1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static const struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_fs_info *fs_info, 278 struct extent_buffer *buf, 279 int verify) 280 { 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 282 char *result = NULL; 283 unsigned long len; 284 unsigned long cur_len; 285 unsigned long offset = BTRFS_CSUM_SIZE; 286 char *kaddr; 287 unsigned long map_start; 288 unsigned long map_len; 289 int err; 290 u32 crc = ~(u32)0; 291 unsigned long inline_result; 292 293 len = buf->len - offset; 294 while (len > 0) { 295 err = map_private_extent_buffer(buf, offset, 32, 296 &kaddr, &map_start, &map_len); 297 if (err) 298 return 1; 299 cur_len = min(len, map_len - (offset - map_start)); 300 crc = btrfs_csum_data(kaddr + offset - map_start, 301 crc, cur_len); 302 len -= cur_len; 303 offset += cur_len; 304 } 305 if (csum_size > sizeof(inline_result)) { 306 result = kzalloc(csum_size, GFP_NOFS); 307 if (!result) 308 return 1; 309 } else { 310 result = (char *)&inline_result; 311 } 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 printk_ratelimited(KERN_WARNING 323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 324 "level %d\n", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 if (result != (char *)&inline_result) 328 kfree(result); 329 return 1; 330 } 331 } else { 332 write_extent_buffer(buf, result, 0, csum_size); 333 } 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 0; 337 } 338 339 /* 340 * we can't consider a given block up to date unless the transid of the 341 * block matches the transid in the parent node's pointer. This is how we 342 * detect blocks that either didn't get written at all or got written 343 * in the wrong place. 344 */ 345 static int verify_parent_transid(struct extent_io_tree *io_tree, 346 struct extent_buffer *eb, u64 parent_transid, 347 int atomic) 348 { 349 struct extent_state *cached_state = NULL; 350 int ret; 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 352 353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 354 return 0; 355 356 if (atomic) 357 return -EAGAIN; 358 359 if (need_lock) { 360 btrfs_tree_read_lock(eb); 361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 362 } 363 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 365 0, &cached_state); 366 if (extent_buffer_uptodate(eb) && 367 btrfs_header_generation(eb) == parent_transid) { 368 ret = 0; 369 goto out; 370 } 371 printk_ratelimited(KERN_ERR 372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 373 eb->fs_info->sb->s_id, eb->start, 374 parent_transid, btrfs_header_generation(eb)); 375 ret = 1; 376 377 /* 378 * Things reading via commit roots that don't have normal protection, 379 * like send, can have a really old block in cache that may point at a 380 * block that has been free'd and re-allocated. So don't clear uptodate 381 * if we find an eb that is under IO (dirty/writeback) because we could 382 * end up reading in the stale data and then writing it back out and 383 * making everybody very sad. 384 */ 385 if (!extent_buffer_under_io(eb)) 386 clear_extent_buffer_uptodate(eb); 387 out: 388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 389 &cached_state, GFP_NOFS); 390 if (need_lock) 391 btrfs_tree_read_unlock_blocking(eb); 392 return ret; 393 } 394 395 /* 396 * Return 0 if the superblock checksum type matches the checksum value of that 397 * algorithm. Pass the raw disk superblock data. 398 */ 399 static int btrfs_check_super_csum(char *raw_disk_sb) 400 { 401 struct btrfs_super_block *disk_sb = 402 (struct btrfs_super_block *)raw_disk_sb; 403 u16 csum_type = btrfs_super_csum_type(disk_sb); 404 int ret = 0; 405 406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 407 u32 crc = ~(u32)0; 408 const int csum_size = sizeof(crc); 409 char result[csum_size]; 410 411 /* 412 * The super_block structure does not span the whole 413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 414 * is filled with zeros and is included in the checkum. 415 */ 416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 418 btrfs_csum_final(crc, result); 419 420 if (memcmp(raw_disk_sb, result, csum_size)) 421 ret = 1; 422 } 423 424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 426 csum_type); 427 ret = 1; 428 } 429 430 return ret; 431 } 432 433 /* 434 * helper to read a given tree block, doing retries as required when 435 * the checksums don't match and we have alternate mirrors to try. 436 */ 437 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 438 struct extent_buffer *eb, 439 u64 start, u64 parent_transid) 440 { 441 struct extent_io_tree *io_tree; 442 int failed = 0; 443 int ret; 444 int num_copies = 0; 445 int mirror_num = 0; 446 int failed_mirror = 0; 447 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 450 while (1) { 451 ret = read_extent_buffer_pages(io_tree, eb, start, 452 WAIT_COMPLETE, 453 btree_get_extent, mirror_num); 454 if (!ret) { 455 if (!verify_parent_transid(io_tree, eb, 456 parent_transid, 0)) 457 break; 458 else 459 ret = -EIO; 460 } 461 462 /* 463 * This buffer's crc is fine, but its contents are corrupted, so 464 * there is no reason to read the other copies, they won't be 465 * any less wrong. 466 */ 467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 468 break; 469 470 num_copies = btrfs_num_copies(root->fs_info, 471 eb->start, eb->len); 472 if (num_copies == 1) 473 break; 474 475 if (!failed_mirror) { 476 failed = 1; 477 failed_mirror = eb->read_mirror; 478 } 479 480 mirror_num++; 481 if (mirror_num == failed_mirror) 482 mirror_num++; 483 484 if (mirror_num > num_copies) 485 break; 486 } 487 488 if (failed && !ret && failed_mirror) 489 repair_eb_io_failure(root, eb, failed_mirror); 490 491 return ret; 492 } 493 494 /* 495 * checksum a dirty tree block before IO. This has extra checks to make sure 496 * we only fill in the checksum field in the first page of a multi-page block 497 */ 498 499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 500 { 501 u64 start = page_offset(page); 502 u64 found_start; 503 struct extent_buffer *eb; 504 505 eb = (struct extent_buffer *)page->private; 506 if (page != eb->pages[0]) 507 return 0; 508 found_start = btrfs_header_bytenr(eb); 509 if (WARN_ON(found_start != start || !PageUptodate(page))) 510 return 0; 511 csum_tree_block(fs_info, eb, 0); 512 return 0; 513 } 514 515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 516 struct extent_buffer *eb) 517 { 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 519 u8 fsid[BTRFS_UUID_SIZE]; 520 int ret = 1; 521 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 523 while (fs_devices) { 524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 525 ret = 0; 526 break; 527 } 528 fs_devices = fs_devices->seed; 529 } 530 return ret; 531 } 532 533 #define CORRUPT(reason, eb, root, slot) \ 534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 535 "root=%llu, slot=%d", reason, \ 536 btrfs_header_bytenr(eb), root->objectid, slot) 537 538 static noinline int check_leaf(struct btrfs_root *root, 539 struct extent_buffer *leaf) 540 { 541 struct btrfs_key key; 542 struct btrfs_key leaf_key; 543 u32 nritems = btrfs_header_nritems(leaf); 544 int slot; 545 546 if (nritems == 0) 547 return 0; 548 549 /* Check the 0 item */ 550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 551 BTRFS_LEAF_DATA_SIZE(root)) { 552 CORRUPT("invalid item offset size pair", leaf, root, 0); 553 return -EIO; 554 } 555 556 /* 557 * Check to make sure each items keys are in the correct order and their 558 * offsets make sense. We only have to loop through nritems-1 because 559 * we check the current slot against the next slot, which verifies the 560 * next slot's offset+size makes sense and that the current's slot 561 * offset is correct. 562 */ 563 for (slot = 0; slot < nritems - 1; slot++) { 564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 565 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 566 567 /* Make sure the keys are in the right order */ 568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 569 CORRUPT("bad key order", leaf, root, slot); 570 return -EIO; 571 } 572 573 /* 574 * Make sure the offset and ends are right, remember that the 575 * item data starts at the end of the leaf and grows towards the 576 * front. 577 */ 578 if (btrfs_item_offset_nr(leaf, slot) != 579 btrfs_item_end_nr(leaf, slot + 1)) { 580 CORRUPT("slot offset bad", leaf, root, slot); 581 return -EIO; 582 } 583 584 /* 585 * Check to make sure that we don't point outside of the leaf, 586 * just incase all the items are consistent to eachother, but 587 * all point outside of the leaf. 588 */ 589 if (btrfs_item_end_nr(leaf, slot) > 590 BTRFS_LEAF_DATA_SIZE(root)) { 591 CORRUPT("slot end outside of leaf", leaf, root, slot); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 600 u64 phy_offset, struct page *page, 601 u64 start, u64 end, int mirror) 602 { 603 u64 found_start; 604 int found_level; 605 struct extent_buffer *eb; 606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 607 int ret = 0; 608 int reads_done; 609 610 if (!page->private) 611 goto out; 612 613 eb = (struct extent_buffer *)page->private; 614 615 /* the pending IO might have been the only thing that kept this buffer 616 * in memory. Make sure we have a ref for all this other checks 617 */ 618 extent_buffer_get(eb); 619 620 reads_done = atomic_dec_and_test(&eb->io_pages); 621 if (!reads_done) 622 goto err; 623 624 eb->read_mirror = mirror; 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 626 ret = -EIO; 627 goto err; 628 } 629 630 found_start = btrfs_header_bytenr(eb); 631 if (found_start != eb->start) { 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start " 633 "%llu %llu\n", 634 eb->fs_info->sb->s_id, found_start, eb->start); 635 ret = -EIO; 636 goto err; 637 } 638 if (check_tree_block_fsid(root->fs_info, eb)) { 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n", 640 eb->fs_info->sb->s_id, eb->start); 641 ret = -EIO; 642 goto err; 643 } 644 found_level = btrfs_header_level(eb); 645 if (found_level >= BTRFS_MAX_LEVEL) { 646 btrfs_err(root->fs_info, "bad tree block level %d", 647 (int)btrfs_header_level(eb)); 648 ret = -EIO; 649 goto err; 650 } 651 652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 653 eb, found_level); 654 655 ret = csum_tree_block(root->fs_info, eb, 1); 656 if (ret) { 657 ret = -EIO; 658 goto err; 659 } 660 661 /* 662 * If this is a leaf block and it is corrupt, set the corrupt bit so 663 * that we don't try and read the other copies of this block, just 664 * return -EIO. 665 */ 666 if (found_level == 0 && check_leaf(root, eb)) { 667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 668 ret = -EIO; 669 } 670 671 if (!ret) 672 set_extent_buffer_uptodate(eb); 673 err: 674 if (reads_done && 675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 676 btree_readahead_hook(root, eb, eb->start, ret); 677 678 if (ret) { 679 /* 680 * our io error hook is going to dec the io pages 681 * again, we have to make sure it has something 682 * to decrement 683 */ 684 atomic_inc(&eb->io_pages); 685 clear_extent_buffer_uptodate(eb); 686 } 687 free_extent_buffer(eb); 688 out: 689 return ret; 690 } 691 692 static int btree_io_failed_hook(struct page *page, int failed_mirror) 693 { 694 struct extent_buffer *eb; 695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 696 697 eb = (struct extent_buffer *)page->private; 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 699 eb->read_mirror = failed_mirror; 700 atomic_dec(&eb->io_pages); 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 702 btree_readahead_hook(root, eb, eb->start, -EIO); 703 return -EIO; /* we fixed nothing */ 704 } 705 706 static void end_workqueue_bio(struct bio *bio) 707 { 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 709 struct btrfs_fs_info *fs_info; 710 struct btrfs_workqueue *wq; 711 btrfs_work_func_t func; 712 713 fs_info = end_io_wq->info; 714 end_io_wq->error = bio->bi_error; 715 716 if (bio->bi_rw & REQ_WRITE) { 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 718 wq = fs_info->endio_meta_write_workers; 719 func = btrfs_endio_meta_write_helper; 720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 721 wq = fs_info->endio_freespace_worker; 722 func = btrfs_freespace_write_helper; 723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 724 wq = fs_info->endio_raid56_workers; 725 func = btrfs_endio_raid56_helper; 726 } else { 727 wq = fs_info->endio_write_workers; 728 func = btrfs_endio_write_helper; 729 } 730 } else { 731 if (unlikely(end_io_wq->metadata == 732 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 733 wq = fs_info->endio_repair_workers; 734 func = btrfs_endio_repair_helper; 735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 736 wq = fs_info->endio_raid56_workers; 737 func = btrfs_endio_raid56_helper; 738 } else if (end_io_wq->metadata) { 739 wq = fs_info->endio_meta_workers; 740 func = btrfs_endio_meta_helper; 741 } else { 742 wq = fs_info->endio_workers; 743 func = btrfs_endio_helper; 744 } 745 } 746 747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 748 btrfs_queue_work(wq, &end_io_wq->work); 749 } 750 751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 752 enum btrfs_wq_endio_type metadata) 753 { 754 struct btrfs_end_io_wq *end_io_wq; 755 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 757 if (!end_io_wq) 758 return -ENOMEM; 759 760 end_io_wq->private = bio->bi_private; 761 end_io_wq->end_io = bio->bi_end_io; 762 end_io_wq->info = info; 763 end_io_wq->error = 0; 764 end_io_wq->bio = bio; 765 end_io_wq->metadata = metadata; 766 767 bio->bi_private = end_io_wq; 768 bio->bi_end_io = end_workqueue_bio; 769 return 0; 770 } 771 772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 773 { 774 unsigned long limit = min_t(unsigned long, 775 info->thread_pool_size, 776 info->fs_devices->open_devices); 777 return 256 * limit; 778 } 779 780 static void run_one_async_start(struct btrfs_work *work) 781 { 782 struct async_submit_bio *async; 783 int ret; 784 785 async = container_of(work, struct async_submit_bio, work); 786 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 787 async->mirror_num, async->bio_flags, 788 async->bio_offset); 789 if (ret) 790 async->error = ret; 791 } 792 793 static void run_one_async_done(struct btrfs_work *work) 794 { 795 struct btrfs_fs_info *fs_info; 796 struct async_submit_bio *async; 797 int limit; 798 799 async = container_of(work, struct async_submit_bio, work); 800 fs_info = BTRFS_I(async->inode)->root->fs_info; 801 802 limit = btrfs_async_submit_limit(fs_info); 803 limit = limit * 2 / 3; 804 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 806 waitqueue_active(&fs_info->async_submit_wait)) 807 wake_up(&fs_info->async_submit_wait); 808 809 /* If an error occured we just want to clean up the bio and move on */ 810 if (async->error) { 811 async->bio->bi_error = async->error; 812 bio_endio(async->bio); 813 return; 814 } 815 816 async->submit_bio_done(async->inode, async->rw, async->bio, 817 async->mirror_num, async->bio_flags, 818 async->bio_offset); 819 } 820 821 static void run_one_async_free(struct btrfs_work *work) 822 { 823 struct async_submit_bio *async; 824 825 async = container_of(work, struct async_submit_bio, work); 826 kfree(async); 827 } 828 829 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 830 int rw, struct bio *bio, int mirror_num, 831 unsigned long bio_flags, 832 u64 bio_offset, 833 extent_submit_bio_hook_t *submit_bio_start, 834 extent_submit_bio_hook_t *submit_bio_done) 835 { 836 struct async_submit_bio *async; 837 838 async = kmalloc(sizeof(*async), GFP_NOFS); 839 if (!async) 840 return -ENOMEM; 841 842 async->inode = inode; 843 async->rw = rw; 844 async->bio = bio; 845 async->mirror_num = mirror_num; 846 async->submit_bio_start = submit_bio_start; 847 async->submit_bio_done = submit_bio_done; 848 849 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 850 run_one_async_done, run_one_async_free); 851 852 async->bio_flags = bio_flags; 853 async->bio_offset = bio_offset; 854 855 async->error = 0; 856 857 atomic_inc(&fs_info->nr_async_submits); 858 859 if (rw & REQ_SYNC) 860 btrfs_set_work_high_priority(&async->work); 861 862 btrfs_queue_work(fs_info->workers, &async->work); 863 864 while (atomic_read(&fs_info->async_submit_draining) && 865 atomic_read(&fs_info->nr_async_submits)) { 866 wait_event(fs_info->async_submit_wait, 867 (atomic_read(&fs_info->nr_async_submits) == 0)); 868 } 869 870 return 0; 871 } 872 873 static int btree_csum_one_bio(struct bio *bio) 874 { 875 struct bio_vec *bvec; 876 struct btrfs_root *root; 877 int i, ret = 0; 878 879 bio_for_each_segment_all(bvec, bio, i) { 880 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 881 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 882 if (ret) 883 break; 884 } 885 886 return ret; 887 } 888 889 static int __btree_submit_bio_start(struct inode *inode, int rw, 890 struct bio *bio, int mirror_num, 891 unsigned long bio_flags, 892 u64 bio_offset) 893 { 894 /* 895 * when we're called for a write, we're already in the async 896 * submission context. Just jump into btrfs_map_bio 897 */ 898 return btree_csum_one_bio(bio); 899 } 900 901 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 902 int mirror_num, unsigned long bio_flags, 903 u64 bio_offset) 904 { 905 int ret; 906 907 /* 908 * when we're called for a write, we're already in the async 909 * submission context. Just jump into btrfs_map_bio 910 */ 911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 912 if (ret) { 913 bio->bi_error = ret; 914 bio_endio(bio); 915 } 916 return ret; 917 } 918 919 static int check_async_write(struct inode *inode, unsigned long bio_flags) 920 { 921 if (bio_flags & EXTENT_BIO_TREE_LOG) 922 return 0; 923 #ifdef CONFIG_X86 924 if (cpu_has_xmm4_2) 925 return 0; 926 #endif 927 return 1; 928 } 929 930 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 931 int mirror_num, unsigned long bio_flags, 932 u64 bio_offset) 933 { 934 int async = check_async_write(inode, bio_flags); 935 int ret; 936 937 if (!(rw & REQ_WRITE)) { 938 /* 939 * called for a read, do the setup so that checksum validation 940 * can happen in the async kernel threads 941 */ 942 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 943 bio, BTRFS_WQ_ENDIO_METADATA); 944 if (ret) 945 goto out_w_error; 946 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 947 mirror_num, 0); 948 } else if (!async) { 949 ret = btree_csum_one_bio(bio); 950 if (ret) 951 goto out_w_error; 952 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 953 mirror_num, 0); 954 } else { 955 /* 956 * kthread helpers are used to submit writes so that 957 * checksumming can happen in parallel across all CPUs 958 */ 959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 960 inode, rw, bio, mirror_num, 0, 961 bio_offset, 962 __btree_submit_bio_start, 963 __btree_submit_bio_done); 964 } 965 966 if (ret) 967 goto out_w_error; 968 return 0; 969 970 out_w_error: 971 bio->bi_error = ret; 972 bio_endio(bio); 973 return ret; 974 } 975 976 #ifdef CONFIG_MIGRATION 977 static int btree_migratepage(struct address_space *mapping, 978 struct page *newpage, struct page *page, 979 enum migrate_mode mode) 980 { 981 /* 982 * we can't safely write a btree page from here, 983 * we haven't done the locking hook 984 */ 985 if (PageDirty(page)) 986 return -EAGAIN; 987 /* 988 * Buffers may be managed in a filesystem specific way. 989 * We must have no buffers or drop them. 990 */ 991 if (page_has_private(page) && 992 !try_to_release_page(page, GFP_KERNEL)) 993 return -EAGAIN; 994 return migrate_page(mapping, newpage, page, mode); 995 } 996 #endif 997 998 999 static int btree_writepages(struct address_space *mapping, 1000 struct writeback_control *wbc) 1001 { 1002 struct btrfs_fs_info *fs_info; 1003 int ret; 1004 1005 if (wbc->sync_mode == WB_SYNC_NONE) { 1006 1007 if (wbc->for_kupdate) 1008 return 0; 1009 1010 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1011 /* this is a bit racy, but that's ok */ 1012 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1013 BTRFS_DIRTY_METADATA_THRESH); 1014 if (ret < 0) 1015 return 0; 1016 } 1017 return btree_write_cache_pages(mapping, wbc); 1018 } 1019 1020 static int btree_readpage(struct file *file, struct page *page) 1021 { 1022 struct extent_io_tree *tree; 1023 tree = &BTRFS_I(page->mapping->host)->io_tree; 1024 return extent_read_full_page(tree, page, btree_get_extent, 0); 1025 } 1026 1027 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1028 { 1029 if (PageWriteback(page) || PageDirty(page)) 1030 return 0; 1031 1032 return try_release_extent_buffer(page); 1033 } 1034 1035 static void btree_invalidatepage(struct page *page, unsigned int offset, 1036 unsigned int length) 1037 { 1038 struct extent_io_tree *tree; 1039 tree = &BTRFS_I(page->mapping->host)->io_tree; 1040 extent_invalidatepage(tree, page, offset); 1041 btree_releasepage(page, GFP_NOFS); 1042 if (PagePrivate(page)) { 1043 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1044 "page private not zero on page %llu", 1045 (unsigned long long)page_offset(page)); 1046 ClearPagePrivate(page); 1047 set_page_private(page, 0); 1048 page_cache_release(page); 1049 } 1050 } 1051 1052 static int btree_set_page_dirty(struct page *page) 1053 { 1054 #ifdef DEBUG 1055 struct extent_buffer *eb; 1056 1057 BUG_ON(!PagePrivate(page)); 1058 eb = (struct extent_buffer *)page->private; 1059 BUG_ON(!eb); 1060 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1061 BUG_ON(!atomic_read(&eb->refs)); 1062 btrfs_assert_tree_locked(eb); 1063 #endif 1064 return __set_page_dirty_nobuffers(page); 1065 } 1066 1067 static const struct address_space_operations btree_aops = { 1068 .readpage = btree_readpage, 1069 .writepages = btree_writepages, 1070 .releasepage = btree_releasepage, 1071 .invalidatepage = btree_invalidatepage, 1072 #ifdef CONFIG_MIGRATION 1073 .migratepage = btree_migratepage, 1074 #endif 1075 .set_page_dirty = btree_set_page_dirty, 1076 }; 1077 1078 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1079 { 1080 struct extent_buffer *buf = NULL; 1081 struct inode *btree_inode = root->fs_info->btree_inode; 1082 1083 buf = btrfs_find_create_tree_block(root, bytenr); 1084 if (!buf) 1085 return; 1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1087 buf, 0, WAIT_NONE, btree_get_extent, 0); 1088 free_extent_buffer(buf); 1089 } 1090 1091 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1092 int mirror_num, struct extent_buffer **eb) 1093 { 1094 struct extent_buffer *buf = NULL; 1095 struct inode *btree_inode = root->fs_info->btree_inode; 1096 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1097 int ret; 1098 1099 buf = btrfs_find_create_tree_block(root, bytenr); 1100 if (!buf) 1101 return 0; 1102 1103 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1104 1105 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1106 btree_get_extent, mirror_num); 1107 if (ret) { 1108 free_extent_buffer(buf); 1109 return ret; 1110 } 1111 1112 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1113 free_extent_buffer(buf); 1114 return -EIO; 1115 } else if (extent_buffer_uptodate(buf)) { 1116 *eb = buf; 1117 } else { 1118 free_extent_buffer(buf); 1119 } 1120 return 0; 1121 } 1122 1123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1124 u64 bytenr) 1125 { 1126 return find_extent_buffer(fs_info, bytenr); 1127 } 1128 1129 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1130 u64 bytenr) 1131 { 1132 if (btrfs_test_is_dummy_root(root)) 1133 return alloc_test_extent_buffer(root->fs_info, bytenr); 1134 return alloc_extent_buffer(root->fs_info, bytenr); 1135 } 1136 1137 1138 int btrfs_write_tree_block(struct extent_buffer *buf) 1139 { 1140 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1141 buf->start + buf->len - 1); 1142 } 1143 1144 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1145 { 1146 return filemap_fdatawait_range(buf->pages[0]->mapping, 1147 buf->start, buf->start + buf->len - 1); 1148 } 1149 1150 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1151 u64 parent_transid) 1152 { 1153 struct extent_buffer *buf = NULL; 1154 int ret; 1155 1156 buf = btrfs_find_create_tree_block(root, bytenr); 1157 if (!buf) 1158 return ERR_PTR(-ENOMEM); 1159 1160 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1161 if (ret) { 1162 free_extent_buffer(buf); 1163 return ERR_PTR(ret); 1164 } 1165 return buf; 1166 1167 } 1168 1169 void clean_tree_block(struct btrfs_trans_handle *trans, 1170 struct btrfs_fs_info *fs_info, 1171 struct extent_buffer *buf) 1172 { 1173 if (btrfs_header_generation(buf) == 1174 fs_info->running_transaction->transid) { 1175 btrfs_assert_tree_locked(buf); 1176 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1179 -buf->len, 1180 fs_info->dirty_metadata_batch); 1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1182 btrfs_set_lock_blocking(buf); 1183 clear_extent_buffer_dirty(buf); 1184 } 1185 } 1186 } 1187 1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1189 { 1190 struct btrfs_subvolume_writers *writers; 1191 int ret; 1192 1193 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1194 if (!writers) 1195 return ERR_PTR(-ENOMEM); 1196 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1198 if (ret < 0) { 1199 kfree(writers); 1200 return ERR_PTR(ret); 1201 } 1202 1203 init_waitqueue_head(&writers->wait); 1204 return writers; 1205 } 1206 1207 static void 1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1209 { 1210 percpu_counter_destroy(&writers->counter); 1211 kfree(writers); 1212 } 1213 1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1216 u64 objectid) 1217 { 1218 root->node = NULL; 1219 root->commit_root = NULL; 1220 root->sectorsize = sectorsize; 1221 root->nodesize = nodesize; 1222 root->stripesize = stripesize; 1223 root->state = 0; 1224 root->orphan_cleanup_state = 0; 1225 1226 root->objectid = objectid; 1227 root->last_trans = 0; 1228 root->highest_objectid = 0; 1229 root->nr_delalloc_inodes = 0; 1230 root->nr_ordered_extents = 0; 1231 root->name = NULL; 1232 root->inode_tree = RB_ROOT; 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1234 root->block_rsv = NULL; 1235 root->orphan_block_rsv = NULL; 1236 1237 INIT_LIST_HEAD(&root->dirty_list); 1238 INIT_LIST_HEAD(&root->root_list); 1239 INIT_LIST_HEAD(&root->delalloc_inodes); 1240 INIT_LIST_HEAD(&root->delalloc_root); 1241 INIT_LIST_HEAD(&root->ordered_extents); 1242 INIT_LIST_HEAD(&root->ordered_root); 1243 INIT_LIST_HEAD(&root->logged_list[0]); 1244 INIT_LIST_HEAD(&root->logged_list[1]); 1245 spin_lock_init(&root->orphan_lock); 1246 spin_lock_init(&root->inode_lock); 1247 spin_lock_init(&root->delalloc_lock); 1248 spin_lock_init(&root->ordered_extent_lock); 1249 spin_lock_init(&root->accounting_lock); 1250 spin_lock_init(&root->log_extents_lock[0]); 1251 spin_lock_init(&root->log_extents_lock[1]); 1252 mutex_init(&root->objectid_mutex); 1253 mutex_init(&root->log_mutex); 1254 mutex_init(&root->ordered_extent_mutex); 1255 mutex_init(&root->delalloc_mutex); 1256 init_waitqueue_head(&root->log_writer_wait); 1257 init_waitqueue_head(&root->log_commit_wait[0]); 1258 init_waitqueue_head(&root->log_commit_wait[1]); 1259 INIT_LIST_HEAD(&root->log_ctxs[0]); 1260 INIT_LIST_HEAD(&root->log_ctxs[1]); 1261 atomic_set(&root->log_commit[0], 0); 1262 atomic_set(&root->log_commit[1], 0); 1263 atomic_set(&root->log_writers, 0); 1264 atomic_set(&root->log_batch, 0); 1265 atomic_set(&root->orphan_inodes, 0); 1266 atomic_set(&root->refs, 1); 1267 atomic_set(&root->will_be_snapshoted, 0); 1268 root->log_transid = 0; 1269 root->log_transid_committed = -1; 1270 root->last_log_commit = 0; 1271 if (fs_info) 1272 extent_io_tree_init(&root->dirty_log_pages, 1273 fs_info->btree_inode->i_mapping); 1274 1275 memset(&root->root_key, 0, sizeof(root->root_key)); 1276 memset(&root->root_item, 0, sizeof(root->root_item)); 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1278 if (fs_info) 1279 root->defrag_trans_start = fs_info->generation; 1280 else 1281 root->defrag_trans_start = 0; 1282 root->root_key.objectid = objectid; 1283 root->anon_dev = 0; 1284 1285 spin_lock_init(&root->root_item_lock); 1286 } 1287 1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1289 { 1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1291 if (root) 1292 root->fs_info = fs_info; 1293 return root; 1294 } 1295 1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1297 /* Should only be used by the testing infrastructure */ 1298 struct btrfs_root *btrfs_alloc_dummy_root(void) 1299 { 1300 struct btrfs_root *root; 1301 1302 root = btrfs_alloc_root(NULL); 1303 if (!root) 1304 return ERR_PTR(-ENOMEM); 1305 __setup_root(4096, 4096, 4096, root, NULL, 1); 1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1307 root->alloc_bytenr = 0; 1308 1309 return root; 1310 } 1311 #endif 1312 1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_fs_info *fs_info, 1315 u64 objectid) 1316 { 1317 struct extent_buffer *leaf; 1318 struct btrfs_root *tree_root = fs_info->tree_root; 1319 struct btrfs_root *root; 1320 struct btrfs_key key; 1321 int ret = 0; 1322 uuid_le uuid; 1323 1324 root = btrfs_alloc_root(fs_info); 1325 if (!root) 1326 return ERR_PTR(-ENOMEM); 1327 1328 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1329 tree_root->stripesize, root, fs_info, objectid); 1330 root->root_key.objectid = objectid; 1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1332 root->root_key.offset = 0; 1333 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 ret = PTR_ERR(leaf); 1337 leaf = NULL; 1338 goto fail; 1339 } 1340 1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1342 btrfs_set_header_bytenr(leaf, leaf->start); 1343 btrfs_set_header_generation(leaf, trans->transid); 1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1345 btrfs_set_header_owner(leaf, objectid); 1346 root->node = leaf; 1347 1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1349 BTRFS_FSID_SIZE); 1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1351 btrfs_header_chunk_tree_uuid(leaf), 1352 BTRFS_UUID_SIZE); 1353 btrfs_mark_buffer_dirty(leaf); 1354 1355 root->commit_root = btrfs_root_node(root); 1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1357 1358 root->root_item.flags = 0; 1359 root->root_item.byte_limit = 0; 1360 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1361 btrfs_set_root_generation(&root->root_item, trans->transid); 1362 btrfs_set_root_level(&root->root_item, 0); 1363 btrfs_set_root_refs(&root->root_item, 1); 1364 btrfs_set_root_used(&root->root_item, leaf->len); 1365 btrfs_set_root_last_snapshot(&root->root_item, 0); 1366 btrfs_set_root_dirid(&root->root_item, 0); 1367 uuid_le_gen(&uuid); 1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1369 root->root_item.drop_level = 0; 1370 1371 key.objectid = objectid; 1372 key.type = BTRFS_ROOT_ITEM_KEY; 1373 key.offset = 0; 1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1375 if (ret) 1376 goto fail; 1377 1378 btrfs_tree_unlock(leaf); 1379 1380 return root; 1381 1382 fail: 1383 if (leaf) { 1384 btrfs_tree_unlock(leaf); 1385 free_extent_buffer(root->commit_root); 1386 free_extent_buffer(leaf); 1387 } 1388 kfree(root); 1389 1390 return ERR_PTR(ret); 1391 } 1392 1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info) 1395 { 1396 struct btrfs_root *root; 1397 struct btrfs_root *tree_root = fs_info->tree_root; 1398 struct extent_buffer *leaf; 1399 1400 root = btrfs_alloc_root(fs_info); 1401 if (!root) 1402 return ERR_PTR(-ENOMEM); 1403 1404 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1405 tree_root->stripesize, root, fs_info, 1406 BTRFS_TREE_LOG_OBJECTID); 1407 1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1411 1412 /* 1413 * DON'T set REF_COWS for log trees 1414 * 1415 * log trees do not get reference counted because they go away 1416 * before a real commit is actually done. They do store pointers 1417 * to file data extents, and those reference counts still get 1418 * updated (along with back refs to the log tree). 1419 */ 1420 1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1422 NULL, 0, 0, 0); 1423 if (IS_ERR(leaf)) { 1424 kfree(root); 1425 return ERR_CAST(leaf); 1426 } 1427 1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1429 btrfs_set_header_bytenr(leaf, leaf->start); 1430 btrfs_set_header_generation(leaf, trans->transid); 1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1433 root->node = leaf; 1434 1435 write_extent_buffer(root->node, root->fs_info->fsid, 1436 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1437 btrfs_mark_buffer_dirty(root->node); 1438 btrfs_tree_unlock(root->node); 1439 return root; 1440 } 1441 1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1443 struct btrfs_fs_info *fs_info) 1444 { 1445 struct btrfs_root *log_root; 1446 1447 log_root = alloc_log_tree(trans, fs_info); 1448 if (IS_ERR(log_root)) 1449 return PTR_ERR(log_root); 1450 WARN_ON(fs_info->log_root_tree); 1451 fs_info->log_root_tree = log_root; 1452 return 0; 1453 } 1454 1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root) 1457 { 1458 struct btrfs_root *log_root; 1459 struct btrfs_inode_item *inode_item; 1460 1461 log_root = alloc_log_tree(trans, root->fs_info); 1462 if (IS_ERR(log_root)) 1463 return PTR_ERR(log_root); 1464 1465 log_root->last_trans = trans->transid; 1466 log_root->root_key.offset = root->root_key.objectid; 1467 1468 inode_item = &log_root->root_item.inode; 1469 btrfs_set_stack_inode_generation(inode_item, 1); 1470 btrfs_set_stack_inode_size(inode_item, 3); 1471 btrfs_set_stack_inode_nlink(inode_item, 1); 1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1474 1475 btrfs_set_root_node(&log_root->root_item, log_root->node); 1476 1477 WARN_ON(root->log_root); 1478 root->log_root = log_root; 1479 root->log_transid = 0; 1480 root->log_transid_committed = -1; 1481 root->last_log_commit = 0; 1482 return 0; 1483 } 1484 1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1486 struct btrfs_key *key) 1487 { 1488 struct btrfs_root *root; 1489 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1490 struct btrfs_path *path; 1491 u64 generation; 1492 int ret; 1493 1494 path = btrfs_alloc_path(); 1495 if (!path) 1496 return ERR_PTR(-ENOMEM); 1497 1498 root = btrfs_alloc_root(fs_info); 1499 if (!root) { 1500 ret = -ENOMEM; 1501 goto alloc_fail; 1502 } 1503 1504 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1505 tree_root->stripesize, root, fs_info, key->objectid); 1506 1507 ret = btrfs_find_root(tree_root, key, path, 1508 &root->root_item, &root->root_key); 1509 if (ret) { 1510 if (ret > 0) 1511 ret = -ENOENT; 1512 goto find_fail; 1513 } 1514 1515 generation = btrfs_root_generation(&root->root_item); 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1517 generation); 1518 if (IS_ERR(root->node)) { 1519 ret = PTR_ERR(root->node); 1520 goto find_fail; 1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1522 ret = -EIO; 1523 free_extent_buffer(root->node); 1524 goto find_fail; 1525 } 1526 root->commit_root = btrfs_root_node(root); 1527 out: 1528 btrfs_free_path(path); 1529 return root; 1530 1531 find_fail: 1532 kfree(root); 1533 alloc_fail: 1534 root = ERR_PTR(ret); 1535 goto out; 1536 } 1537 1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1539 struct btrfs_key *location) 1540 { 1541 struct btrfs_root *root; 1542 1543 root = btrfs_read_tree_root(tree_root, location); 1544 if (IS_ERR(root)) 1545 return root; 1546 1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1549 btrfs_check_and_init_root_item(&root->root_item); 1550 } 1551 1552 return root; 1553 } 1554 1555 int btrfs_init_fs_root(struct btrfs_root *root) 1556 { 1557 int ret; 1558 struct btrfs_subvolume_writers *writers; 1559 1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1562 GFP_NOFS); 1563 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1564 ret = -ENOMEM; 1565 goto fail; 1566 } 1567 1568 writers = btrfs_alloc_subvolume_writers(); 1569 if (IS_ERR(writers)) { 1570 ret = PTR_ERR(writers); 1571 goto fail; 1572 } 1573 root->subv_writers = writers; 1574 1575 btrfs_init_free_ino_ctl(root); 1576 spin_lock_init(&root->ino_cache_lock); 1577 init_waitqueue_head(&root->ino_cache_wait); 1578 1579 ret = get_anon_bdev(&root->anon_dev); 1580 if (ret) 1581 goto free_writers; 1582 return 0; 1583 1584 free_writers: 1585 btrfs_free_subvolume_writers(root->subv_writers); 1586 fail: 1587 kfree(root->free_ino_ctl); 1588 kfree(root->free_ino_pinned); 1589 return ret; 1590 } 1591 1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1593 u64 root_id) 1594 { 1595 struct btrfs_root *root; 1596 1597 spin_lock(&fs_info->fs_roots_radix_lock); 1598 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1599 (unsigned long)root_id); 1600 spin_unlock(&fs_info->fs_roots_radix_lock); 1601 return root; 1602 } 1603 1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1605 struct btrfs_root *root) 1606 { 1607 int ret; 1608 1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1610 if (ret) 1611 return ret; 1612 1613 spin_lock(&fs_info->fs_roots_radix_lock); 1614 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1615 (unsigned long)root->root_key.objectid, 1616 root); 1617 if (ret == 0) 1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1619 spin_unlock(&fs_info->fs_roots_radix_lock); 1620 radix_tree_preload_end(); 1621 1622 return ret; 1623 } 1624 1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1626 struct btrfs_key *location, 1627 bool check_ref) 1628 { 1629 struct btrfs_root *root; 1630 struct btrfs_path *path; 1631 struct btrfs_key key; 1632 int ret; 1633 1634 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1635 return fs_info->tree_root; 1636 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1637 return fs_info->extent_root; 1638 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1639 return fs_info->chunk_root; 1640 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1641 return fs_info->dev_root; 1642 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1643 return fs_info->csum_root; 1644 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1645 return fs_info->quota_root ? fs_info->quota_root : 1646 ERR_PTR(-ENOENT); 1647 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1648 return fs_info->uuid_root ? fs_info->uuid_root : 1649 ERR_PTR(-ENOENT); 1650 again: 1651 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1652 if (root) { 1653 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1654 return ERR_PTR(-ENOENT); 1655 return root; 1656 } 1657 1658 root = btrfs_read_fs_root(fs_info->tree_root, location); 1659 if (IS_ERR(root)) 1660 return root; 1661 1662 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1663 ret = -ENOENT; 1664 goto fail; 1665 } 1666 1667 ret = btrfs_init_fs_root(root); 1668 if (ret) 1669 goto fail; 1670 1671 path = btrfs_alloc_path(); 1672 if (!path) { 1673 ret = -ENOMEM; 1674 goto fail; 1675 } 1676 key.objectid = BTRFS_ORPHAN_OBJECTID; 1677 key.type = BTRFS_ORPHAN_ITEM_KEY; 1678 key.offset = location->objectid; 1679 1680 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1681 btrfs_free_path(path); 1682 if (ret < 0) 1683 goto fail; 1684 if (ret == 0) 1685 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1686 1687 ret = btrfs_insert_fs_root(fs_info, root); 1688 if (ret) { 1689 if (ret == -EEXIST) { 1690 free_fs_root(root); 1691 goto again; 1692 } 1693 goto fail; 1694 } 1695 return root; 1696 fail: 1697 free_fs_root(root); 1698 return ERR_PTR(ret); 1699 } 1700 1701 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1702 { 1703 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1704 int ret = 0; 1705 struct btrfs_device *device; 1706 struct backing_dev_info *bdi; 1707 1708 rcu_read_lock(); 1709 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1710 if (!device->bdev) 1711 continue; 1712 bdi = blk_get_backing_dev_info(device->bdev); 1713 if (bdi_congested(bdi, bdi_bits)) { 1714 ret = 1; 1715 break; 1716 } 1717 } 1718 rcu_read_unlock(); 1719 return ret; 1720 } 1721 1722 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1723 { 1724 int err; 1725 1726 err = bdi_setup_and_register(bdi, "btrfs"); 1727 if (err) 1728 return err; 1729 1730 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1731 bdi->congested_fn = btrfs_congested_fn; 1732 bdi->congested_data = info; 1733 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1734 return 0; 1735 } 1736 1737 /* 1738 * called by the kthread helper functions to finally call the bio end_io 1739 * functions. This is where read checksum verification actually happens 1740 */ 1741 static void end_workqueue_fn(struct btrfs_work *work) 1742 { 1743 struct bio *bio; 1744 struct btrfs_end_io_wq *end_io_wq; 1745 1746 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1747 bio = end_io_wq->bio; 1748 1749 bio->bi_error = end_io_wq->error; 1750 bio->bi_private = end_io_wq->private; 1751 bio->bi_end_io = end_io_wq->end_io; 1752 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1753 bio_endio(bio); 1754 } 1755 1756 static int cleaner_kthread(void *arg) 1757 { 1758 struct btrfs_root *root = arg; 1759 int again; 1760 struct btrfs_trans_handle *trans; 1761 1762 do { 1763 again = 0; 1764 1765 /* Make the cleaner go to sleep early. */ 1766 if (btrfs_need_cleaner_sleep(root)) 1767 goto sleep; 1768 1769 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1770 goto sleep; 1771 1772 /* 1773 * Avoid the problem that we change the status of the fs 1774 * during the above check and trylock. 1775 */ 1776 if (btrfs_need_cleaner_sleep(root)) { 1777 mutex_unlock(&root->fs_info->cleaner_mutex); 1778 goto sleep; 1779 } 1780 1781 btrfs_run_delayed_iputs(root); 1782 again = btrfs_clean_one_deleted_snapshot(root); 1783 mutex_unlock(&root->fs_info->cleaner_mutex); 1784 1785 /* 1786 * The defragger has dealt with the R/O remount and umount, 1787 * needn't do anything special here. 1788 */ 1789 btrfs_run_defrag_inodes(root->fs_info); 1790 1791 /* 1792 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1793 * with relocation (btrfs_relocate_chunk) and relocation 1794 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1795 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1796 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1797 * unused block groups. 1798 */ 1799 btrfs_delete_unused_bgs(root->fs_info); 1800 sleep: 1801 if (!try_to_freeze() && !again) { 1802 set_current_state(TASK_INTERRUPTIBLE); 1803 if (!kthread_should_stop()) 1804 schedule(); 1805 __set_current_state(TASK_RUNNING); 1806 } 1807 } while (!kthread_should_stop()); 1808 1809 /* 1810 * Transaction kthread is stopped before us and wakes us up. 1811 * However we might have started a new transaction and COWed some 1812 * tree blocks when deleting unused block groups for example. So 1813 * make sure we commit the transaction we started to have a clean 1814 * shutdown when evicting the btree inode - if it has dirty pages 1815 * when we do the final iput() on it, eviction will trigger a 1816 * writeback for it which will fail with null pointer dereferences 1817 * since work queues and other resources were already released and 1818 * destroyed by the time the iput/eviction/writeback is made. 1819 */ 1820 trans = btrfs_attach_transaction(root); 1821 if (IS_ERR(trans)) { 1822 if (PTR_ERR(trans) != -ENOENT) 1823 btrfs_err(root->fs_info, 1824 "cleaner transaction attach returned %ld", 1825 PTR_ERR(trans)); 1826 } else { 1827 int ret; 1828 1829 ret = btrfs_commit_transaction(trans, root); 1830 if (ret) 1831 btrfs_err(root->fs_info, 1832 "cleaner open transaction commit returned %d", 1833 ret); 1834 } 1835 1836 return 0; 1837 } 1838 1839 static int transaction_kthread(void *arg) 1840 { 1841 struct btrfs_root *root = arg; 1842 struct btrfs_trans_handle *trans; 1843 struct btrfs_transaction *cur; 1844 u64 transid; 1845 unsigned long now; 1846 unsigned long delay; 1847 bool cannot_commit; 1848 1849 do { 1850 cannot_commit = false; 1851 delay = HZ * root->fs_info->commit_interval; 1852 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1853 1854 spin_lock(&root->fs_info->trans_lock); 1855 cur = root->fs_info->running_transaction; 1856 if (!cur) { 1857 spin_unlock(&root->fs_info->trans_lock); 1858 goto sleep; 1859 } 1860 1861 now = get_seconds(); 1862 if (cur->state < TRANS_STATE_BLOCKED && 1863 (now < cur->start_time || 1864 now - cur->start_time < root->fs_info->commit_interval)) { 1865 spin_unlock(&root->fs_info->trans_lock); 1866 delay = HZ * 5; 1867 goto sleep; 1868 } 1869 transid = cur->transid; 1870 spin_unlock(&root->fs_info->trans_lock); 1871 1872 /* If the file system is aborted, this will always fail. */ 1873 trans = btrfs_attach_transaction(root); 1874 if (IS_ERR(trans)) { 1875 if (PTR_ERR(trans) != -ENOENT) 1876 cannot_commit = true; 1877 goto sleep; 1878 } 1879 if (transid == trans->transid) { 1880 btrfs_commit_transaction(trans, root); 1881 } else { 1882 btrfs_end_transaction(trans, root); 1883 } 1884 sleep: 1885 wake_up_process(root->fs_info->cleaner_kthread); 1886 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1887 1888 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1889 &root->fs_info->fs_state))) 1890 btrfs_cleanup_transaction(root); 1891 if (!try_to_freeze()) { 1892 set_current_state(TASK_INTERRUPTIBLE); 1893 if (!kthread_should_stop() && 1894 (!btrfs_transaction_blocked(root->fs_info) || 1895 cannot_commit)) 1896 schedule_timeout(delay); 1897 __set_current_state(TASK_RUNNING); 1898 } 1899 } while (!kthread_should_stop()); 1900 return 0; 1901 } 1902 1903 /* 1904 * this will find the highest generation in the array of 1905 * root backups. The index of the highest array is returned, 1906 * or -1 if we can't find anything. 1907 * 1908 * We check to make sure the array is valid by comparing the 1909 * generation of the latest root in the array with the generation 1910 * in the super block. If they don't match we pitch it. 1911 */ 1912 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1913 { 1914 u64 cur; 1915 int newest_index = -1; 1916 struct btrfs_root_backup *root_backup; 1917 int i; 1918 1919 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1920 root_backup = info->super_copy->super_roots + i; 1921 cur = btrfs_backup_tree_root_gen(root_backup); 1922 if (cur == newest_gen) 1923 newest_index = i; 1924 } 1925 1926 /* check to see if we actually wrapped around */ 1927 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1928 root_backup = info->super_copy->super_roots; 1929 cur = btrfs_backup_tree_root_gen(root_backup); 1930 if (cur == newest_gen) 1931 newest_index = 0; 1932 } 1933 return newest_index; 1934 } 1935 1936 1937 /* 1938 * find the oldest backup so we know where to store new entries 1939 * in the backup array. This will set the backup_root_index 1940 * field in the fs_info struct 1941 */ 1942 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1943 u64 newest_gen) 1944 { 1945 int newest_index = -1; 1946 1947 newest_index = find_newest_super_backup(info, newest_gen); 1948 /* if there was garbage in there, just move along */ 1949 if (newest_index == -1) { 1950 info->backup_root_index = 0; 1951 } else { 1952 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1953 } 1954 } 1955 1956 /* 1957 * copy all the root pointers into the super backup array. 1958 * this will bump the backup pointer by one when it is 1959 * done 1960 */ 1961 static void backup_super_roots(struct btrfs_fs_info *info) 1962 { 1963 int next_backup; 1964 struct btrfs_root_backup *root_backup; 1965 int last_backup; 1966 1967 next_backup = info->backup_root_index; 1968 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1969 BTRFS_NUM_BACKUP_ROOTS; 1970 1971 /* 1972 * just overwrite the last backup if we're at the same generation 1973 * this happens only at umount 1974 */ 1975 root_backup = info->super_for_commit->super_roots + last_backup; 1976 if (btrfs_backup_tree_root_gen(root_backup) == 1977 btrfs_header_generation(info->tree_root->node)) 1978 next_backup = last_backup; 1979 1980 root_backup = info->super_for_commit->super_roots + next_backup; 1981 1982 /* 1983 * make sure all of our padding and empty slots get zero filled 1984 * regardless of which ones we use today 1985 */ 1986 memset(root_backup, 0, sizeof(*root_backup)); 1987 1988 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1989 1990 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1991 btrfs_set_backup_tree_root_gen(root_backup, 1992 btrfs_header_generation(info->tree_root->node)); 1993 1994 btrfs_set_backup_tree_root_level(root_backup, 1995 btrfs_header_level(info->tree_root->node)); 1996 1997 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1998 btrfs_set_backup_chunk_root_gen(root_backup, 1999 btrfs_header_generation(info->chunk_root->node)); 2000 btrfs_set_backup_chunk_root_level(root_backup, 2001 btrfs_header_level(info->chunk_root->node)); 2002 2003 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2004 btrfs_set_backup_extent_root_gen(root_backup, 2005 btrfs_header_generation(info->extent_root->node)); 2006 btrfs_set_backup_extent_root_level(root_backup, 2007 btrfs_header_level(info->extent_root->node)); 2008 2009 /* 2010 * we might commit during log recovery, which happens before we set 2011 * the fs_root. Make sure it is valid before we fill it in. 2012 */ 2013 if (info->fs_root && info->fs_root->node) { 2014 btrfs_set_backup_fs_root(root_backup, 2015 info->fs_root->node->start); 2016 btrfs_set_backup_fs_root_gen(root_backup, 2017 btrfs_header_generation(info->fs_root->node)); 2018 btrfs_set_backup_fs_root_level(root_backup, 2019 btrfs_header_level(info->fs_root->node)); 2020 } 2021 2022 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2023 btrfs_set_backup_dev_root_gen(root_backup, 2024 btrfs_header_generation(info->dev_root->node)); 2025 btrfs_set_backup_dev_root_level(root_backup, 2026 btrfs_header_level(info->dev_root->node)); 2027 2028 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2029 btrfs_set_backup_csum_root_gen(root_backup, 2030 btrfs_header_generation(info->csum_root->node)); 2031 btrfs_set_backup_csum_root_level(root_backup, 2032 btrfs_header_level(info->csum_root->node)); 2033 2034 btrfs_set_backup_total_bytes(root_backup, 2035 btrfs_super_total_bytes(info->super_copy)); 2036 btrfs_set_backup_bytes_used(root_backup, 2037 btrfs_super_bytes_used(info->super_copy)); 2038 btrfs_set_backup_num_devices(root_backup, 2039 btrfs_super_num_devices(info->super_copy)); 2040 2041 /* 2042 * if we don't copy this out to the super_copy, it won't get remembered 2043 * for the next commit 2044 */ 2045 memcpy(&info->super_copy->super_roots, 2046 &info->super_for_commit->super_roots, 2047 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2048 } 2049 2050 /* 2051 * this copies info out of the root backup array and back into 2052 * the in-memory super block. It is meant to help iterate through 2053 * the array, so you send it the number of backups you've already 2054 * tried and the last backup index you used. 2055 * 2056 * this returns -1 when it has tried all the backups 2057 */ 2058 static noinline int next_root_backup(struct btrfs_fs_info *info, 2059 struct btrfs_super_block *super, 2060 int *num_backups_tried, int *backup_index) 2061 { 2062 struct btrfs_root_backup *root_backup; 2063 int newest = *backup_index; 2064 2065 if (*num_backups_tried == 0) { 2066 u64 gen = btrfs_super_generation(super); 2067 2068 newest = find_newest_super_backup(info, gen); 2069 if (newest == -1) 2070 return -1; 2071 2072 *backup_index = newest; 2073 *num_backups_tried = 1; 2074 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2075 /* we've tried all the backups, all done */ 2076 return -1; 2077 } else { 2078 /* jump to the next oldest backup */ 2079 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2080 BTRFS_NUM_BACKUP_ROOTS; 2081 *backup_index = newest; 2082 *num_backups_tried += 1; 2083 } 2084 root_backup = super->super_roots + newest; 2085 2086 btrfs_set_super_generation(super, 2087 btrfs_backup_tree_root_gen(root_backup)); 2088 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2089 btrfs_set_super_root_level(super, 2090 btrfs_backup_tree_root_level(root_backup)); 2091 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2092 2093 /* 2094 * fixme: the total bytes and num_devices need to match or we should 2095 * need a fsck 2096 */ 2097 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2098 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2099 return 0; 2100 } 2101 2102 /* helper to cleanup workers */ 2103 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2104 { 2105 btrfs_destroy_workqueue(fs_info->fixup_workers); 2106 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2107 btrfs_destroy_workqueue(fs_info->workers); 2108 btrfs_destroy_workqueue(fs_info->endio_workers); 2109 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2110 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2111 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2112 btrfs_destroy_workqueue(fs_info->rmw_workers); 2113 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2114 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2115 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2116 btrfs_destroy_workqueue(fs_info->submit_workers); 2117 btrfs_destroy_workqueue(fs_info->delayed_workers); 2118 btrfs_destroy_workqueue(fs_info->caching_workers); 2119 btrfs_destroy_workqueue(fs_info->readahead_workers); 2120 btrfs_destroy_workqueue(fs_info->flush_workers); 2121 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2122 btrfs_destroy_workqueue(fs_info->extent_workers); 2123 } 2124 2125 static void free_root_extent_buffers(struct btrfs_root *root) 2126 { 2127 if (root) { 2128 free_extent_buffer(root->node); 2129 free_extent_buffer(root->commit_root); 2130 root->node = NULL; 2131 root->commit_root = NULL; 2132 } 2133 } 2134 2135 /* helper to cleanup tree roots */ 2136 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2137 { 2138 free_root_extent_buffers(info->tree_root); 2139 2140 free_root_extent_buffers(info->dev_root); 2141 free_root_extent_buffers(info->extent_root); 2142 free_root_extent_buffers(info->csum_root); 2143 free_root_extent_buffers(info->quota_root); 2144 free_root_extent_buffers(info->uuid_root); 2145 if (chunk_root) 2146 free_root_extent_buffers(info->chunk_root); 2147 } 2148 2149 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2150 { 2151 int ret; 2152 struct btrfs_root *gang[8]; 2153 int i; 2154 2155 while (!list_empty(&fs_info->dead_roots)) { 2156 gang[0] = list_entry(fs_info->dead_roots.next, 2157 struct btrfs_root, root_list); 2158 list_del(&gang[0]->root_list); 2159 2160 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2161 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2162 } else { 2163 free_extent_buffer(gang[0]->node); 2164 free_extent_buffer(gang[0]->commit_root); 2165 btrfs_put_fs_root(gang[0]); 2166 } 2167 } 2168 2169 while (1) { 2170 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2171 (void **)gang, 0, 2172 ARRAY_SIZE(gang)); 2173 if (!ret) 2174 break; 2175 for (i = 0; i < ret; i++) 2176 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2177 } 2178 2179 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2180 btrfs_free_log_root_tree(NULL, fs_info); 2181 btrfs_destroy_pinned_extent(fs_info->tree_root, 2182 fs_info->pinned_extents); 2183 } 2184 } 2185 2186 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2187 { 2188 mutex_init(&fs_info->scrub_lock); 2189 atomic_set(&fs_info->scrubs_running, 0); 2190 atomic_set(&fs_info->scrub_pause_req, 0); 2191 atomic_set(&fs_info->scrubs_paused, 0); 2192 atomic_set(&fs_info->scrub_cancel_req, 0); 2193 init_waitqueue_head(&fs_info->scrub_pause_wait); 2194 fs_info->scrub_workers_refcnt = 0; 2195 } 2196 2197 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2198 { 2199 spin_lock_init(&fs_info->balance_lock); 2200 mutex_init(&fs_info->balance_mutex); 2201 atomic_set(&fs_info->balance_running, 0); 2202 atomic_set(&fs_info->balance_pause_req, 0); 2203 atomic_set(&fs_info->balance_cancel_req, 0); 2204 fs_info->balance_ctl = NULL; 2205 init_waitqueue_head(&fs_info->balance_wait_q); 2206 } 2207 2208 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2209 struct btrfs_root *tree_root) 2210 { 2211 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2212 set_nlink(fs_info->btree_inode, 1); 2213 /* 2214 * we set the i_size on the btree inode to the max possible int. 2215 * the real end of the address space is determined by all of 2216 * the devices in the system 2217 */ 2218 fs_info->btree_inode->i_size = OFFSET_MAX; 2219 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2220 2221 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2222 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2223 fs_info->btree_inode->i_mapping); 2224 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2225 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2226 2227 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2228 2229 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2230 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2231 sizeof(struct btrfs_key)); 2232 set_bit(BTRFS_INODE_DUMMY, 2233 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2234 btrfs_insert_inode_hash(fs_info->btree_inode); 2235 } 2236 2237 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2238 { 2239 fs_info->dev_replace.lock_owner = 0; 2240 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2241 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2242 mutex_init(&fs_info->dev_replace.lock_management_lock); 2243 mutex_init(&fs_info->dev_replace.lock); 2244 init_waitqueue_head(&fs_info->replace_wait); 2245 } 2246 2247 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2248 { 2249 spin_lock_init(&fs_info->qgroup_lock); 2250 mutex_init(&fs_info->qgroup_ioctl_lock); 2251 fs_info->qgroup_tree = RB_ROOT; 2252 fs_info->qgroup_op_tree = RB_ROOT; 2253 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2254 fs_info->qgroup_seq = 1; 2255 fs_info->quota_enabled = 0; 2256 fs_info->pending_quota_state = 0; 2257 fs_info->qgroup_ulist = NULL; 2258 mutex_init(&fs_info->qgroup_rescan_lock); 2259 } 2260 2261 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2262 struct btrfs_fs_devices *fs_devices) 2263 { 2264 int max_active = fs_info->thread_pool_size; 2265 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2266 2267 fs_info->workers = 2268 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2269 max_active, 16); 2270 2271 fs_info->delalloc_workers = 2272 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2273 2274 fs_info->flush_workers = 2275 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2276 2277 fs_info->caching_workers = 2278 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2279 2280 /* 2281 * a higher idle thresh on the submit workers makes it much more 2282 * likely that bios will be send down in a sane order to the 2283 * devices 2284 */ 2285 fs_info->submit_workers = 2286 btrfs_alloc_workqueue("submit", flags, 2287 min_t(u64, fs_devices->num_devices, 2288 max_active), 64); 2289 2290 fs_info->fixup_workers = 2291 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2292 2293 /* 2294 * endios are largely parallel and should have a very 2295 * low idle thresh 2296 */ 2297 fs_info->endio_workers = 2298 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2299 fs_info->endio_meta_workers = 2300 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2301 fs_info->endio_meta_write_workers = 2302 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2303 fs_info->endio_raid56_workers = 2304 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2305 fs_info->endio_repair_workers = 2306 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2307 fs_info->rmw_workers = 2308 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2309 fs_info->endio_write_workers = 2310 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2311 fs_info->endio_freespace_worker = 2312 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2313 fs_info->delayed_workers = 2314 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2315 fs_info->readahead_workers = 2316 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2317 fs_info->qgroup_rescan_workers = 2318 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2319 fs_info->extent_workers = 2320 btrfs_alloc_workqueue("extent-refs", flags, 2321 min_t(u64, fs_devices->num_devices, 2322 max_active), 8); 2323 2324 if (!(fs_info->workers && fs_info->delalloc_workers && 2325 fs_info->submit_workers && fs_info->flush_workers && 2326 fs_info->endio_workers && fs_info->endio_meta_workers && 2327 fs_info->endio_meta_write_workers && 2328 fs_info->endio_repair_workers && 2329 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2330 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2331 fs_info->caching_workers && fs_info->readahead_workers && 2332 fs_info->fixup_workers && fs_info->delayed_workers && 2333 fs_info->extent_workers && 2334 fs_info->qgroup_rescan_workers)) { 2335 return -ENOMEM; 2336 } 2337 2338 return 0; 2339 } 2340 2341 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2342 struct btrfs_fs_devices *fs_devices) 2343 { 2344 int ret; 2345 struct btrfs_root *tree_root = fs_info->tree_root; 2346 struct btrfs_root *log_tree_root; 2347 struct btrfs_super_block *disk_super = fs_info->super_copy; 2348 u64 bytenr = btrfs_super_log_root(disk_super); 2349 2350 if (fs_devices->rw_devices == 0) { 2351 printk(KERN_WARNING "BTRFS: log replay required " 2352 "on RO media\n"); 2353 return -EIO; 2354 } 2355 2356 log_tree_root = btrfs_alloc_root(fs_info); 2357 if (!log_tree_root) 2358 return -ENOMEM; 2359 2360 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2361 tree_root->stripesize, log_tree_root, fs_info, 2362 BTRFS_TREE_LOG_OBJECTID); 2363 2364 log_tree_root->node = read_tree_block(tree_root, bytenr, 2365 fs_info->generation + 1); 2366 if (IS_ERR(log_tree_root->node)) { 2367 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2368 ret = PTR_ERR(log_tree_root->node); 2369 kfree(log_tree_root); 2370 return ret; 2371 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2372 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2373 free_extent_buffer(log_tree_root->node); 2374 kfree(log_tree_root); 2375 return -EIO; 2376 } 2377 /* returns with log_tree_root freed on success */ 2378 ret = btrfs_recover_log_trees(log_tree_root); 2379 if (ret) { 2380 btrfs_error(tree_root->fs_info, ret, 2381 "Failed to recover log tree"); 2382 free_extent_buffer(log_tree_root->node); 2383 kfree(log_tree_root); 2384 return ret; 2385 } 2386 2387 if (fs_info->sb->s_flags & MS_RDONLY) { 2388 ret = btrfs_commit_super(tree_root); 2389 if (ret) 2390 return ret; 2391 } 2392 2393 return 0; 2394 } 2395 2396 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2397 struct btrfs_root *tree_root) 2398 { 2399 struct btrfs_root *root; 2400 struct btrfs_key location; 2401 int ret; 2402 2403 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2404 location.type = BTRFS_ROOT_ITEM_KEY; 2405 location.offset = 0; 2406 2407 root = btrfs_read_tree_root(tree_root, &location); 2408 if (IS_ERR(root)) 2409 return PTR_ERR(root); 2410 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2411 fs_info->extent_root = root; 2412 2413 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2414 root = btrfs_read_tree_root(tree_root, &location); 2415 if (IS_ERR(root)) 2416 return PTR_ERR(root); 2417 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2418 fs_info->dev_root = root; 2419 btrfs_init_devices_late(fs_info); 2420 2421 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2422 root = btrfs_read_tree_root(tree_root, &location); 2423 if (IS_ERR(root)) 2424 return PTR_ERR(root); 2425 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2426 fs_info->csum_root = root; 2427 2428 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2429 root = btrfs_read_tree_root(tree_root, &location); 2430 if (!IS_ERR(root)) { 2431 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2432 fs_info->quota_enabled = 1; 2433 fs_info->pending_quota_state = 1; 2434 fs_info->quota_root = root; 2435 } 2436 2437 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2438 root = btrfs_read_tree_root(tree_root, &location); 2439 if (IS_ERR(root)) { 2440 ret = PTR_ERR(root); 2441 if (ret != -ENOENT) 2442 return ret; 2443 } else { 2444 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2445 fs_info->uuid_root = root; 2446 } 2447 2448 return 0; 2449 } 2450 2451 int open_ctree(struct super_block *sb, 2452 struct btrfs_fs_devices *fs_devices, 2453 char *options) 2454 { 2455 u32 sectorsize; 2456 u32 nodesize; 2457 u32 stripesize; 2458 u64 generation; 2459 u64 features; 2460 struct btrfs_key location; 2461 struct buffer_head *bh; 2462 struct btrfs_super_block *disk_super; 2463 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2464 struct btrfs_root *tree_root; 2465 struct btrfs_root *chunk_root; 2466 int ret; 2467 int err = -EINVAL; 2468 int num_backups_tried = 0; 2469 int backup_index = 0; 2470 int max_active; 2471 2472 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2473 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2474 if (!tree_root || !chunk_root) { 2475 err = -ENOMEM; 2476 goto fail; 2477 } 2478 2479 ret = init_srcu_struct(&fs_info->subvol_srcu); 2480 if (ret) { 2481 err = ret; 2482 goto fail; 2483 } 2484 2485 ret = setup_bdi(fs_info, &fs_info->bdi); 2486 if (ret) { 2487 err = ret; 2488 goto fail_srcu; 2489 } 2490 2491 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2492 if (ret) { 2493 err = ret; 2494 goto fail_bdi; 2495 } 2496 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2497 (1 + ilog2(nr_cpu_ids)); 2498 2499 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2500 if (ret) { 2501 err = ret; 2502 goto fail_dirty_metadata_bytes; 2503 } 2504 2505 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2506 if (ret) { 2507 err = ret; 2508 goto fail_delalloc_bytes; 2509 } 2510 2511 fs_info->btree_inode = new_inode(sb); 2512 if (!fs_info->btree_inode) { 2513 err = -ENOMEM; 2514 goto fail_bio_counter; 2515 } 2516 2517 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2518 2519 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2520 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2521 INIT_LIST_HEAD(&fs_info->trans_list); 2522 INIT_LIST_HEAD(&fs_info->dead_roots); 2523 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2524 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2525 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2526 spin_lock_init(&fs_info->delalloc_root_lock); 2527 spin_lock_init(&fs_info->trans_lock); 2528 spin_lock_init(&fs_info->fs_roots_radix_lock); 2529 spin_lock_init(&fs_info->delayed_iput_lock); 2530 spin_lock_init(&fs_info->defrag_inodes_lock); 2531 spin_lock_init(&fs_info->free_chunk_lock); 2532 spin_lock_init(&fs_info->tree_mod_seq_lock); 2533 spin_lock_init(&fs_info->super_lock); 2534 spin_lock_init(&fs_info->qgroup_op_lock); 2535 spin_lock_init(&fs_info->buffer_lock); 2536 spin_lock_init(&fs_info->unused_bgs_lock); 2537 rwlock_init(&fs_info->tree_mod_log_lock); 2538 mutex_init(&fs_info->unused_bg_unpin_mutex); 2539 mutex_init(&fs_info->delete_unused_bgs_mutex); 2540 mutex_init(&fs_info->reloc_mutex); 2541 mutex_init(&fs_info->delalloc_root_mutex); 2542 seqlock_init(&fs_info->profiles_lock); 2543 init_rwsem(&fs_info->delayed_iput_sem); 2544 2545 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2546 INIT_LIST_HEAD(&fs_info->space_info); 2547 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2548 INIT_LIST_HEAD(&fs_info->unused_bgs); 2549 btrfs_mapping_init(&fs_info->mapping_tree); 2550 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2551 BTRFS_BLOCK_RSV_GLOBAL); 2552 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2553 BTRFS_BLOCK_RSV_DELALLOC); 2554 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2555 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2556 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2557 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2558 BTRFS_BLOCK_RSV_DELOPS); 2559 atomic_set(&fs_info->nr_async_submits, 0); 2560 atomic_set(&fs_info->async_delalloc_pages, 0); 2561 atomic_set(&fs_info->async_submit_draining, 0); 2562 atomic_set(&fs_info->nr_async_bios, 0); 2563 atomic_set(&fs_info->defrag_running, 0); 2564 atomic_set(&fs_info->qgroup_op_seq, 0); 2565 atomic64_set(&fs_info->tree_mod_seq, 0); 2566 fs_info->sb = sb; 2567 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2568 fs_info->metadata_ratio = 0; 2569 fs_info->defrag_inodes = RB_ROOT; 2570 fs_info->free_chunk_space = 0; 2571 fs_info->tree_mod_log = RB_ROOT; 2572 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2573 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2574 /* readahead state */ 2575 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2576 spin_lock_init(&fs_info->reada_lock); 2577 2578 fs_info->thread_pool_size = min_t(unsigned long, 2579 num_online_cpus() + 2, 8); 2580 2581 INIT_LIST_HEAD(&fs_info->ordered_roots); 2582 spin_lock_init(&fs_info->ordered_root_lock); 2583 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2584 GFP_NOFS); 2585 if (!fs_info->delayed_root) { 2586 err = -ENOMEM; 2587 goto fail_iput; 2588 } 2589 btrfs_init_delayed_root(fs_info->delayed_root); 2590 2591 btrfs_init_scrub(fs_info); 2592 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2593 fs_info->check_integrity_print_mask = 0; 2594 #endif 2595 btrfs_init_balance(fs_info); 2596 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2597 2598 sb->s_blocksize = 4096; 2599 sb->s_blocksize_bits = blksize_bits(4096); 2600 sb->s_bdi = &fs_info->bdi; 2601 2602 btrfs_init_btree_inode(fs_info, tree_root); 2603 2604 spin_lock_init(&fs_info->block_group_cache_lock); 2605 fs_info->block_group_cache_tree = RB_ROOT; 2606 fs_info->first_logical_byte = (u64)-1; 2607 2608 extent_io_tree_init(&fs_info->freed_extents[0], 2609 fs_info->btree_inode->i_mapping); 2610 extent_io_tree_init(&fs_info->freed_extents[1], 2611 fs_info->btree_inode->i_mapping); 2612 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2613 fs_info->do_barriers = 1; 2614 2615 2616 mutex_init(&fs_info->ordered_operations_mutex); 2617 mutex_init(&fs_info->tree_log_mutex); 2618 mutex_init(&fs_info->chunk_mutex); 2619 mutex_init(&fs_info->transaction_kthread_mutex); 2620 mutex_init(&fs_info->cleaner_mutex); 2621 mutex_init(&fs_info->volume_mutex); 2622 mutex_init(&fs_info->ro_block_group_mutex); 2623 init_rwsem(&fs_info->commit_root_sem); 2624 init_rwsem(&fs_info->cleanup_work_sem); 2625 init_rwsem(&fs_info->subvol_sem); 2626 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2627 2628 btrfs_init_dev_replace_locks(fs_info); 2629 btrfs_init_qgroup(fs_info); 2630 2631 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2632 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2633 2634 init_waitqueue_head(&fs_info->transaction_throttle); 2635 init_waitqueue_head(&fs_info->transaction_wait); 2636 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2637 init_waitqueue_head(&fs_info->async_submit_wait); 2638 2639 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2640 2641 ret = btrfs_alloc_stripe_hash_table(fs_info); 2642 if (ret) { 2643 err = ret; 2644 goto fail_alloc; 2645 } 2646 2647 __setup_root(4096, 4096, 4096, tree_root, 2648 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2649 2650 invalidate_bdev(fs_devices->latest_bdev); 2651 2652 /* 2653 * Read super block and check the signature bytes only 2654 */ 2655 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2656 if (!bh) { 2657 err = -EINVAL; 2658 goto fail_alloc; 2659 } 2660 2661 /* 2662 * We want to check superblock checksum, the type is stored inside. 2663 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2664 */ 2665 if (btrfs_check_super_csum(bh->b_data)) { 2666 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2667 err = -EINVAL; 2668 goto fail_alloc; 2669 } 2670 2671 /* 2672 * super_copy is zeroed at allocation time and we never touch the 2673 * following bytes up to INFO_SIZE, the checksum is calculated from 2674 * the whole block of INFO_SIZE 2675 */ 2676 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2677 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2678 sizeof(*fs_info->super_for_commit)); 2679 brelse(bh); 2680 2681 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2682 2683 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2684 if (ret) { 2685 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2686 err = -EINVAL; 2687 goto fail_alloc; 2688 } 2689 2690 disk_super = fs_info->super_copy; 2691 if (!btrfs_super_root(disk_super)) 2692 goto fail_alloc; 2693 2694 /* check FS state, whether FS is broken. */ 2695 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2696 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2697 2698 /* 2699 * run through our array of backup supers and setup 2700 * our ring pointer to the oldest one 2701 */ 2702 generation = btrfs_super_generation(disk_super); 2703 find_oldest_super_backup(fs_info, generation); 2704 2705 /* 2706 * In the long term, we'll store the compression type in the super 2707 * block, and it'll be used for per file compression control. 2708 */ 2709 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2710 2711 ret = btrfs_parse_options(tree_root, options); 2712 if (ret) { 2713 err = ret; 2714 goto fail_alloc; 2715 } 2716 2717 features = btrfs_super_incompat_flags(disk_super) & 2718 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2719 if (features) { 2720 printk(KERN_ERR "BTRFS: couldn't mount because of " 2721 "unsupported optional features (%Lx).\n", 2722 features); 2723 err = -EINVAL; 2724 goto fail_alloc; 2725 } 2726 2727 /* 2728 * Leafsize and nodesize were always equal, this is only a sanity check. 2729 */ 2730 if (le32_to_cpu(disk_super->__unused_leafsize) != 2731 btrfs_super_nodesize(disk_super)) { 2732 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2733 "blocksizes don't match. node %d leaf %d\n", 2734 btrfs_super_nodesize(disk_super), 2735 le32_to_cpu(disk_super->__unused_leafsize)); 2736 err = -EINVAL; 2737 goto fail_alloc; 2738 } 2739 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2740 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2741 "blocksize (%d) was too large\n", 2742 btrfs_super_nodesize(disk_super)); 2743 err = -EINVAL; 2744 goto fail_alloc; 2745 } 2746 2747 features = btrfs_super_incompat_flags(disk_super); 2748 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2749 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2750 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2751 2752 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2753 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2754 2755 /* 2756 * flag our filesystem as having big metadata blocks if 2757 * they are bigger than the page size 2758 */ 2759 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2760 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2761 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2762 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2763 } 2764 2765 nodesize = btrfs_super_nodesize(disk_super); 2766 sectorsize = btrfs_super_sectorsize(disk_super); 2767 stripesize = btrfs_super_stripesize(disk_super); 2768 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2769 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2770 2771 /* 2772 * mixed block groups end up with duplicate but slightly offset 2773 * extent buffers for the same range. It leads to corruptions 2774 */ 2775 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2776 (sectorsize != nodesize)) { 2777 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2778 "are not allowed for mixed block groups on %s\n", 2779 sb->s_id); 2780 goto fail_alloc; 2781 } 2782 2783 /* 2784 * Needn't use the lock because there is no other task which will 2785 * update the flag. 2786 */ 2787 btrfs_set_super_incompat_flags(disk_super, features); 2788 2789 features = btrfs_super_compat_ro_flags(disk_super) & 2790 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2791 if (!(sb->s_flags & MS_RDONLY) && features) { 2792 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2793 "unsupported option features (%Lx).\n", 2794 features); 2795 err = -EINVAL; 2796 goto fail_alloc; 2797 } 2798 2799 max_active = fs_info->thread_pool_size; 2800 2801 ret = btrfs_init_workqueues(fs_info, fs_devices); 2802 if (ret) { 2803 err = ret; 2804 goto fail_sb_buffer; 2805 } 2806 2807 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2808 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2809 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2810 2811 tree_root->nodesize = nodesize; 2812 tree_root->sectorsize = sectorsize; 2813 tree_root->stripesize = stripesize; 2814 2815 sb->s_blocksize = sectorsize; 2816 sb->s_blocksize_bits = blksize_bits(sectorsize); 2817 2818 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2819 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2820 goto fail_sb_buffer; 2821 } 2822 2823 if (sectorsize != PAGE_SIZE) { 2824 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2825 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2826 goto fail_sb_buffer; 2827 } 2828 2829 mutex_lock(&fs_info->chunk_mutex); 2830 ret = btrfs_read_sys_array(tree_root); 2831 mutex_unlock(&fs_info->chunk_mutex); 2832 if (ret) { 2833 printk(KERN_ERR "BTRFS: failed to read the system " 2834 "array on %s\n", sb->s_id); 2835 goto fail_sb_buffer; 2836 } 2837 2838 generation = btrfs_super_chunk_root_generation(disk_super); 2839 2840 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2841 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2842 2843 chunk_root->node = read_tree_block(chunk_root, 2844 btrfs_super_chunk_root(disk_super), 2845 generation); 2846 if (IS_ERR(chunk_root->node) || 2847 !extent_buffer_uptodate(chunk_root->node)) { 2848 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2849 sb->s_id); 2850 chunk_root->node = NULL; 2851 goto fail_tree_roots; 2852 } 2853 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2854 chunk_root->commit_root = btrfs_root_node(chunk_root); 2855 2856 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2857 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2858 2859 ret = btrfs_read_chunk_tree(chunk_root); 2860 if (ret) { 2861 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2862 sb->s_id); 2863 goto fail_tree_roots; 2864 } 2865 2866 /* 2867 * keep the device that is marked to be the target device for the 2868 * dev_replace procedure 2869 */ 2870 btrfs_close_extra_devices(fs_devices, 0); 2871 2872 if (!fs_devices->latest_bdev) { 2873 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2874 sb->s_id); 2875 goto fail_tree_roots; 2876 } 2877 2878 retry_root_backup: 2879 generation = btrfs_super_generation(disk_super); 2880 2881 tree_root->node = read_tree_block(tree_root, 2882 btrfs_super_root(disk_super), 2883 generation); 2884 if (IS_ERR(tree_root->node) || 2885 !extent_buffer_uptodate(tree_root->node)) { 2886 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2887 sb->s_id); 2888 tree_root->node = NULL; 2889 goto recovery_tree_root; 2890 } 2891 2892 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2893 tree_root->commit_root = btrfs_root_node(tree_root); 2894 btrfs_set_root_refs(&tree_root->root_item, 1); 2895 2896 ret = btrfs_read_roots(fs_info, tree_root); 2897 if (ret) 2898 goto recovery_tree_root; 2899 2900 fs_info->generation = generation; 2901 fs_info->last_trans_committed = generation; 2902 2903 ret = btrfs_recover_balance(fs_info); 2904 if (ret) { 2905 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2906 goto fail_block_groups; 2907 } 2908 2909 ret = btrfs_init_dev_stats(fs_info); 2910 if (ret) { 2911 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2912 ret); 2913 goto fail_block_groups; 2914 } 2915 2916 ret = btrfs_init_dev_replace(fs_info); 2917 if (ret) { 2918 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2919 goto fail_block_groups; 2920 } 2921 2922 btrfs_close_extra_devices(fs_devices, 1); 2923 2924 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2925 if (ret) { 2926 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2927 goto fail_block_groups; 2928 } 2929 2930 ret = btrfs_sysfs_add_device(fs_devices); 2931 if (ret) { 2932 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2933 goto fail_fsdev_sysfs; 2934 } 2935 2936 ret = btrfs_sysfs_add_one(fs_info); 2937 if (ret) { 2938 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2939 goto fail_fsdev_sysfs; 2940 } 2941 2942 ret = btrfs_init_space_info(fs_info); 2943 if (ret) { 2944 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2945 goto fail_sysfs; 2946 } 2947 2948 ret = btrfs_read_block_groups(fs_info->extent_root); 2949 if (ret) { 2950 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2951 goto fail_sysfs; 2952 } 2953 fs_info->num_tolerated_disk_barrier_failures = 2954 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2955 if (fs_info->fs_devices->missing_devices > 2956 fs_info->num_tolerated_disk_barrier_failures && 2957 !(sb->s_flags & MS_RDONLY)) { 2958 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n", 2959 fs_info->fs_devices->missing_devices, 2960 fs_info->num_tolerated_disk_barrier_failures); 2961 goto fail_sysfs; 2962 } 2963 2964 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2965 "btrfs-cleaner"); 2966 if (IS_ERR(fs_info->cleaner_kthread)) 2967 goto fail_sysfs; 2968 2969 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2970 tree_root, 2971 "btrfs-transaction"); 2972 if (IS_ERR(fs_info->transaction_kthread)) 2973 goto fail_cleaner; 2974 2975 if (!btrfs_test_opt(tree_root, SSD) && 2976 !btrfs_test_opt(tree_root, NOSSD) && 2977 !fs_info->fs_devices->rotating) { 2978 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2979 "mode\n"); 2980 btrfs_set_opt(fs_info->mount_opt, SSD); 2981 } 2982 2983 /* 2984 * Mount does not set all options immediatelly, we can do it now and do 2985 * not have to wait for transaction commit 2986 */ 2987 btrfs_apply_pending_changes(fs_info); 2988 2989 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2990 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2991 ret = btrfsic_mount(tree_root, fs_devices, 2992 btrfs_test_opt(tree_root, 2993 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2994 1 : 0, 2995 fs_info->check_integrity_print_mask); 2996 if (ret) 2997 printk(KERN_WARNING "BTRFS: failed to initialize" 2998 " integrity check module %s\n", sb->s_id); 2999 } 3000 #endif 3001 ret = btrfs_read_qgroup_config(fs_info); 3002 if (ret) 3003 goto fail_trans_kthread; 3004 3005 /* do not make disk changes in broken FS */ 3006 if (btrfs_super_log_root(disk_super) != 0) { 3007 ret = btrfs_replay_log(fs_info, fs_devices); 3008 if (ret) { 3009 err = ret; 3010 goto fail_qgroup; 3011 } 3012 } 3013 3014 ret = btrfs_find_orphan_roots(tree_root); 3015 if (ret) 3016 goto fail_qgroup; 3017 3018 if (!(sb->s_flags & MS_RDONLY)) { 3019 ret = btrfs_cleanup_fs_roots(fs_info); 3020 if (ret) 3021 goto fail_qgroup; 3022 3023 mutex_lock(&fs_info->cleaner_mutex); 3024 ret = btrfs_recover_relocation(tree_root); 3025 mutex_unlock(&fs_info->cleaner_mutex); 3026 if (ret < 0) { 3027 printk(KERN_WARNING 3028 "BTRFS: failed to recover relocation\n"); 3029 err = -EINVAL; 3030 goto fail_qgroup; 3031 } 3032 } 3033 3034 location.objectid = BTRFS_FS_TREE_OBJECTID; 3035 location.type = BTRFS_ROOT_ITEM_KEY; 3036 location.offset = 0; 3037 3038 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3039 if (IS_ERR(fs_info->fs_root)) { 3040 err = PTR_ERR(fs_info->fs_root); 3041 goto fail_qgroup; 3042 } 3043 3044 if (sb->s_flags & MS_RDONLY) 3045 return 0; 3046 3047 down_read(&fs_info->cleanup_work_sem); 3048 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3049 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3050 up_read(&fs_info->cleanup_work_sem); 3051 close_ctree(tree_root); 3052 return ret; 3053 } 3054 up_read(&fs_info->cleanup_work_sem); 3055 3056 ret = btrfs_resume_balance_async(fs_info); 3057 if (ret) { 3058 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3059 close_ctree(tree_root); 3060 return ret; 3061 } 3062 3063 ret = btrfs_resume_dev_replace_async(fs_info); 3064 if (ret) { 3065 pr_warn("BTRFS: failed to resume dev_replace\n"); 3066 close_ctree(tree_root); 3067 return ret; 3068 } 3069 3070 btrfs_qgroup_rescan_resume(fs_info); 3071 3072 if (!fs_info->uuid_root) { 3073 pr_info("BTRFS: creating UUID tree\n"); 3074 ret = btrfs_create_uuid_tree(fs_info); 3075 if (ret) { 3076 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3077 ret); 3078 close_ctree(tree_root); 3079 return ret; 3080 } 3081 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3082 fs_info->generation != 3083 btrfs_super_uuid_tree_generation(disk_super)) { 3084 pr_info("BTRFS: checking UUID tree\n"); 3085 ret = btrfs_check_uuid_tree(fs_info); 3086 if (ret) { 3087 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3088 ret); 3089 close_ctree(tree_root); 3090 return ret; 3091 } 3092 } else { 3093 fs_info->update_uuid_tree_gen = 1; 3094 } 3095 3096 fs_info->open = 1; 3097 3098 return 0; 3099 3100 fail_qgroup: 3101 btrfs_free_qgroup_config(fs_info); 3102 fail_trans_kthread: 3103 kthread_stop(fs_info->transaction_kthread); 3104 btrfs_cleanup_transaction(fs_info->tree_root); 3105 btrfs_free_fs_roots(fs_info); 3106 fail_cleaner: 3107 kthread_stop(fs_info->cleaner_kthread); 3108 3109 /* 3110 * make sure we're done with the btree inode before we stop our 3111 * kthreads 3112 */ 3113 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3114 3115 fail_sysfs: 3116 btrfs_sysfs_remove_one(fs_info); 3117 3118 fail_fsdev_sysfs: 3119 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3120 3121 fail_block_groups: 3122 btrfs_put_block_group_cache(fs_info); 3123 btrfs_free_block_groups(fs_info); 3124 3125 fail_tree_roots: 3126 free_root_pointers(fs_info, 1); 3127 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3128 3129 fail_sb_buffer: 3130 btrfs_stop_all_workers(fs_info); 3131 fail_alloc: 3132 fail_iput: 3133 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3134 3135 iput(fs_info->btree_inode); 3136 fail_bio_counter: 3137 percpu_counter_destroy(&fs_info->bio_counter); 3138 fail_delalloc_bytes: 3139 percpu_counter_destroy(&fs_info->delalloc_bytes); 3140 fail_dirty_metadata_bytes: 3141 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3142 fail_bdi: 3143 bdi_destroy(&fs_info->bdi); 3144 fail_srcu: 3145 cleanup_srcu_struct(&fs_info->subvol_srcu); 3146 fail: 3147 btrfs_free_stripe_hash_table(fs_info); 3148 btrfs_close_devices(fs_info->fs_devices); 3149 return err; 3150 3151 recovery_tree_root: 3152 if (!btrfs_test_opt(tree_root, RECOVERY)) 3153 goto fail_tree_roots; 3154 3155 free_root_pointers(fs_info, 0); 3156 3157 /* don't use the log in recovery mode, it won't be valid */ 3158 btrfs_set_super_log_root(disk_super, 0); 3159 3160 /* we can't trust the free space cache either */ 3161 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3162 3163 ret = next_root_backup(fs_info, fs_info->super_copy, 3164 &num_backups_tried, &backup_index); 3165 if (ret == -1) 3166 goto fail_block_groups; 3167 goto retry_root_backup; 3168 } 3169 3170 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3171 { 3172 if (uptodate) { 3173 set_buffer_uptodate(bh); 3174 } else { 3175 struct btrfs_device *device = (struct btrfs_device *) 3176 bh->b_private; 3177 3178 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3179 "I/O error on %s\n", 3180 rcu_str_deref(device->name)); 3181 /* note, we dont' set_buffer_write_io_error because we have 3182 * our own ways of dealing with the IO errors 3183 */ 3184 clear_buffer_uptodate(bh); 3185 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3186 } 3187 unlock_buffer(bh); 3188 put_bh(bh); 3189 } 3190 3191 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3192 { 3193 struct buffer_head *bh; 3194 struct buffer_head *latest = NULL; 3195 struct btrfs_super_block *super; 3196 int i; 3197 u64 transid = 0; 3198 u64 bytenr; 3199 3200 /* we would like to check all the supers, but that would make 3201 * a btrfs mount succeed after a mkfs from a different FS. 3202 * So, we need to add a special mount option to scan for 3203 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3204 */ 3205 for (i = 0; i < 1; i++) { 3206 bytenr = btrfs_sb_offset(i); 3207 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3208 i_size_read(bdev->bd_inode)) 3209 break; 3210 bh = __bread(bdev, bytenr / 4096, 3211 BTRFS_SUPER_INFO_SIZE); 3212 if (!bh) 3213 continue; 3214 3215 super = (struct btrfs_super_block *)bh->b_data; 3216 if (btrfs_super_bytenr(super) != bytenr || 3217 btrfs_super_magic(super) != BTRFS_MAGIC) { 3218 brelse(bh); 3219 continue; 3220 } 3221 3222 if (!latest || btrfs_super_generation(super) > transid) { 3223 brelse(latest); 3224 latest = bh; 3225 transid = btrfs_super_generation(super); 3226 } else { 3227 brelse(bh); 3228 } 3229 } 3230 return latest; 3231 } 3232 3233 /* 3234 * this should be called twice, once with wait == 0 and 3235 * once with wait == 1. When wait == 0 is done, all the buffer heads 3236 * we write are pinned. 3237 * 3238 * They are released when wait == 1 is done. 3239 * max_mirrors must be the same for both runs, and it indicates how 3240 * many supers on this one device should be written. 3241 * 3242 * max_mirrors == 0 means to write them all. 3243 */ 3244 static int write_dev_supers(struct btrfs_device *device, 3245 struct btrfs_super_block *sb, 3246 int do_barriers, int wait, int max_mirrors) 3247 { 3248 struct buffer_head *bh; 3249 int i; 3250 int ret; 3251 int errors = 0; 3252 u32 crc; 3253 u64 bytenr; 3254 3255 if (max_mirrors == 0) 3256 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3257 3258 for (i = 0; i < max_mirrors; i++) { 3259 bytenr = btrfs_sb_offset(i); 3260 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3261 device->commit_total_bytes) 3262 break; 3263 3264 if (wait) { 3265 bh = __find_get_block(device->bdev, bytenr / 4096, 3266 BTRFS_SUPER_INFO_SIZE); 3267 if (!bh) { 3268 errors++; 3269 continue; 3270 } 3271 wait_on_buffer(bh); 3272 if (!buffer_uptodate(bh)) 3273 errors++; 3274 3275 /* drop our reference */ 3276 brelse(bh); 3277 3278 /* drop the reference from the wait == 0 run */ 3279 brelse(bh); 3280 continue; 3281 } else { 3282 btrfs_set_super_bytenr(sb, bytenr); 3283 3284 crc = ~(u32)0; 3285 crc = btrfs_csum_data((char *)sb + 3286 BTRFS_CSUM_SIZE, crc, 3287 BTRFS_SUPER_INFO_SIZE - 3288 BTRFS_CSUM_SIZE); 3289 btrfs_csum_final(crc, sb->csum); 3290 3291 /* 3292 * one reference for us, and we leave it for the 3293 * caller 3294 */ 3295 bh = __getblk(device->bdev, bytenr / 4096, 3296 BTRFS_SUPER_INFO_SIZE); 3297 if (!bh) { 3298 printk(KERN_ERR "BTRFS: couldn't get super " 3299 "buffer head for bytenr %Lu\n", bytenr); 3300 errors++; 3301 continue; 3302 } 3303 3304 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3305 3306 /* one reference for submit_bh */ 3307 get_bh(bh); 3308 3309 set_buffer_uptodate(bh); 3310 lock_buffer(bh); 3311 bh->b_end_io = btrfs_end_buffer_write_sync; 3312 bh->b_private = device; 3313 } 3314 3315 /* 3316 * we fua the first super. The others we allow 3317 * to go down lazy. 3318 */ 3319 if (i == 0) 3320 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3321 else 3322 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3323 if (ret) 3324 errors++; 3325 } 3326 return errors < i ? 0 : -1; 3327 } 3328 3329 /* 3330 * endio for the write_dev_flush, this will wake anyone waiting 3331 * for the barrier when it is done 3332 */ 3333 static void btrfs_end_empty_barrier(struct bio *bio) 3334 { 3335 if (bio->bi_private) 3336 complete(bio->bi_private); 3337 bio_put(bio); 3338 } 3339 3340 /* 3341 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3342 * sent down. With wait == 1, it waits for the previous flush. 3343 * 3344 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3345 * capable 3346 */ 3347 static int write_dev_flush(struct btrfs_device *device, int wait) 3348 { 3349 struct bio *bio; 3350 int ret = 0; 3351 3352 if (device->nobarriers) 3353 return 0; 3354 3355 if (wait) { 3356 bio = device->flush_bio; 3357 if (!bio) 3358 return 0; 3359 3360 wait_for_completion(&device->flush_wait); 3361 3362 if (bio->bi_error) { 3363 ret = bio->bi_error; 3364 btrfs_dev_stat_inc_and_print(device, 3365 BTRFS_DEV_STAT_FLUSH_ERRS); 3366 } 3367 3368 /* drop the reference from the wait == 0 run */ 3369 bio_put(bio); 3370 device->flush_bio = NULL; 3371 3372 return ret; 3373 } 3374 3375 /* 3376 * one reference for us, and we leave it for the 3377 * caller 3378 */ 3379 device->flush_bio = NULL; 3380 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3381 if (!bio) 3382 return -ENOMEM; 3383 3384 bio->bi_end_io = btrfs_end_empty_barrier; 3385 bio->bi_bdev = device->bdev; 3386 init_completion(&device->flush_wait); 3387 bio->bi_private = &device->flush_wait; 3388 device->flush_bio = bio; 3389 3390 bio_get(bio); 3391 btrfsic_submit_bio(WRITE_FLUSH, bio); 3392 3393 return 0; 3394 } 3395 3396 /* 3397 * send an empty flush down to each device in parallel, 3398 * then wait for them 3399 */ 3400 static int barrier_all_devices(struct btrfs_fs_info *info) 3401 { 3402 struct list_head *head; 3403 struct btrfs_device *dev; 3404 int errors_send = 0; 3405 int errors_wait = 0; 3406 int ret; 3407 3408 /* send down all the barriers */ 3409 head = &info->fs_devices->devices; 3410 list_for_each_entry_rcu(dev, head, dev_list) { 3411 if (dev->missing) 3412 continue; 3413 if (!dev->bdev) { 3414 errors_send++; 3415 continue; 3416 } 3417 if (!dev->in_fs_metadata || !dev->writeable) 3418 continue; 3419 3420 ret = write_dev_flush(dev, 0); 3421 if (ret) 3422 errors_send++; 3423 } 3424 3425 /* wait for all the barriers */ 3426 list_for_each_entry_rcu(dev, head, dev_list) { 3427 if (dev->missing) 3428 continue; 3429 if (!dev->bdev) { 3430 errors_wait++; 3431 continue; 3432 } 3433 if (!dev->in_fs_metadata || !dev->writeable) 3434 continue; 3435 3436 ret = write_dev_flush(dev, 1); 3437 if (ret) 3438 errors_wait++; 3439 } 3440 if (errors_send > info->num_tolerated_disk_barrier_failures || 3441 errors_wait > info->num_tolerated_disk_barrier_failures) 3442 return -EIO; 3443 return 0; 3444 } 3445 3446 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3447 { 3448 if ((flags & (BTRFS_BLOCK_GROUP_DUP | 3449 BTRFS_BLOCK_GROUP_RAID0 | 3450 BTRFS_AVAIL_ALLOC_BIT_SINGLE)) || 3451 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)) 3452 return 0; 3453 3454 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3455 BTRFS_BLOCK_GROUP_RAID5 | 3456 BTRFS_BLOCK_GROUP_RAID10)) 3457 return 1; 3458 3459 if (flags & BTRFS_BLOCK_GROUP_RAID6) 3460 return 2; 3461 3462 pr_warn("BTRFS: unknown raid type: %llu\n", flags); 3463 return 0; 3464 } 3465 3466 int btrfs_calc_num_tolerated_disk_barrier_failures( 3467 struct btrfs_fs_info *fs_info) 3468 { 3469 struct btrfs_ioctl_space_info space; 3470 struct btrfs_space_info *sinfo; 3471 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3472 BTRFS_BLOCK_GROUP_SYSTEM, 3473 BTRFS_BLOCK_GROUP_METADATA, 3474 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3475 int i; 3476 int c; 3477 int num_tolerated_disk_barrier_failures = 3478 (int)fs_info->fs_devices->num_devices; 3479 3480 for (i = 0; i < ARRAY_SIZE(types); i++) { 3481 struct btrfs_space_info *tmp; 3482 3483 sinfo = NULL; 3484 rcu_read_lock(); 3485 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3486 if (tmp->flags == types[i]) { 3487 sinfo = tmp; 3488 break; 3489 } 3490 } 3491 rcu_read_unlock(); 3492 3493 if (!sinfo) 3494 continue; 3495 3496 down_read(&sinfo->groups_sem); 3497 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3498 u64 flags; 3499 3500 if (list_empty(&sinfo->block_groups[c])) 3501 continue; 3502 3503 btrfs_get_block_group_info(&sinfo->block_groups[c], 3504 &space); 3505 if (space.total_bytes == 0 || space.used_bytes == 0) 3506 continue; 3507 flags = space.flags; 3508 3509 num_tolerated_disk_barrier_failures = min( 3510 num_tolerated_disk_barrier_failures, 3511 btrfs_get_num_tolerated_disk_barrier_failures( 3512 flags)); 3513 } 3514 up_read(&sinfo->groups_sem); 3515 } 3516 3517 return num_tolerated_disk_barrier_failures; 3518 } 3519 3520 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3521 { 3522 struct list_head *head; 3523 struct btrfs_device *dev; 3524 struct btrfs_super_block *sb; 3525 struct btrfs_dev_item *dev_item; 3526 int ret; 3527 int do_barriers; 3528 int max_errors; 3529 int total_errors = 0; 3530 u64 flags; 3531 3532 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3533 backup_super_roots(root->fs_info); 3534 3535 sb = root->fs_info->super_for_commit; 3536 dev_item = &sb->dev_item; 3537 3538 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3539 head = &root->fs_info->fs_devices->devices; 3540 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3541 3542 if (do_barriers) { 3543 ret = barrier_all_devices(root->fs_info); 3544 if (ret) { 3545 mutex_unlock( 3546 &root->fs_info->fs_devices->device_list_mutex); 3547 btrfs_error(root->fs_info, ret, 3548 "errors while submitting device barriers."); 3549 return ret; 3550 } 3551 } 3552 3553 list_for_each_entry_rcu(dev, head, dev_list) { 3554 if (!dev->bdev) { 3555 total_errors++; 3556 continue; 3557 } 3558 if (!dev->in_fs_metadata || !dev->writeable) 3559 continue; 3560 3561 btrfs_set_stack_device_generation(dev_item, 0); 3562 btrfs_set_stack_device_type(dev_item, dev->type); 3563 btrfs_set_stack_device_id(dev_item, dev->devid); 3564 btrfs_set_stack_device_total_bytes(dev_item, 3565 dev->commit_total_bytes); 3566 btrfs_set_stack_device_bytes_used(dev_item, 3567 dev->commit_bytes_used); 3568 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3569 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3570 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3571 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3572 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3573 3574 flags = btrfs_super_flags(sb); 3575 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3576 3577 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3578 if (ret) 3579 total_errors++; 3580 } 3581 if (total_errors > max_errors) { 3582 btrfs_err(root->fs_info, "%d errors while writing supers", 3583 total_errors); 3584 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3585 3586 /* FUA is masked off if unsupported and can't be the reason */ 3587 btrfs_error(root->fs_info, -EIO, 3588 "%d errors while writing supers", total_errors); 3589 return -EIO; 3590 } 3591 3592 total_errors = 0; 3593 list_for_each_entry_rcu(dev, head, dev_list) { 3594 if (!dev->bdev) 3595 continue; 3596 if (!dev->in_fs_metadata || !dev->writeable) 3597 continue; 3598 3599 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3600 if (ret) 3601 total_errors++; 3602 } 3603 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3604 if (total_errors > max_errors) { 3605 btrfs_error(root->fs_info, -EIO, 3606 "%d errors while writing supers", total_errors); 3607 return -EIO; 3608 } 3609 return 0; 3610 } 3611 3612 int write_ctree_super(struct btrfs_trans_handle *trans, 3613 struct btrfs_root *root, int max_mirrors) 3614 { 3615 return write_all_supers(root, max_mirrors); 3616 } 3617 3618 /* Drop a fs root from the radix tree and free it. */ 3619 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3620 struct btrfs_root *root) 3621 { 3622 spin_lock(&fs_info->fs_roots_radix_lock); 3623 radix_tree_delete(&fs_info->fs_roots_radix, 3624 (unsigned long)root->root_key.objectid); 3625 spin_unlock(&fs_info->fs_roots_radix_lock); 3626 3627 if (btrfs_root_refs(&root->root_item) == 0) 3628 synchronize_srcu(&fs_info->subvol_srcu); 3629 3630 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3631 btrfs_free_log(NULL, root); 3632 3633 if (root->free_ino_pinned) 3634 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3635 if (root->free_ino_ctl) 3636 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3637 free_fs_root(root); 3638 } 3639 3640 static void free_fs_root(struct btrfs_root *root) 3641 { 3642 iput(root->ino_cache_inode); 3643 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3644 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3645 root->orphan_block_rsv = NULL; 3646 if (root->anon_dev) 3647 free_anon_bdev(root->anon_dev); 3648 if (root->subv_writers) 3649 btrfs_free_subvolume_writers(root->subv_writers); 3650 free_extent_buffer(root->node); 3651 free_extent_buffer(root->commit_root); 3652 kfree(root->free_ino_ctl); 3653 kfree(root->free_ino_pinned); 3654 kfree(root->name); 3655 btrfs_put_fs_root(root); 3656 } 3657 3658 void btrfs_free_fs_root(struct btrfs_root *root) 3659 { 3660 free_fs_root(root); 3661 } 3662 3663 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3664 { 3665 u64 root_objectid = 0; 3666 struct btrfs_root *gang[8]; 3667 int i = 0; 3668 int err = 0; 3669 unsigned int ret = 0; 3670 int index; 3671 3672 while (1) { 3673 index = srcu_read_lock(&fs_info->subvol_srcu); 3674 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3675 (void **)gang, root_objectid, 3676 ARRAY_SIZE(gang)); 3677 if (!ret) { 3678 srcu_read_unlock(&fs_info->subvol_srcu, index); 3679 break; 3680 } 3681 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3682 3683 for (i = 0; i < ret; i++) { 3684 /* Avoid to grab roots in dead_roots */ 3685 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3686 gang[i] = NULL; 3687 continue; 3688 } 3689 /* grab all the search result for later use */ 3690 gang[i] = btrfs_grab_fs_root(gang[i]); 3691 } 3692 srcu_read_unlock(&fs_info->subvol_srcu, index); 3693 3694 for (i = 0; i < ret; i++) { 3695 if (!gang[i]) 3696 continue; 3697 root_objectid = gang[i]->root_key.objectid; 3698 err = btrfs_orphan_cleanup(gang[i]); 3699 if (err) 3700 break; 3701 btrfs_put_fs_root(gang[i]); 3702 } 3703 root_objectid++; 3704 } 3705 3706 /* release the uncleaned roots due to error */ 3707 for (; i < ret; i++) { 3708 if (gang[i]) 3709 btrfs_put_fs_root(gang[i]); 3710 } 3711 return err; 3712 } 3713 3714 int btrfs_commit_super(struct btrfs_root *root) 3715 { 3716 struct btrfs_trans_handle *trans; 3717 3718 mutex_lock(&root->fs_info->cleaner_mutex); 3719 btrfs_run_delayed_iputs(root); 3720 mutex_unlock(&root->fs_info->cleaner_mutex); 3721 wake_up_process(root->fs_info->cleaner_kthread); 3722 3723 /* wait until ongoing cleanup work done */ 3724 down_write(&root->fs_info->cleanup_work_sem); 3725 up_write(&root->fs_info->cleanup_work_sem); 3726 3727 trans = btrfs_join_transaction(root); 3728 if (IS_ERR(trans)) 3729 return PTR_ERR(trans); 3730 return btrfs_commit_transaction(trans, root); 3731 } 3732 3733 void close_ctree(struct btrfs_root *root) 3734 { 3735 struct btrfs_fs_info *fs_info = root->fs_info; 3736 int ret; 3737 3738 fs_info->closing = 1; 3739 smp_mb(); 3740 3741 /* wait for the uuid_scan task to finish */ 3742 down(&fs_info->uuid_tree_rescan_sem); 3743 /* avoid complains from lockdep et al., set sem back to initial state */ 3744 up(&fs_info->uuid_tree_rescan_sem); 3745 3746 /* pause restriper - we want to resume on mount */ 3747 btrfs_pause_balance(fs_info); 3748 3749 btrfs_dev_replace_suspend_for_unmount(fs_info); 3750 3751 btrfs_scrub_cancel(fs_info); 3752 3753 /* wait for any defraggers to finish */ 3754 wait_event(fs_info->transaction_wait, 3755 (atomic_read(&fs_info->defrag_running) == 0)); 3756 3757 /* clear out the rbtree of defraggable inodes */ 3758 btrfs_cleanup_defrag_inodes(fs_info); 3759 3760 cancel_work_sync(&fs_info->async_reclaim_work); 3761 3762 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3763 /* 3764 * If the cleaner thread is stopped and there are 3765 * block groups queued for removal, the deletion will be 3766 * skipped when we quit the cleaner thread. 3767 */ 3768 btrfs_delete_unused_bgs(root->fs_info); 3769 3770 ret = btrfs_commit_super(root); 3771 if (ret) 3772 btrfs_err(fs_info, "commit super ret %d", ret); 3773 } 3774 3775 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3776 btrfs_error_commit_super(root); 3777 3778 kthread_stop(fs_info->transaction_kthread); 3779 kthread_stop(fs_info->cleaner_kthread); 3780 3781 fs_info->closing = 2; 3782 smp_mb(); 3783 3784 btrfs_free_qgroup_config(fs_info); 3785 3786 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3787 btrfs_info(fs_info, "at unmount delalloc count %lld", 3788 percpu_counter_sum(&fs_info->delalloc_bytes)); 3789 } 3790 3791 btrfs_sysfs_remove_one(fs_info); 3792 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3793 3794 btrfs_free_fs_roots(fs_info); 3795 3796 btrfs_put_block_group_cache(fs_info); 3797 3798 btrfs_free_block_groups(fs_info); 3799 3800 /* 3801 * we must make sure there is not any read request to 3802 * submit after we stopping all workers. 3803 */ 3804 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3805 btrfs_stop_all_workers(fs_info); 3806 3807 fs_info->open = 0; 3808 free_root_pointers(fs_info, 1); 3809 3810 iput(fs_info->btree_inode); 3811 3812 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3813 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3814 btrfsic_unmount(root, fs_info->fs_devices); 3815 #endif 3816 3817 btrfs_close_devices(fs_info->fs_devices); 3818 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3819 3820 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3821 percpu_counter_destroy(&fs_info->delalloc_bytes); 3822 percpu_counter_destroy(&fs_info->bio_counter); 3823 bdi_destroy(&fs_info->bdi); 3824 cleanup_srcu_struct(&fs_info->subvol_srcu); 3825 3826 btrfs_free_stripe_hash_table(fs_info); 3827 3828 __btrfs_free_block_rsv(root->orphan_block_rsv); 3829 root->orphan_block_rsv = NULL; 3830 3831 lock_chunks(root); 3832 while (!list_empty(&fs_info->pinned_chunks)) { 3833 struct extent_map *em; 3834 3835 em = list_first_entry(&fs_info->pinned_chunks, 3836 struct extent_map, list); 3837 list_del_init(&em->list); 3838 free_extent_map(em); 3839 } 3840 unlock_chunks(root); 3841 } 3842 3843 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3844 int atomic) 3845 { 3846 int ret; 3847 struct inode *btree_inode = buf->pages[0]->mapping->host; 3848 3849 ret = extent_buffer_uptodate(buf); 3850 if (!ret) 3851 return ret; 3852 3853 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3854 parent_transid, atomic); 3855 if (ret == -EAGAIN) 3856 return ret; 3857 return !ret; 3858 } 3859 3860 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3861 { 3862 return set_extent_buffer_uptodate(buf); 3863 } 3864 3865 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3866 { 3867 struct btrfs_root *root; 3868 u64 transid = btrfs_header_generation(buf); 3869 int was_dirty; 3870 3871 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3872 /* 3873 * This is a fast path so only do this check if we have sanity tests 3874 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3875 * outside of the sanity tests. 3876 */ 3877 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3878 return; 3879 #endif 3880 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3881 btrfs_assert_tree_locked(buf); 3882 if (transid != root->fs_info->generation) 3883 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3884 "found %llu running %llu\n", 3885 buf->start, transid, root->fs_info->generation); 3886 was_dirty = set_extent_buffer_dirty(buf); 3887 if (!was_dirty) 3888 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3889 buf->len, 3890 root->fs_info->dirty_metadata_batch); 3891 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3892 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3893 btrfs_print_leaf(root, buf); 3894 ASSERT(0); 3895 } 3896 #endif 3897 } 3898 3899 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3900 int flush_delayed) 3901 { 3902 /* 3903 * looks as though older kernels can get into trouble with 3904 * this code, they end up stuck in balance_dirty_pages forever 3905 */ 3906 int ret; 3907 3908 if (current->flags & PF_MEMALLOC) 3909 return; 3910 3911 if (flush_delayed) 3912 btrfs_balance_delayed_items(root); 3913 3914 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3915 BTRFS_DIRTY_METADATA_THRESH); 3916 if (ret > 0) { 3917 balance_dirty_pages_ratelimited( 3918 root->fs_info->btree_inode->i_mapping); 3919 } 3920 return; 3921 } 3922 3923 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3924 { 3925 __btrfs_btree_balance_dirty(root, 1); 3926 } 3927 3928 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3929 { 3930 __btrfs_btree_balance_dirty(root, 0); 3931 } 3932 3933 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3934 { 3935 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3936 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3937 } 3938 3939 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3940 int read_only) 3941 { 3942 struct btrfs_super_block *sb = fs_info->super_copy; 3943 int ret = 0; 3944 3945 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3946 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3947 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3948 ret = -EINVAL; 3949 } 3950 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3951 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3952 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3953 ret = -EINVAL; 3954 } 3955 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3956 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3957 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3958 ret = -EINVAL; 3959 } 3960 3961 /* 3962 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3963 * items yet, they'll be verified later. Issue just a warning. 3964 */ 3965 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3966 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3967 btrfs_super_root(sb)); 3968 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3969 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 3970 btrfs_super_chunk_root(sb)); 3971 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3972 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 3973 btrfs_super_log_root(sb)); 3974 3975 /* 3976 * Check the lower bound, the alignment and other constraints are 3977 * checked later. 3978 */ 3979 if (btrfs_super_nodesize(sb) < 4096) { 3980 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 3981 btrfs_super_nodesize(sb)); 3982 ret = -EINVAL; 3983 } 3984 if (btrfs_super_sectorsize(sb) < 4096) { 3985 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 3986 btrfs_super_sectorsize(sb)); 3987 ret = -EINVAL; 3988 } 3989 3990 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3991 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3992 fs_info->fsid, sb->dev_item.fsid); 3993 ret = -EINVAL; 3994 } 3995 3996 /* 3997 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3998 * done later 3999 */ 4000 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4001 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4002 btrfs_super_num_devices(sb)); 4003 if (btrfs_super_num_devices(sb) == 0) { 4004 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4005 ret = -EINVAL; 4006 } 4007 4008 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4009 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4010 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4011 ret = -EINVAL; 4012 } 4013 4014 /* 4015 * Obvious sys_chunk_array corruptions, it must hold at least one key 4016 * and one chunk 4017 */ 4018 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4019 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4020 btrfs_super_sys_array_size(sb), 4021 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4022 ret = -EINVAL; 4023 } 4024 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4025 + sizeof(struct btrfs_chunk)) { 4026 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4027 btrfs_super_sys_array_size(sb), 4028 sizeof(struct btrfs_disk_key) 4029 + sizeof(struct btrfs_chunk)); 4030 ret = -EINVAL; 4031 } 4032 4033 /* 4034 * The generation is a global counter, we'll trust it more than the others 4035 * but it's still possible that it's the one that's wrong. 4036 */ 4037 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4038 printk(KERN_WARNING 4039 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4040 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4041 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4042 && btrfs_super_cache_generation(sb) != (u64)-1) 4043 printk(KERN_WARNING 4044 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4045 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4046 4047 return ret; 4048 } 4049 4050 static void btrfs_error_commit_super(struct btrfs_root *root) 4051 { 4052 mutex_lock(&root->fs_info->cleaner_mutex); 4053 btrfs_run_delayed_iputs(root); 4054 mutex_unlock(&root->fs_info->cleaner_mutex); 4055 4056 down_write(&root->fs_info->cleanup_work_sem); 4057 up_write(&root->fs_info->cleanup_work_sem); 4058 4059 /* cleanup FS via transaction */ 4060 btrfs_cleanup_transaction(root); 4061 } 4062 4063 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4064 { 4065 struct btrfs_ordered_extent *ordered; 4066 4067 spin_lock(&root->ordered_extent_lock); 4068 /* 4069 * This will just short circuit the ordered completion stuff which will 4070 * make sure the ordered extent gets properly cleaned up. 4071 */ 4072 list_for_each_entry(ordered, &root->ordered_extents, 4073 root_extent_list) 4074 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4075 spin_unlock(&root->ordered_extent_lock); 4076 } 4077 4078 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4079 { 4080 struct btrfs_root *root; 4081 struct list_head splice; 4082 4083 INIT_LIST_HEAD(&splice); 4084 4085 spin_lock(&fs_info->ordered_root_lock); 4086 list_splice_init(&fs_info->ordered_roots, &splice); 4087 while (!list_empty(&splice)) { 4088 root = list_first_entry(&splice, struct btrfs_root, 4089 ordered_root); 4090 list_move_tail(&root->ordered_root, 4091 &fs_info->ordered_roots); 4092 4093 spin_unlock(&fs_info->ordered_root_lock); 4094 btrfs_destroy_ordered_extents(root); 4095 4096 cond_resched(); 4097 spin_lock(&fs_info->ordered_root_lock); 4098 } 4099 spin_unlock(&fs_info->ordered_root_lock); 4100 } 4101 4102 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4103 struct btrfs_root *root) 4104 { 4105 struct rb_node *node; 4106 struct btrfs_delayed_ref_root *delayed_refs; 4107 struct btrfs_delayed_ref_node *ref; 4108 int ret = 0; 4109 4110 delayed_refs = &trans->delayed_refs; 4111 4112 spin_lock(&delayed_refs->lock); 4113 if (atomic_read(&delayed_refs->num_entries) == 0) { 4114 spin_unlock(&delayed_refs->lock); 4115 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4116 return ret; 4117 } 4118 4119 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4120 struct btrfs_delayed_ref_head *head; 4121 struct btrfs_delayed_ref_node *tmp; 4122 bool pin_bytes = false; 4123 4124 head = rb_entry(node, struct btrfs_delayed_ref_head, 4125 href_node); 4126 if (!mutex_trylock(&head->mutex)) { 4127 atomic_inc(&head->node.refs); 4128 spin_unlock(&delayed_refs->lock); 4129 4130 mutex_lock(&head->mutex); 4131 mutex_unlock(&head->mutex); 4132 btrfs_put_delayed_ref(&head->node); 4133 spin_lock(&delayed_refs->lock); 4134 continue; 4135 } 4136 spin_lock(&head->lock); 4137 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4138 list) { 4139 ref->in_tree = 0; 4140 list_del(&ref->list); 4141 atomic_dec(&delayed_refs->num_entries); 4142 btrfs_put_delayed_ref(ref); 4143 } 4144 if (head->must_insert_reserved) 4145 pin_bytes = true; 4146 btrfs_free_delayed_extent_op(head->extent_op); 4147 delayed_refs->num_heads--; 4148 if (head->processing == 0) 4149 delayed_refs->num_heads_ready--; 4150 atomic_dec(&delayed_refs->num_entries); 4151 head->node.in_tree = 0; 4152 rb_erase(&head->href_node, &delayed_refs->href_root); 4153 spin_unlock(&head->lock); 4154 spin_unlock(&delayed_refs->lock); 4155 mutex_unlock(&head->mutex); 4156 4157 if (pin_bytes) 4158 btrfs_pin_extent(root, head->node.bytenr, 4159 head->node.num_bytes, 1); 4160 btrfs_put_delayed_ref(&head->node); 4161 cond_resched(); 4162 spin_lock(&delayed_refs->lock); 4163 } 4164 4165 spin_unlock(&delayed_refs->lock); 4166 4167 return ret; 4168 } 4169 4170 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4171 { 4172 struct btrfs_inode *btrfs_inode; 4173 struct list_head splice; 4174 4175 INIT_LIST_HEAD(&splice); 4176 4177 spin_lock(&root->delalloc_lock); 4178 list_splice_init(&root->delalloc_inodes, &splice); 4179 4180 while (!list_empty(&splice)) { 4181 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4182 delalloc_inodes); 4183 4184 list_del_init(&btrfs_inode->delalloc_inodes); 4185 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4186 &btrfs_inode->runtime_flags); 4187 spin_unlock(&root->delalloc_lock); 4188 4189 btrfs_invalidate_inodes(btrfs_inode->root); 4190 4191 spin_lock(&root->delalloc_lock); 4192 } 4193 4194 spin_unlock(&root->delalloc_lock); 4195 } 4196 4197 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4198 { 4199 struct btrfs_root *root; 4200 struct list_head splice; 4201 4202 INIT_LIST_HEAD(&splice); 4203 4204 spin_lock(&fs_info->delalloc_root_lock); 4205 list_splice_init(&fs_info->delalloc_roots, &splice); 4206 while (!list_empty(&splice)) { 4207 root = list_first_entry(&splice, struct btrfs_root, 4208 delalloc_root); 4209 list_del_init(&root->delalloc_root); 4210 root = btrfs_grab_fs_root(root); 4211 BUG_ON(!root); 4212 spin_unlock(&fs_info->delalloc_root_lock); 4213 4214 btrfs_destroy_delalloc_inodes(root); 4215 btrfs_put_fs_root(root); 4216 4217 spin_lock(&fs_info->delalloc_root_lock); 4218 } 4219 spin_unlock(&fs_info->delalloc_root_lock); 4220 } 4221 4222 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4223 struct extent_io_tree *dirty_pages, 4224 int mark) 4225 { 4226 int ret; 4227 struct extent_buffer *eb; 4228 u64 start = 0; 4229 u64 end; 4230 4231 while (1) { 4232 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4233 mark, NULL); 4234 if (ret) 4235 break; 4236 4237 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4238 while (start <= end) { 4239 eb = btrfs_find_tree_block(root->fs_info, start); 4240 start += root->nodesize; 4241 if (!eb) 4242 continue; 4243 wait_on_extent_buffer_writeback(eb); 4244 4245 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4246 &eb->bflags)) 4247 clear_extent_buffer_dirty(eb); 4248 free_extent_buffer_stale(eb); 4249 } 4250 } 4251 4252 return ret; 4253 } 4254 4255 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4256 struct extent_io_tree *pinned_extents) 4257 { 4258 struct extent_io_tree *unpin; 4259 u64 start; 4260 u64 end; 4261 int ret; 4262 bool loop = true; 4263 4264 unpin = pinned_extents; 4265 again: 4266 while (1) { 4267 ret = find_first_extent_bit(unpin, 0, &start, &end, 4268 EXTENT_DIRTY, NULL); 4269 if (ret) 4270 break; 4271 4272 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4273 btrfs_error_unpin_extent_range(root, start, end); 4274 cond_resched(); 4275 } 4276 4277 if (loop) { 4278 if (unpin == &root->fs_info->freed_extents[0]) 4279 unpin = &root->fs_info->freed_extents[1]; 4280 else 4281 unpin = &root->fs_info->freed_extents[0]; 4282 loop = false; 4283 goto again; 4284 } 4285 4286 return 0; 4287 } 4288 4289 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4290 struct btrfs_fs_info *fs_info) 4291 { 4292 struct btrfs_ordered_extent *ordered; 4293 4294 spin_lock(&fs_info->trans_lock); 4295 while (!list_empty(&cur_trans->pending_ordered)) { 4296 ordered = list_first_entry(&cur_trans->pending_ordered, 4297 struct btrfs_ordered_extent, 4298 trans_list); 4299 list_del_init(&ordered->trans_list); 4300 spin_unlock(&fs_info->trans_lock); 4301 4302 btrfs_put_ordered_extent(ordered); 4303 spin_lock(&fs_info->trans_lock); 4304 } 4305 spin_unlock(&fs_info->trans_lock); 4306 } 4307 4308 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4309 struct btrfs_root *root) 4310 { 4311 btrfs_destroy_delayed_refs(cur_trans, root); 4312 4313 cur_trans->state = TRANS_STATE_COMMIT_START; 4314 wake_up(&root->fs_info->transaction_blocked_wait); 4315 4316 cur_trans->state = TRANS_STATE_UNBLOCKED; 4317 wake_up(&root->fs_info->transaction_wait); 4318 4319 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4320 btrfs_destroy_delayed_inodes(root); 4321 btrfs_assert_delayed_root_empty(root); 4322 4323 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4324 EXTENT_DIRTY); 4325 btrfs_destroy_pinned_extent(root, 4326 root->fs_info->pinned_extents); 4327 4328 cur_trans->state =TRANS_STATE_COMPLETED; 4329 wake_up(&cur_trans->commit_wait); 4330 4331 /* 4332 memset(cur_trans, 0, sizeof(*cur_trans)); 4333 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4334 */ 4335 } 4336 4337 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4338 { 4339 struct btrfs_transaction *t; 4340 4341 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4342 4343 spin_lock(&root->fs_info->trans_lock); 4344 while (!list_empty(&root->fs_info->trans_list)) { 4345 t = list_first_entry(&root->fs_info->trans_list, 4346 struct btrfs_transaction, list); 4347 if (t->state >= TRANS_STATE_COMMIT_START) { 4348 atomic_inc(&t->use_count); 4349 spin_unlock(&root->fs_info->trans_lock); 4350 btrfs_wait_for_commit(root, t->transid); 4351 btrfs_put_transaction(t); 4352 spin_lock(&root->fs_info->trans_lock); 4353 continue; 4354 } 4355 if (t == root->fs_info->running_transaction) { 4356 t->state = TRANS_STATE_COMMIT_DOING; 4357 spin_unlock(&root->fs_info->trans_lock); 4358 /* 4359 * We wait for 0 num_writers since we don't hold a trans 4360 * handle open currently for this transaction. 4361 */ 4362 wait_event(t->writer_wait, 4363 atomic_read(&t->num_writers) == 0); 4364 } else { 4365 spin_unlock(&root->fs_info->trans_lock); 4366 } 4367 btrfs_cleanup_one_transaction(t, root); 4368 4369 spin_lock(&root->fs_info->trans_lock); 4370 if (t == root->fs_info->running_transaction) 4371 root->fs_info->running_transaction = NULL; 4372 list_del_init(&t->list); 4373 spin_unlock(&root->fs_info->trans_lock); 4374 4375 btrfs_put_transaction(t); 4376 trace_btrfs_transaction_commit(root); 4377 spin_lock(&root->fs_info->trans_lock); 4378 } 4379 spin_unlock(&root->fs_info->trans_lock); 4380 btrfs_destroy_all_ordered_extents(root->fs_info); 4381 btrfs_destroy_delayed_inodes(root); 4382 btrfs_assert_delayed_root_empty(root); 4383 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4384 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4385 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4386 4387 return 0; 4388 } 4389 4390 static const struct extent_io_ops btree_extent_io_ops = { 4391 .readpage_end_io_hook = btree_readpage_end_io_hook, 4392 .readpage_io_failed_hook = btree_io_failed_hook, 4393 .submit_bio_hook = btree_submit_bio_hook, 4394 /* note we're sharing with inode.c for the merge bio hook */ 4395 .merge_bio_hook = btrfs_merge_bio_hook, 4396 }; 4397