1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45
46 #undef SCRAMBLE_DELAYED_REFS
47
48
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 struct btrfs_delayed_ref_node *node, u64 parent,
51 u64 root_objectid, u64 owner_objectid,
52 u64 owner_offset, int refs_to_drop,
53 struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 struct extent_buffer *leaf,
56 struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 u64 parent, u64 root_objectid,
59 u64 flags, u64 owner, u64 offset,
60 struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 struct btrfs_delayed_ref_node *node,
63 struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 struct btrfs_key *key);
66
block_group_bits(struct btrfs_block_group * cache,u64 bits)67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 return (cache->flags & bits) == bits;
70 }
71
72 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 int ret;
77 struct btrfs_key key;
78 struct btrfs_path *path;
79
80 path = btrfs_alloc_path();
81 if (!path)
82 return -ENOMEM;
83
84 key.objectid = start;
85 key.offset = len;
86 key.type = BTRFS_EXTENT_ITEM_KEY;
87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 btrfs_free_path(path);
89 return ret;
90 }
91
92 /*
93 * helper function to lookup reference count and flags of a tree block.
94 *
95 * the head node for delayed ref is used to store the sum of all the
96 * reference count modifications queued up in the rbtree. the head
97 * node may also store the extent flags to set. This way you can check
98 * to see what the reference count and extent flags would be if all of
99 * the delayed refs are not processed.
100 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 struct btrfs_fs_info *fs_info, u64 bytenr,
103 u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 struct btrfs_root *extent_root;
106 struct btrfs_delayed_ref_head *head;
107 struct btrfs_delayed_ref_root *delayed_refs;
108 struct btrfs_path *path;
109 struct btrfs_extent_item *ei;
110 struct extent_buffer *leaf;
111 struct btrfs_key key;
112 u32 item_size;
113 u64 num_refs;
114 u64 extent_flags;
115 int ret;
116
117 /*
118 * If we don't have skinny metadata, don't bother doing anything
119 * different
120 */
121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 offset = fs_info->nodesize;
123 metadata = 0;
124 }
125
126 path = btrfs_alloc_path();
127 if (!path)
128 return -ENOMEM;
129
130 if (!trans) {
131 path->skip_locking = 1;
132 path->search_commit_root = 1;
133 }
134
135 search_again:
136 key.objectid = bytenr;
137 key.offset = offset;
138 if (metadata)
139 key.type = BTRFS_METADATA_ITEM_KEY;
140 else
141 key.type = BTRFS_EXTENT_ITEM_KEY;
142
143 extent_root = btrfs_extent_root(fs_info, bytenr);
144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 if (ret < 0)
146 goto out_free;
147
148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 if (path->slots[0]) {
150 path->slots[0]--;
151 btrfs_item_key_to_cpu(path->nodes[0], &key,
152 path->slots[0]);
153 if (key.objectid == bytenr &&
154 key.type == BTRFS_EXTENT_ITEM_KEY &&
155 key.offset == fs_info->nodesize)
156 ret = 0;
157 }
158 }
159
160 if (ret == 0) {
161 leaf = path->nodes[0];
162 item_size = btrfs_item_size(leaf, path->slots[0]);
163 if (item_size >= sizeof(*ei)) {
164 ei = btrfs_item_ptr(leaf, path->slots[0],
165 struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 extent_flags = btrfs_extent_flags(leaf, ei);
168 } else {
169 ret = -EUCLEAN;
170 btrfs_err(fs_info,
171 "unexpected extent item size, has %u expect >= %zu",
172 item_size, sizeof(*ei));
173 if (trans)
174 btrfs_abort_transaction(trans, ret);
175 else
176 btrfs_handle_fs_error(fs_info, ret, NULL);
177
178 goto out_free;
179 }
180
181 BUG_ON(num_refs == 0);
182 } else {
183 num_refs = 0;
184 extent_flags = 0;
185 ret = 0;
186 }
187
188 if (!trans)
189 goto out;
190
191 delayed_refs = &trans->transaction->delayed_refs;
192 spin_lock(&delayed_refs->lock);
193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 if (head) {
195 if (!mutex_trylock(&head->mutex)) {
196 refcount_inc(&head->refs);
197 spin_unlock(&delayed_refs->lock);
198
199 btrfs_release_path(path);
200
201 /*
202 * Mutex was contended, block until it's released and try
203 * again
204 */
205 mutex_lock(&head->mutex);
206 mutex_unlock(&head->mutex);
207 btrfs_put_delayed_ref_head(head);
208 goto search_again;
209 }
210 spin_lock(&head->lock);
211 if (head->extent_op && head->extent_op->update_flags)
212 extent_flags |= head->extent_op->flags_to_set;
213 else
214 BUG_ON(num_refs == 0);
215
216 num_refs += head->ref_mod;
217 spin_unlock(&head->lock);
218 mutex_unlock(&head->mutex);
219 }
220 spin_unlock(&delayed_refs->lock);
221 out:
222 WARN_ON(num_refs == 0);
223 if (refs)
224 *refs = num_refs;
225 if (flags)
226 *flags = extent_flags;
227 out_free:
228 btrfs_free_path(path);
229 return ret;
230 }
231
232 /*
233 * Back reference rules. Back refs have three main goals:
234 *
235 * 1) differentiate between all holders of references to an extent so that
236 * when a reference is dropped we can make sure it was a valid reference
237 * before freeing the extent.
238 *
239 * 2) Provide enough information to quickly find the holders of an extent
240 * if we notice a given block is corrupted or bad.
241 *
242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243 * maintenance. This is actually the same as #2, but with a slightly
244 * different use case.
245 *
246 * There are two kinds of back refs. The implicit back refs is optimized
247 * for pointers in non-shared tree blocks. For a given pointer in a block,
248 * back refs of this kind provide information about the block's owner tree
249 * and the pointer's key. These information allow us to find the block by
250 * b-tree searching. The full back refs is for pointers in tree blocks not
251 * referenced by their owner trees. The location of tree block is recorded
252 * in the back refs. Actually the full back refs is generic, and can be
253 * used in all cases the implicit back refs is used. The major shortcoming
254 * of the full back refs is its overhead. Every time a tree block gets
255 * COWed, we have to update back refs entry for all pointers in it.
256 *
257 * For a newly allocated tree block, we use implicit back refs for
258 * pointers in it. This means most tree related operations only involve
259 * implicit back refs. For a tree block created in old transaction, the
260 * only way to drop a reference to it is COW it. So we can detect the
261 * event that tree block loses its owner tree's reference and do the
262 * back refs conversion.
263 *
264 * When a tree block is COWed through a tree, there are four cases:
265 *
266 * The reference count of the block is one and the tree is the block's
267 * owner tree. Nothing to do in this case.
268 *
269 * The reference count of the block is one and the tree is not the
270 * block's owner tree. In this case, full back refs is used for pointers
271 * in the block. Remove these full back refs, add implicit back refs for
272 * every pointers in the new block.
273 *
274 * The reference count of the block is greater than one and the tree is
275 * the block's owner tree. In this case, implicit back refs is used for
276 * pointers in the block. Add full back refs for every pointers in the
277 * block, increase lower level extents' reference counts. The original
278 * implicit back refs are entailed to the new block.
279 *
280 * The reference count of the block is greater than one and the tree is
281 * not the block's owner tree. Add implicit back refs for every pointer in
282 * the new block, increase lower level extents' reference count.
283 *
284 * Back Reference Key composing:
285 *
286 * The key objectid corresponds to the first byte in the extent,
287 * The key type is used to differentiate between types of back refs.
288 * There are different meanings of the key offset for different types
289 * of back refs.
290 *
291 * File extents can be referenced by:
292 *
293 * - multiple snapshots, subvolumes, or different generations in one subvol
294 * - different files inside a single subvolume
295 * - different offsets inside a file (bookend extents in file.c)
296 *
297 * The extent ref structure for the implicit back refs has fields for:
298 *
299 * - Objectid of the subvolume root
300 * - objectid of the file holding the reference
301 * - original offset in the file
302 * - how many bookend extents
303 *
304 * The key offset for the implicit back refs is hash of the first
305 * three fields.
306 *
307 * The extent ref structure for the full back refs has field for:
308 *
309 * - number of pointers in the tree leaf
310 *
311 * The key offset for the implicit back refs is the first byte of
312 * the tree leaf
313 *
314 * When a file extent is allocated, The implicit back refs is used.
315 * the fields are filled in:
316 *
317 * (root_key.objectid, inode objectid, offset in file, 1)
318 *
319 * When a file extent is removed file truncation, we find the
320 * corresponding implicit back refs and check the following fields:
321 *
322 * (btrfs_header_owner(leaf), inode objectid, offset in file)
323 *
324 * Btree extents can be referenced by:
325 *
326 * - Different subvolumes
327 *
328 * Both the implicit back refs and the full back refs for tree blocks
329 * only consist of key. The key offset for the implicit back refs is
330 * objectid of block's owner tree. The key offset for the full back refs
331 * is the first byte of parent block.
332 *
333 * When implicit back refs is used, information about the lowest key and
334 * level of the tree block are required. These information are stored in
335 * tree block info structure.
336 */
337
338 /*
339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 struct btrfs_extent_inline_ref *iref,
345 enum btrfs_inline_ref_type is_data)
346 {
347 int type = btrfs_extent_inline_ref_type(eb, iref);
348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349
350 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 type == BTRFS_SHARED_DATA_REF_KEY ||
353 type == BTRFS_EXTENT_DATA_REF_KEY) {
354 if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 return type;
357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 ASSERT(eb->fs_info);
359 /*
360 * Every shared one has parent tree block,
361 * which must be aligned to sector size.
362 */
363 if (offset &&
364 IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 return type;
366 }
367 } else if (is_data == BTRFS_REF_TYPE_DATA) {
368 if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 return type;
370 if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 ASSERT(eb->fs_info);
372 /*
373 * Every shared one has parent tree block,
374 * which must be aligned to sector size.
375 */
376 if (offset &&
377 IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 return type;
379 }
380 } else {
381 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 return type;
383 }
384 }
385
386 WARN_ON(1);
387 btrfs_print_leaf(eb);
388 btrfs_err(eb->fs_info,
389 "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 eb->start, (unsigned long)iref, type);
391
392 return BTRFS_REF_TYPE_INVALID;
393 }
394
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 u32 high_crc = ~(u32)0;
398 u32 low_crc = ~(u32)0;
399 __le64 lenum;
400
401 lenum = cpu_to_le64(root_objectid);
402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 lenum = cpu_to_le64(owner);
404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 lenum = cpu_to_le64(offset);
406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407
408 return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 struct btrfs_extent_data_ref *ref)
413 {
414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 btrfs_extent_data_ref_objectid(leaf, ref),
416 btrfs_extent_data_ref_offset(leaf, ref));
417 }
418
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref,
421 u64 root_objectid, u64 owner, u64 offset)
422 {
423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 return 0;
427 return 1;
428 }
429
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 struct btrfs_path *path,
432 u64 bytenr, u64 parent,
433 u64 root_objectid,
434 u64 owner, u64 offset)
435 {
436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 struct btrfs_key key;
438 struct btrfs_extent_data_ref *ref;
439 struct extent_buffer *leaf;
440 u32 nritems;
441 int ret;
442 int recow;
443 int err = -ENOENT;
444
445 key.objectid = bytenr;
446 if (parent) {
447 key.type = BTRFS_SHARED_DATA_REF_KEY;
448 key.offset = parent;
449 } else {
450 key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 key.offset = hash_extent_data_ref(root_objectid,
452 owner, offset);
453 }
454 again:
455 recow = 0;
456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 if (ret < 0) {
458 err = ret;
459 goto fail;
460 }
461
462 if (parent) {
463 if (!ret)
464 return 0;
465 goto fail;
466 }
467
468 leaf = path->nodes[0];
469 nritems = btrfs_header_nritems(leaf);
470 while (1) {
471 if (path->slots[0] >= nritems) {
472 ret = btrfs_next_leaf(root, path);
473 if (ret < 0)
474 err = ret;
475 if (ret)
476 goto fail;
477
478 leaf = path->nodes[0];
479 nritems = btrfs_header_nritems(leaf);
480 recow = 1;
481 }
482
483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 if (key.objectid != bytenr ||
485 key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 goto fail;
487
488 ref = btrfs_item_ptr(leaf, path->slots[0],
489 struct btrfs_extent_data_ref);
490
491 if (match_extent_data_ref(leaf, ref, root_objectid,
492 owner, offset)) {
493 if (recow) {
494 btrfs_release_path(path);
495 goto again;
496 }
497 err = 0;
498 break;
499 }
500 path->slots[0]++;
501 }
502 fail:
503 return err;
504 }
505
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 struct btrfs_path *path,
508 u64 bytenr, u64 parent,
509 u64 root_objectid, u64 owner,
510 u64 offset, int refs_to_add)
511 {
512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 struct btrfs_key key;
514 struct extent_buffer *leaf;
515 u32 size;
516 u32 num_refs;
517 int ret;
518
519 key.objectid = bytenr;
520 if (parent) {
521 key.type = BTRFS_SHARED_DATA_REF_KEY;
522 key.offset = parent;
523 size = sizeof(struct btrfs_shared_data_ref);
524 } else {
525 key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 key.offset = hash_extent_data_ref(root_objectid,
527 owner, offset);
528 size = sizeof(struct btrfs_extent_data_ref);
529 }
530
531 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 if (ret && ret != -EEXIST)
533 goto fail;
534
535 leaf = path->nodes[0];
536 if (parent) {
537 struct btrfs_shared_data_ref *ref;
538 ref = btrfs_item_ptr(leaf, path->slots[0],
539 struct btrfs_shared_data_ref);
540 if (ret == 0) {
541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 } else {
543 num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 num_refs += refs_to_add;
545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 }
547 } else {
548 struct btrfs_extent_data_ref *ref;
549 while (ret == -EEXIST) {
550 ref = btrfs_item_ptr(leaf, path->slots[0],
551 struct btrfs_extent_data_ref);
552 if (match_extent_data_ref(leaf, ref, root_objectid,
553 owner, offset))
554 break;
555 btrfs_release_path(path);
556 key.offset++;
557 ret = btrfs_insert_empty_item(trans, root, path, &key,
558 size);
559 if (ret && ret != -EEXIST)
560 goto fail;
561
562 leaf = path->nodes[0];
563 }
564 ref = btrfs_item_ptr(leaf, path->slots[0],
565 struct btrfs_extent_data_ref);
566 if (ret == 0) {
567 btrfs_set_extent_data_ref_root(leaf, ref,
568 root_objectid);
569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 } else {
573 num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 num_refs += refs_to_add;
575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 }
577 }
578 btrfs_mark_buffer_dirty(trans, leaf);
579 ret = 0;
580 fail:
581 btrfs_release_path(path);
582 return ret;
583 }
584
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 int refs_to_drop)
589 {
590 struct btrfs_key key;
591 struct btrfs_extent_data_ref *ref1 = NULL;
592 struct btrfs_shared_data_ref *ref2 = NULL;
593 struct extent_buffer *leaf;
594 u32 num_refs = 0;
595 int ret = 0;
596
597 leaf = path->nodes[0];
598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599
600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 struct btrfs_extent_data_ref);
603 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 struct btrfs_shared_data_ref);
607 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 } else {
609 btrfs_err(trans->fs_info,
610 "unrecognized backref key (%llu %u %llu)",
611 key.objectid, key.type, key.offset);
612 btrfs_abort_transaction(trans, -EUCLEAN);
613 return -EUCLEAN;
614 }
615
616 BUG_ON(num_refs < refs_to_drop);
617 num_refs -= refs_to_drop;
618
619 if (num_refs == 0) {
620 ret = btrfs_del_item(trans, root, path);
621 } else {
622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 btrfs_mark_buffer_dirty(trans, leaf);
627 }
628 return ret;
629 }
630
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 struct btrfs_extent_inline_ref *iref)
633 {
634 struct btrfs_key key;
635 struct extent_buffer *leaf;
636 struct btrfs_extent_data_ref *ref1;
637 struct btrfs_shared_data_ref *ref2;
638 u32 num_refs = 0;
639 int type;
640
641 leaf = path->nodes[0];
642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643
644 if (iref) {
645 /*
646 * If type is invalid, we should have bailed out earlier than
647 * this call.
648 */
649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 } else {
655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 }
658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 struct btrfs_extent_data_ref);
661 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 struct btrfs_shared_data_ref);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 } else {
667 WARN_ON(1);
668 }
669 return num_refs;
670 }
671
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 struct btrfs_path *path,
674 u64 bytenr, u64 parent,
675 u64 root_objectid)
676 {
677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 struct btrfs_key key;
679 int ret;
680
681 key.objectid = bytenr;
682 if (parent) {
683 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 key.offset = parent;
685 } else {
686 key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 key.offset = root_objectid;
688 }
689
690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 if (ret > 0)
692 ret = -ENOENT;
693 return ret;
694 }
695
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 struct btrfs_path *path,
698 u64 bytenr, u64 parent,
699 u64 root_objectid)
700 {
701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 struct btrfs_key key;
703 int ret;
704
705 key.objectid = bytenr;
706 if (parent) {
707 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 key.offset = parent;
709 } else {
710 key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 key.offset = root_objectid;
712 }
713
714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 btrfs_release_path(path);
716 return ret;
717 }
718
extent_ref_type(u64 parent,u64 owner)719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 int type;
722 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 if (parent > 0)
724 type = BTRFS_SHARED_BLOCK_REF_KEY;
725 else
726 type = BTRFS_TREE_BLOCK_REF_KEY;
727 } else {
728 if (parent > 0)
729 type = BTRFS_SHARED_DATA_REF_KEY;
730 else
731 type = BTRFS_EXTENT_DATA_REF_KEY;
732 }
733 return type;
734 }
735
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)736 static int find_next_key(struct btrfs_path *path, int level,
737 struct btrfs_key *key)
738
739 {
740 for (; level < BTRFS_MAX_LEVEL; level++) {
741 if (!path->nodes[level])
742 break;
743 if (path->slots[level] + 1 >=
744 btrfs_header_nritems(path->nodes[level]))
745 continue;
746 if (level == 0)
747 btrfs_item_key_to_cpu(path->nodes[level], key,
748 path->slots[level] + 1);
749 else
750 btrfs_node_key_to_cpu(path->nodes[level], key,
751 path->slots[level] + 1);
752 return 0;
753 }
754 return 1;
755 }
756
757 /*
758 * look for inline back ref. if back ref is found, *ref_ret is set
759 * to the address of inline back ref, and 0 is returned.
760 *
761 * if back ref isn't found, *ref_ret is set to the address where it
762 * should be inserted, and -ENOENT is returned.
763 *
764 * if insert is true and there are too many inline back refs, the path
765 * points to the extent item, and -EAGAIN is returned.
766 *
767 * NOTE: inline back refs are ordered in the same way that back ref
768 * items in the tree are ordered.
769 */
770 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 struct btrfs_path *path,
773 struct btrfs_extent_inline_ref **ref_ret,
774 u64 bytenr, u64 num_bytes,
775 u64 parent, u64 root_objectid,
776 u64 owner, u64 offset, int insert)
777 {
778 struct btrfs_fs_info *fs_info = trans->fs_info;
779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 struct btrfs_key key;
781 struct extent_buffer *leaf;
782 struct btrfs_extent_item *ei;
783 struct btrfs_extent_inline_ref *iref;
784 u64 flags;
785 u64 item_size;
786 unsigned long ptr;
787 unsigned long end;
788 int extra_size;
789 int type;
790 int want;
791 int ret;
792 int err = 0;
793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 int needed;
795
796 key.objectid = bytenr;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 key.offset = num_bytes;
799
800 want = extent_ref_type(parent, owner);
801 if (insert) {
802 extra_size = btrfs_extent_inline_ref_size(want);
803 path->search_for_extension = 1;
804 path->keep_locks = 1;
805 } else
806 extra_size = -1;
807
808 /*
809 * Owner is our level, so we can just add one to get the level for the
810 * block we are interested in.
811 */
812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 key.type = BTRFS_METADATA_ITEM_KEY;
814 key.offset = owner;
815 }
816
817 again:
818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 if (ret < 0) {
820 err = ret;
821 goto out;
822 }
823
824 /*
825 * We may be a newly converted file system which still has the old fat
826 * extent entries for metadata, so try and see if we have one of those.
827 */
828 if (ret > 0 && skinny_metadata) {
829 skinny_metadata = false;
830 if (path->slots[0]) {
831 path->slots[0]--;
832 btrfs_item_key_to_cpu(path->nodes[0], &key,
833 path->slots[0]);
834 if (key.objectid == bytenr &&
835 key.type == BTRFS_EXTENT_ITEM_KEY &&
836 key.offset == num_bytes)
837 ret = 0;
838 }
839 if (ret) {
840 key.objectid = bytenr;
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842 key.offset = num_bytes;
843 btrfs_release_path(path);
844 goto again;
845 }
846 }
847
848 if (ret && !insert) {
849 err = -ENOENT;
850 goto out;
851 } else if (WARN_ON(ret)) {
852 btrfs_print_leaf(path->nodes[0]);
853 btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 bytenr, num_bytes, parent, root_objectid, owner,
856 offset);
857 err = -EIO;
858 goto out;
859 }
860
861 leaf = path->nodes[0];
862 item_size = btrfs_item_size(leaf, path->slots[0]);
863 if (unlikely(item_size < sizeof(*ei))) {
864 err = -EUCLEAN;
865 btrfs_err(fs_info,
866 "unexpected extent item size, has %llu expect >= %zu",
867 item_size, sizeof(*ei));
868 btrfs_abort_transaction(trans, err);
869 goto out;
870 }
871
872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 flags = btrfs_extent_flags(leaf, ei);
874
875 ptr = (unsigned long)(ei + 1);
876 end = (unsigned long)ei + item_size;
877
878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 ptr += sizeof(struct btrfs_tree_block_info);
880 BUG_ON(ptr > end);
881 }
882
883 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 needed = BTRFS_REF_TYPE_DATA;
885 else
886 needed = BTRFS_REF_TYPE_BLOCK;
887
888 err = -ENOENT;
889 while (1) {
890 if (ptr >= end) {
891 if (ptr > end) {
892 err = -EUCLEAN;
893 btrfs_print_leaf(path->nodes[0]);
894 btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 path->slots[0], root_objectid, owner, offset, parent);
897 }
898 break;
899 }
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_REF_TYPE_INVALID) {
903 err = -EUCLEAN;
904 goto out;
905 }
906
907 if (want < type)
908 break;
909 if (want > type) {
910 ptr += btrfs_extent_inline_ref_size(type);
911 continue;
912 }
913
914 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 struct btrfs_extent_data_ref *dref;
916 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 if (match_extent_data_ref(leaf, dref, root_objectid,
918 owner, offset)) {
919 err = 0;
920 break;
921 }
922 if (hash_extent_data_ref_item(leaf, dref) <
923 hash_extent_data_ref(root_objectid, owner, offset))
924 break;
925 } else {
926 u64 ref_offset;
927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 if (parent > 0) {
929 if (parent == ref_offset) {
930 err = 0;
931 break;
932 }
933 if (ref_offset < parent)
934 break;
935 } else {
936 if (root_objectid == ref_offset) {
937 err = 0;
938 break;
939 }
940 if (ref_offset < root_objectid)
941 break;
942 }
943 }
944 ptr += btrfs_extent_inline_ref_size(type);
945 }
946 if (err == -ENOENT && insert) {
947 if (item_size + extra_size >=
948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 err = -EAGAIN;
950 goto out;
951 }
952 /*
953 * To add new inline back ref, we have to make sure
954 * there is no corresponding back ref item.
955 * For simplicity, we just do not add new inline back
956 * ref if there is any kind of item for this block
957 */
958 if (find_next_key(path, 0, &key) == 0 &&
959 key.objectid == bytenr &&
960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 err = -EAGAIN;
962 goto out;
963 }
964 }
965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 if (insert) {
968 path->keep_locks = 0;
969 path->search_for_extension = 0;
970 btrfs_unlock_up_safe(path, 1);
971 }
972 return err;
973 }
974
975 /*
976 * helper to add new inline back ref
977 */
978 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
980 struct btrfs_path *path,
981 struct btrfs_extent_inline_ref *iref,
982 u64 parent, u64 root_objectid,
983 u64 owner, u64 offset, int refs_to_add,
984 struct btrfs_delayed_extent_op *extent_op)
985 {
986 struct extent_buffer *leaf;
987 struct btrfs_extent_item *ei;
988 unsigned long ptr;
989 unsigned long end;
990 unsigned long item_offset;
991 u64 refs;
992 int size;
993 int type;
994
995 leaf = path->nodes[0];
996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 item_offset = (unsigned long)iref - (unsigned long)ei;
998
999 type = extent_ref_type(parent, owner);
1000 size = btrfs_extent_inline_ref_size(type);
1001
1002 btrfs_extend_item(trans, path, size);
1003
1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 refs = btrfs_extent_refs(leaf, ei);
1006 refs += refs_to_add;
1007 btrfs_set_extent_refs(leaf, ei, refs);
1008 if (extent_op)
1009 __run_delayed_extent_op(extent_op, leaf, ei);
1010
1011 ptr = (unsigned long)ei + item_offset;
1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 if (ptr < end - size)
1014 memmove_extent_buffer(leaf, ptr + size, ptr,
1015 end - size - ptr);
1016
1017 iref = (struct btrfs_extent_inline_ref *)ptr;
1018 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 struct btrfs_extent_data_ref *dref;
1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 struct btrfs_shared_data_ref *sref;
1028 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 } else {
1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 }
1036 btrfs_mark_buffer_dirty(trans, leaf);
1037 }
1038
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 struct btrfs_path *path,
1041 struct btrfs_extent_inline_ref **ref_ret,
1042 u64 bytenr, u64 num_bytes, u64 parent,
1043 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 int ret;
1046
1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 num_bytes, parent, root_objectid,
1049 owner, offset, 0);
1050 if (ret != -ENOENT)
1051 return ret;
1052
1053 btrfs_release_path(path);
1054 *ref_ret = NULL;
1055
1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 root_objectid);
1059 } else {
1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 root_objectid, owner, offset);
1062 }
1063 return ret;
1064 }
1065
1066 /*
1067 * helper to update/remove inline back ref
1068 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1069 static noinline_for_stack int update_inline_extent_backref(
1070 struct btrfs_trans_handle *trans,
1071 struct btrfs_path *path,
1072 struct btrfs_extent_inline_ref *iref,
1073 int refs_to_mod,
1074 struct btrfs_delayed_extent_op *extent_op)
1075 {
1076 struct extent_buffer *leaf = path->nodes[0];
1077 struct btrfs_fs_info *fs_info = leaf->fs_info;
1078 struct btrfs_extent_item *ei;
1079 struct btrfs_extent_data_ref *dref = NULL;
1080 struct btrfs_shared_data_ref *sref = NULL;
1081 unsigned long ptr;
1082 unsigned long end;
1083 u32 item_size;
1084 int size;
1085 int type;
1086 u64 refs;
1087
1088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1089 refs = btrfs_extent_refs(leaf, ei);
1090 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1091 struct btrfs_key key;
1092 u32 extent_size;
1093
1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095 if (key.type == BTRFS_METADATA_ITEM_KEY)
1096 extent_size = fs_info->nodesize;
1097 else
1098 extent_size = key.offset;
1099 btrfs_print_leaf(leaf);
1100 btrfs_err(fs_info,
1101 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1102 key.objectid, extent_size, refs_to_mod, refs);
1103 return -EUCLEAN;
1104 }
1105 refs += refs_to_mod;
1106 btrfs_set_extent_refs(leaf, ei, refs);
1107 if (extent_op)
1108 __run_delayed_extent_op(extent_op, leaf, ei);
1109
1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111 /*
1112 * Function btrfs_get_extent_inline_ref_type() has already printed
1113 * error messages.
1114 */
1115 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1116 return -EUCLEAN;
1117
1118 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1119 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1120 refs = btrfs_extent_data_ref_count(leaf, dref);
1121 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1122 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1123 refs = btrfs_shared_data_ref_count(leaf, sref);
1124 } else {
1125 refs = 1;
1126 /*
1127 * For tree blocks we can only drop one ref for it, and tree
1128 * blocks should not have refs > 1.
1129 *
1130 * Furthermore if we're inserting a new inline backref, we
1131 * won't reach this path either. That would be
1132 * setup_inline_extent_backref().
1133 */
1134 if (unlikely(refs_to_mod != -1)) {
1135 struct btrfs_key key;
1136
1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138
1139 btrfs_print_leaf(leaf);
1140 btrfs_err(fs_info,
1141 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1142 key.objectid, refs_to_mod);
1143 return -EUCLEAN;
1144 }
1145 }
1146
1147 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1148 struct btrfs_key key;
1149 u32 extent_size;
1150
1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152 if (key.type == BTRFS_METADATA_ITEM_KEY)
1153 extent_size = fs_info->nodesize;
1154 else
1155 extent_size = key.offset;
1156 btrfs_print_leaf(leaf);
1157 btrfs_err(fs_info,
1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1159 (unsigned long)iref, key.objectid, extent_size,
1160 refs_to_mod, refs);
1161 return -EUCLEAN;
1162 }
1163 refs += refs_to_mod;
1164
1165 if (refs > 0) {
1166 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1167 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1168 else
1169 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1170 } else {
1171 size = btrfs_extent_inline_ref_size(type);
1172 item_size = btrfs_item_size(leaf, path->slots[0]);
1173 ptr = (unsigned long)iref;
1174 end = (unsigned long)ei + item_size;
1175 if (ptr + size < end)
1176 memmove_extent_buffer(leaf, ptr, ptr + size,
1177 end - ptr - size);
1178 item_size -= size;
1179 btrfs_truncate_item(trans, path, item_size, 1);
1180 }
1181 btrfs_mark_buffer_dirty(trans, leaf);
1182 return 0;
1183 }
1184
1185 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1187 struct btrfs_path *path,
1188 u64 bytenr, u64 num_bytes, u64 parent,
1189 u64 root_objectid, u64 owner,
1190 u64 offset, int refs_to_add,
1191 struct btrfs_delayed_extent_op *extent_op)
1192 {
1193 struct btrfs_extent_inline_ref *iref;
1194 int ret;
1195
1196 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1197 num_bytes, parent, root_objectid,
1198 owner, offset, 1);
1199 if (ret == 0) {
1200 /*
1201 * We're adding refs to a tree block we already own, this
1202 * should not happen at all.
1203 */
1204 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1205 btrfs_print_leaf(path->nodes[0]);
1206 btrfs_crit(trans->fs_info,
1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1208 bytenr, num_bytes, root_objectid, path->slots[0]);
1209 return -EUCLEAN;
1210 }
1211 ret = update_inline_extent_backref(trans, path, iref,
1212 refs_to_add, extent_op);
1213 } else if (ret == -ENOENT) {
1214 setup_inline_extent_backref(trans, path, iref, parent,
1215 root_objectid, owner, offset,
1216 refs_to_add, extent_op);
1217 ret = 0;
1218 }
1219 return ret;
1220 }
1221
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1222 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root,
1224 struct btrfs_path *path,
1225 struct btrfs_extent_inline_ref *iref,
1226 int refs_to_drop, int is_data)
1227 {
1228 int ret = 0;
1229
1230 BUG_ON(!is_data && refs_to_drop != 1);
1231 if (iref)
1232 ret = update_inline_extent_backref(trans, path, iref,
1233 -refs_to_drop, NULL);
1234 else if (is_data)
1235 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1236 else
1237 ret = btrfs_del_item(trans, root, path);
1238 return ret;
1239 }
1240
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1242 u64 *discarded_bytes)
1243 {
1244 int j, ret = 0;
1245 u64 bytes_left, end;
1246 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1247
1248 /* Adjust the range to be aligned to 512B sectors if necessary. */
1249 if (start != aligned_start) {
1250 len -= aligned_start - start;
1251 len = round_down(len, 1 << SECTOR_SHIFT);
1252 start = aligned_start;
1253 }
1254
1255 *discarded_bytes = 0;
1256
1257 if (!len)
1258 return 0;
1259
1260 end = start + len;
1261 bytes_left = len;
1262
1263 /* Skip any superblocks on this device. */
1264 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1265 u64 sb_start = btrfs_sb_offset(j);
1266 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1267 u64 size = sb_start - start;
1268
1269 if (!in_range(sb_start, start, bytes_left) &&
1270 !in_range(sb_end, start, bytes_left) &&
1271 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1272 continue;
1273
1274 /*
1275 * Superblock spans beginning of range. Adjust start and
1276 * try again.
1277 */
1278 if (sb_start <= start) {
1279 start += sb_end - start;
1280 if (start > end) {
1281 bytes_left = 0;
1282 break;
1283 }
1284 bytes_left = end - start;
1285 continue;
1286 }
1287
1288 if (size) {
1289 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1290 size >> SECTOR_SHIFT,
1291 GFP_NOFS);
1292 if (!ret)
1293 *discarded_bytes += size;
1294 else if (ret != -EOPNOTSUPP)
1295 return ret;
1296 }
1297
1298 start = sb_end;
1299 if (start > end) {
1300 bytes_left = 0;
1301 break;
1302 }
1303 bytes_left = end - start;
1304 }
1305
1306 while (bytes_left) {
1307 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1308
1309 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1310 bytes_to_discard >> SECTOR_SHIFT,
1311 GFP_NOFS);
1312
1313 if (ret) {
1314 if (ret != -EOPNOTSUPP)
1315 break;
1316 continue;
1317 }
1318
1319 start += bytes_to_discard;
1320 bytes_left -= bytes_to_discard;
1321 *discarded_bytes += bytes_to_discard;
1322
1323 if (btrfs_trim_interrupted()) {
1324 ret = -ERESTARTSYS;
1325 break;
1326 }
1327 }
1328
1329 return ret;
1330 }
1331
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1332 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1333 {
1334 struct btrfs_device *dev = stripe->dev;
1335 struct btrfs_fs_info *fs_info = dev->fs_info;
1336 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1337 u64 phys = stripe->physical;
1338 u64 len = stripe->length;
1339 u64 discarded = 0;
1340 int ret = 0;
1341
1342 /* Zone reset on a zoned filesystem */
1343 if (btrfs_can_zone_reset(dev, phys, len)) {
1344 u64 src_disc;
1345
1346 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1347 if (ret)
1348 goto out;
1349
1350 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1351 dev != dev_replace->srcdev)
1352 goto out;
1353
1354 src_disc = discarded;
1355
1356 /* Send to replace target as well */
1357 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1358 &discarded);
1359 discarded += src_disc;
1360 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1361 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1362 } else {
1363 ret = 0;
1364 *bytes = 0;
1365 }
1366
1367 out:
1368 *bytes = discarded;
1369 return ret;
1370 }
1371
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1372 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1373 u64 num_bytes, u64 *actual_bytes)
1374 {
1375 int ret = 0;
1376 u64 discarded_bytes = 0;
1377 u64 end = bytenr + num_bytes;
1378 u64 cur = bytenr;
1379
1380 /*
1381 * Avoid races with device replace and make sure the devices in the
1382 * stripes don't go away while we are discarding.
1383 */
1384 btrfs_bio_counter_inc_blocked(fs_info);
1385 while (cur < end) {
1386 struct btrfs_discard_stripe *stripes;
1387 unsigned int num_stripes;
1388 int i;
1389
1390 num_bytes = end - cur;
1391 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1392 if (IS_ERR(stripes)) {
1393 ret = PTR_ERR(stripes);
1394 if (ret == -EOPNOTSUPP)
1395 ret = 0;
1396 break;
1397 }
1398
1399 for (i = 0; i < num_stripes; i++) {
1400 struct btrfs_discard_stripe *stripe = stripes + i;
1401 u64 bytes;
1402
1403 if (!stripe->dev->bdev) {
1404 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1405 continue;
1406 }
1407
1408 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1409 &stripe->dev->dev_state))
1410 continue;
1411
1412 ret = do_discard_extent(stripe, &bytes);
1413 if (ret) {
1414 /*
1415 * Keep going if discard is not supported by the
1416 * device.
1417 */
1418 if (ret != -EOPNOTSUPP)
1419 break;
1420 ret = 0;
1421 } else {
1422 discarded_bytes += bytes;
1423 }
1424 }
1425 kfree(stripes);
1426 if (ret)
1427 break;
1428 cur += num_bytes;
1429 }
1430 btrfs_bio_counter_dec(fs_info);
1431 if (actual_bytes)
1432 *actual_bytes = discarded_bytes;
1433 return ret;
1434 }
1435
1436 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1437 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1438 struct btrfs_ref *generic_ref)
1439 {
1440 struct btrfs_fs_info *fs_info = trans->fs_info;
1441 int ret;
1442
1443 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1444 generic_ref->action);
1445 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1446 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1447
1448 if (generic_ref->type == BTRFS_REF_METADATA)
1449 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1450 else
1451 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1452
1453 btrfs_ref_tree_mod(fs_info, generic_ref);
1454
1455 return ret;
1456 }
1457
1458 /*
1459 * __btrfs_inc_extent_ref - insert backreference for a given extent
1460 *
1461 * The counterpart is in __btrfs_free_extent(), with examples and more details
1462 * how it works.
1463 *
1464 * @trans: Handle of transaction
1465 *
1466 * @node: The delayed ref node used to get the bytenr/length for
1467 * extent whose references are incremented.
1468 *
1469 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1470 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1471 * bytenr of the parent block. Since new extents are always
1472 * created with indirect references, this will only be the case
1473 * when relocating a shared extent. In that case, root_objectid
1474 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1475 * be 0
1476 *
1477 * @root_objectid: The id of the root where this modification has originated,
1478 * this can be either one of the well-known metadata trees or
1479 * the subvolume id which references this extent.
1480 *
1481 * @owner: For data extents it is the inode number of the owning file.
1482 * For metadata extents this parameter holds the level in the
1483 * tree of the extent.
1484 *
1485 * @offset: For metadata extents the offset is ignored and is currently
1486 * always passed as 0. For data extents it is the fileoffset
1487 * this extent belongs to.
1488 *
1489 * @refs_to_add Number of references to add
1490 *
1491 * @extent_op Pointer to a structure, holding information necessary when
1492 * updating a tree block's flags
1493 *
1494 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1495 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1496 struct btrfs_delayed_ref_node *node,
1497 u64 parent, u64 root_objectid,
1498 u64 owner, u64 offset, int refs_to_add,
1499 struct btrfs_delayed_extent_op *extent_op)
1500 {
1501 struct btrfs_path *path;
1502 struct extent_buffer *leaf;
1503 struct btrfs_extent_item *item;
1504 struct btrfs_key key;
1505 u64 bytenr = node->bytenr;
1506 u64 num_bytes = node->num_bytes;
1507 u64 refs;
1508 int ret;
1509
1510 path = btrfs_alloc_path();
1511 if (!path)
1512 return -ENOMEM;
1513
1514 /* this will setup the path even if it fails to insert the back ref */
1515 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1516 parent, root_objectid, owner,
1517 offset, refs_to_add, extent_op);
1518 if ((ret < 0 && ret != -EAGAIN) || !ret)
1519 goto out;
1520
1521 /*
1522 * Ok we had -EAGAIN which means we didn't have space to insert and
1523 * inline extent ref, so just update the reference count and add a
1524 * normal backref.
1525 */
1526 leaf = path->nodes[0];
1527 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1528 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1529 refs = btrfs_extent_refs(leaf, item);
1530 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1531 if (extent_op)
1532 __run_delayed_extent_op(extent_op, leaf, item);
1533
1534 btrfs_mark_buffer_dirty(trans, leaf);
1535 btrfs_release_path(path);
1536
1537 /* now insert the actual backref */
1538 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1539 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1540 root_objectid);
1541 else
1542 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1543 root_objectid, owner, offset,
1544 refs_to_add);
1545
1546 if (ret)
1547 btrfs_abort_transaction(trans, ret);
1548 out:
1549 btrfs_free_path(path);
1550 return ret;
1551 }
1552
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1553 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1554 struct btrfs_delayed_ref_node *node,
1555 struct btrfs_delayed_extent_op *extent_op,
1556 bool insert_reserved)
1557 {
1558 int ret = 0;
1559 struct btrfs_delayed_data_ref *ref;
1560 struct btrfs_key ins;
1561 u64 parent = 0;
1562 u64 ref_root = 0;
1563 u64 flags = 0;
1564
1565 ins.objectid = node->bytenr;
1566 ins.offset = node->num_bytes;
1567 ins.type = BTRFS_EXTENT_ITEM_KEY;
1568
1569 ref = btrfs_delayed_node_to_data_ref(node);
1570 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1571
1572 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1573 parent = ref->parent;
1574 ref_root = ref->root;
1575
1576 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1577 if (extent_op)
1578 flags |= extent_op->flags_to_set;
1579 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1580 flags, ref->objectid,
1581 ref->offset, &ins,
1582 node->ref_mod);
1583 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1584 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1585 ref->objectid, ref->offset,
1586 node->ref_mod, extent_op);
1587 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1588 ret = __btrfs_free_extent(trans, node, parent,
1589 ref_root, ref->objectid,
1590 ref->offset, node->ref_mod,
1591 extent_op);
1592 } else {
1593 BUG();
1594 }
1595 return ret;
1596 }
1597
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1598 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1599 struct extent_buffer *leaf,
1600 struct btrfs_extent_item *ei)
1601 {
1602 u64 flags = btrfs_extent_flags(leaf, ei);
1603 if (extent_op->update_flags) {
1604 flags |= extent_op->flags_to_set;
1605 btrfs_set_extent_flags(leaf, ei, flags);
1606 }
1607
1608 if (extent_op->update_key) {
1609 struct btrfs_tree_block_info *bi;
1610 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1611 bi = (struct btrfs_tree_block_info *)(ei + 1);
1612 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1613 }
1614 }
1615
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1616 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1617 struct btrfs_delayed_ref_head *head,
1618 struct btrfs_delayed_extent_op *extent_op)
1619 {
1620 struct btrfs_fs_info *fs_info = trans->fs_info;
1621 struct btrfs_root *root;
1622 struct btrfs_key key;
1623 struct btrfs_path *path;
1624 struct btrfs_extent_item *ei;
1625 struct extent_buffer *leaf;
1626 u32 item_size;
1627 int ret;
1628 int err = 0;
1629 int metadata = 1;
1630
1631 if (TRANS_ABORTED(trans))
1632 return 0;
1633
1634 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1635 metadata = 0;
1636
1637 path = btrfs_alloc_path();
1638 if (!path)
1639 return -ENOMEM;
1640
1641 key.objectid = head->bytenr;
1642
1643 if (metadata) {
1644 key.type = BTRFS_METADATA_ITEM_KEY;
1645 key.offset = extent_op->level;
1646 } else {
1647 key.type = BTRFS_EXTENT_ITEM_KEY;
1648 key.offset = head->num_bytes;
1649 }
1650
1651 root = btrfs_extent_root(fs_info, key.objectid);
1652 again:
1653 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1654 if (ret < 0) {
1655 err = ret;
1656 goto out;
1657 }
1658 if (ret > 0) {
1659 if (metadata) {
1660 if (path->slots[0] > 0) {
1661 path->slots[0]--;
1662 btrfs_item_key_to_cpu(path->nodes[0], &key,
1663 path->slots[0]);
1664 if (key.objectid == head->bytenr &&
1665 key.type == BTRFS_EXTENT_ITEM_KEY &&
1666 key.offset == head->num_bytes)
1667 ret = 0;
1668 }
1669 if (ret > 0) {
1670 btrfs_release_path(path);
1671 metadata = 0;
1672
1673 key.objectid = head->bytenr;
1674 key.offset = head->num_bytes;
1675 key.type = BTRFS_EXTENT_ITEM_KEY;
1676 goto again;
1677 }
1678 } else {
1679 err = -EUCLEAN;
1680 btrfs_err(fs_info,
1681 "missing extent item for extent %llu num_bytes %llu level %d",
1682 head->bytenr, head->num_bytes, extent_op->level);
1683 goto out;
1684 }
1685 }
1686
1687 leaf = path->nodes[0];
1688 item_size = btrfs_item_size(leaf, path->slots[0]);
1689
1690 if (unlikely(item_size < sizeof(*ei))) {
1691 err = -EUCLEAN;
1692 btrfs_err(fs_info,
1693 "unexpected extent item size, has %u expect >= %zu",
1694 item_size, sizeof(*ei));
1695 btrfs_abort_transaction(trans, err);
1696 goto out;
1697 }
1698
1699 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1700 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702 btrfs_mark_buffer_dirty(trans, leaf);
1703 out:
1704 btrfs_free_path(path);
1705 return err;
1706 }
1707
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1708 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1709 struct btrfs_delayed_ref_node *node,
1710 struct btrfs_delayed_extent_op *extent_op,
1711 bool insert_reserved)
1712 {
1713 int ret = 0;
1714 struct btrfs_delayed_tree_ref *ref;
1715 u64 parent = 0;
1716 u64 ref_root = 0;
1717
1718 ref = btrfs_delayed_node_to_tree_ref(node);
1719 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1720
1721 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1722 parent = ref->parent;
1723 ref_root = ref->root;
1724
1725 if (unlikely(node->ref_mod != 1)) {
1726 btrfs_err(trans->fs_info,
1727 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1728 node->bytenr, node->ref_mod, node->action, ref_root,
1729 parent);
1730 return -EUCLEAN;
1731 }
1732 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1733 BUG_ON(!extent_op || !extent_op->update_flags);
1734 ret = alloc_reserved_tree_block(trans, node, extent_op);
1735 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1736 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1737 ref->level, 0, 1, extent_op);
1738 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1739 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1740 ref->level, 0, 1, extent_op);
1741 } else {
1742 BUG();
1743 }
1744 return ret;
1745 }
1746
1747 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1748 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1749 struct btrfs_delayed_ref_node *node,
1750 struct btrfs_delayed_extent_op *extent_op,
1751 bool insert_reserved)
1752 {
1753 int ret = 0;
1754
1755 if (TRANS_ABORTED(trans)) {
1756 if (insert_reserved)
1757 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1758 return 0;
1759 }
1760
1761 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1762 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1763 ret = run_delayed_tree_ref(trans, node, extent_op,
1764 insert_reserved);
1765 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1766 node->type == BTRFS_SHARED_DATA_REF_KEY)
1767 ret = run_delayed_data_ref(trans, node, extent_op,
1768 insert_reserved);
1769 else
1770 BUG();
1771 if (ret && insert_reserved)
1772 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1773 if (ret < 0)
1774 btrfs_err(trans->fs_info,
1775 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1776 node->bytenr, node->num_bytes, node->type,
1777 node->action, node->ref_mod, ret);
1778 return ret;
1779 }
1780
1781 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1782 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1783 {
1784 struct btrfs_delayed_ref_node *ref;
1785
1786 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1787 return NULL;
1788
1789 /*
1790 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1791 * This is to prevent a ref count from going down to zero, which deletes
1792 * the extent item from the extent tree, when there still are references
1793 * to add, which would fail because they would not find the extent item.
1794 */
1795 if (!list_empty(&head->ref_add_list))
1796 return list_first_entry(&head->ref_add_list,
1797 struct btrfs_delayed_ref_node, add_list);
1798
1799 ref = rb_entry(rb_first_cached(&head->ref_tree),
1800 struct btrfs_delayed_ref_node, ref_node);
1801 ASSERT(list_empty(&ref->add_list));
1802 return ref;
1803 }
1804
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1805 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1806 struct btrfs_delayed_ref_head *head)
1807 {
1808 spin_lock(&delayed_refs->lock);
1809 head->processing = false;
1810 delayed_refs->num_heads_ready++;
1811 spin_unlock(&delayed_refs->lock);
1812 btrfs_delayed_ref_unlock(head);
1813 }
1814
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1815 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1816 struct btrfs_delayed_ref_head *head)
1817 {
1818 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1819
1820 if (!extent_op)
1821 return NULL;
1822
1823 if (head->must_insert_reserved) {
1824 head->extent_op = NULL;
1825 btrfs_free_delayed_extent_op(extent_op);
1826 return NULL;
1827 }
1828 return extent_op;
1829 }
1830
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1831 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1832 struct btrfs_delayed_ref_head *head)
1833 {
1834 struct btrfs_delayed_extent_op *extent_op;
1835 int ret;
1836
1837 extent_op = cleanup_extent_op(head);
1838 if (!extent_op)
1839 return 0;
1840 head->extent_op = NULL;
1841 spin_unlock(&head->lock);
1842 ret = run_delayed_extent_op(trans, head, extent_op);
1843 btrfs_free_delayed_extent_op(extent_op);
1844 return ret ? ret : 1;
1845 }
1846
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1847 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1848 struct btrfs_delayed_ref_root *delayed_refs,
1849 struct btrfs_delayed_ref_head *head)
1850 {
1851 int nr_items = 1; /* Dropping this ref head update. */
1852
1853 /*
1854 * We had csum deletions accounted for in our delayed refs rsv, we need
1855 * to drop the csum leaves for this update from our delayed_refs_rsv.
1856 */
1857 if (head->total_ref_mod < 0 && head->is_data) {
1858 spin_lock(&delayed_refs->lock);
1859 delayed_refs->pending_csums -= head->num_bytes;
1860 spin_unlock(&delayed_refs->lock);
1861 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1862 }
1863
1864 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1865 }
1866
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1867 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1868 struct btrfs_delayed_ref_head *head)
1869 {
1870
1871 struct btrfs_fs_info *fs_info = trans->fs_info;
1872 struct btrfs_delayed_ref_root *delayed_refs;
1873 int ret;
1874
1875 delayed_refs = &trans->transaction->delayed_refs;
1876
1877 ret = run_and_cleanup_extent_op(trans, head);
1878 if (ret < 0) {
1879 unselect_delayed_ref_head(delayed_refs, head);
1880 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1881 return ret;
1882 } else if (ret) {
1883 return ret;
1884 }
1885
1886 /*
1887 * Need to drop our head ref lock and re-acquire the delayed ref lock
1888 * and then re-check to make sure nobody got added.
1889 */
1890 spin_unlock(&head->lock);
1891 spin_lock(&delayed_refs->lock);
1892 spin_lock(&head->lock);
1893 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1894 spin_unlock(&head->lock);
1895 spin_unlock(&delayed_refs->lock);
1896 return 1;
1897 }
1898 btrfs_delete_ref_head(delayed_refs, head);
1899 spin_unlock(&head->lock);
1900 spin_unlock(&delayed_refs->lock);
1901
1902 if (head->must_insert_reserved) {
1903 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1904 if (head->is_data) {
1905 struct btrfs_root *csum_root;
1906
1907 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1908 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1909 head->num_bytes);
1910 }
1911 }
1912
1913 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1914
1915 trace_run_delayed_ref_head(fs_info, head, 0);
1916 btrfs_delayed_ref_unlock(head);
1917 btrfs_put_delayed_ref_head(head);
1918 return ret;
1919 }
1920
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1921 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1922 struct btrfs_trans_handle *trans)
1923 {
1924 struct btrfs_delayed_ref_root *delayed_refs =
1925 &trans->transaction->delayed_refs;
1926 struct btrfs_delayed_ref_head *head = NULL;
1927 int ret;
1928
1929 spin_lock(&delayed_refs->lock);
1930 head = btrfs_select_ref_head(delayed_refs);
1931 if (!head) {
1932 spin_unlock(&delayed_refs->lock);
1933 return head;
1934 }
1935
1936 /*
1937 * Grab the lock that says we are going to process all the refs for
1938 * this head
1939 */
1940 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1941 spin_unlock(&delayed_refs->lock);
1942
1943 /*
1944 * We may have dropped the spin lock to get the head mutex lock, and
1945 * that might have given someone else time to free the head. If that's
1946 * true, it has been removed from our list and we can move on.
1947 */
1948 if (ret == -EAGAIN)
1949 head = ERR_PTR(-EAGAIN);
1950
1951 return head;
1952 }
1953
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref)1954 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1955 struct btrfs_delayed_ref_head *locked_ref)
1956 {
1957 struct btrfs_fs_info *fs_info = trans->fs_info;
1958 struct btrfs_delayed_ref_root *delayed_refs;
1959 struct btrfs_delayed_extent_op *extent_op;
1960 struct btrfs_delayed_ref_node *ref;
1961 bool must_insert_reserved;
1962 int ret;
1963
1964 delayed_refs = &trans->transaction->delayed_refs;
1965
1966 lockdep_assert_held(&locked_ref->mutex);
1967 lockdep_assert_held(&locked_ref->lock);
1968
1969 while ((ref = select_delayed_ref(locked_ref))) {
1970 if (ref->seq &&
1971 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1972 spin_unlock(&locked_ref->lock);
1973 unselect_delayed_ref_head(delayed_refs, locked_ref);
1974 return -EAGAIN;
1975 }
1976
1977 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1978 RB_CLEAR_NODE(&ref->ref_node);
1979 if (!list_empty(&ref->add_list))
1980 list_del(&ref->add_list);
1981 /*
1982 * When we play the delayed ref, also correct the ref_mod on
1983 * head
1984 */
1985 switch (ref->action) {
1986 case BTRFS_ADD_DELAYED_REF:
1987 case BTRFS_ADD_DELAYED_EXTENT:
1988 locked_ref->ref_mod -= ref->ref_mod;
1989 break;
1990 case BTRFS_DROP_DELAYED_REF:
1991 locked_ref->ref_mod += ref->ref_mod;
1992 break;
1993 default:
1994 WARN_ON(1);
1995 }
1996 atomic_dec(&delayed_refs->num_entries);
1997
1998 /*
1999 * Record the must_insert_reserved flag before we drop the
2000 * spin lock.
2001 */
2002 must_insert_reserved = locked_ref->must_insert_reserved;
2003 locked_ref->must_insert_reserved = false;
2004
2005 extent_op = locked_ref->extent_op;
2006 locked_ref->extent_op = NULL;
2007 spin_unlock(&locked_ref->lock);
2008
2009 ret = run_one_delayed_ref(trans, ref, extent_op,
2010 must_insert_reserved);
2011
2012 btrfs_free_delayed_extent_op(extent_op);
2013 if (ret) {
2014 unselect_delayed_ref_head(delayed_refs, locked_ref);
2015 btrfs_put_delayed_ref(ref);
2016 return ret;
2017 }
2018
2019 btrfs_put_delayed_ref(ref);
2020 cond_resched();
2021
2022 spin_lock(&locked_ref->lock);
2023 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2024 }
2025
2026 return 0;
2027 }
2028
2029 /*
2030 * Returns 0 on success or if called with an already aborted transaction.
2031 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2032 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2033 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2034 unsigned long nr)
2035 {
2036 struct btrfs_fs_info *fs_info = trans->fs_info;
2037 struct btrfs_delayed_ref_root *delayed_refs;
2038 struct btrfs_delayed_ref_head *locked_ref = NULL;
2039 int ret;
2040 unsigned long count = 0;
2041
2042 delayed_refs = &trans->transaction->delayed_refs;
2043 do {
2044 if (!locked_ref) {
2045 locked_ref = btrfs_obtain_ref_head(trans);
2046 if (IS_ERR_OR_NULL(locked_ref)) {
2047 if (PTR_ERR(locked_ref) == -EAGAIN) {
2048 continue;
2049 } else {
2050 break;
2051 }
2052 }
2053 count++;
2054 }
2055 /*
2056 * We need to try and merge add/drops of the same ref since we
2057 * can run into issues with relocate dropping the implicit ref
2058 * and then it being added back again before the drop can
2059 * finish. If we merged anything we need to re-loop so we can
2060 * get a good ref.
2061 * Or we can get node references of the same type that weren't
2062 * merged when created due to bumps in the tree mod seq, and
2063 * we need to merge them to prevent adding an inline extent
2064 * backref before dropping it (triggering a BUG_ON at
2065 * insert_inline_extent_backref()).
2066 */
2067 spin_lock(&locked_ref->lock);
2068 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2069
2070 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2071 if (ret < 0 && ret != -EAGAIN) {
2072 /*
2073 * Error, btrfs_run_delayed_refs_for_head already
2074 * unlocked everything so just bail out
2075 */
2076 return ret;
2077 } else if (!ret) {
2078 /*
2079 * Success, perform the usual cleanup of a processed
2080 * head
2081 */
2082 ret = cleanup_ref_head(trans, locked_ref);
2083 if (ret > 0 ) {
2084 /* We dropped our lock, we need to loop. */
2085 ret = 0;
2086 continue;
2087 } else if (ret) {
2088 return ret;
2089 }
2090 }
2091
2092 /*
2093 * Either success case or btrfs_run_delayed_refs_for_head
2094 * returned -EAGAIN, meaning we need to select another head
2095 */
2096
2097 locked_ref = NULL;
2098 cond_resched();
2099 } while ((nr != -1 && count < nr) || locked_ref);
2100
2101 return 0;
2102 }
2103
2104 #ifdef SCRAMBLE_DELAYED_REFS
2105 /*
2106 * Normally delayed refs get processed in ascending bytenr order. This
2107 * correlates in most cases to the order added. To expose dependencies on this
2108 * order, we start to process the tree in the middle instead of the beginning
2109 */
find_middle(struct rb_root * root)2110 static u64 find_middle(struct rb_root *root)
2111 {
2112 struct rb_node *n = root->rb_node;
2113 struct btrfs_delayed_ref_node *entry;
2114 int alt = 1;
2115 u64 middle;
2116 u64 first = 0, last = 0;
2117
2118 n = rb_first(root);
2119 if (n) {
2120 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2121 first = entry->bytenr;
2122 }
2123 n = rb_last(root);
2124 if (n) {
2125 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2126 last = entry->bytenr;
2127 }
2128 n = root->rb_node;
2129
2130 while (n) {
2131 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2132 WARN_ON(!entry->in_tree);
2133
2134 middle = entry->bytenr;
2135
2136 if (alt)
2137 n = n->rb_left;
2138 else
2139 n = n->rb_right;
2140
2141 alt = 1 - alt;
2142 }
2143 return middle;
2144 }
2145 #endif
2146
2147 /*
2148 * this starts processing the delayed reference count updates and
2149 * extent insertions we have queued up so far. count can be
2150 * 0, which means to process everything in the tree at the start
2151 * of the run (but not newly added entries), or it can be some target
2152 * number you'd like to process.
2153 *
2154 * Returns 0 on success or if called with an aborted transaction
2155 * Returns <0 on error and aborts the transaction
2156 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2157 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2158 unsigned long count)
2159 {
2160 struct btrfs_fs_info *fs_info = trans->fs_info;
2161 struct rb_node *node;
2162 struct btrfs_delayed_ref_root *delayed_refs;
2163 struct btrfs_delayed_ref_head *head;
2164 int ret;
2165 int run_all = count == (unsigned long)-1;
2166
2167 /* We'll clean this up in btrfs_cleanup_transaction */
2168 if (TRANS_ABORTED(trans))
2169 return 0;
2170
2171 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2172 return 0;
2173
2174 delayed_refs = &trans->transaction->delayed_refs;
2175 if (count == 0)
2176 count = delayed_refs->num_heads_ready;
2177
2178 again:
2179 #ifdef SCRAMBLE_DELAYED_REFS
2180 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2181 #endif
2182 ret = __btrfs_run_delayed_refs(trans, count);
2183 if (ret < 0) {
2184 btrfs_abort_transaction(trans, ret);
2185 return ret;
2186 }
2187
2188 if (run_all) {
2189 btrfs_create_pending_block_groups(trans);
2190
2191 spin_lock(&delayed_refs->lock);
2192 node = rb_first_cached(&delayed_refs->href_root);
2193 if (!node) {
2194 spin_unlock(&delayed_refs->lock);
2195 goto out;
2196 }
2197 head = rb_entry(node, struct btrfs_delayed_ref_head,
2198 href_node);
2199 refcount_inc(&head->refs);
2200 spin_unlock(&delayed_refs->lock);
2201
2202 /* Mutex was contended, block until it's released and retry. */
2203 mutex_lock(&head->mutex);
2204 mutex_unlock(&head->mutex);
2205
2206 btrfs_put_delayed_ref_head(head);
2207 cond_resched();
2208 goto again;
2209 }
2210 out:
2211 return 0;
2212 }
2213
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2214 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2215 struct extent_buffer *eb, u64 flags)
2216 {
2217 struct btrfs_delayed_extent_op *extent_op;
2218 int level = btrfs_header_level(eb);
2219 int ret;
2220
2221 extent_op = btrfs_alloc_delayed_extent_op();
2222 if (!extent_op)
2223 return -ENOMEM;
2224
2225 extent_op->flags_to_set = flags;
2226 extent_op->update_flags = true;
2227 extent_op->update_key = false;
2228 extent_op->level = level;
2229
2230 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2231 if (ret)
2232 btrfs_free_delayed_extent_op(extent_op);
2233 return ret;
2234 }
2235
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2236 static noinline int check_delayed_ref(struct btrfs_root *root,
2237 struct btrfs_path *path,
2238 u64 objectid, u64 offset, u64 bytenr)
2239 {
2240 struct btrfs_delayed_ref_head *head;
2241 struct btrfs_delayed_ref_node *ref;
2242 struct btrfs_delayed_data_ref *data_ref;
2243 struct btrfs_delayed_ref_root *delayed_refs;
2244 struct btrfs_transaction *cur_trans;
2245 struct rb_node *node;
2246 int ret = 0;
2247
2248 spin_lock(&root->fs_info->trans_lock);
2249 cur_trans = root->fs_info->running_transaction;
2250 if (cur_trans)
2251 refcount_inc(&cur_trans->use_count);
2252 spin_unlock(&root->fs_info->trans_lock);
2253 if (!cur_trans)
2254 return 0;
2255
2256 delayed_refs = &cur_trans->delayed_refs;
2257 spin_lock(&delayed_refs->lock);
2258 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2259 if (!head) {
2260 spin_unlock(&delayed_refs->lock);
2261 btrfs_put_transaction(cur_trans);
2262 return 0;
2263 }
2264
2265 if (!mutex_trylock(&head->mutex)) {
2266 if (path->nowait) {
2267 spin_unlock(&delayed_refs->lock);
2268 btrfs_put_transaction(cur_trans);
2269 return -EAGAIN;
2270 }
2271
2272 refcount_inc(&head->refs);
2273 spin_unlock(&delayed_refs->lock);
2274
2275 btrfs_release_path(path);
2276
2277 /*
2278 * Mutex was contended, block until it's released and let
2279 * caller try again
2280 */
2281 mutex_lock(&head->mutex);
2282 mutex_unlock(&head->mutex);
2283 btrfs_put_delayed_ref_head(head);
2284 btrfs_put_transaction(cur_trans);
2285 return -EAGAIN;
2286 }
2287 spin_unlock(&delayed_refs->lock);
2288
2289 spin_lock(&head->lock);
2290 /*
2291 * XXX: We should replace this with a proper search function in the
2292 * future.
2293 */
2294 for (node = rb_first_cached(&head->ref_tree); node;
2295 node = rb_next(node)) {
2296 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2297 /* If it's a shared ref we know a cross reference exists */
2298 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2299 ret = 1;
2300 break;
2301 }
2302
2303 data_ref = btrfs_delayed_node_to_data_ref(ref);
2304
2305 /*
2306 * If our ref doesn't match the one we're currently looking at
2307 * then we have a cross reference.
2308 */
2309 if (data_ref->root != root->root_key.objectid ||
2310 data_ref->objectid != objectid ||
2311 data_ref->offset != offset) {
2312 ret = 1;
2313 break;
2314 }
2315 }
2316 spin_unlock(&head->lock);
2317 mutex_unlock(&head->mutex);
2318 btrfs_put_transaction(cur_trans);
2319 return ret;
2320 }
2321
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2322 static noinline int check_committed_ref(struct btrfs_root *root,
2323 struct btrfs_path *path,
2324 u64 objectid, u64 offset, u64 bytenr,
2325 bool strict)
2326 {
2327 struct btrfs_fs_info *fs_info = root->fs_info;
2328 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2329 struct extent_buffer *leaf;
2330 struct btrfs_extent_data_ref *ref;
2331 struct btrfs_extent_inline_ref *iref;
2332 struct btrfs_extent_item *ei;
2333 struct btrfs_key key;
2334 u32 item_size;
2335 int type;
2336 int ret;
2337
2338 key.objectid = bytenr;
2339 key.offset = (u64)-1;
2340 key.type = BTRFS_EXTENT_ITEM_KEY;
2341
2342 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2343 if (ret < 0)
2344 goto out;
2345 BUG_ON(ret == 0); /* Corruption */
2346
2347 ret = -ENOENT;
2348 if (path->slots[0] == 0)
2349 goto out;
2350
2351 path->slots[0]--;
2352 leaf = path->nodes[0];
2353 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2354
2355 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2356 goto out;
2357
2358 ret = 1;
2359 item_size = btrfs_item_size(leaf, path->slots[0]);
2360 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2361
2362 /* If extent item has more than 1 inline ref then it's shared */
2363 if (item_size != sizeof(*ei) +
2364 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2365 goto out;
2366
2367 /*
2368 * If extent created before last snapshot => it's shared unless the
2369 * snapshot has been deleted. Use the heuristic if strict is false.
2370 */
2371 if (!strict &&
2372 (btrfs_extent_generation(leaf, ei) <=
2373 btrfs_root_last_snapshot(&root->root_item)))
2374 goto out;
2375
2376 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2377
2378 /* If this extent has SHARED_DATA_REF then it's shared */
2379 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2380 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2381 goto out;
2382
2383 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2384 if (btrfs_extent_refs(leaf, ei) !=
2385 btrfs_extent_data_ref_count(leaf, ref) ||
2386 btrfs_extent_data_ref_root(leaf, ref) !=
2387 root->root_key.objectid ||
2388 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2389 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2390 goto out;
2391
2392 ret = 0;
2393 out:
2394 return ret;
2395 }
2396
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2397 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2398 u64 bytenr, bool strict, struct btrfs_path *path)
2399 {
2400 int ret;
2401
2402 do {
2403 ret = check_committed_ref(root, path, objectid,
2404 offset, bytenr, strict);
2405 if (ret && ret != -ENOENT)
2406 goto out;
2407
2408 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2409 } while (ret == -EAGAIN && !path->nowait);
2410
2411 out:
2412 btrfs_release_path(path);
2413 if (btrfs_is_data_reloc_root(root))
2414 WARN_ON(ret > 0);
2415 return ret;
2416 }
2417
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2418 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2419 struct btrfs_root *root,
2420 struct extent_buffer *buf,
2421 int full_backref, int inc)
2422 {
2423 struct btrfs_fs_info *fs_info = root->fs_info;
2424 u64 bytenr;
2425 u64 num_bytes;
2426 u64 parent;
2427 u64 ref_root;
2428 u32 nritems;
2429 struct btrfs_key key;
2430 struct btrfs_file_extent_item *fi;
2431 struct btrfs_ref generic_ref = { 0 };
2432 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2433 int i;
2434 int action;
2435 int level;
2436 int ret = 0;
2437
2438 if (btrfs_is_testing(fs_info))
2439 return 0;
2440
2441 ref_root = btrfs_header_owner(buf);
2442 nritems = btrfs_header_nritems(buf);
2443 level = btrfs_header_level(buf);
2444
2445 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2446 return 0;
2447
2448 if (full_backref)
2449 parent = buf->start;
2450 else
2451 parent = 0;
2452 if (inc)
2453 action = BTRFS_ADD_DELAYED_REF;
2454 else
2455 action = BTRFS_DROP_DELAYED_REF;
2456
2457 for (i = 0; i < nritems; i++) {
2458 if (level == 0) {
2459 btrfs_item_key_to_cpu(buf, &key, i);
2460 if (key.type != BTRFS_EXTENT_DATA_KEY)
2461 continue;
2462 fi = btrfs_item_ptr(buf, i,
2463 struct btrfs_file_extent_item);
2464 if (btrfs_file_extent_type(buf, fi) ==
2465 BTRFS_FILE_EXTENT_INLINE)
2466 continue;
2467 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2468 if (bytenr == 0)
2469 continue;
2470
2471 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2472 key.offset -= btrfs_file_extent_offset(buf, fi);
2473 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2474 num_bytes, parent);
2475 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2476 key.offset, root->root_key.objectid,
2477 for_reloc);
2478 if (inc)
2479 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2480 else
2481 ret = btrfs_free_extent(trans, &generic_ref);
2482 if (ret)
2483 goto fail;
2484 } else {
2485 bytenr = btrfs_node_blockptr(buf, i);
2486 num_bytes = fs_info->nodesize;
2487 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2488 num_bytes, parent);
2489 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2490 root->root_key.objectid, for_reloc);
2491 if (inc)
2492 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2493 else
2494 ret = btrfs_free_extent(trans, &generic_ref);
2495 if (ret)
2496 goto fail;
2497 }
2498 }
2499 return 0;
2500 fail:
2501 return ret;
2502 }
2503
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2504 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2505 struct extent_buffer *buf, int full_backref)
2506 {
2507 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2508 }
2509
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2510 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2511 struct extent_buffer *buf, int full_backref)
2512 {
2513 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2514 }
2515
get_alloc_profile_by_root(struct btrfs_root * root,int data)2516 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2517 {
2518 struct btrfs_fs_info *fs_info = root->fs_info;
2519 u64 flags;
2520 u64 ret;
2521
2522 if (data)
2523 flags = BTRFS_BLOCK_GROUP_DATA;
2524 else if (root == fs_info->chunk_root)
2525 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2526 else
2527 flags = BTRFS_BLOCK_GROUP_METADATA;
2528
2529 ret = btrfs_get_alloc_profile(fs_info, flags);
2530 return ret;
2531 }
2532
first_logical_byte(struct btrfs_fs_info * fs_info)2533 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2534 {
2535 struct rb_node *leftmost;
2536 u64 bytenr = 0;
2537
2538 read_lock(&fs_info->block_group_cache_lock);
2539 /* Get the block group with the lowest logical start address. */
2540 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2541 if (leftmost) {
2542 struct btrfs_block_group *bg;
2543
2544 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2545 bytenr = bg->start;
2546 }
2547 read_unlock(&fs_info->block_group_cache_lock);
2548
2549 return bytenr;
2550 }
2551
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2552 static int pin_down_extent(struct btrfs_trans_handle *trans,
2553 struct btrfs_block_group *cache,
2554 u64 bytenr, u64 num_bytes, int reserved)
2555 {
2556 struct btrfs_fs_info *fs_info = cache->fs_info;
2557
2558 spin_lock(&cache->space_info->lock);
2559 spin_lock(&cache->lock);
2560 cache->pinned += num_bytes;
2561 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2562 num_bytes);
2563 if (reserved) {
2564 cache->reserved -= num_bytes;
2565 cache->space_info->bytes_reserved -= num_bytes;
2566 }
2567 spin_unlock(&cache->lock);
2568 spin_unlock(&cache->space_info->lock);
2569
2570 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2571 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2572 return 0;
2573 }
2574
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2575 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2576 u64 bytenr, u64 num_bytes, int reserved)
2577 {
2578 struct btrfs_block_group *cache;
2579
2580 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2581 BUG_ON(!cache); /* Logic error */
2582
2583 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2584
2585 btrfs_put_block_group(cache);
2586 return 0;
2587 }
2588
2589 /*
2590 * this function must be called within transaction
2591 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2592 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2593 u64 bytenr, u64 num_bytes)
2594 {
2595 struct btrfs_block_group *cache;
2596 int ret;
2597
2598 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2599 if (!cache)
2600 return -EINVAL;
2601
2602 /*
2603 * Fully cache the free space first so that our pin removes the free space
2604 * from the cache.
2605 */
2606 ret = btrfs_cache_block_group(cache, true);
2607 if (ret)
2608 goto out;
2609
2610 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2611
2612 /* remove us from the free space cache (if we're there at all) */
2613 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2614 out:
2615 btrfs_put_block_group(cache);
2616 return ret;
2617 }
2618
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2619 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2620 u64 start, u64 num_bytes)
2621 {
2622 int ret;
2623 struct btrfs_block_group *block_group;
2624
2625 block_group = btrfs_lookup_block_group(fs_info, start);
2626 if (!block_group)
2627 return -EINVAL;
2628
2629 ret = btrfs_cache_block_group(block_group, true);
2630 if (ret)
2631 goto out;
2632
2633 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2634 out:
2635 btrfs_put_block_group(block_group);
2636 return ret;
2637 }
2638
btrfs_exclude_logged_extents(struct extent_buffer * eb)2639 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2640 {
2641 struct btrfs_fs_info *fs_info = eb->fs_info;
2642 struct btrfs_file_extent_item *item;
2643 struct btrfs_key key;
2644 int found_type;
2645 int i;
2646 int ret = 0;
2647
2648 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2649 return 0;
2650
2651 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2652 btrfs_item_key_to_cpu(eb, &key, i);
2653 if (key.type != BTRFS_EXTENT_DATA_KEY)
2654 continue;
2655 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2656 found_type = btrfs_file_extent_type(eb, item);
2657 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2658 continue;
2659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2660 continue;
2661 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2662 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2663 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2664 if (ret)
2665 break;
2666 }
2667
2668 return ret;
2669 }
2670
2671 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2672 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2673 {
2674 atomic_inc(&bg->reservations);
2675 }
2676
2677 /*
2678 * Returns the free cluster for the given space info and sets empty_cluster to
2679 * what it should be based on the mount options.
2680 */
2681 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2682 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2683 struct btrfs_space_info *space_info, u64 *empty_cluster)
2684 {
2685 struct btrfs_free_cluster *ret = NULL;
2686
2687 *empty_cluster = 0;
2688 if (btrfs_mixed_space_info(space_info))
2689 return ret;
2690
2691 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2692 ret = &fs_info->meta_alloc_cluster;
2693 if (btrfs_test_opt(fs_info, SSD))
2694 *empty_cluster = SZ_2M;
2695 else
2696 *empty_cluster = SZ_64K;
2697 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2698 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2699 *empty_cluster = SZ_2M;
2700 ret = &fs_info->data_alloc_cluster;
2701 }
2702
2703 return ret;
2704 }
2705
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2706 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2707 u64 start, u64 end,
2708 const bool return_free_space)
2709 {
2710 struct btrfs_block_group *cache = NULL;
2711 struct btrfs_space_info *space_info;
2712 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2713 struct btrfs_free_cluster *cluster = NULL;
2714 u64 len;
2715 u64 total_unpinned = 0;
2716 u64 empty_cluster = 0;
2717 bool readonly;
2718
2719 while (start <= end) {
2720 readonly = false;
2721 if (!cache ||
2722 start >= cache->start + cache->length) {
2723 if (cache)
2724 btrfs_put_block_group(cache);
2725 total_unpinned = 0;
2726 cache = btrfs_lookup_block_group(fs_info, start);
2727 BUG_ON(!cache); /* Logic error */
2728
2729 cluster = fetch_cluster_info(fs_info,
2730 cache->space_info,
2731 &empty_cluster);
2732 empty_cluster <<= 1;
2733 }
2734
2735 len = cache->start + cache->length - start;
2736 len = min(len, end + 1 - start);
2737
2738 if (return_free_space)
2739 btrfs_add_free_space(cache, start, len);
2740
2741 start += len;
2742 total_unpinned += len;
2743 space_info = cache->space_info;
2744
2745 /*
2746 * If this space cluster has been marked as fragmented and we've
2747 * unpinned enough in this block group to potentially allow a
2748 * cluster to be created inside of it go ahead and clear the
2749 * fragmented check.
2750 */
2751 if (cluster && cluster->fragmented &&
2752 total_unpinned > empty_cluster) {
2753 spin_lock(&cluster->lock);
2754 cluster->fragmented = 0;
2755 spin_unlock(&cluster->lock);
2756 }
2757
2758 spin_lock(&space_info->lock);
2759 spin_lock(&cache->lock);
2760 cache->pinned -= len;
2761 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2762 space_info->max_extent_size = 0;
2763 if (cache->ro) {
2764 space_info->bytes_readonly += len;
2765 readonly = true;
2766 } else if (btrfs_is_zoned(fs_info)) {
2767 /* Need reset before reusing in a zoned block group */
2768 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2769 len);
2770 readonly = true;
2771 }
2772 spin_unlock(&cache->lock);
2773 if (!readonly && return_free_space &&
2774 global_rsv->space_info == space_info) {
2775 spin_lock(&global_rsv->lock);
2776 if (!global_rsv->full) {
2777 u64 to_add = min(len, global_rsv->size -
2778 global_rsv->reserved);
2779
2780 global_rsv->reserved += to_add;
2781 btrfs_space_info_update_bytes_may_use(fs_info,
2782 space_info, to_add);
2783 if (global_rsv->reserved >= global_rsv->size)
2784 global_rsv->full = 1;
2785 len -= to_add;
2786 }
2787 spin_unlock(&global_rsv->lock);
2788 }
2789 /* Add to any tickets we may have */
2790 if (!readonly && return_free_space && len)
2791 btrfs_try_granting_tickets(fs_info, space_info);
2792 spin_unlock(&space_info->lock);
2793 }
2794
2795 if (cache)
2796 btrfs_put_block_group(cache);
2797 return 0;
2798 }
2799
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2800 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2801 {
2802 struct btrfs_fs_info *fs_info = trans->fs_info;
2803 struct btrfs_block_group *block_group, *tmp;
2804 struct list_head *deleted_bgs;
2805 struct extent_io_tree *unpin;
2806 u64 start;
2807 u64 end;
2808 int ret;
2809
2810 unpin = &trans->transaction->pinned_extents;
2811
2812 while (!TRANS_ABORTED(trans)) {
2813 struct extent_state *cached_state = NULL;
2814
2815 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2816 if (!find_first_extent_bit(unpin, 0, &start, &end,
2817 EXTENT_DIRTY, &cached_state)) {
2818 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2819 break;
2820 }
2821
2822 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2823 ret = btrfs_discard_extent(fs_info, start,
2824 end + 1 - start, NULL);
2825
2826 clear_extent_dirty(unpin, start, end, &cached_state);
2827 unpin_extent_range(fs_info, start, end, true);
2828 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2829 free_extent_state(cached_state);
2830 cond_resched();
2831 }
2832
2833 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2834 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2835 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2836 }
2837
2838 /*
2839 * Transaction is finished. We don't need the lock anymore. We
2840 * do need to clean up the block groups in case of a transaction
2841 * abort.
2842 */
2843 deleted_bgs = &trans->transaction->deleted_bgs;
2844 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2845 u64 trimmed = 0;
2846
2847 ret = -EROFS;
2848 if (!TRANS_ABORTED(trans))
2849 ret = btrfs_discard_extent(fs_info,
2850 block_group->start,
2851 block_group->length,
2852 &trimmed);
2853
2854 list_del_init(&block_group->bg_list);
2855 btrfs_unfreeze_block_group(block_group);
2856 btrfs_put_block_group(block_group);
2857
2858 if (ret) {
2859 const char *errstr = btrfs_decode_error(ret);
2860 btrfs_warn(fs_info,
2861 "discard failed while removing blockgroup: errno=%d %s",
2862 ret, errstr);
2863 }
2864 }
2865
2866 return 0;
2867 }
2868
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2869 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2870 u64 bytenr, u64 num_bytes, bool is_data)
2871 {
2872 int ret;
2873
2874 if (is_data) {
2875 struct btrfs_root *csum_root;
2876
2877 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2878 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2879 if (ret) {
2880 btrfs_abort_transaction(trans, ret);
2881 return ret;
2882 }
2883 }
2884
2885 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2886 if (ret) {
2887 btrfs_abort_transaction(trans, ret);
2888 return ret;
2889 }
2890
2891 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2892 if (ret)
2893 btrfs_abort_transaction(trans, ret);
2894
2895 return ret;
2896 }
2897
2898 #define abort_and_dump(trans, path, fmt, args...) \
2899 ({ \
2900 btrfs_abort_transaction(trans, -EUCLEAN); \
2901 btrfs_print_leaf(path->nodes[0]); \
2902 btrfs_crit(trans->fs_info, fmt, ##args); \
2903 })
2904
2905 /*
2906 * Drop one or more refs of @node.
2907 *
2908 * 1. Locate the extent refs.
2909 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2910 * Locate it, then reduce the refs number or remove the ref line completely.
2911 *
2912 * 2. Update the refs count in EXTENT/METADATA_ITEM
2913 *
2914 * Inline backref case:
2915 *
2916 * in extent tree we have:
2917 *
2918 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2919 * refs 2 gen 6 flags DATA
2920 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2921 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2922 *
2923 * This function gets called with:
2924 *
2925 * node->bytenr = 13631488
2926 * node->num_bytes = 1048576
2927 * root_objectid = FS_TREE
2928 * owner_objectid = 257
2929 * owner_offset = 0
2930 * refs_to_drop = 1
2931 *
2932 * Then we should get some like:
2933 *
2934 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2935 * refs 1 gen 6 flags DATA
2936 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2937 *
2938 * Keyed backref case:
2939 *
2940 * in extent tree we have:
2941 *
2942 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2943 * refs 754 gen 6 flags DATA
2944 * [...]
2945 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2946 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2947 *
2948 * This function get called with:
2949 *
2950 * node->bytenr = 13631488
2951 * node->num_bytes = 1048576
2952 * root_objectid = FS_TREE
2953 * owner_objectid = 866
2954 * owner_offset = 0
2955 * refs_to_drop = 1
2956 *
2957 * Then we should get some like:
2958 *
2959 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2960 * refs 753 gen 6 flags DATA
2961 *
2962 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2963 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2964 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2965 struct btrfs_delayed_ref_node *node, u64 parent,
2966 u64 root_objectid, u64 owner_objectid,
2967 u64 owner_offset, int refs_to_drop,
2968 struct btrfs_delayed_extent_op *extent_op)
2969 {
2970 struct btrfs_fs_info *info = trans->fs_info;
2971 struct btrfs_key key;
2972 struct btrfs_path *path;
2973 struct btrfs_root *extent_root;
2974 struct extent_buffer *leaf;
2975 struct btrfs_extent_item *ei;
2976 struct btrfs_extent_inline_ref *iref;
2977 int ret;
2978 int is_data;
2979 int extent_slot = 0;
2980 int found_extent = 0;
2981 int num_to_del = 1;
2982 u32 item_size;
2983 u64 refs;
2984 u64 bytenr = node->bytenr;
2985 u64 num_bytes = node->num_bytes;
2986 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2987
2988 extent_root = btrfs_extent_root(info, bytenr);
2989 ASSERT(extent_root);
2990
2991 path = btrfs_alloc_path();
2992 if (!path)
2993 return -ENOMEM;
2994
2995 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2996
2997 if (!is_data && refs_to_drop != 1) {
2998 btrfs_crit(info,
2999 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3000 node->bytenr, refs_to_drop);
3001 ret = -EINVAL;
3002 btrfs_abort_transaction(trans, ret);
3003 goto out;
3004 }
3005
3006 if (is_data)
3007 skinny_metadata = false;
3008
3009 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3010 parent, root_objectid, owner_objectid,
3011 owner_offset);
3012 if (ret == 0) {
3013 /*
3014 * Either the inline backref or the SHARED_DATA_REF/
3015 * SHARED_BLOCK_REF is found
3016 *
3017 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3018 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3019 */
3020 extent_slot = path->slots[0];
3021 while (extent_slot >= 0) {
3022 btrfs_item_key_to_cpu(path->nodes[0], &key,
3023 extent_slot);
3024 if (key.objectid != bytenr)
3025 break;
3026 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3027 key.offset == num_bytes) {
3028 found_extent = 1;
3029 break;
3030 }
3031 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3032 key.offset == owner_objectid) {
3033 found_extent = 1;
3034 break;
3035 }
3036
3037 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3038 if (path->slots[0] - extent_slot > 5)
3039 break;
3040 extent_slot--;
3041 }
3042
3043 if (!found_extent) {
3044 if (iref) {
3045 abort_and_dump(trans, path,
3046 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3047 path->slots[0]);
3048 ret = -EUCLEAN;
3049 goto out;
3050 }
3051 /* Must be SHARED_* item, remove the backref first */
3052 ret = remove_extent_backref(trans, extent_root, path,
3053 NULL, refs_to_drop, is_data);
3054 if (ret) {
3055 btrfs_abort_transaction(trans, ret);
3056 goto out;
3057 }
3058 btrfs_release_path(path);
3059
3060 /* Slow path to locate EXTENT/METADATA_ITEM */
3061 key.objectid = bytenr;
3062 key.type = BTRFS_EXTENT_ITEM_KEY;
3063 key.offset = num_bytes;
3064
3065 if (!is_data && skinny_metadata) {
3066 key.type = BTRFS_METADATA_ITEM_KEY;
3067 key.offset = owner_objectid;
3068 }
3069
3070 ret = btrfs_search_slot(trans, extent_root,
3071 &key, path, -1, 1);
3072 if (ret > 0 && skinny_metadata && path->slots[0]) {
3073 /*
3074 * Couldn't find our skinny metadata item,
3075 * see if we have ye olde extent item.
3076 */
3077 path->slots[0]--;
3078 btrfs_item_key_to_cpu(path->nodes[0], &key,
3079 path->slots[0]);
3080 if (key.objectid == bytenr &&
3081 key.type == BTRFS_EXTENT_ITEM_KEY &&
3082 key.offset == num_bytes)
3083 ret = 0;
3084 }
3085
3086 if (ret > 0 && skinny_metadata) {
3087 skinny_metadata = false;
3088 key.objectid = bytenr;
3089 key.type = BTRFS_EXTENT_ITEM_KEY;
3090 key.offset = num_bytes;
3091 btrfs_release_path(path);
3092 ret = btrfs_search_slot(trans, extent_root,
3093 &key, path, -1, 1);
3094 }
3095
3096 if (ret) {
3097 if (ret > 0)
3098 btrfs_print_leaf(path->nodes[0]);
3099 btrfs_err(info,
3100 "umm, got %d back from search, was looking for %llu, slot %d",
3101 ret, bytenr, path->slots[0]);
3102 }
3103 if (ret < 0) {
3104 btrfs_abort_transaction(trans, ret);
3105 goto out;
3106 }
3107 extent_slot = path->slots[0];
3108 }
3109 } else if (WARN_ON(ret == -ENOENT)) {
3110 abort_and_dump(trans, path,
3111 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3112 bytenr, parent, root_objectid, owner_objectid,
3113 owner_offset, path->slots[0]);
3114 goto out;
3115 } else {
3116 btrfs_abort_transaction(trans, ret);
3117 goto out;
3118 }
3119
3120 leaf = path->nodes[0];
3121 item_size = btrfs_item_size(leaf, extent_slot);
3122 if (unlikely(item_size < sizeof(*ei))) {
3123 ret = -EUCLEAN;
3124 btrfs_err(trans->fs_info,
3125 "unexpected extent item size, has %u expect >= %zu",
3126 item_size, sizeof(*ei));
3127 btrfs_abort_transaction(trans, ret);
3128 goto out;
3129 }
3130 ei = btrfs_item_ptr(leaf, extent_slot,
3131 struct btrfs_extent_item);
3132 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3133 key.type == BTRFS_EXTENT_ITEM_KEY) {
3134 struct btrfs_tree_block_info *bi;
3135
3136 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3137 abort_and_dump(trans, path,
3138 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3139 key.objectid, key.type, key.offset,
3140 path->slots[0], owner_objectid, item_size,
3141 sizeof(*ei) + sizeof(*bi));
3142 ret = -EUCLEAN;
3143 goto out;
3144 }
3145 bi = (struct btrfs_tree_block_info *)(ei + 1);
3146 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3147 }
3148
3149 refs = btrfs_extent_refs(leaf, ei);
3150 if (refs < refs_to_drop) {
3151 abort_and_dump(trans, path,
3152 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3153 refs_to_drop, refs, bytenr, path->slots[0]);
3154 ret = -EUCLEAN;
3155 goto out;
3156 }
3157 refs -= refs_to_drop;
3158
3159 if (refs > 0) {
3160 if (extent_op)
3161 __run_delayed_extent_op(extent_op, leaf, ei);
3162 /*
3163 * In the case of inline back ref, reference count will
3164 * be updated by remove_extent_backref
3165 */
3166 if (iref) {
3167 if (!found_extent) {
3168 abort_and_dump(trans, path,
3169 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3170 path->slots[0]);
3171 ret = -EUCLEAN;
3172 goto out;
3173 }
3174 } else {
3175 btrfs_set_extent_refs(leaf, ei, refs);
3176 btrfs_mark_buffer_dirty(trans, leaf);
3177 }
3178 if (found_extent) {
3179 ret = remove_extent_backref(trans, extent_root, path,
3180 iref, refs_to_drop, is_data);
3181 if (ret) {
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185 }
3186 } else {
3187 /* In this branch refs == 1 */
3188 if (found_extent) {
3189 if (is_data && refs_to_drop !=
3190 extent_data_ref_count(path, iref)) {
3191 abort_and_dump(trans, path,
3192 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3193 extent_data_ref_count(path, iref),
3194 refs_to_drop, path->slots[0]);
3195 ret = -EUCLEAN;
3196 goto out;
3197 }
3198 if (iref) {
3199 if (path->slots[0] != extent_slot) {
3200 abort_and_dump(trans, path,
3201 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3202 key.objectid, key.type,
3203 key.offset, path->slots[0]);
3204 ret = -EUCLEAN;
3205 goto out;
3206 }
3207 } else {
3208 /*
3209 * No inline ref, we must be at SHARED_* item,
3210 * And it's single ref, it must be:
3211 * | extent_slot ||extent_slot + 1|
3212 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3213 */
3214 if (path->slots[0] != extent_slot + 1) {
3215 abort_and_dump(trans, path,
3216 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3217 path->slots[0]);
3218 ret = -EUCLEAN;
3219 goto out;
3220 }
3221 path->slots[0] = extent_slot;
3222 num_to_del = 2;
3223 }
3224 }
3225
3226 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3227 num_to_del);
3228 if (ret) {
3229 btrfs_abort_transaction(trans, ret);
3230 goto out;
3231 }
3232 btrfs_release_path(path);
3233
3234 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3235 }
3236 btrfs_release_path(path);
3237
3238 out:
3239 btrfs_free_path(path);
3240 return ret;
3241 }
3242
3243 /*
3244 * when we free an block, it is possible (and likely) that we free the last
3245 * delayed ref for that extent as well. This searches the delayed ref tree for
3246 * a given extent, and if there are no other delayed refs to be processed, it
3247 * removes it from the tree.
3248 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3249 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3250 u64 bytenr)
3251 {
3252 struct btrfs_delayed_ref_head *head;
3253 struct btrfs_delayed_ref_root *delayed_refs;
3254 int ret = 0;
3255
3256 delayed_refs = &trans->transaction->delayed_refs;
3257 spin_lock(&delayed_refs->lock);
3258 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3259 if (!head)
3260 goto out_delayed_unlock;
3261
3262 spin_lock(&head->lock);
3263 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3264 goto out;
3265
3266 if (cleanup_extent_op(head) != NULL)
3267 goto out;
3268
3269 /*
3270 * waiting for the lock here would deadlock. If someone else has it
3271 * locked they are already in the process of dropping it anyway
3272 */
3273 if (!mutex_trylock(&head->mutex))
3274 goto out;
3275
3276 btrfs_delete_ref_head(delayed_refs, head);
3277 head->processing = false;
3278
3279 spin_unlock(&head->lock);
3280 spin_unlock(&delayed_refs->lock);
3281
3282 BUG_ON(head->extent_op);
3283 if (head->must_insert_reserved)
3284 ret = 1;
3285
3286 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3287 mutex_unlock(&head->mutex);
3288 btrfs_put_delayed_ref_head(head);
3289 return ret;
3290 out:
3291 spin_unlock(&head->lock);
3292
3293 out_delayed_unlock:
3294 spin_unlock(&delayed_refs->lock);
3295 return 0;
3296 }
3297
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3298 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3299 u64 root_id,
3300 struct extent_buffer *buf,
3301 u64 parent, int last_ref)
3302 {
3303 struct btrfs_fs_info *fs_info = trans->fs_info;
3304 struct btrfs_ref generic_ref = { 0 };
3305 int ret;
3306
3307 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3308 buf->start, buf->len, parent);
3309 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3310 root_id, 0, false);
3311
3312 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3313 btrfs_ref_tree_mod(fs_info, &generic_ref);
3314 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3315 if (ret < 0)
3316 return ret;
3317 }
3318
3319 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3320 struct btrfs_block_group *cache;
3321 bool must_pin = false;
3322
3323 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3324 ret = check_ref_cleanup(trans, buf->start);
3325 if (!ret) {
3326 btrfs_redirty_list_add(trans->transaction, buf);
3327 goto out;
3328 }
3329 }
3330
3331 cache = btrfs_lookup_block_group(fs_info, buf->start);
3332
3333 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3334 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3335 btrfs_put_block_group(cache);
3336 goto out;
3337 }
3338
3339 /*
3340 * If there are tree mod log users we may have recorded mod log
3341 * operations for this node. If we re-allocate this node we
3342 * could replay operations on this node that happened when it
3343 * existed in a completely different root. For example if it
3344 * was part of root A, then was reallocated to root B, and we
3345 * are doing a btrfs_old_search_slot(root b), we could replay
3346 * operations that happened when the block was part of root A,
3347 * giving us an inconsistent view of the btree.
3348 *
3349 * We are safe from races here because at this point no other
3350 * node or root points to this extent buffer, so if after this
3351 * check a new tree mod log user joins we will not have an
3352 * existing log of operations on this node that we have to
3353 * contend with.
3354 */
3355 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3356 must_pin = true;
3357
3358 if (must_pin || btrfs_is_zoned(fs_info)) {
3359 btrfs_redirty_list_add(trans->transaction, buf);
3360 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3361 btrfs_put_block_group(cache);
3362 goto out;
3363 }
3364
3365 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3366
3367 btrfs_add_free_space(cache, buf->start, buf->len);
3368 btrfs_free_reserved_bytes(cache, buf->len, 0);
3369 btrfs_put_block_group(cache);
3370 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3371 }
3372 out:
3373 if (last_ref) {
3374 /*
3375 * Deleting the buffer, clear the corrupt flag since it doesn't
3376 * matter anymore.
3377 */
3378 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3379 }
3380 return 0;
3381 }
3382
3383 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3384 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3385 {
3386 struct btrfs_fs_info *fs_info = trans->fs_info;
3387 int ret;
3388
3389 if (btrfs_is_testing(fs_info))
3390 return 0;
3391
3392 /*
3393 * tree log blocks never actually go into the extent allocation
3394 * tree, just update pinning info and exit early.
3395 */
3396 if ((ref->type == BTRFS_REF_METADATA &&
3397 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3398 (ref->type == BTRFS_REF_DATA &&
3399 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3400 /* unlocks the pinned mutex */
3401 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3402 ret = 0;
3403 } else if (ref->type == BTRFS_REF_METADATA) {
3404 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3405 } else {
3406 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3407 }
3408
3409 if (!((ref->type == BTRFS_REF_METADATA &&
3410 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3411 (ref->type == BTRFS_REF_DATA &&
3412 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3413 btrfs_ref_tree_mod(fs_info, ref);
3414
3415 return ret;
3416 }
3417
3418 enum btrfs_loop_type {
3419 /*
3420 * Start caching block groups but do not wait for progress or for them
3421 * to be done.
3422 */
3423 LOOP_CACHING_NOWAIT,
3424
3425 /*
3426 * Wait for the block group free_space >= the space we're waiting for if
3427 * the block group isn't cached.
3428 */
3429 LOOP_CACHING_WAIT,
3430
3431 /*
3432 * Allow allocations to happen from block groups that do not yet have a
3433 * size classification.
3434 */
3435 LOOP_UNSET_SIZE_CLASS,
3436
3437 /*
3438 * Allocate a chunk and then retry the allocation.
3439 */
3440 LOOP_ALLOC_CHUNK,
3441
3442 /*
3443 * Ignore the size class restrictions for this allocation.
3444 */
3445 LOOP_WRONG_SIZE_CLASS,
3446
3447 /*
3448 * Ignore the empty size, only try to allocate the number of bytes
3449 * needed for this allocation.
3450 */
3451 LOOP_NO_EMPTY_SIZE,
3452 };
3453
3454 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3455 btrfs_lock_block_group(struct btrfs_block_group *cache,
3456 int delalloc)
3457 {
3458 if (delalloc)
3459 down_read(&cache->data_rwsem);
3460 }
3461
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3462 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3463 int delalloc)
3464 {
3465 btrfs_get_block_group(cache);
3466 if (delalloc)
3467 down_read(&cache->data_rwsem);
3468 }
3469
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3470 static struct btrfs_block_group *btrfs_lock_cluster(
3471 struct btrfs_block_group *block_group,
3472 struct btrfs_free_cluster *cluster,
3473 int delalloc)
3474 __acquires(&cluster->refill_lock)
3475 {
3476 struct btrfs_block_group *used_bg = NULL;
3477
3478 spin_lock(&cluster->refill_lock);
3479 while (1) {
3480 used_bg = cluster->block_group;
3481 if (!used_bg)
3482 return NULL;
3483
3484 if (used_bg == block_group)
3485 return used_bg;
3486
3487 btrfs_get_block_group(used_bg);
3488
3489 if (!delalloc)
3490 return used_bg;
3491
3492 if (down_read_trylock(&used_bg->data_rwsem))
3493 return used_bg;
3494
3495 spin_unlock(&cluster->refill_lock);
3496
3497 /* We should only have one-level nested. */
3498 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3499
3500 spin_lock(&cluster->refill_lock);
3501 if (used_bg == cluster->block_group)
3502 return used_bg;
3503
3504 up_read(&used_bg->data_rwsem);
3505 btrfs_put_block_group(used_bg);
3506 }
3507 }
3508
3509 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3510 btrfs_release_block_group(struct btrfs_block_group *cache,
3511 int delalloc)
3512 {
3513 if (delalloc)
3514 up_read(&cache->data_rwsem);
3515 btrfs_put_block_group(cache);
3516 }
3517
3518 /*
3519 * Helper function for find_free_extent().
3520 *
3521 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3522 * Return >0 to inform caller that we find nothing
3523 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3524 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3525 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3526 struct find_free_extent_ctl *ffe_ctl,
3527 struct btrfs_block_group **cluster_bg_ret)
3528 {
3529 struct btrfs_block_group *cluster_bg;
3530 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3531 u64 aligned_cluster;
3532 u64 offset;
3533 int ret;
3534
3535 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3536 if (!cluster_bg)
3537 goto refill_cluster;
3538 if (cluster_bg != bg && (cluster_bg->ro ||
3539 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3540 goto release_cluster;
3541
3542 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3543 ffe_ctl->num_bytes, cluster_bg->start,
3544 &ffe_ctl->max_extent_size);
3545 if (offset) {
3546 /* We have a block, we're done */
3547 spin_unlock(&last_ptr->refill_lock);
3548 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3549 *cluster_bg_ret = cluster_bg;
3550 ffe_ctl->found_offset = offset;
3551 return 0;
3552 }
3553 WARN_ON(last_ptr->block_group != cluster_bg);
3554
3555 release_cluster:
3556 /*
3557 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3558 * lets just skip it and let the allocator find whatever block it can
3559 * find. If we reach this point, we will have tried the cluster
3560 * allocator plenty of times and not have found anything, so we are
3561 * likely way too fragmented for the clustering stuff to find anything.
3562 *
3563 * However, if the cluster is taken from the current block group,
3564 * release the cluster first, so that we stand a better chance of
3565 * succeeding in the unclustered allocation.
3566 */
3567 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3568 spin_unlock(&last_ptr->refill_lock);
3569 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3570 return -ENOENT;
3571 }
3572
3573 /* This cluster didn't work out, free it and start over */
3574 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3575
3576 if (cluster_bg != bg)
3577 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3578
3579 refill_cluster:
3580 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3581 spin_unlock(&last_ptr->refill_lock);
3582 return -ENOENT;
3583 }
3584
3585 aligned_cluster = max_t(u64,
3586 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3587 bg->full_stripe_len);
3588 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3589 ffe_ctl->num_bytes, aligned_cluster);
3590 if (ret == 0) {
3591 /* Now pull our allocation out of this cluster */
3592 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3593 ffe_ctl->num_bytes, ffe_ctl->search_start,
3594 &ffe_ctl->max_extent_size);
3595 if (offset) {
3596 /* We found one, proceed */
3597 spin_unlock(&last_ptr->refill_lock);
3598 ffe_ctl->found_offset = offset;
3599 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3600 return 0;
3601 }
3602 }
3603 /*
3604 * At this point we either didn't find a cluster or we weren't able to
3605 * allocate a block from our cluster. Free the cluster we've been
3606 * trying to use, and go to the next block group.
3607 */
3608 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3609 spin_unlock(&last_ptr->refill_lock);
3610 return 1;
3611 }
3612
3613 /*
3614 * Return >0 to inform caller that we find nothing
3615 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3616 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3617 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3618 struct find_free_extent_ctl *ffe_ctl)
3619 {
3620 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3621 u64 offset;
3622
3623 /*
3624 * We are doing an unclustered allocation, set the fragmented flag so
3625 * we don't bother trying to setup a cluster again until we get more
3626 * space.
3627 */
3628 if (unlikely(last_ptr)) {
3629 spin_lock(&last_ptr->lock);
3630 last_ptr->fragmented = 1;
3631 spin_unlock(&last_ptr->lock);
3632 }
3633 if (ffe_ctl->cached) {
3634 struct btrfs_free_space_ctl *free_space_ctl;
3635
3636 free_space_ctl = bg->free_space_ctl;
3637 spin_lock(&free_space_ctl->tree_lock);
3638 if (free_space_ctl->free_space <
3639 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3640 ffe_ctl->empty_size) {
3641 ffe_ctl->total_free_space = max_t(u64,
3642 ffe_ctl->total_free_space,
3643 free_space_ctl->free_space);
3644 spin_unlock(&free_space_ctl->tree_lock);
3645 return 1;
3646 }
3647 spin_unlock(&free_space_ctl->tree_lock);
3648 }
3649
3650 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3651 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3652 &ffe_ctl->max_extent_size);
3653 if (!offset)
3654 return 1;
3655 ffe_ctl->found_offset = offset;
3656 return 0;
3657 }
3658
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3659 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3660 struct find_free_extent_ctl *ffe_ctl,
3661 struct btrfs_block_group **bg_ret)
3662 {
3663 int ret;
3664
3665 /* We want to try and use the cluster allocator, so lets look there */
3666 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3667 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3668 if (ret >= 0)
3669 return ret;
3670 /* ret == -ENOENT case falls through */
3671 }
3672
3673 return find_free_extent_unclustered(block_group, ffe_ctl);
3674 }
3675
3676 /*
3677 * Tree-log block group locking
3678 * ============================
3679 *
3680 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3681 * indicates the starting address of a block group, which is reserved only
3682 * for tree-log metadata.
3683 *
3684 * Lock nesting
3685 * ============
3686 *
3687 * space_info::lock
3688 * block_group::lock
3689 * fs_info::treelog_bg_lock
3690 */
3691
3692 /*
3693 * Simple allocator for sequential-only block group. It only allows sequential
3694 * allocation. No need to play with trees. This function also reserves the
3695 * bytes as in btrfs_add_reserved_bytes.
3696 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3697 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3698 struct find_free_extent_ctl *ffe_ctl,
3699 struct btrfs_block_group **bg_ret)
3700 {
3701 struct btrfs_fs_info *fs_info = block_group->fs_info;
3702 struct btrfs_space_info *space_info = block_group->space_info;
3703 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3704 u64 start = block_group->start;
3705 u64 num_bytes = ffe_ctl->num_bytes;
3706 u64 avail;
3707 u64 bytenr = block_group->start;
3708 u64 log_bytenr;
3709 u64 data_reloc_bytenr;
3710 int ret = 0;
3711 bool skip = false;
3712
3713 ASSERT(btrfs_is_zoned(block_group->fs_info));
3714
3715 /*
3716 * Do not allow non-tree-log blocks in the dedicated tree-log block
3717 * group, and vice versa.
3718 */
3719 spin_lock(&fs_info->treelog_bg_lock);
3720 log_bytenr = fs_info->treelog_bg;
3721 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3722 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3723 skip = true;
3724 spin_unlock(&fs_info->treelog_bg_lock);
3725 if (skip)
3726 return 1;
3727
3728 /*
3729 * Do not allow non-relocation blocks in the dedicated relocation block
3730 * group, and vice versa.
3731 */
3732 spin_lock(&fs_info->relocation_bg_lock);
3733 data_reloc_bytenr = fs_info->data_reloc_bg;
3734 if (data_reloc_bytenr &&
3735 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3736 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3737 skip = true;
3738 spin_unlock(&fs_info->relocation_bg_lock);
3739 if (skip)
3740 return 1;
3741
3742 /* Check RO and no space case before trying to activate it */
3743 spin_lock(&block_group->lock);
3744 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3745 ret = 1;
3746 /*
3747 * May need to clear fs_info->{treelog,data_reloc}_bg.
3748 * Return the error after taking the locks.
3749 */
3750 }
3751 spin_unlock(&block_group->lock);
3752
3753 /* Metadata block group is activated at write time. */
3754 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3755 !btrfs_zone_activate(block_group)) {
3756 ret = 1;
3757 /*
3758 * May need to clear fs_info->{treelog,data_reloc}_bg.
3759 * Return the error after taking the locks.
3760 */
3761 }
3762
3763 spin_lock(&space_info->lock);
3764 spin_lock(&block_group->lock);
3765 spin_lock(&fs_info->treelog_bg_lock);
3766 spin_lock(&fs_info->relocation_bg_lock);
3767
3768 if (ret)
3769 goto out;
3770
3771 ASSERT(!ffe_ctl->for_treelog ||
3772 block_group->start == fs_info->treelog_bg ||
3773 fs_info->treelog_bg == 0);
3774 ASSERT(!ffe_ctl->for_data_reloc ||
3775 block_group->start == fs_info->data_reloc_bg ||
3776 fs_info->data_reloc_bg == 0);
3777
3778 if (block_group->ro ||
3779 (!ffe_ctl->for_data_reloc &&
3780 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3781 ret = 1;
3782 goto out;
3783 }
3784
3785 /*
3786 * Do not allow currently using block group to be tree-log dedicated
3787 * block group.
3788 */
3789 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3790 (block_group->used || block_group->reserved)) {
3791 ret = 1;
3792 goto out;
3793 }
3794
3795 /*
3796 * Do not allow currently used block group to be the data relocation
3797 * dedicated block group.
3798 */
3799 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3800 (block_group->used || block_group->reserved)) {
3801 ret = 1;
3802 goto out;
3803 }
3804
3805 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3806 avail = block_group->zone_capacity - block_group->alloc_offset;
3807 if (avail < num_bytes) {
3808 if (ffe_ctl->max_extent_size < avail) {
3809 /*
3810 * With sequential allocator, free space is always
3811 * contiguous
3812 */
3813 ffe_ctl->max_extent_size = avail;
3814 ffe_ctl->total_free_space = avail;
3815 }
3816 ret = 1;
3817 goto out;
3818 }
3819
3820 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3821 fs_info->treelog_bg = block_group->start;
3822
3823 if (ffe_ctl->for_data_reloc) {
3824 if (!fs_info->data_reloc_bg)
3825 fs_info->data_reloc_bg = block_group->start;
3826 /*
3827 * Do not allow allocations from this block group, unless it is
3828 * for data relocation. Compared to increasing the ->ro, setting
3829 * the ->zoned_data_reloc_ongoing flag still allows nocow
3830 * writers to come in. See btrfs_inc_nocow_writers().
3831 *
3832 * We need to disable an allocation to avoid an allocation of
3833 * regular (non-relocation data) extent. With mix of relocation
3834 * extents and regular extents, we can dispatch WRITE commands
3835 * (for relocation extents) and ZONE APPEND commands (for
3836 * regular extents) at the same time to the same zone, which
3837 * easily break the write pointer.
3838 *
3839 * Also, this flag avoids this block group to be zone finished.
3840 */
3841 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3842 }
3843
3844 ffe_ctl->found_offset = start + block_group->alloc_offset;
3845 block_group->alloc_offset += num_bytes;
3846 spin_lock(&ctl->tree_lock);
3847 ctl->free_space -= num_bytes;
3848 spin_unlock(&ctl->tree_lock);
3849
3850 /*
3851 * We do not check if found_offset is aligned to stripesize. The
3852 * address is anyway rewritten when using zone append writing.
3853 */
3854
3855 ffe_ctl->search_start = ffe_ctl->found_offset;
3856
3857 out:
3858 if (ret && ffe_ctl->for_treelog)
3859 fs_info->treelog_bg = 0;
3860 if (ret && ffe_ctl->for_data_reloc)
3861 fs_info->data_reloc_bg = 0;
3862 spin_unlock(&fs_info->relocation_bg_lock);
3863 spin_unlock(&fs_info->treelog_bg_lock);
3864 spin_unlock(&block_group->lock);
3865 spin_unlock(&space_info->lock);
3866 return ret;
3867 }
3868
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3869 static int do_allocation(struct btrfs_block_group *block_group,
3870 struct find_free_extent_ctl *ffe_ctl,
3871 struct btrfs_block_group **bg_ret)
3872 {
3873 switch (ffe_ctl->policy) {
3874 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3875 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3876 case BTRFS_EXTENT_ALLOC_ZONED:
3877 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3878 default:
3879 BUG();
3880 }
3881 }
3882
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3883 static void release_block_group(struct btrfs_block_group *block_group,
3884 struct find_free_extent_ctl *ffe_ctl,
3885 int delalloc)
3886 {
3887 switch (ffe_ctl->policy) {
3888 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3889 ffe_ctl->retry_uncached = false;
3890 break;
3891 case BTRFS_EXTENT_ALLOC_ZONED:
3892 /* Nothing to do */
3893 break;
3894 default:
3895 BUG();
3896 }
3897
3898 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3899 ffe_ctl->index);
3900 btrfs_release_block_group(block_group, delalloc);
3901 }
3902
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3903 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3904 struct btrfs_key *ins)
3905 {
3906 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3907
3908 if (!ffe_ctl->use_cluster && last_ptr) {
3909 spin_lock(&last_ptr->lock);
3910 last_ptr->window_start = ins->objectid;
3911 spin_unlock(&last_ptr->lock);
3912 }
3913 }
3914
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3915 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3916 struct btrfs_key *ins)
3917 {
3918 switch (ffe_ctl->policy) {
3919 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3920 found_extent_clustered(ffe_ctl, ins);
3921 break;
3922 case BTRFS_EXTENT_ALLOC_ZONED:
3923 /* Nothing to do */
3924 break;
3925 default:
3926 BUG();
3927 }
3928 }
3929
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3930 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3931 struct find_free_extent_ctl *ffe_ctl)
3932 {
3933 /* Block group's activeness is not a requirement for METADATA block groups. */
3934 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3935 return 0;
3936
3937 /* If we can activate new zone, just allocate a chunk and use it */
3938 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3939 return 0;
3940
3941 /*
3942 * We already reached the max active zones. Try to finish one block
3943 * group to make a room for a new block group. This is only possible
3944 * for a data block group because btrfs_zone_finish() may need to wait
3945 * for a running transaction which can cause a deadlock for metadata
3946 * allocation.
3947 */
3948 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3949 int ret = btrfs_zone_finish_one_bg(fs_info);
3950
3951 if (ret == 1)
3952 return 0;
3953 else if (ret < 0)
3954 return ret;
3955 }
3956
3957 /*
3958 * If we have enough free space left in an already active block group
3959 * and we can't activate any other zone now, do not allow allocating a
3960 * new chunk and let find_free_extent() retry with a smaller size.
3961 */
3962 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3963 return -ENOSPC;
3964
3965 /*
3966 * Even min_alloc_size is not left in any block groups. Since we cannot
3967 * activate a new block group, allocating it may not help. Let's tell a
3968 * caller to try again and hope it progress something by writing some
3969 * parts of the region. That is only possible for data block groups,
3970 * where a part of the region can be written.
3971 */
3972 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3973 return -EAGAIN;
3974
3975 /*
3976 * We cannot activate a new block group and no enough space left in any
3977 * block groups. So, allocating a new block group may not help. But,
3978 * there is nothing to do anyway, so let's go with it.
3979 */
3980 return 0;
3981 }
3982
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3983 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3984 struct find_free_extent_ctl *ffe_ctl)
3985 {
3986 switch (ffe_ctl->policy) {
3987 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3988 return 0;
3989 case BTRFS_EXTENT_ALLOC_ZONED:
3990 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3991 default:
3992 BUG();
3993 }
3994 }
3995
3996 /*
3997 * Return >0 means caller needs to re-search for free extent
3998 * Return 0 means we have the needed free extent.
3999 * Return <0 means we failed to locate any free extent.
4000 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4001 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4002 struct btrfs_key *ins,
4003 struct find_free_extent_ctl *ffe_ctl,
4004 bool full_search)
4005 {
4006 struct btrfs_root *root = fs_info->chunk_root;
4007 int ret;
4008
4009 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4010 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4011 ffe_ctl->orig_have_caching_bg = true;
4012
4013 if (ins->objectid) {
4014 found_extent(ffe_ctl, ins);
4015 return 0;
4016 }
4017
4018 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4019 return 1;
4020
4021 ffe_ctl->index++;
4022 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4023 return 1;
4024
4025 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4026 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4027 ffe_ctl->index = 0;
4028 /*
4029 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4030 * any uncached bgs and we've already done a full search
4031 * through.
4032 */
4033 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4034 (!ffe_ctl->orig_have_caching_bg && full_search))
4035 ffe_ctl->loop++;
4036 ffe_ctl->loop++;
4037
4038 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4039 struct btrfs_trans_handle *trans;
4040 int exist = 0;
4041
4042 /* Check if allocation policy allows to create a new chunk */
4043 ret = can_allocate_chunk(fs_info, ffe_ctl);
4044 if (ret)
4045 return ret;
4046
4047 trans = current->journal_info;
4048 if (trans)
4049 exist = 1;
4050 else
4051 trans = btrfs_join_transaction(root);
4052
4053 if (IS_ERR(trans)) {
4054 ret = PTR_ERR(trans);
4055 return ret;
4056 }
4057
4058 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4059 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4060
4061 /* Do not bail out on ENOSPC since we can do more. */
4062 if (ret == -ENOSPC) {
4063 ret = 0;
4064 ffe_ctl->loop++;
4065 }
4066 else if (ret < 0)
4067 btrfs_abort_transaction(trans, ret);
4068 else
4069 ret = 0;
4070 if (!exist)
4071 btrfs_end_transaction(trans);
4072 if (ret)
4073 return ret;
4074 }
4075
4076 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4077 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4078 return -ENOSPC;
4079
4080 /*
4081 * Don't loop again if we already have no empty_size and
4082 * no empty_cluster.
4083 */
4084 if (ffe_ctl->empty_size == 0 &&
4085 ffe_ctl->empty_cluster == 0)
4086 return -ENOSPC;
4087 ffe_ctl->empty_size = 0;
4088 ffe_ctl->empty_cluster = 0;
4089 }
4090 return 1;
4091 }
4092 return -ENOSPC;
4093 }
4094
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4095 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4096 struct btrfs_block_group *bg)
4097 {
4098 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4099 return true;
4100 if (!btrfs_block_group_should_use_size_class(bg))
4101 return true;
4102 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4103 return true;
4104 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4105 bg->size_class == BTRFS_BG_SZ_NONE)
4106 return true;
4107 return ffe_ctl->size_class == bg->size_class;
4108 }
4109
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4110 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4111 struct find_free_extent_ctl *ffe_ctl,
4112 struct btrfs_space_info *space_info,
4113 struct btrfs_key *ins)
4114 {
4115 /*
4116 * If our free space is heavily fragmented we may not be able to make
4117 * big contiguous allocations, so instead of doing the expensive search
4118 * for free space, simply return ENOSPC with our max_extent_size so we
4119 * can go ahead and search for a more manageable chunk.
4120 *
4121 * If our max_extent_size is large enough for our allocation simply
4122 * disable clustering since we will likely not be able to find enough
4123 * space to create a cluster and induce latency trying.
4124 */
4125 if (space_info->max_extent_size) {
4126 spin_lock(&space_info->lock);
4127 if (space_info->max_extent_size &&
4128 ffe_ctl->num_bytes > space_info->max_extent_size) {
4129 ins->offset = space_info->max_extent_size;
4130 spin_unlock(&space_info->lock);
4131 return -ENOSPC;
4132 } else if (space_info->max_extent_size) {
4133 ffe_ctl->use_cluster = false;
4134 }
4135 spin_unlock(&space_info->lock);
4136 }
4137
4138 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4139 &ffe_ctl->empty_cluster);
4140 if (ffe_ctl->last_ptr) {
4141 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4142
4143 spin_lock(&last_ptr->lock);
4144 if (last_ptr->block_group)
4145 ffe_ctl->hint_byte = last_ptr->window_start;
4146 if (last_ptr->fragmented) {
4147 /*
4148 * We still set window_start so we can keep track of the
4149 * last place we found an allocation to try and save
4150 * some time.
4151 */
4152 ffe_ctl->hint_byte = last_ptr->window_start;
4153 ffe_ctl->use_cluster = false;
4154 }
4155 spin_unlock(&last_ptr->lock);
4156 }
4157
4158 return 0;
4159 }
4160
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4161 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4162 struct find_free_extent_ctl *ffe_ctl)
4163 {
4164 if (ffe_ctl->for_treelog) {
4165 spin_lock(&fs_info->treelog_bg_lock);
4166 if (fs_info->treelog_bg)
4167 ffe_ctl->hint_byte = fs_info->treelog_bg;
4168 spin_unlock(&fs_info->treelog_bg_lock);
4169 } else if (ffe_ctl->for_data_reloc) {
4170 spin_lock(&fs_info->relocation_bg_lock);
4171 if (fs_info->data_reloc_bg)
4172 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4173 spin_unlock(&fs_info->relocation_bg_lock);
4174 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4175 struct btrfs_block_group *block_group;
4176
4177 spin_lock(&fs_info->zone_active_bgs_lock);
4178 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4179 /*
4180 * No lock is OK here because avail is monotinically
4181 * decreasing, and this is just a hint.
4182 */
4183 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4184
4185 if (block_group_bits(block_group, ffe_ctl->flags) &&
4186 avail >= ffe_ctl->num_bytes) {
4187 ffe_ctl->hint_byte = block_group->start;
4188 break;
4189 }
4190 }
4191 spin_unlock(&fs_info->zone_active_bgs_lock);
4192 }
4193
4194 return 0;
4195 }
4196
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4197 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4198 struct find_free_extent_ctl *ffe_ctl,
4199 struct btrfs_space_info *space_info,
4200 struct btrfs_key *ins)
4201 {
4202 switch (ffe_ctl->policy) {
4203 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4204 return prepare_allocation_clustered(fs_info, ffe_ctl,
4205 space_info, ins);
4206 case BTRFS_EXTENT_ALLOC_ZONED:
4207 return prepare_allocation_zoned(fs_info, ffe_ctl);
4208 default:
4209 BUG();
4210 }
4211 }
4212
4213 /*
4214 * walks the btree of allocated extents and find a hole of a given size.
4215 * The key ins is changed to record the hole:
4216 * ins->objectid == start position
4217 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4218 * ins->offset == the size of the hole.
4219 * Any available blocks before search_start are skipped.
4220 *
4221 * If there is no suitable free space, we will record the max size of
4222 * the free space extent currently.
4223 *
4224 * The overall logic and call chain:
4225 *
4226 * find_free_extent()
4227 * |- Iterate through all block groups
4228 * | |- Get a valid block group
4229 * | |- Try to do clustered allocation in that block group
4230 * | |- Try to do unclustered allocation in that block group
4231 * | |- Check if the result is valid
4232 * | | |- If valid, then exit
4233 * | |- Jump to next block group
4234 * |
4235 * |- Push harder to find free extents
4236 * |- If not found, re-iterate all block groups
4237 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4238 static noinline int find_free_extent(struct btrfs_root *root,
4239 struct btrfs_key *ins,
4240 struct find_free_extent_ctl *ffe_ctl)
4241 {
4242 struct btrfs_fs_info *fs_info = root->fs_info;
4243 int ret = 0;
4244 int cache_block_group_error = 0;
4245 struct btrfs_block_group *block_group = NULL;
4246 struct btrfs_space_info *space_info;
4247 bool full_search = false;
4248
4249 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4250
4251 ffe_ctl->search_start = 0;
4252 /* For clustered allocation */
4253 ffe_ctl->empty_cluster = 0;
4254 ffe_ctl->last_ptr = NULL;
4255 ffe_ctl->use_cluster = true;
4256 ffe_ctl->have_caching_bg = false;
4257 ffe_ctl->orig_have_caching_bg = false;
4258 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4259 ffe_ctl->loop = 0;
4260 ffe_ctl->retry_uncached = false;
4261 ffe_ctl->cached = 0;
4262 ffe_ctl->max_extent_size = 0;
4263 ffe_ctl->total_free_space = 0;
4264 ffe_ctl->found_offset = 0;
4265 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4266 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4267
4268 if (btrfs_is_zoned(fs_info))
4269 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4270
4271 ins->type = BTRFS_EXTENT_ITEM_KEY;
4272 ins->objectid = 0;
4273 ins->offset = 0;
4274
4275 trace_find_free_extent(root, ffe_ctl);
4276
4277 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4278 if (!space_info) {
4279 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4280 return -ENOSPC;
4281 }
4282
4283 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4284 if (ret < 0)
4285 return ret;
4286
4287 ffe_ctl->search_start = max(ffe_ctl->search_start,
4288 first_logical_byte(fs_info));
4289 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4290 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4291 block_group = btrfs_lookup_block_group(fs_info,
4292 ffe_ctl->search_start);
4293 /*
4294 * we don't want to use the block group if it doesn't match our
4295 * allocation bits, or if its not cached.
4296 *
4297 * However if we are re-searching with an ideal block group
4298 * picked out then we don't care that the block group is cached.
4299 */
4300 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4301 block_group->cached != BTRFS_CACHE_NO) {
4302 down_read(&space_info->groups_sem);
4303 if (list_empty(&block_group->list) ||
4304 block_group->ro) {
4305 /*
4306 * someone is removing this block group,
4307 * we can't jump into the have_block_group
4308 * target because our list pointers are not
4309 * valid
4310 */
4311 btrfs_put_block_group(block_group);
4312 up_read(&space_info->groups_sem);
4313 } else {
4314 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4315 block_group->flags);
4316 btrfs_lock_block_group(block_group,
4317 ffe_ctl->delalloc);
4318 ffe_ctl->hinted = true;
4319 goto have_block_group;
4320 }
4321 } else if (block_group) {
4322 btrfs_put_block_group(block_group);
4323 }
4324 }
4325 search:
4326 trace_find_free_extent_search_loop(root, ffe_ctl);
4327 ffe_ctl->have_caching_bg = false;
4328 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4329 ffe_ctl->index == 0)
4330 full_search = true;
4331 down_read(&space_info->groups_sem);
4332 list_for_each_entry(block_group,
4333 &space_info->block_groups[ffe_ctl->index], list) {
4334 struct btrfs_block_group *bg_ret;
4335
4336 ffe_ctl->hinted = false;
4337 /* If the block group is read-only, we can skip it entirely. */
4338 if (unlikely(block_group->ro)) {
4339 if (ffe_ctl->for_treelog)
4340 btrfs_clear_treelog_bg(block_group);
4341 if (ffe_ctl->for_data_reloc)
4342 btrfs_clear_data_reloc_bg(block_group);
4343 continue;
4344 }
4345
4346 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4347 ffe_ctl->search_start = block_group->start;
4348
4349 /*
4350 * this can happen if we end up cycling through all the
4351 * raid types, but we want to make sure we only allocate
4352 * for the proper type.
4353 */
4354 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4355 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4356 BTRFS_BLOCK_GROUP_RAID1_MASK |
4357 BTRFS_BLOCK_GROUP_RAID56_MASK |
4358 BTRFS_BLOCK_GROUP_RAID10;
4359
4360 /*
4361 * if they asked for extra copies and this block group
4362 * doesn't provide them, bail. This does allow us to
4363 * fill raid0 from raid1.
4364 */
4365 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4366 goto loop;
4367
4368 /*
4369 * This block group has different flags than we want.
4370 * It's possible that we have MIXED_GROUP flag but no
4371 * block group is mixed. Just skip such block group.
4372 */
4373 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4374 continue;
4375 }
4376
4377 have_block_group:
4378 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4379 ffe_ctl->cached = btrfs_block_group_done(block_group);
4380 if (unlikely(!ffe_ctl->cached)) {
4381 ffe_ctl->have_caching_bg = true;
4382 ret = btrfs_cache_block_group(block_group, false);
4383
4384 /*
4385 * If we get ENOMEM here or something else we want to
4386 * try other block groups, because it may not be fatal.
4387 * However if we can't find anything else we need to
4388 * save our return here so that we return the actual
4389 * error that caused problems, not ENOSPC.
4390 */
4391 if (ret < 0) {
4392 if (!cache_block_group_error)
4393 cache_block_group_error = ret;
4394 ret = 0;
4395 goto loop;
4396 }
4397 ret = 0;
4398 }
4399
4400 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4401 if (!cache_block_group_error)
4402 cache_block_group_error = -EIO;
4403 goto loop;
4404 }
4405
4406 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4407 goto loop;
4408
4409 bg_ret = NULL;
4410 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4411 if (ret > 0)
4412 goto loop;
4413
4414 if (bg_ret && bg_ret != block_group) {
4415 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4416 block_group = bg_ret;
4417 }
4418
4419 /* Checks */
4420 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4421 fs_info->stripesize);
4422
4423 /* move on to the next group */
4424 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4425 block_group->start + block_group->length) {
4426 btrfs_add_free_space_unused(block_group,
4427 ffe_ctl->found_offset,
4428 ffe_ctl->num_bytes);
4429 goto loop;
4430 }
4431
4432 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4433 btrfs_add_free_space_unused(block_group,
4434 ffe_ctl->found_offset,
4435 ffe_ctl->search_start - ffe_ctl->found_offset);
4436
4437 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4438 ffe_ctl->num_bytes,
4439 ffe_ctl->delalloc,
4440 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4441 if (ret == -EAGAIN) {
4442 btrfs_add_free_space_unused(block_group,
4443 ffe_ctl->found_offset,
4444 ffe_ctl->num_bytes);
4445 goto loop;
4446 }
4447 btrfs_inc_block_group_reservations(block_group);
4448
4449 /* we are all good, lets return */
4450 ins->objectid = ffe_ctl->search_start;
4451 ins->offset = ffe_ctl->num_bytes;
4452
4453 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4454 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4455 break;
4456 loop:
4457 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4458 !ffe_ctl->retry_uncached) {
4459 ffe_ctl->retry_uncached = true;
4460 btrfs_wait_block_group_cache_progress(block_group,
4461 ffe_ctl->num_bytes +
4462 ffe_ctl->empty_cluster +
4463 ffe_ctl->empty_size);
4464 goto have_block_group;
4465 }
4466 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4467 cond_resched();
4468 }
4469 up_read(&space_info->groups_sem);
4470
4471 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4472 if (ret > 0)
4473 goto search;
4474
4475 if (ret == -ENOSPC && !cache_block_group_error) {
4476 /*
4477 * Use ffe_ctl->total_free_space as fallback if we can't find
4478 * any contiguous hole.
4479 */
4480 if (!ffe_ctl->max_extent_size)
4481 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4482 spin_lock(&space_info->lock);
4483 space_info->max_extent_size = ffe_ctl->max_extent_size;
4484 spin_unlock(&space_info->lock);
4485 ins->offset = ffe_ctl->max_extent_size;
4486 } else if (ret == -ENOSPC) {
4487 ret = cache_block_group_error;
4488 }
4489 return ret;
4490 }
4491
4492 /*
4493 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4494 * hole that is at least as big as @num_bytes.
4495 *
4496 * @root - The root that will contain this extent
4497 *
4498 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4499 * is used for accounting purposes. This value differs
4500 * from @num_bytes only in the case of compressed extents.
4501 *
4502 * @num_bytes - Number of bytes to allocate on-disk.
4503 *
4504 * @min_alloc_size - Indicates the minimum amount of space that the
4505 * allocator should try to satisfy. In some cases
4506 * @num_bytes may be larger than what is required and if
4507 * the filesystem is fragmented then allocation fails.
4508 * However, the presence of @min_alloc_size gives a
4509 * chance to try and satisfy the smaller allocation.
4510 *
4511 * @empty_size - A hint that you plan on doing more COW. This is the
4512 * size in bytes the allocator should try to find free
4513 * next to the block it returns. This is just a hint and
4514 * may be ignored by the allocator.
4515 *
4516 * @hint_byte - Hint to the allocator to start searching above the byte
4517 * address passed. It might be ignored.
4518 *
4519 * @ins - This key is modified to record the found hole. It will
4520 * have the following values:
4521 * ins->objectid == start position
4522 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4523 * ins->offset == the size of the hole.
4524 *
4525 * @is_data - Boolean flag indicating whether an extent is
4526 * allocated for data (true) or metadata (false)
4527 *
4528 * @delalloc - Boolean flag indicating whether this allocation is for
4529 * delalloc or not. If 'true' data_rwsem of block groups
4530 * is going to be acquired.
4531 *
4532 *
4533 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4534 * case -ENOSPC is returned then @ins->offset will contain the size of the
4535 * largest available hole the allocator managed to find.
4536 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4537 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4538 u64 num_bytes, u64 min_alloc_size,
4539 u64 empty_size, u64 hint_byte,
4540 struct btrfs_key *ins, int is_data, int delalloc)
4541 {
4542 struct btrfs_fs_info *fs_info = root->fs_info;
4543 struct find_free_extent_ctl ffe_ctl = {};
4544 bool final_tried = num_bytes == min_alloc_size;
4545 u64 flags;
4546 int ret;
4547 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4548 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4549
4550 flags = get_alloc_profile_by_root(root, is_data);
4551 again:
4552 WARN_ON(num_bytes < fs_info->sectorsize);
4553
4554 ffe_ctl.ram_bytes = ram_bytes;
4555 ffe_ctl.num_bytes = num_bytes;
4556 ffe_ctl.min_alloc_size = min_alloc_size;
4557 ffe_ctl.empty_size = empty_size;
4558 ffe_ctl.flags = flags;
4559 ffe_ctl.delalloc = delalloc;
4560 ffe_ctl.hint_byte = hint_byte;
4561 ffe_ctl.for_treelog = for_treelog;
4562 ffe_ctl.for_data_reloc = for_data_reloc;
4563
4564 ret = find_free_extent(root, ins, &ffe_ctl);
4565 if (!ret && !is_data) {
4566 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4567 } else if (ret == -ENOSPC) {
4568 if (!final_tried && ins->offset) {
4569 num_bytes = min(num_bytes >> 1, ins->offset);
4570 num_bytes = round_down(num_bytes,
4571 fs_info->sectorsize);
4572 num_bytes = max(num_bytes, min_alloc_size);
4573 ram_bytes = num_bytes;
4574 if (num_bytes == min_alloc_size)
4575 final_tried = true;
4576 goto again;
4577 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4578 struct btrfs_space_info *sinfo;
4579
4580 sinfo = btrfs_find_space_info(fs_info, flags);
4581 btrfs_err(fs_info,
4582 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4583 flags, num_bytes, for_treelog, for_data_reloc);
4584 if (sinfo)
4585 btrfs_dump_space_info(fs_info, sinfo,
4586 num_bytes, 1);
4587 }
4588 }
4589
4590 return ret;
4591 }
4592
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4593 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4594 u64 start, u64 len, int delalloc)
4595 {
4596 struct btrfs_block_group *cache;
4597
4598 cache = btrfs_lookup_block_group(fs_info, start);
4599 if (!cache) {
4600 btrfs_err(fs_info, "Unable to find block group for %llu",
4601 start);
4602 return -ENOSPC;
4603 }
4604
4605 btrfs_add_free_space(cache, start, len);
4606 btrfs_free_reserved_bytes(cache, len, delalloc);
4607 trace_btrfs_reserved_extent_free(fs_info, start, len);
4608
4609 btrfs_put_block_group(cache);
4610 return 0;
4611 }
4612
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4613 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4614 u64 len)
4615 {
4616 struct btrfs_block_group *cache;
4617 int ret = 0;
4618
4619 cache = btrfs_lookup_block_group(trans->fs_info, start);
4620 if (!cache) {
4621 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4622 start);
4623 return -ENOSPC;
4624 }
4625
4626 ret = pin_down_extent(trans, cache, start, len, 1);
4627 btrfs_put_block_group(cache);
4628 return ret;
4629 }
4630
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4631 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4632 u64 num_bytes)
4633 {
4634 struct btrfs_fs_info *fs_info = trans->fs_info;
4635 int ret;
4636
4637 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4638 if (ret)
4639 return ret;
4640
4641 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4642 if (ret) {
4643 ASSERT(!ret);
4644 btrfs_err(fs_info, "update block group failed for %llu %llu",
4645 bytenr, num_bytes);
4646 return ret;
4647 }
4648
4649 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4650 return 0;
4651 }
4652
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4653 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4654 u64 parent, u64 root_objectid,
4655 u64 flags, u64 owner, u64 offset,
4656 struct btrfs_key *ins, int ref_mod)
4657 {
4658 struct btrfs_fs_info *fs_info = trans->fs_info;
4659 struct btrfs_root *extent_root;
4660 int ret;
4661 struct btrfs_extent_item *extent_item;
4662 struct btrfs_extent_inline_ref *iref;
4663 struct btrfs_path *path;
4664 struct extent_buffer *leaf;
4665 int type;
4666 u32 size;
4667
4668 if (parent > 0)
4669 type = BTRFS_SHARED_DATA_REF_KEY;
4670 else
4671 type = BTRFS_EXTENT_DATA_REF_KEY;
4672
4673 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4674
4675 path = btrfs_alloc_path();
4676 if (!path)
4677 return -ENOMEM;
4678
4679 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4680 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4681 if (ret) {
4682 btrfs_free_path(path);
4683 return ret;
4684 }
4685
4686 leaf = path->nodes[0];
4687 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4688 struct btrfs_extent_item);
4689 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4690 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4691 btrfs_set_extent_flags(leaf, extent_item,
4692 flags | BTRFS_EXTENT_FLAG_DATA);
4693
4694 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4695 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4696 if (parent > 0) {
4697 struct btrfs_shared_data_ref *ref;
4698 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4699 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4700 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4701 } else {
4702 struct btrfs_extent_data_ref *ref;
4703 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4704 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4705 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4706 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4707 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4708 }
4709
4710 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4711 btrfs_free_path(path);
4712
4713 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4714 }
4715
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4716 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4717 struct btrfs_delayed_ref_node *node,
4718 struct btrfs_delayed_extent_op *extent_op)
4719 {
4720 struct btrfs_fs_info *fs_info = trans->fs_info;
4721 struct btrfs_root *extent_root;
4722 int ret;
4723 struct btrfs_extent_item *extent_item;
4724 struct btrfs_key extent_key;
4725 struct btrfs_tree_block_info *block_info;
4726 struct btrfs_extent_inline_ref *iref;
4727 struct btrfs_path *path;
4728 struct extent_buffer *leaf;
4729 struct btrfs_delayed_tree_ref *ref;
4730 u32 size = sizeof(*extent_item) + sizeof(*iref);
4731 u64 flags = extent_op->flags_to_set;
4732 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4733
4734 ref = btrfs_delayed_node_to_tree_ref(node);
4735
4736 extent_key.objectid = node->bytenr;
4737 if (skinny_metadata) {
4738 extent_key.offset = ref->level;
4739 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4740 } else {
4741 extent_key.offset = node->num_bytes;
4742 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4743 size += sizeof(*block_info);
4744 }
4745
4746 path = btrfs_alloc_path();
4747 if (!path)
4748 return -ENOMEM;
4749
4750 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4751 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4752 size);
4753 if (ret) {
4754 btrfs_free_path(path);
4755 return ret;
4756 }
4757
4758 leaf = path->nodes[0];
4759 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4760 struct btrfs_extent_item);
4761 btrfs_set_extent_refs(leaf, extent_item, 1);
4762 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4763 btrfs_set_extent_flags(leaf, extent_item,
4764 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4765
4766 if (skinny_metadata) {
4767 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4768 } else {
4769 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4770 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4771 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4772 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4773 }
4774
4775 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4776 btrfs_set_extent_inline_ref_type(leaf, iref,
4777 BTRFS_SHARED_BLOCK_REF_KEY);
4778 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4779 } else {
4780 btrfs_set_extent_inline_ref_type(leaf, iref,
4781 BTRFS_TREE_BLOCK_REF_KEY);
4782 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4783 }
4784
4785 btrfs_mark_buffer_dirty(trans, leaf);
4786 btrfs_free_path(path);
4787
4788 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4789 }
4790
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4791 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4792 struct btrfs_root *root, u64 owner,
4793 u64 offset, u64 ram_bytes,
4794 struct btrfs_key *ins)
4795 {
4796 struct btrfs_ref generic_ref = { 0 };
4797
4798 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4799
4800 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4801 ins->objectid, ins->offset, 0);
4802 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4803 offset, 0, false);
4804 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4805
4806 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4807 }
4808
4809 /*
4810 * this is used by the tree logging recovery code. It records that
4811 * an extent has been allocated and makes sure to clear the free
4812 * space cache bits as well
4813 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4814 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4815 u64 root_objectid, u64 owner, u64 offset,
4816 struct btrfs_key *ins)
4817 {
4818 struct btrfs_fs_info *fs_info = trans->fs_info;
4819 int ret;
4820 struct btrfs_block_group *block_group;
4821 struct btrfs_space_info *space_info;
4822
4823 /*
4824 * Mixed block groups will exclude before processing the log so we only
4825 * need to do the exclude dance if this fs isn't mixed.
4826 */
4827 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4828 ret = __exclude_logged_extent(fs_info, ins->objectid,
4829 ins->offset);
4830 if (ret)
4831 return ret;
4832 }
4833
4834 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4835 if (!block_group)
4836 return -EINVAL;
4837
4838 space_info = block_group->space_info;
4839 spin_lock(&space_info->lock);
4840 spin_lock(&block_group->lock);
4841 space_info->bytes_reserved += ins->offset;
4842 block_group->reserved += ins->offset;
4843 spin_unlock(&block_group->lock);
4844 spin_unlock(&space_info->lock);
4845
4846 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4847 offset, ins, 1);
4848 if (ret)
4849 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4850 btrfs_put_block_group(block_group);
4851 return ret;
4852 }
4853
4854 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4855 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4856 u64 bytenr, int level, u64 owner,
4857 enum btrfs_lock_nesting nest)
4858 {
4859 struct btrfs_fs_info *fs_info = root->fs_info;
4860 struct extent_buffer *buf;
4861 u64 lockdep_owner = owner;
4862
4863 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4864 if (IS_ERR(buf))
4865 return buf;
4866
4867 /*
4868 * Extra safety check in case the extent tree is corrupted and extent
4869 * allocator chooses to use a tree block which is already used and
4870 * locked.
4871 */
4872 if (buf->lock_owner == current->pid) {
4873 btrfs_err_rl(fs_info,
4874 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4875 buf->start, btrfs_header_owner(buf), current->pid);
4876 free_extent_buffer(buf);
4877 return ERR_PTR(-EUCLEAN);
4878 }
4879
4880 /*
4881 * The reloc trees are just snapshots, so we need them to appear to be
4882 * just like any other fs tree WRT lockdep.
4883 *
4884 * The exception however is in replace_path() in relocation, where we
4885 * hold the lock on the original fs root and then search for the reloc
4886 * root. At that point we need to make sure any reloc root buffers are
4887 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4888 * lockdep happy.
4889 */
4890 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4891 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4892 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4893
4894 /* btrfs_clear_buffer_dirty() accesses generation field. */
4895 btrfs_set_header_generation(buf, trans->transid);
4896
4897 /*
4898 * This needs to stay, because we could allocate a freed block from an
4899 * old tree into a new tree, so we need to make sure this new block is
4900 * set to the appropriate level and owner.
4901 */
4902 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4903
4904 __btrfs_tree_lock(buf, nest);
4905 btrfs_clear_buffer_dirty(trans, buf);
4906 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4907 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4908
4909 set_extent_buffer_uptodate(buf);
4910
4911 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4912 btrfs_set_header_level(buf, level);
4913 btrfs_set_header_bytenr(buf, buf->start);
4914 btrfs_set_header_generation(buf, trans->transid);
4915 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4916 btrfs_set_header_owner(buf, owner);
4917 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4918 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4919 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4920 buf->log_index = root->log_transid % 2;
4921 /*
4922 * we allow two log transactions at a time, use different
4923 * EXTENT bit to differentiate dirty pages.
4924 */
4925 if (buf->log_index == 0)
4926 set_extent_bit(&root->dirty_log_pages, buf->start,
4927 buf->start + buf->len - 1,
4928 EXTENT_DIRTY, NULL);
4929 else
4930 set_extent_bit(&root->dirty_log_pages, buf->start,
4931 buf->start + buf->len - 1,
4932 EXTENT_NEW, NULL);
4933 } else {
4934 buf->log_index = -1;
4935 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4936 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4937 }
4938 /* this returns a buffer locked for blocking */
4939 return buf;
4940 }
4941
4942 /*
4943 * finds a free extent and does all the dirty work required for allocation
4944 * returns the tree buffer or an ERR_PTR on error.
4945 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4946 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4947 struct btrfs_root *root,
4948 u64 parent, u64 root_objectid,
4949 const struct btrfs_disk_key *key,
4950 int level, u64 hint,
4951 u64 empty_size,
4952 enum btrfs_lock_nesting nest)
4953 {
4954 struct btrfs_fs_info *fs_info = root->fs_info;
4955 struct btrfs_key ins;
4956 struct btrfs_block_rsv *block_rsv;
4957 struct extent_buffer *buf;
4958 struct btrfs_delayed_extent_op *extent_op;
4959 struct btrfs_ref generic_ref = { 0 };
4960 u64 flags = 0;
4961 int ret;
4962 u32 blocksize = fs_info->nodesize;
4963 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4964
4965 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4966 if (btrfs_is_testing(fs_info)) {
4967 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4968 level, root_objectid, nest);
4969 if (!IS_ERR(buf))
4970 root->alloc_bytenr += blocksize;
4971 return buf;
4972 }
4973 #endif
4974
4975 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4976 if (IS_ERR(block_rsv))
4977 return ERR_CAST(block_rsv);
4978
4979 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4980 empty_size, hint, &ins, 0, 0);
4981 if (ret)
4982 goto out_unuse;
4983
4984 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4985 root_objectid, nest);
4986 if (IS_ERR(buf)) {
4987 ret = PTR_ERR(buf);
4988 goto out_free_reserved;
4989 }
4990
4991 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4992 if (parent == 0)
4993 parent = ins.objectid;
4994 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4995 } else
4996 BUG_ON(parent > 0);
4997
4998 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4999 extent_op = btrfs_alloc_delayed_extent_op();
5000 if (!extent_op) {
5001 ret = -ENOMEM;
5002 goto out_free_buf;
5003 }
5004 if (key)
5005 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5006 else
5007 memset(&extent_op->key, 0, sizeof(extent_op->key));
5008 extent_op->flags_to_set = flags;
5009 extent_op->update_key = skinny_metadata ? false : true;
5010 extent_op->update_flags = true;
5011 extent_op->level = level;
5012
5013 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5014 ins.objectid, ins.offset, parent);
5015 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5016 root->root_key.objectid, false);
5017 btrfs_ref_tree_mod(fs_info, &generic_ref);
5018 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5019 if (ret)
5020 goto out_free_delayed;
5021 }
5022 return buf;
5023
5024 out_free_delayed:
5025 btrfs_free_delayed_extent_op(extent_op);
5026 out_free_buf:
5027 btrfs_tree_unlock(buf);
5028 free_extent_buffer(buf);
5029 out_free_reserved:
5030 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5031 out_unuse:
5032 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5033 return ERR_PTR(ret);
5034 }
5035
5036 struct walk_control {
5037 u64 refs[BTRFS_MAX_LEVEL];
5038 u64 flags[BTRFS_MAX_LEVEL];
5039 struct btrfs_key update_progress;
5040 struct btrfs_key drop_progress;
5041 int drop_level;
5042 int stage;
5043 int level;
5044 int shared_level;
5045 int update_ref;
5046 int keep_locks;
5047 int reada_slot;
5048 int reada_count;
5049 int restarted;
5050 };
5051
5052 #define DROP_REFERENCE 1
5053 #define UPDATE_BACKREF 2
5054
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5055 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5056 struct btrfs_root *root,
5057 struct walk_control *wc,
5058 struct btrfs_path *path)
5059 {
5060 struct btrfs_fs_info *fs_info = root->fs_info;
5061 u64 bytenr;
5062 u64 generation;
5063 u64 refs;
5064 u64 flags;
5065 u32 nritems;
5066 struct btrfs_key key;
5067 struct extent_buffer *eb;
5068 int ret;
5069 int slot;
5070 int nread = 0;
5071
5072 if (path->slots[wc->level] < wc->reada_slot) {
5073 wc->reada_count = wc->reada_count * 2 / 3;
5074 wc->reada_count = max(wc->reada_count, 2);
5075 } else {
5076 wc->reada_count = wc->reada_count * 3 / 2;
5077 wc->reada_count = min_t(int, wc->reada_count,
5078 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5079 }
5080
5081 eb = path->nodes[wc->level];
5082 nritems = btrfs_header_nritems(eb);
5083
5084 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5085 if (nread >= wc->reada_count)
5086 break;
5087
5088 cond_resched();
5089 bytenr = btrfs_node_blockptr(eb, slot);
5090 generation = btrfs_node_ptr_generation(eb, slot);
5091
5092 if (slot == path->slots[wc->level])
5093 goto reada;
5094
5095 if (wc->stage == UPDATE_BACKREF &&
5096 generation <= root->root_key.offset)
5097 continue;
5098
5099 /* We don't lock the tree block, it's OK to be racy here */
5100 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5101 wc->level - 1, 1, &refs,
5102 &flags);
5103 /* We don't care about errors in readahead. */
5104 if (ret < 0)
5105 continue;
5106
5107 /*
5108 * This could be racey, it's conceivable that we raced and end
5109 * up with a bogus refs count, if that's the case just skip, if
5110 * we are actually corrupt we will notice when we look up
5111 * everything again with our locks.
5112 */
5113 if (refs == 0)
5114 continue;
5115
5116 if (wc->stage == DROP_REFERENCE) {
5117 if (refs == 1)
5118 goto reada;
5119
5120 if (wc->level == 1 &&
5121 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5122 continue;
5123 if (!wc->update_ref ||
5124 generation <= root->root_key.offset)
5125 continue;
5126 btrfs_node_key_to_cpu(eb, &key, slot);
5127 ret = btrfs_comp_cpu_keys(&key,
5128 &wc->update_progress);
5129 if (ret < 0)
5130 continue;
5131 } else {
5132 if (wc->level == 1 &&
5133 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5134 continue;
5135 }
5136 reada:
5137 btrfs_readahead_node_child(eb, slot);
5138 nread++;
5139 }
5140 wc->reada_slot = slot;
5141 }
5142
5143 /*
5144 * helper to process tree block while walking down the tree.
5145 *
5146 * when wc->stage == UPDATE_BACKREF, this function updates
5147 * back refs for pointers in the block.
5148 *
5149 * NOTE: return value 1 means we should stop walking down.
5150 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5151 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5152 struct btrfs_root *root,
5153 struct btrfs_path *path,
5154 struct walk_control *wc, int lookup_info)
5155 {
5156 struct btrfs_fs_info *fs_info = root->fs_info;
5157 int level = wc->level;
5158 struct extent_buffer *eb = path->nodes[level];
5159 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5160 int ret;
5161
5162 if (wc->stage == UPDATE_BACKREF &&
5163 btrfs_header_owner(eb) != root->root_key.objectid)
5164 return 1;
5165
5166 /*
5167 * when reference count of tree block is 1, it won't increase
5168 * again. once full backref flag is set, we never clear it.
5169 */
5170 if (lookup_info &&
5171 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5172 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5173 ASSERT(path->locks[level]);
5174 ret = btrfs_lookup_extent_info(trans, fs_info,
5175 eb->start, level, 1,
5176 &wc->refs[level],
5177 &wc->flags[level]);
5178 if (ret)
5179 return ret;
5180 if (unlikely(wc->refs[level] == 0)) {
5181 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5182 eb->start);
5183 return -EUCLEAN;
5184 }
5185 }
5186
5187 if (wc->stage == DROP_REFERENCE) {
5188 if (wc->refs[level] > 1)
5189 return 1;
5190
5191 if (path->locks[level] && !wc->keep_locks) {
5192 btrfs_tree_unlock_rw(eb, path->locks[level]);
5193 path->locks[level] = 0;
5194 }
5195 return 0;
5196 }
5197
5198 /* wc->stage == UPDATE_BACKREF */
5199 if (!(wc->flags[level] & flag)) {
5200 ASSERT(path->locks[level]);
5201 ret = btrfs_inc_ref(trans, root, eb, 1);
5202 BUG_ON(ret); /* -ENOMEM */
5203 ret = btrfs_dec_ref(trans, root, eb, 0);
5204 BUG_ON(ret); /* -ENOMEM */
5205 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5206 BUG_ON(ret); /* -ENOMEM */
5207 wc->flags[level] |= flag;
5208 }
5209
5210 /*
5211 * the block is shared by multiple trees, so it's not good to
5212 * keep the tree lock
5213 */
5214 if (path->locks[level] && level > 0) {
5215 btrfs_tree_unlock_rw(eb, path->locks[level]);
5216 path->locks[level] = 0;
5217 }
5218 return 0;
5219 }
5220
5221 /*
5222 * This is used to verify a ref exists for this root to deal with a bug where we
5223 * would have a drop_progress key that hadn't been updated properly.
5224 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5225 static int check_ref_exists(struct btrfs_trans_handle *trans,
5226 struct btrfs_root *root, u64 bytenr, u64 parent,
5227 int level)
5228 {
5229 struct btrfs_path *path;
5230 struct btrfs_extent_inline_ref *iref;
5231 int ret;
5232
5233 path = btrfs_alloc_path();
5234 if (!path)
5235 return -ENOMEM;
5236
5237 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5238 root->fs_info->nodesize, parent,
5239 root->root_key.objectid, level, 0);
5240 btrfs_free_path(path);
5241 if (ret == -ENOENT)
5242 return 0;
5243 if (ret < 0)
5244 return ret;
5245 return 1;
5246 }
5247
5248 /*
5249 * helper to process tree block pointer.
5250 *
5251 * when wc->stage == DROP_REFERENCE, this function checks
5252 * reference count of the block pointed to. if the block
5253 * is shared and we need update back refs for the subtree
5254 * rooted at the block, this function changes wc->stage to
5255 * UPDATE_BACKREF. if the block is shared and there is no
5256 * need to update back, this function drops the reference
5257 * to the block.
5258 *
5259 * NOTE: return value 1 means we should stop walking down.
5260 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5261 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5262 struct btrfs_root *root,
5263 struct btrfs_path *path,
5264 struct walk_control *wc, int *lookup_info)
5265 {
5266 struct btrfs_fs_info *fs_info = root->fs_info;
5267 u64 bytenr;
5268 u64 generation;
5269 u64 parent;
5270 struct btrfs_tree_parent_check check = { 0 };
5271 struct btrfs_key key;
5272 struct btrfs_ref ref = { 0 };
5273 struct extent_buffer *next;
5274 int level = wc->level;
5275 int reada = 0;
5276 int ret = 0;
5277 bool need_account = false;
5278
5279 generation = btrfs_node_ptr_generation(path->nodes[level],
5280 path->slots[level]);
5281 /*
5282 * if the lower level block was created before the snapshot
5283 * was created, we know there is no need to update back refs
5284 * for the subtree
5285 */
5286 if (wc->stage == UPDATE_BACKREF &&
5287 generation <= root->root_key.offset) {
5288 *lookup_info = 1;
5289 return 1;
5290 }
5291
5292 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5293
5294 check.level = level - 1;
5295 check.transid = generation;
5296 check.owner_root = root->root_key.objectid;
5297 check.has_first_key = true;
5298 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5299 path->slots[level]);
5300
5301 next = find_extent_buffer(fs_info, bytenr);
5302 if (!next) {
5303 next = btrfs_find_create_tree_block(fs_info, bytenr,
5304 root->root_key.objectid, level - 1);
5305 if (IS_ERR(next))
5306 return PTR_ERR(next);
5307 reada = 1;
5308 }
5309 btrfs_tree_lock(next);
5310
5311 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5312 &wc->refs[level - 1],
5313 &wc->flags[level - 1]);
5314 if (ret < 0)
5315 goto out_unlock;
5316
5317 if (unlikely(wc->refs[level - 1] == 0)) {
5318 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5319 bytenr);
5320 ret = -EUCLEAN;
5321 goto out_unlock;
5322 }
5323 *lookup_info = 0;
5324
5325 if (wc->stage == DROP_REFERENCE) {
5326 if (wc->refs[level - 1] > 1) {
5327 need_account = true;
5328 if (level == 1 &&
5329 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5330 goto skip;
5331
5332 if (!wc->update_ref ||
5333 generation <= root->root_key.offset)
5334 goto skip;
5335
5336 btrfs_node_key_to_cpu(path->nodes[level], &key,
5337 path->slots[level]);
5338 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5339 if (ret < 0)
5340 goto skip;
5341
5342 wc->stage = UPDATE_BACKREF;
5343 wc->shared_level = level - 1;
5344 }
5345 } else {
5346 if (level == 1 &&
5347 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5348 goto skip;
5349 }
5350
5351 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5352 btrfs_tree_unlock(next);
5353 free_extent_buffer(next);
5354 next = NULL;
5355 *lookup_info = 1;
5356 }
5357
5358 if (!next) {
5359 if (reada && level == 1)
5360 reada_walk_down(trans, root, wc, path);
5361 next = read_tree_block(fs_info, bytenr, &check);
5362 if (IS_ERR(next)) {
5363 return PTR_ERR(next);
5364 } else if (!extent_buffer_uptodate(next)) {
5365 free_extent_buffer(next);
5366 return -EIO;
5367 }
5368 btrfs_tree_lock(next);
5369 }
5370
5371 level--;
5372 ASSERT(level == btrfs_header_level(next));
5373 if (level != btrfs_header_level(next)) {
5374 btrfs_err(root->fs_info, "mismatched level");
5375 ret = -EIO;
5376 goto out_unlock;
5377 }
5378 path->nodes[level] = next;
5379 path->slots[level] = 0;
5380 path->locks[level] = BTRFS_WRITE_LOCK;
5381 wc->level = level;
5382 if (wc->level == 1)
5383 wc->reada_slot = 0;
5384 return 0;
5385 skip:
5386 wc->refs[level - 1] = 0;
5387 wc->flags[level - 1] = 0;
5388 if (wc->stage == DROP_REFERENCE) {
5389 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5390 parent = path->nodes[level]->start;
5391 } else {
5392 ASSERT(root->root_key.objectid ==
5393 btrfs_header_owner(path->nodes[level]));
5394 if (root->root_key.objectid !=
5395 btrfs_header_owner(path->nodes[level])) {
5396 btrfs_err(root->fs_info,
5397 "mismatched block owner");
5398 ret = -EIO;
5399 goto out_unlock;
5400 }
5401 parent = 0;
5402 }
5403
5404 /*
5405 * If we had a drop_progress we need to verify the refs are set
5406 * as expected. If we find our ref then we know that from here
5407 * on out everything should be correct, and we can clear the
5408 * ->restarted flag.
5409 */
5410 if (wc->restarted) {
5411 ret = check_ref_exists(trans, root, bytenr, parent,
5412 level - 1);
5413 if (ret < 0)
5414 goto out_unlock;
5415 if (ret == 0)
5416 goto no_delete;
5417 ret = 0;
5418 wc->restarted = 0;
5419 }
5420
5421 /*
5422 * Reloc tree doesn't contribute to qgroup numbers, and we have
5423 * already accounted them at merge time (replace_path),
5424 * thus we could skip expensive subtree trace here.
5425 */
5426 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5427 need_account) {
5428 ret = btrfs_qgroup_trace_subtree(trans, next,
5429 generation, level - 1);
5430 if (ret) {
5431 btrfs_err_rl(fs_info,
5432 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5433 ret);
5434 }
5435 }
5436
5437 /*
5438 * We need to update the next key in our walk control so we can
5439 * update the drop_progress key accordingly. We don't care if
5440 * find_next_key doesn't find a key because that means we're at
5441 * the end and are going to clean up now.
5442 */
5443 wc->drop_level = level;
5444 find_next_key(path, level, &wc->drop_progress);
5445
5446 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5447 fs_info->nodesize, parent);
5448 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5449 0, false);
5450 ret = btrfs_free_extent(trans, &ref);
5451 if (ret)
5452 goto out_unlock;
5453 }
5454 no_delete:
5455 *lookup_info = 1;
5456 ret = 1;
5457
5458 out_unlock:
5459 btrfs_tree_unlock(next);
5460 free_extent_buffer(next);
5461
5462 return ret;
5463 }
5464
5465 /*
5466 * helper to process tree block while walking up the tree.
5467 *
5468 * when wc->stage == DROP_REFERENCE, this function drops
5469 * reference count on the block.
5470 *
5471 * when wc->stage == UPDATE_BACKREF, this function changes
5472 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5473 * to UPDATE_BACKREF previously while processing the block.
5474 *
5475 * NOTE: return value 1 means we should stop walking up.
5476 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5477 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5478 struct btrfs_root *root,
5479 struct btrfs_path *path,
5480 struct walk_control *wc)
5481 {
5482 struct btrfs_fs_info *fs_info = root->fs_info;
5483 int ret = 0;
5484 int level = wc->level;
5485 struct extent_buffer *eb = path->nodes[level];
5486 u64 parent = 0;
5487
5488 if (wc->stage == UPDATE_BACKREF) {
5489 BUG_ON(wc->shared_level < level);
5490 if (level < wc->shared_level)
5491 goto out;
5492
5493 ret = find_next_key(path, level + 1, &wc->update_progress);
5494 if (ret > 0)
5495 wc->update_ref = 0;
5496
5497 wc->stage = DROP_REFERENCE;
5498 wc->shared_level = -1;
5499 path->slots[level] = 0;
5500
5501 /*
5502 * check reference count again if the block isn't locked.
5503 * we should start walking down the tree again if reference
5504 * count is one.
5505 */
5506 if (!path->locks[level]) {
5507 BUG_ON(level == 0);
5508 btrfs_tree_lock(eb);
5509 path->locks[level] = BTRFS_WRITE_LOCK;
5510
5511 ret = btrfs_lookup_extent_info(trans, fs_info,
5512 eb->start, level, 1,
5513 &wc->refs[level],
5514 &wc->flags[level]);
5515 if (ret < 0) {
5516 btrfs_tree_unlock_rw(eb, path->locks[level]);
5517 path->locks[level] = 0;
5518 return ret;
5519 }
5520 if (unlikely(wc->refs[level] == 0)) {
5521 btrfs_tree_unlock_rw(eb, path->locks[level]);
5522 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5523 eb->start);
5524 return -EUCLEAN;
5525 }
5526 if (wc->refs[level] == 1) {
5527 btrfs_tree_unlock_rw(eb, path->locks[level]);
5528 path->locks[level] = 0;
5529 return 1;
5530 }
5531 }
5532 }
5533
5534 /* wc->stage == DROP_REFERENCE */
5535 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5536
5537 if (wc->refs[level] == 1) {
5538 if (level == 0) {
5539 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5540 ret = btrfs_dec_ref(trans, root, eb, 1);
5541 else
5542 ret = btrfs_dec_ref(trans, root, eb, 0);
5543 BUG_ON(ret); /* -ENOMEM */
5544 if (is_fstree(root->root_key.objectid)) {
5545 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5546 if (ret) {
5547 btrfs_err_rl(fs_info,
5548 "error %d accounting leaf items, quota is out of sync, rescan required",
5549 ret);
5550 }
5551 }
5552 }
5553 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5554 if (!path->locks[level]) {
5555 btrfs_tree_lock(eb);
5556 path->locks[level] = BTRFS_WRITE_LOCK;
5557 }
5558 btrfs_clear_buffer_dirty(trans, eb);
5559 }
5560
5561 if (eb == root->node) {
5562 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5563 parent = eb->start;
5564 else if (root->root_key.objectid != btrfs_header_owner(eb))
5565 goto owner_mismatch;
5566 } else {
5567 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5568 parent = path->nodes[level + 1]->start;
5569 else if (root->root_key.objectid !=
5570 btrfs_header_owner(path->nodes[level + 1]))
5571 goto owner_mismatch;
5572 }
5573
5574 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5575 wc->refs[level] == 1);
5576 if (ret < 0)
5577 btrfs_abort_transaction(trans, ret);
5578 out:
5579 wc->refs[level] = 0;
5580 wc->flags[level] = 0;
5581 return ret;
5582
5583 owner_mismatch:
5584 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5585 btrfs_header_owner(eb), root->root_key.objectid);
5586 return -EUCLEAN;
5587 }
5588
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5589 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5590 struct btrfs_root *root,
5591 struct btrfs_path *path,
5592 struct walk_control *wc)
5593 {
5594 int level = wc->level;
5595 int lookup_info = 1;
5596 int ret = 0;
5597
5598 while (level >= 0) {
5599 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5600 if (ret)
5601 break;
5602
5603 if (level == 0)
5604 break;
5605
5606 if (path->slots[level] >=
5607 btrfs_header_nritems(path->nodes[level]))
5608 break;
5609
5610 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5611 if (ret > 0) {
5612 path->slots[level]++;
5613 continue;
5614 } else if (ret < 0)
5615 break;
5616 level = wc->level;
5617 }
5618 return (ret == 1) ? 0 : ret;
5619 }
5620
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5621 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5622 struct btrfs_root *root,
5623 struct btrfs_path *path,
5624 struct walk_control *wc, int max_level)
5625 {
5626 int level = wc->level;
5627 int ret;
5628
5629 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5630 while (level < max_level && path->nodes[level]) {
5631 wc->level = level;
5632 if (path->slots[level] + 1 <
5633 btrfs_header_nritems(path->nodes[level])) {
5634 path->slots[level]++;
5635 return 0;
5636 } else {
5637 ret = walk_up_proc(trans, root, path, wc);
5638 if (ret > 0)
5639 return 0;
5640 if (ret < 0)
5641 return ret;
5642
5643 if (path->locks[level]) {
5644 btrfs_tree_unlock_rw(path->nodes[level],
5645 path->locks[level]);
5646 path->locks[level] = 0;
5647 }
5648 free_extent_buffer(path->nodes[level]);
5649 path->nodes[level] = NULL;
5650 level++;
5651 }
5652 }
5653 return 1;
5654 }
5655
5656 /*
5657 * drop a subvolume tree.
5658 *
5659 * this function traverses the tree freeing any blocks that only
5660 * referenced by the tree.
5661 *
5662 * when a shared tree block is found. this function decreases its
5663 * reference count by one. if update_ref is true, this function
5664 * also make sure backrefs for the shared block and all lower level
5665 * blocks are properly updated.
5666 *
5667 * If called with for_reloc == 0, may exit early with -EAGAIN
5668 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5669 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5670 {
5671 const bool is_reloc_root = (root->root_key.objectid ==
5672 BTRFS_TREE_RELOC_OBJECTID);
5673 struct btrfs_fs_info *fs_info = root->fs_info;
5674 struct btrfs_path *path;
5675 struct btrfs_trans_handle *trans;
5676 struct btrfs_root *tree_root = fs_info->tree_root;
5677 struct btrfs_root_item *root_item = &root->root_item;
5678 struct walk_control *wc;
5679 struct btrfs_key key;
5680 int err = 0;
5681 int ret;
5682 int level;
5683 bool root_dropped = false;
5684 bool unfinished_drop = false;
5685
5686 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5687
5688 path = btrfs_alloc_path();
5689 if (!path) {
5690 err = -ENOMEM;
5691 goto out;
5692 }
5693
5694 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5695 if (!wc) {
5696 btrfs_free_path(path);
5697 err = -ENOMEM;
5698 goto out;
5699 }
5700
5701 /*
5702 * Use join to avoid potential EINTR from transaction start. See
5703 * wait_reserve_ticket and the whole reservation callchain.
5704 */
5705 if (for_reloc)
5706 trans = btrfs_join_transaction(tree_root);
5707 else
5708 trans = btrfs_start_transaction(tree_root, 0);
5709 if (IS_ERR(trans)) {
5710 err = PTR_ERR(trans);
5711 goto out_free;
5712 }
5713
5714 err = btrfs_run_delayed_items(trans);
5715 if (err)
5716 goto out_end_trans;
5717
5718 /*
5719 * This will help us catch people modifying the fs tree while we're
5720 * dropping it. It is unsafe to mess with the fs tree while it's being
5721 * dropped as we unlock the root node and parent nodes as we walk down
5722 * the tree, assuming nothing will change. If something does change
5723 * then we'll have stale information and drop references to blocks we've
5724 * already dropped.
5725 */
5726 set_bit(BTRFS_ROOT_DELETING, &root->state);
5727 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5728
5729 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5730 level = btrfs_header_level(root->node);
5731 path->nodes[level] = btrfs_lock_root_node(root);
5732 path->slots[level] = 0;
5733 path->locks[level] = BTRFS_WRITE_LOCK;
5734 memset(&wc->update_progress, 0,
5735 sizeof(wc->update_progress));
5736 } else {
5737 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5738 memcpy(&wc->update_progress, &key,
5739 sizeof(wc->update_progress));
5740
5741 level = btrfs_root_drop_level(root_item);
5742 BUG_ON(level == 0);
5743 path->lowest_level = level;
5744 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5745 path->lowest_level = 0;
5746 if (ret < 0) {
5747 err = ret;
5748 goto out_end_trans;
5749 }
5750 WARN_ON(ret > 0);
5751
5752 /*
5753 * unlock our path, this is safe because only this
5754 * function is allowed to delete this snapshot
5755 */
5756 btrfs_unlock_up_safe(path, 0);
5757
5758 level = btrfs_header_level(root->node);
5759 while (1) {
5760 btrfs_tree_lock(path->nodes[level]);
5761 path->locks[level] = BTRFS_WRITE_LOCK;
5762
5763 ret = btrfs_lookup_extent_info(trans, fs_info,
5764 path->nodes[level]->start,
5765 level, 1, &wc->refs[level],
5766 &wc->flags[level]);
5767 if (ret < 0) {
5768 err = ret;
5769 goto out_end_trans;
5770 }
5771 BUG_ON(wc->refs[level] == 0);
5772
5773 if (level == btrfs_root_drop_level(root_item))
5774 break;
5775
5776 btrfs_tree_unlock(path->nodes[level]);
5777 path->locks[level] = 0;
5778 WARN_ON(wc->refs[level] != 1);
5779 level--;
5780 }
5781 }
5782
5783 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5784 wc->level = level;
5785 wc->shared_level = -1;
5786 wc->stage = DROP_REFERENCE;
5787 wc->update_ref = update_ref;
5788 wc->keep_locks = 0;
5789 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5790
5791 while (1) {
5792
5793 ret = walk_down_tree(trans, root, path, wc);
5794 if (ret < 0) {
5795 btrfs_abort_transaction(trans, ret);
5796 err = ret;
5797 break;
5798 }
5799
5800 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5801 if (ret < 0) {
5802 btrfs_abort_transaction(trans, ret);
5803 err = ret;
5804 break;
5805 }
5806
5807 if (ret > 0) {
5808 BUG_ON(wc->stage != DROP_REFERENCE);
5809 break;
5810 }
5811
5812 if (wc->stage == DROP_REFERENCE) {
5813 wc->drop_level = wc->level;
5814 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5815 &wc->drop_progress,
5816 path->slots[wc->drop_level]);
5817 }
5818 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5819 &wc->drop_progress);
5820 btrfs_set_root_drop_level(root_item, wc->drop_level);
5821
5822 BUG_ON(wc->level == 0);
5823 if (btrfs_should_end_transaction(trans) ||
5824 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5825 ret = btrfs_update_root(trans, tree_root,
5826 &root->root_key,
5827 root_item);
5828 if (ret) {
5829 btrfs_abort_transaction(trans, ret);
5830 err = ret;
5831 goto out_end_trans;
5832 }
5833
5834 if (!is_reloc_root)
5835 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5836
5837 btrfs_end_transaction_throttle(trans);
5838 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5839 btrfs_debug(fs_info,
5840 "drop snapshot early exit");
5841 err = -EAGAIN;
5842 goto out_free;
5843 }
5844
5845 /*
5846 * Use join to avoid potential EINTR from transaction
5847 * start. See wait_reserve_ticket and the whole
5848 * reservation callchain.
5849 */
5850 if (for_reloc)
5851 trans = btrfs_join_transaction(tree_root);
5852 else
5853 trans = btrfs_start_transaction(tree_root, 0);
5854 if (IS_ERR(trans)) {
5855 err = PTR_ERR(trans);
5856 goto out_free;
5857 }
5858 }
5859 }
5860 btrfs_release_path(path);
5861 if (err)
5862 goto out_end_trans;
5863
5864 ret = btrfs_del_root(trans, &root->root_key);
5865 if (ret) {
5866 btrfs_abort_transaction(trans, ret);
5867 err = ret;
5868 goto out_end_trans;
5869 }
5870
5871 if (!is_reloc_root) {
5872 ret = btrfs_find_root(tree_root, &root->root_key, path,
5873 NULL, NULL);
5874 if (ret < 0) {
5875 btrfs_abort_transaction(trans, ret);
5876 err = ret;
5877 goto out_end_trans;
5878 } else if (ret > 0) {
5879 /* if we fail to delete the orphan item this time
5880 * around, it'll get picked up the next time.
5881 *
5882 * The most common failure here is just -ENOENT.
5883 */
5884 btrfs_del_orphan_item(trans, tree_root,
5885 root->root_key.objectid);
5886 }
5887 }
5888
5889 /*
5890 * This subvolume is going to be completely dropped, and won't be
5891 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5892 * commit transaction time. So free it here manually.
5893 */
5894 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5895 btrfs_qgroup_free_meta_all_pertrans(root);
5896
5897 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5898 btrfs_add_dropped_root(trans, root);
5899 else
5900 btrfs_put_root(root);
5901 root_dropped = true;
5902 out_end_trans:
5903 if (!is_reloc_root)
5904 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5905
5906 btrfs_end_transaction_throttle(trans);
5907 out_free:
5908 kfree(wc);
5909 btrfs_free_path(path);
5910 out:
5911 /*
5912 * We were an unfinished drop root, check to see if there are any
5913 * pending, and if not clear and wake up any waiters.
5914 */
5915 if (!err && unfinished_drop)
5916 btrfs_maybe_wake_unfinished_drop(fs_info);
5917
5918 /*
5919 * So if we need to stop dropping the snapshot for whatever reason we
5920 * need to make sure to add it back to the dead root list so that we
5921 * keep trying to do the work later. This also cleans up roots if we
5922 * don't have it in the radix (like when we recover after a power fail
5923 * or unmount) so we don't leak memory.
5924 */
5925 if (!for_reloc && !root_dropped)
5926 btrfs_add_dead_root(root);
5927 return err;
5928 }
5929
5930 /*
5931 * drop subtree rooted at tree block 'node'.
5932 *
5933 * NOTE: this function will unlock and release tree block 'node'
5934 * only used by relocation code
5935 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5936 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5937 struct btrfs_root *root,
5938 struct extent_buffer *node,
5939 struct extent_buffer *parent)
5940 {
5941 struct btrfs_fs_info *fs_info = root->fs_info;
5942 struct btrfs_path *path;
5943 struct walk_control *wc;
5944 int level;
5945 int parent_level;
5946 int ret = 0;
5947 int wret;
5948
5949 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5950
5951 path = btrfs_alloc_path();
5952 if (!path)
5953 return -ENOMEM;
5954
5955 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5956 if (!wc) {
5957 btrfs_free_path(path);
5958 return -ENOMEM;
5959 }
5960
5961 btrfs_assert_tree_write_locked(parent);
5962 parent_level = btrfs_header_level(parent);
5963 atomic_inc(&parent->refs);
5964 path->nodes[parent_level] = parent;
5965 path->slots[parent_level] = btrfs_header_nritems(parent);
5966
5967 btrfs_assert_tree_write_locked(node);
5968 level = btrfs_header_level(node);
5969 path->nodes[level] = node;
5970 path->slots[level] = 0;
5971 path->locks[level] = BTRFS_WRITE_LOCK;
5972
5973 wc->refs[parent_level] = 1;
5974 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5975 wc->level = level;
5976 wc->shared_level = -1;
5977 wc->stage = DROP_REFERENCE;
5978 wc->update_ref = 0;
5979 wc->keep_locks = 1;
5980 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5981
5982 while (1) {
5983 wret = walk_down_tree(trans, root, path, wc);
5984 if (wret < 0) {
5985 ret = wret;
5986 break;
5987 }
5988
5989 wret = walk_up_tree(trans, root, path, wc, parent_level);
5990 if (wret < 0)
5991 ret = wret;
5992 if (wret != 0)
5993 break;
5994 }
5995
5996 kfree(wc);
5997 btrfs_free_path(path);
5998 return ret;
5999 }
6000
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6001 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6002 u64 start, u64 end)
6003 {
6004 return unpin_extent_range(fs_info, start, end, false);
6005 }
6006
6007 /*
6008 * It used to be that old block groups would be left around forever.
6009 * Iterating over them would be enough to trim unused space. Since we
6010 * now automatically remove them, we also need to iterate over unallocated
6011 * space.
6012 *
6013 * We don't want a transaction for this since the discard may take a
6014 * substantial amount of time. We don't require that a transaction be
6015 * running, but we do need to take a running transaction into account
6016 * to ensure that we're not discarding chunks that were released or
6017 * allocated in the current transaction.
6018 *
6019 * Holding the chunks lock will prevent other threads from allocating
6020 * or releasing chunks, but it won't prevent a running transaction
6021 * from committing and releasing the memory that the pending chunks
6022 * list head uses. For that, we need to take a reference to the
6023 * transaction and hold the commit root sem. We only need to hold
6024 * it while performing the free space search since we have already
6025 * held back allocations.
6026 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6027 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6028 {
6029 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6030 int ret;
6031
6032 *trimmed = 0;
6033
6034 /* Discard not supported = nothing to do. */
6035 if (!bdev_max_discard_sectors(device->bdev))
6036 return 0;
6037
6038 /* Not writable = nothing to do. */
6039 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6040 return 0;
6041
6042 /* No free space = nothing to do. */
6043 if (device->total_bytes <= device->bytes_used)
6044 return 0;
6045
6046 ret = 0;
6047
6048 while (1) {
6049 struct btrfs_fs_info *fs_info = device->fs_info;
6050 u64 bytes;
6051
6052 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6053 if (ret)
6054 break;
6055
6056 find_first_clear_extent_bit(&device->alloc_state, start,
6057 &start, &end,
6058 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6059
6060 /* Check if there are any CHUNK_* bits left */
6061 if (start > device->total_bytes) {
6062 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6063 btrfs_warn_in_rcu(fs_info,
6064 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6065 start, end - start + 1,
6066 btrfs_dev_name(device),
6067 device->total_bytes);
6068 mutex_unlock(&fs_info->chunk_mutex);
6069 ret = 0;
6070 break;
6071 }
6072
6073 /* Ensure we skip the reserved space on each device. */
6074 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6075
6076 /*
6077 * If find_first_clear_extent_bit find a range that spans the
6078 * end of the device it will set end to -1, in this case it's up
6079 * to the caller to trim the value to the size of the device.
6080 */
6081 end = min(end, device->total_bytes - 1);
6082
6083 len = end - start + 1;
6084
6085 /* We didn't find any extents */
6086 if (!len) {
6087 mutex_unlock(&fs_info->chunk_mutex);
6088 ret = 0;
6089 break;
6090 }
6091
6092 ret = btrfs_issue_discard(device->bdev, start, len,
6093 &bytes);
6094 if (!ret)
6095 set_extent_bit(&device->alloc_state, start,
6096 start + bytes - 1, CHUNK_TRIMMED, NULL);
6097 mutex_unlock(&fs_info->chunk_mutex);
6098
6099 if (ret)
6100 break;
6101
6102 start += len;
6103 *trimmed += bytes;
6104
6105 if (btrfs_trim_interrupted()) {
6106 ret = -ERESTARTSYS;
6107 break;
6108 }
6109
6110 cond_resched();
6111 }
6112
6113 return ret;
6114 }
6115
6116 /*
6117 * Trim the whole filesystem by:
6118 * 1) trimming the free space in each block group
6119 * 2) trimming the unallocated space on each device
6120 *
6121 * This will also continue trimming even if a block group or device encounters
6122 * an error. The return value will be the last error, or 0 if nothing bad
6123 * happens.
6124 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6125 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6126 {
6127 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6128 struct btrfs_block_group *cache = NULL;
6129 struct btrfs_device *device;
6130 u64 group_trimmed;
6131 u64 range_end = U64_MAX;
6132 u64 start;
6133 u64 end;
6134 u64 trimmed = 0;
6135 u64 bg_failed = 0;
6136 u64 dev_failed = 0;
6137 int bg_ret = 0;
6138 int dev_ret = 0;
6139 int ret = 0;
6140
6141 if (range->start == U64_MAX)
6142 return -EINVAL;
6143
6144 /*
6145 * Check range overflow if range->len is set.
6146 * The default range->len is U64_MAX.
6147 */
6148 if (range->len != U64_MAX &&
6149 check_add_overflow(range->start, range->len, &range_end))
6150 return -EINVAL;
6151
6152 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6153 for (; cache; cache = btrfs_next_block_group(cache)) {
6154 if (cache->start >= range_end) {
6155 btrfs_put_block_group(cache);
6156 break;
6157 }
6158
6159 start = max(range->start, cache->start);
6160 end = min(range_end, cache->start + cache->length);
6161
6162 if (end - start >= range->minlen) {
6163 if (!btrfs_block_group_done(cache)) {
6164 ret = btrfs_cache_block_group(cache, true);
6165 if (ret) {
6166 bg_failed++;
6167 bg_ret = ret;
6168 continue;
6169 }
6170 }
6171 ret = btrfs_trim_block_group(cache,
6172 &group_trimmed,
6173 start,
6174 end,
6175 range->minlen);
6176
6177 trimmed += group_trimmed;
6178 if (ret) {
6179 bg_failed++;
6180 bg_ret = ret;
6181 continue;
6182 }
6183 }
6184 }
6185
6186 if (bg_failed)
6187 btrfs_warn(fs_info,
6188 "failed to trim %llu block group(s), last error %d",
6189 bg_failed, bg_ret);
6190
6191 mutex_lock(&fs_devices->device_list_mutex);
6192 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6193 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6194 continue;
6195
6196 ret = btrfs_trim_free_extents(device, &group_trimmed);
6197
6198 trimmed += group_trimmed;
6199 if (ret) {
6200 dev_failed++;
6201 dev_ret = ret;
6202 break;
6203 }
6204 }
6205 mutex_unlock(&fs_devices->device_list_mutex);
6206
6207 if (dev_failed)
6208 btrfs_warn(fs_info,
6209 "failed to trim %llu device(s), last error %d",
6210 dev_failed, dev_ret);
6211 range->len = trimmed;
6212 if (bg_ret)
6213 return bg_ret;
6214 return dev_ret;
6215 }
6216