xref: /openbmc/linux/fs/btrfs/disk-io.c (revision f5b06569)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	int error;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 	struct extent_map *em;
229 	int ret;
230 
231 	read_lock(&em_tree->lock);
232 	em = lookup_extent_mapping(em_tree, start, len);
233 	if (em) {
234 		em->bdev =
235 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X "
330 				"level %d",
331 				fs_info->sb->s_id, buf->start,
332 				val, found, btrfs_header_level(buf));
333 			if (result != (char *)&inline_result)
334 				kfree(result);
335 			return -EUCLEAN;
336 		}
337 	} else {
338 		write_extent_buffer(buf, result, 0, csum_size);
339 	}
340 	if (result != (char *)&inline_result)
341 		kfree(result);
342 	return 0;
343 }
344 
345 /*
346  * we can't consider a given block up to date unless the transid of the
347  * block matches the transid in the parent node's pointer.  This is how we
348  * detect blocks that either didn't get written at all or got written
349  * in the wrong place.
350  */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 				 struct extent_buffer *eb, u64 parent_transid,
353 				 int atomic)
354 {
355 	struct extent_state *cached_state = NULL;
356 	int ret;
357 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358 
359 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 		return 0;
361 
362 	if (atomic)
363 		return -EAGAIN;
364 
365 	if (need_lock) {
366 		btrfs_tree_read_lock(eb);
367 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 	}
369 
370 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 			 &cached_state);
372 	if (extent_buffer_uptodate(eb) &&
373 	    btrfs_header_generation(eb) == parent_transid) {
374 		ret = 0;
375 		goto out;
376 	}
377 	btrfs_err_rl(eb->fs_info,
378 		"parent transid verify failed on %llu wanted %llu found %llu",
379 			eb->start,
380 			parent_transid, btrfs_header_generation(eb));
381 	ret = 1;
382 
383 	/*
384 	 * Things reading via commit roots that don't have normal protection,
385 	 * like send, can have a really old block in cache that may point at a
386 	 * block that has been freed and re-allocated.  So don't clear uptodate
387 	 * if we find an eb that is under IO (dirty/writeback) because we could
388 	 * end up reading in the stale data and then writing it back out and
389 	 * making everybody very sad.
390 	 */
391 	if (!extent_buffer_under_io(eb))
392 		clear_extent_buffer_uptodate(eb);
393 out:
394 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 			     &cached_state, GFP_NOFS);
396 	if (need_lock)
397 		btrfs_tree_read_unlock_blocking(eb);
398 	return ret;
399 }
400 
401 /*
402  * Return 0 if the superblock checksum type matches the checksum value of that
403  * algorithm. Pass the raw disk superblock data.
404  */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 					  struct extent_buffer *eb,
445 					  u64 start, u64 parent_transid)
446 {
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 	while (1) {
457 		ret = read_extent_buffer_pages(io_tree, eb, start,
458 					       WAIT_COMPLETE,
459 					       btree_get_extent, mirror_num);
460 		if (!ret) {
461 			if (!verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				break;
464 			else
465 				ret = -EIO;
466 		}
467 
468 		/*
469 		 * This buffer's crc is fine, but its contents are corrupted, so
470 		 * there is no reason to read the other copies, they won't be
471 		 * any less wrong.
472 		 */
473 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 			break;
475 
476 		num_copies = btrfs_num_copies(root->fs_info,
477 					      eb->start, eb->len);
478 		if (num_copies == 1)
479 			break;
480 
481 		if (!failed_mirror) {
482 			failed = 1;
483 			failed_mirror = eb->read_mirror;
484 		}
485 
486 		mirror_num++;
487 		if (mirror_num == failed_mirror)
488 			mirror_num++;
489 
490 		if (mirror_num > num_copies)
491 			break;
492 	}
493 
494 	if (failed && !ret && failed_mirror)
495 		repair_eb_io_failure(root, eb, failed_mirror);
496 
497 	return ret;
498 }
499 
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504 
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 	u64 start = page_offset(page);
508 	u64 found_start;
509 	struct extent_buffer *eb;
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 	/*
517 	 * Please do not consolidate these warnings into a single if.
518 	 * It is useful to know what went wrong.
519 	 */
520 	if (WARN_ON(found_start != start))
521 		return -EUCLEAN;
522 	if (WARN_ON(!PageUptodate(page)))
523 		return -EUCLEAN;
524 
525 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 
528 	return csum_tree_block(fs_info, eb, 0);
529 }
530 
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 				 struct extent_buffer *eb)
533 {
534 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 	u8 fsid[BTRFS_UUID_SIZE];
536 	int ret = 1;
537 
538 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 	while (fs_devices) {
540 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 			ret = 0;
542 			break;
543 		}
544 		fs_devices = fs_devices->seed;
545 	}
546 	return ret;
547 }
548 
549 #define CORRUPT(reason, eb, root, slot)				\
550 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
551 		   "root=%llu, slot=%d", reason,			\
552 	       btrfs_header_bytenr(eb),	root->objectid, slot)
553 
554 static noinline int check_leaf(struct btrfs_root *root,
555 			       struct extent_buffer *leaf)
556 {
557 	struct btrfs_key key;
558 	struct btrfs_key leaf_key;
559 	u32 nritems = btrfs_header_nritems(leaf);
560 	int slot;
561 
562 	if (nritems == 0) {
563 		struct btrfs_root *check_root;
564 
565 		key.objectid = btrfs_header_owner(leaf);
566 		key.type = BTRFS_ROOT_ITEM_KEY;
567 		key.offset = (u64)-1;
568 
569 		check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570 		/*
571 		 * The only reason we also check NULL here is that during
572 		 * open_ctree() some roots has not yet been set up.
573 		 */
574 		if (!IS_ERR_OR_NULL(check_root)) {
575 			/* if leaf is the root, then it's fine */
576 			if (leaf->start !=
577 			    btrfs_root_bytenr(&check_root->root_item)) {
578 				CORRUPT("non-root leaf's nritems is 0",
579 					leaf, root, 0);
580 				return -EIO;
581 			}
582 		}
583 		return 0;
584 	}
585 
586 	/* Check the 0 item */
587 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588 	    BTRFS_LEAF_DATA_SIZE(root)) {
589 		CORRUPT("invalid item offset size pair", leaf, root, 0);
590 		return -EIO;
591 	}
592 
593 	/*
594 	 * Check to make sure each items keys are in the correct order and their
595 	 * offsets make sense.  We only have to loop through nritems-1 because
596 	 * we check the current slot against the next slot, which verifies the
597 	 * next slot's offset+size makes sense and that the current's slot
598 	 * offset is correct.
599 	 */
600 	for (slot = 0; slot < nritems - 1; slot++) {
601 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603 
604 		/* Make sure the keys are in the right order */
605 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606 			CORRUPT("bad key order", leaf, root, slot);
607 			return -EIO;
608 		}
609 
610 		/*
611 		 * Make sure the offset and ends are right, remember that the
612 		 * item data starts at the end of the leaf and grows towards the
613 		 * front.
614 		 */
615 		if (btrfs_item_offset_nr(leaf, slot) !=
616 			btrfs_item_end_nr(leaf, slot + 1)) {
617 			CORRUPT("slot offset bad", leaf, root, slot);
618 			return -EIO;
619 		}
620 
621 		/*
622 		 * Check to make sure that we don't point outside of the leaf,
623 		 * just in case all the items are consistent to each other, but
624 		 * all point outside of the leaf.
625 		 */
626 		if (btrfs_item_end_nr(leaf, slot) >
627 		    BTRFS_LEAF_DATA_SIZE(root)) {
628 			CORRUPT("slot end outside of leaf", leaf, root, slot);
629 			return -EIO;
630 		}
631 	}
632 
633 	return 0;
634 }
635 
636 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637 {
638 	unsigned long nr = btrfs_header_nritems(node);
639 
640 	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
641 		btrfs_crit(root->fs_info,
642 			   "corrupt node: block %llu root %llu nritems %lu",
643 			   node->start, root->objectid, nr);
644 		return -EIO;
645 	}
646 	return 0;
647 }
648 
649 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
650 				      u64 phy_offset, struct page *page,
651 				      u64 start, u64 end, int mirror)
652 {
653 	u64 found_start;
654 	int found_level;
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
657 	struct btrfs_fs_info *fs_info = root->fs_info;
658 	int ret = 0;
659 	int reads_done;
660 
661 	if (!page->private)
662 		goto out;
663 
664 	eb = (struct extent_buffer *)page->private;
665 
666 	/* the pending IO might have been the only thing that kept this buffer
667 	 * in memory.  Make sure we have a ref for all this other checks
668 	 */
669 	extent_buffer_get(eb);
670 
671 	reads_done = atomic_dec_and_test(&eb->io_pages);
672 	if (!reads_done)
673 		goto err;
674 
675 	eb->read_mirror = mirror;
676 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
677 		ret = -EIO;
678 		goto err;
679 	}
680 
681 	found_start = btrfs_header_bytenr(eb);
682 	if (found_start != eb->start) {
683 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
684 			     found_start, eb->start);
685 		ret = -EIO;
686 		goto err;
687 	}
688 	if (check_tree_block_fsid(fs_info, eb)) {
689 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
690 			     eb->start);
691 		ret = -EIO;
692 		goto err;
693 	}
694 	found_level = btrfs_header_level(eb);
695 	if (found_level >= BTRFS_MAX_LEVEL) {
696 		btrfs_err(fs_info, "bad tree block level %d",
697 			  (int)btrfs_header_level(eb));
698 		ret = -EIO;
699 		goto err;
700 	}
701 
702 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
703 				       eb, found_level);
704 
705 	ret = csum_tree_block(fs_info, eb, 1);
706 	if (ret)
707 		goto err;
708 
709 	/*
710 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
711 	 * that we don't try and read the other copies of this block, just
712 	 * return -EIO.
713 	 */
714 	if (found_level == 0 && check_leaf(root, eb)) {
715 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
716 		ret = -EIO;
717 	}
718 
719 	if (found_level > 0 && check_node(root, eb))
720 		ret = -EIO;
721 
722 	if (!ret)
723 		set_extent_buffer_uptodate(eb);
724 err:
725 	if (reads_done &&
726 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
727 		btree_readahead_hook(fs_info, eb, eb->start, ret);
728 
729 	if (ret) {
730 		/*
731 		 * our io error hook is going to dec the io pages
732 		 * again, we have to make sure it has something
733 		 * to decrement
734 		 */
735 		atomic_inc(&eb->io_pages);
736 		clear_extent_buffer_uptodate(eb);
737 	}
738 	free_extent_buffer(eb);
739 out:
740 	return ret;
741 }
742 
743 static int btree_io_failed_hook(struct page *page, int failed_mirror)
744 {
745 	struct extent_buffer *eb;
746 
747 	eb = (struct extent_buffer *)page->private;
748 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
749 	eb->read_mirror = failed_mirror;
750 	atomic_dec(&eb->io_pages);
751 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
752 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
753 	return -EIO;	/* we fixed nothing */
754 }
755 
756 static void end_workqueue_bio(struct bio *bio)
757 {
758 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
759 	struct btrfs_fs_info *fs_info;
760 	struct btrfs_workqueue *wq;
761 	btrfs_work_func_t func;
762 
763 	fs_info = end_io_wq->info;
764 	end_io_wq->error = bio->bi_error;
765 
766 	if (bio_op(bio) == REQ_OP_WRITE) {
767 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
768 			wq = fs_info->endio_meta_write_workers;
769 			func = btrfs_endio_meta_write_helper;
770 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
771 			wq = fs_info->endio_freespace_worker;
772 			func = btrfs_freespace_write_helper;
773 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
774 			wq = fs_info->endio_raid56_workers;
775 			func = btrfs_endio_raid56_helper;
776 		} else {
777 			wq = fs_info->endio_write_workers;
778 			func = btrfs_endio_write_helper;
779 		}
780 	} else {
781 		if (unlikely(end_io_wq->metadata ==
782 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
783 			wq = fs_info->endio_repair_workers;
784 			func = btrfs_endio_repair_helper;
785 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
786 			wq = fs_info->endio_raid56_workers;
787 			func = btrfs_endio_raid56_helper;
788 		} else if (end_io_wq->metadata) {
789 			wq = fs_info->endio_meta_workers;
790 			func = btrfs_endio_meta_helper;
791 		} else {
792 			wq = fs_info->endio_workers;
793 			func = btrfs_endio_helper;
794 		}
795 	}
796 
797 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
798 	btrfs_queue_work(wq, &end_io_wq->work);
799 }
800 
801 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
802 			enum btrfs_wq_endio_type metadata)
803 {
804 	struct btrfs_end_io_wq *end_io_wq;
805 
806 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
807 	if (!end_io_wq)
808 		return -ENOMEM;
809 
810 	end_io_wq->private = bio->bi_private;
811 	end_io_wq->end_io = bio->bi_end_io;
812 	end_io_wq->info = info;
813 	end_io_wq->error = 0;
814 	end_io_wq->bio = bio;
815 	end_io_wq->metadata = metadata;
816 
817 	bio->bi_private = end_io_wq;
818 	bio->bi_end_io = end_workqueue_bio;
819 	return 0;
820 }
821 
822 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
823 {
824 	unsigned long limit = min_t(unsigned long,
825 				    info->thread_pool_size,
826 				    info->fs_devices->open_devices);
827 	return 256 * limit;
828 }
829 
830 static void run_one_async_start(struct btrfs_work *work)
831 {
832 	struct async_submit_bio *async;
833 	int ret;
834 
835 	async = container_of(work, struct  async_submit_bio, work);
836 	ret = async->submit_bio_start(async->inode, async->bio,
837 				      async->mirror_num, async->bio_flags,
838 				      async->bio_offset);
839 	if (ret)
840 		async->error = ret;
841 }
842 
843 static void run_one_async_done(struct btrfs_work *work)
844 {
845 	struct btrfs_fs_info *fs_info;
846 	struct async_submit_bio *async;
847 	int limit;
848 
849 	async = container_of(work, struct  async_submit_bio, work);
850 	fs_info = BTRFS_I(async->inode)->root->fs_info;
851 
852 	limit = btrfs_async_submit_limit(fs_info);
853 	limit = limit * 2 / 3;
854 
855 	/*
856 	 * atomic_dec_return implies a barrier for waitqueue_active
857 	 */
858 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
859 	    waitqueue_active(&fs_info->async_submit_wait))
860 		wake_up(&fs_info->async_submit_wait);
861 
862 	/* If an error occurred we just want to clean up the bio and move on */
863 	if (async->error) {
864 		async->bio->bi_error = async->error;
865 		bio_endio(async->bio);
866 		return;
867 	}
868 
869 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
870 			       async->bio_flags, async->bio_offset);
871 }
872 
873 static void run_one_async_free(struct btrfs_work *work)
874 {
875 	struct async_submit_bio *async;
876 
877 	async = container_of(work, struct  async_submit_bio, work);
878 	kfree(async);
879 }
880 
881 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
882 			struct bio *bio, int mirror_num,
883 			unsigned long bio_flags,
884 			u64 bio_offset,
885 			extent_submit_bio_hook_t *submit_bio_start,
886 			extent_submit_bio_hook_t *submit_bio_done)
887 {
888 	struct async_submit_bio *async;
889 
890 	async = kmalloc(sizeof(*async), GFP_NOFS);
891 	if (!async)
892 		return -ENOMEM;
893 
894 	async->inode = inode;
895 	async->bio = bio;
896 	async->mirror_num = mirror_num;
897 	async->submit_bio_start = submit_bio_start;
898 	async->submit_bio_done = submit_bio_done;
899 
900 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
901 			run_one_async_done, run_one_async_free);
902 
903 	async->bio_flags = bio_flags;
904 	async->bio_offset = bio_offset;
905 
906 	async->error = 0;
907 
908 	atomic_inc(&fs_info->nr_async_submits);
909 
910 	if (bio->bi_opf & REQ_SYNC)
911 		btrfs_set_work_high_priority(&async->work);
912 
913 	btrfs_queue_work(fs_info->workers, &async->work);
914 
915 	while (atomic_read(&fs_info->async_submit_draining) &&
916 	      atomic_read(&fs_info->nr_async_submits)) {
917 		wait_event(fs_info->async_submit_wait,
918 			   (atomic_read(&fs_info->nr_async_submits) == 0));
919 	}
920 
921 	return 0;
922 }
923 
924 static int btree_csum_one_bio(struct bio *bio)
925 {
926 	struct bio_vec *bvec;
927 	struct btrfs_root *root;
928 	int i, ret = 0;
929 
930 	bio_for_each_segment_all(bvec, bio, i) {
931 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
932 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
933 		if (ret)
934 			break;
935 	}
936 
937 	return ret;
938 }
939 
940 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
941 				    int mirror_num, unsigned long bio_flags,
942 				    u64 bio_offset)
943 {
944 	/*
945 	 * when we're called for a write, we're already in the async
946 	 * submission context.  Just jump into btrfs_map_bio
947 	 */
948 	return btree_csum_one_bio(bio);
949 }
950 
951 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
952 				 int mirror_num, unsigned long bio_flags,
953 				 u64 bio_offset)
954 {
955 	int ret;
956 
957 	/*
958 	 * when we're called for a write, we're already in the async
959 	 * submission context.  Just jump into btrfs_map_bio
960 	 */
961 	ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
962 	if (ret) {
963 		bio->bi_error = ret;
964 		bio_endio(bio);
965 	}
966 	return ret;
967 }
968 
969 static int check_async_write(struct inode *inode, unsigned long bio_flags)
970 {
971 	if (bio_flags & EXTENT_BIO_TREE_LOG)
972 		return 0;
973 #ifdef CONFIG_X86
974 	if (static_cpu_has(X86_FEATURE_XMM4_2))
975 		return 0;
976 #endif
977 	return 1;
978 }
979 
980 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
981 				 int mirror_num, unsigned long bio_flags,
982 				 u64 bio_offset)
983 {
984 	int async = check_async_write(inode, bio_flags);
985 	int ret;
986 
987 	if (bio_op(bio) != REQ_OP_WRITE) {
988 		/*
989 		 * called for a read, do the setup so that checksum validation
990 		 * can happen in the async kernel threads
991 		 */
992 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
993 					  bio, BTRFS_WQ_ENDIO_METADATA);
994 		if (ret)
995 			goto out_w_error;
996 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
997 	} else if (!async) {
998 		ret = btree_csum_one_bio(bio);
999 		if (ret)
1000 			goto out_w_error;
1001 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1002 	} else {
1003 		/*
1004 		 * kthread helpers are used to submit writes so that
1005 		 * checksumming can happen in parallel across all CPUs
1006 		 */
1007 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1008 					  inode, bio, mirror_num, 0,
1009 					  bio_offset,
1010 					  __btree_submit_bio_start,
1011 					  __btree_submit_bio_done);
1012 	}
1013 
1014 	if (ret)
1015 		goto out_w_error;
1016 	return 0;
1017 
1018 out_w_error:
1019 	bio->bi_error = ret;
1020 	bio_endio(bio);
1021 	return ret;
1022 }
1023 
1024 #ifdef CONFIG_MIGRATION
1025 static int btree_migratepage(struct address_space *mapping,
1026 			struct page *newpage, struct page *page,
1027 			enum migrate_mode mode)
1028 {
1029 	/*
1030 	 * we can't safely write a btree page from here,
1031 	 * we haven't done the locking hook
1032 	 */
1033 	if (PageDirty(page))
1034 		return -EAGAIN;
1035 	/*
1036 	 * Buffers may be managed in a filesystem specific way.
1037 	 * We must have no buffers or drop them.
1038 	 */
1039 	if (page_has_private(page) &&
1040 	    !try_to_release_page(page, GFP_KERNEL))
1041 		return -EAGAIN;
1042 	return migrate_page(mapping, newpage, page, mode);
1043 }
1044 #endif
1045 
1046 
1047 static int btree_writepages(struct address_space *mapping,
1048 			    struct writeback_control *wbc)
1049 {
1050 	struct btrfs_fs_info *fs_info;
1051 	int ret;
1052 
1053 	if (wbc->sync_mode == WB_SYNC_NONE) {
1054 
1055 		if (wbc->for_kupdate)
1056 			return 0;
1057 
1058 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1059 		/* this is a bit racy, but that's ok */
1060 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1061 					     BTRFS_DIRTY_METADATA_THRESH);
1062 		if (ret < 0)
1063 			return 0;
1064 	}
1065 	return btree_write_cache_pages(mapping, wbc);
1066 }
1067 
1068 static int btree_readpage(struct file *file, struct page *page)
1069 {
1070 	struct extent_io_tree *tree;
1071 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1072 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1073 }
1074 
1075 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1076 {
1077 	if (PageWriteback(page) || PageDirty(page))
1078 		return 0;
1079 
1080 	return try_release_extent_buffer(page);
1081 }
1082 
1083 static void btree_invalidatepage(struct page *page, unsigned int offset,
1084 				 unsigned int length)
1085 {
1086 	struct extent_io_tree *tree;
1087 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1088 	extent_invalidatepage(tree, page, offset);
1089 	btree_releasepage(page, GFP_NOFS);
1090 	if (PagePrivate(page)) {
1091 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1092 			   "page private not zero on page %llu",
1093 			   (unsigned long long)page_offset(page));
1094 		ClearPagePrivate(page);
1095 		set_page_private(page, 0);
1096 		put_page(page);
1097 	}
1098 }
1099 
1100 static int btree_set_page_dirty(struct page *page)
1101 {
1102 #ifdef DEBUG
1103 	struct extent_buffer *eb;
1104 
1105 	BUG_ON(!PagePrivate(page));
1106 	eb = (struct extent_buffer *)page->private;
1107 	BUG_ON(!eb);
1108 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1109 	BUG_ON(!atomic_read(&eb->refs));
1110 	btrfs_assert_tree_locked(eb);
1111 #endif
1112 	return __set_page_dirty_nobuffers(page);
1113 }
1114 
1115 static const struct address_space_operations btree_aops = {
1116 	.readpage	= btree_readpage,
1117 	.writepages	= btree_writepages,
1118 	.releasepage	= btree_releasepage,
1119 	.invalidatepage = btree_invalidatepage,
1120 #ifdef CONFIG_MIGRATION
1121 	.migratepage	= btree_migratepage,
1122 #endif
1123 	.set_page_dirty = btree_set_page_dirty,
1124 };
1125 
1126 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1127 {
1128 	struct extent_buffer *buf = NULL;
1129 	struct inode *btree_inode = root->fs_info->btree_inode;
1130 
1131 	buf = btrfs_find_create_tree_block(root, bytenr);
1132 	if (IS_ERR(buf))
1133 		return;
1134 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1135 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1136 	free_extent_buffer(buf);
1137 }
1138 
1139 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1140 			 int mirror_num, struct extent_buffer **eb)
1141 {
1142 	struct extent_buffer *buf = NULL;
1143 	struct inode *btree_inode = root->fs_info->btree_inode;
1144 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1145 	int ret;
1146 
1147 	buf = btrfs_find_create_tree_block(root, bytenr);
1148 	if (IS_ERR(buf))
1149 		return 0;
1150 
1151 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1152 
1153 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1154 				       btree_get_extent, mirror_num);
1155 	if (ret) {
1156 		free_extent_buffer(buf);
1157 		return ret;
1158 	}
1159 
1160 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1161 		free_extent_buffer(buf);
1162 		return -EIO;
1163 	} else if (extent_buffer_uptodate(buf)) {
1164 		*eb = buf;
1165 	} else {
1166 		free_extent_buffer(buf);
1167 	}
1168 	return 0;
1169 }
1170 
1171 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1172 					    u64 bytenr)
1173 {
1174 	return find_extent_buffer(fs_info, bytenr);
1175 }
1176 
1177 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1178 						 u64 bytenr)
1179 {
1180 	if (btrfs_is_testing(root->fs_info))
1181 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1182 				root->nodesize);
1183 	return alloc_extent_buffer(root->fs_info, bytenr);
1184 }
1185 
1186 
1187 int btrfs_write_tree_block(struct extent_buffer *buf)
1188 {
1189 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1190 					buf->start + buf->len - 1);
1191 }
1192 
1193 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1194 {
1195 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1196 				       buf->start, buf->start + buf->len - 1);
1197 }
1198 
1199 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1200 				      u64 parent_transid)
1201 {
1202 	struct extent_buffer *buf = NULL;
1203 	int ret;
1204 
1205 	buf = btrfs_find_create_tree_block(root, bytenr);
1206 	if (IS_ERR(buf))
1207 		return buf;
1208 
1209 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1210 	if (ret) {
1211 		free_extent_buffer(buf);
1212 		return ERR_PTR(ret);
1213 	}
1214 	return buf;
1215 
1216 }
1217 
1218 void clean_tree_block(struct btrfs_trans_handle *trans,
1219 		      struct btrfs_fs_info *fs_info,
1220 		      struct extent_buffer *buf)
1221 {
1222 	if (btrfs_header_generation(buf) ==
1223 	    fs_info->running_transaction->transid) {
1224 		btrfs_assert_tree_locked(buf);
1225 
1226 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1227 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1228 					     -buf->len,
1229 					     fs_info->dirty_metadata_batch);
1230 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1231 			btrfs_set_lock_blocking(buf);
1232 			clear_extent_buffer_dirty(buf);
1233 		}
1234 	}
1235 }
1236 
1237 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1238 {
1239 	struct btrfs_subvolume_writers *writers;
1240 	int ret;
1241 
1242 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1243 	if (!writers)
1244 		return ERR_PTR(-ENOMEM);
1245 
1246 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1247 	if (ret < 0) {
1248 		kfree(writers);
1249 		return ERR_PTR(ret);
1250 	}
1251 
1252 	init_waitqueue_head(&writers->wait);
1253 	return writers;
1254 }
1255 
1256 static void
1257 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1258 {
1259 	percpu_counter_destroy(&writers->counter);
1260 	kfree(writers);
1261 }
1262 
1263 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1264 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1265 			 u64 objectid)
1266 {
1267 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1268 	root->node = NULL;
1269 	root->commit_root = NULL;
1270 	root->sectorsize = sectorsize;
1271 	root->nodesize = nodesize;
1272 	root->stripesize = stripesize;
1273 	root->state = 0;
1274 	root->orphan_cleanup_state = 0;
1275 
1276 	root->objectid = objectid;
1277 	root->last_trans = 0;
1278 	root->highest_objectid = 0;
1279 	root->nr_delalloc_inodes = 0;
1280 	root->nr_ordered_extents = 0;
1281 	root->name = NULL;
1282 	root->inode_tree = RB_ROOT;
1283 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1284 	root->block_rsv = NULL;
1285 	root->orphan_block_rsv = NULL;
1286 
1287 	INIT_LIST_HEAD(&root->dirty_list);
1288 	INIT_LIST_HEAD(&root->root_list);
1289 	INIT_LIST_HEAD(&root->delalloc_inodes);
1290 	INIT_LIST_HEAD(&root->delalloc_root);
1291 	INIT_LIST_HEAD(&root->ordered_extents);
1292 	INIT_LIST_HEAD(&root->ordered_root);
1293 	INIT_LIST_HEAD(&root->logged_list[0]);
1294 	INIT_LIST_HEAD(&root->logged_list[1]);
1295 	spin_lock_init(&root->orphan_lock);
1296 	spin_lock_init(&root->inode_lock);
1297 	spin_lock_init(&root->delalloc_lock);
1298 	spin_lock_init(&root->ordered_extent_lock);
1299 	spin_lock_init(&root->accounting_lock);
1300 	spin_lock_init(&root->log_extents_lock[0]);
1301 	spin_lock_init(&root->log_extents_lock[1]);
1302 	mutex_init(&root->objectid_mutex);
1303 	mutex_init(&root->log_mutex);
1304 	mutex_init(&root->ordered_extent_mutex);
1305 	mutex_init(&root->delalloc_mutex);
1306 	init_waitqueue_head(&root->log_writer_wait);
1307 	init_waitqueue_head(&root->log_commit_wait[0]);
1308 	init_waitqueue_head(&root->log_commit_wait[1]);
1309 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1310 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1311 	atomic_set(&root->log_commit[0], 0);
1312 	atomic_set(&root->log_commit[1], 0);
1313 	atomic_set(&root->log_writers, 0);
1314 	atomic_set(&root->log_batch, 0);
1315 	atomic_set(&root->orphan_inodes, 0);
1316 	atomic_set(&root->refs, 1);
1317 	atomic_set(&root->will_be_snapshoted, 0);
1318 	atomic_set(&root->qgroup_meta_rsv, 0);
1319 	root->log_transid = 0;
1320 	root->log_transid_committed = -1;
1321 	root->last_log_commit = 0;
1322 	if (!dummy)
1323 		extent_io_tree_init(&root->dirty_log_pages,
1324 				     fs_info->btree_inode->i_mapping);
1325 
1326 	memset(&root->root_key, 0, sizeof(root->root_key));
1327 	memset(&root->root_item, 0, sizeof(root->root_item));
1328 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1329 	if (!dummy)
1330 		root->defrag_trans_start = fs_info->generation;
1331 	else
1332 		root->defrag_trans_start = 0;
1333 	root->root_key.objectid = objectid;
1334 	root->anon_dev = 0;
1335 
1336 	spin_lock_init(&root->root_item_lock);
1337 }
1338 
1339 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1340 		gfp_t flags)
1341 {
1342 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1343 	if (root)
1344 		root->fs_info = fs_info;
1345 	return root;
1346 }
1347 
1348 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1349 /* Should only be used by the testing infrastructure */
1350 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1351 					  u32 sectorsize, u32 nodesize)
1352 {
1353 	struct btrfs_root *root;
1354 
1355 	if (!fs_info)
1356 		return ERR_PTR(-EINVAL);
1357 
1358 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1359 	if (!root)
1360 		return ERR_PTR(-ENOMEM);
1361 	/* We don't use the stripesize in selftest, set it as sectorsize */
1362 	__setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1363 			BTRFS_ROOT_TREE_OBJECTID);
1364 	root->alloc_bytenr = 0;
1365 
1366 	return root;
1367 }
1368 #endif
1369 
1370 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1371 				     struct btrfs_fs_info *fs_info,
1372 				     u64 objectid)
1373 {
1374 	struct extent_buffer *leaf;
1375 	struct btrfs_root *tree_root = fs_info->tree_root;
1376 	struct btrfs_root *root;
1377 	struct btrfs_key key;
1378 	int ret = 0;
1379 	uuid_le uuid;
1380 
1381 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1382 	if (!root)
1383 		return ERR_PTR(-ENOMEM);
1384 
1385 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1386 		tree_root->stripesize, root, fs_info, objectid);
1387 	root->root_key.objectid = objectid;
1388 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1389 	root->root_key.offset = 0;
1390 
1391 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1392 	if (IS_ERR(leaf)) {
1393 		ret = PTR_ERR(leaf);
1394 		leaf = NULL;
1395 		goto fail;
1396 	}
1397 
1398 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1399 	btrfs_set_header_bytenr(leaf, leaf->start);
1400 	btrfs_set_header_generation(leaf, trans->transid);
1401 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1402 	btrfs_set_header_owner(leaf, objectid);
1403 	root->node = leaf;
1404 
1405 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1406 			    BTRFS_FSID_SIZE);
1407 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1408 			    btrfs_header_chunk_tree_uuid(leaf),
1409 			    BTRFS_UUID_SIZE);
1410 	btrfs_mark_buffer_dirty(leaf);
1411 
1412 	root->commit_root = btrfs_root_node(root);
1413 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1414 
1415 	root->root_item.flags = 0;
1416 	root->root_item.byte_limit = 0;
1417 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1418 	btrfs_set_root_generation(&root->root_item, trans->transid);
1419 	btrfs_set_root_level(&root->root_item, 0);
1420 	btrfs_set_root_refs(&root->root_item, 1);
1421 	btrfs_set_root_used(&root->root_item, leaf->len);
1422 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1423 	btrfs_set_root_dirid(&root->root_item, 0);
1424 	uuid_le_gen(&uuid);
1425 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1426 	root->root_item.drop_level = 0;
1427 
1428 	key.objectid = objectid;
1429 	key.type = BTRFS_ROOT_ITEM_KEY;
1430 	key.offset = 0;
1431 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1432 	if (ret)
1433 		goto fail;
1434 
1435 	btrfs_tree_unlock(leaf);
1436 
1437 	return root;
1438 
1439 fail:
1440 	if (leaf) {
1441 		btrfs_tree_unlock(leaf);
1442 		free_extent_buffer(root->commit_root);
1443 		free_extent_buffer(leaf);
1444 	}
1445 	kfree(root);
1446 
1447 	return ERR_PTR(ret);
1448 }
1449 
1450 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1451 					 struct btrfs_fs_info *fs_info)
1452 {
1453 	struct btrfs_root *root;
1454 	struct btrfs_root *tree_root = fs_info->tree_root;
1455 	struct extent_buffer *leaf;
1456 
1457 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1458 	if (!root)
1459 		return ERR_PTR(-ENOMEM);
1460 
1461 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1462 		     tree_root->stripesize, root, fs_info,
1463 		     BTRFS_TREE_LOG_OBJECTID);
1464 
1465 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1466 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1467 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1468 
1469 	/*
1470 	 * DON'T set REF_COWS for log trees
1471 	 *
1472 	 * log trees do not get reference counted because they go away
1473 	 * before a real commit is actually done.  They do store pointers
1474 	 * to file data extents, and those reference counts still get
1475 	 * updated (along with back refs to the log tree).
1476 	 */
1477 
1478 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1479 			NULL, 0, 0, 0);
1480 	if (IS_ERR(leaf)) {
1481 		kfree(root);
1482 		return ERR_CAST(leaf);
1483 	}
1484 
1485 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1486 	btrfs_set_header_bytenr(leaf, leaf->start);
1487 	btrfs_set_header_generation(leaf, trans->transid);
1488 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1489 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1490 	root->node = leaf;
1491 
1492 	write_extent_buffer(root->node, root->fs_info->fsid,
1493 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1494 	btrfs_mark_buffer_dirty(root->node);
1495 	btrfs_tree_unlock(root->node);
1496 	return root;
1497 }
1498 
1499 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1500 			     struct btrfs_fs_info *fs_info)
1501 {
1502 	struct btrfs_root *log_root;
1503 
1504 	log_root = alloc_log_tree(trans, fs_info);
1505 	if (IS_ERR(log_root))
1506 		return PTR_ERR(log_root);
1507 	WARN_ON(fs_info->log_root_tree);
1508 	fs_info->log_root_tree = log_root;
1509 	return 0;
1510 }
1511 
1512 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1513 		       struct btrfs_root *root)
1514 {
1515 	struct btrfs_root *log_root;
1516 	struct btrfs_inode_item *inode_item;
1517 
1518 	log_root = alloc_log_tree(trans, root->fs_info);
1519 	if (IS_ERR(log_root))
1520 		return PTR_ERR(log_root);
1521 
1522 	log_root->last_trans = trans->transid;
1523 	log_root->root_key.offset = root->root_key.objectid;
1524 
1525 	inode_item = &log_root->root_item.inode;
1526 	btrfs_set_stack_inode_generation(inode_item, 1);
1527 	btrfs_set_stack_inode_size(inode_item, 3);
1528 	btrfs_set_stack_inode_nlink(inode_item, 1);
1529 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1530 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1531 
1532 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1533 
1534 	WARN_ON(root->log_root);
1535 	root->log_root = log_root;
1536 	root->log_transid = 0;
1537 	root->log_transid_committed = -1;
1538 	root->last_log_commit = 0;
1539 	return 0;
1540 }
1541 
1542 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1543 					       struct btrfs_key *key)
1544 {
1545 	struct btrfs_root *root;
1546 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1547 	struct btrfs_path *path;
1548 	u64 generation;
1549 	int ret;
1550 
1551 	path = btrfs_alloc_path();
1552 	if (!path)
1553 		return ERR_PTR(-ENOMEM);
1554 
1555 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1556 	if (!root) {
1557 		ret = -ENOMEM;
1558 		goto alloc_fail;
1559 	}
1560 
1561 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1562 		tree_root->stripesize, root, fs_info, key->objectid);
1563 
1564 	ret = btrfs_find_root(tree_root, key, path,
1565 			      &root->root_item, &root->root_key);
1566 	if (ret) {
1567 		if (ret > 0)
1568 			ret = -ENOENT;
1569 		goto find_fail;
1570 	}
1571 
1572 	generation = btrfs_root_generation(&root->root_item);
1573 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1574 				     generation);
1575 	if (IS_ERR(root->node)) {
1576 		ret = PTR_ERR(root->node);
1577 		goto find_fail;
1578 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1579 		ret = -EIO;
1580 		free_extent_buffer(root->node);
1581 		goto find_fail;
1582 	}
1583 	root->commit_root = btrfs_root_node(root);
1584 out:
1585 	btrfs_free_path(path);
1586 	return root;
1587 
1588 find_fail:
1589 	kfree(root);
1590 alloc_fail:
1591 	root = ERR_PTR(ret);
1592 	goto out;
1593 }
1594 
1595 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1596 				      struct btrfs_key *location)
1597 {
1598 	struct btrfs_root *root;
1599 
1600 	root = btrfs_read_tree_root(tree_root, location);
1601 	if (IS_ERR(root))
1602 		return root;
1603 
1604 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1605 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1606 		btrfs_check_and_init_root_item(&root->root_item);
1607 	}
1608 
1609 	return root;
1610 }
1611 
1612 int btrfs_init_fs_root(struct btrfs_root *root)
1613 {
1614 	int ret;
1615 	struct btrfs_subvolume_writers *writers;
1616 
1617 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1618 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1619 					GFP_NOFS);
1620 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1621 		ret = -ENOMEM;
1622 		goto fail;
1623 	}
1624 
1625 	writers = btrfs_alloc_subvolume_writers();
1626 	if (IS_ERR(writers)) {
1627 		ret = PTR_ERR(writers);
1628 		goto fail;
1629 	}
1630 	root->subv_writers = writers;
1631 
1632 	btrfs_init_free_ino_ctl(root);
1633 	spin_lock_init(&root->ino_cache_lock);
1634 	init_waitqueue_head(&root->ino_cache_wait);
1635 
1636 	ret = get_anon_bdev(&root->anon_dev);
1637 	if (ret)
1638 		goto fail;
1639 
1640 	mutex_lock(&root->objectid_mutex);
1641 	ret = btrfs_find_highest_objectid(root,
1642 					&root->highest_objectid);
1643 	if (ret) {
1644 		mutex_unlock(&root->objectid_mutex);
1645 		goto fail;
1646 	}
1647 
1648 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1649 
1650 	mutex_unlock(&root->objectid_mutex);
1651 
1652 	return 0;
1653 fail:
1654 	/* the caller is responsible to call free_fs_root */
1655 	return ret;
1656 }
1657 
1658 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1659 					u64 root_id)
1660 {
1661 	struct btrfs_root *root;
1662 
1663 	spin_lock(&fs_info->fs_roots_radix_lock);
1664 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1665 				 (unsigned long)root_id);
1666 	spin_unlock(&fs_info->fs_roots_radix_lock);
1667 	return root;
1668 }
1669 
1670 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1671 			 struct btrfs_root *root)
1672 {
1673 	int ret;
1674 
1675 	ret = radix_tree_preload(GFP_NOFS);
1676 	if (ret)
1677 		return ret;
1678 
1679 	spin_lock(&fs_info->fs_roots_radix_lock);
1680 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1681 				(unsigned long)root->root_key.objectid,
1682 				root);
1683 	if (ret == 0)
1684 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1685 	spin_unlock(&fs_info->fs_roots_radix_lock);
1686 	radix_tree_preload_end();
1687 
1688 	return ret;
1689 }
1690 
1691 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1692 				     struct btrfs_key *location,
1693 				     bool check_ref)
1694 {
1695 	struct btrfs_root *root;
1696 	struct btrfs_path *path;
1697 	struct btrfs_key key;
1698 	int ret;
1699 
1700 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1701 		return fs_info->tree_root;
1702 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1703 		return fs_info->extent_root;
1704 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1705 		return fs_info->chunk_root;
1706 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1707 		return fs_info->dev_root;
1708 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1709 		return fs_info->csum_root;
1710 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1711 		return fs_info->quota_root ? fs_info->quota_root :
1712 					     ERR_PTR(-ENOENT);
1713 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1714 		return fs_info->uuid_root ? fs_info->uuid_root :
1715 					    ERR_PTR(-ENOENT);
1716 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1717 		return fs_info->free_space_root ? fs_info->free_space_root :
1718 						  ERR_PTR(-ENOENT);
1719 again:
1720 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1721 	if (root) {
1722 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1723 			return ERR_PTR(-ENOENT);
1724 		return root;
1725 	}
1726 
1727 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1728 	if (IS_ERR(root))
1729 		return root;
1730 
1731 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1732 		ret = -ENOENT;
1733 		goto fail;
1734 	}
1735 
1736 	ret = btrfs_init_fs_root(root);
1737 	if (ret)
1738 		goto fail;
1739 
1740 	path = btrfs_alloc_path();
1741 	if (!path) {
1742 		ret = -ENOMEM;
1743 		goto fail;
1744 	}
1745 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1746 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1747 	key.offset = location->objectid;
1748 
1749 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1750 	btrfs_free_path(path);
1751 	if (ret < 0)
1752 		goto fail;
1753 	if (ret == 0)
1754 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1755 
1756 	ret = btrfs_insert_fs_root(fs_info, root);
1757 	if (ret) {
1758 		if (ret == -EEXIST) {
1759 			free_fs_root(root);
1760 			goto again;
1761 		}
1762 		goto fail;
1763 	}
1764 	return root;
1765 fail:
1766 	free_fs_root(root);
1767 	return ERR_PTR(ret);
1768 }
1769 
1770 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1771 {
1772 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1773 	int ret = 0;
1774 	struct btrfs_device *device;
1775 	struct backing_dev_info *bdi;
1776 
1777 	rcu_read_lock();
1778 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1779 		if (!device->bdev)
1780 			continue;
1781 		bdi = blk_get_backing_dev_info(device->bdev);
1782 		if (bdi_congested(bdi, bdi_bits)) {
1783 			ret = 1;
1784 			break;
1785 		}
1786 	}
1787 	rcu_read_unlock();
1788 	return ret;
1789 }
1790 
1791 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1792 {
1793 	int err;
1794 
1795 	err = bdi_setup_and_register(bdi, "btrfs");
1796 	if (err)
1797 		return err;
1798 
1799 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1800 	bdi->congested_fn	= btrfs_congested_fn;
1801 	bdi->congested_data	= info;
1802 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1803 	return 0;
1804 }
1805 
1806 /*
1807  * called by the kthread helper functions to finally call the bio end_io
1808  * functions.  This is where read checksum verification actually happens
1809  */
1810 static void end_workqueue_fn(struct btrfs_work *work)
1811 {
1812 	struct bio *bio;
1813 	struct btrfs_end_io_wq *end_io_wq;
1814 
1815 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1816 	bio = end_io_wq->bio;
1817 
1818 	bio->bi_error = end_io_wq->error;
1819 	bio->bi_private = end_io_wq->private;
1820 	bio->bi_end_io = end_io_wq->end_io;
1821 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1822 	bio_endio(bio);
1823 }
1824 
1825 static int cleaner_kthread(void *arg)
1826 {
1827 	struct btrfs_root *root = arg;
1828 	int again;
1829 	struct btrfs_trans_handle *trans;
1830 
1831 	do {
1832 		again = 0;
1833 
1834 		/* Make the cleaner go to sleep early. */
1835 		if (btrfs_need_cleaner_sleep(root))
1836 			goto sleep;
1837 
1838 		/*
1839 		 * Do not do anything if we might cause open_ctree() to block
1840 		 * before we have finished mounting the filesystem.
1841 		 */
1842 		if (!root->fs_info->open)
1843 			goto sleep;
1844 
1845 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1846 			goto sleep;
1847 
1848 		/*
1849 		 * Avoid the problem that we change the status of the fs
1850 		 * during the above check and trylock.
1851 		 */
1852 		if (btrfs_need_cleaner_sleep(root)) {
1853 			mutex_unlock(&root->fs_info->cleaner_mutex);
1854 			goto sleep;
1855 		}
1856 
1857 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1858 		btrfs_run_delayed_iputs(root);
1859 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1860 
1861 		again = btrfs_clean_one_deleted_snapshot(root);
1862 		mutex_unlock(&root->fs_info->cleaner_mutex);
1863 
1864 		/*
1865 		 * The defragger has dealt with the R/O remount and umount,
1866 		 * needn't do anything special here.
1867 		 */
1868 		btrfs_run_defrag_inodes(root->fs_info);
1869 
1870 		/*
1871 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1872 		 * with relocation (btrfs_relocate_chunk) and relocation
1873 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1874 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1875 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1876 		 * unused block groups.
1877 		 */
1878 		btrfs_delete_unused_bgs(root->fs_info);
1879 sleep:
1880 		if (!again) {
1881 			set_current_state(TASK_INTERRUPTIBLE);
1882 			if (!kthread_should_stop())
1883 				schedule();
1884 			__set_current_state(TASK_RUNNING);
1885 		}
1886 	} while (!kthread_should_stop());
1887 
1888 	/*
1889 	 * Transaction kthread is stopped before us and wakes us up.
1890 	 * However we might have started a new transaction and COWed some
1891 	 * tree blocks when deleting unused block groups for example. So
1892 	 * make sure we commit the transaction we started to have a clean
1893 	 * shutdown when evicting the btree inode - if it has dirty pages
1894 	 * when we do the final iput() on it, eviction will trigger a
1895 	 * writeback for it which will fail with null pointer dereferences
1896 	 * since work queues and other resources were already released and
1897 	 * destroyed by the time the iput/eviction/writeback is made.
1898 	 */
1899 	trans = btrfs_attach_transaction(root);
1900 	if (IS_ERR(trans)) {
1901 		if (PTR_ERR(trans) != -ENOENT)
1902 			btrfs_err(root->fs_info,
1903 				  "cleaner transaction attach returned %ld",
1904 				  PTR_ERR(trans));
1905 	} else {
1906 		int ret;
1907 
1908 		ret = btrfs_commit_transaction(trans, root);
1909 		if (ret)
1910 			btrfs_err(root->fs_info,
1911 				  "cleaner open transaction commit returned %d",
1912 				  ret);
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 static int transaction_kthread(void *arg)
1919 {
1920 	struct btrfs_root *root = arg;
1921 	struct btrfs_trans_handle *trans;
1922 	struct btrfs_transaction *cur;
1923 	u64 transid;
1924 	unsigned long now;
1925 	unsigned long delay;
1926 	bool cannot_commit;
1927 
1928 	do {
1929 		cannot_commit = false;
1930 		delay = HZ * root->fs_info->commit_interval;
1931 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1932 
1933 		spin_lock(&root->fs_info->trans_lock);
1934 		cur = root->fs_info->running_transaction;
1935 		if (!cur) {
1936 			spin_unlock(&root->fs_info->trans_lock);
1937 			goto sleep;
1938 		}
1939 
1940 		now = get_seconds();
1941 		if (cur->state < TRANS_STATE_BLOCKED &&
1942 		    (now < cur->start_time ||
1943 		     now - cur->start_time < root->fs_info->commit_interval)) {
1944 			spin_unlock(&root->fs_info->trans_lock);
1945 			delay = HZ * 5;
1946 			goto sleep;
1947 		}
1948 		transid = cur->transid;
1949 		spin_unlock(&root->fs_info->trans_lock);
1950 
1951 		/* If the file system is aborted, this will always fail. */
1952 		trans = btrfs_attach_transaction(root);
1953 		if (IS_ERR(trans)) {
1954 			if (PTR_ERR(trans) != -ENOENT)
1955 				cannot_commit = true;
1956 			goto sleep;
1957 		}
1958 		if (transid == trans->transid) {
1959 			btrfs_commit_transaction(trans, root);
1960 		} else {
1961 			btrfs_end_transaction(trans, root);
1962 		}
1963 sleep:
1964 		wake_up_process(root->fs_info->cleaner_kthread);
1965 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1966 
1967 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1968 				      &root->fs_info->fs_state)))
1969 			btrfs_cleanup_transaction(root);
1970 		set_current_state(TASK_INTERRUPTIBLE);
1971 		if (!kthread_should_stop() &&
1972 				(!btrfs_transaction_blocked(root->fs_info) ||
1973 				 cannot_commit))
1974 			schedule_timeout(delay);
1975 		__set_current_state(TASK_RUNNING);
1976 	} while (!kthread_should_stop());
1977 	return 0;
1978 }
1979 
1980 /*
1981  * this will find the highest generation in the array of
1982  * root backups.  The index of the highest array is returned,
1983  * or -1 if we can't find anything.
1984  *
1985  * We check to make sure the array is valid by comparing the
1986  * generation of the latest  root in the array with the generation
1987  * in the super block.  If they don't match we pitch it.
1988  */
1989 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1990 {
1991 	u64 cur;
1992 	int newest_index = -1;
1993 	struct btrfs_root_backup *root_backup;
1994 	int i;
1995 
1996 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1997 		root_backup = info->super_copy->super_roots + i;
1998 		cur = btrfs_backup_tree_root_gen(root_backup);
1999 		if (cur == newest_gen)
2000 			newest_index = i;
2001 	}
2002 
2003 	/* check to see if we actually wrapped around */
2004 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2005 		root_backup = info->super_copy->super_roots;
2006 		cur = btrfs_backup_tree_root_gen(root_backup);
2007 		if (cur == newest_gen)
2008 			newest_index = 0;
2009 	}
2010 	return newest_index;
2011 }
2012 
2013 
2014 /*
2015  * find the oldest backup so we know where to store new entries
2016  * in the backup array.  This will set the backup_root_index
2017  * field in the fs_info struct
2018  */
2019 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2020 				     u64 newest_gen)
2021 {
2022 	int newest_index = -1;
2023 
2024 	newest_index = find_newest_super_backup(info, newest_gen);
2025 	/* if there was garbage in there, just move along */
2026 	if (newest_index == -1) {
2027 		info->backup_root_index = 0;
2028 	} else {
2029 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2030 	}
2031 }
2032 
2033 /*
2034  * copy all the root pointers into the super backup array.
2035  * this will bump the backup pointer by one when it is
2036  * done
2037  */
2038 static void backup_super_roots(struct btrfs_fs_info *info)
2039 {
2040 	int next_backup;
2041 	struct btrfs_root_backup *root_backup;
2042 	int last_backup;
2043 
2044 	next_backup = info->backup_root_index;
2045 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2046 		BTRFS_NUM_BACKUP_ROOTS;
2047 
2048 	/*
2049 	 * just overwrite the last backup if we're at the same generation
2050 	 * this happens only at umount
2051 	 */
2052 	root_backup = info->super_for_commit->super_roots + last_backup;
2053 	if (btrfs_backup_tree_root_gen(root_backup) ==
2054 	    btrfs_header_generation(info->tree_root->node))
2055 		next_backup = last_backup;
2056 
2057 	root_backup = info->super_for_commit->super_roots + next_backup;
2058 
2059 	/*
2060 	 * make sure all of our padding and empty slots get zero filled
2061 	 * regardless of which ones we use today
2062 	 */
2063 	memset(root_backup, 0, sizeof(*root_backup));
2064 
2065 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2066 
2067 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2068 	btrfs_set_backup_tree_root_gen(root_backup,
2069 			       btrfs_header_generation(info->tree_root->node));
2070 
2071 	btrfs_set_backup_tree_root_level(root_backup,
2072 			       btrfs_header_level(info->tree_root->node));
2073 
2074 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2075 	btrfs_set_backup_chunk_root_gen(root_backup,
2076 			       btrfs_header_generation(info->chunk_root->node));
2077 	btrfs_set_backup_chunk_root_level(root_backup,
2078 			       btrfs_header_level(info->chunk_root->node));
2079 
2080 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2081 	btrfs_set_backup_extent_root_gen(root_backup,
2082 			       btrfs_header_generation(info->extent_root->node));
2083 	btrfs_set_backup_extent_root_level(root_backup,
2084 			       btrfs_header_level(info->extent_root->node));
2085 
2086 	/*
2087 	 * we might commit during log recovery, which happens before we set
2088 	 * the fs_root.  Make sure it is valid before we fill it in.
2089 	 */
2090 	if (info->fs_root && info->fs_root->node) {
2091 		btrfs_set_backup_fs_root(root_backup,
2092 					 info->fs_root->node->start);
2093 		btrfs_set_backup_fs_root_gen(root_backup,
2094 			       btrfs_header_generation(info->fs_root->node));
2095 		btrfs_set_backup_fs_root_level(root_backup,
2096 			       btrfs_header_level(info->fs_root->node));
2097 	}
2098 
2099 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2100 	btrfs_set_backup_dev_root_gen(root_backup,
2101 			       btrfs_header_generation(info->dev_root->node));
2102 	btrfs_set_backup_dev_root_level(root_backup,
2103 				       btrfs_header_level(info->dev_root->node));
2104 
2105 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2106 	btrfs_set_backup_csum_root_gen(root_backup,
2107 			       btrfs_header_generation(info->csum_root->node));
2108 	btrfs_set_backup_csum_root_level(root_backup,
2109 			       btrfs_header_level(info->csum_root->node));
2110 
2111 	btrfs_set_backup_total_bytes(root_backup,
2112 			     btrfs_super_total_bytes(info->super_copy));
2113 	btrfs_set_backup_bytes_used(root_backup,
2114 			     btrfs_super_bytes_used(info->super_copy));
2115 	btrfs_set_backup_num_devices(root_backup,
2116 			     btrfs_super_num_devices(info->super_copy));
2117 
2118 	/*
2119 	 * if we don't copy this out to the super_copy, it won't get remembered
2120 	 * for the next commit
2121 	 */
2122 	memcpy(&info->super_copy->super_roots,
2123 	       &info->super_for_commit->super_roots,
2124 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2125 }
2126 
2127 /*
2128  * this copies info out of the root backup array and back into
2129  * the in-memory super block.  It is meant to help iterate through
2130  * the array, so you send it the number of backups you've already
2131  * tried and the last backup index you used.
2132  *
2133  * this returns -1 when it has tried all the backups
2134  */
2135 static noinline int next_root_backup(struct btrfs_fs_info *info,
2136 				     struct btrfs_super_block *super,
2137 				     int *num_backups_tried, int *backup_index)
2138 {
2139 	struct btrfs_root_backup *root_backup;
2140 	int newest = *backup_index;
2141 
2142 	if (*num_backups_tried == 0) {
2143 		u64 gen = btrfs_super_generation(super);
2144 
2145 		newest = find_newest_super_backup(info, gen);
2146 		if (newest == -1)
2147 			return -1;
2148 
2149 		*backup_index = newest;
2150 		*num_backups_tried = 1;
2151 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2152 		/* we've tried all the backups, all done */
2153 		return -1;
2154 	} else {
2155 		/* jump to the next oldest backup */
2156 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2157 			BTRFS_NUM_BACKUP_ROOTS;
2158 		*backup_index = newest;
2159 		*num_backups_tried += 1;
2160 	}
2161 	root_backup = super->super_roots + newest;
2162 
2163 	btrfs_set_super_generation(super,
2164 				   btrfs_backup_tree_root_gen(root_backup));
2165 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2166 	btrfs_set_super_root_level(super,
2167 				   btrfs_backup_tree_root_level(root_backup));
2168 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2169 
2170 	/*
2171 	 * fixme: the total bytes and num_devices need to match or we should
2172 	 * need a fsck
2173 	 */
2174 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2175 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2176 	return 0;
2177 }
2178 
2179 /* helper to cleanup workers */
2180 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2181 {
2182 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2183 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2184 	btrfs_destroy_workqueue(fs_info->workers);
2185 	btrfs_destroy_workqueue(fs_info->endio_workers);
2186 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2187 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2188 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2189 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2190 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2191 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2192 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2193 	btrfs_destroy_workqueue(fs_info->submit_workers);
2194 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2195 	btrfs_destroy_workqueue(fs_info->caching_workers);
2196 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2197 	btrfs_destroy_workqueue(fs_info->flush_workers);
2198 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2199 	btrfs_destroy_workqueue(fs_info->extent_workers);
2200 }
2201 
2202 static void free_root_extent_buffers(struct btrfs_root *root)
2203 {
2204 	if (root) {
2205 		free_extent_buffer(root->node);
2206 		free_extent_buffer(root->commit_root);
2207 		root->node = NULL;
2208 		root->commit_root = NULL;
2209 	}
2210 }
2211 
2212 /* helper to cleanup tree roots */
2213 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2214 {
2215 	free_root_extent_buffers(info->tree_root);
2216 
2217 	free_root_extent_buffers(info->dev_root);
2218 	free_root_extent_buffers(info->extent_root);
2219 	free_root_extent_buffers(info->csum_root);
2220 	free_root_extent_buffers(info->quota_root);
2221 	free_root_extent_buffers(info->uuid_root);
2222 	if (chunk_root)
2223 		free_root_extent_buffers(info->chunk_root);
2224 	free_root_extent_buffers(info->free_space_root);
2225 }
2226 
2227 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2228 {
2229 	int ret;
2230 	struct btrfs_root *gang[8];
2231 	int i;
2232 
2233 	while (!list_empty(&fs_info->dead_roots)) {
2234 		gang[0] = list_entry(fs_info->dead_roots.next,
2235 				     struct btrfs_root, root_list);
2236 		list_del(&gang[0]->root_list);
2237 
2238 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2239 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2240 		} else {
2241 			free_extent_buffer(gang[0]->node);
2242 			free_extent_buffer(gang[0]->commit_root);
2243 			btrfs_put_fs_root(gang[0]);
2244 		}
2245 	}
2246 
2247 	while (1) {
2248 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2249 					     (void **)gang, 0,
2250 					     ARRAY_SIZE(gang));
2251 		if (!ret)
2252 			break;
2253 		for (i = 0; i < ret; i++)
2254 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2255 	}
2256 
2257 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2258 		btrfs_free_log_root_tree(NULL, fs_info);
2259 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2260 					    fs_info->pinned_extents);
2261 	}
2262 }
2263 
2264 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2265 {
2266 	mutex_init(&fs_info->scrub_lock);
2267 	atomic_set(&fs_info->scrubs_running, 0);
2268 	atomic_set(&fs_info->scrub_pause_req, 0);
2269 	atomic_set(&fs_info->scrubs_paused, 0);
2270 	atomic_set(&fs_info->scrub_cancel_req, 0);
2271 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2272 	fs_info->scrub_workers_refcnt = 0;
2273 }
2274 
2275 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2276 {
2277 	spin_lock_init(&fs_info->balance_lock);
2278 	mutex_init(&fs_info->balance_mutex);
2279 	atomic_set(&fs_info->balance_running, 0);
2280 	atomic_set(&fs_info->balance_pause_req, 0);
2281 	atomic_set(&fs_info->balance_cancel_req, 0);
2282 	fs_info->balance_ctl = NULL;
2283 	init_waitqueue_head(&fs_info->balance_wait_q);
2284 }
2285 
2286 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2287 				   struct btrfs_root *tree_root)
2288 {
2289 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2290 	set_nlink(fs_info->btree_inode, 1);
2291 	/*
2292 	 * we set the i_size on the btree inode to the max possible int.
2293 	 * the real end of the address space is determined by all of
2294 	 * the devices in the system
2295 	 */
2296 	fs_info->btree_inode->i_size = OFFSET_MAX;
2297 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2298 
2299 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2300 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2301 			     fs_info->btree_inode->i_mapping);
2302 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2303 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2304 
2305 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2306 
2307 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2308 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2309 	       sizeof(struct btrfs_key));
2310 	set_bit(BTRFS_INODE_DUMMY,
2311 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2312 	btrfs_insert_inode_hash(fs_info->btree_inode);
2313 }
2314 
2315 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2316 {
2317 	fs_info->dev_replace.lock_owner = 0;
2318 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2319 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2320 	rwlock_init(&fs_info->dev_replace.lock);
2321 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2322 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2323 	init_waitqueue_head(&fs_info->replace_wait);
2324 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2325 }
2326 
2327 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2328 {
2329 	spin_lock_init(&fs_info->qgroup_lock);
2330 	mutex_init(&fs_info->qgroup_ioctl_lock);
2331 	fs_info->qgroup_tree = RB_ROOT;
2332 	fs_info->qgroup_op_tree = RB_ROOT;
2333 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2334 	fs_info->qgroup_seq = 1;
2335 	fs_info->quota_enabled = 0;
2336 	fs_info->pending_quota_state = 0;
2337 	fs_info->qgroup_ulist = NULL;
2338 	fs_info->qgroup_rescan_running = false;
2339 	mutex_init(&fs_info->qgroup_rescan_lock);
2340 }
2341 
2342 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2343 		struct btrfs_fs_devices *fs_devices)
2344 {
2345 	int max_active = fs_info->thread_pool_size;
2346 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2347 
2348 	fs_info->workers =
2349 		btrfs_alloc_workqueue(fs_info, "worker",
2350 				      flags | WQ_HIGHPRI, max_active, 16);
2351 
2352 	fs_info->delalloc_workers =
2353 		btrfs_alloc_workqueue(fs_info, "delalloc",
2354 				      flags, max_active, 2);
2355 
2356 	fs_info->flush_workers =
2357 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2358 				      flags, max_active, 0);
2359 
2360 	fs_info->caching_workers =
2361 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2362 
2363 	/*
2364 	 * a higher idle thresh on the submit workers makes it much more
2365 	 * likely that bios will be send down in a sane order to the
2366 	 * devices
2367 	 */
2368 	fs_info->submit_workers =
2369 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2370 				      min_t(u64, fs_devices->num_devices,
2371 					    max_active), 64);
2372 
2373 	fs_info->fixup_workers =
2374 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2375 
2376 	/*
2377 	 * endios are largely parallel and should have a very
2378 	 * low idle thresh
2379 	 */
2380 	fs_info->endio_workers =
2381 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2382 	fs_info->endio_meta_workers =
2383 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2384 				      max_active, 4);
2385 	fs_info->endio_meta_write_workers =
2386 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2387 				      max_active, 2);
2388 	fs_info->endio_raid56_workers =
2389 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2390 				      max_active, 4);
2391 	fs_info->endio_repair_workers =
2392 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2393 	fs_info->rmw_workers =
2394 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2395 	fs_info->endio_write_workers =
2396 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2397 				      max_active, 2);
2398 	fs_info->endio_freespace_worker =
2399 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2400 				      max_active, 0);
2401 	fs_info->delayed_workers =
2402 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2403 				      max_active, 0);
2404 	fs_info->readahead_workers =
2405 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2406 				      max_active, 2);
2407 	fs_info->qgroup_rescan_workers =
2408 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2409 	fs_info->extent_workers =
2410 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2411 				      min_t(u64, fs_devices->num_devices,
2412 					    max_active), 8);
2413 
2414 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2415 	      fs_info->submit_workers && fs_info->flush_workers &&
2416 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2417 	      fs_info->endio_meta_write_workers &&
2418 	      fs_info->endio_repair_workers &&
2419 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2420 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2421 	      fs_info->caching_workers && fs_info->readahead_workers &&
2422 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2423 	      fs_info->extent_workers &&
2424 	      fs_info->qgroup_rescan_workers)) {
2425 		return -ENOMEM;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2432 			    struct btrfs_fs_devices *fs_devices)
2433 {
2434 	int ret;
2435 	struct btrfs_root *tree_root = fs_info->tree_root;
2436 	struct btrfs_root *log_tree_root;
2437 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2438 	u64 bytenr = btrfs_super_log_root(disk_super);
2439 
2440 	if (fs_devices->rw_devices == 0) {
2441 		btrfs_warn(fs_info, "log replay required on RO media");
2442 		return -EIO;
2443 	}
2444 
2445 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2446 	if (!log_tree_root)
2447 		return -ENOMEM;
2448 
2449 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2450 			tree_root->stripesize, log_tree_root, fs_info,
2451 			BTRFS_TREE_LOG_OBJECTID);
2452 
2453 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2454 			fs_info->generation + 1);
2455 	if (IS_ERR(log_tree_root->node)) {
2456 		btrfs_warn(fs_info, "failed to read log tree");
2457 		ret = PTR_ERR(log_tree_root->node);
2458 		kfree(log_tree_root);
2459 		return ret;
2460 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2461 		btrfs_err(fs_info, "failed to read log tree");
2462 		free_extent_buffer(log_tree_root->node);
2463 		kfree(log_tree_root);
2464 		return -EIO;
2465 	}
2466 	/* returns with log_tree_root freed on success */
2467 	ret = btrfs_recover_log_trees(log_tree_root);
2468 	if (ret) {
2469 		btrfs_handle_fs_error(tree_root->fs_info, ret,
2470 			    "Failed to recover log tree");
2471 		free_extent_buffer(log_tree_root->node);
2472 		kfree(log_tree_root);
2473 		return ret;
2474 	}
2475 
2476 	if (fs_info->sb->s_flags & MS_RDONLY) {
2477 		ret = btrfs_commit_super(tree_root);
2478 		if (ret)
2479 			return ret;
2480 	}
2481 
2482 	return 0;
2483 }
2484 
2485 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2486 			    struct btrfs_root *tree_root)
2487 {
2488 	struct btrfs_root *root;
2489 	struct btrfs_key location;
2490 	int ret;
2491 
2492 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2493 	location.type = BTRFS_ROOT_ITEM_KEY;
2494 	location.offset = 0;
2495 
2496 	root = btrfs_read_tree_root(tree_root, &location);
2497 	if (IS_ERR(root))
2498 		return PTR_ERR(root);
2499 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2500 	fs_info->extent_root = root;
2501 
2502 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2503 	root = btrfs_read_tree_root(tree_root, &location);
2504 	if (IS_ERR(root))
2505 		return PTR_ERR(root);
2506 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 	fs_info->dev_root = root;
2508 	btrfs_init_devices_late(fs_info);
2509 
2510 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2511 	root = btrfs_read_tree_root(tree_root, &location);
2512 	if (IS_ERR(root))
2513 		return PTR_ERR(root);
2514 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2515 	fs_info->csum_root = root;
2516 
2517 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2518 	root = btrfs_read_tree_root(tree_root, &location);
2519 	if (!IS_ERR(root)) {
2520 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 		fs_info->quota_enabled = 1;
2522 		fs_info->pending_quota_state = 1;
2523 		fs_info->quota_root = root;
2524 	}
2525 
2526 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2527 	root = btrfs_read_tree_root(tree_root, &location);
2528 	if (IS_ERR(root)) {
2529 		ret = PTR_ERR(root);
2530 		if (ret != -ENOENT)
2531 			return ret;
2532 	} else {
2533 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2534 		fs_info->uuid_root = root;
2535 	}
2536 
2537 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2538 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2539 		root = btrfs_read_tree_root(tree_root, &location);
2540 		if (IS_ERR(root))
2541 			return PTR_ERR(root);
2542 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2543 		fs_info->free_space_root = root;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 int open_ctree(struct super_block *sb,
2550 	       struct btrfs_fs_devices *fs_devices,
2551 	       char *options)
2552 {
2553 	u32 sectorsize;
2554 	u32 nodesize;
2555 	u32 stripesize;
2556 	u64 generation;
2557 	u64 features;
2558 	struct btrfs_key location;
2559 	struct buffer_head *bh;
2560 	struct btrfs_super_block *disk_super;
2561 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2562 	struct btrfs_root *tree_root;
2563 	struct btrfs_root *chunk_root;
2564 	int ret;
2565 	int err = -EINVAL;
2566 	int num_backups_tried = 0;
2567 	int backup_index = 0;
2568 	int max_active;
2569 
2570 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2571 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2572 	if (!tree_root || !chunk_root) {
2573 		err = -ENOMEM;
2574 		goto fail;
2575 	}
2576 
2577 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2578 	if (ret) {
2579 		err = ret;
2580 		goto fail;
2581 	}
2582 
2583 	ret = setup_bdi(fs_info, &fs_info->bdi);
2584 	if (ret) {
2585 		err = ret;
2586 		goto fail_srcu;
2587 	}
2588 
2589 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2590 	if (ret) {
2591 		err = ret;
2592 		goto fail_bdi;
2593 	}
2594 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2595 					(1 + ilog2(nr_cpu_ids));
2596 
2597 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2598 	if (ret) {
2599 		err = ret;
2600 		goto fail_dirty_metadata_bytes;
2601 	}
2602 
2603 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2604 	if (ret) {
2605 		err = ret;
2606 		goto fail_delalloc_bytes;
2607 	}
2608 
2609 	fs_info->btree_inode = new_inode(sb);
2610 	if (!fs_info->btree_inode) {
2611 		err = -ENOMEM;
2612 		goto fail_bio_counter;
2613 	}
2614 
2615 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2616 
2617 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2618 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2619 	INIT_LIST_HEAD(&fs_info->trans_list);
2620 	INIT_LIST_HEAD(&fs_info->dead_roots);
2621 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2622 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2623 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2624 	spin_lock_init(&fs_info->delalloc_root_lock);
2625 	spin_lock_init(&fs_info->trans_lock);
2626 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2627 	spin_lock_init(&fs_info->delayed_iput_lock);
2628 	spin_lock_init(&fs_info->defrag_inodes_lock);
2629 	spin_lock_init(&fs_info->free_chunk_lock);
2630 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2631 	spin_lock_init(&fs_info->super_lock);
2632 	spin_lock_init(&fs_info->qgroup_op_lock);
2633 	spin_lock_init(&fs_info->buffer_lock);
2634 	spin_lock_init(&fs_info->unused_bgs_lock);
2635 	rwlock_init(&fs_info->tree_mod_log_lock);
2636 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2637 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2638 	mutex_init(&fs_info->reloc_mutex);
2639 	mutex_init(&fs_info->delalloc_root_mutex);
2640 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2641 	seqlock_init(&fs_info->profiles_lock);
2642 
2643 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2644 	INIT_LIST_HEAD(&fs_info->space_info);
2645 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2646 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2647 	btrfs_mapping_init(&fs_info->mapping_tree);
2648 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2649 			     BTRFS_BLOCK_RSV_GLOBAL);
2650 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2651 			     BTRFS_BLOCK_RSV_DELALLOC);
2652 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2653 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2654 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2655 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2656 			     BTRFS_BLOCK_RSV_DELOPS);
2657 	atomic_set(&fs_info->nr_async_submits, 0);
2658 	atomic_set(&fs_info->async_delalloc_pages, 0);
2659 	atomic_set(&fs_info->async_submit_draining, 0);
2660 	atomic_set(&fs_info->nr_async_bios, 0);
2661 	atomic_set(&fs_info->defrag_running, 0);
2662 	atomic_set(&fs_info->qgroup_op_seq, 0);
2663 	atomic_set(&fs_info->reada_works_cnt, 0);
2664 	atomic64_set(&fs_info->tree_mod_seq, 0);
2665 	fs_info->fs_frozen = 0;
2666 	fs_info->sb = sb;
2667 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2668 	fs_info->metadata_ratio = 0;
2669 	fs_info->defrag_inodes = RB_ROOT;
2670 	fs_info->free_chunk_space = 0;
2671 	fs_info->tree_mod_log = RB_ROOT;
2672 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2673 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2674 	/* readahead state */
2675 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2676 	spin_lock_init(&fs_info->reada_lock);
2677 
2678 	fs_info->thread_pool_size = min_t(unsigned long,
2679 					  num_online_cpus() + 2, 8);
2680 
2681 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2682 	spin_lock_init(&fs_info->ordered_root_lock);
2683 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2684 					GFP_KERNEL);
2685 	if (!fs_info->delayed_root) {
2686 		err = -ENOMEM;
2687 		goto fail_iput;
2688 	}
2689 	btrfs_init_delayed_root(fs_info->delayed_root);
2690 
2691 	btrfs_init_scrub(fs_info);
2692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2693 	fs_info->check_integrity_print_mask = 0;
2694 #endif
2695 	btrfs_init_balance(fs_info);
2696 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2697 
2698 	sb->s_blocksize = 4096;
2699 	sb->s_blocksize_bits = blksize_bits(4096);
2700 	sb->s_bdi = &fs_info->bdi;
2701 
2702 	btrfs_init_btree_inode(fs_info, tree_root);
2703 
2704 	spin_lock_init(&fs_info->block_group_cache_lock);
2705 	fs_info->block_group_cache_tree = RB_ROOT;
2706 	fs_info->first_logical_byte = (u64)-1;
2707 
2708 	extent_io_tree_init(&fs_info->freed_extents[0],
2709 			     fs_info->btree_inode->i_mapping);
2710 	extent_io_tree_init(&fs_info->freed_extents[1],
2711 			     fs_info->btree_inode->i_mapping);
2712 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2713 	fs_info->do_barriers = 1;
2714 
2715 
2716 	mutex_init(&fs_info->ordered_operations_mutex);
2717 	mutex_init(&fs_info->tree_log_mutex);
2718 	mutex_init(&fs_info->chunk_mutex);
2719 	mutex_init(&fs_info->transaction_kthread_mutex);
2720 	mutex_init(&fs_info->cleaner_mutex);
2721 	mutex_init(&fs_info->volume_mutex);
2722 	mutex_init(&fs_info->ro_block_group_mutex);
2723 	init_rwsem(&fs_info->commit_root_sem);
2724 	init_rwsem(&fs_info->cleanup_work_sem);
2725 	init_rwsem(&fs_info->subvol_sem);
2726 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2727 
2728 	btrfs_init_dev_replace_locks(fs_info);
2729 	btrfs_init_qgroup(fs_info);
2730 
2731 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2732 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2733 
2734 	init_waitqueue_head(&fs_info->transaction_throttle);
2735 	init_waitqueue_head(&fs_info->transaction_wait);
2736 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2737 	init_waitqueue_head(&fs_info->async_submit_wait);
2738 
2739 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2740 
2741 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2742 	if (ret) {
2743 		err = ret;
2744 		goto fail_alloc;
2745 	}
2746 
2747 	__setup_root(4096, 4096, 4096, tree_root,
2748 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2749 
2750 	invalidate_bdev(fs_devices->latest_bdev);
2751 
2752 	/*
2753 	 * Read super block and check the signature bytes only
2754 	 */
2755 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2756 	if (IS_ERR(bh)) {
2757 		err = PTR_ERR(bh);
2758 		goto fail_alloc;
2759 	}
2760 
2761 	/*
2762 	 * We want to check superblock checksum, the type is stored inside.
2763 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2764 	 */
2765 	if (btrfs_check_super_csum(bh->b_data)) {
2766 		btrfs_err(fs_info, "superblock checksum mismatch");
2767 		err = -EINVAL;
2768 		brelse(bh);
2769 		goto fail_alloc;
2770 	}
2771 
2772 	/*
2773 	 * super_copy is zeroed at allocation time and we never touch the
2774 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2775 	 * the whole block of INFO_SIZE
2776 	 */
2777 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2778 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2779 	       sizeof(*fs_info->super_for_commit));
2780 	brelse(bh);
2781 
2782 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2783 
2784 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2785 	if (ret) {
2786 		btrfs_err(fs_info, "superblock contains fatal errors");
2787 		err = -EINVAL;
2788 		goto fail_alloc;
2789 	}
2790 
2791 	disk_super = fs_info->super_copy;
2792 	if (!btrfs_super_root(disk_super))
2793 		goto fail_alloc;
2794 
2795 	/* check FS state, whether FS is broken. */
2796 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2797 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2798 
2799 	/*
2800 	 * run through our array of backup supers and setup
2801 	 * our ring pointer to the oldest one
2802 	 */
2803 	generation = btrfs_super_generation(disk_super);
2804 	find_oldest_super_backup(fs_info, generation);
2805 
2806 	/*
2807 	 * In the long term, we'll store the compression type in the super
2808 	 * block, and it'll be used for per file compression control.
2809 	 */
2810 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2811 
2812 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2813 	if (ret) {
2814 		err = ret;
2815 		goto fail_alloc;
2816 	}
2817 
2818 	features = btrfs_super_incompat_flags(disk_super) &
2819 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2820 	if (features) {
2821 		btrfs_err(fs_info,
2822 		    "cannot mount because of unsupported optional features (%llx)",
2823 		    features);
2824 		err = -EINVAL;
2825 		goto fail_alloc;
2826 	}
2827 
2828 	features = btrfs_super_incompat_flags(disk_super);
2829 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2830 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2831 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2832 
2833 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2834 		btrfs_info(fs_info, "has skinny extents");
2835 
2836 	/*
2837 	 * flag our filesystem as having big metadata blocks if
2838 	 * they are bigger than the page size
2839 	 */
2840 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2841 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2842 			btrfs_info(fs_info,
2843 				"flagging fs with big metadata feature");
2844 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2845 	}
2846 
2847 	nodesize = btrfs_super_nodesize(disk_super);
2848 	sectorsize = btrfs_super_sectorsize(disk_super);
2849 	stripesize = sectorsize;
2850 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2851 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2852 
2853 	/*
2854 	 * mixed block groups end up with duplicate but slightly offset
2855 	 * extent buffers for the same range.  It leads to corruptions
2856 	 */
2857 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2858 	    (sectorsize != nodesize)) {
2859 		btrfs_err(fs_info,
2860 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2861 			nodesize, sectorsize);
2862 		goto fail_alloc;
2863 	}
2864 
2865 	/*
2866 	 * Needn't use the lock because there is no other task which will
2867 	 * update the flag.
2868 	 */
2869 	btrfs_set_super_incompat_flags(disk_super, features);
2870 
2871 	features = btrfs_super_compat_ro_flags(disk_super) &
2872 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2873 	if (!(sb->s_flags & MS_RDONLY) && features) {
2874 		btrfs_err(fs_info,
2875 	"cannot mount read-write because of unsupported optional features (%llx)",
2876 		       features);
2877 		err = -EINVAL;
2878 		goto fail_alloc;
2879 	}
2880 
2881 	max_active = fs_info->thread_pool_size;
2882 
2883 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2884 	if (ret) {
2885 		err = ret;
2886 		goto fail_sb_buffer;
2887 	}
2888 
2889 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2890 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2891 				    SZ_4M / PAGE_SIZE);
2892 
2893 	tree_root->nodesize = nodesize;
2894 	tree_root->sectorsize = sectorsize;
2895 	tree_root->stripesize = stripesize;
2896 
2897 	sb->s_blocksize = sectorsize;
2898 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2899 
2900 	mutex_lock(&fs_info->chunk_mutex);
2901 	ret = btrfs_read_sys_array(tree_root);
2902 	mutex_unlock(&fs_info->chunk_mutex);
2903 	if (ret) {
2904 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2905 		goto fail_sb_buffer;
2906 	}
2907 
2908 	generation = btrfs_super_chunk_root_generation(disk_super);
2909 
2910 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2911 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2912 
2913 	chunk_root->node = read_tree_block(chunk_root,
2914 					   btrfs_super_chunk_root(disk_super),
2915 					   generation);
2916 	if (IS_ERR(chunk_root->node) ||
2917 	    !extent_buffer_uptodate(chunk_root->node)) {
2918 		btrfs_err(fs_info, "failed to read chunk root");
2919 		if (!IS_ERR(chunk_root->node))
2920 			free_extent_buffer(chunk_root->node);
2921 		chunk_root->node = NULL;
2922 		goto fail_tree_roots;
2923 	}
2924 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2925 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2926 
2927 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2928 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2929 
2930 	ret = btrfs_read_chunk_tree(chunk_root);
2931 	if (ret) {
2932 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2933 		goto fail_tree_roots;
2934 	}
2935 
2936 	/*
2937 	 * keep the device that is marked to be the target device for the
2938 	 * dev_replace procedure
2939 	 */
2940 	btrfs_close_extra_devices(fs_devices, 0);
2941 
2942 	if (!fs_devices->latest_bdev) {
2943 		btrfs_err(fs_info, "failed to read devices");
2944 		goto fail_tree_roots;
2945 	}
2946 
2947 retry_root_backup:
2948 	generation = btrfs_super_generation(disk_super);
2949 
2950 	tree_root->node = read_tree_block(tree_root,
2951 					  btrfs_super_root(disk_super),
2952 					  generation);
2953 	if (IS_ERR(tree_root->node) ||
2954 	    !extent_buffer_uptodate(tree_root->node)) {
2955 		btrfs_warn(fs_info, "failed to read tree root");
2956 		if (!IS_ERR(tree_root->node))
2957 			free_extent_buffer(tree_root->node);
2958 		tree_root->node = NULL;
2959 		goto recovery_tree_root;
2960 	}
2961 
2962 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2963 	tree_root->commit_root = btrfs_root_node(tree_root);
2964 	btrfs_set_root_refs(&tree_root->root_item, 1);
2965 
2966 	mutex_lock(&tree_root->objectid_mutex);
2967 	ret = btrfs_find_highest_objectid(tree_root,
2968 					&tree_root->highest_objectid);
2969 	if (ret) {
2970 		mutex_unlock(&tree_root->objectid_mutex);
2971 		goto recovery_tree_root;
2972 	}
2973 
2974 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2975 
2976 	mutex_unlock(&tree_root->objectid_mutex);
2977 
2978 	ret = btrfs_read_roots(fs_info, tree_root);
2979 	if (ret)
2980 		goto recovery_tree_root;
2981 
2982 	fs_info->generation = generation;
2983 	fs_info->last_trans_committed = generation;
2984 
2985 	ret = btrfs_recover_balance(fs_info);
2986 	if (ret) {
2987 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2988 		goto fail_block_groups;
2989 	}
2990 
2991 	ret = btrfs_init_dev_stats(fs_info);
2992 	if (ret) {
2993 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2994 		goto fail_block_groups;
2995 	}
2996 
2997 	ret = btrfs_init_dev_replace(fs_info);
2998 	if (ret) {
2999 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3000 		goto fail_block_groups;
3001 	}
3002 
3003 	btrfs_close_extra_devices(fs_devices, 1);
3004 
3005 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3006 	if (ret) {
3007 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3008 				ret);
3009 		goto fail_block_groups;
3010 	}
3011 
3012 	ret = btrfs_sysfs_add_device(fs_devices);
3013 	if (ret) {
3014 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3015 				ret);
3016 		goto fail_fsdev_sysfs;
3017 	}
3018 
3019 	ret = btrfs_sysfs_add_mounted(fs_info);
3020 	if (ret) {
3021 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3022 		goto fail_fsdev_sysfs;
3023 	}
3024 
3025 	ret = btrfs_init_space_info(fs_info);
3026 	if (ret) {
3027 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3028 		goto fail_sysfs;
3029 	}
3030 
3031 	ret = btrfs_read_block_groups(fs_info->extent_root);
3032 	if (ret) {
3033 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3034 		goto fail_sysfs;
3035 	}
3036 	fs_info->num_tolerated_disk_barrier_failures =
3037 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3038 	if (fs_info->fs_devices->missing_devices >
3039 	     fs_info->num_tolerated_disk_barrier_failures &&
3040 	    !(sb->s_flags & MS_RDONLY)) {
3041 		btrfs_warn(fs_info,
3042 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3043 			fs_info->fs_devices->missing_devices,
3044 			fs_info->num_tolerated_disk_barrier_failures);
3045 		goto fail_sysfs;
3046 	}
3047 
3048 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3049 					       "btrfs-cleaner");
3050 	if (IS_ERR(fs_info->cleaner_kthread))
3051 		goto fail_sysfs;
3052 
3053 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3054 						   tree_root,
3055 						   "btrfs-transaction");
3056 	if (IS_ERR(fs_info->transaction_kthread))
3057 		goto fail_cleaner;
3058 
3059 	if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3060 	    !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3061 	    !fs_info->fs_devices->rotating) {
3062 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3063 		btrfs_set_opt(fs_info->mount_opt, SSD);
3064 	}
3065 
3066 	/*
3067 	 * Mount does not set all options immediately, we can do it now and do
3068 	 * not have to wait for transaction commit
3069 	 */
3070 	btrfs_apply_pending_changes(fs_info);
3071 
3072 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3073 	if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3074 		ret = btrfsic_mount(tree_root, fs_devices,
3075 				    btrfs_test_opt(tree_root->fs_info,
3076 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3077 				    1 : 0,
3078 				    fs_info->check_integrity_print_mask);
3079 		if (ret)
3080 			btrfs_warn(fs_info,
3081 				"failed to initialize integrity check module: %d",
3082 				ret);
3083 	}
3084 #endif
3085 	ret = btrfs_read_qgroup_config(fs_info);
3086 	if (ret)
3087 		goto fail_trans_kthread;
3088 
3089 	/* do not make disk changes in broken FS or nologreplay is given */
3090 	if (btrfs_super_log_root(disk_super) != 0 &&
3091 	    !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3092 		ret = btrfs_replay_log(fs_info, fs_devices);
3093 		if (ret) {
3094 			err = ret;
3095 			goto fail_qgroup;
3096 		}
3097 	}
3098 
3099 	ret = btrfs_find_orphan_roots(tree_root);
3100 	if (ret)
3101 		goto fail_qgroup;
3102 
3103 	if (!(sb->s_flags & MS_RDONLY)) {
3104 		ret = btrfs_cleanup_fs_roots(fs_info);
3105 		if (ret)
3106 			goto fail_qgroup;
3107 
3108 		mutex_lock(&fs_info->cleaner_mutex);
3109 		ret = btrfs_recover_relocation(tree_root);
3110 		mutex_unlock(&fs_info->cleaner_mutex);
3111 		if (ret < 0) {
3112 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3113 					ret);
3114 			err = -EINVAL;
3115 			goto fail_qgroup;
3116 		}
3117 	}
3118 
3119 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3120 	location.type = BTRFS_ROOT_ITEM_KEY;
3121 	location.offset = 0;
3122 
3123 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3124 	if (IS_ERR(fs_info->fs_root)) {
3125 		err = PTR_ERR(fs_info->fs_root);
3126 		goto fail_qgroup;
3127 	}
3128 
3129 	if (sb->s_flags & MS_RDONLY)
3130 		return 0;
3131 
3132 	if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3133 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3134 		btrfs_info(fs_info, "creating free space tree");
3135 		ret = btrfs_create_free_space_tree(fs_info);
3136 		if (ret) {
3137 			btrfs_warn(fs_info,
3138 				"failed to create free space tree: %d", ret);
3139 			close_ctree(tree_root);
3140 			return ret;
3141 		}
3142 	}
3143 
3144 	down_read(&fs_info->cleanup_work_sem);
3145 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3146 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3147 		up_read(&fs_info->cleanup_work_sem);
3148 		close_ctree(tree_root);
3149 		return ret;
3150 	}
3151 	up_read(&fs_info->cleanup_work_sem);
3152 
3153 	ret = btrfs_resume_balance_async(fs_info);
3154 	if (ret) {
3155 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3156 		close_ctree(tree_root);
3157 		return ret;
3158 	}
3159 
3160 	ret = btrfs_resume_dev_replace_async(fs_info);
3161 	if (ret) {
3162 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3163 		close_ctree(tree_root);
3164 		return ret;
3165 	}
3166 
3167 	btrfs_qgroup_rescan_resume(fs_info);
3168 
3169 	if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3170 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3171 		btrfs_info(fs_info, "clearing free space tree");
3172 		ret = btrfs_clear_free_space_tree(fs_info);
3173 		if (ret) {
3174 			btrfs_warn(fs_info,
3175 				"failed to clear free space tree: %d", ret);
3176 			close_ctree(tree_root);
3177 			return ret;
3178 		}
3179 	}
3180 
3181 	if (!fs_info->uuid_root) {
3182 		btrfs_info(fs_info, "creating UUID tree");
3183 		ret = btrfs_create_uuid_tree(fs_info);
3184 		if (ret) {
3185 			btrfs_warn(fs_info,
3186 				"failed to create the UUID tree: %d", ret);
3187 			close_ctree(tree_root);
3188 			return ret;
3189 		}
3190 	} else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3191 		   fs_info->generation !=
3192 				btrfs_super_uuid_tree_generation(disk_super)) {
3193 		btrfs_info(fs_info, "checking UUID tree");
3194 		ret = btrfs_check_uuid_tree(fs_info);
3195 		if (ret) {
3196 			btrfs_warn(fs_info,
3197 				"failed to check the UUID tree: %d", ret);
3198 			close_ctree(tree_root);
3199 			return ret;
3200 		}
3201 	} else {
3202 		fs_info->update_uuid_tree_gen = 1;
3203 	}
3204 
3205 	fs_info->open = 1;
3206 
3207 	/*
3208 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3209 	 * no need to keep the flag
3210 	 */
3211 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3212 
3213 	return 0;
3214 
3215 fail_qgroup:
3216 	btrfs_free_qgroup_config(fs_info);
3217 fail_trans_kthread:
3218 	kthread_stop(fs_info->transaction_kthread);
3219 	btrfs_cleanup_transaction(fs_info->tree_root);
3220 	btrfs_free_fs_roots(fs_info);
3221 fail_cleaner:
3222 	kthread_stop(fs_info->cleaner_kthread);
3223 
3224 	/*
3225 	 * make sure we're done with the btree inode before we stop our
3226 	 * kthreads
3227 	 */
3228 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3229 
3230 fail_sysfs:
3231 	btrfs_sysfs_remove_mounted(fs_info);
3232 
3233 fail_fsdev_sysfs:
3234 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3235 
3236 fail_block_groups:
3237 	btrfs_put_block_group_cache(fs_info);
3238 	btrfs_free_block_groups(fs_info);
3239 
3240 fail_tree_roots:
3241 	free_root_pointers(fs_info, 1);
3242 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3243 
3244 fail_sb_buffer:
3245 	btrfs_stop_all_workers(fs_info);
3246 fail_alloc:
3247 fail_iput:
3248 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3249 
3250 	iput(fs_info->btree_inode);
3251 fail_bio_counter:
3252 	percpu_counter_destroy(&fs_info->bio_counter);
3253 fail_delalloc_bytes:
3254 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3255 fail_dirty_metadata_bytes:
3256 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3257 fail_bdi:
3258 	bdi_destroy(&fs_info->bdi);
3259 fail_srcu:
3260 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3261 fail:
3262 	btrfs_free_stripe_hash_table(fs_info);
3263 	btrfs_close_devices(fs_info->fs_devices);
3264 	return err;
3265 
3266 recovery_tree_root:
3267 	if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3268 		goto fail_tree_roots;
3269 
3270 	free_root_pointers(fs_info, 0);
3271 
3272 	/* don't use the log in recovery mode, it won't be valid */
3273 	btrfs_set_super_log_root(disk_super, 0);
3274 
3275 	/* we can't trust the free space cache either */
3276 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3277 
3278 	ret = next_root_backup(fs_info, fs_info->super_copy,
3279 			       &num_backups_tried, &backup_index);
3280 	if (ret == -1)
3281 		goto fail_block_groups;
3282 	goto retry_root_backup;
3283 }
3284 
3285 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3286 {
3287 	if (uptodate) {
3288 		set_buffer_uptodate(bh);
3289 	} else {
3290 		struct btrfs_device *device = (struct btrfs_device *)
3291 			bh->b_private;
3292 
3293 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3294 				"lost page write due to IO error on %s",
3295 					  rcu_str_deref(device->name));
3296 		/* note, we don't set_buffer_write_io_error because we have
3297 		 * our own ways of dealing with the IO errors
3298 		 */
3299 		clear_buffer_uptodate(bh);
3300 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3301 	}
3302 	unlock_buffer(bh);
3303 	put_bh(bh);
3304 }
3305 
3306 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3307 			struct buffer_head **bh_ret)
3308 {
3309 	struct buffer_head *bh;
3310 	struct btrfs_super_block *super;
3311 	u64 bytenr;
3312 
3313 	bytenr = btrfs_sb_offset(copy_num);
3314 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3315 		return -EINVAL;
3316 
3317 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3318 	/*
3319 	 * If we fail to read from the underlying devices, as of now
3320 	 * the best option we have is to mark it EIO.
3321 	 */
3322 	if (!bh)
3323 		return -EIO;
3324 
3325 	super = (struct btrfs_super_block *)bh->b_data;
3326 	if (btrfs_super_bytenr(super) != bytenr ||
3327 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3328 		brelse(bh);
3329 		return -EINVAL;
3330 	}
3331 
3332 	*bh_ret = bh;
3333 	return 0;
3334 }
3335 
3336 
3337 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3338 {
3339 	struct buffer_head *bh;
3340 	struct buffer_head *latest = NULL;
3341 	struct btrfs_super_block *super;
3342 	int i;
3343 	u64 transid = 0;
3344 	int ret = -EINVAL;
3345 
3346 	/* we would like to check all the supers, but that would make
3347 	 * a btrfs mount succeed after a mkfs from a different FS.
3348 	 * So, we need to add a special mount option to scan for
3349 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3350 	 */
3351 	for (i = 0; i < 1; i++) {
3352 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3353 		if (ret)
3354 			continue;
3355 
3356 		super = (struct btrfs_super_block *)bh->b_data;
3357 
3358 		if (!latest || btrfs_super_generation(super) > transid) {
3359 			brelse(latest);
3360 			latest = bh;
3361 			transid = btrfs_super_generation(super);
3362 		} else {
3363 			brelse(bh);
3364 		}
3365 	}
3366 
3367 	if (!latest)
3368 		return ERR_PTR(ret);
3369 
3370 	return latest;
3371 }
3372 
3373 /*
3374  * this should be called twice, once with wait == 0 and
3375  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3376  * we write are pinned.
3377  *
3378  * They are released when wait == 1 is done.
3379  * max_mirrors must be the same for both runs, and it indicates how
3380  * many supers on this one device should be written.
3381  *
3382  * max_mirrors == 0 means to write them all.
3383  */
3384 static int write_dev_supers(struct btrfs_device *device,
3385 			    struct btrfs_super_block *sb,
3386 			    int do_barriers, int wait, int max_mirrors)
3387 {
3388 	struct buffer_head *bh;
3389 	int i;
3390 	int ret;
3391 	int errors = 0;
3392 	u32 crc;
3393 	u64 bytenr;
3394 
3395 	if (max_mirrors == 0)
3396 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3397 
3398 	for (i = 0; i < max_mirrors; i++) {
3399 		bytenr = btrfs_sb_offset(i);
3400 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3401 		    device->commit_total_bytes)
3402 			break;
3403 
3404 		if (wait) {
3405 			bh = __find_get_block(device->bdev, bytenr / 4096,
3406 					      BTRFS_SUPER_INFO_SIZE);
3407 			if (!bh) {
3408 				errors++;
3409 				continue;
3410 			}
3411 			wait_on_buffer(bh);
3412 			if (!buffer_uptodate(bh))
3413 				errors++;
3414 
3415 			/* drop our reference */
3416 			brelse(bh);
3417 
3418 			/* drop the reference from the wait == 0 run */
3419 			brelse(bh);
3420 			continue;
3421 		} else {
3422 			btrfs_set_super_bytenr(sb, bytenr);
3423 
3424 			crc = ~(u32)0;
3425 			crc = btrfs_csum_data((char *)sb +
3426 					      BTRFS_CSUM_SIZE, crc,
3427 					      BTRFS_SUPER_INFO_SIZE -
3428 					      BTRFS_CSUM_SIZE);
3429 			btrfs_csum_final(crc, sb->csum);
3430 
3431 			/*
3432 			 * one reference for us, and we leave it for the
3433 			 * caller
3434 			 */
3435 			bh = __getblk(device->bdev, bytenr / 4096,
3436 				      BTRFS_SUPER_INFO_SIZE);
3437 			if (!bh) {
3438 				btrfs_err(device->dev_root->fs_info,
3439 				    "couldn't get super buffer head for bytenr %llu",
3440 				    bytenr);
3441 				errors++;
3442 				continue;
3443 			}
3444 
3445 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3446 
3447 			/* one reference for submit_bh */
3448 			get_bh(bh);
3449 
3450 			set_buffer_uptodate(bh);
3451 			lock_buffer(bh);
3452 			bh->b_end_io = btrfs_end_buffer_write_sync;
3453 			bh->b_private = device;
3454 		}
3455 
3456 		/*
3457 		 * we fua the first super.  The others we allow
3458 		 * to go down lazy.
3459 		 */
3460 		if (i == 0)
3461 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3462 		else
3463 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3464 		if (ret)
3465 			errors++;
3466 	}
3467 	return errors < i ? 0 : -1;
3468 }
3469 
3470 /*
3471  * endio for the write_dev_flush, this will wake anyone waiting
3472  * for the barrier when it is done
3473  */
3474 static void btrfs_end_empty_barrier(struct bio *bio)
3475 {
3476 	if (bio->bi_private)
3477 		complete(bio->bi_private);
3478 	bio_put(bio);
3479 }
3480 
3481 /*
3482  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3483  * sent down.  With wait == 1, it waits for the previous flush.
3484  *
3485  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3486  * capable
3487  */
3488 static int write_dev_flush(struct btrfs_device *device, int wait)
3489 {
3490 	struct bio *bio;
3491 	int ret = 0;
3492 
3493 	if (device->nobarriers)
3494 		return 0;
3495 
3496 	if (wait) {
3497 		bio = device->flush_bio;
3498 		if (!bio)
3499 			return 0;
3500 
3501 		wait_for_completion(&device->flush_wait);
3502 
3503 		if (bio->bi_error) {
3504 			ret = bio->bi_error;
3505 			btrfs_dev_stat_inc_and_print(device,
3506 				BTRFS_DEV_STAT_FLUSH_ERRS);
3507 		}
3508 
3509 		/* drop the reference from the wait == 0 run */
3510 		bio_put(bio);
3511 		device->flush_bio = NULL;
3512 
3513 		return ret;
3514 	}
3515 
3516 	/*
3517 	 * one reference for us, and we leave it for the
3518 	 * caller
3519 	 */
3520 	device->flush_bio = NULL;
3521 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3522 	if (!bio)
3523 		return -ENOMEM;
3524 
3525 	bio->bi_end_io = btrfs_end_empty_barrier;
3526 	bio->bi_bdev = device->bdev;
3527 	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3528 	init_completion(&device->flush_wait);
3529 	bio->bi_private = &device->flush_wait;
3530 	device->flush_bio = bio;
3531 
3532 	bio_get(bio);
3533 	btrfsic_submit_bio(bio);
3534 
3535 	return 0;
3536 }
3537 
3538 /*
3539  * send an empty flush down to each device in parallel,
3540  * then wait for them
3541  */
3542 static int barrier_all_devices(struct btrfs_fs_info *info)
3543 {
3544 	struct list_head *head;
3545 	struct btrfs_device *dev;
3546 	int errors_send = 0;
3547 	int errors_wait = 0;
3548 	int ret;
3549 
3550 	/* send down all the barriers */
3551 	head = &info->fs_devices->devices;
3552 	list_for_each_entry_rcu(dev, head, dev_list) {
3553 		if (dev->missing)
3554 			continue;
3555 		if (!dev->bdev) {
3556 			errors_send++;
3557 			continue;
3558 		}
3559 		if (!dev->in_fs_metadata || !dev->writeable)
3560 			continue;
3561 
3562 		ret = write_dev_flush(dev, 0);
3563 		if (ret)
3564 			errors_send++;
3565 	}
3566 
3567 	/* wait for all the barriers */
3568 	list_for_each_entry_rcu(dev, head, dev_list) {
3569 		if (dev->missing)
3570 			continue;
3571 		if (!dev->bdev) {
3572 			errors_wait++;
3573 			continue;
3574 		}
3575 		if (!dev->in_fs_metadata || !dev->writeable)
3576 			continue;
3577 
3578 		ret = write_dev_flush(dev, 1);
3579 		if (ret)
3580 			errors_wait++;
3581 	}
3582 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3583 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3584 		return -EIO;
3585 	return 0;
3586 }
3587 
3588 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3589 {
3590 	int raid_type;
3591 	int min_tolerated = INT_MAX;
3592 
3593 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3594 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3595 		min_tolerated = min(min_tolerated,
3596 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3597 				    tolerated_failures);
3598 
3599 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3600 		if (raid_type == BTRFS_RAID_SINGLE)
3601 			continue;
3602 		if (!(flags & btrfs_raid_group[raid_type]))
3603 			continue;
3604 		min_tolerated = min(min_tolerated,
3605 				    btrfs_raid_array[raid_type].
3606 				    tolerated_failures);
3607 	}
3608 
3609 	if (min_tolerated == INT_MAX) {
3610 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3611 		min_tolerated = 0;
3612 	}
3613 
3614 	return min_tolerated;
3615 }
3616 
3617 int btrfs_calc_num_tolerated_disk_barrier_failures(
3618 	struct btrfs_fs_info *fs_info)
3619 {
3620 	struct btrfs_ioctl_space_info space;
3621 	struct btrfs_space_info *sinfo;
3622 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3623 		       BTRFS_BLOCK_GROUP_SYSTEM,
3624 		       BTRFS_BLOCK_GROUP_METADATA,
3625 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3626 	int i;
3627 	int c;
3628 	int num_tolerated_disk_barrier_failures =
3629 		(int)fs_info->fs_devices->num_devices;
3630 
3631 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3632 		struct btrfs_space_info *tmp;
3633 
3634 		sinfo = NULL;
3635 		rcu_read_lock();
3636 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3637 			if (tmp->flags == types[i]) {
3638 				sinfo = tmp;
3639 				break;
3640 			}
3641 		}
3642 		rcu_read_unlock();
3643 
3644 		if (!sinfo)
3645 			continue;
3646 
3647 		down_read(&sinfo->groups_sem);
3648 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3649 			u64 flags;
3650 
3651 			if (list_empty(&sinfo->block_groups[c]))
3652 				continue;
3653 
3654 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3655 						   &space);
3656 			if (space.total_bytes == 0 || space.used_bytes == 0)
3657 				continue;
3658 			flags = space.flags;
3659 
3660 			num_tolerated_disk_barrier_failures = min(
3661 				num_tolerated_disk_barrier_failures,
3662 				btrfs_get_num_tolerated_disk_barrier_failures(
3663 					flags));
3664 		}
3665 		up_read(&sinfo->groups_sem);
3666 	}
3667 
3668 	return num_tolerated_disk_barrier_failures;
3669 }
3670 
3671 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3672 {
3673 	struct list_head *head;
3674 	struct btrfs_device *dev;
3675 	struct btrfs_super_block *sb;
3676 	struct btrfs_dev_item *dev_item;
3677 	int ret;
3678 	int do_barriers;
3679 	int max_errors;
3680 	int total_errors = 0;
3681 	u64 flags;
3682 
3683 	do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3684 	backup_super_roots(root->fs_info);
3685 
3686 	sb = root->fs_info->super_for_commit;
3687 	dev_item = &sb->dev_item;
3688 
3689 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3690 	head = &root->fs_info->fs_devices->devices;
3691 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3692 
3693 	if (do_barriers) {
3694 		ret = barrier_all_devices(root->fs_info);
3695 		if (ret) {
3696 			mutex_unlock(
3697 				&root->fs_info->fs_devices->device_list_mutex);
3698 			btrfs_handle_fs_error(root->fs_info, ret,
3699 				    "errors while submitting device barriers.");
3700 			return ret;
3701 		}
3702 	}
3703 
3704 	list_for_each_entry_rcu(dev, head, dev_list) {
3705 		if (!dev->bdev) {
3706 			total_errors++;
3707 			continue;
3708 		}
3709 		if (!dev->in_fs_metadata || !dev->writeable)
3710 			continue;
3711 
3712 		btrfs_set_stack_device_generation(dev_item, 0);
3713 		btrfs_set_stack_device_type(dev_item, dev->type);
3714 		btrfs_set_stack_device_id(dev_item, dev->devid);
3715 		btrfs_set_stack_device_total_bytes(dev_item,
3716 						   dev->commit_total_bytes);
3717 		btrfs_set_stack_device_bytes_used(dev_item,
3718 						  dev->commit_bytes_used);
3719 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3720 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3721 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3722 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3723 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3724 
3725 		flags = btrfs_super_flags(sb);
3726 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3727 
3728 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3729 		if (ret)
3730 			total_errors++;
3731 	}
3732 	if (total_errors > max_errors) {
3733 		btrfs_err(root->fs_info, "%d errors while writing supers",
3734 		       total_errors);
3735 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3736 
3737 		/* FUA is masked off if unsupported and can't be the reason */
3738 		btrfs_handle_fs_error(root->fs_info, -EIO,
3739 			    "%d errors while writing supers", total_errors);
3740 		return -EIO;
3741 	}
3742 
3743 	total_errors = 0;
3744 	list_for_each_entry_rcu(dev, head, dev_list) {
3745 		if (!dev->bdev)
3746 			continue;
3747 		if (!dev->in_fs_metadata || !dev->writeable)
3748 			continue;
3749 
3750 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3751 		if (ret)
3752 			total_errors++;
3753 	}
3754 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3755 	if (total_errors > max_errors) {
3756 		btrfs_handle_fs_error(root->fs_info, -EIO,
3757 			    "%d errors while writing supers", total_errors);
3758 		return -EIO;
3759 	}
3760 	return 0;
3761 }
3762 
3763 int write_ctree_super(struct btrfs_trans_handle *trans,
3764 		      struct btrfs_root *root, int max_mirrors)
3765 {
3766 	return write_all_supers(root, max_mirrors);
3767 }
3768 
3769 /* Drop a fs root from the radix tree and free it. */
3770 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3771 				  struct btrfs_root *root)
3772 {
3773 	spin_lock(&fs_info->fs_roots_radix_lock);
3774 	radix_tree_delete(&fs_info->fs_roots_radix,
3775 			  (unsigned long)root->root_key.objectid);
3776 	spin_unlock(&fs_info->fs_roots_radix_lock);
3777 
3778 	if (btrfs_root_refs(&root->root_item) == 0)
3779 		synchronize_srcu(&fs_info->subvol_srcu);
3780 
3781 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3782 		btrfs_free_log(NULL, root);
3783 		if (root->reloc_root) {
3784 			free_extent_buffer(root->reloc_root->node);
3785 			free_extent_buffer(root->reloc_root->commit_root);
3786 			btrfs_put_fs_root(root->reloc_root);
3787 			root->reloc_root = NULL;
3788 		}
3789 	}
3790 
3791 	if (root->free_ino_pinned)
3792 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3793 	if (root->free_ino_ctl)
3794 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3795 	free_fs_root(root);
3796 }
3797 
3798 static void free_fs_root(struct btrfs_root *root)
3799 {
3800 	iput(root->ino_cache_inode);
3801 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3802 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3803 	root->orphan_block_rsv = NULL;
3804 	if (root->anon_dev)
3805 		free_anon_bdev(root->anon_dev);
3806 	if (root->subv_writers)
3807 		btrfs_free_subvolume_writers(root->subv_writers);
3808 	free_extent_buffer(root->node);
3809 	free_extent_buffer(root->commit_root);
3810 	kfree(root->free_ino_ctl);
3811 	kfree(root->free_ino_pinned);
3812 	kfree(root->name);
3813 	btrfs_put_fs_root(root);
3814 }
3815 
3816 void btrfs_free_fs_root(struct btrfs_root *root)
3817 {
3818 	free_fs_root(root);
3819 }
3820 
3821 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3822 {
3823 	u64 root_objectid = 0;
3824 	struct btrfs_root *gang[8];
3825 	int i = 0;
3826 	int err = 0;
3827 	unsigned int ret = 0;
3828 	int index;
3829 
3830 	while (1) {
3831 		index = srcu_read_lock(&fs_info->subvol_srcu);
3832 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3833 					     (void **)gang, root_objectid,
3834 					     ARRAY_SIZE(gang));
3835 		if (!ret) {
3836 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3837 			break;
3838 		}
3839 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3840 
3841 		for (i = 0; i < ret; i++) {
3842 			/* Avoid to grab roots in dead_roots */
3843 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3844 				gang[i] = NULL;
3845 				continue;
3846 			}
3847 			/* grab all the search result for later use */
3848 			gang[i] = btrfs_grab_fs_root(gang[i]);
3849 		}
3850 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3851 
3852 		for (i = 0; i < ret; i++) {
3853 			if (!gang[i])
3854 				continue;
3855 			root_objectid = gang[i]->root_key.objectid;
3856 			err = btrfs_orphan_cleanup(gang[i]);
3857 			if (err)
3858 				break;
3859 			btrfs_put_fs_root(gang[i]);
3860 		}
3861 		root_objectid++;
3862 	}
3863 
3864 	/* release the uncleaned roots due to error */
3865 	for (; i < ret; i++) {
3866 		if (gang[i])
3867 			btrfs_put_fs_root(gang[i]);
3868 	}
3869 	return err;
3870 }
3871 
3872 int btrfs_commit_super(struct btrfs_root *root)
3873 {
3874 	struct btrfs_trans_handle *trans;
3875 
3876 	mutex_lock(&root->fs_info->cleaner_mutex);
3877 	btrfs_run_delayed_iputs(root);
3878 	mutex_unlock(&root->fs_info->cleaner_mutex);
3879 	wake_up_process(root->fs_info->cleaner_kthread);
3880 
3881 	/* wait until ongoing cleanup work done */
3882 	down_write(&root->fs_info->cleanup_work_sem);
3883 	up_write(&root->fs_info->cleanup_work_sem);
3884 
3885 	trans = btrfs_join_transaction(root);
3886 	if (IS_ERR(trans))
3887 		return PTR_ERR(trans);
3888 	return btrfs_commit_transaction(trans, root);
3889 }
3890 
3891 void close_ctree(struct btrfs_root *root)
3892 {
3893 	struct btrfs_fs_info *fs_info = root->fs_info;
3894 	int ret;
3895 
3896 	fs_info->closing = 1;
3897 	smp_mb();
3898 
3899 	/* wait for the qgroup rescan worker to stop */
3900 	btrfs_qgroup_wait_for_completion(fs_info, false);
3901 
3902 	/* wait for the uuid_scan task to finish */
3903 	down(&fs_info->uuid_tree_rescan_sem);
3904 	/* avoid complains from lockdep et al., set sem back to initial state */
3905 	up(&fs_info->uuid_tree_rescan_sem);
3906 
3907 	/* pause restriper - we want to resume on mount */
3908 	btrfs_pause_balance(fs_info);
3909 
3910 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3911 
3912 	btrfs_scrub_cancel(fs_info);
3913 
3914 	/* wait for any defraggers to finish */
3915 	wait_event(fs_info->transaction_wait,
3916 		   (atomic_read(&fs_info->defrag_running) == 0));
3917 
3918 	/* clear out the rbtree of defraggable inodes */
3919 	btrfs_cleanup_defrag_inodes(fs_info);
3920 
3921 	cancel_work_sync(&fs_info->async_reclaim_work);
3922 
3923 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3924 		/*
3925 		 * If the cleaner thread is stopped and there are
3926 		 * block groups queued for removal, the deletion will be
3927 		 * skipped when we quit the cleaner thread.
3928 		 */
3929 		btrfs_delete_unused_bgs(root->fs_info);
3930 
3931 		ret = btrfs_commit_super(root);
3932 		if (ret)
3933 			btrfs_err(fs_info, "commit super ret %d", ret);
3934 	}
3935 
3936 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3937 		btrfs_error_commit_super(root);
3938 
3939 	kthread_stop(fs_info->transaction_kthread);
3940 	kthread_stop(fs_info->cleaner_kthread);
3941 
3942 	fs_info->closing = 2;
3943 	smp_mb();
3944 
3945 	btrfs_free_qgroup_config(fs_info);
3946 
3947 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3948 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3949 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3950 	}
3951 
3952 	btrfs_sysfs_remove_mounted(fs_info);
3953 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3954 
3955 	btrfs_free_fs_roots(fs_info);
3956 
3957 	btrfs_put_block_group_cache(fs_info);
3958 
3959 	btrfs_free_block_groups(fs_info);
3960 
3961 	/*
3962 	 * we must make sure there is not any read request to
3963 	 * submit after we stopping all workers.
3964 	 */
3965 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3966 	btrfs_stop_all_workers(fs_info);
3967 
3968 	fs_info->open = 0;
3969 	free_root_pointers(fs_info, 1);
3970 
3971 	iput(fs_info->btree_inode);
3972 
3973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3974 	if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3975 		btrfsic_unmount(root, fs_info->fs_devices);
3976 #endif
3977 
3978 	btrfs_close_devices(fs_info->fs_devices);
3979 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3980 
3981 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3982 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3983 	percpu_counter_destroy(&fs_info->bio_counter);
3984 	bdi_destroy(&fs_info->bdi);
3985 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3986 
3987 	btrfs_free_stripe_hash_table(fs_info);
3988 
3989 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3990 	root->orphan_block_rsv = NULL;
3991 
3992 	lock_chunks(root);
3993 	while (!list_empty(&fs_info->pinned_chunks)) {
3994 		struct extent_map *em;
3995 
3996 		em = list_first_entry(&fs_info->pinned_chunks,
3997 				      struct extent_map, list);
3998 		list_del_init(&em->list);
3999 		free_extent_map(em);
4000 	}
4001 	unlock_chunks(root);
4002 }
4003 
4004 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4005 			  int atomic)
4006 {
4007 	int ret;
4008 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4009 
4010 	ret = extent_buffer_uptodate(buf);
4011 	if (!ret)
4012 		return ret;
4013 
4014 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4015 				    parent_transid, atomic);
4016 	if (ret == -EAGAIN)
4017 		return ret;
4018 	return !ret;
4019 }
4020 
4021 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4022 {
4023 	struct btrfs_root *root;
4024 	u64 transid = btrfs_header_generation(buf);
4025 	int was_dirty;
4026 
4027 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4028 	/*
4029 	 * This is a fast path so only do this check if we have sanity tests
4030 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4031 	 * outside of the sanity tests.
4032 	 */
4033 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4034 		return;
4035 #endif
4036 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4037 	btrfs_assert_tree_locked(buf);
4038 	if (transid != root->fs_info->generation)
4039 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
4040 		       "found %llu running %llu\n",
4041 			buf->start, transid, root->fs_info->generation);
4042 	was_dirty = set_extent_buffer_dirty(buf);
4043 	if (!was_dirty)
4044 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4045 				     buf->len,
4046 				     root->fs_info->dirty_metadata_batch);
4047 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4048 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4049 		btrfs_print_leaf(root, buf);
4050 		ASSERT(0);
4051 	}
4052 #endif
4053 }
4054 
4055 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4056 					int flush_delayed)
4057 {
4058 	/*
4059 	 * looks as though older kernels can get into trouble with
4060 	 * this code, they end up stuck in balance_dirty_pages forever
4061 	 */
4062 	int ret;
4063 
4064 	if (current->flags & PF_MEMALLOC)
4065 		return;
4066 
4067 	if (flush_delayed)
4068 		btrfs_balance_delayed_items(root);
4069 
4070 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4071 				     BTRFS_DIRTY_METADATA_THRESH);
4072 	if (ret > 0) {
4073 		balance_dirty_pages_ratelimited(
4074 				   root->fs_info->btree_inode->i_mapping);
4075 	}
4076 }
4077 
4078 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4079 {
4080 	__btrfs_btree_balance_dirty(root, 1);
4081 }
4082 
4083 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4084 {
4085 	__btrfs_btree_balance_dirty(root, 0);
4086 }
4087 
4088 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4089 {
4090 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4091 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4092 }
4093 
4094 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4095 			      int read_only)
4096 {
4097 	struct btrfs_super_block *sb = fs_info->super_copy;
4098 	u64 nodesize = btrfs_super_nodesize(sb);
4099 	u64 sectorsize = btrfs_super_sectorsize(sb);
4100 	int ret = 0;
4101 
4102 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4103 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4104 		ret = -EINVAL;
4105 	}
4106 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4107 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4108 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4109 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4110 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4111 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4112 		ret = -EINVAL;
4113 	}
4114 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4115 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4116 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4117 		ret = -EINVAL;
4118 	}
4119 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4120 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4121 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4122 		ret = -EINVAL;
4123 	}
4124 
4125 	/*
4126 	 * Check sectorsize and nodesize first, other check will need it.
4127 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4128 	 */
4129 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4130 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4131 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4132 		ret = -EINVAL;
4133 	}
4134 	/* Only PAGE SIZE is supported yet */
4135 	if (sectorsize != PAGE_SIZE) {
4136 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4137 				sectorsize, PAGE_SIZE);
4138 		ret = -EINVAL;
4139 	}
4140 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4141 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4142 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4143 		ret = -EINVAL;
4144 	}
4145 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4146 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4147 				le32_to_cpu(sb->__unused_leafsize),
4148 				nodesize);
4149 		ret = -EINVAL;
4150 	}
4151 
4152 	/* Root alignment check */
4153 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4154 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4155 				btrfs_super_root(sb));
4156 		ret = -EINVAL;
4157 	}
4158 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4159 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4160 				btrfs_super_chunk_root(sb));
4161 		ret = -EINVAL;
4162 	}
4163 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4164 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4165 				btrfs_super_log_root(sb));
4166 		ret = -EINVAL;
4167 	}
4168 
4169 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4170 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4171 				fs_info->fsid, sb->dev_item.fsid);
4172 		ret = -EINVAL;
4173 	}
4174 
4175 	/*
4176 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4177 	 * done later
4178 	 */
4179 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4180 		btrfs_err(fs_info, "bytes_used is too small %llu",
4181 		       btrfs_super_bytes_used(sb));
4182 		ret = -EINVAL;
4183 	}
4184 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4185 		btrfs_err(fs_info, "invalid stripesize %u",
4186 		       btrfs_super_stripesize(sb));
4187 		ret = -EINVAL;
4188 	}
4189 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4190 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4191 				btrfs_super_num_devices(sb));
4192 	if (btrfs_super_num_devices(sb) == 0) {
4193 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4194 		ret = -EINVAL;
4195 	}
4196 
4197 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4198 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4199 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4200 		ret = -EINVAL;
4201 	}
4202 
4203 	/*
4204 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4205 	 * and one chunk
4206 	 */
4207 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4208 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4209 				btrfs_super_sys_array_size(sb),
4210 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4211 		ret = -EINVAL;
4212 	}
4213 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4214 			+ sizeof(struct btrfs_chunk)) {
4215 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4216 				btrfs_super_sys_array_size(sb),
4217 				sizeof(struct btrfs_disk_key)
4218 				+ sizeof(struct btrfs_chunk));
4219 		ret = -EINVAL;
4220 	}
4221 
4222 	/*
4223 	 * The generation is a global counter, we'll trust it more than the others
4224 	 * but it's still possible that it's the one that's wrong.
4225 	 */
4226 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4227 		printk(KERN_WARNING
4228 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4229 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4230 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4231 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4232 		printk(KERN_WARNING
4233 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4234 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4235 
4236 	return ret;
4237 }
4238 
4239 static void btrfs_error_commit_super(struct btrfs_root *root)
4240 {
4241 	mutex_lock(&root->fs_info->cleaner_mutex);
4242 	btrfs_run_delayed_iputs(root);
4243 	mutex_unlock(&root->fs_info->cleaner_mutex);
4244 
4245 	down_write(&root->fs_info->cleanup_work_sem);
4246 	up_write(&root->fs_info->cleanup_work_sem);
4247 
4248 	/* cleanup FS via transaction */
4249 	btrfs_cleanup_transaction(root);
4250 }
4251 
4252 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4253 {
4254 	struct btrfs_ordered_extent *ordered;
4255 
4256 	spin_lock(&root->ordered_extent_lock);
4257 	/*
4258 	 * This will just short circuit the ordered completion stuff which will
4259 	 * make sure the ordered extent gets properly cleaned up.
4260 	 */
4261 	list_for_each_entry(ordered, &root->ordered_extents,
4262 			    root_extent_list)
4263 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4264 	spin_unlock(&root->ordered_extent_lock);
4265 }
4266 
4267 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4268 {
4269 	struct btrfs_root *root;
4270 	struct list_head splice;
4271 
4272 	INIT_LIST_HEAD(&splice);
4273 
4274 	spin_lock(&fs_info->ordered_root_lock);
4275 	list_splice_init(&fs_info->ordered_roots, &splice);
4276 	while (!list_empty(&splice)) {
4277 		root = list_first_entry(&splice, struct btrfs_root,
4278 					ordered_root);
4279 		list_move_tail(&root->ordered_root,
4280 			       &fs_info->ordered_roots);
4281 
4282 		spin_unlock(&fs_info->ordered_root_lock);
4283 		btrfs_destroy_ordered_extents(root);
4284 
4285 		cond_resched();
4286 		spin_lock(&fs_info->ordered_root_lock);
4287 	}
4288 	spin_unlock(&fs_info->ordered_root_lock);
4289 }
4290 
4291 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4292 				      struct btrfs_root *root)
4293 {
4294 	struct rb_node *node;
4295 	struct btrfs_delayed_ref_root *delayed_refs;
4296 	struct btrfs_delayed_ref_node *ref;
4297 	int ret = 0;
4298 
4299 	delayed_refs = &trans->delayed_refs;
4300 
4301 	spin_lock(&delayed_refs->lock);
4302 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4303 		spin_unlock(&delayed_refs->lock);
4304 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4305 		return ret;
4306 	}
4307 
4308 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4309 		struct btrfs_delayed_ref_head *head;
4310 		struct btrfs_delayed_ref_node *tmp;
4311 		bool pin_bytes = false;
4312 
4313 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4314 				href_node);
4315 		if (!mutex_trylock(&head->mutex)) {
4316 			atomic_inc(&head->node.refs);
4317 			spin_unlock(&delayed_refs->lock);
4318 
4319 			mutex_lock(&head->mutex);
4320 			mutex_unlock(&head->mutex);
4321 			btrfs_put_delayed_ref(&head->node);
4322 			spin_lock(&delayed_refs->lock);
4323 			continue;
4324 		}
4325 		spin_lock(&head->lock);
4326 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4327 						 list) {
4328 			ref->in_tree = 0;
4329 			list_del(&ref->list);
4330 			atomic_dec(&delayed_refs->num_entries);
4331 			btrfs_put_delayed_ref(ref);
4332 		}
4333 		if (head->must_insert_reserved)
4334 			pin_bytes = true;
4335 		btrfs_free_delayed_extent_op(head->extent_op);
4336 		delayed_refs->num_heads--;
4337 		if (head->processing == 0)
4338 			delayed_refs->num_heads_ready--;
4339 		atomic_dec(&delayed_refs->num_entries);
4340 		head->node.in_tree = 0;
4341 		rb_erase(&head->href_node, &delayed_refs->href_root);
4342 		spin_unlock(&head->lock);
4343 		spin_unlock(&delayed_refs->lock);
4344 		mutex_unlock(&head->mutex);
4345 
4346 		if (pin_bytes)
4347 			btrfs_pin_extent(root, head->node.bytenr,
4348 					 head->node.num_bytes, 1);
4349 		btrfs_put_delayed_ref(&head->node);
4350 		cond_resched();
4351 		spin_lock(&delayed_refs->lock);
4352 	}
4353 
4354 	spin_unlock(&delayed_refs->lock);
4355 
4356 	return ret;
4357 }
4358 
4359 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4360 {
4361 	struct btrfs_inode *btrfs_inode;
4362 	struct list_head splice;
4363 
4364 	INIT_LIST_HEAD(&splice);
4365 
4366 	spin_lock(&root->delalloc_lock);
4367 	list_splice_init(&root->delalloc_inodes, &splice);
4368 
4369 	while (!list_empty(&splice)) {
4370 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4371 					       delalloc_inodes);
4372 
4373 		list_del_init(&btrfs_inode->delalloc_inodes);
4374 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4375 			  &btrfs_inode->runtime_flags);
4376 		spin_unlock(&root->delalloc_lock);
4377 
4378 		btrfs_invalidate_inodes(btrfs_inode->root);
4379 
4380 		spin_lock(&root->delalloc_lock);
4381 	}
4382 
4383 	spin_unlock(&root->delalloc_lock);
4384 }
4385 
4386 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4387 {
4388 	struct btrfs_root *root;
4389 	struct list_head splice;
4390 
4391 	INIT_LIST_HEAD(&splice);
4392 
4393 	spin_lock(&fs_info->delalloc_root_lock);
4394 	list_splice_init(&fs_info->delalloc_roots, &splice);
4395 	while (!list_empty(&splice)) {
4396 		root = list_first_entry(&splice, struct btrfs_root,
4397 					 delalloc_root);
4398 		list_del_init(&root->delalloc_root);
4399 		root = btrfs_grab_fs_root(root);
4400 		BUG_ON(!root);
4401 		spin_unlock(&fs_info->delalloc_root_lock);
4402 
4403 		btrfs_destroy_delalloc_inodes(root);
4404 		btrfs_put_fs_root(root);
4405 
4406 		spin_lock(&fs_info->delalloc_root_lock);
4407 	}
4408 	spin_unlock(&fs_info->delalloc_root_lock);
4409 }
4410 
4411 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4412 					struct extent_io_tree *dirty_pages,
4413 					int mark)
4414 {
4415 	int ret;
4416 	struct extent_buffer *eb;
4417 	u64 start = 0;
4418 	u64 end;
4419 
4420 	while (1) {
4421 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4422 					    mark, NULL);
4423 		if (ret)
4424 			break;
4425 
4426 		clear_extent_bits(dirty_pages, start, end, mark);
4427 		while (start <= end) {
4428 			eb = btrfs_find_tree_block(root->fs_info, start);
4429 			start += root->nodesize;
4430 			if (!eb)
4431 				continue;
4432 			wait_on_extent_buffer_writeback(eb);
4433 
4434 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4435 					       &eb->bflags))
4436 				clear_extent_buffer_dirty(eb);
4437 			free_extent_buffer_stale(eb);
4438 		}
4439 	}
4440 
4441 	return ret;
4442 }
4443 
4444 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4445 				       struct extent_io_tree *pinned_extents)
4446 {
4447 	struct extent_io_tree *unpin;
4448 	u64 start;
4449 	u64 end;
4450 	int ret;
4451 	bool loop = true;
4452 
4453 	unpin = pinned_extents;
4454 again:
4455 	while (1) {
4456 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4457 					    EXTENT_DIRTY, NULL);
4458 		if (ret)
4459 			break;
4460 
4461 		clear_extent_dirty(unpin, start, end);
4462 		btrfs_error_unpin_extent_range(root, start, end);
4463 		cond_resched();
4464 	}
4465 
4466 	if (loop) {
4467 		if (unpin == &root->fs_info->freed_extents[0])
4468 			unpin = &root->fs_info->freed_extents[1];
4469 		else
4470 			unpin = &root->fs_info->freed_extents[0];
4471 		loop = false;
4472 		goto again;
4473 	}
4474 
4475 	return 0;
4476 }
4477 
4478 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4479 				   struct btrfs_root *root)
4480 {
4481 	btrfs_destroy_delayed_refs(cur_trans, root);
4482 
4483 	cur_trans->state = TRANS_STATE_COMMIT_START;
4484 	wake_up(&root->fs_info->transaction_blocked_wait);
4485 
4486 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4487 	wake_up(&root->fs_info->transaction_wait);
4488 
4489 	btrfs_destroy_delayed_inodes(root);
4490 	btrfs_assert_delayed_root_empty(root);
4491 
4492 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4493 				     EXTENT_DIRTY);
4494 	btrfs_destroy_pinned_extent(root,
4495 				    root->fs_info->pinned_extents);
4496 
4497 	cur_trans->state =TRANS_STATE_COMPLETED;
4498 	wake_up(&cur_trans->commit_wait);
4499 
4500 	/*
4501 	memset(cur_trans, 0, sizeof(*cur_trans));
4502 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4503 	*/
4504 }
4505 
4506 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4507 {
4508 	struct btrfs_transaction *t;
4509 
4510 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4511 
4512 	spin_lock(&root->fs_info->trans_lock);
4513 	while (!list_empty(&root->fs_info->trans_list)) {
4514 		t = list_first_entry(&root->fs_info->trans_list,
4515 				     struct btrfs_transaction, list);
4516 		if (t->state >= TRANS_STATE_COMMIT_START) {
4517 			atomic_inc(&t->use_count);
4518 			spin_unlock(&root->fs_info->trans_lock);
4519 			btrfs_wait_for_commit(root, t->transid);
4520 			btrfs_put_transaction(t);
4521 			spin_lock(&root->fs_info->trans_lock);
4522 			continue;
4523 		}
4524 		if (t == root->fs_info->running_transaction) {
4525 			t->state = TRANS_STATE_COMMIT_DOING;
4526 			spin_unlock(&root->fs_info->trans_lock);
4527 			/*
4528 			 * We wait for 0 num_writers since we don't hold a trans
4529 			 * handle open currently for this transaction.
4530 			 */
4531 			wait_event(t->writer_wait,
4532 				   atomic_read(&t->num_writers) == 0);
4533 		} else {
4534 			spin_unlock(&root->fs_info->trans_lock);
4535 		}
4536 		btrfs_cleanup_one_transaction(t, root);
4537 
4538 		spin_lock(&root->fs_info->trans_lock);
4539 		if (t == root->fs_info->running_transaction)
4540 			root->fs_info->running_transaction = NULL;
4541 		list_del_init(&t->list);
4542 		spin_unlock(&root->fs_info->trans_lock);
4543 
4544 		btrfs_put_transaction(t);
4545 		trace_btrfs_transaction_commit(root);
4546 		spin_lock(&root->fs_info->trans_lock);
4547 	}
4548 	spin_unlock(&root->fs_info->trans_lock);
4549 	btrfs_destroy_all_ordered_extents(root->fs_info);
4550 	btrfs_destroy_delayed_inodes(root);
4551 	btrfs_assert_delayed_root_empty(root);
4552 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4553 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4554 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4555 
4556 	return 0;
4557 }
4558 
4559 static const struct extent_io_ops btree_extent_io_ops = {
4560 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4561 	.readpage_io_failed_hook = btree_io_failed_hook,
4562 	.submit_bio_hook = btree_submit_bio_hook,
4563 	/* note we're sharing with inode.c for the merge bio hook */
4564 	.merge_bio_hook = btrfs_merge_bio_hook,
4565 };
4566