990 				 TASK_UNINTERRUPTIBLE);
10991 	}
10992 }
10993