xref: /openbmc/linux/fs/btrfs/disk-io.c (revision fd589a8f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41 
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 
45 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
46 
47 /*
48  * end_io_wq structs are used to do processing in task context when an IO is
49  * complete.  This is used during reads to verify checksums, and it is used
50  * by writes to insert metadata for new file extents after IO is complete.
51  */
52 struct end_io_wq {
53 	struct bio *bio;
54 	bio_end_io_t *end_io;
55 	void *private;
56 	struct btrfs_fs_info *info;
57 	int error;
58 	int metadata;
59 	struct list_head list;
60 	struct btrfs_work work;
61 };
62 
63 /*
64  * async submit bios are used to offload expensive checksumming
65  * onto the worker threads.  They checksum file and metadata bios
66  * just before they are sent down the IO stack.
67  */
68 struct async_submit_bio {
69 	struct inode *inode;
70 	struct bio *bio;
71 	struct list_head list;
72 	extent_submit_bio_hook_t *submit_bio_start;
73 	extent_submit_bio_hook_t *submit_bio_done;
74 	int rw;
75 	int mirror_num;
76 	unsigned long bio_flags;
77 	struct btrfs_work work;
78 };
79 
80 /* These are used to set the lockdep class on the extent buffer locks.
81  * The class is set by the readpage_end_io_hook after the buffer has
82  * passed csum validation but before the pages are unlocked.
83  *
84  * The lockdep class is also set by btrfs_init_new_buffer on freshly
85  * allocated blocks.
86  *
87  * The class is based on the level in the tree block, which allows lockdep
88  * to know that lower nodes nest inside the locks of higher nodes.
89  *
90  * We also add a check to make sure the highest level of the tree is
91  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
92  * code needs update as well.
93  */
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
96 #  error
97 # endif
98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
100 	/* leaf */
101 	"btrfs-extent-00",
102 	"btrfs-extent-01",
103 	"btrfs-extent-02",
104 	"btrfs-extent-03",
105 	"btrfs-extent-04",
106 	"btrfs-extent-05",
107 	"btrfs-extent-06",
108 	"btrfs-extent-07",
109 	/* highest possible level */
110 	"btrfs-extent-08",
111 };
112 #endif
113 
114 /*
115  * extents on the btree inode are pretty simple, there's one extent
116  * that covers the entire device
117  */
118 static struct extent_map *btree_get_extent(struct inode *inode,
119 		struct page *page, size_t page_offset, u64 start, u64 len,
120 		int create)
121 {
122 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 	struct extent_map *em;
124 	int ret;
125 
126 	spin_lock(&em_tree->lock);
127 	em = lookup_extent_mapping(em_tree, start, len);
128 	if (em) {
129 		em->bdev =
130 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
131 		spin_unlock(&em_tree->lock);
132 		goto out;
133 	}
134 	spin_unlock(&em_tree->lock);
135 
136 	em = alloc_extent_map(GFP_NOFS);
137 	if (!em) {
138 		em = ERR_PTR(-ENOMEM);
139 		goto out;
140 	}
141 	em->start = 0;
142 	em->len = (u64)-1;
143 	em->block_len = (u64)-1;
144 	em->block_start = 0;
145 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
146 
147 	spin_lock(&em_tree->lock);
148 	ret = add_extent_mapping(em_tree, em);
149 	if (ret == -EEXIST) {
150 		u64 failed_start = em->start;
151 		u64 failed_len = em->len;
152 
153 		free_extent_map(em);
154 		em = lookup_extent_mapping(em_tree, start, len);
155 		if (em) {
156 			ret = 0;
157 		} else {
158 			em = lookup_extent_mapping(em_tree, failed_start,
159 						   failed_len);
160 			ret = -EIO;
161 		}
162 	} else if (ret) {
163 		free_extent_map(em);
164 		em = NULL;
165 	}
166 	spin_unlock(&em_tree->lock);
167 
168 	if (ret)
169 		em = ERR_PTR(ret);
170 out:
171 	return em;
172 }
173 
174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
175 {
176 	return crc32c(seed, data, len);
177 }
178 
179 void btrfs_csum_final(u32 crc, char *result)
180 {
181 	*(__le32 *)result = ~cpu_to_le32(crc);
182 }
183 
184 /*
185  * compute the csum for a btree block, and either verify it or write it
186  * into the csum field of the block.
187  */
188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
189 			   int verify)
190 {
191 	u16 csum_size =
192 		btrfs_super_csum_size(&root->fs_info->super_copy);
193 	char *result = NULL;
194 	unsigned long len;
195 	unsigned long cur_len;
196 	unsigned long offset = BTRFS_CSUM_SIZE;
197 	char *map_token = NULL;
198 	char *kaddr;
199 	unsigned long map_start;
200 	unsigned long map_len;
201 	int err;
202 	u32 crc = ~(u32)0;
203 	unsigned long inline_result;
204 
205 	len = buf->len - offset;
206 	while (len > 0) {
207 		err = map_private_extent_buffer(buf, offset, 32,
208 					&map_token, &kaddr,
209 					&map_start, &map_len, KM_USER0);
210 		if (err)
211 			return 1;
212 		cur_len = min(len, map_len - (offset - map_start));
213 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
214 				      crc, cur_len);
215 		len -= cur_len;
216 		offset += cur_len;
217 		unmap_extent_buffer(buf, map_token, KM_USER0);
218 	}
219 	if (csum_size > sizeof(inline_result)) {
220 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
221 		if (!result)
222 			return 1;
223 	} else {
224 		result = (char *)&inline_result;
225 	}
226 
227 	btrfs_csum_final(crc, result);
228 
229 	if (verify) {
230 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
231 			u32 val;
232 			u32 found = 0;
233 			memcpy(&found, result, csum_size);
234 
235 			read_extent_buffer(buf, &val, 0, csum_size);
236 			if (printk_ratelimit()) {
237 				printk(KERN_INFO "btrfs: %s checksum verify "
238 				       "failed on %llu wanted %X found %X "
239 				       "level %d\n",
240 				       root->fs_info->sb->s_id,
241 				       (unsigned long long)buf->start, val, found,
242 				       btrfs_header_level(buf));
243 			}
244 			if (result != (char *)&inline_result)
245 				kfree(result);
246 			return 1;
247 		}
248 	} else {
249 		write_extent_buffer(buf, result, 0, csum_size);
250 	}
251 	if (result != (char *)&inline_result)
252 		kfree(result);
253 	return 0;
254 }
255 
256 /*
257  * we can't consider a given block up to date unless the transid of the
258  * block matches the transid in the parent node's pointer.  This is how we
259  * detect blocks that either didn't get written at all or got written
260  * in the wrong place.
261  */
262 static int verify_parent_transid(struct extent_io_tree *io_tree,
263 				 struct extent_buffer *eb, u64 parent_transid)
264 {
265 	int ret;
266 
267 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
268 		return 0;
269 
270 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
271 	if (extent_buffer_uptodate(io_tree, eb) &&
272 	    btrfs_header_generation(eb) == parent_transid) {
273 		ret = 0;
274 		goto out;
275 	}
276 	if (printk_ratelimit()) {
277 		printk("parent transid verify failed on %llu wanted %llu "
278 		       "found %llu\n",
279 		       (unsigned long long)eb->start,
280 		       (unsigned long long)parent_transid,
281 		       (unsigned long long)btrfs_header_generation(eb));
282 	}
283 	ret = 1;
284 	clear_extent_buffer_uptodate(io_tree, eb);
285 out:
286 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
287 		      GFP_NOFS);
288 	return ret;
289 }
290 
291 /*
292  * helper to read a given tree block, doing retries as required when
293  * the checksums don't match and we have alternate mirrors to try.
294  */
295 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
296 					  struct extent_buffer *eb,
297 					  u64 start, u64 parent_transid)
298 {
299 	struct extent_io_tree *io_tree;
300 	int ret;
301 	int num_copies = 0;
302 	int mirror_num = 0;
303 
304 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
305 	while (1) {
306 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
307 					       btree_get_extent, mirror_num);
308 		if (!ret &&
309 		    !verify_parent_transid(io_tree, eb, parent_transid))
310 			return ret;
311 
312 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
313 					      eb->start, eb->len);
314 		if (num_copies == 1)
315 			return ret;
316 
317 		mirror_num++;
318 		if (mirror_num > num_copies)
319 			return ret;
320 	}
321 	return -EIO;
322 }
323 
324 /*
325  * checksum a dirty tree block before IO.  This has extra checks to make sure
326  * we only fill in the checksum field in the first page of a multi-page block
327  */
328 
329 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
330 {
331 	struct extent_io_tree *tree;
332 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
333 	u64 found_start;
334 	int found_level;
335 	unsigned long len;
336 	struct extent_buffer *eb;
337 	int ret;
338 
339 	tree = &BTRFS_I(page->mapping->host)->io_tree;
340 
341 	if (page->private == EXTENT_PAGE_PRIVATE)
342 		goto out;
343 	if (!page->private)
344 		goto out;
345 	len = page->private >> 2;
346 	WARN_ON(len == 0);
347 
348 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
349 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
350 					     btrfs_header_generation(eb));
351 	BUG_ON(ret);
352 	found_start = btrfs_header_bytenr(eb);
353 	if (found_start != start) {
354 		WARN_ON(1);
355 		goto err;
356 	}
357 	if (eb->first_page != page) {
358 		WARN_ON(1);
359 		goto err;
360 	}
361 	if (!PageUptodate(page)) {
362 		WARN_ON(1);
363 		goto err;
364 	}
365 	found_level = btrfs_header_level(eb);
366 
367 	csum_tree_block(root, eb, 0);
368 err:
369 	free_extent_buffer(eb);
370 out:
371 	return 0;
372 }
373 
374 static int check_tree_block_fsid(struct btrfs_root *root,
375 				 struct extent_buffer *eb)
376 {
377 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
378 	u8 fsid[BTRFS_UUID_SIZE];
379 	int ret = 1;
380 
381 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
382 			   BTRFS_FSID_SIZE);
383 	while (fs_devices) {
384 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
385 			ret = 0;
386 			break;
387 		}
388 		fs_devices = fs_devices->seed;
389 	}
390 	return ret;
391 }
392 
393 #ifdef CONFIG_DEBUG_LOCK_ALLOC
394 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
395 {
396 	lockdep_set_class_and_name(&eb->lock,
397 			   &btrfs_eb_class[level],
398 			   btrfs_eb_name[level]);
399 }
400 #endif
401 
402 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
403 			       struct extent_state *state)
404 {
405 	struct extent_io_tree *tree;
406 	u64 found_start;
407 	int found_level;
408 	unsigned long len;
409 	struct extent_buffer *eb;
410 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
411 	int ret = 0;
412 
413 	tree = &BTRFS_I(page->mapping->host)->io_tree;
414 	if (page->private == EXTENT_PAGE_PRIVATE)
415 		goto out;
416 	if (!page->private)
417 		goto out;
418 
419 	len = page->private >> 2;
420 	WARN_ON(len == 0);
421 
422 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
423 
424 	found_start = btrfs_header_bytenr(eb);
425 	if (found_start != start) {
426 		if (printk_ratelimit()) {
427 			printk(KERN_INFO "btrfs bad tree block start "
428 			       "%llu %llu\n",
429 			       (unsigned long long)found_start,
430 			       (unsigned long long)eb->start);
431 		}
432 		ret = -EIO;
433 		goto err;
434 	}
435 	if (eb->first_page != page) {
436 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
437 		       eb->first_page->index, page->index);
438 		WARN_ON(1);
439 		ret = -EIO;
440 		goto err;
441 	}
442 	if (check_tree_block_fsid(root, eb)) {
443 		if (printk_ratelimit()) {
444 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
445 			       (unsigned long long)eb->start);
446 		}
447 		ret = -EIO;
448 		goto err;
449 	}
450 	found_level = btrfs_header_level(eb);
451 
452 	btrfs_set_buffer_lockdep_class(eb, found_level);
453 
454 	ret = csum_tree_block(root, eb, 1);
455 	if (ret)
456 		ret = -EIO;
457 
458 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
459 	end = eb->start + end - 1;
460 err:
461 	free_extent_buffer(eb);
462 out:
463 	return ret;
464 }
465 
466 static void end_workqueue_bio(struct bio *bio, int err)
467 {
468 	struct end_io_wq *end_io_wq = bio->bi_private;
469 	struct btrfs_fs_info *fs_info;
470 
471 	fs_info = end_io_wq->info;
472 	end_io_wq->error = err;
473 	end_io_wq->work.func = end_workqueue_fn;
474 	end_io_wq->work.flags = 0;
475 
476 	if (bio->bi_rw & (1 << BIO_RW)) {
477 		if (end_io_wq->metadata)
478 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
479 					   &end_io_wq->work);
480 		else
481 			btrfs_queue_worker(&fs_info->endio_write_workers,
482 					   &end_io_wq->work);
483 	} else {
484 		if (end_io_wq->metadata)
485 			btrfs_queue_worker(&fs_info->endio_meta_workers,
486 					   &end_io_wq->work);
487 		else
488 			btrfs_queue_worker(&fs_info->endio_workers,
489 					   &end_io_wq->work);
490 	}
491 }
492 
493 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
494 			int metadata)
495 {
496 	struct end_io_wq *end_io_wq;
497 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
498 	if (!end_io_wq)
499 		return -ENOMEM;
500 
501 	end_io_wq->private = bio->bi_private;
502 	end_io_wq->end_io = bio->bi_end_io;
503 	end_io_wq->info = info;
504 	end_io_wq->error = 0;
505 	end_io_wq->bio = bio;
506 	end_io_wq->metadata = metadata;
507 
508 	bio->bi_private = end_io_wq;
509 	bio->bi_end_io = end_workqueue_bio;
510 	return 0;
511 }
512 
513 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
514 {
515 	unsigned long limit = min_t(unsigned long,
516 				    info->workers.max_workers,
517 				    info->fs_devices->open_devices);
518 	return 256 * limit;
519 }
520 
521 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
522 {
523 	return atomic_read(&info->nr_async_bios) >
524 		btrfs_async_submit_limit(info);
525 }
526 
527 static void run_one_async_start(struct btrfs_work *work)
528 {
529 	struct btrfs_fs_info *fs_info;
530 	struct async_submit_bio *async;
531 
532 	async = container_of(work, struct  async_submit_bio, work);
533 	fs_info = BTRFS_I(async->inode)->root->fs_info;
534 	async->submit_bio_start(async->inode, async->rw, async->bio,
535 			       async->mirror_num, async->bio_flags);
536 }
537 
538 static void run_one_async_done(struct btrfs_work *work)
539 {
540 	struct btrfs_fs_info *fs_info;
541 	struct async_submit_bio *async;
542 	int limit;
543 
544 	async = container_of(work, struct  async_submit_bio, work);
545 	fs_info = BTRFS_I(async->inode)->root->fs_info;
546 
547 	limit = btrfs_async_submit_limit(fs_info);
548 	limit = limit * 2 / 3;
549 
550 	atomic_dec(&fs_info->nr_async_submits);
551 
552 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
553 	    waitqueue_active(&fs_info->async_submit_wait))
554 		wake_up(&fs_info->async_submit_wait);
555 
556 	async->submit_bio_done(async->inode, async->rw, async->bio,
557 			       async->mirror_num, async->bio_flags);
558 }
559 
560 static void run_one_async_free(struct btrfs_work *work)
561 {
562 	struct async_submit_bio *async;
563 
564 	async = container_of(work, struct  async_submit_bio, work);
565 	kfree(async);
566 }
567 
568 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
569 			int rw, struct bio *bio, int mirror_num,
570 			unsigned long bio_flags,
571 			extent_submit_bio_hook_t *submit_bio_start,
572 			extent_submit_bio_hook_t *submit_bio_done)
573 {
574 	struct async_submit_bio *async;
575 
576 	async = kmalloc(sizeof(*async), GFP_NOFS);
577 	if (!async)
578 		return -ENOMEM;
579 
580 	async->inode = inode;
581 	async->rw = rw;
582 	async->bio = bio;
583 	async->mirror_num = mirror_num;
584 	async->submit_bio_start = submit_bio_start;
585 	async->submit_bio_done = submit_bio_done;
586 
587 	async->work.func = run_one_async_start;
588 	async->work.ordered_func = run_one_async_done;
589 	async->work.ordered_free = run_one_async_free;
590 
591 	async->work.flags = 0;
592 	async->bio_flags = bio_flags;
593 
594 	atomic_inc(&fs_info->nr_async_submits);
595 
596 	if (rw & (1 << BIO_RW_SYNCIO))
597 		btrfs_set_work_high_prio(&async->work);
598 
599 	btrfs_queue_worker(&fs_info->workers, &async->work);
600 
601 	while (atomic_read(&fs_info->async_submit_draining) &&
602 	      atomic_read(&fs_info->nr_async_submits)) {
603 		wait_event(fs_info->async_submit_wait,
604 			   (atomic_read(&fs_info->nr_async_submits) == 0));
605 	}
606 
607 	return 0;
608 }
609 
610 static int btree_csum_one_bio(struct bio *bio)
611 {
612 	struct bio_vec *bvec = bio->bi_io_vec;
613 	int bio_index = 0;
614 	struct btrfs_root *root;
615 
616 	WARN_ON(bio->bi_vcnt <= 0);
617 	while (bio_index < bio->bi_vcnt) {
618 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
619 		csum_dirty_buffer(root, bvec->bv_page);
620 		bio_index++;
621 		bvec++;
622 	}
623 	return 0;
624 }
625 
626 static int __btree_submit_bio_start(struct inode *inode, int rw,
627 				    struct bio *bio, int mirror_num,
628 				    unsigned long bio_flags)
629 {
630 	/*
631 	 * when we're called for a write, we're already in the async
632 	 * submission context.  Just jump into btrfs_map_bio
633 	 */
634 	btree_csum_one_bio(bio);
635 	return 0;
636 }
637 
638 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
639 				 int mirror_num, unsigned long bio_flags)
640 {
641 	/*
642 	 * when we're called for a write, we're already in the async
643 	 * submission context.  Just jump into btrfs_map_bio
644 	 */
645 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
646 }
647 
648 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
649 				 int mirror_num, unsigned long bio_flags)
650 {
651 	int ret;
652 
653 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
654 					  bio, 1);
655 	BUG_ON(ret);
656 
657 	if (!(rw & (1 << BIO_RW))) {
658 		/*
659 		 * called for a read, do the setup so that checksum validation
660 		 * can happen in the async kernel threads
661 		 */
662 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
663 				     mirror_num, 0);
664 	}
665 
666 	/*
667 	 * kthread helpers are used to submit writes so that checksumming
668 	 * can happen in parallel across all CPUs
669 	 */
670 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
671 				   inode, rw, bio, mirror_num, 0,
672 				   __btree_submit_bio_start,
673 				   __btree_submit_bio_done);
674 }
675 
676 static int btree_writepage(struct page *page, struct writeback_control *wbc)
677 {
678 	struct extent_io_tree *tree;
679 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680 	struct extent_buffer *eb;
681 	int was_dirty;
682 
683 	tree = &BTRFS_I(page->mapping->host)->io_tree;
684 	if (!(current->flags & PF_MEMALLOC)) {
685 		return extent_write_full_page(tree, page,
686 					      btree_get_extent, wbc);
687 	}
688 
689 	redirty_page_for_writepage(wbc, page);
690 	eb = btrfs_find_tree_block(root, page_offset(page),
691 				      PAGE_CACHE_SIZE);
692 	WARN_ON(!eb);
693 
694 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
695 	if (!was_dirty) {
696 		spin_lock(&root->fs_info->delalloc_lock);
697 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
698 		spin_unlock(&root->fs_info->delalloc_lock);
699 	}
700 	free_extent_buffer(eb);
701 
702 	unlock_page(page);
703 	return 0;
704 }
705 
706 static int btree_writepages(struct address_space *mapping,
707 			    struct writeback_control *wbc)
708 {
709 	struct extent_io_tree *tree;
710 	tree = &BTRFS_I(mapping->host)->io_tree;
711 	if (wbc->sync_mode == WB_SYNC_NONE) {
712 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
713 		u64 num_dirty;
714 		unsigned long thresh = 32 * 1024 * 1024;
715 
716 		if (wbc->for_kupdate)
717 			return 0;
718 
719 		/* this is a bit racy, but that's ok */
720 		num_dirty = root->fs_info->dirty_metadata_bytes;
721 		if (num_dirty < thresh)
722 			return 0;
723 	}
724 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
725 }
726 
727 static int btree_readpage(struct file *file, struct page *page)
728 {
729 	struct extent_io_tree *tree;
730 	tree = &BTRFS_I(page->mapping->host)->io_tree;
731 	return extent_read_full_page(tree, page, btree_get_extent);
732 }
733 
734 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
735 {
736 	struct extent_io_tree *tree;
737 	struct extent_map_tree *map;
738 	int ret;
739 
740 	if (PageWriteback(page) || PageDirty(page))
741 		return 0;
742 
743 	tree = &BTRFS_I(page->mapping->host)->io_tree;
744 	map = &BTRFS_I(page->mapping->host)->extent_tree;
745 
746 	ret = try_release_extent_state(map, tree, page, gfp_flags);
747 	if (!ret)
748 		return 0;
749 
750 	ret = try_release_extent_buffer(tree, page);
751 	if (ret == 1) {
752 		ClearPagePrivate(page);
753 		set_page_private(page, 0);
754 		page_cache_release(page);
755 	}
756 
757 	return ret;
758 }
759 
760 static void btree_invalidatepage(struct page *page, unsigned long offset)
761 {
762 	struct extent_io_tree *tree;
763 	tree = &BTRFS_I(page->mapping->host)->io_tree;
764 	extent_invalidatepage(tree, page, offset);
765 	btree_releasepage(page, GFP_NOFS);
766 	if (PagePrivate(page)) {
767 		printk(KERN_WARNING "btrfs warning page private not zero "
768 		       "on page %llu\n", (unsigned long long)page_offset(page));
769 		ClearPagePrivate(page);
770 		set_page_private(page, 0);
771 		page_cache_release(page);
772 	}
773 }
774 
775 static struct address_space_operations btree_aops = {
776 	.readpage	= btree_readpage,
777 	.writepage	= btree_writepage,
778 	.writepages	= btree_writepages,
779 	.releasepage	= btree_releasepage,
780 	.invalidatepage = btree_invalidatepage,
781 	.sync_page	= block_sync_page,
782 };
783 
784 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
785 			 u64 parent_transid)
786 {
787 	struct extent_buffer *buf = NULL;
788 	struct inode *btree_inode = root->fs_info->btree_inode;
789 	int ret = 0;
790 
791 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
792 	if (!buf)
793 		return 0;
794 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
795 				 buf, 0, 0, btree_get_extent, 0);
796 	free_extent_buffer(buf);
797 	return ret;
798 }
799 
800 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
801 					    u64 bytenr, u32 blocksize)
802 {
803 	struct inode *btree_inode = root->fs_info->btree_inode;
804 	struct extent_buffer *eb;
805 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
806 				bytenr, blocksize, GFP_NOFS);
807 	return eb;
808 }
809 
810 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
811 						 u64 bytenr, u32 blocksize)
812 {
813 	struct inode *btree_inode = root->fs_info->btree_inode;
814 	struct extent_buffer *eb;
815 
816 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
817 				 bytenr, blocksize, NULL, GFP_NOFS);
818 	return eb;
819 }
820 
821 
822 int btrfs_write_tree_block(struct extent_buffer *buf)
823 {
824 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
825 				      buf->start + buf->len - 1, WB_SYNC_ALL);
826 }
827 
828 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
829 {
830 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
831 				  buf->start, buf->start + buf->len - 1);
832 }
833 
834 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
835 				      u32 blocksize, u64 parent_transid)
836 {
837 	struct extent_buffer *buf = NULL;
838 	struct inode *btree_inode = root->fs_info->btree_inode;
839 	struct extent_io_tree *io_tree;
840 	int ret;
841 
842 	io_tree = &BTRFS_I(btree_inode)->io_tree;
843 
844 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
845 	if (!buf)
846 		return NULL;
847 
848 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
849 
850 	if (ret == 0)
851 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
852 	return buf;
853 
854 }
855 
856 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
857 		     struct extent_buffer *buf)
858 {
859 	struct inode *btree_inode = root->fs_info->btree_inode;
860 	if (btrfs_header_generation(buf) ==
861 	    root->fs_info->running_transaction->transid) {
862 		btrfs_assert_tree_locked(buf);
863 
864 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
865 			spin_lock(&root->fs_info->delalloc_lock);
866 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
867 				root->fs_info->dirty_metadata_bytes -= buf->len;
868 			else
869 				WARN_ON(1);
870 			spin_unlock(&root->fs_info->delalloc_lock);
871 		}
872 
873 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
874 		btrfs_set_lock_blocking(buf);
875 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
876 					  buf);
877 	}
878 	return 0;
879 }
880 
881 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
882 			u32 stripesize, struct btrfs_root *root,
883 			struct btrfs_fs_info *fs_info,
884 			u64 objectid)
885 {
886 	root->node = NULL;
887 	root->commit_root = NULL;
888 	root->sectorsize = sectorsize;
889 	root->nodesize = nodesize;
890 	root->leafsize = leafsize;
891 	root->stripesize = stripesize;
892 	root->ref_cows = 0;
893 	root->track_dirty = 0;
894 
895 	root->fs_info = fs_info;
896 	root->objectid = objectid;
897 	root->last_trans = 0;
898 	root->highest_inode = 0;
899 	root->last_inode_alloc = 0;
900 	root->name = NULL;
901 	root->in_sysfs = 0;
902 	root->inode_tree.rb_node = NULL;
903 
904 	INIT_LIST_HEAD(&root->dirty_list);
905 	INIT_LIST_HEAD(&root->orphan_list);
906 	INIT_LIST_HEAD(&root->root_list);
907 	spin_lock_init(&root->node_lock);
908 	spin_lock_init(&root->list_lock);
909 	spin_lock_init(&root->inode_lock);
910 	mutex_init(&root->objectid_mutex);
911 	mutex_init(&root->log_mutex);
912 	init_waitqueue_head(&root->log_writer_wait);
913 	init_waitqueue_head(&root->log_commit_wait[0]);
914 	init_waitqueue_head(&root->log_commit_wait[1]);
915 	atomic_set(&root->log_commit[0], 0);
916 	atomic_set(&root->log_commit[1], 0);
917 	atomic_set(&root->log_writers, 0);
918 	root->log_batch = 0;
919 	root->log_transid = 0;
920 	extent_io_tree_init(&root->dirty_log_pages,
921 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
922 
923 	memset(&root->root_key, 0, sizeof(root->root_key));
924 	memset(&root->root_item, 0, sizeof(root->root_item));
925 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
926 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
927 	root->defrag_trans_start = fs_info->generation;
928 	init_completion(&root->kobj_unregister);
929 	root->defrag_running = 0;
930 	root->defrag_level = 0;
931 	root->root_key.objectid = objectid;
932 	root->anon_super.s_root = NULL;
933 	root->anon_super.s_dev = 0;
934 	INIT_LIST_HEAD(&root->anon_super.s_list);
935 	INIT_LIST_HEAD(&root->anon_super.s_instances);
936 	init_rwsem(&root->anon_super.s_umount);
937 
938 	return 0;
939 }
940 
941 static int find_and_setup_root(struct btrfs_root *tree_root,
942 			       struct btrfs_fs_info *fs_info,
943 			       u64 objectid,
944 			       struct btrfs_root *root)
945 {
946 	int ret;
947 	u32 blocksize;
948 	u64 generation;
949 
950 	__setup_root(tree_root->nodesize, tree_root->leafsize,
951 		     tree_root->sectorsize, tree_root->stripesize,
952 		     root, fs_info, objectid);
953 	ret = btrfs_find_last_root(tree_root, objectid,
954 				   &root->root_item, &root->root_key);
955 	BUG_ON(ret);
956 
957 	generation = btrfs_root_generation(&root->root_item);
958 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
959 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
960 				     blocksize, generation);
961 	root->commit_root = btrfs_root_node(root);
962 	BUG_ON(!root->node);
963 	return 0;
964 }
965 
966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
967 			     struct btrfs_fs_info *fs_info)
968 {
969 	struct extent_buffer *eb;
970 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
971 	u64 start = 0;
972 	u64 end = 0;
973 	int ret;
974 
975 	if (!log_root_tree)
976 		return 0;
977 
978 	while (1) {
979 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
980 				    0, &start, &end, EXTENT_DIRTY);
981 		if (ret)
982 			break;
983 
984 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
985 				   start, end, GFP_NOFS);
986 	}
987 	eb = fs_info->log_root_tree->node;
988 
989 	WARN_ON(btrfs_header_level(eb) != 0);
990 	WARN_ON(btrfs_header_nritems(eb) != 0);
991 
992 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
993 				eb->start, eb->len);
994 	BUG_ON(ret);
995 
996 	free_extent_buffer(eb);
997 	kfree(fs_info->log_root_tree);
998 	fs_info->log_root_tree = NULL;
999 	return 0;
1000 }
1001 
1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1003 					 struct btrfs_fs_info *fs_info)
1004 {
1005 	struct btrfs_root *root;
1006 	struct btrfs_root *tree_root = fs_info->tree_root;
1007 	struct extent_buffer *leaf;
1008 
1009 	root = kzalloc(sizeof(*root), GFP_NOFS);
1010 	if (!root)
1011 		return ERR_PTR(-ENOMEM);
1012 
1013 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1014 		     tree_root->sectorsize, tree_root->stripesize,
1015 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1016 
1017 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1018 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1019 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1020 	/*
1021 	 * log trees do not get reference counted because they go away
1022 	 * before a real commit is actually done.  They do store pointers
1023 	 * to file data extents, and those reference counts still get
1024 	 * updated (along with back refs to the log tree).
1025 	 */
1026 	root->ref_cows = 0;
1027 
1028 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1029 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1030 	if (IS_ERR(leaf)) {
1031 		kfree(root);
1032 		return ERR_CAST(leaf);
1033 	}
1034 
1035 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1036 	btrfs_set_header_bytenr(leaf, leaf->start);
1037 	btrfs_set_header_generation(leaf, trans->transid);
1038 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1039 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1040 	root->node = leaf;
1041 
1042 	write_extent_buffer(root->node, root->fs_info->fsid,
1043 			    (unsigned long)btrfs_header_fsid(root->node),
1044 			    BTRFS_FSID_SIZE);
1045 	btrfs_mark_buffer_dirty(root->node);
1046 	btrfs_tree_unlock(root->node);
1047 	return root;
1048 }
1049 
1050 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1051 			     struct btrfs_fs_info *fs_info)
1052 {
1053 	struct btrfs_root *log_root;
1054 
1055 	log_root = alloc_log_tree(trans, fs_info);
1056 	if (IS_ERR(log_root))
1057 		return PTR_ERR(log_root);
1058 	WARN_ON(fs_info->log_root_tree);
1059 	fs_info->log_root_tree = log_root;
1060 	return 0;
1061 }
1062 
1063 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1064 		       struct btrfs_root *root)
1065 {
1066 	struct btrfs_root *log_root;
1067 	struct btrfs_inode_item *inode_item;
1068 
1069 	log_root = alloc_log_tree(trans, root->fs_info);
1070 	if (IS_ERR(log_root))
1071 		return PTR_ERR(log_root);
1072 
1073 	log_root->last_trans = trans->transid;
1074 	log_root->root_key.offset = root->root_key.objectid;
1075 
1076 	inode_item = &log_root->root_item.inode;
1077 	inode_item->generation = cpu_to_le64(1);
1078 	inode_item->size = cpu_to_le64(3);
1079 	inode_item->nlink = cpu_to_le32(1);
1080 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1081 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1082 
1083 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1084 
1085 	WARN_ON(root->log_root);
1086 	root->log_root = log_root;
1087 	root->log_transid = 0;
1088 	return 0;
1089 }
1090 
1091 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1092 					       struct btrfs_key *location)
1093 {
1094 	struct btrfs_root *root;
1095 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1096 	struct btrfs_path *path;
1097 	struct extent_buffer *l;
1098 	u64 highest_inode;
1099 	u64 generation;
1100 	u32 blocksize;
1101 	int ret = 0;
1102 
1103 	root = kzalloc(sizeof(*root), GFP_NOFS);
1104 	if (!root)
1105 		return ERR_PTR(-ENOMEM);
1106 	if (location->offset == (u64)-1) {
1107 		ret = find_and_setup_root(tree_root, fs_info,
1108 					  location->objectid, root);
1109 		if (ret) {
1110 			kfree(root);
1111 			return ERR_PTR(ret);
1112 		}
1113 		goto insert;
1114 	}
1115 
1116 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1117 		     tree_root->sectorsize, tree_root->stripesize,
1118 		     root, fs_info, location->objectid);
1119 
1120 	path = btrfs_alloc_path();
1121 	BUG_ON(!path);
1122 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1123 	if (ret != 0) {
1124 		if (ret > 0)
1125 			ret = -ENOENT;
1126 		goto out;
1127 	}
1128 	l = path->nodes[0];
1129 	read_extent_buffer(l, &root->root_item,
1130 	       btrfs_item_ptr_offset(l, path->slots[0]),
1131 	       sizeof(root->root_item));
1132 	memcpy(&root->root_key, location, sizeof(*location));
1133 	ret = 0;
1134 out:
1135 	btrfs_release_path(root, path);
1136 	btrfs_free_path(path);
1137 	if (ret) {
1138 		kfree(root);
1139 		return ERR_PTR(ret);
1140 	}
1141 	generation = btrfs_root_generation(&root->root_item);
1142 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1143 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1144 				     blocksize, generation);
1145 	root->commit_root = btrfs_root_node(root);
1146 	BUG_ON(!root->node);
1147 insert:
1148 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1149 		root->ref_cows = 1;
1150 		ret = btrfs_find_highest_inode(root, &highest_inode);
1151 		if (ret == 0) {
1152 			root->highest_inode = highest_inode;
1153 			root->last_inode_alloc = highest_inode;
1154 		}
1155 	}
1156 	return root;
1157 }
1158 
1159 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1160 					u64 root_objectid)
1161 {
1162 	struct btrfs_root *root;
1163 
1164 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1165 		return fs_info->tree_root;
1166 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1167 		return fs_info->extent_root;
1168 
1169 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 				 (unsigned long)root_objectid);
1171 	return root;
1172 }
1173 
1174 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1175 					      struct btrfs_key *location)
1176 {
1177 	struct btrfs_root *root;
1178 	int ret;
1179 
1180 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1181 		return fs_info->tree_root;
1182 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1183 		return fs_info->extent_root;
1184 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1185 		return fs_info->chunk_root;
1186 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1187 		return fs_info->dev_root;
1188 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1189 		return fs_info->csum_root;
1190 
1191 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1192 				 (unsigned long)location->objectid);
1193 	if (root)
1194 		return root;
1195 
1196 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1197 	if (IS_ERR(root))
1198 		return root;
1199 
1200 	set_anon_super(&root->anon_super, NULL);
1201 
1202 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1203 				(unsigned long)root->root_key.objectid,
1204 				root);
1205 	if (ret) {
1206 		free_extent_buffer(root->node);
1207 		kfree(root);
1208 		return ERR_PTR(ret);
1209 	}
1210 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1211 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1212 					    root->root_key.objectid);
1213 		BUG_ON(ret);
1214 		btrfs_orphan_cleanup(root);
1215 	}
1216 	return root;
1217 }
1218 
1219 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1220 				      struct btrfs_key *location,
1221 				      const char *name, int namelen)
1222 {
1223 	struct btrfs_root *root;
1224 	int ret;
1225 
1226 	root = btrfs_read_fs_root_no_name(fs_info, location);
1227 	if (!root)
1228 		return NULL;
1229 
1230 	if (root->in_sysfs)
1231 		return root;
1232 
1233 	ret = btrfs_set_root_name(root, name, namelen);
1234 	if (ret) {
1235 		free_extent_buffer(root->node);
1236 		kfree(root);
1237 		return ERR_PTR(ret);
1238 	}
1239 #if 0
1240 	ret = btrfs_sysfs_add_root(root);
1241 	if (ret) {
1242 		free_extent_buffer(root->node);
1243 		kfree(root->name);
1244 		kfree(root);
1245 		return ERR_PTR(ret);
1246 	}
1247 #endif
1248 	root->in_sysfs = 1;
1249 	return root;
1250 }
1251 
1252 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1253 {
1254 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1255 	int ret = 0;
1256 	struct btrfs_device *device;
1257 	struct backing_dev_info *bdi;
1258 
1259 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1260 		if (!device->bdev)
1261 			continue;
1262 		bdi = blk_get_backing_dev_info(device->bdev);
1263 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1264 			ret = 1;
1265 			break;
1266 		}
1267 	}
1268 	return ret;
1269 }
1270 
1271 /*
1272  * this unplugs every device on the box, and it is only used when page
1273  * is null
1274  */
1275 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1276 {
1277 	struct btrfs_device *device;
1278 	struct btrfs_fs_info *info;
1279 
1280 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1281 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1282 		if (!device->bdev)
1283 			continue;
1284 
1285 		bdi = blk_get_backing_dev_info(device->bdev);
1286 		if (bdi->unplug_io_fn)
1287 			bdi->unplug_io_fn(bdi, page);
1288 	}
1289 }
1290 
1291 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1292 {
1293 	struct inode *inode;
1294 	struct extent_map_tree *em_tree;
1295 	struct extent_map *em;
1296 	struct address_space *mapping;
1297 	u64 offset;
1298 
1299 	/* the generic O_DIRECT read code does this */
1300 	if (1 || !page) {
1301 		__unplug_io_fn(bdi, page);
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * page->mapping may change at any time.  Get a consistent copy
1307 	 * and use that for everything below
1308 	 */
1309 	smp_mb();
1310 	mapping = page->mapping;
1311 	if (!mapping)
1312 		return;
1313 
1314 	inode = mapping->host;
1315 
1316 	/*
1317 	 * don't do the expensive searching for a small number of
1318 	 * devices
1319 	 */
1320 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1321 		__unplug_io_fn(bdi, page);
1322 		return;
1323 	}
1324 
1325 	offset = page_offset(page);
1326 
1327 	em_tree = &BTRFS_I(inode)->extent_tree;
1328 	spin_lock(&em_tree->lock);
1329 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1330 	spin_unlock(&em_tree->lock);
1331 	if (!em) {
1332 		__unplug_io_fn(bdi, page);
1333 		return;
1334 	}
1335 
1336 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1337 		free_extent_map(em);
1338 		__unplug_io_fn(bdi, page);
1339 		return;
1340 	}
1341 	offset = offset - em->start;
1342 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1343 			  em->block_start + offset, page);
1344 	free_extent_map(em);
1345 }
1346 
1347 /*
1348  * If this fails, caller must call bdi_destroy() to get rid of the
1349  * bdi again.
1350  */
1351 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1352 {
1353 	int err;
1354 
1355 	bdi->name = "btrfs";
1356 	bdi->capabilities = BDI_CAP_MAP_COPY;
1357 	err = bdi_init(bdi);
1358 	if (err)
1359 		return err;
1360 
1361 	err = bdi_register(bdi, NULL, "btrfs-%d",
1362 				atomic_inc_return(&btrfs_bdi_num));
1363 	if (err)
1364 		return err;
1365 
1366 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1367 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1368 	bdi->unplug_io_data	= info;
1369 	bdi->congested_fn	= btrfs_congested_fn;
1370 	bdi->congested_data	= info;
1371 	return 0;
1372 }
1373 
1374 static int bio_ready_for_csum(struct bio *bio)
1375 {
1376 	u64 length = 0;
1377 	u64 buf_len = 0;
1378 	u64 start = 0;
1379 	struct page *page;
1380 	struct extent_io_tree *io_tree = NULL;
1381 	struct btrfs_fs_info *info = NULL;
1382 	struct bio_vec *bvec;
1383 	int i;
1384 	int ret;
1385 
1386 	bio_for_each_segment(bvec, bio, i) {
1387 		page = bvec->bv_page;
1388 		if (page->private == EXTENT_PAGE_PRIVATE) {
1389 			length += bvec->bv_len;
1390 			continue;
1391 		}
1392 		if (!page->private) {
1393 			length += bvec->bv_len;
1394 			continue;
1395 		}
1396 		length = bvec->bv_len;
1397 		buf_len = page->private >> 2;
1398 		start = page_offset(page) + bvec->bv_offset;
1399 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1400 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1401 	}
1402 	/* are we fully contained in this bio? */
1403 	if (buf_len <= length)
1404 		return 1;
1405 
1406 	ret = extent_range_uptodate(io_tree, start + length,
1407 				    start + buf_len - 1);
1408 	return ret;
1409 }
1410 
1411 /*
1412  * called by the kthread helper functions to finally call the bio end_io
1413  * functions.  This is where read checksum verification actually happens
1414  */
1415 static void end_workqueue_fn(struct btrfs_work *work)
1416 {
1417 	struct bio *bio;
1418 	struct end_io_wq *end_io_wq;
1419 	struct btrfs_fs_info *fs_info;
1420 	int error;
1421 
1422 	end_io_wq = container_of(work, struct end_io_wq, work);
1423 	bio = end_io_wq->bio;
1424 	fs_info = end_io_wq->info;
1425 
1426 	/* metadata bio reads are special because the whole tree block must
1427 	 * be checksummed at once.  This makes sure the entire block is in
1428 	 * ram and up to date before trying to verify things.  For
1429 	 * blocksize <= pagesize, it is basically a noop
1430 	 */
1431 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1432 	    !bio_ready_for_csum(bio)) {
1433 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1434 				   &end_io_wq->work);
1435 		return;
1436 	}
1437 	error = end_io_wq->error;
1438 	bio->bi_private = end_io_wq->private;
1439 	bio->bi_end_io = end_io_wq->end_io;
1440 	kfree(end_io_wq);
1441 	bio_endio(bio, error);
1442 }
1443 
1444 static int cleaner_kthread(void *arg)
1445 {
1446 	struct btrfs_root *root = arg;
1447 
1448 	do {
1449 		smp_mb();
1450 		if (root->fs_info->closing)
1451 			break;
1452 
1453 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1454 		mutex_lock(&root->fs_info->cleaner_mutex);
1455 		btrfs_clean_old_snapshots(root);
1456 		mutex_unlock(&root->fs_info->cleaner_mutex);
1457 
1458 		if (freezing(current)) {
1459 			refrigerator();
1460 		} else {
1461 			smp_mb();
1462 			if (root->fs_info->closing)
1463 				break;
1464 			set_current_state(TASK_INTERRUPTIBLE);
1465 			schedule();
1466 			__set_current_state(TASK_RUNNING);
1467 		}
1468 	} while (!kthread_should_stop());
1469 	return 0;
1470 }
1471 
1472 static int transaction_kthread(void *arg)
1473 {
1474 	struct btrfs_root *root = arg;
1475 	struct btrfs_trans_handle *trans;
1476 	struct btrfs_transaction *cur;
1477 	unsigned long now;
1478 	unsigned long delay;
1479 	int ret;
1480 
1481 	do {
1482 		smp_mb();
1483 		if (root->fs_info->closing)
1484 			break;
1485 
1486 		delay = HZ * 30;
1487 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1488 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1489 
1490 		mutex_lock(&root->fs_info->trans_mutex);
1491 		cur = root->fs_info->running_transaction;
1492 		if (!cur) {
1493 			mutex_unlock(&root->fs_info->trans_mutex);
1494 			goto sleep;
1495 		}
1496 
1497 		now = get_seconds();
1498 		if (now < cur->start_time || now - cur->start_time < 30) {
1499 			mutex_unlock(&root->fs_info->trans_mutex);
1500 			delay = HZ * 5;
1501 			goto sleep;
1502 		}
1503 		mutex_unlock(&root->fs_info->trans_mutex);
1504 		trans = btrfs_start_transaction(root, 1);
1505 		ret = btrfs_commit_transaction(trans, root);
1506 
1507 sleep:
1508 		wake_up_process(root->fs_info->cleaner_kthread);
1509 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1510 
1511 		if (freezing(current)) {
1512 			refrigerator();
1513 		} else {
1514 			if (root->fs_info->closing)
1515 				break;
1516 			set_current_state(TASK_INTERRUPTIBLE);
1517 			schedule_timeout(delay);
1518 			__set_current_state(TASK_RUNNING);
1519 		}
1520 	} while (!kthread_should_stop());
1521 	return 0;
1522 }
1523 
1524 struct btrfs_root *open_ctree(struct super_block *sb,
1525 			      struct btrfs_fs_devices *fs_devices,
1526 			      char *options)
1527 {
1528 	u32 sectorsize;
1529 	u32 nodesize;
1530 	u32 leafsize;
1531 	u32 blocksize;
1532 	u32 stripesize;
1533 	u64 generation;
1534 	u64 features;
1535 	struct btrfs_key location;
1536 	struct buffer_head *bh;
1537 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1538 						 GFP_NOFS);
1539 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1540 						 GFP_NOFS);
1541 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1542 					       GFP_NOFS);
1543 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1544 						GFP_NOFS);
1545 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1546 						GFP_NOFS);
1547 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1548 					      GFP_NOFS);
1549 	struct btrfs_root *log_tree_root;
1550 
1551 	int ret;
1552 	int err = -EINVAL;
1553 
1554 	struct btrfs_super_block *disk_super;
1555 
1556 	if (!extent_root || !tree_root || !fs_info ||
1557 	    !chunk_root || !dev_root || !csum_root) {
1558 		err = -ENOMEM;
1559 		goto fail;
1560 	}
1561 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1562 	INIT_LIST_HEAD(&fs_info->trans_list);
1563 	INIT_LIST_HEAD(&fs_info->dead_roots);
1564 	INIT_LIST_HEAD(&fs_info->hashers);
1565 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1566 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1567 	spin_lock_init(&fs_info->delalloc_lock);
1568 	spin_lock_init(&fs_info->new_trans_lock);
1569 	spin_lock_init(&fs_info->ref_cache_lock);
1570 
1571 	init_completion(&fs_info->kobj_unregister);
1572 	fs_info->tree_root = tree_root;
1573 	fs_info->extent_root = extent_root;
1574 	fs_info->csum_root = csum_root;
1575 	fs_info->chunk_root = chunk_root;
1576 	fs_info->dev_root = dev_root;
1577 	fs_info->fs_devices = fs_devices;
1578 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1579 	INIT_LIST_HEAD(&fs_info->space_info);
1580 	btrfs_mapping_init(&fs_info->mapping_tree);
1581 	atomic_set(&fs_info->nr_async_submits, 0);
1582 	atomic_set(&fs_info->async_delalloc_pages, 0);
1583 	atomic_set(&fs_info->async_submit_draining, 0);
1584 	atomic_set(&fs_info->nr_async_bios, 0);
1585 	fs_info->sb = sb;
1586 	fs_info->max_extent = (u64)-1;
1587 	fs_info->max_inline = 8192 * 1024;
1588 	if (setup_bdi(fs_info, &fs_info->bdi))
1589 		goto fail_bdi;
1590 	fs_info->btree_inode = new_inode(sb);
1591 	fs_info->btree_inode->i_ino = 1;
1592 	fs_info->btree_inode->i_nlink = 1;
1593 	fs_info->metadata_ratio = 8;
1594 
1595 	fs_info->thread_pool_size = min_t(unsigned long,
1596 					  num_online_cpus() + 2, 8);
1597 
1598 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1599 	spin_lock_init(&fs_info->ordered_extent_lock);
1600 
1601 	sb->s_blocksize = 4096;
1602 	sb->s_blocksize_bits = blksize_bits(4096);
1603 	sb->s_bdi = &fs_info->bdi;
1604 
1605 	/*
1606 	 * we set the i_size on the btree inode to the max possible int.
1607 	 * the real end of the address space is determined by all of
1608 	 * the devices in the system
1609 	 */
1610 	fs_info->btree_inode->i_size = OFFSET_MAX;
1611 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1612 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1613 
1614 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1615 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1616 			     fs_info->btree_inode->i_mapping,
1617 			     GFP_NOFS);
1618 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1619 			     GFP_NOFS);
1620 
1621 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1622 
1623 	spin_lock_init(&fs_info->block_group_cache_lock);
1624 	fs_info->block_group_cache_tree.rb_node = NULL;
1625 
1626 	extent_io_tree_init(&fs_info->pinned_extents,
1627 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1628 	fs_info->do_barriers = 1;
1629 
1630 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1631 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1632 	       sizeof(struct btrfs_key));
1633 	insert_inode_hash(fs_info->btree_inode);
1634 
1635 	mutex_init(&fs_info->trans_mutex);
1636 	mutex_init(&fs_info->ordered_operations_mutex);
1637 	mutex_init(&fs_info->tree_log_mutex);
1638 	mutex_init(&fs_info->drop_mutex);
1639 	mutex_init(&fs_info->chunk_mutex);
1640 	mutex_init(&fs_info->transaction_kthread_mutex);
1641 	mutex_init(&fs_info->cleaner_mutex);
1642 	mutex_init(&fs_info->volume_mutex);
1643 	mutex_init(&fs_info->tree_reloc_mutex);
1644 	init_rwsem(&fs_info->extent_commit_sem);
1645 
1646 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1647 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1648 
1649 	init_waitqueue_head(&fs_info->transaction_throttle);
1650 	init_waitqueue_head(&fs_info->transaction_wait);
1651 	init_waitqueue_head(&fs_info->async_submit_wait);
1652 
1653 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1654 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1655 
1656 
1657 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1658 	if (!bh)
1659 		goto fail_iput;
1660 
1661 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1662 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1663 	       sizeof(fs_info->super_for_commit));
1664 	brelse(bh);
1665 
1666 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1667 
1668 	disk_super = &fs_info->super_copy;
1669 	if (!btrfs_super_root(disk_super))
1670 		goto fail_iput;
1671 
1672 	ret = btrfs_parse_options(tree_root, options);
1673 	if (ret) {
1674 		err = ret;
1675 		goto fail_iput;
1676 	}
1677 
1678 	features = btrfs_super_incompat_flags(disk_super) &
1679 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1680 	if (features) {
1681 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1682 		       "unsupported optional features (%Lx).\n",
1683 		       (unsigned long long)features);
1684 		err = -EINVAL;
1685 		goto fail_iput;
1686 	}
1687 
1688 	features = btrfs_super_incompat_flags(disk_super);
1689 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1690 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1691 		btrfs_set_super_incompat_flags(disk_super, features);
1692 	}
1693 
1694 	features = btrfs_super_compat_ro_flags(disk_super) &
1695 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1696 	if (!(sb->s_flags & MS_RDONLY) && features) {
1697 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1698 		       "unsupported option features (%Lx).\n",
1699 		       (unsigned long long)features);
1700 		err = -EINVAL;
1701 		goto fail_iput;
1702 	}
1703 
1704 	/*
1705 	 * we need to start all the end_io workers up front because the
1706 	 * queue work function gets called at interrupt time, and so it
1707 	 * cannot dynamically grow.
1708 	 */
1709 	btrfs_init_workers(&fs_info->workers, "worker",
1710 			   fs_info->thread_pool_size);
1711 
1712 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1713 			   fs_info->thread_pool_size);
1714 
1715 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1716 			   min_t(u64, fs_devices->num_devices,
1717 			   fs_info->thread_pool_size));
1718 
1719 	/* a higher idle thresh on the submit workers makes it much more
1720 	 * likely that bios will be send down in a sane order to the
1721 	 * devices
1722 	 */
1723 	fs_info->submit_workers.idle_thresh = 64;
1724 
1725 	fs_info->workers.idle_thresh = 16;
1726 	fs_info->workers.ordered = 1;
1727 
1728 	fs_info->delalloc_workers.idle_thresh = 2;
1729 	fs_info->delalloc_workers.ordered = 1;
1730 
1731 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1732 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1733 			   fs_info->thread_pool_size);
1734 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1735 			   fs_info->thread_pool_size);
1736 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1737 			   "endio-meta-write", fs_info->thread_pool_size);
1738 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1739 			   fs_info->thread_pool_size);
1740 
1741 	/*
1742 	 * endios are largely parallel and should have a very
1743 	 * low idle thresh
1744 	 */
1745 	fs_info->endio_workers.idle_thresh = 4;
1746 	fs_info->endio_meta_workers.idle_thresh = 4;
1747 
1748 	fs_info->endio_write_workers.idle_thresh = 64;
1749 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1750 
1751 	btrfs_start_workers(&fs_info->workers, 1);
1752 	btrfs_start_workers(&fs_info->submit_workers, 1);
1753 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1754 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1755 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1756 	btrfs_start_workers(&fs_info->endio_meta_workers,
1757 			    fs_info->thread_pool_size);
1758 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1759 			    fs_info->thread_pool_size);
1760 	btrfs_start_workers(&fs_info->endio_write_workers,
1761 			    fs_info->thread_pool_size);
1762 
1763 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1764 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1765 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1766 
1767 	nodesize = btrfs_super_nodesize(disk_super);
1768 	leafsize = btrfs_super_leafsize(disk_super);
1769 	sectorsize = btrfs_super_sectorsize(disk_super);
1770 	stripesize = btrfs_super_stripesize(disk_super);
1771 	tree_root->nodesize = nodesize;
1772 	tree_root->leafsize = leafsize;
1773 	tree_root->sectorsize = sectorsize;
1774 	tree_root->stripesize = stripesize;
1775 
1776 	sb->s_blocksize = sectorsize;
1777 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1778 
1779 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1780 		    sizeof(disk_super->magic))) {
1781 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1782 		goto fail_sb_buffer;
1783 	}
1784 
1785 	mutex_lock(&fs_info->chunk_mutex);
1786 	ret = btrfs_read_sys_array(tree_root);
1787 	mutex_unlock(&fs_info->chunk_mutex);
1788 	if (ret) {
1789 		printk(KERN_WARNING "btrfs: failed to read the system "
1790 		       "array on %s\n", sb->s_id);
1791 		goto fail_sb_buffer;
1792 	}
1793 
1794 	blocksize = btrfs_level_size(tree_root,
1795 				     btrfs_super_chunk_root_level(disk_super));
1796 	generation = btrfs_super_chunk_root_generation(disk_super);
1797 
1798 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1799 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1800 
1801 	chunk_root->node = read_tree_block(chunk_root,
1802 					   btrfs_super_chunk_root(disk_super),
1803 					   blocksize, generation);
1804 	BUG_ON(!chunk_root->node);
1805 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1806 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1807 		       sb->s_id);
1808 		goto fail_chunk_root;
1809 	}
1810 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1811 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1812 
1813 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1814 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1815 	   BTRFS_UUID_SIZE);
1816 
1817 	mutex_lock(&fs_info->chunk_mutex);
1818 	ret = btrfs_read_chunk_tree(chunk_root);
1819 	mutex_unlock(&fs_info->chunk_mutex);
1820 	if (ret) {
1821 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1822 		       sb->s_id);
1823 		goto fail_chunk_root;
1824 	}
1825 
1826 	btrfs_close_extra_devices(fs_devices);
1827 
1828 	blocksize = btrfs_level_size(tree_root,
1829 				     btrfs_super_root_level(disk_super));
1830 	generation = btrfs_super_generation(disk_super);
1831 
1832 	tree_root->node = read_tree_block(tree_root,
1833 					  btrfs_super_root(disk_super),
1834 					  blocksize, generation);
1835 	if (!tree_root->node)
1836 		goto fail_chunk_root;
1837 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1838 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1839 		       sb->s_id);
1840 		goto fail_tree_root;
1841 	}
1842 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1843 	tree_root->commit_root = btrfs_root_node(tree_root);
1844 
1845 	ret = find_and_setup_root(tree_root, fs_info,
1846 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1847 	if (ret)
1848 		goto fail_tree_root;
1849 	extent_root->track_dirty = 1;
1850 
1851 	ret = find_and_setup_root(tree_root, fs_info,
1852 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1853 	if (ret)
1854 		goto fail_extent_root;
1855 	dev_root->track_dirty = 1;
1856 
1857 	ret = find_and_setup_root(tree_root, fs_info,
1858 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1859 	if (ret)
1860 		goto fail_dev_root;
1861 
1862 	csum_root->track_dirty = 1;
1863 
1864 	btrfs_read_block_groups(extent_root);
1865 
1866 	fs_info->generation = generation;
1867 	fs_info->last_trans_committed = generation;
1868 	fs_info->data_alloc_profile = (u64)-1;
1869 	fs_info->metadata_alloc_profile = (u64)-1;
1870 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1871 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1872 					       "btrfs-cleaner");
1873 	if (IS_ERR(fs_info->cleaner_kthread))
1874 		goto fail_csum_root;
1875 
1876 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1877 						   tree_root,
1878 						   "btrfs-transaction");
1879 	if (IS_ERR(fs_info->transaction_kthread))
1880 		goto fail_cleaner;
1881 
1882 	if (!btrfs_test_opt(tree_root, SSD) &&
1883 	    !btrfs_test_opt(tree_root, NOSSD) &&
1884 	    !fs_info->fs_devices->rotating) {
1885 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1886 		       "mode\n");
1887 		btrfs_set_opt(fs_info->mount_opt, SSD);
1888 	}
1889 
1890 	if (btrfs_super_log_root(disk_super) != 0) {
1891 		u64 bytenr = btrfs_super_log_root(disk_super);
1892 
1893 		if (fs_devices->rw_devices == 0) {
1894 			printk(KERN_WARNING "Btrfs log replay required "
1895 			       "on RO media\n");
1896 			err = -EIO;
1897 			goto fail_trans_kthread;
1898 		}
1899 		blocksize =
1900 		     btrfs_level_size(tree_root,
1901 				      btrfs_super_log_root_level(disk_super));
1902 
1903 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1904 						      GFP_NOFS);
1905 
1906 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1907 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1908 
1909 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1910 						      blocksize,
1911 						      generation + 1);
1912 		ret = btrfs_recover_log_trees(log_tree_root);
1913 		BUG_ON(ret);
1914 
1915 		if (sb->s_flags & MS_RDONLY) {
1916 			ret =  btrfs_commit_super(tree_root);
1917 			BUG_ON(ret);
1918 		}
1919 	}
1920 
1921 	if (!(sb->s_flags & MS_RDONLY)) {
1922 		ret = btrfs_recover_relocation(tree_root);
1923 		BUG_ON(ret);
1924 	}
1925 
1926 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1927 	location.type = BTRFS_ROOT_ITEM_KEY;
1928 	location.offset = (u64)-1;
1929 
1930 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1931 	if (!fs_info->fs_root)
1932 		goto fail_trans_kthread;
1933 
1934 	return tree_root;
1935 
1936 fail_trans_kthread:
1937 	kthread_stop(fs_info->transaction_kthread);
1938 fail_cleaner:
1939 	kthread_stop(fs_info->cleaner_kthread);
1940 
1941 	/*
1942 	 * make sure we're done with the btree inode before we stop our
1943 	 * kthreads
1944 	 */
1945 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1946 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1947 
1948 fail_csum_root:
1949 	free_extent_buffer(csum_root->node);
1950 	free_extent_buffer(csum_root->commit_root);
1951 fail_dev_root:
1952 	free_extent_buffer(dev_root->node);
1953 	free_extent_buffer(dev_root->commit_root);
1954 fail_extent_root:
1955 	free_extent_buffer(extent_root->node);
1956 	free_extent_buffer(extent_root->commit_root);
1957 fail_tree_root:
1958 	free_extent_buffer(tree_root->node);
1959 	free_extent_buffer(tree_root->commit_root);
1960 fail_chunk_root:
1961 	free_extent_buffer(chunk_root->node);
1962 	free_extent_buffer(chunk_root->commit_root);
1963 fail_sb_buffer:
1964 	btrfs_stop_workers(&fs_info->fixup_workers);
1965 	btrfs_stop_workers(&fs_info->delalloc_workers);
1966 	btrfs_stop_workers(&fs_info->workers);
1967 	btrfs_stop_workers(&fs_info->endio_workers);
1968 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1969 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1970 	btrfs_stop_workers(&fs_info->endio_write_workers);
1971 	btrfs_stop_workers(&fs_info->submit_workers);
1972 fail_iput:
1973 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1974 	iput(fs_info->btree_inode);
1975 
1976 	btrfs_close_devices(fs_info->fs_devices);
1977 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1978 fail_bdi:
1979 	bdi_destroy(&fs_info->bdi);
1980 fail:
1981 	kfree(extent_root);
1982 	kfree(tree_root);
1983 	kfree(fs_info);
1984 	kfree(chunk_root);
1985 	kfree(dev_root);
1986 	kfree(csum_root);
1987 	return ERR_PTR(err);
1988 }
1989 
1990 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1991 {
1992 	char b[BDEVNAME_SIZE];
1993 
1994 	if (uptodate) {
1995 		set_buffer_uptodate(bh);
1996 	} else {
1997 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1998 			printk(KERN_WARNING "lost page write due to "
1999 					"I/O error on %s\n",
2000 				       bdevname(bh->b_bdev, b));
2001 		}
2002 		/* note, we dont' set_buffer_write_io_error because we have
2003 		 * our own ways of dealing with the IO errors
2004 		 */
2005 		clear_buffer_uptodate(bh);
2006 	}
2007 	unlock_buffer(bh);
2008 	put_bh(bh);
2009 }
2010 
2011 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2012 {
2013 	struct buffer_head *bh;
2014 	struct buffer_head *latest = NULL;
2015 	struct btrfs_super_block *super;
2016 	int i;
2017 	u64 transid = 0;
2018 	u64 bytenr;
2019 
2020 	/* we would like to check all the supers, but that would make
2021 	 * a btrfs mount succeed after a mkfs from a different FS.
2022 	 * So, we need to add a special mount option to scan for
2023 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2024 	 */
2025 	for (i = 0; i < 1; i++) {
2026 		bytenr = btrfs_sb_offset(i);
2027 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2028 			break;
2029 		bh = __bread(bdev, bytenr / 4096, 4096);
2030 		if (!bh)
2031 			continue;
2032 
2033 		super = (struct btrfs_super_block *)bh->b_data;
2034 		if (btrfs_super_bytenr(super) != bytenr ||
2035 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2036 			    sizeof(super->magic))) {
2037 			brelse(bh);
2038 			continue;
2039 		}
2040 
2041 		if (!latest || btrfs_super_generation(super) > transid) {
2042 			brelse(latest);
2043 			latest = bh;
2044 			transid = btrfs_super_generation(super);
2045 		} else {
2046 			brelse(bh);
2047 		}
2048 	}
2049 	return latest;
2050 }
2051 
2052 /*
2053  * this should be called twice, once with wait == 0 and
2054  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2055  * we write are pinned.
2056  *
2057  * They are released when wait == 1 is done.
2058  * max_mirrors must be the same for both runs, and it indicates how
2059  * many supers on this one device should be written.
2060  *
2061  * max_mirrors == 0 means to write them all.
2062  */
2063 static int write_dev_supers(struct btrfs_device *device,
2064 			    struct btrfs_super_block *sb,
2065 			    int do_barriers, int wait, int max_mirrors)
2066 {
2067 	struct buffer_head *bh;
2068 	int i;
2069 	int ret;
2070 	int errors = 0;
2071 	u32 crc;
2072 	u64 bytenr;
2073 	int last_barrier = 0;
2074 
2075 	if (max_mirrors == 0)
2076 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2077 
2078 	/* make sure only the last submit_bh does a barrier */
2079 	if (do_barriers) {
2080 		for (i = 0; i < max_mirrors; i++) {
2081 			bytenr = btrfs_sb_offset(i);
2082 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2083 			    device->total_bytes)
2084 				break;
2085 			last_barrier = i;
2086 		}
2087 	}
2088 
2089 	for (i = 0; i < max_mirrors; i++) {
2090 		bytenr = btrfs_sb_offset(i);
2091 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2092 			break;
2093 
2094 		if (wait) {
2095 			bh = __find_get_block(device->bdev, bytenr / 4096,
2096 					      BTRFS_SUPER_INFO_SIZE);
2097 			BUG_ON(!bh);
2098 			wait_on_buffer(bh);
2099 			if (!buffer_uptodate(bh))
2100 				errors++;
2101 
2102 			/* drop our reference */
2103 			brelse(bh);
2104 
2105 			/* drop the reference from the wait == 0 run */
2106 			brelse(bh);
2107 			continue;
2108 		} else {
2109 			btrfs_set_super_bytenr(sb, bytenr);
2110 
2111 			crc = ~(u32)0;
2112 			crc = btrfs_csum_data(NULL, (char *)sb +
2113 					      BTRFS_CSUM_SIZE, crc,
2114 					      BTRFS_SUPER_INFO_SIZE -
2115 					      BTRFS_CSUM_SIZE);
2116 			btrfs_csum_final(crc, sb->csum);
2117 
2118 			/*
2119 			 * one reference for us, and we leave it for the
2120 			 * caller
2121 			 */
2122 			bh = __getblk(device->bdev, bytenr / 4096,
2123 				      BTRFS_SUPER_INFO_SIZE);
2124 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2125 
2126 			/* one reference for submit_bh */
2127 			get_bh(bh);
2128 
2129 			set_buffer_uptodate(bh);
2130 			lock_buffer(bh);
2131 			bh->b_end_io = btrfs_end_buffer_write_sync;
2132 		}
2133 
2134 		if (i == last_barrier && do_barriers && device->barriers) {
2135 			ret = submit_bh(WRITE_BARRIER, bh);
2136 			if (ret == -EOPNOTSUPP) {
2137 				printk("btrfs: disabling barriers on dev %s\n",
2138 				       device->name);
2139 				set_buffer_uptodate(bh);
2140 				device->barriers = 0;
2141 				/* one reference for submit_bh */
2142 				get_bh(bh);
2143 				lock_buffer(bh);
2144 				ret = submit_bh(WRITE_SYNC, bh);
2145 			}
2146 		} else {
2147 			ret = submit_bh(WRITE_SYNC, bh);
2148 		}
2149 
2150 		if (ret)
2151 			errors++;
2152 	}
2153 	return errors < i ? 0 : -1;
2154 }
2155 
2156 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2157 {
2158 	struct list_head *head;
2159 	struct btrfs_device *dev;
2160 	struct btrfs_super_block *sb;
2161 	struct btrfs_dev_item *dev_item;
2162 	int ret;
2163 	int do_barriers;
2164 	int max_errors;
2165 	int total_errors = 0;
2166 	u64 flags;
2167 
2168 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2169 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2170 
2171 	sb = &root->fs_info->super_for_commit;
2172 	dev_item = &sb->dev_item;
2173 
2174 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2175 	head = &root->fs_info->fs_devices->devices;
2176 	list_for_each_entry(dev, head, dev_list) {
2177 		if (!dev->bdev) {
2178 			total_errors++;
2179 			continue;
2180 		}
2181 		if (!dev->in_fs_metadata || !dev->writeable)
2182 			continue;
2183 
2184 		btrfs_set_stack_device_generation(dev_item, 0);
2185 		btrfs_set_stack_device_type(dev_item, dev->type);
2186 		btrfs_set_stack_device_id(dev_item, dev->devid);
2187 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2188 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2189 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2190 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2191 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2192 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2193 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2194 
2195 		flags = btrfs_super_flags(sb);
2196 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2197 
2198 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2199 		if (ret)
2200 			total_errors++;
2201 	}
2202 	if (total_errors > max_errors) {
2203 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2204 		       total_errors);
2205 		BUG();
2206 	}
2207 
2208 	total_errors = 0;
2209 	list_for_each_entry(dev, head, dev_list) {
2210 		if (!dev->bdev)
2211 			continue;
2212 		if (!dev->in_fs_metadata || !dev->writeable)
2213 			continue;
2214 
2215 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2216 		if (ret)
2217 			total_errors++;
2218 	}
2219 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2220 	if (total_errors > max_errors) {
2221 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2222 		       total_errors);
2223 		BUG();
2224 	}
2225 	return 0;
2226 }
2227 
2228 int write_ctree_super(struct btrfs_trans_handle *trans,
2229 		      struct btrfs_root *root, int max_mirrors)
2230 {
2231 	int ret;
2232 
2233 	ret = write_all_supers(root, max_mirrors);
2234 	return ret;
2235 }
2236 
2237 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2238 {
2239 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2240 	radix_tree_delete(&fs_info->fs_roots_radix,
2241 			  (unsigned long)root->root_key.objectid);
2242 	if (root->anon_super.s_dev) {
2243 		down_write(&root->anon_super.s_umount);
2244 		kill_anon_super(&root->anon_super);
2245 	}
2246 	if (root->node)
2247 		free_extent_buffer(root->node);
2248 	if (root->commit_root)
2249 		free_extent_buffer(root->commit_root);
2250 	kfree(root->name);
2251 	kfree(root);
2252 	return 0;
2253 }
2254 
2255 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2256 {
2257 	int ret;
2258 	struct btrfs_root *gang[8];
2259 	int i;
2260 
2261 	while (1) {
2262 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2263 					     (void **)gang, 0,
2264 					     ARRAY_SIZE(gang));
2265 		if (!ret)
2266 			break;
2267 		for (i = 0; i < ret; i++)
2268 			btrfs_free_fs_root(fs_info, gang[i]);
2269 	}
2270 	return 0;
2271 }
2272 
2273 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2274 {
2275 	u64 root_objectid = 0;
2276 	struct btrfs_root *gang[8];
2277 	int i;
2278 	int ret;
2279 
2280 	while (1) {
2281 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2282 					     (void **)gang, root_objectid,
2283 					     ARRAY_SIZE(gang));
2284 		if (!ret)
2285 			break;
2286 
2287 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2288 		for (i = 0; i < ret; i++) {
2289 			root_objectid = gang[i]->root_key.objectid;
2290 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2291 						    root_objectid);
2292 			BUG_ON(ret);
2293 			btrfs_orphan_cleanup(gang[i]);
2294 		}
2295 		root_objectid++;
2296 	}
2297 	return 0;
2298 }
2299 
2300 int btrfs_commit_super(struct btrfs_root *root)
2301 {
2302 	struct btrfs_trans_handle *trans;
2303 	int ret;
2304 
2305 	mutex_lock(&root->fs_info->cleaner_mutex);
2306 	btrfs_clean_old_snapshots(root);
2307 	mutex_unlock(&root->fs_info->cleaner_mutex);
2308 	trans = btrfs_start_transaction(root, 1);
2309 	ret = btrfs_commit_transaction(trans, root);
2310 	BUG_ON(ret);
2311 	/* run commit again to drop the original snapshot */
2312 	trans = btrfs_start_transaction(root, 1);
2313 	btrfs_commit_transaction(trans, root);
2314 	ret = btrfs_write_and_wait_transaction(NULL, root);
2315 	BUG_ON(ret);
2316 
2317 	ret = write_ctree_super(NULL, root, 0);
2318 	return ret;
2319 }
2320 
2321 int close_ctree(struct btrfs_root *root)
2322 {
2323 	struct btrfs_fs_info *fs_info = root->fs_info;
2324 	int ret;
2325 
2326 	fs_info->closing = 1;
2327 	smp_mb();
2328 
2329 	kthread_stop(root->fs_info->transaction_kthread);
2330 	kthread_stop(root->fs_info->cleaner_kthread);
2331 
2332 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2333 		ret =  btrfs_commit_super(root);
2334 		if (ret)
2335 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2336 	}
2337 
2338 	fs_info->closing = 2;
2339 	smp_mb();
2340 
2341 	if (fs_info->delalloc_bytes) {
2342 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2343 		       (unsigned long long)fs_info->delalloc_bytes);
2344 	}
2345 	if (fs_info->total_ref_cache_size) {
2346 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2347 		       (unsigned long long)fs_info->total_ref_cache_size);
2348 	}
2349 
2350 	free_extent_buffer(fs_info->extent_root->node);
2351 	free_extent_buffer(fs_info->extent_root->commit_root);
2352 	free_extent_buffer(fs_info->tree_root->node);
2353 	free_extent_buffer(fs_info->tree_root->commit_root);
2354 	free_extent_buffer(root->fs_info->chunk_root->node);
2355 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2356 	free_extent_buffer(root->fs_info->dev_root->node);
2357 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2358 	free_extent_buffer(root->fs_info->csum_root->node);
2359 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2360 
2361 	btrfs_free_block_groups(root->fs_info);
2362 	btrfs_free_pinned_extents(root->fs_info);
2363 
2364 	del_fs_roots(fs_info);
2365 
2366 	iput(fs_info->btree_inode);
2367 
2368 	btrfs_stop_workers(&fs_info->fixup_workers);
2369 	btrfs_stop_workers(&fs_info->delalloc_workers);
2370 	btrfs_stop_workers(&fs_info->workers);
2371 	btrfs_stop_workers(&fs_info->endio_workers);
2372 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2373 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2374 	btrfs_stop_workers(&fs_info->endio_write_workers);
2375 	btrfs_stop_workers(&fs_info->submit_workers);
2376 
2377 	btrfs_close_devices(fs_info->fs_devices);
2378 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2379 
2380 	bdi_destroy(&fs_info->bdi);
2381 
2382 	kfree(fs_info->extent_root);
2383 	kfree(fs_info->tree_root);
2384 	kfree(fs_info->chunk_root);
2385 	kfree(fs_info->dev_root);
2386 	kfree(fs_info->csum_root);
2387 	return 0;
2388 }
2389 
2390 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2391 {
2392 	int ret;
2393 	struct inode *btree_inode = buf->first_page->mapping->host;
2394 
2395 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2396 	if (!ret)
2397 		return ret;
2398 
2399 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2400 				    parent_transid);
2401 	return !ret;
2402 }
2403 
2404 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2405 {
2406 	struct inode *btree_inode = buf->first_page->mapping->host;
2407 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2408 					  buf);
2409 }
2410 
2411 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2412 {
2413 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2414 	u64 transid = btrfs_header_generation(buf);
2415 	struct inode *btree_inode = root->fs_info->btree_inode;
2416 	int was_dirty;
2417 
2418 	btrfs_assert_tree_locked(buf);
2419 	if (transid != root->fs_info->generation) {
2420 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2421 		       "found %llu running %llu\n",
2422 			(unsigned long long)buf->start,
2423 			(unsigned long long)transid,
2424 			(unsigned long long)root->fs_info->generation);
2425 		WARN_ON(1);
2426 	}
2427 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2428 					    buf);
2429 	if (!was_dirty) {
2430 		spin_lock(&root->fs_info->delalloc_lock);
2431 		root->fs_info->dirty_metadata_bytes += buf->len;
2432 		spin_unlock(&root->fs_info->delalloc_lock);
2433 	}
2434 }
2435 
2436 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2437 {
2438 	/*
2439 	 * looks as though older kernels can get into trouble with
2440 	 * this code, they end up stuck in balance_dirty_pages forever
2441 	 */
2442 	u64 num_dirty;
2443 	unsigned long thresh = 32 * 1024 * 1024;
2444 
2445 	if (current->flags & PF_MEMALLOC)
2446 		return;
2447 
2448 	num_dirty = root->fs_info->dirty_metadata_bytes;
2449 
2450 	if (num_dirty > thresh) {
2451 		balance_dirty_pages_ratelimited_nr(
2452 				   root->fs_info->btree_inode->i_mapping, 1);
2453 	}
2454 	return;
2455 }
2456 
2457 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2458 {
2459 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2460 	int ret;
2461 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2462 	if (ret == 0)
2463 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2464 	return ret;
2465 }
2466 
2467 int btree_lock_page_hook(struct page *page)
2468 {
2469 	struct inode *inode = page->mapping->host;
2470 	struct btrfs_root *root = BTRFS_I(inode)->root;
2471 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2472 	struct extent_buffer *eb;
2473 	unsigned long len;
2474 	u64 bytenr = page_offset(page);
2475 
2476 	if (page->private == EXTENT_PAGE_PRIVATE)
2477 		goto out;
2478 
2479 	len = page->private >> 2;
2480 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2481 	if (!eb)
2482 		goto out;
2483 
2484 	btrfs_tree_lock(eb);
2485 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2486 
2487 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2488 		spin_lock(&root->fs_info->delalloc_lock);
2489 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2490 			root->fs_info->dirty_metadata_bytes -= eb->len;
2491 		else
2492 			WARN_ON(1);
2493 		spin_unlock(&root->fs_info->delalloc_lock);
2494 	}
2495 
2496 	btrfs_tree_unlock(eb);
2497 	free_extent_buffer(eb);
2498 out:
2499 	lock_page(page);
2500 	return 0;
2501 }
2502 
2503 static struct extent_io_ops btree_extent_io_ops = {
2504 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2505 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2506 	.submit_bio_hook = btree_submit_bio_hook,
2507 	/* note we're sharing with inode.c for the merge bio hook */
2508 	.merge_bio_hook = btrfs_merge_bio_hook,
2509 };
2510