xref: /openbmc/linux/fs/btrfs/disk-io.c (revision e2aa5e65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	struct inode *inode;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 
118 	/* Optional parameter for submit_bio_start used by direct io */
119 	u64 dio_file_offset;
120 	struct btrfs_work work;
121 	blk_status_t status;
122 };
123 
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151 
152 #define DEFINE_LEVEL(stem, level)					\
153 	.names[level] = "btrfs-" stem "-0" #level,
154 
155 #define DEFINE_NAME(stem)						\
156 	DEFINE_LEVEL(stem, 0)						\
157 	DEFINE_LEVEL(stem, 1)						\
158 	DEFINE_LEVEL(stem, 2)						\
159 	DEFINE_LEVEL(stem, 3)						\
160 	DEFINE_LEVEL(stem, 4)						\
161 	DEFINE_LEVEL(stem, 5)						\
162 	DEFINE_LEVEL(stem, 6)						\
163 	DEFINE_LEVEL(stem, 7)
164 
165 static struct btrfs_lockdep_keyset {
166 	u64			id;		/* root objectid */
167 	/* Longest entry: btrfs-free-space-00 */
168 	char			names[BTRFS_MAX_LEVEL][20];
169 	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
172 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
173 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
174 	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
175 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
176 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
177 	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
178 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
179 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
180 	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
181 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
182 	{ .id = 0,				DEFINE_NAME("tree")	},
183 };
184 
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187 
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 				    int level)
190 {
191 	struct btrfs_lockdep_keyset *ks;
192 
193 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
194 
195 	/* find the matching keyset, id 0 is the default entry */
196 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 		if (ks->id == objectid)
198 			break;
199 
200 	lockdep_set_class_and_name(&eb->lock,
201 				   &ks->keys[level], ks->names[level]);
202 }
203 
204 #endif
205 
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 	struct btrfs_fs_info *fs_info = buf->fs_info;
212 	const int num_pages = num_extent_pages(buf);
213 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215 	char *kaddr;
216 	int i;
217 
218 	shash->tfm = fs_info->csum_shash;
219 	crypto_shash_init(shash);
220 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222 			    first_page_part - BTRFS_CSUM_SIZE);
223 
224 	for (i = 1; i < num_pages; i++) {
225 		kaddr = page_address(buf->pages[i]);
226 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
227 	}
228 	memset(result, 0, BTRFS_CSUM_SIZE);
229 	crypto_shash_final(shash, result);
230 }
231 
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239 				 struct extent_buffer *eb, u64 parent_transid,
240 				 int atomic)
241 {
242 	struct extent_state *cached_state = NULL;
243 	int ret;
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252 			 &cached_state);
253 	if (extent_buffer_uptodate(eb) &&
254 	    btrfs_header_generation(eb) == parent_transid) {
255 		ret = 0;
256 		goto out;
257 	}
258 	btrfs_err_rl(eb->fs_info,
259 		"parent transid verify failed on %llu wanted %llu found %llu",
260 			eb->start,
261 			parent_transid, btrfs_header_generation(eb));
262 	ret = 1;
263 	clear_extent_buffer_uptodate(eb);
264 out:
265 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266 			     &cached_state);
267 	return ret;
268 }
269 
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272 	switch (csum_type) {
273 	case BTRFS_CSUM_TYPE_CRC32:
274 	case BTRFS_CSUM_TYPE_XXHASH:
275 	case BTRFS_CSUM_TYPE_SHA256:
276 	case BTRFS_CSUM_TYPE_BLAKE2:
277 		return true;
278 	default:
279 		return false;
280 	}
281 }
282 
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288 				  char *raw_disk_sb)
289 {
290 	struct btrfs_super_block *disk_sb =
291 		(struct btrfs_super_block *)raw_disk_sb;
292 	char result[BTRFS_CSUM_SIZE];
293 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294 
295 	shash->tfm = fs_info->csum_shash;
296 
297 	/*
298 	 * The super_block structure does not span the whole
299 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300 	 * filled with zeros and is included in the checksum.
301 	 */
302 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304 
305 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306 		return 1;
307 
308 	return 0;
309 }
310 
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312 			   struct btrfs_key *first_key, u64 parent_transid)
313 {
314 	struct btrfs_fs_info *fs_info = eb->fs_info;
315 	int found_level;
316 	struct btrfs_key found_key;
317 	int ret;
318 
319 	found_level = btrfs_header_level(eb);
320 	if (found_level != level) {
321 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322 		     KERN_ERR "BTRFS: tree level check failed\n");
323 		btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325 			  eb->start, level, found_level);
326 		return -EIO;
327 	}
328 
329 	if (!first_key)
330 		return 0;
331 
332 	/*
333 	 * For live tree block (new tree blocks in current transaction),
334 	 * we need proper lock context to avoid race, which is impossible here.
335 	 * So we only checks tree blocks which is read from disk, whose
336 	 * generation <= fs_info->last_trans_committed.
337 	 */
338 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339 		return 0;
340 
341 	/* We have @first_key, so this @eb must have at least one item */
342 	if (btrfs_header_nritems(eb) == 0) {
343 		btrfs_err(fs_info,
344 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345 			  eb->start);
346 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347 		return -EUCLEAN;
348 	}
349 
350 	if (found_level)
351 		btrfs_node_key_to_cpu(eb, &found_key, 0);
352 	else
353 		btrfs_item_key_to_cpu(eb, &found_key, 0);
354 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
355 
356 	if (ret) {
357 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358 		     KERN_ERR "BTRFS: tree first key check failed\n");
359 		btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361 			  eb->start, parent_transid, first_key->objectid,
362 			  first_key->type, first_key->offset,
363 			  found_key.objectid, found_key.type,
364 			  found_key.offset);
365 	}
366 	return ret;
367 }
368 
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:	expected transid, skip check if 0
374  * @level:		expected level, mandatory check
375  * @first_key:		expected key of first slot, skip check if NULL
376  */
377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378 					  u64 parent_transid, int level,
379 					  struct btrfs_key *first_key)
380 {
381 	struct btrfs_fs_info *fs_info = eb->fs_info;
382 	struct extent_io_tree *io_tree;
383 	int failed = 0;
384 	int ret;
385 	int num_copies = 0;
386 	int mirror_num = 0;
387 	int failed_mirror = 0;
388 
389 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390 	while (1) {
391 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393 		if (!ret) {
394 			if (verify_parent_transid(io_tree, eb,
395 						   parent_transid, 0))
396 				ret = -EIO;
397 			else if (btrfs_verify_level_key(eb, level,
398 						first_key, parent_transid))
399 				ret = -EUCLEAN;
400 			else
401 				break;
402 		}
403 
404 		num_copies = btrfs_num_copies(fs_info,
405 					      eb->start, eb->len);
406 		if (num_copies == 1)
407 			break;
408 
409 		if (!failed_mirror) {
410 			failed = 1;
411 			failed_mirror = eb->read_mirror;
412 		}
413 
414 		mirror_num++;
415 		if (mirror_num == failed_mirror)
416 			mirror_num++;
417 
418 		if (mirror_num > num_copies)
419 			break;
420 	}
421 
422 	if (failed && !ret && failed_mirror)
423 		btrfs_repair_eb_io_failure(eb, failed_mirror);
424 
425 	return ret;
426 }
427 
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430 	struct btrfs_fs_info *fs_info = eb->fs_info;
431 	u8 result[BTRFS_CSUM_SIZE];
432 	int ret;
433 
434 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435 				    offsetof(struct btrfs_header, fsid),
436 				    BTRFS_FSID_SIZE) == 0);
437 	csum_tree_block(eb, result);
438 
439 	if (btrfs_header_level(eb))
440 		ret = btrfs_check_node(eb);
441 	else
442 		ret = btrfs_check_leaf_full(eb);
443 
444 	if (ret < 0) {
445 		btrfs_print_tree(eb, 0);
446 		btrfs_err(fs_info,
447 			"block=%llu write time tree block corruption detected",
448 			eb->start);
449 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
450 		return ret;
451 	}
452 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
453 
454 	return 0;
455 }
456 
457 /* Checksum all dirty extent buffers in one bio_vec */
458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
459 				      struct bio_vec *bvec)
460 {
461 	struct page *page = bvec->bv_page;
462 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
463 	u64 cur;
464 	int ret = 0;
465 
466 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
467 	     cur += fs_info->nodesize) {
468 		struct extent_buffer *eb;
469 		bool uptodate;
470 
471 		eb = find_extent_buffer(fs_info, cur);
472 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
473 						       fs_info->nodesize);
474 
475 		/* A dirty eb shouldn't disappear from buffer_radix */
476 		if (WARN_ON(!eb))
477 			return -EUCLEAN;
478 
479 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
480 			free_extent_buffer(eb);
481 			return -EUCLEAN;
482 		}
483 		if (WARN_ON(!uptodate)) {
484 			free_extent_buffer(eb);
485 			return -EUCLEAN;
486 		}
487 
488 		ret = csum_one_extent_buffer(eb);
489 		free_extent_buffer(eb);
490 		if (ret < 0)
491 			return ret;
492 	}
493 	return ret;
494 }
495 
496 /*
497  * Checksum a dirty tree block before IO.  This has extra checks to make sure
498  * we only fill in the checksum field in the first page of a multi-page block.
499  * For subpage extent buffers we need bvec to also read the offset in the page.
500  */
501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
502 {
503 	struct page *page = bvec->bv_page;
504 	u64 start = page_offset(page);
505 	u64 found_start;
506 	struct extent_buffer *eb;
507 
508 	if (fs_info->sectorsize < PAGE_SIZE)
509 		return csum_dirty_subpage_buffers(fs_info, bvec);
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 
517 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
518 		WARN_ON(found_start != 0);
519 		return 0;
520 	}
521 
522 	/*
523 	 * Please do not consolidate these warnings into a single if.
524 	 * It is useful to know what went wrong.
525 	 */
526 	if (WARN_ON(found_start != start))
527 		return -EUCLEAN;
528 	if (WARN_ON(!PageUptodate(page)))
529 		return -EUCLEAN;
530 
531 	return csum_one_extent_buffer(eb);
532 }
533 
534 static int check_tree_block_fsid(struct extent_buffer *eb)
535 {
536 	struct btrfs_fs_info *fs_info = eb->fs_info;
537 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
538 	u8 fsid[BTRFS_FSID_SIZE];
539 	u8 *metadata_uuid;
540 
541 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
542 			   BTRFS_FSID_SIZE);
543 	/*
544 	 * Checking the incompat flag is only valid for the current fs. For
545 	 * seed devices it's forbidden to have their uuid changed so reading
546 	 * ->fsid in this case is fine
547 	 */
548 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
549 		metadata_uuid = fs_devices->metadata_uuid;
550 	else
551 		metadata_uuid = fs_devices->fsid;
552 
553 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
554 		return 0;
555 
556 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
557 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
558 			return 0;
559 
560 	return 1;
561 }
562 
563 /* Do basic extent buffer checks at read time */
564 static int validate_extent_buffer(struct extent_buffer *eb)
565 {
566 	struct btrfs_fs_info *fs_info = eb->fs_info;
567 	u64 found_start;
568 	const u32 csum_size = fs_info->csum_size;
569 	u8 found_level;
570 	u8 result[BTRFS_CSUM_SIZE];
571 	const u8 *header_csum;
572 	int ret = 0;
573 
574 	found_start = btrfs_header_bytenr(eb);
575 	if (found_start != eb->start) {
576 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
577 			     eb->start, found_start);
578 		ret = -EIO;
579 		goto out;
580 	}
581 	if (check_tree_block_fsid(eb)) {
582 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
583 			     eb->start);
584 		ret = -EIO;
585 		goto out;
586 	}
587 	found_level = btrfs_header_level(eb);
588 	if (found_level >= BTRFS_MAX_LEVEL) {
589 		btrfs_err(fs_info, "bad tree block level %d on %llu",
590 			  (int)btrfs_header_level(eb), eb->start);
591 		ret = -EIO;
592 		goto out;
593 	}
594 
595 	csum_tree_block(eb, result);
596 	header_csum = page_address(eb->pages[0]) +
597 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
598 
599 	if (memcmp(result, header_csum, csum_size) != 0) {
600 		btrfs_warn_rl(fs_info,
601 	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
602 			      eb->start,
603 			      CSUM_FMT_VALUE(csum_size, header_csum),
604 			      CSUM_FMT_VALUE(csum_size, result),
605 			      btrfs_header_level(eb));
606 		ret = -EUCLEAN;
607 		goto out;
608 	}
609 
610 	/*
611 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
612 	 * that we don't try and read the other copies of this block, just
613 	 * return -EIO.
614 	 */
615 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
616 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
617 		ret = -EIO;
618 	}
619 
620 	if (found_level > 0 && btrfs_check_node(eb))
621 		ret = -EIO;
622 
623 	if (!ret)
624 		set_extent_buffer_uptodate(eb);
625 	else
626 		btrfs_err(fs_info,
627 			  "block=%llu read time tree block corruption detected",
628 			  eb->start);
629 out:
630 	return ret;
631 }
632 
633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
634 				   int mirror)
635 {
636 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
637 	struct extent_buffer *eb;
638 	bool reads_done;
639 	int ret = 0;
640 
641 	/*
642 	 * We don't allow bio merge for subpage metadata read, so we should
643 	 * only get one eb for each endio hook.
644 	 */
645 	ASSERT(end == start + fs_info->nodesize - 1);
646 	ASSERT(PagePrivate(page));
647 
648 	eb = find_extent_buffer(fs_info, start);
649 	/*
650 	 * When we are reading one tree block, eb must have been inserted into
651 	 * the radix tree. If not, something is wrong.
652 	 */
653 	ASSERT(eb);
654 
655 	reads_done = atomic_dec_and_test(&eb->io_pages);
656 	/* Subpage read must finish in page read */
657 	ASSERT(reads_done);
658 
659 	eb->read_mirror = mirror;
660 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
661 		ret = -EIO;
662 		goto err;
663 	}
664 	ret = validate_extent_buffer(eb);
665 	if (ret < 0)
666 		goto err;
667 
668 	set_extent_buffer_uptodate(eb);
669 
670 	free_extent_buffer(eb);
671 	return ret;
672 err:
673 	/*
674 	 * end_bio_extent_readpage decrements io_pages in case of error,
675 	 * make sure it has something to decrement.
676 	 */
677 	atomic_inc(&eb->io_pages);
678 	clear_extent_buffer_uptodate(eb);
679 	free_extent_buffer(eb);
680 	return ret;
681 }
682 
683 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
684 				   struct page *page, u64 start, u64 end,
685 				   int mirror)
686 {
687 	struct extent_buffer *eb;
688 	int ret = 0;
689 	int reads_done;
690 
691 	ASSERT(page->private);
692 
693 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
694 		return validate_subpage_buffer(page, start, end, mirror);
695 
696 	eb = (struct extent_buffer *)page->private;
697 
698 	/*
699 	 * The pending IO might have been the only thing that kept this buffer
700 	 * in memory.  Make sure we have a ref for all this other checks
701 	 */
702 	atomic_inc(&eb->refs);
703 
704 	reads_done = atomic_dec_and_test(&eb->io_pages);
705 	if (!reads_done)
706 		goto err;
707 
708 	eb->read_mirror = mirror;
709 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
710 		ret = -EIO;
711 		goto err;
712 	}
713 	ret = validate_extent_buffer(eb);
714 err:
715 	if (ret) {
716 		/*
717 		 * our io error hook is going to dec the io pages
718 		 * again, we have to make sure it has something
719 		 * to decrement
720 		 */
721 		atomic_inc(&eb->io_pages);
722 		clear_extent_buffer_uptodate(eb);
723 	}
724 	free_extent_buffer(eb);
725 
726 	return ret;
727 }
728 
729 static void end_workqueue_bio(struct bio *bio)
730 {
731 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
732 	struct btrfs_fs_info *fs_info;
733 	struct btrfs_workqueue *wq;
734 
735 	fs_info = end_io_wq->info;
736 	end_io_wq->status = bio->bi_status;
737 
738 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
739 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
740 			wq = fs_info->endio_meta_write_workers;
741 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
742 			wq = fs_info->endio_freespace_worker;
743 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
744 			wq = fs_info->endio_raid56_workers;
745 		else
746 			wq = fs_info->endio_write_workers;
747 	} else {
748 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
749 			wq = fs_info->endio_raid56_workers;
750 		else if (end_io_wq->metadata)
751 			wq = fs_info->endio_meta_workers;
752 		else
753 			wq = fs_info->endio_workers;
754 	}
755 
756 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
757 	btrfs_queue_work(wq, &end_io_wq->work);
758 }
759 
760 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
761 			enum btrfs_wq_endio_type metadata)
762 {
763 	struct btrfs_end_io_wq *end_io_wq;
764 
765 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
766 	if (!end_io_wq)
767 		return BLK_STS_RESOURCE;
768 
769 	end_io_wq->private = bio->bi_private;
770 	end_io_wq->end_io = bio->bi_end_io;
771 	end_io_wq->info = info;
772 	end_io_wq->status = 0;
773 	end_io_wq->bio = bio;
774 	end_io_wq->metadata = metadata;
775 
776 	bio->bi_private = end_io_wq;
777 	bio->bi_end_io = end_workqueue_bio;
778 	return 0;
779 }
780 
781 static void run_one_async_start(struct btrfs_work *work)
782 {
783 	struct async_submit_bio *async;
784 	blk_status_t ret;
785 
786 	async = container_of(work, struct  async_submit_bio, work);
787 	ret = async->submit_bio_start(async->inode, async->bio,
788 				      async->dio_file_offset);
789 	if (ret)
790 		async->status = ret;
791 }
792 
793 /*
794  * In order to insert checksums into the metadata in large chunks, we wait
795  * until bio submission time.   All the pages in the bio are checksummed and
796  * sums are attached onto the ordered extent record.
797  *
798  * At IO completion time the csums attached on the ordered extent record are
799  * inserted into the tree.
800  */
801 static void run_one_async_done(struct btrfs_work *work)
802 {
803 	struct async_submit_bio *async;
804 	struct inode *inode;
805 	blk_status_t ret;
806 
807 	async = container_of(work, struct  async_submit_bio, work);
808 	inode = async->inode;
809 
810 	/* If an error occurred we just want to clean up the bio and move on */
811 	if (async->status) {
812 		async->bio->bi_status = async->status;
813 		bio_endio(async->bio);
814 		return;
815 	}
816 
817 	/*
818 	 * All of the bios that pass through here are from async helpers.
819 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
820 	 * This changes nothing when cgroups aren't in use.
821 	 */
822 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
823 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
824 	if (ret) {
825 		async->bio->bi_status = ret;
826 		bio_endio(async->bio);
827 	}
828 }
829 
830 static void run_one_async_free(struct btrfs_work *work)
831 {
832 	struct async_submit_bio *async;
833 
834 	async = container_of(work, struct  async_submit_bio, work);
835 	kfree(async);
836 }
837 
838 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
839 				 int mirror_num, unsigned long bio_flags,
840 				 u64 dio_file_offset,
841 				 extent_submit_bio_start_t *submit_bio_start)
842 {
843 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
844 	struct async_submit_bio *async;
845 
846 	async = kmalloc(sizeof(*async), GFP_NOFS);
847 	if (!async)
848 		return BLK_STS_RESOURCE;
849 
850 	async->inode = inode;
851 	async->bio = bio;
852 	async->mirror_num = mirror_num;
853 	async->submit_bio_start = submit_bio_start;
854 
855 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
856 			run_one_async_free);
857 
858 	async->dio_file_offset = dio_file_offset;
859 
860 	async->status = 0;
861 
862 	if (op_is_sync(bio->bi_opf))
863 		btrfs_set_work_high_priority(&async->work);
864 
865 	btrfs_queue_work(fs_info->workers, &async->work);
866 	return 0;
867 }
868 
869 static blk_status_t btree_csum_one_bio(struct bio *bio)
870 {
871 	struct bio_vec *bvec;
872 	struct btrfs_root *root;
873 	int ret = 0;
874 	struct bvec_iter_all iter_all;
875 
876 	ASSERT(!bio_flagged(bio, BIO_CLONED));
877 	bio_for_each_segment_all(bvec, bio, iter_all) {
878 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
879 		ret = csum_dirty_buffer(root->fs_info, bvec);
880 		if (ret)
881 			break;
882 	}
883 
884 	return errno_to_blk_status(ret);
885 }
886 
887 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
888 					   u64 dio_file_offset)
889 {
890 	/*
891 	 * when we're called for a write, we're already in the async
892 	 * submission context.  Just jump into btrfs_map_bio
893 	 */
894 	return btree_csum_one_bio(bio);
895 }
896 
897 static bool should_async_write(struct btrfs_fs_info *fs_info,
898 			     struct btrfs_inode *bi)
899 {
900 	if (btrfs_is_zoned(fs_info))
901 		return false;
902 	if (atomic_read(&bi->sync_writers))
903 		return false;
904 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
905 		return false;
906 	return true;
907 }
908 
909 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
910 				       int mirror_num, unsigned long bio_flags)
911 {
912 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
913 	blk_status_t ret;
914 
915 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
916 		/*
917 		 * called for a read, do the setup so that checksum validation
918 		 * can happen in the async kernel threads
919 		 */
920 		ret = btrfs_bio_wq_end_io(fs_info, bio,
921 					  BTRFS_WQ_ENDIO_METADATA);
922 		if (ret)
923 			goto out_w_error;
924 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
925 	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
926 		ret = btree_csum_one_bio(bio);
927 		if (ret)
928 			goto out_w_error;
929 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
930 	} else {
931 		/*
932 		 * kthread helpers are used to submit writes so that
933 		 * checksumming can happen in parallel across all CPUs
934 		 */
935 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
936 					  0, btree_submit_bio_start);
937 	}
938 
939 	if (ret)
940 		goto out_w_error;
941 	return 0;
942 
943 out_w_error:
944 	bio->bi_status = ret;
945 	bio_endio(bio);
946 	return ret;
947 }
948 
949 #ifdef CONFIG_MIGRATION
950 static int btree_migratepage(struct address_space *mapping,
951 			struct page *newpage, struct page *page,
952 			enum migrate_mode mode)
953 {
954 	/*
955 	 * we can't safely write a btree page from here,
956 	 * we haven't done the locking hook
957 	 */
958 	if (PageDirty(page))
959 		return -EAGAIN;
960 	/*
961 	 * Buffers may be managed in a filesystem specific way.
962 	 * We must have no buffers or drop them.
963 	 */
964 	if (page_has_private(page) &&
965 	    !try_to_release_page(page, GFP_KERNEL))
966 		return -EAGAIN;
967 	return migrate_page(mapping, newpage, page, mode);
968 }
969 #endif
970 
971 
972 static int btree_writepages(struct address_space *mapping,
973 			    struct writeback_control *wbc)
974 {
975 	struct btrfs_fs_info *fs_info;
976 	int ret;
977 
978 	if (wbc->sync_mode == WB_SYNC_NONE) {
979 
980 		if (wbc->for_kupdate)
981 			return 0;
982 
983 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
984 		/* this is a bit racy, but that's ok */
985 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
986 					     BTRFS_DIRTY_METADATA_THRESH,
987 					     fs_info->dirty_metadata_batch);
988 		if (ret < 0)
989 			return 0;
990 	}
991 	return btree_write_cache_pages(mapping, wbc);
992 }
993 
994 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
995 {
996 	if (PageWriteback(page) || PageDirty(page))
997 		return 0;
998 
999 	return try_release_extent_buffer(page);
1000 }
1001 
1002 static void btree_invalidatepage(struct page *page, unsigned int offset,
1003 				 unsigned int length)
1004 {
1005 	struct extent_io_tree *tree;
1006 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1007 	extent_invalidatepage(tree, page, offset);
1008 	btree_releasepage(page, GFP_NOFS);
1009 	if (PagePrivate(page)) {
1010 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1011 			   "page private not zero on page %llu",
1012 			   (unsigned long long)page_offset(page));
1013 		detach_page_private(page);
1014 	}
1015 }
1016 
1017 static int btree_set_page_dirty(struct page *page)
1018 {
1019 #ifdef DEBUG
1020 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1021 	struct btrfs_subpage *subpage;
1022 	struct extent_buffer *eb;
1023 	int cur_bit = 0;
1024 	u64 page_start = page_offset(page);
1025 
1026 	if (fs_info->sectorsize == PAGE_SIZE) {
1027 		BUG_ON(!PagePrivate(page));
1028 		eb = (struct extent_buffer *)page->private;
1029 		BUG_ON(!eb);
1030 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1031 		BUG_ON(!atomic_read(&eb->refs));
1032 		btrfs_assert_tree_write_locked(eb);
1033 		return __set_page_dirty_nobuffers(page);
1034 	}
1035 	ASSERT(PagePrivate(page) && page->private);
1036 	subpage = (struct btrfs_subpage *)page->private;
1037 
1038 	ASSERT(subpage->dirty_bitmap);
1039 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1040 		unsigned long flags;
1041 		u64 cur;
1042 		u16 tmp = (1 << cur_bit);
1043 
1044 		spin_lock_irqsave(&subpage->lock, flags);
1045 		if (!(tmp & subpage->dirty_bitmap)) {
1046 			spin_unlock_irqrestore(&subpage->lock, flags);
1047 			cur_bit++;
1048 			continue;
1049 		}
1050 		spin_unlock_irqrestore(&subpage->lock, flags);
1051 		cur = page_start + cur_bit * fs_info->sectorsize;
1052 
1053 		eb = find_extent_buffer(fs_info, cur);
1054 		ASSERT(eb);
1055 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1056 		ASSERT(atomic_read(&eb->refs));
1057 		btrfs_assert_tree_write_locked(eb);
1058 		free_extent_buffer(eb);
1059 
1060 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1061 	}
1062 #endif
1063 	return __set_page_dirty_nobuffers(page);
1064 }
1065 
1066 static const struct address_space_operations btree_aops = {
1067 	.writepages	= btree_writepages,
1068 	.releasepage	= btree_releasepage,
1069 	.invalidatepage = btree_invalidatepage,
1070 #ifdef CONFIG_MIGRATION
1071 	.migratepage	= btree_migratepage,
1072 #endif
1073 	.set_page_dirty = btree_set_page_dirty,
1074 };
1075 
1076 struct extent_buffer *btrfs_find_create_tree_block(
1077 						struct btrfs_fs_info *fs_info,
1078 						u64 bytenr, u64 owner_root,
1079 						int level)
1080 {
1081 	if (btrfs_is_testing(fs_info))
1082 		return alloc_test_extent_buffer(fs_info, bytenr);
1083 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1084 }
1085 
1086 /*
1087  * Read tree block at logical address @bytenr and do variant basic but critical
1088  * verification.
1089  *
1090  * @owner_root:		the objectid of the root owner for this block.
1091  * @parent_transid:	expected transid of this tree block, skip check if 0
1092  * @level:		expected level, mandatory check
1093  * @first_key:		expected key in slot 0, skip check if NULL
1094  */
1095 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1096 				      u64 owner_root, u64 parent_transid,
1097 				      int level, struct btrfs_key *first_key)
1098 {
1099 	struct extent_buffer *buf = NULL;
1100 	int ret;
1101 
1102 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1103 	if (IS_ERR(buf))
1104 		return buf;
1105 
1106 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1107 					     level, first_key);
1108 	if (ret) {
1109 		free_extent_buffer_stale(buf);
1110 		return ERR_PTR(ret);
1111 	}
1112 	return buf;
1113 
1114 }
1115 
1116 void btrfs_clean_tree_block(struct extent_buffer *buf)
1117 {
1118 	struct btrfs_fs_info *fs_info = buf->fs_info;
1119 	if (btrfs_header_generation(buf) ==
1120 	    fs_info->running_transaction->transid) {
1121 		btrfs_assert_tree_write_locked(buf);
1122 
1123 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1124 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1125 						 -buf->len,
1126 						 fs_info->dirty_metadata_batch);
1127 			clear_extent_buffer_dirty(buf);
1128 		}
1129 	}
1130 }
1131 
1132 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1133 			 u64 objectid)
1134 {
1135 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1136 
1137 	memset(&root->root_key, 0, sizeof(root->root_key));
1138 	memset(&root->root_item, 0, sizeof(root->root_item));
1139 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1140 	root->fs_info = fs_info;
1141 	root->root_key.objectid = objectid;
1142 	root->node = NULL;
1143 	root->commit_root = NULL;
1144 	root->state = 0;
1145 	RB_CLEAR_NODE(&root->rb_node);
1146 
1147 	root->last_trans = 0;
1148 	root->free_objectid = 0;
1149 	root->nr_delalloc_inodes = 0;
1150 	root->nr_ordered_extents = 0;
1151 	root->inode_tree = RB_ROOT;
1152 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 
1154 	btrfs_init_root_block_rsv(root);
1155 
1156 	INIT_LIST_HEAD(&root->dirty_list);
1157 	INIT_LIST_HEAD(&root->root_list);
1158 	INIT_LIST_HEAD(&root->delalloc_inodes);
1159 	INIT_LIST_HEAD(&root->delalloc_root);
1160 	INIT_LIST_HEAD(&root->ordered_extents);
1161 	INIT_LIST_HEAD(&root->ordered_root);
1162 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1163 	INIT_LIST_HEAD(&root->logged_list[0]);
1164 	INIT_LIST_HEAD(&root->logged_list[1]);
1165 	spin_lock_init(&root->inode_lock);
1166 	spin_lock_init(&root->delalloc_lock);
1167 	spin_lock_init(&root->ordered_extent_lock);
1168 	spin_lock_init(&root->accounting_lock);
1169 	spin_lock_init(&root->log_extents_lock[0]);
1170 	spin_lock_init(&root->log_extents_lock[1]);
1171 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1172 	mutex_init(&root->objectid_mutex);
1173 	mutex_init(&root->log_mutex);
1174 	mutex_init(&root->ordered_extent_mutex);
1175 	mutex_init(&root->delalloc_mutex);
1176 	init_waitqueue_head(&root->qgroup_flush_wait);
1177 	init_waitqueue_head(&root->log_writer_wait);
1178 	init_waitqueue_head(&root->log_commit_wait[0]);
1179 	init_waitqueue_head(&root->log_commit_wait[1]);
1180 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1181 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1182 	atomic_set(&root->log_commit[0], 0);
1183 	atomic_set(&root->log_commit[1], 0);
1184 	atomic_set(&root->log_writers, 0);
1185 	atomic_set(&root->log_batch, 0);
1186 	refcount_set(&root->refs, 1);
1187 	atomic_set(&root->snapshot_force_cow, 0);
1188 	atomic_set(&root->nr_swapfiles, 0);
1189 	root->log_transid = 0;
1190 	root->log_transid_committed = -1;
1191 	root->last_log_commit = 0;
1192 	root->anon_dev = 0;
1193 	if (!dummy) {
1194 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196 		extent_io_tree_init(fs_info, &root->log_csum_range,
1197 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1198 	}
1199 
1200 	spin_lock_init(&root->root_item_lock);
1201 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1202 #ifdef CONFIG_BTRFS_DEBUG
1203 	INIT_LIST_HEAD(&root->leak_list);
1204 	spin_lock(&fs_info->fs_roots_radix_lock);
1205 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1206 	spin_unlock(&fs_info->fs_roots_radix_lock);
1207 #endif
1208 }
1209 
1210 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1211 					   u64 objectid, gfp_t flags)
1212 {
1213 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1214 	if (root)
1215 		__setup_root(root, fs_info, objectid);
1216 	return root;
1217 }
1218 
1219 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220 /* Should only be used by the testing infrastructure */
1221 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1222 {
1223 	struct btrfs_root *root;
1224 
1225 	if (!fs_info)
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1229 	if (!root)
1230 		return ERR_PTR(-ENOMEM);
1231 
1232 	/* We don't use the stripesize in selftest, set it as sectorsize */
1233 	root->alloc_bytenr = 0;
1234 
1235 	return root;
1236 }
1237 #endif
1238 
1239 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1240 {
1241 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1242 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1243 
1244 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1245 }
1246 
1247 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1248 {
1249 	const struct btrfs_key *key = k;
1250 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1251 
1252 	return btrfs_comp_cpu_keys(key, &root->root_key);
1253 }
1254 
1255 int btrfs_global_root_insert(struct btrfs_root *root)
1256 {
1257 	struct btrfs_fs_info *fs_info = root->fs_info;
1258 	struct rb_node *tmp;
1259 
1260 	write_lock(&fs_info->global_root_lock);
1261 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1262 	write_unlock(&fs_info->global_root_lock);
1263 	ASSERT(!tmp);
1264 
1265 	return tmp ? -EEXIST : 0;
1266 }
1267 
1268 void btrfs_global_root_delete(struct btrfs_root *root)
1269 {
1270 	struct btrfs_fs_info *fs_info = root->fs_info;
1271 
1272 	write_lock(&fs_info->global_root_lock);
1273 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1274 	write_unlock(&fs_info->global_root_lock);
1275 }
1276 
1277 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1278 				     struct btrfs_key *key)
1279 {
1280 	struct rb_node *node;
1281 	struct btrfs_root *root = NULL;
1282 
1283 	read_lock(&fs_info->global_root_lock);
1284 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1285 	if (node)
1286 		root = container_of(node, struct btrfs_root, rb_node);
1287 	read_unlock(&fs_info->global_root_lock);
1288 
1289 	return root;
1290 }
1291 
1292 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1293 {
1294 	struct btrfs_key key = {
1295 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1296 		.type = BTRFS_ROOT_ITEM_KEY,
1297 		.offset = 0,
1298 	};
1299 
1300 	return btrfs_global_root(fs_info, &key);
1301 }
1302 
1303 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1304 {
1305 	struct btrfs_key key = {
1306 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1307 		.type = BTRFS_ROOT_ITEM_KEY,
1308 		.offset = 0,
1309 	};
1310 
1311 	return btrfs_global_root(fs_info, &key);
1312 }
1313 
1314 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1315 				     u64 objectid)
1316 {
1317 	struct btrfs_fs_info *fs_info = trans->fs_info;
1318 	struct extent_buffer *leaf;
1319 	struct btrfs_root *tree_root = fs_info->tree_root;
1320 	struct btrfs_root *root;
1321 	struct btrfs_key key;
1322 	unsigned int nofs_flag;
1323 	int ret = 0;
1324 
1325 	/*
1326 	 * We're holding a transaction handle, so use a NOFS memory allocation
1327 	 * context to avoid deadlock if reclaim happens.
1328 	 */
1329 	nofs_flag = memalloc_nofs_save();
1330 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1331 	memalloc_nofs_restore(nofs_flag);
1332 	if (!root)
1333 		return ERR_PTR(-ENOMEM);
1334 
1335 	root->root_key.objectid = objectid;
1336 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 	root->root_key.offset = 0;
1338 
1339 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1340 				      BTRFS_NESTING_NORMAL);
1341 	if (IS_ERR(leaf)) {
1342 		ret = PTR_ERR(leaf);
1343 		leaf = NULL;
1344 		goto fail_unlock;
1345 	}
1346 
1347 	root->node = leaf;
1348 	btrfs_mark_buffer_dirty(leaf);
1349 
1350 	root->commit_root = btrfs_root_node(root);
1351 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1352 
1353 	btrfs_set_root_flags(&root->root_item, 0);
1354 	btrfs_set_root_limit(&root->root_item, 0);
1355 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1356 	btrfs_set_root_generation(&root->root_item, trans->transid);
1357 	btrfs_set_root_level(&root->root_item, 0);
1358 	btrfs_set_root_refs(&root->root_item, 1);
1359 	btrfs_set_root_used(&root->root_item, leaf->len);
1360 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1361 	btrfs_set_root_dirid(&root->root_item, 0);
1362 	if (is_fstree(objectid))
1363 		generate_random_guid(root->root_item.uuid);
1364 	else
1365 		export_guid(root->root_item.uuid, &guid_null);
1366 	btrfs_set_root_drop_level(&root->root_item, 0);
1367 
1368 	btrfs_tree_unlock(leaf);
1369 
1370 	key.objectid = objectid;
1371 	key.type = BTRFS_ROOT_ITEM_KEY;
1372 	key.offset = 0;
1373 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1374 	if (ret)
1375 		goto fail;
1376 
1377 	return root;
1378 
1379 fail_unlock:
1380 	if (leaf)
1381 		btrfs_tree_unlock(leaf);
1382 fail:
1383 	btrfs_put_root(root);
1384 
1385 	return ERR_PTR(ret);
1386 }
1387 
1388 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1389 					 struct btrfs_fs_info *fs_info)
1390 {
1391 	struct btrfs_root *root;
1392 
1393 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1394 	if (!root)
1395 		return ERR_PTR(-ENOMEM);
1396 
1397 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1398 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1399 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1400 
1401 	return root;
1402 }
1403 
1404 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1405 			      struct btrfs_root *root)
1406 {
1407 	struct extent_buffer *leaf;
1408 
1409 	/*
1410 	 * DON'T set SHAREABLE bit for log trees.
1411 	 *
1412 	 * Log trees are not exposed to user space thus can't be snapshotted,
1413 	 * and they go away before a real commit is actually done.
1414 	 *
1415 	 * They do store pointers to file data extents, and those reference
1416 	 * counts still get updated (along with back refs to the log tree).
1417 	 */
1418 
1419 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1420 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1421 	if (IS_ERR(leaf))
1422 		return PTR_ERR(leaf);
1423 
1424 	root->node = leaf;
1425 
1426 	btrfs_mark_buffer_dirty(root->node);
1427 	btrfs_tree_unlock(root->node);
1428 
1429 	return 0;
1430 }
1431 
1432 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1433 			     struct btrfs_fs_info *fs_info)
1434 {
1435 	struct btrfs_root *log_root;
1436 
1437 	log_root = alloc_log_tree(trans, fs_info);
1438 	if (IS_ERR(log_root))
1439 		return PTR_ERR(log_root);
1440 
1441 	if (!btrfs_is_zoned(fs_info)) {
1442 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1443 
1444 		if (ret) {
1445 			btrfs_put_root(log_root);
1446 			return ret;
1447 		}
1448 	}
1449 
1450 	WARN_ON(fs_info->log_root_tree);
1451 	fs_info->log_root_tree = log_root;
1452 	return 0;
1453 }
1454 
1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1456 		       struct btrfs_root *root)
1457 {
1458 	struct btrfs_fs_info *fs_info = root->fs_info;
1459 	struct btrfs_root *log_root;
1460 	struct btrfs_inode_item *inode_item;
1461 	int ret;
1462 
1463 	log_root = alloc_log_tree(trans, fs_info);
1464 	if (IS_ERR(log_root))
1465 		return PTR_ERR(log_root);
1466 
1467 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1468 	if (ret) {
1469 		btrfs_put_root(log_root);
1470 		return ret;
1471 	}
1472 
1473 	log_root->last_trans = trans->transid;
1474 	log_root->root_key.offset = root->root_key.objectid;
1475 
1476 	inode_item = &log_root->root_item.inode;
1477 	btrfs_set_stack_inode_generation(inode_item, 1);
1478 	btrfs_set_stack_inode_size(inode_item, 3);
1479 	btrfs_set_stack_inode_nlink(inode_item, 1);
1480 	btrfs_set_stack_inode_nbytes(inode_item,
1481 				     fs_info->nodesize);
1482 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1483 
1484 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1485 
1486 	WARN_ON(root->log_root);
1487 	root->log_root = log_root;
1488 	root->log_transid = 0;
1489 	root->log_transid_committed = -1;
1490 	root->last_log_commit = 0;
1491 	return 0;
1492 }
1493 
1494 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1495 					      struct btrfs_path *path,
1496 					      struct btrfs_key *key)
1497 {
1498 	struct btrfs_root *root;
1499 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1500 	u64 generation;
1501 	int ret;
1502 	int level;
1503 
1504 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1505 	if (!root)
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	ret = btrfs_find_root(tree_root, key, path,
1509 			      &root->root_item, &root->root_key);
1510 	if (ret) {
1511 		if (ret > 0)
1512 			ret = -ENOENT;
1513 		goto fail;
1514 	}
1515 
1516 	generation = btrfs_root_generation(&root->root_item);
1517 	level = btrfs_root_level(&root->root_item);
1518 	root->node = read_tree_block(fs_info,
1519 				     btrfs_root_bytenr(&root->root_item),
1520 				     key->objectid, generation, level, NULL);
1521 	if (IS_ERR(root->node)) {
1522 		ret = PTR_ERR(root->node);
1523 		root->node = NULL;
1524 		goto fail;
1525 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1526 		ret = -EIO;
1527 		goto fail;
1528 	}
1529 	root->commit_root = btrfs_root_node(root);
1530 	return root;
1531 fail:
1532 	btrfs_put_root(root);
1533 	return ERR_PTR(ret);
1534 }
1535 
1536 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1537 					struct btrfs_key *key)
1538 {
1539 	struct btrfs_root *root;
1540 	struct btrfs_path *path;
1541 
1542 	path = btrfs_alloc_path();
1543 	if (!path)
1544 		return ERR_PTR(-ENOMEM);
1545 	root = read_tree_root_path(tree_root, path, key);
1546 	btrfs_free_path(path);
1547 
1548 	return root;
1549 }
1550 
1551 /*
1552  * Initialize subvolume root in-memory structure
1553  *
1554  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1555  */
1556 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1557 {
1558 	int ret;
1559 	unsigned int nofs_flag;
1560 
1561 	/*
1562 	 * We might be called under a transaction (e.g. indirect backref
1563 	 * resolution) which could deadlock if it triggers memory reclaim
1564 	 */
1565 	nofs_flag = memalloc_nofs_save();
1566 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1567 	memalloc_nofs_restore(nofs_flag);
1568 	if (ret)
1569 		goto fail;
1570 
1571 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1572 	    !btrfs_is_data_reloc_root(root)) {
1573 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1574 		btrfs_check_and_init_root_item(&root->root_item);
1575 	}
1576 
1577 	/*
1578 	 * Don't assign anonymous block device to roots that are not exposed to
1579 	 * userspace, the id pool is limited to 1M
1580 	 */
1581 	if (is_fstree(root->root_key.objectid) &&
1582 	    btrfs_root_refs(&root->root_item) > 0) {
1583 		if (!anon_dev) {
1584 			ret = get_anon_bdev(&root->anon_dev);
1585 			if (ret)
1586 				goto fail;
1587 		} else {
1588 			root->anon_dev = anon_dev;
1589 		}
1590 	}
1591 
1592 	mutex_lock(&root->objectid_mutex);
1593 	ret = btrfs_init_root_free_objectid(root);
1594 	if (ret) {
1595 		mutex_unlock(&root->objectid_mutex);
1596 		goto fail;
1597 	}
1598 
1599 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1600 
1601 	mutex_unlock(&root->objectid_mutex);
1602 
1603 	return 0;
1604 fail:
1605 	/* The caller is responsible to call btrfs_free_fs_root */
1606 	return ret;
1607 }
1608 
1609 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1610 					       u64 root_id)
1611 {
1612 	struct btrfs_root *root;
1613 
1614 	spin_lock(&fs_info->fs_roots_radix_lock);
1615 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1616 				 (unsigned long)root_id);
1617 	if (root)
1618 		root = btrfs_grab_root(root);
1619 	spin_unlock(&fs_info->fs_roots_radix_lock);
1620 	return root;
1621 }
1622 
1623 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1624 						u64 objectid)
1625 {
1626 	struct btrfs_key key = {
1627 		.objectid = objectid,
1628 		.type = BTRFS_ROOT_ITEM_KEY,
1629 		.offset = 0,
1630 	};
1631 
1632 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1633 		return btrfs_grab_root(fs_info->tree_root);
1634 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1635 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1636 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1637 		return btrfs_grab_root(fs_info->chunk_root);
1638 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1639 		return btrfs_grab_root(fs_info->dev_root);
1640 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1641 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1642 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1643 		return btrfs_grab_root(fs_info->quota_root) ?
1644 			fs_info->quota_root : ERR_PTR(-ENOENT);
1645 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1646 		return btrfs_grab_root(fs_info->uuid_root) ?
1647 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1648 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1649 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1650 
1651 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1652 	}
1653 	return NULL;
1654 }
1655 
1656 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1657 			 struct btrfs_root *root)
1658 {
1659 	int ret;
1660 
1661 	ret = radix_tree_preload(GFP_NOFS);
1662 	if (ret)
1663 		return ret;
1664 
1665 	spin_lock(&fs_info->fs_roots_radix_lock);
1666 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1667 				(unsigned long)root->root_key.objectid,
1668 				root);
1669 	if (ret == 0) {
1670 		btrfs_grab_root(root);
1671 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1672 	}
1673 	spin_unlock(&fs_info->fs_roots_radix_lock);
1674 	radix_tree_preload_end();
1675 
1676 	return ret;
1677 }
1678 
1679 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1680 {
1681 #ifdef CONFIG_BTRFS_DEBUG
1682 	struct btrfs_root *root;
1683 
1684 	while (!list_empty(&fs_info->allocated_roots)) {
1685 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1686 
1687 		root = list_first_entry(&fs_info->allocated_roots,
1688 					struct btrfs_root, leak_list);
1689 		btrfs_err(fs_info, "leaked root %s refcount %d",
1690 			  btrfs_root_name(&root->root_key, buf),
1691 			  refcount_read(&root->refs));
1692 		while (refcount_read(&root->refs) > 1)
1693 			btrfs_put_root(root);
1694 		btrfs_put_root(root);
1695 	}
1696 #endif
1697 }
1698 
1699 static void free_global_roots(struct btrfs_fs_info *fs_info)
1700 {
1701 	struct btrfs_root *root;
1702 	struct rb_node *node;
1703 
1704 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1705 		root = rb_entry(node, struct btrfs_root, rb_node);
1706 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1707 		btrfs_put_root(root);
1708 	}
1709 }
1710 
1711 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1712 {
1713 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1714 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1715 	percpu_counter_destroy(&fs_info->ordered_bytes);
1716 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1717 	btrfs_free_csum_hash(fs_info);
1718 	btrfs_free_stripe_hash_table(fs_info);
1719 	btrfs_free_ref_cache(fs_info);
1720 	kfree(fs_info->balance_ctl);
1721 	kfree(fs_info->delayed_root);
1722 	free_global_roots(fs_info);
1723 	btrfs_put_root(fs_info->tree_root);
1724 	btrfs_put_root(fs_info->chunk_root);
1725 	btrfs_put_root(fs_info->dev_root);
1726 	btrfs_put_root(fs_info->quota_root);
1727 	btrfs_put_root(fs_info->uuid_root);
1728 	btrfs_put_root(fs_info->fs_root);
1729 	btrfs_put_root(fs_info->data_reloc_root);
1730 	btrfs_check_leaked_roots(fs_info);
1731 	btrfs_extent_buffer_leak_debug_check(fs_info);
1732 	kfree(fs_info->super_copy);
1733 	kfree(fs_info->super_for_commit);
1734 	kfree(fs_info->subpage_info);
1735 	kvfree(fs_info);
1736 }
1737 
1738 
1739 /*
1740  * Get an in-memory reference of a root structure.
1741  *
1742  * For essential trees like root/extent tree, we grab it from fs_info directly.
1743  * For subvolume trees, we check the cached filesystem roots first. If not
1744  * found, then read it from disk and add it to cached fs roots.
1745  *
1746  * Caller should release the root by calling btrfs_put_root() after the usage.
1747  *
1748  * NOTE: Reloc and log trees can't be read by this function as they share the
1749  *	 same root objectid.
1750  *
1751  * @objectid:	root id
1752  * @anon_dev:	preallocated anonymous block device number for new roots,
1753  * 		pass 0 for new allocation.
1754  * @check_ref:	whether to check root item references, If true, return -ENOENT
1755  *		for orphan roots
1756  */
1757 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1758 					     u64 objectid, dev_t anon_dev,
1759 					     bool check_ref)
1760 {
1761 	struct btrfs_root *root;
1762 	struct btrfs_path *path;
1763 	struct btrfs_key key;
1764 	int ret;
1765 
1766 	root = btrfs_get_global_root(fs_info, objectid);
1767 	if (root)
1768 		return root;
1769 again:
1770 	root = btrfs_lookup_fs_root(fs_info, objectid);
1771 	if (root) {
1772 		/* Shouldn't get preallocated anon_dev for cached roots */
1773 		ASSERT(!anon_dev);
1774 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1775 			btrfs_put_root(root);
1776 			return ERR_PTR(-ENOENT);
1777 		}
1778 		return root;
1779 	}
1780 
1781 	key.objectid = objectid;
1782 	key.type = BTRFS_ROOT_ITEM_KEY;
1783 	key.offset = (u64)-1;
1784 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1785 	if (IS_ERR(root))
1786 		return root;
1787 
1788 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1789 		ret = -ENOENT;
1790 		goto fail;
1791 	}
1792 
1793 	ret = btrfs_init_fs_root(root, anon_dev);
1794 	if (ret)
1795 		goto fail;
1796 
1797 	path = btrfs_alloc_path();
1798 	if (!path) {
1799 		ret = -ENOMEM;
1800 		goto fail;
1801 	}
1802 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1803 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1804 	key.offset = objectid;
1805 
1806 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1807 	btrfs_free_path(path);
1808 	if (ret < 0)
1809 		goto fail;
1810 	if (ret == 0)
1811 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1812 
1813 	ret = btrfs_insert_fs_root(fs_info, root);
1814 	if (ret) {
1815 		btrfs_put_root(root);
1816 		if (ret == -EEXIST)
1817 			goto again;
1818 		goto fail;
1819 	}
1820 	return root;
1821 fail:
1822 	/*
1823 	 * If our caller provided us an anonymous device, then it's his
1824 	 * responsability to free it in case we fail. So we have to set our
1825 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1826 	 * and once again by our caller.
1827 	 */
1828 	if (anon_dev)
1829 		root->anon_dev = 0;
1830 	btrfs_put_root(root);
1831 	return ERR_PTR(ret);
1832 }
1833 
1834 /*
1835  * Get in-memory reference of a root structure
1836  *
1837  * @objectid:	tree objectid
1838  * @check_ref:	if set, verify that the tree exists and the item has at least
1839  *		one reference
1840  */
1841 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1842 				     u64 objectid, bool check_ref)
1843 {
1844 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1845 }
1846 
1847 /*
1848  * Get in-memory reference of a root structure, created as new, optionally pass
1849  * the anonymous block device id
1850  *
1851  * @objectid:	tree objectid
1852  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1853  *		parameter value
1854  */
1855 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1856 					 u64 objectid, dev_t anon_dev)
1857 {
1858 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1859 }
1860 
1861 /*
1862  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1863  * @fs_info:	the fs_info
1864  * @objectid:	the objectid we need to lookup
1865  *
1866  * This is exclusively used for backref walking, and exists specifically because
1867  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1868  * creation time, which means we may have to read the tree_root in order to look
1869  * up a fs root that is not in memory.  If the root is not in memory we will
1870  * read the tree root commit root and look up the fs root from there.  This is a
1871  * temporary root, it will not be inserted into the radix tree as it doesn't
1872  * have the most uptodate information, it'll simply be discarded once the
1873  * backref code is finished using the root.
1874  */
1875 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1876 						 struct btrfs_path *path,
1877 						 u64 objectid)
1878 {
1879 	struct btrfs_root *root;
1880 	struct btrfs_key key;
1881 
1882 	ASSERT(path->search_commit_root && path->skip_locking);
1883 
1884 	/*
1885 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1886 	 * since this is called via the backref walking code we won't be looking
1887 	 * up a root that doesn't exist, unless there's corruption.  So if root
1888 	 * != NULL just return it.
1889 	 */
1890 	root = btrfs_get_global_root(fs_info, objectid);
1891 	if (root)
1892 		return root;
1893 
1894 	root = btrfs_lookup_fs_root(fs_info, objectid);
1895 	if (root)
1896 		return root;
1897 
1898 	key.objectid = objectid;
1899 	key.type = BTRFS_ROOT_ITEM_KEY;
1900 	key.offset = (u64)-1;
1901 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1902 	btrfs_release_path(path);
1903 
1904 	return root;
1905 }
1906 
1907 /*
1908  * called by the kthread helper functions to finally call the bio end_io
1909  * functions.  This is where read checksum verification actually happens
1910  */
1911 static void end_workqueue_fn(struct btrfs_work *work)
1912 {
1913 	struct bio *bio;
1914 	struct btrfs_end_io_wq *end_io_wq;
1915 
1916 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1917 	bio = end_io_wq->bio;
1918 
1919 	bio->bi_status = end_io_wq->status;
1920 	bio->bi_private = end_io_wq->private;
1921 	bio->bi_end_io = end_io_wq->end_io;
1922 	bio_endio(bio);
1923 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1924 }
1925 
1926 static int cleaner_kthread(void *arg)
1927 {
1928 	struct btrfs_root *root = arg;
1929 	struct btrfs_fs_info *fs_info = root->fs_info;
1930 	int again;
1931 
1932 	while (1) {
1933 		again = 0;
1934 
1935 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1936 
1937 		/* Make the cleaner go to sleep early. */
1938 		if (btrfs_need_cleaner_sleep(fs_info))
1939 			goto sleep;
1940 
1941 		/*
1942 		 * Do not do anything if we might cause open_ctree() to block
1943 		 * before we have finished mounting the filesystem.
1944 		 */
1945 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1946 			goto sleep;
1947 
1948 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1949 			goto sleep;
1950 
1951 		/*
1952 		 * Avoid the problem that we change the status of the fs
1953 		 * during the above check and trylock.
1954 		 */
1955 		if (btrfs_need_cleaner_sleep(fs_info)) {
1956 			mutex_unlock(&fs_info->cleaner_mutex);
1957 			goto sleep;
1958 		}
1959 
1960 		btrfs_run_delayed_iputs(fs_info);
1961 
1962 		again = btrfs_clean_one_deleted_snapshot(root);
1963 		mutex_unlock(&fs_info->cleaner_mutex);
1964 
1965 		/*
1966 		 * The defragger has dealt with the R/O remount and umount,
1967 		 * needn't do anything special here.
1968 		 */
1969 		btrfs_run_defrag_inodes(fs_info);
1970 
1971 		/*
1972 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1973 		 * with relocation (btrfs_relocate_chunk) and relocation
1974 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1975 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1976 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1977 		 * unused block groups.
1978 		 */
1979 		btrfs_delete_unused_bgs(fs_info);
1980 
1981 		/*
1982 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1983 		 * all unused block_groups. This possibly gives us some more free
1984 		 * space.
1985 		 */
1986 		btrfs_reclaim_bgs(fs_info);
1987 sleep:
1988 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1989 		if (kthread_should_park())
1990 			kthread_parkme();
1991 		if (kthread_should_stop())
1992 			return 0;
1993 		if (!again) {
1994 			set_current_state(TASK_INTERRUPTIBLE);
1995 			schedule();
1996 			__set_current_state(TASK_RUNNING);
1997 		}
1998 	}
1999 }
2000 
2001 static int transaction_kthread(void *arg)
2002 {
2003 	struct btrfs_root *root = arg;
2004 	struct btrfs_fs_info *fs_info = root->fs_info;
2005 	struct btrfs_trans_handle *trans;
2006 	struct btrfs_transaction *cur;
2007 	u64 transid;
2008 	time64_t delta;
2009 	unsigned long delay;
2010 	bool cannot_commit;
2011 
2012 	do {
2013 		cannot_commit = false;
2014 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
2015 		mutex_lock(&fs_info->transaction_kthread_mutex);
2016 
2017 		spin_lock(&fs_info->trans_lock);
2018 		cur = fs_info->running_transaction;
2019 		if (!cur) {
2020 			spin_unlock(&fs_info->trans_lock);
2021 			goto sleep;
2022 		}
2023 
2024 		delta = ktime_get_seconds() - cur->start_time;
2025 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
2026 		    cur->state < TRANS_STATE_COMMIT_START &&
2027 		    delta < fs_info->commit_interval) {
2028 			spin_unlock(&fs_info->trans_lock);
2029 			delay -= msecs_to_jiffies((delta - 1) * 1000);
2030 			delay = min(delay,
2031 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
2032 			goto sleep;
2033 		}
2034 		transid = cur->transid;
2035 		spin_unlock(&fs_info->trans_lock);
2036 
2037 		/* If the file system is aborted, this will always fail. */
2038 		trans = btrfs_attach_transaction(root);
2039 		if (IS_ERR(trans)) {
2040 			if (PTR_ERR(trans) != -ENOENT)
2041 				cannot_commit = true;
2042 			goto sleep;
2043 		}
2044 		if (transid == trans->transid) {
2045 			btrfs_commit_transaction(trans);
2046 		} else {
2047 			btrfs_end_transaction(trans);
2048 		}
2049 sleep:
2050 		wake_up_process(fs_info->cleaner_kthread);
2051 		mutex_unlock(&fs_info->transaction_kthread_mutex);
2052 
2053 		if (BTRFS_FS_ERROR(fs_info))
2054 			btrfs_cleanup_transaction(fs_info);
2055 		if (!kthread_should_stop() &&
2056 				(!btrfs_transaction_blocked(fs_info) ||
2057 				 cannot_commit))
2058 			schedule_timeout_interruptible(delay);
2059 	} while (!kthread_should_stop());
2060 	return 0;
2061 }
2062 
2063 /*
2064  * This will find the highest generation in the array of root backups.  The
2065  * index of the highest array is returned, or -EINVAL if we can't find
2066  * anything.
2067  *
2068  * We check to make sure the array is valid by comparing the
2069  * generation of the latest  root in the array with the generation
2070  * in the super block.  If they don't match we pitch it.
2071  */
2072 static int find_newest_super_backup(struct btrfs_fs_info *info)
2073 {
2074 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
2075 	u64 cur;
2076 	struct btrfs_root_backup *root_backup;
2077 	int i;
2078 
2079 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2080 		root_backup = info->super_copy->super_roots + i;
2081 		cur = btrfs_backup_tree_root_gen(root_backup);
2082 		if (cur == newest_gen)
2083 			return i;
2084 	}
2085 
2086 	return -EINVAL;
2087 }
2088 
2089 /*
2090  * copy all the root pointers into the super backup array.
2091  * this will bump the backup pointer by one when it is
2092  * done
2093  */
2094 static void backup_super_roots(struct btrfs_fs_info *info)
2095 {
2096 	const int next_backup = info->backup_root_index;
2097 	struct btrfs_root_backup *root_backup;
2098 	struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2099 	struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2100 
2101 	root_backup = info->super_for_commit->super_roots + next_backup;
2102 
2103 	/*
2104 	 * make sure all of our padding and empty slots get zero filled
2105 	 * regardless of which ones we use today
2106 	 */
2107 	memset(root_backup, 0, sizeof(*root_backup));
2108 
2109 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2110 
2111 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2112 	btrfs_set_backup_tree_root_gen(root_backup,
2113 			       btrfs_header_generation(info->tree_root->node));
2114 
2115 	btrfs_set_backup_tree_root_level(root_backup,
2116 			       btrfs_header_level(info->tree_root->node));
2117 
2118 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2119 	btrfs_set_backup_chunk_root_gen(root_backup,
2120 			       btrfs_header_generation(info->chunk_root->node));
2121 	btrfs_set_backup_chunk_root_level(root_backup,
2122 			       btrfs_header_level(info->chunk_root->node));
2123 
2124 	btrfs_set_backup_extent_root(root_backup, extent_root->node->start);
2125 	btrfs_set_backup_extent_root_gen(root_backup,
2126 			       btrfs_header_generation(extent_root->node));
2127 	btrfs_set_backup_extent_root_level(root_backup,
2128 			       btrfs_header_level(extent_root->node));
2129 
2130 	/*
2131 	 * we might commit during log recovery, which happens before we set
2132 	 * the fs_root.  Make sure it is valid before we fill it in.
2133 	 */
2134 	if (info->fs_root && info->fs_root->node) {
2135 		btrfs_set_backup_fs_root(root_backup,
2136 					 info->fs_root->node->start);
2137 		btrfs_set_backup_fs_root_gen(root_backup,
2138 			       btrfs_header_generation(info->fs_root->node));
2139 		btrfs_set_backup_fs_root_level(root_backup,
2140 			       btrfs_header_level(info->fs_root->node));
2141 	}
2142 
2143 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2144 	btrfs_set_backup_dev_root_gen(root_backup,
2145 			       btrfs_header_generation(info->dev_root->node));
2146 	btrfs_set_backup_dev_root_level(root_backup,
2147 				       btrfs_header_level(info->dev_root->node));
2148 
2149 	btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2150 	btrfs_set_backup_csum_root_gen(root_backup,
2151 				       btrfs_header_generation(csum_root->node));
2152 	btrfs_set_backup_csum_root_level(root_backup,
2153 					 btrfs_header_level(csum_root->node));
2154 
2155 	btrfs_set_backup_total_bytes(root_backup,
2156 			     btrfs_super_total_bytes(info->super_copy));
2157 	btrfs_set_backup_bytes_used(root_backup,
2158 			     btrfs_super_bytes_used(info->super_copy));
2159 	btrfs_set_backup_num_devices(root_backup,
2160 			     btrfs_super_num_devices(info->super_copy));
2161 
2162 	/*
2163 	 * if we don't copy this out to the super_copy, it won't get remembered
2164 	 * for the next commit
2165 	 */
2166 	memcpy(&info->super_copy->super_roots,
2167 	       &info->super_for_commit->super_roots,
2168 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2169 }
2170 
2171 /*
2172  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2173  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2174  *
2175  * fs_info - filesystem whose backup roots need to be read
2176  * priority - priority of backup root required
2177  *
2178  * Returns backup root index on success and -EINVAL otherwise.
2179  */
2180 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2181 {
2182 	int backup_index = find_newest_super_backup(fs_info);
2183 	struct btrfs_super_block *super = fs_info->super_copy;
2184 	struct btrfs_root_backup *root_backup;
2185 
2186 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2187 		if (priority == 0)
2188 			return backup_index;
2189 
2190 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2191 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2192 	} else {
2193 		return -EINVAL;
2194 	}
2195 
2196 	root_backup = super->super_roots + backup_index;
2197 
2198 	btrfs_set_super_generation(super,
2199 				   btrfs_backup_tree_root_gen(root_backup));
2200 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2201 	btrfs_set_super_root_level(super,
2202 				   btrfs_backup_tree_root_level(root_backup));
2203 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2204 
2205 	/*
2206 	 * Fixme: the total bytes and num_devices need to match or we should
2207 	 * need a fsck
2208 	 */
2209 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2210 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2211 
2212 	return backup_index;
2213 }
2214 
2215 /* helper to cleanup workers */
2216 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2217 {
2218 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2219 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2220 	btrfs_destroy_workqueue(fs_info->workers);
2221 	btrfs_destroy_workqueue(fs_info->endio_workers);
2222 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2223 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2224 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2225 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2226 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2227 	btrfs_destroy_workqueue(fs_info->caching_workers);
2228 	btrfs_destroy_workqueue(fs_info->flush_workers);
2229 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2230 	if (fs_info->discard_ctl.discard_workers)
2231 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2232 	/*
2233 	 * Now that all other work queues are destroyed, we can safely destroy
2234 	 * the queues used for metadata I/O, since tasks from those other work
2235 	 * queues can do metadata I/O operations.
2236 	 */
2237 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2238 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2239 }
2240 
2241 static void free_root_extent_buffers(struct btrfs_root *root)
2242 {
2243 	if (root) {
2244 		free_extent_buffer(root->node);
2245 		free_extent_buffer(root->commit_root);
2246 		root->node = NULL;
2247 		root->commit_root = NULL;
2248 	}
2249 }
2250 
2251 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2252 {
2253 	struct btrfs_root *root, *tmp;
2254 
2255 	rbtree_postorder_for_each_entry_safe(root, tmp,
2256 					     &fs_info->global_root_tree,
2257 					     rb_node)
2258 		free_root_extent_buffers(root);
2259 }
2260 
2261 /* helper to cleanup tree roots */
2262 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2263 {
2264 	free_root_extent_buffers(info->tree_root);
2265 
2266 	free_global_root_pointers(info);
2267 	free_root_extent_buffers(info->dev_root);
2268 	free_root_extent_buffers(info->quota_root);
2269 	free_root_extent_buffers(info->uuid_root);
2270 	free_root_extent_buffers(info->fs_root);
2271 	free_root_extent_buffers(info->data_reloc_root);
2272 	if (free_chunk_root)
2273 		free_root_extent_buffers(info->chunk_root);
2274 }
2275 
2276 void btrfs_put_root(struct btrfs_root *root)
2277 {
2278 	if (!root)
2279 		return;
2280 
2281 	if (refcount_dec_and_test(&root->refs)) {
2282 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2283 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2284 		if (root->anon_dev)
2285 			free_anon_bdev(root->anon_dev);
2286 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2287 		free_root_extent_buffers(root);
2288 #ifdef CONFIG_BTRFS_DEBUG
2289 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2290 		list_del_init(&root->leak_list);
2291 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2292 #endif
2293 		kfree(root);
2294 	}
2295 }
2296 
2297 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2298 {
2299 	int ret;
2300 	struct btrfs_root *gang[8];
2301 	int i;
2302 
2303 	while (!list_empty(&fs_info->dead_roots)) {
2304 		gang[0] = list_entry(fs_info->dead_roots.next,
2305 				     struct btrfs_root, root_list);
2306 		list_del(&gang[0]->root_list);
2307 
2308 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2309 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2310 		btrfs_put_root(gang[0]);
2311 	}
2312 
2313 	while (1) {
2314 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2315 					     (void **)gang, 0,
2316 					     ARRAY_SIZE(gang));
2317 		if (!ret)
2318 			break;
2319 		for (i = 0; i < ret; i++)
2320 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2321 	}
2322 }
2323 
2324 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2325 {
2326 	mutex_init(&fs_info->scrub_lock);
2327 	atomic_set(&fs_info->scrubs_running, 0);
2328 	atomic_set(&fs_info->scrub_pause_req, 0);
2329 	atomic_set(&fs_info->scrubs_paused, 0);
2330 	atomic_set(&fs_info->scrub_cancel_req, 0);
2331 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2332 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2333 }
2334 
2335 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2336 {
2337 	spin_lock_init(&fs_info->balance_lock);
2338 	mutex_init(&fs_info->balance_mutex);
2339 	atomic_set(&fs_info->balance_pause_req, 0);
2340 	atomic_set(&fs_info->balance_cancel_req, 0);
2341 	fs_info->balance_ctl = NULL;
2342 	init_waitqueue_head(&fs_info->balance_wait_q);
2343 	atomic_set(&fs_info->reloc_cancel_req, 0);
2344 }
2345 
2346 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2347 {
2348 	struct inode *inode = fs_info->btree_inode;
2349 
2350 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2351 	set_nlink(inode, 1);
2352 	/*
2353 	 * we set the i_size on the btree inode to the max possible int.
2354 	 * the real end of the address space is determined by all of
2355 	 * the devices in the system
2356 	 */
2357 	inode->i_size = OFFSET_MAX;
2358 	inode->i_mapping->a_ops = &btree_aops;
2359 
2360 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2361 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2362 			    IO_TREE_BTREE_INODE_IO, inode);
2363 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2364 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2365 
2366 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2367 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2368 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2369 	btrfs_insert_inode_hash(inode);
2370 }
2371 
2372 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2373 {
2374 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2375 	init_rwsem(&fs_info->dev_replace.rwsem);
2376 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2377 }
2378 
2379 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2380 {
2381 	spin_lock_init(&fs_info->qgroup_lock);
2382 	mutex_init(&fs_info->qgroup_ioctl_lock);
2383 	fs_info->qgroup_tree = RB_ROOT;
2384 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2385 	fs_info->qgroup_seq = 1;
2386 	fs_info->qgroup_ulist = NULL;
2387 	fs_info->qgroup_rescan_running = false;
2388 	mutex_init(&fs_info->qgroup_rescan_lock);
2389 }
2390 
2391 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2392 {
2393 	u32 max_active = fs_info->thread_pool_size;
2394 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2395 
2396 	fs_info->workers =
2397 		btrfs_alloc_workqueue(fs_info, "worker",
2398 				      flags | WQ_HIGHPRI, max_active, 16);
2399 
2400 	fs_info->delalloc_workers =
2401 		btrfs_alloc_workqueue(fs_info, "delalloc",
2402 				      flags, max_active, 2);
2403 
2404 	fs_info->flush_workers =
2405 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2406 				      flags, max_active, 0);
2407 
2408 	fs_info->caching_workers =
2409 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2410 
2411 	fs_info->fixup_workers =
2412 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2413 
2414 	/*
2415 	 * endios are largely parallel and should have a very
2416 	 * low idle thresh
2417 	 */
2418 	fs_info->endio_workers =
2419 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2420 	fs_info->endio_meta_workers =
2421 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2422 				      max_active, 4);
2423 	fs_info->endio_meta_write_workers =
2424 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2425 				      max_active, 2);
2426 	fs_info->endio_raid56_workers =
2427 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2428 				      max_active, 4);
2429 	fs_info->rmw_workers =
2430 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2431 	fs_info->endio_write_workers =
2432 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2433 				      max_active, 2);
2434 	fs_info->endio_freespace_worker =
2435 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2436 				      max_active, 0);
2437 	fs_info->delayed_workers =
2438 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2439 				      max_active, 0);
2440 	fs_info->qgroup_rescan_workers =
2441 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2442 	fs_info->discard_ctl.discard_workers =
2443 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2444 
2445 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2446 	      fs_info->flush_workers &&
2447 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2448 	      fs_info->endio_meta_write_workers &&
2449 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2450 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2451 	      fs_info->caching_workers && fs_info->fixup_workers &&
2452 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2453 	      fs_info->discard_ctl.discard_workers)) {
2454 		return -ENOMEM;
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2461 {
2462 	struct crypto_shash *csum_shash;
2463 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2464 
2465 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2466 
2467 	if (IS_ERR(csum_shash)) {
2468 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2469 			  csum_driver);
2470 		return PTR_ERR(csum_shash);
2471 	}
2472 
2473 	fs_info->csum_shash = csum_shash;
2474 
2475 	return 0;
2476 }
2477 
2478 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2479 			    struct btrfs_fs_devices *fs_devices)
2480 {
2481 	int ret;
2482 	struct btrfs_root *log_tree_root;
2483 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2484 	u64 bytenr = btrfs_super_log_root(disk_super);
2485 	int level = btrfs_super_log_root_level(disk_super);
2486 
2487 	if (fs_devices->rw_devices == 0) {
2488 		btrfs_warn(fs_info, "log replay required on RO media");
2489 		return -EIO;
2490 	}
2491 
2492 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2493 					 GFP_KERNEL);
2494 	if (!log_tree_root)
2495 		return -ENOMEM;
2496 
2497 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2498 					      BTRFS_TREE_LOG_OBJECTID,
2499 					      fs_info->generation + 1, level,
2500 					      NULL);
2501 	if (IS_ERR(log_tree_root->node)) {
2502 		btrfs_warn(fs_info, "failed to read log tree");
2503 		ret = PTR_ERR(log_tree_root->node);
2504 		log_tree_root->node = NULL;
2505 		btrfs_put_root(log_tree_root);
2506 		return ret;
2507 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2508 		btrfs_err(fs_info, "failed to read log tree");
2509 		btrfs_put_root(log_tree_root);
2510 		return -EIO;
2511 	}
2512 	/* returns with log_tree_root freed on success */
2513 	ret = btrfs_recover_log_trees(log_tree_root);
2514 	if (ret) {
2515 		btrfs_handle_fs_error(fs_info, ret,
2516 				      "Failed to recover log tree");
2517 		btrfs_put_root(log_tree_root);
2518 		return ret;
2519 	}
2520 
2521 	if (sb_rdonly(fs_info->sb)) {
2522 		ret = btrfs_commit_super(fs_info);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2531 				      struct btrfs_path *path, u64 objectid,
2532 				      const char *name)
2533 {
2534 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2535 	struct btrfs_root *root;
2536 	int ret;
2537 	struct btrfs_key key = {
2538 		.objectid = objectid,
2539 		.type = BTRFS_ROOT_ITEM_KEY,
2540 		.offset = 0,
2541 	};
2542 	bool found = false;
2543 
2544 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2545 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2546 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2547 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2548 		return 0;
2549 	}
2550 
2551 	while (1) {
2552 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2553 		if (ret < 0)
2554 			break;
2555 
2556 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2557 			ret = btrfs_next_leaf(tree_root, path);
2558 			if (ret) {
2559 				if (ret > 0)
2560 					ret = 0;
2561 				break;
2562 			}
2563 		}
2564 		ret = 0;
2565 
2566 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2567 		if (key.objectid != objectid)
2568 			break;
2569 		btrfs_release_path(path);
2570 
2571 		found = true;
2572 		root = read_tree_root_path(tree_root, path, &key);
2573 		if (IS_ERR(root)) {
2574 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2575 				ret = PTR_ERR(root);
2576 			break;
2577 		}
2578 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2579 		ret = btrfs_global_root_insert(root);
2580 		if (ret) {
2581 			btrfs_put_root(root);
2582 			break;
2583 		}
2584 		key.offset++;
2585 	}
2586 	btrfs_release_path(path);
2587 
2588 	if (!found || ret) {
2589 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2590 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2591 
2592 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2593 			ret = ret ? ret : -ENOENT;
2594 		else
2595 			ret = 0;
2596 		btrfs_err(fs_info, "failed to load root %s", name);
2597 	}
2598 	return ret;
2599 }
2600 
2601 static int load_global_roots(struct btrfs_root *tree_root)
2602 {
2603 	struct btrfs_path *path;
2604 	int ret = 0;
2605 
2606 	path = btrfs_alloc_path();
2607 	if (!path)
2608 		return -ENOMEM;
2609 
2610 	ret = load_global_roots_objectid(tree_root, path,
2611 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2612 	if (ret)
2613 		goto out;
2614 	ret = load_global_roots_objectid(tree_root, path,
2615 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2616 	if (ret)
2617 		goto out;
2618 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2619 		goto out;
2620 	ret = load_global_roots_objectid(tree_root, path,
2621 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2622 					 "free space");
2623 out:
2624 	btrfs_free_path(path);
2625 	return ret;
2626 }
2627 
2628 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2629 {
2630 	struct btrfs_root *tree_root = fs_info->tree_root;
2631 	struct btrfs_root *root;
2632 	struct btrfs_key location;
2633 	int ret;
2634 
2635 	BUG_ON(!fs_info->tree_root);
2636 
2637 	ret = load_global_roots(tree_root);
2638 	if (ret)
2639 		return ret;
2640 
2641 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2642 	location.type = BTRFS_ROOT_ITEM_KEY;
2643 	location.offset = 0;
2644 
2645 	root = btrfs_read_tree_root(tree_root, &location);
2646 	if (IS_ERR(root)) {
2647 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2648 			ret = PTR_ERR(root);
2649 			goto out;
2650 		}
2651 	} else {
2652 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2653 		fs_info->dev_root = root;
2654 	}
2655 	/* Initialize fs_info for all devices in any case */
2656 	btrfs_init_devices_late(fs_info);
2657 
2658 	/*
2659 	 * This tree can share blocks with some other fs tree during relocation
2660 	 * and we need a proper setup by btrfs_get_fs_root
2661 	 */
2662 	root = btrfs_get_fs_root(tree_root->fs_info,
2663 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2664 	if (IS_ERR(root)) {
2665 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2666 			ret = PTR_ERR(root);
2667 			goto out;
2668 		}
2669 	} else {
2670 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2671 		fs_info->data_reloc_root = root;
2672 	}
2673 
2674 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2675 	root = btrfs_read_tree_root(tree_root, &location);
2676 	if (!IS_ERR(root)) {
2677 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2678 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2679 		fs_info->quota_root = root;
2680 	}
2681 
2682 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2683 	root = btrfs_read_tree_root(tree_root, &location);
2684 	if (IS_ERR(root)) {
2685 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2686 			ret = PTR_ERR(root);
2687 			if (ret != -ENOENT)
2688 				goto out;
2689 		}
2690 	} else {
2691 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2692 		fs_info->uuid_root = root;
2693 	}
2694 
2695 	return 0;
2696 out:
2697 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2698 		   location.objectid, ret);
2699 	return ret;
2700 }
2701 
2702 /*
2703  * Real super block validation
2704  * NOTE: super csum type and incompat features will not be checked here.
2705  *
2706  * @sb:		super block to check
2707  * @mirror_num:	the super block number to check its bytenr:
2708  * 		0	the primary (1st) sb
2709  * 		1, 2	2nd and 3rd backup copy
2710  * 	       -1	skip bytenr check
2711  */
2712 static int validate_super(struct btrfs_fs_info *fs_info,
2713 			    struct btrfs_super_block *sb, int mirror_num)
2714 {
2715 	u64 nodesize = btrfs_super_nodesize(sb);
2716 	u64 sectorsize = btrfs_super_sectorsize(sb);
2717 	int ret = 0;
2718 
2719 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2720 		btrfs_err(fs_info, "no valid FS found");
2721 		ret = -EINVAL;
2722 	}
2723 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2724 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2725 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2726 		ret = -EINVAL;
2727 	}
2728 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2729 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2730 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2731 		ret = -EINVAL;
2732 	}
2733 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2734 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2735 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2736 		ret = -EINVAL;
2737 	}
2738 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2739 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2740 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2741 		ret = -EINVAL;
2742 	}
2743 
2744 	/*
2745 	 * Check sectorsize and nodesize first, other check will need it.
2746 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2747 	 */
2748 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2749 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2750 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2751 		ret = -EINVAL;
2752 	}
2753 
2754 	/*
2755 	 * For 4K page size, we only support 4K sector size.
2756 	 * For 64K page size, we support 64K and 4K sector sizes.
2757 	 */
2758 	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2759 	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2760 				     sectorsize != SZ_64K))) {
2761 		btrfs_err(fs_info,
2762 			"sectorsize %llu not yet supported for page size %lu",
2763 			sectorsize, PAGE_SIZE);
2764 		ret = -EINVAL;
2765 	}
2766 
2767 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2768 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2769 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2770 		ret = -EINVAL;
2771 	}
2772 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2773 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2774 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2775 		ret = -EINVAL;
2776 	}
2777 
2778 	/* Root alignment check */
2779 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2780 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2781 			   btrfs_super_root(sb));
2782 		ret = -EINVAL;
2783 	}
2784 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2785 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2786 			   btrfs_super_chunk_root(sb));
2787 		ret = -EINVAL;
2788 	}
2789 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2790 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2791 			   btrfs_super_log_root(sb));
2792 		ret = -EINVAL;
2793 	}
2794 
2795 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2796 		   BTRFS_FSID_SIZE)) {
2797 		btrfs_err(fs_info,
2798 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2799 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2800 		ret = -EINVAL;
2801 	}
2802 
2803 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2804 	    memcmp(fs_info->fs_devices->metadata_uuid,
2805 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2806 		btrfs_err(fs_info,
2807 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2808 			fs_info->super_copy->metadata_uuid,
2809 			fs_info->fs_devices->metadata_uuid);
2810 		ret = -EINVAL;
2811 	}
2812 
2813 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2814 		   BTRFS_FSID_SIZE) != 0) {
2815 		btrfs_err(fs_info,
2816 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2817 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2818 		ret = -EINVAL;
2819 	}
2820 
2821 	/*
2822 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2823 	 * done later
2824 	 */
2825 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2826 		btrfs_err(fs_info, "bytes_used is too small %llu",
2827 			  btrfs_super_bytes_used(sb));
2828 		ret = -EINVAL;
2829 	}
2830 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2831 		btrfs_err(fs_info, "invalid stripesize %u",
2832 			  btrfs_super_stripesize(sb));
2833 		ret = -EINVAL;
2834 	}
2835 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2836 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2837 			   btrfs_super_num_devices(sb));
2838 	if (btrfs_super_num_devices(sb) == 0) {
2839 		btrfs_err(fs_info, "number of devices is 0");
2840 		ret = -EINVAL;
2841 	}
2842 
2843 	if (mirror_num >= 0 &&
2844 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2845 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2846 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2847 		ret = -EINVAL;
2848 	}
2849 
2850 	/*
2851 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2852 	 * and one chunk
2853 	 */
2854 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2855 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2856 			  btrfs_super_sys_array_size(sb),
2857 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2858 		ret = -EINVAL;
2859 	}
2860 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2861 			+ sizeof(struct btrfs_chunk)) {
2862 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2863 			  btrfs_super_sys_array_size(sb),
2864 			  sizeof(struct btrfs_disk_key)
2865 			  + sizeof(struct btrfs_chunk));
2866 		ret = -EINVAL;
2867 	}
2868 
2869 	/*
2870 	 * The generation is a global counter, we'll trust it more than the others
2871 	 * but it's still possible that it's the one that's wrong.
2872 	 */
2873 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2874 		btrfs_warn(fs_info,
2875 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2876 			btrfs_super_generation(sb),
2877 			btrfs_super_chunk_root_generation(sb));
2878 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2879 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2880 		btrfs_warn(fs_info,
2881 			"suspicious: generation < cache_generation: %llu < %llu",
2882 			btrfs_super_generation(sb),
2883 			btrfs_super_cache_generation(sb));
2884 
2885 	return ret;
2886 }
2887 
2888 /*
2889  * Validation of super block at mount time.
2890  * Some checks already done early at mount time, like csum type and incompat
2891  * flags will be skipped.
2892  */
2893 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2894 {
2895 	return validate_super(fs_info, fs_info->super_copy, 0);
2896 }
2897 
2898 /*
2899  * Validation of super block at write time.
2900  * Some checks like bytenr check will be skipped as their values will be
2901  * overwritten soon.
2902  * Extra checks like csum type and incompat flags will be done here.
2903  */
2904 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2905 				      struct btrfs_super_block *sb)
2906 {
2907 	int ret;
2908 
2909 	ret = validate_super(fs_info, sb, -1);
2910 	if (ret < 0)
2911 		goto out;
2912 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2913 		ret = -EUCLEAN;
2914 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2915 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2916 		goto out;
2917 	}
2918 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2919 		ret = -EUCLEAN;
2920 		btrfs_err(fs_info,
2921 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2922 			  btrfs_super_incompat_flags(sb),
2923 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2924 		goto out;
2925 	}
2926 out:
2927 	if (ret < 0)
2928 		btrfs_err(fs_info,
2929 		"super block corruption detected before writing it to disk");
2930 	return ret;
2931 }
2932 
2933 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2934 {
2935 	int backup_index = find_newest_super_backup(fs_info);
2936 	struct btrfs_super_block *sb = fs_info->super_copy;
2937 	struct btrfs_root *tree_root = fs_info->tree_root;
2938 	bool handle_error = false;
2939 	int ret = 0;
2940 	int i;
2941 
2942 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2943 		u64 generation;
2944 		int level;
2945 
2946 		if (handle_error) {
2947 			if (!IS_ERR(tree_root->node))
2948 				free_extent_buffer(tree_root->node);
2949 			tree_root->node = NULL;
2950 
2951 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2952 				break;
2953 
2954 			free_root_pointers(fs_info, 0);
2955 
2956 			/*
2957 			 * Don't use the log in recovery mode, it won't be
2958 			 * valid
2959 			 */
2960 			btrfs_set_super_log_root(sb, 0);
2961 
2962 			/* We can't trust the free space cache either */
2963 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2964 
2965 			ret = read_backup_root(fs_info, i);
2966 			backup_index = ret;
2967 			if (ret < 0)
2968 				return ret;
2969 		}
2970 		generation = btrfs_super_generation(sb);
2971 		level = btrfs_super_root_level(sb);
2972 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2973 						  BTRFS_ROOT_TREE_OBJECTID,
2974 						  generation, level, NULL);
2975 		if (IS_ERR(tree_root->node)) {
2976 			handle_error = true;
2977 			ret = PTR_ERR(tree_root->node);
2978 			tree_root->node = NULL;
2979 			btrfs_warn(fs_info, "couldn't read tree root");
2980 			continue;
2981 
2982 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2983 			handle_error = true;
2984 			ret = -EIO;
2985 			btrfs_warn(fs_info, "error while reading tree root");
2986 			continue;
2987 		}
2988 
2989 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2990 		tree_root->commit_root = btrfs_root_node(tree_root);
2991 		btrfs_set_root_refs(&tree_root->root_item, 1);
2992 
2993 		/*
2994 		 * No need to hold btrfs_root::objectid_mutex since the fs
2995 		 * hasn't been fully initialised and we are the only user
2996 		 */
2997 		ret = btrfs_init_root_free_objectid(tree_root);
2998 		if (ret < 0) {
2999 			handle_error = true;
3000 			continue;
3001 		}
3002 
3003 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3004 
3005 		ret = btrfs_read_roots(fs_info);
3006 		if (ret < 0) {
3007 			handle_error = true;
3008 			continue;
3009 		}
3010 
3011 		/* All successful */
3012 		fs_info->generation = generation;
3013 		fs_info->last_trans_committed = generation;
3014 		fs_info->last_reloc_trans = 0;
3015 
3016 		/* Always begin writing backup roots after the one being used */
3017 		if (backup_index < 0) {
3018 			fs_info->backup_root_index = 0;
3019 		} else {
3020 			fs_info->backup_root_index = backup_index + 1;
3021 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3022 		}
3023 		break;
3024 	}
3025 
3026 	return ret;
3027 }
3028 
3029 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3030 {
3031 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3032 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3033 	INIT_LIST_HEAD(&fs_info->trans_list);
3034 	INIT_LIST_HEAD(&fs_info->dead_roots);
3035 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3036 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3037 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3038 	spin_lock_init(&fs_info->delalloc_root_lock);
3039 	spin_lock_init(&fs_info->trans_lock);
3040 	spin_lock_init(&fs_info->fs_roots_radix_lock);
3041 	spin_lock_init(&fs_info->delayed_iput_lock);
3042 	spin_lock_init(&fs_info->defrag_inodes_lock);
3043 	spin_lock_init(&fs_info->super_lock);
3044 	spin_lock_init(&fs_info->buffer_lock);
3045 	spin_lock_init(&fs_info->unused_bgs_lock);
3046 	spin_lock_init(&fs_info->treelog_bg_lock);
3047 	spin_lock_init(&fs_info->zone_active_bgs_lock);
3048 	spin_lock_init(&fs_info->relocation_bg_lock);
3049 	rwlock_init(&fs_info->tree_mod_log_lock);
3050 	rwlock_init(&fs_info->global_root_lock);
3051 	mutex_init(&fs_info->unused_bg_unpin_mutex);
3052 	mutex_init(&fs_info->reclaim_bgs_lock);
3053 	mutex_init(&fs_info->reloc_mutex);
3054 	mutex_init(&fs_info->delalloc_root_mutex);
3055 	mutex_init(&fs_info->zoned_meta_io_lock);
3056 	seqlock_init(&fs_info->profiles_lock);
3057 
3058 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3059 	INIT_LIST_HEAD(&fs_info->space_info);
3060 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3061 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3062 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3063 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3064 #ifdef CONFIG_BTRFS_DEBUG
3065 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3066 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3067 	spin_lock_init(&fs_info->eb_leak_lock);
3068 #endif
3069 	extent_map_tree_init(&fs_info->mapping_tree);
3070 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3071 			     BTRFS_BLOCK_RSV_GLOBAL);
3072 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3073 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3074 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3075 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3076 			     BTRFS_BLOCK_RSV_DELOPS);
3077 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3078 			     BTRFS_BLOCK_RSV_DELREFS);
3079 
3080 	atomic_set(&fs_info->async_delalloc_pages, 0);
3081 	atomic_set(&fs_info->defrag_running, 0);
3082 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3083 	atomic64_set(&fs_info->tree_mod_seq, 0);
3084 	fs_info->global_root_tree = RB_ROOT;
3085 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3086 	fs_info->metadata_ratio = 0;
3087 	fs_info->defrag_inodes = RB_ROOT;
3088 	atomic64_set(&fs_info->free_chunk_space, 0);
3089 	fs_info->tree_mod_log = RB_ROOT;
3090 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3091 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3092 	btrfs_init_ref_verify(fs_info);
3093 
3094 	fs_info->thread_pool_size = min_t(unsigned long,
3095 					  num_online_cpus() + 2, 8);
3096 
3097 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3098 	spin_lock_init(&fs_info->ordered_root_lock);
3099 
3100 	btrfs_init_scrub(fs_info);
3101 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3102 	fs_info->check_integrity_print_mask = 0;
3103 #endif
3104 	btrfs_init_balance(fs_info);
3105 	btrfs_init_async_reclaim_work(fs_info);
3106 
3107 	spin_lock_init(&fs_info->block_group_cache_lock);
3108 	fs_info->block_group_cache_tree = RB_ROOT;
3109 	fs_info->first_logical_byte = (u64)-1;
3110 
3111 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3112 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3113 
3114 	mutex_init(&fs_info->ordered_operations_mutex);
3115 	mutex_init(&fs_info->tree_log_mutex);
3116 	mutex_init(&fs_info->chunk_mutex);
3117 	mutex_init(&fs_info->transaction_kthread_mutex);
3118 	mutex_init(&fs_info->cleaner_mutex);
3119 	mutex_init(&fs_info->ro_block_group_mutex);
3120 	init_rwsem(&fs_info->commit_root_sem);
3121 	init_rwsem(&fs_info->cleanup_work_sem);
3122 	init_rwsem(&fs_info->subvol_sem);
3123 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3124 
3125 	btrfs_init_dev_replace_locks(fs_info);
3126 	btrfs_init_qgroup(fs_info);
3127 	btrfs_discard_init(fs_info);
3128 
3129 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3130 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3131 
3132 	init_waitqueue_head(&fs_info->transaction_throttle);
3133 	init_waitqueue_head(&fs_info->transaction_wait);
3134 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3135 	init_waitqueue_head(&fs_info->async_submit_wait);
3136 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3137 
3138 	/* Usable values until the real ones are cached from the superblock */
3139 	fs_info->nodesize = 4096;
3140 	fs_info->sectorsize = 4096;
3141 	fs_info->sectorsize_bits = ilog2(4096);
3142 	fs_info->stripesize = 4096;
3143 
3144 	spin_lock_init(&fs_info->swapfile_pins_lock);
3145 	fs_info->swapfile_pins = RB_ROOT;
3146 
3147 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3148 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3149 }
3150 
3151 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3152 {
3153 	int ret;
3154 
3155 	fs_info->sb = sb;
3156 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3157 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3158 
3159 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3160 	if (ret)
3161 		return ret;
3162 
3163 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3164 	if (ret)
3165 		return ret;
3166 
3167 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3168 					(1 + ilog2(nr_cpu_ids));
3169 
3170 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3171 	if (ret)
3172 		return ret;
3173 
3174 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3175 			GFP_KERNEL);
3176 	if (ret)
3177 		return ret;
3178 
3179 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3180 					GFP_KERNEL);
3181 	if (!fs_info->delayed_root)
3182 		return -ENOMEM;
3183 	btrfs_init_delayed_root(fs_info->delayed_root);
3184 
3185 	if (sb_rdonly(sb))
3186 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3187 
3188 	return btrfs_alloc_stripe_hash_table(fs_info);
3189 }
3190 
3191 static int btrfs_uuid_rescan_kthread(void *data)
3192 {
3193 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3194 	int ret;
3195 
3196 	/*
3197 	 * 1st step is to iterate through the existing UUID tree and
3198 	 * to delete all entries that contain outdated data.
3199 	 * 2nd step is to add all missing entries to the UUID tree.
3200 	 */
3201 	ret = btrfs_uuid_tree_iterate(fs_info);
3202 	if (ret < 0) {
3203 		if (ret != -EINTR)
3204 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3205 				   ret);
3206 		up(&fs_info->uuid_tree_rescan_sem);
3207 		return ret;
3208 	}
3209 	return btrfs_uuid_scan_kthread(data);
3210 }
3211 
3212 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3213 {
3214 	struct task_struct *task;
3215 
3216 	down(&fs_info->uuid_tree_rescan_sem);
3217 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3218 	if (IS_ERR(task)) {
3219 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3220 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3221 		up(&fs_info->uuid_tree_rescan_sem);
3222 		return PTR_ERR(task);
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 /*
3229  * Some options only have meaning at mount time and shouldn't persist across
3230  * remounts, or be displayed. Clear these at the end of mount and remount
3231  * code paths.
3232  */
3233 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3234 {
3235 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3236 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3237 }
3238 
3239 /*
3240  * Mounting logic specific to read-write file systems. Shared by open_ctree
3241  * and btrfs_remount when remounting from read-only to read-write.
3242  */
3243 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3244 {
3245 	int ret;
3246 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3247 	bool clear_free_space_tree = false;
3248 
3249 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3250 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3251 		clear_free_space_tree = true;
3252 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3253 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3254 		btrfs_warn(fs_info, "free space tree is invalid");
3255 		clear_free_space_tree = true;
3256 	}
3257 
3258 	if (clear_free_space_tree) {
3259 		btrfs_info(fs_info, "clearing free space tree");
3260 		ret = btrfs_clear_free_space_tree(fs_info);
3261 		if (ret) {
3262 			btrfs_warn(fs_info,
3263 				   "failed to clear free space tree: %d", ret);
3264 			goto out;
3265 		}
3266 	}
3267 
3268 	/*
3269 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3270 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3271 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3272 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3273 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3274 	 * item before the root's tree is deleted - this means that if we unmount
3275 	 * or crash before the deletion completes, on the next mount we will not
3276 	 * delete what remains of the tree because the orphan item does not
3277 	 * exists anymore, which is what tells us we have a pending deletion.
3278 	 */
3279 	ret = btrfs_find_orphan_roots(fs_info);
3280 	if (ret)
3281 		goto out;
3282 
3283 	ret = btrfs_cleanup_fs_roots(fs_info);
3284 	if (ret)
3285 		goto out;
3286 
3287 	down_read(&fs_info->cleanup_work_sem);
3288 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3289 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3290 		up_read(&fs_info->cleanup_work_sem);
3291 		goto out;
3292 	}
3293 	up_read(&fs_info->cleanup_work_sem);
3294 
3295 	mutex_lock(&fs_info->cleaner_mutex);
3296 	ret = btrfs_recover_relocation(fs_info->tree_root);
3297 	mutex_unlock(&fs_info->cleaner_mutex);
3298 	if (ret < 0) {
3299 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3300 		goto out;
3301 	}
3302 
3303 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3304 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3305 		btrfs_info(fs_info, "creating free space tree");
3306 		ret = btrfs_create_free_space_tree(fs_info);
3307 		if (ret) {
3308 			btrfs_warn(fs_info,
3309 				"failed to create free space tree: %d", ret);
3310 			goto out;
3311 		}
3312 	}
3313 
3314 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3315 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3316 		if (ret)
3317 			goto out;
3318 	}
3319 
3320 	ret = btrfs_resume_balance_async(fs_info);
3321 	if (ret)
3322 		goto out;
3323 
3324 	ret = btrfs_resume_dev_replace_async(fs_info);
3325 	if (ret) {
3326 		btrfs_warn(fs_info, "failed to resume dev_replace");
3327 		goto out;
3328 	}
3329 
3330 	btrfs_qgroup_rescan_resume(fs_info);
3331 
3332 	if (!fs_info->uuid_root) {
3333 		btrfs_info(fs_info, "creating UUID tree");
3334 		ret = btrfs_create_uuid_tree(fs_info);
3335 		if (ret) {
3336 			btrfs_warn(fs_info,
3337 				   "failed to create the UUID tree %d", ret);
3338 			goto out;
3339 		}
3340 	}
3341 
3342 out:
3343 	return ret;
3344 }
3345 
3346 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3347 		      char *options)
3348 {
3349 	u32 sectorsize;
3350 	u32 nodesize;
3351 	u32 stripesize;
3352 	u64 generation;
3353 	u64 features;
3354 	u16 csum_type;
3355 	struct btrfs_super_block *disk_super;
3356 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3357 	struct btrfs_root *tree_root;
3358 	struct btrfs_root *chunk_root;
3359 	int ret;
3360 	int err = -EINVAL;
3361 	int level;
3362 
3363 	ret = init_mount_fs_info(fs_info, sb);
3364 	if (ret) {
3365 		err = ret;
3366 		goto fail;
3367 	}
3368 
3369 	/* These need to be init'ed before we start creating inodes and such. */
3370 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3371 				     GFP_KERNEL);
3372 	fs_info->tree_root = tree_root;
3373 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3374 				      GFP_KERNEL);
3375 	fs_info->chunk_root = chunk_root;
3376 	if (!tree_root || !chunk_root) {
3377 		err = -ENOMEM;
3378 		goto fail;
3379 	}
3380 
3381 	fs_info->btree_inode = new_inode(sb);
3382 	if (!fs_info->btree_inode) {
3383 		err = -ENOMEM;
3384 		goto fail;
3385 	}
3386 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3387 	btrfs_init_btree_inode(fs_info);
3388 
3389 	invalidate_bdev(fs_devices->latest_dev->bdev);
3390 
3391 	/*
3392 	 * Read super block and check the signature bytes only
3393 	 */
3394 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3395 	if (IS_ERR(disk_super)) {
3396 		err = PTR_ERR(disk_super);
3397 		goto fail_alloc;
3398 	}
3399 
3400 	/*
3401 	 * Verify the type first, if that or the checksum value are
3402 	 * corrupted, we'll find out
3403 	 */
3404 	csum_type = btrfs_super_csum_type(disk_super);
3405 	if (!btrfs_supported_super_csum(csum_type)) {
3406 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3407 			  csum_type);
3408 		err = -EINVAL;
3409 		btrfs_release_disk_super(disk_super);
3410 		goto fail_alloc;
3411 	}
3412 
3413 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3414 
3415 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3416 	if (ret) {
3417 		err = ret;
3418 		btrfs_release_disk_super(disk_super);
3419 		goto fail_alloc;
3420 	}
3421 
3422 	/*
3423 	 * We want to check superblock checksum, the type is stored inside.
3424 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3425 	 */
3426 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3427 		btrfs_err(fs_info, "superblock checksum mismatch");
3428 		err = -EINVAL;
3429 		btrfs_release_disk_super(disk_super);
3430 		goto fail_alloc;
3431 	}
3432 
3433 	/*
3434 	 * super_copy is zeroed at allocation time and we never touch the
3435 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3436 	 * the whole block of INFO_SIZE
3437 	 */
3438 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3439 	btrfs_release_disk_super(disk_super);
3440 
3441 	disk_super = fs_info->super_copy;
3442 
3443 
3444 	features = btrfs_super_flags(disk_super);
3445 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3446 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3447 		btrfs_set_super_flags(disk_super, features);
3448 		btrfs_info(fs_info,
3449 			"found metadata UUID change in progress flag, clearing");
3450 	}
3451 
3452 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3453 	       sizeof(*fs_info->super_for_commit));
3454 
3455 	ret = btrfs_validate_mount_super(fs_info);
3456 	if (ret) {
3457 		btrfs_err(fs_info, "superblock contains fatal errors");
3458 		err = -EINVAL;
3459 		goto fail_alloc;
3460 	}
3461 
3462 	if (!btrfs_super_root(disk_super))
3463 		goto fail_alloc;
3464 
3465 	/* check FS state, whether FS is broken. */
3466 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3467 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3468 
3469 	/*
3470 	 * In the long term, we'll store the compression type in the super
3471 	 * block, and it'll be used for per file compression control.
3472 	 */
3473 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3474 
3475 	/*
3476 	 * Flag our filesystem as having big metadata blocks if they are bigger
3477 	 * than the page size.
3478 	 */
3479 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3480 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3481 			btrfs_info(fs_info,
3482 				"flagging fs with big metadata feature");
3483 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3484 	}
3485 
3486 	/* Set up fs_info before parsing mount options */
3487 	nodesize = btrfs_super_nodesize(disk_super);
3488 	sectorsize = btrfs_super_sectorsize(disk_super);
3489 	stripesize = sectorsize;
3490 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3491 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3492 
3493 	fs_info->nodesize = nodesize;
3494 	fs_info->sectorsize = sectorsize;
3495 	fs_info->sectorsize_bits = ilog2(sectorsize);
3496 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3497 	fs_info->stripesize = stripesize;
3498 
3499 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3500 	if (ret) {
3501 		err = ret;
3502 		goto fail_alloc;
3503 	}
3504 
3505 	features = btrfs_super_incompat_flags(disk_super) &
3506 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3507 	if (features) {
3508 		btrfs_err(fs_info,
3509 		    "cannot mount because of unsupported optional features (%llx)",
3510 		    features);
3511 		err = -EINVAL;
3512 		goto fail_alloc;
3513 	}
3514 
3515 	features = btrfs_super_incompat_flags(disk_super);
3516 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3517 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3518 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3519 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3520 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3521 
3522 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3523 		btrfs_info(fs_info, "has skinny extents");
3524 
3525 	/*
3526 	 * mixed block groups end up with duplicate but slightly offset
3527 	 * extent buffers for the same range.  It leads to corruptions
3528 	 */
3529 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3530 	    (sectorsize != nodesize)) {
3531 		btrfs_err(fs_info,
3532 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3533 			nodesize, sectorsize);
3534 		goto fail_alloc;
3535 	}
3536 
3537 	/*
3538 	 * Needn't use the lock because there is no other task which will
3539 	 * update the flag.
3540 	 */
3541 	btrfs_set_super_incompat_flags(disk_super, features);
3542 
3543 	features = btrfs_super_compat_ro_flags(disk_super) &
3544 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3545 	if (!sb_rdonly(sb) && features) {
3546 		btrfs_err(fs_info,
3547 	"cannot mount read-write because of unsupported optional features (%llx)",
3548 		       features);
3549 		err = -EINVAL;
3550 		goto fail_alloc;
3551 	}
3552 
3553 	if (sectorsize < PAGE_SIZE) {
3554 		struct btrfs_subpage_info *subpage_info;
3555 
3556 		btrfs_warn(fs_info,
3557 		"read-write for sector size %u with page size %lu is experimental",
3558 			   sectorsize, PAGE_SIZE);
3559 		if (btrfs_super_incompat_flags(fs_info->super_copy) &
3560 			BTRFS_FEATURE_INCOMPAT_RAID56) {
3561 			btrfs_err(fs_info,
3562 		"RAID56 is not yet supported for sector size %u with page size %lu",
3563 				sectorsize, PAGE_SIZE);
3564 			err = -EINVAL;
3565 			goto fail_alloc;
3566 		}
3567 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3568 		if (!subpage_info)
3569 			goto fail_alloc;
3570 		btrfs_init_subpage_info(subpage_info, sectorsize);
3571 		fs_info->subpage_info = subpage_info;
3572 	}
3573 
3574 	ret = btrfs_init_workqueues(fs_info);
3575 	if (ret) {
3576 		err = ret;
3577 		goto fail_sb_buffer;
3578 	}
3579 
3580 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3581 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3582 
3583 	sb->s_blocksize = sectorsize;
3584 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3585 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3586 
3587 	mutex_lock(&fs_info->chunk_mutex);
3588 	ret = btrfs_read_sys_array(fs_info);
3589 	mutex_unlock(&fs_info->chunk_mutex);
3590 	if (ret) {
3591 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3592 		goto fail_sb_buffer;
3593 	}
3594 
3595 	generation = btrfs_super_chunk_root_generation(disk_super);
3596 	level = btrfs_super_chunk_root_level(disk_super);
3597 
3598 	chunk_root->node = read_tree_block(fs_info,
3599 					   btrfs_super_chunk_root(disk_super),
3600 					   BTRFS_CHUNK_TREE_OBJECTID,
3601 					   generation, level, NULL);
3602 	if (IS_ERR(chunk_root->node) ||
3603 	    !extent_buffer_uptodate(chunk_root->node)) {
3604 		btrfs_err(fs_info, "failed to read chunk root");
3605 		if (!IS_ERR(chunk_root->node))
3606 			free_extent_buffer(chunk_root->node);
3607 		chunk_root->node = NULL;
3608 		goto fail_tree_roots;
3609 	}
3610 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3611 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3612 
3613 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3614 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3615 			   BTRFS_UUID_SIZE);
3616 
3617 	ret = btrfs_read_chunk_tree(fs_info);
3618 	if (ret) {
3619 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3620 		goto fail_tree_roots;
3621 	}
3622 
3623 	/*
3624 	 * At this point we know all the devices that make this filesystem,
3625 	 * including the seed devices but we don't know yet if the replace
3626 	 * target is required. So free devices that are not part of this
3627 	 * filesystem but skip the replace target device which is checked
3628 	 * below in btrfs_init_dev_replace().
3629 	 */
3630 	btrfs_free_extra_devids(fs_devices);
3631 	if (!fs_devices->latest_dev->bdev) {
3632 		btrfs_err(fs_info, "failed to read devices");
3633 		goto fail_tree_roots;
3634 	}
3635 
3636 	ret = init_tree_roots(fs_info);
3637 	if (ret)
3638 		goto fail_tree_roots;
3639 
3640 	/*
3641 	 * Get zone type information of zoned block devices. This will also
3642 	 * handle emulation of a zoned filesystem if a regular device has the
3643 	 * zoned incompat feature flag set.
3644 	 */
3645 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3646 	if (ret) {
3647 		btrfs_err(fs_info,
3648 			  "zoned: failed to read device zone info: %d",
3649 			  ret);
3650 		goto fail_block_groups;
3651 	}
3652 
3653 	/*
3654 	 * If we have a uuid root and we're not being told to rescan we need to
3655 	 * check the generation here so we can set the
3656 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3657 	 * transaction during a balance or the log replay without updating the
3658 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3659 	 * even though it was perfectly fine.
3660 	 */
3661 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3662 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3663 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3664 
3665 	ret = btrfs_verify_dev_extents(fs_info);
3666 	if (ret) {
3667 		btrfs_err(fs_info,
3668 			  "failed to verify dev extents against chunks: %d",
3669 			  ret);
3670 		goto fail_block_groups;
3671 	}
3672 	ret = btrfs_recover_balance(fs_info);
3673 	if (ret) {
3674 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3675 		goto fail_block_groups;
3676 	}
3677 
3678 	ret = btrfs_init_dev_stats(fs_info);
3679 	if (ret) {
3680 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3681 		goto fail_block_groups;
3682 	}
3683 
3684 	ret = btrfs_init_dev_replace(fs_info);
3685 	if (ret) {
3686 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3687 		goto fail_block_groups;
3688 	}
3689 
3690 	ret = btrfs_check_zoned_mode(fs_info);
3691 	if (ret) {
3692 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3693 			  ret);
3694 		goto fail_block_groups;
3695 	}
3696 
3697 	ret = btrfs_sysfs_add_fsid(fs_devices);
3698 	if (ret) {
3699 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3700 				ret);
3701 		goto fail_block_groups;
3702 	}
3703 
3704 	ret = btrfs_sysfs_add_mounted(fs_info);
3705 	if (ret) {
3706 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3707 		goto fail_fsdev_sysfs;
3708 	}
3709 
3710 	ret = btrfs_init_space_info(fs_info);
3711 	if (ret) {
3712 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3713 		goto fail_sysfs;
3714 	}
3715 
3716 	ret = btrfs_read_block_groups(fs_info);
3717 	if (ret) {
3718 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3719 		goto fail_sysfs;
3720 	}
3721 
3722 	btrfs_free_zone_cache(fs_info);
3723 
3724 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3725 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3726 		btrfs_warn(fs_info,
3727 		"writable mount is not allowed due to too many missing devices");
3728 		goto fail_sysfs;
3729 	}
3730 
3731 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3732 					       "btrfs-cleaner");
3733 	if (IS_ERR(fs_info->cleaner_kthread))
3734 		goto fail_sysfs;
3735 
3736 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3737 						   tree_root,
3738 						   "btrfs-transaction");
3739 	if (IS_ERR(fs_info->transaction_kthread))
3740 		goto fail_cleaner;
3741 
3742 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3743 	    !fs_info->fs_devices->rotating) {
3744 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3745 	}
3746 
3747 	/*
3748 	 * Mount does not set all options immediately, we can do it now and do
3749 	 * not have to wait for transaction commit
3750 	 */
3751 	btrfs_apply_pending_changes(fs_info);
3752 
3753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3754 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3755 		ret = btrfsic_mount(fs_info, fs_devices,
3756 				    btrfs_test_opt(fs_info,
3757 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3758 				    fs_info->check_integrity_print_mask);
3759 		if (ret)
3760 			btrfs_warn(fs_info,
3761 				"failed to initialize integrity check module: %d",
3762 				ret);
3763 	}
3764 #endif
3765 	ret = btrfs_read_qgroup_config(fs_info);
3766 	if (ret)
3767 		goto fail_trans_kthread;
3768 
3769 	if (btrfs_build_ref_tree(fs_info))
3770 		btrfs_err(fs_info, "couldn't build ref tree");
3771 
3772 	/* do not make disk changes in broken FS or nologreplay is given */
3773 	if (btrfs_super_log_root(disk_super) != 0 &&
3774 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3775 		btrfs_info(fs_info, "start tree-log replay");
3776 		ret = btrfs_replay_log(fs_info, fs_devices);
3777 		if (ret) {
3778 			err = ret;
3779 			goto fail_qgroup;
3780 		}
3781 	}
3782 
3783 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3784 	if (IS_ERR(fs_info->fs_root)) {
3785 		err = PTR_ERR(fs_info->fs_root);
3786 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3787 		fs_info->fs_root = NULL;
3788 		goto fail_qgroup;
3789 	}
3790 
3791 	if (sb_rdonly(sb))
3792 		goto clear_oneshot;
3793 
3794 	ret = btrfs_start_pre_rw_mount(fs_info);
3795 	if (ret) {
3796 		close_ctree(fs_info);
3797 		return ret;
3798 	}
3799 	btrfs_discard_resume(fs_info);
3800 
3801 	if (fs_info->uuid_root &&
3802 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3803 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3804 		btrfs_info(fs_info, "checking UUID tree");
3805 		ret = btrfs_check_uuid_tree(fs_info);
3806 		if (ret) {
3807 			btrfs_warn(fs_info,
3808 				"failed to check the UUID tree: %d", ret);
3809 			close_ctree(fs_info);
3810 			return ret;
3811 		}
3812 	}
3813 
3814 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3815 
3816 clear_oneshot:
3817 	btrfs_clear_oneshot_options(fs_info);
3818 	return 0;
3819 
3820 fail_qgroup:
3821 	btrfs_free_qgroup_config(fs_info);
3822 fail_trans_kthread:
3823 	kthread_stop(fs_info->transaction_kthread);
3824 	btrfs_cleanup_transaction(fs_info);
3825 	btrfs_free_fs_roots(fs_info);
3826 fail_cleaner:
3827 	kthread_stop(fs_info->cleaner_kthread);
3828 
3829 	/*
3830 	 * make sure we're done with the btree inode before we stop our
3831 	 * kthreads
3832 	 */
3833 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3834 
3835 fail_sysfs:
3836 	btrfs_sysfs_remove_mounted(fs_info);
3837 
3838 fail_fsdev_sysfs:
3839 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3840 
3841 fail_block_groups:
3842 	btrfs_put_block_group_cache(fs_info);
3843 
3844 fail_tree_roots:
3845 	if (fs_info->data_reloc_root)
3846 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3847 	free_root_pointers(fs_info, true);
3848 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3849 
3850 fail_sb_buffer:
3851 	btrfs_stop_all_workers(fs_info);
3852 	btrfs_free_block_groups(fs_info);
3853 fail_alloc:
3854 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3855 
3856 	iput(fs_info->btree_inode);
3857 fail:
3858 	btrfs_close_devices(fs_info->fs_devices);
3859 	return err;
3860 }
3861 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3862 
3863 static void btrfs_end_super_write(struct bio *bio)
3864 {
3865 	struct btrfs_device *device = bio->bi_private;
3866 	struct bio_vec *bvec;
3867 	struct bvec_iter_all iter_all;
3868 	struct page *page;
3869 
3870 	bio_for_each_segment_all(bvec, bio, iter_all) {
3871 		page = bvec->bv_page;
3872 
3873 		if (bio->bi_status) {
3874 			btrfs_warn_rl_in_rcu(device->fs_info,
3875 				"lost page write due to IO error on %s (%d)",
3876 				rcu_str_deref(device->name),
3877 				blk_status_to_errno(bio->bi_status));
3878 			ClearPageUptodate(page);
3879 			SetPageError(page);
3880 			btrfs_dev_stat_inc_and_print(device,
3881 						     BTRFS_DEV_STAT_WRITE_ERRS);
3882 		} else {
3883 			SetPageUptodate(page);
3884 		}
3885 
3886 		put_page(page);
3887 		unlock_page(page);
3888 	}
3889 
3890 	bio_put(bio);
3891 }
3892 
3893 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3894 						   int copy_num)
3895 {
3896 	struct btrfs_super_block *super;
3897 	struct page *page;
3898 	u64 bytenr, bytenr_orig;
3899 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3900 	int ret;
3901 
3902 	bytenr_orig = btrfs_sb_offset(copy_num);
3903 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3904 	if (ret == -ENOENT)
3905 		return ERR_PTR(-EINVAL);
3906 	else if (ret)
3907 		return ERR_PTR(ret);
3908 
3909 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3910 		return ERR_PTR(-EINVAL);
3911 
3912 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3913 	if (IS_ERR(page))
3914 		return ERR_CAST(page);
3915 
3916 	super = page_address(page);
3917 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3918 		btrfs_release_disk_super(super);
3919 		return ERR_PTR(-ENODATA);
3920 	}
3921 
3922 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3923 		btrfs_release_disk_super(super);
3924 		return ERR_PTR(-EINVAL);
3925 	}
3926 
3927 	return super;
3928 }
3929 
3930 
3931 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3932 {
3933 	struct btrfs_super_block *super, *latest = NULL;
3934 	int i;
3935 	u64 transid = 0;
3936 
3937 	/* we would like to check all the supers, but that would make
3938 	 * a btrfs mount succeed after a mkfs from a different FS.
3939 	 * So, we need to add a special mount option to scan for
3940 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3941 	 */
3942 	for (i = 0; i < 1; i++) {
3943 		super = btrfs_read_dev_one_super(bdev, i);
3944 		if (IS_ERR(super))
3945 			continue;
3946 
3947 		if (!latest || btrfs_super_generation(super) > transid) {
3948 			if (latest)
3949 				btrfs_release_disk_super(super);
3950 
3951 			latest = super;
3952 			transid = btrfs_super_generation(super);
3953 		}
3954 	}
3955 
3956 	return super;
3957 }
3958 
3959 /*
3960  * Write superblock @sb to the @device. Do not wait for completion, all the
3961  * pages we use for writing are locked.
3962  *
3963  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3964  * the expected device size at commit time. Note that max_mirrors must be
3965  * same for write and wait phases.
3966  *
3967  * Return number of errors when page is not found or submission fails.
3968  */
3969 static int write_dev_supers(struct btrfs_device *device,
3970 			    struct btrfs_super_block *sb, int max_mirrors)
3971 {
3972 	struct btrfs_fs_info *fs_info = device->fs_info;
3973 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3974 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3975 	int i;
3976 	int errors = 0;
3977 	int ret;
3978 	u64 bytenr, bytenr_orig;
3979 
3980 	if (max_mirrors == 0)
3981 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3982 
3983 	shash->tfm = fs_info->csum_shash;
3984 
3985 	for (i = 0; i < max_mirrors; i++) {
3986 		struct page *page;
3987 		struct bio *bio;
3988 		struct btrfs_super_block *disk_super;
3989 
3990 		bytenr_orig = btrfs_sb_offset(i);
3991 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3992 		if (ret == -ENOENT) {
3993 			continue;
3994 		} else if (ret < 0) {
3995 			btrfs_err(device->fs_info,
3996 				"couldn't get super block location for mirror %d",
3997 				i);
3998 			errors++;
3999 			continue;
4000 		}
4001 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4002 		    device->commit_total_bytes)
4003 			break;
4004 
4005 		btrfs_set_super_bytenr(sb, bytenr_orig);
4006 
4007 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4008 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4009 				    sb->csum);
4010 
4011 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4012 					   GFP_NOFS);
4013 		if (!page) {
4014 			btrfs_err(device->fs_info,
4015 			    "couldn't get super block page for bytenr %llu",
4016 			    bytenr);
4017 			errors++;
4018 			continue;
4019 		}
4020 
4021 		/* Bump the refcount for wait_dev_supers() */
4022 		get_page(page);
4023 
4024 		disk_super = page_address(page);
4025 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4026 
4027 		/*
4028 		 * Directly use bios here instead of relying on the page cache
4029 		 * to do I/O, so we don't lose the ability to do integrity
4030 		 * checking.
4031 		 */
4032 		bio = bio_alloc(GFP_NOFS, 1);
4033 		bio_set_dev(bio, device->bdev);
4034 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4035 		bio->bi_private = device;
4036 		bio->bi_end_io = btrfs_end_super_write;
4037 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4038 			       offset_in_page(bytenr));
4039 
4040 		/*
4041 		 * We FUA only the first super block.  The others we allow to
4042 		 * go down lazy and there's a short window where the on-disk
4043 		 * copies might still contain the older version.
4044 		 */
4045 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
4046 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4047 			bio->bi_opf |= REQ_FUA;
4048 
4049 		btrfsic_submit_bio(bio);
4050 
4051 		if (btrfs_advance_sb_log(device, i))
4052 			errors++;
4053 	}
4054 	return errors < i ? 0 : -1;
4055 }
4056 
4057 /*
4058  * Wait for write completion of superblocks done by write_dev_supers,
4059  * @max_mirrors same for write and wait phases.
4060  *
4061  * Return number of errors when page is not found or not marked up to
4062  * date.
4063  */
4064 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4065 {
4066 	int i;
4067 	int errors = 0;
4068 	bool primary_failed = false;
4069 	int ret;
4070 	u64 bytenr;
4071 
4072 	if (max_mirrors == 0)
4073 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4074 
4075 	for (i = 0; i < max_mirrors; i++) {
4076 		struct page *page;
4077 
4078 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4079 		if (ret == -ENOENT) {
4080 			break;
4081 		} else if (ret < 0) {
4082 			errors++;
4083 			if (i == 0)
4084 				primary_failed = true;
4085 			continue;
4086 		}
4087 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4088 		    device->commit_total_bytes)
4089 			break;
4090 
4091 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4092 				     bytenr >> PAGE_SHIFT);
4093 		if (!page) {
4094 			errors++;
4095 			if (i == 0)
4096 				primary_failed = true;
4097 			continue;
4098 		}
4099 		/* Page is submitted locked and unlocked once the IO completes */
4100 		wait_on_page_locked(page);
4101 		if (PageError(page)) {
4102 			errors++;
4103 			if (i == 0)
4104 				primary_failed = true;
4105 		}
4106 
4107 		/* Drop our reference */
4108 		put_page(page);
4109 
4110 		/* Drop the reference from the writing run */
4111 		put_page(page);
4112 	}
4113 
4114 	/* log error, force error return */
4115 	if (primary_failed) {
4116 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4117 			  device->devid);
4118 		return -1;
4119 	}
4120 
4121 	return errors < i ? 0 : -1;
4122 }
4123 
4124 /*
4125  * endio for the write_dev_flush, this will wake anyone waiting
4126  * for the barrier when it is done
4127  */
4128 static void btrfs_end_empty_barrier(struct bio *bio)
4129 {
4130 	complete(bio->bi_private);
4131 }
4132 
4133 /*
4134  * Submit a flush request to the device if it supports it. Error handling is
4135  * done in the waiting counterpart.
4136  */
4137 static void write_dev_flush(struct btrfs_device *device)
4138 {
4139 	struct bio *bio = device->flush_bio;
4140 
4141 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4142 	/*
4143 	 * When a disk has write caching disabled, we skip submission of a bio
4144 	 * with flush and sync requests before writing the superblock, since
4145 	 * it's not needed. However when the integrity checker is enabled, this
4146 	 * results in reports that there are metadata blocks referred by a
4147 	 * superblock that were not properly flushed. So don't skip the bio
4148 	 * submission only when the integrity checker is enabled for the sake
4149 	 * of simplicity, since this is a debug tool and not meant for use in
4150 	 * non-debug builds.
4151 	 */
4152 	struct request_queue *q = bdev_get_queue(device->bdev);
4153 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4154 		return;
4155 #endif
4156 
4157 	bio_reset(bio);
4158 	bio->bi_end_io = btrfs_end_empty_barrier;
4159 	bio_set_dev(bio, device->bdev);
4160 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
4161 	init_completion(&device->flush_wait);
4162 	bio->bi_private = &device->flush_wait;
4163 
4164 	btrfsic_submit_bio(bio);
4165 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4166 }
4167 
4168 /*
4169  * If the flush bio has been submitted by write_dev_flush, wait for it.
4170  */
4171 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4172 {
4173 	struct bio *bio = device->flush_bio;
4174 
4175 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4176 		return BLK_STS_OK;
4177 
4178 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4179 	wait_for_completion_io(&device->flush_wait);
4180 
4181 	return bio->bi_status;
4182 }
4183 
4184 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4185 {
4186 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4187 		return -EIO;
4188 	return 0;
4189 }
4190 
4191 /*
4192  * send an empty flush down to each device in parallel,
4193  * then wait for them
4194  */
4195 static int barrier_all_devices(struct btrfs_fs_info *info)
4196 {
4197 	struct list_head *head;
4198 	struct btrfs_device *dev;
4199 	int errors_wait = 0;
4200 	blk_status_t ret;
4201 
4202 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4203 	/* send down all the barriers */
4204 	head = &info->fs_devices->devices;
4205 	list_for_each_entry(dev, head, dev_list) {
4206 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4207 			continue;
4208 		if (!dev->bdev)
4209 			continue;
4210 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4211 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4212 			continue;
4213 
4214 		write_dev_flush(dev);
4215 		dev->last_flush_error = BLK_STS_OK;
4216 	}
4217 
4218 	/* wait for all the barriers */
4219 	list_for_each_entry(dev, head, dev_list) {
4220 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4221 			continue;
4222 		if (!dev->bdev) {
4223 			errors_wait++;
4224 			continue;
4225 		}
4226 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4227 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4228 			continue;
4229 
4230 		ret = wait_dev_flush(dev);
4231 		if (ret) {
4232 			dev->last_flush_error = ret;
4233 			btrfs_dev_stat_inc_and_print(dev,
4234 					BTRFS_DEV_STAT_FLUSH_ERRS);
4235 			errors_wait++;
4236 		}
4237 	}
4238 
4239 	if (errors_wait) {
4240 		/*
4241 		 * At some point we need the status of all disks
4242 		 * to arrive at the volume status. So error checking
4243 		 * is being pushed to a separate loop.
4244 		 */
4245 		return check_barrier_error(info);
4246 	}
4247 	return 0;
4248 }
4249 
4250 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4251 {
4252 	int raid_type;
4253 	int min_tolerated = INT_MAX;
4254 
4255 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4256 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4257 		min_tolerated = min_t(int, min_tolerated,
4258 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4259 				    tolerated_failures);
4260 
4261 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4262 		if (raid_type == BTRFS_RAID_SINGLE)
4263 			continue;
4264 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4265 			continue;
4266 		min_tolerated = min_t(int, min_tolerated,
4267 				    btrfs_raid_array[raid_type].
4268 				    tolerated_failures);
4269 	}
4270 
4271 	if (min_tolerated == INT_MAX) {
4272 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4273 		min_tolerated = 0;
4274 	}
4275 
4276 	return min_tolerated;
4277 }
4278 
4279 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4280 {
4281 	struct list_head *head;
4282 	struct btrfs_device *dev;
4283 	struct btrfs_super_block *sb;
4284 	struct btrfs_dev_item *dev_item;
4285 	int ret;
4286 	int do_barriers;
4287 	int max_errors;
4288 	int total_errors = 0;
4289 	u64 flags;
4290 
4291 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4292 
4293 	/*
4294 	 * max_mirrors == 0 indicates we're from commit_transaction,
4295 	 * not from fsync where the tree roots in fs_info have not
4296 	 * been consistent on disk.
4297 	 */
4298 	if (max_mirrors == 0)
4299 		backup_super_roots(fs_info);
4300 
4301 	sb = fs_info->super_for_commit;
4302 	dev_item = &sb->dev_item;
4303 
4304 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4305 	head = &fs_info->fs_devices->devices;
4306 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4307 
4308 	if (do_barriers) {
4309 		ret = barrier_all_devices(fs_info);
4310 		if (ret) {
4311 			mutex_unlock(
4312 				&fs_info->fs_devices->device_list_mutex);
4313 			btrfs_handle_fs_error(fs_info, ret,
4314 					      "errors while submitting device barriers.");
4315 			return ret;
4316 		}
4317 	}
4318 
4319 	list_for_each_entry(dev, head, dev_list) {
4320 		if (!dev->bdev) {
4321 			total_errors++;
4322 			continue;
4323 		}
4324 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4325 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4326 			continue;
4327 
4328 		btrfs_set_stack_device_generation(dev_item, 0);
4329 		btrfs_set_stack_device_type(dev_item, dev->type);
4330 		btrfs_set_stack_device_id(dev_item, dev->devid);
4331 		btrfs_set_stack_device_total_bytes(dev_item,
4332 						   dev->commit_total_bytes);
4333 		btrfs_set_stack_device_bytes_used(dev_item,
4334 						  dev->commit_bytes_used);
4335 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4336 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4337 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4338 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4339 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4340 		       BTRFS_FSID_SIZE);
4341 
4342 		flags = btrfs_super_flags(sb);
4343 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4344 
4345 		ret = btrfs_validate_write_super(fs_info, sb);
4346 		if (ret < 0) {
4347 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4348 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4349 				"unexpected superblock corruption detected");
4350 			return -EUCLEAN;
4351 		}
4352 
4353 		ret = write_dev_supers(dev, sb, max_mirrors);
4354 		if (ret)
4355 			total_errors++;
4356 	}
4357 	if (total_errors > max_errors) {
4358 		btrfs_err(fs_info, "%d errors while writing supers",
4359 			  total_errors);
4360 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4361 
4362 		/* FUA is masked off if unsupported and can't be the reason */
4363 		btrfs_handle_fs_error(fs_info, -EIO,
4364 				      "%d errors while writing supers",
4365 				      total_errors);
4366 		return -EIO;
4367 	}
4368 
4369 	total_errors = 0;
4370 	list_for_each_entry(dev, head, dev_list) {
4371 		if (!dev->bdev)
4372 			continue;
4373 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4374 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4375 			continue;
4376 
4377 		ret = wait_dev_supers(dev, max_mirrors);
4378 		if (ret)
4379 			total_errors++;
4380 	}
4381 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4382 	if (total_errors > max_errors) {
4383 		btrfs_handle_fs_error(fs_info, -EIO,
4384 				      "%d errors while writing supers",
4385 				      total_errors);
4386 		return -EIO;
4387 	}
4388 	return 0;
4389 }
4390 
4391 /* Drop a fs root from the radix tree and free it. */
4392 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4393 				  struct btrfs_root *root)
4394 {
4395 	bool drop_ref = false;
4396 
4397 	spin_lock(&fs_info->fs_roots_radix_lock);
4398 	radix_tree_delete(&fs_info->fs_roots_radix,
4399 			  (unsigned long)root->root_key.objectid);
4400 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4401 		drop_ref = true;
4402 	spin_unlock(&fs_info->fs_roots_radix_lock);
4403 
4404 	if (BTRFS_FS_ERROR(fs_info)) {
4405 		ASSERT(root->log_root == NULL);
4406 		if (root->reloc_root) {
4407 			btrfs_put_root(root->reloc_root);
4408 			root->reloc_root = NULL;
4409 		}
4410 	}
4411 
4412 	if (drop_ref)
4413 		btrfs_put_root(root);
4414 }
4415 
4416 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4417 {
4418 	u64 root_objectid = 0;
4419 	struct btrfs_root *gang[8];
4420 	int i = 0;
4421 	int err = 0;
4422 	unsigned int ret = 0;
4423 
4424 	while (1) {
4425 		spin_lock(&fs_info->fs_roots_radix_lock);
4426 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4427 					     (void **)gang, root_objectid,
4428 					     ARRAY_SIZE(gang));
4429 		if (!ret) {
4430 			spin_unlock(&fs_info->fs_roots_radix_lock);
4431 			break;
4432 		}
4433 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4434 
4435 		for (i = 0; i < ret; i++) {
4436 			/* Avoid to grab roots in dead_roots */
4437 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4438 				gang[i] = NULL;
4439 				continue;
4440 			}
4441 			/* grab all the search result for later use */
4442 			gang[i] = btrfs_grab_root(gang[i]);
4443 		}
4444 		spin_unlock(&fs_info->fs_roots_radix_lock);
4445 
4446 		for (i = 0; i < ret; i++) {
4447 			if (!gang[i])
4448 				continue;
4449 			root_objectid = gang[i]->root_key.objectid;
4450 			err = btrfs_orphan_cleanup(gang[i]);
4451 			if (err)
4452 				break;
4453 			btrfs_put_root(gang[i]);
4454 		}
4455 		root_objectid++;
4456 	}
4457 
4458 	/* release the uncleaned roots due to error */
4459 	for (; i < ret; i++) {
4460 		if (gang[i])
4461 			btrfs_put_root(gang[i]);
4462 	}
4463 	return err;
4464 }
4465 
4466 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4467 {
4468 	struct btrfs_root *root = fs_info->tree_root;
4469 	struct btrfs_trans_handle *trans;
4470 
4471 	mutex_lock(&fs_info->cleaner_mutex);
4472 	btrfs_run_delayed_iputs(fs_info);
4473 	mutex_unlock(&fs_info->cleaner_mutex);
4474 	wake_up_process(fs_info->cleaner_kthread);
4475 
4476 	/* wait until ongoing cleanup work done */
4477 	down_write(&fs_info->cleanup_work_sem);
4478 	up_write(&fs_info->cleanup_work_sem);
4479 
4480 	trans = btrfs_join_transaction(root);
4481 	if (IS_ERR(trans))
4482 		return PTR_ERR(trans);
4483 	return btrfs_commit_transaction(trans);
4484 }
4485 
4486 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4487 {
4488 	struct btrfs_transaction *trans;
4489 	struct btrfs_transaction *tmp;
4490 	bool found = false;
4491 
4492 	if (list_empty(&fs_info->trans_list))
4493 		return;
4494 
4495 	/*
4496 	 * This function is only called at the very end of close_ctree(),
4497 	 * thus no other running transaction, no need to take trans_lock.
4498 	 */
4499 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4500 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4501 		struct extent_state *cached = NULL;
4502 		u64 dirty_bytes = 0;
4503 		u64 cur = 0;
4504 		u64 found_start;
4505 		u64 found_end;
4506 
4507 		found = true;
4508 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4509 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4510 			dirty_bytes += found_end + 1 - found_start;
4511 			cur = found_end + 1;
4512 		}
4513 		btrfs_warn(fs_info,
4514 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4515 			   trans->transid, dirty_bytes);
4516 		btrfs_cleanup_one_transaction(trans, fs_info);
4517 
4518 		if (trans == fs_info->running_transaction)
4519 			fs_info->running_transaction = NULL;
4520 		list_del_init(&trans->list);
4521 
4522 		btrfs_put_transaction(trans);
4523 		trace_btrfs_transaction_commit(fs_info);
4524 	}
4525 	ASSERT(!found);
4526 }
4527 
4528 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4529 {
4530 	int ret;
4531 
4532 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4533 	/*
4534 	 * We don't want the cleaner to start new transactions, add more delayed
4535 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4536 	 * because that frees the task_struct, and the transaction kthread might
4537 	 * still try to wake up the cleaner.
4538 	 */
4539 	kthread_park(fs_info->cleaner_kthread);
4540 
4541 	/* wait for the qgroup rescan worker to stop */
4542 	btrfs_qgroup_wait_for_completion(fs_info, false);
4543 
4544 	/* wait for the uuid_scan task to finish */
4545 	down(&fs_info->uuid_tree_rescan_sem);
4546 	/* avoid complains from lockdep et al., set sem back to initial state */
4547 	up(&fs_info->uuid_tree_rescan_sem);
4548 
4549 	/* pause restriper - we want to resume on mount */
4550 	btrfs_pause_balance(fs_info);
4551 
4552 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4553 
4554 	btrfs_scrub_cancel(fs_info);
4555 
4556 	/* wait for any defraggers to finish */
4557 	wait_event(fs_info->transaction_wait,
4558 		   (atomic_read(&fs_info->defrag_running) == 0));
4559 
4560 	/* clear out the rbtree of defraggable inodes */
4561 	btrfs_cleanup_defrag_inodes(fs_info);
4562 
4563 	cancel_work_sync(&fs_info->async_reclaim_work);
4564 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4565 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4566 
4567 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4568 
4569 	/* Cancel or finish ongoing discard work */
4570 	btrfs_discard_cleanup(fs_info);
4571 
4572 	if (!sb_rdonly(fs_info->sb)) {
4573 		/*
4574 		 * The cleaner kthread is stopped, so do one final pass over
4575 		 * unused block groups.
4576 		 */
4577 		btrfs_delete_unused_bgs(fs_info);
4578 
4579 		/*
4580 		 * There might be existing delayed inode workers still running
4581 		 * and holding an empty delayed inode item. We must wait for
4582 		 * them to complete first because they can create a transaction.
4583 		 * This happens when someone calls btrfs_balance_delayed_items()
4584 		 * and then a transaction commit runs the same delayed nodes
4585 		 * before any delayed worker has done something with the nodes.
4586 		 * We must wait for any worker here and not at transaction
4587 		 * commit time since that could cause a deadlock.
4588 		 * This is a very rare case.
4589 		 */
4590 		btrfs_flush_workqueue(fs_info->delayed_workers);
4591 
4592 		ret = btrfs_commit_super(fs_info);
4593 		if (ret)
4594 			btrfs_err(fs_info, "commit super ret %d", ret);
4595 	}
4596 
4597 	if (BTRFS_FS_ERROR(fs_info))
4598 		btrfs_error_commit_super(fs_info);
4599 
4600 	kthread_stop(fs_info->transaction_kthread);
4601 	kthread_stop(fs_info->cleaner_kthread);
4602 
4603 	ASSERT(list_empty(&fs_info->delayed_iputs));
4604 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4605 
4606 	if (btrfs_check_quota_leak(fs_info)) {
4607 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4608 		btrfs_err(fs_info, "qgroup reserved space leaked");
4609 	}
4610 
4611 	btrfs_free_qgroup_config(fs_info);
4612 	ASSERT(list_empty(&fs_info->delalloc_roots));
4613 
4614 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4615 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4616 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4617 	}
4618 
4619 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4620 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4621 			   percpu_counter_sum(&fs_info->ordered_bytes));
4622 
4623 	btrfs_sysfs_remove_mounted(fs_info);
4624 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4625 
4626 	btrfs_put_block_group_cache(fs_info);
4627 
4628 	/*
4629 	 * we must make sure there is not any read request to
4630 	 * submit after we stopping all workers.
4631 	 */
4632 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4633 	btrfs_stop_all_workers(fs_info);
4634 
4635 	/* We shouldn't have any transaction open at this point */
4636 	warn_about_uncommitted_trans(fs_info);
4637 
4638 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4639 	free_root_pointers(fs_info, true);
4640 	btrfs_free_fs_roots(fs_info);
4641 
4642 	/*
4643 	 * We must free the block groups after dropping the fs_roots as we could
4644 	 * have had an IO error and have left over tree log blocks that aren't
4645 	 * cleaned up until the fs roots are freed.  This makes the block group
4646 	 * accounting appear to be wrong because there's pending reserved bytes,
4647 	 * so make sure we do the block group cleanup afterwards.
4648 	 */
4649 	btrfs_free_block_groups(fs_info);
4650 
4651 	iput(fs_info->btree_inode);
4652 
4653 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4654 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4655 		btrfsic_unmount(fs_info->fs_devices);
4656 #endif
4657 
4658 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4659 	btrfs_close_devices(fs_info->fs_devices);
4660 }
4661 
4662 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4663 			  int atomic)
4664 {
4665 	int ret;
4666 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4667 
4668 	ret = extent_buffer_uptodate(buf);
4669 	if (!ret)
4670 		return ret;
4671 
4672 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4673 				    parent_transid, atomic);
4674 	if (ret == -EAGAIN)
4675 		return ret;
4676 	return !ret;
4677 }
4678 
4679 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4680 {
4681 	struct btrfs_fs_info *fs_info = buf->fs_info;
4682 	u64 transid = btrfs_header_generation(buf);
4683 	int was_dirty;
4684 
4685 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4686 	/*
4687 	 * This is a fast path so only do this check if we have sanity tests
4688 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4689 	 * outside of the sanity tests.
4690 	 */
4691 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4692 		return;
4693 #endif
4694 	btrfs_assert_tree_write_locked(buf);
4695 	if (transid != fs_info->generation)
4696 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4697 			buf->start, transid, fs_info->generation);
4698 	was_dirty = set_extent_buffer_dirty(buf);
4699 	if (!was_dirty)
4700 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4701 					 buf->len,
4702 					 fs_info->dirty_metadata_batch);
4703 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4704 	/*
4705 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4706 	 * but item data not updated.
4707 	 * So here we should only check item pointers, not item data.
4708 	 */
4709 	if (btrfs_header_level(buf) == 0 &&
4710 	    btrfs_check_leaf_relaxed(buf)) {
4711 		btrfs_print_leaf(buf);
4712 		ASSERT(0);
4713 	}
4714 #endif
4715 }
4716 
4717 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4718 					int flush_delayed)
4719 {
4720 	/*
4721 	 * looks as though older kernels can get into trouble with
4722 	 * this code, they end up stuck in balance_dirty_pages forever
4723 	 */
4724 	int ret;
4725 
4726 	if (current->flags & PF_MEMALLOC)
4727 		return;
4728 
4729 	if (flush_delayed)
4730 		btrfs_balance_delayed_items(fs_info);
4731 
4732 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4733 				     BTRFS_DIRTY_METADATA_THRESH,
4734 				     fs_info->dirty_metadata_batch);
4735 	if (ret > 0) {
4736 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4737 	}
4738 }
4739 
4740 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4741 {
4742 	__btrfs_btree_balance_dirty(fs_info, 1);
4743 }
4744 
4745 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4746 {
4747 	__btrfs_btree_balance_dirty(fs_info, 0);
4748 }
4749 
4750 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4751 		      struct btrfs_key *first_key)
4752 {
4753 	return btree_read_extent_buffer_pages(buf, parent_transid,
4754 					      level, first_key);
4755 }
4756 
4757 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4758 {
4759 	/* cleanup FS via transaction */
4760 	btrfs_cleanup_transaction(fs_info);
4761 
4762 	mutex_lock(&fs_info->cleaner_mutex);
4763 	btrfs_run_delayed_iputs(fs_info);
4764 	mutex_unlock(&fs_info->cleaner_mutex);
4765 
4766 	down_write(&fs_info->cleanup_work_sem);
4767 	up_write(&fs_info->cleanup_work_sem);
4768 }
4769 
4770 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4771 {
4772 	struct btrfs_root *gang[8];
4773 	u64 root_objectid = 0;
4774 	int ret;
4775 
4776 	spin_lock(&fs_info->fs_roots_radix_lock);
4777 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4778 					     (void **)gang, root_objectid,
4779 					     ARRAY_SIZE(gang))) != 0) {
4780 		int i;
4781 
4782 		for (i = 0; i < ret; i++)
4783 			gang[i] = btrfs_grab_root(gang[i]);
4784 		spin_unlock(&fs_info->fs_roots_radix_lock);
4785 
4786 		for (i = 0; i < ret; i++) {
4787 			if (!gang[i])
4788 				continue;
4789 			root_objectid = gang[i]->root_key.objectid;
4790 			btrfs_free_log(NULL, gang[i]);
4791 			btrfs_put_root(gang[i]);
4792 		}
4793 		root_objectid++;
4794 		spin_lock(&fs_info->fs_roots_radix_lock);
4795 	}
4796 	spin_unlock(&fs_info->fs_roots_radix_lock);
4797 	btrfs_free_log_root_tree(NULL, fs_info);
4798 }
4799 
4800 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4801 {
4802 	struct btrfs_ordered_extent *ordered;
4803 
4804 	spin_lock(&root->ordered_extent_lock);
4805 	/*
4806 	 * This will just short circuit the ordered completion stuff which will
4807 	 * make sure the ordered extent gets properly cleaned up.
4808 	 */
4809 	list_for_each_entry(ordered, &root->ordered_extents,
4810 			    root_extent_list)
4811 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4812 	spin_unlock(&root->ordered_extent_lock);
4813 }
4814 
4815 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4816 {
4817 	struct btrfs_root *root;
4818 	struct list_head splice;
4819 
4820 	INIT_LIST_HEAD(&splice);
4821 
4822 	spin_lock(&fs_info->ordered_root_lock);
4823 	list_splice_init(&fs_info->ordered_roots, &splice);
4824 	while (!list_empty(&splice)) {
4825 		root = list_first_entry(&splice, struct btrfs_root,
4826 					ordered_root);
4827 		list_move_tail(&root->ordered_root,
4828 			       &fs_info->ordered_roots);
4829 
4830 		spin_unlock(&fs_info->ordered_root_lock);
4831 		btrfs_destroy_ordered_extents(root);
4832 
4833 		cond_resched();
4834 		spin_lock(&fs_info->ordered_root_lock);
4835 	}
4836 	spin_unlock(&fs_info->ordered_root_lock);
4837 
4838 	/*
4839 	 * We need this here because if we've been flipped read-only we won't
4840 	 * get sync() from the umount, so we need to make sure any ordered
4841 	 * extents that haven't had their dirty pages IO start writeout yet
4842 	 * actually get run and error out properly.
4843 	 */
4844 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4845 }
4846 
4847 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4848 				      struct btrfs_fs_info *fs_info)
4849 {
4850 	struct rb_node *node;
4851 	struct btrfs_delayed_ref_root *delayed_refs;
4852 	struct btrfs_delayed_ref_node *ref;
4853 	int ret = 0;
4854 
4855 	delayed_refs = &trans->delayed_refs;
4856 
4857 	spin_lock(&delayed_refs->lock);
4858 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4859 		spin_unlock(&delayed_refs->lock);
4860 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4861 		return ret;
4862 	}
4863 
4864 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4865 		struct btrfs_delayed_ref_head *head;
4866 		struct rb_node *n;
4867 		bool pin_bytes = false;
4868 
4869 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4870 				href_node);
4871 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4872 			continue;
4873 
4874 		spin_lock(&head->lock);
4875 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4876 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4877 				       ref_node);
4878 			ref->in_tree = 0;
4879 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4880 			RB_CLEAR_NODE(&ref->ref_node);
4881 			if (!list_empty(&ref->add_list))
4882 				list_del(&ref->add_list);
4883 			atomic_dec(&delayed_refs->num_entries);
4884 			btrfs_put_delayed_ref(ref);
4885 		}
4886 		if (head->must_insert_reserved)
4887 			pin_bytes = true;
4888 		btrfs_free_delayed_extent_op(head->extent_op);
4889 		btrfs_delete_ref_head(delayed_refs, head);
4890 		spin_unlock(&head->lock);
4891 		spin_unlock(&delayed_refs->lock);
4892 		mutex_unlock(&head->mutex);
4893 
4894 		if (pin_bytes) {
4895 			struct btrfs_block_group *cache;
4896 
4897 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4898 			BUG_ON(!cache);
4899 
4900 			spin_lock(&cache->space_info->lock);
4901 			spin_lock(&cache->lock);
4902 			cache->pinned += head->num_bytes;
4903 			btrfs_space_info_update_bytes_pinned(fs_info,
4904 				cache->space_info, head->num_bytes);
4905 			cache->reserved -= head->num_bytes;
4906 			cache->space_info->bytes_reserved -= head->num_bytes;
4907 			spin_unlock(&cache->lock);
4908 			spin_unlock(&cache->space_info->lock);
4909 
4910 			btrfs_put_block_group(cache);
4911 
4912 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4913 				head->bytenr + head->num_bytes - 1);
4914 		}
4915 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4916 		btrfs_put_delayed_ref_head(head);
4917 		cond_resched();
4918 		spin_lock(&delayed_refs->lock);
4919 	}
4920 	btrfs_qgroup_destroy_extent_records(trans);
4921 
4922 	spin_unlock(&delayed_refs->lock);
4923 
4924 	return ret;
4925 }
4926 
4927 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4928 {
4929 	struct btrfs_inode *btrfs_inode;
4930 	struct list_head splice;
4931 
4932 	INIT_LIST_HEAD(&splice);
4933 
4934 	spin_lock(&root->delalloc_lock);
4935 	list_splice_init(&root->delalloc_inodes, &splice);
4936 
4937 	while (!list_empty(&splice)) {
4938 		struct inode *inode = NULL;
4939 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4940 					       delalloc_inodes);
4941 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4942 		spin_unlock(&root->delalloc_lock);
4943 
4944 		/*
4945 		 * Make sure we get a live inode and that it'll not disappear
4946 		 * meanwhile.
4947 		 */
4948 		inode = igrab(&btrfs_inode->vfs_inode);
4949 		if (inode) {
4950 			invalidate_inode_pages2(inode->i_mapping);
4951 			iput(inode);
4952 		}
4953 		spin_lock(&root->delalloc_lock);
4954 	}
4955 	spin_unlock(&root->delalloc_lock);
4956 }
4957 
4958 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4959 {
4960 	struct btrfs_root *root;
4961 	struct list_head splice;
4962 
4963 	INIT_LIST_HEAD(&splice);
4964 
4965 	spin_lock(&fs_info->delalloc_root_lock);
4966 	list_splice_init(&fs_info->delalloc_roots, &splice);
4967 	while (!list_empty(&splice)) {
4968 		root = list_first_entry(&splice, struct btrfs_root,
4969 					 delalloc_root);
4970 		root = btrfs_grab_root(root);
4971 		BUG_ON(!root);
4972 		spin_unlock(&fs_info->delalloc_root_lock);
4973 
4974 		btrfs_destroy_delalloc_inodes(root);
4975 		btrfs_put_root(root);
4976 
4977 		spin_lock(&fs_info->delalloc_root_lock);
4978 	}
4979 	spin_unlock(&fs_info->delalloc_root_lock);
4980 }
4981 
4982 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4983 					struct extent_io_tree *dirty_pages,
4984 					int mark)
4985 {
4986 	int ret;
4987 	struct extent_buffer *eb;
4988 	u64 start = 0;
4989 	u64 end;
4990 
4991 	while (1) {
4992 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4993 					    mark, NULL);
4994 		if (ret)
4995 			break;
4996 
4997 		clear_extent_bits(dirty_pages, start, end, mark);
4998 		while (start <= end) {
4999 			eb = find_extent_buffer(fs_info, start);
5000 			start += fs_info->nodesize;
5001 			if (!eb)
5002 				continue;
5003 			wait_on_extent_buffer_writeback(eb);
5004 
5005 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5006 					       &eb->bflags))
5007 				clear_extent_buffer_dirty(eb);
5008 			free_extent_buffer_stale(eb);
5009 		}
5010 	}
5011 
5012 	return ret;
5013 }
5014 
5015 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5016 				       struct extent_io_tree *unpin)
5017 {
5018 	u64 start;
5019 	u64 end;
5020 	int ret;
5021 
5022 	while (1) {
5023 		struct extent_state *cached_state = NULL;
5024 
5025 		/*
5026 		 * The btrfs_finish_extent_commit() may get the same range as
5027 		 * ours between find_first_extent_bit and clear_extent_dirty.
5028 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5029 		 * the same extent range.
5030 		 */
5031 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5032 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5033 					    EXTENT_DIRTY, &cached_state);
5034 		if (ret) {
5035 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5036 			break;
5037 		}
5038 
5039 		clear_extent_dirty(unpin, start, end, &cached_state);
5040 		free_extent_state(cached_state);
5041 		btrfs_error_unpin_extent_range(fs_info, start, end);
5042 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5043 		cond_resched();
5044 	}
5045 
5046 	return 0;
5047 }
5048 
5049 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5050 {
5051 	struct inode *inode;
5052 
5053 	inode = cache->io_ctl.inode;
5054 	if (inode) {
5055 		invalidate_inode_pages2(inode->i_mapping);
5056 		BTRFS_I(inode)->generation = 0;
5057 		cache->io_ctl.inode = NULL;
5058 		iput(inode);
5059 	}
5060 	ASSERT(cache->io_ctl.pages == NULL);
5061 	btrfs_put_block_group(cache);
5062 }
5063 
5064 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5065 			     struct btrfs_fs_info *fs_info)
5066 {
5067 	struct btrfs_block_group *cache;
5068 
5069 	spin_lock(&cur_trans->dirty_bgs_lock);
5070 	while (!list_empty(&cur_trans->dirty_bgs)) {
5071 		cache = list_first_entry(&cur_trans->dirty_bgs,
5072 					 struct btrfs_block_group,
5073 					 dirty_list);
5074 
5075 		if (!list_empty(&cache->io_list)) {
5076 			spin_unlock(&cur_trans->dirty_bgs_lock);
5077 			list_del_init(&cache->io_list);
5078 			btrfs_cleanup_bg_io(cache);
5079 			spin_lock(&cur_trans->dirty_bgs_lock);
5080 		}
5081 
5082 		list_del_init(&cache->dirty_list);
5083 		spin_lock(&cache->lock);
5084 		cache->disk_cache_state = BTRFS_DC_ERROR;
5085 		spin_unlock(&cache->lock);
5086 
5087 		spin_unlock(&cur_trans->dirty_bgs_lock);
5088 		btrfs_put_block_group(cache);
5089 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5090 		spin_lock(&cur_trans->dirty_bgs_lock);
5091 	}
5092 	spin_unlock(&cur_trans->dirty_bgs_lock);
5093 
5094 	/*
5095 	 * Refer to the definition of io_bgs member for details why it's safe
5096 	 * to use it without any locking
5097 	 */
5098 	while (!list_empty(&cur_trans->io_bgs)) {
5099 		cache = list_first_entry(&cur_trans->io_bgs,
5100 					 struct btrfs_block_group,
5101 					 io_list);
5102 
5103 		list_del_init(&cache->io_list);
5104 		spin_lock(&cache->lock);
5105 		cache->disk_cache_state = BTRFS_DC_ERROR;
5106 		spin_unlock(&cache->lock);
5107 		btrfs_cleanup_bg_io(cache);
5108 	}
5109 }
5110 
5111 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5112 				   struct btrfs_fs_info *fs_info)
5113 {
5114 	struct btrfs_device *dev, *tmp;
5115 
5116 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5117 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5118 	ASSERT(list_empty(&cur_trans->io_bgs));
5119 
5120 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5121 				 post_commit_list) {
5122 		list_del_init(&dev->post_commit_list);
5123 	}
5124 
5125 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5126 
5127 	cur_trans->state = TRANS_STATE_COMMIT_START;
5128 	wake_up(&fs_info->transaction_blocked_wait);
5129 
5130 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5131 	wake_up(&fs_info->transaction_wait);
5132 
5133 	btrfs_destroy_delayed_inodes(fs_info);
5134 
5135 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5136 				     EXTENT_DIRTY);
5137 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5138 
5139 	btrfs_free_redirty_list(cur_trans);
5140 
5141 	cur_trans->state =TRANS_STATE_COMPLETED;
5142 	wake_up(&cur_trans->commit_wait);
5143 }
5144 
5145 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5146 {
5147 	struct btrfs_transaction *t;
5148 
5149 	mutex_lock(&fs_info->transaction_kthread_mutex);
5150 
5151 	spin_lock(&fs_info->trans_lock);
5152 	while (!list_empty(&fs_info->trans_list)) {
5153 		t = list_first_entry(&fs_info->trans_list,
5154 				     struct btrfs_transaction, list);
5155 		if (t->state >= TRANS_STATE_COMMIT_START) {
5156 			refcount_inc(&t->use_count);
5157 			spin_unlock(&fs_info->trans_lock);
5158 			btrfs_wait_for_commit(fs_info, t->transid);
5159 			btrfs_put_transaction(t);
5160 			spin_lock(&fs_info->trans_lock);
5161 			continue;
5162 		}
5163 		if (t == fs_info->running_transaction) {
5164 			t->state = TRANS_STATE_COMMIT_DOING;
5165 			spin_unlock(&fs_info->trans_lock);
5166 			/*
5167 			 * We wait for 0 num_writers since we don't hold a trans
5168 			 * handle open currently for this transaction.
5169 			 */
5170 			wait_event(t->writer_wait,
5171 				   atomic_read(&t->num_writers) == 0);
5172 		} else {
5173 			spin_unlock(&fs_info->trans_lock);
5174 		}
5175 		btrfs_cleanup_one_transaction(t, fs_info);
5176 
5177 		spin_lock(&fs_info->trans_lock);
5178 		if (t == fs_info->running_transaction)
5179 			fs_info->running_transaction = NULL;
5180 		list_del_init(&t->list);
5181 		spin_unlock(&fs_info->trans_lock);
5182 
5183 		btrfs_put_transaction(t);
5184 		trace_btrfs_transaction_commit(fs_info);
5185 		spin_lock(&fs_info->trans_lock);
5186 	}
5187 	spin_unlock(&fs_info->trans_lock);
5188 	btrfs_destroy_all_ordered_extents(fs_info);
5189 	btrfs_destroy_delayed_inodes(fs_info);
5190 	btrfs_assert_delayed_root_empty(fs_info);
5191 	btrfs_destroy_all_delalloc_inodes(fs_info);
5192 	btrfs_drop_all_logs(fs_info);
5193 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5194 
5195 	return 0;
5196 }
5197 
5198 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5199 {
5200 	struct btrfs_path *path;
5201 	int ret;
5202 	struct extent_buffer *l;
5203 	struct btrfs_key search_key;
5204 	struct btrfs_key found_key;
5205 	int slot;
5206 
5207 	path = btrfs_alloc_path();
5208 	if (!path)
5209 		return -ENOMEM;
5210 
5211 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5212 	search_key.type = -1;
5213 	search_key.offset = (u64)-1;
5214 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5215 	if (ret < 0)
5216 		goto error;
5217 	BUG_ON(ret == 0); /* Corruption */
5218 	if (path->slots[0] > 0) {
5219 		slot = path->slots[0] - 1;
5220 		l = path->nodes[0];
5221 		btrfs_item_key_to_cpu(l, &found_key, slot);
5222 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5223 					    BTRFS_FIRST_FREE_OBJECTID);
5224 	} else {
5225 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5226 	}
5227 	ret = 0;
5228 error:
5229 	btrfs_free_path(path);
5230 	return ret;
5231 }
5232 
5233 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5234 {
5235 	int ret;
5236 	mutex_lock(&root->objectid_mutex);
5237 
5238 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5239 		btrfs_warn(root->fs_info,
5240 			   "the objectid of root %llu reaches its highest value",
5241 			   root->root_key.objectid);
5242 		ret = -ENOSPC;
5243 		goto out;
5244 	}
5245 
5246 	*objectid = root->free_objectid++;
5247 	ret = 0;
5248 out:
5249 	mutex_unlock(&root->objectid_mutex);
5250 	return ret;
5251 }
5252