1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int mirror_num; 128 unsigned long bio_flags; 129 /* 130 * bio_offset is optional, can be used if the pages in the bio 131 * can't tell us where in the file the bio should go 132 */ 133 u64 bio_offset; 134 struct btrfs_work work; 135 int error; 136 }; 137 138 /* 139 * Lockdep class keys for extent_buffer->lock's in this root. For a given 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and 141 * the level the eb occupies in the tree. 142 * 143 * Different roots are used for different purposes and may nest inside each 144 * other and they require separate keysets. As lockdep keys should be 145 * static, assign keysets according to the purpose of the root as indicated 146 * by btrfs_root->objectid. This ensures that all special purpose roots 147 * have separate keysets. 148 * 149 * Lock-nesting across peer nodes is always done with the immediate parent 150 * node locked thus preventing deadlock. As lockdep doesn't know this, use 151 * subclass to avoid triggering lockdep warning in such cases. 152 * 153 * The key is set by the readpage_end_io_hook after the buffer has passed 154 * csum validation but before the pages are unlocked. It is also set by 155 * btrfs_init_new_buffer on freshly allocated blocks. 156 * 157 * We also add a check to make sure the highest level of the tree is the 158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 159 * needs update as well. 160 */ 161 #ifdef CONFIG_DEBUG_LOCK_ALLOC 162 # if BTRFS_MAX_LEVEL != 8 163 # error 164 # endif 165 166 static struct btrfs_lockdep_keyset { 167 u64 id; /* root objectid */ 168 const char *name_stem; /* lock name stem */ 169 char names[BTRFS_MAX_LEVEL + 1][20]; 170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 171 } btrfs_lockdep_keysets[] = { 172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 184 { .id = 0, .name_stem = "tree" }, 185 }; 186 187 void __init btrfs_init_lockdep(void) 188 { 189 int i, j; 190 191 /* initialize lockdep class names */ 192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 194 195 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 196 snprintf(ks->names[j], sizeof(ks->names[j]), 197 "btrfs-%s-%02d", ks->name_stem, j); 198 } 199 } 200 201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 202 int level) 203 { 204 struct btrfs_lockdep_keyset *ks; 205 206 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 207 208 /* find the matching keyset, id 0 is the default entry */ 209 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 210 if (ks->id == objectid) 211 break; 212 213 lockdep_set_class_and_name(&eb->lock, 214 &ks->keys[level], ks->names[level]); 215 } 216 217 #endif 218 219 /* 220 * extents on the btree inode are pretty simple, there's one extent 221 * that covers the entire device 222 */ 223 static struct extent_map *btree_get_extent(struct inode *inode, 224 struct page *page, size_t pg_offset, u64 start, u64 len, 225 int create) 226 { 227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 228 struct extent_map *em; 229 int ret; 230 231 read_lock(&em_tree->lock); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (em) { 234 em->bdev = 235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 236 read_unlock(&em_tree->lock); 237 goto out; 238 } 239 read_unlock(&em_tree->lock); 240 241 em = alloc_extent_map(); 242 if (!em) { 243 em = ERR_PTR(-ENOMEM); 244 goto out; 245 } 246 em->start = 0; 247 em->len = (u64)-1; 248 em->block_len = (u64)-1; 249 em->block_start = 0; 250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 251 252 write_lock(&em_tree->lock); 253 ret = add_extent_mapping(em_tree, em, 0); 254 if (ret == -EEXIST) { 255 free_extent_map(em); 256 em = lookup_extent_mapping(em_tree, start, len); 257 if (!em) 258 em = ERR_PTR(-EIO); 259 } else if (ret) { 260 free_extent_map(em); 261 em = ERR_PTR(ret); 262 } 263 write_unlock(&em_tree->lock); 264 265 out: 266 return em; 267 } 268 269 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 270 { 271 return btrfs_crc32c(seed, data, len); 272 } 273 274 void btrfs_csum_final(u32 crc, char *result) 275 { 276 put_unaligned_le32(~crc, result); 277 } 278 279 /* 280 * compute the csum for a btree block, and either verify it or write it 281 * into the csum field of the block. 282 */ 283 static int csum_tree_block(struct btrfs_fs_info *fs_info, 284 struct extent_buffer *buf, 285 int verify) 286 { 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 288 char *result = NULL; 289 unsigned long len; 290 unsigned long cur_len; 291 unsigned long offset = BTRFS_CSUM_SIZE; 292 char *kaddr; 293 unsigned long map_start; 294 unsigned long map_len; 295 int err; 296 u32 crc = ~(u32)0; 297 unsigned long inline_result; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 if (csum_size > sizeof(inline_result)) { 312 result = kzalloc(csum_size, GFP_NOFS); 313 if (!result) 314 return -ENOMEM; 315 } else { 316 result = (char *)&inline_result; 317 } 318 319 btrfs_csum_final(crc, result); 320 321 if (verify) { 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 323 u32 val; 324 u32 found = 0; 325 memcpy(&found, result, csum_size); 326 327 read_extent_buffer(buf, &val, 0, csum_size); 328 btrfs_warn_rl(fs_info, 329 "%s checksum verify failed on %llu wanted %X found %X level %d", 330 fs_info->sb->s_id, buf->start, 331 val, found, btrfs_header_level(buf)); 332 if (result != (char *)&inline_result) 333 kfree(result); 334 return -EUCLEAN; 335 } 336 } else { 337 write_extent_buffer(buf, result, 0, csum_size); 338 } 339 if (result != (char *)&inline_result) 340 kfree(result); 341 return 0; 342 } 343 344 /* 345 * we can't consider a given block up to date unless the transid of the 346 * block matches the transid in the parent node's pointer. This is how we 347 * detect blocks that either didn't get written at all or got written 348 * in the wrong place. 349 */ 350 static int verify_parent_transid(struct extent_io_tree *io_tree, 351 struct extent_buffer *eb, u64 parent_transid, 352 int atomic) 353 { 354 struct extent_state *cached_state = NULL; 355 int ret; 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 357 358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 359 return 0; 360 361 if (atomic) 362 return -EAGAIN; 363 364 if (need_lock) { 365 btrfs_tree_read_lock(eb); 366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 367 } 368 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 370 &cached_state); 371 if (extent_buffer_uptodate(eb) && 372 btrfs_header_generation(eb) == parent_transid) { 373 ret = 0; 374 goto out; 375 } 376 btrfs_err_rl(eb->fs_info, 377 "parent transid verify failed on %llu wanted %llu found %llu", 378 eb->start, 379 parent_transid, btrfs_header_generation(eb)); 380 ret = 1; 381 382 /* 383 * Things reading via commit roots that don't have normal protection, 384 * like send, can have a really old block in cache that may point at a 385 * block that has been freed and re-allocated. So don't clear uptodate 386 * if we find an eb that is under IO (dirty/writeback) because we could 387 * end up reading in the stale data and then writing it back out and 388 * making everybody very sad. 389 */ 390 if (!extent_buffer_under_io(eb)) 391 clear_extent_buffer_uptodate(eb); 392 out: 393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 394 &cached_state, GFP_NOFS); 395 if (need_lock) 396 btrfs_tree_read_unlock_blocking(eb); 397 return ret; 398 } 399 400 /* 401 * Return 0 if the superblock checksum type matches the checksum value of that 402 * algorithm. Pass the raw disk superblock data. 403 */ 404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 405 char *raw_disk_sb) 406 { 407 struct btrfs_super_block *disk_sb = 408 (struct btrfs_super_block *)raw_disk_sb; 409 u16 csum_type = btrfs_super_csum_type(disk_sb); 410 int ret = 0; 411 412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 413 u32 crc = ~(u32)0; 414 const int csum_size = sizeof(crc); 415 char result[csum_size]; 416 417 /* 418 * The super_block structure does not span the whole 419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 420 * is filled with zeros and is included in the checksum. 421 */ 422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 424 btrfs_csum_final(crc, result); 425 426 if (memcmp(raw_disk_sb, result, csum_size)) 427 ret = 1; 428 } 429 430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 431 btrfs_err(fs_info, "unsupported checksum algorithm %u", 432 csum_type); 433 ret = 1; 434 } 435 436 return ret; 437 } 438 439 /* 440 * helper to read a given tree block, doing retries as required when 441 * the checksums don't match and we have alternate mirrors to try. 442 */ 443 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 444 struct extent_buffer *eb, 445 u64 parent_transid) 446 { 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 456 while (1) { 457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 458 btree_get_extent, mirror_num); 459 if (!ret) { 460 if (!verify_parent_transid(io_tree, eb, 461 parent_transid, 0)) 462 break; 463 else 464 ret = -EIO; 465 } 466 467 /* 468 * This buffer's crc is fine, but its contents are corrupted, so 469 * there is no reason to read the other copies, they won't be 470 * any less wrong. 471 */ 472 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 473 break; 474 475 num_copies = btrfs_num_copies(root->fs_info, 476 eb->start, eb->len); 477 if (num_copies == 1) 478 break; 479 480 if (!failed_mirror) { 481 failed = 1; 482 failed_mirror = eb->read_mirror; 483 } 484 485 mirror_num++; 486 if (mirror_num == failed_mirror) 487 mirror_num++; 488 489 if (mirror_num > num_copies) 490 break; 491 } 492 493 if (failed && !ret && failed_mirror) 494 repair_eb_io_failure(root, eb, failed_mirror); 495 496 return ret; 497 } 498 499 /* 500 * checksum a dirty tree block before IO. This has extra checks to make sure 501 * we only fill in the checksum field in the first page of a multi-page block 502 */ 503 504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 505 { 506 u64 start = page_offset(page); 507 u64 found_start; 508 struct extent_buffer *eb; 509 510 eb = (struct extent_buffer *)page->private; 511 if (page != eb->pages[0]) 512 return 0; 513 514 found_start = btrfs_header_bytenr(eb); 515 /* 516 * Please do not consolidate these warnings into a single if. 517 * It is useful to know what went wrong. 518 */ 519 if (WARN_ON(found_start != start)) 520 return -EUCLEAN; 521 if (WARN_ON(!PageUptodate(page))) 522 return -EUCLEAN; 523 524 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 525 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 526 527 return csum_tree_block(fs_info, eb, 0); 528 } 529 530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 531 struct extent_buffer *eb) 532 { 533 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 534 u8 fsid[BTRFS_UUID_SIZE]; 535 int ret = 1; 536 537 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 538 while (fs_devices) { 539 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 540 ret = 0; 541 break; 542 } 543 fs_devices = fs_devices->seed; 544 } 545 return ret; 546 } 547 548 #define CORRUPT(reason, eb, root, slot) \ 549 btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \ 550 " root=%llu, slot=%d", \ 551 btrfs_header_level(eb) == 0 ? "leaf" : "node",\ 552 reason, btrfs_header_bytenr(eb), root->objectid, slot) 553 554 static noinline int check_leaf(struct btrfs_root *root, 555 struct extent_buffer *leaf) 556 { 557 struct btrfs_key key; 558 struct btrfs_key leaf_key; 559 u32 nritems = btrfs_header_nritems(leaf); 560 int slot; 561 562 if (nritems == 0) { 563 struct btrfs_root *check_root; 564 565 key.objectid = btrfs_header_owner(leaf); 566 key.type = BTRFS_ROOT_ITEM_KEY; 567 key.offset = (u64)-1; 568 569 check_root = btrfs_get_fs_root(root->fs_info, &key, false); 570 /* 571 * The only reason we also check NULL here is that during 572 * open_ctree() some roots has not yet been set up. 573 */ 574 if (!IS_ERR_OR_NULL(check_root)) { 575 /* if leaf is the root, then it's fine */ 576 if (leaf->start != 577 btrfs_root_bytenr(&check_root->root_item)) { 578 CORRUPT("non-root leaf's nritems is 0", 579 leaf, root, 0); 580 return -EIO; 581 } 582 } 583 return 0; 584 } 585 586 /* Check the 0 item */ 587 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 588 BTRFS_LEAF_DATA_SIZE(root)) { 589 CORRUPT("invalid item offset size pair", leaf, root, 0); 590 return -EIO; 591 } 592 593 /* 594 * Check to make sure each items keys are in the correct order and their 595 * offsets make sense. We only have to loop through nritems-1 because 596 * we check the current slot against the next slot, which verifies the 597 * next slot's offset+size makes sense and that the current's slot 598 * offset is correct. 599 */ 600 for (slot = 0; slot < nritems - 1; slot++) { 601 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 602 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 603 604 /* Make sure the keys are in the right order */ 605 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 606 CORRUPT("bad key order", leaf, root, slot); 607 return -EIO; 608 } 609 610 /* 611 * Make sure the offset and ends are right, remember that the 612 * item data starts at the end of the leaf and grows towards the 613 * front. 614 */ 615 if (btrfs_item_offset_nr(leaf, slot) != 616 btrfs_item_end_nr(leaf, slot + 1)) { 617 CORRUPT("slot offset bad", leaf, root, slot); 618 return -EIO; 619 } 620 621 /* 622 * Check to make sure that we don't point outside of the leaf, 623 * just in case all the items are consistent to each other, but 624 * all point outside of the leaf. 625 */ 626 if (btrfs_item_end_nr(leaf, slot) > 627 BTRFS_LEAF_DATA_SIZE(root)) { 628 CORRUPT("slot end outside of leaf", leaf, root, slot); 629 return -EIO; 630 } 631 } 632 633 return 0; 634 } 635 636 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 637 { 638 unsigned long nr = btrfs_header_nritems(node); 639 struct btrfs_key key, next_key; 640 int slot; 641 u64 bytenr; 642 int ret = 0; 643 644 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) { 645 btrfs_crit(root->fs_info, 646 "corrupt node: block %llu root %llu nritems %lu", 647 node->start, root->objectid, nr); 648 return -EIO; 649 } 650 651 for (slot = 0; slot < nr - 1; slot++) { 652 bytenr = btrfs_node_blockptr(node, slot); 653 btrfs_node_key_to_cpu(node, &key, slot); 654 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 655 656 if (!bytenr) { 657 CORRUPT("invalid item slot", node, root, slot); 658 ret = -EIO; 659 goto out; 660 } 661 662 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 663 CORRUPT("bad key order", node, root, slot); 664 ret = -EIO; 665 goto out; 666 } 667 } 668 out: 669 return ret; 670 } 671 672 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 673 u64 phy_offset, struct page *page, 674 u64 start, u64 end, int mirror) 675 { 676 u64 found_start; 677 int found_level; 678 struct extent_buffer *eb; 679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 680 struct btrfs_fs_info *fs_info = root->fs_info; 681 int ret = 0; 682 int reads_done; 683 684 if (!page->private) 685 goto out; 686 687 eb = (struct extent_buffer *)page->private; 688 689 /* the pending IO might have been the only thing that kept this buffer 690 * in memory. Make sure we have a ref for all this other checks 691 */ 692 extent_buffer_get(eb); 693 694 reads_done = atomic_dec_and_test(&eb->io_pages); 695 if (!reads_done) 696 goto err; 697 698 eb->read_mirror = mirror; 699 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 700 ret = -EIO; 701 goto err; 702 } 703 704 found_start = btrfs_header_bytenr(eb); 705 if (found_start != eb->start) { 706 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 707 found_start, eb->start); 708 ret = -EIO; 709 goto err; 710 } 711 if (check_tree_block_fsid(fs_info, eb)) { 712 btrfs_err_rl(fs_info, "bad fsid on block %llu", 713 eb->start); 714 ret = -EIO; 715 goto err; 716 } 717 found_level = btrfs_header_level(eb); 718 if (found_level >= BTRFS_MAX_LEVEL) { 719 btrfs_err(fs_info, "bad tree block level %d", 720 (int)btrfs_header_level(eb)); 721 ret = -EIO; 722 goto err; 723 } 724 725 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 726 eb, found_level); 727 728 ret = csum_tree_block(fs_info, eb, 1); 729 if (ret) 730 goto err; 731 732 /* 733 * If this is a leaf block and it is corrupt, set the corrupt bit so 734 * that we don't try and read the other copies of this block, just 735 * return -EIO. 736 */ 737 if (found_level == 0 && check_leaf(root, eb)) { 738 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 739 ret = -EIO; 740 } 741 742 if (found_level > 0 && check_node(root, eb)) 743 ret = -EIO; 744 745 if (!ret) 746 set_extent_buffer_uptodate(eb); 747 err: 748 if (reads_done && 749 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 750 btree_readahead_hook(fs_info, eb, eb->start, ret); 751 752 if (ret) { 753 /* 754 * our io error hook is going to dec the io pages 755 * again, we have to make sure it has something 756 * to decrement 757 */ 758 atomic_inc(&eb->io_pages); 759 clear_extent_buffer_uptodate(eb); 760 } 761 free_extent_buffer(eb); 762 out: 763 return ret; 764 } 765 766 static int btree_io_failed_hook(struct page *page, int failed_mirror) 767 { 768 struct extent_buffer *eb; 769 770 eb = (struct extent_buffer *)page->private; 771 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 772 eb->read_mirror = failed_mirror; 773 atomic_dec(&eb->io_pages); 774 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 775 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO); 776 return -EIO; /* we fixed nothing */ 777 } 778 779 static void end_workqueue_bio(struct bio *bio) 780 { 781 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 782 struct btrfs_fs_info *fs_info; 783 struct btrfs_workqueue *wq; 784 btrfs_work_func_t func; 785 786 fs_info = end_io_wq->info; 787 end_io_wq->error = bio->bi_error; 788 789 if (bio_op(bio) == REQ_OP_WRITE) { 790 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 791 wq = fs_info->endio_meta_write_workers; 792 func = btrfs_endio_meta_write_helper; 793 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 794 wq = fs_info->endio_freespace_worker; 795 func = btrfs_freespace_write_helper; 796 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 797 wq = fs_info->endio_raid56_workers; 798 func = btrfs_endio_raid56_helper; 799 } else { 800 wq = fs_info->endio_write_workers; 801 func = btrfs_endio_write_helper; 802 } 803 } else { 804 if (unlikely(end_io_wq->metadata == 805 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 806 wq = fs_info->endio_repair_workers; 807 func = btrfs_endio_repair_helper; 808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 809 wq = fs_info->endio_raid56_workers; 810 func = btrfs_endio_raid56_helper; 811 } else if (end_io_wq->metadata) { 812 wq = fs_info->endio_meta_workers; 813 func = btrfs_endio_meta_helper; 814 } else { 815 wq = fs_info->endio_workers; 816 func = btrfs_endio_helper; 817 } 818 } 819 820 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 821 btrfs_queue_work(wq, &end_io_wq->work); 822 } 823 824 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 825 enum btrfs_wq_endio_type metadata) 826 { 827 struct btrfs_end_io_wq *end_io_wq; 828 829 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 830 if (!end_io_wq) 831 return -ENOMEM; 832 833 end_io_wq->private = bio->bi_private; 834 end_io_wq->end_io = bio->bi_end_io; 835 end_io_wq->info = info; 836 end_io_wq->error = 0; 837 end_io_wq->bio = bio; 838 end_io_wq->metadata = metadata; 839 840 bio->bi_private = end_io_wq; 841 bio->bi_end_io = end_workqueue_bio; 842 return 0; 843 } 844 845 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 846 { 847 unsigned long limit = min_t(unsigned long, 848 info->thread_pool_size, 849 info->fs_devices->open_devices); 850 return 256 * limit; 851 } 852 853 static void run_one_async_start(struct btrfs_work *work) 854 { 855 struct async_submit_bio *async; 856 int ret; 857 858 async = container_of(work, struct async_submit_bio, work); 859 ret = async->submit_bio_start(async->inode, async->bio, 860 async->mirror_num, async->bio_flags, 861 async->bio_offset); 862 if (ret) 863 async->error = ret; 864 } 865 866 static void run_one_async_done(struct btrfs_work *work) 867 { 868 struct btrfs_fs_info *fs_info; 869 struct async_submit_bio *async; 870 int limit; 871 872 async = container_of(work, struct async_submit_bio, work); 873 fs_info = BTRFS_I(async->inode)->root->fs_info; 874 875 limit = btrfs_async_submit_limit(fs_info); 876 limit = limit * 2 / 3; 877 878 /* 879 * atomic_dec_return implies a barrier for waitqueue_active 880 */ 881 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 882 waitqueue_active(&fs_info->async_submit_wait)) 883 wake_up(&fs_info->async_submit_wait); 884 885 /* If an error occurred we just want to clean up the bio and move on */ 886 if (async->error) { 887 async->bio->bi_error = async->error; 888 bio_endio(async->bio); 889 return; 890 } 891 892 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 893 async->bio_flags, async->bio_offset); 894 } 895 896 static void run_one_async_free(struct btrfs_work *work) 897 { 898 struct async_submit_bio *async; 899 900 async = container_of(work, struct async_submit_bio, work); 901 kfree(async); 902 } 903 904 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 905 struct bio *bio, int mirror_num, 906 unsigned long bio_flags, 907 u64 bio_offset, 908 extent_submit_bio_hook_t *submit_bio_start, 909 extent_submit_bio_hook_t *submit_bio_done) 910 { 911 struct async_submit_bio *async; 912 913 async = kmalloc(sizeof(*async), GFP_NOFS); 914 if (!async) 915 return -ENOMEM; 916 917 async->inode = inode; 918 async->bio = bio; 919 async->mirror_num = mirror_num; 920 async->submit_bio_start = submit_bio_start; 921 async->submit_bio_done = submit_bio_done; 922 923 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 924 run_one_async_done, run_one_async_free); 925 926 async->bio_flags = bio_flags; 927 async->bio_offset = bio_offset; 928 929 async->error = 0; 930 931 atomic_inc(&fs_info->nr_async_submits); 932 933 if (bio->bi_opf & REQ_SYNC) 934 btrfs_set_work_high_priority(&async->work); 935 936 btrfs_queue_work(fs_info->workers, &async->work); 937 938 while (atomic_read(&fs_info->async_submit_draining) && 939 atomic_read(&fs_info->nr_async_submits)) { 940 wait_event(fs_info->async_submit_wait, 941 (atomic_read(&fs_info->nr_async_submits) == 0)); 942 } 943 944 return 0; 945 } 946 947 static int btree_csum_one_bio(struct bio *bio) 948 { 949 struct bio_vec *bvec; 950 struct btrfs_root *root; 951 int i, ret = 0; 952 953 bio_for_each_segment_all(bvec, bio, i) { 954 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 955 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 956 if (ret) 957 break; 958 } 959 960 return ret; 961 } 962 963 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 964 int mirror_num, unsigned long bio_flags, 965 u64 bio_offset) 966 { 967 /* 968 * when we're called for a write, we're already in the async 969 * submission context. Just jump into btrfs_map_bio 970 */ 971 return btree_csum_one_bio(bio); 972 } 973 974 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 975 int mirror_num, unsigned long bio_flags, 976 u64 bio_offset) 977 { 978 int ret; 979 980 /* 981 * when we're called for a write, we're already in the async 982 * submission context. Just jump into btrfs_map_bio 983 */ 984 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1); 985 if (ret) { 986 bio->bi_error = ret; 987 bio_endio(bio); 988 } 989 return ret; 990 } 991 992 static int check_async_write(struct inode *inode, unsigned long bio_flags) 993 { 994 if (bio_flags & EXTENT_BIO_TREE_LOG) 995 return 0; 996 #ifdef CONFIG_X86 997 if (static_cpu_has(X86_FEATURE_XMM4_2)) 998 return 0; 999 #endif 1000 return 1; 1001 } 1002 1003 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 1004 int mirror_num, unsigned long bio_flags, 1005 u64 bio_offset) 1006 { 1007 int async = check_async_write(inode, bio_flags); 1008 int ret; 1009 1010 if (bio_op(bio) != REQ_OP_WRITE) { 1011 /* 1012 * called for a read, do the setup so that checksum validation 1013 * can happen in the async kernel threads 1014 */ 1015 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 1016 bio, BTRFS_WQ_ENDIO_METADATA); 1017 if (ret) 1018 goto out_w_error; 1019 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 1020 } else if (!async) { 1021 ret = btree_csum_one_bio(bio); 1022 if (ret) 1023 goto out_w_error; 1024 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 1025 } else { 1026 /* 1027 * kthread helpers are used to submit writes so that 1028 * checksumming can happen in parallel across all CPUs 1029 */ 1030 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1031 inode, bio, mirror_num, 0, 1032 bio_offset, 1033 __btree_submit_bio_start, 1034 __btree_submit_bio_done); 1035 } 1036 1037 if (ret) 1038 goto out_w_error; 1039 return 0; 1040 1041 out_w_error: 1042 bio->bi_error = ret; 1043 bio_endio(bio); 1044 return ret; 1045 } 1046 1047 #ifdef CONFIG_MIGRATION 1048 static int btree_migratepage(struct address_space *mapping, 1049 struct page *newpage, struct page *page, 1050 enum migrate_mode mode) 1051 { 1052 /* 1053 * we can't safely write a btree page from here, 1054 * we haven't done the locking hook 1055 */ 1056 if (PageDirty(page)) 1057 return -EAGAIN; 1058 /* 1059 * Buffers may be managed in a filesystem specific way. 1060 * We must have no buffers or drop them. 1061 */ 1062 if (page_has_private(page) && 1063 !try_to_release_page(page, GFP_KERNEL)) 1064 return -EAGAIN; 1065 return migrate_page(mapping, newpage, page, mode); 1066 } 1067 #endif 1068 1069 1070 static int btree_writepages(struct address_space *mapping, 1071 struct writeback_control *wbc) 1072 { 1073 struct btrfs_fs_info *fs_info; 1074 int ret; 1075 1076 if (wbc->sync_mode == WB_SYNC_NONE) { 1077 1078 if (wbc->for_kupdate) 1079 return 0; 1080 1081 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1082 /* this is a bit racy, but that's ok */ 1083 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1084 BTRFS_DIRTY_METADATA_THRESH); 1085 if (ret < 0) 1086 return 0; 1087 } 1088 return btree_write_cache_pages(mapping, wbc); 1089 } 1090 1091 static int btree_readpage(struct file *file, struct page *page) 1092 { 1093 struct extent_io_tree *tree; 1094 tree = &BTRFS_I(page->mapping->host)->io_tree; 1095 return extent_read_full_page(tree, page, btree_get_extent, 0); 1096 } 1097 1098 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1099 { 1100 if (PageWriteback(page) || PageDirty(page)) 1101 return 0; 1102 1103 return try_release_extent_buffer(page); 1104 } 1105 1106 static void btree_invalidatepage(struct page *page, unsigned int offset, 1107 unsigned int length) 1108 { 1109 struct extent_io_tree *tree; 1110 tree = &BTRFS_I(page->mapping->host)->io_tree; 1111 extent_invalidatepage(tree, page, offset); 1112 btree_releasepage(page, GFP_NOFS); 1113 if (PagePrivate(page)) { 1114 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1115 "page private not zero on page %llu", 1116 (unsigned long long)page_offset(page)); 1117 ClearPagePrivate(page); 1118 set_page_private(page, 0); 1119 put_page(page); 1120 } 1121 } 1122 1123 static int btree_set_page_dirty(struct page *page) 1124 { 1125 #ifdef DEBUG 1126 struct extent_buffer *eb; 1127 1128 BUG_ON(!PagePrivate(page)); 1129 eb = (struct extent_buffer *)page->private; 1130 BUG_ON(!eb); 1131 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1132 BUG_ON(!atomic_read(&eb->refs)); 1133 btrfs_assert_tree_locked(eb); 1134 #endif 1135 return __set_page_dirty_nobuffers(page); 1136 } 1137 1138 static const struct address_space_operations btree_aops = { 1139 .readpage = btree_readpage, 1140 .writepages = btree_writepages, 1141 .releasepage = btree_releasepage, 1142 .invalidatepage = btree_invalidatepage, 1143 #ifdef CONFIG_MIGRATION 1144 .migratepage = btree_migratepage, 1145 #endif 1146 .set_page_dirty = btree_set_page_dirty, 1147 }; 1148 1149 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1150 { 1151 struct extent_buffer *buf = NULL; 1152 struct inode *btree_inode = root->fs_info->btree_inode; 1153 1154 buf = btrfs_find_create_tree_block(root, bytenr); 1155 if (IS_ERR(buf)) 1156 return; 1157 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1158 buf, WAIT_NONE, btree_get_extent, 0); 1159 free_extent_buffer(buf); 1160 } 1161 1162 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1163 int mirror_num, struct extent_buffer **eb) 1164 { 1165 struct extent_buffer *buf = NULL; 1166 struct inode *btree_inode = root->fs_info->btree_inode; 1167 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1168 int ret; 1169 1170 buf = btrfs_find_create_tree_block(root, bytenr); 1171 if (IS_ERR(buf)) 1172 return 0; 1173 1174 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1175 1176 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1177 btree_get_extent, mirror_num); 1178 if (ret) { 1179 free_extent_buffer(buf); 1180 return ret; 1181 } 1182 1183 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1184 free_extent_buffer(buf); 1185 return -EIO; 1186 } else if (extent_buffer_uptodate(buf)) { 1187 *eb = buf; 1188 } else { 1189 free_extent_buffer(buf); 1190 } 1191 return 0; 1192 } 1193 1194 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1195 u64 bytenr) 1196 { 1197 return find_extent_buffer(fs_info, bytenr); 1198 } 1199 1200 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1201 u64 bytenr) 1202 { 1203 if (btrfs_is_testing(root->fs_info)) 1204 return alloc_test_extent_buffer(root->fs_info, bytenr, 1205 root->nodesize); 1206 return alloc_extent_buffer(root->fs_info, bytenr); 1207 } 1208 1209 1210 int btrfs_write_tree_block(struct extent_buffer *buf) 1211 { 1212 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1213 buf->start + buf->len - 1); 1214 } 1215 1216 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1217 { 1218 return filemap_fdatawait_range(buf->pages[0]->mapping, 1219 buf->start, buf->start + buf->len - 1); 1220 } 1221 1222 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1223 u64 parent_transid) 1224 { 1225 struct extent_buffer *buf = NULL; 1226 int ret; 1227 1228 buf = btrfs_find_create_tree_block(root, bytenr); 1229 if (IS_ERR(buf)) 1230 return buf; 1231 1232 ret = btree_read_extent_buffer_pages(root, buf, parent_transid); 1233 if (ret) { 1234 free_extent_buffer(buf); 1235 return ERR_PTR(ret); 1236 } 1237 return buf; 1238 1239 } 1240 1241 void clean_tree_block(struct btrfs_trans_handle *trans, 1242 struct btrfs_fs_info *fs_info, 1243 struct extent_buffer *buf) 1244 { 1245 if (btrfs_header_generation(buf) == 1246 fs_info->running_transaction->transid) { 1247 btrfs_assert_tree_locked(buf); 1248 1249 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1250 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1251 -buf->len, 1252 fs_info->dirty_metadata_batch); 1253 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1254 btrfs_set_lock_blocking(buf); 1255 clear_extent_buffer_dirty(buf); 1256 } 1257 } 1258 } 1259 1260 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1261 { 1262 struct btrfs_subvolume_writers *writers; 1263 int ret; 1264 1265 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1266 if (!writers) 1267 return ERR_PTR(-ENOMEM); 1268 1269 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1270 if (ret < 0) { 1271 kfree(writers); 1272 return ERR_PTR(ret); 1273 } 1274 1275 init_waitqueue_head(&writers->wait); 1276 return writers; 1277 } 1278 1279 static void 1280 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1281 { 1282 percpu_counter_destroy(&writers->counter); 1283 kfree(writers); 1284 } 1285 1286 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1287 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1288 u64 objectid) 1289 { 1290 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1291 root->node = NULL; 1292 root->commit_root = NULL; 1293 root->sectorsize = sectorsize; 1294 root->nodesize = nodesize; 1295 root->stripesize = stripesize; 1296 root->state = 0; 1297 root->orphan_cleanup_state = 0; 1298 1299 root->objectid = objectid; 1300 root->last_trans = 0; 1301 root->highest_objectid = 0; 1302 root->nr_delalloc_inodes = 0; 1303 root->nr_ordered_extents = 0; 1304 root->name = NULL; 1305 root->inode_tree = RB_ROOT; 1306 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1307 root->block_rsv = NULL; 1308 root->orphan_block_rsv = NULL; 1309 1310 INIT_LIST_HEAD(&root->dirty_list); 1311 INIT_LIST_HEAD(&root->root_list); 1312 INIT_LIST_HEAD(&root->delalloc_inodes); 1313 INIT_LIST_HEAD(&root->delalloc_root); 1314 INIT_LIST_HEAD(&root->ordered_extents); 1315 INIT_LIST_HEAD(&root->ordered_root); 1316 INIT_LIST_HEAD(&root->logged_list[0]); 1317 INIT_LIST_HEAD(&root->logged_list[1]); 1318 spin_lock_init(&root->orphan_lock); 1319 spin_lock_init(&root->inode_lock); 1320 spin_lock_init(&root->delalloc_lock); 1321 spin_lock_init(&root->ordered_extent_lock); 1322 spin_lock_init(&root->accounting_lock); 1323 spin_lock_init(&root->log_extents_lock[0]); 1324 spin_lock_init(&root->log_extents_lock[1]); 1325 mutex_init(&root->objectid_mutex); 1326 mutex_init(&root->log_mutex); 1327 mutex_init(&root->ordered_extent_mutex); 1328 mutex_init(&root->delalloc_mutex); 1329 init_waitqueue_head(&root->log_writer_wait); 1330 init_waitqueue_head(&root->log_commit_wait[0]); 1331 init_waitqueue_head(&root->log_commit_wait[1]); 1332 INIT_LIST_HEAD(&root->log_ctxs[0]); 1333 INIT_LIST_HEAD(&root->log_ctxs[1]); 1334 atomic_set(&root->log_commit[0], 0); 1335 atomic_set(&root->log_commit[1], 0); 1336 atomic_set(&root->log_writers, 0); 1337 atomic_set(&root->log_batch, 0); 1338 atomic_set(&root->orphan_inodes, 0); 1339 atomic_set(&root->refs, 1); 1340 atomic_set(&root->will_be_snapshoted, 0); 1341 atomic_set(&root->qgroup_meta_rsv, 0); 1342 root->log_transid = 0; 1343 root->log_transid_committed = -1; 1344 root->last_log_commit = 0; 1345 if (!dummy) 1346 extent_io_tree_init(&root->dirty_log_pages, 1347 fs_info->btree_inode->i_mapping); 1348 1349 memset(&root->root_key, 0, sizeof(root->root_key)); 1350 memset(&root->root_item, 0, sizeof(root->root_item)); 1351 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1352 if (!dummy) 1353 root->defrag_trans_start = fs_info->generation; 1354 else 1355 root->defrag_trans_start = 0; 1356 root->root_key.objectid = objectid; 1357 root->anon_dev = 0; 1358 1359 spin_lock_init(&root->root_item_lock); 1360 } 1361 1362 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1363 gfp_t flags) 1364 { 1365 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1366 if (root) 1367 root->fs_info = fs_info; 1368 return root; 1369 } 1370 1371 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1372 /* Should only be used by the testing infrastructure */ 1373 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info, 1374 u32 sectorsize, u32 nodesize) 1375 { 1376 struct btrfs_root *root; 1377 1378 if (!fs_info) 1379 return ERR_PTR(-EINVAL); 1380 1381 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1382 if (!root) 1383 return ERR_PTR(-ENOMEM); 1384 /* We don't use the stripesize in selftest, set it as sectorsize */ 1385 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info, 1386 BTRFS_ROOT_TREE_OBJECTID); 1387 root->alloc_bytenr = 0; 1388 1389 return root; 1390 } 1391 #endif 1392 1393 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info, 1395 u64 objectid) 1396 { 1397 struct extent_buffer *leaf; 1398 struct btrfs_root *tree_root = fs_info->tree_root; 1399 struct btrfs_root *root; 1400 struct btrfs_key key; 1401 int ret = 0; 1402 uuid_le uuid; 1403 1404 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1405 if (!root) 1406 return ERR_PTR(-ENOMEM); 1407 1408 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1409 tree_root->stripesize, root, fs_info, objectid); 1410 root->root_key.objectid = objectid; 1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1412 root->root_key.offset = 0; 1413 1414 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1415 if (IS_ERR(leaf)) { 1416 ret = PTR_ERR(leaf); 1417 leaf = NULL; 1418 goto fail; 1419 } 1420 1421 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1422 btrfs_set_header_bytenr(leaf, leaf->start); 1423 btrfs_set_header_generation(leaf, trans->transid); 1424 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1425 btrfs_set_header_owner(leaf, objectid); 1426 root->node = leaf; 1427 1428 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1429 BTRFS_FSID_SIZE); 1430 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1431 btrfs_header_chunk_tree_uuid(leaf), 1432 BTRFS_UUID_SIZE); 1433 btrfs_mark_buffer_dirty(leaf); 1434 1435 root->commit_root = btrfs_root_node(root); 1436 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1437 1438 root->root_item.flags = 0; 1439 root->root_item.byte_limit = 0; 1440 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1441 btrfs_set_root_generation(&root->root_item, trans->transid); 1442 btrfs_set_root_level(&root->root_item, 0); 1443 btrfs_set_root_refs(&root->root_item, 1); 1444 btrfs_set_root_used(&root->root_item, leaf->len); 1445 btrfs_set_root_last_snapshot(&root->root_item, 0); 1446 btrfs_set_root_dirid(&root->root_item, 0); 1447 uuid_le_gen(&uuid); 1448 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1449 root->root_item.drop_level = 0; 1450 1451 key.objectid = objectid; 1452 key.type = BTRFS_ROOT_ITEM_KEY; 1453 key.offset = 0; 1454 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1455 if (ret) 1456 goto fail; 1457 1458 btrfs_tree_unlock(leaf); 1459 1460 return root; 1461 1462 fail: 1463 if (leaf) { 1464 btrfs_tree_unlock(leaf); 1465 free_extent_buffer(root->commit_root); 1466 free_extent_buffer(leaf); 1467 } 1468 kfree(root); 1469 1470 return ERR_PTR(ret); 1471 } 1472 1473 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1474 struct btrfs_fs_info *fs_info) 1475 { 1476 struct btrfs_root *root; 1477 struct btrfs_root *tree_root = fs_info->tree_root; 1478 struct extent_buffer *leaf; 1479 1480 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1481 if (!root) 1482 return ERR_PTR(-ENOMEM); 1483 1484 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1485 tree_root->stripesize, root, fs_info, 1486 BTRFS_TREE_LOG_OBJECTID); 1487 1488 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1489 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1490 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1491 1492 /* 1493 * DON'T set REF_COWS for log trees 1494 * 1495 * log trees do not get reference counted because they go away 1496 * before a real commit is actually done. They do store pointers 1497 * to file data extents, and those reference counts still get 1498 * updated (along with back refs to the log tree). 1499 */ 1500 1501 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1502 NULL, 0, 0, 0); 1503 if (IS_ERR(leaf)) { 1504 kfree(root); 1505 return ERR_CAST(leaf); 1506 } 1507 1508 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1509 btrfs_set_header_bytenr(leaf, leaf->start); 1510 btrfs_set_header_generation(leaf, trans->transid); 1511 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1512 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1513 root->node = leaf; 1514 1515 write_extent_buffer(root->node, root->fs_info->fsid, 1516 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1517 btrfs_mark_buffer_dirty(root->node); 1518 btrfs_tree_unlock(root->node); 1519 return root; 1520 } 1521 1522 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1523 struct btrfs_fs_info *fs_info) 1524 { 1525 struct btrfs_root *log_root; 1526 1527 log_root = alloc_log_tree(trans, fs_info); 1528 if (IS_ERR(log_root)) 1529 return PTR_ERR(log_root); 1530 WARN_ON(fs_info->log_root_tree); 1531 fs_info->log_root_tree = log_root; 1532 return 0; 1533 } 1534 1535 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1536 struct btrfs_root *root) 1537 { 1538 struct btrfs_root *log_root; 1539 struct btrfs_inode_item *inode_item; 1540 1541 log_root = alloc_log_tree(trans, root->fs_info); 1542 if (IS_ERR(log_root)) 1543 return PTR_ERR(log_root); 1544 1545 log_root->last_trans = trans->transid; 1546 log_root->root_key.offset = root->root_key.objectid; 1547 1548 inode_item = &log_root->root_item.inode; 1549 btrfs_set_stack_inode_generation(inode_item, 1); 1550 btrfs_set_stack_inode_size(inode_item, 3); 1551 btrfs_set_stack_inode_nlink(inode_item, 1); 1552 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1553 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1554 1555 btrfs_set_root_node(&log_root->root_item, log_root->node); 1556 1557 WARN_ON(root->log_root); 1558 root->log_root = log_root; 1559 root->log_transid = 0; 1560 root->log_transid_committed = -1; 1561 root->last_log_commit = 0; 1562 return 0; 1563 } 1564 1565 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1566 struct btrfs_key *key) 1567 { 1568 struct btrfs_root *root; 1569 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1570 struct btrfs_path *path; 1571 u64 generation; 1572 int ret; 1573 1574 path = btrfs_alloc_path(); 1575 if (!path) 1576 return ERR_PTR(-ENOMEM); 1577 1578 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1579 if (!root) { 1580 ret = -ENOMEM; 1581 goto alloc_fail; 1582 } 1583 1584 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1585 tree_root->stripesize, root, fs_info, key->objectid); 1586 1587 ret = btrfs_find_root(tree_root, key, path, 1588 &root->root_item, &root->root_key); 1589 if (ret) { 1590 if (ret > 0) 1591 ret = -ENOENT; 1592 goto find_fail; 1593 } 1594 1595 generation = btrfs_root_generation(&root->root_item); 1596 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1597 generation); 1598 if (IS_ERR(root->node)) { 1599 ret = PTR_ERR(root->node); 1600 goto find_fail; 1601 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1602 ret = -EIO; 1603 free_extent_buffer(root->node); 1604 goto find_fail; 1605 } 1606 root->commit_root = btrfs_root_node(root); 1607 out: 1608 btrfs_free_path(path); 1609 return root; 1610 1611 find_fail: 1612 kfree(root); 1613 alloc_fail: 1614 root = ERR_PTR(ret); 1615 goto out; 1616 } 1617 1618 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1619 struct btrfs_key *location) 1620 { 1621 struct btrfs_root *root; 1622 1623 root = btrfs_read_tree_root(tree_root, location); 1624 if (IS_ERR(root)) 1625 return root; 1626 1627 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1628 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1629 btrfs_check_and_init_root_item(&root->root_item); 1630 } 1631 1632 return root; 1633 } 1634 1635 int btrfs_init_fs_root(struct btrfs_root *root) 1636 { 1637 int ret; 1638 struct btrfs_subvolume_writers *writers; 1639 1640 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1641 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1642 GFP_NOFS); 1643 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1644 ret = -ENOMEM; 1645 goto fail; 1646 } 1647 1648 writers = btrfs_alloc_subvolume_writers(); 1649 if (IS_ERR(writers)) { 1650 ret = PTR_ERR(writers); 1651 goto fail; 1652 } 1653 root->subv_writers = writers; 1654 1655 btrfs_init_free_ino_ctl(root); 1656 spin_lock_init(&root->ino_cache_lock); 1657 init_waitqueue_head(&root->ino_cache_wait); 1658 1659 ret = get_anon_bdev(&root->anon_dev); 1660 if (ret) 1661 goto fail; 1662 1663 mutex_lock(&root->objectid_mutex); 1664 ret = btrfs_find_highest_objectid(root, 1665 &root->highest_objectid); 1666 if (ret) { 1667 mutex_unlock(&root->objectid_mutex); 1668 goto fail; 1669 } 1670 1671 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1672 1673 mutex_unlock(&root->objectid_mutex); 1674 1675 return 0; 1676 fail: 1677 /* the caller is responsible to call free_fs_root */ 1678 return ret; 1679 } 1680 1681 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1682 u64 root_id) 1683 { 1684 struct btrfs_root *root; 1685 1686 spin_lock(&fs_info->fs_roots_radix_lock); 1687 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1688 (unsigned long)root_id); 1689 spin_unlock(&fs_info->fs_roots_radix_lock); 1690 return root; 1691 } 1692 1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1694 struct btrfs_root *root) 1695 { 1696 int ret; 1697 1698 ret = radix_tree_preload(GFP_NOFS); 1699 if (ret) 1700 return ret; 1701 1702 spin_lock(&fs_info->fs_roots_radix_lock); 1703 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1704 (unsigned long)root->root_key.objectid, 1705 root); 1706 if (ret == 0) 1707 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1708 spin_unlock(&fs_info->fs_roots_radix_lock); 1709 radix_tree_preload_end(); 1710 1711 return ret; 1712 } 1713 1714 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1715 struct btrfs_key *location, 1716 bool check_ref) 1717 { 1718 struct btrfs_root *root; 1719 struct btrfs_path *path; 1720 struct btrfs_key key; 1721 int ret; 1722 1723 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1724 return fs_info->tree_root; 1725 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1726 return fs_info->extent_root; 1727 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1728 return fs_info->chunk_root; 1729 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1730 return fs_info->dev_root; 1731 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1732 return fs_info->csum_root; 1733 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1734 return fs_info->quota_root ? fs_info->quota_root : 1735 ERR_PTR(-ENOENT); 1736 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1737 return fs_info->uuid_root ? fs_info->uuid_root : 1738 ERR_PTR(-ENOENT); 1739 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1740 return fs_info->free_space_root ? fs_info->free_space_root : 1741 ERR_PTR(-ENOENT); 1742 again: 1743 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1744 if (root) { 1745 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1746 return ERR_PTR(-ENOENT); 1747 return root; 1748 } 1749 1750 root = btrfs_read_fs_root(fs_info->tree_root, location); 1751 if (IS_ERR(root)) 1752 return root; 1753 1754 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1755 ret = -ENOENT; 1756 goto fail; 1757 } 1758 1759 ret = btrfs_init_fs_root(root); 1760 if (ret) 1761 goto fail; 1762 1763 path = btrfs_alloc_path(); 1764 if (!path) { 1765 ret = -ENOMEM; 1766 goto fail; 1767 } 1768 key.objectid = BTRFS_ORPHAN_OBJECTID; 1769 key.type = BTRFS_ORPHAN_ITEM_KEY; 1770 key.offset = location->objectid; 1771 1772 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1773 btrfs_free_path(path); 1774 if (ret < 0) 1775 goto fail; 1776 if (ret == 0) 1777 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1778 1779 ret = btrfs_insert_fs_root(fs_info, root); 1780 if (ret) { 1781 if (ret == -EEXIST) { 1782 free_fs_root(root); 1783 goto again; 1784 } 1785 goto fail; 1786 } 1787 return root; 1788 fail: 1789 free_fs_root(root); 1790 return ERR_PTR(ret); 1791 } 1792 1793 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1794 { 1795 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1796 int ret = 0; 1797 struct btrfs_device *device; 1798 struct backing_dev_info *bdi; 1799 1800 rcu_read_lock(); 1801 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1802 if (!device->bdev) 1803 continue; 1804 bdi = blk_get_backing_dev_info(device->bdev); 1805 if (bdi_congested(bdi, bdi_bits)) { 1806 ret = 1; 1807 break; 1808 } 1809 } 1810 rcu_read_unlock(); 1811 return ret; 1812 } 1813 1814 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1815 { 1816 int err; 1817 1818 err = bdi_setup_and_register(bdi, "btrfs"); 1819 if (err) 1820 return err; 1821 1822 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1823 bdi->congested_fn = btrfs_congested_fn; 1824 bdi->congested_data = info; 1825 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1826 return 0; 1827 } 1828 1829 /* 1830 * called by the kthread helper functions to finally call the bio end_io 1831 * functions. This is where read checksum verification actually happens 1832 */ 1833 static void end_workqueue_fn(struct btrfs_work *work) 1834 { 1835 struct bio *bio; 1836 struct btrfs_end_io_wq *end_io_wq; 1837 1838 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1839 bio = end_io_wq->bio; 1840 1841 bio->bi_error = end_io_wq->error; 1842 bio->bi_private = end_io_wq->private; 1843 bio->bi_end_io = end_io_wq->end_io; 1844 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1845 bio_endio(bio); 1846 } 1847 1848 static int cleaner_kthread(void *arg) 1849 { 1850 struct btrfs_root *root = arg; 1851 int again; 1852 struct btrfs_trans_handle *trans; 1853 1854 do { 1855 again = 0; 1856 1857 /* Make the cleaner go to sleep early. */ 1858 if (btrfs_need_cleaner_sleep(root)) 1859 goto sleep; 1860 1861 /* 1862 * Do not do anything if we might cause open_ctree() to block 1863 * before we have finished mounting the filesystem. 1864 */ 1865 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags)) 1866 goto sleep; 1867 1868 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1869 goto sleep; 1870 1871 /* 1872 * Avoid the problem that we change the status of the fs 1873 * during the above check and trylock. 1874 */ 1875 if (btrfs_need_cleaner_sleep(root)) { 1876 mutex_unlock(&root->fs_info->cleaner_mutex); 1877 goto sleep; 1878 } 1879 1880 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1881 btrfs_run_delayed_iputs(root); 1882 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1883 1884 again = btrfs_clean_one_deleted_snapshot(root); 1885 mutex_unlock(&root->fs_info->cleaner_mutex); 1886 1887 /* 1888 * The defragger has dealt with the R/O remount and umount, 1889 * needn't do anything special here. 1890 */ 1891 btrfs_run_defrag_inodes(root->fs_info); 1892 1893 /* 1894 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1895 * with relocation (btrfs_relocate_chunk) and relocation 1896 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1897 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1898 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1899 * unused block groups. 1900 */ 1901 btrfs_delete_unused_bgs(root->fs_info); 1902 sleep: 1903 if (!again) { 1904 set_current_state(TASK_INTERRUPTIBLE); 1905 if (!kthread_should_stop()) 1906 schedule(); 1907 __set_current_state(TASK_RUNNING); 1908 } 1909 } while (!kthread_should_stop()); 1910 1911 /* 1912 * Transaction kthread is stopped before us and wakes us up. 1913 * However we might have started a new transaction and COWed some 1914 * tree blocks when deleting unused block groups for example. So 1915 * make sure we commit the transaction we started to have a clean 1916 * shutdown when evicting the btree inode - if it has dirty pages 1917 * when we do the final iput() on it, eviction will trigger a 1918 * writeback for it which will fail with null pointer dereferences 1919 * since work queues and other resources were already released and 1920 * destroyed by the time the iput/eviction/writeback is made. 1921 */ 1922 trans = btrfs_attach_transaction(root); 1923 if (IS_ERR(trans)) { 1924 if (PTR_ERR(trans) != -ENOENT) 1925 btrfs_err(root->fs_info, 1926 "cleaner transaction attach returned %ld", 1927 PTR_ERR(trans)); 1928 } else { 1929 int ret; 1930 1931 ret = btrfs_commit_transaction(trans, root); 1932 if (ret) 1933 btrfs_err(root->fs_info, 1934 "cleaner open transaction commit returned %d", 1935 ret); 1936 } 1937 1938 return 0; 1939 } 1940 1941 static int transaction_kthread(void *arg) 1942 { 1943 struct btrfs_root *root = arg; 1944 struct btrfs_trans_handle *trans; 1945 struct btrfs_transaction *cur; 1946 u64 transid; 1947 unsigned long now; 1948 unsigned long delay; 1949 bool cannot_commit; 1950 1951 do { 1952 cannot_commit = false; 1953 delay = HZ * root->fs_info->commit_interval; 1954 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1955 1956 spin_lock(&root->fs_info->trans_lock); 1957 cur = root->fs_info->running_transaction; 1958 if (!cur) { 1959 spin_unlock(&root->fs_info->trans_lock); 1960 goto sleep; 1961 } 1962 1963 now = get_seconds(); 1964 if (cur->state < TRANS_STATE_BLOCKED && 1965 (now < cur->start_time || 1966 now - cur->start_time < root->fs_info->commit_interval)) { 1967 spin_unlock(&root->fs_info->trans_lock); 1968 delay = HZ * 5; 1969 goto sleep; 1970 } 1971 transid = cur->transid; 1972 spin_unlock(&root->fs_info->trans_lock); 1973 1974 /* If the file system is aborted, this will always fail. */ 1975 trans = btrfs_attach_transaction(root); 1976 if (IS_ERR(trans)) { 1977 if (PTR_ERR(trans) != -ENOENT) 1978 cannot_commit = true; 1979 goto sleep; 1980 } 1981 if (transid == trans->transid) { 1982 btrfs_commit_transaction(trans, root); 1983 } else { 1984 btrfs_end_transaction(trans, root); 1985 } 1986 sleep: 1987 wake_up_process(root->fs_info->cleaner_kthread); 1988 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1989 1990 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1991 &root->fs_info->fs_state))) 1992 btrfs_cleanup_transaction(root); 1993 set_current_state(TASK_INTERRUPTIBLE); 1994 if (!kthread_should_stop() && 1995 (!btrfs_transaction_blocked(root->fs_info) || 1996 cannot_commit)) 1997 schedule_timeout(delay); 1998 __set_current_state(TASK_RUNNING); 1999 } while (!kthread_should_stop()); 2000 return 0; 2001 } 2002 2003 /* 2004 * this will find the highest generation in the array of 2005 * root backups. The index of the highest array is returned, 2006 * or -1 if we can't find anything. 2007 * 2008 * We check to make sure the array is valid by comparing the 2009 * generation of the latest root in the array with the generation 2010 * in the super block. If they don't match we pitch it. 2011 */ 2012 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 2013 { 2014 u64 cur; 2015 int newest_index = -1; 2016 struct btrfs_root_backup *root_backup; 2017 int i; 2018 2019 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2020 root_backup = info->super_copy->super_roots + i; 2021 cur = btrfs_backup_tree_root_gen(root_backup); 2022 if (cur == newest_gen) 2023 newest_index = i; 2024 } 2025 2026 /* check to see if we actually wrapped around */ 2027 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2028 root_backup = info->super_copy->super_roots; 2029 cur = btrfs_backup_tree_root_gen(root_backup); 2030 if (cur == newest_gen) 2031 newest_index = 0; 2032 } 2033 return newest_index; 2034 } 2035 2036 2037 /* 2038 * find the oldest backup so we know where to store new entries 2039 * in the backup array. This will set the backup_root_index 2040 * field in the fs_info struct 2041 */ 2042 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2043 u64 newest_gen) 2044 { 2045 int newest_index = -1; 2046 2047 newest_index = find_newest_super_backup(info, newest_gen); 2048 /* if there was garbage in there, just move along */ 2049 if (newest_index == -1) { 2050 info->backup_root_index = 0; 2051 } else { 2052 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2053 } 2054 } 2055 2056 /* 2057 * copy all the root pointers into the super backup array. 2058 * this will bump the backup pointer by one when it is 2059 * done 2060 */ 2061 static void backup_super_roots(struct btrfs_fs_info *info) 2062 { 2063 int next_backup; 2064 struct btrfs_root_backup *root_backup; 2065 int last_backup; 2066 2067 next_backup = info->backup_root_index; 2068 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2069 BTRFS_NUM_BACKUP_ROOTS; 2070 2071 /* 2072 * just overwrite the last backup if we're at the same generation 2073 * this happens only at umount 2074 */ 2075 root_backup = info->super_for_commit->super_roots + last_backup; 2076 if (btrfs_backup_tree_root_gen(root_backup) == 2077 btrfs_header_generation(info->tree_root->node)) 2078 next_backup = last_backup; 2079 2080 root_backup = info->super_for_commit->super_roots + next_backup; 2081 2082 /* 2083 * make sure all of our padding and empty slots get zero filled 2084 * regardless of which ones we use today 2085 */ 2086 memset(root_backup, 0, sizeof(*root_backup)); 2087 2088 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2089 2090 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2091 btrfs_set_backup_tree_root_gen(root_backup, 2092 btrfs_header_generation(info->tree_root->node)); 2093 2094 btrfs_set_backup_tree_root_level(root_backup, 2095 btrfs_header_level(info->tree_root->node)); 2096 2097 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2098 btrfs_set_backup_chunk_root_gen(root_backup, 2099 btrfs_header_generation(info->chunk_root->node)); 2100 btrfs_set_backup_chunk_root_level(root_backup, 2101 btrfs_header_level(info->chunk_root->node)); 2102 2103 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2104 btrfs_set_backup_extent_root_gen(root_backup, 2105 btrfs_header_generation(info->extent_root->node)); 2106 btrfs_set_backup_extent_root_level(root_backup, 2107 btrfs_header_level(info->extent_root->node)); 2108 2109 /* 2110 * we might commit during log recovery, which happens before we set 2111 * the fs_root. Make sure it is valid before we fill it in. 2112 */ 2113 if (info->fs_root && info->fs_root->node) { 2114 btrfs_set_backup_fs_root(root_backup, 2115 info->fs_root->node->start); 2116 btrfs_set_backup_fs_root_gen(root_backup, 2117 btrfs_header_generation(info->fs_root->node)); 2118 btrfs_set_backup_fs_root_level(root_backup, 2119 btrfs_header_level(info->fs_root->node)); 2120 } 2121 2122 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2123 btrfs_set_backup_dev_root_gen(root_backup, 2124 btrfs_header_generation(info->dev_root->node)); 2125 btrfs_set_backup_dev_root_level(root_backup, 2126 btrfs_header_level(info->dev_root->node)); 2127 2128 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2129 btrfs_set_backup_csum_root_gen(root_backup, 2130 btrfs_header_generation(info->csum_root->node)); 2131 btrfs_set_backup_csum_root_level(root_backup, 2132 btrfs_header_level(info->csum_root->node)); 2133 2134 btrfs_set_backup_total_bytes(root_backup, 2135 btrfs_super_total_bytes(info->super_copy)); 2136 btrfs_set_backup_bytes_used(root_backup, 2137 btrfs_super_bytes_used(info->super_copy)); 2138 btrfs_set_backup_num_devices(root_backup, 2139 btrfs_super_num_devices(info->super_copy)); 2140 2141 /* 2142 * if we don't copy this out to the super_copy, it won't get remembered 2143 * for the next commit 2144 */ 2145 memcpy(&info->super_copy->super_roots, 2146 &info->super_for_commit->super_roots, 2147 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2148 } 2149 2150 /* 2151 * this copies info out of the root backup array and back into 2152 * the in-memory super block. It is meant to help iterate through 2153 * the array, so you send it the number of backups you've already 2154 * tried and the last backup index you used. 2155 * 2156 * this returns -1 when it has tried all the backups 2157 */ 2158 static noinline int next_root_backup(struct btrfs_fs_info *info, 2159 struct btrfs_super_block *super, 2160 int *num_backups_tried, int *backup_index) 2161 { 2162 struct btrfs_root_backup *root_backup; 2163 int newest = *backup_index; 2164 2165 if (*num_backups_tried == 0) { 2166 u64 gen = btrfs_super_generation(super); 2167 2168 newest = find_newest_super_backup(info, gen); 2169 if (newest == -1) 2170 return -1; 2171 2172 *backup_index = newest; 2173 *num_backups_tried = 1; 2174 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2175 /* we've tried all the backups, all done */ 2176 return -1; 2177 } else { 2178 /* jump to the next oldest backup */ 2179 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2180 BTRFS_NUM_BACKUP_ROOTS; 2181 *backup_index = newest; 2182 *num_backups_tried += 1; 2183 } 2184 root_backup = super->super_roots + newest; 2185 2186 btrfs_set_super_generation(super, 2187 btrfs_backup_tree_root_gen(root_backup)); 2188 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2189 btrfs_set_super_root_level(super, 2190 btrfs_backup_tree_root_level(root_backup)); 2191 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2192 2193 /* 2194 * fixme: the total bytes and num_devices need to match or we should 2195 * need a fsck 2196 */ 2197 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2198 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2199 return 0; 2200 } 2201 2202 /* helper to cleanup workers */ 2203 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2204 { 2205 btrfs_destroy_workqueue(fs_info->fixup_workers); 2206 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2207 btrfs_destroy_workqueue(fs_info->workers); 2208 btrfs_destroy_workqueue(fs_info->endio_workers); 2209 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2210 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2211 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2212 btrfs_destroy_workqueue(fs_info->rmw_workers); 2213 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2214 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2215 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2216 btrfs_destroy_workqueue(fs_info->submit_workers); 2217 btrfs_destroy_workqueue(fs_info->delayed_workers); 2218 btrfs_destroy_workqueue(fs_info->caching_workers); 2219 btrfs_destroy_workqueue(fs_info->readahead_workers); 2220 btrfs_destroy_workqueue(fs_info->flush_workers); 2221 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2222 btrfs_destroy_workqueue(fs_info->extent_workers); 2223 } 2224 2225 static void free_root_extent_buffers(struct btrfs_root *root) 2226 { 2227 if (root) { 2228 free_extent_buffer(root->node); 2229 free_extent_buffer(root->commit_root); 2230 root->node = NULL; 2231 root->commit_root = NULL; 2232 } 2233 } 2234 2235 /* helper to cleanup tree roots */ 2236 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2237 { 2238 free_root_extent_buffers(info->tree_root); 2239 2240 free_root_extent_buffers(info->dev_root); 2241 free_root_extent_buffers(info->extent_root); 2242 free_root_extent_buffers(info->csum_root); 2243 free_root_extent_buffers(info->quota_root); 2244 free_root_extent_buffers(info->uuid_root); 2245 if (chunk_root) 2246 free_root_extent_buffers(info->chunk_root); 2247 free_root_extent_buffers(info->free_space_root); 2248 } 2249 2250 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2251 { 2252 int ret; 2253 struct btrfs_root *gang[8]; 2254 int i; 2255 2256 while (!list_empty(&fs_info->dead_roots)) { 2257 gang[0] = list_entry(fs_info->dead_roots.next, 2258 struct btrfs_root, root_list); 2259 list_del(&gang[0]->root_list); 2260 2261 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2262 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2263 } else { 2264 free_extent_buffer(gang[0]->node); 2265 free_extent_buffer(gang[0]->commit_root); 2266 btrfs_put_fs_root(gang[0]); 2267 } 2268 } 2269 2270 while (1) { 2271 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2272 (void **)gang, 0, 2273 ARRAY_SIZE(gang)); 2274 if (!ret) 2275 break; 2276 for (i = 0; i < ret; i++) 2277 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2278 } 2279 2280 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2281 btrfs_free_log_root_tree(NULL, fs_info); 2282 btrfs_destroy_pinned_extent(fs_info->tree_root, 2283 fs_info->pinned_extents); 2284 } 2285 } 2286 2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2288 { 2289 mutex_init(&fs_info->scrub_lock); 2290 atomic_set(&fs_info->scrubs_running, 0); 2291 atomic_set(&fs_info->scrub_pause_req, 0); 2292 atomic_set(&fs_info->scrubs_paused, 0); 2293 atomic_set(&fs_info->scrub_cancel_req, 0); 2294 init_waitqueue_head(&fs_info->scrub_pause_wait); 2295 fs_info->scrub_workers_refcnt = 0; 2296 } 2297 2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2299 { 2300 spin_lock_init(&fs_info->balance_lock); 2301 mutex_init(&fs_info->balance_mutex); 2302 atomic_set(&fs_info->balance_running, 0); 2303 atomic_set(&fs_info->balance_pause_req, 0); 2304 atomic_set(&fs_info->balance_cancel_req, 0); 2305 fs_info->balance_ctl = NULL; 2306 init_waitqueue_head(&fs_info->balance_wait_q); 2307 } 2308 2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2310 struct btrfs_root *tree_root) 2311 { 2312 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2313 set_nlink(fs_info->btree_inode, 1); 2314 /* 2315 * we set the i_size on the btree inode to the max possible int. 2316 * the real end of the address space is determined by all of 2317 * the devices in the system 2318 */ 2319 fs_info->btree_inode->i_size = OFFSET_MAX; 2320 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2321 2322 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2323 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2324 fs_info->btree_inode->i_mapping); 2325 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2326 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2327 2328 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2329 2330 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2331 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2332 sizeof(struct btrfs_key)); 2333 set_bit(BTRFS_INODE_DUMMY, 2334 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2335 btrfs_insert_inode_hash(fs_info->btree_inode); 2336 } 2337 2338 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2339 { 2340 fs_info->dev_replace.lock_owner = 0; 2341 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2342 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2343 rwlock_init(&fs_info->dev_replace.lock); 2344 atomic_set(&fs_info->dev_replace.read_locks, 0); 2345 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2346 init_waitqueue_head(&fs_info->replace_wait); 2347 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2348 } 2349 2350 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2351 { 2352 spin_lock_init(&fs_info->qgroup_lock); 2353 mutex_init(&fs_info->qgroup_ioctl_lock); 2354 fs_info->qgroup_tree = RB_ROOT; 2355 fs_info->qgroup_op_tree = RB_ROOT; 2356 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2357 fs_info->qgroup_seq = 1; 2358 fs_info->qgroup_ulist = NULL; 2359 fs_info->qgroup_rescan_running = false; 2360 mutex_init(&fs_info->qgroup_rescan_lock); 2361 } 2362 2363 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2364 struct btrfs_fs_devices *fs_devices) 2365 { 2366 int max_active = fs_info->thread_pool_size; 2367 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2368 2369 fs_info->workers = 2370 btrfs_alloc_workqueue(fs_info, "worker", 2371 flags | WQ_HIGHPRI, max_active, 16); 2372 2373 fs_info->delalloc_workers = 2374 btrfs_alloc_workqueue(fs_info, "delalloc", 2375 flags, max_active, 2); 2376 2377 fs_info->flush_workers = 2378 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2379 flags, max_active, 0); 2380 2381 fs_info->caching_workers = 2382 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2383 2384 /* 2385 * a higher idle thresh on the submit workers makes it much more 2386 * likely that bios will be send down in a sane order to the 2387 * devices 2388 */ 2389 fs_info->submit_workers = 2390 btrfs_alloc_workqueue(fs_info, "submit", flags, 2391 min_t(u64, fs_devices->num_devices, 2392 max_active), 64); 2393 2394 fs_info->fixup_workers = 2395 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2396 2397 /* 2398 * endios are largely parallel and should have a very 2399 * low idle thresh 2400 */ 2401 fs_info->endio_workers = 2402 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2403 fs_info->endio_meta_workers = 2404 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2405 max_active, 4); 2406 fs_info->endio_meta_write_workers = 2407 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2408 max_active, 2); 2409 fs_info->endio_raid56_workers = 2410 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2411 max_active, 4); 2412 fs_info->endio_repair_workers = 2413 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2414 fs_info->rmw_workers = 2415 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2416 fs_info->endio_write_workers = 2417 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2418 max_active, 2); 2419 fs_info->endio_freespace_worker = 2420 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2421 max_active, 0); 2422 fs_info->delayed_workers = 2423 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2424 max_active, 0); 2425 fs_info->readahead_workers = 2426 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2427 max_active, 2); 2428 fs_info->qgroup_rescan_workers = 2429 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2430 fs_info->extent_workers = 2431 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2432 min_t(u64, fs_devices->num_devices, 2433 max_active), 8); 2434 2435 if (!(fs_info->workers && fs_info->delalloc_workers && 2436 fs_info->submit_workers && fs_info->flush_workers && 2437 fs_info->endio_workers && fs_info->endio_meta_workers && 2438 fs_info->endio_meta_write_workers && 2439 fs_info->endio_repair_workers && 2440 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2441 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2442 fs_info->caching_workers && fs_info->readahead_workers && 2443 fs_info->fixup_workers && fs_info->delayed_workers && 2444 fs_info->extent_workers && 2445 fs_info->qgroup_rescan_workers)) { 2446 return -ENOMEM; 2447 } 2448 2449 return 0; 2450 } 2451 2452 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2453 struct btrfs_fs_devices *fs_devices) 2454 { 2455 int ret; 2456 struct btrfs_root *tree_root = fs_info->tree_root; 2457 struct btrfs_root *log_tree_root; 2458 struct btrfs_super_block *disk_super = fs_info->super_copy; 2459 u64 bytenr = btrfs_super_log_root(disk_super); 2460 2461 if (fs_devices->rw_devices == 0) { 2462 btrfs_warn(fs_info, "log replay required on RO media"); 2463 return -EIO; 2464 } 2465 2466 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2467 if (!log_tree_root) 2468 return -ENOMEM; 2469 2470 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2471 tree_root->stripesize, log_tree_root, fs_info, 2472 BTRFS_TREE_LOG_OBJECTID); 2473 2474 log_tree_root->node = read_tree_block(tree_root, bytenr, 2475 fs_info->generation + 1); 2476 if (IS_ERR(log_tree_root->node)) { 2477 btrfs_warn(fs_info, "failed to read log tree"); 2478 ret = PTR_ERR(log_tree_root->node); 2479 kfree(log_tree_root); 2480 return ret; 2481 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2482 btrfs_err(fs_info, "failed to read log tree"); 2483 free_extent_buffer(log_tree_root->node); 2484 kfree(log_tree_root); 2485 return -EIO; 2486 } 2487 /* returns with log_tree_root freed on success */ 2488 ret = btrfs_recover_log_trees(log_tree_root); 2489 if (ret) { 2490 btrfs_handle_fs_error(tree_root->fs_info, ret, 2491 "Failed to recover log tree"); 2492 free_extent_buffer(log_tree_root->node); 2493 kfree(log_tree_root); 2494 return ret; 2495 } 2496 2497 if (fs_info->sb->s_flags & MS_RDONLY) { 2498 ret = btrfs_commit_super(tree_root); 2499 if (ret) 2500 return ret; 2501 } 2502 2503 return 0; 2504 } 2505 2506 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2507 struct btrfs_root *tree_root) 2508 { 2509 struct btrfs_root *root; 2510 struct btrfs_key location; 2511 int ret; 2512 2513 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2514 location.type = BTRFS_ROOT_ITEM_KEY; 2515 location.offset = 0; 2516 2517 root = btrfs_read_tree_root(tree_root, &location); 2518 if (IS_ERR(root)) 2519 return PTR_ERR(root); 2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2521 fs_info->extent_root = root; 2522 2523 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2524 root = btrfs_read_tree_root(tree_root, &location); 2525 if (IS_ERR(root)) 2526 return PTR_ERR(root); 2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2528 fs_info->dev_root = root; 2529 btrfs_init_devices_late(fs_info); 2530 2531 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2532 root = btrfs_read_tree_root(tree_root, &location); 2533 if (IS_ERR(root)) 2534 return PTR_ERR(root); 2535 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2536 fs_info->csum_root = root; 2537 2538 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2539 root = btrfs_read_tree_root(tree_root, &location); 2540 if (!IS_ERR(root)) { 2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2542 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2543 fs_info->quota_root = root; 2544 } 2545 2546 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2547 root = btrfs_read_tree_root(tree_root, &location); 2548 if (IS_ERR(root)) { 2549 ret = PTR_ERR(root); 2550 if (ret != -ENOENT) 2551 return ret; 2552 } else { 2553 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2554 fs_info->uuid_root = root; 2555 } 2556 2557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2558 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2559 root = btrfs_read_tree_root(tree_root, &location); 2560 if (IS_ERR(root)) 2561 return PTR_ERR(root); 2562 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2563 fs_info->free_space_root = root; 2564 } 2565 2566 return 0; 2567 } 2568 2569 int open_ctree(struct super_block *sb, 2570 struct btrfs_fs_devices *fs_devices, 2571 char *options) 2572 { 2573 u32 sectorsize; 2574 u32 nodesize; 2575 u32 stripesize; 2576 u64 generation; 2577 u64 features; 2578 struct btrfs_key location; 2579 struct buffer_head *bh; 2580 struct btrfs_super_block *disk_super; 2581 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2582 struct btrfs_root *tree_root; 2583 struct btrfs_root *chunk_root; 2584 int ret; 2585 int err = -EINVAL; 2586 int num_backups_tried = 0; 2587 int backup_index = 0; 2588 int max_active; 2589 int clear_free_space_tree = 0; 2590 2591 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2592 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2593 if (!tree_root || !chunk_root) { 2594 err = -ENOMEM; 2595 goto fail; 2596 } 2597 2598 ret = init_srcu_struct(&fs_info->subvol_srcu); 2599 if (ret) { 2600 err = ret; 2601 goto fail; 2602 } 2603 2604 ret = setup_bdi(fs_info, &fs_info->bdi); 2605 if (ret) { 2606 err = ret; 2607 goto fail_srcu; 2608 } 2609 2610 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2611 if (ret) { 2612 err = ret; 2613 goto fail_bdi; 2614 } 2615 fs_info->dirty_metadata_batch = PAGE_SIZE * 2616 (1 + ilog2(nr_cpu_ids)); 2617 2618 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2619 if (ret) { 2620 err = ret; 2621 goto fail_dirty_metadata_bytes; 2622 } 2623 2624 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2625 if (ret) { 2626 err = ret; 2627 goto fail_delalloc_bytes; 2628 } 2629 2630 fs_info->btree_inode = new_inode(sb); 2631 if (!fs_info->btree_inode) { 2632 err = -ENOMEM; 2633 goto fail_bio_counter; 2634 } 2635 2636 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2637 2638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2639 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2640 INIT_LIST_HEAD(&fs_info->trans_list); 2641 INIT_LIST_HEAD(&fs_info->dead_roots); 2642 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2643 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2644 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2645 spin_lock_init(&fs_info->delalloc_root_lock); 2646 spin_lock_init(&fs_info->trans_lock); 2647 spin_lock_init(&fs_info->fs_roots_radix_lock); 2648 spin_lock_init(&fs_info->delayed_iput_lock); 2649 spin_lock_init(&fs_info->defrag_inodes_lock); 2650 spin_lock_init(&fs_info->free_chunk_lock); 2651 spin_lock_init(&fs_info->tree_mod_seq_lock); 2652 spin_lock_init(&fs_info->super_lock); 2653 spin_lock_init(&fs_info->qgroup_op_lock); 2654 spin_lock_init(&fs_info->buffer_lock); 2655 spin_lock_init(&fs_info->unused_bgs_lock); 2656 rwlock_init(&fs_info->tree_mod_log_lock); 2657 mutex_init(&fs_info->unused_bg_unpin_mutex); 2658 mutex_init(&fs_info->delete_unused_bgs_mutex); 2659 mutex_init(&fs_info->reloc_mutex); 2660 mutex_init(&fs_info->delalloc_root_mutex); 2661 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2662 seqlock_init(&fs_info->profiles_lock); 2663 2664 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2665 INIT_LIST_HEAD(&fs_info->space_info); 2666 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2667 INIT_LIST_HEAD(&fs_info->unused_bgs); 2668 btrfs_mapping_init(&fs_info->mapping_tree); 2669 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2670 BTRFS_BLOCK_RSV_GLOBAL); 2671 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2672 BTRFS_BLOCK_RSV_DELALLOC); 2673 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2674 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2675 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2676 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2677 BTRFS_BLOCK_RSV_DELOPS); 2678 atomic_set(&fs_info->nr_async_submits, 0); 2679 atomic_set(&fs_info->async_delalloc_pages, 0); 2680 atomic_set(&fs_info->async_submit_draining, 0); 2681 atomic_set(&fs_info->nr_async_bios, 0); 2682 atomic_set(&fs_info->defrag_running, 0); 2683 atomic_set(&fs_info->qgroup_op_seq, 0); 2684 atomic_set(&fs_info->reada_works_cnt, 0); 2685 atomic64_set(&fs_info->tree_mod_seq, 0); 2686 fs_info->fs_frozen = 0; 2687 fs_info->sb = sb; 2688 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2689 fs_info->metadata_ratio = 0; 2690 fs_info->defrag_inodes = RB_ROOT; 2691 fs_info->free_chunk_space = 0; 2692 fs_info->tree_mod_log = RB_ROOT; 2693 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2694 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2695 /* readahead state */ 2696 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2697 spin_lock_init(&fs_info->reada_lock); 2698 2699 fs_info->thread_pool_size = min_t(unsigned long, 2700 num_online_cpus() + 2, 8); 2701 2702 INIT_LIST_HEAD(&fs_info->ordered_roots); 2703 spin_lock_init(&fs_info->ordered_root_lock); 2704 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2705 GFP_KERNEL); 2706 if (!fs_info->delayed_root) { 2707 err = -ENOMEM; 2708 goto fail_iput; 2709 } 2710 btrfs_init_delayed_root(fs_info->delayed_root); 2711 2712 btrfs_init_scrub(fs_info); 2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2714 fs_info->check_integrity_print_mask = 0; 2715 #endif 2716 btrfs_init_balance(fs_info); 2717 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2718 2719 sb->s_blocksize = 4096; 2720 sb->s_blocksize_bits = blksize_bits(4096); 2721 sb->s_bdi = &fs_info->bdi; 2722 2723 btrfs_init_btree_inode(fs_info, tree_root); 2724 2725 spin_lock_init(&fs_info->block_group_cache_lock); 2726 fs_info->block_group_cache_tree = RB_ROOT; 2727 fs_info->first_logical_byte = (u64)-1; 2728 2729 extent_io_tree_init(&fs_info->freed_extents[0], 2730 fs_info->btree_inode->i_mapping); 2731 extent_io_tree_init(&fs_info->freed_extents[1], 2732 fs_info->btree_inode->i_mapping); 2733 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2734 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2735 2736 mutex_init(&fs_info->ordered_operations_mutex); 2737 mutex_init(&fs_info->tree_log_mutex); 2738 mutex_init(&fs_info->chunk_mutex); 2739 mutex_init(&fs_info->transaction_kthread_mutex); 2740 mutex_init(&fs_info->cleaner_mutex); 2741 mutex_init(&fs_info->volume_mutex); 2742 mutex_init(&fs_info->ro_block_group_mutex); 2743 init_rwsem(&fs_info->commit_root_sem); 2744 init_rwsem(&fs_info->cleanup_work_sem); 2745 init_rwsem(&fs_info->subvol_sem); 2746 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2747 2748 btrfs_init_dev_replace_locks(fs_info); 2749 btrfs_init_qgroup(fs_info); 2750 2751 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2752 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2753 2754 init_waitqueue_head(&fs_info->transaction_throttle); 2755 init_waitqueue_head(&fs_info->transaction_wait); 2756 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2757 init_waitqueue_head(&fs_info->async_submit_wait); 2758 2759 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2760 2761 ret = btrfs_alloc_stripe_hash_table(fs_info); 2762 if (ret) { 2763 err = ret; 2764 goto fail_alloc; 2765 } 2766 2767 __setup_root(4096, 4096, 4096, tree_root, 2768 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2769 2770 invalidate_bdev(fs_devices->latest_bdev); 2771 2772 /* 2773 * Read super block and check the signature bytes only 2774 */ 2775 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2776 if (IS_ERR(bh)) { 2777 err = PTR_ERR(bh); 2778 goto fail_alloc; 2779 } 2780 2781 /* 2782 * We want to check superblock checksum, the type is stored inside. 2783 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2784 */ 2785 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2786 btrfs_err(fs_info, "superblock checksum mismatch"); 2787 err = -EINVAL; 2788 brelse(bh); 2789 goto fail_alloc; 2790 } 2791 2792 /* 2793 * super_copy is zeroed at allocation time and we never touch the 2794 * following bytes up to INFO_SIZE, the checksum is calculated from 2795 * the whole block of INFO_SIZE 2796 */ 2797 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2798 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2799 sizeof(*fs_info->super_for_commit)); 2800 brelse(bh); 2801 2802 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2803 2804 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2805 if (ret) { 2806 btrfs_err(fs_info, "superblock contains fatal errors"); 2807 err = -EINVAL; 2808 goto fail_alloc; 2809 } 2810 2811 disk_super = fs_info->super_copy; 2812 if (!btrfs_super_root(disk_super)) 2813 goto fail_alloc; 2814 2815 /* check FS state, whether FS is broken. */ 2816 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2817 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2818 2819 /* 2820 * run through our array of backup supers and setup 2821 * our ring pointer to the oldest one 2822 */ 2823 generation = btrfs_super_generation(disk_super); 2824 find_oldest_super_backup(fs_info, generation); 2825 2826 /* 2827 * In the long term, we'll store the compression type in the super 2828 * block, and it'll be used for per file compression control. 2829 */ 2830 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2831 2832 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2833 if (ret) { 2834 err = ret; 2835 goto fail_alloc; 2836 } 2837 2838 features = btrfs_super_incompat_flags(disk_super) & 2839 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2840 if (features) { 2841 btrfs_err(fs_info, 2842 "cannot mount because of unsupported optional features (%llx)", 2843 features); 2844 err = -EINVAL; 2845 goto fail_alloc; 2846 } 2847 2848 features = btrfs_super_incompat_flags(disk_super); 2849 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2850 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2851 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2852 2853 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2854 btrfs_info(fs_info, "has skinny extents"); 2855 2856 /* 2857 * flag our filesystem as having big metadata blocks if 2858 * they are bigger than the page size 2859 */ 2860 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2861 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2862 btrfs_info(fs_info, 2863 "flagging fs with big metadata feature"); 2864 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2865 } 2866 2867 nodesize = btrfs_super_nodesize(disk_super); 2868 sectorsize = btrfs_super_sectorsize(disk_super); 2869 stripesize = sectorsize; 2870 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2871 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2872 2873 /* 2874 * mixed block groups end up with duplicate but slightly offset 2875 * extent buffers for the same range. It leads to corruptions 2876 */ 2877 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2878 (sectorsize != nodesize)) { 2879 btrfs_err(fs_info, 2880 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2881 nodesize, sectorsize); 2882 goto fail_alloc; 2883 } 2884 2885 /* 2886 * Needn't use the lock because there is no other task which will 2887 * update the flag. 2888 */ 2889 btrfs_set_super_incompat_flags(disk_super, features); 2890 2891 features = btrfs_super_compat_ro_flags(disk_super) & 2892 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2893 if (!(sb->s_flags & MS_RDONLY) && features) { 2894 btrfs_err(fs_info, 2895 "cannot mount read-write because of unsupported optional features (%llx)", 2896 features); 2897 err = -EINVAL; 2898 goto fail_alloc; 2899 } 2900 2901 max_active = fs_info->thread_pool_size; 2902 2903 ret = btrfs_init_workqueues(fs_info, fs_devices); 2904 if (ret) { 2905 err = ret; 2906 goto fail_sb_buffer; 2907 } 2908 2909 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2910 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2911 SZ_4M / PAGE_SIZE); 2912 2913 tree_root->nodesize = nodesize; 2914 tree_root->sectorsize = sectorsize; 2915 tree_root->stripesize = stripesize; 2916 2917 sb->s_blocksize = sectorsize; 2918 sb->s_blocksize_bits = blksize_bits(sectorsize); 2919 2920 mutex_lock(&fs_info->chunk_mutex); 2921 ret = btrfs_read_sys_array(tree_root); 2922 mutex_unlock(&fs_info->chunk_mutex); 2923 if (ret) { 2924 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2925 goto fail_sb_buffer; 2926 } 2927 2928 generation = btrfs_super_chunk_root_generation(disk_super); 2929 2930 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2931 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2932 2933 chunk_root->node = read_tree_block(chunk_root, 2934 btrfs_super_chunk_root(disk_super), 2935 generation); 2936 if (IS_ERR(chunk_root->node) || 2937 !extent_buffer_uptodate(chunk_root->node)) { 2938 btrfs_err(fs_info, "failed to read chunk root"); 2939 if (!IS_ERR(chunk_root->node)) 2940 free_extent_buffer(chunk_root->node); 2941 chunk_root->node = NULL; 2942 goto fail_tree_roots; 2943 } 2944 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2945 chunk_root->commit_root = btrfs_root_node(chunk_root); 2946 2947 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2948 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2949 2950 ret = btrfs_read_chunk_tree(chunk_root); 2951 if (ret) { 2952 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2953 goto fail_tree_roots; 2954 } 2955 2956 /* 2957 * keep the device that is marked to be the target device for the 2958 * dev_replace procedure 2959 */ 2960 btrfs_close_extra_devices(fs_devices, 0); 2961 2962 if (!fs_devices->latest_bdev) { 2963 btrfs_err(fs_info, "failed to read devices"); 2964 goto fail_tree_roots; 2965 } 2966 2967 retry_root_backup: 2968 generation = btrfs_super_generation(disk_super); 2969 2970 tree_root->node = read_tree_block(tree_root, 2971 btrfs_super_root(disk_super), 2972 generation); 2973 if (IS_ERR(tree_root->node) || 2974 !extent_buffer_uptodate(tree_root->node)) { 2975 btrfs_warn(fs_info, "failed to read tree root"); 2976 if (!IS_ERR(tree_root->node)) 2977 free_extent_buffer(tree_root->node); 2978 tree_root->node = NULL; 2979 goto recovery_tree_root; 2980 } 2981 2982 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2983 tree_root->commit_root = btrfs_root_node(tree_root); 2984 btrfs_set_root_refs(&tree_root->root_item, 1); 2985 2986 mutex_lock(&tree_root->objectid_mutex); 2987 ret = btrfs_find_highest_objectid(tree_root, 2988 &tree_root->highest_objectid); 2989 if (ret) { 2990 mutex_unlock(&tree_root->objectid_mutex); 2991 goto recovery_tree_root; 2992 } 2993 2994 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2995 2996 mutex_unlock(&tree_root->objectid_mutex); 2997 2998 ret = btrfs_read_roots(fs_info, tree_root); 2999 if (ret) 3000 goto recovery_tree_root; 3001 3002 fs_info->generation = generation; 3003 fs_info->last_trans_committed = generation; 3004 3005 ret = btrfs_recover_balance(fs_info); 3006 if (ret) { 3007 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3008 goto fail_block_groups; 3009 } 3010 3011 ret = btrfs_init_dev_stats(fs_info); 3012 if (ret) { 3013 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3014 goto fail_block_groups; 3015 } 3016 3017 ret = btrfs_init_dev_replace(fs_info); 3018 if (ret) { 3019 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3020 goto fail_block_groups; 3021 } 3022 3023 btrfs_close_extra_devices(fs_devices, 1); 3024 3025 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3026 if (ret) { 3027 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3028 ret); 3029 goto fail_block_groups; 3030 } 3031 3032 ret = btrfs_sysfs_add_device(fs_devices); 3033 if (ret) { 3034 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3035 ret); 3036 goto fail_fsdev_sysfs; 3037 } 3038 3039 ret = btrfs_sysfs_add_mounted(fs_info); 3040 if (ret) { 3041 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3042 goto fail_fsdev_sysfs; 3043 } 3044 3045 ret = btrfs_init_space_info(fs_info); 3046 if (ret) { 3047 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3048 goto fail_sysfs; 3049 } 3050 3051 ret = btrfs_read_block_groups(fs_info->extent_root); 3052 if (ret) { 3053 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3054 goto fail_sysfs; 3055 } 3056 fs_info->num_tolerated_disk_barrier_failures = 3057 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3058 if (fs_info->fs_devices->missing_devices > 3059 fs_info->num_tolerated_disk_barrier_failures && 3060 !(sb->s_flags & MS_RDONLY)) { 3061 btrfs_warn(fs_info, 3062 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3063 fs_info->fs_devices->missing_devices, 3064 fs_info->num_tolerated_disk_barrier_failures); 3065 goto fail_sysfs; 3066 } 3067 3068 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3069 "btrfs-cleaner"); 3070 if (IS_ERR(fs_info->cleaner_kthread)) 3071 goto fail_sysfs; 3072 3073 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3074 tree_root, 3075 "btrfs-transaction"); 3076 if (IS_ERR(fs_info->transaction_kthread)) 3077 goto fail_cleaner; 3078 3079 if (!btrfs_test_opt(tree_root->fs_info, SSD) && 3080 !btrfs_test_opt(tree_root->fs_info, NOSSD) && 3081 !fs_info->fs_devices->rotating) { 3082 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3083 btrfs_set_opt(fs_info->mount_opt, SSD); 3084 } 3085 3086 /* 3087 * Mount does not set all options immediately, we can do it now and do 3088 * not have to wait for transaction commit 3089 */ 3090 btrfs_apply_pending_changes(fs_info); 3091 3092 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3093 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) { 3094 ret = btrfsic_mount(tree_root, fs_devices, 3095 btrfs_test_opt(tree_root->fs_info, 3096 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3097 1 : 0, 3098 fs_info->check_integrity_print_mask); 3099 if (ret) 3100 btrfs_warn(fs_info, 3101 "failed to initialize integrity check module: %d", 3102 ret); 3103 } 3104 #endif 3105 ret = btrfs_read_qgroup_config(fs_info); 3106 if (ret) 3107 goto fail_trans_kthread; 3108 3109 /* do not make disk changes in broken FS or nologreplay is given */ 3110 if (btrfs_super_log_root(disk_super) != 0 && 3111 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) { 3112 ret = btrfs_replay_log(fs_info, fs_devices); 3113 if (ret) { 3114 err = ret; 3115 goto fail_qgroup; 3116 } 3117 } 3118 3119 ret = btrfs_find_orphan_roots(tree_root); 3120 if (ret) 3121 goto fail_qgroup; 3122 3123 if (!(sb->s_flags & MS_RDONLY)) { 3124 ret = btrfs_cleanup_fs_roots(fs_info); 3125 if (ret) 3126 goto fail_qgroup; 3127 3128 mutex_lock(&fs_info->cleaner_mutex); 3129 ret = btrfs_recover_relocation(tree_root); 3130 mutex_unlock(&fs_info->cleaner_mutex); 3131 if (ret < 0) { 3132 btrfs_warn(fs_info, "failed to recover relocation: %d", 3133 ret); 3134 err = -EINVAL; 3135 goto fail_qgroup; 3136 } 3137 } 3138 3139 location.objectid = BTRFS_FS_TREE_OBJECTID; 3140 location.type = BTRFS_ROOT_ITEM_KEY; 3141 location.offset = 0; 3142 3143 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3144 if (IS_ERR(fs_info->fs_root)) { 3145 err = PTR_ERR(fs_info->fs_root); 3146 goto fail_qgroup; 3147 } 3148 3149 if (sb->s_flags & MS_RDONLY) 3150 return 0; 3151 3152 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3153 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3154 clear_free_space_tree = 1; 3155 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3156 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3157 btrfs_warn(fs_info, "free space tree is invalid"); 3158 clear_free_space_tree = 1; 3159 } 3160 3161 if (clear_free_space_tree) { 3162 btrfs_info(fs_info, "clearing free space tree"); 3163 ret = btrfs_clear_free_space_tree(fs_info); 3164 if (ret) { 3165 btrfs_warn(fs_info, 3166 "failed to clear free space tree: %d", ret); 3167 close_ctree(tree_root); 3168 return ret; 3169 } 3170 } 3171 3172 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) && 3173 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3174 btrfs_info(fs_info, "creating free space tree"); 3175 ret = btrfs_create_free_space_tree(fs_info); 3176 if (ret) { 3177 btrfs_warn(fs_info, 3178 "failed to create free space tree: %d", ret); 3179 close_ctree(tree_root); 3180 return ret; 3181 } 3182 } 3183 3184 down_read(&fs_info->cleanup_work_sem); 3185 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3186 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3187 up_read(&fs_info->cleanup_work_sem); 3188 close_ctree(tree_root); 3189 return ret; 3190 } 3191 up_read(&fs_info->cleanup_work_sem); 3192 3193 ret = btrfs_resume_balance_async(fs_info); 3194 if (ret) { 3195 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3196 close_ctree(tree_root); 3197 return ret; 3198 } 3199 3200 ret = btrfs_resume_dev_replace_async(fs_info); 3201 if (ret) { 3202 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3203 close_ctree(tree_root); 3204 return ret; 3205 } 3206 3207 btrfs_qgroup_rescan_resume(fs_info); 3208 3209 if (!fs_info->uuid_root) { 3210 btrfs_info(fs_info, "creating UUID tree"); 3211 ret = btrfs_create_uuid_tree(fs_info); 3212 if (ret) { 3213 btrfs_warn(fs_info, 3214 "failed to create the UUID tree: %d", ret); 3215 close_ctree(tree_root); 3216 return ret; 3217 } 3218 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) || 3219 fs_info->generation != 3220 btrfs_super_uuid_tree_generation(disk_super)) { 3221 btrfs_info(fs_info, "checking UUID tree"); 3222 ret = btrfs_check_uuid_tree(fs_info); 3223 if (ret) { 3224 btrfs_warn(fs_info, 3225 "failed to check the UUID tree: %d", ret); 3226 close_ctree(tree_root); 3227 return ret; 3228 } 3229 } else { 3230 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3231 } 3232 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3233 3234 /* 3235 * backuproot only affect mount behavior, and if open_ctree succeeded, 3236 * no need to keep the flag 3237 */ 3238 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3239 3240 return 0; 3241 3242 fail_qgroup: 3243 btrfs_free_qgroup_config(fs_info); 3244 fail_trans_kthread: 3245 kthread_stop(fs_info->transaction_kthread); 3246 btrfs_cleanup_transaction(fs_info->tree_root); 3247 btrfs_free_fs_roots(fs_info); 3248 fail_cleaner: 3249 kthread_stop(fs_info->cleaner_kthread); 3250 3251 /* 3252 * make sure we're done with the btree inode before we stop our 3253 * kthreads 3254 */ 3255 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3256 3257 fail_sysfs: 3258 btrfs_sysfs_remove_mounted(fs_info); 3259 3260 fail_fsdev_sysfs: 3261 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3262 3263 fail_block_groups: 3264 btrfs_put_block_group_cache(fs_info); 3265 btrfs_free_block_groups(fs_info); 3266 3267 fail_tree_roots: 3268 free_root_pointers(fs_info, 1); 3269 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3270 3271 fail_sb_buffer: 3272 btrfs_stop_all_workers(fs_info); 3273 fail_alloc: 3274 fail_iput: 3275 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3276 3277 iput(fs_info->btree_inode); 3278 fail_bio_counter: 3279 percpu_counter_destroy(&fs_info->bio_counter); 3280 fail_delalloc_bytes: 3281 percpu_counter_destroy(&fs_info->delalloc_bytes); 3282 fail_dirty_metadata_bytes: 3283 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3284 fail_bdi: 3285 bdi_destroy(&fs_info->bdi); 3286 fail_srcu: 3287 cleanup_srcu_struct(&fs_info->subvol_srcu); 3288 fail: 3289 btrfs_free_stripe_hash_table(fs_info); 3290 btrfs_close_devices(fs_info->fs_devices); 3291 return err; 3292 3293 recovery_tree_root: 3294 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT)) 3295 goto fail_tree_roots; 3296 3297 free_root_pointers(fs_info, 0); 3298 3299 /* don't use the log in recovery mode, it won't be valid */ 3300 btrfs_set_super_log_root(disk_super, 0); 3301 3302 /* we can't trust the free space cache either */ 3303 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3304 3305 ret = next_root_backup(fs_info, fs_info->super_copy, 3306 &num_backups_tried, &backup_index); 3307 if (ret == -1) 3308 goto fail_block_groups; 3309 goto retry_root_backup; 3310 } 3311 3312 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3313 { 3314 if (uptodate) { 3315 set_buffer_uptodate(bh); 3316 } else { 3317 struct btrfs_device *device = (struct btrfs_device *) 3318 bh->b_private; 3319 3320 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3321 "lost page write due to IO error on %s", 3322 rcu_str_deref(device->name)); 3323 /* note, we don't set_buffer_write_io_error because we have 3324 * our own ways of dealing with the IO errors 3325 */ 3326 clear_buffer_uptodate(bh); 3327 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3328 } 3329 unlock_buffer(bh); 3330 put_bh(bh); 3331 } 3332 3333 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3334 struct buffer_head **bh_ret) 3335 { 3336 struct buffer_head *bh; 3337 struct btrfs_super_block *super; 3338 u64 bytenr; 3339 3340 bytenr = btrfs_sb_offset(copy_num); 3341 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3342 return -EINVAL; 3343 3344 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3345 /* 3346 * If we fail to read from the underlying devices, as of now 3347 * the best option we have is to mark it EIO. 3348 */ 3349 if (!bh) 3350 return -EIO; 3351 3352 super = (struct btrfs_super_block *)bh->b_data; 3353 if (btrfs_super_bytenr(super) != bytenr || 3354 btrfs_super_magic(super) != BTRFS_MAGIC) { 3355 brelse(bh); 3356 return -EINVAL; 3357 } 3358 3359 *bh_ret = bh; 3360 return 0; 3361 } 3362 3363 3364 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3365 { 3366 struct buffer_head *bh; 3367 struct buffer_head *latest = NULL; 3368 struct btrfs_super_block *super; 3369 int i; 3370 u64 transid = 0; 3371 int ret = -EINVAL; 3372 3373 /* we would like to check all the supers, but that would make 3374 * a btrfs mount succeed after a mkfs from a different FS. 3375 * So, we need to add a special mount option to scan for 3376 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3377 */ 3378 for (i = 0; i < 1; i++) { 3379 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3380 if (ret) 3381 continue; 3382 3383 super = (struct btrfs_super_block *)bh->b_data; 3384 3385 if (!latest || btrfs_super_generation(super) > transid) { 3386 brelse(latest); 3387 latest = bh; 3388 transid = btrfs_super_generation(super); 3389 } else { 3390 brelse(bh); 3391 } 3392 } 3393 3394 if (!latest) 3395 return ERR_PTR(ret); 3396 3397 return latest; 3398 } 3399 3400 /* 3401 * this should be called twice, once with wait == 0 and 3402 * once with wait == 1. When wait == 0 is done, all the buffer heads 3403 * we write are pinned. 3404 * 3405 * They are released when wait == 1 is done. 3406 * max_mirrors must be the same for both runs, and it indicates how 3407 * many supers on this one device should be written. 3408 * 3409 * max_mirrors == 0 means to write them all. 3410 */ 3411 static int write_dev_supers(struct btrfs_device *device, 3412 struct btrfs_super_block *sb, 3413 int do_barriers, int wait, int max_mirrors) 3414 { 3415 struct buffer_head *bh; 3416 int i; 3417 int ret; 3418 int errors = 0; 3419 u32 crc; 3420 u64 bytenr; 3421 3422 if (max_mirrors == 0) 3423 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3424 3425 for (i = 0; i < max_mirrors; i++) { 3426 bytenr = btrfs_sb_offset(i); 3427 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3428 device->commit_total_bytes) 3429 break; 3430 3431 if (wait) { 3432 bh = __find_get_block(device->bdev, bytenr / 4096, 3433 BTRFS_SUPER_INFO_SIZE); 3434 if (!bh) { 3435 errors++; 3436 continue; 3437 } 3438 wait_on_buffer(bh); 3439 if (!buffer_uptodate(bh)) 3440 errors++; 3441 3442 /* drop our reference */ 3443 brelse(bh); 3444 3445 /* drop the reference from the wait == 0 run */ 3446 brelse(bh); 3447 continue; 3448 } else { 3449 btrfs_set_super_bytenr(sb, bytenr); 3450 3451 crc = ~(u32)0; 3452 crc = btrfs_csum_data((char *)sb + 3453 BTRFS_CSUM_SIZE, crc, 3454 BTRFS_SUPER_INFO_SIZE - 3455 BTRFS_CSUM_SIZE); 3456 btrfs_csum_final(crc, sb->csum); 3457 3458 /* 3459 * one reference for us, and we leave it for the 3460 * caller 3461 */ 3462 bh = __getblk(device->bdev, bytenr / 4096, 3463 BTRFS_SUPER_INFO_SIZE); 3464 if (!bh) { 3465 btrfs_err(device->dev_root->fs_info, 3466 "couldn't get super buffer head for bytenr %llu", 3467 bytenr); 3468 errors++; 3469 continue; 3470 } 3471 3472 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3473 3474 /* one reference for submit_bh */ 3475 get_bh(bh); 3476 3477 set_buffer_uptodate(bh); 3478 lock_buffer(bh); 3479 bh->b_end_io = btrfs_end_buffer_write_sync; 3480 bh->b_private = device; 3481 } 3482 3483 /* 3484 * we fua the first super. The others we allow 3485 * to go down lazy. 3486 */ 3487 if (i == 0) 3488 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh); 3489 else 3490 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh); 3491 if (ret) 3492 errors++; 3493 } 3494 return errors < i ? 0 : -1; 3495 } 3496 3497 /* 3498 * endio for the write_dev_flush, this will wake anyone waiting 3499 * for the barrier when it is done 3500 */ 3501 static void btrfs_end_empty_barrier(struct bio *bio) 3502 { 3503 if (bio->bi_private) 3504 complete(bio->bi_private); 3505 bio_put(bio); 3506 } 3507 3508 /* 3509 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3510 * sent down. With wait == 1, it waits for the previous flush. 3511 * 3512 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3513 * capable 3514 */ 3515 static int write_dev_flush(struct btrfs_device *device, int wait) 3516 { 3517 struct bio *bio; 3518 int ret = 0; 3519 3520 if (device->nobarriers) 3521 return 0; 3522 3523 if (wait) { 3524 bio = device->flush_bio; 3525 if (!bio) 3526 return 0; 3527 3528 wait_for_completion(&device->flush_wait); 3529 3530 if (bio->bi_error) { 3531 ret = bio->bi_error; 3532 btrfs_dev_stat_inc_and_print(device, 3533 BTRFS_DEV_STAT_FLUSH_ERRS); 3534 } 3535 3536 /* drop the reference from the wait == 0 run */ 3537 bio_put(bio); 3538 device->flush_bio = NULL; 3539 3540 return ret; 3541 } 3542 3543 /* 3544 * one reference for us, and we leave it for the 3545 * caller 3546 */ 3547 device->flush_bio = NULL; 3548 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3549 if (!bio) 3550 return -ENOMEM; 3551 3552 bio->bi_end_io = btrfs_end_empty_barrier; 3553 bio->bi_bdev = device->bdev; 3554 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 3555 init_completion(&device->flush_wait); 3556 bio->bi_private = &device->flush_wait; 3557 device->flush_bio = bio; 3558 3559 bio_get(bio); 3560 btrfsic_submit_bio(bio); 3561 3562 return 0; 3563 } 3564 3565 /* 3566 * send an empty flush down to each device in parallel, 3567 * then wait for them 3568 */ 3569 static int barrier_all_devices(struct btrfs_fs_info *info) 3570 { 3571 struct list_head *head; 3572 struct btrfs_device *dev; 3573 int errors_send = 0; 3574 int errors_wait = 0; 3575 int ret; 3576 3577 /* send down all the barriers */ 3578 head = &info->fs_devices->devices; 3579 list_for_each_entry_rcu(dev, head, dev_list) { 3580 if (dev->missing) 3581 continue; 3582 if (!dev->bdev) { 3583 errors_send++; 3584 continue; 3585 } 3586 if (!dev->in_fs_metadata || !dev->writeable) 3587 continue; 3588 3589 ret = write_dev_flush(dev, 0); 3590 if (ret) 3591 errors_send++; 3592 } 3593 3594 /* wait for all the barriers */ 3595 list_for_each_entry_rcu(dev, head, dev_list) { 3596 if (dev->missing) 3597 continue; 3598 if (!dev->bdev) { 3599 errors_wait++; 3600 continue; 3601 } 3602 if (!dev->in_fs_metadata || !dev->writeable) 3603 continue; 3604 3605 ret = write_dev_flush(dev, 1); 3606 if (ret) 3607 errors_wait++; 3608 } 3609 if (errors_send > info->num_tolerated_disk_barrier_failures || 3610 errors_wait > info->num_tolerated_disk_barrier_failures) 3611 return -EIO; 3612 return 0; 3613 } 3614 3615 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3616 { 3617 int raid_type; 3618 int min_tolerated = INT_MAX; 3619 3620 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3621 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3622 min_tolerated = min(min_tolerated, 3623 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3624 tolerated_failures); 3625 3626 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3627 if (raid_type == BTRFS_RAID_SINGLE) 3628 continue; 3629 if (!(flags & btrfs_raid_group[raid_type])) 3630 continue; 3631 min_tolerated = min(min_tolerated, 3632 btrfs_raid_array[raid_type]. 3633 tolerated_failures); 3634 } 3635 3636 if (min_tolerated == INT_MAX) { 3637 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3638 min_tolerated = 0; 3639 } 3640 3641 return min_tolerated; 3642 } 3643 3644 int btrfs_calc_num_tolerated_disk_barrier_failures( 3645 struct btrfs_fs_info *fs_info) 3646 { 3647 struct btrfs_ioctl_space_info space; 3648 struct btrfs_space_info *sinfo; 3649 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3650 BTRFS_BLOCK_GROUP_SYSTEM, 3651 BTRFS_BLOCK_GROUP_METADATA, 3652 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3653 int i; 3654 int c; 3655 int num_tolerated_disk_barrier_failures = 3656 (int)fs_info->fs_devices->num_devices; 3657 3658 for (i = 0; i < ARRAY_SIZE(types); i++) { 3659 struct btrfs_space_info *tmp; 3660 3661 sinfo = NULL; 3662 rcu_read_lock(); 3663 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3664 if (tmp->flags == types[i]) { 3665 sinfo = tmp; 3666 break; 3667 } 3668 } 3669 rcu_read_unlock(); 3670 3671 if (!sinfo) 3672 continue; 3673 3674 down_read(&sinfo->groups_sem); 3675 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3676 u64 flags; 3677 3678 if (list_empty(&sinfo->block_groups[c])) 3679 continue; 3680 3681 btrfs_get_block_group_info(&sinfo->block_groups[c], 3682 &space); 3683 if (space.total_bytes == 0 || space.used_bytes == 0) 3684 continue; 3685 flags = space.flags; 3686 3687 num_tolerated_disk_barrier_failures = min( 3688 num_tolerated_disk_barrier_failures, 3689 btrfs_get_num_tolerated_disk_barrier_failures( 3690 flags)); 3691 } 3692 up_read(&sinfo->groups_sem); 3693 } 3694 3695 return num_tolerated_disk_barrier_failures; 3696 } 3697 3698 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3699 { 3700 struct list_head *head; 3701 struct btrfs_device *dev; 3702 struct btrfs_super_block *sb; 3703 struct btrfs_dev_item *dev_item; 3704 int ret; 3705 int do_barriers; 3706 int max_errors; 3707 int total_errors = 0; 3708 u64 flags; 3709 3710 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER); 3711 backup_super_roots(root->fs_info); 3712 3713 sb = root->fs_info->super_for_commit; 3714 dev_item = &sb->dev_item; 3715 3716 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3717 head = &root->fs_info->fs_devices->devices; 3718 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3719 3720 if (do_barriers) { 3721 ret = barrier_all_devices(root->fs_info); 3722 if (ret) { 3723 mutex_unlock( 3724 &root->fs_info->fs_devices->device_list_mutex); 3725 btrfs_handle_fs_error(root->fs_info, ret, 3726 "errors while submitting device barriers."); 3727 return ret; 3728 } 3729 } 3730 3731 list_for_each_entry_rcu(dev, head, dev_list) { 3732 if (!dev->bdev) { 3733 total_errors++; 3734 continue; 3735 } 3736 if (!dev->in_fs_metadata || !dev->writeable) 3737 continue; 3738 3739 btrfs_set_stack_device_generation(dev_item, 0); 3740 btrfs_set_stack_device_type(dev_item, dev->type); 3741 btrfs_set_stack_device_id(dev_item, dev->devid); 3742 btrfs_set_stack_device_total_bytes(dev_item, 3743 dev->commit_total_bytes); 3744 btrfs_set_stack_device_bytes_used(dev_item, 3745 dev->commit_bytes_used); 3746 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3747 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3748 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3749 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3750 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3751 3752 flags = btrfs_super_flags(sb); 3753 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3754 3755 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3756 if (ret) 3757 total_errors++; 3758 } 3759 if (total_errors > max_errors) { 3760 btrfs_err(root->fs_info, "%d errors while writing supers", 3761 total_errors); 3762 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3763 3764 /* FUA is masked off if unsupported and can't be the reason */ 3765 btrfs_handle_fs_error(root->fs_info, -EIO, 3766 "%d errors while writing supers", total_errors); 3767 return -EIO; 3768 } 3769 3770 total_errors = 0; 3771 list_for_each_entry_rcu(dev, head, dev_list) { 3772 if (!dev->bdev) 3773 continue; 3774 if (!dev->in_fs_metadata || !dev->writeable) 3775 continue; 3776 3777 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3778 if (ret) 3779 total_errors++; 3780 } 3781 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3782 if (total_errors > max_errors) { 3783 btrfs_handle_fs_error(root->fs_info, -EIO, 3784 "%d errors while writing supers", total_errors); 3785 return -EIO; 3786 } 3787 return 0; 3788 } 3789 3790 int write_ctree_super(struct btrfs_trans_handle *trans, 3791 struct btrfs_root *root, int max_mirrors) 3792 { 3793 return write_all_supers(root, max_mirrors); 3794 } 3795 3796 /* Drop a fs root from the radix tree and free it. */ 3797 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3798 struct btrfs_root *root) 3799 { 3800 spin_lock(&fs_info->fs_roots_radix_lock); 3801 radix_tree_delete(&fs_info->fs_roots_radix, 3802 (unsigned long)root->root_key.objectid); 3803 spin_unlock(&fs_info->fs_roots_radix_lock); 3804 3805 if (btrfs_root_refs(&root->root_item) == 0) 3806 synchronize_srcu(&fs_info->subvol_srcu); 3807 3808 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3809 btrfs_free_log(NULL, root); 3810 if (root->reloc_root) { 3811 free_extent_buffer(root->reloc_root->node); 3812 free_extent_buffer(root->reloc_root->commit_root); 3813 btrfs_put_fs_root(root->reloc_root); 3814 root->reloc_root = NULL; 3815 } 3816 } 3817 3818 if (root->free_ino_pinned) 3819 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3820 if (root->free_ino_ctl) 3821 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3822 free_fs_root(root); 3823 } 3824 3825 static void free_fs_root(struct btrfs_root *root) 3826 { 3827 iput(root->ino_cache_inode); 3828 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3829 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3830 root->orphan_block_rsv = NULL; 3831 if (root->anon_dev) 3832 free_anon_bdev(root->anon_dev); 3833 if (root->subv_writers) 3834 btrfs_free_subvolume_writers(root->subv_writers); 3835 free_extent_buffer(root->node); 3836 free_extent_buffer(root->commit_root); 3837 kfree(root->free_ino_ctl); 3838 kfree(root->free_ino_pinned); 3839 kfree(root->name); 3840 btrfs_put_fs_root(root); 3841 } 3842 3843 void btrfs_free_fs_root(struct btrfs_root *root) 3844 { 3845 free_fs_root(root); 3846 } 3847 3848 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3849 { 3850 u64 root_objectid = 0; 3851 struct btrfs_root *gang[8]; 3852 int i = 0; 3853 int err = 0; 3854 unsigned int ret = 0; 3855 int index; 3856 3857 while (1) { 3858 index = srcu_read_lock(&fs_info->subvol_srcu); 3859 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3860 (void **)gang, root_objectid, 3861 ARRAY_SIZE(gang)); 3862 if (!ret) { 3863 srcu_read_unlock(&fs_info->subvol_srcu, index); 3864 break; 3865 } 3866 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3867 3868 for (i = 0; i < ret; i++) { 3869 /* Avoid to grab roots in dead_roots */ 3870 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3871 gang[i] = NULL; 3872 continue; 3873 } 3874 /* grab all the search result for later use */ 3875 gang[i] = btrfs_grab_fs_root(gang[i]); 3876 } 3877 srcu_read_unlock(&fs_info->subvol_srcu, index); 3878 3879 for (i = 0; i < ret; i++) { 3880 if (!gang[i]) 3881 continue; 3882 root_objectid = gang[i]->root_key.objectid; 3883 err = btrfs_orphan_cleanup(gang[i]); 3884 if (err) 3885 break; 3886 btrfs_put_fs_root(gang[i]); 3887 } 3888 root_objectid++; 3889 } 3890 3891 /* release the uncleaned roots due to error */ 3892 for (; i < ret; i++) { 3893 if (gang[i]) 3894 btrfs_put_fs_root(gang[i]); 3895 } 3896 return err; 3897 } 3898 3899 int btrfs_commit_super(struct btrfs_root *root) 3900 { 3901 struct btrfs_trans_handle *trans; 3902 3903 mutex_lock(&root->fs_info->cleaner_mutex); 3904 btrfs_run_delayed_iputs(root); 3905 mutex_unlock(&root->fs_info->cleaner_mutex); 3906 wake_up_process(root->fs_info->cleaner_kthread); 3907 3908 /* wait until ongoing cleanup work done */ 3909 down_write(&root->fs_info->cleanup_work_sem); 3910 up_write(&root->fs_info->cleanup_work_sem); 3911 3912 trans = btrfs_join_transaction(root); 3913 if (IS_ERR(trans)) 3914 return PTR_ERR(trans); 3915 return btrfs_commit_transaction(trans, root); 3916 } 3917 3918 void close_ctree(struct btrfs_root *root) 3919 { 3920 struct btrfs_fs_info *fs_info = root->fs_info; 3921 int ret; 3922 3923 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3924 3925 /* wait for the qgroup rescan worker to stop */ 3926 btrfs_qgroup_wait_for_completion(fs_info, false); 3927 3928 /* wait for the uuid_scan task to finish */ 3929 down(&fs_info->uuid_tree_rescan_sem); 3930 /* avoid complains from lockdep et al., set sem back to initial state */ 3931 up(&fs_info->uuid_tree_rescan_sem); 3932 3933 /* pause restriper - we want to resume on mount */ 3934 btrfs_pause_balance(fs_info); 3935 3936 btrfs_dev_replace_suspend_for_unmount(fs_info); 3937 3938 btrfs_scrub_cancel(fs_info); 3939 3940 /* wait for any defraggers to finish */ 3941 wait_event(fs_info->transaction_wait, 3942 (atomic_read(&fs_info->defrag_running) == 0)); 3943 3944 /* clear out the rbtree of defraggable inodes */ 3945 btrfs_cleanup_defrag_inodes(fs_info); 3946 3947 cancel_work_sync(&fs_info->async_reclaim_work); 3948 3949 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3950 /* 3951 * If the cleaner thread is stopped and there are 3952 * block groups queued for removal, the deletion will be 3953 * skipped when we quit the cleaner thread. 3954 */ 3955 btrfs_delete_unused_bgs(root->fs_info); 3956 3957 ret = btrfs_commit_super(root); 3958 if (ret) 3959 btrfs_err(fs_info, "commit super ret %d", ret); 3960 } 3961 3962 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3963 btrfs_error_commit_super(root); 3964 3965 kthread_stop(fs_info->transaction_kthread); 3966 kthread_stop(fs_info->cleaner_kthread); 3967 3968 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3969 3970 btrfs_free_qgroup_config(fs_info); 3971 3972 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3973 btrfs_info(fs_info, "at unmount delalloc count %lld", 3974 percpu_counter_sum(&fs_info->delalloc_bytes)); 3975 } 3976 3977 btrfs_sysfs_remove_mounted(fs_info); 3978 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3979 3980 btrfs_free_fs_roots(fs_info); 3981 3982 btrfs_put_block_group_cache(fs_info); 3983 3984 btrfs_free_block_groups(fs_info); 3985 3986 /* 3987 * we must make sure there is not any read request to 3988 * submit after we stopping all workers. 3989 */ 3990 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3991 btrfs_stop_all_workers(fs_info); 3992 3993 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3994 free_root_pointers(fs_info, 1); 3995 3996 iput(fs_info->btree_inode); 3997 3998 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3999 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY)) 4000 btrfsic_unmount(root, fs_info->fs_devices); 4001 #endif 4002 4003 btrfs_close_devices(fs_info->fs_devices); 4004 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4005 4006 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4007 percpu_counter_destroy(&fs_info->delalloc_bytes); 4008 percpu_counter_destroy(&fs_info->bio_counter); 4009 bdi_destroy(&fs_info->bdi); 4010 cleanup_srcu_struct(&fs_info->subvol_srcu); 4011 4012 btrfs_free_stripe_hash_table(fs_info); 4013 4014 __btrfs_free_block_rsv(root->orphan_block_rsv); 4015 root->orphan_block_rsv = NULL; 4016 4017 lock_chunks(root); 4018 while (!list_empty(&fs_info->pinned_chunks)) { 4019 struct extent_map *em; 4020 4021 em = list_first_entry(&fs_info->pinned_chunks, 4022 struct extent_map, list); 4023 list_del_init(&em->list); 4024 free_extent_map(em); 4025 } 4026 unlock_chunks(root); 4027 } 4028 4029 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4030 int atomic) 4031 { 4032 int ret; 4033 struct inode *btree_inode = buf->pages[0]->mapping->host; 4034 4035 ret = extent_buffer_uptodate(buf); 4036 if (!ret) 4037 return ret; 4038 4039 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4040 parent_transid, atomic); 4041 if (ret == -EAGAIN) 4042 return ret; 4043 return !ret; 4044 } 4045 4046 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4047 { 4048 struct btrfs_root *root; 4049 u64 transid = btrfs_header_generation(buf); 4050 int was_dirty; 4051 4052 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4053 /* 4054 * This is a fast path so only do this check if we have sanity tests 4055 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4056 * outside of the sanity tests. 4057 */ 4058 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4059 return; 4060 #endif 4061 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4062 btrfs_assert_tree_locked(buf); 4063 if (transid != root->fs_info->generation) 4064 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4065 buf->start, transid, root->fs_info->generation); 4066 was_dirty = set_extent_buffer_dirty(buf); 4067 if (!was_dirty) 4068 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 4069 buf->len, 4070 root->fs_info->dirty_metadata_batch); 4071 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4072 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4073 btrfs_print_leaf(root, buf); 4074 ASSERT(0); 4075 } 4076 #endif 4077 } 4078 4079 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 4080 int flush_delayed) 4081 { 4082 /* 4083 * looks as though older kernels can get into trouble with 4084 * this code, they end up stuck in balance_dirty_pages forever 4085 */ 4086 int ret; 4087 4088 if (current->flags & PF_MEMALLOC) 4089 return; 4090 4091 if (flush_delayed) 4092 btrfs_balance_delayed_items(root); 4093 4094 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 4095 BTRFS_DIRTY_METADATA_THRESH); 4096 if (ret > 0) { 4097 balance_dirty_pages_ratelimited( 4098 root->fs_info->btree_inode->i_mapping); 4099 } 4100 } 4101 4102 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4103 { 4104 __btrfs_btree_balance_dirty(root, 1); 4105 } 4106 4107 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4108 { 4109 __btrfs_btree_balance_dirty(root, 0); 4110 } 4111 4112 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4113 { 4114 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4115 return btree_read_extent_buffer_pages(root, buf, parent_transid); 4116 } 4117 4118 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4119 int read_only) 4120 { 4121 struct btrfs_super_block *sb = fs_info->super_copy; 4122 u64 nodesize = btrfs_super_nodesize(sb); 4123 u64 sectorsize = btrfs_super_sectorsize(sb); 4124 int ret = 0; 4125 4126 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4127 btrfs_err(fs_info, "no valid FS found"); 4128 ret = -EINVAL; 4129 } 4130 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4131 btrfs_warn(fs_info, "unrecognized super flag: %llu", 4132 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4133 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4134 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 4135 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4136 ret = -EINVAL; 4137 } 4138 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4139 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4140 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4141 ret = -EINVAL; 4142 } 4143 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4144 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4145 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4146 ret = -EINVAL; 4147 } 4148 4149 /* 4150 * Check sectorsize and nodesize first, other check will need it. 4151 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4152 */ 4153 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4154 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4155 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4156 ret = -EINVAL; 4157 } 4158 /* Only PAGE SIZE is supported yet */ 4159 if (sectorsize != PAGE_SIZE) { 4160 btrfs_err(fs_info, 4161 "sectorsize %llu not supported yet, only support %lu", 4162 sectorsize, PAGE_SIZE); 4163 ret = -EINVAL; 4164 } 4165 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4166 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4167 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4168 ret = -EINVAL; 4169 } 4170 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4171 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4172 le32_to_cpu(sb->__unused_leafsize), nodesize); 4173 ret = -EINVAL; 4174 } 4175 4176 /* Root alignment check */ 4177 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4178 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4179 btrfs_super_root(sb)); 4180 ret = -EINVAL; 4181 } 4182 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4183 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4184 btrfs_super_chunk_root(sb)); 4185 ret = -EINVAL; 4186 } 4187 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4188 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4189 btrfs_super_log_root(sb)); 4190 ret = -EINVAL; 4191 } 4192 4193 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4194 btrfs_err(fs_info, 4195 "dev_item UUID does not match fsid: %pU != %pU", 4196 fs_info->fsid, sb->dev_item.fsid); 4197 ret = -EINVAL; 4198 } 4199 4200 /* 4201 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4202 * done later 4203 */ 4204 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4205 btrfs_err(fs_info, "bytes_used is too small %llu", 4206 btrfs_super_bytes_used(sb)); 4207 ret = -EINVAL; 4208 } 4209 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4210 btrfs_err(fs_info, "invalid stripesize %u", 4211 btrfs_super_stripesize(sb)); 4212 ret = -EINVAL; 4213 } 4214 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4215 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4216 btrfs_super_num_devices(sb)); 4217 if (btrfs_super_num_devices(sb) == 0) { 4218 btrfs_err(fs_info, "number of devices is 0"); 4219 ret = -EINVAL; 4220 } 4221 4222 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4223 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4224 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4225 ret = -EINVAL; 4226 } 4227 4228 /* 4229 * Obvious sys_chunk_array corruptions, it must hold at least one key 4230 * and one chunk 4231 */ 4232 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4233 btrfs_err(fs_info, "system chunk array too big %u > %u", 4234 btrfs_super_sys_array_size(sb), 4235 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4236 ret = -EINVAL; 4237 } 4238 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4239 + sizeof(struct btrfs_chunk)) { 4240 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4241 btrfs_super_sys_array_size(sb), 4242 sizeof(struct btrfs_disk_key) 4243 + sizeof(struct btrfs_chunk)); 4244 ret = -EINVAL; 4245 } 4246 4247 /* 4248 * The generation is a global counter, we'll trust it more than the others 4249 * but it's still possible that it's the one that's wrong. 4250 */ 4251 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4252 btrfs_warn(fs_info, 4253 "suspicious: generation < chunk_root_generation: %llu < %llu", 4254 btrfs_super_generation(sb), 4255 btrfs_super_chunk_root_generation(sb)); 4256 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4257 && btrfs_super_cache_generation(sb) != (u64)-1) 4258 btrfs_warn(fs_info, 4259 "suspicious: generation < cache_generation: %llu < %llu", 4260 btrfs_super_generation(sb), 4261 btrfs_super_cache_generation(sb)); 4262 4263 return ret; 4264 } 4265 4266 static void btrfs_error_commit_super(struct btrfs_root *root) 4267 { 4268 mutex_lock(&root->fs_info->cleaner_mutex); 4269 btrfs_run_delayed_iputs(root); 4270 mutex_unlock(&root->fs_info->cleaner_mutex); 4271 4272 down_write(&root->fs_info->cleanup_work_sem); 4273 up_write(&root->fs_info->cleanup_work_sem); 4274 4275 /* cleanup FS via transaction */ 4276 btrfs_cleanup_transaction(root); 4277 } 4278 4279 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4280 { 4281 struct btrfs_ordered_extent *ordered; 4282 4283 spin_lock(&root->ordered_extent_lock); 4284 /* 4285 * This will just short circuit the ordered completion stuff which will 4286 * make sure the ordered extent gets properly cleaned up. 4287 */ 4288 list_for_each_entry(ordered, &root->ordered_extents, 4289 root_extent_list) 4290 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4291 spin_unlock(&root->ordered_extent_lock); 4292 } 4293 4294 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4295 { 4296 struct btrfs_root *root; 4297 struct list_head splice; 4298 4299 INIT_LIST_HEAD(&splice); 4300 4301 spin_lock(&fs_info->ordered_root_lock); 4302 list_splice_init(&fs_info->ordered_roots, &splice); 4303 while (!list_empty(&splice)) { 4304 root = list_first_entry(&splice, struct btrfs_root, 4305 ordered_root); 4306 list_move_tail(&root->ordered_root, 4307 &fs_info->ordered_roots); 4308 4309 spin_unlock(&fs_info->ordered_root_lock); 4310 btrfs_destroy_ordered_extents(root); 4311 4312 cond_resched(); 4313 spin_lock(&fs_info->ordered_root_lock); 4314 } 4315 spin_unlock(&fs_info->ordered_root_lock); 4316 } 4317 4318 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4319 struct btrfs_root *root) 4320 { 4321 struct rb_node *node; 4322 struct btrfs_delayed_ref_root *delayed_refs; 4323 struct btrfs_delayed_ref_node *ref; 4324 int ret = 0; 4325 4326 delayed_refs = &trans->delayed_refs; 4327 4328 spin_lock(&delayed_refs->lock); 4329 if (atomic_read(&delayed_refs->num_entries) == 0) { 4330 spin_unlock(&delayed_refs->lock); 4331 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4332 return ret; 4333 } 4334 4335 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4336 struct btrfs_delayed_ref_head *head; 4337 struct btrfs_delayed_ref_node *tmp; 4338 bool pin_bytes = false; 4339 4340 head = rb_entry(node, struct btrfs_delayed_ref_head, 4341 href_node); 4342 if (!mutex_trylock(&head->mutex)) { 4343 atomic_inc(&head->node.refs); 4344 spin_unlock(&delayed_refs->lock); 4345 4346 mutex_lock(&head->mutex); 4347 mutex_unlock(&head->mutex); 4348 btrfs_put_delayed_ref(&head->node); 4349 spin_lock(&delayed_refs->lock); 4350 continue; 4351 } 4352 spin_lock(&head->lock); 4353 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4354 list) { 4355 ref->in_tree = 0; 4356 list_del(&ref->list); 4357 atomic_dec(&delayed_refs->num_entries); 4358 btrfs_put_delayed_ref(ref); 4359 } 4360 if (head->must_insert_reserved) 4361 pin_bytes = true; 4362 btrfs_free_delayed_extent_op(head->extent_op); 4363 delayed_refs->num_heads--; 4364 if (head->processing == 0) 4365 delayed_refs->num_heads_ready--; 4366 atomic_dec(&delayed_refs->num_entries); 4367 head->node.in_tree = 0; 4368 rb_erase(&head->href_node, &delayed_refs->href_root); 4369 spin_unlock(&head->lock); 4370 spin_unlock(&delayed_refs->lock); 4371 mutex_unlock(&head->mutex); 4372 4373 if (pin_bytes) 4374 btrfs_pin_extent(root, head->node.bytenr, 4375 head->node.num_bytes, 1); 4376 btrfs_put_delayed_ref(&head->node); 4377 cond_resched(); 4378 spin_lock(&delayed_refs->lock); 4379 } 4380 4381 spin_unlock(&delayed_refs->lock); 4382 4383 return ret; 4384 } 4385 4386 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4387 { 4388 struct btrfs_inode *btrfs_inode; 4389 struct list_head splice; 4390 4391 INIT_LIST_HEAD(&splice); 4392 4393 spin_lock(&root->delalloc_lock); 4394 list_splice_init(&root->delalloc_inodes, &splice); 4395 4396 while (!list_empty(&splice)) { 4397 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4398 delalloc_inodes); 4399 4400 list_del_init(&btrfs_inode->delalloc_inodes); 4401 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4402 &btrfs_inode->runtime_flags); 4403 spin_unlock(&root->delalloc_lock); 4404 4405 btrfs_invalidate_inodes(btrfs_inode->root); 4406 4407 spin_lock(&root->delalloc_lock); 4408 } 4409 4410 spin_unlock(&root->delalloc_lock); 4411 } 4412 4413 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4414 { 4415 struct btrfs_root *root; 4416 struct list_head splice; 4417 4418 INIT_LIST_HEAD(&splice); 4419 4420 spin_lock(&fs_info->delalloc_root_lock); 4421 list_splice_init(&fs_info->delalloc_roots, &splice); 4422 while (!list_empty(&splice)) { 4423 root = list_first_entry(&splice, struct btrfs_root, 4424 delalloc_root); 4425 list_del_init(&root->delalloc_root); 4426 root = btrfs_grab_fs_root(root); 4427 BUG_ON(!root); 4428 spin_unlock(&fs_info->delalloc_root_lock); 4429 4430 btrfs_destroy_delalloc_inodes(root); 4431 btrfs_put_fs_root(root); 4432 4433 spin_lock(&fs_info->delalloc_root_lock); 4434 } 4435 spin_unlock(&fs_info->delalloc_root_lock); 4436 } 4437 4438 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4439 struct extent_io_tree *dirty_pages, 4440 int mark) 4441 { 4442 int ret; 4443 struct extent_buffer *eb; 4444 u64 start = 0; 4445 u64 end; 4446 4447 while (1) { 4448 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4449 mark, NULL); 4450 if (ret) 4451 break; 4452 4453 clear_extent_bits(dirty_pages, start, end, mark); 4454 while (start <= end) { 4455 eb = btrfs_find_tree_block(root->fs_info, start); 4456 start += root->nodesize; 4457 if (!eb) 4458 continue; 4459 wait_on_extent_buffer_writeback(eb); 4460 4461 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4462 &eb->bflags)) 4463 clear_extent_buffer_dirty(eb); 4464 free_extent_buffer_stale(eb); 4465 } 4466 } 4467 4468 return ret; 4469 } 4470 4471 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4472 struct extent_io_tree *pinned_extents) 4473 { 4474 struct extent_io_tree *unpin; 4475 u64 start; 4476 u64 end; 4477 int ret; 4478 bool loop = true; 4479 4480 unpin = pinned_extents; 4481 again: 4482 while (1) { 4483 ret = find_first_extent_bit(unpin, 0, &start, &end, 4484 EXTENT_DIRTY, NULL); 4485 if (ret) 4486 break; 4487 4488 clear_extent_dirty(unpin, start, end); 4489 btrfs_error_unpin_extent_range(root, start, end); 4490 cond_resched(); 4491 } 4492 4493 if (loop) { 4494 if (unpin == &root->fs_info->freed_extents[0]) 4495 unpin = &root->fs_info->freed_extents[1]; 4496 else 4497 unpin = &root->fs_info->freed_extents[0]; 4498 loop = false; 4499 goto again; 4500 } 4501 4502 return 0; 4503 } 4504 4505 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4506 { 4507 struct inode *inode; 4508 4509 inode = cache->io_ctl.inode; 4510 if (inode) { 4511 invalidate_inode_pages2(inode->i_mapping); 4512 BTRFS_I(inode)->generation = 0; 4513 cache->io_ctl.inode = NULL; 4514 iput(inode); 4515 } 4516 btrfs_put_block_group(cache); 4517 } 4518 4519 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4520 struct btrfs_root *root) 4521 { 4522 struct btrfs_block_group_cache *cache; 4523 4524 spin_lock(&cur_trans->dirty_bgs_lock); 4525 while (!list_empty(&cur_trans->dirty_bgs)) { 4526 cache = list_first_entry(&cur_trans->dirty_bgs, 4527 struct btrfs_block_group_cache, 4528 dirty_list); 4529 if (!cache) { 4530 btrfs_err(root->fs_info, 4531 "orphan block group dirty_bgs list"); 4532 spin_unlock(&cur_trans->dirty_bgs_lock); 4533 return; 4534 } 4535 4536 if (!list_empty(&cache->io_list)) { 4537 spin_unlock(&cur_trans->dirty_bgs_lock); 4538 list_del_init(&cache->io_list); 4539 btrfs_cleanup_bg_io(cache); 4540 spin_lock(&cur_trans->dirty_bgs_lock); 4541 } 4542 4543 list_del_init(&cache->dirty_list); 4544 spin_lock(&cache->lock); 4545 cache->disk_cache_state = BTRFS_DC_ERROR; 4546 spin_unlock(&cache->lock); 4547 4548 spin_unlock(&cur_trans->dirty_bgs_lock); 4549 btrfs_put_block_group(cache); 4550 spin_lock(&cur_trans->dirty_bgs_lock); 4551 } 4552 spin_unlock(&cur_trans->dirty_bgs_lock); 4553 4554 while (!list_empty(&cur_trans->io_bgs)) { 4555 cache = list_first_entry(&cur_trans->io_bgs, 4556 struct btrfs_block_group_cache, 4557 io_list); 4558 if (!cache) { 4559 btrfs_err(root->fs_info, 4560 "orphan block group on io_bgs list"); 4561 return; 4562 } 4563 4564 list_del_init(&cache->io_list); 4565 spin_lock(&cache->lock); 4566 cache->disk_cache_state = BTRFS_DC_ERROR; 4567 spin_unlock(&cache->lock); 4568 btrfs_cleanup_bg_io(cache); 4569 } 4570 } 4571 4572 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4573 struct btrfs_root *root) 4574 { 4575 btrfs_cleanup_dirty_bgs(cur_trans, root); 4576 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4577 ASSERT(list_empty(&cur_trans->io_bgs)); 4578 4579 btrfs_destroy_delayed_refs(cur_trans, root); 4580 4581 cur_trans->state = TRANS_STATE_COMMIT_START; 4582 wake_up(&root->fs_info->transaction_blocked_wait); 4583 4584 cur_trans->state = TRANS_STATE_UNBLOCKED; 4585 wake_up(&root->fs_info->transaction_wait); 4586 4587 btrfs_destroy_delayed_inodes(root); 4588 btrfs_assert_delayed_root_empty(root); 4589 4590 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4591 EXTENT_DIRTY); 4592 btrfs_destroy_pinned_extent(root, 4593 root->fs_info->pinned_extents); 4594 4595 cur_trans->state =TRANS_STATE_COMPLETED; 4596 wake_up(&cur_trans->commit_wait); 4597 4598 /* 4599 memset(cur_trans, 0, sizeof(*cur_trans)); 4600 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4601 */ 4602 } 4603 4604 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4605 { 4606 struct btrfs_transaction *t; 4607 4608 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4609 4610 spin_lock(&root->fs_info->trans_lock); 4611 while (!list_empty(&root->fs_info->trans_list)) { 4612 t = list_first_entry(&root->fs_info->trans_list, 4613 struct btrfs_transaction, list); 4614 if (t->state >= TRANS_STATE_COMMIT_START) { 4615 atomic_inc(&t->use_count); 4616 spin_unlock(&root->fs_info->trans_lock); 4617 btrfs_wait_for_commit(root, t->transid); 4618 btrfs_put_transaction(t); 4619 spin_lock(&root->fs_info->trans_lock); 4620 continue; 4621 } 4622 if (t == root->fs_info->running_transaction) { 4623 t->state = TRANS_STATE_COMMIT_DOING; 4624 spin_unlock(&root->fs_info->trans_lock); 4625 /* 4626 * We wait for 0 num_writers since we don't hold a trans 4627 * handle open currently for this transaction. 4628 */ 4629 wait_event(t->writer_wait, 4630 atomic_read(&t->num_writers) == 0); 4631 } else { 4632 spin_unlock(&root->fs_info->trans_lock); 4633 } 4634 btrfs_cleanup_one_transaction(t, root); 4635 4636 spin_lock(&root->fs_info->trans_lock); 4637 if (t == root->fs_info->running_transaction) 4638 root->fs_info->running_transaction = NULL; 4639 list_del_init(&t->list); 4640 spin_unlock(&root->fs_info->trans_lock); 4641 4642 btrfs_put_transaction(t); 4643 trace_btrfs_transaction_commit(root); 4644 spin_lock(&root->fs_info->trans_lock); 4645 } 4646 spin_unlock(&root->fs_info->trans_lock); 4647 btrfs_destroy_all_ordered_extents(root->fs_info); 4648 btrfs_destroy_delayed_inodes(root); 4649 btrfs_assert_delayed_root_empty(root); 4650 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4651 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4652 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4653 4654 return 0; 4655 } 4656 4657 static const struct extent_io_ops btree_extent_io_ops = { 4658 .readpage_end_io_hook = btree_readpage_end_io_hook, 4659 .readpage_io_failed_hook = btree_io_failed_hook, 4660 .submit_bio_hook = btree_submit_bio_hook, 4661 /* note we're sharing with inode.c for the merge bio hook */ 4662 .merge_bio_hook = btrfs_merge_bio_hook, 4663 }; 4664