1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <asm/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "volumes.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 #include "free-space-cache.h" 30 #include "free-space-tree.h" 31 #include "inode-map.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 42 #ifdef CONFIG_X86 43 #include <asm/cpufeature.h> 44 #endif 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->root_key.objectid. This ensures that all special purpose 129 * roots have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, u64 start, u64 len, 207 int create) 208 { 209 struct btrfs_fs_info *fs_info = inode->root->fs_info; 210 struct extent_map_tree *em_tree = &inode->extent_tree; 211 struct extent_map *em; 212 int ret; 213 214 read_lock(&em_tree->lock); 215 em = lookup_extent_mapping(em_tree, start, len); 216 if (em) { 217 em->bdev = fs_info->fs_devices->latest_bdev; 218 read_unlock(&em_tree->lock); 219 goto out; 220 } 221 read_unlock(&em_tree->lock); 222 223 em = alloc_extent_map(); 224 if (!em) { 225 em = ERR_PTR(-ENOMEM); 226 goto out; 227 } 228 em->start = 0; 229 em->len = (u64)-1; 230 em->block_len = (u64)-1; 231 em->block_start = 0; 232 em->bdev = fs_info->fs_devices->latest_bdev; 233 234 write_lock(&em_tree->lock); 235 ret = add_extent_mapping(em_tree, em, 0); 236 if (ret == -EEXIST) { 237 free_extent_map(em); 238 em = lookup_extent_mapping(em_tree, start, len); 239 if (!em) 240 em = ERR_PTR(-EIO); 241 } else if (ret) { 242 free_extent_map(em); 243 em = ERR_PTR(ret); 244 } 245 write_unlock(&em_tree->lock); 246 247 out: 248 return em; 249 } 250 251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 252 { 253 return crc32c(seed, data, len); 254 } 255 256 void btrfs_csum_final(u32 crc, u8 *result) 257 { 258 put_unaligned_le32(~crc, result); 259 } 260 261 /* 262 * compute the csum for a btree block, and either verify it or write it 263 * into the csum field of the block. 264 */ 265 static int csum_tree_block(struct btrfs_fs_info *fs_info, 266 struct extent_buffer *buf, 267 int verify) 268 { 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 270 char result[BTRFS_CSUM_SIZE]; 271 unsigned long len; 272 unsigned long cur_len; 273 unsigned long offset = BTRFS_CSUM_SIZE; 274 char *kaddr; 275 unsigned long map_start; 276 unsigned long map_len; 277 int err; 278 u32 crc = ~(u32)0; 279 280 len = buf->len - offset; 281 while (len > 0) { 282 err = map_private_extent_buffer(buf, offset, 32, 283 &kaddr, &map_start, &map_len); 284 if (err) 285 return err; 286 cur_len = min(len, map_len - (offset - map_start)); 287 crc = btrfs_csum_data(kaddr + offset - map_start, 288 crc, cur_len); 289 len -= cur_len; 290 offset += cur_len; 291 } 292 memset(result, 0, BTRFS_CSUM_SIZE); 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 btrfs_warn_rl(fs_info, 304 "%s checksum verify failed on %llu wanted %X found %X level %d", 305 fs_info->sb->s_id, buf->start, 306 val, found, btrfs_header_level(buf)); 307 return -EUCLEAN; 308 } 309 } else { 310 write_extent_buffer(buf, result, 0, csum_size); 311 } 312 313 return 0; 314 } 315 316 /* 317 * we can't consider a given block up to date unless the transid of the 318 * block matches the transid in the parent node's pointer. This is how we 319 * detect blocks that either didn't get written at all or got written 320 * in the wrong place. 321 */ 322 static int verify_parent_transid(struct extent_io_tree *io_tree, 323 struct extent_buffer *eb, u64 parent_transid, 324 int atomic) 325 { 326 struct extent_state *cached_state = NULL; 327 int ret; 328 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 if (atomic) 334 return -EAGAIN; 335 336 if (need_lock) { 337 btrfs_tree_read_lock(eb); 338 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 339 } 340 341 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 342 &cached_state); 343 if (extent_buffer_uptodate(eb) && 344 btrfs_header_generation(eb) == parent_transid) { 345 ret = 0; 346 goto out; 347 } 348 btrfs_err_rl(eb->fs_info, 349 "parent transid verify failed on %llu wanted %llu found %llu", 350 eb->start, 351 parent_transid, btrfs_header_generation(eb)); 352 ret = 1; 353 354 /* 355 * Things reading via commit roots that don't have normal protection, 356 * like send, can have a really old block in cache that may point at a 357 * block that has been freed and re-allocated. So don't clear uptodate 358 * if we find an eb that is under IO (dirty/writeback) because we could 359 * end up reading in the stale data and then writing it back out and 360 * making everybody very sad. 361 */ 362 if (!extent_buffer_under_io(eb)) 363 clear_extent_buffer_uptodate(eb); 364 out: 365 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 366 &cached_state); 367 if (need_lock) 368 btrfs_tree_read_unlock_blocking(eb); 369 return ret; 370 } 371 372 /* 373 * Return 0 if the superblock checksum type matches the checksum value of that 374 * algorithm. Pass the raw disk superblock data. 375 */ 376 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 377 char *raw_disk_sb) 378 { 379 struct btrfs_super_block *disk_sb = 380 (struct btrfs_super_block *)raw_disk_sb; 381 u16 csum_type = btrfs_super_csum_type(disk_sb); 382 int ret = 0; 383 384 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 385 u32 crc = ~(u32)0; 386 char result[sizeof(crc)]; 387 388 /* 389 * The super_block structure does not span the whole 390 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 391 * is filled with zeros and is included in the checksum. 392 */ 393 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 394 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 395 btrfs_csum_final(crc, result); 396 397 if (memcmp(raw_disk_sb, result, sizeof(result))) 398 ret = 1; 399 } 400 401 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 402 btrfs_err(fs_info, "unsupported checksum algorithm %u", 403 csum_type); 404 ret = 1; 405 } 406 407 return ret; 408 } 409 410 static int verify_level_key(struct btrfs_fs_info *fs_info, 411 struct extent_buffer *eb, int level, 412 struct btrfs_key *first_key, u64 parent_transid) 413 { 414 int found_level; 415 struct btrfs_key found_key; 416 int ret; 417 418 found_level = btrfs_header_level(eb); 419 if (found_level != level) { 420 #ifdef CONFIG_BTRFS_DEBUG 421 WARN_ON(1); 422 btrfs_err(fs_info, 423 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 424 eb->start, level, found_level); 425 #endif 426 return -EIO; 427 } 428 429 if (!first_key) 430 return 0; 431 432 /* 433 * For live tree block (new tree blocks in current transaction), 434 * we need proper lock context to avoid race, which is impossible here. 435 * So we only checks tree blocks which is read from disk, whose 436 * generation <= fs_info->last_trans_committed. 437 */ 438 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 439 return 0; 440 if (found_level) 441 btrfs_node_key_to_cpu(eb, &found_key, 0); 442 else 443 btrfs_item_key_to_cpu(eb, &found_key, 0); 444 ret = btrfs_comp_cpu_keys(first_key, &found_key); 445 446 #ifdef CONFIG_BTRFS_DEBUG 447 if (ret) { 448 WARN_ON(1); 449 btrfs_err(fs_info, 450 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 451 eb->start, parent_transid, first_key->objectid, 452 first_key->type, first_key->offset, 453 found_key.objectid, found_key.type, 454 found_key.offset); 455 } 456 #endif 457 return ret; 458 } 459 460 /* 461 * helper to read a given tree block, doing retries as required when 462 * the checksums don't match and we have alternate mirrors to try. 463 * 464 * @parent_transid: expected transid, skip check if 0 465 * @level: expected level, mandatory check 466 * @first_key: expected key of first slot, skip check if NULL 467 */ 468 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 469 struct extent_buffer *eb, 470 u64 parent_transid, int level, 471 struct btrfs_key *first_key) 472 { 473 struct extent_io_tree *io_tree; 474 int failed = 0; 475 int ret; 476 int num_copies = 0; 477 int mirror_num = 0; 478 int failed_mirror = 0; 479 480 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 481 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 482 while (1) { 483 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 484 mirror_num); 485 if (!ret) { 486 if (verify_parent_transid(io_tree, eb, 487 parent_transid, 0)) 488 ret = -EIO; 489 else if (verify_level_key(fs_info, eb, level, 490 first_key, parent_transid)) 491 ret = -EUCLEAN; 492 else 493 break; 494 } 495 496 /* 497 * This buffer's crc is fine, but its contents are corrupted, so 498 * there is no reason to read the other copies, they won't be 499 * any less wrong. 500 */ 501 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) || 502 ret == -EUCLEAN) 503 break; 504 505 num_copies = btrfs_num_copies(fs_info, 506 eb->start, eb->len); 507 if (num_copies == 1) 508 break; 509 510 if (!failed_mirror) { 511 failed = 1; 512 failed_mirror = eb->read_mirror; 513 } 514 515 mirror_num++; 516 if (mirror_num == failed_mirror) 517 mirror_num++; 518 519 if (mirror_num > num_copies) 520 break; 521 } 522 523 if (failed && !ret && failed_mirror) 524 repair_eb_io_failure(fs_info, eb, failed_mirror); 525 526 return ret; 527 } 528 529 /* 530 * checksum a dirty tree block before IO. This has extra checks to make sure 531 * we only fill in the checksum field in the first page of a multi-page block 532 */ 533 534 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 535 { 536 u64 start = page_offset(page); 537 u64 found_start; 538 struct extent_buffer *eb; 539 540 eb = (struct extent_buffer *)page->private; 541 if (page != eb->pages[0]) 542 return 0; 543 544 found_start = btrfs_header_bytenr(eb); 545 /* 546 * Please do not consolidate these warnings into a single if. 547 * It is useful to know what went wrong. 548 */ 549 if (WARN_ON(found_start != start)) 550 return -EUCLEAN; 551 if (WARN_ON(!PageUptodate(page))) 552 return -EUCLEAN; 553 554 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 555 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 556 557 return csum_tree_block(fs_info, eb, 0); 558 } 559 560 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 561 struct extent_buffer *eb) 562 { 563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 564 u8 fsid[BTRFS_FSID_SIZE]; 565 int ret = 1; 566 567 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 568 while (fs_devices) { 569 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 570 ret = 0; 571 break; 572 } 573 fs_devices = fs_devices->seed; 574 } 575 return ret; 576 } 577 578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 579 u64 phy_offset, struct page *page, 580 u64 start, u64 end, int mirror) 581 { 582 u64 found_start; 583 int found_level; 584 struct extent_buffer *eb; 585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 int ret = 0; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 595 /* the pending IO might have been the only thing that kept this buffer 596 * in memory. Make sure we have a ref for all this other checks 597 */ 598 extent_buffer_get(eb); 599 600 reads_done = atomic_dec_and_test(&eb->io_pages); 601 if (!reads_done) 602 goto err; 603 604 eb->read_mirror = mirror; 605 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 606 ret = -EIO; 607 goto err; 608 } 609 610 found_start = btrfs_header_bytenr(eb); 611 if (found_start != eb->start) { 612 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 613 eb->start, found_start); 614 ret = -EIO; 615 goto err; 616 } 617 if (check_tree_block_fsid(fs_info, eb)) { 618 btrfs_err_rl(fs_info, "bad fsid on block %llu", 619 eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 found_level = btrfs_header_level(eb); 624 if (found_level >= BTRFS_MAX_LEVEL) { 625 btrfs_err(fs_info, "bad tree block level %d on %llu", 626 (int)btrfs_header_level(eb), eb->start); 627 ret = -EIO; 628 goto err; 629 } 630 631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 632 eb, found_level); 633 634 ret = csum_tree_block(fs_info, eb, 1); 635 if (ret) 636 goto err; 637 638 /* 639 * If this is a leaf block and it is corrupt, set the corrupt bit so 640 * that we don't try and read the other copies of this block, just 641 * return -EIO. 642 */ 643 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 644 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 645 ret = -EIO; 646 } 647 648 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 649 ret = -EIO; 650 651 if (!ret) 652 set_extent_buffer_uptodate(eb); 653 err: 654 if (reads_done && 655 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 656 btree_readahead_hook(eb, ret); 657 658 if (ret) { 659 /* 660 * our io error hook is going to dec the io pages 661 * again, we have to make sure it has something 662 * to decrement 663 */ 664 atomic_inc(&eb->io_pages); 665 clear_extent_buffer_uptodate(eb); 666 } 667 free_extent_buffer(eb); 668 out: 669 return ret; 670 } 671 672 static int btree_io_failed_hook(struct page *page, int failed_mirror) 673 { 674 struct extent_buffer *eb; 675 676 eb = (struct extent_buffer *)page->private; 677 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 678 eb->read_mirror = failed_mirror; 679 atomic_dec(&eb->io_pages); 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 681 btree_readahead_hook(eb, -EIO); 682 return -EIO; /* we fixed nothing */ 683 } 684 685 static void end_workqueue_bio(struct bio *bio) 686 { 687 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 688 struct btrfs_fs_info *fs_info; 689 struct btrfs_workqueue *wq; 690 btrfs_work_func_t func; 691 692 fs_info = end_io_wq->info; 693 end_io_wq->status = bio->bi_status; 694 695 if (bio_op(bio) == REQ_OP_WRITE) { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 697 wq = fs_info->endio_meta_write_workers; 698 func = btrfs_endio_meta_write_helper; 699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 700 wq = fs_info->endio_freespace_worker; 701 func = btrfs_freespace_write_helper; 702 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 703 wq = fs_info->endio_raid56_workers; 704 func = btrfs_endio_raid56_helper; 705 } else { 706 wq = fs_info->endio_write_workers; 707 func = btrfs_endio_write_helper; 708 } 709 } else { 710 if (unlikely(end_io_wq->metadata == 711 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 712 wq = fs_info->endio_repair_workers; 713 func = btrfs_endio_repair_helper; 714 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 715 wq = fs_info->endio_raid56_workers; 716 func = btrfs_endio_raid56_helper; 717 } else if (end_io_wq->metadata) { 718 wq = fs_info->endio_meta_workers; 719 func = btrfs_endio_meta_helper; 720 } else { 721 wq = fs_info->endio_workers; 722 func = btrfs_endio_helper; 723 } 724 } 725 726 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 727 btrfs_queue_work(wq, &end_io_wq->work); 728 } 729 730 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 731 enum btrfs_wq_endio_type metadata) 732 { 733 struct btrfs_end_io_wq *end_io_wq; 734 735 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 736 if (!end_io_wq) 737 return BLK_STS_RESOURCE; 738 739 end_io_wq->private = bio->bi_private; 740 end_io_wq->end_io = bio->bi_end_io; 741 end_io_wq->info = info; 742 end_io_wq->status = 0; 743 end_io_wq->bio = bio; 744 end_io_wq->metadata = metadata; 745 746 bio->bi_private = end_io_wq; 747 bio->bi_end_io = end_workqueue_bio; 748 return 0; 749 } 750 751 static void run_one_async_start(struct btrfs_work *work) 752 { 753 struct async_submit_bio *async; 754 blk_status_t ret; 755 756 async = container_of(work, struct async_submit_bio, work); 757 ret = async->submit_bio_start(async->private_data, async->bio, 758 async->bio_offset); 759 if (ret) 760 async->status = ret; 761 } 762 763 static void run_one_async_done(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 767 async = container_of(work, struct async_submit_bio, work); 768 769 /* If an error occurred we just want to clean up the bio and move on */ 770 if (async->status) { 771 async->bio->bi_status = async->status; 772 bio_endio(async->bio); 773 return; 774 } 775 776 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num); 777 } 778 779 static void run_one_async_free(struct btrfs_work *work) 780 { 781 struct async_submit_bio *async; 782 783 async = container_of(work, struct async_submit_bio, work); 784 kfree(async); 785 } 786 787 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 788 int mirror_num, unsigned long bio_flags, 789 u64 bio_offset, void *private_data, 790 extent_submit_bio_start_t *submit_bio_start) 791 { 792 struct async_submit_bio *async; 793 794 async = kmalloc(sizeof(*async), GFP_NOFS); 795 if (!async) 796 return BLK_STS_RESOURCE; 797 798 async->private_data = private_data; 799 async->bio = bio; 800 async->mirror_num = mirror_num; 801 async->submit_bio_start = submit_bio_start; 802 803 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 804 run_one_async_done, run_one_async_free); 805 806 async->bio_offset = bio_offset; 807 808 async->status = 0; 809 810 if (op_is_sync(bio->bi_opf)) 811 btrfs_set_work_high_priority(&async->work); 812 813 btrfs_queue_work(fs_info->workers, &async->work); 814 return 0; 815 } 816 817 static blk_status_t btree_csum_one_bio(struct bio *bio) 818 { 819 struct bio_vec *bvec; 820 struct btrfs_root *root; 821 int i, ret = 0; 822 823 ASSERT(!bio_flagged(bio, BIO_CLONED)); 824 bio_for_each_segment_all(bvec, bio, i) { 825 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 826 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 827 if (ret) 828 break; 829 } 830 831 return errno_to_blk_status(ret); 832 } 833 834 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 835 u64 bio_offset) 836 { 837 /* 838 * when we're called for a write, we're already in the async 839 * submission context. Just jump into btrfs_map_bio 840 */ 841 return btree_csum_one_bio(bio); 842 } 843 844 static int check_async_write(struct btrfs_inode *bi) 845 { 846 if (atomic_read(&bi->sync_writers)) 847 return 0; 848 #ifdef CONFIG_X86 849 if (static_cpu_has(X86_FEATURE_XMM4_2)) 850 return 0; 851 #endif 852 return 1; 853 } 854 855 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 856 int mirror_num, unsigned long bio_flags, 857 u64 bio_offset) 858 { 859 struct inode *inode = private_data; 860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 861 int async = check_async_write(BTRFS_I(inode)); 862 blk_status_t ret; 863 864 if (bio_op(bio) != REQ_OP_WRITE) { 865 /* 866 * called for a read, do the setup so that checksum validation 867 * can happen in the async kernel threads 868 */ 869 ret = btrfs_bio_wq_end_io(fs_info, bio, 870 BTRFS_WQ_ENDIO_METADATA); 871 if (ret) 872 goto out_w_error; 873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 874 } else if (!async) { 875 ret = btree_csum_one_bio(bio); 876 if (ret) 877 goto out_w_error; 878 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 879 } else { 880 /* 881 * kthread helpers are used to submit writes so that 882 * checksumming can happen in parallel across all CPUs 883 */ 884 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 885 bio_offset, private_data, 886 btree_submit_bio_start); 887 } 888 889 if (ret) 890 goto out_w_error; 891 return 0; 892 893 out_w_error: 894 bio->bi_status = ret; 895 bio_endio(bio); 896 return ret; 897 } 898 899 #ifdef CONFIG_MIGRATION 900 static int btree_migratepage(struct address_space *mapping, 901 struct page *newpage, struct page *page, 902 enum migrate_mode mode) 903 { 904 /* 905 * we can't safely write a btree page from here, 906 * we haven't done the locking hook 907 */ 908 if (PageDirty(page)) 909 return -EAGAIN; 910 /* 911 * Buffers may be managed in a filesystem specific way. 912 * We must have no buffers or drop them. 913 */ 914 if (page_has_private(page) && 915 !try_to_release_page(page, GFP_KERNEL)) 916 return -EAGAIN; 917 return migrate_page(mapping, newpage, page, mode); 918 } 919 #endif 920 921 922 static int btree_writepages(struct address_space *mapping, 923 struct writeback_control *wbc) 924 { 925 struct btrfs_fs_info *fs_info; 926 int ret; 927 928 if (wbc->sync_mode == WB_SYNC_NONE) { 929 930 if (wbc->for_kupdate) 931 return 0; 932 933 fs_info = BTRFS_I(mapping->host)->root->fs_info; 934 /* this is a bit racy, but that's ok */ 935 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 936 BTRFS_DIRTY_METADATA_THRESH, 937 fs_info->dirty_metadata_batch); 938 if (ret < 0) 939 return 0; 940 } 941 return btree_write_cache_pages(mapping, wbc); 942 } 943 944 static int btree_readpage(struct file *file, struct page *page) 945 { 946 struct extent_io_tree *tree; 947 tree = &BTRFS_I(page->mapping->host)->io_tree; 948 return extent_read_full_page(tree, page, btree_get_extent, 0); 949 } 950 951 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 952 { 953 if (PageWriteback(page) || PageDirty(page)) 954 return 0; 955 956 return try_release_extent_buffer(page); 957 } 958 959 static void btree_invalidatepage(struct page *page, unsigned int offset, 960 unsigned int length) 961 { 962 struct extent_io_tree *tree; 963 tree = &BTRFS_I(page->mapping->host)->io_tree; 964 extent_invalidatepage(tree, page, offset); 965 btree_releasepage(page, GFP_NOFS); 966 if (PagePrivate(page)) { 967 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 968 "page private not zero on page %llu", 969 (unsigned long long)page_offset(page)); 970 ClearPagePrivate(page); 971 set_page_private(page, 0); 972 put_page(page); 973 } 974 } 975 976 static int btree_set_page_dirty(struct page *page) 977 { 978 #ifdef DEBUG 979 struct extent_buffer *eb; 980 981 BUG_ON(!PagePrivate(page)); 982 eb = (struct extent_buffer *)page->private; 983 BUG_ON(!eb); 984 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 985 BUG_ON(!atomic_read(&eb->refs)); 986 btrfs_assert_tree_locked(eb); 987 #endif 988 return __set_page_dirty_nobuffers(page); 989 } 990 991 static const struct address_space_operations btree_aops = { 992 .readpage = btree_readpage, 993 .writepages = btree_writepages, 994 .releasepage = btree_releasepage, 995 .invalidatepage = btree_invalidatepage, 996 #ifdef CONFIG_MIGRATION 997 .migratepage = btree_migratepage, 998 #endif 999 .set_page_dirty = btree_set_page_dirty, 1000 }; 1001 1002 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1003 { 1004 struct extent_buffer *buf = NULL; 1005 struct inode *btree_inode = fs_info->btree_inode; 1006 1007 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1008 if (IS_ERR(buf)) 1009 return; 1010 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1011 buf, WAIT_NONE, 0); 1012 free_extent_buffer(buf); 1013 } 1014 1015 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1016 int mirror_num, struct extent_buffer **eb) 1017 { 1018 struct extent_buffer *buf = NULL; 1019 struct inode *btree_inode = fs_info->btree_inode; 1020 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1021 int ret; 1022 1023 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1024 if (IS_ERR(buf)) 1025 return 0; 1026 1027 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1028 1029 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1030 mirror_num); 1031 if (ret) { 1032 free_extent_buffer(buf); 1033 return ret; 1034 } 1035 1036 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1037 free_extent_buffer(buf); 1038 return -EIO; 1039 } else if (extent_buffer_uptodate(buf)) { 1040 *eb = buf; 1041 } else { 1042 free_extent_buffer(buf); 1043 } 1044 return 0; 1045 } 1046 1047 struct extent_buffer *btrfs_find_create_tree_block( 1048 struct btrfs_fs_info *fs_info, 1049 u64 bytenr) 1050 { 1051 if (btrfs_is_testing(fs_info)) 1052 return alloc_test_extent_buffer(fs_info, bytenr); 1053 return alloc_extent_buffer(fs_info, bytenr); 1054 } 1055 1056 1057 int btrfs_write_tree_block(struct extent_buffer *buf) 1058 { 1059 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1060 buf->start + buf->len - 1); 1061 } 1062 1063 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1064 { 1065 filemap_fdatawait_range(buf->pages[0]->mapping, 1066 buf->start, buf->start + buf->len - 1); 1067 } 1068 1069 /* 1070 * Read tree block at logical address @bytenr and do variant basic but critical 1071 * verification. 1072 * 1073 * @parent_transid: expected transid of this tree block, skip check if 0 1074 * @level: expected level, mandatory check 1075 * @first_key: expected key in slot 0, skip check if NULL 1076 */ 1077 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1078 u64 parent_transid, int level, 1079 struct btrfs_key *first_key) 1080 { 1081 struct extent_buffer *buf = NULL; 1082 int ret; 1083 1084 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1085 if (IS_ERR(buf)) 1086 return buf; 1087 1088 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1089 level, first_key); 1090 if (ret) { 1091 free_extent_buffer(buf); 1092 return ERR_PTR(ret); 1093 } 1094 return buf; 1095 1096 } 1097 1098 void clean_tree_block(struct btrfs_fs_info *fs_info, 1099 struct extent_buffer *buf) 1100 { 1101 if (btrfs_header_generation(buf) == 1102 fs_info->running_transaction->transid) { 1103 btrfs_assert_tree_locked(buf); 1104 1105 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1107 -buf->len, 1108 fs_info->dirty_metadata_batch); 1109 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1110 btrfs_set_lock_blocking(buf); 1111 clear_extent_buffer_dirty(buf); 1112 } 1113 } 1114 } 1115 1116 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1117 { 1118 struct btrfs_subvolume_writers *writers; 1119 int ret; 1120 1121 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1122 if (!writers) 1123 return ERR_PTR(-ENOMEM); 1124 1125 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1126 if (ret < 0) { 1127 kfree(writers); 1128 return ERR_PTR(ret); 1129 } 1130 1131 init_waitqueue_head(&writers->wait); 1132 return writers; 1133 } 1134 1135 static void 1136 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1137 { 1138 percpu_counter_destroy(&writers->counter); 1139 kfree(writers); 1140 } 1141 1142 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1143 u64 objectid) 1144 { 1145 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1146 root->node = NULL; 1147 root->commit_root = NULL; 1148 root->state = 0; 1149 root->orphan_cleanup_state = 0; 1150 1151 root->last_trans = 0; 1152 root->highest_objectid = 0; 1153 root->nr_delalloc_inodes = 0; 1154 root->nr_ordered_extents = 0; 1155 root->inode_tree = RB_ROOT; 1156 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1157 root->block_rsv = NULL; 1158 1159 INIT_LIST_HEAD(&root->dirty_list); 1160 INIT_LIST_HEAD(&root->root_list); 1161 INIT_LIST_HEAD(&root->delalloc_inodes); 1162 INIT_LIST_HEAD(&root->delalloc_root); 1163 INIT_LIST_HEAD(&root->ordered_extents); 1164 INIT_LIST_HEAD(&root->ordered_root); 1165 INIT_LIST_HEAD(&root->logged_list[0]); 1166 INIT_LIST_HEAD(&root->logged_list[1]); 1167 spin_lock_init(&root->inode_lock); 1168 spin_lock_init(&root->delalloc_lock); 1169 spin_lock_init(&root->ordered_extent_lock); 1170 spin_lock_init(&root->accounting_lock); 1171 spin_lock_init(&root->log_extents_lock[0]); 1172 spin_lock_init(&root->log_extents_lock[1]); 1173 spin_lock_init(&root->qgroup_meta_rsv_lock); 1174 mutex_init(&root->objectid_mutex); 1175 mutex_init(&root->log_mutex); 1176 mutex_init(&root->ordered_extent_mutex); 1177 mutex_init(&root->delalloc_mutex); 1178 init_waitqueue_head(&root->log_writer_wait); 1179 init_waitqueue_head(&root->log_commit_wait[0]); 1180 init_waitqueue_head(&root->log_commit_wait[1]); 1181 INIT_LIST_HEAD(&root->log_ctxs[0]); 1182 INIT_LIST_HEAD(&root->log_ctxs[1]); 1183 atomic_set(&root->log_commit[0], 0); 1184 atomic_set(&root->log_commit[1], 0); 1185 atomic_set(&root->log_writers, 0); 1186 atomic_set(&root->log_batch, 0); 1187 refcount_set(&root->refs, 1); 1188 atomic_set(&root->will_be_snapshotted, 0); 1189 atomic_set(&root->snapshot_force_cow, 0); 1190 root->log_transid = 0; 1191 root->log_transid_committed = -1; 1192 root->last_log_commit = 0; 1193 if (!dummy) 1194 extent_io_tree_init(&root->dirty_log_pages, NULL); 1195 1196 memset(&root->root_key, 0, sizeof(root->root_key)); 1197 memset(&root->root_item, 0, sizeof(root->root_item)); 1198 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1199 if (!dummy) 1200 root->defrag_trans_start = fs_info->generation; 1201 else 1202 root->defrag_trans_start = 0; 1203 root->root_key.objectid = objectid; 1204 root->anon_dev = 0; 1205 1206 spin_lock_init(&root->root_item_lock); 1207 } 1208 1209 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1210 gfp_t flags) 1211 { 1212 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1213 if (root) 1214 root->fs_info = fs_info; 1215 return root; 1216 } 1217 1218 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1219 /* Should only be used by the testing infrastructure */ 1220 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1221 { 1222 struct btrfs_root *root; 1223 1224 if (!fs_info) 1225 return ERR_PTR(-EINVAL); 1226 1227 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1228 if (!root) 1229 return ERR_PTR(-ENOMEM); 1230 1231 /* We don't use the stripesize in selftest, set it as sectorsize */ 1232 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1233 root->alloc_bytenr = 0; 1234 1235 return root; 1236 } 1237 #endif 1238 1239 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1240 struct btrfs_fs_info *fs_info, 1241 u64 objectid) 1242 { 1243 struct extent_buffer *leaf; 1244 struct btrfs_root *tree_root = fs_info->tree_root; 1245 struct btrfs_root *root; 1246 struct btrfs_key key; 1247 int ret = 0; 1248 uuid_le uuid = NULL_UUID_LE; 1249 1250 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1251 if (!root) 1252 return ERR_PTR(-ENOMEM); 1253 1254 __setup_root(root, fs_info, objectid); 1255 root->root_key.objectid = objectid; 1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1257 root->root_key.offset = 0; 1258 1259 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1260 if (IS_ERR(leaf)) { 1261 ret = PTR_ERR(leaf); 1262 leaf = NULL; 1263 goto fail; 1264 } 1265 1266 root->node = leaf; 1267 btrfs_mark_buffer_dirty(leaf); 1268 1269 root->commit_root = btrfs_root_node(root); 1270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1271 1272 root->root_item.flags = 0; 1273 root->root_item.byte_limit = 0; 1274 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1275 btrfs_set_root_generation(&root->root_item, trans->transid); 1276 btrfs_set_root_level(&root->root_item, 0); 1277 btrfs_set_root_refs(&root->root_item, 1); 1278 btrfs_set_root_used(&root->root_item, leaf->len); 1279 btrfs_set_root_last_snapshot(&root->root_item, 0); 1280 btrfs_set_root_dirid(&root->root_item, 0); 1281 if (is_fstree(objectid)) 1282 uuid_le_gen(&uuid); 1283 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1284 root->root_item.drop_level = 0; 1285 1286 key.objectid = objectid; 1287 key.type = BTRFS_ROOT_ITEM_KEY; 1288 key.offset = 0; 1289 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1290 if (ret) 1291 goto fail; 1292 1293 btrfs_tree_unlock(leaf); 1294 1295 return root; 1296 1297 fail: 1298 if (leaf) { 1299 btrfs_tree_unlock(leaf); 1300 free_extent_buffer(root->commit_root); 1301 free_extent_buffer(leaf); 1302 } 1303 kfree(root); 1304 1305 return ERR_PTR(ret); 1306 } 1307 1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info) 1310 { 1311 struct btrfs_root *root; 1312 struct extent_buffer *leaf; 1313 1314 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1315 if (!root) 1316 return ERR_PTR(-ENOMEM); 1317 1318 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1319 1320 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1322 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1323 1324 /* 1325 * DON'T set REF_COWS for log trees 1326 * 1327 * log trees do not get reference counted because they go away 1328 * before a real commit is actually done. They do store pointers 1329 * to file data extents, and those reference counts still get 1330 * updated (along with back refs to the log tree). 1331 */ 1332 1333 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1334 NULL, 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 kfree(root); 1337 return ERR_CAST(leaf); 1338 } 1339 1340 root->node = leaf; 1341 1342 btrfs_mark_buffer_dirty(root->node); 1343 btrfs_tree_unlock(root->node); 1344 return root; 1345 } 1346 1347 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1348 struct btrfs_fs_info *fs_info) 1349 { 1350 struct btrfs_root *log_root; 1351 1352 log_root = alloc_log_tree(trans, fs_info); 1353 if (IS_ERR(log_root)) 1354 return PTR_ERR(log_root); 1355 WARN_ON(fs_info->log_root_tree); 1356 fs_info->log_root_tree = log_root; 1357 return 0; 1358 } 1359 1360 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1361 struct btrfs_root *root) 1362 { 1363 struct btrfs_fs_info *fs_info = root->fs_info; 1364 struct btrfs_root *log_root; 1365 struct btrfs_inode_item *inode_item; 1366 1367 log_root = alloc_log_tree(trans, fs_info); 1368 if (IS_ERR(log_root)) 1369 return PTR_ERR(log_root); 1370 1371 log_root->last_trans = trans->transid; 1372 log_root->root_key.offset = root->root_key.objectid; 1373 1374 inode_item = &log_root->root_item.inode; 1375 btrfs_set_stack_inode_generation(inode_item, 1); 1376 btrfs_set_stack_inode_size(inode_item, 3); 1377 btrfs_set_stack_inode_nlink(inode_item, 1); 1378 btrfs_set_stack_inode_nbytes(inode_item, 1379 fs_info->nodesize); 1380 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1381 1382 btrfs_set_root_node(&log_root->root_item, log_root->node); 1383 1384 WARN_ON(root->log_root); 1385 root->log_root = log_root; 1386 root->log_transid = 0; 1387 root->log_transid_committed = -1; 1388 root->last_log_commit = 0; 1389 return 0; 1390 } 1391 1392 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1393 struct btrfs_key *key) 1394 { 1395 struct btrfs_root *root; 1396 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1397 struct btrfs_path *path; 1398 u64 generation; 1399 int ret; 1400 int level; 1401 1402 path = btrfs_alloc_path(); 1403 if (!path) 1404 return ERR_PTR(-ENOMEM); 1405 1406 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1407 if (!root) { 1408 ret = -ENOMEM; 1409 goto alloc_fail; 1410 } 1411 1412 __setup_root(root, fs_info, key->objectid); 1413 1414 ret = btrfs_find_root(tree_root, key, path, 1415 &root->root_item, &root->root_key); 1416 if (ret) { 1417 if (ret > 0) 1418 ret = -ENOENT; 1419 goto find_fail; 1420 } 1421 1422 generation = btrfs_root_generation(&root->root_item); 1423 level = btrfs_root_level(&root->root_item); 1424 root->node = read_tree_block(fs_info, 1425 btrfs_root_bytenr(&root->root_item), 1426 generation, level, NULL); 1427 if (IS_ERR(root->node)) { 1428 ret = PTR_ERR(root->node); 1429 goto find_fail; 1430 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1431 ret = -EIO; 1432 free_extent_buffer(root->node); 1433 goto find_fail; 1434 } 1435 root->commit_root = btrfs_root_node(root); 1436 out: 1437 btrfs_free_path(path); 1438 return root; 1439 1440 find_fail: 1441 kfree(root); 1442 alloc_fail: 1443 root = ERR_PTR(ret); 1444 goto out; 1445 } 1446 1447 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1448 struct btrfs_key *location) 1449 { 1450 struct btrfs_root *root; 1451 1452 root = btrfs_read_tree_root(tree_root, location); 1453 if (IS_ERR(root)) 1454 return root; 1455 1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1457 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1458 btrfs_check_and_init_root_item(&root->root_item); 1459 } 1460 1461 return root; 1462 } 1463 1464 int btrfs_init_fs_root(struct btrfs_root *root) 1465 { 1466 int ret; 1467 struct btrfs_subvolume_writers *writers; 1468 1469 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1470 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1471 GFP_NOFS); 1472 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1473 ret = -ENOMEM; 1474 goto fail; 1475 } 1476 1477 writers = btrfs_alloc_subvolume_writers(); 1478 if (IS_ERR(writers)) { 1479 ret = PTR_ERR(writers); 1480 goto fail; 1481 } 1482 root->subv_writers = writers; 1483 1484 btrfs_init_free_ino_ctl(root); 1485 spin_lock_init(&root->ino_cache_lock); 1486 init_waitqueue_head(&root->ino_cache_wait); 1487 1488 ret = get_anon_bdev(&root->anon_dev); 1489 if (ret) 1490 goto fail; 1491 1492 mutex_lock(&root->objectid_mutex); 1493 ret = btrfs_find_highest_objectid(root, 1494 &root->highest_objectid); 1495 if (ret) { 1496 mutex_unlock(&root->objectid_mutex); 1497 goto fail; 1498 } 1499 1500 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1501 1502 mutex_unlock(&root->objectid_mutex); 1503 1504 return 0; 1505 fail: 1506 /* The caller is responsible to call btrfs_free_fs_root */ 1507 return ret; 1508 } 1509 1510 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1511 u64 root_id) 1512 { 1513 struct btrfs_root *root; 1514 1515 spin_lock(&fs_info->fs_roots_radix_lock); 1516 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1517 (unsigned long)root_id); 1518 spin_unlock(&fs_info->fs_roots_radix_lock); 1519 return root; 1520 } 1521 1522 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1523 struct btrfs_root *root) 1524 { 1525 int ret; 1526 1527 ret = radix_tree_preload(GFP_NOFS); 1528 if (ret) 1529 return ret; 1530 1531 spin_lock(&fs_info->fs_roots_radix_lock); 1532 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1533 (unsigned long)root->root_key.objectid, 1534 root); 1535 if (ret == 0) 1536 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1537 spin_unlock(&fs_info->fs_roots_radix_lock); 1538 radix_tree_preload_end(); 1539 1540 return ret; 1541 } 1542 1543 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1544 struct btrfs_key *location, 1545 bool check_ref) 1546 { 1547 struct btrfs_root *root; 1548 struct btrfs_path *path; 1549 struct btrfs_key key; 1550 int ret; 1551 1552 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1553 return fs_info->tree_root; 1554 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1555 return fs_info->extent_root; 1556 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1557 return fs_info->chunk_root; 1558 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1559 return fs_info->dev_root; 1560 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1561 return fs_info->csum_root; 1562 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1563 return fs_info->quota_root ? fs_info->quota_root : 1564 ERR_PTR(-ENOENT); 1565 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1566 return fs_info->uuid_root ? fs_info->uuid_root : 1567 ERR_PTR(-ENOENT); 1568 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1569 return fs_info->free_space_root ? fs_info->free_space_root : 1570 ERR_PTR(-ENOENT); 1571 again: 1572 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1573 if (root) { 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1575 return ERR_PTR(-ENOENT); 1576 return root; 1577 } 1578 1579 root = btrfs_read_fs_root(fs_info->tree_root, location); 1580 if (IS_ERR(root)) 1581 return root; 1582 1583 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1584 ret = -ENOENT; 1585 goto fail; 1586 } 1587 1588 ret = btrfs_init_fs_root(root); 1589 if (ret) 1590 goto fail; 1591 1592 path = btrfs_alloc_path(); 1593 if (!path) { 1594 ret = -ENOMEM; 1595 goto fail; 1596 } 1597 key.objectid = BTRFS_ORPHAN_OBJECTID; 1598 key.type = BTRFS_ORPHAN_ITEM_KEY; 1599 key.offset = location->objectid; 1600 1601 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1602 btrfs_free_path(path); 1603 if (ret < 0) 1604 goto fail; 1605 if (ret == 0) 1606 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1607 1608 ret = btrfs_insert_fs_root(fs_info, root); 1609 if (ret) { 1610 if (ret == -EEXIST) { 1611 btrfs_free_fs_root(root); 1612 goto again; 1613 } 1614 goto fail; 1615 } 1616 return root; 1617 fail: 1618 btrfs_free_fs_root(root); 1619 return ERR_PTR(ret); 1620 } 1621 1622 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1623 { 1624 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1625 int ret = 0; 1626 struct btrfs_device *device; 1627 struct backing_dev_info *bdi; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1631 if (!device->bdev) 1632 continue; 1633 bdi = device->bdev->bd_bdi; 1634 if (bdi_congested(bdi, bdi_bits)) { 1635 ret = 1; 1636 break; 1637 } 1638 } 1639 rcu_read_unlock(); 1640 return ret; 1641 } 1642 1643 /* 1644 * called by the kthread helper functions to finally call the bio end_io 1645 * functions. This is where read checksum verification actually happens 1646 */ 1647 static void end_workqueue_fn(struct btrfs_work *work) 1648 { 1649 struct bio *bio; 1650 struct btrfs_end_io_wq *end_io_wq; 1651 1652 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1653 bio = end_io_wq->bio; 1654 1655 bio->bi_status = end_io_wq->status; 1656 bio->bi_private = end_io_wq->private; 1657 bio->bi_end_io = end_io_wq->end_io; 1658 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1659 bio_endio(bio); 1660 } 1661 1662 static int cleaner_kthread(void *arg) 1663 { 1664 struct btrfs_root *root = arg; 1665 struct btrfs_fs_info *fs_info = root->fs_info; 1666 int again; 1667 struct btrfs_trans_handle *trans; 1668 1669 do { 1670 again = 0; 1671 1672 /* Make the cleaner go to sleep early. */ 1673 if (btrfs_need_cleaner_sleep(fs_info)) 1674 goto sleep; 1675 1676 /* 1677 * Do not do anything if we might cause open_ctree() to block 1678 * before we have finished mounting the filesystem. 1679 */ 1680 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1681 goto sleep; 1682 1683 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1684 goto sleep; 1685 1686 /* 1687 * Avoid the problem that we change the status of the fs 1688 * during the above check and trylock. 1689 */ 1690 if (btrfs_need_cleaner_sleep(fs_info)) { 1691 mutex_unlock(&fs_info->cleaner_mutex); 1692 goto sleep; 1693 } 1694 1695 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1696 btrfs_run_delayed_iputs(fs_info); 1697 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1698 1699 again = btrfs_clean_one_deleted_snapshot(root); 1700 mutex_unlock(&fs_info->cleaner_mutex); 1701 1702 /* 1703 * The defragger has dealt with the R/O remount and umount, 1704 * needn't do anything special here. 1705 */ 1706 btrfs_run_defrag_inodes(fs_info); 1707 1708 /* 1709 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1710 * with relocation (btrfs_relocate_chunk) and relocation 1711 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1712 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1713 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1714 * unused block groups. 1715 */ 1716 btrfs_delete_unused_bgs(fs_info); 1717 sleep: 1718 if (!again) { 1719 set_current_state(TASK_INTERRUPTIBLE); 1720 if (!kthread_should_stop()) 1721 schedule(); 1722 __set_current_state(TASK_RUNNING); 1723 } 1724 } while (!kthread_should_stop()); 1725 1726 /* 1727 * Transaction kthread is stopped before us and wakes us up. 1728 * However we might have started a new transaction and COWed some 1729 * tree blocks when deleting unused block groups for example. So 1730 * make sure we commit the transaction we started to have a clean 1731 * shutdown when evicting the btree inode - if it has dirty pages 1732 * when we do the final iput() on it, eviction will trigger a 1733 * writeback for it which will fail with null pointer dereferences 1734 * since work queues and other resources were already released and 1735 * destroyed by the time the iput/eviction/writeback is made. 1736 */ 1737 trans = btrfs_attach_transaction(root); 1738 if (IS_ERR(trans)) { 1739 if (PTR_ERR(trans) != -ENOENT) 1740 btrfs_err(fs_info, 1741 "cleaner transaction attach returned %ld", 1742 PTR_ERR(trans)); 1743 } else { 1744 int ret; 1745 1746 ret = btrfs_commit_transaction(trans); 1747 if (ret) 1748 btrfs_err(fs_info, 1749 "cleaner open transaction commit returned %d", 1750 ret); 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int transaction_kthread(void *arg) 1757 { 1758 struct btrfs_root *root = arg; 1759 struct btrfs_fs_info *fs_info = root->fs_info; 1760 struct btrfs_trans_handle *trans; 1761 struct btrfs_transaction *cur; 1762 u64 transid; 1763 time64_t now; 1764 unsigned long delay; 1765 bool cannot_commit; 1766 1767 do { 1768 cannot_commit = false; 1769 delay = HZ * fs_info->commit_interval; 1770 mutex_lock(&fs_info->transaction_kthread_mutex); 1771 1772 spin_lock(&fs_info->trans_lock); 1773 cur = fs_info->running_transaction; 1774 if (!cur) { 1775 spin_unlock(&fs_info->trans_lock); 1776 goto sleep; 1777 } 1778 1779 now = ktime_get_seconds(); 1780 if (cur->state < TRANS_STATE_BLOCKED && 1781 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1782 (now < cur->start_time || 1783 now - cur->start_time < fs_info->commit_interval)) { 1784 spin_unlock(&fs_info->trans_lock); 1785 delay = HZ * 5; 1786 goto sleep; 1787 } 1788 transid = cur->transid; 1789 spin_unlock(&fs_info->trans_lock); 1790 1791 /* If the file system is aborted, this will always fail. */ 1792 trans = btrfs_attach_transaction(root); 1793 if (IS_ERR(trans)) { 1794 if (PTR_ERR(trans) != -ENOENT) 1795 cannot_commit = true; 1796 goto sleep; 1797 } 1798 if (transid == trans->transid) { 1799 btrfs_commit_transaction(trans); 1800 } else { 1801 btrfs_end_transaction(trans); 1802 } 1803 sleep: 1804 wake_up_process(fs_info->cleaner_kthread); 1805 mutex_unlock(&fs_info->transaction_kthread_mutex); 1806 1807 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1808 &fs_info->fs_state))) 1809 btrfs_cleanup_transaction(fs_info); 1810 if (!kthread_should_stop() && 1811 (!btrfs_transaction_blocked(fs_info) || 1812 cannot_commit)) 1813 schedule_timeout_interruptible(delay); 1814 } while (!kthread_should_stop()); 1815 return 0; 1816 } 1817 1818 /* 1819 * this will find the highest generation in the array of 1820 * root backups. The index of the highest array is returned, 1821 * or -1 if we can't find anything. 1822 * 1823 * We check to make sure the array is valid by comparing the 1824 * generation of the latest root in the array with the generation 1825 * in the super block. If they don't match we pitch it. 1826 */ 1827 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1828 { 1829 u64 cur; 1830 int newest_index = -1; 1831 struct btrfs_root_backup *root_backup; 1832 int i; 1833 1834 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1835 root_backup = info->super_copy->super_roots + i; 1836 cur = btrfs_backup_tree_root_gen(root_backup); 1837 if (cur == newest_gen) 1838 newest_index = i; 1839 } 1840 1841 /* check to see if we actually wrapped around */ 1842 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1843 root_backup = info->super_copy->super_roots; 1844 cur = btrfs_backup_tree_root_gen(root_backup); 1845 if (cur == newest_gen) 1846 newest_index = 0; 1847 } 1848 return newest_index; 1849 } 1850 1851 1852 /* 1853 * find the oldest backup so we know where to store new entries 1854 * in the backup array. This will set the backup_root_index 1855 * field in the fs_info struct 1856 */ 1857 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1858 u64 newest_gen) 1859 { 1860 int newest_index = -1; 1861 1862 newest_index = find_newest_super_backup(info, newest_gen); 1863 /* if there was garbage in there, just move along */ 1864 if (newest_index == -1) { 1865 info->backup_root_index = 0; 1866 } else { 1867 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1868 } 1869 } 1870 1871 /* 1872 * copy all the root pointers into the super backup array. 1873 * this will bump the backup pointer by one when it is 1874 * done 1875 */ 1876 static void backup_super_roots(struct btrfs_fs_info *info) 1877 { 1878 int next_backup; 1879 struct btrfs_root_backup *root_backup; 1880 int last_backup; 1881 1882 next_backup = info->backup_root_index; 1883 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1884 BTRFS_NUM_BACKUP_ROOTS; 1885 1886 /* 1887 * just overwrite the last backup if we're at the same generation 1888 * this happens only at umount 1889 */ 1890 root_backup = info->super_for_commit->super_roots + last_backup; 1891 if (btrfs_backup_tree_root_gen(root_backup) == 1892 btrfs_header_generation(info->tree_root->node)) 1893 next_backup = last_backup; 1894 1895 root_backup = info->super_for_commit->super_roots + next_backup; 1896 1897 /* 1898 * make sure all of our padding and empty slots get zero filled 1899 * regardless of which ones we use today 1900 */ 1901 memset(root_backup, 0, sizeof(*root_backup)); 1902 1903 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1904 1905 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1906 btrfs_set_backup_tree_root_gen(root_backup, 1907 btrfs_header_generation(info->tree_root->node)); 1908 1909 btrfs_set_backup_tree_root_level(root_backup, 1910 btrfs_header_level(info->tree_root->node)); 1911 1912 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1913 btrfs_set_backup_chunk_root_gen(root_backup, 1914 btrfs_header_generation(info->chunk_root->node)); 1915 btrfs_set_backup_chunk_root_level(root_backup, 1916 btrfs_header_level(info->chunk_root->node)); 1917 1918 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1919 btrfs_set_backup_extent_root_gen(root_backup, 1920 btrfs_header_generation(info->extent_root->node)); 1921 btrfs_set_backup_extent_root_level(root_backup, 1922 btrfs_header_level(info->extent_root->node)); 1923 1924 /* 1925 * we might commit during log recovery, which happens before we set 1926 * the fs_root. Make sure it is valid before we fill it in. 1927 */ 1928 if (info->fs_root && info->fs_root->node) { 1929 btrfs_set_backup_fs_root(root_backup, 1930 info->fs_root->node->start); 1931 btrfs_set_backup_fs_root_gen(root_backup, 1932 btrfs_header_generation(info->fs_root->node)); 1933 btrfs_set_backup_fs_root_level(root_backup, 1934 btrfs_header_level(info->fs_root->node)); 1935 } 1936 1937 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1938 btrfs_set_backup_dev_root_gen(root_backup, 1939 btrfs_header_generation(info->dev_root->node)); 1940 btrfs_set_backup_dev_root_level(root_backup, 1941 btrfs_header_level(info->dev_root->node)); 1942 1943 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1944 btrfs_set_backup_csum_root_gen(root_backup, 1945 btrfs_header_generation(info->csum_root->node)); 1946 btrfs_set_backup_csum_root_level(root_backup, 1947 btrfs_header_level(info->csum_root->node)); 1948 1949 btrfs_set_backup_total_bytes(root_backup, 1950 btrfs_super_total_bytes(info->super_copy)); 1951 btrfs_set_backup_bytes_used(root_backup, 1952 btrfs_super_bytes_used(info->super_copy)); 1953 btrfs_set_backup_num_devices(root_backup, 1954 btrfs_super_num_devices(info->super_copy)); 1955 1956 /* 1957 * if we don't copy this out to the super_copy, it won't get remembered 1958 * for the next commit 1959 */ 1960 memcpy(&info->super_copy->super_roots, 1961 &info->super_for_commit->super_roots, 1962 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1963 } 1964 1965 /* 1966 * this copies info out of the root backup array and back into 1967 * the in-memory super block. It is meant to help iterate through 1968 * the array, so you send it the number of backups you've already 1969 * tried and the last backup index you used. 1970 * 1971 * this returns -1 when it has tried all the backups 1972 */ 1973 static noinline int next_root_backup(struct btrfs_fs_info *info, 1974 struct btrfs_super_block *super, 1975 int *num_backups_tried, int *backup_index) 1976 { 1977 struct btrfs_root_backup *root_backup; 1978 int newest = *backup_index; 1979 1980 if (*num_backups_tried == 0) { 1981 u64 gen = btrfs_super_generation(super); 1982 1983 newest = find_newest_super_backup(info, gen); 1984 if (newest == -1) 1985 return -1; 1986 1987 *backup_index = newest; 1988 *num_backups_tried = 1; 1989 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1990 /* we've tried all the backups, all done */ 1991 return -1; 1992 } else { 1993 /* jump to the next oldest backup */ 1994 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1995 BTRFS_NUM_BACKUP_ROOTS; 1996 *backup_index = newest; 1997 *num_backups_tried += 1; 1998 } 1999 root_backup = super->super_roots + newest; 2000 2001 btrfs_set_super_generation(super, 2002 btrfs_backup_tree_root_gen(root_backup)); 2003 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2004 btrfs_set_super_root_level(super, 2005 btrfs_backup_tree_root_level(root_backup)); 2006 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2007 2008 /* 2009 * fixme: the total bytes and num_devices need to match or we should 2010 * need a fsck 2011 */ 2012 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2013 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2014 return 0; 2015 } 2016 2017 /* helper to cleanup workers */ 2018 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2019 { 2020 btrfs_destroy_workqueue(fs_info->fixup_workers); 2021 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2022 btrfs_destroy_workqueue(fs_info->workers); 2023 btrfs_destroy_workqueue(fs_info->endio_workers); 2024 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2025 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2026 btrfs_destroy_workqueue(fs_info->rmw_workers); 2027 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2028 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2029 btrfs_destroy_workqueue(fs_info->submit_workers); 2030 btrfs_destroy_workqueue(fs_info->delayed_workers); 2031 btrfs_destroy_workqueue(fs_info->caching_workers); 2032 btrfs_destroy_workqueue(fs_info->readahead_workers); 2033 btrfs_destroy_workqueue(fs_info->flush_workers); 2034 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2035 btrfs_destroy_workqueue(fs_info->extent_workers); 2036 /* 2037 * Now that all other work queues are destroyed, we can safely destroy 2038 * the queues used for metadata I/O, since tasks from those other work 2039 * queues can do metadata I/O operations. 2040 */ 2041 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2042 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2043 } 2044 2045 static void free_root_extent_buffers(struct btrfs_root *root) 2046 { 2047 if (root) { 2048 free_extent_buffer(root->node); 2049 free_extent_buffer(root->commit_root); 2050 root->node = NULL; 2051 root->commit_root = NULL; 2052 } 2053 } 2054 2055 /* helper to cleanup tree roots */ 2056 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2057 { 2058 free_root_extent_buffers(info->tree_root); 2059 2060 free_root_extent_buffers(info->dev_root); 2061 free_root_extent_buffers(info->extent_root); 2062 free_root_extent_buffers(info->csum_root); 2063 free_root_extent_buffers(info->quota_root); 2064 free_root_extent_buffers(info->uuid_root); 2065 if (chunk_root) 2066 free_root_extent_buffers(info->chunk_root); 2067 free_root_extent_buffers(info->free_space_root); 2068 } 2069 2070 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2071 { 2072 int ret; 2073 struct btrfs_root *gang[8]; 2074 int i; 2075 2076 while (!list_empty(&fs_info->dead_roots)) { 2077 gang[0] = list_entry(fs_info->dead_roots.next, 2078 struct btrfs_root, root_list); 2079 list_del(&gang[0]->root_list); 2080 2081 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2082 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2083 } else { 2084 free_extent_buffer(gang[0]->node); 2085 free_extent_buffer(gang[0]->commit_root); 2086 btrfs_put_fs_root(gang[0]); 2087 } 2088 } 2089 2090 while (1) { 2091 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2092 (void **)gang, 0, 2093 ARRAY_SIZE(gang)); 2094 if (!ret) 2095 break; 2096 for (i = 0; i < ret; i++) 2097 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2098 } 2099 2100 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2101 btrfs_free_log_root_tree(NULL, fs_info); 2102 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2103 } 2104 } 2105 2106 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2107 { 2108 mutex_init(&fs_info->scrub_lock); 2109 atomic_set(&fs_info->scrubs_running, 0); 2110 atomic_set(&fs_info->scrub_pause_req, 0); 2111 atomic_set(&fs_info->scrubs_paused, 0); 2112 atomic_set(&fs_info->scrub_cancel_req, 0); 2113 init_waitqueue_head(&fs_info->scrub_pause_wait); 2114 fs_info->scrub_workers_refcnt = 0; 2115 } 2116 2117 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2118 { 2119 spin_lock_init(&fs_info->balance_lock); 2120 mutex_init(&fs_info->balance_mutex); 2121 atomic_set(&fs_info->balance_pause_req, 0); 2122 atomic_set(&fs_info->balance_cancel_req, 0); 2123 fs_info->balance_ctl = NULL; 2124 init_waitqueue_head(&fs_info->balance_wait_q); 2125 } 2126 2127 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2128 { 2129 struct inode *inode = fs_info->btree_inode; 2130 2131 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2132 set_nlink(inode, 1); 2133 /* 2134 * we set the i_size on the btree inode to the max possible int. 2135 * the real end of the address space is determined by all of 2136 * the devices in the system 2137 */ 2138 inode->i_size = OFFSET_MAX; 2139 inode->i_mapping->a_ops = &btree_aops; 2140 2141 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2142 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2143 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2144 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2145 2146 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2147 2148 BTRFS_I(inode)->root = fs_info->tree_root; 2149 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2150 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2151 btrfs_insert_inode_hash(inode); 2152 } 2153 2154 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2155 { 2156 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2157 rwlock_init(&fs_info->dev_replace.lock); 2158 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2159 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2160 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2161 } 2162 2163 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2164 { 2165 spin_lock_init(&fs_info->qgroup_lock); 2166 mutex_init(&fs_info->qgroup_ioctl_lock); 2167 fs_info->qgroup_tree = RB_ROOT; 2168 fs_info->qgroup_op_tree = RB_ROOT; 2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2170 fs_info->qgroup_seq = 1; 2171 fs_info->qgroup_ulist = NULL; 2172 fs_info->qgroup_rescan_running = false; 2173 mutex_init(&fs_info->qgroup_rescan_lock); 2174 } 2175 2176 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2177 struct btrfs_fs_devices *fs_devices) 2178 { 2179 u32 max_active = fs_info->thread_pool_size; 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2181 2182 fs_info->workers = 2183 btrfs_alloc_workqueue(fs_info, "worker", 2184 flags | WQ_HIGHPRI, max_active, 16); 2185 2186 fs_info->delalloc_workers = 2187 btrfs_alloc_workqueue(fs_info, "delalloc", 2188 flags, max_active, 2); 2189 2190 fs_info->flush_workers = 2191 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2192 flags, max_active, 0); 2193 2194 fs_info->caching_workers = 2195 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2196 2197 /* 2198 * a higher idle thresh on the submit workers makes it much more 2199 * likely that bios will be send down in a sane order to the 2200 * devices 2201 */ 2202 fs_info->submit_workers = 2203 btrfs_alloc_workqueue(fs_info, "submit", flags, 2204 min_t(u64, fs_devices->num_devices, 2205 max_active), 64); 2206 2207 fs_info->fixup_workers = 2208 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2209 2210 /* 2211 * endios are largely parallel and should have a very 2212 * low idle thresh 2213 */ 2214 fs_info->endio_workers = 2215 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2216 fs_info->endio_meta_workers = 2217 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2218 max_active, 4); 2219 fs_info->endio_meta_write_workers = 2220 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2221 max_active, 2); 2222 fs_info->endio_raid56_workers = 2223 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2224 max_active, 4); 2225 fs_info->endio_repair_workers = 2226 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2227 fs_info->rmw_workers = 2228 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2229 fs_info->endio_write_workers = 2230 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2231 max_active, 2); 2232 fs_info->endio_freespace_worker = 2233 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2234 max_active, 0); 2235 fs_info->delayed_workers = 2236 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2237 max_active, 0); 2238 fs_info->readahead_workers = 2239 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2240 max_active, 2); 2241 fs_info->qgroup_rescan_workers = 2242 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2243 fs_info->extent_workers = 2244 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2245 min_t(u64, fs_devices->num_devices, 2246 max_active), 8); 2247 2248 if (!(fs_info->workers && fs_info->delalloc_workers && 2249 fs_info->submit_workers && fs_info->flush_workers && 2250 fs_info->endio_workers && fs_info->endio_meta_workers && 2251 fs_info->endio_meta_write_workers && 2252 fs_info->endio_repair_workers && 2253 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2254 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2255 fs_info->caching_workers && fs_info->readahead_workers && 2256 fs_info->fixup_workers && fs_info->delayed_workers && 2257 fs_info->extent_workers && 2258 fs_info->qgroup_rescan_workers)) { 2259 return -ENOMEM; 2260 } 2261 2262 return 0; 2263 } 2264 2265 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2266 struct btrfs_fs_devices *fs_devices) 2267 { 2268 int ret; 2269 struct btrfs_root *log_tree_root; 2270 struct btrfs_super_block *disk_super = fs_info->super_copy; 2271 u64 bytenr = btrfs_super_log_root(disk_super); 2272 int level = btrfs_super_log_root_level(disk_super); 2273 2274 if (fs_devices->rw_devices == 0) { 2275 btrfs_warn(fs_info, "log replay required on RO media"); 2276 return -EIO; 2277 } 2278 2279 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2280 if (!log_tree_root) 2281 return -ENOMEM; 2282 2283 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2284 2285 log_tree_root->node = read_tree_block(fs_info, bytenr, 2286 fs_info->generation + 1, 2287 level, NULL); 2288 if (IS_ERR(log_tree_root->node)) { 2289 btrfs_warn(fs_info, "failed to read log tree"); 2290 ret = PTR_ERR(log_tree_root->node); 2291 kfree(log_tree_root); 2292 return ret; 2293 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2294 btrfs_err(fs_info, "failed to read log tree"); 2295 free_extent_buffer(log_tree_root->node); 2296 kfree(log_tree_root); 2297 return -EIO; 2298 } 2299 /* returns with log_tree_root freed on success */ 2300 ret = btrfs_recover_log_trees(log_tree_root); 2301 if (ret) { 2302 btrfs_handle_fs_error(fs_info, ret, 2303 "Failed to recover log tree"); 2304 free_extent_buffer(log_tree_root->node); 2305 kfree(log_tree_root); 2306 return ret; 2307 } 2308 2309 if (sb_rdonly(fs_info->sb)) { 2310 ret = btrfs_commit_super(fs_info); 2311 if (ret) 2312 return ret; 2313 } 2314 2315 return 0; 2316 } 2317 2318 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2319 { 2320 struct btrfs_root *tree_root = fs_info->tree_root; 2321 struct btrfs_root *root; 2322 struct btrfs_key location; 2323 int ret; 2324 2325 BUG_ON(!fs_info->tree_root); 2326 2327 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2328 location.type = BTRFS_ROOT_ITEM_KEY; 2329 location.offset = 0; 2330 2331 root = btrfs_read_tree_root(tree_root, &location); 2332 if (IS_ERR(root)) { 2333 ret = PTR_ERR(root); 2334 goto out; 2335 } 2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2337 fs_info->extent_root = root; 2338 2339 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2340 root = btrfs_read_tree_root(tree_root, &location); 2341 if (IS_ERR(root)) { 2342 ret = PTR_ERR(root); 2343 goto out; 2344 } 2345 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2346 fs_info->dev_root = root; 2347 btrfs_init_devices_late(fs_info); 2348 2349 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2350 root = btrfs_read_tree_root(tree_root, &location); 2351 if (IS_ERR(root)) { 2352 ret = PTR_ERR(root); 2353 goto out; 2354 } 2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2356 fs_info->csum_root = root; 2357 2358 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2359 root = btrfs_read_tree_root(tree_root, &location); 2360 if (!IS_ERR(root)) { 2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2362 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2363 fs_info->quota_root = root; 2364 } 2365 2366 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2367 root = btrfs_read_tree_root(tree_root, &location); 2368 if (IS_ERR(root)) { 2369 ret = PTR_ERR(root); 2370 if (ret != -ENOENT) 2371 goto out; 2372 } else { 2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2374 fs_info->uuid_root = root; 2375 } 2376 2377 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2378 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2379 root = btrfs_read_tree_root(tree_root, &location); 2380 if (IS_ERR(root)) { 2381 ret = PTR_ERR(root); 2382 goto out; 2383 } 2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2385 fs_info->free_space_root = root; 2386 } 2387 2388 return 0; 2389 out: 2390 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2391 location.objectid, ret); 2392 return ret; 2393 } 2394 2395 /* 2396 * Real super block validation 2397 * NOTE: super csum type and incompat features will not be checked here. 2398 * 2399 * @sb: super block to check 2400 * @mirror_num: the super block number to check its bytenr: 2401 * 0 the primary (1st) sb 2402 * 1, 2 2nd and 3rd backup copy 2403 * -1 skip bytenr check 2404 */ 2405 static int validate_super(struct btrfs_fs_info *fs_info, 2406 struct btrfs_super_block *sb, int mirror_num) 2407 { 2408 u64 nodesize = btrfs_super_nodesize(sb); 2409 u64 sectorsize = btrfs_super_sectorsize(sb); 2410 int ret = 0; 2411 2412 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2413 btrfs_err(fs_info, "no valid FS found"); 2414 ret = -EINVAL; 2415 } 2416 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2417 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2418 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2419 ret = -EINVAL; 2420 } 2421 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2422 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2423 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2424 ret = -EINVAL; 2425 } 2426 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2427 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2428 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2429 ret = -EINVAL; 2430 } 2431 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2432 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2433 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2434 ret = -EINVAL; 2435 } 2436 2437 /* 2438 * Check sectorsize and nodesize first, other check will need it. 2439 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2440 */ 2441 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2442 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2443 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2444 ret = -EINVAL; 2445 } 2446 /* Only PAGE SIZE is supported yet */ 2447 if (sectorsize != PAGE_SIZE) { 2448 btrfs_err(fs_info, 2449 "sectorsize %llu not supported yet, only support %lu", 2450 sectorsize, PAGE_SIZE); 2451 ret = -EINVAL; 2452 } 2453 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2454 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2455 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2456 ret = -EINVAL; 2457 } 2458 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2459 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2460 le32_to_cpu(sb->__unused_leafsize), nodesize); 2461 ret = -EINVAL; 2462 } 2463 2464 /* Root alignment check */ 2465 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2466 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2467 btrfs_super_root(sb)); 2468 ret = -EINVAL; 2469 } 2470 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2471 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2472 btrfs_super_chunk_root(sb)); 2473 ret = -EINVAL; 2474 } 2475 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2476 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2477 btrfs_super_log_root(sb)); 2478 ret = -EINVAL; 2479 } 2480 2481 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 2482 btrfs_err(fs_info, 2483 "dev_item UUID does not match fsid: %pU != %pU", 2484 fs_info->fsid, sb->dev_item.fsid); 2485 ret = -EINVAL; 2486 } 2487 2488 /* 2489 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2490 * done later 2491 */ 2492 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2493 btrfs_err(fs_info, "bytes_used is too small %llu", 2494 btrfs_super_bytes_used(sb)); 2495 ret = -EINVAL; 2496 } 2497 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2498 btrfs_err(fs_info, "invalid stripesize %u", 2499 btrfs_super_stripesize(sb)); 2500 ret = -EINVAL; 2501 } 2502 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2503 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2504 btrfs_super_num_devices(sb)); 2505 if (btrfs_super_num_devices(sb) == 0) { 2506 btrfs_err(fs_info, "number of devices is 0"); 2507 ret = -EINVAL; 2508 } 2509 2510 if (mirror_num >= 0 && 2511 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2512 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2513 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2514 ret = -EINVAL; 2515 } 2516 2517 /* 2518 * Obvious sys_chunk_array corruptions, it must hold at least one key 2519 * and one chunk 2520 */ 2521 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2522 btrfs_err(fs_info, "system chunk array too big %u > %u", 2523 btrfs_super_sys_array_size(sb), 2524 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2525 ret = -EINVAL; 2526 } 2527 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2528 + sizeof(struct btrfs_chunk)) { 2529 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2530 btrfs_super_sys_array_size(sb), 2531 sizeof(struct btrfs_disk_key) 2532 + sizeof(struct btrfs_chunk)); 2533 ret = -EINVAL; 2534 } 2535 2536 /* 2537 * The generation is a global counter, we'll trust it more than the others 2538 * but it's still possible that it's the one that's wrong. 2539 */ 2540 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2541 btrfs_warn(fs_info, 2542 "suspicious: generation < chunk_root_generation: %llu < %llu", 2543 btrfs_super_generation(sb), 2544 btrfs_super_chunk_root_generation(sb)); 2545 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2546 && btrfs_super_cache_generation(sb) != (u64)-1) 2547 btrfs_warn(fs_info, 2548 "suspicious: generation < cache_generation: %llu < %llu", 2549 btrfs_super_generation(sb), 2550 btrfs_super_cache_generation(sb)); 2551 2552 return ret; 2553 } 2554 2555 /* 2556 * Validation of super block at mount time. 2557 * Some checks already done early at mount time, like csum type and incompat 2558 * flags will be skipped. 2559 */ 2560 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2561 { 2562 return validate_super(fs_info, fs_info->super_copy, 0); 2563 } 2564 2565 /* 2566 * Validation of super block at write time. 2567 * Some checks like bytenr check will be skipped as their values will be 2568 * overwritten soon. 2569 * Extra checks like csum type and incompat flags will be done here. 2570 */ 2571 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2572 struct btrfs_super_block *sb) 2573 { 2574 int ret; 2575 2576 ret = validate_super(fs_info, sb, -1); 2577 if (ret < 0) 2578 goto out; 2579 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2580 ret = -EUCLEAN; 2581 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2582 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2583 goto out; 2584 } 2585 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2586 ret = -EUCLEAN; 2587 btrfs_err(fs_info, 2588 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2589 btrfs_super_incompat_flags(sb), 2590 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2591 goto out; 2592 } 2593 out: 2594 if (ret < 0) 2595 btrfs_err(fs_info, 2596 "super block corruption detected before writing it to disk"); 2597 return ret; 2598 } 2599 2600 int open_ctree(struct super_block *sb, 2601 struct btrfs_fs_devices *fs_devices, 2602 char *options) 2603 { 2604 u32 sectorsize; 2605 u32 nodesize; 2606 u32 stripesize; 2607 u64 generation; 2608 u64 features; 2609 struct btrfs_key location; 2610 struct buffer_head *bh; 2611 struct btrfs_super_block *disk_super; 2612 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2613 struct btrfs_root *tree_root; 2614 struct btrfs_root *chunk_root; 2615 int ret; 2616 int err = -EINVAL; 2617 int num_backups_tried = 0; 2618 int backup_index = 0; 2619 int clear_free_space_tree = 0; 2620 int level; 2621 2622 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2623 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2624 if (!tree_root || !chunk_root) { 2625 err = -ENOMEM; 2626 goto fail; 2627 } 2628 2629 ret = init_srcu_struct(&fs_info->subvol_srcu); 2630 if (ret) { 2631 err = ret; 2632 goto fail; 2633 } 2634 2635 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2636 if (ret) { 2637 err = ret; 2638 goto fail_srcu; 2639 } 2640 fs_info->dirty_metadata_batch = PAGE_SIZE * 2641 (1 + ilog2(nr_cpu_ids)); 2642 2643 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2644 if (ret) { 2645 err = ret; 2646 goto fail_dirty_metadata_bytes; 2647 } 2648 2649 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2650 GFP_KERNEL); 2651 if (ret) { 2652 err = ret; 2653 goto fail_delalloc_bytes; 2654 } 2655 2656 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2657 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2658 INIT_LIST_HEAD(&fs_info->trans_list); 2659 INIT_LIST_HEAD(&fs_info->dead_roots); 2660 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2661 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2662 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2663 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2664 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2665 spin_lock_init(&fs_info->delalloc_root_lock); 2666 spin_lock_init(&fs_info->trans_lock); 2667 spin_lock_init(&fs_info->fs_roots_radix_lock); 2668 spin_lock_init(&fs_info->delayed_iput_lock); 2669 spin_lock_init(&fs_info->defrag_inodes_lock); 2670 spin_lock_init(&fs_info->tree_mod_seq_lock); 2671 spin_lock_init(&fs_info->super_lock); 2672 spin_lock_init(&fs_info->qgroup_op_lock); 2673 spin_lock_init(&fs_info->buffer_lock); 2674 spin_lock_init(&fs_info->unused_bgs_lock); 2675 rwlock_init(&fs_info->tree_mod_log_lock); 2676 mutex_init(&fs_info->unused_bg_unpin_mutex); 2677 mutex_init(&fs_info->delete_unused_bgs_mutex); 2678 mutex_init(&fs_info->reloc_mutex); 2679 mutex_init(&fs_info->delalloc_root_mutex); 2680 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2681 seqlock_init(&fs_info->profiles_lock); 2682 2683 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2684 INIT_LIST_HEAD(&fs_info->space_info); 2685 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2686 INIT_LIST_HEAD(&fs_info->unused_bgs); 2687 btrfs_mapping_init(&fs_info->mapping_tree); 2688 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2689 BTRFS_BLOCK_RSV_GLOBAL); 2690 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2691 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2692 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2693 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2694 BTRFS_BLOCK_RSV_DELOPS); 2695 atomic_set(&fs_info->async_delalloc_pages, 0); 2696 atomic_set(&fs_info->defrag_running, 0); 2697 atomic_set(&fs_info->qgroup_op_seq, 0); 2698 atomic_set(&fs_info->reada_works_cnt, 0); 2699 atomic64_set(&fs_info->tree_mod_seq, 0); 2700 fs_info->sb = sb; 2701 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2702 fs_info->metadata_ratio = 0; 2703 fs_info->defrag_inodes = RB_ROOT; 2704 atomic64_set(&fs_info->free_chunk_space, 0); 2705 fs_info->tree_mod_log = RB_ROOT; 2706 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2707 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2708 /* readahead state */ 2709 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2710 spin_lock_init(&fs_info->reada_lock); 2711 btrfs_init_ref_verify(fs_info); 2712 2713 fs_info->thread_pool_size = min_t(unsigned long, 2714 num_online_cpus() + 2, 8); 2715 2716 INIT_LIST_HEAD(&fs_info->ordered_roots); 2717 spin_lock_init(&fs_info->ordered_root_lock); 2718 2719 fs_info->btree_inode = new_inode(sb); 2720 if (!fs_info->btree_inode) { 2721 err = -ENOMEM; 2722 goto fail_bio_counter; 2723 } 2724 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2725 2726 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2727 GFP_KERNEL); 2728 if (!fs_info->delayed_root) { 2729 err = -ENOMEM; 2730 goto fail_iput; 2731 } 2732 btrfs_init_delayed_root(fs_info->delayed_root); 2733 2734 btrfs_init_scrub(fs_info); 2735 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2736 fs_info->check_integrity_print_mask = 0; 2737 #endif 2738 btrfs_init_balance(fs_info); 2739 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2740 2741 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2742 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2743 2744 btrfs_init_btree_inode(fs_info); 2745 2746 spin_lock_init(&fs_info->block_group_cache_lock); 2747 fs_info->block_group_cache_tree = RB_ROOT; 2748 fs_info->first_logical_byte = (u64)-1; 2749 2750 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2751 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2752 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2753 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2754 2755 mutex_init(&fs_info->ordered_operations_mutex); 2756 mutex_init(&fs_info->tree_log_mutex); 2757 mutex_init(&fs_info->chunk_mutex); 2758 mutex_init(&fs_info->transaction_kthread_mutex); 2759 mutex_init(&fs_info->cleaner_mutex); 2760 mutex_init(&fs_info->ro_block_group_mutex); 2761 init_rwsem(&fs_info->commit_root_sem); 2762 init_rwsem(&fs_info->cleanup_work_sem); 2763 init_rwsem(&fs_info->subvol_sem); 2764 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2765 2766 btrfs_init_dev_replace_locks(fs_info); 2767 btrfs_init_qgroup(fs_info); 2768 2769 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2770 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2771 2772 init_waitqueue_head(&fs_info->transaction_throttle); 2773 init_waitqueue_head(&fs_info->transaction_wait); 2774 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2775 init_waitqueue_head(&fs_info->async_submit_wait); 2776 2777 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2778 2779 /* Usable values until the real ones are cached from the superblock */ 2780 fs_info->nodesize = 4096; 2781 fs_info->sectorsize = 4096; 2782 fs_info->stripesize = 4096; 2783 2784 ret = btrfs_alloc_stripe_hash_table(fs_info); 2785 if (ret) { 2786 err = ret; 2787 goto fail_alloc; 2788 } 2789 2790 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2791 2792 invalidate_bdev(fs_devices->latest_bdev); 2793 2794 /* 2795 * Read super block and check the signature bytes only 2796 */ 2797 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2798 if (IS_ERR(bh)) { 2799 err = PTR_ERR(bh); 2800 goto fail_alloc; 2801 } 2802 2803 /* 2804 * We want to check superblock checksum, the type is stored inside. 2805 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2806 */ 2807 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2808 btrfs_err(fs_info, "superblock checksum mismatch"); 2809 err = -EINVAL; 2810 brelse(bh); 2811 goto fail_alloc; 2812 } 2813 2814 /* 2815 * super_copy is zeroed at allocation time and we never touch the 2816 * following bytes up to INFO_SIZE, the checksum is calculated from 2817 * the whole block of INFO_SIZE 2818 */ 2819 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2820 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2821 sizeof(*fs_info->super_for_commit)); 2822 brelse(bh); 2823 2824 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2825 2826 ret = btrfs_validate_mount_super(fs_info); 2827 if (ret) { 2828 btrfs_err(fs_info, "superblock contains fatal errors"); 2829 err = -EINVAL; 2830 goto fail_alloc; 2831 } 2832 2833 disk_super = fs_info->super_copy; 2834 if (!btrfs_super_root(disk_super)) 2835 goto fail_alloc; 2836 2837 /* check FS state, whether FS is broken. */ 2838 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2839 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2840 2841 /* 2842 * run through our array of backup supers and setup 2843 * our ring pointer to the oldest one 2844 */ 2845 generation = btrfs_super_generation(disk_super); 2846 find_oldest_super_backup(fs_info, generation); 2847 2848 /* 2849 * In the long term, we'll store the compression type in the super 2850 * block, and it'll be used for per file compression control. 2851 */ 2852 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2853 2854 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2855 if (ret) { 2856 err = ret; 2857 goto fail_alloc; 2858 } 2859 2860 features = btrfs_super_incompat_flags(disk_super) & 2861 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2862 if (features) { 2863 btrfs_err(fs_info, 2864 "cannot mount because of unsupported optional features (%llx)", 2865 features); 2866 err = -EINVAL; 2867 goto fail_alloc; 2868 } 2869 2870 features = btrfs_super_incompat_flags(disk_super); 2871 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2872 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2873 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2874 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2875 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2876 2877 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2878 btrfs_info(fs_info, "has skinny extents"); 2879 2880 /* 2881 * flag our filesystem as having big metadata blocks if 2882 * they are bigger than the page size 2883 */ 2884 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2885 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2886 btrfs_info(fs_info, 2887 "flagging fs with big metadata feature"); 2888 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2889 } 2890 2891 nodesize = btrfs_super_nodesize(disk_super); 2892 sectorsize = btrfs_super_sectorsize(disk_super); 2893 stripesize = sectorsize; 2894 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2895 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2896 2897 /* Cache block sizes */ 2898 fs_info->nodesize = nodesize; 2899 fs_info->sectorsize = sectorsize; 2900 fs_info->stripesize = stripesize; 2901 2902 /* 2903 * mixed block groups end up with duplicate but slightly offset 2904 * extent buffers for the same range. It leads to corruptions 2905 */ 2906 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2907 (sectorsize != nodesize)) { 2908 btrfs_err(fs_info, 2909 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2910 nodesize, sectorsize); 2911 goto fail_alloc; 2912 } 2913 2914 /* 2915 * Needn't use the lock because there is no other task which will 2916 * update the flag. 2917 */ 2918 btrfs_set_super_incompat_flags(disk_super, features); 2919 2920 features = btrfs_super_compat_ro_flags(disk_super) & 2921 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2922 if (!sb_rdonly(sb) && features) { 2923 btrfs_err(fs_info, 2924 "cannot mount read-write because of unsupported optional features (%llx)", 2925 features); 2926 err = -EINVAL; 2927 goto fail_alloc; 2928 } 2929 2930 ret = btrfs_init_workqueues(fs_info, fs_devices); 2931 if (ret) { 2932 err = ret; 2933 goto fail_sb_buffer; 2934 } 2935 2936 sb->s_bdi->congested_fn = btrfs_congested_fn; 2937 sb->s_bdi->congested_data = fs_info; 2938 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2939 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2940 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2941 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2942 2943 sb->s_blocksize = sectorsize; 2944 sb->s_blocksize_bits = blksize_bits(sectorsize); 2945 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2946 2947 mutex_lock(&fs_info->chunk_mutex); 2948 ret = btrfs_read_sys_array(fs_info); 2949 mutex_unlock(&fs_info->chunk_mutex); 2950 if (ret) { 2951 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2952 goto fail_sb_buffer; 2953 } 2954 2955 generation = btrfs_super_chunk_root_generation(disk_super); 2956 level = btrfs_super_chunk_root_level(disk_super); 2957 2958 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2959 2960 chunk_root->node = read_tree_block(fs_info, 2961 btrfs_super_chunk_root(disk_super), 2962 generation, level, NULL); 2963 if (IS_ERR(chunk_root->node) || 2964 !extent_buffer_uptodate(chunk_root->node)) { 2965 btrfs_err(fs_info, "failed to read chunk root"); 2966 if (!IS_ERR(chunk_root->node)) 2967 free_extent_buffer(chunk_root->node); 2968 chunk_root->node = NULL; 2969 goto fail_tree_roots; 2970 } 2971 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2972 chunk_root->commit_root = btrfs_root_node(chunk_root); 2973 2974 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2975 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2976 2977 ret = btrfs_read_chunk_tree(fs_info); 2978 if (ret) { 2979 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2980 goto fail_tree_roots; 2981 } 2982 2983 /* 2984 * Keep the devid that is marked to be the target device for the 2985 * device replace procedure 2986 */ 2987 btrfs_free_extra_devids(fs_devices, 0); 2988 2989 if (!fs_devices->latest_bdev) { 2990 btrfs_err(fs_info, "failed to read devices"); 2991 goto fail_tree_roots; 2992 } 2993 2994 retry_root_backup: 2995 generation = btrfs_super_generation(disk_super); 2996 level = btrfs_super_root_level(disk_super); 2997 2998 tree_root->node = read_tree_block(fs_info, 2999 btrfs_super_root(disk_super), 3000 generation, level, NULL); 3001 if (IS_ERR(tree_root->node) || 3002 !extent_buffer_uptodate(tree_root->node)) { 3003 btrfs_warn(fs_info, "failed to read tree root"); 3004 if (!IS_ERR(tree_root->node)) 3005 free_extent_buffer(tree_root->node); 3006 tree_root->node = NULL; 3007 goto recovery_tree_root; 3008 } 3009 3010 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3011 tree_root->commit_root = btrfs_root_node(tree_root); 3012 btrfs_set_root_refs(&tree_root->root_item, 1); 3013 3014 mutex_lock(&tree_root->objectid_mutex); 3015 ret = btrfs_find_highest_objectid(tree_root, 3016 &tree_root->highest_objectid); 3017 if (ret) { 3018 mutex_unlock(&tree_root->objectid_mutex); 3019 goto recovery_tree_root; 3020 } 3021 3022 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3023 3024 mutex_unlock(&tree_root->objectid_mutex); 3025 3026 ret = btrfs_read_roots(fs_info); 3027 if (ret) 3028 goto recovery_tree_root; 3029 3030 fs_info->generation = generation; 3031 fs_info->last_trans_committed = generation; 3032 3033 ret = btrfs_verify_dev_extents(fs_info); 3034 if (ret) { 3035 btrfs_err(fs_info, 3036 "failed to verify dev extents against chunks: %d", 3037 ret); 3038 goto fail_block_groups; 3039 } 3040 ret = btrfs_recover_balance(fs_info); 3041 if (ret) { 3042 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3043 goto fail_block_groups; 3044 } 3045 3046 ret = btrfs_init_dev_stats(fs_info); 3047 if (ret) { 3048 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3049 goto fail_block_groups; 3050 } 3051 3052 ret = btrfs_init_dev_replace(fs_info); 3053 if (ret) { 3054 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3055 goto fail_block_groups; 3056 } 3057 3058 btrfs_free_extra_devids(fs_devices, 1); 3059 3060 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3061 if (ret) { 3062 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3063 ret); 3064 goto fail_block_groups; 3065 } 3066 3067 ret = btrfs_sysfs_add_device(fs_devices); 3068 if (ret) { 3069 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3070 ret); 3071 goto fail_fsdev_sysfs; 3072 } 3073 3074 ret = btrfs_sysfs_add_mounted(fs_info); 3075 if (ret) { 3076 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3077 goto fail_fsdev_sysfs; 3078 } 3079 3080 ret = btrfs_init_space_info(fs_info); 3081 if (ret) { 3082 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3083 goto fail_sysfs; 3084 } 3085 3086 ret = btrfs_read_block_groups(fs_info); 3087 if (ret) { 3088 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3089 goto fail_sysfs; 3090 } 3091 3092 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3093 btrfs_warn(fs_info, 3094 "writeable mount is not allowed due to too many missing devices"); 3095 goto fail_sysfs; 3096 } 3097 3098 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3099 "btrfs-cleaner"); 3100 if (IS_ERR(fs_info->cleaner_kthread)) 3101 goto fail_sysfs; 3102 3103 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3104 tree_root, 3105 "btrfs-transaction"); 3106 if (IS_ERR(fs_info->transaction_kthread)) 3107 goto fail_cleaner; 3108 3109 if (!btrfs_test_opt(fs_info, NOSSD) && 3110 !fs_info->fs_devices->rotating) { 3111 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3112 } 3113 3114 /* 3115 * Mount does not set all options immediately, we can do it now and do 3116 * not have to wait for transaction commit 3117 */ 3118 btrfs_apply_pending_changes(fs_info); 3119 3120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3121 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3122 ret = btrfsic_mount(fs_info, fs_devices, 3123 btrfs_test_opt(fs_info, 3124 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3125 1 : 0, 3126 fs_info->check_integrity_print_mask); 3127 if (ret) 3128 btrfs_warn(fs_info, 3129 "failed to initialize integrity check module: %d", 3130 ret); 3131 } 3132 #endif 3133 ret = btrfs_read_qgroup_config(fs_info); 3134 if (ret) 3135 goto fail_trans_kthread; 3136 3137 if (btrfs_build_ref_tree(fs_info)) 3138 btrfs_err(fs_info, "couldn't build ref tree"); 3139 3140 /* do not make disk changes in broken FS or nologreplay is given */ 3141 if (btrfs_super_log_root(disk_super) != 0 && 3142 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3143 ret = btrfs_replay_log(fs_info, fs_devices); 3144 if (ret) { 3145 err = ret; 3146 goto fail_qgroup; 3147 } 3148 } 3149 3150 ret = btrfs_find_orphan_roots(fs_info); 3151 if (ret) 3152 goto fail_qgroup; 3153 3154 if (!sb_rdonly(sb)) { 3155 ret = btrfs_cleanup_fs_roots(fs_info); 3156 if (ret) 3157 goto fail_qgroup; 3158 3159 mutex_lock(&fs_info->cleaner_mutex); 3160 ret = btrfs_recover_relocation(tree_root); 3161 mutex_unlock(&fs_info->cleaner_mutex); 3162 if (ret < 0) { 3163 btrfs_warn(fs_info, "failed to recover relocation: %d", 3164 ret); 3165 err = -EINVAL; 3166 goto fail_qgroup; 3167 } 3168 } 3169 3170 location.objectid = BTRFS_FS_TREE_OBJECTID; 3171 location.type = BTRFS_ROOT_ITEM_KEY; 3172 location.offset = 0; 3173 3174 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3175 if (IS_ERR(fs_info->fs_root)) { 3176 err = PTR_ERR(fs_info->fs_root); 3177 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3178 goto fail_qgroup; 3179 } 3180 3181 if (sb_rdonly(sb)) 3182 return 0; 3183 3184 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3185 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3186 clear_free_space_tree = 1; 3187 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3188 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3189 btrfs_warn(fs_info, "free space tree is invalid"); 3190 clear_free_space_tree = 1; 3191 } 3192 3193 if (clear_free_space_tree) { 3194 btrfs_info(fs_info, "clearing free space tree"); 3195 ret = btrfs_clear_free_space_tree(fs_info); 3196 if (ret) { 3197 btrfs_warn(fs_info, 3198 "failed to clear free space tree: %d", ret); 3199 close_ctree(fs_info); 3200 return ret; 3201 } 3202 } 3203 3204 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3205 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3206 btrfs_info(fs_info, "creating free space tree"); 3207 ret = btrfs_create_free_space_tree(fs_info); 3208 if (ret) { 3209 btrfs_warn(fs_info, 3210 "failed to create free space tree: %d", ret); 3211 close_ctree(fs_info); 3212 return ret; 3213 } 3214 } 3215 3216 down_read(&fs_info->cleanup_work_sem); 3217 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3218 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3219 up_read(&fs_info->cleanup_work_sem); 3220 close_ctree(fs_info); 3221 return ret; 3222 } 3223 up_read(&fs_info->cleanup_work_sem); 3224 3225 ret = btrfs_resume_balance_async(fs_info); 3226 if (ret) { 3227 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3228 close_ctree(fs_info); 3229 return ret; 3230 } 3231 3232 ret = btrfs_resume_dev_replace_async(fs_info); 3233 if (ret) { 3234 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3235 close_ctree(fs_info); 3236 return ret; 3237 } 3238 3239 btrfs_qgroup_rescan_resume(fs_info); 3240 3241 if (!fs_info->uuid_root) { 3242 btrfs_info(fs_info, "creating UUID tree"); 3243 ret = btrfs_create_uuid_tree(fs_info); 3244 if (ret) { 3245 btrfs_warn(fs_info, 3246 "failed to create the UUID tree: %d", ret); 3247 close_ctree(fs_info); 3248 return ret; 3249 } 3250 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3251 fs_info->generation != 3252 btrfs_super_uuid_tree_generation(disk_super)) { 3253 btrfs_info(fs_info, "checking UUID tree"); 3254 ret = btrfs_check_uuid_tree(fs_info); 3255 if (ret) { 3256 btrfs_warn(fs_info, 3257 "failed to check the UUID tree: %d", ret); 3258 close_ctree(fs_info); 3259 return ret; 3260 } 3261 } else { 3262 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3263 } 3264 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3265 3266 /* 3267 * backuproot only affect mount behavior, and if open_ctree succeeded, 3268 * no need to keep the flag 3269 */ 3270 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3271 3272 return 0; 3273 3274 fail_qgroup: 3275 btrfs_free_qgroup_config(fs_info); 3276 fail_trans_kthread: 3277 kthread_stop(fs_info->transaction_kthread); 3278 btrfs_cleanup_transaction(fs_info); 3279 btrfs_free_fs_roots(fs_info); 3280 fail_cleaner: 3281 kthread_stop(fs_info->cleaner_kthread); 3282 3283 /* 3284 * make sure we're done with the btree inode before we stop our 3285 * kthreads 3286 */ 3287 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3288 3289 fail_sysfs: 3290 btrfs_sysfs_remove_mounted(fs_info); 3291 3292 fail_fsdev_sysfs: 3293 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3294 3295 fail_block_groups: 3296 btrfs_put_block_group_cache(fs_info); 3297 3298 fail_tree_roots: 3299 free_root_pointers(fs_info, 1); 3300 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3301 3302 fail_sb_buffer: 3303 btrfs_stop_all_workers(fs_info); 3304 btrfs_free_block_groups(fs_info); 3305 fail_alloc: 3306 fail_iput: 3307 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3308 3309 iput(fs_info->btree_inode); 3310 fail_bio_counter: 3311 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3312 fail_delalloc_bytes: 3313 percpu_counter_destroy(&fs_info->delalloc_bytes); 3314 fail_dirty_metadata_bytes: 3315 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3316 fail_srcu: 3317 cleanup_srcu_struct(&fs_info->subvol_srcu); 3318 fail: 3319 btrfs_free_stripe_hash_table(fs_info); 3320 btrfs_close_devices(fs_info->fs_devices); 3321 return err; 3322 3323 recovery_tree_root: 3324 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3325 goto fail_tree_roots; 3326 3327 free_root_pointers(fs_info, 0); 3328 3329 /* don't use the log in recovery mode, it won't be valid */ 3330 btrfs_set_super_log_root(disk_super, 0); 3331 3332 /* we can't trust the free space cache either */ 3333 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3334 3335 ret = next_root_backup(fs_info, fs_info->super_copy, 3336 &num_backups_tried, &backup_index); 3337 if (ret == -1) 3338 goto fail_block_groups; 3339 goto retry_root_backup; 3340 } 3341 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3342 3343 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3344 { 3345 if (uptodate) { 3346 set_buffer_uptodate(bh); 3347 } else { 3348 struct btrfs_device *device = (struct btrfs_device *) 3349 bh->b_private; 3350 3351 btrfs_warn_rl_in_rcu(device->fs_info, 3352 "lost page write due to IO error on %s", 3353 rcu_str_deref(device->name)); 3354 /* note, we don't set_buffer_write_io_error because we have 3355 * our own ways of dealing with the IO errors 3356 */ 3357 clear_buffer_uptodate(bh); 3358 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3359 } 3360 unlock_buffer(bh); 3361 put_bh(bh); 3362 } 3363 3364 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3365 struct buffer_head **bh_ret) 3366 { 3367 struct buffer_head *bh; 3368 struct btrfs_super_block *super; 3369 u64 bytenr; 3370 3371 bytenr = btrfs_sb_offset(copy_num); 3372 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3373 return -EINVAL; 3374 3375 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3376 /* 3377 * If we fail to read from the underlying devices, as of now 3378 * the best option we have is to mark it EIO. 3379 */ 3380 if (!bh) 3381 return -EIO; 3382 3383 super = (struct btrfs_super_block *)bh->b_data; 3384 if (btrfs_super_bytenr(super) != bytenr || 3385 btrfs_super_magic(super) != BTRFS_MAGIC) { 3386 brelse(bh); 3387 return -EINVAL; 3388 } 3389 3390 *bh_ret = bh; 3391 return 0; 3392 } 3393 3394 3395 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3396 { 3397 struct buffer_head *bh; 3398 struct buffer_head *latest = NULL; 3399 struct btrfs_super_block *super; 3400 int i; 3401 u64 transid = 0; 3402 int ret = -EINVAL; 3403 3404 /* we would like to check all the supers, but that would make 3405 * a btrfs mount succeed after a mkfs from a different FS. 3406 * So, we need to add a special mount option to scan for 3407 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3408 */ 3409 for (i = 0; i < 1; i++) { 3410 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3411 if (ret) 3412 continue; 3413 3414 super = (struct btrfs_super_block *)bh->b_data; 3415 3416 if (!latest || btrfs_super_generation(super) > transid) { 3417 brelse(latest); 3418 latest = bh; 3419 transid = btrfs_super_generation(super); 3420 } else { 3421 brelse(bh); 3422 } 3423 } 3424 3425 if (!latest) 3426 return ERR_PTR(ret); 3427 3428 return latest; 3429 } 3430 3431 /* 3432 * Write superblock @sb to the @device. Do not wait for completion, all the 3433 * buffer heads we write are pinned. 3434 * 3435 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3436 * the expected device size at commit time. Note that max_mirrors must be 3437 * same for write and wait phases. 3438 * 3439 * Return number of errors when buffer head is not found or submission fails. 3440 */ 3441 static int write_dev_supers(struct btrfs_device *device, 3442 struct btrfs_super_block *sb, int max_mirrors) 3443 { 3444 struct buffer_head *bh; 3445 int i; 3446 int ret; 3447 int errors = 0; 3448 u32 crc; 3449 u64 bytenr; 3450 int op_flags; 3451 3452 if (max_mirrors == 0) 3453 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3454 3455 for (i = 0; i < max_mirrors; i++) { 3456 bytenr = btrfs_sb_offset(i); 3457 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3458 device->commit_total_bytes) 3459 break; 3460 3461 btrfs_set_super_bytenr(sb, bytenr); 3462 3463 crc = ~(u32)0; 3464 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3465 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3466 btrfs_csum_final(crc, sb->csum); 3467 3468 /* One reference for us, and we leave it for the caller */ 3469 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3470 BTRFS_SUPER_INFO_SIZE); 3471 if (!bh) { 3472 btrfs_err(device->fs_info, 3473 "couldn't get super buffer head for bytenr %llu", 3474 bytenr); 3475 errors++; 3476 continue; 3477 } 3478 3479 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3480 3481 /* one reference for submit_bh */ 3482 get_bh(bh); 3483 3484 set_buffer_uptodate(bh); 3485 lock_buffer(bh); 3486 bh->b_end_io = btrfs_end_buffer_write_sync; 3487 bh->b_private = device; 3488 3489 /* 3490 * we fua the first super. The others we allow 3491 * to go down lazy. 3492 */ 3493 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3494 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3495 op_flags |= REQ_FUA; 3496 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3497 if (ret) 3498 errors++; 3499 } 3500 return errors < i ? 0 : -1; 3501 } 3502 3503 /* 3504 * Wait for write completion of superblocks done by write_dev_supers, 3505 * @max_mirrors same for write and wait phases. 3506 * 3507 * Return number of errors when buffer head is not found or not marked up to 3508 * date. 3509 */ 3510 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3511 { 3512 struct buffer_head *bh; 3513 int i; 3514 int errors = 0; 3515 bool primary_failed = false; 3516 u64 bytenr; 3517 3518 if (max_mirrors == 0) 3519 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3520 3521 for (i = 0; i < max_mirrors; i++) { 3522 bytenr = btrfs_sb_offset(i); 3523 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3524 device->commit_total_bytes) 3525 break; 3526 3527 bh = __find_get_block(device->bdev, 3528 bytenr / BTRFS_BDEV_BLOCKSIZE, 3529 BTRFS_SUPER_INFO_SIZE); 3530 if (!bh) { 3531 errors++; 3532 if (i == 0) 3533 primary_failed = true; 3534 continue; 3535 } 3536 wait_on_buffer(bh); 3537 if (!buffer_uptodate(bh)) { 3538 errors++; 3539 if (i == 0) 3540 primary_failed = true; 3541 } 3542 3543 /* drop our reference */ 3544 brelse(bh); 3545 3546 /* drop the reference from the writing run */ 3547 brelse(bh); 3548 } 3549 3550 /* log error, force error return */ 3551 if (primary_failed) { 3552 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3553 device->devid); 3554 return -1; 3555 } 3556 3557 return errors < i ? 0 : -1; 3558 } 3559 3560 /* 3561 * endio for the write_dev_flush, this will wake anyone waiting 3562 * for the barrier when it is done 3563 */ 3564 static void btrfs_end_empty_barrier(struct bio *bio) 3565 { 3566 complete(bio->bi_private); 3567 } 3568 3569 /* 3570 * Submit a flush request to the device if it supports it. Error handling is 3571 * done in the waiting counterpart. 3572 */ 3573 static void write_dev_flush(struct btrfs_device *device) 3574 { 3575 struct request_queue *q = bdev_get_queue(device->bdev); 3576 struct bio *bio = device->flush_bio; 3577 3578 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3579 return; 3580 3581 bio_reset(bio); 3582 bio->bi_end_io = btrfs_end_empty_barrier; 3583 bio_set_dev(bio, device->bdev); 3584 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3585 init_completion(&device->flush_wait); 3586 bio->bi_private = &device->flush_wait; 3587 3588 btrfsic_submit_bio(bio); 3589 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3590 } 3591 3592 /* 3593 * If the flush bio has been submitted by write_dev_flush, wait for it. 3594 */ 3595 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3596 { 3597 struct bio *bio = device->flush_bio; 3598 3599 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3600 return BLK_STS_OK; 3601 3602 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3603 wait_for_completion_io(&device->flush_wait); 3604 3605 return bio->bi_status; 3606 } 3607 3608 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3609 { 3610 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3611 return -EIO; 3612 return 0; 3613 } 3614 3615 /* 3616 * send an empty flush down to each device in parallel, 3617 * then wait for them 3618 */ 3619 static int barrier_all_devices(struct btrfs_fs_info *info) 3620 { 3621 struct list_head *head; 3622 struct btrfs_device *dev; 3623 int errors_wait = 0; 3624 blk_status_t ret; 3625 3626 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3627 /* send down all the barriers */ 3628 head = &info->fs_devices->devices; 3629 list_for_each_entry(dev, head, dev_list) { 3630 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3631 continue; 3632 if (!dev->bdev) 3633 continue; 3634 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3635 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3636 continue; 3637 3638 write_dev_flush(dev); 3639 dev->last_flush_error = BLK_STS_OK; 3640 } 3641 3642 /* wait for all the barriers */ 3643 list_for_each_entry(dev, head, dev_list) { 3644 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3645 continue; 3646 if (!dev->bdev) { 3647 errors_wait++; 3648 continue; 3649 } 3650 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3651 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3652 continue; 3653 3654 ret = wait_dev_flush(dev); 3655 if (ret) { 3656 dev->last_flush_error = ret; 3657 btrfs_dev_stat_inc_and_print(dev, 3658 BTRFS_DEV_STAT_FLUSH_ERRS); 3659 errors_wait++; 3660 } 3661 } 3662 3663 if (errors_wait) { 3664 /* 3665 * At some point we need the status of all disks 3666 * to arrive at the volume status. So error checking 3667 * is being pushed to a separate loop. 3668 */ 3669 return check_barrier_error(info); 3670 } 3671 return 0; 3672 } 3673 3674 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3675 { 3676 int raid_type; 3677 int min_tolerated = INT_MAX; 3678 3679 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3680 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3681 min_tolerated = min(min_tolerated, 3682 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3683 tolerated_failures); 3684 3685 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3686 if (raid_type == BTRFS_RAID_SINGLE) 3687 continue; 3688 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3689 continue; 3690 min_tolerated = min(min_tolerated, 3691 btrfs_raid_array[raid_type]. 3692 tolerated_failures); 3693 } 3694 3695 if (min_tolerated == INT_MAX) { 3696 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3697 min_tolerated = 0; 3698 } 3699 3700 return min_tolerated; 3701 } 3702 3703 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3704 { 3705 struct list_head *head; 3706 struct btrfs_device *dev; 3707 struct btrfs_super_block *sb; 3708 struct btrfs_dev_item *dev_item; 3709 int ret; 3710 int do_barriers; 3711 int max_errors; 3712 int total_errors = 0; 3713 u64 flags; 3714 3715 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3716 3717 /* 3718 * max_mirrors == 0 indicates we're from commit_transaction, 3719 * not from fsync where the tree roots in fs_info have not 3720 * been consistent on disk. 3721 */ 3722 if (max_mirrors == 0) 3723 backup_super_roots(fs_info); 3724 3725 sb = fs_info->super_for_commit; 3726 dev_item = &sb->dev_item; 3727 3728 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3729 head = &fs_info->fs_devices->devices; 3730 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3731 3732 if (do_barriers) { 3733 ret = barrier_all_devices(fs_info); 3734 if (ret) { 3735 mutex_unlock( 3736 &fs_info->fs_devices->device_list_mutex); 3737 btrfs_handle_fs_error(fs_info, ret, 3738 "errors while submitting device barriers."); 3739 return ret; 3740 } 3741 } 3742 3743 list_for_each_entry(dev, head, dev_list) { 3744 if (!dev->bdev) { 3745 total_errors++; 3746 continue; 3747 } 3748 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3749 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3750 continue; 3751 3752 btrfs_set_stack_device_generation(dev_item, 0); 3753 btrfs_set_stack_device_type(dev_item, dev->type); 3754 btrfs_set_stack_device_id(dev_item, dev->devid); 3755 btrfs_set_stack_device_total_bytes(dev_item, 3756 dev->commit_total_bytes); 3757 btrfs_set_stack_device_bytes_used(dev_item, 3758 dev->commit_bytes_used); 3759 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3760 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3761 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3762 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3763 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3764 3765 flags = btrfs_super_flags(sb); 3766 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3767 3768 ret = btrfs_validate_write_super(fs_info, sb); 3769 if (ret < 0) { 3770 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3771 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3772 "unexpected superblock corruption detected"); 3773 return -EUCLEAN; 3774 } 3775 3776 ret = write_dev_supers(dev, sb, max_mirrors); 3777 if (ret) 3778 total_errors++; 3779 } 3780 if (total_errors > max_errors) { 3781 btrfs_err(fs_info, "%d errors while writing supers", 3782 total_errors); 3783 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3784 3785 /* FUA is masked off if unsupported and can't be the reason */ 3786 btrfs_handle_fs_error(fs_info, -EIO, 3787 "%d errors while writing supers", 3788 total_errors); 3789 return -EIO; 3790 } 3791 3792 total_errors = 0; 3793 list_for_each_entry(dev, head, dev_list) { 3794 if (!dev->bdev) 3795 continue; 3796 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3797 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3798 continue; 3799 3800 ret = wait_dev_supers(dev, max_mirrors); 3801 if (ret) 3802 total_errors++; 3803 } 3804 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3805 if (total_errors > max_errors) { 3806 btrfs_handle_fs_error(fs_info, -EIO, 3807 "%d errors while writing supers", 3808 total_errors); 3809 return -EIO; 3810 } 3811 return 0; 3812 } 3813 3814 /* Drop a fs root from the radix tree and free it. */ 3815 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3816 struct btrfs_root *root) 3817 { 3818 spin_lock(&fs_info->fs_roots_radix_lock); 3819 radix_tree_delete(&fs_info->fs_roots_radix, 3820 (unsigned long)root->root_key.objectid); 3821 spin_unlock(&fs_info->fs_roots_radix_lock); 3822 3823 if (btrfs_root_refs(&root->root_item) == 0) 3824 synchronize_srcu(&fs_info->subvol_srcu); 3825 3826 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3827 btrfs_free_log(NULL, root); 3828 if (root->reloc_root) { 3829 free_extent_buffer(root->reloc_root->node); 3830 free_extent_buffer(root->reloc_root->commit_root); 3831 btrfs_put_fs_root(root->reloc_root); 3832 root->reloc_root = NULL; 3833 } 3834 } 3835 3836 if (root->free_ino_pinned) 3837 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3838 if (root->free_ino_ctl) 3839 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3840 btrfs_free_fs_root(root); 3841 } 3842 3843 void btrfs_free_fs_root(struct btrfs_root *root) 3844 { 3845 iput(root->ino_cache_inode); 3846 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3847 if (root->anon_dev) 3848 free_anon_bdev(root->anon_dev); 3849 if (root->subv_writers) 3850 btrfs_free_subvolume_writers(root->subv_writers); 3851 free_extent_buffer(root->node); 3852 free_extent_buffer(root->commit_root); 3853 kfree(root->free_ino_ctl); 3854 kfree(root->free_ino_pinned); 3855 btrfs_put_fs_root(root); 3856 } 3857 3858 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3859 { 3860 u64 root_objectid = 0; 3861 struct btrfs_root *gang[8]; 3862 int i = 0; 3863 int err = 0; 3864 unsigned int ret = 0; 3865 int index; 3866 3867 while (1) { 3868 index = srcu_read_lock(&fs_info->subvol_srcu); 3869 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3870 (void **)gang, root_objectid, 3871 ARRAY_SIZE(gang)); 3872 if (!ret) { 3873 srcu_read_unlock(&fs_info->subvol_srcu, index); 3874 break; 3875 } 3876 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3877 3878 for (i = 0; i < ret; i++) { 3879 /* Avoid to grab roots in dead_roots */ 3880 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3881 gang[i] = NULL; 3882 continue; 3883 } 3884 /* grab all the search result for later use */ 3885 gang[i] = btrfs_grab_fs_root(gang[i]); 3886 } 3887 srcu_read_unlock(&fs_info->subvol_srcu, index); 3888 3889 for (i = 0; i < ret; i++) { 3890 if (!gang[i]) 3891 continue; 3892 root_objectid = gang[i]->root_key.objectid; 3893 err = btrfs_orphan_cleanup(gang[i]); 3894 if (err) 3895 break; 3896 btrfs_put_fs_root(gang[i]); 3897 } 3898 root_objectid++; 3899 } 3900 3901 /* release the uncleaned roots due to error */ 3902 for (; i < ret; i++) { 3903 if (gang[i]) 3904 btrfs_put_fs_root(gang[i]); 3905 } 3906 return err; 3907 } 3908 3909 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3910 { 3911 struct btrfs_root *root = fs_info->tree_root; 3912 struct btrfs_trans_handle *trans; 3913 3914 mutex_lock(&fs_info->cleaner_mutex); 3915 btrfs_run_delayed_iputs(fs_info); 3916 mutex_unlock(&fs_info->cleaner_mutex); 3917 wake_up_process(fs_info->cleaner_kthread); 3918 3919 /* wait until ongoing cleanup work done */ 3920 down_write(&fs_info->cleanup_work_sem); 3921 up_write(&fs_info->cleanup_work_sem); 3922 3923 trans = btrfs_join_transaction(root); 3924 if (IS_ERR(trans)) 3925 return PTR_ERR(trans); 3926 return btrfs_commit_transaction(trans); 3927 } 3928 3929 void close_ctree(struct btrfs_fs_info *fs_info) 3930 { 3931 int ret; 3932 3933 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3934 3935 /* wait for the qgroup rescan worker to stop */ 3936 btrfs_qgroup_wait_for_completion(fs_info, false); 3937 3938 /* wait for the uuid_scan task to finish */ 3939 down(&fs_info->uuid_tree_rescan_sem); 3940 /* avoid complains from lockdep et al., set sem back to initial state */ 3941 up(&fs_info->uuid_tree_rescan_sem); 3942 3943 /* pause restriper - we want to resume on mount */ 3944 btrfs_pause_balance(fs_info); 3945 3946 btrfs_dev_replace_suspend_for_unmount(fs_info); 3947 3948 btrfs_scrub_cancel(fs_info); 3949 3950 /* wait for any defraggers to finish */ 3951 wait_event(fs_info->transaction_wait, 3952 (atomic_read(&fs_info->defrag_running) == 0)); 3953 3954 /* clear out the rbtree of defraggable inodes */ 3955 btrfs_cleanup_defrag_inodes(fs_info); 3956 3957 cancel_work_sync(&fs_info->async_reclaim_work); 3958 3959 if (!sb_rdonly(fs_info->sb)) { 3960 /* 3961 * If the cleaner thread is stopped and there are 3962 * block groups queued for removal, the deletion will be 3963 * skipped when we quit the cleaner thread. 3964 */ 3965 btrfs_delete_unused_bgs(fs_info); 3966 3967 ret = btrfs_commit_super(fs_info); 3968 if (ret) 3969 btrfs_err(fs_info, "commit super ret %d", ret); 3970 } 3971 3972 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3973 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3974 btrfs_error_commit_super(fs_info); 3975 3976 kthread_stop(fs_info->transaction_kthread); 3977 kthread_stop(fs_info->cleaner_kthread); 3978 3979 ASSERT(list_empty(&fs_info->delayed_iputs)); 3980 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3981 3982 btrfs_free_qgroup_config(fs_info); 3983 ASSERT(list_empty(&fs_info->delalloc_roots)); 3984 3985 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3986 btrfs_info(fs_info, "at unmount delalloc count %lld", 3987 percpu_counter_sum(&fs_info->delalloc_bytes)); 3988 } 3989 3990 btrfs_sysfs_remove_mounted(fs_info); 3991 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3992 3993 btrfs_free_fs_roots(fs_info); 3994 3995 btrfs_put_block_group_cache(fs_info); 3996 3997 /* 3998 * we must make sure there is not any read request to 3999 * submit after we stopping all workers. 4000 */ 4001 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4002 btrfs_stop_all_workers(fs_info); 4003 4004 btrfs_free_block_groups(fs_info); 4005 4006 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4007 free_root_pointers(fs_info, 1); 4008 4009 iput(fs_info->btree_inode); 4010 4011 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4012 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4013 btrfsic_unmount(fs_info->fs_devices); 4014 #endif 4015 4016 btrfs_close_devices(fs_info->fs_devices); 4017 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4018 4019 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4020 percpu_counter_destroy(&fs_info->delalloc_bytes); 4021 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4022 cleanup_srcu_struct(&fs_info->subvol_srcu); 4023 4024 btrfs_free_stripe_hash_table(fs_info); 4025 btrfs_free_ref_cache(fs_info); 4026 4027 while (!list_empty(&fs_info->pinned_chunks)) { 4028 struct extent_map *em; 4029 4030 em = list_first_entry(&fs_info->pinned_chunks, 4031 struct extent_map, list); 4032 list_del_init(&em->list); 4033 free_extent_map(em); 4034 } 4035 } 4036 4037 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4038 int atomic) 4039 { 4040 int ret; 4041 struct inode *btree_inode = buf->pages[0]->mapping->host; 4042 4043 ret = extent_buffer_uptodate(buf); 4044 if (!ret) 4045 return ret; 4046 4047 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4048 parent_transid, atomic); 4049 if (ret == -EAGAIN) 4050 return ret; 4051 return !ret; 4052 } 4053 4054 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4055 { 4056 struct btrfs_fs_info *fs_info; 4057 struct btrfs_root *root; 4058 u64 transid = btrfs_header_generation(buf); 4059 int was_dirty; 4060 4061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4062 /* 4063 * This is a fast path so only do this check if we have sanity tests 4064 * enabled. Normal people shouldn't be using umapped buffers as dirty 4065 * outside of the sanity tests. 4066 */ 4067 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4068 return; 4069 #endif 4070 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4071 fs_info = root->fs_info; 4072 btrfs_assert_tree_locked(buf); 4073 if (transid != fs_info->generation) 4074 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4075 buf->start, transid, fs_info->generation); 4076 was_dirty = set_extent_buffer_dirty(buf); 4077 if (!was_dirty) 4078 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4079 buf->len, 4080 fs_info->dirty_metadata_batch); 4081 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4082 /* 4083 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4084 * but item data not updated. 4085 * So here we should only check item pointers, not item data. 4086 */ 4087 if (btrfs_header_level(buf) == 0 && 4088 btrfs_check_leaf_relaxed(fs_info, buf)) { 4089 btrfs_print_leaf(buf); 4090 ASSERT(0); 4091 } 4092 #endif 4093 } 4094 4095 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4096 int flush_delayed) 4097 { 4098 /* 4099 * looks as though older kernels can get into trouble with 4100 * this code, they end up stuck in balance_dirty_pages forever 4101 */ 4102 int ret; 4103 4104 if (current->flags & PF_MEMALLOC) 4105 return; 4106 4107 if (flush_delayed) 4108 btrfs_balance_delayed_items(fs_info); 4109 4110 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4111 BTRFS_DIRTY_METADATA_THRESH, 4112 fs_info->dirty_metadata_batch); 4113 if (ret > 0) { 4114 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4115 } 4116 } 4117 4118 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4119 { 4120 __btrfs_btree_balance_dirty(fs_info, 1); 4121 } 4122 4123 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4124 { 4125 __btrfs_btree_balance_dirty(fs_info, 0); 4126 } 4127 4128 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4129 struct btrfs_key *first_key) 4130 { 4131 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4132 struct btrfs_fs_info *fs_info = root->fs_info; 4133 4134 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4135 level, first_key); 4136 } 4137 4138 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4139 { 4140 /* cleanup FS via transaction */ 4141 btrfs_cleanup_transaction(fs_info); 4142 4143 mutex_lock(&fs_info->cleaner_mutex); 4144 btrfs_run_delayed_iputs(fs_info); 4145 mutex_unlock(&fs_info->cleaner_mutex); 4146 4147 down_write(&fs_info->cleanup_work_sem); 4148 up_write(&fs_info->cleanup_work_sem); 4149 } 4150 4151 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4152 { 4153 struct btrfs_ordered_extent *ordered; 4154 4155 spin_lock(&root->ordered_extent_lock); 4156 /* 4157 * This will just short circuit the ordered completion stuff which will 4158 * make sure the ordered extent gets properly cleaned up. 4159 */ 4160 list_for_each_entry(ordered, &root->ordered_extents, 4161 root_extent_list) 4162 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4163 spin_unlock(&root->ordered_extent_lock); 4164 } 4165 4166 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4167 { 4168 struct btrfs_root *root; 4169 struct list_head splice; 4170 4171 INIT_LIST_HEAD(&splice); 4172 4173 spin_lock(&fs_info->ordered_root_lock); 4174 list_splice_init(&fs_info->ordered_roots, &splice); 4175 while (!list_empty(&splice)) { 4176 root = list_first_entry(&splice, struct btrfs_root, 4177 ordered_root); 4178 list_move_tail(&root->ordered_root, 4179 &fs_info->ordered_roots); 4180 4181 spin_unlock(&fs_info->ordered_root_lock); 4182 btrfs_destroy_ordered_extents(root); 4183 4184 cond_resched(); 4185 spin_lock(&fs_info->ordered_root_lock); 4186 } 4187 spin_unlock(&fs_info->ordered_root_lock); 4188 } 4189 4190 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4191 struct btrfs_fs_info *fs_info) 4192 { 4193 struct rb_node *node; 4194 struct btrfs_delayed_ref_root *delayed_refs; 4195 struct btrfs_delayed_ref_node *ref; 4196 int ret = 0; 4197 4198 delayed_refs = &trans->delayed_refs; 4199 4200 spin_lock(&delayed_refs->lock); 4201 if (atomic_read(&delayed_refs->num_entries) == 0) { 4202 spin_unlock(&delayed_refs->lock); 4203 btrfs_info(fs_info, "delayed_refs has NO entry"); 4204 return ret; 4205 } 4206 4207 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4208 struct btrfs_delayed_ref_head *head; 4209 struct rb_node *n; 4210 bool pin_bytes = false; 4211 4212 head = rb_entry(node, struct btrfs_delayed_ref_head, 4213 href_node); 4214 if (!mutex_trylock(&head->mutex)) { 4215 refcount_inc(&head->refs); 4216 spin_unlock(&delayed_refs->lock); 4217 4218 mutex_lock(&head->mutex); 4219 mutex_unlock(&head->mutex); 4220 btrfs_put_delayed_ref_head(head); 4221 spin_lock(&delayed_refs->lock); 4222 continue; 4223 } 4224 spin_lock(&head->lock); 4225 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4226 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4227 ref_node); 4228 ref->in_tree = 0; 4229 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4230 RB_CLEAR_NODE(&ref->ref_node); 4231 if (!list_empty(&ref->add_list)) 4232 list_del(&ref->add_list); 4233 atomic_dec(&delayed_refs->num_entries); 4234 btrfs_put_delayed_ref(ref); 4235 } 4236 if (head->must_insert_reserved) 4237 pin_bytes = true; 4238 btrfs_free_delayed_extent_op(head->extent_op); 4239 delayed_refs->num_heads--; 4240 if (head->processing == 0) 4241 delayed_refs->num_heads_ready--; 4242 atomic_dec(&delayed_refs->num_entries); 4243 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 4244 RB_CLEAR_NODE(&head->href_node); 4245 spin_unlock(&head->lock); 4246 spin_unlock(&delayed_refs->lock); 4247 mutex_unlock(&head->mutex); 4248 4249 if (pin_bytes) 4250 btrfs_pin_extent(fs_info, head->bytenr, 4251 head->num_bytes, 1); 4252 btrfs_put_delayed_ref_head(head); 4253 cond_resched(); 4254 spin_lock(&delayed_refs->lock); 4255 } 4256 4257 spin_unlock(&delayed_refs->lock); 4258 4259 return ret; 4260 } 4261 4262 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4263 { 4264 struct btrfs_inode *btrfs_inode; 4265 struct list_head splice; 4266 4267 INIT_LIST_HEAD(&splice); 4268 4269 spin_lock(&root->delalloc_lock); 4270 list_splice_init(&root->delalloc_inodes, &splice); 4271 4272 while (!list_empty(&splice)) { 4273 struct inode *inode = NULL; 4274 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4275 delalloc_inodes); 4276 __btrfs_del_delalloc_inode(root, btrfs_inode); 4277 spin_unlock(&root->delalloc_lock); 4278 4279 /* 4280 * Make sure we get a live inode and that it'll not disappear 4281 * meanwhile. 4282 */ 4283 inode = igrab(&btrfs_inode->vfs_inode); 4284 if (inode) { 4285 invalidate_inode_pages2(inode->i_mapping); 4286 iput(inode); 4287 } 4288 spin_lock(&root->delalloc_lock); 4289 } 4290 spin_unlock(&root->delalloc_lock); 4291 } 4292 4293 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4294 { 4295 struct btrfs_root *root; 4296 struct list_head splice; 4297 4298 INIT_LIST_HEAD(&splice); 4299 4300 spin_lock(&fs_info->delalloc_root_lock); 4301 list_splice_init(&fs_info->delalloc_roots, &splice); 4302 while (!list_empty(&splice)) { 4303 root = list_first_entry(&splice, struct btrfs_root, 4304 delalloc_root); 4305 root = btrfs_grab_fs_root(root); 4306 BUG_ON(!root); 4307 spin_unlock(&fs_info->delalloc_root_lock); 4308 4309 btrfs_destroy_delalloc_inodes(root); 4310 btrfs_put_fs_root(root); 4311 4312 spin_lock(&fs_info->delalloc_root_lock); 4313 } 4314 spin_unlock(&fs_info->delalloc_root_lock); 4315 } 4316 4317 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4318 struct extent_io_tree *dirty_pages, 4319 int mark) 4320 { 4321 int ret; 4322 struct extent_buffer *eb; 4323 u64 start = 0; 4324 u64 end; 4325 4326 while (1) { 4327 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4328 mark, NULL); 4329 if (ret) 4330 break; 4331 4332 clear_extent_bits(dirty_pages, start, end, mark); 4333 while (start <= end) { 4334 eb = find_extent_buffer(fs_info, start); 4335 start += fs_info->nodesize; 4336 if (!eb) 4337 continue; 4338 wait_on_extent_buffer_writeback(eb); 4339 4340 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4341 &eb->bflags)) 4342 clear_extent_buffer_dirty(eb); 4343 free_extent_buffer_stale(eb); 4344 } 4345 } 4346 4347 return ret; 4348 } 4349 4350 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4351 struct extent_io_tree *pinned_extents) 4352 { 4353 struct extent_io_tree *unpin; 4354 u64 start; 4355 u64 end; 4356 int ret; 4357 bool loop = true; 4358 4359 unpin = pinned_extents; 4360 again: 4361 while (1) { 4362 ret = find_first_extent_bit(unpin, 0, &start, &end, 4363 EXTENT_DIRTY, NULL); 4364 if (ret) 4365 break; 4366 4367 clear_extent_dirty(unpin, start, end); 4368 btrfs_error_unpin_extent_range(fs_info, start, end); 4369 cond_resched(); 4370 } 4371 4372 if (loop) { 4373 if (unpin == &fs_info->freed_extents[0]) 4374 unpin = &fs_info->freed_extents[1]; 4375 else 4376 unpin = &fs_info->freed_extents[0]; 4377 loop = false; 4378 goto again; 4379 } 4380 4381 return 0; 4382 } 4383 4384 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4385 { 4386 struct inode *inode; 4387 4388 inode = cache->io_ctl.inode; 4389 if (inode) { 4390 invalidate_inode_pages2(inode->i_mapping); 4391 BTRFS_I(inode)->generation = 0; 4392 cache->io_ctl.inode = NULL; 4393 iput(inode); 4394 } 4395 btrfs_put_block_group(cache); 4396 } 4397 4398 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4399 struct btrfs_fs_info *fs_info) 4400 { 4401 struct btrfs_block_group_cache *cache; 4402 4403 spin_lock(&cur_trans->dirty_bgs_lock); 4404 while (!list_empty(&cur_trans->dirty_bgs)) { 4405 cache = list_first_entry(&cur_trans->dirty_bgs, 4406 struct btrfs_block_group_cache, 4407 dirty_list); 4408 4409 if (!list_empty(&cache->io_list)) { 4410 spin_unlock(&cur_trans->dirty_bgs_lock); 4411 list_del_init(&cache->io_list); 4412 btrfs_cleanup_bg_io(cache); 4413 spin_lock(&cur_trans->dirty_bgs_lock); 4414 } 4415 4416 list_del_init(&cache->dirty_list); 4417 spin_lock(&cache->lock); 4418 cache->disk_cache_state = BTRFS_DC_ERROR; 4419 spin_unlock(&cache->lock); 4420 4421 spin_unlock(&cur_trans->dirty_bgs_lock); 4422 btrfs_put_block_group(cache); 4423 spin_lock(&cur_trans->dirty_bgs_lock); 4424 } 4425 spin_unlock(&cur_trans->dirty_bgs_lock); 4426 4427 /* 4428 * Refer to the definition of io_bgs member for details why it's safe 4429 * to use it without any locking 4430 */ 4431 while (!list_empty(&cur_trans->io_bgs)) { 4432 cache = list_first_entry(&cur_trans->io_bgs, 4433 struct btrfs_block_group_cache, 4434 io_list); 4435 4436 list_del_init(&cache->io_list); 4437 spin_lock(&cache->lock); 4438 cache->disk_cache_state = BTRFS_DC_ERROR; 4439 spin_unlock(&cache->lock); 4440 btrfs_cleanup_bg_io(cache); 4441 } 4442 } 4443 4444 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4445 struct btrfs_fs_info *fs_info) 4446 { 4447 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4448 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4449 ASSERT(list_empty(&cur_trans->io_bgs)); 4450 4451 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4452 4453 cur_trans->state = TRANS_STATE_COMMIT_START; 4454 wake_up(&fs_info->transaction_blocked_wait); 4455 4456 cur_trans->state = TRANS_STATE_UNBLOCKED; 4457 wake_up(&fs_info->transaction_wait); 4458 4459 btrfs_destroy_delayed_inodes(fs_info); 4460 btrfs_assert_delayed_root_empty(fs_info); 4461 4462 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4463 EXTENT_DIRTY); 4464 btrfs_destroy_pinned_extent(fs_info, 4465 fs_info->pinned_extents); 4466 4467 cur_trans->state =TRANS_STATE_COMPLETED; 4468 wake_up(&cur_trans->commit_wait); 4469 } 4470 4471 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4472 { 4473 struct btrfs_transaction *t; 4474 4475 mutex_lock(&fs_info->transaction_kthread_mutex); 4476 4477 spin_lock(&fs_info->trans_lock); 4478 while (!list_empty(&fs_info->trans_list)) { 4479 t = list_first_entry(&fs_info->trans_list, 4480 struct btrfs_transaction, list); 4481 if (t->state >= TRANS_STATE_COMMIT_START) { 4482 refcount_inc(&t->use_count); 4483 spin_unlock(&fs_info->trans_lock); 4484 btrfs_wait_for_commit(fs_info, t->transid); 4485 btrfs_put_transaction(t); 4486 spin_lock(&fs_info->trans_lock); 4487 continue; 4488 } 4489 if (t == fs_info->running_transaction) { 4490 t->state = TRANS_STATE_COMMIT_DOING; 4491 spin_unlock(&fs_info->trans_lock); 4492 /* 4493 * We wait for 0 num_writers since we don't hold a trans 4494 * handle open currently for this transaction. 4495 */ 4496 wait_event(t->writer_wait, 4497 atomic_read(&t->num_writers) == 0); 4498 } else { 4499 spin_unlock(&fs_info->trans_lock); 4500 } 4501 btrfs_cleanup_one_transaction(t, fs_info); 4502 4503 spin_lock(&fs_info->trans_lock); 4504 if (t == fs_info->running_transaction) 4505 fs_info->running_transaction = NULL; 4506 list_del_init(&t->list); 4507 spin_unlock(&fs_info->trans_lock); 4508 4509 btrfs_put_transaction(t); 4510 trace_btrfs_transaction_commit(fs_info->tree_root); 4511 spin_lock(&fs_info->trans_lock); 4512 } 4513 spin_unlock(&fs_info->trans_lock); 4514 btrfs_destroy_all_ordered_extents(fs_info); 4515 btrfs_destroy_delayed_inodes(fs_info); 4516 btrfs_assert_delayed_root_empty(fs_info); 4517 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4518 btrfs_destroy_all_delalloc_inodes(fs_info); 4519 mutex_unlock(&fs_info->transaction_kthread_mutex); 4520 4521 return 0; 4522 } 4523 4524 static const struct extent_io_ops btree_extent_io_ops = { 4525 /* mandatory callbacks */ 4526 .submit_bio_hook = btree_submit_bio_hook, 4527 .readpage_end_io_hook = btree_readpage_end_io_hook, 4528 .readpage_io_failed_hook = btree_io_failed_hook, 4529 4530 /* optional callbacks */ 4531 }; 4532