1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int mirror_num; 128 unsigned long bio_flags; 129 /* 130 * bio_offset is optional, can be used if the pages in the bio 131 * can't tell us where in the file the bio should go 132 */ 133 u64 bio_offset; 134 struct btrfs_work work; 135 int error; 136 }; 137 138 /* 139 * Lockdep class keys for extent_buffer->lock's in this root. For a given 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and 141 * the level the eb occupies in the tree. 142 * 143 * Different roots are used for different purposes and may nest inside each 144 * other and they require separate keysets. As lockdep keys should be 145 * static, assign keysets according to the purpose of the root as indicated 146 * by btrfs_root->objectid. This ensures that all special purpose roots 147 * have separate keysets. 148 * 149 * Lock-nesting across peer nodes is always done with the immediate parent 150 * node locked thus preventing deadlock. As lockdep doesn't know this, use 151 * subclass to avoid triggering lockdep warning in such cases. 152 * 153 * The key is set by the readpage_end_io_hook after the buffer has passed 154 * csum validation but before the pages are unlocked. It is also set by 155 * btrfs_init_new_buffer on freshly allocated blocks. 156 * 157 * We also add a check to make sure the highest level of the tree is the 158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 159 * needs update as well. 160 */ 161 #ifdef CONFIG_DEBUG_LOCK_ALLOC 162 # if BTRFS_MAX_LEVEL != 8 163 # error 164 # endif 165 166 static struct btrfs_lockdep_keyset { 167 u64 id; /* root objectid */ 168 const char *name_stem; /* lock name stem */ 169 char names[BTRFS_MAX_LEVEL + 1][20]; 170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 171 } btrfs_lockdep_keysets[] = { 172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 184 { .id = 0, .name_stem = "tree" }, 185 }; 186 187 void __init btrfs_init_lockdep(void) 188 { 189 int i, j; 190 191 /* initialize lockdep class names */ 192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 194 195 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 196 snprintf(ks->names[j], sizeof(ks->names[j]), 197 "btrfs-%s-%02d", ks->name_stem, j); 198 } 199 } 200 201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 202 int level) 203 { 204 struct btrfs_lockdep_keyset *ks; 205 206 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 207 208 /* find the matching keyset, id 0 is the default entry */ 209 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 210 if (ks->id == objectid) 211 break; 212 213 lockdep_set_class_and_name(&eb->lock, 214 &ks->keys[level], ks->names[level]); 215 } 216 217 #endif 218 219 /* 220 * extents on the btree inode are pretty simple, there's one extent 221 * that covers the entire device 222 */ 223 static struct extent_map *btree_get_extent(struct inode *inode, 224 struct page *page, size_t pg_offset, u64 start, u64 len, 225 int create) 226 { 227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 228 struct extent_map *em; 229 int ret; 230 231 read_lock(&em_tree->lock); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (em) { 234 em->bdev = 235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 236 read_unlock(&em_tree->lock); 237 goto out; 238 } 239 read_unlock(&em_tree->lock); 240 241 em = alloc_extent_map(); 242 if (!em) { 243 em = ERR_PTR(-ENOMEM); 244 goto out; 245 } 246 em->start = 0; 247 em->len = (u64)-1; 248 em->block_len = (u64)-1; 249 em->block_start = 0; 250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 251 252 write_lock(&em_tree->lock); 253 ret = add_extent_mapping(em_tree, em, 0); 254 if (ret == -EEXIST) { 255 free_extent_map(em); 256 em = lookup_extent_mapping(em_tree, start, len); 257 if (!em) 258 em = ERR_PTR(-EIO); 259 } else if (ret) { 260 free_extent_map(em); 261 em = ERR_PTR(ret); 262 } 263 write_unlock(&em_tree->lock); 264 265 out: 266 return em; 267 } 268 269 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 270 { 271 return btrfs_crc32c(seed, data, len); 272 } 273 274 void btrfs_csum_final(u32 crc, char *result) 275 { 276 put_unaligned_le32(~crc, result); 277 } 278 279 /* 280 * compute the csum for a btree block, and either verify it or write it 281 * into the csum field of the block. 282 */ 283 static int csum_tree_block(struct btrfs_fs_info *fs_info, 284 struct extent_buffer *buf, 285 int verify) 286 { 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 288 char *result = NULL; 289 unsigned long len; 290 unsigned long cur_len; 291 unsigned long offset = BTRFS_CSUM_SIZE; 292 char *kaddr; 293 unsigned long map_start; 294 unsigned long map_len; 295 int err; 296 u32 crc = ~(u32)0; 297 unsigned long inline_result; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 if (csum_size > sizeof(inline_result)) { 312 result = kzalloc(csum_size, GFP_NOFS); 313 if (!result) 314 return -ENOMEM; 315 } else { 316 result = (char *)&inline_result; 317 } 318 319 btrfs_csum_final(crc, result); 320 321 if (verify) { 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 323 u32 val; 324 u32 found = 0; 325 memcpy(&found, result, csum_size); 326 327 read_extent_buffer(buf, &val, 0, csum_size); 328 btrfs_warn_rl(fs_info, 329 "%s checksum verify failed on %llu wanted %X found %X " 330 "level %d", 331 fs_info->sb->s_id, buf->start, 332 val, found, btrfs_header_level(buf)); 333 if (result != (char *)&inline_result) 334 kfree(result); 335 return -EUCLEAN; 336 } 337 } else { 338 write_extent_buffer(buf, result, 0, csum_size); 339 } 340 if (result != (char *)&inline_result) 341 kfree(result); 342 return 0; 343 } 344 345 /* 346 * we can't consider a given block up to date unless the transid of the 347 * block matches the transid in the parent node's pointer. This is how we 348 * detect blocks that either didn't get written at all or got written 349 * in the wrong place. 350 */ 351 static int verify_parent_transid(struct extent_io_tree *io_tree, 352 struct extent_buffer *eb, u64 parent_transid, 353 int atomic) 354 { 355 struct extent_state *cached_state = NULL; 356 int ret; 357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 358 359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 360 return 0; 361 362 if (atomic) 363 return -EAGAIN; 364 365 if (need_lock) { 366 btrfs_tree_read_lock(eb); 367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 368 } 369 370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 371 &cached_state); 372 if (extent_buffer_uptodate(eb) && 373 btrfs_header_generation(eb) == parent_transid) { 374 ret = 0; 375 goto out; 376 } 377 btrfs_err_rl(eb->fs_info, 378 "parent transid verify failed on %llu wanted %llu found %llu", 379 eb->start, 380 parent_transid, btrfs_header_generation(eb)); 381 ret = 1; 382 383 /* 384 * Things reading via commit roots that don't have normal protection, 385 * like send, can have a really old block in cache that may point at a 386 * block that has been freed and re-allocated. So don't clear uptodate 387 * if we find an eb that is under IO (dirty/writeback) because we could 388 * end up reading in the stale data and then writing it back out and 389 * making everybody very sad. 390 */ 391 if (!extent_buffer_under_io(eb)) 392 clear_extent_buffer_uptodate(eb); 393 out: 394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 395 &cached_state, GFP_NOFS); 396 if (need_lock) 397 btrfs_tree_read_unlock_blocking(eb); 398 return ret; 399 } 400 401 /* 402 * Return 0 if the superblock checksum type matches the checksum value of that 403 * algorithm. Pass the raw disk superblock data. 404 */ 405 static int btrfs_check_super_csum(char *raw_disk_sb) 406 { 407 struct btrfs_super_block *disk_sb = 408 (struct btrfs_super_block *)raw_disk_sb; 409 u16 csum_type = btrfs_super_csum_type(disk_sb); 410 int ret = 0; 411 412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 413 u32 crc = ~(u32)0; 414 const int csum_size = sizeof(crc); 415 char result[csum_size]; 416 417 /* 418 * The super_block structure does not span the whole 419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 420 * is filled with zeros and is included in the checksum. 421 */ 422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 424 btrfs_csum_final(crc, result); 425 426 if (memcmp(raw_disk_sb, result, csum_size)) 427 ret = 1; 428 } 429 430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 432 csum_type); 433 ret = 1; 434 } 435 436 return ret; 437 } 438 439 /* 440 * helper to read a given tree block, doing retries as required when 441 * the checksums don't match and we have alternate mirrors to try. 442 */ 443 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 444 struct extent_buffer *eb, 445 u64 start, u64 parent_transid) 446 { 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 456 while (1) { 457 ret = read_extent_buffer_pages(io_tree, eb, start, 458 WAIT_COMPLETE, 459 btree_get_extent, mirror_num); 460 if (!ret) { 461 if (!verify_parent_transid(io_tree, eb, 462 parent_transid, 0)) 463 break; 464 else 465 ret = -EIO; 466 } 467 468 /* 469 * This buffer's crc is fine, but its contents are corrupted, so 470 * there is no reason to read the other copies, they won't be 471 * any less wrong. 472 */ 473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 474 break; 475 476 num_copies = btrfs_num_copies(root->fs_info, 477 eb->start, eb->len); 478 if (num_copies == 1) 479 break; 480 481 if (!failed_mirror) { 482 failed = 1; 483 failed_mirror = eb->read_mirror; 484 } 485 486 mirror_num++; 487 if (mirror_num == failed_mirror) 488 mirror_num++; 489 490 if (mirror_num > num_copies) 491 break; 492 } 493 494 if (failed && !ret && failed_mirror) 495 repair_eb_io_failure(root, eb, failed_mirror); 496 497 return ret; 498 } 499 500 /* 501 * checksum a dirty tree block before IO. This has extra checks to make sure 502 * we only fill in the checksum field in the first page of a multi-page block 503 */ 504 505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 506 { 507 u64 start = page_offset(page); 508 u64 found_start; 509 struct extent_buffer *eb; 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 /* 517 * Please do not consolidate these warnings into a single if. 518 * It is useful to know what went wrong. 519 */ 520 if (WARN_ON(found_start != start)) 521 return -EUCLEAN; 522 if (WARN_ON(!PageUptodate(page))) 523 return -EUCLEAN; 524 525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 527 528 return csum_tree_block(fs_info, eb, 0); 529 } 530 531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 532 struct extent_buffer *eb) 533 { 534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 535 u8 fsid[BTRFS_UUID_SIZE]; 536 int ret = 1; 537 538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 539 while (fs_devices) { 540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 541 ret = 0; 542 break; 543 } 544 fs_devices = fs_devices->seed; 545 } 546 return ret; 547 } 548 549 #define CORRUPT(reason, eb, root, slot) \ 550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 551 "root=%llu, slot=%d", reason, \ 552 btrfs_header_bytenr(eb), root->objectid, slot) 553 554 static noinline int check_leaf(struct btrfs_root *root, 555 struct extent_buffer *leaf) 556 { 557 struct btrfs_key key; 558 struct btrfs_key leaf_key; 559 u32 nritems = btrfs_header_nritems(leaf); 560 int slot; 561 562 if (nritems == 0) { 563 struct btrfs_root *check_root; 564 565 key.objectid = btrfs_header_owner(leaf); 566 key.type = BTRFS_ROOT_ITEM_KEY; 567 key.offset = (u64)-1; 568 569 check_root = btrfs_get_fs_root(root->fs_info, &key, false); 570 /* 571 * The only reason we also check NULL here is that during 572 * open_ctree() some roots has not yet been set up. 573 */ 574 if (!IS_ERR_OR_NULL(check_root)) { 575 /* if leaf is the root, then it's fine */ 576 if (leaf->start != 577 btrfs_root_bytenr(&check_root->root_item)) { 578 CORRUPT("non-root leaf's nritems is 0", 579 leaf, root, 0); 580 return -EIO; 581 } 582 } 583 return 0; 584 } 585 586 /* Check the 0 item */ 587 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 588 BTRFS_LEAF_DATA_SIZE(root)) { 589 CORRUPT("invalid item offset size pair", leaf, root, 0); 590 return -EIO; 591 } 592 593 /* 594 * Check to make sure each items keys are in the correct order and their 595 * offsets make sense. We only have to loop through nritems-1 because 596 * we check the current slot against the next slot, which verifies the 597 * next slot's offset+size makes sense and that the current's slot 598 * offset is correct. 599 */ 600 for (slot = 0; slot < nritems - 1; slot++) { 601 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 602 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 603 604 /* Make sure the keys are in the right order */ 605 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 606 CORRUPT("bad key order", leaf, root, slot); 607 return -EIO; 608 } 609 610 /* 611 * Make sure the offset and ends are right, remember that the 612 * item data starts at the end of the leaf and grows towards the 613 * front. 614 */ 615 if (btrfs_item_offset_nr(leaf, slot) != 616 btrfs_item_end_nr(leaf, slot + 1)) { 617 CORRUPT("slot offset bad", leaf, root, slot); 618 return -EIO; 619 } 620 621 /* 622 * Check to make sure that we don't point outside of the leaf, 623 * just in case all the items are consistent to each other, but 624 * all point outside of the leaf. 625 */ 626 if (btrfs_item_end_nr(leaf, slot) > 627 BTRFS_LEAF_DATA_SIZE(root)) { 628 CORRUPT("slot end outside of leaf", leaf, root, slot); 629 return -EIO; 630 } 631 } 632 633 return 0; 634 } 635 636 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 637 { 638 unsigned long nr = btrfs_header_nritems(node); 639 640 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) { 641 btrfs_crit(root->fs_info, 642 "corrupt node: block %llu root %llu nritems %lu", 643 node->start, root->objectid, nr); 644 return -EIO; 645 } 646 return 0; 647 } 648 649 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 650 u64 phy_offset, struct page *page, 651 u64 start, u64 end, int mirror) 652 { 653 u64 found_start; 654 int found_level; 655 struct extent_buffer *eb; 656 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 657 struct btrfs_fs_info *fs_info = root->fs_info; 658 int ret = 0; 659 int reads_done; 660 661 if (!page->private) 662 goto out; 663 664 eb = (struct extent_buffer *)page->private; 665 666 /* the pending IO might have been the only thing that kept this buffer 667 * in memory. Make sure we have a ref for all this other checks 668 */ 669 extent_buffer_get(eb); 670 671 reads_done = atomic_dec_and_test(&eb->io_pages); 672 if (!reads_done) 673 goto err; 674 675 eb->read_mirror = mirror; 676 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 677 ret = -EIO; 678 goto err; 679 } 680 681 found_start = btrfs_header_bytenr(eb); 682 if (found_start != eb->start) { 683 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 684 found_start, eb->start); 685 ret = -EIO; 686 goto err; 687 } 688 if (check_tree_block_fsid(fs_info, eb)) { 689 btrfs_err_rl(fs_info, "bad fsid on block %llu", 690 eb->start); 691 ret = -EIO; 692 goto err; 693 } 694 found_level = btrfs_header_level(eb); 695 if (found_level >= BTRFS_MAX_LEVEL) { 696 btrfs_err(fs_info, "bad tree block level %d", 697 (int)btrfs_header_level(eb)); 698 ret = -EIO; 699 goto err; 700 } 701 702 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 703 eb, found_level); 704 705 ret = csum_tree_block(fs_info, eb, 1); 706 if (ret) 707 goto err; 708 709 /* 710 * If this is a leaf block and it is corrupt, set the corrupt bit so 711 * that we don't try and read the other copies of this block, just 712 * return -EIO. 713 */ 714 if (found_level == 0 && check_leaf(root, eb)) { 715 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 716 ret = -EIO; 717 } 718 719 if (found_level > 0 && check_node(root, eb)) 720 ret = -EIO; 721 722 if (!ret) 723 set_extent_buffer_uptodate(eb); 724 err: 725 if (reads_done && 726 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 727 btree_readahead_hook(fs_info, eb, eb->start, ret); 728 729 if (ret) { 730 /* 731 * our io error hook is going to dec the io pages 732 * again, we have to make sure it has something 733 * to decrement 734 */ 735 atomic_inc(&eb->io_pages); 736 clear_extent_buffer_uptodate(eb); 737 } 738 free_extent_buffer(eb); 739 out: 740 return ret; 741 } 742 743 static int btree_io_failed_hook(struct page *page, int failed_mirror) 744 { 745 struct extent_buffer *eb; 746 747 eb = (struct extent_buffer *)page->private; 748 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 749 eb->read_mirror = failed_mirror; 750 atomic_dec(&eb->io_pages); 751 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 752 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO); 753 return -EIO; /* we fixed nothing */ 754 } 755 756 static void end_workqueue_bio(struct bio *bio) 757 { 758 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 759 struct btrfs_fs_info *fs_info; 760 struct btrfs_workqueue *wq; 761 btrfs_work_func_t func; 762 763 fs_info = end_io_wq->info; 764 end_io_wq->error = bio->bi_error; 765 766 if (bio_op(bio) == REQ_OP_WRITE) { 767 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 768 wq = fs_info->endio_meta_write_workers; 769 func = btrfs_endio_meta_write_helper; 770 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 771 wq = fs_info->endio_freespace_worker; 772 func = btrfs_freespace_write_helper; 773 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 774 wq = fs_info->endio_raid56_workers; 775 func = btrfs_endio_raid56_helper; 776 } else { 777 wq = fs_info->endio_write_workers; 778 func = btrfs_endio_write_helper; 779 } 780 } else { 781 if (unlikely(end_io_wq->metadata == 782 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 783 wq = fs_info->endio_repair_workers; 784 func = btrfs_endio_repair_helper; 785 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 786 wq = fs_info->endio_raid56_workers; 787 func = btrfs_endio_raid56_helper; 788 } else if (end_io_wq->metadata) { 789 wq = fs_info->endio_meta_workers; 790 func = btrfs_endio_meta_helper; 791 } else { 792 wq = fs_info->endio_workers; 793 func = btrfs_endio_helper; 794 } 795 } 796 797 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 798 btrfs_queue_work(wq, &end_io_wq->work); 799 } 800 801 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 802 enum btrfs_wq_endio_type metadata) 803 { 804 struct btrfs_end_io_wq *end_io_wq; 805 806 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 807 if (!end_io_wq) 808 return -ENOMEM; 809 810 end_io_wq->private = bio->bi_private; 811 end_io_wq->end_io = bio->bi_end_io; 812 end_io_wq->info = info; 813 end_io_wq->error = 0; 814 end_io_wq->bio = bio; 815 end_io_wq->metadata = metadata; 816 817 bio->bi_private = end_io_wq; 818 bio->bi_end_io = end_workqueue_bio; 819 return 0; 820 } 821 822 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 823 { 824 unsigned long limit = min_t(unsigned long, 825 info->thread_pool_size, 826 info->fs_devices->open_devices); 827 return 256 * limit; 828 } 829 830 static void run_one_async_start(struct btrfs_work *work) 831 { 832 struct async_submit_bio *async; 833 int ret; 834 835 async = container_of(work, struct async_submit_bio, work); 836 ret = async->submit_bio_start(async->inode, async->bio, 837 async->mirror_num, async->bio_flags, 838 async->bio_offset); 839 if (ret) 840 async->error = ret; 841 } 842 843 static void run_one_async_done(struct btrfs_work *work) 844 { 845 struct btrfs_fs_info *fs_info; 846 struct async_submit_bio *async; 847 int limit; 848 849 async = container_of(work, struct async_submit_bio, work); 850 fs_info = BTRFS_I(async->inode)->root->fs_info; 851 852 limit = btrfs_async_submit_limit(fs_info); 853 limit = limit * 2 / 3; 854 855 /* 856 * atomic_dec_return implies a barrier for waitqueue_active 857 */ 858 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 859 waitqueue_active(&fs_info->async_submit_wait)) 860 wake_up(&fs_info->async_submit_wait); 861 862 /* If an error occurred we just want to clean up the bio and move on */ 863 if (async->error) { 864 async->bio->bi_error = async->error; 865 bio_endio(async->bio); 866 return; 867 } 868 869 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 870 async->bio_flags, async->bio_offset); 871 } 872 873 static void run_one_async_free(struct btrfs_work *work) 874 { 875 struct async_submit_bio *async; 876 877 async = container_of(work, struct async_submit_bio, work); 878 kfree(async); 879 } 880 881 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 882 struct bio *bio, int mirror_num, 883 unsigned long bio_flags, 884 u64 bio_offset, 885 extent_submit_bio_hook_t *submit_bio_start, 886 extent_submit_bio_hook_t *submit_bio_done) 887 { 888 struct async_submit_bio *async; 889 890 async = kmalloc(sizeof(*async), GFP_NOFS); 891 if (!async) 892 return -ENOMEM; 893 894 async->inode = inode; 895 async->bio = bio; 896 async->mirror_num = mirror_num; 897 async->submit_bio_start = submit_bio_start; 898 async->submit_bio_done = submit_bio_done; 899 900 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 901 run_one_async_done, run_one_async_free); 902 903 async->bio_flags = bio_flags; 904 async->bio_offset = bio_offset; 905 906 async->error = 0; 907 908 atomic_inc(&fs_info->nr_async_submits); 909 910 if (bio->bi_opf & REQ_SYNC) 911 btrfs_set_work_high_priority(&async->work); 912 913 btrfs_queue_work(fs_info->workers, &async->work); 914 915 while (atomic_read(&fs_info->async_submit_draining) && 916 atomic_read(&fs_info->nr_async_submits)) { 917 wait_event(fs_info->async_submit_wait, 918 (atomic_read(&fs_info->nr_async_submits) == 0)); 919 } 920 921 return 0; 922 } 923 924 static int btree_csum_one_bio(struct bio *bio) 925 { 926 struct bio_vec *bvec; 927 struct btrfs_root *root; 928 int i, ret = 0; 929 930 bio_for_each_segment_all(bvec, bio, i) { 931 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 932 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 933 if (ret) 934 break; 935 } 936 937 return ret; 938 } 939 940 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 941 int mirror_num, unsigned long bio_flags, 942 u64 bio_offset) 943 { 944 /* 945 * when we're called for a write, we're already in the async 946 * submission context. Just jump into btrfs_map_bio 947 */ 948 return btree_csum_one_bio(bio); 949 } 950 951 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 952 int mirror_num, unsigned long bio_flags, 953 u64 bio_offset) 954 { 955 int ret; 956 957 /* 958 * when we're called for a write, we're already in the async 959 * submission context. Just jump into btrfs_map_bio 960 */ 961 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1); 962 if (ret) { 963 bio->bi_error = ret; 964 bio_endio(bio); 965 } 966 return ret; 967 } 968 969 static int check_async_write(struct inode *inode, unsigned long bio_flags) 970 { 971 if (bio_flags & EXTENT_BIO_TREE_LOG) 972 return 0; 973 #ifdef CONFIG_X86 974 if (static_cpu_has(X86_FEATURE_XMM4_2)) 975 return 0; 976 #endif 977 return 1; 978 } 979 980 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 981 int mirror_num, unsigned long bio_flags, 982 u64 bio_offset) 983 { 984 int async = check_async_write(inode, bio_flags); 985 int ret; 986 987 if (bio_op(bio) != REQ_OP_WRITE) { 988 /* 989 * called for a read, do the setup so that checksum validation 990 * can happen in the async kernel threads 991 */ 992 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 993 bio, BTRFS_WQ_ENDIO_METADATA); 994 if (ret) 995 goto out_w_error; 996 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 997 } else if (!async) { 998 ret = btree_csum_one_bio(bio); 999 if (ret) 1000 goto out_w_error; 1001 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 1002 } else { 1003 /* 1004 * kthread helpers are used to submit writes so that 1005 * checksumming can happen in parallel across all CPUs 1006 */ 1007 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1008 inode, bio, mirror_num, 0, 1009 bio_offset, 1010 __btree_submit_bio_start, 1011 __btree_submit_bio_done); 1012 } 1013 1014 if (ret) 1015 goto out_w_error; 1016 return 0; 1017 1018 out_w_error: 1019 bio->bi_error = ret; 1020 bio_endio(bio); 1021 return ret; 1022 } 1023 1024 #ifdef CONFIG_MIGRATION 1025 static int btree_migratepage(struct address_space *mapping, 1026 struct page *newpage, struct page *page, 1027 enum migrate_mode mode) 1028 { 1029 /* 1030 * we can't safely write a btree page from here, 1031 * we haven't done the locking hook 1032 */ 1033 if (PageDirty(page)) 1034 return -EAGAIN; 1035 /* 1036 * Buffers may be managed in a filesystem specific way. 1037 * We must have no buffers or drop them. 1038 */ 1039 if (page_has_private(page) && 1040 !try_to_release_page(page, GFP_KERNEL)) 1041 return -EAGAIN; 1042 return migrate_page(mapping, newpage, page, mode); 1043 } 1044 #endif 1045 1046 1047 static int btree_writepages(struct address_space *mapping, 1048 struct writeback_control *wbc) 1049 { 1050 struct btrfs_fs_info *fs_info; 1051 int ret; 1052 1053 if (wbc->sync_mode == WB_SYNC_NONE) { 1054 1055 if (wbc->for_kupdate) 1056 return 0; 1057 1058 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1059 /* this is a bit racy, but that's ok */ 1060 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1061 BTRFS_DIRTY_METADATA_THRESH); 1062 if (ret < 0) 1063 return 0; 1064 } 1065 return btree_write_cache_pages(mapping, wbc); 1066 } 1067 1068 static int btree_readpage(struct file *file, struct page *page) 1069 { 1070 struct extent_io_tree *tree; 1071 tree = &BTRFS_I(page->mapping->host)->io_tree; 1072 return extent_read_full_page(tree, page, btree_get_extent, 0); 1073 } 1074 1075 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1076 { 1077 if (PageWriteback(page) || PageDirty(page)) 1078 return 0; 1079 1080 return try_release_extent_buffer(page); 1081 } 1082 1083 static void btree_invalidatepage(struct page *page, unsigned int offset, 1084 unsigned int length) 1085 { 1086 struct extent_io_tree *tree; 1087 tree = &BTRFS_I(page->mapping->host)->io_tree; 1088 extent_invalidatepage(tree, page, offset); 1089 btree_releasepage(page, GFP_NOFS); 1090 if (PagePrivate(page)) { 1091 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1092 "page private not zero on page %llu", 1093 (unsigned long long)page_offset(page)); 1094 ClearPagePrivate(page); 1095 set_page_private(page, 0); 1096 put_page(page); 1097 } 1098 } 1099 1100 static int btree_set_page_dirty(struct page *page) 1101 { 1102 #ifdef DEBUG 1103 struct extent_buffer *eb; 1104 1105 BUG_ON(!PagePrivate(page)); 1106 eb = (struct extent_buffer *)page->private; 1107 BUG_ON(!eb); 1108 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1109 BUG_ON(!atomic_read(&eb->refs)); 1110 btrfs_assert_tree_locked(eb); 1111 #endif 1112 return __set_page_dirty_nobuffers(page); 1113 } 1114 1115 static const struct address_space_operations btree_aops = { 1116 .readpage = btree_readpage, 1117 .writepages = btree_writepages, 1118 .releasepage = btree_releasepage, 1119 .invalidatepage = btree_invalidatepage, 1120 #ifdef CONFIG_MIGRATION 1121 .migratepage = btree_migratepage, 1122 #endif 1123 .set_page_dirty = btree_set_page_dirty, 1124 }; 1125 1126 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1127 { 1128 struct extent_buffer *buf = NULL; 1129 struct inode *btree_inode = root->fs_info->btree_inode; 1130 1131 buf = btrfs_find_create_tree_block(root, bytenr); 1132 if (IS_ERR(buf)) 1133 return; 1134 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1135 buf, 0, WAIT_NONE, btree_get_extent, 0); 1136 free_extent_buffer(buf); 1137 } 1138 1139 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1140 int mirror_num, struct extent_buffer **eb) 1141 { 1142 struct extent_buffer *buf = NULL; 1143 struct inode *btree_inode = root->fs_info->btree_inode; 1144 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1145 int ret; 1146 1147 buf = btrfs_find_create_tree_block(root, bytenr); 1148 if (IS_ERR(buf)) 1149 return 0; 1150 1151 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1152 1153 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1154 btree_get_extent, mirror_num); 1155 if (ret) { 1156 free_extent_buffer(buf); 1157 return ret; 1158 } 1159 1160 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1161 free_extent_buffer(buf); 1162 return -EIO; 1163 } else if (extent_buffer_uptodate(buf)) { 1164 *eb = buf; 1165 } else { 1166 free_extent_buffer(buf); 1167 } 1168 return 0; 1169 } 1170 1171 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1172 u64 bytenr) 1173 { 1174 return find_extent_buffer(fs_info, bytenr); 1175 } 1176 1177 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1178 u64 bytenr) 1179 { 1180 if (btrfs_is_testing(root->fs_info)) 1181 return alloc_test_extent_buffer(root->fs_info, bytenr, 1182 root->nodesize); 1183 return alloc_extent_buffer(root->fs_info, bytenr); 1184 } 1185 1186 1187 int btrfs_write_tree_block(struct extent_buffer *buf) 1188 { 1189 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1190 buf->start + buf->len - 1); 1191 } 1192 1193 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1194 { 1195 return filemap_fdatawait_range(buf->pages[0]->mapping, 1196 buf->start, buf->start + buf->len - 1); 1197 } 1198 1199 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1200 u64 parent_transid) 1201 { 1202 struct extent_buffer *buf = NULL; 1203 int ret; 1204 1205 buf = btrfs_find_create_tree_block(root, bytenr); 1206 if (IS_ERR(buf)) 1207 return buf; 1208 1209 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1210 if (ret) { 1211 free_extent_buffer(buf); 1212 return ERR_PTR(ret); 1213 } 1214 return buf; 1215 1216 } 1217 1218 void clean_tree_block(struct btrfs_trans_handle *trans, 1219 struct btrfs_fs_info *fs_info, 1220 struct extent_buffer *buf) 1221 { 1222 if (btrfs_header_generation(buf) == 1223 fs_info->running_transaction->transid) { 1224 btrfs_assert_tree_locked(buf); 1225 1226 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1227 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1228 -buf->len, 1229 fs_info->dirty_metadata_batch); 1230 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1231 btrfs_set_lock_blocking(buf); 1232 clear_extent_buffer_dirty(buf); 1233 } 1234 } 1235 } 1236 1237 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1238 { 1239 struct btrfs_subvolume_writers *writers; 1240 int ret; 1241 1242 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1243 if (!writers) 1244 return ERR_PTR(-ENOMEM); 1245 1246 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1247 if (ret < 0) { 1248 kfree(writers); 1249 return ERR_PTR(ret); 1250 } 1251 1252 init_waitqueue_head(&writers->wait); 1253 return writers; 1254 } 1255 1256 static void 1257 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1258 { 1259 percpu_counter_destroy(&writers->counter); 1260 kfree(writers); 1261 } 1262 1263 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1264 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1265 u64 objectid) 1266 { 1267 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1268 root->node = NULL; 1269 root->commit_root = NULL; 1270 root->sectorsize = sectorsize; 1271 root->nodesize = nodesize; 1272 root->stripesize = stripesize; 1273 root->state = 0; 1274 root->orphan_cleanup_state = 0; 1275 1276 root->objectid = objectid; 1277 root->last_trans = 0; 1278 root->highest_objectid = 0; 1279 root->nr_delalloc_inodes = 0; 1280 root->nr_ordered_extents = 0; 1281 root->name = NULL; 1282 root->inode_tree = RB_ROOT; 1283 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1284 root->block_rsv = NULL; 1285 root->orphan_block_rsv = NULL; 1286 1287 INIT_LIST_HEAD(&root->dirty_list); 1288 INIT_LIST_HEAD(&root->root_list); 1289 INIT_LIST_HEAD(&root->delalloc_inodes); 1290 INIT_LIST_HEAD(&root->delalloc_root); 1291 INIT_LIST_HEAD(&root->ordered_extents); 1292 INIT_LIST_HEAD(&root->ordered_root); 1293 INIT_LIST_HEAD(&root->logged_list[0]); 1294 INIT_LIST_HEAD(&root->logged_list[1]); 1295 spin_lock_init(&root->orphan_lock); 1296 spin_lock_init(&root->inode_lock); 1297 spin_lock_init(&root->delalloc_lock); 1298 spin_lock_init(&root->ordered_extent_lock); 1299 spin_lock_init(&root->accounting_lock); 1300 spin_lock_init(&root->log_extents_lock[0]); 1301 spin_lock_init(&root->log_extents_lock[1]); 1302 mutex_init(&root->objectid_mutex); 1303 mutex_init(&root->log_mutex); 1304 mutex_init(&root->ordered_extent_mutex); 1305 mutex_init(&root->delalloc_mutex); 1306 init_waitqueue_head(&root->log_writer_wait); 1307 init_waitqueue_head(&root->log_commit_wait[0]); 1308 init_waitqueue_head(&root->log_commit_wait[1]); 1309 INIT_LIST_HEAD(&root->log_ctxs[0]); 1310 INIT_LIST_HEAD(&root->log_ctxs[1]); 1311 atomic_set(&root->log_commit[0], 0); 1312 atomic_set(&root->log_commit[1], 0); 1313 atomic_set(&root->log_writers, 0); 1314 atomic_set(&root->log_batch, 0); 1315 atomic_set(&root->orphan_inodes, 0); 1316 atomic_set(&root->refs, 1); 1317 atomic_set(&root->will_be_snapshoted, 0); 1318 atomic_set(&root->qgroup_meta_rsv, 0); 1319 root->log_transid = 0; 1320 root->log_transid_committed = -1; 1321 root->last_log_commit = 0; 1322 if (!dummy) 1323 extent_io_tree_init(&root->dirty_log_pages, 1324 fs_info->btree_inode->i_mapping); 1325 1326 memset(&root->root_key, 0, sizeof(root->root_key)); 1327 memset(&root->root_item, 0, sizeof(root->root_item)); 1328 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1329 if (!dummy) 1330 root->defrag_trans_start = fs_info->generation; 1331 else 1332 root->defrag_trans_start = 0; 1333 root->root_key.objectid = objectid; 1334 root->anon_dev = 0; 1335 1336 spin_lock_init(&root->root_item_lock); 1337 } 1338 1339 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1340 gfp_t flags) 1341 { 1342 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1343 if (root) 1344 root->fs_info = fs_info; 1345 return root; 1346 } 1347 1348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1349 /* Should only be used by the testing infrastructure */ 1350 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info, 1351 u32 sectorsize, u32 nodesize) 1352 { 1353 struct btrfs_root *root; 1354 1355 if (!fs_info) 1356 return ERR_PTR(-EINVAL); 1357 1358 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1359 if (!root) 1360 return ERR_PTR(-ENOMEM); 1361 /* We don't use the stripesize in selftest, set it as sectorsize */ 1362 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info, 1363 BTRFS_ROOT_TREE_OBJECTID); 1364 root->alloc_bytenr = 0; 1365 1366 return root; 1367 } 1368 #endif 1369 1370 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1371 struct btrfs_fs_info *fs_info, 1372 u64 objectid) 1373 { 1374 struct extent_buffer *leaf; 1375 struct btrfs_root *tree_root = fs_info->tree_root; 1376 struct btrfs_root *root; 1377 struct btrfs_key key; 1378 int ret = 0; 1379 uuid_le uuid; 1380 1381 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1382 if (!root) 1383 return ERR_PTR(-ENOMEM); 1384 1385 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1386 tree_root->stripesize, root, fs_info, objectid); 1387 root->root_key.objectid = objectid; 1388 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1389 root->root_key.offset = 0; 1390 1391 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1392 if (IS_ERR(leaf)) { 1393 ret = PTR_ERR(leaf); 1394 leaf = NULL; 1395 goto fail; 1396 } 1397 1398 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1399 btrfs_set_header_bytenr(leaf, leaf->start); 1400 btrfs_set_header_generation(leaf, trans->transid); 1401 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1402 btrfs_set_header_owner(leaf, objectid); 1403 root->node = leaf; 1404 1405 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1406 BTRFS_FSID_SIZE); 1407 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1408 btrfs_header_chunk_tree_uuid(leaf), 1409 BTRFS_UUID_SIZE); 1410 btrfs_mark_buffer_dirty(leaf); 1411 1412 root->commit_root = btrfs_root_node(root); 1413 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1414 1415 root->root_item.flags = 0; 1416 root->root_item.byte_limit = 0; 1417 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1418 btrfs_set_root_generation(&root->root_item, trans->transid); 1419 btrfs_set_root_level(&root->root_item, 0); 1420 btrfs_set_root_refs(&root->root_item, 1); 1421 btrfs_set_root_used(&root->root_item, leaf->len); 1422 btrfs_set_root_last_snapshot(&root->root_item, 0); 1423 btrfs_set_root_dirid(&root->root_item, 0); 1424 uuid_le_gen(&uuid); 1425 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1426 root->root_item.drop_level = 0; 1427 1428 key.objectid = objectid; 1429 key.type = BTRFS_ROOT_ITEM_KEY; 1430 key.offset = 0; 1431 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1432 if (ret) 1433 goto fail; 1434 1435 btrfs_tree_unlock(leaf); 1436 1437 return root; 1438 1439 fail: 1440 if (leaf) { 1441 btrfs_tree_unlock(leaf); 1442 free_extent_buffer(root->commit_root); 1443 free_extent_buffer(leaf); 1444 } 1445 kfree(root); 1446 1447 return ERR_PTR(ret); 1448 } 1449 1450 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1451 struct btrfs_fs_info *fs_info) 1452 { 1453 struct btrfs_root *root; 1454 struct btrfs_root *tree_root = fs_info->tree_root; 1455 struct extent_buffer *leaf; 1456 1457 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1458 if (!root) 1459 return ERR_PTR(-ENOMEM); 1460 1461 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1462 tree_root->stripesize, root, fs_info, 1463 BTRFS_TREE_LOG_OBJECTID); 1464 1465 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1466 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1467 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1468 1469 /* 1470 * DON'T set REF_COWS for log trees 1471 * 1472 * log trees do not get reference counted because they go away 1473 * before a real commit is actually done. They do store pointers 1474 * to file data extents, and those reference counts still get 1475 * updated (along with back refs to the log tree). 1476 */ 1477 1478 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1479 NULL, 0, 0, 0); 1480 if (IS_ERR(leaf)) { 1481 kfree(root); 1482 return ERR_CAST(leaf); 1483 } 1484 1485 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1486 btrfs_set_header_bytenr(leaf, leaf->start); 1487 btrfs_set_header_generation(leaf, trans->transid); 1488 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1489 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1490 root->node = leaf; 1491 1492 write_extent_buffer(root->node, root->fs_info->fsid, 1493 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1494 btrfs_mark_buffer_dirty(root->node); 1495 btrfs_tree_unlock(root->node); 1496 return root; 1497 } 1498 1499 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1500 struct btrfs_fs_info *fs_info) 1501 { 1502 struct btrfs_root *log_root; 1503 1504 log_root = alloc_log_tree(trans, fs_info); 1505 if (IS_ERR(log_root)) 1506 return PTR_ERR(log_root); 1507 WARN_ON(fs_info->log_root_tree); 1508 fs_info->log_root_tree = log_root; 1509 return 0; 1510 } 1511 1512 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1513 struct btrfs_root *root) 1514 { 1515 struct btrfs_root *log_root; 1516 struct btrfs_inode_item *inode_item; 1517 1518 log_root = alloc_log_tree(trans, root->fs_info); 1519 if (IS_ERR(log_root)) 1520 return PTR_ERR(log_root); 1521 1522 log_root->last_trans = trans->transid; 1523 log_root->root_key.offset = root->root_key.objectid; 1524 1525 inode_item = &log_root->root_item.inode; 1526 btrfs_set_stack_inode_generation(inode_item, 1); 1527 btrfs_set_stack_inode_size(inode_item, 3); 1528 btrfs_set_stack_inode_nlink(inode_item, 1); 1529 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1530 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1531 1532 btrfs_set_root_node(&log_root->root_item, log_root->node); 1533 1534 WARN_ON(root->log_root); 1535 root->log_root = log_root; 1536 root->log_transid = 0; 1537 root->log_transid_committed = -1; 1538 root->last_log_commit = 0; 1539 return 0; 1540 } 1541 1542 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1543 struct btrfs_key *key) 1544 { 1545 struct btrfs_root *root; 1546 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1547 struct btrfs_path *path; 1548 u64 generation; 1549 int ret; 1550 1551 path = btrfs_alloc_path(); 1552 if (!path) 1553 return ERR_PTR(-ENOMEM); 1554 1555 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1556 if (!root) { 1557 ret = -ENOMEM; 1558 goto alloc_fail; 1559 } 1560 1561 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1562 tree_root->stripesize, root, fs_info, key->objectid); 1563 1564 ret = btrfs_find_root(tree_root, key, path, 1565 &root->root_item, &root->root_key); 1566 if (ret) { 1567 if (ret > 0) 1568 ret = -ENOENT; 1569 goto find_fail; 1570 } 1571 1572 generation = btrfs_root_generation(&root->root_item); 1573 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1574 generation); 1575 if (IS_ERR(root->node)) { 1576 ret = PTR_ERR(root->node); 1577 goto find_fail; 1578 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1579 ret = -EIO; 1580 free_extent_buffer(root->node); 1581 goto find_fail; 1582 } 1583 root->commit_root = btrfs_root_node(root); 1584 out: 1585 btrfs_free_path(path); 1586 return root; 1587 1588 find_fail: 1589 kfree(root); 1590 alloc_fail: 1591 root = ERR_PTR(ret); 1592 goto out; 1593 } 1594 1595 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1596 struct btrfs_key *location) 1597 { 1598 struct btrfs_root *root; 1599 1600 root = btrfs_read_tree_root(tree_root, location); 1601 if (IS_ERR(root)) 1602 return root; 1603 1604 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1605 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1606 btrfs_check_and_init_root_item(&root->root_item); 1607 } 1608 1609 return root; 1610 } 1611 1612 int btrfs_init_fs_root(struct btrfs_root *root) 1613 { 1614 int ret; 1615 struct btrfs_subvolume_writers *writers; 1616 1617 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1618 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1619 GFP_NOFS); 1620 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1621 ret = -ENOMEM; 1622 goto fail; 1623 } 1624 1625 writers = btrfs_alloc_subvolume_writers(); 1626 if (IS_ERR(writers)) { 1627 ret = PTR_ERR(writers); 1628 goto fail; 1629 } 1630 root->subv_writers = writers; 1631 1632 btrfs_init_free_ino_ctl(root); 1633 spin_lock_init(&root->ino_cache_lock); 1634 init_waitqueue_head(&root->ino_cache_wait); 1635 1636 ret = get_anon_bdev(&root->anon_dev); 1637 if (ret) 1638 goto fail; 1639 1640 mutex_lock(&root->objectid_mutex); 1641 ret = btrfs_find_highest_objectid(root, 1642 &root->highest_objectid); 1643 if (ret) { 1644 mutex_unlock(&root->objectid_mutex); 1645 goto fail; 1646 } 1647 1648 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1649 1650 mutex_unlock(&root->objectid_mutex); 1651 1652 return 0; 1653 fail: 1654 /* the caller is responsible to call free_fs_root */ 1655 return ret; 1656 } 1657 1658 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1659 u64 root_id) 1660 { 1661 struct btrfs_root *root; 1662 1663 spin_lock(&fs_info->fs_roots_radix_lock); 1664 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1665 (unsigned long)root_id); 1666 spin_unlock(&fs_info->fs_roots_radix_lock); 1667 return root; 1668 } 1669 1670 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1671 struct btrfs_root *root) 1672 { 1673 int ret; 1674 1675 ret = radix_tree_preload(GFP_NOFS); 1676 if (ret) 1677 return ret; 1678 1679 spin_lock(&fs_info->fs_roots_radix_lock); 1680 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1681 (unsigned long)root->root_key.objectid, 1682 root); 1683 if (ret == 0) 1684 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1685 spin_unlock(&fs_info->fs_roots_radix_lock); 1686 radix_tree_preload_end(); 1687 1688 return ret; 1689 } 1690 1691 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1692 struct btrfs_key *location, 1693 bool check_ref) 1694 { 1695 struct btrfs_root *root; 1696 struct btrfs_path *path; 1697 struct btrfs_key key; 1698 int ret; 1699 1700 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1701 return fs_info->tree_root; 1702 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1703 return fs_info->extent_root; 1704 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1705 return fs_info->chunk_root; 1706 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1707 return fs_info->dev_root; 1708 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1709 return fs_info->csum_root; 1710 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1711 return fs_info->quota_root ? fs_info->quota_root : 1712 ERR_PTR(-ENOENT); 1713 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1714 return fs_info->uuid_root ? fs_info->uuid_root : 1715 ERR_PTR(-ENOENT); 1716 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1717 return fs_info->free_space_root ? fs_info->free_space_root : 1718 ERR_PTR(-ENOENT); 1719 again: 1720 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1721 if (root) { 1722 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1723 return ERR_PTR(-ENOENT); 1724 return root; 1725 } 1726 1727 root = btrfs_read_fs_root(fs_info->tree_root, location); 1728 if (IS_ERR(root)) 1729 return root; 1730 1731 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1732 ret = -ENOENT; 1733 goto fail; 1734 } 1735 1736 ret = btrfs_init_fs_root(root); 1737 if (ret) 1738 goto fail; 1739 1740 path = btrfs_alloc_path(); 1741 if (!path) { 1742 ret = -ENOMEM; 1743 goto fail; 1744 } 1745 key.objectid = BTRFS_ORPHAN_OBJECTID; 1746 key.type = BTRFS_ORPHAN_ITEM_KEY; 1747 key.offset = location->objectid; 1748 1749 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1750 btrfs_free_path(path); 1751 if (ret < 0) 1752 goto fail; 1753 if (ret == 0) 1754 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1755 1756 ret = btrfs_insert_fs_root(fs_info, root); 1757 if (ret) { 1758 if (ret == -EEXIST) { 1759 free_fs_root(root); 1760 goto again; 1761 } 1762 goto fail; 1763 } 1764 return root; 1765 fail: 1766 free_fs_root(root); 1767 return ERR_PTR(ret); 1768 } 1769 1770 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1771 { 1772 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1773 int ret = 0; 1774 struct btrfs_device *device; 1775 struct backing_dev_info *bdi; 1776 1777 rcu_read_lock(); 1778 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1779 if (!device->bdev) 1780 continue; 1781 bdi = blk_get_backing_dev_info(device->bdev); 1782 if (bdi_congested(bdi, bdi_bits)) { 1783 ret = 1; 1784 break; 1785 } 1786 } 1787 rcu_read_unlock(); 1788 return ret; 1789 } 1790 1791 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1792 { 1793 int err; 1794 1795 err = bdi_setup_and_register(bdi, "btrfs"); 1796 if (err) 1797 return err; 1798 1799 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1800 bdi->congested_fn = btrfs_congested_fn; 1801 bdi->congested_data = info; 1802 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1803 return 0; 1804 } 1805 1806 /* 1807 * called by the kthread helper functions to finally call the bio end_io 1808 * functions. This is where read checksum verification actually happens 1809 */ 1810 static void end_workqueue_fn(struct btrfs_work *work) 1811 { 1812 struct bio *bio; 1813 struct btrfs_end_io_wq *end_io_wq; 1814 1815 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1816 bio = end_io_wq->bio; 1817 1818 bio->bi_error = end_io_wq->error; 1819 bio->bi_private = end_io_wq->private; 1820 bio->bi_end_io = end_io_wq->end_io; 1821 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1822 bio_endio(bio); 1823 } 1824 1825 static int cleaner_kthread(void *arg) 1826 { 1827 struct btrfs_root *root = arg; 1828 int again; 1829 struct btrfs_trans_handle *trans; 1830 1831 do { 1832 again = 0; 1833 1834 /* Make the cleaner go to sleep early. */ 1835 if (btrfs_need_cleaner_sleep(root)) 1836 goto sleep; 1837 1838 /* 1839 * Do not do anything if we might cause open_ctree() to block 1840 * before we have finished mounting the filesystem. 1841 */ 1842 if (!root->fs_info->open) 1843 goto sleep; 1844 1845 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1846 goto sleep; 1847 1848 /* 1849 * Avoid the problem that we change the status of the fs 1850 * during the above check and trylock. 1851 */ 1852 if (btrfs_need_cleaner_sleep(root)) { 1853 mutex_unlock(&root->fs_info->cleaner_mutex); 1854 goto sleep; 1855 } 1856 1857 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1858 btrfs_run_delayed_iputs(root); 1859 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1860 1861 again = btrfs_clean_one_deleted_snapshot(root); 1862 mutex_unlock(&root->fs_info->cleaner_mutex); 1863 1864 /* 1865 * The defragger has dealt with the R/O remount and umount, 1866 * needn't do anything special here. 1867 */ 1868 btrfs_run_defrag_inodes(root->fs_info); 1869 1870 /* 1871 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1872 * with relocation (btrfs_relocate_chunk) and relocation 1873 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1874 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1875 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1876 * unused block groups. 1877 */ 1878 btrfs_delete_unused_bgs(root->fs_info); 1879 sleep: 1880 if (!again) { 1881 set_current_state(TASK_INTERRUPTIBLE); 1882 if (!kthread_should_stop()) 1883 schedule(); 1884 __set_current_state(TASK_RUNNING); 1885 } 1886 } while (!kthread_should_stop()); 1887 1888 /* 1889 * Transaction kthread is stopped before us and wakes us up. 1890 * However we might have started a new transaction and COWed some 1891 * tree blocks when deleting unused block groups for example. So 1892 * make sure we commit the transaction we started to have a clean 1893 * shutdown when evicting the btree inode - if it has dirty pages 1894 * when we do the final iput() on it, eviction will trigger a 1895 * writeback for it which will fail with null pointer dereferences 1896 * since work queues and other resources were already released and 1897 * destroyed by the time the iput/eviction/writeback is made. 1898 */ 1899 trans = btrfs_attach_transaction(root); 1900 if (IS_ERR(trans)) { 1901 if (PTR_ERR(trans) != -ENOENT) 1902 btrfs_err(root->fs_info, 1903 "cleaner transaction attach returned %ld", 1904 PTR_ERR(trans)); 1905 } else { 1906 int ret; 1907 1908 ret = btrfs_commit_transaction(trans, root); 1909 if (ret) 1910 btrfs_err(root->fs_info, 1911 "cleaner open transaction commit returned %d", 1912 ret); 1913 } 1914 1915 return 0; 1916 } 1917 1918 static int transaction_kthread(void *arg) 1919 { 1920 struct btrfs_root *root = arg; 1921 struct btrfs_trans_handle *trans; 1922 struct btrfs_transaction *cur; 1923 u64 transid; 1924 unsigned long now; 1925 unsigned long delay; 1926 bool cannot_commit; 1927 1928 do { 1929 cannot_commit = false; 1930 delay = HZ * root->fs_info->commit_interval; 1931 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1932 1933 spin_lock(&root->fs_info->trans_lock); 1934 cur = root->fs_info->running_transaction; 1935 if (!cur) { 1936 spin_unlock(&root->fs_info->trans_lock); 1937 goto sleep; 1938 } 1939 1940 now = get_seconds(); 1941 if (cur->state < TRANS_STATE_BLOCKED && 1942 (now < cur->start_time || 1943 now - cur->start_time < root->fs_info->commit_interval)) { 1944 spin_unlock(&root->fs_info->trans_lock); 1945 delay = HZ * 5; 1946 goto sleep; 1947 } 1948 transid = cur->transid; 1949 spin_unlock(&root->fs_info->trans_lock); 1950 1951 /* If the file system is aborted, this will always fail. */ 1952 trans = btrfs_attach_transaction(root); 1953 if (IS_ERR(trans)) { 1954 if (PTR_ERR(trans) != -ENOENT) 1955 cannot_commit = true; 1956 goto sleep; 1957 } 1958 if (transid == trans->transid) { 1959 btrfs_commit_transaction(trans, root); 1960 } else { 1961 btrfs_end_transaction(trans, root); 1962 } 1963 sleep: 1964 wake_up_process(root->fs_info->cleaner_kthread); 1965 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1966 1967 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1968 &root->fs_info->fs_state))) 1969 btrfs_cleanup_transaction(root); 1970 set_current_state(TASK_INTERRUPTIBLE); 1971 if (!kthread_should_stop() && 1972 (!btrfs_transaction_blocked(root->fs_info) || 1973 cannot_commit)) 1974 schedule_timeout(delay); 1975 __set_current_state(TASK_RUNNING); 1976 } while (!kthread_should_stop()); 1977 return 0; 1978 } 1979 1980 /* 1981 * this will find the highest generation in the array of 1982 * root backups. The index of the highest array is returned, 1983 * or -1 if we can't find anything. 1984 * 1985 * We check to make sure the array is valid by comparing the 1986 * generation of the latest root in the array with the generation 1987 * in the super block. If they don't match we pitch it. 1988 */ 1989 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1990 { 1991 u64 cur; 1992 int newest_index = -1; 1993 struct btrfs_root_backup *root_backup; 1994 int i; 1995 1996 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1997 root_backup = info->super_copy->super_roots + i; 1998 cur = btrfs_backup_tree_root_gen(root_backup); 1999 if (cur == newest_gen) 2000 newest_index = i; 2001 } 2002 2003 /* check to see if we actually wrapped around */ 2004 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2005 root_backup = info->super_copy->super_roots; 2006 cur = btrfs_backup_tree_root_gen(root_backup); 2007 if (cur == newest_gen) 2008 newest_index = 0; 2009 } 2010 return newest_index; 2011 } 2012 2013 2014 /* 2015 * find the oldest backup so we know where to store new entries 2016 * in the backup array. This will set the backup_root_index 2017 * field in the fs_info struct 2018 */ 2019 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2020 u64 newest_gen) 2021 { 2022 int newest_index = -1; 2023 2024 newest_index = find_newest_super_backup(info, newest_gen); 2025 /* if there was garbage in there, just move along */ 2026 if (newest_index == -1) { 2027 info->backup_root_index = 0; 2028 } else { 2029 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2030 } 2031 } 2032 2033 /* 2034 * copy all the root pointers into the super backup array. 2035 * this will bump the backup pointer by one when it is 2036 * done 2037 */ 2038 static void backup_super_roots(struct btrfs_fs_info *info) 2039 { 2040 int next_backup; 2041 struct btrfs_root_backup *root_backup; 2042 int last_backup; 2043 2044 next_backup = info->backup_root_index; 2045 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2046 BTRFS_NUM_BACKUP_ROOTS; 2047 2048 /* 2049 * just overwrite the last backup if we're at the same generation 2050 * this happens only at umount 2051 */ 2052 root_backup = info->super_for_commit->super_roots + last_backup; 2053 if (btrfs_backup_tree_root_gen(root_backup) == 2054 btrfs_header_generation(info->tree_root->node)) 2055 next_backup = last_backup; 2056 2057 root_backup = info->super_for_commit->super_roots + next_backup; 2058 2059 /* 2060 * make sure all of our padding and empty slots get zero filled 2061 * regardless of which ones we use today 2062 */ 2063 memset(root_backup, 0, sizeof(*root_backup)); 2064 2065 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2066 2067 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2068 btrfs_set_backup_tree_root_gen(root_backup, 2069 btrfs_header_generation(info->tree_root->node)); 2070 2071 btrfs_set_backup_tree_root_level(root_backup, 2072 btrfs_header_level(info->tree_root->node)); 2073 2074 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2075 btrfs_set_backup_chunk_root_gen(root_backup, 2076 btrfs_header_generation(info->chunk_root->node)); 2077 btrfs_set_backup_chunk_root_level(root_backup, 2078 btrfs_header_level(info->chunk_root->node)); 2079 2080 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2081 btrfs_set_backup_extent_root_gen(root_backup, 2082 btrfs_header_generation(info->extent_root->node)); 2083 btrfs_set_backup_extent_root_level(root_backup, 2084 btrfs_header_level(info->extent_root->node)); 2085 2086 /* 2087 * we might commit during log recovery, which happens before we set 2088 * the fs_root. Make sure it is valid before we fill it in. 2089 */ 2090 if (info->fs_root && info->fs_root->node) { 2091 btrfs_set_backup_fs_root(root_backup, 2092 info->fs_root->node->start); 2093 btrfs_set_backup_fs_root_gen(root_backup, 2094 btrfs_header_generation(info->fs_root->node)); 2095 btrfs_set_backup_fs_root_level(root_backup, 2096 btrfs_header_level(info->fs_root->node)); 2097 } 2098 2099 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2100 btrfs_set_backup_dev_root_gen(root_backup, 2101 btrfs_header_generation(info->dev_root->node)); 2102 btrfs_set_backup_dev_root_level(root_backup, 2103 btrfs_header_level(info->dev_root->node)); 2104 2105 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2106 btrfs_set_backup_csum_root_gen(root_backup, 2107 btrfs_header_generation(info->csum_root->node)); 2108 btrfs_set_backup_csum_root_level(root_backup, 2109 btrfs_header_level(info->csum_root->node)); 2110 2111 btrfs_set_backup_total_bytes(root_backup, 2112 btrfs_super_total_bytes(info->super_copy)); 2113 btrfs_set_backup_bytes_used(root_backup, 2114 btrfs_super_bytes_used(info->super_copy)); 2115 btrfs_set_backup_num_devices(root_backup, 2116 btrfs_super_num_devices(info->super_copy)); 2117 2118 /* 2119 * if we don't copy this out to the super_copy, it won't get remembered 2120 * for the next commit 2121 */ 2122 memcpy(&info->super_copy->super_roots, 2123 &info->super_for_commit->super_roots, 2124 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2125 } 2126 2127 /* 2128 * this copies info out of the root backup array and back into 2129 * the in-memory super block. It is meant to help iterate through 2130 * the array, so you send it the number of backups you've already 2131 * tried and the last backup index you used. 2132 * 2133 * this returns -1 when it has tried all the backups 2134 */ 2135 static noinline int next_root_backup(struct btrfs_fs_info *info, 2136 struct btrfs_super_block *super, 2137 int *num_backups_tried, int *backup_index) 2138 { 2139 struct btrfs_root_backup *root_backup; 2140 int newest = *backup_index; 2141 2142 if (*num_backups_tried == 0) { 2143 u64 gen = btrfs_super_generation(super); 2144 2145 newest = find_newest_super_backup(info, gen); 2146 if (newest == -1) 2147 return -1; 2148 2149 *backup_index = newest; 2150 *num_backups_tried = 1; 2151 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2152 /* we've tried all the backups, all done */ 2153 return -1; 2154 } else { 2155 /* jump to the next oldest backup */ 2156 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2157 BTRFS_NUM_BACKUP_ROOTS; 2158 *backup_index = newest; 2159 *num_backups_tried += 1; 2160 } 2161 root_backup = super->super_roots + newest; 2162 2163 btrfs_set_super_generation(super, 2164 btrfs_backup_tree_root_gen(root_backup)); 2165 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2166 btrfs_set_super_root_level(super, 2167 btrfs_backup_tree_root_level(root_backup)); 2168 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2169 2170 /* 2171 * fixme: the total bytes and num_devices need to match or we should 2172 * need a fsck 2173 */ 2174 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2175 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2176 return 0; 2177 } 2178 2179 /* helper to cleanup workers */ 2180 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2181 { 2182 btrfs_destroy_workqueue(fs_info->fixup_workers); 2183 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2184 btrfs_destroy_workqueue(fs_info->workers); 2185 btrfs_destroy_workqueue(fs_info->endio_workers); 2186 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2187 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2188 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2189 btrfs_destroy_workqueue(fs_info->rmw_workers); 2190 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2191 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2192 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2193 btrfs_destroy_workqueue(fs_info->submit_workers); 2194 btrfs_destroy_workqueue(fs_info->delayed_workers); 2195 btrfs_destroy_workqueue(fs_info->caching_workers); 2196 btrfs_destroy_workqueue(fs_info->readahead_workers); 2197 btrfs_destroy_workqueue(fs_info->flush_workers); 2198 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2199 btrfs_destroy_workqueue(fs_info->extent_workers); 2200 } 2201 2202 static void free_root_extent_buffers(struct btrfs_root *root) 2203 { 2204 if (root) { 2205 free_extent_buffer(root->node); 2206 free_extent_buffer(root->commit_root); 2207 root->node = NULL; 2208 root->commit_root = NULL; 2209 } 2210 } 2211 2212 /* helper to cleanup tree roots */ 2213 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2214 { 2215 free_root_extent_buffers(info->tree_root); 2216 2217 free_root_extent_buffers(info->dev_root); 2218 free_root_extent_buffers(info->extent_root); 2219 free_root_extent_buffers(info->csum_root); 2220 free_root_extent_buffers(info->quota_root); 2221 free_root_extent_buffers(info->uuid_root); 2222 if (chunk_root) 2223 free_root_extent_buffers(info->chunk_root); 2224 free_root_extent_buffers(info->free_space_root); 2225 } 2226 2227 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2228 { 2229 int ret; 2230 struct btrfs_root *gang[8]; 2231 int i; 2232 2233 while (!list_empty(&fs_info->dead_roots)) { 2234 gang[0] = list_entry(fs_info->dead_roots.next, 2235 struct btrfs_root, root_list); 2236 list_del(&gang[0]->root_list); 2237 2238 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2239 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2240 } else { 2241 free_extent_buffer(gang[0]->node); 2242 free_extent_buffer(gang[0]->commit_root); 2243 btrfs_put_fs_root(gang[0]); 2244 } 2245 } 2246 2247 while (1) { 2248 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2249 (void **)gang, 0, 2250 ARRAY_SIZE(gang)); 2251 if (!ret) 2252 break; 2253 for (i = 0; i < ret; i++) 2254 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2255 } 2256 2257 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2258 btrfs_free_log_root_tree(NULL, fs_info); 2259 btrfs_destroy_pinned_extent(fs_info->tree_root, 2260 fs_info->pinned_extents); 2261 } 2262 } 2263 2264 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2265 { 2266 mutex_init(&fs_info->scrub_lock); 2267 atomic_set(&fs_info->scrubs_running, 0); 2268 atomic_set(&fs_info->scrub_pause_req, 0); 2269 atomic_set(&fs_info->scrubs_paused, 0); 2270 atomic_set(&fs_info->scrub_cancel_req, 0); 2271 init_waitqueue_head(&fs_info->scrub_pause_wait); 2272 fs_info->scrub_workers_refcnt = 0; 2273 } 2274 2275 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2276 { 2277 spin_lock_init(&fs_info->balance_lock); 2278 mutex_init(&fs_info->balance_mutex); 2279 atomic_set(&fs_info->balance_running, 0); 2280 atomic_set(&fs_info->balance_pause_req, 0); 2281 atomic_set(&fs_info->balance_cancel_req, 0); 2282 fs_info->balance_ctl = NULL; 2283 init_waitqueue_head(&fs_info->balance_wait_q); 2284 } 2285 2286 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2287 struct btrfs_root *tree_root) 2288 { 2289 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2290 set_nlink(fs_info->btree_inode, 1); 2291 /* 2292 * we set the i_size on the btree inode to the max possible int. 2293 * the real end of the address space is determined by all of 2294 * the devices in the system 2295 */ 2296 fs_info->btree_inode->i_size = OFFSET_MAX; 2297 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2298 2299 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2300 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2301 fs_info->btree_inode->i_mapping); 2302 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2303 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2304 2305 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2306 2307 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2308 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2309 sizeof(struct btrfs_key)); 2310 set_bit(BTRFS_INODE_DUMMY, 2311 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2312 btrfs_insert_inode_hash(fs_info->btree_inode); 2313 } 2314 2315 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2316 { 2317 fs_info->dev_replace.lock_owner = 0; 2318 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2319 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2320 rwlock_init(&fs_info->dev_replace.lock); 2321 atomic_set(&fs_info->dev_replace.read_locks, 0); 2322 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2323 init_waitqueue_head(&fs_info->replace_wait); 2324 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2325 } 2326 2327 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2328 { 2329 spin_lock_init(&fs_info->qgroup_lock); 2330 mutex_init(&fs_info->qgroup_ioctl_lock); 2331 fs_info->qgroup_tree = RB_ROOT; 2332 fs_info->qgroup_op_tree = RB_ROOT; 2333 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2334 fs_info->qgroup_seq = 1; 2335 fs_info->quota_enabled = 0; 2336 fs_info->pending_quota_state = 0; 2337 fs_info->qgroup_ulist = NULL; 2338 fs_info->qgroup_rescan_running = false; 2339 mutex_init(&fs_info->qgroup_rescan_lock); 2340 } 2341 2342 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2343 struct btrfs_fs_devices *fs_devices) 2344 { 2345 int max_active = fs_info->thread_pool_size; 2346 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2347 2348 fs_info->workers = 2349 btrfs_alloc_workqueue(fs_info, "worker", 2350 flags | WQ_HIGHPRI, max_active, 16); 2351 2352 fs_info->delalloc_workers = 2353 btrfs_alloc_workqueue(fs_info, "delalloc", 2354 flags, max_active, 2); 2355 2356 fs_info->flush_workers = 2357 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2358 flags, max_active, 0); 2359 2360 fs_info->caching_workers = 2361 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2362 2363 /* 2364 * a higher idle thresh on the submit workers makes it much more 2365 * likely that bios will be send down in a sane order to the 2366 * devices 2367 */ 2368 fs_info->submit_workers = 2369 btrfs_alloc_workqueue(fs_info, "submit", flags, 2370 min_t(u64, fs_devices->num_devices, 2371 max_active), 64); 2372 2373 fs_info->fixup_workers = 2374 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2375 2376 /* 2377 * endios are largely parallel and should have a very 2378 * low idle thresh 2379 */ 2380 fs_info->endio_workers = 2381 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2382 fs_info->endio_meta_workers = 2383 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2384 max_active, 4); 2385 fs_info->endio_meta_write_workers = 2386 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2387 max_active, 2); 2388 fs_info->endio_raid56_workers = 2389 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2390 max_active, 4); 2391 fs_info->endio_repair_workers = 2392 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2393 fs_info->rmw_workers = 2394 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2395 fs_info->endio_write_workers = 2396 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2397 max_active, 2); 2398 fs_info->endio_freespace_worker = 2399 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2400 max_active, 0); 2401 fs_info->delayed_workers = 2402 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2403 max_active, 0); 2404 fs_info->readahead_workers = 2405 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2406 max_active, 2); 2407 fs_info->qgroup_rescan_workers = 2408 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2409 fs_info->extent_workers = 2410 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2411 min_t(u64, fs_devices->num_devices, 2412 max_active), 8); 2413 2414 if (!(fs_info->workers && fs_info->delalloc_workers && 2415 fs_info->submit_workers && fs_info->flush_workers && 2416 fs_info->endio_workers && fs_info->endio_meta_workers && 2417 fs_info->endio_meta_write_workers && 2418 fs_info->endio_repair_workers && 2419 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2420 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2421 fs_info->caching_workers && fs_info->readahead_workers && 2422 fs_info->fixup_workers && fs_info->delayed_workers && 2423 fs_info->extent_workers && 2424 fs_info->qgroup_rescan_workers)) { 2425 return -ENOMEM; 2426 } 2427 2428 return 0; 2429 } 2430 2431 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2432 struct btrfs_fs_devices *fs_devices) 2433 { 2434 int ret; 2435 struct btrfs_root *tree_root = fs_info->tree_root; 2436 struct btrfs_root *log_tree_root; 2437 struct btrfs_super_block *disk_super = fs_info->super_copy; 2438 u64 bytenr = btrfs_super_log_root(disk_super); 2439 2440 if (fs_devices->rw_devices == 0) { 2441 btrfs_warn(fs_info, "log replay required on RO media"); 2442 return -EIO; 2443 } 2444 2445 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2446 if (!log_tree_root) 2447 return -ENOMEM; 2448 2449 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2450 tree_root->stripesize, log_tree_root, fs_info, 2451 BTRFS_TREE_LOG_OBJECTID); 2452 2453 log_tree_root->node = read_tree_block(tree_root, bytenr, 2454 fs_info->generation + 1); 2455 if (IS_ERR(log_tree_root->node)) { 2456 btrfs_warn(fs_info, "failed to read log tree"); 2457 ret = PTR_ERR(log_tree_root->node); 2458 kfree(log_tree_root); 2459 return ret; 2460 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2461 btrfs_err(fs_info, "failed to read log tree"); 2462 free_extent_buffer(log_tree_root->node); 2463 kfree(log_tree_root); 2464 return -EIO; 2465 } 2466 /* returns with log_tree_root freed on success */ 2467 ret = btrfs_recover_log_trees(log_tree_root); 2468 if (ret) { 2469 btrfs_handle_fs_error(tree_root->fs_info, ret, 2470 "Failed to recover log tree"); 2471 free_extent_buffer(log_tree_root->node); 2472 kfree(log_tree_root); 2473 return ret; 2474 } 2475 2476 if (fs_info->sb->s_flags & MS_RDONLY) { 2477 ret = btrfs_commit_super(tree_root); 2478 if (ret) 2479 return ret; 2480 } 2481 2482 return 0; 2483 } 2484 2485 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2486 struct btrfs_root *tree_root) 2487 { 2488 struct btrfs_root *root; 2489 struct btrfs_key location; 2490 int ret; 2491 2492 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2493 location.type = BTRFS_ROOT_ITEM_KEY; 2494 location.offset = 0; 2495 2496 root = btrfs_read_tree_root(tree_root, &location); 2497 if (IS_ERR(root)) 2498 return PTR_ERR(root); 2499 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2500 fs_info->extent_root = root; 2501 2502 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2503 root = btrfs_read_tree_root(tree_root, &location); 2504 if (IS_ERR(root)) 2505 return PTR_ERR(root); 2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2507 fs_info->dev_root = root; 2508 btrfs_init_devices_late(fs_info); 2509 2510 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2511 root = btrfs_read_tree_root(tree_root, &location); 2512 if (IS_ERR(root)) 2513 return PTR_ERR(root); 2514 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2515 fs_info->csum_root = root; 2516 2517 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2518 root = btrfs_read_tree_root(tree_root, &location); 2519 if (!IS_ERR(root)) { 2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2521 fs_info->quota_enabled = 1; 2522 fs_info->pending_quota_state = 1; 2523 fs_info->quota_root = root; 2524 } 2525 2526 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2527 root = btrfs_read_tree_root(tree_root, &location); 2528 if (IS_ERR(root)) { 2529 ret = PTR_ERR(root); 2530 if (ret != -ENOENT) 2531 return ret; 2532 } else { 2533 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2534 fs_info->uuid_root = root; 2535 } 2536 2537 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2538 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2539 root = btrfs_read_tree_root(tree_root, &location); 2540 if (IS_ERR(root)) 2541 return PTR_ERR(root); 2542 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2543 fs_info->free_space_root = root; 2544 } 2545 2546 return 0; 2547 } 2548 2549 int open_ctree(struct super_block *sb, 2550 struct btrfs_fs_devices *fs_devices, 2551 char *options) 2552 { 2553 u32 sectorsize; 2554 u32 nodesize; 2555 u32 stripesize; 2556 u64 generation; 2557 u64 features; 2558 struct btrfs_key location; 2559 struct buffer_head *bh; 2560 struct btrfs_super_block *disk_super; 2561 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2562 struct btrfs_root *tree_root; 2563 struct btrfs_root *chunk_root; 2564 int ret; 2565 int err = -EINVAL; 2566 int num_backups_tried = 0; 2567 int backup_index = 0; 2568 int max_active; 2569 2570 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2571 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2572 if (!tree_root || !chunk_root) { 2573 err = -ENOMEM; 2574 goto fail; 2575 } 2576 2577 ret = init_srcu_struct(&fs_info->subvol_srcu); 2578 if (ret) { 2579 err = ret; 2580 goto fail; 2581 } 2582 2583 ret = setup_bdi(fs_info, &fs_info->bdi); 2584 if (ret) { 2585 err = ret; 2586 goto fail_srcu; 2587 } 2588 2589 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2590 if (ret) { 2591 err = ret; 2592 goto fail_bdi; 2593 } 2594 fs_info->dirty_metadata_batch = PAGE_SIZE * 2595 (1 + ilog2(nr_cpu_ids)); 2596 2597 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2598 if (ret) { 2599 err = ret; 2600 goto fail_dirty_metadata_bytes; 2601 } 2602 2603 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2604 if (ret) { 2605 err = ret; 2606 goto fail_delalloc_bytes; 2607 } 2608 2609 fs_info->btree_inode = new_inode(sb); 2610 if (!fs_info->btree_inode) { 2611 err = -ENOMEM; 2612 goto fail_bio_counter; 2613 } 2614 2615 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2616 2617 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2618 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2619 INIT_LIST_HEAD(&fs_info->trans_list); 2620 INIT_LIST_HEAD(&fs_info->dead_roots); 2621 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2622 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2623 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2624 spin_lock_init(&fs_info->delalloc_root_lock); 2625 spin_lock_init(&fs_info->trans_lock); 2626 spin_lock_init(&fs_info->fs_roots_radix_lock); 2627 spin_lock_init(&fs_info->delayed_iput_lock); 2628 spin_lock_init(&fs_info->defrag_inodes_lock); 2629 spin_lock_init(&fs_info->free_chunk_lock); 2630 spin_lock_init(&fs_info->tree_mod_seq_lock); 2631 spin_lock_init(&fs_info->super_lock); 2632 spin_lock_init(&fs_info->qgroup_op_lock); 2633 spin_lock_init(&fs_info->buffer_lock); 2634 spin_lock_init(&fs_info->unused_bgs_lock); 2635 rwlock_init(&fs_info->tree_mod_log_lock); 2636 mutex_init(&fs_info->unused_bg_unpin_mutex); 2637 mutex_init(&fs_info->delete_unused_bgs_mutex); 2638 mutex_init(&fs_info->reloc_mutex); 2639 mutex_init(&fs_info->delalloc_root_mutex); 2640 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2641 seqlock_init(&fs_info->profiles_lock); 2642 2643 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2644 INIT_LIST_HEAD(&fs_info->space_info); 2645 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2646 INIT_LIST_HEAD(&fs_info->unused_bgs); 2647 btrfs_mapping_init(&fs_info->mapping_tree); 2648 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2649 BTRFS_BLOCK_RSV_GLOBAL); 2650 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2651 BTRFS_BLOCK_RSV_DELALLOC); 2652 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2653 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2654 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2655 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2656 BTRFS_BLOCK_RSV_DELOPS); 2657 atomic_set(&fs_info->nr_async_submits, 0); 2658 atomic_set(&fs_info->async_delalloc_pages, 0); 2659 atomic_set(&fs_info->async_submit_draining, 0); 2660 atomic_set(&fs_info->nr_async_bios, 0); 2661 atomic_set(&fs_info->defrag_running, 0); 2662 atomic_set(&fs_info->qgroup_op_seq, 0); 2663 atomic_set(&fs_info->reada_works_cnt, 0); 2664 atomic64_set(&fs_info->tree_mod_seq, 0); 2665 fs_info->fs_frozen = 0; 2666 fs_info->sb = sb; 2667 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2668 fs_info->metadata_ratio = 0; 2669 fs_info->defrag_inodes = RB_ROOT; 2670 fs_info->free_chunk_space = 0; 2671 fs_info->tree_mod_log = RB_ROOT; 2672 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2673 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2674 /* readahead state */ 2675 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2676 spin_lock_init(&fs_info->reada_lock); 2677 2678 fs_info->thread_pool_size = min_t(unsigned long, 2679 num_online_cpus() + 2, 8); 2680 2681 INIT_LIST_HEAD(&fs_info->ordered_roots); 2682 spin_lock_init(&fs_info->ordered_root_lock); 2683 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2684 GFP_KERNEL); 2685 if (!fs_info->delayed_root) { 2686 err = -ENOMEM; 2687 goto fail_iput; 2688 } 2689 btrfs_init_delayed_root(fs_info->delayed_root); 2690 2691 btrfs_init_scrub(fs_info); 2692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2693 fs_info->check_integrity_print_mask = 0; 2694 #endif 2695 btrfs_init_balance(fs_info); 2696 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2697 2698 sb->s_blocksize = 4096; 2699 sb->s_blocksize_bits = blksize_bits(4096); 2700 sb->s_bdi = &fs_info->bdi; 2701 2702 btrfs_init_btree_inode(fs_info, tree_root); 2703 2704 spin_lock_init(&fs_info->block_group_cache_lock); 2705 fs_info->block_group_cache_tree = RB_ROOT; 2706 fs_info->first_logical_byte = (u64)-1; 2707 2708 extent_io_tree_init(&fs_info->freed_extents[0], 2709 fs_info->btree_inode->i_mapping); 2710 extent_io_tree_init(&fs_info->freed_extents[1], 2711 fs_info->btree_inode->i_mapping); 2712 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2713 fs_info->do_barriers = 1; 2714 2715 2716 mutex_init(&fs_info->ordered_operations_mutex); 2717 mutex_init(&fs_info->tree_log_mutex); 2718 mutex_init(&fs_info->chunk_mutex); 2719 mutex_init(&fs_info->transaction_kthread_mutex); 2720 mutex_init(&fs_info->cleaner_mutex); 2721 mutex_init(&fs_info->volume_mutex); 2722 mutex_init(&fs_info->ro_block_group_mutex); 2723 init_rwsem(&fs_info->commit_root_sem); 2724 init_rwsem(&fs_info->cleanup_work_sem); 2725 init_rwsem(&fs_info->subvol_sem); 2726 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2727 2728 btrfs_init_dev_replace_locks(fs_info); 2729 btrfs_init_qgroup(fs_info); 2730 2731 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2732 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2733 2734 init_waitqueue_head(&fs_info->transaction_throttle); 2735 init_waitqueue_head(&fs_info->transaction_wait); 2736 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2737 init_waitqueue_head(&fs_info->async_submit_wait); 2738 2739 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2740 2741 ret = btrfs_alloc_stripe_hash_table(fs_info); 2742 if (ret) { 2743 err = ret; 2744 goto fail_alloc; 2745 } 2746 2747 __setup_root(4096, 4096, 4096, tree_root, 2748 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2749 2750 invalidate_bdev(fs_devices->latest_bdev); 2751 2752 /* 2753 * Read super block and check the signature bytes only 2754 */ 2755 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2756 if (IS_ERR(bh)) { 2757 err = PTR_ERR(bh); 2758 goto fail_alloc; 2759 } 2760 2761 /* 2762 * We want to check superblock checksum, the type is stored inside. 2763 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2764 */ 2765 if (btrfs_check_super_csum(bh->b_data)) { 2766 btrfs_err(fs_info, "superblock checksum mismatch"); 2767 err = -EINVAL; 2768 brelse(bh); 2769 goto fail_alloc; 2770 } 2771 2772 /* 2773 * super_copy is zeroed at allocation time and we never touch the 2774 * following bytes up to INFO_SIZE, the checksum is calculated from 2775 * the whole block of INFO_SIZE 2776 */ 2777 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2778 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2779 sizeof(*fs_info->super_for_commit)); 2780 brelse(bh); 2781 2782 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2783 2784 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2785 if (ret) { 2786 btrfs_err(fs_info, "superblock contains fatal errors"); 2787 err = -EINVAL; 2788 goto fail_alloc; 2789 } 2790 2791 disk_super = fs_info->super_copy; 2792 if (!btrfs_super_root(disk_super)) 2793 goto fail_alloc; 2794 2795 /* check FS state, whether FS is broken. */ 2796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2797 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2798 2799 /* 2800 * run through our array of backup supers and setup 2801 * our ring pointer to the oldest one 2802 */ 2803 generation = btrfs_super_generation(disk_super); 2804 find_oldest_super_backup(fs_info, generation); 2805 2806 /* 2807 * In the long term, we'll store the compression type in the super 2808 * block, and it'll be used for per file compression control. 2809 */ 2810 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2811 2812 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2813 if (ret) { 2814 err = ret; 2815 goto fail_alloc; 2816 } 2817 2818 features = btrfs_super_incompat_flags(disk_super) & 2819 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2820 if (features) { 2821 btrfs_err(fs_info, 2822 "cannot mount because of unsupported optional features (%llx)", 2823 features); 2824 err = -EINVAL; 2825 goto fail_alloc; 2826 } 2827 2828 features = btrfs_super_incompat_flags(disk_super); 2829 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2830 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2831 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2832 2833 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2834 btrfs_info(fs_info, "has skinny extents"); 2835 2836 /* 2837 * flag our filesystem as having big metadata blocks if 2838 * they are bigger than the page size 2839 */ 2840 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2841 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2842 btrfs_info(fs_info, 2843 "flagging fs with big metadata feature"); 2844 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2845 } 2846 2847 nodesize = btrfs_super_nodesize(disk_super); 2848 sectorsize = btrfs_super_sectorsize(disk_super); 2849 stripesize = sectorsize; 2850 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2851 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2852 2853 /* 2854 * mixed block groups end up with duplicate but slightly offset 2855 * extent buffers for the same range. It leads to corruptions 2856 */ 2857 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2858 (sectorsize != nodesize)) { 2859 btrfs_err(fs_info, 2860 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2861 nodesize, sectorsize); 2862 goto fail_alloc; 2863 } 2864 2865 /* 2866 * Needn't use the lock because there is no other task which will 2867 * update the flag. 2868 */ 2869 btrfs_set_super_incompat_flags(disk_super, features); 2870 2871 features = btrfs_super_compat_ro_flags(disk_super) & 2872 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2873 if (!(sb->s_flags & MS_RDONLY) && features) { 2874 btrfs_err(fs_info, 2875 "cannot mount read-write because of unsupported optional features (%llx)", 2876 features); 2877 err = -EINVAL; 2878 goto fail_alloc; 2879 } 2880 2881 max_active = fs_info->thread_pool_size; 2882 2883 ret = btrfs_init_workqueues(fs_info, fs_devices); 2884 if (ret) { 2885 err = ret; 2886 goto fail_sb_buffer; 2887 } 2888 2889 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2890 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2891 SZ_4M / PAGE_SIZE); 2892 2893 tree_root->nodesize = nodesize; 2894 tree_root->sectorsize = sectorsize; 2895 tree_root->stripesize = stripesize; 2896 2897 sb->s_blocksize = sectorsize; 2898 sb->s_blocksize_bits = blksize_bits(sectorsize); 2899 2900 mutex_lock(&fs_info->chunk_mutex); 2901 ret = btrfs_read_sys_array(tree_root); 2902 mutex_unlock(&fs_info->chunk_mutex); 2903 if (ret) { 2904 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2905 goto fail_sb_buffer; 2906 } 2907 2908 generation = btrfs_super_chunk_root_generation(disk_super); 2909 2910 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2911 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2912 2913 chunk_root->node = read_tree_block(chunk_root, 2914 btrfs_super_chunk_root(disk_super), 2915 generation); 2916 if (IS_ERR(chunk_root->node) || 2917 !extent_buffer_uptodate(chunk_root->node)) { 2918 btrfs_err(fs_info, "failed to read chunk root"); 2919 if (!IS_ERR(chunk_root->node)) 2920 free_extent_buffer(chunk_root->node); 2921 chunk_root->node = NULL; 2922 goto fail_tree_roots; 2923 } 2924 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2925 chunk_root->commit_root = btrfs_root_node(chunk_root); 2926 2927 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2928 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2929 2930 ret = btrfs_read_chunk_tree(chunk_root); 2931 if (ret) { 2932 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2933 goto fail_tree_roots; 2934 } 2935 2936 /* 2937 * keep the device that is marked to be the target device for the 2938 * dev_replace procedure 2939 */ 2940 btrfs_close_extra_devices(fs_devices, 0); 2941 2942 if (!fs_devices->latest_bdev) { 2943 btrfs_err(fs_info, "failed to read devices"); 2944 goto fail_tree_roots; 2945 } 2946 2947 retry_root_backup: 2948 generation = btrfs_super_generation(disk_super); 2949 2950 tree_root->node = read_tree_block(tree_root, 2951 btrfs_super_root(disk_super), 2952 generation); 2953 if (IS_ERR(tree_root->node) || 2954 !extent_buffer_uptodate(tree_root->node)) { 2955 btrfs_warn(fs_info, "failed to read tree root"); 2956 if (!IS_ERR(tree_root->node)) 2957 free_extent_buffer(tree_root->node); 2958 tree_root->node = NULL; 2959 goto recovery_tree_root; 2960 } 2961 2962 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2963 tree_root->commit_root = btrfs_root_node(tree_root); 2964 btrfs_set_root_refs(&tree_root->root_item, 1); 2965 2966 mutex_lock(&tree_root->objectid_mutex); 2967 ret = btrfs_find_highest_objectid(tree_root, 2968 &tree_root->highest_objectid); 2969 if (ret) { 2970 mutex_unlock(&tree_root->objectid_mutex); 2971 goto recovery_tree_root; 2972 } 2973 2974 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2975 2976 mutex_unlock(&tree_root->objectid_mutex); 2977 2978 ret = btrfs_read_roots(fs_info, tree_root); 2979 if (ret) 2980 goto recovery_tree_root; 2981 2982 fs_info->generation = generation; 2983 fs_info->last_trans_committed = generation; 2984 2985 ret = btrfs_recover_balance(fs_info); 2986 if (ret) { 2987 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2988 goto fail_block_groups; 2989 } 2990 2991 ret = btrfs_init_dev_stats(fs_info); 2992 if (ret) { 2993 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2994 goto fail_block_groups; 2995 } 2996 2997 ret = btrfs_init_dev_replace(fs_info); 2998 if (ret) { 2999 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3000 goto fail_block_groups; 3001 } 3002 3003 btrfs_close_extra_devices(fs_devices, 1); 3004 3005 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3006 if (ret) { 3007 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3008 ret); 3009 goto fail_block_groups; 3010 } 3011 3012 ret = btrfs_sysfs_add_device(fs_devices); 3013 if (ret) { 3014 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3015 ret); 3016 goto fail_fsdev_sysfs; 3017 } 3018 3019 ret = btrfs_sysfs_add_mounted(fs_info); 3020 if (ret) { 3021 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3022 goto fail_fsdev_sysfs; 3023 } 3024 3025 ret = btrfs_init_space_info(fs_info); 3026 if (ret) { 3027 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3028 goto fail_sysfs; 3029 } 3030 3031 ret = btrfs_read_block_groups(fs_info->extent_root); 3032 if (ret) { 3033 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3034 goto fail_sysfs; 3035 } 3036 fs_info->num_tolerated_disk_barrier_failures = 3037 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3038 if (fs_info->fs_devices->missing_devices > 3039 fs_info->num_tolerated_disk_barrier_failures && 3040 !(sb->s_flags & MS_RDONLY)) { 3041 btrfs_warn(fs_info, 3042 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3043 fs_info->fs_devices->missing_devices, 3044 fs_info->num_tolerated_disk_barrier_failures); 3045 goto fail_sysfs; 3046 } 3047 3048 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3049 "btrfs-cleaner"); 3050 if (IS_ERR(fs_info->cleaner_kthread)) 3051 goto fail_sysfs; 3052 3053 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3054 tree_root, 3055 "btrfs-transaction"); 3056 if (IS_ERR(fs_info->transaction_kthread)) 3057 goto fail_cleaner; 3058 3059 if (!btrfs_test_opt(tree_root->fs_info, SSD) && 3060 !btrfs_test_opt(tree_root->fs_info, NOSSD) && 3061 !fs_info->fs_devices->rotating) { 3062 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3063 btrfs_set_opt(fs_info->mount_opt, SSD); 3064 } 3065 3066 /* 3067 * Mount does not set all options immediately, we can do it now and do 3068 * not have to wait for transaction commit 3069 */ 3070 btrfs_apply_pending_changes(fs_info); 3071 3072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3073 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) { 3074 ret = btrfsic_mount(tree_root, fs_devices, 3075 btrfs_test_opt(tree_root->fs_info, 3076 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3077 1 : 0, 3078 fs_info->check_integrity_print_mask); 3079 if (ret) 3080 btrfs_warn(fs_info, 3081 "failed to initialize integrity check module: %d", 3082 ret); 3083 } 3084 #endif 3085 ret = btrfs_read_qgroup_config(fs_info); 3086 if (ret) 3087 goto fail_trans_kthread; 3088 3089 /* do not make disk changes in broken FS or nologreplay is given */ 3090 if (btrfs_super_log_root(disk_super) != 0 && 3091 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) { 3092 ret = btrfs_replay_log(fs_info, fs_devices); 3093 if (ret) { 3094 err = ret; 3095 goto fail_qgroup; 3096 } 3097 } 3098 3099 ret = btrfs_find_orphan_roots(tree_root); 3100 if (ret) 3101 goto fail_qgroup; 3102 3103 if (!(sb->s_flags & MS_RDONLY)) { 3104 ret = btrfs_cleanup_fs_roots(fs_info); 3105 if (ret) 3106 goto fail_qgroup; 3107 3108 mutex_lock(&fs_info->cleaner_mutex); 3109 ret = btrfs_recover_relocation(tree_root); 3110 mutex_unlock(&fs_info->cleaner_mutex); 3111 if (ret < 0) { 3112 btrfs_warn(fs_info, "failed to recover relocation: %d", 3113 ret); 3114 err = -EINVAL; 3115 goto fail_qgroup; 3116 } 3117 } 3118 3119 location.objectid = BTRFS_FS_TREE_OBJECTID; 3120 location.type = BTRFS_ROOT_ITEM_KEY; 3121 location.offset = 0; 3122 3123 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3124 if (IS_ERR(fs_info->fs_root)) { 3125 err = PTR_ERR(fs_info->fs_root); 3126 goto fail_qgroup; 3127 } 3128 3129 if (sb->s_flags & MS_RDONLY) 3130 return 0; 3131 3132 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) && 3133 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3134 btrfs_info(fs_info, "creating free space tree"); 3135 ret = btrfs_create_free_space_tree(fs_info); 3136 if (ret) { 3137 btrfs_warn(fs_info, 3138 "failed to create free space tree: %d", ret); 3139 close_ctree(tree_root); 3140 return ret; 3141 } 3142 } 3143 3144 down_read(&fs_info->cleanup_work_sem); 3145 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3146 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3147 up_read(&fs_info->cleanup_work_sem); 3148 close_ctree(tree_root); 3149 return ret; 3150 } 3151 up_read(&fs_info->cleanup_work_sem); 3152 3153 ret = btrfs_resume_balance_async(fs_info); 3154 if (ret) { 3155 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3156 close_ctree(tree_root); 3157 return ret; 3158 } 3159 3160 ret = btrfs_resume_dev_replace_async(fs_info); 3161 if (ret) { 3162 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3163 close_ctree(tree_root); 3164 return ret; 3165 } 3166 3167 btrfs_qgroup_rescan_resume(fs_info); 3168 3169 if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) && 3170 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3171 btrfs_info(fs_info, "clearing free space tree"); 3172 ret = btrfs_clear_free_space_tree(fs_info); 3173 if (ret) { 3174 btrfs_warn(fs_info, 3175 "failed to clear free space tree: %d", ret); 3176 close_ctree(tree_root); 3177 return ret; 3178 } 3179 } 3180 3181 if (!fs_info->uuid_root) { 3182 btrfs_info(fs_info, "creating UUID tree"); 3183 ret = btrfs_create_uuid_tree(fs_info); 3184 if (ret) { 3185 btrfs_warn(fs_info, 3186 "failed to create the UUID tree: %d", ret); 3187 close_ctree(tree_root); 3188 return ret; 3189 } 3190 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) || 3191 fs_info->generation != 3192 btrfs_super_uuid_tree_generation(disk_super)) { 3193 btrfs_info(fs_info, "checking UUID tree"); 3194 ret = btrfs_check_uuid_tree(fs_info); 3195 if (ret) { 3196 btrfs_warn(fs_info, 3197 "failed to check the UUID tree: %d", ret); 3198 close_ctree(tree_root); 3199 return ret; 3200 } 3201 } else { 3202 fs_info->update_uuid_tree_gen = 1; 3203 } 3204 3205 fs_info->open = 1; 3206 3207 /* 3208 * backuproot only affect mount behavior, and if open_ctree succeeded, 3209 * no need to keep the flag 3210 */ 3211 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3212 3213 return 0; 3214 3215 fail_qgroup: 3216 btrfs_free_qgroup_config(fs_info); 3217 fail_trans_kthread: 3218 kthread_stop(fs_info->transaction_kthread); 3219 btrfs_cleanup_transaction(fs_info->tree_root); 3220 btrfs_free_fs_roots(fs_info); 3221 fail_cleaner: 3222 kthread_stop(fs_info->cleaner_kthread); 3223 3224 /* 3225 * make sure we're done with the btree inode before we stop our 3226 * kthreads 3227 */ 3228 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3229 3230 fail_sysfs: 3231 btrfs_sysfs_remove_mounted(fs_info); 3232 3233 fail_fsdev_sysfs: 3234 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3235 3236 fail_block_groups: 3237 btrfs_put_block_group_cache(fs_info); 3238 btrfs_free_block_groups(fs_info); 3239 3240 fail_tree_roots: 3241 free_root_pointers(fs_info, 1); 3242 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3243 3244 fail_sb_buffer: 3245 btrfs_stop_all_workers(fs_info); 3246 fail_alloc: 3247 fail_iput: 3248 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3249 3250 iput(fs_info->btree_inode); 3251 fail_bio_counter: 3252 percpu_counter_destroy(&fs_info->bio_counter); 3253 fail_delalloc_bytes: 3254 percpu_counter_destroy(&fs_info->delalloc_bytes); 3255 fail_dirty_metadata_bytes: 3256 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3257 fail_bdi: 3258 bdi_destroy(&fs_info->bdi); 3259 fail_srcu: 3260 cleanup_srcu_struct(&fs_info->subvol_srcu); 3261 fail: 3262 btrfs_free_stripe_hash_table(fs_info); 3263 btrfs_close_devices(fs_info->fs_devices); 3264 return err; 3265 3266 recovery_tree_root: 3267 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT)) 3268 goto fail_tree_roots; 3269 3270 free_root_pointers(fs_info, 0); 3271 3272 /* don't use the log in recovery mode, it won't be valid */ 3273 btrfs_set_super_log_root(disk_super, 0); 3274 3275 /* we can't trust the free space cache either */ 3276 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3277 3278 ret = next_root_backup(fs_info, fs_info->super_copy, 3279 &num_backups_tried, &backup_index); 3280 if (ret == -1) 3281 goto fail_block_groups; 3282 goto retry_root_backup; 3283 } 3284 3285 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3286 { 3287 if (uptodate) { 3288 set_buffer_uptodate(bh); 3289 } else { 3290 struct btrfs_device *device = (struct btrfs_device *) 3291 bh->b_private; 3292 3293 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3294 "lost page write due to IO error on %s", 3295 rcu_str_deref(device->name)); 3296 /* note, we don't set_buffer_write_io_error because we have 3297 * our own ways of dealing with the IO errors 3298 */ 3299 clear_buffer_uptodate(bh); 3300 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3301 } 3302 unlock_buffer(bh); 3303 put_bh(bh); 3304 } 3305 3306 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3307 struct buffer_head **bh_ret) 3308 { 3309 struct buffer_head *bh; 3310 struct btrfs_super_block *super; 3311 u64 bytenr; 3312 3313 bytenr = btrfs_sb_offset(copy_num); 3314 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3315 return -EINVAL; 3316 3317 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3318 /* 3319 * If we fail to read from the underlying devices, as of now 3320 * the best option we have is to mark it EIO. 3321 */ 3322 if (!bh) 3323 return -EIO; 3324 3325 super = (struct btrfs_super_block *)bh->b_data; 3326 if (btrfs_super_bytenr(super) != bytenr || 3327 btrfs_super_magic(super) != BTRFS_MAGIC) { 3328 brelse(bh); 3329 return -EINVAL; 3330 } 3331 3332 *bh_ret = bh; 3333 return 0; 3334 } 3335 3336 3337 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3338 { 3339 struct buffer_head *bh; 3340 struct buffer_head *latest = NULL; 3341 struct btrfs_super_block *super; 3342 int i; 3343 u64 transid = 0; 3344 int ret = -EINVAL; 3345 3346 /* we would like to check all the supers, but that would make 3347 * a btrfs mount succeed after a mkfs from a different FS. 3348 * So, we need to add a special mount option to scan for 3349 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3350 */ 3351 for (i = 0; i < 1; i++) { 3352 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3353 if (ret) 3354 continue; 3355 3356 super = (struct btrfs_super_block *)bh->b_data; 3357 3358 if (!latest || btrfs_super_generation(super) > transid) { 3359 brelse(latest); 3360 latest = bh; 3361 transid = btrfs_super_generation(super); 3362 } else { 3363 brelse(bh); 3364 } 3365 } 3366 3367 if (!latest) 3368 return ERR_PTR(ret); 3369 3370 return latest; 3371 } 3372 3373 /* 3374 * this should be called twice, once with wait == 0 and 3375 * once with wait == 1. When wait == 0 is done, all the buffer heads 3376 * we write are pinned. 3377 * 3378 * They are released when wait == 1 is done. 3379 * max_mirrors must be the same for both runs, and it indicates how 3380 * many supers on this one device should be written. 3381 * 3382 * max_mirrors == 0 means to write them all. 3383 */ 3384 static int write_dev_supers(struct btrfs_device *device, 3385 struct btrfs_super_block *sb, 3386 int do_barriers, int wait, int max_mirrors) 3387 { 3388 struct buffer_head *bh; 3389 int i; 3390 int ret; 3391 int errors = 0; 3392 u32 crc; 3393 u64 bytenr; 3394 3395 if (max_mirrors == 0) 3396 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3397 3398 for (i = 0; i < max_mirrors; i++) { 3399 bytenr = btrfs_sb_offset(i); 3400 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3401 device->commit_total_bytes) 3402 break; 3403 3404 if (wait) { 3405 bh = __find_get_block(device->bdev, bytenr / 4096, 3406 BTRFS_SUPER_INFO_SIZE); 3407 if (!bh) { 3408 errors++; 3409 continue; 3410 } 3411 wait_on_buffer(bh); 3412 if (!buffer_uptodate(bh)) 3413 errors++; 3414 3415 /* drop our reference */ 3416 brelse(bh); 3417 3418 /* drop the reference from the wait == 0 run */ 3419 brelse(bh); 3420 continue; 3421 } else { 3422 btrfs_set_super_bytenr(sb, bytenr); 3423 3424 crc = ~(u32)0; 3425 crc = btrfs_csum_data((char *)sb + 3426 BTRFS_CSUM_SIZE, crc, 3427 BTRFS_SUPER_INFO_SIZE - 3428 BTRFS_CSUM_SIZE); 3429 btrfs_csum_final(crc, sb->csum); 3430 3431 /* 3432 * one reference for us, and we leave it for the 3433 * caller 3434 */ 3435 bh = __getblk(device->bdev, bytenr / 4096, 3436 BTRFS_SUPER_INFO_SIZE); 3437 if (!bh) { 3438 btrfs_err(device->dev_root->fs_info, 3439 "couldn't get super buffer head for bytenr %llu", 3440 bytenr); 3441 errors++; 3442 continue; 3443 } 3444 3445 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3446 3447 /* one reference for submit_bh */ 3448 get_bh(bh); 3449 3450 set_buffer_uptodate(bh); 3451 lock_buffer(bh); 3452 bh->b_end_io = btrfs_end_buffer_write_sync; 3453 bh->b_private = device; 3454 } 3455 3456 /* 3457 * we fua the first super. The others we allow 3458 * to go down lazy. 3459 */ 3460 if (i == 0) 3461 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh); 3462 else 3463 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh); 3464 if (ret) 3465 errors++; 3466 } 3467 return errors < i ? 0 : -1; 3468 } 3469 3470 /* 3471 * endio for the write_dev_flush, this will wake anyone waiting 3472 * for the barrier when it is done 3473 */ 3474 static void btrfs_end_empty_barrier(struct bio *bio) 3475 { 3476 if (bio->bi_private) 3477 complete(bio->bi_private); 3478 bio_put(bio); 3479 } 3480 3481 /* 3482 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3483 * sent down. With wait == 1, it waits for the previous flush. 3484 * 3485 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3486 * capable 3487 */ 3488 static int write_dev_flush(struct btrfs_device *device, int wait) 3489 { 3490 struct bio *bio; 3491 int ret = 0; 3492 3493 if (device->nobarriers) 3494 return 0; 3495 3496 if (wait) { 3497 bio = device->flush_bio; 3498 if (!bio) 3499 return 0; 3500 3501 wait_for_completion(&device->flush_wait); 3502 3503 if (bio->bi_error) { 3504 ret = bio->bi_error; 3505 btrfs_dev_stat_inc_and_print(device, 3506 BTRFS_DEV_STAT_FLUSH_ERRS); 3507 } 3508 3509 /* drop the reference from the wait == 0 run */ 3510 bio_put(bio); 3511 device->flush_bio = NULL; 3512 3513 return ret; 3514 } 3515 3516 /* 3517 * one reference for us, and we leave it for the 3518 * caller 3519 */ 3520 device->flush_bio = NULL; 3521 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3522 if (!bio) 3523 return -ENOMEM; 3524 3525 bio->bi_end_io = btrfs_end_empty_barrier; 3526 bio->bi_bdev = device->bdev; 3527 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 3528 init_completion(&device->flush_wait); 3529 bio->bi_private = &device->flush_wait; 3530 device->flush_bio = bio; 3531 3532 bio_get(bio); 3533 btrfsic_submit_bio(bio); 3534 3535 return 0; 3536 } 3537 3538 /* 3539 * send an empty flush down to each device in parallel, 3540 * then wait for them 3541 */ 3542 static int barrier_all_devices(struct btrfs_fs_info *info) 3543 { 3544 struct list_head *head; 3545 struct btrfs_device *dev; 3546 int errors_send = 0; 3547 int errors_wait = 0; 3548 int ret; 3549 3550 /* send down all the barriers */ 3551 head = &info->fs_devices->devices; 3552 list_for_each_entry_rcu(dev, head, dev_list) { 3553 if (dev->missing) 3554 continue; 3555 if (!dev->bdev) { 3556 errors_send++; 3557 continue; 3558 } 3559 if (!dev->in_fs_metadata || !dev->writeable) 3560 continue; 3561 3562 ret = write_dev_flush(dev, 0); 3563 if (ret) 3564 errors_send++; 3565 } 3566 3567 /* wait for all the barriers */ 3568 list_for_each_entry_rcu(dev, head, dev_list) { 3569 if (dev->missing) 3570 continue; 3571 if (!dev->bdev) { 3572 errors_wait++; 3573 continue; 3574 } 3575 if (!dev->in_fs_metadata || !dev->writeable) 3576 continue; 3577 3578 ret = write_dev_flush(dev, 1); 3579 if (ret) 3580 errors_wait++; 3581 } 3582 if (errors_send > info->num_tolerated_disk_barrier_failures || 3583 errors_wait > info->num_tolerated_disk_barrier_failures) 3584 return -EIO; 3585 return 0; 3586 } 3587 3588 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3589 { 3590 int raid_type; 3591 int min_tolerated = INT_MAX; 3592 3593 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3594 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3595 min_tolerated = min(min_tolerated, 3596 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3597 tolerated_failures); 3598 3599 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3600 if (raid_type == BTRFS_RAID_SINGLE) 3601 continue; 3602 if (!(flags & btrfs_raid_group[raid_type])) 3603 continue; 3604 min_tolerated = min(min_tolerated, 3605 btrfs_raid_array[raid_type]. 3606 tolerated_failures); 3607 } 3608 3609 if (min_tolerated == INT_MAX) { 3610 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3611 min_tolerated = 0; 3612 } 3613 3614 return min_tolerated; 3615 } 3616 3617 int btrfs_calc_num_tolerated_disk_barrier_failures( 3618 struct btrfs_fs_info *fs_info) 3619 { 3620 struct btrfs_ioctl_space_info space; 3621 struct btrfs_space_info *sinfo; 3622 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3623 BTRFS_BLOCK_GROUP_SYSTEM, 3624 BTRFS_BLOCK_GROUP_METADATA, 3625 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3626 int i; 3627 int c; 3628 int num_tolerated_disk_barrier_failures = 3629 (int)fs_info->fs_devices->num_devices; 3630 3631 for (i = 0; i < ARRAY_SIZE(types); i++) { 3632 struct btrfs_space_info *tmp; 3633 3634 sinfo = NULL; 3635 rcu_read_lock(); 3636 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3637 if (tmp->flags == types[i]) { 3638 sinfo = tmp; 3639 break; 3640 } 3641 } 3642 rcu_read_unlock(); 3643 3644 if (!sinfo) 3645 continue; 3646 3647 down_read(&sinfo->groups_sem); 3648 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3649 u64 flags; 3650 3651 if (list_empty(&sinfo->block_groups[c])) 3652 continue; 3653 3654 btrfs_get_block_group_info(&sinfo->block_groups[c], 3655 &space); 3656 if (space.total_bytes == 0 || space.used_bytes == 0) 3657 continue; 3658 flags = space.flags; 3659 3660 num_tolerated_disk_barrier_failures = min( 3661 num_tolerated_disk_barrier_failures, 3662 btrfs_get_num_tolerated_disk_barrier_failures( 3663 flags)); 3664 } 3665 up_read(&sinfo->groups_sem); 3666 } 3667 3668 return num_tolerated_disk_barrier_failures; 3669 } 3670 3671 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3672 { 3673 struct list_head *head; 3674 struct btrfs_device *dev; 3675 struct btrfs_super_block *sb; 3676 struct btrfs_dev_item *dev_item; 3677 int ret; 3678 int do_barriers; 3679 int max_errors; 3680 int total_errors = 0; 3681 u64 flags; 3682 3683 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER); 3684 backup_super_roots(root->fs_info); 3685 3686 sb = root->fs_info->super_for_commit; 3687 dev_item = &sb->dev_item; 3688 3689 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3690 head = &root->fs_info->fs_devices->devices; 3691 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3692 3693 if (do_barriers) { 3694 ret = barrier_all_devices(root->fs_info); 3695 if (ret) { 3696 mutex_unlock( 3697 &root->fs_info->fs_devices->device_list_mutex); 3698 btrfs_handle_fs_error(root->fs_info, ret, 3699 "errors while submitting device barriers."); 3700 return ret; 3701 } 3702 } 3703 3704 list_for_each_entry_rcu(dev, head, dev_list) { 3705 if (!dev->bdev) { 3706 total_errors++; 3707 continue; 3708 } 3709 if (!dev->in_fs_metadata || !dev->writeable) 3710 continue; 3711 3712 btrfs_set_stack_device_generation(dev_item, 0); 3713 btrfs_set_stack_device_type(dev_item, dev->type); 3714 btrfs_set_stack_device_id(dev_item, dev->devid); 3715 btrfs_set_stack_device_total_bytes(dev_item, 3716 dev->commit_total_bytes); 3717 btrfs_set_stack_device_bytes_used(dev_item, 3718 dev->commit_bytes_used); 3719 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3720 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3721 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3722 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3723 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3724 3725 flags = btrfs_super_flags(sb); 3726 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3727 3728 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3729 if (ret) 3730 total_errors++; 3731 } 3732 if (total_errors > max_errors) { 3733 btrfs_err(root->fs_info, "%d errors while writing supers", 3734 total_errors); 3735 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3736 3737 /* FUA is masked off if unsupported and can't be the reason */ 3738 btrfs_handle_fs_error(root->fs_info, -EIO, 3739 "%d errors while writing supers", total_errors); 3740 return -EIO; 3741 } 3742 3743 total_errors = 0; 3744 list_for_each_entry_rcu(dev, head, dev_list) { 3745 if (!dev->bdev) 3746 continue; 3747 if (!dev->in_fs_metadata || !dev->writeable) 3748 continue; 3749 3750 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3751 if (ret) 3752 total_errors++; 3753 } 3754 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3755 if (total_errors > max_errors) { 3756 btrfs_handle_fs_error(root->fs_info, -EIO, 3757 "%d errors while writing supers", total_errors); 3758 return -EIO; 3759 } 3760 return 0; 3761 } 3762 3763 int write_ctree_super(struct btrfs_trans_handle *trans, 3764 struct btrfs_root *root, int max_mirrors) 3765 { 3766 return write_all_supers(root, max_mirrors); 3767 } 3768 3769 /* Drop a fs root from the radix tree and free it. */ 3770 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3771 struct btrfs_root *root) 3772 { 3773 spin_lock(&fs_info->fs_roots_radix_lock); 3774 radix_tree_delete(&fs_info->fs_roots_radix, 3775 (unsigned long)root->root_key.objectid); 3776 spin_unlock(&fs_info->fs_roots_radix_lock); 3777 3778 if (btrfs_root_refs(&root->root_item) == 0) 3779 synchronize_srcu(&fs_info->subvol_srcu); 3780 3781 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3782 btrfs_free_log(NULL, root); 3783 if (root->reloc_root) { 3784 free_extent_buffer(root->reloc_root->node); 3785 free_extent_buffer(root->reloc_root->commit_root); 3786 btrfs_put_fs_root(root->reloc_root); 3787 root->reloc_root = NULL; 3788 } 3789 } 3790 3791 if (root->free_ino_pinned) 3792 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3793 if (root->free_ino_ctl) 3794 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3795 free_fs_root(root); 3796 } 3797 3798 static void free_fs_root(struct btrfs_root *root) 3799 { 3800 iput(root->ino_cache_inode); 3801 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3802 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3803 root->orphan_block_rsv = NULL; 3804 if (root->anon_dev) 3805 free_anon_bdev(root->anon_dev); 3806 if (root->subv_writers) 3807 btrfs_free_subvolume_writers(root->subv_writers); 3808 free_extent_buffer(root->node); 3809 free_extent_buffer(root->commit_root); 3810 kfree(root->free_ino_ctl); 3811 kfree(root->free_ino_pinned); 3812 kfree(root->name); 3813 btrfs_put_fs_root(root); 3814 } 3815 3816 void btrfs_free_fs_root(struct btrfs_root *root) 3817 { 3818 free_fs_root(root); 3819 } 3820 3821 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3822 { 3823 u64 root_objectid = 0; 3824 struct btrfs_root *gang[8]; 3825 int i = 0; 3826 int err = 0; 3827 unsigned int ret = 0; 3828 int index; 3829 3830 while (1) { 3831 index = srcu_read_lock(&fs_info->subvol_srcu); 3832 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3833 (void **)gang, root_objectid, 3834 ARRAY_SIZE(gang)); 3835 if (!ret) { 3836 srcu_read_unlock(&fs_info->subvol_srcu, index); 3837 break; 3838 } 3839 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3840 3841 for (i = 0; i < ret; i++) { 3842 /* Avoid to grab roots in dead_roots */ 3843 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3844 gang[i] = NULL; 3845 continue; 3846 } 3847 /* grab all the search result for later use */ 3848 gang[i] = btrfs_grab_fs_root(gang[i]); 3849 } 3850 srcu_read_unlock(&fs_info->subvol_srcu, index); 3851 3852 for (i = 0; i < ret; i++) { 3853 if (!gang[i]) 3854 continue; 3855 root_objectid = gang[i]->root_key.objectid; 3856 err = btrfs_orphan_cleanup(gang[i]); 3857 if (err) 3858 break; 3859 btrfs_put_fs_root(gang[i]); 3860 } 3861 root_objectid++; 3862 } 3863 3864 /* release the uncleaned roots due to error */ 3865 for (; i < ret; i++) { 3866 if (gang[i]) 3867 btrfs_put_fs_root(gang[i]); 3868 } 3869 return err; 3870 } 3871 3872 int btrfs_commit_super(struct btrfs_root *root) 3873 { 3874 struct btrfs_trans_handle *trans; 3875 3876 mutex_lock(&root->fs_info->cleaner_mutex); 3877 btrfs_run_delayed_iputs(root); 3878 mutex_unlock(&root->fs_info->cleaner_mutex); 3879 wake_up_process(root->fs_info->cleaner_kthread); 3880 3881 /* wait until ongoing cleanup work done */ 3882 down_write(&root->fs_info->cleanup_work_sem); 3883 up_write(&root->fs_info->cleanup_work_sem); 3884 3885 trans = btrfs_join_transaction(root); 3886 if (IS_ERR(trans)) 3887 return PTR_ERR(trans); 3888 return btrfs_commit_transaction(trans, root); 3889 } 3890 3891 void close_ctree(struct btrfs_root *root) 3892 { 3893 struct btrfs_fs_info *fs_info = root->fs_info; 3894 int ret; 3895 3896 fs_info->closing = 1; 3897 smp_mb(); 3898 3899 /* wait for the qgroup rescan worker to stop */ 3900 btrfs_qgroup_wait_for_completion(fs_info, false); 3901 3902 /* wait for the uuid_scan task to finish */ 3903 down(&fs_info->uuid_tree_rescan_sem); 3904 /* avoid complains from lockdep et al., set sem back to initial state */ 3905 up(&fs_info->uuid_tree_rescan_sem); 3906 3907 /* pause restriper - we want to resume on mount */ 3908 btrfs_pause_balance(fs_info); 3909 3910 btrfs_dev_replace_suspend_for_unmount(fs_info); 3911 3912 btrfs_scrub_cancel(fs_info); 3913 3914 /* wait for any defraggers to finish */ 3915 wait_event(fs_info->transaction_wait, 3916 (atomic_read(&fs_info->defrag_running) == 0)); 3917 3918 /* clear out the rbtree of defraggable inodes */ 3919 btrfs_cleanup_defrag_inodes(fs_info); 3920 3921 cancel_work_sync(&fs_info->async_reclaim_work); 3922 3923 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3924 /* 3925 * If the cleaner thread is stopped and there are 3926 * block groups queued for removal, the deletion will be 3927 * skipped when we quit the cleaner thread. 3928 */ 3929 btrfs_delete_unused_bgs(root->fs_info); 3930 3931 ret = btrfs_commit_super(root); 3932 if (ret) 3933 btrfs_err(fs_info, "commit super ret %d", ret); 3934 } 3935 3936 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3937 btrfs_error_commit_super(root); 3938 3939 kthread_stop(fs_info->transaction_kthread); 3940 kthread_stop(fs_info->cleaner_kthread); 3941 3942 fs_info->closing = 2; 3943 smp_mb(); 3944 3945 btrfs_free_qgroup_config(fs_info); 3946 3947 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3948 btrfs_info(fs_info, "at unmount delalloc count %lld", 3949 percpu_counter_sum(&fs_info->delalloc_bytes)); 3950 } 3951 3952 btrfs_sysfs_remove_mounted(fs_info); 3953 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3954 3955 btrfs_free_fs_roots(fs_info); 3956 3957 btrfs_put_block_group_cache(fs_info); 3958 3959 btrfs_free_block_groups(fs_info); 3960 3961 /* 3962 * we must make sure there is not any read request to 3963 * submit after we stopping all workers. 3964 */ 3965 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3966 btrfs_stop_all_workers(fs_info); 3967 3968 fs_info->open = 0; 3969 free_root_pointers(fs_info, 1); 3970 3971 iput(fs_info->btree_inode); 3972 3973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3974 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY)) 3975 btrfsic_unmount(root, fs_info->fs_devices); 3976 #endif 3977 3978 btrfs_close_devices(fs_info->fs_devices); 3979 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3980 3981 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3982 percpu_counter_destroy(&fs_info->delalloc_bytes); 3983 percpu_counter_destroy(&fs_info->bio_counter); 3984 bdi_destroy(&fs_info->bdi); 3985 cleanup_srcu_struct(&fs_info->subvol_srcu); 3986 3987 btrfs_free_stripe_hash_table(fs_info); 3988 3989 __btrfs_free_block_rsv(root->orphan_block_rsv); 3990 root->orphan_block_rsv = NULL; 3991 3992 lock_chunks(root); 3993 while (!list_empty(&fs_info->pinned_chunks)) { 3994 struct extent_map *em; 3995 3996 em = list_first_entry(&fs_info->pinned_chunks, 3997 struct extent_map, list); 3998 list_del_init(&em->list); 3999 free_extent_map(em); 4000 } 4001 unlock_chunks(root); 4002 } 4003 4004 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4005 int atomic) 4006 { 4007 int ret; 4008 struct inode *btree_inode = buf->pages[0]->mapping->host; 4009 4010 ret = extent_buffer_uptodate(buf); 4011 if (!ret) 4012 return ret; 4013 4014 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4015 parent_transid, atomic); 4016 if (ret == -EAGAIN) 4017 return ret; 4018 return !ret; 4019 } 4020 4021 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4022 { 4023 struct btrfs_root *root; 4024 u64 transid = btrfs_header_generation(buf); 4025 int was_dirty; 4026 4027 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4028 /* 4029 * This is a fast path so only do this check if we have sanity tests 4030 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4031 * outside of the sanity tests. 4032 */ 4033 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4034 return; 4035 #endif 4036 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4037 btrfs_assert_tree_locked(buf); 4038 if (transid != root->fs_info->generation) 4039 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 4040 "found %llu running %llu\n", 4041 buf->start, transid, root->fs_info->generation); 4042 was_dirty = set_extent_buffer_dirty(buf); 4043 if (!was_dirty) 4044 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 4045 buf->len, 4046 root->fs_info->dirty_metadata_batch); 4047 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4048 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4049 btrfs_print_leaf(root, buf); 4050 ASSERT(0); 4051 } 4052 #endif 4053 } 4054 4055 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 4056 int flush_delayed) 4057 { 4058 /* 4059 * looks as though older kernels can get into trouble with 4060 * this code, they end up stuck in balance_dirty_pages forever 4061 */ 4062 int ret; 4063 4064 if (current->flags & PF_MEMALLOC) 4065 return; 4066 4067 if (flush_delayed) 4068 btrfs_balance_delayed_items(root); 4069 4070 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 4071 BTRFS_DIRTY_METADATA_THRESH); 4072 if (ret > 0) { 4073 balance_dirty_pages_ratelimited( 4074 root->fs_info->btree_inode->i_mapping); 4075 } 4076 } 4077 4078 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4079 { 4080 __btrfs_btree_balance_dirty(root, 1); 4081 } 4082 4083 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4084 { 4085 __btrfs_btree_balance_dirty(root, 0); 4086 } 4087 4088 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4089 { 4090 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4091 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 4092 } 4093 4094 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4095 int read_only) 4096 { 4097 struct btrfs_super_block *sb = fs_info->super_copy; 4098 u64 nodesize = btrfs_super_nodesize(sb); 4099 u64 sectorsize = btrfs_super_sectorsize(sb); 4100 int ret = 0; 4101 4102 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4103 printk(KERN_ERR "BTRFS: no valid FS found\n"); 4104 ret = -EINVAL; 4105 } 4106 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4107 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n", 4108 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4109 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4110 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 4111 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4112 ret = -EINVAL; 4113 } 4114 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4115 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 4116 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4117 ret = -EINVAL; 4118 } 4119 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4120 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 4121 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4122 ret = -EINVAL; 4123 } 4124 4125 /* 4126 * Check sectorsize and nodesize first, other check will need it. 4127 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4128 */ 4129 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4130 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4131 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize); 4132 ret = -EINVAL; 4133 } 4134 /* Only PAGE SIZE is supported yet */ 4135 if (sectorsize != PAGE_SIZE) { 4136 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n", 4137 sectorsize, PAGE_SIZE); 4138 ret = -EINVAL; 4139 } 4140 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4141 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4142 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize); 4143 ret = -EINVAL; 4144 } 4145 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4146 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n", 4147 le32_to_cpu(sb->__unused_leafsize), 4148 nodesize); 4149 ret = -EINVAL; 4150 } 4151 4152 /* Root alignment check */ 4153 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4154 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4155 btrfs_super_root(sb)); 4156 ret = -EINVAL; 4157 } 4158 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4159 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4160 btrfs_super_chunk_root(sb)); 4161 ret = -EINVAL; 4162 } 4163 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4164 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4165 btrfs_super_log_root(sb)); 4166 ret = -EINVAL; 4167 } 4168 4169 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4170 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4171 fs_info->fsid, sb->dev_item.fsid); 4172 ret = -EINVAL; 4173 } 4174 4175 /* 4176 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4177 * done later 4178 */ 4179 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4180 btrfs_err(fs_info, "bytes_used is too small %llu", 4181 btrfs_super_bytes_used(sb)); 4182 ret = -EINVAL; 4183 } 4184 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4185 btrfs_err(fs_info, "invalid stripesize %u", 4186 btrfs_super_stripesize(sb)); 4187 ret = -EINVAL; 4188 } 4189 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4190 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4191 btrfs_super_num_devices(sb)); 4192 if (btrfs_super_num_devices(sb) == 0) { 4193 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4194 ret = -EINVAL; 4195 } 4196 4197 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4198 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4199 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4200 ret = -EINVAL; 4201 } 4202 4203 /* 4204 * Obvious sys_chunk_array corruptions, it must hold at least one key 4205 * and one chunk 4206 */ 4207 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4208 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4209 btrfs_super_sys_array_size(sb), 4210 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4211 ret = -EINVAL; 4212 } 4213 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4214 + sizeof(struct btrfs_chunk)) { 4215 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4216 btrfs_super_sys_array_size(sb), 4217 sizeof(struct btrfs_disk_key) 4218 + sizeof(struct btrfs_chunk)); 4219 ret = -EINVAL; 4220 } 4221 4222 /* 4223 * The generation is a global counter, we'll trust it more than the others 4224 * but it's still possible that it's the one that's wrong. 4225 */ 4226 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4227 printk(KERN_WARNING 4228 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4229 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4230 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4231 && btrfs_super_cache_generation(sb) != (u64)-1) 4232 printk(KERN_WARNING 4233 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4234 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4235 4236 return ret; 4237 } 4238 4239 static void btrfs_error_commit_super(struct btrfs_root *root) 4240 { 4241 mutex_lock(&root->fs_info->cleaner_mutex); 4242 btrfs_run_delayed_iputs(root); 4243 mutex_unlock(&root->fs_info->cleaner_mutex); 4244 4245 down_write(&root->fs_info->cleanup_work_sem); 4246 up_write(&root->fs_info->cleanup_work_sem); 4247 4248 /* cleanup FS via transaction */ 4249 btrfs_cleanup_transaction(root); 4250 } 4251 4252 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4253 { 4254 struct btrfs_ordered_extent *ordered; 4255 4256 spin_lock(&root->ordered_extent_lock); 4257 /* 4258 * This will just short circuit the ordered completion stuff which will 4259 * make sure the ordered extent gets properly cleaned up. 4260 */ 4261 list_for_each_entry(ordered, &root->ordered_extents, 4262 root_extent_list) 4263 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4264 spin_unlock(&root->ordered_extent_lock); 4265 } 4266 4267 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4268 { 4269 struct btrfs_root *root; 4270 struct list_head splice; 4271 4272 INIT_LIST_HEAD(&splice); 4273 4274 spin_lock(&fs_info->ordered_root_lock); 4275 list_splice_init(&fs_info->ordered_roots, &splice); 4276 while (!list_empty(&splice)) { 4277 root = list_first_entry(&splice, struct btrfs_root, 4278 ordered_root); 4279 list_move_tail(&root->ordered_root, 4280 &fs_info->ordered_roots); 4281 4282 spin_unlock(&fs_info->ordered_root_lock); 4283 btrfs_destroy_ordered_extents(root); 4284 4285 cond_resched(); 4286 spin_lock(&fs_info->ordered_root_lock); 4287 } 4288 spin_unlock(&fs_info->ordered_root_lock); 4289 } 4290 4291 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4292 struct btrfs_root *root) 4293 { 4294 struct rb_node *node; 4295 struct btrfs_delayed_ref_root *delayed_refs; 4296 struct btrfs_delayed_ref_node *ref; 4297 int ret = 0; 4298 4299 delayed_refs = &trans->delayed_refs; 4300 4301 spin_lock(&delayed_refs->lock); 4302 if (atomic_read(&delayed_refs->num_entries) == 0) { 4303 spin_unlock(&delayed_refs->lock); 4304 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4305 return ret; 4306 } 4307 4308 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4309 struct btrfs_delayed_ref_head *head; 4310 struct btrfs_delayed_ref_node *tmp; 4311 bool pin_bytes = false; 4312 4313 head = rb_entry(node, struct btrfs_delayed_ref_head, 4314 href_node); 4315 if (!mutex_trylock(&head->mutex)) { 4316 atomic_inc(&head->node.refs); 4317 spin_unlock(&delayed_refs->lock); 4318 4319 mutex_lock(&head->mutex); 4320 mutex_unlock(&head->mutex); 4321 btrfs_put_delayed_ref(&head->node); 4322 spin_lock(&delayed_refs->lock); 4323 continue; 4324 } 4325 spin_lock(&head->lock); 4326 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4327 list) { 4328 ref->in_tree = 0; 4329 list_del(&ref->list); 4330 atomic_dec(&delayed_refs->num_entries); 4331 btrfs_put_delayed_ref(ref); 4332 } 4333 if (head->must_insert_reserved) 4334 pin_bytes = true; 4335 btrfs_free_delayed_extent_op(head->extent_op); 4336 delayed_refs->num_heads--; 4337 if (head->processing == 0) 4338 delayed_refs->num_heads_ready--; 4339 atomic_dec(&delayed_refs->num_entries); 4340 head->node.in_tree = 0; 4341 rb_erase(&head->href_node, &delayed_refs->href_root); 4342 spin_unlock(&head->lock); 4343 spin_unlock(&delayed_refs->lock); 4344 mutex_unlock(&head->mutex); 4345 4346 if (pin_bytes) 4347 btrfs_pin_extent(root, head->node.bytenr, 4348 head->node.num_bytes, 1); 4349 btrfs_put_delayed_ref(&head->node); 4350 cond_resched(); 4351 spin_lock(&delayed_refs->lock); 4352 } 4353 4354 spin_unlock(&delayed_refs->lock); 4355 4356 return ret; 4357 } 4358 4359 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4360 { 4361 struct btrfs_inode *btrfs_inode; 4362 struct list_head splice; 4363 4364 INIT_LIST_HEAD(&splice); 4365 4366 spin_lock(&root->delalloc_lock); 4367 list_splice_init(&root->delalloc_inodes, &splice); 4368 4369 while (!list_empty(&splice)) { 4370 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4371 delalloc_inodes); 4372 4373 list_del_init(&btrfs_inode->delalloc_inodes); 4374 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4375 &btrfs_inode->runtime_flags); 4376 spin_unlock(&root->delalloc_lock); 4377 4378 btrfs_invalidate_inodes(btrfs_inode->root); 4379 4380 spin_lock(&root->delalloc_lock); 4381 } 4382 4383 spin_unlock(&root->delalloc_lock); 4384 } 4385 4386 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4387 { 4388 struct btrfs_root *root; 4389 struct list_head splice; 4390 4391 INIT_LIST_HEAD(&splice); 4392 4393 spin_lock(&fs_info->delalloc_root_lock); 4394 list_splice_init(&fs_info->delalloc_roots, &splice); 4395 while (!list_empty(&splice)) { 4396 root = list_first_entry(&splice, struct btrfs_root, 4397 delalloc_root); 4398 list_del_init(&root->delalloc_root); 4399 root = btrfs_grab_fs_root(root); 4400 BUG_ON(!root); 4401 spin_unlock(&fs_info->delalloc_root_lock); 4402 4403 btrfs_destroy_delalloc_inodes(root); 4404 btrfs_put_fs_root(root); 4405 4406 spin_lock(&fs_info->delalloc_root_lock); 4407 } 4408 spin_unlock(&fs_info->delalloc_root_lock); 4409 } 4410 4411 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4412 struct extent_io_tree *dirty_pages, 4413 int mark) 4414 { 4415 int ret; 4416 struct extent_buffer *eb; 4417 u64 start = 0; 4418 u64 end; 4419 4420 while (1) { 4421 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4422 mark, NULL); 4423 if (ret) 4424 break; 4425 4426 clear_extent_bits(dirty_pages, start, end, mark); 4427 while (start <= end) { 4428 eb = btrfs_find_tree_block(root->fs_info, start); 4429 start += root->nodesize; 4430 if (!eb) 4431 continue; 4432 wait_on_extent_buffer_writeback(eb); 4433 4434 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4435 &eb->bflags)) 4436 clear_extent_buffer_dirty(eb); 4437 free_extent_buffer_stale(eb); 4438 } 4439 } 4440 4441 return ret; 4442 } 4443 4444 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4445 struct extent_io_tree *pinned_extents) 4446 { 4447 struct extent_io_tree *unpin; 4448 u64 start; 4449 u64 end; 4450 int ret; 4451 bool loop = true; 4452 4453 unpin = pinned_extents; 4454 again: 4455 while (1) { 4456 ret = find_first_extent_bit(unpin, 0, &start, &end, 4457 EXTENT_DIRTY, NULL); 4458 if (ret) 4459 break; 4460 4461 clear_extent_dirty(unpin, start, end); 4462 btrfs_error_unpin_extent_range(root, start, end); 4463 cond_resched(); 4464 } 4465 4466 if (loop) { 4467 if (unpin == &root->fs_info->freed_extents[0]) 4468 unpin = &root->fs_info->freed_extents[1]; 4469 else 4470 unpin = &root->fs_info->freed_extents[0]; 4471 loop = false; 4472 goto again; 4473 } 4474 4475 return 0; 4476 } 4477 4478 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4479 struct btrfs_root *root) 4480 { 4481 btrfs_destroy_delayed_refs(cur_trans, root); 4482 4483 cur_trans->state = TRANS_STATE_COMMIT_START; 4484 wake_up(&root->fs_info->transaction_blocked_wait); 4485 4486 cur_trans->state = TRANS_STATE_UNBLOCKED; 4487 wake_up(&root->fs_info->transaction_wait); 4488 4489 btrfs_destroy_delayed_inodes(root); 4490 btrfs_assert_delayed_root_empty(root); 4491 4492 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4493 EXTENT_DIRTY); 4494 btrfs_destroy_pinned_extent(root, 4495 root->fs_info->pinned_extents); 4496 4497 cur_trans->state =TRANS_STATE_COMPLETED; 4498 wake_up(&cur_trans->commit_wait); 4499 4500 /* 4501 memset(cur_trans, 0, sizeof(*cur_trans)); 4502 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4503 */ 4504 } 4505 4506 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4507 { 4508 struct btrfs_transaction *t; 4509 4510 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4511 4512 spin_lock(&root->fs_info->trans_lock); 4513 while (!list_empty(&root->fs_info->trans_list)) { 4514 t = list_first_entry(&root->fs_info->trans_list, 4515 struct btrfs_transaction, list); 4516 if (t->state >= TRANS_STATE_COMMIT_START) { 4517 atomic_inc(&t->use_count); 4518 spin_unlock(&root->fs_info->trans_lock); 4519 btrfs_wait_for_commit(root, t->transid); 4520 btrfs_put_transaction(t); 4521 spin_lock(&root->fs_info->trans_lock); 4522 continue; 4523 } 4524 if (t == root->fs_info->running_transaction) { 4525 t->state = TRANS_STATE_COMMIT_DOING; 4526 spin_unlock(&root->fs_info->trans_lock); 4527 /* 4528 * We wait for 0 num_writers since we don't hold a trans 4529 * handle open currently for this transaction. 4530 */ 4531 wait_event(t->writer_wait, 4532 atomic_read(&t->num_writers) == 0); 4533 } else { 4534 spin_unlock(&root->fs_info->trans_lock); 4535 } 4536 btrfs_cleanup_one_transaction(t, root); 4537 4538 spin_lock(&root->fs_info->trans_lock); 4539 if (t == root->fs_info->running_transaction) 4540 root->fs_info->running_transaction = NULL; 4541 list_del_init(&t->list); 4542 spin_unlock(&root->fs_info->trans_lock); 4543 4544 btrfs_put_transaction(t); 4545 trace_btrfs_transaction_commit(root); 4546 spin_lock(&root->fs_info->trans_lock); 4547 } 4548 spin_unlock(&root->fs_info->trans_lock); 4549 btrfs_destroy_all_ordered_extents(root->fs_info); 4550 btrfs_destroy_delayed_inodes(root); 4551 btrfs_assert_delayed_root_empty(root); 4552 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4553 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4554 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4555 4556 return 0; 4557 } 4558 4559 static const struct extent_io_ops btree_extent_io_ops = { 4560 .readpage_end_io_hook = btree_readpage_end_io_hook, 4561 .readpage_io_failed_hook = btree_io_failed_hook, 4562 .submit_bio_hook = btree_submit_bio_hook, 4563 /* note we're sharing with inode.c for the merge bio hook */ 4564 .merge_bio_hook = btrfs_merge_bio_hook, 4565 }; 4566