xref: /openbmc/linux/fs/btrfs/disk-io.c (revision f3d7c2cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	struct inode *inode;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 
118 	/* Optional parameter for submit_bio_start used by direct io */
119 	u64 dio_file_offset;
120 	struct btrfs_work work;
121 	blk_status_t status;
122 };
123 
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151 
152 #define DEFINE_LEVEL(stem, level)					\
153 	.names[level] = "btrfs-" stem "-0" #level,
154 
155 #define DEFINE_NAME(stem)						\
156 	DEFINE_LEVEL(stem, 0)						\
157 	DEFINE_LEVEL(stem, 1)						\
158 	DEFINE_LEVEL(stem, 2)						\
159 	DEFINE_LEVEL(stem, 3)						\
160 	DEFINE_LEVEL(stem, 4)						\
161 	DEFINE_LEVEL(stem, 5)						\
162 	DEFINE_LEVEL(stem, 6)						\
163 	DEFINE_LEVEL(stem, 7)
164 
165 static struct btrfs_lockdep_keyset {
166 	u64			id;		/* root objectid */
167 	/* Longest entry: btrfs-free-space-00 */
168 	char			names[BTRFS_MAX_LEVEL][20];
169 	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
172 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
173 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
174 	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
175 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
176 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
177 	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
178 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
179 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
180 	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
181 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
182 	{ .id = 0,				DEFINE_NAME("tree")	},
183 };
184 
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187 
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 				    int level)
190 {
191 	struct btrfs_lockdep_keyset *ks;
192 
193 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
194 
195 	/* find the matching keyset, id 0 is the default entry */
196 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 		if (ks->id == objectid)
198 			break;
199 
200 	lockdep_set_class_and_name(&eb->lock,
201 				   &ks->keys[level], ks->names[level]);
202 }
203 
204 #endif
205 
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 	struct btrfs_fs_info *fs_info = buf->fs_info;
212 	const int num_pages = num_extent_pages(buf);
213 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215 	char *kaddr;
216 	int i;
217 
218 	shash->tfm = fs_info->csum_shash;
219 	crypto_shash_init(shash);
220 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222 			    first_page_part - BTRFS_CSUM_SIZE);
223 
224 	for (i = 1; i < num_pages; i++) {
225 		kaddr = page_address(buf->pages[i]);
226 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227 	}
228 	memset(result, 0, BTRFS_CSUM_SIZE);
229 	crypto_shash_final(shash, result);
230 }
231 
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239 				 struct extent_buffer *eb, u64 parent_transid,
240 				 int atomic)
241 {
242 	struct extent_state *cached_state = NULL;
243 	int ret;
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252 			 &cached_state);
253 	if (extent_buffer_uptodate(eb) &&
254 	    btrfs_header_generation(eb) == parent_transid) {
255 		ret = 0;
256 		goto out;
257 	}
258 	btrfs_err_rl(eb->fs_info,
259 		"parent transid verify failed on %llu wanted %llu found %llu",
260 			eb->start,
261 			parent_transid, btrfs_header_generation(eb));
262 	ret = 1;
263 	clear_extent_buffer_uptodate(eb);
264 out:
265 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266 			     &cached_state);
267 	return ret;
268 }
269 
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272 	switch (csum_type) {
273 	case BTRFS_CSUM_TYPE_CRC32:
274 	case BTRFS_CSUM_TYPE_XXHASH:
275 	case BTRFS_CSUM_TYPE_SHA256:
276 	case BTRFS_CSUM_TYPE_BLAKE2:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 				  char *raw_disk_sb)
289 {
290 	struct btrfs_super_block *disk_sb =
291 		(struct btrfs_super_block *)raw_disk_sb;
292 	char result[BTRFS_CSUM_SIZE];
293 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294 
295 	shash->tfm = fs_info->csum_shash;
296 
297 	/*
298 	 * The super_block structure does not span the whole
299 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 	 * filled with zeros and is included in the checksum.
301 	 */
302 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304 
305 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306 		return 1;
307 
308 	return 0;
309 }
310 
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312 			   struct btrfs_key *first_key, u64 parent_transid)
313 {
314 	struct btrfs_fs_info *fs_info = eb->fs_info;
315 	int found_level;
316 	struct btrfs_key found_key;
317 	int ret;
318 
319 	found_level = btrfs_header_level(eb);
320 	if (found_level != level) {
321 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 		     KERN_ERR "BTRFS: tree level check failed\n");
323 		btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 			  eb->start, level, found_level);
326 		return -EIO;
327 	}
328 
329 	if (!first_key)
330 		return 0;
331 
332 	/*
333 	 * For live tree block (new tree blocks in current transaction),
334 	 * we need proper lock context to avoid race, which is impossible here.
335 	 * So we only checks tree blocks which is read from disk, whose
336 	 * generation <= fs_info->last_trans_committed.
337 	 */
338 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 		return 0;
340 
341 	/* We have @first_key, so this @eb must have at least one item */
342 	if (btrfs_header_nritems(eb) == 0) {
343 		btrfs_err(fs_info,
344 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 			  eb->start);
346 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 		return -EUCLEAN;
348 	}
349 
350 	if (found_level)
351 		btrfs_node_key_to_cpu(eb, &found_key, 0);
352 	else
353 		btrfs_item_key_to_cpu(eb, &found_key, 0);
354 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
355 
356 	if (ret) {
357 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 		     KERN_ERR "BTRFS: tree first key check failed\n");
359 		btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 			  eb->start, parent_transid, first_key->objectid,
362 			  first_key->type, first_key->offset,
363 			  found_key.objectid, found_key.type,
364 			  found_key.offset);
365 	}
366 	return ret;
367 }
368 
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:	expected transid, skip check if 0
374  * @level:		expected level, mandatory check
375  * @first_key:		expected key of first slot, skip check if NULL
376  */
377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378 					  u64 parent_transid, int level,
379 					  struct btrfs_key *first_key)
380 {
381 	struct btrfs_fs_info *fs_info = eb->fs_info;
382 	struct extent_io_tree *io_tree;
383 	int failed = 0;
384 	int ret;
385 	int num_copies = 0;
386 	int mirror_num = 0;
387 	int failed_mirror = 0;
388 
389 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390 	while (1) {
391 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393 		if (!ret) {
394 			if (verify_parent_transid(io_tree, eb,
395 						   parent_transid, 0))
396 				ret = -EIO;
397 			else if (btrfs_verify_level_key(eb, level,
398 						first_key, parent_transid))
399 				ret = -EUCLEAN;
400 			else
401 				break;
402 		}
403 
404 		num_copies = btrfs_num_copies(fs_info,
405 					      eb->start, eb->len);
406 		if (num_copies == 1)
407 			break;
408 
409 		if (!failed_mirror) {
410 			failed = 1;
411 			failed_mirror = eb->read_mirror;
412 		}
413 
414 		mirror_num++;
415 		if (mirror_num == failed_mirror)
416 			mirror_num++;
417 
418 		if (mirror_num > num_copies)
419 			break;
420 	}
421 
422 	if (failed && !ret && failed_mirror)
423 		btrfs_repair_eb_io_failure(eb, failed_mirror);
424 
425 	return ret;
426 }
427 
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430 	struct btrfs_fs_info *fs_info = eb->fs_info;
431 	u8 result[BTRFS_CSUM_SIZE];
432 	int ret;
433 
434 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 				    offsetof(struct btrfs_header, fsid),
436 				    BTRFS_FSID_SIZE) == 0);
437 	csum_tree_block(eb, result);
438 
439 	if (btrfs_header_level(eb))
440 		ret = btrfs_check_node(eb);
441 	else
442 		ret = btrfs_check_leaf_full(eb);
443 
444 	if (ret < 0) {
445 		btrfs_print_tree(eb, 0);
446 		btrfs_err(fs_info,
447 			"block=%llu write time tree block corruption detected",
448 			eb->start);
449 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
450 		return ret;
451 	}
452 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
453 
454 	return 0;
455 }
456 
457 /* Checksum all dirty extent buffers in one bio_vec */
458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
459 				      struct bio_vec *bvec)
460 {
461 	struct page *page = bvec->bv_page;
462 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
463 	u64 cur;
464 	int ret = 0;
465 
466 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
467 	     cur += fs_info->nodesize) {
468 		struct extent_buffer *eb;
469 		bool uptodate;
470 
471 		eb = find_extent_buffer(fs_info, cur);
472 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
473 						       fs_info->nodesize);
474 
475 		/* A dirty eb shouldn't disappear from buffer_radix */
476 		if (WARN_ON(!eb))
477 			return -EUCLEAN;
478 
479 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
480 			free_extent_buffer(eb);
481 			return -EUCLEAN;
482 		}
483 		if (WARN_ON(!uptodate)) {
484 			free_extent_buffer(eb);
485 			return -EUCLEAN;
486 		}
487 
488 		ret = csum_one_extent_buffer(eb);
489 		free_extent_buffer(eb);
490 		if (ret < 0)
491 			return ret;
492 	}
493 	return ret;
494 }
495 
496 /*
497  * Checksum a dirty tree block before IO.  This has extra checks to make sure
498  * we only fill in the checksum field in the first page of a multi-page block.
499  * For subpage extent buffers we need bvec to also read the offset in the page.
500  */
501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
502 {
503 	struct page *page = bvec->bv_page;
504 	u64 start = page_offset(page);
505 	u64 found_start;
506 	struct extent_buffer *eb;
507 
508 	if (fs_info->sectorsize < PAGE_SIZE)
509 		return csum_dirty_subpage_buffers(fs_info, bvec);
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 
517 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
518 		WARN_ON(found_start != 0);
519 		return 0;
520 	}
521 
522 	/*
523 	 * Please do not consolidate these warnings into a single if.
524 	 * It is useful to know what went wrong.
525 	 */
526 	if (WARN_ON(found_start != start))
527 		return -EUCLEAN;
528 	if (WARN_ON(!PageUptodate(page)))
529 		return -EUCLEAN;
530 
531 	return csum_one_extent_buffer(eb);
532 }
533 
534 static int check_tree_block_fsid(struct extent_buffer *eb)
535 {
536 	struct btrfs_fs_info *fs_info = eb->fs_info;
537 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
538 	u8 fsid[BTRFS_FSID_SIZE];
539 	u8 *metadata_uuid;
540 
541 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
542 			   BTRFS_FSID_SIZE);
543 	/*
544 	 * Checking the incompat flag is only valid for the current fs. For
545 	 * seed devices it's forbidden to have their uuid changed so reading
546 	 * ->fsid in this case is fine
547 	 */
548 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
549 		metadata_uuid = fs_devices->metadata_uuid;
550 	else
551 		metadata_uuid = fs_devices->fsid;
552 
553 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
554 		return 0;
555 
556 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
557 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
558 			return 0;
559 
560 	return 1;
561 }
562 
563 /* Do basic extent buffer checks at read time */
564 static int validate_extent_buffer(struct extent_buffer *eb)
565 {
566 	struct btrfs_fs_info *fs_info = eb->fs_info;
567 	u64 found_start;
568 	const u32 csum_size = fs_info->csum_size;
569 	u8 found_level;
570 	u8 result[BTRFS_CSUM_SIZE];
571 	const u8 *header_csum;
572 	int ret = 0;
573 
574 	found_start = btrfs_header_bytenr(eb);
575 	if (found_start != eb->start) {
576 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
577 			     eb->start, found_start);
578 		ret = -EIO;
579 		goto out;
580 	}
581 	if (check_tree_block_fsid(eb)) {
582 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
583 			     eb->start);
584 		ret = -EIO;
585 		goto out;
586 	}
587 	found_level = btrfs_header_level(eb);
588 	if (found_level >= BTRFS_MAX_LEVEL) {
589 		btrfs_err(fs_info, "bad tree block level %d on %llu",
590 			  (int)btrfs_header_level(eb), eb->start);
591 		ret = -EIO;
592 		goto out;
593 	}
594 
595 	csum_tree_block(eb, result);
596 	header_csum = page_address(eb->pages[0]) +
597 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
598 
599 	if (memcmp(result, header_csum, csum_size) != 0) {
600 		btrfs_warn_rl(fs_info,
601 	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
602 			      eb->start,
603 			      CSUM_FMT_VALUE(csum_size, header_csum),
604 			      CSUM_FMT_VALUE(csum_size, result),
605 			      btrfs_header_level(eb));
606 		ret = -EUCLEAN;
607 		goto out;
608 	}
609 
610 	/*
611 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
612 	 * that we don't try and read the other copies of this block, just
613 	 * return -EIO.
614 	 */
615 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
616 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
617 		ret = -EIO;
618 	}
619 
620 	if (found_level > 0 && btrfs_check_node(eb))
621 		ret = -EIO;
622 
623 	if (!ret)
624 		set_extent_buffer_uptodate(eb);
625 	else
626 		btrfs_err(fs_info,
627 			  "block=%llu read time tree block corruption detected",
628 			  eb->start);
629 out:
630 	return ret;
631 }
632 
633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
634 				   int mirror)
635 {
636 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
637 	struct extent_buffer *eb;
638 	bool reads_done;
639 	int ret = 0;
640 
641 	/*
642 	 * We don't allow bio merge for subpage metadata read, so we should
643 	 * only get one eb for each endio hook.
644 	 */
645 	ASSERT(end == start + fs_info->nodesize - 1);
646 	ASSERT(PagePrivate(page));
647 
648 	eb = find_extent_buffer(fs_info, start);
649 	/*
650 	 * When we are reading one tree block, eb must have been inserted into
651 	 * the radix tree. If not, something is wrong.
652 	 */
653 	ASSERT(eb);
654 
655 	reads_done = atomic_dec_and_test(&eb->io_pages);
656 	/* Subpage read must finish in page read */
657 	ASSERT(reads_done);
658 
659 	eb->read_mirror = mirror;
660 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
661 		ret = -EIO;
662 		goto err;
663 	}
664 	ret = validate_extent_buffer(eb);
665 	if (ret < 0)
666 		goto err;
667 
668 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
669 		btree_readahead_hook(eb, ret);
670 
671 	set_extent_buffer_uptodate(eb);
672 
673 	free_extent_buffer(eb);
674 	return ret;
675 err:
676 	/*
677 	 * end_bio_extent_readpage decrements io_pages in case of error,
678 	 * make sure it has something to decrement.
679 	 */
680 	atomic_inc(&eb->io_pages);
681 	clear_extent_buffer_uptodate(eb);
682 	free_extent_buffer(eb);
683 	return ret;
684 }
685 
686 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
687 				   struct page *page, u64 start, u64 end,
688 				   int mirror)
689 {
690 	struct extent_buffer *eb;
691 	int ret = 0;
692 	int reads_done;
693 
694 	ASSERT(page->private);
695 
696 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
697 		return validate_subpage_buffer(page, start, end, mirror);
698 
699 	eb = (struct extent_buffer *)page->private;
700 
701 	/*
702 	 * The pending IO might have been the only thing that kept this buffer
703 	 * in memory.  Make sure we have a ref for all this other checks
704 	 */
705 	atomic_inc(&eb->refs);
706 
707 	reads_done = atomic_dec_and_test(&eb->io_pages);
708 	if (!reads_done)
709 		goto err;
710 
711 	eb->read_mirror = mirror;
712 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
713 		ret = -EIO;
714 		goto err;
715 	}
716 	ret = validate_extent_buffer(eb);
717 err:
718 	if (reads_done &&
719 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
720 		btree_readahead_hook(eb, ret);
721 
722 	if (ret) {
723 		/*
724 		 * our io error hook is going to dec the io pages
725 		 * again, we have to make sure it has something
726 		 * to decrement
727 		 */
728 		atomic_inc(&eb->io_pages);
729 		clear_extent_buffer_uptodate(eb);
730 	}
731 	free_extent_buffer(eb);
732 
733 	return ret;
734 }
735 
736 static void end_workqueue_bio(struct bio *bio)
737 {
738 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
739 	struct btrfs_fs_info *fs_info;
740 	struct btrfs_workqueue *wq;
741 
742 	fs_info = end_io_wq->info;
743 	end_io_wq->status = bio->bi_status;
744 
745 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
746 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
747 			wq = fs_info->endio_meta_write_workers;
748 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
749 			wq = fs_info->endio_freespace_worker;
750 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
751 			wq = fs_info->endio_raid56_workers;
752 		else
753 			wq = fs_info->endio_write_workers;
754 	} else {
755 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
756 			wq = fs_info->endio_raid56_workers;
757 		else if (end_io_wq->metadata)
758 			wq = fs_info->endio_meta_workers;
759 		else
760 			wq = fs_info->endio_workers;
761 	}
762 
763 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
764 	btrfs_queue_work(wq, &end_io_wq->work);
765 }
766 
767 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
768 			enum btrfs_wq_endio_type metadata)
769 {
770 	struct btrfs_end_io_wq *end_io_wq;
771 
772 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
773 	if (!end_io_wq)
774 		return BLK_STS_RESOURCE;
775 
776 	end_io_wq->private = bio->bi_private;
777 	end_io_wq->end_io = bio->bi_end_io;
778 	end_io_wq->info = info;
779 	end_io_wq->status = 0;
780 	end_io_wq->bio = bio;
781 	end_io_wq->metadata = metadata;
782 
783 	bio->bi_private = end_io_wq;
784 	bio->bi_end_io = end_workqueue_bio;
785 	return 0;
786 }
787 
788 static void run_one_async_start(struct btrfs_work *work)
789 {
790 	struct async_submit_bio *async;
791 	blk_status_t ret;
792 
793 	async = container_of(work, struct  async_submit_bio, work);
794 	ret = async->submit_bio_start(async->inode, async->bio,
795 				      async->dio_file_offset);
796 	if (ret)
797 		async->status = ret;
798 }
799 
800 /*
801  * In order to insert checksums into the metadata in large chunks, we wait
802  * until bio submission time.   All the pages in the bio are checksummed and
803  * sums are attached onto the ordered extent record.
804  *
805  * At IO completion time the csums attached on the ordered extent record are
806  * inserted into the tree.
807  */
808 static void run_one_async_done(struct btrfs_work *work)
809 {
810 	struct async_submit_bio *async;
811 	struct inode *inode;
812 	blk_status_t ret;
813 
814 	async = container_of(work, struct  async_submit_bio, work);
815 	inode = async->inode;
816 
817 	/* If an error occurred we just want to clean up the bio and move on */
818 	if (async->status) {
819 		async->bio->bi_status = async->status;
820 		bio_endio(async->bio);
821 		return;
822 	}
823 
824 	/*
825 	 * All of the bios that pass through here are from async helpers.
826 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
827 	 * This changes nothing when cgroups aren't in use.
828 	 */
829 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
830 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
831 	if (ret) {
832 		async->bio->bi_status = ret;
833 		bio_endio(async->bio);
834 	}
835 }
836 
837 static void run_one_async_free(struct btrfs_work *work)
838 {
839 	struct async_submit_bio *async;
840 
841 	async = container_of(work, struct  async_submit_bio, work);
842 	kfree(async);
843 }
844 
845 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
846 				 int mirror_num, unsigned long bio_flags,
847 				 u64 dio_file_offset,
848 				 extent_submit_bio_start_t *submit_bio_start)
849 {
850 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
851 	struct async_submit_bio *async;
852 
853 	async = kmalloc(sizeof(*async), GFP_NOFS);
854 	if (!async)
855 		return BLK_STS_RESOURCE;
856 
857 	async->inode = inode;
858 	async->bio = bio;
859 	async->mirror_num = mirror_num;
860 	async->submit_bio_start = submit_bio_start;
861 
862 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
863 			run_one_async_free);
864 
865 	async->dio_file_offset = dio_file_offset;
866 
867 	async->status = 0;
868 
869 	if (op_is_sync(bio->bi_opf))
870 		btrfs_set_work_high_priority(&async->work);
871 
872 	btrfs_queue_work(fs_info->workers, &async->work);
873 	return 0;
874 }
875 
876 static blk_status_t btree_csum_one_bio(struct bio *bio)
877 {
878 	struct bio_vec *bvec;
879 	struct btrfs_root *root;
880 	int ret = 0;
881 	struct bvec_iter_all iter_all;
882 
883 	ASSERT(!bio_flagged(bio, BIO_CLONED));
884 	bio_for_each_segment_all(bvec, bio, iter_all) {
885 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
886 		ret = csum_dirty_buffer(root->fs_info, bvec);
887 		if (ret)
888 			break;
889 	}
890 
891 	return errno_to_blk_status(ret);
892 }
893 
894 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
895 					   u64 dio_file_offset)
896 {
897 	/*
898 	 * when we're called for a write, we're already in the async
899 	 * submission context.  Just jump into btrfs_map_bio
900 	 */
901 	return btree_csum_one_bio(bio);
902 }
903 
904 static bool should_async_write(struct btrfs_fs_info *fs_info,
905 			     struct btrfs_inode *bi)
906 {
907 	if (btrfs_is_zoned(fs_info))
908 		return false;
909 	if (atomic_read(&bi->sync_writers))
910 		return false;
911 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
912 		return false;
913 	return true;
914 }
915 
916 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
917 				       int mirror_num, unsigned long bio_flags)
918 {
919 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
920 	blk_status_t ret;
921 
922 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
923 		/*
924 		 * called for a read, do the setup so that checksum validation
925 		 * can happen in the async kernel threads
926 		 */
927 		ret = btrfs_bio_wq_end_io(fs_info, bio,
928 					  BTRFS_WQ_ENDIO_METADATA);
929 		if (ret)
930 			goto out_w_error;
931 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
932 	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
933 		ret = btree_csum_one_bio(bio);
934 		if (ret)
935 			goto out_w_error;
936 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
937 	} else {
938 		/*
939 		 * kthread helpers are used to submit writes so that
940 		 * checksumming can happen in parallel across all CPUs
941 		 */
942 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
943 					  0, btree_submit_bio_start);
944 	}
945 
946 	if (ret)
947 		goto out_w_error;
948 	return 0;
949 
950 out_w_error:
951 	bio->bi_status = ret;
952 	bio_endio(bio);
953 	return ret;
954 }
955 
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958 			struct page *newpage, struct page *page,
959 			enum migrate_mode mode)
960 {
961 	/*
962 	 * we can't safely write a btree page from here,
963 	 * we haven't done the locking hook
964 	 */
965 	if (PageDirty(page))
966 		return -EAGAIN;
967 	/*
968 	 * Buffers may be managed in a filesystem specific way.
969 	 * We must have no buffers or drop them.
970 	 */
971 	if (page_has_private(page) &&
972 	    !try_to_release_page(page, GFP_KERNEL))
973 		return -EAGAIN;
974 	return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977 
978 
979 static int btree_writepages(struct address_space *mapping,
980 			    struct writeback_control *wbc)
981 {
982 	struct btrfs_fs_info *fs_info;
983 	int ret;
984 
985 	if (wbc->sync_mode == WB_SYNC_NONE) {
986 
987 		if (wbc->for_kupdate)
988 			return 0;
989 
990 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
991 		/* this is a bit racy, but that's ok */
992 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993 					     BTRFS_DIRTY_METADATA_THRESH,
994 					     fs_info->dirty_metadata_batch);
995 		if (ret < 0)
996 			return 0;
997 	}
998 	return btree_write_cache_pages(mapping, wbc);
999 }
1000 
1001 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002 {
1003 	if (PageWriteback(page) || PageDirty(page))
1004 		return 0;
1005 
1006 	return try_release_extent_buffer(page);
1007 }
1008 
1009 static void btree_invalidatepage(struct page *page, unsigned int offset,
1010 				 unsigned int length)
1011 {
1012 	struct extent_io_tree *tree;
1013 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1014 	extent_invalidatepage(tree, page, offset);
1015 	btree_releasepage(page, GFP_NOFS);
1016 	if (PagePrivate(page)) {
1017 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1018 			   "page private not zero on page %llu",
1019 			   (unsigned long long)page_offset(page));
1020 		detach_page_private(page);
1021 	}
1022 }
1023 
1024 static int btree_set_page_dirty(struct page *page)
1025 {
1026 #ifdef DEBUG
1027 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1028 	struct btrfs_subpage *subpage;
1029 	struct extent_buffer *eb;
1030 	int cur_bit = 0;
1031 	u64 page_start = page_offset(page);
1032 
1033 	if (fs_info->sectorsize == PAGE_SIZE) {
1034 		BUG_ON(!PagePrivate(page));
1035 		eb = (struct extent_buffer *)page->private;
1036 		BUG_ON(!eb);
1037 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038 		BUG_ON(!atomic_read(&eb->refs));
1039 		btrfs_assert_tree_locked(eb);
1040 		return __set_page_dirty_nobuffers(page);
1041 	}
1042 	ASSERT(PagePrivate(page) && page->private);
1043 	subpage = (struct btrfs_subpage *)page->private;
1044 
1045 	ASSERT(subpage->dirty_bitmap);
1046 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1047 		unsigned long flags;
1048 		u64 cur;
1049 		u16 tmp = (1 << cur_bit);
1050 
1051 		spin_lock_irqsave(&subpage->lock, flags);
1052 		if (!(tmp & subpage->dirty_bitmap)) {
1053 			spin_unlock_irqrestore(&subpage->lock, flags);
1054 			cur_bit++;
1055 			continue;
1056 		}
1057 		spin_unlock_irqrestore(&subpage->lock, flags);
1058 		cur = page_start + cur_bit * fs_info->sectorsize;
1059 
1060 		eb = find_extent_buffer(fs_info, cur);
1061 		ASSERT(eb);
1062 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 		ASSERT(atomic_read(&eb->refs));
1064 		btrfs_assert_tree_locked(eb);
1065 		free_extent_buffer(eb);
1066 
1067 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1068 	}
1069 #endif
1070 	return __set_page_dirty_nobuffers(page);
1071 }
1072 
1073 static const struct address_space_operations btree_aops = {
1074 	.writepages	= btree_writepages,
1075 	.releasepage	= btree_releasepage,
1076 	.invalidatepage = btree_invalidatepage,
1077 #ifdef CONFIG_MIGRATION
1078 	.migratepage	= btree_migratepage,
1079 #endif
1080 	.set_page_dirty = btree_set_page_dirty,
1081 };
1082 
1083 struct extent_buffer *btrfs_find_create_tree_block(
1084 						struct btrfs_fs_info *fs_info,
1085 						u64 bytenr, u64 owner_root,
1086 						int level)
1087 {
1088 	if (btrfs_is_testing(fs_info))
1089 		return alloc_test_extent_buffer(fs_info, bytenr);
1090 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1091 }
1092 
1093 /*
1094  * Read tree block at logical address @bytenr and do variant basic but critical
1095  * verification.
1096  *
1097  * @owner_root:		the objectid of the root owner for this block.
1098  * @parent_transid:	expected transid of this tree block, skip check if 0
1099  * @level:		expected level, mandatory check
1100  * @first_key:		expected key in slot 0, skip check if NULL
1101  */
1102 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103 				      u64 owner_root, u64 parent_transid,
1104 				      int level, struct btrfs_key *first_key)
1105 {
1106 	struct extent_buffer *buf = NULL;
1107 	int ret;
1108 
1109 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110 	if (IS_ERR(buf))
1111 		return buf;
1112 
1113 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1114 					     level, first_key);
1115 	if (ret) {
1116 		free_extent_buffer_stale(buf);
1117 		return ERR_PTR(ret);
1118 	}
1119 	return buf;
1120 
1121 }
1122 
1123 void btrfs_clean_tree_block(struct extent_buffer *buf)
1124 {
1125 	struct btrfs_fs_info *fs_info = buf->fs_info;
1126 	if (btrfs_header_generation(buf) ==
1127 	    fs_info->running_transaction->transid) {
1128 		btrfs_assert_tree_locked(buf);
1129 
1130 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1132 						 -buf->len,
1133 						 fs_info->dirty_metadata_batch);
1134 			clear_extent_buffer_dirty(buf);
1135 		}
1136 	}
1137 }
1138 
1139 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1140 			 u64 objectid)
1141 {
1142 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1143 	root->fs_info = fs_info;
1144 	root->node = NULL;
1145 	root->commit_root = NULL;
1146 	root->state = 0;
1147 	root->orphan_cleanup_state = 0;
1148 
1149 	root->last_trans = 0;
1150 	root->free_objectid = 0;
1151 	root->nr_delalloc_inodes = 0;
1152 	root->nr_ordered_extents = 0;
1153 	root->inode_tree = RB_ROOT;
1154 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155 	root->block_rsv = NULL;
1156 
1157 	INIT_LIST_HEAD(&root->dirty_list);
1158 	INIT_LIST_HEAD(&root->root_list);
1159 	INIT_LIST_HEAD(&root->delalloc_inodes);
1160 	INIT_LIST_HEAD(&root->delalloc_root);
1161 	INIT_LIST_HEAD(&root->ordered_extents);
1162 	INIT_LIST_HEAD(&root->ordered_root);
1163 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1164 	INIT_LIST_HEAD(&root->logged_list[0]);
1165 	INIT_LIST_HEAD(&root->logged_list[1]);
1166 	spin_lock_init(&root->inode_lock);
1167 	spin_lock_init(&root->delalloc_lock);
1168 	spin_lock_init(&root->ordered_extent_lock);
1169 	spin_lock_init(&root->accounting_lock);
1170 	spin_lock_init(&root->log_extents_lock[0]);
1171 	spin_lock_init(&root->log_extents_lock[1]);
1172 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1173 	mutex_init(&root->objectid_mutex);
1174 	mutex_init(&root->log_mutex);
1175 	mutex_init(&root->ordered_extent_mutex);
1176 	mutex_init(&root->delalloc_mutex);
1177 	init_waitqueue_head(&root->qgroup_flush_wait);
1178 	init_waitqueue_head(&root->log_writer_wait);
1179 	init_waitqueue_head(&root->log_commit_wait[0]);
1180 	init_waitqueue_head(&root->log_commit_wait[1]);
1181 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1182 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1183 	atomic_set(&root->log_commit[0], 0);
1184 	atomic_set(&root->log_commit[1], 0);
1185 	atomic_set(&root->log_writers, 0);
1186 	atomic_set(&root->log_batch, 0);
1187 	refcount_set(&root->refs, 1);
1188 	atomic_set(&root->snapshot_force_cow, 0);
1189 	atomic_set(&root->nr_swapfiles, 0);
1190 	root->log_transid = 0;
1191 	root->log_transid_committed = -1;
1192 	root->last_log_commit = 0;
1193 	if (!dummy) {
1194 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196 		extent_io_tree_init(fs_info, &root->log_csum_range,
1197 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1198 	}
1199 
1200 	memset(&root->root_key, 0, sizeof(root->root_key));
1201 	memset(&root->root_item, 0, sizeof(root->root_item));
1202 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1203 	root->root_key.objectid = objectid;
1204 	root->anon_dev = 0;
1205 
1206 	spin_lock_init(&root->root_item_lock);
1207 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1208 #ifdef CONFIG_BTRFS_DEBUG
1209 	INIT_LIST_HEAD(&root->leak_list);
1210 	spin_lock(&fs_info->fs_roots_radix_lock);
1211 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1212 	spin_unlock(&fs_info->fs_roots_radix_lock);
1213 #endif
1214 }
1215 
1216 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1217 					   u64 objectid, gfp_t flags)
1218 {
1219 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1220 	if (root)
1221 		__setup_root(root, fs_info, objectid);
1222 	return root;
1223 }
1224 
1225 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1226 /* Should only be used by the testing infrastructure */
1227 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1228 {
1229 	struct btrfs_root *root;
1230 
1231 	if (!fs_info)
1232 		return ERR_PTR(-EINVAL);
1233 
1234 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1235 	if (!root)
1236 		return ERR_PTR(-ENOMEM);
1237 
1238 	/* We don't use the stripesize in selftest, set it as sectorsize */
1239 	root->alloc_bytenr = 0;
1240 
1241 	return root;
1242 }
1243 #endif
1244 
1245 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1246 				     u64 objectid)
1247 {
1248 	struct btrfs_fs_info *fs_info = trans->fs_info;
1249 	struct extent_buffer *leaf;
1250 	struct btrfs_root *tree_root = fs_info->tree_root;
1251 	struct btrfs_root *root;
1252 	struct btrfs_key key;
1253 	unsigned int nofs_flag;
1254 	int ret = 0;
1255 
1256 	/*
1257 	 * We're holding a transaction handle, so use a NOFS memory allocation
1258 	 * context to avoid deadlock if reclaim happens.
1259 	 */
1260 	nofs_flag = memalloc_nofs_save();
1261 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1262 	memalloc_nofs_restore(nofs_flag);
1263 	if (!root)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	root->root_key.objectid = objectid;
1267 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268 	root->root_key.offset = 0;
1269 
1270 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1271 				      BTRFS_NESTING_NORMAL);
1272 	if (IS_ERR(leaf)) {
1273 		ret = PTR_ERR(leaf);
1274 		leaf = NULL;
1275 		goto fail_unlock;
1276 	}
1277 
1278 	root->node = leaf;
1279 	btrfs_mark_buffer_dirty(leaf);
1280 
1281 	root->commit_root = btrfs_root_node(root);
1282 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1283 
1284 	btrfs_set_root_flags(&root->root_item, 0);
1285 	btrfs_set_root_limit(&root->root_item, 0);
1286 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1287 	btrfs_set_root_generation(&root->root_item, trans->transid);
1288 	btrfs_set_root_level(&root->root_item, 0);
1289 	btrfs_set_root_refs(&root->root_item, 1);
1290 	btrfs_set_root_used(&root->root_item, leaf->len);
1291 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1292 	btrfs_set_root_dirid(&root->root_item, 0);
1293 	if (is_fstree(objectid))
1294 		generate_random_guid(root->root_item.uuid);
1295 	else
1296 		export_guid(root->root_item.uuid, &guid_null);
1297 	btrfs_set_root_drop_level(&root->root_item, 0);
1298 
1299 	btrfs_tree_unlock(leaf);
1300 
1301 	key.objectid = objectid;
1302 	key.type = BTRFS_ROOT_ITEM_KEY;
1303 	key.offset = 0;
1304 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 	if (ret)
1306 		goto fail;
1307 
1308 	return root;
1309 
1310 fail_unlock:
1311 	if (leaf)
1312 		btrfs_tree_unlock(leaf);
1313 fail:
1314 	btrfs_put_root(root);
1315 
1316 	return ERR_PTR(ret);
1317 }
1318 
1319 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1320 					 struct btrfs_fs_info *fs_info)
1321 {
1322 	struct btrfs_root *root;
1323 
1324 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1325 	if (!root)
1326 		return ERR_PTR(-ENOMEM);
1327 
1328 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1329 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1330 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331 
1332 	return root;
1333 }
1334 
1335 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1336 			      struct btrfs_root *root)
1337 {
1338 	struct extent_buffer *leaf;
1339 
1340 	/*
1341 	 * DON'T set SHAREABLE bit for log trees.
1342 	 *
1343 	 * Log trees are not exposed to user space thus can't be snapshotted,
1344 	 * and they go away before a real commit is actually done.
1345 	 *
1346 	 * They do store pointers to file data extents, and those reference
1347 	 * counts still get updated (along with back refs to the log tree).
1348 	 */
1349 
1350 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1352 	if (IS_ERR(leaf))
1353 		return PTR_ERR(leaf);
1354 
1355 	root->node = leaf;
1356 
1357 	btrfs_mark_buffer_dirty(root->node);
1358 	btrfs_tree_unlock(root->node);
1359 
1360 	return 0;
1361 }
1362 
1363 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1364 			     struct btrfs_fs_info *fs_info)
1365 {
1366 	struct btrfs_root *log_root;
1367 
1368 	log_root = alloc_log_tree(trans, fs_info);
1369 	if (IS_ERR(log_root))
1370 		return PTR_ERR(log_root);
1371 
1372 	if (!btrfs_is_zoned(fs_info)) {
1373 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1374 
1375 		if (ret) {
1376 			btrfs_put_root(log_root);
1377 			return ret;
1378 		}
1379 	}
1380 
1381 	WARN_ON(fs_info->log_root_tree);
1382 	fs_info->log_root_tree = log_root;
1383 	return 0;
1384 }
1385 
1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387 		       struct btrfs_root *root)
1388 {
1389 	struct btrfs_fs_info *fs_info = root->fs_info;
1390 	struct btrfs_root *log_root;
1391 	struct btrfs_inode_item *inode_item;
1392 	int ret;
1393 
1394 	log_root = alloc_log_tree(trans, fs_info);
1395 	if (IS_ERR(log_root))
1396 		return PTR_ERR(log_root);
1397 
1398 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1399 	if (ret) {
1400 		btrfs_put_root(log_root);
1401 		return ret;
1402 	}
1403 
1404 	log_root->last_trans = trans->transid;
1405 	log_root->root_key.offset = root->root_key.objectid;
1406 
1407 	inode_item = &log_root->root_item.inode;
1408 	btrfs_set_stack_inode_generation(inode_item, 1);
1409 	btrfs_set_stack_inode_size(inode_item, 3);
1410 	btrfs_set_stack_inode_nlink(inode_item, 1);
1411 	btrfs_set_stack_inode_nbytes(inode_item,
1412 				     fs_info->nodesize);
1413 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414 
1415 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1416 
1417 	WARN_ON(root->log_root);
1418 	root->log_root = log_root;
1419 	root->log_transid = 0;
1420 	root->log_transid_committed = -1;
1421 	root->last_log_commit = 0;
1422 	return 0;
1423 }
1424 
1425 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1426 					      struct btrfs_path *path,
1427 					      struct btrfs_key *key)
1428 {
1429 	struct btrfs_root *root;
1430 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1431 	u64 generation;
1432 	int ret;
1433 	int level;
1434 
1435 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1436 	if (!root)
1437 		return ERR_PTR(-ENOMEM);
1438 
1439 	ret = btrfs_find_root(tree_root, key, path,
1440 			      &root->root_item, &root->root_key);
1441 	if (ret) {
1442 		if (ret > 0)
1443 			ret = -ENOENT;
1444 		goto fail;
1445 	}
1446 
1447 	generation = btrfs_root_generation(&root->root_item);
1448 	level = btrfs_root_level(&root->root_item);
1449 	root->node = read_tree_block(fs_info,
1450 				     btrfs_root_bytenr(&root->root_item),
1451 				     key->objectid, generation, level, NULL);
1452 	if (IS_ERR(root->node)) {
1453 		ret = PTR_ERR(root->node);
1454 		root->node = NULL;
1455 		goto fail;
1456 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1457 		ret = -EIO;
1458 		goto fail;
1459 	}
1460 	root->commit_root = btrfs_root_node(root);
1461 	return root;
1462 fail:
1463 	btrfs_put_root(root);
1464 	return ERR_PTR(ret);
1465 }
1466 
1467 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1468 					struct btrfs_key *key)
1469 {
1470 	struct btrfs_root *root;
1471 	struct btrfs_path *path;
1472 
1473 	path = btrfs_alloc_path();
1474 	if (!path)
1475 		return ERR_PTR(-ENOMEM);
1476 	root = read_tree_root_path(tree_root, path, key);
1477 	btrfs_free_path(path);
1478 
1479 	return root;
1480 }
1481 
1482 /*
1483  * Initialize subvolume root in-memory structure
1484  *
1485  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1486  */
1487 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1488 {
1489 	int ret;
1490 	unsigned int nofs_flag;
1491 
1492 	/*
1493 	 * We might be called under a transaction (e.g. indirect backref
1494 	 * resolution) which could deadlock if it triggers memory reclaim
1495 	 */
1496 	nofs_flag = memalloc_nofs_save();
1497 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1498 	memalloc_nofs_restore(nofs_flag);
1499 	if (ret)
1500 		goto fail;
1501 
1502 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1503 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1504 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1505 		btrfs_check_and_init_root_item(&root->root_item);
1506 	}
1507 
1508 	/*
1509 	 * Don't assign anonymous block device to roots that are not exposed to
1510 	 * userspace, the id pool is limited to 1M
1511 	 */
1512 	if (is_fstree(root->root_key.objectid) &&
1513 	    btrfs_root_refs(&root->root_item) > 0) {
1514 		if (!anon_dev) {
1515 			ret = get_anon_bdev(&root->anon_dev);
1516 			if (ret)
1517 				goto fail;
1518 		} else {
1519 			root->anon_dev = anon_dev;
1520 		}
1521 	}
1522 
1523 	mutex_lock(&root->objectid_mutex);
1524 	ret = btrfs_init_root_free_objectid(root);
1525 	if (ret) {
1526 		mutex_unlock(&root->objectid_mutex);
1527 		goto fail;
1528 	}
1529 
1530 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531 
1532 	mutex_unlock(&root->objectid_mutex);
1533 
1534 	return 0;
1535 fail:
1536 	/* The caller is responsible to call btrfs_free_fs_root */
1537 	return ret;
1538 }
1539 
1540 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541 					       u64 root_id)
1542 {
1543 	struct btrfs_root *root;
1544 
1545 	spin_lock(&fs_info->fs_roots_radix_lock);
1546 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 				 (unsigned long)root_id);
1548 	if (root)
1549 		root = btrfs_grab_root(root);
1550 	spin_unlock(&fs_info->fs_roots_radix_lock);
1551 	return root;
1552 }
1553 
1554 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1555 						u64 objectid)
1556 {
1557 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1558 		return btrfs_grab_root(fs_info->tree_root);
1559 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560 		return btrfs_grab_root(fs_info->extent_root);
1561 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562 		return btrfs_grab_root(fs_info->chunk_root);
1563 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1564 		return btrfs_grab_root(fs_info->dev_root);
1565 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1566 		return btrfs_grab_root(fs_info->csum_root);
1567 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568 		return btrfs_grab_root(fs_info->quota_root) ?
1569 			fs_info->quota_root : ERR_PTR(-ENOENT);
1570 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1571 		return btrfs_grab_root(fs_info->uuid_root) ?
1572 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1573 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574 		return btrfs_grab_root(fs_info->free_space_root) ?
1575 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1576 	return NULL;
1577 }
1578 
1579 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580 			 struct btrfs_root *root)
1581 {
1582 	int ret;
1583 
1584 	ret = radix_tree_preload(GFP_NOFS);
1585 	if (ret)
1586 		return ret;
1587 
1588 	spin_lock(&fs_info->fs_roots_radix_lock);
1589 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 				(unsigned long)root->root_key.objectid,
1591 				root);
1592 	if (ret == 0) {
1593 		btrfs_grab_root(root);
1594 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1595 	}
1596 	spin_unlock(&fs_info->fs_roots_radix_lock);
1597 	radix_tree_preload_end();
1598 
1599 	return ret;
1600 }
1601 
1602 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1603 {
1604 #ifdef CONFIG_BTRFS_DEBUG
1605 	struct btrfs_root *root;
1606 
1607 	while (!list_empty(&fs_info->allocated_roots)) {
1608 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1609 
1610 		root = list_first_entry(&fs_info->allocated_roots,
1611 					struct btrfs_root, leak_list);
1612 		btrfs_err(fs_info, "leaked root %s refcount %d",
1613 			  btrfs_root_name(&root->root_key, buf),
1614 			  refcount_read(&root->refs));
1615 		while (refcount_read(&root->refs) > 1)
1616 			btrfs_put_root(root);
1617 		btrfs_put_root(root);
1618 	}
1619 #endif
1620 }
1621 
1622 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1623 {
1624 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1625 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1626 	percpu_counter_destroy(&fs_info->ordered_bytes);
1627 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1628 	btrfs_free_csum_hash(fs_info);
1629 	btrfs_free_stripe_hash_table(fs_info);
1630 	btrfs_free_ref_cache(fs_info);
1631 	kfree(fs_info->balance_ctl);
1632 	kfree(fs_info->delayed_root);
1633 	btrfs_put_root(fs_info->extent_root);
1634 	btrfs_put_root(fs_info->tree_root);
1635 	btrfs_put_root(fs_info->chunk_root);
1636 	btrfs_put_root(fs_info->dev_root);
1637 	btrfs_put_root(fs_info->csum_root);
1638 	btrfs_put_root(fs_info->quota_root);
1639 	btrfs_put_root(fs_info->uuid_root);
1640 	btrfs_put_root(fs_info->free_space_root);
1641 	btrfs_put_root(fs_info->fs_root);
1642 	btrfs_put_root(fs_info->data_reloc_root);
1643 	btrfs_check_leaked_roots(fs_info);
1644 	btrfs_extent_buffer_leak_debug_check(fs_info);
1645 	kfree(fs_info->super_copy);
1646 	kfree(fs_info->super_for_commit);
1647 	kvfree(fs_info);
1648 }
1649 
1650 
1651 /*
1652  * Get an in-memory reference of a root structure.
1653  *
1654  * For essential trees like root/extent tree, we grab it from fs_info directly.
1655  * For subvolume trees, we check the cached filesystem roots first. If not
1656  * found, then read it from disk and add it to cached fs roots.
1657  *
1658  * Caller should release the root by calling btrfs_put_root() after the usage.
1659  *
1660  * NOTE: Reloc and log trees can't be read by this function as they share the
1661  *	 same root objectid.
1662  *
1663  * @objectid:	root id
1664  * @anon_dev:	preallocated anonymous block device number for new roots,
1665  * 		pass 0 for new allocation.
1666  * @check_ref:	whether to check root item references, If true, return -ENOENT
1667  *		for orphan roots
1668  */
1669 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1670 					     u64 objectid, dev_t anon_dev,
1671 					     bool check_ref)
1672 {
1673 	struct btrfs_root *root;
1674 	struct btrfs_path *path;
1675 	struct btrfs_key key;
1676 	int ret;
1677 
1678 	root = btrfs_get_global_root(fs_info, objectid);
1679 	if (root)
1680 		return root;
1681 again:
1682 	root = btrfs_lookup_fs_root(fs_info, objectid);
1683 	if (root) {
1684 		/* Shouldn't get preallocated anon_dev for cached roots */
1685 		ASSERT(!anon_dev);
1686 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1687 			btrfs_put_root(root);
1688 			return ERR_PTR(-ENOENT);
1689 		}
1690 		return root;
1691 	}
1692 
1693 	key.objectid = objectid;
1694 	key.type = BTRFS_ROOT_ITEM_KEY;
1695 	key.offset = (u64)-1;
1696 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1697 	if (IS_ERR(root))
1698 		return root;
1699 
1700 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1701 		ret = -ENOENT;
1702 		goto fail;
1703 	}
1704 
1705 	ret = btrfs_init_fs_root(root, anon_dev);
1706 	if (ret)
1707 		goto fail;
1708 
1709 	path = btrfs_alloc_path();
1710 	if (!path) {
1711 		ret = -ENOMEM;
1712 		goto fail;
1713 	}
1714 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1715 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1716 	key.offset = objectid;
1717 
1718 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1719 	btrfs_free_path(path);
1720 	if (ret < 0)
1721 		goto fail;
1722 	if (ret == 0)
1723 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1724 
1725 	ret = btrfs_insert_fs_root(fs_info, root);
1726 	if (ret) {
1727 		btrfs_put_root(root);
1728 		if (ret == -EEXIST)
1729 			goto again;
1730 		goto fail;
1731 	}
1732 	return root;
1733 fail:
1734 	btrfs_put_root(root);
1735 	return ERR_PTR(ret);
1736 }
1737 
1738 /*
1739  * Get in-memory reference of a root structure
1740  *
1741  * @objectid:	tree objectid
1742  * @check_ref:	if set, verify that the tree exists and the item has at least
1743  *		one reference
1744  */
1745 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1746 				     u64 objectid, bool check_ref)
1747 {
1748 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1749 }
1750 
1751 /*
1752  * Get in-memory reference of a root structure, created as new, optionally pass
1753  * the anonymous block device id
1754  *
1755  * @objectid:	tree objectid
1756  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1757  *		parameter value
1758  */
1759 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1760 					 u64 objectid, dev_t anon_dev)
1761 {
1762 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1763 }
1764 
1765 /*
1766  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1767  * @fs_info:	the fs_info
1768  * @objectid:	the objectid we need to lookup
1769  *
1770  * This is exclusively used for backref walking, and exists specifically because
1771  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1772  * creation time, which means we may have to read the tree_root in order to look
1773  * up a fs root that is not in memory.  If the root is not in memory we will
1774  * read the tree root commit root and look up the fs root from there.  This is a
1775  * temporary root, it will not be inserted into the radix tree as it doesn't
1776  * have the most uptodate information, it'll simply be discarded once the
1777  * backref code is finished using the root.
1778  */
1779 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1780 						 struct btrfs_path *path,
1781 						 u64 objectid)
1782 {
1783 	struct btrfs_root *root;
1784 	struct btrfs_key key;
1785 
1786 	ASSERT(path->search_commit_root && path->skip_locking);
1787 
1788 	/*
1789 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1790 	 * since this is called via the backref walking code we won't be looking
1791 	 * up a root that doesn't exist, unless there's corruption.  So if root
1792 	 * != NULL just return it.
1793 	 */
1794 	root = btrfs_get_global_root(fs_info, objectid);
1795 	if (root)
1796 		return root;
1797 
1798 	root = btrfs_lookup_fs_root(fs_info, objectid);
1799 	if (root)
1800 		return root;
1801 
1802 	key.objectid = objectid;
1803 	key.type = BTRFS_ROOT_ITEM_KEY;
1804 	key.offset = (u64)-1;
1805 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1806 	btrfs_release_path(path);
1807 
1808 	return root;
1809 }
1810 
1811 /*
1812  * called by the kthread helper functions to finally call the bio end_io
1813  * functions.  This is where read checksum verification actually happens
1814  */
1815 static void end_workqueue_fn(struct btrfs_work *work)
1816 {
1817 	struct bio *bio;
1818 	struct btrfs_end_io_wq *end_io_wq;
1819 
1820 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1821 	bio = end_io_wq->bio;
1822 
1823 	bio->bi_status = end_io_wq->status;
1824 	bio->bi_private = end_io_wq->private;
1825 	bio->bi_end_io = end_io_wq->end_io;
1826 	bio_endio(bio);
1827 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1828 }
1829 
1830 static int cleaner_kthread(void *arg)
1831 {
1832 	struct btrfs_root *root = arg;
1833 	struct btrfs_fs_info *fs_info = root->fs_info;
1834 	int again;
1835 
1836 	while (1) {
1837 		again = 0;
1838 
1839 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1840 
1841 		/* Make the cleaner go to sleep early. */
1842 		if (btrfs_need_cleaner_sleep(fs_info))
1843 			goto sleep;
1844 
1845 		/*
1846 		 * Do not do anything if we might cause open_ctree() to block
1847 		 * before we have finished mounting the filesystem.
1848 		 */
1849 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1850 			goto sleep;
1851 
1852 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1853 			goto sleep;
1854 
1855 		/*
1856 		 * Avoid the problem that we change the status of the fs
1857 		 * during the above check and trylock.
1858 		 */
1859 		if (btrfs_need_cleaner_sleep(fs_info)) {
1860 			mutex_unlock(&fs_info->cleaner_mutex);
1861 			goto sleep;
1862 		}
1863 
1864 		btrfs_run_delayed_iputs(fs_info);
1865 
1866 		again = btrfs_clean_one_deleted_snapshot(root);
1867 		mutex_unlock(&fs_info->cleaner_mutex);
1868 
1869 		/*
1870 		 * The defragger has dealt with the R/O remount and umount,
1871 		 * needn't do anything special here.
1872 		 */
1873 		btrfs_run_defrag_inodes(fs_info);
1874 
1875 		/*
1876 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1877 		 * with relocation (btrfs_relocate_chunk) and relocation
1878 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1879 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1880 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1881 		 * unused block groups.
1882 		 */
1883 		btrfs_delete_unused_bgs(fs_info);
1884 
1885 		/*
1886 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1887 		 * all unused block_groups. This possibly gives us some more free
1888 		 * space.
1889 		 */
1890 		btrfs_reclaim_bgs(fs_info);
1891 sleep:
1892 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1893 		if (kthread_should_park())
1894 			kthread_parkme();
1895 		if (kthread_should_stop())
1896 			return 0;
1897 		if (!again) {
1898 			set_current_state(TASK_INTERRUPTIBLE);
1899 			schedule();
1900 			__set_current_state(TASK_RUNNING);
1901 		}
1902 	}
1903 }
1904 
1905 static int transaction_kthread(void *arg)
1906 {
1907 	struct btrfs_root *root = arg;
1908 	struct btrfs_fs_info *fs_info = root->fs_info;
1909 	struct btrfs_trans_handle *trans;
1910 	struct btrfs_transaction *cur;
1911 	u64 transid;
1912 	time64_t delta;
1913 	unsigned long delay;
1914 	bool cannot_commit;
1915 
1916 	do {
1917 		cannot_commit = false;
1918 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1919 		mutex_lock(&fs_info->transaction_kthread_mutex);
1920 
1921 		spin_lock(&fs_info->trans_lock);
1922 		cur = fs_info->running_transaction;
1923 		if (!cur) {
1924 			spin_unlock(&fs_info->trans_lock);
1925 			goto sleep;
1926 		}
1927 
1928 		delta = ktime_get_seconds() - cur->start_time;
1929 		if (cur->state < TRANS_STATE_COMMIT_START &&
1930 		    delta < fs_info->commit_interval) {
1931 			spin_unlock(&fs_info->trans_lock);
1932 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1933 			delay = min(delay,
1934 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1935 			goto sleep;
1936 		}
1937 		transid = cur->transid;
1938 		spin_unlock(&fs_info->trans_lock);
1939 
1940 		/* If the file system is aborted, this will always fail. */
1941 		trans = btrfs_attach_transaction(root);
1942 		if (IS_ERR(trans)) {
1943 			if (PTR_ERR(trans) != -ENOENT)
1944 				cannot_commit = true;
1945 			goto sleep;
1946 		}
1947 		if (transid == trans->transid) {
1948 			btrfs_commit_transaction(trans);
1949 		} else {
1950 			btrfs_end_transaction(trans);
1951 		}
1952 sleep:
1953 		wake_up_process(fs_info->cleaner_kthread);
1954 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1955 
1956 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1957 				      &fs_info->fs_state)))
1958 			btrfs_cleanup_transaction(fs_info);
1959 		if (!kthread_should_stop() &&
1960 				(!btrfs_transaction_blocked(fs_info) ||
1961 				 cannot_commit))
1962 			schedule_timeout_interruptible(delay);
1963 	} while (!kthread_should_stop());
1964 	return 0;
1965 }
1966 
1967 /*
1968  * This will find the highest generation in the array of root backups.  The
1969  * index of the highest array is returned, or -EINVAL if we can't find
1970  * anything.
1971  *
1972  * We check to make sure the array is valid by comparing the
1973  * generation of the latest  root in the array with the generation
1974  * in the super block.  If they don't match we pitch it.
1975  */
1976 static int find_newest_super_backup(struct btrfs_fs_info *info)
1977 {
1978 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1979 	u64 cur;
1980 	struct btrfs_root_backup *root_backup;
1981 	int i;
1982 
1983 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1984 		root_backup = info->super_copy->super_roots + i;
1985 		cur = btrfs_backup_tree_root_gen(root_backup);
1986 		if (cur == newest_gen)
1987 			return i;
1988 	}
1989 
1990 	return -EINVAL;
1991 }
1992 
1993 /*
1994  * copy all the root pointers into the super backup array.
1995  * this will bump the backup pointer by one when it is
1996  * done
1997  */
1998 static void backup_super_roots(struct btrfs_fs_info *info)
1999 {
2000 	const int next_backup = info->backup_root_index;
2001 	struct btrfs_root_backup *root_backup;
2002 
2003 	root_backup = info->super_for_commit->super_roots + next_backup;
2004 
2005 	/*
2006 	 * make sure all of our padding and empty slots get zero filled
2007 	 * regardless of which ones we use today
2008 	 */
2009 	memset(root_backup, 0, sizeof(*root_backup));
2010 
2011 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2012 
2013 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2014 	btrfs_set_backup_tree_root_gen(root_backup,
2015 			       btrfs_header_generation(info->tree_root->node));
2016 
2017 	btrfs_set_backup_tree_root_level(root_backup,
2018 			       btrfs_header_level(info->tree_root->node));
2019 
2020 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2021 	btrfs_set_backup_chunk_root_gen(root_backup,
2022 			       btrfs_header_generation(info->chunk_root->node));
2023 	btrfs_set_backup_chunk_root_level(root_backup,
2024 			       btrfs_header_level(info->chunk_root->node));
2025 
2026 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2027 	btrfs_set_backup_extent_root_gen(root_backup,
2028 			       btrfs_header_generation(info->extent_root->node));
2029 	btrfs_set_backup_extent_root_level(root_backup,
2030 			       btrfs_header_level(info->extent_root->node));
2031 
2032 	/*
2033 	 * we might commit during log recovery, which happens before we set
2034 	 * the fs_root.  Make sure it is valid before we fill it in.
2035 	 */
2036 	if (info->fs_root && info->fs_root->node) {
2037 		btrfs_set_backup_fs_root(root_backup,
2038 					 info->fs_root->node->start);
2039 		btrfs_set_backup_fs_root_gen(root_backup,
2040 			       btrfs_header_generation(info->fs_root->node));
2041 		btrfs_set_backup_fs_root_level(root_backup,
2042 			       btrfs_header_level(info->fs_root->node));
2043 	}
2044 
2045 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2046 	btrfs_set_backup_dev_root_gen(root_backup,
2047 			       btrfs_header_generation(info->dev_root->node));
2048 	btrfs_set_backup_dev_root_level(root_backup,
2049 				       btrfs_header_level(info->dev_root->node));
2050 
2051 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2052 	btrfs_set_backup_csum_root_gen(root_backup,
2053 			       btrfs_header_generation(info->csum_root->node));
2054 	btrfs_set_backup_csum_root_level(root_backup,
2055 			       btrfs_header_level(info->csum_root->node));
2056 
2057 	btrfs_set_backup_total_bytes(root_backup,
2058 			     btrfs_super_total_bytes(info->super_copy));
2059 	btrfs_set_backup_bytes_used(root_backup,
2060 			     btrfs_super_bytes_used(info->super_copy));
2061 	btrfs_set_backup_num_devices(root_backup,
2062 			     btrfs_super_num_devices(info->super_copy));
2063 
2064 	/*
2065 	 * if we don't copy this out to the super_copy, it won't get remembered
2066 	 * for the next commit
2067 	 */
2068 	memcpy(&info->super_copy->super_roots,
2069 	       &info->super_for_commit->super_roots,
2070 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2071 }
2072 
2073 /*
2074  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2075  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2076  *
2077  * fs_info - filesystem whose backup roots need to be read
2078  * priority - priority of backup root required
2079  *
2080  * Returns backup root index on success and -EINVAL otherwise.
2081  */
2082 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2083 {
2084 	int backup_index = find_newest_super_backup(fs_info);
2085 	struct btrfs_super_block *super = fs_info->super_copy;
2086 	struct btrfs_root_backup *root_backup;
2087 
2088 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2089 		if (priority == 0)
2090 			return backup_index;
2091 
2092 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2093 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2094 	} else {
2095 		return -EINVAL;
2096 	}
2097 
2098 	root_backup = super->super_roots + backup_index;
2099 
2100 	btrfs_set_super_generation(super,
2101 				   btrfs_backup_tree_root_gen(root_backup));
2102 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2103 	btrfs_set_super_root_level(super,
2104 				   btrfs_backup_tree_root_level(root_backup));
2105 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2106 
2107 	/*
2108 	 * Fixme: the total bytes and num_devices need to match or we should
2109 	 * need a fsck
2110 	 */
2111 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2112 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2113 
2114 	return backup_index;
2115 }
2116 
2117 /* helper to cleanup workers */
2118 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2119 {
2120 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2121 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2122 	btrfs_destroy_workqueue(fs_info->workers);
2123 	btrfs_destroy_workqueue(fs_info->endio_workers);
2124 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2125 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2126 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2127 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2128 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2129 	btrfs_destroy_workqueue(fs_info->caching_workers);
2130 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2131 	btrfs_destroy_workqueue(fs_info->flush_workers);
2132 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2133 	if (fs_info->discard_ctl.discard_workers)
2134 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2135 	/*
2136 	 * Now that all other work queues are destroyed, we can safely destroy
2137 	 * the queues used for metadata I/O, since tasks from those other work
2138 	 * queues can do metadata I/O operations.
2139 	 */
2140 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2141 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2142 }
2143 
2144 static void free_root_extent_buffers(struct btrfs_root *root)
2145 {
2146 	if (root) {
2147 		free_extent_buffer(root->node);
2148 		free_extent_buffer(root->commit_root);
2149 		root->node = NULL;
2150 		root->commit_root = NULL;
2151 	}
2152 }
2153 
2154 /* helper to cleanup tree roots */
2155 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2156 {
2157 	free_root_extent_buffers(info->tree_root);
2158 
2159 	free_root_extent_buffers(info->dev_root);
2160 	free_root_extent_buffers(info->extent_root);
2161 	free_root_extent_buffers(info->csum_root);
2162 	free_root_extent_buffers(info->quota_root);
2163 	free_root_extent_buffers(info->uuid_root);
2164 	free_root_extent_buffers(info->fs_root);
2165 	free_root_extent_buffers(info->data_reloc_root);
2166 	if (free_chunk_root)
2167 		free_root_extent_buffers(info->chunk_root);
2168 	free_root_extent_buffers(info->free_space_root);
2169 }
2170 
2171 void btrfs_put_root(struct btrfs_root *root)
2172 {
2173 	if (!root)
2174 		return;
2175 
2176 	if (refcount_dec_and_test(&root->refs)) {
2177 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2178 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2179 		if (root->anon_dev)
2180 			free_anon_bdev(root->anon_dev);
2181 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2182 		free_root_extent_buffers(root);
2183 #ifdef CONFIG_BTRFS_DEBUG
2184 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2185 		list_del_init(&root->leak_list);
2186 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2187 #endif
2188 		kfree(root);
2189 	}
2190 }
2191 
2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2193 {
2194 	int ret;
2195 	struct btrfs_root *gang[8];
2196 	int i;
2197 
2198 	while (!list_empty(&fs_info->dead_roots)) {
2199 		gang[0] = list_entry(fs_info->dead_roots.next,
2200 				     struct btrfs_root, root_list);
2201 		list_del(&gang[0]->root_list);
2202 
2203 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2204 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2205 		btrfs_put_root(gang[0]);
2206 	}
2207 
2208 	while (1) {
2209 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210 					     (void **)gang, 0,
2211 					     ARRAY_SIZE(gang));
2212 		if (!ret)
2213 			break;
2214 		for (i = 0; i < ret; i++)
2215 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216 	}
2217 }
2218 
2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220 {
2221 	mutex_init(&fs_info->scrub_lock);
2222 	atomic_set(&fs_info->scrubs_running, 0);
2223 	atomic_set(&fs_info->scrub_pause_req, 0);
2224 	atomic_set(&fs_info->scrubs_paused, 0);
2225 	atomic_set(&fs_info->scrub_cancel_req, 0);
2226 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2227 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2228 }
2229 
2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231 {
2232 	spin_lock_init(&fs_info->balance_lock);
2233 	mutex_init(&fs_info->balance_mutex);
2234 	atomic_set(&fs_info->balance_pause_req, 0);
2235 	atomic_set(&fs_info->balance_cancel_req, 0);
2236 	fs_info->balance_ctl = NULL;
2237 	init_waitqueue_head(&fs_info->balance_wait_q);
2238 	atomic_set(&fs_info->reloc_cancel_req, 0);
2239 }
2240 
2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2242 {
2243 	struct inode *inode = fs_info->btree_inode;
2244 
2245 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2246 	set_nlink(inode, 1);
2247 	/*
2248 	 * we set the i_size on the btree inode to the max possible int.
2249 	 * the real end of the address space is determined by all of
2250 	 * the devices in the system
2251 	 */
2252 	inode->i_size = OFFSET_MAX;
2253 	inode->i_mapping->a_ops = &btree_aops;
2254 
2255 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2256 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2257 			    IO_TREE_BTREE_INODE_IO, inode);
2258 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2259 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2260 
2261 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2262 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2263 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2264 	btrfs_insert_inode_hash(inode);
2265 }
2266 
2267 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2268 {
2269 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2270 	init_rwsem(&fs_info->dev_replace.rwsem);
2271 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2272 }
2273 
2274 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2275 {
2276 	spin_lock_init(&fs_info->qgroup_lock);
2277 	mutex_init(&fs_info->qgroup_ioctl_lock);
2278 	fs_info->qgroup_tree = RB_ROOT;
2279 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2280 	fs_info->qgroup_seq = 1;
2281 	fs_info->qgroup_ulist = NULL;
2282 	fs_info->qgroup_rescan_running = false;
2283 	mutex_init(&fs_info->qgroup_rescan_lock);
2284 }
2285 
2286 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2287 		struct btrfs_fs_devices *fs_devices)
2288 {
2289 	u32 max_active = fs_info->thread_pool_size;
2290 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2291 
2292 	fs_info->workers =
2293 		btrfs_alloc_workqueue(fs_info, "worker",
2294 				      flags | WQ_HIGHPRI, max_active, 16);
2295 
2296 	fs_info->delalloc_workers =
2297 		btrfs_alloc_workqueue(fs_info, "delalloc",
2298 				      flags, max_active, 2);
2299 
2300 	fs_info->flush_workers =
2301 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2302 				      flags, max_active, 0);
2303 
2304 	fs_info->caching_workers =
2305 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2306 
2307 	fs_info->fixup_workers =
2308 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2309 
2310 	/*
2311 	 * endios are largely parallel and should have a very
2312 	 * low idle thresh
2313 	 */
2314 	fs_info->endio_workers =
2315 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2316 	fs_info->endio_meta_workers =
2317 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2318 				      max_active, 4);
2319 	fs_info->endio_meta_write_workers =
2320 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2321 				      max_active, 2);
2322 	fs_info->endio_raid56_workers =
2323 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2324 				      max_active, 4);
2325 	fs_info->rmw_workers =
2326 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2327 	fs_info->endio_write_workers =
2328 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2329 				      max_active, 2);
2330 	fs_info->endio_freespace_worker =
2331 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2332 				      max_active, 0);
2333 	fs_info->delayed_workers =
2334 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2335 				      max_active, 0);
2336 	fs_info->readahead_workers =
2337 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2338 				      max_active, 2);
2339 	fs_info->qgroup_rescan_workers =
2340 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2341 	fs_info->discard_ctl.discard_workers =
2342 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2343 
2344 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2345 	      fs_info->flush_workers &&
2346 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2347 	      fs_info->endio_meta_write_workers &&
2348 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2349 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2350 	      fs_info->caching_workers && fs_info->readahead_workers &&
2351 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2352 	      fs_info->qgroup_rescan_workers &&
2353 	      fs_info->discard_ctl.discard_workers)) {
2354 		return -ENOMEM;
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2361 {
2362 	struct crypto_shash *csum_shash;
2363 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2364 
2365 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2366 
2367 	if (IS_ERR(csum_shash)) {
2368 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2369 			  csum_driver);
2370 		return PTR_ERR(csum_shash);
2371 	}
2372 
2373 	fs_info->csum_shash = csum_shash;
2374 
2375 	return 0;
2376 }
2377 
2378 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2379 			    struct btrfs_fs_devices *fs_devices)
2380 {
2381 	int ret;
2382 	struct btrfs_root *log_tree_root;
2383 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2384 	u64 bytenr = btrfs_super_log_root(disk_super);
2385 	int level = btrfs_super_log_root_level(disk_super);
2386 
2387 	if (fs_devices->rw_devices == 0) {
2388 		btrfs_warn(fs_info, "log replay required on RO media");
2389 		return -EIO;
2390 	}
2391 
2392 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2393 					 GFP_KERNEL);
2394 	if (!log_tree_root)
2395 		return -ENOMEM;
2396 
2397 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2398 					      BTRFS_TREE_LOG_OBJECTID,
2399 					      fs_info->generation + 1, level,
2400 					      NULL);
2401 	if (IS_ERR(log_tree_root->node)) {
2402 		btrfs_warn(fs_info, "failed to read log tree");
2403 		ret = PTR_ERR(log_tree_root->node);
2404 		log_tree_root->node = NULL;
2405 		btrfs_put_root(log_tree_root);
2406 		return ret;
2407 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2408 		btrfs_err(fs_info, "failed to read log tree");
2409 		btrfs_put_root(log_tree_root);
2410 		return -EIO;
2411 	}
2412 	/* returns with log_tree_root freed on success */
2413 	ret = btrfs_recover_log_trees(log_tree_root);
2414 	if (ret) {
2415 		btrfs_handle_fs_error(fs_info, ret,
2416 				      "Failed to recover log tree");
2417 		btrfs_put_root(log_tree_root);
2418 		return ret;
2419 	}
2420 
2421 	if (sb_rdonly(fs_info->sb)) {
2422 		ret = btrfs_commit_super(fs_info);
2423 		if (ret)
2424 			return ret;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2431 {
2432 	struct btrfs_root *tree_root = fs_info->tree_root;
2433 	struct btrfs_root *root;
2434 	struct btrfs_key location;
2435 	int ret;
2436 
2437 	BUG_ON(!fs_info->tree_root);
2438 
2439 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2440 	location.type = BTRFS_ROOT_ITEM_KEY;
2441 	location.offset = 0;
2442 
2443 	root = btrfs_read_tree_root(tree_root, &location);
2444 	if (IS_ERR(root)) {
2445 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2446 			ret = PTR_ERR(root);
2447 			goto out;
2448 		}
2449 	} else {
2450 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451 		fs_info->extent_root = root;
2452 	}
2453 
2454 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2455 	root = btrfs_read_tree_root(tree_root, &location);
2456 	if (IS_ERR(root)) {
2457 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2458 			ret = PTR_ERR(root);
2459 			goto out;
2460 		}
2461 	} else {
2462 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2463 		fs_info->dev_root = root;
2464 	}
2465 	/* Initialize fs_info for all devices in any case */
2466 	btrfs_init_devices_late(fs_info);
2467 
2468 	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2469 	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2470 		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2471 		root = btrfs_read_tree_root(tree_root, &location);
2472 		if (IS_ERR(root)) {
2473 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2474 				ret = PTR_ERR(root);
2475 				goto out;
2476 			}
2477 		} else {
2478 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479 			fs_info->csum_root = root;
2480 		}
2481 	}
2482 
2483 	/*
2484 	 * This tree can share blocks with some other fs tree during relocation
2485 	 * and we need a proper setup by btrfs_get_fs_root
2486 	 */
2487 	root = btrfs_get_fs_root(tree_root->fs_info,
2488 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2489 	if (IS_ERR(root)) {
2490 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2491 			ret = PTR_ERR(root);
2492 			goto out;
2493 		}
2494 	} else {
2495 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496 		fs_info->data_reloc_root = root;
2497 	}
2498 
2499 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2500 	root = btrfs_read_tree_root(tree_root, &location);
2501 	if (!IS_ERR(root)) {
2502 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2504 		fs_info->quota_root = root;
2505 	}
2506 
2507 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2508 	root = btrfs_read_tree_root(tree_root, &location);
2509 	if (IS_ERR(root)) {
2510 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2511 			ret = PTR_ERR(root);
2512 			if (ret != -ENOENT)
2513 				goto out;
2514 		}
2515 	} else {
2516 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517 		fs_info->uuid_root = root;
2518 	}
2519 
2520 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2521 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2522 		root = btrfs_read_tree_root(tree_root, &location);
2523 		if (IS_ERR(root)) {
2524 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2525 				ret = PTR_ERR(root);
2526 				goto out;
2527 			}
2528 		}  else {
2529 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2530 			fs_info->free_space_root = root;
2531 		}
2532 	}
2533 
2534 	return 0;
2535 out:
2536 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2537 		   location.objectid, ret);
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Real super block validation
2543  * NOTE: super csum type and incompat features will not be checked here.
2544  *
2545  * @sb:		super block to check
2546  * @mirror_num:	the super block number to check its bytenr:
2547  * 		0	the primary (1st) sb
2548  * 		1, 2	2nd and 3rd backup copy
2549  * 	       -1	skip bytenr check
2550  */
2551 static int validate_super(struct btrfs_fs_info *fs_info,
2552 			    struct btrfs_super_block *sb, int mirror_num)
2553 {
2554 	u64 nodesize = btrfs_super_nodesize(sb);
2555 	u64 sectorsize = btrfs_super_sectorsize(sb);
2556 	int ret = 0;
2557 
2558 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2559 		btrfs_err(fs_info, "no valid FS found");
2560 		ret = -EINVAL;
2561 	}
2562 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2563 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2564 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2565 		ret = -EINVAL;
2566 	}
2567 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2568 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2569 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2570 		ret = -EINVAL;
2571 	}
2572 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2573 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2574 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2575 		ret = -EINVAL;
2576 	}
2577 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2578 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2579 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2580 		ret = -EINVAL;
2581 	}
2582 
2583 	/*
2584 	 * Check sectorsize and nodesize first, other check will need it.
2585 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2586 	 */
2587 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2588 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2589 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2590 		ret = -EINVAL;
2591 	}
2592 
2593 	/*
2594 	 * For 4K page size, we only support 4K sector size.
2595 	 * For 64K page size, we support read-write for 64K sector size, and
2596 	 * read-only for 4K sector size.
2597 	 */
2598 	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2599 	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2600 				     sectorsize != SZ_64K))) {
2601 		btrfs_err(fs_info,
2602 			"sectorsize %llu not yet supported for page size %lu",
2603 			sectorsize, PAGE_SIZE);
2604 		ret = -EINVAL;
2605 	}
2606 
2607 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2608 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2609 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2610 		ret = -EINVAL;
2611 	}
2612 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2613 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2614 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2615 		ret = -EINVAL;
2616 	}
2617 
2618 	/* Root alignment check */
2619 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2620 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2621 			   btrfs_super_root(sb));
2622 		ret = -EINVAL;
2623 	}
2624 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2625 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2626 			   btrfs_super_chunk_root(sb));
2627 		ret = -EINVAL;
2628 	}
2629 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2630 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2631 			   btrfs_super_log_root(sb));
2632 		ret = -EINVAL;
2633 	}
2634 
2635 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2636 		   BTRFS_FSID_SIZE)) {
2637 		btrfs_err(fs_info,
2638 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2639 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2640 		ret = -EINVAL;
2641 	}
2642 
2643 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2644 	    memcmp(fs_info->fs_devices->metadata_uuid,
2645 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2646 		btrfs_err(fs_info,
2647 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2648 			fs_info->super_copy->metadata_uuid,
2649 			fs_info->fs_devices->metadata_uuid);
2650 		ret = -EINVAL;
2651 	}
2652 
2653 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2654 		   BTRFS_FSID_SIZE) != 0) {
2655 		btrfs_err(fs_info,
2656 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2657 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2658 		ret = -EINVAL;
2659 	}
2660 
2661 	/*
2662 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2663 	 * done later
2664 	 */
2665 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2666 		btrfs_err(fs_info, "bytes_used is too small %llu",
2667 			  btrfs_super_bytes_used(sb));
2668 		ret = -EINVAL;
2669 	}
2670 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2671 		btrfs_err(fs_info, "invalid stripesize %u",
2672 			  btrfs_super_stripesize(sb));
2673 		ret = -EINVAL;
2674 	}
2675 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2676 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2677 			   btrfs_super_num_devices(sb));
2678 	if (btrfs_super_num_devices(sb) == 0) {
2679 		btrfs_err(fs_info, "number of devices is 0");
2680 		ret = -EINVAL;
2681 	}
2682 
2683 	if (mirror_num >= 0 &&
2684 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2685 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2686 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2687 		ret = -EINVAL;
2688 	}
2689 
2690 	/*
2691 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2692 	 * and one chunk
2693 	 */
2694 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2695 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2696 			  btrfs_super_sys_array_size(sb),
2697 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2698 		ret = -EINVAL;
2699 	}
2700 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2701 			+ sizeof(struct btrfs_chunk)) {
2702 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2703 			  btrfs_super_sys_array_size(sb),
2704 			  sizeof(struct btrfs_disk_key)
2705 			  + sizeof(struct btrfs_chunk));
2706 		ret = -EINVAL;
2707 	}
2708 
2709 	/*
2710 	 * The generation is a global counter, we'll trust it more than the others
2711 	 * but it's still possible that it's the one that's wrong.
2712 	 */
2713 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2714 		btrfs_warn(fs_info,
2715 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2716 			btrfs_super_generation(sb),
2717 			btrfs_super_chunk_root_generation(sb));
2718 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2719 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2720 		btrfs_warn(fs_info,
2721 			"suspicious: generation < cache_generation: %llu < %llu",
2722 			btrfs_super_generation(sb),
2723 			btrfs_super_cache_generation(sb));
2724 
2725 	return ret;
2726 }
2727 
2728 /*
2729  * Validation of super block at mount time.
2730  * Some checks already done early at mount time, like csum type and incompat
2731  * flags will be skipped.
2732  */
2733 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2734 {
2735 	return validate_super(fs_info, fs_info->super_copy, 0);
2736 }
2737 
2738 /*
2739  * Validation of super block at write time.
2740  * Some checks like bytenr check will be skipped as their values will be
2741  * overwritten soon.
2742  * Extra checks like csum type and incompat flags will be done here.
2743  */
2744 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2745 				      struct btrfs_super_block *sb)
2746 {
2747 	int ret;
2748 
2749 	ret = validate_super(fs_info, sb, -1);
2750 	if (ret < 0)
2751 		goto out;
2752 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2753 		ret = -EUCLEAN;
2754 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2755 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2756 		goto out;
2757 	}
2758 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2759 		ret = -EUCLEAN;
2760 		btrfs_err(fs_info,
2761 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2762 			  btrfs_super_incompat_flags(sb),
2763 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2764 		goto out;
2765 	}
2766 out:
2767 	if (ret < 0)
2768 		btrfs_err(fs_info,
2769 		"super block corruption detected before writing it to disk");
2770 	return ret;
2771 }
2772 
2773 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2774 {
2775 	int backup_index = find_newest_super_backup(fs_info);
2776 	struct btrfs_super_block *sb = fs_info->super_copy;
2777 	struct btrfs_root *tree_root = fs_info->tree_root;
2778 	bool handle_error = false;
2779 	int ret = 0;
2780 	int i;
2781 
2782 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2783 		u64 generation;
2784 		int level;
2785 
2786 		if (handle_error) {
2787 			if (!IS_ERR(tree_root->node))
2788 				free_extent_buffer(tree_root->node);
2789 			tree_root->node = NULL;
2790 
2791 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2792 				break;
2793 
2794 			free_root_pointers(fs_info, 0);
2795 
2796 			/*
2797 			 * Don't use the log in recovery mode, it won't be
2798 			 * valid
2799 			 */
2800 			btrfs_set_super_log_root(sb, 0);
2801 
2802 			/* We can't trust the free space cache either */
2803 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2804 
2805 			ret = read_backup_root(fs_info, i);
2806 			backup_index = ret;
2807 			if (ret < 0)
2808 				return ret;
2809 		}
2810 		generation = btrfs_super_generation(sb);
2811 		level = btrfs_super_root_level(sb);
2812 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2813 						  BTRFS_ROOT_TREE_OBJECTID,
2814 						  generation, level, NULL);
2815 		if (IS_ERR(tree_root->node)) {
2816 			handle_error = true;
2817 			ret = PTR_ERR(tree_root->node);
2818 			tree_root->node = NULL;
2819 			btrfs_warn(fs_info, "couldn't read tree root");
2820 			continue;
2821 
2822 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2823 			handle_error = true;
2824 			ret = -EIO;
2825 			btrfs_warn(fs_info, "error while reading tree root");
2826 			continue;
2827 		}
2828 
2829 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2830 		tree_root->commit_root = btrfs_root_node(tree_root);
2831 		btrfs_set_root_refs(&tree_root->root_item, 1);
2832 
2833 		/*
2834 		 * No need to hold btrfs_root::objectid_mutex since the fs
2835 		 * hasn't been fully initialised and we are the only user
2836 		 */
2837 		ret = btrfs_init_root_free_objectid(tree_root);
2838 		if (ret < 0) {
2839 			handle_error = true;
2840 			continue;
2841 		}
2842 
2843 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2844 
2845 		ret = btrfs_read_roots(fs_info);
2846 		if (ret < 0) {
2847 			handle_error = true;
2848 			continue;
2849 		}
2850 
2851 		/* All successful */
2852 		fs_info->generation = generation;
2853 		fs_info->last_trans_committed = generation;
2854 
2855 		/* Always begin writing backup roots after the one being used */
2856 		if (backup_index < 0) {
2857 			fs_info->backup_root_index = 0;
2858 		} else {
2859 			fs_info->backup_root_index = backup_index + 1;
2860 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2861 		}
2862 		break;
2863 	}
2864 
2865 	return ret;
2866 }
2867 
2868 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2869 {
2870 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2871 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2872 	INIT_LIST_HEAD(&fs_info->trans_list);
2873 	INIT_LIST_HEAD(&fs_info->dead_roots);
2874 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2875 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2876 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2877 	spin_lock_init(&fs_info->delalloc_root_lock);
2878 	spin_lock_init(&fs_info->trans_lock);
2879 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2880 	spin_lock_init(&fs_info->delayed_iput_lock);
2881 	spin_lock_init(&fs_info->defrag_inodes_lock);
2882 	spin_lock_init(&fs_info->super_lock);
2883 	spin_lock_init(&fs_info->buffer_lock);
2884 	spin_lock_init(&fs_info->unused_bgs_lock);
2885 	spin_lock_init(&fs_info->treelog_bg_lock);
2886 	rwlock_init(&fs_info->tree_mod_log_lock);
2887 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2888 	mutex_init(&fs_info->reclaim_bgs_lock);
2889 	mutex_init(&fs_info->reloc_mutex);
2890 	mutex_init(&fs_info->delalloc_root_mutex);
2891 	mutex_init(&fs_info->zoned_meta_io_lock);
2892 	seqlock_init(&fs_info->profiles_lock);
2893 
2894 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2895 	INIT_LIST_HEAD(&fs_info->space_info);
2896 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2897 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2898 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2899 #ifdef CONFIG_BTRFS_DEBUG
2900 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2901 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2902 	spin_lock_init(&fs_info->eb_leak_lock);
2903 #endif
2904 	extent_map_tree_init(&fs_info->mapping_tree);
2905 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2906 			     BTRFS_BLOCK_RSV_GLOBAL);
2907 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2908 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2909 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2910 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2911 			     BTRFS_BLOCK_RSV_DELOPS);
2912 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2913 			     BTRFS_BLOCK_RSV_DELREFS);
2914 
2915 	atomic_set(&fs_info->async_delalloc_pages, 0);
2916 	atomic_set(&fs_info->defrag_running, 0);
2917 	atomic_set(&fs_info->reada_works_cnt, 0);
2918 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2919 	atomic64_set(&fs_info->tree_mod_seq, 0);
2920 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2921 	fs_info->metadata_ratio = 0;
2922 	fs_info->defrag_inodes = RB_ROOT;
2923 	atomic64_set(&fs_info->free_chunk_space, 0);
2924 	fs_info->tree_mod_log = RB_ROOT;
2925 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2926 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2927 	/* readahead state */
2928 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2929 	spin_lock_init(&fs_info->reada_lock);
2930 	btrfs_init_ref_verify(fs_info);
2931 
2932 	fs_info->thread_pool_size = min_t(unsigned long,
2933 					  num_online_cpus() + 2, 8);
2934 
2935 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2936 	spin_lock_init(&fs_info->ordered_root_lock);
2937 
2938 	btrfs_init_scrub(fs_info);
2939 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2940 	fs_info->check_integrity_print_mask = 0;
2941 #endif
2942 	btrfs_init_balance(fs_info);
2943 	btrfs_init_async_reclaim_work(fs_info);
2944 
2945 	spin_lock_init(&fs_info->block_group_cache_lock);
2946 	fs_info->block_group_cache_tree = RB_ROOT;
2947 	fs_info->first_logical_byte = (u64)-1;
2948 
2949 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2950 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2951 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2952 
2953 	mutex_init(&fs_info->ordered_operations_mutex);
2954 	mutex_init(&fs_info->tree_log_mutex);
2955 	mutex_init(&fs_info->chunk_mutex);
2956 	mutex_init(&fs_info->transaction_kthread_mutex);
2957 	mutex_init(&fs_info->cleaner_mutex);
2958 	mutex_init(&fs_info->ro_block_group_mutex);
2959 	init_rwsem(&fs_info->commit_root_sem);
2960 	init_rwsem(&fs_info->cleanup_work_sem);
2961 	init_rwsem(&fs_info->subvol_sem);
2962 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2963 
2964 	btrfs_init_dev_replace_locks(fs_info);
2965 	btrfs_init_qgroup(fs_info);
2966 	btrfs_discard_init(fs_info);
2967 
2968 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2969 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2970 
2971 	init_waitqueue_head(&fs_info->transaction_throttle);
2972 	init_waitqueue_head(&fs_info->transaction_wait);
2973 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2974 	init_waitqueue_head(&fs_info->async_submit_wait);
2975 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2976 
2977 	/* Usable values until the real ones are cached from the superblock */
2978 	fs_info->nodesize = 4096;
2979 	fs_info->sectorsize = 4096;
2980 	fs_info->sectorsize_bits = ilog2(4096);
2981 	fs_info->stripesize = 4096;
2982 
2983 	spin_lock_init(&fs_info->swapfile_pins_lock);
2984 	fs_info->swapfile_pins = RB_ROOT;
2985 
2986 	spin_lock_init(&fs_info->send_reloc_lock);
2987 	fs_info->send_in_progress = 0;
2988 
2989 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2990 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2991 }
2992 
2993 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2994 {
2995 	int ret;
2996 
2997 	fs_info->sb = sb;
2998 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2999 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3000 
3001 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3002 	if (ret)
3003 		return ret;
3004 
3005 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3006 	if (ret)
3007 		return ret;
3008 
3009 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3010 					(1 + ilog2(nr_cpu_ids));
3011 
3012 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3013 	if (ret)
3014 		return ret;
3015 
3016 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3017 			GFP_KERNEL);
3018 	if (ret)
3019 		return ret;
3020 
3021 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3022 					GFP_KERNEL);
3023 	if (!fs_info->delayed_root)
3024 		return -ENOMEM;
3025 	btrfs_init_delayed_root(fs_info->delayed_root);
3026 
3027 	if (sb_rdonly(sb))
3028 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3029 
3030 	return btrfs_alloc_stripe_hash_table(fs_info);
3031 }
3032 
3033 static int btrfs_uuid_rescan_kthread(void *data)
3034 {
3035 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3036 	int ret;
3037 
3038 	/*
3039 	 * 1st step is to iterate through the existing UUID tree and
3040 	 * to delete all entries that contain outdated data.
3041 	 * 2nd step is to add all missing entries to the UUID tree.
3042 	 */
3043 	ret = btrfs_uuid_tree_iterate(fs_info);
3044 	if (ret < 0) {
3045 		if (ret != -EINTR)
3046 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3047 				   ret);
3048 		up(&fs_info->uuid_tree_rescan_sem);
3049 		return ret;
3050 	}
3051 	return btrfs_uuid_scan_kthread(data);
3052 }
3053 
3054 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3055 {
3056 	struct task_struct *task;
3057 
3058 	down(&fs_info->uuid_tree_rescan_sem);
3059 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3060 	if (IS_ERR(task)) {
3061 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3062 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3063 		up(&fs_info->uuid_tree_rescan_sem);
3064 		return PTR_ERR(task);
3065 	}
3066 
3067 	return 0;
3068 }
3069 
3070 /*
3071  * Some options only have meaning at mount time and shouldn't persist across
3072  * remounts, or be displayed. Clear these at the end of mount and remount
3073  * code paths.
3074  */
3075 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3076 {
3077 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3078 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3079 }
3080 
3081 /*
3082  * Mounting logic specific to read-write file systems. Shared by open_ctree
3083  * and btrfs_remount when remounting from read-only to read-write.
3084  */
3085 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3086 {
3087 	int ret;
3088 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3089 	bool clear_free_space_tree = false;
3090 
3091 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3092 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3093 		clear_free_space_tree = true;
3094 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3095 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3096 		btrfs_warn(fs_info, "free space tree is invalid");
3097 		clear_free_space_tree = true;
3098 	}
3099 
3100 	if (clear_free_space_tree) {
3101 		btrfs_info(fs_info, "clearing free space tree");
3102 		ret = btrfs_clear_free_space_tree(fs_info);
3103 		if (ret) {
3104 			btrfs_warn(fs_info,
3105 				   "failed to clear free space tree: %d", ret);
3106 			goto out;
3107 		}
3108 	}
3109 
3110 	/*
3111 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3112 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3113 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3114 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3115 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3116 	 * item before the root's tree is deleted - this means that if we unmount
3117 	 * or crash before the deletion completes, on the next mount we will not
3118 	 * delete what remains of the tree because the orphan item does not
3119 	 * exists anymore, which is what tells us we have a pending deletion.
3120 	 */
3121 	ret = btrfs_find_orphan_roots(fs_info);
3122 	if (ret)
3123 		goto out;
3124 
3125 	ret = btrfs_cleanup_fs_roots(fs_info);
3126 	if (ret)
3127 		goto out;
3128 
3129 	down_read(&fs_info->cleanup_work_sem);
3130 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3131 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3132 		up_read(&fs_info->cleanup_work_sem);
3133 		goto out;
3134 	}
3135 	up_read(&fs_info->cleanup_work_sem);
3136 
3137 	mutex_lock(&fs_info->cleaner_mutex);
3138 	ret = btrfs_recover_relocation(fs_info->tree_root);
3139 	mutex_unlock(&fs_info->cleaner_mutex);
3140 	if (ret < 0) {
3141 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3142 		goto out;
3143 	}
3144 
3145 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3146 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3147 		btrfs_info(fs_info, "creating free space tree");
3148 		ret = btrfs_create_free_space_tree(fs_info);
3149 		if (ret) {
3150 			btrfs_warn(fs_info,
3151 				"failed to create free space tree: %d", ret);
3152 			goto out;
3153 		}
3154 	}
3155 
3156 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3157 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3158 		if (ret)
3159 			goto out;
3160 	}
3161 
3162 	ret = btrfs_resume_balance_async(fs_info);
3163 	if (ret)
3164 		goto out;
3165 
3166 	ret = btrfs_resume_dev_replace_async(fs_info);
3167 	if (ret) {
3168 		btrfs_warn(fs_info, "failed to resume dev_replace");
3169 		goto out;
3170 	}
3171 
3172 	btrfs_qgroup_rescan_resume(fs_info);
3173 
3174 	if (!fs_info->uuid_root) {
3175 		btrfs_info(fs_info, "creating UUID tree");
3176 		ret = btrfs_create_uuid_tree(fs_info);
3177 		if (ret) {
3178 			btrfs_warn(fs_info,
3179 				   "failed to create the UUID tree %d", ret);
3180 			goto out;
3181 		}
3182 	}
3183 
3184 out:
3185 	return ret;
3186 }
3187 
3188 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3189 		      char *options)
3190 {
3191 	u32 sectorsize;
3192 	u32 nodesize;
3193 	u32 stripesize;
3194 	u64 generation;
3195 	u64 features;
3196 	u16 csum_type;
3197 	struct btrfs_super_block *disk_super;
3198 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3199 	struct btrfs_root *tree_root;
3200 	struct btrfs_root *chunk_root;
3201 	int ret;
3202 	int err = -EINVAL;
3203 	int level;
3204 
3205 	ret = init_mount_fs_info(fs_info, sb);
3206 	if (ret) {
3207 		err = ret;
3208 		goto fail;
3209 	}
3210 
3211 	/* These need to be init'ed before we start creating inodes and such. */
3212 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3213 				     GFP_KERNEL);
3214 	fs_info->tree_root = tree_root;
3215 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3216 				      GFP_KERNEL);
3217 	fs_info->chunk_root = chunk_root;
3218 	if (!tree_root || !chunk_root) {
3219 		err = -ENOMEM;
3220 		goto fail;
3221 	}
3222 
3223 	fs_info->btree_inode = new_inode(sb);
3224 	if (!fs_info->btree_inode) {
3225 		err = -ENOMEM;
3226 		goto fail;
3227 	}
3228 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3229 	btrfs_init_btree_inode(fs_info);
3230 
3231 	invalidate_bdev(fs_devices->latest_bdev);
3232 
3233 	/*
3234 	 * Read super block and check the signature bytes only
3235 	 */
3236 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3237 	if (IS_ERR(disk_super)) {
3238 		err = PTR_ERR(disk_super);
3239 		goto fail_alloc;
3240 	}
3241 
3242 	/*
3243 	 * Verify the type first, if that or the checksum value are
3244 	 * corrupted, we'll find out
3245 	 */
3246 	csum_type = btrfs_super_csum_type(disk_super);
3247 	if (!btrfs_supported_super_csum(csum_type)) {
3248 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3249 			  csum_type);
3250 		err = -EINVAL;
3251 		btrfs_release_disk_super(disk_super);
3252 		goto fail_alloc;
3253 	}
3254 
3255 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3256 
3257 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3258 	if (ret) {
3259 		err = ret;
3260 		btrfs_release_disk_super(disk_super);
3261 		goto fail_alloc;
3262 	}
3263 
3264 	/*
3265 	 * We want to check superblock checksum, the type is stored inside.
3266 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267 	 */
3268 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3269 		btrfs_err(fs_info, "superblock checksum mismatch");
3270 		err = -EINVAL;
3271 		btrfs_release_disk_super(disk_super);
3272 		goto fail_alloc;
3273 	}
3274 
3275 	/*
3276 	 * super_copy is zeroed at allocation time and we never touch the
3277 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3278 	 * the whole block of INFO_SIZE
3279 	 */
3280 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281 	btrfs_release_disk_super(disk_super);
3282 
3283 	disk_super = fs_info->super_copy;
3284 
3285 
3286 	features = btrfs_super_flags(disk_super);
3287 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3288 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3289 		btrfs_set_super_flags(disk_super, features);
3290 		btrfs_info(fs_info,
3291 			"found metadata UUID change in progress flag, clearing");
3292 	}
3293 
3294 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3295 	       sizeof(*fs_info->super_for_commit));
3296 
3297 	ret = btrfs_validate_mount_super(fs_info);
3298 	if (ret) {
3299 		btrfs_err(fs_info, "superblock contains fatal errors");
3300 		err = -EINVAL;
3301 		goto fail_alloc;
3302 	}
3303 
3304 	if (!btrfs_super_root(disk_super))
3305 		goto fail_alloc;
3306 
3307 	/* check FS state, whether FS is broken. */
3308 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3309 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3310 
3311 	/*
3312 	 * In the long term, we'll store the compression type in the super
3313 	 * block, and it'll be used for per file compression control.
3314 	 */
3315 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3316 
3317 	/*
3318 	 * Flag our filesystem as having big metadata blocks if they are bigger
3319 	 * than the page size.
3320 	 */
3321 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3322 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3323 			btrfs_info(fs_info,
3324 				"flagging fs with big metadata feature");
3325 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3326 	}
3327 
3328 	/* Set up fs_info before parsing mount options */
3329 	nodesize = btrfs_super_nodesize(disk_super);
3330 	sectorsize = btrfs_super_sectorsize(disk_super);
3331 	stripesize = sectorsize;
3332 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3333 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3334 
3335 	fs_info->nodesize = nodesize;
3336 	fs_info->sectorsize = sectorsize;
3337 	fs_info->sectorsize_bits = ilog2(sectorsize);
3338 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3339 	fs_info->stripesize = stripesize;
3340 
3341 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3342 	if (ret) {
3343 		err = ret;
3344 		goto fail_alloc;
3345 	}
3346 
3347 	features = btrfs_super_incompat_flags(disk_super) &
3348 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3349 	if (features) {
3350 		btrfs_err(fs_info,
3351 		    "cannot mount because of unsupported optional features (%llx)",
3352 		    features);
3353 		err = -EINVAL;
3354 		goto fail_alloc;
3355 	}
3356 
3357 	features = btrfs_super_incompat_flags(disk_super);
3358 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3359 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3360 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3361 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3362 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3363 
3364 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3365 		btrfs_info(fs_info, "has skinny extents");
3366 
3367 	/*
3368 	 * mixed block groups end up with duplicate but slightly offset
3369 	 * extent buffers for the same range.  It leads to corruptions
3370 	 */
3371 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3372 	    (sectorsize != nodesize)) {
3373 		btrfs_err(fs_info,
3374 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3375 			nodesize, sectorsize);
3376 		goto fail_alloc;
3377 	}
3378 
3379 	/*
3380 	 * Needn't use the lock because there is no other task which will
3381 	 * update the flag.
3382 	 */
3383 	btrfs_set_super_incompat_flags(disk_super, features);
3384 
3385 	features = btrfs_super_compat_ro_flags(disk_super) &
3386 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3387 	if (!sb_rdonly(sb) && features) {
3388 		btrfs_err(fs_info,
3389 	"cannot mount read-write because of unsupported optional features (%llx)",
3390 		       features);
3391 		err = -EINVAL;
3392 		goto fail_alloc;
3393 	}
3394 
3395 	if (sectorsize != PAGE_SIZE) {
3396 		btrfs_warn(fs_info,
3397 		"read-write for sector size %u with page size %lu is experimental",
3398 			   sectorsize, PAGE_SIZE);
3399 	}
3400 	if (sectorsize != PAGE_SIZE) {
3401 		if (btrfs_super_incompat_flags(fs_info->super_copy) &
3402 			BTRFS_FEATURE_INCOMPAT_RAID56) {
3403 			btrfs_err(fs_info,
3404 		"RAID56 is not yet supported for sector size %u with page size %lu",
3405 				sectorsize, PAGE_SIZE);
3406 			err = -EINVAL;
3407 			goto fail_alloc;
3408 		}
3409 	}
3410 
3411 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3412 	if (ret) {
3413 		err = ret;
3414 		goto fail_sb_buffer;
3415 	}
3416 
3417 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3418 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3419 
3420 	sb->s_blocksize = sectorsize;
3421 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3422 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3423 
3424 	mutex_lock(&fs_info->chunk_mutex);
3425 	ret = btrfs_read_sys_array(fs_info);
3426 	mutex_unlock(&fs_info->chunk_mutex);
3427 	if (ret) {
3428 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3429 		goto fail_sb_buffer;
3430 	}
3431 
3432 	generation = btrfs_super_chunk_root_generation(disk_super);
3433 	level = btrfs_super_chunk_root_level(disk_super);
3434 
3435 	chunk_root->node = read_tree_block(fs_info,
3436 					   btrfs_super_chunk_root(disk_super),
3437 					   BTRFS_CHUNK_TREE_OBJECTID,
3438 					   generation, level, NULL);
3439 	if (IS_ERR(chunk_root->node) ||
3440 	    !extent_buffer_uptodate(chunk_root->node)) {
3441 		btrfs_err(fs_info, "failed to read chunk root");
3442 		if (!IS_ERR(chunk_root->node))
3443 			free_extent_buffer(chunk_root->node);
3444 		chunk_root->node = NULL;
3445 		goto fail_tree_roots;
3446 	}
3447 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3448 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3449 
3450 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3451 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3452 			   BTRFS_UUID_SIZE);
3453 
3454 	ret = btrfs_read_chunk_tree(fs_info);
3455 	if (ret) {
3456 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3457 		goto fail_tree_roots;
3458 	}
3459 
3460 	/*
3461 	 * At this point we know all the devices that make this filesystem,
3462 	 * including the seed devices but we don't know yet if the replace
3463 	 * target is required. So free devices that are not part of this
3464 	 * filesystem but skip the replace target device which is checked
3465 	 * below in btrfs_init_dev_replace().
3466 	 */
3467 	btrfs_free_extra_devids(fs_devices);
3468 	if (!fs_devices->latest_bdev) {
3469 		btrfs_err(fs_info, "failed to read devices");
3470 		goto fail_tree_roots;
3471 	}
3472 
3473 	ret = init_tree_roots(fs_info);
3474 	if (ret)
3475 		goto fail_tree_roots;
3476 
3477 	/*
3478 	 * Get zone type information of zoned block devices. This will also
3479 	 * handle emulation of a zoned filesystem if a regular device has the
3480 	 * zoned incompat feature flag set.
3481 	 */
3482 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3483 	if (ret) {
3484 		btrfs_err(fs_info,
3485 			  "zoned: failed to read device zone info: %d",
3486 			  ret);
3487 		goto fail_block_groups;
3488 	}
3489 
3490 	/*
3491 	 * If we have a uuid root and we're not being told to rescan we need to
3492 	 * check the generation here so we can set the
3493 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3494 	 * transaction during a balance or the log replay without updating the
3495 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3496 	 * even though it was perfectly fine.
3497 	 */
3498 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3499 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3500 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3501 
3502 	ret = btrfs_verify_dev_extents(fs_info);
3503 	if (ret) {
3504 		btrfs_err(fs_info,
3505 			  "failed to verify dev extents against chunks: %d",
3506 			  ret);
3507 		goto fail_block_groups;
3508 	}
3509 	ret = btrfs_recover_balance(fs_info);
3510 	if (ret) {
3511 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3512 		goto fail_block_groups;
3513 	}
3514 
3515 	ret = btrfs_init_dev_stats(fs_info);
3516 	if (ret) {
3517 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3518 		goto fail_block_groups;
3519 	}
3520 
3521 	ret = btrfs_init_dev_replace(fs_info);
3522 	if (ret) {
3523 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3524 		goto fail_block_groups;
3525 	}
3526 
3527 	ret = btrfs_check_zoned_mode(fs_info);
3528 	if (ret) {
3529 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3530 			  ret);
3531 		goto fail_block_groups;
3532 	}
3533 
3534 	ret = btrfs_sysfs_add_fsid(fs_devices);
3535 	if (ret) {
3536 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3537 				ret);
3538 		goto fail_block_groups;
3539 	}
3540 
3541 	ret = btrfs_sysfs_add_mounted(fs_info);
3542 	if (ret) {
3543 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3544 		goto fail_fsdev_sysfs;
3545 	}
3546 
3547 	ret = btrfs_init_space_info(fs_info);
3548 	if (ret) {
3549 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3550 		goto fail_sysfs;
3551 	}
3552 
3553 	ret = btrfs_read_block_groups(fs_info);
3554 	if (ret) {
3555 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3556 		goto fail_sysfs;
3557 	}
3558 
3559 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3560 		btrfs_warn(fs_info,
3561 		"writable mount is not allowed due to too many missing devices");
3562 		goto fail_sysfs;
3563 	}
3564 
3565 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3566 					       "btrfs-cleaner");
3567 	if (IS_ERR(fs_info->cleaner_kthread))
3568 		goto fail_sysfs;
3569 
3570 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3571 						   tree_root,
3572 						   "btrfs-transaction");
3573 	if (IS_ERR(fs_info->transaction_kthread))
3574 		goto fail_cleaner;
3575 
3576 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3577 	    !fs_info->fs_devices->rotating) {
3578 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3579 	}
3580 
3581 	/*
3582 	 * Mount does not set all options immediately, we can do it now and do
3583 	 * not have to wait for transaction commit
3584 	 */
3585 	btrfs_apply_pending_changes(fs_info);
3586 
3587 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3588 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3589 		ret = btrfsic_mount(fs_info, fs_devices,
3590 				    btrfs_test_opt(fs_info,
3591 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3592 				    fs_info->check_integrity_print_mask);
3593 		if (ret)
3594 			btrfs_warn(fs_info,
3595 				"failed to initialize integrity check module: %d",
3596 				ret);
3597 	}
3598 #endif
3599 	ret = btrfs_read_qgroup_config(fs_info);
3600 	if (ret)
3601 		goto fail_trans_kthread;
3602 
3603 	if (btrfs_build_ref_tree(fs_info))
3604 		btrfs_err(fs_info, "couldn't build ref tree");
3605 
3606 	/* do not make disk changes in broken FS or nologreplay is given */
3607 	if (btrfs_super_log_root(disk_super) != 0 &&
3608 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3609 		btrfs_info(fs_info, "start tree-log replay");
3610 		ret = btrfs_replay_log(fs_info, fs_devices);
3611 		if (ret) {
3612 			err = ret;
3613 			goto fail_qgroup;
3614 		}
3615 	}
3616 
3617 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3618 	if (IS_ERR(fs_info->fs_root)) {
3619 		err = PTR_ERR(fs_info->fs_root);
3620 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3621 		fs_info->fs_root = NULL;
3622 		goto fail_qgroup;
3623 	}
3624 
3625 	if (sb_rdonly(sb))
3626 		goto clear_oneshot;
3627 
3628 	ret = btrfs_start_pre_rw_mount(fs_info);
3629 	if (ret) {
3630 		close_ctree(fs_info);
3631 		return ret;
3632 	}
3633 	btrfs_discard_resume(fs_info);
3634 
3635 	if (fs_info->uuid_root &&
3636 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3637 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3638 		btrfs_info(fs_info, "checking UUID tree");
3639 		ret = btrfs_check_uuid_tree(fs_info);
3640 		if (ret) {
3641 			btrfs_warn(fs_info,
3642 				"failed to check the UUID tree: %d", ret);
3643 			close_ctree(fs_info);
3644 			return ret;
3645 		}
3646 	}
3647 
3648 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3649 
3650 clear_oneshot:
3651 	btrfs_clear_oneshot_options(fs_info);
3652 	return 0;
3653 
3654 fail_qgroup:
3655 	btrfs_free_qgroup_config(fs_info);
3656 fail_trans_kthread:
3657 	kthread_stop(fs_info->transaction_kthread);
3658 	btrfs_cleanup_transaction(fs_info);
3659 	btrfs_free_fs_roots(fs_info);
3660 fail_cleaner:
3661 	kthread_stop(fs_info->cleaner_kthread);
3662 
3663 	/*
3664 	 * make sure we're done with the btree inode before we stop our
3665 	 * kthreads
3666 	 */
3667 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3668 
3669 fail_sysfs:
3670 	btrfs_sysfs_remove_mounted(fs_info);
3671 
3672 fail_fsdev_sysfs:
3673 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3674 
3675 fail_block_groups:
3676 	btrfs_put_block_group_cache(fs_info);
3677 
3678 fail_tree_roots:
3679 	if (fs_info->data_reloc_root)
3680 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3681 	free_root_pointers(fs_info, true);
3682 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3683 
3684 fail_sb_buffer:
3685 	btrfs_stop_all_workers(fs_info);
3686 	btrfs_free_block_groups(fs_info);
3687 fail_alloc:
3688 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3689 
3690 	iput(fs_info->btree_inode);
3691 fail:
3692 	btrfs_close_devices(fs_info->fs_devices);
3693 	return err;
3694 }
3695 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3696 
3697 static void btrfs_end_super_write(struct bio *bio)
3698 {
3699 	struct btrfs_device *device = bio->bi_private;
3700 	struct bio_vec *bvec;
3701 	struct bvec_iter_all iter_all;
3702 	struct page *page;
3703 
3704 	bio_for_each_segment_all(bvec, bio, iter_all) {
3705 		page = bvec->bv_page;
3706 
3707 		if (bio->bi_status) {
3708 			btrfs_warn_rl_in_rcu(device->fs_info,
3709 				"lost page write due to IO error on %s (%d)",
3710 				rcu_str_deref(device->name),
3711 				blk_status_to_errno(bio->bi_status));
3712 			ClearPageUptodate(page);
3713 			SetPageError(page);
3714 			btrfs_dev_stat_inc_and_print(device,
3715 						     BTRFS_DEV_STAT_WRITE_ERRS);
3716 		} else {
3717 			SetPageUptodate(page);
3718 		}
3719 
3720 		put_page(page);
3721 		unlock_page(page);
3722 	}
3723 
3724 	bio_put(bio);
3725 }
3726 
3727 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3728 						   int copy_num)
3729 {
3730 	struct btrfs_super_block *super;
3731 	struct page *page;
3732 	u64 bytenr, bytenr_orig;
3733 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3734 	int ret;
3735 
3736 	bytenr_orig = btrfs_sb_offset(copy_num);
3737 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3738 	if (ret == -ENOENT)
3739 		return ERR_PTR(-EINVAL);
3740 	else if (ret)
3741 		return ERR_PTR(ret);
3742 
3743 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3744 		return ERR_PTR(-EINVAL);
3745 
3746 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3747 	if (IS_ERR(page))
3748 		return ERR_CAST(page);
3749 
3750 	super = page_address(page);
3751 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3752 		btrfs_release_disk_super(super);
3753 		return ERR_PTR(-ENODATA);
3754 	}
3755 
3756 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3757 		btrfs_release_disk_super(super);
3758 		return ERR_PTR(-EINVAL);
3759 	}
3760 
3761 	return super;
3762 }
3763 
3764 
3765 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3766 {
3767 	struct btrfs_super_block *super, *latest = NULL;
3768 	int i;
3769 	u64 transid = 0;
3770 
3771 	/* we would like to check all the supers, but that would make
3772 	 * a btrfs mount succeed after a mkfs from a different FS.
3773 	 * So, we need to add a special mount option to scan for
3774 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3775 	 */
3776 	for (i = 0; i < 1; i++) {
3777 		super = btrfs_read_dev_one_super(bdev, i);
3778 		if (IS_ERR(super))
3779 			continue;
3780 
3781 		if (!latest || btrfs_super_generation(super) > transid) {
3782 			if (latest)
3783 				btrfs_release_disk_super(super);
3784 
3785 			latest = super;
3786 			transid = btrfs_super_generation(super);
3787 		}
3788 	}
3789 
3790 	return super;
3791 }
3792 
3793 /*
3794  * Write superblock @sb to the @device. Do not wait for completion, all the
3795  * pages we use for writing are locked.
3796  *
3797  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3798  * the expected device size at commit time. Note that max_mirrors must be
3799  * same for write and wait phases.
3800  *
3801  * Return number of errors when page is not found or submission fails.
3802  */
3803 static int write_dev_supers(struct btrfs_device *device,
3804 			    struct btrfs_super_block *sb, int max_mirrors)
3805 {
3806 	struct btrfs_fs_info *fs_info = device->fs_info;
3807 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3808 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3809 	int i;
3810 	int errors = 0;
3811 	int ret;
3812 	u64 bytenr, bytenr_orig;
3813 
3814 	if (max_mirrors == 0)
3815 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3816 
3817 	shash->tfm = fs_info->csum_shash;
3818 
3819 	for (i = 0; i < max_mirrors; i++) {
3820 		struct page *page;
3821 		struct bio *bio;
3822 		struct btrfs_super_block *disk_super;
3823 
3824 		bytenr_orig = btrfs_sb_offset(i);
3825 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3826 		if (ret == -ENOENT) {
3827 			continue;
3828 		} else if (ret < 0) {
3829 			btrfs_err(device->fs_info,
3830 				"couldn't get super block location for mirror %d",
3831 				i);
3832 			errors++;
3833 			continue;
3834 		}
3835 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3836 		    device->commit_total_bytes)
3837 			break;
3838 
3839 		btrfs_set_super_bytenr(sb, bytenr_orig);
3840 
3841 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3842 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3843 				    sb->csum);
3844 
3845 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3846 					   GFP_NOFS);
3847 		if (!page) {
3848 			btrfs_err(device->fs_info,
3849 			    "couldn't get super block page for bytenr %llu",
3850 			    bytenr);
3851 			errors++;
3852 			continue;
3853 		}
3854 
3855 		/* Bump the refcount for wait_dev_supers() */
3856 		get_page(page);
3857 
3858 		disk_super = page_address(page);
3859 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3860 
3861 		/*
3862 		 * Directly use bios here instead of relying on the page cache
3863 		 * to do I/O, so we don't lose the ability to do integrity
3864 		 * checking.
3865 		 */
3866 		bio = bio_alloc(GFP_NOFS, 1);
3867 		bio_set_dev(bio, device->bdev);
3868 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3869 		bio->bi_private = device;
3870 		bio->bi_end_io = btrfs_end_super_write;
3871 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3872 			       offset_in_page(bytenr));
3873 
3874 		/*
3875 		 * We FUA only the first super block.  The others we allow to
3876 		 * go down lazy and there's a short window where the on-disk
3877 		 * copies might still contain the older version.
3878 		 */
3879 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3880 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3881 			bio->bi_opf |= REQ_FUA;
3882 
3883 		btrfsic_submit_bio(bio);
3884 		btrfs_advance_sb_log(device, i);
3885 	}
3886 	return errors < i ? 0 : -1;
3887 }
3888 
3889 /*
3890  * Wait for write completion of superblocks done by write_dev_supers,
3891  * @max_mirrors same for write and wait phases.
3892  *
3893  * Return number of errors when page is not found or not marked up to
3894  * date.
3895  */
3896 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3897 {
3898 	int i;
3899 	int errors = 0;
3900 	bool primary_failed = false;
3901 	int ret;
3902 	u64 bytenr;
3903 
3904 	if (max_mirrors == 0)
3905 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3906 
3907 	for (i = 0; i < max_mirrors; i++) {
3908 		struct page *page;
3909 
3910 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3911 		if (ret == -ENOENT) {
3912 			break;
3913 		} else if (ret < 0) {
3914 			errors++;
3915 			if (i == 0)
3916 				primary_failed = true;
3917 			continue;
3918 		}
3919 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3920 		    device->commit_total_bytes)
3921 			break;
3922 
3923 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3924 				     bytenr >> PAGE_SHIFT);
3925 		if (!page) {
3926 			errors++;
3927 			if (i == 0)
3928 				primary_failed = true;
3929 			continue;
3930 		}
3931 		/* Page is submitted locked and unlocked once the IO completes */
3932 		wait_on_page_locked(page);
3933 		if (PageError(page)) {
3934 			errors++;
3935 			if (i == 0)
3936 				primary_failed = true;
3937 		}
3938 
3939 		/* Drop our reference */
3940 		put_page(page);
3941 
3942 		/* Drop the reference from the writing run */
3943 		put_page(page);
3944 	}
3945 
3946 	/* log error, force error return */
3947 	if (primary_failed) {
3948 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3949 			  device->devid);
3950 		return -1;
3951 	}
3952 
3953 	return errors < i ? 0 : -1;
3954 }
3955 
3956 /*
3957  * endio for the write_dev_flush, this will wake anyone waiting
3958  * for the barrier when it is done
3959  */
3960 static void btrfs_end_empty_barrier(struct bio *bio)
3961 {
3962 	complete(bio->bi_private);
3963 }
3964 
3965 /*
3966  * Submit a flush request to the device if it supports it. Error handling is
3967  * done in the waiting counterpart.
3968  */
3969 static void write_dev_flush(struct btrfs_device *device)
3970 {
3971 	struct request_queue *q = bdev_get_queue(device->bdev);
3972 	struct bio *bio = device->flush_bio;
3973 
3974 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3975 		return;
3976 
3977 	bio_reset(bio);
3978 	bio->bi_end_io = btrfs_end_empty_barrier;
3979 	bio_set_dev(bio, device->bdev);
3980 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3981 	init_completion(&device->flush_wait);
3982 	bio->bi_private = &device->flush_wait;
3983 
3984 	btrfsic_submit_bio(bio);
3985 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3986 }
3987 
3988 /*
3989  * If the flush bio has been submitted by write_dev_flush, wait for it.
3990  */
3991 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3992 {
3993 	struct bio *bio = device->flush_bio;
3994 
3995 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3996 		return BLK_STS_OK;
3997 
3998 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3999 	wait_for_completion_io(&device->flush_wait);
4000 
4001 	return bio->bi_status;
4002 }
4003 
4004 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4005 {
4006 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4007 		return -EIO;
4008 	return 0;
4009 }
4010 
4011 /*
4012  * send an empty flush down to each device in parallel,
4013  * then wait for them
4014  */
4015 static int barrier_all_devices(struct btrfs_fs_info *info)
4016 {
4017 	struct list_head *head;
4018 	struct btrfs_device *dev;
4019 	int errors_wait = 0;
4020 	blk_status_t ret;
4021 
4022 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4023 	/* send down all the barriers */
4024 	head = &info->fs_devices->devices;
4025 	list_for_each_entry(dev, head, dev_list) {
4026 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4027 			continue;
4028 		if (!dev->bdev)
4029 			continue;
4030 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4031 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4032 			continue;
4033 
4034 		write_dev_flush(dev);
4035 		dev->last_flush_error = BLK_STS_OK;
4036 	}
4037 
4038 	/* wait for all the barriers */
4039 	list_for_each_entry(dev, head, dev_list) {
4040 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4041 			continue;
4042 		if (!dev->bdev) {
4043 			errors_wait++;
4044 			continue;
4045 		}
4046 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4047 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4048 			continue;
4049 
4050 		ret = wait_dev_flush(dev);
4051 		if (ret) {
4052 			dev->last_flush_error = ret;
4053 			btrfs_dev_stat_inc_and_print(dev,
4054 					BTRFS_DEV_STAT_FLUSH_ERRS);
4055 			errors_wait++;
4056 		}
4057 	}
4058 
4059 	if (errors_wait) {
4060 		/*
4061 		 * At some point we need the status of all disks
4062 		 * to arrive at the volume status. So error checking
4063 		 * is being pushed to a separate loop.
4064 		 */
4065 		return check_barrier_error(info);
4066 	}
4067 	return 0;
4068 }
4069 
4070 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4071 {
4072 	int raid_type;
4073 	int min_tolerated = INT_MAX;
4074 
4075 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4076 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4077 		min_tolerated = min_t(int, min_tolerated,
4078 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4079 				    tolerated_failures);
4080 
4081 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4082 		if (raid_type == BTRFS_RAID_SINGLE)
4083 			continue;
4084 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4085 			continue;
4086 		min_tolerated = min_t(int, min_tolerated,
4087 				    btrfs_raid_array[raid_type].
4088 				    tolerated_failures);
4089 	}
4090 
4091 	if (min_tolerated == INT_MAX) {
4092 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4093 		min_tolerated = 0;
4094 	}
4095 
4096 	return min_tolerated;
4097 }
4098 
4099 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4100 {
4101 	struct list_head *head;
4102 	struct btrfs_device *dev;
4103 	struct btrfs_super_block *sb;
4104 	struct btrfs_dev_item *dev_item;
4105 	int ret;
4106 	int do_barriers;
4107 	int max_errors;
4108 	int total_errors = 0;
4109 	u64 flags;
4110 
4111 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4112 
4113 	/*
4114 	 * max_mirrors == 0 indicates we're from commit_transaction,
4115 	 * not from fsync where the tree roots in fs_info have not
4116 	 * been consistent on disk.
4117 	 */
4118 	if (max_mirrors == 0)
4119 		backup_super_roots(fs_info);
4120 
4121 	sb = fs_info->super_for_commit;
4122 	dev_item = &sb->dev_item;
4123 
4124 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4125 	head = &fs_info->fs_devices->devices;
4126 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4127 
4128 	if (do_barriers) {
4129 		ret = barrier_all_devices(fs_info);
4130 		if (ret) {
4131 			mutex_unlock(
4132 				&fs_info->fs_devices->device_list_mutex);
4133 			btrfs_handle_fs_error(fs_info, ret,
4134 					      "errors while submitting device barriers.");
4135 			return ret;
4136 		}
4137 	}
4138 
4139 	list_for_each_entry(dev, head, dev_list) {
4140 		if (!dev->bdev) {
4141 			total_errors++;
4142 			continue;
4143 		}
4144 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4145 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4146 			continue;
4147 
4148 		btrfs_set_stack_device_generation(dev_item, 0);
4149 		btrfs_set_stack_device_type(dev_item, dev->type);
4150 		btrfs_set_stack_device_id(dev_item, dev->devid);
4151 		btrfs_set_stack_device_total_bytes(dev_item,
4152 						   dev->commit_total_bytes);
4153 		btrfs_set_stack_device_bytes_used(dev_item,
4154 						  dev->commit_bytes_used);
4155 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4156 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4157 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4158 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4159 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4160 		       BTRFS_FSID_SIZE);
4161 
4162 		flags = btrfs_super_flags(sb);
4163 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4164 
4165 		ret = btrfs_validate_write_super(fs_info, sb);
4166 		if (ret < 0) {
4167 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4168 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4169 				"unexpected superblock corruption detected");
4170 			return -EUCLEAN;
4171 		}
4172 
4173 		ret = write_dev_supers(dev, sb, max_mirrors);
4174 		if (ret)
4175 			total_errors++;
4176 	}
4177 	if (total_errors > max_errors) {
4178 		btrfs_err(fs_info, "%d errors while writing supers",
4179 			  total_errors);
4180 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4181 
4182 		/* FUA is masked off if unsupported and can't be the reason */
4183 		btrfs_handle_fs_error(fs_info, -EIO,
4184 				      "%d errors while writing supers",
4185 				      total_errors);
4186 		return -EIO;
4187 	}
4188 
4189 	total_errors = 0;
4190 	list_for_each_entry(dev, head, dev_list) {
4191 		if (!dev->bdev)
4192 			continue;
4193 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4194 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4195 			continue;
4196 
4197 		ret = wait_dev_supers(dev, max_mirrors);
4198 		if (ret)
4199 			total_errors++;
4200 	}
4201 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4202 	if (total_errors > max_errors) {
4203 		btrfs_handle_fs_error(fs_info, -EIO,
4204 				      "%d errors while writing supers",
4205 				      total_errors);
4206 		return -EIO;
4207 	}
4208 	return 0;
4209 }
4210 
4211 /* Drop a fs root from the radix tree and free it. */
4212 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4213 				  struct btrfs_root *root)
4214 {
4215 	bool drop_ref = false;
4216 
4217 	spin_lock(&fs_info->fs_roots_radix_lock);
4218 	radix_tree_delete(&fs_info->fs_roots_radix,
4219 			  (unsigned long)root->root_key.objectid);
4220 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4221 		drop_ref = true;
4222 	spin_unlock(&fs_info->fs_roots_radix_lock);
4223 
4224 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4225 		ASSERT(root->log_root == NULL);
4226 		if (root->reloc_root) {
4227 			btrfs_put_root(root->reloc_root);
4228 			root->reloc_root = NULL;
4229 		}
4230 	}
4231 
4232 	if (drop_ref)
4233 		btrfs_put_root(root);
4234 }
4235 
4236 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4237 {
4238 	u64 root_objectid = 0;
4239 	struct btrfs_root *gang[8];
4240 	int i = 0;
4241 	int err = 0;
4242 	unsigned int ret = 0;
4243 
4244 	while (1) {
4245 		spin_lock(&fs_info->fs_roots_radix_lock);
4246 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4247 					     (void **)gang, root_objectid,
4248 					     ARRAY_SIZE(gang));
4249 		if (!ret) {
4250 			spin_unlock(&fs_info->fs_roots_radix_lock);
4251 			break;
4252 		}
4253 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4254 
4255 		for (i = 0; i < ret; i++) {
4256 			/* Avoid to grab roots in dead_roots */
4257 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4258 				gang[i] = NULL;
4259 				continue;
4260 			}
4261 			/* grab all the search result for later use */
4262 			gang[i] = btrfs_grab_root(gang[i]);
4263 		}
4264 		spin_unlock(&fs_info->fs_roots_radix_lock);
4265 
4266 		for (i = 0; i < ret; i++) {
4267 			if (!gang[i])
4268 				continue;
4269 			root_objectid = gang[i]->root_key.objectid;
4270 			err = btrfs_orphan_cleanup(gang[i]);
4271 			if (err)
4272 				break;
4273 			btrfs_put_root(gang[i]);
4274 		}
4275 		root_objectid++;
4276 	}
4277 
4278 	/* release the uncleaned roots due to error */
4279 	for (; i < ret; i++) {
4280 		if (gang[i])
4281 			btrfs_put_root(gang[i]);
4282 	}
4283 	return err;
4284 }
4285 
4286 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4287 {
4288 	struct btrfs_root *root = fs_info->tree_root;
4289 	struct btrfs_trans_handle *trans;
4290 
4291 	mutex_lock(&fs_info->cleaner_mutex);
4292 	btrfs_run_delayed_iputs(fs_info);
4293 	mutex_unlock(&fs_info->cleaner_mutex);
4294 	wake_up_process(fs_info->cleaner_kthread);
4295 
4296 	/* wait until ongoing cleanup work done */
4297 	down_write(&fs_info->cleanup_work_sem);
4298 	up_write(&fs_info->cleanup_work_sem);
4299 
4300 	trans = btrfs_join_transaction(root);
4301 	if (IS_ERR(trans))
4302 		return PTR_ERR(trans);
4303 	return btrfs_commit_transaction(trans);
4304 }
4305 
4306 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4307 {
4308 	int ret;
4309 
4310 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4311 	/*
4312 	 * We don't want the cleaner to start new transactions, add more delayed
4313 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4314 	 * because that frees the task_struct, and the transaction kthread might
4315 	 * still try to wake up the cleaner.
4316 	 */
4317 	kthread_park(fs_info->cleaner_kthread);
4318 
4319 	/* wait for the qgroup rescan worker to stop */
4320 	btrfs_qgroup_wait_for_completion(fs_info, false);
4321 
4322 	/* wait for the uuid_scan task to finish */
4323 	down(&fs_info->uuid_tree_rescan_sem);
4324 	/* avoid complains from lockdep et al., set sem back to initial state */
4325 	up(&fs_info->uuid_tree_rescan_sem);
4326 
4327 	/* pause restriper - we want to resume on mount */
4328 	btrfs_pause_balance(fs_info);
4329 
4330 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4331 
4332 	btrfs_scrub_cancel(fs_info);
4333 
4334 	/* wait for any defraggers to finish */
4335 	wait_event(fs_info->transaction_wait,
4336 		   (atomic_read(&fs_info->defrag_running) == 0));
4337 
4338 	/* clear out the rbtree of defraggable inodes */
4339 	btrfs_cleanup_defrag_inodes(fs_info);
4340 
4341 	cancel_work_sync(&fs_info->async_reclaim_work);
4342 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4343 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4344 
4345 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4346 
4347 	/* Cancel or finish ongoing discard work */
4348 	btrfs_discard_cleanup(fs_info);
4349 
4350 	if (!sb_rdonly(fs_info->sb)) {
4351 		/*
4352 		 * The cleaner kthread is stopped, so do one final pass over
4353 		 * unused block groups.
4354 		 */
4355 		btrfs_delete_unused_bgs(fs_info);
4356 
4357 		/*
4358 		 * There might be existing delayed inode workers still running
4359 		 * and holding an empty delayed inode item. We must wait for
4360 		 * them to complete first because they can create a transaction.
4361 		 * This happens when someone calls btrfs_balance_delayed_items()
4362 		 * and then a transaction commit runs the same delayed nodes
4363 		 * before any delayed worker has done something with the nodes.
4364 		 * We must wait for any worker here and not at transaction
4365 		 * commit time since that could cause a deadlock.
4366 		 * This is a very rare case.
4367 		 */
4368 		btrfs_flush_workqueue(fs_info->delayed_workers);
4369 
4370 		ret = btrfs_commit_super(fs_info);
4371 		if (ret)
4372 			btrfs_err(fs_info, "commit super ret %d", ret);
4373 	}
4374 
4375 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4376 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4377 		btrfs_error_commit_super(fs_info);
4378 
4379 	kthread_stop(fs_info->transaction_kthread);
4380 	kthread_stop(fs_info->cleaner_kthread);
4381 
4382 	ASSERT(list_empty(&fs_info->delayed_iputs));
4383 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4384 
4385 	if (btrfs_check_quota_leak(fs_info)) {
4386 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4387 		btrfs_err(fs_info, "qgroup reserved space leaked");
4388 	}
4389 
4390 	btrfs_free_qgroup_config(fs_info);
4391 	ASSERT(list_empty(&fs_info->delalloc_roots));
4392 
4393 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4394 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4395 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4396 	}
4397 
4398 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4399 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4400 			   percpu_counter_sum(&fs_info->ordered_bytes));
4401 
4402 	btrfs_sysfs_remove_mounted(fs_info);
4403 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4404 
4405 	btrfs_put_block_group_cache(fs_info);
4406 
4407 	/*
4408 	 * we must make sure there is not any read request to
4409 	 * submit after we stopping all workers.
4410 	 */
4411 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4412 	btrfs_stop_all_workers(fs_info);
4413 
4414 	/* We shouldn't have any transaction open at this point */
4415 	ASSERT(list_empty(&fs_info->trans_list));
4416 
4417 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4418 	free_root_pointers(fs_info, true);
4419 	btrfs_free_fs_roots(fs_info);
4420 
4421 	/*
4422 	 * We must free the block groups after dropping the fs_roots as we could
4423 	 * have had an IO error and have left over tree log blocks that aren't
4424 	 * cleaned up until the fs roots are freed.  This makes the block group
4425 	 * accounting appear to be wrong because there's pending reserved bytes,
4426 	 * so make sure we do the block group cleanup afterwards.
4427 	 */
4428 	btrfs_free_block_groups(fs_info);
4429 
4430 	iput(fs_info->btree_inode);
4431 
4432 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4433 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4434 		btrfsic_unmount(fs_info->fs_devices);
4435 #endif
4436 
4437 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4438 	btrfs_close_devices(fs_info->fs_devices);
4439 }
4440 
4441 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4442 			  int atomic)
4443 {
4444 	int ret;
4445 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4446 
4447 	ret = extent_buffer_uptodate(buf);
4448 	if (!ret)
4449 		return ret;
4450 
4451 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4452 				    parent_transid, atomic);
4453 	if (ret == -EAGAIN)
4454 		return ret;
4455 	return !ret;
4456 }
4457 
4458 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4459 {
4460 	struct btrfs_fs_info *fs_info = buf->fs_info;
4461 	u64 transid = btrfs_header_generation(buf);
4462 	int was_dirty;
4463 
4464 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4465 	/*
4466 	 * This is a fast path so only do this check if we have sanity tests
4467 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4468 	 * outside of the sanity tests.
4469 	 */
4470 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4471 		return;
4472 #endif
4473 	btrfs_assert_tree_locked(buf);
4474 	if (transid != fs_info->generation)
4475 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4476 			buf->start, transid, fs_info->generation);
4477 	was_dirty = set_extent_buffer_dirty(buf);
4478 	if (!was_dirty)
4479 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4480 					 buf->len,
4481 					 fs_info->dirty_metadata_batch);
4482 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4483 	/*
4484 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4485 	 * but item data not updated.
4486 	 * So here we should only check item pointers, not item data.
4487 	 */
4488 	if (btrfs_header_level(buf) == 0 &&
4489 	    btrfs_check_leaf_relaxed(buf)) {
4490 		btrfs_print_leaf(buf);
4491 		ASSERT(0);
4492 	}
4493 #endif
4494 }
4495 
4496 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4497 					int flush_delayed)
4498 {
4499 	/*
4500 	 * looks as though older kernels can get into trouble with
4501 	 * this code, they end up stuck in balance_dirty_pages forever
4502 	 */
4503 	int ret;
4504 
4505 	if (current->flags & PF_MEMALLOC)
4506 		return;
4507 
4508 	if (flush_delayed)
4509 		btrfs_balance_delayed_items(fs_info);
4510 
4511 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4512 				     BTRFS_DIRTY_METADATA_THRESH,
4513 				     fs_info->dirty_metadata_batch);
4514 	if (ret > 0) {
4515 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4516 	}
4517 }
4518 
4519 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4520 {
4521 	__btrfs_btree_balance_dirty(fs_info, 1);
4522 }
4523 
4524 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4525 {
4526 	__btrfs_btree_balance_dirty(fs_info, 0);
4527 }
4528 
4529 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4530 		      struct btrfs_key *first_key)
4531 {
4532 	return btree_read_extent_buffer_pages(buf, parent_transid,
4533 					      level, first_key);
4534 }
4535 
4536 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4537 {
4538 	/* cleanup FS via transaction */
4539 	btrfs_cleanup_transaction(fs_info);
4540 
4541 	mutex_lock(&fs_info->cleaner_mutex);
4542 	btrfs_run_delayed_iputs(fs_info);
4543 	mutex_unlock(&fs_info->cleaner_mutex);
4544 
4545 	down_write(&fs_info->cleanup_work_sem);
4546 	up_write(&fs_info->cleanup_work_sem);
4547 }
4548 
4549 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4550 {
4551 	struct btrfs_root *gang[8];
4552 	u64 root_objectid = 0;
4553 	int ret;
4554 
4555 	spin_lock(&fs_info->fs_roots_radix_lock);
4556 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4557 					     (void **)gang, root_objectid,
4558 					     ARRAY_SIZE(gang))) != 0) {
4559 		int i;
4560 
4561 		for (i = 0; i < ret; i++)
4562 			gang[i] = btrfs_grab_root(gang[i]);
4563 		spin_unlock(&fs_info->fs_roots_radix_lock);
4564 
4565 		for (i = 0; i < ret; i++) {
4566 			if (!gang[i])
4567 				continue;
4568 			root_objectid = gang[i]->root_key.objectid;
4569 			btrfs_free_log(NULL, gang[i]);
4570 			btrfs_put_root(gang[i]);
4571 		}
4572 		root_objectid++;
4573 		spin_lock(&fs_info->fs_roots_radix_lock);
4574 	}
4575 	spin_unlock(&fs_info->fs_roots_radix_lock);
4576 	btrfs_free_log_root_tree(NULL, fs_info);
4577 }
4578 
4579 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4580 {
4581 	struct btrfs_ordered_extent *ordered;
4582 
4583 	spin_lock(&root->ordered_extent_lock);
4584 	/*
4585 	 * This will just short circuit the ordered completion stuff which will
4586 	 * make sure the ordered extent gets properly cleaned up.
4587 	 */
4588 	list_for_each_entry(ordered, &root->ordered_extents,
4589 			    root_extent_list)
4590 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4591 	spin_unlock(&root->ordered_extent_lock);
4592 }
4593 
4594 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4595 {
4596 	struct btrfs_root *root;
4597 	struct list_head splice;
4598 
4599 	INIT_LIST_HEAD(&splice);
4600 
4601 	spin_lock(&fs_info->ordered_root_lock);
4602 	list_splice_init(&fs_info->ordered_roots, &splice);
4603 	while (!list_empty(&splice)) {
4604 		root = list_first_entry(&splice, struct btrfs_root,
4605 					ordered_root);
4606 		list_move_tail(&root->ordered_root,
4607 			       &fs_info->ordered_roots);
4608 
4609 		spin_unlock(&fs_info->ordered_root_lock);
4610 		btrfs_destroy_ordered_extents(root);
4611 
4612 		cond_resched();
4613 		spin_lock(&fs_info->ordered_root_lock);
4614 	}
4615 	spin_unlock(&fs_info->ordered_root_lock);
4616 
4617 	/*
4618 	 * We need this here because if we've been flipped read-only we won't
4619 	 * get sync() from the umount, so we need to make sure any ordered
4620 	 * extents that haven't had their dirty pages IO start writeout yet
4621 	 * actually get run and error out properly.
4622 	 */
4623 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4624 }
4625 
4626 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4627 				      struct btrfs_fs_info *fs_info)
4628 {
4629 	struct rb_node *node;
4630 	struct btrfs_delayed_ref_root *delayed_refs;
4631 	struct btrfs_delayed_ref_node *ref;
4632 	int ret = 0;
4633 
4634 	delayed_refs = &trans->delayed_refs;
4635 
4636 	spin_lock(&delayed_refs->lock);
4637 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4638 		spin_unlock(&delayed_refs->lock);
4639 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4640 		return ret;
4641 	}
4642 
4643 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4644 		struct btrfs_delayed_ref_head *head;
4645 		struct rb_node *n;
4646 		bool pin_bytes = false;
4647 
4648 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4649 				href_node);
4650 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4651 			continue;
4652 
4653 		spin_lock(&head->lock);
4654 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4655 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4656 				       ref_node);
4657 			ref->in_tree = 0;
4658 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4659 			RB_CLEAR_NODE(&ref->ref_node);
4660 			if (!list_empty(&ref->add_list))
4661 				list_del(&ref->add_list);
4662 			atomic_dec(&delayed_refs->num_entries);
4663 			btrfs_put_delayed_ref(ref);
4664 		}
4665 		if (head->must_insert_reserved)
4666 			pin_bytes = true;
4667 		btrfs_free_delayed_extent_op(head->extent_op);
4668 		btrfs_delete_ref_head(delayed_refs, head);
4669 		spin_unlock(&head->lock);
4670 		spin_unlock(&delayed_refs->lock);
4671 		mutex_unlock(&head->mutex);
4672 
4673 		if (pin_bytes) {
4674 			struct btrfs_block_group *cache;
4675 
4676 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4677 			BUG_ON(!cache);
4678 
4679 			spin_lock(&cache->space_info->lock);
4680 			spin_lock(&cache->lock);
4681 			cache->pinned += head->num_bytes;
4682 			btrfs_space_info_update_bytes_pinned(fs_info,
4683 				cache->space_info, head->num_bytes);
4684 			cache->reserved -= head->num_bytes;
4685 			cache->space_info->bytes_reserved -= head->num_bytes;
4686 			spin_unlock(&cache->lock);
4687 			spin_unlock(&cache->space_info->lock);
4688 
4689 			btrfs_put_block_group(cache);
4690 
4691 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4692 				head->bytenr + head->num_bytes - 1);
4693 		}
4694 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4695 		btrfs_put_delayed_ref_head(head);
4696 		cond_resched();
4697 		spin_lock(&delayed_refs->lock);
4698 	}
4699 	btrfs_qgroup_destroy_extent_records(trans);
4700 
4701 	spin_unlock(&delayed_refs->lock);
4702 
4703 	return ret;
4704 }
4705 
4706 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4707 {
4708 	struct btrfs_inode *btrfs_inode;
4709 	struct list_head splice;
4710 
4711 	INIT_LIST_HEAD(&splice);
4712 
4713 	spin_lock(&root->delalloc_lock);
4714 	list_splice_init(&root->delalloc_inodes, &splice);
4715 
4716 	while (!list_empty(&splice)) {
4717 		struct inode *inode = NULL;
4718 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4719 					       delalloc_inodes);
4720 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4721 		spin_unlock(&root->delalloc_lock);
4722 
4723 		/*
4724 		 * Make sure we get a live inode and that it'll not disappear
4725 		 * meanwhile.
4726 		 */
4727 		inode = igrab(&btrfs_inode->vfs_inode);
4728 		if (inode) {
4729 			invalidate_inode_pages2(inode->i_mapping);
4730 			iput(inode);
4731 		}
4732 		spin_lock(&root->delalloc_lock);
4733 	}
4734 	spin_unlock(&root->delalloc_lock);
4735 }
4736 
4737 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4738 {
4739 	struct btrfs_root *root;
4740 	struct list_head splice;
4741 
4742 	INIT_LIST_HEAD(&splice);
4743 
4744 	spin_lock(&fs_info->delalloc_root_lock);
4745 	list_splice_init(&fs_info->delalloc_roots, &splice);
4746 	while (!list_empty(&splice)) {
4747 		root = list_first_entry(&splice, struct btrfs_root,
4748 					 delalloc_root);
4749 		root = btrfs_grab_root(root);
4750 		BUG_ON(!root);
4751 		spin_unlock(&fs_info->delalloc_root_lock);
4752 
4753 		btrfs_destroy_delalloc_inodes(root);
4754 		btrfs_put_root(root);
4755 
4756 		spin_lock(&fs_info->delalloc_root_lock);
4757 	}
4758 	spin_unlock(&fs_info->delalloc_root_lock);
4759 }
4760 
4761 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4762 					struct extent_io_tree *dirty_pages,
4763 					int mark)
4764 {
4765 	int ret;
4766 	struct extent_buffer *eb;
4767 	u64 start = 0;
4768 	u64 end;
4769 
4770 	while (1) {
4771 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4772 					    mark, NULL);
4773 		if (ret)
4774 			break;
4775 
4776 		clear_extent_bits(dirty_pages, start, end, mark);
4777 		while (start <= end) {
4778 			eb = find_extent_buffer(fs_info, start);
4779 			start += fs_info->nodesize;
4780 			if (!eb)
4781 				continue;
4782 			wait_on_extent_buffer_writeback(eb);
4783 
4784 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4785 					       &eb->bflags))
4786 				clear_extent_buffer_dirty(eb);
4787 			free_extent_buffer_stale(eb);
4788 		}
4789 	}
4790 
4791 	return ret;
4792 }
4793 
4794 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4795 				       struct extent_io_tree *unpin)
4796 {
4797 	u64 start;
4798 	u64 end;
4799 	int ret;
4800 
4801 	while (1) {
4802 		struct extent_state *cached_state = NULL;
4803 
4804 		/*
4805 		 * The btrfs_finish_extent_commit() may get the same range as
4806 		 * ours between find_first_extent_bit and clear_extent_dirty.
4807 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4808 		 * the same extent range.
4809 		 */
4810 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4811 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4812 					    EXTENT_DIRTY, &cached_state);
4813 		if (ret) {
4814 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4815 			break;
4816 		}
4817 
4818 		clear_extent_dirty(unpin, start, end, &cached_state);
4819 		free_extent_state(cached_state);
4820 		btrfs_error_unpin_extent_range(fs_info, start, end);
4821 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4822 		cond_resched();
4823 	}
4824 
4825 	return 0;
4826 }
4827 
4828 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4829 {
4830 	struct inode *inode;
4831 
4832 	inode = cache->io_ctl.inode;
4833 	if (inode) {
4834 		invalidate_inode_pages2(inode->i_mapping);
4835 		BTRFS_I(inode)->generation = 0;
4836 		cache->io_ctl.inode = NULL;
4837 		iput(inode);
4838 	}
4839 	ASSERT(cache->io_ctl.pages == NULL);
4840 	btrfs_put_block_group(cache);
4841 }
4842 
4843 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4844 			     struct btrfs_fs_info *fs_info)
4845 {
4846 	struct btrfs_block_group *cache;
4847 
4848 	spin_lock(&cur_trans->dirty_bgs_lock);
4849 	while (!list_empty(&cur_trans->dirty_bgs)) {
4850 		cache = list_first_entry(&cur_trans->dirty_bgs,
4851 					 struct btrfs_block_group,
4852 					 dirty_list);
4853 
4854 		if (!list_empty(&cache->io_list)) {
4855 			spin_unlock(&cur_trans->dirty_bgs_lock);
4856 			list_del_init(&cache->io_list);
4857 			btrfs_cleanup_bg_io(cache);
4858 			spin_lock(&cur_trans->dirty_bgs_lock);
4859 		}
4860 
4861 		list_del_init(&cache->dirty_list);
4862 		spin_lock(&cache->lock);
4863 		cache->disk_cache_state = BTRFS_DC_ERROR;
4864 		spin_unlock(&cache->lock);
4865 
4866 		spin_unlock(&cur_trans->dirty_bgs_lock);
4867 		btrfs_put_block_group(cache);
4868 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4869 		spin_lock(&cur_trans->dirty_bgs_lock);
4870 	}
4871 	spin_unlock(&cur_trans->dirty_bgs_lock);
4872 
4873 	/*
4874 	 * Refer to the definition of io_bgs member for details why it's safe
4875 	 * to use it without any locking
4876 	 */
4877 	while (!list_empty(&cur_trans->io_bgs)) {
4878 		cache = list_first_entry(&cur_trans->io_bgs,
4879 					 struct btrfs_block_group,
4880 					 io_list);
4881 
4882 		list_del_init(&cache->io_list);
4883 		spin_lock(&cache->lock);
4884 		cache->disk_cache_state = BTRFS_DC_ERROR;
4885 		spin_unlock(&cache->lock);
4886 		btrfs_cleanup_bg_io(cache);
4887 	}
4888 }
4889 
4890 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4891 				   struct btrfs_fs_info *fs_info)
4892 {
4893 	struct btrfs_device *dev, *tmp;
4894 
4895 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4896 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4897 	ASSERT(list_empty(&cur_trans->io_bgs));
4898 
4899 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4900 				 post_commit_list) {
4901 		list_del_init(&dev->post_commit_list);
4902 	}
4903 
4904 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4905 
4906 	cur_trans->state = TRANS_STATE_COMMIT_START;
4907 	wake_up(&fs_info->transaction_blocked_wait);
4908 
4909 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4910 	wake_up(&fs_info->transaction_wait);
4911 
4912 	btrfs_destroy_delayed_inodes(fs_info);
4913 
4914 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4915 				     EXTENT_DIRTY);
4916 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4917 
4918 	btrfs_free_redirty_list(cur_trans);
4919 
4920 	cur_trans->state =TRANS_STATE_COMPLETED;
4921 	wake_up(&cur_trans->commit_wait);
4922 }
4923 
4924 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4925 {
4926 	struct btrfs_transaction *t;
4927 
4928 	mutex_lock(&fs_info->transaction_kthread_mutex);
4929 
4930 	spin_lock(&fs_info->trans_lock);
4931 	while (!list_empty(&fs_info->trans_list)) {
4932 		t = list_first_entry(&fs_info->trans_list,
4933 				     struct btrfs_transaction, list);
4934 		if (t->state >= TRANS_STATE_COMMIT_START) {
4935 			refcount_inc(&t->use_count);
4936 			spin_unlock(&fs_info->trans_lock);
4937 			btrfs_wait_for_commit(fs_info, t->transid);
4938 			btrfs_put_transaction(t);
4939 			spin_lock(&fs_info->trans_lock);
4940 			continue;
4941 		}
4942 		if (t == fs_info->running_transaction) {
4943 			t->state = TRANS_STATE_COMMIT_DOING;
4944 			spin_unlock(&fs_info->trans_lock);
4945 			/*
4946 			 * We wait for 0 num_writers since we don't hold a trans
4947 			 * handle open currently for this transaction.
4948 			 */
4949 			wait_event(t->writer_wait,
4950 				   atomic_read(&t->num_writers) == 0);
4951 		} else {
4952 			spin_unlock(&fs_info->trans_lock);
4953 		}
4954 		btrfs_cleanup_one_transaction(t, fs_info);
4955 
4956 		spin_lock(&fs_info->trans_lock);
4957 		if (t == fs_info->running_transaction)
4958 			fs_info->running_transaction = NULL;
4959 		list_del_init(&t->list);
4960 		spin_unlock(&fs_info->trans_lock);
4961 
4962 		btrfs_put_transaction(t);
4963 		trace_btrfs_transaction_commit(fs_info->tree_root);
4964 		spin_lock(&fs_info->trans_lock);
4965 	}
4966 	spin_unlock(&fs_info->trans_lock);
4967 	btrfs_destroy_all_ordered_extents(fs_info);
4968 	btrfs_destroy_delayed_inodes(fs_info);
4969 	btrfs_assert_delayed_root_empty(fs_info);
4970 	btrfs_destroy_all_delalloc_inodes(fs_info);
4971 	btrfs_drop_all_logs(fs_info);
4972 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4973 
4974 	return 0;
4975 }
4976 
4977 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4978 {
4979 	struct btrfs_path *path;
4980 	int ret;
4981 	struct extent_buffer *l;
4982 	struct btrfs_key search_key;
4983 	struct btrfs_key found_key;
4984 	int slot;
4985 
4986 	path = btrfs_alloc_path();
4987 	if (!path)
4988 		return -ENOMEM;
4989 
4990 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4991 	search_key.type = -1;
4992 	search_key.offset = (u64)-1;
4993 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4994 	if (ret < 0)
4995 		goto error;
4996 	BUG_ON(ret == 0); /* Corruption */
4997 	if (path->slots[0] > 0) {
4998 		slot = path->slots[0] - 1;
4999 		l = path->nodes[0];
5000 		btrfs_item_key_to_cpu(l, &found_key, slot);
5001 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5002 					    BTRFS_FIRST_FREE_OBJECTID);
5003 	} else {
5004 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5005 	}
5006 	ret = 0;
5007 error:
5008 	btrfs_free_path(path);
5009 	return ret;
5010 }
5011 
5012 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5013 {
5014 	int ret;
5015 	mutex_lock(&root->objectid_mutex);
5016 
5017 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5018 		btrfs_warn(root->fs_info,
5019 			   "the objectid of root %llu reaches its highest value",
5020 			   root->root_key.objectid);
5021 		ret = -ENOSPC;
5022 		goto out;
5023 	}
5024 
5025 	*objectid = root->free_objectid++;
5026 	ret = 0;
5027 out:
5028 	mutex_unlock(&root->objectid_mutex);
5029 	return ret;
5030 }
5031