1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 36 #undef SCRAMBLE_DELAYED_REFS 37 38 39 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 40 struct btrfs_delayed_ref_node *node, u64 parent, 41 u64 root_objectid, u64 owner_objectid, 42 u64 owner_offset, int refs_to_drop, 43 struct btrfs_delayed_extent_op *extra_op); 44 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 45 struct extent_buffer *leaf, 46 struct btrfs_extent_item *ei); 47 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 48 u64 parent, u64 root_objectid, 49 u64 flags, u64 owner, u64 offset, 50 struct btrfs_key *ins, int ref_mod); 51 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 52 struct btrfs_delayed_ref_node *node, 53 struct btrfs_delayed_extent_op *extent_op); 54 static int find_next_key(struct btrfs_path *path, int level, 55 struct btrfs_key *key); 56 57 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 58 { 59 return (cache->flags & bits) == bits; 60 } 61 62 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 63 u64 start, u64 num_bytes) 64 { 65 u64 end = start + num_bytes - 1; 66 set_extent_bits(&fs_info->freed_extents[0], 67 start, end, EXTENT_UPTODATE); 68 set_extent_bits(&fs_info->freed_extents[1], 69 start, end, EXTENT_UPTODATE); 70 return 0; 71 } 72 73 void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache) 74 { 75 struct btrfs_fs_info *fs_info = cache->fs_info; 76 u64 start, end; 77 78 start = cache->key.objectid; 79 end = start + cache->key.offset - 1; 80 81 clear_extent_bits(&fs_info->freed_extents[0], 82 start, end, EXTENT_UPTODATE); 83 clear_extent_bits(&fs_info->freed_extents[1], 84 start, end, EXTENT_UPTODATE); 85 } 86 87 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref) 88 { 89 if (ref->type == BTRFS_REF_METADATA) { 90 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID) 91 return BTRFS_BLOCK_GROUP_SYSTEM; 92 else 93 return BTRFS_BLOCK_GROUP_METADATA; 94 } 95 return BTRFS_BLOCK_GROUP_DATA; 96 } 97 98 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, 99 struct btrfs_ref *ref) 100 { 101 struct btrfs_space_info *space_info; 102 u64 flags = generic_ref_to_space_flags(ref); 103 104 space_info = btrfs_find_space_info(fs_info, flags); 105 ASSERT(space_info); 106 percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len, 107 BTRFS_TOTAL_BYTES_PINNED_BATCH); 108 } 109 110 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info, 111 struct btrfs_ref *ref) 112 { 113 struct btrfs_space_info *space_info; 114 u64 flags = generic_ref_to_space_flags(ref); 115 116 space_info = btrfs_find_space_info(fs_info, flags); 117 ASSERT(space_info); 118 percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len, 119 BTRFS_TOTAL_BYTES_PINNED_BATCH); 120 } 121 122 /* simple helper to search for an existing data extent at a given offset */ 123 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 124 { 125 int ret; 126 struct btrfs_key key; 127 struct btrfs_path *path; 128 129 path = btrfs_alloc_path(); 130 if (!path) 131 return -ENOMEM; 132 133 key.objectid = start; 134 key.offset = len; 135 key.type = BTRFS_EXTENT_ITEM_KEY; 136 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 137 btrfs_free_path(path); 138 return ret; 139 } 140 141 /* 142 * helper function to lookup reference count and flags of a tree block. 143 * 144 * the head node for delayed ref is used to store the sum of all the 145 * reference count modifications queued up in the rbtree. the head 146 * node may also store the extent flags to set. This way you can check 147 * to see what the reference count and extent flags would be if all of 148 * the delayed refs are not processed. 149 */ 150 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 151 struct btrfs_fs_info *fs_info, u64 bytenr, 152 u64 offset, int metadata, u64 *refs, u64 *flags) 153 { 154 struct btrfs_delayed_ref_head *head; 155 struct btrfs_delayed_ref_root *delayed_refs; 156 struct btrfs_path *path; 157 struct btrfs_extent_item *ei; 158 struct extent_buffer *leaf; 159 struct btrfs_key key; 160 u32 item_size; 161 u64 num_refs; 162 u64 extent_flags; 163 int ret; 164 165 /* 166 * If we don't have skinny metadata, don't bother doing anything 167 * different 168 */ 169 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 170 offset = fs_info->nodesize; 171 metadata = 0; 172 } 173 174 path = btrfs_alloc_path(); 175 if (!path) 176 return -ENOMEM; 177 178 if (!trans) { 179 path->skip_locking = 1; 180 path->search_commit_root = 1; 181 } 182 183 search_again: 184 key.objectid = bytenr; 185 key.offset = offset; 186 if (metadata) 187 key.type = BTRFS_METADATA_ITEM_KEY; 188 else 189 key.type = BTRFS_EXTENT_ITEM_KEY; 190 191 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 192 if (ret < 0) 193 goto out_free; 194 195 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 196 if (path->slots[0]) { 197 path->slots[0]--; 198 btrfs_item_key_to_cpu(path->nodes[0], &key, 199 path->slots[0]); 200 if (key.objectid == bytenr && 201 key.type == BTRFS_EXTENT_ITEM_KEY && 202 key.offset == fs_info->nodesize) 203 ret = 0; 204 } 205 } 206 207 if (ret == 0) { 208 leaf = path->nodes[0]; 209 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 210 if (item_size >= sizeof(*ei)) { 211 ei = btrfs_item_ptr(leaf, path->slots[0], 212 struct btrfs_extent_item); 213 num_refs = btrfs_extent_refs(leaf, ei); 214 extent_flags = btrfs_extent_flags(leaf, ei); 215 } else { 216 ret = -EINVAL; 217 btrfs_print_v0_err(fs_info); 218 if (trans) 219 btrfs_abort_transaction(trans, ret); 220 else 221 btrfs_handle_fs_error(fs_info, ret, NULL); 222 223 goto out_free; 224 } 225 226 BUG_ON(num_refs == 0); 227 } else { 228 num_refs = 0; 229 extent_flags = 0; 230 ret = 0; 231 } 232 233 if (!trans) 234 goto out; 235 236 delayed_refs = &trans->transaction->delayed_refs; 237 spin_lock(&delayed_refs->lock); 238 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 239 if (head) { 240 if (!mutex_trylock(&head->mutex)) { 241 refcount_inc(&head->refs); 242 spin_unlock(&delayed_refs->lock); 243 244 btrfs_release_path(path); 245 246 /* 247 * Mutex was contended, block until it's released and try 248 * again 249 */ 250 mutex_lock(&head->mutex); 251 mutex_unlock(&head->mutex); 252 btrfs_put_delayed_ref_head(head); 253 goto search_again; 254 } 255 spin_lock(&head->lock); 256 if (head->extent_op && head->extent_op->update_flags) 257 extent_flags |= head->extent_op->flags_to_set; 258 else 259 BUG_ON(num_refs == 0); 260 261 num_refs += head->ref_mod; 262 spin_unlock(&head->lock); 263 mutex_unlock(&head->mutex); 264 } 265 spin_unlock(&delayed_refs->lock); 266 out: 267 WARN_ON(num_refs == 0); 268 if (refs) 269 *refs = num_refs; 270 if (flags) 271 *flags = extent_flags; 272 out_free: 273 btrfs_free_path(path); 274 return ret; 275 } 276 277 /* 278 * Back reference rules. Back refs have three main goals: 279 * 280 * 1) differentiate between all holders of references to an extent so that 281 * when a reference is dropped we can make sure it was a valid reference 282 * before freeing the extent. 283 * 284 * 2) Provide enough information to quickly find the holders of an extent 285 * if we notice a given block is corrupted or bad. 286 * 287 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 288 * maintenance. This is actually the same as #2, but with a slightly 289 * different use case. 290 * 291 * There are two kinds of back refs. The implicit back refs is optimized 292 * for pointers in non-shared tree blocks. For a given pointer in a block, 293 * back refs of this kind provide information about the block's owner tree 294 * and the pointer's key. These information allow us to find the block by 295 * b-tree searching. The full back refs is for pointers in tree blocks not 296 * referenced by their owner trees. The location of tree block is recorded 297 * in the back refs. Actually the full back refs is generic, and can be 298 * used in all cases the implicit back refs is used. The major shortcoming 299 * of the full back refs is its overhead. Every time a tree block gets 300 * COWed, we have to update back refs entry for all pointers in it. 301 * 302 * For a newly allocated tree block, we use implicit back refs for 303 * pointers in it. This means most tree related operations only involve 304 * implicit back refs. For a tree block created in old transaction, the 305 * only way to drop a reference to it is COW it. So we can detect the 306 * event that tree block loses its owner tree's reference and do the 307 * back refs conversion. 308 * 309 * When a tree block is COWed through a tree, there are four cases: 310 * 311 * The reference count of the block is one and the tree is the block's 312 * owner tree. Nothing to do in this case. 313 * 314 * The reference count of the block is one and the tree is not the 315 * block's owner tree. In this case, full back refs is used for pointers 316 * in the block. Remove these full back refs, add implicit back refs for 317 * every pointers in the new block. 318 * 319 * The reference count of the block is greater than one and the tree is 320 * the block's owner tree. In this case, implicit back refs is used for 321 * pointers in the block. Add full back refs for every pointers in the 322 * block, increase lower level extents' reference counts. The original 323 * implicit back refs are entailed to the new block. 324 * 325 * The reference count of the block is greater than one and the tree is 326 * not the block's owner tree. Add implicit back refs for every pointer in 327 * the new block, increase lower level extents' reference count. 328 * 329 * Back Reference Key composing: 330 * 331 * The key objectid corresponds to the first byte in the extent, 332 * The key type is used to differentiate between types of back refs. 333 * There are different meanings of the key offset for different types 334 * of back refs. 335 * 336 * File extents can be referenced by: 337 * 338 * - multiple snapshots, subvolumes, or different generations in one subvol 339 * - different files inside a single subvolume 340 * - different offsets inside a file (bookend extents in file.c) 341 * 342 * The extent ref structure for the implicit back refs has fields for: 343 * 344 * - Objectid of the subvolume root 345 * - objectid of the file holding the reference 346 * - original offset in the file 347 * - how many bookend extents 348 * 349 * The key offset for the implicit back refs is hash of the first 350 * three fields. 351 * 352 * The extent ref structure for the full back refs has field for: 353 * 354 * - number of pointers in the tree leaf 355 * 356 * The key offset for the implicit back refs is the first byte of 357 * the tree leaf 358 * 359 * When a file extent is allocated, The implicit back refs is used. 360 * the fields are filled in: 361 * 362 * (root_key.objectid, inode objectid, offset in file, 1) 363 * 364 * When a file extent is removed file truncation, we find the 365 * corresponding implicit back refs and check the following fields: 366 * 367 * (btrfs_header_owner(leaf), inode objectid, offset in file) 368 * 369 * Btree extents can be referenced by: 370 * 371 * - Different subvolumes 372 * 373 * Both the implicit back refs and the full back refs for tree blocks 374 * only consist of key. The key offset for the implicit back refs is 375 * objectid of block's owner tree. The key offset for the full back refs 376 * is the first byte of parent block. 377 * 378 * When implicit back refs is used, information about the lowest key and 379 * level of the tree block are required. These information are stored in 380 * tree block info structure. 381 */ 382 383 /* 384 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 385 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 386 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 387 */ 388 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 389 struct btrfs_extent_inline_ref *iref, 390 enum btrfs_inline_ref_type is_data) 391 { 392 int type = btrfs_extent_inline_ref_type(eb, iref); 393 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 394 395 if (type == BTRFS_TREE_BLOCK_REF_KEY || 396 type == BTRFS_SHARED_BLOCK_REF_KEY || 397 type == BTRFS_SHARED_DATA_REF_KEY || 398 type == BTRFS_EXTENT_DATA_REF_KEY) { 399 if (is_data == BTRFS_REF_TYPE_BLOCK) { 400 if (type == BTRFS_TREE_BLOCK_REF_KEY) 401 return type; 402 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 403 ASSERT(eb->fs_info); 404 /* 405 * Every shared one has parent tree 406 * block, which must be aligned to 407 * nodesize. 408 */ 409 if (offset && 410 IS_ALIGNED(offset, eb->fs_info->nodesize)) 411 return type; 412 } 413 } else if (is_data == BTRFS_REF_TYPE_DATA) { 414 if (type == BTRFS_EXTENT_DATA_REF_KEY) 415 return type; 416 if (type == BTRFS_SHARED_DATA_REF_KEY) { 417 ASSERT(eb->fs_info); 418 /* 419 * Every shared one has parent tree 420 * block, which must be aligned to 421 * nodesize. 422 */ 423 if (offset && 424 IS_ALIGNED(offset, eb->fs_info->nodesize)) 425 return type; 426 } 427 } else { 428 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 429 return type; 430 } 431 } 432 433 btrfs_print_leaf((struct extent_buffer *)eb); 434 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 435 eb->start, type); 436 WARN_ON(1); 437 438 return BTRFS_REF_TYPE_INVALID; 439 } 440 441 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 442 { 443 u32 high_crc = ~(u32)0; 444 u32 low_crc = ~(u32)0; 445 __le64 lenum; 446 447 lenum = cpu_to_le64(root_objectid); 448 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 449 lenum = cpu_to_le64(owner); 450 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 451 lenum = cpu_to_le64(offset); 452 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 453 454 return ((u64)high_crc << 31) ^ (u64)low_crc; 455 } 456 457 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 458 struct btrfs_extent_data_ref *ref) 459 { 460 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 461 btrfs_extent_data_ref_objectid(leaf, ref), 462 btrfs_extent_data_ref_offset(leaf, ref)); 463 } 464 465 static int match_extent_data_ref(struct extent_buffer *leaf, 466 struct btrfs_extent_data_ref *ref, 467 u64 root_objectid, u64 owner, u64 offset) 468 { 469 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 470 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 471 btrfs_extent_data_ref_offset(leaf, ref) != offset) 472 return 0; 473 return 1; 474 } 475 476 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 477 struct btrfs_path *path, 478 u64 bytenr, u64 parent, 479 u64 root_objectid, 480 u64 owner, u64 offset) 481 { 482 struct btrfs_root *root = trans->fs_info->extent_root; 483 struct btrfs_key key; 484 struct btrfs_extent_data_ref *ref; 485 struct extent_buffer *leaf; 486 u32 nritems; 487 int ret; 488 int recow; 489 int err = -ENOENT; 490 491 key.objectid = bytenr; 492 if (parent) { 493 key.type = BTRFS_SHARED_DATA_REF_KEY; 494 key.offset = parent; 495 } else { 496 key.type = BTRFS_EXTENT_DATA_REF_KEY; 497 key.offset = hash_extent_data_ref(root_objectid, 498 owner, offset); 499 } 500 again: 501 recow = 0; 502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 503 if (ret < 0) { 504 err = ret; 505 goto fail; 506 } 507 508 if (parent) { 509 if (!ret) 510 return 0; 511 goto fail; 512 } 513 514 leaf = path->nodes[0]; 515 nritems = btrfs_header_nritems(leaf); 516 while (1) { 517 if (path->slots[0] >= nritems) { 518 ret = btrfs_next_leaf(root, path); 519 if (ret < 0) 520 err = ret; 521 if (ret) 522 goto fail; 523 524 leaf = path->nodes[0]; 525 nritems = btrfs_header_nritems(leaf); 526 recow = 1; 527 } 528 529 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 530 if (key.objectid != bytenr || 531 key.type != BTRFS_EXTENT_DATA_REF_KEY) 532 goto fail; 533 534 ref = btrfs_item_ptr(leaf, path->slots[0], 535 struct btrfs_extent_data_ref); 536 537 if (match_extent_data_ref(leaf, ref, root_objectid, 538 owner, offset)) { 539 if (recow) { 540 btrfs_release_path(path); 541 goto again; 542 } 543 err = 0; 544 break; 545 } 546 path->slots[0]++; 547 } 548 fail: 549 return err; 550 } 551 552 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 553 struct btrfs_path *path, 554 u64 bytenr, u64 parent, 555 u64 root_objectid, u64 owner, 556 u64 offset, int refs_to_add) 557 { 558 struct btrfs_root *root = trans->fs_info->extent_root; 559 struct btrfs_key key; 560 struct extent_buffer *leaf; 561 u32 size; 562 u32 num_refs; 563 int ret; 564 565 key.objectid = bytenr; 566 if (parent) { 567 key.type = BTRFS_SHARED_DATA_REF_KEY; 568 key.offset = parent; 569 size = sizeof(struct btrfs_shared_data_ref); 570 } else { 571 key.type = BTRFS_EXTENT_DATA_REF_KEY; 572 key.offset = hash_extent_data_ref(root_objectid, 573 owner, offset); 574 size = sizeof(struct btrfs_extent_data_ref); 575 } 576 577 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 578 if (ret && ret != -EEXIST) 579 goto fail; 580 581 leaf = path->nodes[0]; 582 if (parent) { 583 struct btrfs_shared_data_ref *ref; 584 ref = btrfs_item_ptr(leaf, path->slots[0], 585 struct btrfs_shared_data_ref); 586 if (ret == 0) { 587 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 588 } else { 589 num_refs = btrfs_shared_data_ref_count(leaf, ref); 590 num_refs += refs_to_add; 591 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 592 } 593 } else { 594 struct btrfs_extent_data_ref *ref; 595 while (ret == -EEXIST) { 596 ref = btrfs_item_ptr(leaf, path->slots[0], 597 struct btrfs_extent_data_ref); 598 if (match_extent_data_ref(leaf, ref, root_objectid, 599 owner, offset)) 600 break; 601 btrfs_release_path(path); 602 key.offset++; 603 ret = btrfs_insert_empty_item(trans, root, path, &key, 604 size); 605 if (ret && ret != -EEXIST) 606 goto fail; 607 608 leaf = path->nodes[0]; 609 } 610 ref = btrfs_item_ptr(leaf, path->slots[0], 611 struct btrfs_extent_data_ref); 612 if (ret == 0) { 613 btrfs_set_extent_data_ref_root(leaf, ref, 614 root_objectid); 615 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 616 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 617 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 618 } else { 619 num_refs = btrfs_extent_data_ref_count(leaf, ref); 620 num_refs += refs_to_add; 621 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 622 } 623 } 624 btrfs_mark_buffer_dirty(leaf); 625 ret = 0; 626 fail: 627 btrfs_release_path(path); 628 return ret; 629 } 630 631 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 632 struct btrfs_path *path, 633 int refs_to_drop, int *last_ref) 634 { 635 struct btrfs_key key; 636 struct btrfs_extent_data_ref *ref1 = NULL; 637 struct btrfs_shared_data_ref *ref2 = NULL; 638 struct extent_buffer *leaf; 639 u32 num_refs = 0; 640 int ret = 0; 641 642 leaf = path->nodes[0]; 643 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 644 645 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 646 ref1 = btrfs_item_ptr(leaf, path->slots[0], 647 struct btrfs_extent_data_ref); 648 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 649 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 650 ref2 = btrfs_item_ptr(leaf, path->slots[0], 651 struct btrfs_shared_data_ref); 652 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 653 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 654 btrfs_print_v0_err(trans->fs_info); 655 btrfs_abort_transaction(trans, -EINVAL); 656 return -EINVAL; 657 } else { 658 BUG(); 659 } 660 661 BUG_ON(num_refs < refs_to_drop); 662 num_refs -= refs_to_drop; 663 664 if (num_refs == 0) { 665 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 666 *last_ref = 1; 667 } else { 668 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 669 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 670 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 671 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 672 btrfs_mark_buffer_dirty(leaf); 673 } 674 return ret; 675 } 676 677 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 678 struct btrfs_extent_inline_ref *iref) 679 { 680 struct btrfs_key key; 681 struct extent_buffer *leaf; 682 struct btrfs_extent_data_ref *ref1; 683 struct btrfs_shared_data_ref *ref2; 684 u32 num_refs = 0; 685 int type; 686 687 leaf = path->nodes[0]; 688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 689 690 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 691 if (iref) { 692 /* 693 * If type is invalid, we should have bailed out earlier than 694 * this call. 695 */ 696 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 697 ASSERT(type != BTRFS_REF_TYPE_INVALID); 698 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 699 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 700 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 701 } else { 702 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 703 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 704 } 705 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 706 ref1 = btrfs_item_ptr(leaf, path->slots[0], 707 struct btrfs_extent_data_ref); 708 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 709 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 710 ref2 = btrfs_item_ptr(leaf, path->slots[0], 711 struct btrfs_shared_data_ref); 712 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 713 } else { 714 WARN_ON(1); 715 } 716 return num_refs; 717 } 718 719 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 720 struct btrfs_path *path, 721 u64 bytenr, u64 parent, 722 u64 root_objectid) 723 { 724 struct btrfs_root *root = trans->fs_info->extent_root; 725 struct btrfs_key key; 726 int ret; 727 728 key.objectid = bytenr; 729 if (parent) { 730 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 731 key.offset = parent; 732 } else { 733 key.type = BTRFS_TREE_BLOCK_REF_KEY; 734 key.offset = root_objectid; 735 } 736 737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 738 if (ret > 0) 739 ret = -ENOENT; 740 return ret; 741 } 742 743 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 744 struct btrfs_path *path, 745 u64 bytenr, u64 parent, 746 u64 root_objectid) 747 { 748 struct btrfs_key key; 749 int ret; 750 751 key.objectid = bytenr; 752 if (parent) { 753 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 754 key.offset = parent; 755 } else { 756 key.type = BTRFS_TREE_BLOCK_REF_KEY; 757 key.offset = root_objectid; 758 } 759 760 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 761 path, &key, 0); 762 btrfs_release_path(path); 763 return ret; 764 } 765 766 static inline int extent_ref_type(u64 parent, u64 owner) 767 { 768 int type; 769 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 770 if (parent > 0) 771 type = BTRFS_SHARED_BLOCK_REF_KEY; 772 else 773 type = BTRFS_TREE_BLOCK_REF_KEY; 774 } else { 775 if (parent > 0) 776 type = BTRFS_SHARED_DATA_REF_KEY; 777 else 778 type = BTRFS_EXTENT_DATA_REF_KEY; 779 } 780 return type; 781 } 782 783 static int find_next_key(struct btrfs_path *path, int level, 784 struct btrfs_key *key) 785 786 { 787 for (; level < BTRFS_MAX_LEVEL; level++) { 788 if (!path->nodes[level]) 789 break; 790 if (path->slots[level] + 1 >= 791 btrfs_header_nritems(path->nodes[level])) 792 continue; 793 if (level == 0) 794 btrfs_item_key_to_cpu(path->nodes[level], key, 795 path->slots[level] + 1); 796 else 797 btrfs_node_key_to_cpu(path->nodes[level], key, 798 path->slots[level] + 1); 799 return 0; 800 } 801 return 1; 802 } 803 804 /* 805 * look for inline back ref. if back ref is found, *ref_ret is set 806 * to the address of inline back ref, and 0 is returned. 807 * 808 * if back ref isn't found, *ref_ret is set to the address where it 809 * should be inserted, and -ENOENT is returned. 810 * 811 * if insert is true and there are too many inline back refs, the path 812 * points to the extent item, and -EAGAIN is returned. 813 * 814 * NOTE: inline back refs are ordered in the same way that back ref 815 * items in the tree are ordered. 816 */ 817 static noinline_for_stack 818 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 819 struct btrfs_path *path, 820 struct btrfs_extent_inline_ref **ref_ret, 821 u64 bytenr, u64 num_bytes, 822 u64 parent, u64 root_objectid, 823 u64 owner, u64 offset, int insert) 824 { 825 struct btrfs_fs_info *fs_info = trans->fs_info; 826 struct btrfs_root *root = fs_info->extent_root; 827 struct btrfs_key key; 828 struct extent_buffer *leaf; 829 struct btrfs_extent_item *ei; 830 struct btrfs_extent_inline_ref *iref; 831 u64 flags; 832 u64 item_size; 833 unsigned long ptr; 834 unsigned long end; 835 int extra_size; 836 int type; 837 int want; 838 int ret; 839 int err = 0; 840 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 841 int needed; 842 843 key.objectid = bytenr; 844 key.type = BTRFS_EXTENT_ITEM_KEY; 845 key.offset = num_bytes; 846 847 want = extent_ref_type(parent, owner); 848 if (insert) { 849 extra_size = btrfs_extent_inline_ref_size(want); 850 path->keep_locks = 1; 851 } else 852 extra_size = -1; 853 854 /* 855 * Owner is our level, so we can just add one to get the level for the 856 * block we are interested in. 857 */ 858 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 859 key.type = BTRFS_METADATA_ITEM_KEY; 860 key.offset = owner; 861 } 862 863 again: 864 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 865 if (ret < 0) { 866 err = ret; 867 goto out; 868 } 869 870 /* 871 * We may be a newly converted file system which still has the old fat 872 * extent entries for metadata, so try and see if we have one of those. 873 */ 874 if (ret > 0 && skinny_metadata) { 875 skinny_metadata = false; 876 if (path->slots[0]) { 877 path->slots[0]--; 878 btrfs_item_key_to_cpu(path->nodes[0], &key, 879 path->slots[0]); 880 if (key.objectid == bytenr && 881 key.type == BTRFS_EXTENT_ITEM_KEY && 882 key.offset == num_bytes) 883 ret = 0; 884 } 885 if (ret) { 886 key.objectid = bytenr; 887 key.type = BTRFS_EXTENT_ITEM_KEY; 888 key.offset = num_bytes; 889 btrfs_release_path(path); 890 goto again; 891 } 892 } 893 894 if (ret && !insert) { 895 err = -ENOENT; 896 goto out; 897 } else if (WARN_ON(ret)) { 898 err = -EIO; 899 goto out; 900 } 901 902 leaf = path->nodes[0]; 903 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 904 if (unlikely(item_size < sizeof(*ei))) { 905 err = -EINVAL; 906 btrfs_print_v0_err(fs_info); 907 btrfs_abort_transaction(trans, err); 908 goto out; 909 } 910 911 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 912 flags = btrfs_extent_flags(leaf, ei); 913 914 ptr = (unsigned long)(ei + 1); 915 end = (unsigned long)ei + item_size; 916 917 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 918 ptr += sizeof(struct btrfs_tree_block_info); 919 BUG_ON(ptr > end); 920 } 921 922 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 923 needed = BTRFS_REF_TYPE_DATA; 924 else 925 needed = BTRFS_REF_TYPE_BLOCK; 926 927 err = -ENOENT; 928 while (1) { 929 if (ptr >= end) { 930 WARN_ON(ptr > end); 931 break; 932 } 933 iref = (struct btrfs_extent_inline_ref *)ptr; 934 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 935 if (type == BTRFS_REF_TYPE_INVALID) { 936 err = -EUCLEAN; 937 goto out; 938 } 939 940 if (want < type) 941 break; 942 if (want > type) { 943 ptr += btrfs_extent_inline_ref_size(type); 944 continue; 945 } 946 947 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 948 struct btrfs_extent_data_ref *dref; 949 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 950 if (match_extent_data_ref(leaf, dref, root_objectid, 951 owner, offset)) { 952 err = 0; 953 break; 954 } 955 if (hash_extent_data_ref_item(leaf, dref) < 956 hash_extent_data_ref(root_objectid, owner, offset)) 957 break; 958 } else { 959 u64 ref_offset; 960 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 961 if (parent > 0) { 962 if (parent == ref_offset) { 963 err = 0; 964 break; 965 } 966 if (ref_offset < parent) 967 break; 968 } else { 969 if (root_objectid == ref_offset) { 970 err = 0; 971 break; 972 } 973 if (ref_offset < root_objectid) 974 break; 975 } 976 } 977 ptr += btrfs_extent_inline_ref_size(type); 978 } 979 if (err == -ENOENT && insert) { 980 if (item_size + extra_size >= 981 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 982 err = -EAGAIN; 983 goto out; 984 } 985 /* 986 * To add new inline back ref, we have to make sure 987 * there is no corresponding back ref item. 988 * For simplicity, we just do not add new inline back 989 * ref if there is any kind of item for this block 990 */ 991 if (find_next_key(path, 0, &key) == 0 && 992 key.objectid == bytenr && 993 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 994 err = -EAGAIN; 995 goto out; 996 } 997 } 998 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 999 out: 1000 if (insert) { 1001 path->keep_locks = 0; 1002 btrfs_unlock_up_safe(path, 1); 1003 } 1004 return err; 1005 } 1006 1007 /* 1008 * helper to add new inline back ref 1009 */ 1010 static noinline_for_stack 1011 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1012 struct btrfs_path *path, 1013 struct btrfs_extent_inline_ref *iref, 1014 u64 parent, u64 root_objectid, 1015 u64 owner, u64 offset, int refs_to_add, 1016 struct btrfs_delayed_extent_op *extent_op) 1017 { 1018 struct extent_buffer *leaf; 1019 struct btrfs_extent_item *ei; 1020 unsigned long ptr; 1021 unsigned long end; 1022 unsigned long item_offset; 1023 u64 refs; 1024 int size; 1025 int type; 1026 1027 leaf = path->nodes[0]; 1028 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1029 item_offset = (unsigned long)iref - (unsigned long)ei; 1030 1031 type = extent_ref_type(parent, owner); 1032 size = btrfs_extent_inline_ref_size(type); 1033 1034 btrfs_extend_item(path, size); 1035 1036 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1037 refs = btrfs_extent_refs(leaf, ei); 1038 refs += refs_to_add; 1039 btrfs_set_extent_refs(leaf, ei, refs); 1040 if (extent_op) 1041 __run_delayed_extent_op(extent_op, leaf, ei); 1042 1043 ptr = (unsigned long)ei + item_offset; 1044 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1045 if (ptr < end - size) 1046 memmove_extent_buffer(leaf, ptr + size, ptr, 1047 end - size - ptr); 1048 1049 iref = (struct btrfs_extent_inline_ref *)ptr; 1050 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1051 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1052 struct btrfs_extent_data_ref *dref; 1053 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1054 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1055 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1056 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1057 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1058 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1059 struct btrfs_shared_data_ref *sref; 1060 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1061 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1062 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1063 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1064 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1065 } else { 1066 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1067 } 1068 btrfs_mark_buffer_dirty(leaf); 1069 } 1070 1071 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1072 struct btrfs_path *path, 1073 struct btrfs_extent_inline_ref **ref_ret, 1074 u64 bytenr, u64 num_bytes, u64 parent, 1075 u64 root_objectid, u64 owner, u64 offset) 1076 { 1077 int ret; 1078 1079 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1080 num_bytes, parent, root_objectid, 1081 owner, offset, 0); 1082 if (ret != -ENOENT) 1083 return ret; 1084 1085 btrfs_release_path(path); 1086 *ref_ret = NULL; 1087 1088 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1089 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1090 root_objectid); 1091 } else { 1092 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1093 root_objectid, owner, offset); 1094 } 1095 return ret; 1096 } 1097 1098 /* 1099 * helper to update/remove inline back ref 1100 */ 1101 static noinline_for_stack 1102 void update_inline_extent_backref(struct btrfs_path *path, 1103 struct btrfs_extent_inline_ref *iref, 1104 int refs_to_mod, 1105 struct btrfs_delayed_extent_op *extent_op, 1106 int *last_ref) 1107 { 1108 struct extent_buffer *leaf = path->nodes[0]; 1109 struct btrfs_extent_item *ei; 1110 struct btrfs_extent_data_ref *dref = NULL; 1111 struct btrfs_shared_data_ref *sref = NULL; 1112 unsigned long ptr; 1113 unsigned long end; 1114 u32 item_size; 1115 int size; 1116 int type; 1117 u64 refs; 1118 1119 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1120 refs = btrfs_extent_refs(leaf, ei); 1121 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1122 refs += refs_to_mod; 1123 btrfs_set_extent_refs(leaf, ei, refs); 1124 if (extent_op) 1125 __run_delayed_extent_op(extent_op, leaf, ei); 1126 1127 /* 1128 * If type is invalid, we should have bailed out after 1129 * lookup_inline_extent_backref(). 1130 */ 1131 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1132 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1133 1134 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1135 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1136 refs = btrfs_extent_data_ref_count(leaf, dref); 1137 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1138 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1139 refs = btrfs_shared_data_ref_count(leaf, sref); 1140 } else { 1141 refs = 1; 1142 BUG_ON(refs_to_mod != -1); 1143 } 1144 1145 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1146 refs += refs_to_mod; 1147 1148 if (refs > 0) { 1149 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1150 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1151 else 1152 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1153 } else { 1154 *last_ref = 1; 1155 size = btrfs_extent_inline_ref_size(type); 1156 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1157 ptr = (unsigned long)iref; 1158 end = (unsigned long)ei + item_size; 1159 if (ptr + size < end) 1160 memmove_extent_buffer(leaf, ptr, ptr + size, 1161 end - ptr - size); 1162 item_size -= size; 1163 btrfs_truncate_item(path, item_size, 1); 1164 } 1165 btrfs_mark_buffer_dirty(leaf); 1166 } 1167 1168 static noinline_for_stack 1169 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1170 struct btrfs_path *path, 1171 u64 bytenr, u64 num_bytes, u64 parent, 1172 u64 root_objectid, u64 owner, 1173 u64 offset, int refs_to_add, 1174 struct btrfs_delayed_extent_op *extent_op) 1175 { 1176 struct btrfs_extent_inline_ref *iref; 1177 int ret; 1178 1179 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1180 num_bytes, parent, root_objectid, 1181 owner, offset, 1); 1182 if (ret == 0) { 1183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1184 update_inline_extent_backref(path, iref, refs_to_add, 1185 extent_op, NULL); 1186 } else if (ret == -ENOENT) { 1187 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1188 root_objectid, owner, offset, 1189 refs_to_add, extent_op); 1190 ret = 0; 1191 } 1192 return ret; 1193 } 1194 1195 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1196 struct btrfs_path *path, 1197 u64 bytenr, u64 parent, u64 root_objectid, 1198 u64 owner, u64 offset, int refs_to_add) 1199 { 1200 int ret; 1201 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1202 BUG_ON(refs_to_add != 1); 1203 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1204 root_objectid); 1205 } else { 1206 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1207 root_objectid, owner, offset, 1208 refs_to_add); 1209 } 1210 return ret; 1211 } 1212 1213 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1214 struct btrfs_path *path, 1215 struct btrfs_extent_inline_ref *iref, 1216 int refs_to_drop, int is_data, int *last_ref) 1217 { 1218 int ret = 0; 1219 1220 BUG_ON(!is_data && refs_to_drop != 1); 1221 if (iref) { 1222 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1223 last_ref); 1224 } else if (is_data) { 1225 ret = remove_extent_data_ref(trans, path, refs_to_drop, 1226 last_ref); 1227 } else { 1228 *last_ref = 1; 1229 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); 1230 } 1231 return ret; 1232 } 1233 1234 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1235 u64 *discarded_bytes) 1236 { 1237 int j, ret = 0; 1238 u64 bytes_left, end; 1239 u64 aligned_start = ALIGN(start, 1 << 9); 1240 1241 if (WARN_ON(start != aligned_start)) { 1242 len -= aligned_start - start; 1243 len = round_down(len, 1 << 9); 1244 start = aligned_start; 1245 } 1246 1247 *discarded_bytes = 0; 1248 1249 if (!len) 1250 return 0; 1251 1252 end = start + len; 1253 bytes_left = len; 1254 1255 /* Skip any superblocks on this device. */ 1256 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1257 u64 sb_start = btrfs_sb_offset(j); 1258 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1259 u64 size = sb_start - start; 1260 1261 if (!in_range(sb_start, start, bytes_left) && 1262 !in_range(sb_end, start, bytes_left) && 1263 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1264 continue; 1265 1266 /* 1267 * Superblock spans beginning of range. Adjust start and 1268 * try again. 1269 */ 1270 if (sb_start <= start) { 1271 start += sb_end - start; 1272 if (start > end) { 1273 bytes_left = 0; 1274 break; 1275 } 1276 bytes_left = end - start; 1277 continue; 1278 } 1279 1280 if (size) { 1281 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1282 GFP_NOFS, 0); 1283 if (!ret) 1284 *discarded_bytes += size; 1285 else if (ret != -EOPNOTSUPP) 1286 return ret; 1287 } 1288 1289 start = sb_end; 1290 if (start > end) { 1291 bytes_left = 0; 1292 break; 1293 } 1294 bytes_left = end - start; 1295 } 1296 1297 if (bytes_left) { 1298 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1299 GFP_NOFS, 0); 1300 if (!ret) 1301 *discarded_bytes += bytes_left; 1302 } 1303 return ret; 1304 } 1305 1306 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1307 u64 num_bytes, u64 *actual_bytes) 1308 { 1309 int ret; 1310 u64 discarded_bytes = 0; 1311 struct btrfs_bio *bbio = NULL; 1312 1313 1314 /* 1315 * Avoid races with device replace and make sure our bbio has devices 1316 * associated to its stripes that don't go away while we are discarding. 1317 */ 1318 btrfs_bio_counter_inc_blocked(fs_info); 1319 /* Tell the block device(s) that the sectors can be discarded */ 1320 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 1321 &bbio, 0); 1322 /* Error condition is -ENOMEM */ 1323 if (!ret) { 1324 struct btrfs_bio_stripe *stripe = bbio->stripes; 1325 int i; 1326 1327 1328 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1329 u64 bytes; 1330 struct request_queue *req_q; 1331 1332 if (!stripe->dev->bdev) { 1333 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1334 continue; 1335 } 1336 req_q = bdev_get_queue(stripe->dev->bdev); 1337 if (!blk_queue_discard(req_q)) 1338 continue; 1339 1340 ret = btrfs_issue_discard(stripe->dev->bdev, 1341 stripe->physical, 1342 stripe->length, 1343 &bytes); 1344 if (!ret) 1345 discarded_bytes += bytes; 1346 else if (ret != -EOPNOTSUPP) 1347 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1348 1349 /* 1350 * Just in case we get back EOPNOTSUPP for some reason, 1351 * just ignore the return value so we don't screw up 1352 * people calling discard_extent. 1353 */ 1354 ret = 0; 1355 } 1356 btrfs_put_bbio(bbio); 1357 } 1358 btrfs_bio_counter_dec(fs_info); 1359 1360 if (actual_bytes) 1361 *actual_bytes = discarded_bytes; 1362 1363 1364 if (ret == -EOPNOTSUPP) 1365 ret = 0; 1366 return ret; 1367 } 1368 1369 /* Can return -ENOMEM */ 1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_ref *generic_ref) 1372 { 1373 struct btrfs_fs_info *fs_info = trans->fs_info; 1374 int old_ref_mod, new_ref_mod; 1375 int ret; 1376 1377 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1378 generic_ref->action); 1379 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1380 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID); 1381 1382 if (generic_ref->type == BTRFS_REF_METADATA) 1383 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, 1384 NULL, &old_ref_mod, &new_ref_mod); 1385 else 1386 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0, 1387 &old_ref_mod, &new_ref_mod); 1388 1389 btrfs_ref_tree_mod(fs_info, generic_ref); 1390 1391 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 1392 sub_pinned_bytes(fs_info, generic_ref); 1393 1394 return ret; 1395 } 1396 1397 /* 1398 * __btrfs_inc_extent_ref - insert backreference for a given extent 1399 * 1400 * @trans: Handle of transaction 1401 * 1402 * @node: The delayed ref node used to get the bytenr/length for 1403 * extent whose references are incremented. 1404 * 1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1407 * bytenr of the parent block. Since new extents are always 1408 * created with indirect references, this will only be the case 1409 * when relocating a shared extent. In that case, root_objectid 1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must 1411 * be 0 1412 * 1413 * @root_objectid: The id of the root where this modification has originated, 1414 * this can be either one of the well-known metadata trees or 1415 * the subvolume id which references this extent. 1416 * 1417 * @owner: For data extents it is the inode number of the owning file. 1418 * For metadata extents this parameter holds the level in the 1419 * tree of the extent. 1420 * 1421 * @offset: For metadata extents the offset is ignored and is currently 1422 * always passed as 0. For data extents it is the fileoffset 1423 * this extent belongs to. 1424 * 1425 * @refs_to_add Number of references to add 1426 * 1427 * @extent_op Pointer to a structure, holding information necessary when 1428 * updating a tree block's flags 1429 * 1430 */ 1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1432 struct btrfs_delayed_ref_node *node, 1433 u64 parent, u64 root_objectid, 1434 u64 owner, u64 offset, int refs_to_add, 1435 struct btrfs_delayed_extent_op *extent_op) 1436 { 1437 struct btrfs_path *path; 1438 struct extent_buffer *leaf; 1439 struct btrfs_extent_item *item; 1440 struct btrfs_key key; 1441 u64 bytenr = node->bytenr; 1442 u64 num_bytes = node->num_bytes; 1443 u64 refs; 1444 int ret; 1445 1446 path = btrfs_alloc_path(); 1447 if (!path) 1448 return -ENOMEM; 1449 1450 path->reada = READA_FORWARD; 1451 path->leave_spinning = 1; 1452 /* this will setup the path even if it fails to insert the back ref */ 1453 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1454 parent, root_objectid, owner, 1455 offset, refs_to_add, extent_op); 1456 if ((ret < 0 && ret != -EAGAIN) || !ret) 1457 goto out; 1458 1459 /* 1460 * Ok we had -EAGAIN which means we didn't have space to insert and 1461 * inline extent ref, so just update the reference count and add a 1462 * normal backref. 1463 */ 1464 leaf = path->nodes[0]; 1465 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1466 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1467 refs = btrfs_extent_refs(leaf, item); 1468 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1469 if (extent_op) 1470 __run_delayed_extent_op(extent_op, leaf, item); 1471 1472 btrfs_mark_buffer_dirty(leaf); 1473 btrfs_release_path(path); 1474 1475 path->reada = READA_FORWARD; 1476 path->leave_spinning = 1; 1477 /* now insert the actual backref */ 1478 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, 1479 owner, offset, refs_to_add); 1480 if (ret) 1481 btrfs_abort_transaction(trans, ret); 1482 out: 1483 btrfs_free_path(path); 1484 return ret; 1485 } 1486 1487 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1488 struct btrfs_delayed_ref_node *node, 1489 struct btrfs_delayed_extent_op *extent_op, 1490 int insert_reserved) 1491 { 1492 int ret = 0; 1493 struct btrfs_delayed_data_ref *ref; 1494 struct btrfs_key ins; 1495 u64 parent = 0; 1496 u64 ref_root = 0; 1497 u64 flags = 0; 1498 1499 ins.objectid = node->bytenr; 1500 ins.offset = node->num_bytes; 1501 ins.type = BTRFS_EXTENT_ITEM_KEY; 1502 1503 ref = btrfs_delayed_node_to_data_ref(node); 1504 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1505 1506 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1507 parent = ref->parent; 1508 ref_root = ref->root; 1509 1510 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1511 if (extent_op) 1512 flags |= extent_op->flags_to_set; 1513 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1514 flags, ref->objectid, 1515 ref->offset, &ins, 1516 node->ref_mod); 1517 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1518 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1519 ref->objectid, ref->offset, 1520 node->ref_mod, extent_op); 1521 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1522 ret = __btrfs_free_extent(trans, node, parent, 1523 ref_root, ref->objectid, 1524 ref->offset, node->ref_mod, 1525 extent_op); 1526 } else { 1527 BUG(); 1528 } 1529 return ret; 1530 } 1531 1532 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1533 struct extent_buffer *leaf, 1534 struct btrfs_extent_item *ei) 1535 { 1536 u64 flags = btrfs_extent_flags(leaf, ei); 1537 if (extent_op->update_flags) { 1538 flags |= extent_op->flags_to_set; 1539 btrfs_set_extent_flags(leaf, ei, flags); 1540 } 1541 1542 if (extent_op->update_key) { 1543 struct btrfs_tree_block_info *bi; 1544 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1545 bi = (struct btrfs_tree_block_info *)(ei + 1); 1546 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1547 } 1548 } 1549 1550 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1551 struct btrfs_delayed_ref_head *head, 1552 struct btrfs_delayed_extent_op *extent_op) 1553 { 1554 struct btrfs_fs_info *fs_info = trans->fs_info; 1555 struct btrfs_key key; 1556 struct btrfs_path *path; 1557 struct btrfs_extent_item *ei; 1558 struct extent_buffer *leaf; 1559 u32 item_size; 1560 int ret; 1561 int err = 0; 1562 int metadata = !extent_op->is_data; 1563 1564 if (trans->aborted) 1565 return 0; 1566 1567 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1568 metadata = 0; 1569 1570 path = btrfs_alloc_path(); 1571 if (!path) 1572 return -ENOMEM; 1573 1574 key.objectid = head->bytenr; 1575 1576 if (metadata) { 1577 key.type = BTRFS_METADATA_ITEM_KEY; 1578 key.offset = extent_op->level; 1579 } else { 1580 key.type = BTRFS_EXTENT_ITEM_KEY; 1581 key.offset = head->num_bytes; 1582 } 1583 1584 again: 1585 path->reada = READA_FORWARD; 1586 path->leave_spinning = 1; 1587 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1588 if (ret < 0) { 1589 err = ret; 1590 goto out; 1591 } 1592 if (ret > 0) { 1593 if (metadata) { 1594 if (path->slots[0] > 0) { 1595 path->slots[0]--; 1596 btrfs_item_key_to_cpu(path->nodes[0], &key, 1597 path->slots[0]); 1598 if (key.objectid == head->bytenr && 1599 key.type == BTRFS_EXTENT_ITEM_KEY && 1600 key.offset == head->num_bytes) 1601 ret = 0; 1602 } 1603 if (ret > 0) { 1604 btrfs_release_path(path); 1605 metadata = 0; 1606 1607 key.objectid = head->bytenr; 1608 key.offset = head->num_bytes; 1609 key.type = BTRFS_EXTENT_ITEM_KEY; 1610 goto again; 1611 } 1612 } else { 1613 err = -EIO; 1614 goto out; 1615 } 1616 } 1617 1618 leaf = path->nodes[0]; 1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1620 1621 if (unlikely(item_size < sizeof(*ei))) { 1622 err = -EINVAL; 1623 btrfs_print_v0_err(fs_info); 1624 btrfs_abort_transaction(trans, err); 1625 goto out; 1626 } 1627 1628 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1629 __run_delayed_extent_op(extent_op, leaf, ei); 1630 1631 btrfs_mark_buffer_dirty(leaf); 1632 out: 1633 btrfs_free_path(path); 1634 return err; 1635 } 1636 1637 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1638 struct btrfs_delayed_ref_node *node, 1639 struct btrfs_delayed_extent_op *extent_op, 1640 int insert_reserved) 1641 { 1642 int ret = 0; 1643 struct btrfs_delayed_tree_ref *ref; 1644 u64 parent = 0; 1645 u64 ref_root = 0; 1646 1647 ref = btrfs_delayed_node_to_tree_ref(node); 1648 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1649 1650 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1651 parent = ref->parent; 1652 ref_root = ref->root; 1653 1654 if (node->ref_mod != 1) { 1655 btrfs_err(trans->fs_info, 1656 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1657 node->bytenr, node->ref_mod, node->action, ref_root, 1658 parent); 1659 return -EIO; 1660 } 1661 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1662 BUG_ON(!extent_op || !extent_op->update_flags); 1663 ret = alloc_reserved_tree_block(trans, node, extent_op); 1664 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1665 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1666 ref->level, 0, 1, extent_op); 1667 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1668 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1669 ref->level, 0, 1, extent_op); 1670 } else { 1671 BUG(); 1672 } 1673 return ret; 1674 } 1675 1676 /* helper function to actually process a single delayed ref entry */ 1677 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1678 struct btrfs_delayed_ref_node *node, 1679 struct btrfs_delayed_extent_op *extent_op, 1680 int insert_reserved) 1681 { 1682 int ret = 0; 1683 1684 if (trans->aborted) { 1685 if (insert_reserved) 1686 btrfs_pin_extent(trans->fs_info, node->bytenr, 1687 node->num_bytes, 1); 1688 return 0; 1689 } 1690 1691 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1692 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1693 ret = run_delayed_tree_ref(trans, node, extent_op, 1694 insert_reserved); 1695 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1696 node->type == BTRFS_SHARED_DATA_REF_KEY) 1697 ret = run_delayed_data_ref(trans, node, extent_op, 1698 insert_reserved); 1699 else 1700 BUG(); 1701 if (ret && insert_reserved) 1702 btrfs_pin_extent(trans->fs_info, node->bytenr, 1703 node->num_bytes, 1); 1704 return ret; 1705 } 1706 1707 static inline struct btrfs_delayed_ref_node * 1708 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1709 { 1710 struct btrfs_delayed_ref_node *ref; 1711 1712 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1713 return NULL; 1714 1715 /* 1716 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1717 * This is to prevent a ref count from going down to zero, which deletes 1718 * the extent item from the extent tree, when there still are references 1719 * to add, which would fail because they would not find the extent item. 1720 */ 1721 if (!list_empty(&head->ref_add_list)) 1722 return list_first_entry(&head->ref_add_list, 1723 struct btrfs_delayed_ref_node, add_list); 1724 1725 ref = rb_entry(rb_first_cached(&head->ref_tree), 1726 struct btrfs_delayed_ref_node, ref_node); 1727 ASSERT(list_empty(&ref->add_list)); 1728 return ref; 1729 } 1730 1731 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1732 struct btrfs_delayed_ref_head *head) 1733 { 1734 spin_lock(&delayed_refs->lock); 1735 head->processing = 0; 1736 delayed_refs->num_heads_ready++; 1737 spin_unlock(&delayed_refs->lock); 1738 btrfs_delayed_ref_unlock(head); 1739 } 1740 1741 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1742 struct btrfs_delayed_ref_head *head) 1743 { 1744 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1745 1746 if (!extent_op) 1747 return NULL; 1748 1749 if (head->must_insert_reserved) { 1750 head->extent_op = NULL; 1751 btrfs_free_delayed_extent_op(extent_op); 1752 return NULL; 1753 } 1754 return extent_op; 1755 } 1756 1757 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1758 struct btrfs_delayed_ref_head *head) 1759 { 1760 struct btrfs_delayed_extent_op *extent_op; 1761 int ret; 1762 1763 extent_op = cleanup_extent_op(head); 1764 if (!extent_op) 1765 return 0; 1766 head->extent_op = NULL; 1767 spin_unlock(&head->lock); 1768 ret = run_delayed_extent_op(trans, head, extent_op); 1769 btrfs_free_delayed_extent_op(extent_op); 1770 return ret ? ret : 1; 1771 } 1772 1773 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1774 struct btrfs_delayed_ref_root *delayed_refs, 1775 struct btrfs_delayed_ref_head *head) 1776 { 1777 int nr_items = 1; /* Dropping this ref head update. */ 1778 1779 if (head->total_ref_mod < 0) { 1780 struct btrfs_space_info *space_info; 1781 u64 flags; 1782 1783 if (head->is_data) 1784 flags = BTRFS_BLOCK_GROUP_DATA; 1785 else if (head->is_system) 1786 flags = BTRFS_BLOCK_GROUP_SYSTEM; 1787 else 1788 flags = BTRFS_BLOCK_GROUP_METADATA; 1789 space_info = btrfs_find_space_info(fs_info, flags); 1790 ASSERT(space_info); 1791 percpu_counter_add_batch(&space_info->total_bytes_pinned, 1792 -head->num_bytes, 1793 BTRFS_TOTAL_BYTES_PINNED_BATCH); 1794 1795 /* 1796 * We had csum deletions accounted for in our delayed refs rsv, 1797 * we need to drop the csum leaves for this update from our 1798 * delayed_refs_rsv. 1799 */ 1800 if (head->is_data) { 1801 spin_lock(&delayed_refs->lock); 1802 delayed_refs->pending_csums -= head->num_bytes; 1803 spin_unlock(&delayed_refs->lock); 1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info, 1805 head->num_bytes); 1806 } 1807 } 1808 1809 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1810 } 1811 1812 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1813 struct btrfs_delayed_ref_head *head) 1814 { 1815 1816 struct btrfs_fs_info *fs_info = trans->fs_info; 1817 struct btrfs_delayed_ref_root *delayed_refs; 1818 int ret; 1819 1820 delayed_refs = &trans->transaction->delayed_refs; 1821 1822 ret = run_and_cleanup_extent_op(trans, head); 1823 if (ret < 0) { 1824 unselect_delayed_ref_head(delayed_refs, head); 1825 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1826 return ret; 1827 } else if (ret) { 1828 return ret; 1829 } 1830 1831 /* 1832 * Need to drop our head ref lock and re-acquire the delayed ref lock 1833 * and then re-check to make sure nobody got added. 1834 */ 1835 spin_unlock(&head->lock); 1836 spin_lock(&delayed_refs->lock); 1837 spin_lock(&head->lock); 1838 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1839 spin_unlock(&head->lock); 1840 spin_unlock(&delayed_refs->lock); 1841 return 1; 1842 } 1843 btrfs_delete_ref_head(delayed_refs, head); 1844 spin_unlock(&head->lock); 1845 spin_unlock(&delayed_refs->lock); 1846 1847 if (head->must_insert_reserved) { 1848 btrfs_pin_extent(fs_info, head->bytenr, 1849 head->num_bytes, 1); 1850 if (head->is_data) { 1851 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 1852 head->num_bytes); 1853 } 1854 } 1855 1856 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1857 1858 trace_run_delayed_ref_head(fs_info, head, 0); 1859 btrfs_delayed_ref_unlock(head); 1860 btrfs_put_delayed_ref_head(head); 1861 return 0; 1862 } 1863 1864 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1865 struct btrfs_trans_handle *trans) 1866 { 1867 struct btrfs_delayed_ref_root *delayed_refs = 1868 &trans->transaction->delayed_refs; 1869 struct btrfs_delayed_ref_head *head = NULL; 1870 int ret; 1871 1872 spin_lock(&delayed_refs->lock); 1873 head = btrfs_select_ref_head(delayed_refs); 1874 if (!head) { 1875 spin_unlock(&delayed_refs->lock); 1876 return head; 1877 } 1878 1879 /* 1880 * Grab the lock that says we are going to process all the refs for 1881 * this head 1882 */ 1883 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1884 spin_unlock(&delayed_refs->lock); 1885 1886 /* 1887 * We may have dropped the spin lock to get the head mutex lock, and 1888 * that might have given someone else time to free the head. If that's 1889 * true, it has been removed from our list and we can move on. 1890 */ 1891 if (ret == -EAGAIN) 1892 head = ERR_PTR(-EAGAIN); 1893 1894 return head; 1895 } 1896 1897 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1898 struct btrfs_delayed_ref_head *locked_ref, 1899 unsigned long *run_refs) 1900 { 1901 struct btrfs_fs_info *fs_info = trans->fs_info; 1902 struct btrfs_delayed_ref_root *delayed_refs; 1903 struct btrfs_delayed_extent_op *extent_op; 1904 struct btrfs_delayed_ref_node *ref; 1905 int must_insert_reserved = 0; 1906 int ret; 1907 1908 delayed_refs = &trans->transaction->delayed_refs; 1909 1910 lockdep_assert_held(&locked_ref->mutex); 1911 lockdep_assert_held(&locked_ref->lock); 1912 1913 while ((ref = select_delayed_ref(locked_ref))) { 1914 if (ref->seq && 1915 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1916 spin_unlock(&locked_ref->lock); 1917 unselect_delayed_ref_head(delayed_refs, locked_ref); 1918 return -EAGAIN; 1919 } 1920 1921 (*run_refs)++; 1922 ref->in_tree = 0; 1923 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1924 RB_CLEAR_NODE(&ref->ref_node); 1925 if (!list_empty(&ref->add_list)) 1926 list_del(&ref->add_list); 1927 /* 1928 * When we play the delayed ref, also correct the ref_mod on 1929 * head 1930 */ 1931 switch (ref->action) { 1932 case BTRFS_ADD_DELAYED_REF: 1933 case BTRFS_ADD_DELAYED_EXTENT: 1934 locked_ref->ref_mod -= ref->ref_mod; 1935 break; 1936 case BTRFS_DROP_DELAYED_REF: 1937 locked_ref->ref_mod += ref->ref_mod; 1938 break; 1939 default: 1940 WARN_ON(1); 1941 } 1942 atomic_dec(&delayed_refs->num_entries); 1943 1944 /* 1945 * Record the must_insert_reserved flag before we drop the 1946 * spin lock. 1947 */ 1948 must_insert_reserved = locked_ref->must_insert_reserved; 1949 locked_ref->must_insert_reserved = 0; 1950 1951 extent_op = locked_ref->extent_op; 1952 locked_ref->extent_op = NULL; 1953 spin_unlock(&locked_ref->lock); 1954 1955 ret = run_one_delayed_ref(trans, ref, extent_op, 1956 must_insert_reserved); 1957 1958 btrfs_free_delayed_extent_op(extent_op); 1959 if (ret) { 1960 unselect_delayed_ref_head(delayed_refs, locked_ref); 1961 btrfs_put_delayed_ref(ref); 1962 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1963 ret); 1964 return ret; 1965 } 1966 1967 btrfs_put_delayed_ref(ref); 1968 cond_resched(); 1969 1970 spin_lock(&locked_ref->lock); 1971 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1972 } 1973 1974 return 0; 1975 } 1976 1977 /* 1978 * Returns 0 on success or if called with an already aborted transaction. 1979 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1980 */ 1981 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1982 unsigned long nr) 1983 { 1984 struct btrfs_fs_info *fs_info = trans->fs_info; 1985 struct btrfs_delayed_ref_root *delayed_refs; 1986 struct btrfs_delayed_ref_head *locked_ref = NULL; 1987 ktime_t start = ktime_get(); 1988 int ret; 1989 unsigned long count = 0; 1990 unsigned long actual_count = 0; 1991 1992 delayed_refs = &trans->transaction->delayed_refs; 1993 do { 1994 if (!locked_ref) { 1995 locked_ref = btrfs_obtain_ref_head(trans); 1996 if (IS_ERR_OR_NULL(locked_ref)) { 1997 if (PTR_ERR(locked_ref) == -EAGAIN) { 1998 continue; 1999 } else { 2000 break; 2001 } 2002 } 2003 count++; 2004 } 2005 /* 2006 * We need to try and merge add/drops of the same ref since we 2007 * can run into issues with relocate dropping the implicit ref 2008 * and then it being added back again before the drop can 2009 * finish. If we merged anything we need to re-loop so we can 2010 * get a good ref. 2011 * Or we can get node references of the same type that weren't 2012 * merged when created due to bumps in the tree mod seq, and 2013 * we need to merge them to prevent adding an inline extent 2014 * backref before dropping it (triggering a BUG_ON at 2015 * insert_inline_extent_backref()). 2016 */ 2017 spin_lock(&locked_ref->lock); 2018 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2019 2020 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2021 &actual_count); 2022 if (ret < 0 && ret != -EAGAIN) { 2023 /* 2024 * Error, btrfs_run_delayed_refs_for_head already 2025 * unlocked everything so just bail out 2026 */ 2027 return ret; 2028 } else if (!ret) { 2029 /* 2030 * Success, perform the usual cleanup of a processed 2031 * head 2032 */ 2033 ret = cleanup_ref_head(trans, locked_ref); 2034 if (ret > 0 ) { 2035 /* We dropped our lock, we need to loop. */ 2036 ret = 0; 2037 continue; 2038 } else if (ret) { 2039 return ret; 2040 } 2041 } 2042 2043 /* 2044 * Either success case or btrfs_run_delayed_refs_for_head 2045 * returned -EAGAIN, meaning we need to select another head 2046 */ 2047 2048 locked_ref = NULL; 2049 cond_resched(); 2050 } while ((nr != -1 && count < nr) || locked_ref); 2051 2052 /* 2053 * We don't want to include ref heads since we can have empty ref heads 2054 * and those will drastically skew our runtime down since we just do 2055 * accounting, no actual extent tree updates. 2056 */ 2057 if (actual_count > 0) { 2058 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2059 u64 avg; 2060 2061 /* 2062 * We weigh the current average higher than our current runtime 2063 * to avoid large swings in the average. 2064 */ 2065 spin_lock(&delayed_refs->lock); 2066 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2067 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2068 spin_unlock(&delayed_refs->lock); 2069 } 2070 return 0; 2071 } 2072 2073 #ifdef SCRAMBLE_DELAYED_REFS 2074 /* 2075 * Normally delayed refs get processed in ascending bytenr order. This 2076 * correlates in most cases to the order added. To expose dependencies on this 2077 * order, we start to process the tree in the middle instead of the beginning 2078 */ 2079 static u64 find_middle(struct rb_root *root) 2080 { 2081 struct rb_node *n = root->rb_node; 2082 struct btrfs_delayed_ref_node *entry; 2083 int alt = 1; 2084 u64 middle; 2085 u64 first = 0, last = 0; 2086 2087 n = rb_first(root); 2088 if (n) { 2089 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2090 first = entry->bytenr; 2091 } 2092 n = rb_last(root); 2093 if (n) { 2094 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2095 last = entry->bytenr; 2096 } 2097 n = root->rb_node; 2098 2099 while (n) { 2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2101 WARN_ON(!entry->in_tree); 2102 2103 middle = entry->bytenr; 2104 2105 if (alt) 2106 n = n->rb_left; 2107 else 2108 n = n->rb_right; 2109 2110 alt = 1 - alt; 2111 } 2112 return middle; 2113 } 2114 #endif 2115 2116 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2117 { 2118 u64 num_bytes; 2119 2120 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2121 sizeof(struct btrfs_extent_inline_ref)); 2122 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2123 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2124 2125 /* 2126 * We don't ever fill up leaves all the way so multiply by 2 just to be 2127 * closer to what we're really going to want to use. 2128 */ 2129 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2130 } 2131 2132 /* 2133 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2134 * would require to store the csums for that many bytes. 2135 */ 2136 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2137 { 2138 u64 csum_size; 2139 u64 num_csums_per_leaf; 2140 u64 num_csums; 2141 2142 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2143 num_csums_per_leaf = div64_u64(csum_size, 2144 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2145 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2146 num_csums += num_csums_per_leaf - 1; 2147 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2148 return num_csums; 2149 } 2150 2151 /* 2152 * this starts processing the delayed reference count updates and 2153 * extent insertions we have queued up so far. count can be 2154 * 0, which means to process everything in the tree at the start 2155 * of the run (but not newly added entries), or it can be some target 2156 * number you'd like to process. 2157 * 2158 * Returns 0 on success or if called with an aborted transaction 2159 * Returns <0 on error and aborts the transaction 2160 */ 2161 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2162 unsigned long count) 2163 { 2164 struct btrfs_fs_info *fs_info = trans->fs_info; 2165 struct rb_node *node; 2166 struct btrfs_delayed_ref_root *delayed_refs; 2167 struct btrfs_delayed_ref_head *head; 2168 int ret; 2169 int run_all = count == (unsigned long)-1; 2170 2171 /* We'll clean this up in btrfs_cleanup_transaction */ 2172 if (trans->aborted) 2173 return 0; 2174 2175 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2176 return 0; 2177 2178 delayed_refs = &trans->transaction->delayed_refs; 2179 if (count == 0) 2180 count = atomic_read(&delayed_refs->num_entries) * 2; 2181 2182 again: 2183 #ifdef SCRAMBLE_DELAYED_REFS 2184 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2185 #endif 2186 ret = __btrfs_run_delayed_refs(trans, count); 2187 if (ret < 0) { 2188 btrfs_abort_transaction(trans, ret); 2189 return ret; 2190 } 2191 2192 if (run_all) { 2193 btrfs_create_pending_block_groups(trans); 2194 2195 spin_lock(&delayed_refs->lock); 2196 node = rb_first_cached(&delayed_refs->href_root); 2197 if (!node) { 2198 spin_unlock(&delayed_refs->lock); 2199 goto out; 2200 } 2201 head = rb_entry(node, struct btrfs_delayed_ref_head, 2202 href_node); 2203 refcount_inc(&head->refs); 2204 spin_unlock(&delayed_refs->lock); 2205 2206 /* Mutex was contended, block until it's released and retry. */ 2207 mutex_lock(&head->mutex); 2208 mutex_unlock(&head->mutex); 2209 2210 btrfs_put_delayed_ref_head(head); 2211 cond_resched(); 2212 goto again; 2213 } 2214 out: 2215 return 0; 2216 } 2217 2218 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2219 u64 bytenr, u64 num_bytes, u64 flags, 2220 int level, int is_data) 2221 { 2222 struct btrfs_delayed_extent_op *extent_op; 2223 int ret; 2224 2225 extent_op = btrfs_alloc_delayed_extent_op(); 2226 if (!extent_op) 2227 return -ENOMEM; 2228 2229 extent_op->flags_to_set = flags; 2230 extent_op->update_flags = true; 2231 extent_op->update_key = false; 2232 extent_op->is_data = is_data ? true : false; 2233 extent_op->level = level; 2234 2235 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op); 2236 if (ret) 2237 btrfs_free_delayed_extent_op(extent_op); 2238 return ret; 2239 } 2240 2241 static noinline int check_delayed_ref(struct btrfs_root *root, 2242 struct btrfs_path *path, 2243 u64 objectid, u64 offset, u64 bytenr) 2244 { 2245 struct btrfs_delayed_ref_head *head; 2246 struct btrfs_delayed_ref_node *ref; 2247 struct btrfs_delayed_data_ref *data_ref; 2248 struct btrfs_delayed_ref_root *delayed_refs; 2249 struct btrfs_transaction *cur_trans; 2250 struct rb_node *node; 2251 int ret = 0; 2252 2253 spin_lock(&root->fs_info->trans_lock); 2254 cur_trans = root->fs_info->running_transaction; 2255 if (cur_trans) 2256 refcount_inc(&cur_trans->use_count); 2257 spin_unlock(&root->fs_info->trans_lock); 2258 if (!cur_trans) 2259 return 0; 2260 2261 delayed_refs = &cur_trans->delayed_refs; 2262 spin_lock(&delayed_refs->lock); 2263 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2264 if (!head) { 2265 spin_unlock(&delayed_refs->lock); 2266 btrfs_put_transaction(cur_trans); 2267 return 0; 2268 } 2269 2270 if (!mutex_trylock(&head->mutex)) { 2271 refcount_inc(&head->refs); 2272 spin_unlock(&delayed_refs->lock); 2273 2274 btrfs_release_path(path); 2275 2276 /* 2277 * Mutex was contended, block until it's released and let 2278 * caller try again 2279 */ 2280 mutex_lock(&head->mutex); 2281 mutex_unlock(&head->mutex); 2282 btrfs_put_delayed_ref_head(head); 2283 btrfs_put_transaction(cur_trans); 2284 return -EAGAIN; 2285 } 2286 spin_unlock(&delayed_refs->lock); 2287 2288 spin_lock(&head->lock); 2289 /* 2290 * XXX: We should replace this with a proper search function in the 2291 * future. 2292 */ 2293 for (node = rb_first_cached(&head->ref_tree); node; 2294 node = rb_next(node)) { 2295 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2296 /* If it's a shared ref we know a cross reference exists */ 2297 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2298 ret = 1; 2299 break; 2300 } 2301 2302 data_ref = btrfs_delayed_node_to_data_ref(ref); 2303 2304 /* 2305 * If our ref doesn't match the one we're currently looking at 2306 * then we have a cross reference. 2307 */ 2308 if (data_ref->root != root->root_key.objectid || 2309 data_ref->objectid != objectid || 2310 data_ref->offset != offset) { 2311 ret = 1; 2312 break; 2313 } 2314 } 2315 spin_unlock(&head->lock); 2316 mutex_unlock(&head->mutex); 2317 btrfs_put_transaction(cur_trans); 2318 return ret; 2319 } 2320 2321 static noinline int check_committed_ref(struct btrfs_root *root, 2322 struct btrfs_path *path, 2323 u64 objectid, u64 offset, u64 bytenr) 2324 { 2325 struct btrfs_fs_info *fs_info = root->fs_info; 2326 struct btrfs_root *extent_root = fs_info->extent_root; 2327 struct extent_buffer *leaf; 2328 struct btrfs_extent_data_ref *ref; 2329 struct btrfs_extent_inline_ref *iref; 2330 struct btrfs_extent_item *ei; 2331 struct btrfs_key key; 2332 u32 item_size; 2333 int type; 2334 int ret; 2335 2336 key.objectid = bytenr; 2337 key.offset = (u64)-1; 2338 key.type = BTRFS_EXTENT_ITEM_KEY; 2339 2340 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2341 if (ret < 0) 2342 goto out; 2343 BUG_ON(ret == 0); /* Corruption */ 2344 2345 ret = -ENOENT; 2346 if (path->slots[0] == 0) 2347 goto out; 2348 2349 path->slots[0]--; 2350 leaf = path->nodes[0]; 2351 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2352 2353 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2354 goto out; 2355 2356 ret = 1; 2357 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2358 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2359 2360 /* If extent item has more than 1 inline ref then it's shared */ 2361 if (item_size != sizeof(*ei) + 2362 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2363 goto out; 2364 2365 /* If extent created before last snapshot => it's definitely shared */ 2366 if (btrfs_extent_generation(leaf, ei) <= 2367 btrfs_root_last_snapshot(&root->root_item)) 2368 goto out; 2369 2370 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2371 2372 /* If this extent has SHARED_DATA_REF then it's shared */ 2373 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2374 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2375 goto out; 2376 2377 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2378 if (btrfs_extent_refs(leaf, ei) != 2379 btrfs_extent_data_ref_count(leaf, ref) || 2380 btrfs_extent_data_ref_root(leaf, ref) != 2381 root->root_key.objectid || 2382 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2383 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2384 goto out; 2385 2386 ret = 0; 2387 out: 2388 return ret; 2389 } 2390 2391 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2392 u64 bytenr) 2393 { 2394 struct btrfs_path *path; 2395 int ret; 2396 2397 path = btrfs_alloc_path(); 2398 if (!path) 2399 return -ENOMEM; 2400 2401 do { 2402 ret = check_committed_ref(root, path, objectid, 2403 offset, bytenr); 2404 if (ret && ret != -ENOENT) 2405 goto out; 2406 2407 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2408 } while (ret == -EAGAIN); 2409 2410 out: 2411 btrfs_free_path(path); 2412 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2413 WARN_ON(ret > 0); 2414 return ret; 2415 } 2416 2417 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2418 struct btrfs_root *root, 2419 struct extent_buffer *buf, 2420 int full_backref, int inc) 2421 { 2422 struct btrfs_fs_info *fs_info = root->fs_info; 2423 u64 bytenr; 2424 u64 num_bytes; 2425 u64 parent; 2426 u64 ref_root; 2427 u32 nritems; 2428 struct btrfs_key key; 2429 struct btrfs_file_extent_item *fi; 2430 struct btrfs_ref generic_ref = { 0 }; 2431 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2432 int i; 2433 int action; 2434 int level; 2435 int ret = 0; 2436 2437 if (btrfs_is_testing(fs_info)) 2438 return 0; 2439 2440 ref_root = btrfs_header_owner(buf); 2441 nritems = btrfs_header_nritems(buf); 2442 level = btrfs_header_level(buf); 2443 2444 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 2445 return 0; 2446 2447 if (full_backref) 2448 parent = buf->start; 2449 else 2450 parent = 0; 2451 if (inc) 2452 action = BTRFS_ADD_DELAYED_REF; 2453 else 2454 action = BTRFS_DROP_DELAYED_REF; 2455 2456 for (i = 0; i < nritems; i++) { 2457 if (level == 0) { 2458 btrfs_item_key_to_cpu(buf, &key, i); 2459 if (key.type != BTRFS_EXTENT_DATA_KEY) 2460 continue; 2461 fi = btrfs_item_ptr(buf, i, 2462 struct btrfs_file_extent_item); 2463 if (btrfs_file_extent_type(buf, fi) == 2464 BTRFS_FILE_EXTENT_INLINE) 2465 continue; 2466 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2467 if (bytenr == 0) 2468 continue; 2469 2470 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2471 key.offset -= btrfs_file_extent_offset(buf, fi); 2472 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2473 num_bytes, parent); 2474 generic_ref.real_root = root->root_key.objectid; 2475 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2476 key.offset); 2477 generic_ref.skip_qgroup = for_reloc; 2478 if (inc) 2479 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2480 else 2481 ret = btrfs_free_extent(trans, &generic_ref); 2482 if (ret) 2483 goto fail; 2484 } else { 2485 bytenr = btrfs_node_blockptr(buf, i); 2486 num_bytes = fs_info->nodesize; 2487 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2488 num_bytes, parent); 2489 generic_ref.real_root = root->root_key.objectid; 2490 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root); 2491 generic_ref.skip_qgroup = for_reloc; 2492 if (inc) 2493 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2494 else 2495 ret = btrfs_free_extent(trans, &generic_ref); 2496 if (ret) 2497 goto fail; 2498 } 2499 } 2500 return 0; 2501 fail: 2502 return ret; 2503 } 2504 2505 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2506 struct extent_buffer *buf, int full_backref) 2507 { 2508 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2509 } 2510 2511 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2512 struct extent_buffer *buf, int full_backref) 2513 { 2514 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2515 } 2516 2517 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 2518 { 2519 struct btrfs_block_group_cache *block_group; 2520 int readonly = 0; 2521 2522 block_group = btrfs_lookup_block_group(fs_info, bytenr); 2523 if (!block_group || block_group->ro) 2524 readonly = 1; 2525 if (block_group) 2526 btrfs_put_block_group(block_group); 2527 return readonly; 2528 } 2529 2530 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2531 { 2532 struct btrfs_fs_info *fs_info = root->fs_info; 2533 u64 flags; 2534 u64 ret; 2535 2536 if (data) 2537 flags = BTRFS_BLOCK_GROUP_DATA; 2538 else if (root == fs_info->chunk_root) 2539 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2540 else 2541 flags = BTRFS_BLOCK_GROUP_METADATA; 2542 2543 ret = btrfs_get_alloc_profile(fs_info, flags); 2544 return ret; 2545 } 2546 2547 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2548 { 2549 struct btrfs_block_group_cache *cache; 2550 u64 bytenr; 2551 2552 spin_lock(&fs_info->block_group_cache_lock); 2553 bytenr = fs_info->first_logical_byte; 2554 spin_unlock(&fs_info->block_group_cache_lock); 2555 2556 if (bytenr < (u64)-1) 2557 return bytenr; 2558 2559 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2560 if (!cache) 2561 return 0; 2562 2563 bytenr = cache->key.objectid; 2564 btrfs_put_block_group(cache); 2565 2566 return bytenr; 2567 } 2568 2569 static int pin_down_extent(struct btrfs_block_group_cache *cache, 2570 u64 bytenr, u64 num_bytes, int reserved) 2571 { 2572 struct btrfs_fs_info *fs_info = cache->fs_info; 2573 2574 spin_lock(&cache->space_info->lock); 2575 spin_lock(&cache->lock); 2576 cache->pinned += num_bytes; 2577 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2578 num_bytes); 2579 if (reserved) { 2580 cache->reserved -= num_bytes; 2581 cache->space_info->bytes_reserved -= num_bytes; 2582 } 2583 spin_unlock(&cache->lock); 2584 spin_unlock(&cache->space_info->lock); 2585 2586 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, 2587 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2588 set_extent_dirty(fs_info->pinned_extents, bytenr, 2589 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2590 return 0; 2591 } 2592 2593 /* 2594 * this function must be called within transaction 2595 */ 2596 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 2597 u64 bytenr, u64 num_bytes, int reserved) 2598 { 2599 struct btrfs_block_group_cache *cache; 2600 2601 cache = btrfs_lookup_block_group(fs_info, bytenr); 2602 BUG_ON(!cache); /* Logic error */ 2603 2604 pin_down_extent(cache, bytenr, num_bytes, reserved); 2605 2606 btrfs_put_block_group(cache); 2607 return 0; 2608 } 2609 2610 /* 2611 * this function must be called within transaction 2612 */ 2613 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 2614 u64 bytenr, u64 num_bytes) 2615 { 2616 struct btrfs_block_group_cache *cache; 2617 int ret; 2618 2619 cache = btrfs_lookup_block_group(fs_info, bytenr); 2620 if (!cache) 2621 return -EINVAL; 2622 2623 /* 2624 * pull in the free space cache (if any) so that our pin 2625 * removes the free space from the cache. We have load_only set 2626 * to one because the slow code to read in the free extents does check 2627 * the pinned extents. 2628 */ 2629 btrfs_cache_block_group(cache, 1); 2630 2631 pin_down_extent(cache, bytenr, num_bytes, 0); 2632 2633 /* remove us from the free space cache (if we're there at all) */ 2634 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2635 btrfs_put_block_group(cache); 2636 return ret; 2637 } 2638 2639 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2640 u64 start, u64 num_bytes) 2641 { 2642 int ret; 2643 struct btrfs_block_group_cache *block_group; 2644 struct btrfs_caching_control *caching_ctl; 2645 2646 block_group = btrfs_lookup_block_group(fs_info, start); 2647 if (!block_group) 2648 return -EINVAL; 2649 2650 btrfs_cache_block_group(block_group, 0); 2651 caching_ctl = btrfs_get_caching_control(block_group); 2652 2653 if (!caching_ctl) { 2654 /* Logic error */ 2655 BUG_ON(!btrfs_block_group_cache_done(block_group)); 2656 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2657 } else { 2658 mutex_lock(&caching_ctl->mutex); 2659 2660 if (start >= caching_ctl->progress) { 2661 ret = btrfs_add_excluded_extent(fs_info, start, 2662 num_bytes); 2663 } else if (start + num_bytes <= caching_ctl->progress) { 2664 ret = btrfs_remove_free_space(block_group, 2665 start, num_bytes); 2666 } else { 2667 num_bytes = caching_ctl->progress - start; 2668 ret = btrfs_remove_free_space(block_group, 2669 start, num_bytes); 2670 if (ret) 2671 goto out_lock; 2672 2673 num_bytes = (start + num_bytes) - 2674 caching_ctl->progress; 2675 start = caching_ctl->progress; 2676 ret = btrfs_add_excluded_extent(fs_info, start, 2677 num_bytes); 2678 } 2679 out_lock: 2680 mutex_unlock(&caching_ctl->mutex); 2681 btrfs_put_caching_control(caching_ctl); 2682 } 2683 btrfs_put_block_group(block_group); 2684 return ret; 2685 } 2686 2687 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2688 { 2689 struct btrfs_fs_info *fs_info = eb->fs_info; 2690 struct btrfs_file_extent_item *item; 2691 struct btrfs_key key; 2692 int found_type; 2693 int i; 2694 int ret = 0; 2695 2696 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2697 return 0; 2698 2699 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2700 btrfs_item_key_to_cpu(eb, &key, i); 2701 if (key.type != BTRFS_EXTENT_DATA_KEY) 2702 continue; 2703 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2704 found_type = btrfs_file_extent_type(eb, item); 2705 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2706 continue; 2707 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2708 continue; 2709 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2710 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2711 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2712 if (ret) 2713 break; 2714 } 2715 2716 return ret; 2717 } 2718 2719 static void 2720 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 2721 { 2722 atomic_inc(&bg->reservations); 2723 } 2724 2725 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 2726 { 2727 struct btrfs_caching_control *next; 2728 struct btrfs_caching_control *caching_ctl; 2729 struct btrfs_block_group_cache *cache; 2730 2731 down_write(&fs_info->commit_root_sem); 2732 2733 list_for_each_entry_safe(caching_ctl, next, 2734 &fs_info->caching_block_groups, list) { 2735 cache = caching_ctl->block_group; 2736 if (btrfs_block_group_cache_done(cache)) { 2737 cache->last_byte_to_unpin = (u64)-1; 2738 list_del_init(&caching_ctl->list); 2739 btrfs_put_caching_control(caching_ctl); 2740 } else { 2741 cache->last_byte_to_unpin = caching_ctl->progress; 2742 } 2743 } 2744 2745 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 2746 fs_info->pinned_extents = &fs_info->freed_extents[1]; 2747 else 2748 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2749 2750 up_write(&fs_info->commit_root_sem); 2751 2752 btrfs_update_global_block_rsv(fs_info); 2753 } 2754 2755 /* 2756 * Returns the free cluster for the given space info and sets empty_cluster to 2757 * what it should be based on the mount options. 2758 */ 2759 static struct btrfs_free_cluster * 2760 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2761 struct btrfs_space_info *space_info, u64 *empty_cluster) 2762 { 2763 struct btrfs_free_cluster *ret = NULL; 2764 2765 *empty_cluster = 0; 2766 if (btrfs_mixed_space_info(space_info)) 2767 return ret; 2768 2769 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2770 ret = &fs_info->meta_alloc_cluster; 2771 if (btrfs_test_opt(fs_info, SSD)) 2772 *empty_cluster = SZ_2M; 2773 else 2774 *empty_cluster = SZ_64K; 2775 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2776 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2777 *empty_cluster = SZ_2M; 2778 ret = &fs_info->data_alloc_cluster; 2779 } 2780 2781 return ret; 2782 } 2783 2784 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2785 u64 start, u64 end, 2786 const bool return_free_space) 2787 { 2788 struct btrfs_block_group_cache *cache = NULL; 2789 struct btrfs_space_info *space_info; 2790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2791 struct btrfs_free_cluster *cluster = NULL; 2792 u64 len; 2793 u64 total_unpinned = 0; 2794 u64 empty_cluster = 0; 2795 bool readonly; 2796 2797 while (start <= end) { 2798 readonly = false; 2799 if (!cache || 2800 start >= cache->key.objectid + cache->key.offset) { 2801 if (cache) 2802 btrfs_put_block_group(cache); 2803 total_unpinned = 0; 2804 cache = btrfs_lookup_block_group(fs_info, start); 2805 BUG_ON(!cache); /* Logic error */ 2806 2807 cluster = fetch_cluster_info(fs_info, 2808 cache->space_info, 2809 &empty_cluster); 2810 empty_cluster <<= 1; 2811 } 2812 2813 len = cache->key.objectid + cache->key.offset - start; 2814 len = min(len, end + 1 - start); 2815 2816 if (start < cache->last_byte_to_unpin) { 2817 len = min(len, cache->last_byte_to_unpin - start); 2818 if (return_free_space) 2819 btrfs_add_free_space(cache, start, len); 2820 } 2821 2822 start += len; 2823 total_unpinned += len; 2824 space_info = cache->space_info; 2825 2826 /* 2827 * If this space cluster has been marked as fragmented and we've 2828 * unpinned enough in this block group to potentially allow a 2829 * cluster to be created inside of it go ahead and clear the 2830 * fragmented check. 2831 */ 2832 if (cluster && cluster->fragmented && 2833 total_unpinned > empty_cluster) { 2834 spin_lock(&cluster->lock); 2835 cluster->fragmented = 0; 2836 spin_unlock(&cluster->lock); 2837 } 2838 2839 spin_lock(&space_info->lock); 2840 spin_lock(&cache->lock); 2841 cache->pinned -= len; 2842 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2843 space_info->max_extent_size = 0; 2844 percpu_counter_add_batch(&space_info->total_bytes_pinned, 2845 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); 2846 if (cache->ro) { 2847 space_info->bytes_readonly += len; 2848 readonly = true; 2849 } 2850 spin_unlock(&cache->lock); 2851 if (!readonly && return_free_space && 2852 global_rsv->space_info == space_info) { 2853 u64 to_add = len; 2854 2855 spin_lock(&global_rsv->lock); 2856 if (!global_rsv->full) { 2857 to_add = min(len, global_rsv->size - 2858 global_rsv->reserved); 2859 global_rsv->reserved += to_add; 2860 btrfs_space_info_update_bytes_may_use(fs_info, 2861 space_info, to_add); 2862 if (global_rsv->reserved >= global_rsv->size) 2863 global_rsv->full = 1; 2864 len -= to_add; 2865 } 2866 spin_unlock(&global_rsv->lock); 2867 /* Add to any tickets we may have */ 2868 if (len) 2869 btrfs_try_granting_tickets(fs_info, 2870 space_info); 2871 } 2872 spin_unlock(&space_info->lock); 2873 } 2874 2875 if (cache) 2876 btrfs_put_block_group(cache); 2877 return 0; 2878 } 2879 2880 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2881 { 2882 struct btrfs_fs_info *fs_info = trans->fs_info; 2883 struct btrfs_block_group_cache *block_group, *tmp; 2884 struct list_head *deleted_bgs; 2885 struct extent_io_tree *unpin; 2886 u64 start; 2887 u64 end; 2888 int ret; 2889 2890 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 2891 unpin = &fs_info->freed_extents[1]; 2892 else 2893 unpin = &fs_info->freed_extents[0]; 2894 2895 while (!trans->aborted) { 2896 struct extent_state *cached_state = NULL; 2897 2898 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2899 ret = find_first_extent_bit(unpin, 0, &start, &end, 2900 EXTENT_DIRTY, &cached_state); 2901 if (ret) { 2902 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2903 break; 2904 } 2905 2906 if (btrfs_test_opt(fs_info, DISCARD)) 2907 ret = btrfs_discard_extent(fs_info, start, 2908 end + 1 - start, NULL); 2909 2910 clear_extent_dirty(unpin, start, end, &cached_state); 2911 unpin_extent_range(fs_info, start, end, true); 2912 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2913 free_extent_state(cached_state); 2914 cond_resched(); 2915 } 2916 2917 /* 2918 * Transaction is finished. We don't need the lock anymore. We 2919 * do need to clean up the block groups in case of a transaction 2920 * abort. 2921 */ 2922 deleted_bgs = &trans->transaction->deleted_bgs; 2923 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2924 u64 trimmed = 0; 2925 2926 ret = -EROFS; 2927 if (!trans->aborted) 2928 ret = btrfs_discard_extent(fs_info, 2929 block_group->key.objectid, 2930 block_group->key.offset, 2931 &trimmed); 2932 2933 list_del_init(&block_group->bg_list); 2934 btrfs_put_block_group_trimming(block_group); 2935 btrfs_put_block_group(block_group); 2936 2937 if (ret) { 2938 const char *errstr = btrfs_decode_error(ret); 2939 btrfs_warn(fs_info, 2940 "discard failed while removing blockgroup: errno=%d %s", 2941 ret, errstr); 2942 } 2943 } 2944 2945 return 0; 2946 } 2947 2948 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2949 struct btrfs_delayed_ref_node *node, u64 parent, 2950 u64 root_objectid, u64 owner_objectid, 2951 u64 owner_offset, int refs_to_drop, 2952 struct btrfs_delayed_extent_op *extent_op) 2953 { 2954 struct btrfs_fs_info *info = trans->fs_info; 2955 struct btrfs_key key; 2956 struct btrfs_path *path; 2957 struct btrfs_root *extent_root = info->extent_root; 2958 struct extent_buffer *leaf; 2959 struct btrfs_extent_item *ei; 2960 struct btrfs_extent_inline_ref *iref; 2961 int ret; 2962 int is_data; 2963 int extent_slot = 0; 2964 int found_extent = 0; 2965 int num_to_del = 1; 2966 u32 item_size; 2967 u64 refs; 2968 u64 bytenr = node->bytenr; 2969 u64 num_bytes = node->num_bytes; 2970 int last_ref = 0; 2971 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2972 2973 path = btrfs_alloc_path(); 2974 if (!path) 2975 return -ENOMEM; 2976 2977 path->reada = READA_FORWARD; 2978 path->leave_spinning = 1; 2979 2980 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2981 BUG_ON(!is_data && refs_to_drop != 1); 2982 2983 if (is_data) 2984 skinny_metadata = false; 2985 2986 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2987 parent, root_objectid, owner_objectid, 2988 owner_offset); 2989 if (ret == 0) { 2990 extent_slot = path->slots[0]; 2991 while (extent_slot >= 0) { 2992 btrfs_item_key_to_cpu(path->nodes[0], &key, 2993 extent_slot); 2994 if (key.objectid != bytenr) 2995 break; 2996 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2997 key.offset == num_bytes) { 2998 found_extent = 1; 2999 break; 3000 } 3001 if (key.type == BTRFS_METADATA_ITEM_KEY && 3002 key.offset == owner_objectid) { 3003 found_extent = 1; 3004 break; 3005 } 3006 if (path->slots[0] - extent_slot > 5) 3007 break; 3008 extent_slot--; 3009 } 3010 3011 if (!found_extent) { 3012 BUG_ON(iref); 3013 ret = remove_extent_backref(trans, path, NULL, 3014 refs_to_drop, 3015 is_data, &last_ref); 3016 if (ret) { 3017 btrfs_abort_transaction(trans, ret); 3018 goto out; 3019 } 3020 btrfs_release_path(path); 3021 path->leave_spinning = 1; 3022 3023 key.objectid = bytenr; 3024 key.type = BTRFS_EXTENT_ITEM_KEY; 3025 key.offset = num_bytes; 3026 3027 if (!is_data && skinny_metadata) { 3028 key.type = BTRFS_METADATA_ITEM_KEY; 3029 key.offset = owner_objectid; 3030 } 3031 3032 ret = btrfs_search_slot(trans, extent_root, 3033 &key, path, -1, 1); 3034 if (ret > 0 && skinny_metadata && path->slots[0]) { 3035 /* 3036 * Couldn't find our skinny metadata item, 3037 * see if we have ye olde extent item. 3038 */ 3039 path->slots[0]--; 3040 btrfs_item_key_to_cpu(path->nodes[0], &key, 3041 path->slots[0]); 3042 if (key.objectid == bytenr && 3043 key.type == BTRFS_EXTENT_ITEM_KEY && 3044 key.offset == num_bytes) 3045 ret = 0; 3046 } 3047 3048 if (ret > 0 && skinny_metadata) { 3049 skinny_metadata = false; 3050 key.objectid = bytenr; 3051 key.type = BTRFS_EXTENT_ITEM_KEY; 3052 key.offset = num_bytes; 3053 btrfs_release_path(path); 3054 ret = btrfs_search_slot(trans, extent_root, 3055 &key, path, -1, 1); 3056 } 3057 3058 if (ret) { 3059 btrfs_err(info, 3060 "umm, got %d back from search, was looking for %llu", 3061 ret, bytenr); 3062 if (ret > 0) 3063 btrfs_print_leaf(path->nodes[0]); 3064 } 3065 if (ret < 0) { 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } 3069 extent_slot = path->slots[0]; 3070 } 3071 } else if (WARN_ON(ret == -ENOENT)) { 3072 btrfs_print_leaf(path->nodes[0]); 3073 btrfs_err(info, 3074 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3075 bytenr, parent, root_objectid, owner_objectid, 3076 owner_offset); 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } else { 3080 btrfs_abort_transaction(trans, ret); 3081 goto out; 3082 } 3083 3084 leaf = path->nodes[0]; 3085 item_size = btrfs_item_size_nr(leaf, extent_slot); 3086 if (unlikely(item_size < sizeof(*ei))) { 3087 ret = -EINVAL; 3088 btrfs_print_v0_err(info); 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 ei = btrfs_item_ptr(leaf, extent_slot, 3093 struct btrfs_extent_item); 3094 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3095 key.type == BTRFS_EXTENT_ITEM_KEY) { 3096 struct btrfs_tree_block_info *bi; 3097 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 3098 bi = (struct btrfs_tree_block_info *)(ei + 1); 3099 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3100 } 3101 3102 refs = btrfs_extent_refs(leaf, ei); 3103 if (refs < refs_to_drop) { 3104 btrfs_err(info, 3105 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 3106 refs_to_drop, refs, bytenr); 3107 ret = -EINVAL; 3108 btrfs_abort_transaction(trans, ret); 3109 goto out; 3110 } 3111 refs -= refs_to_drop; 3112 3113 if (refs > 0) { 3114 if (extent_op) 3115 __run_delayed_extent_op(extent_op, leaf, ei); 3116 /* 3117 * In the case of inline back ref, reference count will 3118 * be updated by remove_extent_backref 3119 */ 3120 if (iref) { 3121 BUG_ON(!found_extent); 3122 } else { 3123 btrfs_set_extent_refs(leaf, ei, refs); 3124 btrfs_mark_buffer_dirty(leaf); 3125 } 3126 if (found_extent) { 3127 ret = remove_extent_backref(trans, path, iref, 3128 refs_to_drop, is_data, 3129 &last_ref); 3130 if (ret) { 3131 btrfs_abort_transaction(trans, ret); 3132 goto out; 3133 } 3134 } 3135 } else { 3136 if (found_extent) { 3137 BUG_ON(is_data && refs_to_drop != 3138 extent_data_ref_count(path, iref)); 3139 if (iref) { 3140 BUG_ON(path->slots[0] != extent_slot); 3141 } else { 3142 BUG_ON(path->slots[0] != extent_slot + 1); 3143 path->slots[0] = extent_slot; 3144 num_to_del = 2; 3145 } 3146 } 3147 3148 last_ref = 1; 3149 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3150 num_to_del); 3151 if (ret) { 3152 btrfs_abort_transaction(trans, ret); 3153 goto out; 3154 } 3155 btrfs_release_path(path); 3156 3157 if (is_data) { 3158 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 3159 if (ret) { 3160 btrfs_abort_transaction(trans, ret); 3161 goto out; 3162 } 3163 } 3164 3165 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3166 if (ret) { 3167 btrfs_abort_transaction(trans, ret); 3168 goto out; 3169 } 3170 3171 ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0); 3172 if (ret) { 3173 btrfs_abort_transaction(trans, ret); 3174 goto out; 3175 } 3176 } 3177 btrfs_release_path(path); 3178 3179 out: 3180 btrfs_free_path(path); 3181 return ret; 3182 } 3183 3184 /* 3185 * when we free an block, it is possible (and likely) that we free the last 3186 * delayed ref for that extent as well. This searches the delayed ref tree for 3187 * a given extent, and if there are no other delayed refs to be processed, it 3188 * removes it from the tree. 3189 */ 3190 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3191 u64 bytenr) 3192 { 3193 struct btrfs_delayed_ref_head *head; 3194 struct btrfs_delayed_ref_root *delayed_refs; 3195 int ret = 0; 3196 3197 delayed_refs = &trans->transaction->delayed_refs; 3198 spin_lock(&delayed_refs->lock); 3199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3200 if (!head) 3201 goto out_delayed_unlock; 3202 3203 spin_lock(&head->lock); 3204 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3205 goto out; 3206 3207 if (cleanup_extent_op(head) != NULL) 3208 goto out; 3209 3210 /* 3211 * waiting for the lock here would deadlock. If someone else has it 3212 * locked they are already in the process of dropping it anyway 3213 */ 3214 if (!mutex_trylock(&head->mutex)) 3215 goto out; 3216 3217 btrfs_delete_ref_head(delayed_refs, head); 3218 head->processing = 0; 3219 3220 spin_unlock(&head->lock); 3221 spin_unlock(&delayed_refs->lock); 3222 3223 BUG_ON(head->extent_op); 3224 if (head->must_insert_reserved) 3225 ret = 1; 3226 3227 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3228 mutex_unlock(&head->mutex); 3229 btrfs_put_delayed_ref_head(head); 3230 return ret; 3231 out: 3232 spin_unlock(&head->lock); 3233 3234 out_delayed_unlock: 3235 spin_unlock(&delayed_refs->lock); 3236 return 0; 3237 } 3238 3239 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3240 struct btrfs_root *root, 3241 struct extent_buffer *buf, 3242 u64 parent, int last_ref) 3243 { 3244 struct btrfs_fs_info *fs_info = root->fs_info; 3245 struct btrfs_ref generic_ref = { 0 }; 3246 int pin = 1; 3247 int ret; 3248 3249 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3250 buf->start, buf->len, parent); 3251 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3252 root->root_key.objectid); 3253 3254 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3255 int old_ref_mod, new_ref_mod; 3256 3257 btrfs_ref_tree_mod(fs_info, &generic_ref); 3258 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL, 3259 &old_ref_mod, &new_ref_mod); 3260 BUG_ON(ret); /* -ENOMEM */ 3261 pin = old_ref_mod >= 0 && new_ref_mod < 0; 3262 } 3263 3264 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3265 struct btrfs_block_group_cache *cache; 3266 3267 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 3268 ret = check_ref_cleanup(trans, buf->start); 3269 if (!ret) 3270 goto out; 3271 } 3272 3273 pin = 0; 3274 cache = btrfs_lookup_block_group(fs_info, buf->start); 3275 3276 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3277 pin_down_extent(cache, buf->start, buf->len, 1); 3278 btrfs_put_block_group(cache); 3279 goto out; 3280 } 3281 3282 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3283 3284 btrfs_add_free_space(cache, buf->start, buf->len); 3285 btrfs_free_reserved_bytes(cache, buf->len, 0); 3286 btrfs_put_block_group(cache); 3287 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3288 } 3289 out: 3290 if (pin) 3291 add_pinned_bytes(fs_info, &generic_ref); 3292 3293 if (last_ref) { 3294 /* 3295 * Deleting the buffer, clear the corrupt flag since it doesn't 3296 * matter anymore. 3297 */ 3298 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3299 } 3300 } 3301 3302 /* Can return -ENOMEM */ 3303 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3304 { 3305 struct btrfs_fs_info *fs_info = trans->fs_info; 3306 int old_ref_mod, new_ref_mod; 3307 int ret; 3308 3309 if (btrfs_is_testing(fs_info)) 3310 return 0; 3311 3312 /* 3313 * tree log blocks never actually go into the extent allocation 3314 * tree, just update pinning info and exit early. 3315 */ 3316 if ((ref->type == BTRFS_REF_METADATA && 3317 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3318 (ref->type == BTRFS_REF_DATA && 3319 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3320 /* unlocks the pinned mutex */ 3321 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1); 3322 old_ref_mod = new_ref_mod = 0; 3323 ret = 0; 3324 } else if (ref->type == BTRFS_REF_METADATA) { 3325 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL, 3326 &old_ref_mod, &new_ref_mod); 3327 } else { 3328 ret = btrfs_add_delayed_data_ref(trans, ref, 0, 3329 &old_ref_mod, &new_ref_mod); 3330 } 3331 3332 if (!((ref->type == BTRFS_REF_METADATA && 3333 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) || 3334 (ref->type == BTRFS_REF_DATA && 3335 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3336 btrfs_ref_tree_mod(fs_info, ref); 3337 3338 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 3339 add_pinned_bytes(fs_info, ref); 3340 3341 return ret; 3342 } 3343 3344 enum btrfs_loop_type { 3345 LOOP_CACHING_NOWAIT, 3346 LOOP_CACHING_WAIT, 3347 LOOP_ALLOC_CHUNK, 3348 LOOP_NO_EMPTY_SIZE, 3349 }; 3350 3351 static inline void 3352 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 3353 int delalloc) 3354 { 3355 if (delalloc) 3356 down_read(&cache->data_rwsem); 3357 } 3358 3359 static inline void 3360 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 3361 int delalloc) 3362 { 3363 btrfs_get_block_group(cache); 3364 if (delalloc) 3365 down_read(&cache->data_rwsem); 3366 } 3367 3368 static struct btrfs_block_group_cache * 3369 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 3370 struct btrfs_free_cluster *cluster, 3371 int delalloc) 3372 { 3373 struct btrfs_block_group_cache *used_bg = NULL; 3374 3375 spin_lock(&cluster->refill_lock); 3376 while (1) { 3377 used_bg = cluster->block_group; 3378 if (!used_bg) 3379 return NULL; 3380 3381 if (used_bg == block_group) 3382 return used_bg; 3383 3384 btrfs_get_block_group(used_bg); 3385 3386 if (!delalloc) 3387 return used_bg; 3388 3389 if (down_read_trylock(&used_bg->data_rwsem)) 3390 return used_bg; 3391 3392 spin_unlock(&cluster->refill_lock); 3393 3394 /* We should only have one-level nested. */ 3395 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3396 3397 spin_lock(&cluster->refill_lock); 3398 if (used_bg == cluster->block_group) 3399 return used_bg; 3400 3401 up_read(&used_bg->data_rwsem); 3402 btrfs_put_block_group(used_bg); 3403 } 3404 } 3405 3406 static inline void 3407 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 3408 int delalloc) 3409 { 3410 if (delalloc) 3411 up_read(&cache->data_rwsem); 3412 btrfs_put_block_group(cache); 3413 } 3414 3415 /* 3416 * Structure used internally for find_free_extent() function. Wraps needed 3417 * parameters. 3418 */ 3419 struct find_free_extent_ctl { 3420 /* Basic allocation info */ 3421 u64 ram_bytes; 3422 u64 num_bytes; 3423 u64 empty_size; 3424 u64 flags; 3425 int delalloc; 3426 3427 /* Where to start the search inside the bg */ 3428 u64 search_start; 3429 3430 /* For clustered allocation */ 3431 u64 empty_cluster; 3432 3433 bool have_caching_bg; 3434 bool orig_have_caching_bg; 3435 3436 /* RAID index, converted from flags */ 3437 int index; 3438 3439 /* 3440 * Current loop number, check find_free_extent_update_loop() for details 3441 */ 3442 int loop; 3443 3444 /* 3445 * Whether we're refilling a cluster, if true we need to re-search 3446 * current block group but don't try to refill the cluster again. 3447 */ 3448 bool retry_clustered; 3449 3450 /* 3451 * Whether we're updating free space cache, if true we need to re-search 3452 * current block group but don't try updating free space cache again. 3453 */ 3454 bool retry_unclustered; 3455 3456 /* If current block group is cached */ 3457 int cached; 3458 3459 /* Max contiguous hole found */ 3460 u64 max_extent_size; 3461 3462 /* Total free space from free space cache, not always contiguous */ 3463 u64 total_free_space; 3464 3465 /* Found result */ 3466 u64 found_offset; 3467 }; 3468 3469 3470 /* 3471 * Helper function for find_free_extent(). 3472 * 3473 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3474 * Return -EAGAIN to inform caller that we need to re-search this block group 3475 * Return >0 to inform caller that we find nothing 3476 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3477 */ 3478 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg, 3479 struct btrfs_free_cluster *last_ptr, 3480 struct find_free_extent_ctl *ffe_ctl, 3481 struct btrfs_block_group_cache **cluster_bg_ret) 3482 { 3483 struct btrfs_block_group_cache *cluster_bg; 3484 u64 aligned_cluster; 3485 u64 offset; 3486 int ret; 3487 3488 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3489 if (!cluster_bg) 3490 goto refill_cluster; 3491 if (cluster_bg != bg && (cluster_bg->ro || 3492 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3493 goto release_cluster; 3494 3495 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3496 ffe_ctl->num_bytes, cluster_bg->key.objectid, 3497 &ffe_ctl->max_extent_size); 3498 if (offset) { 3499 /* We have a block, we're done */ 3500 spin_unlock(&last_ptr->refill_lock); 3501 trace_btrfs_reserve_extent_cluster(cluster_bg, 3502 ffe_ctl->search_start, ffe_ctl->num_bytes); 3503 *cluster_bg_ret = cluster_bg; 3504 ffe_ctl->found_offset = offset; 3505 return 0; 3506 } 3507 WARN_ON(last_ptr->block_group != cluster_bg); 3508 3509 release_cluster: 3510 /* 3511 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3512 * lets just skip it and let the allocator find whatever block it can 3513 * find. If we reach this point, we will have tried the cluster 3514 * allocator plenty of times and not have found anything, so we are 3515 * likely way too fragmented for the clustering stuff to find anything. 3516 * 3517 * However, if the cluster is taken from the current block group, 3518 * release the cluster first, so that we stand a better chance of 3519 * succeeding in the unclustered allocation. 3520 */ 3521 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3522 spin_unlock(&last_ptr->refill_lock); 3523 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3524 return -ENOENT; 3525 } 3526 3527 /* This cluster didn't work out, free it and start over */ 3528 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3529 3530 if (cluster_bg != bg) 3531 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3532 3533 refill_cluster: 3534 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3535 spin_unlock(&last_ptr->refill_lock); 3536 return -ENOENT; 3537 } 3538 3539 aligned_cluster = max_t(u64, 3540 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3541 bg->full_stripe_len); 3542 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3543 ffe_ctl->num_bytes, aligned_cluster); 3544 if (ret == 0) { 3545 /* Now pull our allocation out of this cluster */ 3546 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3547 ffe_ctl->num_bytes, ffe_ctl->search_start, 3548 &ffe_ctl->max_extent_size); 3549 if (offset) { 3550 /* We found one, proceed */ 3551 spin_unlock(&last_ptr->refill_lock); 3552 trace_btrfs_reserve_extent_cluster(bg, 3553 ffe_ctl->search_start, 3554 ffe_ctl->num_bytes); 3555 ffe_ctl->found_offset = offset; 3556 return 0; 3557 } 3558 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3559 !ffe_ctl->retry_clustered) { 3560 spin_unlock(&last_ptr->refill_lock); 3561 3562 ffe_ctl->retry_clustered = true; 3563 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3564 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3565 return -EAGAIN; 3566 } 3567 /* 3568 * At this point we either didn't find a cluster or we weren't able to 3569 * allocate a block from our cluster. Free the cluster we've been 3570 * trying to use, and go to the next block group. 3571 */ 3572 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3573 spin_unlock(&last_ptr->refill_lock); 3574 return 1; 3575 } 3576 3577 /* 3578 * Return >0 to inform caller that we find nothing 3579 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3580 * Return -EAGAIN to inform caller that we need to re-search this block group 3581 */ 3582 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg, 3583 struct btrfs_free_cluster *last_ptr, 3584 struct find_free_extent_ctl *ffe_ctl) 3585 { 3586 u64 offset; 3587 3588 /* 3589 * We are doing an unclustered allocation, set the fragmented flag so 3590 * we don't bother trying to setup a cluster again until we get more 3591 * space. 3592 */ 3593 if (unlikely(last_ptr)) { 3594 spin_lock(&last_ptr->lock); 3595 last_ptr->fragmented = 1; 3596 spin_unlock(&last_ptr->lock); 3597 } 3598 if (ffe_ctl->cached) { 3599 struct btrfs_free_space_ctl *free_space_ctl; 3600 3601 free_space_ctl = bg->free_space_ctl; 3602 spin_lock(&free_space_ctl->tree_lock); 3603 if (free_space_ctl->free_space < 3604 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3605 ffe_ctl->empty_size) { 3606 ffe_ctl->total_free_space = max_t(u64, 3607 ffe_ctl->total_free_space, 3608 free_space_ctl->free_space); 3609 spin_unlock(&free_space_ctl->tree_lock); 3610 return 1; 3611 } 3612 spin_unlock(&free_space_ctl->tree_lock); 3613 } 3614 3615 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3616 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3617 &ffe_ctl->max_extent_size); 3618 3619 /* 3620 * If we didn't find a chunk, and we haven't failed on this block group 3621 * before, and this block group is in the middle of caching and we are 3622 * ok with waiting, then go ahead and wait for progress to be made, and 3623 * set @retry_unclustered to true. 3624 * 3625 * If @retry_unclustered is true then we've already waited on this 3626 * block group once and should move on to the next block group. 3627 */ 3628 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3629 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3630 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3631 ffe_ctl->empty_size); 3632 ffe_ctl->retry_unclustered = true; 3633 return -EAGAIN; 3634 } else if (!offset) { 3635 return 1; 3636 } 3637 ffe_ctl->found_offset = offset; 3638 return 0; 3639 } 3640 3641 /* 3642 * Return >0 means caller needs to re-search for free extent 3643 * Return 0 means we have the needed free extent. 3644 * Return <0 means we failed to locate any free extent. 3645 */ 3646 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3647 struct btrfs_free_cluster *last_ptr, 3648 struct btrfs_key *ins, 3649 struct find_free_extent_ctl *ffe_ctl, 3650 int full_search, bool use_cluster) 3651 { 3652 struct btrfs_root *root = fs_info->extent_root; 3653 int ret; 3654 3655 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3656 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3657 ffe_ctl->orig_have_caching_bg = true; 3658 3659 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT && 3660 ffe_ctl->have_caching_bg) 3661 return 1; 3662 3663 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES) 3664 return 1; 3665 3666 if (ins->objectid) { 3667 if (!use_cluster && last_ptr) { 3668 spin_lock(&last_ptr->lock); 3669 last_ptr->window_start = ins->objectid; 3670 spin_unlock(&last_ptr->lock); 3671 } 3672 return 0; 3673 } 3674 3675 /* 3676 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 3677 * caching kthreads as we move along 3678 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 3679 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 3680 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 3681 * again 3682 */ 3683 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 3684 ffe_ctl->index = 0; 3685 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 3686 /* 3687 * We want to skip the LOOP_CACHING_WAIT step if we 3688 * don't have any uncached bgs and we've already done a 3689 * full search through. 3690 */ 3691 if (ffe_ctl->orig_have_caching_bg || !full_search) 3692 ffe_ctl->loop = LOOP_CACHING_WAIT; 3693 else 3694 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 3695 } else { 3696 ffe_ctl->loop++; 3697 } 3698 3699 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 3700 struct btrfs_trans_handle *trans; 3701 int exist = 0; 3702 3703 trans = current->journal_info; 3704 if (trans) 3705 exist = 1; 3706 else 3707 trans = btrfs_join_transaction(root); 3708 3709 if (IS_ERR(trans)) { 3710 ret = PTR_ERR(trans); 3711 return ret; 3712 } 3713 3714 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 3715 CHUNK_ALLOC_FORCE); 3716 3717 /* 3718 * If we can't allocate a new chunk we've already looped 3719 * through at least once, move on to the NO_EMPTY_SIZE 3720 * case. 3721 */ 3722 if (ret == -ENOSPC) 3723 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3724 3725 /* Do not bail out on ENOSPC since we can do more. */ 3726 if (ret < 0 && ret != -ENOSPC) 3727 btrfs_abort_transaction(trans, ret); 3728 else 3729 ret = 0; 3730 if (!exist) 3731 btrfs_end_transaction(trans); 3732 if (ret) 3733 return ret; 3734 } 3735 3736 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 3737 /* 3738 * Don't loop again if we already have no empty_size and 3739 * no empty_cluster. 3740 */ 3741 if (ffe_ctl->empty_size == 0 && 3742 ffe_ctl->empty_cluster == 0) 3743 return -ENOSPC; 3744 ffe_ctl->empty_size = 0; 3745 ffe_ctl->empty_cluster = 0; 3746 } 3747 return 1; 3748 } 3749 return -ENOSPC; 3750 } 3751 3752 /* 3753 * walks the btree of allocated extents and find a hole of a given size. 3754 * The key ins is changed to record the hole: 3755 * ins->objectid == start position 3756 * ins->flags = BTRFS_EXTENT_ITEM_KEY 3757 * ins->offset == the size of the hole. 3758 * Any available blocks before search_start are skipped. 3759 * 3760 * If there is no suitable free space, we will record the max size of 3761 * the free space extent currently. 3762 * 3763 * The overall logic and call chain: 3764 * 3765 * find_free_extent() 3766 * |- Iterate through all block groups 3767 * | |- Get a valid block group 3768 * | |- Try to do clustered allocation in that block group 3769 * | |- Try to do unclustered allocation in that block group 3770 * | |- Check if the result is valid 3771 * | | |- If valid, then exit 3772 * | |- Jump to next block group 3773 * | 3774 * |- Push harder to find free extents 3775 * |- If not found, re-iterate all block groups 3776 */ 3777 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 3778 u64 ram_bytes, u64 num_bytes, u64 empty_size, 3779 u64 hint_byte, struct btrfs_key *ins, 3780 u64 flags, int delalloc) 3781 { 3782 int ret = 0; 3783 struct btrfs_free_cluster *last_ptr = NULL; 3784 struct btrfs_block_group_cache *block_group = NULL; 3785 struct find_free_extent_ctl ffe_ctl = {0}; 3786 struct btrfs_space_info *space_info; 3787 bool use_cluster = true; 3788 bool full_search = false; 3789 3790 WARN_ON(num_bytes < fs_info->sectorsize); 3791 3792 ffe_ctl.ram_bytes = ram_bytes; 3793 ffe_ctl.num_bytes = num_bytes; 3794 ffe_ctl.empty_size = empty_size; 3795 ffe_ctl.flags = flags; 3796 ffe_ctl.search_start = 0; 3797 ffe_ctl.retry_clustered = false; 3798 ffe_ctl.retry_unclustered = false; 3799 ffe_ctl.delalloc = delalloc; 3800 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags); 3801 ffe_ctl.have_caching_bg = false; 3802 ffe_ctl.orig_have_caching_bg = false; 3803 ffe_ctl.found_offset = 0; 3804 3805 ins->type = BTRFS_EXTENT_ITEM_KEY; 3806 ins->objectid = 0; 3807 ins->offset = 0; 3808 3809 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 3810 3811 space_info = btrfs_find_space_info(fs_info, flags); 3812 if (!space_info) { 3813 btrfs_err(fs_info, "No space info for %llu", flags); 3814 return -ENOSPC; 3815 } 3816 3817 /* 3818 * If our free space is heavily fragmented we may not be able to make 3819 * big contiguous allocations, so instead of doing the expensive search 3820 * for free space, simply return ENOSPC with our max_extent_size so we 3821 * can go ahead and search for a more manageable chunk. 3822 * 3823 * If our max_extent_size is large enough for our allocation simply 3824 * disable clustering since we will likely not be able to find enough 3825 * space to create a cluster and induce latency trying. 3826 */ 3827 if (unlikely(space_info->max_extent_size)) { 3828 spin_lock(&space_info->lock); 3829 if (space_info->max_extent_size && 3830 num_bytes > space_info->max_extent_size) { 3831 ins->offset = space_info->max_extent_size; 3832 spin_unlock(&space_info->lock); 3833 return -ENOSPC; 3834 } else if (space_info->max_extent_size) { 3835 use_cluster = false; 3836 } 3837 spin_unlock(&space_info->lock); 3838 } 3839 3840 last_ptr = fetch_cluster_info(fs_info, space_info, 3841 &ffe_ctl.empty_cluster); 3842 if (last_ptr) { 3843 spin_lock(&last_ptr->lock); 3844 if (last_ptr->block_group) 3845 hint_byte = last_ptr->window_start; 3846 if (last_ptr->fragmented) { 3847 /* 3848 * We still set window_start so we can keep track of the 3849 * last place we found an allocation to try and save 3850 * some time. 3851 */ 3852 hint_byte = last_ptr->window_start; 3853 use_cluster = false; 3854 } 3855 spin_unlock(&last_ptr->lock); 3856 } 3857 3858 ffe_ctl.search_start = max(ffe_ctl.search_start, 3859 first_logical_byte(fs_info, 0)); 3860 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte); 3861 if (ffe_ctl.search_start == hint_byte) { 3862 block_group = btrfs_lookup_block_group(fs_info, 3863 ffe_ctl.search_start); 3864 /* 3865 * we don't want to use the block group if it doesn't match our 3866 * allocation bits, or if its not cached. 3867 * 3868 * However if we are re-searching with an ideal block group 3869 * picked out then we don't care that the block group is cached. 3870 */ 3871 if (block_group && block_group_bits(block_group, flags) && 3872 block_group->cached != BTRFS_CACHE_NO) { 3873 down_read(&space_info->groups_sem); 3874 if (list_empty(&block_group->list) || 3875 block_group->ro) { 3876 /* 3877 * someone is removing this block group, 3878 * we can't jump into the have_block_group 3879 * target because our list pointers are not 3880 * valid 3881 */ 3882 btrfs_put_block_group(block_group); 3883 up_read(&space_info->groups_sem); 3884 } else { 3885 ffe_ctl.index = btrfs_bg_flags_to_raid_index( 3886 block_group->flags); 3887 btrfs_lock_block_group(block_group, delalloc); 3888 goto have_block_group; 3889 } 3890 } else if (block_group) { 3891 btrfs_put_block_group(block_group); 3892 } 3893 } 3894 search: 3895 ffe_ctl.have_caching_bg = false; 3896 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) || 3897 ffe_ctl.index == 0) 3898 full_search = true; 3899 down_read(&space_info->groups_sem); 3900 list_for_each_entry(block_group, 3901 &space_info->block_groups[ffe_ctl.index], list) { 3902 /* If the block group is read-only, we can skip it entirely. */ 3903 if (unlikely(block_group->ro)) 3904 continue; 3905 3906 btrfs_grab_block_group(block_group, delalloc); 3907 ffe_ctl.search_start = block_group->key.objectid; 3908 3909 /* 3910 * this can happen if we end up cycling through all the 3911 * raid types, but we want to make sure we only allocate 3912 * for the proper type. 3913 */ 3914 if (!block_group_bits(block_group, flags)) { 3915 u64 extra = BTRFS_BLOCK_GROUP_DUP | 3916 BTRFS_BLOCK_GROUP_RAID1_MASK | 3917 BTRFS_BLOCK_GROUP_RAID56_MASK | 3918 BTRFS_BLOCK_GROUP_RAID10; 3919 3920 /* 3921 * if they asked for extra copies and this block group 3922 * doesn't provide them, bail. This does allow us to 3923 * fill raid0 from raid1. 3924 */ 3925 if ((flags & extra) && !(block_group->flags & extra)) 3926 goto loop; 3927 3928 /* 3929 * This block group has different flags than we want. 3930 * It's possible that we have MIXED_GROUP flag but no 3931 * block group is mixed. Just skip such block group. 3932 */ 3933 btrfs_release_block_group(block_group, delalloc); 3934 continue; 3935 } 3936 3937 have_block_group: 3938 ffe_ctl.cached = btrfs_block_group_cache_done(block_group); 3939 if (unlikely(!ffe_ctl.cached)) { 3940 ffe_ctl.have_caching_bg = true; 3941 ret = btrfs_cache_block_group(block_group, 0); 3942 BUG_ON(ret < 0); 3943 ret = 0; 3944 } 3945 3946 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 3947 goto loop; 3948 3949 /* 3950 * Ok we want to try and use the cluster allocator, so 3951 * lets look there 3952 */ 3953 if (last_ptr && use_cluster) { 3954 struct btrfs_block_group_cache *cluster_bg = NULL; 3955 3956 ret = find_free_extent_clustered(block_group, last_ptr, 3957 &ffe_ctl, &cluster_bg); 3958 3959 if (ret == 0) { 3960 if (cluster_bg && cluster_bg != block_group) { 3961 btrfs_release_block_group(block_group, 3962 delalloc); 3963 block_group = cluster_bg; 3964 } 3965 goto checks; 3966 } else if (ret == -EAGAIN) { 3967 goto have_block_group; 3968 } else if (ret > 0) { 3969 goto loop; 3970 } 3971 /* ret == -ENOENT case falls through */ 3972 } 3973 3974 ret = find_free_extent_unclustered(block_group, last_ptr, 3975 &ffe_ctl); 3976 if (ret == -EAGAIN) 3977 goto have_block_group; 3978 else if (ret > 0) 3979 goto loop; 3980 /* ret == 0 case falls through */ 3981 checks: 3982 ffe_ctl.search_start = round_up(ffe_ctl.found_offset, 3983 fs_info->stripesize); 3984 3985 /* move on to the next group */ 3986 if (ffe_ctl.search_start + num_bytes > 3987 block_group->key.objectid + block_group->key.offset) { 3988 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 3989 num_bytes); 3990 goto loop; 3991 } 3992 3993 if (ffe_ctl.found_offset < ffe_ctl.search_start) 3994 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 3995 ffe_ctl.search_start - ffe_ctl.found_offset); 3996 3997 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 3998 num_bytes, delalloc); 3999 if (ret == -EAGAIN) { 4000 btrfs_add_free_space(block_group, ffe_ctl.found_offset, 4001 num_bytes); 4002 goto loop; 4003 } 4004 btrfs_inc_block_group_reservations(block_group); 4005 4006 /* we are all good, lets return */ 4007 ins->objectid = ffe_ctl.search_start; 4008 ins->offset = num_bytes; 4009 4010 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start, 4011 num_bytes); 4012 btrfs_release_block_group(block_group, delalloc); 4013 break; 4014 loop: 4015 ffe_ctl.retry_clustered = false; 4016 ffe_ctl.retry_unclustered = false; 4017 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4018 ffe_ctl.index); 4019 btrfs_release_block_group(block_group, delalloc); 4020 cond_resched(); 4021 } 4022 up_read(&space_info->groups_sem); 4023 4024 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl, 4025 full_search, use_cluster); 4026 if (ret > 0) 4027 goto search; 4028 4029 if (ret == -ENOSPC) { 4030 /* 4031 * Use ffe_ctl->total_free_space as fallback if we can't find 4032 * any contiguous hole. 4033 */ 4034 if (!ffe_ctl.max_extent_size) 4035 ffe_ctl.max_extent_size = ffe_ctl.total_free_space; 4036 spin_lock(&space_info->lock); 4037 space_info->max_extent_size = ffe_ctl.max_extent_size; 4038 spin_unlock(&space_info->lock); 4039 ins->offset = ffe_ctl.max_extent_size; 4040 } 4041 return ret; 4042 } 4043 4044 /* 4045 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4046 * hole that is at least as big as @num_bytes. 4047 * 4048 * @root - The root that will contain this extent 4049 * 4050 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4051 * is used for accounting purposes. This value differs 4052 * from @num_bytes only in the case of compressed extents. 4053 * 4054 * @num_bytes - Number of bytes to allocate on-disk. 4055 * 4056 * @min_alloc_size - Indicates the minimum amount of space that the 4057 * allocator should try to satisfy. In some cases 4058 * @num_bytes may be larger than what is required and if 4059 * the filesystem is fragmented then allocation fails. 4060 * However, the presence of @min_alloc_size gives a 4061 * chance to try and satisfy the smaller allocation. 4062 * 4063 * @empty_size - A hint that you plan on doing more COW. This is the 4064 * size in bytes the allocator should try to find free 4065 * next to the block it returns. This is just a hint and 4066 * may be ignored by the allocator. 4067 * 4068 * @hint_byte - Hint to the allocator to start searching above the byte 4069 * address passed. It might be ignored. 4070 * 4071 * @ins - This key is modified to record the found hole. It will 4072 * have the following values: 4073 * ins->objectid == start position 4074 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4075 * ins->offset == the size of the hole. 4076 * 4077 * @is_data - Boolean flag indicating whether an extent is 4078 * allocated for data (true) or metadata (false) 4079 * 4080 * @delalloc - Boolean flag indicating whether this allocation is for 4081 * delalloc or not. If 'true' data_rwsem of block groups 4082 * is going to be acquired. 4083 * 4084 * 4085 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4086 * case -ENOSPC is returned then @ins->offset will contain the size of the 4087 * largest available hole the allocator managed to find. 4088 */ 4089 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4090 u64 num_bytes, u64 min_alloc_size, 4091 u64 empty_size, u64 hint_byte, 4092 struct btrfs_key *ins, int is_data, int delalloc) 4093 { 4094 struct btrfs_fs_info *fs_info = root->fs_info; 4095 bool final_tried = num_bytes == min_alloc_size; 4096 u64 flags; 4097 int ret; 4098 4099 flags = get_alloc_profile_by_root(root, is_data); 4100 again: 4101 WARN_ON(num_bytes < fs_info->sectorsize); 4102 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 4103 hint_byte, ins, flags, delalloc); 4104 if (!ret && !is_data) { 4105 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4106 } else if (ret == -ENOSPC) { 4107 if (!final_tried && ins->offset) { 4108 num_bytes = min(num_bytes >> 1, ins->offset); 4109 num_bytes = round_down(num_bytes, 4110 fs_info->sectorsize); 4111 num_bytes = max(num_bytes, min_alloc_size); 4112 ram_bytes = num_bytes; 4113 if (num_bytes == min_alloc_size) 4114 final_tried = true; 4115 goto again; 4116 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4117 struct btrfs_space_info *sinfo; 4118 4119 sinfo = btrfs_find_space_info(fs_info, flags); 4120 btrfs_err(fs_info, 4121 "allocation failed flags %llu, wanted %llu", 4122 flags, num_bytes); 4123 if (sinfo) 4124 btrfs_dump_space_info(fs_info, sinfo, 4125 num_bytes, 1); 4126 } 4127 } 4128 4129 return ret; 4130 } 4131 4132 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4133 u64 start, u64 len, 4134 int pin, int delalloc) 4135 { 4136 struct btrfs_block_group_cache *cache; 4137 int ret = 0; 4138 4139 cache = btrfs_lookup_block_group(fs_info, start); 4140 if (!cache) { 4141 btrfs_err(fs_info, "Unable to find block group for %llu", 4142 start); 4143 return -ENOSPC; 4144 } 4145 4146 if (pin) 4147 pin_down_extent(cache, start, len, 1); 4148 else { 4149 if (btrfs_test_opt(fs_info, DISCARD)) 4150 ret = btrfs_discard_extent(fs_info, start, len, NULL); 4151 btrfs_add_free_space(cache, start, len); 4152 btrfs_free_reserved_bytes(cache, len, delalloc); 4153 trace_btrfs_reserved_extent_free(fs_info, start, len); 4154 } 4155 4156 btrfs_put_block_group(cache); 4157 return ret; 4158 } 4159 4160 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4161 u64 start, u64 len, int delalloc) 4162 { 4163 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 4164 } 4165 4166 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 4167 u64 start, u64 len) 4168 { 4169 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 4170 } 4171 4172 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4173 u64 parent, u64 root_objectid, 4174 u64 flags, u64 owner, u64 offset, 4175 struct btrfs_key *ins, int ref_mod) 4176 { 4177 struct btrfs_fs_info *fs_info = trans->fs_info; 4178 int ret; 4179 struct btrfs_extent_item *extent_item; 4180 struct btrfs_extent_inline_ref *iref; 4181 struct btrfs_path *path; 4182 struct extent_buffer *leaf; 4183 int type; 4184 u32 size; 4185 4186 if (parent > 0) 4187 type = BTRFS_SHARED_DATA_REF_KEY; 4188 else 4189 type = BTRFS_EXTENT_DATA_REF_KEY; 4190 4191 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4192 4193 path = btrfs_alloc_path(); 4194 if (!path) 4195 return -ENOMEM; 4196 4197 path->leave_spinning = 1; 4198 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4199 ins, size); 4200 if (ret) { 4201 btrfs_free_path(path); 4202 return ret; 4203 } 4204 4205 leaf = path->nodes[0]; 4206 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4207 struct btrfs_extent_item); 4208 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4209 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4210 btrfs_set_extent_flags(leaf, extent_item, 4211 flags | BTRFS_EXTENT_FLAG_DATA); 4212 4213 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4214 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4215 if (parent > 0) { 4216 struct btrfs_shared_data_ref *ref; 4217 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4218 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4219 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4220 } else { 4221 struct btrfs_extent_data_ref *ref; 4222 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4223 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4224 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4225 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4226 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4227 } 4228 4229 btrfs_mark_buffer_dirty(path->nodes[0]); 4230 btrfs_free_path(path); 4231 4232 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4233 if (ret) 4234 return ret; 4235 4236 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1); 4237 if (ret) { /* -ENOENT, logic error */ 4238 btrfs_err(fs_info, "update block group failed for %llu %llu", 4239 ins->objectid, ins->offset); 4240 BUG(); 4241 } 4242 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4243 return ret; 4244 } 4245 4246 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4247 struct btrfs_delayed_ref_node *node, 4248 struct btrfs_delayed_extent_op *extent_op) 4249 { 4250 struct btrfs_fs_info *fs_info = trans->fs_info; 4251 int ret; 4252 struct btrfs_extent_item *extent_item; 4253 struct btrfs_key extent_key; 4254 struct btrfs_tree_block_info *block_info; 4255 struct btrfs_extent_inline_ref *iref; 4256 struct btrfs_path *path; 4257 struct extent_buffer *leaf; 4258 struct btrfs_delayed_tree_ref *ref; 4259 u32 size = sizeof(*extent_item) + sizeof(*iref); 4260 u64 num_bytes; 4261 u64 flags = extent_op->flags_to_set; 4262 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4263 4264 ref = btrfs_delayed_node_to_tree_ref(node); 4265 4266 extent_key.objectid = node->bytenr; 4267 if (skinny_metadata) { 4268 extent_key.offset = ref->level; 4269 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4270 num_bytes = fs_info->nodesize; 4271 } else { 4272 extent_key.offset = node->num_bytes; 4273 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4274 size += sizeof(*block_info); 4275 num_bytes = node->num_bytes; 4276 } 4277 4278 path = btrfs_alloc_path(); 4279 if (!path) 4280 return -ENOMEM; 4281 4282 path->leave_spinning = 1; 4283 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4284 &extent_key, size); 4285 if (ret) { 4286 btrfs_free_path(path); 4287 return ret; 4288 } 4289 4290 leaf = path->nodes[0]; 4291 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4292 struct btrfs_extent_item); 4293 btrfs_set_extent_refs(leaf, extent_item, 1); 4294 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4295 btrfs_set_extent_flags(leaf, extent_item, 4296 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4297 4298 if (skinny_metadata) { 4299 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4300 } else { 4301 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4302 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4303 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4304 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4305 } 4306 4307 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4308 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 4309 btrfs_set_extent_inline_ref_type(leaf, iref, 4310 BTRFS_SHARED_BLOCK_REF_KEY); 4311 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4312 } else { 4313 btrfs_set_extent_inline_ref_type(leaf, iref, 4314 BTRFS_TREE_BLOCK_REF_KEY); 4315 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4316 } 4317 4318 btrfs_mark_buffer_dirty(leaf); 4319 btrfs_free_path(path); 4320 4321 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4322 num_bytes); 4323 if (ret) 4324 return ret; 4325 4326 ret = btrfs_update_block_group(trans, extent_key.objectid, 4327 fs_info->nodesize, 1); 4328 if (ret) { /* -ENOENT, logic error */ 4329 btrfs_err(fs_info, "update block group failed for %llu %llu", 4330 extent_key.objectid, extent_key.offset); 4331 BUG(); 4332 } 4333 4334 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4335 fs_info->nodesize); 4336 return ret; 4337 } 4338 4339 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4340 struct btrfs_root *root, u64 owner, 4341 u64 offset, u64 ram_bytes, 4342 struct btrfs_key *ins) 4343 { 4344 struct btrfs_ref generic_ref = { 0 }; 4345 int ret; 4346 4347 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4348 4349 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4350 ins->objectid, ins->offset, 0); 4351 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset); 4352 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4353 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 4354 ram_bytes, NULL, NULL); 4355 return ret; 4356 } 4357 4358 /* 4359 * this is used by the tree logging recovery code. It records that 4360 * an extent has been allocated and makes sure to clear the free 4361 * space cache bits as well 4362 */ 4363 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4364 u64 root_objectid, u64 owner, u64 offset, 4365 struct btrfs_key *ins) 4366 { 4367 struct btrfs_fs_info *fs_info = trans->fs_info; 4368 int ret; 4369 struct btrfs_block_group_cache *block_group; 4370 struct btrfs_space_info *space_info; 4371 4372 /* 4373 * Mixed block groups will exclude before processing the log so we only 4374 * need to do the exclude dance if this fs isn't mixed. 4375 */ 4376 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4377 ret = __exclude_logged_extent(fs_info, ins->objectid, 4378 ins->offset); 4379 if (ret) 4380 return ret; 4381 } 4382 4383 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4384 if (!block_group) 4385 return -EINVAL; 4386 4387 space_info = block_group->space_info; 4388 spin_lock(&space_info->lock); 4389 spin_lock(&block_group->lock); 4390 space_info->bytes_reserved += ins->offset; 4391 block_group->reserved += ins->offset; 4392 spin_unlock(&block_group->lock); 4393 spin_unlock(&space_info->lock); 4394 4395 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4396 offset, ins, 1); 4397 btrfs_put_block_group(block_group); 4398 return ret; 4399 } 4400 4401 static struct extent_buffer * 4402 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4403 u64 bytenr, int level, u64 owner) 4404 { 4405 struct btrfs_fs_info *fs_info = root->fs_info; 4406 struct extent_buffer *buf; 4407 4408 buf = btrfs_find_create_tree_block(fs_info, bytenr); 4409 if (IS_ERR(buf)) 4410 return buf; 4411 4412 /* 4413 * Extra safety check in case the extent tree is corrupted and extent 4414 * allocator chooses to use a tree block which is already used and 4415 * locked. 4416 */ 4417 if (buf->lock_owner == current->pid) { 4418 btrfs_err_rl(fs_info, 4419 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4420 buf->start, btrfs_header_owner(buf), current->pid); 4421 free_extent_buffer(buf); 4422 return ERR_PTR(-EUCLEAN); 4423 } 4424 4425 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 4426 btrfs_tree_lock(buf); 4427 btrfs_clean_tree_block(buf); 4428 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4429 4430 btrfs_set_lock_blocking_write(buf); 4431 set_extent_buffer_uptodate(buf); 4432 4433 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4434 btrfs_set_header_level(buf, level); 4435 btrfs_set_header_bytenr(buf, buf->start); 4436 btrfs_set_header_generation(buf, trans->transid); 4437 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4438 btrfs_set_header_owner(buf, owner); 4439 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4440 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4441 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4442 buf->log_index = root->log_transid % 2; 4443 /* 4444 * we allow two log transactions at a time, use different 4445 * EXTENT bit to differentiate dirty pages. 4446 */ 4447 if (buf->log_index == 0) 4448 set_extent_dirty(&root->dirty_log_pages, buf->start, 4449 buf->start + buf->len - 1, GFP_NOFS); 4450 else 4451 set_extent_new(&root->dirty_log_pages, buf->start, 4452 buf->start + buf->len - 1); 4453 } else { 4454 buf->log_index = -1; 4455 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4456 buf->start + buf->len - 1, GFP_NOFS); 4457 } 4458 trans->dirty = true; 4459 /* this returns a buffer locked for blocking */ 4460 return buf; 4461 } 4462 4463 /* 4464 * finds a free extent and does all the dirty work required for allocation 4465 * returns the tree buffer or an ERR_PTR on error. 4466 */ 4467 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4468 struct btrfs_root *root, 4469 u64 parent, u64 root_objectid, 4470 const struct btrfs_disk_key *key, 4471 int level, u64 hint, 4472 u64 empty_size) 4473 { 4474 struct btrfs_fs_info *fs_info = root->fs_info; 4475 struct btrfs_key ins; 4476 struct btrfs_block_rsv *block_rsv; 4477 struct extent_buffer *buf; 4478 struct btrfs_delayed_extent_op *extent_op; 4479 struct btrfs_ref generic_ref = { 0 }; 4480 u64 flags = 0; 4481 int ret; 4482 u32 blocksize = fs_info->nodesize; 4483 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4484 4485 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4486 if (btrfs_is_testing(fs_info)) { 4487 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4488 level, root_objectid); 4489 if (!IS_ERR(buf)) 4490 root->alloc_bytenr += blocksize; 4491 return buf; 4492 } 4493 #endif 4494 4495 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4496 if (IS_ERR(block_rsv)) 4497 return ERR_CAST(block_rsv); 4498 4499 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4500 empty_size, hint, &ins, 0, 0); 4501 if (ret) 4502 goto out_unuse; 4503 4504 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4505 root_objectid); 4506 if (IS_ERR(buf)) { 4507 ret = PTR_ERR(buf); 4508 goto out_free_reserved; 4509 } 4510 4511 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4512 if (parent == 0) 4513 parent = ins.objectid; 4514 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4515 } else 4516 BUG_ON(parent > 0); 4517 4518 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4519 extent_op = btrfs_alloc_delayed_extent_op(); 4520 if (!extent_op) { 4521 ret = -ENOMEM; 4522 goto out_free_buf; 4523 } 4524 if (key) 4525 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4526 else 4527 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4528 extent_op->flags_to_set = flags; 4529 extent_op->update_key = skinny_metadata ? false : true; 4530 extent_op->update_flags = true; 4531 extent_op->is_data = false; 4532 extent_op->level = level; 4533 4534 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4535 ins.objectid, ins.offset, parent); 4536 generic_ref.real_root = root->root_key.objectid; 4537 btrfs_init_tree_ref(&generic_ref, level, root_objectid); 4538 btrfs_ref_tree_mod(fs_info, &generic_ref); 4539 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, 4540 extent_op, NULL, NULL); 4541 if (ret) 4542 goto out_free_delayed; 4543 } 4544 return buf; 4545 4546 out_free_delayed: 4547 btrfs_free_delayed_extent_op(extent_op); 4548 out_free_buf: 4549 free_extent_buffer(buf); 4550 out_free_reserved: 4551 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4552 out_unuse: 4553 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4554 return ERR_PTR(ret); 4555 } 4556 4557 struct walk_control { 4558 u64 refs[BTRFS_MAX_LEVEL]; 4559 u64 flags[BTRFS_MAX_LEVEL]; 4560 struct btrfs_key update_progress; 4561 struct btrfs_key drop_progress; 4562 int drop_level; 4563 int stage; 4564 int level; 4565 int shared_level; 4566 int update_ref; 4567 int keep_locks; 4568 int reada_slot; 4569 int reada_count; 4570 int restarted; 4571 }; 4572 4573 #define DROP_REFERENCE 1 4574 #define UPDATE_BACKREF 2 4575 4576 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4577 struct btrfs_root *root, 4578 struct walk_control *wc, 4579 struct btrfs_path *path) 4580 { 4581 struct btrfs_fs_info *fs_info = root->fs_info; 4582 u64 bytenr; 4583 u64 generation; 4584 u64 refs; 4585 u64 flags; 4586 u32 nritems; 4587 struct btrfs_key key; 4588 struct extent_buffer *eb; 4589 int ret; 4590 int slot; 4591 int nread = 0; 4592 4593 if (path->slots[wc->level] < wc->reada_slot) { 4594 wc->reada_count = wc->reada_count * 2 / 3; 4595 wc->reada_count = max(wc->reada_count, 2); 4596 } else { 4597 wc->reada_count = wc->reada_count * 3 / 2; 4598 wc->reada_count = min_t(int, wc->reada_count, 4599 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 4600 } 4601 4602 eb = path->nodes[wc->level]; 4603 nritems = btrfs_header_nritems(eb); 4604 4605 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 4606 if (nread >= wc->reada_count) 4607 break; 4608 4609 cond_resched(); 4610 bytenr = btrfs_node_blockptr(eb, slot); 4611 generation = btrfs_node_ptr_generation(eb, slot); 4612 4613 if (slot == path->slots[wc->level]) 4614 goto reada; 4615 4616 if (wc->stage == UPDATE_BACKREF && 4617 generation <= root->root_key.offset) 4618 continue; 4619 4620 /* We don't lock the tree block, it's OK to be racy here */ 4621 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 4622 wc->level - 1, 1, &refs, 4623 &flags); 4624 /* We don't care about errors in readahead. */ 4625 if (ret < 0) 4626 continue; 4627 BUG_ON(refs == 0); 4628 4629 if (wc->stage == DROP_REFERENCE) { 4630 if (refs == 1) 4631 goto reada; 4632 4633 if (wc->level == 1 && 4634 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4635 continue; 4636 if (!wc->update_ref || 4637 generation <= root->root_key.offset) 4638 continue; 4639 btrfs_node_key_to_cpu(eb, &key, slot); 4640 ret = btrfs_comp_cpu_keys(&key, 4641 &wc->update_progress); 4642 if (ret < 0) 4643 continue; 4644 } else { 4645 if (wc->level == 1 && 4646 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4647 continue; 4648 } 4649 reada: 4650 readahead_tree_block(fs_info, bytenr); 4651 nread++; 4652 } 4653 wc->reada_slot = slot; 4654 } 4655 4656 /* 4657 * helper to process tree block while walking down the tree. 4658 * 4659 * when wc->stage == UPDATE_BACKREF, this function updates 4660 * back refs for pointers in the block. 4661 * 4662 * NOTE: return value 1 means we should stop walking down. 4663 */ 4664 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 4665 struct btrfs_root *root, 4666 struct btrfs_path *path, 4667 struct walk_control *wc, int lookup_info) 4668 { 4669 struct btrfs_fs_info *fs_info = root->fs_info; 4670 int level = wc->level; 4671 struct extent_buffer *eb = path->nodes[level]; 4672 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 4673 int ret; 4674 4675 if (wc->stage == UPDATE_BACKREF && 4676 btrfs_header_owner(eb) != root->root_key.objectid) 4677 return 1; 4678 4679 /* 4680 * when reference count of tree block is 1, it won't increase 4681 * again. once full backref flag is set, we never clear it. 4682 */ 4683 if (lookup_info && 4684 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 4685 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 4686 BUG_ON(!path->locks[level]); 4687 ret = btrfs_lookup_extent_info(trans, fs_info, 4688 eb->start, level, 1, 4689 &wc->refs[level], 4690 &wc->flags[level]); 4691 BUG_ON(ret == -ENOMEM); 4692 if (ret) 4693 return ret; 4694 BUG_ON(wc->refs[level] == 0); 4695 } 4696 4697 if (wc->stage == DROP_REFERENCE) { 4698 if (wc->refs[level] > 1) 4699 return 1; 4700 4701 if (path->locks[level] && !wc->keep_locks) { 4702 btrfs_tree_unlock_rw(eb, path->locks[level]); 4703 path->locks[level] = 0; 4704 } 4705 return 0; 4706 } 4707 4708 /* wc->stage == UPDATE_BACKREF */ 4709 if (!(wc->flags[level] & flag)) { 4710 BUG_ON(!path->locks[level]); 4711 ret = btrfs_inc_ref(trans, root, eb, 1); 4712 BUG_ON(ret); /* -ENOMEM */ 4713 ret = btrfs_dec_ref(trans, root, eb, 0); 4714 BUG_ON(ret); /* -ENOMEM */ 4715 ret = btrfs_set_disk_extent_flags(trans, eb->start, 4716 eb->len, flag, 4717 btrfs_header_level(eb), 0); 4718 BUG_ON(ret); /* -ENOMEM */ 4719 wc->flags[level] |= flag; 4720 } 4721 4722 /* 4723 * the block is shared by multiple trees, so it's not good to 4724 * keep the tree lock 4725 */ 4726 if (path->locks[level] && level > 0) { 4727 btrfs_tree_unlock_rw(eb, path->locks[level]); 4728 path->locks[level] = 0; 4729 } 4730 return 0; 4731 } 4732 4733 /* 4734 * This is used to verify a ref exists for this root to deal with a bug where we 4735 * would have a drop_progress key that hadn't been updated properly. 4736 */ 4737 static int check_ref_exists(struct btrfs_trans_handle *trans, 4738 struct btrfs_root *root, u64 bytenr, u64 parent, 4739 int level) 4740 { 4741 struct btrfs_path *path; 4742 struct btrfs_extent_inline_ref *iref; 4743 int ret; 4744 4745 path = btrfs_alloc_path(); 4746 if (!path) 4747 return -ENOMEM; 4748 4749 ret = lookup_extent_backref(trans, path, &iref, bytenr, 4750 root->fs_info->nodesize, parent, 4751 root->root_key.objectid, level, 0); 4752 btrfs_free_path(path); 4753 if (ret == -ENOENT) 4754 return 0; 4755 if (ret < 0) 4756 return ret; 4757 return 1; 4758 } 4759 4760 /* 4761 * helper to process tree block pointer. 4762 * 4763 * when wc->stage == DROP_REFERENCE, this function checks 4764 * reference count of the block pointed to. if the block 4765 * is shared and we need update back refs for the subtree 4766 * rooted at the block, this function changes wc->stage to 4767 * UPDATE_BACKREF. if the block is shared and there is no 4768 * need to update back, this function drops the reference 4769 * to the block. 4770 * 4771 * NOTE: return value 1 means we should stop walking down. 4772 */ 4773 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 4774 struct btrfs_root *root, 4775 struct btrfs_path *path, 4776 struct walk_control *wc, int *lookup_info) 4777 { 4778 struct btrfs_fs_info *fs_info = root->fs_info; 4779 u64 bytenr; 4780 u64 generation; 4781 u64 parent; 4782 struct btrfs_key key; 4783 struct btrfs_key first_key; 4784 struct btrfs_ref ref = { 0 }; 4785 struct extent_buffer *next; 4786 int level = wc->level; 4787 int reada = 0; 4788 int ret = 0; 4789 bool need_account = false; 4790 4791 generation = btrfs_node_ptr_generation(path->nodes[level], 4792 path->slots[level]); 4793 /* 4794 * if the lower level block was created before the snapshot 4795 * was created, we know there is no need to update back refs 4796 * for the subtree 4797 */ 4798 if (wc->stage == UPDATE_BACKREF && 4799 generation <= root->root_key.offset) { 4800 *lookup_info = 1; 4801 return 1; 4802 } 4803 4804 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 4805 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 4806 path->slots[level]); 4807 4808 next = find_extent_buffer(fs_info, bytenr); 4809 if (!next) { 4810 next = btrfs_find_create_tree_block(fs_info, bytenr); 4811 if (IS_ERR(next)) 4812 return PTR_ERR(next); 4813 4814 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 4815 level - 1); 4816 reada = 1; 4817 } 4818 btrfs_tree_lock(next); 4819 btrfs_set_lock_blocking_write(next); 4820 4821 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 4822 &wc->refs[level - 1], 4823 &wc->flags[level - 1]); 4824 if (ret < 0) 4825 goto out_unlock; 4826 4827 if (unlikely(wc->refs[level - 1] == 0)) { 4828 btrfs_err(fs_info, "Missing references."); 4829 ret = -EIO; 4830 goto out_unlock; 4831 } 4832 *lookup_info = 0; 4833 4834 if (wc->stage == DROP_REFERENCE) { 4835 if (wc->refs[level - 1] > 1) { 4836 need_account = true; 4837 if (level == 1 && 4838 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4839 goto skip; 4840 4841 if (!wc->update_ref || 4842 generation <= root->root_key.offset) 4843 goto skip; 4844 4845 btrfs_node_key_to_cpu(path->nodes[level], &key, 4846 path->slots[level]); 4847 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 4848 if (ret < 0) 4849 goto skip; 4850 4851 wc->stage = UPDATE_BACKREF; 4852 wc->shared_level = level - 1; 4853 } 4854 } else { 4855 if (level == 1 && 4856 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4857 goto skip; 4858 } 4859 4860 if (!btrfs_buffer_uptodate(next, generation, 0)) { 4861 btrfs_tree_unlock(next); 4862 free_extent_buffer(next); 4863 next = NULL; 4864 *lookup_info = 1; 4865 } 4866 4867 if (!next) { 4868 if (reada && level == 1) 4869 reada_walk_down(trans, root, wc, path); 4870 next = read_tree_block(fs_info, bytenr, generation, level - 1, 4871 &first_key); 4872 if (IS_ERR(next)) { 4873 return PTR_ERR(next); 4874 } else if (!extent_buffer_uptodate(next)) { 4875 free_extent_buffer(next); 4876 return -EIO; 4877 } 4878 btrfs_tree_lock(next); 4879 btrfs_set_lock_blocking_write(next); 4880 } 4881 4882 level--; 4883 ASSERT(level == btrfs_header_level(next)); 4884 if (level != btrfs_header_level(next)) { 4885 btrfs_err(root->fs_info, "mismatched level"); 4886 ret = -EIO; 4887 goto out_unlock; 4888 } 4889 path->nodes[level] = next; 4890 path->slots[level] = 0; 4891 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 4892 wc->level = level; 4893 if (wc->level == 1) 4894 wc->reada_slot = 0; 4895 return 0; 4896 skip: 4897 wc->refs[level - 1] = 0; 4898 wc->flags[level - 1] = 0; 4899 if (wc->stage == DROP_REFERENCE) { 4900 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 4901 parent = path->nodes[level]->start; 4902 } else { 4903 ASSERT(root->root_key.objectid == 4904 btrfs_header_owner(path->nodes[level])); 4905 if (root->root_key.objectid != 4906 btrfs_header_owner(path->nodes[level])) { 4907 btrfs_err(root->fs_info, 4908 "mismatched block owner"); 4909 ret = -EIO; 4910 goto out_unlock; 4911 } 4912 parent = 0; 4913 } 4914 4915 /* 4916 * If we had a drop_progress we need to verify the refs are set 4917 * as expected. If we find our ref then we know that from here 4918 * on out everything should be correct, and we can clear the 4919 * ->restarted flag. 4920 */ 4921 if (wc->restarted) { 4922 ret = check_ref_exists(trans, root, bytenr, parent, 4923 level - 1); 4924 if (ret < 0) 4925 goto out_unlock; 4926 if (ret == 0) 4927 goto no_delete; 4928 ret = 0; 4929 wc->restarted = 0; 4930 } 4931 4932 /* 4933 * Reloc tree doesn't contribute to qgroup numbers, and we have 4934 * already accounted them at merge time (replace_path), 4935 * thus we could skip expensive subtree trace here. 4936 */ 4937 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 4938 need_account) { 4939 ret = btrfs_qgroup_trace_subtree(trans, next, 4940 generation, level - 1); 4941 if (ret) { 4942 btrfs_err_rl(fs_info, 4943 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 4944 ret); 4945 } 4946 } 4947 4948 /* 4949 * We need to update the next key in our walk control so we can 4950 * update the drop_progress key accordingly. We don't care if 4951 * find_next_key doesn't find a key because that means we're at 4952 * the end and are going to clean up now. 4953 */ 4954 wc->drop_level = level; 4955 find_next_key(path, level, &wc->drop_progress); 4956 4957 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 4958 fs_info->nodesize, parent); 4959 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid); 4960 ret = btrfs_free_extent(trans, &ref); 4961 if (ret) 4962 goto out_unlock; 4963 } 4964 no_delete: 4965 *lookup_info = 1; 4966 ret = 1; 4967 4968 out_unlock: 4969 btrfs_tree_unlock(next); 4970 free_extent_buffer(next); 4971 4972 return ret; 4973 } 4974 4975 /* 4976 * helper to process tree block while walking up the tree. 4977 * 4978 * when wc->stage == DROP_REFERENCE, this function drops 4979 * reference count on the block. 4980 * 4981 * when wc->stage == UPDATE_BACKREF, this function changes 4982 * wc->stage back to DROP_REFERENCE if we changed wc->stage 4983 * to UPDATE_BACKREF previously while processing the block. 4984 * 4985 * NOTE: return value 1 means we should stop walking up. 4986 */ 4987 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 4988 struct btrfs_root *root, 4989 struct btrfs_path *path, 4990 struct walk_control *wc) 4991 { 4992 struct btrfs_fs_info *fs_info = root->fs_info; 4993 int ret; 4994 int level = wc->level; 4995 struct extent_buffer *eb = path->nodes[level]; 4996 u64 parent = 0; 4997 4998 if (wc->stage == UPDATE_BACKREF) { 4999 BUG_ON(wc->shared_level < level); 5000 if (level < wc->shared_level) 5001 goto out; 5002 5003 ret = find_next_key(path, level + 1, &wc->update_progress); 5004 if (ret > 0) 5005 wc->update_ref = 0; 5006 5007 wc->stage = DROP_REFERENCE; 5008 wc->shared_level = -1; 5009 path->slots[level] = 0; 5010 5011 /* 5012 * check reference count again if the block isn't locked. 5013 * we should start walking down the tree again if reference 5014 * count is one. 5015 */ 5016 if (!path->locks[level]) { 5017 BUG_ON(level == 0); 5018 btrfs_tree_lock(eb); 5019 btrfs_set_lock_blocking_write(eb); 5020 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5021 5022 ret = btrfs_lookup_extent_info(trans, fs_info, 5023 eb->start, level, 1, 5024 &wc->refs[level], 5025 &wc->flags[level]); 5026 if (ret < 0) { 5027 btrfs_tree_unlock_rw(eb, path->locks[level]); 5028 path->locks[level] = 0; 5029 return ret; 5030 } 5031 BUG_ON(wc->refs[level] == 0); 5032 if (wc->refs[level] == 1) { 5033 btrfs_tree_unlock_rw(eb, path->locks[level]); 5034 path->locks[level] = 0; 5035 return 1; 5036 } 5037 } 5038 } 5039 5040 /* wc->stage == DROP_REFERENCE */ 5041 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5042 5043 if (wc->refs[level] == 1) { 5044 if (level == 0) { 5045 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5046 ret = btrfs_dec_ref(trans, root, eb, 1); 5047 else 5048 ret = btrfs_dec_ref(trans, root, eb, 0); 5049 BUG_ON(ret); /* -ENOMEM */ 5050 if (is_fstree(root->root_key.objectid)) { 5051 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5052 if (ret) { 5053 btrfs_err_rl(fs_info, 5054 "error %d accounting leaf items, quota is out of sync, rescan required", 5055 ret); 5056 } 5057 } 5058 } 5059 /* make block locked assertion in btrfs_clean_tree_block happy */ 5060 if (!path->locks[level] && 5061 btrfs_header_generation(eb) == trans->transid) { 5062 btrfs_tree_lock(eb); 5063 btrfs_set_lock_blocking_write(eb); 5064 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5065 } 5066 btrfs_clean_tree_block(eb); 5067 } 5068 5069 if (eb == root->node) { 5070 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5071 parent = eb->start; 5072 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5073 goto owner_mismatch; 5074 } else { 5075 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5076 parent = path->nodes[level + 1]->start; 5077 else if (root->root_key.objectid != 5078 btrfs_header_owner(path->nodes[level + 1])) 5079 goto owner_mismatch; 5080 } 5081 5082 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 5083 out: 5084 wc->refs[level] = 0; 5085 wc->flags[level] = 0; 5086 return 0; 5087 5088 owner_mismatch: 5089 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5090 btrfs_header_owner(eb), root->root_key.objectid); 5091 return -EUCLEAN; 5092 } 5093 5094 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5095 struct btrfs_root *root, 5096 struct btrfs_path *path, 5097 struct walk_control *wc) 5098 { 5099 int level = wc->level; 5100 int lookup_info = 1; 5101 int ret; 5102 5103 while (level >= 0) { 5104 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5105 if (ret > 0) 5106 break; 5107 5108 if (level == 0) 5109 break; 5110 5111 if (path->slots[level] >= 5112 btrfs_header_nritems(path->nodes[level])) 5113 break; 5114 5115 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5116 if (ret > 0) { 5117 path->slots[level]++; 5118 continue; 5119 } else if (ret < 0) 5120 return ret; 5121 level = wc->level; 5122 } 5123 return 0; 5124 } 5125 5126 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5127 struct btrfs_root *root, 5128 struct btrfs_path *path, 5129 struct walk_control *wc, int max_level) 5130 { 5131 int level = wc->level; 5132 int ret; 5133 5134 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5135 while (level < max_level && path->nodes[level]) { 5136 wc->level = level; 5137 if (path->slots[level] + 1 < 5138 btrfs_header_nritems(path->nodes[level])) { 5139 path->slots[level]++; 5140 return 0; 5141 } else { 5142 ret = walk_up_proc(trans, root, path, wc); 5143 if (ret > 0) 5144 return 0; 5145 if (ret < 0) 5146 return ret; 5147 5148 if (path->locks[level]) { 5149 btrfs_tree_unlock_rw(path->nodes[level], 5150 path->locks[level]); 5151 path->locks[level] = 0; 5152 } 5153 free_extent_buffer(path->nodes[level]); 5154 path->nodes[level] = NULL; 5155 level++; 5156 } 5157 } 5158 return 1; 5159 } 5160 5161 /* 5162 * drop a subvolume tree. 5163 * 5164 * this function traverses the tree freeing any blocks that only 5165 * referenced by the tree. 5166 * 5167 * when a shared tree block is found. this function decreases its 5168 * reference count by one. if update_ref is true, this function 5169 * also make sure backrefs for the shared block and all lower level 5170 * blocks are properly updated. 5171 * 5172 * If called with for_reloc == 0, may exit early with -EAGAIN 5173 */ 5174 int btrfs_drop_snapshot(struct btrfs_root *root, 5175 struct btrfs_block_rsv *block_rsv, int update_ref, 5176 int for_reloc) 5177 { 5178 struct btrfs_fs_info *fs_info = root->fs_info; 5179 struct btrfs_path *path; 5180 struct btrfs_trans_handle *trans; 5181 struct btrfs_root *tree_root = fs_info->tree_root; 5182 struct btrfs_root_item *root_item = &root->root_item; 5183 struct walk_control *wc; 5184 struct btrfs_key key; 5185 int err = 0; 5186 int ret; 5187 int level; 5188 bool root_dropped = false; 5189 5190 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5191 5192 path = btrfs_alloc_path(); 5193 if (!path) { 5194 err = -ENOMEM; 5195 goto out; 5196 } 5197 5198 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5199 if (!wc) { 5200 btrfs_free_path(path); 5201 err = -ENOMEM; 5202 goto out; 5203 } 5204 5205 trans = btrfs_start_transaction(tree_root, 0); 5206 if (IS_ERR(trans)) { 5207 err = PTR_ERR(trans); 5208 goto out_free; 5209 } 5210 5211 err = btrfs_run_delayed_items(trans); 5212 if (err) 5213 goto out_end_trans; 5214 5215 if (block_rsv) 5216 trans->block_rsv = block_rsv; 5217 5218 /* 5219 * This will help us catch people modifying the fs tree while we're 5220 * dropping it. It is unsafe to mess with the fs tree while it's being 5221 * dropped as we unlock the root node and parent nodes as we walk down 5222 * the tree, assuming nothing will change. If something does change 5223 * then we'll have stale information and drop references to blocks we've 5224 * already dropped. 5225 */ 5226 set_bit(BTRFS_ROOT_DELETING, &root->state); 5227 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5228 level = btrfs_header_level(root->node); 5229 path->nodes[level] = btrfs_lock_root_node(root); 5230 btrfs_set_lock_blocking_write(path->nodes[level]); 5231 path->slots[level] = 0; 5232 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5233 memset(&wc->update_progress, 0, 5234 sizeof(wc->update_progress)); 5235 } else { 5236 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5237 memcpy(&wc->update_progress, &key, 5238 sizeof(wc->update_progress)); 5239 5240 level = root_item->drop_level; 5241 BUG_ON(level == 0); 5242 path->lowest_level = level; 5243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5244 path->lowest_level = 0; 5245 if (ret < 0) { 5246 err = ret; 5247 goto out_end_trans; 5248 } 5249 WARN_ON(ret > 0); 5250 5251 /* 5252 * unlock our path, this is safe because only this 5253 * function is allowed to delete this snapshot 5254 */ 5255 btrfs_unlock_up_safe(path, 0); 5256 5257 level = btrfs_header_level(root->node); 5258 while (1) { 5259 btrfs_tree_lock(path->nodes[level]); 5260 btrfs_set_lock_blocking_write(path->nodes[level]); 5261 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5262 5263 ret = btrfs_lookup_extent_info(trans, fs_info, 5264 path->nodes[level]->start, 5265 level, 1, &wc->refs[level], 5266 &wc->flags[level]); 5267 if (ret < 0) { 5268 err = ret; 5269 goto out_end_trans; 5270 } 5271 BUG_ON(wc->refs[level] == 0); 5272 5273 if (level == root_item->drop_level) 5274 break; 5275 5276 btrfs_tree_unlock(path->nodes[level]); 5277 path->locks[level] = 0; 5278 WARN_ON(wc->refs[level] != 1); 5279 level--; 5280 } 5281 } 5282 5283 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5284 wc->level = level; 5285 wc->shared_level = -1; 5286 wc->stage = DROP_REFERENCE; 5287 wc->update_ref = update_ref; 5288 wc->keep_locks = 0; 5289 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5290 5291 while (1) { 5292 5293 ret = walk_down_tree(trans, root, path, wc); 5294 if (ret < 0) { 5295 err = ret; 5296 break; 5297 } 5298 5299 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5300 if (ret < 0) { 5301 err = ret; 5302 break; 5303 } 5304 5305 if (ret > 0) { 5306 BUG_ON(wc->stage != DROP_REFERENCE); 5307 break; 5308 } 5309 5310 if (wc->stage == DROP_REFERENCE) { 5311 wc->drop_level = wc->level; 5312 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5313 &wc->drop_progress, 5314 path->slots[wc->drop_level]); 5315 } 5316 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5317 &wc->drop_progress); 5318 root_item->drop_level = wc->drop_level; 5319 5320 BUG_ON(wc->level == 0); 5321 if (btrfs_should_end_transaction(trans) || 5322 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5323 ret = btrfs_update_root(trans, tree_root, 5324 &root->root_key, 5325 root_item); 5326 if (ret) { 5327 btrfs_abort_transaction(trans, ret); 5328 err = ret; 5329 goto out_end_trans; 5330 } 5331 5332 btrfs_end_transaction_throttle(trans); 5333 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5334 btrfs_debug(fs_info, 5335 "drop snapshot early exit"); 5336 err = -EAGAIN; 5337 goto out_free; 5338 } 5339 5340 trans = btrfs_start_transaction(tree_root, 0); 5341 if (IS_ERR(trans)) { 5342 err = PTR_ERR(trans); 5343 goto out_free; 5344 } 5345 if (block_rsv) 5346 trans->block_rsv = block_rsv; 5347 } 5348 } 5349 btrfs_release_path(path); 5350 if (err) 5351 goto out_end_trans; 5352 5353 ret = btrfs_del_root(trans, &root->root_key); 5354 if (ret) { 5355 btrfs_abort_transaction(trans, ret); 5356 err = ret; 5357 goto out_end_trans; 5358 } 5359 5360 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5361 ret = btrfs_find_root(tree_root, &root->root_key, path, 5362 NULL, NULL); 5363 if (ret < 0) { 5364 btrfs_abort_transaction(trans, ret); 5365 err = ret; 5366 goto out_end_trans; 5367 } else if (ret > 0) { 5368 /* if we fail to delete the orphan item this time 5369 * around, it'll get picked up the next time. 5370 * 5371 * The most common failure here is just -ENOENT. 5372 */ 5373 btrfs_del_orphan_item(trans, tree_root, 5374 root->root_key.objectid); 5375 } 5376 } 5377 5378 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 5379 btrfs_add_dropped_root(trans, root); 5380 } else { 5381 free_extent_buffer(root->node); 5382 free_extent_buffer(root->commit_root); 5383 btrfs_put_fs_root(root); 5384 } 5385 root_dropped = true; 5386 out_end_trans: 5387 btrfs_end_transaction_throttle(trans); 5388 out_free: 5389 kfree(wc); 5390 btrfs_free_path(path); 5391 out: 5392 /* 5393 * So if we need to stop dropping the snapshot for whatever reason we 5394 * need to make sure to add it back to the dead root list so that we 5395 * keep trying to do the work later. This also cleans up roots if we 5396 * don't have it in the radix (like when we recover after a power fail 5397 * or unmount) so we don't leak memory. 5398 */ 5399 if (!for_reloc && !root_dropped) 5400 btrfs_add_dead_root(root); 5401 if (err && err != -EAGAIN) 5402 btrfs_handle_fs_error(fs_info, err, NULL); 5403 return err; 5404 } 5405 5406 /* 5407 * drop subtree rooted at tree block 'node'. 5408 * 5409 * NOTE: this function will unlock and release tree block 'node' 5410 * only used by relocation code 5411 */ 5412 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5413 struct btrfs_root *root, 5414 struct extent_buffer *node, 5415 struct extent_buffer *parent) 5416 { 5417 struct btrfs_fs_info *fs_info = root->fs_info; 5418 struct btrfs_path *path; 5419 struct walk_control *wc; 5420 int level; 5421 int parent_level; 5422 int ret = 0; 5423 int wret; 5424 5425 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5426 5427 path = btrfs_alloc_path(); 5428 if (!path) 5429 return -ENOMEM; 5430 5431 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5432 if (!wc) { 5433 btrfs_free_path(path); 5434 return -ENOMEM; 5435 } 5436 5437 btrfs_assert_tree_locked(parent); 5438 parent_level = btrfs_header_level(parent); 5439 extent_buffer_get(parent); 5440 path->nodes[parent_level] = parent; 5441 path->slots[parent_level] = btrfs_header_nritems(parent); 5442 5443 btrfs_assert_tree_locked(node); 5444 level = btrfs_header_level(node); 5445 path->nodes[level] = node; 5446 path->slots[level] = 0; 5447 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 5448 5449 wc->refs[parent_level] = 1; 5450 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5451 wc->level = level; 5452 wc->shared_level = -1; 5453 wc->stage = DROP_REFERENCE; 5454 wc->update_ref = 0; 5455 wc->keep_locks = 1; 5456 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5457 5458 while (1) { 5459 wret = walk_down_tree(trans, root, path, wc); 5460 if (wret < 0) { 5461 ret = wret; 5462 break; 5463 } 5464 5465 wret = walk_up_tree(trans, root, path, wc, parent_level); 5466 if (wret < 0) 5467 ret = wret; 5468 if (wret != 0) 5469 break; 5470 } 5471 5472 kfree(wc); 5473 btrfs_free_path(path); 5474 return ret; 5475 } 5476 5477 /* 5478 * helper to account the unused space of all the readonly block group in the 5479 * space_info. takes mirrors into account. 5480 */ 5481 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5482 { 5483 struct btrfs_block_group_cache *block_group; 5484 u64 free_bytes = 0; 5485 int factor; 5486 5487 /* It's df, we don't care if it's racy */ 5488 if (list_empty(&sinfo->ro_bgs)) 5489 return 0; 5490 5491 spin_lock(&sinfo->lock); 5492 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5493 spin_lock(&block_group->lock); 5494 5495 if (!block_group->ro) { 5496 spin_unlock(&block_group->lock); 5497 continue; 5498 } 5499 5500 factor = btrfs_bg_type_to_factor(block_group->flags); 5501 free_bytes += (block_group->key.offset - 5502 btrfs_block_group_used(&block_group->item)) * 5503 factor; 5504 5505 spin_unlock(&block_group->lock); 5506 } 5507 spin_unlock(&sinfo->lock); 5508 5509 return free_bytes; 5510 } 5511 5512 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5513 u64 start, u64 end) 5514 { 5515 return unpin_extent_range(fs_info, start, end, false); 5516 } 5517 5518 /* 5519 * It used to be that old block groups would be left around forever. 5520 * Iterating over them would be enough to trim unused space. Since we 5521 * now automatically remove them, we also need to iterate over unallocated 5522 * space. 5523 * 5524 * We don't want a transaction for this since the discard may take a 5525 * substantial amount of time. We don't require that a transaction be 5526 * running, but we do need to take a running transaction into account 5527 * to ensure that we're not discarding chunks that were released or 5528 * allocated in the current transaction. 5529 * 5530 * Holding the chunks lock will prevent other threads from allocating 5531 * or releasing chunks, but it won't prevent a running transaction 5532 * from committing and releasing the memory that the pending chunks 5533 * list head uses. For that, we need to take a reference to the 5534 * transaction and hold the commit root sem. We only need to hold 5535 * it while performing the free space search since we have already 5536 * held back allocations. 5537 */ 5538 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5539 { 5540 u64 start = SZ_1M, len = 0, end = 0; 5541 int ret; 5542 5543 *trimmed = 0; 5544 5545 /* Discard not supported = nothing to do. */ 5546 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5547 return 0; 5548 5549 /* Not writable = nothing to do. */ 5550 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5551 return 0; 5552 5553 /* No free space = nothing to do. */ 5554 if (device->total_bytes <= device->bytes_used) 5555 return 0; 5556 5557 ret = 0; 5558 5559 while (1) { 5560 struct btrfs_fs_info *fs_info = device->fs_info; 5561 u64 bytes; 5562 5563 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5564 if (ret) 5565 break; 5566 5567 find_first_clear_extent_bit(&device->alloc_state, start, 5568 &start, &end, 5569 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5570 5571 /* Ensure we skip the reserved area in the first 1M */ 5572 start = max_t(u64, start, SZ_1M); 5573 5574 /* 5575 * If find_first_clear_extent_bit find a range that spans the 5576 * end of the device it will set end to -1, in this case it's up 5577 * to the caller to trim the value to the size of the device. 5578 */ 5579 end = min(end, device->total_bytes - 1); 5580 5581 len = end - start + 1; 5582 5583 /* We didn't find any extents */ 5584 if (!len) { 5585 mutex_unlock(&fs_info->chunk_mutex); 5586 ret = 0; 5587 break; 5588 } 5589 5590 ret = btrfs_issue_discard(device->bdev, start, len, 5591 &bytes); 5592 if (!ret) 5593 set_extent_bits(&device->alloc_state, start, 5594 start + bytes - 1, 5595 CHUNK_TRIMMED); 5596 mutex_unlock(&fs_info->chunk_mutex); 5597 5598 if (ret) 5599 break; 5600 5601 start += len; 5602 *trimmed += bytes; 5603 5604 if (fatal_signal_pending(current)) { 5605 ret = -ERESTARTSYS; 5606 break; 5607 } 5608 5609 cond_resched(); 5610 } 5611 5612 return ret; 5613 } 5614 5615 /* 5616 * Trim the whole filesystem by: 5617 * 1) trimming the free space in each block group 5618 * 2) trimming the unallocated space on each device 5619 * 5620 * This will also continue trimming even if a block group or device encounters 5621 * an error. The return value will be the last error, or 0 if nothing bad 5622 * happens. 5623 */ 5624 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 5625 { 5626 struct btrfs_block_group_cache *cache = NULL; 5627 struct btrfs_device *device; 5628 struct list_head *devices; 5629 u64 group_trimmed; 5630 u64 range_end = U64_MAX; 5631 u64 start; 5632 u64 end; 5633 u64 trimmed = 0; 5634 u64 bg_failed = 0; 5635 u64 dev_failed = 0; 5636 int bg_ret = 0; 5637 int dev_ret = 0; 5638 int ret = 0; 5639 5640 /* 5641 * Check range overflow if range->len is set. 5642 * The default range->len is U64_MAX. 5643 */ 5644 if (range->len != U64_MAX && 5645 check_add_overflow(range->start, range->len, &range_end)) 5646 return -EINVAL; 5647 5648 cache = btrfs_lookup_first_block_group(fs_info, range->start); 5649 for (; cache; cache = btrfs_next_block_group(cache)) { 5650 if (cache->key.objectid >= range_end) { 5651 btrfs_put_block_group(cache); 5652 break; 5653 } 5654 5655 start = max(range->start, cache->key.objectid); 5656 end = min(range_end, cache->key.objectid + cache->key.offset); 5657 5658 if (end - start >= range->minlen) { 5659 if (!btrfs_block_group_cache_done(cache)) { 5660 ret = btrfs_cache_block_group(cache, 0); 5661 if (ret) { 5662 bg_failed++; 5663 bg_ret = ret; 5664 continue; 5665 } 5666 ret = btrfs_wait_block_group_cache_done(cache); 5667 if (ret) { 5668 bg_failed++; 5669 bg_ret = ret; 5670 continue; 5671 } 5672 } 5673 ret = btrfs_trim_block_group(cache, 5674 &group_trimmed, 5675 start, 5676 end, 5677 range->minlen); 5678 5679 trimmed += group_trimmed; 5680 if (ret) { 5681 bg_failed++; 5682 bg_ret = ret; 5683 continue; 5684 } 5685 } 5686 } 5687 5688 if (bg_failed) 5689 btrfs_warn(fs_info, 5690 "failed to trim %llu block group(s), last error %d", 5691 bg_failed, bg_ret); 5692 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5693 devices = &fs_info->fs_devices->devices; 5694 list_for_each_entry(device, devices, dev_list) { 5695 ret = btrfs_trim_free_extents(device, &group_trimmed); 5696 if (ret) { 5697 dev_failed++; 5698 dev_ret = ret; 5699 break; 5700 } 5701 5702 trimmed += group_trimmed; 5703 } 5704 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5705 5706 if (dev_failed) 5707 btrfs_warn(fs_info, 5708 "failed to trim %llu device(s), last error %d", 5709 dev_failed, dev_ret); 5710 range->len = trimmed; 5711 if (bg_ret) 5712 return bg_ret; 5713 return dev_ret; 5714 } 5715 5716 /* 5717 * btrfs_{start,end}_write_no_snapshotting() are similar to 5718 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 5719 * data into the page cache through nocow before the subvolume is snapshoted, 5720 * but flush the data into disk after the snapshot creation, or to prevent 5721 * operations while snapshotting is ongoing and that cause the snapshot to be 5722 * inconsistent (writes followed by expanding truncates for example). 5723 */ 5724 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 5725 { 5726 percpu_counter_dec(&root->subv_writers->counter); 5727 cond_wake_up(&root->subv_writers->wait); 5728 } 5729 5730 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 5731 { 5732 if (atomic_read(&root->will_be_snapshotted)) 5733 return 0; 5734 5735 percpu_counter_inc(&root->subv_writers->counter); 5736 /* 5737 * Make sure counter is updated before we check for snapshot creation. 5738 */ 5739 smp_mb(); 5740 if (atomic_read(&root->will_be_snapshotted)) { 5741 btrfs_end_write_no_snapshotting(root); 5742 return 0; 5743 } 5744 return 1; 5745 } 5746 5747 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 5748 { 5749 while (true) { 5750 int ret; 5751 5752 ret = btrfs_start_write_no_snapshotting(root); 5753 if (ret) 5754 break; 5755 wait_var_event(&root->will_be_snapshotted, 5756 !atomic_read(&root->will_be_snapshotted)); 5757 } 5758 } 5759