1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 37 #undef SCRAMBLE_DELAYED_REFS 38 39 /* 40 * control flags for do_chunk_alloc's force field 41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 42 * if we really need one. 43 * 44 * CHUNK_ALLOC_LIMITED means to only try and allocate one 45 * if we have very few chunks already allocated. This is 46 * used as part of the clustering code to help make sure 47 * we have a good pool of storage to cluster in, without 48 * filling the FS with empty chunks 49 * 50 * CHUNK_ALLOC_FORCE means it must try to allocate one 51 * 52 */ 53 enum { 54 CHUNK_ALLOC_NO_FORCE = 0, 55 CHUNK_ALLOC_LIMITED = 1, 56 CHUNK_ALLOC_FORCE = 2, 57 }; 58 59 /* 60 * Control how reservations are dealt with. 61 * 62 * RESERVE_FREE - freeing a reservation. 63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 64 * ENOSPC accounting 65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 66 * bytes_may_use as the ENOSPC accounting is done elsewhere 67 */ 68 enum { 69 RESERVE_FREE = 0, 70 RESERVE_ALLOC = 1, 71 RESERVE_ALLOC_NO_ACCOUNT = 2, 72 }; 73 74 static int update_block_group(struct btrfs_trans_handle *trans, 75 struct btrfs_root *root, 76 u64 bytenr, u64 num_bytes, int alloc); 77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, 79 u64 bytenr, u64 num_bytes, u64 parent, 80 u64 root_objectid, u64 owner_objectid, 81 u64 owner_offset, int refs_to_drop, 82 struct btrfs_delayed_extent_op *extra_op); 83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 84 struct extent_buffer *leaf, 85 struct btrfs_extent_item *ei); 86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 87 struct btrfs_root *root, 88 u64 parent, u64 root_objectid, 89 u64 flags, u64 owner, u64 offset, 90 struct btrfs_key *ins, int ref_mod); 91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 92 struct btrfs_root *root, 93 u64 parent, u64 root_objectid, 94 u64 flags, struct btrfs_disk_key *key, 95 int level, struct btrfs_key *ins); 96 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 97 struct btrfs_root *extent_root, u64 flags, 98 int force); 99 static int find_next_key(struct btrfs_path *path, int level, 100 struct btrfs_key *key); 101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 102 int dump_block_groups); 103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 104 u64 num_bytes, int reserve); 105 106 static noinline int 107 block_group_cache_done(struct btrfs_block_group_cache *cache) 108 { 109 smp_mb(); 110 return cache->cached == BTRFS_CACHE_FINISHED; 111 } 112 113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 114 { 115 return (cache->flags & bits) == bits; 116 } 117 118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 119 { 120 atomic_inc(&cache->count); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 124 { 125 if (atomic_dec_and_test(&cache->count)) { 126 WARN_ON(cache->pinned > 0); 127 WARN_ON(cache->reserved > 0); 128 kfree(cache->free_space_ctl); 129 kfree(cache); 130 } 131 } 132 133 /* 134 * this adds the block group to the fs_info rb tree for the block group 135 * cache 136 */ 137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 138 struct btrfs_block_group_cache *block_group) 139 { 140 struct rb_node **p; 141 struct rb_node *parent = NULL; 142 struct btrfs_block_group_cache *cache; 143 144 spin_lock(&info->block_group_cache_lock); 145 p = &info->block_group_cache_tree.rb_node; 146 147 while (*p) { 148 parent = *p; 149 cache = rb_entry(parent, struct btrfs_block_group_cache, 150 cache_node); 151 if (block_group->key.objectid < cache->key.objectid) { 152 p = &(*p)->rb_left; 153 } else if (block_group->key.objectid > cache->key.objectid) { 154 p = &(*p)->rb_right; 155 } else { 156 spin_unlock(&info->block_group_cache_lock); 157 return -EEXIST; 158 } 159 } 160 161 rb_link_node(&block_group->cache_node, parent, p); 162 rb_insert_color(&block_group->cache_node, 163 &info->block_group_cache_tree); 164 spin_unlock(&info->block_group_cache_lock); 165 166 return 0; 167 } 168 169 /* 170 * This will return the block group at or after bytenr if contains is 0, else 171 * it will return the block group that contains the bytenr 172 */ 173 static struct btrfs_block_group_cache * 174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 175 int contains) 176 { 177 struct btrfs_block_group_cache *cache, *ret = NULL; 178 struct rb_node *n; 179 u64 end, start; 180 181 spin_lock(&info->block_group_cache_lock); 182 n = info->block_group_cache_tree.rb_node; 183 184 while (n) { 185 cache = rb_entry(n, struct btrfs_block_group_cache, 186 cache_node); 187 end = cache->key.objectid + cache->key.offset - 1; 188 start = cache->key.objectid; 189 190 if (bytenr < start) { 191 if (!contains && (!ret || start < ret->key.objectid)) 192 ret = cache; 193 n = n->rb_left; 194 } else if (bytenr > start) { 195 if (contains && bytenr <= end) { 196 ret = cache; 197 break; 198 } 199 n = n->rb_right; 200 } else { 201 ret = cache; 202 break; 203 } 204 } 205 if (ret) 206 btrfs_get_block_group(ret); 207 spin_unlock(&info->block_group_cache_lock); 208 209 return ret; 210 } 211 212 static int add_excluded_extent(struct btrfs_root *root, 213 u64 start, u64 num_bytes) 214 { 215 u64 end = start + num_bytes - 1; 216 set_extent_bits(&root->fs_info->freed_extents[0], 217 start, end, EXTENT_UPTODATE, GFP_NOFS); 218 set_extent_bits(&root->fs_info->freed_extents[1], 219 start, end, EXTENT_UPTODATE, GFP_NOFS); 220 return 0; 221 } 222 223 static void free_excluded_extents(struct btrfs_root *root, 224 struct btrfs_block_group_cache *cache) 225 { 226 u64 start, end; 227 228 start = cache->key.objectid; 229 end = start + cache->key.offset - 1; 230 231 clear_extent_bits(&root->fs_info->freed_extents[0], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 clear_extent_bits(&root->fs_info->freed_extents[1], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 } 236 237 static int exclude_super_stripes(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 bytenr; 241 u64 *logical; 242 int stripe_len; 243 int i, nr, ret; 244 245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 247 cache->bytes_super += stripe_len; 248 ret = add_excluded_extent(root, cache->key.objectid, 249 stripe_len); 250 BUG_ON(ret); /* -ENOMEM */ 251 } 252 253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 254 bytenr = btrfs_sb_offset(i); 255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 256 cache->key.objectid, bytenr, 257 0, &logical, &nr, &stripe_len); 258 BUG_ON(ret); /* -ENOMEM */ 259 260 while (nr--) { 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, logical[nr], 263 stripe_len); 264 BUG_ON(ret); /* -ENOMEM */ 265 } 266 267 kfree(logical); 268 } 269 return 0; 270 } 271 272 static struct btrfs_caching_control * 273 get_caching_control(struct btrfs_block_group_cache *cache) 274 { 275 struct btrfs_caching_control *ctl; 276 277 spin_lock(&cache->lock); 278 if (cache->cached != BTRFS_CACHE_STARTED) { 279 spin_unlock(&cache->lock); 280 return NULL; 281 } 282 283 /* We're loading it the fast way, so we don't have a caching_ctl. */ 284 if (!cache->caching_ctl) { 285 spin_unlock(&cache->lock); 286 return NULL; 287 } 288 289 ctl = cache->caching_ctl; 290 atomic_inc(&ctl->count); 291 spin_unlock(&cache->lock); 292 return ctl; 293 } 294 295 static void put_caching_control(struct btrfs_caching_control *ctl) 296 { 297 if (atomic_dec_and_test(&ctl->count)) 298 kfree(ctl); 299 } 300 301 /* 302 * this is only called by cache_block_group, since we could have freed extents 303 * we need to check the pinned_extents for any extents that can't be used yet 304 * since their free space will be released as soon as the transaction commits. 305 */ 306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 307 struct btrfs_fs_info *info, u64 start, u64 end) 308 { 309 u64 extent_start, extent_end, size, total_added = 0; 310 int ret; 311 312 while (start < end) { 313 ret = find_first_extent_bit(info->pinned_extents, start, 314 &extent_start, &extent_end, 315 EXTENT_DIRTY | EXTENT_UPTODATE, 316 NULL); 317 if (ret) 318 break; 319 320 if (extent_start <= start) { 321 start = extent_end + 1; 322 } else if (extent_start > start && extent_start < end) { 323 size = extent_start - start; 324 total_added += size; 325 ret = btrfs_add_free_space(block_group, start, 326 size); 327 BUG_ON(ret); /* -ENOMEM or logic error */ 328 start = extent_end + 1; 329 } else { 330 break; 331 } 332 } 333 334 if (start < end) { 335 size = end - start; 336 total_added += size; 337 ret = btrfs_add_free_space(block_group, start, size); 338 BUG_ON(ret); /* -ENOMEM or logic error */ 339 } 340 341 return total_added; 342 } 343 344 static noinline void caching_thread(struct btrfs_work *work) 345 { 346 struct btrfs_block_group_cache *block_group; 347 struct btrfs_fs_info *fs_info; 348 struct btrfs_caching_control *caching_ctl; 349 struct btrfs_root *extent_root; 350 struct btrfs_path *path; 351 struct extent_buffer *leaf; 352 struct btrfs_key key; 353 u64 total_found = 0; 354 u64 last = 0; 355 u32 nritems; 356 int ret = 0; 357 358 caching_ctl = container_of(work, struct btrfs_caching_control, work); 359 block_group = caching_ctl->block_group; 360 fs_info = block_group->fs_info; 361 extent_root = fs_info->extent_root; 362 363 path = btrfs_alloc_path(); 364 if (!path) 365 goto out; 366 367 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 368 369 /* 370 * We don't want to deadlock with somebody trying to allocate a new 371 * extent for the extent root while also trying to search the extent 372 * root to add free space. So we skip locking and search the commit 373 * root, since its read-only 374 */ 375 path->skip_locking = 1; 376 path->search_commit_root = 1; 377 path->reada = 1; 378 379 key.objectid = last; 380 key.offset = 0; 381 key.type = BTRFS_EXTENT_ITEM_KEY; 382 again: 383 mutex_lock(&caching_ctl->mutex); 384 /* need to make sure the commit_root doesn't disappear */ 385 down_read(&fs_info->extent_commit_sem); 386 387 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 388 if (ret < 0) 389 goto err; 390 391 leaf = path->nodes[0]; 392 nritems = btrfs_header_nritems(leaf); 393 394 while (1) { 395 if (btrfs_fs_closing(fs_info) > 1) { 396 last = (u64)-1; 397 break; 398 } 399 400 if (path->slots[0] < nritems) { 401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 402 } else { 403 ret = find_next_key(path, 0, &key); 404 if (ret) 405 break; 406 407 if (need_resched() || 408 btrfs_next_leaf(extent_root, path)) { 409 caching_ctl->progress = last; 410 btrfs_release_path(path); 411 up_read(&fs_info->extent_commit_sem); 412 mutex_unlock(&caching_ctl->mutex); 413 cond_resched(); 414 goto again; 415 } 416 leaf = path->nodes[0]; 417 nritems = btrfs_header_nritems(leaf); 418 continue; 419 } 420 421 if (key.objectid < block_group->key.objectid) { 422 path->slots[0]++; 423 continue; 424 } 425 426 if (key.objectid >= block_group->key.objectid + 427 block_group->key.offset) 428 break; 429 430 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 431 total_found += add_new_free_space(block_group, 432 fs_info, last, 433 key.objectid); 434 last = key.objectid + key.offset; 435 436 if (total_found > (1024 * 1024 * 2)) { 437 total_found = 0; 438 wake_up(&caching_ctl->wait); 439 } 440 } 441 path->slots[0]++; 442 } 443 ret = 0; 444 445 total_found += add_new_free_space(block_group, fs_info, last, 446 block_group->key.objectid + 447 block_group->key.offset); 448 caching_ctl->progress = (u64)-1; 449 450 spin_lock(&block_group->lock); 451 block_group->caching_ctl = NULL; 452 block_group->cached = BTRFS_CACHE_FINISHED; 453 spin_unlock(&block_group->lock); 454 455 err: 456 btrfs_free_path(path); 457 up_read(&fs_info->extent_commit_sem); 458 459 free_excluded_extents(extent_root, block_group); 460 461 mutex_unlock(&caching_ctl->mutex); 462 out: 463 wake_up(&caching_ctl->wait); 464 465 put_caching_control(caching_ctl); 466 btrfs_put_block_group(block_group); 467 } 468 469 static int cache_block_group(struct btrfs_block_group_cache *cache, 470 struct btrfs_trans_handle *trans, 471 struct btrfs_root *root, 472 int load_cache_only) 473 { 474 DEFINE_WAIT(wait); 475 struct btrfs_fs_info *fs_info = cache->fs_info; 476 struct btrfs_caching_control *caching_ctl; 477 int ret = 0; 478 479 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 480 if (!caching_ctl) 481 return -ENOMEM; 482 483 INIT_LIST_HEAD(&caching_ctl->list); 484 mutex_init(&caching_ctl->mutex); 485 init_waitqueue_head(&caching_ctl->wait); 486 caching_ctl->block_group = cache; 487 caching_ctl->progress = cache->key.objectid; 488 atomic_set(&caching_ctl->count, 1); 489 caching_ctl->work.func = caching_thread; 490 491 spin_lock(&cache->lock); 492 /* 493 * This should be a rare occasion, but this could happen I think in the 494 * case where one thread starts to load the space cache info, and then 495 * some other thread starts a transaction commit which tries to do an 496 * allocation while the other thread is still loading the space cache 497 * info. The previous loop should have kept us from choosing this block 498 * group, but if we've moved to the state where we will wait on caching 499 * block groups we need to first check if we're doing a fast load here, 500 * so we can wait for it to finish, otherwise we could end up allocating 501 * from a block group who's cache gets evicted for one reason or 502 * another. 503 */ 504 while (cache->cached == BTRFS_CACHE_FAST) { 505 struct btrfs_caching_control *ctl; 506 507 ctl = cache->caching_ctl; 508 atomic_inc(&ctl->count); 509 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 510 spin_unlock(&cache->lock); 511 512 schedule(); 513 514 finish_wait(&ctl->wait, &wait); 515 put_caching_control(ctl); 516 spin_lock(&cache->lock); 517 } 518 519 if (cache->cached != BTRFS_CACHE_NO) { 520 spin_unlock(&cache->lock); 521 kfree(caching_ctl); 522 return 0; 523 } 524 WARN_ON(cache->caching_ctl); 525 cache->caching_ctl = caching_ctl; 526 cache->cached = BTRFS_CACHE_FAST; 527 spin_unlock(&cache->lock); 528 529 /* 530 * We can't do the read from on-disk cache during a commit since we need 531 * to have the normal tree locking. Also if we are currently trying to 532 * allocate blocks for the tree root we can't do the fast caching since 533 * we likely hold important locks. 534 */ 535 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 536 ret = load_free_space_cache(fs_info, cache); 537 538 spin_lock(&cache->lock); 539 if (ret == 1) { 540 cache->caching_ctl = NULL; 541 cache->cached = BTRFS_CACHE_FINISHED; 542 cache->last_byte_to_unpin = (u64)-1; 543 } else { 544 if (load_cache_only) { 545 cache->caching_ctl = NULL; 546 cache->cached = BTRFS_CACHE_NO; 547 } else { 548 cache->cached = BTRFS_CACHE_STARTED; 549 } 550 } 551 spin_unlock(&cache->lock); 552 wake_up(&caching_ctl->wait); 553 if (ret == 1) { 554 put_caching_control(caching_ctl); 555 free_excluded_extents(fs_info->extent_root, cache); 556 return 0; 557 } 558 } else { 559 /* 560 * We are not going to do the fast caching, set cached to the 561 * appropriate value and wakeup any waiters. 562 */ 563 spin_lock(&cache->lock); 564 if (load_cache_only) { 565 cache->caching_ctl = NULL; 566 cache->cached = BTRFS_CACHE_NO; 567 } else { 568 cache->cached = BTRFS_CACHE_STARTED; 569 } 570 spin_unlock(&cache->lock); 571 wake_up(&caching_ctl->wait); 572 } 573 574 if (load_cache_only) { 575 put_caching_control(caching_ctl); 576 return 0; 577 } 578 579 down_write(&fs_info->extent_commit_sem); 580 atomic_inc(&caching_ctl->count); 581 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 582 up_write(&fs_info->extent_commit_sem); 583 584 btrfs_get_block_group(cache); 585 586 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 587 588 return ret; 589 } 590 591 /* 592 * return the block group that starts at or after bytenr 593 */ 594 static struct btrfs_block_group_cache * 595 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 596 { 597 struct btrfs_block_group_cache *cache; 598 599 cache = block_group_cache_tree_search(info, bytenr, 0); 600 601 return cache; 602 } 603 604 /* 605 * return the block group that contains the given bytenr 606 */ 607 struct btrfs_block_group_cache *btrfs_lookup_block_group( 608 struct btrfs_fs_info *info, 609 u64 bytenr) 610 { 611 struct btrfs_block_group_cache *cache; 612 613 cache = block_group_cache_tree_search(info, bytenr, 1); 614 615 return cache; 616 } 617 618 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 619 u64 flags) 620 { 621 struct list_head *head = &info->space_info; 622 struct btrfs_space_info *found; 623 624 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 625 626 rcu_read_lock(); 627 list_for_each_entry_rcu(found, head, list) { 628 if (found->flags & flags) { 629 rcu_read_unlock(); 630 return found; 631 } 632 } 633 rcu_read_unlock(); 634 return NULL; 635 } 636 637 /* 638 * after adding space to the filesystem, we need to clear the full flags 639 * on all the space infos. 640 */ 641 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 642 { 643 struct list_head *head = &info->space_info; 644 struct btrfs_space_info *found; 645 646 rcu_read_lock(); 647 list_for_each_entry_rcu(found, head, list) 648 found->full = 0; 649 rcu_read_unlock(); 650 } 651 652 static u64 div_factor(u64 num, int factor) 653 { 654 if (factor == 10) 655 return num; 656 num *= factor; 657 do_div(num, 10); 658 return num; 659 } 660 661 static u64 div_factor_fine(u64 num, int factor) 662 { 663 if (factor == 100) 664 return num; 665 num *= factor; 666 do_div(num, 100); 667 return num; 668 } 669 670 u64 btrfs_find_block_group(struct btrfs_root *root, 671 u64 search_start, u64 search_hint, int owner) 672 { 673 struct btrfs_block_group_cache *cache; 674 u64 used; 675 u64 last = max(search_hint, search_start); 676 u64 group_start = 0; 677 int full_search = 0; 678 int factor = 9; 679 int wrapped = 0; 680 again: 681 while (1) { 682 cache = btrfs_lookup_first_block_group(root->fs_info, last); 683 if (!cache) 684 break; 685 686 spin_lock(&cache->lock); 687 last = cache->key.objectid + cache->key.offset; 688 used = btrfs_block_group_used(&cache->item); 689 690 if ((full_search || !cache->ro) && 691 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 692 if (used + cache->pinned + cache->reserved < 693 div_factor(cache->key.offset, factor)) { 694 group_start = cache->key.objectid; 695 spin_unlock(&cache->lock); 696 btrfs_put_block_group(cache); 697 goto found; 698 } 699 } 700 spin_unlock(&cache->lock); 701 btrfs_put_block_group(cache); 702 cond_resched(); 703 } 704 if (!wrapped) { 705 last = search_start; 706 wrapped = 1; 707 goto again; 708 } 709 if (!full_search && factor < 10) { 710 last = search_start; 711 full_search = 1; 712 factor = 10; 713 goto again; 714 } 715 found: 716 return group_start; 717 } 718 719 /* simple helper to search for an existing extent at a given offset */ 720 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 721 { 722 int ret; 723 struct btrfs_key key; 724 struct btrfs_path *path; 725 726 path = btrfs_alloc_path(); 727 if (!path) 728 return -ENOMEM; 729 730 key.objectid = start; 731 key.offset = len; 732 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 733 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 734 0, 0); 735 btrfs_free_path(path); 736 return ret; 737 } 738 739 /* 740 * helper function to lookup reference count and flags of extent. 741 * 742 * the head node for delayed ref is used to store the sum of all the 743 * reference count modifications queued up in the rbtree. the head 744 * node may also store the extent flags to set. This way you can check 745 * to see what the reference count and extent flags would be if all of 746 * the delayed refs are not processed. 747 */ 748 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 749 struct btrfs_root *root, u64 bytenr, 750 u64 num_bytes, u64 *refs, u64 *flags) 751 { 752 struct btrfs_delayed_ref_head *head; 753 struct btrfs_delayed_ref_root *delayed_refs; 754 struct btrfs_path *path; 755 struct btrfs_extent_item *ei; 756 struct extent_buffer *leaf; 757 struct btrfs_key key; 758 u32 item_size; 759 u64 num_refs; 760 u64 extent_flags; 761 int ret; 762 763 path = btrfs_alloc_path(); 764 if (!path) 765 return -ENOMEM; 766 767 key.objectid = bytenr; 768 key.type = BTRFS_EXTENT_ITEM_KEY; 769 key.offset = num_bytes; 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 again: 775 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 776 &key, path, 0, 0); 777 if (ret < 0) 778 goto out_free; 779 780 if (ret == 0) { 781 leaf = path->nodes[0]; 782 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 783 if (item_size >= sizeof(*ei)) { 784 ei = btrfs_item_ptr(leaf, path->slots[0], 785 struct btrfs_extent_item); 786 num_refs = btrfs_extent_refs(leaf, ei); 787 extent_flags = btrfs_extent_flags(leaf, ei); 788 } else { 789 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 790 struct btrfs_extent_item_v0 *ei0; 791 BUG_ON(item_size != sizeof(*ei0)); 792 ei0 = btrfs_item_ptr(leaf, path->slots[0], 793 struct btrfs_extent_item_v0); 794 num_refs = btrfs_extent_refs_v0(leaf, ei0); 795 /* FIXME: this isn't correct for data */ 796 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 797 #else 798 BUG(); 799 #endif 800 } 801 BUG_ON(num_refs == 0); 802 } else { 803 num_refs = 0; 804 extent_flags = 0; 805 ret = 0; 806 } 807 808 if (!trans) 809 goto out; 810 811 delayed_refs = &trans->transaction->delayed_refs; 812 spin_lock(&delayed_refs->lock); 813 head = btrfs_find_delayed_ref_head(trans, bytenr); 814 if (head) { 815 if (!mutex_trylock(&head->mutex)) { 816 atomic_inc(&head->node.refs); 817 spin_unlock(&delayed_refs->lock); 818 819 btrfs_release_path(path); 820 821 /* 822 * Mutex was contended, block until it's released and try 823 * again 824 */ 825 mutex_lock(&head->mutex); 826 mutex_unlock(&head->mutex); 827 btrfs_put_delayed_ref(&head->node); 828 goto again; 829 } 830 if (head->extent_op && head->extent_op->update_flags) 831 extent_flags |= head->extent_op->flags_to_set; 832 else 833 BUG_ON(num_refs == 0); 834 835 num_refs += head->node.ref_mod; 836 mutex_unlock(&head->mutex); 837 } 838 spin_unlock(&delayed_refs->lock); 839 out: 840 WARN_ON(num_refs == 0); 841 if (refs) 842 *refs = num_refs; 843 if (flags) 844 *flags = extent_flags; 845 out_free: 846 btrfs_free_path(path); 847 return ret; 848 } 849 850 /* 851 * Back reference rules. Back refs have three main goals: 852 * 853 * 1) differentiate between all holders of references to an extent so that 854 * when a reference is dropped we can make sure it was a valid reference 855 * before freeing the extent. 856 * 857 * 2) Provide enough information to quickly find the holders of an extent 858 * if we notice a given block is corrupted or bad. 859 * 860 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 861 * maintenance. This is actually the same as #2, but with a slightly 862 * different use case. 863 * 864 * There are two kinds of back refs. The implicit back refs is optimized 865 * for pointers in non-shared tree blocks. For a given pointer in a block, 866 * back refs of this kind provide information about the block's owner tree 867 * and the pointer's key. These information allow us to find the block by 868 * b-tree searching. The full back refs is for pointers in tree blocks not 869 * referenced by their owner trees. The location of tree block is recorded 870 * in the back refs. Actually the full back refs is generic, and can be 871 * used in all cases the implicit back refs is used. The major shortcoming 872 * of the full back refs is its overhead. Every time a tree block gets 873 * COWed, we have to update back refs entry for all pointers in it. 874 * 875 * For a newly allocated tree block, we use implicit back refs for 876 * pointers in it. This means most tree related operations only involve 877 * implicit back refs. For a tree block created in old transaction, the 878 * only way to drop a reference to it is COW it. So we can detect the 879 * event that tree block loses its owner tree's reference and do the 880 * back refs conversion. 881 * 882 * When a tree block is COW'd through a tree, there are four cases: 883 * 884 * The reference count of the block is one and the tree is the block's 885 * owner tree. Nothing to do in this case. 886 * 887 * The reference count of the block is one and the tree is not the 888 * block's owner tree. In this case, full back refs is used for pointers 889 * in the block. Remove these full back refs, add implicit back refs for 890 * every pointers in the new block. 891 * 892 * The reference count of the block is greater than one and the tree is 893 * the block's owner tree. In this case, implicit back refs is used for 894 * pointers in the block. Add full back refs for every pointers in the 895 * block, increase lower level extents' reference counts. The original 896 * implicit back refs are entailed to the new block. 897 * 898 * The reference count of the block is greater than one and the tree is 899 * not the block's owner tree. Add implicit back refs for every pointer in 900 * the new block, increase lower level extents' reference count. 901 * 902 * Back Reference Key composing: 903 * 904 * The key objectid corresponds to the first byte in the extent, 905 * The key type is used to differentiate between types of back refs. 906 * There are different meanings of the key offset for different types 907 * of back refs. 908 * 909 * File extents can be referenced by: 910 * 911 * - multiple snapshots, subvolumes, or different generations in one subvol 912 * - different files inside a single subvolume 913 * - different offsets inside a file (bookend extents in file.c) 914 * 915 * The extent ref structure for the implicit back refs has fields for: 916 * 917 * - Objectid of the subvolume root 918 * - objectid of the file holding the reference 919 * - original offset in the file 920 * - how many bookend extents 921 * 922 * The key offset for the implicit back refs is hash of the first 923 * three fields. 924 * 925 * The extent ref structure for the full back refs has field for: 926 * 927 * - number of pointers in the tree leaf 928 * 929 * The key offset for the implicit back refs is the first byte of 930 * the tree leaf 931 * 932 * When a file extent is allocated, The implicit back refs is used. 933 * the fields are filled in: 934 * 935 * (root_key.objectid, inode objectid, offset in file, 1) 936 * 937 * When a file extent is removed file truncation, we find the 938 * corresponding implicit back refs and check the following fields: 939 * 940 * (btrfs_header_owner(leaf), inode objectid, offset in file) 941 * 942 * Btree extents can be referenced by: 943 * 944 * - Different subvolumes 945 * 946 * Both the implicit back refs and the full back refs for tree blocks 947 * only consist of key. The key offset for the implicit back refs is 948 * objectid of block's owner tree. The key offset for the full back refs 949 * is the first byte of parent block. 950 * 951 * When implicit back refs is used, information about the lowest key and 952 * level of the tree block are required. These information are stored in 953 * tree block info structure. 954 */ 955 956 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 957 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 958 struct btrfs_root *root, 959 struct btrfs_path *path, 960 u64 owner, u32 extra_size) 961 { 962 struct btrfs_extent_item *item; 963 struct btrfs_extent_item_v0 *ei0; 964 struct btrfs_extent_ref_v0 *ref0; 965 struct btrfs_tree_block_info *bi; 966 struct extent_buffer *leaf; 967 struct btrfs_key key; 968 struct btrfs_key found_key; 969 u32 new_size = sizeof(*item); 970 u64 refs; 971 int ret; 972 973 leaf = path->nodes[0]; 974 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 975 976 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 977 ei0 = btrfs_item_ptr(leaf, path->slots[0], 978 struct btrfs_extent_item_v0); 979 refs = btrfs_extent_refs_v0(leaf, ei0); 980 981 if (owner == (u64)-1) { 982 while (1) { 983 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 984 ret = btrfs_next_leaf(root, path); 985 if (ret < 0) 986 return ret; 987 BUG_ON(ret > 0); /* Corruption */ 988 leaf = path->nodes[0]; 989 } 990 btrfs_item_key_to_cpu(leaf, &found_key, 991 path->slots[0]); 992 BUG_ON(key.objectid != found_key.objectid); 993 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 994 path->slots[0]++; 995 continue; 996 } 997 ref0 = btrfs_item_ptr(leaf, path->slots[0], 998 struct btrfs_extent_ref_v0); 999 owner = btrfs_ref_objectid_v0(leaf, ref0); 1000 break; 1001 } 1002 } 1003 btrfs_release_path(path); 1004 1005 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1006 new_size += sizeof(*bi); 1007 1008 new_size -= sizeof(*ei0); 1009 ret = btrfs_search_slot(trans, root, &key, path, 1010 new_size + extra_size, 1); 1011 if (ret < 0) 1012 return ret; 1013 BUG_ON(ret); /* Corruption */ 1014 1015 btrfs_extend_item(trans, root, path, new_size); 1016 1017 leaf = path->nodes[0]; 1018 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1019 btrfs_set_extent_refs(leaf, item, refs); 1020 /* FIXME: get real generation */ 1021 btrfs_set_extent_generation(leaf, item, 0); 1022 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1023 btrfs_set_extent_flags(leaf, item, 1024 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1025 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1026 bi = (struct btrfs_tree_block_info *)(item + 1); 1027 /* FIXME: get first key of the block */ 1028 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1029 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1030 } else { 1031 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1032 } 1033 btrfs_mark_buffer_dirty(leaf); 1034 return 0; 1035 } 1036 #endif 1037 1038 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1039 { 1040 u32 high_crc = ~(u32)0; 1041 u32 low_crc = ~(u32)0; 1042 __le64 lenum; 1043 1044 lenum = cpu_to_le64(root_objectid); 1045 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1046 lenum = cpu_to_le64(owner); 1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1048 lenum = cpu_to_le64(offset); 1049 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1050 1051 return ((u64)high_crc << 31) ^ (u64)low_crc; 1052 } 1053 1054 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1055 struct btrfs_extent_data_ref *ref) 1056 { 1057 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1058 btrfs_extent_data_ref_objectid(leaf, ref), 1059 btrfs_extent_data_ref_offset(leaf, ref)); 1060 } 1061 1062 static int match_extent_data_ref(struct extent_buffer *leaf, 1063 struct btrfs_extent_data_ref *ref, 1064 u64 root_objectid, u64 owner, u64 offset) 1065 { 1066 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1067 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1068 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1069 return 0; 1070 return 1; 1071 } 1072 1073 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1074 struct btrfs_root *root, 1075 struct btrfs_path *path, 1076 u64 bytenr, u64 parent, 1077 u64 root_objectid, 1078 u64 owner, u64 offset) 1079 { 1080 struct btrfs_key key; 1081 struct btrfs_extent_data_ref *ref; 1082 struct extent_buffer *leaf; 1083 u32 nritems; 1084 int ret; 1085 int recow; 1086 int err = -ENOENT; 1087 1088 key.objectid = bytenr; 1089 if (parent) { 1090 key.type = BTRFS_SHARED_DATA_REF_KEY; 1091 key.offset = parent; 1092 } else { 1093 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1094 key.offset = hash_extent_data_ref(root_objectid, 1095 owner, offset); 1096 } 1097 again: 1098 recow = 0; 1099 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1100 if (ret < 0) { 1101 err = ret; 1102 goto fail; 1103 } 1104 1105 if (parent) { 1106 if (!ret) 1107 return 0; 1108 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1109 key.type = BTRFS_EXTENT_REF_V0_KEY; 1110 btrfs_release_path(path); 1111 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1112 if (ret < 0) { 1113 err = ret; 1114 goto fail; 1115 } 1116 if (!ret) 1117 return 0; 1118 #endif 1119 goto fail; 1120 } 1121 1122 leaf = path->nodes[0]; 1123 nritems = btrfs_header_nritems(leaf); 1124 while (1) { 1125 if (path->slots[0] >= nritems) { 1126 ret = btrfs_next_leaf(root, path); 1127 if (ret < 0) 1128 err = ret; 1129 if (ret) 1130 goto fail; 1131 1132 leaf = path->nodes[0]; 1133 nritems = btrfs_header_nritems(leaf); 1134 recow = 1; 1135 } 1136 1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1138 if (key.objectid != bytenr || 1139 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1140 goto fail; 1141 1142 ref = btrfs_item_ptr(leaf, path->slots[0], 1143 struct btrfs_extent_data_ref); 1144 1145 if (match_extent_data_ref(leaf, ref, root_objectid, 1146 owner, offset)) { 1147 if (recow) { 1148 btrfs_release_path(path); 1149 goto again; 1150 } 1151 err = 0; 1152 break; 1153 } 1154 path->slots[0]++; 1155 } 1156 fail: 1157 return err; 1158 } 1159 1160 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1161 struct btrfs_root *root, 1162 struct btrfs_path *path, 1163 u64 bytenr, u64 parent, 1164 u64 root_objectid, u64 owner, 1165 u64 offset, int refs_to_add) 1166 { 1167 struct btrfs_key key; 1168 struct extent_buffer *leaf; 1169 u32 size; 1170 u32 num_refs; 1171 int ret; 1172 1173 key.objectid = bytenr; 1174 if (parent) { 1175 key.type = BTRFS_SHARED_DATA_REF_KEY; 1176 key.offset = parent; 1177 size = sizeof(struct btrfs_shared_data_ref); 1178 } else { 1179 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1180 key.offset = hash_extent_data_ref(root_objectid, 1181 owner, offset); 1182 size = sizeof(struct btrfs_extent_data_ref); 1183 } 1184 1185 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1186 if (ret && ret != -EEXIST) 1187 goto fail; 1188 1189 leaf = path->nodes[0]; 1190 if (parent) { 1191 struct btrfs_shared_data_ref *ref; 1192 ref = btrfs_item_ptr(leaf, path->slots[0], 1193 struct btrfs_shared_data_ref); 1194 if (ret == 0) { 1195 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1196 } else { 1197 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1198 num_refs += refs_to_add; 1199 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1200 } 1201 } else { 1202 struct btrfs_extent_data_ref *ref; 1203 while (ret == -EEXIST) { 1204 ref = btrfs_item_ptr(leaf, path->slots[0], 1205 struct btrfs_extent_data_ref); 1206 if (match_extent_data_ref(leaf, ref, root_objectid, 1207 owner, offset)) 1208 break; 1209 btrfs_release_path(path); 1210 key.offset++; 1211 ret = btrfs_insert_empty_item(trans, root, path, &key, 1212 size); 1213 if (ret && ret != -EEXIST) 1214 goto fail; 1215 1216 leaf = path->nodes[0]; 1217 } 1218 ref = btrfs_item_ptr(leaf, path->slots[0], 1219 struct btrfs_extent_data_ref); 1220 if (ret == 0) { 1221 btrfs_set_extent_data_ref_root(leaf, ref, 1222 root_objectid); 1223 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1224 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1225 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1226 } else { 1227 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1228 num_refs += refs_to_add; 1229 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1230 } 1231 } 1232 btrfs_mark_buffer_dirty(leaf); 1233 ret = 0; 1234 fail: 1235 btrfs_release_path(path); 1236 return ret; 1237 } 1238 1239 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1240 struct btrfs_root *root, 1241 struct btrfs_path *path, 1242 int refs_to_drop) 1243 { 1244 struct btrfs_key key; 1245 struct btrfs_extent_data_ref *ref1 = NULL; 1246 struct btrfs_shared_data_ref *ref2 = NULL; 1247 struct extent_buffer *leaf; 1248 u32 num_refs = 0; 1249 int ret = 0; 1250 1251 leaf = path->nodes[0]; 1252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1253 1254 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1255 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1256 struct btrfs_extent_data_ref); 1257 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1258 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1259 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1260 struct btrfs_shared_data_ref); 1261 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1262 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1263 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1264 struct btrfs_extent_ref_v0 *ref0; 1265 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1266 struct btrfs_extent_ref_v0); 1267 num_refs = btrfs_ref_count_v0(leaf, ref0); 1268 #endif 1269 } else { 1270 BUG(); 1271 } 1272 1273 BUG_ON(num_refs < refs_to_drop); 1274 num_refs -= refs_to_drop; 1275 1276 if (num_refs == 0) { 1277 ret = btrfs_del_item(trans, root, path); 1278 } else { 1279 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1280 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1281 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1282 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1283 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1284 else { 1285 struct btrfs_extent_ref_v0 *ref0; 1286 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1287 struct btrfs_extent_ref_v0); 1288 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1289 } 1290 #endif 1291 btrfs_mark_buffer_dirty(leaf); 1292 } 1293 return ret; 1294 } 1295 1296 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1297 struct btrfs_path *path, 1298 struct btrfs_extent_inline_ref *iref) 1299 { 1300 struct btrfs_key key; 1301 struct extent_buffer *leaf; 1302 struct btrfs_extent_data_ref *ref1; 1303 struct btrfs_shared_data_ref *ref2; 1304 u32 num_refs = 0; 1305 1306 leaf = path->nodes[0]; 1307 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1308 if (iref) { 1309 if (btrfs_extent_inline_ref_type(leaf, iref) == 1310 BTRFS_EXTENT_DATA_REF_KEY) { 1311 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1312 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1313 } else { 1314 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1315 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1316 } 1317 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1318 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_extent_data_ref); 1320 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1321 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1322 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1323 struct btrfs_shared_data_ref); 1324 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1326 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1327 struct btrfs_extent_ref_v0 *ref0; 1328 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1329 struct btrfs_extent_ref_v0); 1330 num_refs = btrfs_ref_count_v0(leaf, ref0); 1331 #endif 1332 } else { 1333 WARN_ON(1); 1334 } 1335 return num_refs; 1336 } 1337 1338 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1339 struct btrfs_root *root, 1340 struct btrfs_path *path, 1341 u64 bytenr, u64 parent, 1342 u64 root_objectid) 1343 { 1344 struct btrfs_key key; 1345 int ret; 1346 1347 key.objectid = bytenr; 1348 if (parent) { 1349 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1350 key.offset = parent; 1351 } else { 1352 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1353 key.offset = root_objectid; 1354 } 1355 1356 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1357 if (ret > 0) 1358 ret = -ENOENT; 1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1360 if (ret == -ENOENT && parent) { 1361 btrfs_release_path(path); 1362 key.type = BTRFS_EXTENT_REF_V0_KEY; 1363 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1364 if (ret > 0) 1365 ret = -ENOENT; 1366 } 1367 #endif 1368 return ret; 1369 } 1370 1371 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1372 struct btrfs_root *root, 1373 struct btrfs_path *path, 1374 u64 bytenr, u64 parent, 1375 u64 root_objectid) 1376 { 1377 struct btrfs_key key; 1378 int ret; 1379 1380 key.objectid = bytenr; 1381 if (parent) { 1382 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1383 key.offset = parent; 1384 } else { 1385 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1386 key.offset = root_objectid; 1387 } 1388 1389 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1390 btrfs_release_path(path); 1391 return ret; 1392 } 1393 1394 static inline int extent_ref_type(u64 parent, u64 owner) 1395 { 1396 int type; 1397 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1398 if (parent > 0) 1399 type = BTRFS_SHARED_BLOCK_REF_KEY; 1400 else 1401 type = BTRFS_TREE_BLOCK_REF_KEY; 1402 } else { 1403 if (parent > 0) 1404 type = BTRFS_SHARED_DATA_REF_KEY; 1405 else 1406 type = BTRFS_EXTENT_DATA_REF_KEY; 1407 } 1408 return type; 1409 } 1410 1411 static int find_next_key(struct btrfs_path *path, int level, 1412 struct btrfs_key *key) 1413 1414 { 1415 for (; level < BTRFS_MAX_LEVEL; level++) { 1416 if (!path->nodes[level]) 1417 break; 1418 if (path->slots[level] + 1 >= 1419 btrfs_header_nritems(path->nodes[level])) 1420 continue; 1421 if (level == 0) 1422 btrfs_item_key_to_cpu(path->nodes[level], key, 1423 path->slots[level] + 1); 1424 else 1425 btrfs_node_key_to_cpu(path->nodes[level], key, 1426 path->slots[level] + 1); 1427 return 0; 1428 } 1429 return 1; 1430 } 1431 1432 /* 1433 * look for inline back ref. if back ref is found, *ref_ret is set 1434 * to the address of inline back ref, and 0 is returned. 1435 * 1436 * if back ref isn't found, *ref_ret is set to the address where it 1437 * should be inserted, and -ENOENT is returned. 1438 * 1439 * if insert is true and there are too many inline back refs, the path 1440 * points to the extent item, and -EAGAIN is returned. 1441 * 1442 * NOTE: inline back refs are ordered in the same way that back ref 1443 * items in the tree are ordered. 1444 */ 1445 static noinline_for_stack 1446 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1447 struct btrfs_root *root, 1448 struct btrfs_path *path, 1449 struct btrfs_extent_inline_ref **ref_ret, 1450 u64 bytenr, u64 num_bytes, 1451 u64 parent, u64 root_objectid, 1452 u64 owner, u64 offset, int insert) 1453 { 1454 struct btrfs_key key; 1455 struct extent_buffer *leaf; 1456 struct btrfs_extent_item *ei; 1457 struct btrfs_extent_inline_ref *iref; 1458 u64 flags; 1459 u64 item_size; 1460 unsigned long ptr; 1461 unsigned long end; 1462 int extra_size; 1463 int type; 1464 int want; 1465 int ret; 1466 int err = 0; 1467 1468 key.objectid = bytenr; 1469 key.type = BTRFS_EXTENT_ITEM_KEY; 1470 key.offset = num_bytes; 1471 1472 want = extent_ref_type(parent, owner); 1473 if (insert) { 1474 extra_size = btrfs_extent_inline_ref_size(want); 1475 path->keep_locks = 1; 1476 } else 1477 extra_size = -1; 1478 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1479 if (ret < 0) { 1480 err = ret; 1481 goto out; 1482 } 1483 if (ret && !insert) { 1484 err = -ENOENT; 1485 goto out; 1486 } 1487 BUG_ON(ret); /* Corruption */ 1488 1489 leaf = path->nodes[0]; 1490 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1491 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1492 if (item_size < sizeof(*ei)) { 1493 if (!insert) { 1494 err = -ENOENT; 1495 goto out; 1496 } 1497 ret = convert_extent_item_v0(trans, root, path, owner, 1498 extra_size); 1499 if (ret < 0) { 1500 err = ret; 1501 goto out; 1502 } 1503 leaf = path->nodes[0]; 1504 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1505 } 1506 #endif 1507 BUG_ON(item_size < sizeof(*ei)); 1508 1509 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1510 flags = btrfs_extent_flags(leaf, ei); 1511 1512 ptr = (unsigned long)(ei + 1); 1513 end = (unsigned long)ei + item_size; 1514 1515 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1516 ptr += sizeof(struct btrfs_tree_block_info); 1517 BUG_ON(ptr > end); 1518 } else { 1519 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1520 } 1521 1522 err = -ENOENT; 1523 while (1) { 1524 if (ptr >= end) { 1525 WARN_ON(ptr > end); 1526 break; 1527 } 1528 iref = (struct btrfs_extent_inline_ref *)ptr; 1529 type = btrfs_extent_inline_ref_type(leaf, iref); 1530 if (want < type) 1531 break; 1532 if (want > type) { 1533 ptr += btrfs_extent_inline_ref_size(type); 1534 continue; 1535 } 1536 1537 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1538 struct btrfs_extent_data_ref *dref; 1539 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1540 if (match_extent_data_ref(leaf, dref, root_objectid, 1541 owner, offset)) { 1542 err = 0; 1543 break; 1544 } 1545 if (hash_extent_data_ref_item(leaf, dref) < 1546 hash_extent_data_ref(root_objectid, owner, offset)) 1547 break; 1548 } else { 1549 u64 ref_offset; 1550 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1551 if (parent > 0) { 1552 if (parent == ref_offset) { 1553 err = 0; 1554 break; 1555 } 1556 if (ref_offset < parent) 1557 break; 1558 } else { 1559 if (root_objectid == ref_offset) { 1560 err = 0; 1561 break; 1562 } 1563 if (ref_offset < root_objectid) 1564 break; 1565 } 1566 } 1567 ptr += btrfs_extent_inline_ref_size(type); 1568 } 1569 if (err == -ENOENT && insert) { 1570 if (item_size + extra_size >= 1571 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1572 err = -EAGAIN; 1573 goto out; 1574 } 1575 /* 1576 * To add new inline back ref, we have to make sure 1577 * there is no corresponding back ref item. 1578 * For simplicity, we just do not add new inline back 1579 * ref if there is any kind of item for this block 1580 */ 1581 if (find_next_key(path, 0, &key) == 0 && 1582 key.objectid == bytenr && 1583 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1584 err = -EAGAIN; 1585 goto out; 1586 } 1587 } 1588 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1589 out: 1590 if (insert) { 1591 path->keep_locks = 0; 1592 btrfs_unlock_up_safe(path, 1); 1593 } 1594 return err; 1595 } 1596 1597 /* 1598 * helper to add new inline back ref 1599 */ 1600 static noinline_for_stack 1601 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1602 struct btrfs_root *root, 1603 struct btrfs_path *path, 1604 struct btrfs_extent_inline_ref *iref, 1605 u64 parent, u64 root_objectid, 1606 u64 owner, u64 offset, int refs_to_add, 1607 struct btrfs_delayed_extent_op *extent_op) 1608 { 1609 struct extent_buffer *leaf; 1610 struct btrfs_extent_item *ei; 1611 unsigned long ptr; 1612 unsigned long end; 1613 unsigned long item_offset; 1614 u64 refs; 1615 int size; 1616 int type; 1617 1618 leaf = path->nodes[0]; 1619 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1620 item_offset = (unsigned long)iref - (unsigned long)ei; 1621 1622 type = extent_ref_type(parent, owner); 1623 size = btrfs_extent_inline_ref_size(type); 1624 1625 btrfs_extend_item(trans, root, path, size); 1626 1627 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1628 refs = btrfs_extent_refs(leaf, ei); 1629 refs += refs_to_add; 1630 btrfs_set_extent_refs(leaf, ei, refs); 1631 if (extent_op) 1632 __run_delayed_extent_op(extent_op, leaf, ei); 1633 1634 ptr = (unsigned long)ei + item_offset; 1635 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1636 if (ptr < end - size) 1637 memmove_extent_buffer(leaf, ptr + size, ptr, 1638 end - size - ptr); 1639 1640 iref = (struct btrfs_extent_inline_ref *)ptr; 1641 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1642 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1643 struct btrfs_extent_data_ref *dref; 1644 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1645 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1646 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1647 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1648 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1649 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1650 struct btrfs_shared_data_ref *sref; 1651 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1652 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1653 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1654 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1655 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1656 } else { 1657 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1658 } 1659 btrfs_mark_buffer_dirty(leaf); 1660 } 1661 1662 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1663 struct btrfs_root *root, 1664 struct btrfs_path *path, 1665 struct btrfs_extent_inline_ref **ref_ret, 1666 u64 bytenr, u64 num_bytes, u64 parent, 1667 u64 root_objectid, u64 owner, u64 offset) 1668 { 1669 int ret; 1670 1671 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1672 bytenr, num_bytes, parent, 1673 root_objectid, owner, offset, 0); 1674 if (ret != -ENOENT) 1675 return ret; 1676 1677 btrfs_release_path(path); 1678 *ref_ret = NULL; 1679 1680 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1681 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1682 root_objectid); 1683 } else { 1684 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1685 root_objectid, owner, offset); 1686 } 1687 return ret; 1688 } 1689 1690 /* 1691 * helper to update/remove inline back ref 1692 */ 1693 static noinline_for_stack 1694 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *root, 1696 struct btrfs_path *path, 1697 struct btrfs_extent_inline_ref *iref, 1698 int refs_to_mod, 1699 struct btrfs_delayed_extent_op *extent_op) 1700 { 1701 struct extent_buffer *leaf; 1702 struct btrfs_extent_item *ei; 1703 struct btrfs_extent_data_ref *dref = NULL; 1704 struct btrfs_shared_data_ref *sref = NULL; 1705 unsigned long ptr; 1706 unsigned long end; 1707 u32 item_size; 1708 int size; 1709 int type; 1710 u64 refs; 1711 1712 leaf = path->nodes[0]; 1713 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1714 refs = btrfs_extent_refs(leaf, ei); 1715 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1716 refs += refs_to_mod; 1717 btrfs_set_extent_refs(leaf, ei, refs); 1718 if (extent_op) 1719 __run_delayed_extent_op(extent_op, leaf, ei); 1720 1721 type = btrfs_extent_inline_ref_type(leaf, iref); 1722 1723 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1724 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1725 refs = btrfs_extent_data_ref_count(leaf, dref); 1726 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1727 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1728 refs = btrfs_shared_data_ref_count(leaf, sref); 1729 } else { 1730 refs = 1; 1731 BUG_ON(refs_to_mod != -1); 1732 } 1733 1734 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1735 refs += refs_to_mod; 1736 1737 if (refs > 0) { 1738 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1739 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1740 else 1741 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1742 } else { 1743 size = btrfs_extent_inline_ref_size(type); 1744 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1745 ptr = (unsigned long)iref; 1746 end = (unsigned long)ei + item_size; 1747 if (ptr + size < end) 1748 memmove_extent_buffer(leaf, ptr, ptr + size, 1749 end - ptr - size); 1750 item_size -= size; 1751 btrfs_truncate_item(trans, root, path, item_size, 1); 1752 } 1753 btrfs_mark_buffer_dirty(leaf); 1754 } 1755 1756 static noinline_for_stack 1757 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1758 struct btrfs_root *root, 1759 struct btrfs_path *path, 1760 u64 bytenr, u64 num_bytes, u64 parent, 1761 u64 root_objectid, u64 owner, 1762 u64 offset, int refs_to_add, 1763 struct btrfs_delayed_extent_op *extent_op) 1764 { 1765 struct btrfs_extent_inline_ref *iref; 1766 int ret; 1767 1768 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1769 bytenr, num_bytes, parent, 1770 root_objectid, owner, offset, 1); 1771 if (ret == 0) { 1772 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1773 update_inline_extent_backref(trans, root, path, iref, 1774 refs_to_add, extent_op); 1775 } else if (ret == -ENOENT) { 1776 setup_inline_extent_backref(trans, root, path, iref, parent, 1777 root_objectid, owner, offset, 1778 refs_to_add, extent_op); 1779 ret = 0; 1780 } 1781 return ret; 1782 } 1783 1784 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1785 struct btrfs_root *root, 1786 struct btrfs_path *path, 1787 u64 bytenr, u64 parent, u64 root_objectid, 1788 u64 owner, u64 offset, int refs_to_add) 1789 { 1790 int ret; 1791 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1792 BUG_ON(refs_to_add != 1); 1793 ret = insert_tree_block_ref(trans, root, path, bytenr, 1794 parent, root_objectid); 1795 } else { 1796 ret = insert_extent_data_ref(trans, root, path, bytenr, 1797 parent, root_objectid, 1798 owner, offset, refs_to_add); 1799 } 1800 return ret; 1801 } 1802 1803 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1804 struct btrfs_root *root, 1805 struct btrfs_path *path, 1806 struct btrfs_extent_inline_ref *iref, 1807 int refs_to_drop, int is_data) 1808 { 1809 int ret = 0; 1810 1811 BUG_ON(!is_data && refs_to_drop != 1); 1812 if (iref) { 1813 update_inline_extent_backref(trans, root, path, iref, 1814 -refs_to_drop, NULL); 1815 } else if (is_data) { 1816 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1817 } else { 1818 ret = btrfs_del_item(trans, root, path); 1819 } 1820 return ret; 1821 } 1822 1823 static int btrfs_issue_discard(struct block_device *bdev, 1824 u64 start, u64 len) 1825 { 1826 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1827 } 1828 1829 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1830 u64 num_bytes, u64 *actual_bytes) 1831 { 1832 int ret; 1833 u64 discarded_bytes = 0; 1834 struct btrfs_bio *bbio = NULL; 1835 1836 1837 /* Tell the block device(s) that the sectors can be discarded */ 1838 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, 1839 bytenr, &num_bytes, &bbio, 0); 1840 /* Error condition is -ENOMEM */ 1841 if (!ret) { 1842 struct btrfs_bio_stripe *stripe = bbio->stripes; 1843 int i; 1844 1845 1846 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1847 if (!stripe->dev->can_discard) 1848 continue; 1849 1850 ret = btrfs_issue_discard(stripe->dev->bdev, 1851 stripe->physical, 1852 stripe->length); 1853 if (!ret) 1854 discarded_bytes += stripe->length; 1855 else if (ret != -EOPNOTSUPP) 1856 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1857 1858 /* 1859 * Just in case we get back EOPNOTSUPP for some reason, 1860 * just ignore the return value so we don't screw up 1861 * people calling discard_extent. 1862 */ 1863 ret = 0; 1864 } 1865 kfree(bbio); 1866 } 1867 1868 if (actual_bytes) 1869 *actual_bytes = discarded_bytes; 1870 1871 1872 return ret; 1873 } 1874 1875 /* Can return -ENOMEM */ 1876 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1877 struct btrfs_root *root, 1878 u64 bytenr, u64 num_bytes, u64 parent, 1879 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1880 { 1881 int ret; 1882 struct btrfs_fs_info *fs_info = root->fs_info; 1883 1884 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1885 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1886 1887 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1888 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1889 num_bytes, 1890 parent, root_objectid, (int)owner, 1891 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1892 } else { 1893 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1894 num_bytes, 1895 parent, root_objectid, owner, offset, 1896 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1897 } 1898 return ret; 1899 } 1900 1901 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1902 struct btrfs_root *root, 1903 u64 bytenr, u64 num_bytes, 1904 u64 parent, u64 root_objectid, 1905 u64 owner, u64 offset, int refs_to_add, 1906 struct btrfs_delayed_extent_op *extent_op) 1907 { 1908 struct btrfs_path *path; 1909 struct extent_buffer *leaf; 1910 struct btrfs_extent_item *item; 1911 u64 refs; 1912 int ret; 1913 int err = 0; 1914 1915 path = btrfs_alloc_path(); 1916 if (!path) 1917 return -ENOMEM; 1918 1919 path->reada = 1; 1920 path->leave_spinning = 1; 1921 /* this will setup the path even if it fails to insert the back ref */ 1922 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1923 path, bytenr, num_bytes, parent, 1924 root_objectid, owner, offset, 1925 refs_to_add, extent_op); 1926 if (ret == 0) 1927 goto out; 1928 1929 if (ret != -EAGAIN) { 1930 err = ret; 1931 goto out; 1932 } 1933 1934 leaf = path->nodes[0]; 1935 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1936 refs = btrfs_extent_refs(leaf, item); 1937 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1938 if (extent_op) 1939 __run_delayed_extent_op(extent_op, leaf, item); 1940 1941 btrfs_mark_buffer_dirty(leaf); 1942 btrfs_release_path(path); 1943 1944 path->reada = 1; 1945 path->leave_spinning = 1; 1946 1947 /* now insert the actual backref */ 1948 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1949 path, bytenr, parent, root_objectid, 1950 owner, offset, refs_to_add); 1951 if (ret) 1952 btrfs_abort_transaction(trans, root, ret); 1953 out: 1954 btrfs_free_path(path); 1955 return err; 1956 } 1957 1958 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1959 struct btrfs_root *root, 1960 struct btrfs_delayed_ref_node *node, 1961 struct btrfs_delayed_extent_op *extent_op, 1962 int insert_reserved) 1963 { 1964 int ret = 0; 1965 struct btrfs_delayed_data_ref *ref; 1966 struct btrfs_key ins; 1967 u64 parent = 0; 1968 u64 ref_root = 0; 1969 u64 flags = 0; 1970 1971 ins.objectid = node->bytenr; 1972 ins.offset = node->num_bytes; 1973 ins.type = BTRFS_EXTENT_ITEM_KEY; 1974 1975 ref = btrfs_delayed_node_to_data_ref(node); 1976 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1977 parent = ref->parent; 1978 else 1979 ref_root = ref->root; 1980 1981 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1982 if (extent_op) { 1983 BUG_ON(extent_op->update_key); 1984 flags |= extent_op->flags_to_set; 1985 } 1986 ret = alloc_reserved_file_extent(trans, root, 1987 parent, ref_root, flags, 1988 ref->objectid, ref->offset, 1989 &ins, node->ref_mod); 1990 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1991 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1992 node->num_bytes, parent, 1993 ref_root, ref->objectid, 1994 ref->offset, node->ref_mod, 1995 extent_op); 1996 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1997 ret = __btrfs_free_extent(trans, root, node->bytenr, 1998 node->num_bytes, parent, 1999 ref_root, ref->objectid, 2000 ref->offset, node->ref_mod, 2001 extent_op); 2002 } else { 2003 BUG(); 2004 } 2005 return ret; 2006 } 2007 2008 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2009 struct extent_buffer *leaf, 2010 struct btrfs_extent_item *ei) 2011 { 2012 u64 flags = btrfs_extent_flags(leaf, ei); 2013 if (extent_op->update_flags) { 2014 flags |= extent_op->flags_to_set; 2015 btrfs_set_extent_flags(leaf, ei, flags); 2016 } 2017 2018 if (extent_op->update_key) { 2019 struct btrfs_tree_block_info *bi; 2020 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2021 bi = (struct btrfs_tree_block_info *)(ei + 1); 2022 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2023 } 2024 } 2025 2026 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2027 struct btrfs_root *root, 2028 struct btrfs_delayed_ref_node *node, 2029 struct btrfs_delayed_extent_op *extent_op) 2030 { 2031 struct btrfs_key key; 2032 struct btrfs_path *path; 2033 struct btrfs_extent_item *ei; 2034 struct extent_buffer *leaf; 2035 u32 item_size; 2036 int ret; 2037 int err = 0; 2038 2039 if (trans->aborted) 2040 return 0; 2041 2042 path = btrfs_alloc_path(); 2043 if (!path) 2044 return -ENOMEM; 2045 2046 key.objectid = node->bytenr; 2047 key.type = BTRFS_EXTENT_ITEM_KEY; 2048 key.offset = node->num_bytes; 2049 2050 path->reada = 1; 2051 path->leave_spinning = 1; 2052 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2053 path, 0, 1); 2054 if (ret < 0) { 2055 err = ret; 2056 goto out; 2057 } 2058 if (ret > 0) { 2059 err = -EIO; 2060 goto out; 2061 } 2062 2063 leaf = path->nodes[0]; 2064 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2065 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2066 if (item_size < sizeof(*ei)) { 2067 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2068 path, (u64)-1, 0); 2069 if (ret < 0) { 2070 err = ret; 2071 goto out; 2072 } 2073 leaf = path->nodes[0]; 2074 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2075 } 2076 #endif 2077 BUG_ON(item_size < sizeof(*ei)); 2078 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2079 __run_delayed_extent_op(extent_op, leaf, ei); 2080 2081 btrfs_mark_buffer_dirty(leaf); 2082 out: 2083 btrfs_free_path(path); 2084 return err; 2085 } 2086 2087 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2088 struct btrfs_root *root, 2089 struct btrfs_delayed_ref_node *node, 2090 struct btrfs_delayed_extent_op *extent_op, 2091 int insert_reserved) 2092 { 2093 int ret = 0; 2094 struct btrfs_delayed_tree_ref *ref; 2095 struct btrfs_key ins; 2096 u64 parent = 0; 2097 u64 ref_root = 0; 2098 2099 ins.objectid = node->bytenr; 2100 ins.offset = node->num_bytes; 2101 ins.type = BTRFS_EXTENT_ITEM_KEY; 2102 2103 ref = btrfs_delayed_node_to_tree_ref(node); 2104 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2105 parent = ref->parent; 2106 else 2107 ref_root = ref->root; 2108 2109 BUG_ON(node->ref_mod != 1); 2110 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2111 BUG_ON(!extent_op || !extent_op->update_flags || 2112 !extent_op->update_key); 2113 ret = alloc_reserved_tree_block(trans, root, 2114 parent, ref_root, 2115 extent_op->flags_to_set, 2116 &extent_op->key, 2117 ref->level, &ins); 2118 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2119 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2120 node->num_bytes, parent, ref_root, 2121 ref->level, 0, 1, extent_op); 2122 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2123 ret = __btrfs_free_extent(trans, root, node->bytenr, 2124 node->num_bytes, parent, ref_root, 2125 ref->level, 0, 1, extent_op); 2126 } else { 2127 BUG(); 2128 } 2129 return ret; 2130 } 2131 2132 /* helper function to actually process a single delayed ref entry */ 2133 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2134 struct btrfs_root *root, 2135 struct btrfs_delayed_ref_node *node, 2136 struct btrfs_delayed_extent_op *extent_op, 2137 int insert_reserved) 2138 { 2139 int ret = 0; 2140 2141 if (trans->aborted) 2142 return 0; 2143 2144 if (btrfs_delayed_ref_is_head(node)) { 2145 struct btrfs_delayed_ref_head *head; 2146 /* 2147 * we've hit the end of the chain and we were supposed 2148 * to insert this extent into the tree. But, it got 2149 * deleted before we ever needed to insert it, so all 2150 * we have to do is clean up the accounting 2151 */ 2152 BUG_ON(extent_op); 2153 head = btrfs_delayed_node_to_head(node); 2154 if (insert_reserved) { 2155 btrfs_pin_extent(root, node->bytenr, 2156 node->num_bytes, 1); 2157 if (head->is_data) { 2158 ret = btrfs_del_csums(trans, root, 2159 node->bytenr, 2160 node->num_bytes); 2161 } 2162 } 2163 mutex_unlock(&head->mutex); 2164 return ret; 2165 } 2166 2167 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2168 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2169 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2170 insert_reserved); 2171 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2172 node->type == BTRFS_SHARED_DATA_REF_KEY) 2173 ret = run_delayed_data_ref(trans, root, node, extent_op, 2174 insert_reserved); 2175 else 2176 BUG(); 2177 return ret; 2178 } 2179 2180 static noinline struct btrfs_delayed_ref_node * 2181 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2182 { 2183 struct rb_node *node; 2184 struct btrfs_delayed_ref_node *ref; 2185 int action = BTRFS_ADD_DELAYED_REF; 2186 again: 2187 /* 2188 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2189 * this prevents ref count from going down to zero when 2190 * there still are pending delayed ref. 2191 */ 2192 node = rb_prev(&head->node.rb_node); 2193 while (1) { 2194 if (!node) 2195 break; 2196 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2197 rb_node); 2198 if (ref->bytenr != head->node.bytenr) 2199 break; 2200 if (ref->action == action) 2201 return ref; 2202 node = rb_prev(node); 2203 } 2204 if (action == BTRFS_ADD_DELAYED_REF) { 2205 action = BTRFS_DROP_DELAYED_REF; 2206 goto again; 2207 } 2208 return NULL; 2209 } 2210 2211 /* 2212 * Returns 0 on success or if called with an already aborted transaction. 2213 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2214 */ 2215 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2216 struct btrfs_root *root, 2217 struct list_head *cluster) 2218 { 2219 struct btrfs_delayed_ref_root *delayed_refs; 2220 struct btrfs_delayed_ref_node *ref; 2221 struct btrfs_delayed_ref_head *locked_ref = NULL; 2222 struct btrfs_delayed_extent_op *extent_op; 2223 struct btrfs_fs_info *fs_info = root->fs_info; 2224 int ret; 2225 int count = 0; 2226 int must_insert_reserved = 0; 2227 2228 delayed_refs = &trans->transaction->delayed_refs; 2229 while (1) { 2230 if (!locked_ref) { 2231 /* pick a new head ref from the cluster list */ 2232 if (list_empty(cluster)) 2233 break; 2234 2235 locked_ref = list_entry(cluster->next, 2236 struct btrfs_delayed_ref_head, cluster); 2237 2238 /* grab the lock that says we are going to process 2239 * all the refs for this head */ 2240 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2241 2242 /* 2243 * we may have dropped the spin lock to get the head 2244 * mutex lock, and that might have given someone else 2245 * time to free the head. If that's true, it has been 2246 * removed from our list and we can move on. 2247 */ 2248 if (ret == -EAGAIN) { 2249 locked_ref = NULL; 2250 count++; 2251 continue; 2252 } 2253 } 2254 2255 /* 2256 * We need to try and merge add/drops of the same ref since we 2257 * can run into issues with relocate dropping the implicit ref 2258 * and then it being added back again before the drop can 2259 * finish. If we merged anything we need to re-loop so we can 2260 * get a good ref. 2261 */ 2262 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2263 locked_ref); 2264 2265 /* 2266 * locked_ref is the head node, so we have to go one 2267 * node back for any delayed ref updates 2268 */ 2269 ref = select_delayed_ref(locked_ref); 2270 2271 if (ref && ref->seq && 2272 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2273 /* 2274 * there are still refs with lower seq numbers in the 2275 * process of being added. Don't run this ref yet. 2276 */ 2277 list_del_init(&locked_ref->cluster); 2278 mutex_unlock(&locked_ref->mutex); 2279 locked_ref = NULL; 2280 delayed_refs->num_heads_ready++; 2281 spin_unlock(&delayed_refs->lock); 2282 cond_resched(); 2283 spin_lock(&delayed_refs->lock); 2284 continue; 2285 } 2286 2287 /* 2288 * record the must insert reserved flag before we 2289 * drop the spin lock. 2290 */ 2291 must_insert_reserved = locked_ref->must_insert_reserved; 2292 locked_ref->must_insert_reserved = 0; 2293 2294 extent_op = locked_ref->extent_op; 2295 locked_ref->extent_op = NULL; 2296 2297 if (!ref) { 2298 /* All delayed refs have been processed, Go ahead 2299 * and send the head node to run_one_delayed_ref, 2300 * so that any accounting fixes can happen 2301 */ 2302 ref = &locked_ref->node; 2303 2304 if (extent_op && must_insert_reserved) { 2305 kfree(extent_op); 2306 extent_op = NULL; 2307 } 2308 2309 if (extent_op) { 2310 spin_unlock(&delayed_refs->lock); 2311 2312 ret = run_delayed_extent_op(trans, root, 2313 ref, extent_op); 2314 kfree(extent_op); 2315 2316 if (ret) { 2317 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret); 2318 spin_lock(&delayed_refs->lock); 2319 return ret; 2320 } 2321 2322 goto next; 2323 } 2324 2325 list_del_init(&locked_ref->cluster); 2326 locked_ref = NULL; 2327 } 2328 2329 ref->in_tree = 0; 2330 rb_erase(&ref->rb_node, &delayed_refs->root); 2331 delayed_refs->num_entries--; 2332 if (locked_ref) { 2333 /* 2334 * when we play the delayed ref, also correct the 2335 * ref_mod on head 2336 */ 2337 switch (ref->action) { 2338 case BTRFS_ADD_DELAYED_REF: 2339 case BTRFS_ADD_DELAYED_EXTENT: 2340 locked_ref->node.ref_mod -= ref->ref_mod; 2341 break; 2342 case BTRFS_DROP_DELAYED_REF: 2343 locked_ref->node.ref_mod += ref->ref_mod; 2344 break; 2345 default: 2346 WARN_ON(1); 2347 } 2348 } 2349 spin_unlock(&delayed_refs->lock); 2350 2351 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2352 must_insert_reserved); 2353 2354 btrfs_put_delayed_ref(ref); 2355 kfree(extent_op); 2356 count++; 2357 2358 if (ret) { 2359 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret); 2360 spin_lock(&delayed_refs->lock); 2361 return ret; 2362 } 2363 2364 next: 2365 cond_resched(); 2366 spin_lock(&delayed_refs->lock); 2367 } 2368 return count; 2369 } 2370 2371 #ifdef SCRAMBLE_DELAYED_REFS 2372 /* 2373 * Normally delayed refs get processed in ascending bytenr order. This 2374 * correlates in most cases to the order added. To expose dependencies on this 2375 * order, we start to process the tree in the middle instead of the beginning 2376 */ 2377 static u64 find_middle(struct rb_root *root) 2378 { 2379 struct rb_node *n = root->rb_node; 2380 struct btrfs_delayed_ref_node *entry; 2381 int alt = 1; 2382 u64 middle; 2383 u64 first = 0, last = 0; 2384 2385 n = rb_first(root); 2386 if (n) { 2387 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2388 first = entry->bytenr; 2389 } 2390 n = rb_last(root); 2391 if (n) { 2392 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2393 last = entry->bytenr; 2394 } 2395 n = root->rb_node; 2396 2397 while (n) { 2398 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2399 WARN_ON(!entry->in_tree); 2400 2401 middle = entry->bytenr; 2402 2403 if (alt) 2404 n = n->rb_left; 2405 else 2406 n = n->rb_right; 2407 2408 alt = 1 - alt; 2409 } 2410 return middle; 2411 } 2412 #endif 2413 2414 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2415 struct btrfs_fs_info *fs_info) 2416 { 2417 struct qgroup_update *qgroup_update; 2418 int ret = 0; 2419 2420 if (list_empty(&trans->qgroup_ref_list) != 2421 !trans->delayed_ref_elem.seq) { 2422 /* list without seq or seq without list */ 2423 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", 2424 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2425 trans->delayed_ref_elem.seq); 2426 BUG(); 2427 } 2428 2429 if (!trans->delayed_ref_elem.seq) 2430 return 0; 2431 2432 while (!list_empty(&trans->qgroup_ref_list)) { 2433 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2434 struct qgroup_update, list); 2435 list_del(&qgroup_update->list); 2436 if (!ret) 2437 ret = btrfs_qgroup_account_ref( 2438 trans, fs_info, qgroup_update->node, 2439 qgroup_update->extent_op); 2440 kfree(qgroup_update); 2441 } 2442 2443 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2444 2445 return ret; 2446 } 2447 2448 /* 2449 * this starts processing the delayed reference count updates and 2450 * extent insertions we have queued up so far. count can be 2451 * 0, which means to process everything in the tree at the start 2452 * of the run (but not newly added entries), or it can be some target 2453 * number you'd like to process. 2454 * 2455 * Returns 0 on success or if called with an aborted transaction 2456 * Returns <0 on error and aborts the transaction 2457 */ 2458 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2459 struct btrfs_root *root, unsigned long count) 2460 { 2461 struct rb_node *node; 2462 struct btrfs_delayed_ref_root *delayed_refs; 2463 struct btrfs_delayed_ref_node *ref; 2464 struct list_head cluster; 2465 int ret; 2466 u64 delayed_start; 2467 int run_all = count == (unsigned long)-1; 2468 int run_most = 0; 2469 int loops; 2470 2471 /* We'll clean this up in btrfs_cleanup_transaction */ 2472 if (trans->aborted) 2473 return 0; 2474 2475 if (root == root->fs_info->extent_root) 2476 root = root->fs_info->tree_root; 2477 2478 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2479 2480 delayed_refs = &trans->transaction->delayed_refs; 2481 INIT_LIST_HEAD(&cluster); 2482 again: 2483 loops = 0; 2484 spin_lock(&delayed_refs->lock); 2485 2486 #ifdef SCRAMBLE_DELAYED_REFS 2487 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2488 #endif 2489 2490 if (count == 0) { 2491 count = delayed_refs->num_entries * 2; 2492 run_most = 1; 2493 } 2494 while (1) { 2495 if (!(run_all || run_most) && 2496 delayed_refs->num_heads_ready < 64) 2497 break; 2498 2499 /* 2500 * go find something we can process in the rbtree. We start at 2501 * the beginning of the tree, and then build a cluster 2502 * of refs to process starting at the first one we are able to 2503 * lock 2504 */ 2505 delayed_start = delayed_refs->run_delayed_start; 2506 ret = btrfs_find_ref_cluster(trans, &cluster, 2507 delayed_refs->run_delayed_start); 2508 if (ret) 2509 break; 2510 2511 ret = run_clustered_refs(trans, root, &cluster); 2512 if (ret < 0) { 2513 spin_unlock(&delayed_refs->lock); 2514 btrfs_abort_transaction(trans, root, ret); 2515 return ret; 2516 } 2517 2518 count -= min_t(unsigned long, ret, count); 2519 2520 if (count == 0) 2521 break; 2522 2523 if (delayed_start >= delayed_refs->run_delayed_start) { 2524 if (loops == 0) { 2525 /* 2526 * btrfs_find_ref_cluster looped. let's do one 2527 * more cycle. if we don't run any delayed ref 2528 * during that cycle (because we can't because 2529 * all of them are blocked), bail out. 2530 */ 2531 loops = 1; 2532 } else { 2533 /* 2534 * no runnable refs left, stop trying 2535 */ 2536 BUG_ON(run_all); 2537 break; 2538 } 2539 } 2540 if (ret) { 2541 /* refs were run, let's reset staleness detection */ 2542 loops = 0; 2543 } 2544 } 2545 2546 if (run_all) { 2547 if (!list_empty(&trans->new_bgs)) { 2548 spin_unlock(&delayed_refs->lock); 2549 btrfs_create_pending_block_groups(trans, root); 2550 spin_lock(&delayed_refs->lock); 2551 } 2552 2553 node = rb_first(&delayed_refs->root); 2554 if (!node) 2555 goto out; 2556 count = (unsigned long)-1; 2557 2558 while (node) { 2559 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2560 rb_node); 2561 if (btrfs_delayed_ref_is_head(ref)) { 2562 struct btrfs_delayed_ref_head *head; 2563 2564 head = btrfs_delayed_node_to_head(ref); 2565 atomic_inc(&ref->refs); 2566 2567 spin_unlock(&delayed_refs->lock); 2568 /* 2569 * Mutex was contended, block until it's 2570 * released and try again 2571 */ 2572 mutex_lock(&head->mutex); 2573 mutex_unlock(&head->mutex); 2574 2575 btrfs_put_delayed_ref(ref); 2576 cond_resched(); 2577 goto again; 2578 } 2579 node = rb_next(node); 2580 } 2581 spin_unlock(&delayed_refs->lock); 2582 schedule_timeout(1); 2583 goto again; 2584 } 2585 out: 2586 spin_unlock(&delayed_refs->lock); 2587 assert_qgroups_uptodate(trans); 2588 return 0; 2589 } 2590 2591 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2592 struct btrfs_root *root, 2593 u64 bytenr, u64 num_bytes, u64 flags, 2594 int is_data) 2595 { 2596 struct btrfs_delayed_extent_op *extent_op; 2597 int ret; 2598 2599 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2600 if (!extent_op) 2601 return -ENOMEM; 2602 2603 extent_op->flags_to_set = flags; 2604 extent_op->update_flags = 1; 2605 extent_op->update_key = 0; 2606 extent_op->is_data = is_data ? 1 : 0; 2607 2608 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2609 num_bytes, extent_op); 2610 if (ret) 2611 kfree(extent_op); 2612 return ret; 2613 } 2614 2615 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2616 struct btrfs_root *root, 2617 struct btrfs_path *path, 2618 u64 objectid, u64 offset, u64 bytenr) 2619 { 2620 struct btrfs_delayed_ref_head *head; 2621 struct btrfs_delayed_ref_node *ref; 2622 struct btrfs_delayed_data_ref *data_ref; 2623 struct btrfs_delayed_ref_root *delayed_refs; 2624 struct rb_node *node; 2625 int ret = 0; 2626 2627 ret = -ENOENT; 2628 delayed_refs = &trans->transaction->delayed_refs; 2629 spin_lock(&delayed_refs->lock); 2630 head = btrfs_find_delayed_ref_head(trans, bytenr); 2631 if (!head) 2632 goto out; 2633 2634 if (!mutex_trylock(&head->mutex)) { 2635 atomic_inc(&head->node.refs); 2636 spin_unlock(&delayed_refs->lock); 2637 2638 btrfs_release_path(path); 2639 2640 /* 2641 * Mutex was contended, block until it's released and let 2642 * caller try again 2643 */ 2644 mutex_lock(&head->mutex); 2645 mutex_unlock(&head->mutex); 2646 btrfs_put_delayed_ref(&head->node); 2647 return -EAGAIN; 2648 } 2649 2650 node = rb_prev(&head->node.rb_node); 2651 if (!node) 2652 goto out_unlock; 2653 2654 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2655 2656 if (ref->bytenr != bytenr) 2657 goto out_unlock; 2658 2659 ret = 1; 2660 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2661 goto out_unlock; 2662 2663 data_ref = btrfs_delayed_node_to_data_ref(ref); 2664 2665 node = rb_prev(node); 2666 if (node) { 2667 int seq = ref->seq; 2668 2669 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2670 if (ref->bytenr == bytenr && ref->seq == seq) 2671 goto out_unlock; 2672 } 2673 2674 if (data_ref->root != root->root_key.objectid || 2675 data_ref->objectid != objectid || data_ref->offset != offset) 2676 goto out_unlock; 2677 2678 ret = 0; 2679 out_unlock: 2680 mutex_unlock(&head->mutex); 2681 out: 2682 spin_unlock(&delayed_refs->lock); 2683 return ret; 2684 } 2685 2686 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2687 struct btrfs_root *root, 2688 struct btrfs_path *path, 2689 u64 objectid, u64 offset, u64 bytenr) 2690 { 2691 struct btrfs_root *extent_root = root->fs_info->extent_root; 2692 struct extent_buffer *leaf; 2693 struct btrfs_extent_data_ref *ref; 2694 struct btrfs_extent_inline_ref *iref; 2695 struct btrfs_extent_item *ei; 2696 struct btrfs_key key; 2697 u32 item_size; 2698 int ret; 2699 2700 key.objectid = bytenr; 2701 key.offset = (u64)-1; 2702 key.type = BTRFS_EXTENT_ITEM_KEY; 2703 2704 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2705 if (ret < 0) 2706 goto out; 2707 BUG_ON(ret == 0); /* Corruption */ 2708 2709 ret = -ENOENT; 2710 if (path->slots[0] == 0) 2711 goto out; 2712 2713 path->slots[0]--; 2714 leaf = path->nodes[0]; 2715 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2716 2717 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2718 goto out; 2719 2720 ret = 1; 2721 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2722 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2723 if (item_size < sizeof(*ei)) { 2724 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2725 goto out; 2726 } 2727 #endif 2728 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2729 2730 if (item_size != sizeof(*ei) + 2731 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2732 goto out; 2733 2734 if (btrfs_extent_generation(leaf, ei) <= 2735 btrfs_root_last_snapshot(&root->root_item)) 2736 goto out; 2737 2738 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2739 if (btrfs_extent_inline_ref_type(leaf, iref) != 2740 BTRFS_EXTENT_DATA_REF_KEY) 2741 goto out; 2742 2743 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2744 if (btrfs_extent_refs(leaf, ei) != 2745 btrfs_extent_data_ref_count(leaf, ref) || 2746 btrfs_extent_data_ref_root(leaf, ref) != 2747 root->root_key.objectid || 2748 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2749 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2750 goto out; 2751 2752 ret = 0; 2753 out: 2754 return ret; 2755 } 2756 2757 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2758 struct btrfs_root *root, 2759 u64 objectid, u64 offset, u64 bytenr) 2760 { 2761 struct btrfs_path *path; 2762 int ret; 2763 int ret2; 2764 2765 path = btrfs_alloc_path(); 2766 if (!path) 2767 return -ENOENT; 2768 2769 do { 2770 ret = check_committed_ref(trans, root, path, objectid, 2771 offset, bytenr); 2772 if (ret && ret != -ENOENT) 2773 goto out; 2774 2775 ret2 = check_delayed_ref(trans, root, path, objectid, 2776 offset, bytenr); 2777 } while (ret2 == -EAGAIN); 2778 2779 if (ret2 && ret2 != -ENOENT) { 2780 ret = ret2; 2781 goto out; 2782 } 2783 2784 if (ret != -ENOENT || ret2 != -ENOENT) 2785 ret = 0; 2786 out: 2787 btrfs_free_path(path); 2788 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2789 WARN_ON(ret > 0); 2790 return ret; 2791 } 2792 2793 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2794 struct btrfs_root *root, 2795 struct extent_buffer *buf, 2796 int full_backref, int inc, int for_cow) 2797 { 2798 u64 bytenr; 2799 u64 num_bytes; 2800 u64 parent; 2801 u64 ref_root; 2802 u32 nritems; 2803 struct btrfs_key key; 2804 struct btrfs_file_extent_item *fi; 2805 int i; 2806 int level; 2807 int ret = 0; 2808 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2809 u64, u64, u64, u64, u64, u64, int); 2810 2811 ref_root = btrfs_header_owner(buf); 2812 nritems = btrfs_header_nritems(buf); 2813 level = btrfs_header_level(buf); 2814 2815 if (!root->ref_cows && level == 0) 2816 return 0; 2817 2818 if (inc) 2819 process_func = btrfs_inc_extent_ref; 2820 else 2821 process_func = btrfs_free_extent; 2822 2823 if (full_backref) 2824 parent = buf->start; 2825 else 2826 parent = 0; 2827 2828 for (i = 0; i < nritems; i++) { 2829 if (level == 0) { 2830 btrfs_item_key_to_cpu(buf, &key, i); 2831 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2832 continue; 2833 fi = btrfs_item_ptr(buf, i, 2834 struct btrfs_file_extent_item); 2835 if (btrfs_file_extent_type(buf, fi) == 2836 BTRFS_FILE_EXTENT_INLINE) 2837 continue; 2838 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2839 if (bytenr == 0) 2840 continue; 2841 2842 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2843 key.offset -= btrfs_file_extent_offset(buf, fi); 2844 ret = process_func(trans, root, bytenr, num_bytes, 2845 parent, ref_root, key.objectid, 2846 key.offset, for_cow); 2847 if (ret) 2848 goto fail; 2849 } else { 2850 bytenr = btrfs_node_blockptr(buf, i); 2851 num_bytes = btrfs_level_size(root, level - 1); 2852 ret = process_func(trans, root, bytenr, num_bytes, 2853 parent, ref_root, level - 1, 0, 2854 for_cow); 2855 if (ret) 2856 goto fail; 2857 } 2858 } 2859 return 0; 2860 fail: 2861 return ret; 2862 } 2863 2864 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2865 struct extent_buffer *buf, int full_backref, int for_cow) 2866 { 2867 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2868 } 2869 2870 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2871 struct extent_buffer *buf, int full_backref, int for_cow) 2872 { 2873 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2874 } 2875 2876 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2877 struct btrfs_root *root, 2878 struct btrfs_path *path, 2879 struct btrfs_block_group_cache *cache) 2880 { 2881 int ret; 2882 struct btrfs_root *extent_root = root->fs_info->extent_root; 2883 unsigned long bi; 2884 struct extent_buffer *leaf; 2885 2886 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2887 if (ret < 0) 2888 goto fail; 2889 BUG_ON(ret); /* Corruption */ 2890 2891 leaf = path->nodes[0]; 2892 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2893 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2894 btrfs_mark_buffer_dirty(leaf); 2895 btrfs_release_path(path); 2896 fail: 2897 if (ret) { 2898 btrfs_abort_transaction(trans, root, ret); 2899 return ret; 2900 } 2901 return 0; 2902 2903 } 2904 2905 static struct btrfs_block_group_cache * 2906 next_block_group(struct btrfs_root *root, 2907 struct btrfs_block_group_cache *cache) 2908 { 2909 struct rb_node *node; 2910 spin_lock(&root->fs_info->block_group_cache_lock); 2911 node = rb_next(&cache->cache_node); 2912 btrfs_put_block_group(cache); 2913 if (node) { 2914 cache = rb_entry(node, struct btrfs_block_group_cache, 2915 cache_node); 2916 btrfs_get_block_group(cache); 2917 } else 2918 cache = NULL; 2919 spin_unlock(&root->fs_info->block_group_cache_lock); 2920 return cache; 2921 } 2922 2923 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2924 struct btrfs_trans_handle *trans, 2925 struct btrfs_path *path) 2926 { 2927 struct btrfs_root *root = block_group->fs_info->tree_root; 2928 struct inode *inode = NULL; 2929 u64 alloc_hint = 0; 2930 int dcs = BTRFS_DC_ERROR; 2931 int num_pages = 0; 2932 int retries = 0; 2933 int ret = 0; 2934 2935 /* 2936 * If this block group is smaller than 100 megs don't bother caching the 2937 * block group. 2938 */ 2939 if (block_group->key.offset < (100 * 1024 * 1024)) { 2940 spin_lock(&block_group->lock); 2941 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2942 spin_unlock(&block_group->lock); 2943 return 0; 2944 } 2945 2946 again: 2947 inode = lookup_free_space_inode(root, block_group, path); 2948 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2949 ret = PTR_ERR(inode); 2950 btrfs_release_path(path); 2951 goto out; 2952 } 2953 2954 if (IS_ERR(inode)) { 2955 BUG_ON(retries); 2956 retries++; 2957 2958 if (block_group->ro) 2959 goto out_free; 2960 2961 ret = create_free_space_inode(root, trans, block_group, path); 2962 if (ret) 2963 goto out_free; 2964 goto again; 2965 } 2966 2967 /* We've already setup this transaction, go ahead and exit */ 2968 if (block_group->cache_generation == trans->transid && 2969 i_size_read(inode)) { 2970 dcs = BTRFS_DC_SETUP; 2971 goto out_put; 2972 } 2973 2974 /* 2975 * We want to set the generation to 0, that way if anything goes wrong 2976 * from here on out we know not to trust this cache when we load up next 2977 * time. 2978 */ 2979 BTRFS_I(inode)->generation = 0; 2980 ret = btrfs_update_inode(trans, root, inode); 2981 WARN_ON(ret); 2982 2983 if (i_size_read(inode) > 0) { 2984 ret = btrfs_truncate_free_space_cache(root, trans, path, 2985 inode); 2986 if (ret) 2987 goto out_put; 2988 } 2989 2990 spin_lock(&block_group->lock); 2991 if (block_group->cached != BTRFS_CACHE_FINISHED || 2992 !btrfs_test_opt(root, SPACE_CACHE)) { 2993 /* 2994 * don't bother trying to write stuff out _if_ 2995 * a) we're not cached, 2996 * b) we're with nospace_cache mount option. 2997 */ 2998 dcs = BTRFS_DC_WRITTEN; 2999 spin_unlock(&block_group->lock); 3000 goto out_put; 3001 } 3002 spin_unlock(&block_group->lock); 3003 3004 /* 3005 * Try to preallocate enough space based on how big the block group is. 3006 * Keep in mind this has to include any pinned space which could end up 3007 * taking up quite a bit since it's not folded into the other space 3008 * cache. 3009 */ 3010 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3011 if (!num_pages) 3012 num_pages = 1; 3013 3014 num_pages *= 16; 3015 num_pages *= PAGE_CACHE_SIZE; 3016 3017 ret = btrfs_check_data_free_space(inode, num_pages); 3018 if (ret) 3019 goto out_put; 3020 3021 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3022 num_pages, num_pages, 3023 &alloc_hint); 3024 if (!ret) 3025 dcs = BTRFS_DC_SETUP; 3026 btrfs_free_reserved_data_space(inode, num_pages); 3027 3028 out_put: 3029 iput(inode); 3030 out_free: 3031 btrfs_release_path(path); 3032 out: 3033 spin_lock(&block_group->lock); 3034 if (!ret && dcs == BTRFS_DC_SETUP) 3035 block_group->cache_generation = trans->transid; 3036 block_group->disk_cache_state = dcs; 3037 spin_unlock(&block_group->lock); 3038 3039 return ret; 3040 } 3041 3042 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3043 struct btrfs_root *root) 3044 { 3045 struct btrfs_block_group_cache *cache; 3046 int err = 0; 3047 struct btrfs_path *path; 3048 u64 last = 0; 3049 3050 path = btrfs_alloc_path(); 3051 if (!path) 3052 return -ENOMEM; 3053 3054 again: 3055 while (1) { 3056 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3057 while (cache) { 3058 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3059 break; 3060 cache = next_block_group(root, cache); 3061 } 3062 if (!cache) { 3063 if (last == 0) 3064 break; 3065 last = 0; 3066 continue; 3067 } 3068 err = cache_save_setup(cache, trans, path); 3069 last = cache->key.objectid + cache->key.offset; 3070 btrfs_put_block_group(cache); 3071 } 3072 3073 while (1) { 3074 if (last == 0) { 3075 err = btrfs_run_delayed_refs(trans, root, 3076 (unsigned long)-1); 3077 if (err) /* File system offline */ 3078 goto out; 3079 } 3080 3081 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3082 while (cache) { 3083 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3084 btrfs_put_block_group(cache); 3085 goto again; 3086 } 3087 3088 if (cache->dirty) 3089 break; 3090 cache = next_block_group(root, cache); 3091 } 3092 if (!cache) { 3093 if (last == 0) 3094 break; 3095 last = 0; 3096 continue; 3097 } 3098 3099 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3100 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3101 cache->dirty = 0; 3102 last = cache->key.objectid + cache->key.offset; 3103 3104 err = write_one_cache_group(trans, root, path, cache); 3105 if (err) /* File system offline */ 3106 goto out; 3107 3108 btrfs_put_block_group(cache); 3109 } 3110 3111 while (1) { 3112 /* 3113 * I don't think this is needed since we're just marking our 3114 * preallocated extent as written, but just in case it can't 3115 * hurt. 3116 */ 3117 if (last == 0) { 3118 err = btrfs_run_delayed_refs(trans, root, 3119 (unsigned long)-1); 3120 if (err) /* File system offline */ 3121 goto out; 3122 } 3123 3124 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3125 while (cache) { 3126 /* 3127 * Really this shouldn't happen, but it could if we 3128 * couldn't write the entire preallocated extent and 3129 * splitting the extent resulted in a new block. 3130 */ 3131 if (cache->dirty) { 3132 btrfs_put_block_group(cache); 3133 goto again; 3134 } 3135 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3136 break; 3137 cache = next_block_group(root, cache); 3138 } 3139 if (!cache) { 3140 if (last == 0) 3141 break; 3142 last = 0; 3143 continue; 3144 } 3145 3146 err = btrfs_write_out_cache(root, trans, cache, path); 3147 3148 /* 3149 * If we didn't have an error then the cache state is still 3150 * NEED_WRITE, so we can set it to WRITTEN. 3151 */ 3152 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3153 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3154 last = cache->key.objectid + cache->key.offset; 3155 btrfs_put_block_group(cache); 3156 } 3157 out: 3158 3159 btrfs_free_path(path); 3160 return err; 3161 } 3162 3163 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3164 { 3165 struct btrfs_block_group_cache *block_group; 3166 int readonly = 0; 3167 3168 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3169 if (!block_group || block_group->ro) 3170 readonly = 1; 3171 if (block_group) 3172 btrfs_put_block_group(block_group); 3173 return readonly; 3174 } 3175 3176 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3177 u64 total_bytes, u64 bytes_used, 3178 struct btrfs_space_info **space_info) 3179 { 3180 struct btrfs_space_info *found; 3181 int i; 3182 int factor; 3183 3184 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3185 BTRFS_BLOCK_GROUP_RAID10)) 3186 factor = 2; 3187 else 3188 factor = 1; 3189 3190 found = __find_space_info(info, flags); 3191 if (found) { 3192 spin_lock(&found->lock); 3193 found->total_bytes += total_bytes; 3194 found->disk_total += total_bytes * factor; 3195 found->bytes_used += bytes_used; 3196 found->disk_used += bytes_used * factor; 3197 found->full = 0; 3198 spin_unlock(&found->lock); 3199 *space_info = found; 3200 return 0; 3201 } 3202 found = kzalloc(sizeof(*found), GFP_NOFS); 3203 if (!found) 3204 return -ENOMEM; 3205 3206 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3207 INIT_LIST_HEAD(&found->block_groups[i]); 3208 init_rwsem(&found->groups_sem); 3209 spin_lock_init(&found->lock); 3210 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3211 found->total_bytes = total_bytes; 3212 found->disk_total = total_bytes * factor; 3213 found->bytes_used = bytes_used; 3214 found->disk_used = bytes_used * factor; 3215 found->bytes_pinned = 0; 3216 found->bytes_reserved = 0; 3217 found->bytes_readonly = 0; 3218 found->bytes_may_use = 0; 3219 found->full = 0; 3220 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3221 found->chunk_alloc = 0; 3222 found->flush = 0; 3223 init_waitqueue_head(&found->wait); 3224 *space_info = found; 3225 list_add_rcu(&found->list, &info->space_info); 3226 if (flags & BTRFS_BLOCK_GROUP_DATA) 3227 info->data_sinfo = found; 3228 return 0; 3229 } 3230 3231 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3232 { 3233 u64 extra_flags = chunk_to_extended(flags) & 3234 BTRFS_EXTENDED_PROFILE_MASK; 3235 3236 if (flags & BTRFS_BLOCK_GROUP_DATA) 3237 fs_info->avail_data_alloc_bits |= extra_flags; 3238 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3239 fs_info->avail_metadata_alloc_bits |= extra_flags; 3240 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3241 fs_info->avail_system_alloc_bits |= extra_flags; 3242 } 3243 3244 /* 3245 * returns target flags in extended format or 0 if restripe for this 3246 * chunk_type is not in progress 3247 * 3248 * should be called with either volume_mutex or balance_lock held 3249 */ 3250 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3251 { 3252 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3253 u64 target = 0; 3254 3255 if (!bctl) 3256 return 0; 3257 3258 if (flags & BTRFS_BLOCK_GROUP_DATA && 3259 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3260 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3261 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3262 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3263 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3264 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3265 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3266 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3267 } 3268 3269 return target; 3270 } 3271 3272 /* 3273 * @flags: available profiles in extended format (see ctree.h) 3274 * 3275 * Returns reduced profile in chunk format. If profile changing is in 3276 * progress (either running or paused) picks the target profile (if it's 3277 * already available), otherwise falls back to plain reducing. 3278 */ 3279 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3280 { 3281 /* 3282 * we add in the count of missing devices because we want 3283 * to make sure that any RAID levels on a degraded FS 3284 * continue to be honored. 3285 */ 3286 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3287 root->fs_info->fs_devices->missing_devices; 3288 u64 target; 3289 3290 /* 3291 * see if restripe for this chunk_type is in progress, if so 3292 * try to reduce to the target profile 3293 */ 3294 spin_lock(&root->fs_info->balance_lock); 3295 target = get_restripe_target(root->fs_info, flags); 3296 if (target) { 3297 /* pick target profile only if it's already available */ 3298 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3299 spin_unlock(&root->fs_info->balance_lock); 3300 return extended_to_chunk(target); 3301 } 3302 } 3303 spin_unlock(&root->fs_info->balance_lock); 3304 3305 if (num_devices == 1) 3306 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3307 if (num_devices < 4) 3308 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3309 3310 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3311 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3312 BTRFS_BLOCK_GROUP_RAID10))) { 3313 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3314 } 3315 3316 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3317 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3318 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3319 } 3320 3321 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3322 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3323 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3324 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3325 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3326 } 3327 3328 return extended_to_chunk(flags); 3329 } 3330 3331 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3332 { 3333 if (flags & BTRFS_BLOCK_GROUP_DATA) 3334 flags |= root->fs_info->avail_data_alloc_bits; 3335 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3336 flags |= root->fs_info->avail_system_alloc_bits; 3337 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3338 flags |= root->fs_info->avail_metadata_alloc_bits; 3339 3340 return btrfs_reduce_alloc_profile(root, flags); 3341 } 3342 3343 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3344 { 3345 u64 flags; 3346 3347 if (data) 3348 flags = BTRFS_BLOCK_GROUP_DATA; 3349 else if (root == root->fs_info->chunk_root) 3350 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3351 else 3352 flags = BTRFS_BLOCK_GROUP_METADATA; 3353 3354 return get_alloc_profile(root, flags); 3355 } 3356 3357 /* 3358 * This will check the space that the inode allocates from to make sure we have 3359 * enough space for bytes. 3360 */ 3361 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3362 { 3363 struct btrfs_space_info *data_sinfo; 3364 struct btrfs_root *root = BTRFS_I(inode)->root; 3365 struct btrfs_fs_info *fs_info = root->fs_info; 3366 u64 used; 3367 int ret = 0, committed = 0, alloc_chunk = 1; 3368 3369 /* make sure bytes are sectorsize aligned */ 3370 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3371 3372 if (root == root->fs_info->tree_root || 3373 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3374 alloc_chunk = 0; 3375 committed = 1; 3376 } 3377 3378 data_sinfo = fs_info->data_sinfo; 3379 if (!data_sinfo) 3380 goto alloc; 3381 3382 again: 3383 /* make sure we have enough space to handle the data first */ 3384 spin_lock(&data_sinfo->lock); 3385 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3386 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3387 data_sinfo->bytes_may_use; 3388 3389 if (used + bytes > data_sinfo->total_bytes) { 3390 struct btrfs_trans_handle *trans; 3391 3392 /* 3393 * if we don't have enough free bytes in this space then we need 3394 * to alloc a new chunk. 3395 */ 3396 if (!data_sinfo->full && alloc_chunk) { 3397 u64 alloc_target; 3398 3399 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3400 spin_unlock(&data_sinfo->lock); 3401 alloc: 3402 alloc_target = btrfs_get_alloc_profile(root, 1); 3403 trans = btrfs_join_transaction(root); 3404 if (IS_ERR(trans)) 3405 return PTR_ERR(trans); 3406 3407 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3408 alloc_target, 3409 CHUNK_ALLOC_NO_FORCE); 3410 btrfs_end_transaction(trans, root); 3411 if (ret < 0) { 3412 if (ret != -ENOSPC) 3413 return ret; 3414 else 3415 goto commit_trans; 3416 } 3417 3418 if (!data_sinfo) 3419 data_sinfo = fs_info->data_sinfo; 3420 3421 goto again; 3422 } 3423 3424 /* 3425 * If we have less pinned bytes than we want to allocate then 3426 * don't bother committing the transaction, it won't help us. 3427 */ 3428 if (data_sinfo->bytes_pinned < bytes) 3429 committed = 1; 3430 spin_unlock(&data_sinfo->lock); 3431 3432 /* commit the current transaction and try again */ 3433 commit_trans: 3434 if (!committed && 3435 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3436 committed = 1; 3437 trans = btrfs_join_transaction(root); 3438 if (IS_ERR(trans)) 3439 return PTR_ERR(trans); 3440 ret = btrfs_commit_transaction(trans, root); 3441 if (ret) 3442 return ret; 3443 goto again; 3444 } 3445 3446 return -ENOSPC; 3447 } 3448 data_sinfo->bytes_may_use += bytes; 3449 trace_btrfs_space_reservation(root->fs_info, "space_info", 3450 data_sinfo->flags, bytes, 1); 3451 spin_unlock(&data_sinfo->lock); 3452 3453 return 0; 3454 } 3455 3456 /* 3457 * Called if we need to clear a data reservation for this inode. 3458 */ 3459 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3460 { 3461 struct btrfs_root *root = BTRFS_I(inode)->root; 3462 struct btrfs_space_info *data_sinfo; 3463 3464 /* make sure bytes are sectorsize aligned */ 3465 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3466 3467 data_sinfo = root->fs_info->data_sinfo; 3468 spin_lock(&data_sinfo->lock); 3469 data_sinfo->bytes_may_use -= bytes; 3470 trace_btrfs_space_reservation(root->fs_info, "space_info", 3471 data_sinfo->flags, bytes, 0); 3472 spin_unlock(&data_sinfo->lock); 3473 } 3474 3475 static void force_metadata_allocation(struct btrfs_fs_info *info) 3476 { 3477 struct list_head *head = &info->space_info; 3478 struct btrfs_space_info *found; 3479 3480 rcu_read_lock(); 3481 list_for_each_entry_rcu(found, head, list) { 3482 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3483 found->force_alloc = CHUNK_ALLOC_FORCE; 3484 } 3485 rcu_read_unlock(); 3486 } 3487 3488 static int should_alloc_chunk(struct btrfs_root *root, 3489 struct btrfs_space_info *sinfo, int force) 3490 { 3491 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3492 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3493 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3494 u64 thresh; 3495 3496 if (force == CHUNK_ALLOC_FORCE) 3497 return 1; 3498 3499 /* 3500 * We need to take into account the global rsv because for all intents 3501 * and purposes it's used space. Don't worry about locking the 3502 * global_rsv, it doesn't change except when the transaction commits. 3503 */ 3504 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3505 num_allocated += global_rsv->size; 3506 3507 /* 3508 * in limited mode, we want to have some free space up to 3509 * about 1% of the FS size. 3510 */ 3511 if (force == CHUNK_ALLOC_LIMITED) { 3512 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3513 thresh = max_t(u64, 64 * 1024 * 1024, 3514 div_factor_fine(thresh, 1)); 3515 3516 if (num_bytes - num_allocated < thresh) 3517 return 1; 3518 } 3519 3520 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3521 return 0; 3522 return 1; 3523 } 3524 3525 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3526 { 3527 u64 num_dev; 3528 3529 if (type & BTRFS_BLOCK_GROUP_RAID10 || 3530 type & BTRFS_BLOCK_GROUP_RAID0) 3531 num_dev = root->fs_info->fs_devices->rw_devices; 3532 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3533 num_dev = 2; 3534 else 3535 num_dev = 1; /* DUP or single */ 3536 3537 /* metadata for updaing devices and chunk tree */ 3538 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3539 } 3540 3541 static void check_system_chunk(struct btrfs_trans_handle *trans, 3542 struct btrfs_root *root, u64 type) 3543 { 3544 struct btrfs_space_info *info; 3545 u64 left; 3546 u64 thresh; 3547 3548 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3549 spin_lock(&info->lock); 3550 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3551 info->bytes_reserved - info->bytes_readonly; 3552 spin_unlock(&info->lock); 3553 3554 thresh = get_system_chunk_thresh(root, type); 3555 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3556 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3557 left, thresh, type); 3558 dump_space_info(info, 0, 0); 3559 } 3560 3561 if (left < thresh) { 3562 u64 flags; 3563 3564 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3565 btrfs_alloc_chunk(trans, root, flags); 3566 } 3567 } 3568 3569 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3570 struct btrfs_root *extent_root, u64 flags, int force) 3571 { 3572 struct btrfs_space_info *space_info; 3573 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3574 int wait_for_alloc = 0; 3575 int ret = 0; 3576 3577 space_info = __find_space_info(extent_root->fs_info, flags); 3578 if (!space_info) { 3579 ret = update_space_info(extent_root->fs_info, flags, 3580 0, 0, &space_info); 3581 BUG_ON(ret); /* -ENOMEM */ 3582 } 3583 BUG_ON(!space_info); /* Logic error */ 3584 3585 again: 3586 spin_lock(&space_info->lock); 3587 if (force < space_info->force_alloc) 3588 force = space_info->force_alloc; 3589 if (space_info->full) { 3590 spin_unlock(&space_info->lock); 3591 return 0; 3592 } 3593 3594 if (!should_alloc_chunk(extent_root, space_info, force)) { 3595 spin_unlock(&space_info->lock); 3596 return 0; 3597 } else if (space_info->chunk_alloc) { 3598 wait_for_alloc = 1; 3599 } else { 3600 space_info->chunk_alloc = 1; 3601 } 3602 3603 spin_unlock(&space_info->lock); 3604 3605 mutex_lock(&fs_info->chunk_mutex); 3606 3607 /* 3608 * The chunk_mutex is held throughout the entirety of a chunk 3609 * allocation, so once we've acquired the chunk_mutex we know that the 3610 * other guy is done and we need to recheck and see if we should 3611 * allocate. 3612 */ 3613 if (wait_for_alloc) { 3614 mutex_unlock(&fs_info->chunk_mutex); 3615 wait_for_alloc = 0; 3616 goto again; 3617 } 3618 3619 /* 3620 * If we have mixed data/metadata chunks we want to make sure we keep 3621 * allocating mixed chunks instead of individual chunks. 3622 */ 3623 if (btrfs_mixed_space_info(space_info)) 3624 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3625 3626 /* 3627 * if we're doing a data chunk, go ahead and make sure that 3628 * we keep a reasonable number of metadata chunks allocated in the 3629 * FS as well. 3630 */ 3631 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3632 fs_info->data_chunk_allocations++; 3633 if (!(fs_info->data_chunk_allocations % 3634 fs_info->metadata_ratio)) 3635 force_metadata_allocation(fs_info); 3636 } 3637 3638 /* 3639 * Check if we have enough space in SYSTEM chunk because we may need 3640 * to update devices. 3641 */ 3642 check_system_chunk(trans, extent_root, flags); 3643 3644 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3645 if (ret < 0 && ret != -ENOSPC) 3646 goto out; 3647 3648 spin_lock(&space_info->lock); 3649 if (ret) 3650 space_info->full = 1; 3651 else 3652 ret = 1; 3653 3654 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3655 space_info->chunk_alloc = 0; 3656 spin_unlock(&space_info->lock); 3657 out: 3658 mutex_unlock(&fs_info->chunk_mutex); 3659 return ret; 3660 } 3661 3662 static int can_overcommit(struct btrfs_root *root, 3663 struct btrfs_space_info *space_info, u64 bytes, 3664 int flush) 3665 { 3666 u64 profile = btrfs_get_alloc_profile(root, 0); 3667 u64 avail; 3668 u64 used; 3669 3670 used = space_info->bytes_used + space_info->bytes_reserved + 3671 space_info->bytes_pinned + space_info->bytes_readonly + 3672 space_info->bytes_may_use; 3673 3674 spin_lock(&root->fs_info->free_chunk_lock); 3675 avail = root->fs_info->free_chunk_space; 3676 spin_unlock(&root->fs_info->free_chunk_lock); 3677 3678 /* 3679 * If we have dup, raid1 or raid10 then only half of the free 3680 * space is actually useable. 3681 */ 3682 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3683 BTRFS_BLOCK_GROUP_RAID1 | 3684 BTRFS_BLOCK_GROUP_RAID10)) 3685 avail >>= 1; 3686 3687 /* 3688 * If we aren't flushing don't let us overcommit too much, say 3689 * 1/8th of the space. If we can flush, let it overcommit up to 3690 * 1/2 of the space. 3691 */ 3692 if (flush) 3693 avail >>= 3; 3694 else 3695 avail >>= 1; 3696 3697 if (used + bytes < space_info->total_bytes + avail) 3698 return 1; 3699 return 0; 3700 } 3701 3702 /* 3703 * shrink metadata reservation for delalloc 3704 */ 3705 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3706 bool wait_ordered) 3707 { 3708 struct btrfs_block_rsv *block_rsv; 3709 struct btrfs_space_info *space_info; 3710 struct btrfs_trans_handle *trans; 3711 u64 delalloc_bytes; 3712 u64 max_reclaim; 3713 long time_left; 3714 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3715 int loops = 0; 3716 3717 trans = (struct btrfs_trans_handle *)current->journal_info; 3718 block_rsv = &root->fs_info->delalloc_block_rsv; 3719 space_info = block_rsv->space_info; 3720 3721 smp_mb(); 3722 delalloc_bytes = root->fs_info->delalloc_bytes; 3723 if (delalloc_bytes == 0) { 3724 if (trans) 3725 return; 3726 btrfs_wait_ordered_extents(root, 0); 3727 return; 3728 } 3729 3730 while (delalloc_bytes && loops < 3) { 3731 max_reclaim = min(delalloc_bytes, to_reclaim); 3732 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3733 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, 3734 WB_REASON_FS_FREE_SPACE); 3735 3736 /* 3737 * We need to wait for the async pages to actually start before 3738 * we do anything. 3739 */ 3740 wait_event(root->fs_info->async_submit_wait, 3741 !atomic_read(&root->fs_info->async_delalloc_pages)); 3742 3743 spin_lock(&space_info->lock); 3744 if (can_overcommit(root, space_info, orig, !trans)) { 3745 spin_unlock(&space_info->lock); 3746 break; 3747 } 3748 spin_unlock(&space_info->lock); 3749 3750 loops++; 3751 if (wait_ordered && !trans) { 3752 btrfs_wait_ordered_extents(root, 0); 3753 } else { 3754 time_left = schedule_timeout_killable(1); 3755 if (time_left) 3756 break; 3757 } 3758 smp_mb(); 3759 delalloc_bytes = root->fs_info->delalloc_bytes; 3760 } 3761 } 3762 3763 /** 3764 * maybe_commit_transaction - possibly commit the transaction if its ok to 3765 * @root - the root we're allocating for 3766 * @bytes - the number of bytes we want to reserve 3767 * @force - force the commit 3768 * 3769 * This will check to make sure that committing the transaction will actually 3770 * get us somewhere and then commit the transaction if it does. Otherwise it 3771 * will return -ENOSPC. 3772 */ 3773 static int may_commit_transaction(struct btrfs_root *root, 3774 struct btrfs_space_info *space_info, 3775 u64 bytes, int force) 3776 { 3777 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3778 struct btrfs_trans_handle *trans; 3779 3780 trans = (struct btrfs_trans_handle *)current->journal_info; 3781 if (trans) 3782 return -EAGAIN; 3783 3784 if (force) 3785 goto commit; 3786 3787 /* See if there is enough pinned space to make this reservation */ 3788 spin_lock(&space_info->lock); 3789 if (space_info->bytes_pinned >= bytes) { 3790 spin_unlock(&space_info->lock); 3791 goto commit; 3792 } 3793 spin_unlock(&space_info->lock); 3794 3795 /* 3796 * See if there is some space in the delayed insertion reservation for 3797 * this reservation. 3798 */ 3799 if (space_info != delayed_rsv->space_info) 3800 return -ENOSPC; 3801 3802 spin_lock(&space_info->lock); 3803 spin_lock(&delayed_rsv->lock); 3804 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3805 spin_unlock(&delayed_rsv->lock); 3806 spin_unlock(&space_info->lock); 3807 return -ENOSPC; 3808 } 3809 spin_unlock(&delayed_rsv->lock); 3810 spin_unlock(&space_info->lock); 3811 3812 commit: 3813 trans = btrfs_join_transaction(root); 3814 if (IS_ERR(trans)) 3815 return -ENOSPC; 3816 3817 return btrfs_commit_transaction(trans, root); 3818 } 3819 3820 enum flush_state { 3821 FLUSH_DELAYED_ITEMS_NR = 1, 3822 FLUSH_DELAYED_ITEMS = 2, 3823 FLUSH_DELALLOC = 3, 3824 FLUSH_DELALLOC_WAIT = 4, 3825 ALLOC_CHUNK = 5, 3826 COMMIT_TRANS = 6, 3827 }; 3828 3829 static int flush_space(struct btrfs_root *root, 3830 struct btrfs_space_info *space_info, u64 num_bytes, 3831 u64 orig_bytes, int state) 3832 { 3833 struct btrfs_trans_handle *trans; 3834 int nr; 3835 int ret = 0; 3836 3837 switch (state) { 3838 case FLUSH_DELAYED_ITEMS_NR: 3839 case FLUSH_DELAYED_ITEMS: 3840 if (state == FLUSH_DELAYED_ITEMS_NR) { 3841 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 3842 3843 nr = (int)div64_u64(num_bytes, bytes); 3844 if (!nr) 3845 nr = 1; 3846 nr *= 2; 3847 } else { 3848 nr = -1; 3849 } 3850 trans = btrfs_join_transaction(root); 3851 if (IS_ERR(trans)) { 3852 ret = PTR_ERR(trans); 3853 break; 3854 } 3855 ret = btrfs_run_delayed_items_nr(trans, root, nr); 3856 btrfs_end_transaction(trans, root); 3857 break; 3858 case FLUSH_DELALLOC: 3859 case FLUSH_DELALLOC_WAIT: 3860 shrink_delalloc(root, num_bytes, orig_bytes, 3861 state == FLUSH_DELALLOC_WAIT); 3862 break; 3863 case ALLOC_CHUNK: 3864 trans = btrfs_join_transaction(root); 3865 if (IS_ERR(trans)) { 3866 ret = PTR_ERR(trans); 3867 break; 3868 } 3869 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3870 btrfs_get_alloc_profile(root, 0), 3871 CHUNK_ALLOC_NO_FORCE); 3872 btrfs_end_transaction(trans, root); 3873 if (ret == -ENOSPC) 3874 ret = 0; 3875 break; 3876 case COMMIT_TRANS: 3877 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3878 break; 3879 default: 3880 ret = -ENOSPC; 3881 break; 3882 } 3883 3884 return ret; 3885 } 3886 /** 3887 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3888 * @root - the root we're allocating for 3889 * @block_rsv - the block_rsv we're allocating for 3890 * @orig_bytes - the number of bytes we want 3891 * @flush - wether or not we can flush to make our reservation 3892 * 3893 * This will reserve orgi_bytes number of bytes from the space info associated 3894 * with the block_rsv. If there is not enough space it will make an attempt to 3895 * flush out space to make room. It will do this by flushing delalloc if 3896 * possible or committing the transaction. If flush is 0 then no attempts to 3897 * regain reservations will be made and this will fail if there is not enough 3898 * space already. 3899 */ 3900 static int reserve_metadata_bytes(struct btrfs_root *root, 3901 struct btrfs_block_rsv *block_rsv, 3902 u64 orig_bytes, int flush) 3903 { 3904 struct btrfs_space_info *space_info = block_rsv->space_info; 3905 u64 used; 3906 u64 num_bytes = orig_bytes; 3907 int flush_state = FLUSH_DELAYED_ITEMS_NR; 3908 int ret = 0; 3909 bool flushing = false; 3910 3911 again: 3912 ret = 0; 3913 spin_lock(&space_info->lock); 3914 /* 3915 * We only want to wait if somebody other than us is flushing and we are 3916 * actually alloed to flush. 3917 */ 3918 while (flush && !flushing && space_info->flush) { 3919 spin_unlock(&space_info->lock); 3920 /* 3921 * If we have a trans handle we can't wait because the flusher 3922 * may have to commit the transaction, which would mean we would 3923 * deadlock since we are waiting for the flusher to finish, but 3924 * hold the current transaction open. 3925 */ 3926 if (current->journal_info) 3927 return -EAGAIN; 3928 ret = wait_event_killable(space_info->wait, !space_info->flush); 3929 /* Must have been killed, return */ 3930 if (ret) 3931 return -EINTR; 3932 3933 spin_lock(&space_info->lock); 3934 } 3935 3936 ret = -ENOSPC; 3937 used = space_info->bytes_used + space_info->bytes_reserved + 3938 space_info->bytes_pinned + space_info->bytes_readonly + 3939 space_info->bytes_may_use; 3940 3941 /* 3942 * The idea here is that we've not already over-reserved the block group 3943 * then we can go ahead and save our reservation first and then start 3944 * flushing if we need to. Otherwise if we've already overcommitted 3945 * lets start flushing stuff first and then come back and try to make 3946 * our reservation. 3947 */ 3948 if (used <= space_info->total_bytes) { 3949 if (used + orig_bytes <= space_info->total_bytes) { 3950 space_info->bytes_may_use += orig_bytes; 3951 trace_btrfs_space_reservation(root->fs_info, 3952 "space_info", space_info->flags, orig_bytes, 1); 3953 ret = 0; 3954 } else { 3955 /* 3956 * Ok set num_bytes to orig_bytes since we aren't 3957 * overocmmitted, this way we only try and reclaim what 3958 * we need. 3959 */ 3960 num_bytes = orig_bytes; 3961 } 3962 } else { 3963 /* 3964 * Ok we're over committed, set num_bytes to the overcommitted 3965 * amount plus the amount of bytes that we need for this 3966 * reservation. 3967 */ 3968 num_bytes = used - space_info->total_bytes + 3969 (orig_bytes * 2); 3970 } 3971 3972 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 3973 space_info->bytes_may_use += orig_bytes; 3974 trace_btrfs_space_reservation(root->fs_info, "space_info", 3975 space_info->flags, orig_bytes, 3976 1); 3977 ret = 0; 3978 } 3979 3980 /* 3981 * Couldn't make our reservation, save our place so while we're trying 3982 * to reclaim space we can actually use it instead of somebody else 3983 * stealing it from us. 3984 */ 3985 if (ret && flush) { 3986 flushing = true; 3987 space_info->flush = 1; 3988 } 3989 3990 spin_unlock(&space_info->lock); 3991 3992 if (!ret || !flush) 3993 goto out; 3994 3995 ret = flush_space(root, space_info, num_bytes, orig_bytes, 3996 flush_state); 3997 flush_state++; 3998 if (!ret) 3999 goto again; 4000 else if (flush_state <= COMMIT_TRANS) 4001 goto again; 4002 4003 out: 4004 if (flushing) { 4005 spin_lock(&space_info->lock); 4006 space_info->flush = 0; 4007 wake_up_all(&space_info->wait); 4008 spin_unlock(&space_info->lock); 4009 } 4010 return ret; 4011 } 4012 4013 static struct btrfs_block_rsv *get_block_rsv( 4014 const struct btrfs_trans_handle *trans, 4015 const struct btrfs_root *root) 4016 { 4017 struct btrfs_block_rsv *block_rsv = NULL; 4018 4019 if (root->ref_cows) 4020 block_rsv = trans->block_rsv; 4021 4022 if (root == root->fs_info->csum_root && trans->adding_csums) 4023 block_rsv = trans->block_rsv; 4024 4025 if (!block_rsv) 4026 block_rsv = root->block_rsv; 4027 4028 if (!block_rsv) 4029 block_rsv = &root->fs_info->empty_block_rsv; 4030 4031 return block_rsv; 4032 } 4033 4034 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4035 u64 num_bytes) 4036 { 4037 int ret = -ENOSPC; 4038 spin_lock(&block_rsv->lock); 4039 if (block_rsv->reserved >= num_bytes) { 4040 block_rsv->reserved -= num_bytes; 4041 if (block_rsv->reserved < block_rsv->size) 4042 block_rsv->full = 0; 4043 ret = 0; 4044 } 4045 spin_unlock(&block_rsv->lock); 4046 return ret; 4047 } 4048 4049 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4050 u64 num_bytes, int update_size) 4051 { 4052 spin_lock(&block_rsv->lock); 4053 block_rsv->reserved += num_bytes; 4054 if (update_size) 4055 block_rsv->size += num_bytes; 4056 else if (block_rsv->reserved >= block_rsv->size) 4057 block_rsv->full = 1; 4058 spin_unlock(&block_rsv->lock); 4059 } 4060 4061 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4062 struct btrfs_block_rsv *block_rsv, 4063 struct btrfs_block_rsv *dest, u64 num_bytes) 4064 { 4065 struct btrfs_space_info *space_info = block_rsv->space_info; 4066 4067 spin_lock(&block_rsv->lock); 4068 if (num_bytes == (u64)-1) 4069 num_bytes = block_rsv->size; 4070 block_rsv->size -= num_bytes; 4071 if (block_rsv->reserved >= block_rsv->size) { 4072 num_bytes = block_rsv->reserved - block_rsv->size; 4073 block_rsv->reserved = block_rsv->size; 4074 block_rsv->full = 1; 4075 } else { 4076 num_bytes = 0; 4077 } 4078 spin_unlock(&block_rsv->lock); 4079 4080 if (num_bytes > 0) { 4081 if (dest) { 4082 spin_lock(&dest->lock); 4083 if (!dest->full) { 4084 u64 bytes_to_add; 4085 4086 bytes_to_add = dest->size - dest->reserved; 4087 bytes_to_add = min(num_bytes, bytes_to_add); 4088 dest->reserved += bytes_to_add; 4089 if (dest->reserved >= dest->size) 4090 dest->full = 1; 4091 num_bytes -= bytes_to_add; 4092 } 4093 spin_unlock(&dest->lock); 4094 } 4095 if (num_bytes) { 4096 spin_lock(&space_info->lock); 4097 space_info->bytes_may_use -= num_bytes; 4098 trace_btrfs_space_reservation(fs_info, "space_info", 4099 space_info->flags, num_bytes, 0); 4100 space_info->reservation_progress++; 4101 spin_unlock(&space_info->lock); 4102 } 4103 } 4104 } 4105 4106 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4107 struct btrfs_block_rsv *dst, u64 num_bytes) 4108 { 4109 int ret; 4110 4111 ret = block_rsv_use_bytes(src, num_bytes); 4112 if (ret) 4113 return ret; 4114 4115 block_rsv_add_bytes(dst, num_bytes, 1); 4116 return 0; 4117 } 4118 4119 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4120 { 4121 memset(rsv, 0, sizeof(*rsv)); 4122 spin_lock_init(&rsv->lock); 4123 rsv->type = type; 4124 } 4125 4126 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4127 unsigned short type) 4128 { 4129 struct btrfs_block_rsv *block_rsv; 4130 struct btrfs_fs_info *fs_info = root->fs_info; 4131 4132 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4133 if (!block_rsv) 4134 return NULL; 4135 4136 btrfs_init_block_rsv(block_rsv, type); 4137 block_rsv->space_info = __find_space_info(fs_info, 4138 BTRFS_BLOCK_GROUP_METADATA); 4139 return block_rsv; 4140 } 4141 4142 void btrfs_free_block_rsv(struct btrfs_root *root, 4143 struct btrfs_block_rsv *rsv) 4144 { 4145 if (!rsv) 4146 return; 4147 btrfs_block_rsv_release(root, rsv, (u64)-1); 4148 kfree(rsv); 4149 } 4150 4151 static inline int __block_rsv_add(struct btrfs_root *root, 4152 struct btrfs_block_rsv *block_rsv, 4153 u64 num_bytes, int flush) 4154 { 4155 int ret; 4156 4157 if (num_bytes == 0) 4158 return 0; 4159 4160 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4161 if (!ret) { 4162 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4163 return 0; 4164 } 4165 4166 return ret; 4167 } 4168 4169 int btrfs_block_rsv_add(struct btrfs_root *root, 4170 struct btrfs_block_rsv *block_rsv, 4171 u64 num_bytes) 4172 { 4173 return __block_rsv_add(root, block_rsv, num_bytes, 1); 4174 } 4175 4176 int btrfs_block_rsv_add_noflush(struct btrfs_root *root, 4177 struct btrfs_block_rsv *block_rsv, 4178 u64 num_bytes) 4179 { 4180 return __block_rsv_add(root, block_rsv, num_bytes, 0); 4181 } 4182 4183 int btrfs_block_rsv_check(struct btrfs_root *root, 4184 struct btrfs_block_rsv *block_rsv, int min_factor) 4185 { 4186 u64 num_bytes = 0; 4187 int ret = -ENOSPC; 4188 4189 if (!block_rsv) 4190 return 0; 4191 4192 spin_lock(&block_rsv->lock); 4193 num_bytes = div_factor(block_rsv->size, min_factor); 4194 if (block_rsv->reserved >= num_bytes) 4195 ret = 0; 4196 spin_unlock(&block_rsv->lock); 4197 4198 return ret; 4199 } 4200 4201 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, 4202 struct btrfs_block_rsv *block_rsv, 4203 u64 min_reserved, int flush) 4204 { 4205 u64 num_bytes = 0; 4206 int ret = -ENOSPC; 4207 4208 if (!block_rsv) 4209 return 0; 4210 4211 spin_lock(&block_rsv->lock); 4212 num_bytes = min_reserved; 4213 if (block_rsv->reserved >= num_bytes) 4214 ret = 0; 4215 else 4216 num_bytes -= block_rsv->reserved; 4217 spin_unlock(&block_rsv->lock); 4218 4219 if (!ret) 4220 return 0; 4221 4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4223 if (!ret) { 4224 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4225 return 0; 4226 } 4227 4228 return ret; 4229 } 4230 4231 int btrfs_block_rsv_refill(struct btrfs_root *root, 4232 struct btrfs_block_rsv *block_rsv, 4233 u64 min_reserved) 4234 { 4235 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); 4236 } 4237 4238 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, 4239 struct btrfs_block_rsv *block_rsv, 4240 u64 min_reserved) 4241 { 4242 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); 4243 } 4244 4245 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4246 struct btrfs_block_rsv *dst_rsv, 4247 u64 num_bytes) 4248 { 4249 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4250 } 4251 4252 void btrfs_block_rsv_release(struct btrfs_root *root, 4253 struct btrfs_block_rsv *block_rsv, 4254 u64 num_bytes) 4255 { 4256 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4257 if (global_rsv->full || global_rsv == block_rsv || 4258 block_rsv->space_info != global_rsv->space_info) 4259 global_rsv = NULL; 4260 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4261 num_bytes); 4262 } 4263 4264 /* 4265 * helper to calculate size of global block reservation. 4266 * the desired value is sum of space used by extent tree, 4267 * checksum tree and root tree 4268 */ 4269 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4270 { 4271 struct btrfs_space_info *sinfo; 4272 u64 num_bytes; 4273 u64 meta_used; 4274 u64 data_used; 4275 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4276 4277 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4278 spin_lock(&sinfo->lock); 4279 data_used = sinfo->bytes_used; 4280 spin_unlock(&sinfo->lock); 4281 4282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4283 spin_lock(&sinfo->lock); 4284 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4285 data_used = 0; 4286 meta_used = sinfo->bytes_used; 4287 spin_unlock(&sinfo->lock); 4288 4289 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4290 csum_size * 2; 4291 num_bytes += div64_u64(data_used + meta_used, 50); 4292 4293 if (num_bytes * 3 > meta_used) 4294 num_bytes = div64_u64(meta_used, 3); 4295 4296 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4297 } 4298 4299 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4300 { 4301 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4302 struct btrfs_space_info *sinfo = block_rsv->space_info; 4303 u64 num_bytes; 4304 4305 num_bytes = calc_global_metadata_size(fs_info); 4306 4307 spin_lock(&sinfo->lock); 4308 spin_lock(&block_rsv->lock); 4309 4310 block_rsv->size = num_bytes; 4311 4312 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4313 sinfo->bytes_reserved + sinfo->bytes_readonly + 4314 sinfo->bytes_may_use; 4315 4316 if (sinfo->total_bytes > num_bytes) { 4317 num_bytes = sinfo->total_bytes - num_bytes; 4318 block_rsv->reserved += num_bytes; 4319 sinfo->bytes_may_use += num_bytes; 4320 trace_btrfs_space_reservation(fs_info, "space_info", 4321 sinfo->flags, num_bytes, 1); 4322 } 4323 4324 if (block_rsv->reserved >= block_rsv->size) { 4325 num_bytes = block_rsv->reserved - block_rsv->size; 4326 sinfo->bytes_may_use -= num_bytes; 4327 trace_btrfs_space_reservation(fs_info, "space_info", 4328 sinfo->flags, num_bytes, 0); 4329 sinfo->reservation_progress++; 4330 block_rsv->reserved = block_rsv->size; 4331 block_rsv->full = 1; 4332 } 4333 4334 spin_unlock(&block_rsv->lock); 4335 spin_unlock(&sinfo->lock); 4336 } 4337 4338 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4339 { 4340 struct btrfs_space_info *space_info; 4341 4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4343 fs_info->chunk_block_rsv.space_info = space_info; 4344 4345 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4346 fs_info->global_block_rsv.space_info = space_info; 4347 fs_info->delalloc_block_rsv.space_info = space_info; 4348 fs_info->trans_block_rsv.space_info = space_info; 4349 fs_info->empty_block_rsv.space_info = space_info; 4350 fs_info->delayed_block_rsv.space_info = space_info; 4351 4352 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4353 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4354 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4355 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4356 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4357 4358 update_global_block_rsv(fs_info); 4359 } 4360 4361 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4362 { 4363 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4364 (u64)-1); 4365 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4366 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4367 WARN_ON(fs_info->trans_block_rsv.size > 0); 4368 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4369 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4370 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4371 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4372 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4373 } 4374 4375 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4376 struct btrfs_root *root) 4377 { 4378 if (!trans->block_rsv) 4379 return; 4380 4381 if (!trans->bytes_reserved) 4382 return; 4383 4384 trace_btrfs_space_reservation(root->fs_info, "transaction", 4385 trans->transid, trans->bytes_reserved, 0); 4386 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4387 trans->bytes_reserved = 0; 4388 } 4389 4390 /* Can only return 0 or -ENOSPC */ 4391 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4392 struct inode *inode) 4393 { 4394 struct btrfs_root *root = BTRFS_I(inode)->root; 4395 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4396 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4397 4398 /* 4399 * We need to hold space in order to delete our orphan item once we've 4400 * added it, so this takes the reservation so we can release it later 4401 * when we are truly done with the orphan item. 4402 */ 4403 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4404 trace_btrfs_space_reservation(root->fs_info, "orphan", 4405 btrfs_ino(inode), num_bytes, 1); 4406 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4407 } 4408 4409 void btrfs_orphan_release_metadata(struct inode *inode) 4410 { 4411 struct btrfs_root *root = BTRFS_I(inode)->root; 4412 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4413 trace_btrfs_space_reservation(root->fs_info, "orphan", 4414 btrfs_ino(inode), num_bytes, 0); 4415 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4416 } 4417 4418 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4419 struct btrfs_pending_snapshot *pending) 4420 { 4421 struct btrfs_root *root = pending->root; 4422 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4423 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4424 /* 4425 * two for root back/forward refs, two for directory entries, 4426 * one for root of the snapshot and one for parent inode. 4427 */ 4428 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6); 4429 dst_rsv->space_info = src_rsv->space_info; 4430 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4431 } 4432 4433 /** 4434 * drop_outstanding_extent - drop an outstanding extent 4435 * @inode: the inode we're dropping the extent for 4436 * 4437 * This is called when we are freeing up an outstanding extent, either called 4438 * after an error or after an extent is written. This will return the number of 4439 * reserved extents that need to be freed. This must be called with 4440 * BTRFS_I(inode)->lock held. 4441 */ 4442 static unsigned drop_outstanding_extent(struct inode *inode) 4443 { 4444 unsigned drop_inode_space = 0; 4445 unsigned dropped_extents = 0; 4446 4447 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4448 BTRFS_I(inode)->outstanding_extents--; 4449 4450 if (BTRFS_I(inode)->outstanding_extents == 0 && 4451 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4452 &BTRFS_I(inode)->runtime_flags)) 4453 drop_inode_space = 1; 4454 4455 /* 4456 * If we have more or the same amount of outsanding extents than we have 4457 * reserved then we need to leave the reserved extents count alone. 4458 */ 4459 if (BTRFS_I(inode)->outstanding_extents >= 4460 BTRFS_I(inode)->reserved_extents) 4461 return drop_inode_space; 4462 4463 dropped_extents = BTRFS_I(inode)->reserved_extents - 4464 BTRFS_I(inode)->outstanding_extents; 4465 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4466 return dropped_extents + drop_inode_space; 4467 } 4468 4469 /** 4470 * calc_csum_metadata_size - return the amount of metada space that must be 4471 * reserved/free'd for the given bytes. 4472 * @inode: the inode we're manipulating 4473 * @num_bytes: the number of bytes in question 4474 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4475 * 4476 * This adjusts the number of csum_bytes in the inode and then returns the 4477 * correct amount of metadata that must either be reserved or freed. We 4478 * calculate how many checksums we can fit into one leaf and then divide the 4479 * number of bytes that will need to be checksumed by this value to figure out 4480 * how many checksums will be required. If we are adding bytes then the number 4481 * may go up and we will return the number of additional bytes that must be 4482 * reserved. If it is going down we will return the number of bytes that must 4483 * be freed. 4484 * 4485 * This must be called with BTRFS_I(inode)->lock held. 4486 */ 4487 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4488 int reserve) 4489 { 4490 struct btrfs_root *root = BTRFS_I(inode)->root; 4491 u64 csum_size; 4492 int num_csums_per_leaf; 4493 int num_csums; 4494 int old_csums; 4495 4496 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4497 BTRFS_I(inode)->csum_bytes == 0) 4498 return 0; 4499 4500 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4501 if (reserve) 4502 BTRFS_I(inode)->csum_bytes += num_bytes; 4503 else 4504 BTRFS_I(inode)->csum_bytes -= num_bytes; 4505 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4506 num_csums_per_leaf = (int)div64_u64(csum_size, 4507 sizeof(struct btrfs_csum_item) + 4508 sizeof(struct btrfs_disk_key)); 4509 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4510 num_csums = num_csums + num_csums_per_leaf - 1; 4511 num_csums = num_csums / num_csums_per_leaf; 4512 4513 old_csums = old_csums + num_csums_per_leaf - 1; 4514 old_csums = old_csums / num_csums_per_leaf; 4515 4516 /* No change, no need to reserve more */ 4517 if (old_csums == num_csums) 4518 return 0; 4519 4520 if (reserve) 4521 return btrfs_calc_trans_metadata_size(root, 4522 num_csums - old_csums); 4523 4524 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4525 } 4526 4527 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4528 { 4529 struct btrfs_root *root = BTRFS_I(inode)->root; 4530 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4531 u64 to_reserve = 0; 4532 u64 csum_bytes; 4533 unsigned nr_extents = 0; 4534 int extra_reserve = 0; 4535 int flush = 1; 4536 int ret; 4537 4538 /* Need to be holding the i_mutex here if we aren't free space cache */ 4539 if (btrfs_is_free_space_inode(inode)) 4540 flush = 0; 4541 4542 if (flush && btrfs_transaction_in_commit(root->fs_info)) 4543 schedule_timeout(1); 4544 4545 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4546 num_bytes = ALIGN(num_bytes, root->sectorsize); 4547 4548 spin_lock(&BTRFS_I(inode)->lock); 4549 BTRFS_I(inode)->outstanding_extents++; 4550 4551 if (BTRFS_I(inode)->outstanding_extents > 4552 BTRFS_I(inode)->reserved_extents) 4553 nr_extents = BTRFS_I(inode)->outstanding_extents - 4554 BTRFS_I(inode)->reserved_extents; 4555 4556 /* 4557 * Add an item to reserve for updating the inode when we complete the 4558 * delalloc io. 4559 */ 4560 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4561 &BTRFS_I(inode)->runtime_flags)) { 4562 nr_extents++; 4563 extra_reserve = 1; 4564 } 4565 4566 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4567 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4568 csum_bytes = BTRFS_I(inode)->csum_bytes; 4569 spin_unlock(&BTRFS_I(inode)->lock); 4570 4571 if (root->fs_info->quota_enabled) { 4572 ret = btrfs_qgroup_reserve(root, num_bytes + 4573 nr_extents * root->leafsize); 4574 if (ret) { 4575 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4576 return ret; 4577 } 4578 } 4579 4580 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4581 if (ret) { 4582 u64 to_free = 0; 4583 unsigned dropped; 4584 4585 spin_lock(&BTRFS_I(inode)->lock); 4586 dropped = drop_outstanding_extent(inode); 4587 /* 4588 * If the inodes csum_bytes is the same as the original 4589 * csum_bytes then we know we haven't raced with any free()ers 4590 * so we can just reduce our inodes csum bytes and carry on. 4591 * Otherwise we have to do the normal free thing to account for 4592 * the case that the free side didn't free up its reserve 4593 * because of this outstanding reservation. 4594 */ 4595 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4596 calc_csum_metadata_size(inode, num_bytes, 0); 4597 else 4598 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4599 spin_unlock(&BTRFS_I(inode)->lock); 4600 if (dropped) 4601 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4602 4603 if (to_free) { 4604 btrfs_block_rsv_release(root, block_rsv, to_free); 4605 trace_btrfs_space_reservation(root->fs_info, 4606 "delalloc", 4607 btrfs_ino(inode), 4608 to_free, 0); 4609 } 4610 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4611 return ret; 4612 } 4613 4614 spin_lock(&BTRFS_I(inode)->lock); 4615 if (extra_reserve) { 4616 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4617 &BTRFS_I(inode)->runtime_flags); 4618 nr_extents--; 4619 } 4620 BTRFS_I(inode)->reserved_extents += nr_extents; 4621 spin_unlock(&BTRFS_I(inode)->lock); 4622 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4623 4624 if (to_reserve) 4625 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4626 btrfs_ino(inode), to_reserve, 1); 4627 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4628 4629 return 0; 4630 } 4631 4632 /** 4633 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4634 * @inode: the inode to release the reservation for 4635 * @num_bytes: the number of bytes we're releasing 4636 * 4637 * This will release the metadata reservation for an inode. This can be called 4638 * once we complete IO for a given set of bytes to release their metadata 4639 * reservations. 4640 */ 4641 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4642 { 4643 struct btrfs_root *root = BTRFS_I(inode)->root; 4644 u64 to_free = 0; 4645 unsigned dropped; 4646 4647 num_bytes = ALIGN(num_bytes, root->sectorsize); 4648 spin_lock(&BTRFS_I(inode)->lock); 4649 dropped = drop_outstanding_extent(inode); 4650 4651 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4652 spin_unlock(&BTRFS_I(inode)->lock); 4653 if (dropped > 0) 4654 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4655 4656 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4657 btrfs_ino(inode), to_free, 0); 4658 if (root->fs_info->quota_enabled) { 4659 btrfs_qgroup_free(root, num_bytes + 4660 dropped * root->leafsize); 4661 } 4662 4663 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4664 to_free); 4665 } 4666 4667 /** 4668 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4669 * @inode: inode we're writing to 4670 * @num_bytes: the number of bytes we want to allocate 4671 * 4672 * This will do the following things 4673 * 4674 * o reserve space in the data space info for num_bytes 4675 * o reserve space in the metadata space info based on number of outstanding 4676 * extents and how much csums will be needed 4677 * o add to the inodes ->delalloc_bytes 4678 * o add it to the fs_info's delalloc inodes list. 4679 * 4680 * This will return 0 for success and -ENOSPC if there is no space left. 4681 */ 4682 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4683 { 4684 int ret; 4685 4686 ret = btrfs_check_data_free_space(inode, num_bytes); 4687 if (ret) 4688 return ret; 4689 4690 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4691 if (ret) { 4692 btrfs_free_reserved_data_space(inode, num_bytes); 4693 return ret; 4694 } 4695 4696 return 0; 4697 } 4698 4699 /** 4700 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4701 * @inode: inode we're releasing space for 4702 * @num_bytes: the number of bytes we want to free up 4703 * 4704 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4705 * called in the case that we don't need the metadata AND data reservations 4706 * anymore. So if there is an error or we insert an inline extent. 4707 * 4708 * This function will release the metadata space that was not used and will 4709 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4710 * list if there are no delalloc bytes left. 4711 */ 4712 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4713 { 4714 btrfs_delalloc_release_metadata(inode, num_bytes); 4715 btrfs_free_reserved_data_space(inode, num_bytes); 4716 } 4717 4718 static int update_block_group(struct btrfs_trans_handle *trans, 4719 struct btrfs_root *root, 4720 u64 bytenr, u64 num_bytes, int alloc) 4721 { 4722 struct btrfs_block_group_cache *cache = NULL; 4723 struct btrfs_fs_info *info = root->fs_info; 4724 u64 total = num_bytes; 4725 u64 old_val; 4726 u64 byte_in_group; 4727 int factor; 4728 4729 /* block accounting for super block */ 4730 spin_lock(&info->delalloc_lock); 4731 old_val = btrfs_super_bytes_used(info->super_copy); 4732 if (alloc) 4733 old_val += num_bytes; 4734 else 4735 old_val -= num_bytes; 4736 btrfs_set_super_bytes_used(info->super_copy, old_val); 4737 spin_unlock(&info->delalloc_lock); 4738 4739 while (total) { 4740 cache = btrfs_lookup_block_group(info, bytenr); 4741 if (!cache) 4742 return -ENOENT; 4743 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4744 BTRFS_BLOCK_GROUP_RAID1 | 4745 BTRFS_BLOCK_GROUP_RAID10)) 4746 factor = 2; 4747 else 4748 factor = 1; 4749 /* 4750 * If this block group has free space cache written out, we 4751 * need to make sure to load it if we are removing space. This 4752 * is because we need the unpinning stage to actually add the 4753 * space back to the block group, otherwise we will leak space. 4754 */ 4755 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4756 cache_block_group(cache, trans, NULL, 1); 4757 4758 byte_in_group = bytenr - cache->key.objectid; 4759 WARN_ON(byte_in_group > cache->key.offset); 4760 4761 spin_lock(&cache->space_info->lock); 4762 spin_lock(&cache->lock); 4763 4764 if (btrfs_test_opt(root, SPACE_CACHE) && 4765 cache->disk_cache_state < BTRFS_DC_CLEAR) 4766 cache->disk_cache_state = BTRFS_DC_CLEAR; 4767 4768 cache->dirty = 1; 4769 old_val = btrfs_block_group_used(&cache->item); 4770 num_bytes = min(total, cache->key.offset - byte_in_group); 4771 if (alloc) { 4772 old_val += num_bytes; 4773 btrfs_set_block_group_used(&cache->item, old_val); 4774 cache->reserved -= num_bytes; 4775 cache->space_info->bytes_reserved -= num_bytes; 4776 cache->space_info->bytes_used += num_bytes; 4777 cache->space_info->disk_used += num_bytes * factor; 4778 spin_unlock(&cache->lock); 4779 spin_unlock(&cache->space_info->lock); 4780 } else { 4781 old_val -= num_bytes; 4782 btrfs_set_block_group_used(&cache->item, old_val); 4783 cache->pinned += num_bytes; 4784 cache->space_info->bytes_pinned += num_bytes; 4785 cache->space_info->bytes_used -= num_bytes; 4786 cache->space_info->disk_used -= num_bytes * factor; 4787 spin_unlock(&cache->lock); 4788 spin_unlock(&cache->space_info->lock); 4789 4790 set_extent_dirty(info->pinned_extents, 4791 bytenr, bytenr + num_bytes - 1, 4792 GFP_NOFS | __GFP_NOFAIL); 4793 } 4794 btrfs_put_block_group(cache); 4795 total -= num_bytes; 4796 bytenr += num_bytes; 4797 } 4798 return 0; 4799 } 4800 4801 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4802 { 4803 struct btrfs_block_group_cache *cache; 4804 u64 bytenr; 4805 4806 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4807 if (!cache) 4808 return 0; 4809 4810 bytenr = cache->key.objectid; 4811 btrfs_put_block_group(cache); 4812 4813 return bytenr; 4814 } 4815 4816 static int pin_down_extent(struct btrfs_root *root, 4817 struct btrfs_block_group_cache *cache, 4818 u64 bytenr, u64 num_bytes, int reserved) 4819 { 4820 spin_lock(&cache->space_info->lock); 4821 spin_lock(&cache->lock); 4822 cache->pinned += num_bytes; 4823 cache->space_info->bytes_pinned += num_bytes; 4824 if (reserved) { 4825 cache->reserved -= num_bytes; 4826 cache->space_info->bytes_reserved -= num_bytes; 4827 } 4828 spin_unlock(&cache->lock); 4829 spin_unlock(&cache->space_info->lock); 4830 4831 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4832 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4833 return 0; 4834 } 4835 4836 /* 4837 * this function must be called within transaction 4838 */ 4839 int btrfs_pin_extent(struct btrfs_root *root, 4840 u64 bytenr, u64 num_bytes, int reserved) 4841 { 4842 struct btrfs_block_group_cache *cache; 4843 4844 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4845 BUG_ON(!cache); /* Logic error */ 4846 4847 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4848 4849 btrfs_put_block_group(cache); 4850 return 0; 4851 } 4852 4853 /* 4854 * this function must be called within transaction 4855 */ 4856 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4857 struct btrfs_root *root, 4858 u64 bytenr, u64 num_bytes) 4859 { 4860 struct btrfs_block_group_cache *cache; 4861 4862 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4863 BUG_ON(!cache); /* Logic error */ 4864 4865 /* 4866 * pull in the free space cache (if any) so that our pin 4867 * removes the free space from the cache. We have load_only set 4868 * to one because the slow code to read in the free extents does check 4869 * the pinned extents. 4870 */ 4871 cache_block_group(cache, trans, root, 1); 4872 4873 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4874 4875 /* remove us from the free space cache (if we're there at all) */ 4876 btrfs_remove_free_space(cache, bytenr, num_bytes); 4877 btrfs_put_block_group(cache); 4878 return 0; 4879 } 4880 4881 /** 4882 * btrfs_update_reserved_bytes - update the block_group and space info counters 4883 * @cache: The cache we are manipulating 4884 * @num_bytes: The number of bytes in question 4885 * @reserve: One of the reservation enums 4886 * 4887 * This is called by the allocator when it reserves space, or by somebody who is 4888 * freeing space that was never actually used on disk. For example if you 4889 * reserve some space for a new leaf in transaction A and before transaction A 4890 * commits you free that leaf, you call this with reserve set to 0 in order to 4891 * clear the reservation. 4892 * 4893 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4894 * ENOSPC accounting. For data we handle the reservation through clearing the 4895 * delalloc bits in the io_tree. We have to do this since we could end up 4896 * allocating less disk space for the amount of data we have reserved in the 4897 * case of compression. 4898 * 4899 * If this is a reservation and the block group has become read only we cannot 4900 * make the reservation and return -EAGAIN, otherwise this function always 4901 * succeeds. 4902 */ 4903 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4904 u64 num_bytes, int reserve) 4905 { 4906 struct btrfs_space_info *space_info = cache->space_info; 4907 int ret = 0; 4908 4909 spin_lock(&space_info->lock); 4910 spin_lock(&cache->lock); 4911 if (reserve != RESERVE_FREE) { 4912 if (cache->ro) { 4913 ret = -EAGAIN; 4914 } else { 4915 cache->reserved += num_bytes; 4916 space_info->bytes_reserved += num_bytes; 4917 if (reserve == RESERVE_ALLOC) { 4918 trace_btrfs_space_reservation(cache->fs_info, 4919 "space_info", space_info->flags, 4920 num_bytes, 0); 4921 space_info->bytes_may_use -= num_bytes; 4922 } 4923 } 4924 } else { 4925 if (cache->ro) 4926 space_info->bytes_readonly += num_bytes; 4927 cache->reserved -= num_bytes; 4928 space_info->bytes_reserved -= num_bytes; 4929 space_info->reservation_progress++; 4930 } 4931 spin_unlock(&cache->lock); 4932 spin_unlock(&space_info->lock); 4933 return ret; 4934 } 4935 4936 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4937 struct btrfs_root *root) 4938 { 4939 struct btrfs_fs_info *fs_info = root->fs_info; 4940 struct btrfs_caching_control *next; 4941 struct btrfs_caching_control *caching_ctl; 4942 struct btrfs_block_group_cache *cache; 4943 4944 down_write(&fs_info->extent_commit_sem); 4945 4946 list_for_each_entry_safe(caching_ctl, next, 4947 &fs_info->caching_block_groups, list) { 4948 cache = caching_ctl->block_group; 4949 if (block_group_cache_done(cache)) { 4950 cache->last_byte_to_unpin = (u64)-1; 4951 list_del_init(&caching_ctl->list); 4952 put_caching_control(caching_ctl); 4953 } else { 4954 cache->last_byte_to_unpin = caching_ctl->progress; 4955 } 4956 } 4957 4958 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4959 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4960 else 4961 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4962 4963 up_write(&fs_info->extent_commit_sem); 4964 4965 update_global_block_rsv(fs_info); 4966 } 4967 4968 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4969 { 4970 struct btrfs_fs_info *fs_info = root->fs_info; 4971 struct btrfs_block_group_cache *cache = NULL; 4972 u64 len; 4973 4974 while (start <= end) { 4975 if (!cache || 4976 start >= cache->key.objectid + cache->key.offset) { 4977 if (cache) 4978 btrfs_put_block_group(cache); 4979 cache = btrfs_lookup_block_group(fs_info, start); 4980 BUG_ON(!cache); /* Logic error */ 4981 } 4982 4983 len = cache->key.objectid + cache->key.offset - start; 4984 len = min(len, end + 1 - start); 4985 4986 if (start < cache->last_byte_to_unpin) { 4987 len = min(len, cache->last_byte_to_unpin - start); 4988 btrfs_add_free_space(cache, start, len); 4989 } 4990 4991 start += len; 4992 4993 spin_lock(&cache->space_info->lock); 4994 spin_lock(&cache->lock); 4995 cache->pinned -= len; 4996 cache->space_info->bytes_pinned -= len; 4997 if (cache->ro) 4998 cache->space_info->bytes_readonly += len; 4999 spin_unlock(&cache->lock); 5000 spin_unlock(&cache->space_info->lock); 5001 } 5002 5003 if (cache) 5004 btrfs_put_block_group(cache); 5005 return 0; 5006 } 5007 5008 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5009 struct btrfs_root *root) 5010 { 5011 struct btrfs_fs_info *fs_info = root->fs_info; 5012 struct extent_io_tree *unpin; 5013 u64 start; 5014 u64 end; 5015 int ret; 5016 5017 if (trans->aborted) 5018 return 0; 5019 5020 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5021 unpin = &fs_info->freed_extents[1]; 5022 else 5023 unpin = &fs_info->freed_extents[0]; 5024 5025 while (1) { 5026 ret = find_first_extent_bit(unpin, 0, &start, &end, 5027 EXTENT_DIRTY, NULL); 5028 if (ret) 5029 break; 5030 5031 if (btrfs_test_opt(root, DISCARD)) 5032 ret = btrfs_discard_extent(root, start, 5033 end + 1 - start, NULL); 5034 5035 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5036 unpin_extent_range(root, start, end); 5037 cond_resched(); 5038 } 5039 5040 return 0; 5041 } 5042 5043 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5044 struct btrfs_root *root, 5045 u64 bytenr, u64 num_bytes, u64 parent, 5046 u64 root_objectid, u64 owner_objectid, 5047 u64 owner_offset, int refs_to_drop, 5048 struct btrfs_delayed_extent_op *extent_op) 5049 { 5050 struct btrfs_key key; 5051 struct btrfs_path *path; 5052 struct btrfs_fs_info *info = root->fs_info; 5053 struct btrfs_root *extent_root = info->extent_root; 5054 struct extent_buffer *leaf; 5055 struct btrfs_extent_item *ei; 5056 struct btrfs_extent_inline_ref *iref; 5057 int ret; 5058 int is_data; 5059 int extent_slot = 0; 5060 int found_extent = 0; 5061 int num_to_del = 1; 5062 u32 item_size; 5063 u64 refs; 5064 5065 path = btrfs_alloc_path(); 5066 if (!path) 5067 return -ENOMEM; 5068 5069 path->reada = 1; 5070 path->leave_spinning = 1; 5071 5072 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5073 BUG_ON(!is_data && refs_to_drop != 1); 5074 5075 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5076 bytenr, num_bytes, parent, 5077 root_objectid, owner_objectid, 5078 owner_offset); 5079 if (ret == 0) { 5080 extent_slot = path->slots[0]; 5081 while (extent_slot >= 0) { 5082 btrfs_item_key_to_cpu(path->nodes[0], &key, 5083 extent_slot); 5084 if (key.objectid != bytenr) 5085 break; 5086 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5087 key.offset == num_bytes) { 5088 found_extent = 1; 5089 break; 5090 } 5091 if (path->slots[0] - extent_slot > 5) 5092 break; 5093 extent_slot--; 5094 } 5095 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5096 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5097 if (found_extent && item_size < sizeof(*ei)) 5098 found_extent = 0; 5099 #endif 5100 if (!found_extent) { 5101 BUG_ON(iref); 5102 ret = remove_extent_backref(trans, extent_root, path, 5103 NULL, refs_to_drop, 5104 is_data); 5105 if (ret) { 5106 btrfs_abort_transaction(trans, extent_root, ret); 5107 goto out; 5108 } 5109 btrfs_release_path(path); 5110 path->leave_spinning = 1; 5111 5112 key.objectid = bytenr; 5113 key.type = BTRFS_EXTENT_ITEM_KEY; 5114 key.offset = num_bytes; 5115 5116 ret = btrfs_search_slot(trans, extent_root, 5117 &key, path, -1, 1); 5118 if (ret) { 5119 printk(KERN_ERR "umm, got %d back from search" 5120 ", was looking for %llu\n", ret, 5121 (unsigned long long)bytenr); 5122 if (ret > 0) 5123 btrfs_print_leaf(extent_root, 5124 path->nodes[0]); 5125 } 5126 if (ret < 0) { 5127 btrfs_abort_transaction(trans, extent_root, ret); 5128 goto out; 5129 } 5130 extent_slot = path->slots[0]; 5131 } 5132 } else if (ret == -ENOENT) { 5133 btrfs_print_leaf(extent_root, path->nodes[0]); 5134 WARN_ON(1); 5135 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5136 "parent %llu root %llu owner %llu offset %llu\n", 5137 (unsigned long long)bytenr, 5138 (unsigned long long)parent, 5139 (unsigned long long)root_objectid, 5140 (unsigned long long)owner_objectid, 5141 (unsigned long long)owner_offset); 5142 } else { 5143 btrfs_abort_transaction(trans, extent_root, ret); 5144 goto out; 5145 } 5146 5147 leaf = path->nodes[0]; 5148 item_size = btrfs_item_size_nr(leaf, extent_slot); 5149 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5150 if (item_size < sizeof(*ei)) { 5151 BUG_ON(found_extent || extent_slot != path->slots[0]); 5152 ret = convert_extent_item_v0(trans, extent_root, path, 5153 owner_objectid, 0); 5154 if (ret < 0) { 5155 btrfs_abort_transaction(trans, extent_root, ret); 5156 goto out; 5157 } 5158 5159 btrfs_release_path(path); 5160 path->leave_spinning = 1; 5161 5162 key.objectid = bytenr; 5163 key.type = BTRFS_EXTENT_ITEM_KEY; 5164 key.offset = num_bytes; 5165 5166 ret = btrfs_search_slot(trans, extent_root, &key, path, 5167 -1, 1); 5168 if (ret) { 5169 printk(KERN_ERR "umm, got %d back from search" 5170 ", was looking for %llu\n", ret, 5171 (unsigned long long)bytenr); 5172 btrfs_print_leaf(extent_root, path->nodes[0]); 5173 } 5174 if (ret < 0) { 5175 btrfs_abort_transaction(trans, extent_root, ret); 5176 goto out; 5177 } 5178 5179 extent_slot = path->slots[0]; 5180 leaf = path->nodes[0]; 5181 item_size = btrfs_item_size_nr(leaf, extent_slot); 5182 } 5183 #endif 5184 BUG_ON(item_size < sizeof(*ei)); 5185 ei = btrfs_item_ptr(leaf, extent_slot, 5186 struct btrfs_extent_item); 5187 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5188 struct btrfs_tree_block_info *bi; 5189 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5190 bi = (struct btrfs_tree_block_info *)(ei + 1); 5191 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5192 } 5193 5194 refs = btrfs_extent_refs(leaf, ei); 5195 BUG_ON(refs < refs_to_drop); 5196 refs -= refs_to_drop; 5197 5198 if (refs > 0) { 5199 if (extent_op) 5200 __run_delayed_extent_op(extent_op, leaf, ei); 5201 /* 5202 * In the case of inline back ref, reference count will 5203 * be updated by remove_extent_backref 5204 */ 5205 if (iref) { 5206 BUG_ON(!found_extent); 5207 } else { 5208 btrfs_set_extent_refs(leaf, ei, refs); 5209 btrfs_mark_buffer_dirty(leaf); 5210 } 5211 if (found_extent) { 5212 ret = remove_extent_backref(trans, extent_root, path, 5213 iref, refs_to_drop, 5214 is_data); 5215 if (ret) { 5216 btrfs_abort_transaction(trans, extent_root, ret); 5217 goto out; 5218 } 5219 } 5220 } else { 5221 if (found_extent) { 5222 BUG_ON(is_data && refs_to_drop != 5223 extent_data_ref_count(root, path, iref)); 5224 if (iref) { 5225 BUG_ON(path->slots[0] != extent_slot); 5226 } else { 5227 BUG_ON(path->slots[0] != extent_slot + 1); 5228 path->slots[0] = extent_slot; 5229 num_to_del = 2; 5230 } 5231 } 5232 5233 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5234 num_to_del); 5235 if (ret) { 5236 btrfs_abort_transaction(trans, extent_root, ret); 5237 goto out; 5238 } 5239 btrfs_release_path(path); 5240 5241 if (is_data) { 5242 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5243 if (ret) { 5244 btrfs_abort_transaction(trans, extent_root, ret); 5245 goto out; 5246 } 5247 } 5248 5249 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5250 if (ret) { 5251 btrfs_abort_transaction(trans, extent_root, ret); 5252 goto out; 5253 } 5254 } 5255 out: 5256 btrfs_free_path(path); 5257 return ret; 5258 } 5259 5260 /* 5261 * when we free an block, it is possible (and likely) that we free the last 5262 * delayed ref for that extent as well. This searches the delayed ref tree for 5263 * a given extent, and if there are no other delayed refs to be processed, it 5264 * removes it from the tree. 5265 */ 5266 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5267 struct btrfs_root *root, u64 bytenr) 5268 { 5269 struct btrfs_delayed_ref_head *head; 5270 struct btrfs_delayed_ref_root *delayed_refs; 5271 struct btrfs_delayed_ref_node *ref; 5272 struct rb_node *node; 5273 int ret = 0; 5274 5275 delayed_refs = &trans->transaction->delayed_refs; 5276 spin_lock(&delayed_refs->lock); 5277 head = btrfs_find_delayed_ref_head(trans, bytenr); 5278 if (!head) 5279 goto out; 5280 5281 node = rb_prev(&head->node.rb_node); 5282 if (!node) 5283 goto out; 5284 5285 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5286 5287 /* there are still entries for this ref, we can't drop it */ 5288 if (ref->bytenr == bytenr) 5289 goto out; 5290 5291 if (head->extent_op) { 5292 if (!head->must_insert_reserved) 5293 goto out; 5294 kfree(head->extent_op); 5295 head->extent_op = NULL; 5296 } 5297 5298 /* 5299 * waiting for the lock here would deadlock. If someone else has it 5300 * locked they are already in the process of dropping it anyway 5301 */ 5302 if (!mutex_trylock(&head->mutex)) 5303 goto out; 5304 5305 /* 5306 * at this point we have a head with no other entries. Go 5307 * ahead and process it. 5308 */ 5309 head->node.in_tree = 0; 5310 rb_erase(&head->node.rb_node, &delayed_refs->root); 5311 5312 delayed_refs->num_entries--; 5313 5314 /* 5315 * we don't take a ref on the node because we're removing it from the 5316 * tree, so we just steal the ref the tree was holding. 5317 */ 5318 delayed_refs->num_heads--; 5319 if (list_empty(&head->cluster)) 5320 delayed_refs->num_heads_ready--; 5321 5322 list_del_init(&head->cluster); 5323 spin_unlock(&delayed_refs->lock); 5324 5325 BUG_ON(head->extent_op); 5326 if (head->must_insert_reserved) 5327 ret = 1; 5328 5329 mutex_unlock(&head->mutex); 5330 btrfs_put_delayed_ref(&head->node); 5331 return ret; 5332 out: 5333 spin_unlock(&delayed_refs->lock); 5334 return 0; 5335 } 5336 5337 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5338 struct btrfs_root *root, 5339 struct extent_buffer *buf, 5340 u64 parent, int last_ref) 5341 { 5342 struct btrfs_block_group_cache *cache = NULL; 5343 int ret; 5344 5345 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5346 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5347 buf->start, buf->len, 5348 parent, root->root_key.objectid, 5349 btrfs_header_level(buf), 5350 BTRFS_DROP_DELAYED_REF, NULL, 0); 5351 BUG_ON(ret); /* -ENOMEM */ 5352 } 5353 5354 if (!last_ref) 5355 return; 5356 5357 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5358 5359 if (btrfs_header_generation(buf) == trans->transid) { 5360 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5361 ret = check_ref_cleanup(trans, root, buf->start); 5362 if (!ret) 5363 goto out; 5364 } 5365 5366 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5367 pin_down_extent(root, cache, buf->start, buf->len, 1); 5368 goto out; 5369 } 5370 5371 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5372 5373 btrfs_add_free_space(cache, buf->start, buf->len); 5374 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5375 } 5376 out: 5377 /* 5378 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5379 * anymore. 5380 */ 5381 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5382 btrfs_put_block_group(cache); 5383 } 5384 5385 /* Can return -ENOMEM */ 5386 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5387 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5388 u64 owner, u64 offset, int for_cow) 5389 { 5390 int ret; 5391 struct btrfs_fs_info *fs_info = root->fs_info; 5392 5393 /* 5394 * tree log blocks never actually go into the extent allocation 5395 * tree, just update pinning info and exit early. 5396 */ 5397 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5398 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5399 /* unlocks the pinned mutex */ 5400 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5401 ret = 0; 5402 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5403 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5404 num_bytes, 5405 parent, root_objectid, (int)owner, 5406 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5407 } else { 5408 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5409 num_bytes, 5410 parent, root_objectid, owner, 5411 offset, BTRFS_DROP_DELAYED_REF, 5412 NULL, for_cow); 5413 } 5414 return ret; 5415 } 5416 5417 static u64 stripe_align(struct btrfs_root *root, u64 val) 5418 { 5419 u64 mask = ((u64)root->stripesize - 1); 5420 u64 ret = (val + mask) & ~mask; 5421 return ret; 5422 } 5423 5424 /* 5425 * when we wait for progress in the block group caching, its because 5426 * our allocation attempt failed at least once. So, we must sleep 5427 * and let some progress happen before we try again. 5428 * 5429 * This function will sleep at least once waiting for new free space to 5430 * show up, and then it will check the block group free space numbers 5431 * for our min num_bytes. Another option is to have it go ahead 5432 * and look in the rbtree for a free extent of a given size, but this 5433 * is a good start. 5434 */ 5435 static noinline int 5436 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5437 u64 num_bytes) 5438 { 5439 struct btrfs_caching_control *caching_ctl; 5440 DEFINE_WAIT(wait); 5441 5442 caching_ctl = get_caching_control(cache); 5443 if (!caching_ctl) 5444 return 0; 5445 5446 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5447 (cache->free_space_ctl->free_space >= num_bytes)); 5448 5449 put_caching_control(caching_ctl); 5450 return 0; 5451 } 5452 5453 static noinline int 5454 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5455 { 5456 struct btrfs_caching_control *caching_ctl; 5457 DEFINE_WAIT(wait); 5458 5459 caching_ctl = get_caching_control(cache); 5460 if (!caching_ctl) 5461 return 0; 5462 5463 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5464 5465 put_caching_control(caching_ctl); 5466 return 0; 5467 } 5468 5469 static int __get_block_group_index(u64 flags) 5470 { 5471 int index; 5472 5473 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5474 index = 0; 5475 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5476 index = 1; 5477 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5478 index = 2; 5479 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5480 index = 3; 5481 else 5482 index = 4; 5483 5484 return index; 5485 } 5486 5487 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5488 { 5489 return __get_block_group_index(cache->flags); 5490 } 5491 5492 enum btrfs_loop_type { 5493 LOOP_CACHING_NOWAIT = 0, 5494 LOOP_CACHING_WAIT = 1, 5495 LOOP_ALLOC_CHUNK = 2, 5496 LOOP_NO_EMPTY_SIZE = 3, 5497 }; 5498 5499 /* 5500 * walks the btree of allocated extents and find a hole of a given size. 5501 * The key ins is changed to record the hole: 5502 * ins->objectid == block start 5503 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5504 * ins->offset == number of blocks 5505 * Any available blocks before search_start are skipped. 5506 */ 5507 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5508 struct btrfs_root *orig_root, 5509 u64 num_bytes, u64 empty_size, 5510 u64 hint_byte, struct btrfs_key *ins, 5511 u64 data) 5512 { 5513 int ret = 0; 5514 struct btrfs_root *root = orig_root->fs_info->extent_root; 5515 struct btrfs_free_cluster *last_ptr = NULL; 5516 struct btrfs_block_group_cache *block_group = NULL; 5517 struct btrfs_block_group_cache *used_block_group; 5518 u64 search_start = 0; 5519 int empty_cluster = 2 * 1024 * 1024; 5520 struct btrfs_space_info *space_info; 5521 int loop = 0; 5522 int index = 0; 5523 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5524 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5525 bool found_uncached_bg = false; 5526 bool failed_cluster_refill = false; 5527 bool failed_alloc = false; 5528 bool use_cluster = true; 5529 bool have_caching_bg = false; 5530 5531 WARN_ON(num_bytes < root->sectorsize); 5532 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5533 ins->objectid = 0; 5534 ins->offset = 0; 5535 5536 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5537 5538 space_info = __find_space_info(root->fs_info, data); 5539 if (!space_info) { 5540 printk(KERN_ERR "No space info for %llu\n", data); 5541 return -ENOSPC; 5542 } 5543 5544 /* 5545 * If the space info is for both data and metadata it means we have a 5546 * small filesystem and we can't use the clustering stuff. 5547 */ 5548 if (btrfs_mixed_space_info(space_info)) 5549 use_cluster = false; 5550 5551 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5552 last_ptr = &root->fs_info->meta_alloc_cluster; 5553 if (!btrfs_test_opt(root, SSD)) 5554 empty_cluster = 64 * 1024; 5555 } 5556 5557 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5558 btrfs_test_opt(root, SSD)) { 5559 last_ptr = &root->fs_info->data_alloc_cluster; 5560 } 5561 5562 if (last_ptr) { 5563 spin_lock(&last_ptr->lock); 5564 if (last_ptr->block_group) 5565 hint_byte = last_ptr->window_start; 5566 spin_unlock(&last_ptr->lock); 5567 } 5568 5569 search_start = max(search_start, first_logical_byte(root, 0)); 5570 search_start = max(search_start, hint_byte); 5571 5572 if (!last_ptr) 5573 empty_cluster = 0; 5574 5575 if (search_start == hint_byte) { 5576 block_group = btrfs_lookup_block_group(root->fs_info, 5577 search_start); 5578 used_block_group = block_group; 5579 /* 5580 * we don't want to use the block group if it doesn't match our 5581 * allocation bits, or if its not cached. 5582 * 5583 * However if we are re-searching with an ideal block group 5584 * picked out then we don't care that the block group is cached. 5585 */ 5586 if (block_group && block_group_bits(block_group, data) && 5587 block_group->cached != BTRFS_CACHE_NO) { 5588 down_read(&space_info->groups_sem); 5589 if (list_empty(&block_group->list) || 5590 block_group->ro) { 5591 /* 5592 * someone is removing this block group, 5593 * we can't jump into the have_block_group 5594 * target because our list pointers are not 5595 * valid 5596 */ 5597 btrfs_put_block_group(block_group); 5598 up_read(&space_info->groups_sem); 5599 } else { 5600 index = get_block_group_index(block_group); 5601 goto have_block_group; 5602 } 5603 } else if (block_group) { 5604 btrfs_put_block_group(block_group); 5605 } 5606 } 5607 search: 5608 have_caching_bg = false; 5609 down_read(&space_info->groups_sem); 5610 list_for_each_entry(block_group, &space_info->block_groups[index], 5611 list) { 5612 u64 offset; 5613 int cached; 5614 5615 used_block_group = block_group; 5616 btrfs_get_block_group(block_group); 5617 search_start = block_group->key.objectid; 5618 5619 /* 5620 * this can happen if we end up cycling through all the 5621 * raid types, but we want to make sure we only allocate 5622 * for the proper type. 5623 */ 5624 if (!block_group_bits(block_group, data)) { 5625 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5626 BTRFS_BLOCK_GROUP_RAID1 | 5627 BTRFS_BLOCK_GROUP_RAID10; 5628 5629 /* 5630 * if they asked for extra copies and this block group 5631 * doesn't provide them, bail. This does allow us to 5632 * fill raid0 from raid1. 5633 */ 5634 if ((data & extra) && !(block_group->flags & extra)) 5635 goto loop; 5636 } 5637 5638 have_block_group: 5639 cached = block_group_cache_done(block_group); 5640 if (unlikely(!cached)) { 5641 found_uncached_bg = true; 5642 ret = cache_block_group(block_group, trans, 5643 orig_root, 0); 5644 BUG_ON(ret < 0); 5645 ret = 0; 5646 } 5647 5648 if (unlikely(block_group->ro)) 5649 goto loop; 5650 5651 /* 5652 * Ok we want to try and use the cluster allocator, so 5653 * lets look there 5654 */ 5655 if (last_ptr) { 5656 /* 5657 * the refill lock keeps out other 5658 * people trying to start a new cluster 5659 */ 5660 spin_lock(&last_ptr->refill_lock); 5661 used_block_group = last_ptr->block_group; 5662 if (used_block_group != block_group && 5663 (!used_block_group || 5664 used_block_group->ro || 5665 !block_group_bits(used_block_group, data))) { 5666 used_block_group = block_group; 5667 goto refill_cluster; 5668 } 5669 5670 if (used_block_group != block_group) 5671 btrfs_get_block_group(used_block_group); 5672 5673 offset = btrfs_alloc_from_cluster(used_block_group, 5674 last_ptr, num_bytes, used_block_group->key.objectid); 5675 if (offset) { 5676 /* we have a block, we're done */ 5677 spin_unlock(&last_ptr->refill_lock); 5678 trace_btrfs_reserve_extent_cluster(root, 5679 block_group, search_start, num_bytes); 5680 goto checks; 5681 } 5682 5683 WARN_ON(last_ptr->block_group != used_block_group); 5684 if (used_block_group != block_group) { 5685 btrfs_put_block_group(used_block_group); 5686 used_block_group = block_group; 5687 } 5688 refill_cluster: 5689 BUG_ON(used_block_group != block_group); 5690 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5691 * set up a new clusters, so lets just skip it 5692 * and let the allocator find whatever block 5693 * it can find. If we reach this point, we 5694 * will have tried the cluster allocator 5695 * plenty of times and not have found 5696 * anything, so we are likely way too 5697 * fragmented for the clustering stuff to find 5698 * anything. 5699 * 5700 * However, if the cluster is taken from the 5701 * current block group, release the cluster 5702 * first, so that we stand a better chance of 5703 * succeeding in the unclustered 5704 * allocation. */ 5705 if (loop >= LOOP_NO_EMPTY_SIZE && 5706 last_ptr->block_group != block_group) { 5707 spin_unlock(&last_ptr->refill_lock); 5708 goto unclustered_alloc; 5709 } 5710 5711 /* 5712 * this cluster didn't work out, free it and 5713 * start over 5714 */ 5715 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5716 5717 if (loop >= LOOP_NO_EMPTY_SIZE) { 5718 spin_unlock(&last_ptr->refill_lock); 5719 goto unclustered_alloc; 5720 } 5721 5722 /* allocate a cluster in this block group */ 5723 ret = btrfs_find_space_cluster(trans, root, 5724 block_group, last_ptr, 5725 search_start, num_bytes, 5726 empty_cluster + empty_size); 5727 if (ret == 0) { 5728 /* 5729 * now pull our allocation out of this 5730 * cluster 5731 */ 5732 offset = btrfs_alloc_from_cluster(block_group, 5733 last_ptr, num_bytes, 5734 search_start); 5735 if (offset) { 5736 /* we found one, proceed */ 5737 spin_unlock(&last_ptr->refill_lock); 5738 trace_btrfs_reserve_extent_cluster(root, 5739 block_group, search_start, 5740 num_bytes); 5741 goto checks; 5742 } 5743 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5744 && !failed_cluster_refill) { 5745 spin_unlock(&last_ptr->refill_lock); 5746 5747 failed_cluster_refill = true; 5748 wait_block_group_cache_progress(block_group, 5749 num_bytes + empty_cluster + empty_size); 5750 goto have_block_group; 5751 } 5752 5753 /* 5754 * at this point we either didn't find a cluster 5755 * or we weren't able to allocate a block from our 5756 * cluster. Free the cluster we've been trying 5757 * to use, and go to the next block group 5758 */ 5759 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5760 spin_unlock(&last_ptr->refill_lock); 5761 goto loop; 5762 } 5763 5764 unclustered_alloc: 5765 spin_lock(&block_group->free_space_ctl->tree_lock); 5766 if (cached && 5767 block_group->free_space_ctl->free_space < 5768 num_bytes + empty_cluster + empty_size) { 5769 spin_unlock(&block_group->free_space_ctl->tree_lock); 5770 goto loop; 5771 } 5772 spin_unlock(&block_group->free_space_ctl->tree_lock); 5773 5774 offset = btrfs_find_space_for_alloc(block_group, search_start, 5775 num_bytes, empty_size); 5776 /* 5777 * If we didn't find a chunk, and we haven't failed on this 5778 * block group before, and this block group is in the middle of 5779 * caching and we are ok with waiting, then go ahead and wait 5780 * for progress to be made, and set failed_alloc to true. 5781 * 5782 * If failed_alloc is true then we've already waited on this 5783 * block group once and should move on to the next block group. 5784 */ 5785 if (!offset && !failed_alloc && !cached && 5786 loop > LOOP_CACHING_NOWAIT) { 5787 wait_block_group_cache_progress(block_group, 5788 num_bytes + empty_size); 5789 failed_alloc = true; 5790 goto have_block_group; 5791 } else if (!offset) { 5792 if (!cached) 5793 have_caching_bg = true; 5794 goto loop; 5795 } 5796 checks: 5797 search_start = stripe_align(root, offset); 5798 5799 /* move on to the next group */ 5800 if (search_start + num_bytes > 5801 used_block_group->key.objectid + used_block_group->key.offset) { 5802 btrfs_add_free_space(used_block_group, offset, num_bytes); 5803 goto loop; 5804 } 5805 5806 if (offset < search_start) 5807 btrfs_add_free_space(used_block_group, offset, 5808 search_start - offset); 5809 BUG_ON(offset > search_start); 5810 5811 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5812 alloc_type); 5813 if (ret == -EAGAIN) { 5814 btrfs_add_free_space(used_block_group, offset, num_bytes); 5815 goto loop; 5816 } 5817 5818 /* we are all good, lets return */ 5819 ins->objectid = search_start; 5820 ins->offset = num_bytes; 5821 5822 trace_btrfs_reserve_extent(orig_root, block_group, 5823 search_start, num_bytes); 5824 if (used_block_group != block_group) 5825 btrfs_put_block_group(used_block_group); 5826 btrfs_put_block_group(block_group); 5827 break; 5828 loop: 5829 failed_cluster_refill = false; 5830 failed_alloc = false; 5831 BUG_ON(index != get_block_group_index(block_group)); 5832 if (used_block_group != block_group) 5833 btrfs_put_block_group(used_block_group); 5834 btrfs_put_block_group(block_group); 5835 } 5836 up_read(&space_info->groups_sem); 5837 5838 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5839 goto search; 5840 5841 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5842 goto search; 5843 5844 /* 5845 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5846 * caching kthreads as we move along 5847 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5848 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5849 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5850 * again 5851 */ 5852 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5853 index = 0; 5854 loop++; 5855 if (loop == LOOP_ALLOC_CHUNK) { 5856 ret = do_chunk_alloc(trans, root, data, 5857 CHUNK_ALLOC_FORCE); 5858 /* 5859 * Do not bail out on ENOSPC since we 5860 * can do more things. 5861 */ 5862 if (ret < 0 && ret != -ENOSPC) { 5863 btrfs_abort_transaction(trans, 5864 root, ret); 5865 goto out; 5866 } 5867 } 5868 5869 if (loop == LOOP_NO_EMPTY_SIZE) { 5870 empty_size = 0; 5871 empty_cluster = 0; 5872 } 5873 5874 goto search; 5875 } else if (!ins->objectid) { 5876 ret = -ENOSPC; 5877 } else if (ins->objectid) { 5878 ret = 0; 5879 } 5880 out: 5881 5882 return ret; 5883 } 5884 5885 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5886 int dump_block_groups) 5887 { 5888 struct btrfs_block_group_cache *cache; 5889 int index = 0; 5890 5891 spin_lock(&info->lock); 5892 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5893 (unsigned long long)info->flags, 5894 (unsigned long long)(info->total_bytes - info->bytes_used - 5895 info->bytes_pinned - info->bytes_reserved - 5896 info->bytes_readonly), 5897 (info->full) ? "" : "not "); 5898 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5899 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5900 (unsigned long long)info->total_bytes, 5901 (unsigned long long)info->bytes_used, 5902 (unsigned long long)info->bytes_pinned, 5903 (unsigned long long)info->bytes_reserved, 5904 (unsigned long long)info->bytes_may_use, 5905 (unsigned long long)info->bytes_readonly); 5906 spin_unlock(&info->lock); 5907 5908 if (!dump_block_groups) 5909 return; 5910 5911 down_read(&info->groups_sem); 5912 again: 5913 list_for_each_entry(cache, &info->block_groups[index], list) { 5914 spin_lock(&cache->lock); 5915 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 5916 (unsigned long long)cache->key.objectid, 5917 (unsigned long long)cache->key.offset, 5918 (unsigned long long)btrfs_block_group_used(&cache->item), 5919 (unsigned long long)cache->pinned, 5920 (unsigned long long)cache->reserved, 5921 cache->ro ? "[readonly]" : ""); 5922 btrfs_dump_free_space(cache, bytes); 5923 spin_unlock(&cache->lock); 5924 } 5925 if (++index < BTRFS_NR_RAID_TYPES) 5926 goto again; 5927 up_read(&info->groups_sem); 5928 } 5929 5930 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5931 struct btrfs_root *root, 5932 u64 num_bytes, u64 min_alloc_size, 5933 u64 empty_size, u64 hint_byte, 5934 struct btrfs_key *ins, u64 data) 5935 { 5936 bool final_tried = false; 5937 int ret; 5938 5939 data = btrfs_get_alloc_profile(root, data); 5940 again: 5941 WARN_ON(num_bytes < root->sectorsize); 5942 ret = find_free_extent(trans, root, num_bytes, empty_size, 5943 hint_byte, ins, data); 5944 5945 if (ret == -ENOSPC) { 5946 if (!final_tried) { 5947 num_bytes = num_bytes >> 1; 5948 num_bytes = num_bytes & ~(root->sectorsize - 1); 5949 num_bytes = max(num_bytes, min_alloc_size); 5950 if (num_bytes == min_alloc_size) 5951 final_tried = true; 5952 goto again; 5953 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 5954 struct btrfs_space_info *sinfo; 5955 5956 sinfo = __find_space_info(root->fs_info, data); 5957 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5958 "wanted %llu\n", (unsigned long long)data, 5959 (unsigned long long)num_bytes); 5960 if (sinfo) 5961 dump_space_info(sinfo, num_bytes, 1); 5962 } 5963 } 5964 5965 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 5966 5967 return ret; 5968 } 5969 5970 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 5971 u64 start, u64 len, int pin) 5972 { 5973 struct btrfs_block_group_cache *cache; 5974 int ret = 0; 5975 5976 cache = btrfs_lookup_block_group(root->fs_info, start); 5977 if (!cache) { 5978 printk(KERN_ERR "Unable to find block group for %llu\n", 5979 (unsigned long long)start); 5980 return -ENOSPC; 5981 } 5982 5983 if (btrfs_test_opt(root, DISCARD)) 5984 ret = btrfs_discard_extent(root, start, len, NULL); 5985 5986 if (pin) 5987 pin_down_extent(root, cache, start, len, 1); 5988 else { 5989 btrfs_add_free_space(cache, start, len); 5990 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 5991 } 5992 btrfs_put_block_group(cache); 5993 5994 trace_btrfs_reserved_extent_free(root, start, len); 5995 5996 return ret; 5997 } 5998 5999 int btrfs_free_reserved_extent(struct btrfs_root *root, 6000 u64 start, u64 len) 6001 { 6002 return __btrfs_free_reserved_extent(root, start, len, 0); 6003 } 6004 6005 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6006 u64 start, u64 len) 6007 { 6008 return __btrfs_free_reserved_extent(root, start, len, 1); 6009 } 6010 6011 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6012 struct btrfs_root *root, 6013 u64 parent, u64 root_objectid, 6014 u64 flags, u64 owner, u64 offset, 6015 struct btrfs_key *ins, int ref_mod) 6016 { 6017 int ret; 6018 struct btrfs_fs_info *fs_info = root->fs_info; 6019 struct btrfs_extent_item *extent_item; 6020 struct btrfs_extent_inline_ref *iref; 6021 struct btrfs_path *path; 6022 struct extent_buffer *leaf; 6023 int type; 6024 u32 size; 6025 6026 if (parent > 0) 6027 type = BTRFS_SHARED_DATA_REF_KEY; 6028 else 6029 type = BTRFS_EXTENT_DATA_REF_KEY; 6030 6031 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6032 6033 path = btrfs_alloc_path(); 6034 if (!path) 6035 return -ENOMEM; 6036 6037 path->leave_spinning = 1; 6038 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6039 ins, size); 6040 if (ret) { 6041 btrfs_free_path(path); 6042 return ret; 6043 } 6044 6045 leaf = path->nodes[0]; 6046 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6047 struct btrfs_extent_item); 6048 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6049 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6050 btrfs_set_extent_flags(leaf, extent_item, 6051 flags | BTRFS_EXTENT_FLAG_DATA); 6052 6053 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6054 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6055 if (parent > 0) { 6056 struct btrfs_shared_data_ref *ref; 6057 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6058 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6059 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6060 } else { 6061 struct btrfs_extent_data_ref *ref; 6062 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6063 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6064 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6065 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6066 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6067 } 6068 6069 btrfs_mark_buffer_dirty(path->nodes[0]); 6070 btrfs_free_path(path); 6071 6072 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6073 if (ret) { /* -ENOENT, logic error */ 6074 printk(KERN_ERR "btrfs update block group failed for %llu " 6075 "%llu\n", (unsigned long long)ins->objectid, 6076 (unsigned long long)ins->offset); 6077 BUG(); 6078 } 6079 return ret; 6080 } 6081 6082 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6083 struct btrfs_root *root, 6084 u64 parent, u64 root_objectid, 6085 u64 flags, struct btrfs_disk_key *key, 6086 int level, struct btrfs_key *ins) 6087 { 6088 int ret; 6089 struct btrfs_fs_info *fs_info = root->fs_info; 6090 struct btrfs_extent_item *extent_item; 6091 struct btrfs_tree_block_info *block_info; 6092 struct btrfs_extent_inline_ref *iref; 6093 struct btrfs_path *path; 6094 struct extent_buffer *leaf; 6095 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6096 6097 path = btrfs_alloc_path(); 6098 if (!path) 6099 return -ENOMEM; 6100 6101 path->leave_spinning = 1; 6102 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6103 ins, size); 6104 if (ret) { 6105 btrfs_free_path(path); 6106 return ret; 6107 } 6108 6109 leaf = path->nodes[0]; 6110 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6111 struct btrfs_extent_item); 6112 btrfs_set_extent_refs(leaf, extent_item, 1); 6113 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6114 btrfs_set_extent_flags(leaf, extent_item, 6115 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6116 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6117 6118 btrfs_set_tree_block_key(leaf, block_info, key); 6119 btrfs_set_tree_block_level(leaf, block_info, level); 6120 6121 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6122 if (parent > 0) { 6123 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6124 btrfs_set_extent_inline_ref_type(leaf, iref, 6125 BTRFS_SHARED_BLOCK_REF_KEY); 6126 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6127 } else { 6128 btrfs_set_extent_inline_ref_type(leaf, iref, 6129 BTRFS_TREE_BLOCK_REF_KEY); 6130 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6131 } 6132 6133 btrfs_mark_buffer_dirty(leaf); 6134 btrfs_free_path(path); 6135 6136 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6137 if (ret) { /* -ENOENT, logic error */ 6138 printk(KERN_ERR "btrfs update block group failed for %llu " 6139 "%llu\n", (unsigned long long)ins->objectid, 6140 (unsigned long long)ins->offset); 6141 BUG(); 6142 } 6143 return ret; 6144 } 6145 6146 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6147 struct btrfs_root *root, 6148 u64 root_objectid, u64 owner, 6149 u64 offset, struct btrfs_key *ins) 6150 { 6151 int ret; 6152 6153 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6154 6155 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6156 ins->offset, 0, 6157 root_objectid, owner, offset, 6158 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6159 return ret; 6160 } 6161 6162 /* 6163 * this is used by the tree logging recovery code. It records that 6164 * an extent has been allocated and makes sure to clear the free 6165 * space cache bits as well 6166 */ 6167 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6168 struct btrfs_root *root, 6169 u64 root_objectid, u64 owner, u64 offset, 6170 struct btrfs_key *ins) 6171 { 6172 int ret; 6173 struct btrfs_block_group_cache *block_group; 6174 struct btrfs_caching_control *caching_ctl; 6175 u64 start = ins->objectid; 6176 u64 num_bytes = ins->offset; 6177 6178 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6179 cache_block_group(block_group, trans, NULL, 0); 6180 caching_ctl = get_caching_control(block_group); 6181 6182 if (!caching_ctl) { 6183 BUG_ON(!block_group_cache_done(block_group)); 6184 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6185 BUG_ON(ret); /* -ENOMEM */ 6186 } else { 6187 mutex_lock(&caching_ctl->mutex); 6188 6189 if (start >= caching_ctl->progress) { 6190 ret = add_excluded_extent(root, start, num_bytes); 6191 BUG_ON(ret); /* -ENOMEM */ 6192 } else if (start + num_bytes <= caching_ctl->progress) { 6193 ret = btrfs_remove_free_space(block_group, 6194 start, num_bytes); 6195 BUG_ON(ret); /* -ENOMEM */ 6196 } else { 6197 num_bytes = caching_ctl->progress - start; 6198 ret = btrfs_remove_free_space(block_group, 6199 start, num_bytes); 6200 BUG_ON(ret); /* -ENOMEM */ 6201 6202 start = caching_ctl->progress; 6203 num_bytes = ins->objectid + ins->offset - 6204 caching_ctl->progress; 6205 ret = add_excluded_extent(root, start, num_bytes); 6206 BUG_ON(ret); /* -ENOMEM */ 6207 } 6208 6209 mutex_unlock(&caching_ctl->mutex); 6210 put_caching_control(caching_ctl); 6211 } 6212 6213 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6214 RESERVE_ALLOC_NO_ACCOUNT); 6215 BUG_ON(ret); /* logic error */ 6216 btrfs_put_block_group(block_group); 6217 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6218 0, owner, offset, ins, 1); 6219 return ret; 6220 } 6221 6222 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6223 struct btrfs_root *root, 6224 u64 bytenr, u32 blocksize, 6225 int level) 6226 { 6227 struct extent_buffer *buf; 6228 6229 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6230 if (!buf) 6231 return ERR_PTR(-ENOMEM); 6232 btrfs_set_header_generation(buf, trans->transid); 6233 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6234 btrfs_tree_lock(buf); 6235 clean_tree_block(trans, root, buf); 6236 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6237 6238 btrfs_set_lock_blocking(buf); 6239 btrfs_set_buffer_uptodate(buf); 6240 6241 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6242 /* 6243 * we allow two log transactions at a time, use different 6244 * EXENT bit to differentiate dirty pages. 6245 */ 6246 if (root->log_transid % 2 == 0) 6247 set_extent_dirty(&root->dirty_log_pages, buf->start, 6248 buf->start + buf->len - 1, GFP_NOFS); 6249 else 6250 set_extent_new(&root->dirty_log_pages, buf->start, 6251 buf->start + buf->len - 1, GFP_NOFS); 6252 } else { 6253 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6254 buf->start + buf->len - 1, GFP_NOFS); 6255 } 6256 trans->blocks_used++; 6257 /* this returns a buffer locked for blocking */ 6258 return buf; 6259 } 6260 6261 static struct btrfs_block_rsv * 6262 use_block_rsv(struct btrfs_trans_handle *trans, 6263 struct btrfs_root *root, u32 blocksize) 6264 { 6265 struct btrfs_block_rsv *block_rsv; 6266 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6267 int ret; 6268 6269 block_rsv = get_block_rsv(trans, root); 6270 6271 if (block_rsv->size == 0) { 6272 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6273 /* 6274 * If we couldn't reserve metadata bytes try and use some from 6275 * the global reserve. 6276 */ 6277 if (ret && block_rsv != global_rsv) { 6278 ret = block_rsv_use_bytes(global_rsv, blocksize); 6279 if (!ret) 6280 return global_rsv; 6281 return ERR_PTR(ret); 6282 } else if (ret) { 6283 return ERR_PTR(ret); 6284 } 6285 return block_rsv; 6286 } 6287 6288 ret = block_rsv_use_bytes(block_rsv, blocksize); 6289 if (!ret) 6290 return block_rsv; 6291 if (ret && !block_rsv->failfast) { 6292 static DEFINE_RATELIMIT_STATE(_rs, 6293 DEFAULT_RATELIMIT_INTERVAL, 6294 /*DEFAULT_RATELIMIT_BURST*/ 2); 6295 if (__ratelimit(&_rs)) { 6296 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); 6297 WARN_ON(1); 6298 } 6299 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6300 if (!ret) { 6301 return block_rsv; 6302 } else if (ret && block_rsv != global_rsv) { 6303 ret = block_rsv_use_bytes(global_rsv, blocksize); 6304 if (!ret) 6305 return global_rsv; 6306 } 6307 } 6308 6309 return ERR_PTR(-ENOSPC); 6310 } 6311 6312 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6313 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6314 { 6315 block_rsv_add_bytes(block_rsv, blocksize, 0); 6316 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6317 } 6318 6319 /* 6320 * finds a free extent and does all the dirty work required for allocation 6321 * returns the key for the extent through ins, and a tree buffer for 6322 * the first block of the extent through buf. 6323 * 6324 * returns the tree buffer or NULL. 6325 */ 6326 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6327 struct btrfs_root *root, u32 blocksize, 6328 u64 parent, u64 root_objectid, 6329 struct btrfs_disk_key *key, int level, 6330 u64 hint, u64 empty_size) 6331 { 6332 struct btrfs_key ins; 6333 struct btrfs_block_rsv *block_rsv; 6334 struct extent_buffer *buf; 6335 u64 flags = 0; 6336 int ret; 6337 6338 6339 block_rsv = use_block_rsv(trans, root, blocksize); 6340 if (IS_ERR(block_rsv)) 6341 return ERR_CAST(block_rsv); 6342 6343 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6344 empty_size, hint, &ins, 0); 6345 if (ret) { 6346 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6347 return ERR_PTR(ret); 6348 } 6349 6350 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6351 blocksize, level); 6352 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6353 6354 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6355 if (parent == 0) 6356 parent = ins.objectid; 6357 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6358 } else 6359 BUG_ON(parent > 0); 6360 6361 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6362 struct btrfs_delayed_extent_op *extent_op; 6363 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 6364 BUG_ON(!extent_op); /* -ENOMEM */ 6365 if (key) 6366 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6367 else 6368 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6369 extent_op->flags_to_set = flags; 6370 extent_op->update_key = 1; 6371 extent_op->update_flags = 1; 6372 extent_op->is_data = 0; 6373 6374 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6375 ins.objectid, 6376 ins.offset, parent, root_objectid, 6377 level, BTRFS_ADD_DELAYED_EXTENT, 6378 extent_op, 0); 6379 BUG_ON(ret); /* -ENOMEM */ 6380 } 6381 return buf; 6382 } 6383 6384 struct walk_control { 6385 u64 refs[BTRFS_MAX_LEVEL]; 6386 u64 flags[BTRFS_MAX_LEVEL]; 6387 struct btrfs_key update_progress; 6388 int stage; 6389 int level; 6390 int shared_level; 6391 int update_ref; 6392 int keep_locks; 6393 int reada_slot; 6394 int reada_count; 6395 int for_reloc; 6396 }; 6397 6398 #define DROP_REFERENCE 1 6399 #define UPDATE_BACKREF 2 6400 6401 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6402 struct btrfs_root *root, 6403 struct walk_control *wc, 6404 struct btrfs_path *path) 6405 { 6406 u64 bytenr; 6407 u64 generation; 6408 u64 refs; 6409 u64 flags; 6410 u32 nritems; 6411 u32 blocksize; 6412 struct btrfs_key key; 6413 struct extent_buffer *eb; 6414 int ret; 6415 int slot; 6416 int nread = 0; 6417 6418 if (path->slots[wc->level] < wc->reada_slot) { 6419 wc->reada_count = wc->reada_count * 2 / 3; 6420 wc->reada_count = max(wc->reada_count, 2); 6421 } else { 6422 wc->reada_count = wc->reada_count * 3 / 2; 6423 wc->reada_count = min_t(int, wc->reada_count, 6424 BTRFS_NODEPTRS_PER_BLOCK(root)); 6425 } 6426 6427 eb = path->nodes[wc->level]; 6428 nritems = btrfs_header_nritems(eb); 6429 blocksize = btrfs_level_size(root, wc->level - 1); 6430 6431 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6432 if (nread >= wc->reada_count) 6433 break; 6434 6435 cond_resched(); 6436 bytenr = btrfs_node_blockptr(eb, slot); 6437 generation = btrfs_node_ptr_generation(eb, slot); 6438 6439 if (slot == path->slots[wc->level]) 6440 goto reada; 6441 6442 if (wc->stage == UPDATE_BACKREF && 6443 generation <= root->root_key.offset) 6444 continue; 6445 6446 /* We don't lock the tree block, it's OK to be racy here */ 6447 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6448 &refs, &flags); 6449 /* We don't care about errors in readahead. */ 6450 if (ret < 0) 6451 continue; 6452 BUG_ON(refs == 0); 6453 6454 if (wc->stage == DROP_REFERENCE) { 6455 if (refs == 1) 6456 goto reada; 6457 6458 if (wc->level == 1 && 6459 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6460 continue; 6461 if (!wc->update_ref || 6462 generation <= root->root_key.offset) 6463 continue; 6464 btrfs_node_key_to_cpu(eb, &key, slot); 6465 ret = btrfs_comp_cpu_keys(&key, 6466 &wc->update_progress); 6467 if (ret < 0) 6468 continue; 6469 } else { 6470 if (wc->level == 1 && 6471 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6472 continue; 6473 } 6474 reada: 6475 ret = readahead_tree_block(root, bytenr, blocksize, 6476 generation); 6477 if (ret) 6478 break; 6479 nread++; 6480 } 6481 wc->reada_slot = slot; 6482 } 6483 6484 /* 6485 * hepler to process tree block while walking down the tree. 6486 * 6487 * when wc->stage == UPDATE_BACKREF, this function updates 6488 * back refs for pointers in the block. 6489 * 6490 * NOTE: return value 1 means we should stop walking down. 6491 */ 6492 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6493 struct btrfs_root *root, 6494 struct btrfs_path *path, 6495 struct walk_control *wc, int lookup_info) 6496 { 6497 int level = wc->level; 6498 struct extent_buffer *eb = path->nodes[level]; 6499 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6500 int ret; 6501 6502 if (wc->stage == UPDATE_BACKREF && 6503 btrfs_header_owner(eb) != root->root_key.objectid) 6504 return 1; 6505 6506 /* 6507 * when reference count of tree block is 1, it won't increase 6508 * again. once full backref flag is set, we never clear it. 6509 */ 6510 if (lookup_info && 6511 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6512 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6513 BUG_ON(!path->locks[level]); 6514 ret = btrfs_lookup_extent_info(trans, root, 6515 eb->start, eb->len, 6516 &wc->refs[level], 6517 &wc->flags[level]); 6518 BUG_ON(ret == -ENOMEM); 6519 if (ret) 6520 return ret; 6521 BUG_ON(wc->refs[level] == 0); 6522 } 6523 6524 if (wc->stage == DROP_REFERENCE) { 6525 if (wc->refs[level] > 1) 6526 return 1; 6527 6528 if (path->locks[level] && !wc->keep_locks) { 6529 btrfs_tree_unlock_rw(eb, path->locks[level]); 6530 path->locks[level] = 0; 6531 } 6532 return 0; 6533 } 6534 6535 /* wc->stage == UPDATE_BACKREF */ 6536 if (!(wc->flags[level] & flag)) { 6537 BUG_ON(!path->locks[level]); 6538 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6539 BUG_ON(ret); /* -ENOMEM */ 6540 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6541 BUG_ON(ret); /* -ENOMEM */ 6542 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6543 eb->len, flag, 0); 6544 BUG_ON(ret); /* -ENOMEM */ 6545 wc->flags[level] |= flag; 6546 } 6547 6548 /* 6549 * the block is shared by multiple trees, so it's not good to 6550 * keep the tree lock 6551 */ 6552 if (path->locks[level] && level > 0) { 6553 btrfs_tree_unlock_rw(eb, path->locks[level]); 6554 path->locks[level] = 0; 6555 } 6556 return 0; 6557 } 6558 6559 /* 6560 * hepler to process tree block pointer. 6561 * 6562 * when wc->stage == DROP_REFERENCE, this function checks 6563 * reference count of the block pointed to. if the block 6564 * is shared and we need update back refs for the subtree 6565 * rooted at the block, this function changes wc->stage to 6566 * UPDATE_BACKREF. if the block is shared and there is no 6567 * need to update back, this function drops the reference 6568 * to the block. 6569 * 6570 * NOTE: return value 1 means we should stop walking down. 6571 */ 6572 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6573 struct btrfs_root *root, 6574 struct btrfs_path *path, 6575 struct walk_control *wc, int *lookup_info) 6576 { 6577 u64 bytenr; 6578 u64 generation; 6579 u64 parent; 6580 u32 blocksize; 6581 struct btrfs_key key; 6582 struct extent_buffer *next; 6583 int level = wc->level; 6584 int reada = 0; 6585 int ret = 0; 6586 6587 generation = btrfs_node_ptr_generation(path->nodes[level], 6588 path->slots[level]); 6589 /* 6590 * if the lower level block was created before the snapshot 6591 * was created, we know there is no need to update back refs 6592 * for the subtree 6593 */ 6594 if (wc->stage == UPDATE_BACKREF && 6595 generation <= root->root_key.offset) { 6596 *lookup_info = 1; 6597 return 1; 6598 } 6599 6600 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6601 blocksize = btrfs_level_size(root, level - 1); 6602 6603 next = btrfs_find_tree_block(root, bytenr, blocksize); 6604 if (!next) { 6605 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6606 if (!next) 6607 return -ENOMEM; 6608 reada = 1; 6609 } 6610 btrfs_tree_lock(next); 6611 btrfs_set_lock_blocking(next); 6612 6613 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6614 &wc->refs[level - 1], 6615 &wc->flags[level - 1]); 6616 if (ret < 0) { 6617 btrfs_tree_unlock(next); 6618 return ret; 6619 } 6620 6621 BUG_ON(wc->refs[level - 1] == 0); 6622 *lookup_info = 0; 6623 6624 if (wc->stage == DROP_REFERENCE) { 6625 if (wc->refs[level - 1] > 1) { 6626 if (level == 1 && 6627 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6628 goto skip; 6629 6630 if (!wc->update_ref || 6631 generation <= root->root_key.offset) 6632 goto skip; 6633 6634 btrfs_node_key_to_cpu(path->nodes[level], &key, 6635 path->slots[level]); 6636 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6637 if (ret < 0) 6638 goto skip; 6639 6640 wc->stage = UPDATE_BACKREF; 6641 wc->shared_level = level - 1; 6642 } 6643 } else { 6644 if (level == 1 && 6645 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6646 goto skip; 6647 } 6648 6649 if (!btrfs_buffer_uptodate(next, generation, 0)) { 6650 btrfs_tree_unlock(next); 6651 free_extent_buffer(next); 6652 next = NULL; 6653 *lookup_info = 1; 6654 } 6655 6656 if (!next) { 6657 if (reada && level == 1) 6658 reada_walk_down(trans, root, wc, path); 6659 next = read_tree_block(root, bytenr, blocksize, generation); 6660 if (!next) 6661 return -EIO; 6662 btrfs_tree_lock(next); 6663 btrfs_set_lock_blocking(next); 6664 } 6665 6666 level--; 6667 BUG_ON(level != btrfs_header_level(next)); 6668 path->nodes[level] = next; 6669 path->slots[level] = 0; 6670 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6671 wc->level = level; 6672 if (wc->level == 1) 6673 wc->reada_slot = 0; 6674 return 0; 6675 skip: 6676 wc->refs[level - 1] = 0; 6677 wc->flags[level - 1] = 0; 6678 if (wc->stage == DROP_REFERENCE) { 6679 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6680 parent = path->nodes[level]->start; 6681 } else { 6682 BUG_ON(root->root_key.objectid != 6683 btrfs_header_owner(path->nodes[level])); 6684 parent = 0; 6685 } 6686 6687 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6688 root->root_key.objectid, level - 1, 0, 0); 6689 BUG_ON(ret); /* -ENOMEM */ 6690 } 6691 btrfs_tree_unlock(next); 6692 free_extent_buffer(next); 6693 *lookup_info = 1; 6694 return 1; 6695 } 6696 6697 /* 6698 * hepler to process tree block while walking up the tree. 6699 * 6700 * when wc->stage == DROP_REFERENCE, this function drops 6701 * reference count on the block. 6702 * 6703 * when wc->stage == UPDATE_BACKREF, this function changes 6704 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6705 * to UPDATE_BACKREF previously while processing the block. 6706 * 6707 * NOTE: return value 1 means we should stop walking up. 6708 */ 6709 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6710 struct btrfs_root *root, 6711 struct btrfs_path *path, 6712 struct walk_control *wc) 6713 { 6714 int ret; 6715 int level = wc->level; 6716 struct extent_buffer *eb = path->nodes[level]; 6717 u64 parent = 0; 6718 6719 if (wc->stage == UPDATE_BACKREF) { 6720 BUG_ON(wc->shared_level < level); 6721 if (level < wc->shared_level) 6722 goto out; 6723 6724 ret = find_next_key(path, level + 1, &wc->update_progress); 6725 if (ret > 0) 6726 wc->update_ref = 0; 6727 6728 wc->stage = DROP_REFERENCE; 6729 wc->shared_level = -1; 6730 path->slots[level] = 0; 6731 6732 /* 6733 * check reference count again if the block isn't locked. 6734 * we should start walking down the tree again if reference 6735 * count is one. 6736 */ 6737 if (!path->locks[level]) { 6738 BUG_ON(level == 0); 6739 btrfs_tree_lock(eb); 6740 btrfs_set_lock_blocking(eb); 6741 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6742 6743 ret = btrfs_lookup_extent_info(trans, root, 6744 eb->start, eb->len, 6745 &wc->refs[level], 6746 &wc->flags[level]); 6747 if (ret < 0) { 6748 btrfs_tree_unlock_rw(eb, path->locks[level]); 6749 return ret; 6750 } 6751 BUG_ON(wc->refs[level] == 0); 6752 if (wc->refs[level] == 1) { 6753 btrfs_tree_unlock_rw(eb, path->locks[level]); 6754 return 1; 6755 } 6756 } 6757 } 6758 6759 /* wc->stage == DROP_REFERENCE */ 6760 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6761 6762 if (wc->refs[level] == 1) { 6763 if (level == 0) { 6764 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6765 ret = btrfs_dec_ref(trans, root, eb, 1, 6766 wc->for_reloc); 6767 else 6768 ret = btrfs_dec_ref(trans, root, eb, 0, 6769 wc->for_reloc); 6770 BUG_ON(ret); /* -ENOMEM */ 6771 } 6772 /* make block locked assertion in clean_tree_block happy */ 6773 if (!path->locks[level] && 6774 btrfs_header_generation(eb) == trans->transid) { 6775 btrfs_tree_lock(eb); 6776 btrfs_set_lock_blocking(eb); 6777 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6778 } 6779 clean_tree_block(trans, root, eb); 6780 } 6781 6782 if (eb == root->node) { 6783 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6784 parent = eb->start; 6785 else 6786 BUG_ON(root->root_key.objectid != 6787 btrfs_header_owner(eb)); 6788 } else { 6789 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6790 parent = path->nodes[level + 1]->start; 6791 else 6792 BUG_ON(root->root_key.objectid != 6793 btrfs_header_owner(path->nodes[level + 1])); 6794 } 6795 6796 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6797 out: 6798 wc->refs[level] = 0; 6799 wc->flags[level] = 0; 6800 return 0; 6801 } 6802 6803 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6804 struct btrfs_root *root, 6805 struct btrfs_path *path, 6806 struct walk_control *wc) 6807 { 6808 int level = wc->level; 6809 int lookup_info = 1; 6810 int ret; 6811 6812 while (level >= 0) { 6813 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6814 if (ret > 0) 6815 break; 6816 6817 if (level == 0) 6818 break; 6819 6820 if (path->slots[level] >= 6821 btrfs_header_nritems(path->nodes[level])) 6822 break; 6823 6824 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6825 if (ret > 0) { 6826 path->slots[level]++; 6827 continue; 6828 } else if (ret < 0) 6829 return ret; 6830 level = wc->level; 6831 } 6832 return 0; 6833 } 6834 6835 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6836 struct btrfs_root *root, 6837 struct btrfs_path *path, 6838 struct walk_control *wc, int max_level) 6839 { 6840 int level = wc->level; 6841 int ret; 6842 6843 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6844 while (level < max_level && path->nodes[level]) { 6845 wc->level = level; 6846 if (path->slots[level] + 1 < 6847 btrfs_header_nritems(path->nodes[level])) { 6848 path->slots[level]++; 6849 return 0; 6850 } else { 6851 ret = walk_up_proc(trans, root, path, wc); 6852 if (ret > 0) 6853 return 0; 6854 6855 if (path->locks[level]) { 6856 btrfs_tree_unlock_rw(path->nodes[level], 6857 path->locks[level]); 6858 path->locks[level] = 0; 6859 } 6860 free_extent_buffer(path->nodes[level]); 6861 path->nodes[level] = NULL; 6862 level++; 6863 } 6864 } 6865 return 1; 6866 } 6867 6868 /* 6869 * drop a subvolume tree. 6870 * 6871 * this function traverses the tree freeing any blocks that only 6872 * referenced by the tree. 6873 * 6874 * when a shared tree block is found. this function decreases its 6875 * reference count by one. if update_ref is true, this function 6876 * also make sure backrefs for the shared block and all lower level 6877 * blocks are properly updated. 6878 */ 6879 int btrfs_drop_snapshot(struct btrfs_root *root, 6880 struct btrfs_block_rsv *block_rsv, int update_ref, 6881 int for_reloc) 6882 { 6883 struct btrfs_path *path; 6884 struct btrfs_trans_handle *trans; 6885 struct btrfs_root *tree_root = root->fs_info->tree_root; 6886 struct btrfs_root_item *root_item = &root->root_item; 6887 struct walk_control *wc; 6888 struct btrfs_key key; 6889 int err = 0; 6890 int ret; 6891 int level; 6892 6893 path = btrfs_alloc_path(); 6894 if (!path) { 6895 err = -ENOMEM; 6896 goto out; 6897 } 6898 6899 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6900 if (!wc) { 6901 btrfs_free_path(path); 6902 err = -ENOMEM; 6903 goto out; 6904 } 6905 6906 trans = btrfs_start_transaction(tree_root, 0); 6907 if (IS_ERR(trans)) { 6908 err = PTR_ERR(trans); 6909 goto out_free; 6910 } 6911 6912 if (block_rsv) 6913 trans->block_rsv = block_rsv; 6914 6915 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6916 level = btrfs_header_level(root->node); 6917 path->nodes[level] = btrfs_lock_root_node(root); 6918 btrfs_set_lock_blocking(path->nodes[level]); 6919 path->slots[level] = 0; 6920 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6921 memset(&wc->update_progress, 0, 6922 sizeof(wc->update_progress)); 6923 } else { 6924 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6925 memcpy(&wc->update_progress, &key, 6926 sizeof(wc->update_progress)); 6927 6928 level = root_item->drop_level; 6929 BUG_ON(level == 0); 6930 path->lowest_level = level; 6931 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6932 path->lowest_level = 0; 6933 if (ret < 0) { 6934 err = ret; 6935 goto out_end_trans; 6936 } 6937 WARN_ON(ret > 0); 6938 6939 /* 6940 * unlock our path, this is safe because only this 6941 * function is allowed to delete this snapshot 6942 */ 6943 btrfs_unlock_up_safe(path, 0); 6944 6945 level = btrfs_header_level(root->node); 6946 while (1) { 6947 btrfs_tree_lock(path->nodes[level]); 6948 btrfs_set_lock_blocking(path->nodes[level]); 6949 6950 ret = btrfs_lookup_extent_info(trans, root, 6951 path->nodes[level]->start, 6952 path->nodes[level]->len, 6953 &wc->refs[level], 6954 &wc->flags[level]); 6955 if (ret < 0) { 6956 err = ret; 6957 goto out_end_trans; 6958 } 6959 BUG_ON(wc->refs[level] == 0); 6960 6961 if (level == root_item->drop_level) 6962 break; 6963 6964 btrfs_tree_unlock(path->nodes[level]); 6965 WARN_ON(wc->refs[level] != 1); 6966 level--; 6967 } 6968 } 6969 6970 wc->level = level; 6971 wc->shared_level = -1; 6972 wc->stage = DROP_REFERENCE; 6973 wc->update_ref = update_ref; 6974 wc->keep_locks = 0; 6975 wc->for_reloc = for_reloc; 6976 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6977 6978 while (1) { 6979 ret = walk_down_tree(trans, root, path, wc); 6980 if (ret < 0) { 6981 err = ret; 6982 break; 6983 } 6984 6985 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6986 if (ret < 0) { 6987 err = ret; 6988 break; 6989 } 6990 6991 if (ret > 0) { 6992 BUG_ON(wc->stage != DROP_REFERENCE); 6993 break; 6994 } 6995 6996 if (wc->stage == DROP_REFERENCE) { 6997 level = wc->level; 6998 btrfs_node_key(path->nodes[level], 6999 &root_item->drop_progress, 7000 path->slots[level]); 7001 root_item->drop_level = level; 7002 } 7003 7004 BUG_ON(wc->level == 0); 7005 if (btrfs_should_end_transaction(trans, tree_root)) { 7006 ret = btrfs_update_root(trans, tree_root, 7007 &root->root_key, 7008 root_item); 7009 if (ret) { 7010 btrfs_abort_transaction(trans, tree_root, ret); 7011 err = ret; 7012 goto out_end_trans; 7013 } 7014 7015 btrfs_end_transaction_throttle(trans, tree_root); 7016 trans = btrfs_start_transaction(tree_root, 0); 7017 if (IS_ERR(trans)) { 7018 err = PTR_ERR(trans); 7019 goto out_free; 7020 } 7021 if (block_rsv) 7022 trans->block_rsv = block_rsv; 7023 } 7024 } 7025 btrfs_release_path(path); 7026 if (err) 7027 goto out_end_trans; 7028 7029 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7030 if (ret) { 7031 btrfs_abort_transaction(trans, tree_root, ret); 7032 goto out_end_trans; 7033 } 7034 7035 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7036 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 7037 NULL, NULL); 7038 if (ret < 0) { 7039 btrfs_abort_transaction(trans, tree_root, ret); 7040 err = ret; 7041 goto out_end_trans; 7042 } else if (ret > 0) { 7043 /* if we fail to delete the orphan item this time 7044 * around, it'll get picked up the next time. 7045 * 7046 * The most common failure here is just -ENOENT. 7047 */ 7048 btrfs_del_orphan_item(trans, tree_root, 7049 root->root_key.objectid); 7050 } 7051 } 7052 7053 if (root->in_radix) { 7054 btrfs_free_fs_root(tree_root->fs_info, root); 7055 } else { 7056 free_extent_buffer(root->node); 7057 free_extent_buffer(root->commit_root); 7058 kfree(root); 7059 } 7060 out_end_trans: 7061 btrfs_end_transaction_throttle(trans, tree_root); 7062 out_free: 7063 kfree(wc); 7064 btrfs_free_path(path); 7065 out: 7066 if (err) 7067 btrfs_std_error(root->fs_info, err); 7068 return err; 7069 } 7070 7071 /* 7072 * drop subtree rooted at tree block 'node'. 7073 * 7074 * NOTE: this function will unlock and release tree block 'node' 7075 * only used by relocation code 7076 */ 7077 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7078 struct btrfs_root *root, 7079 struct extent_buffer *node, 7080 struct extent_buffer *parent) 7081 { 7082 struct btrfs_path *path; 7083 struct walk_control *wc; 7084 int level; 7085 int parent_level; 7086 int ret = 0; 7087 int wret; 7088 7089 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7090 7091 path = btrfs_alloc_path(); 7092 if (!path) 7093 return -ENOMEM; 7094 7095 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7096 if (!wc) { 7097 btrfs_free_path(path); 7098 return -ENOMEM; 7099 } 7100 7101 btrfs_assert_tree_locked(parent); 7102 parent_level = btrfs_header_level(parent); 7103 extent_buffer_get(parent); 7104 path->nodes[parent_level] = parent; 7105 path->slots[parent_level] = btrfs_header_nritems(parent); 7106 7107 btrfs_assert_tree_locked(node); 7108 level = btrfs_header_level(node); 7109 path->nodes[level] = node; 7110 path->slots[level] = 0; 7111 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7112 7113 wc->refs[parent_level] = 1; 7114 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7115 wc->level = level; 7116 wc->shared_level = -1; 7117 wc->stage = DROP_REFERENCE; 7118 wc->update_ref = 0; 7119 wc->keep_locks = 1; 7120 wc->for_reloc = 1; 7121 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7122 7123 while (1) { 7124 wret = walk_down_tree(trans, root, path, wc); 7125 if (wret < 0) { 7126 ret = wret; 7127 break; 7128 } 7129 7130 wret = walk_up_tree(trans, root, path, wc, parent_level); 7131 if (wret < 0) 7132 ret = wret; 7133 if (wret != 0) 7134 break; 7135 } 7136 7137 kfree(wc); 7138 btrfs_free_path(path); 7139 return ret; 7140 } 7141 7142 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7143 { 7144 u64 num_devices; 7145 u64 stripped; 7146 7147 /* 7148 * if restripe for this chunk_type is on pick target profile and 7149 * return, otherwise do the usual balance 7150 */ 7151 stripped = get_restripe_target(root->fs_info, flags); 7152 if (stripped) 7153 return extended_to_chunk(stripped); 7154 7155 /* 7156 * we add in the count of missing devices because we want 7157 * to make sure that any RAID levels on a degraded FS 7158 * continue to be honored. 7159 */ 7160 num_devices = root->fs_info->fs_devices->rw_devices + 7161 root->fs_info->fs_devices->missing_devices; 7162 7163 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7164 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7165 7166 if (num_devices == 1) { 7167 stripped |= BTRFS_BLOCK_GROUP_DUP; 7168 stripped = flags & ~stripped; 7169 7170 /* turn raid0 into single device chunks */ 7171 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7172 return stripped; 7173 7174 /* turn mirroring into duplication */ 7175 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7176 BTRFS_BLOCK_GROUP_RAID10)) 7177 return stripped | BTRFS_BLOCK_GROUP_DUP; 7178 } else { 7179 /* they already had raid on here, just return */ 7180 if (flags & stripped) 7181 return flags; 7182 7183 stripped |= BTRFS_BLOCK_GROUP_DUP; 7184 stripped = flags & ~stripped; 7185 7186 /* switch duplicated blocks with raid1 */ 7187 if (flags & BTRFS_BLOCK_GROUP_DUP) 7188 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7189 7190 /* this is drive concat, leave it alone */ 7191 } 7192 7193 return flags; 7194 } 7195 7196 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7197 { 7198 struct btrfs_space_info *sinfo = cache->space_info; 7199 u64 num_bytes; 7200 u64 min_allocable_bytes; 7201 int ret = -ENOSPC; 7202 7203 7204 /* 7205 * We need some metadata space and system metadata space for 7206 * allocating chunks in some corner cases until we force to set 7207 * it to be readonly. 7208 */ 7209 if ((sinfo->flags & 7210 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7211 !force) 7212 min_allocable_bytes = 1 * 1024 * 1024; 7213 else 7214 min_allocable_bytes = 0; 7215 7216 spin_lock(&sinfo->lock); 7217 spin_lock(&cache->lock); 7218 7219 if (cache->ro) { 7220 ret = 0; 7221 goto out; 7222 } 7223 7224 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7225 cache->bytes_super - btrfs_block_group_used(&cache->item); 7226 7227 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7228 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7229 min_allocable_bytes <= sinfo->total_bytes) { 7230 sinfo->bytes_readonly += num_bytes; 7231 cache->ro = 1; 7232 ret = 0; 7233 } 7234 out: 7235 spin_unlock(&cache->lock); 7236 spin_unlock(&sinfo->lock); 7237 return ret; 7238 } 7239 7240 int btrfs_set_block_group_ro(struct btrfs_root *root, 7241 struct btrfs_block_group_cache *cache) 7242 7243 { 7244 struct btrfs_trans_handle *trans; 7245 u64 alloc_flags; 7246 int ret; 7247 7248 BUG_ON(cache->ro); 7249 7250 trans = btrfs_join_transaction(root); 7251 if (IS_ERR(trans)) 7252 return PTR_ERR(trans); 7253 7254 alloc_flags = update_block_group_flags(root, cache->flags); 7255 if (alloc_flags != cache->flags) { 7256 ret = do_chunk_alloc(trans, root, alloc_flags, 7257 CHUNK_ALLOC_FORCE); 7258 if (ret < 0) 7259 goto out; 7260 } 7261 7262 ret = set_block_group_ro(cache, 0); 7263 if (!ret) 7264 goto out; 7265 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7266 ret = do_chunk_alloc(trans, root, alloc_flags, 7267 CHUNK_ALLOC_FORCE); 7268 if (ret < 0) 7269 goto out; 7270 ret = set_block_group_ro(cache, 0); 7271 out: 7272 btrfs_end_transaction(trans, root); 7273 return ret; 7274 } 7275 7276 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7277 struct btrfs_root *root, u64 type) 7278 { 7279 u64 alloc_flags = get_alloc_profile(root, type); 7280 return do_chunk_alloc(trans, root, alloc_flags, 7281 CHUNK_ALLOC_FORCE); 7282 } 7283 7284 /* 7285 * helper to account the unused space of all the readonly block group in the 7286 * list. takes mirrors into account. 7287 */ 7288 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7289 { 7290 struct btrfs_block_group_cache *block_group; 7291 u64 free_bytes = 0; 7292 int factor; 7293 7294 list_for_each_entry(block_group, groups_list, list) { 7295 spin_lock(&block_group->lock); 7296 7297 if (!block_group->ro) { 7298 spin_unlock(&block_group->lock); 7299 continue; 7300 } 7301 7302 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7303 BTRFS_BLOCK_GROUP_RAID10 | 7304 BTRFS_BLOCK_GROUP_DUP)) 7305 factor = 2; 7306 else 7307 factor = 1; 7308 7309 free_bytes += (block_group->key.offset - 7310 btrfs_block_group_used(&block_group->item)) * 7311 factor; 7312 7313 spin_unlock(&block_group->lock); 7314 } 7315 7316 return free_bytes; 7317 } 7318 7319 /* 7320 * helper to account the unused space of all the readonly block group in the 7321 * space_info. takes mirrors into account. 7322 */ 7323 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7324 { 7325 int i; 7326 u64 free_bytes = 0; 7327 7328 spin_lock(&sinfo->lock); 7329 7330 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7331 if (!list_empty(&sinfo->block_groups[i])) 7332 free_bytes += __btrfs_get_ro_block_group_free_space( 7333 &sinfo->block_groups[i]); 7334 7335 spin_unlock(&sinfo->lock); 7336 7337 return free_bytes; 7338 } 7339 7340 void btrfs_set_block_group_rw(struct btrfs_root *root, 7341 struct btrfs_block_group_cache *cache) 7342 { 7343 struct btrfs_space_info *sinfo = cache->space_info; 7344 u64 num_bytes; 7345 7346 BUG_ON(!cache->ro); 7347 7348 spin_lock(&sinfo->lock); 7349 spin_lock(&cache->lock); 7350 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7351 cache->bytes_super - btrfs_block_group_used(&cache->item); 7352 sinfo->bytes_readonly -= num_bytes; 7353 cache->ro = 0; 7354 spin_unlock(&cache->lock); 7355 spin_unlock(&sinfo->lock); 7356 } 7357 7358 /* 7359 * checks to see if its even possible to relocate this block group. 7360 * 7361 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7362 * ok to go ahead and try. 7363 */ 7364 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7365 { 7366 struct btrfs_block_group_cache *block_group; 7367 struct btrfs_space_info *space_info; 7368 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7369 struct btrfs_device *device; 7370 u64 min_free; 7371 u64 dev_min = 1; 7372 u64 dev_nr = 0; 7373 u64 target; 7374 int index; 7375 int full = 0; 7376 int ret = 0; 7377 7378 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7379 7380 /* odd, couldn't find the block group, leave it alone */ 7381 if (!block_group) 7382 return -1; 7383 7384 min_free = btrfs_block_group_used(&block_group->item); 7385 7386 /* no bytes used, we're good */ 7387 if (!min_free) 7388 goto out; 7389 7390 space_info = block_group->space_info; 7391 spin_lock(&space_info->lock); 7392 7393 full = space_info->full; 7394 7395 /* 7396 * if this is the last block group we have in this space, we can't 7397 * relocate it unless we're able to allocate a new chunk below. 7398 * 7399 * Otherwise, we need to make sure we have room in the space to handle 7400 * all of the extents from this block group. If we can, we're good 7401 */ 7402 if ((space_info->total_bytes != block_group->key.offset) && 7403 (space_info->bytes_used + space_info->bytes_reserved + 7404 space_info->bytes_pinned + space_info->bytes_readonly + 7405 min_free < space_info->total_bytes)) { 7406 spin_unlock(&space_info->lock); 7407 goto out; 7408 } 7409 spin_unlock(&space_info->lock); 7410 7411 /* 7412 * ok we don't have enough space, but maybe we have free space on our 7413 * devices to allocate new chunks for relocation, so loop through our 7414 * alloc devices and guess if we have enough space. if this block 7415 * group is going to be restriped, run checks against the target 7416 * profile instead of the current one. 7417 */ 7418 ret = -1; 7419 7420 /* 7421 * index: 7422 * 0: raid10 7423 * 1: raid1 7424 * 2: dup 7425 * 3: raid0 7426 * 4: single 7427 */ 7428 target = get_restripe_target(root->fs_info, block_group->flags); 7429 if (target) { 7430 index = __get_block_group_index(extended_to_chunk(target)); 7431 } else { 7432 /* 7433 * this is just a balance, so if we were marked as full 7434 * we know there is no space for a new chunk 7435 */ 7436 if (full) 7437 goto out; 7438 7439 index = get_block_group_index(block_group); 7440 } 7441 7442 if (index == 0) { 7443 dev_min = 4; 7444 /* Divide by 2 */ 7445 min_free >>= 1; 7446 } else if (index == 1) { 7447 dev_min = 2; 7448 } else if (index == 2) { 7449 /* Multiply by 2 */ 7450 min_free <<= 1; 7451 } else if (index == 3) { 7452 dev_min = fs_devices->rw_devices; 7453 do_div(min_free, dev_min); 7454 } 7455 7456 mutex_lock(&root->fs_info->chunk_mutex); 7457 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7458 u64 dev_offset; 7459 7460 /* 7461 * check to make sure we can actually find a chunk with enough 7462 * space to fit our block group in. 7463 */ 7464 if (device->total_bytes > device->bytes_used + min_free) { 7465 ret = find_free_dev_extent(device, min_free, 7466 &dev_offset, NULL); 7467 if (!ret) 7468 dev_nr++; 7469 7470 if (dev_nr >= dev_min) 7471 break; 7472 7473 ret = -1; 7474 } 7475 } 7476 mutex_unlock(&root->fs_info->chunk_mutex); 7477 out: 7478 btrfs_put_block_group(block_group); 7479 return ret; 7480 } 7481 7482 static int find_first_block_group(struct btrfs_root *root, 7483 struct btrfs_path *path, struct btrfs_key *key) 7484 { 7485 int ret = 0; 7486 struct btrfs_key found_key; 7487 struct extent_buffer *leaf; 7488 int slot; 7489 7490 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7491 if (ret < 0) 7492 goto out; 7493 7494 while (1) { 7495 slot = path->slots[0]; 7496 leaf = path->nodes[0]; 7497 if (slot >= btrfs_header_nritems(leaf)) { 7498 ret = btrfs_next_leaf(root, path); 7499 if (ret == 0) 7500 continue; 7501 if (ret < 0) 7502 goto out; 7503 break; 7504 } 7505 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7506 7507 if (found_key.objectid >= key->objectid && 7508 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7509 ret = 0; 7510 goto out; 7511 } 7512 path->slots[0]++; 7513 } 7514 out: 7515 return ret; 7516 } 7517 7518 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7519 { 7520 struct btrfs_block_group_cache *block_group; 7521 u64 last = 0; 7522 7523 while (1) { 7524 struct inode *inode; 7525 7526 block_group = btrfs_lookup_first_block_group(info, last); 7527 while (block_group) { 7528 spin_lock(&block_group->lock); 7529 if (block_group->iref) 7530 break; 7531 spin_unlock(&block_group->lock); 7532 block_group = next_block_group(info->tree_root, 7533 block_group); 7534 } 7535 if (!block_group) { 7536 if (last == 0) 7537 break; 7538 last = 0; 7539 continue; 7540 } 7541 7542 inode = block_group->inode; 7543 block_group->iref = 0; 7544 block_group->inode = NULL; 7545 spin_unlock(&block_group->lock); 7546 iput(inode); 7547 last = block_group->key.objectid + block_group->key.offset; 7548 btrfs_put_block_group(block_group); 7549 } 7550 } 7551 7552 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7553 { 7554 struct btrfs_block_group_cache *block_group; 7555 struct btrfs_space_info *space_info; 7556 struct btrfs_caching_control *caching_ctl; 7557 struct rb_node *n; 7558 7559 down_write(&info->extent_commit_sem); 7560 while (!list_empty(&info->caching_block_groups)) { 7561 caching_ctl = list_entry(info->caching_block_groups.next, 7562 struct btrfs_caching_control, list); 7563 list_del(&caching_ctl->list); 7564 put_caching_control(caching_ctl); 7565 } 7566 up_write(&info->extent_commit_sem); 7567 7568 spin_lock(&info->block_group_cache_lock); 7569 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7570 block_group = rb_entry(n, struct btrfs_block_group_cache, 7571 cache_node); 7572 rb_erase(&block_group->cache_node, 7573 &info->block_group_cache_tree); 7574 spin_unlock(&info->block_group_cache_lock); 7575 7576 down_write(&block_group->space_info->groups_sem); 7577 list_del(&block_group->list); 7578 up_write(&block_group->space_info->groups_sem); 7579 7580 if (block_group->cached == BTRFS_CACHE_STARTED) 7581 wait_block_group_cache_done(block_group); 7582 7583 /* 7584 * We haven't cached this block group, which means we could 7585 * possibly have excluded extents on this block group. 7586 */ 7587 if (block_group->cached == BTRFS_CACHE_NO) 7588 free_excluded_extents(info->extent_root, block_group); 7589 7590 btrfs_remove_free_space_cache(block_group); 7591 btrfs_put_block_group(block_group); 7592 7593 spin_lock(&info->block_group_cache_lock); 7594 } 7595 spin_unlock(&info->block_group_cache_lock); 7596 7597 /* now that all the block groups are freed, go through and 7598 * free all the space_info structs. This is only called during 7599 * the final stages of unmount, and so we know nobody is 7600 * using them. We call synchronize_rcu() once before we start, 7601 * just to be on the safe side. 7602 */ 7603 synchronize_rcu(); 7604 7605 release_global_block_rsv(info); 7606 7607 while(!list_empty(&info->space_info)) { 7608 space_info = list_entry(info->space_info.next, 7609 struct btrfs_space_info, 7610 list); 7611 if (space_info->bytes_pinned > 0 || 7612 space_info->bytes_reserved > 0 || 7613 space_info->bytes_may_use > 0) { 7614 WARN_ON(1); 7615 dump_space_info(space_info, 0, 0); 7616 } 7617 list_del(&space_info->list); 7618 kfree(space_info); 7619 } 7620 return 0; 7621 } 7622 7623 static void __link_block_group(struct btrfs_space_info *space_info, 7624 struct btrfs_block_group_cache *cache) 7625 { 7626 int index = get_block_group_index(cache); 7627 7628 down_write(&space_info->groups_sem); 7629 list_add_tail(&cache->list, &space_info->block_groups[index]); 7630 up_write(&space_info->groups_sem); 7631 } 7632 7633 int btrfs_read_block_groups(struct btrfs_root *root) 7634 { 7635 struct btrfs_path *path; 7636 int ret; 7637 struct btrfs_block_group_cache *cache; 7638 struct btrfs_fs_info *info = root->fs_info; 7639 struct btrfs_space_info *space_info; 7640 struct btrfs_key key; 7641 struct btrfs_key found_key; 7642 struct extent_buffer *leaf; 7643 int need_clear = 0; 7644 u64 cache_gen; 7645 7646 root = info->extent_root; 7647 key.objectid = 0; 7648 key.offset = 0; 7649 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7650 path = btrfs_alloc_path(); 7651 if (!path) 7652 return -ENOMEM; 7653 path->reada = 1; 7654 7655 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7656 if (btrfs_test_opt(root, SPACE_CACHE) && 7657 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7658 need_clear = 1; 7659 if (btrfs_test_opt(root, CLEAR_CACHE)) 7660 need_clear = 1; 7661 7662 while (1) { 7663 ret = find_first_block_group(root, path, &key); 7664 if (ret > 0) 7665 break; 7666 if (ret != 0) 7667 goto error; 7668 leaf = path->nodes[0]; 7669 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7670 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7671 if (!cache) { 7672 ret = -ENOMEM; 7673 goto error; 7674 } 7675 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7676 GFP_NOFS); 7677 if (!cache->free_space_ctl) { 7678 kfree(cache); 7679 ret = -ENOMEM; 7680 goto error; 7681 } 7682 7683 atomic_set(&cache->count, 1); 7684 spin_lock_init(&cache->lock); 7685 cache->fs_info = info; 7686 INIT_LIST_HEAD(&cache->list); 7687 INIT_LIST_HEAD(&cache->cluster_list); 7688 7689 if (need_clear) { 7690 /* 7691 * When we mount with old space cache, we need to 7692 * set BTRFS_DC_CLEAR and set dirty flag. 7693 * 7694 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 7695 * truncate the old free space cache inode and 7696 * setup a new one. 7697 * b) Setting 'dirty flag' makes sure that we flush 7698 * the new space cache info onto disk. 7699 */ 7700 cache->disk_cache_state = BTRFS_DC_CLEAR; 7701 if (btrfs_test_opt(root, SPACE_CACHE)) 7702 cache->dirty = 1; 7703 } 7704 7705 read_extent_buffer(leaf, &cache->item, 7706 btrfs_item_ptr_offset(leaf, path->slots[0]), 7707 sizeof(cache->item)); 7708 memcpy(&cache->key, &found_key, sizeof(found_key)); 7709 7710 key.objectid = found_key.objectid + found_key.offset; 7711 btrfs_release_path(path); 7712 cache->flags = btrfs_block_group_flags(&cache->item); 7713 cache->sectorsize = root->sectorsize; 7714 7715 btrfs_init_free_space_ctl(cache); 7716 7717 /* 7718 * We need to exclude the super stripes now so that the space 7719 * info has super bytes accounted for, otherwise we'll think 7720 * we have more space than we actually do. 7721 */ 7722 exclude_super_stripes(root, cache); 7723 7724 /* 7725 * check for two cases, either we are full, and therefore 7726 * don't need to bother with the caching work since we won't 7727 * find any space, or we are empty, and we can just add all 7728 * the space in and be done with it. This saves us _alot_ of 7729 * time, particularly in the full case. 7730 */ 7731 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7732 cache->last_byte_to_unpin = (u64)-1; 7733 cache->cached = BTRFS_CACHE_FINISHED; 7734 free_excluded_extents(root, cache); 7735 } else if (btrfs_block_group_used(&cache->item) == 0) { 7736 cache->last_byte_to_unpin = (u64)-1; 7737 cache->cached = BTRFS_CACHE_FINISHED; 7738 add_new_free_space(cache, root->fs_info, 7739 found_key.objectid, 7740 found_key.objectid + 7741 found_key.offset); 7742 free_excluded_extents(root, cache); 7743 } 7744 7745 ret = update_space_info(info, cache->flags, found_key.offset, 7746 btrfs_block_group_used(&cache->item), 7747 &space_info); 7748 BUG_ON(ret); /* -ENOMEM */ 7749 cache->space_info = space_info; 7750 spin_lock(&cache->space_info->lock); 7751 cache->space_info->bytes_readonly += cache->bytes_super; 7752 spin_unlock(&cache->space_info->lock); 7753 7754 __link_block_group(space_info, cache); 7755 7756 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7757 BUG_ON(ret); /* Logic error */ 7758 7759 set_avail_alloc_bits(root->fs_info, cache->flags); 7760 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7761 set_block_group_ro(cache, 1); 7762 } 7763 7764 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7765 if (!(get_alloc_profile(root, space_info->flags) & 7766 (BTRFS_BLOCK_GROUP_RAID10 | 7767 BTRFS_BLOCK_GROUP_RAID1 | 7768 BTRFS_BLOCK_GROUP_DUP))) 7769 continue; 7770 /* 7771 * avoid allocating from un-mirrored block group if there are 7772 * mirrored block groups. 7773 */ 7774 list_for_each_entry(cache, &space_info->block_groups[3], list) 7775 set_block_group_ro(cache, 1); 7776 list_for_each_entry(cache, &space_info->block_groups[4], list) 7777 set_block_group_ro(cache, 1); 7778 } 7779 7780 init_global_block_rsv(info); 7781 ret = 0; 7782 error: 7783 btrfs_free_path(path); 7784 return ret; 7785 } 7786 7787 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 7788 struct btrfs_root *root) 7789 { 7790 struct btrfs_block_group_cache *block_group, *tmp; 7791 struct btrfs_root *extent_root = root->fs_info->extent_root; 7792 struct btrfs_block_group_item item; 7793 struct btrfs_key key; 7794 int ret = 0; 7795 7796 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 7797 new_bg_list) { 7798 list_del_init(&block_group->new_bg_list); 7799 7800 if (ret) 7801 continue; 7802 7803 spin_lock(&block_group->lock); 7804 memcpy(&item, &block_group->item, sizeof(item)); 7805 memcpy(&key, &block_group->key, sizeof(key)); 7806 spin_unlock(&block_group->lock); 7807 7808 ret = btrfs_insert_item(trans, extent_root, &key, &item, 7809 sizeof(item)); 7810 if (ret) 7811 btrfs_abort_transaction(trans, extent_root, ret); 7812 } 7813 } 7814 7815 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7816 struct btrfs_root *root, u64 bytes_used, 7817 u64 type, u64 chunk_objectid, u64 chunk_offset, 7818 u64 size) 7819 { 7820 int ret; 7821 struct btrfs_root *extent_root; 7822 struct btrfs_block_group_cache *cache; 7823 7824 extent_root = root->fs_info->extent_root; 7825 7826 root->fs_info->last_trans_log_full_commit = trans->transid; 7827 7828 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7829 if (!cache) 7830 return -ENOMEM; 7831 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7832 GFP_NOFS); 7833 if (!cache->free_space_ctl) { 7834 kfree(cache); 7835 return -ENOMEM; 7836 } 7837 7838 cache->key.objectid = chunk_offset; 7839 cache->key.offset = size; 7840 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7841 cache->sectorsize = root->sectorsize; 7842 cache->fs_info = root->fs_info; 7843 7844 atomic_set(&cache->count, 1); 7845 spin_lock_init(&cache->lock); 7846 INIT_LIST_HEAD(&cache->list); 7847 INIT_LIST_HEAD(&cache->cluster_list); 7848 INIT_LIST_HEAD(&cache->new_bg_list); 7849 7850 btrfs_init_free_space_ctl(cache); 7851 7852 btrfs_set_block_group_used(&cache->item, bytes_used); 7853 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7854 cache->flags = type; 7855 btrfs_set_block_group_flags(&cache->item, type); 7856 7857 cache->last_byte_to_unpin = (u64)-1; 7858 cache->cached = BTRFS_CACHE_FINISHED; 7859 exclude_super_stripes(root, cache); 7860 7861 add_new_free_space(cache, root->fs_info, chunk_offset, 7862 chunk_offset + size); 7863 7864 free_excluded_extents(root, cache); 7865 7866 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7867 &cache->space_info); 7868 BUG_ON(ret); /* -ENOMEM */ 7869 update_global_block_rsv(root->fs_info); 7870 7871 spin_lock(&cache->space_info->lock); 7872 cache->space_info->bytes_readonly += cache->bytes_super; 7873 spin_unlock(&cache->space_info->lock); 7874 7875 __link_block_group(cache->space_info, cache); 7876 7877 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7878 BUG_ON(ret); /* Logic error */ 7879 7880 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 7881 7882 set_avail_alloc_bits(extent_root->fs_info, type); 7883 7884 return 0; 7885 } 7886 7887 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7888 { 7889 u64 extra_flags = chunk_to_extended(flags) & 7890 BTRFS_EXTENDED_PROFILE_MASK; 7891 7892 if (flags & BTRFS_BLOCK_GROUP_DATA) 7893 fs_info->avail_data_alloc_bits &= ~extra_flags; 7894 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7895 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7896 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7897 fs_info->avail_system_alloc_bits &= ~extra_flags; 7898 } 7899 7900 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7901 struct btrfs_root *root, u64 group_start) 7902 { 7903 struct btrfs_path *path; 7904 struct btrfs_block_group_cache *block_group; 7905 struct btrfs_free_cluster *cluster; 7906 struct btrfs_root *tree_root = root->fs_info->tree_root; 7907 struct btrfs_key key; 7908 struct inode *inode; 7909 int ret; 7910 int index; 7911 int factor; 7912 7913 root = root->fs_info->extent_root; 7914 7915 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7916 BUG_ON(!block_group); 7917 BUG_ON(!block_group->ro); 7918 7919 /* 7920 * Free the reserved super bytes from this block group before 7921 * remove it. 7922 */ 7923 free_excluded_extents(root, block_group); 7924 7925 memcpy(&key, &block_group->key, sizeof(key)); 7926 index = get_block_group_index(block_group); 7927 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7928 BTRFS_BLOCK_GROUP_RAID1 | 7929 BTRFS_BLOCK_GROUP_RAID10)) 7930 factor = 2; 7931 else 7932 factor = 1; 7933 7934 /* make sure this block group isn't part of an allocation cluster */ 7935 cluster = &root->fs_info->data_alloc_cluster; 7936 spin_lock(&cluster->refill_lock); 7937 btrfs_return_cluster_to_free_space(block_group, cluster); 7938 spin_unlock(&cluster->refill_lock); 7939 7940 /* 7941 * make sure this block group isn't part of a metadata 7942 * allocation cluster 7943 */ 7944 cluster = &root->fs_info->meta_alloc_cluster; 7945 spin_lock(&cluster->refill_lock); 7946 btrfs_return_cluster_to_free_space(block_group, cluster); 7947 spin_unlock(&cluster->refill_lock); 7948 7949 path = btrfs_alloc_path(); 7950 if (!path) { 7951 ret = -ENOMEM; 7952 goto out; 7953 } 7954 7955 inode = lookup_free_space_inode(tree_root, block_group, path); 7956 if (!IS_ERR(inode)) { 7957 ret = btrfs_orphan_add(trans, inode); 7958 if (ret) { 7959 btrfs_add_delayed_iput(inode); 7960 goto out; 7961 } 7962 clear_nlink(inode); 7963 /* One for the block groups ref */ 7964 spin_lock(&block_group->lock); 7965 if (block_group->iref) { 7966 block_group->iref = 0; 7967 block_group->inode = NULL; 7968 spin_unlock(&block_group->lock); 7969 iput(inode); 7970 } else { 7971 spin_unlock(&block_group->lock); 7972 } 7973 /* One for our lookup ref */ 7974 btrfs_add_delayed_iput(inode); 7975 } 7976 7977 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 7978 key.offset = block_group->key.objectid; 7979 key.type = 0; 7980 7981 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 7982 if (ret < 0) 7983 goto out; 7984 if (ret > 0) 7985 btrfs_release_path(path); 7986 if (ret == 0) { 7987 ret = btrfs_del_item(trans, tree_root, path); 7988 if (ret) 7989 goto out; 7990 btrfs_release_path(path); 7991 } 7992 7993 spin_lock(&root->fs_info->block_group_cache_lock); 7994 rb_erase(&block_group->cache_node, 7995 &root->fs_info->block_group_cache_tree); 7996 spin_unlock(&root->fs_info->block_group_cache_lock); 7997 7998 down_write(&block_group->space_info->groups_sem); 7999 /* 8000 * we must use list_del_init so people can check to see if they 8001 * are still on the list after taking the semaphore 8002 */ 8003 list_del_init(&block_group->list); 8004 if (list_empty(&block_group->space_info->block_groups[index])) 8005 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8006 up_write(&block_group->space_info->groups_sem); 8007 8008 if (block_group->cached == BTRFS_CACHE_STARTED) 8009 wait_block_group_cache_done(block_group); 8010 8011 btrfs_remove_free_space_cache(block_group); 8012 8013 spin_lock(&block_group->space_info->lock); 8014 block_group->space_info->total_bytes -= block_group->key.offset; 8015 block_group->space_info->bytes_readonly -= block_group->key.offset; 8016 block_group->space_info->disk_total -= block_group->key.offset * factor; 8017 spin_unlock(&block_group->space_info->lock); 8018 8019 memcpy(&key, &block_group->key, sizeof(key)); 8020 8021 btrfs_clear_space_info_full(root->fs_info); 8022 8023 btrfs_put_block_group(block_group); 8024 btrfs_put_block_group(block_group); 8025 8026 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8027 if (ret > 0) 8028 ret = -EIO; 8029 if (ret < 0) 8030 goto out; 8031 8032 ret = btrfs_del_item(trans, root, path); 8033 out: 8034 btrfs_free_path(path); 8035 return ret; 8036 } 8037 8038 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8039 { 8040 struct btrfs_space_info *space_info; 8041 struct btrfs_super_block *disk_super; 8042 u64 features; 8043 u64 flags; 8044 int mixed = 0; 8045 int ret; 8046 8047 disk_super = fs_info->super_copy; 8048 if (!btrfs_super_root(disk_super)) 8049 return 1; 8050 8051 features = btrfs_super_incompat_flags(disk_super); 8052 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8053 mixed = 1; 8054 8055 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8056 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8057 if (ret) 8058 goto out; 8059 8060 if (mixed) { 8061 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8062 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8063 } else { 8064 flags = BTRFS_BLOCK_GROUP_METADATA; 8065 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8066 if (ret) 8067 goto out; 8068 8069 flags = BTRFS_BLOCK_GROUP_DATA; 8070 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8071 } 8072 out: 8073 return ret; 8074 } 8075 8076 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8077 { 8078 return unpin_extent_range(root, start, end); 8079 } 8080 8081 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8082 u64 num_bytes, u64 *actual_bytes) 8083 { 8084 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8085 } 8086 8087 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8088 { 8089 struct btrfs_fs_info *fs_info = root->fs_info; 8090 struct btrfs_block_group_cache *cache = NULL; 8091 u64 group_trimmed; 8092 u64 start; 8093 u64 end; 8094 u64 trimmed = 0; 8095 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8096 int ret = 0; 8097 8098 /* 8099 * try to trim all FS space, our block group may start from non-zero. 8100 */ 8101 if (range->len == total_bytes) 8102 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8103 else 8104 cache = btrfs_lookup_block_group(fs_info, range->start); 8105 8106 while (cache) { 8107 if (cache->key.objectid >= (range->start + range->len)) { 8108 btrfs_put_block_group(cache); 8109 break; 8110 } 8111 8112 start = max(range->start, cache->key.objectid); 8113 end = min(range->start + range->len, 8114 cache->key.objectid + cache->key.offset); 8115 8116 if (end - start >= range->minlen) { 8117 if (!block_group_cache_done(cache)) { 8118 ret = cache_block_group(cache, NULL, root, 0); 8119 if (!ret) 8120 wait_block_group_cache_done(cache); 8121 } 8122 ret = btrfs_trim_block_group(cache, 8123 &group_trimmed, 8124 start, 8125 end, 8126 range->minlen); 8127 8128 trimmed += group_trimmed; 8129 if (ret) { 8130 btrfs_put_block_group(cache); 8131 break; 8132 } 8133 } 8134 8135 cache = next_block_group(fs_info->tree_root, cache); 8136 } 8137 8138 range->len = trimmed; 8139 return ret; 8140 } 8141