1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include <crypto/hash.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 #include "block-group.h" 44 #include "discard.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->root_key.objectid. This ensures that all special purpose 129 * roots have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, 207 u64 start, u64 len) 208 { 209 struct extent_map_tree *em_tree = &inode->extent_tree; 210 struct extent_map *em; 211 int ret; 212 213 read_lock(&em_tree->lock); 214 em = lookup_extent_mapping(em_tree, start, len); 215 if (em) { 216 read_unlock(&em_tree->lock); 217 goto out; 218 } 219 read_unlock(&em_tree->lock); 220 221 em = alloc_extent_map(); 222 if (!em) { 223 em = ERR_PTR(-ENOMEM); 224 goto out; 225 } 226 em->start = 0; 227 em->len = (u64)-1; 228 em->block_len = (u64)-1; 229 em->block_start = 0; 230 231 write_lock(&em_tree->lock); 232 ret = add_extent_mapping(em_tree, em, 0); 233 if (ret == -EEXIST) { 234 free_extent_map(em); 235 em = lookup_extent_mapping(em_tree, start, len); 236 if (!em) 237 em = ERR_PTR(-EIO); 238 } else if (ret) { 239 free_extent_map(em); 240 em = ERR_PTR(ret); 241 } 242 write_unlock(&em_tree->lock); 243 244 out: 245 return em; 246 } 247 248 /* 249 * Compute the csum of a btree block and store the result to provided buffer. 250 * 251 * Returns error if the extent buffer cannot be mapped. 252 */ 253 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 254 { 255 struct btrfs_fs_info *fs_info = buf->fs_info; 256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 257 unsigned long len; 258 unsigned long cur_len; 259 unsigned long offset = BTRFS_CSUM_SIZE; 260 char *kaddr; 261 unsigned long map_start; 262 unsigned long map_len; 263 int err; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 268 len = buf->len - offset; 269 270 while (len > 0) { 271 /* 272 * Note: we don't need to check for the err == 1 case here, as 273 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 274 * and 'min_len = 32' and the currently implemented mapping 275 * algorithm we cannot cross a page boundary. 276 */ 277 err = map_private_extent_buffer(buf, offset, 32, 278 &kaddr, &map_start, &map_len); 279 if (WARN_ON(err)) 280 return err; 281 cur_len = min(len, map_len - (offset - map_start)); 282 crypto_shash_update(shash, kaddr + offset - map_start, cur_len); 283 len -= cur_len; 284 offset += cur_len; 285 } 286 memset(result, 0, BTRFS_CSUM_SIZE); 287 288 crypto_shash_final(shash, result); 289 290 return 0; 291 } 292 293 /* 294 * we can't consider a given block up to date unless the transid of the 295 * block matches the transid in the parent node's pointer. This is how we 296 * detect blocks that either didn't get written at all or got written 297 * in the wrong place. 298 */ 299 static int verify_parent_transid(struct extent_io_tree *io_tree, 300 struct extent_buffer *eb, u64 parent_transid, 301 int atomic) 302 { 303 struct extent_state *cached_state = NULL; 304 int ret; 305 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 306 307 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 308 return 0; 309 310 if (atomic) 311 return -EAGAIN; 312 313 if (need_lock) { 314 btrfs_tree_read_lock(eb); 315 btrfs_set_lock_blocking_read(eb); 316 } 317 318 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 319 &cached_state); 320 if (extent_buffer_uptodate(eb) && 321 btrfs_header_generation(eb) == parent_transid) { 322 ret = 0; 323 goto out; 324 } 325 btrfs_err_rl(eb->fs_info, 326 "parent transid verify failed on %llu wanted %llu found %llu", 327 eb->start, 328 parent_transid, btrfs_header_generation(eb)); 329 ret = 1; 330 331 /* 332 * Things reading via commit roots that don't have normal protection, 333 * like send, can have a really old block in cache that may point at a 334 * block that has been freed and re-allocated. So don't clear uptodate 335 * if we find an eb that is under IO (dirty/writeback) because we could 336 * end up reading in the stale data and then writing it back out and 337 * making everybody very sad. 338 */ 339 if (!extent_buffer_under_io(eb)) 340 clear_extent_buffer_uptodate(eb); 341 out: 342 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 343 &cached_state); 344 if (need_lock) 345 btrfs_tree_read_unlock_blocking(eb); 346 return ret; 347 } 348 349 static bool btrfs_supported_super_csum(u16 csum_type) 350 { 351 switch (csum_type) { 352 case BTRFS_CSUM_TYPE_CRC32: 353 case BTRFS_CSUM_TYPE_XXHASH: 354 case BTRFS_CSUM_TYPE_SHA256: 355 case BTRFS_CSUM_TYPE_BLAKE2: 356 return true; 357 default: 358 return false; 359 } 360 } 361 362 /* 363 * Return 0 if the superblock checksum type matches the checksum value of that 364 * algorithm. Pass the raw disk superblock data. 365 */ 366 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 367 char *raw_disk_sb) 368 { 369 struct btrfs_super_block *disk_sb = 370 (struct btrfs_super_block *)raw_disk_sb; 371 char result[BTRFS_CSUM_SIZE]; 372 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 373 374 shash->tfm = fs_info->csum_shash; 375 crypto_shash_init(shash); 376 377 /* 378 * The super_block structure does not span the whole 379 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 380 * filled with zeros and is included in the checksum. 381 */ 382 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 383 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 384 crypto_shash_final(shash, result); 385 386 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 387 return 1; 388 389 return 0; 390 } 391 392 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 393 struct btrfs_key *first_key, u64 parent_transid) 394 { 395 struct btrfs_fs_info *fs_info = eb->fs_info; 396 int found_level; 397 struct btrfs_key found_key; 398 int ret; 399 400 found_level = btrfs_header_level(eb); 401 if (found_level != level) { 402 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 403 KERN_ERR "BTRFS: tree level check failed\n"); 404 btrfs_err(fs_info, 405 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 406 eb->start, level, found_level); 407 return -EIO; 408 } 409 410 if (!first_key) 411 return 0; 412 413 /* 414 * For live tree block (new tree blocks in current transaction), 415 * we need proper lock context to avoid race, which is impossible here. 416 * So we only checks tree blocks which is read from disk, whose 417 * generation <= fs_info->last_trans_committed. 418 */ 419 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 420 return 0; 421 422 /* We have @first_key, so this @eb must have at least one item */ 423 if (btrfs_header_nritems(eb) == 0) { 424 btrfs_err(fs_info, 425 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 426 eb->start); 427 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 428 return -EUCLEAN; 429 } 430 431 if (found_level) 432 btrfs_node_key_to_cpu(eb, &found_key, 0); 433 else 434 btrfs_item_key_to_cpu(eb, &found_key, 0); 435 ret = btrfs_comp_cpu_keys(first_key, &found_key); 436 437 if (ret) { 438 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 439 KERN_ERR "BTRFS: tree first key check failed\n"); 440 btrfs_err(fs_info, 441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 442 eb->start, parent_transid, first_key->objectid, 443 first_key->type, first_key->offset, 444 found_key.objectid, found_key.type, 445 found_key.offset); 446 } 447 return ret; 448 } 449 450 /* 451 * helper to read a given tree block, doing retries as required when 452 * the checksums don't match and we have alternate mirrors to try. 453 * 454 * @parent_transid: expected transid, skip check if 0 455 * @level: expected level, mandatory check 456 * @first_key: expected key of first slot, skip check if NULL 457 */ 458 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 459 u64 parent_transid, int level, 460 struct btrfs_key *first_key) 461 { 462 struct btrfs_fs_info *fs_info = eb->fs_info; 463 struct extent_io_tree *io_tree; 464 int failed = 0; 465 int ret; 466 int num_copies = 0; 467 int mirror_num = 0; 468 int failed_mirror = 0; 469 470 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 471 while (1) { 472 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 473 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 474 if (!ret) { 475 if (verify_parent_transid(io_tree, eb, 476 parent_transid, 0)) 477 ret = -EIO; 478 else if (btrfs_verify_level_key(eb, level, 479 first_key, parent_transid)) 480 ret = -EUCLEAN; 481 else 482 break; 483 } 484 485 num_copies = btrfs_num_copies(fs_info, 486 eb->start, eb->len); 487 if (num_copies == 1) 488 break; 489 490 if (!failed_mirror) { 491 failed = 1; 492 failed_mirror = eb->read_mirror; 493 } 494 495 mirror_num++; 496 if (mirror_num == failed_mirror) 497 mirror_num++; 498 499 if (mirror_num > num_copies) 500 break; 501 } 502 503 if (failed && !ret && failed_mirror) 504 btrfs_repair_eb_io_failure(eb, failed_mirror); 505 506 return ret; 507 } 508 509 /* 510 * checksum a dirty tree block before IO. This has extra checks to make sure 511 * we only fill in the checksum field in the first page of a multi-page block 512 */ 513 514 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 515 { 516 u64 start = page_offset(page); 517 u64 found_start; 518 u8 result[BTRFS_CSUM_SIZE]; 519 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 520 struct extent_buffer *eb; 521 int ret; 522 523 eb = (struct extent_buffer *)page->private; 524 if (page != eb->pages[0]) 525 return 0; 526 527 found_start = btrfs_header_bytenr(eb); 528 /* 529 * Please do not consolidate these warnings into a single if. 530 * It is useful to know what went wrong. 531 */ 532 if (WARN_ON(found_start != start)) 533 return -EUCLEAN; 534 if (WARN_ON(!PageUptodate(page))) 535 return -EUCLEAN; 536 537 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 538 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 539 540 if (csum_tree_block(eb, result)) 541 return -EINVAL; 542 543 if (btrfs_header_level(eb)) 544 ret = btrfs_check_node(eb); 545 else 546 ret = btrfs_check_leaf_full(eb); 547 548 if (ret < 0) { 549 btrfs_print_tree(eb, 0); 550 btrfs_err(fs_info, 551 "block=%llu write time tree block corruption detected", 552 eb->start); 553 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 554 return ret; 555 } 556 write_extent_buffer(eb, result, 0, csum_size); 557 558 return 0; 559 } 560 561 static int check_tree_block_fsid(struct extent_buffer *eb) 562 { 563 struct btrfs_fs_info *fs_info = eb->fs_info; 564 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 565 u8 fsid[BTRFS_FSID_SIZE]; 566 int ret = 1; 567 568 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 569 while (fs_devices) { 570 u8 *metadata_uuid; 571 572 /* 573 * Checking the incompat flag is only valid for the current 574 * fs. For seed devices it's forbidden to have their uuid 575 * changed so reading ->fsid in this case is fine 576 */ 577 if (fs_devices == fs_info->fs_devices && 578 btrfs_fs_incompat(fs_info, METADATA_UUID)) 579 metadata_uuid = fs_devices->metadata_uuid; 580 else 581 metadata_uuid = fs_devices->fsid; 582 583 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 584 ret = 0; 585 break; 586 } 587 fs_devices = fs_devices->seed; 588 } 589 return ret; 590 } 591 592 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 593 u64 phy_offset, struct page *page, 594 u64 start, u64 end, int mirror) 595 { 596 u64 found_start; 597 int found_level; 598 struct extent_buffer *eb; 599 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 600 struct btrfs_fs_info *fs_info = root->fs_info; 601 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 602 int ret = 0; 603 u8 result[BTRFS_CSUM_SIZE]; 604 int reads_done; 605 606 if (!page->private) 607 goto out; 608 609 eb = (struct extent_buffer *)page->private; 610 611 /* the pending IO might have been the only thing that kept this buffer 612 * in memory. Make sure we have a ref for all this other checks 613 */ 614 atomic_inc(&eb->refs); 615 616 reads_done = atomic_dec_and_test(&eb->io_pages); 617 if (!reads_done) 618 goto err; 619 620 eb->read_mirror = mirror; 621 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 622 ret = -EIO; 623 goto err; 624 } 625 626 found_start = btrfs_header_bytenr(eb); 627 if (found_start != eb->start) { 628 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 629 eb->start, found_start); 630 ret = -EIO; 631 goto err; 632 } 633 if (check_tree_block_fsid(eb)) { 634 btrfs_err_rl(fs_info, "bad fsid on block %llu", 635 eb->start); 636 ret = -EIO; 637 goto err; 638 } 639 found_level = btrfs_header_level(eb); 640 if (found_level >= BTRFS_MAX_LEVEL) { 641 btrfs_err(fs_info, "bad tree block level %d on %llu", 642 (int)btrfs_header_level(eb), eb->start); 643 ret = -EIO; 644 goto err; 645 } 646 647 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 648 eb, found_level); 649 650 ret = csum_tree_block(eb, result); 651 if (ret) 652 goto err; 653 654 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 655 u32 val; 656 u32 found = 0; 657 658 memcpy(&found, result, csum_size); 659 660 read_extent_buffer(eb, &val, 0, csum_size); 661 btrfs_warn_rl(fs_info, 662 "%s checksum verify failed on %llu wanted %x found %x level %d", 663 fs_info->sb->s_id, eb->start, 664 val, found, btrfs_header_level(eb)); 665 ret = -EUCLEAN; 666 goto err; 667 } 668 669 /* 670 * If this is a leaf block and it is corrupt, set the corrupt bit so 671 * that we don't try and read the other copies of this block, just 672 * return -EIO. 673 */ 674 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 675 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 676 ret = -EIO; 677 } 678 679 if (found_level > 0 && btrfs_check_node(eb)) 680 ret = -EIO; 681 682 if (!ret) 683 set_extent_buffer_uptodate(eb); 684 else 685 btrfs_err(fs_info, 686 "block=%llu read time tree block corruption detected", 687 eb->start); 688 err: 689 if (reads_done && 690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 691 btree_readahead_hook(eb, ret); 692 693 if (ret) { 694 /* 695 * our io error hook is going to dec the io pages 696 * again, we have to make sure it has something 697 * to decrement 698 */ 699 atomic_inc(&eb->io_pages); 700 clear_extent_buffer_uptodate(eb); 701 } 702 free_extent_buffer(eb); 703 out: 704 return ret; 705 } 706 707 static void end_workqueue_bio(struct bio *bio) 708 { 709 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 710 struct btrfs_fs_info *fs_info; 711 struct btrfs_workqueue *wq; 712 713 fs_info = end_io_wq->info; 714 end_io_wq->status = bio->bi_status; 715 716 if (bio_op(bio) == REQ_OP_WRITE) { 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 718 wq = fs_info->endio_meta_write_workers; 719 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 720 wq = fs_info->endio_freespace_worker; 721 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 722 wq = fs_info->endio_raid56_workers; 723 else 724 wq = fs_info->endio_write_workers; 725 } else { 726 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR)) 727 wq = fs_info->endio_repair_workers; 728 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 729 wq = fs_info->endio_raid56_workers; 730 else if (end_io_wq->metadata) 731 wq = fs_info->endio_meta_workers; 732 else 733 wq = fs_info->endio_workers; 734 } 735 736 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 737 btrfs_queue_work(wq, &end_io_wq->work); 738 } 739 740 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 741 enum btrfs_wq_endio_type metadata) 742 { 743 struct btrfs_end_io_wq *end_io_wq; 744 745 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 746 if (!end_io_wq) 747 return BLK_STS_RESOURCE; 748 749 end_io_wq->private = bio->bi_private; 750 end_io_wq->end_io = bio->bi_end_io; 751 end_io_wq->info = info; 752 end_io_wq->status = 0; 753 end_io_wq->bio = bio; 754 end_io_wq->metadata = metadata; 755 756 bio->bi_private = end_io_wq; 757 bio->bi_end_io = end_workqueue_bio; 758 return 0; 759 } 760 761 static void run_one_async_start(struct btrfs_work *work) 762 { 763 struct async_submit_bio *async; 764 blk_status_t ret; 765 766 async = container_of(work, struct async_submit_bio, work); 767 ret = async->submit_bio_start(async->private_data, async->bio, 768 async->bio_offset); 769 if (ret) 770 async->status = ret; 771 } 772 773 /* 774 * In order to insert checksums into the metadata in large chunks, we wait 775 * until bio submission time. All the pages in the bio are checksummed and 776 * sums are attached onto the ordered extent record. 777 * 778 * At IO completion time the csums attached on the ordered extent record are 779 * inserted into the tree. 780 */ 781 static void run_one_async_done(struct btrfs_work *work) 782 { 783 struct async_submit_bio *async; 784 struct inode *inode; 785 blk_status_t ret; 786 787 async = container_of(work, struct async_submit_bio, work); 788 inode = async->private_data; 789 790 /* If an error occurred we just want to clean up the bio and move on */ 791 if (async->status) { 792 async->bio->bi_status = async->status; 793 bio_endio(async->bio); 794 return; 795 } 796 797 /* 798 * All of the bios that pass through here are from async helpers. 799 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 800 * This changes nothing when cgroups aren't in use. 801 */ 802 async->bio->bi_opf |= REQ_CGROUP_PUNT; 803 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 804 if (ret) { 805 async->bio->bi_status = ret; 806 bio_endio(async->bio); 807 } 808 } 809 810 static void run_one_async_free(struct btrfs_work *work) 811 { 812 struct async_submit_bio *async; 813 814 async = container_of(work, struct async_submit_bio, work); 815 kfree(async); 816 } 817 818 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 819 int mirror_num, unsigned long bio_flags, 820 u64 bio_offset, void *private_data, 821 extent_submit_bio_start_t *submit_bio_start) 822 { 823 struct async_submit_bio *async; 824 825 async = kmalloc(sizeof(*async), GFP_NOFS); 826 if (!async) 827 return BLK_STS_RESOURCE; 828 829 async->private_data = private_data; 830 async->bio = bio; 831 async->mirror_num = mirror_num; 832 async->submit_bio_start = submit_bio_start; 833 834 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 835 run_one_async_free); 836 837 async->bio_offset = bio_offset; 838 839 async->status = 0; 840 841 if (op_is_sync(bio->bi_opf)) 842 btrfs_set_work_high_priority(&async->work); 843 844 btrfs_queue_work(fs_info->workers, &async->work); 845 return 0; 846 } 847 848 static blk_status_t btree_csum_one_bio(struct bio *bio) 849 { 850 struct bio_vec *bvec; 851 struct btrfs_root *root; 852 int ret = 0; 853 struct bvec_iter_all iter_all; 854 855 ASSERT(!bio_flagged(bio, BIO_CLONED)); 856 bio_for_each_segment_all(bvec, bio, iter_all) { 857 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 858 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 859 if (ret) 860 break; 861 } 862 863 return errno_to_blk_status(ret); 864 } 865 866 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 867 u64 bio_offset) 868 { 869 /* 870 * when we're called for a write, we're already in the async 871 * submission context. Just jump into btrfs_map_bio 872 */ 873 return btree_csum_one_bio(bio); 874 } 875 876 static int check_async_write(struct btrfs_fs_info *fs_info, 877 struct btrfs_inode *bi) 878 { 879 if (atomic_read(&bi->sync_writers)) 880 return 0; 881 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 882 return 0; 883 return 1; 884 } 885 886 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 887 int mirror_num, 888 unsigned long bio_flags) 889 { 890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 891 int async = check_async_write(fs_info, BTRFS_I(inode)); 892 blk_status_t ret; 893 894 if (bio_op(bio) != REQ_OP_WRITE) { 895 /* 896 * called for a read, do the setup so that checksum validation 897 * can happen in the async kernel threads 898 */ 899 ret = btrfs_bio_wq_end_io(fs_info, bio, 900 BTRFS_WQ_ENDIO_METADATA); 901 if (ret) 902 goto out_w_error; 903 ret = btrfs_map_bio(fs_info, bio, mirror_num); 904 } else if (!async) { 905 ret = btree_csum_one_bio(bio); 906 if (ret) 907 goto out_w_error; 908 ret = btrfs_map_bio(fs_info, bio, mirror_num); 909 } else { 910 /* 911 * kthread helpers are used to submit writes so that 912 * checksumming can happen in parallel across all CPUs 913 */ 914 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 915 0, inode, btree_submit_bio_start); 916 } 917 918 if (ret) 919 goto out_w_error; 920 return 0; 921 922 out_w_error: 923 bio->bi_status = ret; 924 bio_endio(bio); 925 return ret; 926 } 927 928 #ifdef CONFIG_MIGRATION 929 static int btree_migratepage(struct address_space *mapping, 930 struct page *newpage, struct page *page, 931 enum migrate_mode mode) 932 { 933 /* 934 * we can't safely write a btree page from here, 935 * we haven't done the locking hook 936 */ 937 if (PageDirty(page)) 938 return -EAGAIN; 939 /* 940 * Buffers may be managed in a filesystem specific way. 941 * We must have no buffers or drop them. 942 */ 943 if (page_has_private(page) && 944 !try_to_release_page(page, GFP_KERNEL)) 945 return -EAGAIN; 946 return migrate_page(mapping, newpage, page, mode); 947 } 948 #endif 949 950 951 static int btree_writepages(struct address_space *mapping, 952 struct writeback_control *wbc) 953 { 954 struct btrfs_fs_info *fs_info; 955 int ret; 956 957 if (wbc->sync_mode == WB_SYNC_NONE) { 958 959 if (wbc->for_kupdate) 960 return 0; 961 962 fs_info = BTRFS_I(mapping->host)->root->fs_info; 963 /* this is a bit racy, but that's ok */ 964 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 965 BTRFS_DIRTY_METADATA_THRESH, 966 fs_info->dirty_metadata_batch); 967 if (ret < 0) 968 return 0; 969 } 970 return btree_write_cache_pages(mapping, wbc); 971 } 972 973 static int btree_readpage(struct file *file, struct page *page) 974 { 975 struct extent_io_tree *tree; 976 tree = &BTRFS_I(page->mapping->host)->io_tree; 977 return extent_read_full_page(tree, page, btree_get_extent, 0); 978 } 979 980 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 981 { 982 if (PageWriteback(page) || PageDirty(page)) 983 return 0; 984 985 return try_release_extent_buffer(page); 986 } 987 988 static void btree_invalidatepage(struct page *page, unsigned int offset, 989 unsigned int length) 990 { 991 struct extent_io_tree *tree; 992 tree = &BTRFS_I(page->mapping->host)->io_tree; 993 extent_invalidatepage(tree, page, offset); 994 btree_releasepage(page, GFP_NOFS); 995 if (PagePrivate(page)) { 996 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 997 "page private not zero on page %llu", 998 (unsigned long long)page_offset(page)); 999 ClearPagePrivate(page); 1000 set_page_private(page, 0); 1001 put_page(page); 1002 } 1003 } 1004 1005 static int btree_set_page_dirty(struct page *page) 1006 { 1007 #ifdef DEBUG 1008 struct extent_buffer *eb; 1009 1010 BUG_ON(!PagePrivate(page)); 1011 eb = (struct extent_buffer *)page->private; 1012 BUG_ON(!eb); 1013 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1014 BUG_ON(!atomic_read(&eb->refs)); 1015 btrfs_assert_tree_locked(eb); 1016 #endif 1017 return __set_page_dirty_nobuffers(page); 1018 } 1019 1020 static const struct address_space_operations btree_aops = { 1021 .readpage = btree_readpage, 1022 .writepages = btree_writepages, 1023 .releasepage = btree_releasepage, 1024 .invalidatepage = btree_invalidatepage, 1025 #ifdef CONFIG_MIGRATION 1026 .migratepage = btree_migratepage, 1027 #endif 1028 .set_page_dirty = btree_set_page_dirty, 1029 }; 1030 1031 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1032 { 1033 struct extent_buffer *buf = NULL; 1034 int ret; 1035 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1037 if (IS_ERR(buf)) 1038 return; 1039 1040 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1041 if (ret < 0) 1042 free_extent_buffer_stale(buf); 1043 else 1044 free_extent_buffer(buf); 1045 } 1046 1047 struct extent_buffer *btrfs_find_create_tree_block( 1048 struct btrfs_fs_info *fs_info, 1049 u64 bytenr) 1050 { 1051 if (btrfs_is_testing(fs_info)) 1052 return alloc_test_extent_buffer(fs_info, bytenr); 1053 return alloc_extent_buffer(fs_info, bytenr); 1054 } 1055 1056 /* 1057 * Read tree block at logical address @bytenr and do variant basic but critical 1058 * verification. 1059 * 1060 * @parent_transid: expected transid of this tree block, skip check if 0 1061 * @level: expected level, mandatory check 1062 * @first_key: expected key in slot 0, skip check if NULL 1063 */ 1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1065 u64 parent_transid, int level, 1066 struct btrfs_key *first_key) 1067 { 1068 struct extent_buffer *buf = NULL; 1069 int ret; 1070 1071 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1072 if (IS_ERR(buf)) 1073 return buf; 1074 1075 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1076 level, first_key); 1077 if (ret) { 1078 free_extent_buffer_stale(buf); 1079 return ERR_PTR(ret); 1080 } 1081 return buf; 1082 1083 } 1084 1085 void btrfs_clean_tree_block(struct extent_buffer *buf) 1086 { 1087 struct btrfs_fs_info *fs_info = buf->fs_info; 1088 if (btrfs_header_generation(buf) == 1089 fs_info->running_transaction->transid) { 1090 btrfs_assert_tree_locked(buf); 1091 1092 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1093 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1094 -buf->len, 1095 fs_info->dirty_metadata_batch); 1096 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1097 btrfs_set_lock_blocking_write(buf); 1098 clear_extent_buffer_dirty(buf); 1099 } 1100 } 1101 } 1102 1103 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1104 { 1105 struct btrfs_subvolume_writers *writers; 1106 int ret; 1107 1108 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1109 if (!writers) 1110 return ERR_PTR(-ENOMEM); 1111 1112 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1113 if (ret < 0) { 1114 kfree(writers); 1115 return ERR_PTR(ret); 1116 } 1117 1118 init_waitqueue_head(&writers->wait); 1119 return writers; 1120 } 1121 1122 static void 1123 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1124 { 1125 percpu_counter_destroy(&writers->counter); 1126 kfree(writers); 1127 } 1128 1129 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1130 u64 objectid) 1131 { 1132 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1133 root->node = NULL; 1134 root->commit_root = NULL; 1135 root->state = 0; 1136 root->orphan_cleanup_state = 0; 1137 1138 root->last_trans = 0; 1139 root->highest_objectid = 0; 1140 root->nr_delalloc_inodes = 0; 1141 root->nr_ordered_extents = 0; 1142 root->inode_tree = RB_ROOT; 1143 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1144 root->block_rsv = NULL; 1145 1146 INIT_LIST_HEAD(&root->dirty_list); 1147 INIT_LIST_HEAD(&root->root_list); 1148 INIT_LIST_HEAD(&root->delalloc_inodes); 1149 INIT_LIST_HEAD(&root->delalloc_root); 1150 INIT_LIST_HEAD(&root->ordered_extents); 1151 INIT_LIST_HEAD(&root->ordered_root); 1152 INIT_LIST_HEAD(&root->reloc_dirty_list); 1153 INIT_LIST_HEAD(&root->logged_list[0]); 1154 INIT_LIST_HEAD(&root->logged_list[1]); 1155 spin_lock_init(&root->inode_lock); 1156 spin_lock_init(&root->delalloc_lock); 1157 spin_lock_init(&root->ordered_extent_lock); 1158 spin_lock_init(&root->accounting_lock); 1159 spin_lock_init(&root->log_extents_lock[0]); 1160 spin_lock_init(&root->log_extents_lock[1]); 1161 spin_lock_init(&root->qgroup_meta_rsv_lock); 1162 mutex_init(&root->objectid_mutex); 1163 mutex_init(&root->log_mutex); 1164 mutex_init(&root->ordered_extent_mutex); 1165 mutex_init(&root->delalloc_mutex); 1166 init_waitqueue_head(&root->log_writer_wait); 1167 init_waitqueue_head(&root->log_commit_wait[0]); 1168 init_waitqueue_head(&root->log_commit_wait[1]); 1169 INIT_LIST_HEAD(&root->log_ctxs[0]); 1170 INIT_LIST_HEAD(&root->log_ctxs[1]); 1171 atomic_set(&root->log_commit[0], 0); 1172 atomic_set(&root->log_commit[1], 0); 1173 atomic_set(&root->log_writers, 0); 1174 atomic_set(&root->log_batch, 0); 1175 refcount_set(&root->refs, 1); 1176 atomic_set(&root->will_be_snapshotted, 0); 1177 atomic_set(&root->snapshot_force_cow, 0); 1178 atomic_set(&root->nr_swapfiles, 0); 1179 root->log_transid = 0; 1180 root->log_transid_committed = -1; 1181 root->last_log_commit = 0; 1182 if (!dummy) 1183 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1184 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1185 1186 memset(&root->root_key, 0, sizeof(root->root_key)); 1187 memset(&root->root_item, 0, sizeof(root->root_item)); 1188 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1189 if (!dummy) 1190 root->defrag_trans_start = fs_info->generation; 1191 else 1192 root->defrag_trans_start = 0; 1193 root->root_key.objectid = objectid; 1194 root->anon_dev = 0; 1195 1196 spin_lock_init(&root->root_item_lock); 1197 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1198 } 1199 1200 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1201 gfp_t flags) 1202 { 1203 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1204 if (root) 1205 root->fs_info = fs_info; 1206 return root; 1207 } 1208 1209 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1210 /* Should only be used by the testing infrastructure */ 1211 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1212 { 1213 struct btrfs_root *root; 1214 1215 if (!fs_info) 1216 return ERR_PTR(-EINVAL); 1217 1218 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1219 if (!root) 1220 return ERR_PTR(-ENOMEM); 1221 1222 /* We don't use the stripesize in selftest, set it as sectorsize */ 1223 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1224 root->alloc_bytenr = 0; 1225 1226 return root; 1227 } 1228 #endif 1229 1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1231 u64 objectid) 1232 { 1233 struct btrfs_fs_info *fs_info = trans->fs_info; 1234 struct extent_buffer *leaf; 1235 struct btrfs_root *tree_root = fs_info->tree_root; 1236 struct btrfs_root *root; 1237 struct btrfs_key key; 1238 unsigned int nofs_flag; 1239 int ret = 0; 1240 uuid_le uuid = NULL_UUID_LE; 1241 1242 /* 1243 * We're holding a transaction handle, so use a NOFS memory allocation 1244 * context to avoid deadlock if reclaim happens. 1245 */ 1246 nofs_flag = memalloc_nofs_save(); 1247 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1248 memalloc_nofs_restore(nofs_flag); 1249 if (!root) 1250 return ERR_PTR(-ENOMEM); 1251 1252 __setup_root(root, fs_info, objectid); 1253 root->root_key.objectid = objectid; 1254 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1255 root->root_key.offset = 0; 1256 1257 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1258 if (IS_ERR(leaf)) { 1259 ret = PTR_ERR(leaf); 1260 leaf = NULL; 1261 goto fail; 1262 } 1263 1264 root->node = leaf; 1265 btrfs_mark_buffer_dirty(leaf); 1266 1267 root->commit_root = btrfs_root_node(root); 1268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1269 1270 root->root_item.flags = 0; 1271 root->root_item.byte_limit = 0; 1272 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1273 btrfs_set_root_generation(&root->root_item, trans->transid); 1274 btrfs_set_root_level(&root->root_item, 0); 1275 btrfs_set_root_refs(&root->root_item, 1); 1276 btrfs_set_root_used(&root->root_item, leaf->len); 1277 btrfs_set_root_last_snapshot(&root->root_item, 0); 1278 btrfs_set_root_dirid(&root->root_item, 0); 1279 if (is_fstree(objectid)) 1280 uuid_le_gen(&uuid); 1281 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1282 root->root_item.drop_level = 0; 1283 1284 key.objectid = objectid; 1285 key.type = BTRFS_ROOT_ITEM_KEY; 1286 key.offset = 0; 1287 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1288 if (ret) 1289 goto fail; 1290 1291 btrfs_tree_unlock(leaf); 1292 1293 return root; 1294 1295 fail: 1296 if (leaf) { 1297 btrfs_tree_unlock(leaf); 1298 free_extent_buffer(root->commit_root); 1299 free_extent_buffer(leaf); 1300 } 1301 kfree(root); 1302 1303 return ERR_PTR(ret); 1304 } 1305 1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1307 struct btrfs_fs_info *fs_info) 1308 { 1309 struct btrfs_root *root; 1310 struct extent_buffer *leaf; 1311 1312 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1313 if (!root) 1314 return ERR_PTR(-ENOMEM); 1315 1316 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1317 1318 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1319 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1320 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1321 1322 /* 1323 * DON'T set REF_COWS for log trees 1324 * 1325 * log trees do not get reference counted because they go away 1326 * before a real commit is actually done. They do store pointers 1327 * to file data extents, and those reference counts still get 1328 * updated (along with back refs to the log tree). 1329 */ 1330 1331 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1332 NULL, 0, 0, 0); 1333 if (IS_ERR(leaf)) { 1334 kfree(root); 1335 return ERR_CAST(leaf); 1336 } 1337 1338 root->node = leaf; 1339 1340 btrfs_mark_buffer_dirty(root->node); 1341 btrfs_tree_unlock(root->node); 1342 return root; 1343 } 1344 1345 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1346 struct btrfs_fs_info *fs_info) 1347 { 1348 struct btrfs_root *log_root; 1349 1350 log_root = alloc_log_tree(trans, fs_info); 1351 if (IS_ERR(log_root)) 1352 return PTR_ERR(log_root); 1353 WARN_ON(fs_info->log_root_tree); 1354 fs_info->log_root_tree = log_root; 1355 return 0; 1356 } 1357 1358 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1359 struct btrfs_root *root) 1360 { 1361 struct btrfs_fs_info *fs_info = root->fs_info; 1362 struct btrfs_root *log_root; 1363 struct btrfs_inode_item *inode_item; 1364 1365 log_root = alloc_log_tree(trans, fs_info); 1366 if (IS_ERR(log_root)) 1367 return PTR_ERR(log_root); 1368 1369 log_root->last_trans = trans->transid; 1370 log_root->root_key.offset = root->root_key.objectid; 1371 1372 inode_item = &log_root->root_item.inode; 1373 btrfs_set_stack_inode_generation(inode_item, 1); 1374 btrfs_set_stack_inode_size(inode_item, 3); 1375 btrfs_set_stack_inode_nlink(inode_item, 1); 1376 btrfs_set_stack_inode_nbytes(inode_item, 1377 fs_info->nodesize); 1378 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1379 1380 btrfs_set_root_node(&log_root->root_item, log_root->node); 1381 1382 WARN_ON(root->log_root); 1383 root->log_root = log_root; 1384 root->log_transid = 0; 1385 root->log_transid_committed = -1; 1386 root->last_log_commit = 0; 1387 return 0; 1388 } 1389 1390 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1391 struct btrfs_key *key) 1392 { 1393 struct btrfs_root *root; 1394 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1395 struct btrfs_path *path; 1396 u64 generation; 1397 int ret; 1398 int level; 1399 1400 path = btrfs_alloc_path(); 1401 if (!path) 1402 return ERR_PTR(-ENOMEM); 1403 1404 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1405 if (!root) { 1406 ret = -ENOMEM; 1407 goto alloc_fail; 1408 } 1409 1410 __setup_root(root, fs_info, key->objectid); 1411 1412 ret = btrfs_find_root(tree_root, key, path, 1413 &root->root_item, &root->root_key); 1414 if (ret) { 1415 if (ret > 0) 1416 ret = -ENOENT; 1417 goto find_fail; 1418 } 1419 1420 generation = btrfs_root_generation(&root->root_item); 1421 level = btrfs_root_level(&root->root_item); 1422 root->node = read_tree_block(fs_info, 1423 btrfs_root_bytenr(&root->root_item), 1424 generation, level, NULL); 1425 if (IS_ERR(root->node)) { 1426 ret = PTR_ERR(root->node); 1427 goto find_fail; 1428 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1429 ret = -EIO; 1430 free_extent_buffer(root->node); 1431 goto find_fail; 1432 } 1433 root->commit_root = btrfs_root_node(root); 1434 out: 1435 btrfs_free_path(path); 1436 return root; 1437 1438 find_fail: 1439 kfree(root); 1440 alloc_fail: 1441 root = ERR_PTR(ret); 1442 goto out; 1443 } 1444 1445 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1446 struct btrfs_key *location) 1447 { 1448 struct btrfs_root *root; 1449 1450 root = btrfs_read_tree_root(tree_root, location); 1451 if (IS_ERR(root)) 1452 return root; 1453 1454 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1455 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1456 btrfs_check_and_init_root_item(&root->root_item); 1457 } 1458 1459 return root; 1460 } 1461 1462 int btrfs_init_fs_root(struct btrfs_root *root) 1463 { 1464 int ret; 1465 struct btrfs_subvolume_writers *writers; 1466 1467 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1468 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1469 GFP_NOFS); 1470 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1471 ret = -ENOMEM; 1472 goto fail; 1473 } 1474 1475 writers = btrfs_alloc_subvolume_writers(); 1476 if (IS_ERR(writers)) { 1477 ret = PTR_ERR(writers); 1478 goto fail; 1479 } 1480 root->subv_writers = writers; 1481 1482 btrfs_init_free_ino_ctl(root); 1483 spin_lock_init(&root->ino_cache_lock); 1484 init_waitqueue_head(&root->ino_cache_wait); 1485 1486 ret = get_anon_bdev(&root->anon_dev); 1487 if (ret) 1488 goto fail; 1489 1490 mutex_lock(&root->objectid_mutex); 1491 ret = btrfs_find_highest_objectid(root, 1492 &root->highest_objectid); 1493 if (ret) { 1494 mutex_unlock(&root->objectid_mutex); 1495 goto fail; 1496 } 1497 1498 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1499 1500 mutex_unlock(&root->objectid_mutex); 1501 1502 return 0; 1503 fail: 1504 /* The caller is responsible to call btrfs_free_fs_root */ 1505 return ret; 1506 } 1507 1508 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1509 u64 root_id) 1510 { 1511 struct btrfs_root *root; 1512 1513 spin_lock(&fs_info->fs_roots_radix_lock); 1514 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1515 (unsigned long)root_id); 1516 spin_unlock(&fs_info->fs_roots_radix_lock); 1517 return root; 1518 } 1519 1520 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1521 struct btrfs_root *root) 1522 { 1523 int ret; 1524 1525 ret = radix_tree_preload(GFP_NOFS); 1526 if (ret) 1527 return ret; 1528 1529 spin_lock(&fs_info->fs_roots_radix_lock); 1530 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1531 (unsigned long)root->root_key.objectid, 1532 root); 1533 if (ret == 0) 1534 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1535 spin_unlock(&fs_info->fs_roots_radix_lock); 1536 radix_tree_preload_end(); 1537 1538 return ret; 1539 } 1540 1541 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1542 struct btrfs_key *location, 1543 bool check_ref) 1544 { 1545 struct btrfs_root *root; 1546 struct btrfs_path *path; 1547 struct btrfs_key key; 1548 int ret; 1549 1550 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1551 return fs_info->tree_root; 1552 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1553 return fs_info->extent_root; 1554 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1555 return fs_info->chunk_root; 1556 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1557 return fs_info->dev_root; 1558 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1559 return fs_info->csum_root; 1560 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1561 return fs_info->quota_root ? fs_info->quota_root : 1562 ERR_PTR(-ENOENT); 1563 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1564 return fs_info->uuid_root ? fs_info->uuid_root : 1565 ERR_PTR(-ENOENT); 1566 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1567 return fs_info->free_space_root ? fs_info->free_space_root : 1568 ERR_PTR(-ENOENT); 1569 again: 1570 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1571 if (root) { 1572 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1573 return ERR_PTR(-ENOENT); 1574 return root; 1575 } 1576 1577 root = btrfs_read_fs_root(fs_info->tree_root, location); 1578 if (IS_ERR(root)) 1579 return root; 1580 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1582 ret = -ENOENT; 1583 goto fail; 1584 } 1585 1586 ret = btrfs_init_fs_root(root); 1587 if (ret) 1588 goto fail; 1589 1590 path = btrfs_alloc_path(); 1591 if (!path) { 1592 ret = -ENOMEM; 1593 goto fail; 1594 } 1595 key.objectid = BTRFS_ORPHAN_OBJECTID; 1596 key.type = BTRFS_ORPHAN_ITEM_KEY; 1597 key.offset = location->objectid; 1598 1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1600 btrfs_free_path(path); 1601 if (ret < 0) 1602 goto fail; 1603 if (ret == 0) 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1605 1606 ret = btrfs_insert_fs_root(fs_info, root); 1607 if (ret) { 1608 if (ret == -EEXIST) { 1609 btrfs_free_fs_root(root); 1610 goto again; 1611 } 1612 goto fail; 1613 } 1614 return root; 1615 fail: 1616 btrfs_free_fs_root(root); 1617 return ERR_PTR(ret); 1618 } 1619 1620 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1621 { 1622 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1623 int ret = 0; 1624 struct btrfs_device *device; 1625 struct backing_dev_info *bdi; 1626 1627 rcu_read_lock(); 1628 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1629 if (!device->bdev) 1630 continue; 1631 bdi = device->bdev->bd_bdi; 1632 if (bdi_congested(bdi, bdi_bits)) { 1633 ret = 1; 1634 break; 1635 } 1636 } 1637 rcu_read_unlock(); 1638 return ret; 1639 } 1640 1641 /* 1642 * called by the kthread helper functions to finally call the bio end_io 1643 * functions. This is where read checksum verification actually happens 1644 */ 1645 static void end_workqueue_fn(struct btrfs_work *work) 1646 { 1647 struct bio *bio; 1648 struct btrfs_end_io_wq *end_io_wq; 1649 1650 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1651 bio = end_io_wq->bio; 1652 1653 bio->bi_status = end_io_wq->status; 1654 bio->bi_private = end_io_wq->private; 1655 bio->bi_end_io = end_io_wq->end_io; 1656 bio_endio(bio); 1657 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1658 } 1659 1660 static int cleaner_kthread(void *arg) 1661 { 1662 struct btrfs_root *root = arg; 1663 struct btrfs_fs_info *fs_info = root->fs_info; 1664 int again; 1665 1666 while (1) { 1667 again = 0; 1668 1669 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1670 1671 /* Make the cleaner go to sleep early. */ 1672 if (btrfs_need_cleaner_sleep(fs_info)) 1673 goto sleep; 1674 1675 /* 1676 * Do not do anything if we might cause open_ctree() to block 1677 * before we have finished mounting the filesystem. 1678 */ 1679 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1680 goto sleep; 1681 1682 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1683 goto sleep; 1684 1685 /* 1686 * Avoid the problem that we change the status of the fs 1687 * during the above check and trylock. 1688 */ 1689 if (btrfs_need_cleaner_sleep(fs_info)) { 1690 mutex_unlock(&fs_info->cleaner_mutex); 1691 goto sleep; 1692 } 1693 1694 btrfs_run_delayed_iputs(fs_info); 1695 1696 again = btrfs_clean_one_deleted_snapshot(root); 1697 mutex_unlock(&fs_info->cleaner_mutex); 1698 1699 /* 1700 * The defragger has dealt with the R/O remount and umount, 1701 * needn't do anything special here. 1702 */ 1703 btrfs_run_defrag_inodes(fs_info); 1704 1705 /* 1706 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1707 * with relocation (btrfs_relocate_chunk) and relocation 1708 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1709 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1710 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1711 * unused block groups. 1712 */ 1713 btrfs_delete_unused_bgs(fs_info); 1714 sleep: 1715 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1716 if (kthread_should_park()) 1717 kthread_parkme(); 1718 if (kthread_should_stop()) 1719 return 0; 1720 if (!again) { 1721 set_current_state(TASK_INTERRUPTIBLE); 1722 schedule(); 1723 __set_current_state(TASK_RUNNING); 1724 } 1725 } 1726 } 1727 1728 static int transaction_kthread(void *arg) 1729 { 1730 struct btrfs_root *root = arg; 1731 struct btrfs_fs_info *fs_info = root->fs_info; 1732 struct btrfs_trans_handle *trans; 1733 struct btrfs_transaction *cur; 1734 u64 transid; 1735 time64_t now; 1736 unsigned long delay; 1737 bool cannot_commit; 1738 1739 do { 1740 cannot_commit = false; 1741 delay = HZ * fs_info->commit_interval; 1742 mutex_lock(&fs_info->transaction_kthread_mutex); 1743 1744 spin_lock(&fs_info->trans_lock); 1745 cur = fs_info->running_transaction; 1746 if (!cur) { 1747 spin_unlock(&fs_info->trans_lock); 1748 goto sleep; 1749 } 1750 1751 now = ktime_get_seconds(); 1752 if (cur->state < TRANS_STATE_COMMIT_START && 1753 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1754 (now < cur->start_time || 1755 now - cur->start_time < fs_info->commit_interval)) { 1756 spin_unlock(&fs_info->trans_lock); 1757 delay = HZ * 5; 1758 goto sleep; 1759 } 1760 transid = cur->transid; 1761 spin_unlock(&fs_info->trans_lock); 1762 1763 /* If the file system is aborted, this will always fail. */ 1764 trans = btrfs_attach_transaction(root); 1765 if (IS_ERR(trans)) { 1766 if (PTR_ERR(trans) != -ENOENT) 1767 cannot_commit = true; 1768 goto sleep; 1769 } 1770 if (transid == trans->transid) { 1771 btrfs_commit_transaction(trans); 1772 } else { 1773 btrfs_end_transaction(trans); 1774 } 1775 sleep: 1776 wake_up_process(fs_info->cleaner_kthread); 1777 mutex_unlock(&fs_info->transaction_kthread_mutex); 1778 1779 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1780 &fs_info->fs_state))) 1781 btrfs_cleanup_transaction(fs_info); 1782 if (!kthread_should_stop() && 1783 (!btrfs_transaction_blocked(fs_info) || 1784 cannot_commit)) 1785 schedule_timeout_interruptible(delay); 1786 } while (!kthread_should_stop()); 1787 return 0; 1788 } 1789 1790 /* 1791 * This will find the highest generation in the array of root backups. The 1792 * index of the highest array is returned, or -EINVAL if we can't find 1793 * anything. 1794 * 1795 * We check to make sure the array is valid by comparing the 1796 * generation of the latest root in the array with the generation 1797 * in the super block. If they don't match we pitch it. 1798 */ 1799 static int find_newest_super_backup(struct btrfs_fs_info *info) 1800 { 1801 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1802 u64 cur; 1803 struct btrfs_root_backup *root_backup; 1804 int i; 1805 1806 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1807 root_backup = info->super_copy->super_roots + i; 1808 cur = btrfs_backup_tree_root_gen(root_backup); 1809 if (cur == newest_gen) 1810 return i; 1811 } 1812 1813 return -EINVAL; 1814 } 1815 1816 /* 1817 * copy all the root pointers into the super backup array. 1818 * this will bump the backup pointer by one when it is 1819 * done 1820 */ 1821 static void backup_super_roots(struct btrfs_fs_info *info) 1822 { 1823 const int next_backup = info->backup_root_index; 1824 struct btrfs_root_backup *root_backup; 1825 1826 root_backup = info->super_for_commit->super_roots + next_backup; 1827 1828 /* 1829 * make sure all of our padding and empty slots get zero filled 1830 * regardless of which ones we use today 1831 */ 1832 memset(root_backup, 0, sizeof(*root_backup)); 1833 1834 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1835 1836 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1837 btrfs_set_backup_tree_root_gen(root_backup, 1838 btrfs_header_generation(info->tree_root->node)); 1839 1840 btrfs_set_backup_tree_root_level(root_backup, 1841 btrfs_header_level(info->tree_root->node)); 1842 1843 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1844 btrfs_set_backup_chunk_root_gen(root_backup, 1845 btrfs_header_generation(info->chunk_root->node)); 1846 btrfs_set_backup_chunk_root_level(root_backup, 1847 btrfs_header_level(info->chunk_root->node)); 1848 1849 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1850 btrfs_set_backup_extent_root_gen(root_backup, 1851 btrfs_header_generation(info->extent_root->node)); 1852 btrfs_set_backup_extent_root_level(root_backup, 1853 btrfs_header_level(info->extent_root->node)); 1854 1855 /* 1856 * we might commit during log recovery, which happens before we set 1857 * the fs_root. Make sure it is valid before we fill it in. 1858 */ 1859 if (info->fs_root && info->fs_root->node) { 1860 btrfs_set_backup_fs_root(root_backup, 1861 info->fs_root->node->start); 1862 btrfs_set_backup_fs_root_gen(root_backup, 1863 btrfs_header_generation(info->fs_root->node)); 1864 btrfs_set_backup_fs_root_level(root_backup, 1865 btrfs_header_level(info->fs_root->node)); 1866 } 1867 1868 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1869 btrfs_set_backup_dev_root_gen(root_backup, 1870 btrfs_header_generation(info->dev_root->node)); 1871 btrfs_set_backup_dev_root_level(root_backup, 1872 btrfs_header_level(info->dev_root->node)); 1873 1874 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1875 btrfs_set_backup_csum_root_gen(root_backup, 1876 btrfs_header_generation(info->csum_root->node)); 1877 btrfs_set_backup_csum_root_level(root_backup, 1878 btrfs_header_level(info->csum_root->node)); 1879 1880 btrfs_set_backup_total_bytes(root_backup, 1881 btrfs_super_total_bytes(info->super_copy)); 1882 btrfs_set_backup_bytes_used(root_backup, 1883 btrfs_super_bytes_used(info->super_copy)); 1884 btrfs_set_backup_num_devices(root_backup, 1885 btrfs_super_num_devices(info->super_copy)); 1886 1887 /* 1888 * if we don't copy this out to the super_copy, it won't get remembered 1889 * for the next commit 1890 */ 1891 memcpy(&info->super_copy->super_roots, 1892 &info->super_for_commit->super_roots, 1893 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1894 } 1895 1896 /* 1897 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1898 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1899 * 1900 * fs_info - filesystem whose backup roots need to be read 1901 * priority - priority of backup root required 1902 * 1903 * Returns backup root index on success and -EINVAL otherwise. 1904 */ 1905 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1906 { 1907 int backup_index = find_newest_super_backup(fs_info); 1908 struct btrfs_super_block *super = fs_info->super_copy; 1909 struct btrfs_root_backup *root_backup; 1910 1911 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1912 if (priority == 0) 1913 return backup_index; 1914 1915 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1916 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1917 } else { 1918 return -EINVAL; 1919 } 1920 1921 root_backup = super->super_roots + backup_index; 1922 1923 btrfs_set_super_generation(super, 1924 btrfs_backup_tree_root_gen(root_backup)); 1925 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1926 btrfs_set_super_root_level(super, 1927 btrfs_backup_tree_root_level(root_backup)); 1928 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1929 1930 /* 1931 * Fixme: the total bytes and num_devices need to match or we should 1932 * need a fsck 1933 */ 1934 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1935 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1936 1937 return backup_index; 1938 } 1939 1940 /* helper to cleanup workers */ 1941 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1942 { 1943 btrfs_destroy_workqueue(fs_info->fixup_workers); 1944 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1945 btrfs_destroy_workqueue(fs_info->workers); 1946 btrfs_destroy_workqueue(fs_info->endio_workers); 1947 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1948 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 1949 btrfs_destroy_workqueue(fs_info->rmw_workers); 1950 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1951 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1952 btrfs_destroy_workqueue(fs_info->delayed_workers); 1953 btrfs_destroy_workqueue(fs_info->caching_workers); 1954 btrfs_destroy_workqueue(fs_info->readahead_workers); 1955 btrfs_destroy_workqueue(fs_info->flush_workers); 1956 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1957 if (fs_info->discard_ctl.discard_workers) 1958 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1959 /* 1960 * Now that all other work queues are destroyed, we can safely destroy 1961 * the queues used for metadata I/O, since tasks from those other work 1962 * queues can do metadata I/O operations. 1963 */ 1964 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1965 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1966 } 1967 1968 static void free_root_extent_buffers(struct btrfs_root *root) 1969 { 1970 if (root) { 1971 free_extent_buffer(root->node); 1972 free_extent_buffer(root->commit_root); 1973 root->node = NULL; 1974 root->commit_root = NULL; 1975 } 1976 } 1977 1978 /* helper to cleanup tree roots */ 1979 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1980 { 1981 free_root_extent_buffers(info->tree_root); 1982 1983 free_root_extent_buffers(info->dev_root); 1984 free_root_extent_buffers(info->extent_root); 1985 free_root_extent_buffers(info->csum_root); 1986 free_root_extent_buffers(info->quota_root); 1987 free_root_extent_buffers(info->uuid_root); 1988 if (free_chunk_root) 1989 free_root_extent_buffers(info->chunk_root); 1990 free_root_extent_buffers(info->free_space_root); 1991 } 1992 1993 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1994 { 1995 int ret; 1996 struct btrfs_root *gang[8]; 1997 int i; 1998 1999 while (!list_empty(&fs_info->dead_roots)) { 2000 gang[0] = list_entry(fs_info->dead_roots.next, 2001 struct btrfs_root, root_list); 2002 list_del(&gang[0]->root_list); 2003 2004 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2005 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2006 } else { 2007 free_extent_buffer(gang[0]->node); 2008 free_extent_buffer(gang[0]->commit_root); 2009 btrfs_put_fs_root(gang[0]); 2010 } 2011 } 2012 2013 while (1) { 2014 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2015 (void **)gang, 0, 2016 ARRAY_SIZE(gang)); 2017 if (!ret) 2018 break; 2019 for (i = 0; i < ret; i++) 2020 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2021 } 2022 2023 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2024 btrfs_free_log_root_tree(NULL, fs_info); 2025 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2026 } 2027 } 2028 2029 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2030 { 2031 mutex_init(&fs_info->scrub_lock); 2032 atomic_set(&fs_info->scrubs_running, 0); 2033 atomic_set(&fs_info->scrub_pause_req, 0); 2034 atomic_set(&fs_info->scrubs_paused, 0); 2035 atomic_set(&fs_info->scrub_cancel_req, 0); 2036 init_waitqueue_head(&fs_info->scrub_pause_wait); 2037 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2038 } 2039 2040 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2041 { 2042 spin_lock_init(&fs_info->balance_lock); 2043 mutex_init(&fs_info->balance_mutex); 2044 atomic_set(&fs_info->balance_pause_req, 0); 2045 atomic_set(&fs_info->balance_cancel_req, 0); 2046 fs_info->balance_ctl = NULL; 2047 init_waitqueue_head(&fs_info->balance_wait_q); 2048 } 2049 2050 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2051 { 2052 struct inode *inode = fs_info->btree_inode; 2053 2054 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2055 set_nlink(inode, 1); 2056 /* 2057 * we set the i_size on the btree inode to the max possible int. 2058 * the real end of the address space is determined by all of 2059 * the devices in the system 2060 */ 2061 inode->i_size = OFFSET_MAX; 2062 inode->i_mapping->a_ops = &btree_aops; 2063 2064 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2065 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2066 IO_TREE_INODE_IO, inode); 2067 BTRFS_I(inode)->io_tree.track_uptodate = false; 2068 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2069 2070 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2071 2072 BTRFS_I(inode)->root = fs_info->tree_root; 2073 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2074 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2075 btrfs_insert_inode_hash(inode); 2076 } 2077 2078 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2079 { 2080 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2081 init_rwsem(&fs_info->dev_replace.rwsem); 2082 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2083 } 2084 2085 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2086 { 2087 spin_lock_init(&fs_info->qgroup_lock); 2088 mutex_init(&fs_info->qgroup_ioctl_lock); 2089 fs_info->qgroup_tree = RB_ROOT; 2090 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2091 fs_info->qgroup_seq = 1; 2092 fs_info->qgroup_ulist = NULL; 2093 fs_info->qgroup_rescan_running = false; 2094 mutex_init(&fs_info->qgroup_rescan_lock); 2095 } 2096 2097 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2098 struct btrfs_fs_devices *fs_devices) 2099 { 2100 u32 max_active = fs_info->thread_pool_size; 2101 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2102 2103 fs_info->workers = 2104 btrfs_alloc_workqueue(fs_info, "worker", 2105 flags | WQ_HIGHPRI, max_active, 16); 2106 2107 fs_info->delalloc_workers = 2108 btrfs_alloc_workqueue(fs_info, "delalloc", 2109 flags, max_active, 2); 2110 2111 fs_info->flush_workers = 2112 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2113 flags, max_active, 0); 2114 2115 fs_info->caching_workers = 2116 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2117 2118 fs_info->fixup_workers = 2119 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2120 2121 /* 2122 * endios are largely parallel and should have a very 2123 * low idle thresh 2124 */ 2125 fs_info->endio_workers = 2126 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2127 fs_info->endio_meta_workers = 2128 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2129 max_active, 4); 2130 fs_info->endio_meta_write_workers = 2131 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2132 max_active, 2); 2133 fs_info->endio_raid56_workers = 2134 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2135 max_active, 4); 2136 fs_info->endio_repair_workers = 2137 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2138 fs_info->rmw_workers = 2139 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2140 fs_info->endio_write_workers = 2141 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2142 max_active, 2); 2143 fs_info->endio_freespace_worker = 2144 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2145 max_active, 0); 2146 fs_info->delayed_workers = 2147 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2148 max_active, 0); 2149 fs_info->readahead_workers = 2150 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2151 max_active, 2); 2152 fs_info->qgroup_rescan_workers = 2153 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2154 fs_info->discard_ctl.discard_workers = 2155 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2156 2157 if (!(fs_info->workers && fs_info->delalloc_workers && 2158 fs_info->flush_workers && 2159 fs_info->endio_workers && fs_info->endio_meta_workers && 2160 fs_info->endio_meta_write_workers && 2161 fs_info->endio_repair_workers && 2162 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2163 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2164 fs_info->caching_workers && fs_info->readahead_workers && 2165 fs_info->fixup_workers && fs_info->delayed_workers && 2166 fs_info->qgroup_rescan_workers && 2167 fs_info->discard_ctl.discard_workers)) { 2168 return -ENOMEM; 2169 } 2170 2171 return 0; 2172 } 2173 2174 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2175 { 2176 struct crypto_shash *csum_shash; 2177 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2178 2179 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2180 2181 if (IS_ERR(csum_shash)) { 2182 btrfs_err(fs_info, "error allocating %s hash for checksum", 2183 csum_driver); 2184 return PTR_ERR(csum_shash); 2185 } 2186 2187 fs_info->csum_shash = csum_shash; 2188 2189 return 0; 2190 } 2191 2192 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 2193 { 2194 crypto_free_shash(fs_info->csum_shash); 2195 } 2196 2197 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2198 struct btrfs_fs_devices *fs_devices) 2199 { 2200 int ret; 2201 struct btrfs_root *log_tree_root; 2202 struct btrfs_super_block *disk_super = fs_info->super_copy; 2203 u64 bytenr = btrfs_super_log_root(disk_super); 2204 int level = btrfs_super_log_root_level(disk_super); 2205 2206 if (fs_devices->rw_devices == 0) { 2207 btrfs_warn(fs_info, "log replay required on RO media"); 2208 return -EIO; 2209 } 2210 2211 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2212 if (!log_tree_root) 2213 return -ENOMEM; 2214 2215 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2216 2217 log_tree_root->node = read_tree_block(fs_info, bytenr, 2218 fs_info->generation + 1, 2219 level, NULL); 2220 if (IS_ERR(log_tree_root->node)) { 2221 btrfs_warn(fs_info, "failed to read log tree"); 2222 ret = PTR_ERR(log_tree_root->node); 2223 kfree(log_tree_root); 2224 return ret; 2225 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2226 btrfs_err(fs_info, "failed to read log tree"); 2227 free_extent_buffer(log_tree_root->node); 2228 kfree(log_tree_root); 2229 return -EIO; 2230 } 2231 /* returns with log_tree_root freed on success */ 2232 ret = btrfs_recover_log_trees(log_tree_root); 2233 if (ret) { 2234 btrfs_handle_fs_error(fs_info, ret, 2235 "Failed to recover log tree"); 2236 free_extent_buffer(log_tree_root->node); 2237 kfree(log_tree_root); 2238 return ret; 2239 } 2240 2241 if (sb_rdonly(fs_info->sb)) { 2242 ret = btrfs_commit_super(fs_info); 2243 if (ret) 2244 return ret; 2245 } 2246 2247 return 0; 2248 } 2249 2250 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2251 { 2252 struct btrfs_root *tree_root = fs_info->tree_root; 2253 struct btrfs_root *root; 2254 struct btrfs_key location; 2255 int ret; 2256 2257 BUG_ON(!fs_info->tree_root); 2258 2259 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2260 location.type = BTRFS_ROOT_ITEM_KEY; 2261 location.offset = 0; 2262 2263 root = btrfs_read_tree_root(tree_root, &location); 2264 if (IS_ERR(root)) { 2265 ret = PTR_ERR(root); 2266 goto out; 2267 } 2268 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2269 fs_info->extent_root = root; 2270 2271 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2272 root = btrfs_read_tree_root(tree_root, &location); 2273 if (IS_ERR(root)) { 2274 ret = PTR_ERR(root); 2275 goto out; 2276 } 2277 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2278 fs_info->dev_root = root; 2279 btrfs_init_devices_late(fs_info); 2280 2281 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2282 root = btrfs_read_tree_root(tree_root, &location); 2283 if (IS_ERR(root)) { 2284 ret = PTR_ERR(root); 2285 goto out; 2286 } 2287 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2288 fs_info->csum_root = root; 2289 2290 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2291 root = btrfs_read_tree_root(tree_root, &location); 2292 if (!IS_ERR(root)) { 2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2294 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2295 fs_info->quota_root = root; 2296 } 2297 2298 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2299 root = btrfs_read_tree_root(tree_root, &location); 2300 if (IS_ERR(root)) { 2301 ret = PTR_ERR(root); 2302 if (ret != -ENOENT) 2303 goto out; 2304 } else { 2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2306 fs_info->uuid_root = root; 2307 } 2308 2309 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2310 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2311 root = btrfs_read_tree_root(tree_root, &location); 2312 if (IS_ERR(root)) { 2313 ret = PTR_ERR(root); 2314 goto out; 2315 } 2316 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2317 fs_info->free_space_root = root; 2318 } 2319 2320 return 0; 2321 out: 2322 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2323 location.objectid, ret); 2324 return ret; 2325 } 2326 2327 /* 2328 * Real super block validation 2329 * NOTE: super csum type and incompat features will not be checked here. 2330 * 2331 * @sb: super block to check 2332 * @mirror_num: the super block number to check its bytenr: 2333 * 0 the primary (1st) sb 2334 * 1, 2 2nd and 3rd backup copy 2335 * -1 skip bytenr check 2336 */ 2337 static int validate_super(struct btrfs_fs_info *fs_info, 2338 struct btrfs_super_block *sb, int mirror_num) 2339 { 2340 u64 nodesize = btrfs_super_nodesize(sb); 2341 u64 sectorsize = btrfs_super_sectorsize(sb); 2342 int ret = 0; 2343 2344 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2345 btrfs_err(fs_info, "no valid FS found"); 2346 ret = -EINVAL; 2347 } 2348 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2349 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2350 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2351 ret = -EINVAL; 2352 } 2353 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2354 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2355 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2356 ret = -EINVAL; 2357 } 2358 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2359 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2360 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2361 ret = -EINVAL; 2362 } 2363 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2364 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2365 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2366 ret = -EINVAL; 2367 } 2368 2369 /* 2370 * Check sectorsize and nodesize first, other check will need it. 2371 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2372 */ 2373 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2374 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2375 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2376 ret = -EINVAL; 2377 } 2378 /* Only PAGE SIZE is supported yet */ 2379 if (sectorsize != PAGE_SIZE) { 2380 btrfs_err(fs_info, 2381 "sectorsize %llu not supported yet, only support %lu", 2382 sectorsize, PAGE_SIZE); 2383 ret = -EINVAL; 2384 } 2385 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2386 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2387 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2388 ret = -EINVAL; 2389 } 2390 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2391 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2392 le32_to_cpu(sb->__unused_leafsize), nodesize); 2393 ret = -EINVAL; 2394 } 2395 2396 /* Root alignment check */ 2397 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2398 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2399 btrfs_super_root(sb)); 2400 ret = -EINVAL; 2401 } 2402 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2403 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2404 btrfs_super_chunk_root(sb)); 2405 ret = -EINVAL; 2406 } 2407 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2408 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2409 btrfs_super_log_root(sb)); 2410 ret = -EINVAL; 2411 } 2412 2413 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2414 BTRFS_FSID_SIZE) != 0) { 2415 btrfs_err(fs_info, 2416 "dev_item UUID does not match metadata fsid: %pU != %pU", 2417 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2418 ret = -EINVAL; 2419 } 2420 2421 /* 2422 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2423 * done later 2424 */ 2425 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2426 btrfs_err(fs_info, "bytes_used is too small %llu", 2427 btrfs_super_bytes_used(sb)); 2428 ret = -EINVAL; 2429 } 2430 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2431 btrfs_err(fs_info, "invalid stripesize %u", 2432 btrfs_super_stripesize(sb)); 2433 ret = -EINVAL; 2434 } 2435 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2436 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2437 btrfs_super_num_devices(sb)); 2438 if (btrfs_super_num_devices(sb) == 0) { 2439 btrfs_err(fs_info, "number of devices is 0"); 2440 ret = -EINVAL; 2441 } 2442 2443 if (mirror_num >= 0 && 2444 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2445 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2446 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2447 ret = -EINVAL; 2448 } 2449 2450 /* 2451 * Obvious sys_chunk_array corruptions, it must hold at least one key 2452 * and one chunk 2453 */ 2454 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2455 btrfs_err(fs_info, "system chunk array too big %u > %u", 2456 btrfs_super_sys_array_size(sb), 2457 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2458 ret = -EINVAL; 2459 } 2460 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2461 + sizeof(struct btrfs_chunk)) { 2462 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2463 btrfs_super_sys_array_size(sb), 2464 sizeof(struct btrfs_disk_key) 2465 + sizeof(struct btrfs_chunk)); 2466 ret = -EINVAL; 2467 } 2468 2469 /* 2470 * The generation is a global counter, we'll trust it more than the others 2471 * but it's still possible that it's the one that's wrong. 2472 */ 2473 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2474 btrfs_warn(fs_info, 2475 "suspicious: generation < chunk_root_generation: %llu < %llu", 2476 btrfs_super_generation(sb), 2477 btrfs_super_chunk_root_generation(sb)); 2478 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2479 && btrfs_super_cache_generation(sb) != (u64)-1) 2480 btrfs_warn(fs_info, 2481 "suspicious: generation < cache_generation: %llu < %llu", 2482 btrfs_super_generation(sb), 2483 btrfs_super_cache_generation(sb)); 2484 2485 return ret; 2486 } 2487 2488 /* 2489 * Validation of super block at mount time. 2490 * Some checks already done early at mount time, like csum type and incompat 2491 * flags will be skipped. 2492 */ 2493 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2494 { 2495 return validate_super(fs_info, fs_info->super_copy, 0); 2496 } 2497 2498 /* 2499 * Validation of super block at write time. 2500 * Some checks like bytenr check will be skipped as their values will be 2501 * overwritten soon. 2502 * Extra checks like csum type and incompat flags will be done here. 2503 */ 2504 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2505 struct btrfs_super_block *sb) 2506 { 2507 int ret; 2508 2509 ret = validate_super(fs_info, sb, -1); 2510 if (ret < 0) 2511 goto out; 2512 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2513 ret = -EUCLEAN; 2514 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2515 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2516 goto out; 2517 } 2518 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2519 ret = -EUCLEAN; 2520 btrfs_err(fs_info, 2521 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2522 btrfs_super_incompat_flags(sb), 2523 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2524 goto out; 2525 } 2526 out: 2527 if (ret < 0) 2528 btrfs_err(fs_info, 2529 "super block corruption detected before writing it to disk"); 2530 return ret; 2531 } 2532 2533 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2534 { 2535 int backup_index = find_newest_super_backup(fs_info); 2536 struct btrfs_super_block *sb = fs_info->super_copy; 2537 struct btrfs_root *tree_root = fs_info->tree_root; 2538 bool handle_error = false; 2539 int ret = 0; 2540 int i; 2541 2542 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2543 u64 generation; 2544 int level; 2545 2546 if (handle_error) { 2547 if (!IS_ERR(tree_root->node)) 2548 free_extent_buffer(tree_root->node); 2549 tree_root->node = NULL; 2550 2551 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2552 break; 2553 2554 free_root_pointers(fs_info, 0); 2555 2556 /* 2557 * Don't use the log in recovery mode, it won't be 2558 * valid 2559 */ 2560 btrfs_set_super_log_root(sb, 0); 2561 2562 /* We can't trust the free space cache either */ 2563 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2564 2565 ret = read_backup_root(fs_info, i); 2566 backup_index = ret; 2567 if (ret < 0) 2568 return ret; 2569 } 2570 generation = btrfs_super_generation(sb); 2571 level = btrfs_super_root_level(sb); 2572 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2573 generation, level, NULL); 2574 if (IS_ERR(tree_root->node) || 2575 !extent_buffer_uptodate(tree_root->node)) { 2576 handle_error = true; 2577 2578 if (IS_ERR(tree_root->node)) 2579 ret = PTR_ERR(tree_root->node); 2580 else if (!extent_buffer_uptodate(tree_root->node)) 2581 ret = -EUCLEAN; 2582 2583 btrfs_warn(fs_info, "failed to read tree root"); 2584 continue; 2585 } 2586 2587 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2588 tree_root->commit_root = btrfs_root_node(tree_root); 2589 btrfs_set_root_refs(&tree_root->root_item, 1); 2590 2591 /* 2592 * No need to hold btrfs_root::objectid_mutex since the fs 2593 * hasn't been fully initialised and we are the only user 2594 */ 2595 ret = btrfs_find_highest_objectid(tree_root, 2596 &tree_root->highest_objectid); 2597 if (ret < 0) { 2598 handle_error = true; 2599 continue; 2600 } 2601 2602 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2603 2604 ret = btrfs_read_roots(fs_info); 2605 if (ret < 0) { 2606 handle_error = true; 2607 continue; 2608 } 2609 2610 /* All successful */ 2611 fs_info->generation = generation; 2612 fs_info->last_trans_committed = generation; 2613 2614 /* Always begin writing backup roots after the one being used */ 2615 if (backup_index < 0) { 2616 fs_info->backup_root_index = 0; 2617 } else { 2618 fs_info->backup_root_index = backup_index + 1; 2619 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2620 } 2621 break; 2622 } 2623 2624 return ret; 2625 } 2626 2627 int __cold open_ctree(struct super_block *sb, 2628 struct btrfs_fs_devices *fs_devices, 2629 char *options) 2630 { 2631 u32 sectorsize; 2632 u32 nodesize; 2633 u32 stripesize; 2634 u64 generation; 2635 u64 features; 2636 u16 csum_type; 2637 struct btrfs_key location; 2638 struct buffer_head *bh; 2639 struct btrfs_super_block *disk_super; 2640 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2641 struct btrfs_root *tree_root; 2642 struct btrfs_root *chunk_root; 2643 int ret; 2644 int err = -EINVAL; 2645 int clear_free_space_tree = 0; 2646 int level; 2647 2648 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2649 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2650 if (!tree_root || !chunk_root) { 2651 err = -ENOMEM; 2652 goto fail; 2653 } 2654 2655 ret = init_srcu_struct(&fs_info->subvol_srcu); 2656 if (ret) { 2657 err = ret; 2658 goto fail; 2659 } 2660 2661 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2662 if (ret) { 2663 err = ret; 2664 goto fail_srcu; 2665 } 2666 2667 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2668 if (ret) { 2669 err = ret; 2670 goto fail_dio_bytes; 2671 } 2672 fs_info->dirty_metadata_batch = PAGE_SIZE * 2673 (1 + ilog2(nr_cpu_ids)); 2674 2675 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2676 if (ret) { 2677 err = ret; 2678 goto fail_dirty_metadata_bytes; 2679 } 2680 2681 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2682 GFP_KERNEL); 2683 if (ret) { 2684 err = ret; 2685 goto fail_delalloc_bytes; 2686 } 2687 2688 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2689 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2690 INIT_LIST_HEAD(&fs_info->trans_list); 2691 INIT_LIST_HEAD(&fs_info->dead_roots); 2692 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2693 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2694 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2695 spin_lock_init(&fs_info->delalloc_root_lock); 2696 spin_lock_init(&fs_info->trans_lock); 2697 spin_lock_init(&fs_info->fs_roots_radix_lock); 2698 spin_lock_init(&fs_info->delayed_iput_lock); 2699 spin_lock_init(&fs_info->defrag_inodes_lock); 2700 spin_lock_init(&fs_info->super_lock); 2701 spin_lock_init(&fs_info->buffer_lock); 2702 spin_lock_init(&fs_info->unused_bgs_lock); 2703 rwlock_init(&fs_info->tree_mod_log_lock); 2704 mutex_init(&fs_info->unused_bg_unpin_mutex); 2705 mutex_init(&fs_info->delete_unused_bgs_mutex); 2706 mutex_init(&fs_info->reloc_mutex); 2707 mutex_init(&fs_info->delalloc_root_mutex); 2708 seqlock_init(&fs_info->profiles_lock); 2709 2710 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2711 INIT_LIST_HEAD(&fs_info->space_info); 2712 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2713 INIT_LIST_HEAD(&fs_info->unused_bgs); 2714 extent_map_tree_init(&fs_info->mapping_tree); 2715 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2716 BTRFS_BLOCK_RSV_GLOBAL); 2717 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2718 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2719 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2720 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2721 BTRFS_BLOCK_RSV_DELOPS); 2722 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2723 BTRFS_BLOCK_RSV_DELREFS); 2724 2725 atomic_set(&fs_info->async_delalloc_pages, 0); 2726 atomic_set(&fs_info->defrag_running, 0); 2727 atomic_set(&fs_info->reada_works_cnt, 0); 2728 atomic_set(&fs_info->nr_delayed_iputs, 0); 2729 atomic64_set(&fs_info->tree_mod_seq, 0); 2730 fs_info->sb = sb; 2731 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2732 fs_info->metadata_ratio = 0; 2733 fs_info->defrag_inodes = RB_ROOT; 2734 atomic64_set(&fs_info->free_chunk_space, 0); 2735 fs_info->tree_mod_log = RB_ROOT; 2736 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2737 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2738 /* readahead state */ 2739 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2740 spin_lock_init(&fs_info->reada_lock); 2741 btrfs_init_ref_verify(fs_info); 2742 2743 fs_info->thread_pool_size = min_t(unsigned long, 2744 num_online_cpus() + 2, 8); 2745 2746 INIT_LIST_HEAD(&fs_info->ordered_roots); 2747 spin_lock_init(&fs_info->ordered_root_lock); 2748 2749 fs_info->btree_inode = new_inode(sb); 2750 if (!fs_info->btree_inode) { 2751 err = -ENOMEM; 2752 goto fail_bio_counter; 2753 } 2754 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2755 2756 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2757 GFP_KERNEL); 2758 if (!fs_info->delayed_root) { 2759 err = -ENOMEM; 2760 goto fail_iput; 2761 } 2762 btrfs_init_delayed_root(fs_info->delayed_root); 2763 2764 btrfs_init_scrub(fs_info); 2765 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2766 fs_info->check_integrity_print_mask = 0; 2767 #endif 2768 btrfs_init_balance(fs_info); 2769 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2770 2771 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2772 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2773 2774 btrfs_init_btree_inode(fs_info); 2775 2776 spin_lock_init(&fs_info->block_group_cache_lock); 2777 fs_info->block_group_cache_tree = RB_ROOT; 2778 fs_info->first_logical_byte = (u64)-1; 2779 2780 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 2781 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 2782 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 2783 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 2784 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2785 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2786 2787 mutex_init(&fs_info->ordered_operations_mutex); 2788 mutex_init(&fs_info->tree_log_mutex); 2789 mutex_init(&fs_info->chunk_mutex); 2790 mutex_init(&fs_info->transaction_kthread_mutex); 2791 mutex_init(&fs_info->cleaner_mutex); 2792 mutex_init(&fs_info->ro_block_group_mutex); 2793 init_rwsem(&fs_info->commit_root_sem); 2794 init_rwsem(&fs_info->cleanup_work_sem); 2795 init_rwsem(&fs_info->subvol_sem); 2796 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2797 2798 btrfs_init_dev_replace_locks(fs_info); 2799 btrfs_init_qgroup(fs_info); 2800 btrfs_discard_init(fs_info); 2801 2802 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2803 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2804 2805 init_waitqueue_head(&fs_info->transaction_throttle); 2806 init_waitqueue_head(&fs_info->transaction_wait); 2807 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2808 init_waitqueue_head(&fs_info->async_submit_wait); 2809 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2810 2811 /* Usable values until the real ones are cached from the superblock */ 2812 fs_info->nodesize = 4096; 2813 fs_info->sectorsize = 4096; 2814 fs_info->stripesize = 4096; 2815 2816 spin_lock_init(&fs_info->swapfile_pins_lock); 2817 fs_info->swapfile_pins = RB_ROOT; 2818 2819 fs_info->send_in_progress = 0; 2820 2821 ret = btrfs_alloc_stripe_hash_table(fs_info); 2822 if (ret) { 2823 err = ret; 2824 goto fail_alloc; 2825 } 2826 2827 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2828 2829 invalidate_bdev(fs_devices->latest_bdev); 2830 2831 /* 2832 * Read super block and check the signature bytes only 2833 */ 2834 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2835 if (IS_ERR(bh)) { 2836 err = PTR_ERR(bh); 2837 goto fail_alloc; 2838 } 2839 2840 /* 2841 * Verify the type first, if that or the the checksum value are 2842 * corrupted, we'll find out 2843 */ 2844 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data); 2845 if (!btrfs_supported_super_csum(csum_type)) { 2846 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2847 csum_type); 2848 err = -EINVAL; 2849 brelse(bh); 2850 goto fail_alloc; 2851 } 2852 2853 ret = btrfs_init_csum_hash(fs_info, csum_type); 2854 if (ret) { 2855 err = ret; 2856 goto fail_alloc; 2857 } 2858 2859 /* 2860 * We want to check superblock checksum, the type is stored inside. 2861 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2862 */ 2863 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2864 btrfs_err(fs_info, "superblock checksum mismatch"); 2865 err = -EINVAL; 2866 brelse(bh); 2867 goto fail_csum; 2868 } 2869 2870 /* 2871 * super_copy is zeroed at allocation time and we never touch the 2872 * following bytes up to INFO_SIZE, the checksum is calculated from 2873 * the whole block of INFO_SIZE 2874 */ 2875 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2876 brelse(bh); 2877 2878 disk_super = fs_info->super_copy; 2879 2880 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2881 BTRFS_FSID_SIZE)); 2882 2883 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2884 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2885 fs_info->super_copy->metadata_uuid, 2886 BTRFS_FSID_SIZE)); 2887 } 2888 2889 features = btrfs_super_flags(disk_super); 2890 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2891 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2892 btrfs_set_super_flags(disk_super, features); 2893 btrfs_info(fs_info, 2894 "found metadata UUID change in progress flag, clearing"); 2895 } 2896 2897 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2898 sizeof(*fs_info->super_for_commit)); 2899 2900 ret = btrfs_validate_mount_super(fs_info); 2901 if (ret) { 2902 btrfs_err(fs_info, "superblock contains fatal errors"); 2903 err = -EINVAL; 2904 goto fail_csum; 2905 } 2906 2907 if (!btrfs_super_root(disk_super)) 2908 goto fail_csum; 2909 2910 /* check FS state, whether FS is broken. */ 2911 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2912 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2913 2914 /* 2915 * In the long term, we'll store the compression type in the super 2916 * block, and it'll be used for per file compression control. 2917 */ 2918 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2919 2920 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2921 if (ret) { 2922 err = ret; 2923 goto fail_csum; 2924 } 2925 2926 features = btrfs_super_incompat_flags(disk_super) & 2927 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2928 if (features) { 2929 btrfs_err(fs_info, 2930 "cannot mount because of unsupported optional features (%llx)", 2931 features); 2932 err = -EINVAL; 2933 goto fail_csum; 2934 } 2935 2936 features = btrfs_super_incompat_flags(disk_super); 2937 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2938 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2939 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2940 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2941 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2942 2943 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2944 btrfs_info(fs_info, "has skinny extents"); 2945 2946 /* 2947 * flag our filesystem as having big metadata blocks if 2948 * they are bigger than the page size 2949 */ 2950 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2951 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2952 btrfs_info(fs_info, 2953 "flagging fs with big metadata feature"); 2954 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2955 } 2956 2957 nodesize = btrfs_super_nodesize(disk_super); 2958 sectorsize = btrfs_super_sectorsize(disk_super); 2959 stripesize = sectorsize; 2960 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2961 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2962 2963 /* Cache block sizes */ 2964 fs_info->nodesize = nodesize; 2965 fs_info->sectorsize = sectorsize; 2966 fs_info->stripesize = stripesize; 2967 2968 /* 2969 * mixed block groups end up with duplicate but slightly offset 2970 * extent buffers for the same range. It leads to corruptions 2971 */ 2972 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2973 (sectorsize != nodesize)) { 2974 btrfs_err(fs_info, 2975 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2976 nodesize, sectorsize); 2977 goto fail_csum; 2978 } 2979 2980 /* 2981 * Needn't use the lock because there is no other task which will 2982 * update the flag. 2983 */ 2984 btrfs_set_super_incompat_flags(disk_super, features); 2985 2986 features = btrfs_super_compat_ro_flags(disk_super) & 2987 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2988 if (!sb_rdonly(sb) && features) { 2989 btrfs_err(fs_info, 2990 "cannot mount read-write because of unsupported optional features (%llx)", 2991 features); 2992 err = -EINVAL; 2993 goto fail_csum; 2994 } 2995 2996 ret = btrfs_init_workqueues(fs_info, fs_devices); 2997 if (ret) { 2998 err = ret; 2999 goto fail_sb_buffer; 3000 } 3001 3002 sb->s_bdi->congested_fn = btrfs_congested_fn; 3003 sb->s_bdi->congested_data = fs_info; 3004 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3005 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3006 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3007 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3008 3009 sb->s_blocksize = sectorsize; 3010 sb->s_blocksize_bits = blksize_bits(sectorsize); 3011 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3012 3013 mutex_lock(&fs_info->chunk_mutex); 3014 ret = btrfs_read_sys_array(fs_info); 3015 mutex_unlock(&fs_info->chunk_mutex); 3016 if (ret) { 3017 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3018 goto fail_sb_buffer; 3019 } 3020 3021 generation = btrfs_super_chunk_root_generation(disk_super); 3022 level = btrfs_super_chunk_root_level(disk_super); 3023 3024 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 3025 3026 chunk_root->node = read_tree_block(fs_info, 3027 btrfs_super_chunk_root(disk_super), 3028 generation, level, NULL); 3029 if (IS_ERR(chunk_root->node) || 3030 !extent_buffer_uptodate(chunk_root->node)) { 3031 btrfs_err(fs_info, "failed to read chunk root"); 3032 if (!IS_ERR(chunk_root->node)) 3033 free_extent_buffer(chunk_root->node); 3034 chunk_root->node = NULL; 3035 goto fail_tree_roots; 3036 } 3037 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3038 chunk_root->commit_root = btrfs_root_node(chunk_root); 3039 3040 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3041 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3042 3043 ret = btrfs_read_chunk_tree(fs_info); 3044 if (ret) { 3045 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3046 goto fail_tree_roots; 3047 } 3048 3049 /* 3050 * Keep the devid that is marked to be the target device for the 3051 * device replace procedure 3052 */ 3053 btrfs_free_extra_devids(fs_devices, 0); 3054 3055 if (!fs_devices->latest_bdev) { 3056 btrfs_err(fs_info, "failed to read devices"); 3057 goto fail_tree_roots; 3058 } 3059 3060 ret = init_tree_roots(fs_info); 3061 if (ret) 3062 goto fail_tree_roots; 3063 3064 ret = btrfs_verify_dev_extents(fs_info); 3065 if (ret) { 3066 btrfs_err(fs_info, 3067 "failed to verify dev extents against chunks: %d", 3068 ret); 3069 goto fail_block_groups; 3070 } 3071 ret = btrfs_recover_balance(fs_info); 3072 if (ret) { 3073 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3074 goto fail_block_groups; 3075 } 3076 3077 ret = btrfs_init_dev_stats(fs_info); 3078 if (ret) { 3079 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3080 goto fail_block_groups; 3081 } 3082 3083 ret = btrfs_init_dev_replace(fs_info); 3084 if (ret) { 3085 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3086 goto fail_block_groups; 3087 } 3088 3089 btrfs_free_extra_devids(fs_devices, 1); 3090 3091 ret = btrfs_sysfs_add_fsid(fs_devices); 3092 if (ret) { 3093 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3094 ret); 3095 goto fail_block_groups; 3096 } 3097 3098 ret = btrfs_sysfs_add_mounted(fs_info); 3099 if (ret) { 3100 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3101 goto fail_fsdev_sysfs; 3102 } 3103 3104 ret = btrfs_init_space_info(fs_info); 3105 if (ret) { 3106 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3107 goto fail_sysfs; 3108 } 3109 3110 ret = btrfs_read_block_groups(fs_info); 3111 if (ret) { 3112 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3113 goto fail_sysfs; 3114 } 3115 3116 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3117 btrfs_warn(fs_info, 3118 "writable mount is not allowed due to too many missing devices"); 3119 goto fail_sysfs; 3120 } 3121 3122 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3123 "btrfs-cleaner"); 3124 if (IS_ERR(fs_info->cleaner_kthread)) 3125 goto fail_sysfs; 3126 3127 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3128 tree_root, 3129 "btrfs-transaction"); 3130 if (IS_ERR(fs_info->transaction_kthread)) 3131 goto fail_cleaner; 3132 3133 if (!btrfs_test_opt(fs_info, NOSSD) && 3134 !fs_info->fs_devices->rotating) { 3135 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3136 } 3137 3138 /* 3139 * Mount does not set all options immediately, we can do it now and do 3140 * not have to wait for transaction commit 3141 */ 3142 btrfs_apply_pending_changes(fs_info); 3143 3144 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3145 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3146 ret = btrfsic_mount(fs_info, fs_devices, 3147 btrfs_test_opt(fs_info, 3148 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3149 1 : 0, 3150 fs_info->check_integrity_print_mask); 3151 if (ret) 3152 btrfs_warn(fs_info, 3153 "failed to initialize integrity check module: %d", 3154 ret); 3155 } 3156 #endif 3157 ret = btrfs_read_qgroup_config(fs_info); 3158 if (ret) 3159 goto fail_trans_kthread; 3160 3161 if (btrfs_build_ref_tree(fs_info)) 3162 btrfs_err(fs_info, "couldn't build ref tree"); 3163 3164 /* do not make disk changes in broken FS or nologreplay is given */ 3165 if (btrfs_super_log_root(disk_super) != 0 && 3166 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3167 ret = btrfs_replay_log(fs_info, fs_devices); 3168 if (ret) { 3169 err = ret; 3170 goto fail_qgroup; 3171 } 3172 } 3173 3174 ret = btrfs_find_orphan_roots(fs_info); 3175 if (ret) 3176 goto fail_qgroup; 3177 3178 if (!sb_rdonly(sb)) { 3179 ret = btrfs_cleanup_fs_roots(fs_info); 3180 if (ret) 3181 goto fail_qgroup; 3182 3183 mutex_lock(&fs_info->cleaner_mutex); 3184 ret = btrfs_recover_relocation(tree_root); 3185 mutex_unlock(&fs_info->cleaner_mutex); 3186 if (ret < 0) { 3187 btrfs_warn(fs_info, "failed to recover relocation: %d", 3188 ret); 3189 err = -EINVAL; 3190 goto fail_qgroup; 3191 } 3192 } 3193 3194 location.objectid = BTRFS_FS_TREE_OBJECTID; 3195 location.type = BTRFS_ROOT_ITEM_KEY; 3196 location.offset = 0; 3197 3198 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3199 if (IS_ERR(fs_info->fs_root)) { 3200 err = PTR_ERR(fs_info->fs_root); 3201 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3202 goto fail_qgroup; 3203 } 3204 3205 if (sb_rdonly(sb)) 3206 return 0; 3207 3208 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3209 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3210 clear_free_space_tree = 1; 3211 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3212 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3213 btrfs_warn(fs_info, "free space tree is invalid"); 3214 clear_free_space_tree = 1; 3215 } 3216 3217 if (clear_free_space_tree) { 3218 btrfs_info(fs_info, "clearing free space tree"); 3219 ret = btrfs_clear_free_space_tree(fs_info); 3220 if (ret) { 3221 btrfs_warn(fs_info, 3222 "failed to clear free space tree: %d", ret); 3223 close_ctree(fs_info); 3224 return ret; 3225 } 3226 } 3227 3228 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3229 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3230 btrfs_info(fs_info, "creating free space tree"); 3231 ret = btrfs_create_free_space_tree(fs_info); 3232 if (ret) { 3233 btrfs_warn(fs_info, 3234 "failed to create free space tree: %d", ret); 3235 close_ctree(fs_info); 3236 return ret; 3237 } 3238 } 3239 3240 down_read(&fs_info->cleanup_work_sem); 3241 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3242 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3243 up_read(&fs_info->cleanup_work_sem); 3244 close_ctree(fs_info); 3245 return ret; 3246 } 3247 up_read(&fs_info->cleanup_work_sem); 3248 3249 ret = btrfs_resume_balance_async(fs_info); 3250 if (ret) { 3251 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3252 close_ctree(fs_info); 3253 return ret; 3254 } 3255 3256 ret = btrfs_resume_dev_replace_async(fs_info); 3257 if (ret) { 3258 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3259 close_ctree(fs_info); 3260 return ret; 3261 } 3262 3263 btrfs_qgroup_rescan_resume(fs_info); 3264 btrfs_discard_resume(fs_info); 3265 3266 if (!fs_info->uuid_root) { 3267 btrfs_info(fs_info, "creating UUID tree"); 3268 ret = btrfs_create_uuid_tree(fs_info); 3269 if (ret) { 3270 btrfs_warn(fs_info, 3271 "failed to create the UUID tree: %d", ret); 3272 close_ctree(fs_info); 3273 return ret; 3274 } 3275 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3276 fs_info->generation != 3277 btrfs_super_uuid_tree_generation(disk_super)) { 3278 btrfs_info(fs_info, "checking UUID tree"); 3279 ret = btrfs_check_uuid_tree(fs_info); 3280 if (ret) { 3281 btrfs_warn(fs_info, 3282 "failed to check the UUID tree: %d", ret); 3283 close_ctree(fs_info); 3284 return ret; 3285 } 3286 } else { 3287 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3288 } 3289 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3290 3291 /* 3292 * backuproot only affect mount behavior, and if open_ctree succeeded, 3293 * no need to keep the flag 3294 */ 3295 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3296 3297 return 0; 3298 3299 fail_qgroup: 3300 btrfs_free_qgroup_config(fs_info); 3301 fail_trans_kthread: 3302 kthread_stop(fs_info->transaction_kthread); 3303 btrfs_cleanup_transaction(fs_info); 3304 btrfs_free_fs_roots(fs_info); 3305 fail_cleaner: 3306 kthread_stop(fs_info->cleaner_kthread); 3307 3308 /* 3309 * make sure we're done with the btree inode before we stop our 3310 * kthreads 3311 */ 3312 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3313 3314 fail_sysfs: 3315 btrfs_sysfs_remove_mounted(fs_info); 3316 3317 fail_fsdev_sysfs: 3318 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3319 3320 fail_block_groups: 3321 btrfs_put_block_group_cache(fs_info); 3322 3323 fail_tree_roots: 3324 free_root_pointers(fs_info, true); 3325 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3326 3327 fail_sb_buffer: 3328 btrfs_stop_all_workers(fs_info); 3329 btrfs_free_block_groups(fs_info); 3330 fail_csum: 3331 btrfs_free_csum_hash(fs_info); 3332 fail_alloc: 3333 fail_iput: 3334 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3335 3336 iput(fs_info->btree_inode); 3337 fail_bio_counter: 3338 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3339 fail_delalloc_bytes: 3340 percpu_counter_destroy(&fs_info->delalloc_bytes); 3341 fail_dirty_metadata_bytes: 3342 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3343 fail_dio_bytes: 3344 percpu_counter_destroy(&fs_info->dio_bytes); 3345 fail_srcu: 3346 cleanup_srcu_struct(&fs_info->subvol_srcu); 3347 fail: 3348 btrfs_free_stripe_hash_table(fs_info); 3349 btrfs_close_devices(fs_info->fs_devices); 3350 return err; 3351 } 3352 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3353 3354 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3355 { 3356 if (uptodate) { 3357 set_buffer_uptodate(bh); 3358 } else { 3359 struct btrfs_device *device = (struct btrfs_device *) 3360 bh->b_private; 3361 3362 btrfs_warn_rl_in_rcu(device->fs_info, 3363 "lost page write due to IO error on %s", 3364 rcu_str_deref(device->name)); 3365 /* note, we don't set_buffer_write_io_error because we have 3366 * our own ways of dealing with the IO errors 3367 */ 3368 clear_buffer_uptodate(bh); 3369 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3370 } 3371 unlock_buffer(bh); 3372 put_bh(bh); 3373 } 3374 3375 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3376 struct buffer_head **bh_ret) 3377 { 3378 struct buffer_head *bh; 3379 struct btrfs_super_block *super; 3380 u64 bytenr; 3381 3382 bytenr = btrfs_sb_offset(copy_num); 3383 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3384 return -EINVAL; 3385 3386 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3387 /* 3388 * If we fail to read from the underlying devices, as of now 3389 * the best option we have is to mark it EIO. 3390 */ 3391 if (!bh) 3392 return -EIO; 3393 3394 super = (struct btrfs_super_block *)bh->b_data; 3395 if (btrfs_super_bytenr(super) != bytenr || 3396 btrfs_super_magic(super) != BTRFS_MAGIC) { 3397 brelse(bh); 3398 return -EINVAL; 3399 } 3400 3401 *bh_ret = bh; 3402 return 0; 3403 } 3404 3405 3406 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3407 { 3408 struct buffer_head *bh; 3409 struct buffer_head *latest = NULL; 3410 struct btrfs_super_block *super; 3411 int i; 3412 u64 transid = 0; 3413 int ret = -EINVAL; 3414 3415 /* we would like to check all the supers, but that would make 3416 * a btrfs mount succeed after a mkfs from a different FS. 3417 * So, we need to add a special mount option to scan for 3418 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3419 */ 3420 for (i = 0; i < 1; i++) { 3421 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3422 if (ret) 3423 continue; 3424 3425 super = (struct btrfs_super_block *)bh->b_data; 3426 3427 if (!latest || btrfs_super_generation(super) > transid) { 3428 brelse(latest); 3429 latest = bh; 3430 transid = btrfs_super_generation(super); 3431 } else { 3432 brelse(bh); 3433 } 3434 } 3435 3436 if (!latest) 3437 return ERR_PTR(ret); 3438 3439 return latest; 3440 } 3441 3442 /* 3443 * Write superblock @sb to the @device. Do not wait for completion, all the 3444 * buffer heads we write are pinned. 3445 * 3446 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3447 * the expected device size at commit time. Note that max_mirrors must be 3448 * same for write and wait phases. 3449 * 3450 * Return number of errors when buffer head is not found or submission fails. 3451 */ 3452 static int write_dev_supers(struct btrfs_device *device, 3453 struct btrfs_super_block *sb, int max_mirrors) 3454 { 3455 struct btrfs_fs_info *fs_info = device->fs_info; 3456 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3457 struct buffer_head *bh; 3458 int i; 3459 int ret; 3460 int errors = 0; 3461 u64 bytenr; 3462 int op_flags; 3463 3464 if (max_mirrors == 0) 3465 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3466 3467 shash->tfm = fs_info->csum_shash; 3468 3469 for (i = 0; i < max_mirrors; i++) { 3470 bytenr = btrfs_sb_offset(i); 3471 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3472 device->commit_total_bytes) 3473 break; 3474 3475 btrfs_set_super_bytenr(sb, bytenr); 3476 3477 crypto_shash_init(shash); 3478 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3479 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3480 crypto_shash_final(shash, sb->csum); 3481 3482 /* One reference for us, and we leave it for the caller */ 3483 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3484 BTRFS_SUPER_INFO_SIZE); 3485 if (!bh) { 3486 btrfs_err(device->fs_info, 3487 "couldn't get super buffer head for bytenr %llu", 3488 bytenr); 3489 errors++; 3490 continue; 3491 } 3492 3493 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3494 3495 /* one reference for submit_bh */ 3496 get_bh(bh); 3497 3498 set_buffer_uptodate(bh); 3499 lock_buffer(bh); 3500 bh->b_end_io = btrfs_end_buffer_write_sync; 3501 bh->b_private = device; 3502 3503 /* 3504 * we fua the first super. The others we allow 3505 * to go down lazy. 3506 */ 3507 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3508 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3509 op_flags |= REQ_FUA; 3510 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3511 if (ret) 3512 errors++; 3513 } 3514 return errors < i ? 0 : -1; 3515 } 3516 3517 /* 3518 * Wait for write completion of superblocks done by write_dev_supers, 3519 * @max_mirrors same for write and wait phases. 3520 * 3521 * Return number of errors when buffer head is not found or not marked up to 3522 * date. 3523 */ 3524 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3525 { 3526 struct buffer_head *bh; 3527 int i; 3528 int errors = 0; 3529 bool primary_failed = false; 3530 u64 bytenr; 3531 3532 if (max_mirrors == 0) 3533 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3534 3535 for (i = 0; i < max_mirrors; i++) { 3536 bytenr = btrfs_sb_offset(i); 3537 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3538 device->commit_total_bytes) 3539 break; 3540 3541 bh = __find_get_block(device->bdev, 3542 bytenr / BTRFS_BDEV_BLOCKSIZE, 3543 BTRFS_SUPER_INFO_SIZE); 3544 if (!bh) { 3545 errors++; 3546 if (i == 0) 3547 primary_failed = true; 3548 continue; 3549 } 3550 wait_on_buffer(bh); 3551 if (!buffer_uptodate(bh)) { 3552 errors++; 3553 if (i == 0) 3554 primary_failed = true; 3555 } 3556 3557 /* drop our reference */ 3558 brelse(bh); 3559 3560 /* drop the reference from the writing run */ 3561 brelse(bh); 3562 } 3563 3564 /* log error, force error return */ 3565 if (primary_failed) { 3566 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3567 device->devid); 3568 return -1; 3569 } 3570 3571 return errors < i ? 0 : -1; 3572 } 3573 3574 /* 3575 * endio for the write_dev_flush, this will wake anyone waiting 3576 * for the barrier when it is done 3577 */ 3578 static void btrfs_end_empty_barrier(struct bio *bio) 3579 { 3580 complete(bio->bi_private); 3581 } 3582 3583 /* 3584 * Submit a flush request to the device if it supports it. Error handling is 3585 * done in the waiting counterpart. 3586 */ 3587 static void write_dev_flush(struct btrfs_device *device) 3588 { 3589 struct request_queue *q = bdev_get_queue(device->bdev); 3590 struct bio *bio = device->flush_bio; 3591 3592 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3593 return; 3594 3595 bio_reset(bio); 3596 bio->bi_end_io = btrfs_end_empty_barrier; 3597 bio_set_dev(bio, device->bdev); 3598 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3599 init_completion(&device->flush_wait); 3600 bio->bi_private = &device->flush_wait; 3601 3602 btrfsic_submit_bio(bio); 3603 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3604 } 3605 3606 /* 3607 * If the flush bio has been submitted by write_dev_flush, wait for it. 3608 */ 3609 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3610 { 3611 struct bio *bio = device->flush_bio; 3612 3613 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3614 return BLK_STS_OK; 3615 3616 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3617 wait_for_completion_io(&device->flush_wait); 3618 3619 return bio->bi_status; 3620 } 3621 3622 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3623 { 3624 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3625 return -EIO; 3626 return 0; 3627 } 3628 3629 /* 3630 * send an empty flush down to each device in parallel, 3631 * then wait for them 3632 */ 3633 static int barrier_all_devices(struct btrfs_fs_info *info) 3634 { 3635 struct list_head *head; 3636 struct btrfs_device *dev; 3637 int errors_wait = 0; 3638 blk_status_t ret; 3639 3640 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3641 /* send down all the barriers */ 3642 head = &info->fs_devices->devices; 3643 list_for_each_entry(dev, head, dev_list) { 3644 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3645 continue; 3646 if (!dev->bdev) 3647 continue; 3648 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3649 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3650 continue; 3651 3652 write_dev_flush(dev); 3653 dev->last_flush_error = BLK_STS_OK; 3654 } 3655 3656 /* wait for all the barriers */ 3657 list_for_each_entry(dev, head, dev_list) { 3658 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3659 continue; 3660 if (!dev->bdev) { 3661 errors_wait++; 3662 continue; 3663 } 3664 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3665 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3666 continue; 3667 3668 ret = wait_dev_flush(dev); 3669 if (ret) { 3670 dev->last_flush_error = ret; 3671 btrfs_dev_stat_inc_and_print(dev, 3672 BTRFS_DEV_STAT_FLUSH_ERRS); 3673 errors_wait++; 3674 } 3675 } 3676 3677 if (errors_wait) { 3678 /* 3679 * At some point we need the status of all disks 3680 * to arrive at the volume status. So error checking 3681 * is being pushed to a separate loop. 3682 */ 3683 return check_barrier_error(info); 3684 } 3685 return 0; 3686 } 3687 3688 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3689 { 3690 int raid_type; 3691 int min_tolerated = INT_MAX; 3692 3693 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3694 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3695 min_tolerated = min_t(int, min_tolerated, 3696 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3697 tolerated_failures); 3698 3699 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3700 if (raid_type == BTRFS_RAID_SINGLE) 3701 continue; 3702 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3703 continue; 3704 min_tolerated = min_t(int, min_tolerated, 3705 btrfs_raid_array[raid_type]. 3706 tolerated_failures); 3707 } 3708 3709 if (min_tolerated == INT_MAX) { 3710 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3711 min_tolerated = 0; 3712 } 3713 3714 return min_tolerated; 3715 } 3716 3717 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3718 { 3719 struct list_head *head; 3720 struct btrfs_device *dev; 3721 struct btrfs_super_block *sb; 3722 struct btrfs_dev_item *dev_item; 3723 int ret; 3724 int do_barriers; 3725 int max_errors; 3726 int total_errors = 0; 3727 u64 flags; 3728 3729 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3730 3731 /* 3732 * max_mirrors == 0 indicates we're from commit_transaction, 3733 * not from fsync where the tree roots in fs_info have not 3734 * been consistent on disk. 3735 */ 3736 if (max_mirrors == 0) 3737 backup_super_roots(fs_info); 3738 3739 sb = fs_info->super_for_commit; 3740 dev_item = &sb->dev_item; 3741 3742 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3743 head = &fs_info->fs_devices->devices; 3744 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3745 3746 if (do_barriers) { 3747 ret = barrier_all_devices(fs_info); 3748 if (ret) { 3749 mutex_unlock( 3750 &fs_info->fs_devices->device_list_mutex); 3751 btrfs_handle_fs_error(fs_info, ret, 3752 "errors while submitting device barriers."); 3753 return ret; 3754 } 3755 } 3756 3757 list_for_each_entry(dev, head, dev_list) { 3758 if (!dev->bdev) { 3759 total_errors++; 3760 continue; 3761 } 3762 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3763 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3764 continue; 3765 3766 btrfs_set_stack_device_generation(dev_item, 0); 3767 btrfs_set_stack_device_type(dev_item, dev->type); 3768 btrfs_set_stack_device_id(dev_item, dev->devid); 3769 btrfs_set_stack_device_total_bytes(dev_item, 3770 dev->commit_total_bytes); 3771 btrfs_set_stack_device_bytes_used(dev_item, 3772 dev->commit_bytes_used); 3773 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3774 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3775 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3776 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3777 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3778 BTRFS_FSID_SIZE); 3779 3780 flags = btrfs_super_flags(sb); 3781 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3782 3783 ret = btrfs_validate_write_super(fs_info, sb); 3784 if (ret < 0) { 3785 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3786 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3787 "unexpected superblock corruption detected"); 3788 return -EUCLEAN; 3789 } 3790 3791 ret = write_dev_supers(dev, sb, max_mirrors); 3792 if (ret) 3793 total_errors++; 3794 } 3795 if (total_errors > max_errors) { 3796 btrfs_err(fs_info, "%d errors while writing supers", 3797 total_errors); 3798 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3799 3800 /* FUA is masked off if unsupported and can't be the reason */ 3801 btrfs_handle_fs_error(fs_info, -EIO, 3802 "%d errors while writing supers", 3803 total_errors); 3804 return -EIO; 3805 } 3806 3807 total_errors = 0; 3808 list_for_each_entry(dev, head, dev_list) { 3809 if (!dev->bdev) 3810 continue; 3811 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3812 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3813 continue; 3814 3815 ret = wait_dev_supers(dev, max_mirrors); 3816 if (ret) 3817 total_errors++; 3818 } 3819 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3820 if (total_errors > max_errors) { 3821 btrfs_handle_fs_error(fs_info, -EIO, 3822 "%d errors while writing supers", 3823 total_errors); 3824 return -EIO; 3825 } 3826 return 0; 3827 } 3828 3829 /* Drop a fs root from the radix tree and free it. */ 3830 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3831 struct btrfs_root *root) 3832 { 3833 spin_lock(&fs_info->fs_roots_radix_lock); 3834 radix_tree_delete(&fs_info->fs_roots_radix, 3835 (unsigned long)root->root_key.objectid); 3836 spin_unlock(&fs_info->fs_roots_radix_lock); 3837 3838 if (btrfs_root_refs(&root->root_item) == 0) 3839 synchronize_srcu(&fs_info->subvol_srcu); 3840 3841 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3842 btrfs_free_log(NULL, root); 3843 if (root->reloc_root) { 3844 free_extent_buffer(root->reloc_root->node); 3845 free_extent_buffer(root->reloc_root->commit_root); 3846 btrfs_put_fs_root(root->reloc_root); 3847 root->reloc_root = NULL; 3848 } 3849 } 3850 3851 if (root->free_ino_pinned) 3852 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3853 if (root->free_ino_ctl) 3854 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3855 btrfs_free_fs_root(root); 3856 } 3857 3858 void btrfs_free_fs_root(struct btrfs_root *root) 3859 { 3860 iput(root->ino_cache_inode); 3861 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3862 if (root->anon_dev) 3863 free_anon_bdev(root->anon_dev); 3864 if (root->subv_writers) 3865 btrfs_free_subvolume_writers(root->subv_writers); 3866 free_extent_buffer(root->node); 3867 free_extent_buffer(root->commit_root); 3868 kfree(root->free_ino_ctl); 3869 kfree(root->free_ino_pinned); 3870 btrfs_put_fs_root(root); 3871 } 3872 3873 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3874 { 3875 u64 root_objectid = 0; 3876 struct btrfs_root *gang[8]; 3877 int i = 0; 3878 int err = 0; 3879 unsigned int ret = 0; 3880 int index; 3881 3882 while (1) { 3883 index = srcu_read_lock(&fs_info->subvol_srcu); 3884 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3885 (void **)gang, root_objectid, 3886 ARRAY_SIZE(gang)); 3887 if (!ret) { 3888 srcu_read_unlock(&fs_info->subvol_srcu, index); 3889 break; 3890 } 3891 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3892 3893 for (i = 0; i < ret; i++) { 3894 /* Avoid to grab roots in dead_roots */ 3895 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3896 gang[i] = NULL; 3897 continue; 3898 } 3899 /* grab all the search result for later use */ 3900 gang[i] = btrfs_grab_fs_root(gang[i]); 3901 } 3902 srcu_read_unlock(&fs_info->subvol_srcu, index); 3903 3904 for (i = 0; i < ret; i++) { 3905 if (!gang[i]) 3906 continue; 3907 root_objectid = gang[i]->root_key.objectid; 3908 err = btrfs_orphan_cleanup(gang[i]); 3909 if (err) 3910 break; 3911 btrfs_put_fs_root(gang[i]); 3912 } 3913 root_objectid++; 3914 } 3915 3916 /* release the uncleaned roots due to error */ 3917 for (; i < ret; i++) { 3918 if (gang[i]) 3919 btrfs_put_fs_root(gang[i]); 3920 } 3921 return err; 3922 } 3923 3924 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3925 { 3926 struct btrfs_root *root = fs_info->tree_root; 3927 struct btrfs_trans_handle *trans; 3928 3929 mutex_lock(&fs_info->cleaner_mutex); 3930 btrfs_run_delayed_iputs(fs_info); 3931 mutex_unlock(&fs_info->cleaner_mutex); 3932 wake_up_process(fs_info->cleaner_kthread); 3933 3934 /* wait until ongoing cleanup work done */ 3935 down_write(&fs_info->cleanup_work_sem); 3936 up_write(&fs_info->cleanup_work_sem); 3937 3938 trans = btrfs_join_transaction(root); 3939 if (IS_ERR(trans)) 3940 return PTR_ERR(trans); 3941 return btrfs_commit_transaction(trans); 3942 } 3943 3944 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3945 { 3946 int ret; 3947 3948 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3949 /* 3950 * We don't want the cleaner to start new transactions, add more delayed 3951 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3952 * because that frees the task_struct, and the transaction kthread might 3953 * still try to wake up the cleaner. 3954 */ 3955 kthread_park(fs_info->cleaner_kthread); 3956 3957 /* wait for the qgroup rescan worker to stop */ 3958 btrfs_qgroup_wait_for_completion(fs_info, false); 3959 3960 /* wait for the uuid_scan task to finish */ 3961 down(&fs_info->uuid_tree_rescan_sem); 3962 /* avoid complains from lockdep et al., set sem back to initial state */ 3963 up(&fs_info->uuid_tree_rescan_sem); 3964 3965 /* pause restriper - we want to resume on mount */ 3966 btrfs_pause_balance(fs_info); 3967 3968 btrfs_dev_replace_suspend_for_unmount(fs_info); 3969 3970 btrfs_scrub_cancel(fs_info); 3971 3972 /* wait for any defraggers to finish */ 3973 wait_event(fs_info->transaction_wait, 3974 (atomic_read(&fs_info->defrag_running) == 0)); 3975 3976 /* clear out the rbtree of defraggable inodes */ 3977 btrfs_cleanup_defrag_inodes(fs_info); 3978 3979 cancel_work_sync(&fs_info->async_reclaim_work); 3980 3981 /* Cancel or finish ongoing discard work */ 3982 btrfs_discard_cleanup(fs_info); 3983 3984 if (!sb_rdonly(fs_info->sb)) { 3985 /* 3986 * The cleaner kthread is stopped, so do one final pass over 3987 * unused block groups. 3988 */ 3989 btrfs_delete_unused_bgs(fs_info); 3990 3991 ret = btrfs_commit_super(fs_info); 3992 if (ret) 3993 btrfs_err(fs_info, "commit super ret %d", ret); 3994 } 3995 3996 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3997 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3998 btrfs_error_commit_super(fs_info); 3999 4000 kthread_stop(fs_info->transaction_kthread); 4001 kthread_stop(fs_info->cleaner_kthread); 4002 4003 ASSERT(list_empty(&fs_info->delayed_iputs)); 4004 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4005 4006 btrfs_free_qgroup_config(fs_info); 4007 ASSERT(list_empty(&fs_info->delalloc_roots)); 4008 4009 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4010 btrfs_info(fs_info, "at unmount delalloc count %lld", 4011 percpu_counter_sum(&fs_info->delalloc_bytes)); 4012 } 4013 4014 if (percpu_counter_sum(&fs_info->dio_bytes)) 4015 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4016 percpu_counter_sum(&fs_info->dio_bytes)); 4017 4018 btrfs_sysfs_remove_mounted(fs_info); 4019 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4020 4021 btrfs_free_fs_roots(fs_info); 4022 4023 btrfs_put_block_group_cache(fs_info); 4024 4025 /* 4026 * we must make sure there is not any read request to 4027 * submit after we stopping all workers. 4028 */ 4029 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4030 btrfs_stop_all_workers(fs_info); 4031 4032 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4033 free_root_pointers(fs_info, true); 4034 4035 /* 4036 * We must free the block groups after dropping the fs_roots as we could 4037 * have had an IO error and have left over tree log blocks that aren't 4038 * cleaned up until the fs roots are freed. This makes the block group 4039 * accounting appear to be wrong because there's pending reserved bytes, 4040 * so make sure we do the block group cleanup afterwards. 4041 */ 4042 btrfs_free_block_groups(fs_info); 4043 4044 iput(fs_info->btree_inode); 4045 4046 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4047 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4048 btrfsic_unmount(fs_info->fs_devices); 4049 #endif 4050 4051 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4052 btrfs_close_devices(fs_info->fs_devices); 4053 4054 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4055 percpu_counter_destroy(&fs_info->delalloc_bytes); 4056 percpu_counter_destroy(&fs_info->dio_bytes); 4057 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4058 cleanup_srcu_struct(&fs_info->subvol_srcu); 4059 4060 btrfs_free_csum_hash(fs_info); 4061 btrfs_free_stripe_hash_table(fs_info); 4062 btrfs_free_ref_cache(fs_info); 4063 } 4064 4065 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4066 int atomic) 4067 { 4068 int ret; 4069 struct inode *btree_inode = buf->pages[0]->mapping->host; 4070 4071 ret = extent_buffer_uptodate(buf); 4072 if (!ret) 4073 return ret; 4074 4075 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4076 parent_transid, atomic); 4077 if (ret == -EAGAIN) 4078 return ret; 4079 return !ret; 4080 } 4081 4082 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4083 { 4084 struct btrfs_fs_info *fs_info; 4085 struct btrfs_root *root; 4086 u64 transid = btrfs_header_generation(buf); 4087 int was_dirty; 4088 4089 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4090 /* 4091 * This is a fast path so only do this check if we have sanity tests 4092 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4093 * outside of the sanity tests. 4094 */ 4095 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4096 return; 4097 #endif 4098 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4099 fs_info = root->fs_info; 4100 btrfs_assert_tree_locked(buf); 4101 if (transid != fs_info->generation) 4102 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4103 buf->start, transid, fs_info->generation); 4104 was_dirty = set_extent_buffer_dirty(buf); 4105 if (!was_dirty) 4106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4107 buf->len, 4108 fs_info->dirty_metadata_batch); 4109 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4110 /* 4111 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4112 * but item data not updated. 4113 * So here we should only check item pointers, not item data. 4114 */ 4115 if (btrfs_header_level(buf) == 0 && 4116 btrfs_check_leaf_relaxed(buf)) { 4117 btrfs_print_leaf(buf); 4118 ASSERT(0); 4119 } 4120 #endif 4121 } 4122 4123 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4124 int flush_delayed) 4125 { 4126 /* 4127 * looks as though older kernels can get into trouble with 4128 * this code, they end up stuck in balance_dirty_pages forever 4129 */ 4130 int ret; 4131 4132 if (current->flags & PF_MEMALLOC) 4133 return; 4134 4135 if (flush_delayed) 4136 btrfs_balance_delayed_items(fs_info); 4137 4138 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4139 BTRFS_DIRTY_METADATA_THRESH, 4140 fs_info->dirty_metadata_batch); 4141 if (ret > 0) { 4142 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4143 } 4144 } 4145 4146 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4147 { 4148 __btrfs_btree_balance_dirty(fs_info, 1); 4149 } 4150 4151 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4152 { 4153 __btrfs_btree_balance_dirty(fs_info, 0); 4154 } 4155 4156 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4157 struct btrfs_key *first_key) 4158 { 4159 return btree_read_extent_buffer_pages(buf, parent_transid, 4160 level, first_key); 4161 } 4162 4163 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4164 { 4165 /* cleanup FS via transaction */ 4166 btrfs_cleanup_transaction(fs_info); 4167 4168 mutex_lock(&fs_info->cleaner_mutex); 4169 btrfs_run_delayed_iputs(fs_info); 4170 mutex_unlock(&fs_info->cleaner_mutex); 4171 4172 down_write(&fs_info->cleanup_work_sem); 4173 up_write(&fs_info->cleanup_work_sem); 4174 } 4175 4176 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4177 { 4178 struct btrfs_ordered_extent *ordered; 4179 4180 spin_lock(&root->ordered_extent_lock); 4181 /* 4182 * This will just short circuit the ordered completion stuff which will 4183 * make sure the ordered extent gets properly cleaned up. 4184 */ 4185 list_for_each_entry(ordered, &root->ordered_extents, 4186 root_extent_list) 4187 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4188 spin_unlock(&root->ordered_extent_lock); 4189 } 4190 4191 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4192 { 4193 struct btrfs_root *root; 4194 struct list_head splice; 4195 4196 INIT_LIST_HEAD(&splice); 4197 4198 spin_lock(&fs_info->ordered_root_lock); 4199 list_splice_init(&fs_info->ordered_roots, &splice); 4200 while (!list_empty(&splice)) { 4201 root = list_first_entry(&splice, struct btrfs_root, 4202 ordered_root); 4203 list_move_tail(&root->ordered_root, 4204 &fs_info->ordered_roots); 4205 4206 spin_unlock(&fs_info->ordered_root_lock); 4207 btrfs_destroy_ordered_extents(root); 4208 4209 cond_resched(); 4210 spin_lock(&fs_info->ordered_root_lock); 4211 } 4212 spin_unlock(&fs_info->ordered_root_lock); 4213 4214 /* 4215 * We need this here because if we've been flipped read-only we won't 4216 * get sync() from the umount, so we need to make sure any ordered 4217 * extents that haven't had their dirty pages IO start writeout yet 4218 * actually get run and error out properly. 4219 */ 4220 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4221 } 4222 4223 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4224 struct btrfs_fs_info *fs_info) 4225 { 4226 struct rb_node *node; 4227 struct btrfs_delayed_ref_root *delayed_refs; 4228 struct btrfs_delayed_ref_node *ref; 4229 int ret = 0; 4230 4231 delayed_refs = &trans->delayed_refs; 4232 4233 spin_lock(&delayed_refs->lock); 4234 if (atomic_read(&delayed_refs->num_entries) == 0) { 4235 spin_unlock(&delayed_refs->lock); 4236 btrfs_info(fs_info, "delayed_refs has NO entry"); 4237 return ret; 4238 } 4239 4240 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4241 struct btrfs_delayed_ref_head *head; 4242 struct rb_node *n; 4243 bool pin_bytes = false; 4244 4245 head = rb_entry(node, struct btrfs_delayed_ref_head, 4246 href_node); 4247 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4248 continue; 4249 4250 spin_lock(&head->lock); 4251 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4252 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4253 ref_node); 4254 ref->in_tree = 0; 4255 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4256 RB_CLEAR_NODE(&ref->ref_node); 4257 if (!list_empty(&ref->add_list)) 4258 list_del(&ref->add_list); 4259 atomic_dec(&delayed_refs->num_entries); 4260 btrfs_put_delayed_ref(ref); 4261 } 4262 if (head->must_insert_reserved) 4263 pin_bytes = true; 4264 btrfs_free_delayed_extent_op(head->extent_op); 4265 btrfs_delete_ref_head(delayed_refs, head); 4266 spin_unlock(&head->lock); 4267 spin_unlock(&delayed_refs->lock); 4268 mutex_unlock(&head->mutex); 4269 4270 if (pin_bytes) 4271 btrfs_pin_extent(fs_info, head->bytenr, 4272 head->num_bytes, 1); 4273 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4274 btrfs_put_delayed_ref_head(head); 4275 cond_resched(); 4276 spin_lock(&delayed_refs->lock); 4277 } 4278 4279 spin_unlock(&delayed_refs->lock); 4280 4281 return ret; 4282 } 4283 4284 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4285 { 4286 struct btrfs_inode *btrfs_inode; 4287 struct list_head splice; 4288 4289 INIT_LIST_HEAD(&splice); 4290 4291 spin_lock(&root->delalloc_lock); 4292 list_splice_init(&root->delalloc_inodes, &splice); 4293 4294 while (!list_empty(&splice)) { 4295 struct inode *inode = NULL; 4296 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4297 delalloc_inodes); 4298 __btrfs_del_delalloc_inode(root, btrfs_inode); 4299 spin_unlock(&root->delalloc_lock); 4300 4301 /* 4302 * Make sure we get a live inode and that it'll not disappear 4303 * meanwhile. 4304 */ 4305 inode = igrab(&btrfs_inode->vfs_inode); 4306 if (inode) { 4307 invalidate_inode_pages2(inode->i_mapping); 4308 iput(inode); 4309 } 4310 spin_lock(&root->delalloc_lock); 4311 } 4312 spin_unlock(&root->delalloc_lock); 4313 } 4314 4315 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4316 { 4317 struct btrfs_root *root; 4318 struct list_head splice; 4319 4320 INIT_LIST_HEAD(&splice); 4321 4322 spin_lock(&fs_info->delalloc_root_lock); 4323 list_splice_init(&fs_info->delalloc_roots, &splice); 4324 while (!list_empty(&splice)) { 4325 root = list_first_entry(&splice, struct btrfs_root, 4326 delalloc_root); 4327 root = btrfs_grab_fs_root(root); 4328 BUG_ON(!root); 4329 spin_unlock(&fs_info->delalloc_root_lock); 4330 4331 btrfs_destroy_delalloc_inodes(root); 4332 btrfs_put_fs_root(root); 4333 4334 spin_lock(&fs_info->delalloc_root_lock); 4335 } 4336 spin_unlock(&fs_info->delalloc_root_lock); 4337 } 4338 4339 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4340 struct extent_io_tree *dirty_pages, 4341 int mark) 4342 { 4343 int ret; 4344 struct extent_buffer *eb; 4345 u64 start = 0; 4346 u64 end; 4347 4348 while (1) { 4349 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4350 mark, NULL); 4351 if (ret) 4352 break; 4353 4354 clear_extent_bits(dirty_pages, start, end, mark); 4355 while (start <= end) { 4356 eb = find_extent_buffer(fs_info, start); 4357 start += fs_info->nodesize; 4358 if (!eb) 4359 continue; 4360 wait_on_extent_buffer_writeback(eb); 4361 4362 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4363 &eb->bflags)) 4364 clear_extent_buffer_dirty(eb); 4365 free_extent_buffer_stale(eb); 4366 } 4367 } 4368 4369 return ret; 4370 } 4371 4372 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4373 struct extent_io_tree *pinned_extents) 4374 { 4375 struct extent_io_tree *unpin; 4376 u64 start; 4377 u64 end; 4378 int ret; 4379 bool loop = true; 4380 4381 unpin = pinned_extents; 4382 again: 4383 while (1) { 4384 struct extent_state *cached_state = NULL; 4385 4386 /* 4387 * The btrfs_finish_extent_commit() may get the same range as 4388 * ours between find_first_extent_bit and clear_extent_dirty. 4389 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4390 * the same extent range. 4391 */ 4392 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4393 ret = find_first_extent_bit(unpin, 0, &start, &end, 4394 EXTENT_DIRTY, &cached_state); 4395 if (ret) { 4396 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4397 break; 4398 } 4399 4400 clear_extent_dirty(unpin, start, end, &cached_state); 4401 free_extent_state(cached_state); 4402 btrfs_error_unpin_extent_range(fs_info, start, end); 4403 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4404 cond_resched(); 4405 } 4406 4407 if (loop) { 4408 if (unpin == &fs_info->freed_extents[0]) 4409 unpin = &fs_info->freed_extents[1]; 4410 else 4411 unpin = &fs_info->freed_extents[0]; 4412 loop = false; 4413 goto again; 4414 } 4415 4416 return 0; 4417 } 4418 4419 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4420 { 4421 struct inode *inode; 4422 4423 inode = cache->io_ctl.inode; 4424 if (inode) { 4425 invalidate_inode_pages2(inode->i_mapping); 4426 BTRFS_I(inode)->generation = 0; 4427 cache->io_ctl.inode = NULL; 4428 iput(inode); 4429 } 4430 btrfs_put_block_group(cache); 4431 } 4432 4433 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4434 struct btrfs_fs_info *fs_info) 4435 { 4436 struct btrfs_block_group *cache; 4437 4438 spin_lock(&cur_trans->dirty_bgs_lock); 4439 while (!list_empty(&cur_trans->dirty_bgs)) { 4440 cache = list_first_entry(&cur_trans->dirty_bgs, 4441 struct btrfs_block_group, 4442 dirty_list); 4443 4444 if (!list_empty(&cache->io_list)) { 4445 spin_unlock(&cur_trans->dirty_bgs_lock); 4446 list_del_init(&cache->io_list); 4447 btrfs_cleanup_bg_io(cache); 4448 spin_lock(&cur_trans->dirty_bgs_lock); 4449 } 4450 4451 list_del_init(&cache->dirty_list); 4452 spin_lock(&cache->lock); 4453 cache->disk_cache_state = BTRFS_DC_ERROR; 4454 spin_unlock(&cache->lock); 4455 4456 spin_unlock(&cur_trans->dirty_bgs_lock); 4457 btrfs_put_block_group(cache); 4458 btrfs_delayed_refs_rsv_release(fs_info, 1); 4459 spin_lock(&cur_trans->dirty_bgs_lock); 4460 } 4461 spin_unlock(&cur_trans->dirty_bgs_lock); 4462 4463 /* 4464 * Refer to the definition of io_bgs member for details why it's safe 4465 * to use it without any locking 4466 */ 4467 while (!list_empty(&cur_trans->io_bgs)) { 4468 cache = list_first_entry(&cur_trans->io_bgs, 4469 struct btrfs_block_group, 4470 io_list); 4471 4472 list_del_init(&cache->io_list); 4473 spin_lock(&cache->lock); 4474 cache->disk_cache_state = BTRFS_DC_ERROR; 4475 spin_unlock(&cache->lock); 4476 btrfs_cleanup_bg_io(cache); 4477 } 4478 } 4479 4480 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4481 struct btrfs_fs_info *fs_info) 4482 { 4483 struct btrfs_device *dev, *tmp; 4484 4485 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4486 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4487 ASSERT(list_empty(&cur_trans->io_bgs)); 4488 4489 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4490 post_commit_list) { 4491 list_del_init(&dev->post_commit_list); 4492 } 4493 4494 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4495 4496 cur_trans->state = TRANS_STATE_COMMIT_START; 4497 wake_up(&fs_info->transaction_blocked_wait); 4498 4499 cur_trans->state = TRANS_STATE_UNBLOCKED; 4500 wake_up(&fs_info->transaction_wait); 4501 4502 btrfs_destroy_delayed_inodes(fs_info); 4503 btrfs_assert_delayed_root_empty(fs_info); 4504 4505 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4506 EXTENT_DIRTY); 4507 btrfs_destroy_pinned_extent(fs_info, 4508 fs_info->pinned_extents); 4509 4510 cur_trans->state =TRANS_STATE_COMPLETED; 4511 wake_up(&cur_trans->commit_wait); 4512 } 4513 4514 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4515 { 4516 struct btrfs_transaction *t; 4517 4518 mutex_lock(&fs_info->transaction_kthread_mutex); 4519 4520 spin_lock(&fs_info->trans_lock); 4521 while (!list_empty(&fs_info->trans_list)) { 4522 t = list_first_entry(&fs_info->trans_list, 4523 struct btrfs_transaction, list); 4524 if (t->state >= TRANS_STATE_COMMIT_START) { 4525 refcount_inc(&t->use_count); 4526 spin_unlock(&fs_info->trans_lock); 4527 btrfs_wait_for_commit(fs_info, t->transid); 4528 btrfs_put_transaction(t); 4529 spin_lock(&fs_info->trans_lock); 4530 continue; 4531 } 4532 if (t == fs_info->running_transaction) { 4533 t->state = TRANS_STATE_COMMIT_DOING; 4534 spin_unlock(&fs_info->trans_lock); 4535 /* 4536 * We wait for 0 num_writers since we don't hold a trans 4537 * handle open currently for this transaction. 4538 */ 4539 wait_event(t->writer_wait, 4540 atomic_read(&t->num_writers) == 0); 4541 } else { 4542 spin_unlock(&fs_info->trans_lock); 4543 } 4544 btrfs_cleanup_one_transaction(t, fs_info); 4545 4546 spin_lock(&fs_info->trans_lock); 4547 if (t == fs_info->running_transaction) 4548 fs_info->running_transaction = NULL; 4549 list_del_init(&t->list); 4550 spin_unlock(&fs_info->trans_lock); 4551 4552 btrfs_put_transaction(t); 4553 trace_btrfs_transaction_commit(fs_info->tree_root); 4554 spin_lock(&fs_info->trans_lock); 4555 } 4556 spin_unlock(&fs_info->trans_lock); 4557 btrfs_destroy_all_ordered_extents(fs_info); 4558 btrfs_destroy_delayed_inodes(fs_info); 4559 btrfs_assert_delayed_root_empty(fs_info); 4560 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4561 btrfs_destroy_all_delalloc_inodes(fs_info); 4562 mutex_unlock(&fs_info->transaction_kthread_mutex); 4563 4564 return 0; 4565 } 4566 4567 static const struct extent_io_ops btree_extent_io_ops = { 4568 /* mandatory callbacks */ 4569 .submit_bio_hook = btree_submit_bio_hook, 4570 .readpage_end_io_hook = btree_readpage_end_io_hook, 4571 }; 4572