xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 047f2d94)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 /*
55  * Declare a helper function to detect underflow of various space info members
56  */
57 #define DECLARE_SPACE_INFO_UPDATE(name)					\
58 static inline void update_##name(struct btrfs_space_info *sinfo,	\
59 				 s64 bytes)				\
60 {									\
61 	if (bytes < 0 && sinfo->name < -bytes) {			\
62 		WARN_ON(1);						\
63 		sinfo->name = 0;					\
64 		return;							\
65 	}								\
66 	sinfo->name += bytes;						\
67 }
68 
69 DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
70 DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
71 
72 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
73 			       struct btrfs_delayed_ref_node *node, u64 parent,
74 			       u64 root_objectid, u64 owner_objectid,
75 			       u64 owner_offset, int refs_to_drop,
76 			       struct btrfs_delayed_extent_op *extra_op);
77 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 				    struct extent_buffer *leaf,
79 				    struct btrfs_extent_item *ei);
80 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
81 				      u64 parent, u64 root_objectid,
82 				      u64 flags, u64 owner, u64 offset,
83 				      struct btrfs_key *ins, int ref_mod);
84 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
85 				     struct btrfs_delayed_ref_node *node,
86 				     struct btrfs_delayed_extent_op *extent_op);
87 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
88 			  int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 			 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 			    struct btrfs_space_info *info, u64 bytes,
93 			    int dump_block_groups);
94 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 			       u64 num_bytes);
96 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 				     struct btrfs_space_info *space_info,
98 				     u64 num_bytes);
99 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 				     struct btrfs_space_info *space_info,
101 				     u64 num_bytes);
102 
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 	smp_mb();
107 	return cache->cached == BTRFS_CACHE_FINISHED ||
108 		cache->cached == BTRFS_CACHE_ERROR;
109 }
110 
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 	return (cache->flags & bits) == bits;
114 }
115 
116 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 	atomic_inc(&cache->count);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	if (atomic_dec_and_test(&cache->count)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 
127 		/*
128 		 * If not empty, someone is still holding mutex of
129 		 * full_stripe_lock, which can only be released by caller.
130 		 * And it will definitely cause use-after-free when caller
131 		 * tries to release full stripe lock.
132 		 *
133 		 * No better way to resolve, but only to warn.
134 		 */
135 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
136 		kfree(cache->free_space_ctl);
137 		kfree(cache);
138 	}
139 }
140 
141 /*
142  * this adds the block group to the fs_info rb tree for the block group
143  * cache
144  */
145 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
146 				struct btrfs_block_group_cache *block_group)
147 {
148 	struct rb_node **p;
149 	struct rb_node *parent = NULL;
150 	struct btrfs_block_group_cache *cache;
151 
152 	spin_lock(&info->block_group_cache_lock);
153 	p = &info->block_group_cache_tree.rb_node;
154 
155 	while (*p) {
156 		parent = *p;
157 		cache = rb_entry(parent, struct btrfs_block_group_cache,
158 				 cache_node);
159 		if (block_group->key.objectid < cache->key.objectid) {
160 			p = &(*p)->rb_left;
161 		} else if (block_group->key.objectid > cache->key.objectid) {
162 			p = &(*p)->rb_right;
163 		} else {
164 			spin_unlock(&info->block_group_cache_lock);
165 			return -EEXIST;
166 		}
167 	}
168 
169 	rb_link_node(&block_group->cache_node, parent, p);
170 	rb_insert_color(&block_group->cache_node,
171 			&info->block_group_cache_tree);
172 
173 	if (info->first_logical_byte > block_group->key.objectid)
174 		info->first_logical_byte = block_group->key.objectid;
175 
176 	spin_unlock(&info->block_group_cache_lock);
177 
178 	return 0;
179 }
180 
181 /*
182  * This will return the block group at or after bytenr if contains is 0, else
183  * it will return the block group that contains the bytenr
184  */
185 static struct btrfs_block_group_cache *
186 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 			      int contains)
188 {
189 	struct btrfs_block_group_cache *cache, *ret = NULL;
190 	struct rb_node *n;
191 	u64 end, start;
192 
193 	spin_lock(&info->block_group_cache_lock);
194 	n = info->block_group_cache_tree.rb_node;
195 
196 	while (n) {
197 		cache = rb_entry(n, struct btrfs_block_group_cache,
198 				 cache_node);
199 		end = cache->key.objectid + cache->key.offset - 1;
200 		start = cache->key.objectid;
201 
202 		if (bytenr < start) {
203 			if (!contains && (!ret || start < ret->key.objectid))
204 				ret = cache;
205 			n = n->rb_left;
206 		} else if (bytenr > start) {
207 			if (contains && bytenr <= end) {
208 				ret = cache;
209 				break;
210 			}
211 			n = n->rb_right;
212 		} else {
213 			ret = cache;
214 			break;
215 		}
216 	}
217 	if (ret) {
218 		btrfs_get_block_group(ret);
219 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 			info->first_logical_byte = ret->key.objectid;
221 	}
222 	spin_unlock(&info->block_group_cache_lock);
223 
224 	return ret;
225 }
226 
227 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
228 			       u64 start, u64 num_bytes)
229 {
230 	u64 end = start + num_bytes - 1;
231 	set_extent_bits(&fs_info->freed_extents[0],
232 			start, end, EXTENT_UPTODATE);
233 	set_extent_bits(&fs_info->freed_extents[1],
234 			start, end, EXTENT_UPTODATE);
235 	return 0;
236 }
237 
238 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
239 {
240 	struct btrfs_fs_info *fs_info = cache->fs_info;
241 	u64 start, end;
242 
243 	start = cache->key.objectid;
244 	end = start + cache->key.offset - 1;
245 
246 	clear_extent_bits(&fs_info->freed_extents[0],
247 			  start, end, EXTENT_UPTODATE);
248 	clear_extent_bits(&fs_info->freed_extents[1],
249 			  start, end, EXTENT_UPTODATE);
250 }
251 
252 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
253 {
254 	struct btrfs_fs_info *fs_info = cache->fs_info;
255 	u64 bytenr;
256 	u64 *logical;
257 	int stripe_len;
258 	int i, nr, ret;
259 
260 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 		cache->bytes_super += stripe_len;
263 		ret = add_excluded_extent(fs_info, cache->key.objectid,
264 					  stripe_len);
265 		if (ret)
266 			return ret;
267 	}
268 
269 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 		bytenr = btrfs_sb_offset(i);
271 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
272 				       bytenr, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(fs_info, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (!cache->caching_ctl) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	ctl = cache->caching_ctl;
321 	refcount_inc(&ctl->count);
322 	spin_unlock(&cache->lock);
323 	return ctl;
324 }
325 
326 static void put_caching_control(struct btrfs_caching_control *ctl)
327 {
328 	if (refcount_dec_and_test(&ctl->count))
329 		kfree(ctl);
330 }
331 
332 #ifdef CONFIG_BTRFS_DEBUG
333 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
334 {
335 	struct btrfs_fs_info *fs_info = block_group->fs_info;
336 	u64 start = block_group->key.objectid;
337 	u64 len = block_group->key.offset;
338 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
339 		fs_info->nodesize : fs_info->sectorsize;
340 	u64 step = chunk << 1;
341 
342 	while (len > chunk) {
343 		btrfs_remove_free_space(block_group, start, chunk);
344 		start += step;
345 		if (len < step)
346 			len = 0;
347 		else
348 			len -= step;
349 	}
350 }
351 #endif
352 
353 /*
354  * this is only called by cache_block_group, since we could have freed extents
355  * we need to check the pinned_extents for any extents that can't be used yet
356  * since their free space will be released as soon as the transaction commits.
357  */
358 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
359 		       u64 start, u64 end)
360 {
361 	struct btrfs_fs_info *info = block_group->fs_info;
362 	u64 extent_start, extent_end, size, total_added = 0;
363 	int ret;
364 
365 	while (start < end) {
366 		ret = find_first_extent_bit(info->pinned_extents, start,
367 					    &extent_start, &extent_end,
368 					    EXTENT_DIRTY | EXTENT_UPTODATE,
369 					    NULL);
370 		if (ret)
371 			break;
372 
373 		if (extent_start <= start) {
374 			start = extent_end + 1;
375 		} else if (extent_start > start && extent_start < end) {
376 			size = extent_start - start;
377 			total_added += size;
378 			ret = btrfs_add_free_space(block_group, start,
379 						   size);
380 			BUG_ON(ret); /* -ENOMEM or logic error */
381 			start = extent_end + 1;
382 		} else {
383 			break;
384 		}
385 	}
386 
387 	if (start < end) {
388 		size = end - start;
389 		total_added += size;
390 		ret = btrfs_add_free_space(block_group, start, size);
391 		BUG_ON(ret); /* -ENOMEM or logic error */
392 	}
393 
394 	return total_added;
395 }
396 
397 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
398 {
399 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 	struct btrfs_fs_info *fs_info = block_group->fs_info;
401 	struct btrfs_root *extent_root = fs_info->extent_root;
402 	struct btrfs_path *path;
403 	struct extent_buffer *leaf;
404 	struct btrfs_key key;
405 	u64 total_found = 0;
406 	u64 last = 0;
407 	u32 nritems;
408 	int ret;
409 	bool wakeup = true;
410 
411 	path = btrfs_alloc_path();
412 	if (!path)
413 		return -ENOMEM;
414 
415 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
416 
417 #ifdef CONFIG_BTRFS_DEBUG
418 	/*
419 	 * If we're fragmenting we don't want to make anybody think we can
420 	 * allocate from this block group until we've had a chance to fragment
421 	 * the free space.
422 	 */
423 	if (btrfs_should_fragment_free_space(block_group))
424 		wakeup = false;
425 #endif
426 	/*
427 	 * We don't want to deadlock with somebody trying to allocate a new
428 	 * extent for the extent root while also trying to search the extent
429 	 * root to add free space.  So we skip locking and search the commit
430 	 * root, since its read-only
431 	 */
432 	path->skip_locking = 1;
433 	path->search_commit_root = 1;
434 	path->reada = READA_FORWARD;
435 
436 	key.objectid = last;
437 	key.offset = 0;
438 	key.type = BTRFS_EXTENT_ITEM_KEY;
439 
440 next:
441 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
442 	if (ret < 0)
443 		goto out;
444 
445 	leaf = path->nodes[0];
446 	nritems = btrfs_header_nritems(leaf);
447 
448 	while (1) {
449 		if (btrfs_fs_closing(fs_info) > 1) {
450 			last = (u64)-1;
451 			break;
452 		}
453 
454 		if (path->slots[0] < nritems) {
455 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 		} else {
457 			ret = find_next_key(path, 0, &key);
458 			if (ret)
459 				break;
460 
461 			if (need_resched() ||
462 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
463 				if (wakeup)
464 					caching_ctl->progress = last;
465 				btrfs_release_path(path);
466 				up_read(&fs_info->commit_root_sem);
467 				mutex_unlock(&caching_ctl->mutex);
468 				cond_resched();
469 				mutex_lock(&caching_ctl->mutex);
470 				down_read(&fs_info->commit_root_sem);
471 				goto next;
472 			}
473 
474 			ret = btrfs_next_leaf(extent_root, path);
475 			if (ret < 0)
476 				goto out;
477 			if (ret)
478 				break;
479 			leaf = path->nodes[0];
480 			nritems = btrfs_header_nritems(leaf);
481 			continue;
482 		}
483 
484 		if (key.objectid < last) {
485 			key.objectid = last;
486 			key.offset = 0;
487 			key.type = BTRFS_EXTENT_ITEM_KEY;
488 
489 			if (wakeup)
490 				caching_ctl->progress = last;
491 			btrfs_release_path(path);
492 			goto next;
493 		}
494 
495 		if (key.objectid < block_group->key.objectid) {
496 			path->slots[0]++;
497 			continue;
498 		}
499 
500 		if (key.objectid >= block_group->key.objectid +
501 		    block_group->key.offset)
502 			break;
503 
504 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 		    key.type == BTRFS_METADATA_ITEM_KEY) {
506 			total_found += add_new_free_space(block_group, last,
507 							  key.objectid);
508 			if (key.type == BTRFS_METADATA_ITEM_KEY)
509 				last = key.objectid +
510 					fs_info->nodesize;
511 			else
512 				last = key.objectid + key.offset;
513 
514 			if (total_found > CACHING_CTL_WAKE_UP) {
515 				total_found = 0;
516 				if (wakeup)
517 					wake_up(&caching_ctl->wait);
518 			}
519 		}
520 		path->slots[0]++;
521 	}
522 	ret = 0;
523 
524 	total_found += add_new_free_space(block_group, last,
525 					  block_group->key.objectid +
526 					  block_group->key.offset);
527 	caching_ctl->progress = (u64)-1;
528 
529 out:
530 	btrfs_free_path(path);
531 	return ret;
532 }
533 
534 static noinline void caching_thread(struct btrfs_work *work)
535 {
536 	struct btrfs_block_group_cache *block_group;
537 	struct btrfs_fs_info *fs_info;
538 	struct btrfs_caching_control *caching_ctl;
539 	int ret;
540 
541 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 	block_group = caching_ctl->block_group;
543 	fs_info = block_group->fs_info;
544 
545 	mutex_lock(&caching_ctl->mutex);
546 	down_read(&fs_info->commit_root_sem);
547 
548 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 		ret = load_free_space_tree(caching_ctl);
550 	else
551 		ret = load_extent_tree_free(caching_ctl);
552 
553 	spin_lock(&block_group->lock);
554 	block_group->caching_ctl = NULL;
555 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 	spin_unlock(&block_group->lock);
557 
558 #ifdef CONFIG_BTRFS_DEBUG
559 	if (btrfs_should_fragment_free_space(block_group)) {
560 		u64 bytes_used;
561 
562 		spin_lock(&block_group->space_info->lock);
563 		spin_lock(&block_group->lock);
564 		bytes_used = block_group->key.offset -
565 			btrfs_block_group_used(&block_group->item);
566 		block_group->space_info->bytes_used += bytes_used >> 1;
567 		spin_unlock(&block_group->lock);
568 		spin_unlock(&block_group->space_info->lock);
569 		fragment_free_space(block_group);
570 	}
571 #endif
572 
573 	caching_ctl->progress = (u64)-1;
574 
575 	up_read(&fs_info->commit_root_sem);
576 	free_excluded_extents(block_group);
577 	mutex_unlock(&caching_ctl->mutex);
578 
579 	wake_up(&caching_ctl->wait);
580 
581 	put_caching_control(caching_ctl);
582 	btrfs_put_block_group(block_group);
583 }
584 
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
586 			     int load_cache_only)
587 {
588 	DEFINE_WAIT(wait);
589 	struct btrfs_fs_info *fs_info = cache->fs_info;
590 	struct btrfs_caching_control *caching_ctl;
591 	int ret = 0;
592 
593 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
594 	if (!caching_ctl)
595 		return -ENOMEM;
596 
597 	INIT_LIST_HEAD(&caching_ctl->list);
598 	mutex_init(&caching_ctl->mutex);
599 	init_waitqueue_head(&caching_ctl->wait);
600 	caching_ctl->block_group = cache;
601 	caching_ctl->progress = cache->key.objectid;
602 	refcount_set(&caching_ctl->count, 1);
603 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 			caching_thread, NULL, NULL);
605 
606 	spin_lock(&cache->lock);
607 	/*
608 	 * This should be a rare occasion, but this could happen I think in the
609 	 * case where one thread starts to load the space cache info, and then
610 	 * some other thread starts a transaction commit which tries to do an
611 	 * allocation while the other thread is still loading the space cache
612 	 * info.  The previous loop should have kept us from choosing this block
613 	 * group, but if we've moved to the state where we will wait on caching
614 	 * block groups we need to first check if we're doing a fast load here,
615 	 * so we can wait for it to finish, otherwise we could end up allocating
616 	 * from a block group who's cache gets evicted for one reason or
617 	 * another.
618 	 */
619 	while (cache->cached == BTRFS_CACHE_FAST) {
620 		struct btrfs_caching_control *ctl;
621 
622 		ctl = cache->caching_ctl;
623 		refcount_inc(&ctl->count);
624 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 		spin_unlock(&cache->lock);
626 
627 		schedule();
628 
629 		finish_wait(&ctl->wait, &wait);
630 		put_caching_control(ctl);
631 		spin_lock(&cache->lock);
632 	}
633 
634 	if (cache->cached != BTRFS_CACHE_NO) {
635 		spin_unlock(&cache->lock);
636 		kfree(caching_ctl);
637 		return 0;
638 	}
639 	WARN_ON(cache->caching_ctl);
640 	cache->caching_ctl = caching_ctl;
641 	cache->cached = BTRFS_CACHE_FAST;
642 	spin_unlock(&cache->lock);
643 
644 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
645 		mutex_lock(&caching_ctl->mutex);
646 		ret = load_free_space_cache(fs_info, cache);
647 
648 		spin_lock(&cache->lock);
649 		if (ret == 1) {
650 			cache->caching_ctl = NULL;
651 			cache->cached = BTRFS_CACHE_FINISHED;
652 			cache->last_byte_to_unpin = (u64)-1;
653 			caching_ctl->progress = (u64)-1;
654 		} else {
655 			if (load_cache_only) {
656 				cache->caching_ctl = NULL;
657 				cache->cached = BTRFS_CACHE_NO;
658 			} else {
659 				cache->cached = BTRFS_CACHE_STARTED;
660 				cache->has_caching_ctl = 1;
661 			}
662 		}
663 		spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
665 		if (ret == 1 &&
666 		    btrfs_should_fragment_free_space(cache)) {
667 			u64 bytes_used;
668 
669 			spin_lock(&cache->space_info->lock);
670 			spin_lock(&cache->lock);
671 			bytes_used = cache->key.offset -
672 				btrfs_block_group_used(&cache->item);
673 			cache->space_info->bytes_used += bytes_used >> 1;
674 			spin_unlock(&cache->lock);
675 			spin_unlock(&cache->space_info->lock);
676 			fragment_free_space(cache);
677 		}
678 #endif
679 		mutex_unlock(&caching_ctl->mutex);
680 
681 		wake_up(&caching_ctl->wait);
682 		if (ret == 1) {
683 			put_caching_control(caching_ctl);
684 			free_excluded_extents(cache);
685 			return 0;
686 		}
687 	} else {
688 		/*
689 		 * We're either using the free space tree or no caching at all.
690 		 * Set cached to the appropriate value and wakeup any waiters.
691 		 */
692 		spin_lock(&cache->lock);
693 		if (load_cache_only) {
694 			cache->caching_ctl = NULL;
695 			cache->cached = BTRFS_CACHE_NO;
696 		} else {
697 			cache->cached = BTRFS_CACHE_STARTED;
698 			cache->has_caching_ctl = 1;
699 		}
700 		spin_unlock(&cache->lock);
701 		wake_up(&caching_ctl->wait);
702 	}
703 
704 	if (load_cache_only) {
705 		put_caching_control(caching_ctl);
706 		return 0;
707 	}
708 
709 	down_write(&fs_info->commit_root_sem);
710 	refcount_inc(&caching_ctl->count);
711 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 	up_write(&fs_info->commit_root_sem);
713 
714 	btrfs_get_block_group(cache);
715 
716 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
717 
718 	return ret;
719 }
720 
721 /*
722  * return the block group that starts at or after bytenr
723  */
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
726 {
727 	return block_group_cache_tree_search(info, bytenr, 0);
728 }
729 
730 /*
731  * return the block group that contains the given bytenr
732  */
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 						 struct btrfs_fs_info *info,
735 						 u64 bytenr)
736 {
737 	return block_group_cache_tree_search(info, bytenr, 1);
738 }
739 
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 						  u64 flags)
742 {
743 	struct list_head *head = &info->space_info;
744 	struct btrfs_space_info *found;
745 
746 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
747 
748 	rcu_read_lock();
749 	list_for_each_entry_rcu(found, head, list) {
750 		if (found->flags & flags) {
751 			rcu_read_unlock();
752 			return found;
753 		}
754 	}
755 	rcu_read_unlock();
756 	return NULL;
757 }
758 
759 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
760 			     bool metadata, u64 root_objectid)
761 {
762 	struct btrfs_space_info *space_info;
763 	u64 flags;
764 
765 	if (metadata) {
766 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 		else
769 			flags = BTRFS_BLOCK_GROUP_METADATA;
770 	} else {
771 		flags = BTRFS_BLOCK_GROUP_DATA;
772 	}
773 
774 	space_info = __find_space_info(fs_info, flags);
775 	ASSERT(space_info);
776 	percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
778 }
779 
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 	struct list_head *head = &info->space_info;
787 	struct btrfs_space_info *found;
788 
789 	rcu_read_lock();
790 	list_for_each_entry_rcu(found, head, list)
791 		found->full = 0;
792 	rcu_read_unlock();
793 }
794 
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 	int ret;
799 	struct btrfs_key key;
800 	struct btrfs_path *path;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 
806 	key.objectid = start;
807 	key.offset = len;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 	btrfs_free_path(path);
811 	return ret;
812 }
813 
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 			     struct btrfs_fs_info *fs_info, u64 bytenr,
825 			     u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 	struct btrfs_delayed_ref_head *head;
828 	struct btrfs_delayed_ref_root *delayed_refs;
829 	struct btrfs_path *path;
830 	struct btrfs_extent_item *ei;
831 	struct extent_buffer *leaf;
832 	struct btrfs_key key;
833 	u32 item_size;
834 	u64 num_refs;
835 	u64 extent_flags;
836 	int ret;
837 
838 	/*
839 	 * If we don't have skinny metadata, don't bother doing anything
840 	 * different
841 	 */
842 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 		offset = fs_info->nodesize;
844 		metadata = 0;
845 	}
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return -ENOMEM;
850 
851 	if (!trans) {
852 		path->skip_locking = 1;
853 		path->search_commit_root = 1;
854 	}
855 
856 search_again:
857 	key.objectid = bytenr;
858 	key.offset = offset;
859 	if (metadata)
860 		key.type = BTRFS_METADATA_ITEM_KEY;
861 	else
862 		key.type = BTRFS_EXTENT_ITEM_KEY;
863 
864 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 	if (ret < 0)
866 		goto out_free;
867 
868 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 		if (path->slots[0]) {
870 			path->slots[0]--;
871 			btrfs_item_key_to_cpu(path->nodes[0], &key,
872 					      path->slots[0]);
873 			if (key.objectid == bytenr &&
874 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
875 			    key.offset == fs_info->nodesize)
876 				ret = 0;
877 		}
878 	}
879 
880 	if (ret == 0) {
881 		leaf = path->nodes[0];
882 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 		if (item_size >= sizeof(*ei)) {
884 			ei = btrfs_item_ptr(leaf, path->slots[0],
885 					    struct btrfs_extent_item);
886 			num_refs = btrfs_extent_refs(leaf, ei);
887 			extent_flags = btrfs_extent_flags(leaf, ei);
888 		} else {
889 			ret = -EINVAL;
890 			btrfs_print_v0_err(fs_info);
891 			if (trans)
892 				btrfs_abort_transaction(trans, ret);
893 			else
894 				btrfs_handle_fs_error(fs_info, ret, NULL);
895 
896 			goto out_free;
897 		}
898 
899 		BUG_ON(num_refs == 0);
900 	} else {
901 		num_refs = 0;
902 		extent_flags = 0;
903 		ret = 0;
904 	}
905 
906 	if (!trans)
907 		goto out;
908 
909 	delayed_refs = &trans->transaction->delayed_refs;
910 	spin_lock(&delayed_refs->lock);
911 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
912 	if (head) {
913 		if (!mutex_trylock(&head->mutex)) {
914 			refcount_inc(&head->refs);
915 			spin_unlock(&delayed_refs->lock);
916 
917 			btrfs_release_path(path);
918 
919 			/*
920 			 * Mutex was contended, block until it's released and try
921 			 * again
922 			 */
923 			mutex_lock(&head->mutex);
924 			mutex_unlock(&head->mutex);
925 			btrfs_put_delayed_ref_head(head);
926 			goto search_again;
927 		}
928 		spin_lock(&head->lock);
929 		if (head->extent_op && head->extent_op->update_flags)
930 			extent_flags |= head->extent_op->flags_to_set;
931 		else
932 			BUG_ON(num_refs == 0);
933 
934 		num_refs += head->ref_mod;
935 		spin_unlock(&head->lock);
936 		mutex_unlock(&head->mutex);
937 	}
938 	spin_unlock(&delayed_refs->lock);
939 out:
940 	WARN_ON(num_refs == 0);
941 	if (refs)
942 		*refs = num_refs;
943 	if (flags)
944 		*flags = extent_flags;
945 out_free:
946 	btrfs_free_path(path);
947 	return ret;
948 }
949 
950 /*
951  * Back reference rules.  Back refs have three main goals:
952  *
953  * 1) differentiate between all holders of references to an extent so that
954  *    when a reference is dropped we can make sure it was a valid reference
955  *    before freeing the extent.
956  *
957  * 2) Provide enough information to quickly find the holders of an extent
958  *    if we notice a given block is corrupted or bad.
959  *
960  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961  *    maintenance.  This is actually the same as #2, but with a slightly
962  *    different use case.
963  *
964  * There are two kinds of back refs. The implicit back refs is optimized
965  * for pointers in non-shared tree blocks. For a given pointer in a block,
966  * back refs of this kind provide information about the block's owner tree
967  * and the pointer's key. These information allow us to find the block by
968  * b-tree searching. The full back refs is for pointers in tree blocks not
969  * referenced by their owner trees. The location of tree block is recorded
970  * in the back refs. Actually the full back refs is generic, and can be
971  * used in all cases the implicit back refs is used. The major shortcoming
972  * of the full back refs is its overhead. Every time a tree block gets
973  * COWed, we have to update back refs entry for all pointers in it.
974  *
975  * For a newly allocated tree block, we use implicit back refs for
976  * pointers in it. This means most tree related operations only involve
977  * implicit back refs. For a tree block created in old transaction, the
978  * only way to drop a reference to it is COW it. So we can detect the
979  * event that tree block loses its owner tree's reference and do the
980  * back refs conversion.
981  *
982  * When a tree block is COWed through a tree, there are four cases:
983  *
984  * The reference count of the block is one and the tree is the block's
985  * owner tree. Nothing to do in this case.
986  *
987  * The reference count of the block is one and the tree is not the
988  * block's owner tree. In this case, full back refs is used for pointers
989  * in the block. Remove these full back refs, add implicit back refs for
990  * every pointers in the new block.
991  *
992  * The reference count of the block is greater than one and the tree is
993  * the block's owner tree. In this case, implicit back refs is used for
994  * pointers in the block. Add full back refs for every pointers in the
995  * block, increase lower level extents' reference counts. The original
996  * implicit back refs are entailed to the new block.
997  *
998  * The reference count of the block is greater than one and the tree is
999  * not the block's owner tree. Add implicit back refs for every pointer in
1000  * the new block, increase lower level extents' reference count.
1001  *
1002  * Back Reference Key composing:
1003  *
1004  * The key objectid corresponds to the first byte in the extent,
1005  * The key type is used to differentiate between types of back refs.
1006  * There are different meanings of the key offset for different types
1007  * of back refs.
1008  *
1009  * File extents can be referenced by:
1010  *
1011  * - multiple snapshots, subvolumes, or different generations in one subvol
1012  * - different files inside a single subvolume
1013  * - different offsets inside a file (bookend extents in file.c)
1014  *
1015  * The extent ref structure for the implicit back refs has fields for:
1016  *
1017  * - Objectid of the subvolume root
1018  * - objectid of the file holding the reference
1019  * - original offset in the file
1020  * - how many bookend extents
1021  *
1022  * The key offset for the implicit back refs is hash of the first
1023  * three fields.
1024  *
1025  * The extent ref structure for the full back refs has field for:
1026  *
1027  * - number of pointers in the tree leaf
1028  *
1029  * The key offset for the implicit back refs is the first byte of
1030  * the tree leaf
1031  *
1032  * When a file extent is allocated, The implicit back refs is used.
1033  * the fields are filled in:
1034  *
1035  *     (root_key.objectid, inode objectid, offset in file, 1)
1036  *
1037  * When a file extent is removed file truncation, we find the
1038  * corresponding implicit back refs and check the following fields:
1039  *
1040  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1041  *
1042  * Btree extents can be referenced by:
1043  *
1044  * - Different subvolumes
1045  *
1046  * Both the implicit back refs and the full back refs for tree blocks
1047  * only consist of key. The key offset for the implicit back refs is
1048  * objectid of block's owner tree. The key offset for the full back refs
1049  * is the first byte of parent block.
1050  *
1051  * When implicit back refs is used, information about the lowest key and
1052  * level of the tree block are required. These information are stored in
1053  * tree block info structure.
1054  */
1055 
1056 /*
1057  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1058  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1059  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060  */
1061 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 				     struct btrfs_extent_inline_ref *iref,
1063 				     enum btrfs_inline_ref_type is_data)
1064 {
1065 	int type = btrfs_extent_inline_ref_type(eb, iref);
1066 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1067 
1068 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1071 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1073 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1074 				return type;
1075 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 				ASSERT(eb->fs_info);
1077 				/*
1078 				 * Every shared one has parent tree
1079 				 * block, which must be aligned to
1080 				 * nodesize.
1081 				 */
1082 				if (offset &&
1083 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 					return type;
1085 			}
1086 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1087 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1088 				return type;
1089 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 				ASSERT(eb->fs_info);
1091 				/*
1092 				 * Every shared one has parent tree
1093 				 * block, which must be aligned to
1094 				 * nodesize.
1095 				 */
1096 				if (offset &&
1097 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 					return type;
1099 			}
1100 		} else {
1101 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 			return type;
1103 		}
1104 	}
1105 
1106 	btrfs_print_leaf((struct extent_buffer *)eb);
1107 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 		  eb->start, type);
1109 	WARN_ON(1);
1110 
1111 	return BTRFS_REF_TYPE_INVALID;
1112 }
1113 
1114 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115 {
1116 	u32 high_crc = ~(u32)0;
1117 	u32 low_crc = ~(u32)0;
1118 	__le64 lenum;
1119 
1120 	lenum = cpu_to_le64(root_objectid);
1121 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1122 	lenum = cpu_to_le64(owner);
1123 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1124 	lenum = cpu_to_le64(offset);
1125 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1126 
1127 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1128 }
1129 
1130 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 				     struct btrfs_extent_data_ref *ref)
1132 {
1133 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 				    btrfs_extent_data_ref_objectid(leaf, ref),
1135 				    btrfs_extent_data_ref_offset(leaf, ref));
1136 }
1137 
1138 static int match_extent_data_ref(struct extent_buffer *leaf,
1139 				 struct btrfs_extent_data_ref *ref,
1140 				 u64 root_objectid, u64 owner, u64 offset)
1141 {
1142 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 		return 0;
1146 	return 1;
1147 }
1148 
1149 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1150 					   struct btrfs_path *path,
1151 					   u64 bytenr, u64 parent,
1152 					   u64 root_objectid,
1153 					   u64 owner, u64 offset)
1154 {
1155 	struct btrfs_root *root = trans->fs_info->extent_root;
1156 	struct btrfs_key key;
1157 	struct btrfs_extent_data_ref *ref;
1158 	struct extent_buffer *leaf;
1159 	u32 nritems;
1160 	int ret;
1161 	int recow;
1162 	int err = -ENOENT;
1163 
1164 	key.objectid = bytenr;
1165 	if (parent) {
1166 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 		key.offset = parent;
1168 	} else {
1169 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 		key.offset = hash_extent_data_ref(root_objectid,
1171 						  owner, offset);
1172 	}
1173 again:
1174 	recow = 0;
1175 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 	if (ret < 0) {
1177 		err = ret;
1178 		goto fail;
1179 	}
1180 
1181 	if (parent) {
1182 		if (!ret)
1183 			return 0;
1184 		goto fail;
1185 	}
1186 
1187 	leaf = path->nodes[0];
1188 	nritems = btrfs_header_nritems(leaf);
1189 	while (1) {
1190 		if (path->slots[0] >= nritems) {
1191 			ret = btrfs_next_leaf(root, path);
1192 			if (ret < 0)
1193 				err = ret;
1194 			if (ret)
1195 				goto fail;
1196 
1197 			leaf = path->nodes[0];
1198 			nritems = btrfs_header_nritems(leaf);
1199 			recow = 1;
1200 		}
1201 
1202 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 		if (key.objectid != bytenr ||
1204 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 			goto fail;
1206 
1207 		ref = btrfs_item_ptr(leaf, path->slots[0],
1208 				     struct btrfs_extent_data_ref);
1209 
1210 		if (match_extent_data_ref(leaf, ref, root_objectid,
1211 					  owner, offset)) {
1212 			if (recow) {
1213 				btrfs_release_path(path);
1214 				goto again;
1215 			}
1216 			err = 0;
1217 			break;
1218 		}
1219 		path->slots[0]++;
1220 	}
1221 fail:
1222 	return err;
1223 }
1224 
1225 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1226 					   struct btrfs_path *path,
1227 					   u64 bytenr, u64 parent,
1228 					   u64 root_objectid, u64 owner,
1229 					   u64 offset, int refs_to_add)
1230 {
1231 	struct btrfs_root *root = trans->fs_info->extent_root;
1232 	struct btrfs_key key;
1233 	struct extent_buffer *leaf;
1234 	u32 size;
1235 	u32 num_refs;
1236 	int ret;
1237 
1238 	key.objectid = bytenr;
1239 	if (parent) {
1240 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 		key.offset = parent;
1242 		size = sizeof(struct btrfs_shared_data_ref);
1243 	} else {
1244 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 		key.offset = hash_extent_data_ref(root_objectid,
1246 						  owner, offset);
1247 		size = sizeof(struct btrfs_extent_data_ref);
1248 	}
1249 
1250 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 	if (ret && ret != -EEXIST)
1252 		goto fail;
1253 
1254 	leaf = path->nodes[0];
1255 	if (parent) {
1256 		struct btrfs_shared_data_ref *ref;
1257 		ref = btrfs_item_ptr(leaf, path->slots[0],
1258 				     struct btrfs_shared_data_ref);
1259 		if (ret == 0) {
1260 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 		} else {
1262 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 			num_refs += refs_to_add;
1264 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1265 		}
1266 	} else {
1267 		struct btrfs_extent_data_ref *ref;
1268 		while (ret == -EEXIST) {
1269 			ref = btrfs_item_ptr(leaf, path->slots[0],
1270 					     struct btrfs_extent_data_ref);
1271 			if (match_extent_data_ref(leaf, ref, root_objectid,
1272 						  owner, offset))
1273 				break;
1274 			btrfs_release_path(path);
1275 			key.offset++;
1276 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 						      size);
1278 			if (ret && ret != -EEXIST)
1279 				goto fail;
1280 
1281 			leaf = path->nodes[0];
1282 		}
1283 		ref = btrfs_item_ptr(leaf, path->slots[0],
1284 				     struct btrfs_extent_data_ref);
1285 		if (ret == 0) {
1286 			btrfs_set_extent_data_ref_root(leaf, ref,
1287 						       root_objectid);
1288 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 		} else {
1292 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 			num_refs += refs_to_add;
1294 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1295 		}
1296 	}
1297 	btrfs_mark_buffer_dirty(leaf);
1298 	ret = 0;
1299 fail:
1300 	btrfs_release_path(path);
1301 	return ret;
1302 }
1303 
1304 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1305 					   struct btrfs_path *path,
1306 					   int refs_to_drop, int *last_ref)
1307 {
1308 	struct btrfs_key key;
1309 	struct btrfs_extent_data_ref *ref1 = NULL;
1310 	struct btrfs_shared_data_ref *ref2 = NULL;
1311 	struct extent_buffer *leaf;
1312 	u32 num_refs = 0;
1313 	int ret = 0;
1314 
1315 	leaf = path->nodes[0];
1316 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317 
1318 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 				      struct btrfs_extent_data_ref);
1321 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 				      struct btrfs_shared_data_ref);
1325 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1326 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1327 		btrfs_print_v0_err(trans->fs_info);
1328 		btrfs_abort_transaction(trans, -EINVAL);
1329 		return -EINVAL;
1330 	} else {
1331 		BUG();
1332 	}
1333 
1334 	BUG_ON(num_refs < refs_to_drop);
1335 	num_refs -= refs_to_drop;
1336 
1337 	if (num_refs == 0) {
1338 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1339 		*last_ref = 1;
1340 	} else {
1341 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1345 		btrfs_mark_buffer_dirty(leaf);
1346 	}
1347 	return ret;
1348 }
1349 
1350 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1351 					  struct btrfs_extent_inline_ref *iref)
1352 {
1353 	struct btrfs_key key;
1354 	struct extent_buffer *leaf;
1355 	struct btrfs_extent_data_ref *ref1;
1356 	struct btrfs_shared_data_ref *ref2;
1357 	u32 num_refs = 0;
1358 	int type;
1359 
1360 	leaf = path->nodes[0];
1361 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1362 
1363 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1364 	if (iref) {
1365 		/*
1366 		 * If type is invalid, we should have bailed out earlier than
1367 		 * this call.
1368 		 */
1369 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1372 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 		} else {
1375 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 		}
1378 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 				      struct btrfs_extent_data_ref);
1381 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 				      struct btrfs_shared_data_ref);
1385 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1386 	} else {
1387 		WARN_ON(1);
1388 	}
1389 	return num_refs;
1390 }
1391 
1392 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1393 					  struct btrfs_path *path,
1394 					  u64 bytenr, u64 parent,
1395 					  u64 root_objectid)
1396 {
1397 	struct btrfs_root *root = trans->fs_info->extent_root;
1398 	struct btrfs_key key;
1399 	int ret;
1400 
1401 	key.objectid = bytenr;
1402 	if (parent) {
1403 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 		key.offset = parent;
1405 	} else {
1406 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 		key.offset = root_objectid;
1408 	}
1409 
1410 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 	if (ret > 0)
1412 		ret = -ENOENT;
1413 	return ret;
1414 }
1415 
1416 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1417 					  struct btrfs_path *path,
1418 					  u64 bytenr, u64 parent,
1419 					  u64 root_objectid)
1420 {
1421 	struct btrfs_key key;
1422 	int ret;
1423 
1424 	key.objectid = bytenr;
1425 	if (parent) {
1426 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 		key.offset = parent;
1428 	} else {
1429 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 		key.offset = root_objectid;
1431 	}
1432 
1433 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1434 				      path, &key, 0);
1435 	btrfs_release_path(path);
1436 	return ret;
1437 }
1438 
1439 static inline int extent_ref_type(u64 parent, u64 owner)
1440 {
1441 	int type;
1442 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 		if (parent > 0)
1444 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 		else
1446 			type = BTRFS_TREE_BLOCK_REF_KEY;
1447 	} else {
1448 		if (parent > 0)
1449 			type = BTRFS_SHARED_DATA_REF_KEY;
1450 		else
1451 			type = BTRFS_EXTENT_DATA_REF_KEY;
1452 	}
1453 	return type;
1454 }
1455 
1456 static int find_next_key(struct btrfs_path *path, int level,
1457 			 struct btrfs_key *key)
1458 
1459 {
1460 	for (; level < BTRFS_MAX_LEVEL; level++) {
1461 		if (!path->nodes[level])
1462 			break;
1463 		if (path->slots[level] + 1 >=
1464 		    btrfs_header_nritems(path->nodes[level]))
1465 			continue;
1466 		if (level == 0)
1467 			btrfs_item_key_to_cpu(path->nodes[level], key,
1468 					      path->slots[level] + 1);
1469 		else
1470 			btrfs_node_key_to_cpu(path->nodes[level], key,
1471 					      path->slots[level] + 1);
1472 		return 0;
1473 	}
1474 	return 1;
1475 }
1476 
1477 /*
1478  * look for inline back ref. if back ref is found, *ref_ret is set
1479  * to the address of inline back ref, and 0 is returned.
1480  *
1481  * if back ref isn't found, *ref_ret is set to the address where it
1482  * should be inserted, and -ENOENT is returned.
1483  *
1484  * if insert is true and there are too many inline back refs, the path
1485  * points to the extent item, and -EAGAIN is returned.
1486  *
1487  * NOTE: inline back refs are ordered in the same way that back ref
1488  *	 items in the tree are ordered.
1489  */
1490 static noinline_for_stack
1491 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1492 				 struct btrfs_path *path,
1493 				 struct btrfs_extent_inline_ref **ref_ret,
1494 				 u64 bytenr, u64 num_bytes,
1495 				 u64 parent, u64 root_objectid,
1496 				 u64 owner, u64 offset, int insert)
1497 {
1498 	struct btrfs_fs_info *fs_info = trans->fs_info;
1499 	struct btrfs_root *root = fs_info->extent_root;
1500 	struct btrfs_key key;
1501 	struct extent_buffer *leaf;
1502 	struct btrfs_extent_item *ei;
1503 	struct btrfs_extent_inline_ref *iref;
1504 	u64 flags;
1505 	u64 item_size;
1506 	unsigned long ptr;
1507 	unsigned long end;
1508 	int extra_size;
1509 	int type;
1510 	int want;
1511 	int ret;
1512 	int err = 0;
1513 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1514 	int needed;
1515 
1516 	key.objectid = bytenr;
1517 	key.type = BTRFS_EXTENT_ITEM_KEY;
1518 	key.offset = num_bytes;
1519 
1520 	want = extent_ref_type(parent, owner);
1521 	if (insert) {
1522 		extra_size = btrfs_extent_inline_ref_size(want);
1523 		path->keep_locks = 1;
1524 	} else
1525 		extra_size = -1;
1526 
1527 	/*
1528 	 * Owner is our level, so we can just add one to get the level for the
1529 	 * block we are interested in.
1530 	 */
1531 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 		key.type = BTRFS_METADATA_ITEM_KEY;
1533 		key.offset = owner;
1534 	}
1535 
1536 again:
1537 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1538 	if (ret < 0) {
1539 		err = ret;
1540 		goto out;
1541 	}
1542 
1543 	/*
1544 	 * We may be a newly converted file system which still has the old fat
1545 	 * extent entries for metadata, so try and see if we have one of those.
1546 	 */
1547 	if (ret > 0 && skinny_metadata) {
1548 		skinny_metadata = false;
1549 		if (path->slots[0]) {
1550 			path->slots[0]--;
1551 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 					      path->slots[0]);
1553 			if (key.objectid == bytenr &&
1554 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 			    key.offset == num_bytes)
1556 				ret = 0;
1557 		}
1558 		if (ret) {
1559 			key.objectid = bytenr;
1560 			key.type = BTRFS_EXTENT_ITEM_KEY;
1561 			key.offset = num_bytes;
1562 			btrfs_release_path(path);
1563 			goto again;
1564 		}
1565 	}
1566 
1567 	if (ret && !insert) {
1568 		err = -ENOENT;
1569 		goto out;
1570 	} else if (WARN_ON(ret)) {
1571 		err = -EIO;
1572 		goto out;
1573 	}
1574 
1575 	leaf = path->nodes[0];
1576 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 	if (unlikely(item_size < sizeof(*ei))) {
1578 		err = -EINVAL;
1579 		btrfs_print_v0_err(fs_info);
1580 		btrfs_abort_transaction(trans, err);
1581 		goto out;
1582 	}
1583 
1584 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 	flags = btrfs_extent_flags(leaf, ei);
1586 
1587 	ptr = (unsigned long)(ei + 1);
1588 	end = (unsigned long)ei + item_size;
1589 
1590 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1591 		ptr += sizeof(struct btrfs_tree_block_info);
1592 		BUG_ON(ptr > end);
1593 	}
1594 
1595 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 		needed = BTRFS_REF_TYPE_DATA;
1597 	else
1598 		needed = BTRFS_REF_TYPE_BLOCK;
1599 
1600 	err = -ENOENT;
1601 	while (1) {
1602 		if (ptr >= end) {
1603 			WARN_ON(ptr > end);
1604 			break;
1605 		}
1606 		iref = (struct btrfs_extent_inline_ref *)ptr;
1607 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 		if (type == BTRFS_REF_TYPE_INVALID) {
1609 			err = -EUCLEAN;
1610 			goto out;
1611 		}
1612 
1613 		if (want < type)
1614 			break;
1615 		if (want > type) {
1616 			ptr += btrfs_extent_inline_ref_size(type);
1617 			continue;
1618 		}
1619 
1620 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 			struct btrfs_extent_data_ref *dref;
1622 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 			if (match_extent_data_ref(leaf, dref, root_objectid,
1624 						  owner, offset)) {
1625 				err = 0;
1626 				break;
1627 			}
1628 			if (hash_extent_data_ref_item(leaf, dref) <
1629 			    hash_extent_data_ref(root_objectid, owner, offset))
1630 				break;
1631 		} else {
1632 			u64 ref_offset;
1633 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 			if (parent > 0) {
1635 				if (parent == ref_offset) {
1636 					err = 0;
1637 					break;
1638 				}
1639 				if (ref_offset < parent)
1640 					break;
1641 			} else {
1642 				if (root_objectid == ref_offset) {
1643 					err = 0;
1644 					break;
1645 				}
1646 				if (ref_offset < root_objectid)
1647 					break;
1648 			}
1649 		}
1650 		ptr += btrfs_extent_inline_ref_size(type);
1651 	}
1652 	if (err == -ENOENT && insert) {
1653 		if (item_size + extra_size >=
1654 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 			err = -EAGAIN;
1656 			goto out;
1657 		}
1658 		/*
1659 		 * To add new inline back ref, we have to make sure
1660 		 * there is no corresponding back ref item.
1661 		 * For simplicity, we just do not add new inline back
1662 		 * ref if there is any kind of item for this block
1663 		 */
1664 		if (find_next_key(path, 0, &key) == 0 &&
1665 		    key.objectid == bytenr &&
1666 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1667 			err = -EAGAIN;
1668 			goto out;
1669 		}
1670 	}
1671 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672 out:
1673 	if (insert) {
1674 		path->keep_locks = 0;
1675 		btrfs_unlock_up_safe(path, 1);
1676 	}
1677 	return err;
1678 }
1679 
1680 /*
1681  * helper to add new inline back ref
1682  */
1683 static noinline_for_stack
1684 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1685 				 struct btrfs_path *path,
1686 				 struct btrfs_extent_inline_ref *iref,
1687 				 u64 parent, u64 root_objectid,
1688 				 u64 owner, u64 offset, int refs_to_add,
1689 				 struct btrfs_delayed_extent_op *extent_op)
1690 {
1691 	struct extent_buffer *leaf;
1692 	struct btrfs_extent_item *ei;
1693 	unsigned long ptr;
1694 	unsigned long end;
1695 	unsigned long item_offset;
1696 	u64 refs;
1697 	int size;
1698 	int type;
1699 
1700 	leaf = path->nodes[0];
1701 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 	item_offset = (unsigned long)iref - (unsigned long)ei;
1703 
1704 	type = extent_ref_type(parent, owner);
1705 	size = btrfs_extent_inline_ref_size(type);
1706 
1707 	btrfs_extend_item(fs_info, path, size);
1708 
1709 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 	refs = btrfs_extent_refs(leaf, ei);
1711 	refs += refs_to_add;
1712 	btrfs_set_extent_refs(leaf, ei, refs);
1713 	if (extent_op)
1714 		__run_delayed_extent_op(extent_op, leaf, ei);
1715 
1716 	ptr = (unsigned long)ei + item_offset;
1717 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 	if (ptr < end - size)
1719 		memmove_extent_buffer(leaf, ptr + size, ptr,
1720 				      end - size - ptr);
1721 
1722 	iref = (struct btrfs_extent_inline_ref *)ptr;
1723 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 		struct btrfs_extent_data_ref *dref;
1726 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 		struct btrfs_shared_data_ref *sref;
1733 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 	} else {
1739 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 	}
1741 	btrfs_mark_buffer_dirty(leaf);
1742 }
1743 
1744 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1745 				 struct btrfs_path *path,
1746 				 struct btrfs_extent_inline_ref **ref_ret,
1747 				 u64 bytenr, u64 num_bytes, u64 parent,
1748 				 u64 root_objectid, u64 owner, u64 offset)
1749 {
1750 	int ret;
1751 
1752 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 					   num_bytes, parent, root_objectid,
1754 					   owner, offset, 0);
1755 	if (ret != -ENOENT)
1756 		return ret;
1757 
1758 	btrfs_release_path(path);
1759 	*ref_ret = NULL;
1760 
1761 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1762 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 					    root_objectid);
1764 	} else {
1765 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 					     root_objectid, owner, offset);
1767 	}
1768 	return ret;
1769 }
1770 
1771 /*
1772  * helper to update/remove inline back ref
1773  */
1774 static noinline_for_stack
1775 void update_inline_extent_backref(struct btrfs_path *path,
1776 				  struct btrfs_extent_inline_ref *iref,
1777 				  int refs_to_mod,
1778 				  struct btrfs_delayed_extent_op *extent_op,
1779 				  int *last_ref)
1780 {
1781 	struct extent_buffer *leaf = path->nodes[0];
1782 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1783 	struct btrfs_extent_item *ei;
1784 	struct btrfs_extent_data_ref *dref = NULL;
1785 	struct btrfs_shared_data_ref *sref = NULL;
1786 	unsigned long ptr;
1787 	unsigned long end;
1788 	u32 item_size;
1789 	int size;
1790 	int type;
1791 	u64 refs;
1792 
1793 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 	refs = btrfs_extent_refs(leaf, ei);
1795 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 	refs += refs_to_mod;
1797 	btrfs_set_extent_refs(leaf, ei, refs);
1798 	if (extent_op)
1799 		__run_delayed_extent_op(extent_op, leaf, ei);
1800 
1801 	/*
1802 	 * If type is invalid, we should have bailed out after
1803 	 * lookup_inline_extent_backref().
1804 	 */
1805 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1807 
1808 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 		refs = btrfs_extent_data_ref_count(leaf, dref);
1811 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 		refs = btrfs_shared_data_ref_count(leaf, sref);
1814 	} else {
1815 		refs = 1;
1816 		BUG_ON(refs_to_mod != -1);
1817 	}
1818 
1819 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 	refs += refs_to_mod;
1821 
1822 	if (refs > 0) {
1823 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 		else
1826 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 	} else {
1828 		*last_ref = 1;
1829 		size =  btrfs_extent_inline_ref_size(type);
1830 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 		ptr = (unsigned long)iref;
1832 		end = (unsigned long)ei + item_size;
1833 		if (ptr + size < end)
1834 			memmove_extent_buffer(leaf, ptr, ptr + size,
1835 					      end - ptr - size);
1836 		item_size -= size;
1837 		btrfs_truncate_item(fs_info, path, item_size, 1);
1838 	}
1839 	btrfs_mark_buffer_dirty(leaf);
1840 }
1841 
1842 static noinline_for_stack
1843 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1844 				 struct btrfs_path *path,
1845 				 u64 bytenr, u64 num_bytes, u64 parent,
1846 				 u64 root_objectid, u64 owner,
1847 				 u64 offset, int refs_to_add,
1848 				 struct btrfs_delayed_extent_op *extent_op)
1849 {
1850 	struct btrfs_extent_inline_ref *iref;
1851 	int ret;
1852 
1853 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 					   num_bytes, parent, root_objectid,
1855 					   owner, offset, 1);
1856 	if (ret == 0) {
1857 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1858 		update_inline_extent_backref(path, iref, refs_to_add,
1859 					     extent_op, NULL);
1860 	} else if (ret == -ENOENT) {
1861 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1862 					    root_objectid, owner, offset,
1863 					    refs_to_add, extent_op);
1864 		ret = 0;
1865 	}
1866 	return ret;
1867 }
1868 
1869 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1870 				 struct btrfs_path *path,
1871 				 u64 bytenr, u64 parent, u64 root_objectid,
1872 				 u64 owner, u64 offset, int refs_to_add)
1873 {
1874 	int ret;
1875 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 		BUG_ON(refs_to_add != 1);
1877 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 					    root_objectid);
1879 	} else {
1880 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 					     root_objectid, owner, offset,
1882 					     refs_to_add);
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1888 				 struct btrfs_path *path,
1889 				 struct btrfs_extent_inline_ref *iref,
1890 				 int refs_to_drop, int is_data, int *last_ref)
1891 {
1892 	int ret = 0;
1893 
1894 	BUG_ON(!is_data && refs_to_drop != 1);
1895 	if (iref) {
1896 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 					     last_ref);
1898 	} else if (is_data) {
1899 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1900 					     last_ref);
1901 	} else {
1902 		*last_ref = 1;
1903 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1904 	}
1905 	return ret;
1906 }
1907 
1908 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1909 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 			       u64 *discarded_bytes)
1911 {
1912 	int j, ret = 0;
1913 	u64 bytes_left, end;
1914 	u64 aligned_start = ALIGN(start, 1 << 9);
1915 
1916 	if (WARN_ON(start != aligned_start)) {
1917 		len -= aligned_start - start;
1918 		len = round_down(len, 1 << 9);
1919 		start = aligned_start;
1920 	}
1921 
1922 	*discarded_bytes = 0;
1923 
1924 	if (!len)
1925 		return 0;
1926 
1927 	end = start + len;
1928 	bytes_left = len;
1929 
1930 	/* Skip any superblocks on this device. */
1931 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 		u64 sb_start = btrfs_sb_offset(j);
1933 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 		u64 size = sb_start - start;
1935 
1936 		if (!in_range(sb_start, start, bytes_left) &&
1937 		    !in_range(sb_end, start, bytes_left) &&
1938 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 			continue;
1940 
1941 		/*
1942 		 * Superblock spans beginning of range.  Adjust start and
1943 		 * try again.
1944 		 */
1945 		if (sb_start <= start) {
1946 			start += sb_end - start;
1947 			if (start > end) {
1948 				bytes_left = 0;
1949 				break;
1950 			}
1951 			bytes_left = end - start;
1952 			continue;
1953 		}
1954 
1955 		if (size) {
1956 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 						   GFP_NOFS, 0);
1958 			if (!ret)
1959 				*discarded_bytes += size;
1960 			else if (ret != -EOPNOTSUPP)
1961 				return ret;
1962 		}
1963 
1964 		start = sb_end;
1965 		if (start > end) {
1966 			bytes_left = 0;
1967 			break;
1968 		}
1969 		bytes_left = end - start;
1970 	}
1971 
1972 	if (bytes_left) {
1973 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1974 					   GFP_NOFS, 0);
1975 		if (!ret)
1976 			*discarded_bytes += bytes_left;
1977 	}
1978 	return ret;
1979 }
1980 
1981 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1982 			 u64 num_bytes, u64 *actual_bytes)
1983 {
1984 	int ret;
1985 	u64 discarded_bytes = 0;
1986 	struct btrfs_bio *bbio = NULL;
1987 
1988 
1989 	/*
1990 	 * Avoid races with device replace and make sure our bbio has devices
1991 	 * associated to its stripes that don't go away while we are discarding.
1992 	 */
1993 	btrfs_bio_counter_inc_blocked(fs_info);
1994 	/* Tell the block device(s) that the sectors can be discarded */
1995 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 			      &bbio, 0);
1997 	/* Error condition is -ENOMEM */
1998 	if (!ret) {
1999 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2000 		int i;
2001 
2002 
2003 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2004 			u64 bytes;
2005 			struct request_queue *req_q;
2006 
2007 			if (!stripe->dev->bdev) {
2008 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 				continue;
2010 			}
2011 			req_q = bdev_get_queue(stripe->dev->bdev);
2012 			if (!blk_queue_discard(req_q))
2013 				continue;
2014 
2015 			ret = btrfs_issue_discard(stripe->dev->bdev,
2016 						  stripe->physical,
2017 						  stripe->length,
2018 						  &bytes);
2019 			if (!ret)
2020 				discarded_bytes += bytes;
2021 			else if (ret != -EOPNOTSUPP)
2022 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2023 
2024 			/*
2025 			 * Just in case we get back EOPNOTSUPP for some reason,
2026 			 * just ignore the return value so we don't screw up
2027 			 * people calling discard_extent.
2028 			 */
2029 			ret = 0;
2030 		}
2031 		btrfs_put_bbio(bbio);
2032 	}
2033 	btrfs_bio_counter_dec(fs_info);
2034 
2035 	if (actual_bytes)
2036 		*actual_bytes = discarded_bytes;
2037 
2038 
2039 	if (ret == -EOPNOTSUPP)
2040 		ret = 0;
2041 	return ret;
2042 }
2043 
2044 /* Can return -ENOMEM */
2045 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2046 			 struct btrfs_root *root,
2047 			 u64 bytenr, u64 num_bytes, u64 parent,
2048 			 u64 root_objectid, u64 owner, u64 offset)
2049 {
2050 	struct btrfs_fs_info *fs_info = root->fs_info;
2051 	int old_ref_mod, new_ref_mod;
2052 	int ret;
2053 
2054 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056 
2057 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2059 
2060 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2061 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2062 						 num_bytes, parent,
2063 						 root_objectid, (int)owner,
2064 						 BTRFS_ADD_DELAYED_REF, NULL,
2065 						 &old_ref_mod, &new_ref_mod);
2066 	} else {
2067 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
2068 						 num_bytes, parent,
2069 						 root_objectid, owner, offset,
2070 						 0, BTRFS_ADD_DELAYED_REF,
2071 						 &old_ref_mod, &new_ref_mod);
2072 	}
2073 
2074 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076 
2077 		add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 	}
2079 
2080 	return ret;
2081 }
2082 
2083 /*
2084  * __btrfs_inc_extent_ref - insert backreference for a given extent
2085  *
2086  * @trans:	    Handle of transaction
2087  *
2088  * @node:	    The delayed ref node used to get the bytenr/length for
2089  *		    extent whose references are incremented.
2090  *
2091  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093  *		    bytenr of the parent block. Since new extents are always
2094  *		    created with indirect references, this will only be the case
2095  *		    when relocating a shared extent. In that case, root_objectid
2096  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097  *		    be 0
2098  *
2099  * @root_objectid:  The id of the root where this modification has originated,
2100  *		    this can be either one of the well-known metadata trees or
2101  *		    the subvolume id which references this extent.
2102  *
2103  * @owner:	    For data extents it is the inode number of the owning file.
2104  *		    For metadata extents this parameter holds the level in the
2105  *		    tree of the extent.
2106  *
2107  * @offset:	    For metadata extents the offset is ignored and is currently
2108  *		    always passed as 0. For data extents it is the fileoffset
2109  *		    this extent belongs to.
2110  *
2111  * @refs_to_add     Number of references to add
2112  *
2113  * @extent_op       Pointer to a structure, holding information necessary when
2114  *                  updating a tree block's flags
2115  *
2116  */
2117 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2118 				  struct btrfs_delayed_ref_node *node,
2119 				  u64 parent, u64 root_objectid,
2120 				  u64 owner, u64 offset, int refs_to_add,
2121 				  struct btrfs_delayed_extent_op *extent_op)
2122 {
2123 	struct btrfs_path *path;
2124 	struct extent_buffer *leaf;
2125 	struct btrfs_extent_item *item;
2126 	struct btrfs_key key;
2127 	u64 bytenr = node->bytenr;
2128 	u64 num_bytes = node->num_bytes;
2129 	u64 refs;
2130 	int ret;
2131 
2132 	path = btrfs_alloc_path();
2133 	if (!path)
2134 		return -ENOMEM;
2135 
2136 	path->reada = READA_FORWARD;
2137 	path->leave_spinning = 1;
2138 	/* this will setup the path even if it fails to insert the back ref */
2139 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 					   parent, root_objectid, owner,
2141 					   offset, refs_to_add, extent_op);
2142 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2143 		goto out;
2144 
2145 	/*
2146 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 	 * inline extent ref, so just update the reference count and add a
2148 	 * normal backref.
2149 	 */
2150 	leaf = path->nodes[0];
2151 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2152 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 	refs = btrfs_extent_refs(leaf, item);
2154 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 	if (extent_op)
2156 		__run_delayed_extent_op(extent_op, leaf, item);
2157 
2158 	btrfs_mark_buffer_dirty(leaf);
2159 	btrfs_release_path(path);
2160 
2161 	path->reada = READA_FORWARD;
2162 	path->leave_spinning = 1;
2163 	/* now insert the actual backref */
2164 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 				    owner, offset, refs_to_add);
2166 	if (ret)
2167 		btrfs_abort_transaction(trans, ret);
2168 out:
2169 	btrfs_free_path(path);
2170 	return ret;
2171 }
2172 
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 				struct btrfs_delayed_ref_node *node,
2175 				struct btrfs_delayed_extent_op *extent_op,
2176 				int insert_reserved)
2177 {
2178 	int ret = 0;
2179 	struct btrfs_delayed_data_ref *ref;
2180 	struct btrfs_key ins;
2181 	u64 parent = 0;
2182 	u64 ref_root = 0;
2183 	u64 flags = 0;
2184 
2185 	ins.objectid = node->bytenr;
2186 	ins.offset = node->num_bytes;
2187 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2188 
2189 	ref = btrfs_delayed_node_to_data_ref(node);
2190 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2191 
2192 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 		parent = ref->parent;
2194 	ref_root = ref->root;
2195 
2196 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197 		if (extent_op)
2198 			flags |= extent_op->flags_to_set;
2199 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 						 flags, ref->objectid,
2201 						 ref->offset, &ins,
2202 						 node->ref_mod);
2203 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 					     ref->objectid, ref->offset,
2206 					     node->ref_mod, extent_op);
2207 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2208 		ret = __btrfs_free_extent(trans, node, parent,
2209 					  ref_root, ref->objectid,
2210 					  ref->offset, node->ref_mod,
2211 					  extent_op);
2212 	} else {
2213 		BUG();
2214 	}
2215 	return ret;
2216 }
2217 
2218 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 				    struct extent_buffer *leaf,
2220 				    struct btrfs_extent_item *ei)
2221 {
2222 	u64 flags = btrfs_extent_flags(leaf, ei);
2223 	if (extent_op->update_flags) {
2224 		flags |= extent_op->flags_to_set;
2225 		btrfs_set_extent_flags(leaf, ei, flags);
2226 	}
2227 
2228 	if (extent_op->update_key) {
2229 		struct btrfs_tree_block_info *bi;
2230 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 	}
2234 }
2235 
2236 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2237 				 struct btrfs_delayed_ref_head *head,
2238 				 struct btrfs_delayed_extent_op *extent_op)
2239 {
2240 	struct btrfs_fs_info *fs_info = trans->fs_info;
2241 	struct btrfs_key key;
2242 	struct btrfs_path *path;
2243 	struct btrfs_extent_item *ei;
2244 	struct extent_buffer *leaf;
2245 	u32 item_size;
2246 	int ret;
2247 	int err = 0;
2248 	int metadata = !extent_op->is_data;
2249 
2250 	if (trans->aborted)
2251 		return 0;
2252 
2253 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2254 		metadata = 0;
2255 
2256 	path = btrfs_alloc_path();
2257 	if (!path)
2258 		return -ENOMEM;
2259 
2260 	key.objectid = head->bytenr;
2261 
2262 	if (metadata) {
2263 		key.type = BTRFS_METADATA_ITEM_KEY;
2264 		key.offset = extent_op->level;
2265 	} else {
2266 		key.type = BTRFS_EXTENT_ITEM_KEY;
2267 		key.offset = head->num_bytes;
2268 	}
2269 
2270 again:
2271 	path->reada = READA_FORWARD;
2272 	path->leave_spinning = 1;
2273 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2274 	if (ret < 0) {
2275 		err = ret;
2276 		goto out;
2277 	}
2278 	if (ret > 0) {
2279 		if (metadata) {
2280 			if (path->slots[0] > 0) {
2281 				path->slots[0]--;
2282 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 						      path->slots[0]);
2284 				if (key.objectid == head->bytenr &&
2285 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2286 				    key.offset == head->num_bytes)
2287 					ret = 0;
2288 			}
2289 			if (ret > 0) {
2290 				btrfs_release_path(path);
2291 				metadata = 0;
2292 
2293 				key.objectid = head->bytenr;
2294 				key.offset = head->num_bytes;
2295 				key.type = BTRFS_EXTENT_ITEM_KEY;
2296 				goto again;
2297 			}
2298 		} else {
2299 			err = -EIO;
2300 			goto out;
2301 		}
2302 	}
2303 
2304 	leaf = path->nodes[0];
2305 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2306 
2307 	if (unlikely(item_size < sizeof(*ei))) {
2308 		err = -EINVAL;
2309 		btrfs_print_v0_err(fs_info);
2310 		btrfs_abort_transaction(trans, err);
2311 		goto out;
2312 	}
2313 
2314 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 	__run_delayed_extent_op(extent_op, leaf, ei);
2316 
2317 	btrfs_mark_buffer_dirty(leaf);
2318 out:
2319 	btrfs_free_path(path);
2320 	return err;
2321 }
2322 
2323 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2324 				struct btrfs_delayed_ref_node *node,
2325 				struct btrfs_delayed_extent_op *extent_op,
2326 				int insert_reserved)
2327 {
2328 	int ret = 0;
2329 	struct btrfs_delayed_tree_ref *ref;
2330 	u64 parent = 0;
2331 	u64 ref_root = 0;
2332 
2333 	ref = btrfs_delayed_node_to_tree_ref(node);
2334 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2335 
2336 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 		parent = ref->parent;
2338 	ref_root = ref->root;
2339 
2340 	if (node->ref_mod != 1) {
2341 		btrfs_err(trans->fs_info,
2342 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 			  node->bytenr, node->ref_mod, node->action, ref_root,
2344 			  parent);
2345 		return -EIO;
2346 	}
2347 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2348 		BUG_ON(!extent_op || !extent_op->update_flags);
2349 		ret = alloc_reserved_tree_block(trans, node, extent_op);
2350 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2351 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 					     ref->level, 0, 1, extent_op);
2353 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2354 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
2355 					  ref->level, 0, 1, extent_op);
2356 	} else {
2357 		BUG();
2358 	}
2359 	return ret;
2360 }
2361 
2362 /* helper function to actually process a single delayed ref entry */
2363 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2364 			       struct btrfs_delayed_ref_node *node,
2365 			       struct btrfs_delayed_extent_op *extent_op,
2366 			       int insert_reserved)
2367 {
2368 	int ret = 0;
2369 
2370 	if (trans->aborted) {
2371 		if (insert_reserved)
2372 			btrfs_pin_extent(trans->fs_info, node->bytenr,
2373 					 node->num_bytes, 1);
2374 		return 0;
2375 	}
2376 
2377 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2379 		ret = run_delayed_tree_ref(trans, node, extent_op,
2380 					   insert_reserved);
2381 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2383 		ret = run_delayed_data_ref(trans, node, extent_op,
2384 					   insert_reserved);
2385 	else
2386 		BUG();
2387 	if (ret && insert_reserved)
2388 		btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 				 node->num_bytes, 1);
2390 	return ret;
2391 }
2392 
2393 static inline struct btrfs_delayed_ref_node *
2394 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395 {
2396 	struct btrfs_delayed_ref_node *ref;
2397 
2398 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2399 		return NULL;
2400 
2401 	/*
2402 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 	 * This is to prevent a ref count from going down to zero, which deletes
2404 	 * the extent item from the extent tree, when there still are references
2405 	 * to add, which would fail because they would not find the extent item.
2406 	 */
2407 	if (!list_empty(&head->ref_add_list))
2408 		return list_first_entry(&head->ref_add_list,
2409 				struct btrfs_delayed_ref_node, add_list);
2410 
2411 	ref = rb_entry(rb_first_cached(&head->ref_tree),
2412 		       struct btrfs_delayed_ref_node, ref_node);
2413 	ASSERT(list_empty(&ref->add_list));
2414 	return ref;
2415 }
2416 
2417 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 				      struct btrfs_delayed_ref_head *head)
2419 {
2420 	spin_lock(&delayed_refs->lock);
2421 	head->processing = 0;
2422 	delayed_refs->num_heads_ready++;
2423 	spin_unlock(&delayed_refs->lock);
2424 	btrfs_delayed_ref_unlock(head);
2425 }
2426 
2427 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 				struct btrfs_delayed_ref_head *head)
2429 {
2430 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2431 
2432 	if (!extent_op)
2433 		return NULL;
2434 
2435 	if (head->must_insert_reserved) {
2436 		head->extent_op = NULL;
2437 		btrfs_free_delayed_extent_op(extent_op);
2438 		return NULL;
2439 	}
2440 	return extent_op;
2441 }
2442 
2443 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 				     struct btrfs_delayed_ref_head *head)
2445 {
2446 	struct btrfs_delayed_extent_op *extent_op;
2447 	int ret;
2448 
2449 	extent_op = cleanup_extent_op(head);
2450 	if (!extent_op)
2451 		return 0;
2452 	head->extent_op = NULL;
2453 	spin_unlock(&head->lock);
2454 	ret = run_delayed_extent_op(trans, head, extent_op);
2455 	btrfs_free_delayed_extent_op(extent_op);
2456 	return ret ? ret : 1;
2457 }
2458 
2459 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2460 				  struct btrfs_delayed_ref_root *delayed_refs,
2461 				  struct btrfs_delayed_ref_head *head)
2462 {
2463 	int nr_items = 1;	/* Dropping this ref head update. */
2464 
2465 	if (head->total_ref_mod < 0) {
2466 		struct btrfs_space_info *space_info;
2467 		u64 flags;
2468 
2469 		if (head->is_data)
2470 			flags = BTRFS_BLOCK_GROUP_DATA;
2471 		else if (head->is_system)
2472 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 		else
2474 			flags = BTRFS_BLOCK_GROUP_METADATA;
2475 		space_info = __find_space_info(fs_info, flags);
2476 		ASSERT(space_info);
2477 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 				   -head->num_bytes,
2479 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
2480 
2481 		/*
2482 		 * We had csum deletions accounted for in our delayed refs rsv,
2483 		 * we need to drop the csum leaves for this update from our
2484 		 * delayed_refs_rsv.
2485 		 */
2486 		if (head->is_data) {
2487 			spin_lock(&delayed_refs->lock);
2488 			delayed_refs->pending_csums -= head->num_bytes;
2489 			spin_unlock(&delayed_refs->lock);
2490 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2491 				head->num_bytes);
2492 		}
2493 	}
2494 
2495 	/* Also free its reserved qgroup space */
2496 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2497 				      head->qgroup_reserved);
2498 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2499 }
2500 
2501 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2502 			    struct btrfs_delayed_ref_head *head)
2503 {
2504 
2505 	struct btrfs_fs_info *fs_info = trans->fs_info;
2506 	struct btrfs_delayed_ref_root *delayed_refs;
2507 	int ret;
2508 
2509 	delayed_refs = &trans->transaction->delayed_refs;
2510 
2511 	ret = run_and_cleanup_extent_op(trans, head);
2512 	if (ret < 0) {
2513 		unselect_delayed_ref_head(delayed_refs, head);
2514 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2515 		return ret;
2516 	} else if (ret) {
2517 		return ret;
2518 	}
2519 
2520 	/*
2521 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2522 	 * and then re-check to make sure nobody got added.
2523 	 */
2524 	spin_unlock(&head->lock);
2525 	spin_lock(&delayed_refs->lock);
2526 	spin_lock(&head->lock);
2527 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2528 		spin_unlock(&head->lock);
2529 		spin_unlock(&delayed_refs->lock);
2530 		return 1;
2531 	}
2532 	btrfs_delete_ref_head(delayed_refs, head);
2533 	spin_unlock(&head->lock);
2534 	spin_unlock(&delayed_refs->lock);
2535 
2536 	if (head->must_insert_reserved) {
2537 		btrfs_pin_extent(fs_info, head->bytenr,
2538 				 head->num_bytes, 1);
2539 		if (head->is_data) {
2540 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2541 					      head->num_bytes);
2542 		}
2543 	}
2544 
2545 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2546 
2547 	trace_run_delayed_ref_head(fs_info, head, 0);
2548 	btrfs_delayed_ref_unlock(head);
2549 	btrfs_put_delayed_ref_head(head);
2550 	return 0;
2551 }
2552 
2553 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2554 					struct btrfs_trans_handle *trans)
2555 {
2556 	struct btrfs_delayed_ref_root *delayed_refs =
2557 		&trans->transaction->delayed_refs;
2558 	struct btrfs_delayed_ref_head *head = NULL;
2559 	int ret;
2560 
2561 	spin_lock(&delayed_refs->lock);
2562 	head = btrfs_select_ref_head(delayed_refs);
2563 	if (!head) {
2564 		spin_unlock(&delayed_refs->lock);
2565 		return head;
2566 	}
2567 
2568 	/*
2569 	 * Grab the lock that says we are going to process all the refs for
2570 	 * this head
2571 	 */
2572 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
2573 	spin_unlock(&delayed_refs->lock);
2574 
2575 	/*
2576 	 * We may have dropped the spin lock to get the head mutex lock, and
2577 	 * that might have given someone else time to free the head.  If that's
2578 	 * true, it has been removed from our list and we can move on.
2579 	 */
2580 	if (ret == -EAGAIN)
2581 		head = ERR_PTR(-EAGAIN);
2582 
2583 	return head;
2584 }
2585 
2586 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2587 				    struct btrfs_delayed_ref_head *locked_ref,
2588 				    unsigned long *run_refs)
2589 {
2590 	struct btrfs_fs_info *fs_info = trans->fs_info;
2591 	struct btrfs_delayed_ref_root *delayed_refs;
2592 	struct btrfs_delayed_extent_op *extent_op;
2593 	struct btrfs_delayed_ref_node *ref;
2594 	int must_insert_reserved = 0;
2595 	int ret;
2596 
2597 	delayed_refs = &trans->transaction->delayed_refs;
2598 
2599 	lockdep_assert_held(&locked_ref->mutex);
2600 	lockdep_assert_held(&locked_ref->lock);
2601 
2602 	while ((ref = select_delayed_ref(locked_ref))) {
2603 		if (ref->seq &&
2604 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2605 			spin_unlock(&locked_ref->lock);
2606 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2607 			return -EAGAIN;
2608 		}
2609 
2610 		(*run_refs)++;
2611 		ref->in_tree = 0;
2612 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2613 		RB_CLEAR_NODE(&ref->ref_node);
2614 		if (!list_empty(&ref->add_list))
2615 			list_del(&ref->add_list);
2616 		/*
2617 		 * When we play the delayed ref, also correct the ref_mod on
2618 		 * head
2619 		 */
2620 		switch (ref->action) {
2621 		case BTRFS_ADD_DELAYED_REF:
2622 		case BTRFS_ADD_DELAYED_EXTENT:
2623 			locked_ref->ref_mod -= ref->ref_mod;
2624 			break;
2625 		case BTRFS_DROP_DELAYED_REF:
2626 			locked_ref->ref_mod += ref->ref_mod;
2627 			break;
2628 		default:
2629 			WARN_ON(1);
2630 		}
2631 		atomic_dec(&delayed_refs->num_entries);
2632 
2633 		/*
2634 		 * Record the must_insert_reserved flag before we drop the
2635 		 * spin lock.
2636 		 */
2637 		must_insert_reserved = locked_ref->must_insert_reserved;
2638 		locked_ref->must_insert_reserved = 0;
2639 
2640 		extent_op = locked_ref->extent_op;
2641 		locked_ref->extent_op = NULL;
2642 		spin_unlock(&locked_ref->lock);
2643 
2644 		ret = run_one_delayed_ref(trans, ref, extent_op,
2645 					  must_insert_reserved);
2646 
2647 		btrfs_free_delayed_extent_op(extent_op);
2648 		if (ret) {
2649 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2650 			btrfs_put_delayed_ref(ref);
2651 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2652 				    ret);
2653 			return ret;
2654 		}
2655 
2656 		btrfs_put_delayed_ref(ref);
2657 		cond_resched();
2658 
2659 		spin_lock(&locked_ref->lock);
2660 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 /*
2667  * Returns 0 on success or if called with an already aborted transaction.
2668  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2669  */
2670 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2671 					     unsigned long nr)
2672 {
2673 	struct btrfs_fs_info *fs_info = trans->fs_info;
2674 	struct btrfs_delayed_ref_root *delayed_refs;
2675 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2676 	ktime_t start = ktime_get();
2677 	int ret;
2678 	unsigned long count = 0;
2679 	unsigned long actual_count = 0;
2680 
2681 	delayed_refs = &trans->transaction->delayed_refs;
2682 	do {
2683 		if (!locked_ref) {
2684 			locked_ref = btrfs_obtain_ref_head(trans);
2685 			if (IS_ERR_OR_NULL(locked_ref)) {
2686 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2687 					continue;
2688 				} else {
2689 					break;
2690 				}
2691 			}
2692 			count++;
2693 		}
2694 		/*
2695 		 * We need to try and merge add/drops of the same ref since we
2696 		 * can run into issues with relocate dropping the implicit ref
2697 		 * and then it being added back again before the drop can
2698 		 * finish.  If we merged anything we need to re-loop so we can
2699 		 * get a good ref.
2700 		 * Or we can get node references of the same type that weren't
2701 		 * merged when created due to bumps in the tree mod seq, and
2702 		 * we need to merge them to prevent adding an inline extent
2703 		 * backref before dropping it (triggering a BUG_ON at
2704 		 * insert_inline_extent_backref()).
2705 		 */
2706 		spin_lock(&locked_ref->lock);
2707 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2708 
2709 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2710 						      &actual_count);
2711 		if (ret < 0 && ret != -EAGAIN) {
2712 			/*
2713 			 * Error, btrfs_run_delayed_refs_for_head already
2714 			 * unlocked everything so just bail out
2715 			 */
2716 			return ret;
2717 		} else if (!ret) {
2718 			/*
2719 			 * Success, perform the usual cleanup of a processed
2720 			 * head
2721 			 */
2722 			ret = cleanup_ref_head(trans, locked_ref);
2723 			if (ret > 0 ) {
2724 				/* We dropped our lock, we need to loop. */
2725 				ret = 0;
2726 				continue;
2727 			} else if (ret) {
2728 				return ret;
2729 			}
2730 		}
2731 
2732 		/*
2733 		 * Either success case or btrfs_run_delayed_refs_for_head
2734 		 * returned -EAGAIN, meaning we need to select another head
2735 		 */
2736 
2737 		locked_ref = NULL;
2738 		cond_resched();
2739 	} while ((nr != -1 && count < nr) || locked_ref);
2740 
2741 	/*
2742 	 * We don't want to include ref heads since we can have empty ref heads
2743 	 * and those will drastically skew our runtime down since we just do
2744 	 * accounting, no actual extent tree updates.
2745 	 */
2746 	if (actual_count > 0) {
2747 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2748 		u64 avg;
2749 
2750 		/*
2751 		 * We weigh the current average higher than our current runtime
2752 		 * to avoid large swings in the average.
2753 		 */
2754 		spin_lock(&delayed_refs->lock);
2755 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2756 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2757 		spin_unlock(&delayed_refs->lock);
2758 	}
2759 	return 0;
2760 }
2761 
2762 #ifdef SCRAMBLE_DELAYED_REFS
2763 /*
2764  * Normally delayed refs get processed in ascending bytenr order. This
2765  * correlates in most cases to the order added. To expose dependencies on this
2766  * order, we start to process the tree in the middle instead of the beginning
2767  */
2768 static u64 find_middle(struct rb_root *root)
2769 {
2770 	struct rb_node *n = root->rb_node;
2771 	struct btrfs_delayed_ref_node *entry;
2772 	int alt = 1;
2773 	u64 middle;
2774 	u64 first = 0, last = 0;
2775 
2776 	n = rb_first(root);
2777 	if (n) {
2778 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2779 		first = entry->bytenr;
2780 	}
2781 	n = rb_last(root);
2782 	if (n) {
2783 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2784 		last = entry->bytenr;
2785 	}
2786 	n = root->rb_node;
2787 
2788 	while (n) {
2789 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2790 		WARN_ON(!entry->in_tree);
2791 
2792 		middle = entry->bytenr;
2793 
2794 		if (alt)
2795 			n = n->rb_left;
2796 		else
2797 			n = n->rb_right;
2798 
2799 		alt = 1 - alt;
2800 	}
2801 	return middle;
2802 }
2803 #endif
2804 
2805 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2806 {
2807 	u64 num_bytes;
2808 
2809 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2810 			     sizeof(struct btrfs_extent_inline_ref));
2811 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2812 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2813 
2814 	/*
2815 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2816 	 * closer to what we're really going to want to use.
2817 	 */
2818 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2819 }
2820 
2821 /*
2822  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2823  * would require to store the csums for that many bytes.
2824  */
2825 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2826 {
2827 	u64 csum_size;
2828 	u64 num_csums_per_leaf;
2829 	u64 num_csums;
2830 
2831 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2832 	num_csums_per_leaf = div64_u64(csum_size,
2833 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2834 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2835 	num_csums += num_csums_per_leaf - 1;
2836 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2837 	return num_csums;
2838 }
2839 
2840 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2841 {
2842 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2843 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2844 	bool ret = false;
2845 	u64 reserved;
2846 
2847 	spin_lock(&global_rsv->lock);
2848 	reserved = global_rsv->reserved;
2849 	spin_unlock(&global_rsv->lock);
2850 
2851 	/*
2852 	 * Since the global reserve is just kind of magic we don't really want
2853 	 * to rely on it to save our bacon, so if our size is more than the
2854 	 * delayed_refs_rsv and the global rsv then it's time to think about
2855 	 * bailing.
2856 	 */
2857 	spin_lock(&delayed_refs_rsv->lock);
2858 	reserved += delayed_refs_rsv->reserved;
2859 	if (delayed_refs_rsv->size >= reserved)
2860 		ret = true;
2861 	spin_unlock(&delayed_refs_rsv->lock);
2862 	return ret;
2863 }
2864 
2865 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2866 {
2867 	u64 num_entries =
2868 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2869 	u64 avg_runtime;
2870 	u64 val;
2871 
2872 	smp_mb();
2873 	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2874 	val = num_entries * avg_runtime;
2875 	if (val >= NSEC_PER_SEC)
2876 		return 1;
2877 	if (val >= NSEC_PER_SEC / 2)
2878 		return 2;
2879 
2880 	return btrfs_check_space_for_delayed_refs(trans->fs_info);
2881 }
2882 
2883 struct async_delayed_refs {
2884 	struct btrfs_root *root;
2885 	u64 transid;
2886 	int count;
2887 	int error;
2888 	int sync;
2889 	struct completion wait;
2890 	struct btrfs_work work;
2891 };
2892 
2893 static inline struct async_delayed_refs *
2894 to_async_delayed_refs(struct btrfs_work *work)
2895 {
2896 	return container_of(work, struct async_delayed_refs, work);
2897 }
2898 
2899 static void delayed_ref_async_start(struct btrfs_work *work)
2900 {
2901 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2902 	struct btrfs_trans_handle *trans;
2903 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2904 	int ret;
2905 
2906 	/* if the commit is already started, we don't need to wait here */
2907 	if (btrfs_transaction_blocked(fs_info))
2908 		goto done;
2909 
2910 	trans = btrfs_join_transaction(async->root);
2911 	if (IS_ERR(trans)) {
2912 		async->error = PTR_ERR(trans);
2913 		goto done;
2914 	}
2915 
2916 	/*
2917 	 * trans->sync means that when we call end_transaction, we won't
2918 	 * wait on delayed refs
2919 	 */
2920 	trans->sync = true;
2921 
2922 	/* Don't bother flushing if we got into a different transaction */
2923 	if (trans->transid > async->transid)
2924 		goto end;
2925 
2926 	ret = btrfs_run_delayed_refs(trans, async->count);
2927 	if (ret)
2928 		async->error = ret;
2929 end:
2930 	ret = btrfs_end_transaction(trans);
2931 	if (ret && !async->error)
2932 		async->error = ret;
2933 done:
2934 	if (async->sync)
2935 		complete(&async->wait);
2936 	else
2937 		kfree(async);
2938 }
2939 
2940 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2941 				 unsigned long count, u64 transid, int wait)
2942 {
2943 	struct async_delayed_refs *async;
2944 	int ret;
2945 
2946 	async = kmalloc(sizeof(*async), GFP_NOFS);
2947 	if (!async)
2948 		return -ENOMEM;
2949 
2950 	async->root = fs_info->tree_root;
2951 	async->count = count;
2952 	async->error = 0;
2953 	async->transid = transid;
2954 	if (wait)
2955 		async->sync = 1;
2956 	else
2957 		async->sync = 0;
2958 	init_completion(&async->wait);
2959 
2960 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2961 			delayed_ref_async_start, NULL, NULL);
2962 
2963 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2964 
2965 	if (wait) {
2966 		wait_for_completion(&async->wait);
2967 		ret = async->error;
2968 		kfree(async);
2969 		return ret;
2970 	}
2971 	return 0;
2972 }
2973 
2974 /*
2975  * this starts processing the delayed reference count updates and
2976  * extent insertions we have queued up so far.  count can be
2977  * 0, which means to process everything in the tree at the start
2978  * of the run (but not newly added entries), or it can be some target
2979  * number you'd like to process.
2980  *
2981  * Returns 0 on success or if called with an aborted transaction
2982  * Returns <0 on error and aborts the transaction
2983  */
2984 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2985 			   unsigned long count)
2986 {
2987 	struct btrfs_fs_info *fs_info = trans->fs_info;
2988 	struct rb_node *node;
2989 	struct btrfs_delayed_ref_root *delayed_refs;
2990 	struct btrfs_delayed_ref_head *head;
2991 	int ret;
2992 	int run_all = count == (unsigned long)-1;
2993 
2994 	/* We'll clean this up in btrfs_cleanup_transaction */
2995 	if (trans->aborted)
2996 		return 0;
2997 
2998 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2999 		return 0;
3000 
3001 	delayed_refs = &trans->transaction->delayed_refs;
3002 	if (count == 0)
3003 		count = atomic_read(&delayed_refs->num_entries) * 2;
3004 
3005 again:
3006 #ifdef SCRAMBLE_DELAYED_REFS
3007 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3008 #endif
3009 	ret = __btrfs_run_delayed_refs(trans, count);
3010 	if (ret < 0) {
3011 		btrfs_abort_transaction(trans, ret);
3012 		return ret;
3013 	}
3014 
3015 	if (run_all) {
3016 		if (!list_empty(&trans->new_bgs))
3017 			btrfs_create_pending_block_groups(trans);
3018 
3019 		spin_lock(&delayed_refs->lock);
3020 		node = rb_first_cached(&delayed_refs->href_root);
3021 		if (!node) {
3022 			spin_unlock(&delayed_refs->lock);
3023 			goto out;
3024 		}
3025 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 				href_node);
3027 		refcount_inc(&head->refs);
3028 		spin_unlock(&delayed_refs->lock);
3029 
3030 		/* Mutex was contended, block until it's released and retry. */
3031 		mutex_lock(&head->mutex);
3032 		mutex_unlock(&head->mutex);
3033 
3034 		btrfs_put_delayed_ref_head(head);
3035 		cond_resched();
3036 		goto again;
3037 	}
3038 out:
3039 	return 0;
3040 }
3041 
3042 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3043 				struct btrfs_fs_info *fs_info,
3044 				u64 bytenr, u64 num_bytes, u64 flags,
3045 				int level, int is_data)
3046 {
3047 	struct btrfs_delayed_extent_op *extent_op;
3048 	int ret;
3049 
3050 	extent_op = btrfs_alloc_delayed_extent_op();
3051 	if (!extent_op)
3052 		return -ENOMEM;
3053 
3054 	extent_op->flags_to_set = flags;
3055 	extent_op->update_flags = true;
3056 	extent_op->update_key = false;
3057 	extent_op->is_data = is_data ? true : false;
3058 	extent_op->level = level;
3059 
3060 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3061 					  num_bytes, extent_op);
3062 	if (ret)
3063 		btrfs_free_delayed_extent_op(extent_op);
3064 	return ret;
3065 }
3066 
3067 static noinline int check_delayed_ref(struct btrfs_root *root,
3068 				      struct btrfs_path *path,
3069 				      u64 objectid, u64 offset, u64 bytenr)
3070 {
3071 	struct btrfs_delayed_ref_head *head;
3072 	struct btrfs_delayed_ref_node *ref;
3073 	struct btrfs_delayed_data_ref *data_ref;
3074 	struct btrfs_delayed_ref_root *delayed_refs;
3075 	struct btrfs_transaction *cur_trans;
3076 	struct rb_node *node;
3077 	int ret = 0;
3078 
3079 	spin_lock(&root->fs_info->trans_lock);
3080 	cur_trans = root->fs_info->running_transaction;
3081 	if (cur_trans)
3082 		refcount_inc(&cur_trans->use_count);
3083 	spin_unlock(&root->fs_info->trans_lock);
3084 	if (!cur_trans)
3085 		return 0;
3086 
3087 	delayed_refs = &cur_trans->delayed_refs;
3088 	spin_lock(&delayed_refs->lock);
3089 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3090 	if (!head) {
3091 		spin_unlock(&delayed_refs->lock);
3092 		btrfs_put_transaction(cur_trans);
3093 		return 0;
3094 	}
3095 
3096 	if (!mutex_trylock(&head->mutex)) {
3097 		refcount_inc(&head->refs);
3098 		spin_unlock(&delayed_refs->lock);
3099 
3100 		btrfs_release_path(path);
3101 
3102 		/*
3103 		 * Mutex was contended, block until it's released and let
3104 		 * caller try again
3105 		 */
3106 		mutex_lock(&head->mutex);
3107 		mutex_unlock(&head->mutex);
3108 		btrfs_put_delayed_ref_head(head);
3109 		btrfs_put_transaction(cur_trans);
3110 		return -EAGAIN;
3111 	}
3112 	spin_unlock(&delayed_refs->lock);
3113 
3114 	spin_lock(&head->lock);
3115 	/*
3116 	 * XXX: We should replace this with a proper search function in the
3117 	 * future.
3118 	 */
3119 	for (node = rb_first_cached(&head->ref_tree); node;
3120 	     node = rb_next(node)) {
3121 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3122 		/* If it's a shared ref we know a cross reference exists */
3123 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3124 			ret = 1;
3125 			break;
3126 		}
3127 
3128 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3129 
3130 		/*
3131 		 * If our ref doesn't match the one we're currently looking at
3132 		 * then we have a cross reference.
3133 		 */
3134 		if (data_ref->root != root->root_key.objectid ||
3135 		    data_ref->objectid != objectid ||
3136 		    data_ref->offset != offset) {
3137 			ret = 1;
3138 			break;
3139 		}
3140 	}
3141 	spin_unlock(&head->lock);
3142 	mutex_unlock(&head->mutex);
3143 	btrfs_put_transaction(cur_trans);
3144 	return ret;
3145 }
3146 
3147 static noinline int check_committed_ref(struct btrfs_root *root,
3148 					struct btrfs_path *path,
3149 					u64 objectid, u64 offset, u64 bytenr)
3150 {
3151 	struct btrfs_fs_info *fs_info = root->fs_info;
3152 	struct btrfs_root *extent_root = fs_info->extent_root;
3153 	struct extent_buffer *leaf;
3154 	struct btrfs_extent_data_ref *ref;
3155 	struct btrfs_extent_inline_ref *iref;
3156 	struct btrfs_extent_item *ei;
3157 	struct btrfs_key key;
3158 	u32 item_size;
3159 	int type;
3160 	int ret;
3161 
3162 	key.objectid = bytenr;
3163 	key.offset = (u64)-1;
3164 	key.type = BTRFS_EXTENT_ITEM_KEY;
3165 
3166 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3167 	if (ret < 0)
3168 		goto out;
3169 	BUG_ON(ret == 0); /* Corruption */
3170 
3171 	ret = -ENOENT;
3172 	if (path->slots[0] == 0)
3173 		goto out;
3174 
3175 	path->slots[0]--;
3176 	leaf = path->nodes[0];
3177 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3178 
3179 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3180 		goto out;
3181 
3182 	ret = 1;
3183 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3184 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3185 
3186 	if (item_size != sizeof(*ei) +
3187 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3188 		goto out;
3189 
3190 	if (btrfs_extent_generation(leaf, ei) <=
3191 	    btrfs_root_last_snapshot(&root->root_item))
3192 		goto out;
3193 
3194 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3195 
3196 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3197 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3198 		goto out;
3199 
3200 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3201 	if (btrfs_extent_refs(leaf, ei) !=
3202 	    btrfs_extent_data_ref_count(leaf, ref) ||
3203 	    btrfs_extent_data_ref_root(leaf, ref) !=
3204 	    root->root_key.objectid ||
3205 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3206 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3207 		goto out;
3208 
3209 	ret = 0;
3210 out:
3211 	return ret;
3212 }
3213 
3214 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3215 			  u64 bytenr)
3216 {
3217 	struct btrfs_path *path;
3218 	int ret;
3219 
3220 	path = btrfs_alloc_path();
3221 	if (!path)
3222 		return -ENOMEM;
3223 
3224 	do {
3225 		ret = check_committed_ref(root, path, objectid,
3226 					  offset, bytenr);
3227 		if (ret && ret != -ENOENT)
3228 			goto out;
3229 
3230 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3231 	} while (ret == -EAGAIN);
3232 
3233 out:
3234 	btrfs_free_path(path);
3235 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3236 		WARN_ON(ret > 0);
3237 	return ret;
3238 }
3239 
3240 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3241 			   struct btrfs_root *root,
3242 			   struct extent_buffer *buf,
3243 			   int full_backref, int inc)
3244 {
3245 	struct btrfs_fs_info *fs_info = root->fs_info;
3246 	u64 bytenr;
3247 	u64 num_bytes;
3248 	u64 parent;
3249 	u64 ref_root;
3250 	u32 nritems;
3251 	struct btrfs_key key;
3252 	struct btrfs_file_extent_item *fi;
3253 	int i;
3254 	int level;
3255 	int ret = 0;
3256 	int (*process_func)(struct btrfs_trans_handle *,
3257 			    struct btrfs_root *,
3258 			    u64, u64, u64, u64, u64, u64);
3259 
3260 
3261 	if (btrfs_is_testing(fs_info))
3262 		return 0;
3263 
3264 	ref_root = btrfs_header_owner(buf);
3265 	nritems = btrfs_header_nritems(buf);
3266 	level = btrfs_header_level(buf);
3267 
3268 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3269 		return 0;
3270 
3271 	if (inc)
3272 		process_func = btrfs_inc_extent_ref;
3273 	else
3274 		process_func = btrfs_free_extent;
3275 
3276 	if (full_backref)
3277 		parent = buf->start;
3278 	else
3279 		parent = 0;
3280 
3281 	for (i = 0; i < nritems; i++) {
3282 		if (level == 0) {
3283 			btrfs_item_key_to_cpu(buf, &key, i);
3284 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3285 				continue;
3286 			fi = btrfs_item_ptr(buf, i,
3287 					    struct btrfs_file_extent_item);
3288 			if (btrfs_file_extent_type(buf, fi) ==
3289 			    BTRFS_FILE_EXTENT_INLINE)
3290 				continue;
3291 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3292 			if (bytenr == 0)
3293 				continue;
3294 
3295 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3296 			key.offset -= btrfs_file_extent_offset(buf, fi);
3297 			ret = process_func(trans, root, bytenr, num_bytes,
3298 					   parent, ref_root, key.objectid,
3299 					   key.offset);
3300 			if (ret)
3301 				goto fail;
3302 		} else {
3303 			bytenr = btrfs_node_blockptr(buf, i);
3304 			num_bytes = fs_info->nodesize;
3305 			ret = process_func(trans, root, bytenr, num_bytes,
3306 					   parent, ref_root, level - 1, 0);
3307 			if (ret)
3308 				goto fail;
3309 		}
3310 	}
3311 	return 0;
3312 fail:
3313 	return ret;
3314 }
3315 
3316 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3317 		  struct extent_buffer *buf, int full_backref)
3318 {
3319 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3320 }
3321 
3322 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3323 		  struct extent_buffer *buf, int full_backref)
3324 {
3325 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3326 }
3327 
3328 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3329 				 struct btrfs_fs_info *fs_info,
3330 				 struct btrfs_path *path,
3331 				 struct btrfs_block_group_cache *cache)
3332 {
3333 	int ret;
3334 	struct btrfs_root *extent_root = fs_info->extent_root;
3335 	unsigned long bi;
3336 	struct extent_buffer *leaf;
3337 
3338 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3339 	if (ret) {
3340 		if (ret > 0)
3341 			ret = -ENOENT;
3342 		goto fail;
3343 	}
3344 
3345 	leaf = path->nodes[0];
3346 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3347 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3348 	btrfs_mark_buffer_dirty(leaf);
3349 fail:
3350 	btrfs_release_path(path);
3351 	return ret;
3352 
3353 }
3354 
3355 static struct btrfs_block_group_cache *
3356 next_block_group(struct btrfs_fs_info *fs_info,
3357 		 struct btrfs_block_group_cache *cache)
3358 {
3359 	struct rb_node *node;
3360 
3361 	spin_lock(&fs_info->block_group_cache_lock);
3362 
3363 	/* If our block group was removed, we need a full search. */
3364 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3365 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3366 
3367 		spin_unlock(&fs_info->block_group_cache_lock);
3368 		btrfs_put_block_group(cache);
3369 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3370 	}
3371 	node = rb_next(&cache->cache_node);
3372 	btrfs_put_block_group(cache);
3373 	if (node) {
3374 		cache = rb_entry(node, struct btrfs_block_group_cache,
3375 				 cache_node);
3376 		btrfs_get_block_group(cache);
3377 	} else
3378 		cache = NULL;
3379 	spin_unlock(&fs_info->block_group_cache_lock);
3380 	return cache;
3381 }
3382 
3383 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3384 			    struct btrfs_trans_handle *trans,
3385 			    struct btrfs_path *path)
3386 {
3387 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3388 	struct btrfs_root *root = fs_info->tree_root;
3389 	struct inode *inode = NULL;
3390 	struct extent_changeset *data_reserved = NULL;
3391 	u64 alloc_hint = 0;
3392 	int dcs = BTRFS_DC_ERROR;
3393 	u64 num_pages = 0;
3394 	int retries = 0;
3395 	int ret = 0;
3396 
3397 	/*
3398 	 * If this block group is smaller than 100 megs don't bother caching the
3399 	 * block group.
3400 	 */
3401 	if (block_group->key.offset < (100 * SZ_1M)) {
3402 		spin_lock(&block_group->lock);
3403 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3404 		spin_unlock(&block_group->lock);
3405 		return 0;
3406 	}
3407 
3408 	if (trans->aborted)
3409 		return 0;
3410 again:
3411 	inode = lookup_free_space_inode(fs_info, block_group, path);
3412 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3413 		ret = PTR_ERR(inode);
3414 		btrfs_release_path(path);
3415 		goto out;
3416 	}
3417 
3418 	if (IS_ERR(inode)) {
3419 		BUG_ON(retries);
3420 		retries++;
3421 
3422 		if (block_group->ro)
3423 			goto out_free;
3424 
3425 		ret = create_free_space_inode(fs_info, trans, block_group,
3426 					      path);
3427 		if (ret)
3428 			goto out_free;
3429 		goto again;
3430 	}
3431 
3432 	/*
3433 	 * We want to set the generation to 0, that way if anything goes wrong
3434 	 * from here on out we know not to trust this cache when we load up next
3435 	 * time.
3436 	 */
3437 	BTRFS_I(inode)->generation = 0;
3438 	ret = btrfs_update_inode(trans, root, inode);
3439 	if (ret) {
3440 		/*
3441 		 * So theoretically we could recover from this, simply set the
3442 		 * super cache generation to 0 so we know to invalidate the
3443 		 * cache, but then we'd have to keep track of the block groups
3444 		 * that fail this way so we know we _have_ to reset this cache
3445 		 * before the next commit or risk reading stale cache.  So to
3446 		 * limit our exposure to horrible edge cases lets just abort the
3447 		 * transaction, this only happens in really bad situations
3448 		 * anyway.
3449 		 */
3450 		btrfs_abort_transaction(trans, ret);
3451 		goto out_put;
3452 	}
3453 	WARN_ON(ret);
3454 
3455 	/* We've already setup this transaction, go ahead and exit */
3456 	if (block_group->cache_generation == trans->transid &&
3457 	    i_size_read(inode)) {
3458 		dcs = BTRFS_DC_SETUP;
3459 		goto out_put;
3460 	}
3461 
3462 	if (i_size_read(inode) > 0) {
3463 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3464 					&fs_info->global_block_rsv);
3465 		if (ret)
3466 			goto out_put;
3467 
3468 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3469 		if (ret)
3470 			goto out_put;
3471 	}
3472 
3473 	spin_lock(&block_group->lock);
3474 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3475 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3476 		/*
3477 		 * don't bother trying to write stuff out _if_
3478 		 * a) we're not cached,
3479 		 * b) we're with nospace_cache mount option,
3480 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3481 		 */
3482 		dcs = BTRFS_DC_WRITTEN;
3483 		spin_unlock(&block_group->lock);
3484 		goto out_put;
3485 	}
3486 	spin_unlock(&block_group->lock);
3487 
3488 	/*
3489 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3490 	 * skip doing the setup, we've already cleared the cache so we're safe.
3491 	 */
3492 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3493 		ret = -ENOSPC;
3494 		goto out_put;
3495 	}
3496 
3497 	/*
3498 	 * Try to preallocate enough space based on how big the block group is.
3499 	 * Keep in mind this has to include any pinned space which could end up
3500 	 * taking up quite a bit since it's not folded into the other space
3501 	 * cache.
3502 	 */
3503 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3504 	if (!num_pages)
3505 		num_pages = 1;
3506 
3507 	num_pages *= 16;
3508 	num_pages *= PAGE_SIZE;
3509 
3510 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3511 	if (ret)
3512 		goto out_put;
3513 
3514 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3515 					      num_pages, num_pages,
3516 					      &alloc_hint);
3517 	/*
3518 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3519 	 * of metadata or split extents when writing the cache out, which means
3520 	 * we can enospc if we are heavily fragmented in addition to just normal
3521 	 * out of space conditions.  So if we hit this just skip setting up any
3522 	 * other block groups for this transaction, maybe we'll unpin enough
3523 	 * space the next time around.
3524 	 */
3525 	if (!ret)
3526 		dcs = BTRFS_DC_SETUP;
3527 	else if (ret == -ENOSPC)
3528 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3529 
3530 out_put:
3531 	iput(inode);
3532 out_free:
3533 	btrfs_release_path(path);
3534 out:
3535 	spin_lock(&block_group->lock);
3536 	if (!ret && dcs == BTRFS_DC_SETUP)
3537 		block_group->cache_generation = trans->transid;
3538 	block_group->disk_cache_state = dcs;
3539 	spin_unlock(&block_group->lock);
3540 
3541 	extent_changeset_free(data_reserved);
3542 	return ret;
3543 }
3544 
3545 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3546 			    struct btrfs_fs_info *fs_info)
3547 {
3548 	struct btrfs_block_group_cache *cache, *tmp;
3549 	struct btrfs_transaction *cur_trans = trans->transaction;
3550 	struct btrfs_path *path;
3551 
3552 	if (list_empty(&cur_trans->dirty_bgs) ||
3553 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3554 		return 0;
3555 
3556 	path = btrfs_alloc_path();
3557 	if (!path)
3558 		return -ENOMEM;
3559 
3560 	/* Could add new block groups, use _safe just in case */
3561 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3562 				 dirty_list) {
3563 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3564 			cache_save_setup(cache, trans, path);
3565 	}
3566 
3567 	btrfs_free_path(path);
3568 	return 0;
3569 }
3570 
3571 /*
3572  * transaction commit does final block group cache writeback during a
3573  * critical section where nothing is allowed to change the FS.  This is
3574  * required in order for the cache to actually match the block group,
3575  * but can introduce a lot of latency into the commit.
3576  *
3577  * So, btrfs_start_dirty_block_groups is here to kick off block group
3578  * cache IO.  There's a chance we'll have to redo some of it if the
3579  * block group changes again during the commit, but it greatly reduces
3580  * the commit latency by getting rid of the easy block groups while
3581  * we're still allowing others to join the commit.
3582  */
3583 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3584 {
3585 	struct btrfs_fs_info *fs_info = trans->fs_info;
3586 	struct btrfs_block_group_cache *cache;
3587 	struct btrfs_transaction *cur_trans = trans->transaction;
3588 	int ret = 0;
3589 	int should_put;
3590 	struct btrfs_path *path = NULL;
3591 	LIST_HEAD(dirty);
3592 	struct list_head *io = &cur_trans->io_bgs;
3593 	int num_started = 0;
3594 	int loops = 0;
3595 
3596 	spin_lock(&cur_trans->dirty_bgs_lock);
3597 	if (list_empty(&cur_trans->dirty_bgs)) {
3598 		spin_unlock(&cur_trans->dirty_bgs_lock);
3599 		return 0;
3600 	}
3601 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3602 	spin_unlock(&cur_trans->dirty_bgs_lock);
3603 
3604 again:
3605 	/*
3606 	 * make sure all the block groups on our dirty list actually
3607 	 * exist
3608 	 */
3609 	btrfs_create_pending_block_groups(trans);
3610 
3611 	if (!path) {
3612 		path = btrfs_alloc_path();
3613 		if (!path)
3614 			return -ENOMEM;
3615 	}
3616 
3617 	/*
3618 	 * cache_write_mutex is here only to save us from balance or automatic
3619 	 * removal of empty block groups deleting this block group while we are
3620 	 * writing out the cache
3621 	 */
3622 	mutex_lock(&trans->transaction->cache_write_mutex);
3623 	while (!list_empty(&dirty)) {
3624 		bool drop_reserve = true;
3625 
3626 		cache = list_first_entry(&dirty,
3627 					 struct btrfs_block_group_cache,
3628 					 dirty_list);
3629 		/*
3630 		 * this can happen if something re-dirties a block
3631 		 * group that is already under IO.  Just wait for it to
3632 		 * finish and then do it all again
3633 		 */
3634 		if (!list_empty(&cache->io_list)) {
3635 			list_del_init(&cache->io_list);
3636 			btrfs_wait_cache_io(trans, cache, path);
3637 			btrfs_put_block_group(cache);
3638 		}
3639 
3640 
3641 		/*
3642 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3643 		 * if it should update the cache_state.  Don't delete
3644 		 * until after we wait.
3645 		 *
3646 		 * Since we're not running in the commit critical section
3647 		 * we need the dirty_bgs_lock to protect from update_block_group
3648 		 */
3649 		spin_lock(&cur_trans->dirty_bgs_lock);
3650 		list_del_init(&cache->dirty_list);
3651 		spin_unlock(&cur_trans->dirty_bgs_lock);
3652 
3653 		should_put = 1;
3654 
3655 		cache_save_setup(cache, trans, path);
3656 
3657 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3658 			cache->io_ctl.inode = NULL;
3659 			ret = btrfs_write_out_cache(fs_info, trans,
3660 						    cache, path);
3661 			if (ret == 0 && cache->io_ctl.inode) {
3662 				num_started++;
3663 				should_put = 0;
3664 
3665 				/*
3666 				 * The cache_write_mutex is protecting the
3667 				 * io_list, also refer to the definition of
3668 				 * btrfs_transaction::io_bgs for more details
3669 				 */
3670 				list_add_tail(&cache->io_list, io);
3671 			} else {
3672 				/*
3673 				 * if we failed to write the cache, the
3674 				 * generation will be bad and life goes on
3675 				 */
3676 				ret = 0;
3677 			}
3678 		}
3679 		if (!ret) {
3680 			ret = write_one_cache_group(trans, fs_info,
3681 						    path, cache);
3682 			/*
3683 			 * Our block group might still be attached to the list
3684 			 * of new block groups in the transaction handle of some
3685 			 * other task (struct btrfs_trans_handle->new_bgs). This
3686 			 * means its block group item isn't yet in the extent
3687 			 * tree. If this happens ignore the error, as we will
3688 			 * try again later in the critical section of the
3689 			 * transaction commit.
3690 			 */
3691 			if (ret == -ENOENT) {
3692 				ret = 0;
3693 				spin_lock(&cur_trans->dirty_bgs_lock);
3694 				if (list_empty(&cache->dirty_list)) {
3695 					list_add_tail(&cache->dirty_list,
3696 						      &cur_trans->dirty_bgs);
3697 					btrfs_get_block_group(cache);
3698 					drop_reserve = false;
3699 				}
3700 				spin_unlock(&cur_trans->dirty_bgs_lock);
3701 			} else if (ret) {
3702 				btrfs_abort_transaction(trans, ret);
3703 			}
3704 		}
3705 
3706 		/* if it's not on the io list, we need to put the block group */
3707 		if (should_put)
3708 			btrfs_put_block_group(cache);
3709 		if (drop_reserve)
3710 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3711 
3712 		if (ret)
3713 			break;
3714 
3715 		/*
3716 		 * Avoid blocking other tasks for too long. It might even save
3717 		 * us from writing caches for block groups that are going to be
3718 		 * removed.
3719 		 */
3720 		mutex_unlock(&trans->transaction->cache_write_mutex);
3721 		mutex_lock(&trans->transaction->cache_write_mutex);
3722 	}
3723 	mutex_unlock(&trans->transaction->cache_write_mutex);
3724 
3725 	/*
3726 	 * go through delayed refs for all the stuff we've just kicked off
3727 	 * and then loop back (just once)
3728 	 */
3729 	ret = btrfs_run_delayed_refs(trans, 0);
3730 	if (!ret && loops == 0) {
3731 		loops++;
3732 		spin_lock(&cur_trans->dirty_bgs_lock);
3733 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3734 		/*
3735 		 * dirty_bgs_lock protects us from concurrent block group
3736 		 * deletes too (not just cache_write_mutex).
3737 		 */
3738 		if (!list_empty(&dirty)) {
3739 			spin_unlock(&cur_trans->dirty_bgs_lock);
3740 			goto again;
3741 		}
3742 		spin_unlock(&cur_trans->dirty_bgs_lock);
3743 	} else if (ret < 0) {
3744 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3745 	}
3746 
3747 	btrfs_free_path(path);
3748 	return ret;
3749 }
3750 
3751 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3752 				   struct btrfs_fs_info *fs_info)
3753 {
3754 	struct btrfs_block_group_cache *cache;
3755 	struct btrfs_transaction *cur_trans = trans->transaction;
3756 	int ret = 0;
3757 	int should_put;
3758 	struct btrfs_path *path;
3759 	struct list_head *io = &cur_trans->io_bgs;
3760 	int num_started = 0;
3761 
3762 	path = btrfs_alloc_path();
3763 	if (!path)
3764 		return -ENOMEM;
3765 
3766 	/*
3767 	 * Even though we are in the critical section of the transaction commit,
3768 	 * we can still have concurrent tasks adding elements to this
3769 	 * transaction's list of dirty block groups. These tasks correspond to
3770 	 * endio free space workers started when writeback finishes for a
3771 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3772 	 * allocate new block groups as a result of COWing nodes of the root
3773 	 * tree when updating the free space inode. The writeback for the space
3774 	 * caches is triggered by an earlier call to
3775 	 * btrfs_start_dirty_block_groups() and iterations of the following
3776 	 * loop.
3777 	 * Also we want to do the cache_save_setup first and then run the
3778 	 * delayed refs to make sure we have the best chance at doing this all
3779 	 * in one shot.
3780 	 */
3781 	spin_lock(&cur_trans->dirty_bgs_lock);
3782 	while (!list_empty(&cur_trans->dirty_bgs)) {
3783 		cache = list_first_entry(&cur_trans->dirty_bgs,
3784 					 struct btrfs_block_group_cache,
3785 					 dirty_list);
3786 
3787 		/*
3788 		 * this can happen if cache_save_setup re-dirties a block
3789 		 * group that is already under IO.  Just wait for it to
3790 		 * finish and then do it all again
3791 		 */
3792 		if (!list_empty(&cache->io_list)) {
3793 			spin_unlock(&cur_trans->dirty_bgs_lock);
3794 			list_del_init(&cache->io_list);
3795 			btrfs_wait_cache_io(trans, cache, path);
3796 			btrfs_put_block_group(cache);
3797 			spin_lock(&cur_trans->dirty_bgs_lock);
3798 		}
3799 
3800 		/*
3801 		 * don't remove from the dirty list until after we've waited
3802 		 * on any pending IO
3803 		 */
3804 		list_del_init(&cache->dirty_list);
3805 		spin_unlock(&cur_trans->dirty_bgs_lock);
3806 		should_put = 1;
3807 
3808 		cache_save_setup(cache, trans, path);
3809 
3810 		if (!ret)
3811 			ret = btrfs_run_delayed_refs(trans,
3812 						     (unsigned long) -1);
3813 
3814 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3815 			cache->io_ctl.inode = NULL;
3816 			ret = btrfs_write_out_cache(fs_info, trans,
3817 						    cache, path);
3818 			if (ret == 0 && cache->io_ctl.inode) {
3819 				num_started++;
3820 				should_put = 0;
3821 				list_add_tail(&cache->io_list, io);
3822 			} else {
3823 				/*
3824 				 * if we failed to write the cache, the
3825 				 * generation will be bad and life goes on
3826 				 */
3827 				ret = 0;
3828 			}
3829 		}
3830 		if (!ret) {
3831 			ret = write_one_cache_group(trans, fs_info,
3832 						    path, cache);
3833 			/*
3834 			 * One of the free space endio workers might have
3835 			 * created a new block group while updating a free space
3836 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3837 			 * and hasn't released its transaction handle yet, in
3838 			 * which case the new block group is still attached to
3839 			 * its transaction handle and its creation has not
3840 			 * finished yet (no block group item in the extent tree
3841 			 * yet, etc). If this is the case, wait for all free
3842 			 * space endio workers to finish and retry. This is a
3843 			 * a very rare case so no need for a more efficient and
3844 			 * complex approach.
3845 			 */
3846 			if (ret == -ENOENT) {
3847 				wait_event(cur_trans->writer_wait,
3848 				   atomic_read(&cur_trans->num_writers) == 1);
3849 				ret = write_one_cache_group(trans, fs_info,
3850 							    path, cache);
3851 			}
3852 			if (ret)
3853 				btrfs_abort_transaction(trans, ret);
3854 		}
3855 
3856 		/* if its not on the io list, we need to put the block group */
3857 		if (should_put)
3858 			btrfs_put_block_group(cache);
3859 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3860 		spin_lock(&cur_trans->dirty_bgs_lock);
3861 	}
3862 	spin_unlock(&cur_trans->dirty_bgs_lock);
3863 
3864 	/*
3865 	 * Refer to the definition of io_bgs member for details why it's safe
3866 	 * to use it without any locking
3867 	 */
3868 	while (!list_empty(io)) {
3869 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3870 					 io_list);
3871 		list_del_init(&cache->io_list);
3872 		btrfs_wait_cache_io(trans, cache, path);
3873 		btrfs_put_block_group(cache);
3874 	}
3875 
3876 	btrfs_free_path(path);
3877 	return ret;
3878 }
3879 
3880 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3881 {
3882 	struct btrfs_block_group_cache *block_group;
3883 	int readonly = 0;
3884 
3885 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3886 	if (!block_group || block_group->ro)
3887 		readonly = 1;
3888 	if (block_group)
3889 		btrfs_put_block_group(block_group);
3890 	return readonly;
3891 }
3892 
3893 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3894 {
3895 	struct btrfs_block_group_cache *bg;
3896 	bool ret = true;
3897 
3898 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3899 	if (!bg)
3900 		return false;
3901 
3902 	spin_lock(&bg->lock);
3903 	if (bg->ro)
3904 		ret = false;
3905 	else
3906 		atomic_inc(&bg->nocow_writers);
3907 	spin_unlock(&bg->lock);
3908 
3909 	/* no put on block group, done by btrfs_dec_nocow_writers */
3910 	if (!ret)
3911 		btrfs_put_block_group(bg);
3912 
3913 	return ret;
3914 
3915 }
3916 
3917 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3918 {
3919 	struct btrfs_block_group_cache *bg;
3920 
3921 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3922 	ASSERT(bg);
3923 	if (atomic_dec_and_test(&bg->nocow_writers))
3924 		wake_up_var(&bg->nocow_writers);
3925 	/*
3926 	 * Once for our lookup and once for the lookup done by a previous call
3927 	 * to btrfs_inc_nocow_writers()
3928 	 */
3929 	btrfs_put_block_group(bg);
3930 	btrfs_put_block_group(bg);
3931 }
3932 
3933 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3934 {
3935 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3936 }
3937 
3938 static const char *alloc_name(u64 flags)
3939 {
3940 	switch (flags) {
3941 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3942 		return "mixed";
3943 	case BTRFS_BLOCK_GROUP_METADATA:
3944 		return "metadata";
3945 	case BTRFS_BLOCK_GROUP_DATA:
3946 		return "data";
3947 	case BTRFS_BLOCK_GROUP_SYSTEM:
3948 		return "system";
3949 	default:
3950 		WARN_ON(1);
3951 		return "invalid-combination";
3952 	};
3953 }
3954 
3955 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3956 {
3957 
3958 	struct btrfs_space_info *space_info;
3959 	int i;
3960 	int ret;
3961 
3962 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3963 	if (!space_info)
3964 		return -ENOMEM;
3965 
3966 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3967 				 GFP_KERNEL);
3968 	if (ret) {
3969 		kfree(space_info);
3970 		return ret;
3971 	}
3972 
3973 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3974 		INIT_LIST_HEAD(&space_info->block_groups[i]);
3975 	init_rwsem(&space_info->groups_sem);
3976 	spin_lock_init(&space_info->lock);
3977 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3978 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3979 	init_waitqueue_head(&space_info->wait);
3980 	INIT_LIST_HEAD(&space_info->ro_bgs);
3981 	INIT_LIST_HEAD(&space_info->tickets);
3982 	INIT_LIST_HEAD(&space_info->priority_tickets);
3983 
3984 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3985 				    info->space_info_kobj, "%s",
3986 				    alloc_name(space_info->flags));
3987 	if (ret) {
3988 		percpu_counter_destroy(&space_info->total_bytes_pinned);
3989 		kfree(space_info);
3990 		return ret;
3991 	}
3992 
3993 	list_add_rcu(&space_info->list, &info->space_info);
3994 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3995 		info->data_sinfo = space_info;
3996 
3997 	return ret;
3998 }
3999 
4000 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4001 			     u64 total_bytes, u64 bytes_used,
4002 			     u64 bytes_readonly,
4003 			     struct btrfs_space_info **space_info)
4004 {
4005 	struct btrfs_space_info *found;
4006 	int factor;
4007 
4008 	factor = btrfs_bg_type_to_factor(flags);
4009 
4010 	found = __find_space_info(info, flags);
4011 	ASSERT(found);
4012 	spin_lock(&found->lock);
4013 	found->total_bytes += total_bytes;
4014 	found->disk_total += total_bytes * factor;
4015 	found->bytes_used += bytes_used;
4016 	found->disk_used += bytes_used * factor;
4017 	found->bytes_readonly += bytes_readonly;
4018 	if (total_bytes > 0)
4019 		found->full = 0;
4020 	space_info_add_new_bytes(info, found, total_bytes -
4021 				 bytes_used - bytes_readonly);
4022 	spin_unlock(&found->lock);
4023 	*space_info = found;
4024 }
4025 
4026 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4027 {
4028 	u64 extra_flags = chunk_to_extended(flags) &
4029 				BTRFS_EXTENDED_PROFILE_MASK;
4030 
4031 	write_seqlock(&fs_info->profiles_lock);
4032 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4033 		fs_info->avail_data_alloc_bits |= extra_flags;
4034 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4035 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4036 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4037 		fs_info->avail_system_alloc_bits |= extra_flags;
4038 	write_sequnlock(&fs_info->profiles_lock);
4039 }
4040 
4041 /*
4042  * returns target flags in extended format or 0 if restripe for this
4043  * chunk_type is not in progress
4044  *
4045  * should be called with balance_lock held
4046  */
4047 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4048 {
4049 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4050 	u64 target = 0;
4051 
4052 	if (!bctl)
4053 		return 0;
4054 
4055 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4056 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4057 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4058 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4059 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4060 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4061 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4062 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4063 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4064 	}
4065 
4066 	return target;
4067 }
4068 
4069 /*
4070  * @flags: available profiles in extended format (see ctree.h)
4071  *
4072  * Returns reduced profile in chunk format.  If profile changing is in
4073  * progress (either running or paused) picks the target profile (if it's
4074  * already available), otherwise falls back to plain reducing.
4075  */
4076 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4077 {
4078 	u64 num_devices = fs_info->fs_devices->rw_devices;
4079 	u64 target;
4080 	u64 raid_type;
4081 	u64 allowed = 0;
4082 
4083 	/*
4084 	 * see if restripe for this chunk_type is in progress, if so
4085 	 * try to reduce to the target profile
4086 	 */
4087 	spin_lock(&fs_info->balance_lock);
4088 	target = get_restripe_target(fs_info, flags);
4089 	if (target) {
4090 		/* pick target profile only if it's already available */
4091 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4092 			spin_unlock(&fs_info->balance_lock);
4093 			return extended_to_chunk(target);
4094 		}
4095 	}
4096 	spin_unlock(&fs_info->balance_lock);
4097 
4098 	/* First, mask out the RAID levels which aren't possible */
4099 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4100 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4101 			allowed |= btrfs_raid_array[raid_type].bg_flag;
4102 	}
4103 	allowed &= flags;
4104 
4105 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4106 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4107 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4108 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4109 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4110 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4111 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4112 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4113 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4114 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4115 
4116 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4117 
4118 	return extended_to_chunk(flags | allowed);
4119 }
4120 
4121 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4122 {
4123 	unsigned seq;
4124 	u64 flags;
4125 
4126 	do {
4127 		flags = orig_flags;
4128 		seq = read_seqbegin(&fs_info->profiles_lock);
4129 
4130 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4131 			flags |= fs_info->avail_data_alloc_bits;
4132 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4133 			flags |= fs_info->avail_system_alloc_bits;
4134 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4135 			flags |= fs_info->avail_metadata_alloc_bits;
4136 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4137 
4138 	return btrfs_reduce_alloc_profile(fs_info, flags);
4139 }
4140 
4141 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4142 {
4143 	struct btrfs_fs_info *fs_info = root->fs_info;
4144 	u64 flags;
4145 	u64 ret;
4146 
4147 	if (data)
4148 		flags = BTRFS_BLOCK_GROUP_DATA;
4149 	else if (root == fs_info->chunk_root)
4150 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4151 	else
4152 		flags = BTRFS_BLOCK_GROUP_METADATA;
4153 
4154 	ret = get_alloc_profile(fs_info, flags);
4155 	return ret;
4156 }
4157 
4158 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4159 {
4160 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4161 }
4162 
4163 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4164 {
4165 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4166 }
4167 
4168 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4169 {
4170 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4171 }
4172 
4173 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4174 				 bool may_use_included)
4175 {
4176 	ASSERT(s_info);
4177 	return s_info->bytes_used + s_info->bytes_reserved +
4178 		s_info->bytes_pinned + s_info->bytes_readonly +
4179 		(may_use_included ? s_info->bytes_may_use : 0);
4180 }
4181 
4182 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4183 {
4184 	struct btrfs_root *root = inode->root;
4185 	struct btrfs_fs_info *fs_info = root->fs_info;
4186 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4187 	u64 used;
4188 	int ret = 0;
4189 	int need_commit = 2;
4190 	int have_pinned_space;
4191 
4192 	/* make sure bytes are sectorsize aligned */
4193 	bytes = ALIGN(bytes, fs_info->sectorsize);
4194 
4195 	if (btrfs_is_free_space_inode(inode)) {
4196 		need_commit = 0;
4197 		ASSERT(current->journal_info);
4198 	}
4199 
4200 again:
4201 	/* make sure we have enough space to handle the data first */
4202 	spin_lock(&data_sinfo->lock);
4203 	used = btrfs_space_info_used(data_sinfo, true);
4204 
4205 	if (used + bytes > data_sinfo->total_bytes) {
4206 		struct btrfs_trans_handle *trans;
4207 
4208 		/*
4209 		 * if we don't have enough free bytes in this space then we need
4210 		 * to alloc a new chunk.
4211 		 */
4212 		if (!data_sinfo->full) {
4213 			u64 alloc_target;
4214 
4215 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4216 			spin_unlock(&data_sinfo->lock);
4217 
4218 			alloc_target = btrfs_data_alloc_profile(fs_info);
4219 			/*
4220 			 * It is ugly that we don't call nolock join
4221 			 * transaction for the free space inode case here.
4222 			 * But it is safe because we only do the data space
4223 			 * reservation for the free space cache in the
4224 			 * transaction context, the common join transaction
4225 			 * just increase the counter of the current transaction
4226 			 * handler, doesn't try to acquire the trans_lock of
4227 			 * the fs.
4228 			 */
4229 			trans = btrfs_join_transaction(root);
4230 			if (IS_ERR(trans))
4231 				return PTR_ERR(trans);
4232 
4233 			ret = do_chunk_alloc(trans, alloc_target,
4234 					     CHUNK_ALLOC_NO_FORCE);
4235 			btrfs_end_transaction(trans);
4236 			if (ret < 0) {
4237 				if (ret != -ENOSPC)
4238 					return ret;
4239 				else {
4240 					have_pinned_space = 1;
4241 					goto commit_trans;
4242 				}
4243 			}
4244 
4245 			goto again;
4246 		}
4247 
4248 		/*
4249 		 * If we don't have enough pinned space to deal with this
4250 		 * allocation, and no removed chunk in current transaction,
4251 		 * don't bother committing the transaction.
4252 		 */
4253 		have_pinned_space = __percpu_counter_compare(
4254 			&data_sinfo->total_bytes_pinned,
4255 			used + bytes - data_sinfo->total_bytes,
4256 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
4257 		spin_unlock(&data_sinfo->lock);
4258 
4259 		/* commit the current transaction and try again */
4260 commit_trans:
4261 		if (need_commit) {
4262 			need_commit--;
4263 
4264 			if (need_commit > 0) {
4265 				btrfs_start_delalloc_roots(fs_info, -1);
4266 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4267 							 (u64)-1);
4268 			}
4269 
4270 			trans = btrfs_join_transaction(root);
4271 			if (IS_ERR(trans))
4272 				return PTR_ERR(trans);
4273 			if (have_pinned_space >= 0 ||
4274 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4275 				     &trans->transaction->flags) ||
4276 			    need_commit > 0) {
4277 				ret = btrfs_commit_transaction(trans);
4278 				if (ret)
4279 					return ret;
4280 				/*
4281 				 * The cleaner kthread might still be doing iput
4282 				 * operations. Wait for it to finish so that
4283 				 * more space is released.
4284 				 */
4285 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4286 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4287 				goto again;
4288 			} else {
4289 				btrfs_end_transaction(trans);
4290 			}
4291 		}
4292 
4293 		trace_btrfs_space_reservation(fs_info,
4294 					      "space_info:enospc",
4295 					      data_sinfo->flags, bytes, 1);
4296 		return -ENOSPC;
4297 	}
4298 	update_bytes_may_use(data_sinfo, bytes);
4299 	trace_btrfs_space_reservation(fs_info, "space_info",
4300 				      data_sinfo->flags, bytes, 1);
4301 	spin_unlock(&data_sinfo->lock);
4302 
4303 	return 0;
4304 }
4305 
4306 int btrfs_check_data_free_space(struct inode *inode,
4307 			struct extent_changeset **reserved, u64 start, u64 len)
4308 {
4309 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4310 	int ret;
4311 
4312 	/* align the range */
4313 	len = round_up(start + len, fs_info->sectorsize) -
4314 	      round_down(start, fs_info->sectorsize);
4315 	start = round_down(start, fs_info->sectorsize);
4316 
4317 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4318 	if (ret < 0)
4319 		return ret;
4320 
4321 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4322 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4323 	if (ret < 0)
4324 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4325 	else
4326 		ret = 0;
4327 	return ret;
4328 }
4329 
4330 /*
4331  * Called if we need to clear a data reservation for this inode
4332  * Normally in a error case.
4333  *
4334  * This one will *NOT* use accurate qgroup reserved space API, just for case
4335  * which we can't sleep and is sure it won't affect qgroup reserved space.
4336  * Like clear_bit_hook().
4337  */
4338 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4339 					    u64 len)
4340 {
4341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4342 	struct btrfs_space_info *data_sinfo;
4343 
4344 	/* Make sure the range is aligned to sectorsize */
4345 	len = round_up(start + len, fs_info->sectorsize) -
4346 	      round_down(start, fs_info->sectorsize);
4347 	start = round_down(start, fs_info->sectorsize);
4348 
4349 	data_sinfo = fs_info->data_sinfo;
4350 	spin_lock(&data_sinfo->lock);
4351 	update_bytes_may_use(data_sinfo, -len);
4352 	trace_btrfs_space_reservation(fs_info, "space_info",
4353 				      data_sinfo->flags, len, 0);
4354 	spin_unlock(&data_sinfo->lock);
4355 }
4356 
4357 /*
4358  * Called if we need to clear a data reservation for this inode
4359  * Normally in a error case.
4360  *
4361  * This one will handle the per-inode data rsv map for accurate reserved
4362  * space framework.
4363  */
4364 void btrfs_free_reserved_data_space(struct inode *inode,
4365 			struct extent_changeset *reserved, u64 start, u64 len)
4366 {
4367 	struct btrfs_root *root = BTRFS_I(inode)->root;
4368 
4369 	/* Make sure the range is aligned to sectorsize */
4370 	len = round_up(start + len, root->fs_info->sectorsize) -
4371 	      round_down(start, root->fs_info->sectorsize);
4372 	start = round_down(start, root->fs_info->sectorsize);
4373 
4374 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4375 	btrfs_qgroup_free_data(inode, reserved, start, len);
4376 }
4377 
4378 static void force_metadata_allocation(struct btrfs_fs_info *info)
4379 {
4380 	struct list_head *head = &info->space_info;
4381 	struct btrfs_space_info *found;
4382 
4383 	rcu_read_lock();
4384 	list_for_each_entry_rcu(found, head, list) {
4385 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4386 			found->force_alloc = CHUNK_ALLOC_FORCE;
4387 	}
4388 	rcu_read_unlock();
4389 }
4390 
4391 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4392 {
4393 	return (global->size << 1);
4394 }
4395 
4396 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4397 			      struct btrfs_space_info *sinfo, int force)
4398 {
4399 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4400 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4401 	u64 thresh;
4402 
4403 	if (force == CHUNK_ALLOC_FORCE)
4404 		return 1;
4405 
4406 	/*
4407 	 * We need to take into account the global rsv because for all intents
4408 	 * and purposes it's used space.  Don't worry about locking the
4409 	 * global_rsv, it doesn't change except when the transaction commits.
4410 	 */
4411 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4412 		bytes_used += calc_global_rsv_need_space(global_rsv);
4413 
4414 	/*
4415 	 * in limited mode, we want to have some free space up to
4416 	 * about 1% of the FS size.
4417 	 */
4418 	if (force == CHUNK_ALLOC_LIMITED) {
4419 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4420 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4421 
4422 		if (sinfo->total_bytes - bytes_used < thresh)
4423 			return 1;
4424 	}
4425 
4426 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4427 		return 0;
4428 	return 1;
4429 }
4430 
4431 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4432 {
4433 	u64 num_dev;
4434 
4435 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4436 		    BTRFS_BLOCK_GROUP_RAID0 |
4437 		    BTRFS_BLOCK_GROUP_RAID5 |
4438 		    BTRFS_BLOCK_GROUP_RAID6))
4439 		num_dev = fs_info->fs_devices->rw_devices;
4440 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4441 		num_dev = 2;
4442 	else
4443 		num_dev = 1;	/* DUP or single */
4444 
4445 	return num_dev;
4446 }
4447 
4448 /*
4449  * If @is_allocation is true, reserve space in the system space info necessary
4450  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4451  * removing a chunk.
4452  */
4453 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4454 {
4455 	struct btrfs_fs_info *fs_info = trans->fs_info;
4456 	struct btrfs_space_info *info;
4457 	u64 left;
4458 	u64 thresh;
4459 	int ret = 0;
4460 	u64 num_devs;
4461 
4462 	/*
4463 	 * Needed because we can end up allocating a system chunk and for an
4464 	 * atomic and race free space reservation in the chunk block reserve.
4465 	 */
4466 	lockdep_assert_held(&fs_info->chunk_mutex);
4467 
4468 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4469 	spin_lock(&info->lock);
4470 	left = info->total_bytes - btrfs_space_info_used(info, true);
4471 	spin_unlock(&info->lock);
4472 
4473 	num_devs = get_profile_num_devs(fs_info, type);
4474 
4475 	/* num_devs device items to update and 1 chunk item to add or remove */
4476 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4477 		btrfs_calc_trans_metadata_size(fs_info, 1);
4478 
4479 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4480 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4481 			   left, thresh, type);
4482 		dump_space_info(fs_info, info, 0, 0);
4483 	}
4484 
4485 	if (left < thresh) {
4486 		u64 flags = btrfs_system_alloc_profile(fs_info);
4487 
4488 		/*
4489 		 * Ignore failure to create system chunk. We might end up not
4490 		 * needing it, as we might not need to COW all nodes/leafs from
4491 		 * the paths we visit in the chunk tree (they were already COWed
4492 		 * or created in the current transaction for example).
4493 		 */
4494 		ret = btrfs_alloc_chunk(trans, flags);
4495 	}
4496 
4497 	if (!ret) {
4498 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4499 					  &fs_info->chunk_block_rsv,
4500 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4501 		if (!ret)
4502 			trans->chunk_bytes_reserved += thresh;
4503 	}
4504 }
4505 
4506 /*
4507  * If force is CHUNK_ALLOC_FORCE:
4508  *    - return 1 if it successfully allocates a chunk,
4509  *    - return errors including -ENOSPC otherwise.
4510  * If force is NOT CHUNK_ALLOC_FORCE:
4511  *    - return 0 if it doesn't need to allocate a new chunk,
4512  *    - return 1 if it successfully allocates a chunk,
4513  *    - return errors including -ENOSPC otherwise.
4514  */
4515 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4516 			  int force)
4517 {
4518 	struct btrfs_fs_info *fs_info = trans->fs_info;
4519 	struct btrfs_space_info *space_info;
4520 	bool wait_for_alloc = false;
4521 	bool should_alloc = false;
4522 	int ret = 0;
4523 
4524 	/* Don't re-enter if we're already allocating a chunk */
4525 	if (trans->allocating_chunk)
4526 		return -ENOSPC;
4527 
4528 	space_info = __find_space_info(fs_info, flags);
4529 	ASSERT(space_info);
4530 
4531 	do {
4532 		spin_lock(&space_info->lock);
4533 		if (force < space_info->force_alloc)
4534 			force = space_info->force_alloc;
4535 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
4536 		if (space_info->full) {
4537 			/* No more free physical space */
4538 			if (should_alloc)
4539 				ret = -ENOSPC;
4540 			else
4541 				ret = 0;
4542 			spin_unlock(&space_info->lock);
4543 			return ret;
4544 		} else if (!should_alloc) {
4545 			spin_unlock(&space_info->lock);
4546 			return 0;
4547 		} else if (space_info->chunk_alloc) {
4548 			/*
4549 			 * Someone is already allocating, so we need to block
4550 			 * until this someone is finished and then loop to
4551 			 * recheck if we should continue with our allocation
4552 			 * attempt.
4553 			 */
4554 			wait_for_alloc = true;
4555 			spin_unlock(&space_info->lock);
4556 			mutex_lock(&fs_info->chunk_mutex);
4557 			mutex_unlock(&fs_info->chunk_mutex);
4558 		} else {
4559 			/* Proceed with allocation */
4560 			space_info->chunk_alloc = 1;
4561 			wait_for_alloc = false;
4562 			spin_unlock(&space_info->lock);
4563 		}
4564 
4565 		cond_resched();
4566 	} while (wait_for_alloc);
4567 
4568 	mutex_lock(&fs_info->chunk_mutex);
4569 	trans->allocating_chunk = true;
4570 
4571 	/*
4572 	 * If we have mixed data/metadata chunks we want to make sure we keep
4573 	 * allocating mixed chunks instead of individual chunks.
4574 	 */
4575 	if (btrfs_mixed_space_info(space_info))
4576 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4577 
4578 	/*
4579 	 * if we're doing a data chunk, go ahead and make sure that
4580 	 * we keep a reasonable number of metadata chunks allocated in the
4581 	 * FS as well.
4582 	 */
4583 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4584 		fs_info->data_chunk_allocations++;
4585 		if (!(fs_info->data_chunk_allocations %
4586 		      fs_info->metadata_ratio))
4587 			force_metadata_allocation(fs_info);
4588 	}
4589 
4590 	/*
4591 	 * Check if we have enough space in SYSTEM chunk because we may need
4592 	 * to update devices.
4593 	 */
4594 	check_system_chunk(trans, flags);
4595 
4596 	ret = btrfs_alloc_chunk(trans, flags);
4597 	trans->allocating_chunk = false;
4598 
4599 	spin_lock(&space_info->lock);
4600 	if (ret < 0) {
4601 		if (ret == -ENOSPC)
4602 			space_info->full = 1;
4603 		else
4604 			goto out;
4605 	} else {
4606 		ret = 1;
4607 		space_info->max_extent_size = 0;
4608 	}
4609 
4610 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4611 out:
4612 	space_info->chunk_alloc = 0;
4613 	spin_unlock(&space_info->lock);
4614 	mutex_unlock(&fs_info->chunk_mutex);
4615 	/*
4616 	 * When we allocate a new chunk we reserve space in the chunk block
4617 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4618 	 * add new nodes/leafs to it if we end up needing to do it when
4619 	 * inserting the chunk item and updating device items as part of the
4620 	 * second phase of chunk allocation, performed by
4621 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4622 	 * large number of new block groups to create in our transaction
4623 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4624 	 * in extreme cases - like having a single transaction create many new
4625 	 * block groups when starting to write out the free space caches of all
4626 	 * the block groups that were made dirty during the lifetime of the
4627 	 * transaction.
4628 	 */
4629 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4630 		btrfs_create_pending_block_groups(trans);
4631 
4632 	return ret;
4633 }
4634 
4635 static int can_overcommit(struct btrfs_fs_info *fs_info,
4636 			  struct btrfs_space_info *space_info, u64 bytes,
4637 			  enum btrfs_reserve_flush_enum flush,
4638 			  bool system_chunk)
4639 {
4640 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4641 	u64 profile;
4642 	u64 space_size;
4643 	u64 avail;
4644 	u64 used;
4645 	int factor;
4646 
4647 	/* Don't overcommit when in mixed mode. */
4648 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4649 		return 0;
4650 
4651 	if (system_chunk)
4652 		profile = btrfs_system_alloc_profile(fs_info);
4653 	else
4654 		profile = btrfs_metadata_alloc_profile(fs_info);
4655 
4656 	used = btrfs_space_info_used(space_info, false);
4657 
4658 	/*
4659 	 * We only want to allow over committing if we have lots of actual space
4660 	 * free, but if we don't have enough space to handle the global reserve
4661 	 * space then we could end up having a real enospc problem when trying
4662 	 * to allocate a chunk or some other such important allocation.
4663 	 */
4664 	spin_lock(&global_rsv->lock);
4665 	space_size = calc_global_rsv_need_space(global_rsv);
4666 	spin_unlock(&global_rsv->lock);
4667 	if (used + space_size >= space_info->total_bytes)
4668 		return 0;
4669 
4670 	used += space_info->bytes_may_use;
4671 
4672 	avail = atomic64_read(&fs_info->free_chunk_space);
4673 
4674 	/*
4675 	 * If we have dup, raid1 or raid10 then only half of the free
4676 	 * space is actually usable.  For raid56, the space info used
4677 	 * doesn't include the parity drive, so we don't have to
4678 	 * change the math
4679 	 */
4680 	factor = btrfs_bg_type_to_factor(profile);
4681 	avail = div_u64(avail, factor);
4682 
4683 	/*
4684 	 * If we aren't flushing all things, let us overcommit up to
4685 	 * 1/2th of the space. If we can flush, don't let us overcommit
4686 	 * too much, let it overcommit up to 1/8 of the space.
4687 	 */
4688 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4689 		avail >>= 3;
4690 	else
4691 		avail >>= 1;
4692 
4693 	if (used + bytes < space_info->total_bytes + avail)
4694 		return 1;
4695 	return 0;
4696 }
4697 
4698 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4699 					 unsigned long nr_pages, int nr_items)
4700 {
4701 	struct super_block *sb = fs_info->sb;
4702 
4703 	if (down_read_trylock(&sb->s_umount)) {
4704 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4705 		up_read(&sb->s_umount);
4706 	} else {
4707 		/*
4708 		 * We needn't worry the filesystem going from r/w to r/o though
4709 		 * we don't acquire ->s_umount mutex, because the filesystem
4710 		 * should guarantee the delalloc inodes list be empty after
4711 		 * the filesystem is readonly(all dirty pages are written to
4712 		 * the disk).
4713 		 */
4714 		btrfs_start_delalloc_roots(fs_info, nr_items);
4715 		if (!current->journal_info)
4716 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4717 	}
4718 }
4719 
4720 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4721 					u64 to_reclaim)
4722 {
4723 	u64 bytes;
4724 	u64 nr;
4725 
4726 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4727 	nr = div64_u64(to_reclaim, bytes);
4728 	if (!nr)
4729 		nr = 1;
4730 	return nr;
4731 }
4732 
4733 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4734 
4735 /*
4736  * shrink metadata reservation for delalloc
4737  */
4738 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4739 			    u64 orig, bool wait_ordered)
4740 {
4741 	struct btrfs_space_info *space_info;
4742 	struct btrfs_trans_handle *trans;
4743 	u64 delalloc_bytes;
4744 	u64 max_reclaim;
4745 	u64 items;
4746 	long time_left;
4747 	unsigned long nr_pages;
4748 	int loops;
4749 
4750 	/* Calc the number of the pages we need flush for space reservation */
4751 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4752 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4753 
4754 	trans = (struct btrfs_trans_handle *)current->journal_info;
4755 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4756 
4757 	delalloc_bytes = percpu_counter_sum_positive(
4758 						&fs_info->delalloc_bytes);
4759 	if (delalloc_bytes == 0) {
4760 		if (trans)
4761 			return;
4762 		if (wait_ordered)
4763 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4764 		return;
4765 	}
4766 
4767 	loops = 0;
4768 	while (delalloc_bytes && loops < 3) {
4769 		max_reclaim = min(delalloc_bytes, to_reclaim);
4770 		nr_pages = max_reclaim >> PAGE_SHIFT;
4771 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4772 		/*
4773 		 * We need to wait for the async pages to actually start before
4774 		 * we do anything.
4775 		 */
4776 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4777 		if (!max_reclaim)
4778 			goto skip_async;
4779 
4780 		if (max_reclaim <= nr_pages)
4781 			max_reclaim = 0;
4782 		else
4783 			max_reclaim -= nr_pages;
4784 
4785 		wait_event(fs_info->async_submit_wait,
4786 			   atomic_read(&fs_info->async_delalloc_pages) <=
4787 			   (int)max_reclaim);
4788 skip_async:
4789 		spin_lock(&space_info->lock);
4790 		if (list_empty(&space_info->tickets) &&
4791 		    list_empty(&space_info->priority_tickets)) {
4792 			spin_unlock(&space_info->lock);
4793 			break;
4794 		}
4795 		spin_unlock(&space_info->lock);
4796 
4797 		loops++;
4798 		if (wait_ordered && !trans) {
4799 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4800 		} else {
4801 			time_left = schedule_timeout_killable(1);
4802 			if (time_left)
4803 				break;
4804 		}
4805 		delalloc_bytes = percpu_counter_sum_positive(
4806 						&fs_info->delalloc_bytes);
4807 	}
4808 }
4809 
4810 struct reserve_ticket {
4811 	u64 bytes;
4812 	int error;
4813 	struct list_head list;
4814 	wait_queue_head_t wait;
4815 };
4816 
4817 /**
4818  * maybe_commit_transaction - possibly commit the transaction if its ok to
4819  * @root - the root we're allocating for
4820  * @bytes - the number of bytes we want to reserve
4821  * @force - force the commit
4822  *
4823  * This will check to make sure that committing the transaction will actually
4824  * get us somewhere and then commit the transaction if it does.  Otherwise it
4825  * will return -ENOSPC.
4826  */
4827 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4828 				  struct btrfs_space_info *space_info)
4829 {
4830 	struct reserve_ticket *ticket = NULL;
4831 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4832 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
4833 	struct btrfs_trans_handle *trans;
4834 	u64 bytes_needed;
4835 	u64 reclaim_bytes = 0;
4836 
4837 	trans = (struct btrfs_trans_handle *)current->journal_info;
4838 	if (trans)
4839 		return -EAGAIN;
4840 
4841 	spin_lock(&space_info->lock);
4842 	if (!list_empty(&space_info->priority_tickets))
4843 		ticket = list_first_entry(&space_info->priority_tickets,
4844 					  struct reserve_ticket, list);
4845 	else if (!list_empty(&space_info->tickets))
4846 		ticket = list_first_entry(&space_info->tickets,
4847 					  struct reserve_ticket, list);
4848 	bytes_needed = (ticket) ? ticket->bytes : 0;
4849 	spin_unlock(&space_info->lock);
4850 
4851 	if (!bytes_needed)
4852 		return 0;
4853 
4854 	/* See if there is enough pinned space to make this reservation */
4855 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4856 				   bytes_needed,
4857 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4858 		goto commit;
4859 
4860 	/*
4861 	 * See if there is some space in the delayed insertion reservation for
4862 	 * this reservation.
4863 	 */
4864 	if (space_info != delayed_rsv->space_info)
4865 		return -ENOSPC;
4866 
4867 	spin_lock(&delayed_rsv->lock);
4868 	reclaim_bytes += delayed_rsv->reserved;
4869 	spin_unlock(&delayed_rsv->lock);
4870 
4871 	spin_lock(&delayed_refs_rsv->lock);
4872 	reclaim_bytes += delayed_refs_rsv->reserved;
4873 	spin_unlock(&delayed_refs_rsv->lock);
4874 	if (reclaim_bytes >= bytes_needed)
4875 		goto commit;
4876 	bytes_needed -= reclaim_bytes;
4877 
4878 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4879 				   bytes_needed,
4880 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4881 		return -ENOSPC;
4882 	}
4883 
4884 commit:
4885 	trans = btrfs_join_transaction(fs_info->extent_root);
4886 	if (IS_ERR(trans))
4887 		return -ENOSPC;
4888 
4889 	return btrfs_commit_transaction(trans);
4890 }
4891 
4892 /*
4893  * Try to flush some data based on policy set by @state. This is only advisory
4894  * and may fail for various reasons. The caller is supposed to examine the
4895  * state of @space_info to detect the outcome.
4896  */
4897 static void flush_space(struct btrfs_fs_info *fs_info,
4898 		       struct btrfs_space_info *space_info, u64 num_bytes,
4899 		       int state)
4900 {
4901 	struct btrfs_root *root = fs_info->extent_root;
4902 	struct btrfs_trans_handle *trans;
4903 	int nr;
4904 	int ret = 0;
4905 
4906 	switch (state) {
4907 	case FLUSH_DELAYED_ITEMS_NR:
4908 	case FLUSH_DELAYED_ITEMS:
4909 		if (state == FLUSH_DELAYED_ITEMS_NR)
4910 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4911 		else
4912 			nr = -1;
4913 
4914 		trans = btrfs_join_transaction(root);
4915 		if (IS_ERR(trans)) {
4916 			ret = PTR_ERR(trans);
4917 			break;
4918 		}
4919 		ret = btrfs_run_delayed_items_nr(trans, nr);
4920 		btrfs_end_transaction(trans);
4921 		break;
4922 	case FLUSH_DELALLOC:
4923 	case FLUSH_DELALLOC_WAIT:
4924 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4925 				state == FLUSH_DELALLOC_WAIT);
4926 		break;
4927 	case FLUSH_DELAYED_REFS_NR:
4928 	case FLUSH_DELAYED_REFS:
4929 		trans = btrfs_join_transaction(root);
4930 		if (IS_ERR(trans)) {
4931 			ret = PTR_ERR(trans);
4932 			break;
4933 		}
4934 		if (state == FLUSH_DELAYED_REFS_NR)
4935 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
4936 		else
4937 			nr = 0;
4938 		btrfs_run_delayed_refs(trans, nr);
4939 		btrfs_end_transaction(trans);
4940 		break;
4941 	case ALLOC_CHUNK:
4942 		trans = btrfs_join_transaction(root);
4943 		if (IS_ERR(trans)) {
4944 			ret = PTR_ERR(trans);
4945 			break;
4946 		}
4947 		ret = do_chunk_alloc(trans,
4948 				     btrfs_metadata_alloc_profile(fs_info),
4949 				     CHUNK_ALLOC_NO_FORCE);
4950 		btrfs_end_transaction(trans);
4951 		if (ret > 0 || ret == -ENOSPC)
4952 			ret = 0;
4953 		break;
4954 	case COMMIT_TRANS:
4955 		/*
4956 		 * If we have pending delayed iputs then we could free up a
4957 		 * bunch of pinned space, so make sure we run the iputs before
4958 		 * we do our pinned bytes check below.
4959 		 */
4960 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4961 		btrfs_run_delayed_iputs(fs_info);
4962 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4963 
4964 		ret = may_commit_transaction(fs_info, space_info);
4965 		break;
4966 	default:
4967 		ret = -ENOSPC;
4968 		break;
4969 	}
4970 
4971 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4972 				ret);
4973 	return;
4974 }
4975 
4976 static inline u64
4977 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4978 				 struct btrfs_space_info *space_info,
4979 				 bool system_chunk)
4980 {
4981 	struct reserve_ticket *ticket;
4982 	u64 used;
4983 	u64 expected;
4984 	u64 to_reclaim = 0;
4985 
4986 	list_for_each_entry(ticket, &space_info->tickets, list)
4987 		to_reclaim += ticket->bytes;
4988 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4989 		to_reclaim += ticket->bytes;
4990 	if (to_reclaim)
4991 		return to_reclaim;
4992 
4993 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4994 	if (can_overcommit(fs_info, space_info, to_reclaim,
4995 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4996 		return 0;
4997 
4998 	used = btrfs_space_info_used(space_info, true);
4999 
5000 	if (can_overcommit(fs_info, space_info, SZ_1M,
5001 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5002 		expected = div_factor_fine(space_info->total_bytes, 95);
5003 	else
5004 		expected = div_factor_fine(space_info->total_bytes, 90);
5005 
5006 	if (used > expected)
5007 		to_reclaim = used - expected;
5008 	else
5009 		to_reclaim = 0;
5010 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5011 				     space_info->bytes_reserved);
5012 	return to_reclaim;
5013 }
5014 
5015 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5016 					struct btrfs_space_info *space_info,
5017 					u64 used, bool system_chunk)
5018 {
5019 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5020 
5021 	/* If we're just plain full then async reclaim just slows us down. */
5022 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5023 		return 0;
5024 
5025 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5026 					      system_chunk))
5027 		return 0;
5028 
5029 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5030 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5031 }
5032 
5033 static void wake_all_tickets(struct list_head *head)
5034 {
5035 	struct reserve_ticket *ticket;
5036 
5037 	while (!list_empty(head)) {
5038 		ticket = list_first_entry(head, struct reserve_ticket, list);
5039 		list_del_init(&ticket->list);
5040 		ticket->error = -ENOSPC;
5041 		wake_up(&ticket->wait);
5042 	}
5043 }
5044 
5045 /*
5046  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5047  * will loop and continuously try to flush as long as we are making progress.
5048  * We count progress as clearing off tickets each time we have to loop.
5049  */
5050 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5051 {
5052 	struct btrfs_fs_info *fs_info;
5053 	struct btrfs_space_info *space_info;
5054 	u64 to_reclaim;
5055 	int flush_state;
5056 	int commit_cycles = 0;
5057 	u64 last_tickets_id;
5058 
5059 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5060 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5061 
5062 	spin_lock(&space_info->lock);
5063 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5064 						      false);
5065 	if (!to_reclaim) {
5066 		space_info->flush = 0;
5067 		spin_unlock(&space_info->lock);
5068 		return;
5069 	}
5070 	last_tickets_id = space_info->tickets_id;
5071 	spin_unlock(&space_info->lock);
5072 
5073 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5074 	do {
5075 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5076 		spin_lock(&space_info->lock);
5077 		if (list_empty(&space_info->tickets)) {
5078 			space_info->flush = 0;
5079 			spin_unlock(&space_info->lock);
5080 			return;
5081 		}
5082 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5083 							      space_info,
5084 							      false);
5085 		if (last_tickets_id == space_info->tickets_id) {
5086 			flush_state++;
5087 		} else {
5088 			last_tickets_id = space_info->tickets_id;
5089 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5090 			if (commit_cycles)
5091 				commit_cycles--;
5092 		}
5093 
5094 		if (flush_state > COMMIT_TRANS) {
5095 			commit_cycles++;
5096 			if (commit_cycles > 2) {
5097 				wake_all_tickets(&space_info->tickets);
5098 				space_info->flush = 0;
5099 			} else {
5100 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5101 			}
5102 		}
5103 		spin_unlock(&space_info->lock);
5104 	} while (flush_state <= COMMIT_TRANS);
5105 }
5106 
5107 void btrfs_init_async_reclaim_work(struct work_struct *work)
5108 {
5109 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5110 }
5111 
5112 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5113 					    struct btrfs_space_info *space_info,
5114 					    struct reserve_ticket *ticket)
5115 {
5116 	u64 to_reclaim;
5117 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5118 
5119 	spin_lock(&space_info->lock);
5120 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5121 						      false);
5122 	if (!to_reclaim) {
5123 		spin_unlock(&space_info->lock);
5124 		return;
5125 	}
5126 	spin_unlock(&space_info->lock);
5127 
5128 	do {
5129 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5130 		flush_state++;
5131 		spin_lock(&space_info->lock);
5132 		if (ticket->bytes == 0) {
5133 			spin_unlock(&space_info->lock);
5134 			return;
5135 		}
5136 		spin_unlock(&space_info->lock);
5137 
5138 		/*
5139 		 * Priority flushers can't wait on delalloc without
5140 		 * deadlocking.
5141 		 */
5142 		if (flush_state == FLUSH_DELALLOC ||
5143 		    flush_state == FLUSH_DELALLOC_WAIT)
5144 			flush_state = ALLOC_CHUNK;
5145 	} while (flush_state < COMMIT_TRANS);
5146 }
5147 
5148 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5149 			       struct btrfs_space_info *space_info,
5150 			       struct reserve_ticket *ticket, u64 orig_bytes)
5151 
5152 {
5153 	DEFINE_WAIT(wait);
5154 	int ret = 0;
5155 
5156 	spin_lock(&space_info->lock);
5157 	while (ticket->bytes > 0 && ticket->error == 0) {
5158 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5159 		if (ret) {
5160 			ret = -EINTR;
5161 			break;
5162 		}
5163 		spin_unlock(&space_info->lock);
5164 
5165 		schedule();
5166 
5167 		finish_wait(&ticket->wait, &wait);
5168 		spin_lock(&space_info->lock);
5169 	}
5170 	if (!ret)
5171 		ret = ticket->error;
5172 	if (!list_empty(&ticket->list))
5173 		list_del_init(&ticket->list);
5174 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5175 		u64 num_bytes = orig_bytes - ticket->bytes;
5176 		update_bytes_may_use(space_info, -num_bytes);
5177 		trace_btrfs_space_reservation(fs_info, "space_info",
5178 					      space_info->flags, num_bytes, 0);
5179 	}
5180 	spin_unlock(&space_info->lock);
5181 
5182 	return ret;
5183 }
5184 
5185 /**
5186  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5187  * @root - the root we're allocating for
5188  * @space_info - the space info we want to allocate from
5189  * @orig_bytes - the number of bytes we want
5190  * @flush - whether or not we can flush to make our reservation
5191  *
5192  * This will reserve orig_bytes number of bytes from the space info associated
5193  * with the block_rsv.  If there is not enough space it will make an attempt to
5194  * flush out space to make room.  It will do this by flushing delalloc if
5195  * possible or committing the transaction.  If flush is 0 then no attempts to
5196  * regain reservations will be made and this will fail if there is not enough
5197  * space already.
5198  */
5199 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5200 				    struct btrfs_space_info *space_info,
5201 				    u64 orig_bytes,
5202 				    enum btrfs_reserve_flush_enum flush,
5203 				    bool system_chunk)
5204 {
5205 	struct reserve_ticket ticket;
5206 	u64 used;
5207 	int ret = 0;
5208 
5209 	ASSERT(orig_bytes);
5210 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5211 
5212 	spin_lock(&space_info->lock);
5213 	ret = -ENOSPC;
5214 	used = btrfs_space_info_used(space_info, true);
5215 
5216 	/*
5217 	 * If we have enough space then hooray, make our reservation and carry
5218 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5219 	 * If not things get more complicated.
5220 	 */
5221 	if (used + orig_bytes <= space_info->total_bytes) {
5222 		update_bytes_may_use(space_info, orig_bytes);
5223 		trace_btrfs_space_reservation(fs_info, "space_info",
5224 					      space_info->flags, orig_bytes, 1);
5225 		ret = 0;
5226 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5227 				  system_chunk)) {
5228 		update_bytes_may_use(space_info, orig_bytes);
5229 		trace_btrfs_space_reservation(fs_info, "space_info",
5230 					      space_info->flags, orig_bytes, 1);
5231 		ret = 0;
5232 	}
5233 
5234 	/*
5235 	 * If we couldn't make a reservation then setup our reservation ticket
5236 	 * and kick the async worker if it's not already running.
5237 	 *
5238 	 * If we are a priority flusher then we just need to add our ticket to
5239 	 * the list and we will do our own flushing further down.
5240 	 */
5241 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5242 		ticket.bytes = orig_bytes;
5243 		ticket.error = 0;
5244 		init_waitqueue_head(&ticket.wait);
5245 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5246 			list_add_tail(&ticket.list, &space_info->tickets);
5247 			if (!space_info->flush) {
5248 				space_info->flush = 1;
5249 				trace_btrfs_trigger_flush(fs_info,
5250 							  space_info->flags,
5251 							  orig_bytes, flush,
5252 							  "enospc");
5253 				queue_work(system_unbound_wq,
5254 					   &fs_info->async_reclaim_work);
5255 			}
5256 		} else {
5257 			list_add_tail(&ticket.list,
5258 				      &space_info->priority_tickets);
5259 		}
5260 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5261 		used += orig_bytes;
5262 		/*
5263 		 * We will do the space reservation dance during log replay,
5264 		 * which means we won't have fs_info->fs_root set, so don't do
5265 		 * the async reclaim as we will panic.
5266 		 */
5267 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5268 		    need_do_async_reclaim(fs_info, space_info,
5269 					  used, system_chunk) &&
5270 		    !work_busy(&fs_info->async_reclaim_work)) {
5271 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5272 						  orig_bytes, flush, "preempt");
5273 			queue_work(system_unbound_wq,
5274 				   &fs_info->async_reclaim_work);
5275 		}
5276 	}
5277 	spin_unlock(&space_info->lock);
5278 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5279 		return ret;
5280 
5281 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5282 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5283 					   orig_bytes);
5284 
5285 	ret = 0;
5286 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5287 	spin_lock(&space_info->lock);
5288 	if (ticket.bytes) {
5289 		if (ticket.bytes < orig_bytes) {
5290 			u64 num_bytes = orig_bytes - ticket.bytes;
5291 			update_bytes_may_use(space_info, -num_bytes);
5292 			trace_btrfs_space_reservation(fs_info, "space_info",
5293 						      space_info->flags,
5294 						      num_bytes, 0);
5295 
5296 		}
5297 		list_del_init(&ticket.list);
5298 		ret = -ENOSPC;
5299 	}
5300 	spin_unlock(&space_info->lock);
5301 	ASSERT(list_empty(&ticket.list));
5302 	return ret;
5303 }
5304 
5305 /**
5306  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5307  * @root - the root we're allocating for
5308  * @block_rsv - the block_rsv we're allocating for
5309  * @orig_bytes - the number of bytes we want
5310  * @flush - whether or not we can flush to make our reservation
5311  *
5312  * This will reserve orig_bytes number of bytes from the space info associated
5313  * with the block_rsv.  If there is not enough space it will make an attempt to
5314  * flush out space to make room.  It will do this by flushing delalloc if
5315  * possible or committing the transaction.  If flush is 0 then no attempts to
5316  * regain reservations will be made and this will fail if there is not enough
5317  * space already.
5318  */
5319 static int reserve_metadata_bytes(struct btrfs_root *root,
5320 				  struct btrfs_block_rsv *block_rsv,
5321 				  u64 orig_bytes,
5322 				  enum btrfs_reserve_flush_enum flush)
5323 {
5324 	struct btrfs_fs_info *fs_info = root->fs_info;
5325 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5326 	int ret;
5327 	bool system_chunk = (root == fs_info->chunk_root);
5328 
5329 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5330 				       orig_bytes, flush, system_chunk);
5331 	if (ret == -ENOSPC &&
5332 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5333 		if (block_rsv != global_rsv &&
5334 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5335 			ret = 0;
5336 	}
5337 	if (ret == -ENOSPC) {
5338 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5339 					      block_rsv->space_info->flags,
5340 					      orig_bytes, 1);
5341 
5342 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5343 			dump_space_info(fs_info, block_rsv->space_info,
5344 					orig_bytes, 0);
5345 	}
5346 	return ret;
5347 }
5348 
5349 static struct btrfs_block_rsv *get_block_rsv(
5350 					const struct btrfs_trans_handle *trans,
5351 					const struct btrfs_root *root)
5352 {
5353 	struct btrfs_fs_info *fs_info = root->fs_info;
5354 	struct btrfs_block_rsv *block_rsv = NULL;
5355 
5356 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5357 	    (root == fs_info->csum_root && trans->adding_csums) ||
5358 	    (root == fs_info->uuid_root))
5359 		block_rsv = trans->block_rsv;
5360 
5361 	if (!block_rsv)
5362 		block_rsv = root->block_rsv;
5363 
5364 	if (!block_rsv)
5365 		block_rsv = &fs_info->empty_block_rsv;
5366 
5367 	return block_rsv;
5368 }
5369 
5370 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5371 			       u64 num_bytes)
5372 {
5373 	int ret = -ENOSPC;
5374 	spin_lock(&block_rsv->lock);
5375 	if (block_rsv->reserved >= num_bytes) {
5376 		block_rsv->reserved -= num_bytes;
5377 		if (block_rsv->reserved < block_rsv->size)
5378 			block_rsv->full = 0;
5379 		ret = 0;
5380 	}
5381 	spin_unlock(&block_rsv->lock);
5382 	return ret;
5383 }
5384 
5385 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5386 				u64 num_bytes, bool update_size)
5387 {
5388 	spin_lock(&block_rsv->lock);
5389 	block_rsv->reserved += num_bytes;
5390 	if (update_size)
5391 		block_rsv->size += num_bytes;
5392 	else if (block_rsv->reserved >= block_rsv->size)
5393 		block_rsv->full = 1;
5394 	spin_unlock(&block_rsv->lock);
5395 }
5396 
5397 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5398 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5399 			     int min_factor)
5400 {
5401 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5402 	u64 min_bytes;
5403 
5404 	if (global_rsv->space_info != dest->space_info)
5405 		return -ENOSPC;
5406 
5407 	spin_lock(&global_rsv->lock);
5408 	min_bytes = div_factor(global_rsv->size, min_factor);
5409 	if (global_rsv->reserved < min_bytes + num_bytes) {
5410 		spin_unlock(&global_rsv->lock);
5411 		return -ENOSPC;
5412 	}
5413 	global_rsv->reserved -= num_bytes;
5414 	if (global_rsv->reserved < global_rsv->size)
5415 		global_rsv->full = 0;
5416 	spin_unlock(&global_rsv->lock);
5417 
5418 	block_rsv_add_bytes(dest, num_bytes, true);
5419 	return 0;
5420 }
5421 
5422 /**
5423  * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5424  * @fs_info - the fs info for our fs.
5425  * @src - the source block rsv to transfer from.
5426  * @num_bytes - the number of bytes to transfer.
5427  *
5428  * This transfers up to the num_bytes amount from the src rsv to the
5429  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
5430  */
5431 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5432 				       struct btrfs_block_rsv *src,
5433 				       u64 num_bytes)
5434 {
5435 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5436 	u64 to_free = 0;
5437 
5438 	spin_lock(&src->lock);
5439 	src->reserved -= num_bytes;
5440 	src->size -= num_bytes;
5441 	spin_unlock(&src->lock);
5442 
5443 	spin_lock(&delayed_refs_rsv->lock);
5444 	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5445 		u64 delta = delayed_refs_rsv->size -
5446 			delayed_refs_rsv->reserved;
5447 		if (num_bytes > delta) {
5448 			to_free = num_bytes - delta;
5449 			num_bytes = delta;
5450 		}
5451 	} else {
5452 		to_free = num_bytes;
5453 		num_bytes = 0;
5454 	}
5455 
5456 	if (num_bytes)
5457 		delayed_refs_rsv->reserved += num_bytes;
5458 	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5459 		delayed_refs_rsv->full = 1;
5460 	spin_unlock(&delayed_refs_rsv->lock);
5461 
5462 	if (num_bytes)
5463 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5464 					      0, num_bytes, 1);
5465 	if (to_free)
5466 		space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5467 					 to_free);
5468 }
5469 
5470 /**
5471  * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5472  * @fs_info - the fs_info for our fs.
5473  * @flush - control how we can flush for this reservation.
5474  *
5475  * This will refill the delayed block_rsv up to 1 items size worth of space and
5476  * will return -ENOSPC if we can't make the reservation.
5477  */
5478 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5479 				  enum btrfs_reserve_flush_enum flush)
5480 {
5481 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5482 	u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5483 	u64 num_bytes = 0;
5484 	int ret = -ENOSPC;
5485 
5486 	spin_lock(&block_rsv->lock);
5487 	if (block_rsv->reserved < block_rsv->size) {
5488 		num_bytes = block_rsv->size - block_rsv->reserved;
5489 		num_bytes = min(num_bytes, limit);
5490 	}
5491 	spin_unlock(&block_rsv->lock);
5492 
5493 	if (!num_bytes)
5494 		return 0;
5495 
5496 	ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5497 				     num_bytes, flush);
5498 	if (ret)
5499 		return ret;
5500 	block_rsv_add_bytes(block_rsv, num_bytes, 0);
5501 	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5502 				      0, num_bytes, 1);
5503 	return 0;
5504 }
5505 
5506 /*
5507  * This is for space we already have accounted in space_info->bytes_may_use, so
5508  * basically when we're returning space from block_rsv's.
5509  */
5510 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5511 				     struct btrfs_space_info *space_info,
5512 				     u64 num_bytes)
5513 {
5514 	struct reserve_ticket *ticket;
5515 	struct list_head *head;
5516 	u64 used;
5517 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5518 	bool check_overcommit = false;
5519 
5520 	spin_lock(&space_info->lock);
5521 	head = &space_info->priority_tickets;
5522 
5523 	/*
5524 	 * If we are over our limit then we need to check and see if we can
5525 	 * overcommit, and if we can't then we just need to free up our space
5526 	 * and not satisfy any requests.
5527 	 */
5528 	used = btrfs_space_info_used(space_info, true);
5529 	if (used - num_bytes >= space_info->total_bytes)
5530 		check_overcommit = true;
5531 again:
5532 	while (!list_empty(head) && num_bytes) {
5533 		ticket = list_first_entry(head, struct reserve_ticket,
5534 					  list);
5535 		/*
5536 		 * We use 0 bytes because this space is already reserved, so
5537 		 * adding the ticket space would be a double count.
5538 		 */
5539 		if (check_overcommit &&
5540 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5541 			break;
5542 		if (num_bytes >= ticket->bytes) {
5543 			list_del_init(&ticket->list);
5544 			num_bytes -= ticket->bytes;
5545 			ticket->bytes = 0;
5546 			space_info->tickets_id++;
5547 			wake_up(&ticket->wait);
5548 		} else {
5549 			ticket->bytes -= num_bytes;
5550 			num_bytes = 0;
5551 		}
5552 	}
5553 
5554 	if (num_bytes && head == &space_info->priority_tickets) {
5555 		head = &space_info->tickets;
5556 		flush = BTRFS_RESERVE_FLUSH_ALL;
5557 		goto again;
5558 	}
5559 	update_bytes_may_use(space_info, -num_bytes);
5560 	trace_btrfs_space_reservation(fs_info, "space_info",
5561 				      space_info->flags, num_bytes, 0);
5562 	spin_unlock(&space_info->lock);
5563 }
5564 
5565 /*
5566  * This is for newly allocated space that isn't accounted in
5567  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5568  * we use this helper.
5569  */
5570 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5571 				     struct btrfs_space_info *space_info,
5572 				     u64 num_bytes)
5573 {
5574 	struct reserve_ticket *ticket;
5575 	struct list_head *head = &space_info->priority_tickets;
5576 
5577 again:
5578 	while (!list_empty(head) && num_bytes) {
5579 		ticket = list_first_entry(head, struct reserve_ticket,
5580 					  list);
5581 		if (num_bytes >= ticket->bytes) {
5582 			trace_btrfs_space_reservation(fs_info, "space_info",
5583 						      space_info->flags,
5584 						      ticket->bytes, 1);
5585 			list_del_init(&ticket->list);
5586 			num_bytes -= ticket->bytes;
5587 			update_bytes_may_use(space_info, ticket->bytes);
5588 			ticket->bytes = 0;
5589 			space_info->tickets_id++;
5590 			wake_up(&ticket->wait);
5591 		} else {
5592 			trace_btrfs_space_reservation(fs_info, "space_info",
5593 						      space_info->flags,
5594 						      num_bytes, 1);
5595 			update_bytes_may_use(space_info, num_bytes);
5596 			ticket->bytes -= num_bytes;
5597 			num_bytes = 0;
5598 		}
5599 	}
5600 
5601 	if (num_bytes && head == &space_info->priority_tickets) {
5602 		head = &space_info->tickets;
5603 		goto again;
5604 	}
5605 }
5606 
5607 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5608 				    struct btrfs_block_rsv *block_rsv,
5609 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5610 				    u64 *qgroup_to_release_ret)
5611 {
5612 	struct btrfs_space_info *space_info = block_rsv->space_info;
5613 	u64 qgroup_to_release = 0;
5614 	u64 ret;
5615 
5616 	spin_lock(&block_rsv->lock);
5617 	if (num_bytes == (u64)-1) {
5618 		num_bytes = block_rsv->size;
5619 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5620 	}
5621 	block_rsv->size -= num_bytes;
5622 	if (block_rsv->reserved >= block_rsv->size) {
5623 		num_bytes = block_rsv->reserved - block_rsv->size;
5624 		block_rsv->reserved = block_rsv->size;
5625 		block_rsv->full = 1;
5626 	} else {
5627 		num_bytes = 0;
5628 	}
5629 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5630 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5631 				    block_rsv->qgroup_rsv_size;
5632 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5633 	} else {
5634 		qgroup_to_release = 0;
5635 	}
5636 	spin_unlock(&block_rsv->lock);
5637 
5638 	ret = num_bytes;
5639 	if (num_bytes > 0) {
5640 		if (dest) {
5641 			spin_lock(&dest->lock);
5642 			if (!dest->full) {
5643 				u64 bytes_to_add;
5644 
5645 				bytes_to_add = dest->size - dest->reserved;
5646 				bytes_to_add = min(num_bytes, bytes_to_add);
5647 				dest->reserved += bytes_to_add;
5648 				if (dest->reserved >= dest->size)
5649 					dest->full = 1;
5650 				num_bytes -= bytes_to_add;
5651 			}
5652 			spin_unlock(&dest->lock);
5653 		}
5654 		if (num_bytes)
5655 			space_info_add_old_bytes(fs_info, space_info,
5656 						 num_bytes);
5657 	}
5658 	if (qgroup_to_release_ret)
5659 		*qgroup_to_release_ret = qgroup_to_release;
5660 	return ret;
5661 }
5662 
5663 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5664 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5665 			    bool update_size)
5666 {
5667 	int ret;
5668 
5669 	ret = block_rsv_use_bytes(src, num_bytes);
5670 	if (ret)
5671 		return ret;
5672 
5673 	block_rsv_add_bytes(dst, num_bytes, update_size);
5674 	return 0;
5675 }
5676 
5677 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5678 {
5679 	memset(rsv, 0, sizeof(*rsv));
5680 	spin_lock_init(&rsv->lock);
5681 	rsv->type = type;
5682 }
5683 
5684 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5685 				   struct btrfs_block_rsv *rsv,
5686 				   unsigned short type)
5687 {
5688 	btrfs_init_block_rsv(rsv, type);
5689 	rsv->space_info = __find_space_info(fs_info,
5690 					    BTRFS_BLOCK_GROUP_METADATA);
5691 }
5692 
5693 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5694 					      unsigned short type)
5695 {
5696 	struct btrfs_block_rsv *block_rsv;
5697 
5698 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5699 	if (!block_rsv)
5700 		return NULL;
5701 
5702 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5703 	return block_rsv;
5704 }
5705 
5706 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5707 			  struct btrfs_block_rsv *rsv)
5708 {
5709 	if (!rsv)
5710 		return;
5711 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5712 	kfree(rsv);
5713 }
5714 
5715 int btrfs_block_rsv_add(struct btrfs_root *root,
5716 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5717 			enum btrfs_reserve_flush_enum flush)
5718 {
5719 	int ret;
5720 
5721 	if (num_bytes == 0)
5722 		return 0;
5723 
5724 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5725 	if (!ret)
5726 		block_rsv_add_bytes(block_rsv, num_bytes, true);
5727 
5728 	return ret;
5729 }
5730 
5731 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5732 {
5733 	u64 num_bytes = 0;
5734 	int ret = -ENOSPC;
5735 
5736 	if (!block_rsv)
5737 		return 0;
5738 
5739 	spin_lock(&block_rsv->lock);
5740 	num_bytes = div_factor(block_rsv->size, min_factor);
5741 	if (block_rsv->reserved >= num_bytes)
5742 		ret = 0;
5743 	spin_unlock(&block_rsv->lock);
5744 
5745 	return ret;
5746 }
5747 
5748 int btrfs_block_rsv_refill(struct btrfs_root *root,
5749 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5750 			   enum btrfs_reserve_flush_enum flush)
5751 {
5752 	u64 num_bytes = 0;
5753 	int ret = -ENOSPC;
5754 
5755 	if (!block_rsv)
5756 		return 0;
5757 
5758 	spin_lock(&block_rsv->lock);
5759 	num_bytes = min_reserved;
5760 	if (block_rsv->reserved >= num_bytes)
5761 		ret = 0;
5762 	else
5763 		num_bytes -= block_rsv->reserved;
5764 	spin_unlock(&block_rsv->lock);
5765 
5766 	if (!ret)
5767 		return 0;
5768 
5769 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5770 	if (!ret) {
5771 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5772 		return 0;
5773 	}
5774 
5775 	return ret;
5776 }
5777 
5778 /**
5779  * btrfs_inode_rsv_refill - refill the inode block rsv.
5780  * @inode - the inode we are refilling.
5781  * @flush - the flushing restriction.
5782  *
5783  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5784  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5785  * or return if we already have enough space.  This will also handle the reserve
5786  * tracepoint for the reserved amount.
5787  */
5788 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5789 				  enum btrfs_reserve_flush_enum flush)
5790 {
5791 	struct btrfs_root *root = inode->root;
5792 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5793 	u64 num_bytes = 0;
5794 	u64 qgroup_num_bytes = 0;
5795 	int ret = -ENOSPC;
5796 
5797 	spin_lock(&block_rsv->lock);
5798 	if (block_rsv->reserved < block_rsv->size)
5799 		num_bytes = block_rsv->size - block_rsv->reserved;
5800 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5801 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5802 				   block_rsv->qgroup_rsv_reserved;
5803 	spin_unlock(&block_rsv->lock);
5804 
5805 	if (num_bytes == 0)
5806 		return 0;
5807 
5808 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5809 	if (ret)
5810 		return ret;
5811 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5812 	if (!ret) {
5813 		block_rsv_add_bytes(block_rsv, num_bytes, false);
5814 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5815 					      btrfs_ino(inode), num_bytes, 1);
5816 
5817 		/* Don't forget to increase qgroup_rsv_reserved */
5818 		spin_lock(&block_rsv->lock);
5819 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5820 		spin_unlock(&block_rsv->lock);
5821 	} else
5822 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5823 	return ret;
5824 }
5825 
5826 static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5827 				     struct btrfs_block_rsv *block_rsv,
5828 				     u64 num_bytes, u64 *qgroup_to_release)
5829 {
5830 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5831 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5832 	struct btrfs_block_rsv *target = delayed_rsv;
5833 
5834 	if (target->full || target == block_rsv)
5835 		target = global_rsv;
5836 
5837 	if (block_rsv->space_info != target->space_info)
5838 		target = NULL;
5839 
5840 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5841 				       qgroup_to_release);
5842 }
5843 
5844 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5845 			     struct btrfs_block_rsv *block_rsv,
5846 			     u64 num_bytes)
5847 {
5848 	__btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5849 }
5850 
5851 /**
5852  * btrfs_inode_rsv_release - release any excessive reservation.
5853  * @inode - the inode we need to release from.
5854  * @qgroup_free - free or convert qgroup meta.
5855  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5856  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5857  *   @qgroup_free is true for error handling, and false for normal release.
5858  *
5859  * This is the same as btrfs_block_rsv_release, except that it handles the
5860  * tracepoint for the reservation.
5861  */
5862 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5863 {
5864 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5865 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5866 	u64 released = 0;
5867 	u64 qgroup_to_release = 0;
5868 
5869 	/*
5870 	 * Since we statically set the block_rsv->size we just want to say we
5871 	 * are releasing 0 bytes, and then we'll just get the reservation over
5872 	 * the size free'd.
5873 	 */
5874 	released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5875 					     &qgroup_to_release);
5876 	if (released > 0)
5877 		trace_btrfs_space_reservation(fs_info, "delalloc",
5878 					      btrfs_ino(inode), released, 0);
5879 	if (qgroup_free)
5880 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5881 	else
5882 		btrfs_qgroup_convert_reserved_meta(inode->root,
5883 						   qgroup_to_release);
5884 }
5885 
5886 /**
5887  * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5888  * @fs_info - the fs_info for our fs.
5889  * @nr - the number of items to drop.
5890  *
5891  * This drops the delayed ref head's count from the delayed refs rsv and frees
5892  * any excess reservation we had.
5893  */
5894 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
5895 {
5896 	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5897 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5898 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5899 	u64 released = 0;
5900 
5901 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5902 					   num_bytes, NULL);
5903 	if (released)
5904 		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5905 					      0, released, 0);
5906 }
5907 
5908 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5909 {
5910 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5911 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5912 	u64 num_bytes;
5913 
5914 	/*
5915 	 * The global block rsv is based on the size of the extent tree, the
5916 	 * checksum tree and the root tree.  If the fs is empty we want to set
5917 	 * it to a minimal amount for safety.
5918 	 */
5919 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5920 		btrfs_root_used(&fs_info->csum_root->root_item) +
5921 		btrfs_root_used(&fs_info->tree_root->root_item);
5922 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5923 
5924 	spin_lock(&sinfo->lock);
5925 	spin_lock(&block_rsv->lock);
5926 
5927 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5928 
5929 	if (block_rsv->reserved < block_rsv->size) {
5930 		num_bytes = btrfs_space_info_used(sinfo, true);
5931 		if (sinfo->total_bytes > num_bytes) {
5932 			num_bytes = sinfo->total_bytes - num_bytes;
5933 			num_bytes = min(num_bytes,
5934 					block_rsv->size - block_rsv->reserved);
5935 			block_rsv->reserved += num_bytes;
5936 			update_bytes_may_use(sinfo, num_bytes);
5937 			trace_btrfs_space_reservation(fs_info, "space_info",
5938 						      sinfo->flags, num_bytes,
5939 						      1);
5940 		}
5941 	} else if (block_rsv->reserved > block_rsv->size) {
5942 		num_bytes = block_rsv->reserved - block_rsv->size;
5943 		update_bytes_may_use(sinfo, -num_bytes);
5944 		trace_btrfs_space_reservation(fs_info, "space_info",
5945 				      sinfo->flags, num_bytes, 0);
5946 		block_rsv->reserved = block_rsv->size;
5947 	}
5948 
5949 	if (block_rsv->reserved == block_rsv->size)
5950 		block_rsv->full = 1;
5951 	else
5952 		block_rsv->full = 0;
5953 
5954 	spin_unlock(&block_rsv->lock);
5955 	spin_unlock(&sinfo->lock);
5956 }
5957 
5958 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5959 {
5960 	struct btrfs_space_info *space_info;
5961 
5962 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5963 	fs_info->chunk_block_rsv.space_info = space_info;
5964 
5965 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5966 	fs_info->global_block_rsv.space_info = space_info;
5967 	fs_info->trans_block_rsv.space_info = space_info;
5968 	fs_info->empty_block_rsv.space_info = space_info;
5969 	fs_info->delayed_block_rsv.space_info = space_info;
5970 	fs_info->delayed_refs_rsv.space_info = space_info;
5971 
5972 	fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5973 	fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
5974 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5975 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5976 	if (fs_info->quota_root)
5977 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5978 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5979 
5980 	update_global_block_rsv(fs_info);
5981 }
5982 
5983 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5984 {
5985 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5986 				(u64)-1, NULL);
5987 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5988 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5989 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5990 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5991 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5992 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5993 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5994 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
5995 }
5996 
5997 /*
5998  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5999  * @trans - the trans that may have generated delayed refs
6000  *
6001  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
6002  * it'll calculate the additional size and add it to the delayed_refs_rsv.
6003  */
6004 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
6005 {
6006 	struct btrfs_fs_info *fs_info = trans->fs_info;
6007 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
6008 	u64 num_bytes;
6009 
6010 	if (!trans->delayed_ref_updates)
6011 		return;
6012 
6013 	num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6014 						   trans->delayed_ref_updates);
6015 	spin_lock(&delayed_rsv->lock);
6016 	delayed_rsv->size += num_bytes;
6017 	delayed_rsv->full = 0;
6018 	spin_unlock(&delayed_rsv->lock);
6019 	trans->delayed_ref_updates = 0;
6020 }
6021 
6022 /*
6023  * To be called after all the new block groups attached to the transaction
6024  * handle have been created (btrfs_create_pending_block_groups()).
6025  */
6026 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6027 {
6028 	struct btrfs_fs_info *fs_info = trans->fs_info;
6029 
6030 	if (!trans->chunk_bytes_reserved)
6031 		return;
6032 
6033 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6034 
6035 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
6036 				trans->chunk_bytes_reserved, NULL);
6037 	trans->chunk_bytes_reserved = 0;
6038 }
6039 
6040 /*
6041  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6042  * root: the root of the parent directory
6043  * rsv: block reservation
6044  * items: the number of items that we need do reservation
6045  * use_global_rsv: allow fallback to the global block reservation
6046  *
6047  * This function is used to reserve the space for snapshot/subvolume
6048  * creation and deletion. Those operations are different with the
6049  * common file/directory operations, they change two fs/file trees
6050  * and root tree, the number of items that the qgroup reserves is
6051  * different with the free space reservation. So we can not use
6052  * the space reservation mechanism in start_transaction().
6053  */
6054 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6055 				     struct btrfs_block_rsv *rsv, int items,
6056 				     bool use_global_rsv)
6057 {
6058 	u64 qgroup_num_bytes = 0;
6059 	u64 num_bytes;
6060 	int ret;
6061 	struct btrfs_fs_info *fs_info = root->fs_info;
6062 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6063 
6064 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6065 		/* One for parent inode, two for dir entries */
6066 		qgroup_num_bytes = 3 * fs_info->nodesize;
6067 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
6068 				qgroup_num_bytes, true);
6069 		if (ret)
6070 			return ret;
6071 	}
6072 
6073 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6074 	rsv->space_info = __find_space_info(fs_info,
6075 					    BTRFS_BLOCK_GROUP_METADATA);
6076 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6077 				  BTRFS_RESERVE_FLUSH_ALL);
6078 
6079 	if (ret == -ENOSPC && use_global_rsv)
6080 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
6081 
6082 	if (ret && qgroup_num_bytes)
6083 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
6084 
6085 	return ret;
6086 }
6087 
6088 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6089 				      struct btrfs_block_rsv *rsv)
6090 {
6091 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6092 }
6093 
6094 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6095 						 struct btrfs_inode *inode)
6096 {
6097 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6098 	u64 reserve_size = 0;
6099 	u64 qgroup_rsv_size = 0;
6100 	u64 csum_leaves;
6101 	unsigned outstanding_extents;
6102 
6103 	lockdep_assert_held(&inode->lock);
6104 	outstanding_extents = inode->outstanding_extents;
6105 	if (outstanding_extents)
6106 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6107 						outstanding_extents + 1);
6108 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6109 						 inode->csum_bytes);
6110 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6111 						       csum_leaves);
6112 	/*
6113 	 * For qgroup rsv, the calculation is very simple:
6114 	 * account one nodesize for each outstanding extent
6115 	 *
6116 	 * This is overestimating in most cases.
6117 	 */
6118 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6119 
6120 	spin_lock(&block_rsv->lock);
6121 	block_rsv->size = reserve_size;
6122 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6123 	spin_unlock(&block_rsv->lock);
6124 }
6125 
6126 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6127 {
6128 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6129 	unsigned nr_extents;
6130 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6131 	int ret = 0;
6132 	bool delalloc_lock = true;
6133 
6134 	/* If we are a free space inode we need to not flush since we will be in
6135 	 * the middle of a transaction commit.  We also don't need the delalloc
6136 	 * mutex since we won't race with anybody.  We need this mostly to make
6137 	 * lockdep shut its filthy mouth.
6138 	 *
6139 	 * If we have a transaction open (can happen if we call truncate_block
6140 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6141 	 */
6142 	if (btrfs_is_free_space_inode(inode)) {
6143 		flush = BTRFS_RESERVE_NO_FLUSH;
6144 		delalloc_lock = false;
6145 	} else {
6146 		if (current->journal_info)
6147 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6148 
6149 		if (btrfs_transaction_in_commit(fs_info))
6150 			schedule_timeout(1);
6151 	}
6152 
6153 	if (delalloc_lock)
6154 		mutex_lock(&inode->delalloc_mutex);
6155 
6156 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6157 
6158 	/* Add our new extents and calculate the new rsv size. */
6159 	spin_lock(&inode->lock);
6160 	nr_extents = count_max_extents(num_bytes);
6161 	btrfs_mod_outstanding_extents(inode, nr_extents);
6162 	inode->csum_bytes += num_bytes;
6163 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6164 	spin_unlock(&inode->lock);
6165 
6166 	ret = btrfs_inode_rsv_refill(inode, flush);
6167 	if (unlikely(ret))
6168 		goto out_fail;
6169 
6170 	if (delalloc_lock)
6171 		mutex_unlock(&inode->delalloc_mutex);
6172 	return 0;
6173 
6174 out_fail:
6175 	spin_lock(&inode->lock);
6176 	nr_extents = count_max_extents(num_bytes);
6177 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6178 	inode->csum_bytes -= num_bytes;
6179 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6180 	spin_unlock(&inode->lock);
6181 
6182 	btrfs_inode_rsv_release(inode, true);
6183 	if (delalloc_lock)
6184 		mutex_unlock(&inode->delalloc_mutex);
6185 	return ret;
6186 }
6187 
6188 /**
6189  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6190  * @inode: the inode to release the reservation for.
6191  * @num_bytes: the number of bytes we are releasing.
6192  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6193  *
6194  * This will release the metadata reservation for an inode.  This can be called
6195  * once we complete IO for a given set of bytes to release their metadata
6196  * reservations, or on error for the same reason.
6197  */
6198 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6199 				     bool qgroup_free)
6200 {
6201 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6202 
6203 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6204 	spin_lock(&inode->lock);
6205 	inode->csum_bytes -= num_bytes;
6206 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6207 	spin_unlock(&inode->lock);
6208 
6209 	if (btrfs_is_testing(fs_info))
6210 		return;
6211 
6212 	btrfs_inode_rsv_release(inode, qgroup_free);
6213 }
6214 
6215 /**
6216  * btrfs_delalloc_release_extents - release our outstanding_extents
6217  * @inode: the inode to balance the reservation for.
6218  * @num_bytes: the number of bytes we originally reserved with
6219  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6220  *
6221  * When we reserve space we increase outstanding_extents for the extents we may
6222  * add.  Once we've set the range as delalloc or created our ordered extents we
6223  * have outstanding_extents to track the real usage, so we use this to free our
6224  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6225  * with btrfs_delalloc_reserve_metadata.
6226  */
6227 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6228 				    bool qgroup_free)
6229 {
6230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6231 	unsigned num_extents;
6232 
6233 	spin_lock(&inode->lock);
6234 	num_extents = count_max_extents(num_bytes);
6235 	btrfs_mod_outstanding_extents(inode, -num_extents);
6236 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6237 	spin_unlock(&inode->lock);
6238 
6239 	if (btrfs_is_testing(fs_info))
6240 		return;
6241 
6242 	btrfs_inode_rsv_release(inode, qgroup_free);
6243 }
6244 
6245 /**
6246  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6247  * delalloc
6248  * @inode: inode we're writing to
6249  * @start: start range we are writing to
6250  * @len: how long the range we are writing to
6251  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6252  * 	      current reservation.
6253  *
6254  * This will do the following things
6255  *
6256  * o reserve space in data space info for num bytes
6257  *   and reserve precious corresponding qgroup space
6258  *   (Done in check_data_free_space)
6259  *
6260  * o reserve space for metadata space, based on the number of outstanding
6261  *   extents and how much csums will be needed
6262  *   also reserve metadata space in a per root over-reserve method.
6263  * o add to the inodes->delalloc_bytes
6264  * o add it to the fs_info's delalloc inodes list.
6265  *   (Above 3 all done in delalloc_reserve_metadata)
6266  *
6267  * Return 0 for success
6268  * Return <0 for error(-ENOSPC or -EQUOT)
6269  */
6270 int btrfs_delalloc_reserve_space(struct inode *inode,
6271 			struct extent_changeset **reserved, u64 start, u64 len)
6272 {
6273 	int ret;
6274 
6275 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6276 	if (ret < 0)
6277 		return ret;
6278 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6279 	if (ret < 0)
6280 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6281 	return ret;
6282 }
6283 
6284 /**
6285  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6286  * @inode: inode we're releasing space for
6287  * @start: start position of the space already reserved
6288  * @len: the len of the space already reserved
6289  * @release_bytes: the len of the space we consumed or didn't use
6290  *
6291  * This function will release the metadata space that was not used and will
6292  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6293  * list if there are no delalloc bytes left.
6294  * Also it will handle the qgroup reserved space.
6295  */
6296 void btrfs_delalloc_release_space(struct inode *inode,
6297 				  struct extent_changeset *reserved,
6298 				  u64 start, u64 len, bool qgroup_free)
6299 {
6300 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6301 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6302 }
6303 
6304 static int update_block_group(struct btrfs_trans_handle *trans,
6305 			      struct btrfs_fs_info *info, u64 bytenr,
6306 			      u64 num_bytes, int alloc)
6307 {
6308 	struct btrfs_block_group_cache *cache = NULL;
6309 	u64 total = num_bytes;
6310 	u64 old_val;
6311 	u64 byte_in_group;
6312 	int factor;
6313 	int ret = 0;
6314 
6315 	/* block accounting for super block */
6316 	spin_lock(&info->delalloc_root_lock);
6317 	old_val = btrfs_super_bytes_used(info->super_copy);
6318 	if (alloc)
6319 		old_val += num_bytes;
6320 	else
6321 		old_val -= num_bytes;
6322 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6323 	spin_unlock(&info->delalloc_root_lock);
6324 
6325 	while (total) {
6326 		cache = btrfs_lookup_block_group(info, bytenr);
6327 		if (!cache) {
6328 			ret = -ENOENT;
6329 			break;
6330 		}
6331 		factor = btrfs_bg_type_to_factor(cache->flags);
6332 
6333 		/*
6334 		 * If this block group has free space cache written out, we
6335 		 * need to make sure to load it if we are removing space.  This
6336 		 * is because we need the unpinning stage to actually add the
6337 		 * space back to the block group, otherwise we will leak space.
6338 		 */
6339 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6340 			cache_block_group(cache, 1);
6341 
6342 		byte_in_group = bytenr - cache->key.objectid;
6343 		WARN_ON(byte_in_group > cache->key.offset);
6344 
6345 		spin_lock(&cache->space_info->lock);
6346 		spin_lock(&cache->lock);
6347 
6348 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6349 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6350 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6351 
6352 		old_val = btrfs_block_group_used(&cache->item);
6353 		num_bytes = min(total, cache->key.offset - byte_in_group);
6354 		if (alloc) {
6355 			old_val += num_bytes;
6356 			btrfs_set_block_group_used(&cache->item, old_val);
6357 			cache->reserved -= num_bytes;
6358 			cache->space_info->bytes_reserved -= num_bytes;
6359 			cache->space_info->bytes_used += num_bytes;
6360 			cache->space_info->disk_used += num_bytes * factor;
6361 			spin_unlock(&cache->lock);
6362 			spin_unlock(&cache->space_info->lock);
6363 		} else {
6364 			old_val -= num_bytes;
6365 			btrfs_set_block_group_used(&cache->item, old_val);
6366 			cache->pinned += num_bytes;
6367 			update_bytes_pinned(cache->space_info, num_bytes);
6368 			cache->space_info->bytes_used -= num_bytes;
6369 			cache->space_info->disk_used -= num_bytes * factor;
6370 			spin_unlock(&cache->lock);
6371 			spin_unlock(&cache->space_info->lock);
6372 
6373 			trace_btrfs_space_reservation(info, "pinned",
6374 						      cache->space_info->flags,
6375 						      num_bytes, 1);
6376 			percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6377 					   num_bytes,
6378 					   BTRFS_TOTAL_BYTES_PINNED_BATCH);
6379 			set_extent_dirty(info->pinned_extents,
6380 					 bytenr, bytenr + num_bytes - 1,
6381 					 GFP_NOFS | __GFP_NOFAIL);
6382 		}
6383 
6384 		spin_lock(&trans->transaction->dirty_bgs_lock);
6385 		if (list_empty(&cache->dirty_list)) {
6386 			list_add_tail(&cache->dirty_list,
6387 				      &trans->transaction->dirty_bgs);
6388 			trans->transaction->num_dirty_bgs++;
6389 			trans->delayed_ref_updates++;
6390 			btrfs_get_block_group(cache);
6391 		}
6392 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6393 
6394 		/*
6395 		 * No longer have used bytes in this block group, queue it for
6396 		 * deletion. We do this after adding the block group to the
6397 		 * dirty list to avoid races between cleaner kthread and space
6398 		 * cache writeout.
6399 		 */
6400 		if (!alloc && old_val == 0)
6401 			btrfs_mark_bg_unused(cache);
6402 
6403 		btrfs_put_block_group(cache);
6404 		total -= num_bytes;
6405 		bytenr += num_bytes;
6406 	}
6407 
6408 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
6409 	btrfs_update_delayed_refs_rsv(trans);
6410 	return ret;
6411 }
6412 
6413 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6414 {
6415 	struct btrfs_block_group_cache *cache;
6416 	u64 bytenr;
6417 
6418 	spin_lock(&fs_info->block_group_cache_lock);
6419 	bytenr = fs_info->first_logical_byte;
6420 	spin_unlock(&fs_info->block_group_cache_lock);
6421 
6422 	if (bytenr < (u64)-1)
6423 		return bytenr;
6424 
6425 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6426 	if (!cache)
6427 		return 0;
6428 
6429 	bytenr = cache->key.objectid;
6430 	btrfs_put_block_group(cache);
6431 
6432 	return bytenr;
6433 }
6434 
6435 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6436 			   struct btrfs_block_group_cache *cache,
6437 			   u64 bytenr, u64 num_bytes, int reserved)
6438 {
6439 	spin_lock(&cache->space_info->lock);
6440 	spin_lock(&cache->lock);
6441 	cache->pinned += num_bytes;
6442 	update_bytes_pinned(cache->space_info, num_bytes);
6443 	if (reserved) {
6444 		cache->reserved -= num_bytes;
6445 		cache->space_info->bytes_reserved -= num_bytes;
6446 	}
6447 	spin_unlock(&cache->lock);
6448 	spin_unlock(&cache->space_info->lock);
6449 
6450 	trace_btrfs_space_reservation(fs_info, "pinned",
6451 				      cache->space_info->flags, num_bytes, 1);
6452 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6453 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6454 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6455 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6456 	return 0;
6457 }
6458 
6459 /*
6460  * this function must be called within transaction
6461  */
6462 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6463 		     u64 bytenr, u64 num_bytes, int reserved)
6464 {
6465 	struct btrfs_block_group_cache *cache;
6466 
6467 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6468 	BUG_ON(!cache); /* Logic error */
6469 
6470 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6471 
6472 	btrfs_put_block_group(cache);
6473 	return 0;
6474 }
6475 
6476 /*
6477  * this function must be called within transaction
6478  */
6479 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6480 				    u64 bytenr, u64 num_bytes)
6481 {
6482 	struct btrfs_block_group_cache *cache;
6483 	int ret;
6484 
6485 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6486 	if (!cache)
6487 		return -EINVAL;
6488 
6489 	/*
6490 	 * pull in the free space cache (if any) so that our pin
6491 	 * removes the free space from the cache.  We have load_only set
6492 	 * to one because the slow code to read in the free extents does check
6493 	 * the pinned extents.
6494 	 */
6495 	cache_block_group(cache, 1);
6496 
6497 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6498 
6499 	/* remove us from the free space cache (if we're there at all) */
6500 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6501 	btrfs_put_block_group(cache);
6502 	return ret;
6503 }
6504 
6505 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6506 				   u64 start, u64 num_bytes)
6507 {
6508 	int ret;
6509 	struct btrfs_block_group_cache *block_group;
6510 	struct btrfs_caching_control *caching_ctl;
6511 
6512 	block_group = btrfs_lookup_block_group(fs_info, start);
6513 	if (!block_group)
6514 		return -EINVAL;
6515 
6516 	cache_block_group(block_group, 0);
6517 	caching_ctl = get_caching_control(block_group);
6518 
6519 	if (!caching_ctl) {
6520 		/* Logic error */
6521 		BUG_ON(!block_group_cache_done(block_group));
6522 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6523 	} else {
6524 		mutex_lock(&caching_ctl->mutex);
6525 
6526 		if (start >= caching_ctl->progress) {
6527 			ret = add_excluded_extent(fs_info, start, num_bytes);
6528 		} else if (start + num_bytes <= caching_ctl->progress) {
6529 			ret = btrfs_remove_free_space(block_group,
6530 						      start, num_bytes);
6531 		} else {
6532 			num_bytes = caching_ctl->progress - start;
6533 			ret = btrfs_remove_free_space(block_group,
6534 						      start, num_bytes);
6535 			if (ret)
6536 				goto out_lock;
6537 
6538 			num_bytes = (start + num_bytes) -
6539 				caching_ctl->progress;
6540 			start = caching_ctl->progress;
6541 			ret = add_excluded_extent(fs_info, start, num_bytes);
6542 		}
6543 out_lock:
6544 		mutex_unlock(&caching_ctl->mutex);
6545 		put_caching_control(caching_ctl);
6546 	}
6547 	btrfs_put_block_group(block_group);
6548 	return ret;
6549 }
6550 
6551 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6552 				 struct extent_buffer *eb)
6553 {
6554 	struct btrfs_file_extent_item *item;
6555 	struct btrfs_key key;
6556 	int found_type;
6557 	int i;
6558 	int ret = 0;
6559 
6560 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6561 		return 0;
6562 
6563 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6564 		btrfs_item_key_to_cpu(eb, &key, i);
6565 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6566 			continue;
6567 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6568 		found_type = btrfs_file_extent_type(eb, item);
6569 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6570 			continue;
6571 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6572 			continue;
6573 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6574 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6575 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6576 		if (ret)
6577 			break;
6578 	}
6579 
6580 	return ret;
6581 }
6582 
6583 static void
6584 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6585 {
6586 	atomic_inc(&bg->reservations);
6587 }
6588 
6589 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6590 					const u64 start)
6591 {
6592 	struct btrfs_block_group_cache *bg;
6593 
6594 	bg = btrfs_lookup_block_group(fs_info, start);
6595 	ASSERT(bg);
6596 	if (atomic_dec_and_test(&bg->reservations))
6597 		wake_up_var(&bg->reservations);
6598 	btrfs_put_block_group(bg);
6599 }
6600 
6601 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6602 {
6603 	struct btrfs_space_info *space_info = bg->space_info;
6604 
6605 	ASSERT(bg->ro);
6606 
6607 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6608 		return;
6609 
6610 	/*
6611 	 * Our block group is read only but before we set it to read only,
6612 	 * some task might have had allocated an extent from it already, but it
6613 	 * has not yet created a respective ordered extent (and added it to a
6614 	 * root's list of ordered extents).
6615 	 * Therefore wait for any task currently allocating extents, since the
6616 	 * block group's reservations counter is incremented while a read lock
6617 	 * on the groups' semaphore is held and decremented after releasing
6618 	 * the read access on that semaphore and creating the ordered extent.
6619 	 */
6620 	down_write(&space_info->groups_sem);
6621 	up_write(&space_info->groups_sem);
6622 
6623 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6624 }
6625 
6626 /**
6627  * btrfs_add_reserved_bytes - update the block_group and space info counters
6628  * @cache:	The cache we are manipulating
6629  * @ram_bytes:  The number of bytes of file content, and will be same to
6630  *              @num_bytes except for the compress path.
6631  * @num_bytes:	The number of bytes in question
6632  * @delalloc:   The blocks are allocated for the delalloc write
6633  *
6634  * This is called by the allocator when it reserves space. If this is a
6635  * reservation and the block group has become read only we cannot make the
6636  * reservation and return -EAGAIN, otherwise this function always succeeds.
6637  */
6638 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6639 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6640 {
6641 	struct btrfs_space_info *space_info = cache->space_info;
6642 	int ret = 0;
6643 
6644 	spin_lock(&space_info->lock);
6645 	spin_lock(&cache->lock);
6646 	if (cache->ro) {
6647 		ret = -EAGAIN;
6648 	} else {
6649 		cache->reserved += num_bytes;
6650 		space_info->bytes_reserved += num_bytes;
6651 		update_bytes_may_use(space_info, -ram_bytes);
6652 		if (delalloc)
6653 			cache->delalloc_bytes += num_bytes;
6654 	}
6655 	spin_unlock(&cache->lock);
6656 	spin_unlock(&space_info->lock);
6657 	return ret;
6658 }
6659 
6660 /**
6661  * btrfs_free_reserved_bytes - update the block_group and space info counters
6662  * @cache:      The cache we are manipulating
6663  * @num_bytes:  The number of bytes in question
6664  * @delalloc:   The blocks are allocated for the delalloc write
6665  *
6666  * This is called by somebody who is freeing space that was never actually used
6667  * on disk.  For example if you reserve some space for a new leaf in transaction
6668  * A and before transaction A commits you free that leaf, you call this with
6669  * reserve set to 0 in order to clear the reservation.
6670  */
6671 
6672 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6673 				      u64 num_bytes, int delalloc)
6674 {
6675 	struct btrfs_space_info *space_info = cache->space_info;
6676 
6677 	spin_lock(&space_info->lock);
6678 	spin_lock(&cache->lock);
6679 	if (cache->ro)
6680 		space_info->bytes_readonly += num_bytes;
6681 	cache->reserved -= num_bytes;
6682 	space_info->bytes_reserved -= num_bytes;
6683 	space_info->max_extent_size = 0;
6684 
6685 	if (delalloc)
6686 		cache->delalloc_bytes -= num_bytes;
6687 	spin_unlock(&cache->lock);
6688 	spin_unlock(&space_info->lock);
6689 }
6690 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6691 {
6692 	struct btrfs_caching_control *next;
6693 	struct btrfs_caching_control *caching_ctl;
6694 	struct btrfs_block_group_cache *cache;
6695 
6696 	down_write(&fs_info->commit_root_sem);
6697 
6698 	list_for_each_entry_safe(caching_ctl, next,
6699 				 &fs_info->caching_block_groups, list) {
6700 		cache = caching_ctl->block_group;
6701 		if (block_group_cache_done(cache)) {
6702 			cache->last_byte_to_unpin = (u64)-1;
6703 			list_del_init(&caching_ctl->list);
6704 			put_caching_control(caching_ctl);
6705 		} else {
6706 			cache->last_byte_to_unpin = caching_ctl->progress;
6707 		}
6708 	}
6709 
6710 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6711 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6712 	else
6713 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6714 
6715 	up_write(&fs_info->commit_root_sem);
6716 
6717 	update_global_block_rsv(fs_info);
6718 }
6719 
6720 /*
6721  * Returns the free cluster for the given space info and sets empty_cluster to
6722  * what it should be based on the mount options.
6723  */
6724 static struct btrfs_free_cluster *
6725 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6726 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6727 {
6728 	struct btrfs_free_cluster *ret = NULL;
6729 
6730 	*empty_cluster = 0;
6731 	if (btrfs_mixed_space_info(space_info))
6732 		return ret;
6733 
6734 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6735 		ret = &fs_info->meta_alloc_cluster;
6736 		if (btrfs_test_opt(fs_info, SSD))
6737 			*empty_cluster = SZ_2M;
6738 		else
6739 			*empty_cluster = SZ_64K;
6740 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6741 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6742 		*empty_cluster = SZ_2M;
6743 		ret = &fs_info->data_alloc_cluster;
6744 	}
6745 
6746 	return ret;
6747 }
6748 
6749 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6750 			      u64 start, u64 end,
6751 			      const bool return_free_space)
6752 {
6753 	struct btrfs_block_group_cache *cache = NULL;
6754 	struct btrfs_space_info *space_info;
6755 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6756 	struct btrfs_free_cluster *cluster = NULL;
6757 	u64 len;
6758 	u64 total_unpinned = 0;
6759 	u64 empty_cluster = 0;
6760 	bool readonly;
6761 
6762 	while (start <= end) {
6763 		readonly = false;
6764 		if (!cache ||
6765 		    start >= cache->key.objectid + cache->key.offset) {
6766 			if (cache)
6767 				btrfs_put_block_group(cache);
6768 			total_unpinned = 0;
6769 			cache = btrfs_lookup_block_group(fs_info, start);
6770 			BUG_ON(!cache); /* Logic error */
6771 
6772 			cluster = fetch_cluster_info(fs_info,
6773 						     cache->space_info,
6774 						     &empty_cluster);
6775 			empty_cluster <<= 1;
6776 		}
6777 
6778 		len = cache->key.objectid + cache->key.offset - start;
6779 		len = min(len, end + 1 - start);
6780 
6781 		if (start < cache->last_byte_to_unpin) {
6782 			len = min(len, cache->last_byte_to_unpin - start);
6783 			if (return_free_space)
6784 				btrfs_add_free_space(cache, start, len);
6785 		}
6786 
6787 		start += len;
6788 		total_unpinned += len;
6789 		space_info = cache->space_info;
6790 
6791 		/*
6792 		 * If this space cluster has been marked as fragmented and we've
6793 		 * unpinned enough in this block group to potentially allow a
6794 		 * cluster to be created inside of it go ahead and clear the
6795 		 * fragmented check.
6796 		 */
6797 		if (cluster && cluster->fragmented &&
6798 		    total_unpinned > empty_cluster) {
6799 			spin_lock(&cluster->lock);
6800 			cluster->fragmented = 0;
6801 			spin_unlock(&cluster->lock);
6802 		}
6803 
6804 		spin_lock(&space_info->lock);
6805 		spin_lock(&cache->lock);
6806 		cache->pinned -= len;
6807 		update_bytes_pinned(space_info, -len);
6808 
6809 		trace_btrfs_space_reservation(fs_info, "pinned",
6810 					      space_info->flags, len, 0);
6811 		space_info->max_extent_size = 0;
6812 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
6813 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6814 		if (cache->ro) {
6815 			space_info->bytes_readonly += len;
6816 			readonly = true;
6817 		}
6818 		spin_unlock(&cache->lock);
6819 		if (!readonly && return_free_space &&
6820 		    global_rsv->space_info == space_info) {
6821 			u64 to_add = len;
6822 
6823 			spin_lock(&global_rsv->lock);
6824 			if (!global_rsv->full) {
6825 				to_add = min(len, global_rsv->size -
6826 					     global_rsv->reserved);
6827 				global_rsv->reserved += to_add;
6828 				update_bytes_may_use(space_info, to_add);
6829 				if (global_rsv->reserved >= global_rsv->size)
6830 					global_rsv->full = 1;
6831 				trace_btrfs_space_reservation(fs_info,
6832 							      "space_info",
6833 							      space_info->flags,
6834 							      to_add, 1);
6835 				len -= to_add;
6836 			}
6837 			spin_unlock(&global_rsv->lock);
6838 			/* Add to any tickets we may have */
6839 			if (len)
6840 				space_info_add_new_bytes(fs_info, space_info,
6841 							 len);
6842 		}
6843 		spin_unlock(&space_info->lock);
6844 	}
6845 
6846 	if (cache)
6847 		btrfs_put_block_group(cache);
6848 	return 0;
6849 }
6850 
6851 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6852 {
6853 	struct btrfs_fs_info *fs_info = trans->fs_info;
6854 	struct btrfs_block_group_cache *block_group, *tmp;
6855 	struct list_head *deleted_bgs;
6856 	struct extent_io_tree *unpin;
6857 	u64 start;
6858 	u64 end;
6859 	int ret;
6860 
6861 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6862 		unpin = &fs_info->freed_extents[1];
6863 	else
6864 		unpin = &fs_info->freed_extents[0];
6865 
6866 	while (!trans->aborted) {
6867 		struct extent_state *cached_state = NULL;
6868 
6869 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6870 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6871 					    EXTENT_DIRTY, &cached_state);
6872 		if (ret) {
6873 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6874 			break;
6875 		}
6876 
6877 		if (btrfs_test_opt(fs_info, DISCARD))
6878 			ret = btrfs_discard_extent(fs_info, start,
6879 						   end + 1 - start, NULL);
6880 
6881 		clear_extent_dirty(unpin, start, end, &cached_state);
6882 		unpin_extent_range(fs_info, start, end, true);
6883 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6884 		free_extent_state(cached_state);
6885 		cond_resched();
6886 	}
6887 
6888 	/*
6889 	 * Transaction is finished.  We don't need the lock anymore.  We
6890 	 * do need to clean up the block groups in case of a transaction
6891 	 * abort.
6892 	 */
6893 	deleted_bgs = &trans->transaction->deleted_bgs;
6894 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6895 		u64 trimmed = 0;
6896 
6897 		ret = -EROFS;
6898 		if (!trans->aborted)
6899 			ret = btrfs_discard_extent(fs_info,
6900 						   block_group->key.objectid,
6901 						   block_group->key.offset,
6902 						   &trimmed);
6903 
6904 		list_del_init(&block_group->bg_list);
6905 		btrfs_put_block_group_trimming(block_group);
6906 		btrfs_put_block_group(block_group);
6907 
6908 		if (ret) {
6909 			const char *errstr = btrfs_decode_error(ret);
6910 			btrfs_warn(fs_info,
6911 			   "discard failed while removing blockgroup: errno=%d %s",
6912 				   ret, errstr);
6913 		}
6914 	}
6915 
6916 	return 0;
6917 }
6918 
6919 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6920 			       struct btrfs_delayed_ref_node *node, u64 parent,
6921 			       u64 root_objectid, u64 owner_objectid,
6922 			       u64 owner_offset, int refs_to_drop,
6923 			       struct btrfs_delayed_extent_op *extent_op)
6924 {
6925 	struct btrfs_fs_info *info = trans->fs_info;
6926 	struct btrfs_key key;
6927 	struct btrfs_path *path;
6928 	struct btrfs_root *extent_root = info->extent_root;
6929 	struct extent_buffer *leaf;
6930 	struct btrfs_extent_item *ei;
6931 	struct btrfs_extent_inline_ref *iref;
6932 	int ret;
6933 	int is_data;
6934 	int extent_slot = 0;
6935 	int found_extent = 0;
6936 	int num_to_del = 1;
6937 	u32 item_size;
6938 	u64 refs;
6939 	u64 bytenr = node->bytenr;
6940 	u64 num_bytes = node->num_bytes;
6941 	int last_ref = 0;
6942 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6943 
6944 	path = btrfs_alloc_path();
6945 	if (!path)
6946 		return -ENOMEM;
6947 
6948 	path->reada = READA_FORWARD;
6949 	path->leave_spinning = 1;
6950 
6951 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6952 	BUG_ON(!is_data && refs_to_drop != 1);
6953 
6954 	if (is_data)
6955 		skinny_metadata = false;
6956 
6957 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6958 				    parent, root_objectid, owner_objectid,
6959 				    owner_offset);
6960 	if (ret == 0) {
6961 		extent_slot = path->slots[0];
6962 		while (extent_slot >= 0) {
6963 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6964 					      extent_slot);
6965 			if (key.objectid != bytenr)
6966 				break;
6967 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6968 			    key.offset == num_bytes) {
6969 				found_extent = 1;
6970 				break;
6971 			}
6972 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6973 			    key.offset == owner_objectid) {
6974 				found_extent = 1;
6975 				break;
6976 			}
6977 			if (path->slots[0] - extent_slot > 5)
6978 				break;
6979 			extent_slot--;
6980 		}
6981 
6982 		if (!found_extent) {
6983 			BUG_ON(iref);
6984 			ret = remove_extent_backref(trans, path, NULL,
6985 						    refs_to_drop,
6986 						    is_data, &last_ref);
6987 			if (ret) {
6988 				btrfs_abort_transaction(trans, ret);
6989 				goto out;
6990 			}
6991 			btrfs_release_path(path);
6992 			path->leave_spinning = 1;
6993 
6994 			key.objectid = bytenr;
6995 			key.type = BTRFS_EXTENT_ITEM_KEY;
6996 			key.offset = num_bytes;
6997 
6998 			if (!is_data && skinny_metadata) {
6999 				key.type = BTRFS_METADATA_ITEM_KEY;
7000 				key.offset = owner_objectid;
7001 			}
7002 
7003 			ret = btrfs_search_slot(trans, extent_root,
7004 						&key, path, -1, 1);
7005 			if (ret > 0 && skinny_metadata && path->slots[0]) {
7006 				/*
7007 				 * Couldn't find our skinny metadata item,
7008 				 * see if we have ye olde extent item.
7009 				 */
7010 				path->slots[0]--;
7011 				btrfs_item_key_to_cpu(path->nodes[0], &key,
7012 						      path->slots[0]);
7013 				if (key.objectid == bytenr &&
7014 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
7015 				    key.offset == num_bytes)
7016 					ret = 0;
7017 			}
7018 
7019 			if (ret > 0 && skinny_metadata) {
7020 				skinny_metadata = false;
7021 				key.objectid = bytenr;
7022 				key.type = BTRFS_EXTENT_ITEM_KEY;
7023 				key.offset = num_bytes;
7024 				btrfs_release_path(path);
7025 				ret = btrfs_search_slot(trans, extent_root,
7026 							&key, path, -1, 1);
7027 			}
7028 
7029 			if (ret) {
7030 				btrfs_err(info,
7031 					  "umm, got %d back from search, was looking for %llu",
7032 					  ret, bytenr);
7033 				if (ret > 0)
7034 					btrfs_print_leaf(path->nodes[0]);
7035 			}
7036 			if (ret < 0) {
7037 				btrfs_abort_transaction(trans, ret);
7038 				goto out;
7039 			}
7040 			extent_slot = path->slots[0];
7041 		}
7042 	} else if (WARN_ON(ret == -ENOENT)) {
7043 		btrfs_print_leaf(path->nodes[0]);
7044 		btrfs_err(info,
7045 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7046 			bytenr, parent, root_objectid, owner_objectid,
7047 			owner_offset);
7048 		btrfs_abort_transaction(trans, ret);
7049 		goto out;
7050 	} else {
7051 		btrfs_abort_transaction(trans, ret);
7052 		goto out;
7053 	}
7054 
7055 	leaf = path->nodes[0];
7056 	item_size = btrfs_item_size_nr(leaf, extent_slot);
7057 	if (unlikely(item_size < sizeof(*ei))) {
7058 		ret = -EINVAL;
7059 		btrfs_print_v0_err(info);
7060 		btrfs_abort_transaction(trans, ret);
7061 		goto out;
7062 	}
7063 	ei = btrfs_item_ptr(leaf, extent_slot,
7064 			    struct btrfs_extent_item);
7065 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7066 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7067 		struct btrfs_tree_block_info *bi;
7068 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7069 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7070 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7071 	}
7072 
7073 	refs = btrfs_extent_refs(leaf, ei);
7074 	if (refs < refs_to_drop) {
7075 		btrfs_err(info,
7076 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7077 			  refs_to_drop, refs, bytenr);
7078 		ret = -EINVAL;
7079 		btrfs_abort_transaction(trans, ret);
7080 		goto out;
7081 	}
7082 	refs -= refs_to_drop;
7083 
7084 	if (refs > 0) {
7085 		if (extent_op)
7086 			__run_delayed_extent_op(extent_op, leaf, ei);
7087 		/*
7088 		 * In the case of inline back ref, reference count will
7089 		 * be updated by remove_extent_backref
7090 		 */
7091 		if (iref) {
7092 			BUG_ON(!found_extent);
7093 		} else {
7094 			btrfs_set_extent_refs(leaf, ei, refs);
7095 			btrfs_mark_buffer_dirty(leaf);
7096 		}
7097 		if (found_extent) {
7098 			ret = remove_extent_backref(trans, path, iref,
7099 						    refs_to_drop, is_data,
7100 						    &last_ref);
7101 			if (ret) {
7102 				btrfs_abort_transaction(trans, ret);
7103 				goto out;
7104 			}
7105 		}
7106 	} else {
7107 		if (found_extent) {
7108 			BUG_ON(is_data && refs_to_drop !=
7109 			       extent_data_ref_count(path, iref));
7110 			if (iref) {
7111 				BUG_ON(path->slots[0] != extent_slot);
7112 			} else {
7113 				BUG_ON(path->slots[0] != extent_slot + 1);
7114 				path->slots[0] = extent_slot;
7115 				num_to_del = 2;
7116 			}
7117 		}
7118 
7119 		last_ref = 1;
7120 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7121 				      num_to_del);
7122 		if (ret) {
7123 			btrfs_abort_transaction(trans, ret);
7124 			goto out;
7125 		}
7126 		btrfs_release_path(path);
7127 
7128 		if (is_data) {
7129 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7130 			if (ret) {
7131 				btrfs_abort_transaction(trans, ret);
7132 				goto out;
7133 			}
7134 		}
7135 
7136 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7137 		if (ret) {
7138 			btrfs_abort_transaction(trans, ret);
7139 			goto out;
7140 		}
7141 
7142 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7143 		if (ret) {
7144 			btrfs_abort_transaction(trans, ret);
7145 			goto out;
7146 		}
7147 	}
7148 	btrfs_release_path(path);
7149 
7150 out:
7151 	btrfs_free_path(path);
7152 	return ret;
7153 }
7154 
7155 /*
7156  * when we free an block, it is possible (and likely) that we free the last
7157  * delayed ref for that extent as well.  This searches the delayed ref tree for
7158  * a given extent, and if there are no other delayed refs to be processed, it
7159  * removes it from the tree.
7160  */
7161 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7162 				      u64 bytenr)
7163 {
7164 	struct btrfs_delayed_ref_head *head;
7165 	struct btrfs_delayed_ref_root *delayed_refs;
7166 	int ret = 0;
7167 
7168 	delayed_refs = &trans->transaction->delayed_refs;
7169 	spin_lock(&delayed_refs->lock);
7170 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7171 	if (!head)
7172 		goto out_delayed_unlock;
7173 
7174 	spin_lock(&head->lock);
7175 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
7176 		goto out;
7177 
7178 	if (cleanup_extent_op(head) != NULL)
7179 		goto out;
7180 
7181 	/*
7182 	 * waiting for the lock here would deadlock.  If someone else has it
7183 	 * locked they are already in the process of dropping it anyway
7184 	 */
7185 	if (!mutex_trylock(&head->mutex))
7186 		goto out;
7187 
7188 	btrfs_delete_ref_head(delayed_refs, head);
7189 	head->processing = 0;
7190 
7191 	spin_unlock(&head->lock);
7192 	spin_unlock(&delayed_refs->lock);
7193 
7194 	BUG_ON(head->extent_op);
7195 	if (head->must_insert_reserved)
7196 		ret = 1;
7197 
7198 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
7199 	mutex_unlock(&head->mutex);
7200 	btrfs_put_delayed_ref_head(head);
7201 	return ret;
7202 out:
7203 	spin_unlock(&head->lock);
7204 
7205 out_delayed_unlock:
7206 	spin_unlock(&delayed_refs->lock);
7207 	return 0;
7208 }
7209 
7210 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7211 			   struct btrfs_root *root,
7212 			   struct extent_buffer *buf,
7213 			   u64 parent, int last_ref)
7214 {
7215 	struct btrfs_fs_info *fs_info = root->fs_info;
7216 	int pin = 1;
7217 	int ret;
7218 
7219 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7220 		int old_ref_mod, new_ref_mod;
7221 
7222 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7223 				   root->root_key.objectid,
7224 				   btrfs_header_level(buf), 0,
7225 				   BTRFS_DROP_DELAYED_REF);
7226 		ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7227 						 buf->len, parent,
7228 						 root->root_key.objectid,
7229 						 btrfs_header_level(buf),
7230 						 BTRFS_DROP_DELAYED_REF, NULL,
7231 						 &old_ref_mod, &new_ref_mod);
7232 		BUG_ON(ret); /* -ENOMEM */
7233 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7234 	}
7235 
7236 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7237 		struct btrfs_block_group_cache *cache;
7238 
7239 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7240 			ret = check_ref_cleanup(trans, buf->start);
7241 			if (!ret)
7242 				goto out;
7243 		}
7244 
7245 		pin = 0;
7246 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7247 
7248 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7249 			pin_down_extent(fs_info, cache, buf->start,
7250 					buf->len, 1);
7251 			btrfs_put_block_group(cache);
7252 			goto out;
7253 		}
7254 
7255 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7256 
7257 		btrfs_add_free_space(cache, buf->start, buf->len);
7258 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7259 		btrfs_put_block_group(cache);
7260 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7261 	}
7262 out:
7263 	if (pin)
7264 		add_pinned_bytes(fs_info, buf->len, true,
7265 				 root->root_key.objectid);
7266 
7267 	if (last_ref) {
7268 		/*
7269 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7270 		 * matter anymore.
7271 		 */
7272 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7273 	}
7274 }
7275 
7276 /* Can return -ENOMEM */
7277 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7278 		      struct btrfs_root *root,
7279 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7280 		      u64 owner, u64 offset)
7281 {
7282 	struct btrfs_fs_info *fs_info = root->fs_info;
7283 	int old_ref_mod, new_ref_mod;
7284 	int ret;
7285 
7286 	if (btrfs_is_testing(fs_info))
7287 		return 0;
7288 
7289 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7290 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7291 				   root_objectid, owner, offset,
7292 				   BTRFS_DROP_DELAYED_REF);
7293 
7294 	/*
7295 	 * tree log blocks never actually go into the extent allocation
7296 	 * tree, just update pinning info and exit early.
7297 	 */
7298 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7299 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7300 		/* unlocks the pinned mutex */
7301 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7302 		old_ref_mod = new_ref_mod = 0;
7303 		ret = 0;
7304 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7305 		ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7306 						 num_bytes, parent,
7307 						 root_objectid, (int)owner,
7308 						 BTRFS_DROP_DELAYED_REF, NULL,
7309 						 &old_ref_mod, &new_ref_mod);
7310 	} else {
7311 		ret = btrfs_add_delayed_data_ref(trans, bytenr,
7312 						 num_bytes, parent,
7313 						 root_objectid, owner, offset,
7314 						 0, BTRFS_DROP_DELAYED_REF,
7315 						 &old_ref_mod, &new_ref_mod);
7316 	}
7317 
7318 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7319 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7320 
7321 		add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7322 	}
7323 
7324 	return ret;
7325 }
7326 
7327 /*
7328  * when we wait for progress in the block group caching, its because
7329  * our allocation attempt failed at least once.  So, we must sleep
7330  * and let some progress happen before we try again.
7331  *
7332  * This function will sleep at least once waiting for new free space to
7333  * show up, and then it will check the block group free space numbers
7334  * for our min num_bytes.  Another option is to have it go ahead
7335  * and look in the rbtree for a free extent of a given size, but this
7336  * is a good start.
7337  *
7338  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7339  * any of the information in this block group.
7340  */
7341 static noinline void
7342 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7343 				u64 num_bytes)
7344 {
7345 	struct btrfs_caching_control *caching_ctl;
7346 
7347 	caching_ctl = get_caching_control(cache);
7348 	if (!caching_ctl)
7349 		return;
7350 
7351 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7352 		   (cache->free_space_ctl->free_space >= num_bytes));
7353 
7354 	put_caching_control(caching_ctl);
7355 }
7356 
7357 static noinline int
7358 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7359 {
7360 	struct btrfs_caching_control *caching_ctl;
7361 	int ret = 0;
7362 
7363 	caching_ctl = get_caching_control(cache);
7364 	if (!caching_ctl)
7365 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7366 
7367 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7368 	if (cache->cached == BTRFS_CACHE_ERROR)
7369 		ret = -EIO;
7370 	put_caching_control(caching_ctl);
7371 	return ret;
7372 }
7373 
7374 enum btrfs_loop_type {
7375 	LOOP_CACHING_NOWAIT = 0,
7376 	LOOP_CACHING_WAIT = 1,
7377 	LOOP_ALLOC_CHUNK = 2,
7378 	LOOP_NO_EMPTY_SIZE = 3,
7379 };
7380 
7381 static inline void
7382 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7383 		       int delalloc)
7384 {
7385 	if (delalloc)
7386 		down_read(&cache->data_rwsem);
7387 }
7388 
7389 static inline void
7390 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7391 		       int delalloc)
7392 {
7393 	btrfs_get_block_group(cache);
7394 	if (delalloc)
7395 		down_read(&cache->data_rwsem);
7396 }
7397 
7398 static struct btrfs_block_group_cache *
7399 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7400 		   struct btrfs_free_cluster *cluster,
7401 		   int delalloc)
7402 {
7403 	struct btrfs_block_group_cache *used_bg = NULL;
7404 
7405 	spin_lock(&cluster->refill_lock);
7406 	while (1) {
7407 		used_bg = cluster->block_group;
7408 		if (!used_bg)
7409 			return NULL;
7410 
7411 		if (used_bg == block_group)
7412 			return used_bg;
7413 
7414 		btrfs_get_block_group(used_bg);
7415 
7416 		if (!delalloc)
7417 			return used_bg;
7418 
7419 		if (down_read_trylock(&used_bg->data_rwsem))
7420 			return used_bg;
7421 
7422 		spin_unlock(&cluster->refill_lock);
7423 
7424 		/* We should only have one-level nested. */
7425 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7426 
7427 		spin_lock(&cluster->refill_lock);
7428 		if (used_bg == cluster->block_group)
7429 			return used_bg;
7430 
7431 		up_read(&used_bg->data_rwsem);
7432 		btrfs_put_block_group(used_bg);
7433 	}
7434 }
7435 
7436 static inline void
7437 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7438 			 int delalloc)
7439 {
7440 	if (delalloc)
7441 		up_read(&cache->data_rwsem);
7442 	btrfs_put_block_group(cache);
7443 }
7444 
7445 /*
7446  * Structure used internally for find_free_extent() function.  Wraps needed
7447  * parameters.
7448  */
7449 struct find_free_extent_ctl {
7450 	/* Basic allocation info */
7451 	u64 ram_bytes;
7452 	u64 num_bytes;
7453 	u64 empty_size;
7454 	u64 flags;
7455 	int delalloc;
7456 
7457 	/* Where to start the search inside the bg */
7458 	u64 search_start;
7459 
7460 	/* For clustered allocation */
7461 	u64 empty_cluster;
7462 
7463 	bool have_caching_bg;
7464 	bool orig_have_caching_bg;
7465 
7466 	/* RAID index, converted from flags */
7467 	int index;
7468 
7469 	/*
7470 	 * Current loop number, check find_free_extent_update_loop() for details
7471 	 */
7472 	int loop;
7473 
7474 	/*
7475 	 * Whether we're refilling a cluster, if true we need to re-search
7476 	 * current block group but don't try to refill the cluster again.
7477 	 */
7478 	bool retry_clustered;
7479 
7480 	/*
7481 	 * Whether we're updating free space cache, if true we need to re-search
7482 	 * current block group but don't try updating free space cache again.
7483 	 */
7484 	bool retry_unclustered;
7485 
7486 	/* If current block group is cached */
7487 	int cached;
7488 
7489 	/* Max contiguous hole found */
7490 	u64 max_extent_size;
7491 
7492 	/* Total free space from free space cache, not always contiguous */
7493 	u64 total_free_space;
7494 
7495 	/* Found result */
7496 	u64 found_offset;
7497 };
7498 
7499 
7500 /*
7501  * Helper function for find_free_extent().
7502  *
7503  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7504  * Return -EAGAIN to inform caller that we need to re-search this block group
7505  * Return >0 to inform caller that we find nothing
7506  * Return 0 means we have found a location and set ffe_ctl->found_offset.
7507  */
7508 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7509 		struct btrfs_free_cluster *last_ptr,
7510 		struct find_free_extent_ctl *ffe_ctl,
7511 		struct btrfs_block_group_cache **cluster_bg_ret)
7512 {
7513 	struct btrfs_fs_info *fs_info = bg->fs_info;
7514 	struct btrfs_block_group_cache *cluster_bg;
7515 	u64 aligned_cluster;
7516 	u64 offset;
7517 	int ret;
7518 
7519 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7520 	if (!cluster_bg)
7521 		goto refill_cluster;
7522 	if (cluster_bg != bg && (cluster_bg->ro ||
7523 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
7524 		goto release_cluster;
7525 
7526 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7527 			ffe_ctl->num_bytes, cluster_bg->key.objectid,
7528 			&ffe_ctl->max_extent_size);
7529 	if (offset) {
7530 		/* We have a block, we're done */
7531 		spin_unlock(&last_ptr->refill_lock);
7532 		trace_btrfs_reserve_extent_cluster(cluster_bg,
7533 				ffe_ctl->search_start, ffe_ctl->num_bytes);
7534 		*cluster_bg_ret = cluster_bg;
7535 		ffe_ctl->found_offset = offset;
7536 		return 0;
7537 	}
7538 	WARN_ON(last_ptr->block_group != cluster_bg);
7539 
7540 release_cluster:
7541 	/*
7542 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7543 	 * lets just skip it and let the allocator find whatever block it can
7544 	 * find. If we reach this point, we will have tried the cluster
7545 	 * allocator plenty of times and not have found anything, so we are
7546 	 * likely way too fragmented for the clustering stuff to find anything.
7547 	 *
7548 	 * However, if the cluster is taken from the current block group,
7549 	 * release the cluster first, so that we stand a better chance of
7550 	 * succeeding in the unclustered allocation.
7551 	 */
7552 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7553 		spin_unlock(&last_ptr->refill_lock);
7554 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7555 		return -ENOENT;
7556 	}
7557 
7558 	/* This cluster didn't work out, free it and start over */
7559 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
7560 
7561 	if (cluster_bg != bg)
7562 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7563 
7564 refill_cluster:
7565 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7566 		spin_unlock(&last_ptr->refill_lock);
7567 		return -ENOENT;
7568 	}
7569 
7570 	aligned_cluster = max_t(u64,
7571 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7572 			bg->full_stripe_len);
7573 	ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7574 			ffe_ctl->search_start, ffe_ctl->num_bytes,
7575 			aligned_cluster);
7576 	if (ret == 0) {
7577 		/* Now pull our allocation out of this cluster */
7578 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
7579 				ffe_ctl->num_bytes, ffe_ctl->search_start,
7580 				&ffe_ctl->max_extent_size);
7581 		if (offset) {
7582 			/* We found one, proceed */
7583 			spin_unlock(&last_ptr->refill_lock);
7584 			trace_btrfs_reserve_extent_cluster(bg,
7585 					ffe_ctl->search_start,
7586 					ffe_ctl->num_bytes);
7587 			ffe_ctl->found_offset = offset;
7588 			return 0;
7589 		}
7590 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7591 		   !ffe_ctl->retry_clustered) {
7592 		spin_unlock(&last_ptr->refill_lock);
7593 
7594 		ffe_ctl->retry_clustered = true;
7595 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7596 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7597 		return -EAGAIN;
7598 	}
7599 	/*
7600 	 * At this point we either didn't find a cluster or we weren't able to
7601 	 * allocate a block from our cluster.  Free the cluster we've been
7602 	 * trying to use, and go to the next block group.
7603 	 */
7604 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
7605 	spin_unlock(&last_ptr->refill_lock);
7606 	return 1;
7607 }
7608 
7609 /*
7610  * Return >0 to inform caller that we find nothing
7611  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7612  * Return -EAGAIN to inform caller that we need to re-search this block group
7613  */
7614 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7615 		struct btrfs_free_cluster *last_ptr,
7616 		struct find_free_extent_ctl *ffe_ctl)
7617 {
7618 	u64 offset;
7619 
7620 	/*
7621 	 * We are doing an unclustered allocation, set the fragmented flag so
7622 	 * we don't bother trying to setup a cluster again until we get more
7623 	 * space.
7624 	 */
7625 	if (unlikely(last_ptr)) {
7626 		spin_lock(&last_ptr->lock);
7627 		last_ptr->fragmented = 1;
7628 		spin_unlock(&last_ptr->lock);
7629 	}
7630 	if (ffe_ctl->cached) {
7631 		struct btrfs_free_space_ctl *free_space_ctl;
7632 
7633 		free_space_ctl = bg->free_space_ctl;
7634 		spin_lock(&free_space_ctl->tree_lock);
7635 		if (free_space_ctl->free_space <
7636 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7637 		    ffe_ctl->empty_size) {
7638 			ffe_ctl->total_free_space = max_t(u64,
7639 					ffe_ctl->total_free_space,
7640 					free_space_ctl->free_space);
7641 			spin_unlock(&free_space_ctl->tree_lock);
7642 			return 1;
7643 		}
7644 		spin_unlock(&free_space_ctl->tree_lock);
7645 	}
7646 
7647 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7648 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
7649 			&ffe_ctl->max_extent_size);
7650 
7651 	/*
7652 	 * If we didn't find a chunk, and we haven't failed on this block group
7653 	 * before, and this block group is in the middle of caching and we are
7654 	 * ok with waiting, then go ahead and wait for progress to be made, and
7655 	 * set @retry_unclustered to true.
7656 	 *
7657 	 * If @retry_unclustered is true then we've already waited on this
7658 	 * block group once and should move on to the next block group.
7659 	 */
7660 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7661 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7662 		wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7663 						ffe_ctl->empty_size);
7664 		ffe_ctl->retry_unclustered = true;
7665 		return -EAGAIN;
7666 	} else if (!offset) {
7667 		return 1;
7668 	}
7669 	ffe_ctl->found_offset = offset;
7670 	return 0;
7671 }
7672 
7673 /*
7674  * Return >0 means caller needs to re-search for free extent
7675  * Return 0 means we have the needed free extent.
7676  * Return <0 means we failed to locate any free extent.
7677  */
7678 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7679 					struct btrfs_free_cluster *last_ptr,
7680 					struct btrfs_key *ins,
7681 					struct find_free_extent_ctl *ffe_ctl,
7682 					int full_search, bool use_cluster)
7683 {
7684 	struct btrfs_root *root = fs_info->extent_root;
7685 	int ret;
7686 
7687 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7688 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7689 		ffe_ctl->orig_have_caching_bg = true;
7690 
7691 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7692 	    ffe_ctl->have_caching_bg)
7693 		return 1;
7694 
7695 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7696 		return 1;
7697 
7698 	if (ins->objectid) {
7699 		if (!use_cluster && last_ptr) {
7700 			spin_lock(&last_ptr->lock);
7701 			last_ptr->window_start = ins->objectid;
7702 			spin_unlock(&last_ptr->lock);
7703 		}
7704 		return 0;
7705 	}
7706 
7707 	/*
7708 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7709 	 *			caching kthreads as we move along
7710 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7711 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7712 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7713 	 *		       again
7714 	 */
7715 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7716 		ffe_ctl->index = 0;
7717 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7718 			/*
7719 			 * We want to skip the LOOP_CACHING_WAIT step if we
7720 			 * don't have any uncached bgs and we've already done a
7721 			 * full search through.
7722 			 */
7723 			if (ffe_ctl->orig_have_caching_bg || !full_search)
7724 				ffe_ctl->loop = LOOP_CACHING_WAIT;
7725 			else
7726 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7727 		} else {
7728 			ffe_ctl->loop++;
7729 		}
7730 
7731 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7732 			struct btrfs_trans_handle *trans;
7733 			int exist = 0;
7734 
7735 			trans = current->journal_info;
7736 			if (trans)
7737 				exist = 1;
7738 			else
7739 				trans = btrfs_join_transaction(root);
7740 
7741 			if (IS_ERR(trans)) {
7742 				ret = PTR_ERR(trans);
7743 				return ret;
7744 			}
7745 
7746 			ret = do_chunk_alloc(trans, ffe_ctl->flags,
7747 					     CHUNK_ALLOC_FORCE);
7748 
7749 			/*
7750 			 * If we can't allocate a new chunk we've already looped
7751 			 * through at least once, move on to the NO_EMPTY_SIZE
7752 			 * case.
7753 			 */
7754 			if (ret == -ENOSPC)
7755 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7756 
7757 			/* Do not bail out on ENOSPC since we can do more. */
7758 			if (ret < 0 && ret != -ENOSPC)
7759 				btrfs_abort_transaction(trans, ret);
7760 			else
7761 				ret = 0;
7762 			if (!exist)
7763 				btrfs_end_transaction(trans);
7764 			if (ret)
7765 				return ret;
7766 		}
7767 
7768 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7769 			/*
7770 			 * Don't loop again if we already have no empty_size and
7771 			 * no empty_cluster.
7772 			 */
7773 			if (ffe_ctl->empty_size == 0 &&
7774 			    ffe_ctl->empty_cluster == 0)
7775 				return -ENOSPC;
7776 			ffe_ctl->empty_size = 0;
7777 			ffe_ctl->empty_cluster = 0;
7778 		}
7779 		return 1;
7780 	}
7781 	return -ENOSPC;
7782 }
7783 
7784 /*
7785  * walks the btree of allocated extents and find a hole of a given size.
7786  * The key ins is changed to record the hole:
7787  * ins->objectid == start position
7788  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7789  * ins->offset == the size of the hole.
7790  * Any available blocks before search_start are skipped.
7791  *
7792  * If there is no suitable free space, we will record the max size of
7793  * the free space extent currently.
7794  *
7795  * The overall logic and call chain:
7796  *
7797  * find_free_extent()
7798  * |- Iterate through all block groups
7799  * |  |- Get a valid block group
7800  * |  |- Try to do clustered allocation in that block group
7801  * |  |- Try to do unclustered allocation in that block group
7802  * |  |- Check if the result is valid
7803  * |  |  |- If valid, then exit
7804  * |  |- Jump to next block group
7805  * |
7806  * |- Push harder to find free extents
7807  *    |- If not found, re-iterate all block groups
7808  */
7809 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7810 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7811 				u64 hint_byte, struct btrfs_key *ins,
7812 				u64 flags, int delalloc)
7813 {
7814 	int ret = 0;
7815 	struct btrfs_free_cluster *last_ptr = NULL;
7816 	struct btrfs_block_group_cache *block_group = NULL;
7817 	struct find_free_extent_ctl ffe_ctl = {0};
7818 	struct btrfs_space_info *space_info;
7819 	bool use_cluster = true;
7820 	bool full_search = false;
7821 
7822 	WARN_ON(num_bytes < fs_info->sectorsize);
7823 
7824 	ffe_ctl.ram_bytes = ram_bytes;
7825 	ffe_ctl.num_bytes = num_bytes;
7826 	ffe_ctl.empty_size = empty_size;
7827 	ffe_ctl.flags = flags;
7828 	ffe_ctl.search_start = 0;
7829 	ffe_ctl.retry_clustered = false;
7830 	ffe_ctl.retry_unclustered = false;
7831 	ffe_ctl.delalloc = delalloc;
7832 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7833 	ffe_ctl.have_caching_bg = false;
7834 	ffe_ctl.orig_have_caching_bg = false;
7835 	ffe_ctl.found_offset = 0;
7836 
7837 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7838 	ins->objectid = 0;
7839 	ins->offset = 0;
7840 
7841 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7842 
7843 	space_info = __find_space_info(fs_info, flags);
7844 	if (!space_info) {
7845 		btrfs_err(fs_info, "No space info for %llu", flags);
7846 		return -ENOSPC;
7847 	}
7848 
7849 	/*
7850 	 * If our free space is heavily fragmented we may not be able to make
7851 	 * big contiguous allocations, so instead of doing the expensive search
7852 	 * for free space, simply return ENOSPC with our max_extent_size so we
7853 	 * can go ahead and search for a more manageable chunk.
7854 	 *
7855 	 * If our max_extent_size is large enough for our allocation simply
7856 	 * disable clustering since we will likely not be able to find enough
7857 	 * space to create a cluster and induce latency trying.
7858 	 */
7859 	if (unlikely(space_info->max_extent_size)) {
7860 		spin_lock(&space_info->lock);
7861 		if (space_info->max_extent_size &&
7862 		    num_bytes > space_info->max_extent_size) {
7863 			ins->offset = space_info->max_extent_size;
7864 			spin_unlock(&space_info->lock);
7865 			return -ENOSPC;
7866 		} else if (space_info->max_extent_size) {
7867 			use_cluster = false;
7868 		}
7869 		spin_unlock(&space_info->lock);
7870 	}
7871 
7872 	last_ptr = fetch_cluster_info(fs_info, space_info,
7873 				      &ffe_ctl.empty_cluster);
7874 	if (last_ptr) {
7875 		spin_lock(&last_ptr->lock);
7876 		if (last_ptr->block_group)
7877 			hint_byte = last_ptr->window_start;
7878 		if (last_ptr->fragmented) {
7879 			/*
7880 			 * We still set window_start so we can keep track of the
7881 			 * last place we found an allocation to try and save
7882 			 * some time.
7883 			 */
7884 			hint_byte = last_ptr->window_start;
7885 			use_cluster = false;
7886 		}
7887 		spin_unlock(&last_ptr->lock);
7888 	}
7889 
7890 	ffe_ctl.search_start = max(ffe_ctl.search_start,
7891 				   first_logical_byte(fs_info, 0));
7892 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7893 	if (ffe_ctl.search_start == hint_byte) {
7894 		block_group = btrfs_lookup_block_group(fs_info,
7895 						       ffe_ctl.search_start);
7896 		/*
7897 		 * we don't want to use the block group if it doesn't match our
7898 		 * allocation bits, or if its not cached.
7899 		 *
7900 		 * However if we are re-searching with an ideal block group
7901 		 * picked out then we don't care that the block group is cached.
7902 		 */
7903 		if (block_group && block_group_bits(block_group, flags) &&
7904 		    block_group->cached != BTRFS_CACHE_NO) {
7905 			down_read(&space_info->groups_sem);
7906 			if (list_empty(&block_group->list) ||
7907 			    block_group->ro) {
7908 				/*
7909 				 * someone is removing this block group,
7910 				 * we can't jump into the have_block_group
7911 				 * target because our list pointers are not
7912 				 * valid
7913 				 */
7914 				btrfs_put_block_group(block_group);
7915 				up_read(&space_info->groups_sem);
7916 			} else {
7917 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
7918 						block_group->flags);
7919 				btrfs_lock_block_group(block_group, delalloc);
7920 				goto have_block_group;
7921 			}
7922 		} else if (block_group) {
7923 			btrfs_put_block_group(block_group);
7924 		}
7925 	}
7926 search:
7927 	ffe_ctl.have_caching_bg = false;
7928 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7929 	    ffe_ctl.index == 0)
7930 		full_search = true;
7931 	down_read(&space_info->groups_sem);
7932 	list_for_each_entry(block_group,
7933 			    &space_info->block_groups[ffe_ctl.index], list) {
7934 		/* If the block group is read-only, we can skip it entirely. */
7935 		if (unlikely(block_group->ro))
7936 			continue;
7937 
7938 		btrfs_grab_block_group(block_group, delalloc);
7939 		ffe_ctl.search_start = block_group->key.objectid;
7940 
7941 		/*
7942 		 * this can happen if we end up cycling through all the
7943 		 * raid types, but we want to make sure we only allocate
7944 		 * for the proper type.
7945 		 */
7946 		if (!block_group_bits(block_group, flags)) {
7947 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
7948 				BTRFS_BLOCK_GROUP_RAID1 |
7949 				BTRFS_BLOCK_GROUP_RAID5 |
7950 				BTRFS_BLOCK_GROUP_RAID6 |
7951 				BTRFS_BLOCK_GROUP_RAID10;
7952 
7953 			/*
7954 			 * if they asked for extra copies and this block group
7955 			 * doesn't provide them, bail.  This does allow us to
7956 			 * fill raid0 from raid1.
7957 			 */
7958 			if ((flags & extra) && !(block_group->flags & extra))
7959 				goto loop;
7960 		}
7961 
7962 have_block_group:
7963 		ffe_ctl.cached = block_group_cache_done(block_group);
7964 		if (unlikely(!ffe_ctl.cached)) {
7965 			ffe_ctl.have_caching_bg = true;
7966 			ret = cache_block_group(block_group, 0);
7967 			BUG_ON(ret < 0);
7968 			ret = 0;
7969 		}
7970 
7971 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7972 			goto loop;
7973 
7974 		/*
7975 		 * Ok we want to try and use the cluster allocator, so
7976 		 * lets look there
7977 		 */
7978 		if (last_ptr && use_cluster) {
7979 			struct btrfs_block_group_cache *cluster_bg = NULL;
7980 
7981 			ret = find_free_extent_clustered(block_group, last_ptr,
7982 							 &ffe_ctl, &cluster_bg);
7983 
7984 			if (ret == 0) {
7985 				if (cluster_bg && cluster_bg != block_group) {
7986 					btrfs_release_block_group(block_group,
7987 								  delalloc);
7988 					block_group = cluster_bg;
7989 				}
7990 				goto checks;
7991 			} else if (ret == -EAGAIN) {
7992 				goto have_block_group;
7993 			} else if (ret > 0) {
7994 				goto loop;
7995 			}
7996 			/* ret == -ENOENT case falls through */
7997 		}
7998 
7999 		ret = find_free_extent_unclustered(block_group, last_ptr,
8000 						   &ffe_ctl);
8001 		if (ret == -EAGAIN)
8002 			goto have_block_group;
8003 		else if (ret > 0)
8004 			goto loop;
8005 		/* ret == 0 case falls through */
8006 checks:
8007 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
8008 					     fs_info->stripesize);
8009 
8010 		/* move on to the next group */
8011 		if (ffe_ctl.search_start + num_bytes >
8012 		    block_group->key.objectid + block_group->key.offset) {
8013 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8014 					     num_bytes);
8015 			goto loop;
8016 		}
8017 
8018 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
8019 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8020 				ffe_ctl.search_start - ffe_ctl.found_offset);
8021 
8022 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8023 				num_bytes, delalloc);
8024 		if (ret == -EAGAIN) {
8025 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8026 					     num_bytes);
8027 			goto loop;
8028 		}
8029 		btrfs_inc_block_group_reservations(block_group);
8030 
8031 		/* we are all good, lets return */
8032 		ins->objectid = ffe_ctl.search_start;
8033 		ins->offset = num_bytes;
8034 
8035 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8036 					   num_bytes);
8037 		btrfs_release_block_group(block_group, delalloc);
8038 		break;
8039 loop:
8040 		ffe_ctl.retry_clustered = false;
8041 		ffe_ctl.retry_unclustered = false;
8042 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
8043 		       ffe_ctl.index);
8044 		btrfs_release_block_group(block_group, delalloc);
8045 		cond_resched();
8046 	}
8047 	up_read(&space_info->groups_sem);
8048 
8049 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8050 					   full_search, use_cluster);
8051 	if (ret > 0)
8052 		goto search;
8053 
8054 	if (ret == -ENOSPC) {
8055 		/*
8056 		 * Use ffe_ctl->total_free_space as fallback if we can't find
8057 		 * any contiguous hole.
8058 		 */
8059 		if (!ffe_ctl.max_extent_size)
8060 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
8061 		spin_lock(&space_info->lock);
8062 		space_info->max_extent_size = ffe_ctl.max_extent_size;
8063 		spin_unlock(&space_info->lock);
8064 		ins->offset = ffe_ctl.max_extent_size;
8065 	}
8066 	return ret;
8067 }
8068 
8069 static void dump_space_info(struct btrfs_fs_info *fs_info,
8070 			    struct btrfs_space_info *info, u64 bytes,
8071 			    int dump_block_groups)
8072 {
8073 	struct btrfs_block_group_cache *cache;
8074 	int index = 0;
8075 
8076 	spin_lock(&info->lock);
8077 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8078 		   info->flags,
8079 		   info->total_bytes - btrfs_space_info_used(info, true),
8080 		   info->full ? "" : "not ");
8081 	btrfs_info(fs_info,
8082 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8083 		info->total_bytes, info->bytes_used, info->bytes_pinned,
8084 		info->bytes_reserved, info->bytes_may_use,
8085 		info->bytes_readonly);
8086 	spin_unlock(&info->lock);
8087 
8088 	if (!dump_block_groups)
8089 		return;
8090 
8091 	down_read(&info->groups_sem);
8092 again:
8093 	list_for_each_entry(cache, &info->block_groups[index], list) {
8094 		spin_lock(&cache->lock);
8095 		btrfs_info(fs_info,
8096 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8097 			cache->key.objectid, cache->key.offset,
8098 			btrfs_block_group_used(&cache->item), cache->pinned,
8099 			cache->reserved, cache->ro ? "[readonly]" : "");
8100 		btrfs_dump_free_space(cache, bytes);
8101 		spin_unlock(&cache->lock);
8102 	}
8103 	if (++index < BTRFS_NR_RAID_TYPES)
8104 		goto again;
8105 	up_read(&info->groups_sem);
8106 }
8107 
8108 /*
8109  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8110  *			  hole that is at least as big as @num_bytes.
8111  *
8112  * @root           -	The root that will contain this extent
8113  *
8114  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
8115  *			is used for accounting purposes. This value differs
8116  *			from @num_bytes only in the case of compressed extents.
8117  *
8118  * @num_bytes      -	Number of bytes to allocate on-disk.
8119  *
8120  * @min_alloc_size -	Indicates the minimum amount of space that the
8121  *			allocator should try to satisfy. In some cases
8122  *			@num_bytes may be larger than what is required and if
8123  *			the filesystem is fragmented then allocation fails.
8124  *			However, the presence of @min_alloc_size gives a
8125  *			chance to try and satisfy the smaller allocation.
8126  *
8127  * @empty_size     -	A hint that you plan on doing more COW. This is the
8128  *			size in bytes the allocator should try to find free
8129  *			next to the block it returns.  This is just a hint and
8130  *			may be ignored by the allocator.
8131  *
8132  * @hint_byte      -	Hint to the allocator to start searching above the byte
8133  *			address passed. It might be ignored.
8134  *
8135  * @ins            -	This key is modified to record the found hole. It will
8136  *			have the following values:
8137  *			ins->objectid == start position
8138  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
8139  *			ins->offset == the size of the hole.
8140  *
8141  * @is_data        -	Boolean flag indicating whether an extent is
8142  *			allocated for data (true) or metadata (false)
8143  *
8144  * @delalloc       -	Boolean flag indicating whether this allocation is for
8145  *			delalloc or not. If 'true' data_rwsem of block groups
8146  *			is going to be acquired.
8147  *
8148  *
8149  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8150  * case -ENOSPC is returned then @ins->offset will contain the size of the
8151  * largest available hole the allocator managed to find.
8152  */
8153 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8154 			 u64 num_bytes, u64 min_alloc_size,
8155 			 u64 empty_size, u64 hint_byte,
8156 			 struct btrfs_key *ins, int is_data, int delalloc)
8157 {
8158 	struct btrfs_fs_info *fs_info = root->fs_info;
8159 	bool final_tried = num_bytes == min_alloc_size;
8160 	u64 flags;
8161 	int ret;
8162 
8163 	flags = get_alloc_profile_by_root(root, is_data);
8164 again:
8165 	WARN_ON(num_bytes < fs_info->sectorsize);
8166 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8167 			       hint_byte, ins, flags, delalloc);
8168 	if (!ret && !is_data) {
8169 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8170 	} else if (ret == -ENOSPC) {
8171 		if (!final_tried && ins->offset) {
8172 			num_bytes = min(num_bytes >> 1, ins->offset);
8173 			num_bytes = round_down(num_bytes,
8174 					       fs_info->sectorsize);
8175 			num_bytes = max(num_bytes, min_alloc_size);
8176 			ram_bytes = num_bytes;
8177 			if (num_bytes == min_alloc_size)
8178 				final_tried = true;
8179 			goto again;
8180 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8181 			struct btrfs_space_info *sinfo;
8182 
8183 			sinfo = __find_space_info(fs_info, flags);
8184 			btrfs_err(fs_info,
8185 				  "allocation failed flags %llu, wanted %llu",
8186 				  flags, num_bytes);
8187 			if (sinfo)
8188 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8189 		}
8190 	}
8191 
8192 	return ret;
8193 }
8194 
8195 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8196 					u64 start, u64 len,
8197 					int pin, int delalloc)
8198 {
8199 	struct btrfs_block_group_cache *cache;
8200 	int ret = 0;
8201 
8202 	cache = btrfs_lookup_block_group(fs_info, start);
8203 	if (!cache) {
8204 		btrfs_err(fs_info, "Unable to find block group for %llu",
8205 			  start);
8206 		return -ENOSPC;
8207 	}
8208 
8209 	if (pin)
8210 		pin_down_extent(fs_info, cache, start, len, 1);
8211 	else {
8212 		if (btrfs_test_opt(fs_info, DISCARD))
8213 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8214 		btrfs_add_free_space(cache, start, len);
8215 		btrfs_free_reserved_bytes(cache, len, delalloc);
8216 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8217 	}
8218 
8219 	btrfs_put_block_group(cache);
8220 	return ret;
8221 }
8222 
8223 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8224 			       u64 start, u64 len, int delalloc)
8225 {
8226 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8227 }
8228 
8229 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8230 				       u64 start, u64 len)
8231 {
8232 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8233 }
8234 
8235 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8236 				      u64 parent, u64 root_objectid,
8237 				      u64 flags, u64 owner, u64 offset,
8238 				      struct btrfs_key *ins, int ref_mod)
8239 {
8240 	struct btrfs_fs_info *fs_info = trans->fs_info;
8241 	int ret;
8242 	struct btrfs_extent_item *extent_item;
8243 	struct btrfs_extent_inline_ref *iref;
8244 	struct btrfs_path *path;
8245 	struct extent_buffer *leaf;
8246 	int type;
8247 	u32 size;
8248 
8249 	if (parent > 0)
8250 		type = BTRFS_SHARED_DATA_REF_KEY;
8251 	else
8252 		type = BTRFS_EXTENT_DATA_REF_KEY;
8253 
8254 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8255 
8256 	path = btrfs_alloc_path();
8257 	if (!path)
8258 		return -ENOMEM;
8259 
8260 	path->leave_spinning = 1;
8261 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8262 				      ins, size);
8263 	if (ret) {
8264 		btrfs_free_path(path);
8265 		return ret;
8266 	}
8267 
8268 	leaf = path->nodes[0];
8269 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8270 				     struct btrfs_extent_item);
8271 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8272 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8273 	btrfs_set_extent_flags(leaf, extent_item,
8274 			       flags | BTRFS_EXTENT_FLAG_DATA);
8275 
8276 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8277 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8278 	if (parent > 0) {
8279 		struct btrfs_shared_data_ref *ref;
8280 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8281 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8282 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8283 	} else {
8284 		struct btrfs_extent_data_ref *ref;
8285 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8286 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8287 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8288 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8289 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8290 	}
8291 
8292 	btrfs_mark_buffer_dirty(path->nodes[0]);
8293 	btrfs_free_path(path);
8294 
8295 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8296 	if (ret)
8297 		return ret;
8298 
8299 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8300 	if (ret) { /* -ENOENT, logic error */
8301 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8302 			ins->objectid, ins->offset);
8303 		BUG();
8304 	}
8305 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8306 	return ret;
8307 }
8308 
8309 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8310 				     struct btrfs_delayed_ref_node *node,
8311 				     struct btrfs_delayed_extent_op *extent_op)
8312 {
8313 	struct btrfs_fs_info *fs_info = trans->fs_info;
8314 	int ret;
8315 	struct btrfs_extent_item *extent_item;
8316 	struct btrfs_key extent_key;
8317 	struct btrfs_tree_block_info *block_info;
8318 	struct btrfs_extent_inline_ref *iref;
8319 	struct btrfs_path *path;
8320 	struct extent_buffer *leaf;
8321 	struct btrfs_delayed_tree_ref *ref;
8322 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8323 	u64 num_bytes;
8324 	u64 flags = extent_op->flags_to_set;
8325 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8326 
8327 	ref = btrfs_delayed_node_to_tree_ref(node);
8328 
8329 	extent_key.objectid = node->bytenr;
8330 	if (skinny_metadata) {
8331 		extent_key.offset = ref->level;
8332 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
8333 		num_bytes = fs_info->nodesize;
8334 	} else {
8335 		extent_key.offset = node->num_bytes;
8336 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8337 		size += sizeof(*block_info);
8338 		num_bytes = node->num_bytes;
8339 	}
8340 
8341 	path = btrfs_alloc_path();
8342 	if (!path)
8343 		return -ENOMEM;
8344 
8345 	path->leave_spinning = 1;
8346 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8347 				      &extent_key, size);
8348 	if (ret) {
8349 		btrfs_free_path(path);
8350 		return ret;
8351 	}
8352 
8353 	leaf = path->nodes[0];
8354 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8355 				     struct btrfs_extent_item);
8356 	btrfs_set_extent_refs(leaf, extent_item, 1);
8357 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8358 	btrfs_set_extent_flags(leaf, extent_item,
8359 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8360 
8361 	if (skinny_metadata) {
8362 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8363 	} else {
8364 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8365 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8366 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
8367 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8368 	}
8369 
8370 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8371 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8372 		btrfs_set_extent_inline_ref_type(leaf, iref,
8373 						 BTRFS_SHARED_BLOCK_REF_KEY);
8374 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8375 	} else {
8376 		btrfs_set_extent_inline_ref_type(leaf, iref,
8377 						 BTRFS_TREE_BLOCK_REF_KEY);
8378 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8379 	}
8380 
8381 	btrfs_mark_buffer_dirty(leaf);
8382 	btrfs_free_path(path);
8383 
8384 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
8385 					  num_bytes);
8386 	if (ret)
8387 		return ret;
8388 
8389 	ret = update_block_group(trans, fs_info, extent_key.objectid,
8390 				 fs_info->nodesize, 1);
8391 	if (ret) { /* -ENOENT, logic error */
8392 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8393 			extent_key.objectid, extent_key.offset);
8394 		BUG();
8395 	}
8396 
8397 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8398 					  fs_info->nodesize);
8399 	return ret;
8400 }
8401 
8402 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8403 				     struct btrfs_root *root, u64 owner,
8404 				     u64 offset, u64 ram_bytes,
8405 				     struct btrfs_key *ins)
8406 {
8407 	int ret;
8408 
8409 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8410 
8411 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8412 			   root->root_key.objectid, owner, offset,
8413 			   BTRFS_ADD_DELAYED_EXTENT);
8414 
8415 	ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8416 					 ins->offset, 0,
8417 					 root->root_key.objectid, owner,
8418 					 offset, ram_bytes,
8419 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8420 	return ret;
8421 }
8422 
8423 /*
8424  * this is used by the tree logging recovery code.  It records that
8425  * an extent has been allocated and makes sure to clear the free
8426  * space cache bits as well
8427  */
8428 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8429 				   u64 root_objectid, u64 owner, u64 offset,
8430 				   struct btrfs_key *ins)
8431 {
8432 	struct btrfs_fs_info *fs_info = trans->fs_info;
8433 	int ret;
8434 	struct btrfs_block_group_cache *block_group;
8435 	struct btrfs_space_info *space_info;
8436 
8437 	/*
8438 	 * Mixed block groups will exclude before processing the log so we only
8439 	 * need to do the exclude dance if this fs isn't mixed.
8440 	 */
8441 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8442 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8443 					      ins->offset);
8444 		if (ret)
8445 			return ret;
8446 	}
8447 
8448 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8449 	if (!block_group)
8450 		return -EINVAL;
8451 
8452 	space_info = block_group->space_info;
8453 	spin_lock(&space_info->lock);
8454 	spin_lock(&block_group->lock);
8455 	space_info->bytes_reserved += ins->offset;
8456 	block_group->reserved += ins->offset;
8457 	spin_unlock(&block_group->lock);
8458 	spin_unlock(&space_info->lock);
8459 
8460 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8461 					 offset, ins, 1);
8462 	btrfs_put_block_group(block_group);
8463 	return ret;
8464 }
8465 
8466 static struct extent_buffer *
8467 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8468 		      u64 bytenr, int level, u64 owner)
8469 {
8470 	struct btrfs_fs_info *fs_info = root->fs_info;
8471 	struct extent_buffer *buf;
8472 
8473 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8474 	if (IS_ERR(buf))
8475 		return buf;
8476 
8477 	/*
8478 	 * Extra safety check in case the extent tree is corrupted and extent
8479 	 * allocator chooses to use a tree block which is already used and
8480 	 * locked.
8481 	 */
8482 	if (buf->lock_owner == current->pid) {
8483 		btrfs_err_rl(fs_info,
8484 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8485 			buf->start, btrfs_header_owner(buf), current->pid);
8486 		free_extent_buffer(buf);
8487 		return ERR_PTR(-EUCLEAN);
8488 	}
8489 
8490 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8491 	btrfs_tree_lock(buf);
8492 	clean_tree_block(fs_info, buf);
8493 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8494 
8495 	btrfs_set_lock_blocking(buf);
8496 	set_extent_buffer_uptodate(buf);
8497 
8498 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8499 	btrfs_set_header_level(buf, level);
8500 	btrfs_set_header_bytenr(buf, buf->start);
8501 	btrfs_set_header_generation(buf, trans->transid);
8502 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8503 	btrfs_set_header_owner(buf, owner);
8504 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
8505 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8506 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8507 		buf->log_index = root->log_transid % 2;
8508 		/*
8509 		 * we allow two log transactions at a time, use different
8510 		 * EXTENT bit to differentiate dirty pages.
8511 		 */
8512 		if (buf->log_index == 0)
8513 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8514 					buf->start + buf->len - 1, GFP_NOFS);
8515 		else
8516 			set_extent_new(&root->dirty_log_pages, buf->start,
8517 					buf->start + buf->len - 1);
8518 	} else {
8519 		buf->log_index = -1;
8520 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8521 			 buf->start + buf->len - 1, GFP_NOFS);
8522 	}
8523 	trans->dirty = true;
8524 	/* this returns a buffer locked for blocking */
8525 	return buf;
8526 }
8527 
8528 static struct btrfs_block_rsv *
8529 use_block_rsv(struct btrfs_trans_handle *trans,
8530 	      struct btrfs_root *root, u32 blocksize)
8531 {
8532 	struct btrfs_fs_info *fs_info = root->fs_info;
8533 	struct btrfs_block_rsv *block_rsv;
8534 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8535 	int ret;
8536 	bool global_updated = false;
8537 
8538 	block_rsv = get_block_rsv(trans, root);
8539 
8540 	if (unlikely(block_rsv->size == 0))
8541 		goto try_reserve;
8542 again:
8543 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8544 	if (!ret)
8545 		return block_rsv;
8546 
8547 	if (block_rsv->failfast)
8548 		return ERR_PTR(ret);
8549 
8550 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8551 		global_updated = true;
8552 		update_global_block_rsv(fs_info);
8553 		goto again;
8554 	}
8555 
8556 	/*
8557 	 * The global reserve still exists to save us from ourselves, so don't
8558 	 * warn_on if we are short on our delayed refs reserve.
8559 	 */
8560 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8561 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8562 		static DEFINE_RATELIMIT_STATE(_rs,
8563 				DEFAULT_RATELIMIT_INTERVAL * 10,
8564 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8565 		if (__ratelimit(&_rs))
8566 			WARN(1, KERN_DEBUG
8567 				"BTRFS: block rsv returned %d\n", ret);
8568 	}
8569 try_reserve:
8570 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8571 				     BTRFS_RESERVE_NO_FLUSH);
8572 	if (!ret)
8573 		return block_rsv;
8574 	/*
8575 	 * If we couldn't reserve metadata bytes try and use some from
8576 	 * the global reserve if its space type is the same as the global
8577 	 * reservation.
8578 	 */
8579 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8580 	    block_rsv->space_info == global_rsv->space_info) {
8581 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8582 		if (!ret)
8583 			return global_rsv;
8584 	}
8585 	return ERR_PTR(ret);
8586 }
8587 
8588 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8589 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8590 {
8591 	block_rsv_add_bytes(block_rsv, blocksize, false);
8592 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8593 }
8594 
8595 /*
8596  * finds a free extent and does all the dirty work required for allocation
8597  * returns the tree buffer or an ERR_PTR on error.
8598  */
8599 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8600 					     struct btrfs_root *root,
8601 					     u64 parent, u64 root_objectid,
8602 					     const struct btrfs_disk_key *key,
8603 					     int level, u64 hint,
8604 					     u64 empty_size)
8605 {
8606 	struct btrfs_fs_info *fs_info = root->fs_info;
8607 	struct btrfs_key ins;
8608 	struct btrfs_block_rsv *block_rsv;
8609 	struct extent_buffer *buf;
8610 	struct btrfs_delayed_extent_op *extent_op;
8611 	u64 flags = 0;
8612 	int ret;
8613 	u32 blocksize = fs_info->nodesize;
8614 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8615 
8616 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8617 	if (btrfs_is_testing(fs_info)) {
8618 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8619 					    level, root_objectid);
8620 		if (!IS_ERR(buf))
8621 			root->alloc_bytenr += blocksize;
8622 		return buf;
8623 	}
8624 #endif
8625 
8626 	block_rsv = use_block_rsv(trans, root, blocksize);
8627 	if (IS_ERR(block_rsv))
8628 		return ERR_CAST(block_rsv);
8629 
8630 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8631 				   empty_size, hint, &ins, 0, 0);
8632 	if (ret)
8633 		goto out_unuse;
8634 
8635 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8636 				    root_objectid);
8637 	if (IS_ERR(buf)) {
8638 		ret = PTR_ERR(buf);
8639 		goto out_free_reserved;
8640 	}
8641 
8642 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8643 		if (parent == 0)
8644 			parent = ins.objectid;
8645 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8646 	} else
8647 		BUG_ON(parent > 0);
8648 
8649 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8650 		extent_op = btrfs_alloc_delayed_extent_op();
8651 		if (!extent_op) {
8652 			ret = -ENOMEM;
8653 			goto out_free_buf;
8654 		}
8655 		if (key)
8656 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8657 		else
8658 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8659 		extent_op->flags_to_set = flags;
8660 		extent_op->update_key = skinny_metadata ? false : true;
8661 		extent_op->update_flags = true;
8662 		extent_op->is_data = false;
8663 		extent_op->level = level;
8664 
8665 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8666 				   root_objectid, level, 0,
8667 				   BTRFS_ADD_DELAYED_EXTENT);
8668 		ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8669 						 ins.offset, parent,
8670 						 root_objectid, level,
8671 						 BTRFS_ADD_DELAYED_EXTENT,
8672 						 extent_op, NULL, NULL);
8673 		if (ret)
8674 			goto out_free_delayed;
8675 	}
8676 	return buf;
8677 
8678 out_free_delayed:
8679 	btrfs_free_delayed_extent_op(extent_op);
8680 out_free_buf:
8681 	free_extent_buffer(buf);
8682 out_free_reserved:
8683 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8684 out_unuse:
8685 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8686 	return ERR_PTR(ret);
8687 }
8688 
8689 struct walk_control {
8690 	u64 refs[BTRFS_MAX_LEVEL];
8691 	u64 flags[BTRFS_MAX_LEVEL];
8692 	struct btrfs_key update_progress;
8693 	int stage;
8694 	int level;
8695 	int shared_level;
8696 	int update_ref;
8697 	int keep_locks;
8698 	int reada_slot;
8699 	int reada_count;
8700 };
8701 
8702 #define DROP_REFERENCE	1
8703 #define UPDATE_BACKREF	2
8704 
8705 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8706 				     struct btrfs_root *root,
8707 				     struct walk_control *wc,
8708 				     struct btrfs_path *path)
8709 {
8710 	struct btrfs_fs_info *fs_info = root->fs_info;
8711 	u64 bytenr;
8712 	u64 generation;
8713 	u64 refs;
8714 	u64 flags;
8715 	u32 nritems;
8716 	struct btrfs_key key;
8717 	struct extent_buffer *eb;
8718 	int ret;
8719 	int slot;
8720 	int nread = 0;
8721 
8722 	if (path->slots[wc->level] < wc->reada_slot) {
8723 		wc->reada_count = wc->reada_count * 2 / 3;
8724 		wc->reada_count = max(wc->reada_count, 2);
8725 	} else {
8726 		wc->reada_count = wc->reada_count * 3 / 2;
8727 		wc->reada_count = min_t(int, wc->reada_count,
8728 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8729 	}
8730 
8731 	eb = path->nodes[wc->level];
8732 	nritems = btrfs_header_nritems(eb);
8733 
8734 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8735 		if (nread >= wc->reada_count)
8736 			break;
8737 
8738 		cond_resched();
8739 		bytenr = btrfs_node_blockptr(eb, slot);
8740 		generation = btrfs_node_ptr_generation(eb, slot);
8741 
8742 		if (slot == path->slots[wc->level])
8743 			goto reada;
8744 
8745 		if (wc->stage == UPDATE_BACKREF &&
8746 		    generation <= root->root_key.offset)
8747 			continue;
8748 
8749 		/* We don't lock the tree block, it's OK to be racy here */
8750 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8751 					       wc->level - 1, 1, &refs,
8752 					       &flags);
8753 		/* We don't care about errors in readahead. */
8754 		if (ret < 0)
8755 			continue;
8756 		BUG_ON(refs == 0);
8757 
8758 		if (wc->stage == DROP_REFERENCE) {
8759 			if (refs == 1)
8760 				goto reada;
8761 
8762 			if (wc->level == 1 &&
8763 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8764 				continue;
8765 			if (!wc->update_ref ||
8766 			    generation <= root->root_key.offset)
8767 				continue;
8768 			btrfs_node_key_to_cpu(eb, &key, slot);
8769 			ret = btrfs_comp_cpu_keys(&key,
8770 						  &wc->update_progress);
8771 			if (ret < 0)
8772 				continue;
8773 		} else {
8774 			if (wc->level == 1 &&
8775 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8776 				continue;
8777 		}
8778 reada:
8779 		readahead_tree_block(fs_info, bytenr);
8780 		nread++;
8781 	}
8782 	wc->reada_slot = slot;
8783 }
8784 
8785 /*
8786  * helper to process tree block while walking down the tree.
8787  *
8788  * when wc->stage == UPDATE_BACKREF, this function updates
8789  * back refs for pointers in the block.
8790  *
8791  * NOTE: return value 1 means we should stop walking down.
8792  */
8793 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8794 				   struct btrfs_root *root,
8795 				   struct btrfs_path *path,
8796 				   struct walk_control *wc, int lookup_info)
8797 {
8798 	struct btrfs_fs_info *fs_info = root->fs_info;
8799 	int level = wc->level;
8800 	struct extent_buffer *eb = path->nodes[level];
8801 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8802 	int ret;
8803 
8804 	if (wc->stage == UPDATE_BACKREF &&
8805 	    btrfs_header_owner(eb) != root->root_key.objectid)
8806 		return 1;
8807 
8808 	/*
8809 	 * when reference count of tree block is 1, it won't increase
8810 	 * again. once full backref flag is set, we never clear it.
8811 	 */
8812 	if (lookup_info &&
8813 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8814 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8815 		BUG_ON(!path->locks[level]);
8816 		ret = btrfs_lookup_extent_info(trans, fs_info,
8817 					       eb->start, level, 1,
8818 					       &wc->refs[level],
8819 					       &wc->flags[level]);
8820 		BUG_ON(ret == -ENOMEM);
8821 		if (ret)
8822 			return ret;
8823 		BUG_ON(wc->refs[level] == 0);
8824 	}
8825 
8826 	if (wc->stage == DROP_REFERENCE) {
8827 		if (wc->refs[level] > 1)
8828 			return 1;
8829 
8830 		if (path->locks[level] && !wc->keep_locks) {
8831 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8832 			path->locks[level] = 0;
8833 		}
8834 		return 0;
8835 	}
8836 
8837 	/* wc->stage == UPDATE_BACKREF */
8838 	if (!(wc->flags[level] & flag)) {
8839 		BUG_ON(!path->locks[level]);
8840 		ret = btrfs_inc_ref(trans, root, eb, 1);
8841 		BUG_ON(ret); /* -ENOMEM */
8842 		ret = btrfs_dec_ref(trans, root, eb, 0);
8843 		BUG_ON(ret); /* -ENOMEM */
8844 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8845 						  eb->len, flag,
8846 						  btrfs_header_level(eb), 0);
8847 		BUG_ON(ret); /* -ENOMEM */
8848 		wc->flags[level] |= flag;
8849 	}
8850 
8851 	/*
8852 	 * the block is shared by multiple trees, so it's not good to
8853 	 * keep the tree lock
8854 	 */
8855 	if (path->locks[level] && level > 0) {
8856 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8857 		path->locks[level] = 0;
8858 	}
8859 	return 0;
8860 }
8861 
8862 /*
8863  * helper to process tree block pointer.
8864  *
8865  * when wc->stage == DROP_REFERENCE, this function checks
8866  * reference count of the block pointed to. if the block
8867  * is shared and we need update back refs for the subtree
8868  * rooted at the block, this function changes wc->stage to
8869  * UPDATE_BACKREF. if the block is shared and there is no
8870  * need to update back, this function drops the reference
8871  * to the block.
8872  *
8873  * NOTE: return value 1 means we should stop walking down.
8874  */
8875 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8876 				 struct btrfs_root *root,
8877 				 struct btrfs_path *path,
8878 				 struct walk_control *wc, int *lookup_info)
8879 {
8880 	struct btrfs_fs_info *fs_info = root->fs_info;
8881 	u64 bytenr;
8882 	u64 generation;
8883 	u64 parent;
8884 	struct btrfs_key key;
8885 	struct btrfs_key first_key;
8886 	struct extent_buffer *next;
8887 	int level = wc->level;
8888 	int reada = 0;
8889 	int ret = 0;
8890 	bool need_account = false;
8891 
8892 	generation = btrfs_node_ptr_generation(path->nodes[level],
8893 					       path->slots[level]);
8894 	/*
8895 	 * if the lower level block was created before the snapshot
8896 	 * was created, we know there is no need to update back refs
8897 	 * for the subtree
8898 	 */
8899 	if (wc->stage == UPDATE_BACKREF &&
8900 	    generation <= root->root_key.offset) {
8901 		*lookup_info = 1;
8902 		return 1;
8903 	}
8904 
8905 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8906 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8907 			      path->slots[level]);
8908 
8909 	next = find_extent_buffer(fs_info, bytenr);
8910 	if (!next) {
8911 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8912 		if (IS_ERR(next))
8913 			return PTR_ERR(next);
8914 
8915 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8916 					       level - 1);
8917 		reada = 1;
8918 	}
8919 	btrfs_tree_lock(next);
8920 	btrfs_set_lock_blocking(next);
8921 
8922 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8923 				       &wc->refs[level - 1],
8924 				       &wc->flags[level - 1]);
8925 	if (ret < 0)
8926 		goto out_unlock;
8927 
8928 	if (unlikely(wc->refs[level - 1] == 0)) {
8929 		btrfs_err(fs_info, "Missing references.");
8930 		ret = -EIO;
8931 		goto out_unlock;
8932 	}
8933 	*lookup_info = 0;
8934 
8935 	if (wc->stage == DROP_REFERENCE) {
8936 		if (wc->refs[level - 1] > 1) {
8937 			need_account = true;
8938 			if (level == 1 &&
8939 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8940 				goto skip;
8941 
8942 			if (!wc->update_ref ||
8943 			    generation <= root->root_key.offset)
8944 				goto skip;
8945 
8946 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8947 					      path->slots[level]);
8948 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8949 			if (ret < 0)
8950 				goto skip;
8951 
8952 			wc->stage = UPDATE_BACKREF;
8953 			wc->shared_level = level - 1;
8954 		}
8955 	} else {
8956 		if (level == 1 &&
8957 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8958 			goto skip;
8959 	}
8960 
8961 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8962 		btrfs_tree_unlock(next);
8963 		free_extent_buffer(next);
8964 		next = NULL;
8965 		*lookup_info = 1;
8966 	}
8967 
8968 	if (!next) {
8969 		if (reada && level == 1)
8970 			reada_walk_down(trans, root, wc, path);
8971 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8972 				       &first_key);
8973 		if (IS_ERR(next)) {
8974 			return PTR_ERR(next);
8975 		} else if (!extent_buffer_uptodate(next)) {
8976 			free_extent_buffer(next);
8977 			return -EIO;
8978 		}
8979 		btrfs_tree_lock(next);
8980 		btrfs_set_lock_blocking(next);
8981 	}
8982 
8983 	level--;
8984 	ASSERT(level == btrfs_header_level(next));
8985 	if (level != btrfs_header_level(next)) {
8986 		btrfs_err(root->fs_info, "mismatched level");
8987 		ret = -EIO;
8988 		goto out_unlock;
8989 	}
8990 	path->nodes[level] = next;
8991 	path->slots[level] = 0;
8992 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8993 	wc->level = level;
8994 	if (wc->level == 1)
8995 		wc->reada_slot = 0;
8996 	return 0;
8997 skip:
8998 	wc->refs[level - 1] = 0;
8999 	wc->flags[level - 1] = 0;
9000 	if (wc->stage == DROP_REFERENCE) {
9001 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
9002 			parent = path->nodes[level]->start;
9003 		} else {
9004 			ASSERT(root->root_key.objectid ==
9005 			       btrfs_header_owner(path->nodes[level]));
9006 			if (root->root_key.objectid !=
9007 			    btrfs_header_owner(path->nodes[level])) {
9008 				btrfs_err(root->fs_info,
9009 						"mismatched block owner");
9010 				ret = -EIO;
9011 				goto out_unlock;
9012 			}
9013 			parent = 0;
9014 		}
9015 
9016 		/*
9017 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
9018 		 * already accounted them at merge time (replace_path),
9019 		 * thus we could skip expensive subtree trace here.
9020 		 */
9021 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9022 		    need_account) {
9023 			ret = btrfs_qgroup_trace_subtree(trans, next,
9024 							 generation, level - 1);
9025 			if (ret) {
9026 				btrfs_err_rl(fs_info,
9027 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9028 					     ret);
9029 			}
9030 		}
9031 		ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
9032 					parent, root->root_key.objectid,
9033 					level - 1, 0);
9034 		if (ret)
9035 			goto out_unlock;
9036 	}
9037 
9038 	*lookup_info = 1;
9039 	ret = 1;
9040 
9041 out_unlock:
9042 	btrfs_tree_unlock(next);
9043 	free_extent_buffer(next);
9044 
9045 	return ret;
9046 }
9047 
9048 /*
9049  * helper to process tree block while walking up the tree.
9050  *
9051  * when wc->stage == DROP_REFERENCE, this function drops
9052  * reference count on the block.
9053  *
9054  * when wc->stage == UPDATE_BACKREF, this function changes
9055  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9056  * to UPDATE_BACKREF previously while processing the block.
9057  *
9058  * NOTE: return value 1 means we should stop walking up.
9059  */
9060 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9061 				 struct btrfs_root *root,
9062 				 struct btrfs_path *path,
9063 				 struct walk_control *wc)
9064 {
9065 	struct btrfs_fs_info *fs_info = root->fs_info;
9066 	int ret;
9067 	int level = wc->level;
9068 	struct extent_buffer *eb = path->nodes[level];
9069 	u64 parent = 0;
9070 
9071 	if (wc->stage == UPDATE_BACKREF) {
9072 		BUG_ON(wc->shared_level < level);
9073 		if (level < wc->shared_level)
9074 			goto out;
9075 
9076 		ret = find_next_key(path, level + 1, &wc->update_progress);
9077 		if (ret > 0)
9078 			wc->update_ref = 0;
9079 
9080 		wc->stage = DROP_REFERENCE;
9081 		wc->shared_level = -1;
9082 		path->slots[level] = 0;
9083 
9084 		/*
9085 		 * check reference count again if the block isn't locked.
9086 		 * we should start walking down the tree again if reference
9087 		 * count is one.
9088 		 */
9089 		if (!path->locks[level]) {
9090 			BUG_ON(level == 0);
9091 			btrfs_tree_lock(eb);
9092 			btrfs_set_lock_blocking(eb);
9093 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9094 
9095 			ret = btrfs_lookup_extent_info(trans, fs_info,
9096 						       eb->start, level, 1,
9097 						       &wc->refs[level],
9098 						       &wc->flags[level]);
9099 			if (ret < 0) {
9100 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9101 				path->locks[level] = 0;
9102 				return ret;
9103 			}
9104 			BUG_ON(wc->refs[level] == 0);
9105 			if (wc->refs[level] == 1) {
9106 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9107 				path->locks[level] = 0;
9108 				return 1;
9109 			}
9110 		}
9111 	}
9112 
9113 	/* wc->stage == DROP_REFERENCE */
9114 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9115 
9116 	if (wc->refs[level] == 1) {
9117 		if (level == 0) {
9118 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9119 				ret = btrfs_dec_ref(trans, root, eb, 1);
9120 			else
9121 				ret = btrfs_dec_ref(trans, root, eb, 0);
9122 			BUG_ON(ret); /* -ENOMEM */
9123 			ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9124 			if (ret) {
9125 				btrfs_err_rl(fs_info,
9126 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
9127 					     ret);
9128 			}
9129 		}
9130 		/* make block locked assertion in clean_tree_block happy */
9131 		if (!path->locks[level] &&
9132 		    btrfs_header_generation(eb) == trans->transid) {
9133 			btrfs_tree_lock(eb);
9134 			btrfs_set_lock_blocking(eb);
9135 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9136 		}
9137 		clean_tree_block(fs_info, eb);
9138 	}
9139 
9140 	if (eb == root->node) {
9141 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9142 			parent = eb->start;
9143 		else if (root->root_key.objectid != btrfs_header_owner(eb))
9144 			goto owner_mismatch;
9145 	} else {
9146 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9147 			parent = path->nodes[level + 1]->start;
9148 		else if (root->root_key.objectid !=
9149 			 btrfs_header_owner(path->nodes[level + 1]))
9150 			goto owner_mismatch;
9151 	}
9152 
9153 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9154 out:
9155 	wc->refs[level] = 0;
9156 	wc->flags[level] = 0;
9157 	return 0;
9158 
9159 owner_mismatch:
9160 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9161 		     btrfs_header_owner(eb), root->root_key.objectid);
9162 	return -EUCLEAN;
9163 }
9164 
9165 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9166 				   struct btrfs_root *root,
9167 				   struct btrfs_path *path,
9168 				   struct walk_control *wc)
9169 {
9170 	int level = wc->level;
9171 	int lookup_info = 1;
9172 	int ret;
9173 
9174 	while (level >= 0) {
9175 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9176 		if (ret > 0)
9177 			break;
9178 
9179 		if (level == 0)
9180 			break;
9181 
9182 		if (path->slots[level] >=
9183 		    btrfs_header_nritems(path->nodes[level]))
9184 			break;
9185 
9186 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9187 		if (ret > 0) {
9188 			path->slots[level]++;
9189 			continue;
9190 		} else if (ret < 0)
9191 			return ret;
9192 		level = wc->level;
9193 	}
9194 	return 0;
9195 }
9196 
9197 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9198 				 struct btrfs_root *root,
9199 				 struct btrfs_path *path,
9200 				 struct walk_control *wc, int max_level)
9201 {
9202 	int level = wc->level;
9203 	int ret;
9204 
9205 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9206 	while (level < max_level && path->nodes[level]) {
9207 		wc->level = level;
9208 		if (path->slots[level] + 1 <
9209 		    btrfs_header_nritems(path->nodes[level])) {
9210 			path->slots[level]++;
9211 			return 0;
9212 		} else {
9213 			ret = walk_up_proc(trans, root, path, wc);
9214 			if (ret > 0)
9215 				return 0;
9216 			if (ret < 0)
9217 				return ret;
9218 
9219 			if (path->locks[level]) {
9220 				btrfs_tree_unlock_rw(path->nodes[level],
9221 						     path->locks[level]);
9222 				path->locks[level] = 0;
9223 			}
9224 			free_extent_buffer(path->nodes[level]);
9225 			path->nodes[level] = NULL;
9226 			level++;
9227 		}
9228 	}
9229 	return 1;
9230 }
9231 
9232 /*
9233  * drop a subvolume tree.
9234  *
9235  * this function traverses the tree freeing any blocks that only
9236  * referenced by the tree.
9237  *
9238  * when a shared tree block is found. this function decreases its
9239  * reference count by one. if update_ref is true, this function
9240  * also make sure backrefs for the shared block and all lower level
9241  * blocks are properly updated.
9242  *
9243  * If called with for_reloc == 0, may exit early with -EAGAIN
9244  */
9245 int btrfs_drop_snapshot(struct btrfs_root *root,
9246 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9247 			 int for_reloc)
9248 {
9249 	struct btrfs_fs_info *fs_info = root->fs_info;
9250 	struct btrfs_path *path;
9251 	struct btrfs_trans_handle *trans;
9252 	struct btrfs_root *tree_root = fs_info->tree_root;
9253 	struct btrfs_root_item *root_item = &root->root_item;
9254 	struct walk_control *wc;
9255 	struct btrfs_key key;
9256 	int err = 0;
9257 	int ret;
9258 	int level;
9259 	bool root_dropped = false;
9260 
9261 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
9262 
9263 	path = btrfs_alloc_path();
9264 	if (!path) {
9265 		err = -ENOMEM;
9266 		goto out;
9267 	}
9268 
9269 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9270 	if (!wc) {
9271 		btrfs_free_path(path);
9272 		err = -ENOMEM;
9273 		goto out;
9274 	}
9275 
9276 	trans = btrfs_start_transaction(tree_root, 0);
9277 	if (IS_ERR(trans)) {
9278 		err = PTR_ERR(trans);
9279 		goto out_free;
9280 	}
9281 
9282 	err = btrfs_run_delayed_items(trans);
9283 	if (err)
9284 		goto out_end_trans;
9285 
9286 	if (block_rsv)
9287 		trans->block_rsv = block_rsv;
9288 
9289 	/*
9290 	 * This will help us catch people modifying the fs tree while we're
9291 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
9292 	 * dropped as we unlock the root node and parent nodes as we walk down
9293 	 * the tree, assuming nothing will change.  If something does change
9294 	 * then we'll have stale information and drop references to blocks we've
9295 	 * already dropped.
9296 	 */
9297 	set_bit(BTRFS_ROOT_DELETING, &root->state);
9298 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9299 		level = btrfs_header_level(root->node);
9300 		path->nodes[level] = btrfs_lock_root_node(root);
9301 		btrfs_set_lock_blocking(path->nodes[level]);
9302 		path->slots[level] = 0;
9303 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9304 		memset(&wc->update_progress, 0,
9305 		       sizeof(wc->update_progress));
9306 	} else {
9307 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9308 		memcpy(&wc->update_progress, &key,
9309 		       sizeof(wc->update_progress));
9310 
9311 		level = root_item->drop_level;
9312 		BUG_ON(level == 0);
9313 		path->lowest_level = level;
9314 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9315 		path->lowest_level = 0;
9316 		if (ret < 0) {
9317 			err = ret;
9318 			goto out_end_trans;
9319 		}
9320 		WARN_ON(ret > 0);
9321 
9322 		/*
9323 		 * unlock our path, this is safe because only this
9324 		 * function is allowed to delete this snapshot
9325 		 */
9326 		btrfs_unlock_up_safe(path, 0);
9327 
9328 		level = btrfs_header_level(root->node);
9329 		while (1) {
9330 			btrfs_tree_lock(path->nodes[level]);
9331 			btrfs_set_lock_blocking(path->nodes[level]);
9332 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9333 
9334 			ret = btrfs_lookup_extent_info(trans, fs_info,
9335 						path->nodes[level]->start,
9336 						level, 1, &wc->refs[level],
9337 						&wc->flags[level]);
9338 			if (ret < 0) {
9339 				err = ret;
9340 				goto out_end_trans;
9341 			}
9342 			BUG_ON(wc->refs[level] == 0);
9343 
9344 			if (level == root_item->drop_level)
9345 				break;
9346 
9347 			btrfs_tree_unlock(path->nodes[level]);
9348 			path->locks[level] = 0;
9349 			WARN_ON(wc->refs[level] != 1);
9350 			level--;
9351 		}
9352 	}
9353 
9354 	wc->level = level;
9355 	wc->shared_level = -1;
9356 	wc->stage = DROP_REFERENCE;
9357 	wc->update_ref = update_ref;
9358 	wc->keep_locks = 0;
9359 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9360 
9361 	while (1) {
9362 
9363 		ret = walk_down_tree(trans, root, path, wc);
9364 		if (ret < 0) {
9365 			err = ret;
9366 			break;
9367 		}
9368 
9369 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9370 		if (ret < 0) {
9371 			err = ret;
9372 			break;
9373 		}
9374 
9375 		if (ret > 0) {
9376 			BUG_ON(wc->stage != DROP_REFERENCE);
9377 			break;
9378 		}
9379 
9380 		if (wc->stage == DROP_REFERENCE) {
9381 			level = wc->level;
9382 			btrfs_node_key(path->nodes[level],
9383 				       &root_item->drop_progress,
9384 				       path->slots[level]);
9385 			root_item->drop_level = level;
9386 		}
9387 
9388 		BUG_ON(wc->level == 0);
9389 		if (btrfs_should_end_transaction(trans) ||
9390 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9391 			ret = btrfs_update_root(trans, tree_root,
9392 						&root->root_key,
9393 						root_item);
9394 			if (ret) {
9395 				btrfs_abort_transaction(trans, ret);
9396 				err = ret;
9397 				goto out_end_trans;
9398 			}
9399 
9400 			btrfs_end_transaction_throttle(trans);
9401 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9402 				btrfs_debug(fs_info,
9403 					    "drop snapshot early exit");
9404 				err = -EAGAIN;
9405 				goto out_free;
9406 			}
9407 
9408 			trans = btrfs_start_transaction(tree_root, 0);
9409 			if (IS_ERR(trans)) {
9410 				err = PTR_ERR(trans);
9411 				goto out_free;
9412 			}
9413 			if (block_rsv)
9414 				trans->block_rsv = block_rsv;
9415 		}
9416 	}
9417 	btrfs_release_path(path);
9418 	if (err)
9419 		goto out_end_trans;
9420 
9421 	ret = btrfs_del_root(trans, &root->root_key);
9422 	if (ret) {
9423 		btrfs_abort_transaction(trans, ret);
9424 		err = ret;
9425 		goto out_end_trans;
9426 	}
9427 
9428 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9429 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9430 				      NULL, NULL);
9431 		if (ret < 0) {
9432 			btrfs_abort_transaction(trans, ret);
9433 			err = ret;
9434 			goto out_end_trans;
9435 		} else if (ret > 0) {
9436 			/* if we fail to delete the orphan item this time
9437 			 * around, it'll get picked up the next time.
9438 			 *
9439 			 * The most common failure here is just -ENOENT.
9440 			 */
9441 			btrfs_del_orphan_item(trans, tree_root,
9442 					      root->root_key.objectid);
9443 		}
9444 	}
9445 
9446 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9447 		btrfs_add_dropped_root(trans, root);
9448 	} else {
9449 		free_extent_buffer(root->node);
9450 		free_extent_buffer(root->commit_root);
9451 		btrfs_put_fs_root(root);
9452 	}
9453 	root_dropped = true;
9454 out_end_trans:
9455 	btrfs_end_transaction_throttle(trans);
9456 out_free:
9457 	kfree(wc);
9458 	btrfs_free_path(path);
9459 out:
9460 	/*
9461 	 * So if we need to stop dropping the snapshot for whatever reason we
9462 	 * need to make sure to add it back to the dead root list so that we
9463 	 * keep trying to do the work later.  This also cleans up roots if we
9464 	 * don't have it in the radix (like when we recover after a power fail
9465 	 * or unmount) so we don't leak memory.
9466 	 */
9467 	if (!for_reloc && !root_dropped)
9468 		btrfs_add_dead_root(root);
9469 	if (err && err != -EAGAIN)
9470 		btrfs_handle_fs_error(fs_info, err, NULL);
9471 	return err;
9472 }
9473 
9474 /*
9475  * drop subtree rooted at tree block 'node'.
9476  *
9477  * NOTE: this function will unlock and release tree block 'node'
9478  * only used by relocation code
9479  */
9480 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9481 			struct btrfs_root *root,
9482 			struct extent_buffer *node,
9483 			struct extent_buffer *parent)
9484 {
9485 	struct btrfs_fs_info *fs_info = root->fs_info;
9486 	struct btrfs_path *path;
9487 	struct walk_control *wc;
9488 	int level;
9489 	int parent_level;
9490 	int ret = 0;
9491 	int wret;
9492 
9493 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9494 
9495 	path = btrfs_alloc_path();
9496 	if (!path)
9497 		return -ENOMEM;
9498 
9499 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9500 	if (!wc) {
9501 		btrfs_free_path(path);
9502 		return -ENOMEM;
9503 	}
9504 
9505 	btrfs_assert_tree_locked(parent);
9506 	parent_level = btrfs_header_level(parent);
9507 	extent_buffer_get(parent);
9508 	path->nodes[parent_level] = parent;
9509 	path->slots[parent_level] = btrfs_header_nritems(parent);
9510 
9511 	btrfs_assert_tree_locked(node);
9512 	level = btrfs_header_level(node);
9513 	path->nodes[level] = node;
9514 	path->slots[level] = 0;
9515 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9516 
9517 	wc->refs[parent_level] = 1;
9518 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9519 	wc->level = level;
9520 	wc->shared_level = -1;
9521 	wc->stage = DROP_REFERENCE;
9522 	wc->update_ref = 0;
9523 	wc->keep_locks = 1;
9524 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9525 
9526 	while (1) {
9527 		wret = walk_down_tree(trans, root, path, wc);
9528 		if (wret < 0) {
9529 			ret = wret;
9530 			break;
9531 		}
9532 
9533 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9534 		if (wret < 0)
9535 			ret = wret;
9536 		if (wret != 0)
9537 			break;
9538 	}
9539 
9540 	kfree(wc);
9541 	btrfs_free_path(path);
9542 	return ret;
9543 }
9544 
9545 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9546 {
9547 	u64 num_devices;
9548 	u64 stripped;
9549 
9550 	/*
9551 	 * if restripe for this chunk_type is on pick target profile and
9552 	 * return, otherwise do the usual balance
9553 	 */
9554 	stripped = get_restripe_target(fs_info, flags);
9555 	if (stripped)
9556 		return extended_to_chunk(stripped);
9557 
9558 	num_devices = fs_info->fs_devices->rw_devices;
9559 
9560 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9561 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9562 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9563 
9564 	if (num_devices == 1) {
9565 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9566 		stripped = flags & ~stripped;
9567 
9568 		/* turn raid0 into single device chunks */
9569 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9570 			return stripped;
9571 
9572 		/* turn mirroring into duplication */
9573 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9574 			     BTRFS_BLOCK_GROUP_RAID10))
9575 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9576 	} else {
9577 		/* they already had raid on here, just return */
9578 		if (flags & stripped)
9579 			return flags;
9580 
9581 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9582 		stripped = flags & ~stripped;
9583 
9584 		/* switch duplicated blocks with raid1 */
9585 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9586 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9587 
9588 		/* this is drive concat, leave it alone */
9589 	}
9590 
9591 	return flags;
9592 }
9593 
9594 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9595 {
9596 	struct btrfs_space_info *sinfo = cache->space_info;
9597 	u64 num_bytes;
9598 	u64 min_allocable_bytes;
9599 	int ret = -ENOSPC;
9600 
9601 	/*
9602 	 * We need some metadata space and system metadata space for
9603 	 * allocating chunks in some corner cases until we force to set
9604 	 * it to be readonly.
9605 	 */
9606 	if ((sinfo->flags &
9607 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9608 	    !force)
9609 		min_allocable_bytes = SZ_1M;
9610 	else
9611 		min_allocable_bytes = 0;
9612 
9613 	spin_lock(&sinfo->lock);
9614 	spin_lock(&cache->lock);
9615 
9616 	if (cache->ro) {
9617 		cache->ro++;
9618 		ret = 0;
9619 		goto out;
9620 	}
9621 
9622 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9623 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9624 
9625 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9626 	    min_allocable_bytes <= sinfo->total_bytes) {
9627 		sinfo->bytes_readonly += num_bytes;
9628 		cache->ro++;
9629 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9630 		ret = 0;
9631 	}
9632 out:
9633 	spin_unlock(&cache->lock);
9634 	spin_unlock(&sinfo->lock);
9635 	return ret;
9636 }
9637 
9638 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9639 
9640 {
9641 	struct btrfs_fs_info *fs_info = cache->fs_info;
9642 	struct btrfs_trans_handle *trans;
9643 	u64 alloc_flags;
9644 	int ret;
9645 
9646 again:
9647 	trans = btrfs_join_transaction(fs_info->extent_root);
9648 	if (IS_ERR(trans))
9649 		return PTR_ERR(trans);
9650 
9651 	/*
9652 	 * we're not allowed to set block groups readonly after the dirty
9653 	 * block groups cache has started writing.  If it already started,
9654 	 * back off and let this transaction commit
9655 	 */
9656 	mutex_lock(&fs_info->ro_block_group_mutex);
9657 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9658 		u64 transid = trans->transid;
9659 
9660 		mutex_unlock(&fs_info->ro_block_group_mutex);
9661 		btrfs_end_transaction(trans);
9662 
9663 		ret = btrfs_wait_for_commit(fs_info, transid);
9664 		if (ret)
9665 			return ret;
9666 		goto again;
9667 	}
9668 
9669 	/*
9670 	 * if we are changing raid levels, try to allocate a corresponding
9671 	 * block group with the new raid level.
9672 	 */
9673 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9674 	if (alloc_flags != cache->flags) {
9675 		ret = do_chunk_alloc(trans, alloc_flags,
9676 				     CHUNK_ALLOC_FORCE);
9677 		/*
9678 		 * ENOSPC is allowed here, we may have enough space
9679 		 * already allocated at the new raid level to
9680 		 * carry on
9681 		 */
9682 		if (ret == -ENOSPC)
9683 			ret = 0;
9684 		if (ret < 0)
9685 			goto out;
9686 	}
9687 
9688 	ret = inc_block_group_ro(cache, 0);
9689 	if (!ret)
9690 		goto out;
9691 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9692 	ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9693 	if (ret < 0)
9694 		goto out;
9695 	ret = inc_block_group_ro(cache, 0);
9696 out:
9697 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9698 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9699 		mutex_lock(&fs_info->chunk_mutex);
9700 		check_system_chunk(trans, alloc_flags);
9701 		mutex_unlock(&fs_info->chunk_mutex);
9702 	}
9703 	mutex_unlock(&fs_info->ro_block_group_mutex);
9704 
9705 	btrfs_end_transaction(trans);
9706 	return ret;
9707 }
9708 
9709 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9710 {
9711 	u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9712 
9713 	return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9714 }
9715 
9716 /*
9717  * helper to account the unused space of all the readonly block group in the
9718  * space_info. takes mirrors into account.
9719  */
9720 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9721 {
9722 	struct btrfs_block_group_cache *block_group;
9723 	u64 free_bytes = 0;
9724 	int factor;
9725 
9726 	/* It's df, we don't care if it's racy */
9727 	if (list_empty(&sinfo->ro_bgs))
9728 		return 0;
9729 
9730 	spin_lock(&sinfo->lock);
9731 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9732 		spin_lock(&block_group->lock);
9733 
9734 		if (!block_group->ro) {
9735 			spin_unlock(&block_group->lock);
9736 			continue;
9737 		}
9738 
9739 		factor = btrfs_bg_type_to_factor(block_group->flags);
9740 		free_bytes += (block_group->key.offset -
9741 			       btrfs_block_group_used(&block_group->item)) *
9742 			       factor;
9743 
9744 		spin_unlock(&block_group->lock);
9745 	}
9746 	spin_unlock(&sinfo->lock);
9747 
9748 	return free_bytes;
9749 }
9750 
9751 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9752 {
9753 	struct btrfs_space_info *sinfo = cache->space_info;
9754 	u64 num_bytes;
9755 
9756 	BUG_ON(!cache->ro);
9757 
9758 	spin_lock(&sinfo->lock);
9759 	spin_lock(&cache->lock);
9760 	if (!--cache->ro) {
9761 		num_bytes = cache->key.offset - cache->reserved -
9762 			    cache->pinned - cache->bytes_super -
9763 			    btrfs_block_group_used(&cache->item);
9764 		sinfo->bytes_readonly -= num_bytes;
9765 		list_del_init(&cache->ro_list);
9766 	}
9767 	spin_unlock(&cache->lock);
9768 	spin_unlock(&sinfo->lock);
9769 }
9770 
9771 /*
9772  * Checks to see if it's even possible to relocate this block group.
9773  *
9774  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9775  * ok to go ahead and try.
9776  */
9777 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9778 {
9779 	struct btrfs_root *root = fs_info->extent_root;
9780 	struct btrfs_block_group_cache *block_group;
9781 	struct btrfs_space_info *space_info;
9782 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9783 	struct btrfs_device *device;
9784 	struct btrfs_trans_handle *trans;
9785 	u64 min_free;
9786 	u64 dev_min = 1;
9787 	u64 dev_nr = 0;
9788 	u64 target;
9789 	int debug;
9790 	int index;
9791 	int full = 0;
9792 	int ret = 0;
9793 
9794 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9795 
9796 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9797 
9798 	/* odd, couldn't find the block group, leave it alone */
9799 	if (!block_group) {
9800 		if (debug)
9801 			btrfs_warn(fs_info,
9802 				   "can't find block group for bytenr %llu",
9803 				   bytenr);
9804 		return -1;
9805 	}
9806 
9807 	min_free = btrfs_block_group_used(&block_group->item);
9808 
9809 	/* no bytes used, we're good */
9810 	if (!min_free)
9811 		goto out;
9812 
9813 	space_info = block_group->space_info;
9814 	spin_lock(&space_info->lock);
9815 
9816 	full = space_info->full;
9817 
9818 	/*
9819 	 * if this is the last block group we have in this space, we can't
9820 	 * relocate it unless we're able to allocate a new chunk below.
9821 	 *
9822 	 * Otherwise, we need to make sure we have room in the space to handle
9823 	 * all of the extents from this block group.  If we can, we're good
9824 	 */
9825 	if ((space_info->total_bytes != block_group->key.offset) &&
9826 	    (btrfs_space_info_used(space_info, false) + min_free <
9827 	     space_info->total_bytes)) {
9828 		spin_unlock(&space_info->lock);
9829 		goto out;
9830 	}
9831 	spin_unlock(&space_info->lock);
9832 
9833 	/*
9834 	 * ok we don't have enough space, but maybe we have free space on our
9835 	 * devices to allocate new chunks for relocation, so loop through our
9836 	 * alloc devices and guess if we have enough space.  if this block
9837 	 * group is going to be restriped, run checks against the target
9838 	 * profile instead of the current one.
9839 	 */
9840 	ret = -1;
9841 
9842 	/*
9843 	 * index:
9844 	 *      0: raid10
9845 	 *      1: raid1
9846 	 *      2: dup
9847 	 *      3: raid0
9848 	 *      4: single
9849 	 */
9850 	target = get_restripe_target(fs_info, block_group->flags);
9851 	if (target) {
9852 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9853 	} else {
9854 		/*
9855 		 * this is just a balance, so if we were marked as full
9856 		 * we know there is no space for a new chunk
9857 		 */
9858 		if (full) {
9859 			if (debug)
9860 				btrfs_warn(fs_info,
9861 					   "no space to alloc new chunk for block group %llu",
9862 					   block_group->key.objectid);
9863 			goto out;
9864 		}
9865 
9866 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9867 	}
9868 
9869 	if (index == BTRFS_RAID_RAID10) {
9870 		dev_min = 4;
9871 		/* Divide by 2 */
9872 		min_free >>= 1;
9873 	} else if (index == BTRFS_RAID_RAID1) {
9874 		dev_min = 2;
9875 	} else if (index == BTRFS_RAID_DUP) {
9876 		/* Multiply by 2 */
9877 		min_free <<= 1;
9878 	} else if (index == BTRFS_RAID_RAID0) {
9879 		dev_min = fs_devices->rw_devices;
9880 		min_free = div64_u64(min_free, dev_min);
9881 	}
9882 
9883 	/* We need to do this so that we can look at pending chunks */
9884 	trans = btrfs_join_transaction(root);
9885 	if (IS_ERR(trans)) {
9886 		ret = PTR_ERR(trans);
9887 		goto out;
9888 	}
9889 
9890 	mutex_lock(&fs_info->chunk_mutex);
9891 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9892 		u64 dev_offset;
9893 
9894 		/*
9895 		 * check to make sure we can actually find a chunk with enough
9896 		 * space to fit our block group in.
9897 		 */
9898 		if (device->total_bytes > device->bytes_used + min_free &&
9899 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9900 			ret = find_free_dev_extent(trans, device, min_free,
9901 						   &dev_offset, NULL);
9902 			if (!ret)
9903 				dev_nr++;
9904 
9905 			if (dev_nr >= dev_min)
9906 				break;
9907 
9908 			ret = -1;
9909 		}
9910 	}
9911 	if (debug && ret == -1)
9912 		btrfs_warn(fs_info,
9913 			   "no space to allocate a new chunk for block group %llu",
9914 			   block_group->key.objectid);
9915 	mutex_unlock(&fs_info->chunk_mutex);
9916 	btrfs_end_transaction(trans);
9917 out:
9918 	btrfs_put_block_group(block_group);
9919 	return ret;
9920 }
9921 
9922 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9923 				  struct btrfs_path *path,
9924 				  struct btrfs_key *key)
9925 {
9926 	struct btrfs_root *root = fs_info->extent_root;
9927 	int ret = 0;
9928 	struct btrfs_key found_key;
9929 	struct extent_buffer *leaf;
9930 	struct btrfs_block_group_item bg;
9931 	u64 flags;
9932 	int slot;
9933 
9934 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9935 	if (ret < 0)
9936 		goto out;
9937 
9938 	while (1) {
9939 		slot = path->slots[0];
9940 		leaf = path->nodes[0];
9941 		if (slot >= btrfs_header_nritems(leaf)) {
9942 			ret = btrfs_next_leaf(root, path);
9943 			if (ret == 0)
9944 				continue;
9945 			if (ret < 0)
9946 				goto out;
9947 			break;
9948 		}
9949 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9950 
9951 		if (found_key.objectid >= key->objectid &&
9952 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9953 			struct extent_map_tree *em_tree;
9954 			struct extent_map *em;
9955 
9956 			em_tree = &root->fs_info->mapping_tree.map_tree;
9957 			read_lock(&em_tree->lock);
9958 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9959 						   found_key.offset);
9960 			read_unlock(&em_tree->lock);
9961 			if (!em) {
9962 				btrfs_err(fs_info,
9963 			"logical %llu len %llu found bg but no related chunk",
9964 					  found_key.objectid, found_key.offset);
9965 				ret = -ENOENT;
9966 			} else if (em->start != found_key.objectid ||
9967 				   em->len != found_key.offset) {
9968 				btrfs_err(fs_info,
9969 		"block group %llu len %llu mismatch with chunk %llu len %llu",
9970 					  found_key.objectid, found_key.offset,
9971 					  em->start, em->len);
9972 				ret = -EUCLEAN;
9973 			} else {
9974 				read_extent_buffer(leaf, &bg,
9975 					btrfs_item_ptr_offset(leaf, slot),
9976 					sizeof(bg));
9977 				flags = btrfs_block_group_flags(&bg) &
9978 					BTRFS_BLOCK_GROUP_TYPE_MASK;
9979 
9980 				if (flags != (em->map_lookup->type &
9981 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9982 					btrfs_err(fs_info,
9983 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9984 						found_key.objectid,
9985 						found_key.offset, flags,
9986 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
9987 						 em->map_lookup->type));
9988 					ret = -EUCLEAN;
9989 				} else {
9990 					ret = 0;
9991 				}
9992 			}
9993 			free_extent_map(em);
9994 			goto out;
9995 		}
9996 		path->slots[0]++;
9997 	}
9998 out:
9999 	return ret;
10000 }
10001 
10002 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10003 {
10004 	struct btrfs_block_group_cache *block_group;
10005 	u64 last = 0;
10006 
10007 	while (1) {
10008 		struct inode *inode;
10009 
10010 		block_group = btrfs_lookup_first_block_group(info, last);
10011 		while (block_group) {
10012 			wait_block_group_cache_done(block_group);
10013 			spin_lock(&block_group->lock);
10014 			if (block_group->iref)
10015 				break;
10016 			spin_unlock(&block_group->lock);
10017 			block_group = next_block_group(info, block_group);
10018 		}
10019 		if (!block_group) {
10020 			if (last == 0)
10021 				break;
10022 			last = 0;
10023 			continue;
10024 		}
10025 
10026 		inode = block_group->inode;
10027 		block_group->iref = 0;
10028 		block_group->inode = NULL;
10029 		spin_unlock(&block_group->lock);
10030 		ASSERT(block_group->io_ctl.inode == NULL);
10031 		iput(inode);
10032 		last = block_group->key.objectid + block_group->key.offset;
10033 		btrfs_put_block_group(block_group);
10034 	}
10035 }
10036 
10037 /*
10038  * Must be called only after stopping all workers, since we could have block
10039  * group caching kthreads running, and therefore they could race with us if we
10040  * freed the block groups before stopping them.
10041  */
10042 int btrfs_free_block_groups(struct btrfs_fs_info *info)
10043 {
10044 	struct btrfs_block_group_cache *block_group;
10045 	struct btrfs_space_info *space_info;
10046 	struct btrfs_caching_control *caching_ctl;
10047 	struct rb_node *n;
10048 
10049 	down_write(&info->commit_root_sem);
10050 	while (!list_empty(&info->caching_block_groups)) {
10051 		caching_ctl = list_entry(info->caching_block_groups.next,
10052 					 struct btrfs_caching_control, list);
10053 		list_del(&caching_ctl->list);
10054 		put_caching_control(caching_ctl);
10055 	}
10056 	up_write(&info->commit_root_sem);
10057 
10058 	spin_lock(&info->unused_bgs_lock);
10059 	while (!list_empty(&info->unused_bgs)) {
10060 		block_group = list_first_entry(&info->unused_bgs,
10061 					       struct btrfs_block_group_cache,
10062 					       bg_list);
10063 		list_del_init(&block_group->bg_list);
10064 		btrfs_put_block_group(block_group);
10065 	}
10066 	spin_unlock(&info->unused_bgs_lock);
10067 
10068 	spin_lock(&info->block_group_cache_lock);
10069 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10070 		block_group = rb_entry(n, struct btrfs_block_group_cache,
10071 				       cache_node);
10072 		rb_erase(&block_group->cache_node,
10073 			 &info->block_group_cache_tree);
10074 		RB_CLEAR_NODE(&block_group->cache_node);
10075 		spin_unlock(&info->block_group_cache_lock);
10076 
10077 		down_write(&block_group->space_info->groups_sem);
10078 		list_del(&block_group->list);
10079 		up_write(&block_group->space_info->groups_sem);
10080 
10081 		/*
10082 		 * We haven't cached this block group, which means we could
10083 		 * possibly have excluded extents on this block group.
10084 		 */
10085 		if (block_group->cached == BTRFS_CACHE_NO ||
10086 		    block_group->cached == BTRFS_CACHE_ERROR)
10087 			free_excluded_extents(block_group);
10088 
10089 		btrfs_remove_free_space_cache(block_group);
10090 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
10091 		ASSERT(list_empty(&block_group->dirty_list));
10092 		ASSERT(list_empty(&block_group->io_list));
10093 		ASSERT(list_empty(&block_group->bg_list));
10094 		ASSERT(atomic_read(&block_group->count) == 1);
10095 		btrfs_put_block_group(block_group);
10096 
10097 		spin_lock(&info->block_group_cache_lock);
10098 	}
10099 	spin_unlock(&info->block_group_cache_lock);
10100 
10101 	/* now that all the block groups are freed, go through and
10102 	 * free all the space_info structs.  This is only called during
10103 	 * the final stages of unmount, and so we know nobody is
10104 	 * using them.  We call synchronize_rcu() once before we start,
10105 	 * just to be on the safe side.
10106 	 */
10107 	synchronize_rcu();
10108 
10109 	release_global_block_rsv(info);
10110 
10111 	while (!list_empty(&info->space_info)) {
10112 		int i;
10113 
10114 		space_info = list_entry(info->space_info.next,
10115 					struct btrfs_space_info,
10116 					list);
10117 
10118 		/*
10119 		 * Do not hide this behind enospc_debug, this is actually
10120 		 * important and indicates a real bug if this happens.
10121 		 */
10122 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10123 			    space_info->bytes_reserved > 0 ||
10124 			    space_info->bytes_may_use > 0))
10125 			dump_space_info(info, space_info, 0, 0);
10126 		list_del(&space_info->list);
10127 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10128 			struct kobject *kobj;
10129 			kobj = space_info->block_group_kobjs[i];
10130 			space_info->block_group_kobjs[i] = NULL;
10131 			if (kobj) {
10132 				kobject_del(kobj);
10133 				kobject_put(kobj);
10134 			}
10135 		}
10136 		kobject_del(&space_info->kobj);
10137 		kobject_put(&space_info->kobj);
10138 	}
10139 	return 0;
10140 }
10141 
10142 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
10143 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10144 {
10145 	struct btrfs_space_info *space_info;
10146 	struct raid_kobject *rkobj;
10147 	LIST_HEAD(list);
10148 	int index;
10149 	int ret = 0;
10150 
10151 	spin_lock(&fs_info->pending_raid_kobjs_lock);
10152 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
10153 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
10154 
10155 	list_for_each_entry(rkobj, &list, list) {
10156 		space_info = __find_space_info(fs_info, rkobj->flags);
10157 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10158 
10159 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10160 				  "%s", get_raid_name(index));
10161 		if (ret) {
10162 			kobject_put(&rkobj->kobj);
10163 			break;
10164 		}
10165 	}
10166 	if (ret)
10167 		btrfs_warn(fs_info,
10168 			   "failed to add kobject for block cache, ignoring");
10169 }
10170 
10171 static void link_block_group(struct btrfs_block_group_cache *cache)
10172 {
10173 	struct btrfs_space_info *space_info = cache->space_info;
10174 	struct btrfs_fs_info *fs_info = cache->fs_info;
10175 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
10176 	bool first = false;
10177 
10178 	down_write(&space_info->groups_sem);
10179 	if (list_empty(&space_info->block_groups[index]))
10180 		first = true;
10181 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10182 	up_write(&space_info->groups_sem);
10183 
10184 	if (first) {
10185 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10186 		if (!rkobj) {
10187 			btrfs_warn(cache->fs_info,
10188 				"couldn't alloc memory for raid level kobject");
10189 			return;
10190 		}
10191 		rkobj->flags = cache->flags;
10192 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10193 
10194 		spin_lock(&fs_info->pending_raid_kobjs_lock);
10195 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10196 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
10197 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10198 	}
10199 }
10200 
10201 static struct btrfs_block_group_cache *
10202 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10203 			       u64 start, u64 size)
10204 {
10205 	struct btrfs_block_group_cache *cache;
10206 
10207 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10208 	if (!cache)
10209 		return NULL;
10210 
10211 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10212 					GFP_NOFS);
10213 	if (!cache->free_space_ctl) {
10214 		kfree(cache);
10215 		return NULL;
10216 	}
10217 
10218 	cache->key.objectid = start;
10219 	cache->key.offset = size;
10220 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10221 
10222 	cache->fs_info = fs_info;
10223 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10224 	set_free_space_tree_thresholds(cache);
10225 
10226 	atomic_set(&cache->count, 1);
10227 	spin_lock_init(&cache->lock);
10228 	init_rwsem(&cache->data_rwsem);
10229 	INIT_LIST_HEAD(&cache->list);
10230 	INIT_LIST_HEAD(&cache->cluster_list);
10231 	INIT_LIST_HEAD(&cache->bg_list);
10232 	INIT_LIST_HEAD(&cache->ro_list);
10233 	INIT_LIST_HEAD(&cache->dirty_list);
10234 	INIT_LIST_HEAD(&cache->io_list);
10235 	btrfs_init_free_space_ctl(cache);
10236 	atomic_set(&cache->trimming, 0);
10237 	mutex_init(&cache->free_space_lock);
10238 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10239 
10240 	return cache;
10241 }
10242 
10243 
10244 /*
10245  * Iterate all chunks and verify that each of them has the corresponding block
10246  * group
10247  */
10248 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10249 {
10250 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10251 	struct extent_map *em;
10252 	struct btrfs_block_group_cache *bg;
10253 	u64 start = 0;
10254 	int ret = 0;
10255 
10256 	while (1) {
10257 		read_lock(&map_tree->map_tree.lock);
10258 		/*
10259 		 * lookup_extent_mapping will return the first extent map
10260 		 * intersecting the range, so setting @len to 1 is enough to
10261 		 * get the first chunk.
10262 		 */
10263 		em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10264 		read_unlock(&map_tree->map_tree.lock);
10265 		if (!em)
10266 			break;
10267 
10268 		bg = btrfs_lookup_block_group(fs_info, em->start);
10269 		if (!bg) {
10270 			btrfs_err(fs_info,
10271 	"chunk start=%llu len=%llu doesn't have corresponding block group",
10272 				     em->start, em->len);
10273 			ret = -EUCLEAN;
10274 			free_extent_map(em);
10275 			break;
10276 		}
10277 		if (bg->key.objectid != em->start ||
10278 		    bg->key.offset != em->len ||
10279 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10280 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10281 			btrfs_err(fs_info,
10282 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10283 				em->start, em->len,
10284 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10285 				bg->key.objectid, bg->key.offset,
10286 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10287 			ret = -EUCLEAN;
10288 			free_extent_map(em);
10289 			btrfs_put_block_group(bg);
10290 			break;
10291 		}
10292 		start = em->start + em->len;
10293 		free_extent_map(em);
10294 		btrfs_put_block_group(bg);
10295 	}
10296 	return ret;
10297 }
10298 
10299 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10300 {
10301 	struct btrfs_path *path;
10302 	int ret;
10303 	struct btrfs_block_group_cache *cache;
10304 	struct btrfs_space_info *space_info;
10305 	struct btrfs_key key;
10306 	struct btrfs_key found_key;
10307 	struct extent_buffer *leaf;
10308 	int need_clear = 0;
10309 	u64 cache_gen;
10310 	u64 feature;
10311 	int mixed;
10312 
10313 	feature = btrfs_super_incompat_flags(info->super_copy);
10314 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10315 
10316 	key.objectid = 0;
10317 	key.offset = 0;
10318 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10319 	path = btrfs_alloc_path();
10320 	if (!path)
10321 		return -ENOMEM;
10322 	path->reada = READA_FORWARD;
10323 
10324 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10325 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10326 	    btrfs_super_generation(info->super_copy) != cache_gen)
10327 		need_clear = 1;
10328 	if (btrfs_test_opt(info, CLEAR_CACHE))
10329 		need_clear = 1;
10330 
10331 	while (1) {
10332 		ret = find_first_block_group(info, path, &key);
10333 		if (ret > 0)
10334 			break;
10335 		if (ret != 0)
10336 			goto error;
10337 
10338 		leaf = path->nodes[0];
10339 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10340 
10341 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10342 						       found_key.offset);
10343 		if (!cache) {
10344 			ret = -ENOMEM;
10345 			goto error;
10346 		}
10347 
10348 		if (need_clear) {
10349 			/*
10350 			 * When we mount with old space cache, we need to
10351 			 * set BTRFS_DC_CLEAR and set dirty flag.
10352 			 *
10353 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10354 			 *    truncate the old free space cache inode and
10355 			 *    setup a new one.
10356 			 * b) Setting 'dirty flag' makes sure that we flush
10357 			 *    the new space cache info onto disk.
10358 			 */
10359 			if (btrfs_test_opt(info, SPACE_CACHE))
10360 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10361 		}
10362 
10363 		read_extent_buffer(leaf, &cache->item,
10364 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10365 				   sizeof(cache->item));
10366 		cache->flags = btrfs_block_group_flags(&cache->item);
10367 		if (!mixed &&
10368 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10369 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10370 			btrfs_err(info,
10371 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10372 				  cache->key.objectid);
10373 			ret = -EINVAL;
10374 			goto error;
10375 		}
10376 
10377 		key.objectid = found_key.objectid + found_key.offset;
10378 		btrfs_release_path(path);
10379 
10380 		/*
10381 		 * We need to exclude the super stripes now so that the space
10382 		 * info has super bytes accounted for, otherwise we'll think
10383 		 * we have more space than we actually do.
10384 		 */
10385 		ret = exclude_super_stripes(cache);
10386 		if (ret) {
10387 			/*
10388 			 * We may have excluded something, so call this just in
10389 			 * case.
10390 			 */
10391 			free_excluded_extents(cache);
10392 			btrfs_put_block_group(cache);
10393 			goto error;
10394 		}
10395 
10396 		/*
10397 		 * check for two cases, either we are full, and therefore
10398 		 * don't need to bother with the caching work since we won't
10399 		 * find any space, or we are empty, and we can just add all
10400 		 * the space in and be done with it.  This saves us _a_lot_ of
10401 		 * time, particularly in the full case.
10402 		 */
10403 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10404 			cache->last_byte_to_unpin = (u64)-1;
10405 			cache->cached = BTRFS_CACHE_FINISHED;
10406 			free_excluded_extents(cache);
10407 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10408 			cache->last_byte_to_unpin = (u64)-1;
10409 			cache->cached = BTRFS_CACHE_FINISHED;
10410 			add_new_free_space(cache, found_key.objectid,
10411 					   found_key.objectid +
10412 					   found_key.offset);
10413 			free_excluded_extents(cache);
10414 		}
10415 
10416 		ret = btrfs_add_block_group_cache(info, cache);
10417 		if (ret) {
10418 			btrfs_remove_free_space_cache(cache);
10419 			btrfs_put_block_group(cache);
10420 			goto error;
10421 		}
10422 
10423 		trace_btrfs_add_block_group(info, cache, 0);
10424 		update_space_info(info, cache->flags, found_key.offset,
10425 				  btrfs_block_group_used(&cache->item),
10426 				  cache->bytes_super, &space_info);
10427 
10428 		cache->space_info = space_info;
10429 
10430 		link_block_group(cache);
10431 
10432 		set_avail_alloc_bits(info, cache->flags);
10433 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10434 			inc_block_group_ro(cache, 1);
10435 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10436 			ASSERT(list_empty(&cache->bg_list));
10437 			btrfs_mark_bg_unused(cache);
10438 		}
10439 	}
10440 
10441 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10442 		if (!(get_alloc_profile(info, space_info->flags) &
10443 		      (BTRFS_BLOCK_GROUP_RAID10 |
10444 		       BTRFS_BLOCK_GROUP_RAID1 |
10445 		       BTRFS_BLOCK_GROUP_RAID5 |
10446 		       BTRFS_BLOCK_GROUP_RAID6 |
10447 		       BTRFS_BLOCK_GROUP_DUP)))
10448 			continue;
10449 		/*
10450 		 * avoid allocating from un-mirrored block group if there are
10451 		 * mirrored block groups.
10452 		 */
10453 		list_for_each_entry(cache,
10454 				&space_info->block_groups[BTRFS_RAID_RAID0],
10455 				list)
10456 			inc_block_group_ro(cache, 1);
10457 		list_for_each_entry(cache,
10458 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10459 				list)
10460 			inc_block_group_ro(cache, 1);
10461 	}
10462 
10463 	btrfs_add_raid_kobjects(info);
10464 	init_global_block_rsv(info);
10465 	ret = check_chunk_block_group_mappings(info);
10466 error:
10467 	btrfs_free_path(path);
10468 	return ret;
10469 }
10470 
10471 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10472 {
10473 	struct btrfs_fs_info *fs_info = trans->fs_info;
10474 	struct btrfs_block_group_cache *block_group;
10475 	struct btrfs_root *extent_root = fs_info->extent_root;
10476 	struct btrfs_block_group_item item;
10477 	struct btrfs_key key;
10478 	int ret = 0;
10479 
10480 	if (!trans->can_flush_pending_bgs)
10481 		return;
10482 
10483 	while (!list_empty(&trans->new_bgs)) {
10484 		block_group = list_first_entry(&trans->new_bgs,
10485 					       struct btrfs_block_group_cache,
10486 					       bg_list);
10487 		if (ret)
10488 			goto next;
10489 
10490 		spin_lock(&block_group->lock);
10491 		memcpy(&item, &block_group->item, sizeof(item));
10492 		memcpy(&key, &block_group->key, sizeof(key));
10493 		spin_unlock(&block_group->lock);
10494 
10495 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10496 					sizeof(item));
10497 		if (ret)
10498 			btrfs_abort_transaction(trans, ret);
10499 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10500 		if (ret)
10501 			btrfs_abort_transaction(trans, ret);
10502 		add_block_group_free_space(trans, block_group);
10503 		/* already aborted the transaction if it failed. */
10504 next:
10505 		btrfs_delayed_refs_rsv_release(fs_info, 1);
10506 		list_del_init(&block_group->bg_list);
10507 	}
10508 	btrfs_trans_release_chunk_metadata(trans);
10509 }
10510 
10511 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10512 			   u64 type, u64 chunk_offset, u64 size)
10513 {
10514 	struct btrfs_fs_info *fs_info = trans->fs_info;
10515 	struct btrfs_block_group_cache *cache;
10516 	int ret;
10517 
10518 	btrfs_set_log_full_commit(fs_info, trans);
10519 
10520 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10521 	if (!cache)
10522 		return -ENOMEM;
10523 
10524 	btrfs_set_block_group_used(&cache->item, bytes_used);
10525 	btrfs_set_block_group_chunk_objectid(&cache->item,
10526 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10527 	btrfs_set_block_group_flags(&cache->item, type);
10528 
10529 	cache->flags = type;
10530 	cache->last_byte_to_unpin = (u64)-1;
10531 	cache->cached = BTRFS_CACHE_FINISHED;
10532 	cache->needs_free_space = 1;
10533 	ret = exclude_super_stripes(cache);
10534 	if (ret) {
10535 		/*
10536 		 * We may have excluded something, so call this just in
10537 		 * case.
10538 		 */
10539 		free_excluded_extents(cache);
10540 		btrfs_put_block_group(cache);
10541 		return ret;
10542 	}
10543 
10544 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
10545 
10546 	free_excluded_extents(cache);
10547 
10548 #ifdef CONFIG_BTRFS_DEBUG
10549 	if (btrfs_should_fragment_free_space(cache)) {
10550 		u64 new_bytes_used = size - bytes_used;
10551 
10552 		bytes_used += new_bytes_used >> 1;
10553 		fragment_free_space(cache);
10554 	}
10555 #endif
10556 	/*
10557 	 * Ensure the corresponding space_info object is created and
10558 	 * assigned to our block group. We want our bg to be added to the rbtree
10559 	 * with its ->space_info set.
10560 	 */
10561 	cache->space_info = __find_space_info(fs_info, cache->flags);
10562 	ASSERT(cache->space_info);
10563 
10564 	ret = btrfs_add_block_group_cache(fs_info, cache);
10565 	if (ret) {
10566 		btrfs_remove_free_space_cache(cache);
10567 		btrfs_put_block_group(cache);
10568 		return ret;
10569 	}
10570 
10571 	/*
10572 	 * Now that our block group has its ->space_info set and is inserted in
10573 	 * the rbtree, update the space info's counters.
10574 	 */
10575 	trace_btrfs_add_block_group(fs_info, cache, 1);
10576 	update_space_info(fs_info, cache->flags, size, bytes_used,
10577 				cache->bytes_super, &cache->space_info);
10578 	update_global_block_rsv(fs_info);
10579 
10580 	link_block_group(cache);
10581 
10582 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10583 	trans->delayed_ref_updates++;
10584 	btrfs_update_delayed_refs_rsv(trans);
10585 
10586 	set_avail_alloc_bits(fs_info, type);
10587 	return 0;
10588 }
10589 
10590 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10591 {
10592 	u64 extra_flags = chunk_to_extended(flags) &
10593 				BTRFS_EXTENDED_PROFILE_MASK;
10594 
10595 	write_seqlock(&fs_info->profiles_lock);
10596 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10597 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10598 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10599 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10600 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10601 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10602 	write_sequnlock(&fs_info->profiles_lock);
10603 }
10604 
10605 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10606 			     u64 group_start, struct extent_map *em)
10607 {
10608 	struct btrfs_fs_info *fs_info = trans->fs_info;
10609 	struct btrfs_root *root = fs_info->extent_root;
10610 	struct btrfs_path *path;
10611 	struct btrfs_block_group_cache *block_group;
10612 	struct btrfs_free_cluster *cluster;
10613 	struct btrfs_root *tree_root = fs_info->tree_root;
10614 	struct btrfs_key key;
10615 	struct inode *inode;
10616 	struct kobject *kobj = NULL;
10617 	int ret;
10618 	int index;
10619 	int factor;
10620 	struct btrfs_caching_control *caching_ctl = NULL;
10621 	bool remove_em;
10622 	bool remove_rsv = false;
10623 
10624 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10625 	BUG_ON(!block_group);
10626 	BUG_ON(!block_group->ro);
10627 
10628 	trace_btrfs_remove_block_group(block_group);
10629 	/*
10630 	 * Free the reserved super bytes from this block group before
10631 	 * remove it.
10632 	 */
10633 	free_excluded_extents(block_group);
10634 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10635 				  block_group->key.offset);
10636 
10637 	memcpy(&key, &block_group->key, sizeof(key));
10638 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10639 	factor = btrfs_bg_type_to_factor(block_group->flags);
10640 
10641 	/* make sure this block group isn't part of an allocation cluster */
10642 	cluster = &fs_info->data_alloc_cluster;
10643 	spin_lock(&cluster->refill_lock);
10644 	btrfs_return_cluster_to_free_space(block_group, cluster);
10645 	spin_unlock(&cluster->refill_lock);
10646 
10647 	/*
10648 	 * make sure this block group isn't part of a metadata
10649 	 * allocation cluster
10650 	 */
10651 	cluster = &fs_info->meta_alloc_cluster;
10652 	spin_lock(&cluster->refill_lock);
10653 	btrfs_return_cluster_to_free_space(block_group, cluster);
10654 	spin_unlock(&cluster->refill_lock);
10655 
10656 	path = btrfs_alloc_path();
10657 	if (!path) {
10658 		ret = -ENOMEM;
10659 		goto out;
10660 	}
10661 
10662 	/*
10663 	 * get the inode first so any iput calls done for the io_list
10664 	 * aren't the final iput (no unlinks allowed now)
10665 	 */
10666 	inode = lookup_free_space_inode(fs_info, block_group, path);
10667 
10668 	mutex_lock(&trans->transaction->cache_write_mutex);
10669 	/*
10670 	 * Make sure our free space cache IO is done before removing the
10671 	 * free space inode
10672 	 */
10673 	spin_lock(&trans->transaction->dirty_bgs_lock);
10674 	if (!list_empty(&block_group->io_list)) {
10675 		list_del_init(&block_group->io_list);
10676 
10677 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10678 
10679 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10680 		btrfs_wait_cache_io(trans, block_group, path);
10681 		btrfs_put_block_group(block_group);
10682 		spin_lock(&trans->transaction->dirty_bgs_lock);
10683 	}
10684 
10685 	if (!list_empty(&block_group->dirty_list)) {
10686 		list_del_init(&block_group->dirty_list);
10687 		remove_rsv = true;
10688 		btrfs_put_block_group(block_group);
10689 	}
10690 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10691 	mutex_unlock(&trans->transaction->cache_write_mutex);
10692 
10693 	if (!IS_ERR(inode)) {
10694 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10695 		if (ret) {
10696 			btrfs_add_delayed_iput(inode);
10697 			goto out;
10698 		}
10699 		clear_nlink(inode);
10700 		/* One for the block groups ref */
10701 		spin_lock(&block_group->lock);
10702 		if (block_group->iref) {
10703 			block_group->iref = 0;
10704 			block_group->inode = NULL;
10705 			spin_unlock(&block_group->lock);
10706 			iput(inode);
10707 		} else {
10708 			spin_unlock(&block_group->lock);
10709 		}
10710 		/* One for our lookup ref */
10711 		btrfs_add_delayed_iput(inode);
10712 	}
10713 
10714 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10715 	key.offset = block_group->key.objectid;
10716 	key.type = 0;
10717 
10718 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10719 	if (ret < 0)
10720 		goto out;
10721 	if (ret > 0)
10722 		btrfs_release_path(path);
10723 	if (ret == 0) {
10724 		ret = btrfs_del_item(trans, tree_root, path);
10725 		if (ret)
10726 			goto out;
10727 		btrfs_release_path(path);
10728 	}
10729 
10730 	spin_lock(&fs_info->block_group_cache_lock);
10731 	rb_erase(&block_group->cache_node,
10732 		 &fs_info->block_group_cache_tree);
10733 	RB_CLEAR_NODE(&block_group->cache_node);
10734 
10735 	if (fs_info->first_logical_byte == block_group->key.objectid)
10736 		fs_info->first_logical_byte = (u64)-1;
10737 	spin_unlock(&fs_info->block_group_cache_lock);
10738 
10739 	down_write(&block_group->space_info->groups_sem);
10740 	/*
10741 	 * we must use list_del_init so people can check to see if they
10742 	 * are still on the list after taking the semaphore
10743 	 */
10744 	list_del_init(&block_group->list);
10745 	if (list_empty(&block_group->space_info->block_groups[index])) {
10746 		kobj = block_group->space_info->block_group_kobjs[index];
10747 		block_group->space_info->block_group_kobjs[index] = NULL;
10748 		clear_avail_alloc_bits(fs_info, block_group->flags);
10749 	}
10750 	up_write(&block_group->space_info->groups_sem);
10751 	if (kobj) {
10752 		kobject_del(kobj);
10753 		kobject_put(kobj);
10754 	}
10755 
10756 	if (block_group->has_caching_ctl)
10757 		caching_ctl = get_caching_control(block_group);
10758 	if (block_group->cached == BTRFS_CACHE_STARTED)
10759 		wait_block_group_cache_done(block_group);
10760 	if (block_group->has_caching_ctl) {
10761 		down_write(&fs_info->commit_root_sem);
10762 		if (!caching_ctl) {
10763 			struct btrfs_caching_control *ctl;
10764 
10765 			list_for_each_entry(ctl,
10766 				    &fs_info->caching_block_groups, list)
10767 				if (ctl->block_group == block_group) {
10768 					caching_ctl = ctl;
10769 					refcount_inc(&caching_ctl->count);
10770 					break;
10771 				}
10772 		}
10773 		if (caching_ctl)
10774 			list_del_init(&caching_ctl->list);
10775 		up_write(&fs_info->commit_root_sem);
10776 		if (caching_ctl) {
10777 			/* Once for the caching bgs list and once for us. */
10778 			put_caching_control(caching_ctl);
10779 			put_caching_control(caching_ctl);
10780 		}
10781 	}
10782 
10783 	spin_lock(&trans->transaction->dirty_bgs_lock);
10784 	if (!list_empty(&block_group->dirty_list)) {
10785 		WARN_ON(1);
10786 	}
10787 	if (!list_empty(&block_group->io_list)) {
10788 		WARN_ON(1);
10789 	}
10790 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10791 	btrfs_remove_free_space_cache(block_group);
10792 
10793 	spin_lock(&block_group->space_info->lock);
10794 	list_del_init(&block_group->ro_list);
10795 
10796 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10797 		WARN_ON(block_group->space_info->total_bytes
10798 			< block_group->key.offset);
10799 		WARN_ON(block_group->space_info->bytes_readonly
10800 			< block_group->key.offset);
10801 		WARN_ON(block_group->space_info->disk_total
10802 			< block_group->key.offset * factor);
10803 	}
10804 	block_group->space_info->total_bytes -= block_group->key.offset;
10805 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10806 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10807 
10808 	spin_unlock(&block_group->space_info->lock);
10809 
10810 	memcpy(&key, &block_group->key, sizeof(key));
10811 
10812 	mutex_lock(&fs_info->chunk_mutex);
10813 	if (!list_empty(&em->list)) {
10814 		/* We're in the transaction->pending_chunks list. */
10815 		free_extent_map(em);
10816 	}
10817 	spin_lock(&block_group->lock);
10818 	block_group->removed = 1;
10819 	/*
10820 	 * At this point trimming can't start on this block group, because we
10821 	 * removed the block group from the tree fs_info->block_group_cache_tree
10822 	 * so no one can't find it anymore and even if someone already got this
10823 	 * block group before we removed it from the rbtree, they have already
10824 	 * incremented block_group->trimming - if they didn't, they won't find
10825 	 * any free space entries because we already removed them all when we
10826 	 * called btrfs_remove_free_space_cache().
10827 	 *
10828 	 * And we must not remove the extent map from the fs_info->mapping_tree
10829 	 * to prevent the same logical address range and physical device space
10830 	 * ranges from being reused for a new block group. This is because our
10831 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10832 	 * completely transactionless, so while it is trimming a range the
10833 	 * currently running transaction might finish and a new one start,
10834 	 * allowing for new block groups to be created that can reuse the same
10835 	 * physical device locations unless we take this special care.
10836 	 *
10837 	 * There may also be an implicit trim operation if the file system
10838 	 * is mounted with -odiscard. The same protections must remain
10839 	 * in place until the extents have been discarded completely when
10840 	 * the transaction commit has completed.
10841 	 */
10842 	remove_em = (atomic_read(&block_group->trimming) == 0);
10843 	/*
10844 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10845 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10846 	 * before checking block_group->removed).
10847 	 */
10848 	if (!remove_em) {
10849 		/*
10850 		 * Our em might be in trans->transaction->pending_chunks which
10851 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10852 		 * and so is the fs_info->pinned_chunks list.
10853 		 *
10854 		 * So at this point we must be holding the chunk_mutex to avoid
10855 		 * any races with chunk allocation (more specifically at
10856 		 * volumes.c:contains_pending_extent()), to ensure it always
10857 		 * sees the em, either in the pending_chunks list or in the
10858 		 * pinned_chunks list.
10859 		 */
10860 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10861 	}
10862 	spin_unlock(&block_group->lock);
10863 
10864 	if (remove_em) {
10865 		struct extent_map_tree *em_tree;
10866 
10867 		em_tree = &fs_info->mapping_tree.map_tree;
10868 		write_lock(&em_tree->lock);
10869 		/*
10870 		 * The em might be in the pending_chunks list, so make sure the
10871 		 * chunk mutex is locked, since remove_extent_mapping() will
10872 		 * delete us from that list.
10873 		 */
10874 		remove_extent_mapping(em_tree, em);
10875 		write_unlock(&em_tree->lock);
10876 		/* once for the tree */
10877 		free_extent_map(em);
10878 	}
10879 
10880 	mutex_unlock(&fs_info->chunk_mutex);
10881 
10882 	ret = remove_block_group_free_space(trans, block_group);
10883 	if (ret)
10884 		goto out;
10885 
10886 	btrfs_put_block_group(block_group);
10887 	btrfs_put_block_group(block_group);
10888 
10889 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10890 	if (ret > 0)
10891 		ret = -EIO;
10892 	if (ret < 0)
10893 		goto out;
10894 
10895 	ret = btrfs_del_item(trans, root, path);
10896 out:
10897 	if (remove_rsv)
10898 		btrfs_delayed_refs_rsv_release(fs_info, 1);
10899 	btrfs_free_path(path);
10900 	return ret;
10901 }
10902 
10903 struct btrfs_trans_handle *
10904 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10905 				     const u64 chunk_offset)
10906 {
10907 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10908 	struct extent_map *em;
10909 	struct map_lookup *map;
10910 	unsigned int num_items;
10911 
10912 	read_lock(&em_tree->lock);
10913 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10914 	read_unlock(&em_tree->lock);
10915 	ASSERT(em && em->start == chunk_offset);
10916 
10917 	/*
10918 	 * We need to reserve 3 + N units from the metadata space info in order
10919 	 * to remove a block group (done at btrfs_remove_chunk() and at
10920 	 * btrfs_remove_block_group()), which are used for:
10921 	 *
10922 	 * 1 unit for adding the free space inode's orphan (located in the tree
10923 	 * of tree roots).
10924 	 * 1 unit for deleting the block group item (located in the extent
10925 	 * tree).
10926 	 * 1 unit for deleting the free space item (located in tree of tree
10927 	 * roots).
10928 	 * N units for deleting N device extent items corresponding to each
10929 	 * stripe (located in the device tree).
10930 	 *
10931 	 * In order to remove a block group we also need to reserve units in the
10932 	 * system space info in order to update the chunk tree (update one or
10933 	 * more device items and remove one chunk item), but this is done at
10934 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10935 	 */
10936 	map = em->map_lookup;
10937 	num_items = 3 + map->num_stripes;
10938 	free_extent_map(em);
10939 
10940 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10941 							   num_items, 1);
10942 }
10943 
10944 /*
10945  * Process the unused_bgs list and remove any that don't have any allocated
10946  * space inside of them.
10947  */
10948 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10949 {
10950 	struct btrfs_block_group_cache *block_group;
10951 	struct btrfs_space_info *space_info;
10952 	struct btrfs_trans_handle *trans;
10953 	int ret = 0;
10954 
10955 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10956 		return;
10957 
10958 	spin_lock(&fs_info->unused_bgs_lock);
10959 	while (!list_empty(&fs_info->unused_bgs)) {
10960 		u64 start, end;
10961 		int trimming;
10962 
10963 		block_group = list_first_entry(&fs_info->unused_bgs,
10964 					       struct btrfs_block_group_cache,
10965 					       bg_list);
10966 		list_del_init(&block_group->bg_list);
10967 
10968 		space_info = block_group->space_info;
10969 
10970 		if (ret || btrfs_mixed_space_info(space_info)) {
10971 			btrfs_put_block_group(block_group);
10972 			continue;
10973 		}
10974 		spin_unlock(&fs_info->unused_bgs_lock);
10975 
10976 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10977 
10978 		/* Don't want to race with allocators so take the groups_sem */
10979 		down_write(&space_info->groups_sem);
10980 		spin_lock(&block_group->lock);
10981 		if (block_group->reserved || block_group->pinned ||
10982 		    btrfs_block_group_used(&block_group->item) ||
10983 		    block_group->ro ||
10984 		    list_is_singular(&block_group->list)) {
10985 			/*
10986 			 * We want to bail if we made new allocations or have
10987 			 * outstanding allocations in this block group.  We do
10988 			 * the ro check in case balance is currently acting on
10989 			 * this block group.
10990 			 */
10991 			trace_btrfs_skip_unused_block_group(block_group);
10992 			spin_unlock(&block_group->lock);
10993 			up_write(&space_info->groups_sem);
10994 			goto next;
10995 		}
10996 		spin_unlock(&block_group->lock);
10997 
10998 		/* We don't want to force the issue, only flip if it's ok. */
10999 		ret = inc_block_group_ro(block_group, 0);
11000 		up_write(&space_info->groups_sem);
11001 		if (ret < 0) {
11002 			ret = 0;
11003 			goto next;
11004 		}
11005 
11006 		/*
11007 		 * Want to do this before we do anything else so we can recover
11008 		 * properly if we fail to join the transaction.
11009 		 */
11010 		trans = btrfs_start_trans_remove_block_group(fs_info,
11011 						     block_group->key.objectid);
11012 		if (IS_ERR(trans)) {
11013 			btrfs_dec_block_group_ro(block_group);
11014 			ret = PTR_ERR(trans);
11015 			goto next;
11016 		}
11017 
11018 		/*
11019 		 * We could have pending pinned extents for this block group,
11020 		 * just delete them, we don't care about them anymore.
11021 		 */
11022 		start = block_group->key.objectid;
11023 		end = start + block_group->key.offset - 1;
11024 		/*
11025 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11026 		 * btrfs_finish_extent_commit(). If we are at transaction N,
11027 		 * another task might be running finish_extent_commit() for the
11028 		 * previous transaction N - 1, and have seen a range belonging
11029 		 * to the block group in freed_extents[] before we were able to
11030 		 * clear the whole block group range from freed_extents[]. This
11031 		 * means that task can lookup for the block group after we
11032 		 * unpinned it from freed_extents[] and removed it, leading to
11033 		 * a BUG_ON() at btrfs_unpin_extent_range().
11034 		 */
11035 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
11036 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
11037 				  EXTENT_DIRTY);
11038 		if (ret) {
11039 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11040 			btrfs_dec_block_group_ro(block_group);
11041 			goto end_trans;
11042 		}
11043 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
11044 				  EXTENT_DIRTY);
11045 		if (ret) {
11046 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11047 			btrfs_dec_block_group_ro(block_group);
11048 			goto end_trans;
11049 		}
11050 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11051 
11052 		/* Reset pinned so btrfs_put_block_group doesn't complain */
11053 		spin_lock(&space_info->lock);
11054 		spin_lock(&block_group->lock);
11055 
11056 		update_bytes_pinned(space_info, -block_group->pinned);
11057 		space_info->bytes_readonly += block_group->pinned;
11058 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
11059 				   -block_group->pinned,
11060 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
11061 		block_group->pinned = 0;
11062 
11063 		spin_unlock(&block_group->lock);
11064 		spin_unlock(&space_info->lock);
11065 
11066 		/* DISCARD can flip during remount */
11067 		trimming = btrfs_test_opt(fs_info, DISCARD);
11068 
11069 		/* Implicit trim during transaction commit. */
11070 		if (trimming)
11071 			btrfs_get_block_group_trimming(block_group);
11072 
11073 		/*
11074 		 * Btrfs_remove_chunk will abort the transaction if things go
11075 		 * horribly wrong.
11076 		 */
11077 		ret = btrfs_remove_chunk(trans, block_group->key.objectid);
11078 
11079 		if (ret) {
11080 			if (trimming)
11081 				btrfs_put_block_group_trimming(block_group);
11082 			goto end_trans;
11083 		}
11084 
11085 		/*
11086 		 * If we're not mounted with -odiscard, we can just forget
11087 		 * about this block group. Otherwise we'll need to wait
11088 		 * until transaction commit to do the actual discard.
11089 		 */
11090 		if (trimming) {
11091 			spin_lock(&fs_info->unused_bgs_lock);
11092 			/*
11093 			 * A concurrent scrub might have added us to the list
11094 			 * fs_info->unused_bgs, so use a list_move operation
11095 			 * to add the block group to the deleted_bgs list.
11096 			 */
11097 			list_move(&block_group->bg_list,
11098 				  &trans->transaction->deleted_bgs);
11099 			spin_unlock(&fs_info->unused_bgs_lock);
11100 			btrfs_get_block_group(block_group);
11101 		}
11102 end_trans:
11103 		btrfs_end_transaction(trans);
11104 next:
11105 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11106 		btrfs_put_block_group(block_group);
11107 		spin_lock(&fs_info->unused_bgs_lock);
11108 	}
11109 	spin_unlock(&fs_info->unused_bgs_lock);
11110 }
11111 
11112 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11113 {
11114 	struct btrfs_super_block *disk_super;
11115 	u64 features;
11116 	u64 flags;
11117 	int mixed = 0;
11118 	int ret;
11119 
11120 	disk_super = fs_info->super_copy;
11121 	if (!btrfs_super_root(disk_super))
11122 		return -EINVAL;
11123 
11124 	features = btrfs_super_incompat_flags(disk_super);
11125 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11126 		mixed = 1;
11127 
11128 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
11129 	ret = create_space_info(fs_info, flags);
11130 	if (ret)
11131 		goto out;
11132 
11133 	if (mixed) {
11134 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11135 		ret = create_space_info(fs_info, flags);
11136 	} else {
11137 		flags = BTRFS_BLOCK_GROUP_METADATA;
11138 		ret = create_space_info(fs_info, flags);
11139 		if (ret)
11140 			goto out;
11141 
11142 		flags = BTRFS_BLOCK_GROUP_DATA;
11143 		ret = create_space_info(fs_info, flags);
11144 	}
11145 out:
11146 	return ret;
11147 }
11148 
11149 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11150 				   u64 start, u64 end)
11151 {
11152 	return unpin_extent_range(fs_info, start, end, false);
11153 }
11154 
11155 /*
11156  * It used to be that old block groups would be left around forever.
11157  * Iterating over them would be enough to trim unused space.  Since we
11158  * now automatically remove them, we also need to iterate over unallocated
11159  * space.
11160  *
11161  * We don't want a transaction for this since the discard may take a
11162  * substantial amount of time.  We don't require that a transaction be
11163  * running, but we do need to take a running transaction into account
11164  * to ensure that we're not discarding chunks that were released or
11165  * allocated in the current transaction.
11166  *
11167  * Holding the chunks lock will prevent other threads from allocating
11168  * or releasing chunks, but it won't prevent a running transaction
11169  * from committing and releasing the memory that the pending chunks
11170  * list head uses.  For that, we need to take a reference to the
11171  * transaction and hold the commit root sem.  We only need to hold
11172  * it while performing the free space search since we have already
11173  * held back allocations.
11174  */
11175 static int btrfs_trim_free_extents(struct btrfs_device *device,
11176 				   u64 minlen, u64 *trimmed)
11177 {
11178 	u64 start = 0, len = 0;
11179 	int ret;
11180 
11181 	*trimmed = 0;
11182 
11183 	/* Discard not supported = nothing to do. */
11184 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11185 		return 0;
11186 
11187 	/* Not writable = nothing to do. */
11188 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
11189 		return 0;
11190 
11191 	/* No free space = nothing to do. */
11192 	if (device->total_bytes <= device->bytes_used)
11193 		return 0;
11194 
11195 	ret = 0;
11196 
11197 	while (1) {
11198 		struct btrfs_fs_info *fs_info = device->fs_info;
11199 		struct btrfs_transaction *trans;
11200 		u64 bytes;
11201 
11202 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11203 		if (ret)
11204 			break;
11205 
11206 		ret = down_read_killable(&fs_info->commit_root_sem);
11207 		if (ret) {
11208 			mutex_unlock(&fs_info->chunk_mutex);
11209 			break;
11210 		}
11211 
11212 		spin_lock(&fs_info->trans_lock);
11213 		trans = fs_info->running_transaction;
11214 		if (trans)
11215 			refcount_inc(&trans->use_count);
11216 		spin_unlock(&fs_info->trans_lock);
11217 
11218 		if (!trans)
11219 			up_read(&fs_info->commit_root_sem);
11220 
11221 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11222 						 &start, &len);
11223 		if (trans) {
11224 			up_read(&fs_info->commit_root_sem);
11225 			btrfs_put_transaction(trans);
11226 		}
11227 
11228 		if (ret) {
11229 			mutex_unlock(&fs_info->chunk_mutex);
11230 			if (ret == -ENOSPC)
11231 				ret = 0;
11232 			break;
11233 		}
11234 
11235 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11236 		mutex_unlock(&fs_info->chunk_mutex);
11237 
11238 		if (ret)
11239 			break;
11240 
11241 		start += len;
11242 		*trimmed += bytes;
11243 
11244 		if (fatal_signal_pending(current)) {
11245 			ret = -ERESTARTSYS;
11246 			break;
11247 		}
11248 
11249 		cond_resched();
11250 	}
11251 
11252 	return ret;
11253 }
11254 
11255 /*
11256  * Trim the whole filesystem by:
11257  * 1) trimming the free space in each block group
11258  * 2) trimming the unallocated space on each device
11259  *
11260  * This will also continue trimming even if a block group or device encounters
11261  * an error.  The return value will be the last error, or 0 if nothing bad
11262  * happens.
11263  */
11264 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11265 {
11266 	struct btrfs_block_group_cache *cache = NULL;
11267 	struct btrfs_device *device;
11268 	struct list_head *devices;
11269 	u64 group_trimmed;
11270 	u64 start;
11271 	u64 end;
11272 	u64 trimmed = 0;
11273 	u64 bg_failed = 0;
11274 	u64 dev_failed = 0;
11275 	int bg_ret = 0;
11276 	int dev_ret = 0;
11277 	int ret = 0;
11278 
11279 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
11280 	for (; cache; cache = next_block_group(fs_info, cache)) {
11281 		if (cache->key.objectid >= (range->start + range->len)) {
11282 			btrfs_put_block_group(cache);
11283 			break;
11284 		}
11285 
11286 		start = max(range->start, cache->key.objectid);
11287 		end = min(range->start + range->len,
11288 				cache->key.objectid + cache->key.offset);
11289 
11290 		if (end - start >= range->minlen) {
11291 			if (!block_group_cache_done(cache)) {
11292 				ret = cache_block_group(cache, 0);
11293 				if (ret) {
11294 					bg_failed++;
11295 					bg_ret = ret;
11296 					continue;
11297 				}
11298 				ret = wait_block_group_cache_done(cache);
11299 				if (ret) {
11300 					bg_failed++;
11301 					bg_ret = ret;
11302 					continue;
11303 				}
11304 			}
11305 			ret = btrfs_trim_block_group(cache,
11306 						     &group_trimmed,
11307 						     start,
11308 						     end,
11309 						     range->minlen);
11310 
11311 			trimmed += group_trimmed;
11312 			if (ret) {
11313 				bg_failed++;
11314 				bg_ret = ret;
11315 				continue;
11316 			}
11317 		}
11318 	}
11319 
11320 	if (bg_failed)
11321 		btrfs_warn(fs_info,
11322 			"failed to trim %llu block group(s), last error %d",
11323 			bg_failed, bg_ret);
11324 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11325 	devices = &fs_info->fs_devices->devices;
11326 	list_for_each_entry(device, devices, dev_list) {
11327 		ret = btrfs_trim_free_extents(device, range->minlen,
11328 					      &group_trimmed);
11329 		if (ret) {
11330 			dev_failed++;
11331 			dev_ret = ret;
11332 			break;
11333 		}
11334 
11335 		trimmed += group_trimmed;
11336 	}
11337 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11338 
11339 	if (dev_failed)
11340 		btrfs_warn(fs_info,
11341 			"failed to trim %llu device(s), last error %d",
11342 			dev_failed, dev_ret);
11343 	range->len = trimmed;
11344 	if (bg_ret)
11345 		return bg_ret;
11346 	return dev_ret;
11347 }
11348 
11349 /*
11350  * btrfs_{start,end}_write_no_snapshotting() are similar to
11351  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11352  * data into the page cache through nocow before the subvolume is snapshoted,
11353  * but flush the data into disk after the snapshot creation, or to prevent
11354  * operations while snapshotting is ongoing and that cause the snapshot to be
11355  * inconsistent (writes followed by expanding truncates for example).
11356  */
11357 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11358 {
11359 	percpu_counter_dec(&root->subv_writers->counter);
11360 	cond_wake_up(&root->subv_writers->wait);
11361 }
11362 
11363 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11364 {
11365 	if (atomic_read(&root->will_be_snapshotted))
11366 		return 0;
11367 
11368 	percpu_counter_inc(&root->subv_writers->counter);
11369 	/*
11370 	 * Make sure counter is updated before we check for snapshot creation.
11371 	 */
11372 	smp_mb();
11373 	if (atomic_read(&root->will_be_snapshotted)) {
11374 		btrfs_end_write_no_snapshotting(root);
11375 		return 0;
11376 	}
11377 	return 1;
11378 }
11379 
11380 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11381 {
11382 	while (true) {
11383 		int ret;
11384 
11385 		ret = btrfs_start_write_no_snapshotting(root);
11386 		if (ret)
11387 			break;
11388 		wait_var_event(&root->will_be_snapshotted,
11389 			       !atomic_read(&root->will_be_snapshotted));
11390 	}
11391 }
11392 
11393 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11394 {
11395 	struct btrfs_fs_info *fs_info = bg->fs_info;
11396 
11397 	spin_lock(&fs_info->unused_bgs_lock);
11398 	if (list_empty(&bg->bg_list)) {
11399 		btrfs_get_block_group(bg);
11400 		trace_btrfs_add_unused_block_group(bg);
11401 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11402 	}
11403 	spin_unlock(&fs_info->unused_bgs_lock);
11404 }
11405