1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 46 #undef SCRAMBLE_DELAYED_REFS 47 48 49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 50 struct btrfs_delayed_ref_node *node, u64 parent, 51 u64 root_objectid, u64 owner_objectid, 52 u64 owner_offset, int refs_to_drop, 53 struct btrfs_delayed_extent_op *extra_op); 54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 55 struct extent_buffer *leaf, 56 struct btrfs_extent_item *ei); 57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 58 u64 parent, u64 root_objectid, 59 u64 flags, u64 owner, u64 offset, 60 struct btrfs_key *ins, int ref_mod); 61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 62 struct btrfs_delayed_ref_node *node, 63 struct btrfs_delayed_extent_op *extent_op); 64 static int find_next_key(struct btrfs_path *path, int level, 65 struct btrfs_key *key); 66 67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 68 { 69 return (cache->flags & bits) == bits; 70 } 71 72 /* simple helper to search for an existing data extent at a given offset */ 73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 74 { 75 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 76 int ret; 77 struct btrfs_key key; 78 struct btrfs_path *path; 79 80 path = btrfs_alloc_path(); 81 if (!path) 82 return -ENOMEM; 83 84 key.objectid = start; 85 key.offset = len; 86 key.type = BTRFS_EXTENT_ITEM_KEY; 87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 88 btrfs_free_path(path); 89 return ret; 90 } 91 92 /* 93 * helper function to lookup reference count and flags of a tree block. 94 * 95 * the head node for delayed ref is used to store the sum of all the 96 * reference count modifications queued up in the rbtree. the head 97 * node may also store the extent flags to set. This way you can check 98 * to see what the reference count and extent flags would be if all of 99 * the delayed refs are not processed. 100 */ 101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 102 struct btrfs_fs_info *fs_info, u64 bytenr, 103 u64 offset, int metadata, u64 *refs, u64 *flags) 104 { 105 struct btrfs_root *extent_root; 106 struct btrfs_delayed_ref_head *head; 107 struct btrfs_delayed_ref_root *delayed_refs; 108 struct btrfs_path *path; 109 struct btrfs_extent_item *ei; 110 struct extent_buffer *leaf; 111 struct btrfs_key key; 112 u32 item_size; 113 u64 num_refs; 114 u64 extent_flags; 115 int ret; 116 117 /* 118 * If we don't have skinny metadata, don't bother doing anything 119 * different 120 */ 121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 122 offset = fs_info->nodesize; 123 metadata = 0; 124 } 125 126 path = btrfs_alloc_path(); 127 if (!path) 128 return -ENOMEM; 129 130 if (!trans) { 131 path->skip_locking = 1; 132 path->search_commit_root = 1; 133 } 134 135 search_again: 136 key.objectid = bytenr; 137 key.offset = offset; 138 if (metadata) 139 key.type = BTRFS_METADATA_ITEM_KEY; 140 else 141 key.type = BTRFS_EXTENT_ITEM_KEY; 142 143 extent_root = btrfs_extent_root(fs_info, bytenr); 144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 145 if (ret < 0) 146 goto out_free; 147 148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 149 if (path->slots[0]) { 150 path->slots[0]--; 151 btrfs_item_key_to_cpu(path->nodes[0], &key, 152 path->slots[0]); 153 if (key.objectid == bytenr && 154 key.type == BTRFS_EXTENT_ITEM_KEY && 155 key.offset == fs_info->nodesize) 156 ret = 0; 157 } 158 } 159 160 if (ret == 0) { 161 leaf = path->nodes[0]; 162 item_size = btrfs_item_size(leaf, path->slots[0]); 163 if (item_size >= sizeof(*ei)) { 164 ei = btrfs_item_ptr(leaf, path->slots[0], 165 struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 extent_flags = btrfs_extent_flags(leaf, ei); 168 } else { 169 ret = -EUCLEAN; 170 btrfs_err(fs_info, 171 "unexpected extent item size, has %u expect >= %zu", 172 item_size, sizeof(*ei)); 173 if (trans) 174 btrfs_abort_transaction(trans, ret); 175 else 176 btrfs_handle_fs_error(fs_info, ret, NULL); 177 178 goto out_free; 179 } 180 181 BUG_ON(num_refs == 0); 182 } else { 183 num_refs = 0; 184 extent_flags = 0; 185 ret = 0; 186 } 187 188 if (!trans) 189 goto out; 190 191 delayed_refs = &trans->transaction->delayed_refs; 192 spin_lock(&delayed_refs->lock); 193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 194 if (head) { 195 if (!mutex_trylock(&head->mutex)) { 196 refcount_inc(&head->refs); 197 spin_unlock(&delayed_refs->lock); 198 199 btrfs_release_path(path); 200 201 /* 202 * Mutex was contended, block until it's released and try 203 * again 204 */ 205 mutex_lock(&head->mutex); 206 mutex_unlock(&head->mutex); 207 btrfs_put_delayed_ref_head(head); 208 goto search_again; 209 } 210 spin_lock(&head->lock); 211 if (head->extent_op && head->extent_op->update_flags) 212 extent_flags |= head->extent_op->flags_to_set; 213 else 214 BUG_ON(num_refs == 0); 215 216 num_refs += head->ref_mod; 217 spin_unlock(&head->lock); 218 mutex_unlock(&head->mutex); 219 } 220 spin_unlock(&delayed_refs->lock); 221 out: 222 WARN_ON(num_refs == 0); 223 if (refs) 224 *refs = num_refs; 225 if (flags) 226 *flags = extent_flags; 227 out_free: 228 btrfs_free_path(path); 229 return ret; 230 } 231 232 /* 233 * Back reference rules. Back refs have three main goals: 234 * 235 * 1) differentiate between all holders of references to an extent so that 236 * when a reference is dropped we can make sure it was a valid reference 237 * before freeing the extent. 238 * 239 * 2) Provide enough information to quickly find the holders of an extent 240 * if we notice a given block is corrupted or bad. 241 * 242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 243 * maintenance. This is actually the same as #2, but with a slightly 244 * different use case. 245 * 246 * There are two kinds of back refs. The implicit back refs is optimized 247 * for pointers in non-shared tree blocks. For a given pointer in a block, 248 * back refs of this kind provide information about the block's owner tree 249 * and the pointer's key. These information allow us to find the block by 250 * b-tree searching. The full back refs is for pointers in tree blocks not 251 * referenced by their owner trees. The location of tree block is recorded 252 * in the back refs. Actually the full back refs is generic, and can be 253 * used in all cases the implicit back refs is used. The major shortcoming 254 * of the full back refs is its overhead. Every time a tree block gets 255 * COWed, we have to update back refs entry for all pointers in it. 256 * 257 * For a newly allocated tree block, we use implicit back refs for 258 * pointers in it. This means most tree related operations only involve 259 * implicit back refs. For a tree block created in old transaction, the 260 * only way to drop a reference to it is COW it. So we can detect the 261 * event that tree block loses its owner tree's reference and do the 262 * back refs conversion. 263 * 264 * When a tree block is COWed through a tree, there are four cases: 265 * 266 * The reference count of the block is one and the tree is the block's 267 * owner tree. Nothing to do in this case. 268 * 269 * The reference count of the block is one and the tree is not the 270 * block's owner tree. In this case, full back refs is used for pointers 271 * in the block. Remove these full back refs, add implicit back refs for 272 * every pointers in the new block. 273 * 274 * The reference count of the block is greater than one and the tree is 275 * the block's owner tree. In this case, implicit back refs is used for 276 * pointers in the block. Add full back refs for every pointers in the 277 * block, increase lower level extents' reference counts. The original 278 * implicit back refs are entailed to the new block. 279 * 280 * The reference count of the block is greater than one and the tree is 281 * not the block's owner tree. Add implicit back refs for every pointer in 282 * the new block, increase lower level extents' reference count. 283 * 284 * Back Reference Key composing: 285 * 286 * The key objectid corresponds to the first byte in the extent, 287 * The key type is used to differentiate between types of back refs. 288 * There are different meanings of the key offset for different types 289 * of back refs. 290 * 291 * File extents can be referenced by: 292 * 293 * - multiple snapshots, subvolumes, or different generations in one subvol 294 * - different files inside a single subvolume 295 * - different offsets inside a file (bookend extents in file.c) 296 * 297 * The extent ref structure for the implicit back refs has fields for: 298 * 299 * - Objectid of the subvolume root 300 * - objectid of the file holding the reference 301 * - original offset in the file 302 * - how many bookend extents 303 * 304 * The key offset for the implicit back refs is hash of the first 305 * three fields. 306 * 307 * The extent ref structure for the full back refs has field for: 308 * 309 * - number of pointers in the tree leaf 310 * 311 * The key offset for the implicit back refs is the first byte of 312 * the tree leaf 313 * 314 * When a file extent is allocated, The implicit back refs is used. 315 * the fields are filled in: 316 * 317 * (root_key.objectid, inode objectid, offset in file, 1) 318 * 319 * When a file extent is removed file truncation, we find the 320 * corresponding implicit back refs and check the following fields: 321 * 322 * (btrfs_header_owner(leaf), inode objectid, offset in file) 323 * 324 * Btree extents can be referenced by: 325 * 326 * - Different subvolumes 327 * 328 * Both the implicit back refs and the full back refs for tree blocks 329 * only consist of key. The key offset for the implicit back refs is 330 * objectid of block's owner tree. The key offset for the full back refs 331 * is the first byte of parent block. 332 * 333 * When implicit back refs is used, information about the lowest key and 334 * level of the tree block are required. These information are stored in 335 * tree block info structure. 336 */ 337 338 /* 339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 342 */ 343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 344 struct btrfs_extent_inline_ref *iref, 345 enum btrfs_inline_ref_type is_data) 346 { 347 int type = btrfs_extent_inline_ref_type(eb, iref); 348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 349 350 if (type == BTRFS_TREE_BLOCK_REF_KEY || 351 type == BTRFS_SHARED_BLOCK_REF_KEY || 352 type == BTRFS_SHARED_DATA_REF_KEY || 353 type == BTRFS_EXTENT_DATA_REF_KEY) { 354 if (is_data == BTRFS_REF_TYPE_BLOCK) { 355 if (type == BTRFS_TREE_BLOCK_REF_KEY) 356 return type; 357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 358 ASSERT(eb->fs_info); 359 /* 360 * Every shared one has parent tree block, 361 * which must be aligned to sector size. 362 */ 363 if (offset && 364 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 365 return type; 366 } 367 } else if (is_data == BTRFS_REF_TYPE_DATA) { 368 if (type == BTRFS_EXTENT_DATA_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_DATA_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else { 381 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 382 return type; 383 } 384 } 385 386 WARN_ON(1); 387 btrfs_print_leaf(eb); 388 btrfs_err(eb->fs_info, 389 "eb %llu iref 0x%lx invalid extent inline ref type %d", 390 eb->start, (unsigned long)iref, type); 391 392 return BTRFS_REF_TYPE_INVALID; 393 } 394 395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 396 { 397 u32 high_crc = ~(u32)0; 398 u32 low_crc = ~(u32)0; 399 __le64 lenum; 400 401 lenum = cpu_to_le64(root_objectid); 402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 403 lenum = cpu_to_le64(owner); 404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 405 lenum = cpu_to_le64(offset); 406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 407 408 return ((u64)high_crc << 31) ^ (u64)low_crc; 409 } 410 411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 412 struct btrfs_extent_data_ref *ref) 413 { 414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 415 btrfs_extent_data_ref_objectid(leaf, ref), 416 btrfs_extent_data_ref_offset(leaf, ref)); 417 } 418 419 static int match_extent_data_ref(struct extent_buffer *leaf, 420 struct btrfs_extent_data_ref *ref, 421 u64 root_objectid, u64 owner, u64 offset) 422 { 423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 424 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 425 btrfs_extent_data_ref_offset(leaf, ref) != offset) 426 return 0; 427 return 1; 428 } 429 430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 431 struct btrfs_path *path, 432 u64 bytenr, u64 parent, 433 u64 root_objectid, 434 u64 owner, u64 offset) 435 { 436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 437 struct btrfs_key key; 438 struct btrfs_extent_data_ref *ref; 439 struct extent_buffer *leaf; 440 u32 nritems; 441 int ret; 442 int recow; 443 int err = -ENOENT; 444 445 key.objectid = bytenr; 446 if (parent) { 447 key.type = BTRFS_SHARED_DATA_REF_KEY; 448 key.offset = parent; 449 } else { 450 key.type = BTRFS_EXTENT_DATA_REF_KEY; 451 key.offset = hash_extent_data_ref(root_objectid, 452 owner, offset); 453 } 454 again: 455 recow = 0; 456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 457 if (ret < 0) { 458 err = ret; 459 goto fail; 460 } 461 462 if (parent) { 463 if (!ret) 464 return 0; 465 goto fail; 466 } 467 468 leaf = path->nodes[0]; 469 nritems = btrfs_header_nritems(leaf); 470 while (1) { 471 if (path->slots[0] >= nritems) { 472 ret = btrfs_next_leaf(root, path); 473 if (ret < 0) 474 err = ret; 475 if (ret) 476 goto fail; 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 recow = 1; 481 } 482 483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 484 if (key.objectid != bytenr || 485 key.type != BTRFS_EXTENT_DATA_REF_KEY) 486 goto fail; 487 488 ref = btrfs_item_ptr(leaf, path->slots[0], 489 struct btrfs_extent_data_ref); 490 491 if (match_extent_data_ref(leaf, ref, root_objectid, 492 owner, offset)) { 493 if (recow) { 494 btrfs_release_path(path); 495 goto again; 496 } 497 err = 0; 498 break; 499 } 500 path->slots[0]++; 501 } 502 fail: 503 return err; 504 } 505 506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 507 struct btrfs_path *path, 508 u64 bytenr, u64 parent, 509 u64 root_objectid, u64 owner, 510 u64 offset, int refs_to_add) 511 { 512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 513 struct btrfs_key key; 514 struct extent_buffer *leaf; 515 u32 size; 516 u32 num_refs; 517 int ret; 518 519 key.objectid = bytenr; 520 if (parent) { 521 key.type = BTRFS_SHARED_DATA_REF_KEY; 522 key.offset = parent; 523 size = sizeof(struct btrfs_shared_data_ref); 524 } else { 525 key.type = BTRFS_EXTENT_DATA_REF_KEY; 526 key.offset = hash_extent_data_ref(root_objectid, 527 owner, offset); 528 size = sizeof(struct btrfs_extent_data_ref); 529 } 530 531 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 532 if (ret && ret != -EEXIST) 533 goto fail; 534 535 leaf = path->nodes[0]; 536 if (parent) { 537 struct btrfs_shared_data_ref *ref; 538 ref = btrfs_item_ptr(leaf, path->slots[0], 539 struct btrfs_shared_data_ref); 540 if (ret == 0) { 541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 542 } else { 543 num_refs = btrfs_shared_data_ref_count(leaf, ref); 544 num_refs += refs_to_add; 545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 546 } 547 } else { 548 struct btrfs_extent_data_ref *ref; 549 while (ret == -EEXIST) { 550 ref = btrfs_item_ptr(leaf, path->slots[0], 551 struct btrfs_extent_data_ref); 552 if (match_extent_data_ref(leaf, ref, root_objectid, 553 owner, offset)) 554 break; 555 btrfs_release_path(path); 556 key.offset++; 557 ret = btrfs_insert_empty_item(trans, root, path, &key, 558 size); 559 if (ret && ret != -EEXIST) 560 goto fail; 561 562 leaf = path->nodes[0]; 563 } 564 ref = btrfs_item_ptr(leaf, path->slots[0], 565 struct btrfs_extent_data_ref); 566 if (ret == 0) { 567 btrfs_set_extent_data_ref_root(leaf, ref, 568 root_objectid); 569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 570 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 572 } else { 573 num_refs = btrfs_extent_data_ref_count(leaf, ref); 574 num_refs += refs_to_add; 575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 576 } 577 } 578 btrfs_mark_buffer_dirty(trans, leaf); 579 ret = 0; 580 fail: 581 btrfs_release_path(path); 582 return ret; 583 } 584 585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 586 struct btrfs_root *root, 587 struct btrfs_path *path, 588 int refs_to_drop) 589 { 590 struct btrfs_key key; 591 struct btrfs_extent_data_ref *ref1 = NULL; 592 struct btrfs_shared_data_ref *ref2 = NULL; 593 struct extent_buffer *leaf; 594 u32 num_refs = 0; 595 int ret = 0; 596 597 leaf = path->nodes[0]; 598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 599 600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 601 ref1 = btrfs_item_ptr(leaf, path->slots[0], 602 struct btrfs_extent_data_ref); 603 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 605 ref2 = btrfs_item_ptr(leaf, path->slots[0], 606 struct btrfs_shared_data_ref); 607 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 608 } else { 609 btrfs_err(trans->fs_info, 610 "unrecognized backref key (%llu %u %llu)", 611 key.objectid, key.type, key.offset); 612 btrfs_abort_transaction(trans, -EUCLEAN); 613 return -EUCLEAN; 614 } 615 616 BUG_ON(num_refs < refs_to_drop); 617 num_refs -= refs_to_drop; 618 619 if (num_refs == 0) { 620 ret = btrfs_del_item(trans, root, path); 621 } else { 622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 626 btrfs_mark_buffer_dirty(trans, leaf); 627 } 628 return ret; 629 } 630 631 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 632 struct btrfs_extent_inline_ref *iref) 633 { 634 struct btrfs_key key; 635 struct extent_buffer *leaf; 636 struct btrfs_extent_data_ref *ref1; 637 struct btrfs_shared_data_ref *ref2; 638 u32 num_refs = 0; 639 int type; 640 641 leaf = path->nodes[0]; 642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 643 644 if (iref) { 645 /* 646 * If type is invalid, we should have bailed out earlier than 647 * this call. 648 */ 649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 650 ASSERT(type != BTRFS_REF_TYPE_INVALID); 651 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 653 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 654 } else { 655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 656 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 657 } 658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 659 ref1 = btrfs_item_ptr(leaf, path->slots[0], 660 struct btrfs_extent_data_ref); 661 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 663 ref2 = btrfs_item_ptr(leaf, path->slots[0], 664 struct btrfs_shared_data_ref); 665 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 666 } else { 667 WARN_ON(1); 668 } 669 return num_refs; 670 } 671 672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 673 struct btrfs_path *path, 674 u64 bytenr, u64 parent, 675 u64 root_objectid) 676 { 677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 678 struct btrfs_key key; 679 int ret; 680 681 key.objectid = bytenr; 682 if (parent) { 683 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 684 key.offset = parent; 685 } else { 686 key.type = BTRFS_TREE_BLOCK_REF_KEY; 687 key.offset = root_objectid; 688 } 689 690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 691 if (ret > 0) 692 ret = -ENOENT; 693 return ret; 694 } 695 696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 697 struct btrfs_path *path, 698 u64 bytenr, u64 parent, 699 u64 root_objectid) 700 { 701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 702 struct btrfs_key key; 703 int ret; 704 705 key.objectid = bytenr; 706 if (parent) { 707 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 708 key.offset = parent; 709 } else { 710 key.type = BTRFS_TREE_BLOCK_REF_KEY; 711 key.offset = root_objectid; 712 } 713 714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 715 btrfs_release_path(path); 716 return ret; 717 } 718 719 static inline int extent_ref_type(u64 parent, u64 owner) 720 { 721 int type; 722 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 723 if (parent > 0) 724 type = BTRFS_SHARED_BLOCK_REF_KEY; 725 else 726 type = BTRFS_TREE_BLOCK_REF_KEY; 727 } else { 728 if (parent > 0) 729 type = BTRFS_SHARED_DATA_REF_KEY; 730 else 731 type = BTRFS_EXTENT_DATA_REF_KEY; 732 } 733 return type; 734 } 735 736 static int find_next_key(struct btrfs_path *path, int level, 737 struct btrfs_key *key) 738 739 { 740 for (; level < BTRFS_MAX_LEVEL; level++) { 741 if (!path->nodes[level]) 742 break; 743 if (path->slots[level] + 1 >= 744 btrfs_header_nritems(path->nodes[level])) 745 continue; 746 if (level == 0) 747 btrfs_item_key_to_cpu(path->nodes[level], key, 748 path->slots[level] + 1); 749 else 750 btrfs_node_key_to_cpu(path->nodes[level], key, 751 path->slots[level] + 1); 752 return 0; 753 } 754 return 1; 755 } 756 757 /* 758 * look for inline back ref. if back ref is found, *ref_ret is set 759 * to the address of inline back ref, and 0 is returned. 760 * 761 * if back ref isn't found, *ref_ret is set to the address where it 762 * should be inserted, and -ENOENT is returned. 763 * 764 * if insert is true and there are too many inline back refs, the path 765 * points to the extent item, and -EAGAIN is returned. 766 * 767 * NOTE: inline back refs are ordered in the same way that back ref 768 * items in the tree are ordered. 769 */ 770 static noinline_for_stack 771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 772 struct btrfs_path *path, 773 struct btrfs_extent_inline_ref **ref_ret, 774 u64 bytenr, u64 num_bytes, 775 u64 parent, u64 root_objectid, 776 u64 owner, u64 offset, int insert) 777 { 778 struct btrfs_fs_info *fs_info = trans->fs_info; 779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 780 struct btrfs_key key; 781 struct extent_buffer *leaf; 782 struct btrfs_extent_item *ei; 783 struct btrfs_extent_inline_ref *iref; 784 u64 flags; 785 u64 item_size; 786 unsigned long ptr; 787 unsigned long end; 788 int extra_size; 789 int type; 790 int want; 791 int ret; 792 int err = 0; 793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 794 int needed; 795 796 key.objectid = bytenr; 797 key.type = BTRFS_EXTENT_ITEM_KEY; 798 key.offset = num_bytes; 799 800 want = extent_ref_type(parent, owner); 801 if (insert) { 802 extra_size = btrfs_extent_inline_ref_size(want); 803 path->search_for_extension = 1; 804 path->keep_locks = 1; 805 } else 806 extra_size = -1; 807 808 /* 809 * Owner is our level, so we can just add one to get the level for the 810 * block we are interested in. 811 */ 812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 813 key.type = BTRFS_METADATA_ITEM_KEY; 814 key.offset = owner; 815 } 816 817 again: 818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 819 if (ret < 0) { 820 err = ret; 821 goto out; 822 } 823 824 /* 825 * We may be a newly converted file system which still has the old fat 826 * extent entries for metadata, so try and see if we have one of those. 827 */ 828 if (ret > 0 && skinny_metadata) { 829 skinny_metadata = false; 830 if (path->slots[0]) { 831 path->slots[0]--; 832 btrfs_item_key_to_cpu(path->nodes[0], &key, 833 path->slots[0]); 834 if (key.objectid == bytenr && 835 key.type == BTRFS_EXTENT_ITEM_KEY && 836 key.offset == num_bytes) 837 ret = 0; 838 } 839 if (ret) { 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 btrfs_release_path(path); 844 goto again; 845 } 846 } 847 848 if (ret && !insert) { 849 err = -ENOENT; 850 goto out; 851 } else if (WARN_ON(ret)) { 852 btrfs_print_leaf(path->nodes[0]); 853 btrfs_err(fs_info, 854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 855 bytenr, num_bytes, parent, root_objectid, owner, 856 offset); 857 err = -EIO; 858 goto out; 859 } 860 861 leaf = path->nodes[0]; 862 item_size = btrfs_item_size(leaf, path->slots[0]); 863 if (unlikely(item_size < sizeof(*ei))) { 864 err = -EUCLEAN; 865 btrfs_err(fs_info, 866 "unexpected extent item size, has %llu expect >= %zu", 867 item_size, sizeof(*ei)); 868 btrfs_abort_transaction(trans, err); 869 goto out; 870 } 871 872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 873 flags = btrfs_extent_flags(leaf, ei); 874 875 ptr = (unsigned long)(ei + 1); 876 end = (unsigned long)ei + item_size; 877 878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 879 ptr += sizeof(struct btrfs_tree_block_info); 880 BUG_ON(ptr > end); 881 } 882 883 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 884 needed = BTRFS_REF_TYPE_DATA; 885 else 886 needed = BTRFS_REF_TYPE_BLOCK; 887 888 err = -ENOENT; 889 while (1) { 890 if (ptr >= end) { 891 if (ptr > end) { 892 err = -EUCLEAN; 893 btrfs_print_leaf(path->nodes[0]); 894 btrfs_crit(fs_info, 895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 896 path->slots[0], root_objectid, owner, offset, parent); 897 } 898 break; 899 } 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_REF_TYPE_INVALID) { 903 err = -EUCLEAN; 904 goto out; 905 } 906 907 if (want < type) 908 break; 909 if (want > type) { 910 ptr += btrfs_extent_inline_ref_size(type); 911 continue; 912 } 913 914 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 915 struct btrfs_extent_data_ref *dref; 916 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 917 if (match_extent_data_ref(leaf, dref, root_objectid, 918 owner, offset)) { 919 err = 0; 920 break; 921 } 922 if (hash_extent_data_ref_item(leaf, dref) < 923 hash_extent_data_ref(root_objectid, owner, offset)) 924 break; 925 } else { 926 u64 ref_offset; 927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 928 if (parent > 0) { 929 if (parent == ref_offset) { 930 err = 0; 931 break; 932 } 933 if (ref_offset < parent) 934 break; 935 } else { 936 if (root_objectid == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < root_objectid) 941 break; 942 } 943 } 944 ptr += btrfs_extent_inline_ref_size(type); 945 } 946 if (err == -ENOENT && insert) { 947 if (item_size + extra_size >= 948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 949 err = -EAGAIN; 950 goto out; 951 } 952 /* 953 * To add new inline back ref, we have to make sure 954 * there is no corresponding back ref item. 955 * For simplicity, we just do not add new inline back 956 * ref if there is any kind of item for this block 957 */ 958 if (find_next_key(path, 0, &key) == 0 && 959 key.objectid == bytenr && 960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 961 err = -EAGAIN; 962 goto out; 963 } 964 } 965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 966 out: 967 if (insert) { 968 path->keep_locks = 0; 969 path->search_for_extension = 0; 970 btrfs_unlock_up_safe(path, 1); 971 } 972 return err; 973 } 974 975 /* 976 * helper to add new inline back ref 977 */ 978 static noinline_for_stack 979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 980 struct btrfs_path *path, 981 struct btrfs_extent_inline_ref *iref, 982 u64 parent, u64 root_objectid, 983 u64 owner, u64 offset, int refs_to_add, 984 struct btrfs_delayed_extent_op *extent_op) 985 { 986 struct extent_buffer *leaf; 987 struct btrfs_extent_item *ei; 988 unsigned long ptr; 989 unsigned long end; 990 unsigned long item_offset; 991 u64 refs; 992 int size; 993 int type; 994 995 leaf = path->nodes[0]; 996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 997 item_offset = (unsigned long)iref - (unsigned long)ei; 998 999 type = extent_ref_type(parent, owner); 1000 size = btrfs_extent_inline_ref_size(type); 1001 1002 btrfs_extend_item(trans, path, size); 1003 1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1005 refs = btrfs_extent_refs(leaf, ei); 1006 refs += refs_to_add; 1007 btrfs_set_extent_refs(leaf, ei, refs); 1008 if (extent_op) 1009 __run_delayed_extent_op(extent_op, leaf, ei); 1010 1011 ptr = (unsigned long)ei + item_offset; 1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1013 if (ptr < end - size) 1014 memmove_extent_buffer(leaf, ptr + size, ptr, 1015 end - size - ptr); 1016 1017 iref = (struct btrfs_extent_inline_ref *)ptr; 1018 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1020 struct btrfs_extent_data_ref *dref; 1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1027 struct btrfs_shared_data_ref *sref; 1028 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1033 } else { 1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1035 } 1036 btrfs_mark_buffer_dirty(trans, leaf); 1037 } 1038 1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1040 struct btrfs_path *path, 1041 struct btrfs_extent_inline_ref **ref_ret, 1042 u64 bytenr, u64 num_bytes, u64 parent, 1043 u64 root_objectid, u64 owner, u64 offset) 1044 { 1045 int ret; 1046 1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1048 num_bytes, parent, root_objectid, 1049 owner, offset, 0); 1050 if (ret != -ENOENT) 1051 return ret; 1052 1053 btrfs_release_path(path); 1054 *ref_ret = NULL; 1055 1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1058 root_objectid); 1059 } else { 1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1061 root_objectid, owner, offset); 1062 } 1063 return ret; 1064 } 1065 1066 /* 1067 * helper to update/remove inline back ref 1068 */ 1069 static noinline_for_stack int update_inline_extent_backref( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_extent_inline_ref *iref, 1073 int refs_to_mod, 1074 struct btrfs_delayed_extent_op *extent_op) 1075 { 1076 struct extent_buffer *leaf = path->nodes[0]; 1077 struct btrfs_fs_info *fs_info = leaf->fs_info; 1078 struct btrfs_extent_item *ei; 1079 struct btrfs_extent_data_ref *dref = NULL; 1080 struct btrfs_shared_data_ref *sref = NULL; 1081 unsigned long ptr; 1082 unsigned long end; 1083 u32 item_size; 1084 int size; 1085 int type; 1086 u64 refs; 1087 1088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1089 refs = btrfs_extent_refs(leaf, ei); 1090 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1091 struct btrfs_key key; 1092 u32 extent_size; 1093 1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1095 if (key.type == BTRFS_METADATA_ITEM_KEY) 1096 extent_size = fs_info->nodesize; 1097 else 1098 extent_size = key.offset; 1099 btrfs_print_leaf(leaf); 1100 btrfs_err(fs_info, 1101 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1102 key.objectid, extent_size, refs_to_mod, refs); 1103 return -EUCLEAN; 1104 } 1105 refs += refs_to_mod; 1106 btrfs_set_extent_refs(leaf, ei, refs); 1107 if (extent_op) 1108 __run_delayed_extent_op(extent_op, leaf, ei); 1109 1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1111 /* 1112 * Function btrfs_get_extent_inline_ref_type() has already printed 1113 * error messages. 1114 */ 1115 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1116 return -EUCLEAN; 1117 1118 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1119 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1120 refs = btrfs_extent_data_ref_count(leaf, dref); 1121 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1122 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1123 refs = btrfs_shared_data_ref_count(leaf, sref); 1124 } else { 1125 refs = 1; 1126 /* 1127 * For tree blocks we can only drop one ref for it, and tree 1128 * blocks should not have refs > 1. 1129 * 1130 * Furthermore if we're inserting a new inline backref, we 1131 * won't reach this path either. That would be 1132 * setup_inline_extent_backref(). 1133 */ 1134 if (unlikely(refs_to_mod != -1)) { 1135 struct btrfs_key key; 1136 1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1138 1139 btrfs_print_leaf(leaf); 1140 btrfs_err(fs_info, 1141 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1142 key.objectid, refs_to_mod); 1143 return -EUCLEAN; 1144 } 1145 } 1146 1147 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1148 struct btrfs_key key; 1149 u32 extent_size; 1150 1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1152 if (key.type == BTRFS_METADATA_ITEM_KEY) 1153 extent_size = fs_info->nodesize; 1154 else 1155 extent_size = key.offset; 1156 btrfs_print_leaf(leaf); 1157 btrfs_err(fs_info, 1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1159 (unsigned long)iref, key.objectid, extent_size, 1160 refs_to_mod, refs); 1161 return -EUCLEAN; 1162 } 1163 refs += refs_to_mod; 1164 1165 if (refs > 0) { 1166 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1167 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1168 else 1169 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1170 } else { 1171 size = btrfs_extent_inline_ref_size(type); 1172 item_size = btrfs_item_size(leaf, path->slots[0]); 1173 ptr = (unsigned long)iref; 1174 end = (unsigned long)ei + item_size; 1175 if (ptr + size < end) 1176 memmove_extent_buffer(leaf, ptr, ptr + size, 1177 end - ptr - size); 1178 item_size -= size; 1179 btrfs_truncate_item(trans, path, item_size, 1); 1180 } 1181 btrfs_mark_buffer_dirty(trans, leaf); 1182 return 0; 1183 } 1184 1185 static noinline_for_stack 1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1187 struct btrfs_path *path, 1188 u64 bytenr, u64 num_bytes, u64 parent, 1189 u64 root_objectid, u64 owner, 1190 u64 offset, int refs_to_add, 1191 struct btrfs_delayed_extent_op *extent_op) 1192 { 1193 struct btrfs_extent_inline_ref *iref; 1194 int ret; 1195 1196 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1197 num_bytes, parent, root_objectid, 1198 owner, offset, 1); 1199 if (ret == 0) { 1200 /* 1201 * We're adding refs to a tree block we already own, this 1202 * should not happen at all. 1203 */ 1204 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1205 btrfs_print_leaf(path->nodes[0]); 1206 btrfs_crit(trans->fs_info, 1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1208 bytenr, num_bytes, root_objectid, path->slots[0]); 1209 return -EUCLEAN; 1210 } 1211 ret = update_inline_extent_backref(trans, path, iref, 1212 refs_to_add, extent_op); 1213 } else if (ret == -ENOENT) { 1214 setup_inline_extent_backref(trans, path, iref, parent, 1215 root_objectid, owner, offset, 1216 refs_to_add, extent_op); 1217 ret = 0; 1218 } 1219 return ret; 1220 } 1221 1222 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, 1225 struct btrfs_extent_inline_ref *iref, 1226 int refs_to_drop, int is_data) 1227 { 1228 int ret = 0; 1229 1230 BUG_ON(!is_data && refs_to_drop != 1); 1231 if (iref) 1232 ret = update_inline_extent_backref(trans, path, iref, 1233 -refs_to_drop, NULL); 1234 else if (is_data) 1235 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1236 else 1237 ret = btrfs_del_item(trans, root, path); 1238 return ret; 1239 } 1240 1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1242 u64 *discarded_bytes) 1243 { 1244 int j, ret = 0; 1245 u64 bytes_left, end; 1246 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1247 1248 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1249 if (start != aligned_start) { 1250 len -= aligned_start - start; 1251 len = round_down(len, 1 << SECTOR_SHIFT); 1252 start = aligned_start; 1253 } 1254 1255 *discarded_bytes = 0; 1256 1257 if (!len) 1258 return 0; 1259 1260 end = start + len; 1261 bytes_left = len; 1262 1263 /* Skip any superblocks on this device. */ 1264 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1265 u64 sb_start = btrfs_sb_offset(j); 1266 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1267 u64 size = sb_start - start; 1268 1269 if (!in_range(sb_start, start, bytes_left) && 1270 !in_range(sb_end, start, bytes_left) && 1271 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1272 continue; 1273 1274 /* 1275 * Superblock spans beginning of range. Adjust start and 1276 * try again. 1277 */ 1278 if (sb_start <= start) { 1279 start += sb_end - start; 1280 if (start > end) { 1281 bytes_left = 0; 1282 break; 1283 } 1284 bytes_left = end - start; 1285 continue; 1286 } 1287 1288 if (size) { 1289 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1290 size >> SECTOR_SHIFT, 1291 GFP_NOFS); 1292 if (!ret) 1293 *discarded_bytes += size; 1294 else if (ret != -EOPNOTSUPP) 1295 return ret; 1296 } 1297 1298 start = sb_end; 1299 if (start > end) { 1300 bytes_left = 0; 1301 break; 1302 } 1303 bytes_left = end - start; 1304 } 1305 1306 while (bytes_left) { 1307 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); 1308 1309 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1310 bytes_to_discard >> SECTOR_SHIFT, 1311 GFP_NOFS); 1312 1313 if (ret) { 1314 if (ret != -EOPNOTSUPP) 1315 break; 1316 continue; 1317 } 1318 1319 start += bytes_to_discard; 1320 bytes_left -= bytes_to_discard; 1321 *discarded_bytes += bytes_to_discard; 1322 } 1323 1324 return ret; 1325 } 1326 1327 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1328 { 1329 struct btrfs_device *dev = stripe->dev; 1330 struct btrfs_fs_info *fs_info = dev->fs_info; 1331 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1332 u64 phys = stripe->physical; 1333 u64 len = stripe->length; 1334 u64 discarded = 0; 1335 int ret = 0; 1336 1337 /* Zone reset on a zoned filesystem */ 1338 if (btrfs_can_zone_reset(dev, phys, len)) { 1339 u64 src_disc; 1340 1341 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1342 if (ret) 1343 goto out; 1344 1345 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1346 dev != dev_replace->srcdev) 1347 goto out; 1348 1349 src_disc = discarded; 1350 1351 /* Send to replace target as well */ 1352 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1353 &discarded); 1354 discarded += src_disc; 1355 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1356 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1357 } else { 1358 ret = 0; 1359 *bytes = 0; 1360 } 1361 1362 out: 1363 *bytes = discarded; 1364 return ret; 1365 } 1366 1367 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1368 u64 num_bytes, u64 *actual_bytes) 1369 { 1370 int ret = 0; 1371 u64 discarded_bytes = 0; 1372 u64 end = bytenr + num_bytes; 1373 u64 cur = bytenr; 1374 1375 /* 1376 * Avoid races with device replace and make sure the devices in the 1377 * stripes don't go away while we are discarding. 1378 */ 1379 btrfs_bio_counter_inc_blocked(fs_info); 1380 while (cur < end) { 1381 struct btrfs_discard_stripe *stripes; 1382 unsigned int num_stripes; 1383 int i; 1384 1385 num_bytes = end - cur; 1386 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1387 if (IS_ERR(stripes)) { 1388 ret = PTR_ERR(stripes); 1389 if (ret == -EOPNOTSUPP) 1390 ret = 0; 1391 break; 1392 } 1393 1394 for (i = 0; i < num_stripes; i++) { 1395 struct btrfs_discard_stripe *stripe = stripes + i; 1396 u64 bytes; 1397 1398 if (!stripe->dev->bdev) { 1399 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1400 continue; 1401 } 1402 1403 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1404 &stripe->dev->dev_state)) 1405 continue; 1406 1407 ret = do_discard_extent(stripe, &bytes); 1408 if (ret) { 1409 /* 1410 * Keep going if discard is not supported by the 1411 * device. 1412 */ 1413 if (ret != -EOPNOTSUPP) 1414 break; 1415 ret = 0; 1416 } else { 1417 discarded_bytes += bytes; 1418 } 1419 } 1420 kfree(stripes); 1421 if (ret) 1422 break; 1423 cur += num_bytes; 1424 } 1425 btrfs_bio_counter_dec(fs_info); 1426 if (actual_bytes) 1427 *actual_bytes = discarded_bytes; 1428 return ret; 1429 } 1430 1431 /* Can return -ENOMEM */ 1432 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1433 struct btrfs_ref *generic_ref) 1434 { 1435 struct btrfs_fs_info *fs_info = trans->fs_info; 1436 int ret; 1437 1438 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1439 generic_ref->action); 1440 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1441 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1442 1443 if (generic_ref->type == BTRFS_REF_METADATA) 1444 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1445 else 1446 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1447 1448 btrfs_ref_tree_mod(fs_info, generic_ref); 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * __btrfs_inc_extent_ref - insert backreference for a given extent 1455 * 1456 * The counterpart is in __btrfs_free_extent(), with examples and more details 1457 * how it works. 1458 * 1459 * @trans: Handle of transaction 1460 * 1461 * @node: The delayed ref node used to get the bytenr/length for 1462 * extent whose references are incremented. 1463 * 1464 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1465 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1466 * bytenr of the parent block. Since new extents are always 1467 * created with indirect references, this will only be the case 1468 * when relocating a shared extent. In that case, root_objectid 1469 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1470 * be 0 1471 * 1472 * @root_objectid: The id of the root where this modification has originated, 1473 * this can be either one of the well-known metadata trees or 1474 * the subvolume id which references this extent. 1475 * 1476 * @owner: For data extents it is the inode number of the owning file. 1477 * For metadata extents this parameter holds the level in the 1478 * tree of the extent. 1479 * 1480 * @offset: For metadata extents the offset is ignored and is currently 1481 * always passed as 0. For data extents it is the fileoffset 1482 * this extent belongs to. 1483 * 1484 * @refs_to_add Number of references to add 1485 * 1486 * @extent_op Pointer to a structure, holding information necessary when 1487 * updating a tree block's flags 1488 * 1489 */ 1490 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1491 struct btrfs_delayed_ref_node *node, 1492 u64 parent, u64 root_objectid, 1493 u64 owner, u64 offset, int refs_to_add, 1494 struct btrfs_delayed_extent_op *extent_op) 1495 { 1496 struct btrfs_path *path; 1497 struct extent_buffer *leaf; 1498 struct btrfs_extent_item *item; 1499 struct btrfs_key key; 1500 u64 bytenr = node->bytenr; 1501 u64 num_bytes = node->num_bytes; 1502 u64 refs; 1503 int ret; 1504 1505 path = btrfs_alloc_path(); 1506 if (!path) 1507 return -ENOMEM; 1508 1509 /* this will setup the path even if it fails to insert the back ref */ 1510 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1511 parent, root_objectid, owner, 1512 offset, refs_to_add, extent_op); 1513 if ((ret < 0 && ret != -EAGAIN) || !ret) 1514 goto out; 1515 1516 /* 1517 * Ok we had -EAGAIN which means we didn't have space to insert and 1518 * inline extent ref, so just update the reference count and add a 1519 * normal backref. 1520 */ 1521 leaf = path->nodes[0]; 1522 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1523 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1524 refs = btrfs_extent_refs(leaf, item); 1525 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1526 if (extent_op) 1527 __run_delayed_extent_op(extent_op, leaf, item); 1528 1529 btrfs_mark_buffer_dirty(trans, leaf); 1530 btrfs_release_path(path); 1531 1532 /* now insert the actual backref */ 1533 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1534 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1535 root_objectid); 1536 else 1537 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1538 root_objectid, owner, offset, 1539 refs_to_add); 1540 1541 if (ret) 1542 btrfs_abort_transaction(trans, ret); 1543 out: 1544 btrfs_free_path(path); 1545 return ret; 1546 } 1547 1548 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1549 struct btrfs_delayed_ref_node *node, 1550 struct btrfs_delayed_extent_op *extent_op, 1551 bool insert_reserved) 1552 { 1553 int ret = 0; 1554 struct btrfs_delayed_data_ref *ref; 1555 struct btrfs_key ins; 1556 u64 parent = 0; 1557 u64 ref_root = 0; 1558 u64 flags = 0; 1559 1560 ins.objectid = node->bytenr; 1561 ins.offset = node->num_bytes; 1562 ins.type = BTRFS_EXTENT_ITEM_KEY; 1563 1564 ref = btrfs_delayed_node_to_data_ref(node); 1565 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1566 1567 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1568 parent = ref->parent; 1569 ref_root = ref->root; 1570 1571 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1572 if (extent_op) 1573 flags |= extent_op->flags_to_set; 1574 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1575 flags, ref->objectid, 1576 ref->offset, &ins, 1577 node->ref_mod); 1578 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1579 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1580 ref->objectid, ref->offset, 1581 node->ref_mod, extent_op); 1582 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1583 ret = __btrfs_free_extent(trans, node, parent, 1584 ref_root, ref->objectid, 1585 ref->offset, node->ref_mod, 1586 extent_op); 1587 } else { 1588 BUG(); 1589 } 1590 return ret; 1591 } 1592 1593 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1594 struct extent_buffer *leaf, 1595 struct btrfs_extent_item *ei) 1596 { 1597 u64 flags = btrfs_extent_flags(leaf, ei); 1598 if (extent_op->update_flags) { 1599 flags |= extent_op->flags_to_set; 1600 btrfs_set_extent_flags(leaf, ei, flags); 1601 } 1602 1603 if (extent_op->update_key) { 1604 struct btrfs_tree_block_info *bi; 1605 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1606 bi = (struct btrfs_tree_block_info *)(ei + 1); 1607 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1608 } 1609 } 1610 1611 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1612 struct btrfs_delayed_ref_head *head, 1613 struct btrfs_delayed_extent_op *extent_op) 1614 { 1615 struct btrfs_fs_info *fs_info = trans->fs_info; 1616 struct btrfs_root *root; 1617 struct btrfs_key key; 1618 struct btrfs_path *path; 1619 struct btrfs_extent_item *ei; 1620 struct extent_buffer *leaf; 1621 u32 item_size; 1622 int ret; 1623 int err = 0; 1624 int metadata = 1; 1625 1626 if (TRANS_ABORTED(trans)) 1627 return 0; 1628 1629 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1630 metadata = 0; 1631 1632 path = btrfs_alloc_path(); 1633 if (!path) 1634 return -ENOMEM; 1635 1636 key.objectid = head->bytenr; 1637 1638 if (metadata) { 1639 key.type = BTRFS_METADATA_ITEM_KEY; 1640 key.offset = extent_op->level; 1641 } else { 1642 key.type = BTRFS_EXTENT_ITEM_KEY; 1643 key.offset = head->num_bytes; 1644 } 1645 1646 root = btrfs_extent_root(fs_info, key.objectid); 1647 again: 1648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1649 if (ret < 0) { 1650 err = ret; 1651 goto out; 1652 } 1653 if (ret > 0) { 1654 if (metadata) { 1655 if (path->slots[0] > 0) { 1656 path->slots[0]--; 1657 btrfs_item_key_to_cpu(path->nodes[0], &key, 1658 path->slots[0]); 1659 if (key.objectid == head->bytenr && 1660 key.type == BTRFS_EXTENT_ITEM_KEY && 1661 key.offset == head->num_bytes) 1662 ret = 0; 1663 } 1664 if (ret > 0) { 1665 btrfs_release_path(path); 1666 metadata = 0; 1667 1668 key.objectid = head->bytenr; 1669 key.offset = head->num_bytes; 1670 key.type = BTRFS_EXTENT_ITEM_KEY; 1671 goto again; 1672 } 1673 } else { 1674 err = -EUCLEAN; 1675 btrfs_err(fs_info, 1676 "missing extent item for extent %llu num_bytes %llu level %d", 1677 head->bytenr, head->num_bytes, extent_op->level); 1678 goto out; 1679 } 1680 } 1681 1682 leaf = path->nodes[0]; 1683 item_size = btrfs_item_size(leaf, path->slots[0]); 1684 1685 if (unlikely(item_size < sizeof(*ei))) { 1686 err = -EUCLEAN; 1687 btrfs_err(fs_info, 1688 "unexpected extent item size, has %u expect >= %zu", 1689 item_size, sizeof(*ei)); 1690 btrfs_abort_transaction(trans, err); 1691 goto out; 1692 } 1693 1694 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1695 __run_delayed_extent_op(extent_op, leaf, ei); 1696 1697 btrfs_mark_buffer_dirty(trans, leaf); 1698 out: 1699 btrfs_free_path(path); 1700 return err; 1701 } 1702 1703 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1704 struct btrfs_delayed_ref_node *node, 1705 struct btrfs_delayed_extent_op *extent_op, 1706 bool insert_reserved) 1707 { 1708 int ret = 0; 1709 struct btrfs_delayed_tree_ref *ref; 1710 u64 parent = 0; 1711 u64 ref_root = 0; 1712 1713 ref = btrfs_delayed_node_to_tree_ref(node); 1714 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1715 1716 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1717 parent = ref->parent; 1718 ref_root = ref->root; 1719 1720 if (unlikely(node->ref_mod != 1)) { 1721 btrfs_err(trans->fs_info, 1722 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1723 node->bytenr, node->ref_mod, node->action, ref_root, 1724 parent); 1725 return -EUCLEAN; 1726 } 1727 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1728 BUG_ON(!extent_op || !extent_op->update_flags); 1729 ret = alloc_reserved_tree_block(trans, node, extent_op); 1730 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1731 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1732 ref->level, 0, 1, extent_op); 1733 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1734 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1735 ref->level, 0, 1, extent_op); 1736 } else { 1737 BUG(); 1738 } 1739 return ret; 1740 } 1741 1742 /* helper function to actually process a single delayed ref entry */ 1743 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1744 struct btrfs_delayed_ref_node *node, 1745 struct btrfs_delayed_extent_op *extent_op, 1746 bool insert_reserved) 1747 { 1748 int ret = 0; 1749 1750 if (TRANS_ABORTED(trans)) { 1751 if (insert_reserved) 1752 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1753 return 0; 1754 } 1755 1756 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1757 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1758 ret = run_delayed_tree_ref(trans, node, extent_op, 1759 insert_reserved); 1760 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1761 node->type == BTRFS_SHARED_DATA_REF_KEY) 1762 ret = run_delayed_data_ref(trans, node, extent_op, 1763 insert_reserved); 1764 else 1765 BUG(); 1766 if (ret && insert_reserved) 1767 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1768 if (ret < 0) 1769 btrfs_err(trans->fs_info, 1770 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1771 node->bytenr, node->num_bytes, node->type, 1772 node->action, node->ref_mod, ret); 1773 return ret; 1774 } 1775 1776 static inline struct btrfs_delayed_ref_node * 1777 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1778 { 1779 struct btrfs_delayed_ref_node *ref; 1780 1781 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1782 return NULL; 1783 1784 /* 1785 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1786 * This is to prevent a ref count from going down to zero, which deletes 1787 * the extent item from the extent tree, when there still are references 1788 * to add, which would fail because they would not find the extent item. 1789 */ 1790 if (!list_empty(&head->ref_add_list)) 1791 return list_first_entry(&head->ref_add_list, 1792 struct btrfs_delayed_ref_node, add_list); 1793 1794 ref = rb_entry(rb_first_cached(&head->ref_tree), 1795 struct btrfs_delayed_ref_node, ref_node); 1796 ASSERT(list_empty(&ref->add_list)); 1797 return ref; 1798 } 1799 1800 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1801 struct btrfs_delayed_ref_head *head) 1802 { 1803 spin_lock(&delayed_refs->lock); 1804 head->processing = false; 1805 delayed_refs->num_heads_ready++; 1806 spin_unlock(&delayed_refs->lock); 1807 btrfs_delayed_ref_unlock(head); 1808 } 1809 1810 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1811 struct btrfs_delayed_ref_head *head) 1812 { 1813 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1814 1815 if (!extent_op) 1816 return NULL; 1817 1818 if (head->must_insert_reserved) { 1819 head->extent_op = NULL; 1820 btrfs_free_delayed_extent_op(extent_op); 1821 return NULL; 1822 } 1823 return extent_op; 1824 } 1825 1826 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1827 struct btrfs_delayed_ref_head *head) 1828 { 1829 struct btrfs_delayed_extent_op *extent_op; 1830 int ret; 1831 1832 extent_op = cleanup_extent_op(head); 1833 if (!extent_op) 1834 return 0; 1835 head->extent_op = NULL; 1836 spin_unlock(&head->lock); 1837 ret = run_delayed_extent_op(trans, head, extent_op); 1838 btrfs_free_delayed_extent_op(extent_op); 1839 return ret ? ret : 1; 1840 } 1841 1842 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1843 struct btrfs_delayed_ref_root *delayed_refs, 1844 struct btrfs_delayed_ref_head *head) 1845 { 1846 int nr_items = 1; /* Dropping this ref head update. */ 1847 1848 /* 1849 * We had csum deletions accounted for in our delayed refs rsv, we need 1850 * to drop the csum leaves for this update from our delayed_refs_rsv. 1851 */ 1852 if (head->total_ref_mod < 0 && head->is_data) { 1853 spin_lock(&delayed_refs->lock); 1854 delayed_refs->pending_csums -= head->num_bytes; 1855 spin_unlock(&delayed_refs->lock); 1856 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1857 } 1858 1859 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1860 } 1861 1862 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1863 struct btrfs_delayed_ref_head *head) 1864 { 1865 1866 struct btrfs_fs_info *fs_info = trans->fs_info; 1867 struct btrfs_delayed_ref_root *delayed_refs; 1868 int ret; 1869 1870 delayed_refs = &trans->transaction->delayed_refs; 1871 1872 ret = run_and_cleanup_extent_op(trans, head); 1873 if (ret < 0) { 1874 unselect_delayed_ref_head(delayed_refs, head); 1875 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1876 return ret; 1877 } else if (ret) { 1878 return ret; 1879 } 1880 1881 /* 1882 * Need to drop our head ref lock and re-acquire the delayed ref lock 1883 * and then re-check to make sure nobody got added. 1884 */ 1885 spin_unlock(&head->lock); 1886 spin_lock(&delayed_refs->lock); 1887 spin_lock(&head->lock); 1888 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1889 spin_unlock(&head->lock); 1890 spin_unlock(&delayed_refs->lock); 1891 return 1; 1892 } 1893 btrfs_delete_ref_head(delayed_refs, head); 1894 spin_unlock(&head->lock); 1895 spin_unlock(&delayed_refs->lock); 1896 1897 if (head->must_insert_reserved) { 1898 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1899 if (head->is_data) { 1900 struct btrfs_root *csum_root; 1901 1902 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1903 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1904 head->num_bytes); 1905 } 1906 } 1907 1908 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1909 1910 trace_run_delayed_ref_head(fs_info, head, 0); 1911 btrfs_delayed_ref_unlock(head); 1912 btrfs_put_delayed_ref_head(head); 1913 return ret; 1914 } 1915 1916 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1917 struct btrfs_trans_handle *trans) 1918 { 1919 struct btrfs_delayed_ref_root *delayed_refs = 1920 &trans->transaction->delayed_refs; 1921 struct btrfs_delayed_ref_head *head = NULL; 1922 int ret; 1923 1924 spin_lock(&delayed_refs->lock); 1925 head = btrfs_select_ref_head(delayed_refs); 1926 if (!head) { 1927 spin_unlock(&delayed_refs->lock); 1928 return head; 1929 } 1930 1931 /* 1932 * Grab the lock that says we are going to process all the refs for 1933 * this head 1934 */ 1935 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1936 spin_unlock(&delayed_refs->lock); 1937 1938 /* 1939 * We may have dropped the spin lock to get the head mutex lock, and 1940 * that might have given someone else time to free the head. If that's 1941 * true, it has been removed from our list and we can move on. 1942 */ 1943 if (ret == -EAGAIN) 1944 head = ERR_PTR(-EAGAIN); 1945 1946 return head; 1947 } 1948 1949 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1950 struct btrfs_delayed_ref_head *locked_ref) 1951 { 1952 struct btrfs_fs_info *fs_info = trans->fs_info; 1953 struct btrfs_delayed_ref_root *delayed_refs; 1954 struct btrfs_delayed_extent_op *extent_op; 1955 struct btrfs_delayed_ref_node *ref; 1956 bool must_insert_reserved; 1957 int ret; 1958 1959 delayed_refs = &trans->transaction->delayed_refs; 1960 1961 lockdep_assert_held(&locked_ref->mutex); 1962 lockdep_assert_held(&locked_ref->lock); 1963 1964 while ((ref = select_delayed_ref(locked_ref))) { 1965 if (ref->seq && 1966 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1967 spin_unlock(&locked_ref->lock); 1968 unselect_delayed_ref_head(delayed_refs, locked_ref); 1969 return -EAGAIN; 1970 } 1971 1972 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1973 RB_CLEAR_NODE(&ref->ref_node); 1974 if (!list_empty(&ref->add_list)) 1975 list_del(&ref->add_list); 1976 /* 1977 * When we play the delayed ref, also correct the ref_mod on 1978 * head 1979 */ 1980 switch (ref->action) { 1981 case BTRFS_ADD_DELAYED_REF: 1982 case BTRFS_ADD_DELAYED_EXTENT: 1983 locked_ref->ref_mod -= ref->ref_mod; 1984 break; 1985 case BTRFS_DROP_DELAYED_REF: 1986 locked_ref->ref_mod += ref->ref_mod; 1987 break; 1988 default: 1989 WARN_ON(1); 1990 } 1991 atomic_dec(&delayed_refs->num_entries); 1992 1993 /* 1994 * Record the must_insert_reserved flag before we drop the 1995 * spin lock. 1996 */ 1997 must_insert_reserved = locked_ref->must_insert_reserved; 1998 locked_ref->must_insert_reserved = false; 1999 2000 extent_op = locked_ref->extent_op; 2001 locked_ref->extent_op = NULL; 2002 spin_unlock(&locked_ref->lock); 2003 2004 ret = run_one_delayed_ref(trans, ref, extent_op, 2005 must_insert_reserved); 2006 2007 btrfs_free_delayed_extent_op(extent_op); 2008 if (ret) { 2009 unselect_delayed_ref_head(delayed_refs, locked_ref); 2010 btrfs_put_delayed_ref(ref); 2011 return ret; 2012 } 2013 2014 btrfs_put_delayed_ref(ref); 2015 cond_resched(); 2016 2017 spin_lock(&locked_ref->lock); 2018 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2019 } 2020 2021 return 0; 2022 } 2023 2024 /* 2025 * Returns 0 on success or if called with an already aborted transaction. 2026 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2027 */ 2028 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2029 unsigned long nr) 2030 { 2031 struct btrfs_fs_info *fs_info = trans->fs_info; 2032 struct btrfs_delayed_ref_root *delayed_refs; 2033 struct btrfs_delayed_ref_head *locked_ref = NULL; 2034 int ret; 2035 unsigned long count = 0; 2036 2037 delayed_refs = &trans->transaction->delayed_refs; 2038 do { 2039 if (!locked_ref) { 2040 locked_ref = btrfs_obtain_ref_head(trans); 2041 if (IS_ERR_OR_NULL(locked_ref)) { 2042 if (PTR_ERR(locked_ref) == -EAGAIN) { 2043 continue; 2044 } else { 2045 break; 2046 } 2047 } 2048 count++; 2049 } 2050 /* 2051 * We need to try and merge add/drops of the same ref since we 2052 * can run into issues with relocate dropping the implicit ref 2053 * and then it being added back again before the drop can 2054 * finish. If we merged anything we need to re-loop so we can 2055 * get a good ref. 2056 * Or we can get node references of the same type that weren't 2057 * merged when created due to bumps in the tree mod seq, and 2058 * we need to merge them to prevent adding an inline extent 2059 * backref before dropping it (triggering a BUG_ON at 2060 * insert_inline_extent_backref()). 2061 */ 2062 spin_lock(&locked_ref->lock); 2063 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2064 2065 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref); 2066 if (ret < 0 && ret != -EAGAIN) { 2067 /* 2068 * Error, btrfs_run_delayed_refs_for_head already 2069 * unlocked everything so just bail out 2070 */ 2071 return ret; 2072 } else if (!ret) { 2073 /* 2074 * Success, perform the usual cleanup of a processed 2075 * head 2076 */ 2077 ret = cleanup_ref_head(trans, locked_ref); 2078 if (ret > 0 ) { 2079 /* We dropped our lock, we need to loop. */ 2080 ret = 0; 2081 continue; 2082 } else if (ret) { 2083 return ret; 2084 } 2085 } 2086 2087 /* 2088 * Either success case or btrfs_run_delayed_refs_for_head 2089 * returned -EAGAIN, meaning we need to select another head 2090 */ 2091 2092 locked_ref = NULL; 2093 cond_resched(); 2094 } while ((nr != -1 && count < nr) || locked_ref); 2095 2096 return 0; 2097 } 2098 2099 #ifdef SCRAMBLE_DELAYED_REFS 2100 /* 2101 * Normally delayed refs get processed in ascending bytenr order. This 2102 * correlates in most cases to the order added. To expose dependencies on this 2103 * order, we start to process the tree in the middle instead of the beginning 2104 */ 2105 static u64 find_middle(struct rb_root *root) 2106 { 2107 struct rb_node *n = root->rb_node; 2108 struct btrfs_delayed_ref_node *entry; 2109 int alt = 1; 2110 u64 middle; 2111 u64 first = 0, last = 0; 2112 2113 n = rb_first(root); 2114 if (n) { 2115 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2116 first = entry->bytenr; 2117 } 2118 n = rb_last(root); 2119 if (n) { 2120 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2121 last = entry->bytenr; 2122 } 2123 n = root->rb_node; 2124 2125 while (n) { 2126 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2127 WARN_ON(!entry->in_tree); 2128 2129 middle = entry->bytenr; 2130 2131 if (alt) 2132 n = n->rb_left; 2133 else 2134 n = n->rb_right; 2135 2136 alt = 1 - alt; 2137 } 2138 return middle; 2139 } 2140 #endif 2141 2142 /* 2143 * this starts processing the delayed reference count updates and 2144 * extent insertions we have queued up so far. count can be 2145 * 0, which means to process everything in the tree at the start 2146 * of the run (but not newly added entries), or it can be some target 2147 * number you'd like to process. 2148 * 2149 * Returns 0 on success or if called with an aborted transaction 2150 * Returns <0 on error and aborts the transaction 2151 */ 2152 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2153 unsigned long count) 2154 { 2155 struct btrfs_fs_info *fs_info = trans->fs_info; 2156 struct rb_node *node; 2157 struct btrfs_delayed_ref_root *delayed_refs; 2158 struct btrfs_delayed_ref_head *head; 2159 int ret; 2160 int run_all = count == (unsigned long)-1; 2161 2162 /* We'll clean this up in btrfs_cleanup_transaction */ 2163 if (TRANS_ABORTED(trans)) 2164 return 0; 2165 2166 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2167 return 0; 2168 2169 delayed_refs = &trans->transaction->delayed_refs; 2170 if (count == 0) 2171 count = delayed_refs->num_heads_ready; 2172 2173 again: 2174 #ifdef SCRAMBLE_DELAYED_REFS 2175 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2176 #endif 2177 ret = __btrfs_run_delayed_refs(trans, count); 2178 if (ret < 0) { 2179 btrfs_abort_transaction(trans, ret); 2180 return ret; 2181 } 2182 2183 if (run_all) { 2184 btrfs_create_pending_block_groups(trans); 2185 2186 spin_lock(&delayed_refs->lock); 2187 node = rb_first_cached(&delayed_refs->href_root); 2188 if (!node) { 2189 spin_unlock(&delayed_refs->lock); 2190 goto out; 2191 } 2192 head = rb_entry(node, struct btrfs_delayed_ref_head, 2193 href_node); 2194 refcount_inc(&head->refs); 2195 spin_unlock(&delayed_refs->lock); 2196 2197 /* Mutex was contended, block until it's released and retry. */ 2198 mutex_lock(&head->mutex); 2199 mutex_unlock(&head->mutex); 2200 2201 btrfs_put_delayed_ref_head(head); 2202 cond_resched(); 2203 goto again; 2204 } 2205 out: 2206 return 0; 2207 } 2208 2209 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2210 struct extent_buffer *eb, u64 flags) 2211 { 2212 struct btrfs_delayed_extent_op *extent_op; 2213 int level = btrfs_header_level(eb); 2214 int ret; 2215 2216 extent_op = btrfs_alloc_delayed_extent_op(); 2217 if (!extent_op) 2218 return -ENOMEM; 2219 2220 extent_op->flags_to_set = flags; 2221 extent_op->update_flags = true; 2222 extent_op->update_key = false; 2223 extent_op->level = level; 2224 2225 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2226 if (ret) 2227 btrfs_free_delayed_extent_op(extent_op); 2228 return ret; 2229 } 2230 2231 static noinline int check_delayed_ref(struct btrfs_root *root, 2232 struct btrfs_path *path, 2233 u64 objectid, u64 offset, u64 bytenr) 2234 { 2235 struct btrfs_delayed_ref_head *head; 2236 struct btrfs_delayed_ref_node *ref; 2237 struct btrfs_delayed_data_ref *data_ref; 2238 struct btrfs_delayed_ref_root *delayed_refs; 2239 struct btrfs_transaction *cur_trans; 2240 struct rb_node *node; 2241 int ret = 0; 2242 2243 spin_lock(&root->fs_info->trans_lock); 2244 cur_trans = root->fs_info->running_transaction; 2245 if (cur_trans) 2246 refcount_inc(&cur_trans->use_count); 2247 spin_unlock(&root->fs_info->trans_lock); 2248 if (!cur_trans) 2249 return 0; 2250 2251 delayed_refs = &cur_trans->delayed_refs; 2252 spin_lock(&delayed_refs->lock); 2253 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2254 if (!head) { 2255 spin_unlock(&delayed_refs->lock); 2256 btrfs_put_transaction(cur_trans); 2257 return 0; 2258 } 2259 2260 if (!mutex_trylock(&head->mutex)) { 2261 if (path->nowait) { 2262 spin_unlock(&delayed_refs->lock); 2263 btrfs_put_transaction(cur_trans); 2264 return -EAGAIN; 2265 } 2266 2267 refcount_inc(&head->refs); 2268 spin_unlock(&delayed_refs->lock); 2269 2270 btrfs_release_path(path); 2271 2272 /* 2273 * Mutex was contended, block until it's released and let 2274 * caller try again 2275 */ 2276 mutex_lock(&head->mutex); 2277 mutex_unlock(&head->mutex); 2278 btrfs_put_delayed_ref_head(head); 2279 btrfs_put_transaction(cur_trans); 2280 return -EAGAIN; 2281 } 2282 spin_unlock(&delayed_refs->lock); 2283 2284 spin_lock(&head->lock); 2285 /* 2286 * XXX: We should replace this with a proper search function in the 2287 * future. 2288 */ 2289 for (node = rb_first_cached(&head->ref_tree); node; 2290 node = rb_next(node)) { 2291 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2292 /* If it's a shared ref we know a cross reference exists */ 2293 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2294 ret = 1; 2295 break; 2296 } 2297 2298 data_ref = btrfs_delayed_node_to_data_ref(ref); 2299 2300 /* 2301 * If our ref doesn't match the one we're currently looking at 2302 * then we have a cross reference. 2303 */ 2304 if (data_ref->root != root->root_key.objectid || 2305 data_ref->objectid != objectid || 2306 data_ref->offset != offset) { 2307 ret = 1; 2308 break; 2309 } 2310 } 2311 spin_unlock(&head->lock); 2312 mutex_unlock(&head->mutex); 2313 btrfs_put_transaction(cur_trans); 2314 return ret; 2315 } 2316 2317 static noinline int check_committed_ref(struct btrfs_root *root, 2318 struct btrfs_path *path, 2319 u64 objectid, u64 offset, u64 bytenr, 2320 bool strict) 2321 { 2322 struct btrfs_fs_info *fs_info = root->fs_info; 2323 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2324 struct extent_buffer *leaf; 2325 struct btrfs_extent_data_ref *ref; 2326 struct btrfs_extent_inline_ref *iref; 2327 struct btrfs_extent_item *ei; 2328 struct btrfs_key key; 2329 u32 item_size; 2330 int type; 2331 int ret; 2332 2333 key.objectid = bytenr; 2334 key.offset = (u64)-1; 2335 key.type = BTRFS_EXTENT_ITEM_KEY; 2336 2337 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 BUG_ON(ret == 0); /* Corruption */ 2341 2342 ret = -ENOENT; 2343 if (path->slots[0] == 0) 2344 goto out; 2345 2346 path->slots[0]--; 2347 leaf = path->nodes[0]; 2348 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2349 2350 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2351 goto out; 2352 2353 ret = 1; 2354 item_size = btrfs_item_size(leaf, path->slots[0]); 2355 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2356 2357 /* If extent item has more than 1 inline ref then it's shared */ 2358 if (item_size != sizeof(*ei) + 2359 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2360 goto out; 2361 2362 /* 2363 * If extent created before last snapshot => it's shared unless the 2364 * snapshot has been deleted. Use the heuristic if strict is false. 2365 */ 2366 if (!strict && 2367 (btrfs_extent_generation(leaf, ei) <= 2368 btrfs_root_last_snapshot(&root->root_item))) 2369 goto out; 2370 2371 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2372 2373 /* If this extent has SHARED_DATA_REF then it's shared */ 2374 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2375 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2376 goto out; 2377 2378 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2379 if (btrfs_extent_refs(leaf, ei) != 2380 btrfs_extent_data_ref_count(leaf, ref) || 2381 btrfs_extent_data_ref_root(leaf, ref) != 2382 root->root_key.objectid || 2383 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2384 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2385 goto out; 2386 2387 ret = 0; 2388 out: 2389 return ret; 2390 } 2391 2392 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2393 u64 bytenr, bool strict, struct btrfs_path *path) 2394 { 2395 int ret; 2396 2397 do { 2398 ret = check_committed_ref(root, path, objectid, 2399 offset, bytenr, strict); 2400 if (ret && ret != -ENOENT) 2401 goto out; 2402 2403 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2404 } while (ret == -EAGAIN); 2405 2406 out: 2407 btrfs_release_path(path); 2408 if (btrfs_is_data_reloc_root(root)) 2409 WARN_ON(ret > 0); 2410 return ret; 2411 } 2412 2413 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2414 struct btrfs_root *root, 2415 struct extent_buffer *buf, 2416 int full_backref, int inc) 2417 { 2418 struct btrfs_fs_info *fs_info = root->fs_info; 2419 u64 bytenr; 2420 u64 num_bytes; 2421 u64 parent; 2422 u64 ref_root; 2423 u32 nritems; 2424 struct btrfs_key key; 2425 struct btrfs_file_extent_item *fi; 2426 struct btrfs_ref generic_ref = { 0 }; 2427 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2428 int i; 2429 int action; 2430 int level; 2431 int ret = 0; 2432 2433 if (btrfs_is_testing(fs_info)) 2434 return 0; 2435 2436 ref_root = btrfs_header_owner(buf); 2437 nritems = btrfs_header_nritems(buf); 2438 level = btrfs_header_level(buf); 2439 2440 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2441 return 0; 2442 2443 if (full_backref) 2444 parent = buf->start; 2445 else 2446 parent = 0; 2447 if (inc) 2448 action = BTRFS_ADD_DELAYED_REF; 2449 else 2450 action = BTRFS_DROP_DELAYED_REF; 2451 2452 for (i = 0; i < nritems; i++) { 2453 if (level == 0) { 2454 btrfs_item_key_to_cpu(buf, &key, i); 2455 if (key.type != BTRFS_EXTENT_DATA_KEY) 2456 continue; 2457 fi = btrfs_item_ptr(buf, i, 2458 struct btrfs_file_extent_item); 2459 if (btrfs_file_extent_type(buf, fi) == 2460 BTRFS_FILE_EXTENT_INLINE) 2461 continue; 2462 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2463 if (bytenr == 0) 2464 continue; 2465 2466 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2467 key.offset -= btrfs_file_extent_offset(buf, fi); 2468 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2469 num_bytes, parent); 2470 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2471 key.offset, root->root_key.objectid, 2472 for_reloc); 2473 if (inc) 2474 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2475 else 2476 ret = btrfs_free_extent(trans, &generic_ref); 2477 if (ret) 2478 goto fail; 2479 } else { 2480 bytenr = btrfs_node_blockptr(buf, i); 2481 num_bytes = fs_info->nodesize; 2482 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2483 num_bytes, parent); 2484 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2485 root->root_key.objectid, for_reloc); 2486 if (inc) 2487 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2488 else 2489 ret = btrfs_free_extent(trans, &generic_ref); 2490 if (ret) 2491 goto fail; 2492 } 2493 } 2494 return 0; 2495 fail: 2496 return ret; 2497 } 2498 2499 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2500 struct extent_buffer *buf, int full_backref) 2501 { 2502 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2503 } 2504 2505 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2506 struct extent_buffer *buf, int full_backref) 2507 { 2508 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2509 } 2510 2511 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2512 { 2513 struct btrfs_fs_info *fs_info = root->fs_info; 2514 u64 flags; 2515 u64 ret; 2516 2517 if (data) 2518 flags = BTRFS_BLOCK_GROUP_DATA; 2519 else if (root == fs_info->chunk_root) 2520 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2521 else 2522 flags = BTRFS_BLOCK_GROUP_METADATA; 2523 2524 ret = btrfs_get_alloc_profile(fs_info, flags); 2525 return ret; 2526 } 2527 2528 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2529 { 2530 struct rb_node *leftmost; 2531 u64 bytenr = 0; 2532 2533 read_lock(&fs_info->block_group_cache_lock); 2534 /* Get the block group with the lowest logical start address. */ 2535 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2536 if (leftmost) { 2537 struct btrfs_block_group *bg; 2538 2539 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2540 bytenr = bg->start; 2541 } 2542 read_unlock(&fs_info->block_group_cache_lock); 2543 2544 return bytenr; 2545 } 2546 2547 static int pin_down_extent(struct btrfs_trans_handle *trans, 2548 struct btrfs_block_group *cache, 2549 u64 bytenr, u64 num_bytes, int reserved) 2550 { 2551 struct btrfs_fs_info *fs_info = cache->fs_info; 2552 2553 spin_lock(&cache->space_info->lock); 2554 spin_lock(&cache->lock); 2555 cache->pinned += num_bytes; 2556 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2557 num_bytes); 2558 if (reserved) { 2559 cache->reserved -= num_bytes; 2560 cache->space_info->bytes_reserved -= num_bytes; 2561 } 2562 spin_unlock(&cache->lock); 2563 spin_unlock(&cache->space_info->lock); 2564 2565 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2566 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2567 return 0; 2568 } 2569 2570 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2571 u64 bytenr, u64 num_bytes, int reserved) 2572 { 2573 struct btrfs_block_group *cache; 2574 2575 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2576 BUG_ON(!cache); /* Logic error */ 2577 2578 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2579 2580 btrfs_put_block_group(cache); 2581 return 0; 2582 } 2583 2584 /* 2585 * this function must be called within transaction 2586 */ 2587 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2588 u64 bytenr, u64 num_bytes) 2589 { 2590 struct btrfs_block_group *cache; 2591 int ret; 2592 2593 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2594 if (!cache) 2595 return -EINVAL; 2596 2597 /* 2598 * Fully cache the free space first so that our pin removes the free space 2599 * from the cache. 2600 */ 2601 ret = btrfs_cache_block_group(cache, true); 2602 if (ret) 2603 goto out; 2604 2605 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2606 2607 /* remove us from the free space cache (if we're there at all) */ 2608 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2609 out: 2610 btrfs_put_block_group(cache); 2611 return ret; 2612 } 2613 2614 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2615 u64 start, u64 num_bytes) 2616 { 2617 int ret; 2618 struct btrfs_block_group *block_group; 2619 2620 block_group = btrfs_lookup_block_group(fs_info, start); 2621 if (!block_group) 2622 return -EINVAL; 2623 2624 ret = btrfs_cache_block_group(block_group, true); 2625 if (ret) 2626 goto out; 2627 2628 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2629 out: 2630 btrfs_put_block_group(block_group); 2631 return ret; 2632 } 2633 2634 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2635 { 2636 struct btrfs_fs_info *fs_info = eb->fs_info; 2637 struct btrfs_file_extent_item *item; 2638 struct btrfs_key key; 2639 int found_type; 2640 int i; 2641 int ret = 0; 2642 2643 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2644 return 0; 2645 2646 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2647 btrfs_item_key_to_cpu(eb, &key, i); 2648 if (key.type != BTRFS_EXTENT_DATA_KEY) 2649 continue; 2650 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2651 found_type = btrfs_file_extent_type(eb, item); 2652 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2653 continue; 2654 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2655 continue; 2656 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2657 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2658 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2659 if (ret) 2660 break; 2661 } 2662 2663 return ret; 2664 } 2665 2666 static void 2667 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2668 { 2669 atomic_inc(&bg->reservations); 2670 } 2671 2672 /* 2673 * Returns the free cluster for the given space info and sets empty_cluster to 2674 * what it should be based on the mount options. 2675 */ 2676 static struct btrfs_free_cluster * 2677 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2678 struct btrfs_space_info *space_info, u64 *empty_cluster) 2679 { 2680 struct btrfs_free_cluster *ret = NULL; 2681 2682 *empty_cluster = 0; 2683 if (btrfs_mixed_space_info(space_info)) 2684 return ret; 2685 2686 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2687 ret = &fs_info->meta_alloc_cluster; 2688 if (btrfs_test_opt(fs_info, SSD)) 2689 *empty_cluster = SZ_2M; 2690 else 2691 *empty_cluster = SZ_64K; 2692 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2693 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2694 *empty_cluster = SZ_2M; 2695 ret = &fs_info->data_alloc_cluster; 2696 } 2697 2698 return ret; 2699 } 2700 2701 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2702 u64 start, u64 end, 2703 const bool return_free_space) 2704 { 2705 struct btrfs_block_group *cache = NULL; 2706 struct btrfs_space_info *space_info; 2707 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2708 struct btrfs_free_cluster *cluster = NULL; 2709 u64 len; 2710 u64 total_unpinned = 0; 2711 u64 empty_cluster = 0; 2712 bool readonly; 2713 2714 while (start <= end) { 2715 readonly = false; 2716 if (!cache || 2717 start >= cache->start + cache->length) { 2718 if (cache) 2719 btrfs_put_block_group(cache); 2720 total_unpinned = 0; 2721 cache = btrfs_lookup_block_group(fs_info, start); 2722 BUG_ON(!cache); /* Logic error */ 2723 2724 cluster = fetch_cluster_info(fs_info, 2725 cache->space_info, 2726 &empty_cluster); 2727 empty_cluster <<= 1; 2728 } 2729 2730 len = cache->start + cache->length - start; 2731 len = min(len, end + 1 - start); 2732 2733 if (return_free_space) 2734 btrfs_add_free_space(cache, start, len); 2735 2736 start += len; 2737 total_unpinned += len; 2738 space_info = cache->space_info; 2739 2740 /* 2741 * If this space cluster has been marked as fragmented and we've 2742 * unpinned enough in this block group to potentially allow a 2743 * cluster to be created inside of it go ahead and clear the 2744 * fragmented check. 2745 */ 2746 if (cluster && cluster->fragmented && 2747 total_unpinned > empty_cluster) { 2748 spin_lock(&cluster->lock); 2749 cluster->fragmented = 0; 2750 spin_unlock(&cluster->lock); 2751 } 2752 2753 spin_lock(&space_info->lock); 2754 spin_lock(&cache->lock); 2755 cache->pinned -= len; 2756 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2757 space_info->max_extent_size = 0; 2758 if (cache->ro) { 2759 space_info->bytes_readonly += len; 2760 readonly = true; 2761 } else if (btrfs_is_zoned(fs_info)) { 2762 /* Need reset before reusing in a zoned block group */ 2763 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info, 2764 len); 2765 readonly = true; 2766 } 2767 spin_unlock(&cache->lock); 2768 if (!readonly && return_free_space && 2769 global_rsv->space_info == space_info) { 2770 spin_lock(&global_rsv->lock); 2771 if (!global_rsv->full) { 2772 u64 to_add = min(len, global_rsv->size - 2773 global_rsv->reserved); 2774 2775 global_rsv->reserved += to_add; 2776 btrfs_space_info_update_bytes_may_use(fs_info, 2777 space_info, to_add); 2778 if (global_rsv->reserved >= global_rsv->size) 2779 global_rsv->full = 1; 2780 len -= to_add; 2781 } 2782 spin_unlock(&global_rsv->lock); 2783 } 2784 /* Add to any tickets we may have */ 2785 if (!readonly && return_free_space && len) 2786 btrfs_try_granting_tickets(fs_info, space_info); 2787 spin_unlock(&space_info->lock); 2788 } 2789 2790 if (cache) 2791 btrfs_put_block_group(cache); 2792 return 0; 2793 } 2794 2795 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2796 { 2797 struct btrfs_fs_info *fs_info = trans->fs_info; 2798 struct btrfs_block_group *block_group, *tmp; 2799 struct list_head *deleted_bgs; 2800 struct extent_io_tree *unpin; 2801 u64 start; 2802 u64 end; 2803 int ret; 2804 2805 unpin = &trans->transaction->pinned_extents; 2806 2807 while (!TRANS_ABORTED(trans)) { 2808 struct extent_state *cached_state = NULL; 2809 2810 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2811 if (!find_first_extent_bit(unpin, 0, &start, &end, 2812 EXTENT_DIRTY, &cached_state)) { 2813 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2814 break; 2815 } 2816 2817 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2818 ret = btrfs_discard_extent(fs_info, start, 2819 end + 1 - start, NULL); 2820 2821 clear_extent_dirty(unpin, start, end, &cached_state); 2822 unpin_extent_range(fs_info, start, end, true); 2823 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2824 free_extent_state(cached_state); 2825 cond_resched(); 2826 } 2827 2828 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2829 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2830 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2831 } 2832 2833 /* 2834 * Transaction is finished. We don't need the lock anymore. We 2835 * do need to clean up the block groups in case of a transaction 2836 * abort. 2837 */ 2838 deleted_bgs = &trans->transaction->deleted_bgs; 2839 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2840 u64 trimmed = 0; 2841 2842 ret = -EROFS; 2843 if (!TRANS_ABORTED(trans)) 2844 ret = btrfs_discard_extent(fs_info, 2845 block_group->start, 2846 block_group->length, 2847 &trimmed); 2848 2849 list_del_init(&block_group->bg_list); 2850 btrfs_unfreeze_block_group(block_group); 2851 btrfs_put_block_group(block_group); 2852 2853 if (ret) { 2854 const char *errstr = btrfs_decode_error(ret); 2855 btrfs_warn(fs_info, 2856 "discard failed while removing blockgroup: errno=%d %s", 2857 ret, errstr); 2858 } 2859 } 2860 2861 return 0; 2862 } 2863 2864 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2865 u64 bytenr, u64 num_bytes, bool is_data) 2866 { 2867 int ret; 2868 2869 if (is_data) { 2870 struct btrfs_root *csum_root; 2871 2872 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2873 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2874 if (ret) { 2875 btrfs_abort_transaction(trans, ret); 2876 return ret; 2877 } 2878 } 2879 2880 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2881 if (ret) { 2882 btrfs_abort_transaction(trans, ret); 2883 return ret; 2884 } 2885 2886 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2887 if (ret) 2888 btrfs_abort_transaction(trans, ret); 2889 2890 return ret; 2891 } 2892 2893 #define abort_and_dump(trans, path, fmt, args...) \ 2894 ({ \ 2895 btrfs_abort_transaction(trans, -EUCLEAN); \ 2896 btrfs_print_leaf(path->nodes[0]); \ 2897 btrfs_crit(trans->fs_info, fmt, ##args); \ 2898 }) 2899 2900 /* 2901 * Drop one or more refs of @node. 2902 * 2903 * 1. Locate the extent refs. 2904 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2905 * Locate it, then reduce the refs number or remove the ref line completely. 2906 * 2907 * 2. Update the refs count in EXTENT/METADATA_ITEM 2908 * 2909 * Inline backref case: 2910 * 2911 * in extent tree we have: 2912 * 2913 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2914 * refs 2 gen 6 flags DATA 2915 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2916 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2917 * 2918 * This function gets called with: 2919 * 2920 * node->bytenr = 13631488 2921 * node->num_bytes = 1048576 2922 * root_objectid = FS_TREE 2923 * owner_objectid = 257 2924 * owner_offset = 0 2925 * refs_to_drop = 1 2926 * 2927 * Then we should get some like: 2928 * 2929 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2930 * refs 1 gen 6 flags DATA 2931 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2932 * 2933 * Keyed backref case: 2934 * 2935 * in extent tree we have: 2936 * 2937 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2938 * refs 754 gen 6 flags DATA 2939 * [...] 2940 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2941 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2942 * 2943 * This function get called with: 2944 * 2945 * node->bytenr = 13631488 2946 * node->num_bytes = 1048576 2947 * root_objectid = FS_TREE 2948 * owner_objectid = 866 2949 * owner_offset = 0 2950 * refs_to_drop = 1 2951 * 2952 * Then we should get some like: 2953 * 2954 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2955 * refs 753 gen 6 flags DATA 2956 * 2957 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2958 */ 2959 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2960 struct btrfs_delayed_ref_node *node, u64 parent, 2961 u64 root_objectid, u64 owner_objectid, 2962 u64 owner_offset, int refs_to_drop, 2963 struct btrfs_delayed_extent_op *extent_op) 2964 { 2965 struct btrfs_fs_info *info = trans->fs_info; 2966 struct btrfs_key key; 2967 struct btrfs_path *path; 2968 struct btrfs_root *extent_root; 2969 struct extent_buffer *leaf; 2970 struct btrfs_extent_item *ei; 2971 struct btrfs_extent_inline_ref *iref; 2972 int ret; 2973 int is_data; 2974 int extent_slot = 0; 2975 int found_extent = 0; 2976 int num_to_del = 1; 2977 u32 item_size; 2978 u64 refs; 2979 u64 bytenr = node->bytenr; 2980 u64 num_bytes = node->num_bytes; 2981 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2982 2983 extent_root = btrfs_extent_root(info, bytenr); 2984 ASSERT(extent_root); 2985 2986 path = btrfs_alloc_path(); 2987 if (!path) 2988 return -ENOMEM; 2989 2990 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2991 2992 if (!is_data && refs_to_drop != 1) { 2993 btrfs_crit(info, 2994 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2995 node->bytenr, refs_to_drop); 2996 ret = -EINVAL; 2997 btrfs_abort_transaction(trans, ret); 2998 goto out; 2999 } 3000 3001 if (is_data) 3002 skinny_metadata = false; 3003 3004 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3005 parent, root_objectid, owner_objectid, 3006 owner_offset); 3007 if (ret == 0) { 3008 /* 3009 * Either the inline backref or the SHARED_DATA_REF/ 3010 * SHARED_BLOCK_REF is found 3011 * 3012 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3013 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3014 */ 3015 extent_slot = path->slots[0]; 3016 while (extent_slot >= 0) { 3017 btrfs_item_key_to_cpu(path->nodes[0], &key, 3018 extent_slot); 3019 if (key.objectid != bytenr) 3020 break; 3021 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3022 key.offset == num_bytes) { 3023 found_extent = 1; 3024 break; 3025 } 3026 if (key.type == BTRFS_METADATA_ITEM_KEY && 3027 key.offset == owner_objectid) { 3028 found_extent = 1; 3029 break; 3030 } 3031 3032 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3033 if (path->slots[0] - extent_slot > 5) 3034 break; 3035 extent_slot--; 3036 } 3037 3038 if (!found_extent) { 3039 if (iref) { 3040 abort_and_dump(trans, path, 3041 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3042 path->slots[0]); 3043 ret = -EUCLEAN; 3044 goto out; 3045 } 3046 /* Must be SHARED_* item, remove the backref first */ 3047 ret = remove_extent_backref(trans, extent_root, path, 3048 NULL, refs_to_drop, is_data); 3049 if (ret) { 3050 btrfs_abort_transaction(trans, ret); 3051 goto out; 3052 } 3053 btrfs_release_path(path); 3054 3055 /* Slow path to locate EXTENT/METADATA_ITEM */ 3056 key.objectid = bytenr; 3057 key.type = BTRFS_EXTENT_ITEM_KEY; 3058 key.offset = num_bytes; 3059 3060 if (!is_data && skinny_metadata) { 3061 key.type = BTRFS_METADATA_ITEM_KEY; 3062 key.offset = owner_objectid; 3063 } 3064 3065 ret = btrfs_search_slot(trans, extent_root, 3066 &key, path, -1, 1); 3067 if (ret > 0 && skinny_metadata && path->slots[0]) { 3068 /* 3069 * Couldn't find our skinny metadata item, 3070 * see if we have ye olde extent item. 3071 */ 3072 path->slots[0]--; 3073 btrfs_item_key_to_cpu(path->nodes[0], &key, 3074 path->slots[0]); 3075 if (key.objectid == bytenr && 3076 key.type == BTRFS_EXTENT_ITEM_KEY && 3077 key.offset == num_bytes) 3078 ret = 0; 3079 } 3080 3081 if (ret > 0 && skinny_metadata) { 3082 skinny_metadata = false; 3083 key.objectid = bytenr; 3084 key.type = BTRFS_EXTENT_ITEM_KEY; 3085 key.offset = num_bytes; 3086 btrfs_release_path(path); 3087 ret = btrfs_search_slot(trans, extent_root, 3088 &key, path, -1, 1); 3089 } 3090 3091 if (ret) { 3092 if (ret > 0) 3093 btrfs_print_leaf(path->nodes[0]); 3094 btrfs_err(info, 3095 "umm, got %d back from search, was looking for %llu, slot %d", 3096 ret, bytenr, path->slots[0]); 3097 } 3098 if (ret < 0) { 3099 btrfs_abort_transaction(trans, ret); 3100 goto out; 3101 } 3102 extent_slot = path->slots[0]; 3103 } 3104 } else if (WARN_ON(ret == -ENOENT)) { 3105 abort_and_dump(trans, path, 3106 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3107 bytenr, parent, root_objectid, owner_objectid, 3108 owner_offset, path->slots[0]); 3109 goto out; 3110 } else { 3111 btrfs_abort_transaction(trans, ret); 3112 goto out; 3113 } 3114 3115 leaf = path->nodes[0]; 3116 item_size = btrfs_item_size(leaf, extent_slot); 3117 if (unlikely(item_size < sizeof(*ei))) { 3118 ret = -EUCLEAN; 3119 btrfs_err(trans->fs_info, 3120 "unexpected extent item size, has %u expect >= %zu", 3121 item_size, sizeof(*ei)); 3122 btrfs_abort_transaction(trans, ret); 3123 goto out; 3124 } 3125 ei = btrfs_item_ptr(leaf, extent_slot, 3126 struct btrfs_extent_item); 3127 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3128 key.type == BTRFS_EXTENT_ITEM_KEY) { 3129 struct btrfs_tree_block_info *bi; 3130 3131 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3132 abort_and_dump(trans, path, 3133 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3134 key.objectid, key.type, key.offset, 3135 path->slots[0], owner_objectid, item_size, 3136 sizeof(*ei) + sizeof(*bi)); 3137 ret = -EUCLEAN; 3138 goto out; 3139 } 3140 bi = (struct btrfs_tree_block_info *)(ei + 1); 3141 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3142 } 3143 3144 refs = btrfs_extent_refs(leaf, ei); 3145 if (refs < refs_to_drop) { 3146 abort_and_dump(trans, path, 3147 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3148 refs_to_drop, refs, bytenr, path->slots[0]); 3149 ret = -EUCLEAN; 3150 goto out; 3151 } 3152 refs -= refs_to_drop; 3153 3154 if (refs > 0) { 3155 if (extent_op) 3156 __run_delayed_extent_op(extent_op, leaf, ei); 3157 /* 3158 * In the case of inline back ref, reference count will 3159 * be updated by remove_extent_backref 3160 */ 3161 if (iref) { 3162 if (!found_extent) { 3163 abort_and_dump(trans, path, 3164 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3165 path->slots[0]); 3166 ret = -EUCLEAN; 3167 goto out; 3168 } 3169 } else { 3170 btrfs_set_extent_refs(leaf, ei, refs); 3171 btrfs_mark_buffer_dirty(trans, leaf); 3172 } 3173 if (found_extent) { 3174 ret = remove_extent_backref(trans, extent_root, path, 3175 iref, refs_to_drop, is_data); 3176 if (ret) { 3177 btrfs_abort_transaction(trans, ret); 3178 goto out; 3179 } 3180 } 3181 } else { 3182 /* In this branch refs == 1 */ 3183 if (found_extent) { 3184 if (is_data && refs_to_drop != 3185 extent_data_ref_count(path, iref)) { 3186 abort_and_dump(trans, path, 3187 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3188 extent_data_ref_count(path, iref), 3189 refs_to_drop, path->slots[0]); 3190 ret = -EUCLEAN; 3191 goto out; 3192 } 3193 if (iref) { 3194 if (path->slots[0] != extent_slot) { 3195 abort_and_dump(trans, path, 3196 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3197 key.objectid, key.type, 3198 key.offset, path->slots[0]); 3199 ret = -EUCLEAN; 3200 goto out; 3201 } 3202 } else { 3203 /* 3204 * No inline ref, we must be at SHARED_* item, 3205 * And it's single ref, it must be: 3206 * | extent_slot ||extent_slot + 1| 3207 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3208 */ 3209 if (path->slots[0] != extent_slot + 1) { 3210 abort_and_dump(trans, path, 3211 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3212 path->slots[0]); 3213 ret = -EUCLEAN; 3214 goto out; 3215 } 3216 path->slots[0] = extent_slot; 3217 num_to_del = 2; 3218 } 3219 } 3220 3221 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3222 num_to_del); 3223 if (ret) { 3224 btrfs_abort_transaction(trans, ret); 3225 goto out; 3226 } 3227 btrfs_release_path(path); 3228 3229 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3230 } 3231 btrfs_release_path(path); 3232 3233 out: 3234 btrfs_free_path(path); 3235 return ret; 3236 } 3237 3238 /* 3239 * when we free an block, it is possible (and likely) that we free the last 3240 * delayed ref for that extent as well. This searches the delayed ref tree for 3241 * a given extent, and if there are no other delayed refs to be processed, it 3242 * removes it from the tree. 3243 */ 3244 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3245 u64 bytenr) 3246 { 3247 struct btrfs_delayed_ref_head *head; 3248 struct btrfs_delayed_ref_root *delayed_refs; 3249 int ret = 0; 3250 3251 delayed_refs = &trans->transaction->delayed_refs; 3252 spin_lock(&delayed_refs->lock); 3253 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3254 if (!head) 3255 goto out_delayed_unlock; 3256 3257 spin_lock(&head->lock); 3258 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3259 goto out; 3260 3261 if (cleanup_extent_op(head) != NULL) 3262 goto out; 3263 3264 /* 3265 * waiting for the lock here would deadlock. If someone else has it 3266 * locked they are already in the process of dropping it anyway 3267 */ 3268 if (!mutex_trylock(&head->mutex)) 3269 goto out; 3270 3271 btrfs_delete_ref_head(delayed_refs, head); 3272 head->processing = false; 3273 3274 spin_unlock(&head->lock); 3275 spin_unlock(&delayed_refs->lock); 3276 3277 BUG_ON(head->extent_op); 3278 if (head->must_insert_reserved) 3279 ret = 1; 3280 3281 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3282 mutex_unlock(&head->mutex); 3283 btrfs_put_delayed_ref_head(head); 3284 return ret; 3285 out: 3286 spin_unlock(&head->lock); 3287 3288 out_delayed_unlock: 3289 spin_unlock(&delayed_refs->lock); 3290 return 0; 3291 } 3292 3293 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3294 u64 root_id, 3295 struct extent_buffer *buf, 3296 u64 parent, int last_ref) 3297 { 3298 struct btrfs_fs_info *fs_info = trans->fs_info; 3299 struct btrfs_ref generic_ref = { 0 }; 3300 int ret; 3301 3302 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3303 buf->start, buf->len, parent); 3304 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3305 root_id, 0, false); 3306 3307 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3308 btrfs_ref_tree_mod(fs_info, &generic_ref); 3309 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3310 BUG_ON(ret); /* -ENOMEM */ 3311 } 3312 3313 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3314 struct btrfs_block_group *cache; 3315 bool must_pin = false; 3316 3317 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3318 ret = check_ref_cleanup(trans, buf->start); 3319 if (!ret) { 3320 btrfs_redirty_list_add(trans->transaction, buf); 3321 goto out; 3322 } 3323 } 3324 3325 cache = btrfs_lookup_block_group(fs_info, buf->start); 3326 3327 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3328 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3329 btrfs_put_block_group(cache); 3330 goto out; 3331 } 3332 3333 /* 3334 * If there are tree mod log users we may have recorded mod log 3335 * operations for this node. If we re-allocate this node we 3336 * could replay operations on this node that happened when it 3337 * existed in a completely different root. For example if it 3338 * was part of root A, then was reallocated to root B, and we 3339 * are doing a btrfs_old_search_slot(root b), we could replay 3340 * operations that happened when the block was part of root A, 3341 * giving us an inconsistent view of the btree. 3342 * 3343 * We are safe from races here because at this point no other 3344 * node or root points to this extent buffer, so if after this 3345 * check a new tree mod log user joins we will not have an 3346 * existing log of operations on this node that we have to 3347 * contend with. 3348 */ 3349 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3350 must_pin = true; 3351 3352 if (must_pin || btrfs_is_zoned(fs_info)) { 3353 btrfs_redirty_list_add(trans->transaction, buf); 3354 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3355 btrfs_put_block_group(cache); 3356 goto out; 3357 } 3358 3359 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3360 3361 btrfs_add_free_space(cache, buf->start, buf->len); 3362 btrfs_free_reserved_bytes(cache, buf->len, 0); 3363 btrfs_put_block_group(cache); 3364 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3365 } 3366 out: 3367 if (last_ref) { 3368 /* 3369 * Deleting the buffer, clear the corrupt flag since it doesn't 3370 * matter anymore. 3371 */ 3372 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3373 } 3374 } 3375 3376 /* Can return -ENOMEM */ 3377 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3378 { 3379 struct btrfs_fs_info *fs_info = trans->fs_info; 3380 int ret; 3381 3382 if (btrfs_is_testing(fs_info)) 3383 return 0; 3384 3385 /* 3386 * tree log blocks never actually go into the extent allocation 3387 * tree, just update pinning info and exit early. 3388 */ 3389 if ((ref->type == BTRFS_REF_METADATA && 3390 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3391 (ref->type == BTRFS_REF_DATA && 3392 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3393 /* unlocks the pinned mutex */ 3394 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3395 ret = 0; 3396 } else if (ref->type == BTRFS_REF_METADATA) { 3397 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3398 } else { 3399 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3400 } 3401 3402 if (!((ref->type == BTRFS_REF_METADATA && 3403 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3404 (ref->type == BTRFS_REF_DATA && 3405 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3406 btrfs_ref_tree_mod(fs_info, ref); 3407 3408 return ret; 3409 } 3410 3411 enum btrfs_loop_type { 3412 /* 3413 * Start caching block groups but do not wait for progress or for them 3414 * to be done. 3415 */ 3416 LOOP_CACHING_NOWAIT, 3417 3418 /* 3419 * Wait for the block group free_space >= the space we're waiting for if 3420 * the block group isn't cached. 3421 */ 3422 LOOP_CACHING_WAIT, 3423 3424 /* 3425 * Allow allocations to happen from block groups that do not yet have a 3426 * size classification. 3427 */ 3428 LOOP_UNSET_SIZE_CLASS, 3429 3430 /* 3431 * Allocate a chunk and then retry the allocation. 3432 */ 3433 LOOP_ALLOC_CHUNK, 3434 3435 /* 3436 * Ignore the size class restrictions for this allocation. 3437 */ 3438 LOOP_WRONG_SIZE_CLASS, 3439 3440 /* 3441 * Ignore the empty size, only try to allocate the number of bytes 3442 * needed for this allocation. 3443 */ 3444 LOOP_NO_EMPTY_SIZE, 3445 }; 3446 3447 static inline void 3448 btrfs_lock_block_group(struct btrfs_block_group *cache, 3449 int delalloc) 3450 { 3451 if (delalloc) 3452 down_read(&cache->data_rwsem); 3453 } 3454 3455 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3456 int delalloc) 3457 { 3458 btrfs_get_block_group(cache); 3459 if (delalloc) 3460 down_read(&cache->data_rwsem); 3461 } 3462 3463 static struct btrfs_block_group *btrfs_lock_cluster( 3464 struct btrfs_block_group *block_group, 3465 struct btrfs_free_cluster *cluster, 3466 int delalloc) 3467 __acquires(&cluster->refill_lock) 3468 { 3469 struct btrfs_block_group *used_bg = NULL; 3470 3471 spin_lock(&cluster->refill_lock); 3472 while (1) { 3473 used_bg = cluster->block_group; 3474 if (!used_bg) 3475 return NULL; 3476 3477 if (used_bg == block_group) 3478 return used_bg; 3479 3480 btrfs_get_block_group(used_bg); 3481 3482 if (!delalloc) 3483 return used_bg; 3484 3485 if (down_read_trylock(&used_bg->data_rwsem)) 3486 return used_bg; 3487 3488 spin_unlock(&cluster->refill_lock); 3489 3490 /* We should only have one-level nested. */ 3491 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3492 3493 spin_lock(&cluster->refill_lock); 3494 if (used_bg == cluster->block_group) 3495 return used_bg; 3496 3497 up_read(&used_bg->data_rwsem); 3498 btrfs_put_block_group(used_bg); 3499 } 3500 } 3501 3502 static inline void 3503 btrfs_release_block_group(struct btrfs_block_group *cache, 3504 int delalloc) 3505 { 3506 if (delalloc) 3507 up_read(&cache->data_rwsem); 3508 btrfs_put_block_group(cache); 3509 } 3510 3511 /* 3512 * Helper function for find_free_extent(). 3513 * 3514 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3515 * Return >0 to inform caller that we find nothing 3516 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3517 */ 3518 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3519 struct find_free_extent_ctl *ffe_ctl, 3520 struct btrfs_block_group **cluster_bg_ret) 3521 { 3522 struct btrfs_block_group *cluster_bg; 3523 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3524 u64 aligned_cluster; 3525 u64 offset; 3526 int ret; 3527 3528 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3529 if (!cluster_bg) 3530 goto refill_cluster; 3531 if (cluster_bg != bg && (cluster_bg->ro || 3532 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3533 goto release_cluster; 3534 3535 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3536 ffe_ctl->num_bytes, cluster_bg->start, 3537 &ffe_ctl->max_extent_size); 3538 if (offset) { 3539 /* We have a block, we're done */ 3540 spin_unlock(&last_ptr->refill_lock); 3541 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3542 *cluster_bg_ret = cluster_bg; 3543 ffe_ctl->found_offset = offset; 3544 return 0; 3545 } 3546 WARN_ON(last_ptr->block_group != cluster_bg); 3547 3548 release_cluster: 3549 /* 3550 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3551 * lets just skip it and let the allocator find whatever block it can 3552 * find. If we reach this point, we will have tried the cluster 3553 * allocator plenty of times and not have found anything, so we are 3554 * likely way too fragmented for the clustering stuff to find anything. 3555 * 3556 * However, if the cluster is taken from the current block group, 3557 * release the cluster first, so that we stand a better chance of 3558 * succeeding in the unclustered allocation. 3559 */ 3560 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3561 spin_unlock(&last_ptr->refill_lock); 3562 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3563 return -ENOENT; 3564 } 3565 3566 /* This cluster didn't work out, free it and start over */ 3567 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3568 3569 if (cluster_bg != bg) 3570 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3571 3572 refill_cluster: 3573 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3574 spin_unlock(&last_ptr->refill_lock); 3575 return -ENOENT; 3576 } 3577 3578 aligned_cluster = max_t(u64, 3579 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3580 bg->full_stripe_len); 3581 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3582 ffe_ctl->num_bytes, aligned_cluster); 3583 if (ret == 0) { 3584 /* Now pull our allocation out of this cluster */ 3585 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3586 ffe_ctl->num_bytes, ffe_ctl->search_start, 3587 &ffe_ctl->max_extent_size); 3588 if (offset) { 3589 /* We found one, proceed */ 3590 spin_unlock(&last_ptr->refill_lock); 3591 ffe_ctl->found_offset = offset; 3592 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3593 return 0; 3594 } 3595 } 3596 /* 3597 * At this point we either didn't find a cluster or we weren't able to 3598 * allocate a block from our cluster. Free the cluster we've been 3599 * trying to use, and go to the next block group. 3600 */ 3601 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3602 spin_unlock(&last_ptr->refill_lock); 3603 return 1; 3604 } 3605 3606 /* 3607 * Return >0 to inform caller that we find nothing 3608 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3609 */ 3610 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3611 struct find_free_extent_ctl *ffe_ctl) 3612 { 3613 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3614 u64 offset; 3615 3616 /* 3617 * We are doing an unclustered allocation, set the fragmented flag so 3618 * we don't bother trying to setup a cluster again until we get more 3619 * space. 3620 */ 3621 if (unlikely(last_ptr)) { 3622 spin_lock(&last_ptr->lock); 3623 last_ptr->fragmented = 1; 3624 spin_unlock(&last_ptr->lock); 3625 } 3626 if (ffe_ctl->cached) { 3627 struct btrfs_free_space_ctl *free_space_ctl; 3628 3629 free_space_ctl = bg->free_space_ctl; 3630 spin_lock(&free_space_ctl->tree_lock); 3631 if (free_space_ctl->free_space < 3632 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3633 ffe_ctl->empty_size) { 3634 ffe_ctl->total_free_space = max_t(u64, 3635 ffe_ctl->total_free_space, 3636 free_space_ctl->free_space); 3637 spin_unlock(&free_space_ctl->tree_lock); 3638 return 1; 3639 } 3640 spin_unlock(&free_space_ctl->tree_lock); 3641 } 3642 3643 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3644 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3645 &ffe_ctl->max_extent_size); 3646 if (!offset) 3647 return 1; 3648 ffe_ctl->found_offset = offset; 3649 return 0; 3650 } 3651 3652 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3653 struct find_free_extent_ctl *ffe_ctl, 3654 struct btrfs_block_group **bg_ret) 3655 { 3656 int ret; 3657 3658 /* We want to try and use the cluster allocator, so lets look there */ 3659 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3660 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3661 if (ret >= 0) 3662 return ret; 3663 /* ret == -ENOENT case falls through */ 3664 } 3665 3666 return find_free_extent_unclustered(block_group, ffe_ctl); 3667 } 3668 3669 /* 3670 * Tree-log block group locking 3671 * ============================ 3672 * 3673 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3674 * indicates the starting address of a block group, which is reserved only 3675 * for tree-log metadata. 3676 * 3677 * Lock nesting 3678 * ============ 3679 * 3680 * space_info::lock 3681 * block_group::lock 3682 * fs_info::treelog_bg_lock 3683 */ 3684 3685 /* 3686 * Simple allocator for sequential-only block group. It only allows sequential 3687 * allocation. No need to play with trees. This function also reserves the 3688 * bytes as in btrfs_add_reserved_bytes. 3689 */ 3690 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3691 struct find_free_extent_ctl *ffe_ctl, 3692 struct btrfs_block_group **bg_ret) 3693 { 3694 struct btrfs_fs_info *fs_info = block_group->fs_info; 3695 struct btrfs_space_info *space_info = block_group->space_info; 3696 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3697 u64 start = block_group->start; 3698 u64 num_bytes = ffe_ctl->num_bytes; 3699 u64 avail; 3700 u64 bytenr = block_group->start; 3701 u64 log_bytenr; 3702 u64 data_reloc_bytenr; 3703 int ret = 0; 3704 bool skip = false; 3705 3706 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3707 3708 /* 3709 * Do not allow non-tree-log blocks in the dedicated tree-log block 3710 * group, and vice versa. 3711 */ 3712 spin_lock(&fs_info->treelog_bg_lock); 3713 log_bytenr = fs_info->treelog_bg; 3714 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3715 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3716 skip = true; 3717 spin_unlock(&fs_info->treelog_bg_lock); 3718 if (skip) 3719 return 1; 3720 3721 /* 3722 * Do not allow non-relocation blocks in the dedicated relocation block 3723 * group, and vice versa. 3724 */ 3725 spin_lock(&fs_info->relocation_bg_lock); 3726 data_reloc_bytenr = fs_info->data_reloc_bg; 3727 if (data_reloc_bytenr && 3728 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3729 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3730 skip = true; 3731 spin_unlock(&fs_info->relocation_bg_lock); 3732 if (skip) 3733 return 1; 3734 3735 /* Check RO and no space case before trying to activate it */ 3736 spin_lock(&block_group->lock); 3737 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3738 ret = 1; 3739 /* 3740 * May need to clear fs_info->{treelog,data_reloc}_bg. 3741 * Return the error after taking the locks. 3742 */ 3743 } 3744 spin_unlock(&block_group->lock); 3745 3746 /* Metadata block group is activated at write time. */ 3747 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3748 !btrfs_zone_activate(block_group)) { 3749 ret = 1; 3750 /* 3751 * May need to clear fs_info->{treelog,data_reloc}_bg. 3752 * Return the error after taking the locks. 3753 */ 3754 } 3755 3756 spin_lock(&space_info->lock); 3757 spin_lock(&block_group->lock); 3758 spin_lock(&fs_info->treelog_bg_lock); 3759 spin_lock(&fs_info->relocation_bg_lock); 3760 3761 if (ret) 3762 goto out; 3763 3764 ASSERT(!ffe_ctl->for_treelog || 3765 block_group->start == fs_info->treelog_bg || 3766 fs_info->treelog_bg == 0); 3767 ASSERT(!ffe_ctl->for_data_reloc || 3768 block_group->start == fs_info->data_reloc_bg || 3769 fs_info->data_reloc_bg == 0); 3770 3771 if (block_group->ro || 3772 (!ffe_ctl->for_data_reloc && 3773 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3774 ret = 1; 3775 goto out; 3776 } 3777 3778 /* 3779 * Do not allow currently using block group to be tree-log dedicated 3780 * block group. 3781 */ 3782 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3783 (block_group->used || block_group->reserved)) { 3784 ret = 1; 3785 goto out; 3786 } 3787 3788 /* 3789 * Do not allow currently used block group to be the data relocation 3790 * dedicated block group. 3791 */ 3792 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3793 (block_group->used || block_group->reserved)) { 3794 ret = 1; 3795 goto out; 3796 } 3797 3798 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3799 avail = block_group->zone_capacity - block_group->alloc_offset; 3800 if (avail < num_bytes) { 3801 if (ffe_ctl->max_extent_size < avail) { 3802 /* 3803 * With sequential allocator, free space is always 3804 * contiguous 3805 */ 3806 ffe_ctl->max_extent_size = avail; 3807 ffe_ctl->total_free_space = avail; 3808 } 3809 ret = 1; 3810 goto out; 3811 } 3812 3813 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3814 fs_info->treelog_bg = block_group->start; 3815 3816 if (ffe_ctl->for_data_reloc) { 3817 if (!fs_info->data_reloc_bg) 3818 fs_info->data_reloc_bg = block_group->start; 3819 /* 3820 * Do not allow allocations from this block group, unless it is 3821 * for data relocation. Compared to increasing the ->ro, setting 3822 * the ->zoned_data_reloc_ongoing flag still allows nocow 3823 * writers to come in. See btrfs_inc_nocow_writers(). 3824 * 3825 * We need to disable an allocation to avoid an allocation of 3826 * regular (non-relocation data) extent. With mix of relocation 3827 * extents and regular extents, we can dispatch WRITE commands 3828 * (for relocation extents) and ZONE APPEND commands (for 3829 * regular extents) at the same time to the same zone, which 3830 * easily break the write pointer. 3831 * 3832 * Also, this flag avoids this block group to be zone finished. 3833 */ 3834 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3835 } 3836 3837 ffe_ctl->found_offset = start + block_group->alloc_offset; 3838 block_group->alloc_offset += num_bytes; 3839 spin_lock(&ctl->tree_lock); 3840 ctl->free_space -= num_bytes; 3841 spin_unlock(&ctl->tree_lock); 3842 3843 /* 3844 * We do not check if found_offset is aligned to stripesize. The 3845 * address is anyway rewritten when using zone append writing. 3846 */ 3847 3848 ffe_ctl->search_start = ffe_ctl->found_offset; 3849 3850 out: 3851 if (ret && ffe_ctl->for_treelog) 3852 fs_info->treelog_bg = 0; 3853 if (ret && ffe_ctl->for_data_reloc) 3854 fs_info->data_reloc_bg = 0; 3855 spin_unlock(&fs_info->relocation_bg_lock); 3856 spin_unlock(&fs_info->treelog_bg_lock); 3857 spin_unlock(&block_group->lock); 3858 spin_unlock(&space_info->lock); 3859 return ret; 3860 } 3861 3862 static int do_allocation(struct btrfs_block_group *block_group, 3863 struct find_free_extent_ctl *ffe_ctl, 3864 struct btrfs_block_group **bg_ret) 3865 { 3866 switch (ffe_ctl->policy) { 3867 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3868 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3869 case BTRFS_EXTENT_ALLOC_ZONED: 3870 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3871 default: 3872 BUG(); 3873 } 3874 } 3875 3876 static void release_block_group(struct btrfs_block_group *block_group, 3877 struct find_free_extent_ctl *ffe_ctl, 3878 int delalloc) 3879 { 3880 switch (ffe_ctl->policy) { 3881 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3882 ffe_ctl->retry_uncached = false; 3883 break; 3884 case BTRFS_EXTENT_ALLOC_ZONED: 3885 /* Nothing to do */ 3886 break; 3887 default: 3888 BUG(); 3889 } 3890 3891 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3892 ffe_ctl->index); 3893 btrfs_release_block_group(block_group, delalloc); 3894 } 3895 3896 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3897 struct btrfs_key *ins) 3898 { 3899 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3900 3901 if (!ffe_ctl->use_cluster && last_ptr) { 3902 spin_lock(&last_ptr->lock); 3903 last_ptr->window_start = ins->objectid; 3904 spin_unlock(&last_ptr->lock); 3905 } 3906 } 3907 3908 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3909 struct btrfs_key *ins) 3910 { 3911 switch (ffe_ctl->policy) { 3912 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3913 found_extent_clustered(ffe_ctl, ins); 3914 break; 3915 case BTRFS_EXTENT_ALLOC_ZONED: 3916 /* Nothing to do */ 3917 break; 3918 default: 3919 BUG(); 3920 } 3921 } 3922 3923 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3924 struct find_free_extent_ctl *ffe_ctl) 3925 { 3926 /* Block group's activeness is not a requirement for METADATA block groups. */ 3927 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 3928 return 0; 3929 3930 /* If we can activate new zone, just allocate a chunk and use it */ 3931 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3932 return 0; 3933 3934 /* 3935 * We already reached the max active zones. Try to finish one block 3936 * group to make a room for a new block group. This is only possible 3937 * for a data block group because btrfs_zone_finish() may need to wait 3938 * for a running transaction which can cause a deadlock for metadata 3939 * allocation. 3940 */ 3941 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3942 int ret = btrfs_zone_finish_one_bg(fs_info); 3943 3944 if (ret == 1) 3945 return 0; 3946 else if (ret < 0) 3947 return ret; 3948 } 3949 3950 /* 3951 * If we have enough free space left in an already active block group 3952 * and we can't activate any other zone now, do not allow allocating a 3953 * new chunk and let find_free_extent() retry with a smaller size. 3954 */ 3955 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3956 return -ENOSPC; 3957 3958 /* 3959 * Even min_alloc_size is not left in any block groups. Since we cannot 3960 * activate a new block group, allocating it may not help. Let's tell a 3961 * caller to try again and hope it progress something by writing some 3962 * parts of the region. That is only possible for data block groups, 3963 * where a part of the region can be written. 3964 */ 3965 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3966 return -EAGAIN; 3967 3968 /* 3969 * We cannot activate a new block group and no enough space left in any 3970 * block groups. So, allocating a new block group may not help. But, 3971 * there is nothing to do anyway, so let's go with it. 3972 */ 3973 return 0; 3974 } 3975 3976 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 3977 struct find_free_extent_ctl *ffe_ctl) 3978 { 3979 switch (ffe_ctl->policy) { 3980 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3981 return 0; 3982 case BTRFS_EXTENT_ALLOC_ZONED: 3983 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 3984 default: 3985 BUG(); 3986 } 3987 } 3988 3989 /* 3990 * Return >0 means caller needs to re-search for free extent 3991 * Return 0 means we have the needed free extent. 3992 * Return <0 means we failed to locate any free extent. 3993 */ 3994 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3995 struct btrfs_key *ins, 3996 struct find_free_extent_ctl *ffe_ctl, 3997 bool full_search) 3998 { 3999 struct btrfs_root *root = fs_info->chunk_root; 4000 int ret; 4001 4002 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4003 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4004 ffe_ctl->orig_have_caching_bg = true; 4005 4006 if (ins->objectid) { 4007 found_extent(ffe_ctl, ins); 4008 return 0; 4009 } 4010 4011 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4012 return 1; 4013 4014 ffe_ctl->index++; 4015 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4016 return 1; 4017 4018 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4019 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4020 ffe_ctl->index = 0; 4021 /* 4022 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4023 * any uncached bgs and we've already done a full search 4024 * through. 4025 */ 4026 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4027 (!ffe_ctl->orig_have_caching_bg && full_search)) 4028 ffe_ctl->loop++; 4029 ffe_ctl->loop++; 4030 4031 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4032 struct btrfs_trans_handle *trans; 4033 int exist = 0; 4034 4035 /* Check if allocation policy allows to create a new chunk */ 4036 ret = can_allocate_chunk(fs_info, ffe_ctl); 4037 if (ret) 4038 return ret; 4039 4040 trans = current->journal_info; 4041 if (trans) 4042 exist = 1; 4043 else 4044 trans = btrfs_join_transaction(root); 4045 4046 if (IS_ERR(trans)) { 4047 ret = PTR_ERR(trans); 4048 return ret; 4049 } 4050 4051 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4052 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4053 4054 /* Do not bail out on ENOSPC since we can do more. */ 4055 if (ret == -ENOSPC) { 4056 ret = 0; 4057 ffe_ctl->loop++; 4058 } 4059 else if (ret < 0) 4060 btrfs_abort_transaction(trans, ret); 4061 else 4062 ret = 0; 4063 if (!exist) 4064 btrfs_end_transaction(trans); 4065 if (ret) 4066 return ret; 4067 } 4068 4069 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4070 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4071 return -ENOSPC; 4072 4073 /* 4074 * Don't loop again if we already have no empty_size and 4075 * no empty_cluster. 4076 */ 4077 if (ffe_ctl->empty_size == 0 && 4078 ffe_ctl->empty_cluster == 0) 4079 return -ENOSPC; 4080 ffe_ctl->empty_size = 0; 4081 ffe_ctl->empty_cluster = 0; 4082 } 4083 return 1; 4084 } 4085 return -ENOSPC; 4086 } 4087 4088 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4089 struct btrfs_block_group *bg) 4090 { 4091 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4092 return true; 4093 if (!btrfs_block_group_should_use_size_class(bg)) 4094 return true; 4095 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4096 return true; 4097 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4098 bg->size_class == BTRFS_BG_SZ_NONE) 4099 return true; 4100 return ffe_ctl->size_class == bg->size_class; 4101 } 4102 4103 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4104 struct find_free_extent_ctl *ffe_ctl, 4105 struct btrfs_space_info *space_info, 4106 struct btrfs_key *ins) 4107 { 4108 /* 4109 * If our free space is heavily fragmented we may not be able to make 4110 * big contiguous allocations, so instead of doing the expensive search 4111 * for free space, simply return ENOSPC with our max_extent_size so we 4112 * can go ahead and search for a more manageable chunk. 4113 * 4114 * If our max_extent_size is large enough for our allocation simply 4115 * disable clustering since we will likely not be able to find enough 4116 * space to create a cluster and induce latency trying. 4117 */ 4118 if (space_info->max_extent_size) { 4119 spin_lock(&space_info->lock); 4120 if (space_info->max_extent_size && 4121 ffe_ctl->num_bytes > space_info->max_extent_size) { 4122 ins->offset = space_info->max_extent_size; 4123 spin_unlock(&space_info->lock); 4124 return -ENOSPC; 4125 } else if (space_info->max_extent_size) { 4126 ffe_ctl->use_cluster = false; 4127 } 4128 spin_unlock(&space_info->lock); 4129 } 4130 4131 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4132 &ffe_ctl->empty_cluster); 4133 if (ffe_ctl->last_ptr) { 4134 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4135 4136 spin_lock(&last_ptr->lock); 4137 if (last_ptr->block_group) 4138 ffe_ctl->hint_byte = last_ptr->window_start; 4139 if (last_ptr->fragmented) { 4140 /* 4141 * We still set window_start so we can keep track of the 4142 * last place we found an allocation to try and save 4143 * some time. 4144 */ 4145 ffe_ctl->hint_byte = last_ptr->window_start; 4146 ffe_ctl->use_cluster = false; 4147 } 4148 spin_unlock(&last_ptr->lock); 4149 } 4150 4151 return 0; 4152 } 4153 4154 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4155 struct find_free_extent_ctl *ffe_ctl) 4156 { 4157 if (ffe_ctl->for_treelog) { 4158 spin_lock(&fs_info->treelog_bg_lock); 4159 if (fs_info->treelog_bg) 4160 ffe_ctl->hint_byte = fs_info->treelog_bg; 4161 spin_unlock(&fs_info->treelog_bg_lock); 4162 } else if (ffe_ctl->for_data_reloc) { 4163 spin_lock(&fs_info->relocation_bg_lock); 4164 if (fs_info->data_reloc_bg) 4165 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4166 spin_unlock(&fs_info->relocation_bg_lock); 4167 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4168 struct btrfs_block_group *block_group; 4169 4170 spin_lock(&fs_info->zone_active_bgs_lock); 4171 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4172 /* 4173 * No lock is OK here because avail is monotinically 4174 * decreasing, and this is just a hint. 4175 */ 4176 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4177 4178 if (block_group_bits(block_group, ffe_ctl->flags) && 4179 avail >= ffe_ctl->num_bytes) { 4180 ffe_ctl->hint_byte = block_group->start; 4181 break; 4182 } 4183 } 4184 spin_unlock(&fs_info->zone_active_bgs_lock); 4185 } 4186 4187 return 0; 4188 } 4189 4190 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4191 struct find_free_extent_ctl *ffe_ctl, 4192 struct btrfs_space_info *space_info, 4193 struct btrfs_key *ins) 4194 { 4195 switch (ffe_ctl->policy) { 4196 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4197 return prepare_allocation_clustered(fs_info, ffe_ctl, 4198 space_info, ins); 4199 case BTRFS_EXTENT_ALLOC_ZONED: 4200 return prepare_allocation_zoned(fs_info, ffe_ctl); 4201 default: 4202 BUG(); 4203 } 4204 } 4205 4206 /* 4207 * walks the btree of allocated extents and find a hole of a given size. 4208 * The key ins is changed to record the hole: 4209 * ins->objectid == start position 4210 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4211 * ins->offset == the size of the hole. 4212 * Any available blocks before search_start are skipped. 4213 * 4214 * If there is no suitable free space, we will record the max size of 4215 * the free space extent currently. 4216 * 4217 * The overall logic and call chain: 4218 * 4219 * find_free_extent() 4220 * |- Iterate through all block groups 4221 * | |- Get a valid block group 4222 * | |- Try to do clustered allocation in that block group 4223 * | |- Try to do unclustered allocation in that block group 4224 * | |- Check if the result is valid 4225 * | | |- If valid, then exit 4226 * | |- Jump to next block group 4227 * | 4228 * |- Push harder to find free extents 4229 * |- If not found, re-iterate all block groups 4230 */ 4231 static noinline int find_free_extent(struct btrfs_root *root, 4232 struct btrfs_key *ins, 4233 struct find_free_extent_ctl *ffe_ctl) 4234 { 4235 struct btrfs_fs_info *fs_info = root->fs_info; 4236 int ret = 0; 4237 int cache_block_group_error = 0; 4238 struct btrfs_block_group *block_group = NULL; 4239 struct btrfs_space_info *space_info; 4240 bool full_search = false; 4241 4242 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4243 4244 ffe_ctl->search_start = 0; 4245 /* For clustered allocation */ 4246 ffe_ctl->empty_cluster = 0; 4247 ffe_ctl->last_ptr = NULL; 4248 ffe_ctl->use_cluster = true; 4249 ffe_ctl->have_caching_bg = false; 4250 ffe_ctl->orig_have_caching_bg = false; 4251 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4252 ffe_ctl->loop = 0; 4253 ffe_ctl->retry_uncached = false; 4254 ffe_ctl->cached = 0; 4255 ffe_ctl->max_extent_size = 0; 4256 ffe_ctl->total_free_space = 0; 4257 ffe_ctl->found_offset = 0; 4258 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4259 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4260 4261 if (btrfs_is_zoned(fs_info)) 4262 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4263 4264 ins->type = BTRFS_EXTENT_ITEM_KEY; 4265 ins->objectid = 0; 4266 ins->offset = 0; 4267 4268 trace_find_free_extent(root, ffe_ctl); 4269 4270 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4271 if (!space_info) { 4272 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4273 return -ENOSPC; 4274 } 4275 4276 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4277 if (ret < 0) 4278 return ret; 4279 4280 ffe_ctl->search_start = max(ffe_ctl->search_start, 4281 first_logical_byte(fs_info)); 4282 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4283 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4284 block_group = btrfs_lookup_block_group(fs_info, 4285 ffe_ctl->search_start); 4286 /* 4287 * we don't want to use the block group if it doesn't match our 4288 * allocation bits, or if its not cached. 4289 * 4290 * However if we are re-searching with an ideal block group 4291 * picked out then we don't care that the block group is cached. 4292 */ 4293 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4294 block_group->cached != BTRFS_CACHE_NO) { 4295 down_read(&space_info->groups_sem); 4296 if (list_empty(&block_group->list) || 4297 block_group->ro) { 4298 /* 4299 * someone is removing this block group, 4300 * we can't jump into the have_block_group 4301 * target because our list pointers are not 4302 * valid 4303 */ 4304 btrfs_put_block_group(block_group); 4305 up_read(&space_info->groups_sem); 4306 } else { 4307 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4308 block_group->flags); 4309 btrfs_lock_block_group(block_group, 4310 ffe_ctl->delalloc); 4311 ffe_ctl->hinted = true; 4312 goto have_block_group; 4313 } 4314 } else if (block_group) { 4315 btrfs_put_block_group(block_group); 4316 } 4317 } 4318 search: 4319 trace_find_free_extent_search_loop(root, ffe_ctl); 4320 ffe_ctl->have_caching_bg = false; 4321 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4322 ffe_ctl->index == 0) 4323 full_search = true; 4324 down_read(&space_info->groups_sem); 4325 list_for_each_entry(block_group, 4326 &space_info->block_groups[ffe_ctl->index], list) { 4327 struct btrfs_block_group *bg_ret; 4328 4329 ffe_ctl->hinted = false; 4330 /* If the block group is read-only, we can skip it entirely. */ 4331 if (unlikely(block_group->ro)) { 4332 if (ffe_ctl->for_treelog) 4333 btrfs_clear_treelog_bg(block_group); 4334 if (ffe_ctl->for_data_reloc) 4335 btrfs_clear_data_reloc_bg(block_group); 4336 continue; 4337 } 4338 4339 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4340 ffe_ctl->search_start = block_group->start; 4341 4342 /* 4343 * this can happen if we end up cycling through all the 4344 * raid types, but we want to make sure we only allocate 4345 * for the proper type. 4346 */ 4347 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4348 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4349 BTRFS_BLOCK_GROUP_RAID1_MASK | 4350 BTRFS_BLOCK_GROUP_RAID56_MASK | 4351 BTRFS_BLOCK_GROUP_RAID10; 4352 4353 /* 4354 * if they asked for extra copies and this block group 4355 * doesn't provide them, bail. This does allow us to 4356 * fill raid0 from raid1. 4357 */ 4358 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4359 goto loop; 4360 4361 /* 4362 * This block group has different flags than we want. 4363 * It's possible that we have MIXED_GROUP flag but no 4364 * block group is mixed. Just skip such block group. 4365 */ 4366 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4367 continue; 4368 } 4369 4370 have_block_group: 4371 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4372 ffe_ctl->cached = btrfs_block_group_done(block_group); 4373 if (unlikely(!ffe_ctl->cached)) { 4374 ffe_ctl->have_caching_bg = true; 4375 ret = btrfs_cache_block_group(block_group, false); 4376 4377 /* 4378 * If we get ENOMEM here or something else we want to 4379 * try other block groups, because it may not be fatal. 4380 * However if we can't find anything else we need to 4381 * save our return here so that we return the actual 4382 * error that caused problems, not ENOSPC. 4383 */ 4384 if (ret < 0) { 4385 if (!cache_block_group_error) 4386 cache_block_group_error = ret; 4387 ret = 0; 4388 goto loop; 4389 } 4390 ret = 0; 4391 } 4392 4393 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4394 if (!cache_block_group_error) 4395 cache_block_group_error = -EIO; 4396 goto loop; 4397 } 4398 4399 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4400 goto loop; 4401 4402 bg_ret = NULL; 4403 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4404 if (ret > 0) 4405 goto loop; 4406 4407 if (bg_ret && bg_ret != block_group) { 4408 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4409 block_group = bg_ret; 4410 } 4411 4412 /* Checks */ 4413 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4414 fs_info->stripesize); 4415 4416 /* move on to the next group */ 4417 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4418 block_group->start + block_group->length) { 4419 btrfs_add_free_space_unused(block_group, 4420 ffe_ctl->found_offset, 4421 ffe_ctl->num_bytes); 4422 goto loop; 4423 } 4424 4425 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4426 btrfs_add_free_space_unused(block_group, 4427 ffe_ctl->found_offset, 4428 ffe_ctl->search_start - ffe_ctl->found_offset); 4429 4430 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4431 ffe_ctl->num_bytes, 4432 ffe_ctl->delalloc, 4433 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4434 if (ret == -EAGAIN) { 4435 btrfs_add_free_space_unused(block_group, 4436 ffe_ctl->found_offset, 4437 ffe_ctl->num_bytes); 4438 goto loop; 4439 } 4440 btrfs_inc_block_group_reservations(block_group); 4441 4442 /* we are all good, lets return */ 4443 ins->objectid = ffe_ctl->search_start; 4444 ins->offset = ffe_ctl->num_bytes; 4445 4446 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4447 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4448 break; 4449 loop: 4450 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4451 !ffe_ctl->retry_uncached) { 4452 ffe_ctl->retry_uncached = true; 4453 btrfs_wait_block_group_cache_progress(block_group, 4454 ffe_ctl->num_bytes + 4455 ffe_ctl->empty_cluster + 4456 ffe_ctl->empty_size); 4457 goto have_block_group; 4458 } 4459 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4460 cond_resched(); 4461 } 4462 up_read(&space_info->groups_sem); 4463 4464 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4465 if (ret > 0) 4466 goto search; 4467 4468 if (ret == -ENOSPC && !cache_block_group_error) { 4469 /* 4470 * Use ffe_ctl->total_free_space as fallback if we can't find 4471 * any contiguous hole. 4472 */ 4473 if (!ffe_ctl->max_extent_size) 4474 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4475 spin_lock(&space_info->lock); 4476 space_info->max_extent_size = ffe_ctl->max_extent_size; 4477 spin_unlock(&space_info->lock); 4478 ins->offset = ffe_ctl->max_extent_size; 4479 } else if (ret == -ENOSPC) { 4480 ret = cache_block_group_error; 4481 } 4482 return ret; 4483 } 4484 4485 /* 4486 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4487 * hole that is at least as big as @num_bytes. 4488 * 4489 * @root - The root that will contain this extent 4490 * 4491 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4492 * is used for accounting purposes. This value differs 4493 * from @num_bytes only in the case of compressed extents. 4494 * 4495 * @num_bytes - Number of bytes to allocate on-disk. 4496 * 4497 * @min_alloc_size - Indicates the minimum amount of space that the 4498 * allocator should try to satisfy. In some cases 4499 * @num_bytes may be larger than what is required and if 4500 * the filesystem is fragmented then allocation fails. 4501 * However, the presence of @min_alloc_size gives a 4502 * chance to try and satisfy the smaller allocation. 4503 * 4504 * @empty_size - A hint that you plan on doing more COW. This is the 4505 * size in bytes the allocator should try to find free 4506 * next to the block it returns. This is just a hint and 4507 * may be ignored by the allocator. 4508 * 4509 * @hint_byte - Hint to the allocator to start searching above the byte 4510 * address passed. It might be ignored. 4511 * 4512 * @ins - This key is modified to record the found hole. It will 4513 * have the following values: 4514 * ins->objectid == start position 4515 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4516 * ins->offset == the size of the hole. 4517 * 4518 * @is_data - Boolean flag indicating whether an extent is 4519 * allocated for data (true) or metadata (false) 4520 * 4521 * @delalloc - Boolean flag indicating whether this allocation is for 4522 * delalloc or not. If 'true' data_rwsem of block groups 4523 * is going to be acquired. 4524 * 4525 * 4526 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4527 * case -ENOSPC is returned then @ins->offset will contain the size of the 4528 * largest available hole the allocator managed to find. 4529 */ 4530 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4531 u64 num_bytes, u64 min_alloc_size, 4532 u64 empty_size, u64 hint_byte, 4533 struct btrfs_key *ins, int is_data, int delalloc) 4534 { 4535 struct btrfs_fs_info *fs_info = root->fs_info; 4536 struct find_free_extent_ctl ffe_ctl = {}; 4537 bool final_tried = num_bytes == min_alloc_size; 4538 u64 flags; 4539 int ret; 4540 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4541 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4542 4543 flags = get_alloc_profile_by_root(root, is_data); 4544 again: 4545 WARN_ON(num_bytes < fs_info->sectorsize); 4546 4547 ffe_ctl.ram_bytes = ram_bytes; 4548 ffe_ctl.num_bytes = num_bytes; 4549 ffe_ctl.min_alloc_size = min_alloc_size; 4550 ffe_ctl.empty_size = empty_size; 4551 ffe_ctl.flags = flags; 4552 ffe_ctl.delalloc = delalloc; 4553 ffe_ctl.hint_byte = hint_byte; 4554 ffe_ctl.for_treelog = for_treelog; 4555 ffe_ctl.for_data_reloc = for_data_reloc; 4556 4557 ret = find_free_extent(root, ins, &ffe_ctl); 4558 if (!ret && !is_data) { 4559 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4560 } else if (ret == -ENOSPC) { 4561 if (!final_tried && ins->offset) { 4562 num_bytes = min(num_bytes >> 1, ins->offset); 4563 num_bytes = round_down(num_bytes, 4564 fs_info->sectorsize); 4565 num_bytes = max(num_bytes, min_alloc_size); 4566 ram_bytes = num_bytes; 4567 if (num_bytes == min_alloc_size) 4568 final_tried = true; 4569 goto again; 4570 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4571 struct btrfs_space_info *sinfo; 4572 4573 sinfo = btrfs_find_space_info(fs_info, flags); 4574 btrfs_err(fs_info, 4575 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4576 flags, num_bytes, for_treelog, for_data_reloc); 4577 if (sinfo) 4578 btrfs_dump_space_info(fs_info, sinfo, 4579 num_bytes, 1); 4580 } 4581 } 4582 4583 return ret; 4584 } 4585 4586 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4587 u64 start, u64 len, int delalloc) 4588 { 4589 struct btrfs_block_group *cache; 4590 4591 cache = btrfs_lookup_block_group(fs_info, start); 4592 if (!cache) { 4593 btrfs_err(fs_info, "Unable to find block group for %llu", 4594 start); 4595 return -ENOSPC; 4596 } 4597 4598 btrfs_add_free_space(cache, start, len); 4599 btrfs_free_reserved_bytes(cache, len, delalloc); 4600 trace_btrfs_reserved_extent_free(fs_info, start, len); 4601 4602 btrfs_put_block_group(cache); 4603 return 0; 4604 } 4605 4606 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4607 u64 len) 4608 { 4609 struct btrfs_block_group *cache; 4610 int ret = 0; 4611 4612 cache = btrfs_lookup_block_group(trans->fs_info, start); 4613 if (!cache) { 4614 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4615 start); 4616 return -ENOSPC; 4617 } 4618 4619 ret = pin_down_extent(trans, cache, start, len, 1); 4620 btrfs_put_block_group(cache); 4621 return ret; 4622 } 4623 4624 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4625 u64 num_bytes) 4626 { 4627 struct btrfs_fs_info *fs_info = trans->fs_info; 4628 int ret; 4629 4630 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4631 if (ret) 4632 return ret; 4633 4634 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4635 if (ret) { 4636 ASSERT(!ret); 4637 btrfs_err(fs_info, "update block group failed for %llu %llu", 4638 bytenr, num_bytes); 4639 return ret; 4640 } 4641 4642 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4643 return 0; 4644 } 4645 4646 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4647 u64 parent, u64 root_objectid, 4648 u64 flags, u64 owner, u64 offset, 4649 struct btrfs_key *ins, int ref_mod) 4650 { 4651 struct btrfs_fs_info *fs_info = trans->fs_info; 4652 struct btrfs_root *extent_root; 4653 int ret; 4654 struct btrfs_extent_item *extent_item; 4655 struct btrfs_extent_inline_ref *iref; 4656 struct btrfs_path *path; 4657 struct extent_buffer *leaf; 4658 int type; 4659 u32 size; 4660 4661 if (parent > 0) 4662 type = BTRFS_SHARED_DATA_REF_KEY; 4663 else 4664 type = BTRFS_EXTENT_DATA_REF_KEY; 4665 4666 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4667 4668 path = btrfs_alloc_path(); 4669 if (!path) 4670 return -ENOMEM; 4671 4672 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4673 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4674 if (ret) { 4675 btrfs_free_path(path); 4676 return ret; 4677 } 4678 4679 leaf = path->nodes[0]; 4680 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4681 struct btrfs_extent_item); 4682 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4683 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4684 btrfs_set_extent_flags(leaf, extent_item, 4685 flags | BTRFS_EXTENT_FLAG_DATA); 4686 4687 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4688 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4689 if (parent > 0) { 4690 struct btrfs_shared_data_ref *ref; 4691 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4692 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4693 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4694 } else { 4695 struct btrfs_extent_data_ref *ref; 4696 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4697 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4698 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4699 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4700 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4701 } 4702 4703 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4704 btrfs_free_path(path); 4705 4706 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4707 } 4708 4709 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4710 struct btrfs_delayed_ref_node *node, 4711 struct btrfs_delayed_extent_op *extent_op) 4712 { 4713 struct btrfs_fs_info *fs_info = trans->fs_info; 4714 struct btrfs_root *extent_root; 4715 int ret; 4716 struct btrfs_extent_item *extent_item; 4717 struct btrfs_key extent_key; 4718 struct btrfs_tree_block_info *block_info; 4719 struct btrfs_extent_inline_ref *iref; 4720 struct btrfs_path *path; 4721 struct extent_buffer *leaf; 4722 struct btrfs_delayed_tree_ref *ref; 4723 u32 size = sizeof(*extent_item) + sizeof(*iref); 4724 u64 flags = extent_op->flags_to_set; 4725 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4726 4727 ref = btrfs_delayed_node_to_tree_ref(node); 4728 4729 extent_key.objectid = node->bytenr; 4730 if (skinny_metadata) { 4731 extent_key.offset = ref->level; 4732 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4733 } else { 4734 extent_key.offset = node->num_bytes; 4735 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4736 size += sizeof(*block_info); 4737 } 4738 4739 path = btrfs_alloc_path(); 4740 if (!path) 4741 return -ENOMEM; 4742 4743 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4744 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4745 size); 4746 if (ret) { 4747 btrfs_free_path(path); 4748 return ret; 4749 } 4750 4751 leaf = path->nodes[0]; 4752 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4753 struct btrfs_extent_item); 4754 btrfs_set_extent_refs(leaf, extent_item, 1); 4755 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4756 btrfs_set_extent_flags(leaf, extent_item, 4757 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4758 4759 if (skinny_metadata) { 4760 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4761 } else { 4762 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4763 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4764 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4765 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4766 } 4767 4768 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4769 btrfs_set_extent_inline_ref_type(leaf, iref, 4770 BTRFS_SHARED_BLOCK_REF_KEY); 4771 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4772 } else { 4773 btrfs_set_extent_inline_ref_type(leaf, iref, 4774 BTRFS_TREE_BLOCK_REF_KEY); 4775 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4776 } 4777 4778 btrfs_mark_buffer_dirty(trans, leaf); 4779 btrfs_free_path(path); 4780 4781 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4782 } 4783 4784 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4785 struct btrfs_root *root, u64 owner, 4786 u64 offset, u64 ram_bytes, 4787 struct btrfs_key *ins) 4788 { 4789 struct btrfs_ref generic_ref = { 0 }; 4790 4791 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4792 4793 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4794 ins->objectid, ins->offset, 0); 4795 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4796 offset, 0, false); 4797 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4798 4799 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4800 } 4801 4802 /* 4803 * this is used by the tree logging recovery code. It records that 4804 * an extent has been allocated and makes sure to clear the free 4805 * space cache bits as well 4806 */ 4807 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4808 u64 root_objectid, u64 owner, u64 offset, 4809 struct btrfs_key *ins) 4810 { 4811 struct btrfs_fs_info *fs_info = trans->fs_info; 4812 int ret; 4813 struct btrfs_block_group *block_group; 4814 struct btrfs_space_info *space_info; 4815 4816 /* 4817 * Mixed block groups will exclude before processing the log so we only 4818 * need to do the exclude dance if this fs isn't mixed. 4819 */ 4820 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4821 ret = __exclude_logged_extent(fs_info, ins->objectid, 4822 ins->offset); 4823 if (ret) 4824 return ret; 4825 } 4826 4827 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4828 if (!block_group) 4829 return -EINVAL; 4830 4831 space_info = block_group->space_info; 4832 spin_lock(&space_info->lock); 4833 spin_lock(&block_group->lock); 4834 space_info->bytes_reserved += ins->offset; 4835 block_group->reserved += ins->offset; 4836 spin_unlock(&block_group->lock); 4837 spin_unlock(&space_info->lock); 4838 4839 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4840 offset, ins, 1); 4841 if (ret) 4842 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4843 btrfs_put_block_group(block_group); 4844 return ret; 4845 } 4846 4847 static struct extent_buffer * 4848 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4849 u64 bytenr, int level, u64 owner, 4850 enum btrfs_lock_nesting nest) 4851 { 4852 struct btrfs_fs_info *fs_info = root->fs_info; 4853 struct extent_buffer *buf; 4854 u64 lockdep_owner = owner; 4855 4856 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4857 if (IS_ERR(buf)) 4858 return buf; 4859 4860 /* 4861 * Extra safety check in case the extent tree is corrupted and extent 4862 * allocator chooses to use a tree block which is already used and 4863 * locked. 4864 */ 4865 if (buf->lock_owner == current->pid) { 4866 btrfs_err_rl(fs_info, 4867 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4868 buf->start, btrfs_header_owner(buf), current->pid); 4869 free_extent_buffer(buf); 4870 return ERR_PTR(-EUCLEAN); 4871 } 4872 4873 /* 4874 * The reloc trees are just snapshots, so we need them to appear to be 4875 * just like any other fs tree WRT lockdep. 4876 * 4877 * The exception however is in replace_path() in relocation, where we 4878 * hold the lock on the original fs root and then search for the reloc 4879 * root. At that point we need to make sure any reloc root buffers are 4880 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4881 * lockdep happy. 4882 */ 4883 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4884 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4885 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4886 4887 /* btrfs_clear_buffer_dirty() accesses generation field. */ 4888 btrfs_set_header_generation(buf, trans->transid); 4889 4890 /* 4891 * This needs to stay, because we could allocate a freed block from an 4892 * old tree into a new tree, so we need to make sure this new block is 4893 * set to the appropriate level and owner. 4894 */ 4895 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4896 4897 __btrfs_tree_lock(buf, nest); 4898 btrfs_clear_buffer_dirty(trans, buf); 4899 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4900 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4901 4902 set_extent_buffer_uptodate(buf); 4903 4904 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4905 btrfs_set_header_level(buf, level); 4906 btrfs_set_header_bytenr(buf, buf->start); 4907 btrfs_set_header_generation(buf, trans->transid); 4908 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4909 btrfs_set_header_owner(buf, owner); 4910 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4911 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4912 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4913 buf->log_index = root->log_transid % 2; 4914 /* 4915 * we allow two log transactions at a time, use different 4916 * EXTENT bit to differentiate dirty pages. 4917 */ 4918 if (buf->log_index == 0) 4919 set_extent_bit(&root->dirty_log_pages, buf->start, 4920 buf->start + buf->len - 1, 4921 EXTENT_DIRTY, NULL); 4922 else 4923 set_extent_bit(&root->dirty_log_pages, buf->start, 4924 buf->start + buf->len - 1, 4925 EXTENT_NEW, NULL); 4926 } else { 4927 buf->log_index = -1; 4928 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 4929 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 4930 } 4931 /* this returns a buffer locked for blocking */ 4932 return buf; 4933 } 4934 4935 /* 4936 * finds a free extent and does all the dirty work required for allocation 4937 * returns the tree buffer or an ERR_PTR on error. 4938 */ 4939 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4940 struct btrfs_root *root, 4941 u64 parent, u64 root_objectid, 4942 const struct btrfs_disk_key *key, 4943 int level, u64 hint, 4944 u64 empty_size, 4945 enum btrfs_lock_nesting nest) 4946 { 4947 struct btrfs_fs_info *fs_info = root->fs_info; 4948 struct btrfs_key ins; 4949 struct btrfs_block_rsv *block_rsv; 4950 struct extent_buffer *buf; 4951 struct btrfs_delayed_extent_op *extent_op; 4952 struct btrfs_ref generic_ref = { 0 }; 4953 u64 flags = 0; 4954 int ret; 4955 u32 blocksize = fs_info->nodesize; 4956 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4957 4958 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4959 if (btrfs_is_testing(fs_info)) { 4960 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4961 level, root_objectid, nest); 4962 if (!IS_ERR(buf)) 4963 root->alloc_bytenr += blocksize; 4964 return buf; 4965 } 4966 #endif 4967 4968 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4969 if (IS_ERR(block_rsv)) 4970 return ERR_CAST(block_rsv); 4971 4972 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4973 empty_size, hint, &ins, 0, 0); 4974 if (ret) 4975 goto out_unuse; 4976 4977 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4978 root_objectid, nest); 4979 if (IS_ERR(buf)) { 4980 ret = PTR_ERR(buf); 4981 goto out_free_reserved; 4982 } 4983 4984 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4985 if (parent == 0) 4986 parent = ins.objectid; 4987 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4988 } else 4989 BUG_ON(parent > 0); 4990 4991 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4992 extent_op = btrfs_alloc_delayed_extent_op(); 4993 if (!extent_op) { 4994 ret = -ENOMEM; 4995 goto out_free_buf; 4996 } 4997 if (key) 4998 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4999 else 5000 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5001 extent_op->flags_to_set = flags; 5002 extent_op->update_key = skinny_metadata ? false : true; 5003 extent_op->update_flags = true; 5004 extent_op->level = level; 5005 5006 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5007 ins.objectid, ins.offset, parent); 5008 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5009 root->root_key.objectid, false); 5010 btrfs_ref_tree_mod(fs_info, &generic_ref); 5011 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5012 if (ret) 5013 goto out_free_delayed; 5014 } 5015 return buf; 5016 5017 out_free_delayed: 5018 btrfs_free_delayed_extent_op(extent_op); 5019 out_free_buf: 5020 btrfs_tree_unlock(buf); 5021 free_extent_buffer(buf); 5022 out_free_reserved: 5023 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5024 out_unuse: 5025 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5026 return ERR_PTR(ret); 5027 } 5028 5029 struct walk_control { 5030 u64 refs[BTRFS_MAX_LEVEL]; 5031 u64 flags[BTRFS_MAX_LEVEL]; 5032 struct btrfs_key update_progress; 5033 struct btrfs_key drop_progress; 5034 int drop_level; 5035 int stage; 5036 int level; 5037 int shared_level; 5038 int update_ref; 5039 int keep_locks; 5040 int reada_slot; 5041 int reada_count; 5042 int restarted; 5043 }; 5044 5045 #define DROP_REFERENCE 1 5046 #define UPDATE_BACKREF 2 5047 5048 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5049 struct btrfs_root *root, 5050 struct walk_control *wc, 5051 struct btrfs_path *path) 5052 { 5053 struct btrfs_fs_info *fs_info = root->fs_info; 5054 u64 bytenr; 5055 u64 generation; 5056 u64 refs; 5057 u64 flags; 5058 u32 nritems; 5059 struct btrfs_key key; 5060 struct extent_buffer *eb; 5061 int ret; 5062 int slot; 5063 int nread = 0; 5064 5065 if (path->slots[wc->level] < wc->reada_slot) { 5066 wc->reada_count = wc->reada_count * 2 / 3; 5067 wc->reada_count = max(wc->reada_count, 2); 5068 } else { 5069 wc->reada_count = wc->reada_count * 3 / 2; 5070 wc->reada_count = min_t(int, wc->reada_count, 5071 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5072 } 5073 5074 eb = path->nodes[wc->level]; 5075 nritems = btrfs_header_nritems(eb); 5076 5077 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5078 if (nread >= wc->reada_count) 5079 break; 5080 5081 cond_resched(); 5082 bytenr = btrfs_node_blockptr(eb, slot); 5083 generation = btrfs_node_ptr_generation(eb, slot); 5084 5085 if (slot == path->slots[wc->level]) 5086 goto reada; 5087 5088 if (wc->stage == UPDATE_BACKREF && 5089 generation <= root->root_key.offset) 5090 continue; 5091 5092 /* We don't lock the tree block, it's OK to be racy here */ 5093 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5094 wc->level - 1, 1, &refs, 5095 &flags); 5096 /* We don't care about errors in readahead. */ 5097 if (ret < 0) 5098 continue; 5099 5100 /* 5101 * This could be racey, it's conceivable that we raced and end 5102 * up with a bogus refs count, if that's the case just skip, if 5103 * we are actually corrupt we will notice when we look up 5104 * everything again with our locks. 5105 */ 5106 if (refs == 0) 5107 continue; 5108 5109 if (wc->stage == DROP_REFERENCE) { 5110 if (refs == 1) 5111 goto reada; 5112 5113 if (wc->level == 1 && 5114 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5115 continue; 5116 if (!wc->update_ref || 5117 generation <= root->root_key.offset) 5118 continue; 5119 btrfs_node_key_to_cpu(eb, &key, slot); 5120 ret = btrfs_comp_cpu_keys(&key, 5121 &wc->update_progress); 5122 if (ret < 0) 5123 continue; 5124 } else { 5125 if (wc->level == 1 && 5126 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5127 continue; 5128 } 5129 reada: 5130 btrfs_readahead_node_child(eb, slot); 5131 nread++; 5132 } 5133 wc->reada_slot = slot; 5134 } 5135 5136 /* 5137 * helper to process tree block while walking down the tree. 5138 * 5139 * when wc->stage == UPDATE_BACKREF, this function updates 5140 * back refs for pointers in the block. 5141 * 5142 * NOTE: return value 1 means we should stop walking down. 5143 */ 5144 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5145 struct btrfs_root *root, 5146 struct btrfs_path *path, 5147 struct walk_control *wc, int lookup_info) 5148 { 5149 struct btrfs_fs_info *fs_info = root->fs_info; 5150 int level = wc->level; 5151 struct extent_buffer *eb = path->nodes[level]; 5152 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5153 int ret; 5154 5155 if (wc->stage == UPDATE_BACKREF && 5156 btrfs_header_owner(eb) != root->root_key.objectid) 5157 return 1; 5158 5159 /* 5160 * when reference count of tree block is 1, it won't increase 5161 * again. once full backref flag is set, we never clear it. 5162 */ 5163 if (lookup_info && 5164 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5165 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5166 ASSERT(path->locks[level]); 5167 ret = btrfs_lookup_extent_info(trans, fs_info, 5168 eb->start, level, 1, 5169 &wc->refs[level], 5170 &wc->flags[level]); 5171 BUG_ON(ret == -ENOMEM); 5172 if (ret) 5173 return ret; 5174 if (unlikely(wc->refs[level] == 0)) { 5175 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5176 eb->start); 5177 return -EUCLEAN; 5178 } 5179 } 5180 5181 if (wc->stage == DROP_REFERENCE) { 5182 if (wc->refs[level] > 1) 5183 return 1; 5184 5185 if (path->locks[level] && !wc->keep_locks) { 5186 btrfs_tree_unlock_rw(eb, path->locks[level]); 5187 path->locks[level] = 0; 5188 } 5189 return 0; 5190 } 5191 5192 /* wc->stage == UPDATE_BACKREF */ 5193 if (!(wc->flags[level] & flag)) { 5194 ASSERT(path->locks[level]); 5195 ret = btrfs_inc_ref(trans, root, eb, 1); 5196 BUG_ON(ret); /* -ENOMEM */ 5197 ret = btrfs_dec_ref(trans, root, eb, 0); 5198 BUG_ON(ret); /* -ENOMEM */ 5199 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5200 BUG_ON(ret); /* -ENOMEM */ 5201 wc->flags[level] |= flag; 5202 } 5203 5204 /* 5205 * the block is shared by multiple trees, so it's not good to 5206 * keep the tree lock 5207 */ 5208 if (path->locks[level] && level > 0) { 5209 btrfs_tree_unlock_rw(eb, path->locks[level]); 5210 path->locks[level] = 0; 5211 } 5212 return 0; 5213 } 5214 5215 /* 5216 * This is used to verify a ref exists for this root to deal with a bug where we 5217 * would have a drop_progress key that hadn't been updated properly. 5218 */ 5219 static int check_ref_exists(struct btrfs_trans_handle *trans, 5220 struct btrfs_root *root, u64 bytenr, u64 parent, 5221 int level) 5222 { 5223 struct btrfs_path *path; 5224 struct btrfs_extent_inline_ref *iref; 5225 int ret; 5226 5227 path = btrfs_alloc_path(); 5228 if (!path) 5229 return -ENOMEM; 5230 5231 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5232 root->fs_info->nodesize, parent, 5233 root->root_key.objectid, level, 0); 5234 btrfs_free_path(path); 5235 if (ret == -ENOENT) 5236 return 0; 5237 if (ret < 0) 5238 return ret; 5239 return 1; 5240 } 5241 5242 /* 5243 * helper to process tree block pointer. 5244 * 5245 * when wc->stage == DROP_REFERENCE, this function checks 5246 * reference count of the block pointed to. if the block 5247 * is shared and we need update back refs for the subtree 5248 * rooted at the block, this function changes wc->stage to 5249 * UPDATE_BACKREF. if the block is shared and there is no 5250 * need to update back, this function drops the reference 5251 * to the block. 5252 * 5253 * NOTE: return value 1 means we should stop walking down. 5254 */ 5255 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5256 struct btrfs_root *root, 5257 struct btrfs_path *path, 5258 struct walk_control *wc, int *lookup_info) 5259 { 5260 struct btrfs_fs_info *fs_info = root->fs_info; 5261 u64 bytenr; 5262 u64 generation; 5263 u64 parent; 5264 struct btrfs_tree_parent_check check = { 0 }; 5265 struct btrfs_key key; 5266 struct btrfs_ref ref = { 0 }; 5267 struct extent_buffer *next; 5268 int level = wc->level; 5269 int reada = 0; 5270 int ret = 0; 5271 bool need_account = false; 5272 5273 generation = btrfs_node_ptr_generation(path->nodes[level], 5274 path->slots[level]); 5275 /* 5276 * if the lower level block was created before the snapshot 5277 * was created, we know there is no need to update back refs 5278 * for the subtree 5279 */ 5280 if (wc->stage == UPDATE_BACKREF && 5281 generation <= root->root_key.offset) { 5282 *lookup_info = 1; 5283 return 1; 5284 } 5285 5286 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5287 5288 check.level = level - 1; 5289 check.transid = generation; 5290 check.owner_root = root->root_key.objectid; 5291 check.has_first_key = true; 5292 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5293 path->slots[level]); 5294 5295 next = find_extent_buffer(fs_info, bytenr); 5296 if (!next) { 5297 next = btrfs_find_create_tree_block(fs_info, bytenr, 5298 root->root_key.objectid, level - 1); 5299 if (IS_ERR(next)) 5300 return PTR_ERR(next); 5301 reada = 1; 5302 } 5303 btrfs_tree_lock(next); 5304 5305 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5306 &wc->refs[level - 1], 5307 &wc->flags[level - 1]); 5308 if (ret < 0) 5309 goto out_unlock; 5310 5311 if (unlikely(wc->refs[level - 1] == 0)) { 5312 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5313 bytenr); 5314 ret = -EUCLEAN; 5315 goto out_unlock; 5316 } 5317 *lookup_info = 0; 5318 5319 if (wc->stage == DROP_REFERENCE) { 5320 if (wc->refs[level - 1] > 1) { 5321 need_account = true; 5322 if (level == 1 && 5323 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5324 goto skip; 5325 5326 if (!wc->update_ref || 5327 generation <= root->root_key.offset) 5328 goto skip; 5329 5330 btrfs_node_key_to_cpu(path->nodes[level], &key, 5331 path->slots[level]); 5332 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5333 if (ret < 0) 5334 goto skip; 5335 5336 wc->stage = UPDATE_BACKREF; 5337 wc->shared_level = level - 1; 5338 } 5339 } else { 5340 if (level == 1 && 5341 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5342 goto skip; 5343 } 5344 5345 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5346 btrfs_tree_unlock(next); 5347 free_extent_buffer(next); 5348 next = NULL; 5349 *lookup_info = 1; 5350 } 5351 5352 if (!next) { 5353 if (reada && level == 1) 5354 reada_walk_down(trans, root, wc, path); 5355 next = read_tree_block(fs_info, bytenr, &check); 5356 if (IS_ERR(next)) { 5357 return PTR_ERR(next); 5358 } else if (!extent_buffer_uptodate(next)) { 5359 free_extent_buffer(next); 5360 return -EIO; 5361 } 5362 btrfs_tree_lock(next); 5363 } 5364 5365 level--; 5366 ASSERT(level == btrfs_header_level(next)); 5367 if (level != btrfs_header_level(next)) { 5368 btrfs_err(root->fs_info, "mismatched level"); 5369 ret = -EIO; 5370 goto out_unlock; 5371 } 5372 path->nodes[level] = next; 5373 path->slots[level] = 0; 5374 path->locks[level] = BTRFS_WRITE_LOCK; 5375 wc->level = level; 5376 if (wc->level == 1) 5377 wc->reada_slot = 0; 5378 return 0; 5379 skip: 5380 wc->refs[level - 1] = 0; 5381 wc->flags[level - 1] = 0; 5382 if (wc->stage == DROP_REFERENCE) { 5383 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5384 parent = path->nodes[level]->start; 5385 } else { 5386 ASSERT(root->root_key.objectid == 5387 btrfs_header_owner(path->nodes[level])); 5388 if (root->root_key.objectid != 5389 btrfs_header_owner(path->nodes[level])) { 5390 btrfs_err(root->fs_info, 5391 "mismatched block owner"); 5392 ret = -EIO; 5393 goto out_unlock; 5394 } 5395 parent = 0; 5396 } 5397 5398 /* 5399 * If we had a drop_progress we need to verify the refs are set 5400 * as expected. If we find our ref then we know that from here 5401 * on out everything should be correct, and we can clear the 5402 * ->restarted flag. 5403 */ 5404 if (wc->restarted) { 5405 ret = check_ref_exists(trans, root, bytenr, parent, 5406 level - 1); 5407 if (ret < 0) 5408 goto out_unlock; 5409 if (ret == 0) 5410 goto no_delete; 5411 ret = 0; 5412 wc->restarted = 0; 5413 } 5414 5415 /* 5416 * Reloc tree doesn't contribute to qgroup numbers, and we have 5417 * already accounted them at merge time (replace_path), 5418 * thus we could skip expensive subtree trace here. 5419 */ 5420 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5421 need_account) { 5422 ret = btrfs_qgroup_trace_subtree(trans, next, 5423 generation, level - 1); 5424 if (ret) { 5425 btrfs_err_rl(fs_info, 5426 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5427 ret); 5428 } 5429 } 5430 5431 /* 5432 * We need to update the next key in our walk control so we can 5433 * update the drop_progress key accordingly. We don't care if 5434 * find_next_key doesn't find a key because that means we're at 5435 * the end and are going to clean up now. 5436 */ 5437 wc->drop_level = level; 5438 find_next_key(path, level, &wc->drop_progress); 5439 5440 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5441 fs_info->nodesize, parent); 5442 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5443 0, false); 5444 ret = btrfs_free_extent(trans, &ref); 5445 if (ret) 5446 goto out_unlock; 5447 } 5448 no_delete: 5449 *lookup_info = 1; 5450 ret = 1; 5451 5452 out_unlock: 5453 btrfs_tree_unlock(next); 5454 free_extent_buffer(next); 5455 5456 return ret; 5457 } 5458 5459 /* 5460 * helper to process tree block while walking up the tree. 5461 * 5462 * when wc->stage == DROP_REFERENCE, this function drops 5463 * reference count on the block. 5464 * 5465 * when wc->stage == UPDATE_BACKREF, this function changes 5466 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5467 * to UPDATE_BACKREF previously while processing the block. 5468 * 5469 * NOTE: return value 1 means we should stop walking up. 5470 */ 5471 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5472 struct btrfs_root *root, 5473 struct btrfs_path *path, 5474 struct walk_control *wc) 5475 { 5476 struct btrfs_fs_info *fs_info = root->fs_info; 5477 int ret; 5478 int level = wc->level; 5479 struct extent_buffer *eb = path->nodes[level]; 5480 u64 parent = 0; 5481 5482 if (wc->stage == UPDATE_BACKREF) { 5483 BUG_ON(wc->shared_level < level); 5484 if (level < wc->shared_level) 5485 goto out; 5486 5487 ret = find_next_key(path, level + 1, &wc->update_progress); 5488 if (ret > 0) 5489 wc->update_ref = 0; 5490 5491 wc->stage = DROP_REFERENCE; 5492 wc->shared_level = -1; 5493 path->slots[level] = 0; 5494 5495 /* 5496 * check reference count again if the block isn't locked. 5497 * we should start walking down the tree again if reference 5498 * count is one. 5499 */ 5500 if (!path->locks[level]) { 5501 BUG_ON(level == 0); 5502 btrfs_tree_lock(eb); 5503 path->locks[level] = BTRFS_WRITE_LOCK; 5504 5505 ret = btrfs_lookup_extent_info(trans, fs_info, 5506 eb->start, level, 1, 5507 &wc->refs[level], 5508 &wc->flags[level]); 5509 if (ret < 0) { 5510 btrfs_tree_unlock_rw(eb, path->locks[level]); 5511 path->locks[level] = 0; 5512 return ret; 5513 } 5514 if (unlikely(wc->refs[level] == 0)) { 5515 btrfs_tree_unlock_rw(eb, path->locks[level]); 5516 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5517 eb->start); 5518 return -EUCLEAN; 5519 } 5520 if (wc->refs[level] == 1) { 5521 btrfs_tree_unlock_rw(eb, path->locks[level]); 5522 path->locks[level] = 0; 5523 return 1; 5524 } 5525 } 5526 } 5527 5528 /* wc->stage == DROP_REFERENCE */ 5529 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5530 5531 if (wc->refs[level] == 1) { 5532 if (level == 0) { 5533 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5534 ret = btrfs_dec_ref(trans, root, eb, 1); 5535 else 5536 ret = btrfs_dec_ref(trans, root, eb, 0); 5537 BUG_ON(ret); /* -ENOMEM */ 5538 if (is_fstree(root->root_key.objectid)) { 5539 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5540 if (ret) { 5541 btrfs_err_rl(fs_info, 5542 "error %d accounting leaf items, quota is out of sync, rescan required", 5543 ret); 5544 } 5545 } 5546 } 5547 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5548 if (!path->locks[level]) { 5549 btrfs_tree_lock(eb); 5550 path->locks[level] = BTRFS_WRITE_LOCK; 5551 } 5552 btrfs_clear_buffer_dirty(trans, eb); 5553 } 5554 5555 if (eb == root->node) { 5556 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5557 parent = eb->start; 5558 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5559 goto owner_mismatch; 5560 } else { 5561 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5562 parent = path->nodes[level + 1]->start; 5563 else if (root->root_key.objectid != 5564 btrfs_header_owner(path->nodes[level + 1])) 5565 goto owner_mismatch; 5566 } 5567 5568 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5569 wc->refs[level] == 1); 5570 out: 5571 wc->refs[level] = 0; 5572 wc->flags[level] = 0; 5573 return 0; 5574 5575 owner_mismatch: 5576 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5577 btrfs_header_owner(eb), root->root_key.objectid); 5578 return -EUCLEAN; 5579 } 5580 5581 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5582 struct btrfs_root *root, 5583 struct btrfs_path *path, 5584 struct walk_control *wc) 5585 { 5586 int level = wc->level; 5587 int lookup_info = 1; 5588 int ret = 0; 5589 5590 while (level >= 0) { 5591 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5592 if (ret) 5593 break; 5594 5595 if (level == 0) 5596 break; 5597 5598 if (path->slots[level] >= 5599 btrfs_header_nritems(path->nodes[level])) 5600 break; 5601 5602 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5603 if (ret > 0) { 5604 path->slots[level]++; 5605 continue; 5606 } else if (ret < 0) 5607 break; 5608 level = wc->level; 5609 } 5610 return (ret == 1) ? 0 : ret; 5611 } 5612 5613 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5614 struct btrfs_root *root, 5615 struct btrfs_path *path, 5616 struct walk_control *wc, int max_level) 5617 { 5618 int level = wc->level; 5619 int ret; 5620 5621 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5622 while (level < max_level && path->nodes[level]) { 5623 wc->level = level; 5624 if (path->slots[level] + 1 < 5625 btrfs_header_nritems(path->nodes[level])) { 5626 path->slots[level]++; 5627 return 0; 5628 } else { 5629 ret = walk_up_proc(trans, root, path, wc); 5630 if (ret > 0) 5631 return 0; 5632 if (ret < 0) 5633 return ret; 5634 5635 if (path->locks[level]) { 5636 btrfs_tree_unlock_rw(path->nodes[level], 5637 path->locks[level]); 5638 path->locks[level] = 0; 5639 } 5640 free_extent_buffer(path->nodes[level]); 5641 path->nodes[level] = NULL; 5642 level++; 5643 } 5644 } 5645 return 1; 5646 } 5647 5648 /* 5649 * drop a subvolume tree. 5650 * 5651 * this function traverses the tree freeing any blocks that only 5652 * referenced by the tree. 5653 * 5654 * when a shared tree block is found. this function decreases its 5655 * reference count by one. if update_ref is true, this function 5656 * also make sure backrefs for the shared block and all lower level 5657 * blocks are properly updated. 5658 * 5659 * If called with for_reloc == 0, may exit early with -EAGAIN 5660 */ 5661 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5662 { 5663 const bool is_reloc_root = (root->root_key.objectid == 5664 BTRFS_TREE_RELOC_OBJECTID); 5665 struct btrfs_fs_info *fs_info = root->fs_info; 5666 struct btrfs_path *path; 5667 struct btrfs_trans_handle *trans; 5668 struct btrfs_root *tree_root = fs_info->tree_root; 5669 struct btrfs_root_item *root_item = &root->root_item; 5670 struct walk_control *wc; 5671 struct btrfs_key key; 5672 int err = 0; 5673 int ret; 5674 int level; 5675 bool root_dropped = false; 5676 bool unfinished_drop = false; 5677 5678 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5679 5680 path = btrfs_alloc_path(); 5681 if (!path) { 5682 err = -ENOMEM; 5683 goto out; 5684 } 5685 5686 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5687 if (!wc) { 5688 btrfs_free_path(path); 5689 err = -ENOMEM; 5690 goto out; 5691 } 5692 5693 /* 5694 * Use join to avoid potential EINTR from transaction start. See 5695 * wait_reserve_ticket and the whole reservation callchain. 5696 */ 5697 if (for_reloc) 5698 trans = btrfs_join_transaction(tree_root); 5699 else 5700 trans = btrfs_start_transaction(tree_root, 0); 5701 if (IS_ERR(trans)) { 5702 err = PTR_ERR(trans); 5703 goto out_free; 5704 } 5705 5706 err = btrfs_run_delayed_items(trans); 5707 if (err) 5708 goto out_end_trans; 5709 5710 /* 5711 * This will help us catch people modifying the fs tree while we're 5712 * dropping it. It is unsafe to mess with the fs tree while it's being 5713 * dropped as we unlock the root node and parent nodes as we walk down 5714 * the tree, assuming nothing will change. If something does change 5715 * then we'll have stale information and drop references to blocks we've 5716 * already dropped. 5717 */ 5718 set_bit(BTRFS_ROOT_DELETING, &root->state); 5719 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5720 5721 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5722 level = btrfs_header_level(root->node); 5723 path->nodes[level] = btrfs_lock_root_node(root); 5724 path->slots[level] = 0; 5725 path->locks[level] = BTRFS_WRITE_LOCK; 5726 memset(&wc->update_progress, 0, 5727 sizeof(wc->update_progress)); 5728 } else { 5729 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5730 memcpy(&wc->update_progress, &key, 5731 sizeof(wc->update_progress)); 5732 5733 level = btrfs_root_drop_level(root_item); 5734 BUG_ON(level == 0); 5735 path->lowest_level = level; 5736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5737 path->lowest_level = 0; 5738 if (ret < 0) { 5739 err = ret; 5740 goto out_end_trans; 5741 } 5742 WARN_ON(ret > 0); 5743 5744 /* 5745 * unlock our path, this is safe because only this 5746 * function is allowed to delete this snapshot 5747 */ 5748 btrfs_unlock_up_safe(path, 0); 5749 5750 level = btrfs_header_level(root->node); 5751 while (1) { 5752 btrfs_tree_lock(path->nodes[level]); 5753 path->locks[level] = BTRFS_WRITE_LOCK; 5754 5755 ret = btrfs_lookup_extent_info(trans, fs_info, 5756 path->nodes[level]->start, 5757 level, 1, &wc->refs[level], 5758 &wc->flags[level]); 5759 if (ret < 0) { 5760 err = ret; 5761 goto out_end_trans; 5762 } 5763 BUG_ON(wc->refs[level] == 0); 5764 5765 if (level == btrfs_root_drop_level(root_item)) 5766 break; 5767 5768 btrfs_tree_unlock(path->nodes[level]); 5769 path->locks[level] = 0; 5770 WARN_ON(wc->refs[level] != 1); 5771 level--; 5772 } 5773 } 5774 5775 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5776 wc->level = level; 5777 wc->shared_level = -1; 5778 wc->stage = DROP_REFERENCE; 5779 wc->update_ref = update_ref; 5780 wc->keep_locks = 0; 5781 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5782 5783 while (1) { 5784 5785 ret = walk_down_tree(trans, root, path, wc); 5786 if (ret < 0) { 5787 btrfs_abort_transaction(trans, ret); 5788 err = ret; 5789 break; 5790 } 5791 5792 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5793 if (ret < 0) { 5794 btrfs_abort_transaction(trans, ret); 5795 err = ret; 5796 break; 5797 } 5798 5799 if (ret > 0) { 5800 BUG_ON(wc->stage != DROP_REFERENCE); 5801 break; 5802 } 5803 5804 if (wc->stage == DROP_REFERENCE) { 5805 wc->drop_level = wc->level; 5806 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5807 &wc->drop_progress, 5808 path->slots[wc->drop_level]); 5809 } 5810 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5811 &wc->drop_progress); 5812 btrfs_set_root_drop_level(root_item, wc->drop_level); 5813 5814 BUG_ON(wc->level == 0); 5815 if (btrfs_should_end_transaction(trans) || 5816 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5817 ret = btrfs_update_root(trans, tree_root, 5818 &root->root_key, 5819 root_item); 5820 if (ret) { 5821 btrfs_abort_transaction(trans, ret); 5822 err = ret; 5823 goto out_end_trans; 5824 } 5825 5826 if (!is_reloc_root) 5827 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5828 5829 btrfs_end_transaction_throttle(trans); 5830 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5831 btrfs_debug(fs_info, 5832 "drop snapshot early exit"); 5833 err = -EAGAIN; 5834 goto out_free; 5835 } 5836 5837 /* 5838 * Use join to avoid potential EINTR from transaction 5839 * start. See wait_reserve_ticket and the whole 5840 * reservation callchain. 5841 */ 5842 if (for_reloc) 5843 trans = btrfs_join_transaction(tree_root); 5844 else 5845 trans = btrfs_start_transaction(tree_root, 0); 5846 if (IS_ERR(trans)) { 5847 err = PTR_ERR(trans); 5848 goto out_free; 5849 } 5850 } 5851 } 5852 btrfs_release_path(path); 5853 if (err) 5854 goto out_end_trans; 5855 5856 ret = btrfs_del_root(trans, &root->root_key); 5857 if (ret) { 5858 btrfs_abort_transaction(trans, ret); 5859 err = ret; 5860 goto out_end_trans; 5861 } 5862 5863 if (!is_reloc_root) { 5864 ret = btrfs_find_root(tree_root, &root->root_key, path, 5865 NULL, NULL); 5866 if (ret < 0) { 5867 btrfs_abort_transaction(trans, ret); 5868 err = ret; 5869 goto out_end_trans; 5870 } else if (ret > 0) { 5871 /* if we fail to delete the orphan item this time 5872 * around, it'll get picked up the next time. 5873 * 5874 * The most common failure here is just -ENOENT. 5875 */ 5876 btrfs_del_orphan_item(trans, tree_root, 5877 root->root_key.objectid); 5878 } 5879 } 5880 5881 /* 5882 * This subvolume is going to be completely dropped, and won't be 5883 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5884 * commit transaction time. So free it here manually. 5885 */ 5886 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5887 btrfs_qgroup_free_meta_all_pertrans(root); 5888 5889 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5890 btrfs_add_dropped_root(trans, root); 5891 else 5892 btrfs_put_root(root); 5893 root_dropped = true; 5894 out_end_trans: 5895 if (!is_reloc_root) 5896 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5897 5898 btrfs_end_transaction_throttle(trans); 5899 out_free: 5900 kfree(wc); 5901 btrfs_free_path(path); 5902 out: 5903 /* 5904 * We were an unfinished drop root, check to see if there are any 5905 * pending, and if not clear and wake up any waiters. 5906 */ 5907 if (!err && unfinished_drop) 5908 btrfs_maybe_wake_unfinished_drop(fs_info); 5909 5910 /* 5911 * So if we need to stop dropping the snapshot for whatever reason we 5912 * need to make sure to add it back to the dead root list so that we 5913 * keep trying to do the work later. This also cleans up roots if we 5914 * don't have it in the radix (like when we recover after a power fail 5915 * or unmount) so we don't leak memory. 5916 */ 5917 if (!for_reloc && !root_dropped) 5918 btrfs_add_dead_root(root); 5919 return err; 5920 } 5921 5922 /* 5923 * drop subtree rooted at tree block 'node'. 5924 * 5925 * NOTE: this function will unlock and release tree block 'node' 5926 * only used by relocation code 5927 */ 5928 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5929 struct btrfs_root *root, 5930 struct extent_buffer *node, 5931 struct extent_buffer *parent) 5932 { 5933 struct btrfs_fs_info *fs_info = root->fs_info; 5934 struct btrfs_path *path; 5935 struct walk_control *wc; 5936 int level; 5937 int parent_level; 5938 int ret = 0; 5939 int wret; 5940 5941 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5942 5943 path = btrfs_alloc_path(); 5944 if (!path) 5945 return -ENOMEM; 5946 5947 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5948 if (!wc) { 5949 btrfs_free_path(path); 5950 return -ENOMEM; 5951 } 5952 5953 btrfs_assert_tree_write_locked(parent); 5954 parent_level = btrfs_header_level(parent); 5955 atomic_inc(&parent->refs); 5956 path->nodes[parent_level] = parent; 5957 path->slots[parent_level] = btrfs_header_nritems(parent); 5958 5959 btrfs_assert_tree_write_locked(node); 5960 level = btrfs_header_level(node); 5961 path->nodes[level] = node; 5962 path->slots[level] = 0; 5963 path->locks[level] = BTRFS_WRITE_LOCK; 5964 5965 wc->refs[parent_level] = 1; 5966 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5967 wc->level = level; 5968 wc->shared_level = -1; 5969 wc->stage = DROP_REFERENCE; 5970 wc->update_ref = 0; 5971 wc->keep_locks = 1; 5972 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5973 5974 while (1) { 5975 wret = walk_down_tree(trans, root, path, wc); 5976 if (wret < 0) { 5977 ret = wret; 5978 break; 5979 } 5980 5981 wret = walk_up_tree(trans, root, path, wc, parent_level); 5982 if (wret < 0) 5983 ret = wret; 5984 if (wret != 0) 5985 break; 5986 } 5987 5988 kfree(wc); 5989 btrfs_free_path(path); 5990 return ret; 5991 } 5992 5993 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5994 u64 start, u64 end) 5995 { 5996 return unpin_extent_range(fs_info, start, end, false); 5997 } 5998 5999 /* 6000 * It used to be that old block groups would be left around forever. 6001 * Iterating over them would be enough to trim unused space. Since we 6002 * now automatically remove them, we also need to iterate over unallocated 6003 * space. 6004 * 6005 * We don't want a transaction for this since the discard may take a 6006 * substantial amount of time. We don't require that a transaction be 6007 * running, but we do need to take a running transaction into account 6008 * to ensure that we're not discarding chunks that were released or 6009 * allocated in the current transaction. 6010 * 6011 * Holding the chunks lock will prevent other threads from allocating 6012 * or releasing chunks, but it won't prevent a running transaction 6013 * from committing and releasing the memory that the pending chunks 6014 * list head uses. For that, we need to take a reference to the 6015 * transaction and hold the commit root sem. We only need to hold 6016 * it while performing the free space search since we have already 6017 * held back allocations. 6018 */ 6019 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6020 { 6021 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6022 int ret; 6023 6024 *trimmed = 0; 6025 6026 /* Discard not supported = nothing to do. */ 6027 if (!bdev_max_discard_sectors(device->bdev)) 6028 return 0; 6029 6030 /* Not writable = nothing to do. */ 6031 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6032 return 0; 6033 6034 /* No free space = nothing to do. */ 6035 if (device->total_bytes <= device->bytes_used) 6036 return 0; 6037 6038 ret = 0; 6039 6040 while (1) { 6041 struct btrfs_fs_info *fs_info = device->fs_info; 6042 u64 bytes; 6043 6044 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6045 if (ret) 6046 break; 6047 6048 find_first_clear_extent_bit(&device->alloc_state, start, 6049 &start, &end, 6050 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6051 6052 /* Check if there are any CHUNK_* bits left */ 6053 if (start > device->total_bytes) { 6054 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6055 btrfs_warn_in_rcu(fs_info, 6056 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6057 start, end - start + 1, 6058 btrfs_dev_name(device), 6059 device->total_bytes); 6060 mutex_unlock(&fs_info->chunk_mutex); 6061 ret = 0; 6062 break; 6063 } 6064 6065 /* Ensure we skip the reserved space on each device. */ 6066 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6067 6068 /* 6069 * If find_first_clear_extent_bit find a range that spans the 6070 * end of the device it will set end to -1, in this case it's up 6071 * to the caller to trim the value to the size of the device. 6072 */ 6073 end = min(end, device->total_bytes - 1); 6074 6075 len = end - start + 1; 6076 6077 /* We didn't find any extents */ 6078 if (!len) { 6079 mutex_unlock(&fs_info->chunk_mutex); 6080 ret = 0; 6081 break; 6082 } 6083 6084 ret = btrfs_issue_discard(device->bdev, start, len, 6085 &bytes); 6086 if (!ret) 6087 set_extent_bit(&device->alloc_state, start, 6088 start + bytes - 1, CHUNK_TRIMMED, NULL); 6089 mutex_unlock(&fs_info->chunk_mutex); 6090 6091 if (ret) 6092 break; 6093 6094 start += len; 6095 *trimmed += bytes; 6096 6097 if (fatal_signal_pending(current)) { 6098 ret = -ERESTARTSYS; 6099 break; 6100 } 6101 6102 cond_resched(); 6103 } 6104 6105 return ret; 6106 } 6107 6108 /* 6109 * Trim the whole filesystem by: 6110 * 1) trimming the free space in each block group 6111 * 2) trimming the unallocated space on each device 6112 * 6113 * This will also continue trimming even if a block group or device encounters 6114 * an error. The return value will be the last error, or 0 if nothing bad 6115 * happens. 6116 */ 6117 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6118 { 6119 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6120 struct btrfs_block_group *cache = NULL; 6121 struct btrfs_device *device; 6122 u64 group_trimmed; 6123 u64 range_end = U64_MAX; 6124 u64 start; 6125 u64 end; 6126 u64 trimmed = 0; 6127 u64 bg_failed = 0; 6128 u64 dev_failed = 0; 6129 int bg_ret = 0; 6130 int dev_ret = 0; 6131 int ret = 0; 6132 6133 if (range->start == U64_MAX) 6134 return -EINVAL; 6135 6136 /* 6137 * Check range overflow if range->len is set. 6138 * The default range->len is U64_MAX. 6139 */ 6140 if (range->len != U64_MAX && 6141 check_add_overflow(range->start, range->len, &range_end)) 6142 return -EINVAL; 6143 6144 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6145 for (; cache; cache = btrfs_next_block_group(cache)) { 6146 if (cache->start >= range_end) { 6147 btrfs_put_block_group(cache); 6148 break; 6149 } 6150 6151 start = max(range->start, cache->start); 6152 end = min(range_end, cache->start + cache->length); 6153 6154 if (end - start >= range->minlen) { 6155 if (!btrfs_block_group_done(cache)) { 6156 ret = btrfs_cache_block_group(cache, true); 6157 if (ret) { 6158 bg_failed++; 6159 bg_ret = ret; 6160 continue; 6161 } 6162 } 6163 ret = btrfs_trim_block_group(cache, 6164 &group_trimmed, 6165 start, 6166 end, 6167 range->minlen); 6168 6169 trimmed += group_trimmed; 6170 if (ret) { 6171 bg_failed++; 6172 bg_ret = ret; 6173 continue; 6174 } 6175 } 6176 } 6177 6178 if (bg_failed) 6179 btrfs_warn(fs_info, 6180 "failed to trim %llu block group(s), last error %d", 6181 bg_failed, bg_ret); 6182 6183 mutex_lock(&fs_devices->device_list_mutex); 6184 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6185 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6186 continue; 6187 6188 ret = btrfs_trim_free_extents(device, &group_trimmed); 6189 6190 trimmed += group_trimmed; 6191 if (ret) { 6192 dev_failed++; 6193 dev_ret = ret; 6194 break; 6195 } 6196 } 6197 mutex_unlock(&fs_devices->device_list_mutex); 6198 6199 if (dev_failed) 6200 btrfs_warn(fs_info, 6201 "failed to trim %llu device(s), last error %d", 6202 dev_failed, dev_ret); 6203 range->len = trimmed; 6204 if (bg_ret) 6205 return bg_ret; 6206 return dev_ret; 6207 } 6208