xref: /openbmc/linux/fs/btrfs/extent-io-tree.c (revision 2a12187d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/slab.h>
4 #include <trace/events/btrfs.h>
5 #include "messages.h"
6 #include "ctree.h"
7 #include "extent-io-tree.h"
8 #include "btrfs_inode.h"
9 #include "misc.h"
10 
11 static struct kmem_cache *extent_state_cache;
12 
13 static inline bool extent_state_in_tree(const struct extent_state *state)
14 {
15 	return !RB_EMPTY_NODE(&state->rb_node);
16 }
17 
18 #ifdef CONFIG_BTRFS_DEBUG
19 static LIST_HEAD(states);
20 static DEFINE_SPINLOCK(leak_lock);
21 
22 static inline void btrfs_leak_debug_add_state(struct extent_state *state)
23 {
24 	unsigned long flags;
25 
26 	spin_lock_irqsave(&leak_lock, flags);
27 	list_add(&state->leak_list, &states);
28 	spin_unlock_irqrestore(&leak_lock, flags);
29 }
30 
31 static inline void btrfs_leak_debug_del_state(struct extent_state *state)
32 {
33 	unsigned long flags;
34 
35 	spin_lock_irqsave(&leak_lock, flags);
36 	list_del(&state->leak_list);
37 	spin_unlock_irqrestore(&leak_lock, flags);
38 }
39 
40 static inline void btrfs_extent_state_leak_debug_check(void)
41 {
42 	struct extent_state *state;
43 
44 	while (!list_empty(&states)) {
45 		state = list_entry(states.next, struct extent_state, leak_list);
46 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
47 		       state->start, state->end, state->state,
48 		       extent_state_in_tree(state),
49 		       refcount_read(&state->refs));
50 		list_del(&state->leak_list);
51 		kmem_cache_free(extent_state_cache, state);
52 	}
53 }
54 
55 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
56 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
57 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
58 						       struct extent_io_tree *tree,
59 						       u64 start, u64 end)
60 {
61 	struct btrfs_inode *inode = tree->inode;
62 	u64 isize;
63 
64 	if (!inode)
65 		return;
66 
67 	isize = i_size_read(&inode->vfs_inode);
68 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
69 		btrfs_debug_rl(inode->root->fs_info,
70 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
71 			caller, btrfs_ino(inode), isize, start, end);
72 	}
73 }
74 #else
75 #define btrfs_leak_debug_add_state(state)		do {} while (0)
76 #define btrfs_leak_debug_del_state(state)		do {} while (0)
77 #define btrfs_extent_state_leak_debug_check()		do {} while (0)
78 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
79 #endif
80 
81 /*
82  * For the file_extent_tree, we want to hold the inode lock when we lookup and
83  * update the disk_i_size, but lockdep will complain because our io_tree we hold
84  * the tree lock and get the inode lock when setting delalloc.  These two things
85  * are unrelated, so make a class for the file_extent_tree so we don't get the
86  * two locking patterns mixed up.
87  */
88 static struct lock_class_key file_extent_tree_class;
89 
90 struct tree_entry {
91 	u64 start;
92 	u64 end;
93 	struct rb_node rb_node;
94 };
95 
96 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
97 			 struct extent_io_tree *tree, unsigned int owner)
98 {
99 	tree->fs_info = fs_info;
100 	tree->state = RB_ROOT;
101 	spin_lock_init(&tree->lock);
102 	tree->inode = NULL;
103 	tree->owner = owner;
104 	if (owner == IO_TREE_INODE_FILE_EXTENT)
105 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
106 }
107 
108 void extent_io_tree_release(struct extent_io_tree *tree)
109 {
110 	spin_lock(&tree->lock);
111 	/*
112 	 * Do a single barrier for the waitqueue_active check here, the state
113 	 * of the waitqueue should not change once extent_io_tree_release is
114 	 * called.
115 	 */
116 	smp_mb();
117 	while (!RB_EMPTY_ROOT(&tree->state)) {
118 		struct rb_node *node;
119 		struct extent_state *state;
120 
121 		node = rb_first(&tree->state);
122 		state = rb_entry(node, struct extent_state, rb_node);
123 		rb_erase(&state->rb_node, &tree->state);
124 		RB_CLEAR_NODE(&state->rb_node);
125 		/*
126 		 * btree io trees aren't supposed to have tasks waiting for
127 		 * changes in the flags of extent states ever.
128 		 */
129 		ASSERT(!waitqueue_active(&state->wq));
130 		free_extent_state(state);
131 
132 		cond_resched_lock(&tree->lock);
133 	}
134 	spin_unlock(&tree->lock);
135 }
136 
137 static struct extent_state *alloc_extent_state(gfp_t mask)
138 {
139 	struct extent_state *state;
140 
141 	/*
142 	 * The given mask might be not appropriate for the slab allocator,
143 	 * drop the unsupported bits
144 	 */
145 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
146 	state = kmem_cache_alloc(extent_state_cache, mask);
147 	if (!state)
148 		return state;
149 	state->state = 0;
150 	RB_CLEAR_NODE(&state->rb_node);
151 	btrfs_leak_debug_add_state(state);
152 	refcount_set(&state->refs, 1);
153 	init_waitqueue_head(&state->wq);
154 	trace_alloc_extent_state(state, mask, _RET_IP_);
155 	return state;
156 }
157 
158 static struct extent_state *alloc_extent_state_atomic(struct extent_state *prealloc)
159 {
160 	if (!prealloc)
161 		prealloc = alloc_extent_state(GFP_ATOMIC);
162 
163 	return prealloc;
164 }
165 
166 void free_extent_state(struct extent_state *state)
167 {
168 	if (!state)
169 		return;
170 	if (refcount_dec_and_test(&state->refs)) {
171 		WARN_ON(extent_state_in_tree(state));
172 		btrfs_leak_debug_del_state(state);
173 		trace_free_extent_state(state, _RET_IP_);
174 		kmem_cache_free(extent_state_cache, state);
175 	}
176 }
177 
178 static int add_extent_changeset(struct extent_state *state, u32 bits,
179 				 struct extent_changeset *changeset,
180 				 int set)
181 {
182 	int ret;
183 
184 	if (!changeset)
185 		return 0;
186 	if (set && (state->state & bits) == bits)
187 		return 0;
188 	if (!set && (state->state & bits) == 0)
189 		return 0;
190 	changeset->bytes_changed += state->end - state->start + 1;
191 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
192 			GFP_ATOMIC);
193 	return ret;
194 }
195 
196 static inline struct extent_state *next_state(struct extent_state *state)
197 {
198 	struct rb_node *next = rb_next(&state->rb_node);
199 
200 	if (next)
201 		return rb_entry(next, struct extent_state, rb_node);
202 	else
203 		return NULL;
204 }
205 
206 static inline struct extent_state *prev_state(struct extent_state *state)
207 {
208 	struct rb_node *next = rb_prev(&state->rb_node);
209 
210 	if (next)
211 		return rb_entry(next, struct extent_state, rb_node);
212 	else
213 		return NULL;
214 }
215 
216 /*
217  * Search @tree for an entry that contains @offset. Such entry would have
218  * entry->start <= offset && entry->end >= offset.
219  *
220  * @tree:       the tree to search
221  * @offset:     offset that should fall within an entry in @tree
222  * @node_ret:   pointer where new node should be anchored (used when inserting an
223  *	        entry in the tree)
224  * @parent_ret: points to entry which would have been the parent of the entry,
225  *               containing @offset
226  *
227  * Return a pointer to the entry that contains @offset byte address and don't change
228  * @node_ret and @parent_ret.
229  *
230  * If no such entry exists, return pointer to entry that ends before @offset
231  * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
232  */
233 static inline struct extent_state *tree_search_for_insert(struct extent_io_tree *tree,
234 							  u64 offset,
235 							  struct rb_node ***node_ret,
236 							  struct rb_node **parent_ret)
237 {
238 	struct rb_root *root = &tree->state;
239 	struct rb_node **node = &root->rb_node;
240 	struct rb_node *prev = NULL;
241 	struct extent_state *entry = NULL;
242 
243 	while (*node) {
244 		prev = *node;
245 		entry = rb_entry(prev, struct extent_state, rb_node);
246 
247 		if (offset < entry->start)
248 			node = &(*node)->rb_left;
249 		else if (offset > entry->end)
250 			node = &(*node)->rb_right;
251 		else
252 			return entry;
253 	}
254 
255 	if (node_ret)
256 		*node_ret = node;
257 	if (parent_ret)
258 		*parent_ret = prev;
259 
260 	/* Search neighbors until we find the first one past the end */
261 	while (entry && offset > entry->end)
262 		entry = next_state(entry);
263 
264 	return entry;
265 }
266 
267 /*
268  * Search offset in the tree or fill neighbor rbtree node pointers.
269  *
270  * @tree:      the tree to search
271  * @offset:    offset that should fall within an entry in @tree
272  * @next_ret:  pointer to the first entry whose range ends after @offset
273  * @prev_ret:  pointer to the first entry whose range begins before @offset
274  *
275  * Return a pointer to the entry that contains @offset byte address. If no
276  * such entry exists, then return NULL and fill @prev_ret and @next_ret.
277  * Otherwise return the found entry and other pointers are left untouched.
278  */
279 static struct extent_state *tree_search_prev_next(struct extent_io_tree *tree,
280 						  u64 offset,
281 						  struct extent_state **prev_ret,
282 						  struct extent_state **next_ret)
283 {
284 	struct rb_root *root = &tree->state;
285 	struct rb_node **node = &root->rb_node;
286 	struct extent_state *orig_prev;
287 	struct extent_state *entry = NULL;
288 
289 	ASSERT(prev_ret);
290 	ASSERT(next_ret);
291 
292 	while (*node) {
293 		entry = rb_entry(*node, struct extent_state, rb_node);
294 
295 		if (offset < entry->start)
296 			node = &(*node)->rb_left;
297 		else if (offset > entry->end)
298 			node = &(*node)->rb_right;
299 		else
300 			return entry;
301 	}
302 
303 	orig_prev = entry;
304 	while (entry && offset > entry->end)
305 		entry = next_state(entry);
306 	*next_ret = entry;
307 	entry = orig_prev;
308 
309 	while (entry && offset < entry->start)
310 		entry = prev_state(entry);
311 	*prev_ret = entry;
312 
313 	return NULL;
314 }
315 
316 /*
317  * Inexact rb-tree search, return the next entry if @offset is not found
318  */
319 static inline struct extent_state *tree_search(struct extent_io_tree *tree, u64 offset)
320 {
321 	return tree_search_for_insert(tree, offset, NULL, NULL);
322 }
323 
324 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
325 {
326 	btrfs_panic(tree->fs_info, err,
327 	"locking error: extent tree was modified by another thread while locked");
328 }
329 
330 /*
331  * Utility function to look for merge candidates inside a given range.  Any
332  * extents with matching state are merged together into a single extent in the
333  * tree.  Extents with EXTENT_IO in their state field are not merged because
334  * the end_io handlers need to be able to do operations on them without
335  * sleeping (or doing allocations/splits).
336  *
337  * This should be called with the tree lock held.
338  */
339 static void merge_state(struct extent_io_tree *tree, struct extent_state *state)
340 {
341 	struct extent_state *other;
342 
343 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
344 		return;
345 
346 	other = prev_state(state);
347 	if (other && other->end == state->start - 1 &&
348 	    other->state == state->state) {
349 		if (tree->inode)
350 			btrfs_merge_delalloc_extent(tree->inode, state, other);
351 		state->start = other->start;
352 		rb_erase(&other->rb_node, &tree->state);
353 		RB_CLEAR_NODE(&other->rb_node);
354 		free_extent_state(other);
355 	}
356 	other = next_state(state);
357 	if (other && other->start == state->end + 1 &&
358 	    other->state == state->state) {
359 		if (tree->inode)
360 			btrfs_merge_delalloc_extent(tree->inode, state, other);
361 		state->end = other->end;
362 		rb_erase(&other->rb_node, &tree->state);
363 		RB_CLEAR_NODE(&other->rb_node);
364 		free_extent_state(other);
365 	}
366 }
367 
368 static void set_state_bits(struct extent_io_tree *tree,
369 			   struct extent_state *state,
370 			   u32 bits, struct extent_changeset *changeset)
371 {
372 	u32 bits_to_set = bits & ~EXTENT_CTLBITS;
373 	int ret;
374 
375 	if (tree->inode)
376 		btrfs_set_delalloc_extent(tree->inode, state, bits);
377 
378 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
379 	BUG_ON(ret < 0);
380 	state->state |= bits_to_set;
381 }
382 
383 /*
384  * Insert an extent_state struct into the tree.  'bits' are set on the
385  * struct before it is inserted.
386  *
387  * This may return -EEXIST if the extent is already there, in which case the
388  * state struct is freed.
389  *
390  * The tree lock is not taken internally.  This is a utility function and
391  * probably isn't what you want to call (see set/clear_extent_bit).
392  */
393 static int insert_state(struct extent_io_tree *tree,
394 			struct extent_state *state,
395 			u32 bits, struct extent_changeset *changeset)
396 {
397 	struct rb_node **node;
398 	struct rb_node *parent = NULL;
399 	const u64 end = state->end;
400 
401 	set_state_bits(tree, state, bits, changeset);
402 
403 	node = &tree->state.rb_node;
404 	while (*node) {
405 		struct extent_state *entry;
406 
407 		parent = *node;
408 		entry = rb_entry(parent, struct extent_state, rb_node);
409 
410 		if (end < entry->start) {
411 			node = &(*node)->rb_left;
412 		} else if (end > entry->end) {
413 			node = &(*node)->rb_right;
414 		} else {
415 			btrfs_err(tree->fs_info,
416 			       "found node %llu %llu on insert of %llu %llu",
417 			       entry->start, entry->end, state->start, end);
418 			return -EEXIST;
419 		}
420 	}
421 
422 	rb_link_node(&state->rb_node, parent, node);
423 	rb_insert_color(&state->rb_node, &tree->state);
424 
425 	merge_state(tree, state);
426 	return 0;
427 }
428 
429 /*
430  * Insert state to @tree to the location given by @node and @parent.
431  */
432 static void insert_state_fast(struct extent_io_tree *tree,
433 			      struct extent_state *state, struct rb_node **node,
434 			      struct rb_node *parent, unsigned bits,
435 			      struct extent_changeset *changeset)
436 {
437 	set_state_bits(tree, state, bits, changeset);
438 	rb_link_node(&state->rb_node, parent, node);
439 	rb_insert_color(&state->rb_node, &tree->state);
440 	merge_state(tree, state);
441 }
442 
443 /*
444  * Split a given extent state struct in two, inserting the preallocated
445  * struct 'prealloc' as the newly created second half.  'split' indicates an
446  * offset inside 'orig' where it should be split.
447  *
448  * Before calling,
449  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
450  * are two extent state structs in the tree:
451  * prealloc: [orig->start, split - 1]
452  * orig: [ split, orig->end ]
453  *
454  * The tree locks are not taken by this function. They need to be held
455  * by the caller.
456  */
457 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
458 		       struct extent_state *prealloc, u64 split)
459 {
460 	struct rb_node *parent = NULL;
461 	struct rb_node **node;
462 
463 	if (tree->inode)
464 		btrfs_split_delalloc_extent(tree->inode, orig, split);
465 
466 	prealloc->start = orig->start;
467 	prealloc->end = split - 1;
468 	prealloc->state = orig->state;
469 	orig->start = split;
470 
471 	parent = &orig->rb_node;
472 	node = &parent;
473 	while (*node) {
474 		struct extent_state *entry;
475 
476 		parent = *node;
477 		entry = rb_entry(parent, struct extent_state, rb_node);
478 
479 		if (prealloc->end < entry->start) {
480 			node = &(*node)->rb_left;
481 		} else if (prealloc->end > entry->end) {
482 			node = &(*node)->rb_right;
483 		} else {
484 			free_extent_state(prealloc);
485 			return -EEXIST;
486 		}
487 	}
488 
489 	rb_link_node(&prealloc->rb_node, parent, node);
490 	rb_insert_color(&prealloc->rb_node, &tree->state);
491 
492 	return 0;
493 }
494 
495 /*
496  * Utility function to clear some bits in an extent state struct.  It will
497  * optionally wake up anyone waiting on this state (wake == 1).
498  *
499  * If no bits are set on the state struct after clearing things, the
500  * struct is freed and removed from the tree
501  */
502 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
503 					    struct extent_state *state,
504 					    u32 bits, int wake,
505 					    struct extent_changeset *changeset)
506 {
507 	struct extent_state *next;
508 	u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
509 	int ret;
510 
511 	if (tree->inode)
512 		btrfs_clear_delalloc_extent(tree->inode, state, bits);
513 
514 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
515 	BUG_ON(ret < 0);
516 	state->state &= ~bits_to_clear;
517 	if (wake)
518 		wake_up(&state->wq);
519 	if (state->state == 0) {
520 		next = next_state(state);
521 		if (extent_state_in_tree(state)) {
522 			rb_erase(&state->rb_node, &tree->state);
523 			RB_CLEAR_NODE(&state->rb_node);
524 			free_extent_state(state);
525 		} else {
526 			WARN_ON(1);
527 		}
528 	} else {
529 		merge_state(tree, state);
530 		next = next_state(state);
531 	}
532 	return next;
533 }
534 
535 /*
536  * Clear some bits on a range in the tree.  This may require splitting or
537  * inserting elements in the tree, so the gfp mask is used to indicate which
538  * allocations or sleeping are allowed.
539  *
540  * Pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove the given
541  * range from the tree regardless of state (ie for truncate).
542  *
543  * The range [start, end] is inclusive.
544  *
545  * This takes the tree lock, and returns 0 on success and < 0 on error.
546  */
547 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
548 		       u32 bits, struct extent_state **cached_state,
549 		       gfp_t mask, struct extent_changeset *changeset)
550 {
551 	struct extent_state *state;
552 	struct extent_state *cached;
553 	struct extent_state *prealloc = NULL;
554 	u64 last_end;
555 	int err;
556 	int clear = 0;
557 	int wake;
558 	int delete = (bits & EXTENT_CLEAR_ALL_BITS);
559 
560 	btrfs_debug_check_extent_io_range(tree, start, end);
561 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
562 
563 	if (delete)
564 		bits |= ~EXTENT_CTLBITS;
565 
566 	if (bits & EXTENT_DELALLOC)
567 		bits |= EXTENT_NORESERVE;
568 
569 	wake = (bits & EXTENT_LOCKED) ? 1 : 0;
570 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
571 		clear = 1;
572 again:
573 	if (!prealloc) {
574 		/*
575 		 * Don't care for allocation failure here because we might end
576 		 * up not needing the pre-allocated extent state at all, which
577 		 * is the case if we only have in the tree extent states that
578 		 * cover our input range and don't cover too any other range.
579 		 * If we end up needing a new extent state we allocate it later.
580 		 */
581 		prealloc = alloc_extent_state(mask);
582 	}
583 
584 	spin_lock(&tree->lock);
585 	if (cached_state) {
586 		cached = *cached_state;
587 
588 		if (clear) {
589 			*cached_state = NULL;
590 			cached_state = NULL;
591 		}
592 
593 		if (cached && extent_state_in_tree(cached) &&
594 		    cached->start <= start && cached->end > start) {
595 			if (clear)
596 				refcount_dec(&cached->refs);
597 			state = cached;
598 			goto hit_next;
599 		}
600 		if (clear)
601 			free_extent_state(cached);
602 	}
603 
604 	/* This search will find the extents that end after our range starts. */
605 	state = tree_search(tree, start);
606 	if (!state)
607 		goto out;
608 hit_next:
609 	if (state->start > end)
610 		goto out;
611 	WARN_ON(state->end < start);
612 	last_end = state->end;
613 
614 	/* The state doesn't have the wanted bits, go ahead. */
615 	if (!(state->state & bits)) {
616 		state = next_state(state);
617 		goto next;
618 	}
619 
620 	/*
621 	 *     | ---- desired range ---- |
622 	 *  | state | or
623 	 *  | ------------- state -------------- |
624 	 *
625 	 * We need to split the extent we found, and may flip bits on second
626 	 * half.
627 	 *
628 	 * If the extent we found extends past our range, we just split and
629 	 * search again.  It'll get split again the next time though.
630 	 *
631 	 * If the extent we found is inside our range, we clear the desired bit
632 	 * on it.
633 	 */
634 
635 	if (state->start < start) {
636 		prealloc = alloc_extent_state_atomic(prealloc);
637 		if (!prealloc)
638 			goto search_again;
639 		err = split_state(tree, state, prealloc, start);
640 		if (err)
641 			extent_io_tree_panic(tree, err);
642 
643 		prealloc = NULL;
644 		if (err)
645 			goto out;
646 		if (state->end <= end) {
647 			state = clear_state_bit(tree, state, bits, wake, changeset);
648 			goto next;
649 		}
650 		goto search_again;
651 	}
652 	/*
653 	 * | ---- desired range ---- |
654 	 *                        | state |
655 	 * We need to split the extent, and clear the bit on the first half.
656 	 */
657 	if (state->start <= end && state->end > end) {
658 		prealloc = alloc_extent_state_atomic(prealloc);
659 		if (!prealloc)
660 			goto search_again;
661 		err = split_state(tree, state, prealloc, end + 1);
662 		if (err)
663 			extent_io_tree_panic(tree, err);
664 
665 		if (wake)
666 			wake_up(&state->wq);
667 
668 		clear_state_bit(tree, prealloc, bits, wake, changeset);
669 
670 		prealloc = NULL;
671 		goto out;
672 	}
673 
674 	state = clear_state_bit(tree, state, bits, wake, changeset);
675 next:
676 	if (last_end == (u64)-1)
677 		goto out;
678 	start = last_end + 1;
679 	if (start <= end && state && !need_resched())
680 		goto hit_next;
681 
682 search_again:
683 	if (start > end)
684 		goto out;
685 	spin_unlock(&tree->lock);
686 	if (gfpflags_allow_blocking(mask))
687 		cond_resched();
688 	goto again;
689 
690 out:
691 	spin_unlock(&tree->lock);
692 	if (prealloc)
693 		free_extent_state(prealloc);
694 
695 	return 0;
696 
697 }
698 
699 static void wait_on_state(struct extent_io_tree *tree,
700 			  struct extent_state *state)
701 		__releases(tree->lock)
702 		__acquires(tree->lock)
703 {
704 	DEFINE_WAIT(wait);
705 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
706 	spin_unlock(&tree->lock);
707 	schedule();
708 	spin_lock(&tree->lock);
709 	finish_wait(&state->wq, &wait);
710 }
711 
712 /*
713  * Wait for one or more bits to clear on a range in the state tree.
714  * The range [start, end] is inclusive.
715  * The tree lock is taken by this function
716  */
717 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
718 		     struct extent_state **cached_state)
719 {
720 	struct extent_state *state;
721 
722 	btrfs_debug_check_extent_io_range(tree, start, end);
723 
724 	spin_lock(&tree->lock);
725 again:
726 	/*
727 	 * Maintain cached_state, as we may not remove it from the tree if there
728 	 * are more bits than the bits we're waiting on set on this state.
729 	 */
730 	if (cached_state && *cached_state) {
731 		state = *cached_state;
732 		if (extent_state_in_tree(state) &&
733 		    state->start <= start && start < state->end)
734 			goto process_node;
735 	}
736 	while (1) {
737 		/*
738 		 * This search will find all the extents that end after our
739 		 * range starts.
740 		 */
741 		state = tree_search(tree, start);
742 process_node:
743 		if (!state)
744 			break;
745 		if (state->start > end)
746 			goto out;
747 
748 		if (state->state & bits) {
749 			start = state->start;
750 			refcount_inc(&state->refs);
751 			wait_on_state(tree, state);
752 			free_extent_state(state);
753 			goto again;
754 		}
755 		start = state->end + 1;
756 
757 		if (start > end)
758 			break;
759 
760 		if (!cond_resched_lock(&tree->lock)) {
761 			state = next_state(state);
762 			goto process_node;
763 		}
764 	}
765 out:
766 	/* This state is no longer useful, clear it and free it up. */
767 	if (cached_state && *cached_state) {
768 		state = *cached_state;
769 		*cached_state = NULL;
770 		free_extent_state(state);
771 	}
772 	spin_unlock(&tree->lock);
773 }
774 
775 static void cache_state_if_flags(struct extent_state *state,
776 				 struct extent_state **cached_ptr,
777 				 unsigned flags)
778 {
779 	if (cached_ptr && !(*cached_ptr)) {
780 		if (!flags || (state->state & flags)) {
781 			*cached_ptr = state;
782 			refcount_inc(&state->refs);
783 		}
784 	}
785 }
786 
787 static void cache_state(struct extent_state *state,
788 			struct extent_state **cached_ptr)
789 {
790 	return cache_state_if_flags(state, cached_ptr,
791 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
792 }
793 
794 /*
795  * Find the first state struct with 'bits' set after 'start', and return it.
796  * tree->lock must be held.  NULL will returned if nothing was found after
797  * 'start'.
798  */
799 static struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
800 							u64 start, u32 bits)
801 {
802 	struct extent_state *state;
803 
804 	/*
805 	 * This search will find all the extents that end after our range
806 	 * starts.
807 	 */
808 	state = tree_search(tree, start);
809 	while (state) {
810 		if (state->end >= start && (state->state & bits))
811 			return state;
812 		state = next_state(state);
813 	}
814 	return NULL;
815 }
816 
817 /*
818  * Find the first offset in the io tree with one or more @bits set.
819  *
820  * Note: If there are multiple bits set in @bits, any of them will match.
821  *
822  * Return 0 if we find something, and update @start_ret and @end_ret.
823  * Return 1 if we found nothing.
824  */
825 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
826 			  u64 *start_ret, u64 *end_ret, u32 bits,
827 			  struct extent_state **cached_state)
828 {
829 	struct extent_state *state;
830 	int ret = 1;
831 
832 	spin_lock(&tree->lock);
833 	if (cached_state && *cached_state) {
834 		state = *cached_state;
835 		if (state->end == start - 1 && extent_state_in_tree(state)) {
836 			while ((state = next_state(state)) != NULL) {
837 				if (state->state & bits)
838 					goto got_it;
839 			}
840 			free_extent_state(*cached_state);
841 			*cached_state = NULL;
842 			goto out;
843 		}
844 		free_extent_state(*cached_state);
845 		*cached_state = NULL;
846 	}
847 
848 	state = find_first_extent_bit_state(tree, start, bits);
849 got_it:
850 	if (state) {
851 		cache_state_if_flags(state, cached_state, 0);
852 		*start_ret = state->start;
853 		*end_ret = state->end;
854 		ret = 0;
855 	}
856 out:
857 	spin_unlock(&tree->lock);
858 	return ret;
859 }
860 
861 /*
862  * Find a contiguous area of bits
863  *
864  * @tree:      io tree to check
865  * @start:     offset to start the search from
866  * @start_ret: the first offset we found with the bits set
867  * @end_ret:   the final contiguous range of the bits that were set
868  * @bits:      bits to look for
869  *
870  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
871  * to set bits appropriately, and then merge them again.  During this time it
872  * will drop the tree->lock, so use this helper if you want to find the actual
873  * contiguous area for given bits.  We will search to the first bit we find, and
874  * then walk down the tree until we find a non-contiguous area.  The area
875  * returned will be the full contiguous area with the bits set.
876  */
877 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
878 			       u64 *start_ret, u64 *end_ret, u32 bits)
879 {
880 	struct extent_state *state;
881 	int ret = 1;
882 
883 	spin_lock(&tree->lock);
884 	state = find_first_extent_bit_state(tree, start, bits);
885 	if (state) {
886 		*start_ret = state->start;
887 		*end_ret = state->end;
888 		while ((state = next_state(state)) != NULL) {
889 			if (state->start > (*end_ret + 1))
890 				break;
891 			*end_ret = state->end;
892 		}
893 		ret = 0;
894 	}
895 	spin_unlock(&tree->lock);
896 	return ret;
897 }
898 
899 /*
900  * Find a contiguous range of bytes in the file marked as delalloc, not more
901  * than 'max_bytes'.  start and end are used to return the range,
902  *
903  * True is returned if we find something, false if nothing was in the tree.
904  */
905 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
906 			       u64 *end, u64 max_bytes,
907 			       struct extent_state **cached_state)
908 {
909 	struct extent_state *state;
910 	u64 cur_start = *start;
911 	bool found = false;
912 	u64 total_bytes = 0;
913 
914 	spin_lock(&tree->lock);
915 
916 	/*
917 	 * This search will find all the extents that end after our range
918 	 * starts.
919 	 */
920 	state = tree_search(tree, cur_start);
921 	if (!state) {
922 		*end = (u64)-1;
923 		goto out;
924 	}
925 
926 	while (state) {
927 		if (found && (state->start != cur_start ||
928 			      (state->state & EXTENT_BOUNDARY))) {
929 			goto out;
930 		}
931 		if (!(state->state & EXTENT_DELALLOC)) {
932 			if (!found)
933 				*end = state->end;
934 			goto out;
935 		}
936 		if (!found) {
937 			*start = state->start;
938 			*cached_state = state;
939 			refcount_inc(&state->refs);
940 		}
941 		found = true;
942 		*end = state->end;
943 		cur_start = state->end + 1;
944 		total_bytes += state->end - state->start + 1;
945 		if (total_bytes >= max_bytes)
946 			break;
947 		state = next_state(state);
948 	}
949 out:
950 	spin_unlock(&tree->lock);
951 	return found;
952 }
953 
954 /*
955  * Set some bits on a range in the tree.  This may require allocations or
956  * sleeping, so the gfp mask is used to indicate what is allowed.
957  *
958  * If any of the exclusive bits are set, this will fail with -EEXIST if some
959  * part of the range already has the desired bits set.  The extent_state of the
960  * existing range is returned in failed_state in this case, and the start of the
961  * existing range is returned in failed_start.  failed_state is used as an
962  * optimization for wait_extent_bit, failed_start must be used as the source of
963  * truth as failed_state may have changed since we returned.
964  *
965  * [start, end] is inclusive This takes the tree lock.
966  */
967 static int __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
968 			    u32 bits, u64 *failed_start,
969 			    struct extent_state **failed_state,
970 			    struct extent_state **cached_state,
971 			    struct extent_changeset *changeset, gfp_t mask)
972 {
973 	struct extent_state *state;
974 	struct extent_state *prealloc = NULL;
975 	struct rb_node **p;
976 	struct rb_node *parent;
977 	int err = 0;
978 	u64 last_start;
979 	u64 last_end;
980 	u32 exclusive_bits = (bits & EXTENT_LOCKED);
981 
982 	btrfs_debug_check_extent_io_range(tree, start, end);
983 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
984 
985 	if (exclusive_bits)
986 		ASSERT(failed_start);
987 	else
988 		ASSERT(failed_start == NULL && failed_state == NULL);
989 again:
990 	if (!prealloc) {
991 		/*
992 		 * Don't care for allocation failure here because we might end
993 		 * up not needing the pre-allocated extent state at all, which
994 		 * is the case if we only have in the tree extent states that
995 		 * cover our input range and don't cover too any other range.
996 		 * If we end up needing a new extent state we allocate it later.
997 		 */
998 		prealloc = alloc_extent_state(mask);
999 	}
1000 
1001 	spin_lock(&tree->lock);
1002 	if (cached_state && *cached_state) {
1003 		state = *cached_state;
1004 		if (state->start <= start && state->end > start &&
1005 		    extent_state_in_tree(state))
1006 			goto hit_next;
1007 	}
1008 	/*
1009 	 * This search will find all the extents that end after our range
1010 	 * starts.
1011 	 */
1012 	state = tree_search_for_insert(tree, start, &p, &parent);
1013 	if (!state) {
1014 		prealloc = alloc_extent_state_atomic(prealloc);
1015 		if (!prealloc)
1016 			goto search_again;
1017 		prealloc->start = start;
1018 		prealloc->end = end;
1019 		insert_state_fast(tree, prealloc, p, parent, bits, changeset);
1020 		cache_state(prealloc, cached_state);
1021 		prealloc = NULL;
1022 		goto out;
1023 	}
1024 hit_next:
1025 	last_start = state->start;
1026 	last_end = state->end;
1027 
1028 	/*
1029 	 * | ---- desired range ---- |
1030 	 * | state |
1031 	 *
1032 	 * Just lock what we found and keep going
1033 	 */
1034 	if (state->start == start && state->end <= end) {
1035 		if (state->state & exclusive_bits) {
1036 			*failed_start = state->start;
1037 			cache_state(state, failed_state);
1038 			err = -EEXIST;
1039 			goto out;
1040 		}
1041 
1042 		set_state_bits(tree, state, bits, changeset);
1043 		cache_state(state, cached_state);
1044 		merge_state(tree, state);
1045 		if (last_end == (u64)-1)
1046 			goto out;
1047 		start = last_end + 1;
1048 		state = next_state(state);
1049 		if (start < end && state && state->start == start &&
1050 		    !need_resched())
1051 			goto hit_next;
1052 		goto search_again;
1053 	}
1054 
1055 	/*
1056 	 *     | ---- desired range ---- |
1057 	 * | state |
1058 	 *   or
1059 	 * | ------------- state -------------- |
1060 	 *
1061 	 * We need to split the extent we found, and may flip bits on second
1062 	 * half.
1063 	 *
1064 	 * If the extent we found extends past our range, we just split and
1065 	 * search again.  It'll get split again the next time though.
1066 	 *
1067 	 * If the extent we found is inside our range, we set the desired bit
1068 	 * on it.
1069 	 */
1070 	if (state->start < start) {
1071 		if (state->state & exclusive_bits) {
1072 			*failed_start = start;
1073 			cache_state(state, failed_state);
1074 			err = -EEXIST;
1075 			goto out;
1076 		}
1077 
1078 		/*
1079 		 * If this extent already has all the bits we want set, then
1080 		 * skip it, not necessary to split it or do anything with it.
1081 		 */
1082 		if ((state->state & bits) == bits) {
1083 			start = state->end + 1;
1084 			cache_state(state, cached_state);
1085 			goto search_again;
1086 		}
1087 
1088 		prealloc = alloc_extent_state_atomic(prealloc);
1089 		if (!prealloc)
1090 			goto search_again;
1091 		err = split_state(tree, state, prealloc, start);
1092 		if (err)
1093 			extent_io_tree_panic(tree, err);
1094 
1095 		prealloc = NULL;
1096 		if (err)
1097 			goto out;
1098 		if (state->end <= end) {
1099 			set_state_bits(tree, state, bits, changeset);
1100 			cache_state(state, cached_state);
1101 			merge_state(tree, state);
1102 			if (last_end == (u64)-1)
1103 				goto out;
1104 			start = last_end + 1;
1105 			state = next_state(state);
1106 			if (start < end && state && state->start == start &&
1107 			    !need_resched())
1108 				goto hit_next;
1109 		}
1110 		goto search_again;
1111 	}
1112 	/*
1113 	 * | ---- desired range ---- |
1114 	 *     | state | or               | state |
1115 	 *
1116 	 * There's a hole, we need to insert something in it and ignore the
1117 	 * extent we found.
1118 	 */
1119 	if (state->start > start) {
1120 		u64 this_end;
1121 		if (end < last_start)
1122 			this_end = end;
1123 		else
1124 			this_end = last_start - 1;
1125 
1126 		prealloc = alloc_extent_state_atomic(prealloc);
1127 		if (!prealloc)
1128 			goto search_again;
1129 
1130 		/*
1131 		 * Avoid to free 'prealloc' if it can be merged with the later
1132 		 * extent.
1133 		 */
1134 		prealloc->start = start;
1135 		prealloc->end = this_end;
1136 		err = insert_state(tree, prealloc, bits, changeset);
1137 		if (err)
1138 			extent_io_tree_panic(tree, err);
1139 
1140 		cache_state(prealloc, cached_state);
1141 		prealloc = NULL;
1142 		start = this_end + 1;
1143 		goto search_again;
1144 	}
1145 	/*
1146 	 * | ---- desired range ---- |
1147 	 *                        | state |
1148 	 *
1149 	 * We need to split the extent, and set the bit on the first half
1150 	 */
1151 	if (state->start <= end && state->end > end) {
1152 		if (state->state & exclusive_bits) {
1153 			*failed_start = start;
1154 			cache_state(state, failed_state);
1155 			err = -EEXIST;
1156 			goto out;
1157 		}
1158 
1159 		prealloc = alloc_extent_state_atomic(prealloc);
1160 		if (!prealloc)
1161 			goto search_again;
1162 		err = split_state(tree, state, prealloc, end + 1);
1163 		if (err)
1164 			extent_io_tree_panic(tree, err);
1165 
1166 		set_state_bits(tree, prealloc, bits, changeset);
1167 		cache_state(prealloc, cached_state);
1168 		merge_state(tree, prealloc);
1169 		prealloc = NULL;
1170 		goto out;
1171 	}
1172 
1173 search_again:
1174 	if (start > end)
1175 		goto out;
1176 	spin_unlock(&tree->lock);
1177 	if (gfpflags_allow_blocking(mask))
1178 		cond_resched();
1179 	goto again;
1180 
1181 out:
1182 	spin_unlock(&tree->lock);
1183 	if (prealloc)
1184 		free_extent_state(prealloc);
1185 
1186 	return err;
1187 
1188 }
1189 
1190 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1191 		   u32 bits, struct extent_state **cached_state, gfp_t mask)
1192 {
1193 	return __set_extent_bit(tree, start, end, bits, NULL, NULL,
1194 				cached_state, NULL, mask);
1195 }
1196 
1197 /*
1198  * Convert all bits in a given range from one bit to another
1199  *
1200  * @tree:	the io tree to search
1201  * @start:	the start offset in bytes
1202  * @end:	the end offset in bytes (inclusive)
1203  * @bits:	the bits to set in this range
1204  * @clear_bits:	the bits to clear in this range
1205  * @cached_state:	state that we're going to cache
1206  *
1207  * This will go through and set bits for the given range.  If any states exist
1208  * already in this range they are set with the given bit and cleared of the
1209  * clear_bits.  This is only meant to be used by things that are mergeable, ie.
1210  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1211  * boundary bits like LOCK.
1212  *
1213  * All allocations are done with GFP_NOFS.
1214  */
1215 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1216 		       u32 bits, u32 clear_bits,
1217 		       struct extent_state **cached_state)
1218 {
1219 	struct extent_state *state;
1220 	struct extent_state *prealloc = NULL;
1221 	struct rb_node **p;
1222 	struct rb_node *parent;
1223 	int err = 0;
1224 	u64 last_start;
1225 	u64 last_end;
1226 	bool first_iteration = true;
1227 
1228 	btrfs_debug_check_extent_io_range(tree, start, end);
1229 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1230 				       clear_bits);
1231 
1232 again:
1233 	if (!prealloc) {
1234 		/*
1235 		 * Best effort, don't worry if extent state allocation fails
1236 		 * here for the first iteration. We might have a cached state
1237 		 * that matches exactly the target range, in which case no
1238 		 * extent state allocations are needed. We'll only know this
1239 		 * after locking the tree.
1240 		 */
1241 		prealloc = alloc_extent_state(GFP_NOFS);
1242 		if (!prealloc && !first_iteration)
1243 			return -ENOMEM;
1244 	}
1245 
1246 	spin_lock(&tree->lock);
1247 	if (cached_state && *cached_state) {
1248 		state = *cached_state;
1249 		if (state->start <= start && state->end > start &&
1250 		    extent_state_in_tree(state))
1251 			goto hit_next;
1252 	}
1253 
1254 	/*
1255 	 * This search will find all the extents that end after our range
1256 	 * starts.
1257 	 */
1258 	state = tree_search_for_insert(tree, start, &p, &parent);
1259 	if (!state) {
1260 		prealloc = alloc_extent_state_atomic(prealloc);
1261 		if (!prealloc) {
1262 			err = -ENOMEM;
1263 			goto out;
1264 		}
1265 		prealloc->start = start;
1266 		prealloc->end = end;
1267 		insert_state_fast(tree, prealloc, p, parent, bits, NULL);
1268 		cache_state(prealloc, cached_state);
1269 		prealloc = NULL;
1270 		goto out;
1271 	}
1272 hit_next:
1273 	last_start = state->start;
1274 	last_end = state->end;
1275 
1276 	/*
1277 	 * | ---- desired range ---- |
1278 	 * | state |
1279 	 *
1280 	 * Just lock what we found and keep going.
1281 	 */
1282 	if (state->start == start && state->end <= end) {
1283 		set_state_bits(tree, state, bits, NULL);
1284 		cache_state(state, cached_state);
1285 		state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1286 		if (last_end == (u64)-1)
1287 			goto out;
1288 		start = last_end + 1;
1289 		if (start < end && state && state->start == start &&
1290 		    !need_resched())
1291 			goto hit_next;
1292 		goto search_again;
1293 	}
1294 
1295 	/*
1296 	 *     | ---- desired range ---- |
1297 	 * | state |
1298 	 *   or
1299 	 * | ------------- state -------------- |
1300 	 *
1301 	 * We need to split the extent we found, and may flip bits on second
1302 	 * half.
1303 	 *
1304 	 * If the extent we found extends past our range, we just split and
1305 	 * search again.  It'll get split again the next time though.
1306 	 *
1307 	 * If the extent we found is inside our range, we set the desired bit
1308 	 * on it.
1309 	 */
1310 	if (state->start < start) {
1311 		prealloc = alloc_extent_state_atomic(prealloc);
1312 		if (!prealloc) {
1313 			err = -ENOMEM;
1314 			goto out;
1315 		}
1316 		err = split_state(tree, state, prealloc, start);
1317 		if (err)
1318 			extent_io_tree_panic(tree, err);
1319 		prealloc = NULL;
1320 		if (err)
1321 			goto out;
1322 		if (state->end <= end) {
1323 			set_state_bits(tree, state, bits, NULL);
1324 			cache_state(state, cached_state);
1325 			state = clear_state_bit(tree, state, clear_bits, 0, NULL);
1326 			if (last_end == (u64)-1)
1327 				goto out;
1328 			start = last_end + 1;
1329 			if (start < end && state && state->start == start &&
1330 			    !need_resched())
1331 				goto hit_next;
1332 		}
1333 		goto search_again;
1334 	}
1335 	/*
1336 	 * | ---- desired range ---- |
1337 	 *     | state | or               | state |
1338 	 *
1339 	 * There's a hole, we need to insert something in it and ignore the
1340 	 * extent we found.
1341 	 */
1342 	if (state->start > start) {
1343 		u64 this_end;
1344 		if (end < last_start)
1345 			this_end = end;
1346 		else
1347 			this_end = last_start - 1;
1348 
1349 		prealloc = alloc_extent_state_atomic(prealloc);
1350 		if (!prealloc) {
1351 			err = -ENOMEM;
1352 			goto out;
1353 		}
1354 
1355 		/*
1356 		 * Avoid to free 'prealloc' if it can be merged with the later
1357 		 * extent.
1358 		 */
1359 		prealloc->start = start;
1360 		prealloc->end = this_end;
1361 		err = insert_state(tree, prealloc, bits, NULL);
1362 		if (err)
1363 			extent_io_tree_panic(tree, err);
1364 		cache_state(prealloc, cached_state);
1365 		prealloc = NULL;
1366 		start = this_end + 1;
1367 		goto search_again;
1368 	}
1369 	/*
1370 	 * | ---- desired range ---- |
1371 	 *                        | state |
1372 	 *
1373 	 * We need to split the extent, and set the bit on the first half.
1374 	 */
1375 	if (state->start <= end && state->end > end) {
1376 		prealloc = alloc_extent_state_atomic(prealloc);
1377 		if (!prealloc) {
1378 			err = -ENOMEM;
1379 			goto out;
1380 		}
1381 
1382 		err = split_state(tree, state, prealloc, end + 1);
1383 		if (err)
1384 			extent_io_tree_panic(tree, err);
1385 
1386 		set_state_bits(tree, prealloc, bits, NULL);
1387 		cache_state(prealloc, cached_state);
1388 		clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
1389 		prealloc = NULL;
1390 		goto out;
1391 	}
1392 
1393 search_again:
1394 	if (start > end)
1395 		goto out;
1396 	spin_unlock(&tree->lock);
1397 	cond_resched();
1398 	first_iteration = false;
1399 	goto again;
1400 
1401 out:
1402 	spin_unlock(&tree->lock);
1403 	if (prealloc)
1404 		free_extent_state(prealloc);
1405 
1406 	return err;
1407 }
1408 
1409 /*
1410  * Find the first range that has @bits not set. This range could start before
1411  * @start.
1412  *
1413  * @tree:      the tree to search
1414  * @start:     offset at/after which the found extent should start
1415  * @start_ret: records the beginning of the range
1416  * @end_ret:   records the end of the range (inclusive)
1417  * @bits:      the set of bits which must be unset
1418  *
1419  * Since unallocated range is also considered one which doesn't have the bits
1420  * set it's possible that @end_ret contains -1, this happens in case the range
1421  * spans (last_range_end, end of device]. In this case it's up to the caller to
1422  * trim @end_ret to the appropriate size.
1423  */
1424 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1425 				 u64 *start_ret, u64 *end_ret, u32 bits)
1426 {
1427 	struct extent_state *state;
1428 	struct extent_state *prev = NULL, *next = NULL;
1429 
1430 	spin_lock(&tree->lock);
1431 
1432 	/* Find first extent with bits cleared */
1433 	while (1) {
1434 		state = tree_search_prev_next(tree, start, &prev, &next);
1435 		if (!state && !next && !prev) {
1436 			/*
1437 			 * Tree is completely empty, send full range and let
1438 			 * caller deal with it
1439 			 */
1440 			*start_ret = 0;
1441 			*end_ret = -1;
1442 			goto out;
1443 		} else if (!state && !next) {
1444 			/*
1445 			 * We are past the last allocated chunk, set start at
1446 			 * the end of the last extent.
1447 			 */
1448 			*start_ret = prev->end + 1;
1449 			*end_ret = -1;
1450 			goto out;
1451 		} else if (!state) {
1452 			state = next;
1453 		}
1454 
1455 		/*
1456 		 * At this point 'state' either contains 'start' or start is
1457 		 * before 'state'
1458 		 */
1459 		if (in_range(start, state->start, state->end - state->start + 1)) {
1460 			if (state->state & bits) {
1461 				/*
1462 				 * |--range with bits sets--|
1463 				 *    |
1464 				 *    start
1465 				 */
1466 				start = state->end + 1;
1467 			} else {
1468 				/*
1469 				 * 'start' falls within a range that doesn't
1470 				 * have the bits set, so take its start as the
1471 				 * beginning of the desired range
1472 				 *
1473 				 * |--range with bits cleared----|
1474 				 *      |
1475 				 *      start
1476 				 */
1477 				*start_ret = state->start;
1478 				break;
1479 			}
1480 		} else {
1481 			/*
1482 			 * |---prev range---|---hole/unset---|---node range---|
1483 			 *                          |
1484 			 *                        start
1485 			 *
1486 			 *                        or
1487 			 *
1488 			 * |---hole/unset--||--first node--|
1489 			 * 0   |
1490 			 *    start
1491 			 */
1492 			if (prev)
1493 				*start_ret = prev->end + 1;
1494 			else
1495 				*start_ret = 0;
1496 			break;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Find the longest stretch from start until an entry which has the
1502 	 * bits set
1503 	 */
1504 	while (state) {
1505 		if (state->end >= start && !(state->state & bits)) {
1506 			*end_ret = state->end;
1507 		} else {
1508 			*end_ret = state->start - 1;
1509 			break;
1510 		}
1511 		state = next_state(state);
1512 	}
1513 out:
1514 	spin_unlock(&tree->lock);
1515 }
1516 
1517 /*
1518  * Count the number of bytes in the tree that have a given bit(s) set for a
1519  * given range.
1520  *
1521  * @tree:         The io tree to search.
1522  * @start:        The start offset of the range. This value is updated to the
1523  *                offset of the first byte found with the given bit(s), so it
1524  *                can end up being bigger than the initial value.
1525  * @search_end:   The end offset (inclusive value) of the search range.
1526  * @max_bytes:    The maximum byte count we are interested. The search stops
1527  *                once it reaches this count.
1528  * @bits:         The bits the range must have in order to be accounted for.
1529  *                If multiple bits are set, then only subranges that have all
1530  *                the bits set are accounted for.
1531  * @contig:       Indicate if we should ignore holes in the range or not. If
1532  *                this is true, then stop once we find a hole.
1533  * @cached_state: A cached state to be used across multiple calls to this
1534  *                function in order to speedup searches. Use NULL if this is
1535  *                called only once or if each call does not start where the
1536  *                previous one ended.
1537  *
1538  * Returns the total number of bytes found within the given range that have
1539  * all given bits set. If the returned number of bytes is greater than zero
1540  * then @start is updated with the offset of the first byte with the bits set.
1541  */
1542 u64 count_range_bits(struct extent_io_tree *tree,
1543 		     u64 *start, u64 search_end, u64 max_bytes,
1544 		     u32 bits, int contig,
1545 		     struct extent_state **cached_state)
1546 {
1547 	struct extent_state *state = NULL;
1548 	struct extent_state *cached;
1549 	u64 cur_start = *start;
1550 	u64 total_bytes = 0;
1551 	u64 last = 0;
1552 	int found = 0;
1553 
1554 	if (WARN_ON(search_end <= cur_start))
1555 		return 0;
1556 
1557 	spin_lock(&tree->lock);
1558 
1559 	if (!cached_state || !*cached_state)
1560 		goto search;
1561 
1562 	cached = *cached_state;
1563 
1564 	if (!extent_state_in_tree(cached))
1565 		goto search;
1566 
1567 	if (cached->start <= cur_start && cur_start <= cached->end) {
1568 		state = cached;
1569 	} else if (cached->start > cur_start) {
1570 		struct extent_state *prev;
1571 
1572 		/*
1573 		 * The cached state starts after our search range's start. Check
1574 		 * if the previous state record starts at or before the range we
1575 		 * are looking for, and if so, use it - this is a common case
1576 		 * when there are holes between records in the tree. If there is
1577 		 * no previous state record, we can start from our cached state.
1578 		 */
1579 		prev = prev_state(cached);
1580 		if (!prev)
1581 			state = cached;
1582 		else if (prev->start <= cur_start && cur_start <= prev->end)
1583 			state = prev;
1584 	}
1585 
1586 	/*
1587 	 * This search will find all the extents that end after our range
1588 	 * starts.
1589 	 */
1590 search:
1591 	if (!state)
1592 		state = tree_search(tree, cur_start);
1593 
1594 	while (state) {
1595 		if (state->start > search_end)
1596 			break;
1597 		if (contig && found && state->start > last + 1)
1598 			break;
1599 		if (state->end >= cur_start && (state->state & bits) == bits) {
1600 			total_bytes += min(search_end, state->end) + 1 -
1601 				       max(cur_start, state->start);
1602 			if (total_bytes >= max_bytes)
1603 				break;
1604 			if (!found) {
1605 				*start = max(cur_start, state->start);
1606 				found = 1;
1607 			}
1608 			last = state->end;
1609 		} else if (contig && found) {
1610 			break;
1611 		}
1612 		state = next_state(state);
1613 	}
1614 
1615 	if (cached_state) {
1616 		free_extent_state(*cached_state);
1617 		*cached_state = state;
1618 		if (state)
1619 			refcount_inc(&state->refs);
1620 	}
1621 
1622 	spin_unlock(&tree->lock);
1623 
1624 	return total_bytes;
1625 }
1626 
1627 /*
1628  * Searche a range in the state tree for a given mask.  If 'filled' == 1, this
1629  * returns 1 only if every extent in the tree has the bits set.  Otherwise, 1
1630  * is returned if any bit in the range is found set.
1631  */
1632 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1633 		   u32 bits, int filled, struct extent_state *cached)
1634 {
1635 	struct extent_state *state = NULL;
1636 	int bitset = 0;
1637 
1638 	spin_lock(&tree->lock);
1639 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1640 	    cached->end > start)
1641 		state = cached;
1642 	else
1643 		state = tree_search(tree, start);
1644 	while (state && start <= end) {
1645 		if (filled && state->start > start) {
1646 			bitset = 0;
1647 			break;
1648 		}
1649 
1650 		if (state->start > end)
1651 			break;
1652 
1653 		if (state->state & bits) {
1654 			bitset = 1;
1655 			if (!filled)
1656 				break;
1657 		} else if (filled) {
1658 			bitset = 0;
1659 			break;
1660 		}
1661 
1662 		if (state->end == (u64)-1)
1663 			break;
1664 
1665 		start = state->end + 1;
1666 		if (start > end)
1667 			break;
1668 		state = next_state(state);
1669 	}
1670 
1671 	/* We ran out of states and were still inside of our range. */
1672 	if (filled && !state)
1673 		bitset = 0;
1674 	spin_unlock(&tree->lock);
1675 	return bitset;
1676 }
1677 
1678 /* Wrappers around set/clear extent bit */
1679 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1680 			   u32 bits, struct extent_changeset *changeset)
1681 {
1682 	/*
1683 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1684 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1685 	 * either fail with -EEXIST or changeset will record the whole
1686 	 * range.
1687 	 */
1688 	ASSERT(!(bits & EXTENT_LOCKED));
1689 
1690 	return __set_extent_bit(tree, start, end, bits, NULL, NULL, NULL,
1691 				changeset, GFP_NOFS);
1692 }
1693 
1694 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1695 			     u32 bits, struct extent_changeset *changeset)
1696 {
1697 	/*
1698 	 * Don't support EXTENT_LOCKED case, same reason as
1699 	 * set_record_extent_bits().
1700 	 */
1701 	ASSERT(!(bits & EXTENT_LOCKED));
1702 
1703 	return __clear_extent_bit(tree, start, end, bits, NULL, GFP_NOFS,
1704 				  changeset);
1705 }
1706 
1707 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1708 		    struct extent_state **cached)
1709 {
1710 	int err;
1711 	u64 failed_start;
1712 
1713 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start,
1714 			       NULL, cached, NULL, GFP_NOFS);
1715 	if (err == -EEXIST) {
1716 		if (failed_start > start)
1717 			clear_extent_bit(tree, start, failed_start - 1,
1718 					 EXTENT_LOCKED, cached);
1719 		return 0;
1720 	}
1721 	return 1;
1722 }
1723 
1724 /*
1725  * Either insert or lock state struct between start and end use mask to tell
1726  * us if waiting is desired.
1727  */
1728 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1729 		struct extent_state **cached_state)
1730 {
1731 	struct extent_state *failed_state = NULL;
1732 	int err;
1733 	u64 failed_start;
1734 
1735 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, &failed_start,
1736 			       &failed_state, cached_state, NULL, GFP_NOFS);
1737 	while (err == -EEXIST) {
1738 		if (failed_start != start)
1739 			clear_extent_bit(tree, start, failed_start - 1,
1740 					 EXTENT_LOCKED, cached_state);
1741 
1742 		wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED,
1743 				&failed_state);
1744 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1745 				       &failed_start, &failed_state,
1746 				       cached_state, NULL, GFP_NOFS);
1747 	}
1748 	return err;
1749 }
1750 
1751 void __cold extent_state_free_cachep(void)
1752 {
1753 	btrfs_extent_state_leak_debug_check();
1754 	kmem_cache_destroy(extent_state_cache);
1755 }
1756 
1757 int __init extent_state_init_cachep(void)
1758 {
1759 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
1760 			sizeof(struct extent_state), 0,
1761 			SLAB_MEM_SPREAD, NULL);
1762 	if (!extent_state_cache)
1763 		return -ENOMEM;
1764 
1765 	return 0;
1766 }
1767