1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 void *private_data; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->root_key.objectid. This ensures that all special purpose 135 * roots have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, 213 u64 start, u64 len) 214 { 215 struct extent_map_tree *em_tree = &inode->extent_tree; 216 struct extent_map *em; 217 int ret; 218 219 read_lock(&em_tree->lock); 220 em = lookup_extent_mapping(em_tree, start, len); 221 if (em) { 222 read_unlock(&em_tree->lock); 223 goto out; 224 } 225 read_unlock(&em_tree->lock); 226 227 em = alloc_extent_map(); 228 if (!em) { 229 em = ERR_PTR(-ENOMEM); 230 goto out; 231 } 232 em->start = 0; 233 em->len = (u64)-1; 234 em->block_len = (u64)-1; 235 em->block_start = 0; 236 237 write_lock(&em_tree->lock); 238 ret = add_extent_mapping(em_tree, em, 0); 239 if (ret == -EEXIST) { 240 free_extent_map(em); 241 em = lookup_extent_mapping(em_tree, start, len); 242 if (!em) 243 em = ERR_PTR(-EIO); 244 } else if (ret) { 245 free_extent_map(em); 246 em = ERR_PTR(ret); 247 } 248 write_unlock(&em_tree->lock); 249 250 out: 251 return em; 252 } 253 254 /* 255 * Compute the csum of a btree block and store the result to provided buffer. 256 */ 257 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 258 { 259 struct btrfs_fs_info *fs_info = buf->fs_info; 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 262 char *kaddr; 263 int i; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 kaddr = page_address(buf->pages[0]); 268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 269 PAGE_SIZE - BTRFS_CSUM_SIZE); 270 271 for (i = 1; i < num_pages; i++) { 272 kaddr = page_address(buf->pages[i]); 273 crypto_shash_update(shash, kaddr, PAGE_SIZE); 274 } 275 memset(result, 0, BTRFS_CSUM_SIZE); 276 crypto_shash_final(shash, result); 277 } 278 279 /* 280 * we can't consider a given block up to date unless the transid of the 281 * block matches the transid in the parent node's pointer. This is how we 282 * detect blocks that either didn't get written at all or got written 283 * in the wrong place. 284 */ 285 static int verify_parent_transid(struct extent_io_tree *io_tree, 286 struct extent_buffer *eb, u64 parent_transid, 287 int atomic) 288 { 289 struct extent_state *cached_state = NULL; 290 int ret; 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 292 293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 294 return 0; 295 296 if (atomic) 297 return -EAGAIN; 298 299 if (need_lock) { 300 btrfs_tree_read_lock(eb); 301 btrfs_set_lock_blocking_read(eb); 302 } 303 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 305 &cached_state); 306 if (extent_buffer_uptodate(eb) && 307 btrfs_header_generation(eb) == parent_transid) { 308 ret = 0; 309 goto out; 310 } 311 btrfs_err_rl(eb->fs_info, 312 "parent transid verify failed on %llu wanted %llu found %llu", 313 eb->start, 314 parent_transid, btrfs_header_generation(eb)); 315 ret = 1; 316 317 /* 318 * Things reading via commit roots that don't have normal protection, 319 * like send, can have a really old block in cache that may point at a 320 * block that has been freed and re-allocated. So don't clear uptodate 321 * if we find an eb that is under IO (dirty/writeback) because we could 322 * end up reading in the stale data and then writing it back out and 323 * making everybody very sad. 324 */ 325 if (!extent_buffer_under_io(eb)) 326 clear_extent_buffer_uptodate(eb); 327 out: 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (need_lock) 331 btrfs_tree_read_unlock_blocking(eb); 332 return ret; 333 } 334 335 static bool btrfs_supported_super_csum(u16 csum_type) 336 { 337 switch (csum_type) { 338 case BTRFS_CSUM_TYPE_CRC32: 339 case BTRFS_CSUM_TYPE_XXHASH: 340 case BTRFS_CSUM_TYPE_SHA256: 341 case BTRFS_CSUM_TYPE_BLAKE2: 342 return true; 343 default: 344 return false; 345 } 346 } 347 348 /* 349 * Return 0 if the superblock checksum type matches the checksum value of that 350 * algorithm. Pass the raw disk superblock data. 351 */ 352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 353 char *raw_disk_sb) 354 { 355 struct btrfs_super_block *disk_sb = 356 (struct btrfs_super_block *)raw_disk_sb; 357 char result[BTRFS_CSUM_SIZE]; 358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 359 360 shash->tfm = fs_info->csum_shash; 361 362 /* 363 * The super_block structure does not span the whole 364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 365 * filled with zeros and is included in the checksum. 366 */ 367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 369 370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 371 return 1; 372 373 return 0; 374 } 375 376 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 377 struct btrfs_key *first_key, u64 parent_transid) 378 { 379 struct btrfs_fs_info *fs_info = eb->fs_info; 380 int found_level; 381 struct btrfs_key found_key; 382 int ret; 383 384 found_level = btrfs_header_level(eb); 385 if (found_level != level) { 386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 387 KERN_ERR "BTRFS: tree level check failed\n"); 388 btrfs_err(fs_info, 389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 390 eb->start, level, found_level); 391 return -EIO; 392 } 393 394 if (!first_key) 395 return 0; 396 397 /* 398 * For live tree block (new tree blocks in current transaction), 399 * we need proper lock context to avoid race, which is impossible here. 400 * So we only checks tree blocks which is read from disk, whose 401 * generation <= fs_info->last_trans_committed. 402 */ 403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 404 return 0; 405 406 /* We have @first_key, so this @eb must have at least one item */ 407 if (btrfs_header_nritems(eb) == 0) { 408 btrfs_err(fs_info, 409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 410 eb->start); 411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 412 return -EUCLEAN; 413 } 414 415 if (found_level) 416 btrfs_node_key_to_cpu(eb, &found_key, 0); 417 else 418 btrfs_item_key_to_cpu(eb, &found_key, 0); 419 ret = btrfs_comp_cpu_keys(first_key, &found_key); 420 421 if (ret) { 422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 423 KERN_ERR "BTRFS: tree first key check failed\n"); 424 btrfs_err(fs_info, 425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 426 eb->start, parent_transid, first_key->objectid, 427 first_key->type, first_key->offset, 428 found_key.objectid, found_key.type, 429 found_key.offset); 430 } 431 return ret; 432 } 433 434 /* 435 * helper to read a given tree block, doing retries as required when 436 * the checksums don't match and we have alternate mirrors to try. 437 * 438 * @parent_transid: expected transid, skip check if 0 439 * @level: expected level, mandatory check 440 * @first_key: expected key of first slot, skip check if NULL 441 */ 442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 443 u64 parent_transid, int level, 444 struct btrfs_key *first_key) 445 { 446 struct btrfs_fs_info *fs_info = eb->fs_info; 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 458 if (!ret) { 459 if (verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 ret = -EIO; 462 else if (btrfs_verify_level_key(eb, level, 463 first_key, parent_transid)) 464 ret = -EUCLEAN; 465 else 466 break; 467 } 468 469 num_copies = btrfs_num_copies(fs_info, 470 eb->start, eb->len); 471 if (num_copies == 1) 472 break; 473 474 if (!failed_mirror) { 475 failed = 1; 476 failed_mirror = eb->read_mirror; 477 } 478 479 mirror_num++; 480 if (mirror_num == failed_mirror) 481 mirror_num++; 482 483 if (mirror_num > num_copies) 484 break; 485 } 486 487 if (failed && !ret && failed_mirror) 488 btrfs_repair_eb_io_failure(eb, failed_mirror); 489 490 return ret; 491 } 492 493 /* 494 * checksum a dirty tree block before IO. This has extra checks to make sure 495 * we only fill in the checksum field in the first page of a multi-page block 496 */ 497 498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 499 { 500 u64 start = page_offset(page); 501 u64 found_start; 502 u8 result[BTRFS_CSUM_SIZE]; 503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 504 struct extent_buffer *eb; 505 int ret; 506 507 eb = (struct extent_buffer *)page->private; 508 if (page != eb->pages[0]) 509 return 0; 510 511 found_start = btrfs_header_bytenr(eb); 512 /* 513 * Please do not consolidate these warnings into a single if. 514 * It is useful to know what went wrong. 515 */ 516 if (WARN_ON(found_start != start)) 517 return -EUCLEAN; 518 if (WARN_ON(!PageUptodate(page))) 519 return -EUCLEAN; 520 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 522 offsetof(struct btrfs_header, fsid), 523 BTRFS_FSID_SIZE) == 0); 524 525 csum_tree_block(eb, result); 526 527 if (btrfs_header_level(eb)) 528 ret = btrfs_check_node(eb); 529 else 530 ret = btrfs_check_leaf_full(eb); 531 532 if (ret < 0) { 533 btrfs_print_tree(eb, 0); 534 btrfs_err(fs_info, 535 "block=%llu write time tree block corruption detected", 536 eb->start); 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 538 return ret; 539 } 540 write_extent_buffer(eb, result, 0, csum_size); 541 542 return 0; 543 } 544 545 static int check_tree_block_fsid(struct extent_buffer *eb) 546 { 547 struct btrfs_fs_info *fs_info = eb->fs_info; 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 549 u8 fsid[BTRFS_FSID_SIZE]; 550 int ret = 1; 551 552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 553 BTRFS_FSID_SIZE); 554 while (fs_devices) { 555 u8 *metadata_uuid; 556 557 /* 558 * Checking the incompat flag is only valid for the current 559 * fs. For seed devices it's forbidden to have their uuid 560 * changed so reading ->fsid in this case is fine 561 */ 562 if (fs_devices == fs_info->fs_devices && 563 btrfs_fs_incompat(fs_info, METADATA_UUID)) 564 metadata_uuid = fs_devices->metadata_uuid; 565 else 566 metadata_uuid = fs_devices->fsid; 567 568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 569 ret = 0; 570 break; 571 } 572 fs_devices = fs_devices->seed; 573 } 574 return ret; 575 } 576 577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 578 u64 phy_offset, struct page *page, 579 u64 start, u64 end, int mirror) 580 { 581 u64 found_start; 582 int found_level; 583 struct extent_buffer *eb; 584 struct btrfs_fs_info *fs_info; 585 u16 csum_size; 586 int ret = 0; 587 u8 result[BTRFS_CSUM_SIZE]; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 fs_info = eb->fs_info; 595 csum_size = btrfs_super_csum_size(fs_info->super_copy); 596 597 /* the pending IO might have been the only thing that kept this buffer 598 * in memory. Make sure we have a ref for all this other checks 599 */ 600 atomic_inc(&eb->refs); 601 602 reads_done = atomic_dec_and_test(&eb->io_pages); 603 if (!reads_done) 604 goto err; 605 606 eb->read_mirror = mirror; 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 608 ret = -EIO; 609 goto err; 610 } 611 612 found_start = btrfs_header_bytenr(eb); 613 if (found_start != eb->start) { 614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 615 eb->start, found_start); 616 ret = -EIO; 617 goto err; 618 } 619 if (check_tree_block_fsid(eb)) { 620 btrfs_err_rl(fs_info, "bad fsid on block %llu", 621 eb->start); 622 ret = -EIO; 623 goto err; 624 } 625 found_level = btrfs_header_level(eb); 626 if (found_level >= BTRFS_MAX_LEVEL) { 627 btrfs_err(fs_info, "bad tree block level %d on %llu", 628 (int)btrfs_header_level(eb), eb->start); 629 ret = -EIO; 630 goto err; 631 } 632 633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 634 eb, found_level); 635 636 csum_tree_block(eb, result); 637 638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 639 u32 val; 640 u32 found = 0; 641 642 memcpy(&found, result, csum_size); 643 644 read_extent_buffer(eb, &val, 0, csum_size); 645 btrfs_warn_rl(fs_info, 646 "%s checksum verify failed on %llu wanted %x found %x level %d", 647 fs_info->sb->s_id, eb->start, 648 val, found, btrfs_header_level(eb)); 649 ret = -EUCLEAN; 650 goto err; 651 } 652 653 /* 654 * If this is a leaf block and it is corrupt, set the corrupt bit so 655 * that we don't try and read the other copies of this block, just 656 * return -EIO. 657 */ 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 660 ret = -EIO; 661 } 662 663 if (found_level > 0 && btrfs_check_node(eb)) 664 ret = -EIO; 665 666 if (!ret) 667 set_extent_buffer_uptodate(eb); 668 else 669 btrfs_err(fs_info, 670 "block=%llu read time tree block corruption detected", 671 eb->start); 672 err: 673 if (reads_done && 674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 675 btree_readahead_hook(eb, ret); 676 677 if (ret) { 678 /* 679 * our io error hook is going to dec the io pages 680 * again, we have to make sure it has something 681 * to decrement 682 */ 683 atomic_inc(&eb->io_pages); 684 clear_extent_buffer_uptodate(eb); 685 } 686 free_extent_buffer(eb); 687 out: 688 return ret; 689 } 690 691 static void end_workqueue_bio(struct bio *bio) 692 { 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 694 struct btrfs_fs_info *fs_info; 695 struct btrfs_workqueue *wq; 696 697 fs_info = end_io_wq->info; 698 end_io_wq->status = bio->bi_status; 699 700 if (bio_op(bio) == REQ_OP_WRITE) { 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 702 wq = fs_info->endio_meta_write_workers; 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 704 wq = fs_info->endio_freespace_worker; 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 706 wq = fs_info->endio_raid56_workers; 707 else 708 wq = fs_info->endio_write_workers; 709 } else { 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 711 wq = fs_info->endio_raid56_workers; 712 else if (end_io_wq->metadata) 713 wq = fs_info->endio_meta_workers; 714 else 715 wq = fs_info->endio_workers; 716 } 717 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 719 btrfs_queue_work(wq, &end_io_wq->work); 720 } 721 722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 723 enum btrfs_wq_endio_type metadata) 724 { 725 struct btrfs_end_io_wq *end_io_wq; 726 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 728 if (!end_io_wq) 729 return BLK_STS_RESOURCE; 730 731 end_io_wq->private = bio->bi_private; 732 end_io_wq->end_io = bio->bi_end_io; 733 end_io_wq->info = info; 734 end_io_wq->status = 0; 735 end_io_wq->bio = bio; 736 end_io_wq->metadata = metadata; 737 738 bio->bi_private = end_io_wq; 739 bio->bi_end_io = end_workqueue_bio; 740 return 0; 741 } 742 743 static void run_one_async_start(struct btrfs_work *work) 744 { 745 struct async_submit_bio *async; 746 blk_status_t ret; 747 748 async = container_of(work, struct async_submit_bio, work); 749 ret = async->submit_bio_start(async->private_data, async->bio, 750 async->bio_offset); 751 if (ret) 752 async->status = ret; 753 } 754 755 /* 756 * In order to insert checksums into the metadata in large chunks, we wait 757 * until bio submission time. All the pages in the bio are checksummed and 758 * sums are attached onto the ordered extent record. 759 * 760 * At IO completion time the csums attached on the ordered extent record are 761 * inserted into the tree. 762 */ 763 static void run_one_async_done(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 struct inode *inode; 767 blk_status_t ret; 768 769 async = container_of(work, struct async_submit_bio, work); 770 inode = async->private_data; 771 772 /* If an error occurred we just want to clean up the bio and move on */ 773 if (async->status) { 774 async->bio->bi_status = async->status; 775 bio_endio(async->bio); 776 return; 777 } 778 779 /* 780 * All of the bios that pass through here are from async helpers. 781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 782 * This changes nothing when cgroups aren't in use. 783 */ 784 async->bio->bi_opf |= REQ_CGROUP_PUNT; 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 786 if (ret) { 787 async->bio->bi_status = ret; 788 bio_endio(async->bio); 789 } 790 } 791 792 static void run_one_async_free(struct btrfs_work *work) 793 { 794 struct async_submit_bio *async; 795 796 async = container_of(work, struct async_submit_bio, work); 797 kfree(async); 798 } 799 800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 801 int mirror_num, unsigned long bio_flags, 802 u64 bio_offset, void *private_data, 803 extent_submit_bio_start_t *submit_bio_start) 804 { 805 struct async_submit_bio *async; 806 807 async = kmalloc(sizeof(*async), GFP_NOFS); 808 if (!async) 809 return BLK_STS_RESOURCE; 810 811 async->private_data = private_data; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 817 run_one_async_free); 818 819 async->bio_offset = bio_offset; 820 821 async->status = 0; 822 823 if (op_is_sync(bio->bi_opf)) 824 btrfs_set_work_high_priority(&async->work); 825 826 btrfs_queue_work(fs_info->workers, &async->work); 827 return 0; 828 } 829 830 static blk_status_t btree_csum_one_bio(struct bio *bio) 831 { 832 struct bio_vec *bvec; 833 struct btrfs_root *root; 834 int ret = 0; 835 struct bvec_iter_all iter_all; 836 837 ASSERT(!bio_flagged(bio, BIO_CLONED)); 838 bio_for_each_segment_all(bvec, bio, iter_all) { 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 841 if (ret) 842 break; 843 } 844 845 return errno_to_blk_status(ret); 846 } 847 848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 849 u64 bio_offset) 850 { 851 /* 852 * when we're called for a write, we're already in the async 853 * submission context. Just jump into btrfs_map_bio 854 */ 855 return btree_csum_one_bio(bio); 856 } 857 858 static int check_async_write(struct btrfs_fs_info *fs_info, 859 struct btrfs_inode *bi) 860 { 861 if (atomic_read(&bi->sync_writers)) 862 return 0; 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 864 return 0; 865 return 1; 866 } 867 868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 869 int mirror_num, 870 unsigned long bio_flags) 871 { 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 873 int async = check_async_write(fs_info, BTRFS_I(inode)); 874 blk_status_t ret; 875 876 if (bio_op(bio) != REQ_OP_WRITE) { 877 /* 878 * called for a read, do the setup so that checksum validation 879 * can happen in the async kernel threads 880 */ 881 ret = btrfs_bio_wq_end_io(fs_info, bio, 882 BTRFS_WQ_ENDIO_METADATA); 883 if (ret) 884 goto out_w_error; 885 ret = btrfs_map_bio(fs_info, bio, mirror_num); 886 } else if (!async) { 887 ret = btree_csum_one_bio(bio); 888 if (ret) 889 goto out_w_error; 890 ret = btrfs_map_bio(fs_info, bio, mirror_num); 891 } else { 892 /* 893 * kthread helpers are used to submit writes so that 894 * checksumming can happen in parallel across all CPUs 895 */ 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 897 0, inode, btree_submit_bio_start); 898 } 899 900 if (ret) 901 goto out_w_error; 902 return 0; 903 904 out_w_error: 905 bio->bi_status = ret; 906 bio_endio(bio); 907 return ret; 908 } 909 910 #ifdef CONFIG_MIGRATION 911 static int btree_migratepage(struct address_space *mapping, 912 struct page *newpage, struct page *page, 913 enum migrate_mode mode) 914 { 915 /* 916 * we can't safely write a btree page from here, 917 * we haven't done the locking hook 918 */ 919 if (PageDirty(page)) 920 return -EAGAIN; 921 /* 922 * Buffers may be managed in a filesystem specific way. 923 * We must have no buffers or drop them. 924 */ 925 if (page_has_private(page) && 926 !try_to_release_page(page, GFP_KERNEL)) 927 return -EAGAIN; 928 return migrate_page(mapping, newpage, page, mode); 929 } 930 #endif 931 932 933 static int btree_writepages(struct address_space *mapping, 934 struct writeback_control *wbc) 935 { 936 struct btrfs_fs_info *fs_info; 937 int ret; 938 939 if (wbc->sync_mode == WB_SYNC_NONE) { 940 941 if (wbc->for_kupdate) 942 return 0; 943 944 fs_info = BTRFS_I(mapping->host)->root->fs_info; 945 /* this is a bit racy, but that's ok */ 946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 947 BTRFS_DIRTY_METADATA_THRESH, 948 fs_info->dirty_metadata_batch); 949 if (ret < 0) 950 return 0; 951 } 952 return btree_write_cache_pages(mapping, wbc); 953 } 954 955 static int btree_readpage(struct file *file, struct page *page) 956 { 957 return extent_read_full_page(page, btree_get_extent, 0); 958 } 959 960 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 961 { 962 if (PageWriteback(page) || PageDirty(page)) 963 return 0; 964 965 return try_release_extent_buffer(page); 966 } 967 968 static void btree_invalidatepage(struct page *page, unsigned int offset, 969 unsigned int length) 970 { 971 struct extent_io_tree *tree; 972 tree = &BTRFS_I(page->mapping->host)->io_tree; 973 extent_invalidatepage(tree, page, offset); 974 btree_releasepage(page, GFP_NOFS); 975 if (PagePrivate(page)) { 976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 977 "page private not zero on page %llu", 978 (unsigned long long)page_offset(page)); 979 detach_page_private(page); 980 } 981 } 982 983 static int btree_set_page_dirty(struct page *page) 984 { 985 #ifdef DEBUG 986 struct extent_buffer *eb; 987 988 BUG_ON(!PagePrivate(page)); 989 eb = (struct extent_buffer *)page->private; 990 BUG_ON(!eb); 991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 992 BUG_ON(!atomic_read(&eb->refs)); 993 btrfs_assert_tree_locked(eb); 994 #endif 995 return __set_page_dirty_nobuffers(page); 996 } 997 998 static const struct address_space_operations btree_aops = { 999 .readpage = btree_readpage, 1000 .writepages = btree_writepages, 1001 .releasepage = btree_releasepage, 1002 .invalidatepage = btree_invalidatepage, 1003 #ifdef CONFIG_MIGRATION 1004 .migratepage = btree_migratepage, 1005 #endif 1006 .set_page_dirty = btree_set_page_dirty, 1007 }; 1008 1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1010 { 1011 struct extent_buffer *buf = NULL; 1012 int ret; 1013 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1015 if (IS_ERR(buf)) 1016 return; 1017 1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1019 if (ret < 0) 1020 free_extent_buffer_stale(buf); 1021 else 1022 free_extent_buffer(buf); 1023 } 1024 1025 struct extent_buffer *btrfs_find_create_tree_block( 1026 struct btrfs_fs_info *fs_info, 1027 u64 bytenr) 1028 { 1029 if (btrfs_is_testing(fs_info)) 1030 return alloc_test_extent_buffer(fs_info, bytenr); 1031 return alloc_extent_buffer(fs_info, bytenr); 1032 } 1033 1034 /* 1035 * Read tree block at logical address @bytenr and do variant basic but critical 1036 * verification. 1037 * 1038 * @parent_transid: expected transid of this tree block, skip check if 0 1039 * @level: expected level, mandatory check 1040 * @first_key: expected key in slot 0, skip check if NULL 1041 */ 1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1043 u64 parent_transid, int level, 1044 struct btrfs_key *first_key) 1045 { 1046 struct extent_buffer *buf = NULL; 1047 int ret; 1048 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1050 if (IS_ERR(buf)) 1051 return buf; 1052 1053 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1054 level, first_key); 1055 if (ret) { 1056 free_extent_buffer_stale(buf); 1057 return ERR_PTR(ret); 1058 } 1059 return buf; 1060 1061 } 1062 1063 void btrfs_clean_tree_block(struct extent_buffer *buf) 1064 { 1065 struct btrfs_fs_info *fs_info = buf->fs_info; 1066 if (btrfs_header_generation(buf) == 1067 fs_info->running_transaction->transid) { 1068 btrfs_assert_tree_locked(buf); 1069 1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1072 -buf->len, 1073 fs_info->dirty_metadata_batch); 1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1075 btrfs_set_lock_blocking_write(buf); 1076 clear_extent_buffer_dirty(buf); 1077 } 1078 } 1079 } 1080 1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1082 u64 objectid) 1083 { 1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1085 root->fs_info = fs_info; 1086 root->node = NULL; 1087 root->commit_root = NULL; 1088 root->state = 0; 1089 root->orphan_cleanup_state = 0; 1090 1091 root->last_trans = 0; 1092 root->highest_objectid = 0; 1093 root->nr_delalloc_inodes = 0; 1094 root->nr_ordered_extents = 0; 1095 root->inode_tree = RB_ROOT; 1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1097 root->block_rsv = NULL; 1098 1099 INIT_LIST_HEAD(&root->dirty_list); 1100 INIT_LIST_HEAD(&root->root_list); 1101 INIT_LIST_HEAD(&root->delalloc_inodes); 1102 INIT_LIST_HEAD(&root->delalloc_root); 1103 INIT_LIST_HEAD(&root->ordered_extents); 1104 INIT_LIST_HEAD(&root->ordered_root); 1105 INIT_LIST_HEAD(&root->reloc_dirty_list); 1106 INIT_LIST_HEAD(&root->logged_list[0]); 1107 INIT_LIST_HEAD(&root->logged_list[1]); 1108 spin_lock_init(&root->inode_lock); 1109 spin_lock_init(&root->delalloc_lock); 1110 spin_lock_init(&root->ordered_extent_lock); 1111 spin_lock_init(&root->accounting_lock); 1112 spin_lock_init(&root->log_extents_lock[0]); 1113 spin_lock_init(&root->log_extents_lock[1]); 1114 spin_lock_init(&root->qgroup_meta_rsv_lock); 1115 mutex_init(&root->objectid_mutex); 1116 mutex_init(&root->log_mutex); 1117 mutex_init(&root->ordered_extent_mutex); 1118 mutex_init(&root->delalloc_mutex); 1119 init_waitqueue_head(&root->log_writer_wait); 1120 init_waitqueue_head(&root->log_commit_wait[0]); 1121 init_waitqueue_head(&root->log_commit_wait[1]); 1122 INIT_LIST_HEAD(&root->log_ctxs[0]); 1123 INIT_LIST_HEAD(&root->log_ctxs[1]); 1124 atomic_set(&root->log_commit[0], 0); 1125 atomic_set(&root->log_commit[1], 0); 1126 atomic_set(&root->log_writers, 0); 1127 atomic_set(&root->log_batch, 0); 1128 refcount_set(&root->refs, 1); 1129 atomic_set(&root->snapshot_force_cow, 0); 1130 atomic_set(&root->nr_swapfiles, 0); 1131 root->log_transid = 0; 1132 root->log_transid_committed = -1; 1133 root->last_log_commit = 0; 1134 if (!dummy) { 1135 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1137 extent_io_tree_init(fs_info, &root->log_csum_range, 1138 IO_TREE_LOG_CSUM_RANGE, NULL); 1139 } 1140 1141 memset(&root->root_key, 0, sizeof(root->root_key)); 1142 memset(&root->root_item, 0, sizeof(root->root_item)); 1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1144 if (!dummy) 1145 root->defrag_trans_start = fs_info->generation; 1146 else 1147 root->defrag_trans_start = 0; 1148 root->root_key.objectid = objectid; 1149 root->anon_dev = 0; 1150 1151 spin_lock_init(&root->root_item_lock); 1152 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1153 #ifdef CONFIG_BTRFS_DEBUG 1154 INIT_LIST_HEAD(&root->leak_list); 1155 spin_lock(&fs_info->fs_roots_radix_lock); 1156 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1157 spin_unlock(&fs_info->fs_roots_radix_lock); 1158 #endif 1159 } 1160 1161 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1162 u64 objectid, gfp_t flags) 1163 { 1164 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1165 if (root) 1166 __setup_root(root, fs_info, objectid); 1167 return root; 1168 } 1169 1170 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1171 /* Should only be used by the testing infrastructure */ 1172 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1173 { 1174 struct btrfs_root *root; 1175 1176 if (!fs_info) 1177 return ERR_PTR(-EINVAL); 1178 1179 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1180 if (!root) 1181 return ERR_PTR(-ENOMEM); 1182 1183 /* We don't use the stripesize in selftest, set it as sectorsize */ 1184 root->alloc_bytenr = 0; 1185 1186 return root; 1187 } 1188 #endif 1189 1190 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1191 u64 objectid) 1192 { 1193 struct btrfs_fs_info *fs_info = trans->fs_info; 1194 struct extent_buffer *leaf; 1195 struct btrfs_root *tree_root = fs_info->tree_root; 1196 struct btrfs_root *root; 1197 struct btrfs_key key; 1198 unsigned int nofs_flag; 1199 int ret = 0; 1200 1201 /* 1202 * We're holding a transaction handle, so use a NOFS memory allocation 1203 * context to avoid deadlock if reclaim happens. 1204 */ 1205 nofs_flag = memalloc_nofs_save(); 1206 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1207 memalloc_nofs_restore(nofs_flag); 1208 if (!root) 1209 return ERR_PTR(-ENOMEM); 1210 1211 root->root_key.objectid = objectid; 1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1213 root->root_key.offset = 0; 1214 1215 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1216 if (IS_ERR(leaf)) { 1217 ret = PTR_ERR(leaf); 1218 leaf = NULL; 1219 goto fail; 1220 } 1221 1222 root->node = leaf; 1223 btrfs_mark_buffer_dirty(leaf); 1224 1225 root->commit_root = btrfs_root_node(root); 1226 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1227 1228 root->root_item.flags = 0; 1229 root->root_item.byte_limit = 0; 1230 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1231 btrfs_set_root_generation(&root->root_item, trans->transid); 1232 btrfs_set_root_level(&root->root_item, 0); 1233 btrfs_set_root_refs(&root->root_item, 1); 1234 btrfs_set_root_used(&root->root_item, leaf->len); 1235 btrfs_set_root_last_snapshot(&root->root_item, 0); 1236 btrfs_set_root_dirid(&root->root_item, 0); 1237 if (is_fstree(objectid)) 1238 generate_random_guid(root->root_item.uuid); 1239 else 1240 export_guid(root->root_item.uuid, &guid_null); 1241 root->root_item.drop_level = 0; 1242 1243 key.objectid = objectid; 1244 key.type = BTRFS_ROOT_ITEM_KEY; 1245 key.offset = 0; 1246 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1247 if (ret) 1248 goto fail; 1249 1250 btrfs_tree_unlock(leaf); 1251 1252 return root; 1253 1254 fail: 1255 if (leaf) 1256 btrfs_tree_unlock(leaf); 1257 btrfs_put_root(root); 1258 1259 return ERR_PTR(ret); 1260 } 1261 1262 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1263 struct btrfs_fs_info *fs_info) 1264 { 1265 struct btrfs_root *root; 1266 struct extent_buffer *leaf; 1267 1268 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1269 if (!root) 1270 return ERR_PTR(-ENOMEM); 1271 1272 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1273 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1274 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1275 1276 /* 1277 * DON'T set SHAREABLE bit for log trees. 1278 * 1279 * Log trees are not exposed to user space thus can't be snapshotted, 1280 * and they go away before a real commit is actually done. 1281 * 1282 * They do store pointers to file data extents, and those reference 1283 * counts still get updated (along with back refs to the log tree). 1284 */ 1285 1286 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1287 NULL, 0, 0, 0); 1288 if (IS_ERR(leaf)) { 1289 btrfs_put_root(root); 1290 return ERR_CAST(leaf); 1291 } 1292 1293 root->node = leaf; 1294 1295 btrfs_mark_buffer_dirty(root->node); 1296 btrfs_tree_unlock(root->node); 1297 return root; 1298 } 1299 1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1301 struct btrfs_fs_info *fs_info) 1302 { 1303 struct btrfs_root *log_root; 1304 1305 log_root = alloc_log_tree(trans, fs_info); 1306 if (IS_ERR(log_root)) 1307 return PTR_ERR(log_root); 1308 WARN_ON(fs_info->log_root_tree); 1309 fs_info->log_root_tree = log_root; 1310 return 0; 1311 } 1312 1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_root *root) 1315 { 1316 struct btrfs_fs_info *fs_info = root->fs_info; 1317 struct btrfs_root *log_root; 1318 struct btrfs_inode_item *inode_item; 1319 1320 log_root = alloc_log_tree(trans, fs_info); 1321 if (IS_ERR(log_root)) 1322 return PTR_ERR(log_root); 1323 1324 log_root->last_trans = trans->transid; 1325 log_root->root_key.offset = root->root_key.objectid; 1326 1327 inode_item = &log_root->root_item.inode; 1328 btrfs_set_stack_inode_generation(inode_item, 1); 1329 btrfs_set_stack_inode_size(inode_item, 3); 1330 btrfs_set_stack_inode_nlink(inode_item, 1); 1331 btrfs_set_stack_inode_nbytes(inode_item, 1332 fs_info->nodesize); 1333 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1334 1335 btrfs_set_root_node(&log_root->root_item, log_root->node); 1336 1337 WARN_ON(root->log_root); 1338 root->log_root = log_root; 1339 root->log_transid = 0; 1340 root->log_transid_committed = -1; 1341 root->last_log_commit = 0; 1342 return 0; 1343 } 1344 1345 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1346 struct btrfs_key *key) 1347 { 1348 struct btrfs_root *root; 1349 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1350 struct btrfs_path *path; 1351 u64 generation; 1352 int ret; 1353 int level; 1354 1355 path = btrfs_alloc_path(); 1356 if (!path) 1357 return ERR_PTR(-ENOMEM); 1358 1359 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1360 if (!root) { 1361 ret = -ENOMEM; 1362 goto alloc_fail; 1363 } 1364 1365 ret = btrfs_find_root(tree_root, key, path, 1366 &root->root_item, &root->root_key); 1367 if (ret) { 1368 if (ret > 0) 1369 ret = -ENOENT; 1370 goto find_fail; 1371 } 1372 1373 generation = btrfs_root_generation(&root->root_item); 1374 level = btrfs_root_level(&root->root_item); 1375 root->node = read_tree_block(fs_info, 1376 btrfs_root_bytenr(&root->root_item), 1377 generation, level, NULL); 1378 if (IS_ERR(root->node)) { 1379 ret = PTR_ERR(root->node); 1380 root->node = NULL; 1381 goto find_fail; 1382 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1383 ret = -EIO; 1384 goto find_fail; 1385 } 1386 root->commit_root = btrfs_root_node(root); 1387 out: 1388 btrfs_free_path(path); 1389 return root; 1390 1391 find_fail: 1392 btrfs_put_root(root); 1393 alloc_fail: 1394 root = ERR_PTR(ret); 1395 goto out; 1396 } 1397 1398 static int btrfs_init_fs_root(struct btrfs_root *root) 1399 { 1400 int ret; 1401 unsigned int nofs_flag; 1402 1403 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1404 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1405 GFP_NOFS); 1406 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1407 ret = -ENOMEM; 1408 goto fail; 1409 } 1410 1411 /* 1412 * We might be called under a transaction (e.g. indirect backref 1413 * resolution) which could deadlock if it triggers memory reclaim 1414 */ 1415 nofs_flag = memalloc_nofs_save(); 1416 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1417 memalloc_nofs_restore(nofs_flag); 1418 if (ret) 1419 goto fail; 1420 1421 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1422 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1423 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1424 btrfs_check_and_init_root_item(&root->root_item); 1425 } 1426 1427 btrfs_init_free_ino_ctl(root); 1428 spin_lock_init(&root->ino_cache_lock); 1429 init_waitqueue_head(&root->ino_cache_wait); 1430 1431 ret = get_anon_bdev(&root->anon_dev); 1432 if (ret) 1433 goto fail; 1434 1435 mutex_lock(&root->objectid_mutex); 1436 ret = btrfs_find_highest_objectid(root, 1437 &root->highest_objectid); 1438 if (ret) { 1439 mutex_unlock(&root->objectid_mutex); 1440 goto fail; 1441 } 1442 1443 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1444 1445 mutex_unlock(&root->objectid_mutex); 1446 1447 return 0; 1448 fail: 1449 /* The caller is responsible to call btrfs_free_fs_root */ 1450 return ret; 1451 } 1452 1453 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1454 u64 root_id) 1455 { 1456 struct btrfs_root *root; 1457 1458 spin_lock(&fs_info->fs_roots_radix_lock); 1459 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1460 (unsigned long)root_id); 1461 if (root) 1462 root = btrfs_grab_root(root); 1463 spin_unlock(&fs_info->fs_roots_radix_lock); 1464 return root; 1465 } 1466 1467 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1468 struct btrfs_root *root) 1469 { 1470 int ret; 1471 1472 ret = radix_tree_preload(GFP_NOFS); 1473 if (ret) 1474 return ret; 1475 1476 spin_lock(&fs_info->fs_roots_radix_lock); 1477 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1478 (unsigned long)root->root_key.objectid, 1479 root); 1480 if (ret == 0) { 1481 btrfs_grab_root(root); 1482 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1483 } 1484 spin_unlock(&fs_info->fs_roots_radix_lock); 1485 radix_tree_preload_end(); 1486 1487 return ret; 1488 } 1489 1490 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1491 { 1492 #ifdef CONFIG_BTRFS_DEBUG 1493 struct btrfs_root *root; 1494 1495 while (!list_empty(&fs_info->allocated_roots)) { 1496 root = list_first_entry(&fs_info->allocated_roots, 1497 struct btrfs_root, leak_list); 1498 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d", 1499 root->root_key.objectid, root->root_key.offset, 1500 refcount_read(&root->refs)); 1501 while (refcount_read(&root->refs) > 1) 1502 btrfs_put_root(root); 1503 btrfs_put_root(root); 1504 } 1505 #endif 1506 } 1507 1508 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1509 { 1510 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1511 percpu_counter_destroy(&fs_info->delalloc_bytes); 1512 percpu_counter_destroy(&fs_info->dio_bytes); 1513 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1514 btrfs_free_csum_hash(fs_info); 1515 btrfs_free_stripe_hash_table(fs_info); 1516 btrfs_free_ref_cache(fs_info); 1517 kfree(fs_info->balance_ctl); 1518 kfree(fs_info->delayed_root); 1519 btrfs_put_root(fs_info->extent_root); 1520 btrfs_put_root(fs_info->tree_root); 1521 btrfs_put_root(fs_info->chunk_root); 1522 btrfs_put_root(fs_info->dev_root); 1523 btrfs_put_root(fs_info->csum_root); 1524 btrfs_put_root(fs_info->quota_root); 1525 btrfs_put_root(fs_info->uuid_root); 1526 btrfs_put_root(fs_info->free_space_root); 1527 btrfs_put_root(fs_info->fs_root); 1528 btrfs_put_root(fs_info->data_reloc_root); 1529 btrfs_check_leaked_roots(fs_info); 1530 btrfs_extent_buffer_leak_debug_check(fs_info); 1531 kfree(fs_info->super_copy); 1532 kfree(fs_info->super_for_commit); 1533 kvfree(fs_info); 1534 } 1535 1536 1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1538 u64 objectid, bool check_ref) 1539 { 1540 struct btrfs_root *root; 1541 struct btrfs_path *path; 1542 struct btrfs_key key; 1543 int ret; 1544 1545 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1546 return btrfs_grab_root(fs_info->tree_root); 1547 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1548 return btrfs_grab_root(fs_info->extent_root); 1549 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1550 return btrfs_grab_root(fs_info->chunk_root); 1551 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1552 return btrfs_grab_root(fs_info->dev_root); 1553 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1554 return btrfs_grab_root(fs_info->csum_root); 1555 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1556 return btrfs_grab_root(fs_info->quota_root) ? 1557 fs_info->quota_root : ERR_PTR(-ENOENT); 1558 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1559 return btrfs_grab_root(fs_info->uuid_root) ? 1560 fs_info->uuid_root : ERR_PTR(-ENOENT); 1561 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1562 return btrfs_grab_root(fs_info->free_space_root) ? 1563 fs_info->free_space_root : ERR_PTR(-ENOENT); 1564 again: 1565 root = btrfs_lookup_fs_root(fs_info, objectid); 1566 if (root) { 1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1568 btrfs_put_root(root); 1569 return ERR_PTR(-ENOENT); 1570 } 1571 return root; 1572 } 1573 1574 key.objectid = objectid; 1575 key.type = BTRFS_ROOT_ITEM_KEY; 1576 key.offset = (u64)-1; 1577 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1578 if (IS_ERR(root)) 1579 return root; 1580 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1582 ret = -ENOENT; 1583 goto fail; 1584 } 1585 1586 ret = btrfs_init_fs_root(root); 1587 if (ret) 1588 goto fail; 1589 1590 path = btrfs_alloc_path(); 1591 if (!path) { 1592 ret = -ENOMEM; 1593 goto fail; 1594 } 1595 key.objectid = BTRFS_ORPHAN_OBJECTID; 1596 key.type = BTRFS_ORPHAN_ITEM_KEY; 1597 key.offset = objectid; 1598 1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1600 btrfs_free_path(path); 1601 if (ret < 0) 1602 goto fail; 1603 if (ret == 0) 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1605 1606 ret = btrfs_insert_fs_root(fs_info, root); 1607 if (ret) { 1608 btrfs_put_root(root); 1609 if (ret == -EEXIST) 1610 goto again; 1611 goto fail; 1612 } 1613 return root; 1614 fail: 1615 btrfs_put_root(root); 1616 return ERR_PTR(ret); 1617 } 1618 1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1620 { 1621 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1622 int ret = 0; 1623 struct btrfs_device *device; 1624 struct backing_dev_info *bdi; 1625 1626 rcu_read_lock(); 1627 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1628 if (!device->bdev) 1629 continue; 1630 bdi = device->bdev->bd_bdi; 1631 if (bdi_congested(bdi, bdi_bits)) { 1632 ret = 1; 1633 break; 1634 } 1635 } 1636 rcu_read_unlock(); 1637 return ret; 1638 } 1639 1640 /* 1641 * called by the kthread helper functions to finally call the bio end_io 1642 * functions. This is where read checksum verification actually happens 1643 */ 1644 static void end_workqueue_fn(struct btrfs_work *work) 1645 { 1646 struct bio *bio; 1647 struct btrfs_end_io_wq *end_io_wq; 1648 1649 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1650 bio = end_io_wq->bio; 1651 1652 bio->bi_status = end_io_wq->status; 1653 bio->bi_private = end_io_wq->private; 1654 bio->bi_end_io = end_io_wq->end_io; 1655 bio_endio(bio); 1656 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1657 } 1658 1659 static int cleaner_kthread(void *arg) 1660 { 1661 struct btrfs_root *root = arg; 1662 struct btrfs_fs_info *fs_info = root->fs_info; 1663 int again; 1664 1665 while (1) { 1666 again = 0; 1667 1668 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1669 1670 /* Make the cleaner go to sleep early. */ 1671 if (btrfs_need_cleaner_sleep(fs_info)) 1672 goto sleep; 1673 1674 /* 1675 * Do not do anything if we might cause open_ctree() to block 1676 * before we have finished mounting the filesystem. 1677 */ 1678 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1679 goto sleep; 1680 1681 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1682 goto sleep; 1683 1684 /* 1685 * Avoid the problem that we change the status of the fs 1686 * during the above check and trylock. 1687 */ 1688 if (btrfs_need_cleaner_sleep(fs_info)) { 1689 mutex_unlock(&fs_info->cleaner_mutex); 1690 goto sleep; 1691 } 1692 1693 btrfs_run_delayed_iputs(fs_info); 1694 1695 again = btrfs_clean_one_deleted_snapshot(root); 1696 mutex_unlock(&fs_info->cleaner_mutex); 1697 1698 /* 1699 * The defragger has dealt with the R/O remount and umount, 1700 * needn't do anything special here. 1701 */ 1702 btrfs_run_defrag_inodes(fs_info); 1703 1704 /* 1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1706 * with relocation (btrfs_relocate_chunk) and relocation 1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1710 * unused block groups. 1711 */ 1712 btrfs_delete_unused_bgs(fs_info); 1713 sleep: 1714 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1715 if (kthread_should_park()) 1716 kthread_parkme(); 1717 if (kthread_should_stop()) 1718 return 0; 1719 if (!again) { 1720 set_current_state(TASK_INTERRUPTIBLE); 1721 schedule(); 1722 __set_current_state(TASK_RUNNING); 1723 } 1724 } 1725 } 1726 1727 static int transaction_kthread(void *arg) 1728 { 1729 struct btrfs_root *root = arg; 1730 struct btrfs_fs_info *fs_info = root->fs_info; 1731 struct btrfs_trans_handle *trans; 1732 struct btrfs_transaction *cur; 1733 u64 transid; 1734 time64_t now; 1735 unsigned long delay; 1736 bool cannot_commit; 1737 1738 do { 1739 cannot_commit = false; 1740 delay = HZ * fs_info->commit_interval; 1741 mutex_lock(&fs_info->transaction_kthread_mutex); 1742 1743 spin_lock(&fs_info->trans_lock); 1744 cur = fs_info->running_transaction; 1745 if (!cur) { 1746 spin_unlock(&fs_info->trans_lock); 1747 goto sleep; 1748 } 1749 1750 now = ktime_get_seconds(); 1751 if (cur->state < TRANS_STATE_COMMIT_START && 1752 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1753 (now < cur->start_time || 1754 now - cur->start_time < fs_info->commit_interval)) { 1755 spin_unlock(&fs_info->trans_lock); 1756 delay = HZ * 5; 1757 goto sleep; 1758 } 1759 transid = cur->transid; 1760 spin_unlock(&fs_info->trans_lock); 1761 1762 /* If the file system is aborted, this will always fail. */ 1763 trans = btrfs_attach_transaction(root); 1764 if (IS_ERR(trans)) { 1765 if (PTR_ERR(trans) != -ENOENT) 1766 cannot_commit = true; 1767 goto sleep; 1768 } 1769 if (transid == trans->transid) { 1770 btrfs_commit_transaction(trans); 1771 } else { 1772 btrfs_end_transaction(trans); 1773 } 1774 sleep: 1775 wake_up_process(fs_info->cleaner_kthread); 1776 mutex_unlock(&fs_info->transaction_kthread_mutex); 1777 1778 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1779 &fs_info->fs_state))) 1780 btrfs_cleanup_transaction(fs_info); 1781 if (!kthread_should_stop() && 1782 (!btrfs_transaction_blocked(fs_info) || 1783 cannot_commit)) 1784 schedule_timeout_interruptible(delay); 1785 } while (!kthread_should_stop()); 1786 return 0; 1787 } 1788 1789 /* 1790 * This will find the highest generation in the array of root backups. The 1791 * index of the highest array is returned, or -EINVAL if we can't find 1792 * anything. 1793 * 1794 * We check to make sure the array is valid by comparing the 1795 * generation of the latest root in the array with the generation 1796 * in the super block. If they don't match we pitch it. 1797 */ 1798 static int find_newest_super_backup(struct btrfs_fs_info *info) 1799 { 1800 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1801 u64 cur; 1802 struct btrfs_root_backup *root_backup; 1803 int i; 1804 1805 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1806 root_backup = info->super_copy->super_roots + i; 1807 cur = btrfs_backup_tree_root_gen(root_backup); 1808 if (cur == newest_gen) 1809 return i; 1810 } 1811 1812 return -EINVAL; 1813 } 1814 1815 /* 1816 * copy all the root pointers into the super backup array. 1817 * this will bump the backup pointer by one when it is 1818 * done 1819 */ 1820 static void backup_super_roots(struct btrfs_fs_info *info) 1821 { 1822 const int next_backup = info->backup_root_index; 1823 struct btrfs_root_backup *root_backup; 1824 1825 root_backup = info->super_for_commit->super_roots + next_backup; 1826 1827 /* 1828 * make sure all of our padding and empty slots get zero filled 1829 * regardless of which ones we use today 1830 */ 1831 memset(root_backup, 0, sizeof(*root_backup)); 1832 1833 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1834 1835 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1836 btrfs_set_backup_tree_root_gen(root_backup, 1837 btrfs_header_generation(info->tree_root->node)); 1838 1839 btrfs_set_backup_tree_root_level(root_backup, 1840 btrfs_header_level(info->tree_root->node)); 1841 1842 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1843 btrfs_set_backup_chunk_root_gen(root_backup, 1844 btrfs_header_generation(info->chunk_root->node)); 1845 btrfs_set_backup_chunk_root_level(root_backup, 1846 btrfs_header_level(info->chunk_root->node)); 1847 1848 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1849 btrfs_set_backup_extent_root_gen(root_backup, 1850 btrfs_header_generation(info->extent_root->node)); 1851 btrfs_set_backup_extent_root_level(root_backup, 1852 btrfs_header_level(info->extent_root->node)); 1853 1854 /* 1855 * we might commit during log recovery, which happens before we set 1856 * the fs_root. Make sure it is valid before we fill it in. 1857 */ 1858 if (info->fs_root && info->fs_root->node) { 1859 btrfs_set_backup_fs_root(root_backup, 1860 info->fs_root->node->start); 1861 btrfs_set_backup_fs_root_gen(root_backup, 1862 btrfs_header_generation(info->fs_root->node)); 1863 btrfs_set_backup_fs_root_level(root_backup, 1864 btrfs_header_level(info->fs_root->node)); 1865 } 1866 1867 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1868 btrfs_set_backup_dev_root_gen(root_backup, 1869 btrfs_header_generation(info->dev_root->node)); 1870 btrfs_set_backup_dev_root_level(root_backup, 1871 btrfs_header_level(info->dev_root->node)); 1872 1873 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1874 btrfs_set_backup_csum_root_gen(root_backup, 1875 btrfs_header_generation(info->csum_root->node)); 1876 btrfs_set_backup_csum_root_level(root_backup, 1877 btrfs_header_level(info->csum_root->node)); 1878 1879 btrfs_set_backup_total_bytes(root_backup, 1880 btrfs_super_total_bytes(info->super_copy)); 1881 btrfs_set_backup_bytes_used(root_backup, 1882 btrfs_super_bytes_used(info->super_copy)); 1883 btrfs_set_backup_num_devices(root_backup, 1884 btrfs_super_num_devices(info->super_copy)); 1885 1886 /* 1887 * if we don't copy this out to the super_copy, it won't get remembered 1888 * for the next commit 1889 */ 1890 memcpy(&info->super_copy->super_roots, 1891 &info->super_for_commit->super_roots, 1892 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1893 } 1894 1895 /* 1896 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1897 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1898 * 1899 * fs_info - filesystem whose backup roots need to be read 1900 * priority - priority of backup root required 1901 * 1902 * Returns backup root index on success and -EINVAL otherwise. 1903 */ 1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1905 { 1906 int backup_index = find_newest_super_backup(fs_info); 1907 struct btrfs_super_block *super = fs_info->super_copy; 1908 struct btrfs_root_backup *root_backup; 1909 1910 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1911 if (priority == 0) 1912 return backup_index; 1913 1914 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1915 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1916 } else { 1917 return -EINVAL; 1918 } 1919 1920 root_backup = super->super_roots + backup_index; 1921 1922 btrfs_set_super_generation(super, 1923 btrfs_backup_tree_root_gen(root_backup)); 1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1925 btrfs_set_super_root_level(super, 1926 btrfs_backup_tree_root_level(root_backup)); 1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1928 1929 /* 1930 * Fixme: the total bytes and num_devices need to match or we should 1931 * need a fsck 1932 */ 1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1935 1936 return backup_index; 1937 } 1938 1939 /* helper to cleanup workers */ 1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1941 { 1942 btrfs_destroy_workqueue(fs_info->fixup_workers); 1943 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1944 btrfs_destroy_workqueue(fs_info->workers); 1945 btrfs_destroy_workqueue(fs_info->endio_workers); 1946 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1947 btrfs_destroy_workqueue(fs_info->rmw_workers); 1948 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1949 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1950 btrfs_destroy_workqueue(fs_info->delayed_workers); 1951 btrfs_destroy_workqueue(fs_info->caching_workers); 1952 btrfs_destroy_workqueue(fs_info->readahead_workers); 1953 btrfs_destroy_workqueue(fs_info->flush_workers); 1954 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1955 if (fs_info->discard_ctl.discard_workers) 1956 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1957 /* 1958 * Now that all other work queues are destroyed, we can safely destroy 1959 * the queues used for metadata I/O, since tasks from those other work 1960 * queues can do metadata I/O operations. 1961 */ 1962 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1963 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1964 } 1965 1966 static void free_root_extent_buffers(struct btrfs_root *root) 1967 { 1968 if (root) { 1969 free_extent_buffer(root->node); 1970 free_extent_buffer(root->commit_root); 1971 root->node = NULL; 1972 root->commit_root = NULL; 1973 } 1974 } 1975 1976 /* helper to cleanup tree roots */ 1977 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1978 { 1979 free_root_extent_buffers(info->tree_root); 1980 1981 free_root_extent_buffers(info->dev_root); 1982 free_root_extent_buffers(info->extent_root); 1983 free_root_extent_buffers(info->csum_root); 1984 free_root_extent_buffers(info->quota_root); 1985 free_root_extent_buffers(info->uuid_root); 1986 free_root_extent_buffers(info->fs_root); 1987 free_root_extent_buffers(info->data_reloc_root); 1988 if (free_chunk_root) 1989 free_root_extent_buffers(info->chunk_root); 1990 free_root_extent_buffers(info->free_space_root); 1991 } 1992 1993 void btrfs_put_root(struct btrfs_root *root) 1994 { 1995 if (!root) 1996 return; 1997 1998 if (refcount_dec_and_test(&root->refs)) { 1999 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2000 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2001 if (root->anon_dev) 2002 free_anon_bdev(root->anon_dev); 2003 btrfs_drew_lock_destroy(&root->snapshot_lock); 2004 free_extent_buffer(root->node); 2005 free_extent_buffer(root->commit_root); 2006 kfree(root->free_ino_ctl); 2007 kfree(root->free_ino_pinned); 2008 #ifdef CONFIG_BTRFS_DEBUG 2009 spin_lock(&root->fs_info->fs_roots_radix_lock); 2010 list_del_init(&root->leak_list); 2011 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2012 #endif 2013 kfree(root); 2014 } 2015 } 2016 2017 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2018 { 2019 int ret; 2020 struct btrfs_root *gang[8]; 2021 int i; 2022 2023 while (!list_empty(&fs_info->dead_roots)) { 2024 gang[0] = list_entry(fs_info->dead_roots.next, 2025 struct btrfs_root, root_list); 2026 list_del(&gang[0]->root_list); 2027 2028 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2029 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2030 btrfs_put_root(gang[0]); 2031 } 2032 2033 while (1) { 2034 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2035 (void **)gang, 0, 2036 ARRAY_SIZE(gang)); 2037 if (!ret) 2038 break; 2039 for (i = 0; i < ret; i++) 2040 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2041 } 2042 } 2043 2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2045 { 2046 mutex_init(&fs_info->scrub_lock); 2047 atomic_set(&fs_info->scrubs_running, 0); 2048 atomic_set(&fs_info->scrub_pause_req, 0); 2049 atomic_set(&fs_info->scrubs_paused, 0); 2050 atomic_set(&fs_info->scrub_cancel_req, 0); 2051 init_waitqueue_head(&fs_info->scrub_pause_wait); 2052 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2053 } 2054 2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2056 { 2057 spin_lock_init(&fs_info->balance_lock); 2058 mutex_init(&fs_info->balance_mutex); 2059 atomic_set(&fs_info->balance_pause_req, 0); 2060 atomic_set(&fs_info->balance_cancel_req, 0); 2061 fs_info->balance_ctl = NULL; 2062 init_waitqueue_head(&fs_info->balance_wait_q); 2063 } 2064 2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2066 { 2067 struct inode *inode = fs_info->btree_inode; 2068 2069 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2070 set_nlink(inode, 1); 2071 /* 2072 * we set the i_size on the btree inode to the max possible int. 2073 * the real end of the address space is determined by all of 2074 * the devices in the system 2075 */ 2076 inode->i_size = OFFSET_MAX; 2077 inode->i_mapping->a_ops = &btree_aops; 2078 2079 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2080 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2081 IO_TREE_INODE_IO, inode); 2082 BTRFS_I(inode)->io_tree.track_uptodate = false; 2083 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2084 2085 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2086 2087 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2088 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2089 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2090 btrfs_insert_inode_hash(inode); 2091 } 2092 2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2094 { 2095 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2096 init_rwsem(&fs_info->dev_replace.rwsem); 2097 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2098 } 2099 2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2101 { 2102 spin_lock_init(&fs_info->qgroup_lock); 2103 mutex_init(&fs_info->qgroup_ioctl_lock); 2104 fs_info->qgroup_tree = RB_ROOT; 2105 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2106 fs_info->qgroup_seq = 1; 2107 fs_info->qgroup_ulist = NULL; 2108 fs_info->qgroup_rescan_running = false; 2109 mutex_init(&fs_info->qgroup_rescan_lock); 2110 } 2111 2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2113 struct btrfs_fs_devices *fs_devices) 2114 { 2115 u32 max_active = fs_info->thread_pool_size; 2116 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2117 2118 fs_info->workers = 2119 btrfs_alloc_workqueue(fs_info, "worker", 2120 flags | WQ_HIGHPRI, max_active, 16); 2121 2122 fs_info->delalloc_workers = 2123 btrfs_alloc_workqueue(fs_info, "delalloc", 2124 flags, max_active, 2); 2125 2126 fs_info->flush_workers = 2127 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2128 flags, max_active, 0); 2129 2130 fs_info->caching_workers = 2131 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2132 2133 fs_info->fixup_workers = 2134 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2135 2136 /* 2137 * endios are largely parallel and should have a very 2138 * low idle thresh 2139 */ 2140 fs_info->endio_workers = 2141 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2142 fs_info->endio_meta_workers = 2143 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2144 max_active, 4); 2145 fs_info->endio_meta_write_workers = 2146 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2147 max_active, 2); 2148 fs_info->endio_raid56_workers = 2149 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2150 max_active, 4); 2151 fs_info->rmw_workers = 2152 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2153 fs_info->endio_write_workers = 2154 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2155 max_active, 2); 2156 fs_info->endio_freespace_worker = 2157 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2158 max_active, 0); 2159 fs_info->delayed_workers = 2160 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2161 max_active, 0); 2162 fs_info->readahead_workers = 2163 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2164 max_active, 2); 2165 fs_info->qgroup_rescan_workers = 2166 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2167 fs_info->discard_ctl.discard_workers = 2168 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2169 2170 if (!(fs_info->workers && fs_info->delalloc_workers && 2171 fs_info->flush_workers && 2172 fs_info->endio_workers && fs_info->endio_meta_workers && 2173 fs_info->endio_meta_write_workers && 2174 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2175 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2176 fs_info->caching_workers && fs_info->readahead_workers && 2177 fs_info->fixup_workers && fs_info->delayed_workers && 2178 fs_info->qgroup_rescan_workers && 2179 fs_info->discard_ctl.discard_workers)) { 2180 return -ENOMEM; 2181 } 2182 2183 return 0; 2184 } 2185 2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2187 { 2188 struct crypto_shash *csum_shash; 2189 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2190 2191 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2192 2193 if (IS_ERR(csum_shash)) { 2194 btrfs_err(fs_info, "error allocating %s hash for checksum", 2195 csum_driver); 2196 return PTR_ERR(csum_shash); 2197 } 2198 2199 fs_info->csum_shash = csum_shash; 2200 2201 return 0; 2202 } 2203 2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2205 struct btrfs_fs_devices *fs_devices) 2206 { 2207 int ret; 2208 struct btrfs_root *log_tree_root; 2209 struct btrfs_super_block *disk_super = fs_info->super_copy; 2210 u64 bytenr = btrfs_super_log_root(disk_super); 2211 int level = btrfs_super_log_root_level(disk_super); 2212 2213 if (fs_devices->rw_devices == 0) { 2214 btrfs_warn(fs_info, "log replay required on RO media"); 2215 return -EIO; 2216 } 2217 2218 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2219 GFP_KERNEL); 2220 if (!log_tree_root) 2221 return -ENOMEM; 2222 2223 log_tree_root->node = read_tree_block(fs_info, bytenr, 2224 fs_info->generation + 1, 2225 level, NULL); 2226 if (IS_ERR(log_tree_root->node)) { 2227 btrfs_warn(fs_info, "failed to read log tree"); 2228 ret = PTR_ERR(log_tree_root->node); 2229 log_tree_root->node = NULL; 2230 btrfs_put_root(log_tree_root); 2231 return ret; 2232 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2233 btrfs_err(fs_info, "failed to read log tree"); 2234 btrfs_put_root(log_tree_root); 2235 return -EIO; 2236 } 2237 /* returns with log_tree_root freed on success */ 2238 ret = btrfs_recover_log_trees(log_tree_root); 2239 if (ret) { 2240 btrfs_handle_fs_error(fs_info, ret, 2241 "Failed to recover log tree"); 2242 btrfs_put_root(log_tree_root); 2243 return ret; 2244 } 2245 2246 if (sb_rdonly(fs_info->sb)) { 2247 ret = btrfs_commit_super(fs_info); 2248 if (ret) 2249 return ret; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2256 { 2257 struct btrfs_root *tree_root = fs_info->tree_root; 2258 struct btrfs_root *root; 2259 struct btrfs_key location; 2260 int ret; 2261 2262 BUG_ON(!fs_info->tree_root); 2263 2264 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2265 location.type = BTRFS_ROOT_ITEM_KEY; 2266 location.offset = 0; 2267 2268 root = btrfs_read_tree_root(tree_root, &location); 2269 if (IS_ERR(root)) { 2270 ret = PTR_ERR(root); 2271 goto out; 2272 } 2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2274 fs_info->extent_root = root; 2275 2276 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2277 root = btrfs_read_tree_root(tree_root, &location); 2278 if (IS_ERR(root)) { 2279 ret = PTR_ERR(root); 2280 goto out; 2281 } 2282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2283 fs_info->dev_root = root; 2284 btrfs_init_devices_late(fs_info); 2285 2286 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2287 root = btrfs_read_tree_root(tree_root, &location); 2288 if (IS_ERR(root)) { 2289 ret = PTR_ERR(root); 2290 goto out; 2291 } 2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2293 fs_info->csum_root = root; 2294 2295 /* 2296 * This tree can share blocks with some other fs tree during relocation 2297 * and we need a proper setup by btrfs_get_fs_root 2298 */ 2299 root = btrfs_get_fs_root(tree_root->fs_info, 2300 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2301 if (IS_ERR(root)) { 2302 ret = PTR_ERR(root); 2303 goto out; 2304 } 2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2306 fs_info->data_reloc_root = root; 2307 2308 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2309 root = btrfs_read_tree_root(tree_root, &location); 2310 if (!IS_ERR(root)) { 2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2312 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2313 fs_info->quota_root = root; 2314 } 2315 2316 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2317 root = btrfs_read_tree_root(tree_root, &location); 2318 if (IS_ERR(root)) { 2319 ret = PTR_ERR(root); 2320 if (ret != -ENOENT) 2321 goto out; 2322 } else { 2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2324 fs_info->uuid_root = root; 2325 } 2326 2327 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2328 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2329 root = btrfs_read_tree_root(tree_root, &location); 2330 if (IS_ERR(root)) { 2331 ret = PTR_ERR(root); 2332 goto out; 2333 } 2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2335 fs_info->free_space_root = root; 2336 } 2337 2338 return 0; 2339 out: 2340 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2341 location.objectid, ret); 2342 return ret; 2343 } 2344 2345 /* 2346 * Real super block validation 2347 * NOTE: super csum type and incompat features will not be checked here. 2348 * 2349 * @sb: super block to check 2350 * @mirror_num: the super block number to check its bytenr: 2351 * 0 the primary (1st) sb 2352 * 1, 2 2nd and 3rd backup copy 2353 * -1 skip bytenr check 2354 */ 2355 static int validate_super(struct btrfs_fs_info *fs_info, 2356 struct btrfs_super_block *sb, int mirror_num) 2357 { 2358 u64 nodesize = btrfs_super_nodesize(sb); 2359 u64 sectorsize = btrfs_super_sectorsize(sb); 2360 int ret = 0; 2361 2362 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2363 btrfs_err(fs_info, "no valid FS found"); 2364 ret = -EINVAL; 2365 } 2366 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2367 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2368 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2369 ret = -EINVAL; 2370 } 2371 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2372 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2373 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2374 ret = -EINVAL; 2375 } 2376 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2377 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2378 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2379 ret = -EINVAL; 2380 } 2381 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2382 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2383 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2384 ret = -EINVAL; 2385 } 2386 2387 /* 2388 * Check sectorsize and nodesize first, other check will need it. 2389 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2390 */ 2391 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2392 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2393 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2394 ret = -EINVAL; 2395 } 2396 /* Only PAGE SIZE is supported yet */ 2397 if (sectorsize != PAGE_SIZE) { 2398 btrfs_err(fs_info, 2399 "sectorsize %llu not supported yet, only support %lu", 2400 sectorsize, PAGE_SIZE); 2401 ret = -EINVAL; 2402 } 2403 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2404 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2405 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2406 ret = -EINVAL; 2407 } 2408 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2409 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2410 le32_to_cpu(sb->__unused_leafsize), nodesize); 2411 ret = -EINVAL; 2412 } 2413 2414 /* Root alignment check */ 2415 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2416 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2417 btrfs_super_root(sb)); 2418 ret = -EINVAL; 2419 } 2420 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2421 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2422 btrfs_super_chunk_root(sb)); 2423 ret = -EINVAL; 2424 } 2425 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2426 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2427 btrfs_super_log_root(sb)); 2428 ret = -EINVAL; 2429 } 2430 2431 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2432 BTRFS_FSID_SIZE) != 0) { 2433 btrfs_err(fs_info, 2434 "dev_item UUID does not match metadata fsid: %pU != %pU", 2435 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2436 ret = -EINVAL; 2437 } 2438 2439 /* 2440 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2441 * done later 2442 */ 2443 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2444 btrfs_err(fs_info, "bytes_used is too small %llu", 2445 btrfs_super_bytes_used(sb)); 2446 ret = -EINVAL; 2447 } 2448 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2449 btrfs_err(fs_info, "invalid stripesize %u", 2450 btrfs_super_stripesize(sb)); 2451 ret = -EINVAL; 2452 } 2453 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2454 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2455 btrfs_super_num_devices(sb)); 2456 if (btrfs_super_num_devices(sb) == 0) { 2457 btrfs_err(fs_info, "number of devices is 0"); 2458 ret = -EINVAL; 2459 } 2460 2461 if (mirror_num >= 0 && 2462 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2463 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2464 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2465 ret = -EINVAL; 2466 } 2467 2468 /* 2469 * Obvious sys_chunk_array corruptions, it must hold at least one key 2470 * and one chunk 2471 */ 2472 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2473 btrfs_err(fs_info, "system chunk array too big %u > %u", 2474 btrfs_super_sys_array_size(sb), 2475 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2476 ret = -EINVAL; 2477 } 2478 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2479 + sizeof(struct btrfs_chunk)) { 2480 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2481 btrfs_super_sys_array_size(sb), 2482 sizeof(struct btrfs_disk_key) 2483 + sizeof(struct btrfs_chunk)); 2484 ret = -EINVAL; 2485 } 2486 2487 /* 2488 * The generation is a global counter, we'll trust it more than the others 2489 * but it's still possible that it's the one that's wrong. 2490 */ 2491 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2492 btrfs_warn(fs_info, 2493 "suspicious: generation < chunk_root_generation: %llu < %llu", 2494 btrfs_super_generation(sb), 2495 btrfs_super_chunk_root_generation(sb)); 2496 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2497 && btrfs_super_cache_generation(sb) != (u64)-1) 2498 btrfs_warn(fs_info, 2499 "suspicious: generation < cache_generation: %llu < %llu", 2500 btrfs_super_generation(sb), 2501 btrfs_super_cache_generation(sb)); 2502 2503 return ret; 2504 } 2505 2506 /* 2507 * Validation of super block at mount time. 2508 * Some checks already done early at mount time, like csum type and incompat 2509 * flags will be skipped. 2510 */ 2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2512 { 2513 return validate_super(fs_info, fs_info->super_copy, 0); 2514 } 2515 2516 /* 2517 * Validation of super block at write time. 2518 * Some checks like bytenr check will be skipped as their values will be 2519 * overwritten soon. 2520 * Extra checks like csum type and incompat flags will be done here. 2521 */ 2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2523 struct btrfs_super_block *sb) 2524 { 2525 int ret; 2526 2527 ret = validate_super(fs_info, sb, -1); 2528 if (ret < 0) 2529 goto out; 2530 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2531 ret = -EUCLEAN; 2532 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2533 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2534 goto out; 2535 } 2536 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2537 ret = -EUCLEAN; 2538 btrfs_err(fs_info, 2539 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2540 btrfs_super_incompat_flags(sb), 2541 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2542 goto out; 2543 } 2544 out: 2545 if (ret < 0) 2546 btrfs_err(fs_info, 2547 "super block corruption detected before writing it to disk"); 2548 return ret; 2549 } 2550 2551 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2552 { 2553 int backup_index = find_newest_super_backup(fs_info); 2554 struct btrfs_super_block *sb = fs_info->super_copy; 2555 struct btrfs_root *tree_root = fs_info->tree_root; 2556 bool handle_error = false; 2557 int ret = 0; 2558 int i; 2559 2560 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2561 u64 generation; 2562 int level; 2563 2564 if (handle_error) { 2565 if (!IS_ERR(tree_root->node)) 2566 free_extent_buffer(tree_root->node); 2567 tree_root->node = NULL; 2568 2569 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2570 break; 2571 2572 free_root_pointers(fs_info, 0); 2573 2574 /* 2575 * Don't use the log in recovery mode, it won't be 2576 * valid 2577 */ 2578 btrfs_set_super_log_root(sb, 0); 2579 2580 /* We can't trust the free space cache either */ 2581 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2582 2583 ret = read_backup_root(fs_info, i); 2584 backup_index = ret; 2585 if (ret < 0) 2586 return ret; 2587 } 2588 generation = btrfs_super_generation(sb); 2589 level = btrfs_super_root_level(sb); 2590 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2591 generation, level, NULL); 2592 if (IS_ERR(tree_root->node) || 2593 !extent_buffer_uptodate(tree_root->node)) { 2594 handle_error = true; 2595 2596 if (IS_ERR(tree_root->node)) 2597 ret = PTR_ERR(tree_root->node); 2598 else if (!extent_buffer_uptodate(tree_root->node)) 2599 ret = -EUCLEAN; 2600 2601 btrfs_warn(fs_info, "failed to read tree root"); 2602 continue; 2603 } 2604 2605 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2606 tree_root->commit_root = btrfs_root_node(tree_root); 2607 btrfs_set_root_refs(&tree_root->root_item, 1); 2608 2609 /* 2610 * No need to hold btrfs_root::objectid_mutex since the fs 2611 * hasn't been fully initialised and we are the only user 2612 */ 2613 ret = btrfs_find_highest_objectid(tree_root, 2614 &tree_root->highest_objectid); 2615 if (ret < 0) { 2616 handle_error = true; 2617 continue; 2618 } 2619 2620 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2621 2622 ret = btrfs_read_roots(fs_info); 2623 if (ret < 0) { 2624 handle_error = true; 2625 continue; 2626 } 2627 2628 /* All successful */ 2629 fs_info->generation = generation; 2630 fs_info->last_trans_committed = generation; 2631 2632 /* Always begin writing backup roots after the one being used */ 2633 if (backup_index < 0) { 2634 fs_info->backup_root_index = 0; 2635 } else { 2636 fs_info->backup_root_index = backup_index + 1; 2637 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2638 } 2639 break; 2640 } 2641 2642 return ret; 2643 } 2644 2645 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2646 { 2647 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2648 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2649 INIT_LIST_HEAD(&fs_info->trans_list); 2650 INIT_LIST_HEAD(&fs_info->dead_roots); 2651 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2652 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2653 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2654 spin_lock_init(&fs_info->delalloc_root_lock); 2655 spin_lock_init(&fs_info->trans_lock); 2656 spin_lock_init(&fs_info->fs_roots_radix_lock); 2657 spin_lock_init(&fs_info->delayed_iput_lock); 2658 spin_lock_init(&fs_info->defrag_inodes_lock); 2659 spin_lock_init(&fs_info->super_lock); 2660 spin_lock_init(&fs_info->buffer_lock); 2661 spin_lock_init(&fs_info->unused_bgs_lock); 2662 rwlock_init(&fs_info->tree_mod_log_lock); 2663 mutex_init(&fs_info->unused_bg_unpin_mutex); 2664 mutex_init(&fs_info->delete_unused_bgs_mutex); 2665 mutex_init(&fs_info->reloc_mutex); 2666 mutex_init(&fs_info->delalloc_root_mutex); 2667 seqlock_init(&fs_info->profiles_lock); 2668 2669 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2670 INIT_LIST_HEAD(&fs_info->space_info); 2671 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2672 INIT_LIST_HEAD(&fs_info->unused_bgs); 2673 #ifdef CONFIG_BTRFS_DEBUG 2674 INIT_LIST_HEAD(&fs_info->allocated_roots); 2675 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2676 spin_lock_init(&fs_info->eb_leak_lock); 2677 #endif 2678 extent_map_tree_init(&fs_info->mapping_tree); 2679 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2680 BTRFS_BLOCK_RSV_GLOBAL); 2681 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2682 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2683 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2684 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2685 BTRFS_BLOCK_RSV_DELOPS); 2686 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2687 BTRFS_BLOCK_RSV_DELREFS); 2688 2689 atomic_set(&fs_info->async_delalloc_pages, 0); 2690 atomic_set(&fs_info->defrag_running, 0); 2691 atomic_set(&fs_info->reada_works_cnt, 0); 2692 atomic_set(&fs_info->nr_delayed_iputs, 0); 2693 atomic64_set(&fs_info->tree_mod_seq, 0); 2694 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2695 fs_info->metadata_ratio = 0; 2696 fs_info->defrag_inodes = RB_ROOT; 2697 atomic64_set(&fs_info->free_chunk_space, 0); 2698 fs_info->tree_mod_log = RB_ROOT; 2699 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2700 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2701 /* readahead state */ 2702 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2703 spin_lock_init(&fs_info->reada_lock); 2704 btrfs_init_ref_verify(fs_info); 2705 2706 fs_info->thread_pool_size = min_t(unsigned long, 2707 num_online_cpus() + 2, 8); 2708 2709 INIT_LIST_HEAD(&fs_info->ordered_roots); 2710 spin_lock_init(&fs_info->ordered_root_lock); 2711 2712 btrfs_init_scrub(fs_info); 2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2714 fs_info->check_integrity_print_mask = 0; 2715 #endif 2716 btrfs_init_balance(fs_info); 2717 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2718 2719 spin_lock_init(&fs_info->block_group_cache_lock); 2720 fs_info->block_group_cache_tree = RB_ROOT; 2721 fs_info->first_logical_byte = (u64)-1; 2722 2723 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2724 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2725 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2726 2727 mutex_init(&fs_info->ordered_operations_mutex); 2728 mutex_init(&fs_info->tree_log_mutex); 2729 mutex_init(&fs_info->chunk_mutex); 2730 mutex_init(&fs_info->transaction_kthread_mutex); 2731 mutex_init(&fs_info->cleaner_mutex); 2732 mutex_init(&fs_info->ro_block_group_mutex); 2733 init_rwsem(&fs_info->commit_root_sem); 2734 init_rwsem(&fs_info->cleanup_work_sem); 2735 init_rwsem(&fs_info->subvol_sem); 2736 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2737 2738 btrfs_init_dev_replace_locks(fs_info); 2739 btrfs_init_qgroup(fs_info); 2740 btrfs_discard_init(fs_info); 2741 2742 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2743 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2744 2745 init_waitqueue_head(&fs_info->transaction_throttle); 2746 init_waitqueue_head(&fs_info->transaction_wait); 2747 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2748 init_waitqueue_head(&fs_info->async_submit_wait); 2749 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2750 2751 /* Usable values until the real ones are cached from the superblock */ 2752 fs_info->nodesize = 4096; 2753 fs_info->sectorsize = 4096; 2754 fs_info->stripesize = 4096; 2755 2756 spin_lock_init(&fs_info->swapfile_pins_lock); 2757 fs_info->swapfile_pins = RB_ROOT; 2758 2759 fs_info->send_in_progress = 0; 2760 } 2761 2762 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2763 { 2764 int ret; 2765 2766 fs_info->sb = sb; 2767 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2768 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2769 2770 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2771 if (ret) 2772 return ret; 2773 2774 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2775 if (ret) 2776 return ret; 2777 2778 fs_info->dirty_metadata_batch = PAGE_SIZE * 2779 (1 + ilog2(nr_cpu_ids)); 2780 2781 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2782 if (ret) 2783 return ret; 2784 2785 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2786 GFP_KERNEL); 2787 if (ret) 2788 return ret; 2789 2790 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2791 GFP_KERNEL); 2792 if (!fs_info->delayed_root) 2793 return -ENOMEM; 2794 btrfs_init_delayed_root(fs_info->delayed_root); 2795 2796 return btrfs_alloc_stripe_hash_table(fs_info); 2797 } 2798 2799 static int btrfs_uuid_rescan_kthread(void *data) 2800 { 2801 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2802 int ret; 2803 2804 /* 2805 * 1st step is to iterate through the existing UUID tree and 2806 * to delete all entries that contain outdated data. 2807 * 2nd step is to add all missing entries to the UUID tree. 2808 */ 2809 ret = btrfs_uuid_tree_iterate(fs_info); 2810 if (ret < 0) { 2811 if (ret != -EINTR) 2812 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2813 ret); 2814 up(&fs_info->uuid_tree_rescan_sem); 2815 return ret; 2816 } 2817 return btrfs_uuid_scan_kthread(data); 2818 } 2819 2820 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2821 { 2822 struct task_struct *task; 2823 2824 down(&fs_info->uuid_tree_rescan_sem); 2825 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2826 if (IS_ERR(task)) { 2827 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2828 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2829 up(&fs_info->uuid_tree_rescan_sem); 2830 return PTR_ERR(task); 2831 } 2832 2833 return 0; 2834 } 2835 2836 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2837 char *options) 2838 { 2839 u32 sectorsize; 2840 u32 nodesize; 2841 u32 stripesize; 2842 u64 generation; 2843 u64 features; 2844 u16 csum_type; 2845 struct btrfs_super_block *disk_super; 2846 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2847 struct btrfs_root *tree_root; 2848 struct btrfs_root *chunk_root; 2849 int ret; 2850 int err = -EINVAL; 2851 int clear_free_space_tree = 0; 2852 int level; 2853 2854 ret = init_mount_fs_info(fs_info, sb); 2855 if (ret) { 2856 err = ret; 2857 goto fail; 2858 } 2859 2860 /* These need to be init'ed before we start creating inodes and such. */ 2861 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2862 GFP_KERNEL); 2863 fs_info->tree_root = tree_root; 2864 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2865 GFP_KERNEL); 2866 fs_info->chunk_root = chunk_root; 2867 if (!tree_root || !chunk_root) { 2868 err = -ENOMEM; 2869 goto fail; 2870 } 2871 2872 fs_info->btree_inode = new_inode(sb); 2873 if (!fs_info->btree_inode) { 2874 err = -ENOMEM; 2875 goto fail; 2876 } 2877 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2878 btrfs_init_btree_inode(fs_info); 2879 2880 invalidate_bdev(fs_devices->latest_bdev); 2881 2882 /* 2883 * Read super block and check the signature bytes only 2884 */ 2885 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2886 if (IS_ERR(disk_super)) { 2887 err = PTR_ERR(disk_super); 2888 goto fail_alloc; 2889 } 2890 2891 /* 2892 * Verify the type first, if that or the the checksum value are 2893 * corrupted, we'll find out 2894 */ 2895 csum_type = btrfs_super_csum_type(disk_super); 2896 if (!btrfs_supported_super_csum(csum_type)) { 2897 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2898 csum_type); 2899 err = -EINVAL; 2900 btrfs_release_disk_super(disk_super); 2901 goto fail_alloc; 2902 } 2903 2904 ret = btrfs_init_csum_hash(fs_info, csum_type); 2905 if (ret) { 2906 err = ret; 2907 btrfs_release_disk_super(disk_super); 2908 goto fail_alloc; 2909 } 2910 2911 /* 2912 * We want to check superblock checksum, the type is stored inside. 2913 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2914 */ 2915 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2916 btrfs_err(fs_info, "superblock checksum mismatch"); 2917 err = -EINVAL; 2918 btrfs_release_disk_super(disk_super); 2919 goto fail_alloc; 2920 } 2921 2922 /* 2923 * super_copy is zeroed at allocation time and we never touch the 2924 * following bytes up to INFO_SIZE, the checksum is calculated from 2925 * the whole block of INFO_SIZE 2926 */ 2927 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2928 btrfs_release_disk_super(disk_super); 2929 2930 disk_super = fs_info->super_copy; 2931 2932 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2933 BTRFS_FSID_SIZE)); 2934 2935 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2936 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2937 fs_info->super_copy->metadata_uuid, 2938 BTRFS_FSID_SIZE)); 2939 } 2940 2941 features = btrfs_super_flags(disk_super); 2942 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2943 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2944 btrfs_set_super_flags(disk_super, features); 2945 btrfs_info(fs_info, 2946 "found metadata UUID change in progress flag, clearing"); 2947 } 2948 2949 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2950 sizeof(*fs_info->super_for_commit)); 2951 2952 ret = btrfs_validate_mount_super(fs_info); 2953 if (ret) { 2954 btrfs_err(fs_info, "superblock contains fatal errors"); 2955 err = -EINVAL; 2956 goto fail_alloc; 2957 } 2958 2959 if (!btrfs_super_root(disk_super)) 2960 goto fail_alloc; 2961 2962 /* check FS state, whether FS is broken. */ 2963 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2964 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2965 2966 /* 2967 * In the long term, we'll store the compression type in the super 2968 * block, and it'll be used for per file compression control. 2969 */ 2970 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2971 2972 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2973 if (ret) { 2974 err = ret; 2975 goto fail_alloc; 2976 } 2977 2978 features = btrfs_super_incompat_flags(disk_super) & 2979 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2980 if (features) { 2981 btrfs_err(fs_info, 2982 "cannot mount because of unsupported optional features (%llx)", 2983 features); 2984 err = -EINVAL; 2985 goto fail_alloc; 2986 } 2987 2988 features = btrfs_super_incompat_flags(disk_super); 2989 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2990 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2991 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2992 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2993 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2994 2995 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2996 btrfs_info(fs_info, "has skinny extents"); 2997 2998 /* 2999 * flag our filesystem as having big metadata blocks if 3000 * they are bigger than the page size 3001 */ 3002 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3003 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3004 btrfs_info(fs_info, 3005 "flagging fs with big metadata feature"); 3006 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3007 } 3008 3009 nodesize = btrfs_super_nodesize(disk_super); 3010 sectorsize = btrfs_super_sectorsize(disk_super); 3011 stripesize = sectorsize; 3012 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3013 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3014 3015 /* Cache block sizes */ 3016 fs_info->nodesize = nodesize; 3017 fs_info->sectorsize = sectorsize; 3018 fs_info->stripesize = stripesize; 3019 3020 /* 3021 * mixed block groups end up with duplicate but slightly offset 3022 * extent buffers for the same range. It leads to corruptions 3023 */ 3024 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3025 (sectorsize != nodesize)) { 3026 btrfs_err(fs_info, 3027 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3028 nodesize, sectorsize); 3029 goto fail_alloc; 3030 } 3031 3032 /* 3033 * Needn't use the lock because there is no other task which will 3034 * update the flag. 3035 */ 3036 btrfs_set_super_incompat_flags(disk_super, features); 3037 3038 features = btrfs_super_compat_ro_flags(disk_super) & 3039 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3040 if (!sb_rdonly(sb) && features) { 3041 btrfs_err(fs_info, 3042 "cannot mount read-write because of unsupported optional features (%llx)", 3043 features); 3044 err = -EINVAL; 3045 goto fail_alloc; 3046 } 3047 3048 ret = btrfs_init_workqueues(fs_info, fs_devices); 3049 if (ret) { 3050 err = ret; 3051 goto fail_sb_buffer; 3052 } 3053 3054 sb->s_bdi->congested_fn = btrfs_congested_fn; 3055 sb->s_bdi->congested_data = fs_info; 3056 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3057 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3058 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3059 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3060 3061 sb->s_blocksize = sectorsize; 3062 sb->s_blocksize_bits = blksize_bits(sectorsize); 3063 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3064 3065 mutex_lock(&fs_info->chunk_mutex); 3066 ret = btrfs_read_sys_array(fs_info); 3067 mutex_unlock(&fs_info->chunk_mutex); 3068 if (ret) { 3069 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3070 goto fail_sb_buffer; 3071 } 3072 3073 generation = btrfs_super_chunk_root_generation(disk_super); 3074 level = btrfs_super_chunk_root_level(disk_super); 3075 3076 chunk_root->node = read_tree_block(fs_info, 3077 btrfs_super_chunk_root(disk_super), 3078 generation, level, NULL); 3079 if (IS_ERR(chunk_root->node) || 3080 !extent_buffer_uptodate(chunk_root->node)) { 3081 btrfs_err(fs_info, "failed to read chunk root"); 3082 if (!IS_ERR(chunk_root->node)) 3083 free_extent_buffer(chunk_root->node); 3084 chunk_root->node = NULL; 3085 goto fail_tree_roots; 3086 } 3087 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3088 chunk_root->commit_root = btrfs_root_node(chunk_root); 3089 3090 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3091 offsetof(struct btrfs_header, chunk_tree_uuid), 3092 BTRFS_UUID_SIZE); 3093 3094 ret = btrfs_read_chunk_tree(fs_info); 3095 if (ret) { 3096 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3097 goto fail_tree_roots; 3098 } 3099 3100 /* 3101 * Keep the devid that is marked to be the target device for the 3102 * device replace procedure 3103 */ 3104 btrfs_free_extra_devids(fs_devices, 0); 3105 3106 if (!fs_devices->latest_bdev) { 3107 btrfs_err(fs_info, "failed to read devices"); 3108 goto fail_tree_roots; 3109 } 3110 3111 ret = init_tree_roots(fs_info); 3112 if (ret) 3113 goto fail_tree_roots; 3114 3115 /* 3116 * If we have a uuid root and we're not being told to rescan we need to 3117 * check the generation here so we can set the 3118 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3119 * transaction during a balance or the log replay without updating the 3120 * uuid generation, and then if we crash we would rescan the uuid tree, 3121 * even though it was perfectly fine. 3122 */ 3123 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3124 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3125 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3126 3127 ret = btrfs_verify_dev_extents(fs_info); 3128 if (ret) { 3129 btrfs_err(fs_info, 3130 "failed to verify dev extents against chunks: %d", 3131 ret); 3132 goto fail_block_groups; 3133 } 3134 ret = btrfs_recover_balance(fs_info); 3135 if (ret) { 3136 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3137 goto fail_block_groups; 3138 } 3139 3140 ret = btrfs_init_dev_stats(fs_info); 3141 if (ret) { 3142 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3143 goto fail_block_groups; 3144 } 3145 3146 ret = btrfs_init_dev_replace(fs_info); 3147 if (ret) { 3148 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3149 goto fail_block_groups; 3150 } 3151 3152 btrfs_free_extra_devids(fs_devices, 1); 3153 3154 ret = btrfs_sysfs_add_fsid(fs_devices); 3155 if (ret) { 3156 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3157 ret); 3158 goto fail_block_groups; 3159 } 3160 3161 ret = btrfs_sysfs_add_mounted(fs_info); 3162 if (ret) { 3163 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3164 goto fail_fsdev_sysfs; 3165 } 3166 3167 ret = btrfs_init_space_info(fs_info); 3168 if (ret) { 3169 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3170 goto fail_sysfs; 3171 } 3172 3173 ret = btrfs_read_block_groups(fs_info); 3174 if (ret) { 3175 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3176 goto fail_sysfs; 3177 } 3178 3179 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3180 btrfs_warn(fs_info, 3181 "writable mount is not allowed due to too many missing devices"); 3182 goto fail_sysfs; 3183 } 3184 3185 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3186 "btrfs-cleaner"); 3187 if (IS_ERR(fs_info->cleaner_kthread)) 3188 goto fail_sysfs; 3189 3190 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3191 tree_root, 3192 "btrfs-transaction"); 3193 if (IS_ERR(fs_info->transaction_kthread)) 3194 goto fail_cleaner; 3195 3196 if (!btrfs_test_opt(fs_info, NOSSD) && 3197 !fs_info->fs_devices->rotating) { 3198 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3199 } 3200 3201 /* 3202 * Mount does not set all options immediately, we can do it now and do 3203 * not have to wait for transaction commit 3204 */ 3205 btrfs_apply_pending_changes(fs_info); 3206 3207 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3208 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3209 ret = btrfsic_mount(fs_info, fs_devices, 3210 btrfs_test_opt(fs_info, 3211 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3212 1 : 0, 3213 fs_info->check_integrity_print_mask); 3214 if (ret) 3215 btrfs_warn(fs_info, 3216 "failed to initialize integrity check module: %d", 3217 ret); 3218 } 3219 #endif 3220 ret = btrfs_read_qgroup_config(fs_info); 3221 if (ret) 3222 goto fail_trans_kthread; 3223 3224 if (btrfs_build_ref_tree(fs_info)) 3225 btrfs_err(fs_info, "couldn't build ref tree"); 3226 3227 /* do not make disk changes in broken FS or nologreplay is given */ 3228 if (btrfs_super_log_root(disk_super) != 0 && 3229 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3230 btrfs_info(fs_info, "start tree-log replay"); 3231 ret = btrfs_replay_log(fs_info, fs_devices); 3232 if (ret) { 3233 err = ret; 3234 goto fail_qgroup; 3235 } 3236 } 3237 3238 ret = btrfs_find_orphan_roots(fs_info); 3239 if (ret) 3240 goto fail_qgroup; 3241 3242 if (!sb_rdonly(sb)) { 3243 ret = btrfs_cleanup_fs_roots(fs_info); 3244 if (ret) 3245 goto fail_qgroup; 3246 3247 mutex_lock(&fs_info->cleaner_mutex); 3248 ret = btrfs_recover_relocation(tree_root); 3249 mutex_unlock(&fs_info->cleaner_mutex); 3250 if (ret < 0) { 3251 btrfs_warn(fs_info, "failed to recover relocation: %d", 3252 ret); 3253 err = -EINVAL; 3254 goto fail_qgroup; 3255 } 3256 } 3257 3258 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3259 if (IS_ERR(fs_info->fs_root)) { 3260 err = PTR_ERR(fs_info->fs_root); 3261 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3262 fs_info->fs_root = NULL; 3263 goto fail_qgroup; 3264 } 3265 3266 if (sb_rdonly(sb)) 3267 return 0; 3268 3269 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3270 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3271 clear_free_space_tree = 1; 3272 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3273 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3274 btrfs_warn(fs_info, "free space tree is invalid"); 3275 clear_free_space_tree = 1; 3276 } 3277 3278 if (clear_free_space_tree) { 3279 btrfs_info(fs_info, "clearing free space tree"); 3280 ret = btrfs_clear_free_space_tree(fs_info); 3281 if (ret) { 3282 btrfs_warn(fs_info, 3283 "failed to clear free space tree: %d", ret); 3284 close_ctree(fs_info); 3285 return ret; 3286 } 3287 } 3288 3289 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3290 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3291 btrfs_info(fs_info, "creating free space tree"); 3292 ret = btrfs_create_free_space_tree(fs_info); 3293 if (ret) { 3294 btrfs_warn(fs_info, 3295 "failed to create free space tree: %d", ret); 3296 close_ctree(fs_info); 3297 return ret; 3298 } 3299 } 3300 3301 down_read(&fs_info->cleanup_work_sem); 3302 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3303 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3304 up_read(&fs_info->cleanup_work_sem); 3305 close_ctree(fs_info); 3306 return ret; 3307 } 3308 up_read(&fs_info->cleanup_work_sem); 3309 3310 ret = btrfs_resume_balance_async(fs_info); 3311 if (ret) { 3312 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3313 close_ctree(fs_info); 3314 return ret; 3315 } 3316 3317 ret = btrfs_resume_dev_replace_async(fs_info); 3318 if (ret) { 3319 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3320 close_ctree(fs_info); 3321 return ret; 3322 } 3323 3324 btrfs_qgroup_rescan_resume(fs_info); 3325 btrfs_discard_resume(fs_info); 3326 3327 if (!fs_info->uuid_root) { 3328 btrfs_info(fs_info, "creating UUID tree"); 3329 ret = btrfs_create_uuid_tree(fs_info); 3330 if (ret) { 3331 btrfs_warn(fs_info, 3332 "failed to create the UUID tree: %d", ret); 3333 close_ctree(fs_info); 3334 return ret; 3335 } 3336 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3337 fs_info->generation != 3338 btrfs_super_uuid_tree_generation(disk_super)) { 3339 btrfs_info(fs_info, "checking UUID tree"); 3340 ret = btrfs_check_uuid_tree(fs_info); 3341 if (ret) { 3342 btrfs_warn(fs_info, 3343 "failed to check the UUID tree: %d", ret); 3344 close_ctree(fs_info); 3345 return ret; 3346 } 3347 } 3348 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3349 3350 /* 3351 * backuproot only affect mount behavior, and if open_ctree succeeded, 3352 * no need to keep the flag 3353 */ 3354 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3355 3356 return 0; 3357 3358 fail_qgroup: 3359 btrfs_free_qgroup_config(fs_info); 3360 fail_trans_kthread: 3361 kthread_stop(fs_info->transaction_kthread); 3362 btrfs_cleanup_transaction(fs_info); 3363 btrfs_free_fs_roots(fs_info); 3364 fail_cleaner: 3365 kthread_stop(fs_info->cleaner_kthread); 3366 3367 /* 3368 * make sure we're done with the btree inode before we stop our 3369 * kthreads 3370 */ 3371 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3372 3373 fail_sysfs: 3374 btrfs_sysfs_remove_mounted(fs_info); 3375 3376 fail_fsdev_sysfs: 3377 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3378 3379 fail_block_groups: 3380 btrfs_put_block_group_cache(fs_info); 3381 3382 fail_tree_roots: 3383 free_root_pointers(fs_info, true); 3384 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3385 3386 fail_sb_buffer: 3387 btrfs_stop_all_workers(fs_info); 3388 btrfs_free_block_groups(fs_info); 3389 fail_alloc: 3390 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3391 3392 iput(fs_info->btree_inode); 3393 fail: 3394 btrfs_close_devices(fs_info->fs_devices); 3395 return err; 3396 } 3397 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3398 3399 static void btrfs_end_super_write(struct bio *bio) 3400 { 3401 struct btrfs_device *device = bio->bi_private; 3402 struct bio_vec *bvec; 3403 struct bvec_iter_all iter_all; 3404 struct page *page; 3405 3406 bio_for_each_segment_all(bvec, bio, iter_all) { 3407 page = bvec->bv_page; 3408 3409 if (bio->bi_status) { 3410 btrfs_warn_rl_in_rcu(device->fs_info, 3411 "lost page write due to IO error on %s (%d)", 3412 rcu_str_deref(device->name), 3413 blk_status_to_errno(bio->bi_status)); 3414 ClearPageUptodate(page); 3415 SetPageError(page); 3416 btrfs_dev_stat_inc_and_print(device, 3417 BTRFS_DEV_STAT_WRITE_ERRS); 3418 } else { 3419 SetPageUptodate(page); 3420 } 3421 3422 put_page(page); 3423 unlock_page(page); 3424 } 3425 3426 bio_put(bio); 3427 } 3428 3429 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3430 int copy_num) 3431 { 3432 struct btrfs_super_block *super; 3433 struct page *page; 3434 u64 bytenr; 3435 struct address_space *mapping = bdev->bd_inode->i_mapping; 3436 3437 bytenr = btrfs_sb_offset(copy_num); 3438 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3439 return ERR_PTR(-EINVAL); 3440 3441 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3442 if (IS_ERR(page)) 3443 return ERR_CAST(page); 3444 3445 super = page_address(page); 3446 if (btrfs_super_bytenr(super) != bytenr || 3447 btrfs_super_magic(super) != BTRFS_MAGIC) { 3448 btrfs_release_disk_super(super); 3449 return ERR_PTR(-EINVAL); 3450 } 3451 3452 return super; 3453 } 3454 3455 3456 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3457 { 3458 struct btrfs_super_block *super, *latest = NULL; 3459 int i; 3460 u64 transid = 0; 3461 3462 /* we would like to check all the supers, but that would make 3463 * a btrfs mount succeed after a mkfs from a different FS. 3464 * So, we need to add a special mount option to scan for 3465 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3466 */ 3467 for (i = 0; i < 1; i++) { 3468 super = btrfs_read_dev_one_super(bdev, i); 3469 if (IS_ERR(super)) 3470 continue; 3471 3472 if (!latest || btrfs_super_generation(super) > transid) { 3473 if (latest) 3474 btrfs_release_disk_super(super); 3475 3476 latest = super; 3477 transid = btrfs_super_generation(super); 3478 } 3479 } 3480 3481 return super; 3482 } 3483 3484 /* 3485 * Write superblock @sb to the @device. Do not wait for completion, all the 3486 * pages we use for writing are locked. 3487 * 3488 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3489 * the expected device size at commit time. Note that max_mirrors must be 3490 * same for write and wait phases. 3491 * 3492 * Return number of errors when page is not found or submission fails. 3493 */ 3494 static int write_dev_supers(struct btrfs_device *device, 3495 struct btrfs_super_block *sb, int max_mirrors) 3496 { 3497 struct btrfs_fs_info *fs_info = device->fs_info; 3498 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3499 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3500 int i; 3501 int errors = 0; 3502 u64 bytenr; 3503 3504 if (max_mirrors == 0) 3505 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3506 3507 shash->tfm = fs_info->csum_shash; 3508 3509 for (i = 0; i < max_mirrors; i++) { 3510 struct page *page; 3511 struct bio *bio; 3512 struct btrfs_super_block *disk_super; 3513 3514 bytenr = btrfs_sb_offset(i); 3515 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3516 device->commit_total_bytes) 3517 break; 3518 3519 btrfs_set_super_bytenr(sb, bytenr); 3520 3521 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3522 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3523 sb->csum); 3524 3525 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3526 GFP_NOFS); 3527 if (!page) { 3528 btrfs_err(device->fs_info, 3529 "couldn't get super block page for bytenr %llu", 3530 bytenr); 3531 errors++; 3532 continue; 3533 } 3534 3535 /* Bump the refcount for wait_dev_supers() */ 3536 get_page(page); 3537 3538 disk_super = page_address(page); 3539 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3540 3541 /* 3542 * Directly use bios here instead of relying on the page cache 3543 * to do I/O, so we don't lose the ability to do integrity 3544 * checking. 3545 */ 3546 bio = bio_alloc(GFP_NOFS, 1); 3547 bio_set_dev(bio, device->bdev); 3548 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3549 bio->bi_private = device; 3550 bio->bi_end_io = btrfs_end_super_write; 3551 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3552 offset_in_page(bytenr)); 3553 3554 /* 3555 * We FUA only the first super block. The others we allow to 3556 * go down lazy and there's a short window where the on-disk 3557 * copies might still contain the older version. 3558 */ 3559 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3560 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3561 bio->bi_opf |= REQ_FUA; 3562 3563 btrfsic_submit_bio(bio); 3564 } 3565 return errors < i ? 0 : -1; 3566 } 3567 3568 /* 3569 * Wait for write completion of superblocks done by write_dev_supers, 3570 * @max_mirrors same for write and wait phases. 3571 * 3572 * Return number of errors when page is not found or not marked up to 3573 * date. 3574 */ 3575 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3576 { 3577 int i; 3578 int errors = 0; 3579 bool primary_failed = false; 3580 u64 bytenr; 3581 3582 if (max_mirrors == 0) 3583 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3584 3585 for (i = 0; i < max_mirrors; i++) { 3586 struct page *page; 3587 3588 bytenr = btrfs_sb_offset(i); 3589 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3590 device->commit_total_bytes) 3591 break; 3592 3593 page = find_get_page(device->bdev->bd_inode->i_mapping, 3594 bytenr >> PAGE_SHIFT); 3595 if (!page) { 3596 errors++; 3597 if (i == 0) 3598 primary_failed = true; 3599 continue; 3600 } 3601 /* Page is submitted locked and unlocked once the IO completes */ 3602 wait_on_page_locked(page); 3603 if (PageError(page)) { 3604 errors++; 3605 if (i == 0) 3606 primary_failed = true; 3607 } 3608 3609 /* Drop our reference */ 3610 put_page(page); 3611 3612 /* Drop the reference from the writing run */ 3613 put_page(page); 3614 } 3615 3616 /* log error, force error return */ 3617 if (primary_failed) { 3618 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3619 device->devid); 3620 return -1; 3621 } 3622 3623 return errors < i ? 0 : -1; 3624 } 3625 3626 /* 3627 * endio for the write_dev_flush, this will wake anyone waiting 3628 * for the barrier when it is done 3629 */ 3630 static void btrfs_end_empty_barrier(struct bio *bio) 3631 { 3632 complete(bio->bi_private); 3633 } 3634 3635 /* 3636 * Submit a flush request to the device if it supports it. Error handling is 3637 * done in the waiting counterpart. 3638 */ 3639 static void write_dev_flush(struct btrfs_device *device) 3640 { 3641 struct request_queue *q = bdev_get_queue(device->bdev); 3642 struct bio *bio = device->flush_bio; 3643 3644 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3645 return; 3646 3647 bio_reset(bio); 3648 bio->bi_end_io = btrfs_end_empty_barrier; 3649 bio_set_dev(bio, device->bdev); 3650 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3651 init_completion(&device->flush_wait); 3652 bio->bi_private = &device->flush_wait; 3653 3654 btrfsic_submit_bio(bio); 3655 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3656 } 3657 3658 /* 3659 * If the flush bio has been submitted by write_dev_flush, wait for it. 3660 */ 3661 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3662 { 3663 struct bio *bio = device->flush_bio; 3664 3665 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3666 return BLK_STS_OK; 3667 3668 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3669 wait_for_completion_io(&device->flush_wait); 3670 3671 return bio->bi_status; 3672 } 3673 3674 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3675 { 3676 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3677 return -EIO; 3678 return 0; 3679 } 3680 3681 /* 3682 * send an empty flush down to each device in parallel, 3683 * then wait for them 3684 */ 3685 static int barrier_all_devices(struct btrfs_fs_info *info) 3686 { 3687 struct list_head *head; 3688 struct btrfs_device *dev; 3689 int errors_wait = 0; 3690 blk_status_t ret; 3691 3692 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3693 /* send down all the barriers */ 3694 head = &info->fs_devices->devices; 3695 list_for_each_entry(dev, head, dev_list) { 3696 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3697 continue; 3698 if (!dev->bdev) 3699 continue; 3700 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3701 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3702 continue; 3703 3704 write_dev_flush(dev); 3705 dev->last_flush_error = BLK_STS_OK; 3706 } 3707 3708 /* wait for all the barriers */ 3709 list_for_each_entry(dev, head, dev_list) { 3710 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3711 continue; 3712 if (!dev->bdev) { 3713 errors_wait++; 3714 continue; 3715 } 3716 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3717 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3718 continue; 3719 3720 ret = wait_dev_flush(dev); 3721 if (ret) { 3722 dev->last_flush_error = ret; 3723 btrfs_dev_stat_inc_and_print(dev, 3724 BTRFS_DEV_STAT_FLUSH_ERRS); 3725 errors_wait++; 3726 } 3727 } 3728 3729 if (errors_wait) { 3730 /* 3731 * At some point we need the status of all disks 3732 * to arrive at the volume status. So error checking 3733 * is being pushed to a separate loop. 3734 */ 3735 return check_barrier_error(info); 3736 } 3737 return 0; 3738 } 3739 3740 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3741 { 3742 int raid_type; 3743 int min_tolerated = INT_MAX; 3744 3745 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3746 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3747 min_tolerated = min_t(int, min_tolerated, 3748 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3749 tolerated_failures); 3750 3751 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3752 if (raid_type == BTRFS_RAID_SINGLE) 3753 continue; 3754 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3755 continue; 3756 min_tolerated = min_t(int, min_tolerated, 3757 btrfs_raid_array[raid_type]. 3758 tolerated_failures); 3759 } 3760 3761 if (min_tolerated == INT_MAX) { 3762 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3763 min_tolerated = 0; 3764 } 3765 3766 return min_tolerated; 3767 } 3768 3769 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3770 { 3771 struct list_head *head; 3772 struct btrfs_device *dev; 3773 struct btrfs_super_block *sb; 3774 struct btrfs_dev_item *dev_item; 3775 int ret; 3776 int do_barriers; 3777 int max_errors; 3778 int total_errors = 0; 3779 u64 flags; 3780 3781 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3782 3783 /* 3784 * max_mirrors == 0 indicates we're from commit_transaction, 3785 * not from fsync where the tree roots in fs_info have not 3786 * been consistent on disk. 3787 */ 3788 if (max_mirrors == 0) 3789 backup_super_roots(fs_info); 3790 3791 sb = fs_info->super_for_commit; 3792 dev_item = &sb->dev_item; 3793 3794 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3795 head = &fs_info->fs_devices->devices; 3796 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3797 3798 if (do_barriers) { 3799 ret = barrier_all_devices(fs_info); 3800 if (ret) { 3801 mutex_unlock( 3802 &fs_info->fs_devices->device_list_mutex); 3803 btrfs_handle_fs_error(fs_info, ret, 3804 "errors while submitting device barriers."); 3805 return ret; 3806 } 3807 } 3808 3809 list_for_each_entry(dev, head, dev_list) { 3810 if (!dev->bdev) { 3811 total_errors++; 3812 continue; 3813 } 3814 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3815 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3816 continue; 3817 3818 btrfs_set_stack_device_generation(dev_item, 0); 3819 btrfs_set_stack_device_type(dev_item, dev->type); 3820 btrfs_set_stack_device_id(dev_item, dev->devid); 3821 btrfs_set_stack_device_total_bytes(dev_item, 3822 dev->commit_total_bytes); 3823 btrfs_set_stack_device_bytes_used(dev_item, 3824 dev->commit_bytes_used); 3825 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3826 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3827 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3828 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3829 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3830 BTRFS_FSID_SIZE); 3831 3832 flags = btrfs_super_flags(sb); 3833 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3834 3835 ret = btrfs_validate_write_super(fs_info, sb); 3836 if (ret < 0) { 3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3838 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3839 "unexpected superblock corruption detected"); 3840 return -EUCLEAN; 3841 } 3842 3843 ret = write_dev_supers(dev, sb, max_mirrors); 3844 if (ret) 3845 total_errors++; 3846 } 3847 if (total_errors > max_errors) { 3848 btrfs_err(fs_info, "%d errors while writing supers", 3849 total_errors); 3850 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3851 3852 /* FUA is masked off if unsupported and can't be the reason */ 3853 btrfs_handle_fs_error(fs_info, -EIO, 3854 "%d errors while writing supers", 3855 total_errors); 3856 return -EIO; 3857 } 3858 3859 total_errors = 0; 3860 list_for_each_entry(dev, head, dev_list) { 3861 if (!dev->bdev) 3862 continue; 3863 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3864 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3865 continue; 3866 3867 ret = wait_dev_supers(dev, max_mirrors); 3868 if (ret) 3869 total_errors++; 3870 } 3871 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3872 if (total_errors > max_errors) { 3873 btrfs_handle_fs_error(fs_info, -EIO, 3874 "%d errors while writing supers", 3875 total_errors); 3876 return -EIO; 3877 } 3878 return 0; 3879 } 3880 3881 /* Drop a fs root from the radix tree and free it. */ 3882 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3883 struct btrfs_root *root) 3884 { 3885 bool drop_ref = false; 3886 3887 spin_lock(&fs_info->fs_roots_radix_lock); 3888 radix_tree_delete(&fs_info->fs_roots_radix, 3889 (unsigned long)root->root_key.objectid); 3890 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3891 drop_ref = true; 3892 spin_unlock(&fs_info->fs_roots_radix_lock); 3893 3894 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3895 ASSERT(root->log_root == NULL); 3896 if (root->reloc_root) { 3897 btrfs_put_root(root->reloc_root); 3898 root->reloc_root = NULL; 3899 } 3900 } 3901 3902 if (root->free_ino_pinned) 3903 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3904 if (root->free_ino_ctl) 3905 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3906 if (root->ino_cache_inode) { 3907 iput(root->ino_cache_inode); 3908 root->ino_cache_inode = NULL; 3909 } 3910 if (drop_ref) 3911 btrfs_put_root(root); 3912 } 3913 3914 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3915 { 3916 u64 root_objectid = 0; 3917 struct btrfs_root *gang[8]; 3918 int i = 0; 3919 int err = 0; 3920 unsigned int ret = 0; 3921 3922 while (1) { 3923 spin_lock(&fs_info->fs_roots_radix_lock); 3924 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3925 (void **)gang, root_objectid, 3926 ARRAY_SIZE(gang)); 3927 if (!ret) { 3928 spin_unlock(&fs_info->fs_roots_radix_lock); 3929 break; 3930 } 3931 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3932 3933 for (i = 0; i < ret; i++) { 3934 /* Avoid to grab roots in dead_roots */ 3935 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3936 gang[i] = NULL; 3937 continue; 3938 } 3939 /* grab all the search result for later use */ 3940 gang[i] = btrfs_grab_root(gang[i]); 3941 } 3942 spin_unlock(&fs_info->fs_roots_radix_lock); 3943 3944 for (i = 0; i < ret; i++) { 3945 if (!gang[i]) 3946 continue; 3947 root_objectid = gang[i]->root_key.objectid; 3948 err = btrfs_orphan_cleanup(gang[i]); 3949 if (err) 3950 break; 3951 btrfs_put_root(gang[i]); 3952 } 3953 root_objectid++; 3954 } 3955 3956 /* release the uncleaned roots due to error */ 3957 for (; i < ret; i++) { 3958 if (gang[i]) 3959 btrfs_put_root(gang[i]); 3960 } 3961 return err; 3962 } 3963 3964 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3965 { 3966 struct btrfs_root *root = fs_info->tree_root; 3967 struct btrfs_trans_handle *trans; 3968 3969 mutex_lock(&fs_info->cleaner_mutex); 3970 btrfs_run_delayed_iputs(fs_info); 3971 mutex_unlock(&fs_info->cleaner_mutex); 3972 wake_up_process(fs_info->cleaner_kthread); 3973 3974 /* wait until ongoing cleanup work done */ 3975 down_write(&fs_info->cleanup_work_sem); 3976 up_write(&fs_info->cleanup_work_sem); 3977 3978 trans = btrfs_join_transaction(root); 3979 if (IS_ERR(trans)) 3980 return PTR_ERR(trans); 3981 return btrfs_commit_transaction(trans); 3982 } 3983 3984 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3985 { 3986 int ret; 3987 3988 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3989 /* 3990 * We don't want the cleaner to start new transactions, add more delayed 3991 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3992 * because that frees the task_struct, and the transaction kthread might 3993 * still try to wake up the cleaner. 3994 */ 3995 kthread_park(fs_info->cleaner_kthread); 3996 3997 /* wait for the qgroup rescan worker to stop */ 3998 btrfs_qgroup_wait_for_completion(fs_info, false); 3999 4000 /* wait for the uuid_scan task to finish */ 4001 down(&fs_info->uuid_tree_rescan_sem); 4002 /* avoid complains from lockdep et al., set sem back to initial state */ 4003 up(&fs_info->uuid_tree_rescan_sem); 4004 4005 /* pause restriper - we want to resume on mount */ 4006 btrfs_pause_balance(fs_info); 4007 4008 btrfs_dev_replace_suspend_for_unmount(fs_info); 4009 4010 btrfs_scrub_cancel(fs_info); 4011 4012 /* wait for any defraggers to finish */ 4013 wait_event(fs_info->transaction_wait, 4014 (atomic_read(&fs_info->defrag_running) == 0)); 4015 4016 /* clear out the rbtree of defraggable inodes */ 4017 btrfs_cleanup_defrag_inodes(fs_info); 4018 4019 cancel_work_sync(&fs_info->async_reclaim_work); 4020 4021 /* Cancel or finish ongoing discard work */ 4022 btrfs_discard_cleanup(fs_info); 4023 4024 if (!sb_rdonly(fs_info->sb)) { 4025 /* 4026 * The cleaner kthread is stopped, so do one final pass over 4027 * unused block groups. 4028 */ 4029 btrfs_delete_unused_bgs(fs_info); 4030 4031 /* 4032 * There might be existing delayed inode workers still running 4033 * and holding an empty delayed inode item. We must wait for 4034 * them to complete first because they can create a transaction. 4035 * This happens when someone calls btrfs_balance_delayed_items() 4036 * and then a transaction commit runs the same delayed nodes 4037 * before any delayed worker has done something with the nodes. 4038 * We must wait for any worker here and not at transaction 4039 * commit time since that could cause a deadlock. 4040 * This is a very rare case. 4041 */ 4042 btrfs_flush_workqueue(fs_info->delayed_workers); 4043 4044 ret = btrfs_commit_super(fs_info); 4045 if (ret) 4046 btrfs_err(fs_info, "commit super ret %d", ret); 4047 } 4048 4049 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4050 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4051 btrfs_error_commit_super(fs_info); 4052 4053 kthread_stop(fs_info->transaction_kthread); 4054 kthread_stop(fs_info->cleaner_kthread); 4055 4056 ASSERT(list_empty(&fs_info->delayed_iputs)); 4057 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4058 4059 btrfs_free_qgroup_config(fs_info); 4060 ASSERT(list_empty(&fs_info->delalloc_roots)); 4061 4062 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4063 btrfs_info(fs_info, "at unmount delalloc count %lld", 4064 percpu_counter_sum(&fs_info->delalloc_bytes)); 4065 } 4066 4067 if (percpu_counter_sum(&fs_info->dio_bytes)) 4068 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4069 percpu_counter_sum(&fs_info->dio_bytes)); 4070 4071 btrfs_sysfs_remove_mounted(fs_info); 4072 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4073 4074 btrfs_put_block_group_cache(fs_info); 4075 4076 /* 4077 * we must make sure there is not any read request to 4078 * submit after we stopping all workers. 4079 */ 4080 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4081 btrfs_stop_all_workers(fs_info); 4082 4083 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4084 free_root_pointers(fs_info, true); 4085 btrfs_free_fs_roots(fs_info); 4086 4087 /* 4088 * We must free the block groups after dropping the fs_roots as we could 4089 * have had an IO error and have left over tree log blocks that aren't 4090 * cleaned up until the fs roots are freed. This makes the block group 4091 * accounting appear to be wrong because there's pending reserved bytes, 4092 * so make sure we do the block group cleanup afterwards. 4093 */ 4094 btrfs_free_block_groups(fs_info); 4095 4096 iput(fs_info->btree_inode); 4097 4098 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4099 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4100 btrfsic_unmount(fs_info->fs_devices); 4101 #endif 4102 4103 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4104 btrfs_close_devices(fs_info->fs_devices); 4105 } 4106 4107 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4108 int atomic) 4109 { 4110 int ret; 4111 struct inode *btree_inode = buf->pages[0]->mapping->host; 4112 4113 ret = extent_buffer_uptodate(buf); 4114 if (!ret) 4115 return ret; 4116 4117 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4118 parent_transid, atomic); 4119 if (ret == -EAGAIN) 4120 return ret; 4121 return !ret; 4122 } 4123 4124 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4125 { 4126 struct btrfs_fs_info *fs_info; 4127 struct btrfs_root *root; 4128 u64 transid = btrfs_header_generation(buf); 4129 int was_dirty; 4130 4131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4132 /* 4133 * This is a fast path so only do this check if we have sanity tests 4134 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4135 * outside of the sanity tests. 4136 */ 4137 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4138 return; 4139 #endif 4140 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4141 fs_info = root->fs_info; 4142 btrfs_assert_tree_locked(buf); 4143 if (transid != fs_info->generation) 4144 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4145 buf->start, transid, fs_info->generation); 4146 was_dirty = set_extent_buffer_dirty(buf); 4147 if (!was_dirty) 4148 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4149 buf->len, 4150 fs_info->dirty_metadata_batch); 4151 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4152 /* 4153 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4154 * but item data not updated. 4155 * So here we should only check item pointers, not item data. 4156 */ 4157 if (btrfs_header_level(buf) == 0 && 4158 btrfs_check_leaf_relaxed(buf)) { 4159 btrfs_print_leaf(buf); 4160 ASSERT(0); 4161 } 4162 #endif 4163 } 4164 4165 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4166 int flush_delayed) 4167 { 4168 /* 4169 * looks as though older kernels can get into trouble with 4170 * this code, they end up stuck in balance_dirty_pages forever 4171 */ 4172 int ret; 4173 4174 if (current->flags & PF_MEMALLOC) 4175 return; 4176 4177 if (flush_delayed) 4178 btrfs_balance_delayed_items(fs_info); 4179 4180 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4181 BTRFS_DIRTY_METADATA_THRESH, 4182 fs_info->dirty_metadata_batch); 4183 if (ret > 0) { 4184 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4185 } 4186 } 4187 4188 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4189 { 4190 __btrfs_btree_balance_dirty(fs_info, 1); 4191 } 4192 4193 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4194 { 4195 __btrfs_btree_balance_dirty(fs_info, 0); 4196 } 4197 4198 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4199 struct btrfs_key *first_key) 4200 { 4201 return btree_read_extent_buffer_pages(buf, parent_transid, 4202 level, first_key); 4203 } 4204 4205 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4206 { 4207 /* cleanup FS via transaction */ 4208 btrfs_cleanup_transaction(fs_info); 4209 4210 mutex_lock(&fs_info->cleaner_mutex); 4211 btrfs_run_delayed_iputs(fs_info); 4212 mutex_unlock(&fs_info->cleaner_mutex); 4213 4214 down_write(&fs_info->cleanup_work_sem); 4215 up_write(&fs_info->cleanup_work_sem); 4216 } 4217 4218 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4219 { 4220 struct btrfs_root *gang[8]; 4221 u64 root_objectid = 0; 4222 int ret; 4223 4224 spin_lock(&fs_info->fs_roots_radix_lock); 4225 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4226 (void **)gang, root_objectid, 4227 ARRAY_SIZE(gang))) != 0) { 4228 int i; 4229 4230 for (i = 0; i < ret; i++) 4231 gang[i] = btrfs_grab_root(gang[i]); 4232 spin_unlock(&fs_info->fs_roots_radix_lock); 4233 4234 for (i = 0; i < ret; i++) { 4235 if (!gang[i]) 4236 continue; 4237 root_objectid = gang[i]->root_key.objectid; 4238 btrfs_free_log(NULL, gang[i]); 4239 btrfs_put_root(gang[i]); 4240 } 4241 root_objectid++; 4242 spin_lock(&fs_info->fs_roots_radix_lock); 4243 } 4244 spin_unlock(&fs_info->fs_roots_radix_lock); 4245 btrfs_free_log_root_tree(NULL, fs_info); 4246 } 4247 4248 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4249 { 4250 struct btrfs_ordered_extent *ordered; 4251 4252 spin_lock(&root->ordered_extent_lock); 4253 /* 4254 * This will just short circuit the ordered completion stuff which will 4255 * make sure the ordered extent gets properly cleaned up. 4256 */ 4257 list_for_each_entry(ordered, &root->ordered_extents, 4258 root_extent_list) 4259 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4260 spin_unlock(&root->ordered_extent_lock); 4261 } 4262 4263 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4264 { 4265 struct btrfs_root *root; 4266 struct list_head splice; 4267 4268 INIT_LIST_HEAD(&splice); 4269 4270 spin_lock(&fs_info->ordered_root_lock); 4271 list_splice_init(&fs_info->ordered_roots, &splice); 4272 while (!list_empty(&splice)) { 4273 root = list_first_entry(&splice, struct btrfs_root, 4274 ordered_root); 4275 list_move_tail(&root->ordered_root, 4276 &fs_info->ordered_roots); 4277 4278 spin_unlock(&fs_info->ordered_root_lock); 4279 btrfs_destroy_ordered_extents(root); 4280 4281 cond_resched(); 4282 spin_lock(&fs_info->ordered_root_lock); 4283 } 4284 spin_unlock(&fs_info->ordered_root_lock); 4285 4286 /* 4287 * We need this here because if we've been flipped read-only we won't 4288 * get sync() from the umount, so we need to make sure any ordered 4289 * extents that haven't had their dirty pages IO start writeout yet 4290 * actually get run and error out properly. 4291 */ 4292 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4293 } 4294 4295 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4296 struct btrfs_fs_info *fs_info) 4297 { 4298 struct rb_node *node; 4299 struct btrfs_delayed_ref_root *delayed_refs; 4300 struct btrfs_delayed_ref_node *ref; 4301 int ret = 0; 4302 4303 delayed_refs = &trans->delayed_refs; 4304 4305 spin_lock(&delayed_refs->lock); 4306 if (atomic_read(&delayed_refs->num_entries) == 0) { 4307 spin_unlock(&delayed_refs->lock); 4308 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4309 return ret; 4310 } 4311 4312 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4313 struct btrfs_delayed_ref_head *head; 4314 struct rb_node *n; 4315 bool pin_bytes = false; 4316 4317 head = rb_entry(node, struct btrfs_delayed_ref_head, 4318 href_node); 4319 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4320 continue; 4321 4322 spin_lock(&head->lock); 4323 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4324 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4325 ref_node); 4326 ref->in_tree = 0; 4327 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4328 RB_CLEAR_NODE(&ref->ref_node); 4329 if (!list_empty(&ref->add_list)) 4330 list_del(&ref->add_list); 4331 atomic_dec(&delayed_refs->num_entries); 4332 btrfs_put_delayed_ref(ref); 4333 } 4334 if (head->must_insert_reserved) 4335 pin_bytes = true; 4336 btrfs_free_delayed_extent_op(head->extent_op); 4337 btrfs_delete_ref_head(delayed_refs, head); 4338 spin_unlock(&head->lock); 4339 spin_unlock(&delayed_refs->lock); 4340 mutex_unlock(&head->mutex); 4341 4342 if (pin_bytes) { 4343 struct btrfs_block_group *cache; 4344 4345 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4346 BUG_ON(!cache); 4347 4348 spin_lock(&cache->space_info->lock); 4349 spin_lock(&cache->lock); 4350 cache->pinned += head->num_bytes; 4351 btrfs_space_info_update_bytes_pinned(fs_info, 4352 cache->space_info, head->num_bytes); 4353 cache->reserved -= head->num_bytes; 4354 cache->space_info->bytes_reserved -= head->num_bytes; 4355 spin_unlock(&cache->lock); 4356 spin_unlock(&cache->space_info->lock); 4357 percpu_counter_add_batch( 4358 &cache->space_info->total_bytes_pinned, 4359 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4360 4361 btrfs_put_block_group(cache); 4362 4363 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4364 head->bytenr + head->num_bytes - 1); 4365 } 4366 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4367 btrfs_put_delayed_ref_head(head); 4368 cond_resched(); 4369 spin_lock(&delayed_refs->lock); 4370 } 4371 btrfs_qgroup_destroy_extent_records(trans); 4372 4373 spin_unlock(&delayed_refs->lock); 4374 4375 return ret; 4376 } 4377 4378 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4379 { 4380 struct btrfs_inode *btrfs_inode; 4381 struct list_head splice; 4382 4383 INIT_LIST_HEAD(&splice); 4384 4385 spin_lock(&root->delalloc_lock); 4386 list_splice_init(&root->delalloc_inodes, &splice); 4387 4388 while (!list_empty(&splice)) { 4389 struct inode *inode = NULL; 4390 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4391 delalloc_inodes); 4392 __btrfs_del_delalloc_inode(root, btrfs_inode); 4393 spin_unlock(&root->delalloc_lock); 4394 4395 /* 4396 * Make sure we get a live inode and that it'll not disappear 4397 * meanwhile. 4398 */ 4399 inode = igrab(&btrfs_inode->vfs_inode); 4400 if (inode) { 4401 invalidate_inode_pages2(inode->i_mapping); 4402 iput(inode); 4403 } 4404 spin_lock(&root->delalloc_lock); 4405 } 4406 spin_unlock(&root->delalloc_lock); 4407 } 4408 4409 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4410 { 4411 struct btrfs_root *root; 4412 struct list_head splice; 4413 4414 INIT_LIST_HEAD(&splice); 4415 4416 spin_lock(&fs_info->delalloc_root_lock); 4417 list_splice_init(&fs_info->delalloc_roots, &splice); 4418 while (!list_empty(&splice)) { 4419 root = list_first_entry(&splice, struct btrfs_root, 4420 delalloc_root); 4421 root = btrfs_grab_root(root); 4422 BUG_ON(!root); 4423 spin_unlock(&fs_info->delalloc_root_lock); 4424 4425 btrfs_destroy_delalloc_inodes(root); 4426 btrfs_put_root(root); 4427 4428 spin_lock(&fs_info->delalloc_root_lock); 4429 } 4430 spin_unlock(&fs_info->delalloc_root_lock); 4431 } 4432 4433 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4434 struct extent_io_tree *dirty_pages, 4435 int mark) 4436 { 4437 int ret; 4438 struct extent_buffer *eb; 4439 u64 start = 0; 4440 u64 end; 4441 4442 while (1) { 4443 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4444 mark, NULL); 4445 if (ret) 4446 break; 4447 4448 clear_extent_bits(dirty_pages, start, end, mark); 4449 while (start <= end) { 4450 eb = find_extent_buffer(fs_info, start); 4451 start += fs_info->nodesize; 4452 if (!eb) 4453 continue; 4454 wait_on_extent_buffer_writeback(eb); 4455 4456 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4457 &eb->bflags)) 4458 clear_extent_buffer_dirty(eb); 4459 free_extent_buffer_stale(eb); 4460 } 4461 } 4462 4463 return ret; 4464 } 4465 4466 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4467 struct extent_io_tree *unpin) 4468 { 4469 u64 start; 4470 u64 end; 4471 int ret; 4472 4473 while (1) { 4474 struct extent_state *cached_state = NULL; 4475 4476 /* 4477 * The btrfs_finish_extent_commit() may get the same range as 4478 * ours between find_first_extent_bit and clear_extent_dirty. 4479 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4480 * the same extent range. 4481 */ 4482 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4483 ret = find_first_extent_bit(unpin, 0, &start, &end, 4484 EXTENT_DIRTY, &cached_state); 4485 if (ret) { 4486 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4487 break; 4488 } 4489 4490 clear_extent_dirty(unpin, start, end, &cached_state); 4491 free_extent_state(cached_state); 4492 btrfs_error_unpin_extent_range(fs_info, start, end); 4493 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4494 cond_resched(); 4495 } 4496 4497 return 0; 4498 } 4499 4500 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4501 { 4502 struct inode *inode; 4503 4504 inode = cache->io_ctl.inode; 4505 if (inode) { 4506 invalidate_inode_pages2(inode->i_mapping); 4507 BTRFS_I(inode)->generation = 0; 4508 cache->io_ctl.inode = NULL; 4509 iput(inode); 4510 } 4511 btrfs_put_block_group(cache); 4512 } 4513 4514 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4515 struct btrfs_fs_info *fs_info) 4516 { 4517 struct btrfs_block_group *cache; 4518 4519 spin_lock(&cur_trans->dirty_bgs_lock); 4520 while (!list_empty(&cur_trans->dirty_bgs)) { 4521 cache = list_first_entry(&cur_trans->dirty_bgs, 4522 struct btrfs_block_group, 4523 dirty_list); 4524 4525 if (!list_empty(&cache->io_list)) { 4526 spin_unlock(&cur_trans->dirty_bgs_lock); 4527 list_del_init(&cache->io_list); 4528 btrfs_cleanup_bg_io(cache); 4529 spin_lock(&cur_trans->dirty_bgs_lock); 4530 } 4531 4532 list_del_init(&cache->dirty_list); 4533 spin_lock(&cache->lock); 4534 cache->disk_cache_state = BTRFS_DC_ERROR; 4535 spin_unlock(&cache->lock); 4536 4537 spin_unlock(&cur_trans->dirty_bgs_lock); 4538 btrfs_put_block_group(cache); 4539 btrfs_delayed_refs_rsv_release(fs_info, 1); 4540 spin_lock(&cur_trans->dirty_bgs_lock); 4541 } 4542 spin_unlock(&cur_trans->dirty_bgs_lock); 4543 4544 /* 4545 * Refer to the definition of io_bgs member for details why it's safe 4546 * to use it without any locking 4547 */ 4548 while (!list_empty(&cur_trans->io_bgs)) { 4549 cache = list_first_entry(&cur_trans->io_bgs, 4550 struct btrfs_block_group, 4551 io_list); 4552 4553 list_del_init(&cache->io_list); 4554 spin_lock(&cache->lock); 4555 cache->disk_cache_state = BTRFS_DC_ERROR; 4556 spin_unlock(&cache->lock); 4557 btrfs_cleanup_bg_io(cache); 4558 } 4559 } 4560 4561 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4562 struct btrfs_fs_info *fs_info) 4563 { 4564 struct btrfs_device *dev, *tmp; 4565 4566 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4567 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4568 ASSERT(list_empty(&cur_trans->io_bgs)); 4569 4570 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4571 post_commit_list) { 4572 list_del_init(&dev->post_commit_list); 4573 } 4574 4575 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4576 4577 cur_trans->state = TRANS_STATE_COMMIT_START; 4578 wake_up(&fs_info->transaction_blocked_wait); 4579 4580 cur_trans->state = TRANS_STATE_UNBLOCKED; 4581 wake_up(&fs_info->transaction_wait); 4582 4583 btrfs_destroy_delayed_inodes(fs_info); 4584 4585 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4586 EXTENT_DIRTY); 4587 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4588 4589 cur_trans->state =TRANS_STATE_COMPLETED; 4590 wake_up(&cur_trans->commit_wait); 4591 } 4592 4593 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4594 { 4595 struct btrfs_transaction *t; 4596 4597 mutex_lock(&fs_info->transaction_kthread_mutex); 4598 4599 spin_lock(&fs_info->trans_lock); 4600 while (!list_empty(&fs_info->trans_list)) { 4601 t = list_first_entry(&fs_info->trans_list, 4602 struct btrfs_transaction, list); 4603 if (t->state >= TRANS_STATE_COMMIT_START) { 4604 refcount_inc(&t->use_count); 4605 spin_unlock(&fs_info->trans_lock); 4606 btrfs_wait_for_commit(fs_info, t->transid); 4607 btrfs_put_transaction(t); 4608 spin_lock(&fs_info->trans_lock); 4609 continue; 4610 } 4611 if (t == fs_info->running_transaction) { 4612 t->state = TRANS_STATE_COMMIT_DOING; 4613 spin_unlock(&fs_info->trans_lock); 4614 /* 4615 * We wait for 0 num_writers since we don't hold a trans 4616 * handle open currently for this transaction. 4617 */ 4618 wait_event(t->writer_wait, 4619 atomic_read(&t->num_writers) == 0); 4620 } else { 4621 spin_unlock(&fs_info->trans_lock); 4622 } 4623 btrfs_cleanup_one_transaction(t, fs_info); 4624 4625 spin_lock(&fs_info->trans_lock); 4626 if (t == fs_info->running_transaction) 4627 fs_info->running_transaction = NULL; 4628 list_del_init(&t->list); 4629 spin_unlock(&fs_info->trans_lock); 4630 4631 btrfs_put_transaction(t); 4632 trace_btrfs_transaction_commit(fs_info->tree_root); 4633 spin_lock(&fs_info->trans_lock); 4634 } 4635 spin_unlock(&fs_info->trans_lock); 4636 btrfs_destroy_all_ordered_extents(fs_info); 4637 btrfs_destroy_delayed_inodes(fs_info); 4638 btrfs_assert_delayed_root_empty(fs_info); 4639 btrfs_destroy_all_delalloc_inodes(fs_info); 4640 btrfs_drop_all_logs(fs_info); 4641 mutex_unlock(&fs_info->transaction_kthread_mutex); 4642 4643 return 0; 4644 } 4645 4646 static const struct extent_io_ops btree_extent_io_ops = { 4647 /* mandatory callbacks */ 4648 .submit_bio_hook = btree_submit_bio_hook, 4649 .readpage_end_io_hook = btree_readpage_end_io_hook, 4650 }; 4651