xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 089a49b6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 				    struct extent_buffer *leaf,
87 				    struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 				      struct btrfs_root *root,
90 				      u64 parent, u64 root_objectid,
91 				      u64 flags, u64 owner, u64 offset,
92 				      struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 				     struct btrfs_root *root,
95 				     u64 parent, u64 root_objectid,
96 				     u64 flags, struct btrfs_disk_key *key,
97 				     int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 			  struct btrfs_root *extent_root, u64 flags,
100 			  int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 			 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 			    int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 				       u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 			       u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 		     u64 bytenr, u64 num_bytes, int reserved);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 				       cache->key.objectid, bytenr,
272 				       0, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(root, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (cache->cached != BTRFS_CACHE_STARTED) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	/* We're loading it the fast way, so we don't have a caching_ctl. */
321 	if (!cache->caching_ctl) {
322 		spin_unlock(&cache->lock);
323 		return NULL;
324 	}
325 
326 	ctl = cache->caching_ctl;
327 	atomic_inc(&ctl->count);
328 	spin_unlock(&cache->lock);
329 	return ctl;
330 }
331 
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 	if (atomic_dec_and_test(&ctl->count))
335 		kfree(ctl);
336 }
337 
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 			      struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 	u64 extent_start, extent_end, size, total_added = 0;
347 	int ret;
348 
349 	while (start < end) {
350 		ret = find_first_extent_bit(info->pinned_extents, start,
351 					    &extent_start, &extent_end,
352 					    EXTENT_DIRTY | EXTENT_UPTODATE,
353 					    NULL);
354 		if (ret)
355 			break;
356 
357 		if (extent_start <= start) {
358 			start = extent_end + 1;
359 		} else if (extent_start > start && extent_start < end) {
360 			size = extent_start - start;
361 			total_added += size;
362 			ret = btrfs_add_free_space(block_group, start,
363 						   size);
364 			BUG_ON(ret); /* -ENOMEM or logic error */
365 			start = extent_end + 1;
366 		} else {
367 			break;
368 		}
369 	}
370 
371 	if (start < end) {
372 		size = end - start;
373 		total_added += size;
374 		ret = btrfs_add_free_space(block_group, start, size);
375 		BUG_ON(ret); /* -ENOMEM or logic error */
376 	}
377 
378 	return total_added;
379 }
380 
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 	struct btrfs_block_group_cache *block_group;
384 	struct btrfs_fs_info *fs_info;
385 	struct btrfs_caching_control *caching_ctl;
386 	struct btrfs_root *extent_root;
387 	struct btrfs_path *path;
388 	struct extent_buffer *leaf;
389 	struct btrfs_key key;
390 	u64 total_found = 0;
391 	u64 last = 0;
392 	u32 nritems;
393 	int ret = -ENOMEM;
394 
395 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 	block_group = caching_ctl->block_group;
397 	fs_info = block_group->fs_info;
398 	extent_root = fs_info->extent_root;
399 
400 	path = btrfs_alloc_path();
401 	if (!path)
402 		goto out;
403 
404 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 
406 	/*
407 	 * We don't want to deadlock with somebody trying to allocate a new
408 	 * extent for the extent root while also trying to search the extent
409 	 * root to add free space.  So we skip locking and search the commit
410 	 * root, since its read-only
411 	 */
412 	path->skip_locking = 1;
413 	path->search_commit_root = 1;
414 	path->reada = 1;
415 
416 	key.objectid = last;
417 	key.offset = 0;
418 	key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 	mutex_lock(&caching_ctl->mutex);
421 	/* need to make sure the commit_root doesn't disappear */
422 	down_read(&fs_info->extent_commit_sem);
423 
424 next:
425 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 	if (ret < 0)
427 		goto err;
428 
429 	leaf = path->nodes[0];
430 	nritems = btrfs_header_nritems(leaf);
431 
432 	while (1) {
433 		if (btrfs_fs_closing(fs_info) > 1) {
434 			last = (u64)-1;
435 			break;
436 		}
437 
438 		if (path->slots[0] < nritems) {
439 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 		} else {
441 			ret = find_next_key(path, 0, &key);
442 			if (ret)
443 				break;
444 
445 			if (need_resched()) {
446 				caching_ctl->progress = last;
447 				btrfs_release_path(path);
448 				up_read(&fs_info->extent_commit_sem);
449 				mutex_unlock(&caching_ctl->mutex);
450 				cond_resched();
451 				goto again;
452 			}
453 
454 			ret = btrfs_next_leaf(extent_root, path);
455 			if (ret < 0)
456 				goto err;
457 			if (ret)
458 				break;
459 			leaf = path->nodes[0];
460 			nritems = btrfs_header_nritems(leaf);
461 			continue;
462 		}
463 
464 		if (key.objectid < last) {
465 			key.objectid = last;
466 			key.offset = 0;
467 			key.type = BTRFS_EXTENT_ITEM_KEY;
468 
469 			caching_ctl->progress = last;
470 			btrfs_release_path(path);
471 			goto next;
472 		}
473 
474 		if (key.objectid < block_group->key.objectid) {
475 			path->slots[0]++;
476 			continue;
477 		}
478 
479 		if (key.objectid >= block_group->key.objectid +
480 		    block_group->key.offset)
481 			break;
482 
483 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484 		    key.type == BTRFS_METADATA_ITEM_KEY) {
485 			total_found += add_new_free_space(block_group,
486 							  fs_info, last,
487 							  key.objectid);
488 			if (key.type == BTRFS_METADATA_ITEM_KEY)
489 				last = key.objectid +
490 					fs_info->tree_root->leafsize;
491 			else
492 				last = key.objectid + key.offset;
493 
494 			if (total_found > (1024 * 1024 * 2)) {
495 				total_found = 0;
496 				wake_up(&caching_ctl->wait);
497 			}
498 		}
499 		path->slots[0]++;
500 	}
501 	ret = 0;
502 
503 	total_found += add_new_free_space(block_group, fs_info, last,
504 					  block_group->key.objectid +
505 					  block_group->key.offset);
506 	caching_ctl->progress = (u64)-1;
507 
508 	spin_lock(&block_group->lock);
509 	block_group->caching_ctl = NULL;
510 	block_group->cached = BTRFS_CACHE_FINISHED;
511 	spin_unlock(&block_group->lock);
512 
513 err:
514 	btrfs_free_path(path);
515 	up_read(&fs_info->extent_commit_sem);
516 
517 	free_excluded_extents(extent_root, block_group);
518 
519 	mutex_unlock(&caching_ctl->mutex);
520 out:
521 	if (ret) {
522 		spin_lock(&block_group->lock);
523 		block_group->caching_ctl = NULL;
524 		block_group->cached = BTRFS_CACHE_ERROR;
525 		spin_unlock(&block_group->lock);
526 	}
527 	wake_up(&caching_ctl->wait);
528 
529 	put_caching_control(caching_ctl);
530 	btrfs_put_block_group(block_group);
531 }
532 
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534 			     int load_cache_only)
535 {
536 	DEFINE_WAIT(wait);
537 	struct btrfs_fs_info *fs_info = cache->fs_info;
538 	struct btrfs_caching_control *caching_ctl;
539 	int ret = 0;
540 
541 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542 	if (!caching_ctl)
543 		return -ENOMEM;
544 
545 	INIT_LIST_HEAD(&caching_ctl->list);
546 	mutex_init(&caching_ctl->mutex);
547 	init_waitqueue_head(&caching_ctl->wait);
548 	caching_ctl->block_group = cache;
549 	caching_ctl->progress = cache->key.objectid;
550 	atomic_set(&caching_ctl->count, 1);
551 	caching_ctl->work.func = caching_thread;
552 
553 	spin_lock(&cache->lock);
554 	/*
555 	 * This should be a rare occasion, but this could happen I think in the
556 	 * case where one thread starts to load the space cache info, and then
557 	 * some other thread starts a transaction commit which tries to do an
558 	 * allocation while the other thread is still loading the space cache
559 	 * info.  The previous loop should have kept us from choosing this block
560 	 * group, but if we've moved to the state where we will wait on caching
561 	 * block groups we need to first check if we're doing a fast load here,
562 	 * so we can wait for it to finish, otherwise we could end up allocating
563 	 * from a block group who's cache gets evicted for one reason or
564 	 * another.
565 	 */
566 	while (cache->cached == BTRFS_CACHE_FAST) {
567 		struct btrfs_caching_control *ctl;
568 
569 		ctl = cache->caching_ctl;
570 		atomic_inc(&ctl->count);
571 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 		spin_unlock(&cache->lock);
573 
574 		schedule();
575 
576 		finish_wait(&ctl->wait, &wait);
577 		put_caching_control(ctl);
578 		spin_lock(&cache->lock);
579 	}
580 
581 	if (cache->cached != BTRFS_CACHE_NO) {
582 		spin_unlock(&cache->lock);
583 		kfree(caching_ctl);
584 		return 0;
585 	}
586 	WARN_ON(cache->caching_ctl);
587 	cache->caching_ctl = caching_ctl;
588 	cache->cached = BTRFS_CACHE_FAST;
589 	spin_unlock(&cache->lock);
590 
591 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 		} else {
600 			if (load_cache_only) {
601 				cache->caching_ctl = NULL;
602 				cache->cached = BTRFS_CACHE_NO;
603 			} else {
604 				cache->cached = BTRFS_CACHE_STARTED;
605 			}
606 		}
607 		spin_unlock(&cache->lock);
608 		wake_up(&caching_ctl->wait);
609 		if (ret == 1) {
610 			put_caching_control(caching_ctl);
611 			free_excluded_extents(fs_info->extent_root, cache);
612 			return 0;
613 		}
614 	} else {
615 		/*
616 		 * We are not going to do the fast caching, set cached to the
617 		 * appropriate value and wakeup any waiters.
618 		 */
619 		spin_lock(&cache->lock);
620 		if (load_cache_only) {
621 			cache->caching_ctl = NULL;
622 			cache->cached = BTRFS_CACHE_NO;
623 		} else {
624 			cache->cached = BTRFS_CACHE_STARTED;
625 		}
626 		spin_unlock(&cache->lock);
627 		wake_up(&caching_ctl->wait);
628 	}
629 
630 	if (load_cache_only) {
631 		put_caching_control(caching_ctl);
632 		return 0;
633 	}
634 
635 	down_write(&fs_info->extent_commit_sem);
636 	atomic_inc(&caching_ctl->count);
637 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638 	up_write(&fs_info->extent_commit_sem);
639 
640 	btrfs_get_block_group(cache);
641 
642 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643 
644 	return ret;
645 }
646 
647 /*
648  * return the block group that starts at or after bytenr
649  */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653 	struct btrfs_block_group_cache *cache;
654 
655 	cache = block_group_cache_tree_search(info, bytenr, 0);
656 
657 	return cache;
658 }
659 
660 /*
661  * return the block group that contains the given bytenr
662  */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664 						 struct btrfs_fs_info *info,
665 						 u64 bytenr)
666 {
667 	struct btrfs_block_group_cache *cache;
668 
669 	cache = block_group_cache_tree_search(info, bytenr, 1);
670 
671 	return cache;
672 }
673 
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675 						  u64 flags)
676 {
677 	struct list_head *head = &info->space_info;
678 	struct btrfs_space_info *found;
679 
680 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681 
682 	rcu_read_lock();
683 	list_for_each_entry_rcu(found, head, list) {
684 		if (found->flags & flags) {
685 			rcu_read_unlock();
686 			return found;
687 		}
688 	}
689 	rcu_read_unlock();
690 	return NULL;
691 }
692 
693 /*
694  * after adding space to the filesystem, we need to clear the full flags
695  * on all the space infos.
696  */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699 	struct list_head *head = &info->space_info;
700 	struct btrfs_space_info *found;
701 
702 	rcu_read_lock();
703 	list_for_each_entry_rcu(found, head, list)
704 		found->full = 0;
705 	rcu_read_unlock();
706 }
707 
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711 	int ret;
712 	struct btrfs_key key;
713 	struct btrfs_path *path;
714 
715 	path = btrfs_alloc_path();
716 	if (!path)
717 		return -ENOMEM;
718 
719 	key.objectid = start;
720 	key.offset = len;
721 	key.type = BTRFS_EXTENT_ITEM_KEY;
722 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723 				0, 0);
724 	if (ret > 0) {
725 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726 		if (key.objectid == start &&
727 		    key.type == BTRFS_METADATA_ITEM_KEY)
728 			ret = 0;
729 	}
730 	btrfs_free_path(path);
731 	return ret;
732 }
733 
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 			     struct btrfs_root *root, u64 bytenr,
745 			     u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747 	struct btrfs_delayed_ref_head *head;
748 	struct btrfs_delayed_ref_root *delayed_refs;
749 	struct btrfs_path *path;
750 	struct btrfs_extent_item *ei;
751 	struct extent_buffer *leaf;
752 	struct btrfs_key key;
753 	u32 item_size;
754 	u64 num_refs;
755 	u64 extent_flags;
756 	int ret;
757 
758 	/*
759 	 * If we don't have skinny metadata, don't bother doing anything
760 	 * different
761 	 */
762 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763 		offset = root->leafsize;
764 		metadata = 0;
765 	}
766 
767 	path = btrfs_alloc_path();
768 	if (!path)
769 		return -ENOMEM;
770 
771 	if (metadata) {
772 		key.objectid = bytenr;
773 		key.type = BTRFS_METADATA_ITEM_KEY;
774 		key.offset = offset;
775 	} else {
776 		key.objectid = bytenr;
777 		key.type = BTRFS_EXTENT_ITEM_KEY;
778 		key.offset = offset;
779 	}
780 
781 	if (!trans) {
782 		path->skip_locking = 1;
783 		path->search_commit_root = 1;
784 	}
785 again:
786 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 				&key, path, 0, 0);
788 	if (ret < 0)
789 		goto out_free;
790 
791 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 		metadata = 0;
793 		if (path->slots[0]) {
794 			path->slots[0]--;
795 			btrfs_item_key_to_cpu(path->nodes[0], &key,
796 					      path->slots[0]);
797 			if (key.objectid == bytenr &&
798 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
799 			    key.offset == root->leafsize)
800 				ret = 0;
801 		}
802 		if (ret) {
803 			key.objectid = bytenr;
804 			key.type = BTRFS_EXTENT_ITEM_KEY;
805 			key.offset = root->leafsize;
806 			btrfs_release_path(path);
807 			goto again;
808 		}
809 	}
810 
811 	if (ret == 0) {
812 		leaf = path->nodes[0];
813 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814 		if (item_size >= sizeof(*ei)) {
815 			ei = btrfs_item_ptr(leaf, path->slots[0],
816 					    struct btrfs_extent_item);
817 			num_refs = btrfs_extent_refs(leaf, ei);
818 			extent_flags = btrfs_extent_flags(leaf, ei);
819 		} else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821 			struct btrfs_extent_item_v0 *ei0;
822 			BUG_ON(item_size != sizeof(*ei0));
823 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
824 					     struct btrfs_extent_item_v0);
825 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
826 			/* FIXME: this isn't correct for data */
827 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829 			BUG();
830 #endif
831 		}
832 		BUG_ON(num_refs == 0);
833 	} else {
834 		num_refs = 0;
835 		extent_flags = 0;
836 		ret = 0;
837 	}
838 
839 	if (!trans)
840 		goto out;
841 
842 	delayed_refs = &trans->transaction->delayed_refs;
843 	spin_lock(&delayed_refs->lock);
844 	head = btrfs_find_delayed_ref_head(trans, bytenr);
845 	if (head) {
846 		if (!mutex_trylock(&head->mutex)) {
847 			atomic_inc(&head->node.refs);
848 			spin_unlock(&delayed_refs->lock);
849 
850 			btrfs_release_path(path);
851 
852 			/*
853 			 * Mutex was contended, block until it's released and try
854 			 * again
855 			 */
856 			mutex_lock(&head->mutex);
857 			mutex_unlock(&head->mutex);
858 			btrfs_put_delayed_ref(&head->node);
859 			goto again;
860 		}
861 		if (head->extent_op && head->extent_op->update_flags)
862 			extent_flags |= head->extent_op->flags_to_set;
863 		else
864 			BUG_ON(num_refs == 0);
865 
866 		num_refs += head->node.ref_mod;
867 		mutex_unlock(&head->mutex);
868 	}
869 	spin_unlock(&delayed_refs->lock);
870 out:
871 	WARN_ON(num_refs == 0);
872 	if (refs)
873 		*refs = num_refs;
874 	if (flags)
875 		*flags = extent_flags;
876 out_free:
877 	btrfs_free_path(path);
878 	return ret;
879 }
880 
881 /*
882  * Back reference rules.  Back refs have three main goals:
883  *
884  * 1) differentiate between all holders of references to an extent so that
885  *    when a reference is dropped we can make sure it was a valid reference
886  *    before freeing the extent.
887  *
888  * 2) Provide enough information to quickly find the holders of an extent
889  *    if we notice a given block is corrupted or bad.
890  *
891  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892  *    maintenance.  This is actually the same as #2, but with a slightly
893  *    different use case.
894  *
895  * There are two kinds of back refs. The implicit back refs is optimized
896  * for pointers in non-shared tree blocks. For a given pointer in a block,
897  * back refs of this kind provide information about the block's owner tree
898  * and the pointer's key. These information allow us to find the block by
899  * b-tree searching. The full back refs is for pointers in tree blocks not
900  * referenced by their owner trees. The location of tree block is recorded
901  * in the back refs. Actually the full back refs is generic, and can be
902  * used in all cases the implicit back refs is used. The major shortcoming
903  * of the full back refs is its overhead. Every time a tree block gets
904  * COWed, we have to update back refs entry for all pointers in it.
905  *
906  * For a newly allocated tree block, we use implicit back refs for
907  * pointers in it. This means most tree related operations only involve
908  * implicit back refs. For a tree block created in old transaction, the
909  * only way to drop a reference to it is COW it. So we can detect the
910  * event that tree block loses its owner tree's reference and do the
911  * back refs conversion.
912  *
913  * When a tree block is COW'd through a tree, there are four cases:
914  *
915  * The reference count of the block is one and the tree is the block's
916  * owner tree. Nothing to do in this case.
917  *
918  * The reference count of the block is one and the tree is not the
919  * block's owner tree. In this case, full back refs is used for pointers
920  * in the block. Remove these full back refs, add implicit back refs for
921  * every pointers in the new block.
922  *
923  * The reference count of the block is greater than one and the tree is
924  * the block's owner tree. In this case, implicit back refs is used for
925  * pointers in the block. Add full back refs for every pointers in the
926  * block, increase lower level extents' reference counts. The original
927  * implicit back refs are entailed to the new block.
928  *
929  * The reference count of the block is greater than one and the tree is
930  * not the block's owner tree. Add implicit back refs for every pointer in
931  * the new block, increase lower level extents' reference count.
932  *
933  * Back Reference Key composing:
934  *
935  * The key objectid corresponds to the first byte in the extent,
936  * The key type is used to differentiate between types of back refs.
937  * There are different meanings of the key offset for different types
938  * of back refs.
939  *
940  * File extents can be referenced by:
941  *
942  * - multiple snapshots, subvolumes, or different generations in one subvol
943  * - different files inside a single subvolume
944  * - different offsets inside a file (bookend extents in file.c)
945  *
946  * The extent ref structure for the implicit back refs has fields for:
947  *
948  * - Objectid of the subvolume root
949  * - objectid of the file holding the reference
950  * - original offset in the file
951  * - how many bookend extents
952  *
953  * The key offset for the implicit back refs is hash of the first
954  * three fields.
955  *
956  * The extent ref structure for the full back refs has field for:
957  *
958  * - number of pointers in the tree leaf
959  *
960  * The key offset for the implicit back refs is the first byte of
961  * the tree leaf
962  *
963  * When a file extent is allocated, The implicit back refs is used.
964  * the fields are filled in:
965  *
966  *     (root_key.objectid, inode objectid, offset in file, 1)
967  *
968  * When a file extent is removed file truncation, we find the
969  * corresponding implicit back refs and check the following fields:
970  *
971  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
972  *
973  * Btree extents can be referenced by:
974  *
975  * - Different subvolumes
976  *
977  * Both the implicit back refs and the full back refs for tree blocks
978  * only consist of key. The key offset for the implicit back refs is
979  * objectid of block's owner tree. The key offset for the full back refs
980  * is the first byte of parent block.
981  *
982  * When implicit back refs is used, information about the lowest key and
983  * level of the tree block are required. These information are stored in
984  * tree block info structure.
985  */
986 
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989 				  struct btrfs_root *root,
990 				  struct btrfs_path *path,
991 				  u64 owner, u32 extra_size)
992 {
993 	struct btrfs_extent_item *item;
994 	struct btrfs_extent_item_v0 *ei0;
995 	struct btrfs_extent_ref_v0 *ref0;
996 	struct btrfs_tree_block_info *bi;
997 	struct extent_buffer *leaf;
998 	struct btrfs_key key;
999 	struct btrfs_key found_key;
1000 	u32 new_size = sizeof(*item);
1001 	u64 refs;
1002 	int ret;
1003 
1004 	leaf = path->nodes[0];
1005 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006 
1007 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009 			     struct btrfs_extent_item_v0);
1010 	refs = btrfs_extent_refs_v0(leaf, ei0);
1011 
1012 	if (owner == (u64)-1) {
1013 		while (1) {
1014 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015 				ret = btrfs_next_leaf(root, path);
1016 				if (ret < 0)
1017 					return ret;
1018 				BUG_ON(ret > 0); /* Corruption */
1019 				leaf = path->nodes[0];
1020 			}
1021 			btrfs_item_key_to_cpu(leaf, &found_key,
1022 					      path->slots[0]);
1023 			BUG_ON(key.objectid != found_key.objectid);
1024 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025 				path->slots[0]++;
1026 				continue;
1027 			}
1028 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029 					      struct btrfs_extent_ref_v0);
1030 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1031 			break;
1032 		}
1033 	}
1034 	btrfs_release_path(path);
1035 
1036 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037 		new_size += sizeof(*bi);
1038 
1039 	new_size -= sizeof(*ei0);
1040 	ret = btrfs_search_slot(trans, root, &key, path,
1041 				new_size + extra_size, 1);
1042 	if (ret < 0)
1043 		return ret;
1044 	BUG_ON(ret); /* Corruption */
1045 
1046 	btrfs_extend_item(root, path, new_size);
1047 
1048 	leaf = path->nodes[0];
1049 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050 	btrfs_set_extent_refs(leaf, item, refs);
1051 	/* FIXME: get real generation */
1052 	btrfs_set_extent_generation(leaf, item, 0);
1053 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054 		btrfs_set_extent_flags(leaf, item,
1055 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057 		bi = (struct btrfs_tree_block_info *)(item + 1);
1058 		/* FIXME: get first key of the block */
1059 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061 	} else {
1062 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 	}
1064 	btrfs_mark_buffer_dirty(leaf);
1065 	return 0;
1066 }
1067 #endif
1068 
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071 	u32 high_crc = ~(u32)0;
1072 	u32 low_crc = ~(u32)0;
1073 	__le64 lenum;
1074 
1075 	lenum = cpu_to_le64(root_objectid);
1076 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077 	lenum = cpu_to_le64(owner);
1078 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079 	lenum = cpu_to_le64(offset);
1080 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081 
1082 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084 
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086 				     struct btrfs_extent_data_ref *ref)
1087 {
1088 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089 				    btrfs_extent_data_ref_objectid(leaf, ref),
1090 				    btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092 
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094 				 struct btrfs_extent_data_ref *ref,
1095 				 u64 root_objectid, u64 owner, u64 offset)
1096 {
1097 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100 		return 0;
1101 	return 1;
1102 }
1103 
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105 					   struct btrfs_root *root,
1106 					   struct btrfs_path *path,
1107 					   u64 bytenr, u64 parent,
1108 					   u64 root_objectid,
1109 					   u64 owner, u64 offset)
1110 {
1111 	struct btrfs_key key;
1112 	struct btrfs_extent_data_ref *ref;
1113 	struct extent_buffer *leaf;
1114 	u32 nritems;
1115 	int ret;
1116 	int recow;
1117 	int err = -ENOENT;
1118 
1119 	key.objectid = bytenr;
1120 	if (parent) {
1121 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1122 		key.offset = parent;
1123 	} else {
1124 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125 		key.offset = hash_extent_data_ref(root_objectid,
1126 						  owner, offset);
1127 	}
1128 again:
1129 	recow = 0;
1130 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131 	if (ret < 0) {
1132 		err = ret;
1133 		goto fail;
1134 	}
1135 
1136 	if (parent) {
1137 		if (!ret)
1138 			return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1141 		btrfs_release_path(path);
1142 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143 		if (ret < 0) {
1144 			err = ret;
1145 			goto fail;
1146 		}
1147 		if (!ret)
1148 			return 0;
1149 #endif
1150 		goto fail;
1151 	}
1152 
1153 	leaf = path->nodes[0];
1154 	nritems = btrfs_header_nritems(leaf);
1155 	while (1) {
1156 		if (path->slots[0] >= nritems) {
1157 			ret = btrfs_next_leaf(root, path);
1158 			if (ret < 0)
1159 				err = ret;
1160 			if (ret)
1161 				goto fail;
1162 
1163 			leaf = path->nodes[0];
1164 			nritems = btrfs_header_nritems(leaf);
1165 			recow = 1;
1166 		}
1167 
1168 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169 		if (key.objectid != bytenr ||
1170 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171 			goto fail;
1172 
1173 		ref = btrfs_item_ptr(leaf, path->slots[0],
1174 				     struct btrfs_extent_data_ref);
1175 
1176 		if (match_extent_data_ref(leaf, ref, root_objectid,
1177 					  owner, offset)) {
1178 			if (recow) {
1179 				btrfs_release_path(path);
1180 				goto again;
1181 			}
1182 			err = 0;
1183 			break;
1184 		}
1185 		path->slots[0]++;
1186 	}
1187 fail:
1188 	return err;
1189 }
1190 
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192 					   struct btrfs_root *root,
1193 					   struct btrfs_path *path,
1194 					   u64 bytenr, u64 parent,
1195 					   u64 root_objectid, u64 owner,
1196 					   u64 offset, int refs_to_add)
1197 {
1198 	struct btrfs_key key;
1199 	struct extent_buffer *leaf;
1200 	u32 size;
1201 	u32 num_refs;
1202 	int ret;
1203 
1204 	key.objectid = bytenr;
1205 	if (parent) {
1206 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1207 		key.offset = parent;
1208 		size = sizeof(struct btrfs_shared_data_ref);
1209 	} else {
1210 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211 		key.offset = hash_extent_data_ref(root_objectid,
1212 						  owner, offset);
1213 		size = sizeof(struct btrfs_extent_data_ref);
1214 	}
1215 
1216 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217 	if (ret && ret != -EEXIST)
1218 		goto fail;
1219 
1220 	leaf = path->nodes[0];
1221 	if (parent) {
1222 		struct btrfs_shared_data_ref *ref;
1223 		ref = btrfs_item_ptr(leaf, path->slots[0],
1224 				     struct btrfs_shared_data_ref);
1225 		if (ret == 0) {
1226 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227 		} else {
1228 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229 			num_refs += refs_to_add;
1230 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 		}
1232 	} else {
1233 		struct btrfs_extent_data_ref *ref;
1234 		while (ret == -EEXIST) {
1235 			ref = btrfs_item_ptr(leaf, path->slots[0],
1236 					     struct btrfs_extent_data_ref);
1237 			if (match_extent_data_ref(leaf, ref, root_objectid,
1238 						  owner, offset))
1239 				break;
1240 			btrfs_release_path(path);
1241 			key.offset++;
1242 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1243 						      size);
1244 			if (ret && ret != -EEXIST)
1245 				goto fail;
1246 
1247 			leaf = path->nodes[0];
1248 		}
1249 		ref = btrfs_item_ptr(leaf, path->slots[0],
1250 				     struct btrfs_extent_data_ref);
1251 		if (ret == 0) {
1252 			btrfs_set_extent_data_ref_root(leaf, ref,
1253 						       root_objectid);
1254 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257 		} else {
1258 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259 			num_refs += refs_to_add;
1260 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261 		}
1262 	}
1263 	btrfs_mark_buffer_dirty(leaf);
1264 	ret = 0;
1265 fail:
1266 	btrfs_release_path(path);
1267 	return ret;
1268 }
1269 
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271 					   struct btrfs_root *root,
1272 					   struct btrfs_path *path,
1273 					   int refs_to_drop)
1274 {
1275 	struct btrfs_key key;
1276 	struct btrfs_extent_data_ref *ref1 = NULL;
1277 	struct btrfs_shared_data_ref *ref2 = NULL;
1278 	struct extent_buffer *leaf;
1279 	u32 num_refs = 0;
1280 	int ret = 0;
1281 
1282 	leaf = path->nodes[0];
1283 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284 
1285 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287 				      struct btrfs_extent_data_ref);
1288 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291 				      struct btrfs_shared_data_ref);
1292 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295 		struct btrfs_extent_ref_v0 *ref0;
1296 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297 				      struct btrfs_extent_ref_v0);
1298 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300 	} else {
1301 		BUG();
1302 	}
1303 
1304 	BUG_ON(num_refs < refs_to_drop);
1305 	num_refs -= refs_to_drop;
1306 
1307 	if (num_refs == 0) {
1308 		ret = btrfs_del_item(trans, root, path);
1309 	} else {
1310 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315 		else {
1316 			struct btrfs_extent_ref_v0 *ref0;
1317 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318 					struct btrfs_extent_ref_v0);
1319 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 		}
1321 #endif
1322 		btrfs_mark_buffer_dirty(leaf);
1323 	}
1324 	return ret;
1325 }
1326 
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328 					  struct btrfs_path *path,
1329 					  struct btrfs_extent_inline_ref *iref)
1330 {
1331 	struct btrfs_key key;
1332 	struct extent_buffer *leaf;
1333 	struct btrfs_extent_data_ref *ref1;
1334 	struct btrfs_shared_data_ref *ref2;
1335 	u32 num_refs = 0;
1336 
1337 	leaf = path->nodes[0];
1338 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339 	if (iref) {
1340 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341 		    BTRFS_EXTENT_DATA_REF_KEY) {
1342 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 		} else {
1345 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 		}
1348 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350 				      struct btrfs_extent_data_ref);
1351 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354 				      struct btrfs_shared_data_ref);
1355 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358 		struct btrfs_extent_ref_v0 *ref0;
1359 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360 				      struct btrfs_extent_ref_v0);
1361 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363 	} else {
1364 		WARN_ON(1);
1365 	}
1366 	return num_refs;
1367 }
1368 
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370 					  struct btrfs_root *root,
1371 					  struct btrfs_path *path,
1372 					  u64 bytenr, u64 parent,
1373 					  u64 root_objectid)
1374 {
1375 	struct btrfs_key key;
1376 	int ret;
1377 
1378 	key.objectid = bytenr;
1379 	if (parent) {
1380 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 		key.offset = parent;
1382 	} else {
1383 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 		key.offset = root_objectid;
1385 	}
1386 
1387 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 	if (ret > 0)
1389 		ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391 	if (ret == -ENOENT && parent) {
1392 		btrfs_release_path(path);
1393 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1394 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395 		if (ret > 0)
1396 			ret = -ENOENT;
1397 	}
1398 #endif
1399 	return ret;
1400 }
1401 
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403 					  struct btrfs_root *root,
1404 					  struct btrfs_path *path,
1405 					  u64 bytenr, u64 parent,
1406 					  u64 root_objectid)
1407 {
1408 	struct btrfs_key key;
1409 	int ret;
1410 
1411 	key.objectid = bytenr;
1412 	if (parent) {
1413 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414 		key.offset = parent;
1415 	} else {
1416 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417 		key.offset = root_objectid;
1418 	}
1419 
1420 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421 	btrfs_release_path(path);
1422 	return ret;
1423 }
1424 
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427 	int type;
1428 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429 		if (parent > 0)
1430 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1431 		else
1432 			type = BTRFS_TREE_BLOCK_REF_KEY;
1433 	} else {
1434 		if (parent > 0)
1435 			type = BTRFS_SHARED_DATA_REF_KEY;
1436 		else
1437 			type = BTRFS_EXTENT_DATA_REF_KEY;
1438 	}
1439 	return type;
1440 }
1441 
1442 static int find_next_key(struct btrfs_path *path, int level,
1443 			 struct btrfs_key *key)
1444 
1445 {
1446 	for (; level < BTRFS_MAX_LEVEL; level++) {
1447 		if (!path->nodes[level])
1448 			break;
1449 		if (path->slots[level] + 1 >=
1450 		    btrfs_header_nritems(path->nodes[level]))
1451 			continue;
1452 		if (level == 0)
1453 			btrfs_item_key_to_cpu(path->nodes[level], key,
1454 					      path->slots[level] + 1);
1455 		else
1456 			btrfs_node_key_to_cpu(path->nodes[level], key,
1457 					      path->slots[level] + 1);
1458 		return 0;
1459 	}
1460 	return 1;
1461 }
1462 
1463 /*
1464  * look for inline back ref. if back ref is found, *ref_ret is set
1465  * to the address of inline back ref, and 0 is returned.
1466  *
1467  * if back ref isn't found, *ref_ret is set to the address where it
1468  * should be inserted, and -ENOENT is returned.
1469  *
1470  * if insert is true and there are too many inline back refs, the path
1471  * points to the extent item, and -EAGAIN is returned.
1472  *
1473  * NOTE: inline back refs are ordered in the same way that back ref
1474  *	 items in the tree are ordered.
1475  */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478 				 struct btrfs_root *root,
1479 				 struct btrfs_path *path,
1480 				 struct btrfs_extent_inline_ref **ref_ret,
1481 				 u64 bytenr, u64 num_bytes,
1482 				 u64 parent, u64 root_objectid,
1483 				 u64 owner, u64 offset, int insert)
1484 {
1485 	struct btrfs_key key;
1486 	struct extent_buffer *leaf;
1487 	struct btrfs_extent_item *ei;
1488 	struct btrfs_extent_inline_ref *iref;
1489 	u64 flags;
1490 	u64 item_size;
1491 	unsigned long ptr;
1492 	unsigned long end;
1493 	int extra_size;
1494 	int type;
1495 	int want;
1496 	int ret;
1497 	int err = 0;
1498 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499 						 SKINNY_METADATA);
1500 
1501 	key.objectid = bytenr;
1502 	key.type = BTRFS_EXTENT_ITEM_KEY;
1503 	key.offset = num_bytes;
1504 
1505 	want = extent_ref_type(parent, owner);
1506 	if (insert) {
1507 		extra_size = btrfs_extent_inline_ref_size(want);
1508 		path->keep_locks = 1;
1509 	} else
1510 		extra_size = -1;
1511 
1512 	/*
1513 	 * Owner is our parent level, so we can just add one to get the level
1514 	 * for the block we are interested in.
1515 	 */
1516 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517 		key.type = BTRFS_METADATA_ITEM_KEY;
1518 		key.offset = owner;
1519 	}
1520 
1521 again:
1522 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523 	if (ret < 0) {
1524 		err = ret;
1525 		goto out;
1526 	}
1527 
1528 	/*
1529 	 * We may be a newly converted file system which still has the old fat
1530 	 * extent entries for metadata, so try and see if we have one of those.
1531 	 */
1532 	if (ret > 0 && skinny_metadata) {
1533 		skinny_metadata = false;
1534 		if (path->slots[0]) {
1535 			path->slots[0]--;
1536 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1537 					      path->slots[0]);
1538 			if (key.objectid == bytenr &&
1539 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1540 			    key.offset == num_bytes)
1541 				ret = 0;
1542 		}
1543 		if (ret) {
1544 			key.type = BTRFS_EXTENT_ITEM_KEY;
1545 			key.offset = num_bytes;
1546 			btrfs_release_path(path);
1547 			goto again;
1548 		}
1549 	}
1550 
1551 	if (ret && !insert) {
1552 		err = -ENOENT;
1553 		goto out;
1554 	} else if (ret) {
1555 		err = -EIO;
1556 		WARN_ON(1);
1557 		goto out;
1558 	}
1559 
1560 	leaf = path->nodes[0];
1561 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 	if (item_size < sizeof(*ei)) {
1564 		if (!insert) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		ret = convert_extent_item_v0(trans, root, path, owner,
1569 					     extra_size);
1570 		if (ret < 0) {
1571 			err = ret;
1572 			goto out;
1573 		}
1574 		leaf = path->nodes[0];
1575 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 	}
1577 #endif
1578 	BUG_ON(item_size < sizeof(*ei));
1579 
1580 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 	flags = btrfs_extent_flags(leaf, ei);
1582 
1583 	ptr = (unsigned long)(ei + 1);
1584 	end = (unsigned long)ei + item_size;
1585 
1586 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 		ptr += sizeof(struct btrfs_tree_block_info);
1588 		BUG_ON(ptr > end);
1589 	}
1590 
1591 	err = -ENOENT;
1592 	while (1) {
1593 		if (ptr >= end) {
1594 			WARN_ON(ptr > end);
1595 			break;
1596 		}
1597 		iref = (struct btrfs_extent_inline_ref *)ptr;
1598 		type = btrfs_extent_inline_ref_type(leaf, iref);
1599 		if (want < type)
1600 			break;
1601 		if (want > type) {
1602 			ptr += btrfs_extent_inline_ref_size(type);
1603 			continue;
1604 		}
1605 
1606 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 			struct btrfs_extent_data_ref *dref;
1608 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 			if (match_extent_data_ref(leaf, dref, root_objectid,
1610 						  owner, offset)) {
1611 				err = 0;
1612 				break;
1613 			}
1614 			if (hash_extent_data_ref_item(leaf, dref) <
1615 			    hash_extent_data_ref(root_objectid, owner, offset))
1616 				break;
1617 		} else {
1618 			u64 ref_offset;
1619 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 			if (parent > 0) {
1621 				if (parent == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < parent)
1626 					break;
1627 			} else {
1628 				if (root_objectid == ref_offset) {
1629 					err = 0;
1630 					break;
1631 				}
1632 				if (ref_offset < root_objectid)
1633 					break;
1634 			}
1635 		}
1636 		ptr += btrfs_extent_inline_ref_size(type);
1637 	}
1638 	if (err == -ENOENT && insert) {
1639 		if (item_size + extra_size >=
1640 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 			err = -EAGAIN;
1642 			goto out;
1643 		}
1644 		/*
1645 		 * To add new inline back ref, we have to make sure
1646 		 * there is no corresponding back ref item.
1647 		 * For simplicity, we just do not add new inline back
1648 		 * ref if there is any kind of item for this block
1649 		 */
1650 		if (find_next_key(path, 0, &key) == 0 &&
1651 		    key.objectid == bytenr &&
1652 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 			err = -EAGAIN;
1654 			goto out;
1655 		}
1656 	}
1657 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 	if (insert) {
1660 		path->keep_locks = 0;
1661 		btrfs_unlock_up_safe(path, 1);
1662 	}
1663 	return err;
1664 }
1665 
1666 /*
1667  * helper to add new inline back ref
1668  */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 				 struct btrfs_path *path,
1672 				 struct btrfs_extent_inline_ref *iref,
1673 				 u64 parent, u64 root_objectid,
1674 				 u64 owner, u64 offset, int refs_to_add,
1675 				 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_extent_item *ei;
1679 	unsigned long ptr;
1680 	unsigned long end;
1681 	unsigned long item_offset;
1682 	u64 refs;
1683 	int size;
1684 	int type;
1685 
1686 	leaf = path->nodes[0];
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	item_offset = (unsigned long)iref - (unsigned long)ei;
1689 
1690 	type = extent_ref_type(parent, owner);
1691 	size = btrfs_extent_inline_ref_size(type);
1692 
1693 	btrfs_extend_item(root, path, size);
1694 
1695 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 	refs = btrfs_extent_refs(leaf, ei);
1697 	refs += refs_to_add;
1698 	btrfs_set_extent_refs(leaf, ei, refs);
1699 	if (extent_op)
1700 		__run_delayed_extent_op(extent_op, leaf, ei);
1701 
1702 	ptr = (unsigned long)ei + item_offset;
1703 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 	if (ptr < end - size)
1705 		memmove_extent_buffer(leaf, ptr + size, ptr,
1706 				      end - size - ptr);
1707 
1708 	iref = (struct btrfs_extent_inline_ref *)ptr;
1709 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 		struct btrfs_extent_data_ref *dref;
1712 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 		struct btrfs_shared_data_ref *sref;
1719 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 	} else {
1725 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 	}
1727 	btrfs_mark_buffer_dirty(leaf);
1728 }
1729 
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 				 struct btrfs_root *root,
1732 				 struct btrfs_path *path,
1733 				 struct btrfs_extent_inline_ref **ref_ret,
1734 				 u64 bytenr, u64 num_bytes, u64 parent,
1735 				 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 	int ret;
1738 
1739 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 					   bytenr, num_bytes, parent,
1741 					   root_objectid, owner, offset, 0);
1742 	if (ret != -ENOENT)
1743 		return ret;
1744 
1745 	btrfs_release_path(path);
1746 	*ref_ret = NULL;
1747 
1748 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 					    root_objectid);
1751 	} else {
1752 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 					     root_objectid, owner, offset);
1754 	}
1755 	return ret;
1756 }
1757 
1758 /*
1759  * helper to update/remove inline back ref
1760  */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 				  struct btrfs_path *path,
1764 				  struct btrfs_extent_inline_ref *iref,
1765 				  int refs_to_mod,
1766 				  struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 	struct extent_buffer *leaf;
1769 	struct btrfs_extent_item *ei;
1770 	struct btrfs_extent_data_ref *dref = NULL;
1771 	struct btrfs_shared_data_ref *sref = NULL;
1772 	unsigned long ptr;
1773 	unsigned long end;
1774 	u32 item_size;
1775 	int size;
1776 	int type;
1777 	u64 refs;
1778 
1779 	leaf = path->nodes[0];
1780 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 	refs = btrfs_extent_refs(leaf, ei);
1782 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 	refs += refs_to_mod;
1784 	btrfs_set_extent_refs(leaf, ei, refs);
1785 	if (extent_op)
1786 		__run_delayed_extent_op(extent_op, leaf, ei);
1787 
1788 	type = btrfs_extent_inline_ref_type(leaf, iref);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		size =  btrfs_extent_inline_ref_size(type);
1811 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 		ptr = (unsigned long)iref;
1813 		end = (unsigned long)ei + item_size;
1814 		if (ptr + size < end)
1815 			memmove_extent_buffer(leaf, ptr, ptr + size,
1816 					      end - ptr - size);
1817 		item_size -= size;
1818 		btrfs_truncate_item(root, path, item_size, 1);
1819 	}
1820 	btrfs_mark_buffer_dirty(leaf);
1821 }
1822 
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 				 struct btrfs_root *root,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 					   bytenr, num_bytes, parent,
1837 					   root_objectid, owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(root, path, iref,
1841 					     refs_to_add, extent_op);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(root, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_root *root,
1853 				 struct btrfs_path *path,
1854 				 u64 bytenr, u64 parent, u64 root_objectid,
1855 				 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 	int ret;
1858 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 		BUG_ON(refs_to_add != 1);
1860 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 					    parent, root_objectid);
1862 	} else {
1863 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 					     parent, root_objectid,
1865 					     owner, offset, refs_to_add);
1866 	}
1867 	return ret;
1868 }
1869 
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 				 struct btrfs_root *root,
1872 				 struct btrfs_path *path,
1873 				 struct btrfs_extent_inline_ref *iref,
1874 				 int refs_to_drop, int is_data)
1875 {
1876 	int ret = 0;
1877 
1878 	BUG_ON(!is_data && refs_to_drop != 1);
1879 	if (iref) {
1880 		update_inline_extent_backref(root, path, iref,
1881 					     -refs_to_drop, NULL);
1882 	} else if (is_data) {
1883 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 	} else {
1885 		ret = btrfs_del_item(trans, root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 				u64 start, u64 len)
1892 {
1893 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895 
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 				u64 num_bytes, u64 *actual_bytes)
1898 {
1899 	int ret;
1900 	u64 discarded_bytes = 0;
1901 	struct btrfs_bio *bbio = NULL;
1902 
1903 
1904 	/* Tell the block device(s) that the sectors can be discarded */
1905 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 			      bytenr, &num_bytes, &bbio, 0);
1907 	/* Error condition is -ENOMEM */
1908 	if (!ret) {
1909 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 		int i;
1911 
1912 
1913 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 			if (!stripe->dev->can_discard)
1915 				continue;
1916 
1917 			ret = btrfs_issue_discard(stripe->dev->bdev,
1918 						  stripe->physical,
1919 						  stripe->length);
1920 			if (!ret)
1921 				discarded_bytes += stripe->length;
1922 			else if (ret != -EOPNOTSUPP)
1923 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924 
1925 			/*
1926 			 * Just in case we get back EOPNOTSUPP for some reason,
1927 			 * just ignore the return value so we don't screw up
1928 			 * people calling discard_extent.
1929 			 */
1930 			ret = 0;
1931 		}
1932 		kfree(bbio);
1933 	}
1934 
1935 	if (actual_bytes)
1936 		*actual_bytes = discarded_bytes;
1937 
1938 
1939 	if (ret == -EOPNOTSUPP)
1940 		ret = 0;
1941 	return ret;
1942 }
1943 
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 			 struct btrfs_root *root,
1947 			 u64 bytenr, u64 num_bytes, u64 parent,
1948 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 	int ret;
1951 	struct btrfs_fs_info *fs_info = root->fs_info;
1952 
1953 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955 
1956 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 					num_bytes,
1959 					parent, root_objectid, (int)owner,
1960 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 	} else {
1962 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 					num_bytes,
1964 					parent, root_objectid, owner, offset,
1965 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 				  struct btrfs_root *root,
1972 				  u64 bytenr, u64 num_bytes,
1973 				  u64 parent, u64 root_objectid,
1974 				  u64 owner, u64 offset, int refs_to_add,
1975 				  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	u64 refs;
1981 	int ret;
1982 	int err = 0;
1983 
1984 	path = btrfs_alloc_path();
1985 	if (!path)
1986 		return -ENOMEM;
1987 
1988 	path->reada = 1;
1989 	path->leave_spinning = 1;
1990 	/* this will setup the path even if it fails to insert the back ref */
1991 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992 					   path, bytenr, num_bytes, parent,
1993 					   root_objectid, owner, offset,
1994 					   refs_to_add, extent_op);
1995 	if (ret == 0)
1996 		goto out;
1997 
1998 	if (ret != -EAGAIN) {
1999 		err = ret;
2000 		goto out;
2001 	}
2002 
2003 	leaf = path->nodes[0];
2004 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005 	refs = btrfs_extent_refs(leaf, item);
2006 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007 	if (extent_op)
2008 		__run_delayed_extent_op(extent_op, leaf, item);
2009 
2010 	btrfs_mark_buffer_dirty(leaf);
2011 	btrfs_release_path(path);
2012 
2013 	path->reada = 1;
2014 	path->leave_spinning = 1;
2015 
2016 	/* now insert the actual backref */
2017 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018 				    path, bytenr, parent, root_objectid,
2019 				    owner, offset, refs_to_add);
2020 	if (ret)
2021 		btrfs_abort_transaction(trans, root, ret);
2022 out:
2023 	btrfs_free_path(path);
2024 	return err;
2025 }
2026 
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028 				struct btrfs_root *root,
2029 				struct btrfs_delayed_ref_node *node,
2030 				struct btrfs_delayed_extent_op *extent_op,
2031 				int insert_reserved)
2032 {
2033 	int ret = 0;
2034 	struct btrfs_delayed_data_ref *ref;
2035 	struct btrfs_key ins;
2036 	u64 parent = 0;
2037 	u64 ref_root = 0;
2038 	u64 flags = 0;
2039 
2040 	ins.objectid = node->bytenr;
2041 	ins.offset = node->num_bytes;
2042 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2043 
2044 	ref = btrfs_delayed_node_to_data_ref(node);
2045 	trace_run_delayed_data_ref(node, ref, node->action);
2046 
2047 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048 		parent = ref->parent;
2049 	else
2050 		ref_root = ref->root;
2051 
2052 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053 		if (extent_op)
2054 			flags |= extent_op->flags_to_set;
2055 		ret = alloc_reserved_file_extent(trans, root,
2056 						 parent, ref_root, flags,
2057 						 ref->objectid, ref->offset,
2058 						 &ins, node->ref_mod);
2059 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061 					     node->num_bytes, parent,
2062 					     ref_root, ref->objectid,
2063 					     ref->offset, node->ref_mod,
2064 					     extent_op);
2065 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2067 					  node->num_bytes, parent,
2068 					  ref_root, ref->objectid,
2069 					  ref->offset, node->ref_mod,
2070 					  extent_op);
2071 	} else {
2072 		BUG();
2073 	}
2074 	return ret;
2075 }
2076 
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078 				    struct extent_buffer *leaf,
2079 				    struct btrfs_extent_item *ei)
2080 {
2081 	u64 flags = btrfs_extent_flags(leaf, ei);
2082 	if (extent_op->update_flags) {
2083 		flags |= extent_op->flags_to_set;
2084 		btrfs_set_extent_flags(leaf, ei, flags);
2085 	}
2086 
2087 	if (extent_op->update_key) {
2088 		struct btrfs_tree_block_info *bi;
2089 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2091 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092 	}
2093 }
2094 
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096 				 struct btrfs_root *root,
2097 				 struct btrfs_delayed_ref_node *node,
2098 				 struct btrfs_delayed_extent_op *extent_op)
2099 {
2100 	struct btrfs_key key;
2101 	struct btrfs_path *path;
2102 	struct btrfs_extent_item *ei;
2103 	struct extent_buffer *leaf;
2104 	u32 item_size;
2105 	int ret;
2106 	int err = 0;
2107 	int metadata = !extent_op->is_data;
2108 
2109 	if (trans->aborted)
2110 		return 0;
2111 
2112 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113 		metadata = 0;
2114 
2115 	path = btrfs_alloc_path();
2116 	if (!path)
2117 		return -ENOMEM;
2118 
2119 	key.objectid = node->bytenr;
2120 
2121 	if (metadata) {
2122 		key.type = BTRFS_METADATA_ITEM_KEY;
2123 		key.offset = extent_op->level;
2124 	} else {
2125 		key.type = BTRFS_EXTENT_ITEM_KEY;
2126 		key.offset = node->num_bytes;
2127 	}
2128 
2129 again:
2130 	path->reada = 1;
2131 	path->leave_spinning = 1;
2132 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133 				path, 0, 1);
2134 	if (ret < 0) {
2135 		err = ret;
2136 		goto out;
2137 	}
2138 	if (ret > 0) {
2139 		if (metadata) {
2140 			btrfs_release_path(path);
2141 			metadata = 0;
2142 
2143 			key.offset = node->num_bytes;
2144 			key.type = BTRFS_EXTENT_ITEM_KEY;
2145 			goto again;
2146 		}
2147 		err = -EIO;
2148 		goto out;
2149 	}
2150 
2151 	leaf = path->nodes[0];
2152 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154 	if (item_size < sizeof(*ei)) {
2155 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156 					     path, (u64)-1, 0);
2157 		if (ret < 0) {
2158 			err = ret;
2159 			goto out;
2160 		}
2161 		leaf = path->nodes[0];
2162 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163 	}
2164 #endif
2165 	BUG_ON(item_size < sizeof(*ei));
2166 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167 	__run_delayed_extent_op(extent_op, leaf, ei);
2168 
2169 	btrfs_mark_buffer_dirty(leaf);
2170 out:
2171 	btrfs_free_path(path);
2172 	return err;
2173 }
2174 
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176 				struct btrfs_root *root,
2177 				struct btrfs_delayed_ref_node *node,
2178 				struct btrfs_delayed_extent_op *extent_op,
2179 				int insert_reserved)
2180 {
2181 	int ret = 0;
2182 	struct btrfs_delayed_tree_ref *ref;
2183 	struct btrfs_key ins;
2184 	u64 parent = 0;
2185 	u64 ref_root = 0;
2186 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187 						 SKINNY_METADATA);
2188 
2189 	ref = btrfs_delayed_node_to_tree_ref(node);
2190 	trace_run_delayed_tree_ref(node, ref, node->action);
2191 
2192 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193 		parent = ref->parent;
2194 	else
2195 		ref_root = ref->root;
2196 
2197 	ins.objectid = node->bytenr;
2198 	if (skinny_metadata) {
2199 		ins.offset = ref->level;
2200 		ins.type = BTRFS_METADATA_ITEM_KEY;
2201 	} else {
2202 		ins.offset = node->num_bytes;
2203 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2204 	}
2205 
2206 	BUG_ON(node->ref_mod != 1);
2207 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208 		BUG_ON(!extent_op || !extent_op->update_flags);
2209 		ret = alloc_reserved_tree_block(trans, root,
2210 						parent, ref_root,
2211 						extent_op->flags_to_set,
2212 						&extent_op->key,
2213 						ref->level, &ins);
2214 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216 					     node->num_bytes, parent, ref_root,
2217 					     ref->level, 0, 1, extent_op);
2218 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2220 					  node->num_bytes, parent, ref_root,
2221 					  ref->level, 0, 1, extent_op);
2222 	} else {
2223 		BUG();
2224 	}
2225 	return ret;
2226 }
2227 
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230 			       struct btrfs_root *root,
2231 			       struct btrfs_delayed_ref_node *node,
2232 			       struct btrfs_delayed_extent_op *extent_op,
2233 			       int insert_reserved)
2234 {
2235 	int ret = 0;
2236 
2237 	if (trans->aborted)
2238 		return 0;
2239 
2240 	if (btrfs_delayed_ref_is_head(node)) {
2241 		struct btrfs_delayed_ref_head *head;
2242 		/*
2243 		 * we've hit the end of the chain and we were supposed
2244 		 * to insert this extent into the tree.  But, it got
2245 		 * deleted before we ever needed to insert it, so all
2246 		 * we have to do is clean up the accounting
2247 		 */
2248 		BUG_ON(extent_op);
2249 		head = btrfs_delayed_node_to_head(node);
2250 		trace_run_delayed_ref_head(node, head, node->action);
2251 
2252 		if (insert_reserved) {
2253 			btrfs_pin_extent(root, node->bytenr,
2254 					 node->num_bytes, 1);
2255 			if (head->is_data) {
2256 				ret = btrfs_del_csums(trans, root,
2257 						      node->bytenr,
2258 						      node->num_bytes);
2259 			}
2260 		}
2261 		return ret;
2262 	}
2263 
2264 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267 					   insert_reserved);
2268 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2270 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2271 					   insert_reserved);
2272 	else
2273 		BUG();
2274 	return ret;
2275 }
2276 
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280 	struct rb_node *node;
2281 	struct btrfs_delayed_ref_node *ref;
2282 	int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284 	/*
2285 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286 	 * this prevents ref count from going down to zero when
2287 	 * there still are pending delayed ref.
2288 	 */
2289 	node = rb_prev(&head->node.rb_node);
2290 	while (1) {
2291 		if (!node)
2292 			break;
2293 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294 				rb_node);
2295 		if (ref->bytenr != head->node.bytenr)
2296 			break;
2297 		if (ref->action == action)
2298 			return ref;
2299 		node = rb_prev(node);
2300 	}
2301 	if (action == BTRFS_ADD_DELAYED_REF) {
2302 		action = BTRFS_DROP_DELAYED_REF;
2303 		goto again;
2304 	}
2305 	return NULL;
2306 }
2307 
2308 /*
2309  * Returns 0 on success or if called with an already aborted transaction.
2310  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311  */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313 				       struct btrfs_root *root,
2314 				       struct list_head *cluster)
2315 {
2316 	struct btrfs_delayed_ref_root *delayed_refs;
2317 	struct btrfs_delayed_ref_node *ref;
2318 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2319 	struct btrfs_delayed_extent_op *extent_op;
2320 	struct btrfs_fs_info *fs_info = root->fs_info;
2321 	int ret;
2322 	int count = 0;
2323 	int must_insert_reserved = 0;
2324 
2325 	delayed_refs = &trans->transaction->delayed_refs;
2326 	while (1) {
2327 		if (!locked_ref) {
2328 			/* pick a new head ref from the cluster list */
2329 			if (list_empty(cluster))
2330 				break;
2331 
2332 			locked_ref = list_entry(cluster->next,
2333 				     struct btrfs_delayed_ref_head, cluster);
2334 
2335 			/* grab the lock that says we are going to process
2336 			 * all the refs for this head */
2337 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338 
2339 			/*
2340 			 * we may have dropped the spin lock to get the head
2341 			 * mutex lock, and that might have given someone else
2342 			 * time to free the head.  If that's true, it has been
2343 			 * removed from our list and we can move on.
2344 			 */
2345 			if (ret == -EAGAIN) {
2346 				locked_ref = NULL;
2347 				count++;
2348 				continue;
2349 			}
2350 		}
2351 
2352 		/*
2353 		 * We need to try and merge add/drops of the same ref since we
2354 		 * can run into issues with relocate dropping the implicit ref
2355 		 * and then it being added back again before the drop can
2356 		 * finish.  If we merged anything we need to re-loop so we can
2357 		 * get a good ref.
2358 		 */
2359 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360 					 locked_ref);
2361 
2362 		/*
2363 		 * locked_ref is the head node, so we have to go one
2364 		 * node back for any delayed ref updates
2365 		 */
2366 		ref = select_delayed_ref(locked_ref);
2367 
2368 		if (ref && ref->seq &&
2369 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370 			/*
2371 			 * there are still refs with lower seq numbers in the
2372 			 * process of being added. Don't run this ref yet.
2373 			 */
2374 			list_del_init(&locked_ref->cluster);
2375 			btrfs_delayed_ref_unlock(locked_ref);
2376 			locked_ref = NULL;
2377 			delayed_refs->num_heads_ready++;
2378 			spin_unlock(&delayed_refs->lock);
2379 			cond_resched();
2380 			spin_lock(&delayed_refs->lock);
2381 			continue;
2382 		}
2383 
2384 		/*
2385 		 * record the must insert reserved flag before we
2386 		 * drop the spin lock.
2387 		 */
2388 		must_insert_reserved = locked_ref->must_insert_reserved;
2389 		locked_ref->must_insert_reserved = 0;
2390 
2391 		extent_op = locked_ref->extent_op;
2392 		locked_ref->extent_op = NULL;
2393 
2394 		if (!ref) {
2395 			/* All delayed refs have been processed, Go ahead
2396 			 * and send the head node to run_one_delayed_ref,
2397 			 * so that any accounting fixes can happen
2398 			 */
2399 			ref = &locked_ref->node;
2400 
2401 			if (extent_op && must_insert_reserved) {
2402 				btrfs_free_delayed_extent_op(extent_op);
2403 				extent_op = NULL;
2404 			}
2405 
2406 			if (extent_op) {
2407 				spin_unlock(&delayed_refs->lock);
2408 
2409 				ret = run_delayed_extent_op(trans, root,
2410 							    ref, extent_op);
2411 				btrfs_free_delayed_extent_op(extent_op);
2412 
2413 				if (ret) {
2414 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415 					spin_lock(&delayed_refs->lock);
2416 					btrfs_delayed_ref_unlock(locked_ref);
2417 					return ret;
2418 				}
2419 
2420 				goto next;
2421 			}
2422 		}
2423 
2424 		ref->in_tree = 0;
2425 		rb_erase(&ref->rb_node, &delayed_refs->root);
2426 		delayed_refs->num_entries--;
2427 		if (!btrfs_delayed_ref_is_head(ref)) {
2428 			/*
2429 			 * when we play the delayed ref, also correct the
2430 			 * ref_mod on head
2431 			 */
2432 			switch (ref->action) {
2433 			case BTRFS_ADD_DELAYED_REF:
2434 			case BTRFS_ADD_DELAYED_EXTENT:
2435 				locked_ref->node.ref_mod -= ref->ref_mod;
2436 				break;
2437 			case BTRFS_DROP_DELAYED_REF:
2438 				locked_ref->node.ref_mod += ref->ref_mod;
2439 				break;
2440 			default:
2441 				WARN_ON(1);
2442 			}
2443 		} else {
2444 			list_del_init(&locked_ref->cluster);
2445 		}
2446 		spin_unlock(&delayed_refs->lock);
2447 
2448 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2449 					  must_insert_reserved);
2450 
2451 		btrfs_free_delayed_extent_op(extent_op);
2452 		if (ret) {
2453 			btrfs_delayed_ref_unlock(locked_ref);
2454 			btrfs_put_delayed_ref(ref);
2455 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2456 			spin_lock(&delayed_refs->lock);
2457 			return ret;
2458 		}
2459 
2460 		/*
2461 		 * If this node is a head, that means all the refs in this head
2462 		 * have been dealt with, and we will pick the next head to deal
2463 		 * with, so we must unlock the head and drop it from the cluster
2464 		 * list before we release it.
2465 		 */
2466 		if (btrfs_delayed_ref_is_head(ref)) {
2467 			btrfs_delayed_ref_unlock(locked_ref);
2468 			locked_ref = NULL;
2469 		}
2470 		btrfs_put_delayed_ref(ref);
2471 		count++;
2472 next:
2473 		cond_resched();
2474 		spin_lock(&delayed_refs->lock);
2475 	}
2476 	return count;
2477 }
2478 
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 /*
2481  * Normally delayed refs get processed in ascending bytenr order. This
2482  * correlates in most cases to the order added. To expose dependencies on this
2483  * order, we start to process the tree in the middle instead of the beginning
2484  */
2485 static u64 find_middle(struct rb_root *root)
2486 {
2487 	struct rb_node *n = root->rb_node;
2488 	struct btrfs_delayed_ref_node *entry;
2489 	int alt = 1;
2490 	u64 middle;
2491 	u64 first = 0, last = 0;
2492 
2493 	n = rb_first(root);
2494 	if (n) {
2495 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2496 		first = entry->bytenr;
2497 	}
2498 	n = rb_last(root);
2499 	if (n) {
2500 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2501 		last = entry->bytenr;
2502 	}
2503 	n = root->rb_node;
2504 
2505 	while (n) {
2506 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2507 		WARN_ON(!entry->in_tree);
2508 
2509 		middle = entry->bytenr;
2510 
2511 		if (alt)
2512 			n = n->rb_left;
2513 		else
2514 			n = n->rb_right;
2515 
2516 		alt = 1 - alt;
2517 	}
2518 	return middle;
2519 }
2520 #endif
2521 
2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2523 					 struct btrfs_fs_info *fs_info)
2524 {
2525 	struct qgroup_update *qgroup_update;
2526 	int ret = 0;
2527 
2528 	if (list_empty(&trans->qgroup_ref_list) !=
2529 	    !trans->delayed_ref_elem.seq) {
2530 		/* list without seq or seq without list */
2531 		btrfs_err(fs_info,
2532 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2534 			(u32)(trans->delayed_ref_elem.seq >> 32),
2535 			(u32)trans->delayed_ref_elem.seq);
2536 		BUG();
2537 	}
2538 
2539 	if (!trans->delayed_ref_elem.seq)
2540 		return 0;
2541 
2542 	while (!list_empty(&trans->qgroup_ref_list)) {
2543 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2544 						 struct qgroup_update, list);
2545 		list_del(&qgroup_update->list);
2546 		if (!ret)
2547 			ret = btrfs_qgroup_account_ref(
2548 					trans, fs_info, qgroup_update->node,
2549 					qgroup_update->extent_op);
2550 		kfree(qgroup_update);
2551 	}
2552 
2553 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2554 
2555 	return ret;
2556 }
2557 
2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2559 		      int count)
2560 {
2561 	int val = atomic_read(&delayed_refs->ref_seq);
2562 
2563 	if (val < seq || val >= seq + count)
2564 		return 1;
2565 	return 0;
2566 }
2567 
2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2569 {
2570 	u64 num_bytes;
2571 
2572 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2573 			     sizeof(struct btrfs_extent_inline_ref));
2574 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2575 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2576 
2577 	/*
2578 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2579 	 * closer to what we're really going to want to ouse.
2580 	 */
2581 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2582 }
2583 
2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2585 				       struct btrfs_root *root)
2586 {
2587 	struct btrfs_block_rsv *global_rsv;
2588 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2589 	u64 num_bytes;
2590 	int ret = 0;
2591 
2592 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2593 	num_heads = heads_to_leaves(root, num_heads);
2594 	if (num_heads > 1)
2595 		num_bytes += (num_heads - 1) * root->leafsize;
2596 	num_bytes <<= 1;
2597 	global_rsv = &root->fs_info->global_block_rsv;
2598 
2599 	/*
2600 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2601 	 * wiggle room since running delayed refs can create more delayed refs.
2602 	 */
2603 	if (global_rsv->space_info->full)
2604 		num_bytes <<= 1;
2605 
2606 	spin_lock(&global_rsv->lock);
2607 	if (global_rsv->reserved <= num_bytes)
2608 		ret = 1;
2609 	spin_unlock(&global_rsv->lock);
2610 	return ret;
2611 }
2612 
2613 /*
2614  * this starts processing the delayed reference count updates and
2615  * extent insertions we have queued up so far.  count can be
2616  * 0, which means to process everything in the tree at the start
2617  * of the run (but not newly added entries), or it can be some target
2618  * number you'd like to process.
2619  *
2620  * Returns 0 on success or if called with an aborted transaction
2621  * Returns <0 on error and aborts the transaction
2622  */
2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2624 			   struct btrfs_root *root, unsigned long count)
2625 {
2626 	struct rb_node *node;
2627 	struct btrfs_delayed_ref_root *delayed_refs;
2628 	struct btrfs_delayed_ref_node *ref;
2629 	struct list_head cluster;
2630 	int ret;
2631 	u64 delayed_start;
2632 	int run_all = count == (unsigned long)-1;
2633 	int run_most = 0;
2634 	int loops;
2635 
2636 	/* We'll clean this up in btrfs_cleanup_transaction */
2637 	if (trans->aborted)
2638 		return 0;
2639 
2640 	if (root == root->fs_info->extent_root)
2641 		root = root->fs_info->tree_root;
2642 
2643 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2644 
2645 	delayed_refs = &trans->transaction->delayed_refs;
2646 	INIT_LIST_HEAD(&cluster);
2647 	if (count == 0) {
2648 		count = delayed_refs->num_entries * 2;
2649 		run_most = 1;
2650 	}
2651 
2652 	if (!run_all && !run_most) {
2653 		int old;
2654 		int seq = atomic_read(&delayed_refs->ref_seq);
2655 
2656 progress:
2657 		old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2658 		if (old) {
2659 			DEFINE_WAIT(__wait);
2660 			if (delayed_refs->flushing ||
2661 			    !btrfs_should_throttle_delayed_refs(trans, root))
2662 				return 0;
2663 
2664 			prepare_to_wait(&delayed_refs->wait, &__wait,
2665 					TASK_UNINTERRUPTIBLE);
2666 
2667 			old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2668 			if (old) {
2669 				schedule();
2670 				finish_wait(&delayed_refs->wait, &__wait);
2671 
2672 				if (!refs_newer(delayed_refs, seq, 256))
2673 					goto progress;
2674 				else
2675 					return 0;
2676 			} else {
2677 				finish_wait(&delayed_refs->wait, &__wait);
2678 				goto again;
2679 			}
2680 		}
2681 
2682 	} else {
2683 		atomic_inc(&delayed_refs->procs_running_refs);
2684 	}
2685 
2686 again:
2687 	loops = 0;
2688 	spin_lock(&delayed_refs->lock);
2689 
2690 #ifdef SCRAMBLE_DELAYED_REFS
2691 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2692 #endif
2693 
2694 	while (1) {
2695 		if (!(run_all || run_most) &&
2696 		    !btrfs_should_throttle_delayed_refs(trans, root))
2697 			break;
2698 
2699 		/*
2700 		 * go find something we can process in the rbtree.  We start at
2701 		 * the beginning of the tree, and then build a cluster
2702 		 * of refs to process starting at the first one we are able to
2703 		 * lock
2704 		 */
2705 		delayed_start = delayed_refs->run_delayed_start;
2706 		ret = btrfs_find_ref_cluster(trans, &cluster,
2707 					     delayed_refs->run_delayed_start);
2708 		if (ret)
2709 			break;
2710 
2711 		ret = run_clustered_refs(trans, root, &cluster);
2712 		if (ret < 0) {
2713 			btrfs_release_ref_cluster(&cluster);
2714 			spin_unlock(&delayed_refs->lock);
2715 			btrfs_abort_transaction(trans, root, ret);
2716 			atomic_dec(&delayed_refs->procs_running_refs);
2717 			wake_up(&delayed_refs->wait);
2718 			return ret;
2719 		}
2720 
2721 		atomic_add(ret, &delayed_refs->ref_seq);
2722 
2723 		count -= min_t(unsigned long, ret, count);
2724 
2725 		if (count == 0)
2726 			break;
2727 
2728 		if (delayed_start >= delayed_refs->run_delayed_start) {
2729 			if (loops == 0) {
2730 				/*
2731 				 * btrfs_find_ref_cluster looped. let's do one
2732 				 * more cycle. if we don't run any delayed ref
2733 				 * during that cycle (because we can't because
2734 				 * all of them are blocked), bail out.
2735 				 */
2736 				loops = 1;
2737 			} else {
2738 				/*
2739 				 * no runnable refs left, stop trying
2740 				 */
2741 				BUG_ON(run_all);
2742 				break;
2743 			}
2744 		}
2745 		if (ret) {
2746 			/* refs were run, let's reset staleness detection */
2747 			loops = 0;
2748 		}
2749 	}
2750 
2751 	if (run_all) {
2752 		if (!list_empty(&trans->new_bgs)) {
2753 			spin_unlock(&delayed_refs->lock);
2754 			btrfs_create_pending_block_groups(trans, root);
2755 			spin_lock(&delayed_refs->lock);
2756 		}
2757 
2758 		node = rb_first(&delayed_refs->root);
2759 		if (!node)
2760 			goto out;
2761 		count = (unsigned long)-1;
2762 
2763 		while (node) {
2764 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2765 				       rb_node);
2766 			if (btrfs_delayed_ref_is_head(ref)) {
2767 				struct btrfs_delayed_ref_head *head;
2768 
2769 				head = btrfs_delayed_node_to_head(ref);
2770 				atomic_inc(&ref->refs);
2771 
2772 				spin_unlock(&delayed_refs->lock);
2773 				/*
2774 				 * Mutex was contended, block until it's
2775 				 * released and try again
2776 				 */
2777 				mutex_lock(&head->mutex);
2778 				mutex_unlock(&head->mutex);
2779 
2780 				btrfs_put_delayed_ref(ref);
2781 				cond_resched();
2782 				goto again;
2783 			}
2784 			node = rb_next(node);
2785 		}
2786 		spin_unlock(&delayed_refs->lock);
2787 		schedule_timeout(1);
2788 		goto again;
2789 	}
2790 out:
2791 	atomic_dec(&delayed_refs->procs_running_refs);
2792 	smp_mb();
2793 	if (waitqueue_active(&delayed_refs->wait))
2794 		wake_up(&delayed_refs->wait);
2795 
2796 	spin_unlock(&delayed_refs->lock);
2797 	assert_qgroups_uptodate(trans);
2798 	return 0;
2799 }
2800 
2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2802 				struct btrfs_root *root,
2803 				u64 bytenr, u64 num_bytes, u64 flags,
2804 				int level, int is_data)
2805 {
2806 	struct btrfs_delayed_extent_op *extent_op;
2807 	int ret;
2808 
2809 	extent_op = btrfs_alloc_delayed_extent_op();
2810 	if (!extent_op)
2811 		return -ENOMEM;
2812 
2813 	extent_op->flags_to_set = flags;
2814 	extent_op->update_flags = 1;
2815 	extent_op->update_key = 0;
2816 	extent_op->is_data = is_data ? 1 : 0;
2817 	extent_op->level = level;
2818 
2819 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2820 					  num_bytes, extent_op);
2821 	if (ret)
2822 		btrfs_free_delayed_extent_op(extent_op);
2823 	return ret;
2824 }
2825 
2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2827 				      struct btrfs_root *root,
2828 				      struct btrfs_path *path,
2829 				      u64 objectid, u64 offset, u64 bytenr)
2830 {
2831 	struct btrfs_delayed_ref_head *head;
2832 	struct btrfs_delayed_ref_node *ref;
2833 	struct btrfs_delayed_data_ref *data_ref;
2834 	struct btrfs_delayed_ref_root *delayed_refs;
2835 	struct rb_node *node;
2836 	int ret = 0;
2837 
2838 	ret = -ENOENT;
2839 	delayed_refs = &trans->transaction->delayed_refs;
2840 	spin_lock(&delayed_refs->lock);
2841 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2842 	if (!head)
2843 		goto out;
2844 
2845 	if (!mutex_trylock(&head->mutex)) {
2846 		atomic_inc(&head->node.refs);
2847 		spin_unlock(&delayed_refs->lock);
2848 
2849 		btrfs_release_path(path);
2850 
2851 		/*
2852 		 * Mutex was contended, block until it's released and let
2853 		 * caller try again
2854 		 */
2855 		mutex_lock(&head->mutex);
2856 		mutex_unlock(&head->mutex);
2857 		btrfs_put_delayed_ref(&head->node);
2858 		return -EAGAIN;
2859 	}
2860 
2861 	node = rb_prev(&head->node.rb_node);
2862 	if (!node)
2863 		goto out_unlock;
2864 
2865 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2866 
2867 	if (ref->bytenr != bytenr)
2868 		goto out_unlock;
2869 
2870 	ret = 1;
2871 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2872 		goto out_unlock;
2873 
2874 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2875 
2876 	node = rb_prev(node);
2877 	if (node) {
2878 		int seq = ref->seq;
2879 
2880 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881 		if (ref->bytenr == bytenr && ref->seq == seq)
2882 			goto out_unlock;
2883 	}
2884 
2885 	if (data_ref->root != root->root_key.objectid ||
2886 	    data_ref->objectid != objectid || data_ref->offset != offset)
2887 		goto out_unlock;
2888 
2889 	ret = 0;
2890 out_unlock:
2891 	mutex_unlock(&head->mutex);
2892 out:
2893 	spin_unlock(&delayed_refs->lock);
2894 	return ret;
2895 }
2896 
2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2898 					struct btrfs_root *root,
2899 					struct btrfs_path *path,
2900 					u64 objectid, u64 offset, u64 bytenr)
2901 {
2902 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2903 	struct extent_buffer *leaf;
2904 	struct btrfs_extent_data_ref *ref;
2905 	struct btrfs_extent_inline_ref *iref;
2906 	struct btrfs_extent_item *ei;
2907 	struct btrfs_key key;
2908 	u32 item_size;
2909 	int ret;
2910 
2911 	key.objectid = bytenr;
2912 	key.offset = (u64)-1;
2913 	key.type = BTRFS_EXTENT_ITEM_KEY;
2914 
2915 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2916 	if (ret < 0)
2917 		goto out;
2918 	BUG_ON(ret == 0); /* Corruption */
2919 
2920 	ret = -ENOENT;
2921 	if (path->slots[0] == 0)
2922 		goto out;
2923 
2924 	path->slots[0]--;
2925 	leaf = path->nodes[0];
2926 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2927 
2928 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2929 		goto out;
2930 
2931 	ret = 1;
2932 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934 	if (item_size < sizeof(*ei)) {
2935 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2936 		goto out;
2937 	}
2938 #endif
2939 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2940 
2941 	if (item_size != sizeof(*ei) +
2942 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2943 		goto out;
2944 
2945 	if (btrfs_extent_generation(leaf, ei) <=
2946 	    btrfs_root_last_snapshot(&root->root_item))
2947 		goto out;
2948 
2949 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2950 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2951 	    BTRFS_EXTENT_DATA_REF_KEY)
2952 		goto out;
2953 
2954 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2955 	if (btrfs_extent_refs(leaf, ei) !=
2956 	    btrfs_extent_data_ref_count(leaf, ref) ||
2957 	    btrfs_extent_data_ref_root(leaf, ref) !=
2958 	    root->root_key.objectid ||
2959 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2960 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2961 		goto out;
2962 
2963 	ret = 0;
2964 out:
2965 	return ret;
2966 }
2967 
2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2969 			  struct btrfs_root *root,
2970 			  u64 objectid, u64 offset, u64 bytenr)
2971 {
2972 	struct btrfs_path *path;
2973 	int ret;
2974 	int ret2;
2975 
2976 	path = btrfs_alloc_path();
2977 	if (!path)
2978 		return -ENOENT;
2979 
2980 	do {
2981 		ret = check_committed_ref(trans, root, path, objectid,
2982 					  offset, bytenr);
2983 		if (ret && ret != -ENOENT)
2984 			goto out;
2985 
2986 		ret2 = check_delayed_ref(trans, root, path, objectid,
2987 					 offset, bytenr);
2988 	} while (ret2 == -EAGAIN);
2989 
2990 	if (ret2 && ret2 != -ENOENT) {
2991 		ret = ret2;
2992 		goto out;
2993 	}
2994 
2995 	if (ret != -ENOENT || ret2 != -ENOENT)
2996 		ret = 0;
2997 out:
2998 	btrfs_free_path(path);
2999 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3000 		WARN_ON(ret > 0);
3001 	return ret;
3002 }
3003 
3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3005 			   struct btrfs_root *root,
3006 			   struct extent_buffer *buf,
3007 			   int full_backref, int inc, int for_cow)
3008 {
3009 	u64 bytenr;
3010 	u64 num_bytes;
3011 	u64 parent;
3012 	u64 ref_root;
3013 	u32 nritems;
3014 	struct btrfs_key key;
3015 	struct btrfs_file_extent_item *fi;
3016 	int i;
3017 	int level;
3018 	int ret = 0;
3019 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3020 			    u64, u64, u64, u64, u64, u64, int);
3021 
3022 	ref_root = btrfs_header_owner(buf);
3023 	nritems = btrfs_header_nritems(buf);
3024 	level = btrfs_header_level(buf);
3025 
3026 	if (!root->ref_cows && level == 0)
3027 		return 0;
3028 
3029 	if (inc)
3030 		process_func = btrfs_inc_extent_ref;
3031 	else
3032 		process_func = btrfs_free_extent;
3033 
3034 	if (full_backref)
3035 		parent = buf->start;
3036 	else
3037 		parent = 0;
3038 
3039 	for (i = 0; i < nritems; i++) {
3040 		if (level == 0) {
3041 			btrfs_item_key_to_cpu(buf, &key, i);
3042 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3043 				continue;
3044 			fi = btrfs_item_ptr(buf, i,
3045 					    struct btrfs_file_extent_item);
3046 			if (btrfs_file_extent_type(buf, fi) ==
3047 			    BTRFS_FILE_EXTENT_INLINE)
3048 				continue;
3049 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3050 			if (bytenr == 0)
3051 				continue;
3052 
3053 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3054 			key.offset -= btrfs_file_extent_offset(buf, fi);
3055 			ret = process_func(trans, root, bytenr, num_bytes,
3056 					   parent, ref_root, key.objectid,
3057 					   key.offset, for_cow);
3058 			if (ret)
3059 				goto fail;
3060 		} else {
3061 			bytenr = btrfs_node_blockptr(buf, i);
3062 			num_bytes = btrfs_level_size(root, level - 1);
3063 			ret = process_func(trans, root, bytenr, num_bytes,
3064 					   parent, ref_root, level - 1, 0,
3065 					   for_cow);
3066 			if (ret)
3067 				goto fail;
3068 		}
3069 	}
3070 	return 0;
3071 fail:
3072 	return ret;
3073 }
3074 
3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3076 		  struct extent_buffer *buf, int full_backref, int for_cow)
3077 {
3078 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3079 }
3080 
3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3082 		  struct extent_buffer *buf, int full_backref, int for_cow)
3083 {
3084 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3085 }
3086 
3087 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3088 				 struct btrfs_root *root,
3089 				 struct btrfs_path *path,
3090 				 struct btrfs_block_group_cache *cache)
3091 {
3092 	int ret;
3093 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3094 	unsigned long bi;
3095 	struct extent_buffer *leaf;
3096 
3097 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3098 	if (ret < 0)
3099 		goto fail;
3100 	BUG_ON(ret); /* Corruption */
3101 
3102 	leaf = path->nodes[0];
3103 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3104 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3105 	btrfs_mark_buffer_dirty(leaf);
3106 	btrfs_release_path(path);
3107 fail:
3108 	if (ret) {
3109 		btrfs_abort_transaction(trans, root, ret);
3110 		return ret;
3111 	}
3112 	return 0;
3113 
3114 }
3115 
3116 static struct btrfs_block_group_cache *
3117 next_block_group(struct btrfs_root *root,
3118 		 struct btrfs_block_group_cache *cache)
3119 {
3120 	struct rb_node *node;
3121 	spin_lock(&root->fs_info->block_group_cache_lock);
3122 	node = rb_next(&cache->cache_node);
3123 	btrfs_put_block_group(cache);
3124 	if (node) {
3125 		cache = rb_entry(node, struct btrfs_block_group_cache,
3126 				 cache_node);
3127 		btrfs_get_block_group(cache);
3128 	} else
3129 		cache = NULL;
3130 	spin_unlock(&root->fs_info->block_group_cache_lock);
3131 	return cache;
3132 }
3133 
3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3135 			    struct btrfs_trans_handle *trans,
3136 			    struct btrfs_path *path)
3137 {
3138 	struct btrfs_root *root = block_group->fs_info->tree_root;
3139 	struct inode *inode = NULL;
3140 	u64 alloc_hint = 0;
3141 	int dcs = BTRFS_DC_ERROR;
3142 	int num_pages = 0;
3143 	int retries = 0;
3144 	int ret = 0;
3145 
3146 	/*
3147 	 * If this block group is smaller than 100 megs don't bother caching the
3148 	 * block group.
3149 	 */
3150 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3151 		spin_lock(&block_group->lock);
3152 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3153 		spin_unlock(&block_group->lock);
3154 		return 0;
3155 	}
3156 
3157 again:
3158 	inode = lookup_free_space_inode(root, block_group, path);
3159 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3160 		ret = PTR_ERR(inode);
3161 		btrfs_release_path(path);
3162 		goto out;
3163 	}
3164 
3165 	if (IS_ERR(inode)) {
3166 		BUG_ON(retries);
3167 		retries++;
3168 
3169 		if (block_group->ro)
3170 			goto out_free;
3171 
3172 		ret = create_free_space_inode(root, trans, block_group, path);
3173 		if (ret)
3174 			goto out_free;
3175 		goto again;
3176 	}
3177 
3178 	/* We've already setup this transaction, go ahead and exit */
3179 	if (block_group->cache_generation == trans->transid &&
3180 	    i_size_read(inode)) {
3181 		dcs = BTRFS_DC_SETUP;
3182 		goto out_put;
3183 	}
3184 
3185 	/*
3186 	 * We want to set the generation to 0, that way if anything goes wrong
3187 	 * from here on out we know not to trust this cache when we load up next
3188 	 * time.
3189 	 */
3190 	BTRFS_I(inode)->generation = 0;
3191 	ret = btrfs_update_inode(trans, root, inode);
3192 	WARN_ON(ret);
3193 
3194 	if (i_size_read(inode) > 0) {
3195 		ret = btrfs_check_trunc_cache_free_space(root,
3196 					&root->fs_info->global_block_rsv);
3197 		if (ret)
3198 			goto out_put;
3199 
3200 		ret = btrfs_truncate_free_space_cache(root, trans, path,
3201 						      inode);
3202 		if (ret)
3203 			goto out_put;
3204 	}
3205 
3206 	spin_lock(&block_group->lock);
3207 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3208 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3209 		/*
3210 		 * don't bother trying to write stuff out _if_
3211 		 * a) we're not cached,
3212 		 * b) we're with nospace_cache mount option.
3213 		 */
3214 		dcs = BTRFS_DC_WRITTEN;
3215 		spin_unlock(&block_group->lock);
3216 		goto out_put;
3217 	}
3218 	spin_unlock(&block_group->lock);
3219 
3220 	/*
3221 	 * Try to preallocate enough space based on how big the block group is.
3222 	 * Keep in mind this has to include any pinned space which could end up
3223 	 * taking up quite a bit since it's not folded into the other space
3224 	 * cache.
3225 	 */
3226 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3227 	if (!num_pages)
3228 		num_pages = 1;
3229 
3230 	num_pages *= 16;
3231 	num_pages *= PAGE_CACHE_SIZE;
3232 
3233 	ret = btrfs_check_data_free_space(inode, num_pages);
3234 	if (ret)
3235 		goto out_put;
3236 
3237 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3238 					      num_pages, num_pages,
3239 					      &alloc_hint);
3240 	if (!ret)
3241 		dcs = BTRFS_DC_SETUP;
3242 	btrfs_free_reserved_data_space(inode, num_pages);
3243 
3244 out_put:
3245 	iput(inode);
3246 out_free:
3247 	btrfs_release_path(path);
3248 out:
3249 	spin_lock(&block_group->lock);
3250 	if (!ret && dcs == BTRFS_DC_SETUP)
3251 		block_group->cache_generation = trans->transid;
3252 	block_group->disk_cache_state = dcs;
3253 	spin_unlock(&block_group->lock);
3254 
3255 	return ret;
3256 }
3257 
3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3259 				   struct btrfs_root *root)
3260 {
3261 	struct btrfs_block_group_cache *cache;
3262 	int err = 0;
3263 	struct btrfs_path *path;
3264 	u64 last = 0;
3265 
3266 	path = btrfs_alloc_path();
3267 	if (!path)
3268 		return -ENOMEM;
3269 
3270 again:
3271 	while (1) {
3272 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3273 		while (cache) {
3274 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3275 				break;
3276 			cache = next_block_group(root, cache);
3277 		}
3278 		if (!cache) {
3279 			if (last == 0)
3280 				break;
3281 			last = 0;
3282 			continue;
3283 		}
3284 		err = cache_save_setup(cache, trans, path);
3285 		last = cache->key.objectid + cache->key.offset;
3286 		btrfs_put_block_group(cache);
3287 	}
3288 
3289 	while (1) {
3290 		if (last == 0) {
3291 			err = btrfs_run_delayed_refs(trans, root,
3292 						     (unsigned long)-1);
3293 			if (err) /* File system offline */
3294 				goto out;
3295 		}
3296 
3297 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3298 		while (cache) {
3299 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3300 				btrfs_put_block_group(cache);
3301 				goto again;
3302 			}
3303 
3304 			if (cache->dirty)
3305 				break;
3306 			cache = next_block_group(root, cache);
3307 		}
3308 		if (!cache) {
3309 			if (last == 0)
3310 				break;
3311 			last = 0;
3312 			continue;
3313 		}
3314 
3315 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3316 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3317 		cache->dirty = 0;
3318 		last = cache->key.objectid + cache->key.offset;
3319 
3320 		err = write_one_cache_group(trans, root, path, cache);
3321 		if (err) /* File system offline */
3322 			goto out;
3323 
3324 		btrfs_put_block_group(cache);
3325 	}
3326 
3327 	while (1) {
3328 		/*
3329 		 * I don't think this is needed since we're just marking our
3330 		 * preallocated extent as written, but just in case it can't
3331 		 * hurt.
3332 		 */
3333 		if (last == 0) {
3334 			err = btrfs_run_delayed_refs(trans, root,
3335 						     (unsigned long)-1);
3336 			if (err) /* File system offline */
3337 				goto out;
3338 		}
3339 
3340 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3341 		while (cache) {
3342 			/*
3343 			 * Really this shouldn't happen, but it could if we
3344 			 * couldn't write the entire preallocated extent and
3345 			 * splitting the extent resulted in a new block.
3346 			 */
3347 			if (cache->dirty) {
3348 				btrfs_put_block_group(cache);
3349 				goto again;
3350 			}
3351 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3352 				break;
3353 			cache = next_block_group(root, cache);
3354 		}
3355 		if (!cache) {
3356 			if (last == 0)
3357 				break;
3358 			last = 0;
3359 			continue;
3360 		}
3361 
3362 		err = btrfs_write_out_cache(root, trans, cache, path);
3363 
3364 		/*
3365 		 * If we didn't have an error then the cache state is still
3366 		 * NEED_WRITE, so we can set it to WRITTEN.
3367 		 */
3368 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3369 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3370 		last = cache->key.objectid + cache->key.offset;
3371 		btrfs_put_block_group(cache);
3372 	}
3373 out:
3374 
3375 	btrfs_free_path(path);
3376 	return err;
3377 }
3378 
3379 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3380 {
3381 	struct btrfs_block_group_cache *block_group;
3382 	int readonly = 0;
3383 
3384 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3385 	if (!block_group || block_group->ro)
3386 		readonly = 1;
3387 	if (block_group)
3388 		btrfs_put_block_group(block_group);
3389 	return readonly;
3390 }
3391 
3392 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3393 			     u64 total_bytes, u64 bytes_used,
3394 			     struct btrfs_space_info **space_info)
3395 {
3396 	struct btrfs_space_info *found;
3397 	int i;
3398 	int factor;
3399 	int ret;
3400 
3401 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3402 		     BTRFS_BLOCK_GROUP_RAID10))
3403 		factor = 2;
3404 	else
3405 		factor = 1;
3406 
3407 	found = __find_space_info(info, flags);
3408 	if (found) {
3409 		spin_lock(&found->lock);
3410 		found->total_bytes += total_bytes;
3411 		found->disk_total += total_bytes * factor;
3412 		found->bytes_used += bytes_used;
3413 		found->disk_used += bytes_used * factor;
3414 		found->full = 0;
3415 		spin_unlock(&found->lock);
3416 		*space_info = found;
3417 		return 0;
3418 	}
3419 	found = kzalloc(sizeof(*found), GFP_NOFS);
3420 	if (!found)
3421 		return -ENOMEM;
3422 
3423 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3424 	if (ret) {
3425 		kfree(found);
3426 		return ret;
3427 	}
3428 
3429 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3430 		INIT_LIST_HEAD(&found->block_groups[i]);
3431 	init_rwsem(&found->groups_sem);
3432 	spin_lock_init(&found->lock);
3433 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3434 	found->total_bytes = total_bytes;
3435 	found->disk_total = total_bytes * factor;
3436 	found->bytes_used = bytes_used;
3437 	found->disk_used = bytes_used * factor;
3438 	found->bytes_pinned = 0;
3439 	found->bytes_reserved = 0;
3440 	found->bytes_readonly = 0;
3441 	found->bytes_may_use = 0;
3442 	found->full = 0;
3443 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3444 	found->chunk_alloc = 0;
3445 	found->flush = 0;
3446 	init_waitqueue_head(&found->wait);
3447 	*space_info = found;
3448 	list_add_rcu(&found->list, &info->space_info);
3449 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3450 		info->data_sinfo = found;
3451 	return 0;
3452 }
3453 
3454 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3455 {
3456 	u64 extra_flags = chunk_to_extended(flags) &
3457 				BTRFS_EXTENDED_PROFILE_MASK;
3458 
3459 	write_seqlock(&fs_info->profiles_lock);
3460 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3461 		fs_info->avail_data_alloc_bits |= extra_flags;
3462 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3463 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3464 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3465 		fs_info->avail_system_alloc_bits |= extra_flags;
3466 	write_sequnlock(&fs_info->profiles_lock);
3467 }
3468 
3469 /*
3470  * returns target flags in extended format or 0 if restripe for this
3471  * chunk_type is not in progress
3472  *
3473  * should be called with either volume_mutex or balance_lock held
3474  */
3475 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3476 {
3477 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478 	u64 target = 0;
3479 
3480 	if (!bctl)
3481 		return 0;
3482 
3483 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3484 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3485 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3486 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3487 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3489 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3490 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3492 	}
3493 
3494 	return target;
3495 }
3496 
3497 /*
3498  * @flags: available profiles in extended format (see ctree.h)
3499  *
3500  * Returns reduced profile in chunk format.  If profile changing is in
3501  * progress (either running or paused) picks the target profile (if it's
3502  * already available), otherwise falls back to plain reducing.
3503  */
3504 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3505 {
3506 	/*
3507 	 * we add in the count of missing devices because we want
3508 	 * to make sure that any RAID levels on a degraded FS
3509 	 * continue to be honored.
3510 	 */
3511 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3512 		root->fs_info->fs_devices->missing_devices;
3513 	u64 target;
3514 	u64 tmp;
3515 
3516 	/*
3517 	 * see if restripe for this chunk_type is in progress, if so
3518 	 * try to reduce to the target profile
3519 	 */
3520 	spin_lock(&root->fs_info->balance_lock);
3521 	target = get_restripe_target(root->fs_info, flags);
3522 	if (target) {
3523 		/* pick target profile only if it's already available */
3524 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3525 			spin_unlock(&root->fs_info->balance_lock);
3526 			return extended_to_chunk(target);
3527 		}
3528 	}
3529 	spin_unlock(&root->fs_info->balance_lock);
3530 
3531 	/* First, mask out the RAID levels which aren't possible */
3532 	if (num_devices == 1)
3533 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3534 			   BTRFS_BLOCK_GROUP_RAID5);
3535 	if (num_devices < 3)
3536 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3537 	if (num_devices < 4)
3538 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3539 
3540 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3541 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3542 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3543 	flags &= ~tmp;
3544 
3545 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3546 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3547 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3548 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3549 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3550 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3551 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3552 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3553 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3554 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3555 
3556 	return extended_to_chunk(flags | tmp);
3557 }
3558 
3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3560 {
3561 	unsigned seq;
3562 
3563 	do {
3564 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3565 
3566 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3567 			flags |= root->fs_info->avail_data_alloc_bits;
3568 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3569 			flags |= root->fs_info->avail_system_alloc_bits;
3570 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3571 			flags |= root->fs_info->avail_metadata_alloc_bits;
3572 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3573 
3574 	return btrfs_reduce_alloc_profile(root, flags);
3575 }
3576 
3577 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3578 {
3579 	u64 flags;
3580 	u64 ret;
3581 
3582 	if (data)
3583 		flags = BTRFS_BLOCK_GROUP_DATA;
3584 	else if (root == root->fs_info->chunk_root)
3585 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3586 	else
3587 		flags = BTRFS_BLOCK_GROUP_METADATA;
3588 
3589 	ret = get_alloc_profile(root, flags);
3590 	return ret;
3591 }
3592 
3593 /*
3594  * This will check the space that the inode allocates from to make sure we have
3595  * enough space for bytes.
3596  */
3597 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3598 {
3599 	struct btrfs_space_info *data_sinfo;
3600 	struct btrfs_root *root = BTRFS_I(inode)->root;
3601 	struct btrfs_fs_info *fs_info = root->fs_info;
3602 	u64 used;
3603 	int ret = 0, committed = 0, alloc_chunk = 1;
3604 
3605 	/* make sure bytes are sectorsize aligned */
3606 	bytes = ALIGN(bytes, root->sectorsize);
3607 
3608 	if (root == root->fs_info->tree_root ||
3609 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3610 		alloc_chunk = 0;
3611 		committed = 1;
3612 	}
3613 
3614 	data_sinfo = fs_info->data_sinfo;
3615 	if (!data_sinfo)
3616 		goto alloc;
3617 
3618 again:
3619 	/* make sure we have enough space to handle the data first */
3620 	spin_lock(&data_sinfo->lock);
3621 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3622 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3623 		data_sinfo->bytes_may_use;
3624 
3625 	if (used + bytes > data_sinfo->total_bytes) {
3626 		struct btrfs_trans_handle *trans;
3627 
3628 		/*
3629 		 * if we don't have enough free bytes in this space then we need
3630 		 * to alloc a new chunk.
3631 		 */
3632 		if (!data_sinfo->full && alloc_chunk) {
3633 			u64 alloc_target;
3634 
3635 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3636 			spin_unlock(&data_sinfo->lock);
3637 alloc:
3638 			alloc_target = btrfs_get_alloc_profile(root, 1);
3639 			trans = btrfs_join_transaction(root);
3640 			if (IS_ERR(trans))
3641 				return PTR_ERR(trans);
3642 
3643 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3644 					     alloc_target,
3645 					     CHUNK_ALLOC_NO_FORCE);
3646 			btrfs_end_transaction(trans, root);
3647 			if (ret < 0) {
3648 				if (ret != -ENOSPC)
3649 					return ret;
3650 				else
3651 					goto commit_trans;
3652 			}
3653 
3654 			if (!data_sinfo)
3655 				data_sinfo = fs_info->data_sinfo;
3656 
3657 			goto again;
3658 		}
3659 
3660 		/*
3661 		 * If we don't have enough pinned space to deal with this
3662 		 * allocation don't bother committing the transaction.
3663 		 */
3664 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3665 					   bytes) < 0)
3666 			committed = 1;
3667 		spin_unlock(&data_sinfo->lock);
3668 
3669 		/* commit the current transaction and try again */
3670 commit_trans:
3671 		if (!committed &&
3672 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3673 			committed = 1;
3674 
3675 			trans = btrfs_join_transaction(root);
3676 			if (IS_ERR(trans))
3677 				return PTR_ERR(trans);
3678 			ret = btrfs_commit_transaction(trans, root);
3679 			if (ret)
3680 				return ret;
3681 			goto again;
3682 		}
3683 
3684 		return -ENOSPC;
3685 	}
3686 	data_sinfo->bytes_may_use += bytes;
3687 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3688 				      data_sinfo->flags, bytes, 1);
3689 	spin_unlock(&data_sinfo->lock);
3690 
3691 	return 0;
3692 }
3693 
3694 /*
3695  * Called if we need to clear a data reservation for this inode.
3696  */
3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3698 {
3699 	struct btrfs_root *root = BTRFS_I(inode)->root;
3700 	struct btrfs_space_info *data_sinfo;
3701 
3702 	/* make sure bytes are sectorsize aligned */
3703 	bytes = ALIGN(bytes, root->sectorsize);
3704 
3705 	data_sinfo = root->fs_info->data_sinfo;
3706 	spin_lock(&data_sinfo->lock);
3707 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3708 	data_sinfo->bytes_may_use -= bytes;
3709 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3710 				      data_sinfo->flags, bytes, 0);
3711 	spin_unlock(&data_sinfo->lock);
3712 }
3713 
3714 static void force_metadata_allocation(struct btrfs_fs_info *info)
3715 {
3716 	struct list_head *head = &info->space_info;
3717 	struct btrfs_space_info *found;
3718 
3719 	rcu_read_lock();
3720 	list_for_each_entry_rcu(found, head, list) {
3721 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3722 			found->force_alloc = CHUNK_ALLOC_FORCE;
3723 	}
3724 	rcu_read_unlock();
3725 }
3726 
3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3728 {
3729 	return (global->size << 1);
3730 }
3731 
3732 static int should_alloc_chunk(struct btrfs_root *root,
3733 			      struct btrfs_space_info *sinfo, int force)
3734 {
3735 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3736 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3737 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3738 	u64 thresh;
3739 
3740 	if (force == CHUNK_ALLOC_FORCE)
3741 		return 1;
3742 
3743 	/*
3744 	 * We need to take into account the global rsv because for all intents
3745 	 * and purposes it's used space.  Don't worry about locking the
3746 	 * global_rsv, it doesn't change except when the transaction commits.
3747 	 */
3748 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 		num_allocated += calc_global_rsv_need_space(global_rsv);
3750 
3751 	/*
3752 	 * in limited mode, we want to have some free space up to
3753 	 * about 1% of the FS size.
3754 	 */
3755 	if (force == CHUNK_ALLOC_LIMITED) {
3756 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3757 		thresh = max_t(u64, 64 * 1024 * 1024,
3758 			       div_factor_fine(thresh, 1));
3759 
3760 		if (num_bytes - num_allocated < thresh)
3761 			return 1;
3762 	}
3763 
3764 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3765 		return 0;
3766 	return 1;
3767 }
3768 
3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3770 {
3771 	u64 num_dev;
3772 
3773 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3774 		    BTRFS_BLOCK_GROUP_RAID0 |
3775 		    BTRFS_BLOCK_GROUP_RAID5 |
3776 		    BTRFS_BLOCK_GROUP_RAID6))
3777 		num_dev = root->fs_info->fs_devices->rw_devices;
3778 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3779 		num_dev = 2;
3780 	else
3781 		num_dev = 1;	/* DUP or single */
3782 
3783 	/* metadata for updaing devices and chunk tree */
3784 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3785 }
3786 
3787 static void check_system_chunk(struct btrfs_trans_handle *trans,
3788 			       struct btrfs_root *root, u64 type)
3789 {
3790 	struct btrfs_space_info *info;
3791 	u64 left;
3792 	u64 thresh;
3793 
3794 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3795 	spin_lock(&info->lock);
3796 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3797 		info->bytes_reserved - info->bytes_readonly;
3798 	spin_unlock(&info->lock);
3799 
3800 	thresh = get_system_chunk_thresh(root, type);
3801 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3802 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3803 			left, thresh, type);
3804 		dump_space_info(info, 0, 0);
3805 	}
3806 
3807 	if (left < thresh) {
3808 		u64 flags;
3809 
3810 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3811 		btrfs_alloc_chunk(trans, root, flags);
3812 	}
3813 }
3814 
3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3816 			  struct btrfs_root *extent_root, u64 flags, int force)
3817 {
3818 	struct btrfs_space_info *space_info;
3819 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3820 	int wait_for_alloc = 0;
3821 	int ret = 0;
3822 
3823 	/* Don't re-enter if we're already allocating a chunk */
3824 	if (trans->allocating_chunk)
3825 		return -ENOSPC;
3826 
3827 	space_info = __find_space_info(extent_root->fs_info, flags);
3828 	if (!space_info) {
3829 		ret = update_space_info(extent_root->fs_info, flags,
3830 					0, 0, &space_info);
3831 		BUG_ON(ret); /* -ENOMEM */
3832 	}
3833 	BUG_ON(!space_info); /* Logic error */
3834 
3835 again:
3836 	spin_lock(&space_info->lock);
3837 	if (force < space_info->force_alloc)
3838 		force = space_info->force_alloc;
3839 	if (space_info->full) {
3840 		if (should_alloc_chunk(extent_root, space_info, force))
3841 			ret = -ENOSPC;
3842 		else
3843 			ret = 0;
3844 		spin_unlock(&space_info->lock);
3845 		return ret;
3846 	}
3847 
3848 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3849 		spin_unlock(&space_info->lock);
3850 		return 0;
3851 	} else if (space_info->chunk_alloc) {
3852 		wait_for_alloc = 1;
3853 	} else {
3854 		space_info->chunk_alloc = 1;
3855 	}
3856 
3857 	spin_unlock(&space_info->lock);
3858 
3859 	mutex_lock(&fs_info->chunk_mutex);
3860 
3861 	/*
3862 	 * The chunk_mutex is held throughout the entirety of a chunk
3863 	 * allocation, so once we've acquired the chunk_mutex we know that the
3864 	 * other guy is done and we need to recheck and see if we should
3865 	 * allocate.
3866 	 */
3867 	if (wait_for_alloc) {
3868 		mutex_unlock(&fs_info->chunk_mutex);
3869 		wait_for_alloc = 0;
3870 		goto again;
3871 	}
3872 
3873 	trans->allocating_chunk = true;
3874 
3875 	/*
3876 	 * If we have mixed data/metadata chunks we want to make sure we keep
3877 	 * allocating mixed chunks instead of individual chunks.
3878 	 */
3879 	if (btrfs_mixed_space_info(space_info))
3880 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3881 
3882 	/*
3883 	 * if we're doing a data chunk, go ahead and make sure that
3884 	 * we keep a reasonable number of metadata chunks allocated in the
3885 	 * FS as well.
3886 	 */
3887 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3888 		fs_info->data_chunk_allocations++;
3889 		if (!(fs_info->data_chunk_allocations %
3890 		      fs_info->metadata_ratio))
3891 			force_metadata_allocation(fs_info);
3892 	}
3893 
3894 	/*
3895 	 * Check if we have enough space in SYSTEM chunk because we may need
3896 	 * to update devices.
3897 	 */
3898 	check_system_chunk(trans, extent_root, flags);
3899 
3900 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3901 	trans->allocating_chunk = false;
3902 
3903 	spin_lock(&space_info->lock);
3904 	if (ret < 0 && ret != -ENOSPC)
3905 		goto out;
3906 	if (ret)
3907 		space_info->full = 1;
3908 	else
3909 		ret = 1;
3910 
3911 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3912 out:
3913 	space_info->chunk_alloc = 0;
3914 	spin_unlock(&space_info->lock);
3915 	mutex_unlock(&fs_info->chunk_mutex);
3916 	return ret;
3917 }
3918 
3919 static int can_overcommit(struct btrfs_root *root,
3920 			  struct btrfs_space_info *space_info, u64 bytes,
3921 			  enum btrfs_reserve_flush_enum flush)
3922 {
3923 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3924 	u64 profile = btrfs_get_alloc_profile(root, 0);
3925 	u64 space_size;
3926 	u64 avail;
3927 	u64 used;
3928 
3929 	used = space_info->bytes_used + space_info->bytes_reserved +
3930 		space_info->bytes_pinned + space_info->bytes_readonly;
3931 
3932 	/*
3933 	 * We only want to allow over committing if we have lots of actual space
3934 	 * free, but if we don't have enough space to handle the global reserve
3935 	 * space then we could end up having a real enospc problem when trying
3936 	 * to allocate a chunk or some other such important allocation.
3937 	 */
3938 	spin_lock(&global_rsv->lock);
3939 	space_size = calc_global_rsv_need_space(global_rsv);
3940 	spin_unlock(&global_rsv->lock);
3941 	if (used + space_size >= space_info->total_bytes)
3942 		return 0;
3943 
3944 	used += space_info->bytes_may_use;
3945 
3946 	spin_lock(&root->fs_info->free_chunk_lock);
3947 	avail = root->fs_info->free_chunk_space;
3948 	spin_unlock(&root->fs_info->free_chunk_lock);
3949 
3950 	/*
3951 	 * If we have dup, raid1 or raid10 then only half of the free
3952 	 * space is actually useable.  For raid56, the space info used
3953 	 * doesn't include the parity drive, so we don't have to
3954 	 * change the math
3955 	 */
3956 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3957 		       BTRFS_BLOCK_GROUP_RAID1 |
3958 		       BTRFS_BLOCK_GROUP_RAID10))
3959 		avail >>= 1;
3960 
3961 	/*
3962 	 * If we aren't flushing all things, let us overcommit up to
3963 	 * 1/2th of the space. If we can flush, don't let us overcommit
3964 	 * too much, let it overcommit up to 1/8 of the space.
3965 	 */
3966 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3967 		avail >>= 3;
3968 	else
3969 		avail >>= 1;
3970 
3971 	if (used + bytes < space_info->total_bytes + avail)
3972 		return 1;
3973 	return 0;
3974 }
3975 
3976 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3977 					 unsigned long nr_pages)
3978 {
3979 	struct super_block *sb = root->fs_info->sb;
3980 
3981 	if (down_read_trylock(&sb->s_umount)) {
3982 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3983 		up_read(&sb->s_umount);
3984 	} else {
3985 		/*
3986 		 * We needn't worry the filesystem going from r/w to r/o though
3987 		 * we don't acquire ->s_umount mutex, because the filesystem
3988 		 * should guarantee the delalloc inodes list be empty after
3989 		 * the filesystem is readonly(all dirty pages are written to
3990 		 * the disk).
3991 		 */
3992 		btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3993 		if (!current->journal_info)
3994 			btrfs_wait_all_ordered_extents(root->fs_info);
3995 	}
3996 }
3997 
3998 /*
3999  * shrink metadata reservation for delalloc
4000  */
4001 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4002 			    bool wait_ordered)
4003 {
4004 	struct btrfs_block_rsv *block_rsv;
4005 	struct btrfs_space_info *space_info;
4006 	struct btrfs_trans_handle *trans;
4007 	u64 delalloc_bytes;
4008 	u64 max_reclaim;
4009 	long time_left;
4010 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4011 	int loops = 0;
4012 	enum btrfs_reserve_flush_enum flush;
4013 
4014 	trans = (struct btrfs_trans_handle *)current->journal_info;
4015 	block_rsv = &root->fs_info->delalloc_block_rsv;
4016 	space_info = block_rsv->space_info;
4017 
4018 	smp_mb();
4019 	delalloc_bytes = percpu_counter_sum_positive(
4020 						&root->fs_info->delalloc_bytes);
4021 	if (delalloc_bytes == 0) {
4022 		if (trans)
4023 			return;
4024 		btrfs_wait_all_ordered_extents(root->fs_info);
4025 		return;
4026 	}
4027 
4028 	while (delalloc_bytes && loops < 3) {
4029 		max_reclaim = min(delalloc_bytes, to_reclaim);
4030 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4031 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4032 		/*
4033 		 * We need to wait for the async pages to actually start before
4034 		 * we do anything.
4035 		 */
4036 		wait_event(root->fs_info->async_submit_wait,
4037 			   !atomic_read(&root->fs_info->async_delalloc_pages));
4038 
4039 		if (!trans)
4040 			flush = BTRFS_RESERVE_FLUSH_ALL;
4041 		else
4042 			flush = BTRFS_RESERVE_NO_FLUSH;
4043 		spin_lock(&space_info->lock);
4044 		if (can_overcommit(root, space_info, orig, flush)) {
4045 			spin_unlock(&space_info->lock);
4046 			break;
4047 		}
4048 		spin_unlock(&space_info->lock);
4049 
4050 		loops++;
4051 		if (wait_ordered && !trans) {
4052 			btrfs_wait_all_ordered_extents(root->fs_info);
4053 		} else {
4054 			time_left = schedule_timeout_killable(1);
4055 			if (time_left)
4056 				break;
4057 		}
4058 		smp_mb();
4059 		delalloc_bytes = percpu_counter_sum_positive(
4060 						&root->fs_info->delalloc_bytes);
4061 	}
4062 }
4063 
4064 /**
4065  * maybe_commit_transaction - possibly commit the transaction if its ok to
4066  * @root - the root we're allocating for
4067  * @bytes - the number of bytes we want to reserve
4068  * @force - force the commit
4069  *
4070  * This will check to make sure that committing the transaction will actually
4071  * get us somewhere and then commit the transaction if it does.  Otherwise it
4072  * will return -ENOSPC.
4073  */
4074 static int may_commit_transaction(struct btrfs_root *root,
4075 				  struct btrfs_space_info *space_info,
4076 				  u64 bytes, int force)
4077 {
4078 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4079 	struct btrfs_trans_handle *trans;
4080 
4081 	trans = (struct btrfs_trans_handle *)current->journal_info;
4082 	if (trans)
4083 		return -EAGAIN;
4084 
4085 	if (force)
4086 		goto commit;
4087 
4088 	/* See if there is enough pinned space to make this reservation */
4089 	spin_lock(&space_info->lock);
4090 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4091 				   bytes) >= 0) {
4092 		spin_unlock(&space_info->lock);
4093 		goto commit;
4094 	}
4095 	spin_unlock(&space_info->lock);
4096 
4097 	/*
4098 	 * See if there is some space in the delayed insertion reservation for
4099 	 * this reservation.
4100 	 */
4101 	if (space_info != delayed_rsv->space_info)
4102 		return -ENOSPC;
4103 
4104 	spin_lock(&space_info->lock);
4105 	spin_lock(&delayed_rsv->lock);
4106 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4107 				   bytes - delayed_rsv->size) >= 0) {
4108 		spin_unlock(&delayed_rsv->lock);
4109 		spin_unlock(&space_info->lock);
4110 		return -ENOSPC;
4111 	}
4112 	spin_unlock(&delayed_rsv->lock);
4113 	spin_unlock(&space_info->lock);
4114 
4115 commit:
4116 	trans = btrfs_join_transaction(root);
4117 	if (IS_ERR(trans))
4118 		return -ENOSPC;
4119 
4120 	return btrfs_commit_transaction(trans, root);
4121 }
4122 
4123 enum flush_state {
4124 	FLUSH_DELAYED_ITEMS_NR	=	1,
4125 	FLUSH_DELAYED_ITEMS	=	2,
4126 	FLUSH_DELALLOC		=	3,
4127 	FLUSH_DELALLOC_WAIT	=	4,
4128 	ALLOC_CHUNK		=	5,
4129 	COMMIT_TRANS		=	6,
4130 };
4131 
4132 static int flush_space(struct btrfs_root *root,
4133 		       struct btrfs_space_info *space_info, u64 num_bytes,
4134 		       u64 orig_bytes, int state)
4135 {
4136 	struct btrfs_trans_handle *trans;
4137 	int nr;
4138 	int ret = 0;
4139 
4140 	switch (state) {
4141 	case FLUSH_DELAYED_ITEMS_NR:
4142 	case FLUSH_DELAYED_ITEMS:
4143 		if (state == FLUSH_DELAYED_ITEMS_NR) {
4144 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4145 
4146 			nr = (int)div64_u64(num_bytes, bytes);
4147 			if (!nr)
4148 				nr = 1;
4149 			nr *= 2;
4150 		} else {
4151 			nr = -1;
4152 		}
4153 		trans = btrfs_join_transaction(root);
4154 		if (IS_ERR(trans)) {
4155 			ret = PTR_ERR(trans);
4156 			break;
4157 		}
4158 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4159 		btrfs_end_transaction(trans, root);
4160 		break;
4161 	case FLUSH_DELALLOC:
4162 	case FLUSH_DELALLOC_WAIT:
4163 		shrink_delalloc(root, num_bytes, orig_bytes,
4164 				state == FLUSH_DELALLOC_WAIT);
4165 		break;
4166 	case ALLOC_CHUNK:
4167 		trans = btrfs_join_transaction(root);
4168 		if (IS_ERR(trans)) {
4169 			ret = PTR_ERR(trans);
4170 			break;
4171 		}
4172 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4173 				     btrfs_get_alloc_profile(root, 0),
4174 				     CHUNK_ALLOC_NO_FORCE);
4175 		btrfs_end_transaction(trans, root);
4176 		if (ret == -ENOSPC)
4177 			ret = 0;
4178 		break;
4179 	case COMMIT_TRANS:
4180 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4181 		break;
4182 	default:
4183 		ret = -ENOSPC;
4184 		break;
4185 	}
4186 
4187 	return ret;
4188 }
4189 /**
4190  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4191  * @root - the root we're allocating for
4192  * @block_rsv - the block_rsv we're allocating for
4193  * @orig_bytes - the number of bytes we want
4194  * @flush - whether or not we can flush to make our reservation
4195  *
4196  * This will reserve orgi_bytes number of bytes from the space info associated
4197  * with the block_rsv.  If there is not enough space it will make an attempt to
4198  * flush out space to make room.  It will do this by flushing delalloc if
4199  * possible or committing the transaction.  If flush is 0 then no attempts to
4200  * regain reservations will be made and this will fail if there is not enough
4201  * space already.
4202  */
4203 static int reserve_metadata_bytes(struct btrfs_root *root,
4204 				  struct btrfs_block_rsv *block_rsv,
4205 				  u64 orig_bytes,
4206 				  enum btrfs_reserve_flush_enum flush)
4207 {
4208 	struct btrfs_space_info *space_info = block_rsv->space_info;
4209 	u64 used;
4210 	u64 num_bytes = orig_bytes;
4211 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4212 	int ret = 0;
4213 	bool flushing = false;
4214 
4215 again:
4216 	ret = 0;
4217 	spin_lock(&space_info->lock);
4218 	/*
4219 	 * We only want to wait if somebody other than us is flushing and we
4220 	 * are actually allowed to flush all things.
4221 	 */
4222 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4223 	       space_info->flush) {
4224 		spin_unlock(&space_info->lock);
4225 		/*
4226 		 * If we have a trans handle we can't wait because the flusher
4227 		 * may have to commit the transaction, which would mean we would
4228 		 * deadlock since we are waiting for the flusher to finish, but
4229 		 * hold the current transaction open.
4230 		 */
4231 		if (current->journal_info)
4232 			return -EAGAIN;
4233 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4234 		/* Must have been killed, return */
4235 		if (ret)
4236 			return -EINTR;
4237 
4238 		spin_lock(&space_info->lock);
4239 	}
4240 
4241 	ret = -ENOSPC;
4242 	used = space_info->bytes_used + space_info->bytes_reserved +
4243 		space_info->bytes_pinned + space_info->bytes_readonly +
4244 		space_info->bytes_may_use;
4245 
4246 	/*
4247 	 * The idea here is that we've not already over-reserved the block group
4248 	 * then we can go ahead and save our reservation first and then start
4249 	 * flushing if we need to.  Otherwise if we've already overcommitted
4250 	 * lets start flushing stuff first and then come back and try to make
4251 	 * our reservation.
4252 	 */
4253 	if (used <= space_info->total_bytes) {
4254 		if (used + orig_bytes <= space_info->total_bytes) {
4255 			space_info->bytes_may_use += orig_bytes;
4256 			trace_btrfs_space_reservation(root->fs_info,
4257 				"space_info", space_info->flags, orig_bytes, 1);
4258 			ret = 0;
4259 		} else {
4260 			/*
4261 			 * Ok set num_bytes to orig_bytes since we aren't
4262 			 * overocmmitted, this way we only try and reclaim what
4263 			 * we need.
4264 			 */
4265 			num_bytes = orig_bytes;
4266 		}
4267 	} else {
4268 		/*
4269 		 * Ok we're over committed, set num_bytes to the overcommitted
4270 		 * amount plus the amount of bytes that we need for this
4271 		 * reservation.
4272 		 */
4273 		num_bytes = used - space_info->total_bytes +
4274 			(orig_bytes * 2);
4275 	}
4276 
4277 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4278 		space_info->bytes_may_use += orig_bytes;
4279 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4280 					      space_info->flags, orig_bytes,
4281 					      1);
4282 		ret = 0;
4283 	}
4284 
4285 	/*
4286 	 * Couldn't make our reservation, save our place so while we're trying
4287 	 * to reclaim space we can actually use it instead of somebody else
4288 	 * stealing it from us.
4289 	 *
4290 	 * We make the other tasks wait for the flush only when we can flush
4291 	 * all things.
4292 	 */
4293 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4294 		flushing = true;
4295 		space_info->flush = 1;
4296 	}
4297 
4298 	spin_unlock(&space_info->lock);
4299 
4300 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4301 		goto out;
4302 
4303 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4304 			  flush_state);
4305 	flush_state++;
4306 
4307 	/*
4308 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4309 	 * would happen. So skip delalloc flush.
4310 	 */
4311 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4312 	    (flush_state == FLUSH_DELALLOC ||
4313 	     flush_state == FLUSH_DELALLOC_WAIT))
4314 		flush_state = ALLOC_CHUNK;
4315 
4316 	if (!ret)
4317 		goto again;
4318 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4319 		 flush_state < COMMIT_TRANS)
4320 		goto again;
4321 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4322 		 flush_state <= COMMIT_TRANS)
4323 		goto again;
4324 
4325 out:
4326 	if (ret == -ENOSPC &&
4327 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4328 		struct btrfs_block_rsv *global_rsv =
4329 			&root->fs_info->global_block_rsv;
4330 
4331 		if (block_rsv != global_rsv &&
4332 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4333 			ret = 0;
4334 	}
4335 	if (flushing) {
4336 		spin_lock(&space_info->lock);
4337 		space_info->flush = 0;
4338 		wake_up_all(&space_info->wait);
4339 		spin_unlock(&space_info->lock);
4340 	}
4341 	return ret;
4342 }
4343 
4344 static struct btrfs_block_rsv *get_block_rsv(
4345 					const struct btrfs_trans_handle *trans,
4346 					const struct btrfs_root *root)
4347 {
4348 	struct btrfs_block_rsv *block_rsv = NULL;
4349 
4350 	if (root->ref_cows)
4351 		block_rsv = trans->block_rsv;
4352 
4353 	if (root == root->fs_info->csum_root && trans->adding_csums)
4354 		block_rsv = trans->block_rsv;
4355 
4356 	if (root == root->fs_info->uuid_root)
4357 		block_rsv = trans->block_rsv;
4358 
4359 	if (!block_rsv)
4360 		block_rsv = root->block_rsv;
4361 
4362 	if (!block_rsv)
4363 		block_rsv = &root->fs_info->empty_block_rsv;
4364 
4365 	return block_rsv;
4366 }
4367 
4368 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4369 			       u64 num_bytes)
4370 {
4371 	int ret = -ENOSPC;
4372 	spin_lock(&block_rsv->lock);
4373 	if (block_rsv->reserved >= num_bytes) {
4374 		block_rsv->reserved -= num_bytes;
4375 		if (block_rsv->reserved < block_rsv->size)
4376 			block_rsv->full = 0;
4377 		ret = 0;
4378 	}
4379 	spin_unlock(&block_rsv->lock);
4380 	return ret;
4381 }
4382 
4383 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4384 				u64 num_bytes, int update_size)
4385 {
4386 	spin_lock(&block_rsv->lock);
4387 	block_rsv->reserved += num_bytes;
4388 	if (update_size)
4389 		block_rsv->size += num_bytes;
4390 	else if (block_rsv->reserved >= block_rsv->size)
4391 		block_rsv->full = 1;
4392 	spin_unlock(&block_rsv->lock);
4393 }
4394 
4395 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4396 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4397 			     int min_factor)
4398 {
4399 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4400 	u64 min_bytes;
4401 
4402 	if (global_rsv->space_info != dest->space_info)
4403 		return -ENOSPC;
4404 
4405 	spin_lock(&global_rsv->lock);
4406 	min_bytes = div_factor(global_rsv->size, min_factor);
4407 	if (global_rsv->reserved < min_bytes + num_bytes) {
4408 		spin_unlock(&global_rsv->lock);
4409 		return -ENOSPC;
4410 	}
4411 	global_rsv->reserved -= num_bytes;
4412 	if (global_rsv->reserved < global_rsv->size)
4413 		global_rsv->full = 0;
4414 	spin_unlock(&global_rsv->lock);
4415 
4416 	block_rsv_add_bytes(dest, num_bytes, 1);
4417 	return 0;
4418 }
4419 
4420 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4421 				    struct btrfs_block_rsv *block_rsv,
4422 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4423 {
4424 	struct btrfs_space_info *space_info = block_rsv->space_info;
4425 
4426 	spin_lock(&block_rsv->lock);
4427 	if (num_bytes == (u64)-1)
4428 		num_bytes = block_rsv->size;
4429 	block_rsv->size -= num_bytes;
4430 	if (block_rsv->reserved >= block_rsv->size) {
4431 		num_bytes = block_rsv->reserved - block_rsv->size;
4432 		block_rsv->reserved = block_rsv->size;
4433 		block_rsv->full = 1;
4434 	} else {
4435 		num_bytes = 0;
4436 	}
4437 	spin_unlock(&block_rsv->lock);
4438 
4439 	if (num_bytes > 0) {
4440 		if (dest) {
4441 			spin_lock(&dest->lock);
4442 			if (!dest->full) {
4443 				u64 bytes_to_add;
4444 
4445 				bytes_to_add = dest->size - dest->reserved;
4446 				bytes_to_add = min(num_bytes, bytes_to_add);
4447 				dest->reserved += bytes_to_add;
4448 				if (dest->reserved >= dest->size)
4449 					dest->full = 1;
4450 				num_bytes -= bytes_to_add;
4451 			}
4452 			spin_unlock(&dest->lock);
4453 		}
4454 		if (num_bytes) {
4455 			spin_lock(&space_info->lock);
4456 			space_info->bytes_may_use -= num_bytes;
4457 			trace_btrfs_space_reservation(fs_info, "space_info",
4458 					space_info->flags, num_bytes, 0);
4459 			spin_unlock(&space_info->lock);
4460 		}
4461 	}
4462 }
4463 
4464 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4465 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4466 {
4467 	int ret;
4468 
4469 	ret = block_rsv_use_bytes(src, num_bytes);
4470 	if (ret)
4471 		return ret;
4472 
4473 	block_rsv_add_bytes(dst, num_bytes, 1);
4474 	return 0;
4475 }
4476 
4477 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4478 {
4479 	memset(rsv, 0, sizeof(*rsv));
4480 	spin_lock_init(&rsv->lock);
4481 	rsv->type = type;
4482 }
4483 
4484 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4485 					      unsigned short type)
4486 {
4487 	struct btrfs_block_rsv *block_rsv;
4488 	struct btrfs_fs_info *fs_info = root->fs_info;
4489 
4490 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4491 	if (!block_rsv)
4492 		return NULL;
4493 
4494 	btrfs_init_block_rsv(block_rsv, type);
4495 	block_rsv->space_info = __find_space_info(fs_info,
4496 						  BTRFS_BLOCK_GROUP_METADATA);
4497 	return block_rsv;
4498 }
4499 
4500 void btrfs_free_block_rsv(struct btrfs_root *root,
4501 			  struct btrfs_block_rsv *rsv)
4502 {
4503 	if (!rsv)
4504 		return;
4505 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4506 	kfree(rsv);
4507 }
4508 
4509 int btrfs_block_rsv_add(struct btrfs_root *root,
4510 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4511 			enum btrfs_reserve_flush_enum flush)
4512 {
4513 	int ret;
4514 
4515 	if (num_bytes == 0)
4516 		return 0;
4517 
4518 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4519 	if (!ret) {
4520 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4521 		return 0;
4522 	}
4523 
4524 	return ret;
4525 }
4526 
4527 int btrfs_block_rsv_check(struct btrfs_root *root,
4528 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4529 {
4530 	u64 num_bytes = 0;
4531 	int ret = -ENOSPC;
4532 
4533 	if (!block_rsv)
4534 		return 0;
4535 
4536 	spin_lock(&block_rsv->lock);
4537 	num_bytes = div_factor(block_rsv->size, min_factor);
4538 	if (block_rsv->reserved >= num_bytes)
4539 		ret = 0;
4540 	spin_unlock(&block_rsv->lock);
4541 
4542 	return ret;
4543 }
4544 
4545 int btrfs_block_rsv_refill(struct btrfs_root *root,
4546 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4547 			   enum btrfs_reserve_flush_enum flush)
4548 {
4549 	u64 num_bytes = 0;
4550 	int ret = -ENOSPC;
4551 
4552 	if (!block_rsv)
4553 		return 0;
4554 
4555 	spin_lock(&block_rsv->lock);
4556 	num_bytes = min_reserved;
4557 	if (block_rsv->reserved >= num_bytes)
4558 		ret = 0;
4559 	else
4560 		num_bytes -= block_rsv->reserved;
4561 	spin_unlock(&block_rsv->lock);
4562 
4563 	if (!ret)
4564 		return 0;
4565 
4566 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4567 	if (!ret) {
4568 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4569 		return 0;
4570 	}
4571 
4572 	return ret;
4573 }
4574 
4575 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4576 			    struct btrfs_block_rsv *dst_rsv,
4577 			    u64 num_bytes)
4578 {
4579 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4580 }
4581 
4582 void btrfs_block_rsv_release(struct btrfs_root *root,
4583 			     struct btrfs_block_rsv *block_rsv,
4584 			     u64 num_bytes)
4585 {
4586 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4587 	if (global_rsv->full || global_rsv == block_rsv ||
4588 	    block_rsv->space_info != global_rsv->space_info)
4589 		global_rsv = NULL;
4590 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4591 				num_bytes);
4592 }
4593 
4594 /*
4595  * helper to calculate size of global block reservation.
4596  * the desired value is sum of space used by extent tree,
4597  * checksum tree and root tree
4598  */
4599 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4600 {
4601 	struct btrfs_space_info *sinfo;
4602 	u64 num_bytes;
4603 	u64 meta_used;
4604 	u64 data_used;
4605 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4606 
4607 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4608 	spin_lock(&sinfo->lock);
4609 	data_used = sinfo->bytes_used;
4610 	spin_unlock(&sinfo->lock);
4611 
4612 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4613 	spin_lock(&sinfo->lock);
4614 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4615 		data_used = 0;
4616 	meta_used = sinfo->bytes_used;
4617 	spin_unlock(&sinfo->lock);
4618 
4619 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4620 		    csum_size * 2;
4621 	num_bytes += div64_u64(data_used + meta_used, 50);
4622 
4623 	if (num_bytes * 3 > meta_used)
4624 		num_bytes = div64_u64(meta_used, 3);
4625 
4626 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4627 }
4628 
4629 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4630 {
4631 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4632 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4633 	u64 num_bytes;
4634 
4635 	num_bytes = calc_global_metadata_size(fs_info);
4636 
4637 	spin_lock(&sinfo->lock);
4638 	spin_lock(&block_rsv->lock);
4639 
4640 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4641 
4642 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4643 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4644 		    sinfo->bytes_may_use;
4645 
4646 	if (sinfo->total_bytes > num_bytes) {
4647 		num_bytes = sinfo->total_bytes - num_bytes;
4648 		block_rsv->reserved += num_bytes;
4649 		sinfo->bytes_may_use += num_bytes;
4650 		trace_btrfs_space_reservation(fs_info, "space_info",
4651 				      sinfo->flags, num_bytes, 1);
4652 	}
4653 
4654 	if (block_rsv->reserved >= block_rsv->size) {
4655 		num_bytes = block_rsv->reserved - block_rsv->size;
4656 		sinfo->bytes_may_use -= num_bytes;
4657 		trace_btrfs_space_reservation(fs_info, "space_info",
4658 				      sinfo->flags, num_bytes, 0);
4659 		block_rsv->reserved = block_rsv->size;
4660 		block_rsv->full = 1;
4661 	}
4662 
4663 	spin_unlock(&block_rsv->lock);
4664 	spin_unlock(&sinfo->lock);
4665 }
4666 
4667 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4668 {
4669 	struct btrfs_space_info *space_info;
4670 
4671 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4672 	fs_info->chunk_block_rsv.space_info = space_info;
4673 
4674 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4675 	fs_info->global_block_rsv.space_info = space_info;
4676 	fs_info->delalloc_block_rsv.space_info = space_info;
4677 	fs_info->trans_block_rsv.space_info = space_info;
4678 	fs_info->empty_block_rsv.space_info = space_info;
4679 	fs_info->delayed_block_rsv.space_info = space_info;
4680 
4681 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4682 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4683 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4684 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4685 	if (fs_info->quota_root)
4686 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4687 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4688 
4689 	update_global_block_rsv(fs_info);
4690 }
4691 
4692 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4693 {
4694 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4695 				(u64)-1);
4696 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4697 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4698 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4699 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4700 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4701 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4702 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4703 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4704 }
4705 
4706 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4707 				  struct btrfs_root *root)
4708 {
4709 	if (!trans->block_rsv)
4710 		return;
4711 
4712 	if (!trans->bytes_reserved)
4713 		return;
4714 
4715 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4716 				      trans->transid, trans->bytes_reserved, 0);
4717 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4718 	trans->bytes_reserved = 0;
4719 }
4720 
4721 /* Can only return 0 or -ENOSPC */
4722 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4723 				  struct inode *inode)
4724 {
4725 	struct btrfs_root *root = BTRFS_I(inode)->root;
4726 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4727 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4728 
4729 	/*
4730 	 * We need to hold space in order to delete our orphan item once we've
4731 	 * added it, so this takes the reservation so we can release it later
4732 	 * when we are truly done with the orphan item.
4733 	 */
4734 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4735 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4736 				      btrfs_ino(inode), num_bytes, 1);
4737 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4738 }
4739 
4740 void btrfs_orphan_release_metadata(struct inode *inode)
4741 {
4742 	struct btrfs_root *root = BTRFS_I(inode)->root;
4743 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4744 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4745 				      btrfs_ino(inode), num_bytes, 0);
4746 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4747 }
4748 
4749 /*
4750  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4751  * root: the root of the parent directory
4752  * rsv: block reservation
4753  * items: the number of items that we need do reservation
4754  * qgroup_reserved: used to return the reserved size in qgroup
4755  *
4756  * This function is used to reserve the space for snapshot/subvolume
4757  * creation and deletion. Those operations are different with the
4758  * common file/directory operations, they change two fs/file trees
4759  * and root tree, the number of items that the qgroup reserves is
4760  * different with the free space reservation. So we can not use
4761  * the space reseravtion mechanism in start_transaction().
4762  */
4763 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4764 				     struct btrfs_block_rsv *rsv,
4765 				     int items,
4766 				     u64 *qgroup_reserved,
4767 				     bool use_global_rsv)
4768 {
4769 	u64 num_bytes;
4770 	int ret;
4771 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4772 
4773 	if (root->fs_info->quota_enabled) {
4774 		/* One for parent inode, two for dir entries */
4775 		num_bytes = 3 * root->leafsize;
4776 		ret = btrfs_qgroup_reserve(root, num_bytes);
4777 		if (ret)
4778 			return ret;
4779 	} else {
4780 		num_bytes = 0;
4781 	}
4782 
4783 	*qgroup_reserved = num_bytes;
4784 
4785 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4786 	rsv->space_info = __find_space_info(root->fs_info,
4787 					    BTRFS_BLOCK_GROUP_METADATA);
4788 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4789 				  BTRFS_RESERVE_FLUSH_ALL);
4790 
4791 	if (ret == -ENOSPC && use_global_rsv)
4792 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4793 
4794 	if (ret) {
4795 		if (*qgroup_reserved)
4796 			btrfs_qgroup_free(root, *qgroup_reserved);
4797 	}
4798 
4799 	return ret;
4800 }
4801 
4802 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4803 				      struct btrfs_block_rsv *rsv,
4804 				      u64 qgroup_reserved)
4805 {
4806 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4807 	if (qgroup_reserved)
4808 		btrfs_qgroup_free(root, qgroup_reserved);
4809 }
4810 
4811 /**
4812  * drop_outstanding_extent - drop an outstanding extent
4813  * @inode: the inode we're dropping the extent for
4814  *
4815  * This is called when we are freeing up an outstanding extent, either called
4816  * after an error or after an extent is written.  This will return the number of
4817  * reserved extents that need to be freed.  This must be called with
4818  * BTRFS_I(inode)->lock held.
4819  */
4820 static unsigned drop_outstanding_extent(struct inode *inode)
4821 {
4822 	unsigned drop_inode_space = 0;
4823 	unsigned dropped_extents = 0;
4824 
4825 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4826 	BTRFS_I(inode)->outstanding_extents--;
4827 
4828 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4829 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4830 			       &BTRFS_I(inode)->runtime_flags))
4831 		drop_inode_space = 1;
4832 
4833 	/*
4834 	 * If we have more or the same amount of outsanding extents than we have
4835 	 * reserved then we need to leave the reserved extents count alone.
4836 	 */
4837 	if (BTRFS_I(inode)->outstanding_extents >=
4838 	    BTRFS_I(inode)->reserved_extents)
4839 		return drop_inode_space;
4840 
4841 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4842 		BTRFS_I(inode)->outstanding_extents;
4843 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4844 	return dropped_extents + drop_inode_space;
4845 }
4846 
4847 /**
4848  * calc_csum_metadata_size - return the amount of metada space that must be
4849  *	reserved/free'd for the given bytes.
4850  * @inode: the inode we're manipulating
4851  * @num_bytes: the number of bytes in question
4852  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4853  *
4854  * This adjusts the number of csum_bytes in the inode and then returns the
4855  * correct amount of metadata that must either be reserved or freed.  We
4856  * calculate how many checksums we can fit into one leaf and then divide the
4857  * number of bytes that will need to be checksumed by this value to figure out
4858  * how many checksums will be required.  If we are adding bytes then the number
4859  * may go up and we will return the number of additional bytes that must be
4860  * reserved.  If it is going down we will return the number of bytes that must
4861  * be freed.
4862  *
4863  * This must be called with BTRFS_I(inode)->lock held.
4864  */
4865 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4866 				   int reserve)
4867 {
4868 	struct btrfs_root *root = BTRFS_I(inode)->root;
4869 	u64 csum_size;
4870 	int num_csums_per_leaf;
4871 	int num_csums;
4872 	int old_csums;
4873 
4874 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4875 	    BTRFS_I(inode)->csum_bytes == 0)
4876 		return 0;
4877 
4878 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4879 	if (reserve)
4880 		BTRFS_I(inode)->csum_bytes += num_bytes;
4881 	else
4882 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4883 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4884 	num_csums_per_leaf = (int)div64_u64(csum_size,
4885 					    sizeof(struct btrfs_csum_item) +
4886 					    sizeof(struct btrfs_disk_key));
4887 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4888 	num_csums = num_csums + num_csums_per_leaf - 1;
4889 	num_csums = num_csums / num_csums_per_leaf;
4890 
4891 	old_csums = old_csums + num_csums_per_leaf - 1;
4892 	old_csums = old_csums / num_csums_per_leaf;
4893 
4894 	/* No change, no need to reserve more */
4895 	if (old_csums == num_csums)
4896 		return 0;
4897 
4898 	if (reserve)
4899 		return btrfs_calc_trans_metadata_size(root,
4900 						      num_csums - old_csums);
4901 
4902 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4903 }
4904 
4905 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4906 {
4907 	struct btrfs_root *root = BTRFS_I(inode)->root;
4908 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4909 	u64 to_reserve = 0;
4910 	u64 csum_bytes;
4911 	unsigned nr_extents = 0;
4912 	int extra_reserve = 0;
4913 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4914 	int ret = 0;
4915 	bool delalloc_lock = true;
4916 	u64 to_free = 0;
4917 	unsigned dropped;
4918 
4919 	/* If we are a free space inode we need to not flush since we will be in
4920 	 * the middle of a transaction commit.  We also don't need the delalloc
4921 	 * mutex since we won't race with anybody.  We need this mostly to make
4922 	 * lockdep shut its filthy mouth.
4923 	 */
4924 	if (btrfs_is_free_space_inode(inode)) {
4925 		flush = BTRFS_RESERVE_NO_FLUSH;
4926 		delalloc_lock = false;
4927 	}
4928 
4929 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4930 	    btrfs_transaction_in_commit(root->fs_info))
4931 		schedule_timeout(1);
4932 
4933 	if (delalloc_lock)
4934 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4935 
4936 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4937 
4938 	spin_lock(&BTRFS_I(inode)->lock);
4939 	BTRFS_I(inode)->outstanding_extents++;
4940 
4941 	if (BTRFS_I(inode)->outstanding_extents >
4942 	    BTRFS_I(inode)->reserved_extents)
4943 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4944 			BTRFS_I(inode)->reserved_extents;
4945 
4946 	/*
4947 	 * Add an item to reserve for updating the inode when we complete the
4948 	 * delalloc io.
4949 	 */
4950 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4951 		      &BTRFS_I(inode)->runtime_flags)) {
4952 		nr_extents++;
4953 		extra_reserve = 1;
4954 	}
4955 
4956 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4957 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4958 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4959 	spin_unlock(&BTRFS_I(inode)->lock);
4960 
4961 	if (root->fs_info->quota_enabled) {
4962 		ret = btrfs_qgroup_reserve(root, num_bytes +
4963 					   nr_extents * root->leafsize);
4964 		if (ret)
4965 			goto out_fail;
4966 	}
4967 
4968 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4969 	if (unlikely(ret)) {
4970 		if (root->fs_info->quota_enabled)
4971 			btrfs_qgroup_free(root, num_bytes +
4972 						nr_extents * root->leafsize);
4973 		goto out_fail;
4974 	}
4975 
4976 	spin_lock(&BTRFS_I(inode)->lock);
4977 	if (extra_reserve) {
4978 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4979 			&BTRFS_I(inode)->runtime_flags);
4980 		nr_extents--;
4981 	}
4982 	BTRFS_I(inode)->reserved_extents += nr_extents;
4983 	spin_unlock(&BTRFS_I(inode)->lock);
4984 
4985 	if (delalloc_lock)
4986 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4987 
4988 	if (to_reserve)
4989 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4990 					      btrfs_ino(inode), to_reserve, 1);
4991 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4992 
4993 	return 0;
4994 
4995 out_fail:
4996 	spin_lock(&BTRFS_I(inode)->lock);
4997 	dropped = drop_outstanding_extent(inode);
4998 	/*
4999 	 * If the inodes csum_bytes is the same as the original
5000 	 * csum_bytes then we know we haven't raced with any free()ers
5001 	 * so we can just reduce our inodes csum bytes and carry on.
5002 	 */
5003 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5004 		calc_csum_metadata_size(inode, num_bytes, 0);
5005 	} else {
5006 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5007 		u64 bytes;
5008 
5009 		/*
5010 		 * This is tricky, but first we need to figure out how much we
5011 		 * free'd from any free-ers that occured during this
5012 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5013 		 * before we dropped our lock, and then call the free for the
5014 		 * number of bytes that were freed while we were trying our
5015 		 * reservation.
5016 		 */
5017 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5018 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5019 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5020 
5021 
5022 		/*
5023 		 * Now we need to see how much we would have freed had we not
5024 		 * been making this reservation and our ->csum_bytes were not
5025 		 * artificially inflated.
5026 		 */
5027 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5028 		bytes = csum_bytes - orig_csum_bytes;
5029 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5030 
5031 		/*
5032 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5033 		 * more than to_free then we would have free'd more space had we
5034 		 * not had an artificially high ->csum_bytes, so we need to free
5035 		 * the remainder.  If bytes is the same or less then we don't
5036 		 * need to do anything, the other free-ers did the correct
5037 		 * thing.
5038 		 */
5039 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5040 		if (bytes > to_free)
5041 			to_free = bytes - to_free;
5042 		else
5043 			to_free = 0;
5044 	}
5045 	spin_unlock(&BTRFS_I(inode)->lock);
5046 	if (dropped)
5047 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5048 
5049 	if (to_free) {
5050 		btrfs_block_rsv_release(root, block_rsv, to_free);
5051 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5052 					      btrfs_ino(inode), to_free, 0);
5053 	}
5054 	if (delalloc_lock)
5055 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5056 	return ret;
5057 }
5058 
5059 /**
5060  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5061  * @inode: the inode to release the reservation for
5062  * @num_bytes: the number of bytes we're releasing
5063  *
5064  * This will release the metadata reservation for an inode.  This can be called
5065  * once we complete IO for a given set of bytes to release their metadata
5066  * reservations.
5067  */
5068 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5069 {
5070 	struct btrfs_root *root = BTRFS_I(inode)->root;
5071 	u64 to_free = 0;
5072 	unsigned dropped;
5073 
5074 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5075 	spin_lock(&BTRFS_I(inode)->lock);
5076 	dropped = drop_outstanding_extent(inode);
5077 
5078 	if (num_bytes)
5079 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5080 	spin_unlock(&BTRFS_I(inode)->lock);
5081 	if (dropped > 0)
5082 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5083 
5084 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5085 				      btrfs_ino(inode), to_free, 0);
5086 	if (root->fs_info->quota_enabled) {
5087 		btrfs_qgroup_free(root, num_bytes +
5088 					dropped * root->leafsize);
5089 	}
5090 
5091 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5092 				to_free);
5093 }
5094 
5095 /**
5096  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5097  * @inode: inode we're writing to
5098  * @num_bytes: the number of bytes we want to allocate
5099  *
5100  * This will do the following things
5101  *
5102  * o reserve space in the data space info for num_bytes
5103  * o reserve space in the metadata space info based on number of outstanding
5104  *   extents and how much csums will be needed
5105  * o add to the inodes ->delalloc_bytes
5106  * o add it to the fs_info's delalloc inodes list.
5107  *
5108  * This will return 0 for success and -ENOSPC if there is no space left.
5109  */
5110 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5111 {
5112 	int ret;
5113 
5114 	ret = btrfs_check_data_free_space(inode, num_bytes);
5115 	if (ret)
5116 		return ret;
5117 
5118 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5119 	if (ret) {
5120 		btrfs_free_reserved_data_space(inode, num_bytes);
5121 		return ret;
5122 	}
5123 
5124 	return 0;
5125 }
5126 
5127 /**
5128  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5129  * @inode: inode we're releasing space for
5130  * @num_bytes: the number of bytes we want to free up
5131  *
5132  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5133  * called in the case that we don't need the metadata AND data reservations
5134  * anymore.  So if there is an error or we insert an inline extent.
5135  *
5136  * This function will release the metadata space that was not used and will
5137  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5138  * list if there are no delalloc bytes left.
5139  */
5140 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5141 {
5142 	btrfs_delalloc_release_metadata(inode, num_bytes);
5143 	btrfs_free_reserved_data_space(inode, num_bytes);
5144 }
5145 
5146 static int update_block_group(struct btrfs_root *root,
5147 			      u64 bytenr, u64 num_bytes, int alloc)
5148 {
5149 	struct btrfs_block_group_cache *cache = NULL;
5150 	struct btrfs_fs_info *info = root->fs_info;
5151 	u64 total = num_bytes;
5152 	u64 old_val;
5153 	u64 byte_in_group;
5154 	int factor;
5155 
5156 	/* block accounting for super block */
5157 	spin_lock(&info->delalloc_root_lock);
5158 	old_val = btrfs_super_bytes_used(info->super_copy);
5159 	if (alloc)
5160 		old_val += num_bytes;
5161 	else
5162 		old_val -= num_bytes;
5163 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5164 	spin_unlock(&info->delalloc_root_lock);
5165 
5166 	while (total) {
5167 		cache = btrfs_lookup_block_group(info, bytenr);
5168 		if (!cache)
5169 			return -ENOENT;
5170 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5171 				    BTRFS_BLOCK_GROUP_RAID1 |
5172 				    BTRFS_BLOCK_GROUP_RAID10))
5173 			factor = 2;
5174 		else
5175 			factor = 1;
5176 		/*
5177 		 * If this block group has free space cache written out, we
5178 		 * need to make sure to load it if we are removing space.  This
5179 		 * is because we need the unpinning stage to actually add the
5180 		 * space back to the block group, otherwise we will leak space.
5181 		 */
5182 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5183 			cache_block_group(cache, 1);
5184 
5185 		byte_in_group = bytenr - cache->key.objectid;
5186 		WARN_ON(byte_in_group > cache->key.offset);
5187 
5188 		spin_lock(&cache->space_info->lock);
5189 		spin_lock(&cache->lock);
5190 
5191 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5192 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5193 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5194 
5195 		cache->dirty = 1;
5196 		old_val = btrfs_block_group_used(&cache->item);
5197 		num_bytes = min(total, cache->key.offset - byte_in_group);
5198 		if (alloc) {
5199 			old_val += num_bytes;
5200 			btrfs_set_block_group_used(&cache->item, old_val);
5201 			cache->reserved -= num_bytes;
5202 			cache->space_info->bytes_reserved -= num_bytes;
5203 			cache->space_info->bytes_used += num_bytes;
5204 			cache->space_info->disk_used += num_bytes * factor;
5205 			spin_unlock(&cache->lock);
5206 			spin_unlock(&cache->space_info->lock);
5207 		} else {
5208 			old_val -= num_bytes;
5209 			btrfs_set_block_group_used(&cache->item, old_val);
5210 			cache->pinned += num_bytes;
5211 			cache->space_info->bytes_pinned += num_bytes;
5212 			cache->space_info->bytes_used -= num_bytes;
5213 			cache->space_info->disk_used -= num_bytes * factor;
5214 			spin_unlock(&cache->lock);
5215 			spin_unlock(&cache->space_info->lock);
5216 
5217 			set_extent_dirty(info->pinned_extents,
5218 					 bytenr, bytenr + num_bytes - 1,
5219 					 GFP_NOFS | __GFP_NOFAIL);
5220 		}
5221 		btrfs_put_block_group(cache);
5222 		total -= num_bytes;
5223 		bytenr += num_bytes;
5224 	}
5225 	return 0;
5226 }
5227 
5228 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5229 {
5230 	struct btrfs_block_group_cache *cache;
5231 	u64 bytenr;
5232 
5233 	spin_lock(&root->fs_info->block_group_cache_lock);
5234 	bytenr = root->fs_info->first_logical_byte;
5235 	spin_unlock(&root->fs_info->block_group_cache_lock);
5236 
5237 	if (bytenr < (u64)-1)
5238 		return bytenr;
5239 
5240 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5241 	if (!cache)
5242 		return 0;
5243 
5244 	bytenr = cache->key.objectid;
5245 	btrfs_put_block_group(cache);
5246 
5247 	return bytenr;
5248 }
5249 
5250 static int pin_down_extent(struct btrfs_root *root,
5251 			   struct btrfs_block_group_cache *cache,
5252 			   u64 bytenr, u64 num_bytes, int reserved)
5253 {
5254 	spin_lock(&cache->space_info->lock);
5255 	spin_lock(&cache->lock);
5256 	cache->pinned += num_bytes;
5257 	cache->space_info->bytes_pinned += num_bytes;
5258 	if (reserved) {
5259 		cache->reserved -= num_bytes;
5260 		cache->space_info->bytes_reserved -= num_bytes;
5261 	}
5262 	spin_unlock(&cache->lock);
5263 	spin_unlock(&cache->space_info->lock);
5264 
5265 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5266 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5267 	return 0;
5268 }
5269 
5270 /*
5271  * this function must be called within transaction
5272  */
5273 int btrfs_pin_extent(struct btrfs_root *root,
5274 		     u64 bytenr, u64 num_bytes, int reserved)
5275 {
5276 	struct btrfs_block_group_cache *cache;
5277 
5278 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5279 	BUG_ON(!cache); /* Logic error */
5280 
5281 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5282 
5283 	btrfs_put_block_group(cache);
5284 	return 0;
5285 }
5286 
5287 /*
5288  * this function must be called within transaction
5289  */
5290 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5291 				    u64 bytenr, u64 num_bytes)
5292 {
5293 	struct btrfs_block_group_cache *cache;
5294 	int ret;
5295 
5296 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5297 	if (!cache)
5298 		return -EINVAL;
5299 
5300 	/*
5301 	 * pull in the free space cache (if any) so that our pin
5302 	 * removes the free space from the cache.  We have load_only set
5303 	 * to one because the slow code to read in the free extents does check
5304 	 * the pinned extents.
5305 	 */
5306 	cache_block_group(cache, 1);
5307 
5308 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5309 
5310 	/* remove us from the free space cache (if we're there at all) */
5311 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5312 	btrfs_put_block_group(cache);
5313 	return ret;
5314 }
5315 
5316 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5317 {
5318 	int ret;
5319 	struct btrfs_block_group_cache *block_group;
5320 	struct btrfs_caching_control *caching_ctl;
5321 
5322 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5323 	if (!block_group)
5324 		return -EINVAL;
5325 
5326 	cache_block_group(block_group, 0);
5327 	caching_ctl = get_caching_control(block_group);
5328 
5329 	if (!caching_ctl) {
5330 		/* Logic error */
5331 		BUG_ON(!block_group_cache_done(block_group));
5332 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5333 	} else {
5334 		mutex_lock(&caching_ctl->mutex);
5335 
5336 		if (start >= caching_ctl->progress) {
5337 			ret = add_excluded_extent(root, start, num_bytes);
5338 		} else if (start + num_bytes <= caching_ctl->progress) {
5339 			ret = btrfs_remove_free_space(block_group,
5340 						      start, num_bytes);
5341 		} else {
5342 			num_bytes = caching_ctl->progress - start;
5343 			ret = btrfs_remove_free_space(block_group,
5344 						      start, num_bytes);
5345 			if (ret)
5346 				goto out_lock;
5347 
5348 			num_bytes = (start + num_bytes) -
5349 				caching_ctl->progress;
5350 			start = caching_ctl->progress;
5351 			ret = add_excluded_extent(root, start, num_bytes);
5352 		}
5353 out_lock:
5354 		mutex_unlock(&caching_ctl->mutex);
5355 		put_caching_control(caching_ctl);
5356 	}
5357 	btrfs_put_block_group(block_group);
5358 	return ret;
5359 }
5360 
5361 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5362 				 struct extent_buffer *eb)
5363 {
5364 	struct btrfs_file_extent_item *item;
5365 	struct btrfs_key key;
5366 	int found_type;
5367 	int i;
5368 
5369 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5370 		return 0;
5371 
5372 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5373 		btrfs_item_key_to_cpu(eb, &key, i);
5374 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5375 			continue;
5376 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5377 		found_type = btrfs_file_extent_type(eb, item);
5378 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5379 			continue;
5380 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5381 			continue;
5382 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5383 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5384 		__exclude_logged_extent(log, key.objectid, key.offset);
5385 	}
5386 
5387 	return 0;
5388 }
5389 
5390 /**
5391  * btrfs_update_reserved_bytes - update the block_group and space info counters
5392  * @cache:	The cache we are manipulating
5393  * @num_bytes:	The number of bytes in question
5394  * @reserve:	One of the reservation enums
5395  *
5396  * This is called by the allocator when it reserves space, or by somebody who is
5397  * freeing space that was never actually used on disk.  For example if you
5398  * reserve some space for a new leaf in transaction A and before transaction A
5399  * commits you free that leaf, you call this with reserve set to 0 in order to
5400  * clear the reservation.
5401  *
5402  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5403  * ENOSPC accounting.  For data we handle the reservation through clearing the
5404  * delalloc bits in the io_tree.  We have to do this since we could end up
5405  * allocating less disk space for the amount of data we have reserved in the
5406  * case of compression.
5407  *
5408  * If this is a reservation and the block group has become read only we cannot
5409  * make the reservation and return -EAGAIN, otherwise this function always
5410  * succeeds.
5411  */
5412 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5413 				       u64 num_bytes, int reserve)
5414 {
5415 	struct btrfs_space_info *space_info = cache->space_info;
5416 	int ret = 0;
5417 
5418 	spin_lock(&space_info->lock);
5419 	spin_lock(&cache->lock);
5420 	if (reserve != RESERVE_FREE) {
5421 		if (cache->ro) {
5422 			ret = -EAGAIN;
5423 		} else {
5424 			cache->reserved += num_bytes;
5425 			space_info->bytes_reserved += num_bytes;
5426 			if (reserve == RESERVE_ALLOC) {
5427 				trace_btrfs_space_reservation(cache->fs_info,
5428 						"space_info", space_info->flags,
5429 						num_bytes, 0);
5430 				space_info->bytes_may_use -= num_bytes;
5431 			}
5432 		}
5433 	} else {
5434 		if (cache->ro)
5435 			space_info->bytes_readonly += num_bytes;
5436 		cache->reserved -= num_bytes;
5437 		space_info->bytes_reserved -= num_bytes;
5438 	}
5439 	spin_unlock(&cache->lock);
5440 	spin_unlock(&space_info->lock);
5441 	return ret;
5442 }
5443 
5444 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5445 				struct btrfs_root *root)
5446 {
5447 	struct btrfs_fs_info *fs_info = root->fs_info;
5448 	struct btrfs_caching_control *next;
5449 	struct btrfs_caching_control *caching_ctl;
5450 	struct btrfs_block_group_cache *cache;
5451 	struct btrfs_space_info *space_info;
5452 
5453 	down_write(&fs_info->extent_commit_sem);
5454 
5455 	list_for_each_entry_safe(caching_ctl, next,
5456 				 &fs_info->caching_block_groups, list) {
5457 		cache = caching_ctl->block_group;
5458 		if (block_group_cache_done(cache)) {
5459 			cache->last_byte_to_unpin = (u64)-1;
5460 			list_del_init(&caching_ctl->list);
5461 			put_caching_control(caching_ctl);
5462 		} else {
5463 			cache->last_byte_to_unpin = caching_ctl->progress;
5464 		}
5465 	}
5466 
5467 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5468 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5469 	else
5470 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5471 
5472 	up_write(&fs_info->extent_commit_sem);
5473 
5474 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5475 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5476 
5477 	update_global_block_rsv(fs_info);
5478 }
5479 
5480 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5481 {
5482 	struct btrfs_fs_info *fs_info = root->fs_info;
5483 	struct btrfs_block_group_cache *cache = NULL;
5484 	struct btrfs_space_info *space_info;
5485 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5486 	u64 len;
5487 	bool readonly;
5488 
5489 	while (start <= end) {
5490 		readonly = false;
5491 		if (!cache ||
5492 		    start >= cache->key.objectid + cache->key.offset) {
5493 			if (cache)
5494 				btrfs_put_block_group(cache);
5495 			cache = btrfs_lookup_block_group(fs_info, start);
5496 			BUG_ON(!cache); /* Logic error */
5497 		}
5498 
5499 		len = cache->key.objectid + cache->key.offset - start;
5500 		len = min(len, end + 1 - start);
5501 
5502 		if (start < cache->last_byte_to_unpin) {
5503 			len = min(len, cache->last_byte_to_unpin - start);
5504 			btrfs_add_free_space(cache, start, len);
5505 		}
5506 
5507 		start += len;
5508 		space_info = cache->space_info;
5509 
5510 		spin_lock(&space_info->lock);
5511 		spin_lock(&cache->lock);
5512 		cache->pinned -= len;
5513 		space_info->bytes_pinned -= len;
5514 		if (cache->ro) {
5515 			space_info->bytes_readonly += len;
5516 			readonly = true;
5517 		}
5518 		spin_unlock(&cache->lock);
5519 		if (!readonly && global_rsv->space_info == space_info) {
5520 			spin_lock(&global_rsv->lock);
5521 			if (!global_rsv->full) {
5522 				len = min(len, global_rsv->size -
5523 					  global_rsv->reserved);
5524 				global_rsv->reserved += len;
5525 				space_info->bytes_may_use += len;
5526 				if (global_rsv->reserved >= global_rsv->size)
5527 					global_rsv->full = 1;
5528 			}
5529 			spin_unlock(&global_rsv->lock);
5530 		}
5531 		spin_unlock(&space_info->lock);
5532 	}
5533 
5534 	if (cache)
5535 		btrfs_put_block_group(cache);
5536 	return 0;
5537 }
5538 
5539 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5540 			       struct btrfs_root *root)
5541 {
5542 	struct btrfs_fs_info *fs_info = root->fs_info;
5543 	struct extent_io_tree *unpin;
5544 	u64 start;
5545 	u64 end;
5546 	int ret;
5547 
5548 	if (trans->aborted)
5549 		return 0;
5550 
5551 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5552 		unpin = &fs_info->freed_extents[1];
5553 	else
5554 		unpin = &fs_info->freed_extents[0];
5555 
5556 	while (1) {
5557 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5558 					    EXTENT_DIRTY, NULL);
5559 		if (ret)
5560 			break;
5561 
5562 		if (btrfs_test_opt(root, DISCARD))
5563 			ret = btrfs_discard_extent(root, start,
5564 						   end + 1 - start, NULL);
5565 
5566 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5567 		unpin_extent_range(root, start, end);
5568 		cond_resched();
5569 	}
5570 
5571 	return 0;
5572 }
5573 
5574 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5575 			     u64 owner, u64 root_objectid)
5576 {
5577 	struct btrfs_space_info *space_info;
5578 	u64 flags;
5579 
5580 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5581 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5582 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5583 		else
5584 			flags = BTRFS_BLOCK_GROUP_METADATA;
5585 	} else {
5586 		flags = BTRFS_BLOCK_GROUP_DATA;
5587 	}
5588 
5589 	space_info = __find_space_info(fs_info, flags);
5590 	BUG_ON(!space_info); /* Logic bug */
5591 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5592 }
5593 
5594 
5595 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5596 				struct btrfs_root *root,
5597 				u64 bytenr, u64 num_bytes, u64 parent,
5598 				u64 root_objectid, u64 owner_objectid,
5599 				u64 owner_offset, int refs_to_drop,
5600 				struct btrfs_delayed_extent_op *extent_op)
5601 {
5602 	struct btrfs_key key;
5603 	struct btrfs_path *path;
5604 	struct btrfs_fs_info *info = root->fs_info;
5605 	struct btrfs_root *extent_root = info->extent_root;
5606 	struct extent_buffer *leaf;
5607 	struct btrfs_extent_item *ei;
5608 	struct btrfs_extent_inline_ref *iref;
5609 	int ret;
5610 	int is_data;
5611 	int extent_slot = 0;
5612 	int found_extent = 0;
5613 	int num_to_del = 1;
5614 	u32 item_size;
5615 	u64 refs;
5616 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5617 						 SKINNY_METADATA);
5618 
5619 	path = btrfs_alloc_path();
5620 	if (!path)
5621 		return -ENOMEM;
5622 
5623 	path->reada = 1;
5624 	path->leave_spinning = 1;
5625 
5626 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5627 	BUG_ON(!is_data && refs_to_drop != 1);
5628 
5629 	if (is_data)
5630 		skinny_metadata = 0;
5631 
5632 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5633 				    bytenr, num_bytes, parent,
5634 				    root_objectid, owner_objectid,
5635 				    owner_offset);
5636 	if (ret == 0) {
5637 		extent_slot = path->slots[0];
5638 		while (extent_slot >= 0) {
5639 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5640 					      extent_slot);
5641 			if (key.objectid != bytenr)
5642 				break;
5643 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5644 			    key.offset == num_bytes) {
5645 				found_extent = 1;
5646 				break;
5647 			}
5648 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5649 			    key.offset == owner_objectid) {
5650 				found_extent = 1;
5651 				break;
5652 			}
5653 			if (path->slots[0] - extent_slot > 5)
5654 				break;
5655 			extent_slot--;
5656 		}
5657 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5658 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5659 		if (found_extent && item_size < sizeof(*ei))
5660 			found_extent = 0;
5661 #endif
5662 		if (!found_extent) {
5663 			BUG_ON(iref);
5664 			ret = remove_extent_backref(trans, extent_root, path,
5665 						    NULL, refs_to_drop,
5666 						    is_data);
5667 			if (ret) {
5668 				btrfs_abort_transaction(trans, extent_root, ret);
5669 				goto out;
5670 			}
5671 			btrfs_release_path(path);
5672 			path->leave_spinning = 1;
5673 
5674 			key.objectid = bytenr;
5675 			key.type = BTRFS_EXTENT_ITEM_KEY;
5676 			key.offset = num_bytes;
5677 
5678 			if (!is_data && skinny_metadata) {
5679 				key.type = BTRFS_METADATA_ITEM_KEY;
5680 				key.offset = owner_objectid;
5681 			}
5682 
5683 			ret = btrfs_search_slot(trans, extent_root,
5684 						&key, path, -1, 1);
5685 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5686 				/*
5687 				 * Couldn't find our skinny metadata item,
5688 				 * see if we have ye olde extent item.
5689 				 */
5690 				path->slots[0]--;
5691 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5692 						      path->slots[0]);
5693 				if (key.objectid == bytenr &&
5694 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5695 				    key.offset == num_bytes)
5696 					ret = 0;
5697 			}
5698 
5699 			if (ret > 0 && skinny_metadata) {
5700 				skinny_metadata = false;
5701 				key.type = BTRFS_EXTENT_ITEM_KEY;
5702 				key.offset = num_bytes;
5703 				btrfs_release_path(path);
5704 				ret = btrfs_search_slot(trans, extent_root,
5705 							&key, path, -1, 1);
5706 			}
5707 
5708 			if (ret) {
5709 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5710 					ret, bytenr);
5711 				if (ret > 0)
5712 					btrfs_print_leaf(extent_root,
5713 							 path->nodes[0]);
5714 			}
5715 			if (ret < 0) {
5716 				btrfs_abort_transaction(trans, extent_root, ret);
5717 				goto out;
5718 			}
5719 			extent_slot = path->slots[0];
5720 		}
5721 	} else if (ret == -ENOENT) {
5722 		btrfs_print_leaf(extent_root, path->nodes[0]);
5723 		WARN_ON(1);
5724 		btrfs_err(info,
5725 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5726 			bytenr, parent, root_objectid, owner_objectid,
5727 			owner_offset);
5728 	} else {
5729 		btrfs_abort_transaction(trans, extent_root, ret);
5730 		goto out;
5731 	}
5732 
5733 	leaf = path->nodes[0];
5734 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5735 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5736 	if (item_size < sizeof(*ei)) {
5737 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5738 		ret = convert_extent_item_v0(trans, extent_root, path,
5739 					     owner_objectid, 0);
5740 		if (ret < 0) {
5741 			btrfs_abort_transaction(trans, extent_root, ret);
5742 			goto out;
5743 		}
5744 
5745 		btrfs_release_path(path);
5746 		path->leave_spinning = 1;
5747 
5748 		key.objectid = bytenr;
5749 		key.type = BTRFS_EXTENT_ITEM_KEY;
5750 		key.offset = num_bytes;
5751 
5752 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5753 					-1, 1);
5754 		if (ret) {
5755 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5756 				ret, bytenr);
5757 			btrfs_print_leaf(extent_root, path->nodes[0]);
5758 		}
5759 		if (ret < 0) {
5760 			btrfs_abort_transaction(trans, extent_root, ret);
5761 			goto out;
5762 		}
5763 
5764 		extent_slot = path->slots[0];
5765 		leaf = path->nodes[0];
5766 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5767 	}
5768 #endif
5769 	BUG_ON(item_size < sizeof(*ei));
5770 	ei = btrfs_item_ptr(leaf, extent_slot,
5771 			    struct btrfs_extent_item);
5772 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5773 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5774 		struct btrfs_tree_block_info *bi;
5775 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5776 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5777 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5778 	}
5779 
5780 	refs = btrfs_extent_refs(leaf, ei);
5781 	if (refs < refs_to_drop) {
5782 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5783 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5784 		ret = -EINVAL;
5785 		btrfs_abort_transaction(trans, extent_root, ret);
5786 		goto out;
5787 	}
5788 	refs -= refs_to_drop;
5789 
5790 	if (refs > 0) {
5791 		if (extent_op)
5792 			__run_delayed_extent_op(extent_op, leaf, ei);
5793 		/*
5794 		 * In the case of inline back ref, reference count will
5795 		 * be updated by remove_extent_backref
5796 		 */
5797 		if (iref) {
5798 			BUG_ON(!found_extent);
5799 		} else {
5800 			btrfs_set_extent_refs(leaf, ei, refs);
5801 			btrfs_mark_buffer_dirty(leaf);
5802 		}
5803 		if (found_extent) {
5804 			ret = remove_extent_backref(trans, extent_root, path,
5805 						    iref, refs_to_drop,
5806 						    is_data);
5807 			if (ret) {
5808 				btrfs_abort_transaction(trans, extent_root, ret);
5809 				goto out;
5810 			}
5811 		}
5812 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5813 				 root_objectid);
5814 	} else {
5815 		if (found_extent) {
5816 			BUG_ON(is_data && refs_to_drop !=
5817 			       extent_data_ref_count(root, path, iref));
5818 			if (iref) {
5819 				BUG_ON(path->slots[0] != extent_slot);
5820 			} else {
5821 				BUG_ON(path->slots[0] != extent_slot + 1);
5822 				path->slots[0] = extent_slot;
5823 				num_to_del = 2;
5824 			}
5825 		}
5826 
5827 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5828 				      num_to_del);
5829 		if (ret) {
5830 			btrfs_abort_transaction(trans, extent_root, ret);
5831 			goto out;
5832 		}
5833 		btrfs_release_path(path);
5834 
5835 		if (is_data) {
5836 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5837 			if (ret) {
5838 				btrfs_abort_transaction(trans, extent_root, ret);
5839 				goto out;
5840 			}
5841 		}
5842 
5843 		ret = update_block_group(root, bytenr, num_bytes, 0);
5844 		if (ret) {
5845 			btrfs_abort_transaction(trans, extent_root, ret);
5846 			goto out;
5847 		}
5848 	}
5849 out:
5850 	btrfs_free_path(path);
5851 	return ret;
5852 }
5853 
5854 /*
5855  * when we free an block, it is possible (and likely) that we free the last
5856  * delayed ref for that extent as well.  This searches the delayed ref tree for
5857  * a given extent, and if there are no other delayed refs to be processed, it
5858  * removes it from the tree.
5859  */
5860 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5861 				      struct btrfs_root *root, u64 bytenr)
5862 {
5863 	struct btrfs_delayed_ref_head *head;
5864 	struct btrfs_delayed_ref_root *delayed_refs;
5865 	struct btrfs_delayed_ref_node *ref;
5866 	struct rb_node *node;
5867 	int ret = 0;
5868 
5869 	delayed_refs = &trans->transaction->delayed_refs;
5870 	spin_lock(&delayed_refs->lock);
5871 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5872 	if (!head)
5873 		goto out;
5874 
5875 	node = rb_prev(&head->node.rb_node);
5876 	if (!node)
5877 		goto out;
5878 
5879 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5880 
5881 	/* there are still entries for this ref, we can't drop it */
5882 	if (ref->bytenr == bytenr)
5883 		goto out;
5884 
5885 	if (head->extent_op) {
5886 		if (!head->must_insert_reserved)
5887 			goto out;
5888 		btrfs_free_delayed_extent_op(head->extent_op);
5889 		head->extent_op = NULL;
5890 	}
5891 
5892 	/*
5893 	 * waiting for the lock here would deadlock.  If someone else has it
5894 	 * locked they are already in the process of dropping it anyway
5895 	 */
5896 	if (!mutex_trylock(&head->mutex))
5897 		goto out;
5898 
5899 	/*
5900 	 * at this point we have a head with no other entries.  Go
5901 	 * ahead and process it.
5902 	 */
5903 	head->node.in_tree = 0;
5904 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5905 
5906 	delayed_refs->num_entries--;
5907 
5908 	/*
5909 	 * we don't take a ref on the node because we're removing it from the
5910 	 * tree, so we just steal the ref the tree was holding.
5911 	 */
5912 	delayed_refs->num_heads--;
5913 	if (list_empty(&head->cluster))
5914 		delayed_refs->num_heads_ready--;
5915 
5916 	list_del_init(&head->cluster);
5917 	spin_unlock(&delayed_refs->lock);
5918 
5919 	BUG_ON(head->extent_op);
5920 	if (head->must_insert_reserved)
5921 		ret = 1;
5922 
5923 	mutex_unlock(&head->mutex);
5924 	btrfs_put_delayed_ref(&head->node);
5925 	return ret;
5926 out:
5927 	spin_unlock(&delayed_refs->lock);
5928 	return 0;
5929 }
5930 
5931 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5932 			   struct btrfs_root *root,
5933 			   struct extent_buffer *buf,
5934 			   u64 parent, int last_ref)
5935 {
5936 	struct btrfs_block_group_cache *cache = NULL;
5937 	int pin = 1;
5938 	int ret;
5939 
5940 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5941 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5942 					buf->start, buf->len,
5943 					parent, root->root_key.objectid,
5944 					btrfs_header_level(buf),
5945 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5946 		BUG_ON(ret); /* -ENOMEM */
5947 	}
5948 
5949 	if (!last_ref)
5950 		return;
5951 
5952 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5953 
5954 	if (btrfs_header_generation(buf) == trans->transid) {
5955 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5956 			ret = check_ref_cleanup(trans, root, buf->start);
5957 			if (!ret)
5958 				goto out;
5959 		}
5960 
5961 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5962 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5963 			goto out;
5964 		}
5965 
5966 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5967 
5968 		btrfs_add_free_space(cache, buf->start, buf->len);
5969 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5970 		pin = 0;
5971 	}
5972 out:
5973 	if (pin)
5974 		add_pinned_bytes(root->fs_info, buf->len,
5975 				 btrfs_header_level(buf),
5976 				 root->root_key.objectid);
5977 
5978 	/*
5979 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5980 	 * anymore.
5981 	 */
5982 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5983 	btrfs_put_block_group(cache);
5984 }
5985 
5986 /* Can return -ENOMEM */
5987 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5988 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5989 		      u64 owner, u64 offset, int for_cow)
5990 {
5991 	int ret;
5992 	struct btrfs_fs_info *fs_info = root->fs_info;
5993 
5994 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
5995 
5996 	/*
5997 	 * tree log blocks never actually go into the extent allocation
5998 	 * tree, just update pinning info and exit early.
5999 	 */
6000 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6001 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6002 		/* unlocks the pinned mutex */
6003 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6004 		ret = 0;
6005 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6006 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6007 					num_bytes,
6008 					parent, root_objectid, (int)owner,
6009 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6010 	} else {
6011 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6012 						num_bytes,
6013 						parent, root_objectid, owner,
6014 						offset, BTRFS_DROP_DELAYED_REF,
6015 						NULL, for_cow);
6016 	}
6017 	return ret;
6018 }
6019 
6020 static u64 stripe_align(struct btrfs_root *root,
6021 			struct btrfs_block_group_cache *cache,
6022 			u64 val, u64 num_bytes)
6023 {
6024 	u64 ret = ALIGN(val, root->stripesize);
6025 	return ret;
6026 }
6027 
6028 /*
6029  * when we wait for progress in the block group caching, its because
6030  * our allocation attempt failed at least once.  So, we must sleep
6031  * and let some progress happen before we try again.
6032  *
6033  * This function will sleep at least once waiting for new free space to
6034  * show up, and then it will check the block group free space numbers
6035  * for our min num_bytes.  Another option is to have it go ahead
6036  * and look in the rbtree for a free extent of a given size, but this
6037  * is a good start.
6038  *
6039  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6040  * any of the information in this block group.
6041  */
6042 static noinline void
6043 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6044 				u64 num_bytes)
6045 {
6046 	struct btrfs_caching_control *caching_ctl;
6047 
6048 	caching_ctl = get_caching_control(cache);
6049 	if (!caching_ctl)
6050 		return;
6051 
6052 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6053 		   (cache->free_space_ctl->free_space >= num_bytes));
6054 
6055 	put_caching_control(caching_ctl);
6056 }
6057 
6058 static noinline int
6059 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6060 {
6061 	struct btrfs_caching_control *caching_ctl;
6062 	int ret = 0;
6063 
6064 	caching_ctl = get_caching_control(cache);
6065 	if (!caching_ctl)
6066 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6067 
6068 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6069 	if (cache->cached == BTRFS_CACHE_ERROR)
6070 		ret = -EIO;
6071 	put_caching_control(caching_ctl);
6072 	return ret;
6073 }
6074 
6075 int __get_raid_index(u64 flags)
6076 {
6077 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6078 		return BTRFS_RAID_RAID10;
6079 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6080 		return BTRFS_RAID_RAID1;
6081 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6082 		return BTRFS_RAID_DUP;
6083 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6084 		return BTRFS_RAID_RAID0;
6085 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6086 		return BTRFS_RAID_RAID5;
6087 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6088 		return BTRFS_RAID_RAID6;
6089 
6090 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6091 }
6092 
6093 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6094 {
6095 	return __get_raid_index(cache->flags);
6096 }
6097 
6098 enum btrfs_loop_type {
6099 	LOOP_CACHING_NOWAIT = 0,
6100 	LOOP_CACHING_WAIT = 1,
6101 	LOOP_ALLOC_CHUNK = 2,
6102 	LOOP_NO_EMPTY_SIZE = 3,
6103 };
6104 
6105 /*
6106  * walks the btree of allocated extents and find a hole of a given size.
6107  * The key ins is changed to record the hole:
6108  * ins->objectid == start position
6109  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6110  * ins->offset == the size of the hole.
6111  * Any available blocks before search_start are skipped.
6112  *
6113  * If there is no suitable free space, we will record the max size of
6114  * the free space extent currently.
6115  */
6116 static noinline int find_free_extent(struct btrfs_root *orig_root,
6117 				     u64 num_bytes, u64 empty_size,
6118 				     u64 hint_byte, struct btrfs_key *ins,
6119 				     u64 flags)
6120 {
6121 	int ret = 0;
6122 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6123 	struct btrfs_free_cluster *last_ptr = NULL;
6124 	struct btrfs_block_group_cache *block_group = NULL;
6125 	struct btrfs_block_group_cache *used_block_group;
6126 	u64 search_start = 0;
6127 	u64 max_extent_size = 0;
6128 	int empty_cluster = 2 * 1024 * 1024;
6129 	struct btrfs_space_info *space_info;
6130 	int loop = 0;
6131 	int index = __get_raid_index(flags);
6132 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6133 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6134 	bool found_uncached_bg = false;
6135 	bool failed_cluster_refill = false;
6136 	bool failed_alloc = false;
6137 	bool use_cluster = true;
6138 	bool have_caching_bg = false;
6139 
6140 	WARN_ON(num_bytes < root->sectorsize);
6141 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6142 	ins->objectid = 0;
6143 	ins->offset = 0;
6144 
6145 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6146 
6147 	space_info = __find_space_info(root->fs_info, flags);
6148 	if (!space_info) {
6149 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6150 		return -ENOSPC;
6151 	}
6152 
6153 	/*
6154 	 * If the space info is for both data and metadata it means we have a
6155 	 * small filesystem and we can't use the clustering stuff.
6156 	 */
6157 	if (btrfs_mixed_space_info(space_info))
6158 		use_cluster = false;
6159 
6160 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6161 		last_ptr = &root->fs_info->meta_alloc_cluster;
6162 		if (!btrfs_test_opt(root, SSD))
6163 			empty_cluster = 64 * 1024;
6164 	}
6165 
6166 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6167 	    btrfs_test_opt(root, SSD)) {
6168 		last_ptr = &root->fs_info->data_alloc_cluster;
6169 	}
6170 
6171 	if (last_ptr) {
6172 		spin_lock(&last_ptr->lock);
6173 		if (last_ptr->block_group)
6174 			hint_byte = last_ptr->window_start;
6175 		spin_unlock(&last_ptr->lock);
6176 	}
6177 
6178 	search_start = max(search_start, first_logical_byte(root, 0));
6179 	search_start = max(search_start, hint_byte);
6180 
6181 	if (!last_ptr)
6182 		empty_cluster = 0;
6183 
6184 	if (search_start == hint_byte) {
6185 		block_group = btrfs_lookup_block_group(root->fs_info,
6186 						       search_start);
6187 		used_block_group = block_group;
6188 		/*
6189 		 * we don't want to use the block group if it doesn't match our
6190 		 * allocation bits, or if its not cached.
6191 		 *
6192 		 * However if we are re-searching with an ideal block group
6193 		 * picked out then we don't care that the block group is cached.
6194 		 */
6195 		if (block_group && block_group_bits(block_group, flags) &&
6196 		    block_group->cached != BTRFS_CACHE_NO) {
6197 			down_read(&space_info->groups_sem);
6198 			if (list_empty(&block_group->list) ||
6199 			    block_group->ro) {
6200 				/*
6201 				 * someone is removing this block group,
6202 				 * we can't jump into the have_block_group
6203 				 * target because our list pointers are not
6204 				 * valid
6205 				 */
6206 				btrfs_put_block_group(block_group);
6207 				up_read(&space_info->groups_sem);
6208 			} else {
6209 				index = get_block_group_index(block_group);
6210 				goto have_block_group;
6211 			}
6212 		} else if (block_group) {
6213 			btrfs_put_block_group(block_group);
6214 		}
6215 	}
6216 search:
6217 	have_caching_bg = false;
6218 	down_read(&space_info->groups_sem);
6219 	list_for_each_entry(block_group, &space_info->block_groups[index],
6220 			    list) {
6221 		u64 offset;
6222 		int cached;
6223 
6224 		used_block_group = block_group;
6225 		btrfs_get_block_group(block_group);
6226 		search_start = block_group->key.objectid;
6227 
6228 		/*
6229 		 * this can happen if we end up cycling through all the
6230 		 * raid types, but we want to make sure we only allocate
6231 		 * for the proper type.
6232 		 */
6233 		if (!block_group_bits(block_group, flags)) {
6234 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6235 				BTRFS_BLOCK_GROUP_RAID1 |
6236 				BTRFS_BLOCK_GROUP_RAID5 |
6237 				BTRFS_BLOCK_GROUP_RAID6 |
6238 				BTRFS_BLOCK_GROUP_RAID10;
6239 
6240 			/*
6241 			 * if they asked for extra copies and this block group
6242 			 * doesn't provide them, bail.  This does allow us to
6243 			 * fill raid0 from raid1.
6244 			 */
6245 			if ((flags & extra) && !(block_group->flags & extra))
6246 				goto loop;
6247 		}
6248 
6249 have_block_group:
6250 		cached = block_group_cache_done(block_group);
6251 		if (unlikely(!cached)) {
6252 			found_uncached_bg = true;
6253 			ret = cache_block_group(block_group, 0);
6254 			BUG_ON(ret < 0);
6255 			ret = 0;
6256 		}
6257 
6258 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6259 			goto loop;
6260 		if (unlikely(block_group->ro))
6261 			goto loop;
6262 
6263 		/*
6264 		 * Ok we want to try and use the cluster allocator, so
6265 		 * lets look there
6266 		 */
6267 		if (last_ptr) {
6268 			unsigned long aligned_cluster;
6269 			/*
6270 			 * the refill lock keeps out other
6271 			 * people trying to start a new cluster
6272 			 */
6273 			spin_lock(&last_ptr->refill_lock);
6274 			used_block_group = last_ptr->block_group;
6275 			if (used_block_group != block_group &&
6276 			    (!used_block_group ||
6277 			     used_block_group->ro ||
6278 			     !block_group_bits(used_block_group, flags))) {
6279 				used_block_group = block_group;
6280 				goto refill_cluster;
6281 			}
6282 
6283 			if (used_block_group != block_group)
6284 				btrfs_get_block_group(used_block_group);
6285 
6286 			offset = btrfs_alloc_from_cluster(used_block_group,
6287 						last_ptr,
6288 						num_bytes,
6289 						used_block_group->key.objectid,
6290 						&max_extent_size);
6291 			if (offset) {
6292 				/* we have a block, we're done */
6293 				spin_unlock(&last_ptr->refill_lock);
6294 				trace_btrfs_reserve_extent_cluster(root,
6295 					block_group, search_start, num_bytes);
6296 				goto checks;
6297 			}
6298 
6299 			WARN_ON(last_ptr->block_group != used_block_group);
6300 			if (used_block_group != block_group) {
6301 				btrfs_put_block_group(used_block_group);
6302 				used_block_group = block_group;
6303 			}
6304 refill_cluster:
6305 			BUG_ON(used_block_group != block_group);
6306 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6307 			 * set up a new clusters, so lets just skip it
6308 			 * and let the allocator find whatever block
6309 			 * it can find.  If we reach this point, we
6310 			 * will have tried the cluster allocator
6311 			 * plenty of times and not have found
6312 			 * anything, so we are likely way too
6313 			 * fragmented for the clustering stuff to find
6314 			 * anything.
6315 			 *
6316 			 * However, if the cluster is taken from the
6317 			 * current block group, release the cluster
6318 			 * first, so that we stand a better chance of
6319 			 * succeeding in the unclustered
6320 			 * allocation.  */
6321 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6322 			    last_ptr->block_group != block_group) {
6323 				spin_unlock(&last_ptr->refill_lock);
6324 				goto unclustered_alloc;
6325 			}
6326 
6327 			/*
6328 			 * this cluster didn't work out, free it and
6329 			 * start over
6330 			 */
6331 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6332 
6333 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6334 				spin_unlock(&last_ptr->refill_lock);
6335 				goto unclustered_alloc;
6336 			}
6337 
6338 			aligned_cluster = max_t(unsigned long,
6339 						empty_cluster + empty_size,
6340 					      block_group->full_stripe_len);
6341 
6342 			/* allocate a cluster in this block group */
6343 			ret = btrfs_find_space_cluster(root, block_group,
6344 						       last_ptr, search_start,
6345 						       num_bytes,
6346 						       aligned_cluster);
6347 			if (ret == 0) {
6348 				/*
6349 				 * now pull our allocation out of this
6350 				 * cluster
6351 				 */
6352 				offset = btrfs_alloc_from_cluster(block_group,
6353 							last_ptr,
6354 							num_bytes,
6355 							search_start,
6356 							&max_extent_size);
6357 				if (offset) {
6358 					/* we found one, proceed */
6359 					spin_unlock(&last_ptr->refill_lock);
6360 					trace_btrfs_reserve_extent_cluster(root,
6361 						block_group, search_start,
6362 						num_bytes);
6363 					goto checks;
6364 				}
6365 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6366 				   && !failed_cluster_refill) {
6367 				spin_unlock(&last_ptr->refill_lock);
6368 
6369 				failed_cluster_refill = true;
6370 				wait_block_group_cache_progress(block_group,
6371 				       num_bytes + empty_cluster + empty_size);
6372 				goto have_block_group;
6373 			}
6374 
6375 			/*
6376 			 * at this point we either didn't find a cluster
6377 			 * or we weren't able to allocate a block from our
6378 			 * cluster.  Free the cluster we've been trying
6379 			 * to use, and go to the next block group
6380 			 */
6381 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6382 			spin_unlock(&last_ptr->refill_lock);
6383 			goto loop;
6384 		}
6385 
6386 unclustered_alloc:
6387 		spin_lock(&block_group->free_space_ctl->tree_lock);
6388 		if (cached &&
6389 		    block_group->free_space_ctl->free_space <
6390 		    num_bytes + empty_cluster + empty_size) {
6391 			if (block_group->free_space_ctl->free_space >
6392 			    max_extent_size)
6393 				max_extent_size =
6394 					block_group->free_space_ctl->free_space;
6395 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6396 			goto loop;
6397 		}
6398 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6399 
6400 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6401 						    num_bytes, empty_size,
6402 						    &max_extent_size);
6403 		/*
6404 		 * If we didn't find a chunk, and we haven't failed on this
6405 		 * block group before, and this block group is in the middle of
6406 		 * caching and we are ok with waiting, then go ahead and wait
6407 		 * for progress to be made, and set failed_alloc to true.
6408 		 *
6409 		 * If failed_alloc is true then we've already waited on this
6410 		 * block group once and should move on to the next block group.
6411 		 */
6412 		if (!offset && !failed_alloc && !cached &&
6413 		    loop > LOOP_CACHING_NOWAIT) {
6414 			wait_block_group_cache_progress(block_group,
6415 						num_bytes + empty_size);
6416 			failed_alloc = true;
6417 			goto have_block_group;
6418 		} else if (!offset) {
6419 			if (!cached)
6420 				have_caching_bg = true;
6421 			goto loop;
6422 		}
6423 checks:
6424 		search_start = stripe_align(root, used_block_group,
6425 					    offset, num_bytes);
6426 
6427 		/* move on to the next group */
6428 		if (search_start + num_bytes >
6429 		    used_block_group->key.objectid + used_block_group->key.offset) {
6430 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6431 			goto loop;
6432 		}
6433 
6434 		if (offset < search_start)
6435 			btrfs_add_free_space(used_block_group, offset,
6436 					     search_start - offset);
6437 		BUG_ON(offset > search_start);
6438 
6439 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6440 						  alloc_type);
6441 		if (ret == -EAGAIN) {
6442 			btrfs_add_free_space(used_block_group, offset, num_bytes);
6443 			goto loop;
6444 		}
6445 
6446 		/* we are all good, lets return */
6447 		ins->objectid = search_start;
6448 		ins->offset = num_bytes;
6449 
6450 		trace_btrfs_reserve_extent(orig_root, block_group,
6451 					   search_start, num_bytes);
6452 		if (used_block_group != block_group)
6453 			btrfs_put_block_group(used_block_group);
6454 		btrfs_put_block_group(block_group);
6455 		break;
6456 loop:
6457 		failed_cluster_refill = false;
6458 		failed_alloc = false;
6459 		BUG_ON(index != get_block_group_index(block_group));
6460 		if (used_block_group != block_group)
6461 			btrfs_put_block_group(used_block_group);
6462 		btrfs_put_block_group(block_group);
6463 	}
6464 	up_read(&space_info->groups_sem);
6465 
6466 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6467 		goto search;
6468 
6469 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6470 		goto search;
6471 
6472 	/*
6473 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6474 	 *			caching kthreads as we move along
6475 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6476 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6477 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6478 	 *			again
6479 	 */
6480 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6481 		index = 0;
6482 		loop++;
6483 		if (loop == LOOP_ALLOC_CHUNK) {
6484 			struct btrfs_trans_handle *trans;
6485 
6486 			trans = btrfs_join_transaction(root);
6487 			if (IS_ERR(trans)) {
6488 				ret = PTR_ERR(trans);
6489 				goto out;
6490 			}
6491 
6492 			ret = do_chunk_alloc(trans, root, flags,
6493 					     CHUNK_ALLOC_FORCE);
6494 			/*
6495 			 * Do not bail out on ENOSPC since we
6496 			 * can do more things.
6497 			 */
6498 			if (ret < 0 && ret != -ENOSPC)
6499 				btrfs_abort_transaction(trans,
6500 							root, ret);
6501 			else
6502 				ret = 0;
6503 			btrfs_end_transaction(trans, root);
6504 			if (ret)
6505 				goto out;
6506 		}
6507 
6508 		if (loop == LOOP_NO_EMPTY_SIZE) {
6509 			empty_size = 0;
6510 			empty_cluster = 0;
6511 		}
6512 
6513 		goto search;
6514 	} else if (!ins->objectid) {
6515 		ret = -ENOSPC;
6516 	} else if (ins->objectid) {
6517 		ret = 0;
6518 	}
6519 out:
6520 	if (ret == -ENOSPC)
6521 		ins->offset = max_extent_size;
6522 	return ret;
6523 }
6524 
6525 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6526 			    int dump_block_groups)
6527 {
6528 	struct btrfs_block_group_cache *cache;
6529 	int index = 0;
6530 
6531 	spin_lock(&info->lock);
6532 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6533 	       info->flags,
6534 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6535 	       info->bytes_reserved - info->bytes_readonly,
6536 	       (info->full) ? "" : "not ");
6537 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6538 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6539 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6540 	       info->bytes_reserved, info->bytes_may_use,
6541 	       info->bytes_readonly);
6542 	spin_unlock(&info->lock);
6543 
6544 	if (!dump_block_groups)
6545 		return;
6546 
6547 	down_read(&info->groups_sem);
6548 again:
6549 	list_for_each_entry(cache, &info->block_groups[index], list) {
6550 		spin_lock(&cache->lock);
6551 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6552 		       cache->key.objectid, cache->key.offset,
6553 		       btrfs_block_group_used(&cache->item), cache->pinned,
6554 		       cache->reserved, cache->ro ? "[readonly]" : "");
6555 		btrfs_dump_free_space(cache, bytes);
6556 		spin_unlock(&cache->lock);
6557 	}
6558 	if (++index < BTRFS_NR_RAID_TYPES)
6559 		goto again;
6560 	up_read(&info->groups_sem);
6561 }
6562 
6563 int btrfs_reserve_extent(struct btrfs_root *root,
6564 			 u64 num_bytes, u64 min_alloc_size,
6565 			 u64 empty_size, u64 hint_byte,
6566 			 struct btrfs_key *ins, int is_data)
6567 {
6568 	bool final_tried = false;
6569 	u64 flags;
6570 	int ret;
6571 
6572 	flags = btrfs_get_alloc_profile(root, is_data);
6573 again:
6574 	WARN_ON(num_bytes < root->sectorsize);
6575 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6576 			       flags);
6577 
6578 	if (ret == -ENOSPC) {
6579 		if (!final_tried && ins->offset) {
6580 			num_bytes = min(num_bytes >> 1, ins->offset);
6581 			num_bytes = round_down(num_bytes, root->sectorsize);
6582 			num_bytes = max(num_bytes, min_alloc_size);
6583 			if (num_bytes == min_alloc_size)
6584 				final_tried = true;
6585 			goto again;
6586 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6587 			struct btrfs_space_info *sinfo;
6588 
6589 			sinfo = __find_space_info(root->fs_info, flags);
6590 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6591 				flags, num_bytes);
6592 			if (sinfo)
6593 				dump_space_info(sinfo, num_bytes, 1);
6594 		}
6595 	}
6596 
6597 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6598 
6599 	return ret;
6600 }
6601 
6602 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6603 					u64 start, u64 len, int pin)
6604 {
6605 	struct btrfs_block_group_cache *cache;
6606 	int ret = 0;
6607 
6608 	cache = btrfs_lookup_block_group(root->fs_info, start);
6609 	if (!cache) {
6610 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6611 			start);
6612 		return -ENOSPC;
6613 	}
6614 
6615 	if (btrfs_test_opt(root, DISCARD))
6616 		ret = btrfs_discard_extent(root, start, len, NULL);
6617 
6618 	if (pin)
6619 		pin_down_extent(root, cache, start, len, 1);
6620 	else {
6621 		btrfs_add_free_space(cache, start, len);
6622 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6623 	}
6624 	btrfs_put_block_group(cache);
6625 
6626 	trace_btrfs_reserved_extent_free(root, start, len);
6627 
6628 	return ret;
6629 }
6630 
6631 int btrfs_free_reserved_extent(struct btrfs_root *root,
6632 					u64 start, u64 len)
6633 {
6634 	return __btrfs_free_reserved_extent(root, start, len, 0);
6635 }
6636 
6637 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6638 				       u64 start, u64 len)
6639 {
6640 	return __btrfs_free_reserved_extent(root, start, len, 1);
6641 }
6642 
6643 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6644 				      struct btrfs_root *root,
6645 				      u64 parent, u64 root_objectid,
6646 				      u64 flags, u64 owner, u64 offset,
6647 				      struct btrfs_key *ins, int ref_mod)
6648 {
6649 	int ret;
6650 	struct btrfs_fs_info *fs_info = root->fs_info;
6651 	struct btrfs_extent_item *extent_item;
6652 	struct btrfs_extent_inline_ref *iref;
6653 	struct btrfs_path *path;
6654 	struct extent_buffer *leaf;
6655 	int type;
6656 	u32 size;
6657 
6658 	if (parent > 0)
6659 		type = BTRFS_SHARED_DATA_REF_KEY;
6660 	else
6661 		type = BTRFS_EXTENT_DATA_REF_KEY;
6662 
6663 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6664 
6665 	path = btrfs_alloc_path();
6666 	if (!path)
6667 		return -ENOMEM;
6668 
6669 	path->leave_spinning = 1;
6670 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6671 				      ins, size);
6672 	if (ret) {
6673 		btrfs_free_path(path);
6674 		return ret;
6675 	}
6676 
6677 	leaf = path->nodes[0];
6678 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6679 				     struct btrfs_extent_item);
6680 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6681 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6682 	btrfs_set_extent_flags(leaf, extent_item,
6683 			       flags | BTRFS_EXTENT_FLAG_DATA);
6684 
6685 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6686 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6687 	if (parent > 0) {
6688 		struct btrfs_shared_data_ref *ref;
6689 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6690 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6691 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6692 	} else {
6693 		struct btrfs_extent_data_ref *ref;
6694 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6695 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6696 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6697 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6698 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6699 	}
6700 
6701 	btrfs_mark_buffer_dirty(path->nodes[0]);
6702 	btrfs_free_path(path);
6703 
6704 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6705 	if (ret) { /* -ENOENT, logic error */
6706 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6707 			ins->objectid, ins->offset);
6708 		BUG();
6709 	}
6710 	return ret;
6711 }
6712 
6713 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6714 				     struct btrfs_root *root,
6715 				     u64 parent, u64 root_objectid,
6716 				     u64 flags, struct btrfs_disk_key *key,
6717 				     int level, struct btrfs_key *ins)
6718 {
6719 	int ret;
6720 	struct btrfs_fs_info *fs_info = root->fs_info;
6721 	struct btrfs_extent_item *extent_item;
6722 	struct btrfs_tree_block_info *block_info;
6723 	struct btrfs_extent_inline_ref *iref;
6724 	struct btrfs_path *path;
6725 	struct extent_buffer *leaf;
6726 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6727 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6728 						 SKINNY_METADATA);
6729 
6730 	if (!skinny_metadata)
6731 		size += sizeof(*block_info);
6732 
6733 	path = btrfs_alloc_path();
6734 	if (!path)
6735 		return -ENOMEM;
6736 
6737 	path->leave_spinning = 1;
6738 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6739 				      ins, size);
6740 	if (ret) {
6741 		btrfs_free_path(path);
6742 		return ret;
6743 	}
6744 
6745 	leaf = path->nodes[0];
6746 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6747 				     struct btrfs_extent_item);
6748 	btrfs_set_extent_refs(leaf, extent_item, 1);
6749 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6750 	btrfs_set_extent_flags(leaf, extent_item,
6751 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6752 
6753 	if (skinny_metadata) {
6754 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6755 	} else {
6756 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6757 		btrfs_set_tree_block_key(leaf, block_info, key);
6758 		btrfs_set_tree_block_level(leaf, block_info, level);
6759 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6760 	}
6761 
6762 	if (parent > 0) {
6763 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6764 		btrfs_set_extent_inline_ref_type(leaf, iref,
6765 						 BTRFS_SHARED_BLOCK_REF_KEY);
6766 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6767 	} else {
6768 		btrfs_set_extent_inline_ref_type(leaf, iref,
6769 						 BTRFS_TREE_BLOCK_REF_KEY);
6770 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6771 	}
6772 
6773 	btrfs_mark_buffer_dirty(leaf);
6774 	btrfs_free_path(path);
6775 
6776 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6777 	if (ret) { /* -ENOENT, logic error */
6778 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6779 			ins->objectid, ins->offset);
6780 		BUG();
6781 	}
6782 	return ret;
6783 }
6784 
6785 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6786 				     struct btrfs_root *root,
6787 				     u64 root_objectid, u64 owner,
6788 				     u64 offset, struct btrfs_key *ins)
6789 {
6790 	int ret;
6791 
6792 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6793 
6794 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6795 					 ins->offset, 0,
6796 					 root_objectid, owner, offset,
6797 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6798 	return ret;
6799 }
6800 
6801 /*
6802  * this is used by the tree logging recovery code.  It records that
6803  * an extent has been allocated and makes sure to clear the free
6804  * space cache bits as well
6805  */
6806 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6807 				   struct btrfs_root *root,
6808 				   u64 root_objectid, u64 owner, u64 offset,
6809 				   struct btrfs_key *ins)
6810 {
6811 	int ret;
6812 	struct btrfs_block_group_cache *block_group;
6813 
6814 	/*
6815 	 * Mixed block groups will exclude before processing the log so we only
6816 	 * need to do the exlude dance if this fs isn't mixed.
6817 	 */
6818 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6819 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6820 		if (ret)
6821 			return ret;
6822 	}
6823 
6824 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6825 	if (!block_group)
6826 		return -EINVAL;
6827 
6828 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6829 					  RESERVE_ALLOC_NO_ACCOUNT);
6830 	BUG_ON(ret); /* logic error */
6831 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6832 					 0, owner, offset, ins, 1);
6833 	btrfs_put_block_group(block_group);
6834 	return ret;
6835 }
6836 
6837 static struct extent_buffer *
6838 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6839 		      u64 bytenr, u32 blocksize, int level)
6840 {
6841 	struct extent_buffer *buf;
6842 
6843 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6844 	if (!buf)
6845 		return ERR_PTR(-ENOMEM);
6846 	btrfs_set_header_generation(buf, trans->transid);
6847 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6848 	btrfs_tree_lock(buf);
6849 	clean_tree_block(trans, root, buf);
6850 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6851 
6852 	btrfs_set_lock_blocking(buf);
6853 	btrfs_set_buffer_uptodate(buf);
6854 
6855 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6856 		/*
6857 		 * we allow two log transactions at a time, use different
6858 		 * EXENT bit to differentiate dirty pages.
6859 		 */
6860 		if (root->log_transid % 2 == 0)
6861 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6862 					buf->start + buf->len - 1, GFP_NOFS);
6863 		else
6864 			set_extent_new(&root->dirty_log_pages, buf->start,
6865 					buf->start + buf->len - 1, GFP_NOFS);
6866 	} else {
6867 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6868 			 buf->start + buf->len - 1, GFP_NOFS);
6869 	}
6870 	trans->blocks_used++;
6871 	/* this returns a buffer locked for blocking */
6872 	return buf;
6873 }
6874 
6875 static struct btrfs_block_rsv *
6876 use_block_rsv(struct btrfs_trans_handle *trans,
6877 	      struct btrfs_root *root, u32 blocksize)
6878 {
6879 	struct btrfs_block_rsv *block_rsv;
6880 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6881 	int ret;
6882 	bool global_updated = false;
6883 
6884 	block_rsv = get_block_rsv(trans, root);
6885 
6886 	if (unlikely(block_rsv->size == 0))
6887 		goto try_reserve;
6888 again:
6889 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6890 	if (!ret)
6891 		return block_rsv;
6892 
6893 	if (block_rsv->failfast)
6894 		return ERR_PTR(ret);
6895 
6896 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6897 		global_updated = true;
6898 		update_global_block_rsv(root->fs_info);
6899 		goto again;
6900 	}
6901 
6902 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6903 		static DEFINE_RATELIMIT_STATE(_rs,
6904 				DEFAULT_RATELIMIT_INTERVAL * 10,
6905 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6906 		if (__ratelimit(&_rs))
6907 			WARN(1, KERN_DEBUG
6908 				"btrfs: block rsv returned %d\n", ret);
6909 	}
6910 try_reserve:
6911 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6912 				     BTRFS_RESERVE_NO_FLUSH);
6913 	if (!ret)
6914 		return block_rsv;
6915 	/*
6916 	 * If we couldn't reserve metadata bytes try and use some from
6917 	 * the global reserve if its space type is the same as the global
6918 	 * reservation.
6919 	 */
6920 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6921 	    block_rsv->space_info == global_rsv->space_info) {
6922 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6923 		if (!ret)
6924 			return global_rsv;
6925 	}
6926 	return ERR_PTR(ret);
6927 }
6928 
6929 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6930 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6931 {
6932 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6933 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6934 }
6935 
6936 /*
6937  * finds a free extent and does all the dirty work required for allocation
6938  * returns the key for the extent through ins, and a tree buffer for
6939  * the first block of the extent through buf.
6940  *
6941  * returns the tree buffer or NULL.
6942  */
6943 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6944 					struct btrfs_root *root, u32 blocksize,
6945 					u64 parent, u64 root_objectid,
6946 					struct btrfs_disk_key *key, int level,
6947 					u64 hint, u64 empty_size)
6948 {
6949 	struct btrfs_key ins;
6950 	struct btrfs_block_rsv *block_rsv;
6951 	struct extent_buffer *buf;
6952 	u64 flags = 0;
6953 	int ret;
6954 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6955 						 SKINNY_METADATA);
6956 
6957 	block_rsv = use_block_rsv(trans, root, blocksize);
6958 	if (IS_ERR(block_rsv))
6959 		return ERR_CAST(block_rsv);
6960 
6961 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
6962 				   empty_size, hint, &ins, 0);
6963 	if (ret) {
6964 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6965 		return ERR_PTR(ret);
6966 	}
6967 
6968 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6969 				    blocksize, level);
6970 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6971 
6972 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6973 		if (parent == 0)
6974 			parent = ins.objectid;
6975 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6976 	} else
6977 		BUG_ON(parent > 0);
6978 
6979 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6980 		struct btrfs_delayed_extent_op *extent_op;
6981 		extent_op = btrfs_alloc_delayed_extent_op();
6982 		BUG_ON(!extent_op); /* -ENOMEM */
6983 		if (key)
6984 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6985 		else
6986 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6987 		extent_op->flags_to_set = flags;
6988 		if (skinny_metadata)
6989 			extent_op->update_key = 0;
6990 		else
6991 			extent_op->update_key = 1;
6992 		extent_op->update_flags = 1;
6993 		extent_op->is_data = 0;
6994 		extent_op->level = level;
6995 
6996 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6997 					ins.objectid,
6998 					ins.offset, parent, root_objectid,
6999 					level, BTRFS_ADD_DELAYED_EXTENT,
7000 					extent_op, 0);
7001 		BUG_ON(ret); /* -ENOMEM */
7002 	}
7003 	return buf;
7004 }
7005 
7006 struct walk_control {
7007 	u64 refs[BTRFS_MAX_LEVEL];
7008 	u64 flags[BTRFS_MAX_LEVEL];
7009 	struct btrfs_key update_progress;
7010 	int stage;
7011 	int level;
7012 	int shared_level;
7013 	int update_ref;
7014 	int keep_locks;
7015 	int reada_slot;
7016 	int reada_count;
7017 	int for_reloc;
7018 };
7019 
7020 #define DROP_REFERENCE	1
7021 #define UPDATE_BACKREF	2
7022 
7023 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7024 				     struct btrfs_root *root,
7025 				     struct walk_control *wc,
7026 				     struct btrfs_path *path)
7027 {
7028 	u64 bytenr;
7029 	u64 generation;
7030 	u64 refs;
7031 	u64 flags;
7032 	u32 nritems;
7033 	u32 blocksize;
7034 	struct btrfs_key key;
7035 	struct extent_buffer *eb;
7036 	int ret;
7037 	int slot;
7038 	int nread = 0;
7039 
7040 	if (path->slots[wc->level] < wc->reada_slot) {
7041 		wc->reada_count = wc->reada_count * 2 / 3;
7042 		wc->reada_count = max(wc->reada_count, 2);
7043 	} else {
7044 		wc->reada_count = wc->reada_count * 3 / 2;
7045 		wc->reada_count = min_t(int, wc->reada_count,
7046 					BTRFS_NODEPTRS_PER_BLOCK(root));
7047 	}
7048 
7049 	eb = path->nodes[wc->level];
7050 	nritems = btrfs_header_nritems(eb);
7051 	blocksize = btrfs_level_size(root, wc->level - 1);
7052 
7053 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7054 		if (nread >= wc->reada_count)
7055 			break;
7056 
7057 		cond_resched();
7058 		bytenr = btrfs_node_blockptr(eb, slot);
7059 		generation = btrfs_node_ptr_generation(eb, slot);
7060 
7061 		if (slot == path->slots[wc->level])
7062 			goto reada;
7063 
7064 		if (wc->stage == UPDATE_BACKREF &&
7065 		    generation <= root->root_key.offset)
7066 			continue;
7067 
7068 		/* We don't lock the tree block, it's OK to be racy here */
7069 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7070 					       wc->level - 1, 1, &refs,
7071 					       &flags);
7072 		/* We don't care about errors in readahead. */
7073 		if (ret < 0)
7074 			continue;
7075 		BUG_ON(refs == 0);
7076 
7077 		if (wc->stage == DROP_REFERENCE) {
7078 			if (refs == 1)
7079 				goto reada;
7080 
7081 			if (wc->level == 1 &&
7082 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7083 				continue;
7084 			if (!wc->update_ref ||
7085 			    generation <= root->root_key.offset)
7086 				continue;
7087 			btrfs_node_key_to_cpu(eb, &key, slot);
7088 			ret = btrfs_comp_cpu_keys(&key,
7089 						  &wc->update_progress);
7090 			if (ret < 0)
7091 				continue;
7092 		} else {
7093 			if (wc->level == 1 &&
7094 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7095 				continue;
7096 		}
7097 reada:
7098 		ret = readahead_tree_block(root, bytenr, blocksize,
7099 					   generation);
7100 		if (ret)
7101 			break;
7102 		nread++;
7103 	}
7104 	wc->reada_slot = slot;
7105 }
7106 
7107 /*
7108  * helper to process tree block while walking down the tree.
7109  *
7110  * when wc->stage == UPDATE_BACKREF, this function updates
7111  * back refs for pointers in the block.
7112  *
7113  * NOTE: return value 1 means we should stop walking down.
7114  */
7115 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7116 				   struct btrfs_root *root,
7117 				   struct btrfs_path *path,
7118 				   struct walk_control *wc, int lookup_info)
7119 {
7120 	int level = wc->level;
7121 	struct extent_buffer *eb = path->nodes[level];
7122 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7123 	int ret;
7124 
7125 	if (wc->stage == UPDATE_BACKREF &&
7126 	    btrfs_header_owner(eb) != root->root_key.objectid)
7127 		return 1;
7128 
7129 	/*
7130 	 * when reference count of tree block is 1, it won't increase
7131 	 * again. once full backref flag is set, we never clear it.
7132 	 */
7133 	if (lookup_info &&
7134 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7135 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7136 		BUG_ON(!path->locks[level]);
7137 		ret = btrfs_lookup_extent_info(trans, root,
7138 					       eb->start, level, 1,
7139 					       &wc->refs[level],
7140 					       &wc->flags[level]);
7141 		BUG_ON(ret == -ENOMEM);
7142 		if (ret)
7143 			return ret;
7144 		BUG_ON(wc->refs[level] == 0);
7145 	}
7146 
7147 	if (wc->stage == DROP_REFERENCE) {
7148 		if (wc->refs[level] > 1)
7149 			return 1;
7150 
7151 		if (path->locks[level] && !wc->keep_locks) {
7152 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7153 			path->locks[level] = 0;
7154 		}
7155 		return 0;
7156 	}
7157 
7158 	/* wc->stage == UPDATE_BACKREF */
7159 	if (!(wc->flags[level] & flag)) {
7160 		BUG_ON(!path->locks[level]);
7161 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7162 		BUG_ON(ret); /* -ENOMEM */
7163 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7164 		BUG_ON(ret); /* -ENOMEM */
7165 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7166 						  eb->len, flag,
7167 						  btrfs_header_level(eb), 0);
7168 		BUG_ON(ret); /* -ENOMEM */
7169 		wc->flags[level] |= flag;
7170 	}
7171 
7172 	/*
7173 	 * the block is shared by multiple trees, so it's not good to
7174 	 * keep the tree lock
7175 	 */
7176 	if (path->locks[level] && level > 0) {
7177 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7178 		path->locks[level] = 0;
7179 	}
7180 	return 0;
7181 }
7182 
7183 /*
7184  * helper to process tree block pointer.
7185  *
7186  * when wc->stage == DROP_REFERENCE, this function checks
7187  * reference count of the block pointed to. if the block
7188  * is shared and we need update back refs for the subtree
7189  * rooted at the block, this function changes wc->stage to
7190  * UPDATE_BACKREF. if the block is shared and there is no
7191  * need to update back, this function drops the reference
7192  * to the block.
7193  *
7194  * NOTE: return value 1 means we should stop walking down.
7195  */
7196 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7197 				 struct btrfs_root *root,
7198 				 struct btrfs_path *path,
7199 				 struct walk_control *wc, int *lookup_info)
7200 {
7201 	u64 bytenr;
7202 	u64 generation;
7203 	u64 parent;
7204 	u32 blocksize;
7205 	struct btrfs_key key;
7206 	struct extent_buffer *next;
7207 	int level = wc->level;
7208 	int reada = 0;
7209 	int ret = 0;
7210 
7211 	generation = btrfs_node_ptr_generation(path->nodes[level],
7212 					       path->slots[level]);
7213 	/*
7214 	 * if the lower level block was created before the snapshot
7215 	 * was created, we know there is no need to update back refs
7216 	 * for the subtree
7217 	 */
7218 	if (wc->stage == UPDATE_BACKREF &&
7219 	    generation <= root->root_key.offset) {
7220 		*lookup_info = 1;
7221 		return 1;
7222 	}
7223 
7224 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7225 	blocksize = btrfs_level_size(root, level - 1);
7226 
7227 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7228 	if (!next) {
7229 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7230 		if (!next)
7231 			return -ENOMEM;
7232 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7233 					       level - 1);
7234 		reada = 1;
7235 	}
7236 	btrfs_tree_lock(next);
7237 	btrfs_set_lock_blocking(next);
7238 
7239 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7240 				       &wc->refs[level - 1],
7241 				       &wc->flags[level - 1]);
7242 	if (ret < 0) {
7243 		btrfs_tree_unlock(next);
7244 		return ret;
7245 	}
7246 
7247 	if (unlikely(wc->refs[level - 1] == 0)) {
7248 		btrfs_err(root->fs_info, "Missing references.");
7249 		BUG();
7250 	}
7251 	*lookup_info = 0;
7252 
7253 	if (wc->stage == DROP_REFERENCE) {
7254 		if (wc->refs[level - 1] > 1) {
7255 			if (level == 1 &&
7256 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7257 				goto skip;
7258 
7259 			if (!wc->update_ref ||
7260 			    generation <= root->root_key.offset)
7261 				goto skip;
7262 
7263 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7264 					      path->slots[level]);
7265 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7266 			if (ret < 0)
7267 				goto skip;
7268 
7269 			wc->stage = UPDATE_BACKREF;
7270 			wc->shared_level = level - 1;
7271 		}
7272 	} else {
7273 		if (level == 1 &&
7274 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7275 			goto skip;
7276 	}
7277 
7278 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7279 		btrfs_tree_unlock(next);
7280 		free_extent_buffer(next);
7281 		next = NULL;
7282 		*lookup_info = 1;
7283 	}
7284 
7285 	if (!next) {
7286 		if (reada && level == 1)
7287 			reada_walk_down(trans, root, wc, path);
7288 		next = read_tree_block(root, bytenr, blocksize, generation);
7289 		if (!next || !extent_buffer_uptodate(next)) {
7290 			free_extent_buffer(next);
7291 			return -EIO;
7292 		}
7293 		btrfs_tree_lock(next);
7294 		btrfs_set_lock_blocking(next);
7295 	}
7296 
7297 	level--;
7298 	BUG_ON(level != btrfs_header_level(next));
7299 	path->nodes[level] = next;
7300 	path->slots[level] = 0;
7301 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7302 	wc->level = level;
7303 	if (wc->level == 1)
7304 		wc->reada_slot = 0;
7305 	return 0;
7306 skip:
7307 	wc->refs[level - 1] = 0;
7308 	wc->flags[level - 1] = 0;
7309 	if (wc->stage == DROP_REFERENCE) {
7310 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7311 			parent = path->nodes[level]->start;
7312 		} else {
7313 			BUG_ON(root->root_key.objectid !=
7314 			       btrfs_header_owner(path->nodes[level]));
7315 			parent = 0;
7316 		}
7317 
7318 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7319 				root->root_key.objectid, level - 1, 0, 0);
7320 		BUG_ON(ret); /* -ENOMEM */
7321 	}
7322 	btrfs_tree_unlock(next);
7323 	free_extent_buffer(next);
7324 	*lookup_info = 1;
7325 	return 1;
7326 }
7327 
7328 /*
7329  * helper to process tree block while walking up the tree.
7330  *
7331  * when wc->stage == DROP_REFERENCE, this function drops
7332  * reference count on the block.
7333  *
7334  * when wc->stage == UPDATE_BACKREF, this function changes
7335  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7336  * to UPDATE_BACKREF previously while processing the block.
7337  *
7338  * NOTE: return value 1 means we should stop walking up.
7339  */
7340 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7341 				 struct btrfs_root *root,
7342 				 struct btrfs_path *path,
7343 				 struct walk_control *wc)
7344 {
7345 	int ret;
7346 	int level = wc->level;
7347 	struct extent_buffer *eb = path->nodes[level];
7348 	u64 parent = 0;
7349 
7350 	if (wc->stage == UPDATE_BACKREF) {
7351 		BUG_ON(wc->shared_level < level);
7352 		if (level < wc->shared_level)
7353 			goto out;
7354 
7355 		ret = find_next_key(path, level + 1, &wc->update_progress);
7356 		if (ret > 0)
7357 			wc->update_ref = 0;
7358 
7359 		wc->stage = DROP_REFERENCE;
7360 		wc->shared_level = -1;
7361 		path->slots[level] = 0;
7362 
7363 		/*
7364 		 * check reference count again if the block isn't locked.
7365 		 * we should start walking down the tree again if reference
7366 		 * count is one.
7367 		 */
7368 		if (!path->locks[level]) {
7369 			BUG_ON(level == 0);
7370 			btrfs_tree_lock(eb);
7371 			btrfs_set_lock_blocking(eb);
7372 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7373 
7374 			ret = btrfs_lookup_extent_info(trans, root,
7375 						       eb->start, level, 1,
7376 						       &wc->refs[level],
7377 						       &wc->flags[level]);
7378 			if (ret < 0) {
7379 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7380 				path->locks[level] = 0;
7381 				return ret;
7382 			}
7383 			BUG_ON(wc->refs[level] == 0);
7384 			if (wc->refs[level] == 1) {
7385 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7386 				path->locks[level] = 0;
7387 				return 1;
7388 			}
7389 		}
7390 	}
7391 
7392 	/* wc->stage == DROP_REFERENCE */
7393 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7394 
7395 	if (wc->refs[level] == 1) {
7396 		if (level == 0) {
7397 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7398 				ret = btrfs_dec_ref(trans, root, eb, 1,
7399 						    wc->for_reloc);
7400 			else
7401 				ret = btrfs_dec_ref(trans, root, eb, 0,
7402 						    wc->for_reloc);
7403 			BUG_ON(ret); /* -ENOMEM */
7404 		}
7405 		/* make block locked assertion in clean_tree_block happy */
7406 		if (!path->locks[level] &&
7407 		    btrfs_header_generation(eb) == trans->transid) {
7408 			btrfs_tree_lock(eb);
7409 			btrfs_set_lock_blocking(eb);
7410 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7411 		}
7412 		clean_tree_block(trans, root, eb);
7413 	}
7414 
7415 	if (eb == root->node) {
7416 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7417 			parent = eb->start;
7418 		else
7419 			BUG_ON(root->root_key.objectid !=
7420 			       btrfs_header_owner(eb));
7421 	} else {
7422 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7423 			parent = path->nodes[level + 1]->start;
7424 		else
7425 			BUG_ON(root->root_key.objectid !=
7426 			       btrfs_header_owner(path->nodes[level + 1]));
7427 	}
7428 
7429 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7430 out:
7431 	wc->refs[level] = 0;
7432 	wc->flags[level] = 0;
7433 	return 0;
7434 }
7435 
7436 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7437 				   struct btrfs_root *root,
7438 				   struct btrfs_path *path,
7439 				   struct walk_control *wc)
7440 {
7441 	int level = wc->level;
7442 	int lookup_info = 1;
7443 	int ret;
7444 
7445 	while (level >= 0) {
7446 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7447 		if (ret > 0)
7448 			break;
7449 
7450 		if (level == 0)
7451 			break;
7452 
7453 		if (path->slots[level] >=
7454 		    btrfs_header_nritems(path->nodes[level]))
7455 			break;
7456 
7457 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7458 		if (ret > 0) {
7459 			path->slots[level]++;
7460 			continue;
7461 		} else if (ret < 0)
7462 			return ret;
7463 		level = wc->level;
7464 	}
7465 	return 0;
7466 }
7467 
7468 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7469 				 struct btrfs_root *root,
7470 				 struct btrfs_path *path,
7471 				 struct walk_control *wc, int max_level)
7472 {
7473 	int level = wc->level;
7474 	int ret;
7475 
7476 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7477 	while (level < max_level && path->nodes[level]) {
7478 		wc->level = level;
7479 		if (path->slots[level] + 1 <
7480 		    btrfs_header_nritems(path->nodes[level])) {
7481 			path->slots[level]++;
7482 			return 0;
7483 		} else {
7484 			ret = walk_up_proc(trans, root, path, wc);
7485 			if (ret > 0)
7486 				return 0;
7487 
7488 			if (path->locks[level]) {
7489 				btrfs_tree_unlock_rw(path->nodes[level],
7490 						     path->locks[level]);
7491 				path->locks[level] = 0;
7492 			}
7493 			free_extent_buffer(path->nodes[level]);
7494 			path->nodes[level] = NULL;
7495 			level++;
7496 		}
7497 	}
7498 	return 1;
7499 }
7500 
7501 /*
7502  * drop a subvolume tree.
7503  *
7504  * this function traverses the tree freeing any blocks that only
7505  * referenced by the tree.
7506  *
7507  * when a shared tree block is found. this function decreases its
7508  * reference count by one. if update_ref is true, this function
7509  * also make sure backrefs for the shared block and all lower level
7510  * blocks are properly updated.
7511  *
7512  * If called with for_reloc == 0, may exit early with -EAGAIN
7513  */
7514 int btrfs_drop_snapshot(struct btrfs_root *root,
7515 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7516 			 int for_reloc)
7517 {
7518 	struct btrfs_path *path;
7519 	struct btrfs_trans_handle *trans;
7520 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7521 	struct btrfs_root_item *root_item = &root->root_item;
7522 	struct walk_control *wc;
7523 	struct btrfs_key key;
7524 	int err = 0;
7525 	int ret;
7526 	int level;
7527 	bool root_dropped = false;
7528 
7529 	path = btrfs_alloc_path();
7530 	if (!path) {
7531 		err = -ENOMEM;
7532 		goto out;
7533 	}
7534 
7535 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7536 	if (!wc) {
7537 		btrfs_free_path(path);
7538 		err = -ENOMEM;
7539 		goto out;
7540 	}
7541 
7542 	trans = btrfs_start_transaction(tree_root, 0);
7543 	if (IS_ERR(trans)) {
7544 		err = PTR_ERR(trans);
7545 		goto out_free;
7546 	}
7547 
7548 	if (block_rsv)
7549 		trans->block_rsv = block_rsv;
7550 
7551 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7552 		level = btrfs_header_level(root->node);
7553 		path->nodes[level] = btrfs_lock_root_node(root);
7554 		btrfs_set_lock_blocking(path->nodes[level]);
7555 		path->slots[level] = 0;
7556 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7557 		memset(&wc->update_progress, 0,
7558 		       sizeof(wc->update_progress));
7559 	} else {
7560 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7561 		memcpy(&wc->update_progress, &key,
7562 		       sizeof(wc->update_progress));
7563 
7564 		level = root_item->drop_level;
7565 		BUG_ON(level == 0);
7566 		path->lowest_level = level;
7567 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7568 		path->lowest_level = 0;
7569 		if (ret < 0) {
7570 			err = ret;
7571 			goto out_end_trans;
7572 		}
7573 		WARN_ON(ret > 0);
7574 
7575 		/*
7576 		 * unlock our path, this is safe because only this
7577 		 * function is allowed to delete this snapshot
7578 		 */
7579 		btrfs_unlock_up_safe(path, 0);
7580 
7581 		level = btrfs_header_level(root->node);
7582 		while (1) {
7583 			btrfs_tree_lock(path->nodes[level]);
7584 			btrfs_set_lock_blocking(path->nodes[level]);
7585 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7586 
7587 			ret = btrfs_lookup_extent_info(trans, root,
7588 						path->nodes[level]->start,
7589 						level, 1, &wc->refs[level],
7590 						&wc->flags[level]);
7591 			if (ret < 0) {
7592 				err = ret;
7593 				goto out_end_trans;
7594 			}
7595 			BUG_ON(wc->refs[level] == 0);
7596 
7597 			if (level == root_item->drop_level)
7598 				break;
7599 
7600 			btrfs_tree_unlock(path->nodes[level]);
7601 			path->locks[level] = 0;
7602 			WARN_ON(wc->refs[level] != 1);
7603 			level--;
7604 		}
7605 	}
7606 
7607 	wc->level = level;
7608 	wc->shared_level = -1;
7609 	wc->stage = DROP_REFERENCE;
7610 	wc->update_ref = update_ref;
7611 	wc->keep_locks = 0;
7612 	wc->for_reloc = for_reloc;
7613 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7614 
7615 	while (1) {
7616 
7617 		ret = walk_down_tree(trans, root, path, wc);
7618 		if (ret < 0) {
7619 			err = ret;
7620 			break;
7621 		}
7622 
7623 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7624 		if (ret < 0) {
7625 			err = ret;
7626 			break;
7627 		}
7628 
7629 		if (ret > 0) {
7630 			BUG_ON(wc->stage != DROP_REFERENCE);
7631 			break;
7632 		}
7633 
7634 		if (wc->stage == DROP_REFERENCE) {
7635 			level = wc->level;
7636 			btrfs_node_key(path->nodes[level],
7637 				       &root_item->drop_progress,
7638 				       path->slots[level]);
7639 			root_item->drop_level = level;
7640 		}
7641 
7642 		BUG_ON(wc->level == 0);
7643 		if (btrfs_should_end_transaction(trans, tree_root) ||
7644 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7645 			ret = btrfs_update_root(trans, tree_root,
7646 						&root->root_key,
7647 						root_item);
7648 			if (ret) {
7649 				btrfs_abort_transaction(trans, tree_root, ret);
7650 				err = ret;
7651 				goto out_end_trans;
7652 			}
7653 
7654 			btrfs_end_transaction_throttle(trans, tree_root);
7655 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7656 				pr_debug("btrfs: drop snapshot early exit\n");
7657 				err = -EAGAIN;
7658 				goto out_free;
7659 			}
7660 
7661 			trans = btrfs_start_transaction(tree_root, 0);
7662 			if (IS_ERR(trans)) {
7663 				err = PTR_ERR(trans);
7664 				goto out_free;
7665 			}
7666 			if (block_rsv)
7667 				trans->block_rsv = block_rsv;
7668 		}
7669 	}
7670 	btrfs_release_path(path);
7671 	if (err)
7672 		goto out_end_trans;
7673 
7674 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7675 	if (ret) {
7676 		btrfs_abort_transaction(trans, tree_root, ret);
7677 		goto out_end_trans;
7678 	}
7679 
7680 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7681 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7682 				      NULL, NULL);
7683 		if (ret < 0) {
7684 			btrfs_abort_transaction(trans, tree_root, ret);
7685 			err = ret;
7686 			goto out_end_trans;
7687 		} else if (ret > 0) {
7688 			/* if we fail to delete the orphan item this time
7689 			 * around, it'll get picked up the next time.
7690 			 *
7691 			 * The most common failure here is just -ENOENT.
7692 			 */
7693 			btrfs_del_orphan_item(trans, tree_root,
7694 					      root->root_key.objectid);
7695 		}
7696 	}
7697 
7698 	if (root->in_radix) {
7699 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7700 	} else {
7701 		free_extent_buffer(root->node);
7702 		free_extent_buffer(root->commit_root);
7703 		btrfs_put_fs_root(root);
7704 	}
7705 	root_dropped = true;
7706 out_end_trans:
7707 	btrfs_end_transaction_throttle(trans, tree_root);
7708 out_free:
7709 	kfree(wc);
7710 	btrfs_free_path(path);
7711 out:
7712 	/*
7713 	 * So if we need to stop dropping the snapshot for whatever reason we
7714 	 * need to make sure to add it back to the dead root list so that we
7715 	 * keep trying to do the work later.  This also cleans up roots if we
7716 	 * don't have it in the radix (like when we recover after a power fail
7717 	 * or unmount) so we don't leak memory.
7718 	 */
7719 	if (!for_reloc && root_dropped == false)
7720 		btrfs_add_dead_root(root);
7721 	if (err)
7722 		btrfs_std_error(root->fs_info, err);
7723 	return err;
7724 }
7725 
7726 /*
7727  * drop subtree rooted at tree block 'node'.
7728  *
7729  * NOTE: this function will unlock and release tree block 'node'
7730  * only used by relocation code
7731  */
7732 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7733 			struct btrfs_root *root,
7734 			struct extent_buffer *node,
7735 			struct extent_buffer *parent)
7736 {
7737 	struct btrfs_path *path;
7738 	struct walk_control *wc;
7739 	int level;
7740 	int parent_level;
7741 	int ret = 0;
7742 	int wret;
7743 
7744 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7745 
7746 	path = btrfs_alloc_path();
7747 	if (!path)
7748 		return -ENOMEM;
7749 
7750 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7751 	if (!wc) {
7752 		btrfs_free_path(path);
7753 		return -ENOMEM;
7754 	}
7755 
7756 	btrfs_assert_tree_locked(parent);
7757 	parent_level = btrfs_header_level(parent);
7758 	extent_buffer_get(parent);
7759 	path->nodes[parent_level] = parent;
7760 	path->slots[parent_level] = btrfs_header_nritems(parent);
7761 
7762 	btrfs_assert_tree_locked(node);
7763 	level = btrfs_header_level(node);
7764 	path->nodes[level] = node;
7765 	path->slots[level] = 0;
7766 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7767 
7768 	wc->refs[parent_level] = 1;
7769 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7770 	wc->level = level;
7771 	wc->shared_level = -1;
7772 	wc->stage = DROP_REFERENCE;
7773 	wc->update_ref = 0;
7774 	wc->keep_locks = 1;
7775 	wc->for_reloc = 1;
7776 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7777 
7778 	while (1) {
7779 		wret = walk_down_tree(trans, root, path, wc);
7780 		if (wret < 0) {
7781 			ret = wret;
7782 			break;
7783 		}
7784 
7785 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7786 		if (wret < 0)
7787 			ret = wret;
7788 		if (wret != 0)
7789 			break;
7790 	}
7791 
7792 	kfree(wc);
7793 	btrfs_free_path(path);
7794 	return ret;
7795 }
7796 
7797 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7798 {
7799 	u64 num_devices;
7800 	u64 stripped;
7801 
7802 	/*
7803 	 * if restripe for this chunk_type is on pick target profile and
7804 	 * return, otherwise do the usual balance
7805 	 */
7806 	stripped = get_restripe_target(root->fs_info, flags);
7807 	if (stripped)
7808 		return extended_to_chunk(stripped);
7809 
7810 	/*
7811 	 * we add in the count of missing devices because we want
7812 	 * to make sure that any RAID levels on a degraded FS
7813 	 * continue to be honored.
7814 	 */
7815 	num_devices = root->fs_info->fs_devices->rw_devices +
7816 		root->fs_info->fs_devices->missing_devices;
7817 
7818 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7819 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7820 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7821 
7822 	if (num_devices == 1) {
7823 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7824 		stripped = flags & ~stripped;
7825 
7826 		/* turn raid0 into single device chunks */
7827 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7828 			return stripped;
7829 
7830 		/* turn mirroring into duplication */
7831 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7832 			     BTRFS_BLOCK_GROUP_RAID10))
7833 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7834 	} else {
7835 		/* they already had raid on here, just return */
7836 		if (flags & stripped)
7837 			return flags;
7838 
7839 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7840 		stripped = flags & ~stripped;
7841 
7842 		/* switch duplicated blocks with raid1 */
7843 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7844 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7845 
7846 		/* this is drive concat, leave it alone */
7847 	}
7848 
7849 	return flags;
7850 }
7851 
7852 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7853 {
7854 	struct btrfs_space_info *sinfo = cache->space_info;
7855 	u64 num_bytes;
7856 	u64 min_allocable_bytes;
7857 	int ret = -ENOSPC;
7858 
7859 
7860 	/*
7861 	 * We need some metadata space and system metadata space for
7862 	 * allocating chunks in some corner cases until we force to set
7863 	 * it to be readonly.
7864 	 */
7865 	if ((sinfo->flags &
7866 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7867 	    !force)
7868 		min_allocable_bytes = 1 * 1024 * 1024;
7869 	else
7870 		min_allocable_bytes = 0;
7871 
7872 	spin_lock(&sinfo->lock);
7873 	spin_lock(&cache->lock);
7874 
7875 	if (cache->ro) {
7876 		ret = 0;
7877 		goto out;
7878 	}
7879 
7880 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7881 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7882 
7883 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7884 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7885 	    min_allocable_bytes <= sinfo->total_bytes) {
7886 		sinfo->bytes_readonly += num_bytes;
7887 		cache->ro = 1;
7888 		ret = 0;
7889 	}
7890 out:
7891 	spin_unlock(&cache->lock);
7892 	spin_unlock(&sinfo->lock);
7893 	return ret;
7894 }
7895 
7896 int btrfs_set_block_group_ro(struct btrfs_root *root,
7897 			     struct btrfs_block_group_cache *cache)
7898 
7899 {
7900 	struct btrfs_trans_handle *trans;
7901 	u64 alloc_flags;
7902 	int ret;
7903 
7904 	BUG_ON(cache->ro);
7905 
7906 	trans = btrfs_join_transaction(root);
7907 	if (IS_ERR(trans))
7908 		return PTR_ERR(trans);
7909 
7910 	alloc_flags = update_block_group_flags(root, cache->flags);
7911 	if (alloc_flags != cache->flags) {
7912 		ret = do_chunk_alloc(trans, root, alloc_flags,
7913 				     CHUNK_ALLOC_FORCE);
7914 		if (ret < 0)
7915 			goto out;
7916 	}
7917 
7918 	ret = set_block_group_ro(cache, 0);
7919 	if (!ret)
7920 		goto out;
7921 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7922 	ret = do_chunk_alloc(trans, root, alloc_flags,
7923 			     CHUNK_ALLOC_FORCE);
7924 	if (ret < 0)
7925 		goto out;
7926 	ret = set_block_group_ro(cache, 0);
7927 out:
7928 	btrfs_end_transaction(trans, root);
7929 	return ret;
7930 }
7931 
7932 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7933 			    struct btrfs_root *root, u64 type)
7934 {
7935 	u64 alloc_flags = get_alloc_profile(root, type);
7936 	return do_chunk_alloc(trans, root, alloc_flags,
7937 			      CHUNK_ALLOC_FORCE);
7938 }
7939 
7940 /*
7941  * helper to account the unused space of all the readonly block group in the
7942  * list. takes mirrors into account.
7943  */
7944 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7945 {
7946 	struct btrfs_block_group_cache *block_group;
7947 	u64 free_bytes = 0;
7948 	int factor;
7949 
7950 	list_for_each_entry(block_group, groups_list, list) {
7951 		spin_lock(&block_group->lock);
7952 
7953 		if (!block_group->ro) {
7954 			spin_unlock(&block_group->lock);
7955 			continue;
7956 		}
7957 
7958 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7959 					  BTRFS_BLOCK_GROUP_RAID10 |
7960 					  BTRFS_BLOCK_GROUP_DUP))
7961 			factor = 2;
7962 		else
7963 			factor = 1;
7964 
7965 		free_bytes += (block_group->key.offset -
7966 			       btrfs_block_group_used(&block_group->item)) *
7967 			       factor;
7968 
7969 		spin_unlock(&block_group->lock);
7970 	}
7971 
7972 	return free_bytes;
7973 }
7974 
7975 /*
7976  * helper to account the unused space of all the readonly block group in the
7977  * space_info. takes mirrors into account.
7978  */
7979 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7980 {
7981 	int i;
7982 	u64 free_bytes = 0;
7983 
7984 	spin_lock(&sinfo->lock);
7985 
7986 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7987 		if (!list_empty(&sinfo->block_groups[i]))
7988 			free_bytes += __btrfs_get_ro_block_group_free_space(
7989 						&sinfo->block_groups[i]);
7990 
7991 	spin_unlock(&sinfo->lock);
7992 
7993 	return free_bytes;
7994 }
7995 
7996 void btrfs_set_block_group_rw(struct btrfs_root *root,
7997 			      struct btrfs_block_group_cache *cache)
7998 {
7999 	struct btrfs_space_info *sinfo = cache->space_info;
8000 	u64 num_bytes;
8001 
8002 	BUG_ON(!cache->ro);
8003 
8004 	spin_lock(&sinfo->lock);
8005 	spin_lock(&cache->lock);
8006 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8007 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8008 	sinfo->bytes_readonly -= num_bytes;
8009 	cache->ro = 0;
8010 	spin_unlock(&cache->lock);
8011 	spin_unlock(&sinfo->lock);
8012 }
8013 
8014 /*
8015  * checks to see if its even possible to relocate this block group.
8016  *
8017  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8018  * ok to go ahead and try.
8019  */
8020 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8021 {
8022 	struct btrfs_block_group_cache *block_group;
8023 	struct btrfs_space_info *space_info;
8024 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8025 	struct btrfs_device *device;
8026 	struct btrfs_trans_handle *trans;
8027 	u64 min_free;
8028 	u64 dev_min = 1;
8029 	u64 dev_nr = 0;
8030 	u64 target;
8031 	int index;
8032 	int full = 0;
8033 	int ret = 0;
8034 
8035 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8036 
8037 	/* odd, couldn't find the block group, leave it alone */
8038 	if (!block_group)
8039 		return -1;
8040 
8041 	min_free = btrfs_block_group_used(&block_group->item);
8042 
8043 	/* no bytes used, we're good */
8044 	if (!min_free)
8045 		goto out;
8046 
8047 	space_info = block_group->space_info;
8048 	spin_lock(&space_info->lock);
8049 
8050 	full = space_info->full;
8051 
8052 	/*
8053 	 * if this is the last block group we have in this space, we can't
8054 	 * relocate it unless we're able to allocate a new chunk below.
8055 	 *
8056 	 * Otherwise, we need to make sure we have room in the space to handle
8057 	 * all of the extents from this block group.  If we can, we're good
8058 	 */
8059 	if ((space_info->total_bytes != block_group->key.offset) &&
8060 	    (space_info->bytes_used + space_info->bytes_reserved +
8061 	     space_info->bytes_pinned + space_info->bytes_readonly +
8062 	     min_free < space_info->total_bytes)) {
8063 		spin_unlock(&space_info->lock);
8064 		goto out;
8065 	}
8066 	spin_unlock(&space_info->lock);
8067 
8068 	/*
8069 	 * ok we don't have enough space, but maybe we have free space on our
8070 	 * devices to allocate new chunks for relocation, so loop through our
8071 	 * alloc devices and guess if we have enough space.  if this block
8072 	 * group is going to be restriped, run checks against the target
8073 	 * profile instead of the current one.
8074 	 */
8075 	ret = -1;
8076 
8077 	/*
8078 	 * index:
8079 	 *      0: raid10
8080 	 *      1: raid1
8081 	 *      2: dup
8082 	 *      3: raid0
8083 	 *      4: single
8084 	 */
8085 	target = get_restripe_target(root->fs_info, block_group->flags);
8086 	if (target) {
8087 		index = __get_raid_index(extended_to_chunk(target));
8088 	} else {
8089 		/*
8090 		 * this is just a balance, so if we were marked as full
8091 		 * we know there is no space for a new chunk
8092 		 */
8093 		if (full)
8094 			goto out;
8095 
8096 		index = get_block_group_index(block_group);
8097 	}
8098 
8099 	if (index == BTRFS_RAID_RAID10) {
8100 		dev_min = 4;
8101 		/* Divide by 2 */
8102 		min_free >>= 1;
8103 	} else if (index == BTRFS_RAID_RAID1) {
8104 		dev_min = 2;
8105 	} else if (index == BTRFS_RAID_DUP) {
8106 		/* Multiply by 2 */
8107 		min_free <<= 1;
8108 	} else if (index == BTRFS_RAID_RAID0) {
8109 		dev_min = fs_devices->rw_devices;
8110 		do_div(min_free, dev_min);
8111 	}
8112 
8113 	/* We need to do this so that we can look at pending chunks */
8114 	trans = btrfs_join_transaction(root);
8115 	if (IS_ERR(trans)) {
8116 		ret = PTR_ERR(trans);
8117 		goto out;
8118 	}
8119 
8120 	mutex_lock(&root->fs_info->chunk_mutex);
8121 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8122 		u64 dev_offset;
8123 
8124 		/*
8125 		 * check to make sure we can actually find a chunk with enough
8126 		 * space to fit our block group in.
8127 		 */
8128 		if (device->total_bytes > device->bytes_used + min_free &&
8129 		    !device->is_tgtdev_for_dev_replace) {
8130 			ret = find_free_dev_extent(trans, device, min_free,
8131 						   &dev_offset, NULL);
8132 			if (!ret)
8133 				dev_nr++;
8134 
8135 			if (dev_nr >= dev_min)
8136 				break;
8137 
8138 			ret = -1;
8139 		}
8140 	}
8141 	mutex_unlock(&root->fs_info->chunk_mutex);
8142 	btrfs_end_transaction(trans, root);
8143 out:
8144 	btrfs_put_block_group(block_group);
8145 	return ret;
8146 }
8147 
8148 static int find_first_block_group(struct btrfs_root *root,
8149 		struct btrfs_path *path, struct btrfs_key *key)
8150 {
8151 	int ret = 0;
8152 	struct btrfs_key found_key;
8153 	struct extent_buffer *leaf;
8154 	int slot;
8155 
8156 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8157 	if (ret < 0)
8158 		goto out;
8159 
8160 	while (1) {
8161 		slot = path->slots[0];
8162 		leaf = path->nodes[0];
8163 		if (slot >= btrfs_header_nritems(leaf)) {
8164 			ret = btrfs_next_leaf(root, path);
8165 			if (ret == 0)
8166 				continue;
8167 			if (ret < 0)
8168 				goto out;
8169 			break;
8170 		}
8171 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8172 
8173 		if (found_key.objectid >= key->objectid &&
8174 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8175 			ret = 0;
8176 			goto out;
8177 		}
8178 		path->slots[0]++;
8179 	}
8180 out:
8181 	return ret;
8182 }
8183 
8184 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8185 {
8186 	struct btrfs_block_group_cache *block_group;
8187 	u64 last = 0;
8188 
8189 	while (1) {
8190 		struct inode *inode;
8191 
8192 		block_group = btrfs_lookup_first_block_group(info, last);
8193 		while (block_group) {
8194 			spin_lock(&block_group->lock);
8195 			if (block_group->iref)
8196 				break;
8197 			spin_unlock(&block_group->lock);
8198 			block_group = next_block_group(info->tree_root,
8199 						       block_group);
8200 		}
8201 		if (!block_group) {
8202 			if (last == 0)
8203 				break;
8204 			last = 0;
8205 			continue;
8206 		}
8207 
8208 		inode = block_group->inode;
8209 		block_group->iref = 0;
8210 		block_group->inode = NULL;
8211 		spin_unlock(&block_group->lock);
8212 		iput(inode);
8213 		last = block_group->key.objectid + block_group->key.offset;
8214 		btrfs_put_block_group(block_group);
8215 	}
8216 }
8217 
8218 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8219 {
8220 	struct btrfs_block_group_cache *block_group;
8221 	struct btrfs_space_info *space_info;
8222 	struct btrfs_caching_control *caching_ctl;
8223 	struct rb_node *n;
8224 
8225 	down_write(&info->extent_commit_sem);
8226 	while (!list_empty(&info->caching_block_groups)) {
8227 		caching_ctl = list_entry(info->caching_block_groups.next,
8228 					 struct btrfs_caching_control, list);
8229 		list_del(&caching_ctl->list);
8230 		put_caching_control(caching_ctl);
8231 	}
8232 	up_write(&info->extent_commit_sem);
8233 
8234 	spin_lock(&info->block_group_cache_lock);
8235 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8236 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8237 				       cache_node);
8238 		rb_erase(&block_group->cache_node,
8239 			 &info->block_group_cache_tree);
8240 		spin_unlock(&info->block_group_cache_lock);
8241 
8242 		down_write(&block_group->space_info->groups_sem);
8243 		list_del(&block_group->list);
8244 		up_write(&block_group->space_info->groups_sem);
8245 
8246 		if (block_group->cached == BTRFS_CACHE_STARTED)
8247 			wait_block_group_cache_done(block_group);
8248 
8249 		/*
8250 		 * We haven't cached this block group, which means we could
8251 		 * possibly have excluded extents on this block group.
8252 		 */
8253 		if (block_group->cached == BTRFS_CACHE_NO ||
8254 		    block_group->cached == BTRFS_CACHE_ERROR)
8255 			free_excluded_extents(info->extent_root, block_group);
8256 
8257 		btrfs_remove_free_space_cache(block_group);
8258 		btrfs_put_block_group(block_group);
8259 
8260 		spin_lock(&info->block_group_cache_lock);
8261 	}
8262 	spin_unlock(&info->block_group_cache_lock);
8263 
8264 	/* now that all the block groups are freed, go through and
8265 	 * free all the space_info structs.  This is only called during
8266 	 * the final stages of unmount, and so we know nobody is
8267 	 * using them.  We call synchronize_rcu() once before we start,
8268 	 * just to be on the safe side.
8269 	 */
8270 	synchronize_rcu();
8271 
8272 	release_global_block_rsv(info);
8273 
8274 	while(!list_empty(&info->space_info)) {
8275 		space_info = list_entry(info->space_info.next,
8276 					struct btrfs_space_info,
8277 					list);
8278 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8279 			if (space_info->bytes_pinned > 0 ||
8280 			    space_info->bytes_reserved > 0 ||
8281 			    space_info->bytes_may_use > 0) {
8282 				WARN_ON(1);
8283 				dump_space_info(space_info, 0, 0);
8284 			}
8285 		}
8286 		percpu_counter_destroy(&space_info->total_bytes_pinned);
8287 		list_del(&space_info->list);
8288 		kfree(space_info);
8289 	}
8290 	return 0;
8291 }
8292 
8293 static void __link_block_group(struct btrfs_space_info *space_info,
8294 			       struct btrfs_block_group_cache *cache)
8295 {
8296 	int index = get_block_group_index(cache);
8297 
8298 	down_write(&space_info->groups_sem);
8299 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8300 	up_write(&space_info->groups_sem);
8301 }
8302 
8303 int btrfs_read_block_groups(struct btrfs_root *root)
8304 {
8305 	struct btrfs_path *path;
8306 	int ret;
8307 	struct btrfs_block_group_cache *cache;
8308 	struct btrfs_fs_info *info = root->fs_info;
8309 	struct btrfs_space_info *space_info;
8310 	struct btrfs_key key;
8311 	struct btrfs_key found_key;
8312 	struct extent_buffer *leaf;
8313 	int need_clear = 0;
8314 	u64 cache_gen;
8315 
8316 	root = info->extent_root;
8317 	key.objectid = 0;
8318 	key.offset = 0;
8319 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8320 	path = btrfs_alloc_path();
8321 	if (!path)
8322 		return -ENOMEM;
8323 	path->reada = 1;
8324 
8325 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8326 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8327 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8328 		need_clear = 1;
8329 	if (btrfs_test_opt(root, CLEAR_CACHE))
8330 		need_clear = 1;
8331 
8332 	while (1) {
8333 		ret = find_first_block_group(root, path, &key);
8334 		if (ret > 0)
8335 			break;
8336 		if (ret != 0)
8337 			goto error;
8338 		leaf = path->nodes[0];
8339 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8340 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
8341 		if (!cache) {
8342 			ret = -ENOMEM;
8343 			goto error;
8344 		}
8345 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8346 						GFP_NOFS);
8347 		if (!cache->free_space_ctl) {
8348 			kfree(cache);
8349 			ret = -ENOMEM;
8350 			goto error;
8351 		}
8352 
8353 		atomic_set(&cache->count, 1);
8354 		spin_lock_init(&cache->lock);
8355 		cache->fs_info = info;
8356 		INIT_LIST_HEAD(&cache->list);
8357 		INIT_LIST_HEAD(&cache->cluster_list);
8358 
8359 		if (need_clear) {
8360 			/*
8361 			 * When we mount with old space cache, we need to
8362 			 * set BTRFS_DC_CLEAR and set dirty flag.
8363 			 *
8364 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8365 			 *    truncate the old free space cache inode and
8366 			 *    setup a new one.
8367 			 * b) Setting 'dirty flag' makes sure that we flush
8368 			 *    the new space cache info onto disk.
8369 			 */
8370 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8371 			if (btrfs_test_opt(root, SPACE_CACHE))
8372 				cache->dirty = 1;
8373 		}
8374 
8375 		read_extent_buffer(leaf, &cache->item,
8376 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8377 				   sizeof(cache->item));
8378 		memcpy(&cache->key, &found_key, sizeof(found_key));
8379 
8380 		key.objectid = found_key.objectid + found_key.offset;
8381 		btrfs_release_path(path);
8382 		cache->flags = btrfs_block_group_flags(&cache->item);
8383 		cache->sectorsize = root->sectorsize;
8384 		cache->full_stripe_len = btrfs_full_stripe_len(root,
8385 					       &root->fs_info->mapping_tree,
8386 					       found_key.objectid);
8387 		btrfs_init_free_space_ctl(cache);
8388 
8389 		/*
8390 		 * We need to exclude the super stripes now so that the space
8391 		 * info has super bytes accounted for, otherwise we'll think
8392 		 * we have more space than we actually do.
8393 		 */
8394 		ret = exclude_super_stripes(root, cache);
8395 		if (ret) {
8396 			/*
8397 			 * We may have excluded something, so call this just in
8398 			 * case.
8399 			 */
8400 			free_excluded_extents(root, cache);
8401 			kfree(cache->free_space_ctl);
8402 			kfree(cache);
8403 			goto error;
8404 		}
8405 
8406 		/*
8407 		 * check for two cases, either we are full, and therefore
8408 		 * don't need to bother with the caching work since we won't
8409 		 * find any space, or we are empty, and we can just add all
8410 		 * the space in and be done with it.  This saves us _alot_ of
8411 		 * time, particularly in the full case.
8412 		 */
8413 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8414 			cache->last_byte_to_unpin = (u64)-1;
8415 			cache->cached = BTRFS_CACHE_FINISHED;
8416 			free_excluded_extents(root, cache);
8417 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8418 			cache->last_byte_to_unpin = (u64)-1;
8419 			cache->cached = BTRFS_CACHE_FINISHED;
8420 			add_new_free_space(cache, root->fs_info,
8421 					   found_key.objectid,
8422 					   found_key.objectid +
8423 					   found_key.offset);
8424 			free_excluded_extents(root, cache);
8425 		}
8426 
8427 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8428 		if (ret) {
8429 			btrfs_remove_free_space_cache(cache);
8430 			btrfs_put_block_group(cache);
8431 			goto error;
8432 		}
8433 
8434 		ret = update_space_info(info, cache->flags, found_key.offset,
8435 					btrfs_block_group_used(&cache->item),
8436 					&space_info);
8437 		if (ret) {
8438 			btrfs_remove_free_space_cache(cache);
8439 			spin_lock(&info->block_group_cache_lock);
8440 			rb_erase(&cache->cache_node,
8441 				 &info->block_group_cache_tree);
8442 			spin_unlock(&info->block_group_cache_lock);
8443 			btrfs_put_block_group(cache);
8444 			goto error;
8445 		}
8446 
8447 		cache->space_info = space_info;
8448 		spin_lock(&cache->space_info->lock);
8449 		cache->space_info->bytes_readonly += cache->bytes_super;
8450 		spin_unlock(&cache->space_info->lock);
8451 
8452 		__link_block_group(space_info, cache);
8453 
8454 		set_avail_alloc_bits(root->fs_info, cache->flags);
8455 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8456 			set_block_group_ro(cache, 1);
8457 	}
8458 
8459 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8460 		if (!(get_alloc_profile(root, space_info->flags) &
8461 		      (BTRFS_BLOCK_GROUP_RAID10 |
8462 		       BTRFS_BLOCK_GROUP_RAID1 |
8463 		       BTRFS_BLOCK_GROUP_RAID5 |
8464 		       BTRFS_BLOCK_GROUP_RAID6 |
8465 		       BTRFS_BLOCK_GROUP_DUP)))
8466 			continue;
8467 		/*
8468 		 * avoid allocating from un-mirrored block group if there are
8469 		 * mirrored block groups.
8470 		 */
8471 		list_for_each_entry(cache,
8472 				&space_info->block_groups[BTRFS_RAID_RAID0],
8473 				list)
8474 			set_block_group_ro(cache, 1);
8475 		list_for_each_entry(cache,
8476 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8477 				list)
8478 			set_block_group_ro(cache, 1);
8479 	}
8480 
8481 	init_global_block_rsv(info);
8482 	ret = 0;
8483 error:
8484 	btrfs_free_path(path);
8485 	return ret;
8486 }
8487 
8488 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8489 				       struct btrfs_root *root)
8490 {
8491 	struct btrfs_block_group_cache *block_group, *tmp;
8492 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8493 	struct btrfs_block_group_item item;
8494 	struct btrfs_key key;
8495 	int ret = 0;
8496 
8497 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8498 				 new_bg_list) {
8499 		list_del_init(&block_group->new_bg_list);
8500 
8501 		if (ret)
8502 			continue;
8503 
8504 		spin_lock(&block_group->lock);
8505 		memcpy(&item, &block_group->item, sizeof(item));
8506 		memcpy(&key, &block_group->key, sizeof(key));
8507 		spin_unlock(&block_group->lock);
8508 
8509 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8510 					sizeof(item));
8511 		if (ret)
8512 			btrfs_abort_transaction(trans, extent_root, ret);
8513 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8514 					       key.objectid, key.offset);
8515 		if (ret)
8516 			btrfs_abort_transaction(trans, extent_root, ret);
8517 	}
8518 }
8519 
8520 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8521 			   struct btrfs_root *root, u64 bytes_used,
8522 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8523 			   u64 size)
8524 {
8525 	int ret;
8526 	struct btrfs_root *extent_root;
8527 	struct btrfs_block_group_cache *cache;
8528 
8529 	extent_root = root->fs_info->extent_root;
8530 
8531 	root->fs_info->last_trans_log_full_commit = trans->transid;
8532 
8533 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8534 	if (!cache)
8535 		return -ENOMEM;
8536 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8537 					GFP_NOFS);
8538 	if (!cache->free_space_ctl) {
8539 		kfree(cache);
8540 		return -ENOMEM;
8541 	}
8542 
8543 	cache->key.objectid = chunk_offset;
8544 	cache->key.offset = size;
8545 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8546 	cache->sectorsize = root->sectorsize;
8547 	cache->fs_info = root->fs_info;
8548 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8549 					       &root->fs_info->mapping_tree,
8550 					       chunk_offset);
8551 
8552 	atomic_set(&cache->count, 1);
8553 	spin_lock_init(&cache->lock);
8554 	INIT_LIST_HEAD(&cache->list);
8555 	INIT_LIST_HEAD(&cache->cluster_list);
8556 	INIT_LIST_HEAD(&cache->new_bg_list);
8557 
8558 	btrfs_init_free_space_ctl(cache);
8559 
8560 	btrfs_set_block_group_used(&cache->item, bytes_used);
8561 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8562 	cache->flags = type;
8563 	btrfs_set_block_group_flags(&cache->item, type);
8564 
8565 	cache->last_byte_to_unpin = (u64)-1;
8566 	cache->cached = BTRFS_CACHE_FINISHED;
8567 	ret = exclude_super_stripes(root, cache);
8568 	if (ret) {
8569 		/*
8570 		 * We may have excluded something, so call this just in
8571 		 * case.
8572 		 */
8573 		free_excluded_extents(root, cache);
8574 		kfree(cache->free_space_ctl);
8575 		kfree(cache);
8576 		return ret;
8577 	}
8578 
8579 	add_new_free_space(cache, root->fs_info, chunk_offset,
8580 			   chunk_offset + size);
8581 
8582 	free_excluded_extents(root, cache);
8583 
8584 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8585 	if (ret) {
8586 		btrfs_remove_free_space_cache(cache);
8587 		btrfs_put_block_group(cache);
8588 		return ret;
8589 	}
8590 
8591 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8592 				&cache->space_info);
8593 	if (ret) {
8594 		btrfs_remove_free_space_cache(cache);
8595 		spin_lock(&root->fs_info->block_group_cache_lock);
8596 		rb_erase(&cache->cache_node,
8597 			 &root->fs_info->block_group_cache_tree);
8598 		spin_unlock(&root->fs_info->block_group_cache_lock);
8599 		btrfs_put_block_group(cache);
8600 		return ret;
8601 	}
8602 	update_global_block_rsv(root->fs_info);
8603 
8604 	spin_lock(&cache->space_info->lock);
8605 	cache->space_info->bytes_readonly += cache->bytes_super;
8606 	spin_unlock(&cache->space_info->lock);
8607 
8608 	__link_block_group(cache->space_info, cache);
8609 
8610 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8611 
8612 	set_avail_alloc_bits(extent_root->fs_info, type);
8613 
8614 	return 0;
8615 }
8616 
8617 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8618 {
8619 	u64 extra_flags = chunk_to_extended(flags) &
8620 				BTRFS_EXTENDED_PROFILE_MASK;
8621 
8622 	write_seqlock(&fs_info->profiles_lock);
8623 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8624 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8625 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8626 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8627 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8628 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8629 	write_sequnlock(&fs_info->profiles_lock);
8630 }
8631 
8632 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8633 			     struct btrfs_root *root, u64 group_start)
8634 {
8635 	struct btrfs_path *path;
8636 	struct btrfs_block_group_cache *block_group;
8637 	struct btrfs_free_cluster *cluster;
8638 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8639 	struct btrfs_key key;
8640 	struct inode *inode;
8641 	int ret;
8642 	int index;
8643 	int factor;
8644 
8645 	root = root->fs_info->extent_root;
8646 
8647 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8648 	BUG_ON(!block_group);
8649 	BUG_ON(!block_group->ro);
8650 
8651 	/*
8652 	 * Free the reserved super bytes from this block group before
8653 	 * remove it.
8654 	 */
8655 	free_excluded_extents(root, block_group);
8656 
8657 	memcpy(&key, &block_group->key, sizeof(key));
8658 	index = get_block_group_index(block_group);
8659 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8660 				  BTRFS_BLOCK_GROUP_RAID1 |
8661 				  BTRFS_BLOCK_GROUP_RAID10))
8662 		factor = 2;
8663 	else
8664 		factor = 1;
8665 
8666 	/* make sure this block group isn't part of an allocation cluster */
8667 	cluster = &root->fs_info->data_alloc_cluster;
8668 	spin_lock(&cluster->refill_lock);
8669 	btrfs_return_cluster_to_free_space(block_group, cluster);
8670 	spin_unlock(&cluster->refill_lock);
8671 
8672 	/*
8673 	 * make sure this block group isn't part of a metadata
8674 	 * allocation cluster
8675 	 */
8676 	cluster = &root->fs_info->meta_alloc_cluster;
8677 	spin_lock(&cluster->refill_lock);
8678 	btrfs_return_cluster_to_free_space(block_group, cluster);
8679 	spin_unlock(&cluster->refill_lock);
8680 
8681 	path = btrfs_alloc_path();
8682 	if (!path) {
8683 		ret = -ENOMEM;
8684 		goto out;
8685 	}
8686 
8687 	inode = lookup_free_space_inode(tree_root, block_group, path);
8688 	if (!IS_ERR(inode)) {
8689 		ret = btrfs_orphan_add(trans, inode);
8690 		if (ret) {
8691 			btrfs_add_delayed_iput(inode);
8692 			goto out;
8693 		}
8694 		clear_nlink(inode);
8695 		/* One for the block groups ref */
8696 		spin_lock(&block_group->lock);
8697 		if (block_group->iref) {
8698 			block_group->iref = 0;
8699 			block_group->inode = NULL;
8700 			spin_unlock(&block_group->lock);
8701 			iput(inode);
8702 		} else {
8703 			spin_unlock(&block_group->lock);
8704 		}
8705 		/* One for our lookup ref */
8706 		btrfs_add_delayed_iput(inode);
8707 	}
8708 
8709 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8710 	key.offset = block_group->key.objectid;
8711 	key.type = 0;
8712 
8713 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8714 	if (ret < 0)
8715 		goto out;
8716 	if (ret > 0)
8717 		btrfs_release_path(path);
8718 	if (ret == 0) {
8719 		ret = btrfs_del_item(trans, tree_root, path);
8720 		if (ret)
8721 			goto out;
8722 		btrfs_release_path(path);
8723 	}
8724 
8725 	spin_lock(&root->fs_info->block_group_cache_lock);
8726 	rb_erase(&block_group->cache_node,
8727 		 &root->fs_info->block_group_cache_tree);
8728 
8729 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8730 		root->fs_info->first_logical_byte = (u64)-1;
8731 	spin_unlock(&root->fs_info->block_group_cache_lock);
8732 
8733 	down_write(&block_group->space_info->groups_sem);
8734 	/*
8735 	 * we must use list_del_init so people can check to see if they
8736 	 * are still on the list after taking the semaphore
8737 	 */
8738 	list_del_init(&block_group->list);
8739 	if (list_empty(&block_group->space_info->block_groups[index]))
8740 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8741 	up_write(&block_group->space_info->groups_sem);
8742 
8743 	if (block_group->cached == BTRFS_CACHE_STARTED)
8744 		wait_block_group_cache_done(block_group);
8745 
8746 	btrfs_remove_free_space_cache(block_group);
8747 
8748 	spin_lock(&block_group->space_info->lock);
8749 	block_group->space_info->total_bytes -= block_group->key.offset;
8750 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8751 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8752 	spin_unlock(&block_group->space_info->lock);
8753 
8754 	memcpy(&key, &block_group->key, sizeof(key));
8755 
8756 	btrfs_clear_space_info_full(root->fs_info);
8757 
8758 	btrfs_put_block_group(block_group);
8759 	btrfs_put_block_group(block_group);
8760 
8761 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8762 	if (ret > 0)
8763 		ret = -EIO;
8764 	if (ret < 0)
8765 		goto out;
8766 
8767 	ret = btrfs_del_item(trans, root, path);
8768 out:
8769 	btrfs_free_path(path);
8770 	return ret;
8771 }
8772 
8773 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8774 {
8775 	struct btrfs_space_info *space_info;
8776 	struct btrfs_super_block *disk_super;
8777 	u64 features;
8778 	u64 flags;
8779 	int mixed = 0;
8780 	int ret;
8781 
8782 	disk_super = fs_info->super_copy;
8783 	if (!btrfs_super_root(disk_super))
8784 		return 1;
8785 
8786 	features = btrfs_super_incompat_flags(disk_super);
8787 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8788 		mixed = 1;
8789 
8790 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8791 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8792 	if (ret)
8793 		goto out;
8794 
8795 	if (mixed) {
8796 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8797 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8798 	} else {
8799 		flags = BTRFS_BLOCK_GROUP_METADATA;
8800 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8801 		if (ret)
8802 			goto out;
8803 
8804 		flags = BTRFS_BLOCK_GROUP_DATA;
8805 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8806 	}
8807 out:
8808 	return ret;
8809 }
8810 
8811 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8812 {
8813 	return unpin_extent_range(root, start, end);
8814 }
8815 
8816 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8817 			       u64 num_bytes, u64 *actual_bytes)
8818 {
8819 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8820 }
8821 
8822 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8823 {
8824 	struct btrfs_fs_info *fs_info = root->fs_info;
8825 	struct btrfs_block_group_cache *cache = NULL;
8826 	u64 group_trimmed;
8827 	u64 start;
8828 	u64 end;
8829 	u64 trimmed = 0;
8830 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8831 	int ret = 0;
8832 
8833 	/*
8834 	 * try to trim all FS space, our block group may start from non-zero.
8835 	 */
8836 	if (range->len == total_bytes)
8837 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8838 	else
8839 		cache = btrfs_lookup_block_group(fs_info, range->start);
8840 
8841 	while (cache) {
8842 		if (cache->key.objectid >= (range->start + range->len)) {
8843 			btrfs_put_block_group(cache);
8844 			break;
8845 		}
8846 
8847 		start = max(range->start, cache->key.objectid);
8848 		end = min(range->start + range->len,
8849 				cache->key.objectid + cache->key.offset);
8850 
8851 		if (end - start >= range->minlen) {
8852 			if (!block_group_cache_done(cache)) {
8853 				ret = cache_block_group(cache, 0);
8854 				if (ret) {
8855 					btrfs_put_block_group(cache);
8856 					break;
8857 				}
8858 				ret = wait_block_group_cache_done(cache);
8859 				if (ret) {
8860 					btrfs_put_block_group(cache);
8861 					break;
8862 				}
8863 			}
8864 			ret = btrfs_trim_block_group(cache,
8865 						     &group_trimmed,
8866 						     start,
8867 						     end,
8868 						     range->minlen);
8869 
8870 			trimmed += group_trimmed;
8871 			if (ret) {
8872 				btrfs_put_block_group(cache);
8873 				break;
8874 			}
8875 		}
8876 
8877 		cache = next_block_group(fs_info->tree_root, cache);
8878 	}
8879 
8880 	range->len = trimmed;
8881 	return ret;
8882 }
8883