1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include "compat.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "tree-log.h" 40 #include "free-space-cache.h" 41 42 static struct extent_io_ops btree_extent_io_ops; 43 static void end_workqueue_fn(struct btrfs_work *work); 44 45 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0); 46 47 /* 48 * end_io_wq structs are used to do processing in task context when an IO is 49 * complete. This is used during reads to verify checksums, and it is used 50 * by writes to insert metadata for new file extents after IO is complete. 51 */ 52 struct end_io_wq { 53 struct bio *bio; 54 bio_end_io_t *end_io; 55 void *private; 56 struct btrfs_fs_info *info; 57 int error; 58 int metadata; 59 struct list_head list; 60 struct btrfs_work work; 61 }; 62 63 /* 64 * async submit bios are used to offload expensive checksumming 65 * onto the worker threads. They checksum file and metadata bios 66 * just before they are sent down the IO stack. 67 */ 68 struct async_submit_bio { 69 struct inode *inode; 70 struct bio *bio; 71 struct list_head list; 72 extent_submit_bio_hook_t *submit_bio_start; 73 extent_submit_bio_hook_t *submit_bio_done; 74 int rw; 75 int mirror_num; 76 unsigned long bio_flags; 77 struct btrfs_work work; 78 }; 79 80 /* These are used to set the lockdep class on the extent buffer locks. 81 * The class is set by the readpage_end_io_hook after the buffer has 82 * passed csum validation but before the pages are unlocked. 83 * 84 * The lockdep class is also set by btrfs_init_new_buffer on freshly 85 * allocated blocks. 86 * 87 * The class is based on the level in the tree block, which allows lockdep 88 * to know that lower nodes nest inside the locks of higher nodes. 89 * 90 * We also add a check to make sure the highest level of the tree is 91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 92 * code needs update as well. 93 */ 94 #ifdef CONFIG_DEBUG_LOCK_ALLOC 95 # if BTRFS_MAX_LEVEL != 8 96 # error 97 # endif 98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 100 /* leaf */ 101 "btrfs-extent-00", 102 "btrfs-extent-01", 103 "btrfs-extent-02", 104 "btrfs-extent-03", 105 "btrfs-extent-04", 106 "btrfs-extent-05", 107 "btrfs-extent-06", 108 "btrfs-extent-07", 109 /* highest possible level */ 110 "btrfs-extent-08", 111 }; 112 #endif 113 114 /* 115 * extents on the btree inode are pretty simple, there's one extent 116 * that covers the entire device 117 */ 118 static struct extent_map *btree_get_extent(struct inode *inode, 119 struct page *page, size_t page_offset, u64 start, u64 len, 120 int create) 121 { 122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 123 struct extent_map *em; 124 int ret; 125 126 spin_lock(&em_tree->lock); 127 em = lookup_extent_mapping(em_tree, start, len); 128 if (em) { 129 em->bdev = 130 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 131 spin_unlock(&em_tree->lock); 132 goto out; 133 } 134 spin_unlock(&em_tree->lock); 135 136 em = alloc_extent_map(GFP_NOFS); 137 if (!em) { 138 em = ERR_PTR(-ENOMEM); 139 goto out; 140 } 141 em->start = 0; 142 em->len = (u64)-1; 143 em->block_len = (u64)-1; 144 em->block_start = 0; 145 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 146 147 spin_lock(&em_tree->lock); 148 ret = add_extent_mapping(em_tree, em); 149 if (ret == -EEXIST) { 150 u64 failed_start = em->start; 151 u64 failed_len = em->len; 152 153 free_extent_map(em); 154 em = lookup_extent_mapping(em_tree, start, len); 155 if (em) { 156 ret = 0; 157 } else { 158 em = lookup_extent_mapping(em_tree, failed_start, 159 failed_len); 160 ret = -EIO; 161 } 162 } else if (ret) { 163 free_extent_map(em); 164 em = NULL; 165 } 166 spin_unlock(&em_tree->lock); 167 168 if (ret) 169 em = ERR_PTR(ret); 170 out: 171 return em; 172 } 173 174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 175 { 176 return crc32c(seed, data, len); 177 } 178 179 void btrfs_csum_final(u32 crc, char *result) 180 { 181 *(__le32 *)result = ~cpu_to_le32(crc); 182 } 183 184 /* 185 * compute the csum for a btree block, and either verify it or write it 186 * into the csum field of the block. 187 */ 188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 189 int verify) 190 { 191 u16 csum_size = 192 btrfs_super_csum_size(&root->fs_info->super_copy); 193 char *result = NULL; 194 unsigned long len; 195 unsigned long cur_len; 196 unsigned long offset = BTRFS_CSUM_SIZE; 197 char *map_token = NULL; 198 char *kaddr; 199 unsigned long map_start; 200 unsigned long map_len; 201 int err; 202 u32 crc = ~(u32)0; 203 unsigned long inline_result; 204 205 len = buf->len - offset; 206 while (len > 0) { 207 err = map_private_extent_buffer(buf, offset, 32, 208 &map_token, &kaddr, 209 &map_start, &map_len, KM_USER0); 210 if (err) 211 return 1; 212 cur_len = min(len, map_len - (offset - map_start)); 213 crc = btrfs_csum_data(root, kaddr + offset - map_start, 214 crc, cur_len); 215 len -= cur_len; 216 offset += cur_len; 217 unmap_extent_buffer(buf, map_token, KM_USER0); 218 } 219 if (csum_size > sizeof(inline_result)) { 220 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 221 if (!result) 222 return 1; 223 } else { 224 result = (char *)&inline_result; 225 } 226 227 btrfs_csum_final(crc, result); 228 229 if (verify) { 230 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 231 u32 val; 232 u32 found = 0; 233 memcpy(&found, result, csum_size); 234 235 read_extent_buffer(buf, &val, 0, csum_size); 236 if (printk_ratelimit()) { 237 printk(KERN_INFO "btrfs: %s checksum verify " 238 "failed on %llu wanted %X found %X " 239 "level %d\n", 240 root->fs_info->sb->s_id, 241 (unsigned long long)buf->start, val, found, 242 btrfs_header_level(buf)); 243 } 244 if (result != (char *)&inline_result) 245 kfree(result); 246 return 1; 247 } 248 } else { 249 write_extent_buffer(buf, result, 0, csum_size); 250 } 251 if (result != (char *)&inline_result) 252 kfree(result); 253 return 0; 254 } 255 256 /* 257 * we can't consider a given block up to date unless the transid of the 258 * block matches the transid in the parent node's pointer. This is how we 259 * detect blocks that either didn't get written at all or got written 260 * in the wrong place. 261 */ 262 static int verify_parent_transid(struct extent_io_tree *io_tree, 263 struct extent_buffer *eb, u64 parent_transid) 264 { 265 int ret; 266 267 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 268 return 0; 269 270 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 271 if (extent_buffer_uptodate(io_tree, eb) && 272 btrfs_header_generation(eb) == parent_transid) { 273 ret = 0; 274 goto out; 275 } 276 if (printk_ratelimit()) { 277 printk("parent transid verify failed on %llu wanted %llu " 278 "found %llu\n", 279 (unsigned long long)eb->start, 280 (unsigned long long)parent_transid, 281 (unsigned long long)btrfs_header_generation(eb)); 282 } 283 ret = 1; 284 clear_extent_buffer_uptodate(io_tree, eb); 285 out: 286 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 287 GFP_NOFS); 288 return ret; 289 } 290 291 /* 292 * helper to read a given tree block, doing retries as required when 293 * the checksums don't match and we have alternate mirrors to try. 294 */ 295 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 296 struct extent_buffer *eb, 297 u64 start, u64 parent_transid) 298 { 299 struct extent_io_tree *io_tree; 300 int ret; 301 int num_copies = 0; 302 int mirror_num = 0; 303 304 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 305 while (1) { 306 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 307 btree_get_extent, mirror_num); 308 if (!ret && 309 !verify_parent_transid(io_tree, eb, parent_transid)) 310 return ret; 311 312 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 313 eb->start, eb->len); 314 if (num_copies == 1) 315 return ret; 316 317 mirror_num++; 318 if (mirror_num > num_copies) 319 return ret; 320 } 321 return -EIO; 322 } 323 324 /* 325 * checksum a dirty tree block before IO. This has extra checks to make sure 326 * we only fill in the checksum field in the first page of a multi-page block 327 */ 328 329 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 330 { 331 struct extent_io_tree *tree; 332 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 333 u64 found_start; 334 int found_level; 335 unsigned long len; 336 struct extent_buffer *eb; 337 int ret; 338 339 tree = &BTRFS_I(page->mapping->host)->io_tree; 340 341 if (page->private == EXTENT_PAGE_PRIVATE) 342 goto out; 343 if (!page->private) 344 goto out; 345 len = page->private >> 2; 346 WARN_ON(len == 0); 347 348 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 349 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 350 btrfs_header_generation(eb)); 351 BUG_ON(ret); 352 found_start = btrfs_header_bytenr(eb); 353 if (found_start != start) { 354 WARN_ON(1); 355 goto err; 356 } 357 if (eb->first_page != page) { 358 WARN_ON(1); 359 goto err; 360 } 361 if (!PageUptodate(page)) { 362 WARN_ON(1); 363 goto err; 364 } 365 found_level = btrfs_header_level(eb); 366 367 csum_tree_block(root, eb, 0); 368 err: 369 free_extent_buffer(eb); 370 out: 371 return 0; 372 } 373 374 static int check_tree_block_fsid(struct btrfs_root *root, 375 struct extent_buffer *eb) 376 { 377 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 378 u8 fsid[BTRFS_UUID_SIZE]; 379 int ret = 1; 380 381 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 382 BTRFS_FSID_SIZE); 383 while (fs_devices) { 384 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 385 ret = 0; 386 break; 387 } 388 fs_devices = fs_devices->seed; 389 } 390 return ret; 391 } 392 393 #ifdef CONFIG_DEBUG_LOCK_ALLOC 394 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 395 { 396 lockdep_set_class_and_name(&eb->lock, 397 &btrfs_eb_class[level], 398 btrfs_eb_name[level]); 399 } 400 #endif 401 402 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 403 struct extent_state *state) 404 { 405 struct extent_io_tree *tree; 406 u64 found_start; 407 int found_level; 408 unsigned long len; 409 struct extent_buffer *eb; 410 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 411 int ret = 0; 412 413 tree = &BTRFS_I(page->mapping->host)->io_tree; 414 if (page->private == EXTENT_PAGE_PRIVATE) 415 goto out; 416 if (!page->private) 417 goto out; 418 419 len = page->private >> 2; 420 WARN_ON(len == 0); 421 422 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 423 424 found_start = btrfs_header_bytenr(eb); 425 if (found_start != start) { 426 if (printk_ratelimit()) { 427 printk(KERN_INFO "btrfs bad tree block start " 428 "%llu %llu\n", 429 (unsigned long long)found_start, 430 (unsigned long long)eb->start); 431 } 432 ret = -EIO; 433 goto err; 434 } 435 if (eb->first_page != page) { 436 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 437 eb->first_page->index, page->index); 438 WARN_ON(1); 439 ret = -EIO; 440 goto err; 441 } 442 if (check_tree_block_fsid(root, eb)) { 443 if (printk_ratelimit()) { 444 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 445 (unsigned long long)eb->start); 446 } 447 ret = -EIO; 448 goto err; 449 } 450 found_level = btrfs_header_level(eb); 451 452 btrfs_set_buffer_lockdep_class(eb, found_level); 453 454 ret = csum_tree_block(root, eb, 1); 455 if (ret) 456 ret = -EIO; 457 458 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 459 end = eb->start + end - 1; 460 err: 461 free_extent_buffer(eb); 462 out: 463 return ret; 464 } 465 466 static void end_workqueue_bio(struct bio *bio, int err) 467 { 468 struct end_io_wq *end_io_wq = bio->bi_private; 469 struct btrfs_fs_info *fs_info; 470 471 fs_info = end_io_wq->info; 472 end_io_wq->error = err; 473 end_io_wq->work.func = end_workqueue_fn; 474 end_io_wq->work.flags = 0; 475 476 if (bio->bi_rw & (1 << BIO_RW)) { 477 if (end_io_wq->metadata) 478 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 479 &end_io_wq->work); 480 else 481 btrfs_queue_worker(&fs_info->endio_write_workers, 482 &end_io_wq->work); 483 } else { 484 if (end_io_wq->metadata) 485 btrfs_queue_worker(&fs_info->endio_meta_workers, 486 &end_io_wq->work); 487 else 488 btrfs_queue_worker(&fs_info->endio_workers, 489 &end_io_wq->work); 490 } 491 } 492 493 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 494 int metadata) 495 { 496 struct end_io_wq *end_io_wq; 497 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 498 if (!end_io_wq) 499 return -ENOMEM; 500 501 end_io_wq->private = bio->bi_private; 502 end_io_wq->end_io = bio->bi_end_io; 503 end_io_wq->info = info; 504 end_io_wq->error = 0; 505 end_io_wq->bio = bio; 506 end_io_wq->metadata = metadata; 507 508 bio->bi_private = end_io_wq; 509 bio->bi_end_io = end_workqueue_bio; 510 return 0; 511 } 512 513 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 514 { 515 unsigned long limit = min_t(unsigned long, 516 info->workers.max_workers, 517 info->fs_devices->open_devices); 518 return 256 * limit; 519 } 520 521 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 522 { 523 return atomic_read(&info->nr_async_bios) > 524 btrfs_async_submit_limit(info); 525 } 526 527 static void run_one_async_start(struct btrfs_work *work) 528 { 529 struct btrfs_fs_info *fs_info; 530 struct async_submit_bio *async; 531 532 async = container_of(work, struct async_submit_bio, work); 533 fs_info = BTRFS_I(async->inode)->root->fs_info; 534 async->submit_bio_start(async->inode, async->rw, async->bio, 535 async->mirror_num, async->bio_flags); 536 } 537 538 static void run_one_async_done(struct btrfs_work *work) 539 { 540 struct btrfs_fs_info *fs_info; 541 struct async_submit_bio *async; 542 int limit; 543 544 async = container_of(work, struct async_submit_bio, work); 545 fs_info = BTRFS_I(async->inode)->root->fs_info; 546 547 limit = btrfs_async_submit_limit(fs_info); 548 limit = limit * 2 / 3; 549 550 atomic_dec(&fs_info->nr_async_submits); 551 552 if (atomic_read(&fs_info->nr_async_submits) < limit && 553 waitqueue_active(&fs_info->async_submit_wait)) 554 wake_up(&fs_info->async_submit_wait); 555 556 async->submit_bio_done(async->inode, async->rw, async->bio, 557 async->mirror_num, async->bio_flags); 558 } 559 560 static void run_one_async_free(struct btrfs_work *work) 561 { 562 struct async_submit_bio *async; 563 564 async = container_of(work, struct async_submit_bio, work); 565 kfree(async); 566 } 567 568 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 569 int rw, struct bio *bio, int mirror_num, 570 unsigned long bio_flags, 571 extent_submit_bio_hook_t *submit_bio_start, 572 extent_submit_bio_hook_t *submit_bio_done) 573 { 574 struct async_submit_bio *async; 575 576 async = kmalloc(sizeof(*async), GFP_NOFS); 577 if (!async) 578 return -ENOMEM; 579 580 async->inode = inode; 581 async->rw = rw; 582 async->bio = bio; 583 async->mirror_num = mirror_num; 584 async->submit_bio_start = submit_bio_start; 585 async->submit_bio_done = submit_bio_done; 586 587 async->work.func = run_one_async_start; 588 async->work.ordered_func = run_one_async_done; 589 async->work.ordered_free = run_one_async_free; 590 591 async->work.flags = 0; 592 async->bio_flags = bio_flags; 593 594 atomic_inc(&fs_info->nr_async_submits); 595 596 if (rw & (1 << BIO_RW_SYNCIO)) 597 btrfs_set_work_high_prio(&async->work); 598 599 btrfs_queue_worker(&fs_info->workers, &async->work); 600 601 while (atomic_read(&fs_info->async_submit_draining) && 602 atomic_read(&fs_info->nr_async_submits)) { 603 wait_event(fs_info->async_submit_wait, 604 (atomic_read(&fs_info->nr_async_submits) == 0)); 605 } 606 607 return 0; 608 } 609 610 static int btree_csum_one_bio(struct bio *bio) 611 { 612 struct bio_vec *bvec = bio->bi_io_vec; 613 int bio_index = 0; 614 struct btrfs_root *root; 615 616 WARN_ON(bio->bi_vcnt <= 0); 617 while (bio_index < bio->bi_vcnt) { 618 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 619 csum_dirty_buffer(root, bvec->bv_page); 620 bio_index++; 621 bvec++; 622 } 623 return 0; 624 } 625 626 static int __btree_submit_bio_start(struct inode *inode, int rw, 627 struct bio *bio, int mirror_num, 628 unsigned long bio_flags) 629 { 630 /* 631 * when we're called for a write, we're already in the async 632 * submission context. Just jump into btrfs_map_bio 633 */ 634 btree_csum_one_bio(bio); 635 return 0; 636 } 637 638 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 639 int mirror_num, unsigned long bio_flags) 640 { 641 /* 642 * when we're called for a write, we're already in the async 643 * submission context. Just jump into btrfs_map_bio 644 */ 645 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 646 } 647 648 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 649 int mirror_num, unsigned long bio_flags) 650 { 651 int ret; 652 653 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 654 bio, 1); 655 BUG_ON(ret); 656 657 if (!(rw & (1 << BIO_RW))) { 658 /* 659 * called for a read, do the setup so that checksum validation 660 * can happen in the async kernel threads 661 */ 662 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 663 mirror_num, 0); 664 } 665 666 /* 667 * kthread helpers are used to submit writes so that checksumming 668 * can happen in parallel across all CPUs 669 */ 670 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 671 inode, rw, bio, mirror_num, 0, 672 __btree_submit_bio_start, 673 __btree_submit_bio_done); 674 } 675 676 static int btree_writepage(struct page *page, struct writeback_control *wbc) 677 { 678 struct extent_io_tree *tree; 679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 680 struct extent_buffer *eb; 681 int was_dirty; 682 683 tree = &BTRFS_I(page->mapping->host)->io_tree; 684 if (!(current->flags & PF_MEMALLOC)) { 685 return extent_write_full_page(tree, page, 686 btree_get_extent, wbc); 687 } 688 689 redirty_page_for_writepage(wbc, page); 690 eb = btrfs_find_tree_block(root, page_offset(page), 691 PAGE_CACHE_SIZE); 692 WARN_ON(!eb); 693 694 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 695 if (!was_dirty) { 696 spin_lock(&root->fs_info->delalloc_lock); 697 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 698 spin_unlock(&root->fs_info->delalloc_lock); 699 } 700 free_extent_buffer(eb); 701 702 unlock_page(page); 703 return 0; 704 } 705 706 static int btree_writepages(struct address_space *mapping, 707 struct writeback_control *wbc) 708 { 709 struct extent_io_tree *tree; 710 tree = &BTRFS_I(mapping->host)->io_tree; 711 if (wbc->sync_mode == WB_SYNC_NONE) { 712 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 713 u64 num_dirty; 714 unsigned long thresh = 32 * 1024 * 1024; 715 716 if (wbc->for_kupdate) 717 return 0; 718 719 /* this is a bit racy, but that's ok */ 720 num_dirty = root->fs_info->dirty_metadata_bytes; 721 if (num_dirty < thresh) 722 return 0; 723 } 724 return extent_writepages(tree, mapping, btree_get_extent, wbc); 725 } 726 727 static int btree_readpage(struct file *file, struct page *page) 728 { 729 struct extent_io_tree *tree; 730 tree = &BTRFS_I(page->mapping->host)->io_tree; 731 return extent_read_full_page(tree, page, btree_get_extent); 732 } 733 734 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 735 { 736 struct extent_io_tree *tree; 737 struct extent_map_tree *map; 738 int ret; 739 740 if (PageWriteback(page) || PageDirty(page)) 741 return 0; 742 743 tree = &BTRFS_I(page->mapping->host)->io_tree; 744 map = &BTRFS_I(page->mapping->host)->extent_tree; 745 746 ret = try_release_extent_state(map, tree, page, gfp_flags); 747 if (!ret) 748 return 0; 749 750 ret = try_release_extent_buffer(tree, page); 751 if (ret == 1) { 752 ClearPagePrivate(page); 753 set_page_private(page, 0); 754 page_cache_release(page); 755 } 756 757 return ret; 758 } 759 760 static void btree_invalidatepage(struct page *page, unsigned long offset) 761 { 762 struct extent_io_tree *tree; 763 tree = &BTRFS_I(page->mapping->host)->io_tree; 764 extent_invalidatepage(tree, page, offset); 765 btree_releasepage(page, GFP_NOFS); 766 if (PagePrivate(page)) { 767 printk(KERN_WARNING "btrfs warning page private not zero " 768 "on page %llu\n", (unsigned long long)page_offset(page)); 769 ClearPagePrivate(page); 770 set_page_private(page, 0); 771 page_cache_release(page); 772 } 773 } 774 775 static struct address_space_operations btree_aops = { 776 .readpage = btree_readpage, 777 .writepage = btree_writepage, 778 .writepages = btree_writepages, 779 .releasepage = btree_releasepage, 780 .invalidatepage = btree_invalidatepage, 781 .sync_page = block_sync_page, 782 }; 783 784 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 785 u64 parent_transid) 786 { 787 struct extent_buffer *buf = NULL; 788 struct inode *btree_inode = root->fs_info->btree_inode; 789 int ret = 0; 790 791 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 792 if (!buf) 793 return 0; 794 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 795 buf, 0, 0, btree_get_extent, 0); 796 free_extent_buffer(buf); 797 return ret; 798 } 799 800 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 801 u64 bytenr, u32 blocksize) 802 { 803 struct inode *btree_inode = root->fs_info->btree_inode; 804 struct extent_buffer *eb; 805 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 806 bytenr, blocksize, GFP_NOFS); 807 return eb; 808 } 809 810 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 811 u64 bytenr, u32 blocksize) 812 { 813 struct inode *btree_inode = root->fs_info->btree_inode; 814 struct extent_buffer *eb; 815 816 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 817 bytenr, blocksize, NULL, GFP_NOFS); 818 return eb; 819 } 820 821 822 int btrfs_write_tree_block(struct extent_buffer *buf) 823 { 824 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 825 buf->start + buf->len - 1, WB_SYNC_ALL); 826 } 827 828 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 829 { 830 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 831 buf->start, buf->start + buf->len - 1); 832 } 833 834 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 835 u32 blocksize, u64 parent_transid) 836 { 837 struct extent_buffer *buf = NULL; 838 struct inode *btree_inode = root->fs_info->btree_inode; 839 struct extent_io_tree *io_tree; 840 int ret; 841 842 io_tree = &BTRFS_I(btree_inode)->io_tree; 843 844 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 845 if (!buf) 846 return NULL; 847 848 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 849 850 if (ret == 0) 851 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 852 return buf; 853 854 } 855 856 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 857 struct extent_buffer *buf) 858 { 859 struct inode *btree_inode = root->fs_info->btree_inode; 860 if (btrfs_header_generation(buf) == 861 root->fs_info->running_transaction->transid) { 862 btrfs_assert_tree_locked(buf); 863 864 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 865 spin_lock(&root->fs_info->delalloc_lock); 866 if (root->fs_info->dirty_metadata_bytes >= buf->len) 867 root->fs_info->dirty_metadata_bytes -= buf->len; 868 else 869 WARN_ON(1); 870 spin_unlock(&root->fs_info->delalloc_lock); 871 } 872 873 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 874 btrfs_set_lock_blocking(buf); 875 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 876 buf); 877 } 878 return 0; 879 } 880 881 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 882 u32 stripesize, struct btrfs_root *root, 883 struct btrfs_fs_info *fs_info, 884 u64 objectid) 885 { 886 root->node = NULL; 887 root->commit_root = NULL; 888 root->sectorsize = sectorsize; 889 root->nodesize = nodesize; 890 root->leafsize = leafsize; 891 root->stripesize = stripesize; 892 root->ref_cows = 0; 893 root->track_dirty = 0; 894 895 root->fs_info = fs_info; 896 root->objectid = objectid; 897 root->last_trans = 0; 898 root->highest_inode = 0; 899 root->last_inode_alloc = 0; 900 root->name = NULL; 901 root->in_sysfs = 0; 902 root->inode_tree.rb_node = NULL; 903 904 INIT_LIST_HEAD(&root->dirty_list); 905 INIT_LIST_HEAD(&root->orphan_list); 906 INIT_LIST_HEAD(&root->root_list); 907 spin_lock_init(&root->node_lock); 908 spin_lock_init(&root->list_lock); 909 spin_lock_init(&root->inode_lock); 910 mutex_init(&root->objectid_mutex); 911 mutex_init(&root->log_mutex); 912 init_waitqueue_head(&root->log_writer_wait); 913 init_waitqueue_head(&root->log_commit_wait[0]); 914 init_waitqueue_head(&root->log_commit_wait[1]); 915 atomic_set(&root->log_commit[0], 0); 916 atomic_set(&root->log_commit[1], 0); 917 atomic_set(&root->log_writers, 0); 918 root->log_batch = 0; 919 root->log_transid = 0; 920 extent_io_tree_init(&root->dirty_log_pages, 921 fs_info->btree_inode->i_mapping, GFP_NOFS); 922 923 memset(&root->root_key, 0, sizeof(root->root_key)); 924 memset(&root->root_item, 0, sizeof(root->root_item)); 925 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 926 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 927 root->defrag_trans_start = fs_info->generation; 928 init_completion(&root->kobj_unregister); 929 root->defrag_running = 0; 930 root->defrag_level = 0; 931 root->root_key.objectid = objectid; 932 root->anon_super.s_root = NULL; 933 root->anon_super.s_dev = 0; 934 INIT_LIST_HEAD(&root->anon_super.s_list); 935 INIT_LIST_HEAD(&root->anon_super.s_instances); 936 init_rwsem(&root->anon_super.s_umount); 937 938 return 0; 939 } 940 941 static int find_and_setup_root(struct btrfs_root *tree_root, 942 struct btrfs_fs_info *fs_info, 943 u64 objectid, 944 struct btrfs_root *root) 945 { 946 int ret; 947 u32 blocksize; 948 u64 generation; 949 950 __setup_root(tree_root->nodesize, tree_root->leafsize, 951 tree_root->sectorsize, tree_root->stripesize, 952 root, fs_info, objectid); 953 ret = btrfs_find_last_root(tree_root, objectid, 954 &root->root_item, &root->root_key); 955 BUG_ON(ret); 956 957 generation = btrfs_root_generation(&root->root_item); 958 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 959 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 960 blocksize, generation); 961 root->commit_root = btrfs_root_node(root); 962 BUG_ON(!root->node); 963 return 0; 964 } 965 966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 967 struct btrfs_fs_info *fs_info) 968 { 969 struct extent_buffer *eb; 970 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 971 u64 start = 0; 972 u64 end = 0; 973 int ret; 974 975 if (!log_root_tree) 976 return 0; 977 978 while (1) { 979 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 980 0, &start, &end, EXTENT_DIRTY); 981 if (ret) 982 break; 983 984 clear_extent_dirty(&log_root_tree->dirty_log_pages, 985 start, end, GFP_NOFS); 986 } 987 eb = fs_info->log_root_tree->node; 988 989 WARN_ON(btrfs_header_level(eb) != 0); 990 WARN_ON(btrfs_header_nritems(eb) != 0); 991 992 ret = btrfs_free_reserved_extent(fs_info->tree_root, 993 eb->start, eb->len); 994 BUG_ON(ret); 995 996 free_extent_buffer(eb); 997 kfree(fs_info->log_root_tree); 998 fs_info->log_root_tree = NULL; 999 return 0; 1000 } 1001 1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1003 struct btrfs_fs_info *fs_info) 1004 { 1005 struct btrfs_root *root; 1006 struct btrfs_root *tree_root = fs_info->tree_root; 1007 struct extent_buffer *leaf; 1008 1009 root = kzalloc(sizeof(*root), GFP_NOFS); 1010 if (!root) 1011 return ERR_PTR(-ENOMEM); 1012 1013 __setup_root(tree_root->nodesize, tree_root->leafsize, 1014 tree_root->sectorsize, tree_root->stripesize, 1015 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1016 1017 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1018 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1019 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1020 /* 1021 * log trees do not get reference counted because they go away 1022 * before a real commit is actually done. They do store pointers 1023 * to file data extents, and those reference counts still get 1024 * updated (along with back refs to the log tree). 1025 */ 1026 root->ref_cows = 0; 1027 1028 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1029 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1030 if (IS_ERR(leaf)) { 1031 kfree(root); 1032 return ERR_CAST(leaf); 1033 } 1034 1035 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1036 btrfs_set_header_bytenr(leaf, leaf->start); 1037 btrfs_set_header_generation(leaf, trans->transid); 1038 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1039 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1040 root->node = leaf; 1041 1042 write_extent_buffer(root->node, root->fs_info->fsid, 1043 (unsigned long)btrfs_header_fsid(root->node), 1044 BTRFS_FSID_SIZE); 1045 btrfs_mark_buffer_dirty(root->node); 1046 btrfs_tree_unlock(root->node); 1047 return root; 1048 } 1049 1050 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1051 struct btrfs_fs_info *fs_info) 1052 { 1053 struct btrfs_root *log_root; 1054 1055 log_root = alloc_log_tree(trans, fs_info); 1056 if (IS_ERR(log_root)) 1057 return PTR_ERR(log_root); 1058 WARN_ON(fs_info->log_root_tree); 1059 fs_info->log_root_tree = log_root; 1060 return 0; 1061 } 1062 1063 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1064 struct btrfs_root *root) 1065 { 1066 struct btrfs_root *log_root; 1067 struct btrfs_inode_item *inode_item; 1068 1069 log_root = alloc_log_tree(trans, root->fs_info); 1070 if (IS_ERR(log_root)) 1071 return PTR_ERR(log_root); 1072 1073 log_root->last_trans = trans->transid; 1074 log_root->root_key.offset = root->root_key.objectid; 1075 1076 inode_item = &log_root->root_item.inode; 1077 inode_item->generation = cpu_to_le64(1); 1078 inode_item->size = cpu_to_le64(3); 1079 inode_item->nlink = cpu_to_le32(1); 1080 inode_item->nbytes = cpu_to_le64(root->leafsize); 1081 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1082 1083 btrfs_set_root_node(&log_root->root_item, log_root->node); 1084 1085 WARN_ON(root->log_root); 1086 root->log_root = log_root; 1087 root->log_transid = 0; 1088 return 0; 1089 } 1090 1091 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1092 struct btrfs_key *location) 1093 { 1094 struct btrfs_root *root; 1095 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1096 struct btrfs_path *path; 1097 struct extent_buffer *l; 1098 u64 highest_inode; 1099 u64 generation; 1100 u32 blocksize; 1101 int ret = 0; 1102 1103 root = kzalloc(sizeof(*root), GFP_NOFS); 1104 if (!root) 1105 return ERR_PTR(-ENOMEM); 1106 if (location->offset == (u64)-1) { 1107 ret = find_and_setup_root(tree_root, fs_info, 1108 location->objectid, root); 1109 if (ret) { 1110 kfree(root); 1111 return ERR_PTR(ret); 1112 } 1113 goto insert; 1114 } 1115 1116 __setup_root(tree_root->nodesize, tree_root->leafsize, 1117 tree_root->sectorsize, tree_root->stripesize, 1118 root, fs_info, location->objectid); 1119 1120 path = btrfs_alloc_path(); 1121 BUG_ON(!path); 1122 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1123 if (ret != 0) { 1124 if (ret > 0) 1125 ret = -ENOENT; 1126 goto out; 1127 } 1128 l = path->nodes[0]; 1129 read_extent_buffer(l, &root->root_item, 1130 btrfs_item_ptr_offset(l, path->slots[0]), 1131 sizeof(root->root_item)); 1132 memcpy(&root->root_key, location, sizeof(*location)); 1133 ret = 0; 1134 out: 1135 btrfs_release_path(root, path); 1136 btrfs_free_path(path); 1137 if (ret) { 1138 kfree(root); 1139 return ERR_PTR(ret); 1140 } 1141 generation = btrfs_root_generation(&root->root_item); 1142 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1143 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1144 blocksize, generation); 1145 root->commit_root = btrfs_root_node(root); 1146 BUG_ON(!root->node); 1147 insert: 1148 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1149 root->ref_cows = 1; 1150 ret = btrfs_find_highest_inode(root, &highest_inode); 1151 if (ret == 0) { 1152 root->highest_inode = highest_inode; 1153 root->last_inode_alloc = highest_inode; 1154 } 1155 } 1156 return root; 1157 } 1158 1159 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1160 u64 root_objectid) 1161 { 1162 struct btrfs_root *root; 1163 1164 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1165 return fs_info->tree_root; 1166 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1167 return fs_info->extent_root; 1168 1169 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1170 (unsigned long)root_objectid); 1171 return root; 1172 } 1173 1174 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1175 struct btrfs_key *location) 1176 { 1177 struct btrfs_root *root; 1178 int ret; 1179 1180 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1181 return fs_info->tree_root; 1182 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1183 return fs_info->extent_root; 1184 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1185 return fs_info->chunk_root; 1186 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1187 return fs_info->dev_root; 1188 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1189 return fs_info->csum_root; 1190 1191 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1192 (unsigned long)location->objectid); 1193 if (root) 1194 return root; 1195 1196 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1197 if (IS_ERR(root)) 1198 return root; 1199 1200 set_anon_super(&root->anon_super, NULL); 1201 1202 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1203 (unsigned long)root->root_key.objectid, 1204 root); 1205 if (ret) { 1206 free_extent_buffer(root->node); 1207 kfree(root); 1208 return ERR_PTR(ret); 1209 } 1210 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1211 ret = btrfs_find_dead_roots(fs_info->tree_root, 1212 root->root_key.objectid); 1213 BUG_ON(ret); 1214 btrfs_orphan_cleanup(root); 1215 } 1216 return root; 1217 } 1218 1219 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1220 struct btrfs_key *location, 1221 const char *name, int namelen) 1222 { 1223 struct btrfs_root *root; 1224 int ret; 1225 1226 root = btrfs_read_fs_root_no_name(fs_info, location); 1227 if (!root) 1228 return NULL; 1229 1230 if (root->in_sysfs) 1231 return root; 1232 1233 ret = btrfs_set_root_name(root, name, namelen); 1234 if (ret) { 1235 free_extent_buffer(root->node); 1236 kfree(root); 1237 return ERR_PTR(ret); 1238 } 1239 #if 0 1240 ret = btrfs_sysfs_add_root(root); 1241 if (ret) { 1242 free_extent_buffer(root->node); 1243 kfree(root->name); 1244 kfree(root); 1245 return ERR_PTR(ret); 1246 } 1247 #endif 1248 root->in_sysfs = 1; 1249 return root; 1250 } 1251 1252 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1253 { 1254 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1255 int ret = 0; 1256 struct btrfs_device *device; 1257 struct backing_dev_info *bdi; 1258 1259 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1260 if (!device->bdev) 1261 continue; 1262 bdi = blk_get_backing_dev_info(device->bdev); 1263 if (bdi && bdi_congested(bdi, bdi_bits)) { 1264 ret = 1; 1265 break; 1266 } 1267 } 1268 return ret; 1269 } 1270 1271 /* 1272 * this unplugs every device on the box, and it is only used when page 1273 * is null 1274 */ 1275 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1276 { 1277 struct btrfs_device *device; 1278 struct btrfs_fs_info *info; 1279 1280 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1281 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1282 if (!device->bdev) 1283 continue; 1284 1285 bdi = blk_get_backing_dev_info(device->bdev); 1286 if (bdi->unplug_io_fn) 1287 bdi->unplug_io_fn(bdi, page); 1288 } 1289 } 1290 1291 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1292 { 1293 struct inode *inode; 1294 struct extent_map_tree *em_tree; 1295 struct extent_map *em; 1296 struct address_space *mapping; 1297 u64 offset; 1298 1299 /* the generic O_DIRECT read code does this */ 1300 if (1 || !page) { 1301 __unplug_io_fn(bdi, page); 1302 return; 1303 } 1304 1305 /* 1306 * page->mapping may change at any time. Get a consistent copy 1307 * and use that for everything below 1308 */ 1309 smp_mb(); 1310 mapping = page->mapping; 1311 if (!mapping) 1312 return; 1313 1314 inode = mapping->host; 1315 1316 /* 1317 * don't do the expensive searching for a small number of 1318 * devices 1319 */ 1320 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1321 __unplug_io_fn(bdi, page); 1322 return; 1323 } 1324 1325 offset = page_offset(page); 1326 1327 em_tree = &BTRFS_I(inode)->extent_tree; 1328 spin_lock(&em_tree->lock); 1329 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1330 spin_unlock(&em_tree->lock); 1331 if (!em) { 1332 __unplug_io_fn(bdi, page); 1333 return; 1334 } 1335 1336 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1337 free_extent_map(em); 1338 __unplug_io_fn(bdi, page); 1339 return; 1340 } 1341 offset = offset - em->start; 1342 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1343 em->block_start + offset, page); 1344 free_extent_map(em); 1345 } 1346 1347 /* 1348 * If this fails, caller must call bdi_destroy() to get rid of the 1349 * bdi again. 1350 */ 1351 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1352 { 1353 int err; 1354 1355 bdi->name = "btrfs"; 1356 bdi->capabilities = BDI_CAP_MAP_COPY; 1357 err = bdi_init(bdi); 1358 if (err) 1359 return err; 1360 1361 err = bdi_register(bdi, NULL, "btrfs-%d", 1362 atomic_inc_return(&btrfs_bdi_num)); 1363 if (err) 1364 return err; 1365 1366 bdi->ra_pages = default_backing_dev_info.ra_pages; 1367 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1368 bdi->unplug_io_data = info; 1369 bdi->congested_fn = btrfs_congested_fn; 1370 bdi->congested_data = info; 1371 return 0; 1372 } 1373 1374 static int bio_ready_for_csum(struct bio *bio) 1375 { 1376 u64 length = 0; 1377 u64 buf_len = 0; 1378 u64 start = 0; 1379 struct page *page; 1380 struct extent_io_tree *io_tree = NULL; 1381 struct btrfs_fs_info *info = NULL; 1382 struct bio_vec *bvec; 1383 int i; 1384 int ret; 1385 1386 bio_for_each_segment(bvec, bio, i) { 1387 page = bvec->bv_page; 1388 if (page->private == EXTENT_PAGE_PRIVATE) { 1389 length += bvec->bv_len; 1390 continue; 1391 } 1392 if (!page->private) { 1393 length += bvec->bv_len; 1394 continue; 1395 } 1396 length = bvec->bv_len; 1397 buf_len = page->private >> 2; 1398 start = page_offset(page) + bvec->bv_offset; 1399 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1400 info = BTRFS_I(page->mapping->host)->root->fs_info; 1401 } 1402 /* are we fully contained in this bio? */ 1403 if (buf_len <= length) 1404 return 1; 1405 1406 ret = extent_range_uptodate(io_tree, start + length, 1407 start + buf_len - 1); 1408 return ret; 1409 } 1410 1411 /* 1412 * called by the kthread helper functions to finally call the bio end_io 1413 * functions. This is where read checksum verification actually happens 1414 */ 1415 static void end_workqueue_fn(struct btrfs_work *work) 1416 { 1417 struct bio *bio; 1418 struct end_io_wq *end_io_wq; 1419 struct btrfs_fs_info *fs_info; 1420 int error; 1421 1422 end_io_wq = container_of(work, struct end_io_wq, work); 1423 bio = end_io_wq->bio; 1424 fs_info = end_io_wq->info; 1425 1426 /* metadata bio reads are special because the whole tree block must 1427 * be checksummed at once. This makes sure the entire block is in 1428 * ram and up to date before trying to verify things. For 1429 * blocksize <= pagesize, it is basically a noop 1430 */ 1431 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1432 !bio_ready_for_csum(bio)) { 1433 btrfs_queue_worker(&fs_info->endio_meta_workers, 1434 &end_io_wq->work); 1435 return; 1436 } 1437 error = end_io_wq->error; 1438 bio->bi_private = end_io_wq->private; 1439 bio->bi_end_io = end_io_wq->end_io; 1440 kfree(end_io_wq); 1441 bio_endio(bio, error); 1442 } 1443 1444 static int cleaner_kthread(void *arg) 1445 { 1446 struct btrfs_root *root = arg; 1447 1448 do { 1449 smp_mb(); 1450 if (root->fs_info->closing) 1451 break; 1452 1453 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1454 mutex_lock(&root->fs_info->cleaner_mutex); 1455 btrfs_clean_old_snapshots(root); 1456 mutex_unlock(&root->fs_info->cleaner_mutex); 1457 1458 if (freezing(current)) { 1459 refrigerator(); 1460 } else { 1461 smp_mb(); 1462 if (root->fs_info->closing) 1463 break; 1464 set_current_state(TASK_INTERRUPTIBLE); 1465 schedule(); 1466 __set_current_state(TASK_RUNNING); 1467 } 1468 } while (!kthread_should_stop()); 1469 return 0; 1470 } 1471 1472 static int transaction_kthread(void *arg) 1473 { 1474 struct btrfs_root *root = arg; 1475 struct btrfs_trans_handle *trans; 1476 struct btrfs_transaction *cur; 1477 unsigned long now; 1478 unsigned long delay; 1479 int ret; 1480 1481 do { 1482 smp_mb(); 1483 if (root->fs_info->closing) 1484 break; 1485 1486 delay = HZ * 30; 1487 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1488 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1489 1490 mutex_lock(&root->fs_info->trans_mutex); 1491 cur = root->fs_info->running_transaction; 1492 if (!cur) { 1493 mutex_unlock(&root->fs_info->trans_mutex); 1494 goto sleep; 1495 } 1496 1497 now = get_seconds(); 1498 if (now < cur->start_time || now - cur->start_time < 30) { 1499 mutex_unlock(&root->fs_info->trans_mutex); 1500 delay = HZ * 5; 1501 goto sleep; 1502 } 1503 mutex_unlock(&root->fs_info->trans_mutex); 1504 trans = btrfs_start_transaction(root, 1); 1505 ret = btrfs_commit_transaction(trans, root); 1506 1507 sleep: 1508 wake_up_process(root->fs_info->cleaner_kthread); 1509 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1510 1511 if (freezing(current)) { 1512 refrigerator(); 1513 } else { 1514 if (root->fs_info->closing) 1515 break; 1516 set_current_state(TASK_INTERRUPTIBLE); 1517 schedule_timeout(delay); 1518 __set_current_state(TASK_RUNNING); 1519 } 1520 } while (!kthread_should_stop()); 1521 return 0; 1522 } 1523 1524 struct btrfs_root *open_ctree(struct super_block *sb, 1525 struct btrfs_fs_devices *fs_devices, 1526 char *options) 1527 { 1528 u32 sectorsize; 1529 u32 nodesize; 1530 u32 leafsize; 1531 u32 blocksize; 1532 u32 stripesize; 1533 u64 generation; 1534 u64 features; 1535 struct btrfs_key location; 1536 struct buffer_head *bh; 1537 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1538 GFP_NOFS); 1539 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1540 GFP_NOFS); 1541 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1542 GFP_NOFS); 1543 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1544 GFP_NOFS); 1545 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1546 GFP_NOFS); 1547 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1548 GFP_NOFS); 1549 struct btrfs_root *log_tree_root; 1550 1551 int ret; 1552 int err = -EINVAL; 1553 1554 struct btrfs_super_block *disk_super; 1555 1556 if (!extent_root || !tree_root || !fs_info || 1557 !chunk_root || !dev_root || !csum_root) { 1558 err = -ENOMEM; 1559 goto fail; 1560 } 1561 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1562 INIT_LIST_HEAD(&fs_info->trans_list); 1563 INIT_LIST_HEAD(&fs_info->dead_roots); 1564 INIT_LIST_HEAD(&fs_info->hashers); 1565 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1566 INIT_LIST_HEAD(&fs_info->ordered_operations); 1567 spin_lock_init(&fs_info->delalloc_lock); 1568 spin_lock_init(&fs_info->new_trans_lock); 1569 spin_lock_init(&fs_info->ref_cache_lock); 1570 1571 init_completion(&fs_info->kobj_unregister); 1572 fs_info->tree_root = tree_root; 1573 fs_info->extent_root = extent_root; 1574 fs_info->csum_root = csum_root; 1575 fs_info->chunk_root = chunk_root; 1576 fs_info->dev_root = dev_root; 1577 fs_info->fs_devices = fs_devices; 1578 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1579 INIT_LIST_HEAD(&fs_info->space_info); 1580 btrfs_mapping_init(&fs_info->mapping_tree); 1581 atomic_set(&fs_info->nr_async_submits, 0); 1582 atomic_set(&fs_info->async_delalloc_pages, 0); 1583 atomic_set(&fs_info->async_submit_draining, 0); 1584 atomic_set(&fs_info->nr_async_bios, 0); 1585 fs_info->sb = sb; 1586 fs_info->max_extent = (u64)-1; 1587 fs_info->max_inline = 8192 * 1024; 1588 if (setup_bdi(fs_info, &fs_info->bdi)) 1589 goto fail_bdi; 1590 fs_info->btree_inode = new_inode(sb); 1591 fs_info->btree_inode->i_ino = 1; 1592 fs_info->btree_inode->i_nlink = 1; 1593 fs_info->metadata_ratio = 8; 1594 1595 fs_info->thread_pool_size = min_t(unsigned long, 1596 num_online_cpus() + 2, 8); 1597 1598 INIT_LIST_HEAD(&fs_info->ordered_extents); 1599 spin_lock_init(&fs_info->ordered_extent_lock); 1600 1601 sb->s_blocksize = 4096; 1602 sb->s_blocksize_bits = blksize_bits(4096); 1603 sb->s_bdi = &fs_info->bdi; 1604 1605 /* 1606 * we set the i_size on the btree inode to the max possible int. 1607 * the real end of the address space is determined by all of 1608 * the devices in the system 1609 */ 1610 fs_info->btree_inode->i_size = OFFSET_MAX; 1611 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1612 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1613 1614 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1615 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1616 fs_info->btree_inode->i_mapping, 1617 GFP_NOFS); 1618 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1619 GFP_NOFS); 1620 1621 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1622 1623 spin_lock_init(&fs_info->block_group_cache_lock); 1624 fs_info->block_group_cache_tree.rb_node = NULL; 1625 1626 extent_io_tree_init(&fs_info->pinned_extents, 1627 fs_info->btree_inode->i_mapping, GFP_NOFS); 1628 fs_info->do_barriers = 1; 1629 1630 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1631 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1632 sizeof(struct btrfs_key)); 1633 insert_inode_hash(fs_info->btree_inode); 1634 1635 mutex_init(&fs_info->trans_mutex); 1636 mutex_init(&fs_info->ordered_operations_mutex); 1637 mutex_init(&fs_info->tree_log_mutex); 1638 mutex_init(&fs_info->drop_mutex); 1639 mutex_init(&fs_info->chunk_mutex); 1640 mutex_init(&fs_info->transaction_kthread_mutex); 1641 mutex_init(&fs_info->cleaner_mutex); 1642 mutex_init(&fs_info->volume_mutex); 1643 mutex_init(&fs_info->tree_reloc_mutex); 1644 init_rwsem(&fs_info->extent_commit_sem); 1645 1646 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1647 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1648 1649 init_waitqueue_head(&fs_info->transaction_throttle); 1650 init_waitqueue_head(&fs_info->transaction_wait); 1651 init_waitqueue_head(&fs_info->async_submit_wait); 1652 1653 __setup_root(4096, 4096, 4096, 4096, tree_root, 1654 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1655 1656 1657 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1658 if (!bh) 1659 goto fail_iput; 1660 1661 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1662 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1663 sizeof(fs_info->super_for_commit)); 1664 brelse(bh); 1665 1666 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1667 1668 disk_super = &fs_info->super_copy; 1669 if (!btrfs_super_root(disk_super)) 1670 goto fail_iput; 1671 1672 ret = btrfs_parse_options(tree_root, options); 1673 if (ret) { 1674 err = ret; 1675 goto fail_iput; 1676 } 1677 1678 features = btrfs_super_incompat_flags(disk_super) & 1679 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1680 if (features) { 1681 printk(KERN_ERR "BTRFS: couldn't mount because of " 1682 "unsupported optional features (%Lx).\n", 1683 (unsigned long long)features); 1684 err = -EINVAL; 1685 goto fail_iput; 1686 } 1687 1688 features = btrfs_super_incompat_flags(disk_super); 1689 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1690 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1691 btrfs_set_super_incompat_flags(disk_super, features); 1692 } 1693 1694 features = btrfs_super_compat_ro_flags(disk_super) & 1695 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1696 if (!(sb->s_flags & MS_RDONLY) && features) { 1697 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1698 "unsupported option features (%Lx).\n", 1699 (unsigned long long)features); 1700 err = -EINVAL; 1701 goto fail_iput; 1702 } 1703 1704 /* 1705 * we need to start all the end_io workers up front because the 1706 * queue work function gets called at interrupt time, and so it 1707 * cannot dynamically grow. 1708 */ 1709 btrfs_init_workers(&fs_info->workers, "worker", 1710 fs_info->thread_pool_size); 1711 1712 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1713 fs_info->thread_pool_size); 1714 1715 btrfs_init_workers(&fs_info->submit_workers, "submit", 1716 min_t(u64, fs_devices->num_devices, 1717 fs_info->thread_pool_size)); 1718 1719 /* a higher idle thresh on the submit workers makes it much more 1720 * likely that bios will be send down in a sane order to the 1721 * devices 1722 */ 1723 fs_info->submit_workers.idle_thresh = 64; 1724 1725 fs_info->workers.idle_thresh = 16; 1726 fs_info->workers.ordered = 1; 1727 1728 fs_info->delalloc_workers.idle_thresh = 2; 1729 fs_info->delalloc_workers.ordered = 1; 1730 1731 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1732 btrfs_init_workers(&fs_info->endio_workers, "endio", 1733 fs_info->thread_pool_size); 1734 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1735 fs_info->thread_pool_size); 1736 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1737 "endio-meta-write", fs_info->thread_pool_size); 1738 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1739 fs_info->thread_pool_size); 1740 1741 /* 1742 * endios are largely parallel and should have a very 1743 * low idle thresh 1744 */ 1745 fs_info->endio_workers.idle_thresh = 4; 1746 fs_info->endio_meta_workers.idle_thresh = 4; 1747 1748 fs_info->endio_write_workers.idle_thresh = 64; 1749 fs_info->endio_meta_write_workers.idle_thresh = 64; 1750 1751 btrfs_start_workers(&fs_info->workers, 1); 1752 btrfs_start_workers(&fs_info->submit_workers, 1); 1753 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1754 btrfs_start_workers(&fs_info->fixup_workers, 1); 1755 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1756 btrfs_start_workers(&fs_info->endio_meta_workers, 1757 fs_info->thread_pool_size); 1758 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1759 fs_info->thread_pool_size); 1760 btrfs_start_workers(&fs_info->endio_write_workers, 1761 fs_info->thread_pool_size); 1762 1763 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1764 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1765 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1766 1767 nodesize = btrfs_super_nodesize(disk_super); 1768 leafsize = btrfs_super_leafsize(disk_super); 1769 sectorsize = btrfs_super_sectorsize(disk_super); 1770 stripesize = btrfs_super_stripesize(disk_super); 1771 tree_root->nodesize = nodesize; 1772 tree_root->leafsize = leafsize; 1773 tree_root->sectorsize = sectorsize; 1774 tree_root->stripesize = stripesize; 1775 1776 sb->s_blocksize = sectorsize; 1777 sb->s_blocksize_bits = blksize_bits(sectorsize); 1778 1779 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1780 sizeof(disk_super->magic))) { 1781 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1782 goto fail_sb_buffer; 1783 } 1784 1785 mutex_lock(&fs_info->chunk_mutex); 1786 ret = btrfs_read_sys_array(tree_root); 1787 mutex_unlock(&fs_info->chunk_mutex); 1788 if (ret) { 1789 printk(KERN_WARNING "btrfs: failed to read the system " 1790 "array on %s\n", sb->s_id); 1791 goto fail_sb_buffer; 1792 } 1793 1794 blocksize = btrfs_level_size(tree_root, 1795 btrfs_super_chunk_root_level(disk_super)); 1796 generation = btrfs_super_chunk_root_generation(disk_super); 1797 1798 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1799 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1800 1801 chunk_root->node = read_tree_block(chunk_root, 1802 btrfs_super_chunk_root(disk_super), 1803 blocksize, generation); 1804 BUG_ON(!chunk_root->node); 1805 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1806 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1807 sb->s_id); 1808 goto fail_chunk_root; 1809 } 1810 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1811 chunk_root->commit_root = btrfs_root_node(chunk_root); 1812 1813 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1814 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1815 BTRFS_UUID_SIZE); 1816 1817 mutex_lock(&fs_info->chunk_mutex); 1818 ret = btrfs_read_chunk_tree(chunk_root); 1819 mutex_unlock(&fs_info->chunk_mutex); 1820 if (ret) { 1821 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1822 sb->s_id); 1823 goto fail_chunk_root; 1824 } 1825 1826 btrfs_close_extra_devices(fs_devices); 1827 1828 blocksize = btrfs_level_size(tree_root, 1829 btrfs_super_root_level(disk_super)); 1830 generation = btrfs_super_generation(disk_super); 1831 1832 tree_root->node = read_tree_block(tree_root, 1833 btrfs_super_root(disk_super), 1834 blocksize, generation); 1835 if (!tree_root->node) 1836 goto fail_chunk_root; 1837 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1838 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1839 sb->s_id); 1840 goto fail_tree_root; 1841 } 1842 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1843 tree_root->commit_root = btrfs_root_node(tree_root); 1844 1845 ret = find_and_setup_root(tree_root, fs_info, 1846 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1847 if (ret) 1848 goto fail_tree_root; 1849 extent_root->track_dirty = 1; 1850 1851 ret = find_and_setup_root(tree_root, fs_info, 1852 BTRFS_DEV_TREE_OBJECTID, dev_root); 1853 if (ret) 1854 goto fail_extent_root; 1855 dev_root->track_dirty = 1; 1856 1857 ret = find_and_setup_root(tree_root, fs_info, 1858 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1859 if (ret) 1860 goto fail_dev_root; 1861 1862 csum_root->track_dirty = 1; 1863 1864 btrfs_read_block_groups(extent_root); 1865 1866 fs_info->generation = generation; 1867 fs_info->last_trans_committed = generation; 1868 fs_info->data_alloc_profile = (u64)-1; 1869 fs_info->metadata_alloc_profile = (u64)-1; 1870 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1871 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1872 "btrfs-cleaner"); 1873 if (IS_ERR(fs_info->cleaner_kthread)) 1874 goto fail_csum_root; 1875 1876 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1877 tree_root, 1878 "btrfs-transaction"); 1879 if (IS_ERR(fs_info->transaction_kthread)) 1880 goto fail_cleaner; 1881 1882 if (!btrfs_test_opt(tree_root, SSD) && 1883 !btrfs_test_opt(tree_root, NOSSD) && 1884 !fs_info->fs_devices->rotating) { 1885 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1886 "mode\n"); 1887 btrfs_set_opt(fs_info->mount_opt, SSD); 1888 } 1889 1890 if (btrfs_super_log_root(disk_super) != 0) { 1891 u64 bytenr = btrfs_super_log_root(disk_super); 1892 1893 if (fs_devices->rw_devices == 0) { 1894 printk(KERN_WARNING "Btrfs log replay required " 1895 "on RO media\n"); 1896 err = -EIO; 1897 goto fail_trans_kthread; 1898 } 1899 blocksize = 1900 btrfs_level_size(tree_root, 1901 btrfs_super_log_root_level(disk_super)); 1902 1903 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1904 GFP_NOFS); 1905 1906 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1907 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1908 1909 log_tree_root->node = read_tree_block(tree_root, bytenr, 1910 blocksize, 1911 generation + 1); 1912 ret = btrfs_recover_log_trees(log_tree_root); 1913 BUG_ON(ret); 1914 1915 if (sb->s_flags & MS_RDONLY) { 1916 ret = btrfs_commit_super(tree_root); 1917 BUG_ON(ret); 1918 } 1919 } 1920 1921 if (!(sb->s_flags & MS_RDONLY)) { 1922 ret = btrfs_recover_relocation(tree_root); 1923 BUG_ON(ret); 1924 } 1925 1926 location.objectid = BTRFS_FS_TREE_OBJECTID; 1927 location.type = BTRFS_ROOT_ITEM_KEY; 1928 location.offset = (u64)-1; 1929 1930 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1931 if (!fs_info->fs_root) 1932 goto fail_trans_kthread; 1933 1934 return tree_root; 1935 1936 fail_trans_kthread: 1937 kthread_stop(fs_info->transaction_kthread); 1938 fail_cleaner: 1939 kthread_stop(fs_info->cleaner_kthread); 1940 1941 /* 1942 * make sure we're done with the btree inode before we stop our 1943 * kthreads 1944 */ 1945 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1946 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1947 1948 fail_csum_root: 1949 free_extent_buffer(csum_root->node); 1950 free_extent_buffer(csum_root->commit_root); 1951 fail_dev_root: 1952 free_extent_buffer(dev_root->node); 1953 free_extent_buffer(dev_root->commit_root); 1954 fail_extent_root: 1955 free_extent_buffer(extent_root->node); 1956 free_extent_buffer(extent_root->commit_root); 1957 fail_tree_root: 1958 free_extent_buffer(tree_root->node); 1959 free_extent_buffer(tree_root->commit_root); 1960 fail_chunk_root: 1961 free_extent_buffer(chunk_root->node); 1962 free_extent_buffer(chunk_root->commit_root); 1963 fail_sb_buffer: 1964 btrfs_stop_workers(&fs_info->fixup_workers); 1965 btrfs_stop_workers(&fs_info->delalloc_workers); 1966 btrfs_stop_workers(&fs_info->workers); 1967 btrfs_stop_workers(&fs_info->endio_workers); 1968 btrfs_stop_workers(&fs_info->endio_meta_workers); 1969 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1970 btrfs_stop_workers(&fs_info->endio_write_workers); 1971 btrfs_stop_workers(&fs_info->submit_workers); 1972 fail_iput: 1973 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1974 iput(fs_info->btree_inode); 1975 1976 btrfs_close_devices(fs_info->fs_devices); 1977 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1978 fail_bdi: 1979 bdi_destroy(&fs_info->bdi); 1980 fail: 1981 kfree(extent_root); 1982 kfree(tree_root); 1983 kfree(fs_info); 1984 kfree(chunk_root); 1985 kfree(dev_root); 1986 kfree(csum_root); 1987 return ERR_PTR(err); 1988 } 1989 1990 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1991 { 1992 char b[BDEVNAME_SIZE]; 1993 1994 if (uptodate) { 1995 set_buffer_uptodate(bh); 1996 } else { 1997 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1998 printk(KERN_WARNING "lost page write due to " 1999 "I/O error on %s\n", 2000 bdevname(bh->b_bdev, b)); 2001 } 2002 /* note, we dont' set_buffer_write_io_error because we have 2003 * our own ways of dealing with the IO errors 2004 */ 2005 clear_buffer_uptodate(bh); 2006 } 2007 unlock_buffer(bh); 2008 put_bh(bh); 2009 } 2010 2011 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2012 { 2013 struct buffer_head *bh; 2014 struct buffer_head *latest = NULL; 2015 struct btrfs_super_block *super; 2016 int i; 2017 u64 transid = 0; 2018 u64 bytenr; 2019 2020 /* we would like to check all the supers, but that would make 2021 * a btrfs mount succeed after a mkfs from a different FS. 2022 * So, we need to add a special mount option to scan for 2023 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2024 */ 2025 for (i = 0; i < 1; i++) { 2026 bytenr = btrfs_sb_offset(i); 2027 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2028 break; 2029 bh = __bread(bdev, bytenr / 4096, 4096); 2030 if (!bh) 2031 continue; 2032 2033 super = (struct btrfs_super_block *)bh->b_data; 2034 if (btrfs_super_bytenr(super) != bytenr || 2035 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2036 sizeof(super->magic))) { 2037 brelse(bh); 2038 continue; 2039 } 2040 2041 if (!latest || btrfs_super_generation(super) > transid) { 2042 brelse(latest); 2043 latest = bh; 2044 transid = btrfs_super_generation(super); 2045 } else { 2046 brelse(bh); 2047 } 2048 } 2049 return latest; 2050 } 2051 2052 /* 2053 * this should be called twice, once with wait == 0 and 2054 * once with wait == 1. When wait == 0 is done, all the buffer heads 2055 * we write are pinned. 2056 * 2057 * They are released when wait == 1 is done. 2058 * max_mirrors must be the same for both runs, and it indicates how 2059 * many supers on this one device should be written. 2060 * 2061 * max_mirrors == 0 means to write them all. 2062 */ 2063 static int write_dev_supers(struct btrfs_device *device, 2064 struct btrfs_super_block *sb, 2065 int do_barriers, int wait, int max_mirrors) 2066 { 2067 struct buffer_head *bh; 2068 int i; 2069 int ret; 2070 int errors = 0; 2071 u32 crc; 2072 u64 bytenr; 2073 int last_barrier = 0; 2074 2075 if (max_mirrors == 0) 2076 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2077 2078 /* make sure only the last submit_bh does a barrier */ 2079 if (do_barriers) { 2080 for (i = 0; i < max_mirrors; i++) { 2081 bytenr = btrfs_sb_offset(i); 2082 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2083 device->total_bytes) 2084 break; 2085 last_barrier = i; 2086 } 2087 } 2088 2089 for (i = 0; i < max_mirrors; i++) { 2090 bytenr = btrfs_sb_offset(i); 2091 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2092 break; 2093 2094 if (wait) { 2095 bh = __find_get_block(device->bdev, bytenr / 4096, 2096 BTRFS_SUPER_INFO_SIZE); 2097 BUG_ON(!bh); 2098 wait_on_buffer(bh); 2099 if (!buffer_uptodate(bh)) 2100 errors++; 2101 2102 /* drop our reference */ 2103 brelse(bh); 2104 2105 /* drop the reference from the wait == 0 run */ 2106 brelse(bh); 2107 continue; 2108 } else { 2109 btrfs_set_super_bytenr(sb, bytenr); 2110 2111 crc = ~(u32)0; 2112 crc = btrfs_csum_data(NULL, (char *)sb + 2113 BTRFS_CSUM_SIZE, crc, 2114 BTRFS_SUPER_INFO_SIZE - 2115 BTRFS_CSUM_SIZE); 2116 btrfs_csum_final(crc, sb->csum); 2117 2118 /* 2119 * one reference for us, and we leave it for the 2120 * caller 2121 */ 2122 bh = __getblk(device->bdev, bytenr / 4096, 2123 BTRFS_SUPER_INFO_SIZE); 2124 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2125 2126 /* one reference for submit_bh */ 2127 get_bh(bh); 2128 2129 set_buffer_uptodate(bh); 2130 lock_buffer(bh); 2131 bh->b_end_io = btrfs_end_buffer_write_sync; 2132 } 2133 2134 if (i == last_barrier && do_barriers && device->barriers) { 2135 ret = submit_bh(WRITE_BARRIER, bh); 2136 if (ret == -EOPNOTSUPP) { 2137 printk("btrfs: disabling barriers on dev %s\n", 2138 device->name); 2139 set_buffer_uptodate(bh); 2140 device->barriers = 0; 2141 /* one reference for submit_bh */ 2142 get_bh(bh); 2143 lock_buffer(bh); 2144 ret = submit_bh(WRITE_SYNC, bh); 2145 } 2146 } else { 2147 ret = submit_bh(WRITE_SYNC, bh); 2148 } 2149 2150 if (ret) 2151 errors++; 2152 } 2153 return errors < i ? 0 : -1; 2154 } 2155 2156 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2157 { 2158 struct list_head *head; 2159 struct btrfs_device *dev; 2160 struct btrfs_super_block *sb; 2161 struct btrfs_dev_item *dev_item; 2162 int ret; 2163 int do_barriers; 2164 int max_errors; 2165 int total_errors = 0; 2166 u64 flags; 2167 2168 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2169 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2170 2171 sb = &root->fs_info->super_for_commit; 2172 dev_item = &sb->dev_item; 2173 2174 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2175 head = &root->fs_info->fs_devices->devices; 2176 list_for_each_entry(dev, head, dev_list) { 2177 if (!dev->bdev) { 2178 total_errors++; 2179 continue; 2180 } 2181 if (!dev->in_fs_metadata || !dev->writeable) 2182 continue; 2183 2184 btrfs_set_stack_device_generation(dev_item, 0); 2185 btrfs_set_stack_device_type(dev_item, dev->type); 2186 btrfs_set_stack_device_id(dev_item, dev->devid); 2187 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2188 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2189 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2190 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2191 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2192 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2193 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2194 2195 flags = btrfs_super_flags(sb); 2196 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2197 2198 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2199 if (ret) 2200 total_errors++; 2201 } 2202 if (total_errors > max_errors) { 2203 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2204 total_errors); 2205 BUG(); 2206 } 2207 2208 total_errors = 0; 2209 list_for_each_entry(dev, head, dev_list) { 2210 if (!dev->bdev) 2211 continue; 2212 if (!dev->in_fs_metadata || !dev->writeable) 2213 continue; 2214 2215 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2216 if (ret) 2217 total_errors++; 2218 } 2219 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2220 if (total_errors > max_errors) { 2221 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2222 total_errors); 2223 BUG(); 2224 } 2225 return 0; 2226 } 2227 2228 int write_ctree_super(struct btrfs_trans_handle *trans, 2229 struct btrfs_root *root, int max_mirrors) 2230 { 2231 int ret; 2232 2233 ret = write_all_supers(root, max_mirrors); 2234 return ret; 2235 } 2236 2237 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2238 { 2239 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2240 radix_tree_delete(&fs_info->fs_roots_radix, 2241 (unsigned long)root->root_key.objectid); 2242 if (root->anon_super.s_dev) { 2243 down_write(&root->anon_super.s_umount); 2244 kill_anon_super(&root->anon_super); 2245 } 2246 if (root->node) 2247 free_extent_buffer(root->node); 2248 if (root->commit_root) 2249 free_extent_buffer(root->commit_root); 2250 kfree(root->name); 2251 kfree(root); 2252 return 0; 2253 } 2254 2255 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2256 { 2257 int ret; 2258 struct btrfs_root *gang[8]; 2259 int i; 2260 2261 while (1) { 2262 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2263 (void **)gang, 0, 2264 ARRAY_SIZE(gang)); 2265 if (!ret) 2266 break; 2267 for (i = 0; i < ret; i++) 2268 btrfs_free_fs_root(fs_info, gang[i]); 2269 } 2270 return 0; 2271 } 2272 2273 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2274 { 2275 u64 root_objectid = 0; 2276 struct btrfs_root *gang[8]; 2277 int i; 2278 int ret; 2279 2280 while (1) { 2281 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2282 (void **)gang, root_objectid, 2283 ARRAY_SIZE(gang)); 2284 if (!ret) 2285 break; 2286 2287 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2288 for (i = 0; i < ret; i++) { 2289 root_objectid = gang[i]->root_key.objectid; 2290 ret = btrfs_find_dead_roots(fs_info->tree_root, 2291 root_objectid); 2292 BUG_ON(ret); 2293 btrfs_orphan_cleanup(gang[i]); 2294 } 2295 root_objectid++; 2296 } 2297 return 0; 2298 } 2299 2300 int btrfs_commit_super(struct btrfs_root *root) 2301 { 2302 struct btrfs_trans_handle *trans; 2303 int ret; 2304 2305 mutex_lock(&root->fs_info->cleaner_mutex); 2306 btrfs_clean_old_snapshots(root); 2307 mutex_unlock(&root->fs_info->cleaner_mutex); 2308 trans = btrfs_start_transaction(root, 1); 2309 ret = btrfs_commit_transaction(trans, root); 2310 BUG_ON(ret); 2311 /* run commit again to drop the original snapshot */ 2312 trans = btrfs_start_transaction(root, 1); 2313 btrfs_commit_transaction(trans, root); 2314 ret = btrfs_write_and_wait_transaction(NULL, root); 2315 BUG_ON(ret); 2316 2317 ret = write_ctree_super(NULL, root, 0); 2318 return ret; 2319 } 2320 2321 int close_ctree(struct btrfs_root *root) 2322 { 2323 struct btrfs_fs_info *fs_info = root->fs_info; 2324 int ret; 2325 2326 fs_info->closing = 1; 2327 smp_mb(); 2328 2329 kthread_stop(root->fs_info->transaction_kthread); 2330 kthread_stop(root->fs_info->cleaner_kthread); 2331 2332 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2333 ret = btrfs_commit_super(root); 2334 if (ret) 2335 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2336 } 2337 2338 fs_info->closing = 2; 2339 smp_mb(); 2340 2341 if (fs_info->delalloc_bytes) { 2342 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2343 (unsigned long long)fs_info->delalloc_bytes); 2344 } 2345 if (fs_info->total_ref_cache_size) { 2346 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2347 (unsigned long long)fs_info->total_ref_cache_size); 2348 } 2349 2350 free_extent_buffer(fs_info->extent_root->node); 2351 free_extent_buffer(fs_info->extent_root->commit_root); 2352 free_extent_buffer(fs_info->tree_root->node); 2353 free_extent_buffer(fs_info->tree_root->commit_root); 2354 free_extent_buffer(root->fs_info->chunk_root->node); 2355 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2356 free_extent_buffer(root->fs_info->dev_root->node); 2357 free_extent_buffer(root->fs_info->dev_root->commit_root); 2358 free_extent_buffer(root->fs_info->csum_root->node); 2359 free_extent_buffer(root->fs_info->csum_root->commit_root); 2360 2361 btrfs_free_block_groups(root->fs_info); 2362 btrfs_free_pinned_extents(root->fs_info); 2363 2364 del_fs_roots(fs_info); 2365 2366 iput(fs_info->btree_inode); 2367 2368 btrfs_stop_workers(&fs_info->fixup_workers); 2369 btrfs_stop_workers(&fs_info->delalloc_workers); 2370 btrfs_stop_workers(&fs_info->workers); 2371 btrfs_stop_workers(&fs_info->endio_workers); 2372 btrfs_stop_workers(&fs_info->endio_meta_workers); 2373 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2374 btrfs_stop_workers(&fs_info->endio_write_workers); 2375 btrfs_stop_workers(&fs_info->submit_workers); 2376 2377 btrfs_close_devices(fs_info->fs_devices); 2378 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2379 2380 bdi_destroy(&fs_info->bdi); 2381 2382 kfree(fs_info->extent_root); 2383 kfree(fs_info->tree_root); 2384 kfree(fs_info->chunk_root); 2385 kfree(fs_info->dev_root); 2386 kfree(fs_info->csum_root); 2387 return 0; 2388 } 2389 2390 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2391 { 2392 int ret; 2393 struct inode *btree_inode = buf->first_page->mapping->host; 2394 2395 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2396 if (!ret) 2397 return ret; 2398 2399 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2400 parent_transid); 2401 return !ret; 2402 } 2403 2404 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2405 { 2406 struct inode *btree_inode = buf->first_page->mapping->host; 2407 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2408 buf); 2409 } 2410 2411 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2412 { 2413 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2414 u64 transid = btrfs_header_generation(buf); 2415 struct inode *btree_inode = root->fs_info->btree_inode; 2416 int was_dirty; 2417 2418 btrfs_assert_tree_locked(buf); 2419 if (transid != root->fs_info->generation) { 2420 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2421 "found %llu running %llu\n", 2422 (unsigned long long)buf->start, 2423 (unsigned long long)transid, 2424 (unsigned long long)root->fs_info->generation); 2425 WARN_ON(1); 2426 } 2427 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2428 buf); 2429 if (!was_dirty) { 2430 spin_lock(&root->fs_info->delalloc_lock); 2431 root->fs_info->dirty_metadata_bytes += buf->len; 2432 spin_unlock(&root->fs_info->delalloc_lock); 2433 } 2434 } 2435 2436 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2437 { 2438 /* 2439 * looks as though older kernels can get into trouble with 2440 * this code, they end up stuck in balance_dirty_pages forever 2441 */ 2442 u64 num_dirty; 2443 unsigned long thresh = 32 * 1024 * 1024; 2444 2445 if (current->flags & PF_MEMALLOC) 2446 return; 2447 2448 num_dirty = root->fs_info->dirty_metadata_bytes; 2449 2450 if (num_dirty > thresh) { 2451 balance_dirty_pages_ratelimited_nr( 2452 root->fs_info->btree_inode->i_mapping, 1); 2453 } 2454 return; 2455 } 2456 2457 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2458 { 2459 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2460 int ret; 2461 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2462 if (ret == 0) 2463 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2464 return ret; 2465 } 2466 2467 int btree_lock_page_hook(struct page *page) 2468 { 2469 struct inode *inode = page->mapping->host; 2470 struct btrfs_root *root = BTRFS_I(inode)->root; 2471 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2472 struct extent_buffer *eb; 2473 unsigned long len; 2474 u64 bytenr = page_offset(page); 2475 2476 if (page->private == EXTENT_PAGE_PRIVATE) 2477 goto out; 2478 2479 len = page->private >> 2; 2480 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2481 if (!eb) 2482 goto out; 2483 2484 btrfs_tree_lock(eb); 2485 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2486 2487 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2488 spin_lock(&root->fs_info->delalloc_lock); 2489 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2490 root->fs_info->dirty_metadata_bytes -= eb->len; 2491 else 2492 WARN_ON(1); 2493 spin_unlock(&root->fs_info->delalloc_lock); 2494 } 2495 2496 btrfs_tree_unlock(eb); 2497 free_extent_buffer(eb); 2498 out: 2499 lock_page(page); 2500 return 0; 2501 } 2502 2503 static struct extent_io_ops btree_extent_io_ops = { 2504 .write_cache_pages_lock_hook = btree_lock_page_hook, 2505 .readpage_end_io_hook = btree_readpage_end_io_hook, 2506 .submit_bio_hook = btree_submit_bio_hook, 2507 /* note we're sharing with inode.c for the merge bio hook */ 2508 .merge_bio_hook = btrfs_merge_bio_hook, 2509 }; 2510