1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include "compat.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "tree-log.h" 40 #include "free-space-cache.h" 41 42 static struct extent_io_ops btree_extent_io_ops; 43 static void end_workqueue_fn(struct btrfs_work *work); 44 static void free_fs_root(struct btrfs_root *root); 45 46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0); 47 48 /* 49 * end_io_wq structs are used to do processing in task context when an IO is 50 * complete. This is used during reads to verify checksums, and it is used 51 * by writes to insert metadata for new file extents after IO is complete. 52 */ 53 struct end_io_wq { 54 struct bio *bio; 55 bio_end_io_t *end_io; 56 void *private; 57 struct btrfs_fs_info *info; 58 int error; 59 int metadata; 60 struct list_head list; 61 struct btrfs_work work; 62 }; 63 64 /* 65 * async submit bios are used to offload expensive checksumming 66 * onto the worker threads. They checksum file and metadata bios 67 * just before they are sent down the IO stack. 68 */ 69 struct async_submit_bio { 70 struct inode *inode; 71 struct bio *bio; 72 struct list_head list; 73 extent_submit_bio_hook_t *submit_bio_start; 74 extent_submit_bio_hook_t *submit_bio_done; 75 int rw; 76 int mirror_num; 77 unsigned long bio_flags; 78 struct btrfs_work work; 79 }; 80 81 /* These are used to set the lockdep class on the extent buffer locks. 82 * The class is set by the readpage_end_io_hook after the buffer has 83 * passed csum validation but before the pages are unlocked. 84 * 85 * The lockdep class is also set by btrfs_init_new_buffer on freshly 86 * allocated blocks. 87 * 88 * The class is based on the level in the tree block, which allows lockdep 89 * to know that lower nodes nest inside the locks of higher nodes. 90 * 91 * We also add a check to make sure the highest level of the tree is 92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 93 * code needs update as well. 94 */ 95 #ifdef CONFIG_DEBUG_LOCK_ALLOC 96 # if BTRFS_MAX_LEVEL != 8 97 # error 98 # endif 99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 101 /* leaf */ 102 "btrfs-extent-00", 103 "btrfs-extent-01", 104 "btrfs-extent-02", 105 "btrfs-extent-03", 106 "btrfs-extent-04", 107 "btrfs-extent-05", 108 "btrfs-extent-06", 109 "btrfs-extent-07", 110 /* highest possible level */ 111 "btrfs-extent-08", 112 }; 113 #endif 114 115 /* 116 * extents on the btree inode are pretty simple, there's one extent 117 * that covers the entire device 118 */ 119 static struct extent_map *btree_get_extent(struct inode *inode, 120 struct page *page, size_t page_offset, u64 start, u64 len, 121 int create) 122 { 123 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 124 struct extent_map *em; 125 int ret; 126 127 read_lock(&em_tree->lock); 128 em = lookup_extent_mapping(em_tree, start, len); 129 if (em) { 130 em->bdev = 131 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 132 read_unlock(&em_tree->lock); 133 goto out; 134 } 135 read_unlock(&em_tree->lock); 136 137 em = alloc_extent_map(GFP_NOFS); 138 if (!em) { 139 em = ERR_PTR(-ENOMEM); 140 goto out; 141 } 142 em->start = 0; 143 em->len = (u64)-1; 144 em->block_len = (u64)-1; 145 em->block_start = 0; 146 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 147 148 write_lock(&em_tree->lock); 149 ret = add_extent_mapping(em_tree, em); 150 if (ret == -EEXIST) { 151 u64 failed_start = em->start; 152 u64 failed_len = em->len; 153 154 free_extent_map(em); 155 em = lookup_extent_mapping(em_tree, start, len); 156 if (em) { 157 ret = 0; 158 } else { 159 em = lookup_extent_mapping(em_tree, failed_start, 160 failed_len); 161 ret = -EIO; 162 } 163 } else if (ret) { 164 free_extent_map(em); 165 em = NULL; 166 } 167 write_unlock(&em_tree->lock); 168 169 if (ret) 170 em = ERR_PTR(ret); 171 out: 172 return em; 173 } 174 175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 176 { 177 return crc32c(seed, data, len); 178 } 179 180 void btrfs_csum_final(u32 crc, char *result) 181 { 182 *(__le32 *)result = ~cpu_to_le32(crc); 183 } 184 185 /* 186 * compute the csum for a btree block, and either verify it or write it 187 * into the csum field of the block. 188 */ 189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 190 int verify) 191 { 192 u16 csum_size = 193 btrfs_super_csum_size(&root->fs_info->super_copy); 194 char *result = NULL; 195 unsigned long len; 196 unsigned long cur_len; 197 unsigned long offset = BTRFS_CSUM_SIZE; 198 char *map_token = NULL; 199 char *kaddr; 200 unsigned long map_start; 201 unsigned long map_len; 202 int err; 203 u32 crc = ~(u32)0; 204 unsigned long inline_result; 205 206 len = buf->len - offset; 207 while (len > 0) { 208 err = map_private_extent_buffer(buf, offset, 32, 209 &map_token, &kaddr, 210 &map_start, &map_len, KM_USER0); 211 if (err) 212 return 1; 213 cur_len = min(len, map_len - (offset - map_start)); 214 crc = btrfs_csum_data(root, kaddr + offset - map_start, 215 crc, cur_len); 216 len -= cur_len; 217 offset += cur_len; 218 unmap_extent_buffer(buf, map_token, KM_USER0); 219 } 220 if (csum_size > sizeof(inline_result)) { 221 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 222 if (!result) 223 return 1; 224 } else { 225 result = (char *)&inline_result; 226 } 227 228 btrfs_csum_final(crc, result); 229 230 if (verify) { 231 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 232 u32 val; 233 u32 found = 0; 234 memcpy(&found, result, csum_size); 235 236 read_extent_buffer(buf, &val, 0, csum_size); 237 if (printk_ratelimit()) { 238 printk(KERN_INFO "btrfs: %s checksum verify " 239 "failed on %llu wanted %X found %X " 240 "level %d\n", 241 root->fs_info->sb->s_id, 242 (unsigned long long)buf->start, val, found, 243 btrfs_header_level(buf)); 244 } 245 if (result != (char *)&inline_result) 246 kfree(result); 247 return 1; 248 } 249 } else { 250 write_extent_buffer(buf, result, 0, csum_size); 251 } 252 if (result != (char *)&inline_result) 253 kfree(result); 254 return 0; 255 } 256 257 /* 258 * we can't consider a given block up to date unless the transid of the 259 * block matches the transid in the parent node's pointer. This is how we 260 * detect blocks that either didn't get written at all or got written 261 * in the wrong place. 262 */ 263 static int verify_parent_transid(struct extent_io_tree *io_tree, 264 struct extent_buffer *eb, u64 parent_transid) 265 { 266 int ret; 267 268 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 269 return 0; 270 271 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 272 if (extent_buffer_uptodate(io_tree, eb) && 273 btrfs_header_generation(eb) == parent_transid) { 274 ret = 0; 275 goto out; 276 } 277 if (printk_ratelimit()) { 278 printk("parent transid verify failed on %llu wanted %llu " 279 "found %llu\n", 280 (unsigned long long)eb->start, 281 (unsigned long long)parent_transid, 282 (unsigned long long)btrfs_header_generation(eb)); 283 } 284 ret = 1; 285 clear_extent_buffer_uptodate(io_tree, eb); 286 out: 287 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 288 GFP_NOFS); 289 return ret; 290 } 291 292 /* 293 * helper to read a given tree block, doing retries as required when 294 * the checksums don't match and we have alternate mirrors to try. 295 */ 296 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 297 struct extent_buffer *eb, 298 u64 start, u64 parent_transid) 299 { 300 struct extent_io_tree *io_tree; 301 int ret; 302 int num_copies = 0; 303 int mirror_num = 0; 304 305 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 306 while (1) { 307 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 308 btree_get_extent, mirror_num); 309 if (!ret && 310 !verify_parent_transid(io_tree, eb, parent_transid)) 311 return ret; 312 313 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 314 eb->start, eb->len); 315 if (num_copies == 1) 316 return ret; 317 318 mirror_num++; 319 if (mirror_num > num_copies) 320 return ret; 321 } 322 return -EIO; 323 } 324 325 /* 326 * checksum a dirty tree block before IO. This has extra checks to make sure 327 * we only fill in the checksum field in the first page of a multi-page block 328 */ 329 330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 331 { 332 struct extent_io_tree *tree; 333 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 334 u64 found_start; 335 int found_level; 336 unsigned long len; 337 struct extent_buffer *eb; 338 int ret; 339 340 tree = &BTRFS_I(page->mapping->host)->io_tree; 341 342 if (page->private == EXTENT_PAGE_PRIVATE) 343 goto out; 344 if (!page->private) 345 goto out; 346 len = page->private >> 2; 347 WARN_ON(len == 0); 348 349 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 350 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 351 btrfs_header_generation(eb)); 352 BUG_ON(ret); 353 found_start = btrfs_header_bytenr(eb); 354 if (found_start != start) { 355 WARN_ON(1); 356 goto err; 357 } 358 if (eb->first_page != page) { 359 WARN_ON(1); 360 goto err; 361 } 362 if (!PageUptodate(page)) { 363 WARN_ON(1); 364 goto err; 365 } 366 found_level = btrfs_header_level(eb); 367 368 csum_tree_block(root, eb, 0); 369 err: 370 free_extent_buffer(eb); 371 out: 372 return 0; 373 } 374 375 static int check_tree_block_fsid(struct btrfs_root *root, 376 struct extent_buffer *eb) 377 { 378 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 379 u8 fsid[BTRFS_UUID_SIZE]; 380 int ret = 1; 381 382 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 383 BTRFS_FSID_SIZE); 384 while (fs_devices) { 385 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 386 ret = 0; 387 break; 388 } 389 fs_devices = fs_devices->seed; 390 } 391 return ret; 392 } 393 394 #ifdef CONFIG_DEBUG_LOCK_ALLOC 395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 396 { 397 lockdep_set_class_and_name(&eb->lock, 398 &btrfs_eb_class[level], 399 btrfs_eb_name[level]); 400 } 401 #endif 402 403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 404 struct extent_state *state) 405 { 406 struct extent_io_tree *tree; 407 u64 found_start; 408 int found_level; 409 unsigned long len; 410 struct extent_buffer *eb; 411 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 412 int ret = 0; 413 414 tree = &BTRFS_I(page->mapping->host)->io_tree; 415 if (page->private == EXTENT_PAGE_PRIVATE) 416 goto out; 417 if (!page->private) 418 goto out; 419 420 len = page->private >> 2; 421 WARN_ON(len == 0); 422 423 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 424 425 found_start = btrfs_header_bytenr(eb); 426 if (found_start != start) { 427 if (printk_ratelimit()) { 428 printk(KERN_INFO "btrfs bad tree block start " 429 "%llu %llu\n", 430 (unsigned long long)found_start, 431 (unsigned long long)eb->start); 432 } 433 ret = -EIO; 434 goto err; 435 } 436 if (eb->first_page != page) { 437 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 438 eb->first_page->index, page->index); 439 WARN_ON(1); 440 ret = -EIO; 441 goto err; 442 } 443 if (check_tree_block_fsid(root, eb)) { 444 if (printk_ratelimit()) { 445 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 446 (unsigned long long)eb->start); 447 } 448 ret = -EIO; 449 goto err; 450 } 451 found_level = btrfs_header_level(eb); 452 453 btrfs_set_buffer_lockdep_class(eb, found_level); 454 455 ret = csum_tree_block(root, eb, 1); 456 if (ret) 457 ret = -EIO; 458 459 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 460 end = eb->start + end - 1; 461 err: 462 free_extent_buffer(eb); 463 out: 464 return ret; 465 } 466 467 static void end_workqueue_bio(struct bio *bio, int err) 468 { 469 struct end_io_wq *end_io_wq = bio->bi_private; 470 struct btrfs_fs_info *fs_info; 471 472 fs_info = end_io_wq->info; 473 end_io_wq->error = err; 474 end_io_wq->work.func = end_workqueue_fn; 475 end_io_wq->work.flags = 0; 476 477 if (bio->bi_rw & (1 << BIO_RW)) { 478 if (end_io_wq->metadata) 479 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 480 &end_io_wq->work); 481 else 482 btrfs_queue_worker(&fs_info->endio_write_workers, 483 &end_io_wq->work); 484 } else { 485 if (end_io_wq->metadata) 486 btrfs_queue_worker(&fs_info->endio_meta_workers, 487 &end_io_wq->work); 488 else 489 btrfs_queue_worker(&fs_info->endio_workers, 490 &end_io_wq->work); 491 } 492 } 493 494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 495 int metadata) 496 { 497 struct end_io_wq *end_io_wq; 498 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 499 if (!end_io_wq) 500 return -ENOMEM; 501 502 end_io_wq->private = bio->bi_private; 503 end_io_wq->end_io = bio->bi_end_io; 504 end_io_wq->info = info; 505 end_io_wq->error = 0; 506 end_io_wq->bio = bio; 507 end_io_wq->metadata = metadata; 508 509 bio->bi_private = end_io_wq; 510 bio->bi_end_io = end_workqueue_bio; 511 return 0; 512 } 513 514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 515 { 516 unsigned long limit = min_t(unsigned long, 517 info->workers.max_workers, 518 info->fs_devices->open_devices); 519 return 256 * limit; 520 } 521 522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 523 { 524 return atomic_read(&info->nr_async_bios) > 525 btrfs_async_submit_limit(info); 526 } 527 528 static void run_one_async_start(struct btrfs_work *work) 529 { 530 struct btrfs_fs_info *fs_info; 531 struct async_submit_bio *async; 532 533 async = container_of(work, struct async_submit_bio, work); 534 fs_info = BTRFS_I(async->inode)->root->fs_info; 535 async->submit_bio_start(async->inode, async->rw, async->bio, 536 async->mirror_num, async->bio_flags); 537 } 538 539 static void run_one_async_done(struct btrfs_work *work) 540 { 541 struct btrfs_fs_info *fs_info; 542 struct async_submit_bio *async; 543 int limit; 544 545 async = container_of(work, struct async_submit_bio, work); 546 fs_info = BTRFS_I(async->inode)->root->fs_info; 547 548 limit = btrfs_async_submit_limit(fs_info); 549 limit = limit * 2 / 3; 550 551 atomic_dec(&fs_info->nr_async_submits); 552 553 if (atomic_read(&fs_info->nr_async_submits) < limit && 554 waitqueue_active(&fs_info->async_submit_wait)) 555 wake_up(&fs_info->async_submit_wait); 556 557 async->submit_bio_done(async->inode, async->rw, async->bio, 558 async->mirror_num, async->bio_flags); 559 } 560 561 static void run_one_async_free(struct btrfs_work *work) 562 { 563 struct async_submit_bio *async; 564 565 async = container_of(work, struct async_submit_bio, work); 566 kfree(async); 567 } 568 569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 570 int rw, struct bio *bio, int mirror_num, 571 unsigned long bio_flags, 572 extent_submit_bio_hook_t *submit_bio_start, 573 extent_submit_bio_hook_t *submit_bio_done) 574 { 575 struct async_submit_bio *async; 576 577 async = kmalloc(sizeof(*async), GFP_NOFS); 578 if (!async) 579 return -ENOMEM; 580 581 async->inode = inode; 582 async->rw = rw; 583 async->bio = bio; 584 async->mirror_num = mirror_num; 585 async->submit_bio_start = submit_bio_start; 586 async->submit_bio_done = submit_bio_done; 587 588 async->work.func = run_one_async_start; 589 async->work.ordered_func = run_one_async_done; 590 async->work.ordered_free = run_one_async_free; 591 592 async->work.flags = 0; 593 async->bio_flags = bio_flags; 594 595 atomic_inc(&fs_info->nr_async_submits); 596 597 if (rw & (1 << BIO_RW_SYNCIO)) 598 btrfs_set_work_high_prio(&async->work); 599 600 btrfs_queue_worker(&fs_info->workers, &async->work); 601 602 while (atomic_read(&fs_info->async_submit_draining) && 603 atomic_read(&fs_info->nr_async_submits)) { 604 wait_event(fs_info->async_submit_wait, 605 (atomic_read(&fs_info->nr_async_submits) == 0)); 606 } 607 608 return 0; 609 } 610 611 static int btree_csum_one_bio(struct bio *bio) 612 { 613 struct bio_vec *bvec = bio->bi_io_vec; 614 int bio_index = 0; 615 struct btrfs_root *root; 616 617 WARN_ON(bio->bi_vcnt <= 0); 618 while (bio_index < bio->bi_vcnt) { 619 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 620 csum_dirty_buffer(root, bvec->bv_page); 621 bio_index++; 622 bvec++; 623 } 624 return 0; 625 } 626 627 static int __btree_submit_bio_start(struct inode *inode, int rw, 628 struct bio *bio, int mirror_num, 629 unsigned long bio_flags) 630 { 631 /* 632 * when we're called for a write, we're already in the async 633 * submission context. Just jump into btrfs_map_bio 634 */ 635 btree_csum_one_bio(bio); 636 return 0; 637 } 638 639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 640 int mirror_num, unsigned long bio_flags) 641 { 642 /* 643 * when we're called for a write, we're already in the async 644 * submission context. Just jump into btrfs_map_bio 645 */ 646 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 647 } 648 649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 650 int mirror_num, unsigned long bio_flags) 651 { 652 int ret; 653 654 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 655 bio, 1); 656 BUG_ON(ret); 657 658 if (!(rw & (1 << BIO_RW))) { 659 /* 660 * called for a read, do the setup so that checksum validation 661 * can happen in the async kernel threads 662 */ 663 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 664 mirror_num, 0); 665 } 666 667 /* 668 * kthread helpers are used to submit writes so that checksumming 669 * can happen in parallel across all CPUs 670 */ 671 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 672 inode, rw, bio, mirror_num, 0, 673 __btree_submit_bio_start, 674 __btree_submit_bio_done); 675 } 676 677 static int btree_writepage(struct page *page, struct writeback_control *wbc) 678 { 679 struct extent_io_tree *tree; 680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 681 struct extent_buffer *eb; 682 int was_dirty; 683 684 tree = &BTRFS_I(page->mapping->host)->io_tree; 685 if (!(current->flags & PF_MEMALLOC)) { 686 return extent_write_full_page(tree, page, 687 btree_get_extent, wbc); 688 } 689 690 redirty_page_for_writepage(wbc, page); 691 eb = btrfs_find_tree_block(root, page_offset(page), 692 PAGE_CACHE_SIZE); 693 WARN_ON(!eb); 694 695 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 696 if (!was_dirty) { 697 spin_lock(&root->fs_info->delalloc_lock); 698 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 699 spin_unlock(&root->fs_info->delalloc_lock); 700 } 701 free_extent_buffer(eb); 702 703 unlock_page(page); 704 return 0; 705 } 706 707 static int btree_writepages(struct address_space *mapping, 708 struct writeback_control *wbc) 709 { 710 struct extent_io_tree *tree; 711 tree = &BTRFS_I(mapping->host)->io_tree; 712 if (wbc->sync_mode == WB_SYNC_NONE) { 713 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 714 u64 num_dirty; 715 unsigned long thresh = 32 * 1024 * 1024; 716 717 if (wbc->for_kupdate) 718 return 0; 719 720 /* this is a bit racy, but that's ok */ 721 num_dirty = root->fs_info->dirty_metadata_bytes; 722 if (num_dirty < thresh) 723 return 0; 724 } 725 return extent_writepages(tree, mapping, btree_get_extent, wbc); 726 } 727 728 static int btree_readpage(struct file *file, struct page *page) 729 { 730 struct extent_io_tree *tree; 731 tree = &BTRFS_I(page->mapping->host)->io_tree; 732 return extent_read_full_page(tree, page, btree_get_extent); 733 } 734 735 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 736 { 737 struct extent_io_tree *tree; 738 struct extent_map_tree *map; 739 int ret; 740 741 if (PageWriteback(page) || PageDirty(page)) 742 return 0; 743 744 tree = &BTRFS_I(page->mapping->host)->io_tree; 745 map = &BTRFS_I(page->mapping->host)->extent_tree; 746 747 ret = try_release_extent_state(map, tree, page, gfp_flags); 748 if (!ret) 749 return 0; 750 751 ret = try_release_extent_buffer(tree, page); 752 if (ret == 1) { 753 ClearPagePrivate(page); 754 set_page_private(page, 0); 755 page_cache_release(page); 756 } 757 758 return ret; 759 } 760 761 static void btree_invalidatepage(struct page *page, unsigned long offset) 762 { 763 struct extent_io_tree *tree; 764 tree = &BTRFS_I(page->mapping->host)->io_tree; 765 extent_invalidatepage(tree, page, offset); 766 btree_releasepage(page, GFP_NOFS); 767 if (PagePrivate(page)) { 768 printk(KERN_WARNING "btrfs warning page private not zero " 769 "on page %llu\n", (unsigned long long)page_offset(page)); 770 ClearPagePrivate(page); 771 set_page_private(page, 0); 772 page_cache_release(page); 773 } 774 } 775 776 static const struct address_space_operations btree_aops = { 777 .readpage = btree_readpage, 778 .writepage = btree_writepage, 779 .writepages = btree_writepages, 780 .releasepage = btree_releasepage, 781 .invalidatepage = btree_invalidatepage, 782 .sync_page = block_sync_page, 783 }; 784 785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 786 u64 parent_transid) 787 { 788 struct extent_buffer *buf = NULL; 789 struct inode *btree_inode = root->fs_info->btree_inode; 790 int ret = 0; 791 792 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 793 if (!buf) 794 return 0; 795 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 796 buf, 0, 0, btree_get_extent, 0); 797 free_extent_buffer(buf); 798 return ret; 799 } 800 801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 802 u64 bytenr, u32 blocksize) 803 { 804 struct inode *btree_inode = root->fs_info->btree_inode; 805 struct extent_buffer *eb; 806 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 807 bytenr, blocksize, GFP_NOFS); 808 return eb; 809 } 810 811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 812 u64 bytenr, u32 blocksize) 813 { 814 struct inode *btree_inode = root->fs_info->btree_inode; 815 struct extent_buffer *eb; 816 817 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 818 bytenr, blocksize, NULL, GFP_NOFS); 819 return eb; 820 } 821 822 823 int btrfs_write_tree_block(struct extent_buffer *buf) 824 { 825 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 826 buf->start + buf->len - 1); 827 } 828 829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 830 { 831 return filemap_fdatawait_range(buf->first_page->mapping, 832 buf->start, buf->start + buf->len - 1); 833 } 834 835 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 836 u32 blocksize, u64 parent_transid) 837 { 838 struct extent_buffer *buf = NULL; 839 struct inode *btree_inode = root->fs_info->btree_inode; 840 struct extent_io_tree *io_tree; 841 int ret; 842 843 io_tree = &BTRFS_I(btree_inode)->io_tree; 844 845 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 846 if (!buf) 847 return NULL; 848 849 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 850 851 if (ret == 0) 852 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 853 return buf; 854 855 } 856 857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 858 struct extent_buffer *buf) 859 { 860 struct inode *btree_inode = root->fs_info->btree_inode; 861 if (btrfs_header_generation(buf) == 862 root->fs_info->running_transaction->transid) { 863 btrfs_assert_tree_locked(buf); 864 865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 866 spin_lock(&root->fs_info->delalloc_lock); 867 if (root->fs_info->dirty_metadata_bytes >= buf->len) 868 root->fs_info->dirty_metadata_bytes -= buf->len; 869 else 870 WARN_ON(1); 871 spin_unlock(&root->fs_info->delalloc_lock); 872 } 873 874 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 875 btrfs_set_lock_blocking(buf); 876 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 877 buf); 878 } 879 return 0; 880 } 881 882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 883 u32 stripesize, struct btrfs_root *root, 884 struct btrfs_fs_info *fs_info, 885 u64 objectid) 886 { 887 root->node = NULL; 888 root->commit_root = NULL; 889 root->sectorsize = sectorsize; 890 root->nodesize = nodesize; 891 root->leafsize = leafsize; 892 root->stripesize = stripesize; 893 root->ref_cows = 0; 894 root->track_dirty = 0; 895 896 root->fs_info = fs_info; 897 root->objectid = objectid; 898 root->last_trans = 0; 899 root->highest_objectid = 0; 900 root->name = NULL; 901 root->in_sysfs = 0; 902 root->inode_tree.rb_node = NULL; 903 904 INIT_LIST_HEAD(&root->dirty_list); 905 INIT_LIST_HEAD(&root->orphan_list); 906 INIT_LIST_HEAD(&root->root_list); 907 spin_lock_init(&root->node_lock); 908 spin_lock_init(&root->list_lock); 909 spin_lock_init(&root->inode_lock); 910 mutex_init(&root->objectid_mutex); 911 mutex_init(&root->log_mutex); 912 init_waitqueue_head(&root->log_writer_wait); 913 init_waitqueue_head(&root->log_commit_wait[0]); 914 init_waitqueue_head(&root->log_commit_wait[1]); 915 atomic_set(&root->log_commit[0], 0); 916 atomic_set(&root->log_commit[1], 0); 917 atomic_set(&root->log_writers, 0); 918 root->log_batch = 0; 919 root->log_transid = 0; 920 extent_io_tree_init(&root->dirty_log_pages, 921 fs_info->btree_inode->i_mapping, GFP_NOFS); 922 923 memset(&root->root_key, 0, sizeof(root->root_key)); 924 memset(&root->root_item, 0, sizeof(root->root_item)); 925 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 926 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 927 root->defrag_trans_start = fs_info->generation; 928 init_completion(&root->kobj_unregister); 929 root->defrag_running = 0; 930 root->defrag_level = 0; 931 root->root_key.objectid = objectid; 932 root->anon_super.s_root = NULL; 933 root->anon_super.s_dev = 0; 934 INIT_LIST_HEAD(&root->anon_super.s_list); 935 INIT_LIST_HEAD(&root->anon_super.s_instances); 936 init_rwsem(&root->anon_super.s_umount); 937 938 return 0; 939 } 940 941 static int find_and_setup_root(struct btrfs_root *tree_root, 942 struct btrfs_fs_info *fs_info, 943 u64 objectid, 944 struct btrfs_root *root) 945 { 946 int ret; 947 u32 blocksize; 948 u64 generation; 949 950 __setup_root(tree_root->nodesize, tree_root->leafsize, 951 tree_root->sectorsize, tree_root->stripesize, 952 root, fs_info, objectid); 953 ret = btrfs_find_last_root(tree_root, objectid, 954 &root->root_item, &root->root_key); 955 if (ret > 0) 956 return -ENOENT; 957 BUG_ON(ret); 958 959 generation = btrfs_root_generation(&root->root_item); 960 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 961 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 962 blocksize, generation); 963 BUG_ON(!root->node); 964 root->commit_root = btrfs_root_node(root); 965 return 0; 966 } 967 968 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 969 struct btrfs_fs_info *fs_info) 970 { 971 struct extent_buffer *eb; 972 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 973 u64 start = 0; 974 u64 end = 0; 975 int ret; 976 977 if (!log_root_tree) 978 return 0; 979 980 while (1) { 981 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 982 0, &start, &end, EXTENT_DIRTY); 983 if (ret) 984 break; 985 986 clear_extent_dirty(&log_root_tree->dirty_log_pages, 987 start, end, GFP_NOFS); 988 } 989 eb = fs_info->log_root_tree->node; 990 991 WARN_ON(btrfs_header_level(eb) != 0); 992 WARN_ON(btrfs_header_nritems(eb) != 0); 993 994 ret = btrfs_free_reserved_extent(fs_info->tree_root, 995 eb->start, eb->len); 996 BUG_ON(ret); 997 998 free_extent_buffer(eb); 999 kfree(fs_info->log_root_tree); 1000 fs_info->log_root_tree = NULL; 1001 return 0; 1002 } 1003 1004 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1005 struct btrfs_fs_info *fs_info) 1006 { 1007 struct btrfs_root *root; 1008 struct btrfs_root *tree_root = fs_info->tree_root; 1009 struct extent_buffer *leaf; 1010 1011 root = kzalloc(sizeof(*root), GFP_NOFS); 1012 if (!root) 1013 return ERR_PTR(-ENOMEM); 1014 1015 __setup_root(tree_root->nodesize, tree_root->leafsize, 1016 tree_root->sectorsize, tree_root->stripesize, 1017 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1018 1019 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1020 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1021 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1022 /* 1023 * log trees do not get reference counted because they go away 1024 * before a real commit is actually done. They do store pointers 1025 * to file data extents, and those reference counts still get 1026 * updated (along with back refs to the log tree). 1027 */ 1028 root->ref_cows = 0; 1029 1030 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1031 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1032 if (IS_ERR(leaf)) { 1033 kfree(root); 1034 return ERR_CAST(leaf); 1035 } 1036 1037 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1038 btrfs_set_header_bytenr(leaf, leaf->start); 1039 btrfs_set_header_generation(leaf, trans->transid); 1040 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1041 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1042 root->node = leaf; 1043 1044 write_extent_buffer(root->node, root->fs_info->fsid, 1045 (unsigned long)btrfs_header_fsid(root->node), 1046 BTRFS_FSID_SIZE); 1047 btrfs_mark_buffer_dirty(root->node); 1048 btrfs_tree_unlock(root->node); 1049 return root; 1050 } 1051 1052 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1053 struct btrfs_fs_info *fs_info) 1054 { 1055 struct btrfs_root *log_root; 1056 1057 log_root = alloc_log_tree(trans, fs_info); 1058 if (IS_ERR(log_root)) 1059 return PTR_ERR(log_root); 1060 WARN_ON(fs_info->log_root_tree); 1061 fs_info->log_root_tree = log_root; 1062 return 0; 1063 } 1064 1065 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1066 struct btrfs_root *root) 1067 { 1068 struct btrfs_root *log_root; 1069 struct btrfs_inode_item *inode_item; 1070 1071 log_root = alloc_log_tree(trans, root->fs_info); 1072 if (IS_ERR(log_root)) 1073 return PTR_ERR(log_root); 1074 1075 log_root->last_trans = trans->transid; 1076 log_root->root_key.offset = root->root_key.objectid; 1077 1078 inode_item = &log_root->root_item.inode; 1079 inode_item->generation = cpu_to_le64(1); 1080 inode_item->size = cpu_to_le64(3); 1081 inode_item->nlink = cpu_to_le32(1); 1082 inode_item->nbytes = cpu_to_le64(root->leafsize); 1083 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1084 1085 btrfs_set_root_node(&log_root->root_item, log_root->node); 1086 1087 WARN_ON(root->log_root); 1088 root->log_root = log_root; 1089 root->log_transid = 0; 1090 return 0; 1091 } 1092 1093 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1094 struct btrfs_key *location) 1095 { 1096 struct btrfs_root *root; 1097 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1098 struct btrfs_path *path; 1099 struct extent_buffer *l; 1100 u64 generation; 1101 u32 blocksize; 1102 int ret = 0; 1103 1104 root = kzalloc(sizeof(*root), GFP_NOFS); 1105 if (!root) 1106 return ERR_PTR(-ENOMEM); 1107 if (location->offset == (u64)-1) { 1108 ret = find_and_setup_root(tree_root, fs_info, 1109 location->objectid, root); 1110 if (ret) { 1111 kfree(root); 1112 return ERR_PTR(ret); 1113 } 1114 goto out; 1115 } 1116 1117 __setup_root(tree_root->nodesize, tree_root->leafsize, 1118 tree_root->sectorsize, tree_root->stripesize, 1119 root, fs_info, location->objectid); 1120 1121 path = btrfs_alloc_path(); 1122 BUG_ON(!path); 1123 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1124 if (ret == 0) { 1125 l = path->nodes[0]; 1126 read_extent_buffer(l, &root->root_item, 1127 btrfs_item_ptr_offset(l, path->slots[0]), 1128 sizeof(root->root_item)); 1129 memcpy(&root->root_key, location, sizeof(*location)); 1130 } 1131 btrfs_free_path(path); 1132 if (ret) { 1133 if (ret > 0) 1134 ret = -ENOENT; 1135 return ERR_PTR(ret); 1136 } 1137 1138 generation = btrfs_root_generation(&root->root_item); 1139 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1140 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1141 blocksize, generation); 1142 root->commit_root = btrfs_root_node(root); 1143 BUG_ON(!root->node); 1144 out: 1145 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) 1146 root->ref_cows = 1; 1147 1148 return root; 1149 } 1150 1151 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1152 u64 root_objectid) 1153 { 1154 struct btrfs_root *root; 1155 1156 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1157 return fs_info->tree_root; 1158 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1159 return fs_info->extent_root; 1160 1161 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1162 (unsigned long)root_objectid); 1163 return root; 1164 } 1165 1166 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1167 struct btrfs_key *location) 1168 { 1169 struct btrfs_root *root; 1170 int ret; 1171 1172 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1173 return fs_info->tree_root; 1174 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1175 return fs_info->extent_root; 1176 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1177 return fs_info->chunk_root; 1178 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1179 return fs_info->dev_root; 1180 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1181 return fs_info->csum_root; 1182 again: 1183 spin_lock(&fs_info->fs_roots_radix_lock); 1184 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1185 (unsigned long)location->objectid); 1186 spin_unlock(&fs_info->fs_roots_radix_lock); 1187 if (root) 1188 return root; 1189 1190 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1191 if (ret == 0) 1192 ret = -ENOENT; 1193 if (ret < 0) 1194 return ERR_PTR(ret); 1195 1196 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1197 if (IS_ERR(root)) 1198 return root; 1199 1200 WARN_ON(btrfs_root_refs(&root->root_item) == 0); 1201 set_anon_super(&root->anon_super, NULL); 1202 1203 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1204 if (ret) 1205 goto fail; 1206 1207 spin_lock(&fs_info->fs_roots_radix_lock); 1208 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1209 (unsigned long)root->root_key.objectid, 1210 root); 1211 if (ret == 0) 1212 root->in_radix = 1; 1213 spin_unlock(&fs_info->fs_roots_radix_lock); 1214 radix_tree_preload_end(); 1215 if (ret) { 1216 if (ret == -EEXIST) { 1217 free_fs_root(root); 1218 goto again; 1219 } 1220 goto fail; 1221 } 1222 1223 ret = btrfs_find_dead_roots(fs_info->tree_root, 1224 root->root_key.objectid); 1225 WARN_ON(ret); 1226 1227 if (!(fs_info->sb->s_flags & MS_RDONLY)) 1228 btrfs_orphan_cleanup(root); 1229 1230 return root; 1231 fail: 1232 free_fs_root(root); 1233 return ERR_PTR(ret); 1234 } 1235 1236 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1237 struct btrfs_key *location, 1238 const char *name, int namelen) 1239 { 1240 return btrfs_read_fs_root_no_name(fs_info, location); 1241 #if 0 1242 struct btrfs_root *root; 1243 int ret; 1244 1245 root = btrfs_read_fs_root_no_name(fs_info, location); 1246 if (!root) 1247 return NULL; 1248 1249 if (root->in_sysfs) 1250 return root; 1251 1252 ret = btrfs_set_root_name(root, name, namelen); 1253 if (ret) { 1254 free_extent_buffer(root->node); 1255 kfree(root); 1256 return ERR_PTR(ret); 1257 } 1258 1259 ret = btrfs_sysfs_add_root(root); 1260 if (ret) { 1261 free_extent_buffer(root->node); 1262 kfree(root->name); 1263 kfree(root); 1264 return ERR_PTR(ret); 1265 } 1266 root->in_sysfs = 1; 1267 return root; 1268 #endif 1269 } 1270 1271 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1272 { 1273 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1274 int ret = 0; 1275 struct btrfs_device *device; 1276 struct backing_dev_info *bdi; 1277 1278 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1279 if (!device->bdev) 1280 continue; 1281 bdi = blk_get_backing_dev_info(device->bdev); 1282 if (bdi && bdi_congested(bdi, bdi_bits)) { 1283 ret = 1; 1284 break; 1285 } 1286 } 1287 return ret; 1288 } 1289 1290 /* 1291 * this unplugs every device on the box, and it is only used when page 1292 * is null 1293 */ 1294 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1295 { 1296 struct btrfs_device *device; 1297 struct btrfs_fs_info *info; 1298 1299 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1300 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1301 if (!device->bdev) 1302 continue; 1303 1304 bdi = blk_get_backing_dev_info(device->bdev); 1305 if (bdi->unplug_io_fn) 1306 bdi->unplug_io_fn(bdi, page); 1307 } 1308 } 1309 1310 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1311 { 1312 struct inode *inode; 1313 struct extent_map_tree *em_tree; 1314 struct extent_map *em; 1315 struct address_space *mapping; 1316 u64 offset; 1317 1318 /* the generic O_DIRECT read code does this */ 1319 if (1 || !page) { 1320 __unplug_io_fn(bdi, page); 1321 return; 1322 } 1323 1324 /* 1325 * page->mapping may change at any time. Get a consistent copy 1326 * and use that for everything below 1327 */ 1328 smp_mb(); 1329 mapping = page->mapping; 1330 if (!mapping) 1331 return; 1332 1333 inode = mapping->host; 1334 1335 /* 1336 * don't do the expensive searching for a small number of 1337 * devices 1338 */ 1339 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1340 __unplug_io_fn(bdi, page); 1341 return; 1342 } 1343 1344 offset = page_offset(page); 1345 1346 em_tree = &BTRFS_I(inode)->extent_tree; 1347 read_lock(&em_tree->lock); 1348 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1349 read_unlock(&em_tree->lock); 1350 if (!em) { 1351 __unplug_io_fn(bdi, page); 1352 return; 1353 } 1354 1355 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1356 free_extent_map(em); 1357 __unplug_io_fn(bdi, page); 1358 return; 1359 } 1360 offset = offset - em->start; 1361 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1362 em->block_start + offset, page); 1363 free_extent_map(em); 1364 } 1365 1366 /* 1367 * If this fails, caller must call bdi_destroy() to get rid of the 1368 * bdi again. 1369 */ 1370 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1371 { 1372 int err; 1373 1374 bdi->name = "btrfs"; 1375 bdi->capabilities = BDI_CAP_MAP_COPY; 1376 err = bdi_init(bdi); 1377 if (err) 1378 return err; 1379 1380 err = bdi_register(bdi, NULL, "btrfs-%d", 1381 atomic_inc_return(&btrfs_bdi_num)); 1382 if (err) { 1383 bdi_destroy(bdi); 1384 return err; 1385 } 1386 1387 bdi->ra_pages = default_backing_dev_info.ra_pages; 1388 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1389 bdi->unplug_io_data = info; 1390 bdi->congested_fn = btrfs_congested_fn; 1391 bdi->congested_data = info; 1392 return 0; 1393 } 1394 1395 static int bio_ready_for_csum(struct bio *bio) 1396 { 1397 u64 length = 0; 1398 u64 buf_len = 0; 1399 u64 start = 0; 1400 struct page *page; 1401 struct extent_io_tree *io_tree = NULL; 1402 struct btrfs_fs_info *info = NULL; 1403 struct bio_vec *bvec; 1404 int i; 1405 int ret; 1406 1407 bio_for_each_segment(bvec, bio, i) { 1408 page = bvec->bv_page; 1409 if (page->private == EXTENT_PAGE_PRIVATE) { 1410 length += bvec->bv_len; 1411 continue; 1412 } 1413 if (!page->private) { 1414 length += bvec->bv_len; 1415 continue; 1416 } 1417 length = bvec->bv_len; 1418 buf_len = page->private >> 2; 1419 start = page_offset(page) + bvec->bv_offset; 1420 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1421 info = BTRFS_I(page->mapping->host)->root->fs_info; 1422 } 1423 /* are we fully contained in this bio? */ 1424 if (buf_len <= length) 1425 return 1; 1426 1427 ret = extent_range_uptodate(io_tree, start + length, 1428 start + buf_len - 1); 1429 return ret; 1430 } 1431 1432 /* 1433 * called by the kthread helper functions to finally call the bio end_io 1434 * functions. This is where read checksum verification actually happens 1435 */ 1436 static void end_workqueue_fn(struct btrfs_work *work) 1437 { 1438 struct bio *bio; 1439 struct end_io_wq *end_io_wq; 1440 struct btrfs_fs_info *fs_info; 1441 int error; 1442 1443 end_io_wq = container_of(work, struct end_io_wq, work); 1444 bio = end_io_wq->bio; 1445 fs_info = end_io_wq->info; 1446 1447 /* metadata bio reads are special because the whole tree block must 1448 * be checksummed at once. This makes sure the entire block is in 1449 * ram and up to date before trying to verify things. For 1450 * blocksize <= pagesize, it is basically a noop 1451 */ 1452 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1453 !bio_ready_for_csum(bio)) { 1454 btrfs_queue_worker(&fs_info->endio_meta_workers, 1455 &end_io_wq->work); 1456 return; 1457 } 1458 error = end_io_wq->error; 1459 bio->bi_private = end_io_wq->private; 1460 bio->bi_end_io = end_io_wq->end_io; 1461 kfree(end_io_wq); 1462 bio_endio(bio, error); 1463 } 1464 1465 static int cleaner_kthread(void *arg) 1466 { 1467 struct btrfs_root *root = arg; 1468 1469 do { 1470 smp_mb(); 1471 if (root->fs_info->closing) 1472 break; 1473 1474 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1475 1476 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1477 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1478 btrfs_clean_old_snapshots(root); 1479 mutex_unlock(&root->fs_info->cleaner_mutex); 1480 } 1481 1482 if (freezing(current)) { 1483 refrigerator(); 1484 } else { 1485 smp_mb(); 1486 if (root->fs_info->closing) 1487 break; 1488 set_current_state(TASK_INTERRUPTIBLE); 1489 schedule(); 1490 __set_current_state(TASK_RUNNING); 1491 } 1492 } while (!kthread_should_stop()); 1493 return 0; 1494 } 1495 1496 static int transaction_kthread(void *arg) 1497 { 1498 struct btrfs_root *root = arg; 1499 struct btrfs_trans_handle *trans; 1500 struct btrfs_transaction *cur; 1501 unsigned long now; 1502 unsigned long delay; 1503 int ret; 1504 1505 do { 1506 smp_mb(); 1507 if (root->fs_info->closing) 1508 break; 1509 1510 delay = HZ * 30; 1511 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1512 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1513 1514 mutex_lock(&root->fs_info->trans_mutex); 1515 cur = root->fs_info->running_transaction; 1516 if (!cur) { 1517 mutex_unlock(&root->fs_info->trans_mutex); 1518 goto sleep; 1519 } 1520 1521 now = get_seconds(); 1522 if (now < cur->start_time || now - cur->start_time < 30) { 1523 mutex_unlock(&root->fs_info->trans_mutex); 1524 delay = HZ * 5; 1525 goto sleep; 1526 } 1527 mutex_unlock(&root->fs_info->trans_mutex); 1528 trans = btrfs_start_transaction(root, 1); 1529 ret = btrfs_commit_transaction(trans, root); 1530 1531 sleep: 1532 wake_up_process(root->fs_info->cleaner_kthread); 1533 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1534 1535 if (freezing(current)) { 1536 refrigerator(); 1537 } else { 1538 if (root->fs_info->closing) 1539 break; 1540 set_current_state(TASK_INTERRUPTIBLE); 1541 schedule_timeout(delay); 1542 __set_current_state(TASK_RUNNING); 1543 } 1544 } while (!kthread_should_stop()); 1545 return 0; 1546 } 1547 1548 struct btrfs_root *open_ctree(struct super_block *sb, 1549 struct btrfs_fs_devices *fs_devices, 1550 char *options) 1551 { 1552 u32 sectorsize; 1553 u32 nodesize; 1554 u32 leafsize; 1555 u32 blocksize; 1556 u32 stripesize; 1557 u64 generation; 1558 u64 features; 1559 struct btrfs_key location; 1560 struct buffer_head *bh; 1561 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1562 GFP_NOFS); 1563 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1564 GFP_NOFS); 1565 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1566 GFP_NOFS); 1567 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1568 GFP_NOFS); 1569 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1570 GFP_NOFS); 1571 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1572 GFP_NOFS); 1573 struct btrfs_root *log_tree_root; 1574 1575 int ret; 1576 int err = -EINVAL; 1577 1578 struct btrfs_super_block *disk_super; 1579 1580 if (!extent_root || !tree_root || !fs_info || 1581 !chunk_root || !dev_root || !csum_root) { 1582 err = -ENOMEM; 1583 goto fail; 1584 } 1585 1586 ret = init_srcu_struct(&fs_info->subvol_srcu); 1587 if (ret) { 1588 err = ret; 1589 goto fail; 1590 } 1591 1592 ret = setup_bdi(fs_info, &fs_info->bdi); 1593 if (ret) { 1594 err = ret; 1595 goto fail_srcu; 1596 } 1597 1598 fs_info->btree_inode = new_inode(sb); 1599 if (!fs_info->btree_inode) { 1600 err = -ENOMEM; 1601 goto fail_bdi; 1602 } 1603 1604 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1605 INIT_LIST_HEAD(&fs_info->trans_list); 1606 INIT_LIST_HEAD(&fs_info->dead_roots); 1607 INIT_LIST_HEAD(&fs_info->hashers); 1608 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1609 INIT_LIST_HEAD(&fs_info->ordered_operations); 1610 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1611 spin_lock_init(&fs_info->delalloc_lock); 1612 spin_lock_init(&fs_info->new_trans_lock); 1613 spin_lock_init(&fs_info->ref_cache_lock); 1614 spin_lock_init(&fs_info->fs_roots_radix_lock); 1615 1616 init_completion(&fs_info->kobj_unregister); 1617 fs_info->tree_root = tree_root; 1618 fs_info->extent_root = extent_root; 1619 fs_info->csum_root = csum_root; 1620 fs_info->chunk_root = chunk_root; 1621 fs_info->dev_root = dev_root; 1622 fs_info->fs_devices = fs_devices; 1623 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1624 INIT_LIST_HEAD(&fs_info->space_info); 1625 btrfs_mapping_init(&fs_info->mapping_tree); 1626 atomic_set(&fs_info->nr_async_submits, 0); 1627 atomic_set(&fs_info->async_delalloc_pages, 0); 1628 atomic_set(&fs_info->async_submit_draining, 0); 1629 atomic_set(&fs_info->nr_async_bios, 0); 1630 fs_info->sb = sb; 1631 fs_info->max_extent = (u64)-1; 1632 fs_info->max_inline = 8192 * 1024; 1633 fs_info->metadata_ratio = 0; 1634 1635 fs_info->thread_pool_size = min_t(unsigned long, 1636 num_online_cpus() + 2, 8); 1637 1638 INIT_LIST_HEAD(&fs_info->ordered_extents); 1639 spin_lock_init(&fs_info->ordered_extent_lock); 1640 1641 sb->s_blocksize = 4096; 1642 sb->s_blocksize_bits = blksize_bits(4096); 1643 sb->s_bdi = &fs_info->bdi; 1644 1645 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1646 fs_info->btree_inode->i_nlink = 1; 1647 /* 1648 * we set the i_size on the btree inode to the max possible int. 1649 * the real end of the address space is determined by all of 1650 * the devices in the system 1651 */ 1652 fs_info->btree_inode->i_size = OFFSET_MAX; 1653 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1654 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1655 1656 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1657 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1658 fs_info->btree_inode->i_mapping, 1659 GFP_NOFS); 1660 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1661 GFP_NOFS); 1662 1663 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1664 1665 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1666 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1667 sizeof(struct btrfs_key)); 1668 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1669 insert_inode_hash(fs_info->btree_inode); 1670 1671 spin_lock_init(&fs_info->block_group_cache_lock); 1672 fs_info->block_group_cache_tree.rb_node = NULL; 1673 1674 extent_io_tree_init(&fs_info->freed_extents[0], 1675 fs_info->btree_inode->i_mapping, GFP_NOFS); 1676 extent_io_tree_init(&fs_info->freed_extents[1], 1677 fs_info->btree_inode->i_mapping, GFP_NOFS); 1678 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1679 fs_info->do_barriers = 1; 1680 1681 1682 mutex_init(&fs_info->trans_mutex); 1683 mutex_init(&fs_info->ordered_operations_mutex); 1684 mutex_init(&fs_info->tree_log_mutex); 1685 mutex_init(&fs_info->chunk_mutex); 1686 mutex_init(&fs_info->transaction_kthread_mutex); 1687 mutex_init(&fs_info->cleaner_mutex); 1688 mutex_init(&fs_info->volume_mutex); 1689 init_rwsem(&fs_info->extent_commit_sem); 1690 init_rwsem(&fs_info->subvol_sem); 1691 1692 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1693 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1694 1695 init_waitqueue_head(&fs_info->transaction_throttle); 1696 init_waitqueue_head(&fs_info->transaction_wait); 1697 init_waitqueue_head(&fs_info->async_submit_wait); 1698 1699 __setup_root(4096, 4096, 4096, 4096, tree_root, 1700 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1701 1702 1703 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1704 if (!bh) 1705 goto fail_iput; 1706 1707 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1708 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1709 sizeof(fs_info->super_for_commit)); 1710 brelse(bh); 1711 1712 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1713 1714 disk_super = &fs_info->super_copy; 1715 if (!btrfs_super_root(disk_super)) 1716 goto fail_iput; 1717 1718 ret = btrfs_parse_options(tree_root, options); 1719 if (ret) { 1720 err = ret; 1721 goto fail_iput; 1722 } 1723 1724 features = btrfs_super_incompat_flags(disk_super) & 1725 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1726 if (features) { 1727 printk(KERN_ERR "BTRFS: couldn't mount because of " 1728 "unsupported optional features (%Lx).\n", 1729 (unsigned long long)features); 1730 err = -EINVAL; 1731 goto fail_iput; 1732 } 1733 1734 features = btrfs_super_incompat_flags(disk_super); 1735 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1736 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1737 btrfs_set_super_incompat_flags(disk_super, features); 1738 } 1739 1740 features = btrfs_super_compat_ro_flags(disk_super) & 1741 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1742 if (!(sb->s_flags & MS_RDONLY) && features) { 1743 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1744 "unsupported option features (%Lx).\n", 1745 (unsigned long long)features); 1746 err = -EINVAL; 1747 goto fail_iput; 1748 } 1749 printk("thread pool is %d\n", fs_info->thread_pool_size); 1750 /* 1751 * we need to start all the end_io workers up front because the 1752 * queue work function gets called at interrupt time, and so it 1753 * cannot dynamically grow. 1754 */ 1755 btrfs_init_workers(&fs_info->workers, "worker", 1756 fs_info->thread_pool_size); 1757 1758 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1759 fs_info->thread_pool_size); 1760 1761 btrfs_init_workers(&fs_info->submit_workers, "submit", 1762 min_t(u64, fs_devices->num_devices, 1763 fs_info->thread_pool_size)); 1764 1765 /* a higher idle thresh on the submit workers makes it much more 1766 * likely that bios will be send down in a sane order to the 1767 * devices 1768 */ 1769 fs_info->submit_workers.idle_thresh = 64; 1770 1771 fs_info->workers.idle_thresh = 16; 1772 fs_info->workers.ordered = 1; 1773 1774 fs_info->delalloc_workers.idle_thresh = 2; 1775 fs_info->delalloc_workers.ordered = 1; 1776 1777 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1778 btrfs_init_workers(&fs_info->endio_workers, "endio", 1779 fs_info->thread_pool_size); 1780 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1781 fs_info->thread_pool_size); 1782 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1783 "endio-meta-write", fs_info->thread_pool_size); 1784 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1785 fs_info->thread_pool_size); 1786 1787 /* 1788 * endios are largely parallel and should have a very 1789 * low idle thresh 1790 */ 1791 fs_info->endio_workers.idle_thresh = 4; 1792 fs_info->endio_meta_workers.idle_thresh = 4; 1793 1794 fs_info->endio_write_workers.idle_thresh = 2; 1795 fs_info->endio_meta_write_workers.idle_thresh = 2; 1796 1797 fs_info->endio_workers.atomic_worker_start = 1; 1798 fs_info->endio_meta_workers.atomic_worker_start = 1; 1799 fs_info->endio_write_workers.atomic_worker_start = 1; 1800 fs_info->endio_meta_write_workers.atomic_worker_start = 1; 1801 1802 btrfs_start_workers(&fs_info->workers, 1); 1803 btrfs_start_workers(&fs_info->submit_workers, 1); 1804 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1805 btrfs_start_workers(&fs_info->fixup_workers, 1); 1806 btrfs_start_workers(&fs_info->endio_workers, 1); 1807 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1808 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1809 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1810 1811 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1812 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1813 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1814 1815 nodesize = btrfs_super_nodesize(disk_super); 1816 leafsize = btrfs_super_leafsize(disk_super); 1817 sectorsize = btrfs_super_sectorsize(disk_super); 1818 stripesize = btrfs_super_stripesize(disk_super); 1819 tree_root->nodesize = nodesize; 1820 tree_root->leafsize = leafsize; 1821 tree_root->sectorsize = sectorsize; 1822 tree_root->stripesize = stripesize; 1823 1824 sb->s_blocksize = sectorsize; 1825 sb->s_blocksize_bits = blksize_bits(sectorsize); 1826 1827 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1828 sizeof(disk_super->magic))) { 1829 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1830 goto fail_sb_buffer; 1831 } 1832 1833 mutex_lock(&fs_info->chunk_mutex); 1834 ret = btrfs_read_sys_array(tree_root); 1835 mutex_unlock(&fs_info->chunk_mutex); 1836 if (ret) { 1837 printk(KERN_WARNING "btrfs: failed to read the system " 1838 "array on %s\n", sb->s_id); 1839 goto fail_sb_buffer; 1840 } 1841 1842 blocksize = btrfs_level_size(tree_root, 1843 btrfs_super_chunk_root_level(disk_super)); 1844 generation = btrfs_super_chunk_root_generation(disk_super); 1845 1846 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1847 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1848 1849 chunk_root->node = read_tree_block(chunk_root, 1850 btrfs_super_chunk_root(disk_super), 1851 blocksize, generation); 1852 BUG_ON(!chunk_root->node); 1853 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1854 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1855 sb->s_id); 1856 goto fail_chunk_root; 1857 } 1858 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1859 chunk_root->commit_root = btrfs_root_node(chunk_root); 1860 1861 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1862 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1863 BTRFS_UUID_SIZE); 1864 1865 mutex_lock(&fs_info->chunk_mutex); 1866 ret = btrfs_read_chunk_tree(chunk_root); 1867 mutex_unlock(&fs_info->chunk_mutex); 1868 if (ret) { 1869 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1870 sb->s_id); 1871 goto fail_chunk_root; 1872 } 1873 1874 btrfs_close_extra_devices(fs_devices); 1875 1876 blocksize = btrfs_level_size(tree_root, 1877 btrfs_super_root_level(disk_super)); 1878 generation = btrfs_super_generation(disk_super); 1879 1880 tree_root->node = read_tree_block(tree_root, 1881 btrfs_super_root(disk_super), 1882 blocksize, generation); 1883 if (!tree_root->node) 1884 goto fail_chunk_root; 1885 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1886 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1887 sb->s_id); 1888 goto fail_tree_root; 1889 } 1890 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1891 tree_root->commit_root = btrfs_root_node(tree_root); 1892 1893 ret = find_and_setup_root(tree_root, fs_info, 1894 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1895 if (ret) 1896 goto fail_tree_root; 1897 extent_root->track_dirty = 1; 1898 1899 ret = find_and_setup_root(tree_root, fs_info, 1900 BTRFS_DEV_TREE_OBJECTID, dev_root); 1901 if (ret) 1902 goto fail_extent_root; 1903 dev_root->track_dirty = 1; 1904 1905 ret = find_and_setup_root(tree_root, fs_info, 1906 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1907 if (ret) 1908 goto fail_dev_root; 1909 1910 csum_root->track_dirty = 1; 1911 1912 btrfs_read_block_groups(extent_root); 1913 1914 fs_info->generation = generation; 1915 fs_info->last_trans_committed = generation; 1916 fs_info->data_alloc_profile = (u64)-1; 1917 fs_info->metadata_alloc_profile = (u64)-1; 1918 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1919 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1920 "btrfs-cleaner"); 1921 if (IS_ERR(fs_info->cleaner_kthread)) 1922 goto fail_csum_root; 1923 1924 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1925 tree_root, 1926 "btrfs-transaction"); 1927 if (IS_ERR(fs_info->transaction_kthread)) 1928 goto fail_cleaner; 1929 1930 if (!btrfs_test_opt(tree_root, SSD) && 1931 !btrfs_test_opt(tree_root, NOSSD) && 1932 !fs_info->fs_devices->rotating) { 1933 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1934 "mode\n"); 1935 btrfs_set_opt(fs_info->mount_opt, SSD); 1936 } 1937 1938 if (btrfs_super_log_root(disk_super) != 0) { 1939 u64 bytenr = btrfs_super_log_root(disk_super); 1940 1941 if (fs_devices->rw_devices == 0) { 1942 printk(KERN_WARNING "Btrfs log replay required " 1943 "on RO media\n"); 1944 err = -EIO; 1945 goto fail_trans_kthread; 1946 } 1947 blocksize = 1948 btrfs_level_size(tree_root, 1949 btrfs_super_log_root_level(disk_super)); 1950 1951 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1952 GFP_NOFS); 1953 1954 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1955 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1956 1957 log_tree_root->node = read_tree_block(tree_root, bytenr, 1958 blocksize, 1959 generation + 1); 1960 ret = btrfs_recover_log_trees(log_tree_root); 1961 BUG_ON(ret); 1962 1963 if (sb->s_flags & MS_RDONLY) { 1964 ret = btrfs_commit_super(tree_root); 1965 BUG_ON(ret); 1966 } 1967 } 1968 1969 ret = btrfs_find_orphan_roots(tree_root); 1970 BUG_ON(ret); 1971 1972 if (!(sb->s_flags & MS_RDONLY)) { 1973 ret = btrfs_recover_relocation(tree_root); 1974 BUG_ON(ret); 1975 } 1976 1977 location.objectid = BTRFS_FS_TREE_OBJECTID; 1978 location.type = BTRFS_ROOT_ITEM_KEY; 1979 location.offset = (u64)-1; 1980 1981 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1982 if (!fs_info->fs_root) 1983 goto fail_trans_kthread; 1984 1985 return tree_root; 1986 1987 fail_trans_kthread: 1988 kthread_stop(fs_info->transaction_kthread); 1989 fail_cleaner: 1990 kthread_stop(fs_info->cleaner_kthread); 1991 1992 /* 1993 * make sure we're done with the btree inode before we stop our 1994 * kthreads 1995 */ 1996 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1997 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1998 1999 fail_csum_root: 2000 free_extent_buffer(csum_root->node); 2001 free_extent_buffer(csum_root->commit_root); 2002 fail_dev_root: 2003 free_extent_buffer(dev_root->node); 2004 free_extent_buffer(dev_root->commit_root); 2005 fail_extent_root: 2006 free_extent_buffer(extent_root->node); 2007 free_extent_buffer(extent_root->commit_root); 2008 fail_tree_root: 2009 free_extent_buffer(tree_root->node); 2010 free_extent_buffer(tree_root->commit_root); 2011 fail_chunk_root: 2012 free_extent_buffer(chunk_root->node); 2013 free_extent_buffer(chunk_root->commit_root); 2014 fail_sb_buffer: 2015 btrfs_stop_workers(&fs_info->fixup_workers); 2016 btrfs_stop_workers(&fs_info->delalloc_workers); 2017 btrfs_stop_workers(&fs_info->workers); 2018 btrfs_stop_workers(&fs_info->endio_workers); 2019 btrfs_stop_workers(&fs_info->endio_meta_workers); 2020 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2021 btrfs_stop_workers(&fs_info->endio_write_workers); 2022 btrfs_stop_workers(&fs_info->submit_workers); 2023 fail_iput: 2024 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2025 iput(fs_info->btree_inode); 2026 2027 btrfs_close_devices(fs_info->fs_devices); 2028 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2029 fail_bdi: 2030 bdi_destroy(&fs_info->bdi); 2031 fail_srcu: 2032 cleanup_srcu_struct(&fs_info->subvol_srcu); 2033 fail: 2034 kfree(extent_root); 2035 kfree(tree_root); 2036 kfree(fs_info); 2037 kfree(chunk_root); 2038 kfree(dev_root); 2039 kfree(csum_root); 2040 return ERR_PTR(err); 2041 } 2042 2043 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2044 { 2045 char b[BDEVNAME_SIZE]; 2046 2047 if (uptodate) { 2048 set_buffer_uptodate(bh); 2049 } else { 2050 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 2051 printk(KERN_WARNING "lost page write due to " 2052 "I/O error on %s\n", 2053 bdevname(bh->b_bdev, b)); 2054 } 2055 /* note, we dont' set_buffer_write_io_error because we have 2056 * our own ways of dealing with the IO errors 2057 */ 2058 clear_buffer_uptodate(bh); 2059 } 2060 unlock_buffer(bh); 2061 put_bh(bh); 2062 } 2063 2064 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2065 { 2066 struct buffer_head *bh; 2067 struct buffer_head *latest = NULL; 2068 struct btrfs_super_block *super; 2069 int i; 2070 u64 transid = 0; 2071 u64 bytenr; 2072 2073 /* we would like to check all the supers, but that would make 2074 * a btrfs mount succeed after a mkfs from a different FS. 2075 * So, we need to add a special mount option to scan for 2076 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2077 */ 2078 for (i = 0; i < 1; i++) { 2079 bytenr = btrfs_sb_offset(i); 2080 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2081 break; 2082 bh = __bread(bdev, bytenr / 4096, 4096); 2083 if (!bh) 2084 continue; 2085 2086 super = (struct btrfs_super_block *)bh->b_data; 2087 if (btrfs_super_bytenr(super) != bytenr || 2088 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2089 sizeof(super->magic))) { 2090 brelse(bh); 2091 continue; 2092 } 2093 2094 if (!latest || btrfs_super_generation(super) > transid) { 2095 brelse(latest); 2096 latest = bh; 2097 transid = btrfs_super_generation(super); 2098 } else { 2099 brelse(bh); 2100 } 2101 } 2102 return latest; 2103 } 2104 2105 /* 2106 * this should be called twice, once with wait == 0 and 2107 * once with wait == 1. When wait == 0 is done, all the buffer heads 2108 * we write are pinned. 2109 * 2110 * They are released when wait == 1 is done. 2111 * max_mirrors must be the same for both runs, and it indicates how 2112 * many supers on this one device should be written. 2113 * 2114 * max_mirrors == 0 means to write them all. 2115 */ 2116 static int write_dev_supers(struct btrfs_device *device, 2117 struct btrfs_super_block *sb, 2118 int do_barriers, int wait, int max_mirrors) 2119 { 2120 struct buffer_head *bh; 2121 int i; 2122 int ret; 2123 int errors = 0; 2124 u32 crc; 2125 u64 bytenr; 2126 int last_barrier = 0; 2127 2128 if (max_mirrors == 0) 2129 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2130 2131 /* make sure only the last submit_bh does a barrier */ 2132 if (do_barriers) { 2133 for (i = 0; i < max_mirrors; i++) { 2134 bytenr = btrfs_sb_offset(i); 2135 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2136 device->total_bytes) 2137 break; 2138 last_barrier = i; 2139 } 2140 } 2141 2142 for (i = 0; i < max_mirrors; i++) { 2143 bytenr = btrfs_sb_offset(i); 2144 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2145 break; 2146 2147 if (wait) { 2148 bh = __find_get_block(device->bdev, bytenr / 4096, 2149 BTRFS_SUPER_INFO_SIZE); 2150 BUG_ON(!bh); 2151 wait_on_buffer(bh); 2152 if (!buffer_uptodate(bh)) 2153 errors++; 2154 2155 /* drop our reference */ 2156 brelse(bh); 2157 2158 /* drop the reference from the wait == 0 run */ 2159 brelse(bh); 2160 continue; 2161 } else { 2162 btrfs_set_super_bytenr(sb, bytenr); 2163 2164 crc = ~(u32)0; 2165 crc = btrfs_csum_data(NULL, (char *)sb + 2166 BTRFS_CSUM_SIZE, crc, 2167 BTRFS_SUPER_INFO_SIZE - 2168 BTRFS_CSUM_SIZE); 2169 btrfs_csum_final(crc, sb->csum); 2170 2171 /* 2172 * one reference for us, and we leave it for the 2173 * caller 2174 */ 2175 bh = __getblk(device->bdev, bytenr / 4096, 2176 BTRFS_SUPER_INFO_SIZE); 2177 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2178 2179 /* one reference for submit_bh */ 2180 get_bh(bh); 2181 2182 set_buffer_uptodate(bh); 2183 lock_buffer(bh); 2184 bh->b_end_io = btrfs_end_buffer_write_sync; 2185 } 2186 2187 if (i == last_barrier && do_barriers && device->barriers) { 2188 ret = submit_bh(WRITE_BARRIER, bh); 2189 if (ret == -EOPNOTSUPP) { 2190 printk("btrfs: disabling barriers on dev %s\n", 2191 device->name); 2192 set_buffer_uptodate(bh); 2193 device->barriers = 0; 2194 /* one reference for submit_bh */ 2195 get_bh(bh); 2196 lock_buffer(bh); 2197 ret = submit_bh(WRITE_SYNC, bh); 2198 } 2199 } else { 2200 ret = submit_bh(WRITE_SYNC, bh); 2201 } 2202 2203 if (ret) 2204 errors++; 2205 } 2206 return errors < i ? 0 : -1; 2207 } 2208 2209 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2210 { 2211 struct list_head *head; 2212 struct btrfs_device *dev; 2213 struct btrfs_super_block *sb; 2214 struct btrfs_dev_item *dev_item; 2215 int ret; 2216 int do_barriers; 2217 int max_errors; 2218 int total_errors = 0; 2219 u64 flags; 2220 2221 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2222 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2223 2224 sb = &root->fs_info->super_for_commit; 2225 dev_item = &sb->dev_item; 2226 2227 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2228 head = &root->fs_info->fs_devices->devices; 2229 list_for_each_entry(dev, head, dev_list) { 2230 if (!dev->bdev) { 2231 total_errors++; 2232 continue; 2233 } 2234 if (!dev->in_fs_metadata || !dev->writeable) 2235 continue; 2236 2237 btrfs_set_stack_device_generation(dev_item, 0); 2238 btrfs_set_stack_device_type(dev_item, dev->type); 2239 btrfs_set_stack_device_id(dev_item, dev->devid); 2240 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2241 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2242 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2243 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2244 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2245 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2246 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2247 2248 flags = btrfs_super_flags(sb); 2249 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2250 2251 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2252 if (ret) 2253 total_errors++; 2254 } 2255 if (total_errors > max_errors) { 2256 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2257 total_errors); 2258 BUG(); 2259 } 2260 2261 total_errors = 0; 2262 list_for_each_entry(dev, head, dev_list) { 2263 if (!dev->bdev) 2264 continue; 2265 if (!dev->in_fs_metadata || !dev->writeable) 2266 continue; 2267 2268 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2269 if (ret) 2270 total_errors++; 2271 } 2272 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2273 if (total_errors > max_errors) { 2274 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2275 total_errors); 2276 BUG(); 2277 } 2278 return 0; 2279 } 2280 2281 int write_ctree_super(struct btrfs_trans_handle *trans, 2282 struct btrfs_root *root, int max_mirrors) 2283 { 2284 int ret; 2285 2286 ret = write_all_supers(root, max_mirrors); 2287 return ret; 2288 } 2289 2290 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2291 { 2292 spin_lock(&fs_info->fs_roots_radix_lock); 2293 radix_tree_delete(&fs_info->fs_roots_radix, 2294 (unsigned long)root->root_key.objectid); 2295 spin_unlock(&fs_info->fs_roots_radix_lock); 2296 2297 if (btrfs_root_refs(&root->root_item) == 0) 2298 synchronize_srcu(&fs_info->subvol_srcu); 2299 2300 free_fs_root(root); 2301 return 0; 2302 } 2303 2304 static void free_fs_root(struct btrfs_root *root) 2305 { 2306 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2307 if (root->anon_super.s_dev) { 2308 down_write(&root->anon_super.s_umount); 2309 kill_anon_super(&root->anon_super); 2310 } 2311 free_extent_buffer(root->node); 2312 free_extent_buffer(root->commit_root); 2313 kfree(root->name); 2314 kfree(root); 2315 } 2316 2317 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2318 { 2319 int ret; 2320 struct btrfs_root *gang[8]; 2321 int i; 2322 2323 while (!list_empty(&fs_info->dead_roots)) { 2324 gang[0] = list_entry(fs_info->dead_roots.next, 2325 struct btrfs_root, root_list); 2326 list_del(&gang[0]->root_list); 2327 2328 if (gang[0]->in_radix) { 2329 btrfs_free_fs_root(fs_info, gang[0]); 2330 } else { 2331 free_extent_buffer(gang[0]->node); 2332 free_extent_buffer(gang[0]->commit_root); 2333 kfree(gang[0]); 2334 } 2335 } 2336 2337 while (1) { 2338 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2339 (void **)gang, 0, 2340 ARRAY_SIZE(gang)); 2341 if (!ret) 2342 break; 2343 for (i = 0; i < ret; i++) 2344 btrfs_free_fs_root(fs_info, gang[i]); 2345 } 2346 return 0; 2347 } 2348 2349 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2350 { 2351 u64 root_objectid = 0; 2352 struct btrfs_root *gang[8]; 2353 int i; 2354 int ret; 2355 2356 while (1) { 2357 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2358 (void **)gang, root_objectid, 2359 ARRAY_SIZE(gang)); 2360 if (!ret) 2361 break; 2362 2363 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2364 for (i = 0; i < ret; i++) { 2365 root_objectid = gang[i]->root_key.objectid; 2366 btrfs_orphan_cleanup(gang[i]); 2367 } 2368 root_objectid++; 2369 } 2370 return 0; 2371 } 2372 2373 int btrfs_commit_super(struct btrfs_root *root) 2374 { 2375 struct btrfs_trans_handle *trans; 2376 int ret; 2377 2378 mutex_lock(&root->fs_info->cleaner_mutex); 2379 btrfs_clean_old_snapshots(root); 2380 mutex_unlock(&root->fs_info->cleaner_mutex); 2381 trans = btrfs_start_transaction(root, 1); 2382 ret = btrfs_commit_transaction(trans, root); 2383 BUG_ON(ret); 2384 /* run commit again to drop the original snapshot */ 2385 trans = btrfs_start_transaction(root, 1); 2386 btrfs_commit_transaction(trans, root); 2387 ret = btrfs_write_and_wait_transaction(NULL, root); 2388 BUG_ON(ret); 2389 2390 ret = write_ctree_super(NULL, root, 0); 2391 return ret; 2392 } 2393 2394 int close_ctree(struct btrfs_root *root) 2395 { 2396 struct btrfs_fs_info *fs_info = root->fs_info; 2397 int ret; 2398 2399 fs_info->closing = 1; 2400 smp_mb(); 2401 2402 kthread_stop(root->fs_info->transaction_kthread); 2403 kthread_stop(root->fs_info->cleaner_kthread); 2404 2405 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2406 ret = btrfs_commit_super(root); 2407 if (ret) 2408 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2409 } 2410 2411 fs_info->closing = 2; 2412 smp_mb(); 2413 2414 if (fs_info->delalloc_bytes) { 2415 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2416 (unsigned long long)fs_info->delalloc_bytes); 2417 } 2418 if (fs_info->total_ref_cache_size) { 2419 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2420 (unsigned long long)fs_info->total_ref_cache_size); 2421 } 2422 2423 free_extent_buffer(fs_info->extent_root->node); 2424 free_extent_buffer(fs_info->extent_root->commit_root); 2425 free_extent_buffer(fs_info->tree_root->node); 2426 free_extent_buffer(fs_info->tree_root->commit_root); 2427 free_extent_buffer(root->fs_info->chunk_root->node); 2428 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2429 free_extent_buffer(root->fs_info->dev_root->node); 2430 free_extent_buffer(root->fs_info->dev_root->commit_root); 2431 free_extent_buffer(root->fs_info->csum_root->node); 2432 free_extent_buffer(root->fs_info->csum_root->commit_root); 2433 2434 btrfs_free_block_groups(root->fs_info); 2435 2436 del_fs_roots(fs_info); 2437 2438 iput(fs_info->btree_inode); 2439 2440 btrfs_stop_workers(&fs_info->fixup_workers); 2441 btrfs_stop_workers(&fs_info->delalloc_workers); 2442 btrfs_stop_workers(&fs_info->workers); 2443 btrfs_stop_workers(&fs_info->endio_workers); 2444 btrfs_stop_workers(&fs_info->endio_meta_workers); 2445 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2446 btrfs_stop_workers(&fs_info->endio_write_workers); 2447 btrfs_stop_workers(&fs_info->submit_workers); 2448 2449 btrfs_close_devices(fs_info->fs_devices); 2450 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2451 2452 bdi_destroy(&fs_info->bdi); 2453 cleanup_srcu_struct(&fs_info->subvol_srcu); 2454 2455 kfree(fs_info->extent_root); 2456 kfree(fs_info->tree_root); 2457 kfree(fs_info->chunk_root); 2458 kfree(fs_info->dev_root); 2459 kfree(fs_info->csum_root); 2460 return 0; 2461 } 2462 2463 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2464 { 2465 int ret; 2466 struct inode *btree_inode = buf->first_page->mapping->host; 2467 2468 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2469 if (!ret) 2470 return ret; 2471 2472 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2473 parent_transid); 2474 return !ret; 2475 } 2476 2477 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2478 { 2479 struct inode *btree_inode = buf->first_page->mapping->host; 2480 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2481 buf); 2482 } 2483 2484 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2485 { 2486 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2487 u64 transid = btrfs_header_generation(buf); 2488 struct inode *btree_inode = root->fs_info->btree_inode; 2489 int was_dirty; 2490 2491 btrfs_assert_tree_locked(buf); 2492 if (transid != root->fs_info->generation) { 2493 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2494 "found %llu running %llu\n", 2495 (unsigned long long)buf->start, 2496 (unsigned long long)transid, 2497 (unsigned long long)root->fs_info->generation); 2498 WARN_ON(1); 2499 } 2500 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2501 buf); 2502 if (!was_dirty) { 2503 spin_lock(&root->fs_info->delalloc_lock); 2504 root->fs_info->dirty_metadata_bytes += buf->len; 2505 spin_unlock(&root->fs_info->delalloc_lock); 2506 } 2507 } 2508 2509 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2510 { 2511 /* 2512 * looks as though older kernels can get into trouble with 2513 * this code, they end up stuck in balance_dirty_pages forever 2514 */ 2515 u64 num_dirty; 2516 unsigned long thresh = 32 * 1024 * 1024; 2517 2518 if (current->flags & PF_MEMALLOC) 2519 return; 2520 2521 num_dirty = root->fs_info->dirty_metadata_bytes; 2522 2523 if (num_dirty > thresh) { 2524 balance_dirty_pages_ratelimited_nr( 2525 root->fs_info->btree_inode->i_mapping, 1); 2526 } 2527 return; 2528 } 2529 2530 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2531 { 2532 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2533 int ret; 2534 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2535 if (ret == 0) 2536 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2537 return ret; 2538 } 2539 2540 int btree_lock_page_hook(struct page *page) 2541 { 2542 struct inode *inode = page->mapping->host; 2543 struct btrfs_root *root = BTRFS_I(inode)->root; 2544 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2545 struct extent_buffer *eb; 2546 unsigned long len; 2547 u64 bytenr = page_offset(page); 2548 2549 if (page->private == EXTENT_PAGE_PRIVATE) 2550 goto out; 2551 2552 len = page->private >> 2; 2553 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2554 if (!eb) 2555 goto out; 2556 2557 btrfs_tree_lock(eb); 2558 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2559 2560 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2561 spin_lock(&root->fs_info->delalloc_lock); 2562 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2563 root->fs_info->dirty_metadata_bytes -= eb->len; 2564 else 2565 WARN_ON(1); 2566 spin_unlock(&root->fs_info->delalloc_lock); 2567 } 2568 2569 btrfs_tree_unlock(eb); 2570 free_extent_buffer(eb); 2571 out: 2572 lock_page(page); 2573 return 0; 2574 } 2575 2576 static struct extent_io_ops btree_extent_io_ops = { 2577 .write_cache_pages_lock_hook = btree_lock_page_hook, 2578 .readpage_end_io_hook = btree_readpage_end_io_hook, 2579 .submit_bio_hook = btree_submit_bio_hook, 2580 /* note we're sharing with inode.c for the merge bio hook */ 2581 .merge_bio_hook = btrfs_merge_bio_hook, 2582 }; 2583