1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * Compute the csum of a btree block and store the result to provided buffer. 83 */ 84 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 85 { 86 struct btrfs_fs_info *fs_info = buf->fs_info; 87 const int num_pages = num_extent_pages(buf); 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 90 char *kaddr; 91 int i; 92 93 shash->tfm = fs_info->csum_shash; 94 crypto_shash_init(shash); 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 for (i = 1; i < num_pages; i++) { 100 kaddr = page_address(buf->pages[i]); 101 crypto_shash_update(shash, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 crypto_shash_final(shash, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 static int verify_parent_transid(struct extent_io_tree *io_tree, 114 struct extent_buffer *eb, u64 parent_transid, 115 int atomic) 116 { 117 struct extent_state *cached_state = NULL; 118 int ret; 119 120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 121 return 0; 122 123 if (atomic) 124 return -EAGAIN; 125 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 127 if (extent_buffer_uptodate(eb) && 128 btrfs_header_generation(eb) == parent_transid) { 129 ret = 0; 130 goto out; 131 } 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 ret = 1; 137 clear_extent_buffer_uptodate(eb); 138 out: 139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 140 &cached_state); 141 return ret; 142 } 143 144 static bool btrfs_supported_super_csum(u16 csum_type) 145 { 146 switch (csum_type) { 147 case BTRFS_CSUM_TYPE_CRC32: 148 case BTRFS_CSUM_TYPE_XXHASH: 149 case BTRFS_CSUM_TYPE_SHA256: 150 case BTRFS_CSUM_TYPE_BLAKE2: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 /* 158 * Return 0 if the superblock checksum type matches the checksum value of that 159 * algorithm. Pass the raw disk superblock data. 160 */ 161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 162 const struct btrfs_super_block *disk_sb) 163 { 164 char result[BTRFS_CSUM_SIZE]; 165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 166 167 shash->tfm = fs_info->csum_shash; 168 169 /* 170 * The super_block structure does not span the whole 171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 172 * filled with zeros and is included in the checksum. 173 */ 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 176 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 178 return 1; 179 180 return 0; 181 } 182 183 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 184 struct btrfs_key *first_key, u64 parent_transid) 185 { 186 struct btrfs_fs_info *fs_info = eb->fs_info; 187 int found_level; 188 struct btrfs_key found_key; 189 int ret; 190 191 found_level = btrfs_header_level(eb); 192 if (found_level != level) { 193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 194 KERN_ERR "BTRFS: tree level check failed\n"); 195 btrfs_err(fs_info, 196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 197 eb->start, level, found_level); 198 return -EIO; 199 } 200 201 if (!first_key) 202 return 0; 203 204 /* 205 * For live tree block (new tree blocks in current transaction), 206 * we need proper lock context to avoid race, which is impossible here. 207 * So we only checks tree blocks which is read from disk, whose 208 * generation <= fs_info->last_trans_committed. 209 */ 210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 211 return 0; 212 213 /* We have @first_key, so this @eb must have at least one item */ 214 if (btrfs_header_nritems(eb) == 0) { 215 btrfs_err(fs_info, 216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 217 eb->start); 218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 219 return -EUCLEAN; 220 } 221 222 if (found_level) 223 btrfs_node_key_to_cpu(eb, &found_key, 0); 224 else 225 btrfs_item_key_to_cpu(eb, &found_key, 0); 226 ret = btrfs_comp_cpu_keys(first_key, &found_key); 227 228 if (ret) { 229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 230 KERN_ERR "BTRFS: tree first key check failed\n"); 231 btrfs_err(fs_info, 232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 233 eb->start, parent_transid, first_key->objectid, 234 first_key->type, first_key->offset, 235 found_key.objectid, found_key.type, 236 found_key.offset); 237 } 238 return ret; 239 } 240 241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 242 int mirror_num) 243 { 244 struct btrfs_fs_info *fs_info = eb->fs_info; 245 u64 start = eb->start; 246 int i, num_pages = num_extent_pages(eb); 247 int ret = 0; 248 249 if (sb_rdonly(fs_info->sb)) 250 return -EROFS; 251 252 for (i = 0; i < num_pages; i++) { 253 struct page *p = eb->pages[i]; 254 255 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE, 256 start, p, start - page_offset(p), mirror_num); 257 if (ret) 258 break; 259 start += PAGE_SIZE; 260 } 261 262 return ret; 263 } 264 265 /* 266 * helper to read a given tree block, doing retries as required when 267 * the checksums don't match and we have alternate mirrors to try. 268 * 269 * @check: expected tree parentness check, see the comments of the 270 * structure for details. 271 */ 272 int btrfs_read_extent_buffer(struct extent_buffer *eb, 273 struct btrfs_tree_parent_check *check) 274 { 275 struct btrfs_fs_info *fs_info = eb->fs_info; 276 int failed = 0; 277 int ret; 278 int num_copies = 0; 279 int mirror_num = 0; 280 int failed_mirror = 0; 281 282 ASSERT(check); 283 284 while (1) { 285 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 286 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 287 if (!ret) 288 break; 289 290 num_copies = btrfs_num_copies(fs_info, 291 eb->start, eb->len); 292 if (num_copies == 1) 293 break; 294 295 if (!failed_mirror) { 296 failed = 1; 297 failed_mirror = eb->read_mirror; 298 } 299 300 mirror_num++; 301 if (mirror_num == failed_mirror) 302 mirror_num++; 303 304 if (mirror_num > num_copies) 305 break; 306 } 307 308 if (failed && !ret && failed_mirror) 309 btrfs_repair_eb_io_failure(eb, failed_mirror); 310 311 return ret; 312 } 313 314 static int csum_one_extent_buffer(struct extent_buffer *eb) 315 { 316 struct btrfs_fs_info *fs_info = eb->fs_info; 317 u8 result[BTRFS_CSUM_SIZE]; 318 int ret; 319 320 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 321 offsetof(struct btrfs_header, fsid), 322 BTRFS_FSID_SIZE) == 0); 323 csum_tree_block(eb, result); 324 325 if (btrfs_header_level(eb)) 326 ret = btrfs_check_node(eb); 327 else 328 ret = btrfs_check_leaf_full(eb); 329 330 if (ret < 0) 331 goto error; 332 333 /* 334 * Also check the generation, the eb reached here must be newer than 335 * last committed. Or something seriously wrong happened. 336 */ 337 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 338 ret = -EUCLEAN; 339 btrfs_err(fs_info, 340 "block=%llu bad generation, have %llu expect > %llu", 341 eb->start, btrfs_header_generation(eb), 342 fs_info->last_trans_committed); 343 goto error; 344 } 345 write_extent_buffer(eb, result, 0, fs_info->csum_size); 346 347 return 0; 348 349 error: 350 btrfs_print_tree(eb, 0); 351 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 352 eb->start); 353 /* 354 * Be noisy if this is an extent buffer from a log tree. We don't abort 355 * a transaction in case there's a bad log tree extent buffer, we just 356 * fallback to a transaction commit. Still we want to know when there is 357 * a bad log tree extent buffer, as that may signal a bug somewhere. 358 */ 359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 360 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 361 return ret; 362 } 363 364 /* Checksum all dirty extent buffers in one bio_vec */ 365 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 366 struct bio_vec *bvec) 367 { 368 struct page *page = bvec->bv_page; 369 u64 bvec_start = page_offset(page) + bvec->bv_offset; 370 u64 cur; 371 int ret = 0; 372 373 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 374 cur += fs_info->nodesize) { 375 struct extent_buffer *eb; 376 bool uptodate; 377 378 eb = find_extent_buffer(fs_info, cur); 379 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 380 fs_info->nodesize); 381 382 /* A dirty eb shouldn't disappear from buffer_radix */ 383 if (WARN_ON(!eb)) 384 return -EUCLEAN; 385 386 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 387 free_extent_buffer(eb); 388 return -EUCLEAN; 389 } 390 if (WARN_ON(!uptodate)) { 391 free_extent_buffer(eb); 392 return -EUCLEAN; 393 } 394 395 ret = csum_one_extent_buffer(eb); 396 free_extent_buffer(eb); 397 if (ret < 0) 398 return ret; 399 } 400 return ret; 401 } 402 403 /* 404 * Checksum a dirty tree block before IO. This has extra checks to make sure 405 * we only fill in the checksum field in the first page of a multi-page block. 406 * For subpage extent buffers we need bvec to also read the offset in the page. 407 */ 408 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 409 { 410 struct page *page = bvec->bv_page; 411 u64 start = page_offset(page); 412 u64 found_start; 413 struct extent_buffer *eb; 414 415 if (fs_info->nodesize < PAGE_SIZE) 416 return csum_dirty_subpage_buffers(fs_info, bvec); 417 418 eb = (struct extent_buffer *)page->private; 419 if (page != eb->pages[0]) 420 return 0; 421 422 found_start = btrfs_header_bytenr(eb); 423 424 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 425 WARN_ON(found_start != 0); 426 return 0; 427 } 428 429 /* 430 * Please do not consolidate these warnings into a single if. 431 * It is useful to know what went wrong. 432 */ 433 if (WARN_ON(found_start != start)) 434 return -EUCLEAN; 435 if (WARN_ON(!PageUptodate(page))) 436 return -EUCLEAN; 437 438 return csum_one_extent_buffer(eb); 439 } 440 441 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 442 { 443 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 444 struct bvec_iter iter; 445 struct bio_vec bv; 446 int ret = 0; 447 448 bio_for_each_segment(bv, &bbio->bio, iter) { 449 ret = csum_dirty_buffer(fs_info, &bv); 450 if (ret) 451 break; 452 } 453 454 return errno_to_blk_status(ret); 455 } 456 457 static int check_tree_block_fsid(struct extent_buffer *eb) 458 { 459 struct btrfs_fs_info *fs_info = eb->fs_info; 460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 461 u8 fsid[BTRFS_FSID_SIZE]; 462 u8 *metadata_uuid; 463 464 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 465 BTRFS_FSID_SIZE); 466 /* 467 * Checking the incompat flag is only valid for the current fs. For 468 * seed devices it's forbidden to have their uuid changed so reading 469 * ->fsid in this case is fine 470 */ 471 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 472 metadata_uuid = fs_devices->metadata_uuid; 473 else 474 metadata_uuid = fs_devices->fsid; 475 476 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 477 return 0; 478 479 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 480 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 481 return 0; 482 483 return 1; 484 } 485 486 /* Do basic extent buffer checks at read time */ 487 static int validate_extent_buffer(struct extent_buffer *eb, 488 struct btrfs_tree_parent_check *check) 489 { 490 struct btrfs_fs_info *fs_info = eb->fs_info; 491 u64 found_start; 492 const u32 csum_size = fs_info->csum_size; 493 u8 found_level; 494 u8 result[BTRFS_CSUM_SIZE]; 495 const u8 *header_csum; 496 int ret = 0; 497 498 ASSERT(check); 499 500 found_start = btrfs_header_bytenr(eb); 501 if (found_start != eb->start) { 502 btrfs_err_rl(fs_info, 503 "bad tree block start, mirror %u want %llu have %llu", 504 eb->read_mirror, eb->start, found_start); 505 ret = -EIO; 506 goto out; 507 } 508 if (check_tree_block_fsid(eb)) { 509 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 510 eb->start, eb->read_mirror); 511 ret = -EIO; 512 goto out; 513 } 514 found_level = btrfs_header_level(eb); 515 if (found_level >= BTRFS_MAX_LEVEL) { 516 btrfs_err(fs_info, 517 "bad tree block level, mirror %u level %d on logical %llu", 518 eb->read_mirror, btrfs_header_level(eb), eb->start); 519 ret = -EIO; 520 goto out; 521 } 522 523 csum_tree_block(eb, result); 524 header_csum = page_address(eb->pages[0]) + 525 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 526 527 if (memcmp(result, header_csum, csum_size) != 0) { 528 btrfs_warn_rl(fs_info, 529 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 530 eb->start, eb->read_mirror, 531 CSUM_FMT_VALUE(csum_size, header_csum), 532 CSUM_FMT_VALUE(csum_size, result), 533 btrfs_header_level(eb)); 534 ret = -EUCLEAN; 535 goto out; 536 } 537 538 if (found_level != check->level) { 539 btrfs_err(fs_info, 540 "level verify failed on logical %llu mirror %u wanted %u found %u", 541 eb->start, eb->read_mirror, check->level, found_level); 542 ret = -EIO; 543 goto out; 544 } 545 if (unlikely(check->transid && 546 btrfs_header_generation(eb) != check->transid)) { 547 btrfs_err_rl(eb->fs_info, 548 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 549 eb->start, eb->read_mirror, check->transid, 550 btrfs_header_generation(eb)); 551 ret = -EIO; 552 goto out; 553 } 554 if (check->has_first_key) { 555 struct btrfs_key *expect_key = &check->first_key; 556 struct btrfs_key found_key; 557 558 if (found_level) 559 btrfs_node_key_to_cpu(eb, &found_key, 0); 560 else 561 btrfs_item_key_to_cpu(eb, &found_key, 0); 562 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 563 btrfs_err(fs_info, 564 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 565 eb->start, check->transid, 566 expect_key->objectid, 567 expect_key->type, expect_key->offset, 568 found_key.objectid, found_key.type, 569 found_key.offset); 570 ret = -EUCLEAN; 571 goto out; 572 } 573 } 574 if (check->owner_root) { 575 ret = btrfs_check_eb_owner(eb, check->owner_root); 576 if (ret < 0) 577 goto out; 578 } 579 580 /* 581 * If this is a leaf block and it is corrupt, set the corrupt bit so 582 * that we don't try and read the other copies of this block, just 583 * return -EIO. 584 */ 585 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 586 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 587 ret = -EIO; 588 } 589 590 if (found_level > 0 && btrfs_check_node(eb)) 591 ret = -EIO; 592 593 if (!ret) 594 set_extent_buffer_uptodate(eb); 595 else 596 btrfs_err(fs_info, 597 "read time tree block corruption detected on logical %llu mirror %u", 598 eb->start, eb->read_mirror); 599 out: 600 return ret; 601 } 602 603 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 604 int mirror, struct btrfs_tree_parent_check *check) 605 { 606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 607 struct extent_buffer *eb; 608 bool reads_done; 609 int ret = 0; 610 611 ASSERT(check); 612 613 /* 614 * We don't allow bio merge for subpage metadata read, so we should 615 * only get one eb for each endio hook. 616 */ 617 ASSERT(end == start + fs_info->nodesize - 1); 618 ASSERT(PagePrivate(page)); 619 620 eb = find_extent_buffer(fs_info, start); 621 /* 622 * When we are reading one tree block, eb must have been inserted into 623 * the radix tree. If not, something is wrong. 624 */ 625 ASSERT(eb); 626 627 reads_done = atomic_dec_and_test(&eb->io_pages); 628 /* Subpage read must finish in page read */ 629 ASSERT(reads_done); 630 631 eb->read_mirror = mirror; 632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 633 ret = -EIO; 634 goto err; 635 } 636 ret = validate_extent_buffer(eb, check); 637 if (ret < 0) 638 goto err; 639 640 set_extent_buffer_uptodate(eb); 641 642 free_extent_buffer(eb); 643 return ret; 644 err: 645 /* 646 * end_bio_extent_readpage decrements io_pages in case of error, 647 * make sure it has something to decrement. 648 */ 649 atomic_inc(&eb->io_pages); 650 clear_extent_buffer_uptodate(eb); 651 free_extent_buffer(eb); 652 return ret; 653 } 654 655 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 656 struct page *page, u64 start, u64 end, 657 int mirror) 658 { 659 struct extent_buffer *eb; 660 int ret = 0; 661 int reads_done; 662 663 ASSERT(page->private); 664 665 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 666 return validate_subpage_buffer(page, start, end, mirror, 667 &bbio->parent_check); 668 669 eb = (struct extent_buffer *)page->private; 670 671 /* 672 * The pending IO might have been the only thing that kept this buffer 673 * in memory. Make sure we have a ref for all this other checks 674 */ 675 atomic_inc(&eb->refs); 676 677 reads_done = atomic_dec_and_test(&eb->io_pages); 678 if (!reads_done) 679 goto err; 680 681 eb->read_mirror = mirror; 682 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 683 ret = -EIO; 684 goto err; 685 } 686 ret = validate_extent_buffer(eb, &bbio->parent_check); 687 err: 688 if (ret) { 689 /* 690 * our io error hook is going to dec the io pages 691 * again, we have to make sure it has something 692 * to decrement 693 */ 694 atomic_inc(&eb->io_pages); 695 clear_extent_buffer_uptodate(eb); 696 } 697 free_extent_buffer(eb); 698 699 return ret; 700 } 701 702 #ifdef CONFIG_MIGRATION 703 static int btree_migrate_folio(struct address_space *mapping, 704 struct folio *dst, struct folio *src, enum migrate_mode mode) 705 { 706 /* 707 * we can't safely write a btree page from here, 708 * we haven't done the locking hook 709 */ 710 if (folio_test_dirty(src)) 711 return -EAGAIN; 712 /* 713 * Buffers may be managed in a filesystem specific way. 714 * We must have no buffers or drop them. 715 */ 716 if (folio_get_private(src) && 717 !filemap_release_folio(src, GFP_KERNEL)) 718 return -EAGAIN; 719 return migrate_folio(mapping, dst, src, mode); 720 } 721 #else 722 #define btree_migrate_folio NULL 723 #endif 724 725 static int btree_writepages(struct address_space *mapping, 726 struct writeback_control *wbc) 727 { 728 struct btrfs_fs_info *fs_info; 729 int ret; 730 731 if (wbc->sync_mode == WB_SYNC_NONE) { 732 733 if (wbc->for_kupdate) 734 return 0; 735 736 fs_info = BTRFS_I(mapping->host)->root->fs_info; 737 /* this is a bit racy, but that's ok */ 738 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 739 BTRFS_DIRTY_METADATA_THRESH, 740 fs_info->dirty_metadata_batch); 741 if (ret < 0) 742 return 0; 743 } 744 return btree_write_cache_pages(mapping, wbc); 745 } 746 747 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 748 { 749 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 750 return false; 751 752 return try_release_extent_buffer(&folio->page); 753 } 754 755 static void btree_invalidate_folio(struct folio *folio, size_t offset, 756 size_t length) 757 { 758 struct extent_io_tree *tree; 759 tree = &BTRFS_I(folio->mapping->host)->io_tree; 760 extent_invalidate_folio(tree, folio, offset); 761 btree_release_folio(folio, GFP_NOFS); 762 if (folio_get_private(folio)) { 763 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 764 "folio private not zero on folio %llu", 765 (unsigned long long)folio_pos(folio)); 766 folio_detach_private(folio); 767 } 768 } 769 770 #ifdef DEBUG 771 static bool btree_dirty_folio(struct address_space *mapping, 772 struct folio *folio) 773 { 774 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 775 struct btrfs_subpage *subpage; 776 struct extent_buffer *eb; 777 int cur_bit = 0; 778 u64 page_start = folio_pos(folio); 779 780 if (fs_info->sectorsize == PAGE_SIZE) { 781 eb = folio_get_private(folio); 782 BUG_ON(!eb); 783 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 784 BUG_ON(!atomic_read(&eb->refs)); 785 btrfs_assert_tree_write_locked(eb); 786 return filemap_dirty_folio(mapping, folio); 787 } 788 subpage = folio_get_private(folio); 789 790 ASSERT(subpage->dirty_bitmap); 791 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 792 unsigned long flags; 793 u64 cur; 794 u16 tmp = (1 << cur_bit); 795 796 spin_lock_irqsave(&subpage->lock, flags); 797 if (!(tmp & subpage->dirty_bitmap)) { 798 spin_unlock_irqrestore(&subpage->lock, flags); 799 cur_bit++; 800 continue; 801 } 802 spin_unlock_irqrestore(&subpage->lock, flags); 803 cur = page_start + cur_bit * fs_info->sectorsize; 804 805 eb = find_extent_buffer(fs_info, cur); 806 ASSERT(eb); 807 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 808 ASSERT(atomic_read(&eb->refs)); 809 btrfs_assert_tree_write_locked(eb); 810 free_extent_buffer(eb); 811 812 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 813 } 814 return filemap_dirty_folio(mapping, folio); 815 } 816 #else 817 #define btree_dirty_folio filemap_dirty_folio 818 #endif 819 820 static const struct address_space_operations btree_aops = { 821 .writepages = btree_writepages, 822 .release_folio = btree_release_folio, 823 .invalidate_folio = btree_invalidate_folio, 824 .migrate_folio = btree_migrate_folio, 825 .dirty_folio = btree_dirty_folio, 826 }; 827 828 struct extent_buffer *btrfs_find_create_tree_block( 829 struct btrfs_fs_info *fs_info, 830 u64 bytenr, u64 owner_root, 831 int level) 832 { 833 if (btrfs_is_testing(fs_info)) 834 return alloc_test_extent_buffer(fs_info, bytenr); 835 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 836 } 837 838 /* 839 * Read tree block at logical address @bytenr and do variant basic but critical 840 * verification. 841 * 842 * @check: expected tree parentness check, see comments of the 843 * structure for details. 844 */ 845 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 846 struct btrfs_tree_parent_check *check) 847 { 848 struct extent_buffer *buf = NULL; 849 int ret; 850 851 ASSERT(check); 852 853 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 854 check->level); 855 if (IS_ERR(buf)) 856 return buf; 857 858 ret = btrfs_read_extent_buffer(buf, check); 859 if (ret) { 860 free_extent_buffer_stale(buf); 861 return ERR_PTR(ret); 862 } 863 if (btrfs_check_eb_owner(buf, check->owner_root)) { 864 free_extent_buffer_stale(buf); 865 return ERR_PTR(-EUCLEAN); 866 } 867 return buf; 868 869 } 870 871 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 872 u64 objectid) 873 { 874 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 875 876 memset(&root->root_key, 0, sizeof(root->root_key)); 877 memset(&root->root_item, 0, sizeof(root->root_item)); 878 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 879 root->fs_info = fs_info; 880 root->root_key.objectid = objectid; 881 root->node = NULL; 882 root->commit_root = NULL; 883 root->state = 0; 884 RB_CLEAR_NODE(&root->rb_node); 885 886 root->last_trans = 0; 887 root->free_objectid = 0; 888 root->nr_delalloc_inodes = 0; 889 root->nr_ordered_extents = 0; 890 root->inode_tree = RB_ROOT; 891 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 892 893 btrfs_init_root_block_rsv(root); 894 895 INIT_LIST_HEAD(&root->dirty_list); 896 INIT_LIST_HEAD(&root->root_list); 897 INIT_LIST_HEAD(&root->delalloc_inodes); 898 INIT_LIST_HEAD(&root->delalloc_root); 899 INIT_LIST_HEAD(&root->ordered_extents); 900 INIT_LIST_HEAD(&root->ordered_root); 901 INIT_LIST_HEAD(&root->reloc_dirty_list); 902 INIT_LIST_HEAD(&root->logged_list[0]); 903 INIT_LIST_HEAD(&root->logged_list[1]); 904 spin_lock_init(&root->inode_lock); 905 spin_lock_init(&root->delalloc_lock); 906 spin_lock_init(&root->ordered_extent_lock); 907 spin_lock_init(&root->accounting_lock); 908 spin_lock_init(&root->log_extents_lock[0]); 909 spin_lock_init(&root->log_extents_lock[1]); 910 spin_lock_init(&root->qgroup_meta_rsv_lock); 911 mutex_init(&root->objectid_mutex); 912 mutex_init(&root->log_mutex); 913 mutex_init(&root->ordered_extent_mutex); 914 mutex_init(&root->delalloc_mutex); 915 init_waitqueue_head(&root->qgroup_flush_wait); 916 init_waitqueue_head(&root->log_writer_wait); 917 init_waitqueue_head(&root->log_commit_wait[0]); 918 init_waitqueue_head(&root->log_commit_wait[1]); 919 INIT_LIST_HEAD(&root->log_ctxs[0]); 920 INIT_LIST_HEAD(&root->log_ctxs[1]); 921 atomic_set(&root->log_commit[0], 0); 922 atomic_set(&root->log_commit[1], 0); 923 atomic_set(&root->log_writers, 0); 924 atomic_set(&root->log_batch, 0); 925 refcount_set(&root->refs, 1); 926 atomic_set(&root->snapshot_force_cow, 0); 927 atomic_set(&root->nr_swapfiles, 0); 928 root->log_transid = 0; 929 root->log_transid_committed = -1; 930 root->last_log_commit = 0; 931 root->anon_dev = 0; 932 if (!dummy) { 933 extent_io_tree_init(fs_info, &root->dirty_log_pages, 934 IO_TREE_ROOT_DIRTY_LOG_PAGES); 935 extent_io_tree_init(fs_info, &root->log_csum_range, 936 IO_TREE_LOG_CSUM_RANGE); 937 } 938 939 spin_lock_init(&root->root_item_lock); 940 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 941 #ifdef CONFIG_BTRFS_DEBUG 942 INIT_LIST_HEAD(&root->leak_list); 943 spin_lock(&fs_info->fs_roots_radix_lock); 944 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 945 spin_unlock(&fs_info->fs_roots_radix_lock); 946 #endif 947 } 948 949 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 950 u64 objectid, gfp_t flags) 951 { 952 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 953 if (root) 954 __setup_root(root, fs_info, objectid); 955 return root; 956 } 957 958 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 959 /* Should only be used by the testing infrastructure */ 960 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 961 { 962 struct btrfs_root *root; 963 964 if (!fs_info) 965 return ERR_PTR(-EINVAL); 966 967 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 968 if (!root) 969 return ERR_PTR(-ENOMEM); 970 971 /* We don't use the stripesize in selftest, set it as sectorsize */ 972 root->alloc_bytenr = 0; 973 974 return root; 975 } 976 #endif 977 978 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 979 { 980 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 981 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 982 983 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 984 } 985 986 static int global_root_key_cmp(const void *k, const struct rb_node *node) 987 { 988 const struct btrfs_key *key = k; 989 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 990 991 return btrfs_comp_cpu_keys(key, &root->root_key); 992 } 993 994 int btrfs_global_root_insert(struct btrfs_root *root) 995 { 996 struct btrfs_fs_info *fs_info = root->fs_info; 997 struct rb_node *tmp; 998 999 write_lock(&fs_info->global_root_lock); 1000 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1001 write_unlock(&fs_info->global_root_lock); 1002 ASSERT(!tmp); 1003 1004 return tmp ? -EEXIST : 0; 1005 } 1006 1007 void btrfs_global_root_delete(struct btrfs_root *root) 1008 { 1009 struct btrfs_fs_info *fs_info = root->fs_info; 1010 1011 write_lock(&fs_info->global_root_lock); 1012 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1013 write_unlock(&fs_info->global_root_lock); 1014 } 1015 1016 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1017 struct btrfs_key *key) 1018 { 1019 struct rb_node *node; 1020 struct btrfs_root *root = NULL; 1021 1022 read_lock(&fs_info->global_root_lock); 1023 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1024 if (node) 1025 root = container_of(node, struct btrfs_root, rb_node); 1026 read_unlock(&fs_info->global_root_lock); 1027 1028 return root; 1029 } 1030 1031 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1032 { 1033 struct btrfs_block_group *block_group; 1034 u64 ret; 1035 1036 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1037 return 0; 1038 1039 if (bytenr) 1040 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1041 else 1042 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1043 ASSERT(block_group); 1044 if (!block_group) 1045 return 0; 1046 ret = block_group->global_root_id; 1047 btrfs_put_block_group(block_group); 1048 1049 return ret; 1050 } 1051 1052 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1053 { 1054 struct btrfs_key key = { 1055 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1056 .type = BTRFS_ROOT_ITEM_KEY, 1057 .offset = btrfs_global_root_id(fs_info, bytenr), 1058 }; 1059 1060 return btrfs_global_root(fs_info, &key); 1061 } 1062 1063 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1064 { 1065 struct btrfs_key key = { 1066 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1067 .type = BTRFS_ROOT_ITEM_KEY, 1068 .offset = btrfs_global_root_id(fs_info, bytenr), 1069 }; 1070 1071 return btrfs_global_root(fs_info, &key); 1072 } 1073 1074 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1075 { 1076 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1077 return fs_info->block_group_root; 1078 return btrfs_extent_root(fs_info, 0); 1079 } 1080 1081 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1082 u64 objectid) 1083 { 1084 struct btrfs_fs_info *fs_info = trans->fs_info; 1085 struct extent_buffer *leaf; 1086 struct btrfs_root *tree_root = fs_info->tree_root; 1087 struct btrfs_root *root; 1088 struct btrfs_key key; 1089 unsigned int nofs_flag; 1090 int ret = 0; 1091 1092 /* 1093 * We're holding a transaction handle, so use a NOFS memory allocation 1094 * context to avoid deadlock if reclaim happens. 1095 */ 1096 nofs_flag = memalloc_nofs_save(); 1097 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1098 memalloc_nofs_restore(nofs_flag); 1099 if (!root) 1100 return ERR_PTR(-ENOMEM); 1101 1102 root->root_key.objectid = objectid; 1103 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1104 root->root_key.offset = 0; 1105 1106 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1107 BTRFS_NESTING_NORMAL); 1108 if (IS_ERR(leaf)) { 1109 ret = PTR_ERR(leaf); 1110 leaf = NULL; 1111 goto fail; 1112 } 1113 1114 root->node = leaf; 1115 btrfs_mark_buffer_dirty(leaf); 1116 1117 root->commit_root = btrfs_root_node(root); 1118 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1119 1120 btrfs_set_root_flags(&root->root_item, 0); 1121 btrfs_set_root_limit(&root->root_item, 0); 1122 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1123 btrfs_set_root_generation(&root->root_item, trans->transid); 1124 btrfs_set_root_level(&root->root_item, 0); 1125 btrfs_set_root_refs(&root->root_item, 1); 1126 btrfs_set_root_used(&root->root_item, leaf->len); 1127 btrfs_set_root_last_snapshot(&root->root_item, 0); 1128 btrfs_set_root_dirid(&root->root_item, 0); 1129 if (is_fstree(objectid)) 1130 generate_random_guid(root->root_item.uuid); 1131 else 1132 export_guid(root->root_item.uuid, &guid_null); 1133 btrfs_set_root_drop_level(&root->root_item, 0); 1134 1135 btrfs_tree_unlock(leaf); 1136 1137 key.objectid = objectid; 1138 key.type = BTRFS_ROOT_ITEM_KEY; 1139 key.offset = 0; 1140 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1141 if (ret) 1142 goto fail; 1143 1144 return root; 1145 1146 fail: 1147 btrfs_put_root(root); 1148 1149 return ERR_PTR(ret); 1150 } 1151 1152 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1153 struct btrfs_fs_info *fs_info) 1154 { 1155 struct btrfs_root *root; 1156 1157 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1158 if (!root) 1159 return ERR_PTR(-ENOMEM); 1160 1161 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1162 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1163 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1164 1165 return root; 1166 } 1167 1168 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1169 struct btrfs_root *root) 1170 { 1171 struct extent_buffer *leaf; 1172 1173 /* 1174 * DON'T set SHAREABLE bit for log trees. 1175 * 1176 * Log trees are not exposed to user space thus can't be snapshotted, 1177 * and they go away before a real commit is actually done. 1178 * 1179 * They do store pointers to file data extents, and those reference 1180 * counts still get updated (along with back refs to the log tree). 1181 */ 1182 1183 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1184 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1185 if (IS_ERR(leaf)) 1186 return PTR_ERR(leaf); 1187 1188 root->node = leaf; 1189 1190 btrfs_mark_buffer_dirty(root->node); 1191 btrfs_tree_unlock(root->node); 1192 1193 return 0; 1194 } 1195 1196 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1197 struct btrfs_fs_info *fs_info) 1198 { 1199 struct btrfs_root *log_root; 1200 1201 log_root = alloc_log_tree(trans, fs_info); 1202 if (IS_ERR(log_root)) 1203 return PTR_ERR(log_root); 1204 1205 if (!btrfs_is_zoned(fs_info)) { 1206 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1207 1208 if (ret) { 1209 btrfs_put_root(log_root); 1210 return ret; 1211 } 1212 } 1213 1214 WARN_ON(fs_info->log_root_tree); 1215 fs_info->log_root_tree = log_root; 1216 return 0; 1217 } 1218 1219 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1220 struct btrfs_root *root) 1221 { 1222 struct btrfs_fs_info *fs_info = root->fs_info; 1223 struct btrfs_root *log_root; 1224 struct btrfs_inode_item *inode_item; 1225 int ret; 1226 1227 log_root = alloc_log_tree(trans, fs_info); 1228 if (IS_ERR(log_root)) 1229 return PTR_ERR(log_root); 1230 1231 ret = btrfs_alloc_log_tree_node(trans, log_root); 1232 if (ret) { 1233 btrfs_put_root(log_root); 1234 return ret; 1235 } 1236 1237 log_root->last_trans = trans->transid; 1238 log_root->root_key.offset = root->root_key.objectid; 1239 1240 inode_item = &log_root->root_item.inode; 1241 btrfs_set_stack_inode_generation(inode_item, 1); 1242 btrfs_set_stack_inode_size(inode_item, 3); 1243 btrfs_set_stack_inode_nlink(inode_item, 1); 1244 btrfs_set_stack_inode_nbytes(inode_item, 1245 fs_info->nodesize); 1246 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1247 1248 btrfs_set_root_node(&log_root->root_item, log_root->node); 1249 1250 WARN_ON(root->log_root); 1251 root->log_root = log_root; 1252 root->log_transid = 0; 1253 root->log_transid_committed = -1; 1254 root->last_log_commit = 0; 1255 return 0; 1256 } 1257 1258 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1259 struct btrfs_path *path, 1260 struct btrfs_key *key) 1261 { 1262 struct btrfs_root *root; 1263 struct btrfs_tree_parent_check check = { 0 }; 1264 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1265 u64 generation; 1266 int ret; 1267 int level; 1268 1269 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1270 if (!root) 1271 return ERR_PTR(-ENOMEM); 1272 1273 ret = btrfs_find_root(tree_root, key, path, 1274 &root->root_item, &root->root_key); 1275 if (ret) { 1276 if (ret > 0) 1277 ret = -ENOENT; 1278 goto fail; 1279 } 1280 1281 generation = btrfs_root_generation(&root->root_item); 1282 level = btrfs_root_level(&root->root_item); 1283 check.level = level; 1284 check.transid = generation; 1285 check.owner_root = key->objectid; 1286 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1287 &check); 1288 if (IS_ERR(root->node)) { 1289 ret = PTR_ERR(root->node); 1290 root->node = NULL; 1291 goto fail; 1292 } 1293 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1294 ret = -EIO; 1295 goto fail; 1296 } 1297 1298 /* 1299 * For real fs, and not log/reloc trees, root owner must 1300 * match its root node owner 1301 */ 1302 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1303 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1304 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1305 root->root_key.objectid != btrfs_header_owner(root->node)) { 1306 btrfs_crit(fs_info, 1307 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1308 root->root_key.objectid, root->node->start, 1309 btrfs_header_owner(root->node), 1310 root->root_key.objectid); 1311 ret = -EUCLEAN; 1312 goto fail; 1313 } 1314 root->commit_root = btrfs_root_node(root); 1315 return root; 1316 fail: 1317 btrfs_put_root(root); 1318 return ERR_PTR(ret); 1319 } 1320 1321 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1322 struct btrfs_key *key) 1323 { 1324 struct btrfs_root *root; 1325 struct btrfs_path *path; 1326 1327 path = btrfs_alloc_path(); 1328 if (!path) 1329 return ERR_PTR(-ENOMEM); 1330 root = read_tree_root_path(tree_root, path, key); 1331 btrfs_free_path(path); 1332 1333 return root; 1334 } 1335 1336 /* 1337 * Initialize subvolume root in-memory structure 1338 * 1339 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1340 */ 1341 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1342 { 1343 int ret; 1344 unsigned int nofs_flag; 1345 1346 /* 1347 * We might be called under a transaction (e.g. indirect backref 1348 * resolution) which could deadlock if it triggers memory reclaim 1349 */ 1350 nofs_flag = memalloc_nofs_save(); 1351 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1352 memalloc_nofs_restore(nofs_flag); 1353 if (ret) 1354 goto fail; 1355 1356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1357 !btrfs_is_data_reloc_root(root)) { 1358 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1359 btrfs_check_and_init_root_item(&root->root_item); 1360 } 1361 1362 /* 1363 * Don't assign anonymous block device to roots that are not exposed to 1364 * userspace, the id pool is limited to 1M 1365 */ 1366 if (is_fstree(root->root_key.objectid) && 1367 btrfs_root_refs(&root->root_item) > 0) { 1368 if (!anon_dev) { 1369 ret = get_anon_bdev(&root->anon_dev); 1370 if (ret) 1371 goto fail; 1372 } else { 1373 root->anon_dev = anon_dev; 1374 } 1375 } 1376 1377 mutex_lock(&root->objectid_mutex); 1378 ret = btrfs_init_root_free_objectid(root); 1379 if (ret) { 1380 mutex_unlock(&root->objectid_mutex); 1381 goto fail; 1382 } 1383 1384 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1385 1386 mutex_unlock(&root->objectid_mutex); 1387 1388 return 0; 1389 fail: 1390 /* The caller is responsible to call btrfs_free_fs_root */ 1391 return ret; 1392 } 1393 1394 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1395 u64 root_id) 1396 { 1397 struct btrfs_root *root; 1398 1399 spin_lock(&fs_info->fs_roots_radix_lock); 1400 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1401 (unsigned long)root_id); 1402 if (root) 1403 root = btrfs_grab_root(root); 1404 spin_unlock(&fs_info->fs_roots_radix_lock); 1405 return root; 1406 } 1407 1408 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1409 u64 objectid) 1410 { 1411 struct btrfs_key key = { 1412 .objectid = objectid, 1413 .type = BTRFS_ROOT_ITEM_KEY, 1414 .offset = 0, 1415 }; 1416 1417 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1418 return btrfs_grab_root(fs_info->tree_root); 1419 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1420 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1421 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1422 return btrfs_grab_root(fs_info->chunk_root); 1423 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1424 return btrfs_grab_root(fs_info->dev_root); 1425 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1426 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1427 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1428 return btrfs_grab_root(fs_info->quota_root) ? 1429 fs_info->quota_root : ERR_PTR(-ENOENT); 1430 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1431 return btrfs_grab_root(fs_info->uuid_root) ? 1432 fs_info->uuid_root : ERR_PTR(-ENOENT); 1433 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1434 return btrfs_grab_root(fs_info->block_group_root) ? 1435 fs_info->block_group_root : ERR_PTR(-ENOENT); 1436 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1437 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1438 1439 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1440 } 1441 return NULL; 1442 } 1443 1444 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1445 struct btrfs_root *root) 1446 { 1447 int ret; 1448 1449 ret = radix_tree_preload(GFP_NOFS); 1450 if (ret) 1451 return ret; 1452 1453 spin_lock(&fs_info->fs_roots_radix_lock); 1454 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1455 (unsigned long)root->root_key.objectid, 1456 root); 1457 if (ret == 0) { 1458 btrfs_grab_root(root); 1459 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1460 } 1461 spin_unlock(&fs_info->fs_roots_radix_lock); 1462 radix_tree_preload_end(); 1463 1464 return ret; 1465 } 1466 1467 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1468 { 1469 #ifdef CONFIG_BTRFS_DEBUG 1470 struct btrfs_root *root; 1471 1472 while (!list_empty(&fs_info->allocated_roots)) { 1473 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1474 1475 root = list_first_entry(&fs_info->allocated_roots, 1476 struct btrfs_root, leak_list); 1477 btrfs_err(fs_info, "leaked root %s refcount %d", 1478 btrfs_root_name(&root->root_key, buf), 1479 refcount_read(&root->refs)); 1480 while (refcount_read(&root->refs) > 1) 1481 btrfs_put_root(root); 1482 btrfs_put_root(root); 1483 } 1484 #endif 1485 } 1486 1487 static void free_global_roots(struct btrfs_fs_info *fs_info) 1488 { 1489 struct btrfs_root *root; 1490 struct rb_node *node; 1491 1492 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1493 root = rb_entry(node, struct btrfs_root, rb_node); 1494 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1495 btrfs_put_root(root); 1496 } 1497 } 1498 1499 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1500 { 1501 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1502 percpu_counter_destroy(&fs_info->delalloc_bytes); 1503 percpu_counter_destroy(&fs_info->ordered_bytes); 1504 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1505 btrfs_free_csum_hash(fs_info); 1506 btrfs_free_stripe_hash_table(fs_info); 1507 btrfs_free_ref_cache(fs_info); 1508 kfree(fs_info->balance_ctl); 1509 kfree(fs_info->delayed_root); 1510 free_global_roots(fs_info); 1511 btrfs_put_root(fs_info->tree_root); 1512 btrfs_put_root(fs_info->chunk_root); 1513 btrfs_put_root(fs_info->dev_root); 1514 btrfs_put_root(fs_info->quota_root); 1515 btrfs_put_root(fs_info->uuid_root); 1516 btrfs_put_root(fs_info->fs_root); 1517 btrfs_put_root(fs_info->data_reloc_root); 1518 btrfs_put_root(fs_info->block_group_root); 1519 btrfs_check_leaked_roots(fs_info); 1520 btrfs_extent_buffer_leak_debug_check(fs_info); 1521 kfree(fs_info->super_copy); 1522 kfree(fs_info->super_for_commit); 1523 kfree(fs_info->subpage_info); 1524 kvfree(fs_info); 1525 } 1526 1527 1528 /* 1529 * Get an in-memory reference of a root structure. 1530 * 1531 * For essential trees like root/extent tree, we grab it from fs_info directly. 1532 * For subvolume trees, we check the cached filesystem roots first. If not 1533 * found, then read it from disk and add it to cached fs roots. 1534 * 1535 * Caller should release the root by calling btrfs_put_root() after the usage. 1536 * 1537 * NOTE: Reloc and log trees can't be read by this function as they share the 1538 * same root objectid. 1539 * 1540 * @objectid: root id 1541 * @anon_dev: preallocated anonymous block device number for new roots, 1542 * pass 0 for new allocation. 1543 * @check_ref: whether to check root item references, If true, return -ENOENT 1544 * for orphan roots 1545 */ 1546 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1547 u64 objectid, dev_t anon_dev, 1548 bool check_ref) 1549 { 1550 struct btrfs_root *root; 1551 struct btrfs_path *path; 1552 struct btrfs_key key; 1553 int ret; 1554 1555 root = btrfs_get_global_root(fs_info, objectid); 1556 if (root) 1557 return root; 1558 again: 1559 root = btrfs_lookup_fs_root(fs_info, objectid); 1560 if (root) { 1561 /* Shouldn't get preallocated anon_dev for cached roots */ 1562 ASSERT(!anon_dev); 1563 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1564 btrfs_put_root(root); 1565 return ERR_PTR(-ENOENT); 1566 } 1567 return root; 1568 } 1569 1570 key.objectid = objectid; 1571 key.type = BTRFS_ROOT_ITEM_KEY; 1572 key.offset = (u64)-1; 1573 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1574 if (IS_ERR(root)) 1575 return root; 1576 1577 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1578 ret = -ENOENT; 1579 goto fail; 1580 } 1581 1582 ret = btrfs_init_fs_root(root, anon_dev); 1583 if (ret) 1584 goto fail; 1585 1586 path = btrfs_alloc_path(); 1587 if (!path) { 1588 ret = -ENOMEM; 1589 goto fail; 1590 } 1591 key.objectid = BTRFS_ORPHAN_OBJECTID; 1592 key.type = BTRFS_ORPHAN_ITEM_KEY; 1593 key.offset = objectid; 1594 1595 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1596 btrfs_free_path(path); 1597 if (ret < 0) 1598 goto fail; 1599 if (ret == 0) 1600 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1601 1602 ret = btrfs_insert_fs_root(fs_info, root); 1603 if (ret) { 1604 if (ret == -EEXIST) { 1605 btrfs_put_root(root); 1606 goto again; 1607 } 1608 goto fail; 1609 } 1610 return root; 1611 fail: 1612 /* 1613 * If our caller provided us an anonymous device, then it's his 1614 * responsibility to free it in case we fail. So we have to set our 1615 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1616 * and once again by our caller. 1617 */ 1618 if (anon_dev) 1619 root->anon_dev = 0; 1620 btrfs_put_root(root); 1621 return ERR_PTR(ret); 1622 } 1623 1624 /* 1625 * Get in-memory reference of a root structure 1626 * 1627 * @objectid: tree objectid 1628 * @check_ref: if set, verify that the tree exists and the item has at least 1629 * one reference 1630 */ 1631 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1632 u64 objectid, bool check_ref) 1633 { 1634 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1635 } 1636 1637 /* 1638 * Get in-memory reference of a root structure, created as new, optionally pass 1639 * the anonymous block device id 1640 * 1641 * @objectid: tree objectid 1642 * @anon_dev: if zero, allocate a new anonymous block device or use the 1643 * parameter value 1644 */ 1645 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1646 u64 objectid, dev_t anon_dev) 1647 { 1648 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1649 } 1650 1651 /* 1652 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1653 * @fs_info: the fs_info 1654 * @objectid: the objectid we need to lookup 1655 * 1656 * This is exclusively used for backref walking, and exists specifically because 1657 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1658 * creation time, which means we may have to read the tree_root in order to look 1659 * up a fs root that is not in memory. If the root is not in memory we will 1660 * read the tree root commit root and look up the fs root from there. This is a 1661 * temporary root, it will not be inserted into the radix tree as it doesn't 1662 * have the most uptodate information, it'll simply be discarded once the 1663 * backref code is finished using the root. 1664 */ 1665 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1666 struct btrfs_path *path, 1667 u64 objectid) 1668 { 1669 struct btrfs_root *root; 1670 struct btrfs_key key; 1671 1672 ASSERT(path->search_commit_root && path->skip_locking); 1673 1674 /* 1675 * This can return -ENOENT if we ask for a root that doesn't exist, but 1676 * since this is called via the backref walking code we won't be looking 1677 * up a root that doesn't exist, unless there's corruption. So if root 1678 * != NULL just return it. 1679 */ 1680 root = btrfs_get_global_root(fs_info, objectid); 1681 if (root) 1682 return root; 1683 1684 root = btrfs_lookup_fs_root(fs_info, objectid); 1685 if (root) 1686 return root; 1687 1688 key.objectid = objectid; 1689 key.type = BTRFS_ROOT_ITEM_KEY; 1690 key.offset = (u64)-1; 1691 root = read_tree_root_path(fs_info->tree_root, path, &key); 1692 btrfs_release_path(path); 1693 1694 return root; 1695 } 1696 1697 static int cleaner_kthread(void *arg) 1698 { 1699 struct btrfs_fs_info *fs_info = arg; 1700 int again; 1701 1702 while (1) { 1703 again = 0; 1704 1705 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1706 1707 /* Make the cleaner go to sleep early. */ 1708 if (btrfs_need_cleaner_sleep(fs_info)) 1709 goto sleep; 1710 1711 /* 1712 * Do not do anything if we might cause open_ctree() to block 1713 * before we have finished mounting the filesystem. 1714 */ 1715 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1716 goto sleep; 1717 1718 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1719 goto sleep; 1720 1721 /* 1722 * Avoid the problem that we change the status of the fs 1723 * during the above check and trylock. 1724 */ 1725 if (btrfs_need_cleaner_sleep(fs_info)) { 1726 mutex_unlock(&fs_info->cleaner_mutex); 1727 goto sleep; 1728 } 1729 1730 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1731 btrfs_sysfs_feature_update(fs_info); 1732 1733 btrfs_run_delayed_iputs(fs_info); 1734 1735 again = btrfs_clean_one_deleted_snapshot(fs_info); 1736 mutex_unlock(&fs_info->cleaner_mutex); 1737 1738 /* 1739 * The defragger has dealt with the R/O remount and umount, 1740 * needn't do anything special here. 1741 */ 1742 btrfs_run_defrag_inodes(fs_info); 1743 1744 /* 1745 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1746 * with relocation (btrfs_relocate_chunk) and relocation 1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1748 * after acquiring fs_info->reclaim_bgs_lock. So we 1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1750 * unused block groups. 1751 */ 1752 btrfs_delete_unused_bgs(fs_info); 1753 1754 /* 1755 * Reclaim block groups in the reclaim_bgs list after we deleted 1756 * all unused block_groups. This possibly gives us some more free 1757 * space. 1758 */ 1759 btrfs_reclaim_bgs(fs_info); 1760 sleep: 1761 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1762 if (kthread_should_park()) 1763 kthread_parkme(); 1764 if (kthread_should_stop()) 1765 return 0; 1766 if (!again) { 1767 set_current_state(TASK_INTERRUPTIBLE); 1768 schedule(); 1769 __set_current_state(TASK_RUNNING); 1770 } 1771 } 1772 } 1773 1774 static int transaction_kthread(void *arg) 1775 { 1776 struct btrfs_root *root = arg; 1777 struct btrfs_fs_info *fs_info = root->fs_info; 1778 struct btrfs_trans_handle *trans; 1779 struct btrfs_transaction *cur; 1780 u64 transid; 1781 time64_t delta; 1782 unsigned long delay; 1783 bool cannot_commit; 1784 1785 do { 1786 cannot_commit = false; 1787 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1788 mutex_lock(&fs_info->transaction_kthread_mutex); 1789 1790 spin_lock(&fs_info->trans_lock); 1791 cur = fs_info->running_transaction; 1792 if (!cur) { 1793 spin_unlock(&fs_info->trans_lock); 1794 goto sleep; 1795 } 1796 1797 delta = ktime_get_seconds() - cur->start_time; 1798 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1799 cur->state < TRANS_STATE_COMMIT_START && 1800 delta < fs_info->commit_interval) { 1801 spin_unlock(&fs_info->trans_lock); 1802 delay -= msecs_to_jiffies((delta - 1) * 1000); 1803 delay = min(delay, 1804 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1805 goto sleep; 1806 } 1807 transid = cur->transid; 1808 spin_unlock(&fs_info->trans_lock); 1809 1810 /* If the file system is aborted, this will always fail. */ 1811 trans = btrfs_attach_transaction(root); 1812 if (IS_ERR(trans)) { 1813 if (PTR_ERR(trans) != -ENOENT) 1814 cannot_commit = true; 1815 goto sleep; 1816 } 1817 if (transid == trans->transid) { 1818 btrfs_commit_transaction(trans); 1819 } else { 1820 btrfs_end_transaction(trans); 1821 } 1822 sleep: 1823 wake_up_process(fs_info->cleaner_kthread); 1824 mutex_unlock(&fs_info->transaction_kthread_mutex); 1825 1826 if (BTRFS_FS_ERROR(fs_info)) 1827 btrfs_cleanup_transaction(fs_info); 1828 if (!kthread_should_stop() && 1829 (!btrfs_transaction_blocked(fs_info) || 1830 cannot_commit)) 1831 schedule_timeout_interruptible(delay); 1832 } while (!kthread_should_stop()); 1833 return 0; 1834 } 1835 1836 /* 1837 * This will find the highest generation in the array of root backups. The 1838 * index of the highest array is returned, or -EINVAL if we can't find 1839 * anything. 1840 * 1841 * We check to make sure the array is valid by comparing the 1842 * generation of the latest root in the array with the generation 1843 * in the super block. If they don't match we pitch it. 1844 */ 1845 static int find_newest_super_backup(struct btrfs_fs_info *info) 1846 { 1847 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1848 u64 cur; 1849 struct btrfs_root_backup *root_backup; 1850 int i; 1851 1852 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1853 root_backup = info->super_copy->super_roots + i; 1854 cur = btrfs_backup_tree_root_gen(root_backup); 1855 if (cur == newest_gen) 1856 return i; 1857 } 1858 1859 return -EINVAL; 1860 } 1861 1862 /* 1863 * copy all the root pointers into the super backup array. 1864 * this will bump the backup pointer by one when it is 1865 * done 1866 */ 1867 static void backup_super_roots(struct btrfs_fs_info *info) 1868 { 1869 const int next_backup = info->backup_root_index; 1870 struct btrfs_root_backup *root_backup; 1871 1872 root_backup = info->super_for_commit->super_roots + next_backup; 1873 1874 /* 1875 * make sure all of our padding and empty slots get zero filled 1876 * regardless of which ones we use today 1877 */ 1878 memset(root_backup, 0, sizeof(*root_backup)); 1879 1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1881 1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1883 btrfs_set_backup_tree_root_gen(root_backup, 1884 btrfs_header_generation(info->tree_root->node)); 1885 1886 btrfs_set_backup_tree_root_level(root_backup, 1887 btrfs_header_level(info->tree_root->node)); 1888 1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1890 btrfs_set_backup_chunk_root_gen(root_backup, 1891 btrfs_header_generation(info->chunk_root->node)); 1892 btrfs_set_backup_chunk_root_level(root_backup, 1893 btrfs_header_level(info->chunk_root->node)); 1894 1895 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1896 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1897 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1898 1899 btrfs_set_backup_extent_root(root_backup, 1900 extent_root->node->start); 1901 btrfs_set_backup_extent_root_gen(root_backup, 1902 btrfs_header_generation(extent_root->node)); 1903 btrfs_set_backup_extent_root_level(root_backup, 1904 btrfs_header_level(extent_root->node)); 1905 1906 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1907 btrfs_set_backup_csum_root_gen(root_backup, 1908 btrfs_header_generation(csum_root->node)); 1909 btrfs_set_backup_csum_root_level(root_backup, 1910 btrfs_header_level(csum_root->node)); 1911 } 1912 1913 /* 1914 * we might commit during log recovery, which happens before we set 1915 * the fs_root. Make sure it is valid before we fill it in. 1916 */ 1917 if (info->fs_root && info->fs_root->node) { 1918 btrfs_set_backup_fs_root(root_backup, 1919 info->fs_root->node->start); 1920 btrfs_set_backup_fs_root_gen(root_backup, 1921 btrfs_header_generation(info->fs_root->node)); 1922 btrfs_set_backup_fs_root_level(root_backup, 1923 btrfs_header_level(info->fs_root->node)); 1924 } 1925 1926 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1927 btrfs_set_backup_dev_root_gen(root_backup, 1928 btrfs_header_generation(info->dev_root->node)); 1929 btrfs_set_backup_dev_root_level(root_backup, 1930 btrfs_header_level(info->dev_root->node)); 1931 1932 btrfs_set_backup_total_bytes(root_backup, 1933 btrfs_super_total_bytes(info->super_copy)); 1934 btrfs_set_backup_bytes_used(root_backup, 1935 btrfs_super_bytes_used(info->super_copy)); 1936 btrfs_set_backup_num_devices(root_backup, 1937 btrfs_super_num_devices(info->super_copy)); 1938 1939 /* 1940 * if we don't copy this out to the super_copy, it won't get remembered 1941 * for the next commit 1942 */ 1943 memcpy(&info->super_copy->super_roots, 1944 &info->super_for_commit->super_roots, 1945 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1946 } 1947 1948 /* 1949 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1950 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1951 * 1952 * fs_info - filesystem whose backup roots need to be read 1953 * priority - priority of backup root required 1954 * 1955 * Returns backup root index on success and -EINVAL otherwise. 1956 */ 1957 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1958 { 1959 int backup_index = find_newest_super_backup(fs_info); 1960 struct btrfs_super_block *super = fs_info->super_copy; 1961 struct btrfs_root_backup *root_backup; 1962 1963 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1964 if (priority == 0) 1965 return backup_index; 1966 1967 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1968 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1969 } else { 1970 return -EINVAL; 1971 } 1972 1973 root_backup = super->super_roots + backup_index; 1974 1975 btrfs_set_super_generation(super, 1976 btrfs_backup_tree_root_gen(root_backup)); 1977 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1978 btrfs_set_super_root_level(super, 1979 btrfs_backup_tree_root_level(root_backup)); 1980 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1981 1982 /* 1983 * Fixme: the total bytes and num_devices need to match or we should 1984 * need a fsck 1985 */ 1986 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1987 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1988 1989 return backup_index; 1990 } 1991 1992 /* helper to cleanup workers */ 1993 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1994 { 1995 btrfs_destroy_workqueue(fs_info->fixup_workers); 1996 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1997 btrfs_destroy_workqueue(fs_info->hipri_workers); 1998 btrfs_destroy_workqueue(fs_info->workers); 1999 if (fs_info->endio_workers) 2000 destroy_workqueue(fs_info->endio_workers); 2001 if (fs_info->rmw_workers) 2002 destroy_workqueue(fs_info->rmw_workers); 2003 if (fs_info->compressed_write_workers) 2004 destroy_workqueue(fs_info->compressed_write_workers); 2005 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2006 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2007 btrfs_destroy_workqueue(fs_info->delayed_workers); 2008 btrfs_destroy_workqueue(fs_info->caching_workers); 2009 btrfs_destroy_workqueue(fs_info->flush_workers); 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2011 if (fs_info->discard_ctl.discard_workers) 2012 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2013 /* 2014 * Now that all other work queues are destroyed, we can safely destroy 2015 * the queues used for metadata I/O, since tasks from those other work 2016 * queues can do metadata I/O operations. 2017 */ 2018 if (fs_info->endio_meta_workers) 2019 destroy_workqueue(fs_info->endio_meta_workers); 2020 } 2021 2022 static void free_root_extent_buffers(struct btrfs_root *root) 2023 { 2024 if (root) { 2025 free_extent_buffer(root->node); 2026 free_extent_buffer(root->commit_root); 2027 root->node = NULL; 2028 root->commit_root = NULL; 2029 } 2030 } 2031 2032 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2033 { 2034 struct btrfs_root *root, *tmp; 2035 2036 rbtree_postorder_for_each_entry_safe(root, tmp, 2037 &fs_info->global_root_tree, 2038 rb_node) 2039 free_root_extent_buffers(root); 2040 } 2041 2042 /* helper to cleanup tree roots */ 2043 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2044 { 2045 free_root_extent_buffers(info->tree_root); 2046 2047 free_global_root_pointers(info); 2048 free_root_extent_buffers(info->dev_root); 2049 free_root_extent_buffers(info->quota_root); 2050 free_root_extent_buffers(info->uuid_root); 2051 free_root_extent_buffers(info->fs_root); 2052 free_root_extent_buffers(info->data_reloc_root); 2053 free_root_extent_buffers(info->block_group_root); 2054 if (free_chunk_root) 2055 free_root_extent_buffers(info->chunk_root); 2056 } 2057 2058 void btrfs_put_root(struct btrfs_root *root) 2059 { 2060 if (!root) 2061 return; 2062 2063 if (refcount_dec_and_test(&root->refs)) { 2064 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2065 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2066 if (root->anon_dev) 2067 free_anon_bdev(root->anon_dev); 2068 btrfs_drew_lock_destroy(&root->snapshot_lock); 2069 free_root_extent_buffers(root); 2070 #ifdef CONFIG_BTRFS_DEBUG 2071 spin_lock(&root->fs_info->fs_roots_radix_lock); 2072 list_del_init(&root->leak_list); 2073 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2074 #endif 2075 kfree(root); 2076 } 2077 } 2078 2079 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2080 { 2081 int ret; 2082 struct btrfs_root *gang[8]; 2083 int i; 2084 2085 while (!list_empty(&fs_info->dead_roots)) { 2086 gang[0] = list_entry(fs_info->dead_roots.next, 2087 struct btrfs_root, root_list); 2088 list_del(&gang[0]->root_list); 2089 2090 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2091 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2092 btrfs_put_root(gang[0]); 2093 } 2094 2095 while (1) { 2096 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2097 (void **)gang, 0, 2098 ARRAY_SIZE(gang)); 2099 if (!ret) 2100 break; 2101 for (i = 0; i < ret; i++) 2102 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2103 } 2104 } 2105 2106 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2107 { 2108 mutex_init(&fs_info->scrub_lock); 2109 atomic_set(&fs_info->scrubs_running, 0); 2110 atomic_set(&fs_info->scrub_pause_req, 0); 2111 atomic_set(&fs_info->scrubs_paused, 0); 2112 atomic_set(&fs_info->scrub_cancel_req, 0); 2113 init_waitqueue_head(&fs_info->scrub_pause_wait); 2114 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2115 } 2116 2117 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2118 { 2119 spin_lock_init(&fs_info->balance_lock); 2120 mutex_init(&fs_info->balance_mutex); 2121 atomic_set(&fs_info->balance_pause_req, 0); 2122 atomic_set(&fs_info->balance_cancel_req, 0); 2123 fs_info->balance_ctl = NULL; 2124 init_waitqueue_head(&fs_info->balance_wait_q); 2125 atomic_set(&fs_info->reloc_cancel_req, 0); 2126 } 2127 2128 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2129 { 2130 struct inode *inode = fs_info->btree_inode; 2131 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2132 fs_info->tree_root); 2133 2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2135 set_nlink(inode, 1); 2136 /* 2137 * we set the i_size on the btree inode to the max possible int. 2138 * the real end of the address space is determined by all of 2139 * the devices in the system 2140 */ 2141 inode->i_size = OFFSET_MAX; 2142 inode->i_mapping->a_ops = &btree_aops; 2143 2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2145 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2146 IO_TREE_BTREE_INODE_IO); 2147 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2148 2149 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2150 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2151 BTRFS_I(inode)->location.type = 0; 2152 BTRFS_I(inode)->location.offset = 0; 2153 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2154 __insert_inode_hash(inode, hash); 2155 } 2156 2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2158 { 2159 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2160 init_rwsem(&fs_info->dev_replace.rwsem); 2161 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2162 } 2163 2164 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2165 { 2166 spin_lock_init(&fs_info->qgroup_lock); 2167 mutex_init(&fs_info->qgroup_ioctl_lock); 2168 fs_info->qgroup_tree = RB_ROOT; 2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2170 fs_info->qgroup_seq = 1; 2171 fs_info->qgroup_ulist = NULL; 2172 fs_info->qgroup_rescan_running = false; 2173 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2174 mutex_init(&fs_info->qgroup_rescan_lock); 2175 } 2176 2177 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2178 { 2179 u32 max_active = fs_info->thread_pool_size; 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2181 2182 fs_info->workers = 2183 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2184 fs_info->hipri_workers = 2185 btrfs_alloc_workqueue(fs_info, "worker-high", 2186 flags | WQ_HIGHPRI, max_active, 16); 2187 2188 fs_info->delalloc_workers = 2189 btrfs_alloc_workqueue(fs_info, "delalloc", 2190 flags, max_active, 2); 2191 2192 fs_info->flush_workers = 2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2194 flags, max_active, 0); 2195 2196 fs_info->caching_workers = 2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2198 2199 fs_info->fixup_workers = 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2201 2202 fs_info->endio_workers = 2203 alloc_workqueue("btrfs-endio", flags, max_active); 2204 fs_info->endio_meta_workers = 2205 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2206 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2207 fs_info->endio_write_workers = 2208 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2209 max_active, 2); 2210 fs_info->compressed_write_workers = 2211 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2212 fs_info->endio_freespace_worker = 2213 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2214 max_active, 0); 2215 fs_info->delayed_workers = 2216 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2217 max_active, 0); 2218 fs_info->qgroup_rescan_workers = 2219 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2220 fs_info->discard_ctl.discard_workers = 2221 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2222 2223 if (!(fs_info->workers && fs_info->hipri_workers && 2224 fs_info->delalloc_workers && fs_info->flush_workers && 2225 fs_info->endio_workers && fs_info->endio_meta_workers && 2226 fs_info->compressed_write_workers && 2227 fs_info->endio_write_workers && 2228 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2229 fs_info->caching_workers && fs_info->fixup_workers && 2230 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2231 fs_info->discard_ctl.discard_workers)) { 2232 return -ENOMEM; 2233 } 2234 2235 return 0; 2236 } 2237 2238 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2239 { 2240 struct crypto_shash *csum_shash; 2241 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2242 2243 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2244 2245 if (IS_ERR(csum_shash)) { 2246 btrfs_err(fs_info, "error allocating %s hash for checksum", 2247 csum_driver); 2248 return PTR_ERR(csum_shash); 2249 } 2250 2251 fs_info->csum_shash = csum_shash; 2252 2253 /* 2254 * Check if the checksum implementation is a fast accelerated one. 2255 * As-is this is a bit of a hack and should be replaced once the csum 2256 * implementations provide that information themselves. 2257 */ 2258 switch (csum_type) { 2259 case BTRFS_CSUM_TYPE_CRC32: 2260 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2261 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2262 break; 2263 default: 2264 break; 2265 } 2266 2267 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2268 btrfs_super_csum_name(csum_type), 2269 crypto_shash_driver_name(csum_shash)); 2270 return 0; 2271 } 2272 2273 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2274 struct btrfs_fs_devices *fs_devices) 2275 { 2276 int ret; 2277 struct btrfs_tree_parent_check check = { 0 }; 2278 struct btrfs_root *log_tree_root; 2279 struct btrfs_super_block *disk_super = fs_info->super_copy; 2280 u64 bytenr = btrfs_super_log_root(disk_super); 2281 int level = btrfs_super_log_root_level(disk_super); 2282 2283 if (fs_devices->rw_devices == 0) { 2284 btrfs_warn(fs_info, "log replay required on RO media"); 2285 return -EIO; 2286 } 2287 2288 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2289 GFP_KERNEL); 2290 if (!log_tree_root) 2291 return -ENOMEM; 2292 2293 check.level = level; 2294 check.transid = fs_info->generation + 1; 2295 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2296 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2297 if (IS_ERR(log_tree_root->node)) { 2298 btrfs_warn(fs_info, "failed to read log tree"); 2299 ret = PTR_ERR(log_tree_root->node); 2300 log_tree_root->node = NULL; 2301 btrfs_put_root(log_tree_root); 2302 return ret; 2303 } 2304 if (!extent_buffer_uptodate(log_tree_root->node)) { 2305 btrfs_err(fs_info, "failed to read log tree"); 2306 btrfs_put_root(log_tree_root); 2307 return -EIO; 2308 } 2309 2310 /* returns with log_tree_root freed on success */ 2311 ret = btrfs_recover_log_trees(log_tree_root); 2312 if (ret) { 2313 btrfs_handle_fs_error(fs_info, ret, 2314 "Failed to recover log tree"); 2315 btrfs_put_root(log_tree_root); 2316 return ret; 2317 } 2318 2319 if (sb_rdonly(fs_info->sb)) { 2320 ret = btrfs_commit_super(fs_info); 2321 if (ret) 2322 return ret; 2323 } 2324 2325 return 0; 2326 } 2327 2328 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2329 struct btrfs_path *path, u64 objectid, 2330 const char *name) 2331 { 2332 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2333 struct btrfs_root *root; 2334 u64 max_global_id = 0; 2335 int ret; 2336 struct btrfs_key key = { 2337 .objectid = objectid, 2338 .type = BTRFS_ROOT_ITEM_KEY, 2339 .offset = 0, 2340 }; 2341 bool found = false; 2342 2343 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2344 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2345 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2346 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2347 return 0; 2348 } 2349 2350 while (1) { 2351 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2352 if (ret < 0) 2353 break; 2354 2355 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2356 ret = btrfs_next_leaf(tree_root, path); 2357 if (ret) { 2358 if (ret > 0) 2359 ret = 0; 2360 break; 2361 } 2362 } 2363 ret = 0; 2364 2365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2366 if (key.objectid != objectid) 2367 break; 2368 btrfs_release_path(path); 2369 2370 /* 2371 * Just worry about this for extent tree, it'll be the same for 2372 * everybody. 2373 */ 2374 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2375 max_global_id = max(max_global_id, key.offset); 2376 2377 found = true; 2378 root = read_tree_root_path(tree_root, path, &key); 2379 if (IS_ERR(root)) { 2380 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2381 ret = PTR_ERR(root); 2382 break; 2383 } 2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2385 ret = btrfs_global_root_insert(root); 2386 if (ret) { 2387 btrfs_put_root(root); 2388 break; 2389 } 2390 key.offset++; 2391 } 2392 btrfs_release_path(path); 2393 2394 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2395 fs_info->nr_global_roots = max_global_id + 1; 2396 2397 if (!found || ret) { 2398 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2399 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2400 2401 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2402 ret = ret ? ret : -ENOENT; 2403 else 2404 ret = 0; 2405 btrfs_err(fs_info, "failed to load root %s", name); 2406 } 2407 return ret; 2408 } 2409 2410 static int load_global_roots(struct btrfs_root *tree_root) 2411 { 2412 struct btrfs_path *path; 2413 int ret = 0; 2414 2415 path = btrfs_alloc_path(); 2416 if (!path) 2417 return -ENOMEM; 2418 2419 ret = load_global_roots_objectid(tree_root, path, 2420 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2421 if (ret) 2422 goto out; 2423 ret = load_global_roots_objectid(tree_root, path, 2424 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2425 if (ret) 2426 goto out; 2427 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2428 goto out; 2429 ret = load_global_roots_objectid(tree_root, path, 2430 BTRFS_FREE_SPACE_TREE_OBJECTID, 2431 "free space"); 2432 out: 2433 btrfs_free_path(path); 2434 return ret; 2435 } 2436 2437 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2438 { 2439 struct btrfs_root *tree_root = fs_info->tree_root; 2440 struct btrfs_root *root; 2441 struct btrfs_key location; 2442 int ret; 2443 2444 BUG_ON(!fs_info->tree_root); 2445 2446 ret = load_global_roots(tree_root); 2447 if (ret) 2448 return ret; 2449 2450 location.type = BTRFS_ROOT_ITEM_KEY; 2451 location.offset = 0; 2452 2453 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2454 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2455 root = btrfs_read_tree_root(tree_root, &location); 2456 if (IS_ERR(root)) { 2457 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2458 ret = PTR_ERR(root); 2459 goto out; 2460 } 2461 } else { 2462 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2463 fs_info->block_group_root = root; 2464 } 2465 } 2466 2467 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2468 root = btrfs_read_tree_root(tree_root, &location); 2469 if (IS_ERR(root)) { 2470 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2471 ret = PTR_ERR(root); 2472 goto out; 2473 } 2474 } else { 2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2476 fs_info->dev_root = root; 2477 } 2478 /* Initialize fs_info for all devices in any case */ 2479 ret = btrfs_init_devices_late(fs_info); 2480 if (ret) 2481 goto out; 2482 2483 /* 2484 * This tree can share blocks with some other fs tree during relocation 2485 * and we need a proper setup by btrfs_get_fs_root 2486 */ 2487 root = btrfs_get_fs_root(tree_root->fs_info, 2488 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2489 if (IS_ERR(root)) { 2490 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2491 ret = PTR_ERR(root); 2492 goto out; 2493 } 2494 } else { 2495 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2496 fs_info->data_reloc_root = root; 2497 } 2498 2499 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2500 root = btrfs_read_tree_root(tree_root, &location); 2501 if (!IS_ERR(root)) { 2502 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2503 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2504 fs_info->quota_root = root; 2505 } 2506 2507 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2508 root = btrfs_read_tree_root(tree_root, &location); 2509 if (IS_ERR(root)) { 2510 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2511 ret = PTR_ERR(root); 2512 if (ret != -ENOENT) 2513 goto out; 2514 } 2515 } else { 2516 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2517 fs_info->uuid_root = root; 2518 } 2519 2520 return 0; 2521 out: 2522 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2523 location.objectid, ret); 2524 return ret; 2525 } 2526 2527 /* 2528 * Real super block validation 2529 * NOTE: super csum type and incompat features will not be checked here. 2530 * 2531 * @sb: super block to check 2532 * @mirror_num: the super block number to check its bytenr: 2533 * 0 the primary (1st) sb 2534 * 1, 2 2nd and 3rd backup copy 2535 * -1 skip bytenr check 2536 */ 2537 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2538 struct btrfs_super_block *sb, int mirror_num) 2539 { 2540 u64 nodesize = btrfs_super_nodesize(sb); 2541 u64 sectorsize = btrfs_super_sectorsize(sb); 2542 int ret = 0; 2543 2544 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2545 btrfs_err(fs_info, "no valid FS found"); 2546 ret = -EINVAL; 2547 } 2548 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2549 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2550 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2551 ret = -EINVAL; 2552 } 2553 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2554 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2555 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2556 ret = -EINVAL; 2557 } 2558 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2559 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2560 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2561 ret = -EINVAL; 2562 } 2563 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2564 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2565 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2566 ret = -EINVAL; 2567 } 2568 2569 /* 2570 * Check sectorsize and nodesize first, other check will need it. 2571 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2572 */ 2573 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2574 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2575 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2576 ret = -EINVAL; 2577 } 2578 2579 /* 2580 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2581 * 2582 * We can support 16K sectorsize with 64K page size without problem, 2583 * but such sectorsize/pagesize combination doesn't make much sense. 2584 * 4K will be our future standard, PAGE_SIZE is supported from the very 2585 * beginning. 2586 */ 2587 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2588 btrfs_err(fs_info, 2589 "sectorsize %llu not yet supported for page size %lu", 2590 sectorsize, PAGE_SIZE); 2591 ret = -EINVAL; 2592 } 2593 2594 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2595 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2596 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2597 ret = -EINVAL; 2598 } 2599 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2600 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2601 le32_to_cpu(sb->__unused_leafsize), nodesize); 2602 ret = -EINVAL; 2603 } 2604 2605 /* Root alignment check */ 2606 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2607 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2608 btrfs_super_root(sb)); 2609 ret = -EINVAL; 2610 } 2611 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2612 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2613 btrfs_super_chunk_root(sb)); 2614 ret = -EINVAL; 2615 } 2616 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2617 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2618 btrfs_super_log_root(sb)); 2619 ret = -EINVAL; 2620 } 2621 2622 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2623 BTRFS_FSID_SIZE)) { 2624 btrfs_err(fs_info, 2625 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2626 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2627 ret = -EINVAL; 2628 } 2629 2630 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2631 memcmp(fs_info->fs_devices->metadata_uuid, 2632 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2633 btrfs_err(fs_info, 2634 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2635 fs_info->super_copy->metadata_uuid, 2636 fs_info->fs_devices->metadata_uuid); 2637 ret = -EINVAL; 2638 } 2639 2640 /* 2641 * Artificial requirement for block-group-tree to force newer features 2642 * (free-space-tree, no-holes) so the test matrix is smaller. 2643 */ 2644 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2645 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2646 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2647 btrfs_err(fs_info, 2648 "block-group-tree feature requires fres-space-tree and no-holes"); 2649 ret = -EINVAL; 2650 } 2651 2652 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2653 BTRFS_FSID_SIZE) != 0) { 2654 btrfs_err(fs_info, 2655 "dev_item UUID does not match metadata fsid: %pU != %pU", 2656 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2657 ret = -EINVAL; 2658 } 2659 2660 /* 2661 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2662 * done later 2663 */ 2664 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2665 btrfs_err(fs_info, "bytes_used is too small %llu", 2666 btrfs_super_bytes_used(sb)); 2667 ret = -EINVAL; 2668 } 2669 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2670 btrfs_err(fs_info, "invalid stripesize %u", 2671 btrfs_super_stripesize(sb)); 2672 ret = -EINVAL; 2673 } 2674 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2675 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2676 btrfs_super_num_devices(sb)); 2677 if (btrfs_super_num_devices(sb) == 0) { 2678 btrfs_err(fs_info, "number of devices is 0"); 2679 ret = -EINVAL; 2680 } 2681 2682 if (mirror_num >= 0 && 2683 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2684 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2685 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2686 ret = -EINVAL; 2687 } 2688 2689 /* 2690 * Obvious sys_chunk_array corruptions, it must hold at least one key 2691 * and one chunk 2692 */ 2693 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2694 btrfs_err(fs_info, "system chunk array too big %u > %u", 2695 btrfs_super_sys_array_size(sb), 2696 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2697 ret = -EINVAL; 2698 } 2699 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2700 + sizeof(struct btrfs_chunk)) { 2701 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2702 btrfs_super_sys_array_size(sb), 2703 sizeof(struct btrfs_disk_key) 2704 + sizeof(struct btrfs_chunk)); 2705 ret = -EINVAL; 2706 } 2707 2708 /* 2709 * The generation is a global counter, we'll trust it more than the others 2710 * but it's still possible that it's the one that's wrong. 2711 */ 2712 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2713 btrfs_warn(fs_info, 2714 "suspicious: generation < chunk_root_generation: %llu < %llu", 2715 btrfs_super_generation(sb), 2716 btrfs_super_chunk_root_generation(sb)); 2717 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2718 && btrfs_super_cache_generation(sb) != (u64)-1) 2719 btrfs_warn(fs_info, 2720 "suspicious: generation < cache_generation: %llu < %llu", 2721 btrfs_super_generation(sb), 2722 btrfs_super_cache_generation(sb)); 2723 2724 return ret; 2725 } 2726 2727 /* 2728 * Validation of super block at mount time. 2729 * Some checks already done early at mount time, like csum type and incompat 2730 * flags will be skipped. 2731 */ 2732 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2733 { 2734 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2735 } 2736 2737 /* 2738 * Validation of super block at write time. 2739 * Some checks like bytenr check will be skipped as their values will be 2740 * overwritten soon. 2741 * Extra checks like csum type and incompat flags will be done here. 2742 */ 2743 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2744 struct btrfs_super_block *sb) 2745 { 2746 int ret; 2747 2748 ret = btrfs_validate_super(fs_info, sb, -1); 2749 if (ret < 0) 2750 goto out; 2751 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2752 ret = -EUCLEAN; 2753 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2754 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2755 goto out; 2756 } 2757 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2758 ret = -EUCLEAN; 2759 btrfs_err(fs_info, 2760 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2761 btrfs_super_incompat_flags(sb), 2762 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2763 goto out; 2764 } 2765 out: 2766 if (ret < 0) 2767 btrfs_err(fs_info, 2768 "super block corruption detected before writing it to disk"); 2769 return ret; 2770 } 2771 2772 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2773 { 2774 struct btrfs_tree_parent_check check = { 2775 .level = level, 2776 .transid = gen, 2777 .owner_root = root->root_key.objectid 2778 }; 2779 int ret = 0; 2780 2781 root->node = read_tree_block(root->fs_info, bytenr, &check); 2782 if (IS_ERR(root->node)) { 2783 ret = PTR_ERR(root->node); 2784 root->node = NULL; 2785 return ret; 2786 } 2787 if (!extent_buffer_uptodate(root->node)) { 2788 free_extent_buffer(root->node); 2789 root->node = NULL; 2790 return -EIO; 2791 } 2792 2793 btrfs_set_root_node(&root->root_item, root->node); 2794 root->commit_root = btrfs_root_node(root); 2795 btrfs_set_root_refs(&root->root_item, 1); 2796 return ret; 2797 } 2798 2799 static int load_important_roots(struct btrfs_fs_info *fs_info) 2800 { 2801 struct btrfs_super_block *sb = fs_info->super_copy; 2802 u64 gen, bytenr; 2803 int level, ret; 2804 2805 bytenr = btrfs_super_root(sb); 2806 gen = btrfs_super_generation(sb); 2807 level = btrfs_super_root_level(sb); 2808 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2809 if (ret) { 2810 btrfs_warn(fs_info, "couldn't read tree root"); 2811 return ret; 2812 } 2813 return 0; 2814 } 2815 2816 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2817 { 2818 int backup_index = find_newest_super_backup(fs_info); 2819 struct btrfs_super_block *sb = fs_info->super_copy; 2820 struct btrfs_root *tree_root = fs_info->tree_root; 2821 bool handle_error = false; 2822 int ret = 0; 2823 int i; 2824 2825 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2826 if (handle_error) { 2827 if (!IS_ERR(tree_root->node)) 2828 free_extent_buffer(tree_root->node); 2829 tree_root->node = NULL; 2830 2831 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2832 break; 2833 2834 free_root_pointers(fs_info, 0); 2835 2836 /* 2837 * Don't use the log in recovery mode, it won't be 2838 * valid 2839 */ 2840 btrfs_set_super_log_root(sb, 0); 2841 2842 /* We can't trust the free space cache either */ 2843 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2844 2845 ret = read_backup_root(fs_info, i); 2846 backup_index = ret; 2847 if (ret < 0) 2848 return ret; 2849 } 2850 2851 ret = load_important_roots(fs_info); 2852 if (ret) { 2853 handle_error = true; 2854 continue; 2855 } 2856 2857 /* 2858 * No need to hold btrfs_root::objectid_mutex since the fs 2859 * hasn't been fully initialised and we are the only user 2860 */ 2861 ret = btrfs_init_root_free_objectid(tree_root); 2862 if (ret < 0) { 2863 handle_error = true; 2864 continue; 2865 } 2866 2867 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2868 2869 ret = btrfs_read_roots(fs_info); 2870 if (ret < 0) { 2871 handle_error = true; 2872 continue; 2873 } 2874 2875 /* All successful */ 2876 fs_info->generation = btrfs_header_generation(tree_root->node); 2877 fs_info->last_trans_committed = fs_info->generation; 2878 fs_info->last_reloc_trans = 0; 2879 2880 /* Always begin writing backup roots after the one being used */ 2881 if (backup_index < 0) { 2882 fs_info->backup_root_index = 0; 2883 } else { 2884 fs_info->backup_root_index = backup_index + 1; 2885 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2886 } 2887 break; 2888 } 2889 2890 return ret; 2891 } 2892 2893 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2894 { 2895 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2896 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2897 INIT_LIST_HEAD(&fs_info->trans_list); 2898 INIT_LIST_HEAD(&fs_info->dead_roots); 2899 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2900 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2901 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2902 spin_lock_init(&fs_info->delalloc_root_lock); 2903 spin_lock_init(&fs_info->trans_lock); 2904 spin_lock_init(&fs_info->fs_roots_radix_lock); 2905 spin_lock_init(&fs_info->delayed_iput_lock); 2906 spin_lock_init(&fs_info->defrag_inodes_lock); 2907 spin_lock_init(&fs_info->super_lock); 2908 spin_lock_init(&fs_info->buffer_lock); 2909 spin_lock_init(&fs_info->unused_bgs_lock); 2910 spin_lock_init(&fs_info->treelog_bg_lock); 2911 spin_lock_init(&fs_info->zone_active_bgs_lock); 2912 spin_lock_init(&fs_info->relocation_bg_lock); 2913 rwlock_init(&fs_info->tree_mod_log_lock); 2914 rwlock_init(&fs_info->global_root_lock); 2915 mutex_init(&fs_info->unused_bg_unpin_mutex); 2916 mutex_init(&fs_info->reclaim_bgs_lock); 2917 mutex_init(&fs_info->reloc_mutex); 2918 mutex_init(&fs_info->delalloc_root_mutex); 2919 mutex_init(&fs_info->zoned_meta_io_lock); 2920 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2921 seqlock_init(&fs_info->profiles_lock); 2922 2923 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2924 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2925 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2926 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2927 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2928 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2929 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2930 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2931 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2932 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2933 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2934 BTRFS_LOCKDEP_TRANS_COMPLETED); 2935 2936 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2937 INIT_LIST_HEAD(&fs_info->space_info); 2938 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2939 INIT_LIST_HEAD(&fs_info->unused_bgs); 2940 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2941 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2942 #ifdef CONFIG_BTRFS_DEBUG 2943 INIT_LIST_HEAD(&fs_info->allocated_roots); 2944 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2945 spin_lock_init(&fs_info->eb_leak_lock); 2946 #endif 2947 extent_map_tree_init(&fs_info->mapping_tree); 2948 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2949 BTRFS_BLOCK_RSV_GLOBAL); 2950 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2951 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2952 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2953 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2954 BTRFS_BLOCK_RSV_DELOPS); 2955 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2956 BTRFS_BLOCK_RSV_DELREFS); 2957 2958 atomic_set(&fs_info->async_delalloc_pages, 0); 2959 atomic_set(&fs_info->defrag_running, 0); 2960 atomic_set(&fs_info->nr_delayed_iputs, 0); 2961 atomic64_set(&fs_info->tree_mod_seq, 0); 2962 fs_info->global_root_tree = RB_ROOT; 2963 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2964 fs_info->metadata_ratio = 0; 2965 fs_info->defrag_inodes = RB_ROOT; 2966 atomic64_set(&fs_info->free_chunk_space, 0); 2967 fs_info->tree_mod_log = RB_ROOT; 2968 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2969 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2970 btrfs_init_ref_verify(fs_info); 2971 2972 fs_info->thread_pool_size = min_t(unsigned long, 2973 num_online_cpus() + 2, 8); 2974 2975 INIT_LIST_HEAD(&fs_info->ordered_roots); 2976 spin_lock_init(&fs_info->ordered_root_lock); 2977 2978 btrfs_init_scrub(fs_info); 2979 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2980 fs_info->check_integrity_print_mask = 0; 2981 #endif 2982 btrfs_init_balance(fs_info); 2983 btrfs_init_async_reclaim_work(fs_info); 2984 2985 rwlock_init(&fs_info->block_group_cache_lock); 2986 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2987 2988 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2989 IO_TREE_FS_EXCLUDED_EXTENTS); 2990 2991 mutex_init(&fs_info->ordered_operations_mutex); 2992 mutex_init(&fs_info->tree_log_mutex); 2993 mutex_init(&fs_info->chunk_mutex); 2994 mutex_init(&fs_info->transaction_kthread_mutex); 2995 mutex_init(&fs_info->cleaner_mutex); 2996 mutex_init(&fs_info->ro_block_group_mutex); 2997 init_rwsem(&fs_info->commit_root_sem); 2998 init_rwsem(&fs_info->cleanup_work_sem); 2999 init_rwsem(&fs_info->subvol_sem); 3000 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3001 3002 btrfs_init_dev_replace_locks(fs_info); 3003 btrfs_init_qgroup(fs_info); 3004 btrfs_discard_init(fs_info); 3005 3006 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3007 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3008 3009 init_waitqueue_head(&fs_info->transaction_throttle); 3010 init_waitqueue_head(&fs_info->transaction_wait); 3011 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3012 init_waitqueue_head(&fs_info->async_submit_wait); 3013 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3014 3015 /* Usable values until the real ones are cached from the superblock */ 3016 fs_info->nodesize = 4096; 3017 fs_info->sectorsize = 4096; 3018 fs_info->sectorsize_bits = ilog2(4096); 3019 fs_info->stripesize = 4096; 3020 3021 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3022 3023 spin_lock_init(&fs_info->swapfile_pins_lock); 3024 fs_info->swapfile_pins = RB_ROOT; 3025 3026 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3027 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3028 } 3029 3030 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3031 { 3032 int ret; 3033 3034 fs_info->sb = sb; 3035 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3036 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3037 3038 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3039 if (ret) 3040 return ret; 3041 3042 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3043 if (ret) 3044 return ret; 3045 3046 fs_info->dirty_metadata_batch = PAGE_SIZE * 3047 (1 + ilog2(nr_cpu_ids)); 3048 3049 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3050 if (ret) 3051 return ret; 3052 3053 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3054 GFP_KERNEL); 3055 if (ret) 3056 return ret; 3057 3058 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3059 GFP_KERNEL); 3060 if (!fs_info->delayed_root) 3061 return -ENOMEM; 3062 btrfs_init_delayed_root(fs_info->delayed_root); 3063 3064 if (sb_rdonly(sb)) 3065 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3066 3067 return btrfs_alloc_stripe_hash_table(fs_info); 3068 } 3069 3070 static int btrfs_uuid_rescan_kthread(void *data) 3071 { 3072 struct btrfs_fs_info *fs_info = data; 3073 int ret; 3074 3075 /* 3076 * 1st step is to iterate through the existing UUID tree and 3077 * to delete all entries that contain outdated data. 3078 * 2nd step is to add all missing entries to the UUID tree. 3079 */ 3080 ret = btrfs_uuid_tree_iterate(fs_info); 3081 if (ret < 0) { 3082 if (ret != -EINTR) 3083 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3084 ret); 3085 up(&fs_info->uuid_tree_rescan_sem); 3086 return ret; 3087 } 3088 return btrfs_uuid_scan_kthread(data); 3089 } 3090 3091 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3092 { 3093 struct task_struct *task; 3094 3095 down(&fs_info->uuid_tree_rescan_sem); 3096 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3097 if (IS_ERR(task)) { 3098 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3099 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3100 up(&fs_info->uuid_tree_rescan_sem); 3101 return PTR_ERR(task); 3102 } 3103 3104 return 0; 3105 } 3106 3107 /* 3108 * Some options only have meaning at mount time and shouldn't persist across 3109 * remounts, or be displayed. Clear these at the end of mount and remount 3110 * code paths. 3111 */ 3112 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3113 { 3114 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3115 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3116 } 3117 3118 /* 3119 * Mounting logic specific to read-write file systems. Shared by open_ctree 3120 * and btrfs_remount when remounting from read-only to read-write. 3121 */ 3122 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3123 { 3124 int ret; 3125 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3126 bool clear_free_space_tree = false; 3127 3128 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3129 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3130 clear_free_space_tree = true; 3131 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3132 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3133 btrfs_warn(fs_info, "free space tree is invalid"); 3134 clear_free_space_tree = true; 3135 } 3136 3137 if (clear_free_space_tree) { 3138 btrfs_info(fs_info, "clearing free space tree"); 3139 ret = btrfs_clear_free_space_tree(fs_info); 3140 if (ret) { 3141 btrfs_warn(fs_info, 3142 "failed to clear free space tree: %d", ret); 3143 goto out; 3144 } 3145 } 3146 3147 /* 3148 * btrfs_find_orphan_roots() is responsible for finding all the dead 3149 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3150 * them into the fs_info->fs_roots_radix tree. This must be done before 3151 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3152 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3153 * item before the root's tree is deleted - this means that if we unmount 3154 * or crash before the deletion completes, on the next mount we will not 3155 * delete what remains of the tree because the orphan item does not 3156 * exists anymore, which is what tells us we have a pending deletion. 3157 */ 3158 ret = btrfs_find_orphan_roots(fs_info); 3159 if (ret) 3160 goto out; 3161 3162 ret = btrfs_cleanup_fs_roots(fs_info); 3163 if (ret) 3164 goto out; 3165 3166 down_read(&fs_info->cleanup_work_sem); 3167 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3168 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3169 up_read(&fs_info->cleanup_work_sem); 3170 goto out; 3171 } 3172 up_read(&fs_info->cleanup_work_sem); 3173 3174 mutex_lock(&fs_info->cleaner_mutex); 3175 ret = btrfs_recover_relocation(fs_info); 3176 mutex_unlock(&fs_info->cleaner_mutex); 3177 if (ret < 0) { 3178 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3179 goto out; 3180 } 3181 3182 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3183 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3184 btrfs_info(fs_info, "creating free space tree"); 3185 ret = btrfs_create_free_space_tree(fs_info); 3186 if (ret) { 3187 btrfs_warn(fs_info, 3188 "failed to create free space tree: %d", ret); 3189 goto out; 3190 } 3191 } 3192 3193 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3194 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3195 if (ret) 3196 goto out; 3197 } 3198 3199 ret = btrfs_resume_balance_async(fs_info); 3200 if (ret) 3201 goto out; 3202 3203 ret = btrfs_resume_dev_replace_async(fs_info); 3204 if (ret) { 3205 btrfs_warn(fs_info, "failed to resume dev_replace"); 3206 goto out; 3207 } 3208 3209 btrfs_qgroup_rescan_resume(fs_info); 3210 3211 if (!fs_info->uuid_root) { 3212 btrfs_info(fs_info, "creating UUID tree"); 3213 ret = btrfs_create_uuid_tree(fs_info); 3214 if (ret) { 3215 btrfs_warn(fs_info, 3216 "failed to create the UUID tree %d", ret); 3217 goto out; 3218 } 3219 } 3220 3221 out: 3222 return ret; 3223 } 3224 3225 /* 3226 * Do various sanity and dependency checks of different features. 3227 * 3228 * @is_rw_mount: If the mount is read-write. 3229 * 3230 * This is the place for less strict checks (like for subpage or artificial 3231 * feature dependencies). 3232 * 3233 * For strict checks or possible corruption detection, see 3234 * btrfs_validate_super(). 3235 * 3236 * This should be called after btrfs_parse_options(), as some mount options 3237 * (space cache related) can modify on-disk format like free space tree and 3238 * screw up certain feature dependencies. 3239 */ 3240 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3241 { 3242 struct btrfs_super_block *disk_super = fs_info->super_copy; 3243 u64 incompat = btrfs_super_incompat_flags(disk_super); 3244 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3245 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3246 3247 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3248 btrfs_err(fs_info, 3249 "cannot mount because of unknown incompat features (0x%llx)", 3250 incompat); 3251 return -EINVAL; 3252 } 3253 3254 /* Runtime limitation for mixed block groups. */ 3255 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3256 (fs_info->sectorsize != fs_info->nodesize)) { 3257 btrfs_err(fs_info, 3258 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3259 fs_info->nodesize, fs_info->sectorsize); 3260 return -EINVAL; 3261 } 3262 3263 /* Mixed backref is an always-enabled feature. */ 3264 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3265 3266 /* Set compression related flags just in case. */ 3267 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3268 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3269 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3270 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3271 3272 /* 3273 * An ancient flag, which should really be marked deprecated. 3274 * Such runtime limitation doesn't really need a incompat flag. 3275 */ 3276 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3277 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3278 3279 if (compat_ro_unsupp && is_rw_mount) { 3280 btrfs_err(fs_info, 3281 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3282 compat_ro); 3283 return -EINVAL; 3284 } 3285 3286 /* 3287 * We have unsupported RO compat features, although RO mounted, we 3288 * should not cause any metadata writes, including log replay. 3289 * Or we could screw up whatever the new feature requires. 3290 */ 3291 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3292 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3293 btrfs_err(fs_info, 3294 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3295 compat_ro); 3296 return -EINVAL; 3297 } 3298 3299 /* 3300 * Artificial limitations for block group tree, to force 3301 * block-group-tree to rely on no-holes and free-space-tree. 3302 */ 3303 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3304 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3305 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3306 btrfs_err(fs_info, 3307 "block-group-tree feature requires no-holes and free-space-tree features"); 3308 return -EINVAL; 3309 } 3310 3311 /* 3312 * Subpage runtime limitation on v1 cache. 3313 * 3314 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3315 * we're already defaulting to v2 cache, no need to bother v1 as it's 3316 * going to be deprecated anyway. 3317 */ 3318 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3319 btrfs_warn(fs_info, 3320 "v1 space cache is not supported for page size %lu with sectorsize %u", 3321 PAGE_SIZE, fs_info->sectorsize); 3322 return -EINVAL; 3323 } 3324 3325 /* This can be called by remount, we need to protect the super block. */ 3326 spin_lock(&fs_info->super_lock); 3327 btrfs_set_super_incompat_flags(disk_super, incompat); 3328 spin_unlock(&fs_info->super_lock); 3329 3330 return 0; 3331 } 3332 3333 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3334 char *options) 3335 { 3336 u32 sectorsize; 3337 u32 nodesize; 3338 u32 stripesize; 3339 u64 generation; 3340 u64 features; 3341 u16 csum_type; 3342 struct btrfs_super_block *disk_super; 3343 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3344 struct btrfs_root *tree_root; 3345 struct btrfs_root *chunk_root; 3346 int ret; 3347 int err = -EINVAL; 3348 int level; 3349 3350 ret = init_mount_fs_info(fs_info, sb); 3351 if (ret) { 3352 err = ret; 3353 goto fail; 3354 } 3355 3356 /* These need to be init'ed before we start creating inodes and such. */ 3357 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3358 GFP_KERNEL); 3359 fs_info->tree_root = tree_root; 3360 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3361 GFP_KERNEL); 3362 fs_info->chunk_root = chunk_root; 3363 if (!tree_root || !chunk_root) { 3364 err = -ENOMEM; 3365 goto fail; 3366 } 3367 3368 fs_info->btree_inode = new_inode(sb); 3369 if (!fs_info->btree_inode) { 3370 err = -ENOMEM; 3371 goto fail; 3372 } 3373 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3374 btrfs_init_btree_inode(fs_info); 3375 3376 invalidate_bdev(fs_devices->latest_dev->bdev); 3377 3378 /* 3379 * Read super block and check the signature bytes only 3380 */ 3381 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3382 if (IS_ERR(disk_super)) { 3383 err = PTR_ERR(disk_super); 3384 goto fail_alloc; 3385 } 3386 3387 /* 3388 * Verify the type first, if that or the checksum value are 3389 * corrupted, we'll find out 3390 */ 3391 csum_type = btrfs_super_csum_type(disk_super); 3392 if (!btrfs_supported_super_csum(csum_type)) { 3393 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3394 csum_type); 3395 err = -EINVAL; 3396 btrfs_release_disk_super(disk_super); 3397 goto fail_alloc; 3398 } 3399 3400 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3401 3402 ret = btrfs_init_csum_hash(fs_info, csum_type); 3403 if (ret) { 3404 err = ret; 3405 btrfs_release_disk_super(disk_super); 3406 goto fail_alloc; 3407 } 3408 3409 /* 3410 * We want to check superblock checksum, the type is stored inside. 3411 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3412 */ 3413 if (btrfs_check_super_csum(fs_info, disk_super)) { 3414 btrfs_err(fs_info, "superblock checksum mismatch"); 3415 err = -EINVAL; 3416 btrfs_release_disk_super(disk_super); 3417 goto fail_alloc; 3418 } 3419 3420 /* 3421 * super_copy is zeroed at allocation time and we never touch the 3422 * following bytes up to INFO_SIZE, the checksum is calculated from 3423 * the whole block of INFO_SIZE 3424 */ 3425 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3426 btrfs_release_disk_super(disk_super); 3427 3428 disk_super = fs_info->super_copy; 3429 3430 3431 features = btrfs_super_flags(disk_super); 3432 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3433 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3434 btrfs_set_super_flags(disk_super, features); 3435 btrfs_info(fs_info, 3436 "found metadata UUID change in progress flag, clearing"); 3437 } 3438 3439 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3440 sizeof(*fs_info->super_for_commit)); 3441 3442 ret = btrfs_validate_mount_super(fs_info); 3443 if (ret) { 3444 btrfs_err(fs_info, "superblock contains fatal errors"); 3445 err = -EINVAL; 3446 goto fail_alloc; 3447 } 3448 3449 if (!btrfs_super_root(disk_super)) 3450 goto fail_alloc; 3451 3452 /* check FS state, whether FS is broken. */ 3453 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3454 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3455 3456 /* 3457 * In the long term, we'll store the compression type in the super 3458 * block, and it'll be used for per file compression control. 3459 */ 3460 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3461 3462 3463 /* Set up fs_info before parsing mount options */ 3464 nodesize = btrfs_super_nodesize(disk_super); 3465 sectorsize = btrfs_super_sectorsize(disk_super); 3466 stripesize = sectorsize; 3467 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3468 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3469 3470 fs_info->nodesize = nodesize; 3471 fs_info->sectorsize = sectorsize; 3472 fs_info->sectorsize_bits = ilog2(sectorsize); 3473 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3474 fs_info->stripesize = stripesize; 3475 3476 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3477 if (ret) { 3478 err = ret; 3479 goto fail_alloc; 3480 } 3481 3482 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3483 if (ret < 0) { 3484 err = ret; 3485 goto fail_alloc; 3486 } 3487 3488 if (sectorsize < PAGE_SIZE) { 3489 struct btrfs_subpage_info *subpage_info; 3490 3491 /* 3492 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3493 * going to be deprecated. 3494 * 3495 * Force to use v2 cache for subpage case. 3496 */ 3497 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3498 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3499 "forcing free space tree for sector size %u with page size %lu", 3500 sectorsize, PAGE_SIZE); 3501 3502 btrfs_warn(fs_info, 3503 "read-write for sector size %u with page size %lu is experimental", 3504 sectorsize, PAGE_SIZE); 3505 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3506 if (!subpage_info) 3507 goto fail_alloc; 3508 btrfs_init_subpage_info(subpage_info, sectorsize); 3509 fs_info->subpage_info = subpage_info; 3510 } 3511 3512 ret = btrfs_init_workqueues(fs_info); 3513 if (ret) { 3514 err = ret; 3515 goto fail_sb_buffer; 3516 } 3517 3518 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3519 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3520 3521 sb->s_blocksize = sectorsize; 3522 sb->s_blocksize_bits = blksize_bits(sectorsize); 3523 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3524 3525 mutex_lock(&fs_info->chunk_mutex); 3526 ret = btrfs_read_sys_array(fs_info); 3527 mutex_unlock(&fs_info->chunk_mutex); 3528 if (ret) { 3529 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3530 goto fail_sb_buffer; 3531 } 3532 3533 generation = btrfs_super_chunk_root_generation(disk_super); 3534 level = btrfs_super_chunk_root_level(disk_super); 3535 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3536 generation, level); 3537 if (ret) { 3538 btrfs_err(fs_info, "failed to read chunk root"); 3539 goto fail_tree_roots; 3540 } 3541 3542 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3543 offsetof(struct btrfs_header, chunk_tree_uuid), 3544 BTRFS_UUID_SIZE); 3545 3546 ret = btrfs_read_chunk_tree(fs_info); 3547 if (ret) { 3548 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3549 goto fail_tree_roots; 3550 } 3551 3552 /* 3553 * At this point we know all the devices that make this filesystem, 3554 * including the seed devices but we don't know yet if the replace 3555 * target is required. So free devices that are not part of this 3556 * filesystem but skip the replace target device which is checked 3557 * below in btrfs_init_dev_replace(). 3558 */ 3559 btrfs_free_extra_devids(fs_devices); 3560 if (!fs_devices->latest_dev->bdev) { 3561 btrfs_err(fs_info, "failed to read devices"); 3562 goto fail_tree_roots; 3563 } 3564 3565 ret = init_tree_roots(fs_info); 3566 if (ret) 3567 goto fail_tree_roots; 3568 3569 /* 3570 * Get zone type information of zoned block devices. This will also 3571 * handle emulation of a zoned filesystem if a regular device has the 3572 * zoned incompat feature flag set. 3573 */ 3574 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3575 if (ret) { 3576 btrfs_err(fs_info, 3577 "zoned: failed to read device zone info: %d", 3578 ret); 3579 goto fail_block_groups; 3580 } 3581 3582 /* 3583 * If we have a uuid root and we're not being told to rescan we need to 3584 * check the generation here so we can set the 3585 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3586 * transaction during a balance or the log replay without updating the 3587 * uuid generation, and then if we crash we would rescan the uuid tree, 3588 * even though it was perfectly fine. 3589 */ 3590 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3591 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3592 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3593 3594 ret = btrfs_verify_dev_extents(fs_info); 3595 if (ret) { 3596 btrfs_err(fs_info, 3597 "failed to verify dev extents against chunks: %d", 3598 ret); 3599 goto fail_block_groups; 3600 } 3601 ret = btrfs_recover_balance(fs_info); 3602 if (ret) { 3603 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3604 goto fail_block_groups; 3605 } 3606 3607 ret = btrfs_init_dev_stats(fs_info); 3608 if (ret) { 3609 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3610 goto fail_block_groups; 3611 } 3612 3613 ret = btrfs_init_dev_replace(fs_info); 3614 if (ret) { 3615 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3616 goto fail_block_groups; 3617 } 3618 3619 ret = btrfs_check_zoned_mode(fs_info); 3620 if (ret) { 3621 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3622 ret); 3623 goto fail_block_groups; 3624 } 3625 3626 ret = btrfs_sysfs_add_fsid(fs_devices); 3627 if (ret) { 3628 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3629 ret); 3630 goto fail_block_groups; 3631 } 3632 3633 ret = btrfs_sysfs_add_mounted(fs_info); 3634 if (ret) { 3635 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3636 goto fail_fsdev_sysfs; 3637 } 3638 3639 ret = btrfs_init_space_info(fs_info); 3640 if (ret) { 3641 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3642 goto fail_sysfs; 3643 } 3644 3645 ret = btrfs_read_block_groups(fs_info); 3646 if (ret) { 3647 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3648 goto fail_sysfs; 3649 } 3650 3651 btrfs_free_zone_cache(fs_info); 3652 3653 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3654 !btrfs_check_rw_degradable(fs_info, NULL)) { 3655 btrfs_warn(fs_info, 3656 "writable mount is not allowed due to too many missing devices"); 3657 goto fail_sysfs; 3658 } 3659 3660 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3661 "btrfs-cleaner"); 3662 if (IS_ERR(fs_info->cleaner_kthread)) 3663 goto fail_sysfs; 3664 3665 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3666 tree_root, 3667 "btrfs-transaction"); 3668 if (IS_ERR(fs_info->transaction_kthread)) 3669 goto fail_cleaner; 3670 3671 if (!btrfs_test_opt(fs_info, NOSSD) && 3672 !fs_info->fs_devices->rotating) { 3673 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3674 } 3675 3676 /* 3677 * For devices supporting discard turn on discard=async automatically, 3678 * unless it's already set or disabled. This could be turned off by 3679 * nodiscard for the same mount. 3680 */ 3681 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3682 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3683 btrfs_test_opt(fs_info, NODISCARD)) && 3684 fs_info->fs_devices->discardable) { 3685 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3686 "auto enabling async discard"); 3687 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3688 } 3689 3690 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3691 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3692 ret = btrfsic_mount(fs_info, fs_devices, 3693 btrfs_test_opt(fs_info, 3694 CHECK_INTEGRITY_DATA) ? 1 : 0, 3695 fs_info->check_integrity_print_mask); 3696 if (ret) 3697 btrfs_warn(fs_info, 3698 "failed to initialize integrity check module: %d", 3699 ret); 3700 } 3701 #endif 3702 ret = btrfs_read_qgroup_config(fs_info); 3703 if (ret) 3704 goto fail_trans_kthread; 3705 3706 if (btrfs_build_ref_tree(fs_info)) 3707 btrfs_err(fs_info, "couldn't build ref tree"); 3708 3709 /* do not make disk changes in broken FS or nologreplay is given */ 3710 if (btrfs_super_log_root(disk_super) != 0 && 3711 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3712 btrfs_info(fs_info, "start tree-log replay"); 3713 ret = btrfs_replay_log(fs_info, fs_devices); 3714 if (ret) { 3715 err = ret; 3716 goto fail_qgroup; 3717 } 3718 } 3719 3720 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3721 if (IS_ERR(fs_info->fs_root)) { 3722 err = PTR_ERR(fs_info->fs_root); 3723 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3724 fs_info->fs_root = NULL; 3725 goto fail_qgroup; 3726 } 3727 3728 if (sb_rdonly(sb)) 3729 goto clear_oneshot; 3730 3731 ret = btrfs_start_pre_rw_mount(fs_info); 3732 if (ret) { 3733 close_ctree(fs_info); 3734 return ret; 3735 } 3736 btrfs_discard_resume(fs_info); 3737 3738 if (fs_info->uuid_root && 3739 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3740 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3741 btrfs_info(fs_info, "checking UUID tree"); 3742 ret = btrfs_check_uuid_tree(fs_info); 3743 if (ret) { 3744 btrfs_warn(fs_info, 3745 "failed to check the UUID tree: %d", ret); 3746 close_ctree(fs_info); 3747 return ret; 3748 } 3749 } 3750 3751 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3752 3753 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3754 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3755 wake_up_process(fs_info->cleaner_kthread); 3756 3757 clear_oneshot: 3758 btrfs_clear_oneshot_options(fs_info); 3759 return 0; 3760 3761 fail_qgroup: 3762 btrfs_free_qgroup_config(fs_info); 3763 fail_trans_kthread: 3764 kthread_stop(fs_info->transaction_kthread); 3765 btrfs_cleanup_transaction(fs_info); 3766 btrfs_free_fs_roots(fs_info); 3767 fail_cleaner: 3768 kthread_stop(fs_info->cleaner_kthread); 3769 3770 /* 3771 * make sure we're done with the btree inode before we stop our 3772 * kthreads 3773 */ 3774 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3775 3776 fail_sysfs: 3777 btrfs_sysfs_remove_mounted(fs_info); 3778 3779 fail_fsdev_sysfs: 3780 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3781 3782 fail_block_groups: 3783 btrfs_put_block_group_cache(fs_info); 3784 3785 fail_tree_roots: 3786 if (fs_info->data_reloc_root) 3787 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3788 free_root_pointers(fs_info, true); 3789 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3790 3791 fail_sb_buffer: 3792 btrfs_stop_all_workers(fs_info); 3793 btrfs_free_block_groups(fs_info); 3794 fail_alloc: 3795 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3796 3797 iput(fs_info->btree_inode); 3798 fail: 3799 btrfs_close_devices(fs_info->fs_devices); 3800 return err; 3801 } 3802 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3803 3804 static void btrfs_end_super_write(struct bio *bio) 3805 { 3806 struct btrfs_device *device = bio->bi_private; 3807 struct bio_vec *bvec; 3808 struct bvec_iter_all iter_all; 3809 struct page *page; 3810 3811 bio_for_each_segment_all(bvec, bio, iter_all) { 3812 page = bvec->bv_page; 3813 3814 if (bio->bi_status) { 3815 btrfs_warn_rl_in_rcu(device->fs_info, 3816 "lost page write due to IO error on %s (%d)", 3817 btrfs_dev_name(device), 3818 blk_status_to_errno(bio->bi_status)); 3819 ClearPageUptodate(page); 3820 SetPageError(page); 3821 btrfs_dev_stat_inc_and_print(device, 3822 BTRFS_DEV_STAT_WRITE_ERRS); 3823 } else { 3824 SetPageUptodate(page); 3825 } 3826 3827 put_page(page); 3828 unlock_page(page); 3829 } 3830 3831 bio_put(bio); 3832 } 3833 3834 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3835 int copy_num, bool drop_cache) 3836 { 3837 struct btrfs_super_block *super; 3838 struct page *page; 3839 u64 bytenr, bytenr_orig; 3840 struct address_space *mapping = bdev->bd_inode->i_mapping; 3841 int ret; 3842 3843 bytenr_orig = btrfs_sb_offset(copy_num); 3844 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3845 if (ret == -ENOENT) 3846 return ERR_PTR(-EINVAL); 3847 else if (ret) 3848 return ERR_PTR(ret); 3849 3850 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3851 return ERR_PTR(-EINVAL); 3852 3853 if (drop_cache) { 3854 /* This should only be called with the primary sb. */ 3855 ASSERT(copy_num == 0); 3856 3857 /* 3858 * Drop the page of the primary superblock, so later read will 3859 * always read from the device. 3860 */ 3861 invalidate_inode_pages2_range(mapping, 3862 bytenr >> PAGE_SHIFT, 3863 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3864 } 3865 3866 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3867 if (IS_ERR(page)) 3868 return ERR_CAST(page); 3869 3870 super = page_address(page); 3871 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3872 btrfs_release_disk_super(super); 3873 return ERR_PTR(-ENODATA); 3874 } 3875 3876 if (btrfs_super_bytenr(super) != bytenr_orig) { 3877 btrfs_release_disk_super(super); 3878 return ERR_PTR(-EINVAL); 3879 } 3880 3881 return super; 3882 } 3883 3884 3885 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3886 { 3887 struct btrfs_super_block *super, *latest = NULL; 3888 int i; 3889 u64 transid = 0; 3890 3891 /* we would like to check all the supers, but that would make 3892 * a btrfs mount succeed after a mkfs from a different FS. 3893 * So, we need to add a special mount option to scan for 3894 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3895 */ 3896 for (i = 0; i < 1; i++) { 3897 super = btrfs_read_dev_one_super(bdev, i, false); 3898 if (IS_ERR(super)) 3899 continue; 3900 3901 if (!latest || btrfs_super_generation(super) > transid) { 3902 if (latest) 3903 btrfs_release_disk_super(super); 3904 3905 latest = super; 3906 transid = btrfs_super_generation(super); 3907 } 3908 } 3909 3910 return super; 3911 } 3912 3913 /* 3914 * Write superblock @sb to the @device. Do not wait for completion, all the 3915 * pages we use for writing are locked. 3916 * 3917 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3918 * the expected device size at commit time. Note that max_mirrors must be 3919 * same for write and wait phases. 3920 * 3921 * Return number of errors when page is not found or submission fails. 3922 */ 3923 static int write_dev_supers(struct btrfs_device *device, 3924 struct btrfs_super_block *sb, int max_mirrors) 3925 { 3926 struct btrfs_fs_info *fs_info = device->fs_info; 3927 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3928 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3929 int i; 3930 int errors = 0; 3931 int ret; 3932 u64 bytenr, bytenr_orig; 3933 3934 if (max_mirrors == 0) 3935 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3936 3937 shash->tfm = fs_info->csum_shash; 3938 3939 for (i = 0; i < max_mirrors; i++) { 3940 struct page *page; 3941 struct bio *bio; 3942 struct btrfs_super_block *disk_super; 3943 3944 bytenr_orig = btrfs_sb_offset(i); 3945 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3946 if (ret == -ENOENT) { 3947 continue; 3948 } else if (ret < 0) { 3949 btrfs_err(device->fs_info, 3950 "couldn't get super block location for mirror %d", 3951 i); 3952 errors++; 3953 continue; 3954 } 3955 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3956 device->commit_total_bytes) 3957 break; 3958 3959 btrfs_set_super_bytenr(sb, bytenr_orig); 3960 3961 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3962 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3963 sb->csum); 3964 3965 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3966 GFP_NOFS); 3967 if (!page) { 3968 btrfs_err(device->fs_info, 3969 "couldn't get super block page for bytenr %llu", 3970 bytenr); 3971 errors++; 3972 continue; 3973 } 3974 3975 /* Bump the refcount for wait_dev_supers() */ 3976 get_page(page); 3977 3978 disk_super = page_address(page); 3979 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3980 3981 /* 3982 * Directly use bios here instead of relying on the page cache 3983 * to do I/O, so we don't lose the ability to do integrity 3984 * checking. 3985 */ 3986 bio = bio_alloc(device->bdev, 1, 3987 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3988 GFP_NOFS); 3989 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3990 bio->bi_private = device; 3991 bio->bi_end_io = btrfs_end_super_write; 3992 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3993 offset_in_page(bytenr)); 3994 3995 /* 3996 * We FUA only the first super block. The others we allow to 3997 * go down lazy and there's a short window where the on-disk 3998 * copies might still contain the older version. 3999 */ 4000 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4001 bio->bi_opf |= REQ_FUA; 4002 4003 btrfsic_check_bio(bio); 4004 submit_bio(bio); 4005 4006 if (btrfs_advance_sb_log(device, i)) 4007 errors++; 4008 } 4009 return errors < i ? 0 : -1; 4010 } 4011 4012 /* 4013 * Wait for write completion of superblocks done by write_dev_supers, 4014 * @max_mirrors same for write and wait phases. 4015 * 4016 * Return number of errors when page is not found or not marked up to 4017 * date. 4018 */ 4019 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4020 { 4021 int i; 4022 int errors = 0; 4023 bool primary_failed = false; 4024 int ret; 4025 u64 bytenr; 4026 4027 if (max_mirrors == 0) 4028 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4029 4030 for (i = 0; i < max_mirrors; i++) { 4031 struct page *page; 4032 4033 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4034 if (ret == -ENOENT) { 4035 break; 4036 } else if (ret < 0) { 4037 errors++; 4038 if (i == 0) 4039 primary_failed = true; 4040 continue; 4041 } 4042 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4043 device->commit_total_bytes) 4044 break; 4045 4046 page = find_get_page(device->bdev->bd_inode->i_mapping, 4047 bytenr >> PAGE_SHIFT); 4048 if (!page) { 4049 errors++; 4050 if (i == 0) 4051 primary_failed = true; 4052 continue; 4053 } 4054 /* Page is submitted locked and unlocked once the IO completes */ 4055 wait_on_page_locked(page); 4056 if (PageError(page)) { 4057 errors++; 4058 if (i == 0) 4059 primary_failed = true; 4060 } 4061 4062 /* Drop our reference */ 4063 put_page(page); 4064 4065 /* Drop the reference from the writing run */ 4066 put_page(page); 4067 } 4068 4069 /* log error, force error return */ 4070 if (primary_failed) { 4071 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4072 device->devid); 4073 return -1; 4074 } 4075 4076 return errors < i ? 0 : -1; 4077 } 4078 4079 /* 4080 * endio for the write_dev_flush, this will wake anyone waiting 4081 * for the barrier when it is done 4082 */ 4083 static void btrfs_end_empty_barrier(struct bio *bio) 4084 { 4085 bio_uninit(bio); 4086 complete(bio->bi_private); 4087 } 4088 4089 /* 4090 * Submit a flush request to the device if it supports it. Error handling is 4091 * done in the waiting counterpart. 4092 */ 4093 static void write_dev_flush(struct btrfs_device *device) 4094 { 4095 struct bio *bio = &device->flush_bio; 4096 4097 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4098 /* 4099 * When a disk has write caching disabled, we skip submission of a bio 4100 * with flush and sync requests before writing the superblock, since 4101 * it's not needed. However when the integrity checker is enabled, this 4102 * results in reports that there are metadata blocks referred by a 4103 * superblock that were not properly flushed. So don't skip the bio 4104 * submission only when the integrity checker is enabled for the sake 4105 * of simplicity, since this is a debug tool and not meant for use in 4106 * non-debug builds. 4107 */ 4108 if (!bdev_write_cache(device->bdev)) 4109 return; 4110 #endif 4111 4112 bio_init(bio, device->bdev, NULL, 0, 4113 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4114 bio->bi_end_io = btrfs_end_empty_barrier; 4115 init_completion(&device->flush_wait); 4116 bio->bi_private = &device->flush_wait; 4117 4118 btrfsic_check_bio(bio); 4119 submit_bio(bio); 4120 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4121 } 4122 4123 /* 4124 * If the flush bio has been submitted by write_dev_flush, wait for it. 4125 */ 4126 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4127 { 4128 struct bio *bio = &device->flush_bio; 4129 4130 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4131 return BLK_STS_OK; 4132 4133 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4134 wait_for_completion_io(&device->flush_wait); 4135 4136 return bio->bi_status; 4137 } 4138 4139 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4140 { 4141 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4142 return -EIO; 4143 return 0; 4144 } 4145 4146 /* 4147 * send an empty flush down to each device in parallel, 4148 * then wait for them 4149 */ 4150 static int barrier_all_devices(struct btrfs_fs_info *info) 4151 { 4152 struct list_head *head; 4153 struct btrfs_device *dev; 4154 int errors_wait = 0; 4155 blk_status_t ret; 4156 4157 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4158 /* send down all the barriers */ 4159 head = &info->fs_devices->devices; 4160 list_for_each_entry(dev, head, dev_list) { 4161 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4162 continue; 4163 if (!dev->bdev) 4164 continue; 4165 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4166 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4167 continue; 4168 4169 write_dev_flush(dev); 4170 dev->last_flush_error = BLK_STS_OK; 4171 } 4172 4173 /* wait for all the barriers */ 4174 list_for_each_entry(dev, head, dev_list) { 4175 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4176 continue; 4177 if (!dev->bdev) { 4178 errors_wait++; 4179 continue; 4180 } 4181 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4182 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4183 continue; 4184 4185 ret = wait_dev_flush(dev); 4186 if (ret) { 4187 dev->last_flush_error = ret; 4188 btrfs_dev_stat_inc_and_print(dev, 4189 BTRFS_DEV_STAT_FLUSH_ERRS); 4190 errors_wait++; 4191 } 4192 } 4193 4194 if (errors_wait) { 4195 /* 4196 * At some point we need the status of all disks 4197 * to arrive at the volume status. So error checking 4198 * is being pushed to a separate loop. 4199 */ 4200 return check_barrier_error(info); 4201 } 4202 return 0; 4203 } 4204 4205 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4206 { 4207 int raid_type; 4208 int min_tolerated = INT_MAX; 4209 4210 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4211 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4212 min_tolerated = min_t(int, min_tolerated, 4213 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4214 tolerated_failures); 4215 4216 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4217 if (raid_type == BTRFS_RAID_SINGLE) 4218 continue; 4219 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4220 continue; 4221 min_tolerated = min_t(int, min_tolerated, 4222 btrfs_raid_array[raid_type]. 4223 tolerated_failures); 4224 } 4225 4226 if (min_tolerated == INT_MAX) { 4227 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4228 min_tolerated = 0; 4229 } 4230 4231 return min_tolerated; 4232 } 4233 4234 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4235 { 4236 struct list_head *head; 4237 struct btrfs_device *dev; 4238 struct btrfs_super_block *sb; 4239 struct btrfs_dev_item *dev_item; 4240 int ret; 4241 int do_barriers; 4242 int max_errors; 4243 int total_errors = 0; 4244 u64 flags; 4245 4246 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4247 4248 /* 4249 * max_mirrors == 0 indicates we're from commit_transaction, 4250 * not from fsync where the tree roots in fs_info have not 4251 * been consistent on disk. 4252 */ 4253 if (max_mirrors == 0) 4254 backup_super_roots(fs_info); 4255 4256 sb = fs_info->super_for_commit; 4257 dev_item = &sb->dev_item; 4258 4259 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4260 head = &fs_info->fs_devices->devices; 4261 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4262 4263 if (do_barriers) { 4264 ret = barrier_all_devices(fs_info); 4265 if (ret) { 4266 mutex_unlock( 4267 &fs_info->fs_devices->device_list_mutex); 4268 btrfs_handle_fs_error(fs_info, ret, 4269 "errors while submitting device barriers."); 4270 return ret; 4271 } 4272 } 4273 4274 list_for_each_entry(dev, head, dev_list) { 4275 if (!dev->bdev) { 4276 total_errors++; 4277 continue; 4278 } 4279 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4280 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4281 continue; 4282 4283 btrfs_set_stack_device_generation(dev_item, 0); 4284 btrfs_set_stack_device_type(dev_item, dev->type); 4285 btrfs_set_stack_device_id(dev_item, dev->devid); 4286 btrfs_set_stack_device_total_bytes(dev_item, 4287 dev->commit_total_bytes); 4288 btrfs_set_stack_device_bytes_used(dev_item, 4289 dev->commit_bytes_used); 4290 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4291 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4292 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4293 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4294 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4295 BTRFS_FSID_SIZE); 4296 4297 flags = btrfs_super_flags(sb); 4298 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4299 4300 ret = btrfs_validate_write_super(fs_info, sb); 4301 if (ret < 0) { 4302 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4303 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4304 "unexpected superblock corruption detected"); 4305 return -EUCLEAN; 4306 } 4307 4308 ret = write_dev_supers(dev, sb, max_mirrors); 4309 if (ret) 4310 total_errors++; 4311 } 4312 if (total_errors > max_errors) { 4313 btrfs_err(fs_info, "%d errors while writing supers", 4314 total_errors); 4315 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4316 4317 /* FUA is masked off if unsupported and can't be the reason */ 4318 btrfs_handle_fs_error(fs_info, -EIO, 4319 "%d errors while writing supers", 4320 total_errors); 4321 return -EIO; 4322 } 4323 4324 total_errors = 0; 4325 list_for_each_entry(dev, head, dev_list) { 4326 if (!dev->bdev) 4327 continue; 4328 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4329 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4330 continue; 4331 4332 ret = wait_dev_supers(dev, max_mirrors); 4333 if (ret) 4334 total_errors++; 4335 } 4336 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4337 if (total_errors > max_errors) { 4338 btrfs_handle_fs_error(fs_info, -EIO, 4339 "%d errors while writing supers", 4340 total_errors); 4341 return -EIO; 4342 } 4343 return 0; 4344 } 4345 4346 /* Drop a fs root from the radix tree and free it. */ 4347 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4348 struct btrfs_root *root) 4349 { 4350 bool drop_ref = false; 4351 4352 spin_lock(&fs_info->fs_roots_radix_lock); 4353 radix_tree_delete(&fs_info->fs_roots_radix, 4354 (unsigned long)root->root_key.objectid); 4355 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4356 drop_ref = true; 4357 spin_unlock(&fs_info->fs_roots_radix_lock); 4358 4359 if (BTRFS_FS_ERROR(fs_info)) { 4360 ASSERT(root->log_root == NULL); 4361 if (root->reloc_root) { 4362 btrfs_put_root(root->reloc_root); 4363 root->reloc_root = NULL; 4364 } 4365 } 4366 4367 if (drop_ref) 4368 btrfs_put_root(root); 4369 } 4370 4371 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4372 { 4373 u64 root_objectid = 0; 4374 struct btrfs_root *gang[8]; 4375 int i = 0; 4376 int err = 0; 4377 unsigned int ret = 0; 4378 4379 while (1) { 4380 spin_lock(&fs_info->fs_roots_radix_lock); 4381 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4382 (void **)gang, root_objectid, 4383 ARRAY_SIZE(gang)); 4384 if (!ret) { 4385 spin_unlock(&fs_info->fs_roots_radix_lock); 4386 break; 4387 } 4388 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4389 4390 for (i = 0; i < ret; i++) { 4391 /* Avoid to grab roots in dead_roots */ 4392 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4393 gang[i] = NULL; 4394 continue; 4395 } 4396 /* grab all the search result for later use */ 4397 gang[i] = btrfs_grab_root(gang[i]); 4398 } 4399 spin_unlock(&fs_info->fs_roots_radix_lock); 4400 4401 for (i = 0; i < ret; i++) { 4402 if (!gang[i]) 4403 continue; 4404 root_objectid = gang[i]->root_key.objectid; 4405 err = btrfs_orphan_cleanup(gang[i]); 4406 if (err) 4407 break; 4408 btrfs_put_root(gang[i]); 4409 } 4410 root_objectid++; 4411 } 4412 4413 /* release the uncleaned roots due to error */ 4414 for (; i < ret; i++) { 4415 if (gang[i]) 4416 btrfs_put_root(gang[i]); 4417 } 4418 return err; 4419 } 4420 4421 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4422 { 4423 struct btrfs_root *root = fs_info->tree_root; 4424 struct btrfs_trans_handle *trans; 4425 4426 mutex_lock(&fs_info->cleaner_mutex); 4427 btrfs_run_delayed_iputs(fs_info); 4428 mutex_unlock(&fs_info->cleaner_mutex); 4429 wake_up_process(fs_info->cleaner_kthread); 4430 4431 /* wait until ongoing cleanup work done */ 4432 down_write(&fs_info->cleanup_work_sem); 4433 up_write(&fs_info->cleanup_work_sem); 4434 4435 trans = btrfs_join_transaction(root); 4436 if (IS_ERR(trans)) 4437 return PTR_ERR(trans); 4438 return btrfs_commit_transaction(trans); 4439 } 4440 4441 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4442 { 4443 struct btrfs_transaction *trans; 4444 struct btrfs_transaction *tmp; 4445 bool found = false; 4446 4447 if (list_empty(&fs_info->trans_list)) 4448 return; 4449 4450 /* 4451 * This function is only called at the very end of close_ctree(), 4452 * thus no other running transaction, no need to take trans_lock. 4453 */ 4454 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4455 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4456 struct extent_state *cached = NULL; 4457 u64 dirty_bytes = 0; 4458 u64 cur = 0; 4459 u64 found_start; 4460 u64 found_end; 4461 4462 found = true; 4463 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4464 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4465 dirty_bytes += found_end + 1 - found_start; 4466 cur = found_end + 1; 4467 } 4468 btrfs_warn(fs_info, 4469 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4470 trans->transid, dirty_bytes); 4471 btrfs_cleanup_one_transaction(trans, fs_info); 4472 4473 if (trans == fs_info->running_transaction) 4474 fs_info->running_transaction = NULL; 4475 list_del_init(&trans->list); 4476 4477 btrfs_put_transaction(trans); 4478 trace_btrfs_transaction_commit(fs_info); 4479 } 4480 ASSERT(!found); 4481 } 4482 4483 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4484 { 4485 int ret; 4486 4487 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4488 4489 /* 4490 * If we had UNFINISHED_DROPS we could still be processing them, so 4491 * clear that bit and wake up relocation so it can stop. 4492 * We must do this before stopping the block group reclaim task, because 4493 * at btrfs_relocate_block_group() we wait for this bit, and after the 4494 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4495 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4496 * return 1. 4497 */ 4498 btrfs_wake_unfinished_drop(fs_info); 4499 4500 /* 4501 * We may have the reclaim task running and relocating a data block group, 4502 * in which case it may create delayed iputs. So stop it before we park 4503 * the cleaner kthread otherwise we can get new delayed iputs after 4504 * parking the cleaner, and that can make the async reclaim task to hang 4505 * if it's waiting for delayed iputs to complete, since the cleaner is 4506 * parked and can not run delayed iputs - this will make us hang when 4507 * trying to stop the async reclaim task. 4508 */ 4509 cancel_work_sync(&fs_info->reclaim_bgs_work); 4510 /* 4511 * We don't want the cleaner to start new transactions, add more delayed 4512 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4513 * because that frees the task_struct, and the transaction kthread might 4514 * still try to wake up the cleaner. 4515 */ 4516 kthread_park(fs_info->cleaner_kthread); 4517 4518 /* wait for the qgroup rescan worker to stop */ 4519 btrfs_qgroup_wait_for_completion(fs_info, false); 4520 4521 /* wait for the uuid_scan task to finish */ 4522 down(&fs_info->uuid_tree_rescan_sem); 4523 /* avoid complains from lockdep et al., set sem back to initial state */ 4524 up(&fs_info->uuid_tree_rescan_sem); 4525 4526 /* pause restriper - we want to resume on mount */ 4527 btrfs_pause_balance(fs_info); 4528 4529 btrfs_dev_replace_suspend_for_unmount(fs_info); 4530 4531 btrfs_scrub_cancel(fs_info); 4532 4533 /* wait for any defraggers to finish */ 4534 wait_event(fs_info->transaction_wait, 4535 (atomic_read(&fs_info->defrag_running) == 0)); 4536 4537 /* clear out the rbtree of defraggable inodes */ 4538 btrfs_cleanup_defrag_inodes(fs_info); 4539 4540 /* 4541 * After we parked the cleaner kthread, ordered extents may have 4542 * completed and created new delayed iputs. If one of the async reclaim 4543 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4544 * can hang forever trying to stop it, because if a delayed iput is 4545 * added after it ran btrfs_run_delayed_iputs() and before it called 4546 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4547 * no one else to run iputs. 4548 * 4549 * So wait for all ongoing ordered extents to complete and then run 4550 * delayed iputs. This works because once we reach this point no one 4551 * can either create new ordered extents nor create delayed iputs 4552 * through some other means. 4553 * 4554 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4555 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4556 * but the delayed iput for the respective inode is made only when doing 4557 * the final btrfs_put_ordered_extent() (which must happen at 4558 * btrfs_finish_ordered_io() when we are unmounting). 4559 */ 4560 btrfs_flush_workqueue(fs_info->endio_write_workers); 4561 /* Ordered extents for free space inodes. */ 4562 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4563 btrfs_run_delayed_iputs(fs_info); 4564 4565 cancel_work_sync(&fs_info->async_reclaim_work); 4566 cancel_work_sync(&fs_info->async_data_reclaim_work); 4567 cancel_work_sync(&fs_info->preempt_reclaim_work); 4568 4569 /* Cancel or finish ongoing discard work */ 4570 btrfs_discard_cleanup(fs_info); 4571 4572 if (!sb_rdonly(fs_info->sb)) { 4573 /* 4574 * The cleaner kthread is stopped, so do one final pass over 4575 * unused block groups. 4576 */ 4577 btrfs_delete_unused_bgs(fs_info); 4578 4579 /* 4580 * There might be existing delayed inode workers still running 4581 * and holding an empty delayed inode item. We must wait for 4582 * them to complete first because they can create a transaction. 4583 * This happens when someone calls btrfs_balance_delayed_items() 4584 * and then a transaction commit runs the same delayed nodes 4585 * before any delayed worker has done something with the nodes. 4586 * We must wait for any worker here and not at transaction 4587 * commit time since that could cause a deadlock. 4588 * This is a very rare case. 4589 */ 4590 btrfs_flush_workqueue(fs_info->delayed_workers); 4591 4592 ret = btrfs_commit_super(fs_info); 4593 if (ret) 4594 btrfs_err(fs_info, "commit super ret %d", ret); 4595 } 4596 4597 if (BTRFS_FS_ERROR(fs_info)) 4598 btrfs_error_commit_super(fs_info); 4599 4600 kthread_stop(fs_info->transaction_kthread); 4601 kthread_stop(fs_info->cleaner_kthread); 4602 4603 ASSERT(list_empty(&fs_info->delayed_iputs)); 4604 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4605 4606 if (btrfs_check_quota_leak(fs_info)) { 4607 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4608 btrfs_err(fs_info, "qgroup reserved space leaked"); 4609 } 4610 4611 btrfs_free_qgroup_config(fs_info); 4612 ASSERT(list_empty(&fs_info->delalloc_roots)); 4613 4614 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4615 btrfs_info(fs_info, "at unmount delalloc count %lld", 4616 percpu_counter_sum(&fs_info->delalloc_bytes)); 4617 } 4618 4619 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4620 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4621 percpu_counter_sum(&fs_info->ordered_bytes)); 4622 4623 btrfs_sysfs_remove_mounted(fs_info); 4624 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4625 4626 btrfs_put_block_group_cache(fs_info); 4627 4628 /* 4629 * we must make sure there is not any read request to 4630 * submit after we stopping all workers. 4631 */ 4632 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4633 btrfs_stop_all_workers(fs_info); 4634 4635 /* We shouldn't have any transaction open at this point */ 4636 warn_about_uncommitted_trans(fs_info); 4637 4638 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4639 free_root_pointers(fs_info, true); 4640 btrfs_free_fs_roots(fs_info); 4641 4642 /* 4643 * We must free the block groups after dropping the fs_roots as we could 4644 * have had an IO error and have left over tree log blocks that aren't 4645 * cleaned up until the fs roots are freed. This makes the block group 4646 * accounting appear to be wrong because there's pending reserved bytes, 4647 * so make sure we do the block group cleanup afterwards. 4648 */ 4649 btrfs_free_block_groups(fs_info); 4650 4651 iput(fs_info->btree_inode); 4652 4653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4654 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4655 btrfsic_unmount(fs_info->fs_devices); 4656 #endif 4657 4658 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4659 btrfs_close_devices(fs_info->fs_devices); 4660 } 4661 4662 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4663 int atomic) 4664 { 4665 int ret; 4666 struct inode *btree_inode = buf->pages[0]->mapping->host; 4667 4668 ret = extent_buffer_uptodate(buf); 4669 if (!ret) 4670 return ret; 4671 4672 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4673 parent_transid, atomic); 4674 if (ret == -EAGAIN) 4675 return ret; 4676 return !ret; 4677 } 4678 4679 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4680 { 4681 struct btrfs_fs_info *fs_info = buf->fs_info; 4682 u64 transid = btrfs_header_generation(buf); 4683 int was_dirty; 4684 4685 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4686 /* 4687 * This is a fast path so only do this check if we have sanity tests 4688 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4689 * outside of the sanity tests. 4690 */ 4691 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4692 return; 4693 #endif 4694 btrfs_assert_tree_write_locked(buf); 4695 if (transid != fs_info->generation) 4696 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4697 buf->start, transid, fs_info->generation); 4698 was_dirty = set_extent_buffer_dirty(buf); 4699 if (!was_dirty) 4700 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4701 buf->len, 4702 fs_info->dirty_metadata_batch); 4703 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4704 /* 4705 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4706 * but item data not updated. 4707 * So here we should only check item pointers, not item data. 4708 */ 4709 if (btrfs_header_level(buf) == 0 && 4710 btrfs_check_leaf_relaxed(buf)) { 4711 btrfs_print_leaf(buf); 4712 ASSERT(0); 4713 } 4714 #endif 4715 } 4716 4717 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4718 int flush_delayed) 4719 { 4720 /* 4721 * looks as though older kernels can get into trouble with 4722 * this code, they end up stuck in balance_dirty_pages forever 4723 */ 4724 int ret; 4725 4726 if (current->flags & PF_MEMALLOC) 4727 return; 4728 4729 if (flush_delayed) 4730 btrfs_balance_delayed_items(fs_info); 4731 4732 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4733 BTRFS_DIRTY_METADATA_THRESH, 4734 fs_info->dirty_metadata_batch); 4735 if (ret > 0) { 4736 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4737 } 4738 } 4739 4740 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4741 { 4742 __btrfs_btree_balance_dirty(fs_info, 1); 4743 } 4744 4745 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4746 { 4747 __btrfs_btree_balance_dirty(fs_info, 0); 4748 } 4749 4750 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4751 { 4752 /* cleanup FS via transaction */ 4753 btrfs_cleanup_transaction(fs_info); 4754 4755 mutex_lock(&fs_info->cleaner_mutex); 4756 btrfs_run_delayed_iputs(fs_info); 4757 mutex_unlock(&fs_info->cleaner_mutex); 4758 4759 down_write(&fs_info->cleanup_work_sem); 4760 up_write(&fs_info->cleanup_work_sem); 4761 } 4762 4763 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4764 { 4765 struct btrfs_root *gang[8]; 4766 u64 root_objectid = 0; 4767 int ret; 4768 4769 spin_lock(&fs_info->fs_roots_radix_lock); 4770 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4771 (void **)gang, root_objectid, 4772 ARRAY_SIZE(gang))) != 0) { 4773 int i; 4774 4775 for (i = 0; i < ret; i++) 4776 gang[i] = btrfs_grab_root(gang[i]); 4777 spin_unlock(&fs_info->fs_roots_radix_lock); 4778 4779 for (i = 0; i < ret; i++) { 4780 if (!gang[i]) 4781 continue; 4782 root_objectid = gang[i]->root_key.objectid; 4783 btrfs_free_log(NULL, gang[i]); 4784 btrfs_put_root(gang[i]); 4785 } 4786 root_objectid++; 4787 spin_lock(&fs_info->fs_roots_radix_lock); 4788 } 4789 spin_unlock(&fs_info->fs_roots_radix_lock); 4790 btrfs_free_log_root_tree(NULL, fs_info); 4791 } 4792 4793 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4794 { 4795 struct btrfs_ordered_extent *ordered; 4796 4797 spin_lock(&root->ordered_extent_lock); 4798 /* 4799 * This will just short circuit the ordered completion stuff which will 4800 * make sure the ordered extent gets properly cleaned up. 4801 */ 4802 list_for_each_entry(ordered, &root->ordered_extents, 4803 root_extent_list) 4804 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4805 spin_unlock(&root->ordered_extent_lock); 4806 } 4807 4808 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4809 { 4810 struct btrfs_root *root; 4811 struct list_head splice; 4812 4813 INIT_LIST_HEAD(&splice); 4814 4815 spin_lock(&fs_info->ordered_root_lock); 4816 list_splice_init(&fs_info->ordered_roots, &splice); 4817 while (!list_empty(&splice)) { 4818 root = list_first_entry(&splice, struct btrfs_root, 4819 ordered_root); 4820 list_move_tail(&root->ordered_root, 4821 &fs_info->ordered_roots); 4822 4823 spin_unlock(&fs_info->ordered_root_lock); 4824 btrfs_destroy_ordered_extents(root); 4825 4826 cond_resched(); 4827 spin_lock(&fs_info->ordered_root_lock); 4828 } 4829 spin_unlock(&fs_info->ordered_root_lock); 4830 4831 /* 4832 * We need this here because if we've been flipped read-only we won't 4833 * get sync() from the umount, so we need to make sure any ordered 4834 * extents that haven't had their dirty pages IO start writeout yet 4835 * actually get run and error out properly. 4836 */ 4837 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4838 } 4839 4840 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4841 struct btrfs_fs_info *fs_info) 4842 { 4843 struct rb_node *node; 4844 struct btrfs_delayed_ref_root *delayed_refs; 4845 struct btrfs_delayed_ref_node *ref; 4846 int ret = 0; 4847 4848 delayed_refs = &trans->delayed_refs; 4849 4850 spin_lock(&delayed_refs->lock); 4851 if (atomic_read(&delayed_refs->num_entries) == 0) { 4852 spin_unlock(&delayed_refs->lock); 4853 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4854 return ret; 4855 } 4856 4857 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4858 struct btrfs_delayed_ref_head *head; 4859 struct rb_node *n; 4860 bool pin_bytes = false; 4861 4862 head = rb_entry(node, struct btrfs_delayed_ref_head, 4863 href_node); 4864 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4865 continue; 4866 4867 spin_lock(&head->lock); 4868 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4869 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4870 ref_node); 4871 ref->in_tree = 0; 4872 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4873 RB_CLEAR_NODE(&ref->ref_node); 4874 if (!list_empty(&ref->add_list)) 4875 list_del(&ref->add_list); 4876 atomic_dec(&delayed_refs->num_entries); 4877 btrfs_put_delayed_ref(ref); 4878 } 4879 if (head->must_insert_reserved) 4880 pin_bytes = true; 4881 btrfs_free_delayed_extent_op(head->extent_op); 4882 btrfs_delete_ref_head(delayed_refs, head); 4883 spin_unlock(&head->lock); 4884 spin_unlock(&delayed_refs->lock); 4885 mutex_unlock(&head->mutex); 4886 4887 if (pin_bytes) { 4888 struct btrfs_block_group *cache; 4889 4890 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4891 BUG_ON(!cache); 4892 4893 spin_lock(&cache->space_info->lock); 4894 spin_lock(&cache->lock); 4895 cache->pinned += head->num_bytes; 4896 btrfs_space_info_update_bytes_pinned(fs_info, 4897 cache->space_info, head->num_bytes); 4898 cache->reserved -= head->num_bytes; 4899 cache->space_info->bytes_reserved -= head->num_bytes; 4900 spin_unlock(&cache->lock); 4901 spin_unlock(&cache->space_info->lock); 4902 4903 btrfs_put_block_group(cache); 4904 4905 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4906 head->bytenr + head->num_bytes - 1); 4907 } 4908 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4909 btrfs_put_delayed_ref_head(head); 4910 cond_resched(); 4911 spin_lock(&delayed_refs->lock); 4912 } 4913 btrfs_qgroup_destroy_extent_records(trans); 4914 4915 spin_unlock(&delayed_refs->lock); 4916 4917 return ret; 4918 } 4919 4920 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4921 { 4922 struct btrfs_inode *btrfs_inode; 4923 struct list_head splice; 4924 4925 INIT_LIST_HEAD(&splice); 4926 4927 spin_lock(&root->delalloc_lock); 4928 list_splice_init(&root->delalloc_inodes, &splice); 4929 4930 while (!list_empty(&splice)) { 4931 struct inode *inode = NULL; 4932 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4933 delalloc_inodes); 4934 __btrfs_del_delalloc_inode(root, btrfs_inode); 4935 spin_unlock(&root->delalloc_lock); 4936 4937 /* 4938 * Make sure we get a live inode and that it'll not disappear 4939 * meanwhile. 4940 */ 4941 inode = igrab(&btrfs_inode->vfs_inode); 4942 if (inode) { 4943 invalidate_inode_pages2(inode->i_mapping); 4944 iput(inode); 4945 } 4946 spin_lock(&root->delalloc_lock); 4947 } 4948 spin_unlock(&root->delalloc_lock); 4949 } 4950 4951 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4952 { 4953 struct btrfs_root *root; 4954 struct list_head splice; 4955 4956 INIT_LIST_HEAD(&splice); 4957 4958 spin_lock(&fs_info->delalloc_root_lock); 4959 list_splice_init(&fs_info->delalloc_roots, &splice); 4960 while (!list_empty(&splice)) { 4961 root = list_first_entry(&splice, struct btrfs_root, 4962 delalloc_root); 4963 root = btrfs_grab_root(root); 4964 BUG_ON(!root); 4965 spin_unlock(&fs_info->delalloc_root_lock); 4966 4967 btrfs_destroy_delalloc_inodes(root); 4968 btrfs_put_root(root); 4969 4970 spin_lock(&fs_info->delalloc_root_lock); 4971 } 4972 spin_unlock(&fs_info->delalloc_root_lock); 4973 } 4974 4975 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4976 struct extent_io_tree *dirty_pages, 4977 int mark) 4978 { 4979 int ret; 4980 struct extent_buffer *eb; 4981 u64 start = 0; 4982 u64 end; 4983 4984 while (1) { 4985 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4986 mark, NULL); 4987 if (ret) 4988 break; 4989 4990 clear_extent_bits(dirty_pages, start, end, mark); 4991 while (start <= end) { 4992 eb = find_extent_buffer(fs_info, start); 4993 start += fs_info->nodesize; 4994 if (!eb) 4995 continue; 4996 4997 btrfs_tree_lock(eb); 4998 wait_on_extent_buffer_writeback(eb); 4999 btrfs_clear_buffer_dirty(NULL, eb); 5000 btrfs_tree_unlock(eb); 5001 5002 free_extent_buffer_stale(eb); 5003 } 5004 } 5005 5006 return ret; 5007 } 5008 5009 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5010 struct extent_io_tree *unpin) 5011 { 5012 u64 start; 5013 u64 end; 5014 int ret; 5015 5016 while (1) { 5017 struct extent_state *cached_state = NULL; 5018 5019 /* 5020 * The btrfs_finish_extent_commit() may get the same range as 5021 * ours between find_first_extent_bit and clear_extent_dirty. 5022 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5023 * the same extent range. 5024 */ 5025 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5026 ret = find_first_extent_bit(unpin, 0, &start, &end, 5027 EXTENT_DIRTY, &cached_state); 5028 if (ret) { 5029 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5030 break; 5031 } 5032 5033 clear_extent_dirty(unpin, start, end, &cached_state); 5034 free_extent_state(cached_state); 5035 btrfs_error_unpin_extent_range(fs_info, start, end); 5036 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5037 cond_resched(); 5038 } 5039 5040 return 0; 5041 } 5042 5043 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5044 { 5045 struct inode *inode; 5046 5047 inode = cache->io_ctl.inode; 5048 if (inode) { 5049 invalidate_inode_pages2(inode->i_mapping); 5050 BTRFS_I(inode)->generation = 0; 5051 cache->io_ctl.inode = NULL; 5052 iput(inode); 5053 } 5054 ASSERT(cache->io_ctl.pages == NULL); 5055 btrfs_put_block_group(cache); 5056 } 5057 5058 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5059 struct btrfs_fs_info *fs_info) 5060 { 5061 struct btrfs_block_group *cache; 5062 5063 spin_lock(&cur_trans->dirty_bgs_lock); 5064 while (!list_empty(&cur_trans->dirty_bgs)) { 5065 cache = list_first_entry(&cur_trans->dirty_bgs, 5066 struct btrfs_block_group, 5067 dirty_list); 5068 5069 if (!list_empty(&cache->io_list)) { 5070 spin_unlock(&cur_trans->dirty_bgs_lock); 5071 list_del_init(&cache->io_list); 5072 btrfs_cleanup_bg_io(cache); 5073 spin_lock(&cur_trans->dirty_bgs_lock); 5074 } 5075 5076 list_del_init(&cache->dirty_list); 5077 spin_lock(&cache->lock); 5078 cache->disk_cache_state = BTRFS_DC_ERROR; 5079 spin_unlock(&cache->lock); 5080 5081 spin_unlock(&cur_trans->dirty_bgs_lock); 5082 btrfs_put_block_group(cache); 5083 btrfs_delayed_refs_rsv_release(fs_info, 1); 5084 spin_lock(&cur_trans->dirty_bgs_lock); 5085 } 5086 spin_unlock(&cur_trans->dirty_bgs_lock); 5087 5088 /* 5089 * Refer to the definition of io_bgs member for details why it's safe 5090 * to use it without any locking 5091 */ 5092 while (!list_empty(&cur_trans->io_bgs)) { 5093 cache = list_first_entry(&cur_trans->io_bgs, 5094 struct btrfs_block_group, 5095 io_list); 5096 5097 list_del_init(&cache->io_list); 5098 spin_lock(&cache->lock); 5099 cache->disk_cache_state = BTRFS_DC_ERROR; 5100 spin_unlock(&cache->lock); 5101 btrfs_cleanup_bg_io(cache); 5102 } 5103 } 5104 5105 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5106 struct btrfs_fs_info *fs_info) 5107 { 5108 struct btrfs_device *dev, *tmp; 5109 5110 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5111 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5112 ASSERT(list_empty(&cur_trans->io_bgs)); 5113 5114 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5115 post_commit_list) { 5116 list_del_init(&dev->post_commit_list); 5117 } 5118 5119 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5120 5121 cur_trans->state = TRANS_STATE_COMMIT_START; 5122 wake_up(&fs_info->transaction_blocked_wait); 5123 5124 cur_trans->state = TRANS_STATE_UNBLOCKED; 5125 wake_up(&fs_info->transaction_wait); 5126 5127 btrfs_destroy_delayed_inodes(fs_info); 5128 5129 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5130 EXTENT_DIRTY); 5131 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5132 5133 btrfs_free_redirty_list(cur_trans); 5134 5135 cur_trans->state =TRANS_STATE_COMPLETED; 5136 wake_up(&cur_trans->commit_wait); 5137 } 5138 5139 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5140 { 5141 struct btrfs_transaction *t; 5142 5143 mutex_lock(&fs_info->transaction_kthread_mutex); 5144 5145 spin_lock(&fs_info->trans_lock); 5146 while (!list_empty(&fs_info->trans_list)) { 5147 t = list_first_entry(&fs_info->trans_list, 5148 struct btrfs_transaction, list); 5149 if (t->state >= TRANS_STATE_COMMIT_START) { 5150 refcount_inc(&t->use_count); 5151 spin_unlock(&fs_info->trans_lock); 5152 btrfs_wait_for_commit(fs_info, t->transid); 5153 btrfs_put_transaction(t); 5154 spin_lock(&fs_info->trans_lock); 5155 continue; 5156 } 5157 if (t == fs_info->running_transaction) { 5158 t->state = TRANS_STATE_COMMIT_DOING; 5159 spin_unlock(&fs_info->trans_lock); 5160 /* 5161 * We wait for 0 num_writers since we don't hold a trans 5162 * handle open currently for this transaction. 5163 */ 5164 wait_event(t->writer_wait, 5165 atomic_read(&t->num_writers) == 0); 5166 } else { 5167 spin_unlock(&fs_info->trans_lock); 5168 } 5169 btrfs_cleanup_one_transaction(t, fs_info); 5170 5171 spin_lock(&fs_info->trans_lock); 5172 if (t == fs_info->running_transaction) 5173 fs_info->running_transaction = NULL; 5174 list_del_init(&t->list); 5175 spin_unlock(&fs_info->trans_lock); 5176 5177 btrfs_put_transaction(t); 5178 trace_btrfs_transaction_commit(fs_info); 5179 spin_lock(&fs_info->trans_lock); 5180 } 5181 spin_unlock(&fs_info->trans_lock); 5182 btrfs_destroy_all_ordered_extents(fs_info); 5183 btrfs_destroy_delayed_inodes(fs_info); 5184 btrfs_assert_delayed_root_empty(fs_info); 5185 btrfs_destroy_all_delalloc_inodes(fs_info); 5186 btrfs_drop_all_logs(fs_info); 5187 mutex_unlock(&fs_info->transaction_kthread_mutex); 5188 5189 return 0; 5190 } 5191 5192 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5193 { 5194 struct btrfs_path *path; 5195 int ret; 5196 struct extent_buffer *l; 5197 struct btrfs_key search_key; 5198 struct btrfs_key found_key; 5199 int slot; 5200 5201 path = btrfs_alloc_path(); 5202 if (!path) 5203 return -ENOMEM; 5204 5205 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5206 search_key.type = -1; 5207 search_key.offset = (u64)-1; 5208 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5209 if (ret < 0) 5210 goto error; 5211 BUG_ON(ret == 0); /* Corruption */ 5212 if (path->slots[0] > 0) { 5213 slot = path->slots[0] - 1; 5214 l = path->nodes[0]; 5215 btrfs_item_key_to_cpu(l, &found_key, slot); 5216 root->free_objectid = max_t(u64, found_key.objectid + 1, 5217 BTRFS_FIRST_FREE_OBJECTID); 5218 } else { 5219 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5220 } 5221 ret = 0; 5222 error: 5223 btrfs_free_path(path); 5224 return ret; 5225 } 5226 5227 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5228 { 5229 int ret; 5230 mutex_lock(&root->objectid_mutex); 5231 5232 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5233 btrfs_warn(root->fs_info, 5234 "the objectid of root %llu reaches its highest value", 5235 root->root_key.objectid); 5236 ret = -ENOSPC; 5237 goto out; 5238 } 5239 5240 *objectid = root->free_objectid++; 5241 ret = 0; 5242 out: 5243 mutex_unlock(&root->objectid_mutex); 5244 return ret; 5245 } 5246