1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 46 #undef SCRAMBLE_DELAYED_REFS 47 48 49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 50 struct btrfs_delayed_ref_node *node, u64 parent, 51 u64 root_objectid, u64 owner_objectid, 52 u64 owner_offset, int refs_to_drop, 53 struct btrfs_delayed_extent_op *extra_op); 54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 55 struct extent_buffer *leaf, 56 struct btrfs_extent_item *ei); 57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 58 u64 parent, u64 root_objectid, 59 u64 flags, u64 owner, u64 offset, 60 struct btrfs_key *ins, int ref_mod); 61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 62 struct btrfs_delayed_ref_node *node, 63 struct btrfs_delayed_extent_op *extent_op); 64 static int find_next_key(struct btrfs_path *path, int level, 65 struct btrfs_key *key); 66 67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 68 { 69 return (cache->flags & bits) == bits; 70 } 71 72 /* simple helper to search for an existing data extent at a given offset */ 73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 74 { 75 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 76 int ret; 77 struct btrfs_key key; 78 struct btrfs_path *path; 79 80 path = btrfs_alloc_path(); 81 if (!path) 82 return -ENOMEM; 83 84 key.objectid = start; 85 key.offset = len; 86 key.type = BTRFS_EXTENT_ITEM_KEY; 87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 88 btrfs_free_path(path); 89 return ret; 90 } 91 92 /* 93 * helper function to lookup reference count and flags of a tree block. 94 * 95 * the head node for delayed ref is used to store the sum of all the 96 * reference count modifications queued up in the rbtree. the head 97 * node may also store the extent flags to set. This way you can check 98 * to see what the reference count and extent flags would be if all of 99 * the delayed refs are not processed. 100 */ 101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 102 struct btrfs_fs_info *fs_info, u64 bytenr, 103 u64 offset, int metadata, u64 *refs, u64 *flags) 104 { 105 struct btrfs_root *extent_root; 106 struct btrfs_delayed_ref_head *head; 107 struct btrfs_delayed_ref_root *delayed_refs; 108 struct btrfs_path *path; 109 struct btrfs_extent_item *ei; 110 struct extent_buffer *leaf; 111 struct btrfs_key key; 112 u32 item_size; 113 u64 num_refs; 114 u64 extent_flags; 115 int ret; 116 117 /* 118 * If we don't have skinny metadata, don't bother doing anything 119 * different 120 */ 121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 122 offset = fs_info->nodesize; 123 metadata = 0; 124 } 125 126 path = btrfs_alloc_path(); 127 if (!path) 128 return -ENOMEM; 129 130 if (!trans) { 131 path->skip_locking = 1; 132 path->search_commit_root = 1; 133 } 134 135 search_again: 136 key.objectid = bytenr; 137 key.offset = offset; 138 if (metadata) 139 key.type = BTRFS_METADATA_ITEM_KEY; 140 else 141 key.type = BTRFS_EXTENT_ITEM_KEY; 142 143 extent_root = btrfs_extent_root(fs_info, bytenr); 144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 145 if (ret < 0) 146 goto out_free; 147 148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 149 if (path->slots[0]) { 150 path->slots[0]--; 151 btrfs_item_key_to_cpu(path->nodes[0], &key, 152 path->slots[0]); 153 if (key.objectid == bytenr && 154 key.type == BTRFS_EXTENT_ITEM_KEY && 155 key.offset == fs_info->nodesize) 156 ret = 0; 157 } 158 } 159 160 if (ret == 0) { 161 leaf = path->nodes[0]; 162 item_size = btrfs_item_size(leaf, path->slots[0]); 163 if (item_size >= sizeof(*ei)) { 164 ei = btrfs_item_ptr(leaf, path->slots[0], 165 struct btrfs_extent_item); 166 num_refs = btrfs_extent_refs(leaf, ei); 167 extent_flags = btrfs_extent_flags(leaf, ei); 168 } else { 169 ret = -EUCLEAN; 170 btrfs_err(fs_info, 171 "unexpected extent item size, has %u expect >= %zu", 172 item_size, sizeof(*ei)); 173 if (trans) 174 btrfs_abort_transaction(trans, ret); 175 else 176 btrfs_handle_fs_error(fs_info, ret, NULL); 177 178 goto out_free; 179 } 180 181 BUG_ON(num_refs == 0); 182 } else { 183 num_refs = 0; 184 extent_flags = 0; 185 ret = 0; 186 } 187 188 if (!trans) 189 goto out; 190 191 delayed_refs = &trans->transaction->delayed_refs; 192 spin_lock(&delayed_refs->lock); 193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 194 if (head) { 195 if (!mutex_trylock(&head->mutex)) { 196 refcount_inc(&head->refs); 197 spin_unlock(&delayed_refs->lock); 198 199 btrfs_release_path(path); 200 201 /* 202 * Mutex was contended, block until it's released and try 203 * again 204 */ 205 mutex_lock(&head->mutex); 206 mutex_unlock(&head->mutex); 207 btrfs_put_delayed_ref_head(head); 208 goto search_again; 209 } 210 spin_lock(&head->lock); 211 if (head->extent_op && head->extent_op->update_flags) 212 extent_flags |= head->extent_op->flags_to_set; 213 else 214 BUG_ON(num_refs == 0); 215 216 num_refs += head->ref_mod; 217 spin_unlock(&head->lock); 218 mutex_unlock(&head->mutex); 219 } 220 spin_unlock(&delayed_refs->lock); 221 out: 222 WARN_ON(num_refs == 0); 223 if (refs) 224 *refs = num_refs; 225 if (flags) 226 *flags = extent_flags; 227 out_free: 228 btrfs_free_path(path); 229 return ret; 230 } 231 232 /* 233 * Back reference rules. Back refs have three main goals: 234 * 235 * 1) differentiate between all holders of references to an extent so that 236 * when a reference is dropped we can make sure it was a valid reference 237 * before freeing the extent. 238 * 239 * 2) Provide enough information to quickly find the holders of an extent 240 * if we notice a given block is corrupted or bad. 241 * 242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 243 * maintenance. This is actually the same as #2, but with a slightly 244 * different use case. 245 * 246 * There are two kinds of back refs. The implicit back refs is optimized 247 * for pointers in non-shared tree blocks. For a given pointer in a block, 248 * back refs of this kind provide information about the block's owner tree 249 * and the pointer's key. These information allow us to find the block by 250 * b-tree searching. The full back refs is for pointers in tree blocks not 251 * referenced by their owner trees. The location of tree block is recorded 252 * in the back refs. Actually the full back refs is generic, and can be 253 * used in all cases the implicit back refs is used. The major shortcoming 254 * of the full back refs is its overhead. Every time a tree block gets 255 * COWed, we have to update back refs entry for all pointers in it. 256 * 257 * For a newly allocated tree block, we use implicit back refs for 258 * pointers in it. This means most tree related operations only involve 259 * implicit back refs. For a tree block created in old transaction, the 260 * only way to drop a reference to it is COW it. So we can detect the 261 * event that tree block loses its owner tree's reference and do the 262 * back refs conversion. 263 * 264 * When a tree block is COWed through a tree, there are four cases: 265 * 266 * The reference count of the block is one and the tree is the block's 267 * owner tree. Nothing to do in this case. 268 * 269 * The reference count of the block is one and the tree is not the 270 * block's owner tree. In this case, full back refs is used for pointers 271 * in the block. Remove these full back refs, add implicit back refs for 272 * every pointers in the new block. 273 * 274 * The reference count of the block is greater than one and the tree is 275 * the block's owner tree. In this case, implicit back refs is used for 276 * pointers in the block. Add full back refs for every pointers in the 277 * block, increase lower level extents' reference counts. The original 278 * implicit back refs are entailed to the new block. 279 * 280 * The reference count of the block is greater than one and the tree is 281 * not the block's owner tree. Add implicit back refs for every pointer in 282 * the new block, increase lower level extents' reference count. 283 * 284 * Back Reference Key composing: 285 * 286 * The key objectid corresponds to the first byte in the extent, 287 * The key type is used to differentiate between types of back refs. 288 * There are different meanings of the key offset for different types 289 * of back refs. 290 * 291 * File extents can be referenced by: 292 * 293 * - multiple snapshots, subvolumes, or different generations in one subvol 294 * - different files inside a single subvolume 295 * - different offsets inside a file (bookend extents in file.c) 296 * 297 * The extent ref structure for the implicit back refs has fields for: 298 * 299 * - Objectid of the subvolume root 300 * - objectid of the file holding the reference 301 * - original offset in the file 302 * - how many bookend extents 303 * 304 * The key offset for the implicit back refs is hash of the first 305 * three fields. 306 * 307 * The extent ref structure for the full back refs has field for: 308 * 309 * - number of pointers in the tree leaf 310 * 311 * The key offset for the implicit back refs is the first byte of 312 * the tree leaf 313 * 314 * When a file extent is allocated, The implicit back refs is used. 315 * the fields are filled in: 316 * 317 * (root_key.objectid, inode objectid, offset in file, 1) 318 * 319 * When a file extent is removed file truncation, we find the 320 * corresponding implicit back refs and check the following fields: 321 * 322 * (btrfs_header_owner(leaf), inode objectid, offset in file) 323 * 324 * Btree extents can be referenced by: 325 * 326 * - Different subvolumes 327 * 328 * Both the implicit back refs and the full back refs for tree blocks 329 * only consist of key. The key offset for the implicit back refs is 330 * objectid of block's owner tree. The key offset for the full back refs 331 * is the first byte of parent block. 332 * 333 * When implicit back refs is used, information about the lowest key and 334 * level of the tree block are required. These information are stored in 335 * tree block info structure. 336 */ 337 338 /* 339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 342 */ 343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 344 struct btrfs_extent_inline_ref *iref, 345 enum btrfs_inline_ref_type is_data) 346 { 347 int type = btrfs_extent_inline_ref_type(eb, iref); 348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 349 350 if (type == BTRFS_TREE_BLOCK_REF_KEY || 351 type == BTRFS_SHARED_BLOCK_REF_KEY || 352 type == BTRFS_SHARED_DATA_REF_KEY || 353 type == BTRFS_EXTENT_DATA_REF_KEY) { 354 if (is_data == BTRFS_REF_TYPE_BLOCK) { 355 if (type == BTRFS_TREE_BLOCK_REF_KEY) 356 return type; 357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 358 ASSERT(eb->fs_info); 359 /* 360 * Every shared one has parent tree block, 361 * which must be aligned to sector size. 362 */ 363 if (offset && 364 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 365 return type; 366 } 367 } else if (is_data == BTRFS_REF_TYPE_DATA) { 368 if (type == BTRFS_EXTENT_DATA_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_DATA_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else { 381 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 382 return type; 383 } 384 } 385 386 WARN_ON(1); 387 btrfs_print_leaf(eb); 388 btrfs_err(eb->fs_info, 389 "eb %llu iref 0x%lx invalid extent inline ref type %d", 390 eb->start, (unsigned long)iref, type); 391 392 return BTRFS_REF_TYPE_INVALID; 393 } 394 395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 396 { 397 u32 high_crc = ~(u32)0; 398 u32 low_crc = ~(u32)0; 399 __le64 lenum; 400 401 lenum = cpu_to_le64(root_objectid); 402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 403 lenum = cpu_to_le64(owner); 404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 405 lenum = cpu_to_le64(offset); 406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 407 408 return ((u64)high_crc << 31) ^ (u64)low_crc; 409 } 410 411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 412 struct btrfs_extent_data_ref *ref) 413 { 414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 415 btrfs_extent_data_ref_objectid(leaf, ref), 416 btrfs_extent_data_ref_offset(leaf, ref)); 417 } 418 419 static int match_extent_data_ref(struct extent_buffer *leaf, 420 struct btrfs_extent_data_ref *ref, 421 u64 root_objectid, u64 owner, u64 offset) 422 { 423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 424 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 425 btrfs_extent_data_ref_offset(leaf, ref) != offset) 426 return 0; 427 return 1; 428 } 429 430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 431 struct btrfs_path *path, 432 u64 bytenr, u64 parent, 433 u64 root_objectid, 434 u64 owner, u64 offset) 435 { 436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 437 struct btrfs_key key; 438 struct btrfs_extent_data_ref *ref; 439 struct extent_buffer *leaf; 440 u32 nritems; 441 int ret; 442 int recow; 443 int err = -ENOENT; 444 445 key.objectid = bytenr; 446 if (parent) { 447 key.type = BTRFS_SHARED_DATA_REF_KEY; 448 key.offset = parent; 449 } else { 450 key.type = BTRFS_EXTENT_DATA_REF_KEY; 451 key.offset = hash_extent_data_ref(root_objectid, 452 owner, offset); 453 } 454 again: 455 recow = 0; 456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 457 if (ret < 0) { 458 err = ret; 459 goto fail; 460 } 461 462 if (parent) { 463 if (!ret) 464 return 0; 465 goto fail; 466 } 467 468 leaf = path->nodes[0]; 469 nritems = btrfs_header_nritems(leaf); 470 while (1) { 471 if (path->slots[0] >= nritems) { 472 ret = btrfs_next_leaf(root, path); 473 if (ret < 0) 474 err = ret; 475 if (ret) 476 goto fail; 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 recow = 1; 481 } 482 483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 484 if (key.objectid != bytenr || 485 key.type != BTRFS_EXTENT_DATA_REF_KEY) 486 goto fail; 487 488 ref = btrfs_item_ptr(leaf, path->slots[0], 489 struct btrfs_extent_data_ref); 490 491 if (match_extent_data_ref(leaf, ref, root_objectid, 492 owner, offset)) { 493 if (recow) { 494 btrfs_release_path(path); 495 goto again; 496 } 497 err = 0; 498 break; 499 } 500 path->slots[0]++; 501 } 502 fail: 503 return err; 504 } 505 506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 507 struct btrfs_path *path, 508 u64 bytenr, u64 parent, 509 u64 root_objectid, u64 owner, 510 u64 offset, int refs_to_add) 511 { 512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 513 struct btrfs_key key; 514 struct extent_buffer *leaf; 515 u32 size; 516 u32 num_refs; 517 int ret; 518 519 key.objectid = bytenr; 520 if (parent) { 521 key.type = BTRFS_SHARED_DATA_REF_KEY; 522 key.offset = parent; 523 size = sizeof(struct btrfs_shared_data_ref); 524 } else { 525 key.type = BTRFS_EXTENT_DATA_REF_KEY; 526 key.offset = hash_extent_data_ref(root_objectid, 527 owner, offset); 528 size = sizeof(struct btrfs_extent_data_ref); 529 } 530 531 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 532 if (ret && ret != -EEXIST) 533 goto fail; 534 535 leaf = path->nodes[0]; 536 if (parent) { 537 struct btrfs_shared_data_ref *ref; 538 ref = btrfs_item_ptr(leaf, path->slots[0], 539 struct btrfs_shared_data_ref); 540 if (ret == 0) { 541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 542 } else { 543 num_refs = btrfs_shared_data_ref_count(leaf, ref); 544 num_refs += refs_to_add; 545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 546 } 547 } else { 548 struct btrfs_extent_data_ref *ref; 549 while (ret == -EEXIST) { 550 ref = btrfs_item_ptr(leaf, path->slots[0], 551 struct btrfs_extent_data_ref); 552 if (match_extent_data_ref(leaf, ref, root_objectid, 553 owner, offset)) 554 break; 555 btrfs_release_path(path); 556 key.offset++; 557 ret = btrfs_insert_empty_item(trans, root, path, &key, 558 size); 559 if (ret && ret != -EEXIST) 560 goto fail; 561 562 leaf = path->nodes[0]; 563 } 564 ref = btrfs_item_ptr(leaf, path->slots[0], 565 struct btrfs_extent_data_ref); 566 if (ret == 0) { 567 btrfs_set_extent_data_ref_root(leaf, ref, 568 root_objectid); 569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 570 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 572 } else { 573 num_refs = btrfs_extent_data_ref_count(leaf, ref); 574 num_refs += refs_to_add; 575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 576 } 577 } 578 btrfs_mark_buffer_dirty(trans, leaf); 579 ret = 0; 580 fail: 581 btrfs_release_path(path); 582 return ret; 583 } 584 585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 586 struct btrfs_root *root, 587 struct btrfs_path *path, 588 int refs_to_drop) 589 { 590 struct btrfs_key key; 591 struct btrfs_extent_data_ref *ref1 = NULL; 592 struct btrfs_shared_data_ref *ref2 = NULL; 593 struct extent_buffer *leaf; 594 u32 num_refs = 0; 595 int ret = 0; 596 597 leaf = path->nodes[0]; 598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 599 600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 601 ref1 = btrfs_item_ptr(leaf, path->slots[0], 602 struct btrfs_extent_data_ref); 603 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 605 ref2 = btrfs_item_ptr(leaf, path->slots[0], 606 struct btrfs_shared_data_ref); 607 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 608 } else { 609 btrfs_err(trans->fs_info, 610 "unrecognized backref key (%llu %u %llu)", 611 key.objectid, key.type, key.offset); 612 btrfs_abort_transaction(trans, -EUCLEAN); 613 return -EUCLEAN; 614 } 615 616 BUG_ON(num_refs < refs_to_drop); 617 num_refs -= refs_to_drop; 618 619 if (num_refs == 0) { 620 ret = btrfs_del_item(trans, root, path); 621 } else { 622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 626 btrfs_mark_buffer_dirty(trans, leaf); 627 } 628 return ret; 629 } 630 631 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 632 struct btrfs_extent_inline_ref *iref) 633 { 634 struct btrfs_key key; 635 struct extent_buffer *leaf; 636 struct btrfs_extent_data_ref *ref1; 637 struct btrfs_shared_data_ref *ref2; 638 u32 num_refs = 0; 639 int type; 640 641 leaf = path->nodes[0]; 642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 643 644 if (iref) { 645 /* 646 * If type is invalid, we should have bailed out earlier than 647 * this call. 648 */ 649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 650 ASSERT(type != BTRFS_REF_TYPE_INVALID); 651 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 653 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 654 } else { 655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 656 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 657 } 658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 659 ref1 = btrfs_item_ptr(leaf, path->slots[0], 660 struct btrfs_extent_data_ref); 661 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 663 ref2 = btrfs_item_ptr(leaf, path->slots[0], 664 struct btrfs_shared_data_ref); 665 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 666 } else { 667 WARN_ON(1); 668 } 669 return num_refs; 670 } 671 672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 673 struct btrfs_path *path, 674 u64 bytenr, u64 parent, 675 u64 root_objectid) 676 { 677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 678 struct btrfs_key key; 679 int ret; 680 681 key.objectid = bytenr; 682 if (parent) { 683 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 684 key.offset = parent; 685 } else { 686 key.type = BTRFS_TREE_BLOCK_REF_KEY; 687 key.offset = root_objectid; 688 } 689 690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 691 if (ret > 0) 692 ret = -ENOENT; 693 return ret; 694 } 695 696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 697 struct btrfs_path *path, 698 u64 bytenr, u64 parent, 699 u64 root_objectid) 700 { 701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 702 struct btrfs_key key; 703 int ret; 704 705 key.objectid = bytenr; 706 if (parent) { 707 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 708 key.offset = parent; 709 } else { 710 key.type = BTRFS_TREE_BLOCK_REF_KEY; 711 key.offset = root_objectid; 712 } 713 714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 715 btrfs_release_path(path); 716 return ret; 717 } 718 719 static inline int extent_ref_type(u64 parent, u64 owner) 720 { 721 int type; 722 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 723 if (parent > 0) 724 type = BTRFS_SHARED_BLOCK_REF_KEY; 725 else 726 type = BTRFS_TREE_BLOCK_REF_KEY; 727 } else { 728 if (parent > 0) 729 type = BTRFS_SHARED_DATA_REF_KEY; 730 else 731 type = BTRFS_EXTENT_DATA_REF_KEY; 732 } 733 return type; 734 } 735 736 static int find_next_key(struct btrfs_path *path, int level, 737 struct btrfs_key *key) 738 739 { 740 for (; level < BTRFS_MAX_LEVEL; level++) { 741 if (!path->nodes[level]) 742 break; 743 if (path->slots[level] + 1 >= 744 btrfs_header_nritems(path->nodes[level])) 745 continue; 746 if (level == 0) 747 btrfs_item_key_to_cpu(path->nodes[level], key, 748 path->slots[level] + 1); 749 else 750 btrfs_node_key_to_cpu(path->nodes[level], key, 751 path->slots[level] + 1); 752 return 0; 753 } 754 return 1; 755 } 756 757 /* 758 * look for inline back ref. if back ref is found, *ref_ret is set 759 * to the address of inline back ref, and 0 is returned. 760 * 761 * if back ref isn't found, *ref_ret is set to the address where it 762 * should be inserted, and -ENOENT is returned. 763 * 764 * if insert is true and there are too many inline back refs, the path 765 * points to the extent item, and -EAGAIN is returned. 766 * 767 * NOTE: inline back refs are ordered in the same way that back ref 768 * items in the tree are ordered. 769 */ 770 static noinline_for_stack 771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 772 struct btrfs_path *path, 773 struct btrfs_extent_inline_ref **ref_ret, 774 u64 bytenr, u64 num_bytes, 775 u64 parent, u64 root_objectid, 776 u64 owner, u64 offset, int insert) 777 { 778 struct btrfs_fs_info *fs_info = trans->fs_info; 779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 780 struct btrfs_key key; 781 struct extent_buffer *leaf; 782 struct btrfs_extent_item *ei; 783 struct btrfs_extent_inline_ref *iref; 784 u64 flags; 785 u64 item_size; 786 unsigned long ptr; 787 unsigned long end; 788 int extra_size; 789 int type; 790 int want; 791 int ret; 792 int err = 0; 793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 794 int needed; 795 796 key.objectid = bytenr; 797 key.type = BTRFS_EXTENT_ITEM_KEY; 798 key.offset = num_bytes; 799 800 want = extent_ref_type(parent, owner); 801 if (insert) { 802 extra_size = btrfs_extent_inline_ref_size(want); 803 path->search_for_extension = 1; 804 path->keep_locks = 1; 805 } else 806 extra_size = -1; 807 808 /* 809 * Owner is our level, so we can just add one to get the level for the 810 * block we are interested in. 811 */ 812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 813 key.type = BTRFS_METADATA_ITEM_KEY; 814 key.offset = owner; 815 } 816 817 again: 818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 819 if (ret < 0) { 820 err = ret; 821 goto out; 822 } 823 824 /* 825 * We may be a newly converted file system which still has the old fat 826 * extent entries for metadata, so try and see if we have one of those. 827 */ 828 if (ret > 0 && skinny_metadata) { 829 skinny_metadata = false; 830 if (path->slots[0]) { 831 path->slots[0]--; 832 btrfs_item_key_to_cpu(path->nodes[0], &key, 833 path->slots[0]); 834 if (key.objectid == bytenr && 835 key.type == BTRFS_EXTENT_ITEM_KEY && 836 key.offset == num_bytes) 837 ret = 0; 838 } 839 if (ret) { 840 key.objectid = bytenr; 841 key.type = BTRFS_EXTENT_ITEM_KEY; 842 key.offset = num_bytes; 843 btrfs_release_path(path); 844 goto again; 845 } 846 } 847 848 if (ret && !insert) { 849 err = -ENOENT; 850 goto out; 851 } else if (WARN_ON(ret)) { 852 btrfs_print_leaf(path->nodes[0]); 853 btrfs_err(fs_info, 854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 855 bytenr, num_bytes, parent, root_objectid, owner, 856 offset); 857 err = -EIO; 858 goto out; 859 } 860 861 leaf = path->nodes[0]; 862 item_size = btrfs_item_size(leaf, path->slots[0]); 863 if (unlikely(item_size < sizeof(*ei))) { 864 err = -EUCLEAN; 865 btrfs_err(fs_info, 866 "unexpected extent item size, has %llu expect >= %zu", 867 item_size, sizeof(*ei)); 868 btrfs_abort_transaction(trans, err); 869 goto out; 870 } 871 872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 873 flags = btrfs_extent_flags(leaf, ei); 874 875 ptr = (unsigned long)(ei + 1); 876 end = (unsigned long)ei + item_size; 877 878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 879 ptr += sizeof(struct btrfs_tree_block_info); 880 BUG_ON(ptr > end); 881 } 882 883 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 884 needed = BTRFS_REF_TYPE_DATA; 885 else 886 needed = BTRFS_REF_TYPE_BLOCK; 887 888 err = -ENOENT; 889 while (1) { 890 if (ptr >= end) { 891 if (ptr > end) { 892 err = -EUCLEAN; 893 btrfs_print_leaf(path->nodes[0]); 894 btrfs_crit(fs_info, 895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 896 path->slots[0], root_objectid, owner, offset, parent); 897 } 898 break; 899 } 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_REF_TYPE_INVALID) { 903 err = -EUCLEAN; 904 goto out; 905 } 906 907 if (want < type) 908 break; 909 if (want > type) { 910 ptr += btrfs_extent_inline_ref_size(type); 911 continue; 912 } 913 914 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 915 struct btrfs_extent_data_ref *dref; 916 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 917 if (match_extent_data_ref(leaf, dref, root_objectid, 918 owner, offset)) { 919 err = 0; 920 break; 921 } 922 if (hash_extent_data_ref_item(leaf, dref) < 923 hash_extent_data_ref(root_objectid, owner, offset)) 924 break; 925 } else { 926 u64 ref_offset; 927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 928 if (parent > 0) { 929 if (parent == ref_offset) { 930 err = 0; 931 break; 932 } 933 if (ref_offset < parent) 934 break; 935 } else { 936 if (root_objectid == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < root_objectid) 941 break; 942 } 943 } 944 ptr += btrfs_extent_inline_ref_size(type); 945 } 946 if (err == -ENOENT && insert) { 947 if (item_size + extra_size >= 948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 949 err = -EAGAIN; 950 goto out; 951 } 952 /* 953 * To add new inline back ref, we have to make sure 954 * there is no corresponding back ref item. 955 * For simplicity, we just do not add new inline back 956 * ref if there is any kind of item for this block 957 */ 958 if (find_next_key(path, 0, &key) == 0 && 959 key.objectid == bytenr && 960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 961 err = -EAGAIN; 962 goto out; 963 } 964 } 965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 966 out: 967 if (insert) { 968 path->keep_locks = 0; 969 path->search_for_extension = 0; 970 btrfs_unlock_up_safe(path, 1); 971 } 972 return err; 973 } 974 975 /* 976 * helper to add new inline back ref 977 */ 978 static noinline_for_stack 979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 980 struct btrfs_path *path, 981 struct btrfs_extent_inline_ref *iref, 982 u64 parent, u64 root_objectid, 983 u64 owner, u64 offset, int refs_to_add, 984 struct btrfs_delayed_extent_op *extent_op) 985 { 986 struct extent_buffer *leaf; 987 struct btrfs_extent_item *ei; 988 unsigned long ptr; 989 unsigned long end; 990 unsigned long item_offset; 991 u64 refs; 992 int size; 993 int type; 994 995 leaf = path->nodes[0]; 996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 997 item_offset = (unsigned long)iref - (unsigned long)ei; 998 999 type = extent_ref_type(parent, owner); 1000 size = btrfs_extent_inline_ref_size(type); 1001 1002 btrfs_extend_item(trans, path, size); 1003 1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1005 refs = btrfs_extent_refs(leaf, ei); 1006 refs += refs_to_add; 1007 btrfs_set_extent_refs(leaf, ei, refs); 1008 if (extent_op) 1009 __run_delayed_extent_op(extent_op, leaf, ei); 1010 1011 ptr = (unsigned long)ei + item_offset; 1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1013 if (ptr < end - size) 1014 memmove_extent_buffer(leaf, ptr + size, ptr, 1015 end - size - ptr); 1016 1017 iref = (struct btrfs_extent_inline_ref *)ptr; 1018 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1020 struct btrfs_extent_data_ref *dref; 1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1027 struct btrfs_shared_data_ref *sref; 1028 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1033 } else { 1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1035 } 1036 btrfs_mark_buffer_dirty(trans, leaf); 1037 } 1038 1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1040 struct btrfs_path *path, 1041 struct btrfs_extent_inline_ref **ref_ret, 1042 u64 bytenr, u64 num_bytes, u64 parent, 1043 u64 root_objectid, u64 owner, u64 offset) 1044 { 1045 int ret; 1046 1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1048 num_bytes, parent, root_objectid, 1049 owner, offset, 0); 1050 if (ret != -ENOENT) 1051 return ret; 1052 1053 btrfs_release_path(path); 1054 *ref_ret = NULL; 1055 1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1058 root_objectid); 1059 } else { 1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1061 root_objectid, owner, offset); 1062 } 1063 return ret; 1064 } 1065 1066 /* 1067 * helper to update/remove inline back ref 1068 */ 1069 static noinline_for_stack int update_inline_extent_backref( 1070 struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_extent_inline_ref *iref, 1073 int refs_to_mod, 1074 struct btrfs_delayed_extent_op *extent_op) 1075 { 1076 struct extent_buffer *leaf = path->nodes[0]; 1077 struct btrfs_fs_info *fs_info = leaf->fs_info; 1078 struct btrfs_extent_item *ei; 1079 struct btrfs_extent_data_ref *dref = NULL; 1080 struct btrfs_shared_data_ref *sref = NULL; 1081 unsigned long ptr; 1082 unsigned long end; 1083 u32 item_size; 1084 int size; 1085 int type; 1086 u64 refs; 1087 1088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1089 refs = btrfs_extent_refs(leaf, ei); 1090 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1091 struct btrfs_key key; 1092 u32 extent_size; 1093 1094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1095 if (key.type == BTRFS_METADATA_ITEM_KEY) 1096 extent_size = fs_info->nodesize; 1097 else 1098 extent_size = key.offset; 1099 btrfs_print_leaf(leaf); 1100 btrfs_err(fs_info, 1101 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1102 key.objectid, extent_size, refs_to_mod, refs); 1103 return -EUCLEAN; 1104 } 1105 refs += refs_to_mod; 1106 btrfs_set_extent_refs(leaf, ei, refs); 1107 if (extent_op) 1108 __run_delayed_extent_op(extent_op, leaf, ei); 1109 1110 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1111 /* 1112 * Function btrfs_get_extent_inline_ref_type() has already printed 1113 * error messages. 1114 */ 1115 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1116 return -EUCLEAN; 1117 1118 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1119 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1120 refs = btrfs_extent_data_ref_count(leaf, dref); 1121 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1122 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1123 refs = btrfs_shared_data_ref_count(leaf, sref); 1124 } else { 1125 refs = 1; 1126 /* 1127 * For tree blocks we can only drop one ref for it, and tree 1128 * blocks should not have refs > 1. 1129 * 1130 * Furthermore if we're inserting a new inline backref, we 1131 * won't reach this path either. That would be 1132 * setup_inline_extent_backref(). 1133 */ 1134 if (unlikely(refs_to_mod != -1)) { 1135 struct btrfs_key key; 1136 1137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1138 1139 btrfs_print_leaf(leaf); 1140 btrfs_err(fs_info, 1141 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1142 key.objectid, refs_to_mod); 1143 return -EUCLEAN; 1144 } 1145 } 1146 1147 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1148 struct btrfs_key key; 1149 u32 extent_size; 1150 1151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1152 if (key.type == BTRFS_METADATA_ITEM_KEY) 1153 extent_size = fs_info->nodesize; 1154 else 1155 extent_size = key.offset; 1156 btrfs_print_leaf(leaf); 1157 btrfs_err(fs_info, 1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1159 (unsigned long)iref, key.objectid, extent_size, 1160 refs_to_mod, refs); 1161 return -EUCLEAN; 1162 } 1163 refs += refs_to_mod; 1164 1165 if (refs > 0) { 1166 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1167 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1168 else 1169 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1170 } else { 1171 size = btrfs_extent_inline_ref_size(type); 1172 item_size = btrfs_item_size(leaf, path->slots[0]); 1173 ptr = (unsigned long)iref; 1174 end = (unsigned long)ei + item_size; 1175 if (ptr + size < end) 1176 memmove_extent_buffer(leaf, ptr, ptr + size, 1177 end - ptr - size); 1178 item_size -= size; 1179 btrfs_truncate_item(trans, path, item_size, 1); 1180 } 1181 btrfs_mark_buffer_dirty(trans, leaf); 1182 return 0; 1183 } 1184 1185 static noinline_for_stack 1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1187 struct btrfs_path *path, 1188 u64 bytenr, u64 num_bytes, u64 parent, 1189 u64 root_objectid, u64 owner, 1190 u64 offset, int refs_to_add, 1191 struct btrfs_delayed_extent_op *extent_op) 1192 { 1193 struct btrfs_extent_inline_ref *iref; 1194 int ret; 1195 1196 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1197 num_bytes, parent, root_objectid, 1198 owner, offset, 1); 1199 if (ret == 0) { 1200 /* 1201 * We're adding refs to a tree block we already own, this 1202 * should not happen at all. 1203 */ 1204 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1205 btrfs_print_leaf(path->nodes[0]); 1206 btrfs_crit(trans->fs_info, 1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1208 bytenr, num_bytes, root_objectid, path->slots[0]); 1209 return -EUCLEAN; 1210 } 1211 ret = update_inline_extent_backref(trans, path, iref, 1212 refs_to_add, extent_op); 1213 } else if (ret == -ENOENT) { 1214 setup_inline_extent_backref(trans, path, iref, parent, 1215 root_objectid, owner, offset, 1216 refs_to_add, extent_op); 1217 ret = 0; 1218 } 1219 return ret; 1220 } 1221 1222 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, 1225 struct btrfs_extent_inline_ref *iref, 1226 int refs_to_drop, int is_data) 1227 { 1228 int ret = 0; 1229 1230 BUG_ON(!is_data && refs_to_drop != 1); 1231 if (iref) 1232 ret = update_inline_extent_backref(trans, path, iref, 1233 -refs_to_drop, NULL); 1234 else if (is_data) 1235 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1236 else 1237 ret = btrfs_del_item(trans, root, path); 1238 return ret; 1239 } 1240 1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1242 u64 *discarded_bytes) 1243 { 1244 int j, ret = 0; 1245 u64 bytes_left, end; 1246 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1247 1248 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1249 if (start != aligned_start) { 1250 len -= aligned_start - start; 1251 len = round_down(len, 1 << SECTOR_SHIFT); 1252 start = aligned_start; 1253 } 1254 1255 *discarded_bytes = 0; 1256 1257 if (!len) 1258 return 0; 1259 1260 end = start + len; 1261 bytes_left = len; 1262 1263 /* Skip any superblocks on this device. */ 1264 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1265 u64 sb_start = btrfs_sb_offset(j); 1266 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1267 u64 size = sb_start - start; 1268 1269 if (!in_range(sb_start, start, bytes_left) && 1270 !in_range(sb_end, start, bytes_left) && 1271 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1272 continue; 1273 1274 /* 1275 * Superblock spans beginning of range. Adjust start and 1276 * try again. 1277 */ 1278 if (sb_start <= start) { 1279 start += sb_end - start; 1280 if (start > end) { 1281 bytes_left = 0; 1282 break; 1283 } 1284 bytes_left = end - start; 1285 continue; 1286 } 1287 1288 if (size) { 1289 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1290 size >> SECTOR_SHIFT, 1291 GFP_NOFS); 1292 if (!ret) 1293 *discarded_bytes += size; 1294 else if (ret != -EOPNOTSUPP) 1295 return ret; 1296 } 1297 1298 start = sb_end; 1299 if (start > end) { 1300 bytes_left = 0; 1301 break; 1302 } 1303 bytes_left = end - start; 1304 } 1305 1306 if (bytes_left) { 1307 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1308 bytes_left >> SECTOR_SHIFT, 1309 GFP_NOFS); 1310 if (!ret) 1311 *discarded_bytes += bytes_left; 1312 } 1313 return ret; 1314 } 1315 1316 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1317 { 1318 struct btrfs_device *dev = stripe->dev; 1319 struct btrfs_fs_info *fs_info = dev->fs_info; 1320 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1321 u64 phys = stripe->physical; 1322 u64 len = stripe->length; 1323 u64 discarded = 0; 1324 int ret = 0; 1325 1326 /* Zone reset on a zoned filesystem */ 1327 if (btrfs_can_zone_reset(dev, phys, len)) { 1328 u64 src_disc; 1329 1330 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1331 if (ret) 1332 goto out; 1333 1334 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1335 dev != dev_replace->srcdev) 1336 goto out; 1337 1338 src_disc = discarded; 1339 1340 /* Send to replace target as well */ 1341 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1342 &discarded); 1343 discarded += src_disc; 1344 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1345 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1346 } else { 1347 ret = 0; 1348 *bytes = 0; 1349 } 1350 1351 out: 1352 *bytes = discarded; 1353 return ret; 1354 } 1355 1356 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1357 u64 num_bytes, u64 *actual_bytes) 1358 { 1359 int ret = 0; 1360 u64 discarded_bytes = 0; 1361 u64 end = bytenr + num_bytes; 1362 u64 cur = bytenr; 1363 1364 /* 1365 * Avoid races with device replace and make sure the devices in the 1366 * stripes don't go away while we are discarding. 1367 */ 1368 btrfs_bio_counter_inc_blocked(fs_info); 1369 while (cur < end) { 1370 struct btrfs_discard_stripe *stripes; 1371 unsigned int num_stripes; 1372 int i; 1373 1374 num_bytes = end - cur; 1375 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1376 if (IS_ERR(stripes)) { 1377 ret = PTR_ERR(stripes); 1378 if (ret == -EOPNOTSUPP) 1379 ret = 0; 1380 break; 1381 } 1382 1383 for (i = 0; i < num_stripes; i++) { 1384 struct btrfs_discard_stripe *stripe = stripes + i; 1385 u64 bytes; 1386 1387 if (!stripe->dev->bdev) { 1388 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1389 continue; 1390 } 1391 1392 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1393 &stripe->dev->dev_state)) 1394 continue; 1395 1396 ret = do_discard_extent(stripe, &bytes); 1397 if (ret) { 1398 /* 1399 * Keep going if discard is not supported by the 1400 * device. 1401 */ 1402 if (ret != -EOPNOTSUPP) 1403 break; 1404 ret = 0; 1405 } else { 1406 discarded_bytes += bytes; 1407 } 1408 } 1409 kfree(stripes); 1410 if (ret) 1411 break; 1412 cur += num_bytes; 1413 } 1414 btrfs_bio_counter_dec(fs_info); 1415 if (actual_bytes) 1416 *actual_bytes = discarded_bytes; 1417 return ret; 1418 } 1419 1420 /* Can return -ENOMEM */ 1421 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1422 struct btrfs_ref *generic_ref) 1423 { 1424 struct btrfs_fs_info *fs_info = trans->fs_info; 1425 int ret; 1426 1427 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1428 generic_ref->action); 1429 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1430 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1431 1432 if (generic_ref->type == BTRFS_REF_METADATA) 1433 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1434 else 1435 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1436 1437 btrfs_ref_tree_mod(fs_info, generic_ref); 1438 1439 return ret; 1440 } 1441 1442 /* 1443 * __btrfs_inc_extent_ref - insert backreference for a given extent 1444 * 1445 * The counterpart is in __btrfs_free_extent(), with examples and more details 1446 * how it works. 1447 * 1448 * @trans: Handle of transaction 1449 * 1450 * @node: The delayed ref node used to get the bytenr/length for 1451 * extent whose references are incremented. 1452 * 1453 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1454 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1455 * bytenr of the parent block. Since new extents are always 1456 * created with indirect references, this will only be the case 1457 * when relocating a shared extent. In that case, root_objectid 1458 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1459 * be 0 1460 * 1461 * @root_objectid: The id of the root where this modification has originated, 1462 * this can be either one of the well-known metadata trees or 1463 * the subvolume id which references this extent. 1464 * 1465 * @owner: For data extents it is the inode number of the owning file. 1466 * For metadata extents this parameter holds the level in the 1467 * tree of the extent. 1468 * 1469 * @offset: For metadata extents the offset is ignored and is currently 1470 * always passed as 0. For data extents it is the fileoffset 1471 * this extent belongs to. 1472 * 1473 * @refs_to_add Number of references to add 1474 * 1475 * @extent_op Pointer to a structure, holding information necessary when 1476 * updating a tree block's flags 1477 * 1478 */ 1479 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1480 struct btrfs_delayed_ref_node *node, 1481 u64 parent, u64 root_objectid, 1482 u64 owner, u64 offset, int refs_to_add, 1483 struct btrfs_delayed_extent_op *extent_op) 1484 { 1485 struct btrfs_path *path; 1486 struct extent_buffer *leaf; 1487 struct btrfs_extent_item *item; 1488 struct btrfs_key key; 1489 u64 bytenr = node->bytenr; 1490 u64 num_bytes = node->num_bytes; 1491 u64 refs; 1492 int ret; 1493 1494 path = btrfs_alloc_path(); 1495 if (!path) 1496 return -ENOMEM; 1497 1498 /* this will setup the path even if it fails to insert the back ref */ 1499 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1500 parent, root_objectid, owner, 1501 offset, refs_to_add, extent_op); 1502 if ((ret < 0 && ret != -EAGAIN) || !ret) 1503 goto out; 1504 1505 /* 1506 * Ok we had -EAGAIN which means we didn't have space to insert and 1507 * inline extent ref, so just update the reference count and add a 1508 * normal backref. 1509 */ 1510 leaf = path->nodes[0]; 1511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1512 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1513 refs = btrfs_extent_refs(leaf, item); 1514 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1515 if (extent_op) 1516 __run_delayed_extent_op(extent_op, leaf, item); 1517 1518 btrfs_mark_buffer_dirty(trans, leaf); 1519 btrfs_release_path(path); 1520 1521 /* now insert the actual backref */ 1522 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1523 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1524 root_objectid); 1525 else 1526 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1527 root_objectid, owner, offset, 1528 refs_to_add); 1529 1530 if (ret) 1531 btrfs_abort_transaction(trans, ret); 1532 out: 1533 btrfs_free_path(path); 1534 return ret; 1535 } 1536 1537 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1538 struct btrfs_delayed_ref_node *node, 1539 struct btrfs_delayed_extent_op *extent_op, 1540 bool insert_reserved) 1541 { 1542 int ret = 0; 1543 struct btrfs_delayed_data_ref *ref; 1544 struct btrfs_key ins; 1545 u64 parent = 0; 1546 u64 ref_root = 0; 1547 u64 flags = 0; 1548 1549 ins.objectid = node->bytenr; 1550 ins.offset = node->num_bytes; 1551 ins.type = BTRFS_EXTENT_ITEM_KEY; 1552 1553 ref = btrfs_delayed_node_to_data_ref(node); 1554 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1555 1556 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1557 parent = ref->parent; 1558 ref_root = ref->root; 1559 1560 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1561 if (extent_op) 1562 flags |= extent_op->flags_to_set; 1563 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1564 flags, ref->objectid, 1565 ref->offset, &ins, 1566 node->ref_mod); 1567 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1568 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1569 ref->objectid, ref->offset, 1570 node->ref_mod, extent_op); 1571 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1572 ret = __btrfs_free_extent(trans, node, parent, 1573 ref_root, ref->objectid, 1574 ref->offset, node->ref_mod, 1575 extent_op); 1576 } else { 1577 BUG(); 1578 } 1579 return ret; 1580 } 1581 1582 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1583 struct extent_buffer *leaf, 1584 struct btrfs_extent_item *ei) 1585 { 1586 u64 flags = btrfs_extent_flags(leaf, ei); 1587 if (extent_op->update_flags) { 1588 flags |= extent_op->flags_to_set; 1589 btrfs_set_extent_flags(leaf, ei, flags); 1590 } 1591 1592 if (extent_op->update_key) { 1593 struct btrfs_tree_block_info *bi; 1594 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1595 bi = (struct btrfs_tree_block_info *)(ei + 1); 1596 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1597 } 1598 } 1599 1600 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1601 struct btrfs_delayed_ref_head *head, 1602 struct btrfs_delayed_extent_op *extent_op) 1603 { 1604 struct btrfs_fs_info *fs_info = trans->fs_info; 1605 struct btrfs_root *root; 1606 struct btrfs_key key; 1607 struct btrfs_path *path; 1608 struct btrfs_extent_item *ei; 1609 struct extent_buffer *leaf; 1610 u32 item_size; 1611 int ret; 1612 int err = 0; 1613 int metadata = 1; 1614 1615 if (TRANS_ABORTED(trans)) 1616 return 0; 1617 1618 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1619 metadata = 0; 1620 1621 path = btrfs_alloc_path(); 1622 if (!path) 1623 return -ENOMEM; 1624 1625 key.objectid = head->bytenr; 1626 1627 if (metadata) { 1628 key.type = BTRFS_METADATA_ITEM_KEY; 1629 key.offset = extent_op->level; 1630 } else { 1631 key.type = BTRFS_EXTENT_ITEM_KEY; 1632 key.offset = head->num_bytes; 1633 } 1634 1635 root = btrfs_extent_root(fs_info, key.objectid); 1636 again: 1637 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1638 if (ret < 0) { 1639 err = ret; 1640 goto out; 1641 } 1642 if (ret > 0) { 1643 if (metadata) { 1644 if (path->slots[0] > 0) { 1645 path->slots[0]--; 1646 btrfs_item_key_to_cpu(path->nodes[0], &key, 1647 path->slots[0]); 1648 if (key.objectid == head->bytenr && 1649 key.type == BTRFS_EXTENT_ITEM_KEY && 1650 key.offset == head->num_bytes) 1651 ret = 0; 1652 } 1653 if (ret > 0) { 1654 btrfs_release_path(path); 1655 metadata = 0; 1656 1657 key.objectid = head->bytenr; 1658 key.offset = head->num_bytes; 1659 key.type = BTRFS_EXTENT_ITEM_KEY; 1660 goto again; 1661 } 1662 } else { 1663 err = -EUCLEAN; 1664 btrfs_err(fs_info, 1665 "missing extent item for extent %llu num_bytes %llu level %d", 1666 head->bytenr, head->num_bytes, extent_op->level); 1667 goto out; 1668 } 1669 } 1670 1671 leaf = path->nodes[0]; 1672 item_size = btrfs_item_size(leaf, path->slots[0]); 1673 1674 if (unlikely(item_size < sizeof(*ei))) { 1675 err = -EUCLEAN; 1676 btrfs_err(fs_info, 1677 "unexpected extent item size, has %u expect >= %zu", 1678 item_size, sizeof(*ei)); 1679 btrfs_abort_transaction(trans, err); 1680 goto out; 1681 } 1682 1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1684 __run_delayed_extent_op(extent_op, leaf, ei); 1685 1686 btrfs_mark_buffer_dirty(trans, leaf); 1687 out: 1688 btrfs_free_path(path); 1689 return err; 1690 } 1691 1692 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1693 struct btrfs_delayed_ref_node *node, 1694 struct btrfs_delayed_extent_op *extent_op, 1695 bool insert_reserved) 1696 { 1697 int ret = 0; 1698 struct btrfs_delayed_tree_ref *ref; 1699 u64 parent = 0; 1700 u64 ref_root = 0; 1701 1702 ref = btrfs_delayed_node_to_tree_ref(node); 1703 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1704 1705 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1706 parent = ref->parent; 1707 ref_root = ref->root; 1708 1709 if (unlikely(node->ref_mod != 1)) { 1710 btrfs_err(trans->fs_info, 1711 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1712 node->bytenr, node->ref_mod, node->action, ref_root, 1713 parent); 1714 return -EUCLEAN; 1715 } 1716 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1717 BUG_ON(!extent_op || !extent_op->update_flags); 1718 ret = alloc_reserved_tree_block(trans, node, extent_op); 1719 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1720 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1721 ref->level, 0, 1, extent_op); 1722 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1723 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1724 ref->level, 0, 1, extent_op); 1725 } else { 1726 BUG(); 1727 } 1728 return ret; 1729 } 1730 1731 /* helper function to actually process a single delayed ref entry */ 1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1733 struct btrfs_delayed_ref_node *node, 1734 struct btrfs_delayed_extent_op *extent_op, 1735 bool insert_reserved) 1736 { 1737 int ret = 0; 1738 1739 if (TRANS_ABORTED(trans)) { 1740 if (insert_reserved) 1741 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1742 return 0; 1743 } 1744 1745 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1746 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1747 ret = run_delayed_tree_ref(trans, node, extent_op, 1748 insert_reserved); 1749 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1750 node->type == BTRFS_SHARED_DATA_REF_KEY) 1751 ret = run_delayed_data_ref(trans, node, extent_op, 1752 insert_reserved); 1753 else 1754 BUG(); 1755 if (ret && insert_reserved) 1756 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1757 if (ret < 0) 1758 btrfs_err(trans->fs_info, 1759 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1760 node->bytenr, node->num_bytes, node->type, 1761 node->action, node->ref_mod, ret); 1762 return ret; 1763 } 1764 1765 static inline struct btrfs_delayed_ref_node * 1766 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1767 { 1768 struct btrfs_delayed_ref_node *ref; 1769 1770 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1771 return NULL; 1772 1773 /* 1774 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1775 * This is to prevent a ref count from going down to zero, which deletes 1776 * the extent item from the extent tree, when there still are references 1777 * to add, which would fail because they would not find the extent item. 1778 */ 1779 if (!list_empty(&head->ref_add_list)) 1780 return list_first_entry(&head->ref_add_list, 1781 struct btrfs_delayed_ref_node, add_list); 1782 1783 ref = rb_entry(rb_first_cached(&head->ref_tree), 1784 struct btrfs_delayed_ref_node, ref_node); 1785 ASSERT(list_empty(&ref->add_list)); 1786 return ref; 1787 } 1788 1789 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1790 struct btrfs_delayed_ref_head *head) 1791 { 1792 spin_lock(&delayed_refs->lock); 1793 head->processing = false; 1794 delayed_refs->num_heads_ready++; 1795 spin_unlock(&delayed_refs->lock); 1796 btrfs_delayed_ref_unlock(head); 1797 } 1798 1799 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1800 struct btrfs_delayed_ref_head *head) 1801 { 1802 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1803 1804 if (!extent_op) 1805 return NULL; 1806 1807 if (head->must_insert_reserved) { 1808 head->extent_op = NULL; 1809 btrfs_free_delayed_extent_op(extent_op); 1810 return NULL; 1811 } 1812 return extent_op; 1813 } 1814 1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1816 struct btrfs_delayed_ref_head *head) 1817 { 1818 struct btrfs_delayed_extent_op *extent_op; 1819 int ret; 1820 1821 extent_op = cleanup_extent_op(head); 1822 if (!extent_op) 1823 return 0; 1824 head->extent_op = NULL; 1825 spin_unlock(&head->lock); 1826 ret = run_delayed_extent_op(trans, head, extent_op); 1827 btrfs_free_delayed_extent_op(extent_op); 1828 return ret ? ret : 1; 1829 } 1830 1831 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1832 struct btrfs_delayed_ref_root *delayed_refs, 1833 struct btrfs_delayed_ref_head *head) 1834 { 1835 int nr_items = 1; /* Dropping this ref head update. */ 1836 1837 /* 1838 * We had csum deletions accounted for in our delayed refs rsv, we need 1839 * to drop the csum leaves for this update from our delayed_refs_rsv. 1840 */ 1841 if (head->total_ref_mod < 0 && head->is_data) { 1842 spin_lock(&delayed_refs->lock); 1843 delayed_refs->pending_csums -= head->num_bytes; 1844 spin_unlock(&delayed_refs->lock); 1845 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1846 } 1847 1848 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1849 } 1850 1851 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1852 struct btrfs_delayed_ref_head *head) 1853 { 1854 1855 struct btrfs_fs_info *fs_info = trans->fs_info; 1856 struct btrfs_delayed_ref_root *delayed_refs; 1857 int ret; 1858 1859 delayed_refs = &trans->transaction->delayed_refs; 1860 1861 ret = run_and_cleanup_extent_op(trans, head); 1862 if (ret < 0) { 1863 unselect_delayed_ref_head(delayed_refs, head); 1864 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1865 return ret; 1866 } else if (ret) { 1867 return ret; 1868 } 1869 1870 /* 1871 * Need to drop our head ref lock and re-acquire the delayed ref lock 1872 * and then re-check to make sure nobody got added. 1873 */ 1874 spin_unlock(&head->lock); 1875 spin_lock(&delayed_refs->lock); 1876 spin_lock(&head->lock); 1877 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1878 spin_unlock(&head->lock); 1879 spin_unlock(&delayed_refs->lock); 1880 return 1; 1881 } 1882 btrfs_delete_ref_head(delayed_refs, head); 1883 spin_unlock(&head->lock); 1884 spin_unlock(&delayed_refs->lock); 1885 1886 if (head->must_insert_reserved) { 1887 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1888 if (head->is_data) { 1889 struct btrfs_root *csum_root; 1890 1891 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1892 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1893 head->num_bytes); 1894 } 1895 } 1896 1897 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1898 1899 trace_run_delayed_ref_head(fs_info, head, 0); 1900 btrfs_delayed_ref_unlock(head); 1901 btrfs_put_delayed_ref_head(head); 1902 return ret; 1903 } 1904 1905 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1906 struct btrfs_trans_handle *trans) 1907 { 1908 struct btrfs_delayed_ref_root *delayed_refs = 1909 &trans->transaction->delayed_refs; 1910 struct btrfs_delayed_ref_head *head = NULL; 1911 int ret; 1912 1913 spin_lock(&delayed_refs->lock); 1914 head = btrfs_select_ref_head(delayed_refs); 1915 if (!head) { 1916 spin_unlock(&delayed_refs->lock); 1917 return head; 1918 } 1919 1920 /* 1921 * Grab the lock that says we are going to process all the refs for 1922 * this head 1923 */ 1924 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1925 spin_unlock(&delayed_refs->lock); 1926 1927 /* 1928 * We may have dropped the spin lock to get the head mutex lock, and 1929 * that might have given someone else time to free the head. If that's 1930 * true, it has been removed from our list and we can move on. 1931 */ 1932 if (ret == -EAGAIN) 1933 head = ERR_PTR(-EAGAIN); 1934 1935 return head; 1936 } 1937 1938 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1939 struct btrfs_delayed_ref_head *locked_ref) 1940 { 1941 struct btrfs_fs_info *fs_info = trans->fs_info; 1942 struct btrfs_delayed_ref_root *delayed_refs; 1943 struct btrfs_delayed_extent_op *extent_op; 1944 struct btrfs_delayed_ref_node *ref; 1945 bool must_insert_reserved; 1946 int ret; 1947 1948 delayed_refs = &trans->transaction->delayed_refs; 1949 1950 lockdep_assert_held(&locked_ref->mutex); 1951 lockdep_assert_held(&locked_ref->lock); 1952 1953 while ((ref = select_delayed_ref(locked_ref))) { 1954 if (ref->seq && 1955 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1956 spin_unlock(&locked_ref->lock); 1957 unselect_delayed_ref_head(delayed_refs, locked_ref); 1958 return -EAGAIN; 1959 } 1960 1961 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1962 RB_CLEAR_NODE(&ref->ref_node); 1963 if (!list_empty(&ref->add_list)) 1964 list_del(&ref->add_list); 1965 /* 1966 * When we play the delayed ref, also correct the ref_mod on 1967 * head 1968 */ 1969 switch (ref->action) { 1970 case BTRFS_ADD_DELAYED_REF: 1971 case BTRFS_ADD_DELAYED_EXTENT: 1972 locked_ref->ref_mod -= ref->ref_mod; 1973 break; 1974 case BTRFS_DROP_DELAYED_REF: 1975 locked_ref->ref_mod += ref->ref_mod; 1976 break; 1977 default: 1978 WARN_ON(1); 1979 } 1980 atomic_dec(&delayed_refs->num_entries); 1981 1982 /* 1983 * Record the must_insert_reserved flag before we drop the 1984 * spin lock. 1985 */ 1986 must_insert_reserved = locked_ref->must_insert_reserved; 1987 locked_ref->must_insert_reserved = false; 1988 1989 extent_op = locked_ref->extent_op; 1990 locked_ref->extent_op = NULL; 1991 spin_unlock(&locked_ref->lock); 1992 1993 ret = run_one_delayed_ref(trans, ref, extent_op, 1994 must_insert_reserved); 1995 1996 btrfs_free_delayed_extent_op(extent_op); 1997 if (ret) { 1998 unselect_delayed_ref_head(delayed_refs, locked_ref); 1999 btrfs_put_delayed_ref(ref); 2000 return ret; 2001 } 2002 2003 btrfs_put_delayed_ref(ref); 2004 cond_resched(); 2005 2006 spin_lock(&locked_ref->lock); 2007 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2008 } 2009 2010 return 0; 2011 } 2012 2013 /* 2014 * Returns 0 on success or if called with an already aborted transaction. 2015 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2016 */ 2017 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2018 unsigned long nr) 2019 { 2020 struct btrfs_fs_info *fs_info = trans->fs_info; 2021 struct btrfs_delayed_ref_root *delayed_refs; 2022 struct btrfs_delayed_ref_head *locked_ref = NULL; 2023 int ret; 2024 unsigned long count = 0; 2025 2026 delayed_refs = &trans->transaction->delayed_refs; 2027 do { 2028 if (!locked_ref) { 2029 locked_ref = btrfs_obtain_ref_head(trans); 2030 if (IS_ERR_OR_NULL(locked_ref)) { 2031 if (PTR_ERR(locked_ref) == -EAGAIN) { 2032 continue; 2033 } else { 2034 break; 2035 } 2036 } 2037 count++; 2038 } 2039 /* 2040 * We need to try and merge add/drops of the same ref since we 2041 * can run into issues with relocate dropping the implicit ref 2042 * and then it being added back again before the drop can 2043 * finish. If we merged anything we need to re-loop so we can 2044 * get a good ref. 2045 * Or we can get node references of the same type that weren't 2046 * merged when created due to bumps in the tree mod seq, and 2047 * we need to merge them to prevent adding an inline extent 2048 * backref before dropping it (triggering a BUG_ON at 2049 * insert_inline_extent_backref()). 2050 */ 2051 spin_lock(&locked_ref->lock); 2052 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2053 2054 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref); 2055 if (ret < 0 && ret != -EAGAIN) { 2056 /* 2057 * Error, btrfs_run_delayed_refs_for_head already 2058 * unlocked everything so just bail out 2059 */ 2060 return ret; 2061 } else if (!ret) { 2062 /* 2063 * Success, perform the usual cleanup of a processed 2064 * head 2065 */ 2066 ret = cleanup_ref_head(trans, locked_ref); 2067 if (ret > 0 ) { 2068 /* We dropped our lock, we need to loop. */ 2069 ret = 0; 2070 continue; 2071 } else if (ret) { 2072 return ret; 2073 } 2074 } 2075 2076 /* 2077 * Either success case or btrfs_run_delayed_refs_for_head 2078 * returned -EAGAIN, meaning we need to select another head 2079 */ 2080 2081 locked_ref = NULL; 2082 cond_resched(); 2083 } while ((nr != -1 && count < nr) || locked_ref); 2084 2085 return 0; 2086 } 2087 2088 #ifdef SCRAMBLE_DELAYED_REFS 2089 /* 2090 * Normally delayed refs get processed in ascending bytenr order. This 2091 * correlates in most cases to the order added. To expose dependencies on this 2092 * order, we start to process the tree in the middle instead of the beginning 2093 */ 2094 static u64 find_middle(struct rb_root *root) 2095 { 2096 struct rb_node *n = root->rb_node; 2097 struct btrfs_delayed_ref_node *entry; 2098 int alt = 1; 2099 u64 middle; 2100 u64 first = 0, last = 0; 2101 2102 n = rb_first(root); 2103 if (n) { 2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2105 first = entry->bytenr; 2106 } 2107 n = rb_last(root); 2108 if (n) { 2109 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2110 last = entry->bytenr; 2111 } 2112 n = root->rb_node; 2113 2114 while (n) { 2115 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2116 WARN_ON(!entry->in_tree); 2117 2118 middle = entry->bytenr; 2119 2120 if (alt) 2121 n = n->rb_left; 2122 else 2123 n = n->rb_right; 2124 2125 alt = 1 - alt; 2126 } 2127 return middle; 2128 } 2129 #endif 2130 2131 /* 2132 * this starts processing the delayed reference count updates and 2133 * extent insertions we have queued up so far. count can be 2134 * 0, which means to process everything in the tree at the start 2135 * of the run (but not newly added entries), or it can be some target 2136 * number you'd like to process. 2137 * 2138 * Returns 0 on success or if called with an aborted transaction 2139 * Returns <0 on error and aborts the transaction 2140 */ 2141 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2142 unsigned long count) 2143 { 2144 struct btrfs_fs_info *fs_info = trans->fs_info; 2145 struct rb_node *node; 2146 struct btrfs_delayed_ref_root *delayed_refs; 2147 struct btrfs_delayed_ref_head *head; 2148 int ret; 2149 int run_all = count == (unsigned long)-1; 2150 2151 /* We'll clean this up in btrfs_cleanup_transaction */ 2152 if (TRANS_ABORTED(trans)) 2153 return 0; 2154 2155 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2156 return 0; 2157 2158 delayed_refs = &trans->transaction->delayed_refs; 2159 if (count == 0) 2160 count = delayed_refs->num_heads_ready; 2161 2162 again: 2163 #ifdef SCRAMBLE_DELAYED_REFS 2164 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2165 #endif 2166 ret = __btrfs_run_delayed_refs(trans, count); 2167 if (ret < 0) { 2168 btrfs_abort_transaction(trans, ret); 2169 return ret; 2170 } 2171 2172 if (run_all) { 2173 btrfs_create_pending_block_groups(trans); 2174 2175 spin_lock(&delayed_refs->lock); 2176 node = rb_first_cached(&delayed_refs->href_root); 2177 if (!node) { 2178 spin_unlock(&delayed_refs->lock); 2179 goto out; 2180 } 2181 head = rb_entry(node, struct btrfs_delayed_ref_head, 2182 href_node); 2183 refcount_inc(&head->refs); 2184 spin_unlock(&delayed_refs->lock); 2185 2186 /* Mutex was contended, block until it's released and retry. */ 2187 mutex_lock(&head->mutex); 2188 mutex_unlock(&head->mutex); 2189 2190 btrfs_put_delayed_ref_head(head); 2191 cond_resched(); 2192 goto again; 2193 } 2194 out: 2195 return 0; 2196 } 2197 2198 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2199 struct extent_buffer *eb, u64 flags) 2200 { 2201 struct btrfs_delayed_extent_op *extent_op; 2202 int level = btrfs_header_level(eb); 2203 int ret; 2204 2205 extent_op = btrfs_alloc_delayed_extent_op(); 2206 if (!extent_op) 2207 return -ENOMEM; 2208 2209 extent_op->flags_to_set = flags; 2210 extent_op->update_flags = true; 2211 extent_op->update_key = false; 2212 extent_op->level = level; 2213 2214 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2215 if (ret) 2216 btrfs_free_delayed_extent_op(extent_op); 2217 return ret; 2218 } 2219 2220 static noinline int check_delayed_ref(struct btrfs_root *root, 2221 struct btrfs_path *path, 2222 u64 objectid, u64 offset, u64 bytenr) 2223 { 2224 struct btrfs_delayed_ref_head *head; 2225 struct btrfs_delayed_ref_node *ref; 2226 struct btrfs_delayed_data_ref *data_ref; 2227 struct btrfs_delayed_ref_root *delayed_refs; 2228 struct btrfs_transaction *cur_trans; 2229 struct rb_node *node; 2230 int ret = 0; 2231 2232 spin_lock(&root->fs_info->trans_lock); 2233 cur_trans = root->fs_info->running_transaction; 2234 if (cur_trans) 2235 refcount_inc(&cur_trans->use_count); 2236 spin_unlock(&root->fs_info->trans_lock); 2237 if (!cur_trans) 2238 return 0; 2239 2240 delayed_refs = &cur_trans->delayed_refs; 2241 spin_lock(&delayed_refs->lock); 2242 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2243 if (!head) { 2244 spin_unlock(&delayed_refs->lock); 2245 btrfs_put_transaction(cur_trans); 2246 return 0; 2247 } 2248 2249 if (!mutex_trylock(&head->mutex)) { 2250 if (path->nowait) { 2251 spin_unlock(&delayed_refs->lock); 2252 btrfs_put_transaction(cur_trans); 2253 return -EAGAIN; 2254 } 2255 2256 refcount_inc(&head->refs); 2257 spin_unlock(&delayed_refs->lock); 2258 2259 btrfs_release_path(path); 2260 2261 /* 2262 * Mutex was contended, block until it's released and let 2263 * caller try again 2264 */ 2265 mutex_lock(&head->mutex); 2266 mutex_unlock(&head->mutex); 2267 btrfs_put_delayed_ref_head(head); 2268 btrfs_put_transaction(cur_trans); 2269 return -EAGAIN; 2270 } 2271 spin_unlock(&delayed_refs->lock); 2272 2273 spin_lock(&head->lock); 2274 /* 2275 * XXX: We should replace this with a proper search function in the 2276 * future. 2277 */ 2278 for (node = rb_first_cached(&head->ref_tree); node; 2279 node = rb_next(node)) { 2280 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2281 /* If it's a shared ref we know a cross reference exists */ 2282 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2283 ret = 1; 2284 break; 2285 } 2286 2287 data_ref = btrfs_delayed_node_to_data_ref(ref); 2288 2289 /* 2290 * If our ref doesn't match the one we're currently looking at 2291 * then we have a cross reference. 2292 */ 2293 if (data_ref->root != root->root_key.objectid || 2294 data_ref->objectid != objectid || 2295 data_ref->offset != offset) { 2296 ret = 1; 2297 break; 2298 } 2299 } 2300 spin_unlock(&head->lock); 2301 mutex_unlock(&head->mutex); 2302 btrfs_put_transaction(cur_trans); 2303 return ret; 2304 } 2305 2306 static noinline int check_committed_ref(struct btrfs_root *root, 2307 struct btrfs_path *path, 2308 u64 objectid, u64 offset, u64 bytenr, 2309 bool strict) 2310 { 2311 struct btrfs_fs_info *fs_info = root->fs_info; 2312 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2313 struct extent_buffer *leaf; 2314 struct btrfs_extent_data_ref *ref; 2315 struct btrfs_extent_inline_ref *iref; 2316 struct btrfs_extent_item *ei; 2317 struct btrfs_key key; 2318 u32 item_size; 2319 int type; 2320 int ret; 2321 2322 key.objectid = bytenr; 2323 key.offset = (u64)-1; 2324 key.type = BTRFS_EXTENT_ITEM_KEY; 2325 2326 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2327 if (ret < 0) 2328 goto out; 2329 BUG_ON(ret == 0); /* Corruption */ 2330 2331 ret = -ENOENT; 2332 if (path->slots[0] == 0) 2333 goto out; 2334 2335 path->slots[0]--; 2336 leaf = path->nodes[0]; 2337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2338 2339 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2340 goto out; 2341 2342 ret = 1; 2343 item_size = btrfs_item_size(leaf, path->slots[0]); 2344 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2345 2346 /* If extent item has more than 1 inline ref then it's shared */ 2347 if (item_size != sizeof(*ei) + 2348 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2349 goto out; 2350 2351 /* 2352 * If extent created before last snapshot => it's shared unless the 2353 * snapshot has been deleted. Use the heuristic if strict is false. 2354 */ 2355 if (!strict && 2356 (btrfs_extent_generation(leaf, ei) <= 2357 btrfs_root_last_snapshot(&root->root_item))) 2358 goto out; 2359 2360 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2361 2362 /* If this extent has SHARED_DATA_REF then it's shared */ 2363 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2364 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2365 goto out; 2366 2367 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2368 if (btrfs_extent_refs(leaf, ei) != 2369 btrfs_extent_data_ref_count(leaf, ref) || 2370 btrfs_extent_data_ref_root(leaf, ref) != 2371 root->root_key.objectid || 2372 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2373 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2374 goto out; 2375 2376 ret = 0; 2377 out: 2378 return ret; 2379 } 2380 2381 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2382 u64 bytenr, bool strict, struct btrfs_path *path) 2383 { 2384 int ret; 2385 2386 do { 2387 ret = check_committed_ref(root, path, objectid, 2388 offset, bytenr, strict); 2389 if (ret && ret != -ENOENT) 2390 goto out; 2391 2392 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2393 } while (ret == -EAGAIN); 2394 2395 out: 2396 btrfs_release_path(path); 2397 if (btrfs_is_data_reloc_root(root)) 2398 WARN_ON(ret > 0); 2399 return ret; 2400 } 2401 2402 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2403 struct btrfs_root *root, 2404 struct extent_buffer *buf, 2405 int full_backref, int inc) 2406 { 2407 struct btrfs_fs_info *fs_info = root->fs_info; 2408 u64 bytenr; 2409 u64 num_bytes; 2410 u64 parent; 2411 u64 ref_root; 2412 u32 nritems; 2413 struct btrfs_key key; 2414 struct btrfs_file_extent_item *fi; 2415 struct btrfs_ref generic_ref = { 0 }; 2416 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2417 int i; 2418 int action; 2419 int level; 2420 int ret = 0; 2421 2422 if (btrfs_is_testing(fs_info)) 2423 return 0; 2424 2425 ref_root = btrfs_header_owner(buf); 2426 nritems = btrfs_header_nritems(buf); 2427 level = btrfs_header_level(buf); 2428 2429 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2430 return 0; 2431 2432 if (full_backref) 2433 parent = buf->start; 2434 else 2435 parent = 0; 2436 if (inc) 2437 action = BTRFS_ADD_DELAYED_REF; 2438 else 2439 action = BTRFS_DROP_DELAYED_REF; 2440 2441 for (i = 0; i < nritems; i++) { 2442 if (level == 0) { 2443 btrfs_item_key_to_cpu(buf, &key, i); 2444 if (key.type != BTRFS_EXTENT_DATA_KEY) 2445 continue; 2446 fi = btrfs_item_ptr(buf, i, 2447 struct btrfs_file_extent_item); 2448 if (btrfs_file_extent_type(buf, fi) == 2449 BTRFS_FILE_EXTENT_INLINE) 2450 continue; 2451 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2452 if (bytenr == 0) 2453 continue; 2454 2455 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2456 key.offset -= btrfs_file_extent_offset(buf, fi); 2457 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2458 num_bytes, parent); 2459 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2460 key.offset, root->root_key.objectid, 2461 for_reloc); 2462 if (inc) 2463 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2464 else 2465 ret = btrfs_free_extent(trans, &generic_ref); 2466 if (ret) 2467 goto fail; 2468 } else { 2469 bytenr = btrfs_node_blockptr(buf, i); 2470 num_bytes = fs_info->nodesize; 2471 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2472 num_bytes, parent); 2473 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2474 root->root_key.objectid, for_reloc); 2475 if (inc) 2476 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2477 else 2478 ret = btrfs_free_extent(trans, &generic_ref); 2479 if (ret) 2480 goto fail; 2481 } 2482 } 2483 return 0; 2484 fail: 2485 return ret; 2486 } 2487 2488 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2489 struct extent_buffer *buf, int full_backref) 2490 { 2491 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2492 } 2493 2494 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2495 struct extent_buffer *buf, int full_backref) 2496 { 2497 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2498 } 2499 2500 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2501 { 2502 struct btrfs_fs_info *fs_info = root->fs_info; 2503 u64 flags; 2504 u64 ret; 2505 2506 if (data) 2507 flags = BTRFS_BLOCK_GROUP_DATA; 2508 else if (root == fs_info->chunk_root) 2509 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2510 else 2511 flags = BTRFS_BLOCK_GROUP_METADATA; 2512 2513 ret = btrfs_get_alloc_profile(fs_info, flags); 2514 return ret; 2515 } 2516 2517 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2518 { 2519 struct rb_node *leftmost; 2520 u64 bytenr = 0; 2521 2522 read_lock(&fs_info->block_group_cache_lock); 2523 /* Get the block group with the lowest logical start address. */ 2524 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2525 if (leftmost) { 2526 struct btrfs_block_group *bg; 2527 2528 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2529 bytenr = bg->start; 2530 } 2531 read_unlock(&fs_info->block_group_cache_lock); 2532 2533 return bytenr; 2534 } 2535 2536 static int pin_down_extent(struct btrfs_trans_handle *trans, 2537 struct btrfs_block_group *cache, 2538 u64 bytenr, u64 num_bytes, int reserved) 2539 { 2540 struct btrfs_fs_info *fs_info = cache->fs_info; 2541 2542 spin_lock(&cache->space_info->lock); 2543 spin_lock(&cache->lock); 2544 cache->pinned += num_bytes; 2545 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2546 num_bytes); 2547 if (reserved) { 2548 cache->reserved -= num_bytes; 2549 cache->space_info->bytes_reserved -= num_bytes; 2550 } 2551 spin_unlock(&cache->lock); 2552 spin_unlock(&cache->space_info->lock); 2553 2554 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2555 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2556 return 0; 2557 } 2558 2559 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2560 u64 bytenr, u64 num_bytes, int reserved) 2561 { 2562 struct btrfs_block_group *cache; 2563 2564 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2565 BUG_ON(!cache); /* Logic error */ 2566 2567 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2568 2569 btrfs_put_block_group(cache); 2570 return 0; 2571 } 2572 2573 /* 2574 * this function must be called within transaction 2575 */ 2576 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2577 u64 bytenr, u64 num_bytes) 2578 { 2579 struct btrfs_block_group *cache; 2580 int ret; 2581 2582 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2583 if (!cache) 2584 return -EINVAL; 2585 2586 /* 2587 * Fully cache the free space first so that our pin removes the free space 2588 * from the cache. 2589 */ 2590 ret = btrfs_cache_block_group(cache, true); 2591 if (ret) 2592 goto out; 2593 2594 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2595 2596 /* remove us from the free space cache (if we're there at all) */ 2597 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2598 out: 2599 btrfs_put_block_group(cache); 2600 return ret; 2601 } 2602 2603 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2604 u64 start, u64 num_bytes) 2605 { 2606 int ret; 2607 struct btrfs_block_group *block_group; 2608 2609 block_group = btrfs_lookup_block_group(fs_info, start); 2610 if (!block_group) 2611 return -EINVAL; 2612 2613 ret = btrfs_cache_block_group(block_group, true); 2614 if (ret) 2615 goto out; 2616 2617 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2618 out: 2619 btrfs_put_block_group(block_group); 2620 return ret; 2621 } 2622 2623 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2624 { 2625 struct btrfs_fs_info *fs_info = eb->fs_info; 2626 struct btrfs_file_extent_item *item; 2627 struct btrfs_key key; 2628 int found_type; 2629 int i; 2630 int ret = 0; 2631 2632 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2633 return 0; 2634 2635 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2636 btrfs_item_key_to_cpu(eb, &key, i); 2637 if (key.type != BTRFS_EXTENT_DATA_KEY) 2638 continue; 2639 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2640 found_type = btrfs_file_extent_type(eb, item); 2641 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2642 continue; 2643 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2644 continue; 2645 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2646 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2647 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2648 if (ret) 2649 break; 2650 } 2651 2652 return ret; 2653 } 2654 2655 static void 2656 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2657 { 2658 atomic_inc(&bg->reservations); 2659 } 2660 2661 /* 2662 * Returns the free cluster for the given space info and sets empty_cluster to 2663 * what it should be based on the mount options. 2664 */ 2665 static struct btrfs_free_cluster * 2666 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2667 struct btrfs_space_info *space_info, u64 *empty_cluster) 2668 { 2669 struct btrfs_free_cluster *ret = NULL; 2670 2671 *empty_cluster = 0; 2672 if (btrfs_mixed_space_info(space_info)) 2673 return ret; 2674 2675 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2676 ret = &fs_info->meta_alloc_cluster; 2677 if (btrfs_test_opt(fs_info, SSD)) 2678 *empty_cluster = SZ_2M; 2679 else 2680 *empty_cluster = SZ_64K; 2681 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2682 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2683 *empty_cluster = SZ_2M; 2684 ret = &fs_info->data_alloc_cluster; 2685 } 2686 2687 return ret; 2688 } 2689 2690 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2691 u64 start, u64 end, 2692 const bool return_free_space) 2693 { 2694 struct btrfs_block_group *cache = NULL; 2695 struct btrfs_space_info *space_info; 2696 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2697 struct btrfs_free_cluster *cluster = NULL; 2698 u64 len; 2699 u64 total_unpinned = 0; 2700 u64 empty_cluster = 0; 2701 bool readonly; 2702 2703 while (start <= end) { 2704 readonly = false; 2705 if (!cache || 2706 start >= cache->start + cache->length) { 2707 if (cache) 2708 btrfs_put_block_group(cache); 2709 total_unpinned = 0; 2710 cache = btrfs_lookup_block_group(fs_info, start); 2711 BUG_ON(!cache); /* Logic error */ 2712 2713 cluster = fetch_cluster_info(fs_info, 2714 cache->space_info, 2715 &empty_cluster); 2716 empty_cluster <<= 1; 2717 } 2718 2719 len = cache->start + cache->length - start; 2720 len = min(len, end + 1 - start); 2721 2722 if (return_free_space) 2723 btrfs_add_free_space(cache, start, len); 2724 2725 start += len; 2726 total_unpinned += len; 2727 space_info = cache->space_info; 2728 2729 /* 2730 * If this space cluster has been marked as fragmented and we've 2731 * unpinned enough in this block group to potentially allow a 2732 * cluster to be created inside of it go ahead and clear the 2733 * fragmented check. 2734 */ 2735 if (cluster && cluster->fragmented && 2736 total_unpinned > empty_cluster) { 2737 spin_lock(&cluster->lock); 2738 cluster->fragmented = 0; 2739 spin_unlock(&cluster->lock); 2740 } 2741 2742 spin_lock(&space_info->lock); 2743 spin_lock(&cache->lock); 2744 cache->pinned -= len; 2745 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2746 space_info->max_extent_size = 0; 2747 if (cache->ro) { 2748 space_info->bytes_readonly += len; 2749 readonly = true; 2750 } else if (btrfs_is_zoned(fs_info)) { 2751 /* Need reset before reusing in a zoned block group */ 2752 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info, 2753 len); 2754 readonly = true; 2755 } 2756 spin_unlock(&cache->lock); 2757 if (!readonly && return_free_space && 2758 global_rsv->space_info == space_info) { 2759 spin_lock(&global_rsv->lock); 2760 if (!global_rsv->full) { 2761 u64 to_add = min(len, global_rsv->size - 2762 global_rsv->reserved); 2763 2764 global_rsv->reserved += to_add; 2765 btrfs_space_info_update_bytes_may_use(fs_info, 2766 space_info, to_add); 2767 if (global_rsv->reserved >= global_rsv->size) 2768 global_rsv->full = 1; 2769 len -= to_add; 2770 } 2771 spin_unlock(&global_rsv->lock); 2772 } 2773 /* Add to any tickets we may have */ 2774 if (!readonly && return_free_space && len) 2775 btrfs_try_granting_tickets(fs_info, space_info); 2776 spin_unlock(&space_info->lock); 2777 } 2778 2779 if (cache) 2780 btrfs_put_block_group(cache); 2781 return 0; 2782 } 2783 2784 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2785 { 2786 struct btrfs_fs_info *fs_info = trans->fs_info; 2787 struct btrfs_block_group *block_group, *tmp; 2788 struct list_head *deleted_bgs; 2789 struct extent_io_tree *unpin; 2790 u64 start; 2791 u64 end; 2792 int ret; 2793 2794 unpin = &trans->transaction->pinned_extents; 2795 2796 while (!TRANS_ABORTED(trans)) { 2797 struct extent_state *cached_state = NULL; 2798 2799 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2800 if (!find_first_extent_bit(unpin, 0, &start, &end, 2801 EXTENT_DIRTY, &cached_state)) { 2802 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2803 break; 2804 } 2805 2806 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2807 ret = btrfs_discard_extent(fs_info, start, 2808 end + 1 - start, NULL); 2809 2810 clear_extent_dirty(unpin, start, end, &cached_state); 2811 unpin_extent_range(fs_info, start, end, true); 2812 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2813 free_extent_state(cached_state); 2814 cond_resched(); 2815 } 2816 2817 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2818 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2819 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2820 } 2821 2822 /* 2823 * Transaction is finished. We don't need the lock anymore. We 2824 * do need to clean up the block groups in case of a transaction 2825 * abort. 2826 */ 2827 deleted_bgs = &trans->transaction->deleted_bgs; 2828 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2829 u64 trimmed = 0; 2830 2831 ret = -EROFS; 2832 if (!TRANS_ABORTED(trans)) 2833 ret = btrfs_discard_extent(fs_info, 2834 block_group->start, 2835 block_group->length, 2836 &trimmed); 2837 2838 list_del_init(&block_group->bg_list); 2839 btrfs_unfreeze_block_group(block_group); 2840 btrfs_put_block_group(block_group); 2841 2842 if (ret) { 2843 const char *errstr = btrfs_decode_error(ret); 2844 btrfs_warn(fs_info, 2845 "discard failed while removing blockgroup: errno=%d %s", 2846 ret, errstr); 2847 } 2848 } 2849 2850 return 0; 2851 } 2852 2853 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2854 u64 bytenr, u64 num_bytes, bool is_data) 2855 { 2856 int ret; 2857 2858 if (is_data) { 2859 struct btrfs_root *csum_root; 2860 2861 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2862 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2863 if (ret) { 2864 btrfs_abort_transaction(trans, ret); 2865 return ret; 2866 } 2867 } 2868 2869 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2870 if (ret) { 2871 btrfs_abort_transaction(trans, ret); 2872 return ret; 2873 } 2874 2875 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2876 if (ret) 2877 btrfs_abort_transaction(trans, ret); 2878 2879 return ret; 2880 } 2881 2882 #define abort_and_dump(trans, path, fmt, args...) \ 2883 ({ \ 2884 btrfs_abort_transaction(trans, -EUCLEAN); \ 2885 btrfs_print_leaf(path->nodes[0]); \ 2886 btrfs_crit(trans->fs_info, fmt, ##args); \ 2887 }) 2888 2889 /* 2890 * Drop one or more refs of @node. 2891 * 2892 * 1. Locate the extent refs. 2893 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2894 * Locate it, then reduce the refs number or remove the ref line completely. 2895 * 2896 * 2. Update the refs count in EXTENT/METADATA_ITEM 2897 * 2898 * Inline backref case: 2899 * 2900 * in extent tree we have: 2901 * 2902 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2903 * refs 2 gen 6 flags DATA 2904 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2905 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2906 * 2907 * This function gets called with: 2908 * 2909 * node->bytenr = 13631488 2910 * node->num_bytes = 1048576 2911 * root_objectid = FS_TREE 2912 * owner_objectid = 257 2913 * owner_offset = 0 2914 * refs_to_drop = 1 2915 * 2916 * Then we should get some like: 2917 * 2918 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2919 * refs 1 gen 6 flags DATA 2920 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2921 * 2922 * Keyed backref case: 2923 * 2924 * in extent tree we have: 2925 * 2926 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2927 * refs 754 gen 6 flags DATA 2928 * [...] 2929 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2930 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2931 * 2932 * This function get called with: 2933 * 2934 * node->bytenr = 13631488 2935 * node->num_bytes = 1048576 2936 * root_objectid = FS_TREE 2937 * owner_objectid = 866 2938 * owner_offset = 0 2939 * refs_to_drop = 1 2940 * 2941 * Then we should get some like: 2942 * 2943 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2944 * refs 753 gen 6 flags DATA 2945 * 2946 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2947 */ 2948 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2949 struct btrfs_delayed_ref_node *node, u64 parent, 2950 u64 root_objectid, u64 owner_objectid, 2951 u64 owner_offset, int refs_to_drop, 2952 struct btrfs_delayed_extent_op *extent_op) 2953 { 2954 struct btrfs_fs_info *info = trans->fs_info; 2955 struct btrfs_key key; 2956 struct btrfs_path *path; 2957 struct btrfs_root *extent_root; 2958 struct extent_buffer *leaf; 2959 struct btrfs_extent_item *ei; 2960 struct btrfs_extent_inline_ref *iref; 2961 int ret; 2962 int is_data; 2963 int extent_slot = 0; 2964 int found_extent = 0; 2965 int num_to_del = 1; 2966 u32 item_size; 2967 u64 refs; 2968 u64 bytenr = node->bytenr; 2969 u64 num_bytes = node->num_bytes; 2970 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2971 2972 extent_root = btrfs_extent_root(info, bytenr); 2973 ASSERT(extent_root); 2974 2975 path = btrfs_alloc_path(); 2976 if (!path) 2977 return -ENOMEM; 2978 2979 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2980 2981 if (!is_data && refs_to_drop != 1) { 2982 btrfs_crit(info, 2983 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2984 node->bytenr, refs_to_drop); 2985 ret = -EINVAL; 2986 btrfs_abort_transaction(trans, ret); 2987 goto out; 2988 } 2989 2990 if (is_data) 2991 skinny_metadata = false; 2992 2993 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2994 parent, root_objectid, owner_objectid, 2995 owner_offset); 2996 if (ret == 0) { 2997 /* 2998 * Either the inline backref or the SHARED_DATA_REF/ 2999 * SHARED_BLOCK_REF is found 3000 * 3001 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3002 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3003 */ 3004 extent_slot = path->slots[0]; 3005 while (extent_slot >= 0) { 3006 btrfs_item_key_to_cpu(path->nodes[0], &key, 3007 extent_slot); 3008 if (key.objectid != bytenr) 3009 break; 3010 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3011 key.offset == num_bytes) { 3012 found_extent = 1; 3013 break; 3014 } 3015 if (key.type == BTRFS_METADATA_ITEM_KEY && 3016 key.offset == owner_objectid) { 3017 found_extent = 1; 3018 break; 3019 } 3020 3021 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3022 if (path->slots[0] - extent_slot > 5) 3023 break; 3024 extent_slot--; 3025 } 3026 3027 if (!found_extent) { 3028 if (iref) { 3029 abort_and_dump(trans, path, 3030 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3031 path->slots[0]); 3032 ret = -EUCLEAN; 3033 goto out; 3034 } 3035 /* Must be SHARED_* item, remove the backref first */ 3036 ret = remove_extent_backref(trans, extent_root, path, 3037 NULL, refs_to_drop, is_data); 3038 if (ret) { 3039 btrfs_abort_transaction(trans, ret); 3040 goto out; 3041 } 3042 btrfs_release_path(path); 3043 3044 /* Slow path to locate EXTENT/METADATA_ITEM */ 3045 key.objectid = bytenr; 3046 key.type = BTRFS_EXTENT_ITEM_KEY; 3047 key.offset = num_bytes; 3048 3049 if (!is_data && skinny_metadata) { 3050 key.type = BTRFS_METADATA_ITEM_KEY; 3051 key.offset = owner_objectid; 3052 } 3053 3054 ret = btrfs_search_slot(trans, extent_root, 3055 &key, path, -1, 1); 3056 if (ret > 0 && skinny_metadata && path->slots[0]) { 3057 /* 3058 * Couldn't find our skinny metadata item, 3059 * see if we have ye olde extent item. 3060 */ 3061 path->slots[0]--; 3062 btrfs_item_key_to_cpu(path->nodes[0], &key, 3063 path->slots[0]); 3064 if (key.objectid == bytenr && 3065 key.type == BTRFS_EXTENT_ITEM_KEY && 3066 key.offset == num_bytes) 3067 ret = 0; 3068 } 3069 3070 if (ret > 0 && skinny_metadata) { 3071 skinny_metadata = false; 3072 key.objectid = bytenr; 3073 key.type = BTRFS_EXTENT_ITEM_KEY; 3074 key.offset = num_bytes; 3075 btrfs_release_path(path); 3076 ret = btrfs_search_slot(trans, extent_root, 3077 &key, path, -1, 1); 3078 } 3079 3080 if (ret) { 3081 if (ret > 0) 3082 btrfs_print_leaf(path->nodes[0]); 3083 btrfs_err(info, 3084 "umm, got %d back from search, was looking for %llu, slot %d", 3085 ret, bytenr, path->slots[0]); 3086 } 3087 if (ret < 0) { 3088 btrfs_abort_transaction(trans, ret); 3089 goto out; 3090 } 3091 extent_slot = path->slots[0]; 3092 } 3093 } else if (WARN_ON(ret == -ENOENT)) { 3094 abort_and_dump(trans, path, 3095 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3096 bytenr, parent, root_objectid, owner_objectid, 3097 owner_offset, path->slots[0]); 3098 goto out; 3099 } else { 3100 btrfs_abort_transaction(trans, ret); 3101 goto out; 3102 } 3103 3104 leaf = path->nodes[0]; 3105 item_size = btrfs_item_size(leaf, extent_slot); 3106 if (unlikely(item_size < sizeof(*ei))) { 3107 ret = -EUCLEAN; 3108 btrfs_err(trans->fs_info, 3109 "unexpected extent item size, has %u expect >= %zu", 3110 item_size, sizeof(*ei)); 3111 btrfs_abort_transaction(trans, ret); 3112 goto out; 3113 } 3114 ei = btrfs_item_ptr(leaf, extent_slot, 3115 struct btrfs_extent_item); 3116 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3117 key.type == BTRFS_EXTENT_ITEM_KEY) { 3118 struct btrfs_tree_block_info *bi; 3119 3120 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3121 abort_and_dump(trans, path, 3122 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3123 key.objectid, key.type, key.offset, 3124 path->slots[0], owner_objectid, item_size, 3125 sizeof(*ei) + sizeof(*bi)); 3126 ret = -EUCLEAN; 3127 goto out; 3128 } 3129 bi = (struct btrfs_tree_block_info *)(ei + 1); 3130 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3131 } 3132 3133 refs = btrfs_extent_refs(leaf, ei); 3134 if (refs < refs_to_drop) { 3135 abort_and_dump(trans, path, 3136 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3137 refs_to_drop, refs, bytenr, path->slots[0]); 3138 ret = -EUCLEAN; 3139 goto out; 3140 } 3141 refs -= refs_to_drop; 3142 3143 if (refs > 0) { 3144 if (extent_op) 3145 __run_delayed_extent_op(extent_op, leaf, ei); 3146 /* 3147 * In the case of inline back ref, reference count will 3148 * be updated by remove_extent_backref 3149 */ 3150 if (iref) { 3151 if (!found_extent) { 3152 abort_and_dump(trans, path, 3153 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3154 path->slots[0]); 3155 ret = -EUCLEAN; 3156 goto out; 3157 } 3158 } else { 3159 btrfs_set_extent_refs(leaf, ei, refs); 3160 btrfs_mark_buffer_dirty(trans, leaf); 3161 } 3162 if (found_extent) { 3163 ret = remove_extent_backref(trans, extent_root, path, 3164 iref, refs_to_drop, is_data); 3165 if (ret) { 3166 btrfs_abort_transaction(trans, ret); 3167 goto out; 3168 } 3169 } 3170 } else { 3171 /* In this branch refs == 1 */ 3172 if (found_extent) { 3173 if (is_data && refs_to_drop != 3174 extent_data_ref_count(path, iref)) { 3175 abort_and_dump(trans, path, 3176 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3177 extent_data_ref_count(path, iref), 3178 refs_to_drop, path->slots[0]); 3179 ret = -EUCLEAN; 3180 goto out; 3181 } 3182 if (iref) { 3183 if (path->slots[0] != extent_slot) { 3184 abort_and_dump(trans, path, 3185 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3186 key.objectid, key.type, 3187 key.offset, path->slots[0]); 3188 ret = -EUCLEAN; 3189 goto out; 3190 } 3191 } else { 3192 /* 3193 * No inline ref, we must be at SHARED_* item, 3194 * And it's single ref, it must be: 3195 * | extent_slot ||extent_slot + 1| 3196 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3197 */ 3198 if (path->slots[0] != extent_slot + 1) { 3199 abort_and_dump(trans, path, 3200 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3201 path->slots[0]); 3202 ret = -EUCLEAN; 3203 goto out; 3204 } 3205 path->slots[0] = extent_slot; 3206 num_to_del = 2; 3207 } 3208 } 3209 3210 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3211 num_to_del); 3212 if (ret) { 3213 btrfs_abort_transaction(trans, ret); 3214 goto out; 3215 } 3216 btrfs_release_path(path); 3217 3218 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3219 } 3220 btrfs_release_path(path); 3221 3222 out: 3223 btrfs_free_path(path); 3224 return ret; 3225 } 3226 3227 /* 3228 * when we free an block, it is possible (and likely) that we free the last 3229 * delayed ref for that extent as well. This searches the delayed ref tree for 3230 * a given extent, and if there are no other delayed refs to be processed, it 3231 * removes it from the tree. 3232 */ 3233 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3234 u64 bytenr) 3235 { 3236 struct btrfs_delayed_ref_head *head; 3237 struct btrfs_delayed_ref_root *delayed_refs; 3238 int ret = 0; 3239 3240 delayed_refs = &trans->transaction->delayed_refs; 3241 spin_lock(&delayed_refs->lock); 3242 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3243 if (!head) 3244 goto out_delayed_unlock; 3245 3246 spin_lock(&head->lock); 3247 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3248 goto out; 3249 3250 if (cleanup_extent_op(head) != NULL) 3251 goto out; 3252 3253 /* 3254 * waiting for the lock here would deadlock. If someone else has it 3255 * locked they are already in the process of dropping it anyway 3256 */ 3257 if (!mutex_trylock(&head->mutex)) 3258 goto out; 3259 3260 btrfs_delete_ref_head(delayed_refs, head); 3261 head->processing = false; 3262 3263 spin_unlock(&head->lock); 3264 spin_unlock(&delayed_refs->lock); 3265 3266 BUG_ON(head->extent_op); 3267 if (head->must_insert_reserved) 3268 ret = 1; 3269 3270 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3271 mutex_unlock(&head->mutex); 3272 btrfs_put_delayed_ref_head(head); 3273 return ret; 3274 out: 3275 spin_unlock(&head->lock); 3276 3277 out_delayed_unlock: 3278 spin_unlock(&delayed_refs->lock); 3279 return 0; 3280 } 3281 3282 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3283 u64 root_id, 3284 struct extent_buffer *buf, 3285 u64 parent, int last_ref) 3286 { 3287 struct btrfs_fs_info *fs_info = trans->fs_info; 3288 struct btrfs_ref generic_ref = { 0 }; 3289 int ret; 3290 3291 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3292 buf->start, buf->len, parent); 3293 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3294 root_id, 0, false); 3295 3296 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3297 btrfs_ref_tree_mod(fs_info, &generic_ref); 3298 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3299 BUG_ON(ret); /* -ENOMEM */ 3300 } 3301 3302 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3303 struct btrfs_block_group *cache; 3304 bool must_pin = false; 3305 3306 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3307 ret = check_ref_cleanup(trans, buf->start); 3308 if (!ret) { 3309 btrfs_redirty_list_add(trans->transaction, buf); 3310 goto out; 3311 } 3312 } 3313 3314 cache = btrfs_lookup_block_group(fs_info, buf->start); 3315 3316 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3317 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3318 btrfs_put_block_group(cache); 3319 goto out; 3320 } 3321 3322 /* 3323 * If there are tree mod log users we may have recorded mod log 3324 * operations for this node. If we re-allocate this node we 3325 * could replay operations on this node that happened when it 3326 * existed in a completely different root. For example if it 3327 * was part of root A, then was reallocated to root B, and we 3328 * are doing a btrfs_old_search_slot(root b), we could replay 3329 * operations that happened when the block was part of root A, 3330 * giving us an inconsistent view of the btree. 3331 * 3332 * We are safe from races here because at this point no other 3333 * node or root points to this extent buffer, so if after this 3334 * check a new tree mod log user joins we will not have an 3335 * existing log of operations on this node that we have to 3336 * contend with. 3337 */ 3338 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3339 must_pin = true; 3340 3341 if (must_pin || btrfs_is_zoned(fs_info)) { 3342 btrfs_redirty_list_add(trans->transaction, buf); 3343 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3344 btrfs_put_block_group(cache); 3345 goto out; 3346 } 3347 3348 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3349 3350 btrfs_add_free_space(cache, buf->start, buf->len); 3351 btrfs_free_reserved_bytes(cache, buf->len, 0); 3352 btrfs_put_block_group(cache); 3353 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3354 } 3355 out: 3356 if (last_ref) { 3357 /* 3358 * Deleting the buffer, clear the corrupt flag since it doesn't 3359 * matter anymore. 3360 */ 3361 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3362 } 3363 } 3364 3365 /* Can return -ENOMEM */ 3366 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3367 { 3368 struct btrfs_fs_info *fs_info = trans->fs_info; 3369 int ret; 3370 3371 if (btrfs_is_testing(fs_info)) 3372 return 0; 3373 3374 /* 3375 * tree log blocks never actually go into the extent allocation 3376 * tree, just update pinning info and exit early. 3377 */ 3378 if ((ref->type == BTRFS_REF_METADATA && 3379 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3380 (ref->type == BTRFS_REF_DATA && 3381 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3382 /* unlocks the pinned mutex */ 3383 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3384 ret = 0; 3385 } else if (ref->type == BTRFS_REF_METADATA) { 3386 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3387 } else { 3388 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3389 } 3390 3391 if (!((ref->type == BTRFS_REF_METADATA && 3392 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3393 (ref->type == BTRFS_REF_DATA && 3394 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3395 btrfs_ref_tree_mod(fs_info, ref); 3396 3397 return ret; 3398 } 3399 3400 enum btrfs_loop_type { 3401 /* 3402 * Start caching block groups but do not wait for progress or for them 3403 * to be done. 3404 */ 3405 LOOP_CACHING_NOWAIT, 3406 3407 /* 3408 * Wait for the block group free_space >= the space we're waiting for if 3409 * the block group isn't cached. 3410 */ 3411 LOOP_CACHING_WAIT, 3412 3413 /* 3414 * Allow allocations to happen from block groups that do not yet have a 3415 * size classification. 3416 */ 3417 LOOP_UNSET_SIZE_CLASS, 3418 3419 /* 3420 * Allocate a chunk and then retry the allocation. 3421 */ 3422 LOOP_ALLOC_CHUNK, 3423 3424 /* 3425 * Ignore the size class restrictions for this allocation. 3426 */ 3427 LOOP_WRONG_SIZE_CLASS, 3428 3429 /* 3430 * Ignore the empty size, only try to allocate the number of bytes 3431 * needed for this allocation. 3432 */ 3433 LOOP_NO_EMPTY_SIZE, 3434 }; 3435 3436 static inline void 3437 btrfs_lock_block_group(struct btrfs_block_group *cache, 3438 int delalloc) 3439 { 3440 if (delalloc) 3441 down_read(&cache->data_rwsem); 3442 } 3443 3444 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3445 int delalloc) 3446 { 3447 btrfs_get_block_group(cache); 3448 if (delalloc) 3449 down_read(&cache->data_rwsem); 3450 } 3451 3452 static struct btrfs_block_group *btrfs_lock_cluster( 3453 struct btrfs_block_group *block_group, 3454 struct btrfs_free_cluster *cluster, 3455 int delalloc) 3456 __acquires(&cluster->refill_lock) 3457 { 3458 struct btrfs_block_group *used_bg = NULL; 3459 3460 spin_lock(&cluster->refill_lock); 3461 while (1) { 3462 used_bg = cluster->block_group; 3463 if (!used_bg) 3464 return NULL; 3465 3466 if (used_bg == block_group) 3467 return used_bg; 3468 3469 btrfs_get_block_group(used_bg); 3470 3471 if (!delalloc) 3472 return used_bg; 3473 3474 if (down_read_trylock(&used_bg->data_rwsem)) 3475 return used_bg; 3476 3477 spin_unlock(&cluster->refill_lock); 3478 3479 /* We should only have one-level nested. */ 3480 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3481 3482 spin_lock(&cluster->refill_lock); 3483 if (used_bg == cluster->block_group) 3484 return used_bg; 3485 3486 up_read(&used_bg->data_rwsem); 3487 btrfs_put_block_group(used_bg); 3488 } 3489 } 3490 3491 static inline void 3492 btrfs_release_block_group(struct btrfs_block_group *cache, 3493 int delalloc) 3494 { 3495 if (delalloc) 3496 up_read(&cache->data_rwsem); 3497 btrfs_put_block_group(cache); 3498 } 3499 3500 /* 3501 * Helper function for find_free_extent(). 3502 * 3503 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3504 * Return >0 to inform caller that we find nothing 3505 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3506 */ 3507 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3508 struct find_free_extent_ctl *ffe_ctl, 3509 struct btrfs_block_group **cluster_bg_ret) 3510 { 3511 struct btrfs_block_group *cluster_bg; 3512 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3513 u64 aligned_cluster; 3514 u64 offset; 3515 int ret; 3516 3517 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3518 if (!cluster_bg) 3519 goto refill_cluster; 3520 if (cluster_bg != bg && (cluster_bg->ro || 3521 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3522 goto release_cluster; 3523 3524 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3525 ffe_ctl->num_bytes, cluster_bg->start, 3526 &ffe_ctl->max_extent_size); 3527 if (offset) { 3528 /* We have a block, we're done */ 3529 spin_unlock(&last_ptr->refill_lock); 3530 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3531 *cluster_bg_ret = cluster_bg; 3532 ffe_ctl->found_offset = offset; 3533 return 0; 3534 } 3535 WARN_ON(last_ptr->block_group != cluster_bg); 3536 3537 release_cluster: 3538 /* 3539 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3540 * lets just skip it and let the allocator find whatever block it can 3541 * find. If we reach this point, we will have tried the cluster 3542 * allocator plenty of times and not have found anything, so we are 3543 * likely way too fragmented for the clustering stuff to find anything. 3544 * 3545 * However, if the cluster is taken from the current block group, 3546 * release the cluster first, so that we stand a better chance of 3547 * succeeding in the unclustered allocation. 3548 */ 3549 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3550 spin_unlock(&last_ptr->refill_lock); 3551 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3552 return -ENOENT; 3553 } 3554 3555 /* This cluster didn't work out, free it and start over */ 3556 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3557 3558 if (cluster_bg != bg) 3559 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3560 3561 refill_cluster: 3562 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3563 spin_unlock(&last_ptr->refill_lock); 3564 return -ENOENT; 3565 } 3566 3567 aligned_cluster = max_t(u64, 3568 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3569 bg->full_stripe_len); 3570 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3571 ffe_ctl->num_bytes, aligned_cluster); 3572 if (ret == 0) { 3573 /* Now pull our allocation out of this cluster */ 3574 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3575 ffe_ctl->num_bytes, ffe_ctl->search_start, 3576 &ffe_ctl->max_extent_size); 3577 if (offset) { 3578 /* We found one, proceed */ 3579 spin_unlock(&last_ptr->refill_lock); 3580 ffe_ctl->found_offset = offset; 3581 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3582 return 0; 3583 } 3584 } 3585 /* 3586 * At this point we either didn't find a cluster or we weren't able to 3587 * allocate a block from our cluster. Free the cluster we've been 3588 * trying to use, and go to the next block group. 3589 */ 3590 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3591 spin_unlock(&last_ptr->refill_lock); 3592 return 1; 3593 } 3594 3595 /* 3596 * Return >0 to inform caller that we find nothing 3597 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3598 */ 3599 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3600 struct find_free_extent_ctl *ffe_ctl) 3601 { 3602 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3603 u64 offset; 3604 3605 /* 3606 * We are doing an unclustered allocation, set the fragmented flag so 3607 * we don't bother trying to setup a cluster again until we get more 3608 * space. 3609 */ 3610 if (unlikely(last_ptr)) { 3611 spin_lock(&last_ptr->lock); 3612 last_ptr->fragmented = 1; 3613 spin_unlock(&last_ptr->lock); 3614 } 3615 if (ffe_ctl->cached) { 3616 struct btrfs_free_space_ctl *free_space_ctl; 3617 3618 free_space_ctl = bg->free_space_ctl; 3619 spin_lock(&free_space_ctl->tree_lock); 3620 if (free_space_ctl->free_space < 3621 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3622 ffe_ctl->empty_size) { 3623 ffe_ctl->total_free_space = max_t(u64, 3624 ffe_ctl->total_free_space, 3625 free_space_ctl->free_space); 3626 spin_unlock(&free_space_ctl->tree_lock); 3627 return 1; 3628 } 3629 spin_unlock(&free_space_ctl->tree_lock); 3630 } 3631 3632 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3633 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3634 &ffe_ctl->max_extent_size); 3635 if (!offset) 3636 return 1; 3637 ffe_ctl->found_offset = offset; 3638 return 0; 3639 } 3640 3641 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3642 struct find_free_extent_ctl *ffe_ctl, 3643 struct btrfs_block_group **bg_ret) 3644 { 3645 int ret; 3646 3647 /* We want to try and use the cluster allocator, so lets look there */ 3648 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3649 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3650 if (ret >= 0) 3651 return ret; 3652 /* ret == -ENOENT case falls through */ 3653 } 3654 3655 return find_free_extent_unclustered(block_group, ffe_ctl); 3656 } 3657 3658 /* 3659 * Tree-log block group locking 3660 * ============================ 3661 * 3662 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3663 * indicates the starting address of a block group, which is reserved only 3664 * for tree-log metadata. 3665 * 3666 * Lock nesting 3667 * ============ 3668 * 3669 * space_info::lock 3670 * block_group::lock 3671 * fs_info::treelog_bg_lock 3672 */ 3673 3674 /* 3675 * Simple allocator for sequential-only block group. It only allows sequential 3676 * allocation. No need to play with trees. This function also reserves the 3677 * bytes as in btrfs_add_reserved_bytes. 3678 */ 3679 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3680 struct find_free_extent_ctl *ffe_ctl, 3681 struct btrfs_block_group **bg_ret) 3682 { 3683 struct btrfs_fs_info *fs_info = block_group->fs_info; 3684 struct btrfs_space_info *space_info = block_group->space_info; 3685 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3686 u64 start = block_group->start; 3687 u64 num_bytes = ffe_ctl->num_bytes; 3688 u64 avail; 3689 u64 bytenr = block_group->start; 3690 u64 log_bytenr; 3691 u64 data_reloc_bytenr; 3692 int ret = 0; 3693 bool skip = false; 3694 3695 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3696 3697 /* 3698 * Do not allow non-tree-log blocks in the dedicated tree-log block 3699 * group, and vice versa. 3700 */ 3701 spin_lock(&fs_info->treelog_bg_lock); 3702 log_bytenr = fs_info->treelog_bg; 3703 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3704 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3705 skip = true; 3706 spin_unlock(&fs_info->treelog_bg_lock); 3707 if (skip) 3708 return 1; 3709 3710 /* 3711 * Do not allow non-relocation blocks in the dedicated relocation block 3712 * group, and vice versa. 3713 */ 3714 spin_lock(&fs_info->relocation_bg_lock); 3715 data_reloc_bytenr = fs_info->data_reloc_bg; 3716 if (data_reloc_bytenr && 3717 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3718 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3719 skip = true; 3720 spin_unlock(&fs_info->relocation_bg_lock); 3721 if (skip) 3722 return 1; 3723 3724 /* Check RO and no space case before trying to activate it */ 3725 spin_lock(&block_group->lock); 3726 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3727 ret = 1; 3728 /* 3729 * May need to clear fs_info->{treelog,data_reloc}_bg. 3730 * Return the error after taking the locks. 3731 */ 3732 } 3733 spin_unlock(&block_group->lock); 3734 3735 /* Metadata block group is activated at write time. */ 3736 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3737 !btrfs_zone_activate(block_group)) { 3738 ret = 1; 3739 /* 3740 * May need to clear fs_info->{treelog,data_reloc}_bg. 3741 * Return the error after taking the locks. 3742 */ 3743 } 3744 3745 spin_lock(&space_info->lock); 3746 spin_lock(&block_group->lock); 3747 spin_lock(&fs_info->treelog_bg_lock); 3748 spin_lock(&fs_info->relocation_bg_lock); 3749 3750 if (ret) 3751 goto out; 3752 3753 ASSERT(!ffe_ctl->for_treelog || 3754 block_group->start == fs_info->treelog_bg || 3755 fs_info->treelog_bg == 0); 3756 ASSERT(!ffe_ctl->for_data_reloc || 3757 block_group->start == fs_info->data_reloc_bg || 3758 fs_info->data_reloc_bg == 0); 3759 3760 if (block_group->ro || 3761 (!ffe_ctl->for_data_reloc && 3762 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3763 ret = 1; 3764 goto out; 3765 } 3766 3767 /* 3768 * Do not allow currently using block group to be tree-log dedicated 3769 * block group. 3770 */ 3771 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3772 (block_group->used || block_group->reserved)) { 3773 ret = 1; 3774 goto out; 3775 } 3776 3777 /* 3778 * Do not allow currently used block group to be the data relocation 3779 * dedicated block group. 3780 */ 3781 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3782 (block_group->used || block_group->reserved)) { 3783 ret = 1; 3784 goto out; 3785 } 3786 3787 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3788 avail = block_group->zone_capacity - block_group->alloc_offset; 3789 if (avail < num_bytes) { 3790 if (ffe_ctl->max_extent_size < avail) { 3791 /* 3792 * With sequential allocator, free space is always 3793 * contiguous 3794 */ 3795 ffe_ctl->max_extent_size = avail; 3796 ffe_ctl->total_free_space = avail; 3797 } 3798 ret = 1; 3799 goto out; 3800 } 3801 3802 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3803 fs_info->treelog_bg = block_group->start; 3804 3805 if (ffe_ctl->for_data_reloc) { 3806 if (!fs_info->data_reloc_bg) 3807 fs_info->data_reloc_bg = block_group->start; 3808 /* 3809 * Do not allow allocations from this block group, unless it is 3810 * for data relocation. Compared to increasing the ->ro, setting 3811 * the ->zoned_data_reloc_ongoing flag still allows nocow 3812 * writers to come in. See btrfs_inc_nocow_writers(). 3813 * 3814 * We need to disable an allocation to avoid an allocation of 3815 * regular (non-relocation data) extent. With mix of relocation 3816 * extents and regular extents, we can dispatch WRITE commands 3817 * (for relocation extents) and ZONE APPEND commands (for 3818 * regular extents) at the same time to the same zone, which 3819 * easily break the write pointer. 3820 * 3821 * Also, this flag avoids this block group to be zone finished. 3822 */ 3823 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3824 } 3825 3826 ffe_ctl->found_offset = start + block_group->alloc_offset; 3827 block_group->alloc_offset += num_bytes; 3828 spin_lock(&ctl->tree_lock); 3829 ctl->free_space -= num_bytes; 3830 spin_unlock(&ctl->tree_lock); 3831 3832 /* 3833 * We do not check if found_offset is aligned to stripesize. The 3834 * address is anyway rewritten when using zone append writing. 3835 */ 3836 3837 ffe_ctl->search_start = ffe_ctl->found_offset; 3838 3839 out: 3840 if (ret && ffe_ctl->for_treelog) 3841 fs_info->treelog_bg = 0; 3842 if (ret && ffe_ctl->for_data_reloc) 3843 fs_info->data_reloc_bg = 0; 3844 spin_unlock(&fs_info->relocation_bg_lock); 3845 spin_unlock(&fs_info->treelog_bg_lock); 3846 spin_unlock(&block_group->lock); 3847 spin_unlock(&space_info->lock); 3848 return ret; 3849 } 3850 3851 static int do_allocation(struct btrfs_block_group *block_group, 3852 struct find_free_extent_ctl *ffe_ctl, 3853 struct btrfs_block_group **bg_ret) 3854 { 3855 switch (ffe_ctl->policy) { 3856 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3857 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3858 case BTRFS_EXTENT_ALLOC_ZONED: 3859 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3860 default: 3861 BUG(); 3862 } 3863 } 3864 3865 static void release_block_group(struct btrfs_block_group *block_group, 3866 struct find_free_extent_ctl *ffe_ctl, 3867 int delalloc) 3868 { 3869 switch (ffe_ctl->policy) { 3870 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3871 ffe_ctl->retry_uncached = false; 3872 break; 3873 case BTRFS_EXTENT_ALLOC_ZONED: 3874 /* Nothing to do */ 3875 break; 3876 default: 3877 BUG(); 3878 } 3879 3880 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3881 ffe_ctl->index); 3882 btrfs_release_block_group(block_group, delalloc); 3883 } 3884 3885 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3886 struct btrfs_key *ins) 3887 { 3888 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3889 3890 if (!ffe_ctl->use_cluster && last_ptr) { 3891 spin_lock(&last_ptr->lock); 3892 last_ptr->window_start = ins->objectid; 3893 spin_unlock(&last_ptr->lock); 3894 } 3895 } 3896 3897 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3898 struct btrfs_key *ins) 3899 { 3900 switch (ffe_ctl->policy) { 3901 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3902 found_extent_clustered(ffe_ctl, ins); 3903 break; 3904 case BTRFS_EXTENT_ALLOC_ZONED: 3905 /* Nothing to do */ 3906 break; 3907 default: 3908 BUG(); 3909 } 3910 } 3911 3912 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3913 struct find_free_extent_ctl *ffe_ctl) 3914 { 3915 /* Block group's activeness is not a requirement for METADATA block groups. */ 3916 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 3917 return 0; 3918 3919 /* If we can activate new zone, just allocate a chunk and use it */ 3920 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3921 return 0; 3922 3923 /* 3924 * We already reached the max active zones. Try to finish one block 3925 * group to make a room for a new block group. This is only possible 3926 * for a data block group because btrfs_zone_finish() may need to wait 3927 * for a running transaction which can cause a deadlock for metadata 3928 * allocation. 3929 */ 3930 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3931 int ret = btrfs_zone_finish_one_bg(fs_info); 3932 3933 if (ret == 1) 3934 return 0; 3935 else if (ret < 0) 3936 return ret; 3937 } 3938 3939 /* 3940 * If we have enough free space left in an already active block group 3941 * and we can't activate any other zone now, do not allow allocating a 3942 * new chunk and let find_free_extent() retry with a smaller size. 3943 */ 3944 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3945 return -ENOSPC; 3946 3947 /* 3948 * Even min_alloc_size is not left in any block groups. Since we cannot 3949 * activate a new block group, allocating it may not help. Let's tell a 3950 * caller to try again and hope it progress something by writing some 3951 * parts of the region. That is only possible for data block groups, 3952 * where a part of the region can be written. 3953 */ 3954 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3955 return -EAGAIN; 3956 3957 /* 3958 * We cannot activate a new block group and no enough space left in any 3959 * block groups. So, allocating a new block group may not help. But, 3960 * there is nothing to do anyway, so let's go with it. 3961 */ 3962 return 0; 3963 } 3964 3965 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 3966 struct find_free_extent_ctl *ffe_ctl) 3967 { 3968 switch (ffe_ctl->policy) { 3969 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3970 return 0; 3971 case BTRFS_EXTENT_ALLOC_ZONED: 3972 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 3973 default: 3974 BUG(); 3975 } 3976 } 3977 3978 /* 3979 * Return >0 means caller needs to re-search for free extent 3980 * Return 0 means we have the needed free extent. 3981 * Return <0 means we failed to locate any free extent. 3982 */ 3983 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3984 struct btrfs_key *ins, 3985 struct find_free_extent_ctl *ffe_ctl, 3986 bool full_search) 3987 { 3988 struct btrfs_root *root = fs_info->chunk_root; 3989 int ret; 3990 3991 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3992 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3993 ffe_ctl->orig_have_caching_bg = true; 3994 3995 if (ins->objectid) { 3996 found_extent(ffe_ctl, ins); 3997 return 0; 3998 } 3999 4000 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4001 return 1; 4002 4003 ffe_ctl->index++; 4004 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4005 return 1; 4006 4007 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4008 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4009 ffe_ctl->index = 0; 4010 /* 4011 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4012 * any uncached bgs and we've already done a full search 4013 * through. 4014 */ 4015 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4016 (!ffe_ctl->orig_have_caching_bg && full_search)) 4017 ffe_ctl->loop++; 4018 ffe_ctl->loop++; 4019 4020 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4021 struct btrfs_trans_handle *trans; 4022 int exist = 0; 4023 4024 /* Check if allocation policy allows to create a new chunk */ 4025 ret = can_allocate_chunk(fs_info, ffe_ctl); 4026 if (ret) 4027 return ret; 4028 4029 trans = current->journal_info; 4030 if (trans) 4031 exist = 1; 4032 else 4033 trans = btrfs_join_transaction(root); 4034 4035 if (IS_ERR(trans)) { 4036 ret = PTR_ERR(trans); 4037 return ret; 4038 } 4039 4040 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4041 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4042 4043 /* Do not bail out on ENOSPC since we can do more. */ 4044 if (ret == -ENOSPC) { 4045 ret = 0; 4046 ffe_ctl->loop++; 4047 } 4048 else if (ret < 0) 4049 btrfs_abort_transaction(trans, ret); 4050 else 4051 ret = 0; 4052 if (!exist) 4053 btrfs_end_transaction(trans); 4054 if (ret) 4055 return ret; 4056 } 4057 4058 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4059 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4060 return -ENOSPC; 4061 4062 /* 4063 * Don't loop again if we already have no empty_size and 4064 * no empty_cluster. 4065 */ 4066 if (ffe_ctl->empty_size == 0 && 4067 ffe_ctl->empty_cluster == 0) 4068 return -ENOSPC; 4069 ffe_ctl->empty_size = 0; 4070 ffe_ctl->empty_cluster = 0; 4071 } 4072 return 1; 4073 } 4074 return -ENOSPC; 4075 } 4076 4077 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4078 struct btrfs_block_group *bg) 4079 { 4080 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4081 return true; 4082 if (!btrfs_block_group_should_use_size_class(bg)) 4083 return true; 4084 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4085 return true; 4086 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4087 bg->size_class == BTRFS_BG_SZ_NONE) 4088 return true; 4089 return ffe_ctl->size_class == bg->size_class; 4090 } 4091 4092 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4093 struct find_free_extent_ctl *ffe_ctl, 4094 struct btrfs_space_info *space_info, 4095 struct btrfs_key *ins) 4096 { 4097 /* 4098 * If our free space is heavily fragmented we may not be able to make 4099 * big contiguous allocations, so instead of doing the expensive search 4100 * for free space, simply return ENOSPC with our max_extent_size so we 4101 * can go ahead and search for a more manageable chunk. 4102 * 4103 * If our max_extent_size is large enough for our allocation simply 4104 * disable clustering since we will likely not be able to find enough 4105 * space to create a cluster and induce latency trying. 4106 */ 4107 if (space_info->max_extent_size) { 4108 spin_lock(&space_info->lock); 4109 if (space_info->max_extent_size && 4110 ffe_ctl->num_bytes > space_info->max_extent_size) { 4111 ins->offset = space_info->max_extent_size; 4112 spin_unlock(&space_info->lock); 4113 return -ENOSPC; 4114 } else if (space_info->max_extent_size) { 4115 ffe_ctl->use_cluster = false; 4116 } 4117 spin_unlock(&space_info->lock); 4118 } 4119 4120 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4121 &ffe_ctl->empty_cluster); 4122 if (ffe_ctl->last_ptr) { 4123 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4124 4125 spin_lock(&last_ptr->lock); 4126 if (last_ptr->block_group) 4127 ffe_ctl->hint_byte = last_ptr->window_start; 4128 if (last_ptr->fragmented) { 4129 /* 4130 * We still set window_start so we can keep track of the 4131 * last place we found an allocation to try and save 4132 * some time. 4133 */ 4134 ffe_ctl->hint_byte = last_ptr->window_start; 4135 ffe_ctl->use_cluster = false; 4136 } 4137 spin_unlock(&last_ptr->lock); 4138 } 4139 4140 return 0; 4141 } 4142 4143 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4144 struct find_free_extent_ctl *ffe_ctl) 4145 { 4146 if (ffe_ctl->for_treelog) { 4147 spin_lock(&fs_info->treelog_bg_lock); 4148 if (fs_info->treelog_bg) 4149 ffe_ctl->hint_byte = fs_info->treelog_bg; 4150 spin_unlock(&fs_info->treelog_bg_lock); 4151 } else if (ffe_ctl->for_data_reloc) { 4152 spin_lock(&fs_info->relocation_bg_lock); 4153 if (fs_info->data_reloc_bg) 4154 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4155 spin_unlock(&fs_info->relocation_bg_lock); 4156 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4157 struct btrfs_block_group *block_group; 4158 4159 spin_lock(&fs_info->zone_active_bgs_lock); 4160 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4161 /* 4162 * No lock is OK here because avail is monotinically 4163 * decreasing, and this is just a hint. 4164 */ 4165 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4166 4167 if (block_group_bits(block_group, ffe_ctl->flags) && 4168 avail >= ffe_ctl->num_bytes) { 4169 ffe_ctl->hint_byte = block_group->start; 4170 break; 4171 } 4172 } 4173 spin_unlock(&fs_info->zone_active_bgs_lock); 4174 } 4175 4176 return 0; 4177 } 4178 4179 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4180 struct find_free_extent_ctl *ffe_ctl, 4181 struct btrfs_space_info *space_info, 4182 struct btrfs_key *ins) 4183 { 4184 switch (ffe_ctl->policy) { 4185 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4186 return prepare_allocation_clustered(fs_info, ffe_ctl, 4187 space_info, ins); 4188 case BTRFS_EXTENT_ALLOC_ZONED: 4189 return prepare_allocation_zoned(fs_info, ffe_ctl); 4190 default: 4191 BUG(); 4192 } 4193 } 4194 4195 /* 4196 * walks the btree of allocated extents and find a hole of a given size. 4197 * The key ins is changed to record the hole: 4198 * ins->objectid == start position 4199 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4200 * ins->offset == the size of the hole. 4201 * Any available blocks before search_start are skipped. 4202 * 4203 * If there is no suitable free space, we will record the max size of 4204 * the free space extent currently. 4205 * 4206 * The overall logic and call chain: 4207 * 4208 * find_free_extent() 4209 * |- Iterate through all block groups 4210 * | |- Get a valid block group 4211 * | |- Try to do clustered allocation in that block group 4212 * | |- Try to do unclustered allocation in that block group 4213 * | |- Check if the result is valid 4214 * | | |- If valid, then exit 4215 * | |- Jump to next block group 4216 * | 4217 * |- Push harder to find free extents 4218 * |- If not found, re-iterate all block groups 4219 */ 4220 static noinline int find_free_extent(struct btrfs_root *root, 4221 struct btrfs_key *ins, 4222 struct find_free_extent_ctl *ffe_ctl) 4223 { 4224 struct btrfs_fs_info *fs_info = root->fs_info; 4225 int ret = 0; 4226 int cache_block_group_error = 0; 4227 struct btrfs_block_group *block_group = NULL; 4228 struct btrfs_space_info *space_info; 4229 bool full_search = false; 4230 4231 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4232 4233 ffe_ctl->search_start = 0; 4234 /* For clustered allocation */ 4235 ffe_ctl->empty_cluster = 0; 4236 ffe_ctl->last_ptr = NULL; 4237 ffe_ctl->use_cluster = true; 4238 ffe_ctl->have_caching_bg = false; 4239 ffe_ctl->orig_have_caching_bg = false; 4240 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4241 ffe_ctl->loop = 0; 4242 ffe_ctl->retry_uncached = false; 4243 ffe_ctl->cached = 0; 4244 ffe_ctl->max_extent_size = 0; 4245 ffe_ctl->total_free_space = 0; 4246 ffe_ctl->found_offset = 0; 4247 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4248 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4249 4250 if (btrfs_is_zoned(fs_info)) 4251 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4252 4253 ins->type = BTRFS_EXTENT_ITEM_KEY; 4254 ins->objectid = 0; 4255 ins->offset = 0; 4256 4257 trace_find_free_extent(root, ffe_ctl); 4258 4259 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4260 if (!space_info) { 4261 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4262 return -ENOSPC; 4263 } 4264 4265 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4266 if (ret < 0) 4267 return ret; 4268 4269 ffe_ctl->search_start = max(ffe_ctl->search_start, 4270 first_logical_byte(fs_info)); 4271 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4272 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4273 block_group = btrfs_lookup_block_group(fs_info, 4274 ffe_ctl->search_start); 4275 /* 4276 * we don't want to use the block group if it doesn't match our 4277 * allocation bits, or if its not cached. 4278 * 4279 * However if we are re-searching with an ideal block group 4280 * picked out then we don't care that the block group is cached. 4281 */ 4282 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4283 block_group->cached != BTRFS_CACHE_NO) { 4284 down_read(&space_info->groups_sem); 4285 if (list_empty(&block_group->list) || 4286 block_group->ro) { 4287 /* 4288 * someone is removing this block group, 4289 * we can't jump into the have_block_group 4290 * target because our list pointers are not 4291 * valid 4292 */ 4293 btrfs_put_block_group(block_group); 4294 up_read(&space_info->groups_sem); 4295 } else { 4296 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4297 block_group->flags); 4298 btrfs_lock_block_group(block_group, 4299 ffe_ctl->delalloc); 4300 ffe_ctl->hinted = true; 4301 goto have_block_group; 4302 } 4303 } else if (block_group) { 4304 btrfs_put_block_group(block_group); 4305 } 4306 } 4307 search: 4308 trace_find_free_extent_search_loop(root, ffe_ctl); 4309 ffe_ctl->have_caching_bg = false; 4310 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4311 ffe_ctl->index == 0) 4312 full_search = true; 4313 down_read(&space_info->groups_sem); 4314 list_for_each_entry(block_group, 4315 &space_info->block_groups[ffe_ctl->index], list) { 4316 struct btrfs_block_group *bg_ret; 4317 4318 ffe_ctl->hinted = false; 4319 /* If the block group is read-only, we can skip it entirely. */ 4320 if (unlikely(block_group->ro)) { 4321 if (ffe_ctl->for_treelog) 4322 btrfs_clear_treelog_bg(block_group); 4323 if (ffe_ctl->for_data_reloc) 4324 btrfs_clear_data_reloc_bg(block_group); 4325 continue; 4326 } 4327 4328 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4329 ffe_ctl->search_start = block_group->start; 4330 4331 /* 4332 * this can happen if we end up cycling through all the 4333 * raid types, but we want to make sure we only allocate 4334 * for the proper type. 4335 */ 4336 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4337 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4338 BTRFS_BLOCK_GROUP_RAID1_MASK | 4339 BTRFS_BLOCK_GROUP_RAID56_MASK | 4340 BTRFS_BLOCK_GROUP_RAID10; 4341 4342 /* 4343 * if they asked for extra copies and this block group 4344 * doesn't provide them, bail. This does allow us to 4345 * fill raid0 from raid1. 4346 */ 4347 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4348 goto loop; 4349 4350 /* 4351 * This block group has different flags than we want. 4352 * It's possible that we have MIXED_GROUP flag but no 4353 * block group is mixed. Just skip such block group. 4354 */ 4355 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4356 continue; 4357 } 4358 4359 have_block_group: 4360 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4361 ffe_ctl->cached = btrfs_block_group_done(block_group); 4362 if (unlikely(!ffe_ctl->cached)) { 4363 ffe_ctl->have_caching_bg = true; 4364 ret = btrfs_cache_block_group(block_group, false); 4365 4366 /* 4367 * If we get ENOMEM here or something else we want to 4368 * try other block groups, because it may not be fatal. 4369 * However if we can't find anything else we need to 4370 * save our return here so that we return the actual 4371 * error that caused problems, not ENOSPC. 4372 */ 4373 if (ret < 0) { 4374 if (!cache_block_group_error) 4375 cache_block_group_error = ret; 4376 ret = 0; 4377 goto loop; 4378 } 4379 ret = 0; 4380 } 4381 4382 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4383 if (!cache_block_group_error) 4384 cache_block_group_error = -EIO; 4385 goto loop; 4386 } 4387 4388 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4389 goto loop; 4390 4391 bg_ret = NULL; 4392 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4393 if (ret > 0) 4394 goto loop; 4395 4396 if (bg_ret && bg_ret != block_group) { 4397 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4398 block_group = bg_ret; 4399 } 4400 4401 /* Checks */ 4402 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4403 fs_info->stripesize); 4404 4405 /* move on to the next group */ 4406 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4407 block_group->start + block_group->length) { 4408 btrfs_add_free_space_unused(block_group, 4409 ffe_ctl->found_offset, 4410 ffe_ctl->num_bytes); 4411 goto loop; 4412 } 4413 4414 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4415 btrfs_add_free_space_unused(block_group, 4416 ffe_ctl->found_offset, 4417 ffe_ctl->search_start - ffe_ctl->found_offset); 4418 4419 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4420 ffe_ctl->num_bytes, 4421 ffe_ctl->delalloc, 4422 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4423 if (ret == -EAGAIN) { 4424 btrfs_add_free_space_unused(block_group, 4425 ffe_ctl->found_offset, 4426 ffe_ctl->num_bytes); 4427 goto loop; 4428 } 4429 btrfs_inc_block_group_reservations(block_group); 4430 4431 /* we are all good, lets return */ 4432 ins->objectid = ffe_ctl->search_start; 4433 ins->offset = ffe_ctl->num_bytes; 4434 4435 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4436 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4437 break; 4438 loop: 4439 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4440 !ffe_ctl->retry_uncached) { 4441 ffe_ctl->retry_uncached = true; 4442 btrfs_wait_block_group_cache_progress(block_group, 4443 ffe_ctl->num_bytes + 4444 ffe_ctl->empty_cluster + 4445 ffe_ctl->empty_size); 4446 goto have_block_group; 4447 } 4448 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4449 cond_resched(); 4450 } 4451 up_read(&space_info->groups_sem); 4452 4453 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4454 if (ret > 0) 4455 goto search; 4456 4457 if (ret == -ENOSPC && !cache_block_group_error) { 4458 /* 4459 * Use ffe_ctl->total_free_space as fallback if we can't find 4460 * any contiguous hole. 4461 */ 4462 if (!ffe_ctl->max_extent_size) 4463 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4464 spin_lock(&space_info->lock); 4465 space_info->max_extent_size = ffe_ctl->max_extent_size; 4466 spin_unlock(&space_info->lock); 4467 ins->offset = ffe_ctl->max_extent_size; 4468 } else if (ret == -ENOSPC) { 4469 ret = cache_block_group_error; 4470 } 4471 return ret; 4472 } 4473 4474 /* 4475 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4476 * hole that is at least as big as @num_bytes. 4477 * 4478 * @root - The root that will contain this extent 4479 * 4480 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4481 * is used for accounting purposes. This value differs 4482 * from @num_bytes only in the case of compressed extents. 4483 * 4484 * @num_bytes - Number of bytes to allocate on-disk. 4485 * 4486 * @min_alloc_size - Indicates the minimum amount of space that the 4487 * allocator should try to satisfy. In some cases 4488 * @num_bytes may be larger than what is required and if 4489 * the filesystem is fragmented then allocation fails. 4490 * However, the presence of @min_alloc_size gives a 4491 * chance to try and satisfy the smaller allocation. 4492 * 4493 * @empty_size - A hint that you plan on doing more COW. This is the 4494 * size in bytes the allocator should try to find free 4495 * next to the block it returns. This is just a hint and 4496 * may be ignored by the allocator. 4497 * 4498 * @hint_byte - Hint to the allocator to start searching above the byte 4499 * address passed. It might be ignored. 4500 * 4501 * @ins - This key is modified to record the found hole. It will 4502 * have the following values: 4503 * ins->objectid == start position 4504 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4505 * ins->offset == the size of the hole. 4506 * 4507 * @is_data - Boolean flag indicating whether an extent is 4508 * allocated for data (true) or metadata (false) 4509 * 4510 * @delalloc - Boolean flag indicating whether this allocation is for 4511 * delalloc or not. If 'true' data_rwsem of block groups 4512 * is going to be acquired. 4513 * 4514 * 4515 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4516 * case -ENOSPC is returned then @ins->offset will contain the size of the 4517 * largest available hole the allocator managed to find. 4518 */ 4519 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4520 u64 num_bytes, u64 min_alloc_size, 4521 u64 empty_size, u64 hint_byte, 4522 struct btrfs_key *ins, int is_data, int delalloc) 4523 { 4524 struct btrfs_fs_info *fs_info = root->fs_info; 4525 struct find_free_extent_ctl ffe_ctl = {}; 4526 bool final_tried = num_bytes == min_alloc_size; 4527 u64 flags; 4528 int ret; 4529 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4530 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4531 4532 flags = get_alloc_profile_by_root(root, is_data); 4533 again: 4534 WARN_ON(num_bytes < fs_info->sectorsize); 4535 4536 ffe_ctl.ram_bytes = ram_bytes; 4537 ffe_ctl.num_bytes = num_bytes; 4538 ffe_ctl.min_alloc_size = min_alloc_size; 4539 ffe_ctl.empty_size = empty_size; 4540 ffe_ctl.flags = flags; 4541 ffe_ctl.delalloc = delalloc; 4542 ffe_ctl.hint_byte = hint_byte; 4543 ffe_ctl.for_treelog = for_treelog; 4544 ffe_ctl.for_data_reloc = for_data_reloc; 4545 4546 ret = find_free_extent(root, ins, &ffe_ctl); 4547 if (!ret && !is_data) { 4548 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4549 } else if (ret == -ENOSPC) { 4550 if (!final_tried && ins->offset) { 4551 num_bytes = min(num_bytes >> 1, ins->offset); 4552 num_bytes = round_down(num_bytes, 4553 fs_info->sectorsize); 4554 num_bytes = max(num_bytes, min_alloc_size); 4555 ram_bytes = num_bytes; 4556 if (num_bytes == min_alloc_size) 4557 final_tried = true; 4558 goto again; 4559 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4560 struct btrfs_space_info *sinfo; 4561 4562 sinfo = btrfs_find_space_info(fs_info, flags); 4563 btrfs_err(fs_info, 4564 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4565 flags, num_bytes, for_treelog, for_data_reloc); 4566 if (sinfo) 4567 btrfs_dump_space_info(fs_info, sinfo, 4568 num_bytes, 1); 4569 } 4570 } 4571 4572 return ret; 4573 } 4574 4575 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4576 u64 start, u64 len, int delalloc) 4577 { 4578 struct btrfs_block_group *cache; 4579 4580 cache = btrfs_lookup_block_group(fs_info, start); 4581 if (!cache) { 4582 btrfs_err(fs_info, "Unable to find block group for %llu", 4583 start); 4584 return -ENOSPC; 4585 } 4586 4587 btrfs_add_free_space(cache, start, len); 4588 btrfs_free_reserved_bytes(cache, len, delalloc); 4589 trace_btrfs_reserved_extent_free(fs_info, start, len); 4590 4591 btrfs_put_block_group(cache); 4592 return 0; 4593 } 4594 4595 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4596 u64 len) 4597 { 4598 struct btrfs_block_group *cache; 4599 int ret = 0; 4600 4601 cache = btrfs_lookup_block_group(trans->fs_info, start); 4602 if (!cache) { 4603 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4604 start); 4605 return -ENOSPC; 4606 } 4607 4608 ret = pin_down_extent(trans, cache, start, len, 1); 4609 btrfs_put_block_group(cache); 4610 return ret; 4611 } 4612 4613 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4614 u64 num_bytes) 4615 { 4616 struct btrfs_fs_info *fs_info = trans->fs_info; 4617 int ret; 4618 4619 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4620 if (ret) 4621 return ret; 4622 4623 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4624 if (ret) { 4625 ASSERT(!ret); 4626 btrfs_err(fs_info, "update block group failed for %llu %llu", 4627 bytenr, num_bytes); 4628 return ret; 4629 } 4630 4631 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4632 return 0; 4633 } 4634 4635 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4636 u64 parent, u64 root_objectid, 4637 u64 flags, u64 owner, u64 offset, 4638 struct btrfs_key *ins, int ref_mod) 4639 { 4640 struct btrfs_fs_info *fs_info = trans->fs_info; 4641 struct btrfs_root *extent_root; 4642 int ret; 4643 struct btrfs_extent_item *extent_item; 4644 struct btrfs_extent_inline_ref *iref; 4645 struct btrfs_path *path; 4646 struct extent_buffer *leaf; 4647 int type; 4648 u32 size; 4649 4650 if (parent > 0) 4651 type = BTRFS_SHARED_DATA_REF_KEY; 4652 else 4653 type = BTRFS_EXTENT_DATA_REF_KEY; 4654 4655 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4656 4657 path = btrfs_alloc_path(); 4658 if (!path) 4659 return -ENOMEM; 4660 4661 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4662 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4663 if (ret) { 4664 btrfs_free_path(path); 4665 return ret; 4666 } 4667 4668 leaf = path->nodes[0]; 4669 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4670 struct btrfs_extent_item); 4671 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4672 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4673 btrfs_set_extent_flags(leaf, extent_item, 4674 flags | BTRFS_EXTENT_FLAG_DATA); 4675 4676 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4677 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4678 if (parent > 0) { 4679 struct btrfs_shared_data_ref *ref; 4680 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4681 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4682 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4683 } else { 4684 struct btrfs_extent_data_ref *ref; 4685 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4686 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4687 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4688 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4689 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4690 } 4691 4692 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4693 btrfs_free_path(path); 4694 4695 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4696 } 4697 4698 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4699 struct btrfs_delayed_ref_node *node, 4700 struct btrfs_delayed_extent_op *extent_op) 4701 { 4702 struct btrfs_fs_info *fs_info = trans->fs_info; 4703 struct btrfs_root *extent_root; 4704 int ret; 4705 struct btrfs_extent_item *extent_item; 4706 struct btrfs_key extent_key; 4707 struct btrfs_tree_block_info *block_info; 4708 struct btrfs_extent_inline_ref *iref; 4709 struct btrfs_path *path; 4710 struct extent_buffer *leaf; 4711 struct btrfs_delayed_tree_ref *ref; 4712 u32 size = sizeof(*extent_item) + sizeof(*iref); 4713 u64 flags = extent_op->flags_to_set; 4714 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4715 4716 ref = btrfs_delayed_node_to_tree_ref(node); 4717 4718 extent_key.objectid = node->bytenr; 4719 if (skinny_metadata) { 4720 extent_key.offset = ref->level; 4721 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4722 } else { 4723 extent_key.offset = node->num_bytes; 4724 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4725 size += sizeof(*block_info); 4726 } 4727 4728 path = btrfs_alloc_path(); 4729 if (!path) 4730 return -ENOMEM; 4731 4732 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4733 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4734 size); 4735 if (ret) { 4736 btrfs_free_path(path); 4737 return ret; 4738 } 4739 4740 leaf = path->nodes[0]; 4741 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4742 struct btrfs_extent_item); 4743 btrfs_set_extent_refs(leaf, extent_item, 1); 4744 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4745 btrfs_set_extent_flags(leaf, extent_item, 4746 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4747 4748 if (skinny_metadata) { 4749 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4750 } else { 4751 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4752 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4753 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4754 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4755 } 4756 4757 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4758 btrfs_set_extent_inline_ref_type(leaf, iref, 4759 BTRFS_SHARED_BLOCK_REF_KEY); 4760 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4761 } else { 4762 btrfs_set_extent_inline_ref_type(leaf, iref, 4763 BTRFS_TREE_BLOCK_REF_KEY); 4764 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4765 } 4766 4767 btrfs_mark_buffer_dirty(trans, leaf); 4768 btrfs_free_path(path); 4769 4770 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4771 } 4772 4773 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4774 struct btrfs_root *root, u64 owner, 4775 u64 offset, u64 ram_bytes, 4776 struct btrfs_key *ins) 4777 { 4778 struct btrfs_ref generic_ref = { 0 }; 4779 4780 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4781 4782 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4783 ins->objectid, ins->offset, 0); 4784 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4785 offset, 0, false); 4786 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4787 4788 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4789 } 4790 4791 /* 4792 * this is used by the tree logging recovery code. It records that 4793 * an extent has been allocated and makes sure to clear the free 4794 * space cache bits as well 4795 */ 4796 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4797 u64 root_objectid, u64 owner, u64 offset, 4798 struct btrfs_key *ins) 4799 { 4800 struct btrfs_fs_info *fs_info = trans->fs_info; 4801 int ret; 4802 struct btrfs_block_group *block_group; 4803 struct btrfs_space_info *space_info; 4804 4805 /* 4806 * Mixed block groups will exclude before processing the log so we only 4807 * need to do the exclude dance if this fs isn't mixed. 4808 */ 4809 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4810 ret = __exclude_logged_extent(fs_info, ins->objectid, 4811 ins->offset); 4812 if (ret) 4813 return ret; 4814 } 4815 4816 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4817 if (!block_group) 4818 return -EINVAL; 4819 4820 space_info = block_group->space_info; 4821 spin_lock(&space_info->lock); 4822 spin_lock(&block_group->lock); 4823 space_info->bytes_reserved += ins->offset; 4824 block_group->reserved += ins->offset; 4825 spin_unlock(&block_group->lock); 4826 spin_unlock(&space_info->lock); 4827 4828 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4829 offset, ins, 1); 4830 if (ret) 4831 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4832 btrfs_put_block_group(block_group); 4833 return ret; 4834 } 4835 4836 static struct extent_buffer * 4837 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4838 u64 bytenr, int level, u64 owner, 4839 enum btrfs_lock_nesting nest) 4840 { 4841 struct btrfs_fs_info *fs_info = root->fs_info; 4842 struct extent_buffer *buf; 4843 u64 lockdep_owner = owner; 4844 4845 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4846 if (IS_ERR(buf)) 4847 return buf; 4848 4849 /* 4850 * Extra safety check in case the extent tree is corrupted and extent 4851 * allocator chooses to use a tree block which is already used and 4852 * locked. 4853 */ 4854 if (buf->lock_owner == current->pid) { 4855 btrfs_err_rl(fs_info, 4856 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4857 buf->start, btrfs_header_owner(buf), current->pid); 4858 free_extent_buffer(buf); 4859 return ERR_PTR(-EUCLEAN); 4860 } 4861 4862 /* 4863 * The reloc trees are just snapshots, so we need them to appear to be 4864 * just like any other fs tree WRT lockdep. 4865 * 4866 * The exception however is in replace_path() in relocation, where we 4867 * hold the lock on the original fs root and then search for the reloc 4868 * root. At that point we need to make sure any reloc root buffers are 4869 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4870 * lockdep happy. 4871 */ 4872 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4873 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4874 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4875 4876 /* btrfs_clear_buffer_dirty() accesses generation field. */ 4877 btrfs_set_header_generation(buf, trans->transid); 4878 4879 /* 4880 * This needs to stay, because we could allocate a freed block from an 4881 * old tree into a new tree, so we need to make sure this new block is 4882 * set to the appropriate level and owner. 4883 */ 4884 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4885 4886 __btrfs_tree_lock(buf, nest); 4887 btrfs_clear_buffer_dirty(trans, buf); 4888 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4889 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4890 4891 set_extent_buffer_uptodate(buf); 4892 4893 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4894 btrfs_set_header_level(buf, level); 4895 btrfs_set_header_bytenr(buf, buf->start); 4896 btrfs_set_header_generation(buf, trans->transid); 4897 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4898 btrfs_set_header_owner(buf, owner); 4899 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4900 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4901 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4902 buf->log_index = root->log_transid % 2; 4903 /* 4904 * we allow two log transactions at a time, use different 4905 * EXTENT bit to differentiate dirty pages. 4906 */ 4907 if (buf->log_index == 0) 4908 set_extent_bit(&root->dirty_log_pages, buf->start, 4909 buf->start + buf->len - 1, 4910 EXTENT_DIRTY, NULL); 4911 else 4912 set_extent_bit(&root->dirty_log_pages, buf->start, 4913 buf->start + buf->len - 1, 4914 EXTENT_NEW, NULL); 4915 } else { 4916 buf->log_index = -1; 4917 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 4918 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 4919 } 4920 /* this returns a buffer locked for blocking */ 4921 return buf; 4922 } 4923 4924 /* 4925 * finds a free extent and does all the dirty work required for allocation 4926 * returns the tree buffer or an ERR_PTR on error. 4927 */ 4928 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4929 struct btrfs_root *root, 4930 u64 parent, u64 root_objectid, 4931 const struct btrfs_disk_key *key, 4932 int level, u64 hint, 4933 u64 empty_size, 4934 enum btrfs_lock_nesting nest) 4935 { 4936 struct btrfs_fs_info *fs_info = root->fs_info; 4937 struct btrfs_key ins; 4938 struct btrfs_block_rsv *block_rsv; 4939 struct extent_buffer *buf; 4940 struct btrfs_delayed_extent_op *extent_op; 4941 struct btrfs_ref generic_ref = { 0 }; 4942 u64 flags = 0; 4943 int ret; 4944 u32 blocksize = fs_info->nodesize; 4945 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4946 4947 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4948 if (btrfs_is_testing(fs_info)) { 4949 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4950 level, root_objectid, nest); 4951 if (!IS_ERR(buf)) 4952 root->alloc_bytenr += blocksize; 4953 return buf; 4954 } 4955 #endif 4956 4957 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4958 if (IS_ERR(block_rsv)) 4959 return ERR_CAST(block_rsv); 4960 4961 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4962 empty_size, hint, &ins, 0, 0); 4963 if (ret) 4964 goto out_unuse; 4965 4966 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4967 root_objectid, nest); 4968 if (IS_ERR(buf)) { 4969 ret = PTR_ERR(buf); 4970 goto out_free_reserved; 4971 } 4972 4973 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4974 if (parent == 0) 4975 parent = ins.objectid; 4976 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4977 } else 4978 BUG_ON(parent > 0); 4979 4980 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4981 extent_op = btrfs_alloc_delayed_extent_op(); 4982 if (!extent_op) { 4983 ret = -ENOMEM; 4984 goto out_free_buf; 4985 } 4986 if (key) 4987 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4988 else 4989 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4990 extent_op->flags_to_set = flags; 4991 extent_op->update_key = skinny_metadata ? false : true; 4992 extent_op->update_flags = true; 4993 extent_op->level = level; 4994 4995 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4996 ins.objectid, ins.offset, parent); 4997 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 4998 root->root_key.objectid, false); 4999 btrfs_ref_tree_mod(fs_info, &generic_ref); 5000 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5001 if (ret) 5002 goto out_free_delayed; 5003 } 5004 return buf; 5005 5006 out_free_delayed: 5007 btrfs_free_delayed_extent_op(extent_op); 5008 out_free_buf: 5009 btrfs_tree_unlock(buf); 5010 free_extent_buffer(buf); 5011 out_free_reserved: 5012 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5013 out_unuse: 5014 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5015 return ERR_PTR(ret); 5016 } 5017 5018 struct walk_control { 5019 u64 refs[BTRFS_MAX_LEVEL]; 5020 u64 flags[BTRFS_MAX_LEVEL]; 5021 struct btrfs_key update_progress; 5022 struct btrfs_key drop_progress; 5023 int drop_level; 5024 int stage; 5025 int level; 5026 int shared_level; 5027 int update_ref; 5028 int keep_locks; 5029 int reada_slot; 5030 int reada_count; 5031 int restarted; 5032 }; 5033 5034 #define DROP_REFERENCE 1 5035 #define UPDATE_BACKREF 2 5036 5037 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5038 struct btrfs_root *root, 5039 struct walk_control *wc, 5040 struct btrfs_path *path) 5041 { 5042 struct btrfs_fs_info *fs_info = root->fs_info; 5043 u64 bytenr; 5044 u64 generation; 5045 u64 refs; 5046 u64 flags; 5047 u32 nritems; 5048 struct btrfs_key key; 5049 struct extent_buffer *eb; 5050 int ret; 5051 int slot; 5052 int nread = 0; 5053 5054 if (path->slots[wc->level] < wc->reada_slot) { 5055 wc->reada_count = wc->reada_count * 2 / 3; 5056 wc->reada_count = max(wc->reada_count, 2); 5057 } else { 5058 wc->reada_count = wc->reada_count * 3 / 2; 5059 wc->reada_count = min_t(int, wc->reada_count, 5060 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5061 } 5062 5063 eb = path->nodes[wc->level]; 5064 nritems = btrfs_header_nritems(eb); 5065 5066 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5067 if (nread >= wc->reada_count) 5068 break; 5069 5070 cond_resched(); 5071 bytenr = btrfs_node_blockptr(eb, slot); 5072 generation = btrfs_node_ptr_generation(eb, slot); 5073 5074 if (slot == path->slots[wc->level]) 5075 goto reada; 5076 5077 if (wc->stage == UPDATE_BACKREF && 5078 generation <= root->root_key.offset) 5079 continue; 5080 5081 /* We don't lock the tree block, it's OK to be racy here */ 5082 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5083 wc->level - 1, 1, &refs, 5084 &flags); 5085 /* We don't care about errors in readahead. */ 5086 if (ret < 0) 5087 continue; 5088 5089 /* 5090 * This could be racey, it's conceivable that we raced and end 5091 * up with a bogus refs count, if that's the case just skip, if 5092 * we are actually corrupt we will notice when we look up 5093 * everything again with our locks. 5094 */ 5095 if (refs == 0) 5096 continue; 5097 5098 if (wc->stage == DROP_REFERENCE) { 5099 if (refs == 1) 5100 goto reada; 5101 5102 if (wc->level == 1 && 5103 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5104 continue; 5105 if (!wc->update_ref || 5106 generation <= root->root_key.offset) 5107 continue; 5108 btrfs_node_key_to_cpu(eb, &key, slot); 5109 ret = btrfs_comp_cpu_keys(&key, 5110 &wc->update_progress); 5111 if (ret < 0) 5112 continue; 5113 } else { 5114 if (wc->level == 1 && 5115 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5116 continue; 5117 } 5118 reada: 5119 btrfs_readahead_node_child(eb, slot); 5120 nread++; 5121 } 5122 wc->reada_slot = slot; 5123 } 5124 5125 /* 5126 * helper to process tree block while walking down the tree. 5127 * 5128 * when wc->stage == UPDATE_BACKREF, this function updates 5129 * back refs for pointers in the block. 5130 * 5131 * NOTE: return value 1 means we should stop walking down. 5132 */ 5133 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5134 struct btrfs_root *root, 5135 struct btrfs_path *path, 5136 struct walk_control *wc, int lookup_info) 5137 { 5138 struct btrfs_fs_info *fs_info = root->fs_info; 5139 int level = wc->level; 5140 struct extent_buffer *eb = path->nodes[level]; 5141 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5142 int ret; 5143 5144 if (wc->stage == UPDATE_BACKREF && 5145 btrfs_header_owner(eb) != root->root_key.objectid) 5146 return 1; 5147 5148 /* 5149 * when reference count of tree block is 1, it won't increase 5150 * again. once full backref flag is set, we never clear it. 5151 */ 5152 if (lookup_info && 5153 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5154 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5155 ASSERT(path->locks[level]); 5156 ret = btrfs_lookup_extent_info(trans, fs_info, 5157 eb->start, level, 1, 5158 &wc->refs[level], 5159 &wc->flags[level]); 5160 BUG_ON(ret == -ENOMEM); 5161 if (ret) 5162 return ret; 5163 if (unlikely(wc->refs[level] == 0)) { 5164 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5165 eb->start); 5166 return -EUCLEAN; 5167 } 5168 } 5169 5170 if (wc->stage == DROP_REFERENCE) { 5171 if (wc->refs[level] > 1) 5172 return 1; 5173 5174 if (path->locks[level] && !wc->keep_locks) { 5175 btrfs_tree_unlock_rw(eb, path->locks[level]); 5176 path->locks[level] = 0; 5177 } 5178 return 0; 5179 } 5180 5181 /* wc->stage == UPDATE_BACKREF */ 5182 if (!(wc->flags[level] & flag)) { 5183 ASSERT(path->locks[level]); 5184 ret = btrfs_inc_ref(trans, root, eb, 1); 5185 BUG_ON(ret); /* -ENOMEM */ 5186 ret = btrfs_dec_ref(trans, root, eb, 0); 5187 BUG_ON(ret); /* -ENOMEM */ 5188 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5189 BUG_ON(ret); /* -ENOMEM */ 5190 wc->flags[level] |= flag; 5191 } 5192 5193 /* 5194 * the block is shared by multiple trees, so it's not good to 5195 * keep the tree lock 5196 */ 5197 if (path->locks[level] && level > 0) { 5198 btrfs_tree_unlock_rw(eb, path->locks[level]); 5199 path->locks[level] = 0; 5200 } 5201 return 0; 5202 } 5203 5204 /* 5205 * This is used to verify a ref exists for this root to deal with a bug where we 5206 * would have a drop_progress key that hadn't been updated properly. 5207 */ 5208 static int check_ref_exists(struct btrfs_trans_handle *trans, 5209 struct btrfs_root *root, u64 bytenr, u64 parent, 5210 int level) 5211 { 5212 struct btrfs_path *path; 5213 struct btrfs_extent_inline_ref *iref; 5214 int ret; 5215 5216 path = btrfs_alloc_path(); 5217 if (!path) 5218 return -ENOMEM; 5219 5220 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5221 root->fs_info->nodesize, parent, 5222 root->root_key.objectid, level, 0); 5223 btrfs_free_path(path); 5224 if (ret == -ENOENT) 5225 return 0; 5226 if (ret < 0) 5227 return ret; 5228 return 1; 5229 } 5230 5231 /* 5232 * helper to process tree block pointer. 5233 * 5234 * when wc->stage == DROP_REFERENCE, this function checks 5235 * reference count of the block pointed to. if the block 5236 * is shared and we need update back refs for the subtree 5237 * rooted at the block, this function changes wc->stage to 5238 * UPDATE_BACKREF. if the block is shared and there is no 5239 * need to update back, this function drops the reference 5240 * to the block. 5241 * 5242 * NOTE: return value 1 means we should stop walking down. 5243 */ 5244 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5245 struct btrfs_root *root, 5246 struct btrfs_path *path, 5247 struct walk_control *wc, int *lookup_info) 5248 { 5249 struct btrfs_fs_info *fs_info = root->fs_info; 5250 u64 bytenr; 5251 u64 generation; 5252 u64 parent; 5253 struct btrfs_tree_parent_check check = { 0 }; 5254 struct btrfs_key key; 5255 struct btrfs_ref ref = { 0 }; 5256 struct extent_buffer *next; 5257 int level = wc->level; 5258 int reada = 0; 5259 int ret = 0; 5260 bool need_account = false; 5261 5262 generation = btrfs_node_ptr_generation(path->nodes[level], 5263 path->slots[level]); 5264 /* 5265 * if the lower level block was created before the snapshot 5266 * was created, we know there is no need to update back refs 5267 * for the subtree 5268 */ 5269 if (wc->stage == UPDATE_BACKREF && 5270 generation <= root->root_key.offset) { 5271 *lookup_info = 1; 5272 return 1; 5273 } 5274 5275 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5276 5277 check.level = level - 1; 5278 check.transid = generation; 5279 check.owner_root = root->root_key.objectid; 5280 check.has_first_key = true; 5281 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5282 path->slots[level]); 5283 5284 next = find_extent_buffer(fs_info, bytenr); 5285 if (!next) { 5286 next = btrfs_find_create_tree_block(fs_info, bytenr, 5287 root->root_key.objectid, level - 1); 5288 if (IS_ERR(next)) 5289 return PTR_ERR(next); 5290 reada = 1; 5291 } 5292 btrfs_tree_lock(next); 5293 5294 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5295 &wc->refs[level - 1], 5296 &wc->flags[level - 1]); 5297 if (ret < 0) 5298 goto out_unlock; 5299 5300 if (unlikely(wc->refs[level - 1] == 0)) { 5301 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5302 bytenr); 5303 ret = -EUCLEAN; 5304 goto out_unlock; 5305 } 5306 *lookup_info = 0; 5307 5308 if (wc->stage == DROP_REFERENCE) { 5309 if (wc->refs[level - 1] > 1) { 5310 need_account = true; 5311 if (level == 1 && 5312 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5313 goto skip; 5314 5315 if (!wc->update_ref || 5316 generation <= root->root_key.offset) 5317 goto skip; 5318 5319 btrfs_node_key_to_cpu(path->nodes[level], &key, 5320 path->slots[level]); 5321 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5322 if (ret < 0) 5323 goto skip; 5324 5325 wc->stage = UPDATE_BACKREF; 5326 wc->shared_level = level - 1; 5327 } 5328 } else { 5329 if (level == 1 && 5330 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5331 goto skip; 5332 } 5333 5334 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5335 btrfs_tree_unlock(next); 5336 free_extent_buffer(next); 5337 next = NULL; 5338 *lookup_info = 1; 5339 } 5340 5341 if (!next) { 5342 if (reada && level == 1) 5343 reada_walk_down(trans, root, wc, path); 5344 next = read_tree_block(fs_info, bytenr, &check); 5345 if (IS_ERR(next)) { 5346 return PTR_ERR(next); 5347 } else if (!extent_buffer_uptodate(next)) { 5348 free_extent_buffer(next); 5349 return -EIO; 5350 } 5351 btrfs_tree_lock(next); 5352 } 5353 5354 level--; 5355 ASSERT(level == btrfs_header_level(next)); 5356 if (level != btrfs_header_level(next)) { 5357 btrfs_err(root->fs_info, "mismatched level"); 5358 ret = -EIO; 5359 goto out_unlock; 5360 } 5361 path->nodes[level] = next; 5362 path->slots[level] = 0; 5363 path->locks[level] = BTRFS_WRITE_LOCK; 5364 wc->level = level; 5365 if (wc->level == 1) 5366 wc->reada_slot = 0; 5367 return 0; 5368 skip: 5369 wc->refs[level - 1] = 0; 5370 wc->flags[level - 1] = 0; 5371 if (wc->stage == DROP_REFERENCE) { 5372 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5373 parent = path->nodes[level]->start; 5374 } else { 5375 ASSERT(root->root_key.objectid == 5376 btrfs_header_owner(path->nodes[level])); 5377 if (root->root_key.objectid != 5378 btrfs_header_owner(path->nodes[level])) { 5379 btrfs_err(root->fs_info, 5380 "mismatched block owner"); 5381 ret = -EIO; 5382 goto out_unlock; 5383 } 5384 parent = 0; 5385 } 5386 5387 /* 5388 * If we had a drop_progress we need to verify the refs are set 5389 * as expected. If we find our ref then we know that from here 5390 * on out everything should be correct, and we can clear the 5391 * ->restarted flag. 5392 */ 5393 if (wc->restarted) { 5394 ret = check_ref_exists(trans, root, bytenr, parent, 5395 level - 1); 5396 if (ret < 0) 5397 goto out_unlock; 5398 if (ret == 0) 5399 goto no_delete; 5400 ret = 0; 5401 wc->restarted = 0; 5402 } 5403 5404 /* 5405 * Reloc tree doesn't contribute to qgroup numbers, and we have 5406 * already accounted them at merge time (replace_path), 5407 * thus we could skip expensive subtree trace here. 5408 */ 5409 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5410 need_account) { 5411 ret = btrfs_qgroup_trace_subtree(trans, next, 5412 generation, level - 1); 5413 if (ret) { 5414 btrfs_err_rl(fs_info, 5415 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5416 ret); 5417 } 5418 } 5419 5420 /* 5421 * We need to update the next key in our walk control so we can 5422 * update the drop_progress key accordingly. We don't care if 5423 * find_next_key doesn't find a key because that means we're at 5424 * the end and are going to clean up now. 5425 */ 5426 wc->drop_level = level; 5427 find_next_key(path, level, &wc->drop_progress); 5428 5429 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5430 fs_info->nodesize, parent); 5431 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5432 0, false); 5433 ret = btrfs_free_extent(trans, &ref); 5434 if (ret) 5435 goto out_unlock; 5436 } 5437 no_delete: 5438 *lookup_info = 1; 5439 ret = 1; 5440 5441 out_unlock: 5442 btrfs_tree_unlock(next); 5443 free_extent_buffer(next); 5444 5445 return ret; 5446 } 5447 5448 /* 5449 * helper to process tree block while walking up the tree. 5450 * 5451 * when wc->stage == DROP_REFERENCE, this function drops 5452 * reference count on the block. 5453 * 5454 * when wc->stage == UPDATE_BACKREF, this function changes 5455 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5456 * to UPDATE_BACKREF previously while processing the block. 5457 * 5458 * NOTE: return value 1 means we should stop walking up. 5459 */ 5460 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5461 struct btrfs_root *root, 5462 struct btrfs_path *path, 5463 struct walk_control *wc) 5464 { 5465 struct btrfs_fs_info *fs_info = root->fs_info; 5466 int ret; 5467 int level = wc->level; 5468 struct extent_buffer *eb = path->nodes[level]; 5469 u64 parent = 0; 5470 5471 if (wc->stage == UPDATE_BACKREF) { 5472 BUG_ON(wc->shared_level < level); 5473 if (level < wc->shared_level) 5474 goto out; 5475 5476 ret = find_next_key(path, level + 1, &wc->update_progress); 5477 if (ret > 0) 5478 wc->update_ref = 0; 5479 5480 wc->stage = DROP_REFERENCE; 5481 wc->shared_level = -1; 5482 path->slots[level] = 0; 5483 5484 /* 5485 * check reference count again if the block isn't locked. 5486 * we should start walking down the tree again if reference 5487 * count is one. 5488 */ 5489 if (!path->locks[level]) { 5490 BUG_ON(level == 0); 5491 btrfs_tree_lock(eb); 5492 path->locks[level] = BTRFS_WRITE_LOCK; 5493 5494 ret = btrfs_lookup_extent_info(trans, fs_info, 5495 eb->start, level, 1, 5496 &wc->refs[level], 5497 &wc->flags[level]); 5498 if (ret < 0) { 5499 btrfs_tree_unlock_rw(eb, path->locks[level]); 5500 path->locks[level] = 0; 5501 return ret; 5502 } 5503 if (unlikely(wc->refs[level] == 0)) { 5504 btrfs_tree_unlock_rw(eb, path->locks[level]); 5505 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5506 eb->start); 5507 return -EUCLEAN; 5508 } 5509 if (wc->refs[level] == 1) { 5510 btrfs_tree_unlock_rw(eb, path->locks[level]); 5511 path->locks[level] = 0; 5512 return 1; 5513 } 5514 } 5515 } 5516 5517 /* wc->stage == DROP_REFERENCE */ 5518 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5519 5520 if (wc->refs[level] == 1) { 5521 if (level == 0) { 5522 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5523 ret = btrfs_dec_ref(trans, root, eb, 1); 5524 else 5525 ret = btrfs_dec_ref(trans, root, eb, 0); 5526 BUG_ON(ret); /* -ENOMEM */ 5527 if (is_fstree(root->root_key.objectid)) { 5528 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5529 if (ret) { 5530 btrfs_err_rl(fs_info, 5531 "error %d accounting leaf items, quota is out of sync, rescan required", 5532 ret); 5533 } 5534 } 5535 } 5536 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5537 if (!path->locks[level]) { 5538 btrfs_tree_lock(eb); 5539 path->locks[level] = BTRFS_WRITE_LOCK; 5540 } 5541 btrfs_clear_buffer_dirty(trans, eb); 5542 } 5543 5544 if (eb == root->node) { 5545 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5546 parent = eb->start; 5547 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5548 goto owner_mismatch; 5549 } else { 5550 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5551 parent = path->nodes[level + 1]->start; 5552 else if (root->root_key.objectid != 5553 btrfs_header_owner(path->nodes[level + 1])) 5554 goto owner_mismatch; 5555 } 5556 5557 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5558 wc->refs[level] == 1); 5559 out: 5560 wc->refs[level] = 0; 5561 wc->flags[level] = 0; 5562 return 0; 5563 5564 owner_mismatch: 5565 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5566 btrfs_header_owner(eb), root->root_key.objectid); 5567 return -EUCLEAN; 5568 } 5569 5570 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5571 struct btrfs_root *root, 5572 struct btrfs_path *path, 5573 struct walk_control *wc) 5574 { 5575 int level = wc->level; 5576 int lookup_info = 1; 5577 int ret = 0; 5578 5579 while (level >= 0) { 5580 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5581 if (ret) 5582 break; 5583 5584 if (level == 0) 5585 break; 5586 5587 if (path->slots[level] >= 5588 btrfs_header_nritems(path->nodes[level])) 5589 break; 5590 5591 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5592 if (ret > 0) { 5593 path->slots[level]++; 5594 continue; 5595 } else if (ret < 0) 5596 break; 5597 level = wc->level; 5598 } 5599 return (ret == 1) ? 0 : ret; 5600 } 5601 5602 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5603 struct btrfs_root *root, 5604 struct btrfs_path *path, 5605 struct walk_control *wc, int max_level) 5606 { 5607 int level = wc->level; 5608 int ret; 5609 5610 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5611 while (level < max_level && path->nodes[level]) { 5612 wc->level = level; 5613 if (path->slots[level] + 1 < 5614 btrfs_header_nritems(path->nodes[level])) { 5615 path->slots[level]++; 5616 return 0; 5617 } else { 5618 ret = walk_up_proc(trans, root, path, wc); 5619 if (ret > 0) 5620 return 0; 5621 if (ret < 0) 5622 return ret; 5623 5624 if (path->locks[level]) { 5625 btrfs_tree_unlock_rw(path->nodes[level], 5626 path->locks[level]); 5627 path->locks[level] = 0; 5628 } 5629 free_extent_buffer(path->nodes[level]); 5630 path->nodes[level] = NULL; 5631 level++; 5632 } 5633 } 5634 return 1; 5635 } 5636 5637 /* 5638 * drop a subvolume tree. 5639 * 5640 * this function traverses the tree freeing any blocks that only 5641 * referenced by the tree. 5642 * 5643 * when a shared tree block is found. this function decreases its 5644 * reference count by one. if update_ref is true, this function 5645 * also make sure backrefs for the shared block and all lower level 5646 * blocks are properly updated. 5647 * 5648 * If called with for_reloc == 0, may exit early with -EAGAIN 5649 */ 5650 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5651 { 5652 const bool is_reloc_root = (root->root_key.objectid == 5653 BTRFS_TREE_RELOC_OBJECTID); 5654 struct btrfs_fs_info *fs_info = root->fs_info; 5655 struct btrfs_path *path; 5656 struct btrfs_trans_handle *trans; 5657 struct btrfs_root *tree_root = fs_info->tree_root; 5658 struct btrfs_root_item *root_item = &root->root_item; 5659 struct walk_control *wc; 5660 struct btrfs_key key; 5661 int err = 0; 5662 int ret; 5663 int level; 5664 bool root_dropped = false; 5665 bool unfinished_drop = false; 5666 5667 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5668 5669 path = btrfs_alloc_path(); 5670 if (!path) { 5671 err = -ENOMEM; 5672 goto out; 5673 } 5674 5675 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5676 if (!wc) { 5677 btrfs_free_path(path); 5678 err = -ENOMEM; 5679 goto out; 5680 } 5681 5682 /* 5683 * Use join to avoid potential EINTR from transaction start. See 5684 * wait_reserve_ticket and the whole reservation callchain. 5685 */ 5686 if (for_reloc) 5687 trans = btrfs_join_transaction(tree_root); 5688 else 5689 trans = btrfs_start_transaction(tree_root, 0); 5690 if (IS_ERR(trans)) { 5691 err = PTR_ERR(trans); 5692 goto out_free; 5693 } 5694 5695 err = btrfs_run_delayed_items(trans); 5696 if (err) 5697 goto out_end_trans; 5698 5699 /* 5700 * This will help us catch people modifying the fs tree while we're 5701 * dropping it. It is unsafe to mess with the fs tree while it's being 5702 * dropped as we unlock the root node and parent nodes as we walk down 5703 * the tree, assuming nothing will change. If something does change 5704 * then we'll have stale information and drop references to blocks we've 5705 * already dropped. 5706 */ 5707 set_bit(BTRFS_ROOT_DELETING, &root->state); 5708 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5709 5710 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5711 level = btrfs_header_level(root->node); 5712 path->nodes[level] = btrfs_lock_root_node(root); 5713 path->slots[level] = 0; 5714 path->locks[level] = BTRFS_WRITE_LOCK; 5715 memset(&wc->update_progress, 0, 5716 sizeof(wc->update_progress)); 5717 } else { 5718 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5719 memcpy(&wc->update_progress, &key, 5720 sizeof(wc->update_progress)); 5721 5722 level = btrfs_root_drop_level(root_item); 5723 BUG_ON(level == 0); 5724 path->lowest_level = level; 5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5726 path->lowest_level = 0; 5727 if (ret < 0) { 5728 err = ret; 5729 goto out_end_trans; 5730 } 5731 WARN_ON(ret > 0); 5732 5733 /* 5734 * unlock our path, this is safe because only this 5735 * function is allowed to delete this snapshot 5736 */ 5737 btrfs_unlock_up_safe(path, 0); 5738 5739 level = btrfs_header_level(root->node); 5740 while (1) { 5741 btrfs_tree_lock(path->nodes[level]); 5742 path->locks[level] = BTRFS_WRITE_LOCK; 5743 5744 ret = btrfs_lookup_extent_info(trans, fs_info, 5745 path->nodes[level]->start, 5746 level, 1, &wc->refs[level], 5747 &wc->flags[level]); 5748 if (ret < 0) { 5749 err = ret; 5750 goto out_end_trans; 5751 } 5752 BUG_ON(wc->refs[level] == 0); 5753 5754 if (level == btrfs_root_drop_level(root_item)) 5755 break; 5756 5757 btrfs_tree_unlock(path->nodes[level]); 5758 path->locks[level] = 0; 5759 WARN_ON(wc->refs[level] != 1); 5760 level--; 5761 } 5762 } 5763 5764 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5765 wc->level = level; 5766 wc->shared_level = -1; 5767 wc->stage = DROP_REFERENCE; 5768 wc->update_ref = update_ref; 5769 wc->keep_locks = 0; 5770 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5771 5772 while (1) { 5773 5774 ret = walk_down_tree(trans, root, path, wc); 5775 if (ret < 0) { 5776 btrfs_abort_transaction(trans, ret); 5777 err = ret; 5778 break; 5779 } 5780 5781 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5782 if (ret < 0) { 5783 btrfs_abort_transaction(trans, ret); 5784 err = ret; 5785 break; 5786 } 5787 5788 if (ret > 0) { 5789 BUG_ON(wc->stage != DROP_REFERENCE); 5790 break; 5791 } 5792 5793 if (wc->stage == DROP_REFERENCE) { 5794 wc->drop_level = wc->level; 5795 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5796 &wc->drop_progress, 5797 path->slots[wc->drop_level]); 5798 } 5799 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5800 &wc->drop_progress); 5801 btrfs_set_root_drop_level(root_item, wc->drop_level); 5802 5803 BUG_ON(wc->level == 0); 5804 if (btrfs_should_end_transaction(trans) || 5805 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5806 ret = btrfs_update_root(trans, tree_root, 5807 &root->root_key, 5808 root_item); 5809 if (ret) { 5810 btrfs_abort_transaction(trans, ret); 5811 err = ret; 5812 goto out_end_trans; 5813 } 5814 5815 if (!is_reloc_root) 5816 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5817 5818 btrfs_end_transaction_throttle(trans); 5819 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5820 btrfs_debug(fs_info, 5821 "drop snapshot early exit"); 5822 err = -EAGAIN; 5823 goto out_free; 5824 } 5825 5826 /* 5827 * Use join to avoid potential EINTR from transaction 5828 * start. See wait_reserve_ticket and the whole 5829 * reservation callchain. 5830 */ 5831 if (for_reloc) 5832 trans = btrfs_join_transaction(tree_root); 5833 else 5834 trans = btrfs_start_transaction(tree_root, 0); 5835 if (IS_ERR(trans)) { 5836 err = PTR_ERR(trans); 5837 goto out_free; 5838 } 5839 } 5840 } 5841 btrfs_release_path(path); 5842 if (err) 5843 goto out_end_trans; 5844 5845 ret = btrfs_del_root(trans, &root->root_key); 5846 if (ret) { 5847 btrfs_abort_transaction(trans, ret); 5848 err = ret; 5849 goto out_end_trans; 5850 } 5851 5852 if (!is_reloc_root) { 5853 ret = btrfs_find_root(tree_root, &root->root_key, path, 5854 NULL, NULL); 5855 if (ret < 0) { 5856 btrfs_abort_transaction(trans, ret); 5857 err = ret; 5858 goto out_end_trans; 5859 } else if (ret > 0) { 5860 /* if we fail to delete the orphan item this time 5861 * around, it'll get picked up the next time. 5862 * 5863 * The most common failure here is just -ENOENT. 5864 */ 5865 btrfs_del_orphan_item(trans, tree_root, 5866 root->root_key.objectid); 5867 } 5868 } 5869 5870 /* 5871 * This subvolume is going to be completely dropped, and won't be 5872 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5873 * commit transaction time. So free it here manually. 5874 */ 5875 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5876 btrfs_qgroup_free_meta_all_pertrans(root); 5877 5878 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5879 btrfs_add_dropped_root(trans, root); 5880 else 5881 btrfs_put_root(root); 5882 root_dropped = true; 5883 out_end_trans: 5884 if (!is_reloc_root) 5885 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5886 5887 btrfs_end_transaction_throttle(trans); 5888 out_free: 5889 kfree(wc); 5890 btrfs_free_path(path); 5891 out: 5892 /* 5893 * We were an unfinished drop root, check to see if there are any 5894 * pending, and if not clear and wake up any waiters. 5895 */ 5896 if (!err && unfinished_drop) 5897 btrfs_maybe_wake_unfinished_drop(fs_info); 5898 5899 /* 5900 * So if we need to stop dropping the snapshot for whatever reason we 5901 * need to make sure to add it back to the dead root list so that we 5902 * keep trying to do the work later. This also cleans up roots if we 5903 * don't have it in the radix (like when we recover after a power fail 5904 * or unmount) so we don't leak memory. 5905 */ 5906 if (!for_reloc && !root_dropped) 5907 btrfs_add_dead_root(root); 5908 return err; 5909 } 5910 5911 /* 5912 * drop subtree rooted at tree block 'node'. 5913 * 5914 * NOTE: this function will unlock and release tree block 'node' 5915 * only used by relocation code 5916 */ 5917 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5918 struct btrfs_root *root, 5919 struct extent_buffer *node, 5920 struct extent_buffer *parent) 5921 { 5922 struct btrfs_fs_info *fs_info = root->fs_info; 5923 struct btrfs_path *path; 5924 struct walk_control *wc; 5925 int level; 5926 int parent_level; 5927 int ret = 0; 5928 int wret; 5929 5930 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5931 5932 path = btrfs_alloc_path(); 5933 if (!path) 5934 return -ENOMEM; 5935 5936 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5937 if (!wc) { 5938 btrfs_free_path(path); 5939 return -ENOMEM; 5940 } 5941 5942 btrfs_assert_tree_write_locked(parent); 5943 parent_level = btrfs_header_level(parent); 5944 atomic_inc(&parent->refs); 5945 path->nodes[parent_level] = parent; 5946 path->slots[parent_level] = btrfs_header_nritems(parent); 5947 5948 btrfs_assert_tree_write_locked(node); 5949 level = btrfs_header_level(node); 5950 path->nodes[level] = node; 5951 path->slots[level] = 0; 5952 path->locks[level] = BTRFS_WRITE_LOCK; 5953 5954 wc->refs[parent_level] = 1; 5955 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5956 wc->level = level; 5957 wc->shared_level = -1; 5958 wc->stage = DROP_REFERENCE; 5959 wc->update_ref = 0; 5960 wc->keep_locks = 1; 5961 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5962 5963 while (1) { 5964 wret = walk_down_tree(trans, root, path, wc); 5965 if (wret < 0) { 5966 ret = wret; 5967 break; 5968 } 5969 5970 wret = walk_up_tree(trans, root, path, wc, parent_level); 5971 if (wret < 0) 5972 ret = wret; 5973 if (wret != 0) 5974 break; 5975 } 5976 5977 kfree(wc); 5978 btrfs_free_path(path); 5979 return ret; 5980 } 5981 5982 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5983 u64 start, u64 end) 5984 { 5985 return unpin_extent_range(fs_info, start, end, false); 5986 } 5987 5988 /* 5989 * It used to be that old block groups would be left around forever. 5990 * Iterating over them would be enough to trim unused space. Since we 5991 * now automatically remove them, we also need to iterate over unallocated 5992 * space. 5993 * 5994 * We don't want a transaction for this since the discard may take a 5995 * substantial amount of time. We don't require that a transaction be 5996 * running, but we do need to take a running transaction into account 5997 * to ensure that we're not discarding chunks that were released or 5998 * allocated in the current transaction. 5999 * 6000 * Holding the chunks lock will prevent other threads from allocating 6001 * or releasing chunks, but it won't prevent a running transaction 6002 * from committing and releasing the memory that the pending chunks 6003 * list head uses. For that, we need to take a reference to the 6004 * transaction and hold the commit root sem. We only need to hold 6005 * it while performing the free space search since we have already 6006 * held back allocations. 6007 */ 6008 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6009 { 6010 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6011 int ret; 6012 6013 *trimmed = 0; 6014 6015 /* Discard not supported = nothing to do. */ 6016 if (!bdev_max_discard_sectors(device->bdev)) 6017 return 0; 6018 6019 /* Not writable = nothing to do. */ 6020 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6021 return 0; 6022 6023 /* No free space = nothing to do. */ 6024 if (device->total_bytes <= device->bytes_used) 6025 return 0; 6026 6027 ret = 0; 6028 6029 while (1) { 6030 struct btrfs_fs_info *fs_info = device->fs_info; 6031 u64 bytes; 6032 6033 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6034 if (ret) 6035 break; 6036 6037 find_first_clear_extent_bit(&device->alloc_state, start, 6038 &start, &end, 6039 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6040 6041 /* Check if there are any CHUNK_* bits left */ 6042 if (start > device->total_bytes) { 6043 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6044 btrfs_warn_in_rcu(fs_info, 6045 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6046 start, end - start + 1, 6047 btrfs_dev_name(device), 6048 device->total_bytes); 6049 mutex_unlock(&fs_info->chunk_mutex); 6050 ret = 0; 6051 break; 6052 } 6053 6054 /* Ensure we skip the reserved space on each device. */ 6055 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6056 6057 /* 6058 * If find_first_clear_extent_bit find a range that spans the 6059 * end of the device it will set end to -1, in this case it's up 6060 * to the caller to trim the value to the size of the device. 6061 */ 6062 end = min(end, device->total_bytes - 1); 6063 6064 len = end - start + 1; 6065 6066 /* We didn't find any extents */ 6067 if (!len) { 6068 mutex_unlock(&fs_info->chunk_mutex); 6069 ret = 0; 6070 break; 6071 } 6072 6073 ret = btrfs_issue_discard(device->bdev, start, len, 6074 &bytes); 6075 if (!ret) 6076 set_extent_bit(&device->alloc_state, start, 6077 start + bytes - 1, CHUNK_TRIMMED, NULL); 6078 mutex_unlock(&fs_info->chunk_mutex); 6079 6080 if (ret) 6081 break; 6082 6083 start += len; 6084 *trimmed += bytes; 6085 6086 if (fatal_signal_pending(current)) { 6087 ret = -ERESTARTSYS; 6088 break; 6089 } 6090 6091 cond_resched(); 6092 } 6093 6094 return ret; 6095 } 6096 6097 /* 6098 * Trim the whole filesystem by: 6099 * 1) trimming the free space in each block group 6100 * 2) trimming the unallocated space on each device 6101 * 6102 * This will also continue trimming even if a block group or device encounters 6103 * an error. The return value will be the last error, or 0 if nothing bad 6104 * happens. 6105 */ 6106 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6107 { 6108 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6109 struct btrfs_block_group *cache = NULL; 6110 struct btrfs_device *device; 6111 u64 group_trimmed; 6112 u64 range_end = U64_MAX; 6113 u64 start; 6114 u64 end; 6115 u64 trimmed = 0; 6116 u64 bg_failed = 0; 6117 u64 dev_failed = 0; 6118 int bg_ret = 0; 6119 int dev_ret = 0; 6120 int ret = 0; 6121 6122 if (range->start == U64_MAX) 6123 return -EINVAL; 6124 6125 /* 6126 * Check range overflow if range->len is set. 6127 * The default range->len is U64_MAX. 6128 */ 6129 if (range->len != U64_MAX && 6130 check_add_overflow(range->start, range->len, &range_end)) 6131 return -EINVAL; 6132 6133 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6134 for (; cache; cache = btrfs_next_block_group(cache)) { 6135 if (cache->start >= range_end) { 6136 btrfs_put_block_group(cache); 6137 break; 6138 } 6139 6140 start = max(range->start, cache->start); 6141 end = min(range_end, cache->start + cache->length); 6142 6143 if (end - start >= range->minlen) { 6144 if (!btrfs_block_group_done(cache)) { 6145 ret = btrfs_cache_block_group(cache, true); 6146 if (ret) { 6147 bg_failed++; 6148 bg_ret = ret; 6149 continue; 6150 } 6151 } 6152 ret = btrfs_trim_block_group(cache, 6153 &group_trimmed, 6154 start, 6155 end, 6156 range->minlen); 6157 6158 trimmed += group_trimmed; 6159 if (ret) { 6160 bg_failed++; 6161 bg_ret = ret; 6162 continue; 6163 } 6164 } 6165 } 6166 6167 if (bg_failed) 6168 btrfs_warn(fs_info, 6169 "failed to trim %llu block group(s), last error %d", 6170 bg_failed, bg_ret); 6171 6172 mutex_lock(&fs_devices->device_list_mutex); 6173 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6174 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6175 continue; 6176 6177 ret = btrfs_trim_free_extents(device, &group_trimmed); 6178 if (ret) { 6179 dev_failed++; 6180 dev_ret = ret; 6181 break; 6182 } 6183 6184 trimmed += group_trimmed; 6185 } 6186 mutex_unlock(&fs_devices->device_list_mutex); 6187 6188 if (dev_failed) 6189 btrfs_warn(fs_info, 6190 "failed to trim %llu device(s), last error %d", 6191 dev_failed, dev_ret); 6192 range->len = trimmed; 6193 if (bg_ret) 6194 return bg_ret; 6195 return dev_ret; 6196 } 6197